1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 21 */ 22 23 #include <linux/sched.h> 24 #include <linux/latencytop.h> 25 #include <linux/cpumask.h> 26 #include <linux/cpuidle.h> 27 #include <linux/slab.h> 28 #include <linux/profile.h> 29 #include <linux/interrupt.h> 30 #include <linux/mempolicy.h> 31 #include <linux/migrate.h> 32 #include <linux/task_work.h> 33 34 #include <trace/events/sched.h> 35 36 #include "sched.h" 37 38 /* 39 * Targeted preemption latency for CPU-bound tasks: 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 41 * 42 * NOTE: this latency value is not the same as the concept of 43 * 'timeslice length' - timeslices in CFS are of variable length 44 * and have no persistent notion like in traditional, time-slice 45 * based scheduling concepts. 46 * 47 * (to see the precise effective timeslice length of your workload, 48 * run vmstat and monitor the context-switches (cs) field) 49 */ 50 unsigned int sysctl_sched_latency = 6000000ULL; 51 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 52 53 /* 54 * The initial- and re-scaling of tunables is configurable 55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 56 * 57 * Options are: 58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 61 */ 62 enum sched_tunable_scaling sysctl_sched_tunable_scaling 63 = SCHED_TUNABLESCALING_LOG; 64 65 /* 66 * Minimal preemption granularity for CPU-bound tasks: 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 68 */ 69 unsigned int sysctl_sched_min_granularity = 750000ULL; 70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 71 72 /* 73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 74 */ 75 static unsigned int sched_nr_latency = 8; 76 77 /* 78 * After fork, child runs first. If set to 0 (default) then 79 * parent will (try to) run first. 80 */ 81 unsigned int sysctl_sched_child_runs_first __read_mostly; 82 83 /* 84 * SCHED_OTHER wake-up granularity. 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 86 * 87 * This option delays the preemption effects of decoupled workloads 88 * and reduces their over-scheduling. Synchronous workloads will still 89 * have immediate wakeup/sleep latencies. 90 */ 91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 93 94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 95 96 /* 97 * The exponential sliding window over which load is averaged for shares 98 * distribution. 99 * (default: 10msec) 100 */ 101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 102 103 #ifdef CONFIG_CFS_BANDWIDTH 104 /* 105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 106 * each time a cfs_rq requests quota. 107 * 108 * Note: in the case that the slice exceeds the runtime remaining (either due 109 * to consumption or the quota being specified to be smaller than the slice) 110 * we will always only issue the remaining available time. 111 * 112 * default: 5 msec, units: microseconds 113 */ 114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 115 #endif 116 117 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 118 { 119 lw->weight += inc; 120 lw->inv_weight = 0; 121 } 122 123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 124 { 125 lw->weight -= dec; 126 lw->inv_weight = 0; 127 } 128 129 static inline void update_load_set(struct load_weight *lw, unsigned long w) 130 { 131 lw->weight = w; 132 lw->inv_weight = 0; 133 } 134 135 /* 136 * Increase the granularity value when there are more CPUs, 137 * because with more CPUs the 'effective latency' as visible 138 * to users decreases. But the relationship is not linear, 139 * so pick a second-best guess by going with the log2 of the 140 * number of CPUs. 141 * 142 * This idea comes from the SD scheduler of Con Kolivas: 143 */ 144 static unsigned int get_update_sysctl_factor(void) 145 { 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 147 unsigned int factor; 148 149 switch (sysctl_sched_tunable_scaling) { 150 case SCHED_TUNABLESCALING_NONE: 151 factor = 1; 152 break; 153 case SCHED_TUNABLESCALING_LINEAR: 154 factor = cpus; 155 break; 156 case SCHED_TUNABLESCALING_LOG: 157 default: 158 factor = 1 + ilog2(cpus); 159 break; 160 } 161 162 return factor; 163 } 164 165 static void update_sysctl(void) 166 { 167 unsigned int factor = get_update_sysctl_factor(); 168 169 #define SET_SYSCTL(name) \ 170 (sysctl_##name = (factor) * normalized_sysctl_##name) 171 SET_SYSCTL(sched_min_granularity); 172 SET_SYSCTL(sched_latency); 173 SET_SYSCTL(sched_wakeup_granularity); 174 #undef SET_SYSCTL 175 } 176 177 void sched_init_granularity(void) 178 { 179 update_sysctl(); 180 } 181 182 #define WMULT_CONST (~0U) 183 #define WMULT_SHIFT 32 184 185 static void __update_inv_weight(struct load_weight *lw) 186 { 187 unsigned long w; 188 189 if (likely(lw->inv_weight)) 190 return; 191 192 w = scale_load_down(lw->weight); 193 194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 195 lw->inv_weight = 1; 196 else if (unlikely(!w)) 197 lw->inv_weight = WMULT_CONST; 198 else 199 lw->inv_weight = WMULT_CONST / w; 200 } 201 202 /* 203 * delta_exec * weight / lw.weight 204 * OR 205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 206 * 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 208 * we're guaranteed shift stays positive because inv_weight is guaranteed to 209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 210 * 211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 212 * weight/lw.weight <= 1, and therefore our shift will also be positive. 213 */ 214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 215 { 216 u64 fact = scale_load_down(weight); 217 int shift = WMULT_SHIFT; 218 219 __update_inv_weight(lw); 220 221 if (unlikely(fact >> 32)) { 222 while (fact >> 32) { 223 fact >>= 1; 224 shift--; 225 } 226 } 227 228 /* hint to use a 32x32->64 mul */ 229 fact = (u64)(u32)fact * lw->inv_weight; 230 231 while (fact >> 32) { 232 fact >>= 1; 233 shift--; 234 } 235 236 return mul_u64_u32_shr(delta_exec, fact, shift); 237 } 238 239 240 const struct sched_class fair_sched_class; 241 242 /************************************************************** 243 * CFS operations on generic schedulable entities: 244 */ 245 246 #ifdef CONFIG_FAIR_GROUP_SCHED 247 248 /* cpu runqueue to which this cfs_rq is attached */ 249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 250 { 251 return cfs_rq->rq; 252 } 253 254 /* An entity is a task if it doesn't "own" a runqueue */ 255 #define entity_is_task(se) (!se->my_q) 256 257 static inline struct task_struct *task_of(struct sched_entity *se) 258 { 259 #ifdef CONFIG_SCHED_DEBUG 260 WARN_ON_ONCE(!entity_is_task(se)); 261 #endif 262 return container_of(se, struct task_struct, se); 263 } 264 265 /* Walk up scheduling entities hierarchy */ 266 #define for_each_sched_entity(se) \ 267 for (; se; se = se->parent) 268 269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 270 { 271 return p->se.cfs_rq; 272 } 273 274 /* runqueue on which this entity is (to be) queued */ 275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 276 { 277 return se->cfs_rq; 278 } 279 280 /* runqueue "owned" by this group */ 281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 282 { 283 return grp->my_q; 284 } 285 286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 287 { 288 if (!cfs_rq->on_list) { 289 /* 290 * Ensure we either appear before our parent (if already 291 * enqueued) or force our parent to appear after us when it is 292 * enqueued. The fact that we always enqueue bottom-up 293 * reduces this to two cases. 294 */ 295 if (cfs_rq->tg->parent && 296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 298 &rq_of(cfs_rq)->leaf_cfs_rq_list); 299 } else { 300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 301 &rq_of(cfs_rq)->leaf_cfs_rq_list); 302 } 303 304 cfs_rq->on_list = 1; 305 } 306 } 307 308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 309 { 310 if (cfs_rq->on_list) { 311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 312 cfs_rq->on_list = 0; 313 } 314 } 315 316 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 319 320 /* Do the two (enqueued) entities belong to the same group ? */ 321 static inline struct cfs_rq * 322 is_same_group(struct sched_entity *se, struct sched_entity *pse) 323 { 324 if (se->cfs_rq == pse->cfs_rq) 325 return se->cfs_rq; 326 327 return NULL; 328 } 329 330 static inline struct sched_entity *parent_entity(struct sched_entity *se) 331 { 332 return se->parent; 333 } 334 335 static void 336 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 337 { 338 int se_depth, pse_depth; 339 340 /* 341 * preemption test can be made between sibling entities who are in the 342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 343 * both tasks until we find their ancestors who are siblings of common 344 * parent. 345 */ 346 347 /* First walk up until both entities are at same depth */ 348 se_depth = (*se)->depth; 349 pse_depth = (*pse)->depth; 350 351 while (se_depth > pse_depth) { 352 se_depth--; 353 *se = parent_entity(*se); 354 } 355 356 while (pse_depth > se_depth) { 357 pse_depth--; 358 *pse = parent_entity(*pse); 359 } 360 361 while (!is_same_group(*se, *pse)) { 362 *se = parent_entity(*se); 363 *pse = parent_entity(*pse); 364 } 365 } 366 367 #else /* !CONFIG_FAIR_GROUP_SCHED */ 368 369 static inline struct task_struct *task_of(struct sched_entity *se) 370 { 371 return container_of(se, struct task_struct, se); 372 } 373 374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 375 { 376 return container_of(cfs_rq, struct rq, cfs); 377 } 378 379 #define entity_is_task(se) 1 380 381 #define for_each_sched_entity(se) \ 382 for (; se; se = NULL) 383 384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 385 { 386 return &task_rq(p)->cfs; 387 } 388 389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 390 { 391 struct task_struct *p = task_of(se); 392 struct rq *rq = task_rq(p); 393 394 return &rq->cfs; 395 } 396 397 /* runqueue "owned" by this group */ 398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 399 { 400 return NULL; 401 } 402 403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 404 { 405 } 406 407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 408 { 409 } 410 411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 413 414 static inline struct sched_entity *parent_entity(struct sched_entity *se) 415 { 416 return NULL; 417 } 418 419 static inline void 420 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 421 { 422 } 423 424 #endif /* CONFIG_FAIR_GROUP_SCHED */ 425 426 static __always_inline 427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 428 429 /************************************************************** 430 * Scheduling class tree data structure manipulation methods: 431 */ 432 433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 434 { 435 s64 delta = (s64)(vruntime - max_vruntime); 436 if (delta > 0) 437 max_vruntime = vruntime; 438 439 return max_vruntime; 440 } 441 442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 443 { 444 s64 delta = (s64)(vruntime - min_vruntime); 445 if (delta < 0) 446 min_vruntime = vruntime; 447 448 return min_vruntime; 449 } 450 451 static inline int entity_before(struct sched_entity *a, 452 struct sched_entity *b) 453 { 454 return (s64)(a->vruntime - b->vruntime) < 0; 455 } 456 457 static void update_min_vruntime(struct cfs_rq *cfs_rq) 458 { 459 u64 vruntime = cfs_rq->min_vruntime; 460 461 if (cfs_rq->curr) 462 vruntime = cfs_rq->curr->vruntime; 463 464 if (cfs_rq->rb_leftmost) { 465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 466 struct sched_entity, 467 run_node); 468 469 if (!cfs_rq->curr) 470 vruntime = se->vruntime; 471 else 472 vruntime = min_vruntime(vruntime, se->vruntime); 473 } 474 475 /* ensure we never gain time by being placed backwards. */ 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 477 #ifndef CONFIG_64BIT 478 smp_wmb(); 479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 480 #endif 481 } 482 483 /* 484 * Enqueue an entity into the rb-tree: 485 */ 486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 487 { 488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 489 struct rb_node *parent = NULL; 490 struct sched_entity *entry; 491 int leftmost = 1; 492 493 /* 494 * Find the right place in the rbtree: 495 */ 496 while (*link) { 497 parent = *link; 498 entry = rb_entry(parent, struct sched_entity, run_node); 499 /* 500 * We dont care about collisions. Nodes with 501 * the same key stay together. 502 */ 503 if (entity_before(se, entry)) { 504 link = &parent->rb_left; 505 } else { 506 link = &parent->rb_right; 507 leftmost = 0; 508 } 509 } 510 511 /* 512 * Maintain a cache of leftmost tree entries (it is frequently 513 * used): 514 */ 515 if (leftmost) 516 cfs_rq->rb_leftmost = &se->run_node; 517 518 rb_link_node(&se->run_node, parent, link); 519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 520 } 521 522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 523 { 524 if (cfs_rq->rb_leftmost == &se->run_node) { 525 struct rb_node *next_node; 526 527 next_node = rb_next(&se->run_node); 528 cfs_rq->rb_leftmost = next_node; 529 } 530 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 532 } 533 534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 535 { 536 struct rb_node *left = cfs_rq->rb_leftmost; 537 538 if (!left) 539 return NULL; 540 541 return rb_entry(left, struct sched_entity, run_node); 542 } 543 544 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 545 { 546 struct rb_node *next = rb_next(&se->run_node); 547 548 if (!next) 549 return NULL; 550 551 return rb_entry(next, struct sched_entity, run_node); 552 } 553 554 #ifdef CONFIG_SCHED_DEBUG 555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 556 { 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 558 559 if (!last) 560 return NULL; 561 562 return rb_entry(last, struct sched_entity, run_node); 563 } 564 565 /************************************************************** 566 * Scheduling class statistics methods: 567 */ 568 569 int sched_proc_update_handler(struct ctl_table *table, int write, 570 void __user *buffer, size_t *lenp, 571 loff_t *ppos) 572 { 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 574 unsigned int factor = get_update_sysctl_factor(); 575 576 if (ret || !write) 577 return ret; 578 579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 580 sysctl_sched_min_granularity); 581 582 #define WRT_SYSCTL(name) \ 583 (normalized_sysctl_##name = sysctl_##name / (factor)) 584 WRT_SYSCTL(sched_min_granularity); 585 WRT_SYSCTL(sched_latency); 586 WRT_SYSCTL(sched_wakeup_granularity); 587 #undef WRT_SYSCTL 588 589 return 0; 590 } 591 #endif 592 593 /* 594 * delta /= w 595 */ 596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 597 { 598 if (unlikely(se->load.weight != NICE_0_LOAD)) 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 600 601 return delta; 602 } 603 604 /* 605 * The idea is to set a period in which each task runs once. 606 * 607 * When there are too many tasks (sched_nr_latency) we have to stretch 608 * this period because otherwise the slices get too small. 609 * 610 * p = (nr <= nl) ? l : l*nr/nl 611 */ 612 static u64 __sched_period(unsigned long nr_running) 613 { 614 if (unlikely(nr_running > sched_nr_latency)) 615 return nr_running * sysctl_sched_min_granularity; 616 else 617 return sysctl_sched_latency; 618 } 619 620 /* 621 * We calculate the wall-time slice from the period by taking a part 622 * proportional to the weight. 623 * 624 * s = p*P[w/rw] 625 */ 626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 627 { 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 629 630 for_each_sched_entity(se) { 631 struct load_weight *load; 632 struct load_weight lw; 633 634 cfs_rq = cfs_rq_of(se); 635 load = &cfs_rq->load; 636 637 if (unlikely(!se->on_rq)) { 638 lw = cfs_rq->load; 639 640 update_load_add(&lw, se->load.weight); 641 load = &lw; 642 } 643 slice = __calc_delta(slice, se->load.weight, load); 644 } 645 return slice; 646 } 647 648 /* 649 * We calculate the vruntime slice of a to-be-inserted task. 650 * 651 * vs = s/w 652 */ 653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 654 { 655 return calc_delta_fair(sched_slice(cfs_rq, se), se); 656 } 657 658 #ifdef CONFIG_SMP 659 static int select_idle_sibling(struct task_struct *p, int cpu); 660 static unsigned long task_h_load(struct task_struct *p); 661 662 /* 663 * We choose a half-life close to 1 scheduling period. 664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are 665 * dependent on this value. 666 */ 667 #define LOAD_AVG_PERIOD 32 668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */ 670 671 /* Give new sched_entity start runnable values to heavy its load in infant time */ 672 void init_entity_runnable_average(struct sched_entity *se) 673 { 674 struct sched_avg *sa = &se->avg; 675 676 sa->last_update_time = 0; 677 /* 678 * sched_avg's period_contrib should be strictly less then 1024, so 679 * we give it 1023 to make sure it is almost a period (1024us), and 680 * will definitely be update (after enqueue). 681 */ 682 sa->period_contrib = 1023; 683 sa->load_avg = scale_load_down(se->load.weight); 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX; 685 /* 686 * At this point, util_avg won't be used in select_task_rq_fair anyway 687 */ 688 sa->util_avg = 0; 689 sa->util_sum = 0; 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 691 } 692 693 /* 694 * With new tasks being created, their initial util_avgs are extrapolated 695 * based on the cfs_rq's current util_avg: 696 * 697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 698 * 699 * However, in many cases, the above util_avg does not give a desired 700 * value. Moreover, the sum of the util_avgs may be divergent, such 701 * as when the series is a harmonic series. 702 * 703 * To solve this problem, we also cap the util_avg of successive tasks to 704 * only 1/2 of the left utilization budget: 705 * 706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n 707 * 708 * where n denotes the nth task. 709 * 710 * For example, a simplest series from the beginning would be like: 711 * 712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 714 * 715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 716 * if util_avg > util_avg_cap. 717 */ 718 void post_init_entity_util_avg(struct sched_entity *se) 719 { 720 struct cfs_rq *cfs_rq = cfs_rq_of(se); 721 struct sched_avg *sa = &se->avg; 722 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; 723 724 if (cap > 0) { 725 if (cfs_rq->avg.util_avg != 0) { 726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 727 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 728 729 if (sa->util_avg > cap) 730 sa->util_avg = cap; 731 } else { 732 sa->util_avg = cap; 733 } 734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX; 735 } 736 } 737 738 #else 739 void init_entity_runnable_average(struct sched_entity *se) 740 { 741 } 742 void post_init_entity_util_avg(struct sched_entity *se) 743 { 744 } 745 #endif 746 747 /* 748 * Update the current task's runtime statistics. 749 */ 750 static void update_curr(struct cfs_rq *cfs_rq) 751 { 752 struct sched_entity *curr = cfs_rq->curr; 753 u64 now = rq_clock_task(rq_of(cfs_rq)); 754 u64 delta_exec; 755 756 if (unlikely(!curr)) 757 return; 758 759 delta_exec = now - curr->exec_start; 760 if (unlikely((s64)delta_exec <= 0)) 761 return; 762 763 curr->exec_start = now; 764 765 schedstat_set(curr->statistics.exec_max, 766 max(delta_exec, curr->statistics.exec_max)); 767 768 curr->sum_exec_runtime += delta_exec; 769 schedstat_add(cfs_rq, exec_clock, delta_exec); 770 771 curr->vruntime += calc_delta_fair(delta_exec, curr); 772 update_min_vruntime(cfs_rq); 773 774 if (entity_is_task(curr)) { 775 struct task_struct *curtask = task_of(curr); 776 777 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 778 cpuacct_charge(curtask, delta_exec); 779 account_group_exec_runtime(curtask, delta_exec); 780 } 781 782 account_cfs_rq_runtime(cfs_rq, delta_exec); 783 } 784 785 static void update_curr_fair(struct rq *rq) 786 { 787 update_curr(cfs_rq_of(&rq->curr->se)); 788 } 789 790 #ifdef CONFIG_SCHEDSTATS 791 static inline void 792 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 793 { 794 u64 wait_start = rq_clock(rq_of(cfs_rq)); 795 796 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 797 likely(wait_start > se->statistics.wait_start)) 798 wait_start -= se->statistics.wait_start; 799 800 se->statistics.wait_start = wait_start; 801 } 802 803 static void 804 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 805 { 806 struct task_struct *p; 807 u64 delta; 808 809 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start; 810 811 if (entity_is_task(se)) { 812 p = task_of(se); 813 if (task_on_rq_migrating(p)) { 814 /* 815 * Preserve migrating task's wait time so wait_start 816 * time stamp can be adjusted to accumulate wait time 817 * prior to migration. 818 */ 819 se->statistics.wait_start = delta; 820 return; 821 } 822 trace_sched_stat_wait(p, delta); 823 } 824 825 se->statistics.wait_max = max(se->statistics.wait_max, delta); 826 se->statistics.wait_count++; 827 se->statistics.wait_sum += delta; 828 se->statistics.wait_start = 0; 829 } 830 831 /* 832 * Task is being enqueued - update stats: 833 */ 834 static inline void 835 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 836 { 837 /* 838 * Are we enqueueing a waiting task? (for current tasks 839 * a dequeue/enqueue event is a NOP) 840 */ 841 if (se != cfs_rq->curr) 842 update_stats_wait_start(cfs_rq, se); 843 } 844 845 static inline void 846 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 847 { 848 /* 849 * Mark the end of the wait period if dequeueing a 850 * waiting task: 851 */ 852 if (se != cfs_rq->curr) 853 update_stats_wait_end(cfs_rq, se); 854 855 if (flags & DEQUEUE_SLEEP) { 856 if (entity_is_task(se)) { 857 struct task_struct *tsk = task_of(se); 858 859 if (tsk->state & TASK_INTERRUPTIBLE) 860 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 861 if (tsk->state & TASK_UNINTERRUPTIBLE) 862 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 863 } 864 } 865 866 } 867 #else 868 static inline void 869 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 870 { 871 } 872 873 static inline void 874 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 875 { 876 } 877 878 static inline void 879 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 880 { 881 } 882 883 static inline void 884 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 885 { 886 } 887 #endif 888 889 /* 890 * We are picking a new current task - update its stats: 891 */ 892 static inline void 893 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 894 { 895 /* 896 * We are starting a new run period: 897 */ 898 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 899 } 900 901 /************************************************** 902 * Scheduling class queueing methods: 903 */ 904 905 #ifdef CONFIG_NUMA_BALANCING 906 /* 907 * Approximate time to scan a full NUMA task in ms. The task scan period is 908 * calculated based on the tasks virtual memory size and 909 * numa_balancing_scan_size. 910 */ 911 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 912 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 913 914 /* Portion of address space to scan in MB */ 915 unsigned int sysctl_numa_balancing_scan_size = 256; 916 917 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 918 unsigned int sysctl_numa_balancing_scan_delay = 1000; 919 920 static unsigned int task_nr_scan_windows(struct task_struct *p) 921 { 922 unsigned long rss = 0; 923 unsigned long nr_scan_pages; 924 925 /* 926 * Calculations based on RSS as non-present and empty pages are skipped 927 * by the PTE scanner and NUMA hinting faults should be trapped based 928 * on resident pages 929 */ 930 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 931 rss = get_mm_rss(p->mm); 932 if (!rss) 933 rss = nr_scan_pages; 934 935 rss = round_up(rss, nr_scan_pages); 936 return rss / nr_scan_pages; 937 } 938 939 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 940 #define MAX_SCAN_WINDOW 2560 941 942 static unsigned int task_scan_min(struct task_struct *p) 943 { 944 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 945 unsigned int scan, floor; 946 unsigned int windows = 1; 947 948 if (scan_size < MAX_SCAN_WINDOW) 949 windows = MAX_SCAN_WINDOW / scan_size; 950 floor = 1000 / windows; 951 952 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 953 return max_t(unsigned int, floor, scan); 954 } 955 956 static unsigned int task_scan_max(struct task_struct *p) 957 { 958 unsigned int smin = task_scan_min(p); 959 unsigned int smax; 960 961 /* Watch for min being lower than max due to floor calculations */ 962 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 963 return max(smin, smax); 964 } 965 966 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 967 { 968 rq->nr_numa_running += (p->numa_preferred_nid != -1); 969 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 970 } 971 972 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 973 { 974 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 975 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 976 } 977 978 struct numa_group { 979 atomic_t refcount; 980 981 spinlock_t lock; /* nr_tasks, tasks */ 982 int nr_tasks; 983 pid_t gid; 984 int active_nodes; 985 986 struct rcu_head rcu; 987 unsigned long total_faults; 988 unsigned long max_faults_cpu; 989 /* 990 * Faults_cpu is used to decide whether memory should move 991 * towards the CPU. As a consequence, these stats are weighted 992 * more by CPU use than by memory faults. 993 */ 994 unsigned long *faults_cpu; 995 unsigned long faults[0]; 996 }; 997 998 /* Shared or private faults. */ 999 #define NR_NUMA_HINT_FAULT_TYPES 2 1000 1001 /* Memory and CPU locality */ 1002 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1003 1004 /* Averaged statistics, and temporary buffers. */ 1005 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1006 1007 pid_t task_numa_group_id(struct task_struct *p) 1008 { 1009 return p->numa_group ? p->numa_group->gid : 0; 1010 } 1011 1012 /* 1013 * The averaged statistics, shared & private, memory & cpu, 1014 * occupy the first half of the array. The second half of the 1015 * array is for current counters, which are averaged into the 1016 * first set by task_numa_placement. 1017 */ 1018 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1019 { 1020 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1021 } 1022 1023 static inline unsigned long task_faults(struct task_struct *p, int nid) 1024 { 1025 if (!p->numa_faults) 1026 return 0; 1027 1028 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1029 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1030 } 1031 1032 static inline unsigned long group_faults(struct task_struct *p, int nid) 1033 { 1034 if (!p->numa_group) 1035 return 0; 1036 1037 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1038 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1039 } 1040 1041 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1042 { 1043 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1044 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1045 } 1046 1047 /* 1048 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1049 * considered part of a numa group's pseudo-interleaving set. Migrations 1050 * between these nodes are slowed down, to allow things to settle down. 1051 */ 1052 #define ACTIVE_NODE_FRACTION 3 1053 1054 static bool numa_is_active_node(int nid, struct numa_group *ng) 1055 { 1056 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1057 } 1058 1059 /* Handle placement on systems where not all nodes are directly connected. */ 1060 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1061 int maxdist, bool task) 1062 { 1063 unsigned long score = 0; 1064 int node; 1065 1066 /* 1067 * All nodes are directly connected, and the same distance 1068 * from each other. No need for fancy placement algorithms. 1069 */ 1070 if (sched_numa_topology_type == NUMA_DIRECT) 1071 return 0; 1072 1073 /* 1074 * This code is called for each node, introducing N^2 complexity, 1075 * which should be ok given the number of nodes rarely exceeds 8. 1076 */ 1077 for_each_online_node(node) { 1078 unsigned long faults; 1079 int dist = node_distance(nid, node); 1080 1081 /* 1082 * The furthest away nodes in the system are not interesting 1083 * for placement; nid was already counted. 1084 */ 1085 if (dist == sched_max_numa_distance || node == nid) 1086 continue; 1087 1088 /* 1089 * On systems with a backplane NUMA topology, compare groups 1090 * of nodes, and move tasks towards the group with the most 1091 * memory accesses. When comparing two nodes at distance 1092 * "hoplimit", only nodes closer by than "hoplimit" are part 1093 * of each group. Skip other nodes. 1094 */ 1095 if (sched_numa_topology_type == NUMA_BACKPLANE && 1096 dist > maxdist) 1097 continue; 1098 1099 /* Add up the faults from nearby nodes. */ 1100 if (task) 1101 faults = task_faults(p, node); 1102 else 1103 faults = group_faults(p, node); 1104 1105 /* 1106 * On systems with a glueless mesh NUMA topology, there are 1107 * no fixed "groups of nodes". Instead, nodes that are not 1108 * directly connected bounce traffic through intermediate 1109 * nodes; a numa_group can occupy any set of nodes. 1110 * The further away a node is, the less the faults count. 1111 * This seems to result in good task placement. 1112 */ 1113 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1114 faults *= (sched_max_numa_distance - dist); 1115 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1116 } 1117 1118 score += faults; 1119 } 1120 1121 return score; 1122 } 1123 1124 /* 1125 * These return the fraction of accesses done by a particular task, or 1126 * task group, on a particular numa node. The group weight is given a 1127 * larger multiplier, in order to group tasks together that are almost 1128 * evenly spread out between numa nodes. 1129 */ 1130 static inline unsigned long task_weight(struct task_struct *p, int nid, 1131 int dist) 1132 { 1133 unsigned long faults, total_faults; 1134 1135 if (!p->numa_faults) 1136 return 0; 1137 1138 total_faults = p->total_numa_faults; 1139 1140 if (!total_faults) 1141 return 0; 1142 1143 faults = task_faults(p, nid); 1144 faults += score_nearby_nodes(p, nid, dist, true); 1145 1146 return 1000 * faults / total_faults; 1147 } 1148 1149 static inline unsigned long group_weight(struct task_struct *p, int nid, 1150 int dist) 1151 { 1152 unsigned long faults, total_faults; 1153 1154 if (!p->numa_group) 1155 return 0; 1156 1157 total_faults = p->numa_group->total_faults; 1158 1159 if (!total_faults) 1160 return 0; 1161 1162 faults = group_faults(p, nid); 1163 faults += score_nearby_nodes(p, nid, dist, false); 1164 1165 return 1000 * faults / total_faults; 1166 } 1167 1168 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1169 int src_nid, int dst_cpu) 1170 { 1171 struct numa_group *ng = p->numa_group; 1172 int dst_nid = cpu_to_node(dst_cpu); 1173 int last_cpupid, this_cpupid; 1174 1175 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1176 1177 /* 1178 * Multi-stage node selection is used in conjunction with a periodic 1179 * migration fault to build a temporal task<->page relation. By using 1180 * a two-stage filter we remove short/unlikely relations. 1181 * 1182 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1183 * a task's usage of a particular page (n_p) per total usage of this 1184 * page (n_t) (in a given time-span) to a probability. 1185 * 1186 * Our periodic faults will sample this probability and getting the 1187 * same result twice in a row, given these samples are fully 1188 * independent, is then given by P(n)^2, provided our sample period 1189 * is sufficiently short compared to the usage pattern. 1190 * 1191 * This quadric squishes small probabilities, making it less likely we 1192 * act on an unlikely task<->page relation. 1193 */ 1194 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1195 if (!cpupid_pid_unset(last_cpupid) && 1196 cpupid_to_nid(last_cpupid) != dst_nid) 1197 return false; 1198 1199 /* Always allow migrate on private faults */ 1200 if (cpupid_match_pid(p, last_cpupid)) 1201 return true; 1202 1203 /* A shared fault, but p->numa_group has not been set up yet. */ 1204 if (!ng) 1205 return true; 1206 1207 /* 1208 * Destination node is much more heavily used than the source 1209 * node? Allow migration. 1210 */ 1211 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1212 ACTIVE_NODE_FRACTION) 1213 return true; 1214 1215 /* 1216 * Distribute memory according to CPU & memory use on each node, 1217 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1218 * 1219 * faults_cpu(dst) 3 faults_cpu(src) 1220 * --------------- * - > --------------- 1221 * faults_mem(dst) 4 faults_mem(src) 1222 */ 1223 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1224 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1225 } 1226 1227 static unsigned long weighted_cpuload(const int cpu); 1228 static unsigned long source_load(int cpu, int type); 1229 static unsigned long target_load(int cpu, int type); 1230 static unsigned long capacity_of(int cpu); 1231 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1232 1233 /* Cached statistics for all CPUs within a node */ 1234 struct numa_stats { 1235 unsigned long nr_running; 1236 unsigned long load; 1237 1238 /* Total compute capacity of CPUs on a node */ 1239 unsigned long compute_capacity; 1240 1241 /* Approximate capacity in terms of runnable tasks on a node */ 1242 unsigned long task_capacity; 1243 int has_free_capacity; 1244 }; 1245 1246 /* 1247 * XXX borrowed from update_sg_lb_stats 1248 */ 1249 static void update_numa_stats(struct numa_stats *ns, int nid) 1250 { 1251 int smt, cpu, cpus = 0; 1252 unsigned long capacity; 1253 1254 memset(ns, 0, sizeof(*ns)); 1255 for_each_cpu(cpu, cpumask_of_node(nid)) { 1256 struct rq *rq = cpu_rq(cpu); 1257 1258 ns->nr_running += rq->nr_running; 1259 ns->load += weighted_cpuload(cpu); 1260 ns->compute_capacity += capacity_of(cpu); 1261 1262 cpus++; 1263 } 1264 1265 /* 1266 * If we raced with hotplug and there are no CPUs left in our mask 1267 * the @ns structure is NULL'ed and task_numa_compare() will 1268 * not find this node attractive. 1269 * 1270 * We'll either bail at !has_free_capacity, or we'll detect a huge 1271 * imbalance and bail there. 1272 */ 1273 if (!cpus) 1274 return; 1275 1276 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1277 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1278 capacity = cpus / smt; /* cores */ 1279 1280 ns->task_capacity = min_t(unsigned, capacity, 1281 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1282 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1283 } 1284 1285 struct task_numa_env { 1286 struct task_struct *p; 1287 1288 int src_cpu, src_nid; 1289 int dst_cpu, dst_nid; 1290 1291 struct numa_stats src_stats, dst_stats; 1292 1293 int imbalance_pct; 1294 int dist; 1295 1296 struct task_struct *best_task; 1297 long best_imp; 1298 int best_cpu; 1299 }; 1300 1301 static void task_numa_assign(struct task_numa_env *env, 1302 struct task_struct *p, long imp) 1303 { 1304 if (env->best_task) 1305 put_task_struct(env->best_task); 1306 1307 env->best_task = p; 1308 env->best_imp = imp; 1309 env->best_cpu = env->dst_cpu; 1310 } 1311 1312 static bool load_too_imbalanced(long src_load, long dst_load, 1313 struct task_numa_env *env) 1314 { 1315 long imb, old_imb; 1316 long orig_src_load, orig_dst_load; 1317 long src_capacity, dst_capacity; 1318 1319 /* 1320 * The load is corrected for the CPU capacity available on each node. 1321 * 1322 * src_load dst_load 1323 * ------------ vs --------- 1324 * src_capacity dst_capacity 1325 */ 1326 src_capacity = env->src_stats.compute_capacity; 1327 dst_capacity = env->dst_stats.compute_capacity; 1328 1329 /* We care about the slope of the imbalance, not the direction. */ 1330 if (dst_load < src_load) 1331 swap(dst_load, src_load); 1332 1333 /* Is the difference below the threshold? */ 1334 imb = dst_load * src_capacity * 100 - 1335 src_load * dst_capacity * env->imbalance_pct; 1336 if (imb <= 0) 1337 return false; 1338 1339 /* 1340 * The imbalance is above the allowed threshold. 1341 * Compare it with the old imbalance. 1342 */ 1343 orig_src_load = env->src_stats.load; 1344 orig_dst_load = env->dst_stats.load; 1345 1346 if (orig_dst_load < orig_src_load) 1347 swap(orig_dst_load, orig_src_load); 1348 1349 old_imb = orig_dst_load * src_capacity * 100 - 1350 orig_src_load * dst_capacity * env->imbalance_pct; 1351 1352 /* Would this change make things worse? */ 1353 return (imb > old_imb); 1354 } 1355 1356 /* 1357 * This checks if the overall compute and NUMA accesses of the system would 1358 * be improved if the source tasks was migrated to the target dst_cpu taking 1359 * into account that it might be best if task running on the dst_cpu should 1360 * be exchanged with the source task 1361 */ 1362 static void task_numa_compare(struct task_numa_env *env, 1363 long taskimp, long groupimp) 1364 { 1365 struct rq *src_rq = cpu_rq(env->src_cpu); 1366 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1367 struct task_struct *cur; 1368 long src_load, dst_load; 1369 long load; 1370 long imp = env->p->numa_group ? groupimp : taskimp; 1371 long moveimp = imp; 1372 int dist = env->dist; 1373 bool assigned = false; 1374 1375 rcu_read_lock(); 1376 1377 raw_spin_lock_irq(&dst_rq->lock); 1378 cur = dst_rq->curr; 1379 /* 1380 * No need to move the exiting task or idle task. 1381 */ 1382 if ((cur->flags & PF_EXITING) || is_idle_task(cur)) 1383 cur = NULL; 1384 else { 1385 /* 1386 * The task_struct must be protected here to protect the 1387 * p->numa_faults access in the task_weight since the 1388 * numa_faults could already be freed in the following path: 1389 * finish_task_switch() 1390 * --> put_task_struct() 1391 * --> __put_task_struct() 1392 * --> task_numa_free() 1393 */ 1394 get_task_struct(cur); 1395 } 1396 1397 raw_spin_unlock_irq(&dst_rq->lock); 1398 1399 /* 1400 * Because we have preemption enabled we can get migrated around and 1401 * end try selecting ourselves (current == env->p) as a swap candidate. 1402 */ 1403 if (cur == env->p) 1404 goto unlock; 1405 1406 /* 1407 * "imp" is the fault differential for the source task between the 1408 * source and destination node. Calculate the total differential for 1409 * the source task and potential destination task. The more negative 1410 * the value is, the more rmeote accesses that would be expected to 1411 * be incurred if the tasks were swapped. 1412 */ 1413 if (cur) { 1414 /* Skip this swap candidate if cannot move to the source cpu */ 1415 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1416 goto unlock; 1417 1418 /* 1419 * If dst and source tasks are in the same NUMA group, or not 1420 * in any group then look only at task weights. 1421 */ 1422 if (cur->numa_group == env->p->numa_group) { 1423 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1424 task_weight(cur, env->dst_nid, dist); 1425 /* 1426 * Add some hysteresis to prevent swapping the 1427 * tasks within a group over tiny differences. 1428 */ 1429 if (cur->numa_group) 1430 imp -= imp/16; 1431 } else { 1432 /* 1433 * Compare the group weights. If a task is all by 1434 * itself (not part of a group), use the task weight 1435 * instead. 1436 */ 1437 if (cur->numa_group) 1438 imp += group_weight(cur, env->src_nid, dist) - 1439 group_weight(cur, env->dst_nid, dist); 1440 else 1441 imp += task_weight(cur, env->src_nid, dist) - 1442 task_weight(cur, env->dst_nid, dist); 1443 } 1444 } 1445 1446 if (imp <= env->best_imp && moveimp <= env->best_imp) 1447 goto unlock; 1448 1449 if (!cur) { 1450 /* Is there capacity at our destination? */ 1451 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1452 !env->dst_stats.has_free_capacity) 1453 goto unlock; 1454 1455 goto balance; 1456 } 1457 1458 /* Balance doesn't matter much if we're running a task per cpu */ 1459 if (imp > env->best_imp && src_rq->nr_running == 1 && 1460 dst_rq->nr_running == 1) 1461 goto assign; 1462 1463 /* 1464 * In the overloaded case, try and keep the load balanced. 1465 */ 1466 balance: 1467 load = task_h_load(env->p); 1468 dst_load = env->dst_stats.load + load; 1469 src_load = env->src_stats.load - load; 1470 1471 if (moveimp > imp && moveimp > env->best_imp) { 1472 /* 1473 * If the improvement from just moving env->p direction is 1474 * better than swapping tasks around, check if a move is 1475 * possible. Store a slightly smaller score than moveimp, 1476 * so an actually idle CPU will win. 1477 */ 1478 if (!load_too_imbalanced(src_load, dst_load, env)) { 1479 imp = moveimp - 1; 1480 put_task_struct(cur); 1481 cur = NULL; 1482 goto assign; 1483 } 1484 } 1485 1486 if (imp <= env->best_imp) 1487 goto unlock; 1488 1489 if (cur) { 1490 load = task_h_load(cur); 1491 dst_load -= load; 1492 src_load += load; 1493 } 1494 1495 if (load_too_imbalanced(src_load, dst_load, env)) 1496 goto unlock; 1497 1498 /* 1499 * One idle CPU per node is evaluated for a task numa move. 1500 * Call select_idle_sibling to maybe find a better one. 1501 */ 1502 if (!cur) 1503 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu); 1504 1505 assign: 1506 assigned = true; 1507 task_numa_assign(env, cur, imp); 1508 unlock: 1509 rcu_read_unlock(); 1510 /* 1511 * The dst_rq->curr isn't assigned. The protection for task_struct is 1512 * finished. 1513 */ 1514 if (cur && !assigned) 1515 put_task_struct(cur); 1516 } 1517 1518 static void task_numa_find_cpu(struct task_numa_env *env, 1519 long taskimp, long groupimp) 1520 { 1521 int cpu; 1522 1523 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1524 /* Skip this CPU if the source task cannot migrate */ 1525 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1526 continue; 1527 1528 env->dst_cpu = cpu; 1529 task_numa_compare(env, taskimp, groupimp); 1530 } 1531 } 1532 1533 /* Only move tasks to a NUMA node less busy than the current node. */ 1534 static bool numa_has_capacity(struct task_numa_env *env) 1535 { 1536 struct numa_stats *src = &env->src_stats; 1537 struct numa_stats *dst = &env->dst_stats; 1538 1539 if (src->has_free_capacity && !dst->has_free_capacity) 1540 return false; 1541 1542 /* 1543 * Only consider a task move if the source has a higher load 1544 * than the destination, corrected for CPU capacity on each node. 1545 * 1546 * src->load dst->load 1547 * --------------------- vs --------------------- 1548 * src->compute_capacity dst->compute_capacity 1549 */ 1550 if (src->load * dst->compute_capacity * env->imbalance_pct > 1551 1552 dst->load * src->compute_capacity * 100) 1553 return true; 1554 1555 return false; 1556 } 1557 1558 static int task_numa_migrate(struct task_struct *p) 1559 { 1560 struct task_numa_env env = { 1561 .p = p, 1562 1563 .src_cpu = task_cpu(p), 1564 .src_nid = task_node(p), 1565 1566 .imbalance_pct = 112, 1567 1568 .best_task = NULL, 1569 .best_imp = 0, 1570 .best_cpu = -1, 1571 }; 1572 struct sched_domain *sd; 1573 unsigned long taskweight, groupweight; 1574 int nid, ret, dist; 1575 long taskimp, groupimp; 1576 1577 /* 1578 * Pick the lowest SD_NUMA domain, as that would have the smallest 1579 * imbalance and would be the first to start moving tasks about. 1580 * 1581 * And we want to avoid any moving of tasks about, as that would create 1582 * random movement of tasks -- counter the numa conditions we're trying 1583 * to satisfy here. 1584 */ 1585 rcu_read_lock(); 1586 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1587 if (sd) 1588 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1589 rcu_read_unlock(); 1590 1591 /* 1592 * Cpusets can break the scheduler domain tree into smaller 1593 * balance domains, some of which do not cross NUMA boundaries. 1594 * Tasks that are "trapped" in such domains cannot be migrated 1595 * elsewhere, so there is no point in (re)trying. 1596 */ 1597 if (unlikely(!sd)) { 1598 p->numa_preferred_nid = task_node(p); 1599 return -EINVAL; 1600 } 1601 1602 env.dst_nid = p->numa_preferred_nid; 1603 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1604 taskweight = task_weight(p, env.src_nid, dist); 1605 groupweight = group_weight(p, env.src_nid, dist); 1606 update_numa_stats(&env.src_stats, env.src_nid); 1607 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1608 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1609 update_numa_stats(&env.dst_stats, env.dst_nid); 1610 1611 /* Try to find a spot on the preferred nid. */ 1612 if (numa_has_capacity(&env)) 1613 task_numa_find_cpu(&env, taskimp, groupimp); 1614 1615 /* 1616 * Look at other nodes in these cases: 1617 * - there is no space available on the preferred_nid 1618 * - the task is part of a numa_group that is interleaved across 1619 * multiple NUMA nodes; in order to better consolidate the group, 1620 * we need to check other locations. 1621 */ 1622 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1623 for_each_online_node(nid) { 1624 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1625 continue; 1626 1627 dist = node_distance(env.src_nid, env.dst_nid); 1628 if (sched_numa_topology_type == NUMA_BACKPLANE && 1629 dist != env.dist) { 1630 taskweight = task_weight(p, env.src_nid, dist); 1631 groupweight = group_weight(p, env.src_nid, dist); 1632 } 1633 1634 /* Only consider nodes where both task and groups benefit */ 1635 taskimp = task_weight(p, nid, dist) - taskweight; 1636 groupimp = group_weight(p, nid, dist) - groupweight; 1637 if (taskimp < 0 && groupimp < 0) 1638 continue; 1639 1640 env.dist = dist; 1641 env.dst_nid = nid; 1642 update_numa_stats(&env.dst_stats, env.dst_nid); 1643 if (numa_has_capacity(&env)) 1644 task_numa_find_cpu(&env, taskimp, groupimp); 1645 } 1646 } 1647 1648 /* 1649 * If the task is part of a workload that spans multiple NUMA nodes, 1650 * and is migrating into one of the workload's active nodes, remember 1651 * this node as the task's preferred numa node, so the workload can 1652 * settle down. 1653 * A task that migrated to a second choice node will be better off 1654 * trying for a better one later. Do not set the preferred node here. 1655 */ 1656 if (p->numa_group) { 1657 struct numa_group *ng = p->numa_group; 1658 1659 if (env.best_cpu == -1) 1660 nid = env.src_nid; 1661 else 1662 nid = env.dst_nid; 1663 1664 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) 1665 sched_setnuma(p, env.dst_nid); 1666 } 1667 1668 /* No better CPU than the current one was found. */ 1669 if (env.best_cpu == -1) 1670 return -EAGAIN; 1671 1672 /* 1673 * Reset the scan period if the task is being rescheduled on an 1674 * alternative node to recheck if the tasks is now properly placed. 1675 */ 1676 p->numa_scan_period = task_scan_min(p); 1677 1678 if (env.best_task == NULL) { 1679 ret = migrate_task_to(p, env.best_cpu); 1680 if (ret != 0) 1681 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1682 return ret; 1683 } 1684 1685 ret = migrate_swap(p, env.best_task); 1686 if (ret != 0) 1687 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1688 put_task_struct(env.best_task); 1689 return ret; 1690 } 1691 1692 /* Attempt to migrate a task to a CPU on the preferred node. */ 1693 static void numa_migrate_preferred(struct task_struct *p) 1694 { 1695 unsigned long interval = HZ; 1696 1697 /* This task has no NUMA fault statistics yet */ 1698 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1699 return; 1700 1701 /* Periodically retry migrating the task to the preferred node */ 1702 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1703 p->numa_migrate_retry = jiffies + interval; 1704 1705 /* Success if task is already running on preferred CPU */ 1706 if (task_node(p) == p->numa_preferred_nid) 1707 return; 1708 1709 /* Otherwise, try migrate to a CPU on the preferred node */ 1710 task_numa_migrate(p); 1711 } 1712 1713 /* 1714 * Find out how many nodes on the workload is actively running on. Do this by 1715 * tracking the nodes from which NUMA hinting faults are triggered. This can 1716 * be different from the set of nodes where the workload's memory is currently 1717 * located. 1718 */ 1719 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1720 { 1721 unsigned long faults, max_faults = 0; 1722 int nid, active_nodes = 0; 1723 1724 for_each_online_node(nid) { 1725 faults = group_faults_cpu(numa_group, nid); 1726 if (faults > max_faults) 1727 max_faults = faults; 1728 } 1729 1730 for_each_online_node(nid) { 1731 faults = group_faults_cpu(numa_group, nid); 1732 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1733 active_nodes++; 1734 } 1735 1736 numa_group->max_faults_cpu = max_faults; 1737 numa_group->active_nodes = active_nodes; 1738 } 1739 1740 /* 1741 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1742 * increments. The more local the fault statistics are, the higher the scan 1743 * period will be for the next scan window. If local/(local+remote) ratio is 1744 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1745 * the scan period will decrease. Aim for 70% local accesses. 1746 */ 1747 #define NUMA_PERIOD_SLOTS 10 1748 #define NUMA_PERIOD_THRESHOLD 7 1749 1750 /* 1751 * Increase the scan period (slow down scanning) if the majority of 1752 * our memory is already on our local node, or if the majority of 1753 * the page accesses are shared with other processes. 1754 * Otherwise, decrease the scan period. 1755 */ 1756 static void update_task_scan_period(struct task_struct *p, 1757 unsigned long shared, unsigned long private) 1758 { 1759 unsigned int period_slot; 1760 int ratio; 1761 int diff; 1762 1763 unsigned long remote = p->numa_faults_locality[0]; 1764 unsigned long local = p->numa_faults_locality[1]; 1765 1766 /* 1767 * If there were no record hinting faults then either the task is 1768 * completely idle or all activity is areas that are not of interest 1769 * to automatic numa balancing. Related to that, if there were failed 1770 * migration then it implies we are migrating too quickly or the local 1771 * node is overloaded. In either case, scan slower 1772 */ 1773 if (local + shared == 0 || p->numa_faults_locality[2]) { 1774 p->numa_scan_period = min(p->numa_scan_period_max, 1775 p->numa_scan_period << 1); 1776 1777 p->mm->numa_next_scan = jiffies + 1778 msecs_to_jiffies(p->numa_scan_period); 1779 1780 return; 1781 } 1782 1783 /* 1784 * Prepare to scale scan period relative to the current period. 1785 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1786 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1787 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1788 */ 1789 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1790 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1791 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1792 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1793 if (!slot) 1794 slot = 1; 1795 diff = slot * period_slot; 1796 } else { 1797 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1798 1799 /* 1800 * Scale scan rate increases based on sharing. There is an 1801 * inverse relationship between the degree of sharing and 1802 * the adjustment made to the scanning period. Broadly 1803 * speaking the intent is that there is little point 1804 * scanning faster if shared accesses dominate as it may 1805 * simply bounce migrations uselessly 1806 */ 1807 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); 1808 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1809 } 1810 1811 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1812 task_scan_min(p), task_scan_max(p)); 1813 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1814 } 1815 1816 /* 1817 * Get the fraction of time the task has been running since the last 1818 * NUMA placement cycle. The scheduler keeps similar statistics, but 1819 * decays those on a 32ms period, which is orders of magnitude off 1820 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1821 * stats only if the task is so new there are no NUMA statistics yet. 1822 */ 1823 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1824 { 1825 u64 runtime, delta, now; 1826 /* Use the start of this time slice to avoid calculations. */ 1827 now = p->se.exec_start; 1828 runtime = p->se.sum_exec_runtime; 1829 1830 if (p->last_task_numa_placement) { 1831 delta = runtime - p->last_sum_exec_runtime; 1832 *period = now - p->last_task_numa_placement; 1833 } else { 1834 delta = p->se.avg.load_sum / p->se.load.weight; 1835 *period = LOAD_AVG_MAX; 1836 } 1837 1838 p->last_sum_exec_runtime = runtime; 1839 p->last_task_numa_placement = now; 1840 1841 return delta; 1842 } 1843 1844 /* 1845 * Determine the preferred nid for a task in a numa_group. This needs to 1846 * be done in a way that produces consistent results with group_weight, 1847 * otherwise workloads might not converge. 1848 */ 1849 static int preferred_group_nid(struct task_struct *p, int nid) 1850 { 1851 nodemask_t nodes; 1852 int dist; 1853 1854 /* Direct connections between all NUMA nodes. */ 1855 if (sched_numa_topology_type == NUMA_DIRECT) 1856 return nid; 1857 1858 /* 1859 * On a system with glueless mesh NUMA topology, group_weight 1860 * scores nodes according to the number of NUMA hinting faults on 1861 * both the node itself, and on nearby nodes. 1862 */ 1863 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1864 unsigned long score, max_score = 0; 1865 int node, max_node = nid; 1866 1867 dist = sched_max_numa_distance; 1868 1869 for_each_online_node(node) { 1870 score = group_weight(p, node, dist); 1871 if (score > max_score) { 1872 max_score = score; 1873 max_node = node; 1874 } 1875 } 1876 return max_node; 1877 } 1878 1879 /* 1880 * Finding the preferred nid in a system with NUMA backplane 1881 * interconnect topology is more involved. The goal is to locate 1882 * tasks from numa_groups near each other in the system, and 1883 * untangle workloads from different sides of the system. This requires 1884 * searching down the hierarchy of node groups, recursively searching 1885 * inside the highest scoring group of nodes. The nodemask tricks 1886 * keep the complexity of the search down. 1887 */ 1888 nodes = node_online_map; 1889 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 1890 unsigned long max_faults = 0; 1891 nodemask_t max_group = NODE_MASK_NONE; 1892 int a, b; 1893 1894 /* Are there nodes at this distance from each other? */ 1895 if (!find_numa_distance(dist)) 1896 continue; 1897 1898 for_each_node_mask(a, nodes) { 1899 unsigned long faults = 0; 1900 nodemask_t this_group; 1901 nodes_clear(this_group); 1902 1903 /* Sum group's NUMA faults; includes a==b case. */ 1904 for_each_node_mask(b, nodes) { 1905 if (node_distance(a, b) < dist) { 1906 faults += group_faults(p, b); 1907 node_set(b, this_group); 1908 node_clear(b, nodes); 1909 } 1910 } 1911 1912 /* Remember the top group. */ 1913 if (faults > max_faults) { 1914 max_faults = faults; 1915 max_group = this_group; 1916 /* 1917 * subtle: at the smallest distance there is 1918 * just one node left in each "group", the 1919 * winner is the preferred nid. 1920 */ 1921 nid = a; 1922 } 1923 } 1924 /* Next round, evaluate the nodes within max_group. */ 1925 if (!max_faults) 1926 break; 1927 nodes = max_group; 1928 } 1929 return nid; 1930 } 1931 1932 static void task_numa_placement(struct task_struct *p) 1933 { 1934 int seq, nid, max_nid = -1, max_group_nid = -1; 1935 unsigned long max_faults = 0, max_group_faults = 0; 1936 unsigned long fault_types[2] = { 0, 0 }; 1937 unsigned long total_faults; 1938 u64 runtime, period; 1939 spinlock_t *group_lock = NULL; 1940 1941 /* 1942 * The p->mm->numa_scan_seq field gets updated without 1943 * exclusive access. Use READ_ONCE() here to ensure 1944 * that the field is read in a single access: 1945 */ 1946 seq = READ_ONCE(p->mm->numa_scan_seq); 1947 if (p->numa_scan_seq == seq) 1948 return; 1949 p->numa_scan_seq = seq; 1950 p->numa_scan_period_max = task_scan_max(p); 1951 1952 total_faults = p->numa_faults_locality[0] + 1953 p->numa_faults_locality[1]; 1954 runtime = numa_get_avg_runtime(p, &period); 1955 1956 /* If the task is part of a group prevent parallel updates to group stats */ 1957 if (p->numa_group) { 1958 group_lock = &p->numa_group->lock; 1959 spin_lock_irq(group_lock); 1960 } 1961 1962 /* Find the node with the highest number of faults */ 1963 for_each_online_node(nid) { 1964 /* Keep track of the offsets in numa_faults array */ 1965 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 1966 unsigned long faults = 0, group_faults = 0; 1967 int priv; 1968 1969 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 1970 long diff, f_diff, f_weight; 1971 1972 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 1973 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 1974 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 1975 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 1976 1977 /* Decay existing window, copy faults since last scan */ 1978 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 1979 fault_types[priv] += p->numa_faults[membuf_idx]; 1980 p->numa_faults[membuf_idx] = 0; 1981 1982 /* 1983 * Normalize the faults_from, so all tasks in a group 1984 * count according to CPU use, instead of by the raw 1985 * number of faults. Tasks with little runtime have 1986 * little over-all impact on throughput, and thus their 1987 * faults are less important. 1988 */ 1989 f_weight = div64_u64(runtime << 16, period + 1); 1990 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 1991 (total_faults + 1); 1992 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 1993 p->numa_faults[cpubuf_idx] = 0; 1994 1995 p->numa_faults[mem_idx] += diff; 1996 p->numa_faults[cpu_idx] += f_diff; 1997 faults += p->numa_faults[mem_idx]; 1998 p->total_numa_faults += diff; 1999 if (p->numa_group) { 2000 /* 2001 * safe because we can only change our own group 2002 * 2003 * mem_idx represents the offset for a given 2004 * nid and priv in a specific region because it 2005 * is at the beginning of the numa_faults array. 2006 */ 2007 p->numa_group->faults[mem_idx] += diff; 2008 p->numa_group->faults_cpu[mem_idx] += f_diff; 2009 p->numa_group->total_faults += diff; 2010 group_faults += p->numa_group->faults[mem_idx]; 2011 } 2012 } 2013 2014 if (faults > max_faults) { 2015 max_faults = faults; 2016 max_nid = nid; 2017 } 2018 2019 if (group_faults > max_group_faults) { 2020 max_group_faults = group_faults; 2021 max_group_nid = nid; 2022 } 2023 } 2024 2025 update_task_scan_period(p, fault_types[0], fault_types[1]); 2026 2027 if (p->numa_group) { 2028 numa_group_count_active_nodes(p->numa_group); 2029 spin_unlock_irq(group_lock); 2030 max_nid = preferred_group_nid(p, max_group_nid); 2031 } 2032 2033 if (max_faults) { 2034 /* Set the new preferred node */ 2035 if (max_nid != p->numa_preferred_nid) 2036 sched_setnuma(p, max_nid); 2037 2038 if (task_node(p) != p->numa_preferred_nid) 2039 numa_migrate_preferred(p); 2040 } 2041 } 2042 2043 static inline int get_numa_group(struct numa_group *grp) 2044 { 2045 return atomic_inc_not_zero(&grp->refcount); 2046 } 2047 2048 static inline void put_numa_group(struct numa_group *grp) 2049 { 2050 if (atomic_dec_and_test(&grp->refcount)) 2051 kfree_rcu(grp, rcu); 2052 } 2053 2054 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2055 int *priv) 2056 { 2057 struct numa_group *grp, *my_grp; 2058 struct task_struct *tsk; 2059 bool join = false; 2060 int cpu = cpupid_to_cpu(cpupid); 2061 int i; 2062 2063 if (unlikely(!p->numa_group)) { 2064 unsigned int size = sizeof(struct numa_group) + 2065 4*nr_node_ids*sizeof(unsigned long); 2066 2067 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2068 if (!grp) 2069 return; 2070 2071 atomic_set(&grp->refcount, 1); 2072 grp->active_nodes = 1; 2073 grp->max_faults_cpu = 0; 2074 spin_lock_init(&grp->lock); 2075 grp->gid = p->pid; 2076 /* Second half of the array tracks nids where faults happen */ 2077 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2078 nr_node_ids; 2079 2080 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2081 grp->faults[i] = p->numa_faults[i]; 2082 2083 grp->total_faults = p->total_numa_faults; 2084 2085 grp->nr_tasks++; 2086 rcu_assign_pointer(p->numa_group, grp); 2087 } 2088 2089 rcu_read_lock(); 2090 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2091 2092 if (!cpupid_match_pid(tsk, cpupid)) 2093 goto no_join; 2094 2095 grp = rcu_dereference(tsk->numa_group); 2096 if (!grp) 2097 goto no_join; 2098 2099 my_grp = p->numa_group; 2100 if (grp == my_grp) 2101 goto no_join; 2102 2103 /* 2104 * Only join the other group if its bigger; if we're the bigger group, 2105 * the other task will join us. 2106 */ 2107 if (my_grp->nr_tasks > grp->nr_tasks) 2108 goto no_join; 2109 2110 /* 2111 * Tie-break on the grp address. 2112 */ 2113 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2114 goto no_join; 2115 2116 /* Always join threads in the same process. */ 2117 if (tsk->mm == current->mm) 2118 join = true; 2119 2120 /* Simple filter to avoid false positives due to PID collisions */ 2121 if (flags & TNF_SHARED) 2122 join = true; 2123 2124 /* Update priv based on whether false sharing was detected */ 2125 *priv = !join; 2126 2127 if (join && !get_numa_group(grp)) 2128 goto no_join; 2129 2130 rcu_read_unlock(); 2131 2132 if (!join) 2133 return; 2134 2135 BUG_ON(irqs_disabled()); 2136 double_lock_irq(&my_grp->lock, &grp->lock); 2137 2138 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2139 my_grp->faults[i] -= p->numa_faults[i]; 2140 grp->faults[i] += p->numa_faults[i]; 2141 } 2142 my_grp->total_faults -= p->total_numa_faults; 2143 grp->total_faults += p->total_numa_faults; 2144 2145 my_grp->nr_tasks--; 2146 grp->nr_tasks++; 2147 2148 spin_unlock(&my_grp->lock); 2149 spin_unlock_irq(&grp->lock); 2150 2151 rcu_assign_pointer(p->numa_group, grp); 2152 2153 put_numa_group(my_grp); 2154 return; 2155 2156 no_join: 2157 rcu_read_unlock(); 2158 return; 2159 } 2160 2161 void task_numa_free(struct task_struct *p) 2162 { 2163 struct numa_group *grp = p->numa_group; 2164 void *numa_faults = p->numa_faults; 2165 unsigned long flags; 2166 int i; 2167 2168 if (grp) { 2169 spin_lock_irqsave(&grp->lock, flags); 2170 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2171 grp->faults[i] -= p->numa_faults[i]; 2172 grp->total_faults -= p->total_numa_faults; 2173 2174 grp->nr_tasks--; 2175 spin_unlock_irqrestore(&grp->lock, flags); 2176 RCU_INIT_POINTER(p->numa_group, NULL); 2177 put_numa_group(grp); 2178 } 2179 2180 p->numa_faults = NULL; 2181 kfree(numa_faults); 2182 } 2183 2184 /* 2185 * Got a PROT_NONE fault for a page on @node. 2186 */ 2187 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2188 { 2189 struct task_struct *p = current; 2190 bool migrated = flags & TNF_MIGRATED; 2191 int cpu_node = task_node(current); 2192 int local = !!(flags & TNF_FAULT_LOCAL); 2193 struct numa_group *ng; 2194 int priv; 2195 2196 if (!static_branch_likely(&sched_numa_balancing)) 2197 return; 2198 2199 /* for example, ksmd faulting in a user's mm */ 2200 if (!p->mm) 2201 return; 2202 2203 /* Allocate buffer to track faults on a per-node basis */ 2204 if (unlikely(!p->numa_faults)) { 2205 int size = sizeof(*p->numa_faults) * 2206 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2207 2208 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2209 if (!p->numa_faults) 2210 return; 2211 2212 p->total_numa_faults = 0; 2213 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2214 } 2215 2216 /* 2217 * First accesses are treated as private, otherwise consider accesses 2218 * to be private if the accessing pid has not changed 2219 */ 2220 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2221 priv = 1; 2222 } else { 2223 priv = cpupid_match_pid(p, last_cpupid); 2224 if (!priv && !(flags & TNF_NO_GROUP)) 2225 task_numa_group(p, last_cpupid, flags, &priv); 2226 } 2227 2228 /* 2229 * If a workload spans multiple NUMA nodes, a shared fault that 2230 * occurs wholly within the set of nodes that the workload is 2231 * actively using should be counted as local. This allows the 2232 * scan rate to slow down when a workload has settled down. 2233 */ 2234 ng = p->numa_group; 2235 if (!priv && !local && ng && ng->active_nodes > 1 && 2236 numa_is_active_node(cpu_node, ng) && 2237 numa_is_active_node(mem_node, ng)) 2238 local = 1; 2239 2240 task_numa_placement(p); 2241 2242 /* 2243 * Retry task to preferred node migration periodically, in case it 2244 * case it previously failed, or the scheduler moved us. 2245 */ 2246 if (time_after(jiffies, p->numa_migrate_retry)) 2247 numa_migrate_preferred(p); 2248 2249 if (migrated) 2250 p->numa_pages_migrated += pages; 2251 if (flags & TNF_MIGRATE_FAIL) 2252 p->numa_faults_locality[2] += pages; 2253 2254 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2255 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2256 p->numa_faults_locality[local] += pages; 2257 } 2258 2259 static void reset_ptenuma_scan(struct task_struct *p) 2260 { 2261 /* 2262 * We only did a read acquisition of the mmap sem, so 2263 * p->mm->numa_scan_seq is written to without exclusive access 2264 * and the update is not guaranteed to be atomic. That's not 2265 * much of an issue though, since this is just used for 2266 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2267 * expensive, to avoid any form of compiler optimizations: 2268 */ 2269 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2270 p->mm->numa_scan_offset = 0; 2271 } 2272 2273 /* 2274 * The expensive part of numa migration is done from task_work context. 2275 * Triggered from task_tick_numa(). 2276 */ 2277 void task_numa_work(struct callback_head *work) 2278 { 2279 unsigned long migrate, next_scan, now = jiffies; 2280 struct task_struct *p = current; 2281 struct mm_struct *mm = p->mm; 2282 u64 runtime = p->se.sum_exec_runtime; 2283 struct vm_area_struct *vma; 2284 unsigned long start, end; 2285 unsigned long nr_pte_updates = 0; 2286 long pages, virtpages; 2287 2288 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 2289 2290 work->next = work; /* protect against double add */ 2291 /* 2292 * Who cares about NUMA placement when they're dying. 2293 * 2294 * NOTE: make sure not to dereference p->mm before this check, 2295 * exit_task_work() happens _after_ exit_mm() so we could be called 2296 * without p->mm even though we still had it when we enqueued this 2297 * work. 2298 */ 2299 if (p->flags & PF_EXITING) 2300 return; 2301 2302 if (!mm->numa_next_scan) { 2303 mm->numa_next_scan = now + 2304 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2305 } 2306 2307 /* 2308 * Enforce maximal scan/migration frequency.. 2309 */ 2310 migrate = mm->numa_next_scan; 2311 if (time_before(now, migrate)) 2312 return; 2313 2314 if (p->numa_scan_period == 0) { 2315 p->numa_scan_period_max = task_scan_max(p); 2316 p->numa_scan_period = task_scan_min(p); 2317 } 2318 2319 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2320 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2321 return; 2322 2323 /* 2324 * Delay this task enough that another task of this mm will likely win 2325 * the next time around. 2326 */ 2327 p->node_stamp += 2 * TICK_NSEC; 2328 2329 start = mm->numa_scan_offset; 2330 pages = sysctl_numa_balancing_scan_size; 2331 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2332 virtpages = pages * 8; /* Scan up to this much virtual space */ 2333 if (!pages) 2334 return; 2335 2336 2337 down_read(&mm->mmap_sem); 2338 vma = find_vma(mm, start); 2339 if (!vma) { 2340 reset_ptenuma_scan(p); 2341 start = 0; 2342 vma = mm->mmap; 2343 } 2344 for (; vma; vma = vma->vm_next) { 2345 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2346 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2347 continue; 2348 } 2349 2350 /* 2351 * Shared library pages mapped by multiple processes are not 2352 * migrated as it is expected they are cache replicated. Avoid 2353 * hinting faults in read-only file-backed mappings or the vdso 2354 * as migrating the pages will be of marginal benefit. 2355 */ 2356 if (!vma->vm_mm || 2357 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2358 continue; 2359 2360 /* 2361 * Skip inaccessible VMAs to avoid any confusion between 2362 * PROT_NONE and NUMA hinting ptes 2363 */ 2364 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2365 continue; 2366 2367 do { 2368 start = max(start, vma->vm_start); 2369 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2370 end = min(end, vma->vm_end); 2371 nr_pte_updates = change_prot_numa(vma, start, end); 2372 2373 /* 2374 * Try to scan sysctl_numa_balancing_size worth of 2375 * hpages that have at least one present PTE that 2376 * is not already pte-numa. If the VMA contains 2377 * areas that are unused or already full of prot_numa 2378 * PTEs, scan up to virtpages, to skip through those 2379 * areas faster. 2380 */ 2381 if (nr_pte_updates) 2382 pages -= (end - start) >> PAGE_SHIFT; 2383 virtpages -= (end - start) >> PAGE_SHIFT; 2384 2385 start = end; 2386 if (pages <= 0 || virtpages <= 0) 2387 goto out; 2388 2389 cond_resched(); 2390 } while (end != vma->vm_end); 2391 } 2392 2393 out: 2394 /* 2395 * It is possible to reach the end of the VMA list but the last few 2396 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2397 * would find the !migratable VMA on the next scan but not reset the 2398 * scanner to the start so check it now. 2399 */ 2400 if (vma) 2401 mm->numa_scan_offset = start; 2402 else 2403 reset_ptenuma_scan(p); 2404 up_read(&mm->mmap_sem); 2405 2406 /* 2407 * Make sure tasks use at least 32x as much time to run other code 2408 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2409 * Usually update_task_scan_period slows down scanning enough; on an 2410 * overloaded system we need to limit overhead on a per task basis. 2411 */ 2412 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2413 u64 diff = p->se.sum_exec_runtime - runtime; 2414 p->node_stamp += 32 * diff; 2415 } 2416 } 2417 2418 /* 2419 * Drive the periodic memory faults.. 2420 */ 2421 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2422 { 2423 struct callback_head *work = &curr->numa_work; 2424 u64 period, now; 2425 2426 /* 2427 * We don't care about NUMA placement if we don't have memory. 2428 */ 2429 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2430 return; 2431 2432 /* 2433 * Using runtime rather than walltime has the dual advantage that 2434 * we (mostly) drive the selection from busy threads and that the 2435 * task needs to have done some actual work before we bother with 2436 * NUMA placement. 2437 */ 2438 now = curr->se.sum_exec_runtime; 2439 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2440 2441 if (now > curr->node_stamp + period) { 2442 if (!curr->node_stamp) 2443 curr->numa_scan_period = task_scan_min(curr); 2444 curr->node_stamp += period; 2445 2446 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2447 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2448 task_work_add(curr, work, true); 2449 } 2450 } 2451 } 2452 #else 2453 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2454 { 2455 } 2456 2457 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2458 { 2459 } 2460 2461 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2462 { 2463 } 2464 #endif /* CONFIG_NUMA_BALANCING */ 2465 2466 static void 2467 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2468 { 2469 update_load_add(&cfs_rq->load, se->load.weight); 2470 if (!parent_entity(se)) 2471 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2472 #ifdef CONFIG_SMP 2473 if (entity_is_task(se)) { 2474 struct rq *rq = rq_of(cfs_rq); 2475 2476 account_numa_enqueue(rq, task_of(se)); 2477 list_add(&se->group_node, &rq->cfs_tasks); 2478 } 2479 #endif 2480 cfs_rq->nr_running++; 2481 } 2482 2483 static void 2484 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2485 { 2486 update_load_sub(&cfs_rq->load, se->load.weight); 2487 if (!parent_entity(se)) 2488 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2489 #ifdef CONFIG_SMP 2490 if (entity_is_task(se)) { 2491 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2492 list_del_init(&se->group_node); 2493 } 2494 #endif 2495 cfs_rq->nr_running--; 2496 } 2497 2498 #ifdef CONFIG_FAIR_GROUP_SCHED 2499 # ifdef CONFIG_SMP 2500 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2501 { 2502 long tg_weight, load, shares; 2503 2504 /* 2505 * This really should be: cfs_rq->avg.load_avg, but instead we use 2506 * cfs_rq->load.weight, which is its upper bound. This helps ramp up 2507 * the shares for small weight interactive tasks. 2508 */ 2509 load = scale_load_down(cfs_rq->load.weight); 2510 2511 tg_weight = atomic_long_read(&tg->load_avg); 2512 2513 /* Ensure tg_weight >= load */ 2514 tg_weight -= cfs_rq->tg_load_avg_contrib; 2515 tg_weight += load; 2516 2517 shares = (tg->shares * load); 2518 if (tg_weight) 2519 shares /= tg_weight; 2520 2521 if (shares < MIN_SHARES) 2522 shares = MIN_SHARES; 2523 if (shares > tg->shares) 2524 shares = tg->shares; 2525 2526 return shares; 2527 } 2528 # else /* CONFIG_SMP */ 2529 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2530 { 2531 return tg->shares; 2532 } 2533 # endif /* CONFIG_SMP */ 2534 2535 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2536 unsigned long weight) 2537 { 2538 if (se->on_rq) { 2539 /* commit outstanding execution time */ 2540 if (cfs_rq->curr == se) 2541 update_curr(cfs_rq); 2542 account_entity_dequeue(cfs_rq, se); 2543 } 2544 2545 update_load_set(&se->load, weight); 2546 2547 if (se->on_rq) 2548 account_entity_enqueue(cfs_rq, se); 2549 } 2550 2551 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2552 2553 static void update_cfs_shares(struct cfs_rq *cfs_rq) 2554 { 2555 struct task_group *tg; 2556 struct sched_entity *se; 2557 long shares; 2558 2559 tg = cfs_rq->tg; 2560 se = tg->se[cpu_of(rq_of(cfs_rq))]; 2561 if (!se || throttled_hierarchy(cfs_rq)) 2562 return; 2563 #ifndef CONFIG_SMP 2564 if (likely(se->load.weight == tg->shares)) 2565 return; 2566 #endif 2567 shares = calc_cfs_shares(cfs_rq, tg); 2568 2569 reweight_entity(cfs_rq_of(se), se, shares); 2570 } 2571 #else /* CONFIG_FAIR_GROUP_SCHED */ 2572 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 2573 { 2574 } 2575 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2576 2577 #ifdef CONFIG_SMP 2578 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 2579 static const u32 runnable_avg_yN_inv[] = { 2580 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 2581 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 2582 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 2583 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 2584 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 2585 0x85aac367, 0x82cd8698, 2586 }; 2587 2588 /* 2589 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 2590 * over-estimates when re-combining. 2591 */ 2592 static const u32 runnable_avg_yN_sum[] = { 2593 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 2594 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 2595 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 2596 }; 2597 2598 /* 2599 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to 2600 * lower integers. See Documentation/scheduler/sched-avg.txt how these 2601 * were generated: 2602 */ 2603 static const u32 __accumulated_sum_N32[] = { 2604 0, 23371, 35056, 40899, 43820, 45281, 2605 46011, 46376, 46559, 46650, 46696, 46719, 2606 }; 2607 2608 /* 2609 * Approximate: 2610 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2611 */ 2612 static __always_inline u64 decay_load(u64 val, u64 n) 2613 { 2614 unsigned int local_n; 2615 2616 if (!n) 2617 return val; 2618 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2619 return 0; 2620 2621 /* after bounds checking we can collapse to 32-bit */ 2622 local_n = n; 2623 2624 /* 2625 * As y^PERIOD = 1/2, we can combine 2626 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 2627 * With a look-up table which covers y^n (n<PERIOD) 2628 * 2629 * To achieve constant time decay_load. 2630 */ 2631 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2632 val >>= local_n / LOAD_AVG_PERIOD; 2633 local_n %= LOAD_AVG_PERIOD; 2634 } 2635 2636 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 2637 return val; 2638 } 2639 2640 /* 2641 * For updates fully spanning n periods, the contribution to runnable 2642 * average will be: \Sum 1024*y^n 2643 * 2644 * We can compute this reasonably efficiently by combining: 2645 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2646 */ 2647 static u32 __compute_runnable_contrib(u64 n) 2648 { 2649 u32 contrib = 0; 2650 2651 if (likely(n <= LOAD_AVG_PERIOD)) 2652 return runnable_avg_yN_sum[n]; 2653 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2654 return LOAD_AVG_MAX; 2655 2656 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */ 2657 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD]; 2658 n %= LOAD_AVG_PERIOD; 2659 contrib = decay_load(contrib, n); 2660 return contrib + runnable_avg_yN_sum[n]; 2661 } 2662 2663 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 2664 2665 /* 2666 * We can represent the historical contribution to runnable average as the 2667 * coefficients of a geometric series. To do this we sub-divide our runnable 2668 * history into segments of approximately 1ms (1024us); label the segment that 2669 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2670 * 2671 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2672 * p0 p1 p2 2673 * (now) (~1ms ago) (~2ms ago) 2674 * 2675 * Let u_i denote the fraction of p_i that the entity was runnable. 2676 * 2677 * We then designate the fractions u_i as our co-efficients, yielding the 2678 * following representation of historical load: 2679 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2680 * 2681 * We choose y based on the with of a reasonably scheduling period, fixing: 2682 * y^32 = 0.5 2683 * 2684 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2685 * approximately half as much as the contribution to load within the last ms 2686 * (u_0). 2687 * 2688 * When a period "rolls over" and we have new u_0`, multiplying the previous 2689 * sum again by y is sufficient to update: 2690 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2691 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2692 */ 2693 static __always_inline int 2694 __update_load_avg(u64 now, int cpu, struct sched_avg *sa, 2695 unsigned long weight, int running, struct cfs_rq *cfs_rq) 2696 { 2697 u64 delta, scaled_delta, periods; 2698 u32 contrib; 2699 unsigned int delta_w, scaled_delta_w, decayed = 0; 2700 unsigned long scale_freq, scale_cpu; 2701 2702 delta = now - sa->last_update_time; 2703 /* 2704 * This should only happen when time goes backwards, which it 2705 * unfortunately does during sched clock init when we swap over to TSC. 2706 */ 2707 if ((s64)delta < 0) { 2708 sa->last_update_time = now; 2709 return 0; 2710 } 2711 2712 /* 2713 * Use 1024ns as the unit of measurement since it's a reasonable 2714 * approximation of 1us and fast to compute. 2715 */ 2716 delta >>= 10; 2717 if (!delta) 2718 return 0; 2719 sa->last_update_time = now; 2720 2721 scale_freq = arch_scale_freq_capacity(NULL, cpu); 2722 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 2723 2724 /* delta_w is the amount already accumulated against our next period */ 2725 delta_w = sa->period_contrib; 2726 if (delta + delta_w >= 1024) { 2727 decayed = 1; 2728 2729 /* how much left for next period will start over, we don't know yet */ 2730 sa->period_contrib = 0; 2731 2732 /* 2733 * Now that we know we're crossing a period boundary, figure 2734 * out how much from delta we need to complete the current 2735 * period and accrue it. 2736 */ 2737 delta_w = 1024 - delta_w; 2738 scaled_delta_w = cap_scale(delta_w, scale_freq); 2739 if (weight) { 2740 sa->load_sum += weight * scaled_delta_w; 2741 if (cfs_rq) { 2742 cfs_rq->runnable_load_sum += 2743 weight * scaled_delta_w; 2744 } 2745 } 2746 if (running) 2747 sa->util_sum += scaled_delta_w * scale_cpu; 2748 2749 delta -= delta_w; 2750 2751 /* Figure out how many additional periods this update spans */ 2752 periods = delta / 1024; 2753 delta %= 1024; 2754 2755 sa->load_sum = decay_load(sa->load_sum, periods + 1); 2756 if (cfs_rq) { 2757 cfs_rq->runnable_load_sum = 2758 decay_load(cfs_rq->runnable_load_sum, periods + 1); 2759 } 2760 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1); 2761 2762 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2763 contrib = __compute_runnable_contrib(periods); 2764 contrib = cap_scale(contrib, scale_freq); 2765 if (weight) { 2766 sa->load_sum += weight * contrib; 2767 if (cfs_rq) 2768 cfs_rq->runnable_load_sum += weight * contrib; 2769 } 2770 if (running) 2771 sa->util_sum += contrib * scale_cpu; 2772 } 2773 2774 /* Remainder of delta accrued against u_0` */ 2775 scaled_delta = cap_scale(delta, scale_freq); 2776 if (weight) { 2777 sa->load_sum += weight * scaled_delta; 2778 if (cfs_rq) 2779 cfs_rq->runnable_load_sum += weight * scaled_delta; 2780 } 2781 if (running) 2782 sa->util_sum += scaled_delta * scale_cpu; 2783 2784 sa->period_contrib += delta; 2785 2786 if (decayed) { 2787 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX); 2788 if (cfs_rq) { 2789 cfs_rq->runnable_load_avg = 2790 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX); 2791 } 2792 sa->util_avg = sa->util_sum / LOAD_AVG_MAX; 2793 } 2794 2795 return decayed; 2796 } 2797 2798 #ifdef CONFIG_FAIR_GROUP_SCHED 2799 /* 2800 * Updating tg's load_avg is necessary before update_cfs_share (which is done) 2801 * and effective_load (which is not done because it is too costly). 2802 */ 2803 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 2804 { 2805 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 2806 2807 /* 2808 * No need to update load_avg for root_task_group as it is not used. 2809 */ 2810 if (cfs_rq->tg == &root_task_group) 2811 return; 2812 2813 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 2814 atomic_long_add(delta, &cfs_rq->tg->load_avg); 2815 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 2816 } 2817 } 2818 2819 /* 2820 * Called within set_task_rq() right before setting a task's cpu. The 2821 * caller only guarantees p->pi_lock is held; no other assumptions, 2822 * including the state of rq->lock, should be made. 2823 */ 2824 void set_task_rq_fair(struct sched_entity *se, 2825 struct cfs_rq *prev, struct cfs_rq *next) 2826 { 2827 if (!sched_feat(ATTACH_AGE_LOAD)) 2828 return; 2829 2830 /* 2831 * We are supposed to update the task to "current" time, then its up to 2832 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 2833 * getting what current time is, so simply throw away the out-of-date 2834 * time. This will result in the wakee task is less decayed, but giving 2835 * the wakee more load sounds not bad. 2836 */ 2837 if (se->avg.last_update_time && prev) { 2838 u64 p_last_update_time; 2839 u64 n_last_update_time; 2840 2841 #ifndef CONFIG_64BIT 2842 u64 p_last_update_time_copy; 2843 u64 n_last_update_time_copy; 2844 2845 do { 2846 p_last_update_time_copy = prev->load_last_update_time_copy; 2847 n_last_update_time_copy = next->load_last_update_time_copy; 2848 2849 smp_rmb(); 2850 2851 p_last_update_time = prev->avg.last_update_time; 2852 n_last_update_time = next->avg.last_update_time; 2853 2854 } while (p_last_update_time != p_last_update_time_copy || 2855 n_last_update_time != n_last_update_time_copy); 2856 #else 2857 p_last_update_time = prev->avg.last_update_time; 2858 n_last_update_time = next->avg.last_update_time; 2859 #endif 2860 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)), 2861 &se->avg, 0, 0, NULL); 2862 se->avg.last_update_time = n_last_update_time; 2863 } 2864 } 2865 #else /* CONFIG_FAIR_GROUP_SCHED */ 2866 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 2867 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2868 2869 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 2870 2871 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq) 2872 { 2873 struct rq *rq = rq_of(cfs_rq); 2874 int cpu = cpu_of(rq); 2875 2876 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) { 2877 unsigned long max = rq->cpu_capacity_orig; 2878 2879 /* 2880 * There are a few boundary cases this might miss but it should 2881 * get called often enough that that should (hopefully) not be 2882 * a real problem -- added to that it only calls on the local 2883 * CPU, so if we enqueue remotely we'll miss an update, but 2884 * the next tick/schedule should update. 2885 * 2886 * It will not get called when we go idle, because the idle 2887 * thread is a different class (!fair), nor will the utilization 2888 * number include things like RT tasks. 2889 * 2890 * As is, the util number is not freq-invariant (we'd have to 2891 * implement arch_scale_freq_capacity() for that). 2892 * 2893 * See cpu_util(). 2894 */ 2895 cpufreq_update_util(rq_clock(rq), 2896 min(cfs_rq->avg.util_avg, max), max); 2897 } 2898 } 2899 2900 /* 2901 * Unsigned subtract and clamp on underflow. 2902 * 2903 * Explicitly do a load-store to ensure the intermediate value never hits 2904 * memory. This allows lockless observations without ever seeing the negative 2905 * values. 2906 */ 2907 #define sub_positive(_ptr, _val) do { \ 2908 typeof(_ptr) ptr = (_ptr); \ 2909 typeof(*ptr) val = (_val); \ 2910 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2911 res = var - val; \ 2912 if (res > var) \ 2913 res = 0; \ 2914 WRITE_ONCE(*ptr, res); \ 2915 } while (0) 2916 2917 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */ 2918 static inline int 2919 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq) 2920 { 2921 struct sched_avg *sa = &cfs_rq->avg; 2922 int decayed, removed_load = 0, removed_util = 0; 2923 2924 if (atomic_long_read(&cfs_rq->removed_load_avg)) { 2925 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); 2926 sub_positive(&sa->load_avg, r); 2927 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX); 2928 removed_load = 1; 2929 } 2930 2931 if (atomic_long_read(&cfs_rq->removed_util_avg)) { 2932 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); 2933 sub_positive(&sa->util_avg, r); 2934 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX); 2935 removed_util = 1; 2936 } 2937 2938 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 2939 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq); 2940 2941 #ifndef CONFIG_64BIT 2942 smp_wmb(); 2943 cfs_rq->load_last_update_time_copy = sa->last_update_time; 2944 #endif 2945 2946 if (update_freq && (decayed || removed_util)) 2947 cfs_rq_util_change(cfs_rq); 2948 2949 return decayed || removed_load; 2950 } 2951 2952 /* Update task and its cfs_rq load average */ 2953 static inline void update_load_avg(struct sched_entity *se, int update_tg) 2954 { 2955 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2956 u64 now = cfs_rq_clock_task(cfs_rq); 2957 struct rq *rq = rq_of(cfs_rq); 2958 int cpu = cpu_of(rq); 2959 2960 /* 2961 * Track task load average for carrying it to new CPU after migrated, and 2962 * track group sched_entity load average for task_h_load calc in migration 2963 */ 2964 __update_load_avg(now, cpu, &se->avg, 2965 se->on_rq * scale_load_down(se->load.weight), 2966 cfs_rq->curr == se, NULL); 2967 2968 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg) 2969 update_tg_load_avg(cfs_rq, 0); 2970 } 2971 2972 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2973 { 2974 if (!sched_feat(ATTACH_AGE_LOAD)) 2975 goto skip_aging; 2976 2977 /* 2978 * If we got migrated (either between CPUs or between cgroups) we'll 2979 * have aged the average right before clearing @last_update_time. 2980 */ 2981 if (se->avg.last_update_time) { 2982 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), 2983 &se->avg, 0, 0, NULL); 2984 2985 /* 2986 * XXX: we could have just aged the entire load away if we've been 2987 * absent from the fair class for too long. 2988 */ 2989 } 2990 2991 skip_aging: 2992 se->avg.last_update_time = cfs_rq->avg.last_update_time; 2993 cfs_rq->avg.load_avg += se->avg.load_avg; 2994 cfs_rq->avg.load_sum += se->avg.load_sum; 2995 cfs_rq->avg.util_avg += se->avg.util_avg; 2996 cfs_rq->avg.util_sum += se->avg.util_sum; 2997 2998 cfs_rq_util_change(cfs_rq); 2999 } 3000 3001 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3002 { 3003 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), 3004 &se->avg, se->on_rq * scale_load_down(se->load.weight), 3005 cfs_rq->curr == se, NULL); 3006 3007 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3008 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum); 3009 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3010 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3011 3012 cfs_rq_util_change(cfs_rq); 3013 } 3014 3015 /* Add the load generated by se into cfs_rq's load average */ 3016 static inline void 3017 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3018 { 3019 struct sched_avg *sa = &se->avg; 3020 u64 now = cfs_rq_clock_task(cfs_rq); 3021 int migrated, decayed; 3022 3023 migrated = !sa->last_update_time; 3024 if (!migrated) { 3025 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 3026 se->on_rq * scale_load_down(se->load.weight), 3027 cfs_rq->curr == se, NULL); 3028 } 3029 3030 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated); 3031 3032 cfs_rq->runnable_load_avg += sa->load_avg; 3033 cfs_rq->runnable_load_sum += sa->load_sum; 3034 3035 if (migrated) 3036 attach_entity_load_avg(cfs_rq, se); 3037 3038 if (decayed || migrated) 3039 update_tg_load_avg(cfs_rq, 0); 3040 } 3041 3042 /* Remove the runnable load generated by se from cfs_rq's runnable load average */ 3043 static inline void 3044 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3045 { 3046 update_load_avg(se, 1); 3047 3048 cfs_rq->runnable_load_avg = 3049 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0); 3050 cfs_rq->runnable_load_sum = 3051 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0); 3052 } 3053 3054 #ifndef CONFIG_64BIT 3055 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3056 { 3057 u64 last_update_time_copy; 3058 u64 last_update_time; 3059 3060 do { 3061 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3062 smp_rmb(); 3063 last_update_time = cfs_rq->avg.last_update_time; 3064 } while (last_update_time != last_update_time_copy); 3065 3066 return last_update_time; 3067 } 3068 #else 3069 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3070 { 3071 return cfs_rq->avg.last_update_time; 3072 } 3073 #endif 3074 3075 /* 3076 * Task first catches up with cfs_rq, and then subtract 3077 * itself from the cfs_rq (task must be off the queue now). 3078 */ 3079 void remove_entity_load_avg(struct sched_entity *se) 3080 { 3081 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3082 u64 last_update_time; 3083 3084 /* 3085 * Newly created task or never used group entity should not be removed 3086 * from its (source) cfs_rq 3087 */ 3088 if (se->avg.last_update_time == 0) 3089 return; 3090 3091 last_update_time = cfs_rq_last_update_time(cfs_rq); 3092 3093 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL); 3094 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg); 3095 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg); 3096 } 3097 3098 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3099 { 3100 return cfs_rq->runnable_load_avg; 3101 } 3102 3103 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3104 { 3105 return cfs_rq->avg.load_avg; 3106 } 3107 3108 static int idle_balance(struct rq *this_rq); 3109 3110 #else /* CONFIG_SMP */ 3111 3112 static inline void update_load_avg(struct sched_entity *se, int not_used) 3113 { 3114 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3115 struct rq *rq = rq_of(cfs_rq); 3116 3117 cpufreq_trigger_update(rq_clock(rq)); 3118 } 3119 3120 static inline void 3121 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3122 static inline void 3123 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3124 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3125 3126 static inline void 3127 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3128 static inline void 3129 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3130 3131 static inline int idle_balance(struct rq *rq) 3132 { 3133 return 0; 3134 } 3135 3136 #endif /* CONFIG_SMP */ 3137 3138 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 3139 { 3140 #ifdef CONFIG_SCHEDSTATS 3141 struct task_struct *tsk = NULL; 3142 3143 if (entity_is_task(se)) 3144 tsk = task_of(se); 3145 3146 if (se->statistics.sleep_start) { 3147 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 3148 3149 if ((s64)delta < 0) 3150 delta = 0; 3151 3152 if (unlikely(delta > se->statistics.sleep_max)) 3153 se->statistics.sleep_max = delta; 3154 3155 se->statistics.sleep_start = 0; 3156 se->statistics.sum_sleep_runtime += delta; 3157 3158 if (tsk) { 3159 account_scheduler_latency(tsk, delta >> 10, 1); 3160 trace_sched_stat_sleep(tsk, delta); 3161 } 3162 } 3163 if (se->statistics.block_start) { 3164 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 3165 3166 if ((s64)delta < 0) 3167 delta = 0; 3168 3169 if (unlikely(delta > se->statistics.block_max)) 3170 se->statistics.block_max = delta; 3171 3172 se->statistics.block_start = 0; 3173 se->statistics.sum_sleep_runtime += delta; 3174 3175 if (tsk) { 3176 if (tsk->in_iowait) { 3177 se->statistics.iowait_sum += delta; 3178 se->statistics.iowait_count++; 3179 trace_sched_stat_iowait(tsk, delta); 3180 } 3181 3182 trace_sched_stat_blocked(tsk, delta); 3183 3184 /* 3185 * Blocking time is in units of nanosecs, so shift by 3186 * 20 to get a milliseconds-range estimation of the 3187 * amount of time that the task spent sleeping: 3188 */ 3189 if (unlikely(prof_on == SLEEP_PROFILING)) { 3190 profile_hits(SLEEP_PROFILING, 3191 (void *)get_wchan(tsk), 3192 delta >> 20); 3193 } 3194 account_scheduler_latency(tsk, delta >> 10, 0); 3195 } 3196 } 3197 #endif 3198 } 3199 3200 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3201 { 3202 #ifdef CONFIG_SCHED_DEBUG 3203 s64 d = se->vruntime - cfs_rq->min_vruntime; 3204 3205 if (d < 0) 3206 d = -d; 3207 3208 if (d > 3*sysctl_sched_latency) 3209 schedstat_inc(cfs_rq, nr_spread_over); 3210 #endif 3211 } 3212 3213 static void 3214 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3215 { 3216 u64 vruntime = cfs_rq->min_vruntime; 3217 3218 /* 3219 * The 'current' period is already promised to the current tasks, 3220 * however the extra weight of the new task will slow them down a 3221 * little, place the new task so that it fits in the slot that 3222 * stays open at the end. 3223 */ 3224 if (initial && sched_feat(START_DEBIT)) 3225 vruntime += sched_vslice(cfs_rq, se); 3226 3227 /* sleeps up to a single latency don't count. */ 3228 if (!initial) { 3229 unsigned long thresh = sysctl_sched_latency; 3230 3231 /* 3232 * Halve their sleep time's effect, to allow 3233 * for a gentler effect of sleepers: 3234 */ 3235 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3236 thresh >>= 1; 3237 3238 vruntime -= thresh; 3239 } 3240 3241 /* ensure we never gain time by being placed backwards. */ 3242 se->vruntime = max_vruntime(se->vruntime, vruntime); 3243 } 3244 3245 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3246 3247 static inline void check_schedstat_required(void) 3248 { 3249 #ifdef CONFIG_SCHEDSTATS 3250 if (schedstat_enabled()) 3251 return; 3252 3253 /* Force schedstat enabled if a dependent tracepoint is active */ 3254 if (trace_sched_stat_wait_enabled() || 3255 trace_sched_stat_sleep_enabled() || 3256 trace_sched_stat_iowait_enabled() || 3257 trace_sched_stat_blocked_enabled() || 3258 trace_sched_stat_runtime_enabled()) { 3259 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3260 "stat_blocked and stat_runtime require the " 3261 "kernel parameter schedstats=enabled or " 3262 "kernel.sched_schedstats=1\n"); 3263 } 3264 #endif 3265 } 3266 3267 3268 /* 3269 * MIGRATION 3270 * 3271 * dequeue 3272 * update_curr() 3273 * update_min_vruntime() 3274 * vruntime -= min_vruntime 3275 * 3276 * enqueue 3277 * update_curr() 3278 * update_min_vruntime() 3279 * vruntime += min_vruntime 3280 * 3281 * this way the vruntime transition between RQs is done when both 3282 * min_vruntime are up-to-date. 3283 * 3284 * WAKEUP (remote) 3285 * 3286 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3287 * vruntime -= min_vruntime 3288 * 3289 * enqueue 3290 * update_curr() 3291 * update_min_vruntime() 3292 * vruntime += min_vruntime 3293 * 3294 * this way we don't have the most up-to-date min_vruntime on the originating 3295 * CPU and an up-to-date min_vruntime on the destination CPU. 3296 */ 3297 3298 static void 3299 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3300 { 3301 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3302 bool curr = cfs_rq->curr == se; 3303 3304 /* 3305 * If we're the current task, we must renormalise before calling 3306 * update_curr(). 3307 */ 3308 if (renorm && curr) 3309 se->vruntime += cfs_rq->min_vruntime; 3310 3311 update_curr(cfs_rq); 3312 3313 /* 3314 * Otherwise, renormalise after, such that we're placed at the current 3315 * moment in time, instead of some random moment in the past. Being 3316 * placed in the past could significantly boost this task to the 3317 * fairness detriment of existing tasks. 3318 */ 3319 if (renorm && !curr) 3320 se->vruntime += cfs_rq->min_vruntime; 3321 3322 enqueue_entity_load_avg(cfs_rq, se); 3323 account_entity_enqueue(cfs_rq, se); 3324 update_cfs_shares(cfs_rq); 3325 3326 if (flags & ENQUEUE_WAKEUP) { 3327 place_entity(cfs_rq, se, 0); 3328 if (schedstat_enabled()) 3329 enqueue_sleeper(cfs_rq, se); 3330 } 3331 3332 check_schedstat_required(); 3333 if (schedstat_enabled()) { 3334 update_stats_enqueue(cfs_rq, se); 3335 check_spread(cfs_rq, se); 3336 } 3337 if (!curr) 3338 __enqueue_entity(cfs_rq, se); 3339 se->on_rq = 1; 3340 3341 if (cfs_rq->nr_running == 1) { 3342 list_add_leaf_cfs_rq(cfs_rq); 3343 check_enqueue_throttle(cfs_rq); 3344 } 3345 } 3346 3347 static void __clear_buddies_last(struct sched_entity *se) 3348 { 3349 for_each_sched_entity(se) { 3350 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3351 if (cfs_rq->last != se) 3352 break; 3353 3354 cfs_rq->last = NULL; 3355 } 3356 } 3357 3358 static void __clear_buddies_next(struct sched_entity *se) 3359 { 3360 for_each_sched_entity(se) { 3361 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3362 if (cfs_rq->next != se) 3363 break; 3364 3365 cfs_rq->next = NULL; 3366 } 3367 } 3368 3369 static void __clear_buddies_skip(struct sched_entity *se) 3370 { 3371 for_each_sched_entity(se) { 3372 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3373 if (cfs_rq->skip != se) 3374 break; 3375 3376 cfs_rq->skip = NULL; 3377 } 3378 } 3379 3380 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3381 { 3382 if (cfs_rq->last == se) 3383 __clear_buddies_last(se); 3384 3385 if (cfs_rq->next == se) 3386 __clear_buddies_next(se); 3387 3388 if (cfs_rq->skip == se) 3389 __clear_buddies_skip(se); 3390 } 3391 3392 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3393 3394 static void 3395 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3396 { 3397 /* 3398 * Update run-time statistics of the 'current'. 3399 */ 3400 update_curr(cfs_rq); 3401 dequeue_entity_load_avg(cfs_rq, se); 3402 3403 if (schedstat_enabled()) 3404 update_stats_dequeue(cfs_rq, se, flags); 3405 3406 clear_buddies(cfs_rq, se); 3407 3408 if (se != cfs_rq->curr) 3409 __dequeue_entity(cfs_rq, se); 3410 se->on_rq = 0; 3411 account_entity_dequeue(cfs_rq, se); 3412 3413 /* 3414 * Normalize the entity after updating the min_vruntime because the 3415 * update can refer to the ->curr item and we need to reflect this 3416 * movement in our normalized position. 3417 */ 3418 if (!(flags & DEQUEUE_SLEEP)) 3419 se->vruntime -= cfs_rq->min_vruntime; 3420 3421 /* return excess runtime on last dequeue */ 3422 return_cfs_rq_runtime(cfs_rq); 3423 3424 update_min_vruntime(cfs_rq); 3425 update_cfs_shares(cfs_rq); 3426 } 3427 3428 /* 3429 * Preempt the current task with a newly woken task if needed: 3430 */ 3431 static void 3432 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3433 { 3434 unsigned long ideal_runtime, delta_exec; 3435 struct sched_entity *se; 3436 s64 delta; 3437 3438 ideal_runtime = sched_slice(cfs_rq, curr); 3439 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3440 if (delta_exec > ideal_runtime) { 3441 resched_curr(rq_of(cfs_rq)); 3442 /* 3443 * The current task ran long enough, ensure it doesn't get 3444 * re-elected due to buddy favours. 3445 */ 3446 clear_buddies(cfs_rq, curr); 3447 return; 3448 } 3449 3450 /* 3451 * Ensure that a task that missed wakeup preemption by a 3452 * narrow margin doesn't have to wait for a full slice. 3453 * This also mitigates buddy induced latencies under load. 3454 */ 3455 if (delta_exec < sysctl_sched_min_granularity) 3456 return; 3457 3458 se = __pick_first_entity(cfs_rq); 3459 delta = curr->vruntime - se->vruntime; 3460 3461 if (delta < 0) 3462 return; 3463 3464 if (delta > ideal_runtime) 3465 resched_curr(rq_of(cfs_rq)); 3466 } 3467 3468 static void 3469 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3470 { 3471 /* 'current' is not kept within the tree. */ 3472 if (se->on_rq) { 3473 /* 3474 * Any task has to be enqueued before it get to execute on 3475 * a CPU. So account for the time it spent waiting on the 3476 * runqueue. 3477 */ 3478 if (schedstat_enabled()) 3479 update_stats_wait_end(cfs_rq, se); 3480 __dequeue_entity(cfs_rq, se); 3481 update_load_avg(se, 1); 3482 } 3483 3484 update_stats_curr_start(cfs_rq, se); 3485 cfs_rq->curr = se; 3486 #ifdef CONFIG_SCHEDSTATS 3487 /* 3488 * Track our maximum slice length, if the CPU's load is at 3489 * least twice that of our own weight (i.e. dont track it 3490 * when there are only lesser-weight tasks around): 3491 */ 3492 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3493 se->statistics.slice_max = max(se->statistics.slice_max, 3494 se->sum_exec_runtime - se->prev_sum_exec_runtime); 3495 } 3496 #endif 3497 se->prev_sum_exec_runtime = se->sum_exec_runtime; 3498 } 3499 3500 static int 3501 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 3502 3503 /* 3504 * Pick the next process, keeping these things in mind, in this order: 3505 * 1) keep things fair between processes/task groups 3506 * 2) pick the "next" process, since someone really wants that to run 3507 * 3) pick the "last" process, for cache locality 3508 * 4) do not run the "skip" process, if something else is available 3509 */ 3510 static struct sched_entity * 3511 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3512 { 3513 struct sched_entity *left = __pick_first_entity(cfs_rq); 3514 struct sched_entity *se; 3515 3516 /* 3517 * If curr is set we have to see if its left of the leftmost entity 3518 * still in the tree, provided there was anything in the tree at all. 3519 */ 3520 if (!left || (curr && entity_before(curr, left))) 3521 left = curr; 3522 3523 se = left; /* ideally we run the leftmost entity */ 3524 3525 /* 3526 * Avoid running the skip buddy, if running something else can 3527 * be done without getting too unfair. 3528 */ 3529 if (cfs_rq->skip == se) { 3530 struct sched_entity *second; 3531 3532 if (se == curr) { 3533 second = __pick_first_entity(cfs_rq); 3534 } else { 3535 second = __pick_next_entity(se); 3536 if (!second || (curr && entity_before(curr, second))) 3537 second = curr; 3538 } 3539 3540 if (second && wakeup_preempt_entity(second, left) < 1) 3541 se = second; 3542 } 3543 3544 /* 3545 * Prefer last buddy, try to return the CPU to a preempted task. 3546 */ 3547 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3548 se = cfs_rq->last; 3549 3550 /* 3551 * Someone really wants this to run. If it's not unfair, run it. 3552 */ 3553 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3554 se = cfs_rq->next; 3555 3556 clear_buddies(cfs_rq, se); 3557 3558 return se; 3559 } 3560 3561 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3562 3563 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3564 { 3565 /* 3566 * If still on the runqueue then deactivate_task() 3567 * was not called and update_curr() has to be done: 3568 */ 3569 if (prev->on_rq) 3570 update_curr(cfs_rq); 3571 3572 /* throttle cfs_rqs exceeding runtime */ 3573 check_cfs_rq_runtime(cfs_rq); 3574 3575 if (schedstat_enabled()) { 3576 check_spread(cfs_rq, prev); 3577 if (prev->on_rq) 3578 update_stats_wait_start(cfs_rq, prev); 3579 } 3580 3581 if (prev->on_rq) { 3582 /* Put 'current' back into the tree. */ 3583 __enqueue_entity(cfs_rq, prev); 3584 /* in !on_rq case, update occurred at dequeue */ 3585 update_load_avg(prev, 0); 3586 } 3587 cfs_rq->curr = NULL; 3588 } 3589 3590 static void 3591 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3592 { 3593 /* 3594 * Update run-time statistics of the 'current'. 3595 */ 3596 update_curr(cfs_rq); 3597 3598 /* 3599 * Ensure that runnable average is periodically updated. 3600 */ 3601 update_load_avg(curr, 1); 3602 update_cfs_shares(cfs_rq); 3603 3604 #ifdef CONFIG_SCHED_HRTICK 3605 /* 3606 * queued ticks are scheduled to match the slice, so don't bother 3607 * validating it and just reschedule. 3608 */ 3609 if (queued) { 3610 resched_curr(rq_of(cfs_rq)); 3611 return; 3612 } 3613 /* 3614 * don't let the period tick interfere with the hrtick preemption 3615 */ 3616 if (!sched_feat(DOUBLE_TICK) && 3617 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3618 return; 3619 #endif 3620 3621 if (cfs_rq->nr_running > 1) 3622 check_preempt_tick(cfs_rq, curr); 3623 } 3624 3625 3626 /************************************************** 3627 * CFS bandwidth control machinery 3628 */ 3629 3630 #ifdef CONFIG_CFS_BANDWIDTH 3631 3632 #ifdef HAVE_JUMP_LABEL 3633 static struct static_key __cfs_bandwidth_used; 3634 3635 static inline bool cfs_bandwidth_used(void) 3636 { 3637 return static_key_false(&__cfs_bandwidth_used); 3638 } 3639 3640 void cfs_bandwidth_usage_inc(void) 3641 { 3642 static_key_slow_inc(&__cfs_bandwidth_used); 3643 } 3644 3645 void cfs_bandwidth_usage_dec(void) 3646 { 3647 static_key_slow_dec(&__cfs_bandwidth_used); 3648 } 3649 #else /* HAVE_JUMP_LABEL */ 3650 static bool cfs_bandwidth_used(void) 3651 { 3652 return true; 3653 } 3654 3655 void cfs_bandwidth_usage_inc(void) {} 3656 void cfs_bandwidth_usage_dec(void) {} 3657 #endif /* HAVE_JUMP_LABEL */ 3658 3659 /* 3660 * default period for cfs group bandwidth. 3661 * default: 0.1s, units: nanoseconds 3662 */ 3663 static inline u64 default_cfs_period(void) 3664 { 3665 return 100000000ULL; 3666 } 3667 3668 static inline u64 sched_cfs_bandwidth_slice(void) 3669 { 3670 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3671 } 3672 3673 /* 3674 * Replenish runtime according to assigned quota and update expiration time. 3675 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 3676 * additional synchronization around rq->lock. 3677 * 3678 * requires cfs_b->lock 3679 */ 3680 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 3681 { 3682 u64 now; 3683 3684 if (cfs_b->quota == RUNTIME_INF) 3685 return; 3686 3687 now = sched_clock_cpu(smp_processor_id()); 3688 cfs_b->runtime = cfs_b->quota; 3689 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 3690 } 3691 3692 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3693 { 3694 return &tg->cfs_bandwidth; 3695 } 3696 3697 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 3698 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3699 { 3700 if (unlikely(cfs_rq->throttle_count)) 3701 return cfs_rq->throttled_clock_task; 3702 3703 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 3704 } 3705 3706 /* returns 0 on failure to allocate runtime */ 3707 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3708 { 3709 struct task_group *tg = cfs_rq->tg; 3710 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 3711 u64 amount = 0, min_amount, expires; 3712 3713 /* note: this is a positive sum as runtime_remaining <= 0 */ 3714 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 3715 3716 raw_spin_lock(&cfs_b->lock); 3717 if (cfs_b->quota == RUNTIME_INF) 3718 amount = min_amount; 3719 else { 3720 start_cfs_bandwidth(cfs_b); 3721 3722 if (cfs_b->runtime > 0) { 3723 amount = min(cfs_b->runtime, min_amount); 3724 cfs_b->runtime -= amount; 3725 cfs_b->idle = 0; 3726 } 3727 } 3728 expires = cfs_b->runtime_expires; 3729 raw_spin_unlock(&cfs_b->lock); 3730 3731 cfs_rq->runtime_remaining += amount; 3732 /* 3733 * we may have advanced our local expiration to account for allowed 3734 * spread between our sched_clock and the one on which runtime was 3735 * issued. 3736 */ 3737 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 3738 cfs_rq->runtime_expires = expires; 3739 3740 return cfs_rq->runtime_remaining > 0; 3741 } 3742 3743 /* 3744 * Note: This depends on the synchronization provided by sched_clock and the 3745 * fact that rq->clock snapshots this value. 3746 */ 3747 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3748 { 3749 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3750 3751 /* if the deadline is ahead of our clock, nothing to do */ 3752 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 3753 return; 3754 3755 if (cfs_rq->runtime_remaining < 0) 3756 return; 3757 3758 /* 3759 * If the local deadline has passed we have to consider the 3760 * possibility that our sched_clock is 'fast' and the global deadline 3761 * has not truly expired. 3762 * 3763 * Fortunately we can check determine whether this the case by checking 3764 * whether the global deadline has advanced. It is valid to compare 3765 * cfs_b->runtime_expires without any locks since we only care about 3766 * exact equality, so a partial write will still work. 3767 */ 3768 3769 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 3770 /* extend local deadline, drift is bounded above by 2 ticks */ 3771 cfs_rq->runtime_expires += TICK_NSEC; 3772 } else { 3773 /* global deadline is ahead, expiration has passed */ 3774 cfs_rq->runtime_remaining = 0; 3775 } 3776 } 3777 3778 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3779 { 3780 /* dock delta_exec before expiring quota (as it could span periods) */ 3781 cfs_rq->runtime_remaining -= delta_exec; 3782 expire_cfs_rq_runtime(cfs_rq); 3783 3784 if (likely(cfs_rq->runtime_remaining > 0)) 3785 return; 3786 3787 /* 3788 * if we're unable to extend our runtime we resched so that the active 3789 * hierarchy can be throttled 3790 */ 3791 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3792 resched_curr(rq_of(cfs_rq)); 3793 } 3794 3795 static __always_inline 3796 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3797 { 3798 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3799 return; 3800 3801 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3802 } 3803 3804 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3805 { 3806 return cfs_bandwidth_used() && cfs_rq->throttled; 3807 } 3808 3809 /* check whether cfs_rq, or any parent, is throttled */ 3810 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3811 { 3812 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3813 } 3814 3815 /* 3816 * Ensure that neither of the group entities corresponding to src_cpu or 3817 * dest_cpu are members of a throttled hierarchy when performing group 3818 * load-balance operations. 3819 */ 3820 static inline int throttled_lb_pair(struct task_group *tg, 3821 int src_cpu, int dest_cpu) 3822 { 3823 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3824 3825 src_cfs_rq = tg->cfs_rq[src_cpu]; 3826 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3827 3828 return throttled_hierarchy(src_cfs_rq) || 3829 throttled_hierarchy(dest_cfs_rq); 3830 } 3831 3832 /* updated child weight may affect parent so we have to do this bottom up */ 3833 static int tg_unthrottle_up(struct task_group *tg, void *data) 3834 { 3835 struct rq *rq = data; 3836 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3837 3838 cfs_rq->throttle_count--; 3839 #ifdef CONFIG_SMP 3840 if (!cfs_rq->throttle_count) { 3841 /* adjust cfs_rq_clock_task() */ 3842 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3843 cfs_rq->throttled_clock_task; 3844 } 3845 #endif 3846 3847 return 0; 3848 } 3849 3850 static int tg_throttle_down(struct task_group *tg, void *data) 3851 { 3852 struct rq *rq = data; 3853 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3854 3855 /* group is entering throttled state, stop time */ 3856 if (!cfs_rq->throttle_count) 3857 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3858 cfs_rq->throttle_count++; 3859 3860 return 0; 3861 } 3862 3863 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3864 { 3865 struct rq *rq = rq_of(cfs_rq); 3866 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3867 struct sched_entity *se; 3868 long task_delta, dequeue = 1; 3869 bool empty; 3870 3871 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3872 3873 /* freeze hierarchy runnable averages while throttled */ 3874 rcu_read_lock(); 3875 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3876 rcu_read_unlock(); 3877 3878 task_delta = cfs_rq->h_nr_running; 3879 for_each_sched_entity(se) { 3880 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3881 /* throttled entity or throttle-on-deactivate */ 3882 if (!se->on_rq) 3883 break; 3884 3885 if (dequeue) 3886 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3887 qcfs_rq->h_nr_running -= task_delta; 3888 3889 if (qcfs_rq->load.weight) 3890 dequeue = 0; 3891 } 3892 3893 if (!se) 3894 sub_nr_running(rq, task_delta); 3895 3896 cfs_rq->throttled = 1; 3897 cfs_rq->throttled_clock = rq_clock(rq); 3898 raw_spin_lock(&cfs_b->lock); 3899 empty = list_empty(&cfs_b->throttled_cfs_rq); 3900 3901 /* 3902 * Add to the _head_ of the list, so that an already-started 3903 * distribute_cfs_runtime will not see us 3904 */ 3905 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3906 3907 /* 3908 * If we're the first throttled task, make sure the bandwidth 3909 * timer is running. 3910 */ 3911 if (empty) 3912 start_cfs_bandwidth(cfs_b); 3913 3914 raw_spin_unlock(&cfs_b->lock); 3915 } 3916 3917 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3918 { 3919 struct rq *rq = rq_of(cfs_rq); 3920 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3921 struct sched_entity *se; 3922 int enqueue = 1; 3923 long task_delta; 3924 3925 se = cfs_rq->tg->se[cpu_of(rq)]; 3926 3927 cfs_rq->throttled = 0; 3928 3929 update_rq_clock(rq); 3930 3931 raw_spin_lock(&cfs_b->lock); 3932 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 3933 list_del_rcu(&cfs_rq->throttled_list); 3934 raw_spin_unlock(&cfs_b->lock); 3935 3936 /* update hierarchical throttle state */ 3937 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 3938 3939 if (!cfs_rq->load.weight) 3940 return; 3941 3942 task_delta = cfs_rq->h_nr_running; 3943 for_each_sched_entity(se) { 3944 if (se->on_rq) 3945 enqueue = 0; 3946 3947 cfs_rq = cfs_rq_of(se); 3948 if (enqueue) 3949 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 3950 cfs_rq->h_nr_running += task_delta; 3951 3952 if (cfs_rq_throttled(cfs_rq)) 3953 break; 3954 } 3955 3956 if (!se) 3957 add_nr_running(rq, task_delta); 3958 3959 /* determine whether we need to wake up potentially idle cpu */ 3960 if (rq->curr == rq->idle && rq->cfs.nr_running) 3961 resched_curr(rq); 3962 } 3963 3964 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 3965 u64 remaining, u64 expires) 3966 { 3967 struct cfs_rq *cfs_rq; 3968 u64 runtime; 3969 u64 starting_runtime = remaining; 3970 3971 rcu_read_lock(); 3972 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 3973 throttled_list) { 3974 struct rq *rq = rq_of(cfs_rq); 3975 3976 raw_spin_lock(&rq->lock); 3977 if (!cfs_rq_throttled(cfs_rq)) 3978 goto next; 3979 3980 runtime = -cfs_rq->runtime_remaining + 1; 3981 if (runtime > remaining) 3982 runtime = remaining; 3983 remaining -= runtime; 3984 3985 cfs_rq->runtime_remaining += runtime; 3986 cfs_rq->runtime_expires = expires; 3987 3988 /* we check whether we're throttled above */ 3989 if (cfs_rq->runtime_remaining > 0) 3990 unthrottle_cfs_rq(cfs_rq); 3991 3992 next: 3993 raw_spin_unlock(&rq->lock); 3994 3995 if (!remaining) 3996 break; 3997 } 3998 rcu_read_unlock(); 3999 4000 return starting_runtime - remaining; 4001 } 4002 4003 /* 4004 * Responsible for refilling a task_group's bandwidth and unthrottling its 4005 * cfs_rqs as appropriate. If there has been no activity within the last 4006 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4007 * used to track this state. 4008 */ 4009 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4010 { 4011 u64 runtime, runtime_expires; 4012 int throttled; 4013 4014 /* no need to continue the timer with no bandwidth constraint */ 4015 if (cfs_b->quota == RUNTIME_INF) 4016 goto out_deactivate; 4017 4018 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4019 cfs_b->nr_periods += overrun; 4020 4021 /* 4022 * idle depends on !throttled (for the case of a large deficit), and if 4023 * we're going inactive then everything else can be deferred 4024 */ 4025 if (cfs_b->idle && !throttled) 4026 goto out_deactivate; 4027 4028 __refill_cfs_bandwidth_runtime(cfs_b); 4029 4030 if (!throttled) { 4031 /* mark as potentially idle for the upcoming period */ 4032 cfs_b->idle = 1; 4033 return 0; 4034 } 4035 4036 /* account preceding periods in which throttling occurred */ 4037 cfs_b->nr_throttled += overrun; 4038 4039 runtime_expires = cfs_b->runtime_expires; 4040 4041 /* 4042 * This check is repeated as we are holding onto the new bandwidth while 4043 * we unthrottle. This can potentially race with an unthrottled group 4044 * trying to acquire new bandwidth from the global pool. This can result 4045 * in us over-using our runtime if it is all used during this loop, but 4046 * only by limited amounts in that extreme case. 4047 */ 4048 while (throttled && cfs_b->runtime > 0) { 4049 runtime = cfs_b->runtime; 4050 raw_spin_unlock(&cfs_b->lock); 4051 /* we can't nest cfs_b->lock while distributing bandwidth */ 4052 runtime = distribute_cfs_runtime(cfs_b, runtime, 4053 runtime_expires); 4054 raw_spin_lock(&cfs_b->lock); 4055 4056 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4057 4058 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4059 } 4060 4061 /* 4062 * While we are ensured activity in the period following an 4063 * unthrottle, this also covers the case in which the new bandwidth is 4064 * insufficient to cover the existing bandwidth deficit. (Forcing the 4065 * timer to remain active while there are any throttled entities.) 4066 */ 4067 cfs_b->idle = 0; 4068 4069 return 0; 4070 4071 out_deactivate: 4072 return 1; 4073 } 4074 4075 /* a cfs_rq won't donate quota below this amount */ 4076 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4077 /* minimum remaining period time to redistribute slack quota */ 4078 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4079 /* how long we wait to gather additional slack before distributing */ 4080 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4081 4082 /* 4083 * Are we near the end of the current quota period? 4084 * 4085 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4086 * hrtimer base being cleared by hrtimer_start. In the case of 4087 * migrate_hrtimers, base is never cleared, so we are fine. 4088 */ 4089 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4090 { 4091 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4092 u64 remaining; 4093 4094 /* if the call-back is running a quota refresh is already occurring */ 4095 if (hrtimer_callback_running(refresh_timer)) 4096 return 1; 4097 4098 /* is a quota refresh about to occur? */ 4099 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4100 if (remaining < min_expire) 4101 return 1; 4102 4103 return 0; 4104 } 4105 4106 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4107 { 4108 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4109 4110 /* if there's a quota refresh soon don't bother with slack */ 4111 if (runtime_refresh_within(cfs_b, min_left)) 4112 return; 4113 4114 hrtimer_start(&cfs_b->slack_timer, 4115 ns_to_ktime(cfs_bandwidth_slack_period), 4116 HRTIMER_MODE_REL); 4117 } 4118 4119 /* we know any runtime found here is valid as update_curr() precedes return */ 4120 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4121 { 4122 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4123 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4124 4125 if (slack_runtime <= 0) 4126 return; 4127 4128 raw_spin_lock(&cfs_b->lock); 4129 if (cfs_b->quota != RUNTIME_INF && 4130 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4131 cfs_b->runtime += slack_runtime; 4132 4133 /* we are under rq->lock, defer unthrottling using a timer */ 4134 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4135 !list_empty(&cfs_b->throttled_cfs_rq)) 4136 start_cfs_slack_bandwidth(cfs_b); 4137 } 4138 raw_spin_unlock(&cfs_b->lock); 4139 4140 /* even if it's not valid for return we don't want to try again */ 4141 cfs_rq->runtime_remaining -= slack_runtime; 4142 } 4143 4144 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4145 { 4146 if (!cfs_bandwidth_used()) 4147 return; 4148 4149 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4150 return; 4151 4152 __return_cfs_rq_runtime(cfs_rq); 4153 } 4154 4155 /* 4156 * This is done with a timer (instead of inline with bandwidth return) since 4157 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4158 */ 4159 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4160 { 4161 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4162 u64 expires; 4163 4164 /* confirm we're still not at a refresh boundary */ 4165 raw_spin_lock(&cfs_b->lock); 4166 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4167 raw_spin_unlock(&cfs_b->lock); 4168 return; 4169 } 4170 4171 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4172 runtime = cfs_b->runtime; 4173 4174 expires = cfs_b->runtime_expires; 4175 raw_spin_unlock(&cfs_b->lock); 4176 4177 if (!runtime) 4178 return; 4179 4180 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4181 4182 raw_spin_lock(&cfs_b->lock); 4183 if (expires == cfs_b->runtime_expires) 4184 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4185 raw_spin_unlock(&cfs_b->lock); 4186 } 4187 4188 /* 4189 * When a group wakes up we want to make sure that its quota is not already 4190 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4191 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4192 */ 4193 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4194 { 4195 if (!cfs_bandwidth_used()) 4196 return; 4197 4198 /* Synchronize hierarchical throttle counter: */ 4199 if (unlikely(!cfs_rq->throttle_uptodate)) { 4200 struct rq *rq = rq_of(cfs_rq); 4201 struct cfs_rq *pcfs_rq; 4202 struct task_group *tg; 4203 4204 cfs_rq->throttle_uptodate = 1; 4205 4206 /* Get closest up-to-date node, because leaves go first: */ 4207 for (tg = cfs_rq->tg->parent; tg; tg = tg->parent) { 4208 pcfs_rq = tg->cfs_rq[cpu_of(rq)]; 4209 if (pcfs_rq->throttle_uptodate) 4210 break; 4211 } 4212 if (tg) { 4213 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4214 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4215 } 4216 } 4217 4218 /* an active group must be handled by the update_curr()->put() path */ 4219 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4220 return; 4221 4222 /* ensure the group is not already throttled */ 4223 if (cfs_rq_throttled(cfs_rq)) 4224 return; 4225 4226 /* update runtime allocation */ 4227 account_cfs_rq_runtime(cfs_rq, 0); 4228 if (cfs_rq->runtime_remaining <= 0) 4229 throttle_cfs_rq(cfs_rq); 4230 } 4231 4232 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4233 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4234 { 4235 if (!cfs_bandwidth_used()) 4236 return false; 4237 4238 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4239 return false; 4240 4241 /* 4242 * it's possible for a throttled entity to be forced into a running 4243 * state (e.g. set_curr_task), in this case we're finished. 4244 */ 4245 if (cfs_rq_throttled(cfs_rq)) 4246 return true; 4247 4248 throttle_cfs_rq(cfs_rq); 4249 return true; 4250 } 4251 4252 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4253 { 4254 struct cfs_bandwidth *cfs_b = 4255 container_of(timer, struct cfs_bandwidth, slack_timer); 4256 4257 do_sched_cfs_slack_timer(cfs_b); 4258 4259 return HRTIMER_NORESTART; 4260 } 4261 4262 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4263 { 4264 struct cfs_bandwidth *cfs_b = 4265 container_of(timer, struct cfs_bandwidth, period_timer); 4266 int overrun; 4267 int idle = 0; 4268 4269 raw_spin_lock(&cfs_b->lock); 4270 for (;;) { 4271 overrun = hrtimer_forward_now(timer, cfs_b->period); 4272 if (!overrun) 4273 break; 4274 4275 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4276 } 4277 if (idle) 4278 cfs_b->period_active = 0; 4279 raw_spin_unlock(&cfs_b->lock); 4280 4281 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4282 } 4283 4284 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4285 { 4286 raw_spin_lock_init(&cfs_b->lock); 4287 cfs_b->runtime = 0; 4288 cfs_b->quota = RUNTIME_INF; 4289 cfs_b->period = ns_to_ktime(default_cfs_period()); 4290 4291 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4292 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4293 cfs_b->period_timer.function = sched_cfs_period_timer; 4294 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4295 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4296 } 4297 4298 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4299 { 4300 cfs_rq->runtime_enabled = 0; 4301 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4302 } 4303 4304 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4305 { 4306 lockdep_assert_held(&cfs_b->lock); 4307 4308 if (!cfs_b->period_active) { 4309 cfs_b->period_active = 1; 4310 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4311 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4312 } 4313 } 4314 4315 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4316 { 4317 /* init_cfs_bandwidth() was not called */ 4318 if (!cfs_b->throttled_cfs_rq.next) 4319 return; 4320 4321 hrtimer_cancel(&cfs_b->period_timer); 4322 hrtimer_cancel(&cfs_b->slack_timer); 4323 } 4324 4325 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4326 { 4327 struct cfs_rq *cfs_rq; 4328 4329 for_each_leaf_cfs_rq(rq, cfs_rq) { 4330 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; 4331 4332 raw_spin_lock(&cfs_b->lock); 4333 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4334 raw_spin_unlock(&cfs_b->lock); 4335 } 4336 } 4337 4338 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4339 { 4340 struct cfs_rq *cfs_rq; 4341 4342 for_each_leaf_cfs_rq(rq, cfs_rq) { 4343 if (!cfs_rq->runtime_enabled) 4344 continue; 4345 4346 /* 4347 * clock_task is not advancing so we just need to make sure 4348 * there's some valid quota amount 4349 */ 4350 cfs_rq->runtime_remaining = 1; 4351 /* 4352 * Offline rq is schedulable till cpu is completely disabled 4353 * in take_cpu_down(), so we prevent new cfs throttling here. 4354 */ 4355 cfs_rq->runtime_enabled = 0; 4356 4357 if (cfs_rq_throttled(cfs_rq)) 4358 unthrottle_cfs_rq(cfs_rq); 4359 } 4360 } 4361 4362 #else /* CONFIG_CFS_BANDWIDTH */ 4363 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4364 { 4365 return rq_clock_task(rq_of(cfs_rq)); 4366 } 4367 4368 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4369 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4370 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4371 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4372 4373 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4374 { 4375 return 0; 4376 } 4377 4378 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4379 { 4380 return 0; 4381 } 4382 4383 static inline int throttled_lb_pair(struct task_group *tg, 4384 int src_cpu, int dest_cpu) 4385 { 4386 return 0; 4387 } 4388 4389 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4390 4391 #ifdef CONFIG_FAIR_GROUP_SCHED 4392 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4393 #endif 4394 4395 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4396 { 4397 return NULL; 4398 } 4399 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4400 static inline void update_runtime_enabled(struct rq *rq) {} 4401 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4402 4403 #endif /* CONFIG_CFS_BANDWIDTH */ 4404 4405 /************************************************** 4406 * CFS operations on tasks: 4407 */ 4408 4409 #ifdef CONFIG_SCHED_HRTICK 4410 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4411 { 4412 struct sched_entity *se = &p->se; 4413 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4414 4415 WARN_ON(task_rq(p) != rq); 4416 4417 if (cfs_rq->nr_running > 1) { 4418 u64 slice = sched_slice(cfs_rq, se); 4419 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4420 s64 delta = slice - ran; 4421 4422 if (delta < 0) { 4423 if (rq->curr == p) 4424 resched_curr(rq); 4425 return; 4426 } 4427 hrtick_start(rq, delta); 4428 } 4429 } 4430 4431 /* 4432 * called from enqueue/dequeue and updates the hrtick when the 4433 * current task is from our class and nr_running is low enough 4434 * to matter. 4435 */ 4436 static void hrtick_update(struct rq *rq) 4437 { 4438 struct task_struct *curr = rq->curr; 4439 4440 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4441 return; 4442 4443 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4444 hrtick_start_fair(rq, curr); 4445 } 4446 #else /* !CONFIG_SCHED_HRTICK */ 4447 static inline void 4448 hrtick_start_fair(struct rq *rq, struct task_struct *p) 4449 { 4450 } 4451 4452 static inline void hrtick_update(struct rq *rq) 4453 { 4454 } 4455 #endif 4456 4457 /* 4458 * The enqueue_task method is called before nr_running is 4459 * increased. Here we update the fair scheduling stats and 4460 * then put the task into the rbtree: 4461 */ 4462 static void 4463 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4464 { 4465 struct cfs_rq *cfs_rq; 4466 struct sched_entity *se = &p->se; 4467 4468 for_each_sched_entity(se) { 4469 if (se->on_rq) 4470 break; 4471 cfs_rq = cfs_rq_of(se); 4472 enqueue_entity(cfs_rq, se, flags); 4473 4474 /* 4475 * end evaluation on encountering a throttled cfs_rq 4476 * 4477 * note: in the case of encountering a throttled cfs_rq we will 4478 * post the final h_nr_running increment below. 4479 */ 4480 if (cfs_rq_throttled(cfs_rq)) 4481 break; 4482 cfs_rq->h_nr_running++; 4483 4484 flags = ENQUEUE_WAKEUP; 4485 } 4486 4487 for_each_sched_entity(se) { 4488 cfs_rq = cfs_rq_of(se); 4489 cfs_rq->h_nr_running++; 4490 4491 if (cfs_rq_throttled(cfs_rq)) 4492 break; 4493 4494 update_load_avg(se, 1); 4495 update_cfs_shares(cfs_rq); 4496 } 4497 4498 if (!se) 4499 add_nr_running(rq, 1); 4500 4501 hrtick_update(rq); 4502 } 4503 4504 static void set_next_buddy(struct sched_entity *se); 4505 4506 /* 4507 * The dequeue_task method is called before nr_running is 4508 * decreased. We remove the task from the rbtree and 4509 * update the fair scheduling stats: 4510 */ 4511 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4512 { 4513 struct cfs_rq *cfs_rq; 4514 struct sched_entity *se = &p->se; 4515 int task_sleep = flags & DEQUEUE_SLEEP; 4516 4517 for_each_sched_entity(se) { 4518 cfs_rq = cfs_rq_of(se); 4519 dequeue_entity(cfs_rq, se, flags); 4520 4521 /* 4522 * end evaluation on encountering a throttled cfs_rq 4523 * 4524 * note: in the case of encountering a throttled cfs_rq we will 4525 * post the final h_nr_running decrement below. 4526 */ 4527 if (cfs_rq_throttled(cfs_rq)) 4528 break; 4529 cfs_rq->h_nr_running--; 4530 4531 /* Don't dequeue parent if it has other entities besides us */ 4532 if (cfs_rq->load.weight) { 4533 /* Avoid re-evaluating load for this entity: */ 4534 se = parent_entity(se); 4535 /* 4536 * Bias pick_next to pick a task from this cfs_rq, as 4537 * p is sleeping when it is within its sched_slice. 4538 */ 4539 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 4540 set_next_buddy(se); 4541 break; 4542 } 4543 flags |= DEQUEUE_SLEEP; 4544 } 4545 4546 for_each_sched_entity(se) { 4547 cfs_rq = cfs_rq_of(se); 4548 cfs_rq->h_nr_running--; 4549 4550 if (cfs_rq_throttled(cfs_rq)) 4551 break; 4552 4553 update_load_avg(se, 1); 4554 update_cfs_shares(cfs_rq); 4555 } 4556 4557 if (!se) 4558 sub_nr_running(rq, 1); 4559 4560 hrtick_update(rq); 4561 } 4562 4563 #ifdef CONFIG_SMP 4564 #ifdef CONFIG_NO_HZ_COMMON 4565 /* 4566 * per rq 'load' arrray crap; XXX kill this. 4567 */ 4568 4569 /* 4570 * The exact cpuload calculated at every tick would be: 4571 * 4572 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 4573 * 4574 * If a cpu misses updates for n ticks (as it was idle) and update gets 4575 * called on the n+1-th tick when cpu may be busy, then we have: 4576 * 4577 * load_n = (1 - 1/2^i)^n * load_0 4578 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 4579 * 4580 * decay_load_missed() below does efficient calculation of 4581 * 4582 * load' = (1 - 1/2^i)^n * load 4583 * 4584 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 4585 * This allows us to precompute the above in said factors, thereby allowing the 4586 * reduction of an arbitrary n in O(log_2 n) steps. (See also 4587 * fixed_power_int()) 4588 * 4589 * The calculation is approximated on a 128 point scale. 4590 */ 4591 #define DEGRADE_SHIFT 7 4592 4593 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 4594 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 4595 { 0, 0, 0, 0, 0, 0, 0, 0 }, 4596 { 64, 32, 8, 0, 0, 0, 0, 0 }, 4597 { 96, 72, 40, 12, 1, 0, 0, 0 }, 4598 { 112, 98, 75, 43, 15, 1, 0, 0 }, 4599 { 120, 112, 98, 76, 45, 16, 2, 0 } 4600 }; 4601 4602 /* 4603 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 4604 * would be when CPU is idle and so we just decay the old load without 4605 * adding any new load. 4606 */ 4607 static unsigned long 4608 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 4609 { 4610 int j = 0; 4611 4612 if (!missed_updates) 4613 return load; 4614 4615 if (missed_updates >= degrade_zero_ticks[idx]) 4616 return 0; 4617 4618 if (idx == 1) 4619 return load >> missed_updates; 4620 4621 while (missed_updates) { 4622 if (missed_updates % 2) 4623 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 4624 4625 missed_updates >>= 1; 4626 j++; 4627 } 4628 return load; 4629 } 4630 #endif /* CONFIG_NO_HZ_COMMON */ 4631 4632 /** 4633 * __cpu_load_update - update the rq->cpu_load[] statistics 4634 * @this_rq: The rq to update statistics for 4635 * @this_load: The current load 4636 * @pending_updates: The number of missed updates 4637 * 4638 * Update rq->cpu_load[] statistics. This function is usually called every 4639 * scheduler tick (TICK_NSEC). 4640 * 4641 * This function computes a decaying average: 4642 * 4643 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 4644 * 4645 * Because of NOHZ it might not get called on every tick which gives need for 4646 * the @pending_updates argument. 4647 * 4648 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 4649 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 4650 * = A * (A * load[i]_n-2 + B) + B 4651 * = A * (A * (A * load[i]_n-3 + B) + B) + B 4652 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 4653 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 4654 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 4655 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 4656 * 4657 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 4658 * any change in load would have resulted in the tick being turned back on. 4659 * 4660 * For regular NOHZ, this reduces to: 4661 * 4662 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 4663 * 4664 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 4665 * term. 4666 */ 4667 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 4668 unsigned long pending_updates) 4669 { 4670 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 4671 int i, scale; 4672 4673 this_rq->nr_load_updates++; 4674 4675 /* Update our load: */ 4676 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 4677 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 4678 unsigned long old_load, new_load; 4679 4680 /* scale is effectively 1 << i now, and >> i divides by scale */ 4681 4682 old_load = this_rq->cpu_load[i]; 4683 #ifdef CONFIG_NO_HZ_COMMON 4684 old_load = decay_load_missed(old_load, pending_updates - 1, i); 4685 if (tickless_load) { 4686 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 4687 /* 4688 * old_load can never be a negative value because a 4689 * decayed tickless_load cannot be greater than the 4690 * original tickless_load. 4691 */ 4692 old_load += tickless_load; 4693 } 4694 #endif 4695 new_load = this_load; 4696 /* 4697 * Round up the averaging division if load is increasing. This 4698 * prevents us from getting stuck on 9 if the load is 10, for 4699 * example. 4700 */ 4701 if (new_load > old_load) 4702 new_load += scale - 1; 4703 4704 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 4705 } 4706 4707 sched_avg_update(this_rq); 4708 } 4709 4710 /* Used instead of source_load when we know the type == 0 */ 4711 static unsigned long weighted_cpuload(const int cpu) 4712 { 4713 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs); 4714 } 4715 4716 #ifdef CONFIG_NO_HZ_COMMON 4717 /* 4718 * There is no sane way to deal with nohz on smp when using jiffies because the 4719 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 4720 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 4721 * 4722 * Therefore we need to avoid the delta approach from the regular tick when 4723 * possible since that would seriously skew the load calculation. This is why we 4724 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 4725 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 4726 * loop exit, nohz_idle_balance, nohz full exit...) 4727 * 4728 * This means we might still be one tick off for nohz periods. 4729 */ 4730 4731 static void cpu_load_update_nohz(struct rq *this_rq, 4732 unsigned long curr_jiffies, 4733 unsigned long load) 4734 { 4735 unsigned long pending_updates; 4736 4737 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 4738 if (pending_updates) { 4739 this_rq->last_load_update_tick = curr_jiffies; 4740 /* 4741 * In the regular NOHZ case, we were idle, this means load 0. 4742 * In the NOHZ_FULL case, we were non-idle, we should consider 4743 * its weighted load. 4744 */ 4745 cpu_load_update(this_rq, load, pending_updates); 4746 } 4747 } 4748 4749 /* 4750 * Called from nohz_idle_balance() to update the load ratings before doing the 4751 * idle balance. 4752 */ 4753 static void cpu_load_update_idle(struct rq *this_rq) 4754 { 4755 /* 4756 * bail if there's load or we're actually up-to-date. 4757 */ 4758 if (weighted_cpuload(cpu_of(this_rq))) 4759 return; 4760 4761 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 4762 } 4763 4764 /* 4765 * Record CPU load on nohz entry so we know the tickless load to account 4766 * on nohz exit. cpu_load[0] happens then to be updated more frequently 4767 * than other cpu_load[idx] but it should be fine as cpu_load readers 4768 * shouldn't rely into synchronized cpu_load[*] updates. 4769 */ 4770 void cpu_load_update_nohz_start(void) 4771 { 4772 struct rq *this_rq = this_rq(); 4773 4774 /* 4775 * This is all lockless but should be fine. If weighted_cpuload changes 4776 * concurrently we'll exit nohz. And cpu_load write can race with 4777 * cpu_load_update_idle() but both updater would be writing the same. 4778 */ 4779 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq)); 4780 } 4781 4782 /* 4783 * Account the tickless load in the end of a nohz frame. 4784 */ 4785 void cpu_load_update_nohz_stop(void) 4786 { 4787 unsigned long curr_jiffies = READ_ONCE(jiffies); 4788 struct rq *this_rq = this_rq(); 4789 unsigned long load; 4790 4791 if (curr_jiffies == this_rq->last_load_update_tick) 4792 return; 4793 4794 load = weighted_cpuload(cpu_of(this_rq)); 4795 raw_spin_lock(&this_rq->lock); 4796 update_rq_clock(this_rq); 4797 cpu_load_update_nohz(this_rq, curr_jiffies, load); 4798 raw_spin_unlock(&this_rq->lock); 4799 } 4800 #else /* !CONFIG_NO_HZ_COMMON */ 4801 static inline void cpu_load_update_nohz(struct rq *this_rq, 4802 unsigned long curr_jiffies, 4803 unsigned long load) { } 4804 #endif /* CONFIG_NO_HZ_COMMON */ 4805 4806 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 4807 { 4808 #ifdef CONFIG_NO_HZ_COMMON 4809 /* See the mess around cpu_load_update_nohz(). */ 4810 this_rq->last_load_update_tick = READ_ONCE(jiffies); 4811 #endif 4812 cpu_load_update(this_rq, load, 1); 4813 } 4814 4815 /* 4816 * Called from scheduler_tick() 4817 */ 4818 void cpu_load_update_active(struct rq *this_rq) 4819 { 4820 unsigned long load = weighted_cpuload(cpu_of(this_rq)); 4821 4822 if (tick_nohz_tick_stopped()) 4823 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 4824 else 4825 cpu_load_update_periodic(this_rq, load); 4826 } 4827 4828 /* 4829 * Return a low guess at the load of a migration-source cpu weighted 4830 * according to the scheduling class and "nice" value. 4831 * 4832 * We want to under-estimate the load of migration sources, to 4833 * balance conservatively. 4834 */ 4835 static unsigned long source_load(int cpu, int type) 4836 { 4837 struct rq *rq = cpu_rq(cpu); 4838 unsigned long total = weighted_cpuload(cpu); 4839 4840 if (type == 0 || !sched_feat(LB_BIAS)) 4841 return total; 4842 4843 return min(rq->cpu_load[type-1], total); 4844 } 4845 4846 /* 4847 * Return a high guess at the load of a migration-target cpu weighted 4848 * according to the scheduling class and "nice" value. 4849 */ 4850 static unsigned long target_load(int cpu, int type) 4851 { 4852 struct rq *rq = cpu_rq(cpu); 4853 unsigned long total = weighted_cpuload(cpu); 4854 4855 if (type == 0 || !sched_feat(LB_BIAS)) 4856 return total; 4857 4858 return max(rq->cpu_load[type-1], total); 4859 } 4860 4861 static unsigned long capacity_of(int cpu) 4862 { 4863 return cpu_rq(cpu)->cpu_capacity; 4864 } 4865 4866 static unsigned long capacity_orig_of(int cpu) 4867 { 4868 return cpu_rq(cpu)->cpu_capacity_orig; 4869 } 4870 4871 static unsigned long cpu_avg_load_per_task(int cpu) 4872 { 4873 struct rq *rq = cpu_rq(cpu); 4874 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 4875 unsigned long load_avg = weighted_cpuload(cpu); 4876 4877 if (nr_running) 4878 return load_avg / nr_running; 4879 4880 return 0; 4881 } 4882 4883 #ifdef CONFIG_FAIR_GROUP_SCHED 4884 /* 4885 * effective_load() calculates the load change as seen from the root_task_group 4886 * 4887 * Adding load to a group doesn't make a group heavier, but can cause movement 4888 * of group shares between cpus. Assuming the shares were perfectly aligned one 4889 * can calculate the shift in shares. 4890 * 4891 * Calculate the effective load difference if @wl is added (subtracted) to @tg 4892 * on this @cpu and results in a total addition (subtraction) of @wg to the 4893 * total group weight. 4894 * 4895 * Given a runqueue weight distribution (rw_i) we can compute a shares 4896 * distribution (s_i) using: 4897 * 4898 * s_i = rw_i / \Sum rw_j (1) 4899 * 4900 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 4901 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 4902 * shares distribution (s_i): 4903 * 4904 * rw_i = { 2, 4, 1, 0 } 4905 * s_i = { 2/7, 4/7, 1/7, 0 } 4906 * 4907 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 4908 * task used to run on and the CPU the waker is running on), we need to 4909 * compute the effect of waking a task on either CPU and, in case of a sync 4910 * wakeup, compute the effect of the current task going to sleep. 4911 * 4912 * So for a change of @wl to the local @cpu with an overall group weight change 4913 * of @wl we can compute the new shares distribution (s'_i) using: 4914 * 4915 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 4916 * 4917 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 4918 * differences in waking a task to CPU 0. The additional task changes the 4919 * weight and shares distributions like: 4920 * 4921 * rw'_i = { 3, 4, 1, 0 } 4922 * s'_i = { 3/8, 4/8, 1/8, 0 } 4923 * 4924 * We can then compute the difference in effective weight by using: 4925 * 4926 * dw_i = S * (s'_i - s_i) (3) 4927 * 4928 * Where 'S' is the group weight as seen by its parent. 4929 * 4930 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 4931 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 4932 * 4/7) times the weight of the group. 4933 */ 4934 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4935 { 4936 struct sched_entity *se = tg->se[cpu]; 4937 4938 if (!tg->parent) /* the trivial, non-cgroup case */ 4939 return wl; 4940 4941 for_each_sched_entity(se) { 4942 struct cfs_rq *cfs_rq = se->my_q; 4943 long W, w = cfs_rq_load_avg(cfs_rq); 4944 4945 tg = cfs_rq->tg; 4946 4947 /* 4948 * W = @wg + \Sum rw_j 4949 */ 4950 W = wg + atomic_long_read(&tg->load_avg); 4951 4952 /* Ensure \Sum rw_j >= rw_i */ 4953 W -= cfs_rq->tg_load_avg_contrib; 4954 W += w; 4955 4956 /* 4957 * w = rw_i + @wl 4958 */ 4959 w += wl; 4960 4961 /* 4962 * wl = S * s'_i; see (2) 4963 */ 4964 if (W > 0 && w < W) 4965 wl = (w * (long)tg->shares) / W; 4966 else 4967 wl = tg->shares; 4968 4969 /* 4970 * Per the above, wl is the new se->load.weight value; since 4971 * those are clipped to [MIN_SHARES, ...) do so now. See 4972 * calc_cfs_shares(). 4973 */ 4974 if (wl < MIN_SHARES) 4975 wl = MIN_SHARES; 4976 4977 /* 4978 * wl = dw_i = S * (s'_i - s_i); see (3) 4979 */ 4980 wl -= se->avg.load_avg; 4981 4982 /* 4983 * Recursively apply this logic to all parent groups to compute 4984 * the final effective load change on the root group. Since 4985 * only the @tg group gets extra weight, all parent groups can 4986 * only redistribute existing shares. @wl is the shift in shares 4987 * resulting from this level per the above. 4988 */ 4989 wg = 0; 4990 } 4991 4992 return wl; 4993 } 4994 #else 4995 4996 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4997 { 4998 return wl; 4999 } 5000 5001 #endif 5002 5003 static void record_wakee(struct task_struct *p) 5004 { 5005 /* 5006 * Only decay a single time; tasks that have less then 1 wakeup per 5007 * jiffy will not have built up many flips. 5008 */ 5009 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5010 current->wakee_flips >>= 1; 5011 current->wakee_flip_decay_ts = jiffies; 5012 } 5013 5014 if (current->last_wakee != p) { 5015 current->last_wakee = p; 5016 current->wakee_flips++; 5017 } 5018 } 5019 5020 /* 5021 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5022 * 5023 * A waker of many should wake a different task than the one last awakened 5024 * at a frequency roughly N times higher than one of its wakees. 5025 * 5026 * In order to determine whether we should let the load spread vs consolidating 5027 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5028 * partner, and a factor of lls_size higher frequency in the other. 5029 * 5030 * With both conditions met, we can be relatively sure that the relationship is 5031 * non-monogamous, with partner count exceeding socket size. 5032 * 5033 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5034 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5035 * socket size. 5036 */ 5037 static int wake_wide(struct task_struct *p) 5038 { 5039 unsigned int master = current->wakee_flips; 5040 unsigned int slave = p->wakee_flips; 5041 int factor = this_cpu_read(sd_llc_size); 5042 5043 if (master < slave) 5044 swap(master, slave); 5045 if (slave < factor || master < slave * factor) 5046 return 0; 5047 return 1; 5048 } 5049 5050 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 5051 { 5052 s64 this_load, load; 5053 s64 this_eff_load, prev_eff_load; 5054 int idx, this_cpu, prev_cpu; 5055 struct task_group *tg; 5056 unsigned long weight; 5057 int balanced; 5058 5059 idx = sd->wake_idx; 5060 this_cpu = smp_processor_id(); 5061 prev_cpu = task_cpu(p); 5062 load = source_load(prev_cpu, idx); 5063 this_load = target_load(this_cpu, idx); 5064 5065 /* 5066 * If sync wakeup then subtract the (maximum possible) 5067 * effect of the currently running task from the load 5068 * of the current CPU: 5069 */ 5070 if (sync) { 5071 tg = task_group(current); 5072 weight = current->se.avg.load_avg; 5073 5074 this_load += effective_load(tg, this_cpu, -weight, -weight); 5075 load += effective_load(tg, prev_cpu, 0, -weight); 5076 } 5077 5078 tg = task_group(p); 5079 weight = p->se.avg.load_avg; 5080 5081 /* 5082 * In low-load situations, where prev_cpu is idle and this_cpu is idle 5083 * due to the sync cause above having dropped this_load to 0, we'll 5084 * always have an imbalance, but there's really nothing you can do 5085 * about that, so that's good too. 5086 * 5087 * Otherwise check if either cpus are near enough in load to allow this 5088 * task to be woken on this_cpu. 5089 */ 5090 this_eff_load = 100; 5091 this_eff_load *= capacity_of(prev_cpu); 5092 5093 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 5094 prev_eff_load *= capacity_of(this_cpu); 5095 5096 if (this_load > 0) { 5097 this_eff_load *= this_load + 5098 effective_load(tg, this_cpu, weight, weight); 5099 5100 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 5101 } 5102 5103 balanced = this_eff_load <= prev_eff_load; 5104 5105 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 5106 5107 if (!balanced) 5108 return 0; 5109 5110 schedstat_inc(sd, ttwu_move_affine); 5111 schedstat_inc(p, se.statistics.nr_wakeups_affine); 5112 5113 return 1; 5114 } 5115 5116 /* 5117 * find_idlest_group finds and returns the least busy CPU group within the 5118 * domain. 5119 */ 5120 static struct sched_group * 5121 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5122 int this_cpu, int sd_flag) 5123 { 5124 struct sched_group *idlest = NULL, *group = sd->groups; 5125 unsigned long min_load = ULONG_MAX, this_load = 0; 5126 int load_idx = sd->forkexec_idx; 5127 int imbalance = 100 + (sd->imbalance_pct-100)/2; 5128 5129 if (sd_flag & SD_BALANCE_WAKE) 5130 load_idx = sd->wake_idx; 5131 5132 do { 5133 unsigned long load, avg_load; 5134 int local_group; 5135 int i; 5136 5137 /* Skip over this group if it has no CPUs allowed */ 5138 if (!cpumask_intersects(sched_group_cpus(group), 5139 tsk_cpus_allowed(p))) 5140 continue; 5141 5142 local_group = cpumask_test_cpu(this_cpu, 5143 sched_group_cpus(group)); 5144 5145 /* Tally up the load of all CPUs in the group */ 5146 avg_load = 0; 5147 5148 for_each_cpu(i, sched_group_cpus(group)) { 5149 /* Bias balancing toward cpus of our domain */ 5150 if (local_group) 5151 load = source_load(i, load_idx); 5152 else 5153 load = target_load(i, load_idx); 5154 5155 avg_load += load; 5156 } 5157 5158 /* Adjust by relative CPU capacity of the group */ 5159 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; 5160 5161 if (local_group) { 5162 this_load = avg_load; 5163 } else if (avg_load < min_load) { 5164 min_load = avg_load; 5165 idlest = group; 5166 } 5167 } while (group = group->next, group != sd->groups); 5168 5169 if (!idlest || 100*this_load < imbalance*min_load) 5170 return NULL; 5171 return idlest; 5172 } 5173 5174 /* 5175 * find_idlest_cpu - find the idlest cpu among the cpus in group. 5176 */ 5177 static int 5178 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5179 { 5180 unsigned long load, min_load = ULONG_MAX; 5181 unsigned int min_exit_latency = UINT_MAX; 5182 u64 latest_idle_timestamp = 0; 5183 int least_loaded_cpu = this_cpu; 5184 int shallowest_idle_cpu = -1; 5185 int i; 5186 5187 /* Traverse only the allowed CPUs */ 5188 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 5189 if (idle_cpu(i)) { 5190 struct rq *rq = cpu_rq(i); 5191 struct cpuidle_state *idle = idle_get_state(rq); 5192 if (idle && idle->exit_latency < min_exit_latency) { 5193 /* 5194 * We give priority to a CPU whose idle state 5195 * has the smallest exit latency irrespective 5196 * of any idle timestamp. 5197 */ 5198 min_exit_latency = idle->exit_latency; 5199 latest_idle_timestamp = rq->idle_stamp; 5200 shallowest_idle_cpu = i; 5201 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5202 rq->idle_stamp > latest_idle_timestamp) { 5203 /* 5204 * If equal or no active idle state, then 5205 * the most recently idled CPU might have 5206 * a warmer cache. 5207 */ 5208 latest_idle_timestamp = rq->idle_stamp; 5209 shallowest_idle_cpu = i; 5210 } 5211 } else if (shallowest_idle_cpu == -1) { 5212 load = weighted_cpuload(i); 5213 if (load < min_load || (load == min_load && i == this_cpu)) { 5214 min_load = load; 5215 least_loaded_cpu = i; 5216 } 5217 } 5218 } 5219 5220 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5221 } 5222 5223 /* 5224 * Try and locate an idle CPU in the sched_domain. 5225 */ 5226 static int select_idle_sibling(struct task_struct *p, int target) 5227 { 5228 struct sched_domain *sd; 5229 struct sched_group *sg; 5230 int i = task_cpu(p); 5231 5232 if (idle_cpu(target)) 5233 return target; 5234 5235 /* 5236 * If the prevous cpu is cache affine and idle, don't be stupid. 5237 */ 5238 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 5239 return i; 5240 5241 /* 5242 * Otherwise, iterate the domains and find an eligible idle cpu. 5243 * 5244 * A completely idle sched group at higher domains is more 5245 * desirable than an idle group at a lower level, because lower 5246 * domains have smaller groups and usually share hardware 5247 * resources which causes tasks to contend on them, e.g. x86 5248 * hyperthread siblings in the lowest domain (SMT) can contend 5249 * on the shared cpu pipeline. 5250 * 5251 * However, while we prefer idle groups at higher domains 5252 * finding an idle cpu at the lowest domain is still better than 5253 * returning 'target', which we've already established, isn't 5254 * idle. 5255 */ 5256 sd = rcu_dereference(per_cpu(sd_llc, target)); 5257 for_each_lower_domain(sd) { 5258 sg = sd->groups; 5259 do { 5260 if (!cpumask_intersects(sched_group_cpus(sg), 5261 tsk_cpus_allowed(p))) 5262 goto next; 5263 5264 /* Ensure the entire group is idle */ 5265 for_each_cpu(i, sched_group_cpus(sg)) { 5266 if (i == target || !idle_cpu(i)) 5267 goto next; 5268 } 5269 5270 /* 5271 * It doesn't matter which cpu we pick, the 5272 * whole group is idle. 5273 */ 5274 target = cpumask_first_and(sched_group_cpus(sg), 5275 tsk_cpus_allowed(p)); 5276 goto done; 5277 next: 5278 sg = sg->next; 5279 } while (sg != sd->groups); 5280 } 5281 done: 5282 return target; 5283 } 5284 5285 /* 5286 * cpu_util returns the amount of capacity of a CPU that is used by CFS 5287 * tasks. The unit of the return value must be the one of capacity so we can 5288 * compare the utilization with the capacity of the CPU that is available for 5289 * CFS task (ie cpu_capacity). 5290 * 5291 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 5292 * recent utilization of currently non-runnable tasks on a CPU. It represents 5293 * the amount of utilization of a CPU in the range [0..capacity_orig] where 5294 * capacity_orig is the cpu_capacity available at the highest frequency 5295 * (arch_scale_freq_capacity()). 5296 * The utilization of a CPU converges towards a sum equal to or less than the 5297 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 5298 * the running time on this CPU scaled by capacity_curr. 5299 * 5300 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 5301 * higher than capacity_orig because of unfortunate rounding in 5302 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 5303 * the average stabilizes with the new running time. We need to check that the 5304 * utilization stays within the range of [0..capacity_orig] and cap it if 5305 * necessary. Without utilization capping, a group could be seen as overloaded 5306 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 5307 * available capacity. We allow utilization to overshoot capacity_curr (but not 5308 * capacity_orig) as it useful for predicting the capacity required after task 5309 * migrations (scheduler-driven DVFS). 5310 */ 5311 static int cpu_util(int cpu) 5312 { 5313 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; 5314 unsigned long capacity = capacity_orig_of(cpu); 5315 5316 return (util >= capacity) ? capacity : util; 5317 } 5318 5319 /* 5320 * select_task_rq_fair: Select target runqueue for the waking task in domains 5321 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 5322 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 5323 * 5324 * Balances load by selecting the idlest cpu in the idlest group, or under 5325 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 5326 * 5327 * Returns the target cpu number. 5328 * 5329 * preempt must be disabled. 5330 */ 5331 static int 5332 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 5333 { 5334 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 5335 int cpu = smp_processor_id(); 5336 int new_cpu = prev_cpu; 5337 int want_affine = 0; 5338 int sync = wake_flags & WF_SYNC; 5339 5340 if (sd_flag & SD_BALANCE_WAKE) { 5341 record_wakee(p); 5342 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); 5343 } 5344 5345 rcu_read_lock(); 5346 for_each_domain(cpu, tmp) { 5347 if (!(tmp->flags & SD_LOAD_BALANCE)) 5348 break; 5349 5350 /* 5351 * If both cpu and prev_cpu are part of this domain, 5352 * cpu is a valid SD_WAKE_AFFINE target. 5353 */ 5354 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 5355 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 5356 affine_sd = tmp; 5357 break; 5358 } 5359 5360 if (tmp->flags & sd_flag) 5361 sd = tmp; 5362 else if (!want_affine) 5363 break; 5364 } 5365 5366 if (affine_sd) { 5367 sd = NULL; /* Prefer wake_affine over balance flags */ 5368 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 5369 new_cpu = cpu; 5370 } 5371 5372 if (!sd) { 5373 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ 5374 new_cpu = select_idle_sibling(p, new_cpu); 5375 5376 } else while (sd) { 5377 struct sched_group *group; 5378 int weight; 5379 5380 if (!(sd->flags & sd_flag)) { 5381 sd = sd->child; 5382 continue; 5383 } 5384 5385 group = find_idlest_group(sd, p, cpu, sd_flag); 5386 if (!group) { 5387 sd = sd->child; 5388 continue; 5389 } 5390 5391 new_cpu = find_idlest_cpu(group, p, cpu); 5392 if (new_cpu == -1 || new_cpu == cpu) { 5393 /* Now try balancing at a lower domain level of cpu */ 5394 sd = sd->child; 5395 continue; 5396 } 5397 5398 /* Now try balancing at a lower domain level of new_cpu */ 5399 cpu = new_cpu; 5400 weight = sd->span_weight; 5401 sd = NULL; 5402 for_each_domain(cpu, tmp) { 5403 if (weight <= tmp->span_weight) 5404 break; 5405 if (tmp->flags & sd_flag) 5406 sd = tmp; 5407 } 5408 /* while loop will break here if sd == NULL */ 5409 } 5410 rcu_read_unlock(); 5411 5412 return new_cpu; 5413 } 5414 5415 /* 5416 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 5417 * cfs_rq_of(p) references at time of call are still valid and identify the 5418 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 5419 */ 5420 static void migrate_task_rq_fair(struct task_struct *p) 5421 { 5422 /* 5423 * As blocked tasks retain absolute vruntime the migration needs to 5424 * deal with this by subtracting the old and adding the new 5425 * min_vruntime -- the latter is done by enqueue_entity() when placing 5426 * the task on the new runqueue. 5427 */ 5428 if (p->state == TASK_WAKING) { 5429 struct sched_entity *se = &p->se; 5430 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5431 u64 min_vruntime; 5432 5433 #ifndef CONFIG_64BIT 5434 u64 min_vruntime_copy; 5435 5436 do { 5437 min_vruntime_copy = cfs_rq->min_vruntime_copy; 5438 smp_rmb(); 5439 min_vruntime = cfs_rq->min_vruntime; 5440 } while (min_vruntime != min_vruntime_copy); 5441 #else 5442 min_vruntime = cfs_rq->min_vruntime; 5443 #endif 5444 5445 se->vruntime -= min_vruntime; 5446 } 5447 5448 /* 5449 * We are supposed to update the task to "current" time, then its up to date 5450 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting 5451 * what current time is, so simply throw away the out-of-date time. This 5452 * will result in the wakee task is less decayed, but giving the wakee more 5453 * load sounds not bad. 5454 */ 5455 remove_entity_load_avg(&p->se); 5456 5457 /* Tell new CPU we are migrated */ 5458 p->se.avg.last_update_time = 0; 5459 5460 /* We have migrated, no longer consider this task hot */ 5461 p->se.exec_start = 0; 5462 } 5463 5464 static void task_dead_fair(struct task_struct *p) 5465 { 5466 remove_entity_load_avg(&p->se); 5467 } 5468 #endif /* CONFIG_SMP */ 5469 5470 static unsigned long 5471 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 5472 { 5473 unsigned long gran = sysctl_sched_wakeup_granularity; 5474 5475 /* 5476 * Since its curr running now, convert the gran from real-time 5477 * to virtual-time in his units. 5478 * 5479 * By using 'se' instead of 'curr' we penalize light tasks, so 5480 * they get preempted easier. That is, if 'se' < 'curr' then 5481 * the resulting gran will be larger, therefore penalizing the 5482 * lighter, if otoh 'se' > 'curr' then the resulting gran will 5483 * be smaller, again penalizing the lighter task. 5484 * 5485 * This is especially important for buddies when the leftmost 5486 * task is higher priority than the buddy. 5487 */ 5488 return calc_delta_fair(gran, se); 5489 } 5490 5491 /* 5492 * Should 'se' preempt 'curr'. 5493 * 5494 * |s1 5495 * |s2 5496 * |s3 5497 * g 5498 * |<--->|c 5499 * 5500 * w(c, s1) = -1 5501 * w(c, s2) = 0 5502 * w(c, s3) = 1 5503 * 5504 */ 5505 static int 5506 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 5507 { 5508 s64 gran, vdiff = curr->vruntime - se->vruntime; 5509 5510 if (vdiff <= 0) 5511 return -1; 5512 5513 gran = wakeup_gran(curr, se); 5514 if (vdiff > gran) 5515 return 1; 5516 5517 return 0; 5518 } 5519 5520 static void set_last_buddy(struct sched_entity *se) 5521 { 5522 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 5523 return; 5524 5525 for_each_sched_entity(se) 5526 cfs_rq_of(se)->last = se; 5527 } 5528 5529 static void set_next_buddy(struct sched_entity *se) 5530 { 5531 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 5532 return; 5533 5534 for_each_sched_entity(se) 5535 cfs_rq_of(se)->next = se; 5536 } 5537 5538 static void set_skip_buddy(struct sched_entity *se) 5539 { 5540 for_each_sched_entity(se) 5541 cfs_rq_of(se)->skip = se; 5542 } 5543 5544 /* 5545 * Preempt the current task with a newly woken task if needed: 5546 */ 5547 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 5548 { 5549 struct task_struct *curr = rq->curr; 5550 struct sched_entity *se = &curr->se, *pse = &p->se; 5551 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5552 int scale = cfs_rq->nr_running >= sched_nr_latency; 5553 int next_buddy_marked = 0; 5554 5555 if (unlikely(se == pse)) 5556 return; 5557 5558 /* 5559 * This is possible from callers such as attach_tasks(), in which we 5560 * unconditionally check_prempt_curr() after an enqueue (which may have 5561 * lead to a throttle). This both saves work and prevents false 5562 * next-buddy nomination below. 5563 */ 5564 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 5565 return; 5566 5567 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 5568 set_next_buddy(pse); 5569 next_buddy_marked = 1; 5570 } 5571 5572 /* 5573 * We can come here with TIF_NEED_RESCHED already set from new task 5574 * wake up path. 5575 * 5576 * Note: this also catches the edge-case of curr being in a throttled 5577 * group (e.g. via set_curr_task), since update_curr() (in the 5578 * enqueue of curr) will have resulted in resched being set. This 5579 * prevents us from potentially nominating it as a false LAST_BUDDY 5580 * below. 5581 */ 5582 if (test_tsk_need_resched(curr)) 5583 return; 5584 5585 /* Idle tasks are by definition preempted by non-idle tasks. */ 5586 if (unlikely(curr->policy == SCHED_IDLE) && 5587 likely(p->policy != SCHED_IDLE)) 5588 goto preempt; 5589 5590 /* 5591 * Batch and idle tasks do not preempt non-idle tasks (their preemption 5592 * is driven by the tick): 5593 */ 5594 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 5595 return; 5596 5597 find_matching_se(&se, &pse); 5598 update_curr(cfs_rq_of(se)); 5599 BUG_ON(!pse); 5600 if (wakeup_preempt_entity(se, pse) == 1) { 5601 /* 5602 * Bias pick_next to pick the sched entity that is 5603 * triggering this preemption. 5604 */ 5605 if (!next_buddy_marked) 5606 set_next_buddy(pse); 5607 goto preempt; 5608 } 5609 5610 return; 5611 5612 preempt: 5613 resched_curr(rq); 5614 /* 5615 * Only set the backward buddy when the current task is still 5616 * on the rq. This can happen when a wakeup gets interleaved 5617 * with schedule on the ->pre_schedule() or idle_balance() 5618 * point, either of which can * drop the rq lock. 5619 * 5620 * Also, during early boot the idle thread is in the fair class, 5621 * for obvious reasons its a bad idea to schedule back to it. 5622 */ 5623 if (unlikely(!se->on_rq || curr == rq->idle)) 5624 return; 5625 5626 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 5627 set_last_buddy(se); 5628 } 5629 5630 static struct task_struct * 5631 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie) 5632 { 5633 struct cfs_rq *cfs_rq = &rq->cfs; 5634 struct sched_entity *se; 5635 struct task_struct *p; 5636 int new_tasks; 5637 5638 again: 5639 #ifdef CONFIG_FAIR_GROUP_SCHED 5640 if (!cfs_rq->nr_running) 5641 goto idle; 5642 5643 if (prev->sched_class != &fair_sched_class) 5644 goto simple; 5645 5646 /* 5647 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 5648 * likely that a next task is from the same cgroup as the current. 5649 * 5650 * Therefore attempt to avoid putting and setting the entire cgroup 5651 * hierarchy, only change the part that actually changes. 5652 */ 5653 5654 do { 5655 struct sched_entity *curr = cfs_rq->curr; 5656 5657 /* 5658 * Since we got here without doing put_prev_entity() we also 5659 * have to consider cfs_rq->curr. If it is still a runnable 5660 * entity, update_curr() will update its vruntime, otherwise 5661 * forget we've ever seen it. 5662 */ 5663 if (curr) { 5664 if (curr->on_rq) 5665 update_curr(cfs_rq); 5666 else 5667 curr = NULL; 5668 5669 /* 5670 * This call to check_cfs_rq_runtime() will do the 5671 * throttle and dequeue its entity in the parent(s). 5672 * Therefore the 'simple' nr_running test will indeed 5673 * be correct. 5674 */ 5675 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 5676 goto simple; 5677 } 5678 5679 se = pick_next_entity(cfs_rq, curr); 5680 cfs_rq = group_cfs_rq(se); 5681 } while (cfs_rq); 5682 5683 p = task_of(se); 5684 5685 /* 5686 * Since we haven't yet done put_prev_entity and if the selected task 5687 * is a different task than we started out with, try and touch the 5688 * least amount of cfs_rqs. 5689 */ 5690 if (prev != p) { 5691 struct sched_entity *pse = &prev->se; 5692 5693 while (!(cfs_rq = is_same_group(se, pse))) { 5694 int se_depth = se->depth; 5695 int pse_depth = pse->depth; 5696 5697 if (se_depth <= pse_depth) { 5698 put_prev_entity(cfs_rq_of(pse), pse); 5699 pse = parent_entity(pse); 5700 } 5701 if (se_depth >= pse_depth) { 5702 set_next_entity(cfs_rq_of(se), se); 5703 se = parent_entity(se); 5704 } 5705 } 5706 5707 put_prev_entity(cfs_rq, pse); 5708 set_next_entity(cfs_rq, se); 5709 } 5710 5711 if (hrtick_enabled(rq)) 5712 hrtick_start_fair(rq, p); 5713 5714 return p; 5715 simple: 5716 cfs_rq = &rq->cfs; 5717 #endif 5718 5719 if (!cfs_rq->nr_running) 5720 goto idle; 5721 5722 put_prev_task(rq, prev); 5723 5724 do { 5725 se = pick_next_entity(cfs_rq, NULL); 5726 set_next_entity(cfs_rq, se); 5727 cfs_rq = group_cfs_rq(se); 5728 } while (cfs_rq); 5729 5730 p = task_of(se); 5731 5732 if (hrtick_enabled(rq)) 5733 hrtick_start_fair(rq, p); 5734 5735 return p; 5736 5737 idle: 5738 /* 5739 * This is OK, because current is on_cpu, which avoids it being picked 5740 * for load-balance and preemption/IRQs are still disabled avoiding 5741 * further scheduler activity on it and we're being very careful to 5742 * re-start the picking loop. 5743 */ 5744 lockdep_unpin_lock(&rq->lock, cookie); 5745 new_tasks = idle_balance(rq); 5746 lockdep_repin_lock(&rq->lock, cookie); 5747 /* 5748 * Because idle_balance() releases (and re-acquires) rq->lock, it is 5749 * possible for any higher priority task to appear. In that case we 5750 * must re-start the pick_next_entity() loop. 5751 */ 5752 if (new_tasks < 0) 5753 return RETRY_TASK; 5754 5755 if (new_tasks > 0) 5756 goto again; 5757 5758 return NULL; 5759 } 5760 5761 /* 5762 * Account for a descheduled task: 5763 */ 5764 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 5765 { 5766 struct sched_entity *se = &prev->se; 5767 struct cfs_rq *cfs_rq; 5768 5769 for_each_sched_entity(se) { 5770 cfs_rq = cfs_rq_of(se); 5771 put_prev_entity(cfs_rq, se); 5772 } 5773 } 5774 5775 /* 5776 * sched_yield() is very simple 5777 * 5778 * The magic of dealing with the ->skip buddy is in pick_next_entity. 5779 */ 5780 static void yield_task_fair(struct rq *rq) 5781 { 5782 struct task_struct *curr = rq->curr; 5783 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5784 struct sched_entity *se = &curr->se; 5785 5786 /* 5787 * Are we the only task in the tree? 5788 */ 5789 if (unlikely(rq->nr_running == 1)) 5790 return; 5791 5792 clear_buddies(cfs_rq, se); 5793 5794 if (curr->policy != SCHED_BATCH) { 5795 update_rq_clock(rq); 5796 /* 5797 * Update run-time statistics of the 'current'. 5798 */ 5799 update_curr(cfs_rq); 5800 /* 5801 * Tell update_rq_clock() that we've just updated, 5802 * so we don't do microscopic update in schedule() 5803 * and double the fastpath cost. 5804 */ 5805 rq_clock_skip_update(rq, true); 5806 } 5807 5808 set_skip_buddy(se); 5809 } 5810 5811 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 5812 { 5813 struct sched_entity *se = &p->se; 5814 5815 /* throttled hierarchies are not runnable */ 5816 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 5817 return false; 5818 5819 /* Tell the scheduler that we'd really like pse to run next. */ 5820 set_next_buddy(se); 5821 5822 yield_task_fair(rq); 5823 5824 return true; 5825 } 5826 5827 #ifdef CONFIG_SMP 5828 /************************************************** 5829 * Fair scheduling class load-balancing methods. 5830 * 5831 * BASICS 5832 * 5833 * The purpose of load-balancing is to achieve the same basic fairness the 5834 * per-cpu scheduler provides, namely provide a proportional amount of compute 5835 * time to each task. This is expressed in the following equation: 5836 * 5837 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 5838 * 5839 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 5840 * W_i,0 is defined as: 5841 * 5842 * W_i,0 = \Sum_j w_i,j (2) 5843 * 5844 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 5845 * is derived from the nice value as per sched_prio_to_weight[]. 5846 * 5847 * The weight average is an exponential decay average of the instantaneous 5848 * weight: 5849 * 5850 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 5851 * 5852 * C_i is the compute capacity of cpu i, typically it is the 5853 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 5854 * can also include other factors [XXX]. 5855 * 5856 * To achieve this balance we define a measure of imbalance which follows 5857 * directly from (1): 5858 * 5859 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 5860 * 5861 * We them move tasks around to minimize the imbalance. In the continuous 5862 * function space it is obvious this converges, in the discrete case we get 5863 * a few fun cases generally called infeasible weight scenarios. 5864 * 5865 * [XXX expand on: 5866 * - infeasible weights; 5867 * - local vs global optima in the discrete case. ] 5868 * 5869 * 5870 * SCHED DOMAINS 5871 * 5872 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 5873 * for all i,j solution, we create a tree of cpus that follows the hardware 5874 * topology where each level pairs two lower groups (or better). This results 5875 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 5876 * tree to only the first of the previous level and we decrease the frequency 5877 * of load-balance at each level inv. proportional to the number of cpus in 5878 * the groups. 5879 * 5880 * This yields: 5881 * 5882 * log_2 n 1 n 5883 * \Sum { --- * --- * 2^i } = O(n) (5) 5884 * i = 0 2^i 2^i 5885 * `- size of each group 5886 * | | `- number of cpus doing load-balance 5887 * | `- freq 5888 * `- sum over all levels 5889 * 5890 * Coupled with a limit on how many tasks we can migrate every balance pass, 5891 * this makes (5) the runtime complexity of the balancer. 5892 * 5893 * An important property here is that each CPU is still (indirectly) connected 5894 * to every other cpu in at most O(log n) steps: 5895 * 5896 * The adjacency matrix of the resulting graph is given by: 5897 * 5898 * log_2 n 5899 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 5900 * k = 0 5901 * 5902 * And you'll find that: 5903 * 5904 * A^(log_2 n)_i,j != 0 for all i,j (7) 5905 * 5906 * Showing there's indeed a path between every cpu in at most O(log n) steps. 5907 * The task movement gives a factor of O(m), giving a convergence complexity 5908 * of: 5909 * 5910 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 5911 * 5912 * 5913 * WORK CONSERVING 5914 * 5915 * In order to avoid CPUs going idle while there's still work to do, new idle 5916 * balancing is more aggressive and has the newly idle cpu iterate up the domain 5917 * tree itself instead of relying on other CPUs to bring it work. 5918 * 5919 * This adds some complexity to both (5) and (8) but it reduces the total idle 5920 * time. 5921 * 5922 * [XXX more?] 5923 * 5924 * 5925 * CGROUPS 5926 * 5927 * Cgroups make a horror show out of (2), instead of a simple sum we get: 5928 * 5929 * s_k,i 5930 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 5931 * S_k 5932 * 5933 * Where 5934 * 5935 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 5936 * 5937 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 5938 * 5939 * The big problem is S_k, its a global sum needed to compute a local (W_i) 5940 * property. 5941 * 5942 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 5943 * rewrite all of this once again.] 5944 */ 5945 5946 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 5947 5948 enum fbq_type { regular, remote, all }; 5949 5950 #define LBF_ALL_PINNED 0x01 5951 #define LBF_NEED_BREAK 0x02 5952 #define LBF_DST_PINNED 0x04 5953 #define LBF_SOME_PINNED 0x08 5954 5955 struct lb_env { 5956 struct sched_domain *sd; 5957 5958 struct rq *src_rq; 5959 int src_cpu; 5960 5961 int dst_cpu; 5962 struct rq *dst_rq; 5963 5964 struct cpumask *dst_grpmask; 5965 int new_dst_cpu; 5966 enum cpu_idle_type idle; 5967 long imbalance; 5968 /* The set of CPUs under consideration for load-balancing */ 5969 struct cpumask *cpus; 5970 5971 unsigned int flags; 5972 5973 unsigned int loop; 5974 unsigned int loop_break; 5975 unsigned int loop_max; 5976 5977 enum fbq_type fbq_type; 5978 struct list_head tasks; 5979 }; 5980 5981 /* 5982 * Is this task likely cache-hot: 5983 */ 5984 static int task_hot(struct task_struct *p, struct lb_env *env) 5985 { 5986 s64 delta; 5987 5988 lockdep_assert_held(&env->src_rq->lock); 5989 5990 if (p->sched_class != &fair_sched_class) 5991 return 0; 5992 5993 if (unlikely(p->policy == SCHED_IDLE)) 5994 return 0; 5995 5996 /* 5997 * Buddy candidates are cache hot: 5998 */ 5999 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 6000 (&p->se == cfs_rq_of(&p->se)->next || 6001 &p->se == cfs_rq_of(&p->se)->last)) 6002 return 1; 6003 6004 if (sysctl_sched_migration_cost == -1) 6005 return 1; 6006 if (sysctl_sched_migration_cost == 0) 6007 return 0; 6008 6009 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 6010 6011 return delta < (s64)sysctl_sched_migration_cost; 6012 } 6013 6014 #ifdef CONFIG_NUMA_BALANCING 6015 /* 6016 * Returns 1, if task migration degrades locality 6017 * Returns 0, if task migration improves locality i.e migration preferred. 6018 * Returns -1, if task migration is not affected by locality. 6019 */ 6020 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 6021 { 6022 struct numa_group *numa_group = rcu_dereference(p->numa_group); 6023 unsigned long src_faults, dst_faults; 6024 int src_nid, dst_nid; 6025 6026 if (!static_branch_likely(&sched_numa_balancing)) 6027 return -1; 6028 6029 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 6030 return -1; 6031 6032 src_nid = cpu_to_node(env->src_cpu); 6033 dst_nid = cpu_to_node(env->dst_cpu); 6034 6035 if (src_nid == dst_nid) 6036 return -1; 6037 6038 /* Migrating away from the preferred node is always bad. */ 6039 if (src_nid == p->numa_preferred_nid) { 6040 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 6041 return 1; 6042 else 6043 return -1; 6044 } 6045 6046 /* Encourage migration to the preferred node. */ 6047 if (dst_nid == p->numa_preferred_nid) 6048 return 0; 6049 6050 if (numa_group) { 6051 src_faults = group_faults(p, src_nid); 6052 dst_faults = group_faults(p, dst_nid); 6053 } else { 6054 src_faults = task_faults(p, src_nid); 6055 dst_faults = task_faults(p, dst_nid); 6056 } 6057 6058 return dst_faults < src_faults; 6059 } 6060 6061 #else 6062 static inline int migrate_degrades_locality(struct task_struct *p, 6063 struct lb_env *env) 6064 { 6065 return -1; 6066 } 6067 #endif 6068 6069 /* 6070 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 6071 */ 6072 static 6073 int can_migrate_task(struct task_struct *p, struct lb_env *env) 6074 { 6075 int tsk_cache_hot; 6076 6077 lockdep_assert_held(&env->src_rq->lock); 6078 6079 /* 6080 * We do not migrate tasks that are: 6081 * 1) throttled_lb_pair, or 6082 * 2) cannot be migrated to this CPU due to cpus_allowed, or 6083 * 3) running (obviously), or 6084 * 4) are cache-hot on their current CPU. 6085 */ 6086 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 6087 return 0; 6088 6089 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 6090 int cpu; 6091 6092 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 6093 6094 env->flags |= LBF_SOME_PINNED; 6095 6096 /* 6097 * Remember if this task can be migrated to any other cpu in 6098 * our sched_group. We may want to revisit it if we couldn't 6099 * meet load balance goals by pulling other tasks on src_cpu. 6100 * 6101 * Also avoid computing new_dst_cpu if we have already computed 6102 * one in current iteration. 6103 */ 6104 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 6105 return 0; 6106 6107 /* Prevent to re-select dst_cpu via env's cpus */ 6108 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 6109 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 6110 env->flags |= LBF_DST_PINNED; 6111 env->new_dst_cpu = cpu; 6112 break; 6113 } 6114 } 6115 6116 return 0; 6117 } 6118 6119 /* Record that we found atleast one task that could run on dst_cpu */ 6120 env->flags &= ~LBF_ALL_PINNED; 6121 6122 if (task_running(env->src_rq, p)) { 6123 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 6124 return 0; 6125 } 6126 6127 /* 6128 * Aggressive migration if: 6129 * 1) destination numa is preferred 6130 * 2) task is cache cold, or 6131 * 3) too many balance attempts have failed. 6132 */ 6133 tsk_cache_hot = migrate_degrades_locality(p, env); 6134 if (tsk_cache_hot == -1) 6135 tsk_cache_hot = task_hot(p, env); 6136 6137 if (tsk_cache_hot <= 0 || 6138 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 6139 if (tsk_cache_hot == 1) { 6140 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 6141 schedstat_inc(p, se.statistics.nr_forced_migrations); 6142 } 6143 return 1; 6144 } 6145 6146 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 6147 return 0; 6148 } 6149 6150 /* 6151 * detach_task() -- detach the task for the migration specified in env 6152 */ 6153 static void detach_task(struct task_struct *p, struct lb_env *env) 6154 { 6155 lockdep_assert_held(&env->src_rq->lock); 6156 6157 p->on_rq = TASK_ON_RQ_MIGRATING; 6158 deactivate_task(env->src_rq, p, 0); 6159 set_task_cpu(p, env->dst_cpu); 6160 } 6161 6162 /* 6163 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 6164 * part of active balancing operations within "domain". 6165 * 6166 * Returns a task if successful and NULL otherwise. 6167 */ 6168 static struct task_struct *detach_one_task(struct lb_env *env) 6169 { 6170 struct task_struct *p, *n; 6171 6172 lockdep_assert_held(&env->src_rq->lock); 6173 6174 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 6175 if (!can_migrate_task(p, env)) 6176 continue; 6177 6178 detach_task(p, env); 6179 6180 /* 6181 * Right now, this is only the second place where 6182 * lb_gained[env->idle] is updated (other is detach_tasks) 6183 * so we can safely collect stats here rather than 6184 * inside detach_tasks(). 6185 */ 6186 schedstat_inc(env->sd, lb_gained[env->idle]); 6187 return p; 6188 } 6189 return NULL; 6190 } 6191 6192 static const unsigned int sched_nr_migrate_break = 32; 6193 6194 /* 6195 * detach_tasks() -- tries to detach up to imbalance weighted load from 6196 * busiest_rq, as part of a balancing operation within domain "sd". 6197 * 6198 * Returns number of detached tasks if successful and 0 otherwise. 6199 */ 6200 static int detach_tasks(struct lb_env *env) 6201 { 6202 struct list_head *tasks = &env->src_rq->cfs_tasks; 6203 struct task_struct *p; 6204 unsigned long load; 6205 int detached = 0; 6206 6207 lockdep_assert_held(&env->src_rq->lock); 6208 6209 if (env->imbalance <= 0) 6210 return 0; 6211 6212 while (!list_empty(tasks)) { 6213 /* 6214 * We don't want to steal all, otherwise we may be treated likewise, 6215 * which could at worst lead to a livelock crash. 6216 */ 6217 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 6218 break; 6219 6220 p = list_first_entry(tasks, struct task_struct, se.group_node); 6221 6222 env->loop++; 6223 /* We've more or less seen every task there is, call it quits */ 6224 if (env->loop > env->loop_max) 6225 break; 6226 6227 /* take a breather every nr_migrate tasks */ 6228 if (env->loop > env->loop_break) { 6229 env->loop_break += sched_nr_migrate_break; 6230 env->flags |= LBF_NEED_BREAK; 6231 break; 6232 } 6233 6234 if (!can_migrate_task(p, env)) 6235 goto next; 6236 6237 load = task_h_load(p); 6238 6239 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 6240 goto next; 6241 6242 if ((load / 2) > env->imbalance) 6243 goto next; 6244 6245 detach_task(p, env); 6246 list_add(&p->se.group_node, &env->tasks); 6247 6248 detached++; 6249 env->imbalance -= load; 6250 6251 #ifdef CONFIG_PREEMPT 6252 /* 6253 * NEWIDLE balancing is a source of latency, so preemptible 6254 * kernels will stop after the first task is detached to minimize 6255 * the critical section. 6256 */ 6257 if (env->idle == CPU_NEWLY_IDLE) 6258 break; 6259 #endif 6260 6261 /* 6262 * We only want to steal up to the prescribed amount of 6263 * weighted load. 6264 */ 6265 if (env->imbalance <= 0) 6266 break; 6267 6268 continue; 6269 next: 6270 list_move_tail(&p->se.group_node, tasks); 6271 } 6272 6273 /* 6274 * Right now, this is one of only two places we collect this stat 6275 * so we can safely collect detach_one_task() stats here rather 6276 * than inside detach_one_task(). 6277 */ 6278 schedstat_add(env->sd, lb_gained[env->idle], detached); 6279 6280 return detached; 6281 } 6282 6283 /* 6284 * attach_task() -- attach the task detached by detach_task() to its new rq. 6285 */ 6286 static void attach_task(struct rq *rq, struct task_struct *p) 6287 { 6288 lockdep_assert_held(&rq->lock); 6289 6290 BUG_ON(task_rq(p) != rq); 6291 activate_task(rq, p, 0); 6292 p->on_rq = TASK_ON_RQ_QUEUED; 6293 check_preempt_curr(rq, p, 0); 6294 } 6295 6296 /* 6297 * attach_one_task() -- attaches the task returned from detach_one_task() to 6298 * its new rq. 6299 */ 6300 static void attach_one_task(struct rq *rq, struct task_struct *p) 6301 { 6302 raw_spin_lock(&rq->lock); 6303 attach_task(rq, p); 6304 raw_spin_unlock(&rq->lock); 6305 } 6306 6307 /* 6308 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 6309 * new rq. 6310 */ 6311 static void attach_tasks(struct lb_env *env) 6312 { 6313 struct list_head *tasks = &env->tasks; 6314 struct task_struct *p; 6315 6316 raw_spin_lock(&env->dst_rq->lock); 6317 6318 while (!list_empty(tasks)) { 6319 p = list_first_entry(tasks, struct task_struct, se.group_node); 6320 list_del_init(&p->se.group_node); 6321 6322 attach_task(env->dst_rq, p); 6323 } 6324 6325 raw_spin_unlock(&env->dst_rq->lock); 6326 } 6327 6328 #ifdef CONFIG_FAIR_GROUP_SCHED 6329 static void update_blocked_averages(int cpu) 6330 { 6331 struct rq *rq = cpu_rq(cpu); 6332 struct cfs_rq *cfs_rq; 6333 unsigned long flags; 6334 6335 raw_spin_lock_irqsave(&rq->lock, flags); 6336 update_rq_clock(rq); 6337 6338 /* 6339 * Iterates the task_group tree in a bottom up fashion, see 6340 * list_add_leaf_cfs_rq() for details. 6341 */ 6342 for_each_leaf_cfs_rq(rq, cfs_rq) { 6343 /* throttled entities do not contribute to load */ 6344 if (throttled_hierarchy(cfs_rq)) 6345 continue; 6346 6347 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true)) 6348 update_tg_load_avg(cfs_rq, 0); 6349 } 6350 raw_spin_unlock_irqrestore(&rq->lock, flags); 6351 } 6352 6353 /* 6354 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 6355 * This needs to be done in a top-down fashion because the load of a child 6356 * group is a fraction of its parents load. 6357 */ 6358 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 6359 { 6360 struct rq *rq = rq_of(cfs_rq); 6361 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 6362 unsigned long now = jiffies; 6363 unsigned long load; 6364 6365 if (cfs_rq->last_h_load_update == now) 6366 return; 6367 6368 cfs_rq->h_load_next = NULL; 6369 for_each_sched_entity(se) { 6370 cfs_rq = cfs_rq_of(se); 6371 cfs_rq->h_load_next = se; 6372 if (cfs_rq->last_h_load_update == now) 6373 break; 6374 } 6375 6376 if (!se) { 6377 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 6378 cfs_rq->last_h_load_update = now; 6379 } 6380 6381 while ((se = cfs_rq->h_load_next) != NULL) { 6382 load = cfs_rq->h_load; 6383 load = div64_ul(load * se->avg.load_avg, 6384 cfs_rq_load_avg(cfs_rq) + 1); 6385 cfs_rq = group_cfs_rq(se); 6386 cfs_rq->h_load = load; 6387 cfs_rq->last_h_load_update = now; 6388 } 6389 } 6390 6391 static unsigned long task_h_load(struct task_struct *p) 6392 { 6393 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6394 6395 update_cfs_rq_h_load(cfs_rq); 6396 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 6397 cfs_rq_load_avg(cfs_rq) + 1); 6398 } 6399 #else 6400 static inline void update_blocked_averages(int cpu) 6401 { 6402 struct rq *rq = cpu_rq(cpu); 6403 struct cfs_rq *cfs_rq = &rq->cfs; 6404 unsigned long flags; 6405 6406 raw_spin_lock_irqsave(&rq->lock, flags); 6407 update_rq_clock(rq); 6408 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true); 6409 raw_spin_unlock_irqrestore(&rq->lock, flags); 6410 } 6411 6412 static unsigned long task_h_load(struct task_struct *p) 6413 { 6414 return p->se.avg.load_avg; 6415 } 6416 #endif 6417 6418 /********** Helpers for find_busiest_group ************************/ 6419 6420 enum group_type { 6421 group_other = 0, 6422 group_imbalanced, 6423 group_overloaded, 6424 }; 6425 6426 /* 6427 * sg_lb_stats - stats of a sched_group required for load_balancing 6428 */ 6429 struct sg_lb_stats { 6430 unsigned long avg_load; /*Avg load across the CPUs of the group */ 6431 unsigned long group_load; /* Total load over the CPUs of the group */ 6432 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 6433 unsigned long load_per_task; 6434 unsigned long group_capacity; 6435 unsigned long group_util; /* Total utilization of the group */ 6436 unsigned int sum_nr_running; /* Nr tasks running in the group */ 6437 unsigned int idle_cpus; 6438 unsigned int group_weight; 6439 enum group_type group_type; 6440 int group_no_capacity; 6441 #ifdef CONFIG_NUMA_BALANCING 6442 unsigned int nr_numa_running; 6443 unsigned int nr_preferred_running; 6444 #endif 6445 }; 6446 6447 /* 6448 * sd_lb_stats - Structure to store the statistics of a sched_domain 6449 * during load balancing. 6450 */ 6451 struct sd_lb_stats { 6452 struct sched_group *busiest; /* Busiest group in this sd */ 6453 struct sched_group *local; /* Local group in this sd */ 6454 unsigned long total_load; /* Total load of all groups in sd */ 6455 unsigned long total_capacity; /* Total capacity of all groups in sd */ 6456 unsigned long avg_load; /* Average load across all groups in sd */ 6457 6458 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 6459 struct sg_lb_stats local_stat; /* Statistics of the local group */ 6460 }; 6461 6462 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 6463 { 6464 /* 6465 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 6466 * local_stat because update_sg_lb_stats() does a full clear/assignment. 6467 * We must however clear busiest_stat::avg_load because 6468 * update_sd_pick_busiest() reads this before assignment. 6469 */ 6470 *sds = (struct sd_lb_stats){ 6471 .busiest = NULL, 6472 .local = NULL, 6473 .total_load = 0UL, 6474 .total_capacity = 0UL, 6475 .busiest_stat = { 6476 .avg_load = 0UL, 6477 .sum_nr_running = 0, 6478 .group_type = group_other, 6479 }, 6480 }; 6481 } 6482 6483 /** 6484 * get_sd_load_idx - Obtain the load index for a given sched domain. 6485 * @sd: The sched_domain whose load_idx is to be obtained. 6486 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 6487 * 6488 * Return: The load index. 6489 */ 6490 static inline int get_sd_load_idx(struct sched_domain *sd, 6491 enum cpu_idle_type idle) 6492 { 6493 int load_idx; 6494 6495 switch (idle) { 6496 case CPU_NOT_IDLE: 6497 load_idx = sd->busy_idx; 6498 break; 6499 6500 case CPU_NEWLY_IDLE: 6501 load_idx = sd->newidle_idx; 6502 break; 6503 default: 6504 load_idx = sd->idle_idx; 6505 break; 6506 } 6507 6508 return load_idx; 6509 } 6510 6511 static unsigned long scale_rt_capacity(int cpu) 6512 { 6513 struct rq *rq = cpu_rq(cpu); 6514 u64 total, used, age_stamp, avg; 6515 s64 delta; 6516 6517 /* 6518 * Since we're reading these variables without serialization make sure 6519 * we read them once before doing sanity checks on them. 6520 */ 6521 age_stamp = READ_ONCE(rq->age_stamp); 6522 avg = READ_ONCE(rq->rt_avg); 6523 delta = __rq_clock_broken(rq) - age_stamp; 6524 6525 if (unlikely(delta < 0)) 6526 delta = 0; 6527 6528 total = sched_avg_period() + delta; 6529 6530 used = div_u64(avg, total); 6531 6532 if (likely(used < SCHED_CAPACITY_SCALE)) 6533 return SCHED_CAPACITY_SCALE - used; 6534 6535 return 1; 6536 } 6537 6538 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 6539 { 6540 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); 6541 struct sched_group *sdg = sd->groups; 6542 6543 cpu_rq(cpu)->cpu_capacity_orig = capacity; 6544 6545 capacity *= scale_rt_capacity(cpu); 6546 capacity >>= SCHED_CAPACITY_SHIFT; 6547 6548 if (!capacity) 6549 capacity = 1; 6550 6551 cpu_rq(cpu)->cpu_capacity = capacity; 6552 sdg->sgc->capacity = capacity; 6553 } 6554 6555 void update_group_capacity(struct sched_domain *sd, int cpu) 6556 { 6557 struct sched_domain *child = sd->child; 6558 struct sched_group *group, *sdg = sd->groups; 6559 unsigned long capacity; 6560 unsigned long interval; 6561 6562 interval = msecs_to_jiffies(sd->balance_interval); 6563 interval = clamp(interval, 1UL, max_load_balance_interval); 6564 sdg->sgc->next_update = jiffies + interval; 6565 6566 if (!child) { 6567 update_cpu_capacity(sd, cpu); 6568 return; 6569 } 6570 6571 capacity = 0; 6572 6573 if (child->flags & SD_OVERLAP) { 6574 /* 6575 * SD_OVERLAP domains cannot assume that child groups 6576 * span the current group. 6577 */ 6578 6579 for_each_cpu(cpu, sched_group_cpus(sdg)) { 6580 struct sched_group_capacity *sgc; 6581 struct rq *rq = cpu_rq(cpu); 6582 6583 /* 6584 * build_sched_domains() -> init_sched_groups_capacity() 6585 * gets here before we've attached the domains to the 6586 * runqueues. 6587 * 6588 * Use capacity_of(), which is set irrespective of domains 6589 * in update_cpu_capacity(). 6590 * 6591 * This avoids capacity from being 0 and 6592 * causing divide-by-zero issues on boot. 6593 */ 6594 if (unlikely(!rq->sd)) { 6595 capacity += capacity_of(cpu); 6596 continue; 6597 } 6598 6599 sgc = rq->sd->groups->sgc; 6600 capacity += sgc->capacity; 6601 } 6602 } else { 6603 /* 6604 * !SD_OVERLAP domains can assume that child groups 6605 * span the current group. 6606 */ 6607 6608 group = child->groups; 6609 do { 6610 capacity += group->sgc->capacity; 6611 group = group->next; 6612 } while (group != child->groups); 6613 } 6614 6615 sdg->sgc->capacity = capacity; 6616 } 6617 6618 /* 6619 * Check whether the capacity of the rq has been noticeably reduced by side 6620 * activity. The imbalance_pct is used for the threshold. 6621 * Return true is the capacity is reduced 6622 */ 6623 static inline int 6624 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 6625 { 6626 return ((rq->cpu_capacity * sd->imbalance_pct) < 6627 (rq->cpu_capacity_orig * 100)); 6628 } 6629 6630 /* 6631 * Group imbalance indicates (and tries to solve) the problem where balancing 6632 * groups is inadequate due to tsk_cpus_allowed() constraints. 6633 * 6634 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 6635 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 6636 * Something like: 6637 * 6638 * { 0 1 2 3 } { 4 5 6 7 } 6639 * * * * * 6640 * 6641 * If we were to balance group-wise we'd place two tasks in the first group and 6642 * two tasks in the second group. Clearly this is undesired as it will overload 6643 * cpu 3 and leave one of the cpus in the second group unused. 6644 * 6645 * The current solution to this issue is detecting the skew in the first group 6646 * by noticing the lower domain failed to reach balance and had difficulty 6647 * moving tasks due to affinity constraints. 6648 * 6649 * When this is so detected; this group becomes a candidate for busiest; see 6650 * update_sd_pick_busiest(). And calculate_imbalance() and 6651 * find_busiest_group() avoid some of the usual balance conditions to allow it 6652 * to create an effective group imbalance. 6653 * 6654 * This is a somewhat tricky proposition since the next run might not find the 6655 * group imbalance and decide the groups need to be balanced again. A most 6656 * subtle and fragile situation. 6657 */ 6658 6659 static inline int sg_imbalanced(struct sched_group *group) 6660 { 6661 return group->sgc->imbalance; 6662 } 6663 6664 /* 6665 * group_has_capacity returns true if the group has spare capacity that could 6666 * be used by some tasks. 6667 * We consider that a group has spare capacity if the * number of task is 6668 * smaller than the number of CPUs or if the utilization is lower than the 6669 * available capacity for CFS tasks. 6670 * For the latter, we use a threshold to stabilize the state, to take into 6671 * account the variance of the tasks' load and to return true if the available 6672 * capacity in meaningful for the load balancer. 6673 * As an example, an available capacity of 1% can appear but it doesn't make 6674 * any benefit for the load balance. 6675 */ 6676 static inline bool 6677 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 6678 { 6679 if (sgs->sum_nr_running < sgs->group_weight) 6680 return true; 6681 6682 if ((sgs->group_capacity * 100) > 6683 (sgs->group_util * env->sd->imbalance_pct)) 6684 return true; 6685 6686 return false; 6687 } 6688 6689 /* 6690 * group_is_overloaded returns true if the group has more tasks than it can 6691 * handle. 6692 * group_is_overloaded is not equals to !group_has_capacity because a group 6693 * with the exact right number of tasks, has no more spare capacity but is not 6694 * overloaded so both group_has_capacity and group_is_overloaded return 6695 * false. 6696 */ 6697 static inline bool 6698 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 6699 { 6700 if (sgs->sum_nr_running <= sgs->group_weight) 6701 return false; 6702 6703 if ((sgs->group_capacity * 100) < 6704 (sgs->group_util * env->sd->imbalance_pct)) 6705 return true; 6706 6707 return false; 6708 } 6709 6710 static inline enum 6711 group_type group_classify(struct sched_group *group, 6712 struct sg_lb_stats *sgs) 6713 { 6714 if (sgs->group_no_capacity) 6715 return group_overloaded; 6716 6717 if (sg_imbalanced(group)) 6718 return group_imbalanced; 6719 6720 return group_other; 6721 } 6722 6723 /** 6724 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 6725 * @env: The load balancing environment. 6726 * @group: sched_group whose statistics are to be updated. 6727 * @load_idx: Load index of sched_domain of this_cpu for load calc. 6728 * @local_group: Does group contain this_cpu. 6729 * @sgs: variable to hold the statistics for this group. 6730 * @overload: Indicate more than one runnable task for any CPU. 6731 */ 6732 static inline void update_sg_lb_stats(struct lb_env *env, 6733 struct sched_group *group, int load_idx, 6734 int local_group, struct sg_lb_stats *sgs, 6735 bool *overload) 6736 { 6737 unsigned long load; 6738 int i, nr_running; 6739 6740 memset(sgs, 0, sizeof(*sgs)); 6741 6742 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6743 struct rq *rq = cpu_rq(i); 6744 6745 /* Bias balancing toward cpus of our domain */ 6746 if (local_group) 6747 load = target_load(i, load_idx); 6748 else 6749 load = source_load(i, load_idx); 6750 6751 sgs->group_load += load; 6752 sgs->group_util += cpu_util(i); 6753 sgs->sum_nr_running += rq->cfs.h_nr_running; 6754 6755 nr_running = rq->nr_running; 6756 if (nr_running > 1) 6757 *overload = true; 6758 6759 #ifdef CONFIG_NUMA_BALANCING 6760 sgs->nr_numa_running += rq->nr_numa_running; 6761 sgs->nr_preferred_running += rq->nr_preferred_running; 6762 #endif 6763 sgs->sum_weighted_load += weighted_cpuload(i); 6764 /* 6765 * No need to call idle_cpu() if nr_running is not 0 6766 */ 6767 if (!nr_running && idle_cpu(i)) 6768 sgs->idle_cpus++; 6769 } 6770 6771 /* Adjust by relative CPU capacity of the group */ 6772 sgs->group_capacity = group->sgc->capacity; 6773 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 6774 6775 if (sgs->sum_nr_running) 6776 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 6777 6778 sgs->group_weight = group->group_weight; 6779 6780 sgs->group_no_capacity = group_is_overloaded(env, sgs); 6781 sgs->group_type = group_classify(group, sgs); 6782 } 6783 6784 /** 6785 * update_sd_pick_busiest - return 1 on busiest group 6786 * @env: The load balancing environment. 6787 * @sds: sched_domain statistics 6788 * @sg: sched_group candidate to be checked for being the busiest 6789 * @sgs: sched_group statistics 6790 * 6791 * Determine if @sg is a busier group than the previously selected 6792 * busiest group. 6793 * 6794 * Return: %true if @sg is a busier group than the previously selected 6795 * busiest group. %false otherwise. 6796 */ 6797 static bool update_sd_pick_busiest(struct lb_env *env, 6798 struct sd_lb_stats *sds, 6799 struct sched_group *sg, 6800 struct sg_lb_stats *sgs) 6801 { 6802 struct sg_lb_stats *busiest = &sds->busiest_stat; 6803 6804 if (sgs->group_type > busiest->group_type) 6805 return true; 6806 6807 if (sgs->group_type < busiest->group_type) 6808 return false; 6809 6810 if (sgs->avg_load <= busiest->avg_load) 6811 return false; 6812 6813 /* This is the busiest node in its class. */ 6814 if (!(env->sd->flags & SD_ASYM_PACKING)) 6815 return true; 6816 6817 /* No ASYM_PACKING if target cpu is already busy */ 6818 if (env->idle == CPU_NOT_IDLE) 6819 return true; 6820 /* 6821 * ASYM_PACKING needs to move all the work to the lowest 6822 * numbered CPUs in the group, therefore mark all groups 6823 * higher than ourself as busy. 6824 */ 6825 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) { 6826 if (!sds->busiest) 6827 return true; 6828 6829 /* Prefer to move from highest possible cpu's work */ 6830 if (group_first_cpu(sds->busiest) < group_first_cpu(sg)) 6831 return true; 6832 } 6833 6834 return false; 6835 } 6836 6837 #ifdef CONFIG_NUMA_BALANCING 6838 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6839 { 6840 if (sgs->sum_nr_running > sgs->nr_numa_running) 6841 return regular; 6842 if (sgs->sum_nr_running > sgs->nr_preferred_running) 6843 return remote; 6844 return all; 6845 } 6846 6847 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6848 { 6849 if (rq->nr_running > rq->nr_numa_running) 6850 return regular; 6851 if (rq->nr_running > rq->nr_preferred_running) 6852 return remote; 6853 return all; 6854 } 6855 #else 6856 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6857 { 6858 return all; 6859 } 6860 6861 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6862 { 6863 return regular; 6864 } 6865 #endif /* CONFIG_NUMA_BALANCING */ 6866 6867 /** 6868 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 6869 * @env: The load balancing environment. 6870 * @sds: variable to hold the statistics for this sched_domain. 6871 */ 6872 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 6873 { 6874 struct sched_domain *child = env->sd->child; 6875 struct sched_group *sg = env->sd->groups; 6876 struct sg_lb_stats tmp_sgs; 6877 int load_idx, prefer_sibling = 0; 6878 bool overload = false; 6879 6880 if (child && child->flags & SD_PREFER_SIBLING) 6881 prefer_sibling = 1; 6882 6883 load_idx = get_sd_load_idx(env->sd, env->idle); 6884 6885 do { 6886 struct sg_lb_stats *sgs = &tmp_sgs; 6887 int local_group; 6888 6889 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 6890 if (local_group) { 6891 sds->local = sg; 6892 sgs = &sds->local_stat; 6893 6894 if (env->idle != CPU_NEWLY_IDLE || 6895 time_after_eq(jiffies, sg->sgc->next_update)) 6896 update_group_capacity(env->sd, env->dst_cpu); 6897 } 6898 6899 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 6900 &overload); 6901 6902 if (local_group) 6903 goto next_group; 6904 6905 /* 6906 * In case the child domain prefers tasks go to siblings 6907 * first, lower the sg capacity so that we'll try 6908 * and move all the excess tasks away. We lower the capacity 6909 * of a group only if the local group has the capacity to fit 6910 * these excess tasks. The extra check prevents the case where 6911 * you always pull from the heaviest group when it is already 6912 * under-utilized (possible with a large weight task outweighs 6913 * the tasks on the system). 6914 */ 6915 if (prefer_sibling && sds->local && 6916 group_has_capacity(env, &sds->local_stat) && 6917 (sgs->sum_nr_running > 1)) { 6918 sgs->group_no_capacity = 1; 6919 sgs->group_type = group_classify(sg, sgs); 6920 } 6921 6922 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 6923 sds->busiest = sg; 6924 sds->busiest_stat = *sgs; 6925 } 6926 6927 next_group: 6928 /* Now, start updating sd_lb_stats */ 6929 sds->total_load += sgs->group_load; 6930 sds->total_capacity += sgs->group_capacity; 6931 6932 sg = sg->next; 6933 } while (sg != env->sd->groups); 6934 6935 if (env->sd->flags & SD_NUMA) 6936 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 6937 6938 if (!env->sd->parent) { 6939 /* update overload indicator if we are at root domain */ 6940 if (env->dst_rq->rd->overload != overload) 6941 env->dst_rq->rd->overload = overload; 6942 } 6943 6944 } 6945 6946 /** 6947 * check_asym_packing - Check to see if the group is packed into the 6948 * sched doman. 6949 * 6950 * This is primarily intended to used at the sibling level. Some 6951 * cores like POWER7 prefer to use lower numbered SMT threads. In the 6952 * case of POWER7, it can move to lower SMT modes only when higher 6953 * threads are idle. When in lower SMT modes, the threads will 6954 * perform better since they share less core resources. Hence when we 6955 * have idle threads, we want them to be the higher ones. 6956 * 6957 * This packing function is run on idle threads. It checks to see if 6958 * the busiest CPU in this domain (core in the P7 case) has a higher 6959 * CPU number than the packing function is being run on. Here we are 6960 * assuming lower CPU number will be equivalent to lower a SMT thread 6961 * number. 6962 * 6963 * Return: 1 when packing is required and a task should be moved to 6964 * this CPU. The amount of the imbalance is returned in *imbalance. 6965 * 6966 * @env: The load balancing environment. 6967 * @sds: Statistics of the sched_domain which is to be packed 6968 */ 6969 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 6970 { 6971 int busiest_cpu; 6972 6973 if (!(env->sd->flags & SD_ASYM_PACKING)) 6974 return 0; 6975 6976 if (env->idle == CPU_NOT_IDLE) 6977 return 0; 6978 6979 if (!sds->busiest) 6980 return 0; 6981 6982 busiest_cpu = group_first_cpu(sds->busiest); 6983 if (env->dst_cpu > busiest_cpu) 6984 return 0; 6985 6986 env->imbalance = DIV_ROUND_CLOSEST( 6987 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 6988 SCHED_CAPACITY_SCALE); 6989 6990 return 1; 6991 } 6992 6993 /** 6994 * fix_small_imbalance - Calculate the minor imbalance that exists 6995 * amongst the groups of a sched_domain, during 6996 * load balancing. 6997 * @env: The load balancing environment. 6998 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 6999 */ 7000 static inline 7001 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7002 { 7003 unsigned long tmp, capa_now = 0, capa_move = 0; 7004 unsigned int imbn = 2; 7005 unsigned long scaled_busy_load_per_task; 7006 struct sg_lb_stats *local, *busiest; 7007 7008 local = &sds->local_stat; 7009 busiest = &sds->busiest_stat; 7010 7011 if (!local->sum_nr_running) 7012 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 7013 else if (busiest->load_per_task > local->load_per_task) 7014 imbn = 1; 7015 7016 scaled_busy_load_per_task = 7017 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7018 busiest->group_capacity; 7019 7020 if (busiest->avg_load + scaled_busy_load_per_task >= 7021 local->avg_load + (scaled_busy_load_per_task * imbn)) { 7022 env->imbalance = busiest->load_per_task; 7023 return; 7024 } 7025 7026 /* 7027 * OK, we don't have enough imbalance to justify moving tasks, 7028 * however we may be able to increase total CPU capacity used by 7029 * moving them. 7030 */ 7031 7032 capa_now += busiest->group_capacity * 7033 min(busiest->load_per_task, busiest->avg_load); 7034 capa_now += local->group_capacity * 7035 min(local->load_per_task, local->avg_load); 7036 capa_now /= SCHED_CAPACITY_SCALE; 7037 7038 /* Amount of load we'd subtract */ 7039 if (busiest->avg_load > scaled_busy_load_per_task) { 7040 capa_move += busiest->group_capacity * 7041 min(busiest->load_per_task, 7042 busiest->avg_load - scaled_busy_load_per_task); 7043 } 7044 7045 /* Amount of load we'd add */ 7046 if (busiest->avg_load * busiest->group_capacity < 7047 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 7048 tmp = (busiest->avg_load * busiest->group_capacity) / 7049 local->group_capacity; 7050 } else { 7051 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7052 local->group_capacity; 7053 } 7054 capa_move += local->group_capacity * 7055 min(local->load_per_task, local->avg_load + tmp); 7056 capa_move /= SCHED_CAPACITY_SCALE; 7057 7058 /* Move if we gain throughput */ 7059 if (capa_move > capa_now) 7060 env->imbalance = busiest->load_per_task; 7061 } 7062 7063 /** 7064 * calculate_imbalance - Calculate the amount of imbalance present within the 7065 * groups of a given sched_domain during load balance. 7066 * @env: load balance environment 7067 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 7068 */ 7069 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7070 { 7071 unsigned long max_pull, load_above_capacity = ~0UL; 7072 struct sg_lb_stats *local, *busiest; 7073 7074 local = &sds->local_stat; 7075 busiest = &sds->busiest_stat; 7076 7077 if (busiest->group_type == group_imbalanced) { 7078 /* 7079 * In the group_imb case we cannot rely on group-wide averages 7080 * to ensure cpu-load equilibrium, look at wider averages. XXX 7081 */ 7082 busiest->load_per_task = 7083 min(busiest->load_per_task, sds->avg_load); 7084 } 7085 7086 /* 7087 * Avg load of busiest sg can be less and avg load of local sg can 7088 * be greater than avg load across all sgs of sd because avg load 7089 * factors in sg capacity and sgs with smaller group_type are 7090 * skipped when updating the busiest sg: 7091 */ 7092 if (busiest->avg_load <= sds->avg_load || 7093 local->avg_load >= sds->avg_load) { 7094 env->imbalance = 0; 7095 return fix_small_imbalance(env, sds); 7096 } 7097 7098 /* 7099 * If there aren't any idle cpus, avoid creating some. 7100 */ 7101 if (busiest->group_type == group_overloaded && 7102 local->group_type == group_overloaded) { 7103 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 7104 if (load_above_capacity > busiest->group_capacity) { 7105 load_above_capacity -= busiest->group_capacity; 7106 load_above_capacity *= NICE_0_LOAD; 7107 load_above_capacity /= busiest->group_capacity; 7108 } else 7109 load_above_capacity = ~0UL; 7110 } 7111 7112 /* 7113 * We're trying to get all the cpus to the average_load, so we don't 7114 * want to push ourselves above the average load, nor do we wish to 7115 * reduce the max loaded cpu below the average load. At the same time, 7116 * we also don't want to reduce the group load below the group 7117 * capacity. Thus we look for the minimum possible imbalance. 7118 */ 7119 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 7120 7121 /* How much load to actually move to equalise the imbalance */ 7122 env->imbalance = min( 7123 max_pull * busiest->group_capacity, 7124 (sds->avg_load - local->avg_load) * local->group_capacity 7125 ) / SCHED_CAPACITY_SCALE; 7126 7127 /* 7128 * if *imbalance is less than the average load per runnable task 7129 * there is no guarantee that any tasks will be moved so we'll have 7130 * a think about bumping its value to force at least one task to be 7131 * moved 7132 */ 7133 if (env->imbalance < busiest->load_per_task) 7134 return fix_small_imbalance(env, sds); 7135 } 7136 7137 /******* find_busiest_group() helpers end here *********************/ 7138 7139 /** 7140 * find_busiest_group - Returns the busiest group within the sched_domain 7141 * if there is an imbalance. 7142 * 7143 * Also calculates the amount of weighted load which should be moved 7144 * to restore balance. 7145 * 7146 * @env: The load balancing environment. 7147 * 7148 * Return: - The busiest group if imbalance exists. 7149 */ 7150 static struct sched_group *find_busiest_group(struct lb_env *env) 7151 { 7152 struct sg_lb_stats *local, *busiest; 7153 struct sd_lb_stats sds; 7154 7155 init_sd_lb_stats(&sds); 7156 7157 /* 7158 * Compute the various statistics relavent for load balancing at 7159 * this level. 7160 */ 7161 update_sd_lb_stats(env, &sds); 7162 local = &sds.local_stat; 7163 busiest = &sds.busiest_stat; 7164 7165 /* ASYM feature bypasses nice load balance check */ 7166 if (check_asym_packing(env, &sds)) 7167 return sds.busiest; 7168 7169 /* There is no busy sibling group to pull tasks from */ 7170 if (!sds.busiest || busiest->sum_nr_running == 0) 7171 goto out_balanced; 7172 7173 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 7174 / sds.total_capacity; 7175 7176 /* 7177 * If the busiest group is imbalanced the below checks don't 7178 * work because they assume all things are equal, which typically 7179 * isn't true due to cpus_allowed constraints and the like. 7180 */ 7181 if (busiest->group_type == group_imbalanced) 7182 goto force_balance; 7183 7184 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 7185 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && 7186 busiest->group_no_capacity) 7187 goto force_balance; 7188 7189 /* 7190 * If the local group is busier than the selected busiest group 7191 * don't try and pull any tasks. 7192 */ 7193 if (local->avg_load >= busiest->avg_load) 7194 goto out_balanced; 7195 7196 /* 7197 * Don't pull any tasks if this group is already above the domain 7198 * average load. 7199 */ 7200 if (local->avg_load >= sds.avg_load) 7201 goto out_balanced; 7202 7203 if (env->idle == CPU_IDLE) { 7204 /* 7205 * This cpu is idle. If the busiest group is not overloaded 7206 * and there is no imbalance between this and busiest group 7207 * wrt idle cpus, it is balanced. The imbalance becomes 7208 * significant if the diff is greater than 1 otherwise we 7209 * might end up to just move the imbalance on another group 7210 */ 7211 if ((busiest->group_type != group_overloaded) && 7212 (local->idle_cpus <= (busiest->idle_cpus + 1))) 7213 goto out_balanced; 7214 } else { 7215 /* 7216 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 7217 * imbalance_pct to be conservative. 7218 */ 7219 if (100 * busiest->avg_load <= 7220 env->sd->imbalance_pct * local->avg_load) 7221 goto out_balanced; 7222 } 7223 7224 force_balance: 7225 /* Looks like there is an imbalance. Compute it */ 7226 calculate_imbalance(env, &sds); 7227 return sds.busiest; 7228 7229 out_balanced: 7230 env->imbalance = 0; 7231 return NULL; 7232 } 7233 7234 /* 7235 * find_busiest_queue - find the busiest runqueue among the cpus in group. 7236 */ 7237 static struct rq *find_busiest_queue(struct lb_env *env, 7238 struct sched_group *group) 7239 { 7240 struct rq *busiest = NULL, *rq; 7241 unsigned long busiest_load = 0, busiest_capacity = 1; 7242 int i; 7243 7244 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 7245 unsigned long capacity, wl; 7246 enum fbq_type rt; 7247 7248 rq = cpu_rq(i); 7249 rt = fbq_classify_rq(rq); 7250 7251 /* 7252 * We classify groups/runqueues into three groups: 7253 * - regular: there are !numa tasks 7254 * - remote: there are numa tasks that run on the 'wrong' node 7255 * - all: there is no distinction 7256 * 7257 * In order to avoid migrating ideally placed numa tasks, 7258 * ignore those when there's better options. 7259 * 7260 * If we ignore the actual busiest queue to migrate another 7261 * task, the next balance pass can still reduce the busiest 7262 * queue by moving tasks around inside the node. 7263 * 7264 * If we cannot move enough load due to this classification 7265 * the next pass will adjust the group classification and 7266 * allow migration of more tasks. 7267 * 7268 * Both cases only affect the total convergence complexity. 7269 */ 7270 if (rt > env->fbq_type) 7271 continue; 7272 7273 capacity = capacity_of(i); 7274 7275 wl = weighted_cpuload(i); 7276 7277 /* 7278 * When comparing with imbalance, use weighted_cpuload() 7279 * which is not scaled with the cpu capacity. 7280 */ 7281 7282 if (rq->nr_running == 1 && wl > env->imbalance && 7283 !check_cpu_capacity(rq, env->sd)) 7284 continue; 7285 7286 /* 7287 * For the load comparisons with the other cpu's, consider 7288 * the weighted_cpuload() scaled with the cpu capacity, so 7289 * that the load can be moved away from the cpu that is 7290 * potentially running at a lower capacity. 7291 * 7292 * Thus we're looking for max(wl_i / capacity_i), crosswise 7293 * multiplication to rid ourselves of the division works out 7294 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 7295 * our previous maximum. 7296 */ 7297 if (wl * busiest_capacity > busiest_load * capacity) { 7298 busiest_load = wl; 7299 busiest_capacity = capacity; 7300 busiest = rq; 7301 } 7302 } 7303 7304 return busiest; 7305 } 7306 7307 /* 7308 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 7309 * so long as it is large enough. 7310 */ 7311 #define MAX_PINNED_INTERVAL 512 7312 7313 /* Working cpumask for load_balance and load_balance_newidle. */ 7314 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7315 7316 static int need_active_balance(struct lb_env *env) 7317 { 7318 struct sched_domain *sd = env->sd; 7319 7320 if (env->idle == CPU_NEWLY_IDLE) { 7321 7322 /* 7323 * ASYM_PACKING needs to force migrate tasks from busy but 7324 * higher numbered CPUs in order to pack all tasks in the 7325 * lowest numbered CPUs. 7326 */ 7327 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 7328 return 1; 7329 } 7330 7331 /* 7332 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 7333 * It's worth migrating the task if the src_cpu's capacity is reduced 7334 * because of other sched_class or IRQs if more capacity stays 7335 * available on dst_cpu. 7336 */ 7337 if ((env->idle != CPU_NOT_IDLE) && 7338 (env->src_rq->cfs.h_nr_running == 1)) { 7339 if ((check_cpu_capacity(env->src_rq, sd)) && 7340 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 7341 return 1; 7342 } 7343 7344 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 7345 } 7346 7347 static int active_load_balance_cpu_stop(void *data); 7348 7349 static int should_we_balance(struct lb_env *env) 7350 { 7351 struct sched_group *sg = env->sd->groups; 7352 struct cpumask *sg_cpus, *sg_mask; 7353 int cpu, balance_cpu = -1; 7354 7355 /* 7356 * In the newly idle case, we will allow all the cpu's 7357 * to do the newly idle load balance. 7358 */ 7359 if (env->idle == CPU_NEWLY_IDLE) 7360 return 1; 7361 7362 sg_cpus = sched_group_cpus(sg); 7363 sg_mask = sched_group_mask(sg); 7364 /* Try to find first idle cpu */ 7365 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 7366 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 7367 continue; 7368 7369 balance_cpu = cpu; 7370 break; 7371 } 7372 7373 if (balance_cpu == -1) 7374 balance_cpu = group_balance_cpu(sg); 7375 7376 /* 7377 * First idle cpu or the first cpu(busiest) in this sched group 7378 * is eligible for doing load balancing at this and above domains. 7379 */ 7380 return balance_cpu == env->dst_cpu; 7381 } 7382 7383 /* 7384 * Check this_cpu to ensure it is balanced within domain. Attempt to move 7385 * tasks if there is an imbalance. 7386 */ 7387 static int load_balance(int this_cpu, struct rq *this_rq, 7388 struct sched_domain *sd, enum cpu_idle_type idle, 7389 int *continue_balancing) 7390 { 7391 int ld_moved, cur_ld_moved, active_balance = 0; 7392 struct sched_domain *sd_parent = sd->parent; 7393 struct sched_group *group; 7394 struct rq *busiest; 7395 unsigned long flags; 7396 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 7397 7398 struct lb_env env = { 7399 .sd = sd, 7400 .dst_cpu = this_cpu, 7401 .dst_rq = this_rq, 7402 .dst_grpmask = sched_group_cpus(sd->groups), 7403 .idle = idle, 7404 .loop_break = sched_nr_migrate_break, 7405 .cpus = cpus, 7406 .fbq_type = all, 7407 .tasks = LIST_HEAD_INIT(env.tasks), 7408 }; 7409 7410 /* 7411 * For NEWLY_IDLE load_balancing, we don't need to consider 7412 * other cpus in our group 7413 */ 7414 if (idle == CPU_NEWLY_IDLE) 7415 env.dst_grpmask = NULL; 7416 7417 cpumask_copy(cpus, cpu_active_mask); 7418 7419 schedstat_inc(sd, lb_count[idle]); 7420 7421 redo: 7422 if (!should_we_balance(&env)) { 7423 *continue_balancing = 0; 7424 goto out_balanced; 7425 } 7426 7427 group = find_busiest_group(&env); 7428 if (!group) { 7429 schedstat_inc(sd, lb_nobusyg[idle]); 7430 goto out_balanced; 7431 } 7432 7433 busiest = find_busiest_queue(&env, group); 7434 if (!busiest) { 7435 schedstat_inc(sd, lb_nobusyq[idle]); 7436 goto out_balanced; 7437 } 7438 7439 BUG_ON(busiest == env.dst_rq); 7440 7441 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 7442 7443 env.src_cpu = busiest->cpu; 7444 env.src_rq = busiest; 7445 7446 ld_moved = 0; 7447 if (busiest->nr_running > 1) { 7448 /* 7449 * Attempt to move tasks. If find_busiest_group has found 7450 * an imbalance but busiest->nr_running <= 1, the group is 7451 * still unbalanced. ld_moved simply stays zero, so it is 7452 * correctly treated as an imbalance. 7453 */ 7454 env.flags |= LBF_ALL_PINNED; 7455 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 7456 7457 more_balance: 7458 raw_spin_lock_irqsave(&busiest->lock, flags); 7459 7460 /* 7461 * cur_ld_moved - load moved in current iteration 7462 * ld_moved - cumulative load moved across iterations 7463 */ 7464 cur_ld_moved = detach_tasks(&env); 7465 7466 /* 7467 * We've detached some tasks from busiest_rq. Every 7468 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 7469 * unlock busiest->lock, and we are able to be sure 7470 * that nobody can manipulate the tasks in parallel. 7471 * See task_rq_lock() family for the details. 7472 */ 7473 7474 raw_spin_unlock(&busiest->lock); 7475 7476 if (cur_ld_moved) { 7477 attach_tasks(&env); 7478 ld_moved += cur_ld_moved; 7479 } 7480 7481 local_irq_restore(flags); 7482 7483 if (env.flags & LBF_NEED_BREAK) { 7484 env.flags &= ~LBF_NEED_BREAK; 7485 goto more_balance; 7486 } 7487 7488 /* 7489 * Revisit (affine) tasks on src_cpu that couldn't be moved to 7490 * us and move them to an alternate dst_cpu in our sched_group 7491 * where they can run. The upper limit on how many times we 7492 * iterate on same src_cpu is dependent on number of cpus in our 7493 * sched_group. 7494 * 7495 * This changes load balance semantics a bit on who can move 7496 * load to a given_cpu. In addition to the given_cpu itself 7497 * (or a ilb_cpu acting on its behalf where given_cpu is 7498 * nohz-idle), we now have balance_cpu in a position to move 7499 * load to given_cpu. In rare situations, this may cause 7500 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 7501 * _independently_ and at _same_ time to move some load to 7502 * given_cpu) causing exceess load to be moved to given_cpu. 7503 * This however should not happen so much in practice and 7504 * moreover subsequent load balance cycles should correct the 7505 * excess load moved. 7506 */ 7507 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 7508 7509 /* Prevent to re-select dst_cpu via env's cpus */ 7510 cpumask_clear_cpu(env.dst_cpu, env.cpus); 7511 7512 env.dst_rq = cpu_rq(env.new_dst_cpu); 7513 env.dst_cpu = env.new_dst_cpu; 7514 env.flags &= ~LBF_DST_PINNED; 7515 env.loop = 0; 7516 env.loop_break = sched_nr_migrate_break; 7517 7518 /* 7519 * Go back to "more_balance" rather than "redo" since we 7520 * need to continue with same src_cpu. 7521 */ 7522 goto more_balance; 7523 } 7524 7525 /* 7526 * We failed to reach balance because of affinity. 7527 */ 7528 if (sd_parent) { 7529 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7530 7531 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 7532 *group_imbalance = 1; 7533 } 7534 7535 /* All tasks on this runqueue were pinned by CPU affinity */ 7536 if (unlikely(env.flags & LBF_ALL_PINNED)) { 7537 cpumask_clear_cpu(cpu_of(busiest), cpus); 7538 if (!cpumask_empty(cpus)) { 7539 env.loop = 0; 7540 env.loop_break = sched_nr_migrate_break; 7541 goto redo; 7542 } 7543 goto out_all_pinned; 7544 } 7545 } 7546 7547 if (!ld_moved) { 7548 schedstat_inc(sd, lb_failed[idle]); 7549 /* 7550 * Increment the failure counter only on periodic balance. 7551 * We do not want newidle balance, which can be very 7552 * frequent, pollute the failure counter causing 7553 * excessive cache_hot migrations and active balances. 7554 */ 7555 if (idle != CPU_NEWLY_IDLE) 7556 sd->nr_balance_failed++; 7557 7558 if (need_active_balance(&env)) { 7559 raw_spin_lock_irqsave(&busiest->lock, flags); 7560 7561 /* don't kick the active_load_balance_cpu_stop, 7562 * if the curr task on busiest cpu can't be 7563 * moved to this_cpu 7564 */ 7565 if (!cpumask_test_cpu(this_cpu, 7566 tsk_cpus_allowed(busiest->curr))) { 7567 raw_spin_unlock_irqrestore(&busiest->lock, 7568 flags); 7569 env.flags |= LBF_ALL_PINNED; 7570 goto out_one_pinned; 7571 } 7572 7573 /* 7574 * ->active_balance synchronizes accesses to 7575 * ->active_balance_work. Once set, it's cleared 7576 * only after active load balance is finished. 7577 */ 7578 if (!busiest->active_balance) { 7579 busiest->active_balance = 1; 7580 busiest->push_cpu = this_cpu; 7581 active_balance = 1; 7582 } 7583 raw_spin_unlock_irqrestore(&busiest->lock, flags); 7584 7585 if (active_balance) { 7586 stop_one_cpu_nowait(cpu_of(busiest), 7587 active_load_balance_cpu_stop, busiest, 7588 &busiest->active_balance_work); 7589 } 7590 7591 /* We've kicked active balancing, force task migration. */ 7592 sd->nr_balance_failed = sd->cache_nice_tries+1; 7593 } 7594 } else 7595 sd->nr_balance_failed = 0; 7596 7597 if (likely(!active_balance)) { 7598 /* We were unbalanced, so reset the balancing interval */ 7599 sd->balance_interval = sd->min_interval; 7600 } else { 7601 /* 7602 * If we've begun active balancing, start to back off. This 7603 * case may not be covered by the all_pinned logic if there 7604 * is only 1 task on the busy runqueue (because we don't call 7605 * detach_tasks). 7606 */ 7607 if (sd->balance_interval < sd->max_interval) 7608 sd->balance_interval *= 2; 7609 } 7610 7611 goto out; 7612 7613 out_balanced: 7614 /* 7615 * We reach balance although we may have faced some affinity 7616 * constraints. Clear the imbalance flag if it was set. 7617 */ 7618 if (sd_parent) { 7619 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7620 7621 if (*group_imbalance) 7622 *group_imbalance = 0; 7623 } 7624 7625 out_all_pinned: 7626 /* 7627 * We reach balance because all tasks are pinned at this level so 7628 * we can't migrate them. Let the imbalance flag set so parent level 7629 * can try to migrate them. 7630 */ 7631 schedstat_inc(sd, lb_balanced[idle]); 7632 7633 sd->nr_balance_failed = 0; 7634 7635 out_one_pinned: 7636 /* tune up the balancing interval */ 7637 if (((env.flags & LBF_ALL_PINNED) && 7638 sd->balance_interval < MAX_PINNED_INTERVAL) || 7639 (sd->balance_interval < sd->max_interval)) 7640 sd->balance_interval *= 2; 7641 7642 ld_moved = 0; 7643 out: 7644 return ld_moved; 7645 } 7646 7647 static inline unsigned long 7648 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 7649 { 7650 unsigned long interval = sd->balance_interval; 7651 7652 if (cpu_busy) 7653 interval *= sd->busy_factor; 7654 7655 /* scale ms to jiffies */ 7656 interval = msecs_to_jiffies(interval); 7657 interval = clamp(interval, 1UL, max_load_balance_interval); 7658 7659 return interval; 7660 } 7661 7662 static inline void 7663 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) 7664 { 7665 unsigned long interval, next; 7666 7667 interval = get_sd_balance_interval(sd, cpu_busy); 7668 next = sd->last_balance + interval; 7669 7670 if (time_after(*next_balance, next)) 7671 *next_balance = next; 7672 } 7673 7674 /* 7675 * idle_balance is called by schedule() if this_cpu is about to become 7676 * idle. Attempts to pull tasks from other CPUs. 7677 */ 7678 static int idle_balance(struct rq *this_rq) 7679 { 7680 unsigned long next_balance = jiffies + HZ; 7681 int this_cpu = this_rq->cpu; 7682 struct sched_domain *sd; 7683 int pulled_task = 0; 7684 u64 curr_cost = 0; 7685 7686 /* 7687 * We must set idle_stamp _before_ calling idle_balance(), such that we 7688 * measure the duration of idle_balance() as idle time. 7689 */ 7690 this_rq->idle_stamp = rq_clock(this_rq); 7691 7692 if (this_rq->avg_idle < sysctl_sched_migration_cost || 7693 !this_rq->rd->overload) { 7694 rcu_read_lock(); 7695 sd = rcu_dereference_check_sched_domain(this_rq->sd); 7696 if (sd) 7697 update_next_balance(sd, 0, &next_balance); 7698 rcu_read_unlock(); 7699 7700 goto out; 7701 } 7702 7703 raw_spin_unlock(&this_rq->lock); 7704 7705 update_blocked_averages(this_cpu); 7706 rcu_read_lock(); 7707 for_each_domain(this_cpu, sd) { 7708 int continue_balancing = 1; 7709 u64 t0, domain_cost; 7710 7711 if (!(sd->flags & SD_LOAD_BALANCE)) 7712 continue; 7713 7714 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 7715 update_next_balance(sd, 0, &next_balance); 7716 break; 7717 } 7718 7719 if (sd->flags & SD_BALANCE_NEWIDLE) { 7720 t0 = sched_clock_cpu(this_cpu); 7721 7722 pulled_task = load_balance(this_cpu, this_rq, 7723 sd, CPU_NEWLY_IDLE, 7724 &continue_balancing); 7725 7726 domain_cost = sched_clock_cpu(this_cpu) - t0; 7727 if (domain_cost > sd->max_newidle_lb_cost) 7728 sd->max_newidle_lb_cost = domain_cost; 7729 7730 curr_cost += domain_cost; 7731 } 7732 7733 update_next_balance(sd, 0, &next_balance); 7734 7735 /* 7736 * Stop searching for tasks to pull if there are 7737 * now runnable tasks on this rq. 7738 */ 7739 if (pulled_task || this_rq->nr_running > 0) 7740 break; 7741 } 7742 rcu_read_unlock(); 7743 7744 raw_spin_lock(&this_rq->lock); 7745 7746 if (curr_cost > this_rq->max_idle_balance_cost) 7747 this_rq->max_idle_balance_cost = curr_cost; 7748 7749 /* 7750 * While browsing the domains, we released the rq lock, a task could 7751 * have been enqueued in the meantime. Since we're not going idle, 7752 * pretend we pulled a task. 7753 */ 7754 if (this_rq->cfs.h_nr_running && !pulled_task) 7755 pulled_task = 1; 7756 7757 out: 7758 /* Move the next balance forward */ 7759 if (time_after(this_rq->next_balance, next_balance)) 7760 this_rq->next_balance = next_balance; 7761 7762 /* Is there a task of a high priority class? */ 7763 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 7764 pulled_task = -1; 7765 7766 if (pulled_task) 7767 this_rq->idle_stamp = 0; 7768 7769 return pulled_task; 7770 } 7771 7772 /* 7773 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 7774 * running tasks off the busiest CPU onto idle CPUs. It requires at 7775 * least 1 task to be running on each physical CPU where possible, and 7776 * avoids physical / logical imbalances. 7777 */ 7778 static int active_load_balance_cpu_stop(void *data) 7779 { 7780 struct rq *busiest_rq = data; 7781 int busiest_cpu = cpu_of(busiest_rq); 7782 int target_cpu = busiest_rq->push_cpu; 7783 struct rq *target_rq = cpu_rq(target_cpu); 7784 struct sched_domain *sd; 7785 struct task_struct *p = NULL; 7786 7787 raw_spin_lock_irq(&busiest_rq->lock); 7788 7789 /* make sure the requested cpu hasn't gone down in the meantime */ 7790 if (unlikely(busiest_cpu != smp_processor_id() || 7791 !busiest_rq->active_balance)) 7792 goto out_unlock; 7793 7794 /* Is there any task to move? */ 7795 if (busiest_rq->nr_running <= 1) 7796 goto out_unlock; 7797 7798 /* 7799 * This condition is "impossible", if it occurs 7800 * we need to fix it. Originally reported by 7801 * Bjorn Helgaas on a 128-cpu setup. 7802 */ 7803 BUG_ON(busiest_rq == target_rq); 7804 7805 /* Search for an sd spanning us and the target CPU. */ 7806 rcu_read_lock(); 7807 for_each_domain(target_cpu, sd) { 7808 if ((sd->flags & SD_LOAD_BALANCE) && 7809 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 7810 break; 7811 } 7812 7813 if (likely(sd)) { 7814 struct lb_env env = { 7815 .sd = sd, 7816 .dst_cpu = target_cpu, 7817 .dst_rq = target_rq, 7818 .src_cpu = busiest_rq->cpu, 7819 .src_rq = busiest_rq, 7820 .idle = CPU_IDLE, 7821 }; 7822 7823 schedstat_inc(sd, alb_count); 7824 7825 p = detach_one_task(&env); 7826 if (p) { 7827 schedstat_inc(sd, alb_pushed); 7828 /* Active balancing done, reset the failure counter. */ 7829 sd->nr_balance_failed = 0; 7830 } else { 7831 schedstat_inc(sd, alb_failed); 7832 } 7833 } 7834 rcu_read_unlock(); 7835 out_unlock: 7836 busiest_rq->active_balance = 0; 7837 raw_spin_unlock(&busiest_rq->lock); 7838 7839 if (p) 7840 attach_one_task(target_rq, p); 7841 7842 local_irq_enable(); 7843 7844 return 0; 7845 } 7846 7847 static inline int on_null_domain(struct rq *rq) 7848 { 7849 return unlikely(!rcu_dereference_sched(rq->sd)); 7850 } 7851 7852 #ifdef CONFIG_NO_HZ_COMMON 7853 /* 7854 * idle load balancing details 7855 * - When one of the busy CPUs notice that there may be an idle rebalancing 7856 * needed, they will kick the idle load balancer, which then does idle 7857 * load balancing for all the idle CPUs. 7858 */ 7859 static struct { 7860 cpumask_var_t idle_cpus_mask; 7861 atomic_t nr_cpus; 7862 unsigned long next_balance; /* in jiffy units */ 7863 } nohz ____cacheline_aligned; 7864 7865 static inline int find_new_ilb(void) 7866 { 7867 int ilb = cpumask_first(nohz.idle_cpus_mask); 7868 7869 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 7870 return ilb; 7871 7872 return nr_cpu_ids; 7873 } 7874 7875 /* 7876 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 7877 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 7878 * CPU (if there is one). 7879 */ 7880 static void nohz_balancer_kick(void) 7881 { 7882 int ilb_cpu; 7883 7884 nohz.next_balance++; 7885 7886 ilb_cpu = find_new_ilb(); 7887 7888 if (ilb_cpu >= nr_cpu_ids) 7889 return; 7890 7891 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 7892 return; 7893 /* 7894 * Use smp_send_reschedule() instead of resched_cpu(). 7895 * This way we generate a sched IPI on the target cpu which 7896 * is idle. And the softirq performing nohz idle load balance 7897 * will be run before returning from the IPI. 7898 */ 7899 smp_send_reschedule(ilb_cpu); 7900 return; 7901 } 7902 7903 void nohz_balance_exit_idle(unsigned int cpu) 7904 { 7905 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 7906 /* 7907 * Completely isolated CPUs don't ever set, so we must test. 7908 */ 7909 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 7910 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 7911 atomic_dec(&nohz.nr_cpus); 7912 } 7913 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7914 } 7915 } 7916 7917 static inline void set_cpu_sd_state_busy(void) 7918 { 7919 struct sched_domain *sd; 7920 int cpu = smp_processor_id(); 7921 7922 rcu_read_lock(); 7923 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7924 7925 if (!sd || !sd->nohz_idle) 7926 goto unlock; 7927 sd->nohz_idle = 0; 7928 7929 atomic_inc(&sd->groups->sgc->nr_busy_cpus); 7930 unlock: 7931 rcu_read_unlock(); 7932 } 7933 7934 void set_cpu_sd_state_idle(void) 7935 { 7936 struct sched_domain *sd; 7937 int cpu = smp_processor_id(); 7938 7939 rcu_read_lock(); 7940 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7941 7942 if (!sd || sd->nohz_idle) 7943 goto unlock; 7944 sd->nohz_idle = 1; 7945 7946 atomic_dec(&sd->groups->sgc->nr_busy_cpus); 7947 unlock: 7948 rcu_read_unlock(); 7949 } 7950 7951 /* 7952 * This routine will record that the cpu is going idle with tick stopped. 7953 * This info will be used in performing idle load balancing in the future. 7954 */ 7955 void nohz_balance_enter_idle(int cpu) 7956 { 7957 /* 7958 * If this cpu is going down, then nothing needs to be done. 7959 */ 7960 if (!cpu_active(cpu)) 7961 return; 7962 7963 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 7964 return; 7965 7966 /* 7967 * If we're a completely isolated CPU, we don't play. 7968 */ 7969 if (on_null_domain(cpu_rq(cpu))) 7970 return; 7971 7972 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 7973 atomic_inc(&nohz.nr_cpus); 7974 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7975 } 7976 #endif 7977 7978 static DEFINE_SPINLOCK(balancing); 7979 7980 /* 7981 * Scale the max load_balance interval with the number of CPUs in the system. 7982 * This trades load-balance latency on larger machines for less cross talk. 7983 */ 7984 void update_max_interval(void) 7985 { 7986 max_load_balance_interval = HZ*num_online_cpus()/10; 7987 } 7988 7989 /* 7990 * It checks each scheduling domain to see if it is due to be balanced, 7991 * and initiates a balancing operation if so. 7992 * 7993 * Balancing parameters are set up in init_sched_domains. 7994 */ 7995 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 7996 { 7997 int continue_balancing = 1; 7998 int cpu = rq->cpu; 7999 unsigned long interval; 8000 struct sched_domain *sd; 8001 /* Earliest time when we have to do rebalance again */ 8002 unsigned long next_balance = jiffies + 60*HZ; 8003 int update_next_balance = 0; 8004 int need_serialize, need_decay = 0; 8005 u64 max_cost = 0; 8006 8007 update_blocked_averages(cpu); 8008 8009 rcu_read_lock(); 8010 for_each_domain(cpu, sd) { 8011 /* 8012 * Decay the newidle max times here because this is a regular 8013 * visit to all the domains. Decay ~1% per second. 8014 */ 8015 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 8016 sd->max_newidle_lb_cost = 8017 (sd->max_newidle_lb_cost * 253) / 256; 8018 sd->next_decay_max_lb_cost = jiffies + HZ; 8019 need_decay = 1; 8020 } 8021 max_cost += sd->max_newidle_lb_cost; 8022 8023 if (!(sd->flags & SD_LOAD_BALANCE)) 8024 continue; 8025 8026 /* 8027 * Stop the load balance at this level. There is another 8028 * CPU in our sched group which is doing load balancing more 8029 * actively. 8030 */ 8031 if (!continue_balancing) { 8032 if (need_decay) 8033 continue; 8034 break; 8035 } 8036 8037 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8038 8039 need_serialize = sd->flags & SD_SERIALIZE; 8040 if (need_serialize) { 8041 if (!spin_trylock(&balancing)) 8042 goto out; 8043 } 8044 8045 if (time_after_eq(jiffies, sd->last_balance + interval)) { 8046 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 8047 /* 8048 * The LBF_DST_PINNED logic could have changed 8049 * env->dst_cpu, so we can't know our idle 8050 * state even if we migrated tasks. Update it. 8051 */ 8052 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 8053 } 8054 sd->last_balance = jiffies; 8055 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8056 } 8057 if (need_serialize) 8058 spin_unlock(&balancing); 8059 out: 8060 if (time_after(next_balance, sd->last_balance + interval)) { 8061 next_balance = sd->last_balance + interval; 8062 update_next_balance = 1; 8063 } 8064 } 8065 if (need_decay) { 8066 /* 8067 * Ensure the rq-wide value also decays but keep it at a 8068 * reasonable floor to avoid funnies with rq->avg_idle. 8069 */ 8070 rq->max_idle_balance_cost = 8071 max((u64)sysctl_sched_migration_cost, max_cost); 8072 } 8073 rcu_read_unlock(); 8074 8075 /* 8076 * next_balance will be updated only when there is a need. 8077 * When the cpu is attached to null domain for ex, it will not be 8078 * updated. 8079 */ 8080 if (likely(update_next_balance)) { 8081 rq->next_balance = next_balance; 8082 8083 #ifdef CONFIG_NO_HZ_COMMON 8084 /* 8085 * If this CPU has been elected to perform the nohz idle 8086 * balance. Other idle CPUs have already rebalanced with 8087 * nohz_idle_balance() and nohz.next_balance has been 8088 * updated accordingly. This CPU is now running the idle load 8089 * balance for itself and we need to update the 8090 * nohz.next_balance accordingly. 8091 */ 8092 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 8093 nohz.next_balance = rq->next_balance; 8094 #endif 8095 } 8096 } 8097 8098 #ifdef CONFIG_NO_HZ_COMMON 8099 /* 8100 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 8101 * rebalancing for all the cpus for whom scheduler ticks are stopped. 8102 */ 8103 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 8104 { 8105 int this_cpu = this_rq->cpu; 8106 struct rq *rq; 8107 int balance_cpu; 8108 /* Earliest time when we have to do rebalance again */ 8109 unsigned long next_balance = jiffies + 60*HZ; 8110 int update_next_balance = 0; 8111 8112 if (idle != CPU_IDLE || 8113 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 8114 goto end; 8115 8116 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 8117 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 8118 continue; 8119 8120 /* 8121 * If this cpu gets work to do, stop the load balancing 8122 * work being done for other cpus. Next load 8123 * balancing owner will pick it up. 8124 */ 8125 if (need_resched()) 8126 break; 8127 8128 rq = cpu_rq(balance_cpu); 8129 8130 /* 8131 * If time for next balance is due, 8132 * do the balance. 8133 */ 8134 if (time_after_eq(jiffies, rq->next_balance)) { 8135 raw_spin_lock_irq(&rq->lock); 8136 update_rq_clock(rq); 8137 cpu_load_update_idle(rq); 8138 raw_spin_unlock_irq(&rq->lock); 8139 rebalance_domains(rq, CPU_IDLE); 8140 } 8141 8142 if (time_after(next_balance, rq->next_balance)) { 8143 next_balance = rq->next_balance; 8144 update_next_balance = 1; 8145 } 8146 } 8147 8148 /* 8149 * next_balance will be updated only when there is a need. 8150 * When the CPU is attached to null domain for ex, it will not be 8151 * updated. 8152 */ 8153 if (likely(update_next_balance)) 8154 nohz.next_balance = next_balance; 8155 end: 8156 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 8157 } 8158 8159 /* 8160 * Current heuristic for kicking the idle load balancer in the presence 8161 * of an idle cpu in the system. 8162 * - This rq has more than one task. 8163 * - This rq has at least one CFS task and the capacity of the CPU is 8164 * significantly reduced because of RT tasks or IRQs. 8165 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 8166 * multiple busy cpu. 8167 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 8168 * domain span are idle. 8169 */ 8170 static inline bool nohz_kick_needed(struct rq *rq) 8171 { 8172 unsigned long now = jiffies; 8173 struct sched_domain *sd; 8174 struct sched_group_capacity *sgc; 8175 int nr_busy, cpu = rq->cpu; 8176 bool kick = false; 8177 8178 if (unlikely(rq->idle_balance)) 8179 return false; 8180 8181 /* 8182 * We may be recently in ticked or tickless idle mode. At the first 8183 * busy tick after returning from idle, we will update the busy stats. 8184 */ 8185 set_cpu_sd_state_busy(); 8186 nohz_balance_exit_idle(cpu); 8187 8188 /* 8189 * None are in tickless mode and hence no need for NOHZ idle load 8190 * balancing. 8191 */ 8192 if (likely(!atomic_read(&nohz.nr_cpus))) 8193 return false; 8194 8195 if (time_before(now, nohz.next_balance)) 8196 return false; 8197 8198 if (rq->nr_running >= 2) 8199 return true; 8200 8201 rcu_read_lock(); 8202 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 8203 if (sd) { 8204 sgc = sd->groups->sgc; 8205 nr_busy = atomic_read(&sgc->nr_busy_cpus); 8206 8207 if (nr_busy > 1) { 8208 kick = true; 8209 goto unlock; 8210 } 8211 8212 } 8213 8214 sd = rcu_dereference(rq->sd); 8215 if (sd) { 8216 if ((rq->cfs.h_nr_running >= 1) && 8217 check_cpu_capacity(rq, sd)) { 8218 kick = true; 8219 goto unlock; 8220 } 8221 } 8222 8223 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 8224 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 8225 sched_domain_span(sd)) < cpu)) { 8226 kick = true; 8227 goto unlock; 8228 } 8229 8230 unlock: 8231 rcu_read_unlock(); 8232 return kick; 8233 } 8234 #else 8235 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 8236 #endif 8237 8238 /* 8239 * run_rebalance_domains is triggered when needed from the scheduler tick. 8240 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 8241 */ 8242 static void run_rebalance_domains(struct softirq_action *h) 8243 { 8244 struct rq *this_rq = this_rq(); 8245 enum cpu_idle_type idle = this_rq->idle_balance ? 8246 CPU_IDLE : CPU_NOT_IDLE; 8247 8248 /* 8249 * If this cpu has a pending nohz_balance_kick, then do the 8250 * balancing on behalf of the other idle cpus whose ticks are 8251 * stopped. Do nohz_idle_balance *before* rebalance_domains to 8252 * give the idle cpus a chance to load balance. Else we may 8253 * load balance only within the local sched_domain hierarchy 8254 * and abort nohz_idle_balance altogether if we pull some load. 8255 */ 8256 nohz_idle_balance(this_rq, idle); 8257 rebalance_domains(this_rq, idle); 8258 } 8259 8260 /* 8261 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 8262 */ 8263 void trigger_load_balance(struct rq *rq) 8264 { 8265 /* Don't need to rebalance while attached to NULL domain */ 8266 if (unlikely(on_null_domain(rq))) 8267 return; 8268 8269 if (time_after_eq(jiffies, rq->next_balance)) 8270 raise_softirq(SCHED_SOFTIRQ); 8271 #ifdef CONFIG_NO_HZ_COMMON 8272 if (nohz_kick_needed(rq)) 8273 nohz_balancer_kick(); 8274 #endif 8275 } 8276 8277 static void rq_online_fair(struct rq *rq) 8278 { 8279 update_sysctl(); 8280 8281 update_runtime_enabled(rq); 8282 } 8283 8284 static void rq_offline_fair(struct rq *rq) 8285 { 8286 update_sysctl(); 8287 8288 /* Ensure any throttled groups are reachable by pick_next_task */ 8289 unthrottle_offline_cfs_rqs(rq); 8290 } 8291 8292 #endif /* CONFIG_SMP */ 8293 8294 /* 8295 * scheduler tick hitting a task of our scheduling class: 8296 */ 8297 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 8298 { 8299 struct cfs_rq *cfs_rq; 8300 struct sched_entity *se = &curr->se; 8301 8302 for_each_sched_entity(se) { 8303 cfs_rq = cfs_rq_of(se); 8304 entity_tick(cfs_rq, se, queued); 8305 } 8306 8307 if (static_branch_unlikely(&sched_numa_balancing)) 8308 task_tick_numa(rq, curr); 8309 } 8310 8311 /* 8312 * called on fork with the child task as argument from the parent's context 8313 * - child not yet on the tasklist 8314 * - preemption disabled 8315 */ 8316 static void task_fork_fair(struct task_struct *p) 8317 { 8318 struct cfs_rq *cfs_rq; 8319 struct sched_entity *se = &p->se, *curr; 8320 int this_cpu = smp_processor_id(); 8321 struct rq *rq = this_rq(); 8322 unsigned long flags; 8323 8324 raw_spin_lock_irqsave(&rq->lock, flags); 8325 8326 update_rq_clock(rq); 8327 8328 cfs_rq = task_cfs_rq(current); 8329 curr = cfs_rq->curr; 8330 8331 /* 8332 * Not only the cpu but also the task_group of the parent might have 8333 * been changed after parent->se.parent,cfs_rq were copied to 8334 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those 8335 * of child point to valid ones. 8336 */ 8337 rcu_read_lock(); 8338 __set_task_cpu(p, this_cpu); 8339 rcu_read_unlock(); 8340 8341 update_curr(cfs_rq); 8342 8343 if (curr) 8344 se->vruntime = curr->vruntime; 8345 place_entity(cfs_rq, se, 1); 8346 8347 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 8348 /* 8349 * Upon rescheduling, sched_class::put_prev_task() will place 8350 * 'current' within the tree based on its new key value. 8351 */ 8352 swap(curr->vruntime, se->vruntime); 8353 resched_curr(rq); 8354 } 8355 8356 se->vruntime -= cfs_rq->min_vruntime; 8357 8358 raw_spin_unlock_irqrestore(&rq->lock, flags); 8359 } 8360 8361 /* 8362 * Priority of the task has changed. Check to see if we preempt 8363 * the current task. 8364 */ 8365 static void 8366 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 8367 { 8368 if (!task_on_rq_queued(p)) 8369 return; 8370 8371 /* 8372 * Reschedule if we are currently running on this runqueue and 8373 * our priority decreased, or if we are not currently running on 8374 * this runqueue and our priority is higher than the current's 8375 */ 8376 if (rq->curr == p) { 8377 if (p->prio > oldprio) 8378 resched_curr(rq); 8379 } else 8380 check_preempt_curr(rq, p, 0); 8381 } 8382 8383 static inline bool vruntime_normalized(struct task_struct *p) 8384 { 8385 struct sched_entity *se = &p->se; 8386 8387 /* 8388 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 8389 * the dequeue_entity(.flags=0) will already have normalized the 8390 * vruntime. 8391 */ 8392 if (p->on_rq) 8393 return true; 8394 8395 /* 8396 * When !on_rq, vruntime of the task has usually NOT been normalized. 8397 * But there are some cases where it has already been normalized: 8398 * 8399 * - A forked child which is waiting for being woken up by 8400 * wake_up_new_task(). 8401 * - A task which has been woken up by try_to_wake_up() and 8402 * waiting for actually being woken up by sched_ttwu_pending(). 8403 */ 8404 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 8405 return true; 8406 8407 return false; 8408 } 8409 8410 static void detach_task_cfs_rq(struct task_struct *p) 8411 { 8412 struct sched_entity *se = &p->se; 8413 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8414 8415 if (!vruntime_normalized(p)) { 8416 /* 8417 * Fix up our vruntime so that the current sleep doesn't 8418 * cause 'unlimited' sleep bonus. 8419 */ 8420 place_entity(cfs_rq, se, 0); 8421 se->vruntime -= cfs_rq->min_vruntime; 8422 } 8423 8424 /* Catch up with the cfs_rq and remove our load when we leave */ 8425 detach_entity_load_avg(cfs_rq, se); 8426 } 8427 8428 static void attach_task_cfs_rq(struct task_struct *p) 8429 { 8430 struct sched_entity *se = &p->se; 8431 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8432 8433 #ifdef CONFIG_FAIR_GROUP_SCHED 8434 /* 8435 * Since the real-depth could have been changed (only FAIR 8436 * class maintain depth value), reset depth properly. 8437 */ 8438 se->depth = se->parent ? se->parent->depth + 1 : 0; 8439 #endif 8440 8441 /* Synchronize task with its cfs_rq */ 8442 attach_entity_load_avg(cfs_rq, se); 8443 8444 if (!vruntime_normalized(p)) 8445 se->vruntime += cfs_rq->min_vruntime; 8446 } 8447 8448 static void switched_from_fair(struct rq *rq, struct task_struct *p) 8449 { 8450 detach_task_cfs_rq(p); 8451 } 8452 8453 static void switched_to_fair(struct rq *rq, struct task_struct *p) 8454 { 8455 attach_task_cfs_rq(p); 8456 8457 if (task_on_rq_queued(p)) { 8458 /* 8459 * We were most likely switched from sched_rt, so 8460 * kick off the schedule if running, otherwise just see 8461 * if we can still preempt the current task. 8462 */ 8463 if (rq->curr == p) 8464 resched_curr(rq); 8465 else 8466 check_preempt_curr(rq, p, 0); 8467 } 8468 } 8469 8470 /* Account for a task changing its policy or group. 8471 * 8472 * This routine is mostly called to set cfs_rq->curr field when a task 8473 * migrates between groups/classes. 8474 */ 8475 static void set_curr_task_fair(struct rq *rq) 8476 { 8477 struct sched_entity *se = &rq->curr->se; 8478 8479 for_each_sched_entity(se) { 8480 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8481 8482 set_next_entity(cfs_rq, se); 8483 /* ensure bandwidth has been allocated on our new cfs_rq */ 8484 account_cfs_rq_runtime(cfs_rq, 0); 8485 } 8486 } 8487 8488 void init_cfs_rq(struct cfs_rq *cfs_rq) 8489 { 8490 cfs_rq->tasks_timeline = RB_ROOT; 8491 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 8492 #ifndef CONFIG_64BIT 8493 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 8494 #endif 8495 #ifdef CONFIG_SMP 8496 atomic_long_set(&cfs_rq->removed_load_avg, 0); 8497 atomic_long_set(&cfs_rq->removed_util_avg, 0); 8498 #endif 8499 } 8500 8501 #ifdef CONFIG_FAIR_GROUP_SCHED 8502 static void task_move_group_fair(struct task_struct *p) 8503 { 8504 detach_task_cfs_rq(p); 8505 set_task_rq(p, task_cpu(p)); 8506 8507 #ifdef CONFIG_SMP 8508 /* Tell se's cfs_rq has been changed -- migrated */ 8509 p->se.avg.last_update_time = 0; 8510 #endif 8511 attach_task_cfs_rq(p); 8512 } 8513 8514 void free_fair_sched_group(struct task_group *tg) 8515 { 8516 int i; 8517 8518 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8519 8520 for_each_possible_cpu(i) { 8521 if (tg->cfs_rq) 8522 kfree(tg->cfs_rq[i]); 8523 if (tg->se) 8524 kfree(tg->se[i]); 8525 } 8526 8527 kfree(tg->cfs_rq); 8528 kfree(tg->se); 8529 } 8530 8531 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8532 { 8533 struct sched_entity *se; 8534 struct cfs_rq *cfs_rq; 8535 struct rq *rq; 8536 int i; 8537 8538 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 8539 if (!tg->cfs_rq) 8540 goto err; 8541 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 8542 if (!tg->se) 8543 goto err; 8544 8545 tg->shares = NICE_0_LOAD; 8546 8547 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8548 8549 for_each_possible_cpu(i) { 8550 rq = cpu_rq(i); 8551 8552 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 8553 GFP_KERNEL, cpu_to_node(i)); 8554 if (!cfs_rq) 8555 goto err; 8556 8557 se = kzalloc_node(sizeof(struct sched_entity), 8558 GFP_KERNEL, cpu_to_node(i)); 8559 if (!se) 8560 goto err_free_rq; 8561 8562 init_cfs_rq(cfs_rq); 8563 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 8564 init_entity_runnable_average(se); 8565 8566 raw_spin_lock_irq(&rq->lock); 8567 post_init_entity_util_avg(se); 8568 raw_spin_unlock_irq(&rq->lock); 8569 } 8570 8571 return 1; 8572 8573 err_free_rq: 8574 kfree(cfs_rq); 8575 err: 8576 return 0; 8577 } 8578 8579 void unregister_fair_sched_group(struct task_group *tg) 8580 { 8581 unsigned long flags; 8582 struct rq *rq; 8583 int cpu; 8584 8585 for_each_possible_cpu(cpu) { 8586 if (tg->se[cpu]) 8587 remove_entity_load_avg(tg->se[cpu]); 8588 8589 /* 8590 * Only empty task groups can be destroyed; so we can speculatively 8591 * check on_list without danger of it being re-added. 8592 */ 8593 if (!tg->cfs_rq[cpu]->on_list) 8594 continue; 8595 8596 rq = cpu_rq(cpu); 8597 8598 raw_spin_lock_irqsave(&rq->lock, flags); 8599 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 8600 raw_spin_unlock_irqrestore(&rq->lock, flags); 8601 } 8602 } 8603 8604 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 8605 struct sched_entity *se, int cpu, 8606 struct sched_entity *parent) 8607 { 8608 struct rq *rq = cpu_rq(cpu); 8609 8610 cfs_rq->tg = tg; 8611 cfs_rq->rq = rq; 8612 init_cfs_rq_runtime(cfs_rq); 8613 8614 tg->cfs_rq[cpu] = cfs_rq; 8615 tg->se[cpu] = se; 8616 8617 /* se could be NULL for root_task_group */ 8618 if (!se) 8619 return; 8620 8621 if (!parent) { 8622 se->cfs_rq = &rq->cfs; 8623 se->depth = 0; 8624 } else { 8625 se->cfs_rq = parent->my_q; 8626 se->depth = parent->depth + 1; 8627 } 8628 8629 se->my_q = cfs_rq; 8630 /* guarantee group entities always have weight */ 8631 update_load_set(&se->load, NICE_0_LOAD); 8632 se->parent = parent; 8633 } 8634 8635 static DEFINE_MUTEX(shares_mutex); 8636 8637 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 8638 { 8639 int i; 8640 unsigned long flags; 8641 8642 /* 8643 * We can't change the weight of the root cgroup. 8644 */ 8645 if (!tg->se[0]) 8646 return -EINVAL; 8647 8648 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 8649 8650 mutex_lock(&shares_mutex); 8651 if (tg->shares == shares) 8652 goto done; 8653 8654 tg->shares = shares; 8655 for_each_possible_cpu(i) { 8656 struct rq *rq = cpu_rq(i); 8657 struct sched_entity *se; 8658 8659 se = tg->se[i]; 8660 /* Propagate contribution to hierarchy */ 8661 raw_spin_lock_irqsave(&rq->lock, flags); 8662 8663 /* Possible calls to update_curr() need rq clock */ 8664 update_rq_clock(rq); 8665 for_each_sched_entity(se) 8666 update_cfs_shares(group_cfs_rq(se)); 8667 raw_spin_unlock_irqrestore(&rq->lock, flags); 8668 } 8669 8670 done: 8671 mutex_unlock(&shares_mutex); 8672 return 0; 8673 } 8674 #else /* CONFIG_FAIR_GROUP_SCHED */ 8675 8676 void free_fair_sched_group(struct task_group *tg) { } 8677 8678 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8679 { 8680 return 1; 8681 } 8682 8683 void unregister_fair_sched_group(struct task_group *tg) { } 8684 8685 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8686 8687 8688 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 8689 { 8690 struct sched_entity *se = &task->se; 8691 unsigned int rr_interval = 0; 8692 8693 /* 8694 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 8695 * idle runqueue: 8696 */ 8697 if (rq->cfs.load.weight) 8698 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 8699 8700 return rr_interval; 8701 } 8702 8703 /* 8704 * All the scheduling class methods: 8705 */ 8706 const struct sched_class fair_sched_class = { 8707 .next = &idle_sched_class, 8708 .enqueue_task = enqueue_task_fair, 8709 .dequeue_task = dequeue_task_fair, 8710 .yield_task = yield_task_fair, 8711 .yield_to_task = yield_to_task_fair, 8712 8713 .check_preempt_curr = check_preempt_wakeup, 8714 8715 .pick_next_task = pick_next_task_fair, 8716 .put_prev_task = put_prev_task_fair, 8717 8718 #ifdef CONFIG_SMP 8719 .select_task_rq = select_task_rq_fair, 8720 .migrate_task_rq = migrate_task_rq_fair, 8721 8722 .rq_online = rq_online_fair, 8723 .rq_offline = rq_offline_fair, 8724 8725 .task_dead = task_dead_fair, 8726 .set_cpus_allowed = set_cpus_allowed_common, 8727 #endif 8728 8729 .set_curr_task = set_curr_task_fair, 8730 .task_tick = task_tick_fair, 8731 .task_fork = task_fork_fair, 8732 8733 .prio_changed = prio_changed_fair, 8734 .switched_from = switched_from_fair, 8735 .switched_to = switched_to_fair, 8736 8737 .get_rr_interval = get_rr_interval_fair, 8738 8739 .update_curr = update_curr_fair, 8740 8741 #ifdef CONFIG_FAIR_GROUP_SCHED 8742 .task_move_group = task_move_group_fair, 8743 #endif 8744 }; 8745 8746 #ifdef CONFIG_SCHED_DEBUG 8747 void print_cfs_stats(struct seq_file *m, int cpu) 8748 { 8749 struct cfs_rq *cfs_rq; 8750 8751 rcu_read_lock(); 8752 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 8753 print_cfs_rq(m, cpu, cfs_rq); 8754 rcu_read_unlock(); 8755 } 8756 8757 #ifdef CONFIG_NUMA_BALANCING 8758 void show_numa_stats(struct task_struct *p, struct seq_file *m) 8759 { 8760 int node; 8761 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 8762 8763 for_each_online_node(node) { 8764 if (p->numa_faults) { 8765 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 8766 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 8767 } 8768 if (p->numa_group) { 8769 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 8770 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 8771 } 8772 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 8773 } 8774 } 8775 #endif /* CONFIG_NUMA_BALANCING */ 8776 #endif /* CONFIG_SCHED_DEBUG */ 8777 8778 __init void init_sched_fair_class(void) 8779 { 8780 #ifdef CONFIG_SMP 8781 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 8782 8783 #ifdef CONFIG_NO_HZ_COMMON 8784 nohz.next_balance = jiffies; 8785 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 8786 #endif 8787 #endif /* SMP */ 8788 8789 } 8790