xref: /openbmc/linux/kernel/sched/fair.c (revision 532c2919)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity			= 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 
98 /*
99  * The margin used when comparing utilization with CPU capacity.
100  *
101  * (default: ~20%)
102  */
103 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
104 
105 #endif
106 
107 #ifdef CONFIG_CFS_BANDWIDTH
108 /*
109  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110  * each time a cfs_rq requests quota.
111  *
112  * Note: in the case that the slice exceeds the runtime remaining (either due
113  * to consumption or the quota being specified to be smaller than the slice)
114  * we will always only issue the remaining available time.
115  *
116  * (default: 5 msec, units: microseconds)
117  */
118 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
119 #endif
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	fact = mul_u32_u32(fact, lw->inv_weight);
233 
234 	while (fact >> 32) {
235 		fact >>= 1;
236 		shift--;
237 	}
238 
239 	return mul_u64_u32_shr(delta_exec, fact, shift);
240 }
241 
242 
243 const struct sched_class fair_sched_class;
244 
245 /**************************************************************
246  * CFS operations on generic schedulable entities:
247  */
248 
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 static inline struct task_struct *task_of(struct sched_entity *se)
251 {
252 	SCHED_WARN_ON(!entity_is_task(se));
253 	return container_of(se, struct task_struct, se);
254 }
255 
256 /* Walk up scheduling entities hierarchy */
257 #define for_each_sched_entity(se) \
258 		for (; se; se = se->parent)
259 
260 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
261 {
262 	return p->se.cfs_rq;
263 }
264 
265 /* runqueue on which this entity is (to be) queued */
266 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
267 {
268 	return se->cfs_rq;
269 }
270 
271 /* runqueue "owned" by this group */
272 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
273 {
274 	return grp->my_q;
275 }
276 
277 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
278 {
279 	if (!path)
280 		return;
281 
282 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
283 		autogroup_path(cfs_rq->tg, path, len);
284 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
285 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
286 	else
287 		strlcpy(path, "(null)", len);
288 }
289 
290 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291 {
292 	struct rq *rq = rq_of(cfs_rq);
293 	int cpu = cpu_of(rq);
294 
295 	if (cfs_rq->on_list)
296 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
297 
298 	cfs_rq->on_list = 1;
299 
300 	/*
301 	 * Ensure we either appear before our parent (if already
302 	 * enqueued) or force our parent to appear after us when it is
303 	 * enqueued. The fact that we always enqueue bottom-up
304 	 * reduces this to two cases and a special case for the root
305 	 * cfs_rq. Furthermore, it also means that we will always reset
306 	 * tmp_alone_branch either when the branch is connected
307 	 * to a tree or when we reach the top of the tree
308 	 */
309 	if (cfs_rq->tg->parent &&
310 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
311 		/*
312 		 * If parent is already on the list, we add the child
313 		 * just before. Thanks to circular linked property of
314 		 * the list, this means to put the child at the tail
315 		 * of the list that starts by parent.
316 		 */
317 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
318 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
319 		/*
320 		 * The branch is now connected to its tree so we can
321 		 * reset tmp_alone_branch to the beginning of the
322 		 * list.
323 		 */
324 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
325 		return true;
326 	}
327 
328 	if (!cfs_rq->tg->parent) {
329 		/*
330 		 * cfs rq without parent should be put
331 		 * at the tail of the list.
332 		 */
333 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
334 			&rq->leaf_cfs_rq_list);
335 		/*
336 		 * We have reach the top of a tree so we can reset
337 		 * tmp_alone_branch to the beginning of the list.
338 		 */
339 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
340 		return true;
341 	}
342 
343 	/*
344 	 * The parent has not already been added so we want to
345 	 * make sure that it will be put after us.
346 	 * tmp_alone_branch points to the begin of the branch
347 	 * where we will add parent.
348 	 */
349 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
350 	/*
351 	 * update tmp_alone_branch to points to the new begin
352 	 * of the branch
353 	 */
354 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
355 	return false;
356 }
357 
358 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
359 {
360 	if (cfs_rq->on_list) {
361 		struct rq *rq = rq_of(cfs_rq);
362 
363 		/*
364 		 * With cfs_rq being unthrottled/throttled during an enqueue,
365 		 * it can happen the tmp_alone_branch points the a leaf that
366 		 * we finally want to del. In this case, tmp_alone_branch moves
367 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
368 		 * at the end of the enqueue.
369 		 */
370 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
371 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
372 
373 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
374 		cfs_rq->on_list = 0;
375 	}
376 }
377 
378 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
379 {
380 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
381 }
382 
383 /* Iterate thr' all leaf cfs_rq's on a runqueue */
384 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
385 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
386 				 leaf_cfs_rq_list)
387 
388 /* Do the two (enqueued) entities belong to the same group ? */
389 static inline struct cfs_rq *
390 is_same_group(struct sched_entity *se, struct sched_entity *pse)
391 {
392 	if (se->cfs_rq == pse->cfs_rq)
393 		return se->cfs_rq;
394 
395 	return NULL;
396 }
397 
398 static inline struct sched_entity *parent_entity(struct sched_entity *se)
399 {
400 	return se->parent;
401 }
402 
403 static void
404 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
405 {
406 	int se_depth, pse_depth;
407 
408 	/*
409 	 * preemption test can be made between sibling entities who are in the
410 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
411 	 * both tasks until we find their ancestors who are siblings of common
412 	 * parent.
413 	 */
414 
415 	/* First walk up until both entities are at same depth */
416 	se_depth = (*se)->depth;
417 	pse_depth = (*pse)->depth;
418 
419 	while (se_depth > pse_depth) {
420 		se_depth--;
421 		*se = parent_entity(*se);
422 	}
423 
424 	while (pse_depth > se_depth) {
425 		pse_depth--;
426 		*pse = parent_entity(*pse);
427 	}
428 
429 	while (!is_same_group(*se, *pse)) {
430 		*se = parent_entity(*se);
431 		*pse = parent_entity(*pse);
432 	}
433 }
434 
435 #else	/* !CONFIG_FAIR_GROUP_SCHED */
436 
437 static inline struct task_struct *task_of(struct sched_entity *se)
438 {
439 	return container_of(se, struct task_struct, se);
440 }
441 
442 #define for_each_sched_entity(se) \
443 		for (; se; se = NULL)
444 
445 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
446 {
447 	return &task_rq(p)->cfs;
448 }
449 
450 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
451 {
452 	struct task_struct *p = task_of(se);
453 	struct rq *rq = task_rq(p);
454 
455 	return &rq->cfs;
456 }
457 
458 /* runqueue "owned" by this group */
459 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
460 {
461 	return NULL;
462 }
463 
464 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
465 {
466 	if (path)
467 		strlcpy(path, "(null)", len);
468 }
469 
470 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
471 {
472 	return true;
473 }
474 
475 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
476 {
477 }
478 
479 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
480 {
481 }
482 
483 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
484 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
485 
486 static inline struct sched_entity *parent_entity(struct sched_entity *se)
487 {
488 	return NULL;
489 }
490 
491 static inline void
492 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
493 {
494 }
495 
496 #endif	/* CONFIG_FAIR_GROUP_SCHED */
497 
498 static __always_inline
499 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
500 
501 /**************************************************************
502  * Scheduling class tree data structure manipulation methods:
503  */
504 
505 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
506 {
507 	s64 delta = (s64)(vruntime - max_vruntime);
508 	if (delta > 0)
509 		max_vruntime = vruntime;
510 
511 	return max_vruntime;
512 }
513 
514 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
515 {
516 	s64 delta = (s64)(vruntime - min_vruntime);
517 	if (delta < 0)
518 		min_vruntime = vruntime;
519 
520 	return min_vruntime;
521 }
522 
523 static inline int entity_before(struct sched_entity *a,
524 				struct sched_entity *b)
525 {
526 	return (s64)(a->vruntime - b->vruntime) < 0;
527 }
528 
529 static void update_min_vruntime(struct cfs_rq *cfs_rq)
530 {
531 	struct sched_entity *curr = cfs_rq->curr;
532 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
533 
534 	u64 vruntime = cfs_rq->min_vruntime;
535 
536 	if (curr) {
537 		if (curr->on_rq)
538 			vruntime = curr->vruntime;
539 		else
540 			curr = NULL;
541 	}
542 
543 	if (leftmost) { /* non-empty tree */
544 		struct sched_entity *se;
545 		se = rb_entry(leftmost, struct sched_entity, run_node);
546 
547 		if (!curr)
548 			vruntime = se->vruntime;
549 		else
550 			vruntime = min_vruntime(vruntime, se->vruntime);
551 	}
552 
553 	/* ensure we never gain time by being placed backwards. */
554 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
555 #ifndef CONFIG_64BIT
556 	smp_wmb();
557 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
558 #endif
559 }
560 
561 /*
562  * Enqueue an entity into the rb-tree:
563  */
564 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
565 {
566 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
567 	struct rb_node *parent = NULL;
568 	struct sched_entity *entry;
569 	bool leftmost = true;
570 
571 	/*
572 	 * Find the right place in the rbtree:
573 	 */
574 	while (*link) {
575 		parent = *link;
576 		entry = rb_entry(parent, struct sched_entity, run_node);
577 		/*
578 		 * We dont care about collisions. Nodes with
579 		 * the same key stay together.
580 		 */
581 		if (entity_before(se, entry)) {
582 			link = &parent->rb_left;
583 		} else {
584 			link = &parent->rb_right;
585 			leftmost = false;
586 		}
587 	}
588 
589 	rb_link_node(&se->run_node, parent, link);
590 	rb_insert_color_cached(&se->run_node,
591 			       &cfs_rq->tasks_timeline, leftmost);
592 }
593 
594 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
595 {
596 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
597 }
598 
599 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
600 {
601 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
602 
603 	if (!left)
604 		return NULL;
605 
606 	return rb_entry(left, struct sched_entity, run_node);
607 }
608 
609 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
610 {
611 	struct rb_node *next = rb_next(&se->run_node);
612 
613 	if (!next)
614 		return NULL;
615 
616 	return rb_entry(next, struct sched_entity, run_node);
617 }
618 
619 #ifdef CONFIG_SCHED_DEBUG
620 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
621 {
622 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
623 
624 	if (!last)
625 		return NULL;
626 
627 	return rb_entry(last, struct sched_entity, run_node);
628 }
629 
630 /**************************************************************
631  * Scheduling class statistics methods:
632  */
633 
634 int sched_proc_update_handler(struct ctl_table *table, int write,
635 		void __user *buffer, size_t *lenp,
636 		loff_t *ppos)
637 {
638 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
639 	unsigned int factor = get_update_sysctl_factor();
640 
641 	if (ret || !write)
642 		return ret;
643 
644 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
645 					sysctl_sched_min_granularity);
646 
647 #define WRT_SYSCTL(name) \
648 	(normalized_sysctl_##name = sysctl_##name / (factor))
649 	WRT_SYSCTL(sched_min_granularity);
650 	WRT_SYSCTL(sched_latency);
651 	WRT_SYSCTL(sched_wakeup_granularity);
652 #undef WRT_SYSCTL
653 
654 	return 0;
655 }
656 #endif
657 
658 /*
659  * delta /= w
660  */
661 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
662 {
663 	if (unlikely(se->load.weight != NICE_0_LOAD))
664 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
665 
666 	return delta;
667 }
668 
669 /*
670  * The idea is to set a period in which each task runs once.
671  *
672  * When there are too many tasks (sched_nr_latency) we have to stretch
673  * this period because otherwise the slices get too small.
674  *
675  * p = (nr <= nl) ? l : l*nr/nl
676  */
677 static u64 __sched_period(unsigned long nr_running)
678 {
679 	if (unlikely(nr_running > sched_nr_latency))
680 		return nr_running * sysctl_sched_min_granularity;
681 	else
682 		return sysctl_sched_latency;
683 }
684 
685 /*
686  * We calculate the wall-time slice from the period by taking a part
687  * proportional to the weight.
688  *
689  * s = p*P[w/rw]
690  */
691 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
692 {
693 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
694 
695 	for_each_sched_entity(se) {
696 		struct load_weight *load;
697 		struct load_weight lw;
698 
699 		cfs_rq = cfs_rq_of(se);
700 		load = &cfs_rq->load;
701 
702 		if (unlikely(!se->on_rq)) {
703 			lw = cfs_rq->load;
704 
705 			update_load_add(&lw, se->load.weight);
706 			load = &lw;
707 		}
708 		slice = __calc_delta(slice, se->load.weight, load);
709 	}
710 	return slice;
711 }
712 
713 /*
714  * We calculate the vruntime slice of a to-be-inserted task.
715  *
716  * vs = s/w
717  */
718 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
719 {
720 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
721 }
722 
723 #include "pelt.h"
724 #ifdef CONFIG_SMP
725 
726 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
727 static unsigned long task_h_load(struct task_struct *p);
728 static unsigned long capacity_of(int cpu);
729 
730 /* Give new sched_entity start runnable values to heavy its load in infant time */
731 void init_entity_runnable_average(struct sched_entity *se)
732 {
733 	struct sched_avg *sa = &se->avg;
734 
735 	memset(sa, 0, sizeof(*sa));
736 
737 	/*
738 	 * Tasks are initialized with full load to be seen as heavy tasks until
739 	 * they get a chance to stabilize to their real load level.
740 	 * Group entities are initialized with zero load to reflect the fact that
741 	 * nothing has been attached to the task group yet.
742 	 */
743 	if (entity_is_task(se))
744 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
745 
746 	se->runnable_weight = se->load.weight;
747 
748 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
749 }
750 
751 static void attach_entity_cfs_rq(struct sched_entity *se);
752 
753 /*
754  * With new tasks being created, their initial util_avgs are extrapolated
755  * based on the cfs_rq's current util_avg:
756  *
757  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
758  *
759  * However, in many cases, the above util_avg does not give a desired
760  * value. Moreover, the sum of the util_avgs may be divergent, such
761  * as when the series is a harmonic series.
762  *
763  * To solve this problem, we also cap the util_avg of successive tasks to
764  * only 1/2 of the left utilization budget:
765  *
766  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
767  *
768  * where n denotes the nth task and cpu_scale the CPU capacity.
769  *
770  * For example, for a CPU with 1024 of capacity, a simplest series from
771  * the beginning would be like:
772  *
773  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
774  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
775  *
776  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
777  * if util_avg > util_avg_cap.
778  */
779 void post_init_entity_util_avg(struct task_struct *p)
780 {
781 	struct sched_entity *se = &p->se;
782 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
783 	struct sched_avg *sa = &se->avg;
784 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
785 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
786 
787 	if (cap > 0) {
788 		if (cfs_rq->avg.util_avg != 0) {
789 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
790 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
791 
792 			if (sa->util_avg > cap)
793 				sa->util_avg = cap;
794 		} else {
795 			sa->util_avg = cap;
796 		}
797 	}
798 
799 	if (p->sched_class != &fair_sched_class) {
800 		/*
801 		 * For !fair tasks do:
802 		 *
803 		update_cfs_rq_load_avg(now, cfs_rq);
804 		attach_entity_load_avg(cfs_rq, se, 0);
805 		switched_from_fair(rq, p);
806 		 *
807 		 * such that the next switched_to_fair() has the
808 		 * expected state.
809 		 */
810 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
811 		return;
812 	}
813 
814 	attach_entity_cfs_rq(se);
815 }
816 
817 #else /* !CONFIG_SMP */
818 void init_entity_runnable_average(struct sched_entity *se)
819 {
820 }
821 void post_init_entity_util_avg(struct task_struct *p)
822 {
823 }
824 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
825 {
826 }
827 #endif /* CONFIG_SMP */
828 
829 /*
830  * Update the current task's runtime statistics.
831  */
832 static void update_curr(struct cfs_rq *cfs_rq)
833 {
834 	struct sched_entity *curr = cfs_rq->curr;
835 	u64 now = rq_clock_task(rq_of(cfs_rq));
836 	u64 delta_exec;
837 
838 	if (unlikely(!curr))
839 		return;
840 
841 	delta_exec = now - curr->exec_start;
842 	if (unlikely((s64)delta_exec <= 0))
843 		return;
844 
845 	curr->exec_start = now;
846 
847 	schedstat_set(curr->statistics.exec_max,
848 		      max(delta_exec, curr->statistics.exec_max));
849 
850 	curr->sum_exec_runtime += delta_exec;
851 	schedstat_add(cfs_rq->exec_clock, delta_exec);
852 
853 	curr->vruntime += calc_delta_fair(delta_exec, curr);
854 	update_min_vruntime(cfs_rq);
855 
856 	if (entity_is_task(curr)) {
857 		struct task_struct *curtask = task_of(curr);
858 
859 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
860 		cgroup_account_cputime(curtask, delta_exec);
861 		account_group_exec_runtime(curtask, delta_exec);
862 	}
863 
864 	account_cfs_rq_runtime(cfs_rq, delta_exec);
865 }
866 
867 static void update_curr_fair(struct rq *rq)
868 {
869 	update_curr(cfs_rq_of(&rq->curr->se));
870 }
871 
872 static inline void
873 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
874 {
875 	u64 wait_start, prev_wait_start;
876 
877 	if (!schedstat_enabled())
878 		return;
879 
880 	wait_start = rq_clock(rq_of(cfs_rq));
881 	prev_wait_start = schedstat_val(se->statistics.wait_start);
882 
883 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
884 	    likely(wait_start > prev_wait_start))
885 		wait_start -= prev_wait_start;
886 
887 	__schedstat_set(se->statistics.wait_start, wait_start);
888 }
889 
890 static inline void
891 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
892 {
893 	struct task_struct *p;
894 	u64 delta;
895 
896 	if (!schedstat_enabled())
897 		return;
898 
899 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
900 
901 	if (entity_is_task(se)) {
902 		p = task_of(se);
903 		if (task_on_rq_migrating(p)) {
904 			/*
905 			 * Preserve migrating task's wait time so wait_start
906 			 * time stamp can be adjusted to accumulate wait time
907 			 * prior to migration.
908 			 */
909 			__schedstat_set(se->statistics.wait_start, delta);
910 			return;
911 		}
912 		trace_sched_stat_wait(p, delta);
913 	}
914 
915 	__schedstat_set(se->statistics.wait_max,
916 		      max(schedstat_val(se->statistics.wait_max), delta));
917 	__schedstat_inc(se->statistics.wait_count);
918 	__schedstat_add(se->statistics.wait_sum, delta);
919 	__schedstat_set(se->statistics.wait_start, 0);
920 }
921 
922 static inline void
923 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
924 {
925 	struct task_struct *tsk = NULL;
926 	u64 sleep_start, block_start;
927 
928 	if (!schedstat_enabled())
929 		return;
930 
931 	sleep_start = schedstat_val(se->statistics.sleep_start);
932 	block_start = schedstat_val(se->statistics.block_start);
933 
934 	if (entity_is_task(se))
935 		tsk = task_of(se);
936 
937 	if (sleep_start) {
938 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
939 
940 		if ((s64)delta < 0)
941 			delta = 0;
942 
943 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
944 			__schedstat_set(se->statistics.sleep_max, delta);
945 
946 		__schedstat_set(se->statistics.sleep_start, 0);
947 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
948 
949 		if (tsk) {
950 			account_scheduler_latency(tsk, delta >> 10, 1);
951 			trace_sched_stat_sleep(tsk, delta);
952 		}
953 	}
954 	if (block_start) {
955 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
956 
957 		if ((s64)delta < 0)
958 			delta = 0;
959 
960 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
961 			__schedstat_set(se->statistics.block_max, delta);
962 
963 		__schedstat_set(se->statistics.block_start, 0);
964 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
965 
966 		if (tsk) {
967 			if (tsk->in_iowait) {
968 				__schedstat_add(se->statistics.iowait_sum, delta);
969 				__schedstat_inc(se->statistics.iowait_count);
970 				trace_sched_stat_iowait(tsk, delta);
971 			}
972 
973 			trace_sched_stat_blocked(tsk, delta);
974 
975 			/*
976 			 * Blocking time is in units of nanosecs, so shift by
977 			 * 20 to get a milliseconds-range estimation of the
978 			 * amount of time that the task spent sleeping:
979 			 */
980 			if (unlikely(prof_on == SLEEP_PROFILING)) {
981 				profile_hits(SLEEP_PROFILING,
982 						(void *)get_wchan(tsk),
983 						delta >> 20);
984 			}
985 			account_scheduler_latency(tsk, delta >> 10, 0);
986 		}
987 	}
988 }
989 
990 /*
991  * Task is being enqueued - update stats:
992  */
993 static inline void
994 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
995 {
996 	if (!schedstat_enabled())
997 		return;
998 
999 	/*
1000 	 * Are we enqueueing a waiting task? (for current tasks
1001 	 * a dequeue/enqueue event is a NOP)
1002 	 */
1003 	if (se != cfs_rq->curr)
1004 		update_stats_wait_start(cfs_rq, se);
1005 
1006 	if (flags & ENQUEUE_WAKEUP)
1007 		update_stats_enqueue_sleeper(cfs_rq, se);
1008 }
1009 
1010 static inline void
1011 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1012 {
1013 
1014 	if (!schedstat_enabled())
1015 		return;
1016 
1017 	/*
1018 	 * Mark the end of the wait period if dequeueing a
1019 	 * waiting task:
1020 	 */
1021 	if (se != cfs_rq->curr)
1022 		update_stats_wait_end(cfs_rq, se);
1023 
1024 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1025 		struct task_struct *tsk = task_of(se);
1026 
1027 		if (tsk->state & TASK_INTERRUPTIBLE)
1028 			__schedstat_set(se->statistics.sleep_start,
1029 				      rq_clock(rq_of(cfs_rq)));
1030 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1031 			__schedstat_set(se->statistics.block_start,
1032 				      rq_clock(rq_of(cfs_rq)));
1033 	}
1034 }
1035 
1036 /*
1037  * We are picking a new current task - update its stats:
1038  */
1039 static inline void
1040 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1041 {
1042 	/*
1043 	 * We are starting a new run period:
1044 	 */
1045 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1046 }
1047 
1048 /**************************************************
1049  * Scheduling class queueing methods:
1050  */
1051 
1052 #ifdef CONFIG_NUMA_BALANCING
1053 /*
1054  * Approximate time to scan a full NUMA task in ms. The task scan period is
1055  * calculated based on the tasks virtual memory size and
1056  * numa_balancing_scan_size.
1057  */
1058 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1059 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1060 
1061 /* Portion of address space to scan in MB */
1062 unsigned int sysctl_numa_balancing_scan_size = 256;
1063 
1064 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1065 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1066 
1067 struct numa_group {
1068 	refcount_t refcount;
1069 
1070 	spinlock_t lock; /* nr_tasks, tasks */
1071 	int nr_tasks;
1072 	pid_t gid;
1073 	int active_nodes;
1074 
1075 	struct rcu_head rcu;
1076 	unsigned long total_faults;
1077 	unsigned long max_faults_cpu;
1078 	/*
1079 	 * Faults_cpu is used to decide whether memory should move
1080 	 * towards the CPU. As a consequence, these stats are weighted
1081 	 * more by CPU use than by memory faults.
1082 	 */
1083 	unsigned long *faults_cpu;
1084 	unsigned long faults[0];
1085 };
1086 
1087 /*
1088  * For functions that can be called in multiple contexts that permit reading
1089  * ->numa_group (see struct task_struct for locking rules).
1090  */
1091 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1092 {
1093 	return rcu_dereference_check(p->numa_group, p == current ||
1094 		(lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1095 }
1096 
1097 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1098 {
1099 	return rcu_dereference_protected(p->numa_group, p == current);
1100 }
1101 
1102 static inline unsigned long group_faults_priv(struct numa_group *ng);
1103 static inline unsigned long group_faults_shared(struct numa_group *ng);
1104 
1105 static unsigned int task_nr_scan_windows(struct task_struct *p)
1106 {
1107 	unsigned long rss = 0;
1108 	unsigned long nr_scan_pages;
1109 
1110 	/*
1111 	 * Calculations based on RSS as non-present and empty pages are skipped
1112 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1113 	 * on resident pages
1114 	 */
1115 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1116 	rss = get_mm_rss(p->mm);
1117 	if (!rss)
1118 		rss = nr_scan_pages;
1119 
1120 	rss = round_up(rss, nr_scan_pages);
1121 	return rss / nr_scan_pages;
1122 }
1123 
1124 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1125 #define MAX_SCAN_WINDOW 2560
1126 
1127 static unsigned int task_scan_min(struct task_struct *p)
1128 {
1129 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1130 	unsigned int scan, floor;
1131 	unsigned int windows = 1;
1132 
1133 	if (scan_size < MAX_SCAN_WINDOW)
1134 		windows = MAX_SCAN_WINDOW / scan_size;
1135 	floor = 1000 / windows;
1136 
1137 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1138 	return max_t(unsigned int, floor, scan);
1139 }
1140 
1141 static unsigned int task_scan_start(struct task_struct *p)
1142 {
1143 	unsigned long smin = task_scan_min(p);
1144 	unsigned long period = smin;
1145 	struct numa_group *ng;
1146 
1147 	/* Scale the maximum scan period with the amount of shared memory. */
1148 	rcu_read_lock();
1149 	ng = rcu_dereference(p->numa_group);
1150 	if (ng) {
1151 		unsigned long shared = group_faults_shared(ng);
1152 		unsigned long private = group_faults_priv(ng);
1153 
1154 		period *= refcount_read(&ng->refcount);
1155 		period *= shared + 1;
1156 		period /= private + shared + 1;
1157 	}
1158 	rcu_read_unlock();
1159 
1160 	return max(smin, period);
1161 }
1162 
1163 static unsigned int task_scan_max(struct task_struct *p)
1164 {
1165 	unsigned long smin = task_scan_min(p);
1166 	unsigned long smax;
1167 	struct numa_group *ng;
1168 
1169 	/* Watch for min being lower than max due to floor calculations */
1170 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1171 
1172 	/* Scale the maximum scan period with the amount of shared memory. */
1173 	ng = deref_curr_numa_group(p);
1174 	if (ng) {
1175 		unsigned long shared = group_faults_shared(ng);
1176 		unsigned long private = group_faults_priv(ng);
1177 		unsigned long period = smax;
1178 
1179 		period *= refcount_read(&ng->refcount);
1180 		period *= shared + 1;
1181 		period /= private + shared + 1;
1182 
1183 		smax = max(smax, period);
1184 	}
1185 
1186 	return max(smin, smax);
1187 }
1188 
1189 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1190 {
1191 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1192 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1193 }
1194 
1195 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1196 {
1197 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1198 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1199 }
1200 
1201 /* Shared or private faults. */
1202 #define NR_NUMA_HINT_FAULT_TYPES 2
1203 
1204 /* Memory and CPU locality */
1205 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1206 
1207 /* Averaged statistics, and temporary buffers. */
1208 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1209 
1210 pid_t task_numa_group_id(struct task_struct *p)
1211 {
1212 	struct numa_group *ng;
1213 	pid_t gid = 0;
1214 
1215 	rcu_read_lock();
1216 	ng = rcu_dereference(p->numa_group);
1217 	if (ng)
1218 		gid = ng->gid;
1219 	rcu_read_unlock();
1220 
1221 	return gid;
1222 }
1223 
1224 /*
1225  * The averaged statistics, shared & private, memory & CPU,
1226  * occupy the first half of the array. The second half of the
1227  * array is for current counters, which are averaged into the
1228  * first set by task_numa_placement.
1229  */
1230 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1231 {
1232 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1233 }
1234 
1235 static inline unsigned long task_faults(struct task_struct *p, int nid)
1236 {
1237 	if (!p->numa_faults)
1238 		return 0;
1239 
1240 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1241 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1242 }
1243 
1244 static inline unsigned long group_faults(struct task_struct *p, int nid)
1245 {
1246 	struct numa_group *ng = deref_task_numa_group(p);
1247 
1248 	if (!ng)
1249 		return 0;
1250 
1251 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1252 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1253 }
1254 
1255 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1256 {
1257 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1258 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1259 }
1260 
1261 static inline unsigned long group_faults_priv(struct numa_group *ng)
1262 {
1263 	unsigned long faults = 0;
1264 	int node;
1265 
1266 	for_each_online_node(node) {
1267 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1268 	}
1269 
1270 	return faults;
1271 }
1272 
1273 static inline unsigned long group_faults_shared(struct numa_group *ng)
1274 {
1275 	unsigned long faults = 0;
1276 	int node;
1277 
1278 	for_each_online_node(node) {
1279 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1280 	}
1281 
1282 	return faults;
1283 }
1284 
1285 /*
1286  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1287  * considered part of a numa group's pseudo-interleaving set. Migrations
1288  * between these nodes are slowed down, to allow things to settle down.
1289  */
1290 #define ACTIVE_NODE_FRACTION 3
1291 
1292 static bool numa_is_active_node(int nid, struct numa_group *ng)
1293 {
1294 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1295 }
1296 
1297 /* Handle placement on systems where not all nodes are directly connected. */
1298 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1299 					int maxdist, bool task)
1300 {
1301 	unsigned long score = 0;
1302 	int node;
1303 
1304 	/*
1305 	 * All nodes are directly connected, and the same distance
1306 	 * from each other. No need for fancy placement algorithms.
1307 	 */
1308 	if (sched_numa_topology_type == NUMA_DIRECT)
1309 		return 0;
1310 
1311 	/*
1312 	 * This code is called for each node, introducing N^2 complexity,
1313 	 * which should be ok given the number of nodes rarely exceeds 8.
1314 	 */
1315 	for_each_online_node(node) {
1316 		unsigned long faults;
1317 		int dist = node_distance(nid, node);
1318 
1319 		/*
1320 		 * The furthest away nodes in the system are not interesting
1321 		 * for placement; nid was already counted.
1322 		 */
1323 		if (dist == sched_max_numa_distance || node == nid)
1324 			continue;
1325 
1326 		/*
1327 		 * On systems with a backplane NUMA topology, compare groups
1328 		 * of nodes, and move tasks towards the group with the most
1329 		 * memory accesses. When comparing two nodes at distance
1330 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1331 		 * of each group. Skip other nodes.
1332 		 */
1333 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1334 					dist >= maxdist)
1335 			continue;
1336 
1337 		/* Add up the faults from nearby nodes. */
1338 		if (task)
1339 			faults = task_faults(p, node);
1340 		else
1341 			faults = group_faults(p, node);
1342 
1343 		/*
1344 		 * On systems with a glueless mesh NUMA topology, there are
1345 		 * no fixed "groups of nodes". Instead, nodes that are not
1346 		 * directly connected bounce traffic through intermediate
1347 		 * nodes; a numa_group can occupy any set of nodes.
1348 		 * The further away a node is, the less the faults count.
1349 		 * This seems to result in good task placement.
1350 		 */
1351 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1352 			faults *= (sched_max_numa_distance - dist);
1353 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1354 		}
1355 
1356 		score += faults;
1357 	}
1358 
1359 	return score;
1360 }
1361 
1362 /*
1363  * These return the fraction of accesses done by a particular task, or
1364  * task group, on a particular numa node.  The group weight is given a
1365  * larger multiplier, in order to group tasks together that are almost
1366  * evenly spread out between numa nodes.
1367  */
1368 static inline unsigned long task_weight(struct task_struct *p, int nid,
1369 					int dist)
1370 {
1371 	unsigned long faults, total_faults;
1372 
1373 	if (!p->numa_faults)
1374 		return 0;
1375 
1376 	total_faults = p->total_numa_faults;
1377 
1378 	if (!total_faults)
1379 		return 0;
1380 
1381 	faults = task_faults(p, nid);
1382 	faults += score_nearby_nodes(p, nid, dist, true);
1383 
1384 	return 1000 * faults / total_faults;
1385 }
1386 
1387 static inline unsigned long group_weight(struct task_struct *p, int nid,
1388 					 int dist)
1389 {
1390 	struct numa_group *ng = deref_task_numa_group(p);
1391 	unsigned long faults, total_faults;
1392 
1393 	if (!ng)
1394 		return 0;
1395 
1396 	total_faults = ng->total_faults;
1397 
1398 	if (!total_faults)
1399 		return 0;
1400 
1401 	faults = group_faults(p, nid);
1402 	faults += score_nearby_nodes(p, nid, dist, false);
1403 
1404 	return 1000 * faults / total_faults;
1405 }
1406 
1407 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1408 				int src_nid, int dst_cpu)
1409 {
1410 	struct numa_group *ng = deref_curr_numa_group(p);
1411 	int dst_nid = cpu_to_node(dst_cpu);
1412 	int last_cpupid, this_cpupid;
1413 
1414 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1415 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1416 
1417 	/*
1418 	 * Allow first faults or private faults to migrate immediately early in
1419 	 * the lifetime of a task. The magic number 4 is based on waiting for
1420 	 * two full passes of the "multi-stage node selection" test that is
1421 	 * executed below.
1422 	 */
1423 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1424 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1425 		return true;
1426 
1427 	/*
1428 	 * Multi-stage node selection is used in conjunction with a periodic
1429 	 * migration fault to build a temporal task<->page relation. By using
1430 	 * a two-stage filter we remove short/unlikely relations.
1431 	 *
1432 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1433 	 * a task's usage of a particular page (n_p) per total usage of this
1434 	 * page (n_t) (in a given time-span) to a probability.
1435 	 *
1436 	 * Our periodic faults will sample this probability and getting the
1437 	 * same result twice in a row, given these samples are fully
1438 	 * independent, is then given by P(n)^2, provided our sample period
1439 	 * is sufficiently short compared to the usage pattern.
1440 	 *
1441 	 * This quadric squishes small probabilities, making it less likely we
1442 	 * act on an unlikely task<->page relation.
1443 	 */
1444 	if (!cpupid_pid_unset(last_cpupid) &&
1445 				cpupid_to_nid(last_cpupid) != dst_nid)
1446 		return false;
1447 
1448 	/* Always allow migrate on private faults */
1449 	if (cpupid_match_pid(p, last_cpupid))
1450 		return true;
1451 
1452 	/* A shared fault, but p->numa_group has not been set up yet. */
1453 	if (!ng)
1454 		return true;
1455 
1456 	/*
1457 	 * Destination node is much more heavily used than the source
1458 	 * node? Allow migration.
1459 	 */
1460 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1461 					ACTIVE_NODE_FRACTION)
1462 		return true;
1463 
1464 	/*
1465 	 * Distribute memory according to CPU & memory use on each node,
1466 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1467 	 *
1468 	 * faults_cpu(dst)   3   faults_cpu(src)
1469 	 * --------------- * - > ---------------
1470 	 * faults_mem(dst)   4   faults_mem(src)
1471 	 */
1472 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1473 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1474 }
1475 
1476 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
1477 
1478 static unsigned long cpu_runnable_load(struct rq *rq)
1479 {
1480 	return cfs_rq_runnable_load_avg(&rq->cfs);
1481 }
1482 
1483 /* Cached statistics for all CPUs within a node */
1484 struct numa_stats {
1485 	unsigned long load;
1486 
1487 	/* Total compute capacity of CPUs on a node */
1488 	unsigned long compute_capacity;
1489 };
1490 
1491 /*
1492  * XXX borrowed from update_sg_lb_stats
1493  */
1494 static void update_numa_stats(struct numa_stats *ns, int nid)
1495 {
1496 	int cpu;
1497 
1498 	memset(ns, 0, sizeof(*ns));
1499 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1500 		struct rq *rq = cpu_rq(cpu);
1501 
1502 		ns->load += cpu_runnable_load(rq);
1503 		ns->compute_capacity += capacity_of(cpu);
1504 	}
1505 
1506 }
1507 
1508 struct task_numa_env {
1509 	struct task_struct *p;
1510 
1511 	int src_cpu, src_nid;
1512 	int dst_cpu, dst_nid;
1513 
1514 	struct numa_stats src_stats, dst_stats;
1515 
1516 	int imbalance_pct;
1517 	int dist;
1518 
1519 	struct task_struct *best_task;
1520 	long best_imp;
1521 	int best_cpu;
1522 };
1523 
1524 static void task_numa_assign(struct task_numa_env *env,
1525 			     struct task_struct *p, long imp)
1526 {
1527 	struct rq *rq = cpu_rq(env->dst_cpu);
1528 
1529 	/* Bail out if run-queue part of active NUMA balance. */
1530 	if (xchg(&rq->numa_migrate_on, 1))
1531 		return;
1532 
1533 	/*
1534 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1535 	 * found a better CPU to move/swap.
1536 	 */
1537 	if (env->best_cpu != -1) {
1538 		rq = cpu_rq(env->best_cpu);
1539 		WRITE_ONCE(rq->numa_migrate_on, 0);
1540 	}
1541 
1542 	if (env->best_task)
1543 		put_task_struct(env->best_task);
1544 	if (p)
1545 		get_task_struct(p);
1546 
1547 	env->best_task = p;
1548 	env->best_imp = imp;
1549 	env->best_cpu = env->dst_cpu;
1550 }
1551 
1552 static bool load_too_imbalanced(long src_load, long dst_load,
1553 				struct task_numa_env *env)
1554 {
1555 	long imb, old_imb;
1556 	long orig_src_load, orig_dst_load;
1557 	long src_capacity, dst_capacity;
1558 
1559 	/*
1560 	 * The load is corrected for the CPU capacity available on each node.
1561 	 *
1562 	 * src_load        dst_load
1563 	 * ------------ vs ---------
1564 	 * src_capacity    dst_capacity
1565 	 */
1566 	src_capacity = env->src_stats.compute_capacity;
1567 	dst_capacity = env->dst_stats.compute_capacity;
1568 
1569 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1570 
1571 	orig_src_load = env->src_stats.load;
1572 	orig_dst_load = env->dst_stats.load;
1573 
1574 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1575 
1576 	/* Would this change make things worse? */
1577 	return (imb > old_imb);
1578 }
1579 
1580 /*
1581  * Maximum NUMA importance can be 1998 (2*999);
1582  * SMALLIMP @ 30 would be close to 1998/64.
1583  * Used to deter task migration.
1584  */
1585 #define SMALLIMP	30
1586 
1587 /*
1588  * This checks if the overall compute and NUMA accesses of the system would
1589  * be improved if the source tasks was migrated to the target dst_cpu taking
1590  * into account that it might be best if task running on the dst_cpu should
1591  * be exchanged with the source task
1592  */
1593 static void task_numa_compare(struct task_numa_env *env,
1594 			      long taskimp, long groupimp, bool maymove)
1595 {
1596 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1597 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1598 	long imp = p_ng ? groupimp : taskimp;
1599 	struct task_struct *cur;
1600 	long src_load, dst_load;
1601 	int dist = env->dist;
1602 	long moveimp = imp;
1603 	long load;
1604 
1605 	if (READ_ONCE(dst_rq->numa_migrate_on))
1606 		return;
1607 
1608 	rcu_read_lock();
1609 	cur = rcu_dereference(dst_rq->curr);
1610 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1611 		cur = NULL;
1612 
1613 	/*
1614 	 * Because we have preemption enabled we can get migrated around and
1615 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1616 	 */
1617 	if (cur == env->p)
1618 		goto unlock;
1619 
1620 	if (!cur) {
1621 		if (maymove && moveimp >= env->best_imp)
1622 			goto assign;
1623 		else
1624 			goto unlock;
1625 	}
1626 
1627 	/*
1628 	 * "imp" is the fault differential for the source task between the
1629 	 * source and destination node. Calculate the total differential for
1630 	 * the source task and potential destination task. The more negative
1631 	 * the value is, the more remote accesses that would be expected to
1632 	 * be incurred if the tasks were swapped.
1633 	 */
1634 	/* Skip this swap candidate if cannot move to the source cpu */
1635 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1636 		goto unlock;
1637 
1638 	/*
1639 	 * If dst and source tasks are in the same NUMA group, or not
1640 	 * in any group then look only at task weights.
1641 	 */
1642 	cur_ng = rcu_dereference(cur->numa_group);
1643 	if (cur_ng == p_ng) {
1644 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1645 		      task_weight(cur, env->dst_nid, dist);
1646 		/*
1647 		 * Add some hysteresis to prevent swapping the
1648 		 * tasks within a group over tiny differences.
1649 		 */
1650 		if (cur_ng)
1651 			imp -= imp / 16;
1652 	} else {
1653 		/*
1654 		 * Compare the group weights. If a task is all by itself
1655 		 * (not part of a group), use the task weight instead.
1656 		 */
1657 		if (cur_ng && p_ng)
1658 			imp += group_weight(cur, env->src_nid, dist) -
1659 			       group_weight(cur, env->dst_nid, dist);
1660 		else
1661 			imp += task_weight(cur, env->src_nid, dist) -
1662 			       task_weight(cur, env->dst_nid, dist);
1663 	}
1664 
1665 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1666 		imp = moveimp;
1667 		cur = NULL;
1668 		goto assign;
1669 	}
1670 
1671 	/*
1672 	 * If the NUMA importance is less than SMALLIMP,
1673 	 * task migration might only result in ping pong
1674 	 * of tasks and also hurt performance due to cache
1675 	 * misses.
1676 	 */
1677 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1678 		goto unlock;
1679 
1680 	/*
1681 	 * In the overloaded case, try and keep the load balanced.
1682 	 */
1683 	load = task_h_load(env->p) - task_h_load(cur);
1684 	if (!load)
1685 		goto assign;
1686 
1687 	dst_load = env->dst_stats.load + load;
1688 	src_load = env->src_stats.load - load;
1689 
1690 	if (load_too_imbalanced(src_load, dst_load, env))
1691 		goto unlock;
1692 
1693 assign:
1694 	/*
1695 	 * One idle CPU per node is evaluated for a task numa move.
1696 	 * Call select_idle_sibling to maybe find a better one.
1697 	 */
1698 	if (!cur) {
1699 		/*
1700 		 * select_idle_siblings() uses an per-CPU cpumask that
1701 		 * can be used from IRQ context.
1702 		 */
1703 		local_irq_disable();
1704 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1705 						   env->dst_cpu);
1706 		local_irq_enable();
1707 	}
1708 
1709 	task_numa_assign(env, cur, imp);
1710 unlock:
1711 	rcu_read_unlock();
1712 }
1713 
1714 static void task_numa_find_cpu(struct task_numa_env *env,
1715 				long taskimp, long groupimp)
1716 {
1717 	long src_load, dst_load, load;
1718 	bool maymove = false;
1719 	int cpu;
1720 
1721 	load = task_h_load(env->p);
1722 	dst_load = env->dst_stats.load + load;
1723 	src_load = env->src_stats.load - load;
1724 
1725 	/*
1726 	 * If the improvement from just moving env->p direction is better
1727 	 * than swapping tasks around, check if a move is possible.
1728 	 */
1729 	maymove = !load_too_imbalanced(src_load, dst_load, env);
1730 
1731 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1732 		/* Skip this CPU if the source task cannot migrate */
1733 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1734 			continue;
1735 
1736 		env->dst_cpu = cpu;
1737 		task_numa_compare(env, taskimp, groupimp, maymove);
1738 	}
1739 }
1740 
1741 static int task_numa_migrate(struct task_struct *p)
1742 {
1743 	struct task_numa_env env = {
1744 		.p = p,
1745 
1746 		.src_cpu = task_cpu(p),
1747 		.src_nid = task_node(p),
1748 
1749 		.imbalance_pct = 112,
1750 
1751 		.best_task = NULL,
1752 		.best_imp = 0,
1753 		.best_cpu = -1,
1754 	};
1755 	unsigned long taskweight, groupweight;
1756 	struct sched_domain *sd;
1757 	long taskimp, groupimp;
1758 	struct numa_group *ng;
1759 	struct rq *best_rq;
1760 	int nid, ret, dist;
1761 
1762 	/*
1763 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1764 	 * imbalance and would be the first to start moving tasks about.
1765 	 *
1766 	 * And we want to avoid any moving of tasks about, as that would create
1767 	 * random movement of tasks -- counter the numa conditions we're trying
1768 	 * to satisfy here.
1769 	 */
1770 	rcu_read_lock();
1771 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1772 	if (sd)
1773 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1774 	rcu_read_unlock();
1775 
1776 	/*
1777 	 * Cpusets can break the scheduler domain tree into smaller
1778 	 * balance domains, some of which do not cross NUMA boundaries.
1779 	 * Tasks that are "trapped" in such domains cannot be migrated
1780 	 * elsewhere, so there is no point in (re)trying.
1781 	 */
1782 	if (unlikely(!sd)) {
1783 		sched_setnuma(p, task_node(p));
1784 		return -EINVAL;
1785 	}
1786 
1787 	env.dst_nid = p->numa_preferred_nid;
1788 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1789 	taskweight = task_weight(p, env.src_nid, dist);
1790 	groupweight = group_weight(p, env.src_nid, dist);
1791 	update_numa_stats(&env.src_stats, env.src_nid);
1792 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1793 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1794 	update_numa_stats(&env.dst_stats, env.dst_nid);
1795 
1796 	/* Try to find a spot on the preferred nid. */
1797 	task_numa_find_cpu(&env, taskimp, groupimp);
1798 
1799 	/*
1800 	 * Look at other nodes in these cases:
1801 	 * - there is no space available on the preferred_nid
1802 	 * - the task is part of a numa_group that is interleaved across
1803 	 *   multiple NUMA nodes; in order to better consolidate the group,
1804 	 *   we need to check other locations.
1805 	 */
1806 	ng = deref_curr_numa_group(p);
1807 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1808 		for_each_online_node(nid) {
1809 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1810 				continue;
1811 
1812 			dist = node_distance(env.src_nid, env.dst_nid);
1813 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1814 						dist != env.dist) {
1815 				taskweight = task_weight(p, env.src_nid, dist);
1816 				groupweight = group_weight(p, env.src_nid, dist);
1817 			}
1818 
1819 			/* Only consider nodes where both task and groups benefit */
1820 			taskimp = task_weight(p, nid, dist) - taskweight;
1821 			groupimp = group_weight(p, nid, dist) - groupweight;
1822 			if (taskimp < 0 && groupimp < 0)
1823 				continue;
1824 
1825 			env.dist = dist;
1826 			env.dst_nid = nid;
1827 			update_numa_stats(&env.dst_stats, env.dst_nid);
1828 			task_numa_find_cpu(&env, taskimp, groupimp);
1829 		}
1830 	}
1831 
1832 	/*
1833 	 * If the task is part of a workload that spans multiple NUMA nodes,
1834 	 * and is migrating into one of the workload's active nodes, remember
1835 	 * this node as the task's preferred numa node, so the workload can
1836 	 * settle down.
1837 	 * A task that migrated to a second choice node will be better off
1838 	 * trying for a better one later. Do not set the preferred node here.
1839 	 */
1840 	if (ng) {
1841 		if (env.best_cpu == -1)
1842 			nid = env.src_nid;
1843 		else
1844 			nid = cpu_to_node(env.best_cpu);
1845 
1846 		if (nid != p->numa_preferred_nid)
1847 			sched_setnuma(p, nid);
1848 	}
1849 
1850 	/* No better CPU than the current one was found. */
1851 	if (env.best_cpu == -1)
1852 		return -EAGAIN;
1853 
1854 	best_rq = cpu_rq(env.best_cpu);
1855 	if (env.best_task == NULL) {
1856 		ret = migrate_task_to(p, env.best_cpu);
1857 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1858 		if (ret != 0)
1859 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1860 		return ret;
1861 	}
1862 
1863 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1864 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1865 
1866 	if (ret != 0)
1867 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1868 	put_task_struct(env.best_task);
1869 	return ret;
1870 }
1871 
1872 /* Attempt to migrate a task to a CPU on the preferred node. */
1873 static void numa_migrate_preferred(struct task_struct *p)
1874 {
1875 	unsigned long interval = HZ;
1876 
1877 	/* This task has no NUMA fault statistics yet */
1878 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
1879 		return;
1880 
1881 	/* Periodically retry migrating the task to the preferred node */
1882 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1883 	p->numa_migrate_retry = jiffies + interval;
1884 
1885 	/* Success if task is already running on preferred CPU */
1886 	if (task_node(p) == p->numa_preferred_nid)
1887 		return;
1888 
1889 	/* Otherwise, try migrate to a CPU on the preferred node */
1890 	task_numa_migrate(p);
1891 }
1892 
1893 /*
1894  * Find out how many nodes on the workload is actively running on. Do this by
1895  * tracking the nodes from which NUMA hinting faults are triggered. This can
1896  * be different from the set of nodes where the workload's memory is currently
1897  * located.
1898  */
1899 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1900 {
1901 	unsigned long faults, max_faults = 0;
1902 	int nid, active_nodes = 0;
1903 
1904 	for_each_online_node(nid) {
1905 		faults = group_faults_cpu(numa_group, nid);
1906 		if (faults > max_faults)
1907 			max_faults = faults;
1908 	}
1909 
1910 	for_each_online_node(nid) {
1911 		faults = group_faults_cpu(numa_group, nid);
1912 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1913 			active_nodes++;
1914 	}
1915 
1916 	numa_group->max_faults_cpu = max_faults;
1917 	numa_group->active_nodes = active_nodes;
1918 }
1919 
1920 /*
1921  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1922  * increments. The more local the fault statistics are, the higher the scan
1923  * period will be for the next scan window. If local/(local+remote) ratio is
1924  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1925  * the scan period will decrease. Aim for 70% local accesses.
1926  */
1927 #define NUMA_PERIOD_SLOTS 10
1928 #define NUMA_PERIOD_THRESHOLD 7
1929 
1930 /*
1931  * Increase the scan period (slow down scanning) if the majority of
1932  * our memory is already on our local node, or if the majority of
1933  * the page accesses are shared with other processes.
1934  * Otherwise, decrease the scan period.
1935  */
1936 static void update_task_scan_period(struct task_struct *p,
1937 			unsigned long shared, unsigned long private)
1938 {
1939 	unsigned int period_slot;
1940 	int lr_ratio, ps_ratio;
1941 	int diff;
1942 
1943 	unsigned long remote = p->numa_faults_locality[0];
1944 	unsigned long local = p->numa_faults_locality[1];
1945 
1946 	/*
1947 	 * If there were no record hinting faults then either the task is
1948 	 * completely idle or all activity is areas that are not of interest
1949 	 * to automatic numa balancing. Related to that, if there were failed
1950 	 * migration then it implies we are migrating too quickly or the local
1951 	 * node is overloaded. In either case, scan slower
1952 	 */
1953 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1954 		p->numa_scan_period = min(p->numa_scan_period_max,
1955 			p->numa_scan_period << 1);
1956 
1957 		p->mm->numa_next_scan = jiffies +
1958 			msecs_to_jiffies(p->numa_scan_period);
1959 
1960 		return;
1961 	}
1962 
1963 	/*
1964 	 * Prepare to scale scan period relative to the current period.
1965 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1966 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1967 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1968 	 */
1969 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1970 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1971 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1972 
1973 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1974 		/*
1975 		 * Most memory accesses are local. There is no need to
1976 		 * do fast NUMA scanning, since memory is already local.
1977 		 */
1978 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1979 		if (!slot)
1980 			slot = 1;
1981 		diff = slot * period_slot;
1982 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1983 		/*
1984 		 * Most memory accesses are shared with other tasks.
1985 		 * There is no point in continuing fast NUMA scanning,
1986 		 * since other tasks may just move the memory elsewhere.
1987 		 */
1988 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1989 		if (!slot)
1990 			slot = 1;
1991 		diff = slot * period_slot;
1992 	} else {
1993 		/*
1994 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1995 		 * yet they are not on the local NUMA node. Speed up
1996 		 * NUMA scanning to get the memory moved over.
1997 		 */
1998 		int ratio = max(lr_ratio, ps_ratio);
1999 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2000 	}
2001 
2002 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2003 			task_scan_min(p), task_scan_max(p));
2004 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2005 }
2006 
2007 /*
2008  * Get the fraction of time the task has been running since the last
2009  * NUMA placement cycle. The scheduler keeps similar statistics, but
2010  * decays those on a 32ms period, which is orders of magnitude off
2011  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2012  * stats only if the task is so new there are no NUMA statistics yet.
2013  */
2014 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2015 {
2016 	u64 runtime, delta, now;
2017 	/* Use the start of this time slice to avoid calculations. */
2018 	now = p->se.exec_start;
2019 	runtime = p->se.sum_exec_runtime;
2020 
2021 	if (p->last_task_numa_placement) {
2022 		delta = runtime - p->last_sum_exec_runtime;
2023 		*period = now - p->last_task_numa_placement;
2024 
2025 		/* Avoid time going backwards, prevent potential divide error: */
2026 		if (unlikely((s64)*period < 0))
2027 			*period = 0;
2028 	} else {
2029 		delta = p->se.avg.load_sum;
2030 		*period = LOAD_AVG_MAX;
2031 	}
2032 
2033 	p->last_sum_exec_runtime = runtime;
2034 	p->last_task_numa_placement = now;
2035 
2036 	return delta;
2037 }
2038 
2039 /*
2040  * Determine the preferred nid for a task in a numa_group. This needs to
2041  * be done in a way that produces consistent results with group_weight,
2042  * otherwise workloads might not converge.
2043  */
2044 static int preferred_group_nid(struct task_struct *p, int nid)
2045 {
2046 	nodemask_t nodes;
2047 	int dist;
2048 
2049 	/* Direct connections between all NUMA nodes. */
2050 	if (sched_numa_topology_type == NUMA_DIRECT)
2051 		return nid;
2052 
2053 	/*
2054 	 * On a system with glueless mesh NUMA topology, group_weight
2055 	 * scores nodes according to the number of NUMA hinting faults on
2056 	 * both the node itself, and on nearby nodes.
2057 	 */
2058 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2059 		unsigned long score, max_score = 0;
2060 		int node, max_node = nid;
2061 
2062 		dist = sched_max_numa_distance;
2063 
2064 		for_each_online_node(node) {
2065 			score = group_weight(p, node, dist);
2066 			if (score > max_score) {
2067 				max_score = score;
2068 				max_node = node;
2069 			}
2070 		}
2071 		return max_node;
2072 	}
2073 
2074 	/*
2075 	 * Finding the preferred nid in a system with NUMA backplane
2076 	 * interconnect topology is more involved. The goal is to locate
2077 	 * tasks from numa_groups near each other in the system, and
2078 	 * untangle workloads from different sides of the system. This requires
2079 	 * searching down the hierarchy of node groups, recursively searching
2080 	 * inside the highest scoring group of nodes. The nodemask tricks
2081 	 * keep the complexity of the search down.
2082 	 */
2083 	nodes = node_online_map;
2084 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2085 		unsigned long max_faults = 0;
2086 		nodemask_t max_group = NODE_MASK_NONE;
2087 		int a, b;
2088 
2089 		/* Are there nodes at this distance from each other? */
2090 		if (!find_numa_distance(dist))
2091 			continue;
2092 
2093 		for_each_node_mask(a, nodes) {
2094 			unsigned long faults = 0;
2095 			nodemask_t this_group;
2096 			nodes_clear(this_group);
2097 
2098 			/* Sum group's NUMA faults; includes a==b case. */
2099 			for_each_node_mask(b, nodes) {
2100 				if (node_distance(a, b) < dist) {
2101 					faults += group_faults(p, b);
2102 					node_set(b, this_group);
2103 					node_clear(b, nodes);
2104 				}
2105 			}
2106 
2107 			/* Remember the top group. */
2108 			if (faults > max_faults) {
2109 				max_faults = faults;
2110 				max_group = this_group;
2111 				/*
2112 				 * subtle: at the smallest distance there is
2113 				 * just one node left in each "group", the
2114 				 * winner is the preferred nid.
2115 				 */
2116 				nid = a;
2117 			}
2118 		}
2119 		/* Next round, evaluate the nodes within max_group. */
2120 		if (!max_faults)
2121 			break;
2122 		nodes = max_group;
2123 	}
2124 	return nid;
2125 }
2126 
2127 static void task_numa_placement(struct task_struct *p)
2128 {
2129 	int seq, nid, max_nid = NUMA_NO_NODE;
2130 	unsigned long max_faults = 0;
2131 	unsigned long fault_types[2] = { 0, 0 };
2132 	unsigned long total_faults;
2133 	u64 runtime, period;
2134 	spinlock_t *group_lock = NULL;
2135 	struct numa_group *ng;
2136 
2137 	/*
2138 	 * The p->mm->numa_scan_seq field gets updated without
2139 	 * exclusive access. Use READ_ONCE() here to ensure
2140 	 * that the field is read in a single access:
2141 	 */
2142 	seq = READ_ONCE(p->mm->numa_scan_seq);
2143 	if (p->numa_scan_seq == seq)
2144 		return;
2145 	p->numa_scan_seq = seq;
2146 	p->numa_scan_period_max = task_scan_max(p);
2147 
2148 	total_faults = p->numa_faults_locality[0] +
2149 		       p->numa_faults_locality[1];
2150 	runtime = numa_get_avg_runtime(p, &period);
2151 
2152 	/* If the task is part of a group prevent parallel updates to group stats */
2153 	ng = deref_curr_numa_group(p);
2154 	if (ng) {
2155 		group_lock = &ng->lock;
2156 		spin_lock_irq(group_lock);
2157 	}
2158 
2159 	/* Find the node with the highest number of faults */
2160 	for_each_online_node(nid) {
2161 		/* Keep track of the offsets in numa_faults array */
2162 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2163 		unsigned long faults = 0, group_faults = 0;
2164 		int priv;
2165 
2166 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2167 			long diff, f_diff, f_weight;
2168 
2169 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2170 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2171 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2172 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2173 
2174 			/* Decay existing window, copy faults since last scan */
2175 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2176 			fault_types[priv] += p->numa_faults[membuf_idx];
2177 			p->numa_faults[membuf_idx] = 0;
2178 
2179 			/*
2180 			 * Normalize the faults_from, so all tasks in a group
2181 			 * count according to CPU use, instead of by the raw
2182 			 * number of faults. Tasks with little runtime have
2183 			 * little over-all impact on throughput, and thus their
2184 			 * faults are less important.
2185 			 */
2186 			f_weight = div64_u64(runtime << 16, period + 1);
2187 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2188 				   (total_faults + 1);
2189 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2190 			p->numa_faults[cpubuf_idx] = 0;
2191 
2192 			p->numa_faults[mem_idx] += diff;
2193 			p->numa_faults[cpu_idx] += f_diff;
2194 			faults += p->numa_faults[mem_idx];
2195 			p->total_numa_faults += diff;
2196 			if (ng) {
2197 				/*
2198 				 * safe because we can only change our own group
2199 				 *
2200 				 * mem_idx represents the offset for a given
2201 				 * nid and priv in a specific region because it
2202 				 * is at the beginning of the numa_faults array.
2203 				 */
2204 				ng->faults[mem_idx] += diff;
2205 				ng->faults_cpu[mem_idx] += f_diff;
2206 				ng->total_faults += diff;
2207 				group_faults += ng->faults[mem_idx];
2208 			}
2209 		}
2210 
2211 		if (!ng) {
2212 			if (faults > max_faults) {
2213 				max_faults = faults;
2214 				max_nid = nid;
2215 			}
2216 		} else if (group_faults > max_faults) {
2217 			max_faults = group_faults;
2218 			max_nid = nid;
2219 		}
2220 	}
2221 
2222 	if (ng) {
2223 		numa_group_count_active_nodes(ng);
2224 		spin_unlock_irq(group_lock);
2225 		max_nid = preferred_group_nid(p, max_nid);
2226 	}
2227 
2228 	if (max_faults) {
2229 		/* Set the new preferred node */
2230 		if (max_nid != p->numa_preferred_nid)
2231 			sched_setnuma(p, max_nid);
2232 	}
2233 
2234 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2235 }
2236 
2237 static inline int get_numa_group(struct numa_group *grp)
2238 {
2239 	return refcount_inc_not_zero(&grp->refcount);
2240 }
2241 
2242 static inline void put_numa_group(struct numa_group *grp)
2243 {
2244 	if (refcount_dec_and_test(&grp->refcount))
2245 		kfree_rcu(grp, rcu);
2246 }
2247 
2248 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2249 			int *priv)
2250 {
2251 	struct numa_group *grp, *my_grp;
2252 	struct task_struct *tsk;
2253 	bool join = false;
2254 	int cpu = cpupid_to_cpu(cpupid);
2255 	int i;
2256 
2257 	if (unlikely(!deref_curr_numa_group(p))) {
2258 		unsigned int size = sizeof(struct numa_group) +
2259 				    4*nr_node_ids*sizeof(unsigned long);
2260 
2261 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2262 		if (!grp)
2263 			return;
2264 
2265 		refcount_set(&grp->refcount, 1);
2266 		grp->active_nodes = 1;
2267 		grp->max_faults_cpu = 0;
2268 		spin_lock_init(&grp->lock);
2269 		grp->gid = p->pid;
2270 		/* Second half of the array tracks nids where faults happen */
2271 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2272 						nr_node_ids;
2273 
2274 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2275 			grp->faults[i] = p->numa_faults[i];
2276 
2277 		grp->total_faults = p->total_numa_faults;
2278 
2279 		grp->nr_tasks++;
2280 		rcu_assign_pointer(p->numa_group, grp);
2281 	}
2282 
2283 	rcu_read_lock();
2284 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2285 
2286 	if (!cpupid_match_pid(tsk, cpupid))
2287 		goto no_join;
2288 
2289 	grp = rcu_dereference(tsk->numa_group);
2290 	if (!grp)
2291 		goto no_join;
2292 
2293 	my_grp = deref_curr_numa_group(p);
2294 	if (grp == my_grp)
2295 		goto no_join;
2296 
2297 	/*
2298 	 * Only join the other group if its bigger; if we're the bigger group,
2299 	 * the other task will join us.
2300 	 */
2301 	if (my_grp->nr_tasks > grp->nr_tasks)
2302 		goto no_join;
2303 
2304 	/*
2305 	 * Tie-break on the grp address.
2306 	 */
2307 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2308 		goto no_join;
2309 
2310 	/* Always join threads in the same process. */
2311 	if (tsk->mm == current->mm)
2312 		join = true;
2313 
2314 	/* Simple filter to avoid false positives due to PID collisions */
2315 	if (flags & TNF_SHARED)
2316 		join = true;
2317 
2318 	/* Update priv based on whether false sharing was detected */
2319 	*priv = !join;
2320 
2321 	if (join && !get_numa_group(grp))
2322 		goto no_join;
2323 
2324 	rcu_read_unlock();
2325 
2326 	if (!join)
2327 		return;
2328 
2329 	BUG_ON(irqs_disabled());
2330 	double_lock_irq(&my_grp->lock, &grp->lock);
2331 
2332 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2333 		my_grp->faults[i] -= p->numa_faults[i];
2334 		grp->faults[i] += p->numa_faults[i];
2335 	}
2336 	my_grp->total_faults -= p->total_numa_faults;
2337 	grp->total_faults += p->total_numa_faults;
2338 
2339 	my_grp->nr_tasks--;
2340 	grp->nr_tasks++;
2341 
2342 	spin_unlock(&my_grp->lock);
2343 	spin_unlock_irq(&grp->lock);
2344 
2345 	rcu_assign_pointer(p->numa_group, grp);
2346 
2347 	put_numa_group(my_grp);
2348 	return;
2349 
2350 no_join:
2351 	rcu_read_unlock();
2352 	return;
2353 }
2354 
2355 /*
2356  * Get rid of NUMA staticstics associated with a task (either current or dead).
2357  * If @final is set, the task is dead and has reached refcount zero, so we can
2358  * safely free all relevant data structures. Otherwise, there might be
2359  * concurrent reads from places like load balancing and procfs, and we should
2360  * reset the data back to default state without freeing ->numa_faults.
2361  */
2362 void task_numa_free(struct task_struct *p, bool final)
2363 {
2364 	/* safe: p either is current or is being freed by current */
2365 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2366 	unsigned long *numa_faults = p->numa_faults;
2367 	unsigned long flags;
2368 	int i;
2369 
2370 	if (!numa_faults)
2371 		return;
2372 
2373 	if (grp) {
2374 		spin_lock_irqsave(&grp->lock, flags);
2375 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2376 			grp->faults[i] -= p->numa_faults[i];
2377 		grp->total_faults -= p->total_numa_faults;
2378 
2379 		grp->nr_tasks--;
2380 		spin_unlock_irqrestore(&grp->lock, flags);
2381 		RCU_INIT_POINTER(p->numa_group, NULL);
2382 		put_numa_group(grp);
2383 	}
2384 
2385 	if (final) {
2386 		p->numa_faults = NULL;
2387 		kfree(numa_faults);
2388 	} else {
2389 		p->total_numa_faults = 0;
2390 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2391 			numa_faults[i] = 0;
2392 	}
2393 }
2394 
2395 /*
2396  * Got a PROT_NONE fault for a page on @node.
2397  */
2398 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2399 {
2400 	struct task_struct *p = current;
2401 	bool migrated = flags & TNF_MIGRATED;
2402 	int cpu_node = task_node(current);
2403 	int local = !!(flags & TNF_FAULT_LOCAL);
2404 	struct numa_group *ng;
2405 	int priv;
2406 
2407 	if (!static_branch_likely(&sched_numa_balancing))
2408 		return;
2409 
2410 	/* for example, ksmd faulting in a user's mm */
2411 	if (!p->mm)
2412 		return;
2413 
2414 	/* Allocate buffer to track faults on a per-node basis */
2415 	if (unlikely(!p->numa_faults)) {
2416 		int size = sizeof(*p->numa_faults) *
2417 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2418 
2419 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2420 		if (!p->numa_faults)
2421 			return;
2422 
2423 		p->total_numa_faults = 0;
2424 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2425 	}
2426 
2427 	/*
2428 	 * First accesses are treated as private, otherwise consider accesses
2429 	 * to be private if the accessing pid has not changed
2430 	 */
2431 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2432 		priv = 1;
2433 	} else {
2434 		priv = cpupid_match_pid(p, last_cpupid);
2435 		if (!priv && !(flags & TNF_NO_GROUP))
2436 			task_numa_group(p, last_cpupid, flags, &priv);
2437 	}
2438 
2439 	/*
2440 	 * If a workload spans multiple NUMA nodes, a shared fault that
2441 	 * occurs wholly within the set of nodes that the workload is
2442 	 * actively using should be counted as local. This allows the
2443 	 * scan rate to slow down when a workload has settled down.
2444 	 */
2445 	ng = deref_curr_numa_group(p);
2446 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2447 				numa_is_active_node(cpu_node, ng) &&
2448 				numa_is_active_node(mem_node, ng))
2449 		local = 1;
2450 
2451 	/*
2452 	 * Retry to migrate task to preferred node periodically, in case it
2453 	 * previously failed, or the scheduler moved us.
2454 	 */
2455 	if (time_after(jiffies, p->numa_migrate_retry)) {
2456 		task_numa_placement(p);
2457 		numa_migrate_preferred(p);
2458 	}
2459 
2460 	if (migrated)
2461 		p->numa_pages_migrated += pages;
2462 	if (flags & TNF_MIGRATE_FAIL)
2463 		p->numa_faults_locality[2] += pages;
2464 
2465 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2466 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2467 	p->numa_faults_locality[local] += pages;
2468 }
2469 
2470 static void reset_ptenuma_scan(struct task_struct *p)
2471 {
2472 	/*
2473 	 * We only did a read acquisition of the mmap sem, so
2474 	 * p->mm->numa_scan_seq is written to without exclusive access
2475 	 * and the update is not guaranteed to be atomic. That's not
2476 	 * much of an issue though, since this is just used for
2477 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2478 	 * expensive, to avoid any form of compiler optimizations:
2479 	 */
2480 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2481 	p->mm->numa_scan_offset = 0;
2482 }
2483 
2484 /*
2485  * The expensive part of numa migration is done from task_work context.
2486  * Triggered from task_tick_numa().
2487  */
2488 static void task_numa_work(struct callback_head *work)
2489 {
2490 	unsigned long migrate, next_scan, now = jiffies;
2491 	struct task_struct *p = current;
2492 	struct mm_struct *mm = p->mm;
2493 	u64 runtime = p->se.sum_exec_runtime;
2494 	struct vm_area_struct *vma;
2495 	unsigned long start, end;
2496 	unsigned long nr_pte_updates = 0;
2497 	long pages, virtpages;
2498 
2499 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2500 
2501 	work->next = work;
2502 	/*
2503 	 * Who cares about NUMA placement when they're dying.
2504 	 *
2505 	 * NOTE: make sure not to dereference p->mm before this check,
2506 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2507 	 * without p->mm even though we still had it when we enqueued this
2508 	 * work.
2509 	 */
2510 	if (p->flags & PF_EXITING)
2511 		return;
2512 
2513 	if (!mm->numa_next_scan) {
2514 		mm->numa_next_scan = now +
2515 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2516 	}
2517 
2518 	/*
2519 	 * Enforce maximal scan/migration frequency..
2520 	 */
2521 	migrate = mm->numa_next_scan;
2522 	if (time_before(now, migrate))
2523 		return;
2524 
2525 	if (p->numa_scan_period == 0) {
2526 		p->numa_scan_period_max = task_scan_max(p);
2527 		p->numa_scan_period = task_scan_start(p);
2528 	}
2529 
2530 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2531 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2532 		return;
2533 
2534 	/*
2535 	 * Delay this task enough that another task of this mm will likely win
2536 	 * the next time around.
2537 	 */
2538 	p->node_stamp += 2 * TICK_NSEC;
2539 
2540 	start = mm->numa_scan_offset;
2541 	pages = sysctl_numa_balancing_scan_size;
2542 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2543 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2544 	if (!pages)
2545 		return;
2546 
2547 
2548 	if (!down_read_trylock(&mm->mmap_sem))
2549 		return;
2550 	vma = find_vma(mm, start);
2551 	if (!vma) {
2552 		reset_ptenuma_scan(p);
2553 		start = 0;
2554 		vma = mm->mmap;
2555 	}
2556 	for (; vma; vma = vma->vm_next) {
2557 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2558 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2559 			continue;
2560 		}
2561 
2562 		/*
2563 		 * Shared library pages mapped by multiple processes are not
2564 		 * migrated as it is expected they are cache replicated. Avoid
2565 		 * hinting faults in read-only file-backed mappings or the vdso
2566 		 * as migrating the pages will be of marginal benefit.
2567 		 */
2568 		if (!vma->vm_mm ||
2569 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2570 			continue;
2571 
2572 		/*
2573 		 * Skip inaccessible VMAs to avoid any confusion between
2574 		 * PROT_NONE and NUMA hinting ptes
2575 		 */
2576 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2577 			continue;
2578 
2579 		do {
2580 			start = max(start, vma->vm_start);
2581 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2582 			end = min(end, vma->vm_end);
2583 			nr_pte_updates = change_prot_numa(vma, start, end);
2584 
2585 			/*
2586 			 * Try to scan sysctl_numa_balancing_size worth of
2587 			 * hpages that have at least one present PTE that
2588 			 * is not already pte-numa. If the VMA contains
2589 			 * areas that are unused or already full of prot_numa
2590 			 * PTEs, scan up to virtpages, to skip through those
2591 			 * areas faster.
2592 			 */
2593 			if (nr_pte_updates)
2594 				pages -= (end - start) >> PAGE_SHIFT;
2595 			virtpages -= (end - start) >> PAGE_SHIFT;
2596 
2597 			start = end;
2598 			if (pages <= 0 || virtpages <= 0)
2599 				goto out;
2600 
2601 			cond_resched();
2602 		} while (end != vma->vm_end);
2603 	}
2604 
2605 out:
2606 	/*
2607 	 * It is possible to reach the end of the VMA list but the last few
2608 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2609 	 * would find the !migratable VMA on the next scan but not reset the
2610 	 * scanner to the start so check it now.
2611 	 */
2612 	if (vma)
2613 		mm->numa_scan_offset = start;
2614 	else
2615 		reset_ptenuma_scan(p);
2616 	up_read(&mm->mmap_sem);
2617 
2618 	/*
2619 	 * Make sure tasks use at least 32x as much time to run other code
2620 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2621 	 * Usually update_task_scan_period slows down scanning enough; on an
2622 	 * overloaded system we need to limit overhead on a per task basis.
2623 	 */
2624 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2625 		u64 diff = p->se.sum_exec_runtime - runtime;
2626 		p->node_stamp += 32 * diff;
2627 	}
2628 }
2629 
2630 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2631 {
2632 	int mm_users = 0;
2633 	struct mm_struct *mm = p->mm;
2634 
2635 	if (mm) {
2636 		mm_users = atomic_read(&mm->mm_users);
2637 		if (mm_users == 1) {
2638 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2639 			mm->numa_scan_seq = 0;
2640 		}
2641 	}
2642 	p->node_stamp			= 0;
2643 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2644 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2645 	/* Protect against double add, see task_tick_numa and task_numa_work */
2646 	p->numa_work.next		= &p->numa_work;
2647 	p->numa_faults			= NULL;
2648 	RCU_INIT_POINTER(p->numa_group, NULL);
2649 	p->last_task_numa_placement	= 0;
2650 	p->last_sum_exec_runtime	= 0;
2651 
2652 	init_task_work(&p->numa_work, task_numa_work);
2653 
2654 	/* New address space, reset the preferred nid */
2655 	if (!(clone_flags & CLONE_VM)) {
2656 		p->numa_preferred_nid = NUMA_NO_NODE;
2657 		return;
2658 	}
2659 
2660 	/*
2661 	 * New thread, keep existing numa_preferred_nid which should be copied
2662 	 * already by arch_dup_task_struct but stagger when scans start.
2663 	 */
2664 	if (mm) {
2665 		unsigned int delay;
2666 
2667 		delay = min_t(unsigned int, task_scan_max(current),
2668 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2669 		delay += 2 * TICK_NSEC;
2670 		p->node_stamp = delay;
2671 	}
2672 }
2673 
2674 /*
2675  * Drive the periodic memory faults..
2676  */
2677 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2678 {
2679 	struct callback_head *work = &curr->numa_work;
2680 	u64 period, now;
2681 
2682 	/*
2683 	 * We don't care about NUMA placement if we don't have memory.
2684 	 */
2685 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2686 		return;
2687 
2688 	/*
2689 	 * Using runtime rather than walltime has the dual advantage that
2690 	 * we (mostly) drive the selection from busy threads and that the
2691 	 * task needs to have done some actual work before we bother with
2692 	 * NUMA placement.
2693 	 */
2694 	now = curr->se.sum_exec_runtime;
2695 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2696 
2697 	if (now > curr->node_stamp + period) {
2698 		if (!curr->node_stamp)
2699 			curr->numa_scan_period = task_scan_start(curr);
2700 		curr->node_stamp += period;
2701 
2702 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2703 			task_work_add(curr, work, true);
2704 	}
2705 }
2706 
2707 static void update_scan_period(struct task_struct *p, int new_cpu)
2708 {
2709 	int src_nid = cpu_to_node(task_cpu(p));
2710 	int dst_nid = cpu_to_node(new_cpu);
2711 
2712 	if (!static_branch_likely(&sched_numa_balancing))
2713 		return;
2714 
2715 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2716 		return;
2717 
2718 	if (src_nid == dst_nid)
2719 		return;
2720 
2721 	/*
2722 	 * Allow resets if faults have been trapped before one scan
2723 	 * has completed. This is most likely due to a new task that
2724 	 * is pulled cross-node due to wakeups or load balancing.
2725 	 */
2726 	if (p->numa_scan_seq) {
2727 		/*
2728 		 * Avoid scan adjustments if moving to the preferred
2729 		 * node or if the task was not previously running on
2730 		 * the preferred node.
2731 		 */
2732 		if (dst_nid == p->numa_preferred_nid ||
2733 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2734 			src_nid != p->numa_preferred_nid))
2735 			return;
2736 	}
2737 
2738 	p->numa_scan_period = task_scan_start(p);
2739 }
2740 
2741 #else
2742 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2743 {
2744 }
2745 
2746 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2747 {
2748 }
2749 
2750 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2751 {
2752 }
2753 
2754 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2755 {
2756 }
2757 
2758 #endif /* CONFIG_NUMA_BALANCING */
2759 
2760 static void
2761 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2762 {
2763 	update_load_add(&cfs_rq->load, se->load.weight);
2764 #ifdef CONFIG_SMP
2765 	if (entity_is_task(se)) {
2766 		struct rq *rq = rq_of(cfs_rq);
2767 
2768 		account_numa_enqueue(rq, task_of(se));
2769 		list_add(&se->group_node, &rq->cfs_tasks);
2770 	}
2771 #endif
2772 	cfs_rq->nr_running++;
2773 }
2774 
2775 static void
2776 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2777 {
2778 	update_load_sub(&cfs_rq->load, se->load.weight);
2779 #ifdef CONFIG_SMP
2780 	if (entity_is_task(se)) {
2781 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2782 		list_del_init(&se->group_node);
2783 	}
2784 #endif
2785 	cfs_rq->nr_running--;
2786 }
2787 
2788 /*
2789  * Signed add and clamp on underflow.
2790  *
2791  * Explicitly do a load-store to ensure the intermediate value never hits
2792  * memory. This allows lockless observations without ever seeing the negative
2793  * values.
2794  */
2795 #define add_positive(_ptr, _val) do {                           \
2796 	typeof(_ptr) ptr = (_ptr);                              \
2797 	typeof(_val) val = (_val);                              \
2798 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2799 								\
2800 	res = var + val;                                        \
2801 								\
2802 	if (val < 0 && res > var)                               \
2803 		res = 0;                                        \
2804 								\
2805 	WRITE_ONCE(*ptr, res);                                  \
2806 } while (0)
2807 
2808 /*
2809  * Unsigned subtract and clamp on underflow.
2810  *
2811  * Explicitly do a load-store to ensure the intermediate value never hits
2812  * memory. This allows lockless observations without ever seeing the negative
2813  * values.
2814  */
2815 #define sub_positive(_ptr, _val) do {				\
2816 	typeof(_ptr) ptr = (_ptr);				\
2817 	typeof(*ptr) val = (_val);				\
2818 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2819 	res = var - val;					\
2820 	if (res > var)						\
2821 		res = 0;					\
2822 	WRITE_ONCE(*ptr, res);					\
2823 } while (0)
2824 
2825 /*
2826  * Remove and clamp on negative, from a local variable.
2827  *
2828  * A variant of sub_positive(), which does not use explicit load-store
2829  * and is thus optimized for local variable updates.
2830  */
2831 #define lsub_positive(_ptr, _val) do {				\
2832 	typeof(_ptr) ptr = (_ptr);				\
2833 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
2834 } while (0)
2835 
2836 #ifdef CONFIG_SMP
2837 static inline void
2838 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2839 {
2840 	cfs_rq->runnable_weight += se->runnable_weight;
2841 
2842 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2843 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2844 }
2845 
2846 static inline void
2847 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2848 {
2849 	cfs_rq->runnable_weight -= se->runnable_weight;
2850 
2851 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2852 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2853 		     se_runnable(se) * se->avg.runnable_load_sum);
2854 }
2855 
2856 static inline void
2857 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2858 {
2859 	cfs_rq->avg.load_avg += se->avg.load_avg;
2860 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2861 }
2862 
2863 static inline void
2864 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2865 {
2866 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2867 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2868 }
2869 #else
2870 static inline void
2871 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2872 static inline void
2873 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2874 static inline void
2875 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2876 static inline void
2877 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2878 #endif
2879 
2880 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2881 			    unsigned long weight, unsigned long runnable)
2882 {
2883 	if (se->on_rq) {
2884 		/* commit outstanding execution time */
2885 		if (cfs_rq->curr == se)
2886 			update_curr(cfs_rq);
2887 		account_entity_dequeue(cfs_rq, se);
2888 		dequeue_runnable_load_avg(cfs_rq, se);
2889 	}
2890 	dequeue_load_avg(cfs_rq, se);
2891 
2892 	se->runnable_weight = runnable;
2893 	update_load_set(&se->load, weight);
2894 
2895 #ifdef CONFIG_SMP
2896 	do {
2897 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2898 
2899 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2900 		se->avg.runnable_load_avg =
2901 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2902 	} while (0);
2903 #endif
2904 
2905 	enqueue_load_avg(cfs_rq, se);
2906 	if (se->on_rq) {
2907 		account_entity_enqueue(cfs_rq, se);
2908 		enqueue_runnable_load_avg(cfs_rq, se);
2909 	}
2910 }
2911 
2912 void reweight_task(struct task_struct *p, int prio)
2913 {
2914 	struct sched_entity *se = &p->se;
2915 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2916 	struct load_weight *load = &se->load;
2917 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2918 
2919 	reweight_entity(cfs_rq, se, weight, weight);
2920 	load->inv_weight = sched_prio_to_wmult[prio];
2921 }
2922 
2923 #ifdef CONFIG_FAIR_GROUP_SCHED
2924 #ifdef CONFIG_SMP
2925 /*
2926  * All this does is approximate the hierarchical proportion which includes that
2927  * global sum we all love to hate.
2928  *
2929  * That is, the weight of a group entity, is the proportional share of the
2930  * group weight based on the group runqueue weights. That is:
2931  *
2932  *                     tg->weight * grq->load.weight
2933  *   ge->load.weight = -----------------------------               (1)
2934  *			  \Sum grq->load.weight
2935  *
2936  * Now, because computing that sum is prohibitively expensive to compute (been
2937  * there, done that) we approximate it with this average stuff. The average
2938  * moves slower and therefore the approximation is cheaper and more stable.
2939  *
2940  * So instead of the above, we substitute:
2941  *
2942  *   grq->load.weight -> grq->avg.load_avg                         (2)
2943  *
2944  * which yields the following:
2945  *
2946  *                     tg->weight * grq->avg.load_avg
2947  *   ge->load.weight = ------------------------------              (3)
2948  *				tg->load_avg
2949  *
2950  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2951  *
2952  * That is shares_avg, and it is right (given the approximation (2)).
2953  *
2954  * The problem with it is that because the average is slow -- it was designed
2955  * to be exactly that of course -- this leads to transients in boundary
2956  * conditions. In specific, the case where the group was idle and we start the
2957  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2958  * yielding bad latency etc..
2959  *
2960  * Now, in that special case (1) reduces to:
2961  *
2962  *                     tg->weight * grq->load.weight
2963  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2964  *			    grp->load.weight
2965  *
2966  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2967  *
2968  * So what we do is modify our approximation (3) to approach (4) in the (near)
2969  * UP case, like:
2970  *
2971  *   ge->load.weight =
2972  *
2973  *              tg->weight * grq->load.weight
2974  *     ---------------------------------------------------         (5)
2975  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2976  *
2977  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2978  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2979  *
2980  *
2981  *                     tg->weight * grq->load.weight
2982  *   ge->load.weight = -----------------------------		   (6)
2983  *				tg_load_avg'
2984  *
2985  * Where:
2986  *
2987  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2988  *                  max(grq->load.weight, grq->avg.load_avg)
2989  *
2990  * And that is shares_weight and is icky. In the (near) UP case it approaches
2991  * (4) while in the normal case it approaches (3). It consistently
2992  * overestimates the ge->load.weight and therefore:
2993  *
2994  *   \Sum ge->load.weight >= tg->weight
2995  *
2996  * hence icky!
2997  */
2998 static long calc_group_shares(struct cfs_rq *cfs_rq)
2999 {
3000 	long tg_weight, tg_shares, load, shares;
3001 	struct task_group *tg = cfs_rq->tg;
3002 
3003 	tg_shares = READ_ONCE(tg->shares);
3004 
3005 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3006 
3007 	tg_weight = atomic_long_read(&tg->load_avg);
3008 
3009 	/* Ensure tg_weight >= load */
3010 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3011 	tg_weight += load;
3012 
3013 	shares = (tg_shares * load);
3014 	if (tg_weight)
3015 		shares /= tg_weight;
3016 
3017 	/*
3018 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3019 	 * of a group with small tg->shares value. It is a floor value which is
3020 	 * assigned as a minimum load.weight to the sched_entity representing
3021 	 * the group on a CPU.
3022 	 *
3023 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3024 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3025 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3026 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3027 	 * instead of 0.
3028 	 */
3029 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3030 }
3031 
3032 /*
3033  * This calculates the effective runnable weight for a group entity based on
3034  * the group entity weight calculated above.
3035  *
3036  * Because of the above approximation (2), our group entity weight is
3037  * an load_avg based ratio (3). This means that it includes blocked load and
3038  * does not represent the runnable weight.
3039  *
3040  * Approximate the group entity's runnable weight per ratio from the group
3041  * runqueue:
3042  *
3043  *					     grq->avg.runnable_load_avg
3044  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
3045  *						 grq->avg.load_avg
3046  *
3047  * However, analogous to above, since the avg numbers are slow, this leads to
3048  * transients in the from-idle case. Instead we use:
3049  *
3050  *   ge->runnable_weight = ge->load.weight *
3051  *
3052  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
3053  *		-----------------------------------------------------	(8)
3054  *		      max(grq->avg.load_avg, grq->load.weight)
3055  *
3056  * Where these max() serve both to use the 'instant' values to fix the slow
3057  * from-idle and avoid the /0 on to-idle, similar to (6).
3058  */
3059 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3060 {
3061 	long runnable, load_avg;
3062 
3063 	load_avg = max(cfs_rq->avg.load_avg,
3064 		       scale_load_down(cfs_rq->load.weight));
3065 
3066 	runnable = max(cfs_rq->avg.runnable_load_avg,
3067 		       scale_load_down(cfs_rq->runnable_weight));
3068 
3069 	runnable *= shares;
3070 	if (load_avg)
3071 		runnable /= load_avg;
3072 
3073 	return clamp_t(long, runnable, MIN_SHARES, shares);
3074 }
3075 #endif /* CONFIG_SMP */
3076 
3077 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3078 
3079 /*
3080  * Recomputes the group entity based on the current state of its group
3081  * runqueue.
3082  */
3083 static void update_cfs_group(struct sched_entity *se)
3084 {
3085 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3086 	long shares, runnable;
3087 
3088 	if (!gcfs_rq)
3089 		return;
3090 
3091 	if (throttled_hierarchy(gcfs_rq))
3092 		return;
3093 
3094 #ifndef CONFIG_SMP
3095 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3096 
3097 	if (likely(se->load.weight == shares))
3098 		return;
3099 #else
3100 	shares   = calc_group_shares(gcfs_rq);
3101 	runnable = calc_group_runnable(gcfs_rq, shares);
3102 #endif
3103 
3104 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
3105 }
3106 
3107 #else /* CONFIG_FAIR_GROUP_SCHED */
3108 static inline void update_cfs_group(struct sched_entity *se)
3109 {
3110 }
3111 #endif /* CONFIG_FAIR_GROUP_SCHED */
3112 
3113 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3114 {
3115 	struct rq *rq = rq_of(cfs_rq);
3116 
3117 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3118 		/*
3119 		 * There are a few boundary cases this might miss but it should
3120 		 * get called often enough that that should (hopefully) not be
3121 		 * a real problem.
3122 		 *
3123 		 * It will not get called when we go idle, because the idle
3124 		 * thread is a different class (!fair), nor will the utilization
3125 		 * number include things like RT tasks.
3126 		 *
3127 		 * As is, the util number is not freq-invariant (we'd have to
3128 		 * implement arch_scale_freq_capacity() for that).
3129 		 *
3130 		 * See cpu_util().
3131 		 */
3132 		cpufreq_update_util(rq, flags);
3133 	}
3134 }
3135 
3136 #ifdef CONFIG_SMP
3137 #ifdef CONFIG_FAIR_GROUP_SCHED
3138 /**
3139  * update_tg_load_avg - update the tg's load avg
3140  * @cfs_rq: the cfs_rq whose avg changed
3141  * @force: update regardless of how small the difference
3142  *
3143  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3144  * However, because tg->load_avg is a global value there are performance
3145  * considerations.
3146  *
3147  * In order to avoid having to look at the other cfs_rq's, we use a
3148  * differential update where we store the last value we propagated. This in
3149  * turn allows skipping updates if the differential is 'small'.
3150  *
3151  * Updating tg's load_avg is necessary before update_cfs_share().
3152  */
3153 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3154 {
3155 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3156 
3157 	/*
3158 	 * No need to update load_avg for root_task_group as it is not used.
3159 	 */
3160 	if (cfs_rq->tg == &root_task_group)
3161 		return;
3162 
3163 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3164 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3165 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3166 	}
3167 }
3168 
3169 /*
3170  * Called within set_task_rq() right before setting a task's CPU. The
3171  * caller only guarantees p->pi_lock is held; no other assumptions,
3172  * including the state of rq->lock, should be made.
3173  */
3174 void set_task_rq_fair(struct sched_entity *se,
3175 		      struct cfs_rq *prev, struct cfs_rq *next)
3176 {
3177 	u64 p_last_update_time;
3178 	u64 n_last_update_time;
3179 
3180 	if (!sched_feat(ATTACH_AGE_LOAD))
3181 		return;
3182 
3183 	/*
3184 	 * We are supposed to update the task to "current" time, then its up to
3185 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3186 	 * getting what current time is, so simply throw away the out-of-date
3187 	 * time. This will result in the wakee task is less decayed, but giving
3188 	 * the wakee more load sounds not bad.
3189 	 */
3190 	if (!(se->avg.last_update_time && prev))
3191 		return;
3192 
3193 #ifndef CONFIG_64BIT
3194 	{
3195 		u64 p_last_update_time_copy;
3196 		u64 n_last_update_time_copy;
3197 
3198 		do {
3199 			p_last_update_time_copy = prev->load_last_update_time_copy;
3200 			n_last_update_time_copy = next->load_last_update_time_copy;
3201 
3202 			smp_rmb();
3203 
3204 			p_last_update_time = prev->avg.last_update_time;
3205 			n_last_update_time = next->avg.last_update_time;
3206 
3207 		} while (p_last_update_time != p_last_update_time_copy ||
3208 			 n_last_update_time != n_last_update_time_copy);
3209 	}
3210 #else
3211 	p_last_update_time = prev->avg.last_update_time;
3212 	n_last_update_time = next->avg.last_update_time;
3213 #endif
3214 	__update_load_avg_blocked_se(p_last_update_time, se);
3215 	se->avg.last_update_time = n_last_update_time;
3216 }
3217 
3218 
3219 /*
3220  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3221  * propagate its contribution. The key to this propagation is the invariant
3222  * that for each group:
3223  *
3224  *   ge->avg == grq->avg						(1)
3225  *
3226  * _IFF_ we look at the pure running and runnable sums. Because they
3227  * represent the very same entity, just at different points in the hierarchy.
3228  *
3229  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3230  * sum over (but still wrong, because the group entity and group rq do not have
3231  * their PELT windows aligned).
3232  *
3233  * However, update_tg_cfs_runnable() is more complex. So we have:
3234  *
3235  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3236  *
3237  * And since, like util, the runnable part should be directly transferable,
3238  * the following would _appear_ to be the straight forward approach:
3239  *
3240  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3241  *
3242  * And per (1) we have:
3243  *
3244  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3245  *
3246  * Which gives:
3247  *
3248  *                      ge->load.weight * grq->avg.load_avg
3249  *   ge->avg.load_avg = -----------------------------------		(4)
3250  *                               grq->load.weight
3251  *
3252  * Except that is wrong!
3253  *
3254  * Because while for entities historical weight is not important and we
3255  * really only care about our future and therefore can consider a pure
3256  * runnable sum, runqueues can NOT do this.
3257  *
3258  * We specifically want runqueues to have a load_avg that includes
3259  * historical weights. Those represent the blocked load, the load we expect
3260  * to (shortly) return to us. This only works by keeping the weights as
3261  * integral part of the sum. We therefore cannot decompose as per (3).
3262  *
3263  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3264  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3265  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3266  * runnable section of these tasks overlap (or not). If they were to perfectly
3267  * align the rq as a whole would be runnable 2/3 of the time. If however we
3268  * always have at least 1 runnable task, the rq as a whole is always runnable.
3269  *
3270  * So we'll have to approximate.. :/
3271  *
3272  * Given the constraint:
3273  *
3274  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3275  *
3276  * We can construct a rule that adds runnable to a rq by assuming minimal
3277  * overlap.
3278  *
3279  * On removal, we'll assume each task is equally runnable; which yields:
3280  *
3281  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3282  *
3283  * XXX: only do this for the part of runnable > running ?
3284  *
3285  */
3286 
3287 static inline void
3288 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3289 {
3290 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3291 
3292 	/* Nothing to update */
3293 	if (!delta)
3294 		return;
3295 
3296 	/*
3297 	 * The relation between sum and avg is:
3298 	 *
3299 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3300 	 *
3301 	 * however, the PELT windows are not aligned between grq and gse.
3302 	 */
3303 
3304 	/* Set new sched_entity's utilization */
3305 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3306 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3307 
3308 	/* Update parent cfs_rq utilization */
3309 	add_positive(&cfs_rq->avg.util_avg, delta);
3310 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3311 }
3312 
3313 static inline void
3314 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3315 {
3316 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3317 	unsigned long runnable_load_avg, load_avg;
3318 	u64 runnable_load_sum, load_sum = 0;
3319 	s64 delta_sum;
3320 
3321 	if (!runnable_sum)
3322 		return;
3323 
3324 	gcfs_rq->prop_runnable_sum = 0;
3325 
3326 	if (runnable_sum >= 0) {
3327 		/*
3328 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3329 		 * the CPU is saturated running == runnable.
3330 		 */
3331 		runnable_sum += se->avg.load_sum;
3332 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3333 	} else {
3334 		/*
3335 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3336 		 * assuming all tasks are equally runnable.
3337 		 */
3338 		if (scale_load_down(gcfs_rq->load.weight)) {
3339 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3340 				scale_load_down(gcfs_rq->load.weight));
3341 		}
3342 
3343 		/* But make sure to not inflate se's runnable */
3344 		runnable_sum = min(se->avg.load_sum, load_sum);
3345 	}
3346 
3347 	/*
3348 	 * runnable_sum can't be lower than running_sum
3349 	 * Rescale running sum to be in the same range as runnable sum
3350 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3351 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3352 	 */
3353 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3354 	runnable_sum = max(runnable_sum, running_sum);
3355 
3356 	load_sum = (s64)se_weight(se) * runnable_sum;
3357 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3358 
3359 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3360 	delta_avg = load_avg - se->avg.load_avg;
3361 
3362 	se->avg.load_sum = runnable_sum;
3363 	se->avg.load_avg = load_avg;
3364 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3365 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3366 
3367 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3368 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3369 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3370 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3371 
3372 	se->avg.runnable_load_sum = runnable_sum;
3373 	se->avg.runnable_load_avg = runnable_load_avg;
3374 
3375 	if (se->on_rq) {
3376 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3377 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3378 	}
3379 }
3380 
3381 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3382 {
3383 	cfs_rq->propagate = 1;
3384 	cfs_rq->prop_runnable_sum += runnable_sum;
3385 }
3386 
3387 /* Update task and its cfs_rq load average */
3388 static inline int propagate_entity_load_avg(struct sched_entity *se)
3389 {
3390 	struct cfs_rq *cfs_rq, *gcfs_rq;
3391 
3392 	if (entity_is_task(se))
3393 		return 0;
3394 
3395 	gcfs_rq = group_cfs_rq(se);
3396 	if (!gcfs_rq->propagate)
3397 		return 0;
3398 
3399 	gcfs_rq->propagate = 0;
3400 
3401 	cfs_rq = cfs_rq_of(se);
3402 
3403 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3404 
3405 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3406 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3407 
3408 	trace_pelt_cfs_tp(cfs_rq);
3409 	trace_pelt_se_tp(se);
3410 
3411 	return 1;
3412 }
3413 
3414 /*
3415  * Check if we need to update the load and the utilization of a blocked
3416  * group_entity:
3417  */
3418 static inline bool skip_blocked_update(struct sched_entity *se)
3419 {
3420 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3421 
3422 	/*
3423 	 * If sched_entity still have not zero load or utilization, we have to
3424 	 * decay it:
3425 	 */
3426 	if (se->avg.load_avg || se->avg.util_avg)
3427 		return false;
3428 
3429 	/*
3430 	 * If there is a pending propagation, we have to update the load and
3431 	 * the utilization of the sched_entity:
3432 	 */
3433 	if (gcfs_rq->propagate)
3434 		return false;
3435 
3436 	/*
3437 	 * Otherwise, the load and the utilization of the sched_entity is
3438 	 * already zero and there is no pending propagation, so it will be a
3439 	 * waste of time to try to decay it:
3440 	 */
3441 	return true;
3442 }
3443 
3444 #else /* CONFIG_FAIR_GROUP_SCHED */
3445 
3446 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3447 
3448 static inline int propagate_entity_load_avg(struct sched_entity *se)
3449 {
3450 	return 0;
3451 }
3452 
3453 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3454 
3455 #endif /* CONFIG_FAIR_GROUP_SCHED */
3456 
3457 /**
3458  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3459  * @now: current time, as per cfs_rq_clock_pelt()
3460  * @cfs_rq: cfs_rq to update
3461  *
3462  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3463  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3464  * post_init_entity_util_avg().
3465  *
3466  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3467  *
3468  * Returns true if the load decayed or we removed load.
3469  *
3470  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3471  * call update_tg_load_avg() when this function returns true.
3472  */
3473 static inline int
3474 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3475 {
3476 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3477 	struct sched_avg *sa = &cfs_rq->avg;
3478 	int decayed = 0;
3479 
3480 	if (cfs_rq->removed.nr) {
3481 		unsigned long r;
3482 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3483 
3484 		raw_spin_lock(&cfs_rq->removed.lock);
3485 		swap(cfs_rq->removed.util_avg, removed_util);
3486 		swap(cfs_rq->removed.load_avg, removed_load);
3487 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3488 		cfs_rq->removed.nr = 0;
3489 		raw_spin_unlock(&cfs_rq->removed.lock);
3490 
3491 		r = removed_load;
3492 		sub_positive(&sa->load_avg, r);
3493 		sub_positive(&sa->load_sum, r * divider);
3494 
3495 		r = removed_util;
3496 		sub_positive(&sa->util_avg, r);
3497 		sub_positive(&sa->util_sum, r * divider);
3498 
3499 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3500 
3501 		decayed = 1;
3502 	}
3503 
3504 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3505 
3506 #ifndef CONFIG_64BIT
3507 	smp_wmb();
3508 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3509 #endif
3510 
3511 	return decayed;
3512 }
3513 
3514 /**
3515  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3516  * @cfs_rq: cfs_rq to attach to
3517  * @se: sched_entity to attach
3518  * @flags: migration hints
3519  *
3520  * Must call update_cfs_rq_load_avg() before this, since we rely on
3521  * cfs_rq->avg.last_update_time being current.
3522  */
3523 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3524 {
3525 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3526 
3527 	/*
3528 	 * When we attach the @se to the @cfs_rq, we must align the decay
3529 	 * window because without that, really weird and wonderful things can
3530 	 * happen.
3531 	 *
3532 	 * XXX illustrate
3533 	 */
3534 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3535 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3536 
3537 	/*
3538 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3539 	 * period_contrib. This isn't strictly correct, but since we're
3540 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3541 	 * _sum a little.
3542 	 */
3543 	se->avg.util_sum = se->avg.util_avg * divider;
3544 
3545 	se->avg.load_sum = divider;
3546 	if (se_weight(se)) {
3547 		se->avg.load_sum =
3548 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3549 	}
3550 
3551 	se->avg.runnable_load_sum = se->avg.load_sum;
3552 
3553 	enqueue_load_avg(cfs_rq, se);
3554 	cfs_rq->avg.util_avg += se->avg.util_avg;
3555 	cfs_rq->avg.util_sum += se->avg.util_sum;
3556 
3557 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3558 
3559 	cfs_rq_util_change(cfs_rq, flags);
3560 
3561 	trace_pelt_cfs_tp(cfs_rq);
3562 }
3563 
3564 /**
3565  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3566  * @cfs_rq: cfs_rq to detach from
3567  * @se: sched_entity to detach
3568  *
3569  * Must call update_cfs_rq_load_avg() before this, since we rely on
3570  * cfs_rq->avg.last_update_time being current.
3571  */
3572 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3573 {
3574 	dequeue_load_avg(cfs_rq, se);
3575 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3576 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3577 
3578 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3579 
3580 	cfs_rq_util_change(cfs_rq, 0);
3581 
3582 	trace_pelt_cfs_tp(cfs_rq);
3583 }
3584 
3585 /*
3586  * Optional action to be done while updating the load average
3587  */
3588 #define UPDATE_TG	0x1
3589 #define SKIP_AGE_LOAD	0x2
3590 #define DO_ATTACH	0x4
3591 
3592 /* Update task and its cfs_rq load average */
3593 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3594 {
3595 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3596 	int decayed;
3597 
3598 	/*
3599 	 * Track task load average for carrying it to new CPU after migrated, and
3600 	 * track group sched_entity load average for task_h_load calc in migration
3601 	 */
3602 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3603 		__update_load_avg_se(now, cfs_rq, se);
3604 
3605 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3606 	decayed |= propagate_entity_load_avg(se);
3607 
3608 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3609 
3610 		/*
3611 		 * DO_ATTACH means we're here from enqueue_entity().
3612 		 * !last_update_time means we've passed through
3613 		 * migrate_task_rq_fair() indicating we migrated.
3614 		 *
3615 		 * IOW we're enqueueing a task on a new CPU.
3616 		 */
3617 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3618 		update_tg_load_avg(cfs_rq, 0);
3619 
3620 	} else if (decayed) {
3621 		cfs_rq_util_change(cfs_rq, 0);
3622 
3623 		if (flags & UPDATE_TG)
3624 			update_tg_load_avg(cfs_rq, 0);
3625 	}
3626 }
3627 
3628 #ifndef CONFIG_64BIT
3629 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3630 {
3631 	u64 last_update_time_copy;
3632 	u64 last_update_time;
3633 
3634 	do {
3635 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3636 		smp_rmb();
3637 		last_update_time = cfs_rq->avg.last_update_time;
3638 	} while (last_update_time != last_update_time_copy);
3639 
3640 	return last_update_time;
3641 }
3642 #else
3643 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3644 {
3645 	return cfs_rq->avg.last_update_time;
3646 }
3647 #endif
3648 
3649 /*
3650  * Synchronize entity load avg of dequeued entity without locking
3651  * the previous rq.
3652  */
3653 static void sync_entity_load_avg(struct sched_entity *se)
3654 {
3655 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3656 	u64 last_update_time;
3657 
3658 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3659 	__update_load_avg_blocked_se(last_update_time, se);
3660 }
3661 
3662 /*
3663  * Task first catches up with cfs_rq, and then subtract
3664  * itself from the cfs_rq (task must be off the queue now).
3665  */
3666 static void remove_entity_load_avg(struct sched_entity *se)
3667 {
3668 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3669 	unsigned long flags;
3670 
3671 	/*
3672 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3673 	 * post_init_entity_util_avg() which will have added things to the
3674 	 * cfs_rq, so we can remove unconditionally.
3675 	 */
3676 
3677 	sync_entity_load_avg(se);
3678 
3679 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3680 	++cfs_rq->removed.nr;
3681 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3682 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3683 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3684 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3685 }
3686 
3687 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3688 {
3689 	return cfs_rq->avg.runnable_load_avg;
3690 }
3691 
3692 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3693 {
3694 	return cfs_rq->avg.load_avg;
3695 }
3696 
3697 static inline unsigned long task_util(struct task_struct *p)
3698 {
3699 	return READ_ONCE(p->se.avg.util_avg);
3700 }
3701 
3702 static inline unsigned long _task_util_est(struct task_struct *p)
3703 {
3704 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3705 
3706 	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3707 }
3708 
3709 static inline unsigned long task_util_est(struct task_struct *p)
3710 {
3711 	return max(task_util(p), _task_util_est(p));
3712 }
3713 
3714 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3715 				    struct task_struct *p)
3716 {
3717 	unsigned int enqueued;
3718 
3719 	if (!sched_feat(UTIL_EST))
3720 		return;
3721 
3722 	/* Update root cfs_rq's estimated utilization */
3723 	enqueued  = cfs_rq->avg.util_est.enqueued;
3724 	enqueued += _task_util_est(p);
3725 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3726 }
3727 
3728 /*
3729  * Check if a (signed) value is within a specified (unsigned) margin,
3730  * based on the observation that:
3731  *
3732  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3733  *
3734  * NOTE: this only works when value + maring < INT_MAX.
3735  */
3736 static inline bool within_margin(int value, int margin)
3737 {
3738 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3739 }
3740 
3741 static void
3742 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3743 {
3744 	long last_ewma_diff;
3745 	struct util_est ue;
3746 	int cpu;
3747 
3748 	if (!sched_feat(UTIL_EST))
3749 		return;
3750 
3751 	/* Update root cfs_rq's estimated utilization */
3752 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3753 	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3754 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3755 
3756 	/*
3757 	 * Skip update of task's estimated utilization when the task has not
3758 	 * yet completed an activation, e.g. being migrated.
3759 	 */
3760 	if (!task_sleep)
3761 		return;
3762 
3763 	/*
3764 	 * If the PELT values haven't changed since enqueue time,
3765 	 * skip the util_est update.
3766 	 */
3767 	ue = p->se.avg.util_est;
3768 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3769 		return;
3770 
3771 	/*
3772 	 * Reset EWMA on utilization increases, the moving average is used only
3773 	 * to smooth utilization decreases.
3774 	 */
3775 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3776 	if (sched_feat(UTIL_EST_FASTUP)) {
3777 		if (ue.ewma < ue.enqueued) {
3778 			ue.ewma = ue.enqueued;
3779 			goto done;
3780 		}
3781 	}
3782 
3783 	/*
3784 	 * Skip update of task's estimated utilization when its EWMA is
3785 	 * already ~1% close to its last activation value.
3786 	 */
3787 	last_ewma_diff = ue.enqueued - ue.ewma;
3788 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3789 		return;
3790 
3791 	/*
3792 	 * To avoid overestimation of actual task utilization, skip updates if
3793 	 * we cannot grant there is idle time in this CPU.
3794 	 */
3795 	cpu = cpu_of(rq_of(cfs_rq));
3796 	if (task_util(p) > capacity_orig_of(cpu))
3797 		return;
3798 
3799 	/*
3800 	 * Update Task's estimated utilization
3801 	 *
3802 	 * When *p completes an activation we can consolidate another sample
3803 	 * of the task size. This is done by storing the current PELT value
3804 	 * as ue.enqueued and by using this value to update the Exponential
3805 	 * Weighted Moving Average (EWMA):
3806 	 *
3807 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3808 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3809 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3810 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3811 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3812 	 *
3813 	 * Where 'w' is the weight of new samples, which is configured to be
3814 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3815 	 */
3816 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3817 	ue.ewma  += last_ewma_diff;
3818 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3819 done:
3820 	WRITE_ONCE(p->se.avg.util_est, ue);
3821 }
3822 
3823 static inline int task_fits_capacity(struct task_struct *p, long capacity)
3824 {
3825 	return fits_capacity(task_util_est(p), capacity);
3826 }
3827 
3828 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3829 {
3830 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
3831 		return;
3832 
3833 	if (!p) {
3834 		rq->misfit_task_load = 0;
3835 		return;
3836 	}
3837 
3838 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3839 		rq->misfit_task_load = 0;
3840 		return;
3841 	}
3842 
3843 	rq->misfit_task_load = task_h_load(p);
3844 }
3845 
3846 #else /* CONFIG_SMP */
3847 
3848 #define UPDATE_TG	0x0
3849 #define SKIP_AGE_LOAD	0x0
3850 #define DO_ATTACH	0x0
3851 
3852 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3853 {
3854 	cfs_rq_util_change(cfs_rq, 0);
3855 }
3856 
3857 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3858 
3859 static inline void
3860 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3861 static inline void
3862 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3863 
3864 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3865 {
3866 	return 0;
3867 }
3868 
3869 static inline void
3870 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3871 
3872 static inline void
3873 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3874 		 bool task_sleep) {}
3875 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3876 
3877 #endif /* CONFIG_SMP */
3878 
3879 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3880 {
3881 #ifdef CONFIG_SCHED_DEBUG
3882 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3883 
3884 	if (d < 0)
3885 		d = -d;
3886 
3887 	if (d > 3*sysctl_sched_latency)
3888 		schedstat_inc(cfs_rq->nr_spread_over);
3889 #endif
3890 }
3891 
3892 static void
3893 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3894 {
3895 	u64 vruntime = cfs_rq->min_vruntime;
3896 
3897 	/*
3898 	 * The 'current' period is already promised to the current tasks,
3899 	 * however the extra weight of the new task will slow them down a
3900 	 * little, place the new task so that it fits in the slot that
3901 	 * stays open at the end.
3902 	 */
3903 	if (initial && sched_feat(START_DEBIT))
3904 		vruntime += sched_vslice(cfs_rq, se);
3905 
3906 	/* sleeps up to a single latency don't count. */
3907 	if (!initial) {
3908 		unsigned long thresh = sysctl_sched_latency;
3909 
3910 		/*
3911 		 * Halve their sleep time's effect, to allow
3912 		 * for a gentler effect of sleepers:
3913 		 */
3914 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3915 			thresh >>= 1;
3916 
3917 		vruntime -= thresh;
3918 	}
3919 
3920 	/* ensure we never gain time by being placed backwards. */
3921 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3922 }
3923 
3924 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3925 
3926 static inline void check_schedstat_required(void)
3927 {
3928 #ifdef CONFIG_SCHEDSTATS
3929 	if (schedstat_enabled())
3930 		return;
3931 
3932 	/* Force schedstat enabled if a dependent tracepoint is active */
3933 	if (trace_sched_stat_wait_enabled()    ||
3934 			trace_sched_stat_sleep_enabled()   ||
3935 			trace_sched_stat_iowait_enabled()  ||
3936 			trace_sched_stat_blocked_enabled() ||
3937 			trace_sched_stat_runtime_enabled())  {
3938 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3939 			     "stat_blocked and stat_runtime require the "
3940 			     "kernel parameter schedstats=enable or "
3941 			     "kernel.sched_schedstats=1\n");
3942 	}
3943 #endif
3944 }
3945 
3946 
3947 /*
3948  * MIGRATION
3949  *
3950  *	dequeue
3951  *	  update_curr()
3952  *	    update_min_vruntime()
3953  *	  vruntime -= min_vruntime
3954  *
3955  *	enqueue
3956  *	  update_curr()
3957  *	    update_min_vruntime()
3958  *	  vruntime += min_vruntime
3959  *
3960  * this way the vruntime transition between RQs is done when both
3961  * min_vruntime are up-to-date.
3962  *
3963  * WAKEUP (remote)
3964  *
3965  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3966  *	  vruntime -= min_vruntime
3967  *
3968  *	enqueue
3969  *	  update_curr()
3970  *	    update_min_vruntime()
3971  *	  vruntime += min_vruntime
3972  *
3973  * this way we don't have the most up-to-date min_vruntime on the originating
3974  * CPU and an up-to-date min_vruntime on the destination CPU.
3975  */
3976 
3977 static void
3978 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3979 {
3980 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3981 	bool curr = cfs_rq->curr == se;
3982 
3983 	/*
3984 	 * If we're the current task, we must renormalise before calling
3985 	 * update_curr().
3986 	 */
3987 	if (renorm && curr)
3988 		se->vruntime += cfs_rq->min_vruntime;
3989 
3990 	update_curr(cfs_rq);
3991 
3992 	/*
3993 	 * Otherwise, renormalise after, such that we're placed at the current
3994 	 * moment in time, instead of some random moment in the past. Being
3995 	 * placed in the past could significantly boost this task to the
3996 	 * fairness detriment of existing tasks.
3997 	 */
3998 	if (renorm && !curr)
3999 		se->vruntime += cfs_rq->min_vruntime;
4000 
4001 	/*
4002 	 * When enqueuing a sched_entity, we must:
4003 	 *   - Update loads to have both entity and cfs_rq synced with now.
4004 	 *   - Add its load to cfs_rq->runnable_avg
4005 	 *   - For group_entity, update its weight to reflect the new share of
4006 	 *     its group cfs_rq
4007 	 *   - Add its new weight to cfs_rq->load.weight
4008 	 */
4009 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4010 	update_cfs_group(se);
4011 	enqueue_runnable_load_avg(cfs_rq, se);
4012 	account_entity_enqueue(cfs_rq, se);
4013 
4014 	if (flags & ENQUEUE_WAKEUP)
4015 		place_entity(cfs_rq, se, 0);
4016 
4017 	check_schedstat_required();
4018 	update_stats_enqueue(cfs_rq, se, flags);
4019 	check_spread(cfs_rq, se);
4020 	if (!curr)
4021 		__enqueue_entity(cfs_rq, se);
4022 	se->on_rq = 1;
4023 
4024 	if (cfs_rq->nr_running == 1) {
4025 		list_add_leaf_cfs_rq(cfs_rq);
4026 		check_enqueue_throttle(cfs_rq);
4027 	}
4028 }
4029 
4030 static void __clear_buddies_last(struct sched_entity *se)
4031 {
4032 	for_each_sched_entity(se) {
4033 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4034 		if (cfs_rq->last != se)
4035 			break;
4036 
4037 		cfs_rq->last = NULL;
4038 	}
4039 }
4040 
4041 static void __clear_buddies_next(struct sched_entity *se)
4042 {
4043 	for_each_sched_entity(se) {
4044 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4045 		if (cfs_rq->next != se)
4046 			break;
4047 
4048 		cfs_rq->next = NULL;
4049 	}
4050 }
4051 
4052 static void __clear_buddies_skip(struct sched_entity *se)
4053 {
4054 	for_each_sched_entity(se) {
4055 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4056 		if (cfs_rq->skip != se)
4057 			break;
4058 
4059 		cfs_rq->skip = NULL;
4060 	}
4061 }
4062 
4063 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4064 {
4065 	if (cfs_rq->last == se)
4066 		__clear_buddies_last(se);
4067 
4068 	if (cfs_rq->next == se)
4069 		__clear_buddies_next(se);
4070 
4071 	if (cfs_rq->skip == se)
4072 		__clear_buddies_skip(se);
4073 }
4074 
4075 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4076 
4077 static void
4078 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4079 {
4080 	/*
4081 	 * Update run-time statistics of the 'current'.
4082 	 */
4083 	update_curr(cfs_rq);
4084 
4085 	/*
4086 	 * When dequeuing a sched_entity, we must:
4087 	 *   - Update loads to have both entity and cfs_rq synced with now.
4088 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4089 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4090 	 *   - For group entity, update its weight to reflect the new share
4091 	 *     of its group cfs_rq.
4092 	 */
4093 	update_load_avg(cfs_rq, se, UPDATE_TG);
4094 	dequeue_runnable_load_avg(cfs_rq, se);
4095 
4096 	update_stats_dequeue(cfs_rq, se, flags);
4097 
4098 	clear_buddies(cfs_rq, se);
4099 
4100 	if (se != cfs_rq->curr)
4101 		__dequeue_entity(cfs_rq, se);
4102 	se->on_rq = 0;
4103 	account_entity_dequeue(cfs_rq, se);
4104 
4105 	/*
4106 	 * Normalize after update_curr(); which will also have moved
4107 	 * min_vruntime if @se is the one holding it back. But before doing
4108 	 * update_min_vruntime() again, which will discount @se's position and
4109 	 * can move min_vruntime forward still more.
4110 	 */
4111 	if (!(flags & DEQUEUE_SLEEP))
4112 		se->vruntime -= cfs_rq->min_vruntime;
4113 
4114 	/* return excess runtime on last dequeue */
4115 	return_cfs_rq_runtime(cfs_rq);
4116 
4117 	update_cfs_group(se);
4118 
4119 	/*
4120 	 * Now advance min_vruntime if @se was the entity holding it back,
4121 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4122 	 * put back on, and if we advance min_vruntime, we'll be placed back
4123 	 * further than we started -- ie. we'll be penalized.
4124 	 */
4125 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4126 		update_min_vruntime(cfs_rq);
4127 }
4128 
4129 /*
4130  * Preempt the current task with a newly woken task if needed:
4131  */
4132 static void
4133 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4134 {
4135 	unsigned long ideal_runtime, delta_exec;
4136 	struct sched_entity *se;
4137 	s64 delta;
4138 
4139 	ideal_runtime = sched_slice(cfs_rq, curr);
4140 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4141 	if (delta_exec > ideal_runtime) {
4142 		resched_curr(rq_of(cfs_rq));
4143 		/*
4144 		 * The current task ran long enough, ensure it doesn't get
4145 		 * re-elected due to buddy favours.
4146 		 */
4147 		clear_buddies(cfs_rq, curr);
4148 		return;
4149 	}
4150 
4151 	/*
4152 	 * Ensure that a task that missed wakeup preemption by a
4153 	 * narrow margin doesn't have to wait for a full slice.
4154 	 * This also mitigates buddy induced latencies under load.
4155 	 */
4156 	if (delta_exec < sysctl_sched_min_granularity)
4157 		return;
4158 
4159 	se = __pick_first_entity(cfs_rq);
4160 	delta = curr->vruntime - se->vruntime;
4161 
4162 	if (delta < 0)
4163 		return;
4164 
4165 	if (delta > ideal_runtime)
4166 		resched_curr(rq_of(cfs_rq));
4167 }
4168 
4169 static void
4170 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4171 {
4172 	/* 'current' is not kept within the tree. */
4173 	if (se->on_rq) {
4174 		/*
4175 		 * Any task has to be enqueued before it get to execute on
4176 		 * a CPU. So account for the time it spent waiting on the
4177 		 * runqueue.
4178 		 */
4179 		update_stats_wait_end(cfs_rq, se);
4180 		__dequeue_entity(cfs_rq, se);
4181 		update_load_avg(cfs_rq, se, UPDATE_TG);
4182 	}
4183 
4184 	update_stats_curr_start(cfs_rq, se);
4185 	cfs_rq->curr = se;
4186 
4187 	/*
4188 	 * Track our maximum slice length, if the CPU's load is at
4189 	 * least twice that of our own weight (i.e. dont track it
4190 	 * when there are only lesser-weight tasks around):
4191 	 */
4192 	if (schedstat_enabled() &&
4193 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4194 		schedstat_set(se->statistics.slice_max,
4195 			max((u64)schedstat_val(se->statistics.slice_max),
4196 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4197 	}
4198 
4199 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4200 }
4201 
4202 static int
4203 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4204 
4205 /*
4206  * Pick the next process, keeping these things in mind, in this order:
4207  * 1) keep things fair between processes/task groups
4208  * 2) pick the "next" process, since someone really wants that to run
4209  * 3) pick the "last" process, for cache locality
4210  * 4) do not run the "skip" process, if something else is available
4211  */
4212 static struct sched_entity *
4213 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4214 {
4215 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4216 	struct sched_entity *se;
4217 
4218 	/*
4219 	 * If curr is set we have to see if its left of the leftmost entity
4220 	 * still in the tree, provided there was anything in the tree at all.
4221 	 */
4222 	if (!left || (curr && entity_before(curr, left)))
4223 		left = curr;
4224 
4225 	se = left; /* ideally we run the leftmost entity */
4226 
4227 	/*
4228 	 * Avoid running the skip buddy, if running something else can
4229 	 * be done without getting too unfair.
4230 	 */
4231 	if (cfs_rq->skip == se) {
4232 		struct sched_entity *second;
4233 
4234 		if (se == curr) {
4235 			second = __pick_first_entity(cfs_rq);
4236 		} else {
4237 			second = __pick_next_entity(se);
4238 			if (!second || (curr && entity_before(curr, second)))
4239 				second = curr;
4240 		}
4241 
4242 		if (second && wakeup_preempt_entity(second, left) < 1)
4243 			se = second;
4244 	}
4245 
4246 	/*
4247 	 * Prefer last buddy, try to return the CPU to a preempted task.
4248 	 */
4249 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4250 		se = cfs_rq->last;
4251 
4252 	/*
4253 	 * Someone really wants this to run. If it's not unfair, run it.
4254 	 */
4255 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4256 		se = cfs_rq->next;
4257 
4258 	clear_buddies(cfs_rq, se);
4259 
4260 	return se;
4261 }
4262 
4263 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4264 
4265 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4266 {
4267 	/*
4268 	 * If still on the runqueue then deactivate_task()
4269 	 * was not called and update_curr() has to be done:
4270 	 */
4271 	if (prev->on_rq)
4272 		update_curr(cfs_rq);
4273 
4274 	/* throttle cfs_rqs exceeding runtime */
4275 	check_cfs_rq_runtime(cfs_rq);
4276 
4277 	check_spread(cfs_rq, prev);
4278 
4279 	if (prev->on_rq) {
4280 		update_stats_wait_start(cfs_rq, prev);
4281 		/* Put 'current' back into the tree. */
4282 		__enqueue_entity(cfs_rq, prev);
4283 		/* in !on_rq case, update occurred at dequeue */
4284 		update_load_avg(cfs_rq, prev, 0);
4285 	}
4286 	cfs_rq->curr = NULL;
4287 }
4288 
4289 static void
4290 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4291 {
4292 	/*
4293 	 * Update run-time statistics of the 'current'.
4294 	 */
4295 	update_curr(cfs_rq);
4296 
4297 	/*
4298 	 * Ensure that runnable average is periodically updated.
4299 	 */
4300 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4301 	update_cfs_group(curr);
4302 
4303 #ifdef CONFIG_SCHED_HRTICK
4304 	/*
4305 	 * queued ticks are scheduled to match the slice, so don't bother
4306 	 * validating it and just reschedule.
4307 	 */
4308 	if (queued) {
4309 		resched_curr(rq_of(cfs_rq));
4310 		return;
4311 	}
4312 	/*
4313 	 * don't let the period tick interfere with the hrtick preemption
4314 	 */
4315 	if (!sched_feat(DOUBLE_TICK) &&
4316 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4317 		return;
4318 #endif
4319 
4320 	if (cfs_rq->nr_running > 1)
4321 		check_preempt_tick(cfs_rq, curr);
4322 }
4323 
4324 
4325 /**************************************************
4326  * CFS bandwidth control machinery
4327  */
4328 
4329 #ifdef CONFIG_CFS_BANDWIDTH
4330 
4331 #ifdef CONFIG_JUMP_LABEL
4332 static struct static_key __cfs_bandwidth_used;
4333 
4334 static inline bool cfs_bandwidth_used(void)
4335 {
4336 	return static_key_false(&__cfs_bandwidth_used);
4337 }
4338 
4339 void cfs_bandwidth_usage_inc(void)
4340 {
4341 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4342 }
4343 
4344 void cfs_bandwidth_usage_dec(void)
4345 {
4346 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4347 }
4348 #else /* CONFIG_JUMP_LABEL */
4349 static bool cfs_bandwidth_used(void)
4350 {
4351 	return true;
4352 }
4353 
4354 void cfs_bandwidth_usage_inc(void) {}
4355 void cfs_bandwidth_usage_dec(void) {}
4356 #endif /* CONFIG_JUMP_LABEL */
4357 
4358 /*
4359  * default period for cfs group bandwidth.
4360  * default: 0.1s, units: nanoseconds
4361  */
4362 static inline u64 default_cfs_period(void)
4363 {
4364 	return 100000000ULL;
4365 }
4366 
4367 static inline u64 sched_cfs_bandwidth_slice(void)
4368 {
4369 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4370 }
4371 
4372 /*
4373  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4374  * directly instead of rq->clock to avoid adding additional synchronization
4375  * around rq->lock.
4376  *
4377  * requires cfs_b->lock
4378  */
4379 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4380 {
4381 	if (cfs_b->quota != RUNTIME_INF)
4382 		cfs_b->runtime = cfs_b->quota;
4383 }
4384 
4385 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4386 {
4387 	return &tg->cfs_bandwidth;
4388 }
4389 
4390 /* returns 0 on failure to allocate runtime */
4391 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4392 {
4393 	struct task_group *tg = cfs_rq->tg;
4394 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4395 	u64 amount = 0, min_amount;
4396 
4397 	/* note: this is a positive sum as runtime_remaining <= 0 */
4398 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4399 
4400 	raw_spin_lock(&cfs_b->lock);
4401 	if (cfs_b->quota == RUNTIME_INF)
4402 		amount = min_amount;
4403 	else {
4404 		start_cfs_bandwidth(cfs_b);
4405 
4406 		if (cfs_b->runtime > 0) {
4407 			amount = min(cfs_b->runtime, min_amount);
4408 			cfs_b->runtime -= amount;
4409 			cfs_b->idle = 0;
4410 		}
4411 	}
4412 	raw_spin_unlock(&cfs_b->lock);
4413 
4414 	cfs_rq->runtime_remaining += amount;
4415 
4416 	return cfs_rq->runtime_remaining > 0;
4417 }
4418 
4419 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4420 {
4421 	/* dock delta_exec before expiring quota (as it could span periods) */
4422 	cfs_rq->runtime_remaining -= delta_exec;
4423 
4424 	if (likely(cfs_rq->runtime_remaining > 0))
4425 		return;
4426 
4427 	if (cfs_rq->throttled)
4428 		return;
4429 	/*
4430 	 * if we're unable to extend our runtime we resched so that the active
4431 	 * hierarchy can be throttled
4432 	 */
4433 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4434 		resched_curr(rq_of(cfs_rq));
4435 }
4436 
4437 static __always_inline
4438 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4439 {
4440 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4441 		return;
4442 
4443 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4444 }
4445 
4446 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4447 {
4448 	return cfs_bandwidth_used() && cfs_rq->throttled;
4449 }
4450 
4451 /* check whether cfs_rq, or any parent, is throttled */
4452 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4453 {
4454 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4455 }
4456 
4457 /*
4458  * Ensure that neither of the group entities corresponding to src_cpu or
4459  * dest_cpu are members of a throttled hierarchy when performing group
4460  * load-balance operations.
4461  */
4462 static inline int throttled_lb_pair(struct task_group *tg,
4463 				    int src_cpu, int dest_cpu)
4464 {
4465 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4466 
4467 	src_cfs_rq = tg->cfs_rq[src_cpu];
4468 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4469 
4470 	return throttled_hierarchy(src_cfs_rq) ||
4471 	       throttled_hierarchy(dest_cfs_rq);
4472 }
4473 
4474 static int tg_unthrottle_up(struct task_group *tg, void *data)
4475 {
4476 	struct rq *rq = data;
4477 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4478 
4479 	cfs_rq->throttle_count--;
4480 	if (!cfs_rq->throttle_count) {
4481 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4482 					     cfs_rq->throttled_clock_task;
4483 
4484 		/* Add cfs_rq with already running entity in the list */
4485 		if (cfs_rq->nr_running >= 1)
4486 			list_add_leaf_cfs_rq(cfs_rq);
4487 	}
4488 
4489 	return 0;
4490 }
4491 
4492 static int tg_throttle_down(struct task_group *tg, void *data)
4493 {
4494 	struct rq *rq = data;
4495 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4496 
4497 	/* group is entering throttled state, stop time */
4498 	if (!cfs_rq->throttle_count) {
4499 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4500 		list_del_leaf_cfs_rq(cfs_rq);
4501 	}
4502 	cfs_rq->throttle_count++;
4503 
4504 	return 0;
4505 }
4506 
4507 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4508 {
4509 	struct rq *rq = rq_of(cfs_rq);
4510 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4511 	struct sched_entity *se;
4512 	long task_delta, idle_task_delta, dequeue = 1;
4513 	bool empty;
4514 
4515 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4516 
4517 	/* freeze hierarchy runnable averages while throttled */
4518 	rcu_read_lock();
4519 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4520 	rcu_read_unlock();
4521 
4522 	task_delta = cfs_rq->h_nr_running;
4523 	idle_task_delta = cfs_rq->idle_h_nr_running;
4524 	for_each_sched_entity(se) {
4525 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4526 		/* throttled entity or throttle-on-deactivate */
4527 		if (!se->on_rq)
4528 			break;
4529 
4530 		if (dequeue)
4531 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4532 		qcfs_rq->h_nr_running -= task_delta;
4533 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4534 
4535 		if (qcfs_rq->load.weight)
4536 			dequeue = 0;
4537 	}
4538 
4539 	if (!se)
4540 		sub_nr_running(rq, task_delta);
4541 
4542 	cfs_rq->throttled = 1;
4543 	cfs_rq->throttled_clock = rq_clock(rq);
4544 	raw_spin_lock(&cfs_b->lock);
4545 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4546 
4547 	/*
4548 	 * Add to the _head_ of the list, so that an already-started
4549 	 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4550 	 * not running add to the tail so that later runqueues don't get starved.
4551 	 */
4552 	if (cfs_b->distribute_running)
4553 		list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4554 	else
4555 		list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4556 
4557 	/*
4558 	 * If we're the first throttled task, make sure the bandwidth
4559 	 * timer is running.
4560 	 */
4561 	if (empty)
4562 		start_cfs_bandwidth(cfs_b);
4563 
4564 	raw_spin_unlock(&cfs_b->lock);
4565 }
4566 
4567 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4568 {
4569 	struct rq *rq = rq_of(cfs_rq);
4570 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4571 	struct sched_entity *se;
4572 	int enqueue = 1;
4573 	long task_delta, idle_task_delta;
4574 
4575 	se = cfs_rq->tg->se[cpu_of(rq)];
4576 
4577 	cfs_rq->throttled = 0;
4578 
4579 	update_rq_clock(rq);
4580 
4581 	raw_spin_lock(&cfs_b->lock);
4582 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4583 	list_del_rcu(&cfs_rq->throttled_list);
4584 	raw_spin_unlock(&cfs_b->lock);
4585 
4586 	/* update hierarchical throttle state */
4587 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4588 
4589 	if (!cfs_rq->load.weight)
4590 		return;
4591 
4592 	task_delta = cfs_rq->h_nr_running;
4593 	idle_task_delta = cfs_rq->idle_h_nr_running;
4594 	for_each_sched_entity(se) {
4595 		if (se->on_rq)
4596 			enqueue = 0;
4597 
4598 		cfs_rq = cfs_rq_of(se);
4599 		if (enqueue)
4600 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4601 		cfs_rq->h_nr_running += task_delta;
4602 		cfs_rq->idle_h_nr_running += idle_task_delta;
4603 
4604 		if (cfs_rq_throttled(cfs_rq))
4605 			break;
4606 	}
4607 
4608 	assert_list_leaf_cfs_rq(rq);
4609 
4610 	if (!se)
4611 		add_nr_running(rq, task_delta);
4612 
4613 	/* Determine whether we need to wake up potentially idle CPU: */
4614 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4615 		resched_curr(rq);
4616 }
4617 
4618 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
4619 {
4620 	struct cfs_rq *cfs_rq;
4621 	u64 runtime;
4622 	u64 starting_runtime = remaining;
4623 
4624 	rcu_read_lock();
4625 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4626 				throttled_list) {
4627 		struct rq *rq = rq_of(cfs_rq);
4628 		struct rq_flags rf;
4629 
4630 		rq_lock_irqsave(rq, &rf);
4631 		if (!cfs_rq_throttled(cfs_rq))
4632 			goto next;
4633 
4634 		/* By the above check, this should never be true */
4635 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4636 
4637 		runtime = -cfs_rq->runtime_remaining + 1;
4638 		if (runtime > remaining)
4639 			runtime = remaining;
4640 		remaining -= runtime;
4641 
4642 		cfs_rq->runtime_remaining += runtime;
4643 
4644 		/* we check whether we're throttled above */
4645 		if (cfs_rq->runtime_remaining > 0)
4646 			unthrottle_cfs_rq(cfs_rq);
4647 
4648 next:
4649 		rq_unlock_irqrestore(rq, &rf);
4650 
4651 		if (!remaining)
4652 			break;
4653 	}
4654 	rcu_read_unlock();
4655 
4656 	return starting_runtime - remaining;
4657 }
4658 
4659 /*
4660  * Responsible for refilling a task_group's bandwidth and unthrottling its
4661  * cfs_rqs as appropriate. If there has been no activity within the last
4662  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4663  * used to track this state.
4664  */
4665 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4666 {
4667 	u64 runtime;
4668 	int throttled;
4669 
4670 	/* no need to continue the timer with no bandwidth constraint */
4671 	if (cfs_b->quota == RUNTIME_INF)
4672 		goto out_deactivate;
4673 
4674 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4675 	cfs_b->nr_periods += overrun;
4676 
4677 	/*
4678 	 * idle depends on !throttled (for the case of a large deficit), and if
4679 	 * we're going inactive then everything else can be deferred
4680 	 */
4681 	if (cfs_b->idle && !throttled)
4682 		goto out_deactivate;
4683 
4684 	__refill_cfs_bandwidth_runtime(cfs_b);
4685 
4686 	if (!throttled) {
4687 		/* mark as potentially idle for the upcoming period */
4688 		cfs_b->idle = 1;
4689 		return 0;
4690 	}
4691 
4692 	/* account preceding periods in which throttling occurred */
4693 	cfs_b->nr_throttled += overrun;
4694 
4695 	/*
4696 	 * This check is repeated as we are holding onto the new bandwidth while
4697 	 * we unthrottle. This can potentially race with an unthrottled group
4698 	 * trying to acquire new bandwidth from the global pool. This can result
4699 	 * in us over-using our runtime if it is all used during this loop, but
4700 	 * only by limited amounts in that extreme case.
4701 	 */
4702 	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4703 		runtime = cfs_b->runtime;
4704 		cfs_b->distribute_running = 1;
4705 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4706 		/* we can't nest cfs_b->lock while distributing bandwidth */
4707 		runtime = distribute_cfs_runtime(cfs_b, runtime);
4708 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
4709 
4710 		cfs_b->distribute_running = 0;
4711 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4712 
4713 		lsub_positive(&cfs_b->runtime, runtime);
4714 	}
4715 
4716 	/*
4717 	 * While we are ensured activity in the period following an
4718 	 * unthrottle, this also covers the case in which the new bandwidth is
4719 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4720 	 * timer to remain active while there are any throttled entities.)
4721 	 */
4722 	cfs_b->idle = 0;
4723 
4724 	return 0;
4725 
4726 out_deactivate:
4727 	return 1;
4728 }
4729 
4730 /* a cfs_rq won't donate quota below this amount */
4731 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4732 /* minimum remaining period time to redistribute slack quota */
4733 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4734 /* how long we wait to gather additional slack before distributing */
4735 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4736 
4737 /*
4738  * Are we near the end of the current quota period?
4739  *
4740  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4741  * hrtimer base being cleared by hrtimer_start. In the case of
4742  * migrate_hrtimers, base is never cleared, so we are fine.
4743  */
4744 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4745 {
4746 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4747 	u64 remaining;
4748 
4749 	/* if the call-back is running a quota refresh is already occurring */
4750 	if (hrtimer_callback_running(refresh_timer))
4751 		return 1;
4752 
4753 	/* is a quota refresh about to occur? */
4754 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4755 	if (remaining < min_expire)
4756 		return 1;
4757 
4758 	return 0;
4759 }
4760 
4761 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4762 {
4763 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4764 
4765 	/* if there's a quota refresh soon don't bother with slack */
4766 	if (runtime_refresh_within(cfs_b, min_left))
4767 		return;
4768 
4769 	/* don't push forwards an existing deferred unthrottle */
4770 	if (cfs_b->slack_started)
4771 		return;
4772 	cfs_b->slack_started = true;
4773 
4774 	hrtimer_start(&cfs_b->slack_timer,
4775 			ns_to_ktime(cfs_bandwidth_slack_period),
4776 			HRTIMER_MODE_REL);
4777 }
4778 
4779 /* we know any runtime found here is valid as update_curr() precedes return */
4780 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4781 {
4782 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4783 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4784 
4785 	if (slack_runtime <= 0)
4786 		return;
4787 
4788 	raw_spin_lock(&cfs_b->lock);
4789 	if (cfs_b->quota != RUNTIME_INF) {
4790 		cfs_b->runtime += slack_runtime;
4791 
4792 		/* we are under rq->lock, defer unthrottling using a timer */
4793 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4794 		    !list_empty(&cfs_b->throttled_cfs_rq))
4795 			start_cfs_slack_bandwidth(cfs_b);
4796 	}
4797 	raw_spin_unlock(&cfs_b->lock);
4798 
4799 	/* even if it's not valid for return we don't want to try again */
4800 	cfs_rq->runtime_remaining -= slack_runtime;
4801 }
4802 
4803 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4804 {
4805 	if (!cfs_bandwidth_used())
4806 		return;
4807 
4808 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4809 		return;
4810 
4811 	__return_cfs_rq_runtime(cfs_rq);
4812 }
4813 
4814 /*
4815  * This is done with a timer (instead of inline with bandwidth return) since
4816  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4817  */
4818 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4819 {
4820 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4821 	unsigned long flags;
4822 
4823 	/* confirm we're still not at a refresh boundary */
4824 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4825 	cfs_b->slack_started = false;
4826 	if (cfs_b->distribute_running) {
4827 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4828 		return;
4829 	}
4830 
4831 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4832 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4833 		return;
4834 	}
4835 
4836 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4837 		runtime = cfs_b->runtime;
4838 
4839 	if (runtime)
4840 		cfs_b->distribute_running = 1;
4841 
4842 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4843 
4844 	if (!runtime)
4845 		return;
4846 
4847 	runtime = distribute_cfs_runtime(cfs_b, runtime);
4848 
4849 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4850 	lsub_positive(&cfs_b->runtime, runtime);
4851 	cfs_b->distribute_running = 0;
4852 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4853 }
4854 
4855 /*
4856  * When a group wakes up we want to make sure that its quota is not already
4857  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4858  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4859  */
4860 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4861 {
4862 	if (!cfs_bandwidth_used())
4863 		return;
4864 
4865 	/* an active group must be handled by the update_curr()->put() path */
4866 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4867 		return;
4868 
4869 	/* ensure the group is not already throttled */
4870 	if (cfs_rq_throttled(cfs_rq))
4871 		return;
4872 
4873 	/* update runtime allocation */
4874 	account_cfs_rq_runtime(cfs_rq, 0);
4875 	if (cfs_rq->runtime_remaining <= 0)
4876 		throttle_cfs_rq(cfs_rq);
4877 }
4878 
4879 static void sync_throttle(struct task_group *tg, int cpu)
4880 {
4881 	struct cfs_rq *pcfs_rq, *cfs_rq;
4882 
4883 	if (!cfs_bandwidth_used())
4884 		return;
4885 
4886 	if (!tg->parent)
4887 		return;
4888 
4889 	cfs_rq = tg->cfs_rq[cpu];
4890 	pcfs_rq = tg->parent->cfs_rq[cpu];
4891 
4892 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4893 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4894 }
4895 
4896 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4897 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4898 {
4899 	if (!cfs_bandwidth_used())
4900 		return false;
4901 
4902 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4903 		return false;
4904 
4905 	/*
4906 	 * it's possible for a throttled entity to be forced into a running
4907 	 * state (e.g. set_curr_task), in this case we're finished.
4908 	 */
4909 	if (cfs_rq_throttled(cfs_rq))
4910 		return true;
4911 
4912 	throttle_cfs_rq(cfs_rq);
4913 	return true;
4914 }
4915 
4916 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4917 {
4918 	struct cfs_bandwidth *cfs_b =
4919 		container_of(timer, struct cfs_bandwidth, slack_timer);
4920 
4921 	do_sched_cfs_slack_timer(cfs_b);
4922 
4923 	return HRTIMER_NORESTART;
4924 }
4925 
4926 extern const u64 max_cfs_quota_period;
4927 
4928 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4929 {
4930 	struct cfs_bandwidth *cfs_b =
4931 		container_of(timer, struct cfs_bandwidth, period_timer);
4932 	unsigned long flags;
4933 	int overrun;
4934 	int idle = 0;
4935 	int count = 0;
4936 
4937 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4938 	for (;;) {
4939 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4940 		if (!overrun)
4941 			break;
4942 
4943 		if (++count > 3) {
4944 			u64 new, old = ktime_to_ns(cfs_b->period);
4945 
4946 			/*
4947 			 * Grow period by a factor of 2 to avoid losing precision.
4948 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
4949 			 * to fail.
4950 			 */
4951 			new = old * 2;
4952 			if (new < max_cfs_quota_period) {
4953 				cfs_b->period = ns_to_ktime(new);
4954 				cfs_b->quota *= 2;
4955 
4956 				pr_warn_ratelimited(
4957 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4958 					smp_processor_id(),
4959 					div_u64(new, NSEC_PER_USEC),
4960 					div_u64(cfs_b->quota, NSEC_PER_USEC));
4961 			} else {
4962 				pr_warn_ratelimited(
4963 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4964 					smp_processor_id(),
4965 					div_u64(old, NSEC_PER_USEC),
4966 					div_u64(cfs_b->quota, NSEC_PER_USEC));
4967 			}
4968 
4969 			/* reset count so we don't come right back in here */
4970 			count = 0;
4971 		}
4972 
4973 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
4974 	}
4975 	if (idle)
4976 		cfs_b->period_active = 0;
4977 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4978 
4979 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4980 }
4981 
4982 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4983 {
4984 	raw_spin_lock_init(&cfs_b->lock);
4985 	cfs_b->runtime = 0;
4986 	cfs_b->quota = RUNTIME_INF;
4987 	cfs_b->period = ns_to_ktime(default_cfs_period());
4988 
4989 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4990 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4991 	cfs_b->period_timer.function = sched_cfs_period_timer;
4992 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4993 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4994 	cfs_b->distribute_running = 0;
4995 	cfs_b->slack_started = false;
4996 }
4997 
4998 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4999 {
5000 	cfs_rq->runtime_enabled = 0;
5001 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5002 }
5003 
5004 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5005 {
5006 	lockdep_assert_held(&cfs_b->lock);
5007 
5008 	if (cfs_b->period_active)
5009 		return;
5010 
5011 	cfs_b->period_active = 1;
5012 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5013 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5014 }
5015 
5016 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5017 {
5018 	/* init_cfs_bandwidth() was not called */
5019 	if (!cfs_b->throttled_cfs_rq.next)
5020 		return;
5021 
5022 	hrtimer_cancel(&cfs_b->period_timer);
5023 	hrtimer_cancel(&cfs_b->slack_timer);
5024 }
5025 
5026 /*
5027  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5028  *
5029  * The race is harmless, since modifying bandwidth settings of unhooked group
5030  * bits doesn't do much.
5031  */
5032 
5033 /* cpu online calback */
5034 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5035 {
5036 	struct task_group *tg;
5037 
5038 	lockdep_assert_held(&rq->lock);
5039 
5040 	rcu_read_lock();
5041 	list_for_each_entry_rcu(tg, &task_groups, list) {
5042 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5043 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5044 
5045 		raw_spin_lock(&cfs_b->lock);
5046 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5047 		raw_spin_unlock(&cfs_b->lock);
5048 	}
5049 	rcu_read_unlock();
5050 }
5051 
5052 /* cpu offline callback */
5053 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5054 {
5055 	struct task_group *tg;
5056 
5057 	lockdep_assert_held(&rq->lock);
5058 
5059 	rcu_read_lock();
5060 	list_for_each_entry_rcu(tg, &task_groups, list) {
5061 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5062 
5063 		if (!cfs_rq->runtime_enabled)
5064 			continue;
5065 
5066 		/*
5067 		 * clock_task is not advancing so we just need to make sure
5068 		 * there's some valid quota amount
5069 		 */
5070 		cfs_rq->runtime_remaining = 1;
5071 		/*
5072 		 * Offline rq is schedulable till CPU is completely disabled
5073 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5074 		 */
5075 		cfs_rq->runtime_enabled = 0;
5076 
5077 		if (cfs_rq_throttled(cfs_rq))
5078 			unthrottle_cfs_rq(cfs_rq);
5079 	}
5080 	rcu_read_unlock();
5081 }
5082 
5083 #else /* CONFIG_CFS_BANDWIDTH */
5084 
5085 static inline bool cfs_bandwidth_used(void)
5086 {
5087 	return false;
5088 }
5089 
5090 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5091 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5092 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5093 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5094 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5095 
5096 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5097 {
5098 	return 0;
5099 }
5100 
5101 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5102 {
5103 	return 0;
5104 }
5105 
5106 static inline int throttled_lb_pair(struct task_group *tg,
5107 				    int src_cpu, int dest_cpu)
5108 {
5109 	return 0;
5110 }
5111 
5112 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5113 
5114 #ifdef CONFIG_FAIR_GROUP_SCHED
5115 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5116 #endif
5117 
5118 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5119 {
5120 	return NULL;
5121 }
5122 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5123 static inline void update_runtime_enabled(struct rq *rq) {}
5124 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5125 
5126 #endif /* CONFIG_CFS_BANDWIDTH */
5127 
5128 /**************************************************
5129  * CFS operations on tasks:
5130  */
5131 
5132 #ifdef CONFIG_SCHED_HRTICK
5133 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5134 {
5135 	struct sched_entity *se = &p->se;
5136 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5137 
5138 	SCHED_WARN_ON(task_rq(p) != rq);
5139 
5140 	if (rq->cfs.h_nr_running > 1) {
5141 		u64 slice = sched_slice(cfs_rq, se);
5142 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5143 		s64 delta = slice - ran;
5144 
5145 		if (delta < 0) {
5146 			if (rq->curr == p)
5147 				resched_curr(rq);
5148 			return;
5149 		}
5150 		hrtick_start(rq, delta);
5151 	}
5152 }
5153 
5154 /*
5155  * called from enqueue/dequeue and updates the hrtick when the
5156  * current task is from our class and nr_running is low enough
5157  * to matter.
5158  */
5159 static void hrtick_update(struct rq *rq)
5160 {
5161 	struct task_struct *curr = rq->curr;
5162 
5163 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5164 		return;
5165 
5166 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5167 		hrtick_start_fair(rq, curr);
5168 }
5169 #else /* !CONFIG_SCHED_HRTICK */
5170 static inline void
5171 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5172 {
5173 }
5174 
5175 static inline void hrtick_update(struct rq *rq)
5176 {
5177 }
5178 #endif
5179 
5180 #ifdef CONFIG_SMP
5181 static inline unsigned long cpu_util(int cpu);
5182 
5183 static inline bool cpu_overutilized(int cpu)
5184 {
5185 	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5186 }
5187 
5188 static inline void update_overutilized_status(struct rq *rq)
5189 {
5190 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5191 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5192 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5193 	}
5194 }
5195 #else
5196 static inline void update_overutilized_status(struct rq *rq) { }
5197 #endif
5198 
5199 /*
5200  * The enqueue_task method is called before nr_running is
5201  * increased. Here we update the fair scheduling stats and
5202  * then put the task into the rbtree:
5203  */
5204 static void
5205 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5206 {
5207 	struct cfs_rq *cfs_rq;
5208 	struct sched_entity *se = &p->se;
5209 	int idle_h_nr_running = task_has_idle_policy(p);
5210 
5211 	/*
5212 	 * The code below (indirectly) updates schedutil which looks at
5213 	 * the cfs_rq utilization to select a frequency.
5214 	 * Let's add the task's estimated utilization to the cfs_rq's
5215 	 * estimated utilization, before we update schedutil.
5216 	 */
5217 	util_est_enqueue(&rq->cfs, p);
5218 
5219 	/*
5220 	 * If in_iowait is set, the code below may not trigger any cpufreq
5221 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5222 	 * passed.
5223 	 */
5224 	if (p->in_iowait)
5225 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5226 
5227 	for_each_sched_entity(se) {
5228 		if (se->on_rq)
5229 			break;
5230 		cfs_rq = cfs_rq_of(se);
5231 		enqueue_entity(cfs_rq, se, flags);
5232 
5233 		/*
5234 		 * end evaluation on encountering a throttled cfs_rq
5235 		 *
5236 		 * note: in the case of encountering a throttled cfs_rq we will
5237 		 * post the final h_nr_running increment below.
5238 		 */
5239 		if (cfs_rq_throttled(cfs_rq))
5240 			break;
5241 		cfs_rq->h_nr_running++;
5242 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5243 
5244 		flags = ENQUEUE_WAKEUP;
5245 	}
5246 
5247 	for_each_sched_entity(se) {
5248 		cfs_rq = cfs_rq_of(se);
5249 		cfs_rq->h_nr_running++;
5250 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5251 
5252 		if (cfs_rq_throttled(cfs_rq))
5253 			break;
5254 
5255 		update_load_avg(cfs_rq, se, UPDATE_TG);
5256 		update_cfs_group(se);
5257 	}
5258 
5259 	if (!se) {
5260 		add_nr_running(rq, 1);
5261 		/*
5262 		 * Since new tasks are assigned an initial util_avg equal to
5263 		 * half of the spare capacity of their CPU, tiny tasks have the
5264 		 * ability to cross the overutilized threshold, which will
5265 		 * result in the load balancer ruining all the task placement
5266 		 * done by EAS. As a way to mitigate that effect, do not account
5267 		 * for the first enqueue operation of new tasks during the
5268 		 * overutilized flag detection.
5269 		 *
5270 		 * A better way of solving this problem would be to wait for
5271 		 * the PELT signals of tasks to converge before taking them
5272 		 * into account, but that is not straightforward to implement,
5273 		 * and the following generally works well enough in practice.
5274 		 */
5275 		if (flags & ENQUEUE_WAKEUP)
5276 			update_overutilized_status(rq);
5277 
5278 	}
5279 
5280 	if (cfs_bandwidth_used()) {
5281 		/*
5282 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5283 		 * breaks in the above iteration can result in incomplete
5284 		 * leaf list maintenance, resulting in triggering the assertion
5285 		 * below.
5286 		 */
5287 		for_each_sched_entity(se) {
5288 			cfs_rq = cfs_rq_of(se);
5289 
5290 			if (list_add_leaf_cfs_rq(cfs_rq))
5291 				break;
5292 		}
5293 	}
5294 
5295 	assert_list_leaf_cfs_rq(rq);
5296 
5297 	hrtick_update(rq);
5298 }
5299 
5300 static void set_next_buddy(struct sched_entity *se);
5301 
5302 /*
5303  * The dequeue_task method is called before nr_running is
5304  * decreased. We remove the task from the rbtree and
5305  * update the fair scheduling stats:
5306  */
5307 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5308 {
5309 	struct cfs_rq *cfs_rq;
5310 	struct sched_entity *se = &p->se;
5311 	int task_sleep = flags & DEQUEUE_SLEEP;
5312 	int idle_h_nr_running = task_has_idle_policy(p);
5313 
5314 	for_each_sched_entity(se) {
5315 		cfs_rq = cfs_rq_of(se);
5316 		dequeue_entity(cfs_rq, se, flags);
5317 
5318 		/*
5319 		 * end evaluation on encountering a throttled cfs_rq
5320 		 *
5321 		 * note: in the case of encountering a throttled cfs_rq we will
5322 		 * post the final h_nr_running decrement below.
5323 		*/
5324 		if (cfs_rq_throttled(cfs_rq))
5325 			break;
5326 		cfs_rq->h_nr_running--;
5327 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5328 
5329 		/* Don't dequeue parent if it has other entities besides us */
5330 		if (cfs_rq->load.weight) {
5331 			/* Avoid re-evaluating load for this entity: */
5332 			se = parent_entity(se);
5333 			/*
5334 			 * Bias pick_next to pick a task from this cfs_rq, as
5335 			 * p is sleeping when it is within its sched_slice.
5336 			 */
5337 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5338 				set_next_buddy(se);
5339 			break;
5340 		}
5341 		flags |= DEQUEUE_SLEEP;
5342 	}
5343 
5344 	for_each_sched_entity(se) {
5345 		cfs_rq = cfs_rq_of(se);
5346 		cfs_rq->h_nr_running--;
5347 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5348 
5349 		if (cfs_rq_throttled(cfs_rq))
5350 			break;
5351 
5352 		update_load_avg(cfs_rq, se, UPDATE_TG);
5353 		update_cfs_group(se);
5354 	}
5355 
5356 	if (!se)
5357 		sub_nr_running(rq, 1);
5358 
5359 	util_est_dequeue(&rq->cfs, p, task_sleep);
5360 	hrtick_update(rq);
5361 }
5362 
5363 #ifdef CONFIG_SMP
5364 
5365 /* Working cpumask for: load_balance, load_balance_newidle. */
5366 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5367 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5368 
5369 #ifdef CONFIG_NO_HZ_COMMON
5370 
5371 static struct {
5372 	cpumask_var_t idle_cpus_mask;
5373 	atomic_t nr_cpus;
5374 	int has_blocked;		/* Idle CPUS has blocked load */
5375 	unsigned long next_balance;     /* in jiffy units */
5376 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5377 } nohz ____cacheline_aligned;
5378 
5379 #endif /* CONFIG_NO_HZ_COMMON */
5380 
5381 /* CPU only has SCHED_IDLE tasks enqueued */
5382 static int sched_idle_cpu(int cpu)
5383 {
5384 	struct rq *rq = cpu_rq(cpu);
5385 
5386 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5387 			rq->nr_running);
5388 }
5389 
5390 static unsigned long cpu_load(struct rq *rq)
5391 {
5392 	return cfs_rq_load_avg(&rq->cfs);
5393 }
5394 
5395 /*
5396  * cpu_load_without - compute CPU load without any contributions from *p
5397  * @cpu: the CPU which load is requested
5398  * @p: the task which load should be discounted
5399  *
5400  * The load of a CPU is defined by the load of tasks currently enqueued on that
5401  * CPU as well as tasks which are currently sleeping after an execution on that
5402  * CPU.
5403  *
5404  * This method returns the load of the specified CPU by discounting the load of
5405  * the specified task, whenever the task is currently contributing to the CPU
5406  * load.
5407  */
5408 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5409 {
5410 	struct cfs_rq *cfs_rq;
5411 	unsigned int load;
5412 
5413 	/* Task has no contribution or is new */
5414 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5415 		return cpu_load(rq);
5416 
5417 	cfs_rq = &rq->cfs;
5418 	load = READ_ONCE(cfs_rq->avg.load_avg);
5419 
5420 	/* Discount task's util from CPU's util */
5421 	lsub_positive(&load, task_h_load(p));
5422 
5423 	return load;
5424 }
5425 
5426 static unsigned long capacity_of(int cpu)
5427 {
5428 	return cpu_rq(cpu)->cpu_capacity;
5429 }
5430 
5431 static void record_wakee(struct task_struct *p)
5432 {
5433 	/*
5434 	 * Only decay a single time; tasks that have less then 1 wakeup per
5435 	 * jiffy will not have built up many flips.
5436 	 */
5437 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5438 		current->wakee_flips >>= 1;
5439 		current->wakee_flip_decay_ts = jiffies;
5440 	}
5441 
5442 	if (current->last_wakee != p) {
5443 		current->last_wakee = p;
5444 		current->wakee_flips++;
5445 	}
5446 }
5447 
5448 /*
5449  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5450  *
5451  * A waker of many should wake a different task than the one last awakened
5452  * at a frequency roughly N times higher than one of its wakees.
5453  *
5454  * In order to determine whether we should let the load spread vs consolidating
5455  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5456  * partner, and a factor of lls_size higher frequency in the other.
5457  *
5458  * With both conditions met, we can be relatively sure that the relationship is
5459  * non-monogamous, with partner count exceeding socket size.
5460  *
5461  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5462  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5463  * socket size.
5464  */
5465 static int wake_wide(struct task_struct *p)
5466 {
5467 	unsigned int master = current->wakee_flips;
5468 	unsigned int slave = p->wakee_flips;
5469 	int factor = this_cpu_read(sd_llc_size);
5470 
5471 	if (master < slave)
5472 		swap(master, slave);
5473 	if (slave < factor || master < slave * factor)
5474 		return 0;
5475 	return 1;
5476 }
5477 
5478 /*
5479  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5480  * soonest. For the purpose of speed we only consider the waking and previous
5481  * CPU.
5482  *
5483  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5484  *			cache-affine and is (or	will be) idle.
5485  *
5486  * wake_affine_weight() - considers the weight to reflect the average
5487  *			  scheduling latency of the CPUs. This seems to work
5488  *			  for the overloaded case.
5489  */
5490 static int
5491 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5492 {
5493 	/*
5494 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5495 	 * context. Only allow the move if cache is shared. Otherwise an
5496 	 * interrupt intensive workload could force all tasks onto one
5497 	 * node depending on the IO topology or IRQ affinity settings.
5498 	 *
5499 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5500 	 * There is no guarantee that the cache hot data from an interrupt
5501 	 * is more important than cache hot data on the prev_cpu and from
5502 	 * a cpufreq perspective, it's better to have higher utilisation
5503 	 * on one CPU.
5504 	 */
5505 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5506 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5507 
5508 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5509 		return this_cpu;
5510 
5511 	return nr_cpumask_bits;
5512 }
5513 
5514 static int
5515 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5516 		   int this_cpu, int prev_cpu, int sync)
5517 {
5518 	s64 this_eff_load, prev_eff_load;
5519 	unsigned long task_load;
5520 
5521 	this_eff_load = cpu_load(cpu_rq(this_cpu));
5522 
5523 	if (sync) {
5524 		unsigned long current_load = task_h_load(current);
5525 
5526 		if (current_load > this_eff_load)
5527 			return this_cpu;
5528 
5529 		this_eff_load -= current_load;
5530 	}
5531 
5532 	task_load = task_h_load(p);
5533 
5534 	this_eff_load += task_load;
5535 	if (sched_feat(WA_BIAS))
5536 		this_eff_load *= 100;
5537 	this_eff_load *= capacity_of(prev_cpu);
5538 
5539 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5540 	prev_eff_load -= task_load;
5541 	if (sched_feat(WA_BIAS))
5542 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5543 	prev_eff_load *= capacity_of(this_cpu);
5544 
5545 	/*
5546 	 * If sync, adjust the weight of prev_eff_load such that if
5547 	 * prev_eff == this_eff that select_idle_sibling() will consider
5548 	 * stacking the wakee on top of the waker if no other CPU is
5549 	 * idle.
5550 	 */
5551 	if (sync)
5552 		prev_eff_load += 1;
5553 
5554 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5555 }
5556 
5557 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5558 		       int this_cpu, int prev_cpu, int sync)
5559 {
5560 	int target = nr_cpumask_bits;
5561 
5562 	if (sched_feat(WA_IDLE))
5563 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5564 
5565 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5566 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5567 
5568 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5569 	if (target == nr_cpumask_bits)
5570 		return prev_cpu;
5571 
5572 	schedstat_inc(sd->ttwu_move_affine);
5573 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5574 	return target;
5575 }
5576 
5577 static struct sched_group *
5578 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5579 		  int this_cpu, int sd_flag);
5580 
5581 /*
5582  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5583  */
5584 static int
5585 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5586 {
5587 	unsigned long load, min_load = ULONG_MAX;
5588 	unsigned int min_exit_latency = UINT_MAX;
5589 	u64 latest_idle_timestamp = 0;
5590 	int least_loaded_cpu = this_cpu;
5591 	int shallowest_idle_cpu = -1, si_cpu = -1;
5592 	int i;
5593 
5594 	/* Check if we have any choice: */
5595 	if (group->group_weight == 1)
5596 		return cpumask_first(sched_group_span(group));
5597 
5598 	/* Traverse only the allowed CPUs */
5599 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5600 		if (available_idle_cpu(i)) {
5601 			struct rq *rq = cpu_rq(i);
5602 			struct cpuidle_state *idle = idle_get_state(rq);
5603 			if (idle && idle->exit_latency < min_exit_latency) {
5604 				/*
5605 				 * We give priority to a CPU whose idle state
5606 				 * has the smallest exit latency irrespective
5607 				 * of any idle timestamp.
5608 				 */
5609 				min_exit_latency = idle->exit_latency;
5610 				latest_idle_timestamp = rq->idle_stamp;
5611 				shallowest_idle_cpu = i;
5612 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5613 				   rq->idle_stamp > latest_idle_timestamp) {
5614 				/*
5615 				 * If equal or no active idle state, then
5616 				 * the most recently idled CPU might have
5617 				 * a warmer cache.
5618 				 */
5619 				latest_idle_timestamp = rq->idle_stamp;
5620 				shallowest_idle_cpu = i;
5621 			}
5622 		} else if (shallowest_idle_cpu == -1 && si_cpu == -1) {
5623 			if (sched_idle_cpu(i)) {
5624 				si_cpu = i;
5625 				continue;
5626 			}
5627 
5628 			load = cpu_load(cpu_rq(i));
5629 			if (load < min_load) {
5630 				min_load = load;
5631 				least_loaded_cpu = i;
5632 			}
5633 		}
5634 	}
5635 
5636 	if (shallowest_idle_cpu != -1)
5637 		return shallowest_idle_cpu;
5638 	if (si_cpu != -1)
5639 		return si_cpu;
5640 	return least_loaded_cpu;
5641 }
5642 
5643 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5644 				  int cpu, int prev_cpu, int sd_flag)
5645 {
5646 	int new_cpu = cpu;
5647 
5648 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5649 		return prev_cpu;
5650 
5651 	/*
5652 	 * We need task's util for cpu_util_without, sync it up to
5653 	 * prev_cpu's last_update_time.
5654 	 */
5655 	if (!(sd_flag & SD_BALANCE_FORK))
5656 		sync_entity_load_avg(&p->se);
5657 
5658 	while (sd) {
5659 		struct sched_group *group;
5660 		struct sched_domain *tmp;
5661 		int weight;
5662 
5663 		if (!(sd->flags & sd_flag)) {
5664 			sd = sd->child;
5665 			continue;
5666 		}
5667 
5668 		group = find_idlest_group(sd, p, cpu, sd_flag);
5669 		if (!group) {
5670 			sd = sd->child;
5671 			continue;
5672 		}
5673 
5674 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5675 		if (new_cpu == cpu) {
5676 			/* Now try balancing at a lower domain level of 'cpu': */
5677 			sd = sd->child;
5678 			continue;
5679 		}
5680 
5681 		/* Now try balancing at a lower domain level of 'new_cpu': */
5682 		cpu = new_cpu;
5683 		weight = sd->span_weight;
5684 		sd = NULL;
5685 		for_each_domain(cpu, tmp) {
5686 			if (weight <= tmp->span_weight)
5687 				break;
5688 			if (tmp->flags & sd_flag)
5689 				sd = tmp;
5690 		}
5691 	}
5692 
5693 	return new_cpu;
5694 }
5695 
5696 #ifdef CONFIG_SCHED_SMT
5697 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5698 EXPORT_SYMBOL_GPL(sched_smt_present);
5699 
5700 static inline void set_idle_cores(int cpu, int val)
5701 {
5702 	struct sched_domain_shared *sds;
5703 
5704 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5705 	if (sds)
5706 		WRITE_ONCE(sds->has_idle_cores, val);
5707 }
5708 
5709 static inline bool test_idle_cores(int cpu, bool def)
5710 {
5711 	struct sched_domain_shared *sds;
5712 
5713 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5714 	if (sds)
5715 		return READ_ONCE(sds->has_idle_cores);
5716 
5717 	return def;
5718 }
5719 
5720 /*
5721  * Scans the local SMT mask to see if the entire core is idle, and records this
5722  * information in sd_llc_shared->has_idle_cores.
5723  *
5724  * Since SMT siblings share all cache levels, inspecting this limited remote
5725  * state should be fairly cheap.
5726  */
5727 void __update_idle_core(struct rq *rq)
5728 {
5729 	int core = cpu_of(rq);
5730 	int cpu;
5731 
5732 	rcu_read_lock();
5733 	if (test_idle_cores(core, true))
5734 		goto unlock;
5735 
5736 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5737 		if (cpu == core)
5738 			continue;
5739 
5740 		if (!available_idle_cpu(cpu))
5741 			goto unlock;
5742 	}
5743 
5744 	set_idle_cores(core, 1);
5745 unlock:
5746 	rcu_read_unlock();
5747 }
5748 
5749 /*
5750  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5751  * there are no idle cores left in the system; tracked through
5752  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5753  */
5754 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5755 {
5756 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5757 	int core, cpu;
5758 
5759 	if (!static_branch_likely(&sched_smt_present))
5760 		return -1;
5761 
5762 	if (!test_idle_cores(target, false))
5763 		return -1;
5764 
5765 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
5766 
5767 	for_each_cpu_wrap(core, cpus, target) {
5768 		bool idle = true;
5769 
5770 		for_each_cpu(cpu, cpu_smt_mask(core)) {
5771 			__cpumask_clear_cpu(cpu, cpus);
5772 			if (!available_idle_cpu(cpu))
5773 				idle = false;
5774 		}
5775 
5776 		if (idle)
5777 			return core;
5778 	}
5779 
5780 	/*
5781 	 * Failed to find an idle core; stop looking for one.
5782 	 */
5783 	set_idle_cores(target, 0);
5784 
5785 	return -1;
5786 }
5787 
5788 /*
5789  * Scan the local SMT mask for idle CPUs.
5790  */
5791 static int select_idle_smt(struct task_struct *p, int target)
5792 {
5793 	int cpu, si_cpu = -1;
5794 
5795 	if (!static_branch_likely(&sched_smt_present))
5796 		return -1;
5797 
5798 	for_each_cpu(cpu, cpu_smt_mask(target)) {
5799 		if (!cpumask_test_cpu(cpu, p->cpus_ptr))
5800 			continue;
5801 		if (available_idle_cpu(cpu))
5802 			return cpu;
5803 		if (si_cpu == -1 && sched_idle_cpu(cpu))
5804 			si_cpu = cpu;
5805 	}
5806 
5807 	return si_cpu;
5808 }
5809 
5810 #else /* CONFIG_SCHED_SMT */
5811 
5812 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5813 {
5814 	return -1;
5815 }
5816 
5817 static inline int select_idle_smt(struct task_struct *p, int target)
5818 {
5819 	return -1;
5820 }
5821 
5822 #endif /* CONFIG_SCHED_SMT */
5823 
5824 /*
5825  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5826  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5827  * average idle time for this rq (as found in rq->avg_idle).
5828  */
5829 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5830 {
5831 	struct sched_domain *this_sd;
5832 	u64 avg_cost, avg_idle;
5833 	u64 time, cost;
5834 	s64 delta;
5835 	int this = smp_processor_id();
5836 	int cpu, nr = INT_MAX, si_cpu = -1;
5837 
5838 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5839 	if (!this_sd)
5840 		return -1;
5841 
5842 	/*
5843 	 * Due to large variance we need a large fuzz factor; hackbench in
5844 	 * particularly is sensitive here.
5845 	 */
5846 	avg_idle = this_rq()->avg_idle / 512;
5847 	avg_cost = this_sd->avg_scan_cost + 1;
5848 
5849 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5850 		return -1;
5851 
5852 	if (sched_feat(SIS_PROP)) {
5853 		u64 span_avg = sd->span_weight * avg_idle;
5854 		if (span_avg > 4*avg_cost)
5855 			nr = div_u64(span_avg, avg_cost);
5856 		else
5857 			nr = 4;
5858 	}
5859 
5860 	time = cpu_clock(this);
5861 
5862 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
5863 		if (!--nr)
5864 			return si_cpu;
5865 		if (!cpumask_test_cpu(cpu, p->cpus_ptr))
5866 			continue;
5867 		if (available_idle_cpu(cpu))
5868 			break;
5869 		if (si_cpu == -1 && sched_idle_cpu(cpu))
5870 			si_cpu = cpu;
5871 	}
5872 
5873 	time = cpu_clock(this) - time;
5874 	cost = this_sd->avg_scan_cost;
5875 	delta = (s64)(time - cost) / 8;
5876 	this_sd->avg_scan_cost += delta;
5877 
5878 	return cpu;
5879 }
5880 
5881 /*
5882  * Try and locate an idle core/thread in the LLC cache domain.
5883  */
5884 static int select_idle_sibling(struct task_struct *p, int prev, int target)
5885 {
5886 	struct sched_domain *sd;
5887 	int i, recent_used_cpu;
5888 
5889 	if (available_idle_cpu(target) || sched_idle_cpu(target))
5890 		return target;
5891 
5892 	/*
5893 	 * If the previous CPU is cache affine and idle, don't be stupid:
5894 	 */
5895 	if (prev != target && cpus_share_cache(prev, target) &&
5896 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)))
5897 		return prev;
5898 
5899 	/* Check a recently used CPU as a potential idle candidate: */
5900 	recent_used_cpu = p->recent_used_cpu;
5901 	if (recent_used_cpu != prev &&
5902 	    recent_used_cpu != target &&
5903 	    cpus_share_cache(recent_used_cpu, target) &&
5904 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
5905 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
5906 		/*
5907 		 * Replace recent_used_cpu with prev as it is a potential
5908 		 * candidate for the next wake:
5909 		 */
5910 		p->recent_used_cpu = prev;
5911 		return recent_used_cpu;
5912 	}
5913 
5914 	sd = rcu_dereference(per_cpu(sd_llc, target));
5915 	if (!sd)
5916 		return target;
5917 
5918 	i = select_idle_core(p, sd, target);
5919 	if ((unsigned)i < nr_cpumask_bits)
5920 		return i;
5921 
5922 	i = select_idle_cpu(p, sd, target);
5923 	if ((unsigned)i < nr_cpumask_bits)
5924 		return i;
5925 
5926 	i = select_idle_smt(p, target);
5927 	if ((unsigned)i < nr_cpumask_bits)
5928 		return i;
5929 
5930 	return target;
5931 }
5932 
5933 /**
5934  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
5935  * @cpu: the CPU to get the utilization of
5936  *
5937  * The unit of the return value must be the one of capacity so we can compare
5938  * the utilization with the capacity of the CPU that is available for CFS task
5939  * (ie cpu_capacity).
5940  *
5941  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5942  * recent utilization of currently non-runnable tasks on a CPU. It represents
5943  * the amount of utilization of a CPU in the range [0..capacity_orig] where
5944  * capacity_orig is the cpu_capacity available at the highest frequency
5945  * (arch_scale_freq_capacity()).
5946  * The utilization of a CPU converges towards a sum equal to or less than the
5947  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5948  * the running time on this CPU scaled by capacity_curr.
5949  *
5950  * The estimated utilization of a CPU is defined to be the maximum between its
5951  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
5952  * currently RUNNABLE on that CPU.
5953  * This allows to properly represent the expected utilization of a CPU which
5954  * has just got a big task running since a long sleep period. At the same time
5955  * however it preserves the benefits of the "blocked utilization" in
5956  * describing the potential for other tasks waking up on the same CPU.
5957  *
5958  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5959  * higher than capacity_orig because of unfortunate rounding in
5960  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5961  * the average stabilizes with the new running time. We need to check that the
5962  * utilization stays within the range of [0..capacity_orig] and cap it if
5963  * necessary. Without utilization capping, a group could be seen as overloaded
5964  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5965  * available capacity. We allow utilization to overshoot capacity_curr (but not
5966  * capacity_orig) as it useful for predicting the capacity required after task
5967  * migrations (scheduler-driven DVFS).
5968  *
5969  * Return: the (estimated) utilization for the specified CPU
5970  */
5971 static inline unsigned long cpu_util(int cpu)
5972 {
5973 	struct cfs_rq *cfs_rq;
5974 	unsigned int util;
5975 
5976 	cfs_rq = &cpu_rq(cpu)->cfs;
5977 	util = READ_ONCE(cfs_rq->avg.util_avg);
5978 
5979 	if (sched_feat(UTIL_EST))
5980 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
5981 
5982 	return min_t(unsigned long, util, capacity_orig_of(cpu));
5983 }
5984 
5985 /*
5986  * cpu_util_without: compute cpu utilization without any contributions from *p
5987  * @cpu: the CPU which utilization is requested
5988  * @p: the task which utilization should be discounted
5989  *
5990  * The utilization of a CPU is defined by the utilization of tasks currently
5991  * enqueued on that CPU as well as tasks which are currently sleeping after an
5992  * execution on that CPU.
5993  *
5994  * This method returns the utilization of the specified CPU by discounting the
5995  * utilization of the specified task, whenever the task is currently
5996  * contributing to the CPU utilization.
5997  */
5998 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
5999 {
6000 	struct cfs_rq *cfs_rq;
6001 	unsigned int util;
6002 
6003 	/* Task has no contribution or is new */
6004 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6005 		return cpu_util(cpu);
6006 
6007 	cfs_rq = &cpu_rq(cpu)->cfs;
6008 	util = READ_ONCE(cfs_rq->avg.util_avg);
6009 
6010 	/* Discount task's util from CPU's util */
6011 	lsub_positive(&util, task_util(p));
6012 
6013 	/*
6014 	 * Covered cases:
6015 	 *
6016 	 * a) if *p is the only task sleeping on this CPU, then:
6017 	 *      cpu_util (== task_util) > util_est (== 0)
6018 	 *    and thus we return:
6019 	 *      cpu_util_without = (cpu_util - task_util) = 0
6020 	 *
6021 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6022 	 *    IDLE, then:
6023 	 *      cpu_util >= task_util
6024 	 *      cpu_util > util_est (== 0)
6025 	 *    and thus we discount *p's blocked utilization to return:
6026 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6027 	 *
6028 	 * c) if other tasks are RUNNABLE on that CPU and
6029 	 *      util_est > cpu_util
6030 	 *    then we use util_est since it returns a more restrictive
6031 	 *    estimation of the spare capacity on that CPU, by just
6032 	 *    considering the expected utilization of tasks already
6033 	 *    runnable on that CPU.
6034 	 *
6035 	 * Cases a) and b) are covered by the above code, while case c) is
6036 	 * covered by the following code when estimated utilization is
6037 	 * enabled.
6038 	 */
6039 	if (sched_feat(UTIL_EST)) {
6040 		unsigned int estimated =
6041 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6042 
6043 		/*
6044 		 * Despite the following checks we still have a small window
6045 		 * for a possible race, when an execl's select_task_rq_fair()
6046 		 * races with LB's detach_task():
6047 		 *
6048 		 *   detach_task()
6049 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6050 		 *     ---------------------------------- A
6051 		 *     deactivate_task()                   \
6052 		 *       dequeue_task()                     + RaceTime
6053 		 *         util_est_dequeue()              /
6054 		 *     ---------------------------------- B
6055 		 *
6056 		 * The additional check on "current == p" it's required to
6057 		 * properly fix the execl regression and it helps in further
6058 		 * reducing the chances for the above race.
6059 		 */
6060 		if (unlikely(task_on_rq_queued(p) || current == p))
6061 			lsub_positive(&estimated, _task_util_est(p));
6062 
6063 		util = max(util, estimated);
6064 	}
6065 
6066 	/*
6067 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6068 	 * clamp to the maximum CPU capacity to ensure consistency with
6069 	 * the cpu_util call.
6070 	 */
6071 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6072 }
6073 
6074 /*
6075  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6076  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6077  *
6078  * In that case WAKE_AFFINE doesn't make sense and we'll let
6079  * BALANCE_WAKE sort things out.
6080  */
6081 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6082 {
6083 	long min_cap, max_cap;
6084 
6085 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
6086 		return 0;
6087 
6088 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6089 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6090 
6091 	/* Minimum capacity is close to max, no need to abort wake_affine */
6092 	if (max_cap - min_cap < max_cap >> 3)
6093 		return 0;
6094 
6095 	/* Bring task utilization in sync with prev_cpu */
6096 	sync_entity_load_avg(&p->se);
6097 
6098 	return !task_fits_capacity(p, min_cap);
6099 }
6100 
6101 /*
6102  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6103  * to @dst_cpu.
6104  */
6105 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6106 {
6107 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6108 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6109 
6110 	/*
6111 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6112 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6113 	 * the other cases, @cpu is not impacted by the migration, so the
6114 	 * util_avg should already be correct.
6115 	 */
6116 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6117 		sub_positive(&util, task_util(p));
6118 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6119 		util += task_util(p);
6120 
6121 	if (sched_feat(UTIL_EST)) {
6122 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6123 
6124 		/*
6125 		 * During wake-up, the task isn't enqueued yet and doesn't
6126 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6127 		 * so just add it (if needed) to "simulate" what will be
6128 		 * cpu_util() after the task has been enqueued.
6129 		 */
6130 		if (dst_cpu == cpu)
6131 			util_est += _task_util_est(p);
6132 
6133 		util = max(util, util_est);
6134 	}
6135 
6136 	return min(util, capacity_orig_of(cpu));
6137 }
6138 
6139 /*
6140  * compute_energy(): Estimates the energy that @pd would consume if @p was
6141  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6142  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6143  * to compute what would be the energy if we decided to actually migrate that
6144  * task.
6145  */
6146 static long
6147 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6148 {
6149 	struct cpumask *pd_mask = perf_domain_span(pd);
6150 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6151 	unsigned long max_util = 0, sum_util = 0;
6152 	int cpu;
6153 
6154 	/*
6155 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6156 	 * of another rd if they belong to the same pd. So, account for the
6157 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6158 	 * instead of the rd span.
6159 	 *
6160 	 * If an entire pd is outside of the current rd, it will not appear in
6161 	 * its pd list and will not be accounted by compute_energy().
6162 	 */
6163 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6164 		unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6165 		struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6166 
6167 		/*
6168 		 * Busy time computation: utilization clamping is not
6169 		 * required since the ratio (sum_util / cpu_capacity)
6170 		 * is already enough to scale the EM reported power
6171 		 * consumption at the (eventually clamped) cpu_capacity.
6172 		 */
6173 		sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6174 					       ENERGY_UTIL, NULL);
6175 
6176 		/*
6177 		 * Performance domain frequency: utilization clamping
6178 		 * must be considered since it affects the selection
6179 		 * of the performance domain frequency.
6180 		 * NOTE: in case RT tasks are running, by default the
6181 		 * FREQUENCY_UTIL's utilization can be max OPP.
6182 		 */
6183 		cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6184 					      FREQUENCY_UTIL, tsk);
6185 		max_util = max(max_util, cpu_util);
6186 	}
6187 
6188 	return em_pd_energy(pd->em_pd, max_util, sum_util);
6189 }
6190 
6191 /*
6192  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6193  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6194  * spare capacity in each performance domain and uses it as a potential
6195  * candidate to execute the task. Then, it uses the Energy Model to figure
6196  * out which of the CPU candidates is the most energy-efficient.
6197  *
6198  * The rationale for this heuristic is as follows. In a performance domain,
6199  * all the most energy efficient CPU candidates (according to the Energy
6200  * Model) are those for which we'll request a low frequency. When there are
6201  * several CPUs for which the frequency request will be the same, we don't
6202  * have enough data to break the tie between them, because the Energy Model
6203  * only includes active power costs. With this model, if we assume that
6204  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6205  * the maximum spare capacity in a performance domain is guaranteed to be among
6206  * the best candidates of the performance domain.
6207  *
6208  * In practice, it could be preferable from an energy standpoint to pack
6209  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6210  * but that could also hurt our chances to go cluster idle, and we have no
6211  * ways to tell with the current Energy Model if this is actually a good
6212  * idea or not. So, find_energy_efficient_cpu() basically favors
6213  * cluster-packing, and spreading inside a cluster. That should at least be
6214  * a good thing for latency, and this is consistent with the idea that most
6215  * of the energy savings of EAS come from the asymmetry of the system, and
6216  * not so much from breaking the tie between identical CPUs. That's also the
6217  * reason why EAS is enabled in the topology code only for systems where
6218  * SD_ASYM_CPUCAPACITY is set.
6219  *
6220  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6221  * they don't have any useful utilization data yet and it's not possible to
6222  * forecast their impact on energy consumption. Consequently, they will be
6223  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6224  * to be energy-inefficient in some use-cases. The alternative would be to
6225  * bias new tasks towards specific types of CPUs first, or to try to infer
6226  * their util_avg from the parent task, but those heuristics could hurt
6227  * other use-cases too. So, until someone finds a better way to solve this,
6228  * let's keep things simple by re-using the existing slow path.
6229  */
6230 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6231 {
6232 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6233 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6234 	unsigned long cpu_cap, util, base_energy = 0;
6235 	int cpu, best_energy_cpu = prev_cpu;
6236 	struct sched_domain *sd;
6237 	struct perf_domain *pd;
6238 
6239 	rcu_read_lock();
6240 	pd = rcu_dereference(rd->pd);
6241 	if (!pd || READ_ONCE(rd->overutilized))
6242 		goto fail;
6243 
6244 	/*
6245 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6246 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6247 	 */
6248 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6249 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6250 		sd = sd->parent;
6251 	if (!sd)
6252 		goto fail;
6253 
6254 	sync_entity_load_avg(&p->se);
6255 	if (!task_util_est(p))
6256 		goto unlock;
6257 
6258 	for (; pd; pd = pd->next) {
6259 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6260 		unsigned long base_energy_pd;
6261 		int max_spare_cap_cpu = -1;
6262 
6263 		/* Compute the 'base' energy of the pd, without @p */
6264 		base_energy_pd = compute_energy(p, -1, pd);
6265 		base_energy += base_energy_pd;
6266 
6267 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6268 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6269 				continue;
6270 
6271 			/* Skip CPUs that will be overutilized. */
6272 			util = cpu_util_next(cpu, p, cpu);
6273 			cpu_cap = capacity_of(cpu);
6274 			if (!fits_capacity(util, cpu_cap))
6275 				continue;
6276 
6277 			/* Always use prev_cpu as a candidate. */
6278 			if (cpu == prev_cpu) {
6279 				prev_delta = compute_energy(p, prev_cpu, pd);
6280 				prev_delta -= base_energy_pd;
6281 				best_delta = min(best_delta, prev_delta);
6282 			}
6283 
6284 			/*
6285 			 * Find the CPU with the maximum spare capacity in
6286 			 * the performance domain
6287 			 */
6288 			spare_cap = cpu_cap - util;
6289 			if (spare_cap > max_spare_cap) {
6290 				max_spare_cap = spare_cap;
6291 				max_spare_cap_cpu = cpu;
6292 			}
6293 		}
6294 
6295 		/* Evaluate the energy impact of using this CPU. */
6296 		if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6297 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6298 			cur_delta -= base_energy_pd;
6299 			if (cur_delta < best_delta) {
6300 				best_delta = cur_delta;
6301 				best_energy_cpu = max_spare_cap_cpu;
6302 			}
6303 		}
6304 	}
6305 unlock:
6306 	rcu_read_unlock();
6307 
6308 	/*
6309 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6310 	 * least 6% of the energy used by prev_cpu.
6311 	 */
6312 	if (prev_delta == ULONG_MAX)
6313 		return best_energy_cpu;
6314 
6315 	if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6316 		return best_energy_cpu;
6317 
6318 	return prev_cpu;
6319 
6320 fail:
6321 	rcu_read_unlock();
6322 
6323 	return -1;
6324 }
6325 
6326 /*
6327  * select_task_rq_fair: Select target runqueue for the waking task in domains
6328  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6329  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6330  *
6331  * Balances load by selecting the idlest CPU in the idlest group, or under
6332  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6333  *
6334  * Returns the target CPU number.
6335  *
6336  * preempt must be disabled.
6337  */
6338 static int
6339 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6340 {
6341 	struct sched_domain *tmp, *sd = NULL;
6342 	int cpu = smp_processor_id();
6343 	int new_cpu = prev_cpu;
6344 	int want_affine = 0;
6345 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6346 
6347 	if (sd_flag & SD_BALANCE_WAKE) {
6348 		record_wakee(p);
6349 
6350 		if (sched_energy_enabled()) {
6351 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6352 			if (new_cpu >= 0)
6353 				return new_cpu;
6354 			new_cpu = prev_cpu;
6355 		}
6356 
6357 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6358 			      cpumask_test_cpu(cpu, p->cpus_ptr);
6359 	}
6360 
6361 	rcu_read_lock();
6362 	for_each_domain(cpu, tmp) {
6363 		if (!(tmp->flags & SD_LOAD_BALANCE))
6364 			break;
6365 
6366 		/*
6367 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6368 		 * cpu is a valid SD_WAKE_AFFINE target.
6369 		 */
6370 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6371 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6372 			if (cpu != prev_cpu)
6373 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6374 
6375 			sd = NULL; /* Prefer wake_affine over balance flags */
6376 			break;
6377 		}
6378 
6379 		if (tmp->flags & sd_flag)
6380 			sd = tmp;
6381 		else if (!want_affine)
6382 			break;
6383 	}
6384 
6385 	if (unlikely(sd)) {
6386 		/* Slow path */
6387 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6388 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6389 		/* Fast path */
6390 
6391 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6392 
6393 		if (want_affine)
6394 			current->recent_used_cpu = cpu;
6395 	}
6396 	rcu_read_unlock();
6397 
6398 	return new_cpu;
6399 }
6400 
6401 static void detach_entity_cfs_rq(struct sched_entity *se);
6402 
6403 /*
6404  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6405  * cfs_rq_of(p) references at time of call are still valid and identify the
6406  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6407  */
6408 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6409 {
6410 	/*
6411 	 * As blocked tasks retain absolute vruntime the migration needs to
6412 	 * deal with this by subtracting the old and adding the new
6413 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6414 	 * the task on the new runqueue.
6415 	 */
6416 	if (p->state == TASK_WAKING) {
6417 		struct sched_entity *se = &p->se;
6418 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6419 		u64 min_vruntime;
6420 
6421 #ifndef CONFIG_64BIT
6422 		u64 min_vruntime_copy;
6423 
6424 		do {
6425 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6426 			smp_rmb();
6427 			min_vruntime = cfs_rq->min_vruntime;
6428 		} while (min_vruntime != min_vruntime_copy);
6429 #else
6430 		min_vruntime = cfs_rq->min_vruntime;
6431 #endif
6432 
6433 		se->vruntime -= min_vruntime;
6434 	}
6435 
6436 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6437 		/*
6438 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6439 		 * rq->lock and can modify state directly.
6440 		 */
6441 		lockdep_assert_held(&task_rq(p)->lock);
6442 		detach_entity_cfs_rq(&p->se);
6443 
6444 	} else {
6445 		/*
6446 		 * We are supposed to update the task to "current" time, then
6447 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6448 		 * have difficulty in getting what current time is, so simply
6449 		 * throw away the out-of-date time. This will result in the
6450 		 * wakee task is less decayed, but giving the wakee more load
6451 		 * sounds not bad.
6452 		 */
6453 		remove_entity_load_avg(&p->se);
6454 	}
6455 
6456 	/* Tell new CPU we are migrated */
6457 	p->se.avg.last_update_time = 0;
6458 
6459 	/* We have migrated, no longer consider this task hot */
6460 	p->se.exec_start = 0;
6461 
6462 	update_scan_period(p, new_cpu);
6463 }
6464 
6465 static void task_dead_fair(struct task_struct *p)
6466 {
6467 	remove_entity_load_avg(&p->se);
6468 }
6469 
6470 static int
6471 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6472 {
6473 	if (rq->nr_running)
6474 		return 1;
6475 
6476 	return newidle_balance(rq, rf) != 0;
6477 }
6478 #endif /* CONFIG_SMP */
6479 
6480 static unsigned long wakeup_gran(struct sched_entity *se)
6481 {
6482 	unsigned long gran = sysctl_sched_wakeup_granularity;
6483 
6484 	/*
6485 	 * Since its curr running now, convert the gran from real-time
6486 	 * to virtual-time in his units.
6487 	 *
6488 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6489 	 * they get preempted easier. That is, if 'se' < 'curr' then
6490 	 * the resulting gran will be larger, therefore penalizing the
6491 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6492 	 * be smaller, again penalizing the lighter task.
6493 	 *
6494 	 * This is especially important for buddies when the leftmost
6495 	 * task is higher priority than the buddy.
6496 	 */
6497 	return calc_delta_fair(gran, se);
6498 }
6499 
6500 /*
6501  * Should 'se' preempt 'curr'.
6502  *
6503  *             |s1
6504  *        |s2
6505  *   |s3
6506  *         g
6507  *      |<--->|c
6508  *
6509  *  w(c, s1) = -1
6510  *  w(c, s2) =  0
6511  *  w(c, s3) =  1
6512  *
6513  */
6514 static int
6515 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6516 {
6517 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6518 
6519 	if (vdiff <= 0)
6520 		return -1;
6521 
6522 	gran = wakeup_gran(se);
6523 	if (vdiff > gran)
6524 		return 1;
6525 
6526 	return 0;
6527 }
6528 
6529 static void set_last_buddy(struct sched_entity *se)
6530 {
6531 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6532 		return;
6533 
6534 	for_each_sched_entity(se) {
6535 		if (SCHED_WARN_ON(!se->on_rq))
6536 			return;
6537 		cfs_rq_of(se)->last = se;
6538 	}
6539 }
6540 
6541 static void set_next_buddy(struct sched_entity *se)
6542 {
6543 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6544 		return;
6545 
6546 	for_each_sched_entity(se) {
6547 		if (SCHED_WARN_ON(!se->on_rq))
6548 			return;
6549 		cfs_rq_of(se)->next = se;
6550 	}
6551 }
6552 
6553 static void set_skip_buddy(struct sched_entity *se)
6554 {
6555 	for_each_sched_entity(se)
6556 		cfs_rq_of(se)->skip = se;
6557 }
6558 
6559 /*
6560  * Preempt the current task with a newly woken task if needed:
6561  */
6562 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6563 {
6564 	struct task_struct *curr = rq->curr;
6565 	struct sched_entity *se = &curr->se, *pse = &p->se;
6566 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6567 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6568 	int next_buddy_marked = 0;
6569 
6570 	if (unlikely(se == pse))
6571 		return;
6572 
6573 	/*
6574 	 * This is possible from callers such as attach_tasks(), in which we
6575 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6576 	 * lead to a throttle).  This both saves work and prevents false
6577 	 * next-buddy nomination below.
6578 	 */
6579 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6580 		return;
6581 
6582 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6583 		set_next_buddy(pse);
6584 		next_buddy_marked = 1;
6585 	}
6586 
6587 	/*
6588 	 * We can come here with TIF_NEED_RESCHED already set from new task
6589 	 * wake up path.
6590 	 *
6591 	 * Note: this also catches the edge-case of curr being in a throttled
6592 	 * group (e.g. via set_curr_task), since update_curr() (in the
6593 	 * enqueue of curr) will have resulted in resched being set.  This
6594 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6595 	 * below.
6596 	 */
6597 	if (test_tsk_need_resched(curr))
6598 		return;
6599 
6600 	/* Idle tasks are by definition preempted by non-idle tasks. */
6601 	if (unlikely(task_has_idle_policy(curr)) &&
6602 	    likely(!task_has_idle_policy(p)))
6603 		goto preempt;
6604 
6605 	/*
6606 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6607 	 * is driven by the tick):
6608 	 */
6609 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6610 		return;
6611 
6612 	find_matching_se(&se, &pse);
6613 	update_curr(cfs_rq_of(se));
6614 	BUG_ON(!pse);
6615 	if (wakeup_preempt_entity(se, pse) == 1) {
6616 		/*
6617 		 * Bias pick_next to pick the sched entity that is
6618 		 * triggering this preemption.
6619 		 */
6620 		if (!next_buddy_marked)
6621 			set_next_buddy(pse);
6622 		goto preempt;
6623 	}
6624 
6625 	return;
6626 
6627 preempt:
6628 	resched_curr(rq);
6629 	/*
6630 	 * Only set the backward buddy when the current task is still
6631 	 * on the rq. This can happen when a wakeup gets interleaved
6632 	 * with schedule on the ->pre_schedule() or idle_balance()
6633 	 * point, either of which can * drop the rq lock.
6634 	 *
6635 	 * Also, during early boot the idle thread is in the fair class,
6636 	 * for obvious reasons its a bad idea to schedule back to it.
6637 	 */
6638 	if (unlikely(!se->on_rq || curr == rq->idle))
6639 		return;
6640 
6641 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6642 		set_last_buddy(se);
6643 }
6644 
6645 struct task_struct *
6646 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6647 {
6648 	struct cfs_rq *cfs_rq = &rq->cfs;
6649 	struct sched_entity *se;
6650 	struct task_struct *p;
6651 	int new_tasks;
6652 
6653 again:
6654 	if (!sched_fair_runnable(rq))
6655 		goto idle;
6656 
6657 #ifdef CONFIG_FAIR_GROUP_SCHED
6658 	if (!prev || prev->sched_class != &fair_sched_class)
6659 		goto simple;
6660 
6661 	/*
6662 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6663 	 * likely that a next task is from the same cgroup as the current.
6664 	 *
6665 	 * Therefore attempt to avoid putting and setting the entire cgroup
6666 	 * hierarchy, only change the part that actually changes.
6667 	 */
6668 
6669 	do {
6670 		struct sched_entity *curr = cfs_rq->curr;
6671 
6672 		/*
6673 		 * Since we got here without doing put_prev_entity() we also
6674 		 * have to consider cfs_rq->curr. If it is still a runnable
6675 		 * entity, update_curr() will update its vruntime, otherwise
6676 		 * forget we've ever seen it.
6677 		 */
6678 		if (curr) {
6679 			if (curr->on_rq)
6680 				update_curr(cfs_rq);
6681 			else
6682 				curr = NULL;
6683 
6684 			/*
6685 			 * This call to check_cfs_rq_runtime() will do the
6686 			 * throttle and dequeue its entity in the parent(s).
6687 			 * Therefore the nr_running test will indeed
6688 			 * be correct.
6689 			 */
6690 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6691 				cfs_rq = &rq->cfs;
6692 
6693 				if (!cfs_rq->nr_running)
6694 					goto idle;
6695 
6696 				goto simple;
6697 			}
6698 		}
6699 
6700 		se = pick_next_entity(cfs_rq, curr);
6701 		cfs_rq = group_cfs_rq(se);
6702 	} while (cfs_rq);
6703 
6704 	p = task_of(se);
6705 
6706 	/*
6707 	 * Since we haven't yet done put_prev_entity and if the selected task
6708 	 * is a different task than we started out with, try and touch the
6709 	 * least amount of cfs_rqs.
6710 	 */
6711 	if (prev != p) {
6712 		struct sched_entity *pse = &prev->se;
6713 
6714 		while (!(cfs_rq = is_same_group(se, pse))) {
6715 			int se_depth = se->depth;
6716 			int pse_depth = pse->depth;
6717 
6718 			if (se_depth <= pse_depth) {
6719 				put_prev_entity(cfs_rq_of(pse), pse);
6720 				pse = parent_entity(pse);
6721 			}
6722 			if (se_depth >= pse_depth) {
6723 				set_next_entity(cfs_rq_of(se), se);
6724 				se = parent_entity(se);
6725 			}
6726 		}
6727 
6728 		put_prev_entity(cfs_rq, pse);
6729 		set_next_entity(cfs_rq, se);
6730 	}
6731 
6732 	goto done;
6733 simple:
6734 #endif
6735 	if (prev)
6736 		put_prev_task(rq, prev);
6737 
6738 	do {
6739 		se = pick_next_entity(cfs_rq, NULL);
6740 		set_next_entity(cfs_rq, se);
6741 		cfs_rq = group_cfs_rq(se);
6742 	} while (cfs_rq);
6743 
6744 	p = task_of(se);
6745 
6746 done: __maybe_unused;
6747 #ifdef CONFIG_SMP
6748 	/*
6749 	 * Move the next running task to the front of
6750 	 * the list, so our cfs_tasks list becomes MRU
6751 	 * one.
6752 	 */
6753 	list_move(&p->se.group_node, &rq->cfs_tasks);
6754 #endif
6755 
6756 	if (hrtick_enabled(rq))
6757 		hrtick_start_fair(rq, p);
6758 
6759 	update_misfit_status(p, rq);
6760 
6761 	return p;
6762 
6763 idle:
6764 	if (!rf)
6765 		return NULL;
6766 
6767 	new_tasks = newidle_balance(rq, rf);
6768 
6769 	/*
6770 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
6771 	 * possible for any higher priority task to appear. In that case we
6772 	 * must re-start the pick_next_entity() loop.
6773 	 */
6774 	if (new_tasks < 0)
6775 		return RETRY_TASK;
6776 
6777 	if (new_tasks > 0)
6778 		goto again;
6779 
6780 	/*
6781 	 * rq is about to be idle, check if we need to update the
6782 	 * lost_idle_time of clock_pelt
6783 	 */
6784 	update_idle_rq_clock_pelt(rq);
6785 
6786 	return NULL;
6787 }
6788 
6789 static struct task_struct *__pick_next_task_fair(struct rq *rq)
6790 {
6791 	return pick_next_task_fair(rq, NULL, NULL);
6792 }
6793 
6794 /*
6795  * Account for a descheduled task:
6796  */
6797 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6798 {
6799 	struct sched_entity *se = &prev->se;
6800 	struct cfs_rq *cfs_rq;
6801 
6802 	for_each_sched_entity(se) {
6803 		cfs_rq = cfs_rq_of(se);
6804 		put_prev_entity(cfs_rq, se);
6805 	}
6806 }
6807 
6808 /*
6809  * sched_yield() is very simple
6810  *
6811  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6812  */
6813 static void yield_task_fair(struct rq *rq)
6814 {
6815 	struct task_struct *curr = rq->curr;
6816 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6817 	struct sched_entity *se = &curr->se;
6818 
6819 	/*
6820 	 * Are we the only task in the tree?
6821 	 */
6822 	if (unlikely(rq->nr_running == 1))
6823 		return;
6824 
6825 	clear_buddies(cfs_rq, se);
6826 
6827 	if (curr->policy != SCHED_BATCH) {
6828 		update_rq_clock(rq);
6829 		/*
6830 		 * Update run-time statistics of the 'current'.
6831 		 */
6832 		update_curr(cfs_rq);
6833 		/*
6834 		 * Tell update_rq_clock() that we've just updated,
6835 		 * so we don't do microscopic update in schedule()
6836 		 * and double the fastpath cost.
6837 		 */
6838 		rq_clock_skip_update(rq);
6839 	}
6840 
6841 	set_skip_buddy(se);
6842 }
6843 
6844 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6845 {
6846 	struct sched_entity *se = &p->se;
6847 
6848 	/* throttled hierarchies are not runnable */
6849 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6850 		return false;
6851 
6852 	/* Tell the scheduler that we'd really like pse to run next. */
6853 	set_next_buddy(se);
6854 
6855 	yield_task_fair(rq);
6856 
6857 	return true;
6858 }
6859 
6860 #ifdef CONFIG_SMP
6861 /**************************************************
6862  * Fair scheduling class load-balancing methods.
6863  *
6864  * BASICS
6865  *
6866  * The purpose of load-balancing is to achieve the same basic fairness the
6867  * per-CPU scheduler provides, namely provide a proportional amount of compute
6868  * time to each task. This is expressed in the following equation:
6869  *
6870  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6871  *
6872  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
6873  * W_i,0 is defined as:
6874  *
6875  *   W_i,0 = \Sum_j w_i,j                                             (2)
6876  *
6877  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6878  * is derived from the nice value as per sched_prio_to_weight[].
6879  *
6880  * The weight average is an exponential decay average of the instantaneous
6881  * weight:
6882  *
6883  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6884  *
6885  * C_i is the compute capacity of CPU i, typically it is the
6886  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6887  * can also include other factors [XXX].
6888  *
6889  * To achieve this balance we define a measure of imbalance which follows
6890  * directly from (1):
6891  *
6892  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6893  *
6894  * We them move tasks around to minimize the imbalance. In the continuous
6895  * function space it is obvious this converges, in the discrete case we get
6896  * a few fun cases generally called infeasible weight scenarios.
6897  *
6898  * [XXX expand on:
6899  *     - infeasible weights;
6900  *     - local vs global optima in the discrete case. ]
6901  *
6902  *
6903  * SCHED DOMAINS
6904  *
6905  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6906  * for all i,j solution, we create a tree of CPUs that follows the hardware
6907  * topology where each level pairs two lower groups (or better). This results
6908  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
6909  * tree to only the first of the previous level and we decrease the frequency
6910  * of load-balance at each level inv. proportional to the number of CPUs in
6911  * the groups.
6912  *
6913  * This yields:
6914  *
6915  *     log_2 n     1     n
6916  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6917  *     i = 0      2^i   2^i
6918  *                               `- size of each group
6919  *         |         |     `- number of CPUs doing load-balance
6920  *         |         `- freq
6921  *         `- sum over all levels
6922  *
6923  * Coupled with a limit on how many tasks we can migrate every balance pass,
6924  * this makes (5) the runtime complexity of the balancer.
6925  *
6926  * An important property here is that each CPU is still (indirectly) connected
6927  * to every other CPU in at most O(log n) steps:
6928  *
6929  * The adjacency matrix of the resulting graph is given by:
6930  *
6931  *             log_2 n
6932  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6933  *             k = 0
6934  *
6935  * And you'll find that:
6936  *
6937  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6938  *
6939  * Showing there's indeed a path between every CPU in at most O(log n) steps.
6940  * The task movement gives a factor of O(m), giving a convergence complexity
6941  * of:
6942  *
6943  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6944  *
6945  *
6946  * WORK CONSERVING
6947  *
6948  * In order to avoid CPUs going idle while there's still work to do, new idle
6949  * balancing is more aggressive and has the newly idle CPU iterate up the domain
6950  * tree itself instead of relying on other CPUs to bring it work.
6951  *
6952  * This adds some complexity to both (5) and (8) but it reduces the total idle
6953  * time.
6954  *
6955  * [XXX more?]
6956  *
6957  *
6958  * CGROUPS
6959  *
6960  * Cgroups make a horror show out of (2), instead of a simple sum we get:
6961  *
6962  *                                s_k,i
6963  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6964  *                                 S_k
6965  *
6966  * Where
6967  *
6968  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6969  *
6970  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
6971  *
6972  * The big problem is S_k, its a global sum needed to compute a local (W_i)
6973  * property.
6974  *
6975  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6976  *      rewrite all of this once again.]
6977  */
6978 
6979 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6980 
6981 enum fbq_type { regular, remote, all };
6982 
6983 /*
6984  * 'group_type' describes the group of CPUs at the moment of load balancing.
6985  *
6986  * The enum is ordered by pulling priority, with the group with lowest priority
6987  * first so the group_type can simply be compared when selecting the busiest
6988  * group. See update_sd_pick_busiest().
6989  */
6990 enum group_type {
6991 	/* The group has spare capacity that can be used to run more tasks.  */
6992 	group_has_spare = 0,
6993 	/*
6994 	 * The group is fully used and the tasks don't compete for more CPU
6995 	 * cycles. Nevertheless, some tasks might wait before running.
6996 	 */
6997 	group_fully_busy,
6998 	/*
6999 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7000 	 * and must be migrated to a more powerful CPU.
7001 	 */
7002 	group_misfit_task,
7003 	/*
7004 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7005 	 * and the task should be migrated to it instead of running on the
7006 	 * current CPU.
7007 	 */
7008 	group_asym_packing,
7009 	/*
7010 	 * The tasks' affinity constraints previously prevented the scheduler
7011 	 * from balancing the load across the system.
7012 	 */
7013 	group_imbalanced,
7014 	/*
7015 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7016 	 * tasks.
7017 	 */
7018 	group_overloaded
7019 };
7020 
7021 enum migration_type {
7022 	migrate_load = 0,
7023 	migrate_util,
7024 	migrate_task,
7025 	migrate_misfit
7026 };
7027 
7028 #define LBF_ALL_PINNED	0x01
7029 #define LBF_NEED_BREAK	0x02
7030 #define LBF_DST_PINNED  0x04
7031 #define LBF_SOME_PINNED	0x08
7032 #define LBF_NOHZ_STATS	0x10
7033 #define LBF_NOHZ_AGAIN	0x20
7034 
7035 struct lb_env {
7036 	struct sched_domain	*sd;
7037 
7038 	struct rq		*src_rq;
7039 	int			src_cpu;
7040 
7041 	int			dst_cpu;
7042 	struct rq		*dst_rq;
7043 
7044 	struct cpumask		*dst_grpmask;
7045 	int			new_dst_cpu;
7046 	enum cpu_idle_type	idle;
7047 	long			imbalance;
7048 	/* The set of CPUs under consideration for load-balancing */
7049 	struct cpumask		*cpus;
7050 
7051 	unsigned int		flags;
7052 
7053 	unsigned int		loop;
7054 	unsigned int		loop_break;
7055 	unsigned int		loop_max;
7056 
7057 	enum fbq_type		fbq_type;
7058 	enum migration_type	migration_type;
7059 	struct list_head	tasks;
7060 };
7061 
7062 /*
7063  * Is this task likely cache-hot:
7064  */
7065 static int task_hot(struct task_struct *p, struct lb_env *env)
7066 {
7067 	s64 delta;
7068 
7069 	lockdep_assert_held(&env->src_rq->lock);
7070 
7071 	if (p->sched_class != &fair_sched_class)
7072 		return 0;
7073 
7074 	if (unlikely(task_has_idle_policy(p)))
7075 		return 0;
7076 
7077 	/*
7078 	 * Buddy candidates are cache hot:
7079 	 */
7080 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7081 			(&p->se == cfs_rq_of(&p->se)->next ||
7082 			 &p->se == cfs_rq_of(&p->se)->last))
7083 		return 1;
7084 
7085 	if (sysctl_sched_migration_cost == -1)
7086 		return 1;
7087 	if (sysctl_sched_migration_cost == 0)
7088 		return 0;
7089 
7090 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7091 
7092 	return delta < (s64)sysctl_sched_migration_cost;
7093 }
7094 
7095 #ifdef CONFIG_NUMA_BALANCING
7096 /*
7097  * Returns 1, if task migration degrades locality
7098  * Returns 0, if task migration improves locality i.e migration preferred.
7099  * Returns -1, if task migration is not affected by locality.
7100  */
7101 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7102 {
7103 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7104 	unsigned long src_weight, dst_weight;
7105 	int src_nid, dst_nid, dist;
7106 
7107 	if (!static_branch_likely(&sched_numa_balancing))
7108 		return -1;
7109 
7110 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7111 		return -1;
7112 
7113 	src_nid = cpu_to_node(env->src_cpu);
7114 	dst_nid = cpu_to_node(env->dst_cpu);
7115 
7116 	if (src_nid == dst_nid)
7117 		return -1;
7118 
7119 	/* Migrating away from the preferred node is always bad. */
7120 	if (src_nid == p->numa_preferred_nid) {
7121 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7122 			return 1;
7123 		else
7124 			return -1;
7125 	}
7126 
7127 	/* Encourage migration to the preferred node. */
7128 	if (dst_nid == p->numa_preferred_nid)
7129 		return 0;
7130 
7131 	/* Leaving a core idle is often worse than degrading locality. */
7132 	if (env->idle == CPU_IDLE)
7133 		return -1;
7134 
7135 	dist = node_distance(src_nid, dst_nid);
7136 	if (numa_group) {
7137 		src_weight = group_weight(p, src_nid, dist);
7138 		dst_weight = group_weight(p, dst_nid, dist);
7139 	} else {
7140 		src_weight = task_weight(p, src_nid, dist);
7141 		dst_weight = task_weight(p, dst_nid, dist);
7142 	}
7143 
7144 	return dst_weight < src_weight;
7145 }
7146 
7147 #else
7148 static inline int migrate_degrades_locality(struct task_struct *p,
7149 					     struct lb_env *env)
7150 {
7151 	return -1;
7152 }
7153 #endif
7154 
7155 /*
7156  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7157  */
7158 static
7159 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7160 {
7161 	int tsk_cache_hot;
7162 
7163 	lockdep_assert_held(&env->src_rq->lock);
7164 
7165 	/*
7166 	 * We do not migrate tasks that are:
7167 	 * 1) throttled_lb_pair, or
7168 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7169 	 * 3) running (obviously), or
7170 	 * 4) are cache-hot on their current CPU.
7171 	 */
7172 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7173 		return 0;
7174 
7175 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7176 		int cpu;
7177 
7178 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7179 
7180 		env->flags |= LBF_SOME_PINNED;
7181 
7182 		/*
7183 		 * Remember if this task can be migrated to any other CPU in
7184 		 * our sched_group. We may want to revisit it if we couldn't
7185 		 * meet load balance goals by pulling other tasks on src_cpu.
7186 		 *
7187 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7188 		 * already computed one in current iteration.
7189 		 */
7190 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7191 			return 0;
7192 
7193 		/* Prevent to re-select dst_cpu via env's CPUs: */
7194 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7195 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7196 				env->flags |= LBF_DST_PINNED;
7197 				env->new_dst_cpu = cpu;
7198 				break;
7199 			}
7200 		}
7201 
7202 		return 0;
7203 	}
7204 
7205 	/* Record that we found atleast one task that could run on dst_cpu */
7206 	env->flags &= ~LBF_ALL_PINNED;
7207 
7208 	if (task_running(env->src_rq, p)) {
7209 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7210 		return 0;
7211 	}
7212 
7213 	/*
7214 	 * Aggressive migration if:
7215 	 * 1) destination numa is preferred
7216 	 * 2) task is cache cold, or
7217 	 * 3) too many balance attempts have failed.
7218 	 */
7219 	tsk_cache_hot = migrate_degrades_locality(p, env);
7220 	if (tsk_cache_hot == -1)
7221 		tsk_cache_hot = task_hot(p, env);
7222 
7223 	if (tsk_cache_hot <= 0 ||
7224 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7225 		if (tsk_cache_hot == 1) {
7226 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7227 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7228 		}
7229 		return 1;
7230 	}
7231 
7232 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7233 	return 0;
7234 }
7235 
7236 /*
7237  * detach_task() -- detach the task for the migration specified in env
7238  */
7239 static void detach_task(struct task_struct *p, struct lb_env *env)
7240 {
7241 	lockdep_assert_held(&env->src_rq->lock);
7242 
7243 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7244 	set_task_cpu(p, env->dst_cpu);
7245 }
7246 
7247 /*
7248  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7249  * part of active balancing operations within "domain".
7250  *
7251  * Returns a task if successful and NULL otherwise.
7252  */
7253 static struct task_struct *detach_one_task(struct lb_env *env)
7254 {
7255 	struct task_struct *p;
7256 
7257 	lockdep_assert_held(&env->src_rq->lock);
7258 
7259 	list_for_each_entry_reverse(p,
7260 			&env->src_rq->cfs_tasks, se.group_node) {
7261 		if (!can_migrate_task(p, env))
7262 			continue;
7263 
7264 		detach_task(p, env);
7265 
7266 		/*
7267 		 * Right now, this is only the second place where
7268 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7269 		 * so we can safely collect stats here rather than
7270 		 * inside detach_tasks().
7271 		 */
7272 		schedstat_inc(env->sd->lb_gained[env->idle]);
7273 		return p;
7274 	}
7275 	return NULL;
7276 }
7277 
7278 static const unsigned int sched_nr_migrate_break = 32;
7279 
7280 /*
7281  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7282  * busiest_rq, as part of a balancing operation within domain "sd".
7283  *
7284  * Returns number of detached tasks if successful and 0 otherwise.
7285  */
7286 static int detach_tasks(struct lb_env *env)
7287 {
7288 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7289 	unsigned long util, load;
7290 	struct task_struct *p;
7291 	int detached = 0;
7292 
7293 	lockdep_assert_held(&env->src_rq->lock);
7294 
7295 	if (env->imbalance <= 0)
7296 		return 0;
7297 
7298 	while (!list_empty(tasks)) {
7299 		/*
7300 		 * We don't want to steal all, otherwise we may be treated likewise,
7301 		 * which could at worst lead to a livelock crash.
7302 		 */
7303 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7304 			break;
7305 
7306 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7307 
7308 		env->loop++;
7309 		/* We've more or less seen every task there is, call it quits */
7310 		if (env->loop > env->loop_max)
7311 			break;
7312 
7313 		/* take a breather every nr_migrate tasks */
7314 		if (env->loop > env->loop_break) {
7315 			env->loop_break += sched_nr_migrate_break;
7316 			env->flags |= LBF_NEED_BREAK;
7317 			break;
7318 		}
7319 
7320 		if (!can_migrate_task(p, env))
7321 			goto next;
7322 
7323 		switch (env->migration_type) {
7324 		case migrate_load:
7325 			load = task_h_load(p);
7326 
7327 			if (sched_feat(LB_MIN) &&
7328 			    load < 16 && !env->sd->nr_balance_failed)
7329 				goto next;
7330 
7331 			/*
7332 			 * Make sure that we don't migrate too much load.
7333 			 * Nevertheless, let relax the constraint if
7334 			 * scheduler fails to find a good waiting task to
7335 			 * migrate.
7336 			 */
7337 			if (load/2 > env->imbalance &&
7338 			    env->sd->nr_balance_failed <= env->sd->cache_nice_tries)
7339 				goto next;
7340 
7341 			env->imbalance -= load;
7342 			break;
7343 
7344 		case migrate_util:
7345 			util = task_util_est(p);
7346 
7347 			if (util > env->imbalance)
7348 				goto next;
7349 
7350 			env->imbalance -= util;
7351 			break;
7352 
7353 		case migrate_task:
7354 			env->imbalance--;
7355 			break;
7356 
7357 		case migrate_misfit:
7358 			/* This is not a misfit task */
7359 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7360 				goto next;
7361 
7362 			env->imbalance = 0;
7363 			break;
7364 		}
7365 
7366 		detach_task(p, env);
7367 		list_add(&p->se.group_node, &env->tasks);
7368 
7369 		detached++;
7370 
7371 #ifdef CONFIG_PREEMPTION
7372 		/*
7373 		 * NEWIDLE balancing is a source of latency, so preemptible
7374 		 * kernels will stop after the first task is detached to minimize
7375 		 * the critical section.
7376 		 */
7377 		if (env->idle == CPU_NEWLY_IDLE)
7378 			break;
7379 #endif
7380 
7381 		/*
7382 		 * We only want to steal up to the prescribed amount of
7383 		 * load/util/tasks.
7384 		 */
7385 		if (env->imbalance <= 0)
7386 			break;
7387 
7388 		continue;
7389 next:
7390 		list_move(&p->se.group_node, tasks);
7391 	}
7392 
7393 	/*
7394 	 * Right now, this is one of only two places we collect this stat
7395 	 * so we can safely collect detach_one_task() stats here rather
7396 	 * than inside detach_one_task().
7397 	 */
7398 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7399 
7400 	return detached;
7401 }
7402 
7403 /*
7404  * attach_task() -- attach the task detached by detach_task() to its new rq.
7405  */
7406 static void attach_task(struct rq *rq, struct task_struct *p)
7407 {
7408 	lockdep_assert_held(&rq->lock);
7409 
7410 	BUG_ON(task_rq(p) != rq);
7411 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7412 	check_preempt_curr(rq, p, 0);
7413 }
7414 
7415 /*
7416  * attach_one_task() -- attaches the task returned from detach_one_task() to
7417  * its new rq.
7418  */
7419 static void attach_one_task(struct rq *rq, struct task_struct *p)
7420 {
7421 	struct rq_flags rf;
7422 
7423 	rq_lock(rq, &rf);
7424 	update_rq_clock(rq);
7425 	attach_task(rq, p);
7426 	rq_unlock(rq, &rf);
7427 }
7428 
7429 /*
7430  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7431  * new rq.
7432  */
7433 static void attach_tasks(struct lb_env *env)
7434 {
7435 	struct list_head *tasks = &env->tasks;
7436 	struct task_struct *p;
7437 	struct rq_flags rf;
7438 
7439 	rq_lock(env->dst_rq, &rf);
7440 	update_rq_clock(env->dst_rq);
7441 
7442 	while (!list_empty(tasks)) {
7443 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7444 		list_del_init(&p->se.group_node);
7445 
7446 		attach_task(env->dst_rq, p);
7447 	}
7448 
7449 	rq_unlock(env->dst_rq, &rf);
7450 }
7451 
7452 #ifdef CONFIG_NO_HZ_COMMON
7453 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7454 {
7455 	if (cfs_rq->avg.load_avg)
7456 		return true;
7457 
7458 	if (cfs_rq->avg.util_avg)
7459 		return true;
7460 
7461 	return false;
7462 }
7463 
7464 static inline bool others_have_blocked(struct rq *rq)
7465 {
7466 	if (READ_ONCE(rq->avg_rt.util_avg))
7467 		return true;
7468 
7469 	if (READ_ONCE(rq->avg_dl.util_avg))
7470 		return true;
7471 
7472 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7473 	if (READ_ONCE(rq->avg_irq.util_avg))
7474 		return true;
7475 #endif
7476 
7477 	return false;
7478 }
7479 
7480 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7481 {
7482 	rq->last_blocked_load_update_tick = jiffies;
7483 
7484 	if (!has_blocked)
7485 		rq->has_blocked_load = 0;
7486 }
7487 #else
7488 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7489 static inline bool others_have_blocked(struct rq *rq) { return false; }
7490 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7491 #endif
7492 
7493 static bool __update_blocked_others(struct rq *rq, bool *done)
7494 {
7495 	const struct sched_class *curr_class;
7496 	u64 now = rq_clock_pelt(rq);
7497 	bool decayed;
7498 
7499 	/*
7500 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7501 	 * DL and IRQ signals have been updated before updating CFS.
7502 	 */
7503 	curr_class = rq->curr->sched_class;
7504 
7505 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7506 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7507 		  update_irq_load_avg(rq, 0);
7508 
7509 	if (others_have_blocked(rq))
7510 		*done = false;
7511 
7512 	return decayed;
7513 }
7514 
7515 #ifdef CONFIG_FAIR_GROUP_SCHED
7516 
7517 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7518 {
7519 	if (cfs_rq->load.weight)
7520 		return false;
7521 
7522 	if (cfs_rq->avg.load_sum)
7523 		return false;
7524 
7525 	if (cfs_rq->avg.util_sum)
7526 		return false;
7527 
7528 	if (cfs_rq->avg.runnable_load_sum)
7529 		return false;
7530 
7531 	return true;
7532 }
7533 
7534 static bool __update_blocked_fair(struct rq *rq, bool *done)
7535 {
7536 	struct cfs_rq *cfs_rq, *pos;
7537 	bool decayed = false;
7538 	int cpu = cpu_of(rq);
7539 
7540 	/*
7541 	 * Iterates the task_group tree in a bottom up fashion, see
7542 	 * list_add_leaf_cfs_rq() for details.
7543 	 */
7544 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7545 		struct sched_entity *se;
7546 
7547 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7548 			update_tg_load_avg(cfs_rq, 0);
7549 
7550 			if (cfs_rq == &rq->cfs)
7551 				decayed = true;
7552 		}
7553 
7554 		/* Propagate pending load changes to the parent, if any: */
7555 		se = cfs_rq->tg->se[cpu];
7556 		if (se && !skip_blocked_update(se))
7557 			update_load_avg(cfs_rq_of(se), se, 0);
7558 
7559 		/*
7560 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7561 		 * decayed cfs_rqs linger on the list.
7562 		 */
7563 		if (cfs_rq_is_decayed(cfs_rq))
7564 			list_del_leaf_cfs_rq(cfs_rq);
7565 
7566 		/* Don't need periodic decay once load/util_avg are null */
7567 		if (cfs_rq_has_blocked(cfs_rq))
7568 			*done = false;
7569 	}
7570 
7571 	return decayed;
7572 }
7573 
7574 /*
7575  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7576  * This needs to be done in a top-down fashion because the load of a child
7577  * group is a fraction of its parents load.
7578  */
7579 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7580 {
7581 	struct rq *rq = rq_of(cfs_rq);
7582 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7583 	unsigned long now = jiffies;
7584 	unsigned long load;
7585 
7586 	if (cfs_rq->last_h_load_update == now)
7587 		return;
7588 
7589 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
7590 	for_each_sched_entity(se) {
7591 		cfs_rq = cfs_rq_of(se);
7592 		WRITE_ONCE(cfs_rq->h_load_next, se);
7593 		if (cfs_rq->last_h_load_update == now)
7594 			break;
7595 	}
7596 
7597 	if (!se) {
7598 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7599 		cfs_rq->last_h_load_update = now;
7600 	}
7601 
7602 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7603 		load = cfs_rq->h_load;
7604 		load = div64_ul(load * se->avg.load_avg,
7605 			cfs_rq_load_avg(cfs_rq) + 1);
7606 		cfs_rq = group_cfs_rq(se);
7607 		cfs_rq->h_load = load;
7608 		cfs_rq->last_h_load_update = now;
7609 	}
7610 }
7611 
7612 static unsigned long task_h_load(struct task_struct *p)
7613 {
7614 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7615 
7616 	update_cfs_rq_h_load(cfs_rq);
7617 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7618 			cfs_rq_load_avg(cfs_rq) + 1);
7619 }
7620 #else
7621 static bool __update_blocked_fair(struct rq *rq, bool *done)
7622 {
7623 	struct cfs_rq *cfs_rq = &rq->cfs;
7624 	bool decayed;
7625 
7626 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7627 	if (cfs_rq_has_blocked(cfs_rq))
7628 		*done = false;
7629 
7630 	return decayed;
7631 }
7632 
7633 static unsigned long task_h_load(struct task_struct *p)
7634 {
7635 	return p->se.avg.load_avg;
7636 }
7637 #endif
7638 
7639 static void update_blocked_averages(int cpu)
7640 {
7641 	bool decayed = false, done = true;
7642 	struct rq *rq = cpu_rq(cpu);
7643 	struct rq_flags rf;
7644 
7645 	rq_lock_irqsave(rq, &rf);
7646 	update_rq_clock(rq);
7647 
7648 	decayed |= __update_blocked_others(rq, &done);
7649 	decayed |= __update_blocked_fair(rq, &done);
7650 
7651 	update_blocked_load_status(rq, !done);
7652 	if (decayed)
7653 		cpufreq_update_util(rq, 0);
7654 	rq_unlock_irqrestore(rq, &rf);
7655 }
7656 
7657 /********** Helpers for find_busiest_group ************************/
7658 
7659 /*
7660  * sg_lb_stats - stats of a sched_group required for load_balancing
7661  */
7662 struct sg_lb_stats {
7663 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7664 	unsigned long group_load; /* Total load over the CPUs of the group */
7665 	unsigned long group_capacity;
7666 	unsigned long group_util; /* Total utilization of the group */
7667 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
7668 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
7669 	unsigned int idle_cpus;
7670 	unsigned int group_weight;
7671 	enum group_type group_type;
7672 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
7673 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7674 #ifdef CONFIG_NUMA_BALANCING
7675 	unsigned int nr_numa_running;
7676 	unsigned int nr_preferred_running;
7677 #endif
7678 };
7679 
7680 /*
7681  * sd_lb_stats - Structure to store the statistics of a sched_domain
7682  *		 during load balancing.
7683  */
7684 struct sd_lb_stats {
7685 	struct sched_group *busiest;	/* Busiest group in this sd */
7686 	struct sched_group *local;	/* Local group in this sd */
7687 	unsigned long total_load;	/* Total load of all groups in sd */
7688 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7689 	unsigned long avg_load;	/* Average load across all groups in sd */
7690 	unsigned int prefer_sibling; /* tasks should go to sibling first */
7691 
7692 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7693 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7694 };
7695 
7696 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7697 {
7698 	/*
7699 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7700 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7701 	 * We must however set busiest_stat::group_type and
7702 	 * busiest_stat::idle_cpus to the worst busiest group because
7703 	 * update_sd_pick_busiest() reads these before assignment.
7704 	 */
7705 	*sds = (struct sd_lb_stats){
7706 		.busiest = NULL,
7707 		.local = NULL,
7708 		.total_load = 0UL,
7709 		.total_capacity = 0UL,
7710 		.busiest_stat = {
7711 			.idle_cpus = UINT_MAX,
7712 			.group_type = group_has_spare,
7713 		},
7714 	};
7715 }
7716 
7717 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7718 {
7719 	struct rq *rq = cpu_rq(cpu);
7720 	unsigned long max = arch_scale_cpu_capacity(cpu);
7721 	unsigned long used, free;
7722 	unsigned long irq;
7723 
7724 	irq = cpu_util_irq(rq);
7725 
7726 	if (unlikely(irq >= max))
7727 		return 1;
7728 
7729 	used = READ_ONCE(rq->avg_rt.util_avg);
7730 	used += READ_ONCE(rq->avg_dl.util_avg);
7731 
7732 	if (unlikely(used >= max))
7733 		return 1;
7734 
7735 	free = max - used;
7736 
7737 	return scale_irq_capacity(free, irq, max);
7738 }
7739 
7740 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7741 {
7742 	unsigned long capacity = scale_rt_capacity(sd, cpu);
7743 	struct sched_group *sdg = sd->groups;
7744 
7745 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
7746 
7747 	if (!capacity)
7748 		capacity = 1;
7749 
7750 	cpu_rq(cpu)->cpu_capacity = capacity;
7751 	sdg->sgc->capacity = capacity;
7752 	sdg->sgc->min_capacity = capacity;
7753 	sdg->sgc->max_capacity = capacity;
7754 }
7755 
7756 void update_group_capacity(struct sched_domain *sd, int cpu)
7757 {
7758 	struct sched_domain *child = sd->child;
7759 	struct sched_group *group, *sdg = sd->groups;
7760 	unsigned long capacity, min_capacity, max_capacity;
7761 	unsigned long interval;
7762 
7763 	interval = msecs_to_jiffies(sd->balance_interval);
7764 	interval = clamp(interval, 1UL, max_load_balance_interval);
7765 	sdg->sgc->next_update = jiffies + interval;
7766 
7767 	if (!child) {
7768 		update_cpu_capacity(sd, cpu);
7769 		return;
7770 	}
7771 
7772 	capacity = 0;
7773 	min_capacity = ULONG_MAX;
7774 	max_capacity = 0;
7775 
7776 	if (child->flags & SD_OVERLAP) {
7777 		/*
7778 		 * SD_OVERLAP domains cannot assume that child groups
7779 		 * span the current group.
7780 		 */
7781 
7782 		for_each_cpu(cpu, sched_group_span(sdg)) {
7783 			struct sched_group_capacity *sgc;
7784 			struct rq *rq = cpu_rq(cpu);
7785 
7786 			/*
7787 			 * build_sched_domains() -> init_sched_groups_capacity()
7788 			 * gets here before we've attached the domains to the
7789 			 * runqueues.
7790 			 *
7791 			 * Use capacity_of(), which is set irrespective of domains
7792 			 * in update_cpu_capacity().
7793 			 *
7794 			 * This avoids capacity from being 0 and
7795 			 * causing divide-by-zero issues on boot.
7796 			 */
7797 			if (unlikely(!rq->sd)) {
7798 				capacity += capacity_of(cpu);
7799 			} else {
7800 				sgc = rq->sd->groups->sgc;
7801 				capacity += sgc->capacity;
7802 			}
7803 
7804 			min_capacity = min(capacity, min_capacity);
7805 			max_capacity = max(capacity, max_capacity);
7806 		}
7807 	} else  {
7808 		/*
7809 		 * !SD_OVERLAP domains can assume that child groups
7810 		 * span the current group.
7811 		 */
7812 
7813 		group = child->groups;
7814 		do {
7815 			struct sched_group_capacity *sgc = group->sgc;
7816 
7817 			capacity += sgc->capacity;
7818 			min_capacity = min(sgc->min_capacity, min_capacity);
7819 			max_capacity = max(sgc->max_capacity, max_capacity);
7820 			group = group->next;
7821 		} while (group != child->groups);
7822 	}
7823 
7824 	sdg->sgc->capacity = capacity;
7825 	sdg->sgc->min_capacity = min_capacity;
7826 	sdg->sgc->max_capacity = max_capacity;
7827 }
7828 
7829 /*
7830  * Check whether the capacity of the rq has been noticeably reduced by side
7831  * activity. The imbalance_pct is used for the threshold.
7832  * Return true is the capacity is reduced
7833  */
7834 static inline int
7835 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7836 {
7837 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7838 				(rq->cpu_capacity_orig * 100));
7839 }
7840 
7841 /*
7842  * Check whether a rq has a misfit task and if it looks like we can actually
7843  * help that task: we can migrate the task to a CPU of higher capacity, or
7844  * the task's current CPU is heavily pressured.
7845  */
7846 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
7847 {
7848 	return rq->misfit_task_load &&
7849 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
7850 		 check_cpu_capacity(rq, sd));
7851 }
7852 
7853 /*
7854  * Group imbalance indicates (and tries to solve) the problem where balancing
7855  * groups is inadequate due to ->cpus_ptr constraints.
7856  *
7857  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7858  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7859  * Something like:
7860  *
7861  *	{ 0 1 2 3 } { 4 5 6 7 }
7862  *	        *     * * *
7863  *
7864  * If we were to balance group-wise we'd place two tasks in the first group and
7865  * two tasks in the second group. Clearly this is undesired as it will overload
7866  * cpu 3 and leave one of the CPUs in the second group unused.
7867  *
7868  * The current solution to this issue is detecting the skew in the first group
7869  * by noticing the lower domain failed to reach balance and had difficulty
7870  * moving tasks due to affinity constraints.
7871  *
7872  * When this is so detected; this group becomes a candidate for busiest; see
7873  * update_sd_pick_busiest(). And calculate_imbalance() and
7874  * find_busiest_group() avoid some of the usual balance conditions to allow it
7875  * to create an effective group imbalance.
7876  *
7877  * This is a somewhat tricky proposition since the next run might not find the
7878  * group imbalance and decide the groups need to be balanced again. A most
7879  * subtle and fragile situation.
7880  */
7881 
7882 static inline int sg_imbalanced(struct sched_group *group)
7883 {
7884 	return group->sgc->imbalance;
7885 }
7886 
7887 /*
7888  * group_has_capacity returns true if the group has spare capacity that could
7889  * be used by some tasks.
7890  * We consider that a group has spare capacity if the  * number of task is
7891  * smaller than the number of CPUs or if the utilization is lower than the
7892  * available capacity for CFS tasks.
7893  * For the latter, we use a threshold to stabilize the state, to take into
7894  * account the variance of the tasks' load and to return true if the available
7895  * capacity in meaningful for the load balancer.
7896  * As an example, an available capacity of 1% can appear but it doesn't make
7897  * any benefit for the load balance.
7898  */
7899 static inline bool
7900 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
7901 {
7902 	if (sgs->sum_nr_running < sgs->group_weight)
7903 		return true;
7904 
7905 	if ((sgs->group_capacity * 100) >
7906 			(sgs->group_util * imbalance_pct))
7907 		return true;
7908 
7909 	return false;
7910 }
7911 
7912 /*
7913  *  group_is_overloaded returns true if the group has more tasks than it can
7914  *  handle.
7915  *  group_is_overloaded is not equals to !group_has_capacity because a group
7916  *  with the exact right number of tasks, has no more spare capacity but is not
7917  *  overloaded so both group_has_capacity and group_is_overloaded return
7918  *  false.
7919  */
7920 static inline bool
7921 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
7922 {
7923 	if (sgs->sum_nr_running <= sgs->group_weight)
7924 		return false;
7925 
7926 	if ((sgs->group_capacity * 100) <
7927 			(sgs->group_util * imbalance_pct))
7928 		return true;
7929 
7930 	return false;
7931 }
7932 
7933 /*
7934  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
7935  * per-CPU capacity than sched_group ref.
7936  */
7937 static inline bool
7938 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7939 {
7940 	return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
7941 }
7942 
7943 /*
7944  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
7945  * per-CPU capacity_orig than sched_group ref.
7946  */
7947 static inline bool
7948 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7949 {
7950 	return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
7951 }
7952 
7953 static inline enum
7954 group_type group_classify(unsigned int imbalance_pct,
7955 			  struct sched_group *group,
7956 			  struct sg_lb_stats *sgs)
7957 {
7958 	if (group_is_overloaded(imbalance_pct, sgs))
7959 		return group_overloaded;
7960 
7961 	if (sg_imbalanced(group))
7962 		return group_imbalanced;
7963 
7964 	if (sgs->group_asym_packing)
7965 		return group_asym_packing;
7966 
7967 	if (sgs->group_misfit_task_load)
7968 		return group_misfit_task;
7969 
7970 	if (!group_has_capacity(imbalance_pct, sgs))
7971 		return group_fully_busy;
7972 
7973 	return group_has_spare;
7974 }
7975 
7976 static bool update_nohz_stats(struct rq *rq, bool force)
7977 {
7978 #ifdef CONFIG_NO_HZ_COMMON
7979 	unsigned int cpu = rq->cpu;
7980 
7981 	if (!rq->has_blocked_load)
7982 		return false;
7983 
7984 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7985 		return false;
7986 
7987 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7988 		return true;
7989 
7990 	update_blocked_averages(cpu);
7991 
7992 	return rq->has_blocked_load;
7993 #else
7994 	return false;
7995 #endif
7996 }
7997 
7998 /**
7999  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8000  * @env: The load balancing environment.
8001  * @group: sched_group whose statistics are to be updated.
8002  * @sgs: variable to hold the statistics for this group.
8003  * @sg_status: Holds flag indicating the status of the sched_group
8004  */
8005 static inline void update_sg_lb_stats(struct lb_env *env,
8006 				      struct sched_group *group,
8007 				      struct sg_lb_stats *sgs,
8008 				      int *sg_status)
8009 {
8010 	int i, nr_running, local_group;
8011 
8012 	memset(sgs, 0, sizeof(*sgs));
8013 
8014 	local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8015 
8016 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8017 		struct rq *rq = cpu_rq(i);
8018 
8019 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8020 			env->flags |= LBF_NOHZ_AGAIN;
8021 
8022 		sgs->group_load += cpu_load(rq);
8023 		sgs->group_util += cpu_util(i);
8024 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8025 
8026 		nr_running = rq->nr_running;
8027 		sgs->sum_nr_running += nr_running;
8028 
8029 		if (nr_running > 1)
8030 			*sg_status |= SG_OVERLOAD;
8031 
8032 		if (cpu_overutilized(i))
8033 			*sg_status |= SG_OVERUTILIZED;
8034 
8035 #ifdef CONFIG_NUMA_BALANCING
8036 		sgs->nr_numa_running += rq->nr_numa_running;
8037 		sgs->nr_preferred_running += rq->nr_preferred_running;
8038 #endif
8039 		/*
8040 		 * No need to call idle_cpu() if nr_running is not 0
8041 		 */
8042 		if (!nr_running && idle_cpu(i)) {
8043 			sgs->idle_cpus++;
8044 			/* Idle cpu can't have misfit task */
8045 			continue;
8046 		}
8047 
8048 		if (local_group)
8049 			continue;
8050 
8051 		/* Check for a misfit task on the cpu */
8052 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8053 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8054 			sgs->group_misfit_task_load = rq->misfit_task_load;
8055 			*sg_status |= SG_OVERLOAD;
8056 		}
8057 	}
8058 
8059 	/* Check if dst CPU is idle and preferred to this group */
8060 	if (env->sd->flags & SD_ASYM_PACKING &&
8061 	    env->idle != CPU_NOT_IDLE &&
8062 	    sgs->sum_h_nr_running &&
8063 	    sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8064 		sgs->group_asym_packing = 1;
8065 	}
8066 
8067 	sgs->group_capacity = group->sgc->capacity;
8068 
8069 	sgs->group_weight = group->group_weight;
8070 
8071 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8072 
8073 	/* Computing avg_load makes sense only when group is overloaded */
8074 	if (sgs->group_type == group_overloaded)
8075 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8076 				sgs->group_capacity;
8077 }
8078 
8079 /**
8080  * update_sd_pick_busiest - return 1 on busiest group
8081  * @env: The load balancing environment.
8082  * @sds: sched_domain statistics
8083  * @sg: sched_group candidate to be checked for being the busiest
8084  * @sgs: sched_group statistics
8085  *
8086  * Determine if @sg is a busier group than the previously selected
8087  * busiest group.
8088  *
8089  * Return: %true if @sg is a busier group than the previously selected
8090  * busiest group. %false otherwise.
8091  */
8092 static bool update_sd_pick_busiest(struct lb_env *env,
8093 				   struct sd_lb_stats *sds,
8094 				   struct sched_group *sg,
8095 				   struct sg_lb_stats *sgs)
8096 {
8097 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8098 
8099 	/* Make sure that there is at least one task to pull */
8100 	if (!sgs->sum_h_nr_running)
8101 		return false;
8102 
8103 	/*
8104 	 * Don't try to pull misfit tasks we can't help.
8105 	 * We can use max_capacity here as reduction in capacity on some
8106 	 * CPUs in the group should either be possible to resolve
8107 	 * internally or be covered by avg_load imbalance (eventually).
8108 	 */
8109 	if (sgs->group_type == group_misfit_task &&
8110 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8111 	     sds->local_stat.group_type != group_has_spare))
8112 		return false;
8113 
8114 	if (sgs->group_type > busiest->group_type)
8115 		return true;
8116 
8117 	if (sgs->group_type < busiest->group_type)
8118 		return false;
8119 
8120 	/*
8121 	 * The candidate and the current busiest group are the same type of
8122 	 * group. Let check which one is the busiest according to the type.
8123 	 */
8124 
8125 	switch (sgs->group_type) {
8126 	case group_overloaded:
8127 		/* Select the overloaded group with highest avg_load. */
8128 		if (sgs->avg_load <= busiest->avg_load)
8129 			return false;
8130 		break;
8131 
8132 	case group_imbalanced:
8133 		/*
8134 		 * Select the 1st imbalanced group as we don't have any way to
8135 		 * choose one more than another.
8136 		 */
8137 		return false;
8138 
8139 	case group_asym_packing:
8140 		/* Prefer to move from lowest priority CPU's work */
8141 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8142 			return false;
8143 		break;
8144 
8145 	case group_misfit_task:
8146 		/*
8147 		 * If we have more than one misfit sg go with the biggest
8148 		 * misfit.
8149 		 */
8150 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8151 			return false;
8152 		break;
8153 
8154 	case group_fully_busy:
8155 		/*
8156 		 * Select the fully busy group with highest avg_load. In
8157 		 * theory, there is no need to pull task from such kind of
8158 		 * group because tasks have all compute capacity that they need
8159 		 * but we can still improve the overall throughput by reducing
8160 		 * contention when accessing shared HW resources.
8161 		 *
8162 		 * XXX for now avg_load is not computed and always 0 so we
8163 		 * select the 1st one.
8164 		 */
8165 		if (sgs->avg_load <= busiest->avg_load)
8166 			return false;
8167 		break;
8168 
8169 	case group_has_spare:
8170 		/*
8171 		 * Select not overloaded group with lowest number of
8172 		 * idle cpus. We could also compare the spare capacity
8173 		 * which is more stable but it can end up that the
8174 		 * group has less spare capacity but finally more idle
8175 		 * CPUs which means less opportunity to pull tasks.
8176 		 */
8177 		if (sgs->idle_cpus >= busiest->idle_cpus)
8178 			return false;
8179 		break;
8180 	}
8181 
8182 	/*
8183 	 * Candidate sg has no more than one task per CPU and has higher
8184 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8185 	 * throughput. Maximize throughput, power/energy consequences are not
8186 	 * considered.
8187 	 */
8188 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8189 	    (sgs->group_type <= group_fully_busy) &&
8190 	    (group_smaller_min_cpu_capacity(sds->local, sg)))
8191 		return false;
8192 
8193 	return true;
8194 }
8195 
8196 #ifdef CONFIG_NUMA_BALANCING
8197 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8198 {
8199 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8200 		return regular;
8201 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8202 		return remote;
8203 	return all;
8204 }
8205 
8206 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8207 {
8208 	if (rq->nr_running > rq->nr_numa_running)
8209 		return regular;
8210 	if (rq->nr_running > rq->nr_preferred_running)
8211 		return remote;
8212 	return all;
8213 }
8214 #else
8215 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8216 {
8217 	return all;
8218 }
8219 
8220 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8221 {
8222 	return regular;
8223 }
8224 #endif /* CONFIG_NUMA_BALANCING */
8225 
8226 
8227 struct sg_lb_stats;
8228 
8229 /*
8230  * task_running_on_cpu - return 1 if @p is running on @cpu.
8231  */
8232 
8233 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8234 {
8235 	/* Task has no contribution or is new */
8236 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8237 		return 0;
8238 
8239 	if (task_on_rq_queued(p))
8240 		return 1;
8241 
8242 	return 0;
8243 }
8244 
8245 /**
8246  * idle_cpu_without - would a given CPU be idle without p ?
8247  * @cpu: the processor on which idleness is tested.
8248  * @p: task which should be ignored.
8249  *
8250  * Return: 1 if the CPU would be idle. 0 otherwise.
8251  */
8252 static int idle_cpu_without(int cpu, struct task_struct *p)
8253 {
8254 	struct rq *rq = cpu_rq(cpu);
8255 
8256 	if (rq->curr != rq->idle && rq->curr != p)
8257 		return 0;
8258 
8259 	/*
8260 	 * rq->nr_running can't be used but an updated version without the
8261 	 * impact of p on cpu must be used instead. The updated nr_running
8262 	 * be computed and tested before calling idle_cpu_without().
8263 	 */
8264 
8265 #ifdef CONFIG_SMP
8266 	if (!llist_empty(&rq->wake_list))
8267 		return 0;
8268 #endif
8269 
8270 	return 1;
8271 }
8272 
8273 /*
8274  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8275  * @sd: The sched_domain level to look for idlest group.
8276  * @group: sched_group whose statistics are to be updated.
8277  * @sgs: variable to hold the statistics for this group.
8278  * @p: The task for which we look for the idlest group/CPU.
8279  */
8280 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8281 					  struct sched_group *group,
8282 					  struct sg_lb_stats *sgs,
8283 					  struct task_struct *p)
8284 {
8285 	int i, nr_running;
8286 
8287 	memset(sgs, 0, sizeof(*sgs));
8288 
8289 	for_each_cpu(i, sched_group_span(group)) {
8290 		struct rq *rq = cpu_rq(i);
8291 		unsigned int local;
8292 
8293 		sgs->group_load += cpu_load_without(rq, p);
8294 		sgs->group_util += cpu_util_without(i, p);
8295 		local = task_running_on_cpu(i, p);
8296 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8297 
8298 		nr_running = rq->nr_running - local;
8299 		sgs->sum_nr_running += nr_running;
8300 
8301 		/*
8302 		 * No need to call idle_cpu_without() if nr_running is not 0
8303 		 */
8304 		if (!nr_running && idle_cpu_without(i, p))
8305 			sgs->idle_cpus++;
8306 
8307 	}
8308 
8309 	/* Check if task fits in the group */
8310 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
8311 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
8312 		sgs->group_misfit_task_load = 1;
8313 	}
8314 
8315 	sgs->group_capacity = group->sgc->capacity;
8316 
8317 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8318 
8319 	/*
8320 	 * Computing avg_load makes sense only when group is fully busy or
8321 	 * overloaded
8322 	 */
8323 	if (sgs->group_type < group_fully_busy)
8324 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8325 				sgs->group_capacity;
8326 }
8327 
8328 static bool update_pick_idlest(struct sched_group *idlest,
8329 			       struct sg_lb_stats *idlest_sgs,
8330 			       struct sched_group *group,
8331 			       struct sg_lb_stats *sgs)
8332 {
8333 	if (sgs->group_type < idlest_sgs->group_type)
8334 		return true;
8335 
8336 	if (sgs->group_type > idlest_sgs->group_type)
8337 		return false;
8338 
8339 	/*
8340 	 * The candidate and the current idlest group are the same type of
8341 	 * group. Let check which one is the idlest according to the type.
8342 	 */
8343 
8344 	switch (sgs->group_type) {
8345 	case group_overloaded:
8346 	case group_fully_busy:
8347 		/* Select the group with lowest avg_load. */
8348 		if (idlest_sgs->avg_load <= sgs->avg_load)
8349 			return false;
8350 		break;
8351 
8352 	case group_imbalanced:
8353 	case group_asym_packing:
8354 		/* Those types are not used in the slow wakeup path */
8355 		return false;
8356 
8357 	case group_misfit_task:
8358 		/* Select group with the highest max capacity */
8359 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8360 			return false;
8361 		break;
8362 
8363 	case group_has_spare:
8364 		/* Select group with most idle CPUs */
8365 		if (idlest_sgs->idle_cpus >= sgs->idle_cpus)
8366 			return false;
8367 		break;
8368 	}
8369 
8370 	return true;
8371 }
8372 
8373 /*
8374  * find_idlest_group() finds and returns the least busy CPU group within the
8375  * domain.
8376  *
8377  * Assumes p is allowed on at least one CPU in sd.
8378  */
8379 static struct sched_group *
8380 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
8381 		  int this_cpu, int sd_flag)
8382 {
8383 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8384 	struct sg_lb_stats local_sgs, tmp_sgs;
8385 	struct sg_lb_stats *sgs;
8386 	unsigned long imbalance;
8387 	struct sg_lb_stats idlest_sgs = {
8388 			.avg_load = UINT_MAX,
8389 			.group_type = group_overloaded,
8390 	};
8391 
8392 	imbalance = scale_load_down(NICE_0_LOAD) *
8393 				(sd->imbalance_pct-100) / 100;
8394 
8395 	do {
8396 		int local_group;
8397 
8398 		/* Skip over this group if it has no CPUs allowed */
8399 		if (!cpumask_intersects(sched_group_span(group),
8400 					p->cpus_ptr))
8401 			continue;
8402 
8403 		local_group = cpumask_test_cpu(this_cpu,
8404 					       sched_group_span(group));
8405 
8406 		if (local_group) {
8407 			sgs = &local_sgs;
8408 			local = group;
8409 		} else {
8410 			sgs = &tmp_sgs;
8411 		}
8412 
8413 		update_sg_wakeup_stats(sd, group, sgs, p);
8414 
8415 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8416 			idlest = group;
8417 			idlest_sgs = *sgs;
8418 		}
8419 
8420 	} while (group = group->next, group != sd->groups);
8421 
8422 
8423 	/* There is no idlest group to push tasks to */
8424 	if (!idlest)
8425 		return NULL;
8426 
8427 	/* The local group has been skipped because of CPU affinity */
8428 	if (!local)
8429 		return idlest;
8430 
8431 	/*
8432 	 * If the local group is idler than the selected idlest group
8433 	 * don't try and push the task.
8434 	 */
8435 	if (local_sgs.group_type < idlest_sgs.group_type)
8436 		return NULL;
8437 
8438 	/*
8439 	 * If the local group is busier than the selected idlest group
8440 	 * try and push the task.
8441 	 */
8442 	if (local_sgs.group_type > idlest_sgs.group_type)
8443 		return idlest;
8444 
8445 	switch (local_sgs.group_type) {
8446 	case group_overloaded:
8447 	case group_fully_busy:
8448 		/*
8449 		 * When comparing groups across NUMA domains, it's possible for
8450 		 * the local domain to be very lightly loaded relative to the
8451 		 * remote domains but "imbalance" skews the comparison making
8452 		 * remote CPUs look much more favourable. When considering
8453 		 * cross-domain, add imbalance to the load on the remote node
8454 		 * and consider staying local.
8455 		 */
8456 
8457 		if ((sd->flags & SD_NUMA) &&
8458 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8459 			return NULL;
8460 
8461 		/*
8462 		 * If the local group is less loaded than the selected
8463 		 * idlest group don't try and push any tasks.
8464 		 */
8465 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8466 			return NULL;
8467 
8468 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8469 			return NULL;
8470 		break;
8471 
8472 	case group_imbalanced:
8473 	case group_asym_packing:
8474 		/* Those type are not used in the slow wakeup path */
8475 		return NULL;
8476 
8477 	case group_misfit_task:
8478 		/* Select group with the highest max capacity */
8479 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8480 			return NULL;
8481 		break;
8482 
8483 	case group_has_spare:
8484 		if (sd->flags & SD_NUMA) {
8485 #ifdef CONFIG_NUMA_BALANCING
8486 			int idlest_cpu;
8487 			/*
8488 			 * If there is spare capacity at NUMA, try to select
8489 			 * the preferred node
8490 			 */
8491 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8492 				return NULL;
8493 
8494 			idlest_cpu = cpumask_first(sched_group_span(idlest));
8495 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8496 				return idlest;
8497 #endif
8498 			/*
8499 			 * Otherwise, keep the task on this node to stay close
8500 			 * its wakeup source and improve locality. If there is
8501 			 * a real need of migration, periodic load balance will
8502 			 * take care of it.
8503 			 */
8504 			if (local_sgs.idle_cpus)
8505 				return NULL;
8506 		}
8507 
8508 		/*
8509 		 * Select group with highest number of idle CPUs. We could also
8510 		 * compare the utilization which is more stable but it can end
8511 		 * up that the group has less spare capacity but finally more
8512 		 * idle CPUs which means more opportunity to run task.
8513 		 */
8514 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8515 			return NULL;
8516 		break;
8517 	}
8518 
8519 	return idlest;
8520 }
8521 
8522 /**
8523  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8524  * @env: The load balancing environment.
8525  * @sds: variable to hold the statistics for this sched_domain.
8526  */
8527 
8528 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8529 {
8530 	struct sched_domain *child = env->sd->child;
8531 	struct sched_group *sg = env->sd->groups;
8532 	struct sg_lb_stats *local = &sds->local_stat;
8533 	struct sg_lb_stats tmp_sgs;
8534 	int sg_status = 0;
8535 
8536 #ifdef CONFIG_NO_HZ_COMMON
8537 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8538 		env->flags |= LBF_NOHZ_STATS;
8539 #endif
8540 
8541 	do {
8542 		struct sg_lb_stats *sgs = &tmp_sgs;
8543 		int local_group;
8544 
8545 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8546 		if (local_group) {
8547 			sds->local = sg;
8548 			sgs = local;
8549 
8550 			if (env->idle != CPU_NEWLY_IDLE ||
8551 			    time_after_eq(jiffies, sg->sgc->next_update))
8552 				update_group_capacity(env->sd, env->dst_cpu);
8553 		}
8554 
8555 		update_sg_lb_stats(env, sg, sgs, &sg_status);
8556 
8557 		if (local_group)
8558 			goto next_group;
8559 
8560 
8561 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8562 			sds->busiest = sg;
8563 			sds->busiest_stat = *sgs;
8564 		}
8565 
8566 next_group:
8567 		/* Now, start updating sd_lb_stats */
8568 		sds->total_load += sgs->group_load;
8569 		sds->total_capacity += sgs->group_capacity;
8570 
8571 		sg = sg->next;
8572 	} while (sg != env->sd->groups);
8573 
8574 	/* Tag domain that child domain prefers tasks go to siblings first */
8575 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8576 
8577 #ifdef CONFIG_NO_HZ_COMMON
8578 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8579 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8580 
8581 		WRITE_ONCE(nohz.next_blocked,
8582 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8583 	}
8584 #endif
8585 
8586 	if (env->sd->flags & SD_NUMA)
8587 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8588 
8589 	if (!env->sd->parent) {
8590 		struct root_domain *rd = env->dst_rq->rd;
8591 
8592 		/* update overload indicator if we are at root domain */
8593 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8594 
8595 		/* Update over-utilization (tipping point, U >= 0) indicator */
8596 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8597 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8598 	} else if (sg_status & SG_OVERUTILIZED) {
8599 		struct root_domain *rd = env->dst_rq->rd;
8600 
8601 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8602 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8603 	}
8604 }
8605 
8606 /**
8607  * calculate_imbalance - Calculate the amount of imbalance present within the
8608  *			 groups of a given sched_domain during load balance.
8609  * @env: load balance environment
8610  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8611  */
8612 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8613 {
8614 	struct sg_lb_stats *local, *busiest;
8615 
8616 	local = &sds->local_stat;
8617 	busiest = &sds->busiest_stat;
8618 
8619 	if (busiest->group_type == group_misfit_task) {
8620 		/* Set imbalance to allow misfit tasks to be balanced. */
8621 		env->migration_type = migrate_misfit;
8622 		env->imbalance = 1;
8623 		return;
8624 	}
8625 
8626 	if (busiest->group_type == group_asym_packing) {
8627 		/*
8628 		 * In case of asym capacity, we will try to migrate all load to
8629 		 * the preferred CPU.
8630 		 */
8631 		env->migration_type = migrate_task;
8632 		env->imbalance = busiest->sum_h_nr_running;
8633 		return;
8634 	}
8635 
8636 	if (busiest->group_type == group_imbalanced) {
8637 		/*
8638 		 * In the group_imb case we cannot rely on group-wide averages
8639 		 * to ensure CPU-load equilibrium, try to move any task to fix
8640 		 * the imbalance. The next load balance will take care of
8641 		 * balancing back the system.
8642 		 */
8643 		env->migration_type = migrate_task;
8644 		env->imbalance = 1;
8645 		return;
8646 	}
8647 
8648 	/*
8649 	 * Try to use spare capacity of local group without overloading it or
8650 	 * emptying busiest.
8651 	 * XXX Spreading tasks across NUMA nodes is not always the best policy
8652 	 * and special care should be taken for SD_NUMA domain level before
8653 	 * spreading the tasks. For now, load_balance() fully relies on
8654 	 * NUMA_BALANCING and fbq_classify_group/rq to override the decision.
8655 	 */
8656 	if (local->group_type == group_has_spare) {
8657 		if (busiest->group_type > group_fully_busy) {
8658 			/*
8659 			 * If busiest is overloaded, try to fill spare
8660 			 * capacity. This might end up creating spare capacity
8661 			 * in busiest or busiest still being overloaded but
8662 			 * there is no simple way to directly compute the
8663 			 * amount of load to migrate in order to balance the
8664 			 * system.
8665 			 */
8666 			env->migration_type = migrate_util;
8667 			env->imbalance = max(local->group_capacity, local->group_util) -
8668 					 local->group_util;
8669 
8670 			/*
8671 			 * In some cases, the group's utilization is max or even
8672 			 * higher than capacity because of migrations but the
8673 			 * local CPU is (newly) idle. There is at least one
8674 			 * waiting task in this overloaded busiest group. Let's
8675 			 * try to pull it.
8676 			 */
8677 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
8678 				env->migration_type = migrate_task;
8679 				env->imbalance = 1;
8680 			}
8681 
8682 			return;
8683 		}
8684 
8685 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
8686 			unsigned int nr_diff = busiest->sum_nr_running;
8687 			/*
8688 			 * When prefer sibling, evenly spread running tasks on
8689 			 * groups.
8690 			 */
8691 			env->migration_type = migrate_task;
8692 			lsub_positive(&nr_diff, local->sum_nr_running);
8693 			env->imbalance = nr_diff >> 1;
8694 			return;
8695 		}
8696 
8697 		/*
8698 		 * If there is no overload, we just want to even the number of
8699 		 * idle cpus.
8700 		 */
8701 		env->migration_type = migrate_task;
8702 		env->imbalance = max_t(long, 0, (local->idle_cpus -
8703 						 busiest->idle_cpus) >> 1);
8704 		return;
8705 	}
8706 
8707 	/*
8708 	 * Local is fully busy but has to take more load to relieve the
8709 	 * busiest group
8710 	 */
8711 	if (local->group_type < group_overloaded) {
8712 		/*
8713 		 * Local will become overloaded so the avg_load metrics are
8714 		 * finally needed.
8715 		 */
8716 
8717 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
8718 				  local->group_capacity;
8719 
8720 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
8721 				sds->total_capacity;
8722 	}
8723 
8724 	/*
8725 	 * Both group are or will become overloaded and we're trying to get all
8726 	 * the CPUs to the average_load, so we don't want to push ourselves
8727 	 * above the average load, nor do we wish to reduce the max loaded CPU
8728 	 * below the average load. At the same time, we also don't want to
8729 	 * reduce the group load below the group capacity. Thus we look for
8730 	 * the minimum possible imbalance.
8731 	 */
8732 	env->migration_type = migrate_load;
8733 	env->imbalance = min(
8734 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
8735 		(sds->avg_load - local->avg_load) * local->group_capacity
8736 	) / SCHED_CAPACITY_SCALE;
8737 }
8738 
8739 /******* find_busiest_group() helpers end here *********************/
8740 
8741 /*
8742  * Decision matrix according to the local and busiest group type:
8743  *
8744  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
8745  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
8746  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
8747  * misfit_task      force     N/A        N/A    N/A  force      force
8748  * asym_packing     force     force      N/A    N/A  force      force
8749  * imbalanced       force     force      N/A    N/A  force      force
8750  * overloaded       force     force      N/A    N/A  force      avg_load
8751  *
8752  * N/A :      Not Applicable because already filtered while updating
8753  *            statistics.
8754  * balanced : The system is balanced for these 2 groups.
8755  * force :    Calculate the imbalance as load migration is probably needed.
8756  * avg_load : Only if imbalance is significant enough.
8757  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
8758  *            different in groups.
8759  */
8760 
8761 /**
8762  * find_busiest_group - Returns the busiest group within the sched_domain
8763  * if there is an imbalance.
8764  *
8765  * Also calculates the amount of runnable load which should be moved
8766  * to restore balance.
8767  *
8768  * @env: The load balancing environment.
8769  *
8770  * Return:	- The busiest group if imbalance exists.
8771  */
8772 static struct sched_group *find_busiest_group(struct lb_env *env)
8773 {
8774 	struct sg_lb_stats *local, *busiest;
8775 	struct sd_lb_stats sds;
8776 
8777 	init_sd_lb_stats(&sds);
8778 
8779 	/*
8780 	 * Compute the various statistics relevant for load balancing at
8781 	 * this level.
8782 	 */
8783 	update_sd_lb_stats(env, &sds);
8784 
8785 	if (sched_energy_enabled()) {
8786 		struct root_domain *rd = env->dst_rq->rd;
8787 
8788 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8789 			goto out_balanced;
8790 	}
8791 
8792 	local = &sds.local_stat;
8793 	busiest = &sds.busiest_stat;
8794 
8795 	/* There is no busy sibling group to pull tasks from */
8796 	if (!sds.busiest)
8797 		goto out_balanced;
8798 
8799 	/* Misfit tasks should be dealt with regardless of the avg load */
8800 	if (busiest->group_type == group_misfit_task)
8801 		goto force_balance;
8802 
8803 	/* ASYM feature bypasses nice load balance check */
8804 	if (busiest->group_type == group_asym_packing)
8805 		goto force_balance;
8806 
8807 	/*
8808 	 * If the busiest group is imbalanced the below checks don't
8809 	 * work because they assume all things are equal, which typically
8810 	 * isn't true due to cpus_ptr constraints and the like.
8811 	 */
8812 	if (busiest->group_type == group_imbalanced)
8813 		goto force_balance;
8814 
8815 	/*
8816 	 * If the local group is busier than the selected busiest group
8817 	 * don't try and pull any tasks.
8818 	 */
8819 	if (local->group_type > busiest->group_type)
8820 		goto out_balanced;
8821 
8822 	/*
8823 	 * When groups are overloaded, use the avg_load to ensure fairness
8824 	 * between tasks.
8825 	 */
8826 	if (local->group_type == group_overloaded) {
8827 		/*
8828 		 * If the local group is more loaded than the selected
8829 		 * busiest group don't try to pull any tasks.
8830 		 */
8831 		if (local->avg_load >= busiest->avg_load)
8832 			goto out_balanced;
8833 
8834 		/* XXX broken for overlapping NUMA groups */
8835 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
8836 				sds.total_capacity;
8837 
8838 		/*
8839 		 * Don't pull any tasks if this group is already above the
8840 		 * domain average load.
8841 		 */
8842 		if (local->avg_load >= sds.avg_load)
8843 			goto out_balanced;
8844 
8845 		/*
8846 		 * If the busiest group is more loaded, use imbalance_pct to be
8847 		 * conservative.
8848 		 */
8849 		if (100 * busiest->avg_load <=
8850 				env->sd->imbalance_pct * local->avg_load)
8851 			goto out_balanced;
8852 	}
8853 
8854 	/* Try to move all excess tasks to child's sibling domain */
8855 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
8856 	    busiest->sum_nr_running > local->sum_nr_running + 1)
8857 		goto force_balance;
8858 
8859 	if (busiest->group_type != group_overloaded) {
8860 		if (env->idle == CPU_NOT_IDLE)
8861 			/*
8862 			 * If the busiest group is not overloaded (and as a
8863 			 * result the local one too) but this CPU is already
8864 			 * busy, let another idle CPU try to pull task.
8865 			 */
8866 			goto out_balanced;
8867 
8868 		if (busiest->group_weight > 1 &&
8869 		    local->idle_cpus <= (busiest->idle_cpus + 1))
8870 			/*
8871 			 * If the busiest group is not overloaded
8872 			 * and there is no imbalance between this and busiest
8873 			 * group wrt idle CPUs, it is balanced. The imbalance
8874 			 * becomes significant if the diff is greater than 1
8875 			 * otherwise we might end up to just move the imbalance
8876 			 * on another group. Of course this applies only if
8877 			 * there is more than 1 CPU per group.
8878 			 */
8879 			goto out_balanced;
8880 
8881 		if (busiest->sum_h_nr_running == 1)
8882 			/*
8883 			 * busiest doesn't have any tasks waiting to run
8884 			 */
8885 			goto out_balanced;
8886 	}
8887 
8888 force_balance:
8889 	/* Looks like there is an imbalance. Compute it */
8890 	calculate_imbalance(env, &sds);
8891 	return env->imbalance ? sds.busiest : NULL;
8892 
8893 out_balanced:
8894 	env->imbalance = 0;
8895 	return NULL;
8896 }
8897 
8898 /*
8899  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8900  */
8901 static struct rq *find_busiest_queue(struct lb_env *env,
8902 				     struct sched_group *group)
8903 {
8904 	struct rq *busiest = NULL, *rq;
8905 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
8906 	unsigned int busiest_nr = 0;
8907 	int i;
8908 
8909 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8910 		unsigned long capacity, load, util;
8911 		unsigned int nr_running;
8912 		enum fbq_type rt;
8913 
8914 		rq = cpu_rq(i);
8915 		rt = fbq_classify_rq(rq);
8916 
8917 		/*
8918 		 * We classify groups/runqueues into three groups:
8919 		 *  - regular: there are !numa tasks
8920 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8921 		 *  - all:     there is no distinction
8922 		 *
8923 		 * In order to avoid migrating ideally placed numa tasks,
8924 		 * ignore those when there's better options.
8925 		 *
8926 		 * If we ignore the actual busiest queue to migrate another
8927 		 * task, the next balance pass can still reduce the busiest
8928 		 * queue by moving tasks around inside the node.
8929 		 *
8930 		 * If we cannot move enough load due to this classification
8931 		 * the next pass will adjust the group classification and
8932 		 * allow migration of more tasks.
8933 		 *
8934 		 * Both cases only affect the total convergence complexity.
8935 		 */
8936 		if (rt > env->fbq_type)
8937 			continue;
8938 
8939 		capacity = capacity_of(i);
8940 		nr_running = rq->cfs.h_nr_running;
8941 
8942 		/*
8943 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8944 		 * eventually lead to active_balancing high->low capacity.
8945 		 * Higher per-CPU capacity is considered better than balancing
8946 		 * average load.
8947 		 */
8948 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8949 		    capacity_of(env->dst_cpu) < capacity &&
8950 		    nr_running == 1)
8951 			continue;
8952 
8953 		switch (env->migration_type) {
8954 		case migrate_load:
8955 			/*
8956 			 * When comparing with load imbalance, use cpu_load()
8957 			 * which is not scaled with the CPU capacity.
8958 			 */
8959 			load = cpu_load(rq);
8960 
8961 			if (nr_running == 1 && load > env->imbalance &&
8962 			    !check_cpu_capacity(rq, env->sd))
8963 				break;
8964 
8965 			/*
8966 			 * For the load comparisons with the other CPUs,
8967 			 * consider the cpu_load() scaled with the CPU
8968 			 * capacity, so that the load can be moved away
8969 			 * from the CPU that is potentially running at a
8970 			 * lower capacity.
8971 			 *
8972 			 * Thus we're looking for max(load_i / capacity_i),
8973 			 * crosswise multiplication to rid ourselves of the
8974 			 * division works out to:
8975 			 * load_i * capacity_j > load_j * capacity_i;
8976 			 * where j is our previous maximum.
8977 			 */
8978 			if (load * busiest_capacity > busiest_load * capacity) {
8979 				busiest_load = load;
8980 				busiest_capacity = capacity;
8981 				busiest = rq;
8982 			}
8983 			break;
8984 
8985 		case migrate_util:
8986 			util = cpu_util(cpu_of(rq));
8987 
8988 			if (busiest_util < util) {
8989 				busiest_util = util;
8990 				busiest = rq;
8991 			}
8992 			break;
8993 
8994 		case migrate_task:
8995 			if (busiest_nr < nr_running) {
8996 				busiest_nr = nr_running;
8997 				busiest = rq;
8998 			}
8999 			break;
9000 
9001 		case migrate_misfit:
9002 			/*
9003 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9004 			 * simply seek the "biggest" misfit task.
9005 			 */
9006 			if (rq->misfit_task_load > busiest_load) {
9007 				busiest_load = rq->misfit_task_load;
9008 				busiest = rq;
9009 			}
9010 
9011 			break;
9012 
9013 		}
9014 	}
9015 
9016 	return busiest;
9017 }
9018 
9019 /*
9020  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9021  * so long as it is large enough.
9022  */
9023 #define MAX_PINNED_INTERVAL	512
9024 
9025 static inline bool
9026 asym_active_balance(struct lb_env *env)
9027 {
9028 	/*
9029 	 * ASYM_PACKING needs to force migrate tasks from busy but
9030 	 * lower priority CPUs in order to pack all tasks in the
9031 	 * highest priority CPUs.
9032 	 */
9033 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9034 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9035 }
9036 
9037 static inline bool
9038 voluntary_active_balance(struct lb_env *env)
9039 {
9040 	struct sched_domain *sd = env->sd;
9041 
9042 	if (asym_active_balance(env))
9043 		return 1;
9044 
9045 	/*
9046 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9047 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9048 	 * because of other sched_class or IRQs if more capacity stays
9049 	 * available on dst_cpu.
9050 	 */
9051 	if ((env->idle != CPU_NOT_IDLE) &&
9052 	    (env->src_rq->cfs.h_nr_running == 1)) {
9053 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9054 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9055 			return 1;
9056 	}
9057 
9058 	if (env->migration_type == migrate_misfit)
9059 		return 1;
9060 
9061 	return 0;
9062 }
9063 
9064 static int need_active_balance(struct lb_env *env)
9065 {
9066 	struct sched_domain *sd = env->sd;
9067 
9068 	if (voluntary_active_balance(env))
9069 		return 1;
9070 
9071 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9072 }
9073 
9074 static int active_load_balance_cpu_stop(void *data);
9075 
9076 static int should_we_balance(struct lb_env *env)
9077 {
9078 	struct sched_group *sg = env->sd->groups;
9079 	int cpu, balance_cpu = -1;
9080 
9081 	/*
9082 	 * Ensure the balancing environment is consistent; can happen
9083 	 * when the softirq triggers 'during' hotplug.
9084 	 */
9085 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9086 		return 0;
9087 
9088 	/*
9089 	 * In the newly idle case, we will allow all the CPUs
9090 	 * to do the newly idle load balance.
9091 	 */
9092 	if (env->idle == CPU_NEWLY_IDLE)
9093 		return 1;
9094 
9095 	/* Try to find first idle CPU */
9096 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9097 		if (!idle_cpu(cpu))
9098 			continue;
9099 
9100 		balance_cpu = cpu;
9101 		break;
9102 	}
9103 
9104 	if (balance_cpu == -1)
9105 		balance_cpu = group_balance_cpu(sg);
9106 
9107 	/*
9108 	 * First idle CPU or the first CPU(busiest) in this sched group
9109 	 * is eligible for doing load balancing at this and above domains.
9110 	 */
9111 	return balance_cpu == env->dst_cpu;
9112 }
9113 
9114 /*
9115  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9116  * tasks if there is an imbalance.
9117  */
9118 static int load_balance(int this_cpu, struct rq *this_rq,
9119 			struct sched_domain *sd, enum cpu_idle_type idle,
9120 			int *continue_balancing)
9121 {
9122 	int ld_moved, cur_ld_moved, active_balance = 0;
9123 	struct sched_domain *sd_parent = sd->parent;
9124 	struct sched_group *group;
9125 	struct rq *busiest;
9126 	struct rq_flags rf;
9127 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9128 
9129 	struct lb_env env = {
9130 		.sd		= sd,
9131 		.dst_cpu	= this_cpu,
9132 		.dst_rq		= this_rq,
9133 		.dst_grpmask    = sched_group_span(sd->groups),
9134 		.idle		= idle,
9135 		.loop_break	= sched_nr_migrate_break,
9136 		.cpus		= cpus,
9137 		.fbq_type	= all,
9138 		.tasks		= LIST_HEAD_INIT(env.tasks),
9139 	};
9140 
9141 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9142 
9143 	schedstat_inc(sd->lb_count[idle]);
9144 
9145 redo:
9146 	if (!should_we_balance(&env)) {
9147 		*continue_balancing = 0;
9148 		goto out_balanced;
9149 	}
9150 
9151 	group = find_busiest_group(&env);
9152 	if (!group) {
9153 		schedstat_inc(sd->lb_nobusyg[idle]);
9154 		goto out_balanced;
9155 	}
9156 
9157 	busiest = find_busiest_queue(&env, group);
9158 	if (!busiest) {
9159 		schedstat_inc(sd->lb_nobusyq[idle]);
9160 		goto out_balanced;
9161 	}
9162 
9163 	BUG_ON(busiest == env.dst_rq);
9164 
9165 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9166 
9167 	env.src_cpu = busiest->cpu;
9168 	env.src_rq = busiest;
9169 
9170 	ld_moved = 0;
9171 	if (busiest->nr_running > 1) {
9172 		/*
9173 		 * Attempt to move tasks. If find_busiest_group has found
9174 		 * an imbalance but busiest->nr_running <= 1, the group is
9175 		 * still unbalanced. ld_moved simply stays zero, so it is
9176 		 * correctly treated as an imbalance.
9177 		 */
9178 		env.flags |= LBF_ALL_PINNED;
9179 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9180 
9181 more_balance:
9182 		rq_lock_irqsave(busiest, &rf);
9183 		update_rq_clock(busiest);
9184 
9185 		/*
9186 		 * cur_ld_moved - load moved in current iteration
9187 		 * ld_moved     - cumulative load moved across iterations
9188 		 */
9189 		cur_ld_moved = detach_tasks(&env);
9190 
9191 		/*
9192 		 * We've detached some tasks from busiest_rq. Every
9193 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9194 		 * unlock busiest->lock, and we are able to be sure
9195 		 * that nobody can manipulate the tasks in parallel.
9196 		 * See task_rq_lock() family for the details.
9197 		 */
9198 
9199 		rq_unlock(busiest, &rf);
9200 
9201 		if (cur_ld_moved) {
9202 			attach_tasks(&env);
9203 			ld_moved += cur_ld_moved;
9204 		}
9205 
9206 		local_irq_restore(rf.flags);
9207 
9208 		if (env.flags & LBF_NEED_BREAK) {
9209 			env.flags &= ~LBF_NEED_BREAK;
9210 			goto more_balance;
9211 		}
9212 
9213 		/*
9214 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9215 		 * us and move them to an alternate dst_cpu in our sched_group
9216 		 * where they can run. The upper limit on how many times we
9217 		 * iterate on same src_cpu is dependent on number of CPUs in our
9218 		 * sched_group.
9219 		 *
9220 		 * This changes load balance semantics a bit on who can move
9221 		 * load to a given_cpu. In addition to the given_cpu itself
9222 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9223 		 * nohz-idle), we now have balance_cpu in a position to move
9224 		 * load to given_cpu. In rare situations, this may cause
9225 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9226 		 * _independently_ and at _same_ time to move some load to
9227 		 * given_cpu) causing exceess load to be moved to given_cpu.
9228 		 * This however should not happen so much in practice and
9229 		 * moreover subsequent load balance cycles should correct the
9230 		 * excess load moved.
9231 		 */
9232 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9233 
9234 			/* Prevent to re-select dst_cpu via env's CPUs */
9235 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9236 
9237 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9238 			env.dst_cpu	 = env.new_dst_cpu;
9239 			env.flags	&= ~LBF_DST_PINNED;
9240 			env.loop	 = 0;
9241 			env.loop_break	 = sched_nr_migrate_break;
9242 
9243 			/*
9244 			 * Go back to "more_balance" rather than "redo" since we
9245 			 * need to continue with same src_cpu.
9246 			 */
9247 			goto more_balance;
9248 		}
9249 
9250 		/*
9251 		 * We failed to reach balance because of affinity.
9252 		 */
9253 		if (sd_parent) {
9254 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9255 
9256 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9257 				*group_imbalance = 1;
9258 		}
9259 
9260 		/* All tasks on this runqueue were pinned by CPU affinity */
9261 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9262 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9263 			/*
9264 			 * Attempting to continue load balancing at the current
9265 			 * sched_domain level only makes sense if there are
9266 			 * active CPUs remaining as possible busiest CPUs to
9267 			 * pull load from which are not contained within the
9268 			 * destination group that is receiving any migrated
9269 			 * load.
9270 			 */
9271 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9272 				env.loop = 0;
9273 				env.loop_break = sched_nr_migrate_break;
9274 				goto redo;
9275 			}
9276 			goto out_all_pinned;
9277 		}
9278 	}
9279 
9280 	if (!ld_moved) {
9281 		schedstat_inc(sd->lb_failed[idle]);
9282 		/*
9283 		 * Increment the failure counter only on periodic balance.
9284 		 * We do not want newidle balance, which can be very
9285 		 * frequent, pollute the failure counter causing
9286 		 * excessive cache_hot migrations and active balances.
9287 		 */
9288 		if (idle != CPU_NEWLY_IDLE)
9289 			sd->nr_balance_failed++;
9290 
9291 		if (need_active_balance(&env)) {
9292 			unsigned long flags;
9293 
9294 			raw_spin_lock_irqsave(&busiest->lock, flags);
9295 
9296 			/*
9297 			 * Don't kick the active_load_balance_cpu_stop,
9298 			 * if the curr task on busiest CPU can't be
9299 			 * moved to this_cpu:
9300 			 */
9301 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9302 				raw_spin_unlock_irqrestore(&busiest->lock,
9303 							    flags);
9304 				env.flags |= LBF_ALL_PINNED;
9305 				goto out_one_pinned;
9306 			}
9307 
9308 			/*
9309 			 * ->active_balance synchronizes accesses to
9310 			 * ->active_balance_work.  Once set, it's cleared
9311 			 * only after active load balance is finished.
9312 			 */
9313 			if (!busiest->active_balance) {
9314 				busiest->active_balance = 1;
9315 				busiest->push_cpu = this_cpu;
9316 				active_balance = 1;
9317 			}
9318 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9319 
9320 			if (active_balance) {
9321 				stop_one_cpu_nowait(cpu_of(busiest),
9322 					active_load_balance_cpu_stop, busiest,
9323 					&busiest->active_balance_work);
9324 			}
9325 
9326 			/* We've kicked active balancing, force task migration. */
9327 			sd->nr_balance_failed = sd->cache_nice_tries+1;
9328 		}
9329 	} else
9330 		sd->nr_balance_failed = 0;
9331 
9332 	if (likely(!active_balance) || voluntary_active_balance(&env)) {
9333 		/* We were unbalanced, so reset the balancing interval */
9334 		sd->balance_interval = sd->min_interval;
9335 	} else {
9336 		/*
9337 		 * If we've begun active balancing, start to back off. This
9338 		 * case may not be covered by the all_pinned logic if there
9339 		 * is only 1 task on the busy runqueue (because we don't call
9340 		 * detach_tasks).
9341 		 */
9342 		if (sd->balance_interval < sd->max_interval)
9343 			sd->balance_interval *= 2;
9344 	}
9345 
9346 	goto out;
9347 
9348 out_balanced:
9349 	/*
9350 	 * We reach balance although we may have faced some affinity
9351 	 * constraints. Clear the imbalance flag only if other tasks got
9352 	 * a chance to move and fix the imbalance.
9353 	 */
9354 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9355 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9356 
9357 		if (*group_imbalance)
9358 			*group_imbalance = 0;
9359 	}
9360 
9361 out_all_pinned:
9362 	/*
9363 	 * We reach balance because all tasks are pinned at this level so
9364 	 * we can't migrate them. Let the imbalance flag set so parent level
9365 	 * can try to migrate them.
9366 	 */
9367 	schedstat_inc(sd->lb_balanced[idle]);
9368 
9369 	sd->nr_balance_failed = 0;
9370 
9371 out_one_pinned:
9372 	ld_moved = 0;
9373 
9374 	/*
9375 	 * newidle_balance() disregards balance intervals, so we could
9376 	 * repeatedly reach this code, which would lead to balance_interval
9377 	 * skyrocketting in a short amount of time. Skip the balance_interval
9378 	 * increase logic to avoid that.
9379 	 */
9380 	if (env.idle == CPU_NEWLY_IDLE)
9381 		goto out;
9382 
9383 	/* tune up the balancing interval */
9384 	if ((env.flags & LBF_ALL_PINNED &&
9385 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9386 	    sd->balance_interval < sd->max_interval)
9387 		sd->balance_interval *= 2;
9388 out:
9389 	return ld_moved;
9390 }
9391 
9392 static inline unsigned long
9393 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9394 {
9395 	unsigned long interval = sd->balance_interval;
9396 
9397 	if (cpu_busy)
9398 		interval *= sd->busy_factor;
9399 
9400 	/* scale ms to jiffies */
9401 	interval = msecs_to_jiffies(interval);
9402 	interval = clamp(interval, 1UL, max_load_balance_interval);
9403 
9404 	return interval;
9405 }
9406 
9407 static inline void
9408 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9409 {
9410 	unsigned long interval, next;
9411 
9412 	/* used by idle balance, so cpu_busy = 0 */
9413 	interval = get_sd_balance_interval(sd, 0);
9414 	next = sd->last_balance + interval;
9415 
9416 	if (time_after(*next_balance, next))
9417 		*next_balance = next;
9418 }
9419 
9420 /*
9421  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9422  * running tasks off the busiest CPU onto idle CPUs. It requires at
9423  * least 1 task to be running on each physical CPU where possible, and
9424  * avoids physical / logical imbalances.
9425  */
9426 static int active_load_balance_cpu_stop(void *data)
9427 {
9428 	struct rq *busiest_rq = data;
9429 	int busiest_cpu = cpu_of(busiest_rq);
9430 	int target_cpu = busiest_rq->push_cpu;
9431 	struct rq *target_rq = cpu_rq(target_cpu);
9432 	struct sched_domain *sd;
9433 	struct task_struct *p = NULL;
9434 	struct rq_flags rf;
9435 
9436 	rq_lock_irq(busiest_rq, &rf);
9437 	/*
9438 	 * Between queueing the stop-work and running it is a hole in which
9439 	 * CPUs can become inactive. We should not move tasks from or to
9440 	 * inactive CPUs.
9441 	 */
9442 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9443 		goto out_unlock;
9444 
9445 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9446 	if (unlikely(busiest_cpu != smp_processor_id() ||
9447 		     !busiest_rq->active_balance))
9448 		goto out_unlock;
9449 
9450 	/* Is there any task to move? */
9451 	if (busiest_rq->nr_running <= 1)
9452 		goto out_unlock;
9453 
9454 	/*
9455 	 * This condition is "impossible", if it occurs
9456 	 * we need to fix it. Originally reported by
9457 	 * Bjorn Helgaas on a 128-CPU setup.
9458 	 */
9459 	BUG_ON(busiest_rq == target_rq);
9460 
9461 	/* Search for an sd spanning us and the target CPU. */
9462 	rcu_read_lock();
9463 	for_each_domain(target_cpu, sd) {
9464 		if ((sd->flags & SD_LOAD_BALANCE) &&
9465 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9466 				break;
9467 	}
9468 
9469 	if (likely(sd)) {
9470 		struct lb_env env = {
9471 			.sd		= sd,
9472 			.dst_cpu	= target_cpu,
9473 			.dst_rq		= target_rq,
9474 			.src_cpu	= busiest_rq->cpu,
9475 			.src_rq		= busiest_rq,
9476 			.idle		= CPU_IDLE,
9477 			/*
9478 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9479 			 * for active balancing. Since we have CPU_IDLE, but no
9480 			 * @dst_grpmask we need to make that test go away with lying
9481 			 * about DST_PINNED.
9482 			 */
9483 			.flags		= LBF_DST_PINNED,
9484 		};
9485 
9486 		schedstat_inc(sd->alb_count);
9487 		update_rq_clock(busiest_rq);
9488 
9489 		p = detach_one_task(&env);
9490 		if (p) {
9491 			schedstat_inc(sd->alb_pushed);
9492 			/* Active balancing done, reset the failure counter. */
9493 			sd->nr_balance_failed = 0;
9494 		} else {
9495 			schedstat_inc(sd->alb_failed);
9496 		}
9497 	}
9498 	rcu_read_unlock();
9499 out_unlock:
9500 	busiest_rq->active_balance = 0;
9501 	rq_unlock(busiest_rq, &rf);
9502 
9503 	if (p)
9504 		attach_one_task(target_rq, p);
9505 
9506 	local_irq_enable();
9507 
9508 	return 0;
9509 }
9510 
9511 static DEFINE_SPINLOCK(balancing);
9512 
9513 /*
9514  * Scale the max load_balance interval with the number of CPUs in the system.
9515  * This trades load-balance latency on larger machines for less cross talk.
9516  */
9517 void update_max_interval(void)
9518 {
9519 	max_load_balance_interval = HZ*num_online_cpus()/10;
9520 }
9521 
9522 /*
9523  * It checks each scheduling domain to see if it is due to be balanced,
9524  * and initiates a balancing operation if so.
9525  *
9526  * Balancing parameters are set up in init_sched_domains.
9527  */
9528 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9529 {
9530 	int continue_balancing = 1;
9531 	int cpu = rq->cpu;
9532 	unsigned long interval;
9533 	struct sched_domain *sd;
9534 	/* Earliest time when we have to do rebalance again */
9535 	unsigned long next_balance = jiffies + 60*HZ;
9536 	int update_next_balance = 0;
9537 	int need_serialize, need_decay = 0;
9538 	u64 max_cost = 0;
9539 
9540 	rcu_read_lock();
9541 	for_each_domain(cpu, sd) {
9542 		/*
9543 		 * Decay the newidle max times here because this is a regular
9544 		 * visit to all the domains. Decay ~1% per second.
9545 		 */
9546 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9547 			sd->max_newidle_lb_cost =
9548 				(sd->max_newidle_lb_cost * 253) / 256;
9549 			sd->next_decay_max_lb_cost = jiffies + HZ;
9550 			need_decay = 1;
9551 		}
9552 		max_cost += sd->max_newidle_lb_cost;
9553 
9554 		if (!(sd->flags & SD_LOAD_BALANCE))
9555 			continue;
9556 
9557 		/*
9558 		 * Stop the load balance at this level. There is another
9559 		 * CPU in our sched group which is doing load balancing more
9560 		 * actively.
9561 		 */
9562 		if (!continue_balancing) {
9563 			if (need_decay)
9564 				continue;
9565 			break;
9566 		}
9567 
9568 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9569 
9570 		need_serialize = sd->flags & SD_SERIALIZE;
9571 		if (need_serialize) {
9572 			if (!spin_trylock(&balancing))
9573 				goto out;
9574 		}
9575 
9576 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9577 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9578 				/*
9579 				 * The LBF_DST_PINNED logic could have changed
9580 				 * env->dst_cpu, so we can't know our idle
9581 				 * state even if we migrated tasks. Update it.
9582 				 */
9583 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9584 			}
9585 			sd->last_balance = jiffies;
9586 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9587 		}
9588 		if (need_serialize)
9589 			spin_unlock(&balancing);
9590 out:
9591 		if (time_after(next_balance, sd->last_balance + interval)) {
9592 			next_balance = sd->last_balance + interval;
9593 			update_next_balance = 1;
9594 		}
9595 	}
9596 	if (need_decay) {
9597 		/*
9598 		 * Ensure the rq-wide value also decays but keep it at a
9599 		 * reasonable floor to avoid funnies with rq->avg_idle.
9600 		 */
9601 		rq->max_idle_balance_cost =
9602 			max((u64)sysctl_sched_migration_cost, max_cost);
9603 	}
9604 	rcu_read_unlock();
9605 
9606 	/*
9607 	 * next_balance will be updated only when there is a need.
9608 	 * When the cpu is attached to null domain for ex, it will not be
9609 	 * updated.
9610 	 */
9611 	if (likely(update_next_balance)) {
9612 		rq->next_balance = next_balance;
9613 
9614 #ifdef CONFIG_NO_HZ_COMMON
9615 		/*
9616 		 * If this CPU has been elected to perform the nohz idle
9617 		 * balance. Other idle CPUs have already rebalanced with
9618 		 * nohz_idle_balance() and nohz.next_balance has been
9619 		 * updated accordingly. This CPU is now running the idle load
9620 		 * balance for itself and we need to update the
9621 		 * nohz.next_balance accordingly.
9622 		 */
9623 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9624 			nohz.next_balance = rq->next_balance;
9625 #endif
9626 	}
9627 }
9628 
9629 static inline int on_null_domain(struct rq *rq)
9630 {
9631 	return unlikely(!rcu_dereference_sched(rq->sd));
9632 }
9633 
9634 #ifdef CONFIG_NO_HZ_COMMON
9635 /*
9636  * idle load balancing details
9637  * - When one of the busy CPUs notice that there may be an idle rebalancing
9638  *   needed, they will kick the idle load balancer, which then does idle
9639  *   load balancing for all the idle CPUs.
9640  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9641  *   anywhere yet.
9642  */
9643 
9644 static inline int find_new_ilb(void)
9645 {
9646 	int ilb;
9647 
9648 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9649 			      housekeeping_cpumask(HK_FLAG_MISC)) {
9650 		if (idle_cpu(ilb))
9651 			return ilb;
9652 	}
9653 
9654 	return nr_cpu_ids;
9655 }
9656 
9657 /*
9658  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9659  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
9660  */
9661 static void kick_ilb(unsigned int flags)
9662 {
9663 	int ilb_cpu;
9664 
9665 	nohz.next_balance++;
9666 
9667 	ilb_cpu = find_new_ilb();
9668 
9669 	if (ilb_cpu >= nr_cpu_ids)
9670 		return;
9671 
9672 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9673 	if (flags & NOHZ_KICK_MASK)
9674 		return;
9675 
9676 	/*
9677 	 * Use smp_send_reschedule() instead of resched_cpu().
9678 	 * This way we generate a sched IPI on the target CPU which
9679 	 * is idle. And the softirq performing nohz idle load balance
9680 	 * will be run before returning from the IPI.
9681 	 */
9682 	smp_send_reschedule(ilb_cpu);
9683 }
9684 
9685 /*
9686  * Current decision point for kicking the idle load balancer in the presence
9687  * of idle CPUs in the system.
9688  */
9689 static void nohz_balancer_kick(struct rq *rq)
9690 {
9691 	unsigned long now = jiffies;
9692 	struct sched_domain_shared *sds;
9693 	struct sched_domain *sd;
9694 	int nr_busy, i, cpu = rq->cpu;
9695 	unsigned int flags = 0;
9696 
9697 	if (unlikely(rq->idle_balance))
9698 		return;
9699 
9700 	/*
9701 	 * We may be recently in ticked or tickless idle mode. At the first
9702 	 * busy tick after returning from idle, we will update the busy stats.
9703 	 */
9704 	nohz_balance_exit_idle(rq);
9705 
9706 	/*
9707 	 * None are in tickless mode and hence no need for NOHZ idle load
9708 	 * balancing.
9709 	 */
9710 	if (likely(!atomic_read(&nohz.nr_cpus)))
9711 		return;
9712 
9713 	if (READ_ONCE(nohz.has_blocked) &&
9714 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9715 		flags = NOHZ_STATS_KICK;
9716 
9717 	if (time_before(now, nohz.next_balance))
9718 		goto out;
9719 
9720 	if (rq->nr_running >= 2) {
9721 		flags = NOHZ_KICK_MASK;
9722 		goto out;
9723 	}
9724 
9725 	rcu_read_lock();
9726 
9727 	sd = rcu_dereference(rq->sd);
9728 	if (sd) {
9729 		/*
9730 		 * If there's a CFS task and the current CPU has reduced
9731 		 * capacity; kick the ILB to see if there's a better CPU to run
9732 		 * on.
9733 		 */
9734 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
9735 			flags = NOHZ_KICK_MASK;
9736 			goto unlock;
9737 		}
9738 	}
9739 
9740 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
9741 	if (sd) {
9742 		/*
9743 		 * When ASYM_PACKING; see if there's a more preferred CPU
9744 		 * currently idle; in which case, kick the ILB to move tasks
9745 		 * around.
9746 		 */
9747 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
9748 			if (sched_asym_prefer(i, cpu)) {
9749 				flags = NOHZ_KICK_MASK;
9750 				goto unlock;
9751 			}
9752 		}
9753 	}
9754 
9755 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9756 	if (sd) {
9757 		/*
9758 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9759 		 * to run the misfit task on.
9760 		 */
9761 		if (check_misfit_status(rq, sd)) {
9762 			flags = NOHZ_KICK_MASK;
9763 			goto unlock;
9764 		}
9765 
9766 		/*
9767 		 * For asymmetric systems, we do not want to nicely balance
9768 		 * cache use, instead we want to embrace asymmetry and only
9769 		 * ensure tasks have enough CPU capacity.
9770 		 *
9771 		 * Skip the LLC logic because it's not relevant in that case.
9772 		 */
9773 		goto unlock;
9774 	}
9775 
9776 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9777 	if (sds) {
9778 		/*
9779 		 * If there is an imbalance between LLC domains (IOW we could
9780 		 * increase the overall cache use), we need some less-loaded LLC
9781 		 * domain to pull some load. Likewise, we may need to spread
9782 		 * load within the current LLC domain (e.g. packed SMT cores but
9783 		 * other CPUs are idle). We can't really know from here how busy
9784 		 * the others are - so just get a nohz balance going if it looks
9785 		 * like this LLC domain has tasks we could move.
9786 		 */
9787 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9788 		if (nr_busy > 1) {
9789 			flags = NOHZ_KICK_MASK;
9790 			goto unlock;
9791 		}
9792 	}
9793 unlock:
9794 	rcu_read_unlock();
9795 out:
9796 	if (flags)
9797 		kick_ilb(flags);
9798 }
9799 
9800 static void set_cpu_sd_state_busy(int cpu)
9801 {
9802 	struct sched_domain *sd;
9803 
9804 	rcu_read_lock();
9805 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9806 
9807 	if (!sd || !sd->nohz_idle)
9808 		goto unlock;
9809 	sd->nohz_idle = 0;
9810 
9811 	atomic_inc(&sd->shared->nr_busy_cpus);
9812 unlock:
9813 	rcu_read_unlock();
9814 }
9815 
9816 void nohz_balance_exit_idle(struct rq *rq)
9817 {
9818 	SCHED_WARN_ON(rq != this_rq());
9819 
9820 	if (likely(!rq->nohz_tick_stopped))
9821 		return;
9822 
9823 	rq->nohz_tick_stopped = 0;
9824 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9825 	atomic_dec(&nohz.nr_cpus);
9826 
9827 	set_cpu_sd_state_busy(rq->cpu);
9828 }
9829 
9830 static void set_cpu_sd_state_idle(int cpu)
9831 {
9832 	struct sched_domain *sd;
9833 
9834 	rcu_read_lock();
9835 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9836 
9837 	if (!sd || sd->nohz_idle)
9838 		goto unlock;
9839 	sd->nohz_idle = 1;
9840 
9841 	atomic_dec(&sd->shared->nr_busy_cpus);
9842 unlock:
9843 	rcu_read_unlock();
9844 }
9845 
9846 /*
9847  * This routine will record that the CPU is going idle with tick stopped.
9848  * This info will be used in performing idle load balancing in the future.
9849  */
9850 void nohz_balance_enter_idle(int cpu)
9851 {
9852 	struct rq *rq = cpu_rq(cpu);
9853 
9854 	SCHED_WARN_ON(cpu != smp_processor_id());
9855 
9856 	/* If this CPU is going down, then nothing needs to be done: */
9857 	if (!cpu_active(cpu))
9858 		return;
9859 
9860 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9861 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9862 		return;
9863 
9864 	/*
9865 	 * Can be set safely without rq->lock held
9866 	 * If a clear happens, it will have evaluated last additions because
9867 	 * rq->lock is held during the check and the clear
9868 	 */
9869 	rq->has_blocked_load = 1;
9870 
9871 	/*
9872 	 * The tick is still stopped but load could have been added in the
9873 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9874 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9875 	 * of nohz.has_blocked can only happen after checking the new load
9876 	 */
9877 	if (rq->nohz_tick_stopped)
9878 		goto out;
9879 
9880 	/* If we're a completely isolated CPU, we don't play: */
9881 	if (on_null_domain(rq))
9882 		return;
9883 
9884 	rq->nohz_tick_stopped = 1;
9885 
9886 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9887 	atomic_inc(&nohz.nr_cpus);
9888 
9889 	/*
9890 	 * Ensures that if nohz_idle_balance() fails to observe our
9891 	 * @idle_cpus_mask store, it must observe the @has_blocked
9892 	 * store.
9893 	 */
9894 	smp_mb__after_atomic();
9895 
9896 	set_cpu_sd_state_idle(cpu);
9897 
9898 out:
9899 	/*
9900 	 * Each time a cpu enter idle, we assume that it has blocked load and
9901 	 * enable the periodic update of the load of idle cpus
9902 	 */
9903 	WRITE_ONCE(nohz.has_blocked, 1);
9904 }
9905 
9906 /*
9907  * Internal function that runs load balance for all idle cpus. The load balance
9908  * can be a simple update of blocked load or a complete load balance with
9909  * tasks movement depending of flags.
9910  * The function returns false if the loop has stopped before running
9911  * through all idle CPUs.
9912  */
9913 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9914 			       enum cpu_idle_type idle)
9915 {
9916 	/* Earliest time when we have to do rebalance again */
9917 	unsigned long now = jiffies;
9918 	unsigned long next_balance = now + 60*HZ;
9919 	bool has_blocked_load = false;
9920 	int update_next_balance = 0;
9921 	int this_cpu = this_rq->cpu;
9922 	int balance_cpu;
9923 	int ret = false;
9924 	struct rq *rq;
9925 
9926 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9927 
9928 	/*
9929 	 * We assume there will be no idle load after this update and clear
9930 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9931 	 * set the has_blocked flag and trig another update of idle load.
9932 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9933 	 * setting the flag, we are sure to not clear the state and not
9934 	 * check the load of an idle cpu.
9935 	 */
9936 	WRITE_ONCE(nohz.has_blocked, 0);
9937 
9938 	/*
9939 	 * Ensures that if we miss the CPU, we must see the has_blocked
9940 	 * store from nohz_balance_enter_idle().
9941 	 */
9942 	smp_mb();
9943 
9944 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9945 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9946 			continue;
9947 
9948 		/*
9949 		 * If this CPU gets work to do, stop the load balancing
9950 		 * work being done for other CPUs. Next load
9951 		 * balancing owner will pick it up.
9952 		 */
9953 		if (need_resched()) {
9954 			has_blocked_load = true;
9955 			goto abort;
9956 		}
9957 
9958 		rq = cpu_rq(balance_cpu);
9959 
9960 		has_blocked_load |= update_nohz_stats(rq, true);
9961 
9962 		/*
9963 		 * If time for next balance is due,
9964 		 * do the balance.
9965 		 */
9966 		if (time_after_eq(jiffies, rq->next_balance)) {
9967 			struct rq_flags rf;
9968 
9969 			rq_lock_irqsave(rq, &rf);
9970 			update_rq_clock(rq);
9971 			rq_unlock_irqrestore(rq, &rf);
9972 
9973 			if (flags & NOHZ_BALANCE_KICK)
9974 				rebalance_domains(rq, CPU_IDLE);
9975 		}
9976 
9977 		if (time_after(next_balance, rq->next_balance)) {
9978 			next_balance = rq->next_balance;
9979 			update_next_balance = 1;
9980 		}
9981 	}
9982 
9983 	/* Newly idle CPU doesn't need an update */
9984 	if (idle != CPU_NEWLY_IDLE) {
9985 		update_blocked_averages(this_cpu);
9986 		has_blocked_load |= this_rq->has_blocked_load;
9987 	}
9988 
9989 	if (flags & NOHZ_BALANCE_KICK)
9990 		rebalance_domains(this_rq, CPU_IDLE);
9991 
9992 	WRITE_ONCE(nohz.next_blocked,
9993 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9994 
9995 	/* The full idle balance loop has been done */
9996 	ret = true;
9997 
9998 abort:
9999 	/* There is still blocked load, enable periodic update */
10000 	if (has_blocked_load)
10001 		WRITE_ONCE(nohz.has_blocked, 1);
10002 
10003 	/*
10004 	 * next_balance will be updated only when there is a need.
10005 	 * When the CPU is attached to null domain for ex, it will not be
10006 	 * updated.
10007 	 */
10008 	if (likely(update_next_balance))
10009 		nohz.next_balance = next_balance;
10010 
10011 	return ret;
10012 }
10013 
10014 /*
10015  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10016  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10017  */
10018 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10019 {
10020 	int this_cpu = this_rq->cpu;
10021 	unsigned int flags;
10022 
10023 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
10024 		return false;
10025 
10026 	if (idle != CPU_IDLE) {
10027 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
10028 		return false;
10029 	}
10030 
10031 	/* could be _relaxed() */
10032 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
10033 	if (!(flags & NOHZ_KICK_MASK))
10034 		return false;
10035 
10036 	_nohz_idle_balance(this_rq, flags, idle);
10037 
10038 	return true;
10039 }
10040 
10041 static void nohz_newidle_balance(struct rq *this_rq)
10042 {
10043 	int this_cpu = this_rq->cpu;
10044 
10045 	/*
10046 	 * This CPU doesn't want to be disturbed by scheduler
10047 	 * housekeeping
10048 	 */
10049 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10050 		return;
10051 
10052 	/* Will wake up very soon. No time for doing anything else*/
10053 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10054 		return;
10055 
10056 	/* Don't need to update blocked load of idle CPUs*/
10057 	if (!READ_ONCE(nohz.has_blocked) ||
10058 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10059 		return;
10060 
10061 	raw_spin_unlock(&this_rq->lock);
10062 	/*
10063 	 * This CPU is going to be idle and blocked load of idle CPUs
10064 	 * need to be updated. Run the ilb locally as it is a good
10065 	 * candidate for ilb instead of waking up another idle CPU.
10066 	 * Kick an normal ilb if we failed to do the update.
10067 	 */
10068 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10069 		kick_ilb(NOHZ_STATS_KICK);
10070 	raw_spin_lock(&this_rq->lock);
10071 }
10072 
10073 #else /* !CONFIG_NO_HZ_COMMON */
10074 static inline void nohz_balancer_kick(struct rq *rq) { }
10075 
10076 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10077 {
10078 	return false;
10079 }
10080 
10081 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10082 #endif /* CONFIG_NO_HZ_COMMON */
10083 
10084 /*
10085  * idle_balance is called by schedule() if this_cpu is about to become
10086  * idle. Attempts to pull tasks from other CPUs.
10087  *
10088  * Returns:
10089  *   < 0 - we released the lock and there are !fair tasks present
10090  *     0 - failed, no new tasks
10091  *   > 0 - success, new (fair) tasks present
10092  */
10093 int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10094 {
10095 	unsigned long next_balance = jiffies + HZ;
10096 	int this_cpu = this_rq->cpu;
10097 	struct sched_domain *sd;
10098 	int pulled_task = 0;
10099 	u64 curr_cost = 0;
10100 
10101 	update_misfit_status(NULL, this_rq);
10102 	/*
10103 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10104 	 * measure the duration of idle_balance() as idle time.
10105 	 */
10106 	this_rq->idle_stamp = rq_clock(this_rq);
10107 
10108 	/*
10109 	 * Do not pull tasks towards !active CPUs...
10110 	 */
10111 	if (!cpu_active(this_cpu))
10112 		return 0;
10113 
10114 	/*
10115 	 * This is OK, because current is on_cpu, which avoids it being picked
10116 	 * for load-balance and preemption/IRQs are still disabled avoiding
10117 	 * further scheduler activity on it and we're being very careful to
10118 	 * re-start the picking loop.
10119 	 */
10120 	rq_unpin_lock(this_rq, rf);
10121 
10122 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10123 	    !READ_ONCE(this_rq->rd->overload)) {
10124 
10125 		rcu_read_lock();
10126 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10127 		if (sd)
10128 			update_next_balance(sd, &next_balance);
10129 		rcu_read_unlock();
10130 
10131 		nohz_newidle_balance(this_rq);
10132 
10133 		goto out;
10134 	}
10135 
10136 	raw_spin_unlock(&this_rq->lock);
10137 
10138 	update_blocked_averages(this_cpu);
10139 	rcu_read_lock();
10140 	for_each_domain(this_cpu, sd) {
10141 		int continue_balancing = 1;
10142 		u64 t0, domain_cost;
10143 
10144 		if (!(sd->flags & SD_LOAD_BALANCE))
10145 			continue;
10146 
10147 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10148 			update_next_balance(sd, &next_balance);
10149 			break;
10150 		}
10151 
10152 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10153 			t0 = sched_clock_cpu(this_cpu);
10154 
10155 			pulled_task = load_balance(this_cpu, this_rq,
10156 						   sd, CPU_NEWLY_IDLE,
10157 						   &continue_balancing);
10158 
10159 			domain_cost = sched_clock_cpu(this_cpu) - t0;
10160 			if (domain_cost > sd->max_newidle_lb_cost)
10161 				sd->max_newidle_lb_cost = domain_cost;
10162 
10163 			curr_cost += domain_cost;
10164 		}
10165 
10166 		update_next_balance(sd, &next_balance);
10167 
10168 		/*
10169 		 * Stop searching for tasks to pull if there are
10170 		 * now runnable tasks on this rq.
10171 		 */
10172 		if (pulled_task || this_rq->nr_running > 0)
10173 			break;
10174 	}
10175 	rcu_read_unlock();
10176 
10177 	raw_spin_lock(&this_rq->lock);
10178 
10179 	if (curr_cost > this_rq->max_idle_balance_cost)
10180 		this_rq->max_idle_balance_cost = curr_cost;
10181 
10182 out:
10183 	/*
10184 	 * While browsing the domains, we released the rq lock, a task could
10185 	 * have been enqueued in the meantime. Since we're not going idle,
10186 	 * pretend we pulled a task.
10187 	 */
10188 	if (this_rq->cfs.h_nr_running && !pulled_task)
10189 		pulled_task = 1;
10190 
10191 	/* Move the next balance forward */
10192 	if (time_after(this_rq->next_balance, next_balance))
10193 		this_rq->next_balance = next_balance;
10194 
10195 	/* Is there a task of a high priority class? */
10196 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10197 		pulled_task = -1;
10198 
10199 	if (pulled_task)
10200 		this_rq->idle_stamp = 0;
10201 
10202 	rq_repin_lock(this_rq, rf);
10203 
10204 	return pulled_task;
10205 }
10206 
10207 /*
10208  * run_rebalance_domains is triggered when needed from the scheduler tick.
10209  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10210  */
10211 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10212 {
10213 	struct rq *this_rq = this_rq();
10214 	enum cpu_idle_type idle = this_rq->idle_balance ?
10215 						CPU_IDLE : CPU_NOT_IDLE;
10216 
10217 	/*
10218 	 * If this CPU has a pending nohz_balance_kick, then do the
10219 	 * balancing on behalf of the other idle CPUs whose ticks are
10220 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10221 	 * give the idle CPUs a chance to load balance. Else we may
10222 	 * load balance only within the local sched_domain hierarchy
10223 	 * and abort nohz_idle_balance altogether if we pull some load.
10224 	 */
10225 	if (nohz_idle_balance(this_rq, idle))
10226 		return;
10227 
10228 	/* normal load balance */
10229 	update_blocked_averages(this_rq->cpu);
10230 	rebalance_domains(this_rq, idle);
10231 }
10232 
10233 /*
10234  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10235  */
10236 void trigger_load_balance(struct rq *rq)
10237 {
10238 	/* Don't need to rebalance while attached to NULL domain */
10239 	if (unlikely(on_null_domain(rq)))
10240 		return;
10241 
10242 	if (time_after_eq(jiffies, rq->next_balance))
10243 		raise_softirq(SCHED_SOFTIRQ);
10244 
10245 	nohz_balancer_kick(rq);
10246 }
10247 
10248 static void rq_online_fair(struct rq *rq)
10249 {
10250 	update_sysctl();
10251 
10252 	update_runtime_enabled(rq);
10253 }
10254 
10255 static void rq_offline_fair(struct rq *rq)
10256 {
10257 	update_sysctl();
10258 
10259 	/* Ensure any throttled groups are reachable by pick_next_task */
10260 	unthrottle_offline_cfs_rqs(rq);
10261 }
10262 
10263 #endif /* CONFIG_SMP */
10264 
10265 /*
10266  * scheduler tick hitting a task of our scheduling class.
10267  *
10268  * NOTE: This function can be called remotely by the tick offload that
10269  * goes along full dynticks. Therefore no local assumption can be made
10270  * and everything must be accessed through the @rq and @curr passed in
10271  * parameters.
10272  */
10273 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10274 {
10275 	struct cfs_rq *cfs_rq;
10276 	struct sched_entity *se = &curr->se;
10277 
10278 	for_each_sched_entity(se) {
10279 		cfs_rq = cfs_rq_of(se);
10280 		entity_tick(cfs_rq, se, queued);
10281 	}
10282 
10283 	if (static_branch_unlikely(&sched_numa_balancing))
10284 		task_tick_numa(rq, curr);
10285 
10286 	update_misfit_status(curr, rq);
10287 	update_overutilized_status(task_rq(curr));
10288 }
10289 
10290 /*
10291  * called on fork with the child task as argument from the parent's context
10292  *  - child not yet on the tasklist
10293  *  - preemption disabled
10294  */
10295 static void task_fork_fair(struct task_struct *p)
10296 {
10297 	struct cfs_rq *cfs_rq;
10298 	struct sched_entity *se = &p->se, *curr;
10299 	struct rq *rq = this_rq();
10300 	struct rq_flags rf;
10301 
10302 	rq_lock(rq, &rf);
10303 	update_rq_clock(rq);
10304 
10305 	cfs_rq = task_cfs_rq(current);
10306 	curr = cfs_rq->curr;
10307 	if (curr) {
10308 		update_curr(cfs_rq);
10309 		se->vruntime = curr->vruntime;
10310 	}
10311 	place_entity(cfs_rq, se, 1);
10312 
10313 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10314 		/*
10315 		 * Upon rescheduling, sched_class::put_prev_task() will place
10316 		 * 'current' within the tree based on its new key value.
10317 		 */
10318 		swap(curr->vruntime, se->vruntime);
10319 		resched_curr(rq);
10320 	}
10321 
10322 	se->vruntime -= cfs_rq->min_vruntime;
10323 	rq_unlock(rq, &rf);
10324 }
10325 
10326 /*
10327  * Priority of the task has changed. Check to see if we preempt
10328  * the current task.
10329  */
10330 static void
10331 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10332 {
10333 	if (!task_on_rq_queued(p))
10334 		return;
10335 
10336 	/*
10337 	 * Reschedule if we are currently running on this runqueue and
10338 	 * our priority decreased, or if we are not currently running on
10339 	 * this runqueue and our priority is higher than the current's
10340 	 */
10341 	if (rq->curr == p) {
10342 		if (p->prio > oldprio)
10343 			resched_curr(rq);
10344 	} else
10345 		check_preempt_curr(rq, p, 0);
10346 }
10347 
10348 static inline bool vruntime_normalized(struct task_struct *p)
10349 {
10350 	struct sched_entity *se = &p->se;
10351 
10352 	/*
10353 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10354 	 * the dequeue_entity(.flags=0) will already have normalized the
10355 	 * vruntime.
10356 	 */
10357 	if (p->on_rq)
10358 		return true;
10359 
10360 	/*
10361 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10362 	 * But there are some cases where it has already been normalized:
10363 	 *
10364 	 * - A forked child which is waiting for being woken up by
10365 	 *   wake_up_new_task().
10366 	 * - A task which has been woken up by try_to_wake_up() and
10367 	 *   waiting for actually being woken up by sched_ttwu_pending().
10368 	 */
10369 	if (!se->sum_exec_runtime ||
10370 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10371 		return true;
10372 
10373 	return false;
10374 }
10375 
10376 #ifdef CONFIG_FAIR_GROUP_SCHED
10377 /*
10378  * Propagate the changes of the sched_entity across the tg tree to make it
10379  * visible to the root
10380  */
10381 static void propagate_entity_cfs_rq(struct sched_entity *se)
10382 {
10383 	struct cfs_rq *cfs_rq;
10384 
10385 	/* Start to propagate at parent */
10386 	se = se->parent;
10387 
10388 	for_each_sched_entity(se) {
10389 		cfs_rq = cfs_rq_of(se);
10390 
10391 		if (cfs_rq_throttled(cfs_rq))
10392 			break;
10393 
10394 		update_load_avg(cfs_rq, se, UPDATE_TG);
10395 	}
10396 }
10397 #else
10398 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10399 #endif
10400 
10401 static void detach_entity_cfs_rq(struct sched_entity *se)
10402 {
10403 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10404 
10405 	/* Catch up with the cfs_rq and remove our load when we leave */
10406 	update_load_avg(cfs_rq, se, 0);
10407 	detach_entity_load_avg(cfs_rq, se);
10408 	update_tg_load_avg(cfs_rq, false);
10409 	propagate_entity_cfs_rq(se);
10410 }
10411 
10412 static void attach_entity_cfs_rq(struct sched_entity *se)
10413 {
10414 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10415 
10416 #ifdef CONFIG_FAIR_GROUP_SCHED
10417 	/*
10418 	 * Since the real-depth could have been changed (only FAIR
10419 	 * class maintain depth value), reset depth properly.
10420 	 */
10421 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10422 #endif
10423 
10424 	/* Synchronize entity with its cfs_rq */
10425 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10426 	attach_entity_load_avg(cfs_rq, se, 0);
10427 	update_tg_load_avg(cfs_rq, false);
10428 	propagate_entity_cfs_rq(se);
10429 }
10430 
10431 static void detach_task_cfs_rq(struct task_struct *p)
10432 {
10433 	struct sched_entity *se = &p->se;
10434 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10435 
10436 	if (!vruntime_normalized(p)) {
10437 		/*
10438 		 * Fix up our vruntime so that the current sleep doesn't
10439 		 * cause 'unlimited' sleep bonus.
10440 		 */
10441 		place_entity(cfs_rq, se, 0);
10442 		se->vruntime -= cfs_rq->min_vruntime;
10443 	}
10444 
10445 	detach_entity_cfs_rq(se);
10446 }
10447 
10448 static void attach_task_cfs_rq(struct task_struct *p)
10449 {
10450 	struct sched_entity *se = &p->se;
10451 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10452 
10453 	attach_entity_cfs_rq(se);
10454 
10455 	if (!vruntime_normalized(p))
10456 		se->vruntime += cfs_rq->min_vruntime;
10457 }
10458 
10459 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10460 {
10461 	detach_task_cfs_rq(p);
10462 }
10463 
10464 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10465 {
10466 	attach_task_cfs_rq(p);
10467 
10468 	if (task_on_rq_queued(p)) {
10469 		/*
10470 		 * We were most likely switched from sched_rt, so
10471 		 * kick off the schedule if running, otherwise just see
10472 		 * if we can still preempt the current task.
10473 		 */
10474 		if (rq->curr == p)
10475 			resched_curr(rq);
10476 		else
10477 			check_preempt_curr(rq, p, 0);
10478 	}
10479 }
10480 
10481 /* Account for a task changing its policy or group.
10482  *
10483  * This routine is mostly called to set cfs_rq->curr field when a task
10484  * migrates between groups/classes.
10485  */
10486 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10487 {
10488 	struct sched_entity *se = &p->se;
10489 
10490 #ifdef CONFIG_SMP
10491 	if (task_on_rq_queued(p)) {
10492 		/*
10493 		 * Move the next running task to the front of the list, so our
10494 		 * cfs_tasks list becomes MRU one.
10495 		 */
10496 		list_move(&se->group_node, &rq->cfs_tasks);
10497 	}
10498 #endif
10499 
10500 	for_each_sched_entity(se) {
10501 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10502 
10503 		set_next_entity(cfs_rq, se);
10504 		/* ensure bandwidth has been allocated on our new cfs_rq */
10505 		account_cfs_rq_runtime(cfs_rq, 0);
10506 	}
10507 }
10508 
10509 void init_cfs_rq(struct cfs_rq *cfs_rq)
10510 {
10511 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10512 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10513 #ifndef CONFIG_64BIT
10514 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10515 #endif
10516 #ifdef CONFIG_SMP
10517 	raw_spin_lock_init(&cfs_rq->removed.lock);
10518 #endif
10519 }
10520 
10521 #ifdef CONFIG_FAIR_GROUP_SCHED
10522 static void task_set_group_fair(struct task_struct *p)
10523 {
10524 	struct sched_entity *se = &p->se;
10525 
10526 	set_task_rq(p, task_cpu(p));
10527 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10528 }
10529 
10530 static void task_move_group_fair(struct task_struct *p)
10531 {
10532 	detach_task_cfs_rq(p);
10533 	set_task_rq(p, task_cpu(p));
10534 
10535 #ifdef CONFIG_SMP
10536 	/* Tell se's cfs_rq has been changed -- migrated */
10537 	p->se.avg.last_update_time = 0;
10538 #endif
10539 	attach_task_cfs_rq(p);
10540 }
10541 
10542 static void task_change_group_fair(struct task_struct *p, int type)
10543 {
10544 	switch (type) {
10545 	case TASK_SET_GROUP:
10546 		task_set_group_fair(p);
10547 		break;
10548 
10549 	case TASK_MOVE_GROUP:
10550 		task_move_group_fair(p);
10551 		break;
10552 	}
10553 }
10554 
10555 void free_fair_sched_group(struct task_group *tg)
10556 {
10557 	int i;
10558 
10559 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10560 
10561 	for_each_possible_cpu(i) {
10562 		if (tg->cfs_rq)
10563 			kfree(tg->cfs_rq[i]);
10564 		if (tg->se)
10565 			kfree(tg->se[i]);
10566 	}
10567 
10568 	kfree(tg->cfs_rq);
10569 	kfree(tg->se);
10570 }
10571 
10572 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10573 {
10574 	struct sched_entity *se;
10575 	struct cfs_rq *cfs_rq;
10576 	int i;
10577 
10578 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10579 	if (!tg->cfs_rq)
10580 		goto err;
10581 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10582 	if (!tg->se)
10583 		goto err;
10584 
10585 	tg->shares = NICE_0_LOAD;
10586 
10587 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10588 
10589 	for_each_possible_cpu(i) {
10590 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10591 				      GFP_KERNEL, cpu_to_node(i));
10592 		if (!cfs_rq)
10593 			goto err;
10594 
10595 		se = kzalloc_node(sizeof(struct sched_entity),
10596 				  GFP_KERNEL, cpu_to_node(i));
10597 		if (!se)
10598 			goto err_free_rq;
10599 
10600 		init_cfs_rq(cfs_rq);
10601 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10602 		init_entity_runnable_average(se);
10603 	}
10604 
10605 	return 1;
10606 
10607 err_free_rq:
10608 	kfree(cfs_rq);
10609 err:
10610 	return 0;
10611 }
10612 
10613 void online_fair_sched_group(struct task_group *tg)
10614 {
10615 	struct sched_entity *se;
10616 	struct rq_flags rf;
10617 	struct rq *rq;
10618 	int i;
10619 
10620 	for_each_possible_cpu(i) {
10621 		rq = cpu_rq(i);
10622 		se = tg->se[i];
10623 		rq_lock_irq(rq, &rf);
10624 		update_rq_clock(rq);
10625 		attach_entity_cfs_rq(se);
10626 		sync_throttle(tg, i);
10627 		rq_unlock_irq(rq, &rf);
10628 	}
10629 }
10630 
10631 void unregister_fair_sched_group(struct task_group *tg)
10632 {
10633 	unsigned long flags;
10634 	struct rq *rq;
10635 	int cpu;
10636 
10637 	for_each_possible_cpu(cpu) {
10638 		if (tg->se[cpu])
10639 			remove_entity_load_avg(tg->se[cpu]);
10640 
10641 		/*
10642 		 * Only empty task groups can be destroyed; so we can speculatively
10643 		 * check on_list without danger of it being re-added.
10644 		 */
10645 		if (!tg->cfs_rq[cpu]->on_list)
10646 			continue;
10647 
10648 		rq = cpu_rq(cpu);
10649 
10650 		raw_spin_lock_irqsave(&rq->lock, flags);
10651 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10652 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10653 	}
10654 }
10655 
10656 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10657 			struct sched_entity *se, int cpu,
10658 			struct sched_entity *parent)
10659 {
10660 	struct rq *rq = cpu_rq(cpu);
10661 
10662 	cfs_rq->tg = tg;
10663 	cfs_rq->rq = rq;
10664 	init_cfs_rq_runtime(cfs_rq);
10665 
10666 	tg->cfs_rq[cpu] = cfs_rq;
10667 	tg->se[cpu] = se;
10668 
10669 	/* se could be NULL for root_task_group */
10670 	if (!se)
10671 		return;
10672 
10673 	if (!parent) {
10674 		se->cfs_rq = &rq->cfs;
10675 		se->depth = 0;
10676 	} else {
10677 		se->cfs_rq = parent->my_q;
10678 		se->depth = parent->depth + 1;
10679 	}
10680 
10681 	se->my_q = cfs_rq;
10682 	/* guarantee group entities always have weight */
10683 	update_load_set(&se->load, NICE_0_LOAD);
10684 	se->parent = parent;
10685 }
10686 
10687 static DEFINE_MUTEX(shares_mutex);
10688 
10689 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10690 {
10691 	int i;
10692 
10693 	/*
10694 	 * We can't change the weight of the root cgroup.
10695 	 */
10696 	if (!tg->se[0])
10697 		return -EINVAL;
10698 
10699 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10700 
10701 	mutex_lock(&shares_mutex);
10702 	if (tg->shares == shares)
10703 		goto done;
10704 
10705 	tg->shares = shares;
10706 	for_each_possible_cpu(i) {
10707 		struct rq *rq = cpu_rq(i);
10708 		struct sched_entity *se = tg->se[i];
10709 		struct rq_flags rf;
10710 
10711 		/* Propagate contribution to hierarchy */
10712 		rq_lock_irqsave(rq, &rf);
10713 		update_rq_clock(rq);
10714 		for_each_sched_entity(se) {
10715 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10716 			update_cfs_group(se);
10717 		}
10718 		rq_unlock_irqrestore(rq, &rf);
10719 	}
10720 
10721 done:
10722 	mutex_unlock(&shares_mutex);
10723 	return 0;
10724 }
10725 #else /* CONFIG_FAIR_GROUP_SCHED */
10726 
10727 void free_fair_sched_group(struct task_group *tg) { }
10728 
10729 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10730 {
10731 	return 1;
10732 }
10733 
10734 void online_fair_sched_group(struct task_group *tg) { }
10735 
10736 void unregister_fair_sched_group(struct task_group *tg) { }
10737 
10738 #endif /* CONFIG_FAIR_GROUP_SCHED */
10739 
10740 
10741 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10742 {
10743 	struct sched_entity *se = &task->se;
10744 	unsigned int rr_interval = 0;
10745 
10746 	/*
10747 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10748 	 * idle runqueue:
10749 	 */
10750 	if (rq->cfs.load.weight)
10751 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10752 
10753 	return rr_interval;
10754 }
10755 
10756 /*
10757  * All the scheduling class methods:
10758  */
10759 const struct sched_class fair_sched_class = {
10760 	.next			= &idle_sched_class,
10761 	.enqueue_task		= enqueue_task_fair,
10762 	.dequeue_task		= dequeue_task_fair,
10763 	.yield_task		= yield_task_fair,
10764 	.yield_to_task		= yield_to_task_fair,
10765 
10766 	.check_preempt_curr	= check_preempt_wakeup,
10767 
10768 	.pick_next_task		= __pick_next_task_fair,
10769 	.put_prev_task		= put_prev_task_fair,
10770 	.set_next_task          = set_next_task_fair,
10771 
10772 #ifdef CONFIG_SMP
10773 	.balance		= balance_fair,
10774 	.select_task_rq		= select_task_rq_fair,
10775 	.migrate_task_rq	= migrate_task_rq_fair,
10776 
10777 	.rq_online		= rq_online_fair,
10778 	.rq_offline		= rq_offline_fair,
10779 
10780 	.task_dead		= task_dead_fair,
10781 	.set_cpus_allowed	= set_cpus_allowed_common,
10782 #endif
10783 
10784 	.task_tick		= task_tick_fair,
10785 	.task_fork		= task_fork_fair,
10786 
10787 	.prio_changed		= prio_changed_fair,
10788 	.switched_from		= switched_from_fair,
10789 	.switched_to		= switched_to_fair,
10790 
10791 	.get_rr_interval	= get_rr_interval_fair,
10792 
10793 	.update_curr		= update_curr_fair,
10794 
10795 #ifdef CONFIG_FAIR_GROUP_SCHED
10796 	.task_change_group	= task_change_group_fair,
10797 #endif
10798 
10799 #ifdef CONFIG_UCLAMP_TASK
10800 	.uclamp_enabled		= 1,
10801 #endif
10802 };
10803 
10804 #ifdef CONFIG_SCHED_DEBUG
10805 void print_cfs_stats(struct seq_file *m, int cpu)
10806 {
10807 	struct cfs_rq *cfs_rq, *pos;
10808 
10809 	rcu_read_lock();
10810 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10811 		print_cfs_rq(m, cpu, cfs_rq);
10812 	rcu_read_unlock();
10813 }
10814 
10815 #ifdef CONFIG_NUMA_BALANCING
10816 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10817 {
10818 	int node;
10819 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10820 	struct numa_group *ng;
10821 
10822 	rcu_read_lock();
10823 	ng = rcu_dereference(p->numa_group);
10824 	for_each_online_node(node) {
10825 		if (p->numa_faults) {
10826 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10827 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10828 		}
10829 		if (ng) {
10830 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
10831 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
10832 		}
10833 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10834 	}
10835 	rcu_read_unlock();
10836 }
10837 #endif /* CONFIG_NUMA_BALANCING */
10838 #endif /* CONFIG_SCHED_DEBUG */
10839 
10840 __init void init_sched_fair_class(void)
10841 {
10842 #ifdef CONFIG_SMP
10843 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10844 
10845 #ifdef CONFIG_NO_HZ_COMMON
10846 	nohz.next_balance = jiffies;
10847 	nohz.next_blocked = jiffies;
10848 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10849 #endif
10850 #endif /* SMP */
10851 
10852 }
10853 
10854 /*
10855  * Helper functions to facilitate extracting info from tracepoints.
10856  */
10857 
10858 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
10859 {
10860 #ifdef CONFIG_SMP
10861 	return cfs_rq ? &cfs_rq->avg : NULL;
10862 #else
10863 	return NULL;
10864 #endif
10865 }
10866 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
10867 
10868 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
10869 {
10870 	if (!cfs_rq) {
10871 		if (str)
10872 			strlcpy(str, "(null)", len);
10873 		else
10874 			return NULL;
10875 	}
10876 
10877 	cfs_rq_tg_path(cfs_rq, str, len);
10878 	return str;
10879 }
10880 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
10881 
10882 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
10883 {
10884 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
10885 }
10886 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
10887 
10888 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
10889 {
10890 #ifdef CONFIG_SMP
10891 	return rq ? &rq->avg_rt : NULL;
10892 #else
10893 	return NULL;
10894 #endif
10895 }
10896 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
10897 
10898 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
10899 {
10900 #ifdef CONFIG_SMP
10901 	return rq ? &rq->avg_dl : NULL;
10902 #else
10903 	return NULL;
10904 #endif
10905 }
10906 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
10907 
10908 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
10909 {
10910 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10911 	return rq ? &rq->avg_irq : NULL;
10912 #else
10913 	return NULL;
10914 #endif
10915 }
10916 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
10917 
10918 int sched_trace_rq_cpu(struct rq *rq)
10919 {
10920 	return rq ? cpu_of(rq) : -1;
10921 }
10922 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
10923 
10924 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
10925 {
10926 #ifdef CONFIG_SMP
10927 	return rd ? rd->span : NULL;
10928 #else
10929 	return NULL;
10930 #endif
10931 }
10932 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
10933