1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 /* 26 * Targeted preemption latency for CPU-bound tasks: 27 * 28 * NOTE: this latency value is not the same as the concept of 29 * 'timeslice length' - timeslices in CFS are of variable length 30 * and have no persistent notion like in traditional, time-slice 31 * based scheduling concepts. 32 * 33 * (to see the precise effective timeslice length of your workload, 34 * run vmstat and monitor the context-switches (cs) field) 35 * 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 37 */ 38 unsigned int sysctl_sched_latency = 6000000ULL; 39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 40 41 /* 42 * The initial- and re-scaling of tunables is configurable 43 * 44 * Options are: 45 * 46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 49 * 50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 51 */ 52 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 53 54 /* 55 * Minimal preemption granularity for CPU-bound tasks: 56 * 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 58 */ 59 unsigned int sysctl_sched_min_granularity = 750000ULL; 60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 61 62 /* 63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 64 */ 65 static unsigned int sched_nr_latency = 8; 66 67 /* 68 * After fork, child runs first. If set to 0 (default) then 69 * parent will (try to) run first. 70 */ 71 unsigned int sysctl_sched_child_runs_first __read_mostly; 72 73 /* 74 * SCHED_OTHER wake-up granularity. 75 * 76 * This option delays the preemption effects of decoupled workloads 77 * and reduces their over-scheduling. Synchronous workloads will still 78 * have immediate wakeup/sleep latencies. 79 * 80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 81 */ 82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 84 85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 86 87 int sched_thermal_decay_shift; 88 static int __init setup_sched_thermal_decay_shift(char *str) 89 { 90 int _shift = 0; 91 92 if (kstrtoint(str, 0, &_shift)) 93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 94 95 sched_thermal_decay_shift = clamp(_shift, 0, 10); 96 return 1; 97 } 98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 99 100 #ifdef CONFIG_SMP 101 /* 102 * For asym packing, by default the lower numbered CPU has higher priority. 103 */ 104 int __weak arch_asym_cpu_priority(int cpu) 105 { 106 return -cpu; 107 } 108 109 /* 110 * The margin used when comparing utilization with CPU capacity. 111 * 112 * (default: ~20%) 113 */ 114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 115 116 #endif 117 118 #ifdef CONFIG_CFS_BANDWIDTH 119 /* 120 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 121 * each time a cfs_rq requests quota. 122 * 123 * Note: in the case that the slice exceeds the runtime remaining (either due 124 * to consumption or the quota being specified to be smaller than the slice) 125 * we will always only issue the remaining available time. 126 * 127 * (default: 5 msec, units: microseconds) 128 */ 129 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 130 #endif 131 132 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 133 { 134 lw->weight += inc; 135 lw->inv_weight = 0; 136 } 137 138 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 139 { 140 lw->weight -= dec; 141 lw->inv_weight = 0; 142 } 143 144 static inline void update_load_set(struct load_weight *lw, unsigned long w) 145 { 146 lw->weight = w; 147 lw->inv_weight = 0; 148 } 149 150 /* 151 * Increase the granularity value when there are more CPUs, 152 * because with more CPUs the 'effective latency' as visible 153 * to users decreases. But the relationship is not linear, 154 * so pick a second-best guess by going with the log2 of the 155 * number of CPUs. 156 * 157 * This idea comes from the SD scheduler of Con Kolivas: 158 */ 159 static unsigned int get_update_sysctl_factor(void) 160 { 161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 162 unsigned int factor; 163 164 switch (sysctl_sched_tunable_scaling) { 165 case SCHED_TUNABLESCALING_NONE: 166 factor = 1; 167 break; 168 case SCHED_TUNABLESCALING_LINEAR: 169 factor = cpus; 170 break; 171 case SCHED_TUNABLESCALING_LOG: 172 default: 173 factor = 1 + ilog2(cpus); 174 break; 175 } 176 177 return factor; 178 } 179 180 static void update_sysctl(void) 181 { 182 unsigned int factor = get_update_sysctl_factor(); 183 184 #define SET_SYSCTL(name) \ 185 (sysctl_##name = (factor) * normalized_sysctl_##name) 186 SET_SYSCTL(sched_min_granularity); 187 SET_SYSCTL(sched_latency); 188 SET_SYSCTL(sched_wakeup_granularity); 189 #undef SET_SYSCTL 190 } 191 192 void __init sched_init_granularity(void) 193 { 194 update_sysctl(); 195 } 196 197 #define WMULT_CONST (~0U) 198 #define WMULT_SHIFT 32 199 200 static void __update_inv_weight(struct load_weight *lw) 201 { 202 unsigned long w; 203 204 if (likely(lw->inv_weight)) 205 return; 206 207 w = scale_load_down(lw->weight); 208 209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 210 lw->inv_weight = 1; 211 else if (unlikely(!w)) 212 lw->inv_weight = WMULT_CONST; 213 else 214 lw->inv_weight = WMULT_CONST / w; 215 } 216 217 /* 218 * delta_exec * weight / lw.weight 219 * OR 220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 221 * 222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 223 * we're guaranteed shift stays positive because inv_weight is guaranteed to 224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 225 * 226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 227 * weight/lw.weight <= 1, and therefore our shift will also be positive. 228 */ 229 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 230 { 231 u64 fact = scale_load_down(weight); 232 int shift = WMULT_SHIFT; 233 234 __update_inv_weight(lw); 235 236 if (unlikely(fact >> 32)) { 237 while (fact >> 32) { 238 fact >>= 1; 239 shift--; 240 } 241 } 242 243 fact = mul_u32_u32(fact, lw->inv_weight); 244 245 while (fact >> 32) { 246 fact >>= 1; 247 shift--; 248 } 249 250 return mul_u64_u32_shr(delta_exec, fact, shift); 251 } 252 253 254 const struct sched_class fair_sched_class; 255 256 /************************************************************** 257 * CFS operations on generic schedulable entities: 258 */ 259 260 #ifdef CONFIG_FAIR_GROUP_SCHED 261 static inline struct task_struct *task_of(struct sched_entity *se) 262 { 263 SCHED_WARN_ON(!entity_is_task(se)); 264 return container_of(se, struct task_struct, se); 265 } 266 267 /* Walk up scheduling entities hierarchy */ 268 #define for_each_sched_entity(se) \ 269 for (; se; se = se->parent) 270 271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 272 { 273 return p->se.cfs_rq; 274 } 275 276 /* runqueue on which this entity is (to be) queued */ 277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 278 { 279 return se->cfs_rq; 280 } 281 282 /* runqueue "owned" by this group */ 283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 284 { 285 return grp->my_q; 286 } 287 288 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 289 { 290 if (!path) 291 return; 292 293 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 294 autogroup_path(cfs_rq->tg, path, len); 295 else if (cfs_rq && cfs_rq->tg->css.cgroup) 296 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 297 else 298 strlcpy(path, "(null)", len); 299 } 300 301 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 302 { 303 struct rq *rq = rq_of(cfs_rq); 304 int cpu = cpu_of(rq); 305 306 if (cfs_rq->on_list) 307 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 308 309 cfs_rq->on_list = 1; 310 311 /* 312 * Ensure we either appear before our parent (if already 313 * enqueued) or force our parent to appear after us when it is 314 * enqueued. The fact that we always enqueue bottom-up 315 * reduces this to two cases and a special case for the root 316 * cfs_rq. Furthermore, it also means that we will always reset 317 * tmp_alone_branch either when the branch is connected 318 * to a tree or when we reach the top of the tree 319 */ 320 if (cfs_rq->tg->parent && 321 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 322 /* 323 * If parent is already on the list, we add the child 324 * just before. Thanks to circular linked property of 325 * the list, this means to put the child at the tail 326 * of the list that starts by parent. 327 */ 328 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 329 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 330 /* 331 * The branch is now connected to its tree so we can 332 * reset tmp_alone_branch to the beginning of the 333 * list. 334 */ 335 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 336 return true; 337 } 338 339 if (!cfs_rq->tg->parent) { 340 /* 341 * cfs rq without parent should be put 342 * at the tail of the list. 343 */ 344 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 345 &rq->leaf_cfs_rq_list); 346 /* 347 * We have reach the top of a tree so we can reset 348 * tmp_alone_branch to the beginning of the list. 349 */ 350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 351 return true; 352 } 353 354 /* 355 * The parent has not already been added so we want to 356 * make sure that it will be put after us. 357 * tmp_alone_branch points to the begin of the branch 358 * where we will add parent. 359 */ 360 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 361 /* 362 * update tmp_alone_branch to points to the new begin 363 * of the branch 364 */ 365 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 366 return false; 367 } 368 369 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 370 { 371 if (cfs_rq->on_list) { 372 struct rq *rq = rq_of(cfs_rq); 373 374 /* 375 * With cfs_rq being unthrottled/throttled during an enqueue, 376 * it can happen the tmp_alone_branch points the a leaf that 377 * we finally want to del. In this case, tmp_alone_branch moves 378 * to the prev element but it will point to rq->leaf_cfs_rq_list 379 * at the end of the enqueue. 380 */ 381 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 382 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 383 384 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 385 cfs_rq->on_list = 0; 386 } 387 } 388 389 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 390 { 391 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 392 } 393 394 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 395 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 396 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 397 leaf_cfs_rq_list) 398 399 /* Do the two (enqueued) entities belong to the same group ? */ 400 static inline struct cfs_rq * 401 is_same_group(struct sched_entity *se, struct sched_entity *pse) 402 { 403 if (se->cfs_rq == pse->cfs_rq) 404 return se->cfs_rq; 405 406 return NULL; 407 } 408 409 static inline struct sched_entity *parent_entity(struct sched_entity *se) 410 { 411 return se->parent; 412 } 413 414 static void 415 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 416 { 417 int se_depth, pse_depth; 418 419 /* 420 * preemption test can be made between sibling entities who are in the 421 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 422 * both tasks until we find their ancestors who are siblings of common 423 * parent. 424 */ 425 426 /* First walk up until both entities are at same depth */ 427 se_depth = (*se)->depth; 428 pse_depth = (*pse)->depth; 429 430 while (se_depth > pse_depth) { 431 se_depth--; 432 *se = parent_entity(*se); 433 } 434 435 while (pse_depth > se_depth) { 436 pse_depth--; 437 *pse = parent_entity(*pse); 438 } 439 440 while (!is_same_group(*se, *pse)) { 441 *se = parent_entity(*se); 442 *pse = parent_entity(*pse); 443 } 444 } 445 446 #else /* !CONFIG_FAIR_GROUP_SCHED */ 447 448 static inline struct task_struct *task_of(struct sched_entity *se) 449 { 450 return container_of(se, struct task_struct, se); 451 } 452 453 #define for_each_sched_entity(se) \ 454 for (; se; se = NULL) 455 456 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 457 { 458 return &task_rq(p)->cfs; 459 } 460 461 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 462 { 463 struct task_struct *p = task_of(se); 464 struct rq *rq = task_rq(p); 465 466 return &rq->cfs; 467 } 468 469 /* runqueue "owned" by this group */ 470 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 471 { 472 return NULL; 473 } 474 475 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 476 { 477 if (path) 478 strlcpy(path, "(null)", len); 479 } 480 481 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 482 { 483 return true; 484 } 485 486 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 487 { 488 } 489 490 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 491 { 492 } 493 494 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 495 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 496 497 static inline struct sched_entity *parent_entity(struct sched_entity *se) 498 { 499 return NULL; 500 } 501 502 static inline void 503 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 504 { 505 } 506 507 #endif /* CONFIG_FAIR_GROUP_SCHED */ 508 509 static __always_inline 510 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 511 512 /************************************************************** 513 * Scheduling class tree data structure manipulation methods: 514 */ 515 516 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 517 { 518 s64 delta = (s64)(vruntime - max_vruntime); 519 if (delta > 0) 520 max_vruntime = vruntime; 521 522 return max_vruntime; 523 } 524 525 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 526 { 527 s64 delta = (s64)(vruntime - min_vruntime); 528 if (delta < 0) 529 min_vruntime = vruntime; 530 531 return min_vruntime; 532 } 533 534 static inline int entity_before(struct sched_entity *a, 535 struct sched_entity *b) 536 { 537 return (s64)(a->vruntime - b->vruntime) < 0; 538 } 539 540 static void update_min_vruntime(struct cfs_rq *cfs_rq) 541 { 542 struct sched_entity *curr = cfs_rq->curr; 543 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 544 545 u64 vruntime = cfs_rq->min_vruntime; 546 547 if (curr) { 548 if (curr->on_rq) 549 vruntime = curr->vruntime; 550 else 551 curr = NULL; 552 } 553 554 if (leftmost) { /* non-empty tree */ 555 struct sched_entity *se; 556 se = rb_entry(leftmost, struct sched_entity, run_node); 557 558 if (!curr) 559 vruntime = se->vruntime; 560 else 561 vruntime = min_vruntime(vruntime, se->vruntime); 562 } 563 564 /* ensure we never gain time by being placed backwards. */ 565 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 566 #ifndef CONFIG_64BIT 567 smp_wmb(); 568 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 569 #endif 570 } 571 572 /* 573 * Enqueue an entity into the rb-tree: 574 */ 575 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 576 { 577 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 578 struct rb_node *parent = NULL; 579 struct sched_entity *entry; 580 bool leftmost = true; 581 582 /* 583 * Find the right place in the rbtree: 584 */ 585 while (*link) { 586 parent = *link; 587 entry = rb_entry(parent, struct sched_entity, run_node); 588 /* 589 * We dont care about collisions. Nodes with 590 * the same key stay together. 591 */ 592 if (entity_before(se, entry)) { 593 link = &parent->rb_left; 594 } else { 595 link = &parent->rb_right; 596 leftmost = false; 597 } 598 } 599 600 rb_link_node(&se->run_node, parent, link); 601 rb_insert_color_cached(&se->run_node, 602 &cfs_rq->tasks_timeline, leftmost); 603 } 604 605 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 606 { 607 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 608 } 609 610 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 611 { 612 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 613 614 if (!left) 615 return NULL; 616 617 return rb_entry(left, struct sched_entity, run_node); 618 } 619 620 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 621 { 622 struct rb_node *next = rb_next(&se->run_node); 623 624 if (!next) 625 return NULL; 626 627 return rb_entry(next, struct sched_entity, run_node); 628 } 629 630 #ifdef CONFIG_SCHED_DEBUG 631 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 632 { 633 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 634 635 if (!last) 636 return NULL; 637 638 return rb_entry(last, struct sched_entity, run_node); 639 } 640 641 /************************************************************** 642 * Scheduling class statistics methods: 643 */ 644 645 int sched_proc_update_handler(struct ctl_table *table, int write, 646 void *buffer, size_t *lenp, loff_t *ppos) 647 { 648 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 649 unsigned int factor = get_update_sysctl_factor(); 650 651 if (ret || !write) 652 return ret; 653 654 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 655 sysctl_sched_min_granularity); 656 657 #define WRT_SYSCTL(name) \ 658 (normalized_sysctl_##name = sysctl_##name / (factor)) 659 WRT_SYSCTL(sched_min_granularity); 660 WRT_SYSCTL(sched_latency); 661 WRT_SYSCTL(sched_wakeup_granularity); 662 #undef WRT_SYSCTL 663 664 return 0; 665 } 666 #endif 667 668 /* 669 * delta /= w 670 */ 671 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 672 { 673 if (unlikely(se->load.weight != NICE_0_LOAD)) 674 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 675 676 return delta; 677 } 678 679 /* 680 * The idea is to set a period in which each task runs once. 681 * 682 * When there are too many tasks (sched_nr_latency) we have to stretch 683 * this period because otherwise the slices get too small. 684 * 685 * p = (nr <= nl) ? l : l*nr/nl 686 */ 687 static u64 __sched_period(unsigned long nr_running) 688 { 689 if (unlikely(nr_running > sched_nr_latency)) 690 return nr_running * sysctl_sched_min_granularity; 691 else 692 return sysctl_sched_latency; 693 } 694 695 /* 696 * We calculate the wall-time slice from the period by taking a part 697 * proportional to the weight. 698 * 699 * s = p*P[w/rw] 700 */ 701 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 702 { 703 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 704 705 for_each_sched_entity(se) { 706 struct load_weight *load; 707 struct load_weight lw; 708 709 cfs_rq = cfs_rq_of(se); 710 load = &cfs_rq->load; 711 712 if (unlikely(!se->on_rq)) { 713 lw = cfs_rq->load; 714 715 update_load_add(&lw, se->load.weight); 716 load = &lw; 717 } 718 slice = __calc_delta(slice, se->load.weight, load); 719 } 720 return slice; 721 } 722 723 /* 724 * We calculate the vruntime slice of a to-be-inserted task. 725 * 726 * vs = s/w 727 */ 728 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 729 { 730 return calc_delta_fair(sched_slice(cfs_rq, se), se); 731 } 732 733 #include "pelt.h" 734 #ifdef CONFIG_SMP 735 736 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 737 static unsigned long task_h_load(struct task_struct *p); 738 static unsigned long capacity_of(int cpu); 739 740 /* Give new sched_entity start runnable values to heavy its load in infant time */ 741 void init_entity_runnable_average(struct sched_entity *se) 742 { 743 struct sched_avg *sa = &se->avg; 744 745 memset(sa, 0, sizeof(*sa)); 746 747 /* 748 * Tasks are initialized with full load to be seen as heavy tasks until 749 * they get a chance to stabilize to their real load level. 750 * Group entities are initialized with zero load to reflect the fact that 751 * nothing has been attached to the task group yet. 752 */ 753 if (entity_is_task(se)) 754 sa->load_avg = scale_load_down(se->load.weight); 755 756 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 757 } 758 759 static void attach_entity_cfs_rq(struct sched_entity *se); 760 761 /* 762 * With new tasks being created, their initial util_avgs are extrapolated 763 * based on the cfs_rq's current util_avg: 764 * 765 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 766 * 767 * However, in many cases, the above util_avg does not give a desired 768 * value. Moreover, the sum of the util_avgs may be divergent, such 769 * as when the series is a harmonic series. 770 * 771 * To solve this problem, we also cap the util_avg of successive tasks to 772 * only 1/2 of the left utilization budget: 773 * 774 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 775 * 776 * where n denotes the nth task and cpu_scale the CPU capacity. 777 * 778 * For example, for a CPU with 1024 of capacity, a simplest series from 779 * the beginning would be like: 780 * 781 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 783 * 784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 785 * if util_avg > util_avg_cap. 786 */ 787 void post_init_entity_util_avg(struct task_struct *p) 788 { 789 struct sched_entity *se = &p->se; 790 struct cfs_rq *cfs_rq = cfs_rq_of(se); 791 struct sched_avg *sa = &se->avg; 792 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 793 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 794 795 if (cap > 0) { 796 if (cfs_rq->avg.util_avg != 0) { 797 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 798 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 799 800 if (sa->util_avg > cap) 801 sa->util_avg = cap; 802 } else { 803 sa->util_avg = cap; 804 } 805 } 806 807 sa->runnable_avg = sa->util_avg; 808 809 if (p->sched_class != &fair_sched_class) { 810 /* 811 * For !fair tasks do: 812 * 813 update_cfs_rq_load_avg(now, cfs_rq); 814 attach_entity_load_avg(cfs_rq, se); 815 switched_from_fair(rq, p); 816 * 817 * such that the next switched_to_fair() has the 818 * expected state. 819 */ 820 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 821 return; 822 } 823 824 attach_entity_cfs_rq(se); 825 } 826 827 #else /* !CONFIG_SMP */ 828 void init_entity_runnable_average(struct sched_entity *se) 829 { 830 } 831 void post_init_entity_util_avg(struct task_struct *p) 832 { 833 } 834 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 835 { 836 } 837 #endif /* CONFIG_SMP */ 838 839 /* 840 * Update the current task's runtime statistics. 841 */ 842 static void update_curr(struct cfs_rq *cfs_rq) 843 { 844 struct sched_entity *curr = cfs_rq->curr; 845 u64 now = rq_clock_task(rq_of(cfs_rq)); 846 u64 delta_exec; 847 848 if (unlikely(!curr)) 849 return; 850 851 delta_exec = now - curr->exec_start; 852 if (unlikely((s64)delta_exec <= 0)) 853 return; 854 855 curr->exec_start = now; 856 857 schedstat_set(curr->statistics.exec_max, 858 max(delta_exec, curr->statistics.exec_max)); 859 860 curr->sum_exec_runtime += delta_exec; 861 schedstat_add(cfs_rq->exec_clock, delta_exec); 862 863 curr->vruntime += calc_delta_fair(delta_exec, curr); 864 update_min_vruntime(cfs_rq); 865 866 if (entity_is_task(curr)) { 867 struct task_struct *curtask = task_of(curr); 868 869 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 870 cgroup_account_cputime(curtask, delta_exec); 871 account_group_exec_runtime(curtask, delta_exec); 872 } 873 874 account_cfs_rq_runtime(cfs_rq, delta_exec); 875 } 876 877 static void update_curr_fair(struct rq *rq) 878 { 879 update_curr(cfs_rq_of(&rq->curr->se)); 880 } 881 882 static inline void 883 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 884 { 885 u64 wait_start, prev_wait_start; 886 887 if (!schedstat_enabled()) 888 return; 889 890 wait_start = rq_clock(rq_of(cfs_rq)); 891 prev_wait_start = schedstat_val(se->statistics.wait_start); 892 893 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 894 likely(wait_start > prev_wait_start)) 895 wait_start -= prev_wait_start; 896 897 __schedstat_set(se->statistics.wait_start, wait_start); 898 } 899 900 static inline void 901 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 902 { 903 struct task_struct *p; 904 u64 delta; 905 906 if (!schedstat_enabled()) 907 return; 908 909 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 910 911 if (entity_is_task(se)) { 912 p = task_of(se); 913 if (task_on_rq_migrating(p)) { 914 /* 915 * Preserve migrating task's wait time so wait_start 916 * time stamp can be adjusted to accumulate wait time 917 * prior to migration. 918 */ 919 __schedstat_set(se->statistics.wait_start, delta); 920 return; 921 } 922 trace_sched_stat_wait(p, delta); 923 } 924 925 __schedstat_set(se->statistics.wait_max, 926 max(schedstat_val(se->statistics.wait_max), delta)); 927 __schedstat_inc(se->statistics.wait_count); 928 __schedstat_add(se->statistics.wait_sum, delta); 929 __schedstat_set(se->statistics.wait_start, 0); 930 } 931 932 static inline void 933 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 934 { 935 struct task_struct *tsk = NULL; 936 u64 sleep_start, block_start; 937 938 if (!schedstat_enabled()) 939 return; 940 941 sleep_start = schedstat_val(se->statistics.sleep_start); 942 block_start = schedstat_val(se->statistics.block_start); 943 944 if (entity_is_task(se)) 945 tsk = task_of(se); 946 947 if (sleep_start) { 948 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 949 950 if ((s64)delta < 0) 951 delta = 0; 952 953 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 954 __schedstat_set(se->statistics.sleep_max, delta); 955 956 __schedstat_set(se->statistics.sleep_start, 0); 957 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 958 959 if (tsk) { 960 account_scheduler_latency(tsk, delta >> 10, 1); 961 trace_sched_stat_sleep(tsk, delta); 962 } 963 } 964 if (block_start) { 965 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 966 967 if ((s64)delta < 0) 968 delta = 0; 969 970 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 971 __schedstat_set(se->statistics.block_max, delta); 972 973 __schedstat_set(se->statistics.block_start, 0); 974 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 975 976 if (tsk) { 977 if (tsk->in_iowait) { 978 __schedstat_add(se->statistics.iowait_sum, delta); 979 __schedstat_inc(se->statistics.iowait_count); 980 trace_sched_stat_iowait(tsk, delta); 981 } 982 983 trace_sched_stat_blocked(tsk, delta); 984 985 /* 986 * Blocking time is in units of nanosecs, so shift by 987 * 20 to get a milliseconds-range estimation of the 988 * amount of time that the task spent sleeping: 989 */ 990 if (unlikely(prof_on == SLEEP_PROFILING)) { 991 profile_hits(SLEEP_PROFILING, 992 (void *)get_wchan(tsk), 993 delta >> 20); 994 } 995 account_scheduler_latency(tsk, delta >> 10, 0); 996 } 997 } 998 } 999 1000 /* 1001 * Task is being enqueued - update stats: 1002 */ 1003 static inline void 1004 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1005 { 1006 if (!schedstat_enabled()) 1007 return; 1008 1009 /* 1010 * Are we enqueueing a waiting task? (for current tasks 1011 * a dequeue/enqueue event is a NOP) 1012 */ 1013 if (se != cfs_rq->curr) 1014 update_stats_wait_start(cfs_rq, se); 1015 1016 if (flags & ENQUEUE_WAKEUP) 1017 update_stats_enqueue_sleeper(cfs_rq, se); 1018 } 1019 1020 static inline void 1021 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1022 { 1023 1024 if (!schedstat_enabled()) 1025 return; 1026 1027 /* 1028 * Mark the end of the wait period if dequeueing a 1029 * waiting task: 1030 */ 1031 if (se != cfs_rq->curr) 1032 update_stats_wait_end(cfs_rq, se); 1033 1034 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1035 struct task_struct *tsk = task_of(se); 1036 1037 if (tsk->state & TASK_INTERRUPTIBLE) 1038 __schedstat_set(se->statistics.sleep_start, 1039 rq_clock(rq_of(cfs_rq))); 1040 if (tsk->state & TASK_UNINTERRUPTIBLE) 1041 __schedstat_set(se->statistics.block_start, 1042 rq_clock(rq_of(cfs_rq))); 1043 } 1044 } 1045 1046 /* 1047 * We are picking a new current task - update its stats: 1048 */ 1049 static inline void 1050 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1051 { 1052 /* 1053 * We are starting a new run period: 1054 */ 1055 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1056 } 1057 1058 /************************************************** 1059 * Scheduling class queueing methods: 1060 */ 1061 1062 #ifdef CONFIG_NUMA_BALANCING 1063 /* 1064 * Approximate time to scan a full NUMA task in ms. The task scan period is 1065 * calculated based on the tasks virtual memory size and 1066 * numa_balancing_scan_size. 1067 */ 1068 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1069 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1070 1071 /* Portion of address space to scan in MB */ 1072 unsigned int sysctl_numa_balancing_scan_size = 256; 1073 1074 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1075 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1076 1077 struct numa_group { 1078 refcount_t refcount; 1079 1080 spinlock_t lock; /* nr_tasks, tasks */ 1081 int nr_tasks; 1082 pid_t gid; 1083 int active_nodes; 1084 1085 struct rcu_head rcu; 1086 unsigned long total_faults; 1087 unsigned long max_faults_cpu; 1088 /* 1089 * Faults_cpu is used to decide whether memory should move 1090 * towards the CPU. As a consequence, these stats are weighted 1091 * more by CPU use than by memory faults. 1092 */ 1093 unsigned long *faults_cpu; 1094 unsigned long faults[]; 1095 }; 1096 1097 /* 1098 * For functions that can be called in multiple contexts that permit reading 1099 * ->numa_group (see struct task_struct for locking rules). 1100 */ 1101 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1102 { 1103 return rcu_dereference_check(p->numa_group, p == current || 1104 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu))); 1105 } 1106 1107 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1108 { 1109 return rcu_dereference_protected(p->numa_group, p == current); 1110 } 1111 1112 static inline unsigned long group_faults_priv(struct numa_group *ng); 1113 static inline unsigned long group_faults_shared(struct numa_group *ng); 1114 1115 static unsigned int task_nr_scan_windows(struct task_struct *p) 1116 { 1117 unsigned long rss = 0; 1118 unsigned long nr_scan_pages; 1119 1120 /* 1121 * Calculations based on RSS as non-present and empty pages are skipped 1122 * by the PTE scanner and NUMA hinting faults should be trapped based 1123 * on resident pages 1124 */ 1125 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1126 rss = get_mm_rss(p->mm); 1127 if (!rss) 1128 rss = nr_scan_pages; 1129 1130 rss = round_up(rss, nr_scan_pages); 1131 return rss / nr_scan_pages; 1132 } 1133 1134 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1135 #define MAX_SCAN_WINDOW 2560 1136 1137 static unsigned int task_scan_min(struct task_struct *p) 1138 { 1139 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1140 unsigned int scan, floor; 1141 unsigned int windows = 1; 1142 1143 if (scan_size < MAX_SCAN_WINDOW) 1144 windows = MAX_SCAN_WINDOW / scan_size; 1145 floor = 1000 / windows; 1146 1147 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1148 return max_t(unsigned int, floor, scan); 1149 } 1150 1151 static unsigned int task_scan_start(struct task_struct *p) 1152 { 1153 unsigned long smin = task_scan_min(p); 1154 unsigned long period = smin; 1155 struct numa_group *ng; 1156 1157 /* Scale the maximum scan period with the amount of shared memory. */ 1158 rcu_read_lock(); 1159 ng = rcu_dereference(p->numa_group); 1160 if (ng) { 1161 unsigned long shared = group_faults_shared(ng); 1162 unsigned long private = group_faults_priv(ng); 1163 1164 period *= refcount_read(&ng->refcount); 1165 period *= shared + 1; 1166 period /= private + shared + 1; 1167 } 1168 rcu_read_unlock(); 1169 1170 return max(smin, period); 1171 } 1172 1173 static unsigned int task_scan_max(struct task_struct *p) 1174 { 1175 unsigned long smin = task_scan_min(p); 1176 unsigned long smax; 1177 struct numa_group *ng; 1178 1179 /* Watch for min being lower than max due to floor calculations */ 1180 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1181 1182 /* Scale the maximum scan period with the amount of shared memory. */ 1183 ng = deref_curr_numa_group(p); 1184 if (ng) { 1185 unsigned long shared = group_faults_shared(ng); 1186 unsigned long private = group_faults_priv(ng); 1187 unsigned long period = smax; 1188 1189 period *= refcount_read(&ng->refcount); 1190 period *= shared + 1; 1191 period /= private + shared + 1; 1192 1193 smax = max(smax, period); 1194 } 1195 1196 return max(smin, smax); 1197 } 1198 1199 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1200 { 1201 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1202 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1203 } 1204 1205 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1206 { 1207 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1208 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1209 } 1210 1211 /* Shared or private faults. */ 1212 #define NR_NUMA_HINT_FAULT_TYPES 2 1213 1214 /* Memory and CPU locality */ 1215 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1216 1217 /* Averaged statistics, and temporary buffers. */ 1218 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1219 1220 pid_t task_numa_group_id(struct task_struct *p) 1221 { 1222 struct numa_group *ng; 1223 pid_t gid = 0; 1224 1225 rcu_read_lock(); 1226 ng = rcu_dereference(p->numa_group); 1227 if (ng) 1228 gid = ng->gid; 1229 rcu_read_unlock(); 1230 1231 return gid; 1232 } 1233 1234 /* 1235 * The averaged statistics, shared & private, memory & CPU, 1236 * occupy the first half of the array. The second half of the 1237 * array is for current counters, which are averaged into the 1238 * first set by task_numa_placement. 1239 */ 1240 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1241 { 1242 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1243 } 1244 1245 static inline unsigned long task_faults(struct task_struct *p, int nid) 1246 { 1247 if (!p->numa_faults) 1248 return 0; 1249 1250 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1251 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1252 } 1253 1254 static inline unsigned long group_faults(struct task_struct *p, int nid) 1255 { 1256 struct numa_group *ng = deref_task_numa_group(p); 1257 1258 if (!ng) 1259 return 0; 1260 1261 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1262 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1263 } 1264 1265 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1266 { 1267 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1268 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1269 } 1270 1271 static inline unsigned long group_faults_priv(struct numa_group *ng) 1272 { 1273 unsigned long faults = 0; 1274 int node; 1275 1276 for_each_online_node(node) { 1277 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1278 } 1279 1280 return faults; 1281 } 1282 1283 static inline unsigned long group_faults_shared(struct numa_group *ng) 1284 { 1285 unsigned long faults = 0; 1286 int node; 1287 1288 for_each_online_node(node) { 1289 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1290 } 1291 1292 return faults; 1293 } 1294 1295 /* 1296 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1297 * considered part of a numa group's pseudo-interleaving set. Migrations 1298 * between these nodes are slowed down, to allow things to settle down. 1299 */ 1300 #define ACTIVE_NODE_FRACTION 3 1301 1302 static bool numa_is_active_node(int nid, struct numa_group *ng) 1303 { 1304 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1305 } 1306 1307 /* Handle placement on systems where not all nodes are directly connected. */ 1308 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1309 int maxdist, bool task) 1310 { 1311 unsigned long score = 0; 1312 int node; 1313 1314 /* 1315 * All nodes are directly connected, and the same distance 1316 * from each other. No need for fancy placement algorithms. 1317 */ 1318 if (sched_numa_topology_type == NUMA_DIRECT) 1319 return 0; 1320 1321 /* 1322 * This code is called for each node, introducing N^2 complexity, 1323 * which should be ok given the number of nodes rarely exceeds 8. 1324 */ 1325 for_each_online_node(node) { 1326 unsigned long faults; 1327 int dist = node_distance(nid, node); 1328 1329 /* 1330 * The furthest away nodes in the system are not interesting 1331 * for placement; nid was already counted. 1332 */ 1333 if (dist == sched_max_numa_distance || node == nid) 1334 continue; 1335 1336 /* 1337 * On systems with a backplane NUMA topology, compare groups 1338 * of nodes, and move tasks towards the group with the most 1339 * memory accesses. When comparing two nodes at distance 1340 * "hoplimit", only nodes closer by than "hoplimit" are part 1341 * of each group. Skip other nodes. 1342 */ 1343 if (sched_numa_topology_type == NUMA_BACKPLANE && 1344 dist >= maxdist) 1345 continue; 1346 1347 /* Add up the faults from nearby nodes. */ 1348 if (task) 1349 faults = task_faults(p, node); 1350 else 1351 faults = group_faults(p, node); 1352 1353 /* 1354 * On systems with a glueless mesh NUMA topology, there are 1355 * no fixed "groups of nodes". Instead, nodes that are not 1356 * directly connected bounce traffic through intermediate 1357 * nodes; a numa_group can occupy any set of nodes. 1358 * The further away a node is, the less the faults count. 1359 * This seems to result in good task placement. 1360 */ 1361 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1362 faults *= (sched_max_numa_distance - dist); 1363 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1364 } 1365 1366 score += faults; 1367 } 1368 1369 return score; 1370 } 1371 1372 /* 1373 * These return the fraction of accesses done by a particular task, or 1374 * task group, on a particular numa node. The group weight is given a 1375 * larger multiplier, in order to group tasks together that are almost 1376 * evenly spread out between numa nodes. 1377 */ 1378 static inline unsigned long task_weight(struct task_struct *p, int nid, 1379 int dist) 1380 { 1381 unsigned long faults, total_faults; 1382 1383 if (!p->numa_faults) 1384 return 0; 1385 1386 total_faults = p->total_numa_faults; 1387 1388 if (!total_faults) 1389 return 0; 1390 1391 faults = task_faults(p, nid); 1392 faults += score_nearby_nodes(p, nid, dist, true); 1393 1394 return 1000 * faults / total_faults; 1395 } 1396 1397 static inline unsigned long group_weight(struct task_struct *p, int nid, 1398 int dist) 1399 { 1400 struct numa_group *ng = deref_task_numa_group(p); 1401 unsigned long faults, total_faults; 1402 1403 if (!ng) 1404 return 0; 1405 1406 total_faults = ng->total_faults; 1407 1408 if (!total_faults) 1409 return 0; 1410 1411 faults = group_faults(p, nid); 1412 faults += score_nearby_nodes(p, nid, dist, false); 1413 1414 return 1000 * faults / total_faults; 1415 } 1416 1417 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1418 int src_nid, int dst_cpu) 1419 { 1420 struct numa_group *ng = deref_curr_numa_group(p); 1421 int dst_nid = cpu_to_node(dst_cpu); 1422 int last_cpupid, this_cpupid; 1423 1424 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1425 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1426 1427 /* 1428 * Allow first faults or private faults to migrate immediately early in 1429 * the lifetime of a task. The magic number 4 is based on waiting for 1430 * two full passes of the "multi-stage node selection" test that is 1431 * executed below. 1432 */ 1433 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1434 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1435 return true; 1436 1437 /* 1438 * Multi-stage node selection is used in conjunction with a periodic 1439 * migration fault to build a temporal task<->page relation. By using 1440 * a two-stage filter we remove short/unlikely relations. 1441 * 1442 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1443 * a task's usage of a particular page (n_p) per total usage of this 1444 * page (n_t) (in a given time-span) to a probability. 1445 * 1446 * Our periodic faults will sample this probability and getting the 1447 * same result twice in a row, given these samples are fully 1448 * independent, is then given by P(n)^2, provided our sample period 1449 * is sufficiently short compared to the usage pattern. 1450 * 1451 * This quadric squishes small probabilities, making it less likely we 1452 * act on an unlikely task<->page relation. 1453 */ 1454 if (!cpupid_pid_unset(last_cpupid) && 1455 cpupid_to_nid(last_cpupid) != dst_nid) 1456 return false; 1457 1458 /* Always allow migrate on private faults */ 1459 if (cpupid_match_pid(p, last_cpupid)) 1460 return true; 1461 1462 /* A shared fault, but p->numa_group has not been set up yet. */ 1463 if (!ng) 1464 return true; 1465 1466 /* 1467 * Destination node is much more heavily used than the source 1468 * node? Allow migration. 1469 */ 1470 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1471 ACTIVE_NODE_FRACTION) 1472 return true; 1473 1474 /* 1475 * Distribute memory according to CPU & memory use on each node, 1476 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1477 * 1478 * faults_cpu(dst) 3 faults_cpu(src) 1479 * --------------- * - > --------------- 1480 * faults_mem(dst) 4 faults_mem(src) 1481 */ 1482 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1483 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1484 } 1485 1486 /* 1487 * 'numa_type' describes the node at the moment of load balancing. 1488 */ 1489 enum numa_type { 1490 /* The node has spare capacity that can be used to run more tasks. */ 1491 node_has_spare = 0, 1492 /* 1493 * The node is fully used and the tasks don't compete for more CPU 1494 * cycles. Nevertheless, some tasks might wait before running. 1495 */ 1496 node_fully_busy, 1497 /* 1498 * The node is overloaded and can't provide expected CPU cycles to all 1499 * tasks. 1500 */ 1501 node_overloaded 1502 }; 1503 1504 /* Cached statistics for all CPUs within a node */ 1505 struct numa_stats { 1506 unsigned long load; 1507 unsigned long util; 1508 /* Total compute capacity of CPUs on a node */ 1509 unsigned long compute_capacity; 1510 unsigned int nr_running; 1511 unsigned int weight; 1512 enum numa_type node_type; 1513 int idle_cpu; 1514 }; 1515 1516 static inline bool is_core_idle(int cpu) 1517 { 1518 #ifdef CONFIG_SCHED_SMT 1519 int sibling; 1520 1521 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1522 if (cpu == sibling) 1523 continue; 1524 1525 if (!idle_cpu(cpu)) 1526 return false; 1527 } 1528 #endif 1529 1530 return true; 1531 } 1532 1533 struct task_numa_env { 1534 struct task_struct *p; 1535 1536 int src_cpu, src_nid; 1537 int dst_cpu, dst_nid; 1538 1539 struct numa_stats src_stats, dst_stats; 1540 1541 int imbalance_pct; 1542 int dist; 1543 1544 struct task_struct *best_task; 1545 long best_imp; 1546 int best_cpu; 1547 }; 1548 1549 static unsigned long cpu_load(struct rq *rq); 1550 static unsigned long cpu_util(int cpu); 1551 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running); 1552 1553 static inline enum 1554 numa_type numa_classify(unsigned int imbalance_pct, 1555 struct numa_stats *ns) 1556 { 1557 if ((ns->nr_running > ns->weight) && 1558 ((ns->compute_capacity * 100) < (ns->util * imbalance_pct))) 1559 return node_overloaded; 1560 1561 if ((ns->nr_running < ns->weight) || 1562 ((ns->compute_capacity * 100) > (ns->util * imbalance_pct))) 1563 return node_has_spare; 1564 1565 return node_fully_busy; 1566 } 1567 1568 #ifdef CONFIG_SCHED_SMT 1569 /* Forward declarations of select_idle_sibling helpers */ 1570 static inline bool test_idle_cores(int cpu, bool def); 1571 static inline int numa_idle_core(int idle_core, int cpu) 1572 { 1573 if (!static_branch_likely(&sched_smt_present) || 1574 idle_core >= 0 || !test_idle_cores(cpu, false)) 1575 return idle_core; 1576 1577 /* 1578 * Prefer cores instead of packing HT siblings 1579 * and triggering future load balancing. 1580 */ 1581 if (is_core_idle(cpu)) 1582 idle_core = cpu; 1583 1584 return idle_core; 1585 } 1586 #else 1587 static inline int numa_idle_core(int idle_core, int cpu) 1588 { 1589 return idle_core; 1590 } 1591 #endif 1592 1593 /* 1594 * Gather all necessary information to make NUMA balancing placement 1595 * decisions that are compatible with standard load balancer. This 1596 * borrows code and logic from update_sg_lb_stats but sharing a 1597 * common implementation is impractical. 1598 */ 1599 static void update_numa_stats(struct task_numa_env *env, 1600 struct numa_stats *ns, int nid, 1601 bool find_idle) 1602 { 1603 int cpu, idle_core = -1; 1604 1605 memset(ns, 0, sizeof(*ns)); 1606 ns->idle_cpu = -1; 1607 1608 rcu_read_lock(); 1609 for_each_cpu(cpu, cpumask_of_node(nid)) { 1610 struct rq *rq = cpu_rq(cpu); 1611 1612 ns->load += cpu_load(rq); 1613 ns->util += cpu_util(cpu); 1614 ns->nr_running += rq->cfs.h_nr_running; 1615 ns->compute_capacity += capacity_of(cpu); 1616 1617 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1618 if (READ_ONCE(rq->numa_migrate_on) || 1619 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1620 continue; 1621 1622 if (ns->idle_cpu == -1) 1623 ns->idle_cpu = cpu; 1624 1625 idle_core = numa_idle_core(idle_core, cpu); 1626 } 1627 } 1628 rcu_read_unlock(); 1629 1630 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1631 1632 ns->node_type = numa_classify(env->imbalance_pct, ns); 1633 1634 if (idle_core >= 0) 1635 ns->idle_cpu = idle_core; 1636 } 1637 1638 static void task_numa_assign(struct task_numa_env *env, 1639 struct task_struct *p, long imp) 1640 { 1641 struct rq *rq = cpu_rq(env->dst_cpu); 1642 1643 /* Check if run-queue part of active NUMA balance. */ 1644 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1645 int cpu; 1646 int start = env->dst_cpu; 1647 1648 /* Find alternative idle CPU. */ 1649 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1650 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1651 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1652 continue; 1653 } 1654 1655 env->dst_cpu = cpu; 1656 rq = cpu_rq(env->dst_cpu); 1657 if (!xchg(&rq->numa_migrate_on, 1)) 1658 goto assign; 1659 } 1660 1661 /* Failed to find an alternative idle CPU */ 1662 return; 1663 } 1664 1665 assign: 1666 /* 1667 * Clear previous best_cpu/rq numa-migrate flag, since task now 1668 * found a better CPU to move/swap. 1669 */ 1670 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1671 rq = cpu_rq(env->best_cpu); 1672 WRITE_ONCE(rq->numa_migrate_on, 0); 1673 } 1674 1675 if (env->best_task) 1676 put_task_struct(env->best_task); 1677 if (p) 1678 get_task_struct(p); 1679 1680 env->best_task = p; 1681 env->best_imp = imp; 1682 env->best_cpu = env->dst_cpu; 1683 } 1684 1685 static bool load_too_imbalanced(long src_load, long dst_load, 1686 struct task_numa_env *env) 1687 { 1688 long imb, old_imb; 1689 long orig_src_load, orig_dst_load; 1690 long src_capacity, dst_capacity; 1691 1692 /* 1693 * The load is corrected for the CPU capacity available on each node. 1694 * 1695 * src_load dst_load 1696 * ------------ vs --------- 1697 * src_capacity dst_capacity 1698 */ 1699 src_capacity = env->src_stats.compute_capacity; 1700 dst_capacity = env->dst_stats.compute_capacity; 1701 1702 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1703 1704 orig_src_load = env->src_stats.load; 1705 orig_dst_load = env->dst_stats.load; 1706 1707 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1708 1709 /* Would this change make things worse? */ 1710 return (imb > old_imb); 1711 } 1712 1713 /* 1714 * Maximum NUMA importance can be 1998 (2*999); 1715 * SMALLIMP @ 30 would be close to 1998/64. 1716 * Used to deter task migration. 1717 */ 1718 #define SMALLIMP 30 1719 1720 /* 1721 * This checks if the overall compute and NUMA accesses of the system would 1722 * be improved if the source tasks was migrated to the target dst_cpu taking 1723 * into account that it might be best if task running on the dst_cpu should 1724 * be exchanged with the source task 1725 */ 1726 static bool task_numa_compare(struct task_numa_env *env, 1727 long taskimp, long groupimp, bool maymove) 1728 { 1729 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1730 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1731 long imp = p_ng ? groupimp : taskimp; 1732 struct task_struct *cur; 1733 long src_load, dst_load; 1734 int dist = env->dist; 1735 long moveimp = imp; 1736 long load; 1737 bool stopsearch = false; 1738 1739 if (READ_ONCE(dst_rq->numa_migrate_on)) 1740 return false; 1741 1742 rcu_read_lock(); 1743 cur = rcu_dereference(dst_rq->curr); 1744 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1745 cur = NULL; 1746 1747 /* 1748 * Because we have preemption enabled we can get migrated around and 1749 * end try selecting ourselves (current == env->p) as a swap candidate. 1750 */ 1751 if (cur == env->p) { 1752 stopsearch = true; 1753 goto unlock; 1754 } 1755 1756 if (!cur) { 1757 if (maymove && moveimp >= env->best_imp) 1758 goto assign; 1759 else 1760 goto unlock; 1761 } 1762 1763 /* Skip this swap candidate if cannot move to the source cpu. */ 1764 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1765 goto unlock; 1766 1767 /* 1768 * Skip this swap candidate if it is not moving to its preferred 1769 * node and the best task is. 1770 */ 1771 if (env->best_task && 1772 env->best_task->numa_preferred_nid == env->src_nid && 1773 cur->numa_preferred_nid != env->src_nid) { 1774 goto unlock; 1775 } 1776 1777 /* 1778 * "imp" is the fault differential for the source task between the 1779 * source and destination node. Calculate the total differential for 1780 * the source task and potential destination task. The more negative 1781 * the value is, the more remote accesses that would be expected to 1782 * be incurred if the tasks were swapped. 1783 * 1784 * If dst and source tasks are in the same NUMA group, or not 1785 * in any group then look only at task weights. 1786 */ 1787 cur_ng = rcu_dereference(cur->numa_group); 1788 if (cur_ng == p_ng) { 1789 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1790 task_weight(cur, env->dst_nid, dist); 1791 /* 1792 * Add some hysteresis to prevent swapping the 1793 * tasks within a group over tiny differences. 1794 */ 1795 if (cur_ng) 1796 imp -= imp / 16; 1797 } else { 1798 /* 1799 * Compare the group weights. If a task is all by itself 1800 * (not part of a group), use the task weight instead. 1801 */ 1802 if (cur_ng && p_ng) 1803 imp += group_weight(cur, env->src_nid, dist) - 1804 group_weight(cur, env->dst_nid, dist); 1805 else 1806 imp += task_weight(cur, env->src_nid, dist) - 1807 task_weight(cur, env->dst_nid, dist); 1808 } 1809 1810 /* Discourage picking a task already on its preferred node */ 1811 if (cur->numa_preferred_nid == env->dst_nid) 1812 imp -= imp / 16; 1813 1814 /* 1815 * Encourage picking a task that moves to its preferred node. 1816 * This potentially makes imp larger than it's maximum of 1817 * 1998 (see SMALLIMP and task_weight for why) but in this 1818 * case, it does not matter. 1819 */ 1820 if (cur->numa_preferred_nid == env->src_nid) 1821 imp += imp / 8; 1822 1823 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1824 imp = moveimp; 1825 cur = NULL; 1826 goto assign; 1827 } 1828 1829 /* 1830 * Prefer swapping with a task moving to its preferred node over a 1831 * task that is not. 1832 */ 1833 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1834 env->best_task->numa_preferred_nid != env->src_nid) { 1835 goto assign; 1836 } 1837 1838 /* 1839 * If the NUMA importance is less than SMALLIMP, 1840 * task migration might only result in ping pong 1841 * of tasks and also hurt performance due to cache 1842 * misses. 1843 */ 1844 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1845 goto unlock; 1846 1847 /* 1848 * In the overloaded case, try and keep the load balanced. 1849 */ 1850 load = task_h_load(env->p) - task_h_load(cur); 1851 if (!load) 1852 goto assign; 1853 1854 dst_load = env->dst_stats.load + load; 1855 src_load = env->src_stats.load - load; 1856 1857 if (load_too_imbalanced(src_load, dst_load, env)) 1858 goto unlock; 1859 1860 assign: 1861 /* Evaluate an idle CPU for a task numa move. */ 1862 if (!cur) { 1863 int cpu = env->dst_stats.idle_cpu; 1864 1865 /* Nothing cached so current CPU went idle since the search. */ 1866 if (cpu < 0) 1867 cpu = env->dst_cpu; 1868 1869 /* 1870 * If the CPU is no longer truly idle and the previous best CPU 1871 * is, keep using it. 1872 */ 1873 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1874 idle_cpu(env->best_cpu)) { 1875 cpu = env->best_cpu; 1876 } 1877 1878 env->dst_cpu = cpu; 1879 } 1880 1881 task_numa_assign(env, cur, imp); 1882 1883 /* 1884 * If a move to idle is allowed because there is capacity or load 1885 * balance improves then stop the search. While a better swap 1886 * candidate may exist, a search is not free. 1887 */ 1888 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1889 stopsearch = true; 1890 1891 /* 1892 * If a swap candidate must be identified and the current best task 1893 * moves its preferred node then stop the search. 1894 */ 1895 if (!maymove && env->best_task && 1896 env->best_task->numa_preferred_nid == env->src_nid) { 1897 stopsearch = true; 1898 } 1899 unlock: 1900 rcu_read_unlock(); 1901 1902 return stopsearch; 1903 } 1904 1905 static void task_numa_find_cpu(struct task_numa_env *env, 1906 long taskimp, long groupimp) 1907 { 1908 bool maymove = false; 1909 int cpu; 1910 1911 /* 1912 * If dst node has spare capacity, then check if there is an 1913 * imbalance that would be overruled by the load balancer. 1914 */ 1915 if (env->dst_stats.node_type == node_has_spare) { 1916 unsigned int imbalance; 1917 int src_running, dst_running; 1918 1919 /* 1920 * Would movement cause an imbalance? Note that if src has 1921 * more running tasks that the imbalance is ignored as the 1922 * move improves the imbalance from the perspective of the 1923 * CPU load balancer. 1924 * */ 1925 src_running = env->src_stats.nr_running - 1; 1926 dst_running = env->dst_stats.nr_running + 1; 1927 imbalance = max(0, dst_running - src_running); 1928 imbalance = adjust_numa_imbalance(imbalance, src_running); 1929 1930 /* Use idle CPU if there is no imbalance */ 1931 if (!imbalance) { 1932 maymove = true; 1933 if (env->dst_stats.idle_cpu >= 0) { 1934 env->dst_cpu = env->dst_stats.idle_cpu; 1935 task_numa_assign(env, NULL, 0); 1936 return; 1937 } 1938 } 1939 } else { 1940 long src_load, dst_load, load; 1941 /* 1942 * If the improvement from just moving env->p direction is better 1943 * than swapping tasks around, check if a move is possible. 1944 */ 1945 load = task_h_load(env->p); 1946 dst_load = env->dst_stats.load + load; 1947 src_load = env->src_stats.load - load; 1948 maymove = !load_too_imbalanced(src_load, dst_load, env); 1949 } 1950 1951 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1952 /* Skip this CPU if the source task cannot migrate */ 1953 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1954 continue; 1955 1956 env->dst_cpu = cpu; 1957 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1958 break; 1959 } 1960 } 1961 1962 static int task_numa_migrate(struct task_struct *p) 1963 { 1964 struct task_numa_env env = { 1965 .p = p, 1966 1967 .src_cpu = task_cpu(p), 1968 .src_nid = task_node(p), 1969 1970 .imbalance_pct = 112, 1971 1972 .best_task = NULL, 1973 .best_imp = 0, 1974 .best_cpu = -1, 1975 }; 1976 unsigned long taskweight, groupweight; 1977 struct sched_domain *sd; 1978 long taskimp, groupimp; 1979 struct numa_group *ng; 1980 struct rq *best_rq; 1981 int nid, ret, dist; 1982 1983 /* 1984 * Pick the lowest SD_NUMA domain, as that would have the smallest 1985 * imbalance and would be the first to start moving tasks about. 1986 * 1987 * And we want to avoid any moving of tasks about, as that would create 1988 * random movement of tasks -- counter the numa conditions we're trying 1989 * to satisfy here. 1990 */ 1991 rcu_read_lock(); 1992 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1993 if (sd) 1994 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1995 rcu_read_unlock(); 1996 1997 /* 1998 * Cpusets can break the scheduler domain tree into smaller 1999 * balance domains, some of which do not cross NUMA boundaries. 2000 * Tasks that are "trapped" in such domains cannot be migrated 2001 * elsewhere, so there is no point in (re)trying. 2002 */ 2003 if (unlikely(!sd)) { 2004 sched_setnuma(p, task_node(p)); 2005 return -EINVAL; 2006 } 2007 2008 env.dst_nid = p->numa_preferred_nid; 2009 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2010 taskweight = task_weight(p, env.src_nid, dist); 2011 groupweight = group_weight(p, env.src_nid, dist); 2012 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2013 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2014 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2015 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2016 2017 /* Try to find a spot on the preferred nid. */ 2018 task_numa_find_cpu(&env, taskimp, groupimp); 2019 2020 /* 2021 * Look at other nodes in these cases: 2022 * - there is no space available on the preferred_nid 2023 * - the task is part of a numa_group that is interleaved across 2024 * multiple NUMA nodes; in order to better consolidate the group, 2025 * we need to check other locations. 2026 */ 2027 ng = deref_curr_numa_group(p); 2028 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2029 for_each_online_node(nid) { 2030 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2031 continue; 2032 2033 dist = node_distance(env.src_nid, env.dst_nid); 2034 if (sched_numa_topology_type == NUMA_BACKPLANE && 2035 dist != env.dist) { 2036 taskweight = task_weight(p, env.src_nid, dist); 2037 groupweight = group_weight(p, env.src_nid, dist); 2038 } 2039 2040 /* Only consider nodes where both task and groups benefit */ 2041 taskimp = task_weight(p, nid, dist) - taskweight; 2042 groupimp = group_weight(p, nid, dist) - groupweight; 2043 if (taskimp < 0 && groupimp < 0) 2044 continue; 2045 2046 env.dist = dist; 2047 env.dst_nid = nid; 2048 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2049 task_numa_find_cpu(&env, taskimp, groupimp); 2050 } 2051 } 2052 2053 /* 2054 * If the task is part of a workload that spans multiple NUMA nodes, 2055 * and is migrating into one of the workload's active nodes, remember 2056 * this node as the task's preferred numa node, so the workload can 2057 * settle down. 2058 * A task that migrated to a second choice node will be better off 2059 * trying for a better one later. Do not set the preferred node here. 2060 */ 2061 if (ng) { 2062 if (env.best_cpu == -1) 2063 nid = env.src_nid; 2064 else 2065 nid = cpu_to_node(env.best_cpu); 2066 2067 if (nid != p->numa_preferred_nid) 2068 sched_setnuma(p, nid); 2069 } 2070 2071 /* No better CPU than the current one was found. */ 2072 if (env.best_cpu == -1) { 2073 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2074 return -EAGAIN; 2075 } 2076 2077 best_rq = cpu_rq(env.best_cpu); 2078 if (env.best_task == NULL) { 2079 ret = migrate_task_to(p, env.best_cpu); 2080 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2081 if (ret != 0) 2082 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2083 return ret; 2084 } 2085 2086 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2087 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2088 2089 if (ret != 0) 2090 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2091 put_task_struct(env.best_task); 2092 return ret; 2093 } 2094 2095 /* Attempt to migrate a task to a CPU on the preferred node. */ 2096 static void numa_migrate_preferred(struct task_struct *p) 2097 { 2098 unsigned long interval = HZ; 2099 2100 /* This task has no NUMA fault statistics yet */ 2101 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2102 return; 2103 2104 /* Periodically retry migrating the task to the preferred node */ 2105 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2106 p->numa_migrate_retry = jiffies + interval; 2107 2108 /* Success if task is already running on preferred CPU */ 2109 if (task_node(p) == p->numa_preferred_nid) 2110 return; 2111 2112 /* Otherwise, try migrate to a CPU on the preferred node */ 2113 task_numa_migrate(p); 2114 } 2115 2116 /* 2117 * Find out how many nodes on the workload is actively running on. Do this by 2118 * tracking the nodes from which NUMA hinting faults are triggered. This can 2119 * be different from the set of nodes where the workload's memory is currently 2120 * located. 2121 */ 2122 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2123 { 2124 unsigned long faults, max_faults = 0; 2125 int nid, active_nodes = 0; 2126 2127 for_each_online_node(nid) { 2128 faults = group_faults_cpu(numa_group, nid); 2129 if (faults > max_faults) 2130 max_faults = faults; 2131 } 2132 2133 for_each_online_node(nid) { 2134 faults = group_faults_cpu(numa_group, nid); 2135 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2136 active_nodes++; 2137 } 2138 2139 numa_group->max_faults_cpu = max_faults; 2140 numa_group->active_nodes = active_nodes; 2141 } 2142 2143 /* 2144 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2145 * increments. The more local the fault statistics are, the higher the scan 2146 * period will be for the next scan window. If local/(local+remote) ratio is 2147 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2148 * the scan period will decrease. Aim for 70% local accesses. 2149 */ 2150 #define NUMA_PERIOD_SLOTS 10 2151 #define NUMA_PERIOD_THRESHOLD 7 2152 2153 /* 2154 * Increase the scan period (slow down scanning) if the majority of 2155 * our memory is already on our local node, or if the majority of 2156 * the page accesses are shared with other processes. 2157 * Otherwise, decrease the scan period. 2158 */ 2159 static void update_task_scan_period(struct task_struct *p, 2160 unsigned long shared, unsigned long private) 2161 { 2162 unsigned int period_slot; 2163 int lr_ratio, ps_ratio; 2164 int diff; 2165 2166 unsigned long remote = p->numa_faults_locality[0]; 2167 unsigned long local = p->numa_faults_locality[1]; 2168 2169 /* 2170 * If there were no record hinting faults then either the task is 2171 * completely idle or all activity is areas that are not of interest 2172 * to automatic numa balancing. Related to that, if there were failed 2173 * migration then it implies we are migrating too quickly or the local 2174 * node is overloaded. In either case, scan slower 2175 */ 2176 if (local + shared == 0 || p->numa_faults_locality[2]) { 2177 p->numa_scan_period = min(p->numa_scan_period_max, 2178 p->numa_scan_period << 1); 2179 2180 p->mm->numa_next_scan = jiffies + 2181 msecs_to_jiffies(p->numa_scan_period); 2182 2183 return; 2184 } 2185 2186 /* 2187 * Prepare to scale scan period relative to the current period. 2188 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2189 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2190 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2191 */ 2192 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2193 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2194 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2195 2196 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2197 /* 2198 * Most memory accesses are local. There is no need to 2199 * do fast NUMA scanning, since memory is already local. 2200 */ 2201 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2202 if (!slot) 2203 slot = 1; 2204 diff = slot * period_slot; 2205 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2206 /* 2207 * Most memory accesses are shared with other tasks. 2208 * There is no point in continuing fast NUMA scanning, 2209 * since other tasks may just move the memory elsewhere. 2210 */ 2211 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2212 if (!slot) 2213 slot = 1; 2214 diff = slot * period_slot; 2215 } else { 2216 /* 2217 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2218 * yet they are not on the local NUMA node. Speed up 2219 * NUMA scanning to get the memory moved over. 2220 */ 2221 int ratio = max(lr_ratio, ps_ratio); 2222 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2223 } 2224 2225 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2226 task_scan_min(p), task_scan_max(p)); 2227 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2228 } 2229 2230 /* 2231 * Get the fraction of time the task has been running since the last 2232 * NUMA placement cycle. The scheduler keeps similar statistics, but 2233 * decays those on a 32ms period, which is orders of magnitude off 2234 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2235 * stats only if the task is so new there are no NUMA statistics yet. 2236 */ 2237 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2238 { 2239 u64 runtime, delta, now; 2240 /* Use the start of this time slice to avoid calculations. */ 2241 now = p->se.exec_start; 2242 runtime = p->se.sum_exec_runtime; 2243 2244 if (p->last_task_numa_placement) { 2245 delta = runtime - p->last_sum_exec_runtime; 2246 *period = now - p->last_task_numa_placement; 2247 2248 /* Avoid time going backwards, prevent potential divide error: */ 2249 if (unlikely((s64)*period < 0)) 2250 *period = 0; 2251 } else { 2252 delta = p->se.avg.load_sum; 2253 *period = LOAD_AVG_MAX; 2254 } 2255 2256 p->last_sum_exec_runtime = runtime; 2257 p->last_task_numa_placement = now; 2258 2259 return delta; 2260 } 2261 2262 /* 2263 * Determine the preferred nid for a task in a numa_group. This needs to 2264 * be done in a way that produces consistent results with group_weight, 2265 * otherwise workloads might not converge. 2266 */ 2267 static int preferred_group_nid(struct task_struct *p, int nid) 2268 { 2269 nodemask_t nodes; 2270 int dist; 2271 2272 /* Direct connections between all NUMA nodes. */ 2273 if (sched_numa_topology_type == NUMA_DIRECT) 2274 return nid; 2275 2276 /* 2277 * On a system with glueless mesh NUMA topology, group_weight 2278 * scores nodes according to the number of NUMA hinting faults on 2279 * both the node itself, and on nearby nodes. 2280 */ 2281 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2282 unsigned long score, max_score = 0; 2283 int node, max_node = nid; 2284 2285 dist = sched_max_numa_distance; 2286 2287 for_each_online_node(node) { 2288 score = group_weight(p, node, dist); 2289 if (score > max_score) { 2290 max_score = score; 2291 max_node = node; 2292 } 2293 } 2294 return max_node; 2295 } 2296 2297 /* 2298 * Finding the preferred nid in a system with NUMA backplane 2299 * interconnect topology is more involved. The goal is to locate 2300 * tasks from numa_groups near each other in the system, and 2301 * untangle workloads from different sides of the system. This requires 2302 * searching down the hierarchy of node groups, recursively searching 2303 * inside the highest scoring group of nodes. The nodemask tricks 2304 * keep the complexity of the search down. 2305 */ 2306 nodes = node_online_map; 2307 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2308 unsigned long max_faults = 0; 2309 nodemask_t max_group = NODE_MASK_NONE; 2310 int a, b; 2311 2312 /* Are there nodes at this distance from each other? */ 2313 if (!find_numa_distance(dist)) 2314 continue; 2315 2316 for_each_node_mask(a, nodes) { 2317 unsigned long faults = 0; 2318 nodemask_t this_group; 2319 nodes_clear(this_group); 2320 2321 /* Sum group's NUMA faults; includes a==b case. */ 2322 for_each_node_mask(b, nodes) { 2323 if (node_distance(a, b) < dist) { 2324 faults += group_faults(p, b); 2325 node_set(b, this_group); 2326 node_clear(b, nodes); 2327 } 2328 } 2329 2330 /* Remember the top group. */ 2331 if (faults > max_faults) { 2332 max_faults = faults; 2333 max_group = this_group; 2334 /* 2335 * subtle: at the smallest distance there is 2336 * just one node left in each "group", the 2337 * winner is the preferred nid. 2338 */ 2339 nid = a; 2340 } 2341 } 2342 /* Next round, evaluate the nodes within max_group. */ 2343 if (!max_faults) 2344 break; 2345 nodes = max_group; 2346 } 2347 return nid; 2348 } 2349 2350 static void task_numa_placement(struct task_struct *p) 2351 { 2352 int seq, nid, max_nid = NUMA_NO_NODE; 2353 unsigned long max_faults = 0; 2354 unsigned long fault_types[2] = { 0, 0 }; 2355 unsigned long total_faults; 2356 u64 runtime, period; 2357 spinlock_t *group_lock = NULL; 2358 struct numa_group *ng; 2359 2360 /* 2361 * The p->mm->numa_scan_seq field gets updated without 2362 * exclusive access. Use READ_ONCE() here to ensure 2363 * that the field is read in a single access: 2364 */ 2365 seq = READ_ONCE(p->mm->numa_scan_seq); 2366 if (p->numa_scan_seq == seq) 2367 return; 2368 p->numa_scan_seq = seq; 2369 p->numa_scan_period_max = task_scan_max(p); 2370 2371 total_faults = p->numa_faults_locality[0] + 2372 p->numa_faults_locality[1]; 2373 runtime = numa_get_avg_runtime(p, &period); 2374 2375 /* If the task is part of a group prevent parallel updates to group stats */ 2376 ng = deref_curr_numa_group(p); 2377 if (ng) { 2378 group_lock = &ng->lock; 2379 spin_lock_irq(group_lock); 2380 } 2381 2382 /* Find the node with the highest number of faults */ 2383 for_each_online_node(nid) { 2384 /* Keep track of the offsets in numa_faults array */ 2385 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2386 unsigned long faults = 0, group_faults = 0; 2387 int priv; 2388 2389 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2390 long diff, f_diff, f_weight; 2391 2392 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2393 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2394 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2395 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2396 2397 /* Decay existing window, copy faults since last scan */ 2398 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2399 fault_types[priv] += p->numa_faults[membuf_idx]; 2400 p->numa_faults[membuf_idx] = 0; 2401 2402 /* 2403 * Normalize the faults_from, so all tasks in a group 2404 * count according to CPU use, instead of by the raw 2405 * number of faults. Tasks with little runtime have 2406 * little over-all impact on throughput, and thus their 2407 * faults are less important. 2408 */ 2409 f_weight = div64_u64(runtime << 16, period + 1); 2410 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2411 (total_faults + 1); 2412 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2413 p->numa_faults[cpubuf_idx] = 0; 2414 2415 p->numa_faults[mem_idx] += diff; 2416 p->numa_faults[cpu_idx] += f_diff; 2417 faults += p->numa_faults[mem_idx]; 2418 p->total_numa_faults += diff; 2419 if (ng) { 2420 /* 2421 * safe because we can only change our own group 2422 * 2423 * mem_idx represents the offset for a given 2424 * nid and priv in a specific region because it 2425 * is at the beginning of the numa_faults array. 2426 */ 2427 ng->faults[mem_idx] += diff; 2428 ng->faults_cpu[mem_idx] += f_diff; 2429 ng->total_faults += diff; 2430 group_faults += ng->faults[mem_idx]; 2431 } 2432 } 2433 2434 if (!ng) { 2435 if (faults > max_faults) { 2436 max_faults = faults; 2437 max_nid = nid; 2438 } 2439 } else if (group_faults > max_faults) { 2440 max_faults = group_faults; 2441 max_nid = nid; 2442 } 2443 } 2444 2445 if (ng) { 2446 numa_group_count_active_nodes(ng); 2447 spin_unlock_irq(group_lock); 2448 max_nid = preferred_group_nid(p, max_nid); 2449 } 2450 2451 if (max_faults) { 2452 /* Set the new preferred node */ 2453 if (max_nid != p->numa_preferred_nid) 2454 sched_setnuma(p, max_nid); 2455 } 2456 2457 update_task_scan_period(p, fault_types[0], fault_types[1]); 2458 } 2459 2460 static inline int get_numa_group(struct numa_group *grp) 2461 { 2462 return refcount_inc_not_zero(&grp->refcount); 2463 } 2464 2465 static inline void put_numa_group(struct numa_group *grp) 2466 { 2467 if (refcount_dec_and_test(&grp->refcount)) 2468 kfree_rcu(grp, rcu); 2469 } 2470 2471 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2472 int *priv) 2473 { 2474 struct numa_group *grp, *my_grp; 2475 struct task_struct *tsk; 2476 bool join = false; 2477 int cpu = cpupid_to_cpu(cpupid); 2478 int i; 2479 2480 if (unlikely(!deref_curr_numa_group(p))) { 2481 unsigned int size = sizeof(struct numa_group) + 2482 4*nr_node_ids*sizeof(unsigned long); 2483 2484 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2485 if (!grp) 2486 return; 2487 2488 refcount_set(&grp->refcount, 1); 2489 grp->active_nodes = 1; 2490 grp->max_faults_cpu = 0; 2491 spin_lock_init(&grp->lock); 2492 grp->gid = p->pid; 2493 /* Second half of the array tracks nids where faults happen */ 2494 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2495 nr_node_ids; 2496 2497 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2498 grp->faults[i] = p->numa_faults[i]; 2499 2500 grp->total_faults = p->total_numa_faults; 2501 2502 grp->nr_tasks++; 2503 rcu_assign_pointer(p->numa_group, grp); 2504 } 2505 2506 rcu_read_lock(); 2507 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2508 2509 if (!cpupid_match_pid(tsk, cpupid)) 2510 goto no_join; 2511 2512 grp = rcu_dereference(tsk->numa_group); 2513 if (!grp) 2514 goto no_join; 2515 2516 my_grp = deref_curr_numa_group(p); 2517 if (grp == my_grp) 2518 goto no_join; 2519 2520 /* 2521 * Only join the other group if its bigger; if we're the bigger group, 2522 * the other task will join us. 2523 */ 2524 if (my_grp->nr_tasks > grp->nr_tasks) 2525 goto no_join; 2526 2527 /* 2528 * Tie-break on the grp address. 2529 */ 2530 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2531 goto no_join; 2532 2533 /* Always join threads in the same process. */ 2534 if (tsk->mm == current->mm) 2535 join = true; 2536 2537 /* Simple filter to avoid false positives due to PID collisions */ 2538 if (flags & TNF_SHARED) 2539 join = true; 2540 2541 /* Update priv based on whether false sharing was detected */ 2542 *priv = !join; 2543 2544 if (join && !get_numa_group(grp)) 2545 goto no_join; 2546 2547 rcu_read_unlock(); 2548 2549 if (!join) 2550 return; 2551 2552 BUG_ON(irqs_disabled()); 2553 double_lock_irq(&my_grp->lock, &grp->lock); 2554 2555 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2556 my_grp->faults[i] -= p->numa_faults[i]; 2557 grp->faults[i] += p->numa_faults[i]; 2558 } 2559 my_grp->total_faults -= p->total_numa_faults; 2560 grp->total_faults += p->total_numa_faults; 2561 2562 my_grp->nr_tasks--; 2563 grp->nr_tasks++; 2564 2565 spin_unlock(&my_grp->lock); 2566 spin_unlock_irq(&grp->lock); 2567 2568 rcu_assign_pointer(p->numa_group, grp); 2569 2570 put_numa_group(my_grp); 2571 return; 2572 2573 no_join: 2574 rcu_read_unlock(); 2575 return; 2576 } 2577 2578 /* 2579 * Get rid of NUMA staticstics associated with a task (either current or dead). 2580 * If @final is set, the task is dead and has reached refcount zero, so we can 2581 * safely free all relevant data structures. Otherwise, there might be 2582 * concurrent reads from places like load balancing and procfs, and we should 2583 * reset the data back to default state without freeing ->numa_faults. 2584 */ 2585 void task_numa_free(struct task_struct *p, bool final) 2586 { 2587 /* safe: p either is current or is being freed by current */ 2588 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2589 unsigned long *numa_faults = p->numa_faults; 2590 unsigned long flags; 2591 int i; 2592 2593 if (!numa_faults) 2594 return; 2595 2596 if (grp) { 2597 spin_lock_irqsave(&grp->lock, flags); 2598 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2599 grp->faults[i] -= p->numa_faults[i]; 2600 grp->total_faults -= p->total_numa_faults; 2601 2602 grp->nr_tasks--; 2603 spin_unlock_irqrestore(&grp->lock, flags); 2604 RCU_INIT_POINTER(p->numa_group, NULL); 2605 put_numa_group(grp); 2606 } 2607 2608 if (final) { 2609 p->numa_faults = NULL; 2610 kfree(numa_faults); 2611 } else { 2612 p->total_numa_faults = 0; 2613 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2614 numa_faults[i] = 0; 2615 } 2616 } 2617 2618 /* 2619 * Got a PROT_NONE fault for a page on @node. 2620 */ 2621 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2622 { 2623 struct task_struct *p = current; 2624 bool migrated = flags & TNF_MIGRATED; 2625 int cpu_node = task_node(current); 2626 int local = !!(flags & TNF_FAULT_LOCAL); 2627 struct numa_group *ng; 2628 int priv; 2629 2630 if (!static_branch_likely(&sched_numa_balancing)) 2631 return; 2632 2633 /* for example, ksmd faulting in a user's mm */ 2634 if (!p->mm) 2635 return; 2636 2637 /* Allocate buffer to track faults on a per-node basis */ 2638 if (unlikely(!p->numa_faults)) { 2639 int size = sizeof(*p->numa_faults) * 2640 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2641 2642 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2643 if (!p->numa_faults) 2644 return; 2645 2646 p->total_numa_faults = 0; 2647 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2648 } 2649 2650 /* 2651 * First accesses are treated as private, otherwise consider accesses 2652 * to be private if the accessing pid has not changed 2653 */ 2654 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2655 priv = 1; 2656 } else { 2657 priv = cpupid_match_pid(p, last_cpupid); 2658 if (!priv && !(flags & TNF_NO_GROUP)) 2659 task_numa_group(p, last_cpupid, flags, &priv); 2660 } 2661 2662 /* 2663 * If a workload spans multiple NUMA nodes, a shared fault that 2664 * occurs wholly within the set of nodes that the workload is 2665 * actively using should be counted as local. This allows the 2666 * scan rate to slow down when a workload has settled down. 2667 */ 2668 ng = deref_curr_numa_group(p); 2669 if (!priv && !local && ng && ng->active_nodes > 1 && 2670 numa_is_active_node(cpu_node, ng) && 2671 numa_is_active_node(mem_node, ng)) 2672 local = 1; 2673 2674 /* 2675 * Retry to migrate task to preferred node periodically, in case it 2676 * previously failed, or the scheduler moved us. 2677 */ 2678 if (time_after(jiffies, p->numa_migrate_retry)) { 2679 task_numa_placement(p); 2680 numa_migrate_preferred(p); 2681 } 2682 2683 if (migrated) 2684 p->numa_pages_migrated += pages; 2685 if (flags & TNF_MIGRATE_FAIL) 2686 p->numa_faults_locality[2] += pages; 2687 2688 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2689 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2690 p->numa_faults_locality[local] += pages; 2691 } 2692 2693 static void reset_ptenuma_scan(struct task_struct *p) 2694 { 2695 /* 2696 * We only did a read acquisition of the mmap sem, so 2697 * p->mm->numa_scan_seq is written to without exclusive access 2698 * and the update is not guaranteed to be atomic. That's not 2699 * much of an issue though, since this is just used for 2700 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2701 * expensive, to avoid any form of compiler optimizations: 2702 */ 2703 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2704 p->mm->numa_scan_offset = 0; 2705 } 2706 2707 /* 2708 * The expensive part of numa migration is done from task_work context. 2709 * Triggered from task_tick_numa(). 2710 */ 2711 static void task_numa_work(struct callback_head *work) 2712 { 2713 unsigned long migrate, next_scan, now = jiffies; 2714 struct task_struct *p = current; 2715 struct mm_struct *mm = p->mm; 2716 u64 runtime = p->se.sum_exec_runtime; 2717 struct vm_area_struct *vma; 2718 unsigned long start, end; 2719 unsigned long nr_pte_updates = 0; 2720 long pages, virtpages; 2721 2722 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2723 2724 work->next = work; 2725 /* 2726 * Who cares about NUMA placement when they're dying. 2727 * 2728 * NOTE: make sure not to dereference p->mm before this check, 2729 * exit_task_work() happens _after_ exit_mm() so we could be called 2730 * without p->mm even though we still had it when we enqueued this 2731 * work. 2732 */ 2733 if (p->flags & PF_EXITING) 2734 return; 2735 2736 if (!mm->numa_next_scan) { 2737 mm->numa_next_scan = now + 2738 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2739 } 2740 2741 /* 2742 * Enforce maximal scan/migration frequency.. 2743 */ 2744 migrate = mm->numa_next_scan; 2745 if (time_before(now, migrate)) 2746 return; 2747 2748 if (p->numa_scan_period == 0) { 2749 p->numa_scan_period_max = task_scan_max(p); 2750 p->numa_scan_period = task_scan_start(p); 2751 } 2752 2753 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2754 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2755 return; 2756 2757 /* 2758 * Delay this task enough that another task of this mm will likely win 2759 * the next time around. 2760 */ 2761 p->node_stamp += 2 * TICK_NSEC; 2762 2763 start = mm->numa_scan_offset; 2764 pages = sysctl_numa_balancing_scan_size; 2765 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2766 virtpages = pages * 8; /* Scan up to this much virtual space */ 2767 if (!pages) 2768 return; 2769 2770 2771 if (!mmap_read_trylock(mm)) 2772 return; 2773 vma = find_vma(mm, start); 2774 if (!vma) { 2775 reset_ptenuma_scan(p); 2776 start = 0; 2777 vma = mm->mmap; 2778 } 2779 for (; vma; vma = vma->vm_next) { 2780 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2781 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2782 continue; 2783 } 2784 2785 /* 2786 * Shared library pages mapped by multiple processes are not 2787 * migrated as it is expected they are cache replicated. Avoid 2788 * hinting faults in read-only file-backed mappings or the vdso 2789 * as migrating the pages will be of marginal benefit. 2790 */ 2791 if (!vma->vm_mm || 2792 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2793 continue; 2794 2795 /* 2796 * Skip inaccessible VMAs to avoid any confusion between 2797 * PROT_NONE and NUMA hinting ptes 2798 */ 2799 if (!vma_is_accessible(vma)) 2800 continue; 2801 2802 do { 2803 start = max(start, vma->vm_start); 2804 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2805 end = min(end, vma->vm_end); 2806 nr_pte_updates = change_prot_numa(vma, start, end); 2807 2808 /* 2809 * Try to scan sysctl_numa_balancing_size worth of 2810 * hpages that have at least one present PTE that 2811 * is not already pte-numa. If the VMA contains 2812 * areas that are unused or already full of prot_numa 2813 * PTEs, scan up to virtpages, to skip through those 2814 * areas faster. 2815 */ 2816 if (nr_pte_updates) 2817 pages -= (end - start) >> PAGE_SHIFT; 2818 virtpages -= (end - start) >> PAGE_SHIFT; 2819 2820 start = end; 2821 if (pages <= 0 || virtpages <= 0) 2822 goto out; 2823 2824 cond_resched(); 2825 } while (end != vma->vm_end); 2826 } 2827 2828 out: 2829 /* 2830 * It is possible to reach the end of the VMA list but the last few 2831 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2832 * would find the !migratable VMA on the next scan but not reset the 2833 * scanner to the start so check it now. 2834 */ 2835 if (vma) 2836 mm->numa_scan_offset = start; 2837 else 2838 reset_ptenuma_scan(p); 2839 mmap_read_unlock(mm); 2840 2841 /* 2842 * Make sure tasks use at least 32x as much time to run other code 2843 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2844 * Usually update_task_scan_period slows down scanning enough; on an 2845 * overloaded system we need to limit overhead on a per task basis. 2846 */ 2847 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2848 u64 diff = p->se.sum_exec_runtime - runtime; 2849 p->node_stamp += 32 * diff; 2850 } 2851 } 2852 2853 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2854 { 2855 int mm_users = 0; 2856 struct mm_struct *mm = p->mm; 2857 2858 if (mm) { 2859 mm_users = atomic_read(&mm->mm_users); 2860 if (mm_users == 1) { 2861 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2862 mm->numa_scan_seq = 0; 2863 } 2864 } 2865 p->node_stamp = 0; 2866 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2867 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2868 /* Protect against double add, see task_tick_numa and task_numa_work */ 2869 p->numa_work.next = &p->numa_work; 2870 p->numa_faults = NULL; 2871 RCU_INIT_POINTER(p->numa_group, NULL); 2872 p->last_task_numa_placement = 0; 2873 p->last_sum_exec_runtime = 0; 2874 2875 init_task_work(&p->numa_work, task_numa_work); 2876 2877 /* New address space, reset the preferred nid */ 2878 if (!(clone_flags & CLONE_VM)) { 2879 p->numa_preferred_nid = NUMA_NO_NODE; 2880 return; 2881 } 2882 2883 /* 2884 * New thread, keep existing numa_preferred_nid which should be copied 2885 * already by arch_dup_task_struct but stagger when scans start. 2886 */ 2887 if (mm) { 2888 unsigned int delay; 2889 2890 delay = min_t(unsigned int, task_scan_max(current), 2891 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2892 delay += 2 * TICK_NSEC; 2893 p->node_stamp = delay; 2894 } 2895 } 2896 2897 /* 2898 * Drive the periodic memory faults.. 2899 */ 2900 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2901 { 2902 struct callback_head *work = &curr->numa_work; 2903 u64 period, now; 2904 2905 /* 2906 * We don't care about NUMA placement if we don't have memory. 2907 */ 2908 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2909 return; 2910 2911 /* 2912 * Using runtime rather than walltime has the dual advantage that 2913 * we (mostly) drive the selection from busy threads and that the 2914 * task needs to have done some actual work before we bother with 2915 * NUMA placement. 2916 */ 2917 now = curr->se.sum_exec_runtime; 2918 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2919 2920 if (now > curr->node_stamp + period) { 2921 if (!curr->node_stamp) 2922 curr->numa_scan_period = task_scan_start(curr); 2923 curr->node_stamp += period; 2924 2925 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2926 task_work_add(curr, work, true); 2927 } 2928 } 2929 2930 static void update_scan_period(struct task_struct *p, int new_cpu) 2931 { 2932 int src_nid = cpu_to_node(task_cpu(p)); 2933 int dst_nid = cpu_to_node(new_cpu); 2934 2935 if (!static_branch_likely(&sched_numa_balancing)) 2936 return; 2937 2938 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2939 return; 2940 2941 if (src_nid == dst_nid) 2942 return; 2943 2944 /* 2945 * Allow resets if faults have been trapped before one scan 2946 * has completed. This is most likely due to a new task that 2947 * is pulled cross-node due to wakeups or load balancing. 2948 */ 2949 if (p->numa_scan_seq) { 2950 /* 2951 * Avoid scan adjustments if moving to the preferred 2952 * node or if the task was not previously running on 2953 * the preferred node. 2954 */ 2955 if (dst_nid == p->numa_preferred_nid || 2956 (p->numa_preferred_nid != NUMA_NO_NODE && 2957 src_nid != p->numa_preferred_nid)) 2958 return; 2959 } 2960 2961 p->numa_scan_period = task_scan_start(p); 2962 } 2963 2964 #else 2965 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2966 { 2967 } 2968 2969 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2970 { 2971 } 2972 2973 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2974 { 2975 } 2976 2977 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2978 { 2979 } 2980 2981 #endif /* CONFIG_NUMA_BALANCING */ 2982 2983 static void 2984 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2985 { 2986 update_load_add(&cfs_rq->load, se->load.weight); 2987 #ifdef CONFIG_SMP 2988 if (entity_is_task(se)) { 2989 struct rq *rq = rq_of(cfs_rq); 2990 2991 account_numa_enqueue(rq, task_of(se)); 2992 list_add(&se->group_node, &rq->cfs_tasks); 2993 } 2994 #endif 2995 cfs_rq->nr_running++; 2996 } 2997 2998 static void 2999 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3000 { 3001 update_load_sub(&cfs_rq->load, se->load.weight); 3002 #ifdef CONFIG_SMP 3003 if (entity_is_task(se)) { 3004 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3005 list_del_init(&se->group_node); 3006 } 3007 #endif 3008 cfs_rq->nr_running--; 3009 } 3010 3011 /* 3012 * Signed add and clamp on underflow. 3013 * 3014 * Explicitly do a load-store to ensure the intermediate value never hits 3015 * memory. This allows lockless observations without ever seeing the negative 3016 * values. 3017 */ 3018 #define add_positive(_ptr, _val) do { \ 3019 typeof(_ptr) ptr = (_ptr); \ 3020 typeof(_val) val = (_val); \ 3021 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3022 \ 3023 res = var + val; \ 3024 \ 3025 if (val < 0 && res > var) \ 3026 res = 0; \ 3027 \ 3028 WRITE_ONCE(*ptr, res); \ 3029 } while (0) 3030 3031 /* 3032 * Unsigned subtract and clamp on underflow. 3033 * 3034 * Explicitly do a load-store to ensure the intermediate value never hits 3035 * memory. This allows lockless observations without ever seeing the negative 3036 * values. 3037 */ 3038 #define sub_positive(_ptr, _val) do { \ 3039 typeof(_ptr) ptr = (_ptr); \ 3040 typeof(*ptr) val = (_val); \ 3041 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3042 res = var - val; \ 3043 if (res > var) \ 3044 res = 0; \ 3045 WRITE_ONCE(*ptr, res); \ 3046 } while (0) 3047 3048 /* 3049 * Remove and clamp on negative, from a local variable. 3050 * 3051 * A variant of sub_positive(), which does not use explicit load-store 3052 * and is thus optimized for local variable updates. 3053 */ 3054 #define lsub_positive(_ptr, _val) do { \ 3055 typeof(_ptr) ptr = (_ptr); \ 3056 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3057 } while (0) 3058 3059 #ifdef CONFIG_SMP 3060 static inline void 3061 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3062 { 3063 cfs_rq->avg.load_avg += se->avg.load_avg; 3064 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3065 } 3066 3067 static inline void 3068 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3069 { 3070 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3071 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3072 } 3073 #else 3074 static inline void 3075 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3076 static inline void 3077 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3078 #endif 3079 3080 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3081 unsigned long weight) 3082 { 3083 if (se->on_rq) { 3084 /* commit outstanding execution time */ 3085 if (cfs_rq->curr == se) 3086 update_curr(cfs_rq); 3087 account_entity_dequeue(cfs_rq, se); 3088 } 3089 dequeue_load_avg(cfs_rq, se); 3090 3091 update_load_set(&se->load, weight); 3092 3093 #ifdef CONFIG_SMP 3094 do { 3095 u32 divider = get_pelt_divider(&se->avg); 3096 3097 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3098 } while (0); 3099 #endif 3100 3101 enqueue_load_avg(cfs_rq, se); 3102 if (se->on_rq) 3103 account_entity_enqueue(cfs_rq, se); 3104 3105 } 3106 3107 void reweight_task(struct task_struct *p, int prio) 3108 { 3109 struct sched_entity *se = &p->se; 3110 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3111 struct load_weight *load = &se->load; 3112 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3113 3114 reweight_entity(cfs_rq, se, weight); 3115 load->inv_weight = sched_prio_to_wmult[prio]; 3116 } 3117 3118 #ifdef CONFIG_FAIR_GROUP_SCHED 3119 #ifdef CONFIG_SMP 3120 /* 3121 * All this does is approximate the hierarchical proportion which includes that 3122 * global sum we all love to hate. 3123 * 3124 * That is, the weight of a group entity, is the proportional share of the 3125 * group weight based on the group runqueue weights. That is: 3126 * 3127 * tg->weight * grq->load.weight 3128 * ge->load.weight = ----------------------------- (1) 3129 * \Sum grq->load.weight 3130 * 3131 * Now, because computing that sum is prohibitively expensive to compute (been 3132 * there, done that) we approximate it with this average stuff. The average 3133 * moves slower and therefore the approximation is cheaper and more stable. 3134 * 3135 * So instead of the above, we substitute: 3136 * 3137 * grq->load.weight -> grq->avg.load_avg (2) 3138 * 3139 * which yields the following: 3140 * 3141 * tg->weight * grq->avg.load_avg 3142 * ge->load.weight = ------------------------------ (3) 3143 * tg->load_avg 3144 * 3145 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3146 * 3147 * That is shares_avg, and it is right (given the approximation (2)). 3148 * 3149 * The problem with it is that because the average is slow -- it was designed 3150 * to be exactly that of course -- this leads to transients in boundary 3151 * conditions. In specific, the case where the group was idle and we start the 3152 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3153 * yielding bad latency etc.. 3154 * 3155 * Now, in that special case (1) reduces to: 3156 * 3157 * tg->weight * grq->load.weight 3158 * ge->load.weight = ----------------------------- = tg->weight (4) 3159 * grp->load.weight 3160 * 3161 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3162 * 3163 * So what we do is modify our approximation (3) to approach (4) in the (near) 3164 * UP case, like: 3165 * 3166 * ge->load.weight = 3167 * 3168 * tg->weight * grq->load.weight 3169 * --------------------------------------------------- (5) 3170 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3171 * 3172 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3173 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3174 * 3175 * 3176 * tg->weight * grq->load.weight 3177 * ge->load.weight = ----------------------------- (6) 3178 * tg_load_avg' 3179 * 3180 * Where: 3181 * 3182 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3183 * max(grq->load.weight, grq->avg.load_avg) 3184 * 3185 * And that is shares_weight and is icky. In the (near) UP case it approaches 3186 * (4) while in the normal case it approaches (3). It consistently 3187 * overestimates the ge->load.weight and therefore: 3188 * 3189 * \Sum ge->load.weight >= tg->weight 3190 * 3191 * hence icky! 3192 */ 3193 static long calc_group_shares(struct cfs_rq *cfs_rq) 3194 { 3195 long tg_weight, tg_shares, load, shares; 3196 struct task_group *tg = cfs_rq->tg; 3197 3198 tg_shares = READ_ONCE(tg->shares); 3199 3200 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3201 3202 tg_weight = atomic_long_read(&tg->load_avg); 3203 3204 /* Ensure tg_weight >= load */ 3205 tg_weight -= cfs_rq->tg_load_avg_contrib; 3206 tg_weight += load; 3207 3208 shares = (tg_shares * load); 3209 if (tg_weight) 3210 shares /= tg_weight; 3211 3212 /* 3213 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3214 * of a group with small tg->shares value. It is a floor value which is 3215 * assigned as a minimum load.weight to the sched_entity representing 3216 * the group on a CPU. 3217 * 3218 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3219 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3220 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3221 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3222 * instead of 0. 3223 */ 3224 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3225 } 3226 #endif /* CONFIG_SMP */ 3227 3228 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3229 3230 /* 3231 * Recomputes the group entity based on the current state of its group 3232 * runqueue. 3233 */ 3234 static void update_cfs_group(struct sched_entity *se) 3235 { 3236 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3237 long shares; 3238 3239 if (!gcfs_rq) 3240 return; 3241 3242 if (throttled_hierarchy(gcfs_rq)) 3243 return; 3244 3245 #ifndef CONFIG_SMP 3246 shares = READ_ONCE(gcfs_rq->tg->shares); 3247 3248 if (likely(se->load.weight == shares)) 3249 return; 3250 #else 3251 shares = calc_group_shares(gcfs_rq); 3252 #endif 3253 3254 reweight_entity(cfs_rq_of(se), se, shares); 3255 } 3256 3257 #else /* CONFIG_FAIR_GROUP_SCHED */ 3258 static inline void update_cfs_group(struct sched_entity *se) 3259 { 3260 } 3261 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3262 3263 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3264 { 3265 struct rq *rq = rq_of(cfs_rq); 3266 3267 if (&rq->cfs == cfs_rq) { 3268 /* 3269 * There are a few boundary cases this might miss but it should 3270 * get called often enough that that should (hopefully) not be 3271 * a real problem. 3272 * 3273 * It will not get called when we go idle, because the idle 3274 * thread is a different class (!fair), nor will the utilization 3275 * number include things like RT tasks. 3276 * 3277 * As is, the util number is not freq-invariant (we'd have to 3278 * implement arch_scale_freq_capacity() for that). 3279 * 3280 * See cpu_util(). 3281 */ 3282 cpufreq_update_util(rq, flags); 3283 } 3284 } 3285 3286 #ifdef CONFIG_SMP 3287 #ifdef CONFIG_FAIR_GROUP_SCHED 3288 /** 3289 * update_tg_load_avg - update the tg's load avg 3290 * @cfs_rq: the cfs_rq whose avg changed 3291 * @force: update regardless of how small the difference 3292 * 3293 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3294 * However, because tg->load_avg is a global value there are performance 3295 * considerations. 3296 * 3297 * In order to avoid having to look at the other cfs_rq's, we use a 3298 * differential update where we store the last value we propagated. This in 3299 * turn allows skipping updates if the differential is 'small'. 3300 * 3301 * Updating tg's load_avg is necessary before update_cfs_share(). 3302 */ 3303 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3304 { 3305 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3306 3307 /* 3308 * No need to update load_avg for root_task_group as it is not used. 3309 */ 3310 if (cfs_rq->tg == &root_task_group) 3311 return; 3312 3313 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3314 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3315 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3316 } 3317 } 3318 3319 /* 3320 * Called within set_task_rq() right before setting a task's CPU. The 3321 * caller only guarantees p->pi_lock is held; no other assumptions, 3322 * including the state of rq->lock, should be made. 3323 */ 3324 void set_task_rq_fair(struct sched_entity *se, 3325 struct cfs_rq *prev, struct cfs_rq *next) 3326 { 3327 u64 p_last_update_time; 3328 u64 n_last_update_time; 3329 3330 if (!sched_feat(ATTACH_AGE_LOAD)) 3331 return; 3332 3333 /* 3334 * We are supposed to update the task to "current" time, then its up to 3335 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3336 * getting what current time is, so simply throw away the out-of-date 3337 * time. This will result in the wakee task is less decayed, but giving 3338 * the wakee more load sounds not bad. 3339 */ 3340 if (!(se->avg.last_update_time && prev)) 3341 return; 3342 3343 #ifndef CONFIG_64BIT 3344 { 3345 u64 p_last_update_time_copy; 3346 u64 n_last_update_time_copy; 3347 3348 do { 3349 p_last_update_time_copy = prev->load_last_update_time_copy; 3350 n_last_update_time_copy = next->load_last_update_time_copy; 3351 3352 smp_rmb(); 3353 3354 p_last_update_time = prev->avg.last_update_time; 3355 n_last_update_time = next->avg.last_update_time; 3356 3357 } while (p_last_update_time != p_last_update_time_copy || 3358 n_last_update_time != n_last_update_time_copy); 3359 } 3360 #else 3361 p_last_update_time = prev->avg.last_update_time; 3362 n_last_update_time = next->avg.last_update_time; 3363 #endif 3364 __update_load_avg_blocked_se(p_last_update_time, se); 3365 se->avg.last_update_time = n_last_update_time; 3366 } 3367 3368 3369 /* 3370 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3371 * propagate its contribution. The key to this propagation is the invariant 3372 * that for each group: 3373 * 3374 * ge->avg == grq->avg (1) 3375 * 3376 * _IFF_ we look at the pure running and runnable sums. Because they 3377 * represent the very same entity, just at different points in the hierarchy. 3378 * 3379 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3380 * and simply copies the running/runnable sum over (but still wrong, because 3381 * the group entity and group rq do not have their PELT windows aligned). 3382 * 3383 * However, update_tg_cfs_load() is more complex. So we have: 3384 * 3385 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3386 * 3387 * And since, like util, the runnable part should be directly transferable, 3388 * the following would _appear_ to be the straight forward approach: 3389 * 3390 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3391 * 3392 * And per (1) we have: 3393 * 3394 * ge->avg.runnable_avg == grq->avg.runnable_avg 3395 * 3396 * Which gives: 3397 * 3398 * ge->load.weight * grq->avg.load_avg 3399 * ge->avg.load_avg = ----------------------------------- (4) 3400 * grq->load.weight 3401 * 3402 * Except that is wrong! 3403 * 3404 * Because while for entities historical weight is not important and we 3405 * really only care about our future and therefore can consider a pure 3406 * runnable sum, runqueues can NOT do this. 3407 * 3408 * We specifically want runqueues to have a load_avg that includes 3409 * historical weights. Those represent the blocked load, the load we expect 3410 * to (shortly) return to us. This only works by keeping the weights as 3411 * integral part of the sum. We therefore cannot decompose as per (3). 3412 * 3413 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3414 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3415 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3416 * runnable section of these tasks overlap (or not). If they were to perfectly 3417 * align the rq as a whole would be runnable 2/3 of the time. If however we 3418 * always have at least 1 runnable task, the rq as a whole is always runnable. 3419 * 3420 * So we'll have to approximate.. :/ 3421 * 3422 * Given the constraint: 3423 * 3424 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3425 * 3426 * We can construct a rule that adds runnable to a rq by assuming minimal 3427 * overlap. 3428 * 3429 * On removal, we'll assume each task is equally runnable; which yields: 3430 * 3431 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3432 * 3433 * XXX: only do this for the part of runnable > running ? 3434 * 3435 */ 3436 3437 static inline void 3438 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3439 { 3440 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3441 u32 divider; 3442 3443 /* Nothing to update */ 3444 if (!delta) 3445 return; 3446 3447 /* 3448 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3449 * See ___update_load_avg() for details. 3450 */ 3451 divider = get_pelt_divider(&cfs_rq->avg); 3452 3453 /* Set new sched_entity's utilization */ 3454 se->avg.util_avg = gcfs_rq->avg.util_avg; 3455 se->avg.util_sum = se->avg.util_avg * divider; 3456 3457 /* Update parent cfs_rq utilization */ 3458 add_positive(&cfs_rq->avg.util_avg, delta); 3459 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3460 } 3461 3462 static inline void 3463 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3464 { 3465 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3466 u32 divider; 3467 3468 /* Nothing to update */ 3469 if (!delta) 3470 return; 3471 3472 /* 3473 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3474 * See ___update_load_avg() for details. 3475 */ 3476 divider = get_pelt_divider(&cfs_rq->avg); 3477 3478 /* Set new sched_entity's runnable */ 3479 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3480 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3481 3482 /* Update parent cfs_rq runnable */ 3483 add_positive(&cfs_rq->avg.runnable_avg, delta); 3484 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3485 } 3486 3487 static inline void 3488 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3489 { 3490 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3491 unsigned long load_avg; 3492 u64 load_sum = 0; 3493 s64 delta_sum; 3494 u32 divider; 3495 3496 if (!runnable_sum) 3497 return; 3498 3499 gcfs_rq->prop_runnable_sum = 0; 3500 3501 /* 3502 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3503 * See ___update_load_avg() for details. 3504 */ 3505 divider = get_pelt_divider(&cfs_rq->avg); 3506 3507 if (runnable_sum >= 0) { 3508 /* 3509 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3510 * the CPU is saturated running == runnable. 3511 */ 3512 runnable_sum += se->avg.load_sum; 3513 runnable_sum = min_t(long, runnable_sum, divider); 3514 } else { 3515 /* 3516 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3517 * assuming all tasks are equally runnable. 3518 */ 3519 if (scale_load_down(gcfs_rq->load.weight)) { 3520 load_sum = div_s64(gcfs_rq->avg.load_sum, 3521 scale_load_down(gcfs_rq->load.weight)); 3522 } 3523 3524 /* But make sure to not inflate se's runnable */ 3525 runnable_sum = min(se->avg.load_sum, load_sum); 3526 } 3527 3528 /* 3529 * runnable_sum can't be lower than running_sum 3530 * Rescale running sum to be in the same range as runnable sum 3531 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3532 * runnable_sum is in [0 : LOAD_AVG_MAX] 3533 */ 3534 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3535 runnable_sum = max(runnable_sum, running_sum); 3536 3537 load_sum = (s64)se_weight(se) * runnable_sum; 3538 load_avg = div_s64(load_sum, divider); 3539 3540 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3541 delta_avg = load_avg - se->avg.load_avg; 3542 3543 se->avg.load_sum = runnable_sum; 3544 se->avg.load_avg = load_avg; 3545 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3546 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3547 } 3548 3549 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3550 { 3551 cfs_rq->propagate = 1; 3552 cfs_rq->prop_runnable_sum += runnable_sum; 3553 } 3554 3555 /* Update task and its cfs_rq load average */ 3556 static inline int propagate_entity_load_avg(struct sched_entity *se) 3557 { 3558 struct cfs_rq *cfs_rq, *gcfs_rq; 3559 3560 if (entity_is_task(se)) 3561 return 0; 3562 3563 gcfs_rq = group_cfs_rq(se); 3564 if (!gcfs_rq->propagate) 3565 return 0; 3566 3567 gcfs_rq->propagate = 0; 3568 3569 cfs_rq = cfs_rq_of(se); 3570 3571 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3572 3573 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3574 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3575 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3576 3577 trace_pelt_cfs_tp(cfs_rq); 3578 trace_pelt_se_tp(se); 3579 3580 return 1; 3581 } 3582 3583 /* 3584 * Check if we need to update the load and the utilization of a blocked 3585 * group_entity: 3586 */ 3587 static inline bool skip_blocked_update(struct sched_entity *se) 3588 { 3589 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3590 3591 /* 3592 * If sched_entity still have not zero load or utilization, we have to 3593 * decay it: 3594 */ 3595 if (se->avg.load_avg || se->avg.util_avg) 3596 return false; 3597 3598 /* 3599 * If there is a pending propagation, we have to update the load and 3600 * the utilization of the sched_entity: 3601 */ 3602 if (gcfs_rq->propagate) 3603 return false; 3604 3605 /* 3606 * Otherwise, the load and the utilization of the sched_entity is 3607 * already zero and there is no pending propagation, so it will be a 3608 * waste of time to try to decay it: 3609 */ 3610 return true; 3611 } 3612 3613 #else /* CONFIG_FAIR_GROUP_SCHED */ 3614 3615 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3616 3617 static inline int propagate_entity_load_avg(struct sched_entity *se) 3618 { 3619 return 0; 3620 } 3621 3622 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3623 3624 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3625 3626 /** 3627 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3628 * @now: current time, as per cfs_rq_clock_pelt() 3629 * @cfs_rq: cfs_rq to update 3630 * 3631 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3632 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3633 * post_init_entity_util_avg(). 3634 * 3635 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3636 * 3637 * Returns true if the load decayed or we removed load. 3638 * 3639 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3640 * call update_tg_load_avg() when this function returns true. 3641 */ 3642 static inline int 3643 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3644 { 3645 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3646 struct sched_avg *sa = &cfs_rq->avg; 3647 int decayed = 0; 3648 3649 if (cfs_rq->removed.nr) { 3650 unsigned long r; 3651 u32 divider = get_pelt_divider(&cfs_rq->avg); 3652 3653 raw_spin_lock(&cfs_rq->removed.lock); 3654 swap(cfs_rq->removed.util_avg, removed_util); 3655 swap(cfs_rq->removed.load_avg, removed_load); 3656 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3657 cfs_rq->removed.nr = 0; 3658 raw_spin_unlock(&cfs_rq->removed.lock); 3659 3660 r = removed_load; 3661 sub_positive(&sa->load_avg, r); 3662 sub_positive(&sa->load_sum, r * divider); 3663 3664 r = removed_util; 3665 sub_positive(&sa->util_avg, r); 3666 sub_positive(&sa->util_sum, r * divider); 3667 3668 r = removed_runnable; 3669 sub_positive(&sa->runnable_avg, r); 3670 sub_positive(&sa->runnable_sum, r * divider); 3671 3672 /* 3673 * removed_runnable is the unweighted version of removed_load so we 3674 * can use it to estimate removed_load_sum. 3675 */ 3676 add_tg_cfs_propagate(cfs_rq, 3677 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3678 3679 decayed = 1; 3680 } 3681 3682 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3683 3684 #ifndef CONFIG_64BIT 3685 smp_wmb(); 3686 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3687 #endif 3688 3689 return decayed; 3690 } 3691 3692 /** 3693 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3694 * @cfs_rq: cfs_rq to attach to 3695 * @se: sched_entity to attach 3696 * 3697 * Must call update_cfs_rq_load_avg() before this, since we rely on 3698 * cfs_rq->avg.last_update_time being current. 3699 */ 3700 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3701 { 3702 /* 3703 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3704 * See ___update_load_avg() for details. 3705 */ 3706 u32 divider = get_pelt_divider(&cfs_rq->avg); 3707 3708 /* 3709 * When we attach the @se to the @cfs_rq, we must align the decay 3710 * window because without that, really weird and wonderful things can 3711 * happen. 3712 * 3713 * XXX illustrate 3714 */ 3715 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3716 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3717 3718 /* 3719 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3720 * period_contrib. This isn't strictly correct, but since we're 3721 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3722 * _sum a little. 3723 */ 3724 se->avg.util_sum = se->avg.util_avg * divider; 3725 3726 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3727 3728 se->avg.load_sum = divider; 3729 if (se_weight(se)) { 3730 se->avg.load_sum = 3731 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3732 } 3733 3734 enqueue_load_avg(cfs_rq, se); 3735 cfs_rq->avg.util_avg += se->avg.util_avg; 3736 cfs_rq->avg.util_sum += se->avg.util_sum; 3737 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3738 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3739 3740 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3741 3742 cfs_rq_util_change(cfs_rq, 0); 3743 3744 trace_pelt_cfs_tp(cfs_rq); 3745 } 3746 3747 /** 3748 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3749 * @cfs_rq: cfs_rq to detach from 3750 * @se: sched_entity to detach 3751 * 3752 * Must call update_cfs_rq_load_avg() before this, since we rely on 3753 * cfs_rq->avg.last_update_time being current. 3754 */ 3755 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3756 { 3757 dequeue_load_avg(cfs_rq, se); 3758 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3759 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3760 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3761 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 3762 3763 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3764 3765 cfs_rq_util_change(cfs_rq, 0); 3766 3767 trace_pelt_cfs_tp(cfs_rq); 3768 } 3769 3770 /* 3771 * Optional action to be done while updating the load average 3772 */ 3773 #define UPDATE_TG 0x1 3774 #define SKIP_AGE_LOAD 0x2 3775 #define DO_ATTACH 0x4 3776 3777 /* Update task and its cfs_rq load average */ 3778 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3779 { 3780 u64 now = cfs_rq_clock_pelt(cfs_rq); 3781 int decayed; 3782 3783 /* 3784 * Track task load average for carrying it to new CPU after migrated, and 3785 * track group sched_entity load average for task_h_load calc in migration 3786 */ 3787 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3788 __update_load_avg_se(now, cfs_rq, se); 3789 3790 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3791 decayed |= propagate_entity_load_avg(se); 3792 3793 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3794 3795 /* 3796 * DO_ATTACH means we're here from enqueue_entity(). 3797 * !last_update_time means we've passed through 3798 * migrate_task_rq_fair() indicating we migrated. 3799 * 3800 * IOW we're enqueueing a task on a new CPU. 3801 */ 3802 attach_entity_load_avg(cfs_rq, se); 3803 update_tg_load_avg(cfs_rq, 0); 3804 3805 } else if (decayed) { 3806 cfs_rq_util_change(cfs_rq, 0); 3807 3808 if (flags & UPDATE_TG) 3809 update_tg_load_avg(cfs_rq, 0); 3810 } 3811 } 3812 3813 #ifndef CONFIG_64BIT 3814 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3815 { 3816 u64 last_update_time_copy; 3817 u64 last_update_time; 3818 3819 do { 3820 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3821 smp_rmb(); 3822 last_update_time = cfs_rq->avg.last_update_time; 3823 } while (last_update_time != last_update_time_copy); 3824 3825 return last_update_time; 3826 } 3827 #else 3828 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3829 { 3830 return cfs_rq->avg.last_update_time; 3831 } 3832 #endif 3833 3834 /* 3835 * Synchronize entity load avg of dequeued entity without locking 3836 * the previous rq. 3837 */ 3838 static void sync_entity_load_avg(struct sched_entity *se) 3839 { 3840 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3841 u64 last_update_time; 3842 3843 last_update_time = cfs_rq_last_update_time(cfs_rq); 3844 __update_load_avg_blocked_se(last_update_time, se); 3845 } 3846 3847 /* 3848 * Task first catches up with cfs_rq, and then subtract 3849 * itself from the cfs_rq (task must be off the queue now). 3850 */ 3851 static void remove_entity_load_avg(struct sched_entity *se) 3852 { 3853 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3854 unsigned long flags; 3855 3856 /* 3857 * tasks cannot exit without having gone through wake_up_new_task() -> 3858 * post_init_entity_util_avg() which will have added things to the 3859 * cfs_rq, so we can remove unconditionally. 3860 */ 3861 3862 sync_entity_load_avg(se); 3863 3864 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3865 ++cfs_rq->removed.nr; 3866 cfs_rq->removed.util_avg += se->avg.util_avg; 3867 cfs_rq->removed.load_avg += se->avg.load_avg; 3868 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 3869 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3870 } 3871 3872 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 3873 { 3874 return cfs_rq->avg.runnable_avg; 3875 } 3876 3877 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3878 { 3879 return cfs_rq->avg.load_avg; 3880 } 3881 3882 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 3883 3884 static inline unsigned long task_util(struct task_struct *p) 3885 { 3886 return READ_ONCE(p->se.avg.util_avg); 3887 } 3888 3889 static inline unsigned long _task_util_est(struct task_struct *p) 3890 { 3891 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3892 3893 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3894 } 3895 3896 static inline unsigned long task_util_est(struct task_struct *p) 3897 { 3898 return max(task_util(p), _task_util_est(p)); 3899 } 3900 3901 #ifdef CONFIG_UCLAMP_TASK 3902 static inline unsigned long uclamp_task_util(struct task_struct *p) 3903 { 3904 return clamp(task_util_est(p), 3905 uclamp_eff_value(p, UCLAMP_MIN), 3906 uclamp_eff_value(p, UCLAMP_MAX)); 3907 } 3908 #else 3909 static inline unsigned long uclamp_task_util(struct task_struct *p) 3910 { 3911 return task_util_est(p); 3912 } 3913 #endif 3914 3915 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3916 struct task_struct *p) 3917 { 3918 unsigned int enqueued; 3919 3920 if (!sched_feat(UTIL_EST)) 3921 return; 3922 3923 /* Update root cfs_rq's estimated utilization */ 3924 enqueued = cfs_rq->avg.util_est.enqueued; 3925 enqueued += _task_util_est(p); 3926 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3927 3928 trace_sched_util_est_cfs_tp(cfs_rq); 3929 } 3930 3931 /* 3932 * Check if a (signed) value is within a specified (unsigned) margin, 3933 * based on the observation that: 3934 * 3935 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3936 * 3937 * NOTE: this only works when value + maring < INT_MAX. 3938 */ 3939 static inline bool within_margin(int value, int margin) 3940 { 3941 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3942 } 3943 3944 static void 3945 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3946 { 3947 long last_ewma_diff; 3948 struct util_est ue; 3949 int cpu; 3950 3951 if (!sched_feat(UTIL_EST)) 3952 return; 3953 3954 /* Update root cfs_rq's estimated utilization */ 3955 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3956 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); 3957 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3958 3959 trace_sched_util_est_cfs_tp(cfs_rq); 3960 3961 /* 3962 * Skip update of task's estimated utilization when the task has not 3963 * yet completed an activation, e.g. being migrated. 3964 */ 3965 if (!task_sleep) 3966 return; 3967 3968 /* 3969 * If the PELT values haven't changed since enqueue time, 3970 * skip the util_est update. 3971 */ 3972 ue = p->se.avg.util_est; 3973 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3974 return; 3975 3976 /* 3977 * Reset EWMA on utilization increases, the moving average is used only 3978 * to smooth utilization decreases. 3979 */ 3980 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3981 if (sched_feat(UTIL_EST_FASTUP)) { 3982 if (ue.ewma < ue.enqueued) { 3983 ue.ewma = ue.enqueued; 3984 goto done; 3985 } 3986 } 3987 3988 /* 3989 * Skip update of task's estimated utilization when its EWMA is 3990 * already ~1% close to its last activation value. 3991 */ 3992 last_ewma_diff = ue.enqueued - ue.ewma; 3993 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3994 return; 3995 3996 /* 3997 * To avoid overestimation of actual task utilization, skip updates if 3998 * we cannot grant there is idle time in this CPU. 3999 */ 4000 cpu = cpu_of(rq_of(cfs_rq)); 4001 if (task_util(p) > capacity_orig_of(cpu)) 4002 return; 4003 4004 /* 4005 * Update Task's estimated utilization 4006 * 4007 * When *p completes an activation we can consolidate another sample 4008 * of the task size. This is done by storing the current PELT value 4009 * as ue.enqueued and by using this value to update the Exponential 4010 * Weighted Moving Average (EWMA): 4011 * 4012 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4013 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4014 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4015 * = w * ( last_ewma_diff ) + ewma(t-1) 4016 * = w * (last_ewma_diff + ewma(t-1) / w) 4017 * 4018 * Where 'w' is the weight of new samples, which is configured to be 4019 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4020 */ 4021 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4022 ue.ewma += last_ewma_diff; 4023 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4024 done: 4025 WRITE_ONCE(p->se.avg.util_est, ue); 4026 4027 trace_sched_util_est_se_tp(&p->se); 4028 } 4029 4030 static inline int task_fits_capacity(struct task_struct *p, long capacity) 4031 { 4032 return fits_capacity(uclamp_task_util(p), capacity); 4033 } 4034 4035 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4036 { 4037 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4038 return; 4039 4040 if (!p) { 4041 rq->misfit_task_load = 0; 4042 return; 4043 } 4044 4045 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4046 rq->misfit_task_load = 0; 4047 return; 4048 } 4049 4050 /* 4051 * Make sure that misfit_task_load will not be null even if 4052 * task_h_load() returns 0. 4053 */ 4054 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4055 } 4056 4057 #else /* CONFIG_SMP */ 4058 4059 #define UPDATE_TG 0x0 4060 #define SKIP_AGE_LOAD 0x0 4061 #define DO_ATTACH 0x0 4062 4063 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4064 { 4065 cfs_rq_util_change(cfs_rq, 0); 4066 } 4067 4068 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4069 4070 static inline void 4071 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4072 static inline void 4073 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4074 4075 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4076 { 4077 return 0; 4078 } 4079 4080 static inline void 4081 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4082 4083 static inline void 4084 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 4085 bool task_sleep) {} 4086 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4087 4088 #endif /* CONFIG_SMP */ 4089 4090 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4091 { 4092 #ifdef CONFIG_SCHED_DEBUG 4093 s64 d = se->vruntime - cfs_rq->min_vruntime; 4094 4095 if (d < 0) 4096 d = -d; 4097 4098 if (d > 3*sysctl_sched_latency) 4099 schedstat_inc(cfs_rq->nr_spread_over); 4100 #endif 4101 } 4102 4103 static void 4104 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4105 { 4106 u64 vruntime = cfs_rq->min_vruntime; 4107 4108 /* 4109 * The 'current' period is already promised to the current tasks, 4110 * however the extra weight of the new task will slow them down a 4111 * little, place the new task so that it fits in the slot that 4112 * stays open at the end. 4113 */ 4114 if (initial && sched_feat(START_DEBIT)) 4115 vruntime += sched_vslice(cfs_rq, se); 4116 4117 /* sleeps up to a single latency don't count. */ 4118 if (!initial) { 4119 unsigned long thresh = sysctl_sched_latency; 4120 4121 /* 4122 * Halve their sleep time's effect, to allow 4123 * for a gentler effect of sleepers: 4124 */ 4125 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4126 thresh >>= 1; 4127 4128 vruntime -= thresh; 4129 } 4130 4131 /* ensure we never gain time by being placed backwards. */ 4132 se->vruntime = max_vruntime(se->vruntime, vruntime); 4133 } 4134 4135 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4136 4137 static inline void check_schedstat_required(void) 4138 { 4139 #ifdef CONFIG_SCHEDSTATS 4140 if (schedstat_enabled()) 4141 return; 4142 4143 /* Force schedstat enabled if a dependent tracepoint is active */ 4144 if (trace_sched_stat_wait_enabled() || 4145 trace_sched_stat_sleep_enabled() || 4146 trace_sched_stat_iowait_enabled() || 4147 trace_sched_stat_blocked_enabled() || 4148 trace_sched_stat_runtime_enabled()) { 4149 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 4150 "stat_blocked and stat_runtime require the " 4151 "kernel parameter schedstats=enable or " 4152 "kernel.sched_schedstats=1\n"); 4153 } 4154 #endif 4155 } 4156 4157 static inline bool cfs_bandwidth_used(void); 4158 4159 /* 4160 * MIGRATION 4161 * 4162 * dequeue 4163 * update_curr() 4164 * update_min_vruntime() 4165 * vruntime -= min_vruntime 4166 * 4167 * enqueue 4168 * update_curr() 4169 * update_min_vruntime() 4170 * vruntime += min_vruntime 4171 * 4172 * this way the vruntime transition between RQs is done when both 4173 * min_vruntime are up-to-date. 4174 * 4175 * WAKEUP (remote) 4176 * 4177 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4178 * vruntime -= min_vruntime 4179 * 4180 * enqueue 4181 * update_curr() 4182 * update_min_vruntime() 4183 * vruntime += min_vruntime 4184 * 4185 * this way we don't have the most up-to-date min_vruntime on the originating 4186 * CPU and an up-to-date min_vruntime on the destination CPU. 4187 */ 4188 4189 static void 4190 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4191 { 4192 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4193 bool curr = cfs_rq->curr == se; 4194 4195 /* 4196 * If we're the current task, we must renormalise before calling 4197 * update_curr(). 4198 */ 4199 if (renorm && curr) 4200 se->vruntime += cfs_rq->min_vruntime; 4201 4202 update_curr(cfs_rq); 4203 4204 /* 4205 * Otherwise, renormalise after, such that we're placed at the current 4206 * moment in time, instead of some random moment in the past. Being 4207 * placed in the past could significantly boost this task to the 4208 * fairness detriment of existing tasks. 4209 */ 4210 if (renorm && !curr) 4211 se->vruntime += cfs_rq->min_vruntime; 4212 4213 /* 4214 * When enqueuing a sched_entity, we must: 4215 * - Update loads to have both entity and cfs_rq synced with now. 4216 * - Add its load to cfs_rq->runnable_avg 4217 * - For group_entity, update its weight to reflect the new share of 4218 * its group cfs_rq 4219 * - Add its new weight to cfs_rq->load.weight 4220 */ 4221 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4222 se_update_runnable(se); 4223 update_cfs_group(se); 4224 account_entity_enqueue(cfs_rq, se); 4225 4226 if (flags & ENQUEUE_WAKEUP) 4227 place_entity(cfs_rq, se, 0); 4228 4229 check_schedstat_required(); 4230 update_stats_enqueue(cfs_rq, se, flags); 4231 check_spread(cfs_rq, se); 4232 if (!curr) 4233 __enqueue_entity(cfs_rq, se); 4234 se->on_rq = 1; 4235 4236 /* 4237 * When bandwidth control is enabled, cfs might have been removed 4238 * because of a parent been throttled but cfs->nr_running > 1. Try to 4239 * add it unconditionnally. 4240 */ 4241 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) 4242 list_add_leaf_cfs_rq(cfs_rq); 4243 4244 if (cfs_rq->nr_running == 1) 4245 check_enqueue_throttle(cfs_rq); 4246 } 4247 4248 static void __clear_buddies_last(struct sched_entity *se) 4249 { 4250 for_each_sched_entity(se) { 4251 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4252 if (cfs_rq->last != se) 4253 break; 4254 4255 cfs_rq->last = NULL; 4256 } 4257 } 4258 4259 static void __clear_buddies_next(struct sched_entity *se) 4260 { 4261 for_each_sched_entity(se) { 4262 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4263 if (cfs_rq->next != se) 4264 break; 4265 4266 cfs_rq->next = NULL; 4267 } 4268 } 4269 4270 static void __clear_buddies_skip(struct sched_entity *se) 4271 { 4272 for_each_sched_entity(se) { 4273 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4274 if (cfs_rq->skip != se) 4275 break; 4276 4277 cfs_rq->skip = NULL; 4278 } 4279 } 4280 4281 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4282 { 4283 if (cfs_rq->last == se) 4284 __clear_buddies_last(se); 4285 4286 if (cfs_rq->next == se) 4287 __clear_buddies_next(se); 4288 4289 if (cfs_rq->skip == se) 4290 __clear_buddies_skip(se); 4291 } 4292 4293 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4294 4295 static void 4296 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4297 { 4298 /* 4299 * Update run-time statistics of the 'current'. 4300 */ 4301 update_curr(cfs_rq); 4302 4303 /* 4304 * When dequeuing a sched_entity, we must: 4305 * - Update loads to have both entity and cfs_rq synced with now. 4306 * - Subtract its load from the cfs_rq->runnable_avg. 4307 * - Subtract its previous weight from cfs_rq->load.weight. 4308 * - For group entity, update its weight to reflect the new share 4309 * of its group cfs_rq. 4310 */ 4311 update_load_avg(cfs_rq, se, UPDATE_TG); 4312 se_update_runnable(se); 4313 4314 update_stats_dequeue(cfs_rq, se, flags); 4315 4316 clear_buddies(cfs_rq, se); 4317 4318 if (se != cfs_rq->curr) 4319 __dequeue_entity(cfs_rq, se); 4320 se->on_rq = 0; 4321 account_entity_dequeue(cfs_rq, se); 4322 4323 /* 4324 * Normalize after update_curr(); which will also have moved 4325 * min_vruntime if @se is the one holding it back. But before doing 4326 * update_min_vruntime() again, which will discount @se's position and 4327 * can move min_vruntime forward still more. 4328 */ 4329 if (!(flags & DEQUEUE_SLEEP)) 4330 se->vruntime -= cfs_rq->min_vruntime; 4331 4332 /* return excess runtime on last dequeue */ 4333 return_cfs_rq_runtime(cfs_rq); 4334 4335 update_cfs_group(se); 4336 4337 /* 4338 * Now advance min_vruntime if @se was the entity holding it back, 4339 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4340 * put back on, and if we advance min_vruntime, we'll be placed back 4341 * further than we started -- ie. we'll be penalized. 4342 */ 4343 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4344 update_min_vruntime(cfs_rq); 4345 } 4346 4347 /* 4348 * Preempt the current task with a newly woken task if needed: 4349 */ 4350 static void 4351 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4352 { 4353 unsigned long ideal_runtime, delta_exec; 4354 struct sched_entity *se; 4355 s64 delta; 4356 4357 ideal_runtime = sched_slice(cfs_rq, curr); 4358 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4359 if (delta_exec > ideal_runtime) { 4360 resched_curr(rq_of(cfs_rq)); 4361 /* 4362 * The current task ran long enough, ensure it doesn't get 4363 * re-elected due to buddy favours. 4364 */ 4365 clear_buddies(cfs_rq, curr); 4366 return; 4367 } 4368 4369 /* 4370 * Ensure that a task that missed wakeup preemption by a 4371 * narrow margin doesn't have to wait for a full slice. 4372 * This also mitigates buddy induced latencies under load. 4373 */ 4374 if (delta_exec < sysctl_sched_min_granularity) 4375 return; 4376 4377 se = __pick_first_entity(cfs_rq); 4378 delta = curr->vruntime - se->vruntime; 4379 4380 if (delta < 0) 4381 return; 4382 4383 if (delta > ideal_runtime) 4384 resched_curr(rq_of(cfs_rq)); 4385 } 4386 4387 static void 4388 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4389 { 4390 /* 'current' is not kept within the tree. */ 4391 if (se->on_rq) { 4392 /* 4393 * Any task has to be enqueued before it get to execute on 4394 * a CPU. So account for the time it spent waiting on the 4395 * runqueue. 4396 */ 4397 update_stats_wait_end(cfs_rq, se); 4398 __dequeue_entity(cfs_rq, se); 4399 update_load_avg(cfs_rq, se, UPDATE_TG); 4400 } 4401 4402 update_stats_curr_start(cfs_rq, se); 4403 cfs_rq->curr = se; 4404 4405 /* 4406 * Track our maximum slice length, if the CPU's load is at 4407 * least twice that of our own weight (i.e. dont track it 4408 * when there are only lesser-weight tasks around): 4409 */ 4410 if (schedstat_enabled() && 4411 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4412 schedstat_set(se->statistics.slice_max, 4413 max((u64)schedstat_val(se->statistics.slice_max), 4414 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4415 } 4416 4417 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4418 } 4419 4420 static int 4421 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4422 4423 /* 4424 * Pick the next process, keeping these things in mind, in this order: 4425 * 1) keep things fair between processes/task groups 4426 * 2) pick the "next" process, since someone really wants that to run 4427 * 3) pick the "last" process, for cache locality 4428 * 4) do not run the "skip" process, if something else is available 4429 */ 4430 static struct sched_entity * 4431 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4432 { 4433 struct sched_entity *left = __pick_first_entity(cfs_rq); 4434 struct sched_entity *se; 4435 4436 /* 4437 * If curr is set we have to see if its left of the leftmost entity 4438 * still in the tree, provided there was anything in the tree at all. 4439 */ 4440 if (!left || (curr && entity_before(curr, left))) 4441 left = curr; 4442 4443 se = left; /* ideally we run the leftmost entity */ 4444 4445 /* 4446 * Avoid running the skip buddy, if running something else can 4447 * be done without getting too unfair. 4448 */ 4449 if (cfs_rq->skip == se) { 4450 struct sched_entity *second; 4451 4452 if (se == curr) { 4453 second = __pick_first_entity(cfs_rq); 4454 } else { 4455 second = __pick_next_entity(se); 4456 if (!second || (curr && entity_before(curr, second))) 4457 second = curr; 4458 } 4459 4460 if (second && wakeup_preempt_entity(second, left) < 1) 4461 se = second; 4462 } 4463 4464 /* 4465 * Prefer last buddy, try to return the CPU to a preempted task. 4466 */ 4467 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4468 se = cfs_rq->last; 4469 4470 /* 4471 * Someone really wants this to run. If it's not unfair, run it. 4472 */ 4473 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4474 se = cfs_rq->next; 4475 4476 clear_buddies(cfs_rq, se); 4477 4478 return se; 4479 } 4480 4481 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4482 4483 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4484 { 4485 /* 4486 * If still on the runqueue then deactivate_task() 4487 * was not called and update_curr() has to be done: 4488 */ 4489 if (prev->on_rq) 4490 update_curr(cfs_rq); 4491 4492 /* throttle cfs_rqs exceeding runtime */ 4493 check_cfs_rq_runtime(cfs_rq); 4494 4495 check_spread(cfs_rq, prev); 4496 4497 if (prev->on_rq) { 4498 update_stats_wait_start(cfs_rq, prev); 4499 /* Put 'current' back into the tree. */ 4500 __enqueue_entity(cfs_rq, prev); 4501 /* in !on_rq case, update occurred at dequeue */ 4502 update_load_avg(cfs_rq, prev, 0); 4503 } 4504 cfs_rq->curr = NULL; 4505 } 4506 4507 static void 4508 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4509 { 4510 /* 4511 * Update run-time statistics of the 'current'. 4512 */ 4513 update_curr(cfs_rq); 4514 4515 /* 4516 * Ensure that runnable average is periodically updated. 4517 */ 4518 update_load_avg(cfs_rq, curr, UPDATE_TG); 4519 update_cfs_group(curr); 4520 4521 #ifdef CONFIG_SCHED_HRTICK 4522 /* 4523 * queued ticks are scheduled to match the slice, so don't bother 4524 * validating it and just reschedule. 4525 */ 4526 if (queued) { 4527 resched_curr(rq_of(cfs_rq)); 4528 return; 4529 } 4530 /* 4531 * don't let the period tick interfere with the hrtick preemption 4532 */ 4533 if (!sched_feat(DOUBLE_TICK) && 4534 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4535 return; 4536 #endif 4537 4538 if (cfs_rq->nr_running > 1) 4539 check_preempt_tick(cfs_rq, curr); 4540 } 4541 4542 4543 /************************************************** 4544 * CFS bandwidth control machinery 4545 */ 4546 4547 #ifdef CONFIG_CFS_BANDWIDTH 4548 4549 #ifdef CONFIG_JUMP_LABEL 4550 static struct static_key __cfs_bandwidth_used; 4551 4552 static inline bool cfs_bandwidth_used(void) 4553 { 4554 return static_key_false(&__cfs_bandwidth_used); 4555 } 4556 4557 void cfs_bandwidth_usage_inc(void) 4558 { 4559 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4560 } 4561 4562 void cfs_bandwidth_usage_dec(void) 4563 { 4564 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4565 } 4566 #else /* CONFIG_JUMP_LABEL */ 4567 static bool cfs_bandwidth_used(void) 4568 { 4569 return true; 4570 } 4571 4572 void cfs_bandwidth_usage_inc(void) {} 4573 void cfs_bandwidth_usage_dec(void) {} 4574 #endif /* CONFIG_JUMP_LABEL */ 4575 4576 /* 4577 * default period for cfs group bandwidth. 4578 * default: 0.1s, units: nanoseconds 4579 */ 4580 static inline u64 default_cfs_period(void) 4581 { 4582 return 100000000ULL; 4583 } 4584 4585 static inline u64 sched_cfs_bandwidth_slice(void) 4586 { 4587 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4588 } 4589 4590 /* 4591 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4592 * directly instead of rq->clock to avoid adding additional synchronization 4593 * around rq->lock. 4594 * 4595 * requires cfs_b->lock 4596 */ 4597 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4598 { 4599 if (cfs_b->quota != RUNTIME_INF) 4600 cfs_b->runtime = cfs_b->quota; 4601 } 4602 4603 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4604 { 4605 return &tg->cfs_bandwidth; 4606 } 4607 4608 /* returns 0 on failure to allocate runtime */ 4609 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4610 struct cfs_rq *cfs_rq, u64 target_runtime) 4611 { 4612 u64 min_amount, amount = 0; 4613 4614 lockdep_assert_held(&cfs_b->lock); 4615 4616 /* note: this is a positive sum as runtime_remaining <= 0 */ 4617 min_amount = target_runtime - cfs_rq->runtime_remaining; 4618 4619 if (cfs_b->quota == RUNTIME_INF) 4620 amount = min_amount; 4621 else { 4622 start_cfs_bandwidth(cfs_b); 4623 4624 if (cfs_b->runtime > 0) { 4625 amount = min(cfs_b->runtime, min_amount); 4626 cfs_b->runtime -= amount; 4627 cfs_b->idle = 0; 4628 } 4629 } 4630 4631 cfs_rq->runtime_remaining += amount; 4632 4633 return cfs_rq->runtime_remaining > 0; 4634 } 4635 4636 /* returns 0 on failure to allocate runtime */ 4637 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4638 { 4639 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4640 int ret; 4641 4642 raw_spin_lock(&cfs_b->lock); 4643 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4644 raw_spin_unlock(&cfs_b->lock); 4645 4646 return ret; 4647 } 4648 4649 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4650 { 4651 /* dock delta_exec before expiring quota (as it could span periods) */ 4652 cfs_rq->runtime_remaining -= delta_exec; 4653 4654 if (likely(cfs_rq->runtime_remaining > 0)) 4655 return; 4656 4657 if (cfs_rq->throttled) 4658 return; 4659 /* 4660 * if we're unable to extend our runtime we resched so that the active 4661 * hierarchy can be throttled 4662 */ 4663 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4664 resched_curr(rq_of(cfs_rq)); 4665 } 4666 4667 static __always_inline 4668 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4669 { 4670 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4671 return; 4672 4673 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4674 } 4675 4676 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4677 { 4678 return cfs_bandwidth_used() && cfs_rq->throttled; 4679 } 4680 4681 /* check whether cfs_rq, or any parent, is throttled */ 4682 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4683 { 4684 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4685 } 4686 4687 /* 4688 * Ensure that neither of the group entities corresponding to src_cpu or 4689 * dest_cpu are members of a throttled hierarchy when performing group 4690 * load-balance operations. 4691 */ 4692 static inline int throttled_lb_pair(struct task_group *tg, 4693 int src_cpu, int dest_cpu) 4694 { 4695 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4696 4697 src_cfs_rq = tg->cfs_rq[src_cpu]; 4698 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4699 4700 return throttled_hierarchy(src_cfs_rq) || 4701 throttled_hierarchy(dest_cfs_rq); 4702 } 4703 4704 static int tg_unthrottle_up(struct task_group *tg, void *data) 4705 { 4706 struct rq *rq = data; 4707 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4708 4709 cfs_rq->throttle_count--; 4710 if (!cfs_rq->throttle_count) { 4711 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4712 cfs_rq->throttled_clock_task; 4713 4714 /* Add cfs_rq with already running entity in the list */ 4715 if (cfs_rq->nr_running >= 1) 4716 list_add_leaf_cfs_rq(cfs_rq); 4717 } 4718 4719 return 0; 4720 } 4721 4722 static int tg_throttle_down(struct task_group *tg, void *data) 4723 { 4724 struct rq *rq = data; 4725 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4726 4727 /* group is entering throttled state, stop time */ 4728 if (!cfs_rq->throttle_count) { 4729 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4730 list_del_leaf_cfs_rq(cfs_rq); 4731 } 4732 cfs_rq->throttle_count++; 4733 4734 return 0; 4735 } 4736 4737 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4738 { 4739 struct rq *rq = rq_of(cfs_rq); 4740 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4741 struct sched_entity *se; 4742 long task_delta, idle_task_delta, dequeue = 1; 4743 4744 raw_spin_lock(&cfs_b->lock); 4745 /* This will start the period timer if necessary */ 4746 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4747 /* 4748 * We have raced with bandwidth becoming available, and if we 4749 * actually throttled the timer might not unthrottle us for an 4750 * entire period. We additionally needed to make sure that any 4751 * subsequent check_cfs_rq_runtime calls agree not to throttle 4752 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4753 * for 1ns of runtime rather than just check cfs_b. 4754 */ 4755 dequeue = 0; 4756 } else { 4757 list_add_tail_rcu(&cfs_rq->throttled_list, 4758 &cfs_b->throttled_cfs_rq); 4759 } 4760 raw_spin_unlock(&cfs_b->lock); 4761 4762 if (!dequeue) 4763 return false; /* Throttle no longer required. */ 4764 4765 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4766 4767 /* freeze hierarchy runnable averages while throttled */ 4768 rcu_read_lock(); 4769 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4770 rcu_read_unlock(); 4771 4772 task_delta = cfs_rq->h_nr_running; 4773 idle_task_delta = cfs_rq->idle_h_nr_running; 4774 for_each_sched_entity(se) { 4775 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4776 /* throttled entity or throttle-on-deactivate */ 4777 if (!se->on_rq) 4778 break; 4779 4780 if (dequeue) { 4781 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4782 } else { 4783 update_load_avg(qcfs_rq, se, 0); 4784 se_update_runnable(se); 4785 } 4786 4787 qcfs_rq->h_nr_running -= task_delta; 4788 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4789 4790 if (qcfs_rq->load.weight) 4791 dequeue = 0; 4792 } 4793 4794 if (!se) 4795 sub_nr_running(rq, task_delta); 4796 4797 /* 4798 * Note: distribution will already see us throttled via the 4799 * throttled-list. rq->lock protects completion. 4800 */ 4801 cfs_rq->throttled = 1; 4802 cfs_rq->throttled_clock = rq_clock(rq); 4803 return true; 4804 } 4805 4806 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4807 { 4808 struct rq *rq = rq_of(cfs_rq); 4809 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4810 struct sched_entity *se; 4811 long task_delta, idle_task_delta; 4812 4813 se = cfs_rq->tg->se[cpu_of(rq)]; 4814 4815 cfs_rq->throttled = 0; 4816 4817 update_rq_clock(rq); 4818 4819 raw_spin_lock(&cfs_b->lock); 4820 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4821 list_del_rcu(&cfs_rq->throttled_list); 4822 raw_spin_unlock(&cfs_b->lock); 4823 4824 /* update hierarchical throttle state */ 4825 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4826 4827 if (!cfs_rq->load.weight) 4828 return; 4829 4830 task_delta = cfs_rq->h_nr_running; 4831 idle_task_delta = cfs_rq->idle_h_nr_running; 4832 for_each_sched_entity(se) { 4833 if (se->on_rq) 4834 break; 4835 cfs_rq = cfs_rq_of(se); 4836 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4837 4838 cfs_rq->h_nr_running += task_delta; 4839 cfs_rq->idle_h_nr_running += idle_task_delta; 4840 4841 /* end evaluation on encountering a throttled cfs_rq */ 4842 if (cfs_rq_throttled(cfs_rq)) 4843 goto unthrottle_throttle; 4844 } 4845 4846 for_each_sched_entity(se) { 4847 cfs_rq = cfs_rq_of(se); 4848 4849 update_load_avg(cfs_rq, se, UPDATE_TG); 4850 se_update_runnable(se); 4851 4852 cfs_rq->h_nr_running += task_delta; 4853 cfs_rq->idle_h_nr_running += idle_task_delta; 4854 4855 4856 /* end evaluation on encountering a throttled cfs_rq */ 4857 if (cfs_rq_throttled(cfs_rq)) 4858 goto unthrottle_throttle; 4859 4860 /* 4861 * One parent has been throttled and cfs_rq removed from the 4862 * list. Add it back to not break the leaf list. 4863 */ 4864 if (throttled_hierarchy(cfs_rq)) 4865 list_add_leaf_cfs_rq(cfs_rq); 4866 } 4867 4868 /* At this point se is NULL and we are at root level*/ 4869 add_nr_running(rq, task_delta); 4870 4871 unthrottle_throttle: 4872 /* 4873 * The cfs_rq_throttled() breaks in the above iteration can result in 4874 * incomplete leaf list maintenance, resulting in triggering the 4875 * assertion below. 4876 */ 4877 for_each_sched_entity(se) { 4878 cfs_rq = cfs_rq_of(se); 4879 4880 if (list_add_leaf_cfs_rq(cfs_rq)) 4881 break; 4882 } 4883 4884 assert_list_leaf_cfs_rq(rq); 4885 4886 /* Determine whether we need to wake up potentially idle CPU: */ 4887 if (rq->curr == rq->idle && rq->cfs.nr_running) 4888 resched_curr(rq); 4889 } 4890 4891 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 4892 { 4893 struct cfs_rq *cfs_rq; 4894 u64 runtime, remaining = 1; 4895 4896 rcu_read_lock(); 4897 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4898 throttled_list) { 4899 struct rq *rq = rq_of(cfs_rq); 4900 struct rq_flags rf; 4901 4902 rq_lock_irqsave(rq, &rf); 4903 if (!cfs_rq_throttled(cfs_rq)) 4904 goto next; 4905 4906 /* By the above check, this should never be true */ 4907 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 4908 4909 raw_spin_lock(&cfs_b->lock); 4910 runtime = -cfs_rq->runtime_remaining + 1; 4911 if (runtime > cfs_b->runtime) 4912 runtime = cfs_b->runtime; 4913 cfs_b->runtime -= runtime; 4914 remaining = cfs_b->runtime; 4915 raw_spin_unlock(&cfs_b->lock); 4916 4917 cfs_rq->runtime_remaining += runtime; 4918 4919 /* we check whether we're throttled above */ 4920 if (cfs_rq->runtime_remaining > 0) 4921 unthrottle_cfs_rq(cfs_rq); 4922 4923 next: 4924 rq_unlock_irqrestore(rq, &rf); 4925 4926 if (!remaining) 4927 break; 4928 } 4929 rcu_read_unlock(); 4930 } 4931 4932 /* 4933 * Responsible for refilling a task_group's bandwidth and unthrottling its 4934 * cfs_rqs as appropriate. If there has been no activity within the last 4935 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4936 * used to track this state. 4937 */ 4938 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 4939 { 4940 int throttled; 4941 4942 /* no need to continue the timer with no bandwidth constraint */ 4943 if (cfs_b->quota == RUNTIME_INF) 4944 goto out_deactivate; 4945 4946 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4947 cfs_b->nr_periods += overrun; 4948 4949 /* 4950 * idle depends on !throttled (for the case of a large deficit), and if 4951 * we're going inactive then everything else can be deferred 4952 */ 4953 if (cfs_b->idle && !throttled) 4954 goto out_deactivate; 4955 4956 __refill_cfs_bandwidth_runtime(cfs_b); 4957 4958 if (!throttled) { 4959 /* mark as potentially idle for the upcoming period */ 4960 cfs_b->idle = 1; 4961 return 0; 4962 } 4963 4964 /* account preceding periods in which throttling occurred */ 4965 cfs_b->nr_throttled += overrun; 4966 4967 /* 4968 * This check is repeated as we release cfs_b->lock while we unthrottle. 4969 */ 4970 while (throttled && cfs_b->runtime > 0) { 4971 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4972 /* we can't nest cfs_b->lock while distributing bandwidth */ 4973 distribute_cfs_runtime(cfs_b); 4974 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4975 4976 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4977 } 4978 4979 /* 4980 * While we are ensured activity in the period following an 4981 * unthrottle, this also covers the case in which the new bandwidth is 4982 * insufficient to cover the existing bandwidth deficit. (Forcing the 4983 * timer to remain active while there are any throttled entities.) 4984 */ 4985 cfs_b->idle = 0; 4986 4987 return 0; 4988 4989 out_deactivate: 4990 return 1; 4991 } 4992 4993 /* a cfs_rq won't donate quota below this amount */ 4994 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4995 /* minimum remaining period time to redistribute slack quota */ 4996 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4997 /* how long we wait to gather additional slack before distributing */ 4998 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4999 5000 /* 5001 * Are we near the end of the current quota period? 5002 * 5003 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5004 * hrtimer base being cleared by hrtimer_start. In the case of 5005 * migrate_hrtimers, base is never cleared, so we are fine. 5006 */ 5007 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5008 { 5009 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5010 u64 remaining; 5011 5012 /* if the call-back is running a quota refresh is already occurring */ 5013 if (hrtimer_callback_running(refresh_timer)) 5014 return 1; 5015 5016 /* is a quota refresh about to occur? */ 5017 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5018 if (remaining < min_expire) 5019 return 1; 5020 5021 return 0; 5022 } 5023 5024 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5025 { 5026 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5027 5028 /* if there's a quota refresh soon don't bother with slack */ 5029 if (runtime_refresh_within(cfs_b, min_left)) 5030 return; 5031 5032 /* don't push forwards an existing deferred unthrottle */ 5033 if (cfs_b->slack_started) 5034 return; 5035 cfs_b->slack_started = true; 5036 5037 hrtimer_start(&cfs_b->slack_timer, 5038 ns_to_ktime(cfs_bandwidth_slack_period), 5039 HRTIMER_MODE_REL); 5040 } 5041 5042 /* we know any runtime found here is valid as update_curr() precedes return */ 5043 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5044 { 5045 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5046 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5047 5048 if (slack_runtime <= 0) 5049 return; 5050 5051 raw_spin_lock(&cfs_b->lock); 5052 if (cfs_b->quota != RUNTIME_INF) { 5053 cfs_b->runtime += slack_runtime; 5054 5055 /* we are under rq->lock, defer unthrottling using a timer */ 5056 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5057 !list_empty(&cfs_b->throttled_cfs_rq)) 5058 start_cfs_slack_bandwidth(cfs_b); 5059 } 5060 raw_spin_unlock(&cfs_b->lock); 5061 5062 /* even if it's not valid for return we don't want to try again */ 5063 cfs_rq->runtime_remaining -= slack_runtime; 5064 } 5065 5066 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5067 { 5068 if (!cfs_bandwidth_used()) 5069 return; 5070 5071 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5072 return; 5073 5074 __return_cfs_rq_runtime(cfs_rq); 5075 } 5076 5077 /* 5078 * This is done with a timer (instead of inline with bandwidth return) since 5079 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5080 */ 5081 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5082 { 5083 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5084 unsigned long flags; 5085 5086 /* confirm we're still not at a refresh boundary */ 5087 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5088 cfs_b->slack_started = false; 5089 5090 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5091 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5092 return; 5093 } 5094 5095 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5096 runtime = cfs_b->runtime; 5097 5098 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5099 5100 if (!runtime) 5101 return; 5102 5103 distribute_cfs_runtime(cfs_b); 5104 5105 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5106 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5107 } 5108 5109 /* 5110 * When a group wakes up we want to make sure that its quota is not already 5111 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5112 * runtime as update_curr() throttling can not not trigger until it's on-rq. 5113 */ 5114 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5115 { 5116 if (!cfs_bandwidth_used()) 5117 return; 5118 5119 /* an active group must be handled by the update_curr()->put() path */ 5120 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5121 return; 5122 5123 /* ensure the group is not already throttled */ 5124 if (cfs_rq_throttled(cfs_rq)) 5125 return; 5126 5127 /* update runtime allocation */ 5128 account_cfs_rq_runtime(cfs_rq, 0); 5129 if (cfs_rq->runtime_remaining <= 0) 5130 throttle_cfs_rq(cfs_rq); 5131 } 5132 5133 static void sync_throttle(struct task_group *tg, int cpu) 5134 { 5135 struct cfs_rq *pcfs_rq, *cfs_rq; 5136 5137 if (!cfs_bandwidth_used()) 5138 return; 5139 5140 if (!tg->parent) 5141 return; 5142 5143 cfs_rq = tg->cfs_rq[cpu]; 5144 pcfs_rq = tg->parent->cfs_rq[cpu]; 5145 5146 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5147 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5148 } 5149 5150 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5151 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5152 { 5153 if (!cfs_bandwidth_used()) 5154 return false; 5155 5156 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5157 return false; 5158 5159 /* 5160 * it's possible for a throttled entity to be forced into a running 5161 * state (e.g. set_curr_task), in this case we're finished. 5162 */ 5163 if (cfs_rq_throttled(cfs_rq)) 5164 return true; 5165 5166 return throttle_cfs_rq(cfs_rq); 5167 } 5168 5169 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5170 { 5171 struct cfs_bandwidth *cfs_b = 5172 container_of(timer, struct cfs_bandwidth, slack_timer); 5173 5174 do_sched_cfs_slack_timer(cfs_b); 5175 5176 return HRTIMER_NORESTART; 5177 } 5178 5179 extern const u64 max_cfs_quota_period; 5180 5181 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5182 { 5183 struct cfs_bandwidth *cfs_b = 5184 container_of(timer, struct cfs_bandwidth, period_timer); 5185 unsigned long flags; 5186 int overrun; 5187 int idle = 0; 5188 int count = 0; 5189 5190 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5191 for (;;) { 5192 overrun = hrtimer_forward_now(timer, cfs_b->period); 5193 if (!overrun) 5194 break; 5195 5196 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5197 5198 if (++count > 3) { 5199 u64 new, old = ktime_to_ns(cfs_b->period); 5200 5201 /* 5202 * Grow period by a factor of 2 to avoid losing precision. 5203 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5204 * to fail. 5205 */ 5206 new = old * 2; 5207 if (new < max_cfs_quota_period) { 5208 cfs_b->period = ns_to_ktime(new); 5209 cfs_b->quota *= 2; 5210 5211 pr_warn_ratelimited( 5212 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5213 smp_processor_id(), 5214 div_u64(new, NSEC_PER_USEC), 5215 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5216 } else { 5217 pr_warn_ratelimited( 5218 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5219 smp_processor_id(), 5220 div_u64(old, NSEC_PER_USEC), 5221 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5222 } 5223 5224 /* reset count so we don't come right back in here */ 5225 count = 0; 5226 } 5227 } 5228 if (idle) 5229 cfs_b->period_active = 0; 5230 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5231 5232 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5233 } 5234 5235 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5236 { 5237 raw_spin_lock_init(&cfs_b->lock); 5238 cfs_b->runtime = 0; 5239 cfs_b->quota = RUNTIME_INF; 5240 cfs_b->period = ns_to_ktime(default_cfs_period()); 5241 5242 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5243 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5244 cfs_b->period_timer.function = sched_cfs_period_timer; 5245 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5246 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5247 cfs_b->slack_started = false; 5248 } 5249 5250 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5251 { 5252 cfs_rq->runtime_enabled = 0; 5253 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5254 } 5255 5256 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5257 { 5258 lockdep_assert_held(&cfs_b->lock); 5259 5260 if (cfs_b->period_active) 5261 return; 5262 5263 cfs_b->period_active = 1; 5264 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5265 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5266 } 5267 5268 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5269 { 5270 /* init_cfs_bandwidth() was not called */ 5271 if (!cfs_b->throttled_cfs_rq.next) 5272 return; 5273 5274 hrtimer_cancel(&cfs_b->period_timer); 5275 hrtimer_cancel(&cfs_b->slack_timer); 5276 } 5277 5278 /* 5279 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5280 * 5281 * The race is harmless, since modifying bandwidth settings of unhooked group 5282 * bits doesn't do much. 5283 */ 5284 5285 /* cpu online calback */ 5286 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5287 { 5288 struct task_group *tg; 5289 5290 lockdep_assert_held(&rq->lock); 5291 5292 rcu_read_lock(); 5293 list_for_each_entry_rcu(tg, &task_groups, list) { 5294 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5295 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5296 5297 raw_spin_lock(&cfs_b->lock); 5298 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5299 raw_spin_unlock(&cfs_b->lock); 5300 } 5301 rcu_read_unlock(); 5302 } 5303 5304 /* cpu offline callback */ 5305 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5306 { 5307 struct task_group *tg; 5308 5309 lockdep_assert_held(&rq->lock); 5310 5311 rcu_read_lock(); 5312 list_for_each_entry_rcu(tg, &task_groups, list) { 5313 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5314 5315 if (!cfs_rq->runtime_enabled) 5316 continue; 5317 5318 /* 5319 * clock_task is not advancing so we just need to make sure 5320 * there's some valid quota amount 5321 */ 5322 cfs_rq->runtime_remaining = 1; 5323 /* 5324 * Offline rq is schedulable till CPU is completely disabled 5325 * in take_cpu_down(), so we prevent new cfs throttling here. 5326 */ 5327 cfs_rq->runtime_enabled = 0; 5328 5329 if (cfs_rq_throttled(cfs_rq)) 5330 unthrottle_cfs_rq(cfs_rq); 5331 } 5332 rcu_read_unlock(); 5333 } 5334 5335 #else /* CONFIG_CFS_BANDWIDTH */ 5336 5337 static inline bool cfs_bandwidth_used(void) 5338 { 5339 return false; 5340 } 5341 5342 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5343 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5344 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5345 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5346 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5347 5348 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5349 { 5350 return 0; 5351 } 5352 5353 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5354 { 5355 return 0; 5356 } 5357 5358 static inline int throttled_lb_pair(struct task_group *tg, 5359 int src_cpu, int dest_cpu) 5360 { 5361 return 0; 5362 } 5363 5364 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5365 5366 #ifdef CONFIG_FAIR_GROUP_SCHED 5367 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5368 #endif 5369 5370 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5371 { 5372 return NULL; 5373 } 5374 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5375 static inline void update_runtime_enabled(struct rq *rq) {} 5376 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5377 5378 #endif /* CONFIG_CFS_BANDWIDTH */ 5379 5380 /************************************************** 5381 * CFS operations on tasks: 5382 */ 5383 5384 #ifdef CONFIG_SCHED_HRTICK 5385 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5386 { 5387 struct sched_entity *se = &p->se; 5388 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5389 5390 SCHED_WARN_ON(task_rq(p) != rq); 5391 5392 if (rq->cfs.h_nr_running > 1) { 5393 u64 slice = sched_slice(cfs_rq, se); 5394 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5395 s64 delta = slice - ran; 5396 5397 if (delta < 0) { 5398 if (rq->curr == p) 5399 resched_curr(rq); 5400 return; 5401 } 5402 hrtick_start(rq, delta); 5403 } 5404 } 5405 5406 /* 5407 * called from enqueue/dequeue and updates the hrtick when the 5408 * current task is from our class and nr_running is low enough 5409 * to matter. 5410 */ 5411 static void hrtick_update(struct rq *rq) 5412 { 5413 struct task_struct *curr = rq->curr; 5414 5415 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5416 return; 5417 5418 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5419 hrtick_start_fair(rq, curr); 5420 } 5421 #else /* !CONFIG_SCHED_HRTICK */ 5422 static inline void 5423 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5424 { 5425 } 5426 5427 static inline void hrtick_update(struct rq *rq) 5428 { 5429 } 5430 #endif 5431 5432 #ifdef CONFIG_SMP 5433 static inline unsigned long cpu_util(int cpu); 5434 5435 static inline bool cpu_overutilized(int cpu) 5436 { 5437 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5438 } 5439 5440 static inline void update_overutilized_status(struct rq *rq) 5441 { 5442 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5443 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5444 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5445 } 5446 } 5447 #else 5448 static inline void update_overutilized_status(struct rq *rq) { } 5449 #endif 5450 5451 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5452 static int sched_idle_rq(struct rq *rq) 5453 { 5454 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5455 rq->nr_running); 5456 } 5457 5458 #ifdef CONFIG_SMP 5459 static int sched_idle_cpu(int cpu) 5460 { 5461 return sched_idle_rq(cpu_rq(cpu)); 5462 } 5463 #endif 5464 5465 /* 5466 * The enqueue_task method is called before nr_running is 5467 * increased. Here we update the fair scheduling stats and 5468 * then put the task into the rbtree: 5469 */ 5470 static void 5471 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5472 { 5473 struct cfs_rq *cfs_rq; 5474 struct sched_entity *se = &p->se; 5475 int idle_h_nr_running = task_has_idle_policy(p); 5476 5477 /* 5478 * The code below (indirectly) updates schedutil which looks at 5479 * the cfs_rq utilization to select a frequency. 5480 * Let's add the task's estimated utilization to the cfs_rq's 5481 * estimated utilization, before we update schedutil. 5482 */ 5483 util_est_enqueue(&rq->cfs, p); 5484 5485 /* 5486 * If in_iowait is set, the code below may not trigger any cpufreq 5487 * utilization updates, so do it here explicitly with the IOWAIT flag 5488 * passed. 5489 */ 5490 if (p->in_iowait) 5491 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5492 5493 for_each_sched_entity(se) { 5494 if (se->on_rq) 5495 break; 5496 cfs_rq = cfs_rq_of(se); 5497 enqueue_entity(cfs_rq, se, flags); 5498 5499 cfs_rq->h_nr_running++; 5500 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5501 5502 /* end evaluation on encountering a throttled cfs_rq */ 5503 if (cfs_rq_throttled(cfs_rq)) 5504 goto enqueue_throttle; 5505 5506 flags = ENQUEUE_WAKEUP; 5507 } 5508 5509 for_each_sched_entity(se) { 5510 cfs_rq = cfs_rq_of(se); 5511 5512 update_load_avg(cfs_rq, se, UPDATE_TG); 5513 se_update_runnable(se); 5514 update_cfs_group(se); 5515 5516 cfs_rq->h_nr_running++; 5517 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5518 5519 /* end evaluation on encountering a throttled cfs_rq */ 5520 if (cfs_rq_throttled(cfs_rq)) 5521 goto enqueue_throttle; 5522 5523 /* 5524 * One parent has been throttled and cfs_rq removed from the 5525 * list. Add it back to not break the leaf list. 5526 */ 5527 if (throttled_hierarchy(cfs_rq)) 5528 list_add_leaf_cfs_rq(cfs_rq); 5529 } 5530 5531 /* At this point se is NULL and we are at root level*/ 5532 add_nr_running(rq, 1); 5533 5534 /* 5535 * Since new tasks are assigned an initial util_avg equal to 5536 * half of the spare capacity of their CPU, tiny tasks have the 5537 * ability to cross the overutilized threshold, which will 5538 * result in the load balancer ruining all the task placement 5539 * done by EAS. As a way to mitigate that effect, do not account 5540 * for the first enqueue operation of new tasks during the 5541 * overutilized flag detection. 5542 * 5543 * A better way of solving this problem would be to wait for 5544 * the PELT signals of tasks to converge before taking them 5545 * into account, but that is not straightforward to implement, 5546 * and the following generally works well enough in practice. 5547 */ 5548 if (flags & ENQUEUE_WAKEUP) 5549 update_overutilized_status(rq); 5550 5551 enqueue_throttle: 5552 if (cfs_bandwidth_used()) { 5553 /* 5554 * When bandwidth control is enabled; the cfs_rq_throttled() 5555 * breaks in the above iteration can result in incomplete 5556 * leaf list maintenance, resulting in triggering the assertion 5557 * below. 5558 */ 5559 for_each_sched_entity(se) { 5560 cfs_rq = cfs_rq_of(se); 5561 5562 if (list_add_leaf_cfs_rq(cfs_rq)) 5563 break; 5564 } 5565 } 5566 5567 assert_list_leaf_cfs_rq(rq); 5568 5569 hrtick_update(rq); 5570 } 5571 5572 static void set_next_buddy(struct sched_entity *se); 5573 5574 /* 5575 * The dequeue_task method is called before nr_running is 5576 * decreased. We remove the task from the rbtree and 5577 * update the fair scheduling stats: 5578 */ 5579 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5580 { 5581 struct cfs_rq *cfs_rq; 5582 struct sched_entity *se = &p->se; 5583 int task_sleep = flags & DEQUEUE_SLEEP; 5584 int idle_h_nr_running = task_has_idle_policy(p); 5585 bool was_sched_idle = sched_idle_rq(rq); 5586 5587 for_each_sched_entity(se) { 5588 cfs_rq = cfs_rq_of(se); 5589 dequeue_entity(cfs_rq, se, flags); 5590 5591 cfs_rq->h_nr_running--; 5592 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5593 5594 /* end evaluation on encountering a throttled cfs_rq */ 5595 if (cfs_rq_throttled(cfs_rq)) 5596 goto dequeue_throttle; 5597 5598 /* Don't dequeue parent if it has other entities besides us */ 5599 if (cfs_rq->load.weight) { 5600 /* Avoid re-evaluating load for this entity: */ 5601 se = parent_entity(se); 5602 /* 5603 * Bias pick_next to pick a task from this cfs_rq, as 5604 * p is sleeping when it is within its sched_slice. 5605 */ 5606 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5607 set_next_buddy(se); 5608 break; 5609 } 5610 flags |= DEQUEUE_SLEEP; 5611 } 5612 5613 for_each_sched_entity(se) { 5614 cfs_rq = cfs_rq_of(se); 5615 5616 update_load_avg(cfs_rq, se, UPDATE_TG); 5617 se_update_runnable(se); 5618 update_cfs_group(se); 5619 5620 cfs_rq->h_nr_running--; 5621 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5622 5623 /* end evaluation on encountering a throttled cfs_rq */ 5624 if (cfs_rq_throttled(cfs_rq)) 5625 goto dequeue_throttle; 5626 5627 } 5628 5629 /* At this point se is NULL and we are at root level*/ 5630 sub_nr_running(rq, 1); 5631 5632 /* balance early to pull high priority tasks */ 5633 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5634 rq->next_balance = jiffies; 5635 5636 dequeue_throttle: 5637 util_est_dequeue(&rq->cfs, p, task_sleep); 5638 hrtick_update(rq); 5639 } 5640 5641 #ifdef CONFIG_SMP 5642 5643 /* Working cpumask for: load_balance, load_balance_newidle. */ 5644 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5645 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5646 5647 #ifdef CONFIG_NO_HZ_COMMON 5648 5649 static struct { 5650 cpumask_var_t idle_cpus_mask; 5651 atomic_t nr_cpus; 5652 int has_blocked; /* Idle CPUS has blocked load */ 5653 unsigned long next_balance; /* in jiffy units */ 5654 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5655 } nohz ____cacheline_aligned; 5656 5657 #endif /* CONFIG_NO_HZ_COMMON */ 5658 5659 static unsigned long cpu_load(struct rq *rq) 5660 { 5661 return cfs_rq_load_avg(&rq->cfs); 5662 } 5663 5664 /* 5665 * cpu_load_without - compute CPU load without any contributions from *p 5666 * @cpu: the CPU which load is requested 5667 * @p: the task which load should be discounted 5668 * 5669 * The load of a CPU is defined by the load of tasks currently enqueued on that 5670 * CPU as well as tasks which are currently sleeping after an execution on that 5671 * CPU. 5672 * 5673 * This method returns the load of the specified CPU by discounting the load of 5674 * the specified task, whenever the task is currently contributing to the CPU 5675 * load. 5676 */ 5677 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5678 { 5679 struct cfs_rq *cfs_rq; 5680 unsigned int load; 5681 5682 /* Task has no contribution or is new */ 5683 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5684 return cpu_load(rq); 5685 5686 cfs_rq = &rq->cfs; 5687 load = READ_ONCE(cfs_rq->avg.load_avg); 5688 5689 /* Discount task's util from CPU's util */ 5690 lsub_positive(&load, task_h_load(p)); 5691 5692 return load; 5693 } 5694 5695 static unsigned long cpu_runnable(struct rq *rq) 5696 { 5697 return cfs_rq_runnable_avg(&rq->cfs); 5698 } 5699 5700 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5701 { 5702 struct cfs_rq *cfs_rq; 5703 unsigned int runnable; 5704 5705 /* Task has no contribution or is new */ 5706 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5707 return cpu_runnable(rq); 5708 5709 cfs_rq = &rq->cfs; 5710 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5711 5712 /* Discount task's runnable from CPU's runnable */ 5713 lsub_positive(&runnable, p->se.avg.runnable_avg); 5714 5715 return runnable; 5716 } 5717 5718 static unsigned long capacity_of(int cpu) 5719 { 5720 return cpu_rq(cpu)->cpu_capacity; 5721 } 5722 5723 static void record_wakee(struct task_struct *p) 5724 { 5725 /* 5726 * Only decay a single time; tasks that have less then 1 wakeup per 5727 * jiffy will not have built up many flips. 5728 */ 5729 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5730 current->wakee_flips >>= 1; 5731 current->wakee_flip_decay_ts = jiffies; 5732 } 5733 5734 if (current->last_wakee != p) { 5735 current->last_wakee = p; 5736 current->wakee_flips++; 5737 } 5738 } 5739 5740 /* 5741 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5742 * 5743 * A waker of many should wake a different task than the one last awakened 5744 * at a frequency roughly N times higher than one of its wakees. 5745 * 5746 * In order to determine whether we should let the load spread vs consolidating 5747 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5748 * partner, and a factor of lls_size higher frequency in the other. 5749 * 5750 * With both conditions met, we can be relatively sure that the relationship is 5751 * non-monogamous, with partner count exceeding socket size. 5752 * 5753 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5754 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5755 * socket size. 5756 */ 5757 static int wake_wide(struct task_struct *p) 5758 { 5759 unsigned int master = current->wakee_flips; 5760 unsigned int slave = p->wakee_flips; 5761 int factor = __this_cpu_read(sd_llc_size); 5762 5763 if (master < slave) 5764 swap(master, slave); 5765 if (slave < factor || master < slave * factor) 5766 return 0; 5767 return 1; 5768 } 5769 5770 /* 5771 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5772 * soonest. For the purpose of speed we only consider the waking and previous 5773 * CPU. 5774 * 5775 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5776 * cache-affine and is (or will be) idle. 5777 * 5778 * wake_affine_weight() - considers the weight to reflect the average 5779 * scheduling latency of the CPUs. This seems to work 5780 * for the overloaded case. 5781 */ 5782 static int 5783 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5784 { 5785 /* 5786 * If this_cpu is idle, it implies the wakeup is from interrupt 5787 * context. Only allow the move if cache is shared. Otherwise an 5788 * interrupt intensive workload could force all tasks onto one 5789 * node depending on the IO topology or IRQ affinity settings. 5790 * 5791 * If the prev_cpu is idle and cache affine then avoid a migration. 5792 * There is no guarantee that the cache hot data from an interrupt 5793 * is more important than cache hot data on the prev_cpu and from 5794 * a cpufreq perspective, it's better to have higher utilisation 5795 * on one CPU. 5796 */ 5797 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5798 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5799 5800 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5801 return this_cpu; 5802 5803 return nr_cpumask_bits; 5804 } 5805 5806 static int 5807 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5808 int this_cpu, int prev_cpu, int sync) 5809 { 5810 s64 this_eff_load, prev_eff_load; 5811 unsigned long task_load; 5812 5813 this_eff_load = cpu_load(cpu_rq(this_cpu)); 5814 5815 if (sync) { 5816 unsigned long current_load = task_h_load(current); 5817 5818 if (current_load > this_eff_load) 5819 return this_cpu; 5820 5821 this_eff_load -= current_load; 5822 } 5823 5824 task_load = task_h_load(p); 5825 5826 this_eff_load += task_load; 5827 if (sched_feat(WA_BIAS)) 5828 this_eff_load *= 100; 5829 this_eff_load *= capacity_of(prev_cpu); 5830 5831 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 5832 prev_eff_load -= task_load; 5833 if (sched_feat(WA_BIAS)) 5834 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5835 prev_eff_load *= capacity_of(this_cpu); 5836 5837 /* 5838 * If sync, adjust the weight of prev_eff_load such that if 5839 * prev_eff == this_eff that select_idle_sibling() will consider 5840 * stacking the wakee on top of the waker if no other CPU is 5841 * idle. 5842 */ 5843 if (sync) 5844 prev_eff_load += 1; 5845 5846 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5847 } 5848 5849 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5850 int this_cpu, int prev_cpu, int sync) 5851 { 5852 int target = nr_cpumask_bits; 5853 5854 if (sched_feat(WA_IDLE)) 5855 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5856 5857 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5858 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5859 5860 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5861 if (target == nr_cpumask_bits) 5862 return prev_cpu; 5863 5864 schedstat_inc(sd->ttwu_move_affine); 5865 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5866 return target; 5867 } 5868 5869 static struct sched_group * 5870 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 5871 5872 /* 5873 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5874 */ 5875 static int 5876 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5877 { 5878 unsigned long load, min_load = ULONG_MAX; 5879 unsigned int min_exit_latency = UINT_MAX; 5880 u64 latest_idle_timestamp = 0; 5881 int least_loaded_cpu = this_cpu; 5882 int shallowest_idle_cpu = -1; 5883 int i; 5884 5885 /* Check if we have any choice: */ 5886 if (group->group_weight == 1) 5887 return cpumask_first(sched_group_span(group)); 5888 5889 /* Traverse only the allowed CPUs */ 5890 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 5891 if (sched_idle_cpu(i)) 5892 return i; 5893 5894 if (available_idle_cpu(i)) { 5895 struct rq *rq = cpu_rq(i); 5896 struct cpuidle_state *idle = idle_get_state(rq); 5897 if (idle && idle->exit_latency < min_exit_latency) { 5898 /* 5899 * We give priority to a CPU whose idle state 5900 * has the smallest exit latency irrespective 5901 * of any idle timestamp. 5902 */ 5903 min_exit_latency = idle->exit_latency; 5904 latest_idle_timestamp = rq->idle_stamp; 5905 shallowest_idle_cpu = i; 5906 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5907 rq->idle_stamp > latest_idle_timestamp) { 5908 /* 5909 * If equal or no active idle state, then 5910 * the most recently idled CPU might have 5911 * a warmer cache. 5912 */ 5913 latest_idle_timestamp = rq->idle_stamp; 5914 shallowest_idle_cpu = i; 5915 } 5916 } else if (shallowest_idle_cpu == -1) { 5917 load = cpu_load(cpu_rq(i)); 5918 if (load < min_load) { 5919 min_load = load; 5920 least_loaded_cpu = i; 5921 } 5922 } 5923 } 5924 5925 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5926 } 5927 5928 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5929 int cpu, int prev_cpu, int sd_flag) 5930 { 5931 int new_cpu = cpu; 5932 5933 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 5934 return prev_cpu; 5935 5936 /* 5937 * We need task's util for cpu_util_without, sync it up to 5938 * prev_cpu's last_update_time. 5939 */ 5940 if (!(sd_flag & SD_BALANCE_FORK)) 5941 sync_entity_load_avg(&p->se); 5942 5943 while (sd) { 5944 struct sched_group *group; 5945 struct sched_domain *tmp; 5946 int weight; 5947 5948 if (!(sd->flags & sd_flag)) { 5949 sd = sd->child; 5950 continue; 5951 } 5952 5953 group = find_idlest_group(sd, p, cpu); 5954 if (!group) { 5955 sd = sd->child; 5956 continue; 5957 } 5958 5959 new_cpu = find_idlest_group_cpu(group, p, cpu); 5960 if (new_cpu == cpu) { 5961 /* Now try balancing at a lower domain level of 'cpu': */ 5962 sd = sd->child; 5963 continue; 5964 } 5965 5966 /* Now try balancing at a lower domain level of 'new_cpu': */ 5967 cpu = new_cpu; 5968 weight = sd->span_weight; 5969 sd = NULL; 5970 for_each_domain(cpu, tmp) { 5971 if (weight <= tmp->span_weight) 5972 break; 5973 if (tmp->flags & sd_flag) 5974 sd = tmp; 5975 } 5976 } 5977 5978 return new_cpu; 5979 } 5980 5981 #ifdef CONFIG_SCHED_SMT 5982 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5983 EXPORT_SYMBOL_GPL(sched_smt_present); 5984 5985 static inline void set_idle_cores(int cpu, int val) 5986 { 5987 struct sched_domain_shared *sds; 5988 5989 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5990 if (sds) 5991 WRITE_ONCE(sds->has_idle_cores, val); 5992 } 5993 5994 static inline bool test_idle_cores(int cpu, bool def) 5995 { 5996 struct sched_domain_shared *sds; 5997 5998 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5999 if (sds) 6000 return READ_ONCE(sds->has_idle_cores); 6001 6002 return def; 6003 } 6004 6005 /* 6006 * Scans the local SMT mask to see if the entire core is idle, and records this 6007 * information in sd_llc_shared->has_idle_cores. 6008 * 6009 * Since SMT siblings share all cache levels, inspecting this limited remote 6010 * state should be fairly cheap. 6011 */ 6012 void __update_idle_core(struct rq *rq) 6013 { 6014 int core = cpu_of(rq); 6015 int cpu; 6016 6017 rcu_read_lock(); 6018 if (test_idle_cores(core, true)) 6019 goto unlock; 6020 6021 for_each_cpu(cpu, cpu_smt_mask(core)) { 6022 if (cpu == core) 6023 continue; 6024 6025 if (!available_idle_cpu(cpu)) 6026 goto unlock; 6027 } 6028 6029 set_idle_cores(core, 1); 6030 unlock: 6031 rcu_read_unlock(); 6032 } 6033 6034 /* 6035 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6036 * there are no idle cores left in the system; tracked through 6037 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6038 */ 6039 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6040 { 6041 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6042 int core, cpu; 6043 6044 if (!static_branch_likely(&sched_smt_present)) 6045 return -1; 6046 6047 if (!test_idle_cores(target, false)) 6048 return -1; 6049 6050 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6051 6052 for_each_cpu_wrap(core, cpus, target) { 6053 bool idle = true; 6054 6055 for_each_cpu(cpu, cpu_smt_mask(core)) { 6056 if (!available_idle_cpu(cpu)) { 6057 idle = false; 6058 break; 6059 } 6060 } 6061 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6062 6063 if (idle) 6064 return core; 6065 } 6066 6067 /* 6068 * Failed to find an idle core; stop looking for one. 6069 */ 6070 set_idle_cores(target, 0); 6071 6072 return -1; 6073 } 6074 6075 /* 6076 * Scan the local SMT mask for idle CPUs. 6077 */ 6078 static int select_idle_smt(struct task_struct *p, int target) 6079 { 6080 int cpu; 6081 6082 if (!static_branch_likely(&sched_smt_present)) 6083 return -1; 6084 6085 for_each_cpu(cpu, cpu_smt_mask(target)) { 6086 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6087 continue; 6088 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6089 return cpu; 6090 } 6091 6092 return -1; 6093 } 6094 6095 #else /* CONFIG_SCHED_SMT */ 6096 6097 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6098 { 6099 return -1; 6100 } 6101 6102 static inline int select_idle_smt(struct task_struct *p, int target) 6103 { 6104 return -1; 6105 } 6106 6107 #endif /* CONFIG_SCHED_SMT */ 6108 6109 /* 6110 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6111 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6112 * average idle time for this rq (as found in rq->avg_idle). 6113 */ 6114 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6115 { 6116 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6117 struct sched_domain *this_sd; 6118 u64 avg_cost, avg_idle; 6119 u64 time; 6120 int this = smp_processor_id(); 6121 int cpu, nr = INT_MAX; 6122 6123 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6124 if (!this_sd) 6125 return -1; 6126 6127 /* 6128 * Due to large variance we need a large fuzz factor; hackbench in 6129 * particularly is sensitive here. 6130 */ 6131 avg_idle = this_rq()->avg_idle / 512; 6132 avg_cost = this_sd->avg_scan_cost + 1; 6133 6134 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 6135 return -1; 6136 6137 if (sched_feat(SIS_PROP)) { 6138 u64 span_avg = sd->span_weight * avg_idle; 6139 if (span_avg > 4*avg_cost) 6140 nr = div_u64(span_avg, avg_cost); 6141 else 6142 nr = 4; 6143 } 6144 6145 time = cpu_clock(this); 6146 6147 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6148 6149 for_each_cpu_wrap(cpu, cpus, target) { 6150 if (!--nr) 6151 return -1; 6152 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6153 break; 6154 } 6155 6156 time = cpu_clock(this) - time; 6157 update_avg(&this_sd->avg_scan_cost, time); 6158 6159 return cpu; 6160 } 6161 6162 /* 6163 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6164 * the task fits. If no CPU is big enough, but there are idle ones, try to 6165 * maximize capacity. 6166 */ 6167 static int 6168 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6169 { 6170 unsigned long best_cap = 0; 6171 int cpu, best_cpu = -1; 6172 struct cpumask *cpus; 6173 6174 sync_entity_load_avg(&p->se); 6175 6176 cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6177 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6178 6179 for_each_cpu_wrap(cpu, cpus, target) { 6180 unsigned long cpu_cap = capacity_of(cpu); 6181 6182 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6183 continue; 6184 if (task_fits_capacity(p, cpu_cap)) 6185 return cpu; 6186 6187 if (cpu_cap > best_cap) { 6188 best_cap = cpu_cap; 6189 best_cpu = cpu; 6190 } 6191 } 6192 6193 return best_cpu; 6194 } 6195 6196 /* 6197 * Try and locate an idle core/thread in the LLC cache domain. 6198 */ 6199 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6200 { 6201 struct sched_domain *sd; 6202 int i, recent_used_cpu; 6203 6204 /* 6205 * For asymmetric CPU capacity systems, our domain of interest is 6206 * sd_asym_cpucapacity rather than sd_llc. 6207 */ 6208 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6209 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6210 /* 6211 * On an asymmetric CPU capacity system where an exclusive 6212 * cpuset defines a symmetric island (i.e. one unique 6213 * capacity_orig value through the cpuset), the key will be set 6214 * but the CPUs within that cpuset will not have a domain with 6215 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6216 * capacity path. 6217 */ 6218 if (!sd) 6219 goto symmetric; 6220 6221 i = select_idle_capacity(p, sd, target); 6222 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6223 } 6224 6225 symmetric: 6226 if (available_idle_cpu(target) || sched_idle_cpu(target)) 6227 return target; 6228 6229 /* 6230 * If the previous CPU is cache affine and idle, don't be stupid: 6231 */ 6232 if (prev != target && cpus_share_cache(prev, target) && 6233 (available_idle_cpu(prev) || sched_idle_cpu(prev))) 6234 return prev; 6235 6236 /* 6237 * Allow a per-cpu kthread to stack with the wakee if the 6238 * kworker thread and the tasks previous CPUs are the same. 6239 * The assumption is that the wakee queued work for the 6240 * per-cpu kthread that is now complete and the wakeup is 6241 * essentially a sync wakeup. An obvious example of this 6242 * pattern is IO completions. 6243 */ 6244 if (is_per_cpu_kthread(current) && 6245 prev == smp_processor_id() && 6246 this_rq()->nr_running <= 1) { 6247 return prev; 6248 } 6249 6250 /* Check a recently used CPU as a potential idle candidate: */ 6251 recent_used_cpu = p->recent_used_cpu; 6252 if (recent_used_cpu != prev && 6253 recent_used_cpu != target && 6254 cpus_share_cache(recent_used_cpu, target) && 6255 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6256 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) { 6257 /* 6258 * Replace recent_used_cpu with prev as it is a potential 6259 * candidate for the next wake: 6260 */ 6261 p->recent_used_cpu = prev; 6262 return recent_used_cpu; 6263 } 6264 6265 sd = rcu_dereference(per_cpu(sd_llc, target)); 6266 if (!sd) 6267 return target; 6268 6269 i = select_idle_core(p, sd, target); 6270 if ((unsigned)i < nr_cpumask_bits) 6271 return i; 6272 6273 i = select_idle_cpu(p, sd, target); 6274 if ((unsigned)i < nr_cpumask_bits) 6275 return i; 6276 6277 i = select_idle_smt(p, target); 6278 if ((unsigned)i < nr_cpumask_bits) 6279 return i; 6280 6281 return target; 6282 } 6283 6284 /** 6285 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6286 * @cpu: the CPU to get the utilization of 6287 * 6288 * The unit of the return value must be the one of capacity so we can compare 6289 * the utilization with the capacity of the CPU that is available for CFS task 6290 * (ie cpu_capacity). 6291 * 6292 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6293 * recent utilization of currently non-runnable tasks on a CPU. It represents 6294 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6295 * capacity_orig is the cpu_capacity available at the highest frequency 6296 * (arch_scale_freq_capacity()). 6297 * The utilization of a CPU converges towards a sum equal to or less than the 6298 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6299 * the running time on this CPU scaled by capacity_curr. 6300 * 6301 * The estimated utilization of a CPU is defined to be the maximum between its 6302 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6303 * currently RUNNABLE on that CPU. 6304 * This allows to properly represent the expected utilization of a CPU which 6305 * has just got a big task running since a long sleep period. At the same time 6306 * however it preserves the benefits of the "blocked utilization" in 6307 * describing the potential for other tasks waking up on the same CPU. 6308 * 6309 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6310 * higher than capacity_orig because of unfortunate rounding in 6311 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6312 * the average stabilizes with the new running time. We need to check that the 6313 * utilization stays within the range of [0..capacity_orig] and cap it if 6314 * necessary. Without utilization capping, a group could be seen as overloaded 6315 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6316 * available capacity. We allow utilization to overshoot capacity_curr (but not 6317 * capacity_orig) as it useful for predicting the capacity required after task 6318 * migrations (scheduler-driven DVFS). 6319 * 6320 * Return: the (estimated) utilization for the specified CPU 6321 */ 6322 static inline unsigned long cpu_util(int cpu) 6323 { 6324 struct cfs_rq *cfs_rq; 6325 unsigned int util; 6326 6327 cfs_rq = &cpu_rq(cpu)->cfs; 6328 util = READ_ONCE(cfs_rq->avg.util_avg); 6329 6330 if (sched_feat(UTIL_EST)) 6331 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6332 6333 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6334 } 6335 6336 /* 6337 * cpu_util_without: compute cpu utilization without any contributions from *p 6338 * @cpu: the CPU which utilization is requested 6339 * @p: the task which utilization should be discounted 6340 * 6341 * The utilization of a CPU is defined by the utilization of tasks currently 6342 * enqueued on that CPU as well as tasks which are currently sleeping after an 6343 * execution on that CPU. 6344 * 6345 * This method returns the utilization of the specified CPU by discounting the 6346 * utilization of the specified task, whenever the task is currently 6347 * contributing to the CPU utilization. 6348 */ 6349 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6350 { 6351 struct cfs_rq *cfs_rq; 6352 unsigned int util; 6353 6354 /* Task has no contribution or is new */ 6355 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6356 return cpu_util(cpu); 6357 6358 cfs_rq = &cpu_rq(cpu)->cfs; 6359 util = READ_ONCE(cfs_rq->avg.util_avg); 6360 6361 /* Discount task's util from CPU's util */ 6362 lsub_positive(&util, task_util(p)); 6363 6364 /* 6365 * Covered cases: 6366 * 6367 * a) if *p is the only task sleeping on this CPU, then: 6368 * cpu_util (== task_util) > util_est (== 0) 6369 * and thus we return: 6370 * cpu_util_without = (cpu_util - task_util) = 0 6371 * 6372 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6373 * IDLE, then: 6374 * cpu_util >= task_util 6375 * cpu_util > util_est (== 0) 6376 * and thus we discount *p's blocked utilization to return: 6377 * cpu_util_without = (cpu_util - task_util) >= 0 6378 * 6379 * c) if other tasks are RUNNABLE on that CPU and 6380 * util_est > cpu_util 6381 * then we use util_est since it returns a more restrictive 6382 * estimation of the spare capacity on that CPU, by just 6383 * considering the expected utilization of tasks already 6384 * runnable on that CPU. 6385 * 6386 * Cases a) and b) are covered by the above code, while case c) is 6387 * covered by the following code when estimated utilization is 6388 * enabled. 6389 */ 6390 if (sched_feat(UTIL_EST)) { 6391 unsigned int estimated = 6392 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6393 6394 /* 6395 * Despite the following checks we still have a small window 6396 * for a possible race, when an execl's select_task_rq_fair() 6397 * races with LB's detach_task(): 6398 * 6399 * detach_task() 6400 * p->on_rq = TASK_ON_RQ_MIGRATING; 6401 * ---------------------------------- A 6402 * deactivate_task() \ 6403 * dequeue_task() + RaceTime 6404 * util_est_dequeue() / 6405 * ---------------------------------- B 6406 * 6407 * The additional check on "current == p" it's required to 6408 * properly fix the execl regression and it helps in further 6409 * reducing the chances for the above race. 6410 */ 6411 if (unlikely(task_on_rq_queued(p) || current == p)) 6412 lsub_positive(&estimated, _task_util_est(p)); 6413 6414 util = max(util, estimated); 6415 } 6416 6417 /* 6418 * Utilization (estimated) can exceed the CPU capacity, thus let's 6419 * clamp to the maximum CPU capacity to ensure consistency with 6420 * the cpu_util call. 6421 */ 6422 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6423 } 6424 6425 /* 6426 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6427 * to @dst_cpu. 6428 */ 6429 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6430 { 6431 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6432 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6433 6434 /* 6435 * If @p migrates from @cpu to another, remove its contribution. Or, 6436 * if @p migrates from another CPU to @cpu, add its contribution. In 6437 * the other cases, @cpu is not impacted by the migration, so the 6438 * util_avg should already be correct. 6439 */ 6440 if (task_cpu(p) == cpu && dst_cpu != cpu) 6441 sub_positive(&util, task_util(p)); 6442 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6443 util += task_util(p); 6444 6445 if (sched_feat(UTIL_EST)) { 6446 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6447 6448 /* 6449 * During wake-up, the task isn't enqueued yet and doesn't 6450 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6451 * so just add it (if needed) to "simulate" what will be 6452 * cpu_util() after the task has been enqueued. 6453 */ 6454 if (dst_cpu == cpu) 6455 util_est += _task_util_est(p); 6456 6457 util = max(util, util_est); 6458 } 6459 6460 return min(util, capacity_orig_of(cpu)); 6461 } 6462 6463 /* 6464 * compute_energy(): Estimates the energy that @pd would consume if @p was 6465 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6466 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6467 * to compute what would be the energy if we decided to actually migrate that 6468 * task. 6469 */ 6470 static long 6471 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6472 { 6473 struct cpumask *pd_mask = perf_domain_span(pd); 6474 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6475 unsigned long max_util = 0, sum_util = 0; 6476 int cpu; 6477 6478 /* 6479 * The capacity state of CPUs of the current rd can be driven by CPUs 6480 * of another rd if they belong to the same pd. So, account for the 6481 * utilization of these CPUs too by masking pd with cpu_online_mask 6482 * instead of the rd span. 6483 * 6484 * If an entire pd is outside of the current rd, it will not appear in 6485 * its pd list and will not be accounted by compute_energy(). 6486 */ 6487 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6488 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu); 6489 struct task_struct *tsk = cpu == dst_cpu ? p : NULL; 6490 6491 /* 6492 * Busy time computation: utilization clamping is not 6493 * required since the ratio (sum_util / cpu_capacity) 6494 * is already enough to scale the EM reported power 6495 * consumption at the (eventually clamped) cpu_capacity. 6496 */ 6497 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6498 ENERGY_UTIL, NULL); 6499 6500 /* 6501 * Performance domain frequency: utilization clamping 6502 * must be considered since it affects the selection 6503 * of the performance domain frequency. 6504 * NOTE: in case RT tasks are running, by default the 6505 * FREQUENCY_UTIL's utilization can be max OPP. 6506 */ 6507 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6508 FREQUENCY_UTIL, tsk); 6509 max_util = max(max_util, cpu_util); 6510 } 6511 6512 return em_cpu_energy(pd->em_pd, max_util, sum_util); 6513 } 6514 6515 /* 6516 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6517 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6518 * spare capacity in each performance domain and uses it as a potential 6519 * candidate to execute the task. Then, it uses the Energy Model to figure 6520 * out which of the CPU candidates is the most energy-efficient. 6521 * 6522 * The rationale for this heuristic is as follows. In a performance domain, 6523 * all the most energy efficient CPU candidates (according to the Energy 6524 * Model) are those for which we'll request a low frequency. When there are 6525 * several CPUs for which the frequency request will be the same, we don't 6526 * have enough data to break the tie between them, because the Energy Model 6527 * only includes active power costs. With this model, if we assume that 6528 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6529 * the maximum spare capacity in a performance domain is guaranteed to be among 6530 * the best candidates of the performance domain. 6531 * 6532 * In practice, it could be preferable from an energy standpoint to pack 6533 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6534 * but that could also hurt our chances to go cluster idle, and we have no 6535 * ways to tell with the current Energy Model if this is actually a good 6536 * idea or not. So, find_energy_efficient_cpu() basically favors 6537 * cluster-packing, and spreading inside a cluster. That should at least be 6538 * a good thing for latency, and this is consistent with the idea that most 6539 * of the energy savings of EAS come from the asymmetry of the system, and 6540 * not so much from breaking the tie between identical CPUs. That's also the 6541 * reason why EAS is enabled in the topology code only for systems where 6542 * SD_ASYM_CPUCAPACITY is set. 6543 * 6544 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6545 * they don't have any useful utilization data yet and it's not possible to 6546 * forecast their impact on energy consumption. Consequently, they will be 6547 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6548 * to be energy-inefficient in some use-cases. The alternative would be to 6549 * bias new tasks towards specific types of CPUs first, or to try to infer 6550 * their util_avg from the parent task, but those heuristics could hurt 6551 * other use-cases too. So, until someone finds a better way to solve this, 6552 * let's keep things simple by re-using the existing slow path. 6553 */ 6554 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6555 { 6556 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6557 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6558 unsigned long cpu_cap, util, base_energy = 0; 6559 int cpu, best_energy_cpu = prev_cpu; 6560 struct sched_domain *sd; 6561 struct perf_domain *pd; 6562 6563 rcu_read_lock(); 6564 pd = rcu_dereference(rd->pd); 6565 if (!pd || READ_ONCE(rd->overutilized)) 6566 goto fail; 6567 6568 /* 6569 * Energy-aware wake-up happens on the lowest sched_domain starting 6570 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6571 */ 6572 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6573 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6574 sd = sd->parent; 6575 if (!sd) 6576 goto fail; 6577 6578 sync_entity_load_avg(&p->se); 6579 if (!task_util_est(p)) 6580 goto unlock; 6581 6582 for (; pd; pd = pd->next) { 6583 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6584 unsigned long base_energy_pd; 6585 int max_spare_cap_cpu = -1; 6586 6587 /* Compute the 'base' energy of the pd, without @p */ 6588 base_energy_pd = compute_energy(p, -1, pd); 6589 base_energy += base_energy_pd; 6590 6591 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6592 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6593 continue; 6594 6595 util = cpu_util_next(cpu, p, cpu); 6596 cpu_cap = capacity_of(cpu); 6597 spare_cap = cpu_cap - util; 6598 6599 /* 6600 * Skip CPUs that cannot satisfy the capacity request. 6601 * IOW, placing the task there would make the CPU 6602 * overutilized. Take uclamp into account to see how 6603 * much capacity we can get out of the CPU; this is 6604 * aligned with schedutil_cpu_util(). 6605 */ 6606 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6607 if (!fits_capacity(util, cpu_cap)) 6608 continue; 6609 6610 /* Always use prev_cpu as a candidate. */ 6611 if (cpu == prev_cpu) { 6612 prev_delta = compute_energy(p, prev_cpu, pd); 6613 prev_delta -= base_energy_pd; 6614 best_delta = min(best_delta, prev_delta); 6615 } 6616 6617 /* 6618 * Find the CPU with the maximum spare capacity in 6619 * the performance domain 6620 */ 6621 if (spare_cap > max_spare_cap) { 6622 max_spare_cap = spare_cap; 6623 max_spare_cap_cpu = cpu; 6624 } 6625 } 6626 6627 /* Evaluate the energy impact of using this CPU. */ 6628 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) { 6629 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6630 cur_delta -= base_energy_pd; 6631 if (cur_delta < best_delta) { 6632 best_delta = cur_delta; 6633 best_energy_cpu = max_spare_cap_cpu; 6634 } 6635 } 6636 } 6637 unlock: 6638 rcu_read_unlock(); 6639 6640 /* 6641 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6642 * least 6% of the energy used by prev_cpu. 6643 */ 6644 if (prev_delta == ULONG_MAX) 6645 return best_energy_cpu; 6646 6647 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6648 return best_energy_cpu; 6649 6650 return prev_cpu; 6651 6652 fail: 6653 rcu_read_unlock(); 6654 6655 return -1; 6656 } 6657 6658 /* 6659 * select_task_rq_fair: Select target runqueue for the waking task in domains 6660 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6661 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6662 * 6663 * Balances load by selecting the idlest CPU in the idlest group, or under 6664 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6665 * 6666 * Returns the target CPU number. 6667 * 6668 * preempt must be disabled. 6669 */ 6670 static int 6671 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6672 { 6673 struct sched_domain *tmp, *sd = NULL; 6674 int cpu = smp_processor_id(); 6675 int new_cpu = prev_cpu; 6676 int want_affine = 0; 6677 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6678 6679 if (sd_flag & SD_BALANCE_WAKE) { 6680 record_wakee(p); 6681 6682 if (sched_energy_enabled()) { 6683 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6684 if (new_cpu >= 0) 6685 return new_cpu; 6686 new_cpu = prev_cpu; 6687 } 6688 6689 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 6690 } 6691 6692 rcu_read_lock(); 6693 for_each_domain(cpu, tmp) { 6694 /* 6695 * If both 'cpu' and 'prev_cpu' are part of this domain, 6696 * cpu is a valid SD_WAKE_AFFINE target. 6697 */ 6698 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6699 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6700 if (cpu != prev_cpu) 6701 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6702 6703 sd = NULL; /* Prefer wake_affine over balance flags */ 6704 break; 6705 } 6706 6707 if (tmp->flags & sd_flag) 6708 sd = tmp; 6709 else if (!want_affine) 6710 break; 6711 } 6712 6713 if (unlikely(sd)) { 6714 /* Slow path */ 6715 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6716 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6717 /* Fast path */ 6718 6719 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6720 6721 if (want_affine) 6722 current->recent_used_cpu = cpu; 6723 } 6724 rcu_read_unlock(); 6725 6726 return new_cpu; 6727 } 6728 6729 static void detach_entity_cfs_rq(struct sched_entity *se); 6730 6731 /* 6732 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6733 * cfs_rq_of(p) references at time of call are still valid and identify the 6734 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6735 */ 6736 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6737 { 6738 /* 6739 * As blocked tasks retain absolute vruntime the migration needs to 6740 * deal with this by subtracting the old and adding the new 6741 * min_vruntime -- the latter is done by enqueue_entity() when placing 6742 * the task on the new runqueue. 6743 */ 6744 if (p->state == TASK_WAKING) { 6745 struct sched_entity *se = &p->se; 6746 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6747 u64 min_vruntime; 6748 6749 #ifndef CONFIG_64BIT 6750 u64 min_vruntime_copy; 6751 6752 do { 6753 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6754 smp_rmb(); 6755 min_vruntime = cfs_rq->min_vruntime; 6756 } while (min_vruntime != min_vruntime_copy); 6757 #else 6758 min_vruntime = cfs_rq->min_vruntime; 6759 #endif 6760 6761 se->vruntime -= min_vruntime; 6762 } 6763 6764 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6765 /* 6766 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6767 * rq->lock and can modify state directly. 6768 */ 6769 lockdep_assert_held(&task_rq(p)->lock); 6770 detach_entity_cfs_rq(&p->se); 6771 6772 } else { 6773 /* 6774 * We are supposed to update the task to "current" time, then 6775 * its up to date and ready to go to new CPU/cfs_rq. But we 6776 * have difficulty in getting what current time is, so simply 6777 * throw away the out-of-date time. This will result in the 6778 * wakee task is less decayed, but giving the wakee more load 6779 * sounds not bad. 6780 */ 6781 remove_entity_load_avg(&p->se); 6782 } 6783 6784 /* Tell new CPU we are migrated */ 6785 p->se.avg.last_update_time = 0; 6786 6787 /* We have migrated, no longer consider this task hot */ 6788 p->se.exec_start = 0; 6789 6790 update_scan_period(p, new_cpu); 6791 } 6792 6793 static void task_dead_fair(struct task_struct *p) 6794 { 6795 remove_entity_load_avg(&p->se); 6796 } 6797 6798 static int 6799 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6800 { 6801 if (rq->nr_running) 6802 return 1; 6803 6804 return newidle_balance(rq, rf) != 0; 6805 } 6806 #endif /* CONFIG_SMP */ 6807 6808 static unsigned long wakeup_gran(struct sched_entity *se) 6809 { 6810 unsigned long gran = sysctl_sched_wakeup_granularity; 6811 6812 /* 6813 * Since its curr running now, convert the gran from real-time 6814 * to virtual-time in his units. 6815 * 6816 * By using 'se' instead of 'curr' we penalize light tasks, so 6817 * they get preempted easier. That is, if 'se' < 'curr' then 6818 * the resulting gran will be larger, therefore penalizing the 6819 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6820 * be smaller, again penalizing the lighter task. 6821 * 6822 * This is especially important for buddies when the leftmost 6823 * task is higher priority than the buddy. 6824 */ 6825 return calc_delta_fair(gran, se); 6826 } 6827 6828 /* 6829 * Should 'se' preempt 'curr'. 6830 * 6831 * |s1 6832 * |s2 6833 * |s3 6834 * g 6835 * |<--->|c 6836 * 6837 * w(c, s1) = -1 6838 * w(c, s2) = 0 6839 * w(c, s3) = 1 6840 * 6841 */ 6842 static int 6843 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6844 { 6845 s64 gran, vdiff = curr->vruntime - se->vruntime; 6846 6847 if (vdiff <= 0) 6848 return -1; 6849 6850 gran = wakeup_gran(se); 6851 if (vdiff > gran) 6852 return 1; 6853 6854 return 0; 6855 } 6856 6857 static void set_last_buddy(struct sched_entity *se) 6858 { 6859 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6860 return; 6861 6862 for_each_sched_entity(se) { 6863 if (SCHED_WARN_ON(!se->on_rq)) 6864 return; 6865 cfs_rq_of(se)->last = se; 6866 } 6867 } 6868 6869 static void set_next_buddy(struct sched_entity *se) 6870 { 6871 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6872 return; 6873 6874 for_each_sched_entity(se) { 6875 if (SCHED_WARN_ON(!se->on_rq)) 6876 return; 6877 cfs_rq_of(se)->next = se; 6878 } 6879 } 6880 6881 static void set_skip_buddy(struct sched_entity *se) 6882 { 6883 for_each_sched_entity(se) 6884 cfs_rq_of(se)->skip = se; 6885 } 6886 6887 /* 6888 * Preempt the current task with a newly woken task if needed: 6889 */ 6890 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6891 { 6892 struct task_struct *curr = rq->curr; 6893 struct sched_entity *se = &curr->se, *pse = &p->se; 6894 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6895 int scale = cfs_rq->nr_running >= sched_nr_latency; 6896 int next_buddy_marked = 0; 6897 6898 if (unlikely(se == pse)) 6899 return; 6900 6901 /* 6902 * This is possible from callers such as attach_tasks(), in which we 6903 * unconditionally check_prempt_curr() after an enqueue (which may have 6904 * lead to a throttle). This both saves work and prevents false 6905 * next-buddy nomination below. 6906 */ 6907 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6908 return; 6909 6910 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6911 set_next_buddy(pse); 6912 next_buddy_marked = 1; 6913 } 6914 6915 /* 6916 * We can come here with TIF_NEED_RESCHED already set from new task 6917 * wake up path. 6918 * 6919 * Note: this also catches the edge-case of curr being in a throttled 6920 * group (e.g. via set_curr_task), since update_curr() (in the 6921 * enqueue of curr) will have resulted in resched being set. This 6922 * prevents us from potentially nominating it as a false LAST_BUDDY 6923 * below. 6924 */ 6925 if (test_tsk_need_resched(curr)) 6926 return; 6927 6928 /* Idle tasks are by definition preempted by non-idle tasks. */ 6929 if (unlikely(task_has_idle_policy(curr)) && 6930 likely(!task_has_idle_policy(p))) 6931 goto preempt; 6932 6933 /* 6934 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6935 * is driven by the tick): 6936 */ 6937 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6938 return; 6939 6940 find_matching_se(&se, &pse); 6941 update_curr(cfs_rq_of(se)); 6942 BUG_ON(!pse); 6943 if (wakeup_preempt_entity(se, pse) == 1) { 6944 /* 6945 * Bias pick_next to pick the sched entity that is 6946 * triggering this preemption. 6947 */ 6948 if (!next_buddy_marked) 6949 set_next_buddy(pse); 6950 goto preempt; 6951 } 6952 6953 return; 6954 6955 preempt: 6956 resched_curr(rq); 6957 /* 6958 * Only set the backward buddy when the current task is still 6959 * on the rq. This can happen when a wakeup gets interleaved 6960 * with schedule on the ->pre_schedule() or idle_balance() 6961 * point, either of which can * drop the rq lock. 6962 * 6963 * Also, during early boot the idle thread is in the fair class, 6964 * for obvious reasons its a bad idea to schedule back to it. 6965 */ 6966 if (unlikely(!se->on_rq || curr == rq->idle)) 6967 return; 6968 6969 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6970 set_last_buddy(se); 6971 } 6972 6973 struct task_struct * 6974 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6975 { 6976 struct cfs_rq *cfs_rq = &rq->cfs; 6977 struct sched_entity *se; 6978 struct task_struct *p; 6979 int new_tasks; 6980 6981 again: 6982 if (!sched_fair_runnable(rq)) 6983 goto idle; 6984 6985 #ifdef CONFIG_FAIR_GROUP_SCHED 6986 if (!prev || prev->sched_class != &fair_sched_class) 6987 goto simple; 6988 6989 /* 6990 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6991 * likely that a next task is from the same cgroup as the current. 6992 * 6993 * Therefore attempt to avoid putting and setting the entire cgroup 6994 * hierarchy, only change the part that actually changes. 6995 */ 6996 6997 do { 6998 struct sched_entity *curr = cfs_rq->curr; 6999 7000 /* 7001 * Since we got here without doing put_prev_entity() we also 7002 * have to consider cfs_rq->curr. If it is still a runnable 7003 * entity, update_curr() will update its vruntime, otherwise 7004 * forget we've ever seen it. 7005 */ 7006 if (curr) { 7007 if (curr->on_rq) 7008 update_curr(cfs_rq); 7009 else 7010 curr = NULL; 7011 7012 /* 7013 * This call to check_cfs_rq_runtime() will do the 7014 * throttle and dequeue its entity in the parent(s). 7015 * Therefore the nr_running test will indeed 7016 * be correct. 7017 */ 7018 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7019 cfs_rq = &rq->cfs; 7020 7021 if (!cfs_rq->nr_running) 7022 goto idle; 7023 7024 goto simple; 7025 } 7026 } 7027 7028 se = pick_next_entity(cfs_rq, curr); 7029 cfs_rq = group_cfs_rq(se); 7030 } while (cfs_rq); 7031 7032 p = task_of(se); 7033 7034 /* 7035 * Since we haven't yet done put_prev_entity and if the selected task 7036 * is a different task than we started out with, try and touch the 7037 * least amount of cfs_rqs. 7038 */ 7039 if (prev != p) { 7040 struct sched_entity *pse = &prev->se; 7041 7042 while (!(cfs_rq = is_same_group(se, pse))) { 7043 int se_depth = se->depth; 7044 int pse_depth = pse->depth; 7045 7046 if (se_depth <= pse_depth) { 7047 put_prev_entity(cfs_rq_of(pse), pse); 7048 pse = parent_entity(pse); 7049 } 7050 if (se_depth >= pse_depth) { 7051 set_next_entity(cfs_rq_of(se), se); 7052 se = parent_entity(se); 7053 } 7054 } 7055 7056 put_prev_entity(cfs_rq, pse); 7057 set_next_entity(cfs_rq, se); 7058 } 7059 7060 goto done; 7061 simple: 7062 #endif 7063 if (prev) 7064 put_prev_task(rq, prev); 7065 7066 do { 7067 se = pick_next_entity(cfs_rq, NULL); 7068 set_next_entity(cfs_rq, se); 7069 cfs_rq = group_cfs_rq(se); 7070 } while (cfs_rq); 7071 7072 p = task_of(se); 7073 7074 done: __maybe_unused; 7075 #ifdef CONFIG_SMP 7076 /* 7077 * Move the next running task to the front of 7078 * the list, so our cfs_tasks list becomes MRU 7079 * one. 7080 */ 7081 list_move(&p->se.group_node, &rq->cfs_tasks); 7082 #endif 7083 7084 if (hrtick_enabled(rq)) 7085 hrtick_start_fair(rq, p); 7086 7087 update_misfit_status(p, rq); 7088 7089 return p; 7090 7091 idle: 7092 if (!rf) 7093 return NULL; 7094 7095 new_tasks = newidle_balance(rq, rf); 7096 7097 /* 7098 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7099 * possible for any higher priority task to appear. In that case we 7100 * must re-start the pick_next_entity() loop. 7101 */ 7102 if (new_tasks < 0) 7103 return RETRY_TASK; 7104 7105 if (new_tasks > 0) 7106 goto again; 7107 7108 /* 7109 * rq is about to be idle, check if we need to update the 7110 * lost_idle_time of clock_pelt 7111 */ 7112 update_idle_rq_clock_pelt(rq); 7113 7114 return NULL; 7115 } 7116 7117 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7118 { 7119 return pick_next_task_fair(rq, NULL, NULL); 7120 } 7121 7122 /* 7123 * Account for a descheduled task: 7124 */ 7125 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7126 { 7127 struct sched_entity *se = &prev->se; 7128 struct cfs_rq *cfs_rq; 7129 7130 for_each_sched_entity(se) { 7131 cfs_rq = cfs_rq_of(se); 7132 put_prev_entity(cfs_rq, se); 7133 } 7134 } 7135 7136 /* 7137 * sched_yield() is very simple 7138 * 7139 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7140 */ 7141 static void yield_task_fair(struct rq *rq) 7142 { 7143 struct task_struct *curr = rq->curr; 7144 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7145 struct sched_entity *se = &curr->se; 7146 7147 /* 7148 * Are we the only task in the tree? 7149 */ 7150 if (unlikely(rq->nr_running == 1)) 7151 return; 7152 7153 clear_buddies(cfs_rq, se); 7154 7155 if (curr->policy != SCHED_BATCH) { 7156 update_rq_clock(rq); 7157 /* 7158 * Update run-time statistics of the 'current'. 7159 */ 7160 update_curr(cfs_rq); 7161 /* 7162 * Tell update_rq_clock() that we've just updated, 7163 * so we don't do microscopic update in schedule() 7164 * and double the fastpath cost. 7165 */ 7166 rq_clock_skip_update(rq); 7167 } 7168 7169 set_skip_buddy(se); 7170 } 7171 7172 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7173 { 7174 struct sched_entity *se = &p->se; 7175 7176 /* throttled hierarchies are not runnable */ 7177 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7178 return false; 7179 7180 /* Tell the scheduler that we'd really like pse to run next. */ 7181 set_next_buddy(se); 7182 7183 yield_task_fair(rq); 7184 7185 return true; 7186 } 7187 7188 #ifdef CONFIG_SMP 7189 /************************************************** 7190 * Fair scheduling class load-balancing methods. 7191 * 7192 * BASICS 7193 * 7194 * The purpose of load-balancing is to achieve the same basic fairness the 7195 * per-CPU scheduler provides, namely provide a proportional amount of compute 7196 * time to each task. This is expressed in the following equation: 7197 * 7198 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7199 * 7200 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7201 * W_i,0 is defined as: 7202 * 7203 * W_i,0 = \Sum_j w_i,j (2) 7204 * 7205 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7206 * is derived from the nice value as per sched_prio_to_weight[]. 7207 * 7208 * The weight average is an exponential decay average of the instantaneous 7209 * weight: 7210 * 7211 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7212 * 7213 * C_i is the compute capacity of CPU i, typically it is the 7214 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7215 * can also include other factors [XXX]. 7216 * 7217 * To achieve this balance we define a measure of imbalance which follows 7218 * directly from (1): 7219 * 7220 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7221 * 7222 * We them move tasks around to minimize the imbalance. In the continuous 7223 * function space it is obvious this converges, in the discrete case we get 7224 * a few fun cases generally called infeasible weight scenarios. 7225 * 7226 * [XXX expand on: 7227 * - infeasible weights; 7228 * - local vs global optima in the discrete case. ] 7229 * 7230 * 7231 * SCHED DOMAINS 7232 * 7233 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7234 * for all i,j solution, we create a tree of CPUs that follows the hardware 7235 * topology where each level pairs two lower groups (or better). This results 7236 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7237 * tree to only the first of the previous level and we decrease the frequency 7238 * of load-balance at each level inv. proportional to the number of CPUs in 7239 * the groups. 7240 * 7241 * This yields: 7242 * 7243 * log_2 n 1 n 7244 * \Sum { --- * --- * 2^i } = O(n) (5) 7245 * i = 0 2^i 2^i 7246 * `- size of each group 7247 * | | `- number of CPUs doing load-balance 7248 * | `- freq 7249 * `- sum over all levels 7250 * 7251 * Coupled with a limit on how many tasks we can migrate every balance pass, 7252 * this makes (5) the runtime complexity of the balancer. 7253 * 7254 * An important property here is that each CPU is still (indirectly) connected 7255 * to every other CPU in at most O(log n) steps: 7256 * 7257 * The adjacency matrix of the resulting graph is given by: 7258 * 7259 * log_2 n 7260 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7261 * k = 0 7262 * 7263 * And you'll find that: 7264 * 7265 * A^(log_2 n)_i,j != 0 for all i,j (7) 7266 * 7267 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7268 * The task movement gives a factor of O(m), giving a convergence complexity 7269 * of: 7270 * 7271 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7272 * 7273 * 7274 * WORK CONSERVING 7275 * 7276 * In order to avoid CPUs going idle while there's still work to do, new idle 7277 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7278 * tree itself instead of relying on other CPUs to bring it work. 7279 * 7280 * This adds some complexity to both (5) and (8) but it reduces the total idle 7281 * time. 7282 * 7283 * [XXX more?] 7284 * 7285 * 7286 * CGROUPS 7287 * 7288 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7289 * 7290 * s_k,i 7291 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7292 * S_k 7293 * 7294 * Where 7295 * 7296 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7297 * 7298 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7299 * 7300 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7301 * property. 7302 * 7303 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7304 * rewrite all of this once again.] 7305 */ 7306 7307 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7308 7309 enum fbq_type { regular, remote, all }; 7310 7311 /* 7312 * 'group_type' describes the group of CPUs at the moment of load balancing. 7313 * 7314 * The enum is ordered by pulling priority, with the group with lowest priority 7315 * first so the group_type can simply be compared when selecting the busiest 7316 * group. See update_sd_pick_busiest(). 7317 */ 7318 enum group_type { 7319 /* The group has spare capacity that can be used to run more tasks. */ 7320 group_has_spare = 0, 7321 /* 7322 * The group is fully used and the tasks don't compete for more CPU 7323 * cycles. Nevertheless, some tasks might wait before running. 7324 */ 7325 group_fully_busy, 7326 /* 7327 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7328 * and must be migrated to a more powerful CPU. 7329 */ 7330 group_misfit_task, 7331 /* 7332 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7333 * and the task should be migrated to it instead of running on the 7334 * current CPU. 7335 */ 7336 group_asym_packing, 7337 /* 7338 * The tasks' affinity constraints previously prevented the scheduler 7339 * from balancing the load across the system. 7340 */ 7341 group_imbalanced, 7342 /* 7343 * The CPU is overloaded and can't provide expected CPU cycles to all 7344 * tasks. 7345 */ 7346 group_overloaded 7347 }; 7348 7349 enum migration_type { 7350 migrate_load = 0, 7351 migrate_util, 7352 migrate_task, 7353 migrate_misfit 7354 }; 7355 7356 #define LBF_ALL_PINNED 0x01 7357 #define LBF_NEED_BREAK 0x02 7358 #define LBF_DST_PINNED 0x04 7359 #define LBF_SOME_PINNED 0x08 7360 #define LBF_NOHZ_STATS 0x10 7361 #define LBF_NOHZ_AGAIN 0x20 7362 7363 struct lb_env { 7364 struct sched_domain *sd; 7365 7366 struct rq *src_rq; 7367 int src_cpu; 7368 7369 int dst_cpu; 7370 struct rq *dst_rq; 7371 7372 struct cpumask *dst_grpmask; 7373 int new_dst_cpu; 7374 enum cpu_idle_type idle; 7375 long imbalance; 7376 /* The set of CPUs under consideration for load-balancing */ 7377 struct cpumask *cpus; 7378 7379 unsigned int flags; 7380 7381 unsigned int loop; 7382 unsigned int loop_break; 7383 unsigned int loop_max; 7384 7385 enum fbq_type fbq_type; 7386 enum migration_type migration_type; 7387 struct list_head tasks; 7388 }; 7389 7390 /* 7391 * Is this task likely cache-hot: 7392 */ 7393 static int task_hot(struct task_struct *p, struct lb_env *env) 7394 { 7395 s64 delta; 7396 7397 lockdep_assert_held(&env->src_rq->lock); 7398 7399 if (p->sched_class != &fair_sched_class) 7400 return 0; 7401 7402 if (unlikely(task_has_idle_policy(p))) 7403 return 0; 7404 7405 /* 7406 * Buddy candidates are cache hot: 7407 */ 7408 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7409 (&p->se == cfs_rq_of(&p->se)->next || 7410 &p->se == cfs_rq_of(&p->se)->last)) 7411 return 1; 7412 7413 if (sysctl_sched_migration_cost == -1) 7414 return 1; 7415 if (sysctl_sched_migration_cost == 0) 7416 return 0; 7417 7418 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7419 7420 return delta < (s64)sysctl_sched_migration_cost; 7421 } 7422 7423 #ifdef CONFIG_NUMA_BALANCING 7424 /* 7425 * Returns 1, if task migration degrades locality 7426 * Returns 0, if task migration improves locality i.e migration preferred. 7427 * Returns -1, if task migration is not affected by locality. 7428 */ 7429 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7430 { 7431 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7432 unsigned long src_weight, dst_weight; 7433 int src_nid, dst_nid, dist; 7434 7435 if (!static_branch_likely(&sched_numa_balancing)) 7436 return -1; 7437 7438 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7439 return -1; 7440 7441 src_nid = cpu_to_node(env->src_cpu); 7442 dst_nid = cpu_to_node(env->dst_cpu); 7443 7444 if (src_nid == dst_nid) 7445 return -1; 7446 7447 /* Migrating away from the preferred node is always bad. */ 7448 if (src_nid == p->numa_preferred_nid) { 7449 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7450 return 1; 7451 else 7452 return -1; 7453 } 7454 7455 /* Encourage migration to the preferred node. */ 7456 if (dst_nid == p->numa_preferred_nid) 7457 return 0; 7458 7459 /* Leaving a core idle is often worse than degrading locality. */ 7460 if (env->idle == CPU_IDLE) 7461 return -1; 7462 7463 dist = node_distance(src_nid, dst_nid); 7464 if (numa_group) { 7465 src_weight = group_weight(p, src_nid, dist); 7466 dst_weight = group_weight(p, dst_nid, dist); 7467 } else { 7468 src_weight = task_weight(p, src_nid, dist); 7469 dst_weight = task_weight(p, dst_nid, dist); 7470 } 7471 7472 return dst_weight < src_weight; 7473 } 7474 7475 #else 7476 static inline int migrate_degrades_locality(struct task_struct *p, 7477 struct lb_env *env) 7478 { 7479 return -1; 7480 } 7481 #endif 7482 7483 /* 7484 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7485 */ 7486 static 7487 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7488 { 7489 int tsk_cache_hot; 7490 7491 lockdep_assert_held(&env->src_rq->lock); 7492 7493 /* 7494 * We do not migrate tasks that are: 7495 * 1) throttled_lb_pair, or 7496 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7497 * 3) running (obviously), or 7498 * 4) are cache-hot on their current CPU. 7499 */ 7500 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7501 return 0; 7502 7503 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7504 int cpu; 7505 7506 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7507 7508 env->flags |= LBF_SOME_PINNED; 7509 7510 /* 7511 * Remember if this task can be migrated to any other CPU in 7512 * our sched_group. We may want to revisit it if we couldn't 7513 * meet load balance goals by pulling other tasks on src_cpu. 7514 * 7515 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7516 * already computed one in current iteration. 7517 */ 7518 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7519 return 0; 7520 7521 /* Prevent to re-select dst_cpu via env's CPUs: */ 7522 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7523 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7524 env->flags |= LBF_DST_PINNED; 7525 env->new_dst_cpu = cpu; 7526 break; 7527 } 7528 } 7529 7530 return 0; 7531 } 7532 7533 /* Record that we found atleast one task that could run on dst_cpu */ 7534 env->flags &= ~LBF_ALL_PINNED; 7535 7536 if (task_running(env->src_rq, p)) { 7537 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7538 return 0; 7539 } 7540 7541 /* 7542 * Aggressive migration if: 7543 * 1) destination numa is preferred 7544 * 2) task is cache cold, or 7545 * 3) too many balance attempts have failed. 7546 */ 7547 tsk_cache_hot = migrate_degrades_locality(p, env); 7548 if (tsk_cache_hot == -1) 7549 tsk_cache_hot = task_hot(p, env); 7550 7551 if (tsk_cache_hot <= 0 || 7552 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7553 if (tsk_cache_hot == 1) { 7554 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7555 schedstat_inc(p->se.statistics.nr_forced_migrations); 7556 } 7557 return 1; 7558 } 7559 7560 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7561 return 0; 7562 } 7563 7564 /* 7565 * detach_task() -- detach the task for the migration specified in env 7566 */ 7567 static void detach_task(struct task_struct *p, struct lb_env *env) 7568 { 7569 lockdep_assert_held(&env->src_rq->lock); 7570 7571 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7572 set_task_cpu(p, env->dst_cpu); 7573 } 7574 7575 /* 7576 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7577 * part of active balancing operations within "domain". 7578 * 7579 * Returns a task if successful and NULL otherwise. 7580 */ 7581 static struct task_struct *detach_one_task(struct lb_env *env) 7582 { 7583 struct task_struct *p; 7584 7585 lockdep_assert_held(&env->src_rq->lock); 7586 7587 list_for_each_entry_reverse(p, 7588 &env->src_rq->cfs_tasks, se.group_node) { 7589 if (!can_migrate_task(p, env)) 7590 continue; 7591 7592 detach_task(p, env); 7593 7594 /* 7595 * Right now, this is only the second place where 7596 * lb_gained[env->idle] is updated (other is detach_tasks) 7597 * so we can safely collect stats here rather than 7598 * inside detach_tasks(). 7599 */ 7600 schedstat_inc(env->sd->lb_gained[env->idle]); 7601 return p; 7602 } 7603 return NULL; 7604 } 7605 7606 static const unsigned int sched_nr_migrate_break = 32; 7607 7608 /* 7609 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7610 * busiest_rq, as part of a balancing operation within domain "sd". 7611 * 7612 * Returns number of detached tasks if successful and 0 otherwise. 7613 */ 7614 static int detach_tasks(struct lb_env *env) 7615 { 7616 struct list_head *tasks = &env->src_rq->cfs_tasks; 7617 unsigned long util, load; 7618 struct task_struct *p; 7619 int detached = 0; 7620 7621 lockdep_assert_held(&env->src_rq->lock); 7622 7623 if (env->imbalance <= 0) 7624 return 0; 7625 7626 while (!list_empty(tasks)) { 7627 /* 7628 * We don't want to steal all, otherwise we may be treated likewise, 7629 * which could at worst lead to a livelock crash. 7630 */ 7631 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7632 break; 7633 7634 p = list_last_entry(tasks, struct task_struct, se.group_node); 7635 7636 env->loop++; 7637 /* We've more or less seen every task there is, call it quits */ 7638 if (env->loop > env->loop_max) 7639 break; 7640 7641 /* take a breather every nr_migrate tasks */ 7642 if (env->loop > env->loop_break) { 7643 env->loop_break += sched_nr_migrate_break; 7644 env->flags |= LBF_NEED_BREAK; 7645 break; 7646 } 7647 7648 if (!can_migrate_task(p, env)) 7649 goto next; 7650 7651 switch (env->migration_type) { 7652 case migrate_load: 7653 /* 7654 * Depending of the number of CPUs and tasks and the 7655 * cgroup hierarchy, task_h_load() can return a null 7656 * value. Make sure that env->imbalance decreases 7657 * otherwise detach_tasks() will stop only after 7658 * detaching up to loop_max tasks. 7659 */ 7660 load = max_t(unsigned long, task_h_load(p), 1); 7661 7662 if (sched_feat(LB_MIN) && 7663 load < 16 && !env->sd->nr_balance_failed) 7664 goto next; 7665 7666 /* 7667 * Make sure that we don't migrate too much load. 7668 * Nevertheless, let relax the constraint if 7669 * scheduler fails to find a good waiting task to 7670 * migrate. 7671 */ 7672 if (load/2 > env->imbalance && 7673 env->sd->nr_balance_failed <= env->sd->cache_nice_tries) 7674 goto next; 7675 7676 env->imbalance -= load; 7677 break; 7678 7679 case migrate_util: 7680 util = task_util_est(p); 7681 7682 if (util > env->imbalance) 7683 goto next; 7684 7685 env->imbalance -= util; 7686 break; 7687 7688 case migrate_task: 7689 env->imbalance--; 7690 break; 7691 7692 case migrate_misfit: 7693 /* This is not a misfit task */ 7694 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 7695 goto next; 7696 7697 env->imbalance = 0; 7698 break; 7699 } 7700 7701 detach_task(p, env); 7702 list_add(&p->se.group_node, &env->tasks); 7703 7704 detached++; 7705 7706 #ifdef CONFIG_PREEMPTION 7707 /* 7708 * NEWIDLE balancing is a source of latency, so preemptible 7709 * kernels will stop after the first task is detached to minimize 7710 * the critical section. 7711 */ 7712 if (env->idle == CPU_NEWLY_IDLE) 7713 break; 7714 #endif 7715 7716 /* 7717 * We only want to steal up to the prescribed amount of 7718 * load/util/tasks. 7719 */ 7720 if (env->imbalance <= 0) 7721 break; 7722 7723 continue; 7724 next: 7725 list_move(&p->se.group_node, tasks); 7726 } 7727 7728 /* 7729 * Right now, this is one of only two places we collect this stat 7730 * so we can safely collect detach_one_task() stats here rather 7731 * than inside detach_one_task(). 7732 */ 7733 schedstat_add(env->sd->lb_gained[env->idle], detached); 7734 7735 return detached; 7736 } 7737 7738 /* 7739 * attach_task() -- attach the task detached by detach_task() to its new rq. 7740 */ 7741 static void attach_task(struct rq *rq, struct task_struct *p) 7742 { 7743 lockdep_assert_held(&rq->lock); 7744 7745 BUG_ON(task_rq(p) != rq); 7746 activate_task(rq, p, ENQUEUE_NOCLOCK); 7747 check_preempt_curr(rq, p, 0); 7748 } 7749 7750 /* 7751 * attach_one_task() -- attaches the task returned from detach_one_task() to 7752 * its new rq. 7753 */ 7754 static void attach_one_task(struct rq *rq, struct task_struct *p) 7755 { 7756 struct rq_flags rf; 7757 7758 rq_lock(rq, &rf); 7759 update_rq_clock(rq); 7760 attach_task(rq, p); 7761 rq_unlock(rq, &rf); 7762 } 7763 7764 /* 7765 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7766 * new rq. 7767 */ 7768 static void attach_tasks(struct lb_env *env) 7769 { 7770 struct list_head *tasks = &env->tasks; 7771 struct task_struct *p; 7772 struct rq_flags rf; 7773 7774 rq_lock(env->dst_rq, &rf); 7775 update_rq_clock(env->dst_rq); 7776 7777 while (!list_empty(tasks)) { 7778 p = list_first_entry(tasks, struct task_struct, se.group_node); 7779 list_del_init(&p->se.group_node); 7780 7781 attach_task(env->dst_rq, p); 7782 } 7783 7784 rq_unlock(env->dst_rq, &rf); 7785 } 7786 7787 #ifdef CONFIG_NO_HZ_COMMON 7788 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7789 { 7790 if (cfs_rq->avg.load_avg) 7791 return true; 7792 7793 if (cfs_rq->avg.util_avg) 7794 return true; 7795 7796 return false; 7797 } 7798 7799 static inline bool others_have_blocked(struct rq *rq) 7800 { 7801 if (READ_ONCE(rq->avg_rt.util_avg)) 7802 return true; 7803 7804 if (READ_ONCE(rq->avg_dl.util_avg)) 7805 return true; 7806 7807 if (thermal_load_avg(rq)) 7808 return true; 7809 7810 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7811 if (READ_ONCE(rq->avg_irq.util_avg)) 7812 return true; 7813 #endif 7814 7815 return false; 7816 } 7817 7818 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 7819 { 7820 rq->last_blocked_load_update_tick = jiffies; 7821 7822 if (!has_blocked) 7823 rq->has_blocked_load = 0; 7824 } 7825 #else 7826 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 7827 static inline bool others_have_blocked(struct rq *rq) { return false; } 7828 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 7829 #endif 7830 7831 static bool __update_blocked_others(struct rq *rq, bool *done) 7832 { 7833 const struct sched_class *curr_class; 7834 u64 now = rq_clock_pelt(rq); 7835 unsigned long thermal_pressure; 7836 bool decayed; 7837 7838 /* 7839 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 7840 * DL and IRQ signals have been updated before updating CFS. 7841 */ 7842 curr_class = rq->curr->sched_class; 7843 7844 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 7845 7846 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 7847 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 7848 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 7849 update_irq_load_avg(rq, 0); 7850 7851 if (others_have_blocked(rq)) 7852 *done = false; 7853 7854 return decayed; 7855 } 7856 7857 #ifdef CONFIG_FAIR_GROUP_SCHED 7858 7859 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7860 { 7861 if (cfs_rq->load.weight) 7862 return false; 7863 7864 if (cfs_rq->avg.load_sum) 7865 return false; 7866 7867 if (cfs_rq->avg.util_sum) 7868 return false; 7869 7870 if (cfs_rq->avg.runnable_sum) 7871 return false; 7872 7873 return true; 7874 } 7875 7876 static bool __update_blocked_fair(struct rq *rq, bool *done) 7877 { 7878 struct cfs_rq *cfs_rq, *pos; 7879 bool decayed = false; 7880 int cpu = cpu_of(rq); 7881 7882 /* 7883 * Iterates the task_group tree in a bottom up fashion, see 7884 * list_add_leaf_cfs_rq() for details. 7885 */ 7886 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7887 struct sched_entity *se; 7888 7889 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 7890 update_tg_load_avg(cfs_rq, 0); 7891 7892 if (cfs_rq == &rq->cfs) 7893 decayed = true; 7894 } 7895 7896 /* Propagate pending load changes to the parent, if any: */ 7897 se = cfs_rq->tg->se[cpu]; 7898 if (se && !skip_blocked_update(se)) 7899 update_load_avg(cfs_rq_of(se), se, 0); 7900 7901 /* 7902 * There can be a lot of idle CPU cgroups. Don't let fully 7903 * decayed cfs_rqs linger on the list. 7904 */ 7905 if (cfs_rq_is_decayed(cfs_rq)) 7906 list_del_leaf_cfs_rq(cfs_rq); 7907 7908 /* Don't need periodic decay once load/util_avg are null */ 7909 if (cfs_rq_has_blocked(cfs_rq)) 7910 *done = false; 7911 } 7912 7913 return decayed; 7914 } 7915 7916 /* 7917 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7918 * This needs to be done in a top-down fashion because the load of a child 7919 * group is a fraction of its parents load. 7920 */ 7921 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7922 { 7923 struct rq *rq = rq_of(cfs_rq); 7924 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7925 unsigned long now = jiffies; 7926 unsigned long load; 7927 7928 if (cfs_rq->last_h_load_update == now) 7929 return; 7930 7931 WRITE_ONCE(cfs_rq->h_load_next, NULL); 7932 for_each_sched_entity(se) { 7933 cfs_rq = cfs_rq_of(se); 7934 WRITE_ONCE(cfs_rq->h_load_next, se); 7935 if (cfs_rq->last_h_load_update == now) 7936 break; 7937 } 7938 7939 if (!se) { 7940 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7941 cfs_rq->last_h_load_update = now; 7942 } 7943 7944 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 7945 load = cfs_rq->h_load; 7946 load = div64_ul(load * se->avg.load_avg, 7947 cfs_rq_load_avg(cfs_rq) + 1); 7948 cfs_rq = group_cfs_rq(se); 7949 cfs_rq->h_load = load; 7950 cfs_rq->last_h_load_update = now; 7951 } 7952 } 7953 7954 static unsigned long task_h_load(struct task_struct *p) 7955 { 7956 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7957 7958 update_cfs_rq_h_load(cfs_rq); 7959 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7960 cfs_rq_load_avg(cfs_rq) + 1); 7961 } 7962 #else 7963 static bool __update_blocked_fair(struct rq *rq, bool *done) 7964 { 7965 struct cfs_rq *cfs_rq = &rq->cfs; 7966 bool decayed; 7967 7968 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 7969 if (cfs_rq_has_blocked(cfs_rq)) 7970 *done = false; 7971 7972 return decayed; 7973 } 7974 7975 static unsigned long task_h_load(struct task_struct *p) 7976 { 7977 return p->se.avg.load_avg; 7978 } 7979 #endif 7980 7981 static void update_blocked_averages(int cpu) 7982 { 7983 bool decayed = false, done = true; 7984 struct rq *rq = cpu_rq(cpu); 7985 struct rq_flags rf; 7986 7987 rq_lock_irqsave(rq, &rf); 7988 update_rq_clock(rq); 7989 7990 decayed |= __update_blocked_others(rq, &done); 7991 decayed |= __update_blocked_fair(rq, &done); 7992 7993 update_blocked_load_status(rq, !done); 7994 if (decayed) 7995 cpufreq_update_util(rq, 0); 7996 rq_unlock_irqrestore(rq, &rf); 7997 } 7998 7999 /********** Helpers for find_busiest_group ************************/ 8000 8001 /* 8002 * sg_lb_stats - stats of a sched_group required for load_balancing 8003 */ 8004 struct sg_lb_stats { 8005 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8006 unsigned long group_load; /* Total load over the CPUs of the group */ 8007 unsigned long group_capacity; 8008 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8009 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8010 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8011 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8012 unsigned int idle_cpus; 8013 unsigned int group_weight; 8014 enum group_type group_type; 8015 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8016 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8017 #ifdef CONFIG_NUMA_BALANCING 8018 unsigned int nr_numa_running; 8019 unsigned int nr_preferred_running; 8020 #endif 8021 }; 8022 8023 /* 8024 * sd_lb_stats - Structure to store the statistics of a sched_domain 8025 * during load balancing. 8026 */ 8027 struct sd_lb_stats { 8028 struct sched_group *busiest; /* Busiest group in this sd */ 8029 struct sched_group *local; /* Local group in this sd */ 8030 unsigned long total_load; /* Total load of all groups in sd */ 8031 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8032 unsigned long avg_load; /* Average load across all groups in sd */ 8033 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8034 8035 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8036 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8037 }; 8038 8039 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8040 { 8041 /* 8042 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8043 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8044 * We must however set busiest_stat::group_type and 8045 * busiest_stat::idle_cpus to the worst busiest group because 8046 * update_sd_pick_busiest() reads these before assignment. 8047 */ 8048 *sds = (struct sd_lb_stats){ 8049 .busiest = NULL, 8050 .local = NULL, 8051 .total_load = 0UL, 8052 .total_capacity = 0UL, 8053 .busiest_stat = { 8054 .idle_cpus = UINT_MAX, 8055 .group_type = group_has_spare, 8056 }, 8057 }; 8058 } 8059 8060 static unsigned long scale_rt_capacity(int cpu) 8061 { 8062 struct rq *rq = cpu_rq(cpu); 8063 unsigned long max = arch_scale_cpu_capacity(cpu); 8064 unsigned long used, free; 8065 unsigned long irq; 8066 8067 irq = cpu_util_irq(rq); 8068 8069 if (unlikely(irq >= max)) 8070 return 1; 8071 8072 /* 8073 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8074 * (running and not running) with weights 0 and 1024 respectively. 8075 * avg_thermal.load_avg tracks thermal pressure and the weighted 8076 * average uses the actual delta max capacity(load). 8077 */ 8078 used = READ_ONCE(rq->avg_rt.util_avg); 8079 used += READ_ONCE(rq->avg_dl.util_avg); 8080 used += thermal_load_avg(rq); 8081 8082 if (unlikely(used >= max)) 8083 return 1; 8084 8085 free = max - used; 8086 8087 return scale_irq_capacity(free, irq, max); 8088 } 8089 8090 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8091 { 8092 unsigned long capacity = scale_rt_capacity(cpu); 8093 struct sched_group *sdg = sd->groups; 8094 8095 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8096 8097 if (!capacity) 8098 capacity = 1; 8099 8100 cpu_rq(cpu)->cpu_capacity = capacity; 8101 sdg->sgc->capacity = capacity; 8102 sdg->sgc->min_capacity = capacity; 8103 sdg->sgc->max_capacity = capacity; 8104 } 8105 8106 void update_group_capacity(struct sched_domain *sd, int cpu) 8107 { 8108 struct sched_domain *child = sd->child; 8109 struct sched_group *group, *sdg = sd->groups; 8110 unsigned long capacity, min_capacity, max_capacity; 8111 unsigned long interval; 8112 8113 interval = msecs_to_jiffies(sd->balance_interval); 8114 interval = clamp(interval, 1UL, max_load_balance_interval); 8115 sdg->sgc->next_update = jiffies + interval; 8116 8117 if (!child) { 8118 update_cpu_capacity(sd, cpu); 8119 return; 8120 } 8121 8122 capacity = 0; 8123 min_capacity = ULONG_MAX; 8124 max_capacity = 0; 8125 8126 if (child->flags & SD_OVERLAP) { 8127 /* 8128 * SD_OVERLAP domains cannot assume that child groups 8129 * span the current group. 8130 */ 8131 8132 for_each_cpu(cpu, sched_group_span(sdg)) { 8133 unsigned long cpu_cap = capacity_of(cpu); 8134 8135 capacity += cpu_cap; 8136 min_capacity = min(cpu_cap, min_capacity); 8137 max_capacity = max(cpu_cap, max_capacity); 8138 } 8139 } else { 8140 /* 8141 * !SD_OVERLAP domains can assume that child groups 8142 * span the current group. 8143 */ 8144 8145 group = child->groups; 8146 do { 8147 struct sched_group_capacity *sgc = group->sgc; 8148 8149 capacity += sgc->capacity; 8150 min_capacity = min(sgc->min_capacity, min_capacity); 8151 max_capacity = max(sgc->max_capacity, max_capacity); 8152 group = group->next; 8153 } while (group != child->groups); 8154 } 8155 8156 sdg->sgc->capacity = capacity; 8157 sdg->sgc->min_capacity = min_capacity; 8158 sdg->sgc->max_capacity = max_capacity; 8159 } 8160 8161 /* 8162 * Check whether the capacity of the rq has been noticeably reduced by side 8163 * activity. The imbalance_pct is used for the threshold. 8164 * Return true is the capacity is reduced 8165 */ 8166 static inline int 8167 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8168 { 8169 return ((rq->cpu_capacity * sd->imbalance_pct) < 8170 (rq->cpu_capacity_orig * 100)); 8171 } 8172 8173 /* 8174 * Check whether a rq has a misfit task and if it looks like we can actually 8175 * help that task: we can migrate the task to a CPU of higher capacity, or 8176 * the task's current CPU is heavily pressured. 8177 */ 8178 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8179 { 8180 return rq->misfit_task_load && 8181 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8182 check_cpu_capacity(rq, sd)); 8183 } 8184 8185 /* 8186 * Group imbalance indicates (and tries to solve) the problem where balancing 8187 * groups is inadequate due to ->cpus_ptr constraints. 8188 * 8189 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8190 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8191 * Something like: 8192 * 8193 * { 0 1 2 3 } { 4 5 6 7 } 8194 * * * * * 8195 * 8196 * If we were to balance group-wise we'd place two tasks in the first group and 8197 * two tasks in the second group. Clearly this is undesired as it will overload 8198 * cpu 3 and leave one of the CPUs in the second group unused. 8199 * 8200 * The current solution to this issue is detecting the skew in the first group 8201 * by noticing the lower domain failed to reach balance and had difficulty 8202 * moving tasks due to affinity constraints. 8203 * 8204 * When this is so detected; this group becomes a candidate for busiest; see 8205 * update_sd_pick_busiest(). And calculate_imbalance() and 8206 * find_busiest_group() avoid some of the usual balance conditions to allow it 8207 * to create an effective group imbalance. 8208 * 8209 * This is a somewhat tricky proposition since the next run might not find the 8210 * group imbalance and decide the groups need to be balanced again. A most 8211 * subtle and fragile situation. 8212 */ 8213 8214 static inline int sg_imbalanced(struct sched_group *group) 8215 { 8216 return group->sgc->imbalance; 8217 } 8218 8219 /* 8220 * group_has_capacity returns true if the group has spare capacity that could 8221 * be used by some tasks. 8222 * We consider that a group has spare capacity if the * number of task is 8223 * smaller than the number of CPUs or if the utilization is lower than the 8224 * available capacity for CFS tasks. 8225 * For the latter, we use a threshold to stabilize the state, to take into 8226 * account the variance of the tasks' load and to return true if the available 8227 * capacity in meaningful for the load balancer. 8228 * As an example, an available capacity of 1% can appear but it doesn't make 8229 * any benefit for the load balance. 8230 */ 8231 static inline bool 8232 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8233 { 8234 if (sgs->sum_nr_running < sgs->group_weight) 8235 return true; 8236 8237 if ((sgs->group_capacity * imbalance_pct) < 8238 (sgs->group_runnable * 100)) 8239 return false; 8240 8241 if ((sgs->group_capacity * 100) > 8242 (sgs->group_util * imbalance_pct)) 8243 return true; 8244 8245 return false; 8246 } 8247 8248 /* 8249 * group_is_overloaded returns true if the group has more tasks than it can 8250 * handle. 8251 * group_is_overloaded is not equals to !group_has_capacity because a group 8252 * with the exact right number of tasks, has no more spare capacity but is not 8253 * overloaded so both group_has_capacity and group_is_overloaded return 8254 * false. 8255 */ 8256 static inline bool 8257 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8258 { 8259 if (sgs->sum_nr_running <= sgs->group_weight) 8260 return false; 8261 8262 if ((sgs->group_capacity * 100) < 8263 (sgs->group_util * imbalance_pct)) 8264 return true; 8265 8266 if ((sgs->group_capacity * imbalance_pct) < 8267 (sgs->group_runnable * 100)) 8268 return true; 8269 8270 return false; 8271 } 8272 8273 /* 8274 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 8275 * per-CPU capacity than sched_group ref. 8276 */ 8277 static inline bool 8278 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8279 { 8280 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity); 8281 } 8282 8283 /* 8284 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 8285 * per-CPU capacity_orig than sched_group ref. 8286 */ 8287 static inline bool 8288 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8289 { 8290 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity); 8291 } 8292 8293 static inline enum 8294 group_type group_classify(unsigned int imbalance_pct, 8295 struct sched_group *group, 8296 struct sg_lb_stats *sgs) 8297 { 8298 if (group_is_overloaded(imbalance_pct, sgs)) 8299 return group_overloaded; 8300 8301 if (sg_imbalanced(group)) 8302 return group_imbalanced; 8303 8304 if (sgs->group_asym_packing) 8305 return group_asym_packing; 8306 8307 if (sgs->group_misfit_task_load) 8308 return group_misfit_task; 8309 8310 if (!group_has_capacity(imbalance_pct, sgs)) 8311 return group_fully_busy; 8312 8313 return group_has_spare; 8314 } 8315 8316 static bool update_nohz_stats(struct rq *rq, bool force) 8317 { 8318 #ifdef CONFIG_NO_HZ_COMMON 8319 unsigned int cpu = rq->cpu; 8320 8321 if (!rq->has_blocked_load) 8322 return false; 8323 8324 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 8325 return false; 8326 8327 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 8328 return true; 8329 8330 update_blocked_averages(cpu); 8331 8332 return rq->has_blocked_load; 8333 #else 8334 return false; 8335 #endif 8336 } 8337 8338 /** 8339 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8340 * @env: The load balancing environment. 8341 * @group: sched_group whose statistics are to be updated. 8342 * @sgs: variable to hold the statistics for this group. 8343 * @sg_status: Holds flag indicating the status of the sched_group 8344 */ 8345 static inline void update_sg_lb_stats(struct lb_env *env, 8346 struct sched_group *group, 8347 struct sg_lb_stats *sgs, 8348 int *sg_status) 8349 { 8350 int i, nr_running, local_group; 8351 8352 memset(sgs, 0, sizeof(*sgs)); 8353 8354 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8355 8356 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8357 struct rq *rq = cpu_rq(i); 8358 8359 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8360 env->flags |= LBF_NOHZ_AGAIN; 8361 8362 sgs->group_load += cpu_load(rq); 8363 sgs->group_util += cpu_util(i); 8364 sgs->group_runnable += cpu_runnable(rq); 8365 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8366 8367 nr_running = rq->nr_running; 8368 sgs->sum_nr_running += nr_running; 8369 8370 if (nr_running > 1) 8371 *sg_status |= SG_OVERLOAD; 8372 8373 if (cpu_overutilized(i)) 8374 *sg_status |= SG_OVERUTILIZED; 8375 8376 #ifdef CONFIG_NUMA_BALANCING 8377 sgs->nr_numa_running += rq->nr_numa_running; 8378 sgs->nr_preferred_running += rq->nr_preferred_running; 8379 #endif 8380 /* 8381 * No need to call idle_cpu() if nr_running is not 0 8382 */ 8383 if (!nr_running && idle_cpu(i)) { 8384 sgs->idle_cpus++; 8385 /* Idle cpu can't have misfit task */ 8386 continue; 8387 } 8388 8389 if (local_group) 8390 continue; 8391 8392 /* Check for a misfit task on the cpu */ 8393 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8394 sgs->group_misfit_task_load < rq->misfit_task_load) { 8395 sgs->group_misfit_task_load = rq->misfit_task_load; 8396 *sg_status |= SG_OVERLOAD; 8397 } 8398 } 8399 8400 /* Check if dst CPU is idle and preferred to this group */ 8401 if (env->sd->flags & SD_ASYM_PACKING && 8402 env->idle != CPU_NOT_IDLE && 8403 sgs->sum_h_nr_running && 8404 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) { 8405 sgs->group_asym_packing = 1; 8406 } 8407 8408 sgs->group_capacity = group->sgc->capacity; 8409 8410 sgs->group_weight = group->group_weight; 8411 8412 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8413 8414 /* Computing avg_load makes sense only when group is overloaded */ 8415 if (sgs->group_type == group_overloaded) 8416 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8417 sgs->group_capacity; 8418 } 8419 8420 /** 8421 * update_sd_pick_busiest - return 1 on busiest group 8422 * @env: The load balancing environment. 8423 * @sds: sched_domain statistics 8424 * @sg: sched_group candidate to be checked for being the busiest 8425 * @sgs: sched_group statistics 8426 * 8427 * Determine if @sg is a busier group than the previously selected 8428 * busiest group. 8429 * 8430 * Return: %true if @sg is a busier group than the previously selected 8431 * busiest group. %false otherwise. 8432 */ 8433 static bool update_sd_pick_busiest(struct lb_env *env, 8434 struct sd_lb_stats *sds, 8435 struct sched_group *sg, 8436 struct sg_lb_stats *sgs) 8437 { 8438 struct sg_lb_stats *busiest = &sds->busiest_stat; 8439 8440 /* Make sure that there is at least one task to pull */ 8441 if (!sgs->sum_h_nr_running) 8442 return false; 8443 8444 /* 8445 * Don't try to pull misfit tasks we can't help. 8446 * We can use max_capacity here as reduction in capacity on some 8447 * CPUs in the group should either be possible to resolve 8448 * internally or be covered by avg_load imbalance (eventually). 8449 */ 8450 if (sgs->group_type == group_misfit_task && 8451 (!group_smaller_max_cpu_capacity(sg, sds->local) || 8452 sds->local_stat.group_type != group_has_spare)) 8453 return false; 8454 8455 if (sgs->group_type > busiest->group_type) 8456 return true; 8457 8458 if (sgs->group_type < busiest->group_type) 8459 return false; 8460 8461 /* 8462 * The candidate and the current busiest group are the same type of 8463 * group. Let check which one is the busiest according to the type. 8464 */ 8465 8466 switch (sgs->group_type) { 8467 case group_overloaded: 8468 /* Select the overloaded group with highest avg_load. */ 8469 if (sgs->avg_load <= busiest->avg_load) 8470 return false; 8471 break; 8472 8473 case group_imbalanced: 8474 /* 8475 * Select the 1st imbalanced group as we don't have any way to 8476 * choose one more than another. 8477 */ 8478 return false; 8479 8480 case group_asym_packing: 8481 /* Prefer to move from lowest priority CPU's work */ 8482 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8483 return false; 8484 break; 8485 8486 case group_misfit_task: 8487 /* 8488 * If we have more than one misfit sg go with the biggest 8489 * misfit. 8490 */ 8491 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8492 return false; 8493 break; 8494 8495 case group_fully_busy: 8496 /* 8497 * Select the fully busy group with highest avg_load. In 8498 * theory, there is no need to pull task from such kind of 8499 * group because tasks have all compute capacity that they need 8500 * but we can still improve the overall throughput by reducing 8501 * contention when accessing shared HW resources. 8502 * 8503 * XXX for now avg_load is not computed and always 0 so we 8504 * select the 1st one. 8505 */ 8506 if (sgs->avg_load <= busiest->avg_load) 8507 return false; 8508 break; 8509 8510 case group_has_spare: 8511 /* 8512 * Select not overloaded group with lowest number of idle cpus 8513 * and highest number of running tasks. We could also compare 8514 * the spare capacity which is more stable but it can end up 8515 * that the group has less spare capacity but finally more idle 8516 * CPUs which means less opportunity to pull tasks. 8517 */ 8518 if (sgs->idle_cpus > busiest->idle_cpus) 8519 return false; 8520 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8521 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8522 return false; 8523 8524 break; 8525 } 8526 8527 /* 8528 * Candidate sg has no more than one task per CPU and has higher 8529 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8530 * throughput. Maximize throughput, power/energy consequences are not 8531 * considered. 8532 */ 8533 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8534 (sgs->group_type <= group_fully_busy) && 8535 (group_smaller_min_cpu_capacity(sds->local, sg))) 8536 return false; 8537 8538 return true; 8539 } 8540 8541 #ifdef CONFIG_NUMA_BALANCING 8542 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8543 { 8544 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8545 return regular; 8546 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8547 return remote; 8548 return all; 8549 } 8550 8551 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8552 { 8553 if (rq->nr_running > rq->nr_numa_running) 8554 return regular; 8555 if (rq->nr_running > rq->nr_preferred_running) 8556 return remote; 8557 return all; 8558 } 8559 #else 8560 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8561 { 8562 return all; 8563 } 8564 8565 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8566 { 8567 return regular; 8568 } 8569 #endif /* CONFIG_NUMA_BALANCING */ 8570 8571 8572 struct sg_lb_stats; 8573 8574 /* 8575 * task_running_on_cpu - return 1 if @p is running on @cpu. 8576 */ 8577 8578 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8579 { 8580 /* Task has no contribution or is new */ 8581 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8582 return 0; 8583 8584 if (task_on_rq_queued(p)) 8585 return 1; 8586 8587 return 0; 8588 } 8589 8590 /** 8591 * idle_cpu_without - would a given CPU be idle without p ? 8592 * @cpu: the processor on which idleness is tested. 8593 * @p: task which should be ignored. 8594 * 8595 * Return: 1 if the CPU would be idle. 0 otherwise. 8596 */ 8597 static int idle_cpu_without(int cpu, struct task_struct *p) 8598 { 8599 struct rq *rq = cpu_rq(cpu); 8600 8601 if (rq->curr != rq->idle && rq->curr != p) 8602 return 0; 8603 8604 /* 8605 * rq->nr_running can't be used but an updated version without the 8606 * impact of p on cpu must be used instead. The updated nr_running 8607 * be computed and tested before calling idle_cpu_without(). 8608 */ 8609 8610 #ifdef CONFIG_SMP 8611 if (rq->ttwu_pending) 8612 return 0; 8613 #endif 8614 8615 return 1; 8616 } 8617 8618 /* 8619 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8620 * @sd: The sched_domain level to look for idlest group. 8621 * @group: sched_group whose statistics are to be updated. 8622 * @sgs: variable to hold the statistics for this group. 8623 * @p: The task for which we look for the idlest group/CPU. 8624 */ 8625 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8626 struct sched_group *group, 8627 struct sg_lb_stats *sgs, 8628 struct task_struct *p) 8629 { 8630 int i, nr_running; 8631 8632 memset(sgs, 0, sizeof(*sgs)); 8633 8634 for_each_cpu(i, sched_group_span(group)) { 8635 struct rq *rq = cpu_rq(i); 8636 unsigned int local; 8637 8638 sgs->group_load += cpu_load_without(rq, p); 8639 sgs->group_util += cpu_util_without(i, p); 8640 sgs->group_runnable += cpu_runnable_without(rq, p); 8641 local = task_running_on_cpu(i, p); 8642 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8643 8644 nr_running = rq->nr_running - local; 8645 sgs->sum_nr_running += nr_running; 8646 8647 /* 8648 * No need to call idle_cpu_without() if nr_running is not 0 8649 */ 8650 if (!nr_running && idle_cpu_without(i, p)) 8651 sgs->idle_cpus++; 8652 8653 } 8654 8655 /* Check if task fits in the group */ 8656 if (sd->flags & SD_ASYM_CPUCAPACITY && 8657 !task_fits_capacity(p, group->sgc->max_capacity)) { 8658 sgs->group_misfit_task_load = 1; 8659 } 8660 8661 sgs->group_capacity = group->sgc->capacity; 8662 8663 sgs->group_weight = group->group_weight; 8664 8665 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8666 8667 /* 8668 * Computing avg_load makes sense only when group is fully busy or 8669 * overloaded 8670 */ 8671 if (sgs->group_type == group_fully_busy || 8672 sgs->group_type == group_overloaded) 8673 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8674 sgs->group_capacity; 8675 } 8676 8677 static bool update_pick_idlest(struct sched_group *idlest, 8678 struct sg_lb_stats *idlest_sgs, 8679 struct sched_group *group, 8680 struct sg_lb_stats *sgs) 8681 { 8682 if (sgs->group_type < idlest_sgs->group_type) 8683 return true; 8684 8685 if (sgs->group_type > idlest_sgs->group_type) 8686 return false; 8687 8688 /* 8689 * The candidate and the current idlest group are the same type of 8690 * group. Let check which one is the idlest according to the type. 8691 */ 8692 8693 switch (sgs->group_type) { 8694 case group_overloaded: 8695 case group_fully_busy: 8696 /* Select the group with lowest avg_load. */ 8697 if (idlest_sgs->avg_load <= sgs->avg_load) 8698 return false; 8699 break; 8700 8701 case group_imbalanced: 8702 case group_asym_packing: 8703 /* Those types are not used in the slow wakeup path */ 8704 return false; 8705 8706 case group_misfit_task: 8707 /* Select group with the highest max capacity */ 8708 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 8709 return false; 8710 break; 8711 8712 case group_has_spare: 8713 /* Select group with most idle CPUs */ 8714 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 8715 return false; 8716 8717 /* Select group with lowest group_util */ 8718 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 8719 idlest_sgs->group_util <= sgs->group_util) 8720 return false; 8721 8722 break; 8723 } 8724 8725 return true; 8726 } 8727 8728 /* 8729 * find_idlest_group() finds and returns the least busy CPU group within the 8730 * domain. 8731 * 8732 * Assumes p is allowed on at least one CPU in sd. 8733 */ 8734 static struct sched_group * 8735 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 8736 { 8737 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 8738 struct sg_lb_stats local_sgs, tmp_sgs; 8739 struct sg_lb_stats *sgs; 8740 unsigned long imbalance; 8741 struct sg_lb_stats idlest_sgs = { 8742 .avg_load = UINT_MAX, 8743 .group_type = group_overloaded, 8744 }; 8745 8746 imbalance = scale_load_down(NICE_0_LOAD) * 8747 (sd->imbalance_pct-100) / 100; 8748 8749 do { 8750 int local_group; 8751 8752 /* Skip over this group if it has no CPUs allowed */ 8753 if (!cpumask_intersects(sched_group_span(group), 8754 p->cpus_ptr)) 8755 continue; 8756 8757 local_group = cpumask_test_cpu(this_cpu, 8758 sched_group_span(group)); 8759 8760 if (local_group) { 8761 sgs = &local_sgs; 8762 local = group; 8763 } else { 8764 sgs = &tmp_sgs; 8765 } 8766 8767 update_sg_wakeup_stats(sd, group, sgs, p); 8768 8769 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 8770 idlest = group; 8771 idlest_sgs = *sgs; 8772 } 8773 8774 } while (group = group->next, group != sd->groups); 8775 8776 8777 /* There is no idlest group to push tasks to */ 8778 if (!idlest) 8779 return NULL; 8780 8781 /* The local group has been skipped because of CPU affinity */ 8782 if (!local) 8783 return idlest; 8784 8785 /* 8786 * If the local group is idler than the selected idlest group 8787 * don't try and push the task. 8788 */ 8789 if (local_sgs.group_type < idlest_sgs.group_type) 8790 return NULL; 8791 8792 /* 8793 * If the local group is busier than the selected idlest group 8794 * try and push the task. 8795 */ 8796 if (local_sgs.group_type > idlest_sgs.group_type) 8797 return idlest; 8798 8799 switch (local_sgs.group_type) { 8800 case group_overloaded: 8801 case group_fully_busy: 8802 /* 8803 * When comparing groups across NUMA domains, it's possible for 8804 * the local domain to be very lightly loaded relative to the 8805 * remote domains but "imbalance" skews the comparison making 8806 * remote CPUs look much more favourable. When considering 8807 * cross-domain, add imbalance to the load on the remote node 8808 * and consider staying local. 8809 */ 8810 8811 if ((sd->flags & SD_NUMA) && 8812 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 8813 return NULL; 8814 8815 /* 8816 * If the local group is less loaded than the selected 8817 * idlest group don't try and push any tasks. 8818 */ 8819 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 8820 return NULL; 8821 8822 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 8823 return NULL; 8824 break; 8825 8826 case group_imbalanced: 8827 case group_asym_packing: 8828 /* Those type are not used in the slow wakeup path */ 8829 return NULL; 8830 8831 case group_misfit_task: 8832 /* Select group with the highest max capacity */ 8833 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 8834 return NULL; 8835 break; 8836 8837 case group_has_spare: 8838 if (sd->flags & SD_NUMA) { 8839 #ifdef CONFIG_NUMA_BALANCING 8840 int idlest_cpu; 8841 /* 8842 * If there is spare capacity at NUMA, try to select 8843 * the preferred node 8844 */ 8845 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 8846 return NULL; 8847 8848 idlest_cpu = cpumask_first(sched_group_span(idlest)); 8849 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 8850 return idlest; 8851 #endif 8852 /* 8853 * Otherwise, keep the task on this node to stay close 8854 * its wakeup source and improve locality. If there is 8855 * a real need of migration, periodic load balance will 8856 * take care of it. 8857 */ 8858 if (local_sgs.idle_cpus) 8859 return NULL; 8860 } 8861 8862 /* 8863 * Select group with highest number of idle CPUs. We could also 8864 * compare the utilization which is more stable but it can end 8865 * up that the group has less spare capacity but finally more 8866 * idle CPUs which means more opportunity to run task. 8867 */ 8868 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 8869 return NULL; 8870 break; 8871 } 8872 8873 return idlest; 8874 } 8875 8876 /** 8877 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8878 * @env: The load balancing environment. 8879 * @sds: variable to hold the statistics for this sched_domain. 8880 */ 8881 8882 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8883 { 8884 struct sched_domain *child = env->sd->child; 8885 struct sched_group *sg = env->sd->groups; 8886 struct sg_lb_stats *local = &sds->local_stat; 8887 struct sg_lb_stats tmp_sgs; 8888 int sg_status = 0; 8889 8890 #ifdef CONFIG_NO_HZ_COMMON 8891 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8892 env->flags |= LBF_NOHZ_STATS; 8893 #endif 8894 8895 do { 8896 struct sg_lb_stats *sgs = &tmp_sgs; 8897 int local_group; 8898 8899 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8900 if (local_group) { 8901 sds->local = sg; 8902 sgs = local; 8903 8904 if (env->idle != CPU_NEWLY_IDLE || 8905 time_after_eq(jiffies, sg->sgc->next_update)) 8906 update_group_capacity(env->sd, env->dst_cpu); 8907 } 8908 8909 update_sg_lb_stats(env, sg, sgs, &sg_status); 8910 8911 if (local_group) 8912 goto next_group; 8913 8914 8915 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8916 sds->busiest = sg; 8917 sds->busiest_stat = *sgs; 8918 } 8919 8920 next_group: 8921 /* Now, start updating sd_lb_stats */ 8922 sds->total_load += sgs->group_load; 8923 sds->total_capacity += sgs->group_capacity; 8924 8925 sg = sg->next; 8926 } while (sg != env->sd->groups); 8927 8928 /* Tag domain that child domain prefers tasks go to siblings first */ 8929 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8930 8931 #ifdef CONFIG_NO_HZ_COMMON 8932 if ((env->flags & LBF_NOHZ_AGAIN) && 8933 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8934 8935 WRITE_ONCE(nohz.next_blocked, 8936 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8937 } 8938 #endif 8939 8940 if (env->sd->flags & SD_NUMA) 8941 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8942 8943 if (!env->sd->parent) { 8944 struct root_domain *rd = env->dst_rq->rd; 8945 8946 /* update overload indicator if we are at root domain */ 8947 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 8948 8949 /* Update over-utilization (tipping point, U >= 0) indicator */ 8950 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 8951 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 8952 } else if (sg_status & SG_OVERUTILIZED) { 8953 struct root_domain *rd = env->dst_rq->rd; 8954 8955 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 8956 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 8957 } 8958 } 8959 8960 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running) 8961 { 8962 unsigned int imbalance_min; 8963 8964 /* 8965 * Allow a small imbalance based on a simple pair of communicating 8966 * tasks that remain local when the source domain is almost idle. 8967 */ 8968 imbalance_min = 2; 8969 if (src_nr_running <= imbalance_min) 8970 return 0; 8971 8972 return imbalance; 8973 } 8974 8975 /** 8976 * calculate_imbalance - Calculate the amount of imbalance present within the 8977 * groups of a given sched_domain during load balance. 8978 * @env: load balance environment 8979 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8980 */ 8981 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8982 { 8983 struct sg_lb_stats *local, *busiest; 8984 8985 local = &sds->local_stat; 8986 busiest = &sds->busiest_stat; 8987 8988 if (busiest->group_type == group_misfit_task) { 8989 /* Set imbalance to allow misfit tasks to be balanced. */ 8990 env->migration_type = migrate_misfit; 8991 env->imbalance = 1; 8992 return; 8993 } 8994 8995 if (busiest->group_type == group_asym_packing) { 8996 /* 8997 * In case of asym capacity, we will try to migrate all load to 8998 * the preferred CPU. 8999 */ 9000 env->migration_type = migrate_task; 9001 env->imbalance = busiest->sum_h_nr_running; 9002 return; 9003 } 9004 9005 if (busiest->group_type == group_imbalanced) { 9006 /* 9007 * In the group_imb case we cannot rely on group-wide averages 9008 * to ensure CPU-load equilibrium, try to move any task to fix 9009 * the imbalance. The next load balance will take care of 9010 * balancing back the system. 9011 */ 9012 env->migration_type = migrate_task; 9013 env->imbalance = 1; 9014 return; 9015 } 9016 9017 /* 9018 * Try to use spare capacity of local group without overloading it or 9019 * emptying busiest. 9020 */ 9021 if (local->group_type == group_has_spare) { 9022 if (busiest->group_type > group_fully_busy) { 9023 /* 9024 * If busiest is overloaded, try to fill spare 9025 * capacity. This might end up creating spare capacity 9026 * in busiest or busiest still being overloaded but 9027 * there is no simple way to directly compute the 9028 * amount of load to migrate in order to balance the 9029 * system. 9030 */ 9031 env->migration_type = migrate_util; 9032 env->imbalance = max(local->group_capacity, local->group_util) - 9033 local->group_util; 9034 9035 /* 9036 * In some cases, the group's utilization is max or even 9037 * higher than capacity because of migrations but the 9038 * local CPU is (newly) idle. There is at least one 9039 * waiting task in this overloaded busiest group. Let's 9040 * try to pull it. 9041 */ 9042 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9043 env->migration_type = migrate_task; 9044 env->imbalance = 1; 9045 } 9046 9047 return; 9048 } 9049 9050 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9051 unsigned int nr_diff = busiest->sum_nr_running; 9052 /* 9053 * When prefer sibling, evenly spread running tasks on 9054 * groups. 9055 */ 9056 env->migration_type = migrate_task; 9057 lsub_positive(&nr_diff, local->sum_nr_running); 9058 env->imbalance = nr_diff >> 1; 9059 } else { 9060 9061 /* 9062 * If there is no overload, we just want to even the number of 9063 * idle cpus. 9064 */ 9065 env->migration_type = migrate_task; 9066 env->imbalance = max_t(long, 0, (local->idle_cpus - 9067 busiest->idle_cpus) >> 1); 9068 } 9069 9070 /* Consider allowing a small imbalance between NUMA groups */ 9071 if (env->sd->flags & SD_NUMA) 9072 env->imbalance = adjust_numa_imbalance(env->imbalance, 9073 busiest->sum_nr_running); 9074 9075 return; 9076 } 9077 9078 /* 9079 * Local is fully busy but has to take more load to relieve the 9080 * busiest group 9081 */ 9082 if (local->group_type < group_overloaded) { 9083 /* 9084 * Local will become overloaded so the avg_load metrics are 9085 * finally needed. 9086 */ 9087 9088 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9089 local->group_capacity; 9090 9091 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9092 sds->total_capacity; 9093 /* 9094 * If the local group is more loaded than the selected 9095 * busiest group don't try to pull any tasks. 9096 */ 9097 if (local->avg_load >= busiest->avg_load) { 9098 env->imbalance = 0; 9099 return; 9100 } 9101 } 9102 9103 /* 9104 * Both group are or will become overloaded and we're trying to get all 9105 * the CPUs to the average_load, so we don't want to push ourselves 9106 * above the average load, nor do we wish to reduce the max loaded CPU 9107 * below the average load. At the same time, we also don't want to 9108 * reduce the group load below the group capacity. Thus we look for 9109 * the minimum possible imbalance. 9110 */ 9111 env->migration_type = migrate_load; 9112 env->imbalance = min( 9113 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9114 (sds->avg_load - local->avg_load) * local->group_capacity 9115 ) / SCHED_CAPACITY_SCALE; 9116 } 9117 9118 /******* find_busiest_group() helpers end here *********************/ 9119 9120 /* 9121 * Decision matrix according to the local and busiest group type: 9122 * 9123 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9124 * has_spare nr_idle balanced N/A N/A balanced balanced 9125 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9126 * misfit_task force N/A N/A N/A force force 9127 * asym_packing force force N/A N/A force force 9128 * imbalanced force force N/A N/A force force 9129 * overloaded force force N/A N/A force avg_load 9130 * 9131 * N/A : Not Applicable because already filtered while updating 9132 * statistics. 9133 * balanced : The system is balanced for these 2 groups. 9134 * force : Calculate the imbalance as load migration is probably needed. 9135 * avg_load : Only if imbalance is significant enough. 9136 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9137 * different in groups. 9138 */ 9139 9140 /** 9141 * find_busiest_group - Returns the busiest group within the sched_domain 9142 * if there is an imbalance. 9143 * 9144 * Also calculates the amount of runnable load which should be moved 9145 * to restore balance. 9146 * 9147 * @env: The load balancing environment. 9148 * 9149 * Return: - The busiest group if imbalance exists. 9150 */ 9151 static struct sched_group *find_busiest_group(struct lb_env *env) 9152 { 9153 struct sg_lb_stats *local, *busiest; 9154 struct sd_lb_stats sds; 9155 9156 init_sd_lb_stats(&sds); 9157 9158 /* 9159 * Compute the various statistics relevant for load balancing at 9160 * this level. 9161 */ 9162 update_sd_lb_stats(env, &sds); 9163 9164 if (sched_energy_enabled()) { 9165 struct root_domain *rd = env->dst_rq->rd; 9166 9167 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9168 goto out_balanced; 9169 } 9170 9171 local = &sds.local_stat; 9172 busiest = &sds.busiest_stat; 9173 9174 /* There is no busy sibling group to pull tasks from */ 9175 if (!sds.busiest) 9176 goto out_balanced; 9177 9178 /* Misfit tasks should be dealt with regardless of the avg load */ 9179 if (busiest->group_type == group_misfit_task) 9180 goto force_balance; 9181 9182 /* ASYM feature bypasses nice load balance check */ 9183 if (busiest->group_type == group_asym_packing) 9184 goto force_balance; 9185 9186 /* 9187 * If the busiest group is imbalanced the below checks don't 9188 * work because they assume all things are equal, which typically 9189 * isn't true due to cpus_ptr constraints and the like. 9190 */ 9191 if (busiest->group_type == group_imbalanced) 9192 goto force_balance; 9193 9194 /* 9195 * If the local group is busier than the selected busiest group 9196 * don't try and pull any tasks. 9197 */ 9198 if (local->group_type > busiest->group_type) 9199 goto out_balanced; 9200 9201 /* 9202 * When groups are overloaded, use the avg_load to ensure fairness 9203 * between tasks. 9204 */ 9205 if (local->group_type == group_overloaded) { 9206 /* 9207 * If the local group is more loaded than the selected 9208 * busiest group don't try to pull any tasks. 9209 */ 9210 if (local->avg_load >= busiest->avg_load) 9211 goto out_balanced; 9212 9213 /* XXX broken for overlapping NUMA groups */ 9214 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9215 sds.total_capacity; 9216 9217 /* 9218 * Don't pull any tasks if this group is already above the 9219 * domain average load. 9220 */ 9221 if (local->avg_load >= sds.avg_load) 9222 goto out_balanced; 9223 9224 /* 9225 * If the busiest group is more loaded, use imbalance_pct to be 9226 * conservative. 9227 */ 9228 if (100 * busiest->avg_load <= 9229 env->sd->imbalance_pct * local->avg_load) 9230 goto out_balanced; 9231 } 9232 9233 /* Try to move all excess tasks to child's sibling domain */ 9234 if (sds.prefer_sibling && local->group_type == group_has_spare && 9235 busiest->sum_nr_running > local->sum_nr_running + 1) 9236 goto force_balance; 9237 9238 if (busiest->group_type != group_overloaded) { 9239 if (env->idle == CPU_NOT_IDLE) 9240 /* 9241 * If the busiest group is not overloaded (and as a 9242 * result the local one too) but this CPU is already 9243 * busy, let another idle CPU try to pull task. 9244 */ 9245 goto out_balanced; 9246 9247 if (busiest->group_weight > 1 && 9248 local->idle_cpus <= (busiest->idle_cpus + 1)) 9249 /* 9250 * If the busiest group is not overloaded 9251 * and there is no imbalance between this and busiest 9252 * group wrt idle CPUs, it is balanced. The imbalance 9253 * becomes significant if the diff is greater than 1 9254 * otherwise we might end up to just move the imbalance 9255 * on another group. Of course this applies only if 9256 * there is more than 1 CPU per group. 9257 */ 9258 goto out_balanced; 9259 9260 if (busiest->sum_h_nr_running == 1) 9261 /* 9262 * busiest doesn't have any tasks waiting to run 9263 */ 9264 goto out_balanced; 9265 } 9266 9267 force_balance: 9268 /* Looks like there is an imbalance. Compute it */ 9269 calculate_imbalance(env, &sds); 9270 return env->imbalance ? sds.busiest : NULL; 9271 9272 out_balanced: 9273 env->imbalance = 0; 9274 return NULL; 9275 } 9276 9277 /* 9278 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9279 */ 9280 static struct rq *find_busiest_queue(struct lb_env *env, 9281 struct sched_group *group) 9282 { 9283 struct rq *busiest = NULL, *rq; 9284 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9285 unsigned int busiest_nr = 0; 9286 int i; 9287 9288 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9289 unsigned long capacity, load, util; 9290 unsigned int nr_running; 9291 enum fbq_type rt; 9292 9293 rq = cpu_rq(i); 9294 rt = fbq_classify_rq(rq); 9295 9296 /* 9297 * We classify groups/runqueues into three groups: 9298 * - regular: there are !numa tasks 9299 * - remote: there are numa tasks that run on the 'wrong' node 9300 * - all: there is no distinction 9301 * 9302 * In order to avoid migrating ideally placed numa tasks, 9303 * ignore those when there's better options. 9304 * 9305 * If we ignore the actual busiest queue to migrate another 9306 * task, the next balance pass can still reduce the busiest 9307 * queue by moving tasks around inside the node. 9308 * 9309 * If we cannot move enough load due to this classification 9310 * the next pass will adjust the group classification and 9311 * allow migration of more tasks. 9312 * 9313 * Both cases only affect the total convergence complexity. 9314 */ 9315 if (rt > env->fbq_type) 9316 continue; 9317 9318 capacity = capacity_of(i); 9319 nr_running = rq->cfs.h_nr_running; 9320 9321 /* 9322 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9323 * eventually lead to active_balancing high->low capacity. 9324 * Higher per-CPU capacity is considered better than balancing 9325 * average load. 9326 */ 9327 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9328 capacity_of(env->dst_cpu) < capacity && 9329 nr_running == 1) 9330 continue; 9331 9332 switch (env->migration_type) { 9333 case migrate_load: 9334 /* 9335 * When comparing with load imbalance, use cpu_load() 9336 * which is not scaled with the CPU capacity. 9337 */ 9338 load = cpu_load(rq); 9339 9340 if (nr_running == 1 && load > env->imbalance && 9341 !check_cpu_capacity(rq, env->sd)) 9342 break; 9343 9344 /* 9345 * For the load comparisons with the other CPUs, 9346 * consider the cpu_load() scaled with the CPU 9347 * capacity, so that the load can be moved away 9348 * from the CPU that is potentially running at a 9349 * lower capacity. 9350 * 9351 * Thus we're looking for max(load_i / capacity_i), 9352 * crosswise multiplication to rid ourselves of the 9353 * division works out to: 9354 * load_i * capacity_j > load_j * capacity_i; 9355 * where j is our previous maximum. 9356 */ 9357 if (load * busiest_capacity > busiest_load * capacity) { 9358 busiest_load = load; 9359 busiest_capacity = capacity; 9360 busiest = rq; 9361 } 9362 break; 9363 9364 case migrate_util: 9365 util = cpu_util(cpu_of(rq)); 9366 9367 /* 9368 * Don't try to pull utilization from a CPU with one 9369 * running task. Whatever its utilization, we will fail 9370 * detach the task. 9371 */ 9372 if (nr_running <= 1) 9373 continue; 9374 9375 if (busiest_util < util) { 9376 busiest_util = util; 9377 busiest = rq; 9378 } 9379 break; 9380 9381 case migrate_task: 9382 if (busiest_nr < nr_running) { 9383 busiest_nr = nr_running; 9384 busiest = rq; 9385 } 9386 break; 9387 9388 case migrate_misfit: 9389 /* 9390 * For ASYM_CPUCAPACITY domains with misfit tasks we 9391 * simply seek the "biggest" misfit task. 9392 */ 9393 if (rq->misfit_task_load > busiest_load) { 9394 busiest_load = rq->misfit_task_load; 9395 busiest = rq; 9396 } 9397 9398 break; 9399 9400 } 9401 } 9402 9403 return busiest; 9404 } 9405 9406 /* 9407 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9408 * so long as it is large enough. 9409 */ 9410 #define MAX_PINNED_INTERVAL 512 9411 9412 static inline bool 9413 asym_active_balance(struct lb_env *env) 9414 { 9415 /* 9416 * ASYM_PACKING needs to force migrate tasks from busy but 9417 * lower priority CPUs in order to pack all tasks in the 9418 * highest priority CPUs. 9419 */ 9420 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9421 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9422 } 9423 9424 static inline bool 9425 voluntary_active_balance(struct lb_env *env) 9426 { 9427 struct sched_domain *sd = env->sd; 9428 9429 if (asym_active_balance(env)) 9430 return 1; 9431 9432 /* 9433 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9434 * It's worth migrating the task if the src_cpu's capacity is reduced 9435 * because of other sched_class or IRQs if more capacity stays 9436 * available on dst_cpu. 9437 */ 9438 if ((env->idle != CPU_NOT_IDLE) && 9439 (env->src_rq->cfs.h_nr_running == 1)) { 9440 if ((check_cpu_capacity(env->src_rq, sd)) && 9441 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9442 return 1; 9443 } 9444 9445 if (env->migration_type == migrate_misfit) 9446 return 1; 9447 9448 return 0; 9449 } 9450 9451 static int need_active_balance(struct lb_env *env) 9452 { 9453 struct sched_domain *sd = env->sd; 9454 9455 if (voluntary_active_balance(env)) 9456 return 1; 9457 9458 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 9459 } 9460 9461 static int active_load_balance_cpu_stop(void *data); 9462 9463 static int should_we_balance(struct lb_env *env) 9464 { 9465 struct sched_group *sg = env->sd->groups; 9466 int cpu; 9467 9468 /* 9469 * Ensure the balancing environment is consistent; can happen 9470 * when the softirq triggers 'during' hotplug. 9471 */ 9472 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9473 return 0; 9474 9475 /* 9476 * In the newly idle case, we will allow all the CPUs 9477 * to do the newly idle load balance. 9478 */ 9479 if (env->idle == CPU_NEWLY_IDLE) 9480 return 1; 9481 9482 /* Try to find first idle CPU */ 9483 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9484 if (!idle_cpu(cpu)) 9485 continue; 9486 9487 /* Are we the first idle CPU? */ 9488 return cpu == env->dst_cpu; 9489 } 9490 9491 /* Are we the first CPU of this group ? */ 9492 return group_balance_cpu(sg) == env->dst_cpu; 9493 } 9494 9495 /* 9496 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9497 * tasks if there is an imbalance. 9498 */ 9499 static int load_balance(int this_cpu, struct rq *this_rq, 9500 struct sched_domain *sd, enum cpu_idle_type idle, 9501 int *continue_balancing) 9502 { 9503 int ld_moved, cur_ld_moved, active_balance = 0; 9504 struct sched_domain *sd_parent = sd->parent; 9505 struct sched_group *group; 9506 struct rq *busiest; 9507 struct rq_flags rf; 9508 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9509 9510 struct lb_env env = { 9511 .sd = sd, 9512 .dst_cpu = this_cpu, 9513 .dst_rq = this_rq, 9514 .dst_grpmask = sched_group_span(sd->groups), 9515 .idle = idle, 9516 .loop_break = sched_nr_migrate_break, 9517 .cpus = cpus, 9518 .fbq_type = all, 9519 .tasks = LIST_HEAD_INIT(env.tasks), 9520 }; 9521 9522 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9523 9524 schedstat_inc(sd->lb_count[idle]); 9525 9526 redo: 9527 if (!should_we_balance(&env)) { 9528 *continue_balancing = 0; 9529 goto out_balanced; 9530 } 9531 9532 group = find_busiest_group(&env); 9533 if (!group) { 9534 schedstat_inc(sd->lb_nobusyg[idle]); 9535 goto out_balanced; 9536 } 9537 9538 busiest = find_busiest_queue(&env, group); 9539 if (!busiest) { 9540 schedstat_inc(sd->lb_nobusyq[idle]); 9541 goto out_balanced; 9542 } 9543 9544 BUG_ON(busiest == env.dst_rq); 9545 9546 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9547 9548 env.src_cpu = busiest->cpu; 9549 env.src_rq = busiest; 9550 9551 ld_moved = 0; 9552 if (busiest->nr_running > 1) { 9553 /* 9554 * Attempt to move tasks. If find_busiest_group has found 9555 * an imbalance but busiest->nr_running <= 1, the group is 9556 * still unbalanced. ld_moved simply stays zero, so it is 9557 * correctly treated as an imbalance. 9558 */ 9559 env.flags |= LBF_ALL_PINNED; 9560 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9561 9562 more_balance: 9563 rq_lock_irqsave(busiest, &rf); 9564 update_rq_clock(busiest); 9565 9566 /* 9567 * cur_ld_moved - load moved in current iteration 9568 * ld_moved - cumulative load moved across iterations 9569 */ 9570 cur_ld_moved = detach_tasks(&env); 9571 9572 /* 9573 * We've detached some tasks from busiest_rq. Every 9574 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9575 * unlock busiest->lock, and we are able to be sure 9576 * that nobody can manipulate the tasks in parallel. 9577 * See task_rq_lock() family for the details. 9578 */ 9579 9580 rq_unlock(busiest, &rf); 9581 9582 if (cur_ld_moved) { 9583 attach_tasks(&env); 9584 ld_moved += cur_ld_moved; 9585 } 9586 9587 local_irq_restore(rf.flags); 9588 9589 if (env.flags & LBF_NEED_BREAK) { 9590 env.flags &= ~LBF_NEED_BREAK; 9591 goto more_balance; 9592 } 9593 9594 /* 9595 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9596 * us and move them to an alternate dst_cpu in our sched_group 9597 * where they can run. The upper limit on how many times we 9598 * iterate on same src_cpu is dependent on number of CPUs in our 9599 * sched_group. 9600 * 9601 * This changes load balance semantics a bit on who can move 9602 * load to a given_cpu. In addition to the given_cpu itself 9603 * (or a ilb_cpu acting on its behalf where given_cpu is 9604 * nohz-idle), we now have balance_cpu in a position to move 9605 * load to given_cpu. In rare situations, this may cause 9606 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9607 * _independently_ and at _same_ time to move some load to 9608 * given_cpu) causing exceess load to be moved to given_cpu. 9609 * This however should not happen so much in practice and 9610 * moreover subsequent load balance cycles should correct the 9611 * excess load moved. 9612 */ 9613 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9614 9615 /* Prevent to re-select dst_cpu via env's CPUs */ 9616 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9617 9618 env.dst_rq = cpu_rq(env.new_dst_cpu); 9619 env.dst_cpu = env.new_dst_cpu; 9620 env.flags &= ~LBF_DST_PINNED; 9621 env.loop = 0; 9622 env.loop_break = sched_nr_migrate_break; 9623 9624 /* 9625 * Go back to "more_balance" rather than "redo" since we 9626 * need to continue with same src_cpu. 9627 */ 9628 goto more_balance; 9629 } 9630 9631 /* 9632 * We failed to reach balance because of affinity. 9633 */ 9634 if (sd_parent) { 9635 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9636 9637 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9638 *group_imbalance = 1; 9639 } 9640 9641 /* All tasks on this runqueue were pinned by CPU affinity */ 9642 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9643 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9644 /* 9645 * Attempting to continue load balancing at the current 9646 * sched_domain level only makes sense if there are 9647 * active CPUs remaining as possible busiest CPUs to 9648 * pull load from which are not contained within the 9649 * destination group that is receiving any migrated 9650 * load. 9651 */ 9652 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9653 env.loop = 0; 9654 env.loop_break = sched_nr_migrate_break; 9655 goto redo; 9656 } 9657 goto out_all_pinned; 9658 } 9659 } 9660 9661 if (!ld_moved) { 9662 schedstat_inc(sd->lb_failed[idle]); 9663 /* 9664 * Increment the failure counter only on periodic balance. 9665 * We do not want newidle balance, which can be very 9666 * frequent, pollute the failure counter causing 9667 * excessive cache_hot migrations and active balances. 9668 */ 9669 if (idle != CPU_NEWLY_IDLE) 9670 sd->nr_balance_failed++; 9671 9672 if (need_active_balance(&env)) { 9673 unsigned long flags; 9674 9675 raw_spin_lock_irqsave(&busiest->lock, flags); 9676 9677 /* 9678 * Don't kick the active_load_balance_cpu_stop, 9679 * if the curr task on busiest CPU can't be 9680 * moved to this_cpu: 9681 */ 9682 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 9683 raw_spin_unlock_irqrestore(&busiest->lock, 9684 flags); 9685 env.flags |= LBF_ALL_PINNED; 9686 goto out_one_pinned; 9687 } 9688 9689 /* 9690 * ->active_balance synchronizes accesses to 9691 * ->active_balance_work. Once set, it's cleared 9692 * only after active load balance is finished. 9693 */ 9694 if (!busiest->active_balance) { 9695 busiest->active_balance = 1; 9696 busiest->push_cpu = this_cpu; 9697 active_balance = 1; 9698 } 9699 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9700 9701 if (active_balance) { 9702 stop_one_cpu_nowait(cpu_of(busiest), 9703 active_load_balance_cpu_stop, busiest, 9704 &busiest->active_balance_work); 9705 } 9706 9707 /* We've kicked active balancing, force task migration. */ 9708 sd->nr_balance_failed = sd->cache_nice_tries+1; 9709 } 9710 } else 9711 sd->nr_balance_failed = 0; 9712 9713 if (likely(!active_balance) || voluntary_active_balance(&env)) { 9714 /* We were unbalanced, so reset the balancing interval */ 9715 sd->balance_interval = sd->min_interval; 9716 } else { 9717 /* 9718 * If we've begun active balancing, start to back off. This 9719 * case may not be covered by the all_pinned logic if there 9720 * is only 1 task on the busy runqueue (because we don't call 9721 * detach_tasks). 9722 */ 9723 if (sd->balance_interval < sd->max_interval) 9724 sd->balance_interval *= 2; 9725 } 9726 9727 goto out; 9728 9729 out_balanced: 9730 /* 9731 * We reach balance although we may have faced some affinity 9732 * constraints. Clear the imbalance flag only if other tasks got 9733 * a chance to move and fix the imbalance. 9734 */ 9735 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 9736 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9737 9738 if (*group_imbalance) 9739 *group_imbalance = 0; 9740 } 9741 9742 out_all_pinned: 9743 /* 9744 * We reach balance because all tasks are pinned at this level so 9745 * we can't migrate them. Let the imbalance flag set so parent level 9746 * can try to migrate them. 9747 */ 9748 schedstat_inc(sd->lb_balanced[idle]); 9749 9750 sd->nr_balance_failed = 0; 9751 9752 out_one_pinned: 9753 ld_moved = 0; 9754 9755 /* 9756 * newidle_balance() disregards balance intervals, so we could 9757 * repeatedly reach this code, which would lead to balance_interval 9758 * skyrocketting in a short amount of time. Skip the balance_interval 9759 * increase logic to avoid that. 9760 */ 9761 if (env.idle == CPU_NEWLY_IDLE) 9762 goto out; 9763 9764 /* tune up the balancing interval */ 9765 if ((env.flags & LBF_ALL_PINNED && 9766 sd->balance_interval < MAX_PINNED_INTERVAL) || 9767 sd->balance_interval < sd->max_interval) 9768 sd->balance_interval *= 2; 9769 out: 9770 return ld_moved; 9771 } 9772 9773 static inline unsigned long 9774 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9775 { 9776 unsigned long interval = sd->balance_interval; 9777 9778 if (cpu_busy) 9779 interval *= sd->busy_factor; 9780 9781 /* scale ms to jiffies */ 9782 interval = msecs_to_jiffies(interval); 9783 interval = clamp(interval, 1UL, max_load_balance_interval); 9784 9785 return interval; 9786 } 9787 9788 static inline void 9789 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9790 { 9791 unsigned long interval, next; 9792 9793 /* used by idle balance, so cpu_busy = 0 */ 9794 interval = get_sd_balance_interval(sd, 0); 9795 next = sd->last_balance + interval; 9796 9797 if (time_after(*next_balance, next)) 9798 *next_balance = next; 9799 } 9800 9801 /* 9802 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9803 * running tasks off the busiest CPU onto idle CPUs. It requires at 9804 * least 1 task to be running on each physical CPU where possible, and 9805 * avoids physical / logical imbalances. 9806 */ 9807 static int active_load_balance_cpu_stop(void *data) 9808 { 9809 struct rq *busiest_rq = data; 9810 int busiest_cpu = cpu_of(busiest_rq); 9811 int target_cpu = busiest_rq->push_cpu; 9812 struct rq *target_rq = cpu_rq(target_cpu); 9813 struct sched_domain *sd; 9814 struct task_struct *p = NULL; 9815 struct rq_flags rf; 9816 9817 rq_lock_irq(busiest_rq, &rf); 9818 /* 9819 * Between queueing the stop-work and running it is a hole in which 9820 * CPUs can become inactive. We should not move tasks from or to 9821 * inactive CPUs. 9822 */ 9823 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9824 goto out_unlock; 9825 9826 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9827 if (unlikely(busiest_cpu != smp_processor_id() || 9828 !busiest_rq->active_balance)) 9829 goto out_unlock; 9830 9831 /* Is there any task to move? */ 9832 if (busiest_rq->nr_running <= 1) 9833 goto out_unlock; 9834 9835 /* 9836 * This condition is "impossible", if it occurs 9837 * we need to fix it. Originally reported by 9838 * Bjorn Helgaas on a 128-CPU setup. 9839 */ 9840 BUG_ON(busiest_rq == target_rq); 9841 9842 /* Search for an sd spanning us and the target CPU. */ 9843 rcu_read_lock(); 9844 for_each_domain(target_cpu, sd) { 9845 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9846 break; 9847 } 9848 9849 if (likely(sd)) { 9850 struct lb_env env = { 9851 .sd = sd, 9852 .dst_cpu = target_cpu, 9853 .dst_rq = target_rq, 9854 .src_cpu = busiest_rq->cpu, 9855 .src_rq = busiest_rq, 9856 .idle = CPU_IDLE, 9857 /* 9858 * can_migrate_task() doesn't need to compute new_dst_cpu 9859 * for active balancing. Since we have CPU_IDLE, but no 9860 * @dst_grpmask we need to make that test go away with lying 9861 * about DST_PINNED. 9862 */ 9863 .flags = LBF_DST_PINNED, 9864 }; 9865 9866 schedstat_inc(sd->alb_count); 9867 update_rq_clock(busiest_rq); 9868 9869 p = detach_one_task(&env); 9870 if (p) { 9871 schedstat_inc(sd->alb_pushed); 9872 /* Active balancing done, reset the failure counter. */ 9873 sd->nr_balance_failed = 0; 9874 } else { 9875 schedstat_inc(sd->alb_failed); 9876 } 9877 } 9878 rcu_read_unlock(); 9879 out_unlock: 9880 busiest_rq->active_balance = 0; 9881 rq_unlock(busiest_rq, &rf); 9882 9883 if (p) 9884 attach_one_task(target_rq, p); 9885 9886 local_irq_enable(); 9887 9888 return 0; 9889 } 9890 9891 static DEFINE_SPINLOCK(balancing); 9892 9893 /* 9894 * Scale the max load_balance interval with the number of CPUs in the system. 9895 * This trades load-balance latency on larger machines for less cross talk. 9896 */ 9897 void update_max_interval(void) 9898 { 9899 max_load_balance_interval = HZ*num_online_cpus()/10; 9900 } 9901 9902 /* 9903 * It checks each scheduling domain to see if it is due to be balanced, 9904 * and initiates a balancing operation if so. 9905 * 9906 * Balancing parameters are set up in init_sched_domains. 9907 */ 9908 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9909 { 9910 int continue_balancing = 1; 9911 int cpu = rq->cpu; 9912 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 9913 unsigned long interval; 9914 struct sched_domain *sd; 9915 /* Earliest time when we have to do rebalance again */ 9916 unsigned long next_balance = jiffies + 60*HZ; 9917 int update_next_balance = 0; 9918 int need_serialize, need_decay = 0; 9919 u64 max_cost = 0; 9920 9921 rcu_read_lock(); 9922 for_each_domain(cpu, sd) { 9923 /* 9924 * Decay the newidle max times here because this is a regular 9925 * visit to all the domains. Decay ~1% per second. 9926 */ 9927 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9928 sd->max_newidle_lb_cost = 9929 (sd->max_newidle_lb_cost * 253) / 256; 9930 sd->next_decay_max_lb_cost = jiffies + HZ; 9931 need_decay = 1; 9932 } 9933 max_cost += sd->max_newidle_lb_cost; 9934 9935 /* 9936 * Stop the load balance at this level. There is another 9937 * CPU in our sched group which is doing load balancing more 9938 * actively. 9939 */ 9940 if (!continue_balancing) { 9941 if (need_decay) 9942 continue; 9943 break; 9944 } 9945 9946 interval = get_sd_balance_interval(sd, busy); 9947 9948 need_serialize = sd->flags & SD_SERIALIZE; 9949 if (need_serialize) { 9950 if (!spin_trylock(&balancing)) 9951 goto out; 9952 } 9953 9954 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9955 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9956 /* 9957 * The LBF_DST_PINNED logic could have changed 9958 * env->dst_cpu, so we can't know our idle 9959 * state even if we migrated tasks. Update it. 9960 */ 9961 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9962 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 9963 } 9964 sd->last_balance = jiffies; 9965 interval = get_sd_balance_interval(sd, busy); 9966 } 9967 if (need_serialize) 9968 spin_unlock(&balancing); 9969 out: 9970 if (time_after(next_balance, sd->last_balance + interval)) { 9971 next_balance = sd->last_balance + interval; 9972 update_next_balance = 1; 9973 } 9974 } 9975 if (need_decay) { 9976 /* 9977 * Ensure the rq-wide value also decays but keep it at a 9978 * reasonable floor to avoid funnies with rq->avg_idle. 9979 */ 9980 rq->max_idle_balance_cost = 9981 max((u64)sysctl_sched_migration_cost, max_cost); 9982 } 9983 rcu_read_unlock(); 9984 9985 /* 9986 * next_balance will be updated only when there is a need. 9987 * When the cpu is attached to null domain for ex, it will not be 9988 * updated. 9989 */ 9990 if (likely(update_next_balance)) { 9991 rq->next_balance = next_balance; 9992 9993 #ifdef CONFIG_NO_HZ_COMMON 9994 /* 9995 * If this CPU has been elected to perform the nohz idle 9996 * balance. Other idle CPUs have already rebalanced with 9997 * nohz_idle_balance() and nohz.next_balance has been 9998 * updated accordingly. This CPU is now running the idle load 9999 * balance for itself and we need to update the 10000 * nohz.next_balance accordingly. 10001 */ 10002 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 10003 nohz.next_balance = rq->next_balance; 10004 #endif 10005 } 10006 } 10007 10008 static inline int on_null_domain(struct rq *rq) 10009 { 10010 return unlikely(!rcu_dereference_sched(rq->sd)); 10011 } 10012 10013 #ifdef CONFIG_NO_HZ_COMMON 10014 /* 10015 * idle load balancing details 10016 * - When one of the busy CPUs notice that there may be an idle rebalancing 10017 * needed, they will kick the idle load balancer, which then does idle 10018 * load balancing for all the idle CPUs. 10019 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 10020 * anywhere yet. 10021 */ 10022 10023 static inline int find_new_ilb(void) 10024 { 10025 int ilb; 10026 10027 for_each_cpu_and(ilb, nohz.idle_cpus_mask, 10028 housekeeping_cpumask(HK_FLAG_MISC)) { 10029 if (idle_cpu(ilb)) 10030 return ilb; 10031 } 10032 10033 return nr_cpu_ids; 10034 } 10035 10036 /* 10037 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10038 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 10039 */ 10040 static void kick_ilb(unsigned int flags) 10041 { 10042 int ilb_cpu; 10043 10044 /* 10045 * Increase nohz.next_balance only when if full ilb is triggered but 10046 * not if we only update stats. 10047 */ 10048 if (flags & NOHZ_BALANCE_KICK) 10049 nohz.next_balance = jiffies+1; 10050 10051 ilb_cpu = find_new_ilb(); 10052 10053 if (ilb_cpu >= nr_cpu_ids) 10054 return; 10055 10056 /* 10057 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10058 * the first flag owns it; cleared by nohz_csd_func(). 10059 */ 10060 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10061 if (flags & NOHZ_KICK_MASK) 10062 return; 10063 10064 /* 10065 * This way we generate an IPI on the target CPU which 10066 * is idle. And the softirq performing nohz idle load balance 10067 * will be run before returning from the IPI. 10068 */ 10069 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10070 } 10071 10072 /* 10073 * Current decision point for kicking the idle load balancer in the presence 10074 * of idle CPUs in the system. 10075 */ 10076 static void nohz_balancer_kick(struct rq *rq) 10077 { 10078 unsigned long now = jiffies; 10079 struct sched_domain_shared *sds; 10080 struct sched_domain *sd; 10081 int nr_busy, i, cpu = rq->cpu; 10082 unsigned int flags = 0; 10083 10084 if (unlikely(rq->idle_balance)) 10085 return; 10086 10087 /* 10088 * We may be recently in ticked or tickless idle mode. At the first 10089 * busy tick after returning from idle, we will update the busy stats. 10090 */ 10091 nohz_balance_exit_idle(rq); 10092 10093 /* 10094 * None are in tickless mode and hence no need for NOHZ idle load 10095 * balancing. 10096 */ 10097 if (likely(!atomic_read(&nohz.nr_cpus))) 10098 return; 10099 10100 if (READ_ONCE(nohz.has_blocked) && 10101 time_after(now, READ_ONCE(nohz.next_blocked))) 10102 flags = NOHZ_STATS_KICK; 10103 10104 if (time_before(now, nohz.next_balance)) 10105 goto out; 10106 10107 if (rq->nr_running >= 2) { 10108 flags = NOHZ_KICK_MASK; 10109 goto out; 10110 } 10111 10112 rcu_read_lock(); 10113 10114 sd = rcu_dereference(rq->sd); 10115 if (sd) { 10116 /* 10117 * If there's a CFS task and the current CPU has reduced 10118 * capacity; kick the ILB to see if there's a better CPU to run 10119 * on. 10120 */ 10121 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10122 flags = NOHZ_KICK_MASK; 10123 goto unlock; 10124 } 10125 } 10126 10127 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10128 if (sd) { 10129 /* 10130 * When ASYM_PACKING; see if there's a more preferred CPU 10131 * currently idle; in which case, kick the ILB to move tasks 10132 * around. 10133 */ 10134 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10135 if (sched_asym_prefer(i, cpu)) { 10136 flags = NOHZ_KICK_MASK; 10137 goto unlock; 10138 } 10139 } 10140 } 10141 10142 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10143 if (sd) { 10144 /* 10145 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10146 * to run the misfit task on. 10147 */ 10148 if (check_misfit_status(rq, sd)) { 10149 flags = NOHZ_KICK_MASK; 10150 goto unlock; 10151 } 10152 10153 /* 10154 * For asymmetric systems, we do not want to nicely balance 10155 * cache use, instead we want to embrace asymmetry and only 10156 * ensure tasks have enough CPU capacity. 10157 * 10158 * Skip the LLC logic because it's not relevant in that case. 10159 */ 10160 goto unlock; 10161 } 10162 10163 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10164 if (sds) { 10165 /* 10166 * If there is an imbalance between LLC domains (IOW we could 10167 * increase the overall cache use), we need some less-loaded LLC 10168 * domain to pull some load. Likewise, we may need to spread 10169 * load within the current LLC domain (e.g. packed SMT cores but 10170 * other CPUs are idle). We can't really know from here how busy 10171 * the others are - so just get a nohz balance going if it looks 10172 * like this LLC domain has tasks we could move. 10173 */ 10174 nr_busy = atomic_read(&sds->nr_busy_cpus); 10175 if (nr_busy > 1) { 10176 flags = NOHZ_KICK_MASK; 10177 goto unlock; 10178 } 10179 } 10180 unlock: 10181 rcu_read_unlock(); 10182 out: 10183 if (flags) 10184 kick_ilb(flags); 10185 } 10186 10187 static void set_cpu_sd_state_busy(int cpu) 10188 { 10189 struct sched_domain *sd; 10190 10191 rcu_read_lock(); 10192 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10193 10194 if (!sd || !sd->nohz_idle) 10195 goto unlock; 10196 sd->nohz_idle = 0; 10197 10198 atomic_inc(&sd->shared->nr_busy_cpus); 10199 unlock: 10200 rcu_read_unlock(); 10201 } 10202 10203 void nohz_balance_exit_idle(struct rq *rq) 10204 { 10205 SCHED_WARN_ON(rq != this_rq()); 10206 10207 if (likely(!rq->nohz_tick_stopped)) 10208 return; 10209 10210 rq->nohz_tick_stopped = 0; 10211 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10212 atomic_dec(&nohz.nr_cpus); 10213 10214 set_cpu_sd_state_busy(rq->cpu); 10215 } 10216 10217 static void set_cpu_sd_state_idle(int cpu) 10218 { 10219 struct sched_domain *sd; 10220 10221 rcu_read_lock(); 10222 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10223 10224 if (!sd || sd->nohz_idle) 10225 goto unlock; 10226 sd->nohz_idle = 1; 10227 10228 atomic_dec(&sd->shared->nr_busy_cpus); 10229 unlock: 10230 rcu_read_unlock(); 10231 } 10232 10233 /* 10234 * This routine will record that the CPU is going idle with tick stopped. 10235 * This info will be used in performing idle load balancing in the future. 10236 */ 10237 void nohz_balance_enter_idle(int cpu) 10238 { 10239 struct rq *rq = cpu_rq(cpu); 10240 10241 SCHED_WARN_ON(cpu != smp_processor_id()); 10242 10243 /* If this CPU is going down, then nothing needs to be done: */ 10244 if (!cpu_active(cpu)) 10245 return; 10246 10247 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10248 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 10249 return; 10250 10251 /* 10252 * Can be set safely without rq->lock held 10253 * If a clear happens, it will have evaluated last additions because 10254 * rq->lock is held during the check and the clear 10255 */ 10256 rq->has_blocked_load = 1; 10257 10258 /* 10259 * The tick is still stopped but load could have been added in the 10260 * meantime. We set the nohz.has_blocked flag to trig a check of the 10261 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10262 * of nohz.has_blocked can only happen after checking the new load 10263 */ 10264 if (rq->nohz_tick_stopped) 10265 goto out; 10266 10267 /* If we're a completely isolated CPU, we don't play: */ 10268 if (on_null_domain(rq)) 10269 return; 10270 10271 rq->nohz_tick_stopped = 1; 10272 10273 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10274 atomic_inc(&nohz.nr_cpus); 10275 10276 /* 10277 * Ensures that if nohz_idle_balance() fails to observe our 10278 * @idle_cpus_mask store, it must observe the @has_blocked 10279 * store. 10280 */ 10281 smp_mb__after_atomic(); 10282 10283 set_cpu_sd_state_idle(cpu); 10284 10285 out: 10286 /* 10287 * Each time a cpu enter idle, we assume that it has blocked load and 10288 * enable the periodic update of the load of idle cpus 10289 */ 10290 WRITE_ONCE(nohz.has_blocked, 1); 10291 } 10292 10293 /* 10294 * Internal function that runs load balance for all idle cpus. The load balance 10295 * can be a simple update of blocked load or a complete load balance with 10296 * tasks movement depending of flags. 10297 * The function returns false if the loop has stopped before running 10298 * through all idle CPUs. 10299 */ 10300 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10301 enum cpu_idle_type idle) 10302 { 10303 /* Earliest time when we have to do rebalance again */ 10304 unsigned long now = jiffies; 10305 unsigned long next_balance = now + 60*HZ; 10306 bool has_blocked_load = false; 10307 int update_next_balance = 0; 10308 int this_cpu = this_rq->cpu; 10309 int balance_cpu; 10310 int ret = false; 10311 struct rq *rq; 10312 10313 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10314 10315 /* 10316 * We assume there will be no idle load after this update and clear 10317 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10318 * set the has_blocked flag and trig another update of idle load. 10319 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10320 * setting the flag, we are sure to not clear the state and not 10321 * check the load of an idle cpu. 10322 */ 10323 WRITE_ONCE(nohz.has_blocked, 0); 10324 10325 /* 10326 * Ensures that if we miss the CPU, we must see the has_blocked 10327 * store from nohz_balance_enter_idle(). 10328 */ 10329 smp_mb(); 10330 10331 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 10332 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 10333 continue; 10334 10335 /* 10336 * If this CPU gets work to do, stop the load balancing 10337 * work being done for other CPUs. Next load 10338 * balancing owner will pick it up. 10339 */ 10340 if (need_resched()) { 10341 has_blocked_load = true; 10342 goto abort; 10343 } 10344 10345 rq = cpu_rq(balance_cpu); 10346 10347 has_blocked_load |= update_nohz_stats(rq, true); 10348 10349 /* 10350 * If time for next balance is due, 10351 * do the balance. 10352 */ 10353 if (time_after_eq(jiffies, rq->next_balance)) { 10354 struct rq_flags rf; 10355 10356 rq_lock_irqsave(rq, &rf); 10357 update_rq_clock(rq); 10358 rq_unlock_irqrestore(rq, &rf); 10359 10360 if (flags & NOHZ_BALANCE_KICK) 10361 rebalance_domains(rq, CPU_IDLE); 10362 } 10363 10364 if (time_after(next_balance, rq->next_balance)) { 10365 next_balance = rq->next_balance; 10366 update_next_balance = 1; 10367 } 10368 } 10369 10370 /* 10371 * next_balance will be updated only when there is a need. 10372 * When the CPU is attached to null domain for ex, it will not be 10373 * updated. 10374 */ 10375 if (likely(update_next_balance)) 10376 nohz.next_balance = next_balance; 10377 10378 /* Newly idle CPU doesn't need an update */ 10379 if (idle != CPU_NEWLY_IDLE) { 10380 update_blocked_averages(this_cpu); 10381 has_blocked_load |= this_rq->has_blocked_load; 10382 } 10383 10384 if (flags & NOHZ_BALANCE_KICK) 10385 rebalance_domains(this_rq, CPU_IDLE); 10386 10387 WRITE_ONCE(nohz.next_blocked, 10388 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10389 10390 /* The full idle balance loop has been done */ 10391 ret = true; 10392 10393 abort: 10394 /* There is still blocked load, enable periodic update */ 10395 if (has_blocked_load) 10396 WRITE_ONCE(nohz.has_blocked, 1); 10397 10398 return ret; 10399 } 10400 10401 /* 10402 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10403 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10404 */ 10405 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10406 { 10407 unsigned int flags = this_rq->nohz_idle_balance; 10408 10409 if (!flags) 10410 return false; 10411 10412 this_rq->nohz_idle_balance = 0; 10413 10414 if (idle != CPU_IDLE) 10415 return false; 10416 10417 _nohz_idle_balance(this_rq, flags, idle); 10418 10419 return true; 10420 } 10421 10422 static void nohz_newidle_balance(struct rq *this_rq) 10423 { 10424 int this_cpu = this_rq->cpu; 10425 10426 /* 10427 * This CPU doesn't want to be disturbed by scheduler 10428 * housekeeping 10429 */ 10430 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 10431 return; 10432 10433 /* Will wake up very soon. No time for doing anything else*/ 10434 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10435 return; 10436 10437 /* Don't need to update blocked load of idle CPUs*/ 10438 if (!READ_ONCE(nohz.has_blocked) || 10439 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10440 return; 10441 10442 raw_spin_unlock(&this_rq->lock); 10443 /* 10444 * This CPU is going to be idle and blocked load of idle CPUs 10445 * need to be updated. Run the ilb locally as it is a good 10446 * candidate for ilb instead of waking up another idle CPU. 10447 * Kick an normal ilb if we failed to do the update. 10448 */ 10449 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 10450 kick_ilb(NOHZ_STATS_KICK); 10451 raw_spin_lock(&this_rq->lock); 10452 } 10453 10454 #else /* !CONFIG_NO_HZ_COMMON */ 10455 static inline void nohz_balancer_kick(struct rq *rq) { } 10456 10457 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10458 { 10459 return false; 10460 } 10461 10462 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10463 #endif /* CONFIG_NO_HZ_COMMON */ 10464 10465 /* 10466 * idle_balance is called by schedule() if this_cpu is about to become 10467 * idle. Attempts to pull tasks from other CPUs. 10468 * 10469 * Returns: 10470 * < 0 - we released the lock and there are !fair tasks present 10471 * 0 - failed, no new tasks 10472 * > 0 - success, new (fair) tasks present 10473 */ 10474 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10475 { 10476 unsigned long next_balance = jiffies + HZ; 10477 int this_cpu = this_rq->cpu; 10478 struct sched_domain *sd; 10479 int pulled_task = 0; 10480 u64 curr_cost = 0; 10481 10482 update_misfit_status(NULL, this_rq); 10483 /* 10484 * We must set idle_stamp _before_ calling idle_balance(), such that we 10485 * measure the duration of idle_balance() as idle time. 10486 */ 10487 this_rq->idle_stamp = rq_clock(this_rq); 10488 10489 /* 10490 * Do not pull tasks towards !active CPUs... 10491 */ 10492 if (!cpu_active(this_cpu)) 10493 return 0; 10494 10495 /* 10496 * This is OK, because current is on_cpu, which avoids it being picked 10497 * for load-balance and preemption/IRQs are still disabled avoiding 10498 * further scheduler activity on it and we're being very careful to 10499 * re-start the picking loop. 10500 */ 10501 rq_unpin_lock(this_rq, rf); 10502 10503 if (this_rq->avg_idle < sysctl_sched_migration_cost || 10504 !READ_ONCE(this_rq->rd->overload)) { 10505 10506 rcu_read_lock(); 10507 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10508 if (sd) 10509 update_next_balance(sd, &next_balance); 10510 rcu_read_unlock(); 10511 10512 nohz_newidle_balance(this_rq); 10513 10514 goto out; 10515 } 10516 10517 raw_spin_unlock(&this_rq->lock); 10518 10519 update_blocked_averages(this_cpu); 10520 rcu_read_lock(); 10521 for_each_domain(this_cpu, sd) { 10522 int continue_balancing = 1; 10523 u64 t0, domain_cost; 10524 10525 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 10526 update_next_balance(sd, &next_balance); 10527 break; 10528 } 10529 10530 if (sd->flags & SD_BALANCE_NEWIDLE) { 10531 t0 = sched_clock_cpu(this_cpu); 10532 10533 pulled_task = load_balance(this_cpu, this_rq, 10534 sd, CPU_NEWLY_IDLE, 10535 &continue_balancing); 10536 10537 domain_cost = sched_clock_cpu(this_cpu) - t0; 10538 if (domain_cost > sd->max_newidle_lb_cost) 10539 sd->max_newidle_lb_cost = domain_cost; 10540 10541 curr_cost += domain_cost; 10542 } 10543 10544 update_next_balance(sd, &next_balance); 10545 10546 /* 10547 * Stop searching for tasks to pull if there are 10548 * now runnable tasks on this rq. 10549 */ 10550 if (pulled_task || this_rq->nr_running > 0) 10551 break; 10552 } 10553 rcu_read_unlock(); 10554 10555 raw_spin_lock(&this_rq->lock); 10556 10557 if (curr_cost > this_rq->max_idle_balance_cost) 10558 this_rq->max_idle_balance_cost = curr_cost; 10559 10560 out: 10561 /* 10562 * While browsing the domains, we released the rq lock, a task could 10563 * have been enqueued in the meantime. Since we're not going idle, 10564 * pretend we pulled a task. 10565 */ 10566 if (this_rq->cfs.h_nr_running && !pulled_task) 10567 pulled_task = 1; 10568 10569 /* Move the next balance forward */ 10570 if (time_after(this_rq->next_balance, next_balance)) 10571 this_rq->next_balance = next_balance; 10572 10573 /* Is there a task of a high priority class? */ 10574 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10575 pulled_task = -1; 10576 10577 if (pulled_task) 10578 this_rq->idle_stamp = 0; 10579 10580 rq_repin_lock(this_rq, rf); 10581 10582 return pulled_task; 10583 } 10584 10585 /* 10586 * run_rebalance_domains is triggered when needed from the scheduler tick. 10587 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10588 */ 10589 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10590 { 10591 struct rq *this_rq = this_rq(); 10592 enum cpu_idle_type idle = this_rq->idle_balance ? 10593 CPU_IDLE : CPU_NOT_IDLE; 10594 10595 /* 10596 * If this CPU has a pending nohz_balance_kick, then do the 10597 * balancing on behalf of the other idle CPUs whose ticks are 10598 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10599 * give the idle CPUs a chance to load balance. Else we may 10600 * load balance only within the local sched_domain hierarchy 10601 * and abort nohz_idle_balance altogether if we pull some load. 10602 */ 10603 if (nohz_idle_balance(this_rq, idle)) 10604 return; 10605 10606 /* normal load balance */ 10607 update_blocked_averages(this_rq->cpu); 10608 rebalance_domains(this_rq, idle); 10609 } 10610 10611 /* 10612 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10613 */ 10614 void trigger_load_balance(struct rq *rq) 10615 { 10616 /* Don't need to rebalance while attached to NULL domain */ 10617 if (unlikely(on_null_domain(rq))) 10618 return; 10619 10620 if (time_after_eq(jiffies, rq->next_balance)) 10621 raise_softirq(SCHED_SOFTIRQ); 10622 10623 nohz_balancer_kick(rq); 10624 } 10625 10626 static void rq_online_fair(struct rq *rq) 10627 { 10628 update_sysctl(); 10629 10630 update_runtime_enabled(rq); 10631 } 10632 10633 static void rq_offline_fair(struct rq *rq) 10634 { 10635 update_sysctl(); 10636 10637 /* Ensure any throttled groups are reachable by pick_next_task */ 10638 unthrottle_offline_cfs_rqs(rq); 10639 } 10640 10641 #endif /* CONFIG_SMP */ 10642 10643 /* 10644 * scheduler tick hitting a task of our scheduling class. 10645 * 10646 * NOTE: This function can be called remotely by the tick offload that 10647 * goes along full dynticks. Therefore no local assumption can be made 10648 * and everything must be accessed through the @rq and @curr passed in 10649 * parameters. 10650 */ 10651 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 10652 { 10653 struct cfs_rq *cfs_rq; 10654 struct sched_entity *se = &curr->se; 10655 10656 for_each_sched_entity(se) { 10657 cfs_rq = cfs_rq_of(se); 10658 entity_tick(cfs_rq, se, queued); 10659 } 10660 10661 if (static_branch_unlikely(&sched_numa_balancing)) 10662 task_tick_numa(rq, curr); 10663 10664 update_misfit_status(curr, rq); 10665 update_overutilized_status(task_rq(curr)); 10666 } 10667 10668 /* 10669 * called on fork with the child task as argument from the parent's context 10670 * - child not yet on the tasklist 10671 * - preemption disabled 10672 */ 10673 static void task_fork_fair(struct task_struct *p) 10674 { 10675 struct cfs_rq *cfs_rq; 10676 struct sched_entity *se = &p->se, *curr; 10677 struct rq *rq = this_rq(); 10678 struct rq_flags rf; 10679 10680 rq_lock(rq, &rf); 10681 update_rq_clock(rq); 10682 10683 cfs_rq = task_cfs_rq(current); 10684 curr = cfs_rq->curr; 10685 if (curr) { 10686 update_curr(cfs_rq); 10687 se->vruntime = curr->vruntime; 10688 } 10689 place_entity(cfs_rq, se, 1); 10690 10691 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 10692 /* 10693 * Upon rescheduling, sched_class::put_prev_task() will place 10694 * 'current' within the tree based on its new key value. 10695 */ 10696 swap(curr->vruntime, se->vruntime); 10697 resched_curr(rq); 10698 } 10699 10700 se->vruntime -= cfs_rq->min_vruntime; 10701 rq_unlock(rq, &rf); 10702 } 10703 10704 /* 10705 * Priority of the task has changed. Check to see if we preempt 10706 * the current task. 10707 */ 10708 static void 10709 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 10710 { 10711 if (!task_on_rq_queued(p)) 10712 return; 10713 10714 if (rq->cfs.nr_running == 1) 10715 return; 10716 10717 /* 10718 * Reschedule if we are currently running on this runqueue and 10719 * our priority decreased, or if we are not currently running on 10720 * this runqueue and our priority is higher than the current's 10721 */ 10722 if (rq->curr == p) { 10723 if (p->prio > oldprio) 10724 resched_curr(rq); 10725 } else 10726 check_preempt_curr(rq, p, 0); 10727 } 10728 10729 static inline bool vruntime_normalized(struct task_struct *p) 10730 { 10731 struct sched_entity *se = &p->se; 10732 10733 /* 10734 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10735 * the dequeue_entity(.flags=0) will already have normalized the 10736 * vruntime. 10737 */ 10738 if (p->on_rq) 10739 return true; 10740 10741 /* 10742 * When !on_rq, vruntime of the task has usually NOT been normalized. 10743 * But there are some cases where it has already been normalized: 10744 * 10745 * - A forked child which is waiting for being woken up by 10746 * wake_up_new_task(). 10747 * - A task which has been woken up by try_to_wake_up() and 10748 * waiting for actually being woken up by sched_ttwu_pending(). 10749 */ 10750 if (!se->sum_exec_runtime || 10751 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10752 return true; 10753 10754 return false; 10755 } 10756 10757 #ifdef CONFIG_FAIR_GROUP_SCHED 10758 /* 10759 * Propagate the changes of the sched_entity across the tg tree to make it 10760 * visible to the root 10761 */ 10762 static void propagate_entity_cfs_rq(struct sched_entity *se) 10763 { 10764 struct cfs_rq *cfs_rq; 10765 10766 /* Start to propagate at parent */ 10767 se = se->parent; 10768 10769 for_each_sched_entity(se) { 10770 cfs_rq = cfs_rq_of(se); 10771 10772 if (cfs_rq_throttled(cfs_rq)) 10773 break; 10774 10775 update_load_avg(cfs_rq, se, UPDATE_TG); 10776 } 10777 } 10778 #else 10779 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10780 #endif 10781 10782 static void detach_entity_cfs_rq(struct sched_entity *se) 10783 { 10784 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10785 10786 /* Catch up with the cfs_rq and remove our load when we leave */ 10787 update_load_avg(cfs_rq, se, 0); 10788 detach_entity_load_avg(cfs_rq, se); 10789 update_tg_load_avg(cfs_rq, false); 10790 propagate_entity_cfs_rq(se); 10791 } 10792 10793 static void attach_entity_cfs_rq(struct sched_entity *se) 10794 { 10795 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10796 10797 #ifdef CONFIG_FAIR_GROUP_SCHED 10798 /* 10799 * Since the real-depth could have been changed (only FAIR 10800 * class maintain depth value), reset depth properly. 10801 */ 10802 se->depth = se->parent ? se->parent->depth + 1 : 0; 10803 #endif 10804 10805 /* Synchronize entity with its cfs_rq */ 10806 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10807 attach_entity_load_avg(cfs_rq, se); 10808 update_tg_load_avg(cfs_rq, false); 10809 propagate_entity_cfs_rq(se); 10810 } 10811 10812 static void detach_task_cfs_rq(struct task_struct *p) 10813 { 10814 struct sched_entity *se = &p->se; 10815 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10816 10817 if (!vruntime_normalized(p)) { 10818 /* 10819 * Fix up our vruntime so that the current sleep doesn't 10820 * cause 'unlimited' sleep bonus. 10821 */ 10822 place_entity(cfs_rq, se, 0); 10823 se->vruntime -= cfs_rq->min_vruntime; 10824 } 10825 10826 detach_entity_cfs_rq(se); 10827 } 10828 10829 static void attach_task_cfs_rq(struct task_struct *p) 10830 { 10831 struct sched_entity *se = &p->se; 10832 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10833 10834 attach_entity_cfs_rq(se); 10835 10836 if (!vruntime_normalized(p)) 10837 se->vruntime += cfs_rq->min_vruntime; 10838 } 10839 10840 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10841 { 10842 detach_task_cfs_rq(p); 10843 } 10844 10845 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10846 { 10847 attach_task_cfs_rq(p); 10848 10849 if (task_on_rq_queued(p)) { 10850 /* 10851 * We were most likely switched from sched_rt, so 10852 * kick off the schedule if running, otherwise just see 10853 * if we can still preempt the current task. 10854 */ 10855 if (rq->curr == p) 10856 resched_curr(rq); 10857 else 10858 check_preempt_curr(rq, p, 0); 10859 } 10860 } 10861 10862 /* Account for a task changing its policy or group. 10863 * 10864 * This routine is mostly called to set cfs_rq->curr field when a task 10865 * migrates between groups/classes. 10866 */ 10867 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 10868 { 10869 struct sched_entity *se = &p->se; 10870 10871 #ifdef CONFIG_SMP 10872 if (task_on_rq_queued(p)) { 10873 /* 10874 * Move the next running task to the front of the list, so our 10875 * cfs_tasks list becomes MRU one. 10876 */ 10877 list_move(&se->group_node, &rq->cfs_tasks); 10878 } 10879 #endif 10880 10881 for_each_sched_entity(se) { 10882 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10883 10884 set_next_entity(cfs_rq, se); 10885 /* ensure bandwidth has been allocated on our new cfs_rq */ 10886 account_cfs_rq_runtime(cfs_rq, 0); 10887 } 10888 } 10889 10890 void init_cfs_rq(struct cfs_rq *cfs_rq) 10891 { 10892 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10893 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10894 #ifndef CONFIG_64BIT 10895 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10896 #endif 10897 #ifdef CONFIG_SMP 10898 raw_spin_lock_init(&cfs_rq->removed.lock); 10899 #endif 10900 } 10901 10902 #ifdef CONFIG_FAIR_GROUP_SCHED 10903 static void task_set_group_fair(struct task_struct *p) 10904 { 10905 struct sched_entity *se = &p->se; 10906 10907 set_task_rq(p, task_cpu(p)); 10908 se->depth = se->parent ? se->parent->depth + 1 : 0; 10909 } 10910 10911 static void task_move_group_fair(struct task_struct *p) 10912 { 10913 detach_task_cfs_rq(p); 10914 set_task_rq(p, task_cpu(p)); 10915 10916 #ifdef CONFIG_SMP 10917 /* Tell se's cfs_rq has been changed -- migrated */ 10918 p->se.avg.last_update_time = 0; 10919 #endif 10920 attach_task_cfs_rq(p); 10921 } 10922 10923 static void task_change_group_fair(struct task_struct *p, int type) 10924 { 10925 switch (type) { 10926 case TASK_SET_GROUP: 10927 task_set_group_fair(p); 10928 break; 10929 10930 case TASK_MOVE_GROUP: 10931 task_move_group_fair(p); 10932 break; 10933 } 10934 } 10935 10936 void free_fair_sched_group(struct task_group *tg) 10937 { 10938 int i; 10939 10940 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10941 10942 for_each_possible_cpu(i) { 10943 if (tg->cfs_rq) 10944 kfree(tg->cfs_rq[i]); 10945 if (tg->se) 10946 kfree(tg->se[i]); 10947 } 10948 10949 kfree(tg->cfs_rq); 10950 kfree(tg->se); 10951 } 10952 10953 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10954 { 10955 struct sched_entity *se; 10956 struct cfs_rq *cfs_rq; 10957 int i; 10958 10959 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 10960 if (!tg->cfs_rq) 10961 goto err; 10962 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 10963 if (!tg->se) 10964 goto err; 10965 10966 tg->shares = NICE_0_LOAD; 10967 10968 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10969 10970 for_each_possible_cpu(i) { 10971 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10972 GFP_KERNEL, cpu_to_node(i)); 10973 if (!cfs_rq) 10974 goto err; 10975 10976 se = kzalloc_node(sizeof(struct sched_entity), 10977 GFP_KERNEL, cpu_to_node(i)); 10978 if (!se) 10979 goto err_free_rq; 10980 10981 init_cfs_rq(cfs_rq); 10982 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10983 init_entity_runnable_average(se); 10984 } 10985 10986 return 1; 10987 10988 err_free_rq: 10989 kfree(cfs_rq); 10990 err: 10991 return 0; 10992 } 10993 10994 void online_fair_sched_group(struct task_group *tg) 10995 { 10996 struct sched_entity *se; 10997 struct rq_flags rf; 10998 struct rq *rq; 10999 int i; 11000 11001 for_each_possible_cpu(i) { 11002 rq = cpu_rq(i); 11003 se = tg->se[i]; 11004 rq_lock_irq(rq, &rf); 11005 update_rq_clock(rq); 11006 attach_entity_cfs_rq(se); 11007 sync_throttle(tg, i); 11008 rq_unlock_irq(rq, &rf); 11009 } 11010 } 11011 11012 void unregister_fair_sched_group(struct task_group *tg) 11013 { 11014 unsigned long flags; 11015 struct rq *rq; 11016 int cpu; 11017 11018 for_each_possible_cpu(cpu) { 11019 if (tg->se[cpu]) 11020 remove_entity_load_avg(tg->se[cpu]); 11021 11022 /* 11023 * Only empty task groups can be destroyed; so we can speculatively 11024 * check on_list without danger of it being re-added. 11025 */ 11026 if (!tg->cfs_rq[cpu]->on_list) 11027 continue; 11028 11029 rq = cpu_rq(cpu); 11030 11031 raw_spin_lock_irqsave(&rq->lock, flags); 11032 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11033 raw_spin_unlock_irqrestore(&rq->lock, flags); 11034 } 11035 } 11036 11037 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11038 struct sched_entity *se, int cpu, 11039 struct sched_entity *parent) 11040 { 11041 struct rq *rq = cpu_rq(cpu); 11042 11043 cfs_rq->tg = tg; 11044 cfs_rq->rq = rq; 11045 init_cfs_rq_runtime(cfs_rq); 11046 11047 tg->cfs_rq[cpu] = cfs_rq; 11048 tg->se[cpu] = se; 11049 11050 /* se could be NULL for root_task_group */ 11051 if (!se) 11052 return; 11053 11054 if (!parent) { 11055 se->cfs_rq = &rq->cfs; 11056 se->depth = 0; 11057 } else { 11058 se->cfs_rq = parent->my_q; 11059 se->depth = parent->depth + 1; 11060 } 11061 11062 se->my_q = cfs_rq; 11063 /* guarantee group entities always have weight */ 11064 update_load_set(&se->load, NICE_0_LOAD); 11065 se->parent = parent; 11066 } 11067 11068 static DEFINE_MUTEX(shares_mutex); 11069 11070 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11071 { 11072 int i; 11073 11074 /* 11075 * We can't change the weight of the root cgroup. 11076 */ 11077 if (!tg->se[0]) 11078 return -EINVAL; 11079 11080 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11081 11082 mutex_lock(&shares_mutex); 11083 if (tg->shares == shares) 11084 goto done; 11085 11086 tg->shares = shares; 11087 for_each_possible_cpu(i) { 11088 struct rq *rq = cpu_rq(i); 11089 struct sched_entity *se = tg->se[i]; 11090 struct rq_flags rf; 11091 11092 /* Propagate contribution to hierarchy */ 11093 rq_lock_irqsave(rq, &rf); 11094 update_rq_clock(rq); 11095 for_each_sched_entity(se) { 11096 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11097 update_cfs_group(se); 11098 } 11099 rq_unlock_irqrestore(rq, &rf); 11100 } 11101 11102 done: 11103 mutex_unlock(&shares_mutex); 11104 return 0; 11105 } 11106 #else /* CONFIG_FAIR_GROUP_SCHED */ 11107 11108 void free_fair_sched_group(struct task_group *tg) { } 11109 11110 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11111 { 11112 return 1; 11113 } 11114 11115 void online_fair_sched_group(struct task_group *tg) { } 11116 11117 void unregister_fair_sched_group(struct task_group *tg) { } 11118 11119 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11120 11121 11122 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11123 { 11124 struct sched_entity *se = &task->se; 11125 unsigned int rr_interval = 0; 11126 11127 /* 11128 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11129 * idle runqueue: 11130 */ 11131 if (rq->cfs.load.weight) 11132 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11133 11134 return rr_interval; 11135 } 11136 11137 /* 11138 * All the scheduling class methods: 11139 */ 11140 const struct sched_class fair_sched_class 11141 __attribute__((section("__fair_sched_class"))) = { 11142 .enqueue_task = enqueue_task_fair, 11143 .dequeue_task = dequeue_task_fair, 11144 .yield_task = yield_task_fair, 11145 .yield_to_task = yield_to_task_fair, 11146 11147 .check_preempt_curr = check_preempt_wakeup, 11148 11149 .pick_next_task = __pick_next_task_fair, 11150 .put_prev_task = put_prev_task_fair, 11151 .set_next_task = set_next_task_fair, 11152 11153 #ifdef CONFIG_SMP 11154 .balance = balance_fair, 11155 .select_task_rq = select_task_rq_fair, 11156 .migrate_task_rq = migrate_task_rq_fair, 11157 11158 .rq_online = rq_online_fair, 11159 .rq_offline = rq_offline_fair, 11160 11161 .task_dead = task_dead_fair, 11162 .set_cpus_allowed = set_cpus_allowed_common, 11163 #endif 11164 11165 .task_tick = task_tick_fair, 11166 .task_fork = task_fork_fair, 11167 11168 .prio_changed = prio_changed_fair, 11169 .switched_from = switched_from_fair, 11170 .switched_to = switched_to_fair, 11171 11172 .get_rr_interval = get_rr_interval_fair, 11173 11174 .update_curr = update_curr_fair, 11175 11176 #ifdef CONFIG_FAIR_GROUP_SCHED 11177 .task_change_group = task_change_group_fair, 11178 #endif 11179 11180 #ifdef CONFIG_UCLAMP_TASK 11181 .uclamp_enabled = 1, 11182 #endif 11183 }; 11184 11185 #ifdef CONFIG_SCHED_DEBUG 11186 void print_cfs_stats(struct seq_file *m, int cpu) 11187 { 11188 struct cfs_rq *cfs_rq, *pos; 11189 11190 rcu_read_lock(); 11191 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 11192 print_cfs_rq(m, cpu, cfs_rq); 11193 rcu_read_unlock(); 11194 } 11195 11196 #ifdef CONFIG_NUMA_BALANCING 11197 void show_numa_stats(struct task_struct *p, struct seq_file *m) 11198 { 11199 int node; 11200 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 11201 struct numa_group *ng; 11202 11203 rcu_read_lock(); 11204 ng = rcu_dereference(p->numa_group); 11205 for_each_online_node(node) { 11206 if (p->numa_faults) { 11207 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 11208 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 11209 } 11210 if (ng) { 11211 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 11212 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 11213 } 11214 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 11215 } 11216 rcu_read_unlock(); 11217 } 11218 #endif /* CONFIG_NUMA_BALANCING */ 11219 #endif /* CONFIG_SCHED_DEBUG */ 11220 11221 __init void init_sched_fair_class(void) 11222 { 11223 #ifdef CONFIG_SMP 11224 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 11225 11226 #ifdef CONFIG_NO_HZ_COMMON 11227 nohz.next_balance = jiffies; 11228 nohz.next_blocked = jiffies; 11229 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 11230 #endif 11231 #endif /* SMP */ 11232 11233 } 11234 11235 /* 11236 * Helper functions to facilitate extracting info from tracepoints. 11237 */ 11238 11239 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 11240 { 11241 #ifdef CONFIG_SMP 11242 return cfs_rq ? &cfs_rq->avg : NULL; 11243 #else 11244 return NULL; 11245 #endif 11246 } 11247 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 11248 11249 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 11250 { 11251 if (!cfs_rq) { 11252 if (str) 11253 strlcpy(str, "(null)", len); 11254 else 11255 return NULL; 11256 } 11257 11258 cfs_rq_tg_path(cfs_rq, str, len); 11259 return str; 11260 } 11261 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 11262 11263 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 11264 { 11265 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 11266 } 11267 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 11268 11269 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 11270 { 11271 #ifdef CONFIG_SMP 11272 return rq ? &rq->avg_rt : NULL; 11273 #else 11274 return NULL; 11275 #endif 11276 } 11277 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 11278 11279 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 11280 { 11281 #ifdef CONFIG_SMP 11282 return rq ? &rq->avg_dl : NULL; 11283 #else 11284 return NULL; 11285 #endif 11286 } 11287 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 11288 11289 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 11290 { 11291 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 11292 return rq ? &rq->avg_irq : NULL; 11293 #else 11294 return NULL; 11295 #endif 11296 } 11297 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 11298 11299 int sched_trace_rq_cpu(struct rq *rq) 11300 { 11301 return rq ? cpu_of(rq) : -1; 11302 } 11303 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 11304 11305 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 11306 { 11307 #ifdef CONFIG_SMP 11308 return rd ? rd->span : NULL; 11309 #else 11310 return NULL; 11311 #endif 11312 } 11313 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 11314 11315 int sched_trace_rq_nr_running(struct rq *rq) 11316 { 11317 return rq ? rq->nr_running : -1; 11318 } 11319 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running); 11320