xref: /openbmc/linux/kernel/sched/fair.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21  */
22 
23 #include <linux/sched/mm.h>
24 #include <linux/sched/topology.h>
25 
26 #include <linux/latencytop.h>
27 #include <linux/cpumask.h>
28 #include <linux/cpuidle.h>
29 #include <linux/slab.h>
30 #include <linux/profile.h>
31 #include <linux/interrupt.h>
32 #include <linux/mempolicy.h>
33 #include <linux/migrate.h>
34 #include <linux/task_work.h>
35 
36 #include <trace/events/sched.h>
37 
38 #include "sched.h"
39 
40 /*
41  * Targeted preemption latency for CPU-bound tasks:
42  *
43  * NOTE: this latency value is not the same as the concept of
44  * 'timeslice length' - timeslices in CFS are of variable length
45  * and have no persistent notion like in traditional, time-slice
46  * based scheduling concepts.
47  *
48  * (to see the precise effective timeslice length of your workload,
49  *  run vmstat and monitor the context-switches (cs) field)
50  *
51  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
52  */
53 unsigned int sysctl_sched_latency			= 6000000ULL;
54 unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
55 
56 /*
57  * The initial- and re-scaling of tunables is configurable
58  *
59  * Options are:
60  *
61  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
62  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64  *
65  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
66  */
67 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
68 
69 /*
70  * Minimal preemption granularity for CPU-bound tasks:
71  *
72  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
73  */
74 unsigned int sysctl_sched_min_granularity		= 750000ULL;
75 unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
76 
77 /*
78  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
79  */
80 static unsigned int sched_nr_latency = 8;
81 
82 /*
83  * After fork, child runs first. If set to 0 (default) then
84  * parent will (try to) run first.
85  */
86 unsigned int sysctl_sched_child_runs_first __read_mostly;
87 
88 /*
89  * SCHED_OTHER wake-up granularity.
90  *
91  * This option delays the preemption effects of decoupled workloads
92  * and reduces their over-scheduling. Synchronous workloads will still
93  * have immediate wakeup/sleep latencies.
94  *
95  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
96  */
97 unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
98 unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
99 
100 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
101 
102 #ifdef CONFIG_SMP
103 /*
104  * For asym packing, by default the lower numbered cpu has higher priority.
105  */
106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 	return -cpu;
109 }
110 #endif
111 
112 #ifdef CONFIG_CFS_BANDWIDTH
113 /*
114  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115  * each time a cfs_rq requests quota.
116  *
117  * Note: in the case that the slice exceeds the runtime remaining (either due
118  * to consumption or the quota being specified to be smaller than the slice)
119  * we will always only issue the remaining available time.
120  *
121  * (default: 5 msec, units: microseconds)
122  */
123 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
124 #endif
125 
126 /*
127  * The margin used when comparing utilization with CPU capacity:
128  * util * margin < capacity * 1024
129  *
130  * (default: ~20%)
131  */
132 unsigned int capacity_margin				= 1280;
133 
134 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135 {
136 	lw->weight += inc;
137 	lw->inv_weight = 0;
138 }
139 
140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141 {
142 	lw->weight -= dec;
143 	lw->inv_weight = 0;
144 }
145 
146 static inline void update_load_set(struct load_weight *lw, unsigned long w)
147 {
148 	lw->weight = w;
149 	lw->inv_weight = 0;
150 }
151 
152 /*
153  * Increase the granularity value when there are more CPUs,
154  * because with more CPUs the 'effective latency' as visible
155  * to users decreases. But the relationship is not linear,
156  * so pick a second-best guess by going with the log2 of the
157  * number of CPUs.
158  *
159  * This idea comes from the SD scheduler of Con Kolivas:
160  */
161 static unsigned int get_update_sysctl_factor(void)
162 {
163 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 	unsigned int factor;
165 
166 	switch (sysctl_sched_tunable_scaling) {
167 	case SCHED_TUNABLESCALING_NONE:
168 		factor = 1;
169 		break;
170 	case SCHED_TUNABLESCALING_LINEAR:
171 		factor = cpus;
172 		break;
173 	case SCHED_TUNABLESCALING_LOG:
174 	default:
175 		factor = 1 + ilog2(cpus);
176 		break;
177 	}
178 
179 	return factor;
180 }
181 
182 static void update_sysctl(void)
183 {
184 	unsigned int factor = get_update_sysctl_factor();
185 
186 #define SET_SYSCTL(name) \
187 	(sysctl_##name = (factor) * normalized_sysctl_##name)
188 	SET_SYSCTL(sched_min_granularity);
189 	SET_SYSCTL(sched_latency);
190 	SET_SYSCTL(sched_wakeup_granularity);
191 #undef SET_SYSCTL
192 }
193 
194 void sched_init_granularity(void)
195 {
196 	update_sysctl();
197 }
198 
199 #define WMULT_CONST	(~0U)
200 #define WMULT_SHIFT	32
201 
202 static void __update_inv_weight(struct load_weight *lw)
203 {
204 	unsigned long w;
205 
206 	if (likely(lw->inv_weight))
207 		return;
208 
209 	w = scale_load_down(lw->weight);
210 
211 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 		lw->inv_weight = 1;
213 	else if (unlikely(!w))
214 		lw->inv_weight = WMULT_CONST;
215 	else
216 		lw->inv_weight = WMULT_CONST / w;
217 }
218 
219 /*
220  * delta_exec * weight / lw.weight
221  *   OR
222  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223  *
224  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225  * we're guaranteed shift stays positive because inv_weight is guaranteed to
226  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227  *
228  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229  * weight/lw.weight <= 1, and therefore our shift will also be positive.
230  */
231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232 {
233 	u64 fact = scale_load_down(weight);
234 	int shift = WMULT_SHIFT;
235 
236 	__update_inv_weight(lw);
237 
238 	if (unlikely(fact >> 32)) {
239 		while (fact >> 32) {
240 			fact >>= 1;
241 			shift--;
242 		}
243 	}
244 
245 	/* hint to use a 32x32->64 mul */
246 	fact = (u64)(u32)fact * lw->inv_weight;
247 
248 	while (fact >> 32) {
249 		fact >>= 1;
250 		shift--;
251 	}
252 
253 	return mul_u64_u32_shr(delta_exec, fact, shift);
254 }
255 
256 
257 const struct sched_class fair_sched_class;
258 
259 /**************************************************************
260  * CFS operations on generic schedulable entities:
261  */
262 
263 #ifdef CONFIG_FAIR_GROUP_SCHED
264 
265 /* cpu runqueue to which this cfs_rq is attached */
266 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267 {
268 	return cfs_rq->rq;
269 }
270 
271 /* An entity is a task if it doesn't "own" a runqueue */
272 #define entity_is_task(se)	(!se->my_q)
273 
274 static inline struct task_struct *task_of(struct sched_entity *se)
275 {
276 	SCHED_WARN_ON(!entity_is_task(se));
277 	return container_of(se, struct task_struct, se);
278 }
279 
280 /* Walk up scheduling entities hierarchy */
281 #define for_each_sched_entity(se) \
282 		for (; se; se = se->parent)
283 
284 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285 {
286 	return p->se.cfs_rq;
287 }
288 
289 /* runqueue on which this entity is (to be) queued */
290 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291 {
292 	return se->cfs_rq;
293 }
294 
295 /* runqueue "owned" by this group */
296 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297 {
298 	return grp->my_q;
299 }
300 
301 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302 {
303 	if (!cfs_rq->on_list) {
304 		struct rq *rq = rq_of(cfs_rq);
305 		int cpu = cpu_of(rq);
306 		/*
307 		 * Ensure we either appear before our parent (if already
308 		 * enqueued) or force our parent to appear after us when it is
309 		 * enqueued. The fact that we always enqueue bottom-up
310 		 * reduces this to two cases and a special case for the root
311 		 * cfs_rq. Furthermore, it also means that we will always reset
312 		 * tmp_alone_branch either when the branch is connected
313 		 * to a tree or when we reach the beg of the tree
314 		 */
315 		if (cfs_rq->tg->parent &&
316 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 			/*
318 			 * If parent is already on the list, we add the child
319 			 * just before. Thanks to circular linked property of
320 			 * the list, this means to put the child at the tail
321 			 * of the list that starts by parent.
322 			 */
323 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 			/*
326 			 * The branch is now connected to its tree so we can
327 			 * reset tmp_alone_branch to the beginning of the
328 			 * list.
329 			 */
330 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 		} else if (!cfs_rq->tg->parent) {
332 			/*
333 			 * cfs rq without parent should be put
334 			 * at the tail of the list.
335 			 */
336 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 				&rq->leaf_cfs_rq_list);
338 			/*
339 			 * We have reach the beg of a tree so we can reset
340 			 * tmp_alone_branch to the beginning of the list.
341 			 */
342 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 		} else {
344 			/*
345 			 * The parent has not already been added so we want to
346 			 * make sure that it will be put after us.
347 			 * tmp_alone_branch points to the beg of the branch
348 			 * where we will add parent.
349 			 */
350 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 				rq->tmp_alone_branch);
352 			/*
353 			 * update tmp_alone_branch to points to the new beg
354 			 * of the branch
355 			 */
356 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357 		}
358 
359 		cfs_rq->on_list = 1;
360 	}
361 }
362 
363 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364 {
365 	if (cfs_rq->on_list) {
366 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 		cfs_rq->on_list = 0;
368 	}
369 }
370 
371 /* Iterate thr' all leaf cfs_rq's on a runqueue */
372 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
373 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
374 
375 /* Do the two (enqueued) entities belong to the same group ? */
376 static inline struct cfs_rq *
377 is_same_group(struct sched_entity *se, struct sched_entity *pse)
378 {
379 	if (se->cfs_rq == pse->cfs_rq)
380 		return se->cfs_rq;
381 
382 	return NULL;
383 }
384 
385 static inline struct sched_entity *parent_entity(struct sched_entity *se)
386 {
387 	return se->parent;
388 }
389 
390 static void
391 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
392 {
393 	int se_depth, pse_depth;
394 
395 	/*
396 	 * preemption test can be made between sibling entities who are in the
397 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
398 	 * both tasks until we find their ancestors who are siblings of common
399 	 * parent.
400 	 */
401 
402 	/* First walk up until both entities are at same depth */
403 	se_depth = (*se)->depth;
404 	pse_depth = (*pse)->depth;
405 
406 	while (se_depth > pse_depth) {
407 		se_depth--;
408 		*se = parent_entity(*se);
409 	}
410 
411 	while (pse_depth > se_depth) {
412 		pse_depth--;
413 		*pse = parent_entity(*pse);
414 	}
415 
416 	while (!is_same_group(*se, *pse)) {
417 		*se = parent_entity(*se);
418 		*pse = parent_entity(*pse);
419 	}
420 }
421 
422 #else	/* !CONFIG_FAIR_GROUP_SCHED */
423 
424 static inline struct task_struct *task_of(struct sched_entity *se)
425 {
426 	return container_of(se, struct task_struct, se);
427 }
428 
429 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
430 {
431 	return container_of(cfs_rq, struct rq, cfs);
432 }
433 
434 #define entity_is_task(se)	1
435 
436 #define for_each_sched_entity(se) \
437 		for (; se; se = NULL)
438 
439 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
440 {
441 	return &task_rq(p)->cfs;
442 }
443 
444 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
445 {
446 	struct task_struct *p = task_of(se);
447 	struct rq *rq = task_rq(p);
448 
449 	return &rq->cfs;
450 }
451 
452 /* runqueue "owned" by this group */
453 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
454 {
455 	return NULL;
456 }
457 
458 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
459 {
460 }
461 
462 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
463 {
464 }
465 
466 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
467 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
468 
469 static inline struct sched_entity *parent_entity(struct sched_entity *se)
470 {
471 	return NULL;
472 }
473 
474 static inline void
475 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
476 {
477 }
478 
479 #endif	/* CONFIG_FAIR_GROUP_SCHED */
480 
481 static __always_inline
482 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
483 
484 /**************************************************************
485  * Scheduling class tree data structure manipulation methods:
486  */
487 
488 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
489 {
490 	s64 delta = (s64)(vruntime - max_vruntime);
491 	if (delta > 0)
492 		max_vruntime = vruntime;
493 
494 	return max_vruntime;
495 }
496 
497 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
498 {
499 	s64 delta = (s64)(vruntime - min_vruntime);
500 	if (delta < 0)
501 		min_vruntime = vruntime;
502 
503 	return min_vruntime;
504 }
505 
506 static inline int entity_before(struct sched_entity *a,
507 				struct sched_entity *b)
508 {
509 	return (s64)(a->vruntime - b->vruntime) < 0;
510 }
511 
512 static void update_min_vruntime(struct cfs_rq *cfs_rq)
513 {
514 	struct sched_entity *curr = cfs_rq->curr;
515 
516 	u64 vruntime = cfs_rq->min_vruntime;
517 
518 	if (curr) {
519 		if (curr->on_rq)
520 			vruntime = curr->vruntime;
521 		else
522 			curr = NULL;
523 	}
524 
525 	if (cfs_rq->rb_leftmost) {
526 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
527 						   struct sched_entity,
528 						   run_node);
529 
530 		if (!curr)
531 			vruntime = se->vruntime;
532 		else
533 			vruntime = min_vruntime(vruntime, se->vruntime);
534 	}
535 
536 	/* ensure we never gain time by being placed backwards. */
537 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
538 #ifndef CONFIG_64BIT
539 	smp_wmb();
540 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
541 #endif
542 }
543 
544 /*
545  * Enqueue an entity into the rb-tree:
546  */
547 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
548 {
549 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
550 	struct rb_node *parent = NULL;
551 	struct sched_entity *entry;
552 	int leftmost = 1;
553 
554 	/*
555 	 * Find the right place in the rbtree:
556 	 */
557 	while (*link) {
558 		parent = *link;
559 		entry = rb_entry(parent, struct sched_entity, run_node);
560 		/*
561 		 * We dont care about collisions. Nodes with
562 		 * the same key stay together.
563 		 */
564 		if (entity_before(se, entry)) {
565 			link = &parent->rb_left;
566 		} else {
567 			link = &parent->rb_right;
568 			leftmost = 0;
569 		}
570 	}
571 
572 	/*
573 	 * Maintain a cache of leftmost tree entries (it is frequently
574 	 * used):
575 	 */
576 	if (leftmost)
577 		cfs_rq->rb_leftmost = &se->run_node;
578 
579 	rb_link_node(&se->run_node, parent, link);
580 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
581 }
582 
583 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
584 {
585 	if (cfs_rq->rb_leftmost == &se->run_node) {
586 		struct rb_node *next_node;
587 
588 		next_node = rb_next(&se->run_node);
589 		cfs_rq->rb_leftmost = next_node;
590 	}
591 
592 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
593 }
594 
595 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
596 {
597 	struct rb_node *left = cfs_rq->rb_leftmost;
598 
599 	if (!left)
600 		return NULL;
601 
602 	return rb_entry(left, struct sched_entity, run_node);
603 }
604 
605 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
606 {
607 	struct rb_node *next = rb_next(&se->run_node);
608 
609 	if (!next)
610 		return NULL;
611 
612 	return rb_entry(next, struct sched_entity, run_node);
613 }
614 
615 #ifdef CONFIG_SCHED_DEBUG
616 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
617 {
618 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
619 
620 	if (!last)
621 		return NULL;
622 
623 	return rb_entry(last, struct sched_entity, run_node);
624 }
625 
626 /**************************************************************
627  * Scheduling class statistics methods:
628  */
629 
630 int sched_proc_update_handler(struct ctl_table *table, int write,
631 		void __user *buffer, size_t *lenp,
632 		loff_t *ppos)
633 {
634 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
635 	unsigned int factor = get_update_sysctl_factor();
636 
637 	if (ret || !write)
638 		return ret;
639 
640 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
641 					sysctl_sched_min_granularity);
642 
643 #define WRT_SYSCTL(name) \
644 	(normalized_sysctl_##name = sysctl_##name / (factor))
645 	WRT_SYSCTL(sched_min_granularity);
646 	WRT_SYSCTL(sched_latency);
647 	WRT_SYSCTL(sched_wakeup_granularity);
648 #undef WRT_SYSCTL
649 
650 	return 0;
651 }
652 #endif
653 
654 /*
655  * delta /= w
656  */
657 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
658 {
659 	if (unlikely(se->load.weight != NICE_0_LOAD))
660 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
661 
662 	return delta;
663 }
664 
665 /*
666  * The idea is to set a period in which each task runs once.
667  *
668  * When there are too many tasks (sched_nr_latency) we have to stretch
669  * this period because otherwise the slices get too small.
670  *
671  * p = (nr <= nl) ? l : l*nr/nl
672  */
673 static u64 __sched_period(unsigned long nr_running)
674 {
675 	if (unlikely(nr_running > sched_nr_latency))
676 		return nr_running * sysctl_sched_min_granularity;
677 	else
678 		return sysctl_sched_latency;
679 }
680 
681 /*
682  * We calculate the wall-time slice from the period by taking a part
683  * proportional to the weight.
684  *
685  * s = p*P[w/rw]
686  */
687 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
688 {
689 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
690 
691 	for_each_sched_entity(se) {
692 		struct load_weight *load;
693 		struct load_weight lw;
694 
695 		cfs_rq = cfs_rq_of(se);
696 		load = &cfs_rq->load;
697 
698 		if (unlikely(!se->on_rq)) {
699 			lw = cfs_rq->load;
700 
701 			update_load_add(&lw, se->load.weight);
702 			load = &lw;
703 		}
704 		slice = __calc_delta(slice, se->load.weight, load);
705 	}
706 	return slice;
707 }
708 
709 /*
710  * We calculate the vruntime slice of a to-be-inserted task.
711  *
712  * vs = s/w
713  */
714 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
715 {
716 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
717 }
718 
719 #ifdef CONFIG_SMP
720 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
721 static unsigned long task_h_load(struct task_struct *p);
722 
723 /*
724  * We choose a half-life close to 1 scheduling period.
725  * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
726  * dependent on this value.
727  */
728 #define LOAD_AVG_PERIOD 32
729 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
730 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
731 
732 /* Give new sched_entity start runnable values to heavy its load in infant time */
733 void init_entity_runnable_average(struct sched_entity *se)
734 {
735 	struct sched_avg *sa = &se->avg;
736 
737 	sa->last_update_time = 0;
738 	/*
739 	 * sched_avg's period_contrib should be strictly less then 1024, so
740 	 * we give it 1023 to make sure it is almost a period (1024us), and
741 	 * will definitely be update (after enqueue).
742 	 */
743 	sa->period_contrib = 1023;
744 	/*
745 	 * Tasks are intialized with full load to be seen as heavy tasks until
746 	 * they get a chance to stabilize to their real load level.
747 	 * Group entities are intialized with zero load to reflect the fact that
748 	 * nothing has been attached to the task group yet.
749 	 */
750 	if (entity_is_task(se))
751 		sa->load_avg = scale_load_down(se->load.weight);
752 	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
753 	/*
754 	 * At this point, util_avg won't be used in select_task_rq_fair anyway
755 	 */
756 	sa->util_avg = 0;
757 	sa->util_sum = 0;
758 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
759 }
760 
761 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
762 static void attach_entity_cfs_rq(struct sched_entity *se);
763 
764 /*
765  * With new tasks being created, their initial util_avgs are extrapolated
766  * based on the cfs_rq's current util_avg:
767  *
768  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
769  *
770  * However, in many cases, the above util_avg does not give a desired
771  * value. Moreover, the sum of the util_avgs may be divergent, such
772  * as when the series is a harmonic series.
773  *
774  * To solve this problem, we also cap the util_avg of successive tasks to
775  * only 1/2 of the left utilization budget:
776  *
777  *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
778  *
779  * where n denotes the nth task.
780  *
781  * For example, a simplest series from the beginning would be like:
782  *
783  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
784  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
785  *
786  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
787  * if util_avg > util_avg_cap.
788  */
789 void post_init_entity_util_avg(struct sched_entity *se)
790 {
791 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
792 	struct sched_avg *sa = &se->avg;
793 	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
794 
795 	if (cap > 0) {
796 		if (cfs_rq->avg.util_avg != 0) {
797 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
798 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
799 
800 			if (sa->util_avg > cap)
801 				sa->util_avg = cap;
802 		} else {
803 			sa->util_avg = cap;
804 		}
805 		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
806 	}
807 
808 	if (entity_is_task(se)) {
809 		struct task_struct *p = task_of(se);
810 		if (p->sched_class != &fair_sched_class) {
811 			/*
812 			 * For !fair tasks do:
813 			 *
814 			update_cfs_rq_load_avg(now, cfs_rq, false);
815 			attach_entity_load_avg(cfs_rq, se);
816 			switched_from_fair(rq, p);
817 			 *
818 			 * such that the next switched_to_fair() has the
819 			 * expected state.
820 			 */
821 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
822 			return;
823 		}
824 	}
825 
826 	attach_entity_cfs_rq(se);
827 }
828 
829 #else /* !CONFIG_SMP */
830 void init_entity_runnable_average(struct sched_entity *se)
831 {
832 }
833 void post_init_entity_util_avg(struct sched_entity *se)
834 {
835 }
836 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
837 {
838 }
839 #endif /* CONFIG_SMP */
840 
841 /*
842  * Update the current task's runtime statistics.
843  */
844 static void update_curr(struct cfs_rq *cfs_rq)
845 {
846 	struct sched_entity *curr = cfs_rq->curr;
847 	u64 now = rq_clock_task(rq_of(cfs_rq));
848 	u64 delta_exec;
849 
850 	if (unlikely(!curr))
851 		return;
852 
853 	delta_exec = now - curr->exec_start;
854 	if (unlikely((s64)delta_exec <= 0))
855 		return;
856 
857 	curr->exec_start = now;
858 
859 	schedstat_set(curr->statistics.exec_max,
860 		      max(delta_exec, curr->statistics.exec_max));
861 
862 	curr->sum_exec_runtime += delta_exec;
863 	schedstat_add(cfs_rq->exec_clock, delta_exec);
864 
865 	curr->vruntime += calc_delta_fair(delta_exec, curr);
866 	update_min_vruntime(cfs_rq);
867 
868 	if (entity_is_task(curr)) {
869 		struct task_struct *curtask = task_of(curr);
870 
871 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
872 		cpuacct_charge(curtask, delta_exec);
873 		account_group_exec_runtime(curtask, delta_exec);
874 	}
875 
876 	account_cfs_rq_runtime(cfs_rq, delta_exec);
877 }
878 
879 static void update_curr_fair(struct rq *rq)
880 {
881 	update_curr(cfs_rq_of(&rq->curr->se));
882 }
883 
884 static inline void
885 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
886 {
887 	u64 wait_start, prev_wait_start;
888 
889 	if (!schedstat_enabled())
890 		return;
891 
892 	wait_start = rq_clock(rq_of(cfs_rq));
893 	prev_wait_start = schedstat_val(se->statistics.wait_start);
894 
895 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
896 	    likely(wait_start > prev_wait_start))
897 		wait_start -= prev_wait_start;
898 
899 	schedstat_set(se->statistics.wait_start, wait_start);
900 }
901 
902 static inline void
903 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
904 {
905 	struct task_struct *p;
906 	u64 delta;
907 
908 	if (!schedstat_enabled())
909 		return;
910 
911 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
912 
913 	if (entity_is_task(se)) {
914 		p = task_of(se);
915 		if (task_on_rq_migrating(p)) {
916 			/*
917 			 * Preserve migrating task's wait time so wait_start
918 			 * time stamp can be adjusted to accumulate wait time
919 			 * prior to migration.
920 			 */
921 			schedstat_set(se->statistics.wait_start, delta);
922 			return;
923 		}
924 		trace_sched_stat_wait(p, delta);
925 	}
926 
927 	schedstat_set(se->statistics.wait_max,
928 		      max(schedstat_val(se->statistics.wait_max), delta));
929 	schedstat_inc(se->statistics.wait_count);
930 	schedstat_add(se->statistics.wait_sum, delta);
931 	schedstat_set(se->statistics.wait_start, 0);
932 }
933 
934 static inline void
935 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
936 {
937 	struct task_struct *tsk = NULL;
938 	u64 sleep_start, block_start;
939 
940 	if (!schedstat_enabled())
941 		return;
942 
943 	sleep_start = schedstat_val(se->statistics.sleep_start);
944 	block_start = schedstat_val(se->statistics.block_start);
945 
946 	if (entity_is_task(se))
947 		tsk = task_of(se);
948 
949 	if (sleep_start) {
950 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
951 
952 		if ((s64)delta < 0)
953 			delta = 0;
954 
955 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
956 			schedstat_set(se->statistics.sleep_max, delta);
957 
958 		schedstat_set(se->statistics.sleep_start, 0);
959 		schedstat_add(se->statistics.sum_sleep_runtime, delta);
960 
961 		if (tsk) {
962 			account_scheduler_latency(tsk, delta >> 10, 1);
963 			trace_sched_stat_sleep(tsk, delta);
964 		}
965 	}
966 	if (block_start) {
967 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
968 
969 		if ((s64)delta < 0)
970 			delta = 0;
971 
972 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
973 			schedstat_set(se->statistics.block_max, delta);
974 
975 		schedstat_set(se->statistics.block_start, 0);
976 		schedstat_add(se->statistics.sum_sleep_runtime, delta);
977 
978 		if (tsk) {
979 			if (tsk->in_iowait) {
980 				schedstat_add(se->statistics.iowait_sum, delta);
981 				schedstat_inc(se->statistics.iowait_count);
982 				trace_sched_stat_iowait(tsk, delta);
983 			}
984 
985 			trace_sched_stat_blocked(tsk, delta);
986 
987 			/*
988 			 * Blocking time is in units of nanosecs, so shift by
989 			 * 20 to get a milliseconds-range estimation of the
990 			 * amount of time that the task spent sleeping:
991 			 */
992 			if (unlikely(prof_on == SLEEP_PROFILING)) {
993 				profile_hits(SLEEP_PROFILING,
994 						(void *)get_wchan(tsk),
995 						delta >> 20);
996 			}
997 			account_scheduler_latency(tsk, delta >> 10, 0);
998 		}
999 	}
1000 }
1001 
1002 /*
1003  * Task is being enqueued - update stats:
1004  */
1005 static inline void
1006 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1007 {
1008 	if (!schedstat_enabled())
1009 		return;
1010 
1011 	/*
1012 	 * Are we enqueueing a waiting task? (for current tasks
1013 	 * a dequeue/enqueue event is a NOP)
1014 	 */
1015 	if (se != cfs_rq->curr)
1016 		update_stats_wait_start(cfs_rq, se);
1017 
1018 	if (flags & ENQUEUE_WAKEUP)
1019 		update_stats_enqueue_sleeper(cfs_rq, se);
1020 }
1021 
1022 static inline void
1023 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1024 {
1025 
1026 	if (!schedstat_enabled())
1027 		return;
1028 
1029 	/*
1030 	 * Mark the end of the wait period if dequeueing a
1031 	 * waiting task:
1032 	 */
1033 	if (se != cfs_rq->curr)
1034 		update_stats_wait_end(cfs_rq, se);
1035 
1036 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1037 		struct task_struct *tsk = task_of(se);
1038 
1039 		if (tsk->state & TASK_INTERRUPTIBLE)
1040 			schedstat_set(se->statistics.sleep_start,
1041 				      rq_clock(rq_of(cfs_rq)));
1042 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1043 			schedstat_set(se->statistics.block_start,
1044 				      rq_clock(rq_of(cfs_rq)));
1045 	}
1046 }
1047 
1048 /*
1049  * We are picking a new current task - update its stats:
1050  */
1051 static inline void
1052 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1053 {
1054 	/*
1055 	 * We are starting a new run period:
1056 	 */
1057 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1058 }
1059 
1060 /**************************************************
1061  * Scheduling class queueing methods:
1062  */
1063 
1064 #ifdef CONFIG_NUMA_BALANCING
1065 /*
1066  * Approximate time to scan a full NUMA task in ms. The task scan period is
1067  * calculated based on the tasks virtual memory size and
1068  * numa_balancing_scan_size.
1069  */
1070 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1071 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1072 
1073 /* Portion of address space to scan in MB */
1074 unsigned int sysctl_numa_balancing_scan_size = 256;
1075 
1076 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1077 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1078 
1079 static unsigned int task_nr_scan_windows(struct task_struct *p)
1080 {
1081 	unsigned long rss = 0;
1082 	unsigned long nr_scan_pages;
1083 
1084 	/*
1085 	 * Calculations based on RSS as non-present and empty pages are skipped
1086 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1087 	 * on resident pages
1088 	 */
1089 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1090 	rss = get_mm_rss(p->mm);
1091 	if (!rss)
1092 		rss = nr_scan_pages;
1093 
1094 	rss = round_up(rss, nr_scan_pages);
1095 	return rss / nr_scan_pages;
1096 }
1097 
1098 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1099 #define MAX_SCAN_WINDOW 2560
1100 
1101 static unsigned int task_scan_min(struct task_struct *p)
1102 {
1103 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1104 	unsigned int scan, floor;
1105 	unsigned int windows = 1;
1106 
1107 	if (scan_size < MAX_SCAN_WINDOW)
1108 		windows = MAX_SCAN_WINDOW / scan_size;
1109 	floor = 1000 / windows;
1110 
1111 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1112 	return max_t(unsigned int, floor, scan);
1113 }
1114 
1115 static unsigned int task_scan_max(struct task_struct *p)
1116 {
1117 	unsigned int smin = task_scan_min(p);
1118 	unsigned int smax;
1119 
1120 	/* Watch for min being lower than max due to floor calculations */
1121 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1122 	return max(smin, smax);
1123 }
1124 
1125 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1126 {
1127 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1128 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1129 }
1130 
1131 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1132 {
1133 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1134 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1135 }
1136 
1137 struct numa_group {
1138 	atomic_t refcount;
1139 
1140 	spinlock_t lock; /* nr_tasks, tasks */
1141 	int nr_tasks;
1142 	pid_t gid;
1143 	int active_nodes;
1144 
1145 	struct rcu_head rcu;
1146 	unsigned long total_faults;
1147 	unsigned long max_faults_cpu;
1148 	/*
1149 	 * Faults_cpu is used to decide whether memory should move
1150 	 * towards the CPU. As a consequence, these stats are weighted
1151 	 * more by CPU use than by memory faults.
1152 	 */
1153 	unsigned long *faults_cpu;
1154 	unsigned long faults[0];
1155 };
1156 
1157 /* Shared or private faults. */
1158 #define NR_NUMA_HINT_FAULT_TYPES 2
1159 
1160 /* Memory and CPU locality */
1161 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1162 
1163 /* Averaged statistics, and temporary buffers. */
1164 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1165 
1166 pid_t task_numa_group_id(struct task_struct *p)
1167 {
1168 	return p->numa_group ? p->numa_group->gid : 0;
1169 }
1170 
1171 /*
1172  * The averaged statistics, shared & private, memory & cpu,
1173  * occupy the first half of the array. The second half of the
1174  * array is for current counters, which are averaged into the
1175  * first set by task_numa_placement.
1176  */
1177 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1178 {
1179 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1180 }
1181 
1182 static inline unsigned long task_faults(struct task_struct *p, int nid)
1183 {
1184 	if (!p->numa_faults)
1185 		return 0;
1186 
1187 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1188 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1189 }
1190 
1191 static inline unsigned long group_faults(struct task_struct *p, int nid)
1192 {
1193 	if (!p->numa_group)
1194 		return 0;
1195 
1196 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1197 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1198 }
1199 
1200 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1201 {
1202 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1203 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1204 }
1205 
1206 /*
1207  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1208  * considered part of a numa group's pseudo-interleaving set. Migrations
1209  * between these nodes are slowed down, to allow things to settle down.
1210  */
1211 #define ACTIVE_NODE_FRACTION 3
1212 
1213 static bool numa_is_active_node(int nid, struct numa_group *ng)
1214 {
1215 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1216 }
1217 
1218 /* Handle placement on systems where not all nodes are directly connected. */
1219 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1220 					int maxdist, bool task)
1221 {
1222 	unsigned long score = 0;
1223 	int node;
1224 
1225 	/*
1226 	 * All nodes are directly connected, and the same distance
1227 	 * from each other. No need for fancy placement algorithms.
1228 	 */
1229 	if (sched_numa_topology_type == NUMA_DIRECT)
1230 		return 0;
1231 
1232 	/*
1233 	 * This code is called for each node, introducing N^2 complexity,
1234 	 * which should be ok given the number of nodes rarely exceeds 8.
1235 	 */
1236 	for_each_online_node(node) {
1237 		unsigned long faults;
1238 		int dist = node_distance(nid, node);
1239 
1240 		/*
1241 		 * The furthest away nodes in the system are not interesting
1242 		 * for placement; nid was already counted.
1243 		 */
1244 		if (dist == sched_max_numa_distance || node == nid)
1245 			continue;
1246 
1247 		/*
1248 		 * On systems with a backplane NUMA topology, compare groups
1249 		 * of nodes, and move tasks towards the group with the most
1250 		 * memory accesses. When comparing two nodes at distance
1251 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1252 		 * of each group. Skip other nodes.
1253 		 */
1254 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1255 					dist > maxdist)
1256 			continue;
1257 
1258 		/* Add up the faults from nearby nodes. */
1259 		if (task)
1260 			faults = task_faults(p, node);
1261 		else
1262 			faults = group_faults(p, node);
1263 
1264 		/*
1265 		 * On systems with a glueless mesh NUMA topology, there are
1266 		 * no fixed "groups of nodes". Instead, nodes that are not
1267 		 * directly connected bounce traffic through intermediate
1268 		 * nodes; a numa_group can occupy any set of nodes.
1269 		 * The further away a node is, the less the faults count.
1270 		 * This seems to result in good task placement.
1271 		 */
1272 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1273 			faults *= (sched_max_numa_distance - dist);
1274 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1275 		}
1276 
1277 		score += faults;
1278 	}
1279 
1280 	return score;
1281 }
1282 
1283 /*
1284  * These return the fraction of accesses done by a particular task, or
1285  * task group, on a particular numa node.  The group weight is given a
1286  * larger multiplier, in order to group tasks together that are almost
1287  * evenly spread out between numa nodes.
1288  */
1289 static inline unsigned long task_weight(struct task_struct *p, int nid,
1290 					int dist)
1291 {
1292 	unsigned long faults, total_faults;
1293 
1294 	if (!p->numa_faults)
1295 		return 0;
1296 
1297 	total_faults = p->total_numa_faults;
1298 
1299 	if (!total_faults)
1300 		return 0;
1301 
1302 	faults = task_faults(p, nid);
1303 	faults += score_nearby_nodes(p, nid, dist, true);
1304 
1305 	return 1000 * faults / total_faults;
1306 }
1307 
1308 static inline unsigned long group_weight(struct task_struct *p, int nid,
1309 					 int dist)
1310 {
1311 	unsigned long faults, total_faults;
1312 
1313 	if (!p->numa_group)
1314 		return 0;
1315 
1316 	total_faults = p->numa_group->total_faults;
1317 
1318 	if (!total_faults)
1319 		return 0;
1320 
1321 	faults = group_faults(p, nid);
1322 	faults += score_nearby_nodes(p, nid, dist, false);
1323 
1324 	return 1000 * faults / total_faults;
1325 }
1326 
1327 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1328 				int src_nid, int dst_cpu)
1329 {
1330 	struct numa_group *ng = p->numa_group;
1331 	int dst_nid = cpu_to_node(dst_cpu);
1332 	int last_cpupid, this_cpupid;
1333 
1334 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1335 
1336 	/*
1337 	 * Multi-stage node selection is used in conjunction with a periodic
1338 	 * migration fault to build a temporal task<->page relation. By using
1339 	 * a two-stage filter we remove short/unlikely relations.
1340 	 *
1341 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1342 	 * a task's usage of a particular page (n_p) per total usage of this
1343 	 * page (n_t) (in a given time-span) to a probability.
1344 	 *
1345 	 * Our periodic faults will sample this probability and getting the
1346 	 * same result twice in a row, given these samples are fully
1347 	 * independent, is then given by P(n)^2, provided our sample period
1348 	 * is sufficiently short compared to the usage pattern.
1349 	 *
1350 	 * This quadric squishes small probabilities, making it less likely we
1351 	 * act on an unlikely task<->page relation.
1352 	 */
1353 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1354 	if (!cpupid_pid_unset(last_cpupid) &&
1355 				cpupid_to_nid(last_cpupid) != dst_nid)
1356 		return false;
1357 
1358 	/* Always allow migrate on private faults */
1359 	if (cpupid_match_pid(p, last_cpupid))
1360 		return true;
1361 
1362 	/* A shared fault, but p->numa_group has not been set up yet. */
1363 	if (!ng)
1364 		return true;
1365 
1366 	/*
1367 	 * Destination node is much more heavily used than the source
1368 	 * node? Allow migration.
1369 	 */
1370 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1371 					ACTIVE_NODE_FRACTION)
1372 		return true;
1373 
1374 	/*
1375 	 * Distribute memory according to CPU & memory use on each node,
1376 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1377 	 *
1378 	 * faults_cpu(dst)   3   faults_cpu(src)
1379 	 * --------------- * - > ---------------
1380 	 * faults_mem(dst)   4   faults_mem(src)
1381 	 */
1382 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1383 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1384 }
1385 
1386 static unsigned long weighted_cpuload(const int cpu);
1387 static unsigned long source_load(int cpu, int type);
1388 static unsigned long target_load(int cpu, int type);
1389 static unsigned long capacity_of(int cpu);
1390 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1391 
1392 /* Cached statistics for all CPUs within a node */
1393 struct numa_stats {
1394 	unsigned long nr_running;
1395 	unsigned long load;
1396 
1397 	/* Total compute capacity of CPUs on a node */
1398 	unsigned long compute_capacity;
1399 
1400 	/* Approximate capacity in terms of runnable tasks on a node */
1401 	unsigned long task_capacity;
1402 	int has_free_capacity;
1403 };
1404 
1405 /*
1406  * XXX borrowed from update_sg_lb_stats
1407  */
1408 static void update_numa_stats(struct numa_stats *ns, int nid)
1409 {
1410 	int smt, cpu, cpus = 0;
1411 	unsigned long capacity;
1412 
1413 	memset(ns, 0, sizeof(*ns));
1414 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1415 		struct rq *rq = cpu_rq(cpu);
1416 
1417 		ns->nr_running += rq->nr_running;
1418 		ns->load += weighted_cpuload(cpu);
1419 		ns->compute_capacity += capacity_of(cpu);
1420 
1421 		cpus++;
1422 	}
1423 
1424 	/*
1425 	 * If we raced with hotplug and there are no CPUs left in our mask
1426 	 * the @ns structure is NULL'ed and task_numa_compare() will
1427 	 * not find this node attractive.
1428 	 *
1429 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1430 	 * imbalance and bail there.
1431 	 */
1432 	if (!cpus)
1433 		return;
1434 
1435 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1436 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1437 	capacity = cpus / smt; /* cores */
1438 
1439 	ns->task_capacity = min_t(unsigned, capacity,
1440 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1441 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1442 }
1443 
1444 struct task_numa_env {
1445 	struct task_struct *p;
1446 
1447 	int src_cpu, src_nid;
1448 	int dst_cpu, dst_nid;
1449 
1450 	struct numa_stats src_stats, dst_stats;
1451 
1452 	int imbalance_pct;
1453 	int dist;
1454 
1455 	struct task_struct *best_task;
1456 	long best_imp;
1457 	int best_cpu;
1458 };
1459 
1460 static void task_numa_assign(struct task_numa_env *env,
1461 			     struct task_struct *p, long imp)
1462 {
1463 	if (env->best_task)
1464 		put_task_struct(env->best_task);
1465 	if (p)
1466 		get_task_struct(p);
1467 
1468 	env->best_task = p;
1469 	env->best_imp = imp;
1470 	env->best_cpu = env->dst_cpu;
1471 }
1472 
1473 static bool load_too_imbalanced(long src_load, long dst_load,
1474 				struct task_numa_env *env)
1475 {
1476 	long imb, old_imb;
1477 	long orig_src_load, orig_dst_load;
1478 	long src_capacity, dst_capacity;
1479 
1480 	/*
1481 	 * The load is corrected for the CPU capacity available on each node.
1482 	 *
1483 	 * src_load        dst_load
1484 	 * ------------ vs ---------
1485 	 * src_capacity    dst_capacity
1486 	 */
1487 	src_capacity = env->src_stats.compute_capacity;
1488 	dst_capacity = env->dst_stats.compute_capacity;
1489 
1490 	/* We care about the slope of the imbalance, not the direction. */
1491 	if (dst_load < src_load)
1492 		swap(dst_load, src_load);
1493 
1494 	/* Is the difference below the threshold? */
1495 	imb = dst_load * src_capacity * 100 -
1496 	      src_load * dst_capacity * env->imbalance_pct;
1497 	if (imb <= 0)
1498 		return false;
1499 
1500 	/*
1501 	 * The imbalance is above the allowed threshold.
1502 	 * Compare it with the old imbalance.
1503 	 */
1504 	orig_src_load = env->src_stats.load;
1505 	orig_dst_load = env->dst_stats.load;
1506 
1507 	if (orig_dst_load < orig_src_load)
1508 		swap(orig_dst_load, orig_src_load);
1509 
1510 	old_imb = orig_dst_load * src_capacity * 100 -
1511 		  orig_src_load * dst_capacity * env->imbalance_pct;
1512 
1513 	/* Would this change make things worse? */
1514 	return (imb > old_imb);
1515 }
1516 
1517 /*
1518  * This checks if the overall compute and NUMA accesses of the system would
1519  * be improved if the source tasks was migrated to the target dst_cpu taking
1520  * into account that it might be best if task running on the dst_cpu should
1521  * be exchanged with the source task
1522  */
1523 static void task_numa_compare(struct task_numa_env *env,
1524 			      long taskimp, long groupimp)
1525 {
1526 	struct rq *src_rq = cpu_rq(env->src_cpu);
1527 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1528 	struct task_struct *cur;
1529 	long src_load, dst_load;
1530 	long load;
1531 	long imp = env->p->numa_group ? groupimp : taskimp;
1532 	long moveimp = imp;
1533 	int dist = env->dist;
1534 
1535 	rcu_read_lock();
1536 	cur = task_rcu_dereference(&dst_rq->curr);
1537 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1538 		cur = NULL;
1539 
1540 	/*
1541 	 * Because we have preemption enabled we can get migrated around and
1542 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1543 	 */
1544 	if (cur == env->p)
1545 		goto unlock;
1546 
1547 	/*
1548 	 * "imp" is the fault differential for the source task between the
1549 	 * source and destination node. Calculate the total differential for
1550 	 * the source task and potential destination task. The more negative
1551 	 * the value is, the more rmeote accesses that would be expected to
1552 	 * be incurred if the tasks were swapped.
1553 	 */
1554 	if (cur) {
1555 		/* Skip this swap candidate if cannot move to the source cpu */
1556 		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1557 			goto unlock;
1558 
1559 		/*
1560 		 * If dst and source tasks are in the same NUMA group, or not
1561 		 * in any group then look only at task weights.
1562 		 */
1563 		if (cur->numa_group == env->p->numa_group) {
1564 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1565 			      task_weight(cur, env->dst_nid, dist);
1566 			/*
1567 			 * Add some hysteresis to prevent swapping the
1568 			 * tasks within a group over tiny differences.
1569 			 */
1570 			if (cur->numa_group)
1571 				imp -= imp/16;
1572 		} else {
1573 			/*
1574 			 * Compare the group weights. If a task is all by
1575 			 * itself (not part of a group), use the task weight
1576 			 * instead.
1577 			 */
1578 			if (cur->numa_group)
1579 				imp += group_weight(cur, env->src_nid, dist) -
1580 				       group_weight(cur, env->dst_nid, dist);
1581 			else
1582 				imp += task_weight(cur, env->src_nid, dist) -
1583 				       task_weight(cur, env->dst_nid, dist);
1584 		}
1585 	}
1586 
1587 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1588 		goto unlock;
1589 
1590 	if (!cur) {
1591 		/* Is there capacity at our destination? */
1592 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1593 		    !env->dst_stats.has_free_capacity)
1594 			goto unlock;
1595 
1596 		goto balance;
1597 	}
1598 
1599 	/* Balance doesn't matter much if we're running a task per cpu */
1600 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1601 			dst_rq->nr_running == 1)
1602 		goto assign;
1603 
1604 	/*
1605 	 * In the overloaded case, try and keep the load balanced.
1606 	 */
1607 balance:
1608 	load = task_h_load(env->p);
1609 	dst_load = env->dst_stats.load + load;
1610 	src_load = env->src_stats.load - load;
1611 
1612 	if (moveimp > imp && moveimp > env->best_imp) {
1613 		/*
1614 		 * If the improvement from just moving env->p direction is
1615 		 * better than swapping tasks around, check if a move is
1616 		 * possible. Store a slightly smaller score than moveimp,
1617 		 * so an actually idle CPU will win.
1618 		 */
1619 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1620 			imp = moveimp - 1;
1621 			cur = NULL;
1622 			goto assign;
1623 		}
1624 	}
1625 
1626 	if (imp <= env->best_imp)
1627 		goto unlock;
1628 
1629 	if (cur) {
1630 		load = task_h_load(cur);
1631 		dst_load -= load;
1632 		src_load += load;
1633 	}
1634 
1635 	if (load_too_imbalanced(src_load, dst_load, env))
1636 		goto unlock;
1637 
1638 	/*
1639 	 * One idle CPU per node is evaluated for a task numa move.
1640 	 * Call select_idle_sibling to maybe find a better one.
1641 	 */
1642 	if (!cur) {
1643 		/*
1644 		 * select_idle_siblings() uses an per-cpu cpumask that
1645 		 * can be used from IRQ context.
1646 		 */
1647 		local_irq_disable();
1648 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1649 						   env->dst_cpu);
1650 		local_irq_enable();
1651 	}
1652 
1653 assign:
1654 	task_numa_assign(env, cur, imp);
1655 unlock:
1656 	rcu_read_unlock();
1657 }
1658 
1659 static void task_numa_find_cpu(struct task_numa_env *env,
1660 				long taskimp, long groupimp)
1661 {
1662 	int cpu;
1663 
1664 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1665 		/* Skip this CPU if the source task cannot migrate */
1666 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1667 			continue;
1668 
1669 		env->dst_cpu = cpu;
1670 		task_numa_compare(env, taskimp, groupimp);
1671 	}
1672 }
1673 
1674 /* Only move tasks to a NUMA node less busy than the current node. */
1675 static bool numa_has_capacity(struct task_numa_env *env)
1676 {
1677 	struct numa_stats *src = &env->src_stats;
1678 	struct numa_stats *dst = &env->dst_stats;
1679 
1680 	if (src->has_free_capacity && !dst->has_free_capacity)
1681 		return false;
1682 
1683 	/*
1684 	 * Only consider a task move if the source has a higher load
1685 	 * than the destination, corrected for CPU capacity on each node.
1686 	 *
1687 	 *      src->load                dst->load
1688 	 * --------------------- vs ---------------------
1689 	 * src->compute_capacity    dst->compute_capacity
1690 	 */
1691 	if (src->load * dst->compute_capacity * env->imbalance_pct >
1692 
1693 	    dst->load * src->compute_capacity * 100)
1694 		return true;
1695 
1696 	return false;
1697 }
1698 
1699 static int task_numa_migrate(struct task_struct *p)
1700 {
1701 	struct task_numa_env env = {
1702 		.p = p,
1703 
1704 		.src_cpu = task_cpu(p),
1705 		.src_nid = task_node(p),
1706 
1707 		.imbalance_pct = 112,
1708 
1709 		.best_task = NULL,
1710 		.best_imp = 0,
1711 		.best_cpu = -1,
1712 	};
1713 	struct sched_domain *sd;
1714 	unsigned long taskweight, groupweight;
1715 	int nid, ret, dist;
1716 	long taskimp, groupimp;
1717 
1718 	/*
1719 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1720 	 * imbalance and would be the first to start moving tasks about.
1721 	 *
1722 	 * And we want to avoid any moving of tasks about, as that would create
1723 	 * random movement of tasks -- counter the numa conditions we're trying
1724 	 * to satisfy here.
1725 	 */
1726 	rcu_read_lock();
1727 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1728 	if (sd)
1729 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1730 	rcu_read_unlock();
1731 
1732 	/*
1733 	 * Cpusets can break the scheduler domain tree into smaller
1734 	 * balance domains, some of which do not cross NUMA boundaries.
1735 	 * Tasks that are "trapped" in such domains cannot be migrated
1736 	 * elsewhere, so there is no point in (re)trying.
1737 	 */
1738 	if (unlikely(!sd)) {
1739 		p->numa_preferred_nid = task_node(p);
1740 		return -EINVAL;
1741 	}
1742 
1743 	env.dst_nid = p->numa_preferred_nid;
1744 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1745 	taskweight = task_weight(p, env.src_nid, dist);
1746 	groupweight = group_weight(p, env.src_nid, dist);
1747 	update_numa_stats(&env.src_stats, env.src_nid);
1748 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1749 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1750 	update_numa_stats(&env.dst_stats, env.dst_nid);
1751 
1752 	/* Try to find a spot on the preferred nid. */
1753 	if (numa_has_capacity(&env))
1754 		task_numa_find_cpu(&env, taskimp, groupimp);
1755 
1756 	/*
1757 	 * Look at other nodes in these cases:
1758 	 * - there is no space available on the preferred_nid
1759 	 * - the task is part of a numa_group that is interleaved across
1760 	 *   multiple NUMA nodes; in order to better consolidate the group,
1761 	 *   we need to check other locations.
1762 	 */
1763 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1764 		for_each_online_node(nid) {
1765 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1766 				continue;
1767 
1768 			dist = node_distance(env.src_nid, env.dst_nid);
1769 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1770 						dist != env.dist) {
1771 				taskweight = task_weight(p, env.src_nid, dist);
1772 				groupweight = group_weight(p, env.src_nid, dist);
1773 			}
1774 
1775 			/* Only consider nodes where both task and groups benefit */
1776 			taskimp = task_weight(p, nid, dist) - taskweight;
1777 			groupimp = group_weight(p, nid, dist) - groupweight;
1778 			if (taskimp < 0 && groupimp < 0)
1779 				continue;
1780 
1781 			env.dist = dist;
1782 			env.dst_nid = nid;
1783 			update_numa_stats(&env.dst_stats, env.dst_nid);
1784 			if (numa_has_capacity(&env))
1785 				task_numa_find_cpu(&env, taskimp, groupimp);
1786 		}
1787 	}
1788 
1789 	/*
1790 	 * If the task is part of a workload that spans multiple NUMA nodes,
1791 	 * and is migrating into one of the workload's active nodes, remember
1792 	 * this node as the task's preferred numa node, so the workload can
1793 	 * settle down.
1794 	 * A task that migrated to a second choice node will be better off
1795 	 * trying for a better one later. Do not set the preferred node here.
1796 	 */
1797 	if (p->numa_group) {
1798 		struct numa_group *ng = p->numa_group;
1799 
1800 		if (env.best_cpu == -1)
1801 			nid = env.src_nid;
1802 		else
1803 			nid = env.dst_nid;
1804 
1805 		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1806 			sched_setnuma(p, env.dst_nid);
1807 	}
1808 
1809 	/* No better CPU than the current one was found. */
1810 	if (env.best_cpu == -1)
1811 		return -EAGAIN;
1812 
1813 	/*
1814 	 * Reset the scan period if the task is being rescheduled on an
1815 	 * alternative node to recheck if the tasks is now properly placed.
1816 	 */
1817 	p->numa_scan_period = task_scan_min(p);
1818 
1819 	if (env.best_task == NULL) {
1820 		ret = migrate_task_to(p, env.best_cpu);
1821 		if (ret != 0)
1822 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1823 		return ret;
1824 	}
1825 
1826 	ret = migrate_swap(p, env.best_task);
1827 	if (ret != 0)
1828 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1829 	put_task_struct(env.best_task);
1830 	return ret;
1831 }
1832 
1833 /* Attempt to migrate a task to a CPU on the preferred node. */
1834 static void numa_migrate_preferred(struct task_struct *p)
1835 {
1836 	unsigned long interval = HZ;
1837 
1838 	/* This task has no NUMA fault statistics yet */
1839 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1840 		return;
1841 
1842 	/* Periodically retry migrating the task to the preferred node */
1843 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1844 	p->numa_migrate_retry = jiffies + interval;
1845 
1846 	/* Success if task is already running on preferred CPU */
1847 	if (task_node(p) == p->numa_preferred_nid)
1848 		return;
1849 
1850 	/* Otherwise, try migrate to a CPU on the preferred node */
1851 	task_numa_migrate(p);
1852 }
1853 
1854 /*
1855  * Find out how many nodes on the workload is actively running on. Do this by
1856  * tracking the nodes from which NUMA hinting faults are triggered. This can
1857  * be different from the set of nodes where the workload's memory is currently
1858  * located.
1859  */
1860 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1861 {
1862 	unsigned long faults, max_faults = 0;
1863 	int nid, active_nodes = 0;
1864 
1865 	for_each_online_node(nid) {
1866 		faults = group_faults_cpu(numa_group, nid);
1867 		if (faults > max_faults)
1868 			max_faults = faults;
1869 	}
1870 
1871 	for_each_online_node(nid) {
1872 		faults = group_faults_cpu(numa_group, nid);
1873 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1874 			active_nodes++;
1875 	}
1876 
1877 	numa_group->max_faults_cpu = max_faults;
1878 	numa_group->active_nodes = active_nodes;
1879 }
1880 
1881 /*
1882  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1883  * increments. The more local the fault statistics are, the higher the scan
1884  * period will be for the next scan window. If local/(local+remote) ratio is
1885  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1886  * the scan period will decrease. Aim for 70% local accesses.
1887  */
1888 #define NUMA_PERIOD_SLOTS 10
1889 #define NUMA_PERIOD_THRESHOLD 7
1890 
1891 /*
1892  * Increase the scan period (slow down scanning) if the majority of
1893  * our memory is already on our local node, or if the majority of
1894  * the page accesses are shared with other processes.
1895  * Otherwise, decrease the scan period.
1896  */
1897 static void update_task_scan_period(struct task_struct *p,
1898 			unsigned long shared, unsigned long private)
1899 {
1900 	unsigned int period_slot;
1901 	int ratio;
1902 	int diff;
1903 
1904 	unsigned long remote = p->numa_faults_locality[0];
1905 	unsigned long local = p->numa_faults_locality[1];
1906 
1907 	/*
1908 	 * If there were no record hinting faults then either the task is
1909 	 * completely idle or all activity is areas that are not of interest
1910 	 * to automatic numa balancing. Related to that, if there were failed
1911 	 * migration then it implies we are migrating too quickly or the local
1912 	 * node is overloaded. In either case, scan slower
1913 	 */
1914 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1915 		p->numa_scan_period = min(p->numa_scan_period_max,
1916 			p->numa_scan_period << 1);
1917 
1918 		p->mm->numa_next_scan = jiffies +
1919 			msecs_to_jiffies(p->numa_scan_period);
1920 
1921 		return;
1922 	}
1923 
1924 	/*
1925 	 * Prepare to scale scan period relative to the current period.
1926 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1927 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1928 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1929 	 */
1930 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1931 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1932 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1933 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1934 		if (!slot)
1935 			slot = 1;
1936 		diff = slot * period_slot;
1937 	} else {
1938 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1939 
1940 		/*
1941 		 * Scale scan rate increases based on sharing. There is an
1942 		 * inverse relationship between the degree of sharing and
1943 		 * the adjustment made to the scanning period. Broadly
1944 		 * speaking the intent is that there is little point
1945 		 * scanning faster if shared accesses dominate as it may
1946 		 * simply bounce migrations uselessly
1947 		 */
1948 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1949 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1950 	}
1951 
1952 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1953 			task_scan_min(p), task_scan_max(p));
1954 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1955 }
1956 
1957 /*
1958  * Get the fraction of time the task has been running since the last
1959  * NUMA placement cycle. The scheduler keeps similar statistics, but
1960  * decays those on a 32ms period, which is orders of magnitude off
1961  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1962  * stats only if the task is so new there are no NUMA statistics yet.
1963  */
1964 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1965 {
1966 	u64 runtime, delta, now;
1967 	/* Use the start of this time slice to avoid calculations. */
1968 	now = p->se.exec_start;
1969 	runtime = p->se.sum_exec_runtime;
1970 
1971 	if (p->last_task_numa_placement) {
1972 		delta = runtime - p->last_sum_exec_runtime;
1973 		*period = now - p->last_task_numa_placement;
1974 	} else {
1975 		delta = p->se.avg.load_sum / p->se.load.weight;
1976 		*period = LOAD_AVG_MAX;
1977 	}
1978 
1979 	p->last_sum_exec_runtime = runtime;
1980 	p->last_task_numa_placement = now;
1981 
1982 	return delta;
1983 }
1984 
1985 /*
1986  * Determine the preferred nid for a task in a numa_group. This needs to
1987  * be done in a way that produces consistent results with group_weight,
1988  * otherwise workloads might not converge.
1989  */
1990 static int preferred_group_nid(struct task_struct *p, int nid)
1991 {
1992 	nodemask_t nodes;
1993 	int dist;
1994 
1995 	/* Direct connections between all NUMA nodes. */
1996 	if (sched_numa_topology_type == NUMA_DIRECT)
1997 		return nid;
1998 
1999 	/*
2000 	 * On a system with glueless mesh NUMA topology, group_weight
2001 	 * scores nodes according to the number of NUMA hinting faults on
2002 	 * both the node itself, and on nearby nodes.
2003 	 */
2004 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2005 		unsigned long score, max_score = 0;
2006 		int node, max_node = nid;
2007 
2008 		dist = sched_max_numa_distance;
2009 
2010 		for_each_online_node(node) {
2011 			score = group_weight(p, node, dist);
2012 			if (score > max_score) {
2013 				max_score = score;
2014 				max_node = node;
2015 			}
2016 		}
2017 		return max_node;
2018 	}
2019 
2020 	/*
2021 	 * Finding the preferred nid in a system with NUMA backplane
2022 	 * interconnect topology is more involved. The goal is to locate
2023 	 * tasks from numa_groups near each other in the system, and
2024 	 * untangle workloads from different sides of the system. This requires
2025 	 * searching down the hierarchy of node groups, recursively searching
2026 	 * inside the highest scoring group of nodes. The nodemask tricks
2027 	 * keep the complexity of the search down.
2028 	 */
2029 	nodes = node_online_map;
2030 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2031 		unsigned long max_faults = 0;
2032 		nodemask_t max_group = NODE_MASK_NONE;
2033 		int a, b;
2034 
2035 		/* Are there nodes at this distance from each other? */
2036 		if (!find_numa_distance(dist))
2037 			continue;
2038 
2039 		for_each_node_mask(a, nodes) {
2040 			unsigned long faults = 0;
2041 			nodemask_t this_group;
2042 			nodes_clear(this_group);
2043 
2044 			/* Sum group's NUMA faults; includes a==b case. */
2045 			for_each_node_mask(b, nodes) {
2046 				if (node_distance(a, b) < dist) {
2047 					faults += group_faults(p, b);
2048 					node_set(b, this_group);
2049 					node_clear(b, nodes);
2050 				}
2051 			}
2052 
2053 			/* Remember the top group. */
2054 			if (faults > max_faults) {
2055 				max_faults = faults;
2056 				max_group = this_group;
2057 				/*
2058 				 * subtle: at the smallest distance there is
2059 				 * just one node left in each "group", the
2060 				 * winner is the preferred nid.
2061 				 */
2062 				nid = a;
2063 			}
2064 		}
2065 		/* Next round, evaluate the nodes within max_group. */
2066 		if (!max_faults)
2067 			break;
2068 		nodes = max_group;
2069 	}
2070 	return nid;
2071 }
2072 
2073 static void task_numa_placement(struct task_struct *p)
2074 {
2075 	int seq, nid, max_nid = -1, max_group_nid = -1;
2076 	unsigned long max_faults = 0, max_group_faults = 0;
2077 	unsigned long fault_types[2] = { 0, 0 };
2078 	unsigned long total_faults;
2079 	u64 runtime, period;
2080 	spinlock_t *group_lock = NULL;
2081 
2082 	/*
2083 	 * The p->mm->numa_scan_seq field gets updated without
2084 	 * exclusive access. Use READ_ONCE() here to ensure
2085 	 * that the field is read in a single access:
2086 	 */
2087 	seq = READ_ONCE(p->mm->numa_scan_seq);
2088 	if (p->numa_scan_seq == seq)
2089 		return;
2090 	p->numa_scan_seq = seq;
2091 	p->numa_scan_period_max = task_scan_max(p);
2092 
2093 	total_faults = p->numa_faults_locality[0] +
2094 		       p->numa_faults_locality[1];
2095 	runtime = numa_get_avg_runtime(p, &period);
2096 
2097 	/* If the task is part of a group prevent parallel updates to group stats */
2098 	if (p->numa_group) {
2099 		group_lock = &p->numa_group->lock;
2100 		spin_lock_irq(group_lock);
2101 	}
2102 
2103 	/* Find the node with the highest number of faults */
2104 	for_each_online_node(nid) {
2105 		/* Keep track of the offsets in numa_faults array */
2106 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2107 		unsigned long faults = 0, group_faults = 0;
2108 		int priv;
2109 
2110 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2111 			long diff, f_diff, f_weight;
2112 
2113 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2114 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2115 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2116 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2117 
2118 			/* Decay existing window, copy faults since last scan */
2119 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2120 			fault_types[priv] += p->numa_faults[membuf_idx];
2121 			p->numa_faults[membuf_idx] = 0;
2122 
2123 			/*
2124 			 * Normalize the faults_from, so all tasks in a group
2125 			 * count according to CPU use, instead of by the raw
2126 			 * number of faults. Tasks with little runtime have
2127 			 * little over-all impact on throughput, and thus their
2128 			 * faults are less important.
2129 			 */
2130 			f_weight = div64_u64(runtime << 16, period + 1);
2131 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2132 				   (total_faults + 1);
2133 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2134 			p->numa_faults[cpubuf_idx] = 0;
2135 
2136 			p->numa_faults[mem_idx] += diff;
2137 			p->numa_faults[cpu_idx] += f_diff;
2138 			faults += p->numa_faults[mem_idx];
2139 			p->total_numa_faults += diff;
2140 			if (p->numa_group) {
2141 				/*
2142 				 * safe because we can only change our own group
2143 				 *
2144 				 * mem_idx represents the offset for a given
2145 				 * nid and priv in a specific region because it
2146 				 * is at the beginning of the numa_faults array.
2147 				 */
2148 				p->numa_group->faults[mem_idx] += diff;
2149 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2150 				p->numa_group->total_faults += diff;
2151 				group_faults += p->numa_group->faults[mem_idx];
2152 			}
2153 		}
2154 
2155 		if (faults > max_faults) {
2156 			max_faults = faults;
2157 			max_nid = nid;
2158 		}
2159 
2160 		if (group_faults > max_group_faults) {
2161 			max_group_faults = group_faults;
2162 			max_group_nid = nid;
2163 		}
2164 	}
2165 
2166 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2167 
2168 	if (p->numa_group) {
2169 		numa_group_count_active_nodes(p->numa_group);
2170 		spin_unlock_irq(group_lock);
2171 		max_nid = preferred_group_nid(p, max_group_nid);
2172 	}
2173 
2174 	if (max_faults) {
2175 		/* Set the new preferred node */
2176 		if (max_nid != p->numa_preferred_nid)
2177 			sched_setnuma(p, max_nid);
2178 
2179 		if (task_node(p) != p->numa_preferred_nid)
2180 			numa_migrate_preferred(p);
2181 	}
2182 }
2183 
2184 static inline int get_numa_group(struct numa_group *grp)
2185 {
2186 	return atomic_inc_not_zero(&grp->refcount);
2187 }
2188 
2189 static inline void put_numa_group(struct numa_group *grp)
2190 {
2191 	if (atomic_dec_and_test(&grp->refcount))
2192 		kfree_rcu(grp, rcu);
2193 }
2194 
2195 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2196 			int *priv)
2197 {
2198 	struct numa_group *grp, *my_grp;
2199 	struct task_struct *tsk;
2200 	bool join = false;
2201 	int cpu = cpupid_to_cpu(cpupid);
2202 	int i;
2203 
2204 	if (unlikely(!p->numa_group)) {
2205 		unsigned int size = sizeof(struct numa_group) +
2206 				    4*nr_node_ids*sizeof(unsigned long);
2207 
2208 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2209 		if (!grp)
2210 			return;
2211 
2212 		atomic_set(&grp->refcount, 1);
2213 		grp->active_nodes = 1;
2214 		grp->max_faults_cpu = 0;
2215 		spin_lock_init(&grp->lock);
2216 		grp->gid = p->pid;
2217 		/* Second half of the array tracks nids where faults happen */
2218 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2219 						nr_node_ids;
2220 
2221 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2222 			grp->faults[i] = p->numa_faults[i];
2223 
2224 		grp->total_faults = p->total_numa_faults;
2225 
2226 		grp->nr_tasks++;
2227 		rcu_assign_pointer(p->numa_group, grp);
2228 	}
2229 
2230 	rcu_read_lock();
2231 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2232 
2233 	if (!cpupid_match_pid(tsk, cpupid))
2234 		goto no_join;
2235 
2236 	grp = rcu_dereference(tsk->numa_group);
2237 	if (!grp)
2238 		goto no_join;
2239 
2240 	my_grp = p->numa_group;
2241 	if (grp == my_grp)
2242 		goto no_join;
2243 
2244 	/*
2245 	 * Only join the other group if its bigger; if we're the bigger group,
2246 	 * the other task will join us.
2247 	 */
2248 	if (my_grp->nr_tasks > grp->nr_tasks)
2249 		goto no_join;
2250 
2251 	/*
2252 	 * Tie-break on the grp address.
2253 	 */
2254 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2255 		goto no_join;
2256 
2257 	/* Always join threads in the same process. */
2258 	if (tsk->mm == current->mm)
2259 		join = true;
2260 
2261 	/* Simple filter to avoid false positives due to PID collisions */
2262 	if (flags & TNF_SHARED)
2263 		join = true;
2264 
2265 	/* Update priv based on whether false sharing was detected */
2266 	*priv = !join;
2267 
2268 	if (join && !get_numa_group(grp))
2269 		goto no_join;
2270 
2271 	rcu_read_unlock();
2272 
2273 	if (!join)
2274 		return;
2275 
2276 	BUG_ON(irqs_disabled());
2277 	double_lock_irq(&my_grp->lock, &grp->lock);
2278 
2279 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2280 		my_grp->faults[i] -= p->numa_faults[i];
2281 		grp->faults[i] += p->numa_faults[i];
2282 	}
2283 	my_grp->total_faults -= p->total_numa_faults;
2284 	grp->total_faults += p->total_numa_faults;
2285 
2286 	my_grp->nr_tasks--;
2287 	grp->nr_tasks++;
2288 
2289 	spin_unlock(&my_grp->lock);
2290 	spin_unlock_irq(&grp->lock);
2291 
2292 	rcu_assign_pointer(p->numa_group, grp);
2293 
2294 	put_numa_group(my_grp);
2295 	return;
2296 
2297 no_join:
2298 	rcu_read_unlock();
2299 	return;
2300 }
2301 
2302 void task_numa_free(struct task_struct *p)
2303 {
2304 	struct numa_group *grp = p->numa_group;
2305 	void *numa_faults = p->numa_faults;
2306 	unsigned long flags;
2307 	int i;
2308 
2309 	if (grp) {
2310 		spin_lock_irqsave(&grp->lock, flags);
2311 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2312 			grp->faults[i] -= p->numa_faults[i];
2313 		grp->total_faults -= p->total_numa_faults;
2314 
2315 		grp->nr_tasks--;
2316 		spin_unlock_irqrestore(&grp->lock, flags);
2317 		RCU_INIT_POINTER(p->numa_group, NULL);
2318 		put_numa_group(grp);
2319 	}
2320 
2321 	p->numa_faults = NULL;
2322 	kfree(numa_faults);
2323 }
2324 
2325 /*
2326  * Got a PROT_NONE fault for a page on @node.
2327  */
2328 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2329 {
2330 	struct task_struct *p = current;
2331 	bool migrated = flags & TNF_MIGRATED;
2332 	int cpu_node = task_node(current);
2333 	int local = !!(flags & TNF_FAULT_LOCAL);
2334 	struct numa_group *ng;
2335 	int priv;
2336 
2337 	if (!static_branch_likely(&sched_numa_balancing))
2338 		return;
2339 
2340 	/* for example, ksmd faulting in a user's mm */
2341 	if (!p->mm)
2342 		return;
2343 
2344 	/* Allocate buffer to track faults on a per-node basis */
2345 	if (unlikely(!p->numa_faults)) {
2346 		int size = sizeof(*p->numa_faults) *
2347 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2348 
2349 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2350 		if (!p->numa_faults)
2351 			return;
2352 
2353 		p->total_numa_faults = 0;
2354 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2355 	}
2356 
2357 	/*
2358 	 * First accesses are treated as private, otherwise consider accesses
2359 	 * to be private if the accessing pid has not changed
2360 	 */
2361 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2362 		priv = 1;
2363 	} else {
2364 		priv = cpupid_match_pid(p, last_cpupid);
2365 		if (!priv && !(flags & TNF_NO_GROUP))
2366 			task_numa_group(p, last_cpupid, flags, &priv);
2367 	}
2368 
2369 	/*
2370 	 * If a workload spans multiple NUMA nodes, a shared fault that
2371 	 * occurs wholly within the set of nodes that the workload is
2372 	 * actively using should be counted as local. This allows the
2373 	 * scan rate to slow down when a workload has settled down.
2374 	 */
2375 	ng = p->numa_group;
2376 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2377 				numa_is_active_node(cpu_node, ng) &&
2378 				numa_is_active_node(mem_node, ng))
2379 		local = 1;
2380 
2381 	task_numa_placement(p);
2382 
2383 	/*
2384 	 * Retry task to preferred node migration periodically, in case it
2385 	 * case it previously failed, or the scheduler moved us.
2386 	 */
2387 	if (time_after(jiffies, p->numa_migrate_retry))
2388 		numa_migrate_preferred(p);
2389 
2390 	if (migrated)
2391 		p->numa_pages_migrated += pages;
2392 	if (flags & TNF_MIGRATE_FAIL)
2393 		p->numa_faults_locality[2] += pages;
2394 
2395 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2396 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2397 	p->numa_faults_locality[local] += pages;
2398 }
2399 
2400 static void reset_ptenuma_scan(struct task_struct *p)
2401 {
2402 	/*
2403 	 * We only did a read acquisition of the mmap sem, so
2404 	 * p->mm->numa_scan_seq is written to without exclusive access
2405 	 * and the update is not guaranteed to be atomic. That's not
2406 	 * much of an issue though, since this is just used for
2407 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2408 	 * expensive, to avoid any form of compiler optimizations:
2409 	 */
2410 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2411 	p->mm->numa_scan_offset = 0;
2412 }
2413 
2414 /*
2415  * The expensive part of numa migration is done from task_work context.
2416  * Triggered from task_tick_numa().
2417  */
2418 void task_numa_work(struct callback_head *work)
2419 {
2420 	unsigned long migrate, next_scan, now = jiffies;
2421 	struct task_struct *p = current;
2422 	struct mm_struct *mm = p->mm;
2423 	u64 runtime = p->se.sum_exec_runtime;
2424 	struct vm_area_struct *vma;
2425 	unsigned long start, end;
2426 	unsigned long nr_pte_updates = 0;
2427 	long pages, virtpages;
2428 
2429 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2430 
2431 	work->next = work; /* protect against double add */
2432 	/*
2433 	 * Who cares about NUMA placement when they're dying.
2434 	 *
2435 	 * NOTE: make sure not to dereference p->mm before this check,
2436 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2437 	 * without p->mm even though we still had it when we enqueued this
2438 	 * work.
2439 	 */
2440 	if (p->flags & PF_EXITING)
2441 		return;
2442 
2443 	if (!mm->numa_next_scan) {
2444 		mm->numa_next_scan = now +
2445 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2446 	}
2447 
2448 	/*
2449 	 * Enforce maximal scan/migration frequency..
2450 	 */
2451 	migrate = mm->numa_next_scan;
2452 	if (time_before(now, migrate))
2453 		return;
2454 
2455 	if (p->numa_scan_period == 0) {
2456 		p->numa_scan_period_max = task_scan_max(p);
2457 		p->numa_scan_period = task_scan_min(p);
2458 	}
2459 
2460 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2461 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2462 		return;
2463 
2464 	/*
2465 	 * Delay this task enough that another task of this mm will likely win
2466 	 * the next time around.
2467 	 */
2468 	p->node_stamp += 2 * TICK_NSEC;
2469 
2470 	start = mm->numa_scan_offset;
2471 	pages = sysctl_numa_balancing_scan_size;
2472 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2473 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2474 	if (!pages)
2475 		return;
2476 
2477 
2478 	down_read(&mm->mmap_sem);
2479 	vma = find_vma(mm, start);
2480 	if (!vma) {
2481 		reset_ptenuma_scan(p);
2482 		start = 0;
2483 		vma = mm->mmap;
2484 	}
2485 	for (; vma; vma = vma->vm_next) {
2486 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2487 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2488 			continue;
2489 		}
2490 
2491 		/*
2492 		 * Shared library pages mapped by multiple processes are not
2493 		 * migrated as it is expected they are cache replicated. Avoid
2494 		 * hinting faults in read-only file-backed mappings or the vdso
2495 		 * as migrating the pages will be of marginal benefit.
2496 		 */
2497 		if (!vma->vm_mm ||
2498 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2499 			continue;
2500 
2501 		/*
2502 		 * Skip inaccessible VMAs to avoid any confusion between
2503 		 * PROT_NONE and NUMA hinting ptes
2504 		 */
2505 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2506 			continue;
2507 
2508 		do {
2509 			start = max(start, vma->vm_start);
2510 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2511 			end = min(end, vma->vm_end);
2512 			nr_pte_updates = change_prot_numa(vma, start, end);
2513 
2514 			/*
2515 			 * Try to scan sysctl_numa_balancing_size worth of
2516 			 * hpages that have at least one present PTE that
2517 			 * is not already pte-numa. If the VMA contains
2518 			 * areas that are unused or already full of prot_numa
2519 			 * PTEs, scan up to virtpages, to skip through those
2520 			 * areas faster.
2521 			 */
2522 			if (nr_pte_updates)
2523 				pages -= (end - start) >> PAGE_SHIFT;
2524 			virtpages -= (end - start) >> PAGE_SHIFT;
2525 
2526 			start = end;
2527 			if (pages <= 0 || virtpages <= 0)
2528 				goto out;
2529 
2530 			cond_resched();
2531 		} while (end != vma->vm_end);
2532 	}
2533 
2534 out:
2535 	/*
2536 	 * It is possible to reach the end of the VMA list but the last few
2537 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2538 	 * would find the !migratable VMA on the next scan but not reset the
2539 	 * scanner to the start so check it now.
2540 	 */
2541 	if (vma)
2542 		mm->numa_scan_offset = start;
2543 	else
2544 		reset_ptenuma_scan(p);
2545 	up_read(&mm->mmap_sem);
2546 
2547 	/*
2548 	 * Make sure tasks use at least 32x as much time to run other code
2549 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2550 	 * Usually update_task_scan_period slows down scanning enough; on an
2551 	 * overloaded system we need to limit overhead on a per task basis.
2552 	 */
2553 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2554 		u64 diff = p->se.sum_exec_runtime - runtime;
2555 		p->node_stamp += 32 * diff;
2556 	}
2557 }
2558 
2559 /*
2560  * Drive the periodic memory faults..
2561  */
2562 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2563 {
2564 	struct callback_head *work = &curr->numa_work;
2565 	u64 period, now;
2566 
2567 	/*
2568 	 * We don't care about NUMA placement if we don't have memory.
2569 	 */
2570 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2571 		return;
2572 
2573 	/*
2574 	 * Using runtime rather than walltime has the dual advantage that
2575 	 * we (mostly) drive the selection from busy threads and that the
2576 	 * task needs to have done some actual work before we bother with
2577 	 * NUMA placement.
2578 	 */
2579 	now = curr->se.sum_exec_runtime;
2580 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2581 
2582 	if (now > curr->node_stamp + period) {
2583 		if (!curr->node_stamp)
2584 			curr->numa_scan_period = task_scan_min(curr);
2585 		curr->node_stamp += period;
2586 
2587 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2588 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2589 			task_work_add(curr, work, true);
2590 		}
2591 	}
2592 }
2593 #else
2594 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2595 {
2596 }
2597 
2598 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2599 {
2600 }
2601 
2602 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2603 {
2604 }
2605 #endif /* CONFIG_NUMA_BALANCING */
2606 
2607 static void
2608 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2609 {
2610 	update_load_add(&cfs_rq->load, se->load.weight);
2611 	if (!parent_entity(se))
2612 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2613 #ifdef CONFIG_SMP
2614 	if (entity_is_task(se)) {
2615 		struct rq *rq = rq_of(cfs_rq);
2616 
2617 		account_numa_enqueue(rq, task_of(se));
2618 		list_add(&se->group_node, &rq->cfs_tasks);
2619 	}
2620 #endif
2621 	cfs_rq->nr_running++;
2622 }
2623 
2624 static void
2625 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2626 {
2627 	update_load_sub(&cfs_rq->load, se->load.weight);
2628 	if (!parent_entity(se))
2629 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2630 #ifdef CONFIG_SMP
2631 	if (entity_is_task(se)) {
2632 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2633 		list_del_init(&se->group_node);
2634 	}
2635 #endif
2636 	cfs_rq->nr_running--;
2637 }
2638 
2639 #ifdef CONFIG_FAIR_GROUP_SCHED
2640 # ifdef CONFIG_SMP
2641 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2642 {
2643 	long tg_weight, load, shares;
2644 
2645 	/*
2646 	 * This really should be: cfs_rq->avg.load_avg, but instead we use
2647 	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2648 	 * the shares for small weight interactive tasks.
2649 	 */
2650 	load = scale_load_down(cfs_rq->load.weight);
2651 
2652 	tg_weight = atomic_long_read(&tg->load_avg);
2653 
2654 	/* Ensure tg_weight >= load */
2655 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2656 	tg_weight += load;
2657 
2658 	shares = (tg->shares * load);
2659 	if (tg_weight)
2660 		shares /= tg_weight;
2661 
2662 	/*
2663 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2664 	 * of a group with small tg->shares value. It is a floor value which is
2665 	 * assigned as a minimum load.weight to the sched_entity representing
2666 	 * the group on a CPU.
2667 	 *
2668 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2669 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2670 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2671 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2672 	 * instead of 0.
2673 	 */
2674 	if (shares < MIN_SHARES)
2675 		shares = MIN_SHARES;
2676 	if (shares > tg->shares)
2677 		shares = tg->shares;
2678 
2679 	return shares;
2680 }
2681 # else /* CONFIG_SMP */
2682 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2683 {
2684 	return tg->shares;
2685 }
2686 # endif /* CONFIG_SMP */
2687 
2688 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2689 			    unsigned long weight)
2690 {
2691 	if (se->on_rq) {
2692 		/* commit outstanding execution time */
2693 		if (cfs_rq->curr == se)
2694 			update_curr(cfs_rq);
2695 		account_entity_dequeue(cfs_rq, se);
2696 	}
2697 
2698 	update_load_set(&se->load, weight);
2699 
2700 	if (se->on_rq)
2701 		account_entity_enqueue(cfs_rq, se);
2702 }
2703 
2704 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2705 
2706 static void update_cfs_shares(struct sched_entity *se)
2707 {
2708 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2709 	struct task_group *tg;
2710 	long shares;
2711 
2712 	if (!cfs_rq)
2713 		return;
2714 
2715 	if (throttled_hierarchy(cfs_rq))
2716 		return;
2717 
2718 	tg = cfs_rq->tg;
2719 
2720 #ifndef CONFIG_SMP
2721 	if (likely(se->load.weight == tg->shares))
2722 		return;
2723 #endif
2724 	shares = calc_cfs_shares(cfs_rq, tg);
2725 
2726 	reweight_entity(cfs_rq_of(se), se, shares);
2727 }
2728 
2729 #else /* CONFIG_FAIR_GROUP_SCHED */
2730 static inline void update_cfs_shares(struct sched_entity *se)
2731 {
2732 }
2733 #endif /* CONFIG_FAIR_GROUP_SCHED */
2734 
2735 #ifdef CONFIG_SMP
2736 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2737 static const u32 runnable_avg_yN_inv[] = {
2738 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2739 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2740 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2741 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2742 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2743 	0x85aac367, 0x82cd8698,
2744 };
2745 
2746 /*
2747  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2748  * over-estimates when re-combining.
2749  */
2750 static const u32 runnable_avg_yN_sum[] = {
2751 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2752 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2753 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2754 };
2755 
2756 /*
2757  * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2758  * lower integers. See Documentation/scheduler/sched-avg.txt how these
2759  * were generated:
2760  */
2761 static const u32 __accumulated_sum_N32[] = {
2762 	    0, 23371, 35056, 40899, 43820, 45281,
2763 	46011, 46376, 46559, 46650, 46696, 46719,
2764 };
2765 
2766 /*
2767  * Approximate:
2768  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2769  */
2770 static __always_inline u64 decay_load(u64 val, u64 n)
2771 {
2772 	unsigned int local_n;
2773 
2774 	if (!n)
2775 		return val;
2776 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2777 		return 0;
2778 
2779 	/* after bounds checking we can collapse to 32-bit */
2780 	local_n = n;
2781 
2782 	/*
2783 	 * As y^PERIOD = 1/2, we can combine
2784 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2785 	 * With a look-up table which covers y^n (n<PERIOD)
2786 	 *
2787 	 * To achieve constant time decay_load.
2788 	 */
2789 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2790 		val >>= local_n / LOAD_AVG_PERIOD;
2791 		local_n %= LOAD_AVG_PERIOD;
2792 	}
2793 
2794 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2795 	return val;
2796 }
2797 
2798 /*
2799  * For updates fully spanning n periods, the contribution to runnable
2800  * average will be: \Sum 1024*y^n
2801  *
2802  * We can compute this reasonably efficiently by combining:
2803  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2804  */
2805 static u32 __compute_runnable_contrib(u64 n)
2806 {
2807 	u32 contrib = 0;
2808 
2809 	if (likely(n <= LOAD_AVG_PERIOD))
2810 		return runnable_avg_yN_sum[n];
2811 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2812 		return LOAD_AVG_MAX;
2813 
2814 	/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2815 	contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2816 	n %= LOAD_AVG_PERIOD;
2817 	contrib = decay_load(contrib, n);
2818 	return contrib + runnable_avg_yN_sum[n];
2819 }
2820 
2821 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2822 
2823 /*
2824  * We can represent the historical contribution to runnable average as the
2825  * coefficients of a geometric series.  To do this we sub-divide our runnable
2826  * history into segments of approximately 1ms (1024us); label the segment that
2827  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2828  *
2829  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2830  *      p0            p1           p2
2831  *     (now)       (~1ms ago)  (~2ms ago)
2832  *
2833  * Let u_i denote the fraction of p_i that the entity was runnable.
2834  *
2835  * We then designate the fractions u_i as our co-efficients, yielding the
2836  * following representation of historical load:
2837  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2838  *
2839  * We choose y based on the with of a reasonably scheduling period, fixing:
2840  *   y^32 = 0.5
2841  *
2842  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2843  * approximately half as much as the contribution to load within the last ms
2844  * (u_0).
2845  *
2846  * When a period "rolls over" and we have new u_0`, multiplying the previous
2847  * sum again by y is sufficient to update:
2848  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2849  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2850  */
2851 static __always_inline int
2852 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2853 		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2854 {
2855 	u64 delta, scaled_delta, periods;
2856 	u32 contrib;
2857 	unsigned int delta_w, scaled_delta_w, decayed = 0;
2858 	unsigned long scale_freq, scale_cpu;
2859 
2860 	delta = now - sa->last_update_time;
2861 	/*
2862 	 * This should only happen when time goes backwards, which it
2863 	 * unfortunately does during sched clock init when we swap over to TSC.
2864 	 */
2865 	if ((s64)delta < 0) {
2866 		sa->last_update_time = now;
2867 		return 0;
2868 	}
2869 
2870 	/*
2871 	 * Use 1024ns as the unit of measurement since it's a reasonable
2872 	 * approximation of 1us and fast to compute.
2873 	 */
2874 	delta >>= 10;
2875 	if (!delta)
2876 		return 0;
2877 	sa->last_update_time = now;
2878 
2879 	scale_freq = arch_scale_freq_capacity(NULL, cpu);
2880 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2881 
2882 	/* delta_w is the amount already accumulated against our next period */
2883 	delta_w = sa->period_contrib;
2884 	if (delta + delta_w >= 1024) {
2885 		decayed = 1;
2886 
2887 		/* how much left for next period will start over, we don't know yet */
2888 		sa->period_contrib = 0;
2889 
2890 		/*
2891 		 * Now that we know we're crossing a period boundary, figure
2892 		 * out how much from delta we need to complete the current
2893 		 * period and accrue it.
2894 		 */
2895 		delta_w = 1024 - delta_w;
2896 		scaled_delta_w = cap_scale(delta_w, scale_freq);
2897 		if (weight) {
2898 			sa->load_sum += weight * scaled_delta_w;
2899 			if (cfs_rq) {
2900 				cfs_rq->runnable_load_sum +=
2901 						weight * scaled_delta_w;
2902 			}
2903 		}
2904 		if (running)
2905 			sa->util_sum += scaled_delta_w * scale_cpu;
2906 
2907 		delta -= delta_w;
2908 
2909 		/* Figure out how many additional periods this update spans */
2910 		periods = delta / 1024;
2911 		delta %= 1024;
2912 
2913 		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2914 		if (cfs_rq) {
2915 			cfs_rq->runnable_load_sum =
2916 				decay_load(cfs_rq->runnable_load_sum, periods + 1);
2917 		}
2918 		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2919 
2920 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2921 		contrib = __compute_runnable_contrib(periods);
2922 		contrib = cap_scale(contrib, scale_freq);
2923 		if (weight) {
2924 			sa->load_sum += weight * contrib;
2925 			if (cfs_rq)
2926 				cfs_rq->runnable_load_sum += weight * contrib;
2927 		}
2928 		if (running)
2929 			sa->util_sum += contrib * scale_cpu;
2930 	}
2931 
2932 	/* Remainder of delta accrued against u_0` */
2933 	scaled_delta = cap_scale(delta, scale_freq);
2934 	if (weight) {
2935 		sa->load_sum += weight * scaled_delta;
2936 		if (cfs_rq)
2937 			cfs_rq->runnable_load_sum += weight * scaled_delta;
2938 	}
2939 	if (running)
2940 		sa->util_sum += scaled_delta * scale_cpu;
2941 
2942 	sa->period_contrib += delta;
2943 
2944 	if (decayed) {
2945 		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2946 		if (cfs_rq) {
2947 			cfs_rq->runnable_load_avg =
2948 				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2949 		}
2950 		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2951 	}
2952 
2953 	return decayed;
2954 }
2955 
2956 /*
2957  * Signed add and clamp on underflow.
2958  *
2959  * Explicitly do a load-store to ensure the intermediate value never hits
2960  * memory. This allows lockless observations without ever seeing the negative
2961  * values.
2962  */
2963 #define add_positive(_ptr, _val) do {                           \
2964 	typeof(_ptr) ptr = (_ptr);                              \
2965 	typeof(_val) val = (_val);                              \
2966 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2967 								\
2968 	res = var + val;                                        \
2969 								\
2970 	if (val < 0 && res > var)                               \
2971 		res = 0;                                        \
2972 								\
2973 	WRITE_ONCE(*ptr, res);                                  \
2974 } while (0)
2975 
2976 #ifdef CONFIG_FAIR_GROUP_SCHED
2977 /**
2978  * update_tg_load_avg - update the tg's load avg
2979  * @cfs_rq: the cfs_rq whose avg changed
2980  * @force: update regardless of how small the difference
2981  *
2982  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2983  * However, because tg->load_avg is a global value there are performance
2984  * considerations.
2985  *
2986  * In order to avoid having to look at the other cfs_rq's, we use a
2987  * differential update where we store the last value we propagated. This in
2988  * turn allows skipping updates if the differential is 'small'.
2989  *
2990  * Updating tg's load_avg is necessary before update_cfs_share() (which is
2991  * done) and effective_load() (which is not done because it is too costly).
2992  */
2993 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2994 {
2995 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2996 
2997 	/*
2998 	 * No need to update load_avg for root_task_group as it is not used.
2999 	 */
3000 	if (cfs_rq->tg == &root_task_group)
3001 		return;
3002 
3003 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3004 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3005 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3006 	}
3007 }
3008 
3009 /*
3010  * Called within set_task_rq() right before setting a task's cpu. The
3011  * caller only guarantees p->pi_lock is held; no other assumptions,
3012  * including the state of rq->lock, should be made.
3013  */
3014 void set_task_rq_fair(struct sched_entity *se,
3015 		      struct cfs_rq *prev, struct cfs_rq *next)
3016 {
3017 	if (!sched_feat(ATTACH_AGE_LOAD))
3018 		return;
3019 
3020 	/*
3021 	 * We are supposed to update the task to "current" time, then its up to
3022 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3023 	 * getting what current time is, so simply throw away the out-of-date
3024 	 * time. This will result in the wakee task is less decayed, but giving
3025 	 * the wakee more load sounds not bad.
3026 	 */
3027 	if (se->avg.last_update_time && prev) {
3028 		u64 p_last_update_time;
3029 		u64 n_last_update_time;
3030 
3031 #ifndef CONFIG_64BIT
3032 		u64 p_last_update_time_copy;
3033 		u64 n_last_update_time_copy;
3034 
3035 		do {
3036 			p_last_update_time_copy = prev->load_last_update_time_copy;
3037 			n_last_update_time_copy = next->load_last_update_time_copy;
3038 
3039 			smp_rmb();
3040 
3041 			p_last_update_time = prev->avg.last_update_time;
3042 			n_last_update_time = next->avg.last_update_time;
3043 
3044 		} while (p_last_update_time != p_last_update_time_copy ||
3045 			 n_last_update_time != n_last_update_time_copy);
3046 #else
3047 		p_last_update_time = prev->avg.last_update_time;
3048 		n_last_update_time = next->avg.last_update_time;
3049 #endif
3050 		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
3051 				  &se->avg, 0, 0, NULL);
3052 		se->avg.last_update_time = n_last_update_time;
3053 	}
3054 }
3055 
3056 /* Take into account change of utilization of a child task group */
3057 static inline void
3058 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3059 {
3060 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3061 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3062 
3063 	/* Nothing to update */
3064 	if (!delta)
3065 		return;
3066 
3067 	/* Set new sched_entity's utilization */
3068 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3069 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3070 
3071 	/* Update parent cfs_rq utilization */
3072 	add_positive(&cfs_rq->avg.util_avg, delta);
3073 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3074 }
3075 
3076 /* Take into account change of load of a child task group */
3077 static inline void
3078 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3079 {
3080 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3081 	long delta, load = gcfs_rq->avg.load_avg;
3082 
3083 	/*
3084 	 * If the load of group cfs_rq is null, the load of the
3085 	 * sched_entity will also be null so we can skip the formula
3086 	 */
3087 	if (load) {
3088 		long tg_load;
3089 
3090 		/* Get tg's load and ensure tg_load > 0 */
3091 		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3092 
3093 		/* Ensure tg_load >= load and updated with current load*/
3094 		tg_load -= gcfs_rq->tg_load_avg_contrib;
3095 		tg_load += load;
3096 
3097 		/*
3098 		 * We need to compute a correction term in the case that the
3099 		 * task group is consuming more CPU than a task of equal
3100 		 * weight. A task with a weight equals to tg->shares will have
3101 		 * a load less or equal to scale_load_down(tg->shares).
3102 		 * Similarly, the sched_entities that represent the task group
3103 		 * at parent level, can't have a load higher than
3104 		 * scale_load_down(tg->shares). And the Sum of sched_entities'
3105 		 * load must be <= scale_load_down(tg->shares).
3106 		 */
3107 		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3108 			/* scale gcfs_rq's load into tg's shares*/
3109 			load *= scale_load_down(gcfs_rq->tg->shares);
3110 			load /= tg_load;
3111 		}
3112 	}
3113 
3114 	delta = load - se->avg.load_avg;
3115 
3116 	/* Nothing to update */
3117 	if (!delta)
3118 		return;
3119 
3120 	/* Set new sched_entity's load */
3121 	se->avg.load_avg = load;
3122 	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3123 
3124 	/* Update parent cfs_rq load */
3125 	add_positive(&cfs_rq->avg.load_avg, delta);
3126 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3127 
3128 	/*
3129 	 * If the sched_entity is already enqueued, we also have to update the
3130 	 * runnable load avg.
3131 	 */
3132 	if (se->on_rq) {
3133 		/* Update parent cfs_rq runnable_load_avg */
3134 		add_positive(&cfs_rq->runnable_load_avg, delta);
3135 		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3136 	}
3137 }
3138 
3139 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3140 {
3141 	cfs_rq->propagate_avg = 1;
3142 }
3143 
3144 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3145 {
3146 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
3147 
3148 	if (!cfs_rq->propagate_avg)
3149 		return 0;
3150 
3151 	cfs_rq->propagate_avg = 0;
3152 	return 1;
3153 }
3154 
3155 /* Update task and its cfs_rq load average */
3156 static inline int propagate_entity_load_avg(struct sched_entity *se)
3157 {
3158 	struct cfs_rq *cfs_rq;
3159 
3160 	if (entity_is_task(se))
3161 		return 0;
3162 
3163 	if (!test_and_clear_tg_cfs_propagate(se))
3164 		return 0;
3165 
3166 	cfs_rq = cfs_rq_of(se);
3167 
3168 	set_tg_cfs_propagate(cfs_rq);
3169 
3170 	update_tg_cfs_util(cfs_rq, se);
3171 	update_tg_cfs_load(cfs_rq, se);
3172 
3173 	return 1;
3174 }
3175 
3176 #else /* CONFIG_FAIR_GROUP_SCHED */
3177 
3178 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3179 
3180 static inline int propagate_entity_load_avg(struct sched_entity *se)
3181 {
3182 	return 0;
3183 }
3184 
3185 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3186 
3187 #endif /* CONFIG_FAIR_GROUP_SCHED */
3188 
3189 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3190 {
3191 	if (&this_rq()->cfs == cfs_rq) {
3192 		/*
3193 		 * There are a few boundary cases this might miss but it should
3194 		 * get called often enough that that should (hopefully) not be
3195 		 * a real problem -- added to that it only calls on the local
3196 		 * CPU, so if we enqueue remotely we'll miss an update, but
3197 		 * the next tick/schedule should update.
3198 		 *
3199 		 * It will not get called when we go idle, because the idle
3200 		 * thread is a different class (!fair), nor will the utilization
3201 		 * number include things like RT tasks.
3202 		 *
3203 		 * As is, the util number is not freq-invariant (we'd have to
3204 		 * implement arch_scale_freq_capacity() for that).
3205 		 *
3206 		 * See cpu_util().
3207 		 */
3208 		cpufreq_update_util(rq_of(cfs_rq), 0);
3209 	}
3210 }
3211 
3212 /*
3213  * Unsigned subtract and clamp on underflow.
3214  *
3215  * Explicitly do a load-store to ensure the intermediate value never hits
3216  * memory. This allows lockless observations without ever seeing the negative
3217  * values.
3218  */
3219 #define sub_positive(_ptr, _val) do {				\
3220 	typeof(_ptr) ptr = (_ptr);				\
3221 	typeof(*ptr) val = (_val);				\
3222 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3223 	res = var - val;					\
3224 	if (res > var)						\
3225 		res = 0;					\
3226 	WRITE_ONCE(*ptr, res);					\
3227 } while (0)
3228 
3229 /**
3230  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3231  * @now: current time, as per cfs_rq_clock_task()
3232  * @cfs_rq: cfs_rq to update
3233  * @update_freq: should we call cfs_rq_util_change() or will the call do so
3234  *
3235  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3236  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3237  * post_init_entity_util_avg().
3238  *
3239  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3240  *
3241  * Returns true if the load decayed or we removed load.
3242  *
3243  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3244  * call update_tg_load_avg() when this function returns true.
3245  */
3246 static inline int
3247 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3248 {
3249 	struct sched_avg *sa = &cfs_rq->avg;
3250 	int decayed, removed_load = 0, removed_util = 0;
3251 
3252 	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3253 		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3254 		sub_positive(&sa->load_avg, r);
3255 		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3256 		removed_load = 1;
3257 		set_tg_cfs_propagate(cfs_rq);
3258 	}
3259 
3260 	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3261 		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3262 		sub_positive(&sa->util_avg, r);
3263 		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3264 		removed_util = 1;
3265 		set_tg_cfs_propagate(cfs_rq);
3266 	}
3267 
3268 	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3269 		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
3270 
3271 #ifndef CONFIG_64BIT
3272 	smp_wmb();
3273 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3274 #endif
3275 
3276 	if (update_freq && (decayed || removed_util))
3277 		cfs_rq_util_change(cfs_rq);
3278 
3279 	return decayed || removed_load;
3280 }
3281 
3282 /*
3283  * Optional action to be done while updating the load average
3284  */
3285 #define UPDATE_TG	0x1
3286 #define SKIP_AGE_LOAD	0x2
3287 
3288 /* Update task and its cfs_rq load average */
3289 static inline void update_load_avg(struct sched_entity *se, int flags)
3290 {
3291 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3292 	u64 now = cfs_rq_clock_task(cfs_rq);
3293 	struct rq *rq = rq_of(cfs_rq);
3294 	int cpu = cpu_of(rq);
3295 	int decayed;
3296 
3297 	/*
3298 	 * Track task load average for carrying it to new CPU after migrated, and
3299 	 * track group sched_entity load average for task_h_load calc in migration
3300 	 */
3301 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
3302 		__update_load_avg(now, cpu, &se->avg,
3303 			  se->on_rq * scale_load_down(se->load.weight),
3304 			  cfs_rq->curr == se, NULL);
3305 	}
3306 
3307 	decayed  = update_cfs_rq_load_avg(now, cfs_rq, true);
3308 	decayed |= propagate_entity_load_avg(se);
3309 
3310 	if (decayed && (flags & UPDATE_TG))
3311 		update_tg_load_avg(cfs_rq, 0);
3312 }
3313 
3314 /**
3315  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3316  * @cfs_rq: cfs_rq to attach to
3317  * @se: sched_entity to attach
3318  *
3319  * Must call update_cfs_rq_load_avg() before this, since we rely on
3320  * cfs_rq->avg.last_update_time being current.
3321  */
3322 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3323 {
3324 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3325 	cfs_rq->avg.load_avg += se->avg.load_avg;
3326 	cfs_rq->avg.load_sum += se->avg.load_sum;
3327 	cfs_rq->avg.util_avg += se->avg.util_avg;
3328 	cfs_rq->avg.util_sum += se->avg.util_sum;
3329 	set_tg_cfs_propagate(cfs_rq);
3330 
3331 	cfs_rq_util_change(cfs_rq);
3332 }
3333 
3334 /**
3335  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3336  * @cfs_rq: cfs_rq to detach from
3337  * @se: sched_entity to detach
3338  *
3339  * Must call update_cfs_rq_load_avg() before this, since we rely on
3340  * cfs_rq->avg.last_update_time being current.
3341  */
3342 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3343 {
3344 
3345 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3346 	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3347 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3348 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3349 	set_tg_cfs_propagate(cfs_rq);
3350 
3351 	cfs_rq_util_change(cfs_rq);
3352 }
3353 
3354 /* Add the load generated by se into cfs_rq's load average */
3355 static inline void
3356 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3357 {
3358 	struct sched_avg *sa = &se->avg;
3359 
3360 	cfs_rq->runnable_load_avg += sa->load_avg;
3361 	cfs_rq->runnable_load_sum += sa->load_sum;
3362 
3363 	if (!sa->last_update_time) {
3364 		attach_entity_load_avg(cfs_rq, se);
3365 		update_tg_load_avg(cfs_rq, 0);
3366 	}
3367 }
3368 
3369 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3370 static inline void
3371 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3372 {
3373 	cfs_rq->runnable_load_avg =
3374 		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3375 	cfs_rq->runnable_load_sum =
3376 		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3377 }
3378 
3379 #ifndef CONFIG_64BIT
3380 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3381 {
3382 	u64 last_update_time_copy;
3383 	u64 last_update_time;
3384 
3385 	do {
3386 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3387 		smp_rmb();
3388 		last_update_time = cfs_rq->avg.last_update_time;
3389 	} while (last_update_time != last_update_time_copy);
3390 
3391 	return last_update_time;
3392 }
3393 #else
3394 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3395 {
3396 	return cfs_rq->avg.last_update_time;
3397 }
3398 #endif
3399 
3400 /*
3401  * Synchronize entity load avg of dequeued entity without locking
3402  * the previous rq.
3403  */
3404 void sync_entity_load_avg(struct sched_entity *se)
3405 {
3406 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3407 	u64 last_update_time;
3408 
3409 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3410 	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3411 }
3412 
3413 /*
3414  * Task first catches up with cfs_rq, and then subtract
3415  * itself from the cfs_rq (task must be off the queue now).
3416  */
3417 void remove_entity_load_avg(struct sched_entity *se)
3418 {
3419 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3420 
3421 	/*
3422 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3423 	 * post_init_entity_util_avg() which will have added things to the
3424 	 * cfs_rq, so we can remove unconditionally.
3425 	 *
3426 	 * Similarly for groups, they will have passed through
3427 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3428 	 * calls this.
3429 	 */
3430 
3431 	sync_entity_load_avg(se);
3432 	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3433 	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3434 }
3435 
3436 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3437 {
3438 	return cfs_rq->runnable_load_avg;
3439 }
3440 
3441 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3442 {
3443 	return cfs_rq->avg.load_avg;
3444 }
3445 
3446 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3447 
3448 #else /* CONFIG_SMP */
3449 
3450 static inline int
3451 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3452 {
3453 	return 0;
3454 }
3455 
3456 #define UPDATE_TG	0x0
3457 #define SKIP_AGE_LOAD	0x0
3458 
3459 static inline void update_load_avg(struct sched_entity *se, int not_used1)
3460 {
3461 	cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3462 }
3463 
3464 static inline void
3465 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3466 static inline void
3467 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3468 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3469 
3470 static inline void
3471 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3472 static inline void
3473 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3474 
3475 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3476 {
3477 	return 0;
3478 }
3479 
3480 #endif /* CONFIG_SMP */
3481 
3482 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3483 {
3484 #ifdef CONFIG_SCHED_DEBUG
3485 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3486 
3487 	if (d < 0)
3488 		d = -d;
3489 
3490 	if (d > 3*sysctl_sched_latency)
3491 		schedstat_inc(cfs_rq->nr_spread_over);
3492 #endif
3493 }
3494 
3495 static void
3496 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3497 {
3498 	u64 vruntime = cfs_rq->min_vruntime;
3499 
3500 	/*
3501 	 * The 'current' period is already promised to the current tasks,
3502 	 * however the extra weight of the new task will slow them down a
3503 	 * little, place the new task so that it fits in the slot that
3504 	 * stays open at the end.
3505 	 */
3506 	if (initial && sched_feat(START_DEBIT))
3507 		vruntime += sched_vslice(cfs_rq, se);
3508 
3509 	/* sleeps up to a single latency don't count. */
3510 	if (!initial) {
3511 		unsigned long thresh = sysctl_sched_latency;
3512 
3513 		/*
3514 		 * Halve their sleep time's effect, to allow
3515 		 * for a gentler effect of sleepers:
3516 		 */
3517 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3518 			thresh >>= 1;
3519 
3520 		vruntime -= thresh;
3521 	}
3522 
3523 	/* ensure we never gain time by being placed backwards. */
3524 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3525 }
3526 
3527 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3528 
3529 static inline void check_schedstat_required(void)
3530 {
3531 #ifdef CONFIG_SCHEDSTATS
3532 	if (schedstat_enabled())
3533 		return;
3534 
3535 	/* Force schedstat enabled if a dependent tracepoint is active */
3536 	if (trace_sched_stat_wait_enabled()    ||
3537 			trace_sched_stat_sleep_enabled()   ||
3538 			trace_sched_stat_iowait_enabled()  ||
3539 			trace_sched_stat_blocked_enabled() ||
3540 			trace_sched_stat_runtime_enabled())  {
3541 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3542 			     "stat_blocked and stat_runtime require the "
3543 			     "kernel parameter schedstats=enabled or "
3544 			     "kernel.sched_schedstats=1\n");
3545 	}
3546 #endif
3547 }
3548 
3549 
3550 /*
3551  * MIGRATION
3552  *
3553  *	dequeue
3554  *	  update_curr()
3555  *	    update_min_vruntime()
3556  *	  vruntime -= min_vruntime
3557  *
3558  *	enqueue
3559  *	  update_curr()
3560  *	    update_min_vruntime()
3561  *	  vruntime += min_vruntime
3562  *
3563  * this way the vruntime transition between RQs is done when both
3564  * min_vruntime are up-to-date.
3565  *
3566  * WAKEUP (remote)
3567  *
3568  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3569  *	  vruntime -= min_vruntime
3570  *
3571  *	enqueue
3572  *	  update_curr()
3573  *	    update_min_vruntime()
3574  *	  vruntime += min_vruntime
3575  *
3576  * this way we don't have the most up-to-date min_vruntime on the originating
3577  * CPU and an up-to-date min_vruntime on the destination CPU.
3578  */
3579 
3580 static void
3581 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3582 {
3583 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3584 	bool curr = cfs_rq->curr == se;
3585 
3586 	/*
3587 	 * If we're the current task, we must renormalise before calling
3588 	 * update_curr().
3589 	 */
3590 	if (renorm && curr)
3591 		se->vruntime += cfs_rq->min_vruntime;
3592 
3593 	update_curr(cfs_rq);
3594 
3595 	/*
3596 	 * Otherwise, renormalise after, such that we're placed at the current
3597 	 * moment in time, instead of some random moment in the past. Being
3598 	 * placed in the past could significantly boost this task to the
3599 	 * fairness detriment of existing tasks.
3600 	 */
3601 	if (renorm && !curr)
3602 		se->vruntime += cfs_rq->min_vruntime;
3603 
3604 	/*
3605 	 * When enqueuing a sched_entity, we must:
3606 	 *   - Update loads to have both entity and cfs_rq synced with now.
3607 	 *   - Add its load to cfs_rq->runnable_avg
3608 	 *   - For group_entity, update its weight to reflect the new share of
3609 	 *     its group cfs_rq
3610 	 *   - Add its new weight to cfs_rq->load.weight
3611 	 */
3612 	update_load_avg(se, UPDATE_TG);
3613 	enqueue_entity_load_avg(cfs_rq, se);
3614 	update_cfs_shares(se);
3615 	account_entity_enqueue(cfs_rq, se);
3616 
3617 	if (flags & ENQUEUE_WAKEUP)
3618 		place_entity(cfs_rq, se, 0);
3619 
3620 	check_schedstat_required();
3621 	update_stats_enqueue(cfs_rq, se, flags);
3622 	check_spread(cfs_rq, se);
3623 	if (!curr)
3624 		__enqueue_entity(cfs_rq, se);
3625 	se->on_rq = 1;
3626 
3627 	if (cfs_rq->nr_running == 1) {
3628 		list_add_leaf_cfs_rq(cfs_rq);
3629 		check_enqueue_throttle(cfs_rq);
3630 	}
3631 }
3632 
3633 static void __clear_buddies_last(struct sched_entity *se)
3634 {
3635 	for_each_sched_entity(se) {
3636 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3637 		if (cfs_rq->last != se)
3638 			break;
3639 
3640 		cfs_rq->last = NULL;
3641 	}
3642 }
3643 
3644 static void __clear_buddies_next(struct sched_entity *se)
3645 {
3646 	for_each_sched_entity(se) {
3647 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3648 		if (cfs_rq->next != se)
3649 			break;
3650 
3651 		cfs_rq->next = NULL;
3652 	}
3653 }
3654 
3655 static void __clear_buddies_skip(struct sched_entity *se)
3656 {
3657 	for_each_sched_entity(se) {
3658 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3659 		if (cfs_rq->skip != se)
3660 			break;
3661 
3662 		cfs_rq->skip = NULL;
3663 	}
3664 }
3665 
3666 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3667 {
3668 	if (cfs_rq->last == se)
3669 		__clear_buddies_last(se);
3670 
3671 	if (cfs_rq->next == se)
3672 		__clear_buddies_next(se);
3673 
3674 	if (cfs_rq->skip == se)
3675 		__clear_buddies_skip(se);
3676 }
3677 
3678 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3679 
3680 static void
3681 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3682 {
3683 	/*
3684 	 * Update run-time statistics of the 'current'.
3685 	 */
3686 	update_curr(cfs_rq);
3687 
3688 	/*
3689 	 * When dequeuing a sched_entity, we must:
3690 	 *   - Update loads to have both entity and cfs_rq synced with now.
3691 	 *   - Substract its load from the cfs_rq->runnable_avg.
3692 	 *   - Substract its previous weight from cfs_rq->load.weight.
3693 	 *   - For group entity, update its weight to reflect the new share
3694 	 *     of its group cfs_rq.
3695 	 */
3696 	update_load_avg(se, UPDATE_TG);
3697 	dequeue_entity_load_avg(cfs_rq, se);
3698 
3699 	update_stats_dequeue(cfs_rq, se, flags);
3700 
3701 	clear_buddies(cfs_rq, se);
3702 
3703 	if (se != cfs_rq->curr)
3704 		__dequeue_entity(cfs_rq, se);
3705 	se->on_rq = 0;
3706 	account_entity_dequeue(cfs_rq, se);
3707 
3708 	/*
3709 	 * Normalize after update_curr(); which will also have moved
3710 	 * min_vruntime if @se is the one holding it back. But before doing
3711 	 * update_min_vruntime() again, which will discount @se's position and
3712 	 * can move min_vruntime forward still more.
3713 	 */
3714 	if (!(flags & DEQUEUE_SLEEP))
3715 		se->vruntime -= cfs_rq->min_vruntime;
3716 
3717 	/* return excess runtime on last dequeue */
3718 	return_cfs_rq_runtime(cfs_rq);
3719 
3720 	update_cfs_shares(se);
3721 
3722 	/*
3723 	 * Now advance min_vruntime if @se was the entity holding it back,
3724 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3725 	 * put back on, and if we advance min_vruntime, we'll be placed back
3726 	 * further than we started -- ie. we'll be penalized.
3727 	 */
3728 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3729 		update_min_vruntime(cfs_rq);
3730 }
3731 
3732 /*
3733  * Preempt the current task with a newly woken task if needed:
3734  */
3735 static void
3736 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3737 {
3738 	unsigned long ideal_runtime, delta_exec;
3739 	struct sched_entity *se;
3740 	s64 delta;
3741 
3742 	ideal_runtime = sched_slice(cfs_rq, curr);
3743 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3744 	if (delta_exec > ideal_runtime) {
3745 		resched_curr(rq_of(cfs_rq));
3746 		/*
3747 		 * The current task ran long enough, ensure it doesn't get
3748 		 * re-elected due to buddy favours.
3749 		 */
3750 		clear_buddies(cfs_rq, curr);
3751 		return;
3752 	}
3753 
3754 	/*
3755 	 * Ensure that a task that missed wakeup preemption by a
3756 	 * narrow margin doesn't have to wait for a full slice.
3757 	 * This also mitigates buddy induced latencies under load.
3758 	 */
3759 	if (delta_exec < sysctl_sched_min_granularity)
3760 		return;
3761 
3762 	se = __pick_first_entity(cfs_rq);
3763 	delta = curr->vruntime - se->vruntime;
3764 
3765 	if (delta < 0)
3766 		return;
3767 
3768 	if (delta > ideal_runtime)
3769 		resched_curr(rq_of(cfs_rq));
3770 }
3771 
3772 static void
3773 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3774 {
3775 	/* 'current' is not kept within the tree. */
3776 	if (se->on_rq) {
3777 		/*
3778 		 * Any task has to be enqueued before it get to execute on
3779 		 * a CPU. So account for the time it spent waiting on the
3780 		 * runqueue.
3781 		 */
3782 		update_stats_wait_end(cfs_rq, se);
3783 		__dequeue_entity(cfs_rq, se);
3784 		update_load_avg(se, UPDATE_TG);
3785 	}
3786 
3787 	update_stats_curr_start(cfs_rq, se);
3788 	cfs_rq->curr = se;
3789 
3790 	/*
3791 	 * Track our maximum slice length, if the CPU's load is at
3792 	 * least twice that of our own weight (i.e. dont track it
3793 	 * when there are only lesser-weight tasks around):
3794 	 */
3795 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3796 		schedstat_set(se->statistics.slice_max,
3797 			max((u64)schedstat_val(se->statistics.slice_max),
3798 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
3799 	}
3800 
3801 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3802 }
3803 
3804 static int
3805 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3806 
3807 /*
3808  * Pick the next process, keeping these things in mind, in this order:
3809  * 1) keep things fair between processes/task groups
3810  * 2) pick the "next" process, since someone really wants that to run
3811  * 3) pick the "last" process, for cache locality
3812  * 4) do not run the "skip" process, if something else is available
3813  */
3814 static struct sched_entity *
3815 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3816 {
3817 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3818 	struct sched_entity *se;
3819 
3820 	/*
3821 	 * If curr is set we have to see if its left of the leftmost entity
3822 	 * still in the tree, provided there was anything in the tree at all.
3823 	 */
3824 	if (!left || (curr && entity_before(curr, left)))
3825 		left = curr;
3826 
3827 	se = left; /* ideally we run the leftmost entity */
3828 
3829 	/*
3830 	 * Avoid running the skip buddy, if running something else can
3831 	 * be done without getting too unfair.
3832 	 */
3833 	if (cfs_rq->skip == se) {
3834 		struct sched_entity *second;
3835 
3836 		if (se == curr) {
3837 			second = __pick_first_entity(cfs_rq);
3838 		} else {
3839 			second = __pick_next_entity(se);
3840 			if (!second || (curr && entity_before(curr, second)))
3841 				second = curr;
3842 		}
3843 
3844 		if (second && wakeup_preempt_entity(second, left) < 1)
3845 			se = second;
3846 	}
3847 
3848 	/*
3849 	 * Prefer last buddy, try to return the CPU to a preempted task.
3850 	 */
3851 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3852 		se = cfs_rq->last;
3853 
3854 	/*
3855 	 * Someone really wants this to run. If it's not unfair, run it.
3856 	 */
3857 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3858 		se = cfs_rq->next;
3859 
3860 	clear_buddies(cfs_rq, se);
3861 
3862 	return se;
3863 }
3864 
3865 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3866 
3867 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3868 {
3869 	/*
3870 	 * If still on the runqueue then deactivate_task()
3871 	 * was not called and update_curr() has to be done:
3872 	 */
3873 	if (prev->on_rq)
3874 		update_curr(cfs_rq);
3875 
3876 	/* throttle cfs_rqs exceeding runtime */
3877 	check_cfs_rq_runtime(cfs_rq);
3878 
3879 	check_spread(cfs_rq, prev);
3880 
3881 	if (prev->on_rq) {
3882 		update_stats_wait_start(cfs_rq, prev);
3883 		/* Put 'current' back into the tree. */
3884 		__enqueue_entity(cfs_rq, prev);
3885 		/* in !on_rq case, update occurred at dequeue */
3886 		update_load_avg(prev, 0);
3887 	}
3888 	cfs_rq->curr = NULL;
3889 }
3890 
3891 static void
3892 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3893 {
3894 	/*
3895 	 * Update run-time statistics of the 'current'.
3896 	 */
3897 	update_curr(cfs_rq);
3898 
3899 	/*
3900 	 * Ensure that runnable average is periodically updated.
3901 	 */
3902 	update_load_avg(curr, UPDATE_TG);
3903 	update_cfs_shares(curr);
3904 
3905 #ifdef CONFIG_SCHED_HRTICK
3906 	/*
3907 	 * queued ticks are scheduled to match the slice, so don't bother
3908 	 * validating it and just reschedule.
3909 	 */
3910 	if (queued) {
3911 		resched_curr(rq_of(cfs_rq));
3912 		return;
3913 	}
3914 	/*
3915 	 * don't let the period tick interfere with the hrtick preemption
3916 	 */
3917 	if (!sched_feat(DOUBLE_TICK) &&
3918 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3919 		return;
3920 #endif
3921 
3922 	if (cfs_rq->nr_running > 1)
3923 		check_preempt_tick(cfs_rq, curr);
3924 }
3925 
3926 
3927 /**************************************************
3928  * CFS bandwidth control machinery
3929  */
3930 
3931 #ifdef CONFIG_CFS_BANDWIDTH
3932 
3933 #ifdef HAVE_JUMP_LABEL
3934 static struct static_key __cfs_bandwidth_used;
3935 
3936 static inline bool cfs_bandwidth_used(void)
3937 {
3938 	return static_key_false(&__cfs_bandwidth_used);
3939 }
3940 
3941 void cfs_bandwidth_usage_inc(void)
3942 {
3943 	static_key_slow_inc(&__cfs_bandwidth_used);
3944 }
3945 
3946 void cfs_bandwidth_usage_dec(void)
3947 {
3948 	static_key_slow_dec(&__cfs_bandwidth_used);
3949 }
3950 #else /* HAVE_JUMP_LABEL */
3951 static bool cfs_bandwidth_used(void)
3952 {
3953 	return true;
3954 }
3955 
3956 void cfs_bandwidth_usage_inc(void) {}
3957 void cfs_bandwidth_usage_dec(void) {}
3958 #endif /* HAVE_JUMP_LABEL */
3959 
3960 /*
3961  * default period for cfs group bandwidth.
3962  * default: 0.1s, units: nanoseconds
3963  */
3964 static inline u64 default_cfs_period(void)
3965 {
3966 	return 100000000ULL;
3967 }
3968 
3969 static inline u64 sched_cfs_bandwidth_slice(void)
3970 {
3971 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3972 }
3973 
3974 /*
3975  * Replenish runtime according to assigned quota and update expiration time.
3976  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3977  * additional synchronization around rq->lock.
3978  *
3979  * requires cfs_b->lock
3980  */
3981 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3982 {
3983 	u64 now;
3984 
3985 	if (cfs_b->quota == RUNTIME_INF)
3986 		return;
3987 
3988 	now = sched_clock_cpu(smp_processor_id());
3989 	cfs_b->runtime = cfs_b->quota;
3990 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3991 }
3992 
3993 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3994 {
3995 	return &tg->cfs_bandwidth;
3996 }
3997 
3998 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3999 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4000 {
4001 	if (unlikely(cfs_rq->throttle_count))
4002 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4003 
4004 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4005 }
4006 
4007 /* returns 0 on failure to allocate runtime */
4008 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4009 {
4010 	struct task_group *tg = cfs_rq->tg;
4011 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4012 	u64 amount = 0, min_amount, expires;
4013 
4014 	/* note: this is a positive sum as runtime_remaining <= 0 */
4015 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4016 
4017 	raw_spin_lock(&cfs_b->lock);
4018 	if (cfs_b->quota == RUNTIME_INF)
4019 		amount = min_amount;
4020 	else {
4021 		start_cfs_bandwidth(cfs_b);
4022 
4023 		if (cfs_b->runtime > 0) {
4024 			amount = min(cfs_b->runtime, min_amount);
4025 			cfs_b->runtime -= amount;
4026 			cfs_b->idle = 0;
4027 		}
4028 	}
4029 	expires = cfs_b->runtime_expires;
4030 	raw_spin_unlock(&cfs_b->lock);
4031 
4032 	cfs_rq->runtime_remaining += amount;
4033 	/*
4034 	 * we may have advanced our local expiration to account for allowed
4035 	 * spread between our sched_clock and the one on which runtime was
4036 	 * issued.
4037 	 */
4038 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4039 		cfs_rq->runtime_expires = expires;
4040 
4041 	return cfs_rq->runtime_remaining > 0;
4042 }
4043 
4044 /*
4045  * Note: This depends on the synchronization provided by sched_clock and the
4046  * fact that rq->clock snapshots this value.
4047  */
4048 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4049 {
4050 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4051 
4052 	/* if the deadline is ahead of our clock, nothing to do */
4053 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4054 		return;
4055 
4056 	if (cfs_rq->runtime_remaining < 0)
4057 		return;
4058 
4059 	/*
4060 	 * If the local deadline has passed we have to consider the
4061 	 * possibility that our sched_clock is 'fast' and the global deadline
4062 	 * has not truly expired.
4063 	 *
4064 	 * Fortunately we can check determine whether this the case by checking
4065 	 * whether the global deadline has advanced. It is valid to compare
4066 	 * cfs_b->runtime_expires without any locks since we only care about
4067 	 * exact equality, so a partial write will still work.
4068 	 */
4069 
4070 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4071 		/* extend local deadline, drift is bounded above by 2 ticks */
4072 		cfs_rq->runtime_expires += TICK_NSEC;
4073 	} else {
4074 		/* global deadline is ahead, expiration has passed */
4075 		cfs_rq->runtime_remaining = 0;
4076 	}
4077 }
4078 
4079 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4080 {
4081 	/* dock delta_exec before expiring quota (as it could span periods) */
4082 	cfs_rq->runtime_remaining -= delta_exec;
4083 	expire_cfs_rq_runtime(cfs_rq);
4084 
4085 	if (likely(cfs_rq->runtime_remaining > 0))
4086 		return;
4087 
4088 	/*
4089 	 * if we're unable to extend our runtime we resched so that the active
4090 	 * hierarchy can be throttled
4091 	 */
4092 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4093 		resched_curr(rq_of(cfs_rq));
4094 }
4095 
4096 static __always_inline
4097 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4098 {
4099 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4100 		return;
4101 
4102 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4103 }
4104 
4105 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4106 {
4107 	return cfs_bandwidth_used() && cfs_rq->throttled;
4108 }
4109 
4110 /* check whether cfs_rq, or any parent, is throttled */
4111 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4112 {
4113 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4114 }
4115 
4116 /*
4117  * Ensure that neither of the group entities corresponding to src_cpu or
4118  * dest_cpu are members of a throttled hierarchy when performing group
4119  * load-balance operations.
4120  */
4121 static inline int throttled_lb_pair(struct task_group *tg,
4122 				    int src_cpu, int dest_cpu)
4123 {
4124 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4125 
4126 	src_cfs_rq = tg->cfs_rq[src_cpu];
4127 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4128 
4129 	return throttled_hierarchy(src_cfs_rq) ||
4130 	       throttled_hierarchy(dest_cfs_rq);
4131 }
4132 
4133 /* updated child weight may affect parent so we have to do this bottom up */
4134 static int tg_unthrottle_up(struct task_group *tg, void *data)
4135 {
4136 	struct rq *rq = data;
4137 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4138 
4139 	cfs_rq->throttle_count--;
4140 	if (!cfs_rq->throttle_count) {
4141 		/* adjust cfs_rq_clock_task() */
4142 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4143 					     cfs_rq->throttled_clock_task;
4144 	}
4145 
4146 	return 0;
4147 }
4148 
4149 static int tg_throttle_down(struct task_group *tg, void *data)
4150 {
4151 	struct rq *rq = data;
4152 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4153 
4154 	/* group is entering throttled state, stop time */
4155 	if (!cfs_rq->throttle_count)
4156 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4157 	cfs_rq->throttle_count++;
4158 
4159 	return 0;
4160 }
4161 
4162 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4163 {
4164 	struct rq *rq = rq_of(cfs_rq);
4165 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4166 	struct sched_entity *se;
4167 	long task_delta, dequeue = 1;
4168 	bool empty;
4169 
4170 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4171 
4172 	/* freeze hierarchy runnable averages while throttled */
4173 	rcu_read_lock();
4174 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4175 	rcu_read_unlock();
4176 
4177 	task_delta = cfs_rq->h_nr_running;
4178 	for_each_sched_entity(se) {
4179 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4180 		/* throttled entity or throttle-on-deactivate */
4181 		if (!se->on_rq)
4182 			break;
4183 
4184 		if (dequeue)
4185 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4186 		qcfs_rq->h_nr_running -= task_delta;
4187 
4188 		if (qcfs_rq->load.weight)
4189 			dequeue = 0;
4190 	}
4191 
4192 	if (!se)
4193 		sub_nr_running(rq, task_delta);
4194 
4195 	cfs_rq->throttled = 1;
4196 	cfs_rq->throttled_clock = rq_clock(rq);
4197 	raw_spin_lock(&cfs_b->lock);
4198 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4199 
4200 	/*
4201 	 * Add to the _head_ of the list, so that an already-started
4202 	 * distribute_cfs_runtime will not see us
4203 	 */
4204 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4205 
4206 	/*
4207 	 * If we're the first throttled task, make sure the bandwidth
4208 	 * timer is running.
4209 	 */
4210 	if (empty)
4211 		start_cfs_bandwidth(cfs_b);
4212 
4213 	raw_spin_unlock(&cfs_b->lock);
4214 }
4215 
4216 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4217 {
4218 	struct rq *rq = rq_of(cfs_rq);
4219 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4220 	struct sched_entity *se;
4221 	int enqueue = 1;
4222 	long task_delta;
4223 
4224 	se = cfs_rq->tg->se[cpu_of(rq)];
4225 
4226 	cfs_rq->throttled = 0;
4227 
4228 	update_rq_clock(rq);
4229 
4230 	raw_spin_lock(&cfs_b->lock);
4231 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4232 	list_del_rcu(&cfs_rq->throttled_list);
4233 	raw_spin_unlock(&cfs_b->lock);
4234 
4235 	/* update hierarchical throttle state */
4236 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4237 
4238 	if (!cfs_rq->load.weight)
4239 		return;
4240 
4241 	task_delta = cfs_rq->h_nr_running;
4242 	for_each_sched_entity(se) {
4243 		if (se->on_rq)
4244 			enqueue = 0;
4245 
4246 		cfs_rq = cfs_rq_of(se);
4247 		if (enqueue)
4248 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4249 		cfs_rq->h_nr_running += task_delta;
4250 
4251 		if (cfs_rq_throttled(cfs_rq))
4252 			break;
4253 	}
4254 
4255 	if (!se)
4256 		add_nr_running(rq, task_delta);
4257 
4258 	/* determine whether we need to wake up potentially idle cpu */
4259 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4260 		resched_curr(rq);
4261 }
4262 
4263 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4264 		u64 remaining, u64 expires)
4265 {
4266 	struct cfs_rq *cfs_rq;
4267 	u64 runtime;
4268 	u64 starting_runtime = remaining;
4269 
4270 	rcu_read_lock();
4271 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4272 				throttled_list) {
4273 		struct rq *rq = rq_of(cfs_rq);
4274 
4275 		raw_spin_lock(&rq->lock);
4276 		if (!cfs_rq_throttled(cfs_rq))
4277 			goto next;
4278 
4279 		runtime = -cfs_rq->runtime_remaining + 1;
4280 		if (runtime > remaining)
4281 			runtime = remaining;
4282 		remaining -= runtime;
4283 
4284 		cfs_rq->runtime_remaining += runtime;
4285 		cfs_rq->runtime_expires = expires;
4286 
4287 		/* we check whether we're throttled above */
4288 		if (cfs_rq->runtime_remaining > 0)
4289 			unthrottle_cfs_rq(cfs_rq);
4290 
4291 next:
4292 		raw_spin_unlock(&rq->lock);
4293 
4294 		if (!remaining)
4295 			break;
4296 	}
4297 	rcu_read_unlock();
4298 
4299 	return starting_runtime - remaining;
4300 }
4301 
4302 /*
4303  * Responsible for refilling a task_group's bandwidth and unthrottling its
4304  * cfs_rqs as appropriate. If there has been no activity within the last
4305  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4306  * used to track this state.
4307  */
4308 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4309 {
4310 	u64 runtime, runtime_expires;
4311 	int throttled;
4312 
4313 	/* no need to continue the timer with no bandwidth constraint */
4314 	if (cfs_b->quota == RUNTIME_INF)
4315 		goto out_deactivate;
4316 
4317 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4318 	cfs_b->nr_periods += overrun;
4319 
4320 	/*
4321 	 * idle depends on !throttled (for the case of a large deficit), and if
4322 	 * we're going inactive then everything else can be deferred
4323 	 */
4324 	if (cfs_b->idle && !throttled)
4325 		goto out_deactivate;
4326 
4327 	__refill_cfs_bandwidth_runtime(cfs_b);
4328 
4329 	if (!throttled) {
4330 		/* mark as potentially idle for the upcoming period */
4331 		cfs_b->idle = 1;
4332 		return 0;
4333 	}
4334 
4335 	/* account preceding periods in which throttling occurred */
4336 	cfs_b->nr_throttled += overrun;
4337 
4338 	runtime_expires = cfs_b->runtime_expires;
4339 
4340 	/*
4341 	 * This check is repeated as we are holding onto the new bandwidth while
4342 	 * we unthrottle. This can potentially race with an unthrottled group
4343 	 * trying to acquire new bandwidth from the global pool. This can result
4344 	 * in us over-using our runtime if it is all used during this loop, but
4345 	 * only by limited amounts in that extreme case.
4346 	 */
4347 	while (throttled && cfs_b->runtime > 0) {
4348 		runtime = cfs_b->runtime;
4349 		raw_spin_unlock(&cfs_b->lock);
4350 		/* we can't nest cfs_b->lock while distributing bandwidth */
4351 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4352 						 runtime_expires);
4353 		raw_spin_lock(&cfs_b->lock);
4354 
4355 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4356 
4357 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4358 	}
4359 
4360 	/*
4361 	 * While we are ensured activity in the period following an
4362 	 * unthrottle, this also covers the case in which the new bandwidth is
4363 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4364 	 * timer to remain active while there are any throttled entities.)
4365 	 */
4366 	cfs_b->idle = 0;
4367 
4368 	return 0;
4369 
4370 out_deactivate:
4371 	return 1;
4372 }
4373 
4374 /* a cfs_rq won't donate quota below this amount */
4375 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4376 /* minimum remaining period time to redistribute slack quota */
4377 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4378 /* how long we wait to gather additional slack before distributing */
4379 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4380 
4381 /*
4382  * Are we near the end of the current quota period?
4383  *
4384  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4385  * hrtimer base being cleared by hrtimer_start. In the case of
4386  * migrate_hrtimers, base is never cleared, so we are fine.
4387  */
4388 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4389 {
4390 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4391 	u64 remaining;
4392 
4393 	/* if the call-back is running a quota refresh is already occurring */
4394 	if (hrtimer_callback_running(refresh_timer))
4395 		return 1;
4396 
4397 	/* is a quota refresh about to occur? */
4398 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4399 	if (remaining < min_expire)
4400 		return 1;
4401 
4402 	return 0;
4403 }
4404 
4405 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4406 {
4407 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4408 
4409 	/* if there's a quota refresh soon don't bother with slack */
4410 	if (runtime_refresh_within(cfs_b, min_left))
4411 		return;
4412 
4413 	hrtimer_start(&cfs_b->slack_timer,
4414 			ns_to_ktime(cfs_bandwidth_slack_period),
4415 			HRTIMER_MODE_REL);
4416 }
4417 
4418 /* we know any runtime found here is valid as update_curr() precedes return */
4419 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4420 {
4421 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4422 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4423 
4424 	if (slack_runtime <= 0)
4425 		return;
4426 
4427 	raw_spin_lock(&cfs_b->lock);
4428 	if (cfs_b->quota != RUNTIME_INF &&
4429 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4430 		cfs_b->runtime += slack_runtime;
4431 
4432 		/* we are under rq->lock, defer unthrottling using a timer */
4433 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4434 		    !list_empty(&cfs_b->throttled_cfs_rq))
4435 			start_cfs_slack_bandwidth(cfs_b);
4436 	}
4437 	raw_spin_unlock(&cfs_b->lock);
4438 
4439 	/* even if it's not valid for return we don't want to try again */
4440 	cfs_rq->runtime_remaining -= slack_runtime;
4441 }
4442 
4443 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4444 {
4445 	if (!cfs_bandwidth_used())
4446 		return;
4447 
4448 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4449 		return;
4450 
4451 	__return_cfs_rq_runtime(cfs_rq);
4452 }
4453 
4454 /*
4455  * This is done with a timer (instead of inline with bandwidth return) since
4456  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4457  */
4458 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4459 {
4460 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4461 	u64 expires;
4462 
4463 	/* confirm we're still not at a refresh boundary */
4464 	raw_spin_lock(&cfs_b->lock);
4465 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4466 		raw_spin_unlock(&cfs_b->lock);
4467 		return;
4468 	}
4469 
4470 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4471 		runtime = cfs_b->runtime;
4472 
4473 	expires = cfs_b->runtime_expires;
4474 	raw_spin_unlock(&cfs_b->lock);
4475 
4476 	if (!runtime)
4477 		return;
4478 
4479 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4480 
4481 	raw_spin_lock(&cfs_b->lock);
4482 	if (expires == cfs_b->runtime_expires)
4483 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4484 	raw_spin_unlock(&cfs_b->lock);
4485 }
4486 
4487 /*
4488  * When a group wakes up we want to make sure that its quota is not already
4489  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4490  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4491  */
4492 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4493 {
4494 	if (!cfs_bandwidth_used())
4495 		return;
4496 
4497 	/* an active group must be handled by the update_curr()->put() path */
4498 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4499 		return;
4500 
4501 	/* ensure the group is not already throttled */
4502 	if (cfs_rq_throttled(cfs_rq))
4503 		return;
4504 
4505 	/* update runtime allocation */
4506 	account_cfs_rq_runtime(cfs_rq, 0);
4507 	if (cfs_rq->runtime_remaining <= 0)
4508 		throttle_cfs_rq(cfs_rq);
4509 }
4510 
4511 static void sync_throttle(struct task_group *tg, int cpu)
4512 {
4513 	struct cfs_rq *pcfs_rq, *cfs_rq;
4514 
4515 	if (!cfs_bandwidth_used())
4516 		return;
4517 
4518 	if (!tg->parent)
4519 		return;
4520 
4521 	cfs_rq = tg->cfs_rq[cpu];
4522 	pcfs_rq = tg->parent->cfs_rq[cpu];
4523 
4524 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4525 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4526 }
4527 
4528 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4529 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4530 {
4531 	if (!cfs_bandwidth_used())
4532 		return false;
4533 
4534 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4535 		return false;
4536 
4537 	/*
4538 	 * it's possible for a throttled entity to be forced into a running
4539 	 * state (e.g. set_curr_task), in this case we're finished.
4540 	 */
4541 	if (cfs_rq_throttled(cfs_rq))
4542 		return true;
4543 
4544 	throttle_cfs_rq(cfs_rq);
4545 	return true;
4546 }
4547 
4548 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4549 {
4550 	struct cfs_bandwidth *cfs_b =
4551 		container_of(timer, struct cfs_bandwidth, slack_timer);
4552 
4553 	do_sched_cfs_slack_timer(cfs_b);
4554 
4555 	return HRTIMER_NORESTART;
4556 }
4557 
4558 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4559 {
4560 	struct cfs_bandwidth *cfs_b =
4561 		container_of(timer, struct cfs_bandwidth, period_timer);
4562 	int overrun;
4563 	int idle = 0;
4564 
4565 	raw_spin_lock(&cfs_b->lock);
4566 	for (;;) {
4567 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4568 		if (!overrun)
4569 			break;
4570 
4571 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4572 	}
4573 	if (idle)
4574 		cfs_b->period_active = 0;
4575 	raw_spin_unlock(&cfs_b->lock);
4576 
4577 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4578 }
4579 
4580 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4581 {
4582 	raw_spin_lock_init(&cfs_b->lock);
4583 	cfs_b->runtime = 0;
4584 	cfs_b->quota = RUNTIME_INF;
4585 	cfs_b->period = ns_to_ktime(default_cfs_period());
4586 
4587 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4588 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4589 	cfs_b->period_timer.function = sched_cfs_period_timer;
4590 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4591 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4592 }
4593 
4594 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4595 {
4596 	cfs_rq->runtime_enabled = 0;
4597 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4598 }
4599 
4600 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4601 {
4602 	lockdep_assert_held(&cfs_b->lock);
4603 
4604 	if (!cfs_b->period_active) {
4605 		cfs_b->period_active = 1;
4606 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4607 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4608 	}
4609 }
4610 
4611 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4612 {
4613 	/* init_cfs_bandwidth() was not called */
4614 	if (!cfs_b->throttled_cfs_rq.next)
4615 		return;
4616 
4617 	hrtimer_cancel(&cfs_b->period_timer);
4618 	hrtimer_cancel(&cfs_b->slack_timer);
4619 }
4620 
4621 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4622 {
4623 	struct cfs_rq *cfs_rq;
4624 
4625 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4626 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4627 
4628 		raw_spin_lock(&cfs_b->lock);
4629 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4630 		raw_spin_unlock(&cfs_b->lock);
4631 	}
4632 }
4633 
4634 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4635 {
4636 	struct cfs_rq *cfs_rq;
4637 
4638 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4639 		if (!cfs_rq->runtime_enabled)
4640 			continue;
4641 
4642 		/*
4643 		 * clock_task is not advancing so we just need to make sure
4644 		 * there's some valid quota amount
4645 		 */
4646 		cfs_rq->runtime_remaining = 1;
4647 		/*
4648 		 * Offline rq is schedulable till cpu is completely disabled
4649 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4650 		 */
4651 		cfs_rq->runtime_enabled = 0;
4652 
4653 		if (cfs_rq_throttled(cfs_rq))
4654 			unthrottle_cfs_rq(cfs_rq);
4655 	}
4656 }
4657 
4658 #else /* CONFIG_CFS_BANDWIDTH */
4659 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4660 {
4661 	return rq_clock_task(rq_of(cfs_rq));
4662 }
4663 
4664 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4665 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4666 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4667 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4668 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4669 
4670 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4671 {
4672 	return 0;
4673 }
4674 
4675 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4676 {
4677 	return 0;
4678 }
4679 
4680 static inline int throttled_lb_pair(struct task_group *tg,
4681 				    int src_cpu, int dest_cpu)
4682 {
4683 	return 0;
4684 }
4685 
4686 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4687 
4688 #ifdef CONFIG_FAIR_GROUP_SCHED
4689 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4690 #endif
4691 
4692 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4693 {
4694 	return NULL;
4695 }
4696 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4697 static inline void update_runtime_enabled(struct rq *rq) {}
4698 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4699 
4700 #endif /* CONFIG_CFS_BANDWIDTH */
4701 
4702 /**************************************************
4703  * CFS operations on tasks:
4704  */
4705 
4706 #ifdef CONFIG_SCHED_HRTICK
4707 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4708 {
4709 	struct sched_entity *se = &p->se;
4710 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4711 
4712 	SCHED_WARN_ON(task_rq(p) != rq);
4713 
4714 	if (rq->cfs.h_nr_running > 1) {
4715 		u64 slice = sched_slice(cfs_rq, se);
4716 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4717 		s64 delta = slice - ran;
4718 
4719 		if (delta < 0) {
4720 			if (rq->curr == p)
4721 				resched_curr(rq);
4722 			return;
4723 		}
4724 		hrtick_start(rq, delta);
4725 	}
4726 }
4727 
4728 /*
4729  * called from enqueue/dequeue and updates the hrtick when the
4730  * current task is from our class and nr_running is low enough
4731  * to matter.
4732  */
4733 static void hrtick_update(struct rq *rq)
4734 {
4735 	struct task_struct *curr = rq->curr;
4736 
4737 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4738 		return;
4739 
4740 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4741 		hrtick_start_fair(rq, curr);
4742 }
4743 #else /* !CONFIG_SCHED_HRTICK */
4744 static inline void
4745 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4746 {
4747 }
4748 
4749 static inline void hrtick_update(struct rq *rq)
4750 {
4751 }
4752 #endif
4753 
4754 /*
4755  * The enqueue_task method is called before nr_running is
4756  * increased. Here we update the fair scheduling stats and
4757  * then put the task into the rbtree:
4758  */
4759 static void
4760 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4761 {
4762 	struct cfs_rq *cfs_rq;
4763 	struct sched_entity *se = &p->se;
4764 
4765 	/*
4766 	 * If in_iowait is set, the code below may not trigger any cpufreq
4767 	 * utilization updates, so do it here explicitly with the IOWAIT flag
4768 	 * passed.
4769 	 */
4770 	if (p->in_iowait)
4771 		cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4772 
4773 	for_each_sched_entity(se) {
4774 		if (se->on_rq)
4775 			break;
4776 		cfs_rq = cfs_rq_of(se);
4777 		enqueue_entity(cfs_rq, se, flags);
4778 
4779 		/*
4780 		 * end evaluation on encountering a throttled cfs_rq
4781 		 *
4782 		 * note: in the case of encountering a throttled cfs_rq we will
4783 		 * post the final h_nr_running increment below.
4784 		 */
4785 		if (cfs_rq_throttled(cfs_rq))
4786 			break;
4787 		cfs_rq->h_nr_running++;
4788 
4789 		flags = ENQUEUE_WAKEUP;
4790 	}
4791 
4792 	for_each_sched_entity(se) {
4793 		cfs_rq = cfs_rq_of(se);
4794 		cfs_rq->h_nr_running++;
4795 
4796 		if (cfs_rq_throttled(cfs_rq))
4797 			break;
4798 
4799 		update_load_avg(se, UPDATE_TG);
4800 		update_cfs_shares(se);
4801 	}
4802 
4803 	if (!se)
4804 		add_nr_running(rq, 1);
4805 
4806 	hrtick_update(rq);
4807 }
4808 
4809 static void set_next_buddy(struct sched_entity *se);
4810 
4811 /*
4812  * The dequeue_task method is called before nr_running is
4813  * decreased. We remove the task from the rbtree and
4814  * update the fair scheduling stats:
4815  */
4816 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4817 {
4818 	struct cfs_rq *cfs_rq;
4819 	struct sched_entity *se = &p->se;
4820 	int task_sleep = flags & DEQUEUE_SLEEP;
4821 
4822 	for_each_sched_entity(se) {
4823 		cfs_rq = cfs_rq_of(se);
4824 		dequeue_entity(cfs_rq, se, flags);
4825 
4826 		/*
4827 		 * end evaluation on encountering a throttled cfs_rq
4828 		 *
4829 		 * note: in the case of encountering a throttled cfs_rq we will
4830 		 * post the final h_nr_running decrement below.
4831 		*/
4832 		if (cfs_rq_throttled(cfs_rq))
4833 			break;
4834 		cfs_rq->h_nr_running--;
4835 
4836 		/* Don't dequeue parent if it has other entities besides us */
4837 		if (cfs_rq->load.weight) {
4838 			/* Avoid re-evaluating load for this entity: */
4839 			se = parent_entity(se);
4840 			/*
4841 			 * Bias pick_next to pick a task from this cfs_rq, as
4842 			 * p is sleeping when it is within its sched_slice.
4843 			 */
4844 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4845 				set_next_buddy(se);
4846 			break;
4847 		}
4848 		flags |= DEQUEUE_SLEEP;
4849 	}
4850 
4851 	for_each_sched_entity(se) {
4852 		cfs_rq = cfs_rq_of(se);
4853 		cfs_rq->h_nr_running--;
4854 
4855 		if (cfs_rq_throttled(cfs_rq))
4856 			break;
4857 
4858 		update_load_avg(se, UPDATE_TG);
4859 		update_cfs_shares(se);
4860 	}
4861 
4862 	if (!se)
4863 		sub_nr_running(rq, 1);
4864 
4865 	hrtick_update(rq);
4866 }
4867 
4868 #ifdef CONFIG_SMP
4869 
4870 /* Working cpumask for: load_balance, load_balance_newidle. */
4871 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4872 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4873 
4874 #ifdef CONFIG_NO_HZ_COMMON
4875 /*
4876  * per rq 'load' arrray crap; XXX kill this.
4877  */
4878 
4879 /*
4880  * The exact cpuload calculated at every tick would be:
4881  *
4882  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4883  *
4884  * If a cpu misses updates for n ticks (as it was idle) and update gets
4885  * called on the n+1-th tick when cpu may be busy, then we have:
4886  *
4887  *   load_n   = (1 - 1/2^i)^n * load_0
4888  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4889  *
4890  * decay_load_missed() below does efficient calculation of
4891  *
4892  *   load' = (1 - 1/2^i)^n * load
4893  *
4894  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4895  * This allows us to precompute the above in said factors, thereby allowing the
4896  * reduction of an arbitrary n in O(log_2 n) steps. (See also
4897  * fixed_power_int())
4898  *
4899  * The calculation is approximated on a 128 point scale.
4900  */
4901 #define DEGRADE_SHIFT		7
4902 
4903 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4904 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4905 	{   0,   0,  0,  0,  0,  0, 0, 0 },
4906 	{  64,  32,  8,  0,  0,  0, 0, 0 },
4907 	{  96,  72, 40, 12,  1,  0, 0, 0 },
4908 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
4909 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
4910 };
4911 
4912 /*
4913  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4914  * would be when CPU is idle and so we just decay the old load without
4915  * adding any new load.
4916  */
4917 static unsigned long
4918 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4919 {
4920 	int j = 0;
4921 
4922 	if (!missed_updates)
4923 		return load;
4924 
4925 	if (missed_updates >= degrade_zero_ticks[idx])
4926 		return 0;
4927 
4928 	if (idx == 1)
4929 		return load >> missed_updates;
4930 
4931 	while (missed_updates) {
4932 		if (missed_updates % 2)
4933 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4934 
4935 		missed_updates >>= 1;
4936 		j++;
4937 	}
4938 	return load;
4939 }
4940 #endif /* CONFIG_NO_HZ_COMMON */
4941 
4942 /**
4943  * __cpu_load_update - update the rq->cpu_load[] statistics
4944  * @this_rq: The rq to update statistics for
4945  * @this_load: The current load
4946  * @pending_updates: The number of missed updates
4947  *
4948  * Update rq->cpu_load[] statistics. This function is usually called every
4949  * scheduler tick (TICK_NSEC).
4950  *
4951  * This function computes a decaying average:
4952  *
4953  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4954  *
4955  * Because of NOHZ it might not get called on every tick which gives need for
4956  * the @pending_updates argument.
4957  *
4958  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4959  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4960  *             = A * (A * load[i]_n-2 + B) + B
4961  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
4962  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4963  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4964  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4965  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4966  *
4967  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4968  * any change in load would have resulted in the tick being turned back on.
4969  *
4970  * For regular NOHZ, this reduces to:
4971  *
4972  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
4973  *
4974  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4975  * term.
4976  */
4977 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4978 			    unsigned long pending_updates)
4979 {
4980 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4981 	int i, scale;
4982 
4983 	this_rq->nr_load_updates++;
4984 
4985 	/* Update our load: */
4986 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4987 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4988 		unsigned long old_load, new_load;
4989 
4990 		/* scale is effectively 1 << i now, and >> i divides by scale */
4991 
4992 		old_load = this_rq->cpu_load[i];
4993 #ifdef CONFIG_NO_HZ_COMMON
4994 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4995 		if (tickless_load) {
4996 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4997 			/*
4998 			 * old_load can never be a negative value because a
4999 			 * decayed tickless_load cannot be greater than the
5000 			 * original tickless_load.
5001 			 */
5002 			old_load += tickless_load;
5003 		}
5004 #endif
5005 		new_load = this_load;
5006 		/*
5007 		 * Round up the averaging division if load is increasing. This
5008 		 * prevents us from getting stuck on 9 if the load is 10, for
5009 		 * example.
5010 		 */
5011 		if (new_load > old_load)
5012 			new_load += scale - 1;
5013 
5014 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5015 	}
5016 
5017 	sched_avg_update(this_rq);
5018 }
5019 
5020 /* Used instead of source_load when we know the type == 0 */
5021 static unsigned long weighted_cpuload(const int cpu)
5022 {
5023 	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
5024 }
5025 
5026 #ifdef CONFIG_NO_HZ_COMMON
5027 /*
5028  * There is no sane way to deal with nohz on smp when using jiffies because the
5029  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5030  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5031  *
5032  * Therefore we need to avoid the delta approach from the regular tick when
5033  * possible since that would seriously skew the load calculation. This is why we
5034  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5035  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5036  * loop exit, nohz_idle_balance, nohz full exit...)
5037  *
5038  * This means we might still be one tick off for nohz periods.
5039  */
5040 
5041 static void cpu_load_update_nohz(struct rq *this_rq,
5042 				 unsigned long curr_jiffies,
5043 				 unsigned long load)
5044 {
5045 	unsigned long pending_updates;
5046 
5047 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5048 	if (pending_updates) {
5049 		this_rq->last_load_update_tick = curr_jiffies;
5050 		/*
5051 		 * In the regular NOHZ case, we were idle, this means load 0.
5052 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5053 		 * its weighted load.
5054 		 */
5055 		cpu_load_update(this_rq, load, pending_updates);
5056 	}
5057 }
5058 
5059 /*
5060  * Called from nohz_idle_balance() to update the load ratings before doing the
5061  * idle balance.
5062  */
5063 static void cpu_load_update_idle(struct rq *this_rq)
5064 {
5065 	/*
5066 	 * bail if there's load or we're actually up-to-date.
5067 	 */
5068 	if (weighted_cpuload(cpu_of(this_rq)))
5069 		return;
5070 
5071 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5072 }
5073 
5074 /*
5075  * Record CPU load on nohz entry so we know the tickless load to account
5076  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5077  * than other cpu_load[idx] but it should be fine as cpu_load readers
5078  * shouldn't rely into synchronized cpu_load[*] updates.
5079  */
5080 void cpu_load_update_nohz_start(void)
5081 {
5082 	struct rq *this_rq = this_rq();
5083 
5084 	/*
5085 	 * This is all lockless but should be fine. If weighted_cpuload changes
5086 	 * concurrently we'll exit nohz. And cpu_load write can race with
5087 	 * cpu_load_update_idle() but both updater would be writing the same.
5088 	 */
5089 	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
5090 }
5091 
5092 /*
5093  * Account the tickless load in the end of a nohz frame.
5094  */
5095 void cpu_load_update_nohz_stop(void)
5096 {
5097 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5098 	struct rq *this_rq = this_rq();
5099 	unsigned long load;
5100 
5101 	if (curr_jiffies == this_rq->last_load_update_tick)
5102 		return;
5103 
5104 	load = weighted_cpuload(cpu_of(this_rq));
5105 	raw_spin_lock(&this_rq->lock);
5106 	update_rq_clock(this_rq);
5107 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5108 	raw_spin_unlock(&this_rq->lock);
5109 }
5110 #else /* !CONFIG_NO_HZ_COMMON */
5111 static inline void cpu_load_update_nohz(struct rq *this_rq,
5112 					unsigned long curr_jiffies,
5113 					unsigned long load) { }
5114 #endif /* CONFIG_NO_HZ_COMMON */
5115 
5116 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5117 {
5118 #ifdef CONFIG_NO_HZ_COMMON
5119 	/* See the mess around cpu_load_update_nohz(). */
5120 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5121 #endif
5122 	cpu_load_update(this_rq, load, 1);
5123 }
5124 
5125 /*
5126  * Called from scheduler_tick()
5127  */
5128 void cpu_load_update_active(struct rq *this_rq)
5129 {
5130 	unsigned long load = weighted_cpuload(cpu_of(this_rq));
5131 
5132 	if (tick_nohz_tick_stopped())
5133 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5134 	else
5135 		cpu_load_update_periodic(this_rq, load);
5136 }
5137 
5138 /*
5139  * Return a low guess at the load of a migration-source cpu weighted
5140  * according to the scheduling class and "nice" value.
5141  *
5142  * We want to under-estimate the load of migration sources, to
5143  * balance conservatively.
5144  */
5145 static unsigned long source_load(int cpu, int type)
5146 {
5147 	struct rq *rq = cpu_rq(cpu);
5148 	unsigned long total = weighted_cpuload(cpu);
5149 
5150 	if (type == 0 || !sched_feat(LB_BIAS))
5151 		return total;
5152 
5153 	return min(rq->cpu_load[type-1], total);
5154 }
5155 
5156 /*
5157  * Return a high guess at the load of a migration-target cpu weighted
5158  * according to the scheduling class and "nice" value.
5159  */
5160 static unsigned long target_load(int cpu, int type)
5161 {
5162 	struct rq *rq = cpu_rq(cpu);
5163 	unsigned long total = weighted_cpuload(cpu);
5164 
5165 	if (type == 0 || !sched_feat(LB_BIAS))
5166 		return total;
5167 
5168 	return max(rq->cpu_load[type-1], total);
5169 }
5170 
5171 static unsigned long capacity_of(int cpu)
5172 {
5173 	return cpu_rq(cpu)->cpu_capacity;
5174 }
5175 
5176 static unsigned long capacity_orig_of(int cpu)
5177 {
5178 	return cpu_rq(cpu)->cpu_capacity_orig;
5179 }
5180 
5181 static unsigned long cpu_avg_load_per_task(int cpu)
5182 {
5183 	struct rq *rq = cpu_rq(cpu);
5184 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5185 	unsigned long load_avg = weighted_cpuload(cpu);
5186 
5187 	if (nr_running)
5188 		return load_avg / nr_running;
5189 
5190 	return 0;
5191 }
5192 
5193 #ifdef CONFIG_FAIR_GROUP_SCHED
5194 /*
5195  * effective_load() calculates the load change as seen from the root_task_group
5196  *
5197  * Adding load to a group doesn't make a group heavier, but can cause movement
5198  * of group shares between cpus. Assuming the shares were perfectly aligned one
5199  * can calculate the shift in shares.
5200  *
5201  * Calculate the effective load difference if @wl is added (subtracted) to @tg
5202  * on this @cpu and results in a total addition (subtraction) of @wg to the
5203  * total group weight.
5204  *
5205  * Given a runqueue weight distribution (rw_i) we can compute a shares
5206  * distribution (s_i) using:
5207  *
5208  *   s_i = rw_i / \Sum rw_j						(1)
5209  *
5210  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5211  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5212  * shares distribution (s_i):
5213  *
5214  *   rw_i = {   2,   4,   1,   0 }
5215  *   s_i  = { 2/7, 4/7, 1/7,   0 }
5216  *
5217  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5218  * task used to run on and the CPU the waker is running on), we need to
5219  * compute the effect of waking a task on either CPU and, in case of a sync
5220  * wakeup, compute the effect of the current task going to sleep.
5221  *
5222  * So for a change of @wl to the local @cpu with an overall group weight change
5223  * of @wl we can compute the new shares distribution (s'_i) using:
5224  *
5225  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
5226  *
5227  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5228  * differences in waking a task to CPU 0. The additional task changes the
5229  * weight and shares distributions like:
5230  *
5231  *   rw'_i = {   3,   4,   1,   0 }
5232  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
5233  *
5234  * We can then compute the difference in effective weight by using:
5235  *
5236  *   dw_i = S * (s'_i - s_i)						(3)
5237  *
5238  * Where 'S' is the group weight as seen by its parent.
5239  *
5240  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5241  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5242  * 4/7) times the weight of the group.
5243  */
5244 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5245 {
5246 	struct sched_entity *se = tg->se[cpu];
5247 
5248 	if (!tg->parent)	/* the trivial, non-cgroup case */
5249 		return wl;
5250 
5251 	for_each_sched_entity(se) {
5252 		struct cfs_rq *cfs_rq = se->my_q;
5253 		long W, w = cfs_rq_load_avg(cfs_rq);
5254 
5255 		tg = cfs_rq->tg;
5256 
5257 		/*
5258 		 * W = @wg + \Sum rw_j
5259 		 */
5260 		W = wg + atomic_long_read(&tg->load_avg);
5261 
5262 		/* Ensure \Sum rw_j >= rw_i */
5263 		W -= cfs_rq->tg_load_avg_contrib;
5264 		W += w;
5265 
5266 		/*
5267 		 * w = rw_i + @wl
5268 		 */
5269 		w += wl;
5270 
5271 		/*
5272 		 * wl = S * s'_i; see (2)
5273 		 */
5274 		if (W > 0 && w < W)
5275 			wl = (w * (long)scale_load_down(tg->shares)) / W;
5276 		else
5277 			wl = scale_load_down(tg->shares);
5278 
5279 		/*
5280 		 * Per the above, wl is the new se->load.weight value; since
5281 		 * those are clipped to [MIN_SHARES, ...) do so now. See
5282 		 * calc_cfs_shares().
5283 		 */
5284 		if (wl < MIN_SHARES)
5285 			wl = MIN_SHARES;
5286 
5287 		/*
5288 		 * wl = dw_i = S * (s'_i - s_i); see (3)
5289 		 */
5290 		wl -= se->avg.load_avg;
5291 
5292 		/*
5293 		 * Recursively apply this logic to all parent groups to compute
5294 		 * the final effective load change on the root group. Since
5295 		 * only the @tg group gets extra weight, all parent groups can
5296 		 * only redistribute existing shares. @wl is the shift in shares
5297 		 * resulting from this level per the above.
5298 		 */
5299 		wg = 0;
5300 	}
5301 
5302 	return wl;
5303 }
5304 #else
5305 
5306 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5307 {
5308 	return wl;
5309 }
5310 
5311 #endif
5312 
5313 static void record_wakee(struct task_struct *p)
5314 {
5315 	/*
5316 	 * Only decay a single time; tasks that have less then 1 wakeup per
5317 	 * jiffy will not have built up many flips.
5318 	 */
5319 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5320 		current->wakee_flips >>= 1;
5321 		current->wakee_flip_decay_ts = jiffies;
5322 	}
5323 
5324 	if (current->last_wakee != p) {
5325 		current->last_wakee = p;
5326 		current->wakee_flips++;
5327 	}
5328 }
5329 
5330 /*
5331  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5332  *
5333  * A waker of many should wake a different task than the one last awakened
5334  * at a frequency roughly N times higher than one of its wakees.
5335  *
5336  * In order to determine whether we should let the load spread vs consolidating
5337  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5338  * partner, and a factor of lls_size higher frequency in the other.
5339  *
5340  * With both conditions met, we can be relatively sure that the relationship is
5341  * non-monogamous, with partner count exceeding socket size.
5342  *
5343  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5344  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5345  * socket size.
5346  */
5347 static int wake_wide(struct task_struct *p)
5348 {
5349 	unsigned int master = current->wakee_flips;
5350 	unsigned int slave = p->wakee_flips;
5351 	int factor = this_cpu_read(sd_llc_size);
5352 
5353 	if (master < slave)
5354 		swap(master, slave);
5355 	if (slave < factor || master < slave * factor)
5356 		return 0;
5357 	return 1;
5358 }
5359 
5360 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5361 		       int prev_cpu, int sync)
5362 {
5363 	s64 this_load, load;
5364 	s64 this_eff_load, prev_eff_load;
5365 	int idx, this_cpu;
5366 	struct task_group *tg;
5367 	unsigned long weight;
5368 	int balanced;
5369 
5370 	idx	  = sd->wake_idx;
5371 	this_cpu  = smp_processor_id();
5372 	load	  = source_load(prev_cpu, idx);
5373 	this_load = target_load(this_cpu, idx);
5374 
5375 	/*
5376 	 * If sync wakeup then subtract the (maximum possible)
5377 	 * effect of the currently running task from the load
5378 	 * of the current CPU:
5379 	 */
5380 	if (sync) {
5381 		tg = task_group(current);
5382 		weight = current->se.avg.load_avg;
5383 
5384 		this_load += effective_load(tg, this_cpu, -weight, -weight);
5385 		load += effective_load(tg, prev_cpu, 0, -weight);
5386 	}
5387 
5388 	tg = task_group(p);
5389 	weight = p->se.avg.load_avg;
5390 
5391 	/*
5392 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5393 	 * due to the sync cause above having dropped this_load to 0, we'll
5394 	 * always have an imbalance, but there's really nothing you can do
5395 	 * about that, so that's good too.
5396 	 *
5397 	 * Otherwise check if either cpus are near enough in load to allow this
5398 	 * task to be woken on this_cpu.
5399 	 */
5400 	this_eff_load = 100;
5401 	this_eff_load *= capacity_of(prev_cpu);
5402 
5403 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5404 	prev_eff_load *= capacity_of(this_cpu);
5405 
5406 	if (this_load > 0) {
5407 		this_eff_load *= this_load +
5408 			effective_load(tg, this_cpu, weight, weight);
5409 
5410 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5411 	}
5412 
5413 	balanced = this_eff_load <= prev_eff_load;
5414 
5415 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5416 
5417 	if (!balanced)
5418 		return 0;
5419 
5420 	schedstat_inc(sd->ttwu_move_affine);
5421 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5422 
5423 	return 1;
5424 }
5425 
5426 static inline int task_util(struct task_struct *p);
5427 static int cpu_util_wake(int cpu, struct task_struct *p);
5428 
5429 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5430 {
5431 	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5432 }
5433 
5434 /*
5435  * find_idlest_group finds and returns the least busy CPU group within the
5436  * domain.
5437  */
5438 static struct sched_group *
5439 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5440 		  int this_cpu, int sd_flag)
5441 {
5442 	struct sched_group *idlest = NULL, *group = sd->groups;
5443 	struct sched_group *most_spare_sg = NULL;
5444 	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5445 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5446 	unsigned long most_spare = 0, this_spare = 0;
5447 	int load_idx = sd->forkexec_idx;
5448 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5449 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5450 				(sd->imbalance_pct-100) / 100;
5451 
5452 	if (sd_flag & SD_BALANCE_WAKE)
5453 		load_idx = sd->wake_idx;
5454 
5455 	do {
5456 		unsigned long load, avg_load, runnable_load;
5457 		unsigned long spare_cap, max_spare_cap;
5458 		int local_group;
5459 		int i;
5460 
5461 		/* Skip over this group if it has no CPUs allowed */
5462 		if (!cpumask_intersects(sched_group_cpus(group),
5463 					&p->cpus_allowed))
5464 			continue;
5465 
5466 		local_group = cpumask_test_cpu(this_cpu,
5467 					       sched_group_cpus(group));
5468 
5469 		/*
5470 		 * Tally up the load of all CPUs in the group and find
5471 		 * the group containing the CPU with most spare capacity.
5472 		 */
5473 		avg_load = 0;
5474 		runnable_load = 0;
5475 		max_spare_cap = 0;
5476 
5477 		for_each_cpu(i, sched_group_cpus(group)) {
5478 			/* Bias balancing toward cpus of our domain */
5479 			if (local_group)
5480 				load = source_load(i, load_idx);
5481 			else
5482 				load = target_load(i, load_idx);
5483 
5484 			runnable_load += load;
5485 
5486 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5487 
5488 			spare_cap = capacity_spare_wake(i, p);
5489 
5490 			if (spare_cap > max_spare_cap)
5491 				max_spare_cap = spare_cap;
5492 		}
5493 
5494 		/* Adjust by relative CPU capacity of the group */
5495 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5496 					group->sgc->capacity;
5497 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5498 					group->sgc->capacity;
5499 
5500 		if (local_group) {
5501 			this_runnable_load = runnable_load;
5502 			this_avg_load = avg_load;
5503 			this_spare = max_spare_cap;
5504 		} else {
5505 			if (min_runnable_load > (runnable_load + imbalance)) {
5506 				/*
5507 				 * The runnable load is significantly smaller
5508 				 * so we can pick this new cpu
5509 				 */
5510 				min_runnable_load = runnable_load;
5511 				min_avg_load = avg_load;
5512 				idlest = group;
5513 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5514 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5515 				/*
5516 				 * The runnable loads are close so take the
5517 				 * blocked load into account through avg_load.
5518 				 */
5519 				min_avg_load = avg_load;
5520 				idlest = group;
5521 			}
5522 
5523 			if (most_spare < max_spare_cap) {
5524 				most_spare = max_spare_cap;
5525 				most_spare_sg = group;
5526 			}
5527 		}
5528 	} while (group = group->next, group != sd->groups);
5529 
5530 	/*
5531 	 * The cross-over point between using spare capacity or least load
5532 	 * is too conservative for high utilization tasks on partially
5533 	 * utilized systems if we require spare_capacity > task_util(p),
5534 	 * so we allow for some task stuffing by using
5535 	 * spare_capacity > task_util(p)/2.
5536 	 *
5537 	 * Spare capacity can't be used for fork because the utilization has
5538 	 * not been set yet, we must first select a rq to compute the initial
5539 	 * utilization.
5540 	 */
5541 	if (sd_flag & SD_BALANCE_FORK)
5542 		goto skip_spare;
5543 
5544 	if (this_spare > task_util(p) / 2 &&
5545 	    imbalance_scale*this_spare > 100*most_spare)
5546 		return NULL;
5547 
5548 	if (most_spare > task_util(p) / 2)
5549 		return most_spare_sg;
5550 
5551 skip_spare:
5552 	if (!idlest)
5553 		return NULL;
5554 
5555 	if (min_runnable_load > (this_runnable_load + imbalance))
5556 		return NULL;
5557 
5558 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5559 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5560 		return NULL;
5561 
5562 	return idlest;
5563 }
5564 
5565 /*
5566  * find_idlest_cpu - find the idlest cpu among the cpus in group.
5567  */
5568 static int
5569 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5570 {
5571 	unsigned long load, min_load = ULONG_MAX;
5572 	unsigned int min_exit_latency = UINT_MAX;
5573 	u64 latest_idle_timestamp = 0;
5574 	int least_loaded_cpu = this_cpu;
5575 	int shallowest_idle_cpu = -1;
5576 	int i;
5577 
5578 	/* Check if we have any choice: */
5579 	if (group->group_weight == 1)
5580 		return cpumask_first(sched_group_cpus(group));
5581 
5582 	/* Traverse only the allowed CPUs */
5583 	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
5584 		if (idle_cpu(i)) {
5585 			struct rq *rq = cpu_rq(i);
5586 			struct cpuidle_state *idle = idle_get_state(rq);
5587 			if (idle && idle->exit_latency < min_exit_latency) {
5588 				/*
5589 				 * We give priority to a CPU whose idle state
5590 				 * has the smallest exit latency irrespective
5591 				 * of any idle timestamp.
5592 				 */
5593 				min_exit_latency = idle->exit_latency;
5594 				latest_idle_timestamp = rq->idle_stamp;
5595 				shallowest_idle_cpu = i;
5596 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5597 				   rq->idle_stamp > latest_idle_timestamp) {
5598 				/*
5599 				 * If equal or no active idle state, then
5600 				 * the most recently idled CPU might have
5601 				 * a warmer cache.
5602 				 */
5603 				latest_idle_timestamp = rq->idle_stamp;
5604 				shallowest_idle_cpu = i;
5605 			}
5606 		} else if (shallowest_idle_cpu == -1) {
5607 			load = weighted_cpuload(i);
5608 			if (load < min_load || (load == min_load && i == this_cpu)) {
5609 				min_load = load;
5610 				least_loaded_cpu = i;
5611 			}
5612 		}
5613 	}
5614 
5615 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5616 }
5617 
5618 /*
5619  * Implement a for_each_cpu() variant that starts the scan at a given cpu
5620  * (@start), and wraps around.
5621  *
5622  * This is used to scan for idle CPUs; such that not all CPUs looking for an
5623  * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5624  * through the LLC domain.
5625  *
5626  * Especially tbench is found sensitive to this.
5627  */
5628 
5629 static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
5630 {
5631 	int next;
5632 
5633 again:
5634 	next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
5635 
5636 	if (*wrapped) {
5637 		if (next >= start)
5638 			return nr_cpumask_bits;
5639 	} else {
5640 		if (next >= nr_cpumask_bits) {
5641 			*wrapped = 1;
5642 			n = -1;
5643 			goto again;
5644 		}
5645 	}
5646 
5647 	return next;
5648 }
5649 
5650 #define for_each_cpu_wrap(cpu, mask, start, wrap)				\
5651 	for ((wrap) = 0, (cpu) = (start)-1;					\
5652 		(cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)),	\
5653 		(cpu) < nr_cpumask_bits; )
5654 
5655 #ifdef CONFIG_SCHED_SMT
5656 
5657 static inline void set_idle_cores(int cpu, int val)
5658 {
5659 	struct sched_domain_shared *sds;
5660 
5661 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5662 	if (sds)
5663 		WRITE_ONCE(sds->has_idle_cores, val);
5664 }
5665 
5666 static inline bool test_idle_cores(int cpu, bool def)
5667 {
5668 	struct sched_domain_shared *sds;
5669 
5670 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5671 	if (sds)
5672 		return READ_ONCE(sds->has_idle_cores);
5673 
5674 	return def;
5675 }
5676 
5677 /*
5678  * Scans the local SMT mask to see if the entire core is idle, and records this
5679  * information in sd_llc_shared->has_idle_cores.
5680  *
5681  * Since SMT siblings share all cache levels, inspecting this limited remote
5682  * state should be fairly cheap.
5683  */
5684 void __update_idle_core(struct rq *rq)
5685 {
5686 	int core = cpu_of(rq);
5687 	int cpu;
5688 
5689 	rcu_read_lock();
5690 	if (test_idle_cores(core, true))
5691 		goto unlock;
5692 
5693 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5694 		if (cpu == core)
5695 			continue;
5696 
5697 		if (!idle_cpu(cpu))
5698 			goto unlock;
5699 	}
5700 
5701 	set_idle_cores(core, 1);
5702 unlock:
5703 	rcu_read_unlock();
5704 }
5705 
5706 /*
5707  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5708  * there are no idle cores left in the system; tracked through
5709  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5710  */
5711 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5712 {
5713 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5714 	int core, cpu, wrap;
5715 
5716 	if (!static_branch_likely(&sched_smt_present))
5717 		return -1;
5718 
5719 	if (!test_idle_cores(target, false))
5720 		return -1;
5721 
5722 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5723 
5724 	for_each_cpu_wrap(core, cpus, target, wrap) {
5725 		bool idle = true;
5726 
5727 		for_each_cpu(cpu, cpu_smt_mask(core)) {
5728 			cpumask_clear_cpu(cpu, cpus);
5729 			if (!idle_cpu(cpu))
5730 				idle = false;
5731 		}
5732 
5733 		if (idle)
5734 			return core;
5735 	}
5736 
5737 	/*
5738 	 * Failed to find an idle core; stop looking for one.
5739 	 */
5740 	set_idle_cores(target, 0);
5741 
5742 	return -1;
5743 }
5744 
5745 /*
5746  * Scan the local SMT mask for idle CPUs.
5747  */
5748 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5749 {
5750 	int cpu;
5751 
5752 	if (!static_branch_likely(&sched_smt_present))
5753 		return -1;
5754 
5755 	for_each_cpu(cpu, cpu_smt_mask(target)) {
5756 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5757 			continue;
5758 		if (idle_cpu(cpu))
5759 			return cpu;
5760 	}
5761 
5762 	return -1;
5763 }
5764 
5765 #else /* CONFIG_SCHED_SMT */
5766 
5767 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5768 {
5769 	return -1;
5770 }
5771 
5772 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5773 {
5774 	return -1;
5775 }
5776 
5777 #endif /* CONFIG_SCHED_SMT */
5778 
5779 /*
5780  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5781  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5782  * average idle time for this rq (as found in rq->avg_idle).
5783  */
5784 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5785 {
5786 	struct sched_domain *this_sd;
5787 	u64 avg_cost, avg_idle = this_rq()->avg_idle;
5788 	u64 time, cost;
5789 	s64 delta;
5790 	int cpu, wrap;
5791 
5792 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5793 	if (!this_sd)
5794 		return -1;
5795 
5796 	avg_cost = this_sd->avg_scan_cost;
5797 
5798 	/*
5799 	 * Due to large variance we need a large fuzz factor; hackbench in
5800 	 * particularly is sensitive here.
5801 	 */
5802 	if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost)
5803 		return -1;
5804 
5805 	time = local_clock();
5806 
5807 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5808 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5809 			continue;
5810 		if (idle_cpu(cpu))
5811 			break;
5812 	}
5813 
5814 	time = local_clock() - time;
5815 	cost = this_sd->avg_scan_cost;
5816 	delta = (s64)(time - cost) / 8;
5817 	this_sd->avg_scan_cost += delta;
5818 
5819 	return cpu;
5820 }
5821 
5822 /*
5823  * Try and locate an idle core/thread in the LLC cache domain.
5824  */
5825 static int select_idle_sibling(struct task_struct *p, int prev, int target)
5826 {
5827 	struct sched_domain *sd;
5828 	int i;
5829 
5830 	if (idle_cpu(target))
5831 		return target;
5832 
5833 	/*
5834 	 * If the previous cpu is cache affine and idle, don't be stupid.
5835 	 */
5836 	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5837 		return prev;
5838 
5839 	sd = rcu_dereference(per_cpu(sd_llc, target));
5840 	if (!sd)
5841 		return target;
5842 
5843 	i = select_idle_core(p, sd, target);
5844 	if ((unsigned)i < nr_cpumask_bits)
5845 		return i;
5846 
5847 	i = select_idle_cpu(p, sd, target);
5848 	if ((unsigned)i < nr_cpumask_bits)
5849 		return i;
5850 
5851 	i = select_idle_smt(p, sd, target);
5852 	if ((unsigned)i < nr_cpumask_bits)
5853 		return i;
5854 
5855 	return target;
5856 }
5857 
5858 /*
5859  * cpu_util returns the amount of capacity of a CPU that is used by CFS
5860  * tasks. The unit of the return value must be the one of capacity so we can
5861  * compare the utilization with the capacity of the CPU that is available for
5862  * CFS task (ie cpu_capacity).
5863  *
5864  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5865  * recent utilization of currently non-runnable tasks on a CPU. It represents
5866  * the amount of utilization of a CPU in the range [0..capacity_orig] where
5867  * capacity_orig is the cpu_capacity available at the highest frequency
5868  * (arch_scale_freq_capacity()).
5869  * The utilization of a CPU converges towards a sum equal to or less than the
5870  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5871  * the running time on this CPU scaled by capacity_curr.
5872  *
5873  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5874  * higher than capacity_orig because of unfortunate rounding in
5875  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5876  * the average stabilizes with the new running time. We need to check that the
5877  * utilization stays within the range of [0..capacity_orig] and cap it if
5878  * necessary. Without utilization capping, a group could be seen as overloaded
5879  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5880  * available capacity. We allow utilization to overshoot capacity_curr (but not
5881  * capacity_orig) as it useful for predicting the capacity required after task
5882  * migrations (scheduler-driven DVFS).
5883  */
5884 static int cpu_util(int cpu)
5885 {
5886 	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5887 	unsigned long capacity = capacity_orig_of(cpu);
5888 
5889 	return (util >= capacity) ? capacity : util;
5890 }
5891 
5892 static inline int task_util(struct task_struct *p)
5893 {
5894 	return p->se.avg.util_avg;
5895 }
5896 
5897 /*
5898  * cpu_util_wake: Compute cpu utilization with any contributions from
5899  * the waking task p removed.
5900  */
5901 static int cpu_util_wake(int cpu, struct task_struct *p)
5902 {
5903 	unsigned long util, capacity;
5904 
5905 	/* Task has no contribution or is new */
5906 	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5907 		return cpu_util(cpu);
5908 
5909 	capacity = capacity_orig_of(cpu);
5910 	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5911 
5912 	return (util >= capacity) ? capacity : util;
5913 }
5914 
5915 /*
5916  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5917  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5918  *
5919  * In that case WAKE_AFFINE doesn't make sense and we'll let
5920  * BALANCE_WAKE sort things out.
5921  */
5922 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5923 {
5924 	long min_cap, max_cap;
5925 
5926 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5927 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5928 
5929 	/* Minimum capacity is close to max, no need to abort wake_affine */
5930 	if (max_cap - min_cap < max_cap >> 3)
5931 		return 0;
5932 
5933 	/* Bring task utilization in sync with prev_cpu */
5934 	sync_entity_load_avg(&p->se);
5935 
5936 	return min_cap * 1024 < task_util(p) * capacity_margin;
5937 }
5938 
5939 /*
5940  * select_task_rq_fair: Select target runqueue for the waking task in domains
5941  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5942  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5943  *
5944  * Balances load by selecting the idlest cpu in the idlest group, or under
5945  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5946  *
5947  * Returns the target cpu number.
5948  *
5949  * preempt must be disabled.
5950  */
5951 static int
5952 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5953 {
5954 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5955 	int cpu = smp_processor_id();
5956 	int new_cpu = prev_cpu;
5957 	int want_affine = 0;
5958 	int sync = wake_flags & WF_SYNC;
5959 
5960 	if (sd_flag & SD_BALANCE_WAKE) {
5961 		record_wakee(p);
5962 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5963 			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
5964 	}
5965 
5966 	rcu_read_lock();
5967 	for_each_domain(cpu, tmp) {
5968 		if (!(tmp->flags & SD_LOAD_BALANCE))
5969 			break;
5970 
5971 		/*
5972 		 * If both cpu and prev_cpu are part of this domain,
5973 		 * cpu is a valid SD_WAKE_AFFINE target.
5974 		 */
5975 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5976 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5977 			affine_sd = tmp;
5978 			break;
5979 		}
5980 
5981 		if (tmp->flags & sd_flag)
5982 			sd = tmp;
5983 		else if (!want_affine)
5984 			break;
5985 	}
5986 
5987 	if (affine_sd) {
5988 		sd = NULL; /* Prefer wake_affine over balance flags */
5989 		if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
5990 			new_cpu = cpu;
5991 	}
5992 
5993 	if (!sd) {
5994 		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5995 			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
5996 
5997 	} else while (sd) {
5998 		struct sched_group *group;
5999 		int weight;
6000 
6001 		if (!(sd->flags & sd_flag)) {
6002 			sd = sd->child;
6003 			continue;
6004 		}
6005 
6006 		group = find_idlest_group(sd, p, cpu, sd_flag);
6007 		if (!group) {
6008 			sd = sd->child;
6009 			continue;
6010 		}
6011 
6012 		new_cpu = find_idlest_cpu(group, p, cpu);
6013 		if (new_cpu == -1 || new_cpu == cpu) {
6014 			/* Now try balancing at a lower domain level of cpu */
6015 			sd = sd->child;
6016 			continue;
6017 		}
6018 
6019 		/* Now try balancing at a lower domain level of new_cpu */
6020 		cpu = new_cpu;
6021 		weight = sd->span_weight;
6022 		sd = NULL;
6023 		for_each_domain(cpu, tmp) {
6024 			if (weight <= tmp->span_weight)
6025 				break;
6026 			if (tmp->flags & sd_flag)
6027 				sd = tmp;
6028 		}
6029 		/* while loop will break here if sd == NULL */
6030 	}
6031 	rcu_read_unlock();
6032 
6033 	return new_cpu;
6034 }
6035 
6036 /*
6037  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6038  * cfs_rq_of(p) references at time of call are still valid and identify the
6039  * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6040  */
6041 static void migrate_task_rq_fair(struct task_struct *p)
6042 {
6043 	/*
6044 	 * As blocked tasks retain absolute vruntime the migration needs to
6045 	 * deal with this by subtracting the old and adding the new
6046 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6047 	 * the task on the new runqueue.
6048 	 */
6049 	if (p->state == TASK_WAKING) {
6050 		struct sched_entity *se = &p->se;
6051 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6052 		u64 min_vruntime;
6053 
6054 #ifndef CONFIG_64BIT
6055 		u64 min_vruntime_copy;
6056 
6057 		do {
6058 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6059 			smp_rmb();
6060 			min_vruntime = cfs_rq->min_vruntime;
6061 		} while (min_vruntime != min_vruntime_copy);
6062 #else
6063 		min_vruntime = cfs_rq->min_vruntime;
6064 #endif
6065 
6066 		se->vruntime -= min_vruntime;
6067 	}
6068 
6069 	/*
6070 	 * We are supposed to update the task to "current" time, then its up to date
6071 	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6072 	 * what current time is, so simply throw away the out-of-date time. This
6073 	 * will result in the wakee task is less decayed, but giving the wakee more
6074 	 * load sounds not bad.
6075 	 */
6076 	remove_entity_load_avg(&p->se);
6077 
6078 	/* Tell new CPU we are migrated */
6079 	p->se.avg.last_update_time = 0;
6080 
6081 	/* We have migrated, no longer consider this task hot */
6082 	p->se.exec_start = 0;
6083 }
6084 
6085 static void task_dead_fair(struct task_struct *p)
6086 {
6087 	remove_entity_load_avg(&p->se);
6088 }
6089 #endif /* CONFIG_SMP */
6090 
6091 static unsigned long
6092 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6093 {
6094 	unsigned long gran = sysctl_sched_wakeup_granularity;
6095 
6096 	/*
6097 	 * Since its curr running now, convert the gran from real-time
6098 	 * to virtual-time in his units.
6099 	 *
6100 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6101 	 * they get preempted easier. That is, if 'se' < 'curr' then
6102 	 * the resulting gran will be larger, therefore penalizing the
6103 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6104 	 * be smaller, again penalizing the lighter task.
6105 	 *
6106 	 * This is especially important for buddies when the leftmost
6107 	 * task is higher priority than the buddy.
6108 	 */
6109 	return calc_delta_fair(gran, se);
6110 }
6111 
6112 /*
6113  * Should 'se' preempt 'curr'.
6114  *
6115  *             |s1
6116  *        |s2
6117  *   |s3
6118  *         g
6119  *      |<--->|c
6120  *
6121  *  w(c, s1) = -1
6122  *  w(c, s2) =  0
6123  *  w(c, s3) =  1
6124  *
6125  */
6126 static int
6127 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6128 {
6129 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6130 
6131 	if (vdiff <= 0)
6132 		return -1;
6133 
6134 	gran = wakeup_gran(curr, se);
6135 	if (vdiff > gran)
6136 		return 1;
6137 
6138 	return 0;
6139 }
6140 
6141 static void set_last_buddy(struct sched_entity *se)
6142 {
6143 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6144 		return;
6145 
6146 	for_each_sched_entity(se)
6147 		cfs_rq_of(se)->last = se;
6148 }
6149 
6150 static void set_next_buddy(struct sched_entity *se)
6151 {
6152 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6153 		return;
6154 
6155 	for_each_sched_entity(se)
6156 		cfs_rq_of(se)->next = se;
6157 }
6158 
6159 static void set_skip_buddy(struct sched_entity *se)
6160 {
6161 	for_each_sched_entity(se)
6162 		cfs_rq_of(se)->skip = se;
6163 }
6164 
6165 /*
6166  * Preempt the current task with a newly woken task if needed:
6167  */
6168 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6169 {
6170 	struct task_struct *curr = rq->curr;
6171 	struct sched_entity *se = &curr->se, *pse = &p->se;
6172 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6173 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6174 	int next_buddy_marked = 0;
6175 
6176 	if (unlikely(se == pse))
6177 		return;
6178 
6179 	/*
6180 	 * This is possible from callers such as attach_tasks(), in which we
6181 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6182 	 * lead to a throttle).  This both saves work and prevents false
6183 	 * next-buddy nomination below.
6184 	 */
6185 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6186 		return;
6187 
6188 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6189 		set_next_buddy(pse);
6190 		next_buddy_marked = 1;
6191 	}
6192 
6193 	/*
6194 	 * We can come here with TIF_NEED_RESCHED already set from new task
6195 	 * wake up path.
6196 	 *
6197 	 * Note: this also catches the edge-case of curr being in a throttled
6198 	 * group (e.g. via set_curr_task), since update_curr() (in the
6199 	 * enqueue of curr) will have resulted in resched being set.  This
6200 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6201 	 * below.
6202 	 */
6203 	if (test_tsk_need_resched(curr))
6204 		return;
6205 
6206 	/* Idle tasks are by definition preempted by non-idle tasks. */
6207 	if (unlikely(curr->policy == SCHED_IDLE) &&
6208 	    likely(p->policy != SCHED_IDLE))
6209 		goto preempt;
6210 
6211 	/*
6212 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6213 	 * is driven by the tick):
6214 	 */
6215 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6216 		return;
6217 
6218 	find_matching_se(&se, &pse);
6219 	update_curr(cfs_rq_of(se));
6220 	BUG_ON(!pse);
6221 	if (wakeup_preempt_entity(se, pse) == 1) {
6222 		/*
6223 		 * Bias pick_next to pick the sched entity that is
6224 		 * triggering this preemption.
6225 		 */
6226 		if (!next_buddy_marked)
6227 			set_next_buddy(pse);
6228 		goto preempt;
6229 	}
6230 
6231 	return;
6232 
6233 preempt:
6234 	resched_curr(rq);
6235 	/*
6236 	 * Only set the backward buddy when the current task is still
6237 	 * on the rq. This can happen when a wakeup gets interleaved
6238 	 * with schedule on the ->pre_schedule() or idle_balance()
6239 	 * point, either of which can * drop the rq lock.
6240 	 *
6241 	 * Also, during early boot the idle thread is in the fair class,
6242 	 * for obvious reasons its a bad idea to schedule back to it.
6243 	 */
6244 	if (unlikely(!se->on_rq || curr == rq->idle))
6245 		return;
6246 
6247 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6248 		set_last_buddy(se);
6249 }
6250 
6251 static struct task_struct *
6252 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6253 {
6254 	struct cfs_rq *cfs_rq = &rq->cfs;
6255 	struct sched_entity *se;
6256 	struct task_struct *p;
6257 	int new_tasks;
6258 
6259 again:
6260 #ifdef CONFIG_FAIR_GROUP_SCHED
6261 	if (!cfs_rq->nr_running)
6262 		goto idle;
6263 
6264 	if (prev->sched_class != &fair_sched_class)
6265 		goto simple;
6266 
6267 	/*
6268 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6269 	 * likely that a next task is from the same cgroup as the current.
6270 	 *
6271 	 * Therefore attempt to avoid putting and setting the entire cgroup
6272 	 * hierarchy, only change the part that actually changes.
6273 	 */
6274 
6275 	do {
6276 		struct sched_entity *curr = cfs_rq->curr;
6277 
6278 		/*
6279 		 * Since we got here without doing put_prev_entity() we also
6280 		 * have to consider cfs_rq->curr. If it is still a runnable
6281 		 * entity, update_curr() will update its vruntime, otherwise
6282 		 * forget we've ever seen it.
6283 		 */
6284 		if (curr) {
6285 			if (curr->on_rq)
6286 				update_curr(cfs_rq);
6287 			else
6288 				curr = NULL;
6289 
6290 			/*
6291 			 * This call to check_cfs_rq_runtime() will do the
6292 			 * throttle and dequeue its entity in the parent(s).
6293 			 * Therefore the 'simple' nr_running test will indeed
6294 			 * be correct.
6295 			 */
6296 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
6297 				goto simple;
6298 		}
6299 
6300 		se = pick_next_entity(cfs_rq, curr);
6301 		cfs_rq = group_cfs_rq(se);
6302 	} while (cfs_rq);
6303 
6304 	p = task_of(se);
6305 
6306 	/*
6307 	 * Since we haven't yet done put_prev_entity and if the selected task
6308 	 * is a different task than we started out with, try and touch the
6309 	 * least amount of cfs_rqs.
6310 	 */
6311 	if (prev != p) {
6312 		struct sched_entity *pse = &prev->se;
6313 
6314 		while (!(cfs_rq = is_same_group(se, pse))) {
6315 			int se_depth = se->depth;
6316 			int pse_depth = pse->depth;
6317 
6318 			if (se_depth <= pse_depth) {
6319 				put_prev_entity(cfs_rq_of(pse), pse);
6320 				pse = parent_entity(pse);
6321 			}
6322 			if (se_depth >= pse_depth) {
6323 				set_next_entity(cfs_rq_of(se), se);
6324 				se = parent_entity(se);
6325 			}
6326 		}
6327 
6328 		put_prev_entity(cfs_rq, pse);
6329 		set_next_entity(cfs_rq, se);
6330 	}
6331 
6332 	if (hrtick_enabled(rq))
6333 		hrtick_start_fair(rq, p);
6334 
6335 	return p;
6336 simple:
6337 	cfs_rq = &rq->cfs;
6338 #endif
6339 
6340 	if (!cfs_rq->nr_running)
6341 		goto idle;
6342 
6343 	put_prev_task(rq, prev);
6344 
6345 	do {
6346 		se = pick_next_entity(cfs_rq, NULL);
6347 		set_next_entity(cfs_rq, se);
6348 		cfs_rq = group_cfs_rq(se);
6349 	} while (cfs_rq);
6350 
6351 	p = task_of(se);
6352 
6353 	if (hrtick_enabled(rq))
6354 		hrtick_start_fair(rq, p);
6355 
6356 	return p;
6357 
6358 idle:
6359 	new_tasks = idle_balance(rq, rf);
6360 
6361 	/*
6362 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6363 	 * possible for any higher priority task to appear. In that case we
6364 	 * must re-start the pick_next_entity() loop.
6365 	 */
6366 	if (new_tasks < 0)
6367 		return RETRY_TASK;
6368 
6369 	if (new_tasks > 0)
6370 		goto again;
6371 
6372 	return NULL;
6373 }
6374 
6375 /*
6376  * Account for a descheduled task:
6377  */
6378 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6379 {
6380 	struct sched_entity *se = &prev->se;
6381 	struct cfs_rq *cfs_rq;
6382 
6383 	for_each_sched_entity(se) {
6384 		cfs_rq = cfs_rq_of(se);
6385 		put_prev_entity(cfs_rq, se);
6386 	}
6387 }
6388 
6389 /*
6390  * sched_yield() is very simple
6391  *
6392  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6393  */
6394 static void yield_task_fair(struct rq *rq)
6395 {
6396 	struct task_struct *curr = rq->curr;
6397 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6398 	struct sched_entity *se = &curr->se;
6399 
6400 	/*
6401 	 * Are we the only task in the tree?
6402 	 */
6403 	if (unlikely(rq->nr_running == 1))
6404 		return;
6405 
6406 	clear_buddies(cfs_rq, se);
6407 
6408 	if (curr->policy != SCHED_BATCH) {
6409 		update_rq_clock(rq);
6410 		/*
6411 		 * Update run-time statistics of the 'current'.
6412 		 */
6413 		update_curr(cfs_rq);
6414 		/*
6415 		 * Tell update_rq_clock() that we've just updated,
6416 		 * so we don't do microscopic update in schedule()
6417 		 * and double the fastpath cost.
6418 		 */
6419 		rq_clock_skip_update(rq, true);
6420 	}
6421 
6422 	set_skip_buddy(se);
6423 }
6424 
6425 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6426 {
6427 	struct sched_entity *se = &p->se;
6428 
6429 	/* throttled hierarchies are not runnable */
6430 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6431 		return false;
6432 
6433 	/* Tell the scheduler that we'd really like pse to run next. */
6434 	set_next_buddy(se);
6435 
6436 	yield_task_fair(rq);
6437 
6438 	return true;
6439 }
6440 
6441 #ifdef CONFIG_SMP
6442 /**************************************************
6443  * Fair scheduling class load-balancing methods.
6444  *
6445  * BASICS
6446  *
6447  * The purpose of load-balancing is to achieve the same basic fairness the
6448  * per-cpu scheduler provides, namely provide a proportional amount of compute
6449  * time to each task. This is expressed in the following equation:
6450  *
6451  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6452  *
6453  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6454  * W_i,0 is defined as:
6455  *
6456  *   W_i,0 = \Sum_j w_i,j                                             (2)
6457  *
6458  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6459  * is derived from the nice value as per sched_prio_to_weight[].
6460  *
6461  * The weight average is an exponential decay average of the instantaneous
6462  * weight:
6463  *
6464  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6465  *
6466  * C_i is the compute capacity of cpu i, typically it is the
6467  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6468  * can also include other factors [XXX].
6469  *
6470  * To achieve this balance we define a measure of imbalance which follows
6471  * directly from (1):
6472  *
6473  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6474  *
6475  * We them move tasks around to minimize the imbalance. In the continuous
6476  * function space it is obvious this converges, in the discrete case we get
6477  * a few fun cases generally called infeasible weight scenarios.
6478  *
6479  * [XXX expand on:
6480  *     - infeasible weights;
6481  *     - local vs global optima in the discrete case. ]
6482  *
6483  *
6484  * SCHED DOMAINS
6485  *
6486  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6487  * for all i,j solution, we create a tree of cpus that follows the hardware
6488  * topology where each level pairs two lower groups (or better). This results
6489  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6490  * tree to only the first of the previous level and we decrease the frequency
6491  * of load-balance at each level inv. proportional to the number of cpus in
6492  * the groups.
6493  *
6494  * This yields:
6495  *
6496  *     log_2 n     1     n
6497  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6498  *     i = 0      2^i   2^i
6499  *                               `- size of each group
6500  *         |         |     `- number of cpus doing load-balance
6501  *         |         `- freq
6502  *         `- sum over all levels
6503  *
6504  * Coupled with a limit on how many tasks we can migrate every balance pass,
6505  * this makes (5) the runtime complexity of the balancer.
6506  *
6507  * An important property here is that each CPU is still (indirectly) connected
6508  * to every other cpu in at most O(log n) steps:
6509  *
6510  * The adjacency matrix of the resulting graph is given by:
6511  *
6512  *             log_2 n
6513  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6514  *             k = 0
6515  *
6516  * And you'll find that:
6517  *
6518  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6519  *
6520  * Showing there's indeed a path between every cpu in at most O(log n) steps.
6521  * The task movement gives a factor of O(m), giving a convergence complexity
6522  * of:
6523  *
6524  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6525  *
6526  *
6527  * WORK CONSERVING
6528  *
6529  * In order to avoid CPUs going idle while there's still work to do, new idle
6530  * balancing is more aggressive and has the newly idle cpu iterate up the domain
6531  * tree itself instead of relying on other CPUs to bring it work.
6532  *
6533  * This adds some complexity to both (5) and (8) but it reduces the total idle
6534  * time.
6535  *
6536  * [XXX more?]
6537  *
6538  *
6539  * CGROUPS
6540  *
6541  * Cgroups make a horror show out of (2), instead of a simple sum we get:
6542  *
6543  *                                s_k,i
6544  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6545  *                                 S_k
6546  *
6547  * Where
6548  *
6549  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6550  *
6551  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6552  *
6553  * The big problem is S_k, its a global sum needed to compute a local (W_i)
6554  * property.
6555  *
6556  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6557  *      rewrite all of this once again.]
6558  */
6559 
6560 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6561 
6562 enum fbq_type { regular, remote, all };
6563 
6564 #define LBF_ALL_PINNED	0x01
6565 #define LBF_NEED_BREAK	0x02
6566 #define LBF_DST_PINNED  0x04
6567 #define LBF_SOME_PINNED	0x08
6568 
6569 struct lb_env {
6570 	struct sched_domain	*sd;
6571 
6572 	struct rq		*src_rq;
6573 	int			src_cpu;
6574 
6575 	int			dst_cpu;
6576 	struct rq		*dst_rq;
6577 
6578 	struct cpumask		*dst_grpmask;
6579 	int			new_dst_cpu;
6580 	enum cpu_idle_type	idle;
6581 	long			imbalance;
6582 	/* The set of CPUs under consideration for load-balancing */
6583 	struct cpumask		*cpus;
6584 
6585 	unsigned int		flags;
6586 
6587 	unsigned int		loop;
6588 	unsigned int		loop_break;
6589 	unsigned int		loop_max;
6590 
6591 	enum fbq_type		fbq_type;
6592 	struct list_head	tasks;
6593 };
6594 
6595 /*
6596  * Is this task likely cache-hot:
6597  */
6598 static int task_hot(struct task_struct *p, struct lb_env *env)
6599 {
6600 	s64 delta;
6601 
6602 	lockdep_assert_held(&env->src_rq->lock);
6603 
6604 	if (p->sched_class != &fair_sched_class)
6605 		return 0;
6606 
6607 	if (unlikely(p->policy == SCHED_IDLE))
6608 		return 0;
6609 
6610 	/*
6611 	 * Buddy candidates are cache hot:
6612 	 */
6613 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6614 			(&p->se == cfs_rq_of(&p->se)->next ||
6615 			 &p->se == cfs_rq_of(&p->se)->last))
6616 		return 1;
6617 
6618 	if (sysctl_sched_migration_cost == -1)
6619 		return 1;
6620 	if (sysctl_sched_migration_cost == 0)
6621 		return 0;
6622 
6623 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6624 
6625 	return delta < (s64)sysctl_sched_migration_cost;
6626 }
6627 
6628 #ifdef CONFIG_NUMA_BALANCING
6629 /*
6630  * Returns 1, if task migration degrades locality
6631  * Returns 0, if task migration improves locality i.e migration preferred.
6632  * Returns -1, if task migration is not affected by locality.
6633  */
6634 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6635 {
6636 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6637 	unsigned long src_faults, dst_faults;
6638 	int src_nid, dst_nid;
6639 
6640 	if (!static_branch_likely(&sched_numa_balancing))
6641 		return -1;
6642 
6643 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6644 		return -1;
6645 
6646 	src_nid = cpu_to_node(env->src_cpu);
6647 	dst_nid = cpu_to_node(env->dst_cpu);
6648 
6649 	if (src_nid == dst_nid)
6650 		return -1;
6651 
6652 	/* Migrating away from the preferred node is always bad. */
6653 	if (src_nid == p->numa_preferred_nid) {
6654 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6655 			return 1;
6656 		else
6657 			return -1;
6658 	}
6659 
6660 	/* Encourage migration to the preferred node. */
6661 	if (dst_nid == p->numa_preferred_nid)
6662 		return 0;
6663 
6664 	if (numa_group) {
6665 		src_faults = group_faults(p, src_nid);
6666 		dst_faults = group_faults(p, dst_nid);
6667 	} else {
6668 		src_faults = task_faults(p, src_nid);
6669 		dst_faults = task_faults(p, dst_nid);
6670 	}
6671 
6672 	return dst_faults < src_faults;
6673 }
6674 
6675 #else
6676 static inline int migrate_degrades_locality(struct task_struct *p,
6677 					     struct lb_env *env)
6678 {
6679 	return -1;
6680 }
6681 #endif
6682 
6683 /*
6684  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6685  */
6686 static
6687 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6688 {
6689 	int tsk_cache_hot;
6690 
6691 	lockdep_assert_held(&env->src_rq->lock);
6692 
6693 	/*
6694 	 * We do not migrate tasks that are:
6695 	 * 1) throttled_lb_pair, or
6696 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6697 	 * 3) running (obviously), or
6698 	 * 4) are cache-hot on their current CPU.
6699 	 */
6700 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6701 		return 0;
6702 
6703 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6704 		int cpu;
6705 
6706 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6707 
6708 		env->flags |= LBF_SOME_PINNED;
6709 
6710 		/*
6711 		 * Remember if this task can be migrated to any other cpu in
6712 		 * our sched_group. We may want to revisit it if we couldn't
6713 		 * meet load balance goals by pulling other tasks on src_cpu.
6714 		 *
6715 		 * Also avoid computing new_dst_cpu if we have already computed
6716 		 * one in current iteration.
6717 		 */
6718 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6719 			return 0;
6720 
6721 		/* Prevent to re-select dst_cpu via env's cpus */
6722 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6723 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6724 				env->flags |= LBF_DST_PINNED;
6725 				env->new_dst_cpu = cpu;
6726 				break;
6727 			}
6728 		}
6729 
6730 		return 0;
6731 	}
6732 
6733 	/* Record that we found atleast one task that could run on dst_cpu */
6734 	env->flags &= ~LBF_ALL_PINNED;
6735 
6736 	if (task_running(env->src_rq, p)) {
6737 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6738 		return 0;
6739 	}
6740 
6741 	/*
6742 	 * Aggressive migration if:
6743 	 * 1) destination numa is preferred
6744 	 * 2) task is cache cold, or
6745 	 * 3) too many balance attempts have failed.
6746 	 */
6747 	tsk_cache_hot = migrate_degrades_locality(p, env);
6748 	if (tsk_cache_hot == -1)
6749 		tsk_cache_hot = task_hot(p, env);
6750 
6751 	if (tsk_cache_hot <= 0 ||
6752 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6753 		if (tsk_cache_hot == 1) {
6754 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6755 			schedstat_inc(p->se.statistics.nr_forced_migrations);
6756 		}
6757 		return 1;
6758 	}
6759 
6760 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
6761 	return 0;
6762 }
6763 
6764 /*
6765  * detach_task() -- detach the task for the migration specified in env
6766  */
6767 static void detach_task(struct task_struct *p, struct lb_env *env)
6768 {
6769 	lockdep_assert_held(&env->src_rq->lock);
6770 
6771 	p->on_rq = TASK_ON_RQ_MIGRATING;
6772 	deactivate_task(env->src_rq, p, 0);
6773 	set_task_cpu(p, env->dst_cpu);
6774 }
6775 
6776 /*
6777  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6778  * part of active balancing operations within "domain".
6779  *
6780  * Returns a task if successful and NULL otherwise.
6781  */
6782 static struct task_struct *detach_one_task(struct lb_env *env)
6783 {
6784 	struct task_struct *p, *n;
6785 
6786 	lockdep_assert_held(&env->src_rq->lock);
6787 
6788 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6789 		if (!can_migrate_task(p, env))
6790 			continue;
6791 
6792 		detach_task(p, env);
6793 
6794 		/*
6795 		 * Right now, this is only the second place where
6796 		 * lb_gained[env->idle] is updated (other is detach_tasks)
6797 		 * so we can safely collect stats here rather than
6798 		 * inside detach_tasks().
6799 		 */
6800 		schedstat_inc(env->sd->lb_gained[env->idle]);
6801 		return p;
6802 	}
6803 	return NULL;
6804 }
6805 
6806 static const unsigned int sched_nr_migrate_break = 32;
6807 
6808 /*
6809  * detach_tasks() -- tries to detach up to imbalance weighted load from
6810  * busiest_rq, as part of a balancing operation within domain "sd".
6811  *
6812  * Returns number of detached tasks if successful and 0 otherwise.
6813  */
6814 static int detach_tasks(struct lb_env *env)
6815 {
6816 	struct list_head *tasks = &env->src_rq->cfs_tasks;
6817 	struct task_struct *p;
6818 	unsigned long load;
6819 	int detached = 0;
6820 
6821 	lockdep_assert_held(&env->src_rq->lock);
6822 
6823 	if (env->imbalance <= 0)
6824 		return 0;
6825 
6826 	while (!list_empty(tasks)) {
6827 		/*
6828 		 * We don't want to steal all, otherwise we may be treated likewise,
6829 		 * which could at worst lead to a livelock crash.
6830 		 */
6831 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6832 			break;
6833 
6834 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6835 
6836 		env->loop++;
6837 		/* We've more or less seen every task there is, call it quits */
6838 		if (env->loop > env->loop_max)
6839 			break;
6840 
6841 		/* take a breather every nr_migrate tasks */
6842 		if (env->loop > env->loop_break) {
6843 			env->loop_break += sched_nr_migrate_break;
6844 			env->flags |= LBF_NEED_BREAK;
6845 			break;
6846 		}
6847 
6848 		if (!can_migrate_task(p, env))
6849 			goto next;
6850 
6851 		load = task_h_load(p);
6852 
6853 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6854 			goto next;
6855 
6856 		if ((load / 2) > env->imbalance)
6857 			goto next;
6858 
6859 		detach_task(p, env);
6860 		list_add(&p->se.group_node, &env->tasks);
6861 
6862 		detached++;
6863 		env->imbalance -= load;
6864 
6865 #ifdef CONFIG_PREEMPT
6866 		/*
6867 		 * NEWIDLE balancing is a source of latency, so preemptible
6868 		 * kernels will stop after the first task is detached to minimize
6869 		 * the critical section.
6870 		 */
6871 		if (env->idle == CPU_NEWLY_IDLE)
6872 			break;
6873 #endif
6874 
6875 		/*
6876 		 * We only want to steal up to the prescribed amount of
6877 		 * weighted load.
6878 		 */
6879 		if (env->imbalance <= 0)
6880 			break;
6881 
6882 		continue;
6883 next:
6884 		list_move_tail(&p->se.group_node, tasks);
6885 	}
6886 
6887 	/*
6888 	 * Right now, this is one of only two places we collect this stat
6889 	 * so we can safely collect detach_one_task() stats here rather
6890 	 * than inside detach_one_task().
6891 	 */
6892 	schedstat_add(env->sd->lb_gained[env->idle], detached);
6893 
6894 	return detached;
6895 }
6896 
6897 /*
6898  * attach_task() -- attach the task detached by detach_task() to its new rq.
6899  */
6900 static void attach_task(struct rq *rq, struct task_struct *p)
6901 {
6902 	lockdep_assert_held(&rq->lock);
6903 
6904 	BUG_ON(task_rq(p) != rq);
6905 	activate_task(rq, p, 0);
6906 	p->on_rq = TASK_ON_RQ_QUEUED;
6907 	check_preempt_curr(rq, p, 0);
6908 }
6909 
6910 /*
6911  * attach_one_task() -- attaches the task returned from detach_one_task() to
6912  * its new rq.
6913  */
6914 static void attach_one_task(struct rq *rq, struct task_struct *p)
6915 {
6916 	raw_spin_lock(&rq->lock);
6917 	attach_task(rq, p);
6918 	raw_spin_unlock(&rq->lock);
6919 }
6920 
6921 /*
6922  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6923  * new rq.
6924  */
6925 static void attach_tasks(struct lb_env *env)
6926 {
6927 	struct list_head *tasks = &env->tasks;
6928 	struct task_struct *p;
6929 
6930 	raw_spin_lock(&env->dst_rq->lock);
6931 
6932 	while (!list_empty(tasks)) {
6933 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6934 		list_del_init(&p->se.group_node);
6935 
6936 		attach_task(env->dst_rq, p);
6937 	}
6938 
6939 	raw_spin_unlock(&env->dst_rq->lock);
6940 }
6941 
6942 #ifdef CONFIG_FAIR_GROUP_SCHED
6943 static void update_blocked_averages(int cpu)
6944 {
6945 	struct rq *rq = cpu_rq(cpu);
6946 	struct cfs_rq *cfs_rq;
6947 	unsigned long flags;
6948 
6949 	raw_spin_lock_irqsave(&rq->lock, flags);
6950 	update_rq_clock(rq);
6951 
6952 	/*
6953 	 * Iterates the task_group tree in a bottom up fashion, see
6954 	 * list_add_leaf_cfs_rq() for details.
6955 	 */
6956 	for_each_leaf_cfs_rq(rq, cfs_rq) {
6957 		/* throttled entities do not contribute to load */
6958 		if (throttled_hierarchy(cfs_rq))
6959 			continue;
6960 
6961 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6962 			update_tg_load_avg(cfs_rq, 0);
6963 
6964 		/* Propagate pending load changes to the parent */
6965 		if (cfs_rq->tg->se[cpu])
6966 			update_load_avg(cfs_rq->tg->se[cpu], 0);
6967 	}
6968 	raw_spin_unlock_irqrestore(&rq->lock, flags);
6969 }
6970 
6971 /*
6972  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6973  * This needs to be done in a top-down fashion because the load of a child
6974  * group is a fraction of its parents load.
6975  */
6976 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6977 {
6978 	struct rq *rq = rq_of(cfs_rq);
6979 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6980 	unsigned long now = jiffies;
6981 	unsigned long load;
6982 
6983 	if (cfs_rq->last_h_load_update == now)
6984 		return;
6985 
6986 	cfs_rq->h_load_next = NULL;
6987 	for_each_sched_entity(se) {
6988 		cfs_rq = cfs_rq_of(se);
6989 		cfs_rq->h_load_next = se;
6990 		if (cfs_rq->last_h_load_update == now)
6991 			break;
6992 	}
6993 
6994 	if (!se) {
6995 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6996 		cfs_rq->last_h_load_update = now;
6997 	}
6998 
6999 	while ((se = cfs_rq->h_load_next) != NULL) {
7000 		load = cfs_rq->h_load;
7001 		load = div64_ul(load * se->avg.load_avg,
7002 			cfs_rq_load_avg(cfs_rq) + 1);
7003 		cfs_rq = group_cfs_rq(se);
7004 		cfs_rq->h_load = load;
7005 		cfs_rq->last_h_load_update = now;
7006 	}
7007 }
7008 
7009 static unsigned long task_h_load(struct task_struct *p)
7010 {
7011 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7012 
7013 	update_cfs_rq_h_load(cfs_rq);
7014 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7015 			cfs_rq_load_avg(cfs_rq) + 1);
7016 }
7017 #else
7018 static inline void update_blocked_averages(int cpu)
7019 {
7020 	struct rq *rq = cpu_rq(cpu);
7021 	struct cfs_rq *cfs_rq = &rq->cfs;
7022 	unsigned long flags;
7023 
7024 	raw_spin_lock_irqsave(&rq->lock, flags);
7025 	update_rq_clock(rq);
7026 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
7027 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7028 }
7029 
7030 static unsigned long task_h_load(struct task_struct *p)
7031 {
7032 	return p->se.avg.load_avg;
7033 }
7034 #endif
7035 
7036 /********** Helpers for find_busiest_group ************************/
7037 
7038 enum group_type {
7039 	group_other = 0,
7040 	group_imbalanced,
7041 	group_overloaded,
7042 };
7043 
7044 /*
7045  * sg_lb_stats - stats of a sched_group required for load_balancing
7046  */
7047 struct sg_lb_stats {
7048 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7049 	unsigned long group_load; /* Total load over the CPUs of the group */
7050 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7051 	unsigned long load_per_task;
7052 	unsigned long group_capacity;
7053 	unsigned long group_util; /* Total utilization of the group */
7054 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7055 	unsigned int idle_cpus;
7056 	unsigned int group_weight;
7057 	enum group_type group_type;
7058 	int group_no_capacity;
7059 #ifdef CONFIG_NUMA_BALANCING
7060 	unsigned int nr_numa_running;
7061 	unsigned int nr_preferred_running;
7062 #endif
7063 };
7064 
7065 /*
7066  * sd_lb_stats - Structure to store the statistics of a sched_domain
7067  *		 during load balancing.
7068  */
7069 struct sd_lb_stats {
7070 	struct sched_group *busiest;	/* Busiest group in this sd */
7071 	struct sched_group *local;	/* Local group in this sd */
7072 	unsigned long total_load;	/* Total load of all groups in sd */
7073 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7074 	unsigned long avg_load;	/* Average load across all groups in sd */
7075 
7076 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7077 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7078 };
7079 
7080 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7081 {
7082 	/*
7083 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7084 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7085 	 * We must however clear busiest_stat::avg_load because
7086 	 * update_sd_pick_busiest() reads this before assignment.
7087 	 */
7088 	*sds = (struct sd_lb_stats){
7089 		.busiest = NULL,
7090 		.local = NULL,
7091 		.total_load = 0UL,
7092 		.total_capacity = 0UL,
7093 		.busiest_stat = {
7094 			.avg_load = 0UL,
7095 			.sum_nr_running = 0,
7096 			.group_type = group_other,
7097 		},
7098 	};
7099 }
7100 
7101 /**
7102  * get_sd_load_idx - Obtain the load index for a given sched domain.
7103  * @sd: The sched_domain whose load_idx is to be obtained.
7104  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7105  *
7106  * Return: The load index.
7107  */
7108 static inline int get_sd_load_idx(struct sched_domain *sd,
7109 					enum cpu_idle_type idle)
7110 {
7111 	int load_idx;
7112 
7113 	switch (idle) {
7114 	case CPU_NOT_IDLE:
7115 		load_idx = sd->busy_idx;
7116 		break;
7117 
7118 	case CPU_NEWLY_IDLE:
7119 		load_idx = sd->newidle_idx;
7120 		break;
7121 	default:
7122 		load_idx = sd->idle_idx;
7123 		break;
7124 	}
7125 
7126 	return load_idx;
7127 }
7128 
7129 static unsigned long scale_rt_capacity(int cpu)
7130 {
7131 	struct rq *rq = cpu_rq(cpu);
7132 	u64 total, used, age_stamp, avg;
7133 	s64 delta;
7134 
7135 	/*
7136 	 * Since we're reading these variables without serialization make sure
7137 	 * we read them once before doing sanity checks on them.
7138 	 */
7139 	age_stamp = READ_ONCE(rq->age_stamp);
7140 	avg = READ_ONCE(rq->rt_avg);
7141 	delta = __rq_clock_broken(rq) - age_stamp;
7142 
7143 	if (unlikely(delta < 0))
7144 		delta = 0;
7145 
7146 	total = sched_avg_period() + delta;
7147 
7148 	used = div_u64(avg, total);
7149 
7150 	if (likely(used < SCHED_CAPACITY_SCALE))
7151 		return SCHED_CAPACITY_SCALE - used;
7152 
7153 	return 1;
7154 }
7155 
7156 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7157 {
7158 	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7159 	struct sched_group *sdg = sd->groups;
7160 
7161 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7162 
7163 	capacity *= scale_rt_capacity(cpu);
7164 	capacity >>= SCHED_CAPACITY_SHIFT;
7165 
7166 	if (!capacity)
7167 		capacity = 1;
7168 
7169 	cpu_rq(cpu)->cpu_capacity = capacity;
7170 	sdg->sgc->capacity = capacity;
7171 	sdg->sgc->min_capacity = capacity;
7172 }
7173 
7174 void update_group_capacity(struct sched_domain *sd, int cpu)
7175 {
7176 	struct sched_domain *child = sd->child;
7177 	struct sched_group *group, *sdg = sd->groups;
7178 	unsigned long capacity, min_capacity;
7179 	unsigned long interval;
7180 
7181 	interval = msecs_to_jiffies(sd->balance_interval);
7182 	interval = clamp(interval, 1UL, max_load_balance_interval);
7183 	sdg->sgc->next_update = jiffies + interval;
7184 
7185 	if (!child) {
7186 		update_cpu_capacity(sd, cpu);
7187 		return;
7188 	}
7189 
7190 	capacity = 0;
7191 	min_capacity = ULONG_MAX;
7192 
7193 	if (child->flags & SD_OVERLAP) {
7194 		/*
7195 		 * SD_OVERLAP domains cannot assume that child groups
7196 		 * span the current group.
7197 		 */
7198 
7199 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
7200 			struct sched_group_capacity *sgc;
7201 			struct rq *rq = cpu_rq(cpu);
7202 
7203 			/*
7204 			 * build_sched_domains() -> init_sched_groups_capacity()
7205 			 * gets here before we've attached the domains to the
7206 			 * runqueues.
7207 			 *
7208 			 * Use capacity_of(), which is set irrespective of domains
7209 			 * in update_cpu_capacity().
7210 			 *
7211 			 * This avoids capacity from being 0 and
7212 			 * causing divide-by-zero issues on boot.
7213 			 */
7214 			if (unlikely(!rq->sd)) {
7215 				capacity += capacity_of(cpu);
7216 			} else {
7217 				sgc = rq->sd->groups->sgc;
7218 				capacity += sgc->capacity;
7219 			}
7220 
7221 			min_capacity = min(capacity, min_capacity);
7222 		}
7223 	} else  {
7224 		/*
7225 		 * !SD_OVERLAP domains can assume that child groups
7226 		 * span the current group.
7227 		 */
7228 
7229 		group = child->groups;
7230 		do {
7231 			struct sched_group_capacity *sgc = group->sgc;
7232 
7233 			capacity += sgc->capacity;
7234 			min_capacity = min(sgc->min_capacity, min_capacity);
7235 			group = group->next;
7236 		} while (group != child->groups);
7237 	}
7238 
7239 	sdg->sgc->capacity = capacity;
7240 	sdg->sgc->min_capacity = min_capacity;
7241 }
7242 
7243 /*
7244  * Check whether the capacity of the rq has been noticeably reduced by side
7245  * activity. The imbalance_pct is used for the threshold.
7246  * Return true is the capacity is reduced
7247  */
7248 static inline int
7249 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7250 {
7251 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7252 				(rq->cpu_capacity_orig * 100));
7253 }
7254 
7255 /*
7256  * Group imbalance indicates (and tries to solve) the problem where balancing
7257  * groups is inadequate due to ->cpus_allowed constraints.
7258  *
7259  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7260  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7261  * Something like:
7262  *
7263  *	{ 0 1 2 3 } { 4 5 6 7 }
7264  *	        *     * * *
7265  *
7266  * If we were to balance group-wise we'd place two tasks in the first group and
7267  * two tasks in the second group. Clearly this is undesired as it will overload
7268  * cpu 3 and leave one of the cpus in the second group unused.
7269  *
7270  * The current solution to this issue is detecting the skew in the first group
7271  * by noticing the lower domain failed to reach balance and had difficulty
7272  * moving tasks due to affinity constraints.
7273  *
7274  * When this is so detected; this group becomes a candidate for busiest; see
7275  * update_sd_pick_busiest(). And calculate_imbalance() and
7276  * find_busiest_group() avoid some of the usual balance conditions to allow it
7277  * to create an effective group imbalance.
7278  *
7279  * This is a somewhat tricky proposition since the next run might not find the
7280  * group imbalance and decide the groups need to be balanced again. A most
7281  * subtle and fragile situation.
7282  */
7283 
7284 static inline int sg_imbalanced(struct sched_group *group)
7285 {
7286 	return group->sgc->imbalance;
7287 }
7288 
7289 /*
7290  * group_has_capacity returns true if the group has spare capacity that could
7291  * be used by some tasks.
7292  * We consider that a group has spare capacity if the  * number of task is
7293  * smaller than the number of CPUs or if the utilization is lower than the
7294  * available capacity for CFS tasks.
7295  * For the latter, we use a threshold to stabilize the state, to take into
7296  * account the variance of the tasks' load and to return true if the available
7297  * capacity in meaningful for the load balancer.
7298  * As an example, an available capacity of 1% can appear but it doesn't make
7299  * any benefit for the load balance.
7300  */
7301 static inline bool
7302 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7303 {
7304 	if (sgs->sum_nr_running < sgs->group_weight)
7305 		return true;
7306 
7307 	if ((sgs->group_capacity * 100) >
7308 			(sgs->group_util * env->sd->imbalance_pct))
7309 		return true;
7310 
7311 	return false;
7312 }
7313 
7314 /*
7315  *  group_is_overloaded returns true if the group has more tasks than it can
7316  *  handle.
7317  *  group_is_overloaded is not equals to !group_has_capacity because a group
7318  *  with the exact right number of tasks, has no more spare capacity but is not
7319  *  overloaded so both group_has_capacity and group_is_overloaded return
7320  *  false.
7321  */
7322 static inline bool
7323 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7324 {
7325 	if (sgs->sum_nr_running <= sgs->group_weight)
7326 		return false;
7327 
7328 	if ((sgs->group_capacity * 100) <
7329 			(sgs->group_util * env->sd->imbalance_pct))
7330 		return true;
7331 
7332 	return false;
7333 }
7334 
7335 /*
7336  * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7337  * per-CPU capacity than sched_group ref.
7338  */
7339 static inline bool
7340 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7341 {
7342 	return sg->sgc->min_capacity * capacity_margin <
7343 						ref->sgc->min_capacity * 1024;
7344 }
7345 
7346 static inline enum
7347 group_type group_classify(struct sched_group *group,
7348 			  struct sg_lb_stats *sgs)
7349 {
7350 	if (sgs->group_no_capacity)
7351 		return group_overloaded;
7352 
7353 	if (sg_imbalanced(group))
7354 		return group_imbalanced;
7355 
7356 	return group_other;
7357 }
7358 
7359 /**
7360  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7361  * @env: The load balancing environment.
7362  * @group: sched_group whose statistics are to be updated.
7363  * @load_idx: Load index of sched_domain of this_cpu for load calc.
7364  * @local_group: Does group contain this_cpu.
7365  * @sgs: variable to hold the statistics for this group.
7366  * @overload: Indicate more than one runnable task for any CPU.
7367  */
7368 static inline void update_sg_lb_stats(struct lb_env *env,
7369 			struct sched_group *group, int load_idx,
7370 			int local_group, struct sg_lb_stats *sgs,
7371 			bool *overload)
7372 {
7373 	unsigned long load;
7374 	int i, nr_running;
7375 
7376 	memset(sgs, 0, sizeof(*sgs));
7377 
7378 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7379 		struct rq *rq = cpu_rq(i);
7380 
7381 		/* Bias balancing toward cpus of our domain */
7382 		if (local_group)
7383 			load = target_load(i, load_idx);
7384 		else
7385 			load = source_load(i, load_idx);
7386 
7387 		sgs->group_load += load;
7388 		sgs->group_util += cpu_util(i);
7389 		sgs->sum_nr_running += rq->cfs.h_nr_running;
7390 
7391 		nr_running = rq->nr_running;
7392 		if (nr_running > 1)
7393 			*overload = true;
7394 
7395 #ifdef CONFIG_NUMA_BALANCING
7396 		sgs->nr_numa_running += rq->nr_numa_running;
7397 		sgs->nr_preferred_running += rq->nr_preferred_running;
7398 #endif
7399 		sgs->sum_weighted_load += weighted_cpuload(i);
7400 		/*
7401 		 * No need to call idle_cpu() if nr_running is not 0
7402 		 */
7403 		if (!nr_running && idle_cpu(i))
7404 			sgs->idle_cpus++;
7405 	}
7406 
7407 	/* Adjust by relative CPU capacity of the group */
7408 	sgs->group_capacity = group->sgc->capacity;
7409 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7410 
7411 	if (sgs->sum_nr_running)
7412 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7413 
7414 	sgs->group_weight = group->group_weight;
7415 
7416 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7417 	sgs->group_type = group_classify(group, sgs);
7418 }
7419 
7420 /**
7421  * update_sd_pick_busiest - return 1 on busiest group
7422  * @env: The load balancing environment.
7423  * @sds: sched_domain statistics
7424  * @sg: sched_group candidate to be checked for being the busiest
7425  * @sgs: sched_group statistics
7426  *
7427  * Determine if @sg is a busier group than the previously selected
7428  * busiest group.
7429  *
7430  * Return: %true if @sg is a busier group than the previously selected
7431  * busiest group. %false otherwise.
7432  */
7433 static bool update_sd_pick_busiest(struct lb_env *env,
7434 				   struct sd_lb_stats *sds,
7435 				   struct sched_group *sg,
7436 				   struct sg_lb_stats *sgs)
7437 {
7438 	struct sg_lb_stats *busiest = &sds->busiest_stat;
7439 
7440 	if (sgs->group_type > busiest->group_type)
7441 		return true;
7442 
7443 	if (sgs->group_type < busiest->group_type)
7444 		return false;
7445 
7446 	if (sgs->avg_load <= busiest->avg_load)
7447 		return false;
7448 
7449 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7450 		goto asym_packing;
7451 
7452 	/*
7453 	 * Candidate sg has no more than one task per CPU and
7454 	 * has higher per-CPU capacity. Migrating tasks to less
7455 	 * capable CPUs may harm throughput. Maximize throughput,
7456 	 * power/energy consequences are not considered.
7457 	 */
7458 	if (sgs->sum_nr_running <= sgs->group_weight &&
7459 	    group_smaller_cpu_capacity(sds->local, sg))
7460 		return false;
7461 
7462 asym_packing:
7463 	/* This is the busiest node in its class. */
7464 	if (!(env->sd->flags & SD_ASYM_PACKING))
7465 		return true;
7466 
7467 	/* No ASYM_PACKING if target cpu is already busy */
7468 	if (env->idle == CPU_NOT_IDLE)
7469 		return true;
7470 	/*
7471 	 * ASYM_PACKING needs to move all the work to the highest
7472 	 * prority CPUs in the group, therefore mark all groups
7473 	 * of lower priority than ourself as busy.
7474 	 */
7475 	if (sgs->sum_nr_running &&
7476 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7477 		if (!sds->busiest)
7478 			return true;
7479 
7480 		/* Prefer to move from lowest priority cpu's work */
7481 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7482 				      sg->asym_prefer_cpu))
7483 			return true;
7484 	}
7485 
7486 	return false;
7487 }
7488 
7489 #ifdef CONFIG_NUMA_BALANCING
7490 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7491 {
7492 	if (sgs->sum_nr_running > sgs->nr_numa_running)
7493 		return regular;
7494 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
7495 		return remote;
7496 	return all;
7497 }
7498 
7499 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7500 {
7501 	if (rq->nr_running > rq->nr_numa_running)
7502 		return regular;
7503 	if (rq->nr_running > rq->nr_preferred_running)
7504 		return remote;
7505 	return all;
7506 }
7507 #else
7508 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7509 {
7510 	return all;
7511 }
7512 
7513 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7514 {
7515 	return regular;
7516 }
7517 #endif /* CONFIG_NUMA_BALANCING */
7518 
7519 /**
7520  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7521  * @env: The load balancing environment.
7522  * @sds: variable to hold the statistics for this sched_domain.
7523  */
7524 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7525 {
7526 	struct sched_domain *child = env->sd->child;
7527 	struct sched_group *sg = env->sd->groups;
7528 	struct sg_lb_stats tmp_sgs;
7529 	int load_idx, prefer_sibling = 0;
7530 	bool overload = false;
7531 
7532 	if (child && child->flags & SD_PREFER_SIBLING)
7533 		prefer_sibling = 1;
7534 
7535 	load_idx = get_sd_load_idx(env->sd, env->idle);
7536 
7537 	do {
7538 		struct sg_lb_stats *sgs = &tmp_sgs;
7539 		int local_group;
7540 
7541 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
7542 		if (local_group) {
7543 			sds->local = sg;
7544 			sgs = &sds->local_stat;
7545 
7546 			if (env->idle != CPU_NEWLY_IDLE ||
7547 			    time_after_eq(jiffies, sg->sgc->next_update))
7548 				update_group_capacity(env->sd, env->dst_cpu);
7549 		}
7550 
7551 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7552 						&overload);
7553 
7554 		if (local_group)
7555 			goto next_group;
7556 
7557 		/*
7558 		 * In case the child domain prefers tasks go to siblings
7559 		 * first, lower the sg capacity so that we'll try
7560 		 * and move all the excess tasks away. We lower the capacity
7561 		 * of a group only if the local group has the capacity to fit
7562 		 * these excess tasks. The extra check prevents the case where
7563 		 * you always pull from the heaviest group when it is already
7564 		 * under-utilized (possible with a large weight task outweighs
7565 		 * the tasks on the system).
7566 		 */
7567 		if (prefer_sibling && sds->local &&
7568 		    group_has_capacity(env, &sds->local_stat) &&
7569 		    (sgs->sum_nr_running > 1)) {
7570 			sgs->group_no_capacity = 1;
7571 			sgs->group_type = group_classify(sg, sgs);
7572 		}
7573 
7574 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7575 			sds->busiest = sg;
7576 			sds->busiest_stat = *sgs;
7577 		}
7578 
7579 next_group:
7580 		/* Now, start updating sd_lb_stats */
7581 		sds->total_load += sgs->group_load;
7582 		sds->total_capacity += sgs->group_capacity;
7583 
7584 		sg = sg->next;
7585 	} while (sg != env->sd->groups);
7586 
7587 	if (env->sd->flags & SD_NUMA)
7588 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7589 
7590 	if (!env->sd->parent) {
7591 		/* update overload indicator if we are at root domain */
7592 		if (env->dst_rq->rd->overload != overload)
7593 			env->dst_rq->rd->overload = overload;
7594 	}
7595 
7596 }
7597 
7598 /**
7599  * check_asym_packing - Check to see if the group is packed into the
7600  *			sched doman.
7601  *
7602  * This is primarily intended to used at the sibling level.  Some
7603  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
7604  * case of POWER7, it can move to lower SMT modes only when higher
7605  * threads are idle.  When in lower SMT modes, the threads will
7606  * perform better since they share less core resources.  Hence when we
7607  * have idle threads, we want them to be the higher ones.
7608  *
7609  * This packing function is run on idle threads.  It checks to see if
7610  * the busiest CPU in this domain (core in the P7 case) has a higher
7611  * CPU number than the packing function is being run on.  Here we are
7612  * assuming lower CPU number will be equivalent to lower a SMT thread
7613  * number.
7614  *
7615  * Return: 1 when packing is required and a task should be moved to
7616  * this CPU.  The amount of the imbalance is returned in *imbalance.
7617  *
7618  * @env: The load balancing environment.
7619  * @sds: Statistics of the sched_domain which is to be packed
7620  */
7621 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7622 {
7623 	int busiest_cpu;
7624 
7625 	if (!(env->sd->flags & SD_ASYM_PACKING))
7626 		return 0;
7627 
7628 	if (env->idle == CPU_NOT_IDLE)
7629 		return 0;
7630 
7631 	if (!sds->busiest)
7632 		return 0;
7633 
7634 	busiest_cpu = sds->busiest->asym_prefer_cpu;
7635 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7636 		return 0;
7637 
7638 	env->imbalance = DIV_ROUND_CLOSEST(
7639 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7640 		SCHED_CAPACITY_SCALE);
7641 
7642 	return 1;
7643 }
7644 
7645 /**
7646  * fix_small_imbalance - Calculate the minor imbalance that exists
7647  *			amongst the groups of a sched_domain, during
7648  *			load balancing.
7649  * @env: The load balancing environment.
7650  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7651  */
7652 static inline
7653 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7654 {
7655 	unsigned long tmp, capa_now = 0, capa_move = 0;
7656 	unsigned int imbn = 2;
7657 	unsigned long scaled_busy_load_per_task;
7658 	struct sg_lb_stats *local, *busiest;
7659 
7660 	local = &sds->local_stat;
7661 	busiest = &sds->busiest_stat;
7662 
7663 	if (!local->sum_nr_running)
7664 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7665 	else if (busiest->load_per_task > local->load_per_task)
7666 		imbn = 1;
7667 
7668 	scaled_busy_load_per_task =
7669 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7670 		busiest->group_capacity;
7671 
7672 	if (busiest->avg_load + scaled_busy_load_per_task >=
7673 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
7674 		env->imbalance = busiest->load_per_task;
7675 		return;
7676 	}
7677 
7678 	/*
7679 	 * OK, we don't have enough imbalance to justify moving tasks,
7680 	 * however we may be able to increase total CPU capacity used by
7681 	 * moving them.
7682 	 */
7683 
7684 	capa_now += busiest->group_capacity *
7685 			min(busiest->load_per_task, busiest->avg_load);
7686 	capa_now += local->group_capacity *
7687 			min(local->load_per_task, local->avg_load);
7688 	capa_now /= SCHED_CAPACITY_SCALE;
7689 
7690 	/* Amount of load we'd subtract */
7691 	if (busiest->avg_load > scaled_busy_load_per_task) {
7692 		capa_move += busiest->group_capacity *
7693 			    min(busiest->load_per_task,
7694 				busiest->avg_load - scaled_busy_load_per_task);
7695 	}
7696 
7697 	/* Amount of load we'd add */
7698 	if (busiest->avg_load * busiest->group_capacity <
7699 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7700 		tmp = (busiest->avg_load * busiest->group_capacity) /
7701 		      local->group_capacity;
7702 	} else {
7703 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7704 		      local->group_capacity;
7705 	}
7706 	capa_move += local->group_capacity *
7707 		    min(local->load_per_task, local->avg_load + tmp);
7708 	capa_move /= SCHED_CAPACITY_SCALE;
7709 
7710 	/* Move if we gain throughput */
7711 	if (capa_move > capa_now)
7712 		env->imbalance = busiest->load_per_task;
7713 }
7714 
7715 /**
7716  * calculate_imbalance - Calculate the amount of imbalance present within the
7717  *			 groups of a given sched_domain during load balance.
7718  * @env: load balance environment
7719  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7720  */
7721 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7722 {
7723 	unsigned long max_pull, load_above_capacity = ~0UL;
7724 	struct sg_lb_stats *local, *busiest;
7725 
7726 	local = &sds->local_stat;
7727 	busiest = &sds->busiest_stat;
7728 
7729 	if (busiest->group_type == group_imbalanced) {
7730 		/*
7731 		 * In the group_imb case we cannot rely on group-wide averages
7732 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
7733 		 */
7734 		busiest->load_per_task =
7735 			min(busiest->load_per_task, sds->avg_load);
7736 	}
7737 
7738 	/*
7739 	 * Avg load of busiest sg can be less and avg load of local sg can
7740 	 * be greater than avg load across all sgs of sd because avg load
7741 	 * factors in sg capacity and sgs with smaller group_type are
7742 	 * skipped when updating the busiest sg:
7743 	 */
7744 	if (busiest->avg_load <= sds->avg_load ||
7745 	    local->avg_load >= sds->avg_load) {
7746 		env->imbalance = 0;
7747 		return fix_small_imbalance(env, sds);
7748 	}
7749 
7750 	/*
7751 	 * If there aren't any idle cpus, avoid creating some.
7752 	 */
7753 	if (busiest->group_type == group_overloaded &&
7754 	    local->group_type   == group_overloaded) {
7755 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7756 		if (load_above_capacity > busiest->group_capacity) {
7757 			load_above_capacity -= busiest->group_capacity;
7758 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7759 			load_above_capacity /= busiest->group_capacity;
7760 		} else
7761 			load_above_capacity = ~0UL;
7762 	}
7763 
7764 	/*
7765 	 * We're trying to get all the cpus to the average_load, so we don't
7766 	 * want to push ourselves above the average load, nor do we wish to
7767 	 * reduce the max loaded cpu below the average load. At the same time,
7768 	 * we also don't want to reduce the group load below the group
7769 	 * capacity. Thus we look for the minimum possible imbalance.
7770 	 */
7771 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7772 
7773 	/* How much load to actually move to equalise the imbalance */
7774 	env->imbalance = min(
7775 		max_pull * busiest->group_capacity,
7776 		(sds->avg_load - local->avg_load) * local->group_capacity
7777 	) / SCHED_CAPACITY_SCALE;
7778 
7779 	/*
7780 	 * if *imbalance is less than the average load per runnable task
7781 	 * there is no guarantee that any tasks will be moved so we'll have
7782 	 * a think about bumping its value to force at least one task to be
7783 	 * moved
7784 	 */
7785 	if (env->imbalance < busiest->load_per_task)
7786 		return fix_small_imbalance(env, sds);
7787 }
7788 
7789 /******* find_busiest_group() helpers end here *********************/
7790 
7791 /**
7792  * find_busiest_group - Returns the busiest group within the sched_domain
7793  * if there is an imbalance.
7794  *
7795  * Also calculates the amount of weighted load which should be moved
7796  * to restore balance.
7797  *
7798  * @env: The load balancing environment.
7799  *
7800  * Return:	- The busiest group if imbalance exists.
7801  */
7802 static struct sched_group *find_busiest_group(struct lb_env *env)
7803 {
7804 	struct sg_lb_stats *local, *busiest;
7805 	struct sd_lb_stats sds;
7806 
7807 	init_sd_lb_stats(&sds);
7808 
7809 	/*
7810 	 * Compute the various statistics relavent for load balancing at
7811 	 * this level.
7812 	 */
7813 	update_sd_lb_stats(env, &sds);
7814 	local = &sds.local_stat;
7815 	busiest = &sds.busiest_stat;
7816 
7817 	/* ASYM feature bypasses nice load balance check */
7818 	if (check_asym_packing(env, &sds))
7819 		return sds.busiest;
7820 
7821 	/* There is no busy sibling group to pull tasks from */
7822 	if (!sds.busiest || busiest->sum_nr_running == 0)
7823 		goto out_balanced;
7824 
7825 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7826 						/ sds.total_capacity;
7827 
7828 	/*
7829 	 * If the busiest group is imbalanced the below checks don't
7830 	 * work because they assume all things are equal, which typically
7831 	 * isn't true due to cpus_allowed constraints and the like.
7832 	 */
7833 	if (busiest->group_type == group_imbalanced)
7834 		goto force_balance;
7835 
7836 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7837 	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7838 	    busiest->group_no_capacity)
7839 		goto force_balance;
7840 
7841 	/*
7842 	 * If the local group is busier than the selected busiest group
7843 	 * don't try and pull any tasks.
7844 	 */
7845 	if (local->avg_load >= busiest->avg_load)
7846 		goto out_balanced;
7847 
7848 	/*
7849 	 * Don't pull any tasks if this group is already above the domain
7850 	 * average load.
7851 	 */
7852 	if (local->avg_load >= sds.avg_load)
7853 		goto out_balanced;
7854 
7855 	if (env->idle == CPU_IDLE) {
7856 		/*
7857 		 * This cpu is idle. If the busiest group is not overloaded
7858 		 * and there is no imbalance between this and busiest group
7859 		 * wrt idle cpus, it is balanced. The imbalance becomes
7860 		 * significant if the diff is greater than 1 otherwise we
7861 		 * might end up to just move the imbalance on another group
7862 		 */
7863 		if ((busiest->group_type != group_overloaded) &&
7864 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7865 			goto out_balanced;
7866 	} else {
7867 		/*
7868 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7869 		 * imbalance_pct to be conservative.
7870 		 */
7871 		if (100 * busiest->avg_load <=
7872 				env->sd->imbalance_pct * local->avg_load)
7873 			goto out_balanced;
7874 	}
7875 
7876 force_balance:
7877 	/* Looks like there is an imbalance. Compute it */
7878 	calculate_imbalance(env, &sds);
7879 	return sds.busiest;
7880 
7881 out_balanced:
7882 	env->imbalance = 0;
7883 	return NULL;
7884 }
7885 
7886 /*
7887  * find_busiest_queue - find the busiest runqueue among the cpus in group.
7888  */
7889 static struct rq *find_busiest_queue(struct lb_env *env,
7890 				     struct sched_group *group)
7891 {
7892 	struct rq *busiest = NULL, *rq;
7893 	unsigned long busiest_load = 0, busiest_capacity = 1;
7894 	int i;
7895 
7896 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7897 		unsigned long capacity, wl;
7898 		enum fbq_type rt;
7899 
7900 		rq = cpu_rq(i);
7901 		rt = fbq_classify_rq(rq);
7902 
7903 		/*
7904 		 * We classify groups/runqueues into three groups:
7905 		 *  - regular: there are !numa tasks
7906 		 *  - remote:  there are numa tasks that run on the 'wrong' node
7907 		 *  - all:     there is no distinction
7908 		 *
7909 		 * In order to avoid migrating ideally placed numa tasks,
7910 		 * ignore those when there's better options.
7911 		 *
7912 		 * If we ignore the actual busiest queue to migrate another
7913 		 * task, the next balance pass can still reduce the busiest
7914 		 * queue by moving tasks around inside the node.
7915 		 *
7916 		 * If we cannot move enough load due to this classification
7917 		 * the next pass will adjust the group classification and
7918 		 * allow migration of more tasks.
7919 		 *
7920 		 * Both cases only affect the total convergence complexity.
7921 		 */
7922 		if (rt > env->fbq_type)
7923 			continue;
7924 
7925 		capacity = capacity_of(i);
7926 
7927 		wl = weighted_cpuload(i);
7928 
7929 		/*
7930 		 * When comparing with imbalance, use weighted_cpuload()
7931 		 * which is not scaled with the cpu capacity.
7932 		 */
7933 
7934 		if (rq->nr_running == 1 && wl > env->imbalance &&
7935 		    !check_cpu_capacity(rq, env->sd))
7936 			continue;
7937 
7938 		/*
7939 		 * For the load comparisons with the other cpu's, consider
7940 		 * the weighted_cpuload() scaled with the cpu capacity, so
7941 		 * that the load can be moved away from the cpu that is
7942 		 * potentially running at a lower capacity.
7943 		 *
7944 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7945 		 * multiplication to rid ourselves of the division works out
7946 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
7947 		 * our previous maximum.
7948 		 */
7949 		if (wl * busiest_capacity > busiest_load * capacity) {
7950 			busiest_load = wl;
7951 			busiest_capacity = capacity;
7952 			busiest = rq;
7953 		}
7954 	}
7955 
7956 	return busiest;
7957 }
7958 
7959 /*
7960  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7961  * so long as it is large enough.
7962  */
7963 #define MAX_PINNED_INTERVAL	512
7964 
7965 static int need_active_balance(struct lb_env *env)
7966 {
7967 	struct sched_domain *sd = env->sd;
7968 
7969 	if (env->idle == CPU_NEWLY_IDLE) {
7970 
7971 		/*
7972 		 * ASYM_PACKING needs to force migrate tasks from busy but
7973 		 * lower priority CPUs in order to pack all tasks in the
7974 		 * highest priority CPUs.
7975 		 */
7976 		if ((sd->flags & SD_ASYM_PACKING) &&
7977 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
7978 			return 1;
7979 	}
7980 
7981 	/*
7982 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7983 	 * It's worth migrating the task if the src_cpu's capacity is reduced
7984 	 * because of other sched_class or IRQs if more capacity stays
7985 	 * available on dst_cpu.
7986 	 */
7987 	if ((env->idle != CPU_NOT_IDLE) &&
7988 	    (env->src_rq->cfs.h_nr_running == 1)) {
7989 		if ((check_cpu_capacity(env->src_rq, sd)) &&
7990 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7991 			return 1;
7992 	}
7993 
7994 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7995 }
7996 
7997 static int active_load_balance_cpu_stop(void *data);
7998 
7999 static int should_we_balance(struct lb_env *env)
8000 {
8001 	struct sched_group *sg = env->sd->groups;
8002 	struct cpumask *sg_cpus, *sg_mask;
8003 	int cpu, balance_cpu = -1;
8004 
8005 	/*
8006 	 * In the newly idle case, we will allow all the cpu's
8007 	 * to do the newly idle load balance.
8008 	 */
8009 	if (env->idle == CPU_NEWLY_IDLE)
8010 		return 1;
8011 
8012 	sg_cpus = sched_group_cpus(sg);
8013 	sg_mask = sched_group_mask(sg);
8014 	/* Try to find first idle cpu */
8015 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
8016 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
8017 			continue;
8018 
8019 		balance_cpu = cpu;
8020 		break;
8021 	}
8022 
8023 	if (balance_cpu == -1)
8024 		balance_cpu = group_balance_cpu(sg);
8025 
8026 	/*
8027 	 * First idle cpu or the first cpu(busiest) in this sched group
8028 	 * is eligible for doing load balancing at this and above domains.
8029 	 */
8030 	return balance_cpu == env->dst_cpu;
8031 }
8032 
8033 /*
8034  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8035  * tasks if there is an imbalance.
8036  */
8037 static int load_balance(int this_cpu, struct rq *this_rq,
8038 			struct sched_domain *sd, enum cpu_idle_type idle,
8039 			int *continue_balancing)
8040 {
8041 	int ld_moved, cur_ld_moved, active_balance = 0;
8042 	struct sched_domain *sd_parent = sd->parent;
8043 	struct sched_group *group;
8044 	struct rq *busiest;
8045 	unsigned long flags;
8046 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8047 
8048 	struct lb_env env = {
8049 		.sd		= sd,
8050 		.dst_cpu	= this_cpu,
8051 		.dst_rq		= this_rq,
8052 		.dst_grpmask    = sched_group_cpus(sd->groups),
8053 		.idle		= idle,
8054 		.loop_break	= sched_nr_migrate_break,
8055 		.cpus		= cpus,
8056 		.fbq_type	= all,
8057 		.tasks		= LIST_HEAD_INIT(env.tasks),
8058 	};
8059 
8060 	/*
8061 	 * For NEWLY_IDLE load_balancing, we don't need to consider
8062 	 * other cpus in our group
8063 	 */
8064 	if (idle == CPU_NEWLY_IDLE)
8065 		env.dst_grpmask = NULL;
8066 
8067 	cpumask_copy(cpus, cpu_active_mask);
8068 
8069 	schedstat_inc(sd->lb_count[idle]);
8070 
8071 redo:
8072 	if (!should_we_balance(&env)) {
8073 		*continue_balancing = 0;
8074 		goto out_balanced;
8075 	}
8076 
8077 	group = find_busiest_group(&env);
8078 	if (!group) {
8079 		schedstat_inc(sd->lb_nobusyg[idle]);
8080 		goto out_balanced;
8081 	}
8082 
8083 	busiest = find_busiest_queue(&env, group);
8084 	if (!busiest) {
8085 		schedstat_inc(sd->lb_nobusyq[idle]);
8086 		goto out_balanced;
8087 	}
8088 
8089 	BUG_ON(busiest == env.dst_rq);
8090 
8091 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8092 
8093 	env.src_cpu = busiest->cpu;
8094 	env.src_rq = busiest;
8095 
8096 	ld_moved = 0;
8097 	if (busiest->nr_running > 1) {
8098 		/*
8099 		 * Attempt to move tasks. If find_busiest_group has found
8100 		 * an imbalance but busiest->nr_running <= 1, the group is
8101 		 * still unbalanced. ld_moved simply stays zero, so it is
8102 		 * correctly treated as an imbalance.
8103 		 */
8104 		env.flags |= LBF_ALL_PINNED;
8105 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8106 
8107 more_balance:
8108 		raw_spin_lock_irqsave(&busiest->lock, flags);
8109 		update_rq_clock(busiest);
8110 
8111 		/*
8112 		 * cur_ld_moved - load moved in current iteration
8113 		 * ld_moved     - cumulative load moved across iterations
8114 		 */
8115 		cur_ld_moved = detach_tasks(&env);
8116 
8117 		/*
8118 		 * We've detached some tasks from busiest_rq. Every
8119 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8120 		 * unlock busiest->lock, and we are able to be sure
8121 		 * that nobody can manipulate the tasks in parallel.
8122 		 * See task_rq_lock() family for the details.
8123 		 */
8124 
8125 		raw_spin_unlock(&busiest->lock);
8126 
8127 		if (cur_ld_moved) {
8128 			attach_tasks(&env);
8129 			ld_moved += cur_ld_moved;
8130 		}
8131 
8132 		local_irq_restore(flags);
8133 
8134 		if (env.flags & LBF_NEED_BREAK) {
8135 			env.flags &= ~LBF_NEED_BREAK;
8136 			goto more_balance;
8137 		}
8138 
8139 		/*
8140 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8141 		 * us and move them to an alternate dst_cpu in our sched_group
8142 		 * where they can run. The upper limit on how many times we
8143 		 * iterate on same src_cpu is dependent on number of cpus in our
8144 		 * sched_group.
8145 		 *
8146 		 * This changes load balance semantics a bit on who can move
8147 		 * load to a given_cpu. In addition to the given_cpu itself
8148 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8149 		 * nohz-idle), we now have balance_cpu in a position to move
8150 		 * load to given_cpu. In rare situations, this may cause
8151 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8152 		 * _independently_ and at _same_ time to move some load to
8153 		 * given_cpu) causing exceess load to be moved to given_cpu.
8154 		 * This however should not happen so much in practice and
8155 		 * moreover subsequent load balance cycles should correct the
8156 		 * excess load moved.
8157 		 */
8158 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8159 
8160 			/* Prevent to re-select dst_cpu via env's cpus */
8161 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
8162 
8163 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8164 			env.dst_cpu	 = env.new_dst_cpu;
8165 			env.flags	&= ~LBF_DST_PINNED;
8166 			env.loop	 = 0;
8167 			env.loop_break	 = sched_nr_migrate_break;
8168 
8169 			/*
8170 			 * Go back to "more_balance" rather than "redo" since we
8171 			 * need to continue with same src_cpu.
8172 			 */
8173 			goto more_balance;
8174 		}
8175 
8176 		/*
8177 		 * We failed to reach balance because of affinity.
8178 		 */
8179 		if (sd_parent) {
8180 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8181 
8182 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8183 				*group_imbalance = 1;
8184 		}
8185 
8186 		/* All tasks on this runqueue were pinned by CPU affinity */
8187 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8188 			cpumask_clear_cpu(cpu_of(busiest), cpus);
8189 			if (!cpumask_empty(cpus)) {
8190 				env.loop = 0;
8191 				env.loop_break = sched_nr_migrate_break;
8192 				goto redo;
8193 			}
8194 			goto out_all_pinned;
8195 		}
8196 	}
8197 
8198 	if (!ld_moved) {
8199 		schedstat_inc(sd->lb_failed[idle]);
8200 		/*
8201 		 * Increment the failure counter only on periodic balance.
8202 		 * We do not want newidle balance, which can be very
8203 		 * frequent, pollute the failure counter causing
8204 		 * excessive cache_hot migrations and active balances.
8205 		 */
8206 		if (idle != CPU_NEWLY_IDLE)
8207 			sd->nr_balance_failed++;
8208 
8209 		if (need_active_balance(&env)) {
8210 			raw_spin_lock_irqsave(&busiest->lock, flags);
8211 
8212 			/* don't kick the active_load_balance_cpu_stop,
8213 			 * if the curr task on busiest cpu can't be
8214 			 * moved to this_cpu
8215 			 */
8216 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8217 				raw_spin_unlock_irqrestore(&busiest->lock,
8218 							    flags);
8219 				env.flags |= LBF_ALL_PINNED;
8220 				goto out_one_pinned;
8221 			}
8222 
8223 			/*
8224 			 * ->active_balance synchronizes accesses to
8225 			 * ->active_balance_work.  Once set, it's cleared
8226 			 * only after active load balance is finished.
8227 			 */
8228 			if (!busiest->active_balance) {
8229 				busiest->active_balance = 1;
8230 				busiest->push_cpu = this_cpu;
8231 				active_balance = 1;
8232 			}
8233 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8234 
8235 			if (active_balance) {
8236 				stop_one_cpu_nowait(cpu_of(busiest),
8237 					active_load_balance_cpu_stop, busiest,
8238 					&busiest->active_balance_work);
8239 			}
8240 
8241 			/* We've kicked active balancing, force task migration. */
8242 			sd->nr_balance_failed = sd->cache_nice_tries+1;
8243 		}
8244 	} else
8245 		sd->nr_balance_failed = 0;
8246 
8247 	if (likely(!active_balance)) {
8248 		/* We were unbalanced, so reset the balancing interval */
8249 		sd->balance_interval = sd->min_interval;
8250 	} else {
8251 		/*
8252 		 * If we've begun active balancing, start to back off. This
8253 		 * case may not be covered by the all_pinned logic if there
8254 		 * is only 1 task on the busy runqueue (because we don't call
8255 		 * detach_tasks).
8256 		 */
8257 		if (sd->balance_interval < sd->max_interval)
8258 			sd->balance_interval *= 2;
8259 	}
8260 
8261 	goto out;
8262 
8263 out_balanced:
8264 	/*
8265 	 * We reach balance although we may have faced some affinity
8266 	 * constraints. Clear the imbalance flag if it was set.
8267 	 */
8268 	if (sd_parent) {
8269 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8270 
8271 		if (*group_imbalance)
8272 			*group_imbalance = 0;
8273 	}
8274 
8275 out_all_pinned:
8276 	/*
8277 	 * We reach balance because all tasks are pinned at this level so
8278 	 * we can't migrate them. Let the imbalance flag set so parent level
8279 	 * can try to migrate them.
8280 	 */
8281 	schedstat_inc(sd->lb_balanced[idle]);
8282 
8283 	sd->nr_balance_failed = 0;
8284 
8285 out_one_pinned:
8286 	/* tune up the balancing interval */
8287 	if (((env.flags & LBF_ALL_PINNED) &&
8288 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8289 			(sd->balance_interval < sd->max_interval))
8290 		sd->balance_interval *= 2;
8291 
8292 	ld_moved = 0;
8293 out:
8294 	return ld_moved;
8295 }
8296 
8297 static inline unsigned long
8298 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8299 {
8300 	unsigned long interval = sd->balance_interval;
8301 
8302 	if (cpu_busy)
8303 		interval *= sd->busy_factor;
8304 
8305 	/* scale ms to jiffies */
8306 	interval = msecs_to_jiffies(interval);
8307 	interval = clamp(interval, 1UL, max_load_balance_interval);
8308 
8309 	return interval;
8310 }
8311 
8312 static inline void
8313 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8314 {
8315 	unsigned long interval, next;
8316 
8317 	/* used by idle balance, so cpu_busy = 0 */
8318 	interval = get_sd_balance_interval(sd, 0);
8319 	next = sd->last_balance + interval;
8320 
8321 	if (time_after(*next_balance, next))
8322 		*next_balance = next;
8323 }
8324 
8325 /*
8326  * idle_balance is called by schedule() if this_cpu is about to become
8327  * idle. Attempts to pull tasks from other CPUs.
8328  */
8329 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8330 {
8331 	unsigned long next_balance = jiffies + HZ;
8332 	int this_cpu = this_rq->cpu;
8333 	struct sched_domain *sd;
8334 	int pulled_task = 0;
8335 	u64 curr_cost = 0;
8336 
8337 	/*
8338 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
8339 	 * measure the duration of idle_balance() as idle time.
8340 	 */
8341 	this_rq->idle_stamp = rq_clock(this_rq);
8342 
8343 	/*
8344 	 * This is OK, because current is on_cpu, which avoids it being picked
8345 	 * for load-balance and preemption/IRQs are still disabled avoiding
8346 	 * further scheduler activity on it and we're being very careful to
8347 	 * re-start the picking loop.
8348 	 */
8349 	rq_unpin_lock(this_rq, rf);
8350 
8351 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8352 	    !this_rq->rd->overload) {
8353 		rcu_read_lock();
8354 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
8355 		if (sd)
8356 			update_next_balance(sd, &next_balance);
8357 		rcu_read_unlock();
8358 
8359 		goto out;
8360 	}
8361 
8362 	raw_spin_unlock(&this_rq->lock);
8363 
8364 	update_blocked_averages(this_cpu);
8365 	rcu_read_lock();
8366 	for_each_domain(this_cpu, sd) {
8367 		int continue_balancing = 1;
8368 		u64 t0, domain_cost;
8369 
8370 		if (!(sd->flags & SD_LOAD_BALANCE))
8371 			continue;
8372 
8373 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8374 			update_next_balance(sd, &next_balance);
8375 			break;
8376 		}
8377 
8378 		if (sd->flags & SD_BALANCE_NEWIDLE) {
8379 			t0 = sched_clock_cpu(this_cpu);
8380 
8381 			pulled_task = load_balance(this_cpu, this_rq,
8382 						   sd, CPU_NEWLY_IDLE,
8383 						   &continue_balancing);
8384 
8385 			domain_cost = sched_clock_cpu(this_cpu) - t0;
8386 			if (domain_cost > sd->max_newidle_lb_cost)
8387 				sd->max_newidle_lb_cost = domain_cost;
8388 
8389 			curr_cost += domain_cost;
8390 		}
8391 
8392 		update_next_balance(sd, &next_balance);
8393 
8394 		/*
8395 		 * Stop searching for tasks to pull if there are
8396 		 * now runnable tasks on this rq.
8397 		 */
8398 		if (pulled_task || this_rq->nr_running > 0)
8399 			break;
8400 	}
8401 	rcu_read_unlock();
8402 
8403 	raw_spin_lock(&this_rq->lock);
8404 
8405 	if (curr_cost > this_rq->max_idle_balance_cost)
8406 		this_rq->max_idle_balance_cost = curr_cost;
8407 
8408 	/*
8409 	 * While browsing the domains, we released the rq lock, a task could
8410 	 * have been enqueued in the meantime. Since we're not going idle,
8411 	 * pretend we pulled a task.
8412 	 */
8413 	if (this_rq->cfs.h_nr_running && !pulled_task)
8414 		pulled_task = 1;
8415 
8416 out:
8417 	/* Move the next balance forward */
8418 	if (time_after(this_rq->next_balance, next_balance))
8419 		this_rq->next_balance = next_balance;
8420 
8421 	/* Is there a task of a high priority class? */
8422 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8423 		pulled_task = -1;
8424 
8425 	if (pulled_task)
8426 		this_rq->idle_stamp = 0;
8427 
8428 	rq_repin_lock(this_rq, rf);
8429 
8430 	return pulled_task;
8431 }
8432 
8433 /*
8434  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8435  * running tasks off the busiest CPU onto idle CPUs. It requires at
8436  * least 1 task to be running on each physical CPU where possible, and
8437  * avoids physical / logical imbalances.
8438  */
8439 static int active_load_balance_cpu_stop(void *data)
8440 {
8441 	struct rq *busiest_rq = data;
8442 	int busiest_cpu = cpu_of(busiest_rq);
8443 	int target_cpu = busiest_rq->push_cpu;
8444 	struct rq *target_rq = cpu_rq(target_cpu);
8445 	struct sched_domain *sd;
8446 	struct task_struct *p = NULL;
8447 
8448 	raw_spin_lock_irq(&busiest_rq->lock);
8449 
8450 	/* make sure the requested cpu hasn't gone down in the meantime */
8451 	if (unlikely(busiest_cpu != smp_processor_id() ||
8452 		     !busiest_rq->active_balance))
8453 		goto out_unlock;
8454 
8455 	/* Is there any task to move? */
8456 	if (busiest_rq->nr_running <= 1)
8457 		goto out_unlock;
8458 
8459 	/*
8460 	 * This condition is "impossible", if it occurs
8461 	 * we need to fix it. Originally reported by
8462 	 * Bjorn Helgaas on a 128-cpu setup.
8463 	 */
8464 	BUG_ON(busiest_rq == target_rq);
8465 
8466 	/* Search for an sd spanning us and the target CPU. */
8467 	rcu_read_lock();
8468 	for_each_domain(target_cpu, sd) {
8469 		if ((sd->flags & SD_LOAD_BALANCE) &&
8470 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8471 				break;
8472 	}
8473 
8474 	if (likely(sd)) {
8475 		struct lb_env env = {
8476 			.sd		= sd,
8477 			.dst_cpu	= target_cpu,
8478 			.dst_rq		= target_rq,
8479 			.src_cpu	= busiest_rq->cpu,
8480 			.src_rq		= busiest_rq,
8481 			.idle		= CPU_IDLE,
8482 		};
8483 
8484 		schedstat_inc(sd->alb_count);
8485 		update_rq_clock(busiest_rq);
8486 
8487 		p = detach_one_task(&env);
8488 		if (p) {
8489 			schedstat_inc(sd->alb_pushed);
8490 			/* Active balancing done, reset the failure counter. */
8491 			sd->nr_balance_failed = 0;
8492 		} else {
8493 			schedstat_inc(sd->alb_failed);
8494 		}
8495 	}
8496 	rcu_read_unlock();
8497 out_unlock:
8498 	busiest_rq->active_balance = 0;
8499 	raw_spin_unlock(&busiest_rq->lock);
8500 
8501 	if (p)
8502 		attach_one_task(target_rq, p);
8503 
8504 	local_irq_enable();
8505 
8506 	return 0;
8507 }
8508 
8509 static inline int on_null_domain(struct rq *rq)
8510 {
8511 	return unlikely(!rcu_dereference_sched(rq->sd));
8512 }
8513 
8514 #ifdef CONFIG_NO_HZ_COMMON
8515 /*
8516  * idle load balancing details
8517  * - When one of the busy CPUs notice that there may be an idle rebalancing
8518  *   needed, they will kick the idle load balancer, which then does idle
8519  *   load balancing for all the idle CPUs.
8520  */
8521 static struct {
8522 	cpumask_var_t idle_cpus_mask;
8523 	atomic_t nr_cpus;
8524 	unsigned long next_balance;     /* in jiffy units */
8525 } nohz ____cacheline_aligned;
8526 
8527 static inline int find_new_ilb(void)
8528 {
8529 	int ilb = cpumask_first(nohz.idle_cpus_mask);
8530 
8531 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
8532 		return ilb;
8533 
8534 	return nr_cpu_ids;
8535 }
8536 
8537 /*
8538  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8539  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8540  * CPU (if there is one).
8541  */
8542 static void nohz_balancer_kick(void)
8543 {
8544 	int ilb_cpu;
8545 
8546 	nohz.next_balance++;
8547 
8548 	ilb_cpu = find_new_ilb();
8549 
8550 	if (ilb_cpu >= nr_cpu_ids)
8551 		return;
8552 
8553 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8554 		return;
8555 	/*
8556 	 * Use smp_send_reschedule() instead of resched_cpu().
8557 	 * This way we generate a sched IPI on the target cpu which
8558 	 * is idle. And the softirq performing nohz idle load balance
8559 	 * will be run before returning from the IPI.
8560 	 */
8561 	smp_send_reschedule(ilb_cpu);
8562 	return;
8563 }
8564 
8565 void nohz_balance_exit_idle(unsigned int cpu)
8566 {
8567 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8568 		/*
8569 		 * Completely isolated CPUs don't ever set, so we must test.
8570 		 */
8571 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8572 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8573 			atomic_dec(&nohz.nr_cpus);
8574 		}
8575 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8576 	}
8577 }
8578 
8579 static inline void set_cpu_sd_state_busy(void)
8580 {
8581 	struct sched_domain *sd;
8582 	int cpu = smp_processor_id();
8583 
8584 	rcu_read_lock();
8585 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8586 
8587 	if (!sd || !sd->nohz_idle)
8588 		goto unlock;
8589 	sd->nohz_idle = 0;
8590 
8591 	atomic_inc(&sd->shared->nr_busy_cpus);
8592 unlock:
8593 	rcu_read_unlock();
8594 }
8595 
8596 void set_cpu_sd_state_idle(void)
8597 {
8598 	struct sched_domain *sd;
8599 	int cpu = smp_processor_id();
8600 
8601 	rcu_read_lock();
8602 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8603 
8604 	if (!sd || sd->nohz_idle)
8605 		goto unlock;
8606 	sd->nohz_idle = 1;
8607 
8608 	atomic_dec(&sd->shared->nr_busy_cpus);
8609 unlock:
8610 	rcu_read_unlock();
8611 }
8612 
8613 /*
8614  * This routine will record that the cpu is going idle with tick stopped.
8615  * This info will be used in performing idle load balancing in the future.
8616  */
8617 void nohz_balance_enter_idle(int cpu)
8618 {
8619 	/*
8620 	 * If this cpu is going down, then nothing needs to be done.
8621 	 */
8622 	if (!cpu_active(cpu))
8623 		return;
8624 
8625 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8626 		return;
8627 
8628 	/*
8629 	 * If we're a completely isolated CPU, we don't play.
8630 	 */
8631 	if (on_null_domain(cpu_rq(cpu)))
8632 		return;
8633 
8634 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8635 	atomic_inc(&nohz.nr_cpus);
8636 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8637 }
8638 #endif
8639 
8640 static DEFINE_SPINLOCK(balancing);
8641 
8642 /*
8643  * Scale the max load_balance interval with the number of CPUs in the system.
8644  * This trades load-balance latency on larger machines for less cross talk.
8645  */
8646 void update_max_interval(void)
8647 {
8648 	max_load_balance_interval = HZ*num_online_cpus()/10;
8649 }
8650 
8651 /*
8652  * It checks each scheduling domain to see if it is due to be balanced,
8653  * and initiates a balancing operation if so.
8654  *
8655  * Balancing parameters are set up in init_sched_domains.
8656  */
8657 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8658 {
8659 	int continue_balancing = 1;
8660 	int cpu = rq->cpu;
8661 	unsigned long interval;
8662 	struct sched_domain *sd;
8663 	/* Earliest time when we have to do rebalance again */
8664 	unsigned long next_balance = jiffies + 60*HZ;
8665 	int update_next_balance = 0;
8666 	int need_serialize, need_decay = 0;
8667 	u64 max_cost = 0;
8668 
8669 	update_blocked_averages(cpu);
8670 
8671 	rcu_read_lock();
8672 	for_each_domain(cpu, sd) {
8673 		/*
8674 		 * Decay the newidle max times here because this is a regular
8675 		 * visit to all the domains. Decay ~1% per second.
8676 		 */
8677 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8678 			sd->max_newidle_lb_cost =
8679 				(sd->max_newidle_lb_cost * 253) / 256;
8680 			sd->next_decay_max_lb_cost = jiffies + HZ;
8681 			need_decay = 1;
8682 		}
8683 		max_cost += sd->max_newidle_lb_cost;
8684 
8685 		if (!(sd->flags & SD_LOAD_BALANCE))
8686 			continue;
8687 
8688 		/*
8689 		 * Stop the load balance at this level. There is another
8690 		 * CPU in our sched group which is doing load balancing more
8691 		 * actively.
8692 		 */
8693 		if (!continue_balancing) {
8694 			if (need_decay)
8695 				continue;
8696 			break;
8697 		}
8698 
8699 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8700 
8701 		need_serialize = sd->flags & SD_SERIALIZE;
8702 		if (need_serialize) {
8703 			if (!spin_trylock(&balancing))
8704 				goto out;
8705 		}
8706 
8707 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8708 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8709 				/*
8710 				 * The LBF_DST_PINNED logic could have changed
8711 				 * env->dst_cpu, so we can't know our idle
8712 				 * state even if we migrated tasks. Update it.
8713 				 */
8714 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8715 			}
8716 			sd->last_balance = jiffies;
8717 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8718 		}
8719 		if (need_serialize)
8720 			spin_unlock(&balancing);
8721 out:
8722 		if (time_after(next_balance, sd->last_balance + interval)) {
8723 			next_balance = sd->last_balance + interval;
8724 			update_next_balance = 1;
8725 		}
8726 	}
8727 	if (need_decay) {
8728 		/*
8729 		 * Ensure the rq-wide value also decays but keep it at a
8730 		 * reasonable floor to avoid funnies with rq->avg_idle.
8731 		 */
8732 		rq->max_idle_balance_cost =
8733 			max((u64)sysctl_sched_migration_cost, max_cost);
8734 	}
8735 	rcu_read_unlock();
8736 
8737 	/*
8738 	 * next_balance will be updated only when there is a need.
8739 	 * When the cpu is attached to null domain for ex, it will not be
8740 	 * updated.
8741 	 */
8742 	if (likely(update_next_balance)) {
8743 		rq->next_balance = next_balance;
8744 
8745 #ifdef CONFIG_NO_HZ_COMMON
8746 		/*
8747 		 * If this CPU has been elected to perform the nohz idle
8748 		 * balance. Other idle CPUs have already rebalanced with
8749 		 * nohz_idle_balance() and nohz.next_balance has been
8750 		 * updated accordingly. This CPU is now running the idle load
8751 		 * balance for itself and we need to update the
8752 		 * nohz.next_balance accordingly.
8753 		 */
8754 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8755 			nohz.next_balance = rq->next_balance;
8756 #endif
8757 	}
8758 }
8759 
8760 #ifdef CONFIG_NO_HZ_COMMON
8761 /*
8762  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8763  * rebalancing for all the cpus for whom scheduler ticks are stopped.
8764  */
8765 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8766 {
8767 	int this_cpu = this_rq->cpu;
8768 	struct rq *rq;
8769 	int balance_cpu;
8770 	/* Earliest time when we have to do rebalance again */
8771 	unsigned long next_balance = jiffies + 60*HZ;
8772 	int update_next_balance = 0;
8773 
8774 	if (idle != CPU_IDLE ||
8775 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8776 		goto end;
8777 
8778 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8779 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8780 			continue;
8781 
8782 		/*
8783 		 * If this cpu gets work to do, stop the load balancing
8784 		 * work being done for other cpus. Next load
8785 		 * balancing owner will pick it up.
8786 		 */
8787 		if (need_resched())
8788 			break;
8789 
8790 		rq = cpu_rq(balance_cpu);
8791 
8792 		/*
8793 		 * If time for next balance is due,
8794 		 * do the balance.
8795 		 */
8796 		if (time_after_eq(jiffies, rq->next_balance)) {
8797 			raw_spin_lock_irq(&rq->lock);
8798 			update_rq_clock(rq);
8799 			cpu_load_update_idle(rq);
8800 			raw_spin_unlock_irq(&rq->lock);
8801 			rebalance_domains(rq, CPU_IDLE);
8802 		}
8803 
8804 		if (time_after(next_balance, rq->next_balance)) {
8805 			next_balance = rq->next_balance;
8806 			update_next_balance = 1;
8807 		}
8808 	}
8809 
8810 	/*
8811 	 * next_balance will be updated only when there is a need.
8812 	 * When the CPU is attached to null domain for ex, it will not be
8813 	 * updated.
8814 	 */
8815 	if (likely(update_next_balance))
8816 		nohz.next_balance = next_balance;
8817 end:
8818 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8819 }
8820 
8821 /*
8822  * Current heuristic for kicking the idle load balancer in the presence
8823  * of an idle cpu in the system.
8824  *   - This rq has more than one task.
8825  *   - This rq has at least one CFS task and the capacity of the CPU is
8826  *     significantly reduced because of RT tasks or IRQs.
8827  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
8828  *     multiple busy cpu.
8829  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8830  *     domain span are idle.
8831  */
8832 static inline bool nohz_kick_needed(struct rq *rq)
8833 {
8834 	unsigned long now = jiffies;
8835 	struct sched_domain_shared *sds;
8836 	struct sched_domain *sd;
8837 	int nr_busy, i, cpu = rq->cpu;
8838 	bool kick = false;
8839 
8840 	if (unlikely(rq->idle_balance))
8841 		return false;
8842 
8843        /*
8844 	* We may be recently in ticked or tickless idle mode. At the first
8845 	* busy tick after returning from idle, we will update the busy stats.
8846 	*/
8847 	set_cpu_sd_state_busy();
8848 	nohz_balance_exit_idle(cpu);
8849 
8850 	/*
8851 	 * None are in tickless mode and hence no need for NOHZ idle load
8852 	 * balancing.
8853 	 */
8854 	if (likely(!atomic_read(&nohz.nr_cpus)))
8855 		return false;
8856 
8857 	if (time_before(now, nohz.next_balance))
8858 		return false;
8859 
8860 	if (rq->nr_running >= 2)
8861 		return true;
8862 
8863 	rcu_read_lock();
8864 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8865 	if (sds) {
8866 		/*
8867 		 * XXX: write a coherent comment on why we do this.
8868 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8869 		 */
8870 		nr_busy = atomic_read(&sds->nr_busy_cpus);
8871 		if (nr_busy > 1) {
8872 			kick = true;
8873 			goto unlock;
8874 		}
8875 
8876 	}
8877 
8878 	sd = rcu_dereference(rq->sd);
8879 	if (sd) {
8880 		if ((rq->cfs.h_nr_running >= 1) &&
8881 				check_cpu_capacity(rq, sd)) {
8882 			kick = true;
8883 			goto unlock;
8884 		}
8885 	}
8886 
8887 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8888 	if (sd) {
8889 		for_each_cpu(i, sched_domain_span(sd)) {
8890 			if (i == cpu ||
8891 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8892 				continue;
8893 
8894 			if (sched_asym_prefer(i, cpu)) {
8895 				kick = true;
8896 				goto unlock;
8897 			}
8898 		}
8899 	}
8900 unlock:
8901 	rcu_read_unlock();
8902 	return kick;
8903 }
8904 #else
8905 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8906 #endif
8907 
8908 /*
8909  * run_rebalance_domains is triggered when needed from the scheduler tick.
8910  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8911  */
8912 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8913 {
8914 	struct rq *this_rq = this_rq();
8915 	enum cpu_idle_type idle = this_rq->idle_balance ?
8916 						CPU_IDLE : CPU_NOT_IDLE;
8917 
8918 	/*
8919 	 * If this cpu has a pending nohz_balance_kick, then do the
8920 	 * balancing on behalf of the other idle cpus whose ticks are
8921 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8922 	 * give the idle cpus a chance to load balance. Else we may
8923 	 * load balance only within the local sched_domain hierarchy
8924 	 * and abort nohz_idle_balance altogether if we pull some load.
8925 	 */
8926 	nohz_idle_balance(this_rq, idle);
8927 	rebalance_domains(this_rq, idle);
8928 }
8929 
8930 /*
8931  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8932  */
8933 void trigger_load_balance(struct rq *rq)
8934 {
8935 	/* Don't need to rebalance while attached to NULL domain */
8936 	if (unlikely(on_null_domain(rq)))
8937 		return;
8938 
8939 	if (time_after_eq(jiffies, rq->next_balance))
8940 		raise_softirq(SCHED_SOFTIRQ);
8941 #ifdef CONFIG_NO_HZ_COMMON
8942 	if (nohz_kick_needed(rq))
8943 		nohz_balancer_kick();
8944 #endif
8945 }
8946 
8947 static void rq_online_fair(struct rq *rq)
8948 {
8949 	update_sysctl();
8950 
8951 	update_runtime_enabled(rq);
8952 }
8953 
8954 static void rq_offline_fair(struct rq *rq)
8955 {
8956 	update_sysctl();
8957 
8958 	/* Ensure any throttled groups are reachable by pick_next_task */
8959 	unthrottle_offline_cfs_rqs(rq);
8960 }
8961 
8962 #endif /* CONFIG_SMP */
8963 
8964 /*
8965  * scheduler tick hitting a task of our scheduling class:
8966  */
8967 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8968 {
8969 	struct cfs_rq *cfs_rq;
8970 	struct sched_entity *se = &curr->se;
8971 
8972 	for_each_sched_entity(se) {
8973 		cfs_rq = cfs_rq_of(se);
8974 		entity_tick(cfs_rq, se, queued);
8975 	}
8976 
8977 	if (static_branch_unlikely(&sched_numa_balancing))
8978 		task_tick_numa(rq, curr);
8979 }
8980 
8981 /*
8982  * called on fork with the child task as argument from the parent's context
8983  *  - child not yet on the tasklist
8984  *  - preemption disabled
8985  */
8986 static void task_fork_fair(struct task_struct *p)
8987 {
8988 	struct cfs_rq *cfs_rq;
8989 	struct sched_entity *se = &p->se, *curr;
8990 	struct rq *rq = this_rq();
8991 
8992 	raw_spin_lock(&rq->lock);
8993 	update_rq_clock(rq);
8994 
8995 	cfs_rq = task_cfs_rq(current);
8996 	curr = cfs_rq->curr;
8997 	if (curr) {
8998 		update_curr(cfs_rq);
8999 		se->vruntime = curr->vruntime;
9000 	}
9001 	place_entity(cfs_rq, se, 1);
9002 
9003 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9004 		/*
9005 		 * Upon rescheduling, sched_class::put_prev_task() will place
9006 		 * 'current' within the tree based on its new key value.
9007 		 */
9008 		swap(curr->vruntime, se->vruntime);
9009 		resched_curr(rq);
9010 	}
9011 
9012 	se->vruntime -= cfs_rq->min_vruntime;
9013 	raw_spin_unlock(&rq->lock);
9014 }
9015 
9016 /*
9017  * Priority of the task has changed. Check to see if we preempt
9018  * the current task.
9019  */
9020 static void
9021 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9022 {
9023 	if (!task_on_rq_queued(p))
9024 		return;
9025 
9026 	/*
9027 	 * Reschedule if we are currently running on this runqueue and
9028 	 * our priority decreased, or if we are not currently running on
9029 	 * this runqueue and our priority is higher than the current's
9030 	 */
9031 	if (rq->curr == p) {
9032 		if (p->prio > oldprio)
9033 			resched_curr(rq);
9034 	} else
9035 		check_preempt_curr(rq, p, 0);
9036 }
9037 
9038 static inline bool vruntime_normalized(struct task_struct *p)
9039 {
9040 	struct sched_entity *se = &p->se;
9041 
9042 	/*
9043 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9044 	 * the dequeue_entity(.flags=0) will already have normalized the
9045 	 * vruntime.
9046 	 */
9047 	if (p->on_rq)
9048 		return true;
9049 
9050 	/*
9051 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
9052 	 * But there are some cases where it has already been normalized:
9053 	 *
9054 	 * - A forked child which is waiting for being woken up by
9055 	 *   wake_up_new_task().
9056 	 * - A task which has been woken up by try_to_wake_up() and
9057 	 *   waiting for actually being woken up by sched_ttwu_pending().
9058 	 */
9059 	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9060 		return true;
9061 
9062 	return false;
9063 }
9064 
9065 #ifdef CONFIG_FAIR_GROUP_SCHED
9066 /*
9067  * Propagate the changes of the sched_entity across the tg tree to make it
9068  * visible to the root
9069  */
9070 static void propagate_entity_cfs_rq(struct sched_entity *se)
9071 {
9072 	struct cfs_rq *cfs_rq;
9073 
9074 	/* Start to propagate at parent */
9075 	se = se->parent;
9076 
9077 	for_each_sched_entity(se) {
9078 		cfs_rq = cfs_rq_of(se);
9079 
9080 		if (cfs_rq_throttled(cfs_rq))
9081 			break;
9082 
9083 		update_load_avg(se, UPDATE_TG);
9084 	}
9085 }
9086 #else
9087 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9088 #endif
9089 
9090 static void detach_entity_cfs_rq(struct sched_entity *se)
9091 {
9092 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9093 
9094 	/* Catch up with the cfs_rq and remove our load when we leave */
9095 	update_load_avg(se, 0);
9096 	detach_entity_load_avg(cfs_rq, se);
9097 	update_tg_load_avg(cfs_rq, false);
9098 	propagate_entity_cfs_rq(se);
9099 }
9100 
9101 static void attach_entity_cfs_rq(struct sched_entity *se)
9102 {
9103 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9104 
9105 #ifdef CONFIG_FAIR_GROUP_SCHED
9106 	/*
9107 	 * Since the real-depth could have been changed (only FAIR
9108 	 * class maintain depth value), reset depth properly.
9109 	 */
9110 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9111 #endif
9112 
9113 	/* Synchronize entity with its cfs_rq */
9114 	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9115 	attach_entity_load_avg(cfs_rq, se);
9116 	update_tg_load_avg(cfs_rq, false);
9117 	propagate_entity_cfs_rq(se);
9118 }
9119 
9120 static void detach_task_cfs_rq(struct task_struct *p)
9121 {
9122 	struct sched_entity *se = &p->se;
9123 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9124 
9125 	if (!vruntime_normalized(p)) {
9126 		/*
9127 		 * Fix up our vruntime so that the current sleep doesn't
9128 		 * cause 'unlimited' sleep bonus.
9129 		 */
9130 		place_entity(cfs_rq, se, 0);
9131 		se->vruntime -= cfs_rq->min_vruntime;
9132 	}
9133 
9134 	detach_entity_cfs_rq(se);
9135 }
9136 
9137 static void attach_task_cfs_rq(struct task_struct *p)
9138 {
9139 	struct sched_entity *se = &p->se;
9140 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9141 
9142 	attach_entity_cfs_rq(se);
9143 
9144 	if (!vruntime_normalized(p))
9145 		se->vruntime += cfs_rq->min_vruntime;
9146 }
9147 
9148 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9149 {
9150 	detach_task_cfs_rq(p);
9151 }
9152 
9153 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9154 {
9155 	attach_task_cfs_rq(p);
9156 
9157 	if (task_on_rq_queued(p)) {
9158 		/*
9159 		 * We were most likely switched from sched_rt, so
9160 		 * kick off the schedule if running, otherwise just see
9161 		 * if we can still preempt the current task.
9162 		 */
9163 		if (rq->curr == p)
9164 			resched_curr(rq);
9165 		else
9166 			check_preempt_curr(rq, p, 0);
9167 	}
9168 }
9169 
9170 /* Account for a task changing its policy or group.
9171  *
9172  * This routine is mostly called to set cfs_rq->curr field when a task
9173  * migrates between groups/classes.
9174  */
9175 static void set_curr_task_fair(struct rq *rq)
9176 {
9177 	struct sched_entity *se = &rq->curr->se;
9178 
9179 	for_each_sched_entity(se) {
9180 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
9181 
9182 		set_next_entity(cfs_rq, se);
9183 		/* ensure bandwidth has been allocated on our new cfs_rq */
9184 		account_cfs_rq_runtime(cfs_rq, 0);
9185 	}
9186 }
9187 
9188 void init_cfs_rq(struct cfs_rq *cfs_rq)
9189 {
9190 	cfs_rq->tasks_timeline = RB_ROOT;
9191 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9192 #ifndef CONFIG_64BIT
9193 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9194 #endif
9195 #ifdef CONFIG_SMP
9196 #ifdef CONFIG_FAIR_GROUP_SCHED
9197 	cfs_rq->propagate_avg = 0;
9198 #endif
9199 	atomic_long_set(&cfs_rq->removed_load_avg, 0);
9200 	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9201 #endif
9202 }
9203 
9204 #ifdef CONFIG_FAIR_GROUP_SCHED
9205 static void task_set_group_fair(struct task_struct *p)
9206 {
9207 	struct sched_entity *se = &p->se;
9208 
9209 	set_task_rq(p, task_cpu(p));
9210 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9211 }
9212 
9213 static void task_move_group_fair(struct task_struct *p)
9214 {
9215 	detach_task_cfs_rq(p);
9216 	set_task_rq(p, task_cpu(p));
9217 
9218 #ifdef CONFIG_SMP
9219 	/* Tell se's cfs_rq has been changed -- migrated */
9220 	p->se.avg.last_update_time = 0;
9221 #endif
9222 	attach_task_cfs_rq(p);
9223 }
9224 
9225 static void task_change_group_fair(struct task_struct *p, int type)
9226 {
9227 	switch (type) {
9228 	case TASK_SET_GROUP:
9229 		task_set_group_fair(p);
9230 		break;
9231 
9232 	case TASK_MOVE_GROUP:
9233 		task_move_group_fair(p);
9234 		break;
9235 	}
9236 }
9237 
9238 void free_fair_sched_group(struct task_group *tg)
9239 {
9240 	int i;
9241 
9242 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9243 
9244 	for_each_possible_cpu(i) {
9245 		if (tg->cfs_rq)
9246 			kfree(tg->cfs_rq[i]);
9247 		if (tg->se)
9248 			kfree(tg->se[i]);
9249 	}
9250 
9251 	kfree(tg->cfs_rq);
9252 	kfree(tg->se);
9253 }
9254 
9255 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9256 {
9257 	struct sched_entity *se;
9258 	struct cfs_rq *cfs_rq;
9259 	int i;
9260 
9261 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9262 	if (!tg->cfs_rq)
9263 		goto err;
9264 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9265 	if (!tg->se)
9266 		goto err;
9267 
9268 	tg->shares = NICE_0_LOAD;
9269 
9270 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9271 
9272 	for_each_possible_cpu(i) {
9273 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9274 				      GFP_KERNEL, cpu_to_node(i));
9275 		if (!cfs_rq)
9276 			goto err;
9277 
9278 		se = kzalloc_node(sizeof(struct sched_entity),
9279 				  GFP_KERNEL, cpu_to_node(i));
9280 		if (!se)
9281 			goto err_free_rq;
9282 
9283 		init_cfs_rq(cfs_rq);
9284 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9285 		init_entity_runnable_average(se);
9286 	}
9287 
9288 	return 1;
9289 
9290 err_free_rq:
9291 	kfree(cfs_rq);
9292 err:
9293 	return 0;
9294 }
9295 
9296 void online_fair_sched_group(struct task_group *tg)
9297 {
9298 	struct sched_entity *se;
9299 	struct rq *rq;
9300 	int i;
9301 
9302 	for_each_possible_cpu(i) {
9303 		rq = cpu_rq(i);
9304 		se = tg->se[i];
9305 
9306 		raw_spin_lock_irq(&rq->lock);
9307 		update_rq_clock(rq);
9308 		attach_entity_cfs_rq(se);
9309 		sync_throttle(tg, i);
9310 		raw_spin_unlock_irq(&rq->lock);
9311 	}
9312 }
9313 
9314 void unregister_fair_sched_group(struct task_group *tg)
9315 {
9316 	unsigned long flags;
9317 	struct rq *rq;
9318 	int cpu;
9319 
9320 	for_each_possible_cpu(cpu) {
9321 		if (tg->se[cpu])
9322 			remove_entity_load_avg(tg->se[cpu]);
9323 
9324 		/*
9325 		 * Only empty task groups can be destroyed; so we can speculatively
9326 		 * check on_list without danger of it being re-added.
9327 		 */
9328 		if (!tg->cfs_rq[cpu]->on_list)
9329 			continue;
9330 
9331 		rq = cpu_rq(cpu);
9332 
9333 		raw_spin_lock_irqsave(&rq->lock, flags);
9334 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9335 		raw_spin_unlock_irqrestore(&rq->lock, flags);
9336 	}
9337 }
9338 
9339 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9340 			struct sched_entity *se, int cpu,
9341 			struct sched_entity *parent)
9342 {
9343 	struct rq *rq = cpu_rq(cpu);
9344 
9345 	cfs_rq->tg = tg;
9346 	cfs_rq->rq = rq;
9347 	init_cfs_rq_runtime(cfs_rq);
9348 
9349 	tg->cfs_rq[cpu] = cfs_rq;
9350 	tg->se[cpu] = se;
9351 
9352 	/* se could be NULL for root_task_group */
9353 	if (!se)
9354 		return;
9355 
9356 	if (!parent) {
9357 		se->cfs_rq = &rq->cfs;
9358 		se->depth = 0;
9359 	} else {
9360 		se->cfs_rq = parent->my_q;
9361 		se->depth = parent->depth + 1;
9362 	}
9363 
9364 	se->my_q = cfs_rq;
9365 	/* guarantee group entities always have weight */
9366 	update_load_set(&se->load, NICE_0_LOAD);
9367 	se->parent = parent;
9368 }
9369 
9370 static DEFINE_MUTEX(shares_mutex);
9371 
9372 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9373 {
9374 	int i;
9375 	unsigned long flags;
9376 
9377 	/*
9378 	 * We can't change the weight of the root cgroup.
9379 	 */
9380 	if (!tg->se[0])
9381 		return -EINVAL;
9382 
9383 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9384 
9385 	mutex_lock(&shares_mutex);
9386 	if (tg->shares == shares)
9387 		goto done;
9388 
9389 	tg->shares = shares;
9390 	for_each_possible_cpu(i) {
9391 		struct rq *rq = cpu_rq(i);
9392 		struct sched_entity *se;
9393 
9394 		se = tg->se[i];
9395 		/* Propagate contribution to hierarchy */
9396 		raw_spin_lock_irqsave(&rq->lock, flags);
9397 
9398 		/* Possible calls to update_curr() need rq clock */
9399 		update_rq_clock(rq);
9400 		for_each_sched_entity(se) {
9401 			update_load_avg(se, UPDATE_TG);
9402 			update_cfs_shares(se);
9403 		}
9404 		raw_spin_unlock_irqrestore(&rq->lock, flags);
9405 	}
9406 
9407 done:
9408 	mutex_unlock(&shares_mutex);
9409 	return 0;
9410 }
9411 #else /* CONFIG_FAIR_GROUP_SCHED */
9412 
9413 void free_fair_sched_group(struct task_group *tg) { }
9414 
9415 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9416 {
9417 	return 1;
9418 }
9419 
9420 void online_fair_sched_group(struct task_group *tg) { }
9421 
9422 void unregister_fair_sched_group(struct task_group *tg) { }
9423 
9424 #endif /* CONFIG_FAIR_GROUP_SCHED */
9425 
9426 
9427 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9428 {
9429 	struct sched_entity *se = &task->se;
9430 	unsigned int rr_interval = 0;
9431 
9432 	/*
9433 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9434 	 * idle runqueue:
9435 	 */
9436 	if (rq->cfs.load.weight)
9437 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9438 
9439 	return rr_interval;
9440 }
9441 
9442 /*
9443  * All the scheduling class methods:
9444  */
9445 const struct sched_class fair_sched_class = {
9446 	.next			= &idle_sched_class,
9447 	.enqueue_task		= enqueue_task_fair,
9448 	.dequeue_task		= dequeue_task_fair,
9449 	.yield_task		= yield_task_fair,
9450 	.yield_to_task		= yield_to_task_fair,
9451 
9452 	.check_preempt_curr	= check_preempt_wakeup,
9453 
9454 	.pick_next_task		= pick_next_task_fair,
9455 	.put_prev_task		= put_prev_task_fair,
9456 
9457 #ifdef CONFIG_SMP
9458 	.select_task_rq		= select_task_rq_fair,
9459 	.migrate_task_rq	= migrate_task_rq_fair,
9460 
9461 	.rq_online		= rq_online_fair,
9462 	.rq_offline		= rq_offline_fair,
9463 
9464 	.task_dead		= task_dead_fair,
9465 	.set_cpus_allowed	= set_cpus_allowed_common,
9466 #endif
9467 
9468 	.set_curr_task          = set_curr_task_fair,
9469 	.task_tick		= task_tick_fair,
9470 	.task_fork		= task_fork_fair,
9471 
9472 	.prio_changed		= prio_changed_fair,
9473 	.switched_from		= switched_from_fair,
9474 	.switched_to		= switched_to_fair,
9475 
9476 	.get_rr_interval	= get_rr_interval_fair,
9477 
9478 	.update_curr		= update_curr_fair,
9479 
9480 #ifdef CONFIG_FAIR_GROUP_SCHED
9481 	.task_change_group	= task_change_group_fair,
9482 #endif
9483 };
9484 
9485 #ifdef CONFIG_SCHED_DEBUG
9486 void print_cfs_stats(struct seq_file *m, int cpu)
9487 {
9488 	struct cfs_rq *cfs_rq;
9489 
9490 	rcu_read_lock();
9491 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9492 		print_cfs_rq(m, cpu, cfs_rq);
9493 	rcu_read_unlock();
9494 }
9495 
9496 #ifdef CONFIG_NUMA_BALANCING
9497 void show_numa_stats(struct task_struct *p, struct seq_file *m)
9498 {
9499 	int node;
9500 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9501 
9502 	for_each_online_node(node) {
9503 		if (p->numa_faults) {
9504 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9505 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9506 		}
9507 		if (p->numa_group) {
9508 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9509 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9510 		}
9511 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9512 	}
9513 }
9514 #endif /* CONFIG_NUMA_BALANCING */
9515 #endif /* CONFIG_SCHED_DEBUG */
9516 
9517 __init void init_sched_fair_class(void)
9518 {
9519 #ifdef CONFIG_SMP
9520 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9521 
9522 #ifdef CONFIG_NO_HZ_COMMON
9523 	nohz.next_balance = jiffies;
9524 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9525 #endif
9526 #endif /* SMP */
9527 
9528 }
9529