xref: /openbmc/linux/kernel/sched/fair.c (revision 54a611b6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 
51 #include <asm/switch_to.h>
52 
53 #include <linux/sched/cond_resched.h>
54 
55 #include "sched.h"
56 #include "stats.h"
57 #include "autogroup.h"
58 
59 /*
60  * Targeted preemption latency for CPU-bound tasks:
61  *
62  * NOTE: this latency value is not the same as the concept of
63  * 'timeslice length' - timeslices in CFS are of variable length
64  * and have no persistent notion like in traditional, time-slice
65  * based scheduling concepts.
66  *
67  * (to see the precise effective timeslice length of your workload,
68  *  run vmstat and monitor the context-switches (cs) field)
69  *
70  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
71  */
72 unsigned int sysctl_sched_latency			= 6000000ULL;
73 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
74 
75 /*
76  * The initial- and re-scaling of tunables is configurable
77  *
78  * Options are:
79  *
80  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
81  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
82  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
83  *
84  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
85  */
86 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
87 
88 /*
89  * Minimal preemption granularity for CPU-bound tasks:
90  *
91  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
92  */
93 unsigned int sysctl_sched_min_granularity			= 750000ULL;
94 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
95 
96 /*
97  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
98  * Applies only when SCHED_IDLE tasks compete with normal tasks.
99  *
100  * (default: 0.75 msec)
101  */
102 unsigned int sysctl_sched_idle_min_granularity			= 750000ULL;
103 
104 /*
105  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
106  */
107 static unsigned int sched_nr_latency = 8;
108 
109 /*
110  * After fork, child runs first. If set to 0 (default) then
111  * parent will (try to) run first.
112  */
113 unsigned int sysctl_sched_child_runs_first __read_mostly;
114 
115 /*
116  * SCHED_OTHER wake-up granularity.
117  *
118  * This option delays the preemption effects of decoupled workloads
119  * and reduces their over-scheduling. Synchronous workloads will still
120  * have immediate wakeup/sleep latencies.
121  *
122  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
123  */
124 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
125 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
126 
127 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
128 
129 int sched_thermal_decay_shift;
130 static int __init setup_sched_thermal_decay_shift(char *str)
131 {
132 	int _shift = 0;
133 
134 	if (kstrtoint(str, 0, &_shift))
135 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
136 
137 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
138 	return 1;
139 }
140 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
141 
142 #ifdef CONFIG_SMP
143 /*
144  * For asym packing, by default the lower numbered CPU has higher priority.
145  */
146 int __weak arch_asym_cpu_priority(int cpu)
147 {
148 	return -cpu;
149 }
150 
151 /*
152  * The margin used when comparing utilization with CPU capacity.
153  *
154  * (default: ~20%)
155  */
156 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
157 
158 /*
159  * The margin used when comparing CPU capacities.
160  * is 'cap1' noticeably greater than 'cap2'
161  *
162  * (default: ~5%)
163  */
164 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
165 #endif
166 
167 #ifdef CONFIG_CFS_BANDWIDTH
168 /*
169  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
170  * each time a cfs_rq requests quota.
171  *
172  * Note: in the case that the slice exceeds the runtime remaining (either due
173  * to consumption or the quota being specified to be smaller than the slice)
174  * we will always only issue the remaining available time.
175  *
176  * (default: 5 msec, units: microseconds)
177  */
178 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
179 #endif
180 
181 #ifdef CONFIG_SYSCTL
182 static struct ctl_table sched_fair_sysctls[] = {
183 	{
184 		.procname       = "sched_child_runs_first",
185 		.data           = &sysctl_sched_child_runs_first,
186 		.maxlen         = sizeof(unsigned int),
187 		.mode           = 0644,
188 		.proc_handler   = proc_dointvec,
189 	},
190 #ifdef CONFIG_CFS_BANDWIDTH
191 	{
192 		.procname       = "sched_cfs_bandwidth_slice_us",
193 		.data           = &sysctl_sched_cfs_bandwidth_slice,
194 		.maxlen         = sizeof(unsigned int),
195 		.mode           = 0644,
196 		.proc_handler   = proc_dointvec_minmax,
197 		.extra1         = SYSCTL_ONE,
198 	},
199 #endif
200 	{}
201 };
202 
203 static int __init sched_fair_sysctl_init(void)
204 {
205 	register_sysctl_init("kernel", sched_fair_sysctls);
206 	return 0;
207 }
208 late_initcall(sched_fair_sysctl_init);
209 #endif
210 
211 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
212 {
213 	lw->weight += inc;
214 	lw->inv_weight = 0;
215 }
216 
217 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
218 {
219 	lw->weight -= dec;
220 	lw->inv_weight = 0;
221 }
222 
223 static inline void update_load_set(struct load_weight *lw, unsigned long w)
224 {
225 	lw->weight = w;
226 	lw->inv_weight = 0;
227 }
228 
229 /*
230  * Increase the granularity value when there are more CPUs,
231  * because with more CPUs the 'effective latency' as visible
232  * to users decreases. But the relationship is not linear,
233  * so pick a second-best guess by going with the log2 of the
234  * number of CPUs.
235  *
236  * This idea comes from the SD scheduler of Con Kolivas:
237  */
238 static unsigned int get_update_sysctl_factor(void)
239 {
240 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
241 	unsigned int factor;
242 
243 	switch (sysctl_sched_tunable_scaling) {
244 	case SCHED_TUNABLESCALING_NONE:
245 		factor = 1;
246 		break;
247 	case SCHED_TUNABLESCALING_LINEAR:
248 		factor = cpus;
249 		break;
250 	case SCHED_TUNABLESCALING_LOG:
251 	default:
252 		factor = 1 + ilog2(cpus);
253 		break;
254 	}
255 
256 	return factor;
257 }
258 
259 static void update_sysctl(void)
260 {
261 	unsigned int factor = get_update_sysctl_factor();
262 
263 #define SET_SYSCTL(name) \
264 	(sysctl_##name = (factor) * normalized_sysctl_##name)
265 	SET_SYSCTL(sched_min_granularity);
266 	SET_SYSCTL(sched_latency);
267 	SET_SYSCTL(sched_wakeup_granularity);
268 #undef SET_SYSCTL
269 }
270 
271 void __init sched_init_granularity(void)
272 {
273 	update_sysctl();
274 }
275 
276 #define WMULT_CONST	(~0U)
277 #define WMULT_SHIFT	32
278 
279 static void __update_inv_weight(struct load_weight *lw)
280 {
281 	unsigned long w;
282 
283 	if (likely(lw->inv_weight))
284 		return;
285 
286 	w = scale_load_down(lw->weight);
287 
288 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
289 		lw->inv_weight = 1;
290 	else if (unlikely(!w))
291 		lw->inv_weight = WMULT_CONST;
292 	else
293 		lw->inv_weight = WMULT_CONST / w;
294 }
295 
296 /*
297  * delta_exec * weight / lw.weight
298  *   OR
299  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
300  *
301  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
302  * we're guaranteed shift stays positive because inv_weight is guaranteed to
303  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
304  *
305  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
306  * weight/lw.weight <= 1, and therefore our shift will also be positive.
307  */
308 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
309 {
310 	u64 fact = scale_load_down(weight);
311 	u32 fact_hi = (u32)(fact >> 32);
312 	int shift = WMULT_SHIFT;
313 	int fs;
314 
315 	__update_inv_weight(lw);
316 
317 	if (unlikely(fact_hi)) {
318 		fs = fls(fact_hi);
319 		shift -= fs;
320 		fact >>= fs;
321 	}
322 
323 	fact = mul_u32_u32(fact, lw->inv_weight);
324 
325 	fact_hi = (u32)(fact >> 32);
326 	if (fact_hi) {
327 		fs = fls(fact_hi);
328 		shift -= fs;
329 		fact >>= fs;
330 	}
331 
332 	return mul_u64_u32_shr(delta_exec, fact, shift);
333 }
334 
335 
336 const struct sched_class fair_sched_class;
337 
338 /**************************************************************
339  * CFS operations on generic schedulable entities:
340  */
341 
342 #ifdef CONFIG_FAIR_GROUP_SCHED
343 
344 /* Walk up scheduling entities hierarchy */
345 #define for_each_sched_entity(se) \
346 		for (; se; se = se->parent)
347 
348 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
349 {
350 	struct rq *rq = rq_of(cfs_rq);
351 	int cpu = cpu_of(rq);
352 
353 	if (cfs_rq->on_list)
354 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
355 
356 	cfs_rq->on_list = 1;
357 
358 	/*
359 	 * Ensure we either appear before our parent (if already
360 	 * enqueued) or force our parent to appear after us when it is
361 	 * enqueued. The fact that we always enqueue bottom-up
362 	 * reduces this to two cases and a special case for the root
363 	 * cfs_rq. Furthermore, it also means that we will always reset
364 	 * tmp_alone_branch either when the branch is connected
365 	 * to a tree or when we reach the top of the tree
366 	 */
367 	if (cfs_rq->tg->parent &&
368 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
369 		/*
370 		 * If parent is already on the list, we add the child
371 		 * just before. Thanks to circular linked property of
372 		 * the list, this means to put the child at the tail
373 		 * of the list that starts by parent.
374 		 */
375 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
376 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
377 		/*
378 		 * The branch is now connected to its tree so we can
379 		 * reset tmp_alone_branch to the beginning of the
380 		 * list.
381 		 */
382 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
383 		return true;
384 	}
385 
386 	if (!cfs_rq->tg->parent) {
387 		/*
388 		 * cfs rq without parent should be put
389 		 * at the tail of the list.
390 		 */
391 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
392 			&rq->leaf_cfs_rq_list);
393 		/*
394 		 * We have reach the top of a tree so we can reset
395 		 * tmp_alone_branch to the beginning of the list.
396 		 */
397 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
398 		return true;
399 	}
400 
401 	/*
402 	 * The parent has not already been added so we want to
403 	 * make sure that it will be put after us.
404 	 * tmp_alone_branch points to the begin of the branch
405 	 * where we will add parent.
406 	 */
407 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
408 	/*
409 	 * update tmp_alone_branch to points to the new begin
410 	 * of the branch
411 	 */
412 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
413 	return false;
414 }
415 
416 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417 {
418 	if (cfs_rq->on_list) {
419 		struct rq *rq = rq_of(cfs_rq);
420 
421 		/*
422 		 * With cfs_rq being unthrottled/throttled during an enqueue,
423 		 * it can happen the tmp_alone_branch points the a leaf that
424 		 * we finally want to del. In this case, tmp_alone_branch moves
425 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
426 		 * at the end of the enqueue.
427 		 */
428 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
429 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
430 
431 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
432 		cfs_rq->on_list = 0;
433 	}
434 }
435 
436 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
437 {
438 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
439 }
440 
441 /* Iterate thr' all leaf cfs_rq's on a runqueue */
442 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
443 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
444 				 leaf_cfs_rq_list)
445 
446 /* Do the two (enqueued) entities belong to the same group ? */
447 static inline struct cfs_rq *
448 is_same_group(struct sched_entity *se, struct sched_entity *pse)
449 {
450 	if (se->cfs_rq == pse->cfs_rq)
451 		return se->cfs_rq;
452 
453 	return NULL;
454 }
455 
456 static inline struct sched_entity *parent_entity(struct sched_entity *se)
457 {
458 	return se->parent;
459 }
460 
461 static void
462 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
463 {
464 	int se_depth, pse_depth;
465 
466 	/*
467 	 * preemption test can be made between sibling entities who are in the
468 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
469 	 * both tasks until we find their ancestors who are siblings of common
470 	 * parent.
471 	 */
472 
473 	/* First walk up until both entities are at same depth */
474 	se_depth = (*se)->depth;
475 	pse_depth = (*pse)->depth;
476 
477 	while (se_depth > pse_depth) {
478 		se_depth--;
479 		*se = parent_entity(*se);
480 	}
481 
482 	while (pse_depth > se_depth) {
483 		pse_depth--;
484 		*pse = parent_entity(*pse);
485 	}
486 
487 	while (!is_same_group(*se, *pse)) {
488 		*se = parent_entity(*se);
489 		*pse = parent_entity(*pse);
490 	}
491 }
492 
493 static int tg_is_idle(struct task_group *tg)
494 {
495 	return tg->idle > 0;
496 }
497 
498 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
499 {
500 	return cfs_rq->idle > 0;
501 }
502 
503 static int se_is_idle(struct sched_entity *se)
504 {
505 	if (entity_is_task(se))
506 		return task_has_idle_policy(task_of(se));
507 	return cfs_rq_is_idle(group_cfs_rq(se));
508 }
509 
510 #else	/* !CONFIG_FAIR_GROUP_SCHED */
511 
512 #define for_each_sched_entity(se) \
513 		for (; se; se = NULL)
514 
515 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
516 {
517 	return true;
518 }
519 
520 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
521 {
522 }
523 
524 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
525 {
526 }
527 
528 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
529 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
530 
531 static inline struct sched_entity *parent_entity(struct sched_entity *se)
532 {
533 	return NULL;
534 }
535 
536 static inline void
537 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
538 {
539 }
540 
541 static inline int tg_is_idle(struct task_group *tg)
542 {
543 	return 0;
544 }
545 
546 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
547 {
548 	return 0;
549 }
550 
551 static int se_is_idle(struct sched_entity *se)
552 {
553 	return 0;
554 }
555 
556 #endif	/* CONFIG_FAIR_GROUP_SCHED */
557 
558 static __always_inline
559 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
560 
561 /**************************************************************
562  * Scheduling class tree data structure manipulation methods:
563  */
564 
565 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
566 {
567 	s64 delta = (s64)(vruntime - max_vruntime);
568 	if (delta > 0)
569 		max_vruntime = vruntime;
570 
571 	return max_vruntime;
572 }
573 
574 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
575 {
576 	s64 delta = (s64)(vruntime - min_vruntime);
577 	if (delta < 0)
578 		min_vruntime = vruntime;
579 
580 	return min_vruntime;
581 }
582 
583 static inline bool entity_before(struct sched_entity *a,
584 				struct sched_entity *b)
585 {
586 	return (s64)(a->vruntime - b->vruntime) < 0;
587 }
588 
589 #define __node_2_se(node) \
590 	rb_entry((node), struct sched_entity, run_node)
591 
592 static void update_min_vruntime(struct cfs_rq *cfs_rq)
593 {
594 	struct sched_entity *curr = cfs_rq->curr;
595 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
596 
597 	u64 vruntime = cfs_rq->min_vruntime;
598 
599 	if (curr) {
600 		if (curr->on_rq)
601 			vruntime = curr->vruntime;
602 		else
603 			curr = NULL;
604 	}
605 
606 	if (leftmost) { /* non-empty tree */
607 		struct sched_entity *se = __node_2_se(leftmost);
608 
609 		if (!curr)
610 			vruntime = se->vruntime;
611 		else
612 			vruntime = min_vruntime(vruntime, se->vruntime);
613 	}
614 
615 	/* ensure we never gain time by being placed backwards. */
616 	u64_u32_store(cfs_rq->min_vruntime,
617 		      max_vruntime(cfs_rq->min_vruntime, vruntime));
618 }
619 
620 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
621 {
622 	return entity_before(__node_2_se(a), __node_2_se(b));
623 }
624 
625 /*
626  * Enqueue an entity into the rb-tree:
627  */
628 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
629 {
630 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
631 }
632 
633 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
634 {
635 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
636 }
637 
638 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
639 {
640 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
641 
642 	if (!left)
643 		return NULL;
644 
645 	return __node_2_se(left);
646 }
647 
648 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
649 {
650 	struct rb_node *next = rb_next(&se->run_node);
651 
652 	if (!next)
653 		return NULL;
654 
655 	return __node_2_se(next);
656 }
657 
658 #ifdef CONFIG_SCHED_DEBUG
659 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
660 {
661 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
662 
663 	if (!last)
664 		return NULL;
665 
666 	return __node_2_se(last);
667 }
668 
669 /**************************************************************
670  * Scheduling class statistics methods:
671  */
672 
673 int sched_update_scaling(void)
674 {
675 	unsigned int factor = get_update_sysctl_factor();
676 
677 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
678 					sysctl_sched_min_granularity);
679 
680 #define WRT_SYSCTL(name) \
681 	(normalized_sysctl_##name = sysctl_##name / (factor))
682 	WRT_SYSCTL(sched_min_granularity);
683 	WRT_SYSCTL(sched_latency);
684 	WRT_SYSCTL(sched_wakeup_granularity);
685 #undef WRT_SYSCTL
686 
687 	return 0;
688 }
689 #endif
690 
691 /*
692  * delta /= w
693  */
694 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
695 {
696 	if (unlikely(se->load.weight != NICE_0_LOAD))
697 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
698 
699 	return delta;
700 }
701 
702 /*
703  * The idea is to set a period in which each task runs once.
704  *
705  * When there are too many tasks (sched_nr_latency) we have to stretch
706  * this period because otherwise the slices get too small.
707  *
708  * p = (nr <= nl) ? l : l*nr/nl
709  */
710 static u64 __sched_period(unsigned long nr_running)
711 {
712 	if (unlikely(nr_running > sched_nr_latency))
713 		return nr_running * sysctl_sched_min_granularity;
714 	else
715 		return sysctl_sched_latency;
716 }
717 
718 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
719 
720 /*
721  * We calculate the wall-time slice from the period by taking a part
722  * proportional to the weight.
723  *
724  * s = p*P[w/rw]
725  */
726 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
727 {
728 	unsigned int nr_running = cfs_rq->nr_running;
729 	struct sched_entity *init_se = se;
730 	unsigned int min_gran;
731 	u64 slice;
732 
733 	if (sched_feat(ALT_PERIOD))
734 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
735 
736 	slice = __sched_period(nr_running + !se->on_rq);
737 
738 	for_each_sched_entity(se) {
739 		struct load_weight *load;
740 		struct load_weight lw;
741 		struct cfs_rq *qcfs_rq;
742 
743 		qcfs_rq = cfs_rq_of(se);
744 		load = &qcfs_rq->load;
745 
746 		if (unlikely(!se->on_rq)) {
747 			lw = qcfs_rq->load;
748 
749 			update_load_add(&lw, se->load.weight);
750 			load = &lw;
751 		}
752 		slice = __calc_delta(slice, se->load.weight, load);
753 	}
754 
755 	if (sched_feat(BASE_SLICE)) {
756 		if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
757 			min_gran = sysctl_sched_idle_min_granularity;
758 		else
759 			min_gran = sysctl_sched_min_granularity;
760 
761 		slice = max_t(u64, slice, min_gran);
762 	}
763 
764 	return slice;
765 }
766 
767 /*
768  * We calculate the vruntime slice of a to-be-inserted task.
769  *
770  * vs = s/w
771  */
772 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
773 {
774 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
775 }
776 
777 #include "pelt.h"
778 #ifdef CONFIG_SMP
779 
780 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
781 static unsigned long task_h_load(struct task_struct *p);
782 static unsigned long capacity_of(int cpu);
783 
784 /* Give new sched_entity start runnable values to heavy its load in infant time */
785 void init_entity_runnable_average(struct sched_entity *se)
786 {
787 	struct sched_avg *sa = &se->avg;
788 
789 	memset(sa, 0, sizeof(*sa));
790 
791 	/*
792 	 * Tasks are initialized with full load to be seen as heavy tasks until
793 	 * they get a chance to stabilize to their real load level.
794 	 * Group entities are initialized with zero load to reflect the fact that
795 	 * nothing has been attached to the task group yet.
796 	 */
797 	if (entity_is_task(se))
798 		sa->load_avg = scale_load_down(se->load.weight);
799 
800 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
801 }
802 
803 static void attach_entity_cfs_rq(struct sched_entity *se);
804 
805 /*
806  * With new tasks being created, their initial util_avgs are extrapolated
807  * based on the cfs_rq's current util_avg:
808  *
809  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
810  *
811  * However, in many cases, the above util_avg does not give a desired
812  * value. Moreover, the sum of the util_avgs may be divergent, such
813  * as when the series is a harmonic series.
814  *
815  * To solve this problem, we also cap the util_avg of successive tasks to
816  * only 1/2 of the left utilization budget:
817  *
818  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
819  *
820  * where n denotes the nth task and cpu_scale the CPU capacity.
821  *
822  * For example, for a CPU with 1024 of capacity, a simplest series from
823  * the beginning would be like:
824  *
825  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
826  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
827  *
828  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
829  * if util_avg > util_avg_cap.
830  */
831 void post_init_entity_util_avg(struct task_struct *p)
832 {
833 	struct sched_entity *se = &p->se;
834 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
835 	struct sched_avg *sa = &se->avg;
836 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
837 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
838 
839 	if (cap > 0) {
840 		if (cfs_rq->avg.util_avg != 0) {
841 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
842 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
843 
844 			if (sa->util_avg > cap)
845 				sa->util_avg = cap;
846 		} else {
847 			sa->util_avg = cap;
848 		}
849 	}
850 
851 	sa->runnable_avg = sa->util_avg;
852 
853 	if (p->sched_class != &fair_sched_class) {
854 		/*
855 		 * For !fair tasks do:
856 		 *
857 		update_cfs_rq_load_avg(now, cfs_rq);
858 		attach_entity_load_avg(cfs_rq, se);
859 		switched_from_fair(rq, p);
860 		 *
861 		 * such that the next switched_to_fair() has the
862 		 * expected state.
863 		 */
864 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
865 		return;
866 	}
867 
868 	attach_entity_cfs_rq(se);
869 }
870 
871 #else /* !CONFIG_SMP */
872 void init_entity_runnable_average(struct sched_entity *se)
873 {
874 }
875 void post_init_entity_util_avg(struct task_struct *p)
876 {
877 }
878 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
879 {
880 }
881 #endif /* CONFIG_SMP */
882 
883 /*
884  * Update the current task's runtime statistics.
885  */
886 static void update_curr(struct cfs_rq *cfs_rq)
887 {
888 	struct sched_entity *curr = cfs_rq->curr;
889 	u64 now = rq_clock_task(rq_of(cfs_rq));
890 	u64 delta_exec;
891 
892 	if (unlikely(!curr))
893 		return;
894 
895 	delta_exec = now - curr->exec_start;
896 	if (unlikely((s64)delta_exec <= 0))
897 		return;
898 
899 	curr->exec_start = now;
900 
901 	if (schedstat_enabled()) {
902 		struct sched_statistics *stats;
903 
904 		stats = __schedstats_from_se(curr);
905 		__schedstat_set(stats->exec_max,
906 				max(delta_exec, stats->exec_max));
907 	}
908 
909 	curr->sum_exec_runtime += delta_exec;
910 	schedstat_add(cfs_rq->exec_clock, delta_exec);
911 
912 	curr->vruntime += calc_delta_fair(delta_exec, curr);
913 	update_min_vruntime(cfs_rq);
914 
915 	if (entity_is_task(curr)) {
916 		struct task_struct *curtask = task_of(curr);
917 
918 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
919 		cgroup_account_cputime(curtask, delta_exec);
920 		account_group_exec_runtime(curtask, delta_exec);
921 	}
922 
923 	account_cfs_rq_runtime(cfs_rq, delta_exec);
924 }
925 
926 static void update_curr_fair(struct rq *rq)
927 {
928 	update_curr(cfs_rq_of(&rq->curr->se));
929 }
930 
931 static inline void
932 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
933 {
934 	struct sched_statistics *stats;
935 	struct task_struct *p = NULL;
936 
937 	if (!schedstat_enabled())
938 		return;
939 
940 	stats = __schedstats_from_se(se);
941 
942 	if (entity_is_task(se))
943 		p = task_of(se);
944 
945 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
946 }
947 
948 static inline void
949 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
950 {
951 	struct sched_statistics *stats;
952 	struct task_struct *p = NULL;
953 
954 	if (!schedstat_enabled())
955 		return;
956 
957 	stats = __schedstats_from_se(se);
958 
959 	/*
960 	 * When the sched_schedstat changes from 0 to 1, some sched se
961 	 * maybe already in the runqueue, the se->statistics.wait_start
962 	 * will be 0.So it will let the delta wrong. We need to avoid this
963 	 * scenario.
964 	 */
965 	if (unlikely(!schedstat_val(stats->wait_start)))
966 		return;
967 
968 	if (entity_is_task(se))
969 		p = task_of(se);
970 
971 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
972 }
973 
974 static inline void
975 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
976 {
977 	struct sched_statistics *stats;
978 	struct task_struct *tsk = NULL;
979 
980 	if (!schedstat_enabled())
981 		return;
982 
983 	stats = __schedstats_from_se(se);
984 
985 	if (entity_is_task(se))
986 		tsk = task_of(se);
987 
988 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
989 }
990 
991 /*
992  * Task is being enqueued - update stats:
993  */
994 static inline void
995 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
996 {
997 	if (!schedstat_enabled())
998 		return;
999 
1000 	/*
1001 	 * Are we enqueueing a waiting task? (for current tasks
1002 	 * a dequeue/enqueue event is a NOP)
1003 	 */
1004 	if (se != cfs_rq->curr)
1005 		update_stats_wait_start_fair(cfs_rq, se);
1006 
1007 	if (flags & ENQUEUE_WAKEUP)
1008 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1009 }
1010 
1011 static inline void
1012 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1013 {
1014 
1015 	if (!schedstat_enabled())
1016 		return;
1017 
1018 	/*
1019 	 * Mark the end of the wait period if dequeueing a
1020 	 * waiting task:
1021 	 */
1022 	if (se != cfs_rq->curr)
1023 		update_stats_wait_end_fair(cfs_rq, se);
1024 
1025 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1026 		struct task_struct *tsk = task_of(se);
1027 		unsigned int state;
1028 
1029 		/* XXX racy against TTWU */
1030 		state = READ_ONCE(tsk->__state);
1031 		if (state & TASK_INTERRUPTIBLE)
1032 			__schedstat_set(tsk->stats.sleep_start,
1033 				      rq_clock(rq_of(cfs_rq)));
1034 		if (state & TASK_UNINTERRUPTIBLE)
1035 			__schedstat_set(tsk->stats.block_start,
1036 				      rq_clock(rq_of(cfs_rq)));
1037 	}
1038 }
1039 
1040 /*
1041  * We are picking a new current task - update its stats:
1042  */
1043 static inline void
1044 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1045 {
1046 	/*
1047 	 * We are starting a new run period:
1048 	 */
1049 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1050 }
1051 
1052 /**************************************************
1053  * Scheduling class queueing methods:
1054  */
1055 
1056 #ifdef CONFIG_NUMA
1057 #define NUMA_IMBALANCE_MIN 2
1058 
1059 static inline long
1060 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1061 {
1062 	/*
1063 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1064 	 * threshold. Above this threshold, individual tasks may be contending
1065 	 * for both memory bandwidth and any shared HT resources.  This is an
1066 	 * approximation as the number of running tasks may not be related to
1067 	 * the number of busy CPUs due to sched_setaffinity.
1068 	 */
1069 	if (dst_running > imb_numa_nr)
1070 		return imbalance;
1071 
1072 	/*
1073 	 * Allow a small imbalance based on a simple pair of communicating
1074 	 * tasks that remain local when the destination is lightly loaded.
1075 	 */
1076 	if (imbalance <= NUMA_IMBALANCE_MIN)
1077 		return 0;
1078 
1079 	return imbalance;
1080 }
1081 #endif /* CONFIG_NUMA */
1082 
1083 #ifdef CONFIG_NUMA_BALANCING
1084 /*
1085  * Approximate time to scan a full NUMA task in ms. The task scan period is
1086  * calculated based on the tasks virtual memory size and
1087  * numa_balancing_scan_size.
1088  */
1089 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1090 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1091 
1092 /* Portion of address space to scan in MB */
1093 unsigned int sysctl_numa_balancing_scan_size = 256;
1094 
1095 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1096 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1097 
1098 /* The page with hint page fault latency < threshold in ms is considered hot */
1099 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1100 
1101 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
1102 unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
1103 
1104 struct numa_group {
1105 	refcount_t refcount;
1106 
1107 	spinlock_t lock; /* nr_tasks, tasks */
1108 	int nr_tasks;
1109 	pid_t gid;
1110 	int active_nodes;
1111 
1112 	struct rcu_head rcu;
1113 	unsigned long total_faults;
1114 	unsigned long max_faults_cpu;
1115 	/*
1116 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1117 	 *
1118 	 * Faults_cpu is used to decide whether memory should move
1119 	 * towards the CPU. As a consequence, these stats are weighted
1120 	 * more by CPU use than by memory faults.
1121 	 */
1122 	unsigned long faults[];
1123 };
1124 
1125 /*
1126  * For functions that can be called in multiple contexts that permit reading
1127  * ->numa_group (see struct task_struct for locking rules).
1128  */
1129 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1130 {
1131 	return rcu_dereference_check(p->numa_group, p == current ||
1132 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1133 }
1134 
1135 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1136 {
1137 	return rcu_dereference_protected(p->numa_group, p == current);
1138 }
1139 
1140 static inline unsigned long group_faults_priv(struct numa_group *ng);
1141 static inline unsigned long group_faults_shared(struct numa_group *ng);
1142 
1143 static unsigned int task_nr_scan_windows(struct task_struct *p)
1144 {
1145 	unsigned long rss = 0;
1146 	unsigned long nr_scan_pages;
1147 
1148 	/*
1149 	 * Calculations based on RSS as non-present and empty pages are skipped
1150 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1151 	 * on resident pages
1152 	 */
1153 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1154 	rss = get_mm_rss(p->mm);
1155 	if (!rss)
1156 		rss = nr_scan_pages;
1157 
1158 	rss = round_up(rss, nr_scan_pages);
1159 	return rss / nr_scan_pages;
1160 }
1161 
1162 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1163 #define MAX_SCAN_WINDOW 2560
1164 
1165 static unsigned int task_scan_min(struct task_struct *p)
1166 {
1167 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1168 	unsigned int scan, floor;
1169 	unsigned int windows = 1;
1170 
1171 	if (scan_size < MAX_SCAN_WINDOW)
1172 		windows = MAX_SCAN_WINDOW / scan_size;
1173 	floor = 1000 / windows;
1174 
1175 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1176 	return max_t(unsigned int, floor, scan);
1177 }
1178 
1179 static unsigned int task_scan_start(struct task_struct *p)
1180 {
1181 	unsigned long smin = task_scan_min(p);
1182 	unsigned long period = smin;
1183 	struct numa_group *ng;
1184 
1185 	/* Scale the maximum scan period with the amount of shared memory. */
1186 	rcu_read_lock();
1187 	ng = rcu_dereference(p->numa_group);
1188 	if (ng) {
1189 		unsigned long shared = group_faults_shared(ng);
1190 		unsigned long private = group_faults_priv(ng);
1191 
1192 		period *= refcount_read(&ng->refcount);
1193 		period *= shared + 1;
1194 		period /= private + shared + 1;
1195 	}
1196 	rcu_read_unlock();
1197 
1198 	return max(smin, period);
1199 }
1200 
1201 static unsigned int task_scan_max(struct task_struct *p)
1202 {
1203 	unsigned long smin = task_scan_min(p);
1204 	unsigned long smax;
1205 	struct numa_group *ng;
1206 
1207 	/* Watch for min being lower than max due to floor calculations */
1208 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1209 
1210 	/* Scale the maximum scan period with the amount of shared memory. */
1211 	ng = deref_curr_numa_group(p);
1212 	if (ng) {
1213 		unsigned long shared = group_faults_shared(ng);
1214 		unsigned long private = group_faults_priv(ng);
1215 		unsigned long period = smax;
1216 
1217 		period *= refcount_read(&ng->refcount);
1218 		period *= shared + 1;
1219 		period /= private + shared + 1;
1220 
1221 		smax = max(smax, period);
1222 	}
1223 
1224 	return max(smin, smax);
1225 }
1226 
1227 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1228 {
1229 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1230 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1231 }
1232 
1233 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1234 {
1235 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1236 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1237 }
1238 
1239 /* Shared or private faults. */
1240 #define NR_NUMA_HINT_FAULT_TYPES 2
1241 
1242 /* Memory and CPU locality */
1243 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1244 
1245 /* Averaged statistics, and temporary buffers. */
1246 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1247 
1248 pid_t task_numa_group_id(struct task_struct *p)
1249 {
1250 	struct numa_group *ng;
1251 	pid_t gid = 0;
1252 
1253 	rcu_read_lock();
1254 	ng = rcu_dereference(p->numa_group);
1255 	if (ng)
1256 		gid = ng->gid;
1257 	rcu_read_unlock();
1258 
1259 	return gid;
1260 }
1261 
1262 /*
1263  * The averaged statistics, shared & private, memory & CPU,
1264  * occupy the first half of the array. The second half of the
1265  * array is for current counters, which are averaged into the
1266  * first set by task_numa_placement.
1267  */
1268 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1269 {
1270 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1271 }
1272 
1273 static inline unsigned long task_faults(struct task_struct *p, int nid)
1274 {
1275 	if (!p->numa_faults)
1276 		return 0;
1277 
1278 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1279 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1280 }
1281 
1282 static inline unsigned long group_faults(struct task_struct *p, int nid)
1283 {
1284 	struct numa_group *ng = deref_task_numa_group(p);
1285 
1286 	if (!ng)
1287 		return 0;
1288 
1289 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1290 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1291 }
1292 
1293 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1294 {
1295 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1296 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1297 }
1298 
1299 static inline unsigned long group_faults_priv(struct numa_group *ng)
1300 {
1301 	unsigned long faults = 0;
1302 	int node;
1303 
1304 	for_each_online_node(node) {
1305 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1306 	}
1307 
1308 	return faults;
1309 }
1310 
1311 static inline unsigned long group_faults_shared(struct numa_group *ng)
1312 {
1313 	unsigned long faults = 0;
1314 	int node;
1315 
1316 	for_each_online_node(node) {
1317 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1318 	}
1319 
1320 	return faults;
1321 }
1322 
1323 /*
1324  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1325  * considered part of a numa group's pseudo-interleaving set. Migrations
1326  * between these nodes are slowed down, to allow things to settle down.
1327  */
1328 #define ACTIVE_NODE_FRACTION 3
1329 
1330 static bool numa_is_active_node(int nid, struct numa_group *ng)
1331 {
1332 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1333 }
1334 
1335 /* Handle placement on systems where not all nodes are directly connected. */
1336 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1337 					int lim_dist, bool task)
1338 {
1339 	unsigned long score = 0;
1340 	int node, max_dist;
1341 
1342 	/*
1343 	 * All nodes are directly connected, and the same distance
1344 	 * from each other. No need for fancy placement algorithms.
1345 	 */
1346 	if (sched_numa_topology_type == NUMA_DIRECT)
1347 		return 0;
1348 
1349 	/* sched_max_numa_distance may be changed in parallel. */
1350 	max_dist = READ_ONCE(sched_max_numa_distance);
1351 	/*
1352 	 * This code is called for each node, introducing N^2 complexity,
1353 	 * which should be ok given the number of nodes rarely exceeds 8.
1354 	 */
1355 	for_each_online_node(node) {
1356 		unsigned long faults;
1357 		int dist = node_distance(nid, node);
1358 
1359 		/*
1360 		 * The furthest away nodes in the system are not interesting
1361 		 * for placement; nid was already counted.
1362 		 */
1363 		if (dist >= max_dist || node == nid)
1364 			continue;
1365 
1366 		/*
1367 		 * On systems with a backplane NUMA topology, compare groups
1368 		 * of nodes, and move tasks towards the group with the most
1369 		 * memory accesses. When comparing two nodes at distance
1370 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1371 		 * of each group. Skip other nodes.
1372 		 */
1373 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1374 			continue;
1375 
1376 		/* Add up the faults from nearby nodes. */
1377 		if (task)
1378 			faults = task_faults(p, node);
1379 		else
1380 			faults = group_faults(p, node);
1381 
1382 		/*
1383 		 * On systems with a glueless mesh NUMA topology, there are
1384 		 * no fixed "groups of nodes". Instead, nodes that are not
1385 		 * directly connected bounce traffic through intermediate
1386 		 * nodes; a numa_group can occupy any set of nodes.
1387 		 * The further away a node is, the less the faults count.
1388 		 * This seems to result in good task placement.
1389 		 */
1390 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1391 			faults *= (max_dist - dist);
1392 			faults /= (max_dist - LOCAL_DISTANCE);
1393 		}
1394 
1395 		score += faults;
1396 	}
1397 
1398 	return score;
1399 }
1400 
1401 /*
1402  * These return the fraction of accesses done by a particular task, or
1403  * task group, on a particular numa node.  The group weight is given a
1404  * larger multiplier, in order to group tasks together that are almost
1405  * evenly spread out between numa nodes.
1406  */
1407 static inline unsigned long task_weight(struct task_struct *p, int nid,
1408 					int dist)
1409 {
1410 	unsigned long faults, total_faults;
1411 
1412 	if (!p->numa_faults)
1413 		return 0;
1414 
1415 	total_faults = p->total_numa_faults;
1416 
1417 	if (!total_faults)
1418 		return 0;
1419 
1420 	faults = task_faults(p, nid);
1421 	faults += score_nearby_nodes(p, nid, dist, true);
1422 
1423 	return 1000 * faults / total_faults;
1424 }
1425 
1426 static inline unsigned long group_weight(struct task_struct *p, int nid,
1427 					 int dist)
1428 {
1429 	struct numa_group *ng = deref_task_numa_group(p);
1430 	unsigned long faults, total_faults;
1431 
1432 	if (!ng)
1433 		return 0;
1434 
1435 	total_faults = ng->total_faults;
1436 
1437 	if (!total_faults)
1438 		return 0;
1439 
1440 	faults = group_faults(p, nid);
1441 	faults += score_nearby_nodes(p, nid, dist, false);
1442 
1443 	return 1000 * faults / total_faults;
1444 }
1445 
1446 /*
1447  * If memory tiering mode is enabled, cpupid of slow memory page is
1448  * used to record scan time instead of CPU and PID.  When tiering mode
1449  * is disabled at run time, the scan time (in cpupid) will be
1450  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1451  * access out of array bound.
1452  */
1453 static inline bool cpupid_valid(int cpupid)
1454 {
1455 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1456 }
1457 
1458 /*
1459  * For memory tiering mode, if there are enough free pages (more than
1460  * enough watermark defined here) in fast memory node, to take full
1461  * advantage of fast memory capacity, all recently accessed slow
1462  * memory pages will be migrated to fast memory node without
1463  * considering hot threshold.
1464  */
1465 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1466 {
1467 	int z;
1468 	unsigned long enough_wmark;
1469 
1470 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1471 			   pgdat->node_present_pages >> 4);
1472 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1473 		struct zone *zone = pgdat->node_zones + z;
1474 
1475 		if (!populated_zone(zone))
1476 			continue;
1477 
1478 		if (zone_watermark_ok(zone, 0,
1479 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1480 				      ZONE_MOVABLE, 0))
1481 			return true;
1482 	}
1483 	return false;
1484 }
1485 
1486 /*
1487  * For memory tiering mode, when page tables are scanned, the scan
1488  * time will be recorded in struct page in addition to make page
1489  * PROT_NONE for slow memory page.  So when the page is accessed, in
1490  * hint page fault handler, the hint page fault latency is calculated
1491  * via,
1492  *
1493  *	hint page fault latency = hint page fault time - scan time
1494  *
1495  * The smaller the hint page fault latency, the higher the possibility
1496  * for the page to be hot.
1497  */
1498 static int numa_hint_fault_latency(struct page *page)
1499 {
1500 	int last_time, time;
1501 
1502 	time = jiffies_to_msecs(jiffies);
1503 	last_time = xchg_page_access_time(page, time);
1504 
1505 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1506 }
1507 
1508 /*
1509  * For memory tiering mode, too high promotion/demotion throughput may
1510  * hurt application latency.  So we provide a mechanism to rate limit
1511  * the number of pages that are tried to be promoted.
1512  */
1513 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1514 				      unsigned long rate_limit, int nr)
1515 {
1516 	unsigned long nr_cand;
1517 	unsigned int now, start;
1518 
1519 	now = jiffies_to_msecs(jiffies);
1520 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1521 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1522 	start = pgdat->nbp_rl_start;
1523 	if (now - start > MSEC_PER_SEC &&
1524 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1525 		pgdat->nbp_rl_nr_cand = nr_cand;
1526 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1527 		return true;
1528 	return false;
1529 }
1530 
1531 #define NUMA_MIGRATION_ADJUST_STEPS	16
1532 
1533 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1534 					    unsigned long rate_limit,
1535 					    unsigned int ref_th)
1536 {
1537 	unsigned int now, start, th_period, unit_th, th;
1538 	unsigned long nr_cand, ref_cand, diff_cand;
1539 
1540 	now = jiffies_to_msecs(jiffies);
1541 	th_period = sysctl_numa_balancing_scan_period_max;
1542 	start = pgdat->nbp_th_start;
1543 	if (now - start > th_period &&
1544 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1545 		ref_cand = rate_limit *
1546 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1547 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1548 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1549 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1550 		th = pgdat->nbp_threshold ? : ref_th;
1551 		if (diff_cand > ref_cand * 11 / 10)
1552 			th = max(th - unit_th, unit_th);
1553 		else if (diff_cand < ref_cand * 9 / 10)
1554 			th = min(th + unit_th, ref_th * 2);
1555 		pgdat->nbp_th_nr_cand = nr_cand;
1556 		pgdat->nbp_threshold = th;
1557 	}
1558 }
1559 
1560 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1561 				int src_nid, int dst_cpu)
1562 {
1563 	struct numa_group *ng = deref_curr_numa_group(p);
1564 	int dst_nid = cpu_to_node(dst_cpu);
1565 	int last_cpupid, this_cpupid;
1566 
1567 	/*
1568 	 * The pages in slow memory node should be migrated according
1569 	 * to hot/cold instead of private/shared.
1570 	 */
1571 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1572 	    !node_is_toptier(src_nid)) {
1573 		struct pglist_data *pgdat;
1574 		unsigned long rate_limit;
1575 		unsigned int latency, th, def_th;
1576 
1577 		pgdat = NODE_DATA(dst_nid);
1578 		if (pgdat_free_space_enough(pgdat)) {
1579 			/* workload changed, reset hot threshold */
1580 			pgdat->nbp_threshold = 0;
1581 			return true;
1582 		}
1583 
1584 		def_th = sysctl_numa_balancing_hot_threshold;
1585 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1586 			(20 - PAGE_SHIFT);
1587 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1588 
1589 		th = pgdat->nbp_threshold ? : def_th;
1590 		latency = numa_hint_fault_latency(page);
1591 		if (latency >= th)
1592 			return false;
1593 
1594 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1595 						  thp_nr_pages(page));
1596 	}
1597 
1598 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1599 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1600 
1601 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1602 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1603 		return false;
1604 
1605 	/*
1606 	 * Allow first faults or private faults to migrate immediately early in
1607 	 * the lifetime of a task. The magic number 4 is based on waiting for
1608 	 * two full passes of the "multi-stage node selection" test that is
1609 	 * executed below.
1610 	 */
1611 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1612 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1613 		return true;
1614 
1615 	/*
1616 	 * Multi-stage node selection is used in conjunction with a periodic
1617 	 * migration fault to build a temporal task<->page relation. By using
1618 	 * a two-stage filter we remove short/unlikely relations.
1619 	 *
1620 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1621 	 * a task's usage of a particular page (n_p) per total usage of this
1622 	 * page (n_t) (in a given time-span) to a probability.
1623 	 *
1624 	 * Our periodic faults will sample this probability and getting the
1625 	 * same result twice in a row, given these samples are fully
1626 	 * independent, is then given by P(n)^2, provided our sample period
1627 	 * is sufficiently short compared to the usage pattern.
1628 	 *
1629 	 * This quadric squishes small probabilities, making it less likely we
1630 	 * act on an unlikely task<->page relation.
1631 	 */
1632 	if (!cpupid_pid_unset(last_cpupid) &&
1633 				cpupid_to_nid(last_cpupid) != dst_nid)
1634 		return false;
1635 
1636 	/* Always allow migrate on private faults */
1637 	if (cpupid_match_pid(p, last_cpupid))
1638 		return true;
1639 
1640 	/* A shared fault, but p->numa_group has not been set up yet. */
1641 	if (!ng)
1642 		return true;
1643 
1644 	/*
1645 	 * Destination node is much more heavily used than the source
1646 	 * node? Allow migration.
1647 	 */
1648 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1649 					ACTIVE_NODE_FRACTION)
1650 		return true;
1651 
1652 	/*
1653 	 * Distribute memory according to CPU & memory use on each node,
1654 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1655 	 *
1656 	 * faults_cpu(dst)   3   faults_cpu(src)
1657 	 * --------------- * - > ---------------
1658 	 * faults_mem(dst)   4   faults_mem(src)
1659 	 */
1660 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1661 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1662 }
1663 
1664 /*
1665  * 'numa_type' describes the node at the moment of load balancing.
1666  */
1667 enum numa_type {
1668 	/* The node has spare capacity that can be used to run more tasks.  */
1669 	node_has_spare = 0,
1670 	/*
1671 	 * The node is fully used and the tasks don't compete for more CPU
1672 	 * cycles. Nevertheless, some tasks might wait before running.
1673 	 */
1674 	node_fully_busy,
1675 	/*
1676 	 * The node is overloaded and can't provide expected CPU cycles to all
1677 	 * tasks.
1678 	 */
1679 	node_overloaded
1680 };
1681 
1682 /* Cached statistics for all CPUs within a node */
1683 struct numa_stats {
1684 	unsigned long load;
1685 	unsigned long runnable;
1686 	unsigned long util;
1687 	/* Total compute capacity of CPUs on a node */
1688 	unsigned long compute_capacity;
1689 	unsigned int nr_running;
1690 	unsigned int weight;
1691 	enum numa_type node_type;
1692 	int idle_cpu;
1693 };
1694 
1695 static inline bool is_core_idle(int cpu)
1696 {
1697 #ifdef CONFIG_SCHED_SMT
1698 	int sibling;
1699 
1700 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1701 		if (cpu == sibling)
1702 			continue;
1703 
1704 		if (!idle_cpu(sibling))
1705 			return false;
1706 	}
1707 #endif
1708 
1709 	return true;
1710 }
1711 
1712 struct task_numa_env {
1713 	struct task_struct *p;
1714 
1715 	int src_cpu, src_nid;
1716 	int dst_cpu, dst_nid;
1717 	int imb_numa_nr;
1718 
1719 	struct numa_stats src_stats, dst_stats;
1720 
1721 	int imbalance_pct;
1722 	int dist;
1723 
1724 	struct task_struct *best_task;
1725 	long best_imp;
1726 	int best_cpu;
1727 };
1728 
1729 static unsigned long cpu_load(struct rq *rq);
1730 static unsigned long cpu_runnable(struct rq *rq);
1731 
1732 static inline enum
1733 numa_type numa_classify(unsigned int imbalance_pct,
1734 			 struct numa_stats *ns)
1735 {
1736 	if ((ns->nr_running > ns->weight) &&
1737 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1738 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1739 		return node_overloaded;
1740 
1741 	if ((ns->nr_running < ns->weight) ||
1742 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1743 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1744 		return node_has_spare;
1745 
1746 	return node_fully_busy;
1747 }
1748 
1749 #ifdef CONFIG_SCHED_SMT
1750 /* Forward declarations of select_idle_sibling helpers */
1751 static inline bool test_idle_cores(int cpu, bool def);
1752 static inline int numa_idle_core(int idle_core, int cpu)
1753 {
1754 	if (!static_branch_likely(&sched_smt_present) ||
1755 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1756 		return idle_core;
1757 
1758 	/*
1759 	 * Prefer cores instead of packing HT siblings
1760 	 * and triggering future load balancing.
1761 	 */
1762 	if (is_core_idle(cpu))
1763 		idle_core = cpu;
1764 
1765 	return idle_core;
1766 }
1767 #else
1768 static inline int numa_idle_core(int idle_core, int cpu)
1769 {
1770 	return idle_core;
1771 }
1772 #endif
1773 
1774 /*
1775  * Gather all necessary information to make NUMA balancing placement
1776  * decisions that are compatible with standard load balancer. This
1777  * borrows code and logic from update_sg_lb_stats but sharing a
1778  * common implementation is impractical.
1779  */
1780 static void update_numa_stats(struct task_numa_env *env,
1781 			      struct numa_stats *ns, int nid,
1782 			      bool find_idle)
1783 {
1784 	int cpu, idle_core = -1;
1785 
1786 	memset(ns, 0, sizeof(*ns));
1787 	ns->idle_cpu = -1;
1788 
1789 	rcu_read_lock();
1790 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1791 		struct rq *rq = cpu_rq(cpu);
1792 
1793 		ns->load += cpu_load(rq);
1794 		ns->runnable += cpu_runnable(rq);
1795 		ns->util += cpu_util_cfs(cpu);
1796 		ns->nr_running += rq->cfs.h_nr_running;
1797 		ns->compute_capacity += capacity_of(cpu);
1798 
1799 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1800 			if (READ_ONCE(rq->numa_migrate_on) ||
1801 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1802 				continue;
1803 
1804 			if (ns->idle_cpu == -1)
1805 				ns->idle_cpu = cpu;
1806 
1807 			idle_core = numa_idle_core(idle_core, cpu);
1808 		}
1809 	}
1810 	rcu_read_unlock();
1811 
1812 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1813 
1814 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1815 
1816 	if (idle_core >= 0)
1817 		ns->idle_cpu = idle_core;
1818 }
1819 
1820 static void task_numa_assign(struct task_numa_env *env,
1821 			     struct task_struct *p, long imp)
1822 {
1823 	struct rq *rq = cpu_rq(env->dst_cpu);
1824 
1825 	/* Check if run-queue part of active NUMA balance. */
1826 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1827 		int cpu;
1828 		int start = env->dst_cpu;
1829 
1830 		/* Find alternative idle CPU. */
1831 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1832 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1833 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1834 				continue;
1835 			}
1836 
1837 			env->dst_cpu = cpu;
1838 			rq = cpu_rq(env->dst_cpu);
1839 			if (!xchg(&rq->numa_migrate_on, 1))
1840 				goto assign;
1841 		}
1842 
1843 		/* Failed to find an alternative idle CPU */
1844 		return;
1845 	}
1846 
1847 assign:
1848 	/*
1849 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1850 	 * found a better CPU to move/swap.
1851 	 */
1852 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1853 		rq = cpu_rq(env->best_cpu);
1854 		WRITE_ONCE(rq->numa_migrate_on, 0);
1855 	}
1856 
1857 	if (env->best_task)
1858 		put_task_struct(env->best_task);
1859 	if (p)
1860 		get_task_struct(p);
1861 
1862 	env->best_task = p;
1863 	env->best_imp = imp;
1864 	env->best_cpu = env->dst_cpu;
1865 }
1866 
1867 static bool load_too_imbalanced(long src_load, long dst_load,
1868 				struct task_numa_env *env)
1869 {
1870 	long imb, old_imb;
1871 	long orig_src_load, orig_dst_load;
1872 	long src_capacity, dst_capacity;
1873 
1874 	/*
1875 	 * The load is corrected for the CPU capacity available on each node.
1876 	 *
1877 	 * src_load        dst_load
1878 	 * ------------ vs ---------
1879 	 * src_capacity    dst_capacity
1880 	 */
1881 	src_capacity = env->src_stats.compute_capacity;
1882 	dst_capacity = env->dst_stats.compute_capacity;
1883 
1884 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1885 
1886 	orig_src_load = env->src_stats.load;
1887 	orig_dst_load = env->dst_stats.load;
1888 
1889 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1890 
1891 	/* Would this change make things worse? */
1892 	return (imb > old_imb);
1893 }
1894 
1895 /*
1896  * Maximum NUMA importance can be 1998 (2*999);
1897  * SMALLIMP @ 30 would be close to 1998/64.
1898  * Used to deter task migration.
1899  */
1900 #define SMALLIMP	30
1901 
1902 /*
1903  * This checks if the overall compute and NUMA accesses of the system would
1904  * be improved if the source tasks was migrated to the target dst_cpu taking
1905  * into account that it might be best if task running on the dst_cpu should
1906  * be exchanged with the source task
1907  */
1908 static bool task_numa_compare(struct task_numa_env *env,
1909 			      long taskimp, long groupimp, bool maymove)
1910 {
1911 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1912 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1913 	long imp = p_ng ? groupimp : taskimp;
1914 	struct task_struct *cur;
1915 	long src_load, dst_load;
1916 	int dist = env->dist;
1917 	long moveimp = imp;
1918 	long load;
1919 	bool stopsearch = false;
1920 
1921 	if (READ_ONCE(dst_rq->numa_migrate_on))
1922 		return false;
1923 
1924 	rcu_read_lock();
1925 	cur = rcu_dereference(dst_rq->curr);
1926 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1927 		cur = NULL;
1928 
1929 	/*
1930 	 * Because we have preemption enabled we can get migrated around and
1931 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1932 	 */
1933 	if (cur == env->p) {
1934 		stopsearch = true;
1935 		goto unlock;
1936 	}
1937 
1938 	if (!cur) {
1939 		if (maymove && moveimp >= env->best_imp)
1940 			goto assign;
1941 		else
1942 			goto unlock;
1943 	}
1944 
1945 	/* Skip this swap candidate if cannot move to the source cpu. */
1946 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1947 		goto unlock;
1948 
1949 	/*
1950 	 * Skip this swap candidate if it is not moving to its preferred
1951 	 * node and the best task is.
1952 	 */
1953 	if (env->best_task &&
1954 	    env->best_task->numa_preferred_nid == env->src_nid &&
1955 	    cur->numa_preferred_nid != env->src_nid) {
1956 		goto unlock;
1957 	}
1958 
1959 	/*
1960 	 * "imp" is the fault differential for the source task between the
1961 	 * source and destination node. Calculate the total differential for
1962 	 * the source task and potential destination task. The more negative
1963 	 * the value is, the more remote accesses that would be expected to
1964 	 * be incurred if the tasks were swapped.
1965 	 *
1966 	 * If dst and source tasks are in the same NUMA group, or not
1967 	 * in any group then look only at task weights.
1968 	 */
1969 	cur_ng = rcu_dereference(cur->numa_group);
1970 	if (cur_ng == p_ng) {
1971 		/*
1972 		 * Do not swap within a group or between tasks that have
1973 		 * no group if there is spare capacity. Swapping does
1974 		 * not address the load imbalance and helps one task at
1975 		 * the cost of punishing another.
1976 		 */
1977 		if (env->dst_stats.node_type == node_has_spare)
1978 			goto unlock;
1979 
1980 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1981 		      task_weight(cur, env->dst_nid, dist);
1982 		/*
1983 		 * Add some hysteresis to prevent swapping the
1984 		 * tasks within a group over tiny differences.
1985 		 */
1986 		if (cur_ng)
1987 			imp -= imp / 16;
1988 	} else {
1989 		/*
1990 		 * Compare the group weights. If a task is all by itself
1991 		 * (not part of a group), use the task weight instead.
1992 		 */
1993 		if (cur_ng && p_ng)
1994 			imp += group_weight(cur, env->src_nid, dist) -
1995 			       group_weight(cur, env->dst_nid, dist);
1996 		else
1997 			imp += task_weight(cur, env->src_nid, dist) -
1998 			       task_weight(cur, env->dst_nid, dist);
1999 	}
2000 
2001 	/* Discourage picking a task already on its preferred node */
2002 	if (cur->numa_preferred_nid == env->dst_nid)
2003 		imp -= imp / 16;
2004 
2005 	/*
2006 	 * Encourage picking a task that moves to its preferred node.
2007 	 * This potentially makes imp larger than it's maximum of
2008 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2009 	 * case, it does not matter.
2010 	 */
2011 	if (cur->numa_preferred_nid == env->src_nid)
2012 		imp += imp / 8;
2013 
2014 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2015 		imp = moveimp;
2016 		cur = NULL;
2017 		goto assign;
2018 	}
2019 
2020 	/*
2021 	 * Prefer swapping with a task moving to its preferred node over a
2022 	 * task that is not.
2023 	 */
2024 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2025 	    env->best_task->numa_preferred_nid != env->src_nid) {
2026 		goto assign;
2027 	}
2028 
2029 	/*
2030 	 * If the NUMA importance is less than SMALLIMP,
2031 	 * task migration might only result in ping pong
2032 	 * of tasks and also hurt performance due to cache
2033 	 * misses.
2034 	 */
2035 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2036 		goto unlock;
2037 
2038 	/*
2039 	 * In the overloaded case, try and keep the load balanced.
2040 	 */
2041 	load = task_h_load(env->p) - task_h_load(cur);
2042 	if (!load)
2043 		goto assign;
2044 
2045 	dst_load = env->dst_stats.load + load;
2046 	src_load = env->src_stats.load - load;
2047 
2048 	if (load_too_imbalanced(src_load, dst_load, env))
2049 		goto unlock;
2050 
2051 assign:
2052 	/* Evaluate an idle CPU for a task numa move. */
2053 	if (!cur) {
2054 		int cpu = env->dst_stats.idle_cpu;
2055 
2056 		/* Nothing cached so current CPU went idle since the search. */
2057 		if (cpu < 0)
2058 			cpu = env->dst_cpu;
2059 
2060 		/*
2061 		 * If the CPU is no longer truly idle and the previous best CPU
2062 		 * is, keep using it.
2063 		 */
2064 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2065 		    idle_cpu(env->best_cpu)) {
2066 			cpu = env->best_cpu;
2067 		}
2068 
2069 		env->dst_cpu = cpu;
2070 	}
2071 
2072 	task_numa_assign(env, cur, imp);
2073 
2074 	/*
2075 	 * If a move to idle is allowed because there is capacity or load
2076 	 * balance improves then stop the search. While a better swap
2077 	 * candidate may exist, a search is not free.
2078 	 */
2079 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2080 		stopsearch = true;
2081 
2082 	/*
2083 	 * If a swap candidate must be identified and the current best task
2084 	 * moves its preferred node then stop the search.
2085 	 */
2086 	if (!maymove && env->best_task &&
2087 	    env->best_task->numa_preferred_nid == env->src_nid) {
2088 		stopsearch = true;
2089 	}
2090 unlock:
2091 	rcu_read_unlock();
2092 
2093 	return stopsearch;
2094 }
2095 
2096 static void task_numa_find_cpu(struct task_numa_env *env,
2097 				long taskimp, long groupimp)
2098 {
2099 	bool maymove = false;
2100 	int cpu;
2101 
2102 	/*
2103 	 * If dst node has spare capacity, then check if there is an
2104 	 * imbalance that would be overruled by the load balancer.
2105 	 */
2106 	if (env->dst_stats.node_type == node_has_spare) {
2107 		unsigned int imbalance;
2108 		int src_running, dst_running;
2109 
2110 		/*
2111 		 * Would movement cause an imbalance? Note that if src has
2112 		 * more running tasks that the imbalance is ignored as the
2113 		 * move improves the imbalance from the perspective of the
2114 		 * CPU load balancer.
2115 		 * */
2116 		src_running = env->src_stats.nr_running - 1;
2117 		dst_running = env->dst_stats.nr_running + 1;
2118 		imbalance = max(0, dst_running - src_running);
2119 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2120 						  env->imb_numa_nr);
2121 
2122 		/* Use idle CPU if there is no imbalance */
2123 		if (!imbalance) {
2124 			maymove = true;
2125 			if (env->dst_stats.idle_cpu >= 0) {
2126 				env->dst_cpu = env->dst_stats.idle_cpu;
2127 				task_numa_assign(env, NULL, 0);
2128 				return;
2129 			}
2130 		}
2131 	} else {
2132 		long src_load, dst_load, load;
2133 		/*
2134 		 * If the improvement from just moving env->p direction is better
2135 		 * than swapping tasks around, check if a move is possible.
2136 		 */
2137 		load = task_h_load(env->p);
2138 		dst_load = env->dst_stats.load + load;
2139 		src_load = env->src_stats.load - load;
2140 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2141 	}
2142 
2143 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2144 		/* Skip this CPU if the source task cannot migrate */
2145 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2146 			continue;
2147 
2148 		env->dst_cpu = cpu;
2149 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2150 			break;
2151 	}
2152 }
2153 
2154 static int task_numa_migrate(struct task_struct *p)
2155 {
2156 	struct task_numa_env env = {
2157 		.p = p,
2158 
2159 		.src_cpu = task_cpu(p),
2160 		.src_nid = task_node(p),
2161 
2162 		.imbalance_pct = 112,
2163 
2164 		.best_task = NULL,
2165 		.best_imp = 0,
2166 		.best_cpu = -1,
2167 	};
2168 	unsigned long taskweight, groupweight;
2169 	struct sched_domain *sd;
2170 	long taskimp, groupimp;
2171 	struct numa_group *ng;
2172 	struct rq *best_rq;
2173 	int nid, ret, dist;
2174 
2175 	/*
2176 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2177 	 * imbalance and would be the first to start moving tasks about.
2178 	 *
2179 	 * And we want to avoid any moving of tasks about, as that would create
2180 	 * random movement of tasks -- counter the numa conditions we're trying
2181 	 * to satisfy here.
2182 	 */
2183 	rcu_read_lock();
2184 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2185 	if (sd) {
2186 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2187 		env.imb_numa_nr = sd->imb_numa_nr;
2188 	}
2189 	rcu_read_unlock();
2190 
2191 	/*
2192 	 * Cpusets can break the scheduler domain tree into smaller
2193 	 * balance domains, some of which do not cross NUMA boundaries.
2194 	 * Tasks that are "trapped" in such domains cannot be migrated
2195 	 * elsewhere, so there is no point in (re)trying.
2196 	 */
2197 	if (unlikely(!sd)) {
2198 		sched_setnuma(p, task_node(p));
2199 		return -EINVAL;
2200 	}
2201 
2202 	env.dst_nid = p->numa_preferred_nid;
2203 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2204 	taskweight = task_weight(p, env.src_nid, dist);
2205 	groupweight = group_weight(p, env.src_nid, dist);
2206 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2207 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2208 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2209 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2210 
2211 	/* Try to find a spot on the preferred nid. */
2212 	task_numa_find_cpu(&env, taskimp, groupimp);
2213 
2214 	/*
2215 	 * Look at other nodes in these cases:
2216 	 * - there is no space available on the preferred_nid
2217 	 * - the task is part of a numa_group that is interleaved across
2218 	 *   multiple NUMA nodes; in order to better consolidate the group,
2219 	 *   we need to check other locations.
2220 	 */
2221 	ng = deref_curr_numa_group(p);
2222 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2223 		for_each_node_state(nid, N_CPU) {
2224 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2225 				continue;
2226 
2227 			dist = node_distance(env.src_nid, env.dst_nid);
2228 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2229 						dist != env.dist) {
2230 				taskweight = task_weight(p, env.src_nid, dist);
2231 				groupweight = group_weight(p, env.src_nid, dist);
2232 			}
2233 
2234 			/* Only consider nodes where both task and groups benefit */
2235 			taskimp = task_weight(p, nid, dist) - taskweight;
2236 			groupimp = group_weight(p, nid, dist) - groupweight;
2237 			if (taskimp < 0 && groupimp < 0)
2238 				continue;
2239 
2240 			env.dist = dist;
2241 			env.dst_nid = nid;
2242 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2243 			task_numa_find_cpu(&env, taskimp, groupimp);
2244 		}
2245 	}
2246 
2247 	/*
2248 	 * If the task is part of a workload that spans multiple NUMA nodes,
2249 	 * and is migrating into one of the workload's active nodes, remember
2250 	 * this node as the task's preferred numa node, so the workload can
2251 	 * settle down.
2252 	 * A task that migrated to a second choice node will be better off
2253 	 * trying for a better one later. Do not set the preferred node here.
2254 	 */
2255 	if (ng) {
2256 		if (env.best_cpu == -1)
2257 			nid = env.src_nid;
2258 		else
2259 			nid = cpu_to_node(env.best_cpu);
2260 
2261 		if (nid != p->numa_preferred_nid)
2262 			sched_setnuma(p, nid);
2263 	}
2264 
2265 	/* No better CPU than the current one was found. */
2266 	if (env.best_cpu == -1) {
2267 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2268 		return -EAGAIN;
2269 	}
2270 
2271 	best_rq = cpu_rq(env.best_cpu);
2272 	if (env.best_task == NULL) {
2273 		ret = migrate_task_to(p, env.best_cpu);
2274 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2275 		if (ret != 0)
2276 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2277 		return ret;
2278 	}
2279 
2280 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2281 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2282 
2283 	if (ret != 0)
2284 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2285 	put_task_struct(env.best_task);
2286 	return ret;
2287 }
2288 
2289 /* Attempt to migrate a task to a CPU on the preferred node. */
2290 static void numa_migrate_preferred(struct task_struct *p)
2291 {
2292 	unsigned long interval = HZ;
2293 
2294 	/* This task has no NUMA fault statistics yet */
2295 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2296 		return;
2297 
2298 	/* Periodically retry migrating the task to the preferred node */
2299 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2300 	p->numa_migrate_retry = jiffies + interval;
2301 
2302 	/* Success if task is already running on preferred CPU */
2303 	if (task_node(p) == p->numa_preferred_nid)
2304 		return;
2305 
2306 	/* Otherwise, try migrate to a CPU on the preferred node */
2307 	task_numa_migrate(p);
2308 }
2309 
2310 /*
2311  * Find out how many nodes the workload is actively running on. Do this by
2312  * tracking the nodes from which NUMA hinting faults are triggered. This can
2313  * be different from the set of nodes where the workload's memory is currently
2314  * located.
2315  */
2316 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2317 {
2318 	unsigned long faults, max_faults = 0;
2319 	int nid, active_nodes = 0;
2320 
2321 	for_each_node_state(nid, N_CPU) {
2322 		faults = group_faults_cpu(numa_group, nid);
2323 		if (faults > max_faults)
2324 			max_faults = faults;
2325 	}
2326 
2327 	for_each_node_state(nid, N_CPU) {
2328 		faults = group_faults_cpu(numa_group, nid);
2329 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2330 			active_nodes++;
2331 	}
2332 
2333 	numa_group->max_faults_cpu = max_faults;
2334 	numa_group->active_nodes = active_nodes;
2335 }
2336 
2337 /*
2338  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2339  * increments. The more local the fault statistics are, the higher the scan
2340  * period will be for the next scan window. If local/(local+remote) ratio is
2341  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2342  * the scan period will decrease. Aim for 70% local accesses.
2343  */
2344 #define NUMA_PERIOD_SLOTS 10
2345 #define NUMA_PERIOD_THRESHOLD 7
2346 
2347 /*
2348  * Increase the scan period (slow down scanning) if the majority of
2349  * our memory is already on our local node, or if the majority of
2350  * the page accesses are shared with other processes.
2351  * Otherwise, decrease the scan period.
2352  */
2353 static void update_task_scan_period(struct task_struct *p,
2354 			unsigned long shared, unsigned long private)
2355 {
2356 	unsigned int period_slot;
2357 	int lr_ratio, ps_ratio;
2358 	int diff;
2359 
2360 	unsigned long remote = p->numa_faults_locality[0];
2361 	unsigned long local = p->numa_faults_locality[1];
2362 
2363 	/*
2364 	 * If there were no record hinting faults then either the task is
2365 	 * completely idle or all activity is in areas that are not of interest
2366 	 * to automatic numa balancing. Related to that, if there were failed
2367 	 * migration then it implies we are migrating too quickly or the local
2368 	 * node is overloaded. In either case, scan slower
2369 	 */
2370 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2371 		p->numa_scan_period = min(p->numa_scan_period_max,
2372 			p->numa_scan_period << 1);
2373 
2374 		p->mm->numa_next_scan = jiffies +
2375 			msecs_to_jiffies(p->numa_scan_period);
2376 
2377 		return;
2378 	}
2379 
2380 	/*
2381 	 * Prepare to scale scan period relative to the current period.
2382 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2383 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2384 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2385 	 */
2386 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2387 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2388 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2389 
2390 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2391 		/*
2392 		 * Most memory accesses are local. There is no need to
2393 		 * do fast NUMA scanning, since memory is already local.
2394 		 */
2395 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2396 		if (!slot)
2397 			slot = 1;
2398 		diff = slot * period_slot;
2399 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2400 		/*
2401 		 * Most memory accesses are shared with other tasks.
2402 		 * There is no point in continuing fast NUMA scanning,
2403 		 * since other tasks may just move the memory elsewhere.
2404 		 */
2405 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2406 		if (!slot)
2407 			slot = 1;
2408 		diff = slot * period_slot;
2409 	} else {
2410 		/*
2411 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2412 		 * yet they are not on the local NUMA node. Speed up
2413 		 * NUMA scanning to get the memory moved over.
2414 		 */
2415 		int ratio = max(lr_ratio, ps_ratio);
2416 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2417 	}
2418 
2419 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2420 			task_scan_min(p), task_scan_max(p));
2421 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2422 }
2423 
2424 /*
2425  * Get the fraction of time the task has been running since the last
2426  * NUMA placement cycle. The scheduler keeps similar statistics, but
2427  * decays those on a 32ms period, which is orders of magnitude off
2428  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2429  * stats only if the task is so new there are no NUMA statistics yet.
2430  */
2431 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2432 {
2433 	u64 runtime, delta, now;
2434 	/* Use the start of this time slice to avoid calculations. */
2435 	now = p->se.exec_start;
2436 	runtime = p->se.sum_exec_runtime;
2437 
2438 	if (p->last_task_numa_placement) {
2439 		delta = runtime - p->last_sum_exec_runtime;
2440 		*period = now - p->last_task_numa_placement;
2441 
2442 		/* Avoid time going backwards, prevent potential divide error: */
2443 		if (unlikely((s64)*period < 0))
2444 			*period = 0;
2445 	} else {
2446 		delta = p->se.avg.load_sum;
2447 		*period = LOAD_AVG_MAX;
2448 	}
2449 
2450 	p->last_sum_exec_runtime = runtime;
2451 	p->last_task_numa_placement = now;
2452 
2453 	return delta;
2454 }
2455 
2456 /*
2457  * Determine the preferred nid for a task in a numa_group. This needs to
2458  * be done in a way that produces consistent results with group_weight,
2459  * otherwise workloads might not converge.
2460  */
2461 static int preferred_group_nid(struct task_struct *p, int nid)
2462 {
2463 	nodemask_t nodes;
2464 	int dist;
2465 
2466 	/* Direct connections between all NUMA nodes. */
2467 	if (sched_numa_topology_type == NUMA_DIRECT)
2468 		return nid;
2469 
2470 	/*
2471 	 * On a system with glueless mesh NUMA topology, group_weight
2472 	 * scores nodes according to the number of NUMA hinting faults on
2473 	 * both the node itself, and on nearby nodes.
2474 	 */
2475 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2476 		unsigned long score, max_score = 0;
2477 		int node, max_node = nid;
2478 
2479 		dist = sched_max_numa_distance;
2480 
2481 		for_each_node_state(node, N_CPU) {
2482 			score = group_weight(p, node, dist);
2483 			if (score > max_score) {
2484 				max_score = score;
2485 				max_node = node;
2486 			}
2487 		}
2488 		return max_node;
2489 	}
2490 
2491 	/*
2492 	 * Finding the preferred nid in a system with NUMA backplane
2493 	 * interconnect topology is more involved. The goal is to locate
2494 	 * tasks from numa_groups near each other in the system, and
2495 	 * untangle workloads from different sides of the system. This requires
2496 	 * searching down the hierarchy of node groups, recursively searching
2497 	 * inside the highest scoring group of nodes. The nodemask tricks
2498 	 * keep the complexity of the search down.
2499 	 */
2500 	nodes = node_states[N_CPU];
2501 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2502 		unsigned long max_faults = 0;
2503 		nodemask_t max_group = NODE_MASK_NONE;
2504 		int a, b;
2505 
2506 		/* Are there nodes at this distance from each other? */
2507 		if (!find_numa_distance(dist))
2508 			continue;
2509 
2510 		for_each_node_mask(a, nodes) {
2511 			unsigned long faults = 0;
2512 			nodemask_t this_group;
2513 			nodes_clear(this_group);
2514 
2515 			/* Sum group's NUMA faults; includes a==b case. */
2516 			for_each_node_mask(b, nodes) {
2517 				if (node_distance(a, b) < dist) {
2518 					faults += group_faults(p, b);
2519 					node_set(b, this_group);
2520 					node_clear(b, nodes);
2521 				}
2522 			}
2523 
2524 			/* Remember the top group. */
2525 			if (faults > max_faults) {
2526 				max_faults = faults;
2527 				max_group = this_group;
2528 				/*
2529 				 * subtle: at the smallest distance there is
2530 				 * just one node left in each "group", the
2531 				 * winner is the preferred nid.
2532 				 */
2533 				nid = a;
2534 			}
2535 		}
2536 		/* Next round, evaluate the nodes within max_group. */
2537 		if (!max_faults)
2538 			break;
2539 		nodes = max_group;
2540 	}
2541 	return nid;
2542 }
2543 
2544 static void task_numa_placement(struct task_struct *p)
2545 {
2546 	int seq, nid, max_nid = NUMA_NO_NODE;
2547 	unsigned long max_faults = 0;
2548 	unsigned long fault_types[2] = { 0, 0 };
2549 	unsigned long total_faults;
2550 	u64 runtime, period;
2551 	spinlock_t *group_lock = NULL;
2552 	struct numa_group *ng;
2553 
2554 	/*
2555 	 * The p->mm->numa_scan_seq field gets updated without
2556 	 * exclusive access. Use READ_ONCE() here to ensure
2557 	 * that the field is read in a single access:
2558 	 */
2559 	seq = READ_ONCE(p->mm->numa_scan_seq);
2560 	if (p->numa_scan_seq == seq)
2561 		return;
2562 	p->numa_scan_seq = seq;
2563 	p->numa_scan_period_max = task_scan_max(p);
2564 
2565 	total_faults = p->numa_faults_locality[0] +
2566 		       p->numa_faults_locality[1];
2567 	runtime = numa_get_avg_runtime(p, &period);
2568 
2569 	/* If the task is part of a group prevent parallel updates to group stats */
2570 	ng = deref_curr_numa_group(p);
2571 	if (ng) {
2572 		group_lock = &ng->lock;
2573 		spin_lock_irq(group_lock);
2574 	}
2575 
2576 	/* Find the node with the highest number of faults */
2577 	for_each_online_node(nid) {
2578 		/* Keep track of the offsets in numa_faults array */
2579 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2580 		unsigned long faults = 0, group_faults = 0;
2581 		int priv;
2582 
2583 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2584 			long diff, f_diff, f_weight;
2585 
2586 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2587 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2588 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2589 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2590 
2591 			/* Decay existing window, copy faults since last scan */
2592 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2593 			fault_types[priv] += p->numa_faults[membuf_idx];
2594 			p->numa_faults[membuf_idx] = 0;
2595 
2596 			/*
2597 			 * Normalize the faults_from, so all tasks in a group
2598 			 * count according to CPU use, instead of by the raw
2599 			 * number of faults. Tasks with little runtime have
2600 			 * little over-all impact on throughput, and thus their
2601 			 * faults are less important.
2602 			 */
2603 			f_weight = div64_u64(runtime << 16, period + 1);
2604 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2605 				   (total_faults + 1);
2606 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2607 			p->numa_faults[cpubuf_idx] = 0;
2608 
2609 			p->numa_faults[mem_idx] += diff;
2610 			p->numa_faults[cpu_idx] += f_diff;
2611 			faults += p->numa_faults[mem_idx];
2612 			p->total_numa_faults += diff;
2613 			if (ng) {
2614 				/*
2615 				 * safe because we can only change our own group
2616 				 *
2617 				 * mem_idx represents the offset for a given
2618 				 * nid and priv in a specific region because it
2619 				 * is at the beginning of the numa_faults array.
2620 				 */
2621 				ng->faults[mem_idx] += diff;
2622 				ng->faults[cpu_idx] += f_diff;
2623 				ng->total_faults += diff;
2624 				group_faults += ng->faults[mem_idx];
2625 			}
2626 		}
2627 
2628 		if (!ng) {
2629 			if (faults > max_faults) {
2630 				max_faults = faults;
2631 				max_nid = nid;
2632 			}
2633 		} else if (group_faults > max_faults) {
2634 			max_faults = group_faults;
2635 			max_nid = nid;
2636 		}
2637 	}
2638 
2639 	/* Cannot migrate task to CPU-less node */
2640 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2641 		int near_nid = max_nid;
2642 		int distance, near_distance = INT_MAX;
2643 
2644 		for_each_node_state(nid, N_CPU) {
2645 			distance = node_distance(max_nid, nid);
2646 			if (distance < near_distance) {
2647 				near_nid = nid;
2648 				near_distance = distance;
2649 			}
2650 		}
2651 		max_nid = near_nid;
2652 	}
2653 
2654 	if (ng) {
2655 		numa_group_count_active_nodes(ng);
2656 		spin_unlock_irq(group_lock);
2657 		max_nid = preferred_group_nid(p, max_nid);
2658 	}
2659 
2660 	if (max_faults) {
2661 		/* Set the new preferred node */
2662 		if (max_nid != p->numa_preferred_nid)
2663 			sched_setnuma(p, max_nid);
2664 	}
2665 
2666 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2667 }
2668 
2669 static inline int get_numa_group(struct numa_group *grp)
2670 {
2671 	return refcount_inc_not_zero(&grp->refcount);
2672 }
2673 
2674 static inline void put_numa_group(struct numa_group *grp)
2675 {
2676 	if (refcount_dec_and_test(&grp->refcount))
2677 		kfree_rcu(grp, rcu);
2678 }
2679 
2680 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2681 			int *priv)
2682 {
2683 	struct numa_group *grp, *my_grp;
2684 	struct task_struct *tsk;
2685 	bool join = false;
2686 	int cpu = cpupid_to_cpu(cpupid);
2687 	int i;
2688 
2689 	if (unlikely(!deref_curr_numa_group(p))) {
2690 		unsigned int size = sizeof(struct numa_group) +
2691 				    NR_NUMA_HINT_FAULT_STATS *
2692 				    nr_node_ids * sizeof(unsigned long);
2693 
2694 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2695 		if (!grp)
2696 			return;
2697 
2698 		refcount_set(&grp->refcount, 1);
2699 		grp->active_nodes = 1;
2700 		grp->max_faults_cpu = 0;
2701 		spin_lock_init(&grp->lock);
2702 		grp->gid = p->pid;
2703 
2704 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2705 			grp->faults[i] = p->numa_faults[i];
2706 
2707 		grp->total_faults = p->total_numa_faults;
2708 
2709 		grp->nr_tasks++;
2710 		rcu_assign_pointer(p->numa_group, grp);
2711 	}
2712 
2713 	rcu_read_lock();
2714 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2715 
2716 	if (!cpupid_match_pid(tsk, cpupid))
2717 		goto no_join;
2718 
2719 	grp = rcu_dereference(tsk->numa_group);
2720 	if (!grp)
2721 		goto no_join;
2722 
2723 	my_grp = deref_curr_numa_group(p);
2724 	if (grp == my_grp)
2725 		goto no_join;
2726 
2727 	/*
2728 	 * Only join the other group if its bigger; if we're the bigger group,
2729 	 * the other task will join us.
2730 	 */
2731 	if (my_grp->nr_tasks > grp->nr_tasks)
2732 		goto no_join;
2733 
2734 	/*
2735 	 * Tie-break on the grp address.
2736 	 */
2737 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2738 		goto no_join;
2739 
2740 	/* Always join threads in the same process. */
2741 	if (tsk->mm == current->mm)
2742 		join = true;
2743 
2744 	/* Simple filter to avoid false positives due to PID collisions */
2745 	if (flags & TNF_SHARED)
2746 		join = true;
2747 
2748 	/* Update priv based on whether false sharing was detected */
2749 	*priv = !join;
2750 
2751 	if (join && !get_numa_group(grp))
2752 		goto no_join;
2753 
2754 	rcu_read_unlock();
2755 
2756 	if (!join)
2757 		return;
2758 
2759 	BUG_ON(irqs_disabled());
2760 	double_lock_irq(&my_grp->lock, &grp->lock);
2761 
2762 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2763 		my_grp->faults[i] -= p->numa_faults[i];
2764 		grp->faults[i] += p->numa_faults[i];
2765 	}
2766 	my_grp->total_faults -= p->total_numa_faults;
2767 	grp->total_faults += p->total_numa_faults;
2768 
2769 	my_grp->nr_tasks--;
2770 	grp->nr_tasks++;
2771 
2772 	spin_unlock(&my_grp->lock);
2773 	spin_unlock_irq(&grp->lock);
2774 
2775 	rcu_assign_pointer(p->numa_group, grp);
2776 
2777 	put_numa_group(my_grp);
2778 	return;
2779 
2780 no_join:
2781 	rcu_read_unlock();
2782 	return;
2783 }
2784 
2785 /*
2786  * Get rid of NUMA statistics associated with a task (either current or dead).
2787  * If @final is set, the task is dead and has reached refcount zero, so we can
2788  * safely free all relevant data structures. Otherwise, there might be
2789  * concurrent reads from places like load balancing and procfs, and we should
2790  * reset the data back to default state without freeing ->numa_faults.
2791  */
2792 void task_numa_free(struct task_struct *p, bool final)
2793 {
2794 	/* safe: p either is current or is being freed by current */
2795 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2796 	unsigned long *numa_faults = p->numa_faults;
2797 	unsigned long flags;
2798 	int i;
2799 
2800 	if (!numa_faults)
2801 		return;
2802 
2803 	if (grp) {
2804 		spin_lock_irqsave(&grp->lock, flags);
2805 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2806 			grp->faults[i] -= p->numa_faults[i];
2807 		grp->total_faults -= p->total_numa_faults;
2808 
2809 		grp->nr_tasks--;
2810 		spin_unlock_irqrestore(&grp->lock, flags);
2811 		RCU_INIT_POINTER(p->numa_group, NULL);
2812 		put_numa_group(grp);
2813 	}
2814 
2815 	if (final) {
2816 		p->numa_faults = NULL;
2817 		kfree(numa_faults);
2818 	} else {
2819 		p->total_numa_faults = 0;
2820 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2821 			numa_faults[i] = 0;
2822 	}
2823 }
2824 
2825 /*
2826  * Got a PROT_NONE fault for a page on @node.
2827  */
2828 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2829 {
2830 	struct task_struct *p = current;
2831 	bool migrated = flags & TNF_MIGRATED;
2832 	int cpu_node = task_node(current);
2833 	int local = !!(flags & TNF_FAULT_LOCAL);
2834 	struct numa_group *ng;
2835 	int priv;
2836 
2837 	if (!static_branch_likely(&sched_numa_balancing))
2838 		return;
2839 
2840 	/* for example, ksmd faulting in a user's mm */
2841 	if (!p->mm)
2842 		return;
2843 
2844 	/*
2845 	 * NUMA faults statistics are unnecessary for the slow memory
2846 	 * node for memory tiering mode.
2847 	 */
2848 	if (!node_is_toptier(mem_node) &&
2849 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
2850 	     !cpupid_valid(last_cpupid)))
2851 		return;
2852 
2853 	/* Allocate buffer to track faults on a per-node basis */
2854 	if (unlikely(!p->numa_faults)) {
2855 		int size = sizeof(*p->numa_faults) *
2856 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2857 
2858 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2859 		if (!p->numa_faults)
2860 			return;
2861 
2862 		p->total_numa_faults = 0;
2863 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2864 	}
2865 
2866 	/*
2867 	 * First accesses are treated as private, otherwise consider accesses
2868 	 * to be private if the accessing pid has not changed
2869 	 */
2870 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2871 		priv = 1;
2872 	} else {
2873 		priv = cpupid_match_pid(p, last_cpupid);
2874 		if (!priv && !(flags & TNF_NO_GROUP))
2875 			task_numa_group(p, last_cpupid, flags, &priv);
2876 	}
2877 
2878 	/*
2879 	 * If a workload spans multiple NUMA nodes, a shared fault that
2880 	 * occurs wholly within the set of nodes that the workload is
2881 	 * actively using should be counted as local. This allows the
2882 	 * scan rate to slow down when a workload has settled down.
2883 	 */
2884 	ng = deref_curr_numa_group(p);
2885 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2886 				numa_is_active_node(cpu_node, ng) &&
2887 				numa_is_active_node(mem_node, ng))
2888 		local = 1;
2889 
2890 	/*
2891 	 * Retry to migrate task to preferred node periodically, in case it
2892 	 * previously failed, or the scheduler moved us.
2893 	 */
2894 	if (time_after(jiffies, p->numa_migrate_retry)) {
2895 		task_numa_placement(p);
2896 		numa_migrate_preferred(p);
2897 	}
2898 
2899 	if (migrated)
2900 		p->numa_pages_migrated += pages;
2901 	if (flags & TNF_MIGRATE_FAIL)
2902 		p->numa_faults_locality[2] += pages;
2903 
2904 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2905 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2906 	p->numa_faults_locality[local] += pages;
2907 }
2908 
2909 static void reset_ptenuma_scan(struct task_struct *p)
2910 {
2911 	/*
2912 	 * We only did a read acquisition of the mmap sem, so
2913 	 * p->mm->numa_scan_seq is written to without exclusive access
2914 	 * and the update is not guaranteed to be atomic. That's not
2915 	 * much of an issue though, since this is just used for
2916 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2917 	 * expensive, to avoid any form of compiler optimizations:
2918 	 */
2919 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2920 	p->mm->numa_scan_offset = 0;
2921 }
2922 
2923 /*
2924  * The expensive part of numa migration is done from task_work context.
2925  * Triggered from task_tick_numa().
2926  */
2927 static void task_numa_work(struct callback_head *work)
2928 {
2929 	unsigned long migrate, next_scan, now = jiffies;
2930 	struct task_struct *p = current;
2931 	struct mm_struct *mm = p->mm;
2932 	u64 runtime = p->se.sum_exec_runtime;
2933 	struct vm_area_struct *vma;
2934 	unsigned long start, end;
2935 	unsigned long nr_pte_updates = 0;
2936 	long pages, virtpages;
2937 
2938 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2939 
2940 	work->next = work;
2941 	/*
2942 	 * Who cares about NUMA placement when they're dying.
2943 	 *
2944 	 * NOTE: make sure not to dereference p->mm before this check,
2945 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2946 	 * without p->mm even though we still had it when we enqueued this
2947 	 * work.
2948 	 */
2949 	if (p->flags & PF_EXITING)
2950 		return;
2951 
2952 	if (!mm->numa_next_scan) {
2953 		mm->numa_next_scan = now +
2954 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2955 	}
2956 
2957 	/*
2958 	 * Enforce maximal scan/migration frequency..
2959 	 */
2960 	migrate = mm->numa_next_scan;
2961 	if (time_before(now, migrate))
2962 		return;
2963 
2964 	if (p->numa_scan_period == 0) {
2965 		p->numa_scan_period_max = task_scan_max(p);
2966 		p->numa_scan_period = task_scan_start(p);
2967 	}
2968 
2969 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2970 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2971 		return;
2972 
2973 	/*
2974 	 * Delay this task enough that another task of this mm will likely win
2975 	 * the next time around.
2976 	 */
2977 	p->node_stamp += 2 * TICK_NSEC;
2978 
2979 	start = mm->numa_scan_offset;
2980 	pages = sysctl_numa_balancing_scan_size;
2981 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2982 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2983 	if (!pages)
2984 		return;
2985 
2986 
2987 	if (!mmap_read_trylock(mm))
2988 		return;
2989 	vma = find_vma(mm, start);
2990 	if (!vma) {
2991 		reset_ptenuma_scan(p);
2992 		start = 0;
2993 		vma = mm->mmap;
2994 	}
2995 	for (; vma; vma = vma->vm_next) {
2996 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2997 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2998 			continue;
2999 		}
3000 
3001 		/*
3002 		 * Shared library pages mapped by multiple processes are not
3003 		 * migrated as it is expected they are cache replicated. Avoid
3004 		 * hinting faults in read-only file-backed mappings or the vdso
3005 		 * as migrating the pages will be of marginal benefit.
3006 		 */
3007 		if (!vma->vm_mm ||
3008 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
3009 			continue;
3010 
3011 		/*
3012 		 * Skip inaccessible VMAs to avoid any confusion between
3013 		 * PROT_NONE and NUMA hinting ptes
3014 		 */
3015 		if (!vma_is_accessible(vma))
3016 			continue;
3017 
3018 		do {
3019 			start = max(start, vma->vm_start);
3020 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3021 			end = min(end, vma->vm_end);
3022 			nr_pte_updates = change_prot_numa(vma, start, end);
3023 
3024 			/*
3025 			 * Try to scan sysctl_numa_balancing_size worth of
3026 			 * hpages that have at least one present PTE that
3027 			 * is not already pte-numa. If the VMA contains
3028 			 * areas that are unused or already full of prot_numa
3029 			 * PTEs, scan up to virtpages, to skip through those
3030 			 * areas faster.
3031 			 */
3032 			if (nr_pte_updates)
3033 				pages -= (end - start) >> PAGE_SHIFT;
3034 			virtpages -= (end - start) >> PAGE_SHIFT;
3035 
3036 			start = end;
3037 			if (pages <= 0 || virtpages <= 0)
3038 				goto out;
3039 
3040 			cond_resched();
3041 		} while (end != vma->vm_end);
3042 	}
3043 
3044 out:
3045 	/*
3046 	 * It is possible to reach the end of the VMA list but the last few
3047 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3048 	 * would find the !migratable VMA on the next scan but not reset the
3049 	 * scanner to the start so check it now.
3050 	 */
3051 	if (vma)
3052 		mm->numa_scan_offset = start;
3053 	else
3054 		reset_ptenuma_scan(p);
3055 	mmap_read_unlock(mm);
3056 
3057 	/*
3058 	 * Make sure tasks use at least 32x as much time to run other code
3059 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3060 	 * Usually update_task_scan_period slows down scanning enough; on an
3061 	 * overloaded system we need to limit overhead on a per task basis.
3062 	 */
3063 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3064 		u64 diff = p->se.sum_exec_runtime - runtime;
3065 		p->node_stamp += 32 * diff;
3066 	}
3067 }
3068 
3069 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3070 {
3071 	int mm_users = 0;
3072 	struct mm_struct *mm = p->mm;
3073 
3074 	if (mm) {
3075 		mm_users = atomic_read(&mm->mm_users);
3076 		if (mm_users == 1) {
3077 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3078 			mm->numa_scan_seq = 0;
3079 		}
3080 	}
3081 	p->node_stamp			= 0;
3082 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3083 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3084 	p->numa_migrate_retry		= 0;
3085 	/* Protect against double add, see task_tick_numa and task_numa_work */
3086 	p->numa_work.next		= &p->numa_work;
3087 	p->numa_faults			= NULL;
3088 	p->numa_pages_migrated		= 0;
3089 	p->total_numa_faults		= 0;
3090 	RCU_INIT_POINTER(p->numa_group, NULL);
3091 	p->last_task_numa_placement	= 0;
3092 	p->last_sum_exec_runtime	= 0;
3093 
3094 	init_task_work(&p->numa_work, task_numa_work);
3095 
3096 	/* New address space, reset the preferred nid */
3097 	if (!(clone_flags & CLONE_VM)) {
3098 		p->numa_preferred_nid = NUMA_NO_NODE;
3099 		return;
3100 	}
3101 
3102 	/*
3103 	 * New thread, keep existing numa_preferred_nid which should be copied
3104 	 * already by arch_dup_task_struct but stagger when scans start.
3105 	 */
3106 	if (mm) {
3107 		unsigned int delay;
3108 
3109 		delay = min_t(unsigned int, task_scan_max(current),
3110 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3111 		delay += 2 * TICK_NSEC;
3112 		p->node_stamp = delay;
3113 	}
3114 }
3115 
3116 /*
3117  * Drive the periodic memory faults..
3118  */
3119 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3120 {
3121 	struct callback_head *work = &curr->numa_work;
3122 	u64 period, now;
3123 
3124 	/*
3125 	 * We don't care about NUMA placement if we don't have memory.
3126 	 */
3127 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3128 		return;
3129 
3130 	/*
3131 	 * Using runtime rather than walltime has the dual advantage that
3132 	 * we (mostly) drive the selection from busy threads and that the
3133 	 * task needs to have done some actual work before we bother with
3134 	 * NUMA placement.
3135 	 */
3136 	now = curr->se.sum_exec_runtime;
3137 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3138 
3139 	if (now > curr->node_stamp + period) {
3140 		if (!curr->node_stamp)
3141 			curr->numa_scan_period = task_scan_start(curr);
3142 		curr->node_stamp += period;
3143 
3144 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3145 			task_work_add(curr, work, TWA_RESUME);
3146 	}
3147 }
3148 
3149 static void update_scan_period(struct task_struct *p, int new_cpu)
3150 {
3151 	int src_nid = cpu_to_node(task_cpu(p));
3152 	int dst_nid = cpu_to_node(new_cpu);
3153 
3154 	if (!static_branch_likely(&sched_numa_balancing))
3155 		return;
3156 
3157 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3158 		return;
3159 
3160 	if (src_nid == dst_nid)
3161 		return;
3162 
3163 	/*
3164 	 * Allow resets if faults have been trapped before one scan
3165 	 * has completed. This is most likely due to a new task that
3166 	 * is pulled cross-node due to wakeups or load balancing.
3167 	 */
3168 	if (p->numa_scan_seq) {
3169 		/*
3170 		 * Avoid scan adjustments if moving to the preferred
3171 		 * node or if the task was not previously running on
3172 		 * the preferred node.
3173 		 */
3174 		if (dst_nid == p->numa_preferred_nid ||
3175 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3176 			src_nid != p->numa_preferred_nid))
3177 			return;
3178 	}
3179 
3180 	p->numa_scan_period = task_scan_start(p);
3181 }
3182 
3183 #else
3184 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3185 {
3186 }
3187 
3188 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3189 {
3190 }
3191 
3192 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3193 {
3194 }
3195 
3196 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3197 {
3198 }
3199 
3200 #endif /* CONFIG_NUMA_BALANCING */
3201 
3202 static void
3203 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3204 {
3205 	update_load_add(&cfs_rq->load, se->load.weight);
3206 #ifdef CONFIG_SMP
3207 	if (entity_is_task(se)) {
3208 		struct rq *rq = rq_of(cfs_rq);
3209 
3210 		account_numa_enqueue(rq, task_of(se));
3211 		list_add(&se->group_node, &rq->cfs_tasks);
3212 	}
3213 #endif
3214 	cfs_rq->nr_running++;
3215 	if (se_is_idle(se))
3216 		cfs_rq->idle_nr_running++;
3217 }
3218 
3219 static void
3220 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3221 {
3222 	update_load_sub(&cfs_rq->load, se->load.weight);
3223 #ifdef CONFIG_SMP
3224 	if (entity_is_task(se)) {
3225 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3226 		list_del_init(&se->group_node);
3227 	}
3228 #endif
3229 	cfs_rq->nr_running--;
3230 	if (se_is_idle(se))
3231 		cfs_rq->idle_nr_running--;
3232 }
3233 
3234 /*
3235  * Signed add and clamp on underflow.
3236  *
3237  * Explicitly do a load-store to ensure the intermediate value never hits
3238  * memory. This allows lockless observations without ever seeing the negative
3239  * values.
3240  */
3241 #define add_positive(_ptr, _val) do {                           \
3242 	typeof(_ptr) ptr = (_ptr);                              \
3243 	typeof(_val) val = (_val);                              \
3244 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3245 								\
3246 	res = var + val;                                        \
3247 								\
3248 	if (val < 0 && res > var)                               \
3249 		res = 0;                                        \
3250 								\
3251 	WRITE_ONCE(*ptr, res);                                  \
3252 } while (0)
3253 
3254 /*
3255  * Unsigned subtract and clamp on underflow.
3256  *
3257  * Explicitly do a load-store to ensure the intermediate value never hits
3258  * memory. This allows lockless observations without ever seeing the negative
3259  * values.
3260  */
3261 #define sub_positive(_ptr, _val) do {				\
3262 	typeof(_ptr) ptr = (_ptr);				\
3263 	typeof(*ptr) val = (_val);				\
3264 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3265 	res = var - val;					\
3266 	if (res > var)						\
3267 		res = 0;					\
3268 	WRITE_ONCE(*ptr, res);					\
3269 } while (0)
3270 
3271 /*
3272  * Remove and clamp on negative, from a local variable.
3273  *
3274  * A variant of sub_positive(), which does not use explicit load-store
3275  * and is thus optimized for local variable updates.
3276  */
3277 #define lsub_positive(_ptr, _val) do {				\
3278 	typeof(_ptr) ptr = (_ptr);				\
3279 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3280 } while (0)
3281 
3282 #ifdef CONFIG_SMP
3283 static inline void
3284 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3285 {
3286 	cfs_rq->avg.load_avg += se->avg.load_avg;
3287 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3288 }
3289 
3290 static inline void
3291 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3292 {
3293 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3294 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3295 	/* See update_cfs_rq_load_avg() */
3296 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3297 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3298 }
3299 #else
3300 static inline void
3301 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3302 static inline void
3303 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3304 #endif
3305 
3306 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3307 			    unsigned long weight)
3308 {
3309 	if (se->on_rq) {
3310 		/* commit outstanding execution time */
3311 		if (cfs_rq->curr == se)
3312 			update_curr(cfs_rq);
3313 		update_load_sub(&cfs_rq->load, se->load.weight);
3314 	}
3315 	dequeue_load_avg(cfs_rq, se);
3316 
3317 	update_load_set(&se->load, weight);
3318 
3319 #ifdef CONFIG_SMP
3320 	do {
3321 		u32 divider = get_pelt_divider(&se->avg);
3322 
3323 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3324 	} while (0);
3325 #endif
3326 
3327 	enqueue_load_avg(cfs_rq, se);
3328 	if (se->on_rq)
3329 		update_load_add(&cfs_rq->load, se->load.weight);
3330 
3331 }
3332 
3333 void reweight_task(struct task_struct *p, int prio)
3334 {
3335 	struct sched_entity *se = &p->se;
3336 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3337 	struct load_weight *load = &se->load;
3338 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3339 
3340 	reweight_entity(cfs_rq, se, weight);
3341 	load->inv_weight = sched_prio_to_wmult[prio];
3342 }
3343 
3344 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3345 
3346 #ifdef CONFIG_FAIR_GROUP_SCHED
3347 #ifdef CONFIG_SMP
3348 /*
3349  * All this does is approximate the hierarchical proportion which includes that
3350  * global sum we all love to hate.
3351  *
3352  * That is, the weight of a group entity, is the proportional share of the
3353  * group weight based on the group runqueue weights. That is:
3354  *
3355  *                     tg->weight * grq->load.weight
3356  *   ge->load.weight = -----------------------------               (1)
3357  *                       \Sum grq->load.weight
3358  *
3359  * Now, because computing that sum is prohibitively expensive to compute (been
3360  * there, done that) we approximate it with this average stuff. The average
3361  * moves slower and therefore the approximation is cheaper and more stable.
3362  *
3363  * So instead of the above, we substitute:
3364  *
3365  *   grq->load.weight -> grq->avg.load_avg                         (2)
3366  *
3367  * which yields the following:
3368  *
3369  *                     tg->weight * grq->avg.load_avg
3370  *   ge->load.weight = ------------------------------              (3)
3371  *                             tg->load_avg
3372  *
3373  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3374  *
3375  * That is shares_avg, and it is right (given the approximation (2)).
3376  *
3377  * The problem with it is that because the average is slow -- it was designed
3378  * to be exactly that of course -- this leads to transients in boundary
3379  * conditions. In specific, the case where the group was idle and we start the
3380  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3381  * yielding bad latency etc..
3382  *
3383  * Now, in that special case (1) reduces to:
3384  *
3385  *                     tg->weight * grq->load.weight
3386  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3387  *                         grp->load.weight
3388  *
3389  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3390  *
3391  * So what we do is modify our approximation (3) to approach (4) in the (near)
3392  * UP case, like:
3393  *
3394  *   ge->load.weight =
3395  *
3396  *              tg->weight * grq->load.weight
3397  *     ---------------------------------------------------         (5)
3398  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3399  *
3400  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3401  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3402  *
3403  *
3404  *                     tg->weight * grq->load.weight
3405  *   ge->load.weight = -----------------------------		   (6)
3406  *                             tg_load_avg'
3407  *
3408  * Where:
3409  *
3410  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3411  *                  max(grq->load.weight, grq->avg.load_avg)
3412  *
3413  * And that is shares_weight and is icky. In the (near) UP case it approaches
3414  * (4) while in the normal case it approaches (3). It consistently
3415  * overestimates the ge->load.weight and therefore:
3416  *
3417  *   \Sum ge->load.weight >= tg->weight
3418  *
3419  * hence icky!
3420  */
3421 static long calc_group_shares(struct cfs_rq *cfs_rq)
3422 {
3423 	long tg_weight, tg_shares, load, shares;
3424 	struct task_group *tg = cfs_rq->tg;
3425 
3426 	tg_shares = READ_ONCE(tg->shares);
3427 
3428 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3429 
3430 	tg_weight = atomic_long_read(&tg->load_avg);
3431 
3432 	/* Ensure tg_weight >= load */
3433 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3434 	tg_weight += load;
3435 
3436 	shares = (tg_shares * load);
3437 	if (tg_weight)
3438 		shares /= tg_weight;
3439 
3440 	/*
3441 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3442 	 * of a group with small tg->shares value. It is a floor value which is
3443 	 * assigned as a minimum load.weight to the sched_entity representing
3444 	 * the group on a CPU.
3445 	 *
3446 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3447 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3448 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3449 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3450 	 * instead of 0.
3451 	 */
3452 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3453 }
3454 #endif /* CONFIG_SMP */
3455 
3456 /*
3457  * Recomputes the group entity based on the current state of its group
3458  * runqueue.
3459  */
3460 static void update_cfs_group(struct sched_entity *se)
3461 {
3462 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3463 	long shares;
3464 
3465 	if (!gcfs_rq)
3466 		return;
3467 
3468 	if (throttled_hierarchy(gcfs_rq))
3469 		return;
3470 
3471 #ifndef CONFIG_SMP
3472 	shares = READ_ONCE(gcfs_rq->tg->shares);
3473 
3474 	if (likely(se->load.weight == shares))
3475 		return;
3476 #else
3477 	shares   = calc_group_shares(gcfs_rq);
3478 #endif
3479 
3480 	reweight_entity(cfs_rq_of(se), se, shares);
3481 }
3482 
3483 #else /* CONFIG_FAIR_GROUP_SCHED */
3484 static inline void update_cfs_group(struct sched_entity *se)
3485 {
3486 }
3487 #endif /* CONFIG_FAIR_GROUP_SCHED */
3488 
3489 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3490 {
3491 	struct rq *rq = rq_of(cfs_rq);
3492 
3493 	if (&rq->cfs == cfs_rq) {
3494 		/*
3495 		 * There are a few boundary cases this might miss but it should
3496 		 * get called often enough that that should (hopefully) not be
3497 		 * a real problem.
3498 		 *
3499 		 * It will not get called when we go idle, because the idle
3500 		 * thread is a different class (!fair), nor will the utilization
3501 		 * number include things like RT tasks.
3502 		 *
3503 		 * As is, the util number is not freq-invariant (we'd have to
3504 		 * implement arch_scale_freq_capacity() for that).
3505 		 *
3506 		 * See cpu_util_cfs().
3507 		 */
3508 		cpufreq_update_util(rq, flags);
3509 	}
3510 }
3511 
3512 #ifdef CONFIG_SMP
3513 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3514 {
3515 	if (sa->load_sum)
3516 		return false;
3517 
3518 	if (sa->util_sum)
3519 		return false;
3520 
3521 	if (sa->runnable_sum)
3522 		return false;
3523 
3524 	/*
3525 	 * _avg must be null when _sum are null because _avg = _sum / divider
3526 	 * Make sure that rounding and/or propagation of PELT values never
3527 	 * break this.
3528 	 */
3529 	SCHED_WARN_ON(sa->load_avg ||
3530 		      sa->util_avg ||
3531 		      sa->runnable_avg);
3532 
3533 	return true;
3534 }
3535 
3536 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3537 {
3538 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3539 				 cfs_rq->last_update_time_copy);
3540 }
3541 #ifdef CONFIG_FAIR_GROUP_SCHED
3542 /*
3543  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3544  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3545  * bottom-up, we only have to test whether the cfs_rq before us on the list
3546  * is our child.
3547  * If cfs_rq is not on the list, test whether a child needs its to be added to
3548  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3549  */
3550 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3551 {
3552 	struct cfs_rq *prev_cfs_rq;
3553 	struct list_head *prev;
3554 
3555 	if (cfs_rq->on_list) {
3556 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3557 	} else {
3558 		struct rq *rq = rq_of(cfs_rq);
3559 
3560 		prev = rq->tmp_alone_branch;
3561 	}
3562 
3563 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3564 
3565 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3566 }
3567 
3568 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3569 {
3570 	if (cfs_rq->load.weight)
3571 		return false;
3572 
3573 	if (!load_avg_is_decayed(&cfs_rq->avg))
3574 		return false;
3575 
3576 	if (child_cfs_rq_on_list(cfs_rq))
3577 		return false;
3578 
3579 	return true;
3580 }
3581 
3582 /**
3583  * update_tg_load_avg - update the tg's load avg
3584  * @cfs_rq: the cfs_rq whose avg changed
3585  *
3586  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3587  * However, because tg->load_avg is a global value there are performance
3588  * considerations.
3589  *
3590  * In order to avoid having to look at the other cfs_rq's, we use a
3591  * differential update where we store the last value we propagated. This in
3592  * turn allows skipping updates if the differential is 'small'.
3593  *
3594  * Updating tg's load_avg is necessary before update_cfs_share().
3595  */
3596 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3597 {
3598 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3599 
3600 	/*
3601 	 * No need to update load_avg for root_task_group as it is not used.
3602 	 */
3603 	if (cfs_rq->tg == &root_task_group)
3604 		return;
3605 
3606 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3607 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3608 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3609 	}
3610 }
3611 
3612 /*
3613  * Called within set_task_rq() right before setting a task's CPU. The
3614  * caller only guarantees p->pi_lock is held; no other assumptions,
3615  * including the state of rq->lock, should be made.
3616  */
3617 void set_task_rq_fair(struct sched_entity *se,
3618 		      struct cfs_rq *prev, struct cfs_rq *next)
3619 {
3620 	u64 p_last_update_time;
3621 	u64 n_last_update_time;
3622 
3623 	if (!sched_feat(ATTACH_AGE_LOAD))
3624 		return;
3625 
3626 	/*
3627 	 * We are supposed to update the task to "current" time, then its up to
3628 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3629 	 * getting what current time is, so simply throw away the out-of-date
3630 	 * time. This will result in the wakee task is less decayed, but giving
3631 	 * the wakee more load sounds not bad.
3632 	 */
3633 	if (!(se->avg.last_update_time && prev))
3634 		return;
3635 
3636 	p_last_update_time = cfs_rq_last_update_time(prev);
3637 	n_last_update_time = cfs_rq_last_update_time(next);
3638 
3639 	__update_load_avg_blocked_se(p_last_update_time, se);
3640 	se->avg.last_update_time = n_last_update_time;
3641 }
3642 
3643 /*
3644  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3645  * propagate its contribution. The key to this propagation is the invariant
3646  * that for each group:
3647  *
3648  *   ge->avg == grq->avg						(1)
3649  *
3650  * _IFF_ we look at the pure running and runnable sums. Because they
3651  * represent the very same entity, just at different points in the hierarchy.
3652  *
3653  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3654  * and simply copies the running/runnable sum over (but still wrong, because
3655  * the group entity and group rq do not have their PELT windows aligned).
3656  *
3657  * However, update_tg_cfs_load() is more complex. So we have:
3658  *
3659  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3660  *
3661  * And since, like util, the runnable part should be directly transferable,
3662  * the following would _appear_ to be the straight forward approach:
3663  *
3664  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3665  *
3666  * And per (1) we have:
3667  *
3668  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3669  *
3670  * Which gives:
3671  *
3672  *                      ge->load.weight * grq->avg.load_avg
3673  *   ge->avg.load_avg = -----------------------------------		(4)
3674  *                               grq->load.weight
3675  *
3676  * Except that is wrong!
3677  *
3678  * Because while for entities historical weight is not important and we
3679  * really only care about our future and therefore can consider a pure
3680  * runnable sum, runqueues can NOT do this.
3681  *
3682  * We specifically want runqueues to have a load_avg that includes
3683  * historical weights. Those represent the blocked load, the load we expect
3684  * to (shortly) return to us. This only works by keeping the weights as
3685  * integral part of the sum. We therefore cannot decompose as per (3).
3686  *
3687  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3688  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3689  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3690  * runnable section of these tasks overlap (or not). If they were to perfectly
3691  * align the rq as a whole would be runnable 2/3 of the time. If however we
3692  * always have at least 1 runnable task, the rq as a whole is always runnable.
3693  *
3694  * So we'll have to approximate.. :/
3695  *
3696  * Given the constraint:
3697  *
3698  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3699  *
3700  * We can construct a rule that adds runnable to a rq by assuming minimal
3701  * overlap.
3702  *
3703  * On removal, we'll assume each task is equally runnable; which yields:
3704  *
3705  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3706  *
3707  * XXX: only do this for the part of runnable > running ?
3708  *
3709  */
3710 static inline void
3711 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3712 {
3713 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
3714 	u32 new_sum, divider;
3715 
3716 	/* Nothing to update */
3717 	if (!delta_avg)
3718 		return;
3719 
3720 	/*
3721 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3722 	 * See ___update_load_avg() for details.
3723 	 */
3724 	divider = get_pelt_divider(&cfs_rq->avg);
3725 
3726 
3727 	/* Set new sched_entity's utilization */
3728 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3729 	new_sum = se->avg.util_avg * divider;
3730 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
3731 	se->avg.util_sum = new_sum;
3732 
3733 	/* Update parent cfs_rq utilization */
3734 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
3735 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
3736 
3737 	/* See update_cfs_rq_load_avg() */
3738 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3739 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3740 }
3741 
3742 static inline void
3743 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3744 {
3745 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3746 	u32 new_sum, divider;
3747 
3748 	/* Nothing to update */
3749 	if (!delta_avg)
3750 		return;
3751 
3752 	/*
3753 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3754 	 * See ___update_load_avg() for details.
3755 	 */
3756 	divider = get_pelt_divider(&cfs_rq->avg);
3757 
3758 	/* Set new sched_entity's runnable */
3759 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3760 	new_sum = se->avg.runnable_avg * divider;
3761 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
3762 	se->avg.runnable_sum = new_sum;
3763 
3764 	/* Update parent cfs_rq runnable */
3765 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
3766 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
3767 	/* See update_cfs_rq_load_avg() */
3768 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3769 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3770 }
3771 
3772 static inline void
3773 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3774 {
3775 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3776 	unsigned long load_avg;
3777 	u64 load_sum = 0;
3778 	s64 delta_sum;
3779 	u32 divider;
3780 
3781 	if (!runnable_sum)
3782 		return;
3783 
3784 	gcfs_rq->prop_runnable_sum = 0;
3785 
3786 	/*
3787 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3788 	 * See ___update_load_avg() for details.
3789 	 */
3790 	divider = get_pelt_divider(&cfs_rq->avg);
3791 
3792 	if (runnable_sum >= 0) {
3793 		/*
3794 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3795 		 * the CPU is saturated running == runnable.
3796 		 */
3797 		runnable_sum += se->avg.load_sum;
3798 		runnable_sum = min_t(long, runnable_sum, divider);
3799 	} else {
3800 		/*
3801 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3802 		 * assuming all tasks are equally runnable.
3803 		 */
3804 		if (scale_load_down(gcfs_rq->load.weight)) {
3805 			load_sum = div_u64(gcfs_rq->avg.load_sum,
3806 				scale_load_down(gcfs_rq->load.weight));
3807 		}
3808 
3809 		/* But make sure to not inflate se's runnable */
3810 		runnable_sum = min(se->avg.load_sum, load_sum);
3811 	}
3812 
3813 	/*
3814 	 * runnable_sum can't be lower than running_sum
3815 	 * Rescale running sum to be in the same range as runnable sum
3816 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3817 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3818 	 */
3819 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3820 	runnable_sum = max(runnable_sum, running_sum);
3821 
3822 	load_sum = se_weight(se) * runnable_sum;
3823 	load_avg = div_u64(load_sum, divider);
3824 
3825 	delta_avg = load_avg - se->avg.load_avg;
3826 	if (!delta_avg)
3827 		return;
3828 
3829 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3830 
3831 	se->avg.load_sum = runnable_sum;
3832 	se->avg.load_avg = load_avg;
3833 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3834 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3835 	/* See update_cfs_rq_load_avg() */
3836 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3837 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3838 }
3839 
3840 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3841 {
3842 	cfs_rq->propagate = 1;
3843 	cfs_rq->prop_runnable_sum += runnable_sum;
3844 }
3845 
3846 /* Update task and its cfs_rq load average */
3847 static inline int propagate_entity_load_avg(struct sched_entity *se)
3848 {
3849 	struct cfs_rq *cfs_rq, *gcfs_rq;
3850 
3851 	if (entity_is_task(se))
3852 		return 0;
3853 
3854 	gcfs_rq = group_cfs_rq(se);
3855 	if (!gcfs_rq->propagate)
3856 		return 0;
3857 
3858 	gcfs_rq->propagate = 0;
3859 
3860 	cfs_rq = cfs_rq_of(se);
3861 
3862 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3863 
3864 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3865 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3866 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3867 
3868 	trace_pelt_cfs_tp(cfs_rq);
3869 	trace_pelt_se_tp(se);
3870 
3871 	return 1;
3872 }
3873 
3874 /*
3875  * Check if we need to update the load and the utilization of a blocked
3876  * group_entity:
3877  */
3878 static inline bool skip_blocked_update(struct sched_entity *se)
3879 {
3880 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3881 
3882 	/*
3883 	 * If sched_entity still have not zero load or utilization, we have to
3884 	 * decay it:
3885 	 */
3886 	if (se->avg.load_avg || se->avg.util_avg)
3887 		return false;
3888 
3889 	/*
3890 	 * If there is a pending propagation, we have to update the load and
3891 	 * the utilization of the sched_entity:
3892 	 */
3893 	if (gcfs_rq->propagate)
3894 		return false;
3895 
3896 	/*
3897 	 * Otherwise, the load and the utilization of the sched_entity is
3898 	 * already zero and there is no pending propagation, so it will be a
3899 	 * waste of time to try to decay it:
3900 	 */
3901 	return true;
3902 }
3903 
3904 #else /* CONFIG_FAIR_GROUP_SCHED */
3905 
3906 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3907 
3908 static inline int propagate_entity_load_avg(struct sched_entity *se)
3909 {
3910 	return 0;
3911 }
3912 
3913 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3914 
3915 #endif /* CONFIG_FAIR_GROUP_SCHED */
3916 
3917 #ifdef CONFIG_NO_HZ_COMMON
3918 static inline void migrate_se_pelt_lag(struct sched_entity *se)
3919 {
3920 	u64 throttled = 0, now, lut;
3921 	struct cfs_rq *cfs_rq;
3922 	struct rq *rq;
3923 	bool is_idle;
3924 
3925 	if (load_avg_is_decayed(&se->avg))
3926 		return;
3927 
3928 	cfs_rq = cfs_rq_of(se);
3929 	rq = rq_of(cfs_rq);
3930 
3931 	rcu_read_lock();
3932 	is_idle = is_idle_task(rcu_dereference(rq->curr));
3933 	rcu_read_unlock();
3934 
3935 	/*
3936 	 * The lag estimation comes with a cost we don't want to pay all the
3937 	 * time. Hence, limiting to the case where the source CPU is idle and
3938 	 * we know we are at the greatest risk to have an outdated clock.
3939 	 */
3940 	if (!is_idle)
3941 		return;
3942 
3943 	/*
3944 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
3945 	 *
3946 	 *   last_update_time (the cfs_rq's last_update_time)
3947 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
3948 	 *      = rq_clock_pelt()@cfs_rq_idle
3949 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
3950 	 *
3951 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
3952 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
3953 	 *
3954 	 *   rq_idle_lag (delta between now and rq's update)
3955 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
3956 	 *
3957 	 * We can then write:
3958 	 *
3959 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
3960 	 *          sched_clock_cpu() - rq_clock()@rq_idle
3961 	 * Where:
3962 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
3963 	 *      rq_clock()@rq_idle      is rq->clock_idle
3964 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
3965 	 *                              is cfs_rq->throttled_pelt_idle
3966 	 */
3967 
3968 #ifdef CONFIG_CFS_BANDWIDTH
3969 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
3970 	/* The clock has been stopped for throttling */
3971 	if (throttled == U64_MAX)
3972 		return;
3973 #endif
3974 	now = u64_u32_load(rq->clock_pelt_idle);
3975 	/*
3976 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
3977 	 * is observed the old clock_pelt_idle value and the new clock_idle,
3978 	 * which lead to an underestimation. The opposite would lead to an
3979 	 * overestimation.
3980 	 */
3981 	smp_rmb();
3982 	lut = cfs_rq_last_update_time(cfs_rq);
3983 
3984 	now -= throttled;
3985 	if (now < lut)
3986 		/*
3987 		 * cfs_rq->avg.last_update_time is more recent than our
3988 		 * estimation, let's use it.
3989 		 */
3990 		now = lut;
3991 	else
3992 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
3993 
3994 	__update_load_avg_blocked_se(now, se);
3995 }
3996 #else
3997 static void migrate_se_pelt_lag(struct sched_entity *se) {}
3998 #endif
3999 
4000 /**
4001  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4002  * @now: current time, as per cfs_rq_clock_pelt()
4003  * @cfs_rq: cfs_rq to update
4004  *
4005  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4006  * avg. The immediate corollary is that all (fair) tasks must be attached, see
4007  * post_init_entity_util_avg().
4008  *
4009  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4010  *
4011  * Return: true if the load decayed or we removed load.
4012  *
4013  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4014  * call update_tg_load_avg() when this function returns true.
4015  */
4016 static inline int
4017 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4018 {
4019 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4020 	struct sched_avg *sa = &cfs_rq->avg;
4021 	int decayed = 0;
4022 
4023 	if (cfs_rq->removed.nr) {
4024 		unsigned long r;
4025 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4026 
4027 		raw_spin_lock(&cfs_rq->removed.lock);
4028 		swap(cfs_rq->removed.util_avg, removed_util);
4029 		swap(cfs_rq->removed.load_avg, removed_load);
4030 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4031 		cfs_rq->removed.nr = 0;
4032 		raw_spin_unlock(&cfs_rq->removed.lock);
4033 
4034 		r = removed_load;
4035 		sub_positive(&sa->load_avg, r);
4036 		sub_positive(&sa->load_sum, r * divider);
4037 		/* See sa->util_sum below */
4038 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4039 
4040 		r = removed_util;
4041 		sub_positive(&sa->util_avg, r);
4042 		sub_positive(&sa->util_sum, r * divider);
4043 		/*
4044 		 * Because of rounding, se->util_sum might ends up being +1 more than
4045 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4046 		 * a lot of tasks with the rounding problem between 2 updates of
4047 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4048 		 * cfs_util_avg is not.
4049 		 * Check that util_sum is still above its lower bound for the new
4050 		 * util_avg. Given that period_contrib might have moved since the last
4051 		 * sync, we are only sure that util_sum must be above or equal to
4052 		 *    util_avg * minimum possible divider
4053 		 */
4054 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4055 
4056 		r = removed_runnable;
4057 		sub_positive(&sa->runnable_avg, r);
4058 		sub_positive(&sa->runnable_sum, r * divider);
4059 		/* See sa->util_sum above */
4060 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4061 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4062 
4063 		/*
4064 		 * removed_runnable is the unweighted version of removed_load so we
4065 		 * can use it to estimate removed_load_sum.
4066 		 */
4067 		add_tg_cfs_propagate(cfs_rq,
4068 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4069 
4070 		decayed = 1;
4071 	}
4072 
4073 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4074 	u64_u32_store_copy(sa->last_update_time,
4075 			   cfs_rq->last_update_time_copy,
4076 			   sa->last_update_time);
4077 	return decayed;
4078 }
4079 
4080 /**
4081  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4082  * @cfs_rq: cfs_rq to attach to
4083  * @se: sched_entity to attach
4084  *
4085  * Must call update_cfs_rq_load_avg() before this, since we rely on
4086  * cfs_rq->avg.last_update_time being current.
4087  */
4088 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4089 {
4090 	/*
4091 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4092 	 * See ___update_load_avg() for details.
4093 	 */
4094 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4095 
4096 	/*
4097 	 * When we attach the @se to the @cfs_rq, we must align the decay
4098 	 * window because without that, really weird and wonderful things can
4099 	 * happen.
4100 	 *
4101 	 * XXX illustrate
4102 	 */
4103 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4104 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4105 
4106 	/*
4107 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4108 	 * period_contrib. This isn't strictly correct, but since we're
4109 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4110 	 * _sum a little.
4111 	 */
4112 	se->avg.util_sum = se->avg.util_avg * divider;
4113 
4114 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4115 
4116 	se->avg.load_sum = se->avg.load_avg * divider;
4117 	if (se_weight(se) < se->avg.load_sum)
4118 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4119 	else
4120 		se->avg.load_sum = 1;
4121 
4122 	enqueue_load_avg(cfs_rq, se);
4123 	cfs_rq->avg.util_avg += se->avg.util_avg;
4124 	cfs_rq->avg.util_sum += se->avg.util_sum;
4125 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4126 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4127 
4128 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4129 
4130 	cfs_rq_util_change(cfs_rq, 0);
4131 
4132 	trace_pelt_cfs_tp(cfs_rq);
4133 }
4134 
4135 /**
4136  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4137  * @cfs_rq: cfs_rq to detach from
4138  * @se: sched_entity to detach
4139  *
4140  * Must call update_cfs_rq_load_avg() before this, since we rely on
4141  * cfs_rq->avg.last_update_time being current.
4142  */
4143 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4144 {
4145 	dequeue_load_avg(cfs_rq, se);
4146 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4147 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4148 	/* See update_cfs_rq_load_avg() */
4149 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4150 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4151 
4152 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4153 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4154 	/* See update_cfs_rq_load_avg() */
4155 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4156 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4157 
4158 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4159 
4160 	cfs_rq_util_change(cfs_rq, 0);
4161 
4162 	trace_pelt_cfs_tp(cfs_rq);
4163 }
4164 
4165 /*
4166  * Optional action to be done while updating the load average
4167  */
4168 #define UPDATE_TG	0x1
4169 #define SKIP_AGE_LOAD	0x2
4170 #define DO_ATTACH	0x4
4171 
4172 /* Update task and its cfs_rq load average */
4173 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4174 {
4175 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4176 	int decayed;
4177 
4178 	/*
4179 	 * Track task load average for carrying it to new CPU after migrated, and
4180 	 * track group sched_entity load average for task_h_load calc in migration
4181 	 */
4182 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4183 		__update_load_avg_se(now, cfs_rq, se);
4184 
4185 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4186 	decayed |= propagate_entity_load_avg(se);
4187 
4188 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4189 
4190 		/*
4191 		 * DO_ATTACH means we're here from enqueue_entity().
4192 		 * !last_update_time means we've passed through
4193 		 * migrate_task_rq_fair() indicating we migrated.
4194 		 *
4195 		 * IOW we're enqueueing a task on a new CPU.
4196 		 */
4197 		attach_entity_load_avg(cfs_rq, se);
4198 		update_tg_load_avg(cfs_rq);
4199 
4200 	} else if (decayed) {
4201 		cfs_rq_util_change(cfs_rq, 0);
4202 
4203 		if (flags & UPDATE_TG)
4204 			update_tg_load_avg(cfs_rq);
4205 	}
4206 }
4207 
4208 /*
4209  * Synchronize entity load avg of dequeued entity without locking
4210  * the previous rq.
4211  */
4212 static void sync_entity_load_avg(struct sched_entity *se)
4213 {
4214 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4215 	u64 last_update_time;
4216 
4217 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4218 	__update_load_avg_blocked_se(last_update_time, se);
4219 }
4220 
4221 /*
4222  * Task first catches up with cfs_rq, and then subtract
4223  * itself from the cfs_rq (task must be off the queue now).
4224  */
4225 static void remove_entity_load_avg(struct sched_entity *se)
4226 {
4227 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4228 	unsigned long flags;
4229 
4230 	/*
4231 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4232 	 * post_init_entity_util_avg() which will have added things to the
4233 	 * cfs_rq, so we can remove unconditionally.
4234 	 */
4235 
4236 	sync_entity_load_avg(se);
4237 
4238 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4239 	++cfs_rq->removed.nr;
4240 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4241 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4242 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4243 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4244 }
4245 
4246 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4247 {
4248 	return cfs_rq->avg.runnable_avg;
4249 }
4250 
4251 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4252 {
4253 	return cfs_rq->avg.load_avg;
4254 }
4255 
4256 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4257 
4258 static inline unsigned long task_util(struct task_struct *p)
4259 {
4260 	return READ_ONCE(p->se.avg.util_avg);
4261 }
4262 
4263 static inline unsigned long _task_util_est(struct task_struct *p)
4264 {
4265 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4266 
4267 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4268 }
4269 
4270 static inline unsigned long task_util_est(struct task_struct *p)
4271 {
4272 	return max(task_util(p), _task_util_est(p));
4273 }
4274 
4275 #ifdef CONFIG_UCLAMP_TASK
4276 static inline unsigned long uclamp_task_util(struct task_struct *p)
4277 {
4278 	return clamp(task_util_est(p),
4279 		     uclamp_eff_value(p, UCLAMP_MIN),
4280 		     uclamp_eff_value(p, UCLAMP_MAX));
4281 }
4282 #else
4283 static inline unsigned long uclamp_task_util(struct task_struct *p)
4284 {
4285 	return task_util_est(p);
4286 }
4287 #endif
4288 
4289 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4290 				    struct task_struct *p)
4291 {
4292 	unsigned int enqueued;
4293 
4294 	if (!sched_feat(UTIL_EST))
4295 		return;
4296 
4297 	/* Update root cfs_rq's estimated utilization */
4298 	enqueued  = cfs_rq->avg.util_est.enqueued;
4299 	enqueued += _task_util_est(p);
4300 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4301 
4302 	trace_sched_util_est_cfs_tp(cfs_rq);
4303 }
4304 
4305 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4306 				    struct task_struct *p)
4307 {
4308 	unsigned int enqueued;
4309 
4310 	if (!sched_feat(UTIL_EST))
4311 		return;
4312 
4313 	/* Update root cfs_rq's estimated utilization */
4314 	enqueued  = cfs_rq->avg.util_est.enqueued;
4315 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4316 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4317 
4318 	trace_sched_util_est_cfs_tp(cfs_rq);
4319 }
4320 
4321 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4322 
4323 /*
4324  * Check if a (signed) value is within a specified (unsigned) margin,
4325  * based on the observation that:
4326  *
4327  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4328  *
4329  * NOTE: this only works when value + margin < INT_MAX.
4330  */
4331 static inline bool within_margin(int value, int margin)
4332 {
4333 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4334 }
4335 
4336 static inline void util_est_update(struct cfs_rq *cfs_rq,
4337 				   struct task_struct *p,
4338 				   bool task_sleep)
4339 {
4340 	long last_ewma_diff, last_enqueued_diff;
4341 	struct util_est ue;
4342 
4343 	if (!sched_feat(UTIL_EST))
4344 		return;
4345 
4346 	/*
4347 	 * Skip update of task's estimated utilization when the task has not
4348 	 * yet completed an activation, e.g. being migrated.
4349 	 */
4350 	if (!task_sleep)
4351 		return;
4352 
4353 	/*
4354 	 * If the PELT values haven't changed since enqueue time,
4355 	 * skip the util_est update.
4356 	 */
4357 	ue = p->se.avg.util_est;
4358 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4359 		return;
4360 
4361 	last_enqueued_diff = ue.enqueued;
4362 
4363 	/*
4364 	 * Reset EWMA on utilization increases, the moving average is used only
4365 	 * to smooth utilization decreases.
4366 	 */
4367 	ue.enqueued = task_util(p);
4368 	if (sched_feat(UTIL_EST_FASTUP)) {
4369 		if (ue.ewma < ue.enqueued) {
4370 			ue.ewma = ue.enqueued;
4371 			goto done;
4372 		}
4373 	}
4374 
4375 	/*
4376 	 * Skip update of task's estimated utilization when its members are
4377 	 * already ~1% close to its last activation value.
4378 	 */
4379 	last_ewma_diff = ue.enqueued - ue.ewma;
4380 	last_enqueued_diff -= ue.enqueued;
4381 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4382 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4383 			goto done;
4384 
4385 		return;
4386 	}
4387 
4388 	/*
4389 	 * To avoid overestimation of actual task utilization, skip updates if
4390 	 * we cannot grant there is idle time in this CPU.
4391 	 */
4392 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4393 		return;
4394 
4395 	/*
4396 	 * Update Task's estimated utilization
4397 	 *
4398 	 * When *p completes an activation we can consolidate another sample
4399 	 * of the task size. This is done by storing the current PELT value
4400 	 * as ue.enqueued and by using this value to update the Exponential
4401 	 * Weighted Moving Average (EWMA):
4402 	 *
4403 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4404 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4405 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4406 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4407 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4408 	 *
4409 	 * Where 'w' is the weight of new samples, which is configured to be
4410 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4411 	 */
4412 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4413 	ue.ewma  += last_ewma_diff;
4414 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4415 done:
4416 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4417 	WRITE_ONCE(p->se.avg.util_est, ue);
4418 
4419 	trace_sched_util_est_se_tp(&p->se);
4420 }
4421 
4422 static inline int task_fits_capacity(struct task_struct *p,
4423 				     unsigned long capacity)
4424 {
4425 	return fits_capacity(uclamp_task_util(p), capacity);
4426 }
4427 
4428 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4429 {
4430 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4431 		return;
4432 
4433 	if (!p || p->nr_cpus_allowed == 1) {
4434 		rq->misfit_task_load = 0;
4435 		return;
4436 	}
4437 
4438 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4439 		rq->misfit_task_load = 0;
4440 		return;
4441 	}
4442 
4443 	/*
4444 	 * Make sure that misfit_task_load will not be null even if
4445 	 * task_h_load() returns 0.
4446 	 */
4447 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4448 }
4449 
4450 #else /* CONFIG_SMP */
4451 
4452 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4453 {
4454 	return true;
4455 }
4456 
4457 #define UPDATE_TG	0x0
4458 #define SKIP_AGE_LOAD	0x0
4459 #define DO_ATTACH	0x0
4460 
4461 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4462 {
4463 	cfs_rq_util_change(cfs_rq, 0);
4464 }
4465 
4466 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4467 
4468 static inline void
4469 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4470 static inline void
4471 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4472 
4473 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4474 {
4475 	return 0;
4476 }
4477 
4478 static inline void
4479 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4480 
4481 static inline void
4482 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4483 
4484 static inline void
4485 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4486 		bool task_sleep) {}
4487 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4488 
4489 #endif /* CONFIG_SMP */
4490 
4491 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4492 {
4493 #ifdef CONFIG_SCHED_DEBUG
4494 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4495 
4496 	if (d < 0)
4497 		d = -d;
4498 
4499 	if (d > 3*sysctl_sched_latency)
4500 		schedstat_inc(cfs_rq->nr_spread_over);
4501 #endif
4502 }
4503 
4504 static void
4505 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4506 {
4507 	u64 vruntime = cfs_rq->min_vruntime;
4508 
4509 	/*
4510 	 * The 'current' period is already promised to the current tasks,
4511 	 * however the extra weight of the new task will slow them down a
4512 	 * little, place the new task so that it fits in the slot that
4513 	 * stays open at the end.
4514 	 */
4515 	if (initial && sched_feat(START_DEBIT))
4516 		vruntime += sched_vslice(cfs_rq, se);
4517 
4518 	/* sleeps up to a single latency don't count. */
4519 	if (!initial) {
4520 		unsigned long thresh;
4521 
4522 		if (se_is_idle(se))
4523 			thresh = sysctl_sched_min_granularity;
4524 		else
4525 			thresh = sysctl_sched_latency;
4526 
4527 		/*
4528 		 * Halve their sleep time's effect, to allow
4529 		 * for a gentler effect of sleepers:
4530 		 */
4531 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4532 			thresh >>= 1;
4533 
4534 		vruntime -= thresh;
4535 	}
4536 
4537 	/* ensure we never gain time by being placed backwards. */
4538 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4539 }
4540 
4541 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4542 
4543 static inline bool cfs_bandwidth_used(void);
4544 
4545 /*
4546  * MIGRATION
4547  *
4548  *	dequeue
4549  *	  update_curr()
4550  *	    update_min_vruntime()
4551  *	  vruntime -= min_vruntime
4552  *
4553  *	enqueue
4554  *	  update_curr()
4555  *	    update_min_vruntime()
4556  *	  vruntime += min_vruntime
4557  *
4558  * this way the vruntime transition between RQs is done when both
4559  * min_vruntime are up-to-date.
4560  *
4561  * WAKEUP (remote)
4562  *
4563  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4564  *	  vruntime -= min_vruntime
4565  *
4566  *	enqueue
4567  *	  update_curr()
4568  *	    update_min_vruntime()
4569  *	  vruntime += min_vruntime
4570  *
4571  * this way we don't have the most up-to-date min_vruntime on the originating
4572  * CPU and an up-to-date min_vruntime on the destination CPU.
4573  */
4574 
4575 static void
4576 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4577 {
4578 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4579 	bool curr = cfs_rq->curr == se;
4580 
4581 	/*
4582 	 * If we're the current task, we must renormalise before calling
4583 	 * update_curr().
4584 	 */
4585 	if (renorm && curr)
4586 		se->vruntime += cfs_rq->min_vruntime;
4587 
4588 	update_curr(cfs_rq);
4589 
4590 	/*
4591 	 * Otherwise, renormalise after, such that we're placed at the current
4592 	 * moment in time, instead of some random moment in the past. Being
4593 	 * placed in the past could significantly boost this task to the
4594 	 * fairness detriment of existing tasks.
4595 	 */
4596 	if (renorm && !curr)
4597 		se->vruntime += cfs_rq->min_vruntime;
4598 
4599 	/*
4600 	 * When enqueuing a sched_entity, we must:
4601 	 *   - Update loads to have both entity and cfs_rq synced with now.
4602 	 *   - Add its load to cfs_rq->runnable_avg
4603 	 *   - For group_entity, update its weight to reflect the new share of
4604 	 *     its group cfs_rq
4605 	 *   - Add its new weight to cfs_rq->load.weight
4606 	 */
4607 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4608 	se_update_runnable(se);
4609 	update_cfs_group(se);
4610 	account_entity_enqueue(cfs_rq, se);
4611 
4612 	if (flags & ENQUEUE_WAKEUP)
4613 		place_entity(cfs_rq, se, 0);
4614 
4615 	check_schedstat_required();
4616 	update_stats_enqueue_fair(cfs_rq, se, flags);
4617 	check_spread(cfs_rq, se);
4618 	if (!curr)
4619 		__enqueue_entity(cfs_rq, se);
4620 	se->on_rq = 1;
4621 
4622 	if (cfs_rq->nr_running == 1) {
4623 		check_enqueue_throttle(cfs_rq);
4624 		if (!throttled_hierarchy(cfs_rq))
4625 			list_add_leaf_cfs_rq(cfs_rq);
4626 	}
4627 }
4628 
4629 static void __clear_buddies_last(struct sched_entity *se)
4630 {
4631 	for_each_sched_entity(se) {
4632 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4633 		if (cfs_rq->last != se)
4634 			break;
4635 
4636 		cfs_rq->last = NULL;
4637 	}
4638 }
4639 
4640 static void __clear_buddies_next(struct sched_entity *se)
4641 {
4642 	for_each_sched_entity(se) {
4643 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4644 		if (cfs_rq->next != se)
4645 			break;
4646 
4647 		cfs_rq->next = NULL;
4648 	}
4649 }
4650 
4651 static void __clear_buddies_skip(struct sched_entity *se)
4652 {
4653 	for_each_sched_entity(se) {
4654 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4655 		if (cfs_rq->skip != se)
4656 			break;
4657 
4658 		cfs_rq->skip = NULL;
4659 	}
4660 }
4661 
4662 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4663 {
4664 	if (cfs_rq->last == se)
4665 		__clear_buddies_last(se);
4666 
4667 	if (cfs_rq->next == se)
4668 		__clear_buddies_next(se);
4669 
4670 	if (cfs_rq->skip == se)
4671 		__clear_buddies_skip(se);
4672 }
4673 
4674 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4675 
4676 static void
4677 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4678 {
4679 	/*
4680 	 * Update run-time statistics of the 'current'.
4681 	 */
4682 	update_curr(cfs_rq);
4683 
4684 	/*
4685 	 * When dequeuing a sched_entity, we must:
4686 	 *   - Update loads to have both entity and cfs_rq synced with now.
4687 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4688 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4689 	 *   - For group entity, update its weight to reflect the new share
4690 	 *     of its group cfs_rq.
4691 	 */
4692 	update_load_avg(cfs_rq, se, UPDATE_TG);
4693 	se_update_runnable(se);
4694 
4695 	update_stats_dequeue_fair(cfs_rq, se, flags);
4696 
4697 	clear_buddies(cfs_rq, se);
4698 
4699 	if (se != cfs_rq->curr)
4700 		__dequeue_entity(cfs_rq, se);
4701 	se->on_rq = 0;
4702 	account_entity_dequeue(cfs_rq, se);
4703 
4704 	/*
4705 	 * Normalize after update_curr(); which will also have moved
4706 	 * min_vruntime if @se is the one holding it back. But before doing
4707 	 * update_min_vruntime() again, which will discount @se's position and
4708 	 * can move min_vruntime forward still more.
4709 	 */
4710 	if (!(flags & DEQUEUE_SLEEP))
4711 		se->vruntime -= cfs_rq->min_vruntime;
4712 
4713 	/* return excess runtime on last dequeue */
4714 	return_cfs_rq_runtime(cfs_rq);
4715 
4716 	update_cfs_group(se);
4717 
4718 	/*
4719 	 * Now advance min_vruntime if @se was the entity holding it back,
4720 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4721 	 * put back on, and if we advance min_vruntime, we'll be placed back
4722 	 * further than we started -- ie. we'll be penalized.
4723 	 */
4724 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4725 		update_min_vruntime(cfs_rq);
4726 
4727 	if (cfs_rq->nr_running == 0)
4728 		update_idle_cfs_rq_clock_pelt(cfs_rq);
4729 }
4730 
4731 /*
4732  * Preempt the current task with a newly woken task if needed:
4733  */
4734 static void
4735 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4736 {
4737 	unsigned long ideal_runtime, delta_exec;
4738 	struct sched_entity *se;
4739 	s64 delta;
4740 
4741 	ideal_runtime = sched_slice(cfs_rq, curr);
4742 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4743 	if (delta_exec > ideal_runtime) {
4744 		resched_curr(rq_of(cfs_rq));
4745 		/*
4746 		 * The current task ran long enough, ensure it doesn't get
4747 		 * re-elected due to buddy favours.
4748 		 */
4749 		clear_buddies(cfs_rq, curr);
4750 		return;
4751 	}
4752 
4753 	/*
4754 	 * Ensure that a task that missed wakeup preemption by a
4755 	 * narrow margin doesn't have to wait for a full slice.
4756 	 * This also mitigates buddy induced latencies under load.
4757 	 */
4758 	if (delta_exec < sysctl_sched_min_granularity)
4759 		return;
4760 
4761 	se = __pick_first_entity(cfs_rq);
4762 	delta = curr->vruntime - se->vruntime;
4763 
4764 	if (delta < 0)
4765 		return;
4766 
4767 	if (delta > ideal_runtime)
4768 		resched_curr(rq_of(cfs_rq));
4769 }
4770 
4771 static void
4772 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4773 {
4774 	clear_buddies(cfs_rq, se);
4775 
4776 	/* 'current' is not kept within the tree. */
4777 	if (se->on_rq) {
4778 		/*
4779 		 * Any task has to be enqueued before it get to execute on
4780 		 * a CPU. So account for the time it spent waiting on the
4781 		 * runqueue.
4782 		 */
4783 		update_stats_wait_end_fair(cfs_rq, se);
4784 		__dequeue_entity(cfs_rq, se);
4785 		update_load_avg(cfs_rq, se, UPDATE_TG);
4786 	}
4787 
4788 	update_stats_curr_start(cfs_rq, se);
4789 	cfs_rq->curr = se;
4790 
4791 	/*
4792 	 * Track our maximum slice length, if the CPU's load is at
4793 	 * least twice that of our own weight (i.e. dont track it
4794 	 * when there are only lesser-weight tasks around):
4795 	 */
4796 	if (schedstat_enabled() &&
4797 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4798 		struct sched_statistics *stats;
4799 
4800 		stats = __schedstats_from_se(se);
4801 		__schedstat_set(stats->slice_max,
4802 				max((u64)stats->slice_max,
4803 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4804 	}
4805 
4806 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4807 }
4808 
4809 static int
4810 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4811 
4812 /*
4813  * Pick the next process, keeping these things in mind, in this order:
4814  * 1) keep things fair between processes/task groups
4815  * 2) pick the "next" process, since someone really wants that to run
4816  * 3) pick the "last" process, for cache locality
4817  * 4) do not run the "skip" process, if something else is available
4818  */
4819 static struct sched_entity *
4820 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4821 {
4822 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4823 	struct sched_entity *se;
4824 
4825 	/*
4826 	 * If curr is set we have to see if its left of the leftmost entity
4827 	 * still in the tree, provided there was anything in the tree at all.
4828 	 */
4829 	if (!left || (curr && entity_before(curr, left)))
4830 		left = curr;
4831 
4832 	se = left; /* ideally we run the leftmost entity */
4833 
4834 	/*
4835 	 * Avoid running the skip buddy, if running something else can
4836 	 * be done without getting too unfair.
4837 	 */
4838 	if (cfs_rq->skip && cfs_rq->skip == se) {
4839 		struct sched_entity *second;
4840 
4841 		if (se == curr) {
4842 			second = __pick_first_entity(cfs_rq);
4843 		} else {
4844 			second = __pick_next_entity(se);
4845 			if (!second || (curr && entity_before(curr, second)))
4846 				second = curr;
4847 		}
4848 
4849 		if (second && wakeup_preempt_entity(second, left) < 1)
4850 			se = second;
4851 	}
4852 
4853 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4854 		/*
4855 		 * Someone really wants this to run. If it's not unfair, run it.
4856 		 */
4857 		se = cfs_rq->next;
4858 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4859 		/*
4860 		 * Prefer last buddy, try to return the CPU to a preempted task.
4861 		 */
4862 		se = cfs_rq->last;
4863 	}
4864 
4865 	return se;
4866 }
4867 
4868 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4869 
4870 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4871 {
4872 	/*
4873 	 * If still on the runqueue then deactivate_task()
4874 	 * was not called and update_curr() has to be done:
4875 	 */
4876 	if (prev->on_rq)
4877 		update_curr(cfs_rq);
4878 
4879 	/* throttle cfs_rqs exceeding runtime */
4880 	check_cfs_rq_runtime(cfs_rq);
4881 
4882 	check_spread(cfs_rq, prev);
4883 
4884 	if (prev->on_rq) {
4885 		update_stats_wait_start_fair(cfs_rq, prev);
4886 		/* Put 'current' back into the tree. */
4887 		__enqueue_entity(cfs_rq, prev);
4888 		/* in !on_rq case, update occurred at dequeue */
4889 		update_load_avg(cfs_rq, prev, 0);
4890 	}
4891 	cfs_rq->curr = NULL;
4892 }
4893 
4894 static void
4895 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4896 {
4897 	/*
4898 	 * Update run-time statistics of the 'current'.
4899 	 */
4900 	update_curr(cfs_rq);
4901 
4902 	/*
4903 	 * Ensure that runnable average is periodically updated.
4904 	 */
4905 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4906 	update_cfs_group(curr);
4907 
4908 #ifdef CONFIG_SCHED_HRTICK
4909 	/*
4910 	 * queued ticks are scheduled to match the slice, so don't bother
4911 	 * validating it and just reschedule.
4912 	 */
4913 	if (queued) {
4914 		resched_curr(rq_of(cfs_rq));
4915 		return;
4916 	}
4917 	/*
4918 	 * don't let the period tick interfere with the hrtick preemption
4919 	 */
4920 	if (!sched_feat(DOUBLE_TICK) &&
4921 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4922 		return;
4923 #endif
4924 
4925 	if (cfs_rq->nr_running > 1)
4926 		check_preempt_tick(cfs_rq, curr);
4927 }
4928 
4929 
4930 /**************************************************
4931  * CFS bandwidth control machinery
4932  */
4933 
4934 #ifdef CONFIG_CFS_BANDWIDTH
4935 
4936 #ifdef CONFIG_JUMP_LABEL
4937 static struct static_key __cfs_bandwidth_used;
4938 
4939 static inline bool cfs_bandwidth_used(void)
4940 {
4941 	return static_key_false(&__cfs_bandwidth_used);
4942 }
4943 
4944 void cfs_bandwidth_usage_inc(void)
4945 {
4946 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4947 }
4948 
4949 void cfs_bandwidth_usage_dec(void)
4950 {
4951 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4952 }
4953 #else /* CONFIG_JUMP_LABEL */
4954 static bool cfs_bandwidth_used(void)
4955 {
4956 	return true;
4957 }
4958 
4959 void cfs_bandwidth_usage_inc(void) {}
4960 void cfs_bandwidth_usage_dec(void) {}
4961 #endif /* CONFIG_JUMP_LABEL */
4962 
4963 /*
4964  * default period for cfs group bandwidth.
4965  * default: 0.1s, units: nanoseconds
4966  */
4967 static inline u64 default_cfs_period(void)
4968 {
4969 	return 100000000ULL;
4970 }
4971 
4972 static inline u64 sched_cfs_bandwidth_slice(void)
4973 {
4974 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4975 }
4976 
4977 /*
4978  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4979  * directly instead of rq->clock to avoid adding additional synchronization
4980  * around rq->lock.
4981  *
4982  * requires cfs_b->lock
4983  */
4984 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4985 {
4986 	s64 runtime;
4987 
4988 	if (unlikely(cfs_b->quota == RUNTIME_INF))
4989 		return;
4990 
4991 	cfs_b->runtime += cfs_b->quota;
4992 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
4993 	if (runtime > 0) {
4994 		cfs_b->burst_time += runtime;
4995 		cfs_b->nr_burst++;
4996 	}
4997 
4998 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4999 	cfs_b->runtime_snap = cfs_b->runtime;
5000 }
5001 
5002 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5003 {
5004 	return &tg->cfs_bandwidth;
5005 }
5006 
5007 /* returns 0 on failure to allocate runtime */
5008 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5009 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5010 {
5011 	u64 min_amount, amount = 0;
5012 
5013 	lockdep_assert_held(&cfs_b->lock);
5014 
5015 	/* note: this is a positive sum as runtime_remaining <= 0 */
5016 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5017 
5018 	if (cfs_b->quota == RUNTIME_INF)
5019 		amount = min_amount;
5020 	else {
5021 		start_cfs_bandwidth(cfs_b);
5022 
5023 		if (cfs_b->runtime > 0) {
5024 			amount = min(cfs_b->runtime, min_amount);
5025 			cfs_b->runtime -= amount;
5026 			cfs_b->idle = 0;
5027 		}
5028 	}
5029 
5030 	cfs_rq->runtime_remaining += amount;
5031 
5032 	return cfs_rq->runtime_remaining > 0;
5033 }
5034 
5035 /* returns 0 on failure to allocate runtime */
5036 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5037 {
5038 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5039 	int ret;
5040 
5041 	raw_spin_lock(&cfs_b->lock);
5042 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5043 	raw_spin_unlock(&cfs_b->lock);
5044 
5045 	return ret;
5046 }
5047 
5048 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5049 {
5050 	/* dock delta_exec before expiring quota (as it could span periods) */
5051 	cfs_rq->runtime_remaining -= delta_exec;
5052 
5053 	if (likely(cfs_rq->runtime_remaining > 0))
5054 		return;
5055 
5056 	if (cfs_rq->throttled)
5057 		return;
5058 	/*
5059 	 * if we're unable to extend our runtime we resched so that the active
5060 	 * hierarchy can be throttled
5061 	 */
5062 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5063 		resched_curr(rq_of(cfs_rq));
5064 }
5065 
5066 static __always_inline
5067 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5068 {
5069 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5070 		return;
5071 
5072 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5073 }
5074 
5075 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5076 {
5077 	return cfs_bandwidth_used() && cfs_rq->throttled;
5078 }
5079 
5080 /* check whether cfs_rq, or any parent, is throttled */
5081 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5082 {
5083 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5084 }
5085 
5086 /*
5087  * Ensure that neither of the group entities corresponding to src_cpu or
5088  * dest_cpu are members of a throttled hierarchy when performing group
5089  * load-balance operations.
5090  */
5091 static inline int throttled_lb_pair(struct task_group *tg,
5092 				    int src_cpu, int dest_cpu)
5093 {
5094 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5095 
5096 	src_cfs_rq = tg->cfs_rq[src_cpu];
5097 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5098 
5099 	return throttled_hierarchy(src_cfs_rq) ||
5100 	       throttled_hierarchy(dest_cfs_rq);
5101 }
5102 
5103 static int tg_unthrottle_up(struct task_group *tg, void *data)
5104 {
5105 	struct rq *rq = data;
5106 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5107 
5108 	cfs_rq->throttle_count--;
5109 	if (!cfs_rq->throttle_count) {
5110 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5111 					     cfs_rq->throttled_clock_pelt;
5112 
5113 		/* Add cfs_rq with load or one or more already running entities to the list */
5114 		if (!cfs_rq_is_decayed(cfs_rq))
5115 			list_add_leaf_cfs_rq(cfs_rq);
5116 	}
5117 
5118 	return 0;
5119 }
5120 
5121 static int tg_throttle_down(struct task_group *tg, void *data)
5122 {
5123 	struct rq *rq = data;
5124 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5125 
5126 	/* group is entering throttled state, stop time */
5127 	if (!cfs_rq->throttle_count) {
5128 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5129 		list_del_leaf_cfs_rq(cfs_rq);
5130 	}
5131 	cfs_rq->throttle_count++;
5132 
5133 	return 0;
5134 }
5135 
5136 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5137 {
5138 	struct rq *rq = rq_of(cfs_rq);
5139 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5140 	struct sched_entity *se;
5141 	long task_delta, idle_task_delta, dequeue = 1;
5142 
5143 	raw_spin_lock(&cfs_b->lock);
5144 	/* This will start the period timer if necessary */
5145 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5146 		/*
5147 		 * We have raced with bandwidth becoming available, and if we
5148 		 * actually throttled the timer might not unthrottle us for an
5149 		 * entire period. We additionally needed to make sure that any
5150 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5151 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5152 		 * for 1ns of runtime rather than just check cfs_b.
5153 		 */
5154 		dequeue = 0;
5155 	} else {
5156 		list_add_tail_rcu(&cfs_rq->throttled_list,
5157 				  &cfs_b->throttled_cfs_rq);
5158 	}
5159 	raw_spin_unlock(&cfs_b->lock);
5160 
5161 	if (!dequeue)
5162 		return false;  /* Throttle no longer required. */
5163 
5164 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5165 
5166 	/* freeze hierarchy runnable averages while throttled */
5167 	rcu_read_lock();
5168 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5169 	rcu_read_unlock();
5170 
5171 	task_delta = cfs_rq->h_nr_running;
5172 	idle_task_delta = cfs_rq->idle_h_nr_running;
5173 	for_each_sched_entity(se) {
5174 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5175 		/* throttled entity or throttle-on-deactivate */
5176 		if (!se->on_rq)
5177 			goto done;
5178 
5179 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5180 
5181 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5182 			idle_task_delta = cfs_rq->h_nr_running;
5183 
5184 		qcfs_rq->h_nr_running -= task_delta;
5185 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5186 
5187 		if (qcfs_rq->load.weight) {
5188 			/* Avoid re-evaluating load for this entity: */
5189 			se = parent_entity(se);
5190 			break;
5191 		}
5192 	}
5193 
5194 	for_each_sched_entity(se) {
5195 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5196 		/* throttled entity or throttle-on-deactivate */
5197 		if (!se->on_rq)
5198 			goto done;
5199 
5200 		update_load_avg(qcfs_rq, se, 0);
5201 		se_update_runnable(se);
5202 
5203 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5204 			idle_task_delta = cfs_rq->h_nr_running;
5205 
5206 		qcfs_rq->h_nr_running -= task_delta;
5207 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5208 	}
5209 
5210 	/* At this point se is NULL and we are at root level*/
5211 	sub_nr_running(rq, task_delta);
5212 
5213 done:
5214 	/*
5215 	 * Note: distribution will already see us throttled via the
5216 	 * throttled-list.  rq->lock protects completion.
5217 	 */
5218 	cfs_rq->throttled = 1;
5219 	cfs_rq->throttled_clock = rq_clock(rq);
5220 	return true;
5221 }
5222 
5223 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5224 {
5225 	struct rq *rq = rq_of(cfs_rq);
5226 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5227 	struct sched_entity *se;
5228 	long task_delta, idle_task_delta;
5229 
5230 	se = cfs_rq->tg->se[cpu_of(rq)];
5231 
5232 	cfs_rq->throttled = 0;
5233 
5234 	update_rq_clock(rq);
5235 
5236 	raw_spin_lock(&cfs_b->lock);
5237 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5238 	list_del_rcu(&cfs_rq->throttled_list);
5239 	raw_spin_unlock(&cfs_b->lock);
5240 
5241 	/* update hierarchical throttle state */
5242 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5243 
5244 	if (!cfs_rq->load.weight) {
5245 		if (!cfs_rq->on_list)
5246 			return;
5247 		/*
5248 		 * Nothing to run but something to decay (on_list)?
5249 		 * Complete the branch.
5250 		 */
5251 		for_each_sched_entity(se) {
5252 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5253 				break;
5254 		}
5255 		goto unthrottle_throttle;
5256 	}
5257 
5258 	task_delta = cfs_rq->h_nr_running;
5259 	idle_task_delta = cfs_rq->idle_h_nr_running;
5260 	for_each_sched_entity(se) {
5261 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5262 
5263 		if (se->on_rq)
5264 			break;
5265 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5266 
5267 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5268 			idle_task_delta = cfs_rq->h_nr_running;
5269 
5270 		qcfs_rq->h_nr_running += task_delta;
5271 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5272 
5273 		/* end evaluation on encountering a throttled cfs_rq */
5274 		if (cfs_rq_throttled(qcfs_rq))
5275 			goto unthrottle_throttle;
5276 	}
5277 
5278 	for_each_sched_entity(se) {
5279 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5280 
5281 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5282 		se_update_runnable(se);
5283 
5284 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5285 			idle_task_delta = cfs_rq->h_nr_running;
5286 
5287 		qcfs_rq->h_nr_running += task_delta;
5288 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5289 
5290 		/* end evaluation on encountering a throttled cfs_rq */
5291 		if (cfs_rq_throttled(qcfs_rq))
5292 			goto unthrottle_throttle;
5293 	}
5294 
5295 	/* At this point se is NULL and we are at root level*/
5296 	add_nr_running(rq, task_delta);
5297 
5298 unthrottle_throttle:
5299 	assert_list_leaf_cfs_rq(rq);
5300 
5301 	/* Determine whether we need to wake up potentially idle CPU: */
5302 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5303 		resched_curr(rq);
5304 }
5305 
5306 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5307 {
5308 	struct cfs_rq *cfs_rq;
5309 	u64 runtime, remaining = 1;
5310 
5311 	rcu_read_lock();
5312 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5313 				throttled_list) {
5314 		struct rq *rq = rq_of(cfs_rq);
5315 		struct rq_flags rf;
5316 
5317 		rq_lock_irqsave(rq, &rf);
5318 		if (!cfs_rq_throttled(cfs_rq))
5319 			goto next;
5320 
5321 		/* By the above check, this should never be true */
5322 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5323 
5324 		raw_spin_lock(&cfs_b->lock);
5325 		runtime = -cfs_rq->runtime_remaining + 1;
5326 		if (runtime > cfs_b->runtime)
5327 			runtime = cfs_b->runtime;
5328 		cfs_b->runtime -= runtime;
5329 		remaining = cfs_b->runtime;
5330 		raw_spin_unlock(&cfs_b->lock);
5331 
5332 		cfs_rq->runtime_remaining += runtime;
5333 
5334 		/* we check whether we're throttled above */
5335 		if (cfs_rq->runtime_remaining > 0)
5336 			unthrottle_cfs_rq(cfs_rq);
5337 
5338 next:
5339 		rq_unlock_irqrestore(rq, &rf);
5340 
5341 		if (!remaining)
5342 			break;
5343 	}
5344 	rcu_read_unlock();
5345 }
5346 
5347 /*
5348  * Responsible for refilling a task_group's bandwidth and unthrottling its
5349  * cfs_rqs as appropriate. If there has been no activity within the last
5350  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5351  * used to track this state.
5352  */
5353 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5354 {
5355 	int throttled;
5356 
5357 	/* no need to continue the timer with no bandwidth constraint */
5358 	if (cfs_b->quota == RUNTIME_INF)
5359 		goto out_deactivate;
5360 
5361 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5362 	cfs_b->nr_periods += overrun;
5363 
5364 	/* Refill extra burst quota even if cfs_b->idle */
5365 	__refill_cfs_bandwidth_runtime(cfs_b);
5366 
5367 	/*
5368 	 * idle depends on !throttled (for the case of a large deficit), and if
5369 	 * we're going inactive then everything else can be deferred
5370 	 */
5371 	if (cfs_b->idle && !throttled)
5372 		goto out_deactivate;
5373 
5374 	if (!throttled) {
5375 		/* mark as potentially idle for the upcoming period */
5376 		cfs_b->idle = 1;
5377 		return 0;
5378 	}
5379 
5380 	/* account preceding periods in which throttling occurred */
5381 	cfs_b->nr_throttled += overrun;
5382 
5383 	/*
5384 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5385 	 */
5386 	while (throttled && cfs_b->runtime > 0) {
5387 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5388 		/* we can't nest cfs_b->lock while distributing bandwidth */
5389 		distribute_cfs_runtime(cfs_b);
5390 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5391 
5392 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5393 	}
5394 
5395 	/*
5396 	 * While we are ensured activity in the period following an
5397 	 * unthrottle, this also covers the case in which the new bandwidth is
5398 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5399 	 * timer to remain active while there are any throttled entities.)
5400 	 */
5401 	cfs_b->idle = 0;
5402 
5403 	return 0;
5404 
5405 out_deactivate:
5406 	return 1;
5407 }
5408 
5409 /* a cfs_rq won't donate quota below this amount */
5410 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5411 /* minimum remaining period time to redistribute slack quota */
5412 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5413 /* how long we wait to gather additional slack before distributing */
5414 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5415 
5416 /*
5417  * Are we near the end of the current quota period?
5418  *
5419  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5420  * hrtimer base being cleared by hrtimer_start. In the case of
5421  * migrate_hrtimers, base is never cleared, so we are fine.
5422  */
5423 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5424 {
5425 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5426 	s64 remaining;
5427 
5428 	/* if the call-back is running a quota refresh is already occurring */
5429 	if (hrtimer_callback_running(refresh_timer))
5430 		return 1;
5431 
5432 	/* is a quota refresh about to occur? */
5433 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5434 	if (remaining < (s64)min_expire)
5435 		return 1;
5436 
5437 	return 0;
5438 }
5439 
5440 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5441 {
5442 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5443 
5444 	/* if there's a quota refresh soon don't bother with slack */
5445 	if (runtime_refresh_within(cfs_b, min_left))
5446 		return;
5447 
5448 	/* don't push forwards an existing deferred unthrottle */
5449 	if (cfs_b->slack_started)
5450 		return;
5451 	cfs_b->slack_started = true;
5452 
5453 	hrtimer_start(&cfs_b->slack_timer,
5454 			ns_to_ktime(cfs_bandwidth_slack_period),
5455 			HRTIMER_MODE_REL);
5456 }
5457 
5458 /* we know any runtime found here is valid as update_curr() precedes return */
5459 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5460 {
5461 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5462 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5463 
5464 	if (slack_runtime <= 0)
5465 		return;
5466 
5467 	raw_spin_lock(&cfs_b->lock);
5468 	if (cfs_b->quota != RUNTIME_INF) {
5469 		cfs_b->runtime += slack_runtime;
5470 
5471 		/* we are under rq->lock, defer unthrottling using a timer */
5472 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5473 		    !list_empty(&cfs_b->throttled_cfs_rq))
5474 			start_cfs_slack_bandwidth(cfs_b);
5475 	}
5476 	raw_spin_unlock(&cfs_b->lock);
5477 
5478 	/* even if it's not valid for return we don't want to try again */
5479 	cfs_rq->runtime_remaining -= slack_runtime;
5480 }
5481 
5482 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5483 {
5484 	if (!cfs_bandwidth_used())
5485 		return;
5486 
5487 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5488 		return;
5489 
5490 	__return_cfs_rq_runtime(cfs_rq);
5491 }
5492 
5493 /*
5494  * This is done with a timer (instead of inline with bandwidth return) since
5495  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5496  */
5497 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5498 {
5499 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5500 	unsigned long flags;
5501 
5502 	/* confirm we're still not at a refresh boundary */
5503 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5504 	cfs_b->slack_started = false;
5505 
5506 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5507 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5508 		return;
5509 	}
5510 
5511 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5512 		runtime = cfs_b->runtime;
5513 
5514 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5515 
5516 	if (!runtime)
5517 		return;
5518 
5519 	distribute_cfs_runtime(cfs_b);
5520 }
5521 
5522 /*
5523  * When a group wakes up we want to make sure that its quota is not already
5524  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5525  * runtime as update_curr() throttling can not trigger until it's on-rq.
5526  */
5527 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5528 {
5529 	if (!cfs_bandwidth_used())
5530 		return;
5531 
5532 	/* an active group must be handled by the update_curr()->put() path */
5533 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5534 		return;
5535 
5536 	/* ensure the group is not already throttled */
5537 	if (cfs_rq_throttled(cfs_rq))
5538 		return;
5539 
5540 	/* update runtime allocation */
5541 	account_cfs_rq_runtime(cfs_rq, 0);
5542 	if (cfs_rq->runtime_remaining <= 0)
5543 		throttle_cfs_rq(cfs_rq);
5544 }
5545 
5546 static void sync_throttle(struct task_group *tg, int cpu)
5547 {
5548 	struct cfs_rq *pcfs_rq, *cfs_rq;
5549 
5550 	if (!cfs_bandwidth_used())
5551 		return;
5552 
5553 	if (!tg->parent)
5554 		return;
5555 
5556 	cfs_rq = tg->cfs_rq[cpu];
5557 	pcfs_rq = tg->parent->cfs_rq[cpu];
5558 
5559 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5560 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
5561 }
5562 
5563 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5564 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5565 {
5566 	if (!cfs_bandwidth_used())
5567 		return false;
5568 
5569 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5570 		return false;
5571 
5572 	/*
5573 	 * it's possible for a throttled entity to be forced into a running
5574 	 * state (e.g. set_curr_task), in this case we're finished.
5575 	 */
5576 	if (cfs_rq_throttled(cfs_rq))
5577 		return true;
5578 
5579 	return throttle_cfs_rq(cfs_rq);
5580 }
5581 
5582 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5583 {
5584 	struct cfs_bandwidth *cfs_b =
5585 		container_of(timer, struct cfs_bandwidth, slack_timer);
5586 
5587 	do_sched_cfs_slack_timer(cfs_b);
5588 
5589 	return HRTIMER_NORESTART;
5590 }
5591 
5592 extern const u64 max_cfs_quota_period;
5593 
5594 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5595 {
5596 	struct cfs_bandwidth *cfs_b =
5597 		container_of(timer, struct cfs_bandwidth, period_timer);
5598 	unsigned long flags;
5599 	int overrun;
5600 	int idle = 0;
5601 	int count = 0;
5602 
5603 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5604 	for (;;) {
5605 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5606 		if (!overrun)
5607 			break;
5608 
5609 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5610 
5611 		if (++count > 3) {
5612 			u64 new, old = ktime_to_ns(cfs_b->period);
5613 
5614 			/*
5615 			 * Grow period by a factor of 2 to avoid losing precision.
5616 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5617 			 * to fail.
5618 			 */
5619 			new = old * 2;
5620 			if (new < max_cfs_quota_period) {
5621 				cfs_b->period = ns_to_ktime(new);
5622 				cfs_b->quota *= 2;
5623 				cfs_b->burst *= 2;
5624 
5625 				pr_warn_ratelimited(
5626 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5627 					smp_processor_id(),
5628 					div_u64(new, NSEC_PER_USEC),
5629 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5630 			} else {
5631 				pr_warn_ratelimited(
5632 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5633 					smp_processor_id(),
5634 					div_u64(old, NSEC_PER_USEC),
5635 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5636 			}
5637 
5638 			/* reset count so we don't come right back in here */
5639 			count = 0;
5640 		}
5641 	}
5642 	if (idle)
5643 		cfs_b->period_active = 0;
5644 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5645 
5646 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5647 }
5648 
5649 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5650 {
5651 	raw_spin_lock_init(&cfs_b->lock);
5652 	cfs_b->runtime = 0;
5653 	cfs_b->quota = RUNTIME_INF;
5654 	cfs_b->period = ns_to_ktime(default_cfs_period());
5655 	cfs_b->burst = 0;
5656 
5657 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5658 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5659 	cfs_b->period_timer.function = sched_cfs_period_timer;
5660 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5661 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5662 	cfs_b->slack_started = false;
5663 }
5664 
5665 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5666 {
5667 	cfs_rq->runtime_enabled = 0;
5668 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5669 }
5670 
5671 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5672 {
5673 	lockdep_assert_held(&cfs_b->lock);
5674 
5675 	if (cfs_b->period_active)
5676 		return;
5677 
5678 	cfs_b->period_active = 1;
5679 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5680 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5681 }
5682 
5683 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5684 {
5685 	/* init_cfs_bandwidth() was not called */
5686 	if (!cfs_b->throttled_cfs_rq.next)
5687 		return;
5688 
5689 	hrtimer_cancel(&cfs_b->period_timer);
5690 	hrtimer_cancel(&cfs_b->slack_timer);
5691 }
5692 
5693 /*
5694  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5695  *
5696  * The race is harmless, since modifying bandwidth settings of unhooked group
5697  * bits doesn't do much.
5698  */
5699 
5700 /* cpu online callback */
5701 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5702 {
5703 	struct task_group *tg;
5704 
5705 	lockdep_assert_rq_held(rq);
5706 
5707 	rcu_read_lock();
5708 	list_for_each_entry_rcu(tg, &task_groups, list) {
5709 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5710 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5711 
5712 		raw_spin_lock(&cfs_b->lock);
5713 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5714 		raw_spin_unlock(&cfs_b->lock);
5715 	}
5716 	rcu_read_unlock();
5717 }
5718 
5719 /* cpu offline callback */
5720 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5721 {
5722 	struct task_group *tg;
5723 
5724 	lockdep_assert_rq_held(rq);
5725 
5726 	rcu_read_lock();
5727 	list_for_each_entry_rcu(tg, &task_groups, list) {
5728 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5729 
5730 		if (!cfs_rq->runtime_enabled)
5731 			continue;
5732 
5733 		/*
5734 		 * clock_task is not advancing so we just need to make sure
5735 		 * there's some valid quota amount
5736 		 */
5737 		cfs_rq->runtime_remaining = 1;
5738 		/*
5739 		 * Offline rq is schedulable till CPU is completely disabled
5740 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5741 		 */
5742 		cfs_rq->runtime_enabled = 0;
5743 
5744 		if (cfs_rq_throttled(cfs_rq))
5745 			unthrottle_cfs_rq(cfs_rq);
5746 	}
5747 	rcu_read_unlock();
5748 }
5749 
5750 #else /* CONFIG_CFS_BANDWIDTH */
5751 
5752 static inline bool cfs_bandwidth_used(void)
5753 {
5754 	return false;
5755 }
5756 
5757 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5758 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5759 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5760 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5761 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5762 
5763 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5764 {
5765 	return 0;
5766 }
5767 
5768 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5769 {
5770 	return 0;
5771 }
5772 
5773 static inline int throttled_lb_pair(struct task_group *tg,
5774 				    int src_cpu, int dest_cpu)
5775 {
5776 	return 0;
5777 }
5778 
5779 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5780 
5781 #ifdef CONFIG_FAIR_GROUP_SCHED
5782 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5783 #endif
5784 
5785 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5786 {
5787 	return NULL;
5788 }
5789 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5790 static inline void update_runtime_enabled(struct rq *rq) {}
5791 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5792 
5793 #endif /* CONFIG_CFS_BANDWIDTH */
5794 
5795 /**************************************************
5796  * CFS operations on tasks:
5797  */
5798 
5799 #ifdef CONFIG_SCHED_HRTICK
5800 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5801 {
5802 	struct sched_entity *se = &p->se;
5803 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5804 
5805 	SCHED_WARN_ON(task_rq(p) != rq);
5806 
5807 	if (rq->cfs.h_nr_running > 1) {
5808 		u64 slice = sched_slice(cfs_rq, se);
5809 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5810 		s64 delta = slice - ran;
5811 
5812 		if (delta < 0) {
5813 			if (task_current(rq, p))
5814 				resched_curr(rq);
5815 			return;
5816 		}
5817 		hrtick_start(rq, delta);
5818 	}
5819 }
5820 
5821 /*
5822  * called from enqueue/dequeue and updates the hrtick when the
5823  * current task is from our class and nr_running is low enough
5824  * to matter.
5825  */
5826 static void hrtick_update(struct rq *rq)
5827 {
5828 	struct task_struct *curr = rq->curr;
5829 
5830 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5831 		return;
5832 
5833 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5834 		hrtick_start_fair(rq, curr);
5835 }
5836 #else /* !CONFIG_SCHED_HRTICK */
5837 static inline void
5838 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5839 {
5840 }
5841 
5842 static inline void hrtick_update(struct rq *rq)
5843 {
5844 }
5845 #endif
5846 
5847 #ifdef CONFIG_SMP
5848 static inline bool cpu_overutilized(int cpu)
5849 {
5850 	return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu));
5851 }
5852 
5853 static inline void update_overutilized_status(struct rq *rq)
5854 {
5855 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5856 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5857 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5858 	}
5859 }
5860 #else
5861 static inline void update_overutilized_status(struct rq *rq) { }
5862 #endif
5863 
5864 /* Runqueue only has SCHED_IDLE tasks enqueued */
5865 static int sched_idle_rq(struct rq *rq)
5866 {
5867 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5868 			rq->nr_running);
5869 }
5870 
5871 /*
5872  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
5873  * of idle_nr_running, which does not consider idle descendants of normal
5874  * entities.
5875  */
5876 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
5877 {
5878 	return cfs_rq->nr_running &&
5879 		cfs_rq->nr_running == cfs_rq->idle_nr_running;
5880 }
5881 
5882 #ifdef CONFIG_SMP
5883 static int sched_idle_cpu(int cpu)
5884 {
5885 	return sched_idle_rq(cpu_rq(cpu));
5886 }
5887 #endif
5888 
5889 /*
5890  * The enqueue_task method is called before nr_running is
5891  * increased. Here we update the fair scheduling stats and
5892  * then put the task into the rbtree:
5893  */
5894 static void
5895 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5896 {
5897 	struct cfs_rq *cfs_rq;
5898 	struct sched_entity *se = &p->se;
5899 	int idle_h_nr_running = task_has_idle_policy(p);
5900 	int task_new = !(flags & ENQUEUE_WAKEUP);
5901 
5902 	/*
5903 	 * The code below (indirectly) updates schedutil which looks at
5904 	 * the cfs_rq utilization to select a frequency.
5905 	 * Let's add the task's estimated utilization to the cfs_rq's
5906 	 * estimated utilization, before we update schedutil.
5907 	 */
5908 	util_est_enqueue(&rq->cfs, p);
5909 
5910 	/*
5911 	 * If in_iowait is set, the code below may not trigger any cpufreq
5912 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5913 	 * passed.
5914 	 */
5915 	if (p->in_iowait)
5916 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5917 
5918 	for_each_sched_entity(se) {
5919 		if (se->on_rq)
5920 			break;
5921 		cfs_rq = cfs_rq_of(se);
5922 		enqueue_entity(cfs_rq, se, flags);
5923 
5924 		cfs_rq->h_nr_running++;
5925 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5926 
5927 		if (cfs_rq_is_idle(cfs_rq))
5928 			idle_h_nr_running = 1;
5929 
5930 		/* end evaluation on encountering a throttled cfs_rq */
5931 		if (cfs_rq_throttled(cfs_rq))
5932 			goto enqueue_throttle;
5933 
5934 		flags = ENQUEUE_WAKEUP;
5935 	}
5936 
5937 	for_each_sched_entity(se) {
5938 		cfs_rq = cfs_rq_of(se);
5939 
5940 		update_load_avg(cfs_rq, se, UPDATE_TG);
5941 		se_update_runnable(se);
5942 		update_cfs_group(se);
5943 
5944 		cfs_rq->h_nr_running++;
5945 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5946 
5947 		if (cfs_rq_is_idle(cfs_rq))
5948 			idle_h_nr_running = 1;
5949 
5950 		/* end evaluation on encountering a throttled cfs_rq */
5951 		if (cfs_rq_throttled(cfs_rq))
5952 			goto enqueue_throttle;
5953 	}
5954 
5955 	/* At this point se is NULL and we are at root level*/
5956 	add_nr_running(rq, 1);
5957 
5958 	/*
5959 	 * Since new tasks are assigned an initial util_avg equal to
5960 	 * half of the spare capacity of their CPU, tiny tasks have the
5961 	 * ability to cross the overutilized threshold, which will
5962 	 * result in the load balancer ruining all the task placement
5963 	 * done by EAS. As a way to mitigate that effect, do not account
5964 	 * for the first enqueue operation of new tasks during the
5965 	 * overutilized flag detection.
5966 	 *
5967 	 * A better way of solving this problem would be to wait for
5968 	 * the PELT signals of tasks to converge before taking them
5969 	 * into account, but that is not straightforward to implement,
5970 	 * and the following generally works well enough in practice.
5971 	 */
5972 	if (!task_new)
5973 		update_overutilized_status(rq);
5974 
5975 enqueue_throttle:
5976 	assert_list_leaf_cfs_rq(rq);
5977 
5978 	hrtick_update(rq);
5979 }
5980 
5981 static void set_next_buddy(struct sched_entity *se);
5982 
5983 /*
5984  * The dequeue_task method is called before nr_running is
5985  * decreased. We remove the task from the rbtree and
5986  * update the fair scheduling stats:
5987  */
5988 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5989 {
5990 	struct cfs_rq *cfs_rq;
5991 	struct sched_entity *se = &p->se;
5992 	int task_sleep = flags & DEQUEUE_SLEEP;
5993 	int idle_h_nr_running = task_has_idle_policy(p);
5994 	bool was_sched_idle = sched_idle_rq(rq);
5995 
5996 	util_est_dequeue(&rq->cfs, p);
5997 
5998 	for_each_sched_entity(se) {
5999 		cfs_rq = cfs_rq_of(se);
6000 		dequeue_entity(cfs_rq, se, flags);
6001 
6002 		cfs_rq->h_nr_running--;
6003 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6004 
6005 		if (cfs_rq_is_idle(cfs_rq))
6006 			idle_h_nr_running = 1;
6007 
6008 		/* end evaluation on encountering a throttled cfs_rq */
6009 		if (cfs_rq_throttled(cfs_rq))
6010 			goto dequeue_throttle;
6011 
6012 		/* Don't dequeue parent if it has other entities besides us */
6013 		if (cfs_rq->load.weight) {
6014 			/* Avoid re-evaluating load for this entity: */
6015 			se = parent_entity(se);
6016 			/*
6017 			 * Bias pick_next to pick a task from this cfs_rq, as
6018 			 * p is sleeping when it is within its sched_slice.
6019 			 */
6020 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6021 				set_next_buddy(se);
6022 			break;
6023 		}
6024 		flags |= DEQUEUE_SLEEP;
6025 	}
6026 
6027 	for_each_sched_entity(se) {
6028 		cfs_rq = cfs_rq_of(se);
6029 
6030 		update_load_avg(cfs_rq, se, UPDATE_TG);
6031 		se_update_runnable(se);
6032 		update_cfs_group(se);
6033 
6034 		cfs_rq->h_nr_running--;
6035 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6036 
6037 		if (cfs_rq_is_idle(cfs_rq))
6038 			idle_h_nr_running = 1;
6039 
6040 		/* end evaluation on encountering a throttled cfs_rq */
6041 		if (cfs_rq_throttled(cfs_rq))
6042 			goto dequeue_throttle;
6043 
6044 	}
6045 
6046 	/* At this point se is NULL and we are at root level*/
6047 	sub_nr_running(rq, 1);
6048 
6049 	/* balance early to pull high priority tasks */
6050 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6051 		rq->next_balance = jiffies;
6052 
6053 dequeue_throttle:
6054 	util_est_update(&rq->cfs, p, task_sleep);
6055 	hrtick_update(rq);
6056 }
6057 
6058 #ifdef CONFIG_SMP
6059 
6060 /* Working cpumask for: load_balance, load_balance_newidle. */
6061 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6062 DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6063 
6064 #ifdef CONFIG_NO_HZ_COMMON
6065 
6066 static struct {
6067 	cpumask_var_t idle_cpus_mask;
6068 	atomic_t nr_cpus;
6069 	int has_blocked;		/* Idle CPUS has blocked load */
6070 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6071 	unsigned long next_balance;     /* in jiffy units */
6072 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6073 } nohz ____cacheline_aligned;
6074 
6075 #endif /* CONFIG_NO_HZ_COMMON */
6076 
6077 static unsigned long cpu_load(struct rq *rq)
6078 {
6079 	return cfs_rq_load_avg(&rq->cfs);
6080 }
6081 
6082 /*
6083  * cpu_load_without - compute CPU load without any contributions from *p
6084  * @cpu: the CPU which load is requested
6085  * @p: the task which load should be discounted
6086  *
6087  * The load of a CPU is defined by the load of tasks currently enqueued on that
6088  * CPU as well as tasks which are currently sleeping after an execution on that
6089  * CPU.
6090  *
6091  * This method returns the load of the specified CPU by discounting the load of
6092  * the specified task, whenever the task is currently contributing to the CPU
6093  * load.
6094  */
6095 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6096 {
6097 	struct cfs_rq *cfs_rq;
6098 	unsigned int load;
6099 
6100 	/* Task has no contribution or is new */
6101 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6102 		return cpu_load(rq);
6103 
6104 	cfs_rq = &rq->cfs;
6105 	load = READ_ONCE(cfs_rq->avg.load_avg);
6106 
6107 	/* Discount task's util from CPU's util */
6108 	lsub_positive(&load, task_h_load(p));
6109 
6110 	return load;
6111 }
6112 
6113 static unsigned long cpu_runnable(struct rq *rq)
6114 {
6115 	return cfs_rq_runnable_avg(&rq->cfs);
6116 }
6117 
6118 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6119 {
6120 	struct cfs_rq *cfs_rq;
6121 	unsigned int runnable;
6122 
6123 	/* Task has no contribution or is new */
6124 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6125 		return cpu_runnable(rq);
6126 
6127 	cfs_rq = &rq->cfs;
6128 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6129 
6130 	/* Discount task's runnable from CPU's runnable */
6131 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6132 
6133 	return runnable;
6134 }
6135 
6136 static unsigned long capacity_of(int cpu)
6137 {
6138 	return cpu_rq(cpu)->cpu_capacity;
6139 }
6140 
6141 static void record_wakee(struct task_struct *p)
6142 {
6143 	/*
6144 	 * Only decay a single time; tasks that have less then 1 wakeup per
6145 	 * jiffy will not have built up many flips.
6146 	 */
6147 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6148 		current->wakee_flips >>= 1;
6149 		current->wakee_flip_decay_ts = jiffies;
6150 	}
6151 
6152 	if (current->last_wakee != p) {
6153 		current->last_wakee = p;
6154 		current->wakee_flips++;
6155 	}
6156 }
6157 
6158 /*
6159  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6160  *
6161  * A waker of many should wake a different task than the one last awakened
6162  * at a frequency roughly N times higher than one of its wakees.
6163  *
6164  * In order to determine whether we should let the load spread vs consolidating
6165  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6166  * partner, and a factor of lls_size higher frequency in the other.
6167  *
6168  * With both conditions met, we can be relatively sure that the relationship is
6169  * non-monogamous, with partner count exceeding socket size.
6170  *
6171  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6172  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6173  * socket size.
6174  */
6175 static int wake_wide(struct task_struct *p)
6176 {
6177 	unsigned int master = current->wakee_flips;
6178 	unsigned int slave = p->wakee_flips;
6179 	int factor = __this_cpu_read(sd_llc_size);
6180 
6181 	if (master < slave)
6182 		swap(master, slave);
6183 	if (slave < factor || master < slave * factor)
6184 		return 0;
6185 	return 1;
6186 }
6187 
6188 /*
6189  * The purpose of wake_affine() is to quickly determine on which CPU we can run
6190  * soonest. For the purpose of speed we only consider the waking and previous
6191  * CPU.
6192  *
6193  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6194  *			cache-affine and is (or	will be) idle.
6195  *
6196  * wake_affine_weight() - considers the weight to reflect the average
6197  *			  scheduling latency of the CPUs. This seems to work
6198  *			  for the overloaded case.
6199  */
6200 static int
6201 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6202 {
6203 	/*
6204 	 * If this_cpu is idle, it implies the wakeup is from interrupt
6205 	 * context. Only allow the move if cache is shared. Otherwise an
6206 	 * interrupt intensive workload could force all tasks onto one
6207 	 * node depending on the IO topology or IRQ affinity settings.
6208 	 *
6209 	 * If the prev_cpu is idle and cache affine then avoid a migration.
6210 	 * There is no guarantee that the cache hot data from an interrupt
6211 	 * is more important than cache hot data on the prev_cpu and from
6212 	 * a cpufreq perspective, it's better to have higher utilisation
6213 	 * on one CPU.
6214 	 */
6215 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6216 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6217 
6218 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
6219 		return this_cpu;
6220 
6221 	if (available_idle_cpu(prev_cpu))
6222 		return prev_cpu;
6223 
6224 	return nr_cpumask_bits;
6225 }
6226 
6227 static int
6228 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6229 		   int this_cpu, int prev_cpu, int sync)
6230 {
6231 	s64 this_eff_load, prev_eff_load;
6232 	unsigned long task_load;
6233 
6234 	this_eff_load = cpu_load(cpu_rq(this_cpu));
6235 
6236 	if (sync) {
6237 		unsigned long current_load = task_h_load(current);
6238 
6239 		if (current_load > this_eff_load)
6240 			return this_cpu;
6241 
6242 		this_eff_load -= current_load;
6243 	}
6244 
6245 	task_load = task_h_load(p);
6246 
6247 	this_eff_load += task_load;
6248 	if (sched_feat(WA_BIAS))
6249 		this_eff_load *= 100;
6250 	this_eff_load *= capacity_of(prev_cpu);
6251 
6252 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6253 	prev_eff_load -= task_load;
6254 	if (sched_feat(WA_BIAS))
6255 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6256 	prev_eff_load *= capacity_of(this_cpu);
6257 
6258 	/*
6259 	 * If sync, adjust the weight of prev_eff_load such that if
6260 	 * prev_eff == this_eff that select_idle_sibling() will consider
6261 	 * stacking the wakee on top of the waker if no other CPU is
6262 	 * idle.
6263 	 */
6264 	if (sync)
6265 		prev_eff_load += 1;
6266 
6267 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6268 }
6269 
6270 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6271 		       int this_cpu, int prev_cpu, int sync)
6272 {
6273 	int target = nr_cpumask_bits;
6274 
6275 	if (sched_feat(WA_IDLE))
6276 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
6277 
6278 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6279 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6280 
6281 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6282 	if (target == nr_cpumask_bits)
6283 		return prev_cpu;
6284 
6285 	schedstat_inc(sd->ttwu_move_affine);
6286 	schedstat_inc(p->stats.nr_wakeups_affine);
6287 	return target;
6288 }
6289 
6290 static struct sched_group *
6291 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6292 
6293 /*
6294  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6295  */
6296 static int
6297 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6298 {
6299 	unsigned long load, min_load = ULONG_MAX;
6300 	unsigned int min_exit_latency = UINT_MAX;
6301 	u64 latest_idle_timestamp = 0;
6302 	int least_loaded_cpu = this_cpu;
6303 	int shallowest_idle_cpu = -1;
6304 	int i;
6305 
6306 	/* Check if we have any choice: */
6307 	if (group->group_weight == 1)
6308 		return cpumask_first(sched_group_span(group));
6309 
6310 	/* Traverse only the allowed CPUs */
6311 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6312 		struct rq *rq = cpu_rq(i);
6313 
6314 		if (!sched_core_cookie_match(rq, p))
6315 			continue;
6316 
6317 		if (sched_idle_cpu(i))
6318 			return i;
6319 
6320 		if (available_idle_cpu(i)) {
6321 			struct cpuidle_state *idle = idle_get_state(rq);
6322 			if (idle && idle->exit_latency < min_exit_latency) {
6323 				/*
6324 				 * We give priority to a CPU whose idle state
6325 				 * has the smallest exit latency irrespective
6326 				 * of any idle timestamp.
6327 				 */
6328 				min_exit_latency = idle->exit_latency;
6329 				latest_idle_timestamp = rq->idle_stamp;
6330 				shallowest_idle_cpu = i;
6331 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6332 				   rq->idle_stamp > latest_idle_timestamp) {
6333 				/*
6334 				 * If equal or no active idle state, then
6335 				 * the most recently idled CPU might have
6336 				 * a warmer cache.
6337 				 */
6338 				latest_idle_timestamp = rq->idle_stamp;
6339 				shallowest_idle_cpu = i;
6340 			}
6341 		} else if (shallowest_idle_cpu == -1) {
6342 			load = cpu_load(cpu_rq(i));
6343 			if (load < min_load) {
6344 				min_load = load;
6345 				least_loaded_cpu = i;
6346 			}
6347 		}
6348 	}
6349 
6350 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6351 }
6352 
6353 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6354 				  int cpu, int prev_cpu, int sd_flag)
6355 {
6356 	int new_cpu = cpu;
6357 
6358 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6359 		return prev_cpu;
6360 
6361 	/*
6362 	 * We need task's util for cpu_util_without, sync it up to
6363 	 * prev_cpu's last_update_time.
6364 	 */
6365 	if (!(sd_flag & SD_BALANCE_FORK))
6366 		sync_entity_load_avg(&p->se);
6367 
6368 	while (sd) {
6369 		struct sched_group *group;
6370 		struct sched_domain *tmp;
6371 		int weight;
6372 
6373 		if (!(sd->flags & sd_flag)) {
6374 			sd = sd->child;
6375 			continue;
6376 		}
6377 
6378 		group = find_idlest_group(sd, p, cpu);
6379 		if (!group) {
6380 			sd = sd->child;
6381 			continue;
6382 		}
6383 
6384 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6385 		if (new_cpu == cpu) {
6386 			/* Now try balancing at a lower domain level of 'cpu': */
6387 			sd = sd->child;
6388 			continue;
6389 		}
6390 
6391 		/* Now try balancing at a lower domain level of 'new_cpu': */
6392 		cpu = new_cpu;
6393 		weight = sd->span_weight;
6394 		sd = NULL;
6395 		for_each_domain(cpu, tmp) {
6396 			if (weight <= tmp->span_weight)
6397 				break;
6398 			if (tmp->flags & sd_flag)
6399 				sd = tmp;
6400 		}
6401 	}
6402 
6403 	return new_cpu;
6404 }
6405 
6406 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6407 {
6408 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6409 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6410 		return cpu;
6411 
6412 	return -1;
6413 }
6414 
6415 #ifdef CONFIG_SCHED_SMT
6416 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6417 EXPORT_SYMBOL_GPL(sched_smt_present);
6418 
6419 static inline void set_idle_cores(int cpu, int val)
6420 {
6421 	struct sched_domain_shared *sds;
6422 
6423 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6424 	if (sds)
6425 		WRITE_ONCE(sds->has_idle_cores, val);
6426 }
6427 
6428 static inline bool test_idle_cores(int cpu, bool def)
6429 {
6430 	struct sched_domain_shared *sds;
6431 
6432 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6433 	if (sds)
6434 		return READ_ONCE(sds->has_idle_cores);
6435 
6436 	return def;
6437 }
6438 
6439 /*
6440  * Scans the local SMT mask to see if the entire core is idle, and records this
6441  * information in sd_llc_shared->has_idle_cores.
6442  *
6443  * Since SMT siblings share all cache levels, inspecting this limited remote
6444  * state should be fairly cheap.
6445  */
6446 void __update_idle_core(struct rq *rq)
6447 {
6448 	int core = cpu_of(rq);
6449 	int cpu;
6450 
6451 	rcu_read_lock();
6452 	if (test_idle_cores(core, true))
6453 		goto unlock;
6454 
6455 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6456 		if (cpu == core)
6457 			continue;
6458 
6459 		if (!available_idle_cpu(cpu))
6460 			goto unlock;
6461 	}
6462 
6463 	set_idle_cores(core, 1);
6464 unlock:
6465 	rcu_read_unlock();
6466 }
6467 
6468 /*
6469  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6470  * there are no idle cores left in the system; tracked through
6471  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6472  */
6473 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6474 {
6475 	bool idle = true;
6476 	int cpu;
6477 
6478 	if (!static_branch_likely(&sched_smt_present))
6479 		return __select_idle_cpu(core, p);
6480 
6481 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6482 		if (!available_idle_cpu(cpu)) {
6483 			idle = false;
6484 			if (*idle_cpu == -1) {
6485 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6486 					*idle_cpu = cpu;
6487 					break;
6488 				}
6489 				continue;
6490 			}
6491 			break;
6492 		}
6493 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6494 			*idle_cpu = cpu;
6495 	}
6496 
6497 	if (idle)
6498 		return core;
6499 
6500 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6501 	return -1;
6502 }
6503 
6504 /*
6505  * Scan the local SMT mask for idle CPUs.
6506  */
6507 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6508 {
6509 	int cpu;
6510 
6511 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6512 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6513 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6514 			continue;
6515 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6516 			return cpu;
6517 	}
6518 
6519 	return -1;
6520 }
6521 
6522 #else /* CONFIG_SCHED_SMT */
6523 
6524 static inline void set_idle_cores(int cpu, int val)
6525 {
6526 }
6527 
6528 static inline bool test_idle_cores(int cpu, bool def)
6529 {
6530 	return def;
6531 }
6532 
6533 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6534 {
6535 	return __select_idle_cpu(core, p);
6536 }
6537 
6538 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6539 {
6540 	return -1;
6541 }
6542 
6543 #endif /* CONFIG_SCHED_SMT */
6544 
6545 /*
6546  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6547  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6548  * average idle time for this rq (as found in rq->avg_idle).
6549  */
6550 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6551 {
6552 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6553 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6554 	struct sched_domain_shared *sd_share;
6555 	struct rq *this_rq = this_rq();
6556 	int this = smp_processor_id();
6557 	struct sched_domain *this_sd;
6558 	u64 time = 0;
6559 
6560 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6561 	if (!this_sd)
6562 		return -1;
6563 
6564 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6565 
6566 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6567 		u64 avg_cost, avg_idle, span_avg;
6568 		unsigned long now = jiffies;
6569 
6570 		/*
6571 		 * If we're busy, the assumption that the last idle period
6572 		 * predicts the future is flawed; age away the remaining
6573 		 * predicted idle time.
6574 		 */
6575 		if (unlikely(this_rq->wake_stamp < now)) {
6576 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6577 				this_rq->wake_stamp++;
6578 				this_rq->wake_avg_idle >>= 1;
6579 			}
6580 		}
6581 
6582 		avg_idle = this_rq->wake_avg_idle;
6583 		avg_cost = this_sd->avg_scan_cost + 1;
6584 
6585 		span_avg = sd->span_weight * avg_idle;
6586 		if (span_avg > 4*avg_cost)
6587 			nr = div_u64(span_avg, avg_cost);
6588 		else
6589 			nr = 4;
6590 
6591 		time = cpu_clock(this);
6592 	}
6593 
6594 	if (sched_feat(SIS_UTIL)) {
6595 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
6596 		if (sd_share) {
6597 			/* because !--nr is the condition to stop scan */
6598 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
6599 			/* overloaded LLC is unlikely to have idle cpu/core */
6600 			if (nr == 1)
6601 				return -1;
6602 		}
6603 	}
6604 
6605 	for_each_cpu_wrap(cpu, cpus, target + 1) {
6606 		if (has_idle_core) {
6607 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6608 			if ((unsigned int)i < nr_cpumask_bits)
6609 				return i;
6610 
6611 		} else {
6612 			if (!--nr)
6613 				return -1;
6614 			idle_cpu = __select_idle_cpu(cpu, p);
6615 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6616 				break;
6617 		}
6618 	}
6619 
6620 	if (has_idle_core)
6621 		set_idle_cores(target, false);
6622 
6623 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6624 		time = cpu_clock(this) - time;
6625 
6626 		/*
6627 		 * Account for the scan cost of wakeups against the average
6628 		 * idle time.
6629 		 */
6630 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6631 
6632 		update_avg(&this_sd->avg_scan_cost, time);
6633 	}
6634 
6635 	return idle_cpu;
6636 }
6637 
6638 /*
6639  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6640  * the task fits. If no CPU is big enough, but there are idle ones, try to
6641  * maximize capacity.
6642  */
6643 static int
6644 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6645 {
6646 	unsigned long task_util, best_cap = 0;
6647 	int cpu, best_cpu = -1;
6648 	struct cpumask *cpus;
6649 
6650 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6651 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6652 
6653 	task_util = uclamp_task_util(p);
6654 
6655 	for_each_cpu_wrap(cpu, cpus, target) {
6656 		unsigned long cpu_cap = capacity_of(cpu);
6657 
6658 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6659 			continue;
6660 		if (fits_capacity(task_util, cpu_cap))
6661 			return cpu;
6662 
6663 		if (cpu_cap > best_cap) {
6664 			best_cap = cpu_cap;
6665 			best_cpu = cpu;
6666 		}
6667 	}
6668 
6669 	return best_cpu;
6670 }
6671 
6672 static inline bool asym_fits_capacity(unsigned long task_util, int cpu)
6673 {
6674 	if (static_branch_unlikely(&sched_asym_cpucapacity))
6675 		return fits_capacity(task_util, capacity_of(cpu));
6676 
6677 	return true;
6678 }
6679 
6680 /*
6681  * Try and locate an idle core/thread in the LLC cache domain.
6682  */
6683 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6684 {
6685 	bool has_idle_core = false;
6686 	struct sched_domain *sd;
6687 	unsigned long task_util;
6688 	int i, recent_used_cpu;
6689 
6690 	/*
6691 	 * On asymmetric system, update task utilization because we will check
6692 	 * that the task fits with cpu's capacity.
6693 	 */
6694 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6695 		sync_entity_load_avg(&p->se);
6696 		task_util = uclamp_task_util(p);
6697 	}
6698 
6699 	/*
6700 	 * per-cpu select_rq_mask usage
6701 	 */
6702 	lockdep_assert_irqs_disabled();
6703 
6704 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6705 	    asym_fits_capacity(task_util, target))
6706 		return target;
6707 
6708 	/*
6709 	 * If the previous CPU is cache affine and idle, don't be stupid:
6710 	 */
6711 	if (prev != target && cpus_share_cache(prev, target) &&
6712 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6713 	    asym_fits_capacity(task_util, prev))
6714 		return prev;
6715 
6716 	/*
6717 	 * Allow a per-cpu kthread to stack with the wakee if the
6718 	 * kworker thread and the tasks previous CPUs are the same.
6719 	 * The assumption is that the wakee queued work for the
6720 	 * per-cpu kthread that is now complete and the wakeup is
6721 	 * essentially a sync wakeup. An obvious example of this
6722 	 * pattern is IO completions.
6723 	 */
6724 	if (is_per_cpu_kthread(current) &&
6725 	    in_task() &&
6726 	    prev == smp_processor_id() &&
6727 	    this_rq()->nr_running <= 1 &&
6728 	    asym_fits_capacity(task_util, prev)) {
6729 		return prev;
6730 	}
6731 
6732 	/* Check a recently used CPU as a potential idle candidate: */
6733 	recent_used_cpu = p->recent_used_cpu;
6734 	p->recent_used_cpu = prev;
6735 	if (recent_used_cpu != prev &&
6736 	    recent_used_cpu != target &&
6737 	    cpus_share_cache(recent_used_cpu, target) &&
6738 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6739 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6740 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6741 		return recent_used_cpu;
6742 	}
6743 
6744 	/*
6745 	 * For asymmetric CPU capacity systems, our domain of interest is
6746 	 * sd_asym_cpucapacity rather than sd_llc.
6747 	 */
6748 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6749 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6750 		/*
6751 		 * On an asymmetric CPU capacity system where an exclusive
6752 		 * cpuset defines a symmetric island (i.e. one unique
6753 		 * capacity_orig value through the cpuset), the key will be set
6754 		 * but the CPUs within that cpuset will not have a domain with
6755 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6756 		 * capacity path.
6757 		 */
6758 		if (sd) {
6759 			i = select_idle_capacity(p, sd, target);
6760 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6761 		}
6762 	}
6763 
6764 	sd = rcu_dereference(per_cpu(sd_llc, target));
6765 	if (!sd)
6766 		return target;
6767 
6768 	if (sched_smt_active()) {
6769 		has_idle_core = test_idle_cores(target, false);
6770 
6771 		if (!has_idle_core && cpus_share_cache(prev, target)) {
6772 			i = select_idle_smt(p, sd, prev);
6773 			if ((unsigned int)i < nr_cpumask_bits)
6774 				return i;
6775 		}
6776 	}
6777 
6778 	i = select_idle_cpu(p, sd, has_idle_core, target);
6779 	if ((unsigned)i < nr_cpumask_bits)
6780 		return i;
6781 
6782 	return target;
6783 }
6784 
6785 /*
6786  * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu
6787  * (@dst_cpu = -1) or migrated to @dst_cpu.
6788  */
6789 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6790 {
6791 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6792 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
6793 
6794 	/*
6795 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
6796 	 * contribution. If @p migrates from another CPU to @cpu add its
6797 	 * contribution. In all the other cases @cpu is not impacted by the
6798 	 * migration so its util_avg is already correct.
6799 	 */
6800 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6801 		lsub_positive(&util, task_util(p));
6802 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6803 		util += task_util(p);
6804 
6805 	if (sched_feat(UTIL_EST)) {
6806 		unsigned long util_est;
6807 
6808 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6809 
6810 		/*
6811 		 * During wake-up @p isn't enqueued yet and doesn't contribute
6812 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
6813 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
6814 		 * has been enqueued.
6815 		 *
6816 		 * During exec (@dst_cpu = -1) @p is enqueued and does
6817 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
6818 		 * Remove it to "simulate" cpu_util without @p's contribution.
6819 		 *
6820 		 * Despite the task_on_rq_queued(@p) check there is still a
6821 		 * small window for a possible race when an exec
6822 		 * select_task_rq_fair() races with LB's detach_task().
6823 		 *
6824 		 *   detach_task()
6825 		 *     deactivate_task()
6826 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
6827 		 *       -------------------------------- A
6828 		 *       dequeue_task()                    \
6829 		 *         dequeue_task_fair()              + Race Time
6830 		 *           util_est_dequeue()            /
6831 		 *       -------------------------------- B
6832 		 *
6833 		 * The additional check "current == p" is required to further
6834 		 * reduce the race window.
6835 		 */
6836 		if (dst_cpu == cpu)
6837 			util_est += _task_util_est(p);
6838 		else if (unlikely(task_on_rq_queued(p) || current == p))
6839 			lsub_positive(&util_est, _task_util_est(p));
6840 
6841 		util = max(util, util_est);
6842 	}
6843 
6844 	return min(util, capacity_orig_of(cpu));
6845 }
6846 
6847 /*
6848  * cpu_util_without: compute cpu utilization without any contributions from *p
6849  * @cpu: the CPU which utilization is requested
6850  * @p: the task which utilization should be discounted
6851  *
6852  * The utilization of a CPU is defined by the utilization of tasks currently
6853  * enqueued on that CPU as well as tasks which are currently sleeping after an
6854  * execution on that CPU.
6855  *
6856  * This method returns the utilization of the specified CPU by discounting the
6857  * utilization of the specified task, whenever the task is currently
6858  * contributing to the CPU utilization.
6859  */
6860 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6861 {
6862 	/* Task has no contribution or is new */
6863 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6864 		return cpu_util_cfs(cpu);
6865 
6866 	return cpu_util_next(cpu, p, -1);
6867 }
6868 
6869 /*
6870  * energy_env - Utilization landscape for energy estimation.
6871  * @task_busy_time: Utilization contribution by the task for which we test the
6872  *                  placement. Given by eenv_task_busy_time().
6873  * @pd_busy_time:   Utilization of the whole perf domain without the task
6874  *                  contribution. Given by eenv_pd_busy_time().
6875  * @cpu_cap:        Maximum CPU capacity for the perf domain.
6876  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
6877  */
6878 struct energy_env {
6879 	unsigned long task_busy_time;
6880 	unsigned long pd_busy_time;
6881 	unsigned long cpu_cap;
6882 	unsigned long pd_cap;
6883 };
6884 
6885 /*
6886  * Compute the task busy time for compute_energy(). This time cannot be
6887  * injected directly into effective_cpu_util() because of the IRQ scaling.
6888  * The latter only makes sense with the most recent CPUs where the task has
6889  * run.
6890  */
6891 static inline void eenv_task_busy_time(struct energy_env *eenv,
6892 				       struct task_struct *p, int prev_cpu)
6893 {
6894 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
6895 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
6896 
6897 	if (unlikely(irq >= max_cap))
6898 		busy_time = max_cap;
6899 	else
6900 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
6901 
6902 	eenv->task_busy_time = busy_time;
6903 }
6904 
6905 /*
6906  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
6907  * utilization for each @pd_cpus, it however doesn't take into account
6908  * clamping since the ratio (utilization / cpu_capacity) is already enough to
6909  * scale the EM reported power consumption at the (eventually clamped)
6910  * cpu_capacity.
6911  *
6912  * The contribution of the task @p for which we want to estimate the
6913  * energy cost is removed (by cpu_util_next()) and must be calculated
6914  * separately (see eenv_task_busy_time). This ensures:
6915  *
6916  *   - A stable PD utilization, no matter which CPU of that PD we want to place
6917  *     the task on.
6918  *
6919  *   - A fair comparison between CPUs as the task contribution (task_util())
6920  *     will always be the same no matter which CPU utilization we rely on
6921  *     (util_avg or util_est).
6922  *
6923  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
6924  * exceed @eenv->pd_cap.
6925  */
6926 static inline void eenv_pd_busy_time(struct energy_env *eenv,
6927 				     struct cpumask *pd_cpus,
6928 				     struct task_struct *p)
6929 {
6930 	unsigned long busy_time = 0;
6931 	int cpu;
6932 
6933 	for_each_cpu(cpu, pd_cpus) {
6934 		unsigned long util = cpu_util_next(cpu, p, -1);
6935 
6936 		busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
6937 	}
6938 
6939 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
6940 }
6941 
6942 /*
6943  * Compute the maximum utilization for compute_energy() when the task @p
6944  * is placed on the cpu @dst_cpu.
6945  *
6946  * Returns the maximum utilization among @eenv->cpus. This utilization can't
6947  * exceed @eenv->cpu_cap.
6948  */
6949 static inline unsigned long
6950 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
6951 		 struct task_struct *p, int dst_cpu)
6952 {
6953 	unsigned long max_util = 0;
6954 	int cpu;
6955 
6956 	for_each_cpu(cpu, pd_cpus) {
6957 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
6958 		unsigned long util = cpu_util_next(cpu, p, dst_cpu);
6959 		unsigned long cpu_util;
6960 
6961 		/*
6962 		 * Performance domain frequency: utilization clamping
6963 		 * must be considered since it affects the selection
6964 		 * of the performance domain frequency.
6965 		 * NOTE: in case RT tasks are running, by default the
6966 		 * FREQUENCY_UTIL's utilization can be max OPP.
6967 		 */
6968 		cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
6969 		max_util = max(max_util, cpu_util);
6970 	}
6971 
6972 	return min(max_util, eenv->cpu_cap);
6973 }
6974 
6975 /*
6976  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
6977  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
6978  * contribution is ignored.
6979  */
6980 static inline unsigned long
6981 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
6982 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
6983 {
6984 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
6985 	unsigned long busy_time = eenv->pd_busy_time;
6986 
6987 	if (dst_cpu >= 0)
6988 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
6989 
6990 	return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
6991 }
6992 
6993 /*
6994  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6995  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6996  * spare capacity in each performance domain and uses it as a potential
6997  * candidate to execute the task. Then, it uses the Energy Model to figure
6998  * out which of the CPU candidates is the most energy-efficient.
6999  *
7000  * The rationale for this heuristic is as follows. In a performance domain,
7001  * all the most energy efficient CPU candidates (according to the Energy
7002  * Model) are those for which we'll request a low frequency. When there are
7003  * several CPUs for which the frequency request will be the same, we don't
7004  * have enough data to break the tie between them, because the Energy Model
7005  * only includes active power costs. With this model, if we assume that
7006  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7007  * the maximum spare capacity in a performance domain is guaranteed to be among
7008  * the best candidates of the performance domain.
7009  *
7010  * In practice, it could be preferable from an energy standpoint to pack
7011  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7012  * but that could also hurt our chances to go cluster idle, and we have no
7013  * ways to tell with the current Energy Model if this is actually a good
7014  * idea or not. So, find_energy_efficient_cpu() basically favors
7015  * cluster-packing, and spreading inside a cluster. That should at least be
7016  * a good thing for latency, and this is consistent with the idea that most
7017  * of the energy savings of EAS come from the asymmetry of the system, and
7018  * not so much from breaking the tie between identical CPUs. That's also the
7019  * reason why EAS is enabled in the topology code only for systems where
7020  * SD_ASYM_CPUCAPACITY is set.
7021  *
7022  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7023  * they don't have any useful utilization data yet and it's not possible to
7024  * forecast their impact on energy consumption. Consequently, they will be
7025  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7026  * to be energy-inefficient in some use-cases. The alternative would be to
7027  * bias new tasks towards specific types of CPUs first, or to try to infer
7028  * their util_avg from the parent task, but those heuristics could hurt
7029  * other use-cases too. So, until someone finds a better way to solve this,
7030  * let's keep things simple by re-using the existing slow path.
7031  */
7032 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7033 {
7034 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7035 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7036 	struct root_domain *rd = this_rq()->rd;
7037 	int cpu, best_energy_cpu, target = -1;
7038 	struct sched_domain *sd;
7039 	struct perf_domain *pd;
7040 	struct energy_env eenv;
7041 
7042 	rcu_read_lock();
7043 	pd = rcu_dereference(rd->pd);
7044 	if (!pd || READ_ONCE(rd->overutilized))
7045 		goto unlock;
7046 
7047 	/*
7048 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7049 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7050 	 */
7051 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7052 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7053 		sd = sd->parent;
7054 	if (!sd)
7055 		goto unlock;
7056 
7057 	target = prev_cpu;
7058 
7059 	sync_entity_load_avg(&p->se);
7060 	if (!task_util_est(p))
7061 		goto unlock;
7062 
7063 	eenv_task_busy_time(&eenv, p, prev_cpu);
7064 
7065 	for (; pd; pd = pd->next) {
7066 		unsigned long cpu_cap, cpu_thermal_cap, util;
7067 		unsigned long cur_delta, max_spare_cap = 0;
7068 		bool compute_prev_delta = false;
7069 		int max_spare_cap_cpu = -1;
7070 		unsigned long base_energy;
7071 
7072 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7073 
7074 		if (cpumask_empty(cpus))
7075 			continue;
7076 
7077 		/* Account thermal pressure for the energy estimation */
7078 		cpu = cpumask_first(cpus);
7079 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7080 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7081 
7082 		eenv.cpu_cap = cpu_thermal_cap;
7083 		eenv.pd_cap = 0;
7084 
7085 		for_each_cpu(cpu, cpus) {
7086 			eenv.pd_cap += cpu_thermal_cap;
7087 
7088 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7089 				continue;
7090 
7091 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7092 				continue;
7093 
7094 			util = cpu_util_next(cpu, p, cpu);
7095 			cpu_cap = capacity_of(cpu);
7096 
7097 			/*
7098 			 * Skip CPUs that cannot satisfy the capacity request.
7099 			 * IOW, placing the task there would make the CPU
7100 			 * overutilized. Take uclamp into account to see how
7101 			 * much capacity we can get out of the CPU; this is
7102 			 * aligned with sched_cpu_util().
7103 			 */
7104 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
7105 			if (!fits_capacity(util, cpu_cap))
7106 				continue;
7107 
7108 			lsub_positive(&cpu_cap, util);
7109 
7110 			if (cpu == prev_cpu) {
7111 				/* Always use prev_cpu as a candidate. */
7112 				compute_prev_delta = true;
7113 			} else if (cpu_cap > max_spare_cap) {
7114 				/*
7115 				 * Find the CPU with the maximum spare capacity
7116 				 * in the performance domain.
7117 				 */
7118 				max_spare_cap = cpu_cap;
7119 				max_spare_cap_cpu = cpu;
7120 			}
7121 		}
7122 
7123 		if (max_spare_cap_cpu < 0 && !compute_prev_delta)
7124 			continue;
7125 
7126 		eenv_pd_busy_time(&eenv, cpus, p);
7127 		/* Compute the 'base' energy of the pd, without @p */
7128 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
7129 
7130 		/* Evaluate the energy impact of using prev_cpu. */
7131 		if (compute_prev_delta) {
7132 			prev_delta = compute_energy(&eenv, pd, cpus, p,
7133 						    prev_cpu);
7134 			/* CPU utilization has changed */
7135 			if (prev_delta < base_energy)
7136 				goto unlock;
7137 			prev_delta -= base_energy;
7138 			best_delta = min(best_delta, prev_delta);
7139 		}
7140 
7141 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
7142 		if (max_spare_cap_cpu >= 0) {
7143 			cur_delta = compute_energy(&eenv, pd, cpus, p,
7144 						   max_spare_cap_cpu);
7145 			/* CPU utilization has changed */
7146 			if (cur_delta < base_energy)
7147 				goto unlock;
7148 			cur_delta -= base_energy;
7149 			if (cur_delta < best_delta) {
7150 				best_delta = cur_delta;
7151 				best_energy_cpu = max_spare_cap_cpu;
7152 			}
7153 		}
7154 	}
7155 	rcu_read_unlock();
7156 
7157 	if (best_delta < prev_delta)
7158 		target = best_energy_cpu;
7159 
7160 	return target;
7161 
7162 unlock:
7163 	rcu_read_unlock();
7164 
7165 	return target;
7166 }
7167 
7168 /*
7169  * select_task_rq_fair: Select target runqueue for the waking task in domains
7170  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
7171  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7172  *
7173  * Balances load by selecting the idlest CPU in the idlest group, or under
7174  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
7175  *
7176  * Returns the target CPU number.
7177  */
7178 static int
7179 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
7180 {
7181 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
7182 	struct sched_domain *tmp, *sd = NULL;
7183 	int cpu = smp_processor_id();
7184 	int new_cpu = prev_cpu;
7185 	int want_affine = 0;
7186 	/* SD_flags and WF_flags share the first nibble */
7187 	int sd_flag = wake_flags & 0xF;
7188 
7189 	/*
7190 	 * required for stable ->cpus_allowed
7191 	 */
7192 	lockdep_assert_held(&p->pi_lock);
7193 	if (wake_flags & WF_TTWU) {
7194 		record_wakee(p);
7195 
7196 		if (sched_energy_enabled()) {
7197 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
7198 			if (new_cpu >= 0)
7199 				return new_cpu;
7200 			new_cpu = prev_cpu;
7201 		}
7202 
7203 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
7204 	}
7205 
7206 	rcu_read_lock();
7207 	for_each_domain(cpu, tmp) {
7208 		/*
7209 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
7210 		 * cpu is a valid SD_WAKE_AFFINE target.
7211 		 */
7212 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7213 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7214 			if (cpu != prev_cpu)
7215 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7216 
7217 			sd = NULL; /* Prefer wake_affine over balance flags */
7218 			break;
7219 		}
7220 
7221 		/*
7222 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
7223 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
7224 		 * will usually go to the fast path.
7225 		 */
7226 		if (tmp->flags & sd_flag)
7227 			sd = tmp;
7228 		else if (!want_affine)
7229 			break;
7230 	}
7231 
7232 	if (unlikely(sd)) {
7233 		/* Slow path */
7234 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7235 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
7236 		/* Fast path */
7237 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7238 	}
7239 	rcu_read_unlock();
7240 
7241 	return new_cpu;
7242 }
7243 
7244 static void detach_entity_cfs_rq(struct sched_entity *se);
7245 
7246 /*
7247  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7248  * cfs_rq_of(p) references at time of call are still valid and identify the
7249  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7250  */
7251 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
7252 {
7253 	struct sched_entity *se = &p->se;
7254 
7255 	/*
7256 	 * As blocked tasks retain absolute vruntime the migration needs to
7257 	 * deal with this by subtracting the old and adding the new
7258 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
7259 	 * the task on the new runqueue.
7260 	 */
7261 	if (READ_ONCE(p->__state) == TASK_WAKING) {
7262 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7263 
7264 		se->vruntime -= u64_u32_load(cfs_rq->min_vruntime);
7265 	}
7266 
7267 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
7268 		/*
7269 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
7270 		 * rq->lock and can modify state directly.
7271 		 */
7272 		lockdep_assert_rq_held(task_rq(p));
7273 		detach_entity_cfs_rq(se);
7274 
7275 	} else {
7276 		remove_entity_load_avg(se);
7277 
7278 		/*
7279 		 * Here, the task's PELT values have been updated according to
7280 		 * the current rq's clock. But if that clock hasn't been
7281 		 * updated in a while, a substantial idle time will be missed,
7282 		 * leading to an inflation after wake-up on the new rq.
7283 		 *
7284 		 * Estimate the missing time from the cfs_rq last_update_time
7285 		 * and update sched_avg to improve the PELT continuity after
7286 		 * migration.
7287 		 */
7288 		migrate_se_pelt_lag(se);
7289 	}
7290 
7291 	/* Tell new CPU we are migrated */
7292 	se->avg.last_update_time = 0;
7293 
7294 	/* We have migrated, no longer consider this task hot */
7295 	se->exec_start = 0;
7296 
7297 	update_scan_period(p, new_cpu);
7298 }
7299 
7300 static void task_dead_fair(struct task_struct *p)
7301 {
7302 	remove_entity_load_avg(&p->se);
7303 }
7304 
7305 static int
7306 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7307 {
7308 	if (rq->nr_running)
7309 		return 1;
7310 
7311 	return newidle_balance(rq, rf) != 0;
7312 }
7313 #endif /* CONFIG_SMP */
7314 
7315 static unsigned long wakeup_gran(struct sched_entity *se)
7316 {
7317 	unsigned long gran = sysctl_sched_wakeup_granularity;
7318 
7319 	/*
7320 	 * Since its curr running now, convert the gran from real-time
7321 	 * to virtual-time in his units.
7322 	 *
7323 	 * By using 'se' instead of 'curr' we penalize light tasks, so
7324 	 * they get preempted easier. That is, if 'se' < 'curr' then
7325 	 * the resulting gran will be larger, therefore penalizing the
7326 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7327 	 * be smaller, again penalizing the lighter task.
7328 	 *
7329 	 * This is especially important for buddies when the leftmost
7330 	 * task is higher priority than the buddy.
7331 	 */
7332 	return calc_delta_fair(gran, se);
7333 }
7334 
7335 /*
7336  * Should 'se' preempt 'curr'.
7337  *
7338  *             |s1
7339  *        |s2
7340  *   |s3
7341  *         g
7342  *      |<--->|c
7343  *
7344  *  w(c, s1) = -1
7345  *  w(c, s2) =  0
7346  *  w(c, s3) =  1
7347  *
7348  */
7349 static int
7350 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7351 {
7352 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7353 
7354 	if (vdiff <= 0)
7355 		return -1;
7356 
7357 	gran = wakeup_gran(se);
7358 	if (vdiff > gran)
7359 		return 1;
7360 
7361 	return 0;
7362 }
7363 
7364 static void set_last_buddy(struct sched_entity *se)
7365 {
7366 	for_each_sched_entity(se) {
7367 		if (SCHED_WARN_ON(!se->on_rq))
7368 			return;
7369 		if (se_is_idle(se))
7370 			return;
7371 		cfs_rq_of(se)->last = se;
7372 	}
7373 }
7374 
7375 static void set_next_buddy(struct sched_entity *se)
7376 {
7377 	for_each_sched_entity(se) {
7378 		if (SCHED_WARN_ON(!se->on_rq))
7379 			return;
7380 		if (se_is_idle(se))
7381 			return;
7382 		cfs_rq_of(se)->next = se;
7383 	}
7384 }
7385 
7386 static void set_skip_buddy(struct sched_entity *se)
7387 {
7388 	for_each_sched_entity(se)
7389 		cfs_rq_of(se)->skip = se;
7390 }
7391 
7392 /*
7393  * Preempt the current task with a newly woken task if needed:
7394  */
7395 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7396 {
7397 	struct task_struct *curr = rq->curr;
7398 	struct sched_entity *se = &curr->se, *pse = &p->se;
7399 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7400 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7401 	int next_buddy_marked = 0;
7402 	int cse_is_idle, pse_is_idle;
7403 
7404 	if (unlikely(se == pse))
7405 		return;
7406 
7407 	/*
7408 	 * This is possible from callers such as attach_tasks(), in which we
7409 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7410 	 * lead to a throttle).  This both saves work and prevents false
7411 	 * next-buddy nomination below.
7412 	 */
7413 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7414 		return;
7415 
7416 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7417 		set_next_buddy(pse);
7418 		next_buddy_marked = 1;
7419 	}
7420 
7421 	/*
7422 	 * We can come here with TIF_NEED_RESCHED already set from new task
7423 	 * wake up path.
7424 	 *
7425 	 * Note: this also catches the edge-case of curr being in a throttled
7426 	 * group (e.g. via set_curr_task), since update_curr() (in the
7427 	 * enqueue of curr) will have resulted in resched being set.  This
7428 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7429 	 * below.
7430 	 */
7431 	if (test_tsk_need_resched(curr))
7432 		return;
7433 
7434 	/* Idle tasks are by definition preempted by non-idle tasks. */
7435 	if (unlikely(task_has_idle_policy(curr)) &&
7436 	    likely(!task_has_idle_policy(p)))
7437 		goto preempt;
7438 
7439 	/*
7440 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7441 	 * is driven by the tick):
7442 	 */
7443 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7444 		return;
7445 
7446 	find_matching_se(&se, &pse);
7447 	BUG_ON(!pse);
7448 
7449 	cse_is_idle = se_is_idle(se);
7450 	pse_is_idle = se_is_idle(pse);
7451 
7452 	/*
7453 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
7454 	 * in the inverse case).
7455 	 */
7456 	if (cse_is_idle && !pse_is_idle)
7457 		goto preempt;
7458 	if (cse_is_idle != pse_is_idle)
7459 		return;
7460 
7461 	update_curr(cfs_rq_of(se));
7462 	if (wakeup_preempt_entity(se, pse) == 1) {
7463 		/*
7464 		 * Bias pick_next to pick the sched entity that is
7465 		 * triggering this preemption.
7466 		 */
7467 		if (!next_buddy_marked)
7468 			set_next_buddy(pse);
7469 		goto preempt;
7470 	}
7471 
7472 	return;
7473 
7474 preempt:
7475 	resched_curr(rq);
7476 	/*
7477 	 * Only set the backward buddy when the current task is still
7478 	 * on the rq. This can happen when a wakeup gets interleaved
7479 	 * with schedule on the ->pre_schedule() or idle_balance()
7480 	 * point, either of which can * drop the rq lock.
7481 	 *
7482 	 * Also, during early boot the idle thread is in the fair class,
7483 	 * for obvious reasons its a bad idea to schedule back to it.
7484 	 */
7485 	if (unlikely(!se->on_rq || curr == rq->idle))
7486 		return;
7487 
7488 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7489 		set_last_buddy(se);
7490 }
7491 
7492 #ifdef CONFIG_SMP
7493 static struct task_struct *pick_task_fair(struct rq *rq)
7494 {
7495 	struct sched_entity *se;
7496 	struct cfs_rq *cfs_rq;
7497 
7498 again:
7499 	cfs_rq = &rq->cfs;
7500 	if (!cfs_rq->nr_running)
7501 		return NULL;
7502 
7503 	do {
7504 		struct sched_entity *curr = cfs_rq->curr;
7505 
7506 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7507 		if (curr) {
7508 			if (curr->on_rq)
7509 				update_curr(cfs_rq);
7510 			else
7511 				curr = NULL;
7512 
7513 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7514 				goto again;
7515 		}
7516 
7517 		se = pick_next_entity(cfs_rq, curr);
7518 		cfs_rq = group_cfs_rq(se);
7519 	} while (cfs_rq);
7520 
7521 	return task_of(se);
7522 }
7523 #endif
7524 
7525 struct task_struct *
7526 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7527 {
7528 	struct cfs_rq *cfs_rq = &rq->cfs;
7529 	struct sched_entity *se;
7530 	struct task_struct *p;
7531 	int new_tasks;
7532 
7533 again:
7534 	if (!sched_fair_runnable(rq))
7535 		goto idle;
7536 
7537 #ifdef CONFIG_FAIR_GROUP_SCHED
7538 	if (!prev || prev->sched_class != &fair_sched_class)
7539 		goto simple;
7540 
7541 	/*
7542 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7543 	 * likely that a next task is from the same cgroup as the current.
7544 	 *
7545 	 * Therefore attempt to avoid putting and setting the entire cgroup
7546 	 * hierarchy, only change the part that actually changes.
7547 	 */
7548 
7549 	do {
7550 		struct sched_entity *curr = cfs_rq->curr;
7551 
7552 		/*
7553 		 * Since we got here without doing put_prev_entity() we also
7554 		 * have to consider cfs_rq->curr. If it is still a runnable
7555 		 * entity, update_curr() will update its vruntime, otherwise
7556 		 * forget we've ever seen it.
7557 		 */
7558 		if (curr) {
7559 			if (curr->on_rq)
7560 				update_curr(cfs_rq);
7561 			else
7562 				curr = NULL;
7563 
7564 			/*
7565 			 * This call to check_cfs_rq_runtime() will do the
7566 			 * throttle and dequeue its entity in the parent(s).
7567 			 * Therefore the nr_running test will indeed
7568 			 * be correct.
7569 			 */
7570 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7571 				cfs_rq = &rq->cfs;
7572 
7573 				if (!cfs_rq->nr_running)
7574 					goto idle;
7575 
7576 				goto simple;
7577 			}
7578 		}
7579 
7580 		se = pick_next_entity(cfs_rq, curr);
7581 		cfs_rq = group_cfs_rq(se);
7582 	} while (cfs_rq);
7583 
7584 	p = task_of(se);
7585 
7586 	/*
7587 	 * Since we haven't yet done put_prev_entity and if the selected task
7588 	 * is a different task than we started out with, try and touch the
7589 	 * least amount of cfs_rqs.
7590 	 */
7591 	if (prev != p) {
7592 		struct sched_entity *pse = &prev->se;
7593 
7594 		while (!(cfs_rq = is_same_group(se, pse))) {
7595 			int se_depth = se->depth;
7596 			int pse_depth = pse->depth;
7597 
7598 			if (se_depth <= pse_depth) {
7599 				put_prev_entity(cfs_rq_of(pse), pse);
7600 				pse = parent_entity(pse);
7601 			}
7602 			if (se_depth >= pse_depth) {
7603 				set_next_entity(cfs_rq_of(se), se);
7604 				se = parent_entity(se);
7605 			}
7606 		}
7607 
7608 		put_prev_entity(cfs_rq, pse);
7609 		set_next_entity(cfs_rq, se);
7610 	}
7611 
7612 	goto done;
7613 simple:
7614 #endif
7615 	if (prev)
7616 		put_prev_task(rq, prev);
7617 
7618 	do {
7619 		se = pick_next_entity(cfs_rq, NULL);
7620 		set_next_entity(cfs_rq, se);
7621 		cfs_rq = group_cfs_rq(se);
7622 	} while (cfs_rq);
7623 
7624 	p = task_of(se);
7625 
7626 done: __maybe_unused;
7627 #ifdef CONFIG_SMP
7628 	/*
7629 	 * Move the next running task to the front of
7630 	 * the list, so our cfs_tasks list becomes MRU
7631 	 * one.
7632 	 */
7633 	list_move(&p->se.group_node, &rq->cfs_tasks);
7634 #endif
7635 
7636 	if (hrtick_enabled_fair(rq))
7637 		hrtick_start_fair(rq, p);
7638 
7639 	update_misfit_status(p, rq);
7640 
7641 	return p;
7642 
7643 idle:
7644 	if (!rf)
7645 		return NULL;
7646 
7647 	new_tasks = newidle_balance(rq, rf);
7648 
7649 	/*
7650 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7651 	 * possible for any higher priority task to appear. In that case we
7652 	 * must re-start the pick_next_entity() loop.
7653 	 */
7654 	if (new_tasks < 0)
7655 		return RETRY_TASK;
7656 
7657 	if (new_tasks > 0)
7658 		goto again;
7659 
7660 	/*
7661 	 * rq is about to be idle, check if we need to update the
7662 	 * lost_idle_time of clock_pelt
7663 	 */
7664 	update_idle_rq_clock_pelt(rq);
7665 
7666 	return NULL;
7667 }
7668 
7669 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7670 {
7671 	return pick_next_task_fair(rq, NULL, NULL);
7672 }
7673 
7674 /*
7675  * Account for a descheduled task:
7676  */
7677 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7678 {
7679 	struct sched_entity *se = &prev->se;
7680 	struct cfs_rq *cfs_rq;
7681 
7682 	for_each_sched_entity(se) {
7683 		cfs_rq = cfs_rq_of(se);
7684 		put_prev_entity(cfs_rq, se);
7685 	}
7686 }
7687 
7688 /*
7689  * sched_yield() is very simple
7690  *
7691  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7692  */
7693 static void yield_task_fair(struct rq *rq)
7694 {
7695 	struct task_struct *curr = rq->curr;
7696 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7697 	struct sched_entity *se = &curr->se;
7698 
7699 	/*
7700 	 * Are we the only task in the tree?
7701 	 */
7702 	if (unlikely(rq->nr_running == 1))
7703 		return;
7704 
7705 	clear_buddies(cfs_rq, se);
7706 
7707 	if (curr->policy != SCHED_BATCH) {
7708 		update_rq_clock(rq);
7709 		/*
7710 		 * Update run-time statistics of the 'current'.
7711 		 */
7712 		update_curr(cfs_rq);
7713 		/*
7714 		 * Tell update_rq_clock() that we've just updated,
7715 		 * so we don't do microscopic update in schedule()
7716 		 * and double the fastpath cost.
7717 		 */
7718 		rq_clock_skip_update(rq);
7719 	}
7720 
7721 	set_skip_buddy(se);
7722 }
7723 
7724 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7725 {
7726 	struct sched_entity *se = &p->se;
7727 
7728 	/* throttled hierarchies are not runnable */
7729 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7730 		return false;
7731 
7732 	/* Tell the scheduler that we'd really like pse to run next. */
7733 	set_next_buddy(se);
7734 
7735 	yield_task_fair(rq);
7736 
7737 	return true;
7738 }
7739 
7740 #ifdef CONFIG_SMP
7741 /**************************************************
7742  * Fair scheduling class load-balancing methods.
7743  *
7744  * BASICS
7745  *
7746  * The purpose of load-balancing is to achieve the same basic fairness the
7747  * per-CPU scheduler provides, namely provide a proportional amount of compute
7748  * time to each task. This is expressed in the following equation:
7749  *
7750  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7751  *
7752  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7753  * W_i,0 is defined as:
7754  *
7755  *   W_i,0 = \Sum_j w_i,j                                             (2)
7756  *
7757  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7758  * is derived from the nice value as per sched_prio_to_weight[].
7759  *
7760  * The weight average is an exponential decay average of the instantaneous
7761  * weight:
7762  *
7763  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7764  *
7765  * C_i is the compute capacity of CPU i, typically it is the
7766  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7767  * can also include other factors [XXX].
7768  *
7769  * To achieve this balance we define a measure of imbalance which follows
7770  * directly from (1):
7771  *
7772  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7773  *
7774  * We them move tasks around to minimize the imbalance. In the continuous
7775  * function space it is obvious this converges, in the discrete case we get
7776  * a few fun cases generally called infeasible weight scenarios.
7777  *
7778  * [XXX expand on:
7779  *     - infeasible weights;
7780  *     - local vs global optima in the discrete case. ]
7781  *
7782  *
7783  * SCHED DOMAINS
7784  *
7785  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7786  * for all i,j solution, we create a tree of CPUs that follows the hardware
7787  * topology where each level pairs two lower groups (or better). This results
7788  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7789  * tree to only the first of the previous level and we decrease the frequency
7790  * of load-balance at each level inv. proportional to the number of CPUs in
7791  * the groups.
7792  *
7793  * This yields:
7794  *
7795  *     log_2 n     1     n
7796  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7797  *     i = 0      2^i   2^i
7798  *                               `- size of each group
7799  *         |         |     `- number of CPUs doing load-balance
7800  *         |         `- freq
7801  *         `- sum over all levels
7802  *
7803  * Coupled with a limit on how many tasks we can migrate every balance pass,
7804  * this makes (5) the runtime complexity of the balancer.
7805  *
7806  * An important property here is that each CPU is still (indirectly) connected
7807  * to every other CPU in at most O(log n) steps:
7808  *
7809  * The adjacency matrix of the resulting graph is given by:
7810  *
7811  *             log_2 n
7812  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7813  *             k = 0
7814  *
7815  * And you'll find that:
7816  *
7817  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7818  *
7819  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7820  * The task movement gives a factor of O(m), giving a convergence complexity
7821  * of:
7822  *
7823  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7824  *
7825  *
7826  * WORK CONSERVING
7827  *
7828  * In order to avoid CPUs going idle while there's still work to do, new idle
7829  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7830  * tree itself instead of relying on other CPUs to bring it work.
7831  *
7832  * This adds some complexity to both (5) and (8) but it reduces the total idle
7833  * time.
7834  *
7835  * [XXX more?]
7836  *
7837  *
7838  * CGROUPS
7839  *
7840  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7841  *
7842  *                                s_k,i
7843  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7844  *                                 S_k
7845  *
7846  * Where
7847  *
7848  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7849  *
7850  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7851  *
7852  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7853  * property.
7854  *
7855  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7856  *      rewrite all of this once again.]
7857  */
7858 
7859 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7860 
7861 enum fbq_type { regular, remote, all };
7862 
7863 /*
7864  * 'group_type' describes the group of CPUs at the moment of load balancing.
7865  *
7866  * The enum is ordered by pulling priority, with the group with lowest priority
7867  * first so the group_type can simply be compared when selecting the busiest
7868  * group. See update_sd_pick_busiest().
7869  */
7870 enum group_type {
7871 	/* The group has spare capacity that can be used to run more tasks.  */
7872 	group_has_spare = 0,
7873 	/*
7874 	 * The group is fully used and the tasks don't compete for more CPU
7875 	 * cycles. Nevertheless, some tasks might wait before running.
7876 	 */
7877 	group_fully_busy,
7878 	/*
7879 	 * One task doesn't fit with CPU's capacity and must be migrated to a
7880 	 * more powerful CPU.
7881 	 */
7882 	group_misfit_task,
7883 	/*
7884 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7885 	 * and the task should be migrated to it instead of running on the
7886 	 * current CPU.
7887 	 */
7888 	group_asym_packing,
7889 	/*
7890 	 * The tasks' affinity constraints previously prevented the scheduler
7891 	 * from balancing the load across the system.
7892 	 */
7893 	group_imbalanced,
7894 	/*
7895 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7896 	 * tasks.
7897 	 */
7898 	group_overloaded
7899 };
7900 
7901 enum migration_type {
7902 	migrate_load = 0,
7903 	migrate_util,
7904 	migrate_task,
7905 	migrate_misfit
7906 };
7907 
7908 #define LBF_ALL_PINNED	0x01
7909 #define LBF_NEED_BREAK	0x02
7910 #define LBF_DST_PINNED  0x04
7911 #define LBF_SOME_PINNED	0x08
7912 #define LBF_ACTIVE_LB	0x10
7913 
7914 struct lb_env {
7915 	struct sched_domain	*sd;
7916 
7917 	struct rq		*src_rq;
7918 	int			src_cpu;
7919 
7920 	int			dst_cpu;
7921 	struct rq		*dst_rq;
7922 
7923 	struct cpumask		*dst_grpmask;
7924 	int			new_dst_cpu;
7925 	enum cpu_idle_type	idle;
7926 	long			imbalance;
7927 	/* The set of CPUs under consideration for load-balancing */
7928 	struct cpumask		*cpus;
7929 
7930 	unsigned int		flags;
7931 
7932 	unsigned int		loop;
7933 	unsigned int		loop_break;
7934 	unsigned int		loop_max;
7935 
7936 	enum fbq_type		fbq_type;
7937 	enum migration_type	migration_type;
7938 	struct list_head	tasks;
7939 };
7940 
7941 /*
7942  * Is this task likely cache-hot:
7943  */
7944 static int task_hot(struct task_struct *p, struct lb_env *env)
7945 {
7946 	s64 delta;
7947 
7948 	lockdep_assert_rq_held(env->src_rq);
7949 
7950 	if (p->sched_class != &fair_sched_class)
7951 		return 0;
7952 
7953 	if (unlikely(task_has_idle_policy(p)))
7954 		return 0;
7955 
7956 	/* SMT siblings share cache */
7957 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7958 		return 0;
7959 
7960 	/*
7961 	 * Buddy candidates are cache hot:
7962 	 */
7963 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7964 			(&p->se == cfs_rq_of(&p->se)->next ||
7965 			 &p->se == cfs_rq_of(&p->se)->last))
7966 		return 1;
7967 
7968 	if (sysctl_sched_migration_cost == -1)
7969 		return 1;
7970 
7971 	/*
7972 	 * Don't migrate task if the task's cookie does not match
7973 	 * with the destination CPU's core cookie.
7974 	 */
7975 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7976 		return 1;
7977 
7978 	if (sysctl_sched_migration_cost == 0)
7979 		return 0;
7980 
7981 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7982 
7983 	return delta < (s64)sysctl_sched_migration_cost;
7984 }
7985 
7986 #ifdef CONFIG_NUMA_BALANCING
7987 /*
7988  * Returns 1, if task migration degrades locality
7989  * Returns 0, if task migration improves locality i.e migration preferred.
7990  * Returns -1, if task migration is not affected by locality.
7991  */
7992 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7993 {
7994 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7995 	unsigned long src_weight, dst_weight;
7996 	int src_nid, dst_nid, dist;
7997 
7998 	if (!static_branch_likely(&sched_numa_balancing))
7999 		return -1;
8000 
8001 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8002 		return -1;
8003 
8004 	src_nid = cpu_to_node(env->src_cpu);
8005 	dst_nid = cpu_to_node(env->dst_cpu);
8006 
8007 	if (src_nid == dst_nid)
8008 		return -1;
8009 
8010 	/* Migrating away from the preferred node is always bad. */
8011 	if (src_nid == p->numa_preferred_nid) {
8012 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8013 			return 1;
8014 		else
8015 			return -1;
8016 	}
8017 
8018 	/* Encourage migration to the preferred node. */
8019 	if (dst_nid == p->numa_preferred_nid)
8020 		return 0;
8021 
8022 	/* Leaving a core idle is often worse than degrading locality. */
8023 	if (env->idle == CPU_IDLE)
8024 		return -1;
8025 
8026 	dist = node_distance(src_nid, dst_nid);
8027 	if (numa_group) {
8028 		src_weight = group_weight(p, src_nid, dist);
8029 		dst_weight = group_weight(p, dst_nid, dist);
8030 	} else {
8031 		src_weight = task_weight(p, src_nid, dist);
8032 		dst_weight = task_weight(p, dst_nid, dist);
8033 	}
8034 
8035 	return dst_weight < src_weight;
8036 }
8037 
8038 #else
8039 static inline int migrate_degrades_locality(struct task_struct *p,
8040 					     struct lb_env *env)
8041 {
8042 	return -1;
8043 }
8044 #endif
8045 
8046 /*
8047  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8048  */
8049 static
8050 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8051 {
8052 	int tsk_cache_hot;
8053 
8054 	lockdep_assert_rq_held(env->src_rq);
8055 
8056 	/*
8057 	 * We do not migrate tasks that are:
8058 	 * 1) throttled_lb_pair, or
8059 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8060 	 * 3) running (obviously), or
8061 	 * 4) are cache-hot on their current CPU.
8062 	 */
8063 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8064 		return 0;
8065 
8066 	/* Disregard pcpu kthreads; they are where they need to be. */
8067 	if (kthread_is_per_cpu(p))
8068 		return 0;
8069 
8070 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8071 		int cpu;
8072 
8073 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8074 
8075 		env->flags |= LBF_SOME_PINNED;
8076 
8077 		/*
8078 		 * Remember if this task can be migrated to any other CPU in
8079 		 * our sched_group. We may want to revisit it if we couldn't
8080 		 * meet load balance goals by pulling other tasks on src_cpu.
8081 		 *
8082 		 * Avoid computing new_dst_cpu
8083 		 * - for NEWLY_IDLE
8084 		 * - if we have already computed one in current iteration
8085 		 * - if it's an active balance
8086 		 */
8087 		if (env->idle == CPU_NEWLY_IDLE ||
8088 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8089 			return 0;
8090 
8091 		/* Prevent to re-select dst_cpu via env's CPUs: */
8092 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8093 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8094 				env->flags |= LBF_DST_PINNED;
8095 				env->new_dst_cpu = cpu;
8096 				break;
8097 			}
8098 		}
8099 
8100 		return 0;
8101 	}
8102 
8103 	/* Record that we found at least one task that could run on dst_cpu */
8104 	env->flags &= ~LBF_ALL_PINNED;
8105 
8106 	if (task_running(env->src_rq, p)) {
8107 		schedstat_inc(p->stats.nr_failed_migrations_running);
8108 		return 0;
8109 	}
8110 
8111 	/*
8112 	 * Aggressive migration if:
8113 	 * 1) active balance
8114 	 * 2) destination numa is preferred
8115 	 * 3) task is cache cold, or
8116 	 * 4) too many balance attempts have failed.
8117 	 */
8118 	if (env->flags & LBF_ACTIVE_LB)
8119 		return 1;
8120 
8121 	tsk_cache_hot = migrate_degrades_locality(p, env);
8122 	if (tsk_cache_hot == -1)
8123 		tsk_cache_hot = task_hot(p, env);
8124 
8125 	if (tsk_cache_hot <= 0 ||
8126 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8127 		if (tsk_cache_hot == 1) {
8128 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8129 			schedstat_inc(p->stats.nr_forced_migrations);
8130 		}
8131 		return 1;
8132 	}
8133 
8134 	schedstat_inc(p->stats.nr_failed_migrations_hot);
8135 	return 0;
8136 }
8137 
8138 /*
8139  * detach_task() -- detach the task for the migration specified in env
8140  */
8141 static void detach_task(struct task_struct *p, struct lb_env *env)
8142 {
8143 	lockdep_assert_rq_held(env->src_rq);
8144 
8145 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8146 	set_task_cpu(p, env->dst_cpu);
8147 }
8148 
8149 /*
8150  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8151  * part of active balancing operations within "domain".
8152  *
8153  * Returns a task if successful and NULL otherwise.
8154  */
8155 static struct task_struct *detach_one_task(struct lb_env *env)
8156 {
8157 	struct task_struct *p;
8158 
8159 	lockdep_assert_rq_held(env->src_rq);
8160 
8161 	list_for_each_entry_reverse(p,
8162 			&env->src_rq->cfs_tasks, se.group_node) {
8163 		if (!can_migrate_task(p, env))
8164 			continue;
8165 
8166 		detach_task(p, env);
8167 
8168 		/*
8169 		 * Right now, this is only the second place where
8170 		 * lb_gained[env->idle] is updated (other is detach_tasks)
8171 		 * so we can safely collect stats here rather than
8172 		 * inside detach_tasks().
8173 		 */
8174 		schedstat_inc(env->sd->lb_gained[env->idle]);
8175 		return p;
8176 	}
8177 	return NULL;
8178 }
8179 
8180 static const unsigned int sched_nr_migrate_break = 32;
8181 
8182 /*
8183  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8184  * busiest_rq, as part of a balancing operation within domain "sd".
8185  *
8186  * Returns number of detached tasks if successful and 0 otherwise.
8187  */
8188 static int detach_tasks(struct lb_env *env)
8189 {
8190 	struct list_head *tasks = &env->src_rq->cfs_tasks;
8191 	unsigned long util, load;
8192 	struct task_struct *p;
8193 	int detached = 0;
8194 
8195 	lockdep_assert_rq_held(env->src_rq);
8196 
8197 	/*
8198 	 * Source run queue has been emptied by another CPU, clear
8199 	 * LBF_ALL_PINNED flag as we will not test any task.
8200 	 */
8201 	if (env->src_rq->nr_running <= 1) {
8202 		env->flags &= ~LBF_ALL_PINNED;
8203 		return 0;
8204 	}
8205 
8206 	if (env->imbalance <= 0)
8207 		return 0;
8208 
8209 	while (!list_empty(tasks)) {
8210 		/*
8211 		 * We don't want to steal all, otherwise we may be treated likewise,
8212 		 * which could at worst lead to a livelock crash.
8213 		 */
8214 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8215 			break;
8216 
8217 		p = list_last_entry(tasks, struct task_struct, se.group_node);
8218 
8219 		env->loop++;
8220 		/* We've more or less seen every task there is, call it quits */
8221 		if (env->loop > env->loop_max)
8222 			break;
8223 
8224 		/* take a breather every nr_migrate tasks */
8225 		if (env->loop > env->loop_break) {
8226 			env->loop_break += sched_nr_migrate_break;
8227 			env->flags |= LBF_NEED_BREAK;
8228 			break;
8229 		}
8230 
8231 		if (!can_migrate_task(p, env))
8232 			goto next;
8233 
8234 		switch (env->migration_type) {
8235 		case migrate_load:
8236 			/*
8237 			 * Depending of the number of CPUs and tasks and the
8238 			 * cgroup hierarchy, task_h_load() can return a null
8239 			 * value. Make sure that env->imbalance decreases
8240 			 * otherwise detach_tasks() will stop only after
8241 			 * detaching up to loop_max tasks.
8242 			 */
8243 			load = max_t(unsigned long, task_h_load(p), 1);
8244 
8245 			if (sched_feat(LB_MIN) &&
8246 			    load < 16 && !env->sd->nr_balance_failed)
8247 				goto next;
8248 
8249 			/*
8250 			 * Make sure that we don't migrate too much load.
8251 			 * Nevertheless, let relax the constraint if
8252 			 * scheduler fails to find a good waiting task to
8253 			 * migrate.
8254 			 */
8255 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8256 				goto next;
8257 
8258 			env->imbalance -= load;
8259 			break;
8260 
8261 		case migrate_util:
8262 			util = task_util_est(p);
8263 
8264 			if (util > env->imbalance)
8265 				goto next;
8266 
8267 			env->imbalance -= util;
8268 			break;
8269 
8270 		case migrate_task:
8271 			env->imbalance--;
8272 			break;
8273 
8274 		case migrate_misfit:
8275 			/* This is not a misfit task */
8276 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
8277 				goto next;
8278 
8279 			env->imbalance = 0;
8280 			break;
8281 		}
8282 
8283 		detach_task(p, env);
8284 		list_add(&p->se.group_node, &env->tasks);
8285 
8286 		detached++;
8287 
8288 #ifdef CONFIG_PREEMPTION
8289 		/*
8290 		 * NEWIDLE balancing is a source of latency, so preemptible
8291 		 * kernels will stop after the first task is detached to minimize
8292 		 * the critical section.
8293 		 */
8294 		if (env->idle == CPU_NEWLY_IDLE)
8295 			break;
8296 #endif
8297 
8298 		/*
8299 		 * We only want to steal up to the prescribed amount of
8300 		 * load/util/tasks.
8301 		 */
8302 		if (env->imbalance <= 0)
8303 			break;
8304 
8305 		continue;
8306 next:
8307 		list_move(&p->se.group_node, tasks);
8308 	}
8309 
8310 	/*
8311 	 * Right now, this is one of only two places we collect this stat
8312 	 * so we can safely collect detach_one_task() stats here rather
8313 	 * than inside detach_one_task().
8314 	 */
8315 	schedstat_add(env->sd->lb_gained[env->idle], detached);
8316 
8317 	return detached;
8318 }
8319 
8320 /*
8321  * attach_task() -- attach the task detached by detach_task() to its new rq.
8322  */
8323 static void attach_task(struct rq *rq, struct task_struct *p)
8324 {
8325 	lockdep_assert_rq_held(rq);
8326 
8327 	BUG_ON(task_rq(p) != rq);
8328 	activate_task(rq, p, ENQUEUE_NOCLOCK);
8329 	check_preempt_curr(rq, p, 0);
8330 }
8331 
8332 /*
8333  * attach_one_task() -- attaches the task returned from detach_one_task() to
8334  * its new rq.
8335  */
8336 static void attach_one_task(struct rq *rq, struct task_struct *p)
8337 {
8338 	struct rq_flags rf;
8339 
8340 	rq_lock(rq, &rf);
8341 	update_rq_clock(rq);
8342 	attach_task(rq, p);
8343 	rq_unlock(rq, &rf);
8344 }
8345 
8346 /*
8347  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8348  * new rq.
8349  */
8350 static void attach_tasks(struct lb_env *env)
8351 {
8352 	struct list_head *tasks = &env->tasks;
8353 	struct task_struct *p;
8354 	struct rq_flags rf;
8355 
8356 	rq_lock(env->dst_rq, &rf);
8357 	update_rq_clock(env->dst_rq);
8358 
8359 	while (!list_empty(tasks)) {
8360 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8361 		list_del_init(&p->se.group_node);
8362 
8363 		attach_task(env->dst_rq, p);
8364 	}
8365 
8366 	rq_unlock(env->dst_rq, &rf);
8367 }
8368 
8369 #ifdef CONFIG_NO_HZ_COMMON
8370 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8371 {
8372 	if (cfs_rq->avg.load_avg)
8373 		return true;
8374 
8375 	if (cfs_rq->avg.util_avg)
8376 		return true;
8377 
8378 	return false;
8379 }
8380 
8381 static inline bool others_have_blocked(struct rq *rq)
8382 {
8383 	if (READ_ONCE(rq->avg_rt.util_avg))
8384 		return true;
8385 
8386 	if (READ_ONCE(rq->avg_dl.util_avg))
8387 		return true;
8388 
8389 	if (thermal_load_avg(rq))
8390 		return true;
8391 
8392 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8393 	if (READ_ONCE(rq->avg_irq.util_avg))
8394 		return true;
8395 #endif
8396 
8397 	return false;
8398 }
8399 
8400 static inline void update_blocked_load_tick(struct rq *rq)
8401 {
8402 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8403 }
8404 
8405 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8406 {
8407 	if (!has_blocked)
8408 		rq->has_blocked_load = 0;
8409 }
8410 #else
8411 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8412 static inline bool others_have_blocked(struct rq *rq) { return false; }
8413 static inline void update_blocked_load_tick(struct rq *rq) {}
8414 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8415 #endif
8416 
8417 static bool __update_blocked_others(struct rq *rq, bool *done)
8418 {
8419 	const struct sched_class *curr_class;
8420 	u64 now = rq_clock_pelt(rq);
8421 	unsigned long thermal_pressure;
8422 	bool decayed;
8423 
8424 	/*
8425 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8426 	 * DL and IRQ signals have been updated before updating CFS.
8427 	 */
8428 	curr_class = rq->curr->sched_class;
8429 
8430 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8431 
8432 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8433 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8434 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8435 		  update_irq_load_avg(rq, 0);
8436 
8437 	if (others_have_blocked(rq))
8438 		*done = false;
8439 
8440 	return decayed;
8441 }
8442 
8443 #ifdef CONFIG_FAIR_GROUP_SCHED
8444 
8445 static bool __update_blocked_fair(struct rq *rq, bool *done)
8446 {
8447 	struct cfs_rq *cfs_rq, *pos;
8448 	bool decayed = false;
8449 	int cpu = cpu_of(rq);
8450 
8451 	/*
8452 	 * Iterates the task_group tree in a bottom up fashion, see
8453 	 * list_add_leaf_cfs_rq() for details.
8454 	 */
8455 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8456 		struct sched_entity *se;
8457 
8458 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8459 			update_tg_load_avg(cfs_rq);
8460 
8461 			if (cfs_rq->nr_running == 0)
8462 				update_idle_cfs_rq_clock_pelt(cfs_rq);
8463 
8464 			if (cfs_rq == &rq->cfs)
8465 				decayed = true;
8466 		}
8467 
8468 		/* Propagate pending load changes to the parent, if any: */
8469 		se = cfs_rq->tg->se[cpu];
8470 		if (se && !skip_blocked_update(se))
8471 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8472 
8473 		/*
8474 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8475 		 * decayed cfs_rqs linger on the list.
8476 		 */
8477 		if (cfs_rq_is_decayed(cfs_rq))
8478 			list_del_leaf_cfs_rq(cfs_rq);
8479 
8480 		/* Don't need periodic decay once load/util_avg are null */
8481 		if (cfs_rq_has_blocked(cfs_rq))
8482 			*done = false;
8483 	}
8484 
8485 	return decayed;
8486 }
8487 
8488 /*
8489  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8490  * This needs to be done in a top-down fashion because the load of a child
8491  * group is a fraction of its parents load.
8492  */
8493 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8494 {
8495 	struct rq *rq = rq_of(cfs_rq);
8496 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8497 	unsigned long now = jiffies;
8498 	unsigned long load;
8499 
8500 	if (cfs_rq->last_h_load_update == now)
8501 		return;
8502 
8503 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8504 	for_each_sched_entity(se) {
8505 		cfs_rq = cfs_rq_of(se);
8506 		WRITE_ONCE(cfs_rq->h_load_next, se);
8507 		if (cfs_rq->last_h_load_update == now)
8508 			break;
8509 	}
8510 
8511 	if (!se) {
8512 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8513 		cfs_rq->last_h_load_update = now;
8514 	}
8515 
8516 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8517 		load = cfs_rq->h_load;
8518 		load = div64_ul(load * se->avg.load_avg,
8519 			cfs_rq_load_avg(cfs_rq) + 1);
8520 		cfs_rq = group_cfs_rq(se);
8521 		cfs_rq->h_load = load;
8522 		cfs_rq->last_h_load_update = now;
8523 	}
8524 }
8525 
8526 static unsigned long task_h_load(struct task_struct *p)
8527 {
8528 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8529 
8530 	update_cfs_rq_h_load(cfs_rq);
8531 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8532 			cfs_rq_load_avg(cfs_rq) + 1);
8533 }
8534 #else
8535 static bool __update_blocked_fair(struct rq *rq, bool *done)
8536 {
8537 	struct cfs_rq *cfs_rq = &rq->cfs;
8538 	bool decayed;
8539 
8540 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8541 	if (cfs_rq_has_blocked(cfs_rq))
8542 		*done = false;
8543 
8544 	return decayed;
8545 }
8546 
8547 static unsigned long task_h_load(struct task_struct *p)
8548 {
8549 	return p->se.avg.load_avg;
8550 }
8551 #endif
8552 
8553 static void update_blocked_averages(int cpu)
8554 {
8555 	bool decayed = false, done = true;
8556 	struct rq *rq = cpu_rq(cpu);
8557 	struct rq_flags rf;
8558 
8559 	rq_lock_irqsave(rq, &rf);
8560 	update_blocked_load_tick(rq);
8561 	update_rq_clock(rq);
8562 
8563 	decayed |= __update_blocked_others(rq, &done);
8564 	decayed |= __update_blocked_fair(rq, &done);
8565 
8566 	update_blocked_load_status(rq, !done);
8567 	if (decayed)
8568 		cpufreq_update_util(rq, 0);
8569 	rq_unlock_irqrestore(rq, &rf);
8570 }
8571 
8572 /********** Helpers for find_busiest_group ************************/
8573 
8574 /*
8575  * sg_lb_stats - stats of a sched_group required for load_balancing
8576  */
8577 struct sg_lb_stats {
8578 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8579 	unsigned long group_load; /* Total load over the CPUs of the group */
8580 	unsigned long group_capacity;
8581 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8582 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8583 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8584 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8585 	unsigned int idle_cpus;
8586 	unsigned int group_weight;
8587 	enum group_type group_type;
8588 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8589 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8590 #ifdef CONFIG_NUMA_BALANCING
8591 	unsigned int nr_numa_running;
8592 	unsigned int nr_preferred_running;
8593 #endif
8594 };
8595 
8596 /*
8597  * sd_lb_stats - Structure to store the statistics of a sched_domain
8598  *		 during load balancing.
8599  */
8600 struct sd_lb_stats {
8601 	struct sched_group *busiest;	/* Busiest group in this sd */
8602 	struct sched_group *local;	/* Local group in this sd */
8603 	unsigned long total_load;	/* Total load of all groups in sd */
8604 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8605 	unsigned long avg_load;	/* Average load across all groups in sd */
8606 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8607 
8608 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8609 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8610 };
8611 
8612 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8613 {
8614 	/*
8615 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8616 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8617 	 * We must however set busiest_stat::group_type and
8618 	 * busiest_stat::idle_cpus to the worst busiest group because
8619 	 * update_sd_pick_busiest() reads these before assignment.
8620 	 */
8621 	*sds = (struct sd_lb_stats){
8622 		.busiest = NULL,
8623 		.local = NULL,
8624 		.total_load = 0UL,
8625 		.total_capacity = 0UL,
8626 		.busiest_stat = {
8627 			.idle_cpus = UINT_MAX,
8628 			.group_type = group_has_spare,
8629 		},
8630 	};
8631 }
8632 
8633 static unsigned long scale_rt_capacity(int cpu)
8634 {
8635 	struct rq *rq = cpu_rq(cpu);
8636 	unsigned long max = arch_scale_cpu_capacity(cpu);
8637 	unsigned long used, free;
8638 	unsigned long irq;
8639 
8640 	irq = cpu_util_irq(rq);
8641 
8642 	if (unlikely(irq >= max))
8643 		return 1;
8644 
8645 	/*
8646 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8647 	 * (running and not running) with weights 0 and 1024 respectively.
8648 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8649 	 * average uses the actual delta max capacity(load).
8650 	 */
8651 	used = READ_ONCE(rq->avg_rt.util_avg);
8652 	used += READ_ONCE(rq->avg_dl.util_avg);
8653 	used += thermal_load_avg(rq);
8654 
8655 	if (unlikely(used >= max))
8656 		return 1;
8657 
8658 	free = max - used;
8659 
8660 	return scale_irq_capacity(free, irq, max);
8661 }
8662 
8663 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8664 {
8665 	unsigned long capacity = scale_rt_capacity(cpu);
8666 	struct sched_group *sdg = sd->groups;
8667 
8668 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8669 
8670 	if (!capacity)
8671 		capacity = 1;
8672 
8673 	cpu_rq(cpu)->cpu_capacity = capacity;
8674 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8675 
8676 	sdg->sgc->capacity = capacity;
8677 	sdg->sgc->min_capacity = capacity;
8678 	sdg->sgc->max_capacity = capacity;
8679 }
8680 
8681 void update_group_capacity(struct sched_domain *sd, int cpu)
8682 {
8683 	struct sched_domain *child = sd->child;
8684 	struct sched_group *group, *sdg = sd->groups;
8685 	unsigned long capacity, min_capacity, max_capacity;
8686 	unsigned long interval;
8687 
8688 	interval = msecs_to_jiffies(sd->balance_interval);
8689 	interval = clamp(interval, 1UL, max_load_balance_interval);
8690 	sdg->sgc->next_update = jiffies + interval;
8691 
8692 	if (!child) {
8693 		update_cpu_capacity(sd, cpu);
8694 		return;
8695 	}
8696 
8697 	capacity = 0;
8698 	min_capacity = ULONG_MAX;
8699 	max_capacity = 0;
8700 
8701 	if (child->flags & SD_OVERLAP) {
8702 		/*
8703 		 * SD_OVERLAP domains cannot assume that child groups
8704 		 * span the current group.
8705 		 */
8706 
8707 		for_each_cpu(cpu, sched_group_span(sdg)) {
8708 			unsigned long cpu_cap = capacity_of(cpu);
8709 
8710 			capacity += cpu_cap;
8711 			min_capacity = min(cpu_cap, min_capacity);
8712 			max_capacity = max(cpu_cap, max_capacity);
8713 		}
8714 	} else  {
8715 		/*
8716 		 * !SD_OVERLAP domains can assume that child groups
8717 		 * span the current group.
8718 		 */
8719 
8720 		group = child->groups;
8721 		do {
8722 			struct sched_group_capacity *sgc = group->sgc;
8723 
8724 			capacity += sgc->capacity;
8725 			min_capacity = min(sgc->min_capacity, min_capacity);
8726 			max_capacity = max(sgc->max_capacity, max_capacity);
8727 			group = group->next;
8728 		} while (group != child->groups);
8729 	}
8730 
8731 	sdg->sgc->capacity = capacity;
8732 	sdg->sgc->min_capacity = min_capacity;
8733 	sdg->sgc->max_capacity = max_capacity;
8734 }
8735 
8736 /*
8737  * Check whether the capacity of the rq has been noticeably reduced by side
8738  * activity. The imbalance_pct is used for the threshold.
8739  * Return true is the capacity is reduced
8740  */
8741 static inline int
8742 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8743 {
8744 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8745 				(rq->cpu_capacity_orig * 100));
8746 }
8747 
8748 /*
8749  * Check whether a rq has a misfit task and if it looks like we can actually
8750  * help that task: we can migrate the task to a CPU of higher capacity, or
8751  * the task's current CPU is heavily pressured.
8752  */
8753 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8754 {
8755 	return rq->misfit_task_load &&
8756 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8757 		 check_cpu_capacity(rq, sd));
8758 }
8759 
8760 /*
8761  * Group imbalance indicates (and tries to solve) the problem where balancing
8762  * groups is inadequate due to ->cpus_ptr constraints.
8763  *
8764  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8765  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8766  * Something like:
8767  *
8768  *	{ 0 1 2 3 } { 4 5 6 7 }
8769  *	        *     * * *
8770  *
8771  * If we were to balance group-wise we'd place two tasks in the first group and
8772  * two tasks in the second group. Clearly this is undesired as it will overload
8773  * cpu 3 and leave one of the CPUs in the second group unused.
8774  *
8775  * The current solution to this issue is detecting the skew in the first group
8776  * by noticing the lower domain failed to reach balance and had difficulty
8777  * moving tasks due to affinity constraints.
8778  *
8779  * When this is so detected; this group becomes a candidate for busiest; see
8780  * update_sd_pick_busiest(). And calculate_imbalance() and
8781  * find_busiest_group() avoid some of the usual balance conditions to allow it
8782  * to create an effective group imbalance.
8783  *
8784  * This is a somewhat tricky proposition since the next run might not find the
8785  * group imbalance and decide the groups need to be balanced again. A most
8786  * subtle and fragile situation.
8787  */
8788 
8789 static inline int sg_imbalanced(struct sched_group *group)
8790 {
8791 	return group->sgc->imbalance;
8792 }
8793 
8794 /*
8795  * group_has_capacity returns true if the group has spare capacity that could
8796  * be used by some tasks.
8797  * We consider that a group has spare capacity if the number of task is
8798  * smaller than the number of CPUs or if the utilization is lower than the
8799  * available capacity for CFS tasks.
8800  * For the latter, we use a threshold to stabilize the state, to take into
8801  * account the variance of the tasks' load and to return true if the available
8802  * capacity in meaningful for the load balancer.
8803  * As an example, an available capacity of 1% can appear but it doesn't make
8804  * any benefit for the load balance.
8805  */
8806 static inline bool
8807 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8808 {
8809 	if (sgs->sum_nr_running < sgs->group_weight)
8810 		return true;
8811 
8812 	if ((sgs->group_capacity * imbalance_pct) <
8813 			(sgs->group_runnable * 100))
8814 		return false;
8815 
8816 	if ((sgs->group_capacity * 100) >
8817 			(sgs->group_util * imbalance_pct))
8818 		return true;
8819 
8820 	return false;
8821 }
8822 
8823 /*
8824  *  group_is_overloaded returns true if the group has more tasks than it can
8825  *  handle.
8826  *  group_is_overloaded is not equals to !group_has_capacity because a group
8827  *  with the exact right number of tasks, has no more spare capacity but is not
8828  *  overloaded so both group_has_capacity and group_is_overloaded return
8829  *  false.
8830  */
8831 static inline bool
8832 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8833 {
8834 	if (sgs->sum_nr_running <= sgs->group_weight)
8835 		return false;
8836 
8837 	if ((sgs->group_capacity * 100) <
8838 			(sgs->group_util * imbalance_pct))
8839 		return true;
8840 
8841 	if ((sgs->group_capacity * imbalance_pct) <
8842 			(sgs->group_runnable * 100))
8843 		return true;
8844 
8845 	return false;
8846 }
8847 
8848 static inline enum
8849 group_type group_classify(unsigned int imbalance_pct,
8850 			  struct sched_group *group,
8851 			  struct sg_lb_stats *sgs)
8852 {
8853 	if (group_is_overloaded(imbalance_pct, sgs))
8854 		return group_overloaded;
8855 
8856 	if (sg_imbalanced(group))
8857 		return group_imbalanced;
8858 
8859 	if (sgs->group_asym_packing)
8860 		return group_asym_packing;
8861 
8862 	if (sgs->group_misfit_task_load)
8863 		return group_misfit_task;
8864 
8865 	if (!group_has_capacity(imbalance_pct, sgs))
8866 		return group_fully_busy;
8867 
8868 	return group_has_spare;
8869 }
8870 
8871 /**
8872  * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
8873  * @dst_cpu:	Destination CPU of the load balancing
8874  * @sds:	Load-balancing data with statistics of the local group
8875  * @sgs:	Load-balancing statistics of the candidate busiest group
8876  * @sg:		The candidate busiest group
8877  *
8878  * Check the state of the SMT siblings of both @sds::local and @sg and decide
8879  * if @dst_cpu can pull tasks.
8880  *
8881  * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
8882  * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
8883  * only if @dst_cpu has higher priority.
8884  *
8885  * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
8886  * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
8887  * Bigger imbalances in the number of busy CPUs will be dealt with in
8888  * update_sd_pick_busiest().
8889  *
8890  * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
8891  * of @dst_cpu are idle and @sg has lower priority.
8892  *
8893  * Return: true if @dst_cpu can pull tasks, false otherwise.
8894  */
8895 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
8896 				    struct sg_lb_stats *sgs,
8897 				    struct sched_group *sg)
8898 {
8899 #ifdef CONFIG_SCHED_SMT
8900 	bool local_is_smt, sg_is_smt;
8901 	int sg_busy_cpus;
8902 
8903 	local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
8904 	sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
8905 
8906 	sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
8907 
8908 	if (!local_is_smt) {
8909 		/*
8910 		 * If we are here, @dst_cpu is idle and does not have SMT
8911 		 * siblings. Pull tasks if candidate group has two or more
8912 		 * busy CPUs.
8913 		 */
8914 		if (sg_busy_cpus >= 2) /* implies sg_is_smt */
8915 			return true;
8916 
8917 		/*
8918 		 * @dst_cpu does not have SMT siblings. @sg may have SMT
8919 		 * siblings and only one is busy. In such case, @dst_cpu
8920 		 * can help if it has higher priority and is idle (i.e.,
8921 		 * it has no running tasks).
8922 		 */
8923 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8924 	}
8925 
8926 	/* @dst_cpu has SMT siblings. */
8927 
8928 	if (sg_is_smt) {
8929 		int local_busy_cpus = sds->local->group_weight -
8930 				      sds->local_stat.idle_cpus;
8931 		int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
8932 
8933 		if (busy_cpus_delta == 1)
8934 			return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8935 
8936 		return false;
8937 	}
8938 
8939 	/*
8940 	 * @sg does not have SMT siblings. Ensure that @sds::local does not end
8941 	 * up with more than one busy SMT sibling and only pull tasks if there
8942 	 * are not busy CPUs (i.e., no CPU has running tasks).
8943 	 */
8944 	if (!sds->local_stat.sum_nr_running)
8945 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8946 
8947 	return false;
8948 #else
8949 	/* Always return false so that callers deal with non-SMT cases. */
8950 	return false;
8951 #endif
8952 }
8953 
8954 static inline bool
8955 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
8956 	   struct sched_group *group)
8957 {
8958 	/* Only do SMT checks if either local or candidate have SMT siblings */
8959 	if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
8960 	    (group->flags & SD_SHARE_CPUCAPACITY))
8961 		return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
8962 
8963 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
8964 }
8965 
8966 static inline bool
8967 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
8968 {
8969 	/*
8970 	 * When there is more than 1 task, the group_overloaded case already
8971 	 * takes care of cpu with reduced capacity
8972 	 */
8973 	if (rq->cfs.h_nr_running != 1)
8974 		return false;
8975 
8976 	return check_cpu_capacity(rq, sd);
8977 }
8978 
8979 /**
8980  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8981  * @env: The load balancing environment.
8982  * @sds: Load-balancing data with statistics of the local group.
8983  * @group: sched_group whose statistics are to be updated.
8984  * @sgs: variable to hold the statistics for this group.
8985  * @sg_status: Holds flag indicating the status of the sched_group
8986  */
8987 static inline void update_sg_lb_stats(struct lb_env *env,
8988 				      struct sd_lb_stats *sds,
8989 				      struct sched_group *group,
8990 				      struct sg_lb_stats *sgs,
8991 				      int *sg_status)
8992 {
8993 	int i, nr_running, local_group;
8994 
8995 	memset(sgs, 0, sizeof(*sgs));
8996 
8997 	local_group = group == sds->local;
8998 
8999 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9000 		struct rq *rq = cpu_rq(i);
9001 		unsigned long load = cpu_load(rq);
9002 
9003 		sgs->group_load += load;
9004 		sgs->group_util += cpu_util_cfs(i);
9005 		sgs->group_runnable += cpu_runnable(rq);
9006 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9007 
9008 		nr_running = rq->nr_running;
9009 		sgs->sum_nr_running += nr_running;
9010 
9011 		if (nr_running > 1)
9012 			*sg_status |= SG_OVERLOAD;
9013 
9014 		if (cpu_overutilized(i))
9015 			*sg_status |= SG_OVERUTILIZED;
9016 
9017 #ifdef CONFIG_NUMA_BALANCING
9018 		sgs->nr_numa_running += rq->nr_numa_running;
9019 		sgs->nr_preferred_running += rq->nr_preferred_running;
9020 #endif
9021 		/*
9022 		 * No need to call idle_cpu() if nr_running is not 0
9023 		 */
9024 		if (!nr_running && idle_cpu(i)) {
9025 			sgs->idle_cpus++;
9026 			/* Idle cpu can't have misfit task */
9027 			continue;
9028 		}
9029 
9030 		if (local_group)
9031 			continue;
9032 
9033 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9034 			/* Check for a misfit task on the cpu */
9035 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9036 				sgs->group_misfit_task_load = rq->misfit_task_load;
9037 				*sg_status |= SG_OVERLOAD;
9038 			}
9039 		} else if ((env->idle != CPU_NOT_IDLE) &&
9040 			   sched_reduced_capacity(rq, env->sd)) {
9041 			/* Check for a task running on a CPU with reduced capacity */
9042 			if (sgs->group_misfit_task_load < load)
9043 				sgs->group_misfit_task_load = load;
9044 		}
9045 	}
9046 
9047 	sgs->group_capacity = group->sgc->capacity;
9048 
9049 	sgs->group_weight = group->group_weight;
9050 
9051 	/* Check if dst CPU is idle and preferred to this group */
9052 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9053 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9054 	    sched_asym(env, sds, sgs, group)) {
9055 		sgs->group_asym_packing = 1;
9056 	}
9057 
9058 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9059 
9060 	/* Computing avg_load makes sense only when group is overloaded */
9061 	if (sgs->group_type == group_overloaded)
9062 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9063 				sgs->group_capacity;
9064 }
9065 
9066 /**
9067  * update_sd_pick_busiest - return 1 on busiest group
9068  * @env: The load balancing environment.
9069  * @sds: sched_domain statistics
9070  * @sg: sched_group candidate to be checked for being the busiest
9071  * @sgs: sched_group statistics
9072  *
9073  * Determine if @sg is a busier group than the previously selected
9074  * busiest group.
9075  *
9076  * Return: %true if @sg is a busier group than the previously selected
9077  * busiest group. %false otherwise.
9078  */
9079 static bool update_sd_pick_busiest(struct lb_env *env,
9080 				   struct sd_lb_stats *sds,
9081 				   struct sched_group *sg,
9082 				   struct sg_lb_stats *sgs)
9083 {
9084 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9085 
9086 	/* Make sure that there is at least one task to pull */
9087 	if (!sgs->sum_h_nr_running)
9088 		return false;
9089 
9090 	/*
9091 	 * Don't try to pull misfit tasks we can't help.
9092 	 * We can use max_capacity here as reduction in capacity on some
9093 	 * CPUs in the group should either be possible to resolve
9094 	 * internally or be covered by avg_load imbalance (eventually).
9095 	 */
9096 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9097 	    (sgs->group_type == group_misfit_task) &&
9098 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9099 	     sds->local_stat.group_type != group_has_spare))
9100 		return false;
9101 
9102 	if (sgs->group_type > busiest->group_type)
9103 		return true;
9104 
9105 	if (sgs->group_type < busiest->group_type)
9106 		return false;
9107 
9108 	/*
9109 	 * The candidate and the current busiest group are the same type of
9110 	 * group. Let check which one is the busiest according to the type.
9111 	 */
9112 
9113 	switch (sgs->group_type) {
9114 	case group_overloaded:
9115 		/* Select the overloaded group with highest avg_load. */
9116 		if (sgs->avg_load <= busiest->avg_load)
9117 			return false;
9118 		break;
9119 
9120 	case group_imbalanced:
9121 		/*
9122 		 * Select the 1st imbalanced group as we don't have any way to
9123 		 * choose one more than another.
9124 		 */
9125 		return false;
9126 
9127 	case group_asym_packing:
9128 		/* Prefer to move from lowest priority CPU's work */
9129 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9130 			return false;
9131 		break;
9132 
9133 	case group_misfit_task:
9134 		/*
9135 		 * If we have more than one misfit sg go with the biggest
9136 		 * misfit.
9137 		 */
9138 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9139 			return false;
9140 		break;
9141 
9142 	case group_fully_busy:
9143 		/*
9144 		 * Select the fully busy group with highest avg_load. In
9145 		 * theory, there is no need to pull task from such kind of
9146 		 * group because tasks have all compute capacity that they need
9147 		 * but we can still improve the overall throughput by reducing
9148 		 * contention when accessing shared HW resources.
9149 		 *
9150 		 * XXX for now avg_load is not computed and always 0 so we
9151 		 * select the 1st one.
9152 		 */
9153 		if (sgs->avg_load <= busiest->avg_load)
9154 			return false;
9155 		break;
9156 
9157 	case group_has_spare:
9158 		/*
9159 		 * Select not overloaded group with lowest number of idle cpus
9160 		 * and highest number of running tasks. We could also compare
9161 		 * the spare capacity which is more stable but it can end up
9162 		 * that the group has less spare capacity but finally more idle
9163 		 * CPUs which means less opportunity to pull tasks.
9164 		 */
9165 		if (sgs->idle_cpus > busiest->idle_cpus)
9166 			return false;
9167 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9168 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
9169 			return false;
9170 
9171 		break;
9172 	}
9173 
9174 	/*
9175 	 * Candidate sg has no more than one task per CPU and has higher
9176 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9177 	 * throughput. Maximize throughput, power/energy consequences are not
9178 	 * considered.
9179 	 */
9180 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9181 	    (sgs->group_type <= group_fully_busy) &&
9182 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
9183 		return false;
9184 
9185 	return true;
9186 }
9187 
9188 #ifdef CONFIG_NUMA_BALANCING
9189 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9190 {
9191 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
9192 		return regular;
9193 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
9194 		return remote;
9195 	return all;
9196 }
9197 
9198 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9199 {
9200 	if (rq->nr_running > rq->nr_numa_running)
9201 		return regular;
9202 	if (rq->nr_running > rq->nr_preferred_running)
9203 		return remote;
9204 	return all;
9205 }
9206 #else
9207 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9208 {
9209 	return all;
9210 }
9211 
9212 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9213 {
9214 	return regular;
9215 }
9216 #endif /* CONFIG_NUMA_BALANCING */
9217 
9218 
9219 struct sg_lb_stats;
9220 
9221 /*
9222  * task_running_on_cpu - return 1 if @p is running on @cpu.
9223  */
9224 
9225 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9226 {
9227 	/* Task has no contribution or is new */
9228 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
9229 		return 0;
9230 
9231 	if (task_on_rq_queued(p))
9232 		return 1;
9233 
9234 	return 0;
9235 }
9236 
9237 /**
9238  * idle_cpu_without - would a given CPU be idle without p ?
9239  * @cpu: the processor on which idleness is tested.
9240  * @p: task which should be ignored.
9241  *
9242  * Return: 1 if the CPU would be idle. 0 otherwise.
9243  */
9244 static int idle_cpu_without(int cpu, struct task_struct *p)
9245 {
9246 	struct rq *rq = cpu_rq(cpu);
9247 
9248 	if (rq->curr != rq->idle && rq->curr != p)
9249 		return 0;
9250 
9251 	/*
9252 	 * rq->nr_running can't be used but an updated version without the
9253 	 * impact of p on cpu must be used instead. The updated nr_running
9254 	 * be computed and tested before calling idle_cpu_without().
9255 	 */
9256 
9257 #ifdef CONFIG_SMP
9258 	if (rq->ttwu_pending)
9259 		return 0;
9260 #endif
9261 
9262 	return 1;
9263 }
9264 
9265 /*
9266  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
9267  * @sd: The sched_domain level to look for idlest group.
9268  * @group: sched_group whose statistics are to be updated.
9269  * @sgs: variable to hold the statistics for this group.
9270  * @p: The task for which we look for the idlest group/CPU.
9271  */
9272 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
9273 					  struct sched_group *group,
9274 					  struct sg_lb_stats *sgs,
9275 					  struct task_struct *p)
9276 {
9277 	int i, nr_running;
9278 
9279 	memset(sgs, 0, sizeof(*sgs));
9280 
9281 	for_each_cpu(i, sched_group_span(group)) {
9282 		struct rq *rq = cpu_rq(i);
9283 		unsigned int local;
9284 
9285 		sgs->group_load += cpu_load_without(rq, p);
9286 		sgs->group_util += cpu_util_without(i, p);
9287 		sgs->group_runnable += cpu_runnable_without(rq, p);
9288 		local = task_running_on_cpu(i, p);
9289 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9290 
9291 		nr_running = rq->nr_running - local;
9292 		sgs->sum_nr_running += nr_running;
9293 
9294 		/*
9295 		 * No need to call idle_cpu_without() if nr_running is not 0
9296 		 */
9297 		if (!nr_running && idle_cpu_without(i, p))
9298 			sgs->idle_cpus++;
9299 
9300 	}
9301 
9302 	/* Check if task fits in the group */
9303 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
9304 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
9305 		sgs->group_misfit_task_load = 1;
9306 	}
9307 
9308 	sgs->group_capacity = group->sgc->capacity;
9309 
9310 	sgs->group_weight = group->group_weight;
9311 
9312 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9313 
9314 	/*
9315 	 * Computing avg_load makes sense only when group is fully busy or
9316 	 * overloaded
9317 	 */
9318 	if (sgs->group_type == group_fully_busy ||
9319 		sgs->group_type == group_overloaded)
9320 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9321 				sgs->group_capacity;
9322 }
9323 
9324 static bool update_pick_idlest(struct sched_group *idlest,
9325 			       struct sg_lb_stats *idlest_sgs,
9326 			       struct sched_group *group,
9327 			       struct sg_lb_stats *sgs)
9328 {
9329 	if (sgs->group_type < idlest_sgs->group_type)
9330 		return true;
9331 
9332 	if (sgs->group_type > idlest_sgs->group_type)
9333 		return false;
9334 
9335 	/*
9336 	 * The candidate and the current idlest group are the same type of
9337 	 * group. Let check which one is the idlest according to the type.
9338 	 */
9339 
9340 	switch (sgs->group_type) {
9341 	case group_overloaded:
9342 	case group_fully_busy:
9343 		/* Select the group with lowest avg_load. */
9344 		if (idlest_sgs->avg_load <= sgs->avg_load)
9345 			return false;
9346 		break;
9347 
9348 	case group_imbalanced:
9349 	case group_asym_packing:
9350 		/* Those types are not used in the slow wakeup path */
9351 		return false;
9352 
9353 	case group_misfit_task:
9354 		/* Select group with the highest max capacity */
9355 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9356 			return false;
9357 		break;
9358 
9359 	case group_has_spare:
9360 		/* Select group with most idle CPUs */
9361 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9362 			return false;
9363 
9364 		/* Select group with lowest group_util */
9365 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9366 			idlest_sgs->group_util <= sgs->group_util)
9367 			return false;
9368 
9369 		break;
9370 	}
9371 
9372 	return true;
9373 }
9374 
9375 /*
9376  * find_idlest_group() finds and returns the least busy CPU group within the
9377  * domain.
9378  *
9379  * Assumes p is allowed on at least one CPU in sd.
9380  */
9381 static struct sched_group *
9382 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9383 {
9384 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9385 	struct sg_lb_stats local_sgs, tmp_sgs;
9386 	struct sg_lb_stats *sgs;
9387 	unsigned long imbalance;
9388 	struct sg_lb_stats idlest_sgs = {
9389 			.avg_load = UINT_MAX,
9390 			.group_type = group_overloaded,
9391 	};
9392 
9393 	do {
9394 		int local_group;
9395 
9396 		/* Skip over this group if it has no CPUs allowed */
9397 		if (!cpumask_intersects(sched_group_span(group),
9398 					p->cpus_ptr))
9399 			continue;
9400 
9401 		/* Skip over this group if no cookie matched */
9402 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9403 			continue;
9404 
9405 		local_group = cpumask_test_cpu(this_cpu,
9406 					       sched_group_span(group));
9407 
9408 		if (local_group) {
9409 			sgs = &local_sgs;
9410 			local = group;
9411 		} else {
9412 			sgs = &tmp_sgs;
9413 		}
9414 
9415 		update_sg_wakeup_stats(sd, group, sgs, p);
9416 
9417 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9418 			idlest = group;
9419 			idlest_sgs = *sgs;
9420 		}
9421 
9422 	} while (group = group->next, group != sd->groups);
9423 
9424 
9425 	/* There is no idlest group to push tasks to */
9426 	if (!idlest)
9427 		return NULL;
9428 
9429 	/* The local group has been skipped because of CPU affinity */
9430 	if (!local)
9431 		return idlest;
9432 
9433 	/*
9434 	 * If the local group is idler than the selected idlest group
9435 	 * don't try and push the task.
9436 	 */
9437 	if (local_sgs.group_type < idlest_sgs.group_type)
9438 		return NULL;
9439 
9440 	/*
9441 	 * If the local group is busier than the selected idlest group
9442 	 * try and push the task.
9443 	 */
9444 	if (local_sgs.group_type > idlest_sgs.group_type)
9445 		return idlest;
9446 
9447 	switch (local_sgs.group_type) {
9448 	case group_overloaded:
9449 	case group_fully_busy:
9450 
9451 		/* Calculate allowed imbalance based on load */
9452 		imbalance = scale_load_down(NICE_0_LOAD) *
9453 				(sd->imbalance_pct-100) / 100;
9454 
9455 		/*
9456 		 * When comparing groups across NUMA domains, it's possible for
9457 		 * the local domain to be very lightly loaded relative to the
9458 		 * remote domains but "imbalance" skews the comparison making
9459 		 * remote CPUs look much more favourable. When considering
9460 		 * cross-domain, add imbalance to the load on the remote node
9461 		 * and consider staying local.
9462 		 */
9463 
9464 		if ((sd->flags & SD_NUMA) &&
9465 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9466 			return NULL;
9467 
9468 		/*
9469 		 * If the local group is less loaded than the selected
9470 		 * idlest group don't try and push any tasks.
9471 		 */
9472 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9473 			return NULL;
9474 
9475 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9476 			return NULL;
9477 		break;
9478 
9479 	case group_imbalanced:
9480 	case group_asym_packing:
9481 		/* Those type are not used in the slow wakeup path */
9482 		return NULL;
9483 
9484 	case group_misfit_task:
9485 		/* Select group with the highest max capacity */
9486 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9487 			return NULL;
9488 		break;
9489 
9490 	case group_has_spare:
9491 #ifdef CONFIG_NUMA
9492 		if (sd->flags & SD_NUMA) {
9493 			int imb_numa_nr = sd->imb_numa_nr;
9494 #ifdef CONFIG_NUMA_BALANCING
9495 			int idlest_cpu;
9496 			/*
9497 			 * If there is spare capacity at NUMA, try to select
9498 			 * the preferred node
9499 			 */
9500 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9501 				return NULL;
9502 
9503 			idlest_cpu = cpumask_first(sched_group_span(idlest));
9504 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9505 				return idlest;
9506 #endif /* CONFIG_NUMA_BALANCING */
9507 			/*
9508 			 * Otherwise, keep the task close to the wakeup source
9509 			 * and improve locality if the number of running tasks
9510 			 * would remain below threshold where an imbalance is
9511 			 * allowed while accounting for the possibility the
9512 			 * task is pinned to a subset of CPUs. If there is a
9513 			 * real need of migration, periodic load balance will
9514 			 * take care of it.
9515 			 */
9516 			if (p->nr_cpus_allowed != NR_CPUS) {
9517 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
9518 
9519 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
9520 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
9521 			}
9522 
9523 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
9524 			if (!adjust_numa_imbalance(imbalance,
9525 						   local_sgs.sum_nr_running + 1,
9526 						   imb_numa_nr)) {
9527 				return NULL;
9528 			}
9529 		}
9530 #endif /* CONFIG_NUMA */
9531 
9532 		/*
9533 		 * Select group with highest number of idle CPUs. We could also
9534 		 * compare the utilization which is more stable but it can end
9535 		 * up that the group has less spare capacity but finally more
9536 		 * idle CPUs which means more opportunity to run task.
9537 		 */
9538 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9539 			return NULL;
9540 		break;
9541 	}
9542 
9543 	return idlest;
9544 }
9545 
9546 static void update_idle_cpu_scan(struct lb_env *env,
9547 				 unsigned long sum_util)
9548 {
9549 	struct sched_domain_shared *sd_share;
9550 	int llc_weight, pct;
9551 	u64 x, y, tmp;
9552 	/*
9553 	 * Update the number of CPUs to scan in LLC domain, which could
9554 	 * be used as a hint in select_idle_cpu(). The update of sd_share
9555 	 * could be expensive because it is within a shared cache line.
9556 	 * So the write of this hint only occurs during periodic load
9557 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
9558 	 * can fire way more frequently than the former.
9559 	 */
9560 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
9561 		return;
9562 
9563 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
9564 	if (env->sd->span_weight != llc_weight)
9565 		return;
9566 
9567 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
9568 	if (!sd_share)
9569 		return;
9570 
9571 	/*
9572 	 * The number of CPUs to search drops as sum_util increases, when
9573 	 * sum_util hits 85% or above, the scan stops.
9574 	 * The reason to choose 85% as the threshold is because this is the
9575 	 * imbalance_pct(117) when a LLC sched group is overloaded.
9576 	 *
9577 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
9578 	 * and y'= y / SCHED_CAPACITY_SCALE
9579 	 *
9580 	 * x is the ratio of sum_util compared to the CPU capacity:
9581 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
9582 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
9583 	 * and the number of CPUs to scan is calculated by:
9584 	 *
9585 	 * nr_scan = llc_weight * y'                                    [2]
9586 	 *
9587 	 * When x hits the threshold of overloaded, AKA, when
9588 	 * x = 100 / pct, y drops to 0. According to [1],
9589 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
9590 	 *
9591 	 * Scale x by SCHED_CAPACITY_SCALE:
9592 	 * x' = sum_util / llc_weight;                                  [3]
9593 	 *
9594 	 * and finally [1] becomes:
9595 	 * y = SCHED_CAPACITY_SCALE -
9596 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
9597 	 *
9598 	 */
9599 	/* equation [3] */
9600 	x = sum_util;
9601 	do_div(x, llc_weight);
9602 
9603 	/* equation [4] */
9604 	pct = env->sd->imbalance_pct;
9605 	tmp = x * x * pct * pct;
9606 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
9607 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
9608 	y = SCHED_CAPACITY_SCALE - tmp;
9609 
9610 	/* equation [2] */
9611 	y *= llc_weight;
9612 	do_div(y, SCHED_CAPACITY_SCALE);
9613 	if ((int)y != sd_share->nr_idle_scan)
9614 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
9615 }
9616 
9617 /**
9618  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9619  * @env: The load balancing environment.
9620  * @sds: variable to hold the statistics for this sched_domain.
9621  */
9622 
9623 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9624 {
9625 	struct sched_domain *child = env->sd->child;
9626 	struct sched_group *sg = env->sd->groups;
9627 	struct sg_lb_stats *local = &sds->local_stat;
9628 	struct sg_lb_stats tmp_sgs;
9629 	unsigned long sum_util = 0;
9630 	int sg_status = 0;
9631 
9632 	do {
9633 		struct sg_lb_stats *sgs = &tmp_sgs;
9634 		int local_group;
9635 
9636 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9637 		if (local_group) {
9638 			sds->local = sg;
9639 			sgs = local;
9640 
9641 			if (env->idle != CPU_NEWLY_IDLE ||
9642 			    time_after_eq(jiffies, sg->sgc->next_update))
9643 				update_group_capacity(env->sd, env->dst_cpu);
9644 		}
9645 
9646 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
9647 
9648 		if (local_group)
9649 			goto next_group;
9650 
9651 
9652 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9653 			sds->busiest = sg;
9654 			sds->busiest_stat = *sgs;
9655 		}
9656 
9657 next_group:
9658 		/* Now, start updating sd_lb_stats */
9659 		sds->total_load += sgs->group_load;
9660 		sds->total_capacity += sgs->group_capacity;
9661 
9662 		sum_util += sgs->group_util;
9663 		sg = sg->next;
9664 	} while (sg != env->sd->groups);
9665 
9666 	/* Tag domain that child domain prefers tasks go to siblings first */
9667 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9668 
9669 
9670 	if (env->sd->flags & SD_NUMA)
9671 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9672 
9673 	if (!env->sd->parent) {
9674 		struct root_domain *rd = env->dst_rq->rd;
9675 
9676 		/* update overload indicator if we are at root domain */
9677 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9678 
9679 		/* Update over-utilization (tipping point, U >= 0) indicator */
9680 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9681 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9682 	} else if (sg_status & SG_OVERUTILIZED) {
9683 		struct root_domain *rd = env->dst_rq->rd;
9684 
9685 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9686 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9687 	}
9688 
9689 	update_idle_cpu_scan(env, sum_util);
9690 }
9691 
9692 /**
9693  * calculate_imbalance - Calculate the amount of imbalance present within the
9694  *			 groups of a given sched_domain during load balance.
9695  * @env: load balance environment
9696  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9697  */
9698 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9699 {
9700 	struct sg_lb_stats *local, *busiest;
9701 
9702 	local = &sds->local_stat;
9703 	busiest = &sds->busiest_stat;
9704 
9705 	if (busiest->group_type == group_misfit_task) {
9706 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9707 			/* Set imbalance to allow misfit tasks to be balanced. */
9708 			env->migration_type = migrate_misfit;
9709 			env->imbalance = 1;
9710 		} else {
9711 			/*
9712 			 * Set load imbalance to allow moving task from cpu
9713 			 * with reduced capacity.
9714 			 */
9715 			env->migration_type = migrate_load;
9716 			env->imbalance = busiest->group_misfit_task_load;
9717 		}
9718 		return;
9719 	}
9720 
9721 	if (busiest->group_type == group_asym_packing) {
9722 		/*
9723 		 * In case of asym capacity, we will try to migrate all load to
9724 		 * the preferred CPU.
9725 		 */
9726 		env->migration_type = migrate_task;
9727 		env->imbalance = busiest->sum_h_nr_running;
9728 		return;
9729 	}
9730 
9731 	if (busiest->group_type == group_imbalanced) {
9732 		/*
9733 		 * In the group_imb case we cannot rely on group-wide averages
9734 		 * to ensure CPU-load equilibrium, try to move any task to fix
9735 		 * the imbalance. The next load balance will take care of
9736 		 * balancing back the system.
9737 		 */
9738 		env->migration_type = migrate_task;
9739 		env->imbalance = 1;
9740 		return;
9741 	}
9742 
9743 	/*
9744 	 * Try to use spare capacity of local group without overloading it or
9745 	 * emptying busiest.
9746 	 */
9747 	if (local->group_type == group_has_spare) {
9748 		if ((busiest->group_type > group_fully_busy) &&
9749 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9750 			/*
9751 			 * If busiest is overloaded, try to fill spare
9752 			 * capacity. This might end up creating spare capacity
9753 			 * in busiest or busiest still being overloaded but
9754 			 * there is no simple way to directly compute the
9755 			 * amount of load to migrate in order to balance the
9756 			 * system.
9757 			 */
9758 			env->migration_type = migrate_util;
9759 			env->imbalance = max(local->group_capacity, local->group_util) -
9760 					 local->group_util;
9761 
9762 			/*
9763 			 * In some cases, the group's utilization is max or even
9764 			 * higher than capacity because of migrations but the
9765 			 * local CPU is (newly) idle. There is at least one
9766 			 * waiting task in this overloaded busiest group. Let's
9767 			 * try to pull it.
9768 			 */
9769 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9770 				env->migration_type = migrate_task;
9771 				env->imbalance = 1;
9772 			}
9773 
9774 			return;
9775 		}
9776 
9777 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9778 			unsigned int nr_diff = busiest->sum_nr_running;
9779 			/*
9780 			 * When prefer sibling, evenly spread running tasks on
9781 			 * groups.
9782 			 */
9783 			env->migration_type = migrate_task;
9784 			lsub_positive(&nr_diff, local->sum_nr_running);
9785 			env->imbalance = nr_diff;
9786 		} else {
9787 
9788 			/*
9789 			 * If there is no overload, we just want to even the number of
9790 			 * idle cpus.
9791 			 */
9792 			env->migration_type = migrate_task;
9793 			env->imbalance = max_t(long, 0,
9794 					       (local->idle_cpus - busiest->idle_cpus));
9795 		}
9796 
9797 #ifdef CONFIG_NUMA
9798 		/* Consider allowing a small imbalance between NUMA groups */
9799 		if (env->sd->flags & SD_NUMA) {
9800 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9801 							       local->sum_nr_running + 1,
9802 							       env->sd->imb_numa_nr);
9803 		}
9804 #endif
9805 
9806 		/* Number of tasks to move to restore balance */
9807 		env->imbalance >>= 1;
9808 
9809 		return;
9810 	}
9811 
9812 	/*
9813 	 * Local is fully busy but has to take more load to relieve the
9814 	 * busiest group
9815 	 */
9816 	if (local->group_type < group_overloaded) {
9817 		/*
9818 		 * Local will become overloaded so the avg_load metrics are
9819 		 * finally needed.
9820 		 */
9821 
9822 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9823 				  local->group_capacity;
9824 
9825 		/*
9826 		 * If the local group is more loaded than the selected
9827 		 * busiest group don't try to pull any tasks.
9828 		 */
9829 		if (local->avg_load >= busiest->avg_load) {
9830 			env->imbalance = 0;
9831 			return;
9832 		}
9833 
9834 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9835 				sds->total_capacity;
9836 	}
9837 
9838 	/*
9839 	 * Both group are or will become overloaded and we're trying to get all
9840 	 * the CPUs to the average_load, so we don't want to push ourselves
9841 	 * above the average load, nor do we wish to reduce the max loaded CPU
9842 	 * below the average load. At the same time, we also don't want to
9843 	 * reduce the group load below the group capacity. Thus we look for
9844 	 * the minimum possible imbalance.
9845 	 */
9846 	env->migration_type = migrate_load;
9847 	env->imbalance = min(
9848 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9849 		(sds->avg_load - local->avg_load) * local->group_capacity
9850 	) / SCHED_CAPACITY_SCALE;
9851 }
9852 
9853 /******* find_busiest_group() helpers end here *********************/
9854 
9855 /*
9856  * Decision matrix according to the local and busiest group type:
9857  *
9858  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9859  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9860  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9861  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
9862  * asym_packing     force     force      N/A    N/A  force      force
9863  * imbalanced       force     force      N/A    N/A  force      force
9864  * overloaded       force     force      N/A    N/A  force      avg_load
9865  *
9866  * N/A :      Not Applicable because already filtered while updating
9867  *            statistics.
9868  * balanced : The system is balanced for these 2 groups.
9869  * force :    Calculate the imbalance as load migration is probably needed.
9870  * avg_load : Only if imbalance is significant enough.
9871  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9872  *            different in groups.
9873  */
9874 
9875 /**
9876  * find_busiest_group - Returns the busiest group within the sched_domain
9877  * if there is an imbalance.
9878  * @env: The load balancing environment.
9879  *
9880  * Also calculates the amount of runnable load which should be moved
9881  * to restore balance.
9882  *
9883  * Return:	- The busiest group if imbalance exists.
9884  */
9885 static struct sched_group *find_busiest_group(struct lb_env *env)
9886 {
9887 	struct sg_lb_stats *local, *busiest;
9888 	struct sd_lb_stats sds;
9889 
9890 	init_sd_lb_stats(&sds);
9891 
9892 	/*
9893 	 * Compute the various statistics relevant for load balancing at
9894 	 * this level.
9895 	 */
9896 	update_sd_lb_stats(env, &sds);
9897 
9898 	if (sched_energy_enabled()) {
9899 		struct root_domain *rd = env->dst_rq->rd;
9900 
9901 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9902 			goto out_balanced;
9903 	}
9904 
9905 	local = &sds.local_stat;
9906 	busiest = &sds.busiest_stat;
9907 
9908 	/* There is no busy sibling group to pull tasks from */
9909 	if (!sds.busiest)
9910 		goto out_balanced;
9911 
9912 	/* Misfit tasks should be dealt with regardless of the avg load */
9913 	if (busiest->group_type == group_misfit_task)
9914 		goto force_balance;
9915 
9916 	/* ASYM feature bypasses nice load balance check */
9917 	if (busiest->group_type == group_asym_packing)
9918 		goto force_balance;
9919 
9920 	/*
9921 	 * If the busiest group is imbalanced the below checks don't
9922 	 * work because they assume all things are equal, which typically
9923 	 * isn't true due to cpus_ptr constraints and the like.
9924 	 */
9925 	if (busiest->group_type == group_imbalanced)
9926 		goto force_balance;
9927 
9928 	/*
9929 	 * If the local group is busier than the selected busiest group
9930 	 * don't try and pull any tasks.
9931 	 */
9932 	if (local->group_type > busiest->group_type)
9933 		goto out_balanced;
9934 
9935 	/*
9936 	 * When groups are overloaded, use the avg_load to ensure fairness
9937 	 * between tasks.
9938 	 */
9939 	if (local->group_type == group_overloaded) {
9940 		/*
9941 		 * If the local group is more loaded than the selected
9942 		 * busiest group don't try to pull any tasks.
9943 		 */
9944 		if (local->avg_load >= busiest->avg_load)
9945 			goto out_balanced;
9946 
9947 		/* XXX broken for overlapping NUMA groups */
9948 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9949 				sds.total_capacity;
9950 
9951 		/*
9952 		 * Don't pull any tasks if this group is already above the
9953 		 * domain average load.
9954 		 */
9955 		if (local->avg_load >= sds.avg_load)
9956 			goto out_balanced;
9957 
9958 		/*
9959 		 * If the busiest group is more loaded, use imbalance_pct to be
9960 		 * conservative.
9961 		 */
9962 		if (100 * busiest->avg_load <=
9963 				env->sd->imbalance_pct * local->avg_load)
9964 			goto out_balanced;
9965 	}
9966 
9967 	/* Try to move all excess tasks to child's sibling domain */
9968 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9969 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9970 		goto force_balance;
9971 
9972 	if (busiest->group_type != group_overloaded) {
9973 		if (env->idle == CPU_NOT_IDLE)
9974 			/*
9975 			 * If the busiest group is not overloaded (and as a
9976 			 * result the local one too) but this CPU is already
9977 			 * busy, let another idle CPU try to pull task.
9978 			 */
9979 			goto out_balanced;
9980 
9981 		if (busiest->group_weight > 1 &&
9982 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9983 			/*
9984 			 * If the busiest group is not overloaded
9985 			 * and there is no imbalance between this and busiest
9986 			 * group wrt idle CPUs, it is balanced. The imbalance
9987 			 * becomes significant if the diff is greater than 1
9988 			 * otherwise we might end up to just move the imbalance
9989 			 * on another group. Of course this applies only if
9990 			 * there is more than 1 CPU per group.
9991 			 */
9992 			goto out_balanced;
9993 
9994 		if (busiest->sum_h_nr_running == 1)
9995 			/*
9996 			 * busiest doesn't have any tasks waiting to run
9997 			 */
9998 			goto out_balanced;
9999 	}
10000 
10001 force_balance:
10002 	/* Looks like there is an imbalance. Compute it */
10003 	calculate_imbalance(env, &sds);
10004 	return env->imbalance ? sds.busiest : NULL;
10005 
10006 out_balanced:
10007 	env->imbalance = 0;
10008 	return NULL;
10009 }
10010 
10011 /*
10012  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10013  */
10014 static struct rq *find_busiest_queue(struct lb_env *env,
10015 				     struct sched_group *group)
10016 {
10017 	struct rq *busiest = NULL, *rq;
10018 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10019 	unsigned int busiest_nr = 0;
10020 	int i;
10021 
10022 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10023 		unsigned long capacity, load, util;
10024 		unsigned int nr_running;
10025 		enum fbq_type rt;
10026 
10027 		rq = cpu_rq(i);
10028 		rt = fbq_classify_rq(rq);
10029 
10030 		/*
10031 		 * We classify groups/runqueues into three groups:
10032 		 *  - regular: there are !numa tasks
10033 		 *  - remote:  there are numa tasks that run on the 'wrong' node
10034 		 *  - all:     there is no distinction
10035 		 *
10036 		 * In order to avoid migrating ideally placed numa tasks,
10037 		 * ignore those when there's better options.
10038 		 *
10039 		 * If we ignore the actual busiest queue to migrate another
10040 		 * task, the next balance pass can still reduce the busiest
10041 		 * queue by moving tasks around inside the node.
10042 		 *
10043 		 * If we cannot move enough load due to this classification
10044 		 * the next pass will adjust the group classification and
10045 		 * allow migration of more tasks.
10046 		 *
10047 		 * Both cases only affect the total convergence complexity.
10048 		 */
10049 		if (rt > env->fbq_type)
10050 			continue;
10051 
10052 		nr_running = rq->cfs.h_nr_running;
10053 		if (!nr_running)
10054 			continue;
10055 
10056 		capacity = capacity_of(i);
10057 
10058 		/*
10059 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10060 		 * eventually lead to active_balancing high->low capacity.
10061 		 * Higher per-CPU capacity is considered better than balancing
10062 		 * average load.
10063 		 */
10064 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
10065 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
10066 		    nr_running == 1)
10067 			continue;
10068 
10069 		/* Make sure we only pull tasks from a CPU of lower priority */
10070 		if ((env->sd->flags & SD_ASYM_PACKING) &&
10071 		    sched_asym_prefer(i, env->dst_cpu) &&
10072 		    nr_running == 1)
10073 			continue;
10074 
10075 		switch (env->migration_type) {
10076 		case migrate_load:
10077 			/*
10078 			 * When comparing with load imbalance, use cpu_load()
10079 			 * which is not scaled with the CPU capacity.
10080 			 */
10081 			load = cpu_load(rq);
10082 
10083 			if (nr_running == 1 && load > env->imbalance &&
10084 			    !check_cpu_capacity(rq, env->sd))
10085 				break;
10086 
10087 			/*
10088 			 * For the load comparisons with the other CPUs,
10089 			 * consider the cpu_load() scaled with the CPU
10090 			 * capacity, so that the load can be moved away
10091 			 * from the CPU that is potentially running at a
10092 			 * lower capacity.
10093 			 *
10094 			 * Thus we're looking for max(load_i / capacity_i),
10095 			 * crosswise multiplication to rid ourselves of the
10096 			 * division works out to:
10097 			 * load_i * capacity_j > load_j * capacity_i;
10098 			 * where j is our previous maximum.
10099 			 */
10100 			if (load * busiest_capacity > busiest_load * capacity) {
10101 				busiest_load = load;
10102 				busiest_capacity = capacity;
10103 				busiest = rq;
10104 			}
10105 			break;
10106 
10107 		case migrate_util:
10108 			util = cpu_util_cfs(i);
10109 
10110 			/*
10111 			 * Don't try to pull utilization from a CPU with one
10112 			 * running task. Whatever its utilization, we will fail
10113 			 * detach the task.
10114 			 */
10115 			if (nr_running <= 1)
10116 				continue;
10117 
10118 			if (busiest_util < util) {
10119 				busiest_util = util;
10120 				busiest = rq;
10121 			}
10122 			break;
10123 
10124 		case migrate_task:
10125 			if (busiest_nr < nr_running) {
10126 				busiest_nr = nr_running;
10127 				busiest = rq;
10128 			}
10129 			break;
10130 
10131 		case migrate_misfit:
10132 			/*
10133 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
10134 			 * simply seek the "biggest" misfit task.
10135 			 */
10136 			if (rq->misfit_task_load > busiest_load) {
10137 				busiest_load = rq->misfit_task_load;
10138 				busiest = rq;
10139 			}
10140 
10141 			break;
10142 
10143 		}
10144 	}
10145 
10146 	return busiest;
10147 }
10148 
10149 /*
10150  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
10151  * so long as it is large enough.
10152  */
10153 #define MAX_PINNED_INTERVAL	512
10154 
10155 static inline bool
10156 asym_active_balance(struct lb_env *env)
10157 {
10158 	/*
10159 	 * ASYM_PACKING needs to force migrate tasks from busy but
10160 	 * lower priority CPUs in order to pack all tasks in the
10161 	 * highest priority CPUs.
10162 	 */
10163 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
10164 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
10165 }
10166 
10167 static inline bool
10168 imbalanced_active_balance(struct lb_env *env)
10169 {
10170 	struct sched_domain *sd = env->sd;
10171 
10172 	/*
10173 	 * The imbalanced case includes the case of pinned tasks preventing a fair
10174 	 * distribution of the load on the system but also the even distribution of the
10175 	 * threads on a system with spare capacity
10176 	 */
10177 	if ((env->migration_type == migrate_task) &&
10178 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
10179 		return 1;
10180 
10181 	return 0;
10182 }
10183 
10184 static int need_active_balance(struct lb_env *env)
10185 {
10186 	struct sched_domain *sd = env->sd;
10187 
10188 	if (asym_active_balance(env))
10189 		return 1;
10190 
10191 	if (imbalanced_active_balance(env))
10192 		return 1;
10193 
10194 	/*
10195 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10196 	 * It's worth migrating the task if the src_cpu's capacity is reduced
10197 	 * because of other sched_class or IRQs if more capacity stays
10198 	 * available on dst_cpu.
10199 	 */
10200 	if ((env->idle != CPU_NOT_IDLE) &&
10201 	    (env->src_rq->cfs.h_nr_running == 1)) {
10202 		if ((check_cpu_capacity(env->src_rq, sd)) &&
10203 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10204 			return 1;
10205 	}
10206 
10207 	if (env->migration_type == migrate_misfit)
10208 		return 1;
10209 
10210 	return 0;
10211 }
10212 
10213 static int active_load_balance_cpu_stop(void *data);
10214 
10215 static int should_we_balance(struct lb_env *env)
10216 {
10217 	struct sched_group *sg = env->sd->groups;
10218 	int cpu;
10219 
10220 	/*
10221 	 * Ensure the balancing environment is consistent; can happen
10222 	 * when the softirq triggers 'during' hotplug.
10223 	 */
10224 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10225 		return 0;
10226 
10227 	/*
10228 	 * In the newly idle case, we will allow all the CPUs
10229 	 * to do the newly idle load balance.
10230 	 *
10231 	 * However, we bail out if we already have tasks or a wakeup pending,
10232 	 * to optimize wakeup latency.
10233 	 */
10234 	if (env->idle == CPU_NEWLY_IDLE) {
10235 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
10236 			return 0;
10237 		return 1;
10238 	}
10239 
10240 	/* Try to find first idle CPU */
10241 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
10242 		if (!idle_cpu(cpu))
10243 			continue;
10244 
10245 		/* Are we the first idle CPU? */
10246 		return cpu == env->dst_cpu;
10247 	}
10248 
10249 	/* Are we the first CPU of this group ? */
10250 	return group_balance_cpu(sg) == env->dst_cpu;
10251 }
10252 
10253 /*
10254  * Check this_cpu to ensure it is balanced within domain. Attempt to move
10255  * tasks if there is an imbalance.
10256  */
10257 static int load_balance(int this_cpu, struct rq *this_rq,
10258 			struct sched_domain *sd, enum cpu_idle_type idle,
10259 			int *continue_balancing)
10260 {
10261 	int ld_moved, cur_ld_moved, active_balance = 0;
10262 	struct sched_domain *sd_parent = sd->parent;
10263 	struct sched_group *group;
10264 	struct rq *busiest;
10265 	struct rq_flags rf;
10266 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
10267 
10268 	struct lb_env env = {
10269 		.sd		= sd,
10270 		.dst_cpu	= this_cpu,
10271 		.dst_rq		= this_rq,
10272 		.dst_grpmask    = sched_group_span(sd->groups),
10273 		.idle		= idle,
10274 		.loop_break	= sched_nr_migrate_break,
10275 		.cpus		= cpus,
10276 		.fbq_type	= all,
10277 		.tasks		= LIST_HEAD_INIT(env.tasks),
10278 	};
10279 
10280 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
10281 
10282 	schedstat_inc(sd->lb_count[idle]);
10283 
10284 redo:
10285 	if (!should_we_balance(&env)) {
10286 		*continue_balancing = 0;
10287 		goto out_balanced;
10288 	}
10289 
10290 	group = find_busiest_group(&env);
10291 	if (!group) {
10292 		schedstat_inc(sd->lb_nobusyg[idle]);
10293 		goto out_balanced;
10294 	}
10295 
10296 	busiest = find_busiest_queue(&env, group);
10297 	if (!busiest) {
10298 		schedstat_inc(sd->lb_nobusyq[idle]);
10299 		goto out_balanced;
10300 	}
10301 
10302 	BUG_ON(busiest == env.dst_rq);
10303 
10304 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
10305 
10306 	env.src_cpu = busiest->cpu;
10307 	env.src_rq = busiest;
10308 
10309 	ld_moved = 0;
10310 	/* Clear this flag as soon as we find a pullable task */
10311 	env.flags |= LBF_ALL_PINNED;
10312 	if (busiest->nr_running > 1) {
10313 		/*
10314 		 * Attempt to move tasks. If find_busiest_group has found
10315 		 * an imbalance but busiest->nr_running <= 1, the group is
10316 		 * still unbalanced. ld_moved simply stays zero, so it is
10317 		 * correctly treated as an imbalance.
10318 		 */
10319 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
10320 
10321 more_balance:
10322 		rq_lock_irqsave(busiest, &rf);
10323 		update_rq_clock(busiest);
10324 
10325 		/*
10326 		 * cur_ld_moved - load moved in current iteration
10327 		 * ld_moved     - cumulative load moved across iterations
10328 		 */
10329 		cur_ld_moved = detach_tasks(&env);
10330 
10331 		/*
10332 		 * We've detached some tasks from busiest_rq. Every
10333 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
10334 		 * unlock busiest->lock, and we are able to be sure
10335 		 * that nobody can manipulate the tasks in parallel.
10336 		 * See task_rq_lock() family for the details.
10337 		 */
10338 
10339 		rq_unlock(busiest, &rf);
10340 
10341 		if (cur_ld_moved) {
10342 			attach_tasks(&env);
10343 			ld_moved += cur_ld_moved;
10344 		}
10345 
10346 		local_irq_restore(rf.flags);
10347 
10348 		if (env.flags & LBF_NEED_BREAK) {
10349 			env.flags &= ~LBF_NEED_BREAK;
10350 			goto more_balance;
10351 		}
10352 
10353 		/*
10354 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
10355 		 * us and move them to an alternate dst_cpu in our sched_group
10356 		 * where they can run. The upper limit on how many times we
10357 		 * iterate on same src_cpu is dependent on number of CPUs in our
10358 		 * sched_group.
10359 		 *
10360 		 * This changes load balance semantics a bit on who can move
10361 		 * load to a given_cpu. In addition to the given_cpu itself
10362 		 * (or a ilb_cpu acting on its behalf where given_cpu is
10363 		 * nohz-idle), we now have balance_cpu in a position to move
10364 		 * load to given_cpu. In rare situations, this may cause
10365 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
10366 		 * _independently_ and at _same_ time to move some load to
10367 		 * given_cpu) causing excess load to be moved to given_cpu.
10368 		 * This however should not happen so much in practice and
10369 		 * moreover subsequent load balance cycles should correct the
10370 		 * excess load moved.
10371 		 */
10372 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10373 
10374 			/* Prevent to re-select dst_cpu via env's CPUs */
10375 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
10376 
10377 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
10378 			env.dst_cpu	 = env.new_dst_cpu;
10379 			env.flags	&= ~LBF_DST_PINNED;
10380 			env.loop	 = 0;
10381 			env.loop_break	 = sched_nr_migrate_break;
10382 
10383 			/*
10384 			 * Go back to "more_balance" rather than "redo" since we
10385 			 * need to continue with same src_cpu.
10386 			 */
10387 			goto more_balance;
10388 		}
10389 
10390 		/*
10391 		 * We failed to reach balance because of affinity.
10392 		 */
10393 		if (sd_parent) {
10394 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10395 
10396 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10397 				*group_imbalance = 1;
10398 		}
10399 
10400 		/* All tasks on this runqueue were pinned by CPU affinity */
10401 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
10402 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
10403 			/*
10404 			 * Attempting to continue load balancing at the current
10405 			 * sched_domain level only makes sense if there are
10406 			 * active CPUs remaining as possible busiest CPUs to
10407 			 * pull load from which are not contained within the
10408 			 * destination group that is receiving any migrated
10409 			 * load.
10410 			 */
10411 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
10412 				env.loop = 0;
10413 				env.loop_break = sched_nr_migrate_break;
10414 				goto redo;
10415 			}
10416 			goto out_all_pinned;
10417 		}
10418 	}
10419 
10420 	if (!ld_moved) {
10421 		schedstat_inc(sd->lb_failed[idle]);
10422 		/*
10423 		 * Increment the failure counter only on periodic balance.
10424 		 * We do not want newidle balance, which can be very
10425 		 * frequent, pollute the failure counter causing
10426 		 * excessive cache_hot migrations and active balances.
10427 		 */
10428 		if (idle != CPU_NEWLY_IDLE)
10429 			sd->nr_balance_failed++;
10430 
10431 		if (need_active_balance(&env)) {
10432 			unsigned long flags;
10433 
10434 			raw_spin_rq_lock_irqsave(busiest, flags);
10435 
10436 			/*
10437 			 * Don't kick the active_load_balance_cpu_stop,
10438 			 * if the curr task on busiest CPU can't be
10439 			 * moved to this_cpu:
10440 			 */
10441 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10442 				raw_spin_rq_unlock_irqrestore(busiest, flags);
10443 				goto out_one_pinned;
10444 			}
10445 
10446 			/* Record that we found at least one task that could run on this_cpu */
10447 			env.flags &= ~LBF_ALL_PINNED;
10448 
10449 			/*
10450 			 * ->active_balance synchronizes accesses to
10451 			 * ->active_balance_work.  Once set, it's cleared
10452 			 * only after active load balance is finished.
10453 			 */
10454 			if (!busiest->active_balance) {
10455 				busiest->active_balance = 1;
10456 				busiest->push_cpu = this_cpu;
10457 				active_balance = 1;
10458 			}
10459 			raw_spin_rq_unlock_irqrestore(busiest, flags);
10460 
10461 			if (active_balance) {
10462 				stop_one_cpu_nowait(cpu_of(busiest),
10463 					active_load_balance_cpu_stop, busiest,
10464 					&busiest->active_balance_work);
10465 			}
10466 		}
10467 	} else {
10468 		sd->nr_balance_failed = 0;
10469 	}
10470 
10471 	if (likely(!active_balance) || need_active_balance(&env)) {
10472 		/* We were unbalanced, so reset the balancing interval */
10473 		sd->balance_interval = sd->min_interval;
10474 	}
10475 
10476 	goto out;
10477 
10478 out_balanced:
10479 	/*
10480 	 * We reach balance although we may have faced some affinity
10481 	 * constraints. Clear the imbalance flag only if other tasks got
10482 	 * a chance to move and fix the imbalance.
10483 	 */
10484 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10485 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10486 
10487 		if (*group_imbalance)
10488 			*group_imbalance = 0;
10489 	}
10490 
10491 out_all_pinned:
10492 	/*
10493 	 * We reach balance because all tasks are pinned at this level so
10494 	 * we can't migrate them. Let the imbalance flag set so parent level
10495 	 * can try to migrate them.
10496 	 */
10497 	schedstat_inc(sd->lb_balanced[idle]);
10498 
10499 	sd->nr_balance_failed = 0;
10500 
10501 out_one_pinned:
10502 	ld_moved = 0;
10503 
10504 	/*
10505 	 * newidle_balance() disregards balance intervals, so we could
10506 	 * repeatedly reach this code, which would lead to balance_interval
10507 	 * skyrocketing in a short amount of time. Skip the balance_interval
10508 	 * increase logic to avoid that.
10509 	 */
10510 	if (env.idle == CPU_NEWLY_IDLE)
10511 		goto out;
10512 
10513 	/* tune up the balancing interval */
10514 	if ((env.flags & LBF_ALL_PINNED &&
10515 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
10516 	    sd->balance_interval < sd->max_interval)
10517 		sd->balance_interval *= 2;
10518 out:
10519 	return ld_moved;
10520 }
10521 
10522 static inline unsigned long
10523 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10524 {
10525 	unsigned long interval = sd->balance_interval;
10526 
10527 	if (cpu_busy)
10528 		interval *= sd->busy_factor;
10529 
10530 	/* scale ms to jiffies */
10531 	interval = msecs_to_jiffies(interval);
10532 
10533 	/*
10534 	 * Reduce likelihood of busy balancing at higher domains racing with
10535 	 * balancing at lower domains by preventing their balancing periods
10536 	 * from being multiples of each other.
10537 	 */
10538 	if (cpu_busy)
10539 		interval -= 1;
10540 
10541 	interval = clamp(interval, 1UL, max_load_balance_interval);
10542 
10543 	return interval;
10544 }
10545 
10546 static inline void
10547 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10548 {
10549 	unsigned long interval, next;
10550 
10551 	/* used by idle balance, so cpu_busy = 0 */
10552 	interval = get_sd_balance_interval(sd, 0);
10553 	next = sd->last_balance + interval;
10554 
10555 	if (time_after(*next_balance, next))
10556 		*next_balance = next;
10557 }
10558 
10559 /*
10560  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10561  * running tasks off the busiest CPU onto idle CPUs. It requires at
10562  * least 1 task to be running on each physical CPU where possible, and
10563  * avoids physical / logical imbalances.
10564  */
10565 static int active_load_balance_cpu_stop(void *data)
10566 {
10567 	struct rq *busiest_rq = data;
10568 	int busiest_cpu = cpu_of(busiest_rq);
10569 	int target_cpu = busiest_rq->push_cpu;
10570 	struct rq *target_rq = cpu_rq(target_cpu);
10571 	struct sched_domain *sd;
10572 	struct task_struct *p = NULL;
10573 	struct rq_flags rf;
10574 
10575 	rq_lock_irq(busiest_rq, &rf);
10576 	/*
10577 	 * Between queueing the stop-work and running it is a hole in which
10578 	 * CPUs can become inactive. We should not move tasks from or to
10579 	 * inactive CPUs.
10580 	 */
10581 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10582 		goto out_unlock;
10583 
10584 	/* Make sure the requested CPU hasn't gone down in the meantime: */
10585 	if (unlikely(busiest_cpu != smp_processor_id() ||
10586 		     !busiest_rq->active_balance))
10587 		goto out_unlock;
10588 
10589 	/* Is there any task to move? */
10590 	if (busiest_rq->nr_running <= 1)
10591 		goto out_unlock;
10592 
10593 	/*
10594 	 * This condition is "impossible", if it occurs
10595 	 * we need to fix it. Originally reported by
10596 	 * Bjorn Helgaas on a 128-CPU setup.
10597 	 */
10598 	BUG_ON(busiest_rq == target_rq);
10599 
10600 	/* Search for an sd spanning us and the target CPU. */
10601 	rcu_read_lock();
10602 	for_each_domain(target_cpu, sd) {
10603 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10604 			break;
10605 	}
10606 
10607 	if (likely(sd)) {
10608 		struct lb_env env = {
10609 			.sd		= sd,
10610 			.dst_cpu	= target_cpu,
10611 			.dst_rq		= target_rq,
10612 			.src_cpu	= busiest_rq->cpu,
10613 			.src_rq		= busiest_rq,
10614 			.idle		= CPU_IDLE,
10615 			.flags		= LBF_ACTIVE_LB,
10616 		};
10617 
10618 		schedstat_inc(sd->alb_count);
10619 		update_rq_clock(busiest_rq);
10620 
10621 		p = detach_one_task(&env);
10622 		if (p) {
10623 			schedstat_inc(sd->alb_pushed);
10624 			/* Active balancing done, reset the failure counter. */
10625 			sd->nr_balance_failed = 0;
10626 		} else {
10627 			schedstat_inc(sd->alb_failed);
10628 		}
10629 	}
10630 	rcu_read_unlock();
10631 out_unlock:
10632 	busiest_rq->active_balance = 0;
10633 	rq_unlock(busiest_rq, &rf);
10634 
10635 	if (p)
10636 		attach_one_task(target_rq, p);
10637 
10638 	local_irq_enable();
10639 
10640 	return 0;
10641 }
10642 
10643 static DEFINE_SPINLOCK(balancing);
10644 
10645 /*
10646  * Scale the max load_balance interval with the number of CPUs in the system.
10647  * This trades load-balance latency on larger machines for less cross talk.
10648  */
10649 void update_max_interval(void)
10650 {
10651 	max_load_balance_interval = HZ*num_online_cpus()/10;
10652 }
10653 
10654 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
10655 {
10656 	if (cost > sd->max_newidle_lb_cost) {
10657 		/*
10658 		 * Track max cost of a domain to make sure to not delay the
10659 		 * next wakeup on the CPU.
10660 		 */
10661 		sd->max_newidle_lb_cost = cost;
10662 		sd->last_decay_max_lb_cost = jiffies;
10663 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
10664 		/*
10665 		 * Decay the newidle max times by ~1% per second to ensure that
10666 		 * it is not outdated and the current max cost is actually
10667 		 * shorter.
10668 		 */
10669 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
10670 		sd->last_decay_max_lb_cost = jiffies;
10671 
10672 		return true;
10673 	}
10674 
10675 	return false;
10676 }
10677 
10678 /*
10679  * It checks each scheduling domain to see if it is due to be balanced,
10680  * and initiates a balancing operation if so.
10681  *
10682  * Balancing parameters are set up in init_sched_domains.
10683  */
10684 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10685 {
10686 	int continue_balancing = 1;
10687 	int cpu = rq->cpu;
10688 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10689 	unsigned long interval;
10690 	struct sched_domain *sd;
10691 	/* Earliest time when we have to do rebalance again */
10692 	unsigned long next_balance = jiffies + 60*HZ;
10693 	int update_next_balance = 0;
10694 	int need_serialize, need_decay = 0;
10695 	u64 max_cost = 0;
10696 
10697 	rcu_read_lock();
10698 	for_each_domain(cpu, sd) {
10699 		/*
10700 		 * Decay the newidle max times here because this is a regular
10701 		 * visit to all the domains.
10702 		 */
10703 		need_decay = update_newidle_cost(sd, 0);
10704 		max_cost += sd->max_newidle_lb_cost;
10705 
10706 		/*
10707 		 * Stop the load balance at this level. There is another
10708 		 * CPU in our sched group which is doing load balancing more
10709 		 * actively.
10710 		 */
10711 		if (!continue_balancing) {
10712 			if (need_decay)
10713 				continue;
10714 			break;
10715 		}
10716 
10717 		interval = get_sd_balance_interval(sd, busy);
10718 
10719 		need_serialize = sd->flags & SD_SERIALIZE;
10720 		if (need_serialize) {
10721 			if (!spin_trylock(&balancing))
10722 				goto out;
10723 		}
10724 
10725 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10726 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10727 				/*
10728 				 * The LBF_DST_PINNED logic could have changed
10729 				 * env->dst_cpu, so we can't know our idle
10730 				 * state even if we migrated tasks. Update it.
10731 				 */
10732 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10733 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10734 			}
10735 			sd->last_balance = jiffies;
10736 			interval = get_sd_balance_interval(sd, busy);
10737 		}
10738 		if (need_serialize)
10739 			spin_unlock(&balancing);
10740 out:
10741 		if (time_after(next_balance, sd->last_balance + interval)) {
10742 			next_balance = sd->last_balance + interval;
10743 			update_next_balance = 1;
10744 		}
10745 	}
10746 	if (need_decay) {
10747 		/*
10748 		 * Ensure the rq-wide value also decays but keep it at a
10749 		 * reasonable floor to avoid funnies with rq->avg_idle.
10750 		 */
10751 		rq->max_idle_balance_cost =
10752 			max((u64)sysctl_sched_migration_cost, max_cost);
10753 	}
10754 	rcu_read_unlock();
10755 
10756 	/*
10757 	 * next_balance will be updated only when there is a need.
10758 	 * When the cpu is attached to null domain for ex, it will not be
10759 	 * updated.
10760 	 */
10761 	if (likely(update_next_balance))
10762 		rq->next_balance = next_balance;
10763 
10764 }
10765 
10766 static inline int on_null_domain(struct rq *rq)
10767 {
10768 	return unlikely(!rcu_dereference_sched(rq->sd));
10769 }
10770 
10771 #ifdef CONFIG_NO_HZ_COMMON
10772 /*
10773  * idle load balancing details
10774  * - When one of the busy CPUs notice that there may be an idle rebalancing
10775  *   needed, they will kick the idle load balancer, which then does idle
10776  *   load balancing for all the idle CPUs.
10777  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
10778  *   anywhere yet.
10779  */
10780 
10781 static inline int find_new_ilb(void)
10782 {
10783 	int ilb;
10784 	const struct cpumask *hk_mask;
10785 
10786 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
10787 
10788 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10789 
10790 		if (ilb == smp_processor_id())
10791 			continue;
10792 
10793 		if (idle_cpu(ilb))
10794 			return ilb;
10795 	}
10796 
10797 	return nr_cpu_ids;
10798 }
10799 
10800 /*
10801  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10802  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
10803  */
10804 static void kick_ilb(unsigned int flags)
10805 {
10806 	int ilb_cpu;
10807 
10808 	/*
10809 	 * Increase nohz.next_balance only when if full ilb is triggered but
10810 	 * not if we only update stats.
10811 	 */
10812 	if (flags & NOHZ_BALANCE_KICK)
10813 		nohz.next_balance = jiffies+1;
10814 
10815 	ilb_cpu = find_new_ilb();
10816 
10817 	if (ilb_cpu >= nr_cpu_ids)
10818 		return;
10819 
10820 	/*
10821 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10822 	 * the first flag owns it; cleared by nohz_csd_func().
10823 	 */
10824 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10825 	if (flags & NOHZ_KICK_MASK)
10826 		return;
10827 
10828 	/*
10829 	 * This way we generate an IPI on the target CPU which
10830 	 * is idle. And the softirq performing nohz idle load balance
10831 	 * will be run before returning from the IPI.
10832 	 */
10833 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10834 }
10835 
10836 /*
10837  * Current decision point for kicking the idle load balancer in the presence
10838  * of idle CPUs in the system.
10839  */
10840 static void nohz_balancer_kick(struct rq *rq)
10841 {
10842 	unsigned long now = jiffies;
10843 	struct sched_domain_shared *sds;
10844 	struct sched_domain *sd;
10845 	int nr_busy, i, cpu = rq->cpu;
10846 	unsigned int flags = 0;
10847 
10848 	if (unlikely(rq->idle_balance))
10849 		return;
10850 
10851 	/*
10852 	 * We may be recently in ticked or tickless idle mode. At the first
10853 	 * busy tick after returning from idle, we will update the busy stats.
10854 	 */
10855 	nohz_balance_exit_idle(rq);
10856 
10857 	/*
10858 	 * None are in tickless mode and hence no need for NOHZ idle load
10859 	 * balancing.
10860 	 */
10861 	if (likely(!atomic_read(&nohz.nr_cpus)))
10862 		return;
10863 
10864 	if (READ_ONCE(nohz.has_blocked) &&
10865 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10866 		flags = NOHZ_STATS_KICK;
10867 
10868 	if (time_before(now, nohz.next_balance))
10869 		goto out;
10870 
10871 	if (rq->nr_running >= 2) {
10872 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10873 		goto out;
10874 	}
10875 
10876 	rcu_read_lock();
10877 
10878 	sd = rcu_dereference(rq->sd);
10879 	if (sd) {
10880 		/*
10881 		 * If there's a CFS task and the current CPU has reduced
10882 		 * capacity; kick the ILB to see if there's a better CPU to run
10883 		 * on.
10884 		 */
10885 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10886 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10887 			goto unlock;
10888 		}
10889 	}
10890 
10891 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10892 	if (sd) {
10893 		/*
10894 		 * When ASYM_PACKING; see if there's a more preferred CPU
10895 		 * currently idle; in which case, kick the ILB to move tasks
10896 		 * around.
10897 		 */
10898 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10899 			if (sched_asym_prefer(i, cpu)) {
10900 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10901 				goto unlock;
10902 			}
10903 		}
10904 	}
10905 
10906 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10907 	if (sd) {
10908 		/*
10909 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10910 		 * to run the misfit task on.
10911 		 */
10912 		if (check_misfit_status(rq, sd)) {
10913 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10914 			goto unlock;
10915 		}
10916 
10917 		/*
10918 		 * For asymmetric systems, we do not want to nicely balance
10919 		 * cache use, instead we want to embrace asymmetry and only
10920 		 * ensure tasks have enough CPU capacity.
10921 		 *
10922 		 * Skip the LLC logic because it's not relevant in that case.
10923 		 */
10924 		goto unlock;
10925 	}
10926 
10927 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10928 	if (sds) {
10929 		/*
10930 		 * If there is an imbalance between LLC domains (IOW we could
10931 		 * increase the overall cache use), we need some less-loaded LLC
10932 		 * domain to pull some load. Likewise, we may need to spread
10933 		 * load within the current LLC domain (e.g. packed SMT cores but
10934 		 * other CPUs are idle). We can't really know from here how busy
10935 		 * the others are - so just get a nohz balance going if it looks
10936 		 * like this LLC domain has tasks we could move.
10937 		 */
10938 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10939 		if (nr_busy > 1) {
10940 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10941 			goto unlock;
10942 		}
10943 	}
10944 unlock:
10945 	rcu_read_unlock();
10946 out:
10947 	if (READ_ONCE(nohz.needs_update))
10948 		flags |= NOHZ_NEXT_KICK;
10949 
10950 	if (flags)
10951 		kick_ilb(flags);
10952 }
10953 
10954 static void set_cpu_sd_state_busy(int cpu)
10955 {
10956 	struct sched_domain *sd;
10957 
10958 	rcu_read_lock();
10959 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10960 
10961 	if (!sd || !sd->nohz_idle)
10962 		goto unlock;
10963 	sd->nohz_idle = 0;
10964 
10965 	atomic_inc(&sd->shared->nr_busy_cpus);
10966 unlock:
10967 	rcu_read_unlock();
10968 }
10969 
10970 void nohz_balance_exit_idle(struct rq *rq)
10971 {
10972 	SCHED_WARN_ON(rq != this_rq());
10973 
10974 	if (likely(!rq->nohz_tick_stopped))
10975 		return;
10976 
10977 	rq->nohz_tick_stopped = 0;
10978 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10979 	atomic_dec(&nohz.nr_cpus);
10980 
10981 	set_cpu_sd_state_busy(rq->cpu);
10982 }
10983 
10984 static void set_cpu_sd_state_idle(int cpu)
10985 {
10986 	struct sched_domain *sd;
10987 
10988 	rcu_read_lock();
10989 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10990 
10991 	if (!sd || sd->nohz_idle)
10992 		goto unlock;
10993 	sd->nohz_idle = 1;
10994 
10995 	atomic_dec(&sd->shared->nr_busy_cpus);
10996 unlock:
10997 	rcu_read_unlock();
10998 }
10999 
11000 /*
11001  * This routine will record that the CPU is going idle with tick stopped.
11002  * This info will be used in performing idle load balancing in the future.
11003  */
11004 void nohz_balance_enter_idle(int cpu)
11005 {
11006 	struct rq *rq = cpu_rq(cpu);
11007 
11008 	SCHED_WARN_ON(cpu != smp_processor_id());
11009 
11010 	/* If this CPU is going down, then nothing needs to be done: */
11011 	if (!cpu_active(cpu))
11012 		return;
11013 
11014 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
11015 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
11016 		return;
11017 
11018 	/*
11019 	 * Can be set safely without rq->lock held
11020 	 * If a clear happens, it will have evaluated last additions because
11021 	 * rq->lock is held during the check and the clear
11022 	 */
11023 	rq->has_blocked_load = 1;
11024 
11025 	/*
11026 	 * The tick is still stopped but load could have been added in the
11027 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
11028 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11029 	 * of nohz.has_blocked can only happen after checking the new load
11030 	 */
11031 	if (rq->nohz_tick_stopped)
11032 		goto out;
11033 
11034 	/* If we're a completely isolated CPU, we don't play: */
11035 	if (on_null_domain(rq))
11036 		return;
11037 
11038 	rq->nohz_tick_stopped = 1;
11039 
11040 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11041 	atomic_inc(&nohz.nr_cpus);
11042 
11043 	/*
11044 	 * Ensures that if nohz_idle_balance() fails to observe our
11045 	 * @idle_cpus_mask store, it must observe the @has_blocked
11046 	 * and @needs_update stores.
11047 	 */
11048 	smp_mb__after_atomic();
11049 
11050 	set_cpu_sd_state_idle(cpu);
11051 
11052 	WRITE_ONCE(nohz.needs_update, 1);
11053 out:
11054 	/*
11055 	 * Each time a cpu enter idle, we assume that it has blocked load and
11056 	 * enable the periodic update of the load of idle cpus
11057 	 */
11058 	WRITE_ONCE(nohz.has_blocked, 1);
11059 }
11060 
11061 static bool update_nohz_stats(struct rq *rq)
11062 {
11063 	unsigned int cpu = rq->cpu;
11064 
11065 	if (!rq->has_blocked_load)
11066 		return false;
11067 
11068 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
11069 		return false;
11070 
11071 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
11072 		return true;
11073 
11074 	update_blocked_averages(cpu);
11075 
11076 	return rq->has_blocked_load;
11077 }
11078 
11079 /*
11080  * Internal function that runs load balance for all idle cpus. The load balance
11081  * can be a simple update of blocked load or a complete load balance with
11082  * tasks movement depending of flags.
11083  */
11084 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
11085 			       enum cpu_idle_type idle)
11086 {
11087 	/* Earliest time when we have to do rebalance again */
11088 	unsigned long now = jiffies;
11089 	unsigned long next_balance = now + 60*HZ;
11090 	bool has_blocked_load = false;
11091 	int update_next_balance = 0;
11092 	int this_cpu = this_rq->cpu;
11093 	int balance_cpu;
11094 	struct rq *rq;
11095 
11096 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
11097 
11098 	/*
11099 	 * We assume there will be no idle load after this update and clear
11100 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
11101 	 * set the has_blocked flag and trigger another update of idle load.
11102 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
11103 	 * setting the flag, we are sure to not clear the state and not
11104 	 * check the load of an idle cpu.
11105 	 *
11106 	 * Same applies to idle_cpus_mask vs needs_update.
11107 	 */
11108 	if (flags & NOHZ_STATS_KICK)
11109 		WRITE_ONCE(nohz.has_blocked, 0);
11110 	if (flags & NOHZ_NEXT_KICK)
11111 		WRITE_ONCE(nohz.needs_update, 0);
11112 
11113 	/*
11114 	 * Ensures that if we miss the CPU, we must see the has_blocked
11115 	 * store from nohz_balance_enter_idle().
11116 	 */
11117 	smp_mb();
11118 
11119 	/*
11120 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
11121 	 * chance for other idle cpu to pull load.
11122 	 */
11123 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
11124 		if (!idle_cpu(balance_cpu))
11125 			continue;
11126 
11127 		/*
11128 		 * If this CPU gets work to do, stop the load balancing
11129 		 * work being done for other CPUs. Next load
11130 		 * balancing owner will pick it up.
11131 		 */
11132 		if (need_resched()) {
11133 			if (flags & NOHZ_STATS_KICK)
11134 				has_blocked_load = true;
11135 			if (flags & NOHZ_NEXT_KICK)
11136 				WRITE_ONCE(nohz.needs_update, 1);
11137 			goto abort;
11138 		}
11139 
11140 		rq = cpu_rq(balance_cpu);
11141 
11142 		if (flags & NOHZ_STATS_KICK)
11143 			has_blocked_load |= update_nohz_stats(rq);
11144 
11145 		/*
11146 		 * If time for next balance is due,
11147 		 * do the balance.
11148 		 */
11149 		if (time_after_eq(jiffies, rq->next_balance)) {
11150 			struct rq_flags rf;
11151 
11152 			rq_lock_irqsave(rq, &rf);
11153 			update_rq_clock(rq);
11154 			rq_unlock_irqrestore(rq, &rf);
11155 
11156 			if (flags & NOHZ_BALANCE_KICK)
11157 				rebalance_domains(rq, CPU_IDLE);
11158 		}
11159 
11160 		if (time_after(next_balance, rq->next_balance)) {
11161 			next_balance = rq->next_balance;
11162 			update_next_balance = 1;
11163 		}
11164 	}
11165 
11166 	/*
11167 	 * next_balance will be updated only when there is a need.
11168 	 * When the CPU is attached to null domain for ex, it will not be
11169 	 * updated.
11170 	 */
11171 	if (likely(update_next_balance))
11172 		nohz.next_balance = next_balance;
11173 
11174 	if (flags & NOHZ_STATS_KICK)
11175 		WRITE_ONCE(nohz.next_blocked,
11176 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
11177 
11178 abort:
11179 	/* There is still blocked load, enable periodic update */
11180 	if (has_blocked_load)
11181 		WRITE_ONCE(nohz.has_blocked, 1);
11182 }
11183 
11184 /*
11185  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11186  * rebalancing for all the cpus for whom scheduler ticks are stopped.
11187  */
11188 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11189 {
11190 	unsigned int flags = this_rq->nohz_idle_balance;
11191 
11192 	if (!flags)
11193 		return false;
11194 
11195 	this_rq->nohz_idle_balance = 0;
11196 
11197 	if (idle != CPU_IDLE)
11198 		return false;
11199 
11200 	_nohz_idle_balance(this_rq, flags, idle);
11201 
11202 	return true;
11203 }
11204 
11205 /*
11206  * Check if we need to run the ILB for updating blocked load before entering
11207  * idle state.
11208  */
11209 void nohz_run_idle_balance(int cpu)
11210 {
11211 	unsigned int flags;
11212 
11213 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
11214 
11215 	/*
11216 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
11217 	 * (ie NOHZ_STATS_KICK set) and will do the same.
11218 	 */
11219 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
11220 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
11221 }
11222 
11223 static void nohz_newidle_balance(struct rq *this_rq)
11224 {
11225 	int this_cpu = this_rq->cpu;
11226 
11227 	/*
11228 	 * This CPU doesn't want to be disturbed by scheduler
11229 	 * housekeeping
11230 	 */
11231 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
11232 		return;
11233 
11234 	/* Will wake up very soon. No time for doing anything else*/
11235 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
11236 		return;
11237 
11238 	/* Don't need to update blocked load of idle CPUs*/
11239 	if (!READ_ONCE(nohz.has_blocked) ||
11240 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
11241 		return;
11242 
11243 	/*
11244 	 * Set the need to trigger ILB in order to update blocked load
11245 	 * before entering idle state.
11246 	 */
11247 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
11248 }
11249 
11250 #else /* !CONFIG_NO_HZ_COMMON */
11251 static inline void nohz_balancer_kick(struct rq *rq) { }
11252 
11253 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11254 {
11255 	return false;
11256 }
11257 
11258 static inline void nohz_newidle_balance(struct rq *this_rq) { }
11259 #endif /* CONFIG_NO_HZ_COMMON */
11260 
11261 /*
11262  * newidle_balance is called by schedule() if this_cpu is about to become
11263  * idle. Attempts to pull tasks from other CPUs.
11264  *
11265  * Returns:
11266  *   < 0 - we released the lock and there are !fair tasks present
11267  *     0 - failed, no new tasks
11268  *   > 0 - success, new (fair) tasks present
11269  */
11270 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
11271 {
11272 	unsigned long next_balance = jiffies + HZ;
11273 	int this_cpu = this_rq->cpu;
11274 	u64 t0, t1, curr_cost = 0;
11275 	struct sched_domain *sd;
11276 	int pulled_task = 0;
11277 
11278 	update_misfit_status(NULL, this_rq);
11279 
11280 	/*
11281 	 * There is a task waiting to run. No need to search for one.
11282 	 * Return 0; the task will be enqueued when switching to idle.
11283 	 */
11284 	if (this_rq->ttwu_pending)
11285 		return 0;
11286 
11287 	/*
11288 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
11289 	 * measure the duration of idle_balance() as idle time.
11290 	 */
11291 	this_rq->idle_stamp = rq_clock(this_rq);
11292 
11293 	/*
11294 	 * Do not pull tasks towards !active CPUs...
11295 	 */
11296 	if (!cpu_active(this_cpu))
11297 		return 0;
11298 
11299 	/*
11300 	 * This is OK, because current is on_cpu, which avoids it being picked
11301 	 * for load-balance and preemption/IRQs are still disabled avoiding
11302 	 * further scheduler activity on it and we're being very careful to
11303 	 * re-start the picking loop.
11304 	 */
11305 	rq_unpin_lock(this_rq, rf);
11306 
11307 	rcu_read_lock();
11308 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
11309 
11310 	if (!READ_ONCE(this_rq->rd->overload) ||
11311 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
11312 
11313 		if (sd)
11314 			update_next_balance(sd, &next_balance);
11315 		rcu_read_unlock();
11316 
11317 		goto out;
11318 	}
11319 	rcu_read_unlock();
11320 
11321 	raw_spin_rq_unlock(this_rq);
11322 
11323 	t0 = sched_clock_cpu(this_cpu);
11324 	update_blocked_averages(this_cpu);
11325 
11326 	rcu_read_lock();
11327 	for_each_domain(this_cpu, sd) {
11328 		int continue_balancing = 1;
11329 		u64 domain_cost;
11330 
11331 		update_next_balance(sd, &next_balance);
11332 
11333 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
11334 			break;
11335 
11336 		if (sd->flags & SD_BALANCE_NEWIDLE) {
11337 
11338 			pulled_task = load_balance(this_cpu, this_rq,
11339 						   sd, CPU_NEWLY_IDLE,
11340 						   &continue_balancing);
11341 
11342 			t1 = sched_clock_cpu(this_cpu);
11343 			domain_cost = t1 - t0;
11344 			update_newidle_cost(sd, domain_cost);
11345 
11346 			curr_cost += domain_cost;
11347 			t0 = t1;
11348 		}
11349 
11350 		/*
11351 		 * Stop searching for tasks to pull if there are
11352 		 * now runnable tasks on this rq.
11353 		 */
11354 		if (pulled_task || this_rq->nr_running > 0 ||
11355 		    this_rq->ttwu_pending)
11356 			break;
11357 	}
11358 	rcu_read_unlock();
11359 
11360 	raw_spin_rq_lock(this_rq);
11361 
11362 	if (curr_cost > this_rq->max_idle_balance_cost)
11363 		this_rq->max_idle_balance_cost = curr_cost;
11364 
11365 	/*
11366 	 * While browsing the domains, we released the rq lock, a task could
11367 	 * have been enqueued in the meantime. Since we're not going idle,
11368 	 * pretend we pulled a task.
11369 	 */
11370 	if (this_rq->cfs.h_nr_running && !pulled_task)
11371 		pulled_task = 1;
11372 
11373 	/* Is there a task of a high priority class? */
11374 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11375 		pulled_task = -1;
11376 
11377 out:
11378 	/* Move the next balance forward */
11379 	if (time_after(this_rq->next_balance, next_balance))
11380 		this_rq->next_balance = next_balance;
11381 
11382 	if (pulled_task)
11383 		this_rq->idle_stamp = 0;
11384 	else
11385 		nohz_newidle_balance(this_rq);
11386 
11387 	rq_repin_lock(this_rq, rf);
11388 
11389 	return pulled_task;
11390 }
11391 
11392 /*
11393  * run_rebalance_domains is triggered when needed from the scheduler tick.
11394  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11395  */
11396 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11397 {
11398 	struct rq *this_rq = this_rq();
11399 	enum cpu_idle_type idle = this_rq->idle_balance ?
11400 						CPU_IDLE : CPU_NOT_IDLE;
11401 
11402 	/*
11403 	 * If this CPU has a pending nohz_balance_kick, then do the
11404 	 * balancing on behalf of the other idle CPUs whose ticks are
11405 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11406 	 * give the idle CPUs a chance to load balance. Else we may
11407 	 * load balance only within the local sched_domain hierarchy
11408 	 * and abort nohz_idle_balance altogether if we pull some load.
11409 	 */
11410 	if (nohz_idle_balance(this_rq, idle))
11411 		return;
11412 
11413 	/* normal load balance */
11414 	update_blocked_averages(this_rq->cpu);
11415 	rebalance_domains(this_rq, idle);
11416 }
11417 
11418 /*
11419  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11420  */
11421 void trigger_load_balance(struct rq *rq)
11422 {
11423 	/*
11424 	 * Don't need to rebalance while attached to NULL domain or
11425 	 * runqueue CPU is not active
11426 	 */
11427 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11428 		return;
11429 
11430 	if (time_after_eq(jiffies, rq->next_balance))
11431 		raise_softirq(SCHED_SOFTIRQ);
11432 
11433 	nohz_balancer_kick(rq);
11434 }
11435 
11436 static void rq_online_fair(struct rq *rq)
11437 {
11438 	update_sysctl();
11439 
11440 	update_runtime_enabled(rq);
11441 }
11442 
11443 static void rq_offline_fair(struct rq *rq)
11444 {
11445 	update_sysctl();
11446 
11447 	/* Ensure any throttled groups are reachable by pick_next_task */
11448 	unthrottle_offline_cfs_rqs(rq);
11449 }
11450 
11451 #endif /* CONFIG_SMP */
11452 
11453 #ifdef CONFIG_SCHED_CORE
11454 static inline bool
11455 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11456 {
11457 	u64 slice = sched_slice(cfs_rq_of(se), se);
11458 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11459 
11460 	return (rtime * min_nr_tasks > slice);
11461 }
11462 
11463 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
11464 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11465 {
11466 	if (!sched_core_enabled(rq))
11467 		return;
11468 
11469 	/*
11470 	 * If runqueue has only one task which used up its slice and
11471 	 * if the sibling is forced idle, then trigger schedule to
11472 	 * give forced idle task a chance.
11473 	 *
11474 	 * sched_slice() considers only this active rq and it gets the
11475 	 * whole slice. But during force idle, we have siblings acting
11476 	 * like a single runqueue and hence we need to consider runnable
11477 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
11478 	 * go through the forced idle rq, but that would be a perf hit.
11479 	 * We can assume that the forced idle CPU has at least
11480 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11481 	 * if we need to give up the CPU.
11482 	 */
11483 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
11484 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11485 		resched_curr(rq);
11486 }
11487 
11488 /*
11489  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11490  */
11491 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11492 {
11493 	for_each_sched_entity(se) {
11494 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11495 
11496 		if (forceidle) {
11497 			if (cfs_rq->forceidle_seq == fi_seq)
11498 				break;
11499 			cfs_rq->forceidle_seq = fi_seq;
11500 		}
11501 
11502 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11503 	}
11504 }
11505 
11506 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11507 {
11508 	struct sched_entity *se = &p->se;
11509 
11510 	if (p->sched_class != &fair_sched_class)
11511 		return;
11512 
11513 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11514 }
11515 
11516 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11517 {
11518 	struct rq *rq = task_rq(a);
11519 	struct sched_entity *sea = &a->se;
11520 	struct sched_entity *seb = &b->se;
11521 	struct cfs_rq *cfs_rqa;
11522 	struct cfs_rq *cfs_rqb;
11523 	s64 delta;
11524 
11525 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
11526 
11527 #ifdef CONFIG_FAIR_GROUP_SCHED
11528 	/*
11529 	 * Find an se in the hierarchy for tasks a and b, such that the se's
11530 	 * are immediate siblings.
11531 	 */
11532 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11533 		int sea_depth = sea->depth;
11534 		int seb_depth = seb->depth;
11535 
11536 		if (sea_depth >= seb_depth)
11537 			sea = parent_entity(sea);
11538 		if (sea_depth <= seb_depth)
11539 			seb = parent_entity(seb);
11540 	}
11541 
11542 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11543 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11544 
11545 	cfs_rqa = sea->cfs_rq;
11546 	cfs_rqb = seb->cfs_rq;
11547 #else
11548 	cfs_rqa = &task_rq(a)->cfs;
11549 	cfs_rqb = &task_rq(b)->cfs;
11550 #endif
11551 
11552 	/*
11553 	 * Find delta after normalizing se's vruntime with its cfs_rq's
11554 	 * min_vruntime_fi, which would have been updated in prior calls
11555 	 * to se_fi_update().
11556 	 */
11557 	delta = (s64)(sea->vruntime - seb->vruntime) +
11558 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11559 
11560 	return delta > 0;
11561 }
11562 #else
11563 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11564 #endif
11565 
11566 /*
11567  * scheduler tick hitting a task of our scheduling class.
11568  *
11569  * NOTE: This function can be called remotely by the tick offload that
11570  * goes along full dynticks. Therefore no local assumption can be made
11571  * and everything must be accessed through the @rq and @curr passed in
11572  * parameters.
11573  */
11574 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11575 {
11576 	struct cfs_rq *cfs_rq;
11577 	struct sched_entity *se = &curr->se;
11578 
11579 	for_each_sched_entity(se) {
11580 		cfs_rq = cfs_rq_of(se);
11581 		entity_tick(cfs_rq, se, queued);
11582 	}
11583 
11584 	if (static_branch_unlikely(&sched_numa_balancing))
11585 		task_tick_numa(rq, curr);
11586 
11587 	update_misfit_status(curr, rq);
11588 	update_overutilized_status(task_rq(curr));
11589 
11590 	task_tick_core(rq, curr);
11591 }
11592 
11593 /*
11594  * called on fork with the child task as argument from the parent's context
11595  *  - child not yet on the tasklist
11596  *  - preemption disabled
11597  */
11598 static void task_fork_fair(struct task_struct *p)
11599 {
11600 	struct cfs_rq *cfs_rq;
11601 	struct sched_entity *se = &p->se, *curr;
11602 	struct rq *rq = this_rq();
11603 	struct rq_flags rf;
11604 
11605 	rq_lock(rq, &rf);
11606 	update_rq_clock(rq);
11607 
11608 	cfs_rq = task_cfs_rq(current);
11609 	curr = cfs_rq->curr;
11610 	if (curr) {
11611 		update_curr(cfs_rq);
11612 		se->vruntime = curr->vruntime;
11613 	}
11614 	place_entity(cfs_rq, se, 1);
11615 
11616 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11617 		/*
11618 		 * Upon rescheduling, sched_class::put_prev_task() will place
11619 		 * 'current' within the tree based on its new key value.
11620 		 */
11621 		swap(curr->vruntime, se->vruntime);
11622 		resched_curr(rq);
11623 	}
11624 
11625 	se->vruntime -= cfs_rq->min_vruntime;
11626 	rq_unlock(rq, &rf);
11627 }
11628 
11629 /*
11630  * Priority of the task has changed. Check to see if we preempt
11631  * the current task.
11632  */
11633 static void
11634 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11635 {
11636 	if (!task_on_rq_queued(p))
11637 		return;
11638 
11639 	if (rq->cfs.nr_running == 1)
11640 		return;
11641 
11642 	/*
11643 	 * Reschedule if we are currently running on this runqueue and
11644 	 * our priority decreased, or if we are not currently running on
11645 	 * this runqueue and our priority is higher than the current's
11646 	 */
11647 	if (task_current(rq, p)) {
11648 		if (p->prio > oldprio)
11649 			resched_curr(rq);
11650 	} else
11651 		check_preempt_curr(rq, p, 0);
11652 }
11653 
11654 static inline bool vruntime_normalized(struct task_struct *p)
11655 {
11656 	struct sched_entity *se = &p->se;
11657 
11658 	/*
11659 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11660 	 * the dequeue_entity(.flags=0) will already have normalized the
11661 	 * vruntime.
11662 	 */
11663 	if (p->on_rq)
11664 		return true;
11665 
11666 	/*
11667 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
11668 	 * But there are some cases where it has already been normalized:
11669 	 *
11670 	 * - A forked child which is waiting for being woken up by
11671 	 *   wake_up_new_task().
11672 	 * - A task which has been woken up by try_to_wake_up() and
11673 	 *   waiting for actually being woken up by sched_ttwu_pending().
11674 	 */
11675 	if (!se->sum_exec_runtime ||
11676 	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11677 		return true;
11678 
11679 	return false;
11680 }
11681 
11682 #ifdef CONFIG_FAIR_GROUP_SCHED
11683 /*
11684  * Propagate the changes of the sched_entity across the tg tree to make it
11685  * visible to the root
11686  */
11687 static void propagate_entity_cfs_rq(struct sched_entity *se)
11688 {
11689 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11690 
11691 	if (cfs_rq_throttled(cfs_rq))
11692 		return;
11693 
11694 	if (!throttled_hierarchy(cfs_rq))
11695 		list_add_leaf_cfs_rq(cfs_rq);
11696 
11697 	/* Start to propagate at parent */
11698 	se = se->parent;
11699 
11700 	for_each_sched_entity(se) {
11701 		cfs_rq = cfs_rq_of(se);
11702 
11703 		update_load_avg(cfs_rq, se, UPDATE_TG);
11704 
11705 		if (cfs_rq_throttled(cfs_rq))
11706 			break;
11707 
11708 		if (!throttled_hierarchy(cfs_rq))
11709 			list_add_leaf_cfs_rq(cfs_rq);
11710 	}
11711 }
11712 #else
11713 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11714 #endif
11715 
11716 static void detach_entity_cfs_rq(struct sched_entity *se)
11717 {
11718 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11719 
11720 	/* Catch up with the cfs_rq and remove our load when we leave */
11721 	update_load_avg(cfs_rq, se, 0);
11722 	detach_entity_load_avg(cfs_rq, se);
11723 	update_tg_load_avg(cfs_rq);
11724 	propagate_entity_cfs_rq(se);
11725 }
11726 
11727 static void attach_entity_cfs_rq(struct sched_entity *se)
11728 {
11729 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11730 
11731 #ifdef CONFIG_FAIR_GROUP_SCHED
11732 	/*
11733 	 * Since the real-depth could have been changed (only FAIR
11734 	 * class maintain depth value), reset depth properly.
11735 	 */
11736 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11737 #endif
11738 
11739 	/* Synchronize entity with its cfs_rq */
11740 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11741 	attach_entity_load_avg(cfs_rq, se);
11742 	update_tg_load_avg(cfs_rq);
11743 	propagate_entity_cfs_rq(se);
11744 }
11745 
11746 static void detach_task_cfs_rq(struct task_struct *p)
11747 {
11748 	struct sched_entity *se = &p->se;
11749 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11750 
11751 	if (!vruntime_normalized(p)) {
11752 		/*
11753 		 * Fix up our vruntime so that the current sleep doesn't
11754 		 * cause 'unlimited' sleep bonus.
11755 		 */
11756 		place_entity(cfs_rq, se, 0);
11757 		se->vruntime -= cfs_rq->min_vruntime;
11758 	}
11759 
11760 	detach_entity_cfs_rq(se);
11761 }
11762 
11763 static void attach_task_cfs_rq(struct task_struct *p)
11764 {
11765 	struct sched_entity *se = &p->se;
11766 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11767 
11768 	attach_entity_cfs_rq(se);
11769 
11770 	if (!vruntime_normalized(p))
11771 		se->vruntime += cfs_rq->min_vruntime;
11772 }
11773 
11774 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11775 {
11776 	detach_task_cfs_rq(p);
11777 }
11778 
11779 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11780 {
11781 	attach_task_cfs_rq(p);
11782 
11783 	if (task_on_rq_queued(p)) {
11784 		/*
11785 		 * We were most likely switched from sched_rt, so
11786 		 * kick off the schedule if running, otherwise just see
11787 		 * if we can still preempt the current task.
11788 		 */
11789 		if (task_current(rq, p))
11790 			resched_curr(rq);
11791 		else
11792 			check_preempt_curr(rq, p, 0);
11793 	}
11794 }
11795 
11796 /* Account for a task changing its policy or group.
11797  *
11798  * This routine is mostly called to set cfs_rq->curr field when a task
11799  * migrates between groups/classes.
11800  */
11801 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11802 {
11803 	struct sched_entity *se = &p->se;
11804 
11805 #ifdef CONFIG_SMP
11806 	if (task_on_rq_queued(p)) {
11807 		/*
11808 		 * Move the next running task to the front of the list, so our
11809 		 * cfs_tasks list becomes MRU one.
11810 		 */
11811 		list_move(&se->group_node, &rq->cfs_tasks);
11812 	}
11813 #endif
11814 
11815 	for_each_sched_entity(se) {
11816 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11817 
11818 		set_next_entity(cfs_rq, se);
11819 		/* ensure bandwidth has been allocated on our new cfs_rq */
11820 		account_cfs_rq_runtime(cfs_rq, 0);
11821 	}
11822 }
11823 
11824 void init_cfs_rq(struct cfs_rq *cfs_rq)
11825 {
11826 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11827 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
11828 #ifdef CONFIG_SMP
11829 	raw_spin_lock_init(&cfs_rq->removed.lock);
11830 #endif
11831 }
11832 
11833 #ifdef CONFIG_FAIR_GROUP_SCHED
11834 static void task_set_group_fair(struct task_struct *p)
11835 {
11836 	struct sched_entity *se = &p->se;
11837 
11838 	set_task_rq(p, task_cpu(p));
11839 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11840 }
11841 
11842 static void task_move_group_fair(struct task_struct *p)
11843 {
11844 	detach_task_cfs_rq(p);
11845 	set_task_rq(p, task_cpu(p));
11846 
11847 #ifdef CONFIG_SMP
11848 	/* Tell se's cfs_rq has been changed -- migrated */
11849 	p->se.avg.last_update_time = 0;
11850 #endif
11851 	attach_task_cfs_rq(p);
11852 }
11853 
11854 static void task_change_group_fair(struct task_struct *p, int type)
11855 {
11856 	switch (type) {
11857 	case TASK_SET_GROUP:
11858 		task_set_group_fair(p);
11859 		break;
11860 
11861 	case TASK_MOVE_GROUP:
11862 		task_move_group_fair(p);
11863 		break;
11864 	}
11865 }
11866 
11867 void free_fair_sched_group(struct task_group *tg)
11868 {
11869 	int i;
11870 
11871 	for_each_possible_cpu(i) {
11872 		if (tg->cfs_rq)
11873 			kfree(tg->cfs_rq[i]);
11874 		if (tg->se)
11875 			kfree(tg->se[i]);
11876 	}
11877 
11878 	kfree(tg->cfs_rq);
11879 	kfree(tg->se);
11880 }
11881 
11882 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11883 {
11884 	struct sched_entity *se;
11885 	struct cfs_rq *cfs_rq;
11886 	int i;
11887 
11888 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11889 	if (!tg->cfs_rq)
11890 		goto err;
11891 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11892 	if (!tg->se)
11893 		goto err;
11894 
11895 	tg->shares = NICE_0_LOAD;
11896 
11897 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11898 
11899 	for_each_possible_cpu(i) {
11900 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11901 				      GFP_KERNEL, cpu_to_node(i));
11902 		if (!cfs_rq)
11903 			goto err;
11904 
11905 		se = kzalloc_node(sizeof(struct sched_entity_stats),
11906 				  GFP_KERNEL, cpu_to_node(i));
11907 		if (!se)
11908 			goto err_free_rq;
11909 
11910 		init_cfs_rq(cfs_rq);
11911 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11912 		init_entity_runnable_average(se);
11913 	}
11914 
11915 	return 1;
11916 
11917 err_free_rq:
11918 	kfree(cfs_rq);
11919 err:
11920 	return 0;
11921 }
11922 
11923 void online_fair_sched_group(struct task_group *tg)
11924 {
11925 	struct sched_entity *se;
11926 	struct rq_flags rf;
11927 	struct rq *rq;
11928 	int i;
11929 
11930 	for_each_possible_cpu(i) {
11931 		rq = cpu_rq(i);
11932 		se = tg->se[i];
11933 		rq_lock_irq(rq, &rf);
11934 		update_rq_clock(rq);
11935 		attach_entity_cfs_rq(se);
11936 		sync_throttle(tg, i);
11937 		rq_unlock_irq(rq, &rf);
11938 	}
11939 }
11940 
11941 void unregister_fair_sched_group(struct task_group *tg)
11942 {
11943 	unsigned long flags;
11944 	struct rq *rq;
11945 	int cpu;
11946 
11947 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11948 
11949 	for_each_possible_cpu(cpu) {
11950 		if (tg->se[cpu])
11951 			remove_entity_load_avg(tg->se[cpu]);
11952 
11953 		/*
11954 		 * Only empty task groups can be destroyed; so we can speculatively
11955 		 * check on_list without danger of it being re-added.
11956 		 */
11957 		if (!tg->cfs_rq[cpu]->on_list)
11958 			continue;
11959 
11960 		rq = cpu_rq(cpu);
11961 
11962 		raw_spin_rq_lock_irqsave(rq, flags);
11963 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11964 		raw_spin_rq_unlock_irqrestore(rq, flags);
11965 	}
11966 }
11967 
11968 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11969 			struct sched_entity *se, int cpu,
11970 			struct sched_entity *parent)
11971 {
11972 	struct rq *rq = cpu_rq(cpu);
11973 
11974 	cfs_rq->tg = tg;
11975 	cfs_rq->rq = rq;
11976 	init_cfs_rq_runtime(cfs_rq);
11977 
11978 	tg->cfs_rq[cpu] = cfs_rq;
11979 	tg->se[cpu] = se;
11980 
11981 	/* se could be NULL for root_task_group */
11982 	if (!se)
11983 		return;
11984 
11985 	if (!parent) {
11986 		se->cfs_rq = &rq->cfs;
11987 		se->depth = 0;
11988 	} else {
11989 		se->cfs_rq = parent->my_q;
11990 		se->depth = parent->depth + 1;
11991 	}
11992 
11993 	se->my_q = cfs_rq;
11994 	/* guarantee group entities always have weight */
11995 	update_load_set(&se->load, NICE_0_LOAD);
11996 	se->parent = parent;
11997 }
11998 
11999 static DEFINE_MUTEX(shares_mutex);
12000 
12001 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12002 {
12003 	int i;
12004 
12005 	lockdep_assert_held(&shares_mutex);
12006 
12007 	/*
12008 	 * We can't change the weight of the root cgroup.
12009 	 */
12010 	if (!tg->se[0])
12011 		return -EINVAL;
12012 
12013 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12014 
12015 	if (tg->shares == shares)
12016 		return 0;
12017 
12018 	tg->shares = shares;
12019 	for_each_possible_cpu(i) {
12020 		struct rq *rq = cpu_rq(i);
12021 		struct sched_entity *se = tg->se[i];
12022 		struct rq_flags rf;
12023 
12024 		/* Propagate contribution to hierarchy */
12025 		rq_lock_irqsave(rq, &rf);
12026 		update_rq_clock(rq);
12027 		for_each_sched_entity(se) {
12028 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12029 			update_cfs_group(se);
12030 		}
12031 		rq_unlock_irqrestore(rq, &rf);
12032 	}
12033 
12034 	return 0;
12035 }
12036 
12037 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12038 {
12039 	int ret;
12040 
12041 	mutex_lock(&shares_mutex);
12042 	if (tg_is_idle(tg))
12043 		ret = -EINVAL;
12044 	else
12045 		ret = __sched_group_set_shares(tg, shares);
12046 	mutex_unlock(&shares_mutex);
12047 
12048 	return ret;
12049 }
12050 
12051 int sched_group_set_idle(struct task_group *tg, long idle)
12052 {
12053 	int i;
12054 
12055 	if (tg == &root_task_group)
12056 		return -EINVAL;
12057 
12058 	if (idle < 0 || idle > 1)
12059 		return -EINVAL;
12060 
12061 	mutex_lock(&shares_mutex);
12062 
12063 	if (tg->idle == idle) {
12064 		mutex_unlock(&shares_mutex);
12065 		return 0;
12066 	}
12067 
12068 	tg->idle = idle;
12069 
12070 	for_each_possible_cpu(i) {
12071 		struct rq *rq = cpu_rq(i);
12072 		struct sched_entity *se = tg->se[i];
12073 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
12074 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
12075 		long idle_task_delta;
12076 		struct rq_flags rf;
12077 
12078 		rq_lock_irqsave(rq, &rf);
12079 
12080 		grp_cfs_rq->idle = idle;
12081 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
12082 			goto next_cpu;
12083 
12084 		if (se->on_rq) {
12085 			parent_cfs_rq = cfs_rq_of(se);
12086 			if (cfs_rq_is_idle(grp_cfs_rq))
12087 				parent_cfs_rq->idle_nr_running++;
12088 			else
12089 				parent_cfs_rq->idle_nr_running--;
12090 		}
12091 
12092 		idle_task_delta = grp_cfs_rq->h_nr_running -
12093 				  grp_cfs_rq->idle_h_nr_running;
12094 		if (!cfs_rq_is_idle(grp_cfs_rq))
12095 			idle_task_delta *= -1;
12096 
12097 		for_each_sched_entity(se) {
12098 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
12099 
12100 			if (!se->on_rq)
12101 				break;
12102 
12103 			cfs_rq->idle_h_nr_running += idle_task_delta;
12104 
12105 			/* Already accounted at parent level and above. */
12106 			if (cfs_rq_is_idle(cfs_rq))
12107 				break;
12108 		}
12109 
12110 next_cpu:
12111 		rq_unlock_irqrestore(rq, &rf);
12112 	}
12113 
12114 	/* Idle groups have minimum weight. */
12115 	if (tg_is_idle(tg))
12116 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
12117 	else
12118 		__sched_group_set_shares(tg, NICE_0_LOAD);
12119 
12120 	mutex_unlock(&shares_mutex);
12121 	return 0;
12122 }
12123 
12124 #else /* CONFIG_FAIR_GROUP_SCHED */
12125 
12126 void free_fair_sched_group(struct task_group *tg) { }
12127 
12128 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12129 {
12130 	return 1;
12131 }
12132 
12133 void online_fair_sched_group(struct task_group *tg) { }
12134 
12135 void unregister_fair_sched_group(struct task_group *tg) { }
12136 
12137 #endif /* CONFIG_FAIR_GROUP_SCHED */
12138 
12139 
12140 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
12141 {
12142 	struct sched_entity *se = &task->se;
12143 	unsigned int rr_interval = 0;
12144 
12145 	/*
12146 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
12147 	 * idle runqueue:
12148 	 */
12149 	if (rq->cfs.load.weight)
12150 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
12151 
12152 	return rr_interval;
12153 }
12154 
12155 /*
12156  * All the scheduling class methods:
12157  */
12158 DEFINE_SCHED_CLASS(fair) = {
12159 
12160 	.enqueue_task		= enqueue_task_fair,
12161 	.dequeue_task		= dequeue_task_fair,
12162 	.yield_task		= yield_task_fair,
12163 	.yield_to_task		= yield_to_task_fair,
12164 
12165 	.check_preempt_curr	= check_preempt_wakeup,
12166 
12167 	.pick_next_task		= __pick_next_task_fair,
12168 	.put_prev_task		= put_prev_task_fair,
12169 	.set_next_task          = set_next_task_fair,
12170 
12171 #ifdef CONFIG_SMP
12172 	.balance		= balance_fair,
12173 	.pick_task		= pick_task_fair,
12174 	.select_task_rq		= select_task_rq_fair,
12175 	.migrate_task_rq	= migrate_task_rq_fair,
12176 
12177 	.rq_online		= rq_online_fair,
12178 	.rq_offline		= rq_offline_fair,
12179 
12180 	.task_dead		= task_dead_fair,
12181 	.set_cpus_allowed	= set_cpus_allowed_common,
12182 #endif
12183 
12184 	.task_tick		= task_tick_fair,
12185 	.task_fork		= task_fork_fair,
12186 
12187 	.prio_changed		= prio_changed_fair,
12188 	.switched_from		= switched_from_fair,
12189 	.switched_to		= switched_to_fair,
12190 
12191 	.get_rr_interval	= get_rr_interval_fair,
12192 
12193 	.update_curr		= update_curr_fair,
12194 
12195 #ifdef CONFIG_FAIR_GROUP_SCHED
12196 	.task_change_group	= task_change_group_fair,
12197 #endif
12198 
12199 #ifdef CONFIG_UCLAMP_TASK
12200 	.uclamp_enabled		= 1,
12201 #endif
12202 };
12203 
12204 #ifdef CONFIG_SCHED_DEBUG
12205 void print_cfs_stats(struct seq_file *m, int cpu)
12206 {
12207 	struct cfs_rq *cfs_rq, *pos;
12208 
12209 	rcu_read_lock();
12210 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
12211 		print_cfs_rq(m, cpu, cfs_rq);
12212 	rcu_read_unlock();
12213 }
12214 
12215 #ifdef CONFIG_NUMA_BALANCING
12216 void show_numa_stats(struct task_struct *p, struct seq_file *m)
12217 {
12218 	int node;
12219 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
12220 	struct numa_group *ng;
12221 
12222 	rcu_read_lock();
12223 	ng = rcu_dereference(p->numa_group);
12224 	for_each_online_node(node) {
12225 		if (p->numa_faults) {
12226 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12227 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12228 		}
12229 		if (ng) {
12230 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
12231 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
12232 		}
12233 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12234 	}
12235 	rcu_read_unlock();
12236 }
12237 #endif /* CONFIG_NUMA_BALANCING */
12238 #endif /* CONFIG_SCHED_DEBUG */
12239 
12240 __init void init_sched_fair_class(void)
12241 {
12242 #ifdef CONFIG_SMP
12243 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
12244 
12245 #ifdef CONFIG_NO_HZ_COMMON
12246 	nohz.next_balance = jiffies;
12247 	nohz.next_blocked = jiffies;
12248 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
12249 #endif
12250 #endif /* SMP */
12251 
12252 }
12253