xref: /openbmc/linux/kernel/sched/fair.c (revision 4b0aaacee51eb6592a03fdefd5ce97558518e291)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity		= 750000ULL;
62 unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
85 unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 #endif
98 
99 #ifdef CONFIG_CFS_BANDWIDTH
100 /*
101  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102  * each time a cfs_rq requests quota.
103  *
104  * Note: in the case that the slice exceeds the runtime remaining (either due
105  * to consumption or the quota being specified to be smaller than the slice)
106  * we will always only issue the remaining available time.
107  *
108  * (default: 5 msec, units: microseconds)
109  */
110 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
111 #endif
112 
113 /*
114  * The margin used when comparing utilization with CPU capacity:
115  * util * margin < capacity * 1024
116  *
117  * (default: ~20%)
118  */
119 unsigned int capacity_margin				= 1280;
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	/* hint to use a 32x32->64 mul */
233 	fact = (u64)(u32)fact * lw->inv_weight;
234 
235 	while (fact >> 32) {
236 		fact >>= 1;
237 		shift--;
238 	}
239 
240 	return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242 
243 
244 const struct sched_class fair_sched_class;
245 
246 /**************************************************************
247  * CFS operations on generic schedulable entities:
248  */
249 
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 
252 /* cpu runqueue to which this cfs_rq is attached */
253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254 {
255 	return cfs_rq->rq;
256 }
257 
258 static inline struct task_struct *task_of(struct sched_entity *se)
259 {
260 	SCHED_WARN_ON(!entity_is_task(se));
261 	return container_of(se, struct task_struct, se);
262 }
263 
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 		for (; se; se = se->parent)
267 
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 	return p->se.cfs_rq;
271 }
272 
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 	return se->cfs_rq;
277 }
278 
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 	return grp->my_q;
283 }
284 
285 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
286 {
287 	if (!cfs_rq->on_list) {
288 		struct rq *rq = rq_of(cfs_rq);
289 		int cpu = cpu_of(rq);
290 		/*
291 		 * Ensure we either appear before our parent (if already
292 		 * enqueued) or force our parent to appear after us when it is
293 		 * enqueued. The fact that we always enqueue bottom-up
294 		 * reduces this to two cases and a special case for the root
295 		 * cfs_rq. Furthermore, it also means that we will always reset
296 		 * tmp_alone_branch either when the branch is connected
297 		 * to a tree or when we reach the beg of the tree
298 		 */
299 		if (cfs_rq->tg->parent &&
300 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
301 			/*
302 			 * If parent is already on the list, we add the child
303 			 * just before. Thanks to circular linked property of
304 			 * the list, this means to put the child at the tail
305 			 * of the list that starts by parent.
306 			 */
307 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
308 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
309 			/*
310 			 * The branch is now connected to its tree so we can
311 			 * reset tmp_alone_branch to the beginning of the
312 			 * list.
313 			 */
314 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
315 		} else if (!cfs_rq->tg->parent) {
316 			/*
317 			 * cfs rq without parent should be put
318 			 * at the tail of the list.
319 			 */
320 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 				&rq->leaf_cfs_rq_list);
322 			/*
323 			 * We have reach the beg of a tree so we can reset
324 			 * tmp_alone_branch to the beginning of the list.
325 			 */
326 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
327 		} else {
328 			/*
329 			 * The parent has not already been added so we want to
330 			 * make sure that it will be put after us.
331 			 * tmp_alone_branch points to the beg of the branch
332 			 * where we will add parent.
333 			 */
334 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
335 				rq->tmp_alone_branch);
336 			/*
337 			 * update tmp_alone_branch to points to the new beg
338 			 * of the branch
339 			 */
340 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
341 		}
342 
343 		cfs_rq->on_list = 1;
344 	}
345 }
346 
347 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
348 {
349 	if (cfs_rq->on_list) {
350 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
351 		cfs_rq->on_list = 0;
352 	}
353 }
354 
355 /* Iterate thr' all leaf cfs_rq's on a runqueue */
356 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
357 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
358 				 leaf_cfs_rq_list)
359 
360 /* Do the two (enqueued) entities belong to the same group ? */
361 static inline struct cfs_rq *
362 is_same_group(struct sched_entity *se, struct sched_entity *pse)
363 {
364 	if (se->cfs_rq == pse->cfs_rq)
365 		return se->cfs_rq;
366 
367 	return NULL;
368 }
369 
370 static inline struct sched_entity *parent_entity(struct sched_entity *se)
371 {
372 	return se->parent;
373 }
374 
375 static void
376 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
377 {
378 	int se_depth, pse_depth;
379 
380 	/*
381 	 * preemption test can be made between sibling entities who are in the
382 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
383 	 * both tasks until we find their ancestors who are siblings of common
384 	 * parent.
385 	 */
386 
387 	/* First walk up until both entities are at same depth */
388 	se_depth = (*se)->depth;
389 	pse_depth = (*pse)->depth;
390 
391 	while (se_depth > pse_depth) {
392 		se_depth--;
393 		*se = parent_entity(*se);
394 	}
395 
396 	while (pse_depth > se_depth) {
397 		pse_depth--;
398 		*pse = parent_entity(*pse);
399 	}
400 
401 	while (!is_same_group(*se, *pse)) {
402 		*se = parent_entity(*se);
403 		*pse = parent_entity(*pse);
404 	}
405 }
406 
407 #else	/* !CONFIG_FAIR_GROUP_SCHED */
408 
409 static inline struct task_struct *task_of(struct sched_entity *se)
410 {
411 	return container_of(se, struct task_struct, se);
412 }
413 
414 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
415 {
416 	return container_of(cfs_rq, struct rq, cfs);
417 }
418 
419 
420 #define for_each_sched_entity(se) \
421 		for (; se; se = NULL)
422 
423 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
424 {
425 	return &task_rq(p)->cfs;
426 }
427 
428 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
429 {
430 	struct task_struct *p = task_of(se);
431 	struct rq *rq = task_rq(p);
432 
433 	return &rq->cfs;
434 }
435 
436 /* runqueue "owned" by this group */
437 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
438 {
439 	return NULL;
440 }
441 
442 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
443 {
444 }
445 
446 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
447 {
448 }
449 
450 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
451 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
452 
453 static inline struct sched_entity *parent_entity(struct sched_entity *se)
454 {
455 	return NULL;
456 }
457 
458 static inline void
459 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
460 {
461 }
462 
463 #endif	/* CONFIG_FAIR_GROUP_SCHED */
464 
465 static __always_inline
466 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
467 
468 /**************************************************************
469  * Scheduling class tree data structure manipulation methods:
470  */
471 
472 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
473 {
474 	s64 delta = (s64)(vruntime - max_vruntime);
475 	if (delta > 0)
476 		max_vruntime = vruntime;
477 
478 	return max_vruntime;
479 }
480 
481 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
482 {
483 	s64 delta = (s64)(vruntime - min_vruntime);
484 	if (delta < 0)
485 		min_vruntime = vruntime;
486 
487 	return min_vruntime;
488 }
489 
490 static inline int entity_before(struct sched_entity *a,
491 				struct sched_entity *b)
492 {
493 	return (s64)(a->vruntime - b->vruntime) < 0;
494 }
495 
496 static void update_min_vruntime(struct cfs_rq *cfs_rq)
497 {
498 	struct sched_entity *curr = cfs_rq->curr;
499 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
500 
501 	u64 vruntime = cfs_rq->min_vruntime;
502 
503 	if (curr) {
504 		if (curr->on_rq)
505 			vruntime = curr->vruntime;
506 		else
507 			curr = NULL;
508 	}
509 
510 	if (leftmost) { /* non-empty tree */
511 		struct sched_entity *se;
512 		se = rb_entry(leftmost, struct sched_entity, run_node);
513 
514 		if (!curr)
515 			vruntime = se->vruntime;
516 		else
517 			vruntime = min_vruntime(vruntime, se->vruntime);
518 	}
519 
520 	/* ensure we never gain time by being placed backwards. */
521 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
522 #ifndef CONFIG_64BIT
523 	smp_wmb();
524 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
525 #endif
526 }
527 
528 /*
529  * Enqueue an entity into the rb-tree:
530  */
531 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 {
533 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
534 	struct rb_node *parent = NULL;
535 	struct sched_entity *entry;
536 	bool leftmost = true;
537 
538 	/*
539 	 * Find the right place in the rbtree:
540 	 */
541 	while (*link) {
542 		parent = *link;
543 		entry = rb_entry(parent, struct sched_entity, run_node);
544 		/*
545 		 * We dont care about collisions. Nodes with
546 		 * the same key stay together.
547 		 */
548 		if (entity_before(se, entry)) {
549 			link = &parent->rb_left;
550 		} else {
551 			link = &parent->rb_right;
552 			leftmost = false;
553 		}
554 	}
555 
556 	rb_link_node(&se->run_node, parent, link);
557 	rb_insert_color_cached(&se->run_node,
558 			       &cfs_rq->tasks_timeline, leftmost);
559 }
560 
561 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
562 {
563 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
564 }
565 
566 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
567 {
568 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
569 
570 	if (!left)
571 		return NULL;
572 
573 	return rb_entry(left, struct sched_entity, run_node);
574 }
575 
576 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
577 {
578 	struct rb_node *next = rb_next(&se->run_node);
579 
580 	if (!next)
581 		return NULL;
582 
583 	return rb_entry(next, struct sched_entity, run_node);
584 }
585 
586 #ifdef CONFIG_SCHED_DEBUG
587 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
588 {
589 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
590 
591 	if (!last)
592 		return NULL;
593 
594 	return rb_entry(last, struct sched_entity, run_node);
595 }
596 
597 /**************************************************************
598  * Scheduling class statistics methods:
599  */
600 
601 int sched_proc_update_handler(struct ctl_table *table, int write,
602 		void __user *buffer, size_t *lenp,
603 		loff_t *ppos)
604 {
605 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
606 	unsigned int factor = get_update_sysctl_factor();
607 
608 	if (ret || !write)
609 		return ret;
610 
611 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
612 					sysctl_sched_min_granularity);
613 
614 #define WRT_SYSCTL(name) \
615 	(normalized_sysctl_##name = sysctl_##name / (factor))
616 	WRT_SYSCTL(sched_min_granularity);
617 	WRT_SYSCTL(sched_latency);
618 	WRT_SYSCTL(sched_wakeup_granularity);
619 #undef WRT_SYSCTL
620 
621 	return 0;
622 }
623 #endif
624 
625 /*
626  * delta /= w
627  */
628 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
629 {
630 	if (unlikely(se->load.weight != NICE_0_LOAD))
631 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
632 
633 	return delta;
634 }
635 
636 /*
637  * The idea is to set a period in which each task runs once.
638  *
639  * When there are too many tasks (sched_nr_latency) we have to stretch
640  * this period because otherwise the slices get too small.
641  *
642  * p = (nr <= nl) ? l : l*nr/nl
643  */
644 static u64 __sched_period(unsigned long nr_running)
645 {
646 	if (unlikely(nr_running > sched_nr_latency))
647 		return nr_running * sysctl_sched_min_granularity;
648 	else
649 		return sysctl_sched_latency;
650 }
651 
652 /*
653  * We calculate the wall-time slice from the period by taking a part
654  * proportional to the weight.
655  *
656  * s = p*P[w/rw]
657  */
658 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
659 {
660 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
661 
662 	for_each_sched_entity(se) {
663 		struct load_weight *load;
664 		struct load_weight lw;
665 
666 		cfs_rq = cfs_rq_of(se);
667 		load = &cfs_rq->load;
668 
669 		if (unlikely(!se->on_rq)) {
670 			lw = cfs_rq->load;
671 
672 			update_load_add(&lw, se->load.weight);
673 			load = &lw;
674 		}
675 		slice = __calc_delta(slice, se->load.weight, load);
676 	}
677 	return slice;
678 }
679 
680 /*
681  * We calculate the vruntime slice of a to-be-inserted task.
682  *
683  * vs = s/w
684  */
685 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
686 {
687 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
688 }
689 
690 #ifdef CONFIG_SMP
691 #include "pelt.h"
692 #include "sched-pelt.h"
693 
694 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
695 static unsigned long task_h_load(struct task_struct *p);
696 
697 /* Give new sched_entity start runnable values to heavy its load in infant time */
698 void init_entity_runnable_average(struct sched_entity *se)
699 {
700 	struct sched_avg *sa = &se->avg;
701 
702 	memset(sa, 0, sizeof(*sa));
703 
704 	/*
705 	 * Tasks are intialized with full load to be seen as heavy tasks until
706 	 * they get a chance to stabilize to their real load level.
707 	 * Group entities are intialized with zero load to reflect the fact that
708 	 * nothing has been attached to the task group yet.
709 	 */
710 	if (entity_is_task(se))
711 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
712 
713 	se->runnable_weight = se->load.weight;
714 
715 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
716 }
717 
718 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
719 static void attach_entity_cfs_rq(struct sched_entity *se);
720 
721 /*
722  * With new tasks being created, their initial util_avgs are extrapolated
723  * based on the cfs_rq's current util_avg:
724  *
725  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
726  *
727  * However, in many cases, the above util_avg does not give a desired
728  * value. Moreover, the sum of the util_avgs may be divergent, such
729  * as when the series is a harmonic series.
730  *
731  * To solve this problem, we also cap the util_avg of successive tasks to
732  * only 1/2 of the left utilization budget:
733  *
734  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
735  *
736  * where n denotes the nth task and cpu_scale the CPU capacity.
737  *
738  * For example, for a CPU with 1024 of capacity, a simplest series from
739  * the beginning would be like:
740  *
741  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
742  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
743  *
744  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
745  * if util_avg > util_avg_cap.
746  */
747 void post_init_entity_util_avg(struct sched_entity *se)
748 {
749 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
750 	struct sched_avg *sa = &se->avg;
751 	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
752 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
753 
754 	if (cap > 0) {
755 		if (cfs_rq->avg.util_avg != 0) {
756 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
757 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
758 
759 			if (sa->util_avg > cap)
760 				sa->util_avg = cap;
761 		} else {
762 			sa->util_avg = cap;
763 		}
764 	}
765 
766 	if (entity_is_task(se)) {
767 		struct task_struct *p = task_of(se);
768 		if (p->sched_class != &fair_sched_class) {
769 			/*
770 			 * For !fair tasks do:
771 			 *
772 			update_cfs_rq_load_avg(now, cfs_rq);
773 			attach_entity_load_avg(cfs_rq, se, 0);
774 			switched_from_fair(rq, p);
775 			 *
776 			 * such that the next switched_to_fair() has the
777 			 * expected state.
778 			 */
779 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
780 			return;
781 		}
782 	}
783 
784 	attach_entity_cfs_rq(se);
785 }
786 
787 #else /* !CONFIG_SMP */
788 void init_entity_runnable_average(struct sched_entity *se)
789 {
790 }
791 void post_init_entity_util_avg(struct sched_entity *se)
792 {
793 }
794 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
795 {
796 }
797 #endif /* CONFIG_SMP */
798 
799 /*
800  * Update the current task's runtime statistics.
801  */
802 static void update_curr(struct cfs_rq *cfs_rq)
803 {
804 	struct sched_entity *curr = cfs_rq->curr;
805 	u64 now = rq_clock_task(rq_of(cfs_rq));
806 	u64 delta_exec;
807 
808 	if (unlikely(!curr))
809 		return;
810 
811 	delta_exec = now - curr->exec_start;
812 	if (unlikely((s64)delta_exec <= 0))
813 		return;
814 
815 	curr->exec_start = now;
816 
817 	schedstat_set(curr->statistics.exec_max,
818 		      max(delta_exec, curr->statistics.exec_max));
819 
820 	curr->sum_exec_runtime += delta_exec;
821 	schedstat_add(cfs_rq->exec_clock, delta_exec);
822 
823 	curr->vruntime += calc_delta_fair(delta_exec, curr);
824 	update_min_vruntime(cfs_rq);
825 
826 	if (entity_is_task(curr)) {
827 		struct task_struct *curtask = task_of(curr);
828 
829 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
830 		cgroup_account_cputime(curtask, delta_exec);
831 		account_group_exec_runtime(curtask, delta_exec);
832 	}
833 
834 	account_cfs_rq_runtime(cfs_rq, delta_exec);
835 }
836 
837 static void update_curr_fair(struct rq *rq)
838 {
839 	update_curr(cfs_rq_of(&rq->curr->se));
840 }
841 
842 static inline void
843 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
844 {
845 	u64 wait_start, prev_wait_start;
846 
847 	if (!schedstat_enabled())
848 		return;
849 
850 	wait_start = rq_clock(rq_of(cfs_rq));
851 	prev_wait_start = schedstat_val(se->statistics.wait_start);
852 
853 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
854 	    likely(wait_start > prev_wait_start))
855 		wait_start -= prev_wait_start;
856 
857 	__schedstat_set(se->statistics.wait_start, wait_start);
858 }
859 
860 static inline void
861 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
862 {
863 	struct task_struct *p;
864 	u64 delta;
865 
866 	if (!schedstat_enabled())
867 		return;
868 
869 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
870 
871 	if (entity_is_task(se)) {
872 		p = task_of(se);
873 		if (task_on_rq_migrating(p)) {
874 			/*
875 			 * Preserve migrating task's wait time so wait_start
876 			 * time stamp can be adjusted to accumulate wait time
877 			 * prior to migration.
878 			 */
879 			__schedstat_set(se->statistics.wait_start, delta);
880 			return;
881 		}
882 		trace_sched_stat_wait(p, delta);
883 	}
884 
885 	__schedstat_set(se->statistics.wait_max,
886 		      max(schedstat_val(se->statistics.wait_max), delta));
887 	__schedstat_inc(se->statistics.wait_count);
888 	__schedstat_add(se->statistics.wait_sum, delta);
889 	__schedstat_set(se->statistics.wait_start, 0);
890 }
891 
892 static inline void
893 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 {
895 	struct task_struct *tsk = NULL;
896 	u64 sleep_start, block_start;
897 
898 	if (!schedstat_enabled())
899 		return;
900 
901 	sleep_start = schedstat_val(se->statistics.sleep_start);
902 	block_start = schedstat_val(se->statistics.block_start);
903 
904 	if (entity_is_task(se))
905 		tsk = task_of(se);
906 
907 	if (sleep_start) {
908 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
909 
910 		if ((s64)delta < 0)
911 			delta = 0;
912 
913 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
914 			__schedstat_set(se->statistics.sleep_max, delta);
915 
916 		__schedstat_set(se->statistics.sleep_start, 0);
917 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
918 
919 		if (tsk) {
920 			account_scheduler_latency(tsk, delta >> 10, 1);
921 			trace_sched_stat_sleep(tsk, delta);
922 		}
923 	}
924 	if (block_start) {
925 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
926 
927 		if ((s64)delta < 0)
928 			delta = 0;
929 
930 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
931 			__schedstat_set(se->statistics.block_max, delta);
932 
933 		__schedstat_set(se->statistics.block_start, 0);
934 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
935 
936 		if (tsk) {
937 			if (tsk->in_iowait) {
938 				__schedstat_add(se->statistics.iowait_sum, delta);
939 				__schedstat_inc(se->statistics.iowait_count);
940 				trace_sched_stat_iowait(tsk, delta);
941 			}
942 
943 			trace_sched_stat_blocked(tsk, delta);
944 
945 			/*
946 			 * Blocking time is in units of nanosecs, so shift by
947 			 * 20 to get a milliseconds-range estimation of the
948 			 * amount of time that the task spent sleeping:
949 			 */
950 			if (unlikely(prof_on == SLEEP_PROFILING)) {
951 				profile_hits(SLEEP_PROFILING,
952 						(void *)get_wchan(tsk),
953 						delta >> 20);
954 			}
955 			account_scheduler_latency(tsk, delta >> 10, 0);
956 		}
957 	}
958 }
959 
960 /*
961  * Task is being enqueued - update stats:
962  */
963 static inline void
964 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
965 {
966 	if (!schedstat_enabled())
967 		return;
968 
969 	/*
970 	 * Are we enqueueing a waiting task? (for current tasks
971 	 * a dequeue/enqueue event is a NOP)
972 	 */
973 	if (se != cfs_rq->curr)
974 		update_stats_wait_start(cfs_rq, se);
975 
976 	if (flags & ENQUEUE_WAKEUP)
977 		update_stats_enqueue_sleeper(cfs_rq, se);
978 }
979 
980 static inline void
981 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
982 {
983 
984 	if (!schedstat_enabled())
985 		return;
986 
987 	/*
988 	 * Mark the end of the wait period if dequeueing a
989 	 * waiting task:
990 	 */
991 	if (se != cfs_rq->curr)
992 		update_stats_wait_end(cfs_rq, se);
993 
994 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
995 		struct task_struct *tsk = task_of(se);
996 
997 		if (tsk->state & TASK_INTERRUPTIBLE)
998 			__schedstat_set(se->statistics.sleep_start,
999 				      rq_clock(rq_of(cfs_rq)));
1000 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1001 			__schedstat_set(se->statistics.block_start,
1002 				      rq_clock(rq_of(cfs_rq)));
1003 	}
1004 }
1005 
1006 /*
1007  * We are picking a new current task - update its stats:
1008  */
1009 static inline void
1010 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1011 {
1012 	/*
1013 	 * We are starting a new run period:
1014 	 */
1015 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1016 }
1017 
1018 /**************************************************
1019  * Scheduling class queueing methods:
1020  */
1021 
1022 #ifdef CONFIG_NUMA_BALANCING
1023 /*
1024  * Approximate time to scan a full NUMA task in ms. The task scan period is
1025  * calculated based on the tasks virtual memory size and
1026  * numa_balancing_scan_size.
1027  */
1028 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1029 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1030 
1031 /* Portion of address space to scan in MB */
1032 unsigned int sysctl_numa_balancing_scan_size = 256;
1033 
1034 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1035 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1036 
1037 struct numa_group {
1038 	atomic_t refcount;
1039 
1040 	spinlock_t lock; /* nr_tasks, tasks */
1041 	int nr_tasks;
1042 	pid_t gid;
1043 	int active_nodes;
1044 
1045 	struct rcu_head rcu;
1046 	unsigned long total_faults;
1047 	unsigned long max_faults_cpu;
1048 	/*
1049 	 * Faults_cpu is used to decide whether memory should move
1050 	 * towards the CPU. As a consequence, these stats are weighted
1051 	 * more by CPU use than by memory faults.
1052 	 */
1053 	unsigned long *faults_cpu;
1054 	unsigned long faults[0];
1055 };
1056 
1057 static inline unsigned long group_faults_priv(struct numa_group *ng);
1058 static inline unsigned long group_faults_shared(struct numa_group *ng);
1059 
1060 static unsigned int task_nr_scan_windows(struct task_struct *p)
1061 {
1062 	unsigned long rss = 0;
1063 	unsigned long nr_scan_pages;
1064 
1065 	/*
1066 	 * Calculations based on RSS as non-present and empty pages are skipped
1067 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1068 	 * on resident pages
1069 	 */
1070 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1071 	rss = get_mm_rss(p->mm);
1072 	if (!rss)
1073 		rss = nr_scan_pages;
1074 
1075 	rss = round_up(rss, nr_scan_pages);
1076 	return rss / nr_scan_pages;
1077 }
1078 
1079 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1080 #define MAX_SCAN_WINDOW 2560
1081 
1082 static unsigned int task_scan_min(struct task_struct *p)
1083 {
1084 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1085 	unsigned int scan, floor;
1086 	unsigned int windows = 1;
1087 
1088 	if (scan_size < MAX_SCAN_WINDOW)
1089 		windows = MAX_SCAN_WINDOW / scan_size;
1090 	floor = 1000 / windows;
1091 
1092 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1093 	return max_t(unsigned int, floor, scan);
1094 }
1095 
1096 static unsigned int task_scan_start(struct task_struct *p)
1097 {
1098 	unsigned long smin = task_scan_min(p);
1099 	unsigned long period = smin;
1100 
1101 	/* Scale the maximum scan period with the amount of shared memory. */
1102 	if (p->numa_group) {
1103 		struct numa_group *ng = p->numa_group;
1104 		unsigned long shared = group_faults_shared(ng);
1105 		unsigned long private = group_faults_priv(ng);
1106 
1107 		period *= atomic_read(&ng->refcount);
1108 		period *= shared + 1;
1109 		period /= private + shared + 1;
1110 	}
1111 
1112 	return max(smin, period);
1113 }
1114 
1115 static unsigned int task_scan_max(struct task_struct *p)
1116 {
1117 	unsigned long smin = task_scan_min(p);
1118 	unsigned long smax;
1119 
1120 	/* Watch for min being lower than max due to floor calculations */
1121 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1122 
1123 	/* Scale the maximum scan period with the amount of shared memory. */
1124 	if (p->numa_group) {
1125 		struct numa_group *ng = p->numa_group;
1126 		unsigned long shared = group_faults_shared(ng);
1127 		unsigned long private = group_faults_priv(ng);
1128 		unsigned long period = smax;
1129 
1130 		period *= atomic_read(&ng->refcount);
1131 		period *= shared + 1;
1132 		period /= private + shared + 1;
1133 
1134 		smax = max(smax, period);
1135 	}
1136 
1137 	return max(smin, smax);
1138 }
1139 
1140 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1141 {
1142 	int mm_users = 0;
1143 	struct mm_struct *mm = p->mm;
1144 
1145 	if (mm) {
1146 		mm_users = atomic_read(&mm->mm_users);
1147 		if (mm_users == 1) {
1148 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1149 			mm->numa_scan_seq = 0;
1150 		}
1151 	}
1152 	p->node_stamp			= 0;
1153 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
1154 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
1155 	p->numa_work.next		= &p->numa_work;
1156 	p->numa_faults			= NULL;
1157 	p->numa_group			= NULL;
1158 	p->last_task_numa_placement	= 0;
1159 	p->last_sum_exec_runtime	= 0;
1160 
1161 	/* New address space, reset the preferred nid */
1162 	if (!(clone_flags & CLONE_VM)) {
1163 		p->numa_preferred_nid = -1;
1164 		return;
1165 	}
1166 
1167 	/*
1168 	 * New thread, keep existing numa_preferred_nid which should be copied
1169 	 * already by arch_dup_task_struct but stagger when scans start.
1170 	 */
1171 	if (mm) {
1172 		unsigned int delay;
1173 
1174 		delay = min_t(unsigned int, task_scan_max(current),
1175 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1176 		delay += 2 * TICK_NSEC;
1177 		p->node_stamp = delay;
1178 	}
1179 }
1180 
1181 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1182 {
1183 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1184 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1185 }
1186 
1187 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1188 {
1189 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1190 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1191 }
1192 
1193 /* Shared or private faults. */
1194 #define NR_NUMA_HINT_FAULT_TYPES 2
1195 
1196 /* Memory and CPU locality */
1197 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1198 
1199 /* Averaged statistics, and temporary buffers. */
1200 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1201 
1202 pid_t task_numa_group_id(struct task_struct *p)
1203 {
1204 	return p->numa_group ? p->numa_group->gid : 0;
1205 }
1206 
1207 /*
1208  * The averaged statistics, shared & private, memory & CPU,
1209  * occupy the first half of the array. The second half of the
1210  * array is for current counters, which are averaged into the
1211  * first set by task_numa_placement.
1212  */
1213 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1214 {
1215 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1216 }
1217 
1218 static inline unsigned long task_faults(struct task_struct *p, int nid)
1219 {
1220 	if (!p->numa_faults)
1221 		return 0;
1222 
1223 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1224 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1225 }
1226 
1227 static inline unsigned long group_faults(struct task_struct *p, int nid)
1228 {
1229 	if (!p->numa_group)
1230 		return 0;
1231 
1232 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1233 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1234 }
1235 
1236 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1237 {
1238 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1239 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1240 }
1241 
1242 static inline unsigned long group_faults_priv(struct numa_group *ng)
1243 {
1244 	unsigned long faults = 0;
1245 	int node;
1246 
1247 	for_each_online_node(node) {
1248 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1249 	}
1250 
1251 	return faults;
1252 }
1253 
1254 static inline unsigned long group_faults_shared(struct numa_group *ng)
1255 {
1256 	unsigned long faults = 0;
1257 	int node;
1258 
1259 	for_each_online_node(node) {
1260 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1261 	}
1262 
1263 	return faults;
1264 }
1265 
1266 /*
1267  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1268  * considered part of a numa group's pseudo-interleaving set. Migrations
1269  * between these nodes are slowed down, to allow things to settle down.
1270  */
1271 #define ACTIVE_NODE_FRACTION 3
1272 
1273 static bool numa_is_active_node(int nid, struct numa_group *ng)
1274 {
1275 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1276 }
1277 
1278 /* Handle placement on systems where not all nodes are directly connected. */
1279 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1280 					int maxdist, bool task)
1281 {
1282 	unsigned long score = 0;
1283 	int node;
1284 
1285 	/*
1286 	 * All nodes are directly connected, and the same distance
1287 	 * from each other. No need for fancy placement algorithms.
1288 	 */
1289 	if (sched_numa_topology_type == NUMA_DIRECT)
1290 		return 0;
1291 
1292 	/*
1293 	 * This code is called for each node, introducing N^2 complexity,
1294 	 * which should be ok given the number of nodes rarely exceeds 8.
1295 	 */
1296 	for_each_online_node(node) {
1297 		unsigned long faults;
1298 		int dist = node_distance(nid, node);
1299 
1300 		/*
1301 		 * The furthest away nodes in the system are not interesting
1302 		 * for placement; nid was already counted.
1303 		 */
1304 		if (dist == sched_max_numa_distance || node == nid)
1305 			continue;
1306 
1307 		/*
1308 		 * On systems with a backplane NUMA topology, compare groups
1309 		 * of nodes, and move tasks towards the group with the most
1310 		 * memory accesses. When comparing two nodes at distance
1311 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1312 		 * of each group. Skip other nodes.
1313 		 */
1314 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1315 					dist >= maxdist)
1316 			continue;
1317 
1318 		/* Add up the faults from nearby nodes. */
1319 		if (task)
1320 			faults = task_faults(p, node);
1321 		else
1322 			faults = group_faults(p, node);
1323 
1324 		/*
1325 		 * On systems with a glueless mesh NUMA topology, there are
1326 		 * no fixed "groups of nodes". Instead, nodes that are not
1327 		 * directly connected bounce traffic through intermediate
1328 		 * nodes; a numa_group can occupy any set of nodes.
1329 		 * The further away a node is, the less the faults count.
1330 		 * This seems to result in good task placement.
1331 		 */
1332 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1333 			faults *= (sched_max_numa_distance - dist);
1334 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1335 		}
1336 
1337 		score += faults;
1338 	}
1339 
1340 	return score;
1341 }
1342 
1343 /*
1344  * These return the fraction of accesses done by a particular task, or
1345  * task group, on a particular numa node.  The group weight is given a
1346  * larger multiplier, in order to group tasks together that are almost
1347  * evenly spread out between numa nodes.
1348  */
1349 static inline unsigned long task_weight(struct task_struct *p, int nid,
1350 					int dist)
1351 {
1352 	unsigned long faults, total_faults;
1353 
1354 	if (!p->numa_faults)
1355 		return 0;
1356 
1357 	total_faults = p->total_numa_faults;
1358 
1359 	if (!total_faults)
1360 		return 0;
1361 
1362 	faults = task_faults(p, nid);
1363 	faults += score_nearby_nodes(p, nid, dist, true);
1364 
1365 	return 1000 * faults / total_faults;
1366 }
1367 
1368 static inline unsigned long group_weight(struct task_struct *p, int nid,
1369 					 int dist)
1370 {
1371 	unsigned long faults, total_faults;
1372 
1373 	if (!p->numa_group)
1374 		return 0;
1375 
1376 	total_faults = p->numa_group->total_faults;
1377 
1378 	if (!total_faults)
1379 		return 0;
1380 
1381 	faults = group_faults(p, nid);
1382 	faults += score_nearby_nodes(p, nid, dist, false);
1383 
1384 	return 1000 * faults / total_faults;
1385 }
1386 
1387 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1388 				int src_nid, int dst_cpu)
1389 {
1390 	struct numa_group *ng = p->numa_group;
1391 	int dst_nid = cpu_to_node(dst_cpu);
1392 	int last_cpupid, this_cpupid;
1393 
1394 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1395 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1396 
1397 	/*
1398 	 * Allow first faults or private faults to migrate immediately early in
1399 	 * the lifetime of a task. The magic number 4 is based on waiting for
1400 	 * two full passes of the "multi-stage node selection" test that is
1401 	 * executed below.
1402 	 */
1403 	if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
1404 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1405 		return true;
1406 
1407 	/*
1408 	 * Multi-stage node selection is used in conjunction with a periodic
1409 	 * migration fault to build a temporal task<->page relation. By using
1410 	 * a two-stage filter we remove short/unlikely relations.
1411 	 *
1412 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1413 	 * a task's usage of a particular page (n_p) per total usage of this
1414 	 * page (n_t) (in a given time-span) to a probability.
1415 	 *
1416 	 * Our periodic faults will sample this probability and getting the
1417 	 * same result twice in a row, given these samples are fully
1418 	 * independent, is then given by P(n)^2, provided our sample period
1419 	 * is sufficiently short compared to the usage pattern.
1420 	 *
1421 	 * This quadric squishes small probabilities, making it less likely we
1422 	 * act on an unlikely task<->page relation.
1423 	 */
1424 	if (!cpupid_pid_unset(last_cpupid) &&
1425 				cpupid_to_nid(last_cpupid) != dst_nid)
1426 		return false;
1427 
1428 	/* Always allow migrate on private faults */
1429 	if (cpupid_match_pid(p, last_cpupid))
1430 		return true;
1431 
1432 	/* A shared fault, but p->numa_group has not been set up yet. */
1433 	if (!ng)
1434 		return true;
1435 
1436 	/*
1437 	 * Destination node is much more heavily used than the source
1438 	 * node? Allow migration.
1439 	 */
1440 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1441 					ACTIVE_NODE_FRACTION)
1442 		return true;
1443 
1444 	/*
1445 	 * Distribute memory according to CPU & memory use on each node,
1446 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1447 	 *
1448 	 * faults_cpu(dst)   3   faults_cpu(src)
1449 	 * --------------- * - > ---------------
1450 	 * faults_mem(dst)   4   faults_mem(src)
1451 	 */
1452 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1453 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1454 }
1455 
1456 static unsigned long weighted_cpuload(struct rq *rq);
1457 static unsigned long source_load(int cpu, int type);
1458 static unsigned long target_load(int cpu, int type);
1459 static unsigned long capacity_of(int cpu);
1460 
1461 /* Cached statistics for all CPUs within a node */
1462 struct numa_stats {
1463 	unsigned long load;
1464 
1465 	/* Total compute capacity of CPUs on a node */
1466 	unsigned long compute_capacity;
1467 
1468 	unsigned int nr_running;
1469 };
1470 
1471 /*
1472  * XXX borrowed from update_sg_lb_stats
1473  */
1474 static void update_numa_stats(struct numa_stats *ns, int nid)
1475 {
1476 	int smt, cpu, cpus = 0;
1477 	unsigned long capacity;
1478 
1479 	memset(ns, 0, sizeof(*ns));
1480 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1481 		struct rq *rq = cpu_rq(cpu);
1482 
1483 		ns->nr_running += rq->nr_running;
1484 		ns->load += weighted_cpuload(rq);
1485 		ns->compute_capacity += capacity_of(cpu);
1486 
1487 		cpus++;
1488 	}
1489 
1490 	/*
1491 	 * If we raced with hotplug and there are no CPUs left in our mask
1492 	 * the @ns structure is NULL'ed and task_numa_compare() will
1493 	 * not find this node attractive.
1494 	 *
1495 	 * We'll detect a huge imbalance and bail there.
1496 	 */
1497 	if (!cpus)
1498 		return;
1499 
1500 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1501 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1502 	capacity = cpus / smt; /* cores */
1503 
1504 	capacity = min_t(unsigned, capacity,
1505 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1506 }
1507 
1508 struct task_numa_env {
1509 	struct task_struct *p;
1510 
1511 	int src_cpu, src_nid;
1512 	int dst_cpu, dst_nid;
1513 
1514 	struct numa_stats src_stats, dst_stats;
1515 
1516 	int imbalance_pct;
1517 	int dist;
1518 
1519 	struct task_struct *best_task;
1520 	long best_imp;
1521 	int best_cpu;
1522 };
1523 
1524 static void task_numa_assign(struct task_numa_env *env,
1525 			     struct task_struct *p, long imp)
1526 {
1527 	struct rq *rq = cpu_rq(env->dst_cpu);
1528 
1529 	/* Bail out if run-queue part of active NUMA balance. */
1530 	if (xchg(&rq->numa_migrate_on, 1))
1531 		return;
1532 
1533 	/*
1534 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1535 	 * found a better CPU to move/swap.
1536 	 */
1537 	if (env->best_cpu != -1) {
1538 		rq = cpu_rq(env->best_cpu);
1539 		WRITE_ONCE(rq->numa_migrate_on, 0);
1540 	}
1541 
1542 	if (env->best_task)
1543 		put_task_struct(env->best_task);
1544 	if (p)
1545 		get_task_struct(p);
1546 
1547 	env->best_task = p;
1548 	env->best_imp = imp;
1549 	env->best_cpu = env->dst_cpu;
1550 }
1551 
1552 static bool load_too_imbalanced(long src_load, long dst_load,
1553 				struct task_numa_env *env)
1554 {
1555 	long imb, old_imb;
1556 	long orig_src_load, orig_dst_load;
1557 	long src_capacity, dst_capacity;
1558 
1559 	/*
1560 	 * The load is corrected for the CPU capacity available on each node.
1561 	 *
1562 	 * src_load        dst_load
1563 	 * ------------ vs ---------
1564 	 * src_capacity    dst_capacity
1565 	 */
1566 	src_capacity = env->src_stats.compute_capacity;
1567 	dst_capacity = env->dst_stats.compute_capacity;
1568 
1569 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1570 
1571 	orig_src_load = env->src_stats.load;
1572 	orig_dst_load = env->dst_stats.load;
1573 
1574 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1575 
1576 	/* Would this change make things worse? */
1577 	return (imb > old_imb);
1578 }
1579 
1580 /*
1581  * Maximum NUMA importance can be 1998 (2*999);
1582  * SMALLIMP @ 30 would be close to 1998/64.
1583  * Used to deter task migration.
1584  */
1585 #define SMALLIMP	30
1586 
1587 /*
1588  * This checks if the overall compute and NUMA accesses of the system would
1589  * be improved if the source tasks was migrated to the target dst_cpu taking
1590  * into account that it might be best if task running on the dst_cpu should
1591  * be exchanged with the source task
1592  */
1593 static void task_numa_compare(struct task_numa_env *env,
1594 			      long taskimp, long groupimp, bool maymove)
1595 {
1596 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1597 	struct task_struct *cur;
1598 	long src_load, dst_load;
1599 	long load;
1600 	long imp = env->p->numa_group ? groupimp : taskimp;
1601 	long moveimp = imp;
1602 	int dist = env->dist;
1603 
1604 	if (READ_ONCE(dst_rq->numa_migrate_on))
1605 		return;
1606 
1607 	rcu_read_lock();
1608 	cur = task_rcu_dereference(&dst_rq->curr);
1609 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1610 		cur = NULL;
1611 
1612 	/*
1613 	 * Because we have preemption enabled we can get migrated around and
1614 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1615 	 */
1616 	if (cur == env->p)
1617 		goto unlock;
1618 
1619 	if (!cur) {
1620 		if (maymove && moveimp >= env->best_imp)
1621 			goto assign;
1622 		else
1623 			goto unlock;
1624 	}
1625 
1626 	/*
1627 	 * "imp" is the fault differential for the source task between the
1628 	 * source and destination node. Calculate the total differential for
1629 	 * the source task and potential destination task. The more negative
1630 	 * the value is, the more remote accesses that would be expected to
1631 	 * be incurred if the tasks were swapped.
1632 	 */
1633 	/* Skip this swap candidate if cannot move to the source cpu */
1634 	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1635 		goto unlock;
1636 
1637 	/*
1638 	 * If dst and source tasks are in the same NUMA group, or not
1639 	 * in any group then look only at task weights.
1640 	 */
1641 	if (cur->numa_group == env->p->numa_group) {
1642 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1643 		      task_weight(cur, env->dst_nid, dist);
1644 		/*
1645 		 * Add some hysteresis to prevent swapping the
1646 		 * tasks within a group over tiny differences.
1647 		 */
1648 		if (cur->numa_group)
1649 			imp -= imp / 16;
1650 	} else {
1651 		/*
1652 		 * Compare the group weights. If a task is all by itself
1653 		 * (not part of a group), use the task weight instead.
1654 		 */
1655 		if (cur->numa_group && env->p->numa_group)
1656 			imp += group_weight(cur, env->src_nid, dist) -
1657 			       group_weight(cur, env->dst_nid, dist);
1658 		else
1659 			imp += task_weight(cur, env->src_nid, dist) -
1660 			       task_weight(cur, env->dst_nid, dist);
1661 	}
1662 
1663 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1664 		imp = moveimp;
1665 		cur = NULL;
1666 		goto assign;
1667 	}
1668 
1669 	/*
1670 	 * If the NUMA importance is less than SMALLIMP,
1671 	 * task migration might only result in ping pong
1672 	 * of tasks and also hurt performance due to cache
1673 	 * misses.
1674 	 */
1675 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1676 		goto unlock;
1677 
1678 	/*
1679 	 * In the overloaded case, try and keep the load balanced.
1680 	 */
1681 	load = task_h_load(env->p) - task_h_load(cur);
1682 	if (!load)
1683 		goto assign;
1684 
1685 	dst_load = env->dst_stats.load + load;
1686 	src_load = env->src_stats.load - load;
1687 
1688 	if (load_too_imbalanced(src_load, dst_load, env))
1689 		goto unlock;
1690 
1691 assign:
1692 	/*
1693 	 * One idle CPU per node is evaluated for a task numa move.
1694 	 * Call select_idle_sibling to maybe find a better one.
1695 	 */
1696 	if (!cur) {
1697 		/*
1698 		 * select_idle_siblings() uses an per-CPU cpumask that
1699 		 * can be used from IRQ context.
1700 		 */
1701 		local_irq_disable();
1702 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1703 						   env->dst_cpu);
1704 		local_irq_enable();
1705 	}
1706 
1707 	task_numa_assign(env, cur, imp);
1708 unlock:
1709 	rcu_read_unlock();
1710 }
1711 
1712 static void task_numa_find_cpu(struct task_numa_env *env,
1713 				long taskimp, long groupimp)
1714 {
1715 	long src_load, dst_load, load;
1716 	bool maymove = false;
1717 	int cpu;
1718 
1719 	load = task_h_load(env->p);
1720 	dst_load = env->dst_stats.load + load;
1721 	src_load = env->src_stats.load - load;
1722 
1723 	/*
1724 	 * If the improvement from just moving env->p direction is better
1725 	 * than swapping tasks around, check if a move is possible.
1726 	 */
1727 	maymove = !load_too_imbalanced(src_load, dst_load, env);
1728 
1729 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1730 		/* Skip this CPU if the source task cannot migrate */
1731 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1732 			continue;
1733 
1734 		env->dst_cpu = cpu;
1735 		task_numa_compare(env, taskimp, groupimp, maymove);
1736 	}
1737 }
1738 
1739 static int task_numa_migrate(struct task_struct *p)
1740 {
1741 	struct task_numa_env env = {
1742 		.p = p,
1743 
1744 		.src_cpu = task_cpu(p),
1745 		.src_nid = task_node(p),
1746 
1747 		.imbalance_pct = 112,
1748 
1749 		.best_task = NULL,
1750 		.best_imp = 0,
1751 		.best_cpu = -1,
1752 	};
1753 	struct sched_domain *sd;
1754 	struct rq *best_rq;
1755 	unsigned long taskweight, groupweight;
1756 	int nid, ret, dist;
1757 	long taskimp, groupimp;
1758 
1759 	/*
1760 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1761 	 * imbalance and would be the first to start moving tasks about.
1762 	 *
1763 	 * And we want to avoid any moving of tasks about, as that would create
1764 	 * random movement of tasks -- counter the numa conditions we're trying
1765 	 * to satisfy here.
1766 	 */
1767 	rcu_read_lock();
1768 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1769 	if (sd)
1770 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1771 	rcu_read_unlock();
1772 
1773 	/*
1774 	 * Cpusets can break the scheduler domain tree into smaller
1775 	 * balance domains, some of which do not cross NUMA boundaries.
1776 	 * Tasks that are "trapped" in such domains cannot be migrated
1777 	 * elsewhere, so there is no point in (re)trying.
1778 	 */
1779 	if (unlikely(!sd)) {
1780 		sched_setnuma(p, task_node(p));
1781 		return -EINVAL;
1782 	}
1783 
1784 	env.dst_nid = p->numa_preferred_nid;
1785 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1786 	taskweight = task_weight(p, env.src_nid, dist);
1787 	groupweight = group_weight(p, env.src_nid, dist);
1788 	update_numa_stats(&env.src_stats, env.src_nid);
1789 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1790 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1791 	update_numa_stats(&env.dst_stats, env.dst_nid);
1792 
1793 	/* Try to find a spot on the preferred nid. */
1794 	task_numa_find_cpu(&env, taskimp, groupimp);
1795 
1796 	/*
1797 	 * Look at other nodes in these cases:
1798 	 * - there is no space available on the preferred_nid
1799 	 * - the task is part of a numa_group that is interleaved across
1800 	 *   multiple NUMA nodes; in order to better consolidate the group,
1801 	 *   we need to check other locations.
1802 	 */
1803 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1804 		for_each_online_node(nid) {
1805 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1806 				continue;
1807 
1808 			dist = node_distance(env.src_nid, env.dst_nid);
1809 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1810 						dist != env.dist) {
1811 				taskweight = task_weight(p, env.src_nid, dist);
1812 				groupweight = group_weight(p, env.src_nid, dist);
1813 			}
1814 
1815 			/* Only consider nodes where both task and groups benefit */
1816 			taskimp = task_weight(p, nid, dist) - taskweight;
1817 			groupimp = group_weight(p, nid, dist) - groupweight;
1818 			if (taskimp < 0 && groupimp < 0)
1819 				continue;
1820 
1821 			env.dist = dist;
1822 			env.dst_nid = nid;
1823 			update_numa_stats(&env.dst_stats, env.dst_nid);
1824 			task_numa_find_cpu(&env, taskimp, groupimp);
1825 		}
1826 	}
1827 
1828 	/*
1829 	 * If the task is part of a workload that spans multiple NUMA nodes,
1830 	 * and is migrating into one of the workload's active nodes, remember
1831 	 * this node as the task's preferred numa node, so the workload can
1832 	 * settle down.
1833 	 * A task that migrated to a second choice node will be better off
1834 	 * trying for a better one later. Do not set the preferred node here.
1835 	 */
1836 	if (p->numa_group) {
1837 		if (env.best_cpu == -1)
1838 			nid = env.src_nid;
1839 		else
1840 			nid = cpu_to_node(env.best_cpu);
1841 
1842 		if (nid != p->numa_preferred_nid)
1843 			sched_setnuma(p, nid);
1844 	}
1845 
1846 	/* No better CPU than the current one was found. */
1847 	if (env.best_cpu == -1)
1848 		return -EAGAIN;
1849 
1850 	best_rq = cpu_rq(env.best_cpu);
1851 	if (env.best_task == NULL) {
1852 		ret = migrate_task_to(p, env.best_cpu);
1853 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1854 		if (ret != 0)
1855 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1856 		return ret;
1857 	}
1858 
1859 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1860 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1861 
1862 	if (ret != 0)
1863 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1864 	put_task_struct(env.best_task);
1865 	return ret;
1866 }
1867 
1868 /* Attempt to migrate a task to a CPU on the preferred node. */
1869 static void numa_migrate_preferred(struct task_struct *p)
1870 {
1871 	unsigned long interval = HZ;
1872 
1873 	/* This task has no NUMA fault statistics yet */
1874 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1875 		return;
1876 
1877 	/* Periodically retry migrating the task to the preferred node */
1878 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1879 	p->numa_migrate_retry = jiffies + interval;
1880 
1881 	/* Success if task is already running on preferred CPU */
1882 	if (task_node(p) == p->numa_preferred_nid)
1883 		return;
1884 
1885 	/* Otherwise, try migrate to a CPU on the preferred node */
1886 	task_numa_migrate(p);
1887 }
1888 
1889 /*
1890  * Find out how many nodes on the workload is actively running on. Do this by
1891  * tracking the nodes from which NUMA hinting faults are triggered. This can
1892  * be different from the set of nodes where the workload's memory is currently
1893  * located.
1894  */
1895 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1896 {
1897 	unsigned long faults, max_faults = 0;
1898 	int nid, active_nodes = 0;
1899 
1900 	for_each_online_node(nid) {
1901 		faults = group_faults_cpu(numa_group, nid);
1902 		if (faults > max_faults)
1903 			max_faults = faults;
1904 	}
1905 
1906 	for_each_online_node(nid) {
1907 		faults = group_faults_cpu(numa_group, nid);
1908 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1909 			active_nodes++;
1910 	}
1911 
1912 	numa_group->max_faults_cpu = max_faults;
1913 	numa_group->active_nodes = active_nodes;
1914 }
1915 
1916 /*
1917  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1918  * increments. The more local the fault statistics are, the higher the scan
1919  * period will be for the next scan window. If local/(local+remote) ratio is
1920  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1921  * the scan period will decrease. Aim for 70% local accesses.
1922  */
1923 #define NUMA_PERIOD_SLOTS 10
1924 #define NUMA_PERIOD_THRESHOLD 7
1925 
1926 /*
1927  * Increase the scan period (slow down scanning) if the majority of
1928  * our memory is already on our local node, or if the majority of
1929  * the page accesses are shared with other processes.
1930  * Otherwise, decrease the scan period.
1931  */
1932 static void update_task_scan_period(struct task_struct *p,
1933 			unsigned long shared, unsigned long private)
1934 {
1935 	unsigned int period_slot;
1936 	int lr_ratio, ps_ratio;
1937 	int diff;
1938 
1939 	unsigned long remote = p->numa_faults_locality[0];
1940 	unsigned long local = p->numa_faults_locality[1];
1941 
1942 	/*
1943 	 * If there were no record hinting faults then either the task is
1944 	 * completely idle or all activity is areas that are not of interest
1945 	 * to automatic numa balancing. Related to that, if there were failed
1946 	 * migration then it implies we are migrating too quickly or the local
1947 	 * node is overloaded. In either case, scan slower
1948 	 */
1949 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1950 		p->numa_scan_period = min(p->numa_scan_period_max,
1951 			p->numa_scan_period << 1);
1952 
1953 		p->mm->numa_next_scan = jiffies +
1954 			msecs_to_jiffies(p->numa_scan_period);
1955 
1956 		return;
1957 	}
1958 
1959 	/*
1960 	 * Prepare to scale scan period relative to the current period.
1961 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1962 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1963 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1964 	 */
1965 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1966 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1967 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1968 
1969 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1970 		/*
1971 		 * Most memory accesses are local. There is no need to
1972 		 * do fast NUMA scanning, since memory is already local.
1973 		 */
1974 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1975 		if (!slot)
1976 			slot = 1;
1977 		diff = slot * period_slot;
1978 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1979 		/*
1980 		 * Most memory accesses are shared with other tasks.
1981 		 * There is no point in continuing fast NUMA scanning,
1982 		 * since other tasks may just move the memory elsewhere.
1983 		 */
1984 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1985 		if (!slot)
1986 			slot = 1;
1987 		diff = slot * period_slot;
1988 	} else {
1989 		/*
1990 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1991 		 * yet they are not on the local NUMA node. Speed up
1992 		 * NUMA scanning to get the memory moved over.
1993 		 */
1994 		int ratio = max(lr_ratio, ps_ratio);
1995 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1996 	}
1997 
1998 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1999 			task_scan_min(p), task_scan_max(p));
2000 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2001 }
2002 
2003 /*
2004  * Get the fraction of time the task has been running since the last
2005  * NUMA placement cycle. The scheduler keeps similar statistics, but
2006  * decays those on a 32ms period, which is orders of magnitude off
2007  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2008  * stats only if the task is so new there are no NUMA statistics yet.
2009  */
2010 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2011 {
2012 	u64 runtime, delta, now;
2013 	/* Use the start of this time slice to avoid calculations. */
2014 	now = p->se.exec_start;
2015 	runtime = p->se.sum_exec_runtime;
2016 
2017 	if (p->last_task_numa_placement) {
2018 		delta = runtime - p->last_sum_exec_runtime;
2019 		*period = now - p->last_task_numa_placement;
2020 	} else {
2021 		delta = p->se.avg.load_sum;
2022 		*period = LOAD_AVG_MAX;
2023 	}
2024 
2025 	p->last_sum_exec_runtime = runtime;
2026 	p->last_task_numa_placement = now;
2027 
2028 	return delta;
2029 }
2030 
2031 /*
2032  * Determine the preferred nid for a task in a numa_group. This needs to
2033  * be done in a way that produces consistent results with group_weight,
2034  * otherwise workloads might not converge.
2035  */
2036 static int preferred_group_nid(struct task_struct *p, int nid)
2037 {
2038 	nodemask_t nodes;
2039 	int dist;
2040 
2041 	/* Direct connections between all NUMA nodes. */
2042 	if (sched_numa_topology_type == NUMA_DIRECT)
2043 		return nid;
2044 
2045 	/*
2046 	 * On a system with glueless mesh NUMA topology, group_weight
2047 	 * scores nodes according to the number of NUMA hinting faults on
2048 	 * both the node itself, and on nearby nodes.
2049 	 */
2050 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2051 		unsigned long score, max_score = 0;
2052 		int node, max_node = nid;
2053 
2054 		dist = sched_max_numa_distance;
2055 
2056 		for_each_online_node(node) {
2057 			score = group_weight(p, node, dist);
2058 			if (score > max_score) {
2059 				max_score = score;
2060 				max_node = node;
2061 			}
2062 		}
2063 		return max_node;
2064 	}
2065 
2066 	/*
2067 	 * Finding the preferred nid in a system with NUMA backplane
2068 	 * interconnect topology is more involved. The goal is to locate
2069 	 * tasks from numa_groups near each other in the system, and
2070 	 * untangle workloads from different sides of the system. This requires
2071 	 * searching down the hierarchy of node groups, recursively searching
2072 	 * inside the highest scoring group of nodes. The nodemask tricks
2073 	 * keep the complexity of the search down.
2074 	 */
2075 	nodes = node_online_map;
2076 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2077 		unsigned long max_faults = 0;
2078 		nodemask_t max_group = NODE_MASK_NONE;
2079 		int a, b;
2080 
2081 		/* Are there nodes at this distance from each other? */
2082 		if (!find_numa_distance(dist))
2083 			continue;
2084 
2085 		for_each_node_mask(a, nodes) {
2086 			unsigned long faults = 0;
2087 			nodemask_t this_group;
2088 			nodes_clear(this_group);
2089 
2090 			/* Sum group's NUMA faults; includes a==b case. */
2091 			for_each_node_mask(b, nodes) {
2092 				if (node_distance(a, b) < dist) {
2093 					faults += group_faults(p, b);
2094 					node_set(b, this_group);
2095 					node_clear(b, nodes);
2096 				}
2097 			}
2098 
2099 			/* Remember the top group. */
2100 			if (faults > max_faults) {
2101 				max_faults = faults;
2102 				max_group = this_group;
2103 				/*
2104 				 * subtle: at the smallest distance there is
2105 				 * just one node left in each "group", the
2106 				 * winner is the preferred nid.
2107 				 */
2108 				nid = a;
2109 			}
2110 		}
2111 		/* Next round, evaluate the nodes within max_group. */
2112 		if (!max_faults)
2113 			break;
2114 		nodes = max_group;
2115 	}
2116 	return nid;
2117 }
2118 
2119 static void task_numa_placement(struct task_struct *p)
2120 {
2121 	int seq, nid, max_nid = -1;
2122 	unsigned long max_faults = 0;
2123 	unsigned long fault_types[2] = { 0, 0 };
2124 	unsigned long total_faults;
2125 	u64 runtime, period;
2126 	spinlock_t *group_lock = NULL;
2127 
2128 	/*
2129 	 * The p->mm->numa_scan_seq field gets updated without
2130 	 * exclusive access. Use READ_ONCE() here to ensure
2131 	 * that the field is read in a single access:
2132 	 */
2133 	seq = READ_ONCE(p->mm->numa_scan_seq);
2134 	if (p->numa_scan_seq == seq)
2135 		return;
2136 	p->numa_scan_seq = seq;
2137 	p->numa_scan_period_max = task_scan_max(p);
2138 
2139 	total_faults = p->numa_faults_locality[0] +
2140 		       p->numa_faults_locality[1];
2141 	runtime = numa_get_avg_runtime(p, &period);
2142 
2143 	/* If the task is part of a group prevent parallel updates to group stats */
2144 	if (p->numa_group) {
2145 		group_lock = &p->numa_group->lock;
2146 		spin_lock_irq(group_lock);
2147 	}
2148 
2149 	/* Find the node with the highest number of faults */
2150 	for_each_online_node(nid) {
2151 		/* Keep track of the offsets in numa_faults array */
2152 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2153 		unsigned long faults = 0, group_faults = 0;
2154 		int priv;
2155 
2156 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2157 			long diff, f_diff, f_weight;
2158 
2159 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2160 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2161 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2162 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2163 
2164 			/* Decay existing window, copy faults since last scan */
2165 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2166 			fault_types[priv] += p->numa_faults[membuf_idx];
2167 			p->numa_faults[membuf_idx] = 0;
2168 
2169 			/*
2170 			 * Normalize the faults_from, so all tasks in a group
2171 			 * count according to CPU use, instead of by the raw
2172 			 * number of faults. Tasks with little runtime have
2173 			 * little over-all impact on throughput, and thus their
2174 			 * faults are less important.
2175 			 */
2176 			f_weight = div64_u64(runtime << 16, period + 1);
2177 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2178 				   (total_faults + 1);
2179 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2180 			p->numa_faults[cpubuf_idx] = 0;
2181 
2182 			p->numa_faults[mem_idx] += diff;
2183 			p->numa_faults[cpu_idx] += f_diff;
2184 			faults += p->numa_faults[mem_idx];
2185 			p->total_numa_faults += diff;
2186 			if (p->numa_group) {
2187 				/*
2188 				 * safe because we can only change our own group
2189 				 *
2190 				 * mem_idx represents the offset for a given
2191 				 * nid and priv in a specific region because it
2192 				 * is at the beginning of the numa_faults array.
2193 				 */
2194 				p->numa_group->faults[mem_idx] += diff;
2195 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2196 				p->numa_group->total_faults += diff;
2197 				group_faults += p->numa_group->faults[mem_idx];
2198 			}
2199 		}
2200 
2201 		if (!p->numa_group) {
2202 			if (faults > max_faults) {
2203 				max_faults = faults;
2204 				max_nid = nid;
2205 			}
2206 		} else if (group_faults > max_faults) {
2207 			max_faults = group_faults;
2208 			max_nid = nid;
2209 		}
2210 	}
2211 
2212 	if (p->numa_group) {
2213 		numa_group_count_active_nodes(p->numa_group);
2214 		spin_unlock_irq(group_lock);
2215 		max_nid = preferred_group_nid(p, max_nid);
2216 	}
2217 
2218 	if (max_faults) {
2219 		/* Set the new preferred node */
2220 		if (max_nid != p->numa_preferred_nid)
2221 			sched_setnuma(p, max_nid);
2222 	}
2223 
2224 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2225 }
2226 
2227 static inline int get_numa_group(struct numa_group *grp)
2228 {
2229 	return atomic_inc_not_zero(&grp->refcount);
2230 }
2231 
2232 static inline void put_numa_group(struct numa_group *grp)
2233 {
2234 	if (atomic_dec_and_test(&grp->refcount))
2235 		kfree_rcu(grp, rcu);
2236 }
2237 
2238 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2239 			int *priv)
2240 {
2241 	struct numa_group *grp, *my_grp;
2242 	struct task_struct *tsk;
2243 	bool join = false;
2244 	int cpu = cpupid_to_cpu(cpupid);
2245 	int i;
2246 
2247 	if (unlikely(!p->numa_group)) {
2248 		unsigned int size = sizeof(struct numa_group) +
2249 				    4*nr_node_ids*sizeof(unsigned long);
2250 
2251 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2252 		if (!grp)
2253 			return;
2254 
2255 		atomic_set(&grp->refcount, 1);
2256 		grp->active_nodes = 1;
2257 		grp->max_faults_cpu = 0;
2258 		spin_lock_init(&grp->lock);
2259 		grp->gid = p->pid;
2260 		/* Second half of the array tracks nids where faults happen */
2261 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2262 						nr_node_ids;
2263 
2264 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2265 			grp->faults[i] = p->numa_faults[i];
2266 
2267 		grp->total_faults = p->total_numa_faults;
2268 
2269 		grp->nr_tasks++;
2270 		rcu_assign_pointer(p->numa_group, grp);
2271 	}
2272 
2273 	rcu_read_lock();
2274 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2275 
2276 	if (!cpupid_match_pid(tsk, cpupid))
2277 		goto no_join;
2278 
2279 	grp = rcu_dereference(tsk->numa_group);
2280 	if (!grp)
2281 		goto no_join;
2282 
2283 	my_grp = p->numa_group;
2284 	if (grp == my_grp)
2285 		goto no_join;
2286 
2287 	/*
2288 	 * Only join the other group if its bigger; if we're the bigger group,
2289 	 * the other task will join us.
2290 	 */
2291 	if (my_grp->nr_tasks > grp->nr_tasks)
2292 		goto no_join;
2293 
2294 	/*
2295 	 * Tie-break on the grp address.
2296 	 */
2297 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2298 		goto no_join;
2299 
2300 	/* Always join threads in the same process. */
2301 	if (tsk->mm == current->mm)
2302 		join = true;
2303 
2304 	/* Simple filter to avoid false positives due to PID collisions */
2305 	if (flags & TNF_SHARED)
2306 		join = true;
2307 
2308 	/* Update priv based on whether false sharing was detected */
2309 	*priv = !join;
2310 
2311 	if (join && !get_numa_group(grp))
2312 		goto no_join;
2313 
2314 	rcu_read_unlock();
2315 
2316 	if (!join)
2317 		return;
2318 
2319 	BUG_ON(irqs_disabled());
2320 	double_lock_irq(&my_grp->lock, &grp->lock);
2321 
2322 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2323 		my_grp->faults[i] -= p->numa_faults[i];
2324 		grp->faults[i] += p->numa_faults[i];
2325 	}
2326 	my_grp->total_faults -= p->total_numa_faults;
2327 	grp->total_faults += p->total_numa_faults;
2328 
2329 	my_grp->nr_tasks--;
2330 	grp->nr_tasks++;
2331 
2332 	spin_unlock(&my_grp->lock);
2333 	spin_unlock_irq(&grp->lock);
2334 
2335 	rcu_assign_pointer(p->numa_group, grp);
2336 
2337 	put_numa_group(my_grp);
2338 	return;
2339 
2340 no_join:
2341 	rcu_read_unlock();
2342 	return;
2343 }
2344 
2345 void task_numa_free(struct task_struct *p)
2346 {
2347 	struct numa_group *grp = p->numa_group;
2348 	void *numa_faults = p->numa_faults;
2349 	unsigned long flags;
2350 	int i;
2351 
2352 	if (grp) {
2353 		spin_lock_irqsave(&grp->lock, flags);
2354 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2355 			grp->faults[i] -= p->numa_faults[i];
2356 		grp->total_faults -= p->total_numa_faults;
2357 
2358 		grp->nr_tasks--;
2359 		spin_unlock_irqrestore(&grp->lock, flags);
2360 		RCU_INIT_POINTER(p->numa_group, NULL);
2361 		put_numa_group(grp);
2362 	}
2363 
2364 	p->numa_faults = NULL;
2365 	kfree(numa_faults);
2366 }
2367 
2368 /*
2369  * Got a PROT_NONE fault for a page on @node.
2370  */
2371 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2372 {
2373 	struct task_struct *p = current;
2374 	bool migrated = flags & TNF_MIGRATED;
2375 	int cpu_node = task_node(current);
2376 	int local = !!(flags & TNF_FAULT_LOCAL);
2377 	struct numa_group *ng;
2378 	int priv;
2379 
2380 	if (!static_branch_likely(&sched_numa_balancing))
2381 		return;
2382 
2383 	/* for example, ksmd faulting in a user's mm */
2384 	if (!p->mm)
2385 		return;
2386 
2387 	/* Allocate buffer to track faults on a per-node basis */
2388 	if (unlikely(!p->numa_faults)) {
2389 		int size = sizeof(*p->numa_faults) *
2390 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2391 
2392 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2393 		if (!p->numa_faults)
2394 			return;
2395 
2396 		p->total_numa_faults = 0;
2397 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2398 	}
2399 
2400 	/*
2401 	 * First accesses are treated as private, otherwise consider accesses
2402 	 * to be private if the accessing pid has not changed
2403 	 */
2404 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2405 		priv = 1;
2406 	} else {
2407 		priv = cpupid_match_pid(p, last_cpupid);
2408 		if (!priv && !(flags & TNF_NO_GROUP))
2409 			task_numa_group(p, last_cpupid, flags, &priv);
2410 	}
2411 
2412 	/*
2413 	 * If a workload spans multiple NUMA nodes, a shared fault that
2414 	 * occurs wholly within the set of nodes that the workload is
2415 	 * actively using should be counted as local. This allows the
2416 	 * scan rate to slow down when a workload has settled down.
2417 	 */
2418 	ng = p->numa_group;
2419 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2420 				numa_is_active_node(cpu_node, ng) &&
2421 				numa_is_active_node(mem_node, ng))
2422 		local = 1;
2423 
2424 	/*
2425 	 * Retry task to preferred node migration periodically, in case it
2426 	 * case it previously failed, or the scheduler moved us.
2427 	 */
2428 	if (time_after(jiffies, p->numa_migrate_retry)) {
2429 		task_numa_placement(p);
2430 		numa_migrate_preferred(p);
2431 	}
2432 
2433 	if (migrated)
2434 		p->numa_pages_migrated += pages;
2435 	if (flags & TNF_MIGRATE_FAIL)
2436 		p->numa_faults_locality[2] += pages;
2437 
2438 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2439 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2440 	p->numa_faults_locality[local] += pages;
2441 }
2442 
2443 static void reset_ptenuma_scan(struct task_struct *p)
2444 {
2445 	/*
2446 	 * We only did a read acquisition of the mmap sem, so
2447 	 * p->mm->numa_scan_seq is written to without exclusive access
2448 	 * and the update is not guaranteed to be atomic. That's not
2449 	 * much of an issue though, since this is just used for
2450 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2451 	 * expensive, to avoid any form of compiler optimizations:
2452 	 */
2453 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2454 	p->mm->numa_scan_offset = 0;
2455 }
2456 
2457 /*
2458  * The expensive part of numa migration is done from task_work context.
2459  * Triggered from task_tick_numa().
2460  */
2461 void task_numa_work(struct callback_head *work)
2462 {
2463 	unsigned long migrate, next_scan, now = jiffies;
2464 	struct task_struct *p = current;
2465 	struct mm_struct *mm = p->mm;
2466 	u64 runtime = p->se.sum_exec_runtime;
2467 	struct vm_area_struct *vma;
2468 	unsigned long start, end;
2469 	unsigned long nr_pte_updates = 0;
2470 	long pages, virtpages;
2471 
2472 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2473 
2474 	work->next = work; /* protect against double add */
2475 	/*
2476 	 * Who cares about NUMA placement when they're dying.
2477 	 *
2478 	 * NOTE: make sure not to dereference p->mm before this check,
2479 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2480 	 * without p->mm even though we still had it when we enqueued this
2481 	 * work.
2482 	 */
2483 	if (p->flags & PF_EXITING)
2484 		return;
2485 
2486 	if (!mm->numa_next_scan) {
2487 		mm->numa_next_scan = now +
2488 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2489 	}
2490 
2491 	/*
2492 	 * Enforce maximal scan/migration frequency..
2493 	 */
2494 	migrate = mm->numa_next_scan;
2495 	if (time_before(now, migrate))
2496 		return;
2497 
2498 	if (p->numa_scan_period == 0) {
2499 		p->numa_scan_period_max = task_scan_max(p);
2500 		p->numa_scan_period = task_scan_start(p);
2501 	}
2502 
2503 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2504 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2505 		return;
2506 
2507 	/*
2508 	 * Delay this task enough that another task of this mm will likely win
2509 	 * the next time around.
2510 	 */
2511 	p->node_stamp += 2 * TICK_NSEC;
2512 
2513 	start = mm->numa_scan_offset;
2514 	pages = sysctl_numa_balancing_scan_size;
2515 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2516 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2517 	if (!pages)
2518 		return;
2519 
2520 
2521 	if (!down_read_trylock(&mm->mmap_sem))
2522 		return;
2523 	vma = find_vma(mm, start);
2524 	if (!vma) {
2525 		reset_ptenuma_scan(p);
2526 		start = 0;
2527 		vma = mm->mmap;
2528 	}
2529 	for (; vma; vma = vma->vm_next) {
2530 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2531 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2532 			continue;
2533 		}
2534 
2535 		/*
2536 		 * Shared library pages mapped by multiple processes are not
2537 		 * migrated as it is expected they are cache replicated. Avoid
2538 		 * hinting faults in read-only file-backed mappings or the vdso
2539 		 * as migrating the pages will be of marginal benefit.
2540 		 */
2541 		if (!vma->vm_mm ||
2542 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2543 			continue;
2544 
2545 		/*
2546 		 * Skip inaccessible VMAs to avoid any confusion between
2547 		 * PROT_NONE and NUMA hinting ptes
2548 		 */
2549 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2550 			continue;
2551 
2552 		do {
2553 			start = max(start, vma->vm_start);
2554 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2555 			end = min(end, vma->vm_end);
2556 			nr_pte_updates = change_prot_numa(vma, start, end);
2557 
2558 			/*
2559 			 * Try to scan sysctl_numa_balancing_size worth of
2560 			 * hpages that have at least one present PTE that
2561 			 * is not already pte-numa. If the VMA contains
2562 			 * areas that are unused or already full of prot_numa
2563 			 * PTEs, scan up to virtpages, to skip through those
2564 			 * areas faster.
2565 			 */
2566 			if (nr_pte_updates)
2567 				pages -= (end - start) >> PAGE_SHIFT;
2568 			virtpages -= (end - start) >> PAGE_SHIFT;
2569 
2570 			start = end;
2571 			if (pages <= 0 || virtpages <= 0)
2572 				goto out;
2573 
2574 			cond_resched();
2575 		} while (end != vma->vm_end);
2576 	}
2577 
2578 out:
2579 	/*
2580 	 * It is possible to reach the end of the VMA list but the last few
2581 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2582 	 * would find the !migratable VMA on the next scan but not reset the
2583 	 * scanner to the start so check it now.
2584 	 */
2585 	if (vma)
2586 		mm->numa_scan_offset = start;
2587 	else
2588 		reset_ptenuma_scan(p);
2589 	up_read(&mm->mmap_sem);
2590 
2591 	/*
2592 	 * Make sure tasks use at least 32x as much time to run other code
2593 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2594 	 * Usually update_task_scan_period slows down scanning enough; on an
2595 	 * overloaded system we need to limit overhead on a per task basis.
2596 	 */
2597 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2598 		u64 diff = p->se.sum_exec_runtime - runtime;
2599 		p->node_stamp += 32 * diff;
2600 	}
2601 }
2602 
2603 /*
2604  * Drive the periodic memory faults..
2605  */
2606 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2607 {
2608 	struct callback_head *work = &curr->numa_work;
2609 	u64 period, now;
2610 
2611 	/*
2612 	 * We don't care about NUMA placement if we don't have memory.
2613 	 */
2614 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2615 		return;
2616 
2617 	/*
2618 	 * Using runtime rather than walltime has the dual advantage that
2619 	 * we (mostly) drive the selection from busy threads and that the
2620 	 * task needs to have done some actual work before we bother with
2621 	 * NUMA placement.
2622 	 */
2623 	now = curr->se.sum_exec_runtime;
2624 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2625 
2626 	if (now > curr->node_stamp + period) {
2627 		if (!curr->node_stamp)
2628 			curr->numa_scan_period = task_scan_start(curr);
2629 		curr->node_stamp += period;
2630 
2631 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2632 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2633 			task_work_add(curr, work, true);
2634 		}
2635 	}
2636 }
2637 
2638 static void update_scan_period(struct task_struct *p, int new_cpu)
2639 {
2640 	int src_nid = cpu_to_node(task_cpu(p));
2641 	int dst_nid = cpu_to_node(new_cpu);
2642 
2643 	if (!static_branch_likely(&sched_numa_balancing))
2644 		return;
2645 
2646 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2647 		return;
2648 
2649 	if (src_nid == dst_nid)
2650 		return;
2651 
2652 	/*
2653 	 * Allow resets if faults have been trapped before one scan
2654 	 * has completed. This is most likely due to a new task that
2655 	 * is pulled cross-node due to wakeups or load balancing.
2656 	 */
2657 	if (p->numa_scan_seq) {
2658 		/*
2659 		 * Avoid scan adjustments if moving to the preferred
2660 		 * node or if the task was not previously running on
2661 		 * the preferred node.
2662 		 */
2663 		if (dst_nid == p->numa_preferred_nid ||
2664 		    (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
2665 			return;
2666 	}
2667 
2668 	p->numa_scan_period = task_scan_start(p);
2669 }
2670 
2671 #else
2672 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2673 {
2674 }
2675 
2676 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2677 {
2678 }
2679 
2680 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2681 {
2682 }
2683 
2684 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2685 {
2686 }
2687 
2688 #endif /* CONFIG_NUMA_BALANCING */
2689 
2690 static void
2691 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2692 {
2693 	update_load_add(&cfs_rq->load, se->load.weight);
2694 	if (!parent_entity(se))
2695 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2696 #ifdef CONFIG_SMP
2697 	if (entity_is_task(se)) {
2698 		struct rq *rq = rq_of(cfs_rq);
2699 
2700 		account_numa_enqueue(rq, task_of(se));
2701 		list_add(&se->group_node, &rq->cfs_tasks);
2702 	}
2703 #endif
2704 	cfs_rq->nr_running++;
2705 }
2706 
2707 static void
2708 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2709 {
2710 	update_load_sub(&cfs_rq->load, se->load.weight);
2711 	if (!parent_entity(se))
2712 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2713 #ifdef CONFIG_SMP
2714 	if (entity_is_task(se)) {
2715 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2716 		list_del_init(&se->group_node);
2717 	}
2718 #endif
2719 	cfs_rq->nr_running--;
2720 }
2721 
2722 /*
2723  * Signed add and clamp on underflow.
2724  *
2725  * Explicitly do a load-store to ensure the intermediate value never hits
2726  * memory. This allows lockless observations without ever seeing the negative
2727  * values.
2728  */
2729 #define add_positive(_ptr, _val) do {                           \
2730 	typeof(_ptr) ptr = (_ptr);                              \
2731 	typeof(_val) val = (_val);                              \
2732 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2733 								\
2734 	res = var + val;                                        \
2735 								\
2736 	if (val < 0 && res > var)                               \
2737 		res = 0;                                        \
2738 								\
2739 	WRITE_ONCE(*ptr, res);                                  \
2740 } while (0)
2741 
2742 /*
2743  * Unsigned subtract and clamp on underflow.
2744  *
2745  * Explicitly do a load-store to ensure the intermediate value never hits
2746  * memory. This allows lockless observations without ever seeing the negative
2747  * values.
2748  */
2749 #define sub_positive(_ptr, _val) do {				\
2750 	typeof(_ptr) ptr = (_ptr);				\
2751 	typeof(*ptr) val = (_val);				\
2752 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2753 	res = var - val;					\
2754 	if (res > var)						\
2755 		res = 0;					\
2756 	WRITE_ONCE(*ptr, res);					\
2757 } while (0)
2758 
2759 #ifdef CONFIG_SMP
2760 static inline void
2761 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2762 {
2763 	cfs_rq->runnable_weight += se->runnable_weight;
2764 
2765 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2766 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2767 }
2768 
2769 static inline void
2770 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2771 {
2772 	cfs_rq->runnable_weight -= se->runnable_weight;
2773 
2774 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2775 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2776 		     se_runnable(se) * se->avg.runnable_load_sum);
2777 }
2778 
2779 static inline void
2780 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2781 {
2782 	cfs_rq->avg.load_avg += se->avg.load_avg;
2783 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2784 }
2785 
2786 static inline void
2787 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2788 {
2789 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2790 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2791 }
2792 #else
2793 static inline void
2794 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2795 static inline void
2796 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2797 static inline void
2798 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2799 static inline void
2800 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2801 #endif
2802 
2803 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2804 			    unsigned long weight, unsigned long runnable)
2805 {
2806 	if (se->on_rq) {
2807 		/* commit outstanding execution time */
2808 		if (cfs_rq->curr == se)
2809 			update_curr(cfs_rq);
2810 		account_entity_dequeue(cfs_rq, se);
2811 		dequeue_runnable_load_avg(cfs_rq, se);
2812 	}
2813 	dequeue_load_avg(cfs_rq, se);
2814 
2815 	se->runnable_weight = runnable;
2816 	update_load_set(&se->load, weight);
2817 
2818 #ifdef CONFIG_SMP
2819 	do {
2820 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2821 
2822 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2823 		se->avg.runnable_load_avg =
2824 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2825 	} while (0);
2826 #endif
2827 
2828 	enqueue_load_avg(cfs_rq, se);
2829 	if (se->on_rq) {
2830 		account_entity_enqueue(cfs_rq, se);
2831 		enqueue_runnable_load_avg(cfs_rq, se);
2832 	}
2833 }
2834 
2835 void reweight_task(struct task_struct *p, int prio)
2836 {
2837 	struct sched_entity *se = &p->se;
2838 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2839 	struct load_weight *load = &se->load;
2840 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2841 
2842 	reweight_entity(cfs_rq, se, weight, weight);
2843 	load->inv_weight = sched_prio_to_wmult[prio];
2844 }
2845 
2846 #ifdef CONFIG_FAIR_GROUP_SCHED
2847 #ifdef CONFIG_SMP
2848 /*
2849  * All this does is approximate the hierarchical proportion which includes that
2850  * global sum we all love to hate.
2851  *
2852  * That is, the weight of a group entity, is the proportional share of the
2853  * group weight based on the group runqueue weights. That is:
2854  *
2855  *                     tg->weight * grq->load.weight
2856  *   ge->load.weight = -----------------------------               (1)
2857  *			  \Sum grq->load.weight
2858  *
2859  * Now, because computing that sum is prohibitively expensive to compute (been
2860  * there, done that) we approximate it with this average stuff. The average
2861  * moves slower and therefore the approximation is cheaper and more stable.
2862  *
2863  * So instead of the above, we substitute:
2864  *
2865  *   grq->load.weight -> grq->avg.load_avg                         (2)
2866  *
2867  * which yields the following:
2868  *
2869  *                     tg->weight * grq->avg.load_avg
2870  *   ge->load.weight = ------------------------------              (3)
2871  *				tg->load_avg
2872  *
2873  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2874  *
2875  * That is shares_avg, and it is right (given the approximation (2)).
2876  *
2877  * The problem with it is that because the average is slow -- it was designed
2878  * to be exactly that of course -- this leads to transients in boundary
2879  * conditions. In specific, the case where the group was idle and we start the
2880  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2881  * yielding bad latency etc..
2882  *
2883  * Now, in that special case (1) reduces to:
2884  *
2885  *                     tg->weight * grq->load.weight
2886  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2887  *			    grp->load.weight
2888  *
2889  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2890  *
2891  * So what we do is modify our approximation (3) to approach (4) in the (near)
2892  * UP case, like:
2893  *
2894  *   ge->load.weight =
2895  *
2896  *              tg->weight * grq->load.weight
2897  *     ---------------------------------------------------         (5)
2898  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2899  *
2900  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2901  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2902  *
2903  *
2904  *                     tg->weight * grq->load.weight
2905  *   ge->load.weight = -----------------------------		   (6)
2906  *				tg_load_avg'
2907  *
2908  * Where:
2909  *
2910  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2911  *                  max(grq->load.weight, grq->avg.load_avg)
2912  *
2913  * And that is shares_weight and is icky. In the (near) UP case it approaches
2914  * (4) while in the normal case it approaches (3). It consistently
2915  * overestimates the ge->load.weight and therefore:
2916  *
2917  *   \Sum ge->load.weight >= tg->weight
2918  *
2919  * hence icky!
2920  */
2921 static long calc_group_shares(struct cfs_rq *cfs_rq)
2922 {
2923 	long tg_weight, tg_shares, load, shares;
2924 	struct task_group *tg = cfs_rq->tg;
2925 
2926 	tg_shares = READ_ONCE(tg->shares);
2927 
2928 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2929 
2930 	tg_weight = atomic_long_read(&tg->load_avg);
2931 
2932 	/* Ensure tg_weight >= load */
2933 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2934 	tg_weight += load;
2935 
2936 	shares = (tg_shares * load);
2937 	if (tg_weight)
2938 		shares /= tg_weight;
2939 
2940 	/*
2941 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2942 	 * of a group with small tg->shares value. It is a floor value which is
2943 	 * assigned as a minimum load.weight to the sched_entity representing
2944 	 * the group on a CPU.
2945 	 *
2946 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2947 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2948 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2949 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2950 	 * instead of 0.
2951 	 */
2952 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2953 }
2954 
2955 /*
2956  * This calculates the effective runnable weight for a group entity based on
2957  * the group entity weight calculated above.
2958  *
2959  * Because of the above approximation (2), our group entity weight is
2960  * an load_avg based ratio (3). This means that it includes blocked load and
2961  * does not represent the runnable weight.
2962  *
2963  * Approximate the group entity's runnable weight per ratio from the group
2964  * runqueue:
2965  *
2966  *					     grq->avg.runnable_load_avg
2967  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
2968  *						 grq->avg.load_avg
2969  *
2970  * However, analogous to above, since the avg numbers are slow, this leads to
2971  * transients in the from-idle case. Instead we use:
2972  *
2973  *   ge->runnable_weight = ge->load.weight *
2974  *
2975  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
2976  *		-----------------------------------------------------	(8)
2977  *		      max(grq->avg.load_avg, grq->load.weight)
2978  *
2979  * Where these max() serve both to use the 'instant' values to fix the slow
2980  * from-idle and avoid the /0 on to-idle, similar to (6).
2981  */
2982 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2983 {
2984 	long runnable, load_avg;
2985 
2986 	load_avg = max(cfs_rq->avg.load_avg,
2987 		       scale_load_down(cfs_rq->load.weight));
2988 
2989 	runnable = max(cfs_rq->avg.runnable_load_avg,
2990 		       scale_load_down(cfs_rq->runnable_weight));
2991 
2992 	runnable *= shares;
2993 	if (load_avg)
2994 		runnable /= load_avg;
2995 
2996 	return clamp_t(long, runnable, MIN_SHARES, shares);
2997 }
2998 #endif /* CONFIG_SMP */
2999 
3000 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3001 
3002 /*
3003  * Recomputes the group entity based on the current state of its group
3004  * runqueue.
3005  */
3006 static void update_cfs_group(struct sched_entity *se)
3007 {
3008 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3009 	long shares, runnable;
3010 
3011 	if (!gcfs_rq)
3012 		return;
3013 
3014 	if (throttled_hierarchy(gcfs_rq))
3015 		return;
3016 
3017 #ifndef CONFIG_SMP
3018 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3019 
3020 	if (likely(se->load.weight == shares))
3021 		return;
3022 #else
3023 	shares   = calc_group_shares(gcfs_rq);
3024 	runnable = calc_group_runnable(gcfs_rq, shares);
3025 #endif
3026 
3027 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
3028 }
3029 
3030 #else /* CONFIG_FAIR_GROUP_SCHED */
3031 static inline void update_cfs_group(struct sched_entity *se)
3032 {
3033 }
3034 #endif /* CONFIG_FAIR_GROUP_SCHED */
3035 
3036 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3037 {
3038 	struct rq *rq = rq_of(cfs_rq);
3039 
3040 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3041 		/*
3042 		 * There are a few boundary cases this might miss but it should
3043 		 * get called often enough that that should (hopefully) not be
3044 		 * a real problem.
3045 		 *
3046 		 * It will not get called when we go idle, because the idle
3047 		 * thread is a different class (!fair), nor will the utilization
3048 		 * number include things like RT tasks.
3049 		 *
3050 		 * As is, the util number is not freq-invariant (we'd have to
3051 		 * implement arch_scale_freq_capacity() for that).
3052 		 *
3053 		 * See cpu_util().
3054 		 */
3055 		cpufreq_update_util(rq, flags);
3056 	}
3057 }
3058 
3059 #ifdef CONFIG_SMP
3060 #ifdef CONFIG_FAIR_GROUP_SCHED
3061 /**
3062  * update_tg_load_avg - update the tg's load avg
3063  * @cfs_rq: the cfs_rq whose avg changed
3064  * @force: update regardless of how small the difference
3065  *
3066  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3067  * However, because tg->load_avg is a global value there are performance
3068  * considerations.
3069  *
3070  * In order to avoid having to look at the other cfs_rq's, we use a
3071  * differential update where we store the last value we propagated. This in
3072  * turn allows skipping updates if the differential is 'small'.
3073  *
3074  * Updating tg's load_avg is necessary before update_cfs_share().
3075  */
3076 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3077 {
3078 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3079 
3080 	/*
3081 	 * No need to update load_avg for root_task_group as it is not used.
3082 	 */
3083 	if (cfs_rq->tg == &root_task_group)
3084 		return;
3085 
3086 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3087 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3088 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3089 	}
3090 }
3091 
3092 /*
3093  * Called within set_task_rq() right before setting a task's CPU. The
3094  * caller only guarantees p->pi_lock is held; no other assumptions,
3095  * including the state of rq->lock, should be made.
3096  */
3097 void set_task_rq_fair(struct sched_entity *se,
3098 		      struct cfs_rq *prev, struct cfs_rq *next)
3099 {
3100 	u64 p_last_update_time;
3101 	u64 n_last_update_time;
3102 
3103 	if (!sched_feat(ATTACH_AGE_LOAD))
3104 		return;
3105 
3106 	/*
3107 	 * We are supposed to update the task to "current" time, then its up to
3108 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3109 	 * getting what current time is, so simply throw away the out-of-date
3110 	 * time. This will result in the wakee task is less decayed, but giving
3111 	 * the wakee more load sounds not bad.
3112 	 */
3113 	if (!(se->avg.last_update_time && prev))
3114 		return;
3115 
3116 #ifndef CONFIG_64BIT
3117 	{
3118 		u64 p_last_update_time_copy;
3119 		u64 n_last_update_time_copy;
3120 
3121 		do {
3122 			p_last_update_time_copy = prev->load_last_update_time_copy;
3123 			n_last_update_time_copy = next->load_last_update_time_copy;
3124 
3125 			smp_rmb();
3126 
3127 			p_last_update_time = prev->avg.last_update_time;
3128 			n_last_update_time = next->avg.last_update_time;
3129 
3130 		} while (p_last_update_time != p_last_update_time_copy ||
3131 			 n_last_update_time != n_last_update_time_copy);
3132 	}
3133 #else
3134 	p_last_update_time = prev->avg.last_update_time;
3135 	n_last_update_time = next->avg.last_update_time;
3136 #endif
3137 	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3138 	se->avg.last_update_time = n_last_update_time;
3139 }
3140 
3141 
3142 /*
3143  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3144  * propagate its contribution. The key to this propagation is the invariant
3145  * that for each group:
3146  *
3147  *   ge->avg == grq->avg						(1)
3148  *
3149  * _IFF_ we look at the pure running and runnable sums. Because they
3150  * represent the very same entity, just at different points in the hierarchy.
3151  *
3152  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3153  * sum over (but still wrong, because the group entity and group rq do not have
3154  * their PELT windows aligned).
3155  *
3156  * However, update_tg_cfs_runnable() is more complex. So we have:
3157  *
3158  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3159  *
3160  * And since, like util, the runnable part should be directly transferable,
3161  * the following would _appear_ to be the straight forward approach:
3162  *
3163  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3164  *
3165  * And per (1) we have:
3166  *
3167  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3168  *
3169  * Which gives:
3170  *
3171  *                      ge->load.weight * grq->avg.load_avg
3172  *   ge->avg.load_avg = -----------------------------------		(4)
3173  *                               grq->load.weight
3174  *
3175  * Except that is wrong!
3176  *
3177  * Because while for entities historical weight is not important and we
3178  * really only care about our future and therefore can consider a pure
3179  * runnable sum, runqueues can NOT do this.
3180  *
3181  * We specifically want runqueues to have a load_avg that includes
3182  * historical weights. Those represent the blocked load, the load we expect
3183  * to (shortly) return to us. This only works by keeping the weights as
3184  * integral part of the sum. We therefore cannot decompose as per (3).
3185  *
3186  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3187  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3188  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3189  * runnable section of these tasks overlap (or not). If they were to perfectly
3190  * align the rq as a whole would be runnable 2/3 of the time. If however we
3191  * always have at least 1 runnable task, the rq as a whole is always runnable.
3192  *
3193  * So we'll have to approximate.. :/
3194  *
3195  * Given the constraint:
3196  *
3197  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3198  *
3199  * We can construct a rule that adds runnable to a rq by assuming minimal
3200  * overlap.
3201  *
3202  * On removal, we'll assume each task is equally runnable; which yields:
3203  *
3204  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3205  *
3206  * XXX: only do this for the part of runnable > running ?
3207  *
3208  */
3209 
3210 static inline void
3211 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3212 {
3213 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3214 
3215 	/* Nothing to update */
3216 	if (!delta)
3217 		return;
3218 
3219 	/*
3220 	 * The relation between sum and avg is:
3221 	 *
3222 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3223 	 *
3224 	 * however, the PELT windows are not aligned between grq and gse.
3225 	 */
3226 
3227 	/* Set new sched_entity's utilization */
3228 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3229 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3230 
3231 	/* Update parent cfs_rq utilization */
3232 	add_positive(&cfs_rq->avg.util_avg, delta);
3233 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3234 }
3235 
3236 static inline void
3237 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3238 {
3239 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3240 	unsigned long runnable_load_avg, load_avg;
3241 	u64 runnable_load_sum, load_sum = 0;
3242 	s64 delta_sum;
3243 
3244 	if (!runnable_sum)
3245 		return;
3246 
3247 	gcfs_rq->prop_runnable_sum = 0;
3248 
3249 	if (runnable_sum >= 0) {
3250 		/*
3251 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3252 		 * the CPU is saturated running == runnable.
3253 		 */
3254 		runnable_sum += se->avg.load_sum;
3255 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3256 	} else {
3257 		/*
3258 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3259 		 * assuming all tasks are equally runnable.
3260 		 */
3261 		if (scale_load_down(gcfs_rq->load.weight)) {
3262 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3263 				scale_load_down(gcfs_rq->load.weight));
3264 		}
3265 
3266 		/* But make sure to not inflate se's runnable */
3267 		runnable_sum = min(se->avg.load_sum, load_sum);
3268 	}
3269 
3270 	/*
3271 	 * runnable_sum can't be lower than running_sum
3272 	 * As running sum is scale with CPU capacity wehreas the runnable sum
3273 	 * is not we rescale running_sum 1st
3274 	 */
3275 	running_sum = se->avg.util_sum /
3276 		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3277 	runnable_sum = max(runnable_sum, running_sum);
3278 
3279 	load_sum = (s64)se_weight(se) * runnable_sum;
3280 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3281 
3282 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3283 	delta_avg = load_avg - se->avg.load_avg;
3284 
3285 	se->avg.load_sum = runnable_sum;
3286 	se->avg.load_avg = load_avg;
3287 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3288 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3289 
3290 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3291 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3292 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3293 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3294 
3295 	se->avg.runnable_load_sum = runnable_sum;
3296 	se->avg.runnable_load_avg = runnable_load_avg;
3297 
3298 	if (se->on_rq) {
3299 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3300 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3301 	}
3302 }
3303 
3304 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3305 {
3306 	cfs_rq->propagate = 1;
3307 	cfs_rq->prop_runnable_sum += runnable_sum;
3308 }
3309 
3310 /* Update task and its cfs_rq load average */
3311 static inline int propagate_entity_load_avg(struct sched_entity *se)
3312 {
3313 	struct cfs_rq *cfs_rq, *gcfs_rq;
3314 
3315 	if (entity_is_task(se))
3316 		return 0;
3317 
3318 	gcfs_rq = group_cfs_rq(se);
3319 	if (!gcfs_rq->propagate)
3320 		return 0;
3321 
3322 	gcfs_rq->propagate = 0;
3323 
3324 	cfs_rq = cfs_rq_of(se);
3325 
3326 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3327 
3328 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3329 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3330 
3331 	return 1;
3332 }
3333 
3334 /*
3335  * Check if we need to update the load and the utilization of a blocked
3336  * group_entity:
3337  */
3338 static inline bool skip_blocked_update(struct sched_entity *se)
3339 {
3340 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3341 
3342 	/*
3343 	 * If sched_entity still have not zero load or utilization, we have to
3344 	 * decay it:
3345 	 */
3346 	if (se->avg.load_avg || se->avg.util_avg)
3347 		return false;
3348 
3349 	/*
3350 	 * If there is a pending propagation, we have to update the load and
3351 	 * the utilization of the sched_entity:
3352 	 */
3353 	if (gcfs_rq->propagate)
3354 		return false;
3355 
3356 	/*
3357 	 * Otherwise, the load and the utilization of the sched_entity is
3358 	 * already zero and there is no pending propagation, so it will be a
3359 	 * waste of time to try to decay it:
3360 	 */
3361 	return true;
3362 }
3363 
3364 #else /* CONFIG_FAIR_GROUP_SCHED */
3365 
3366 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3367 
3368 static inline int propagate_entity_load_avg(struct sched_entity *se)
3369 {
3370 	return 0;
3371 }
3372 
3373 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3374 
3375 #endif /* CONFIG_FAIR_GROUP_SCHED */
3376 
3377 /**
3378  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3379  * @now: current time, as per cfs_rq_clock_task()
3380  * @cfs_rq: cfs_rq to update
3381  *
3382  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3383  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3384  * post_init_entity_util_avg().
3385  *
3386  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3387  *
3388  * Returns true if the load decayed or we removed load.
3389  *
3390  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3391  * call update_tg_load_avg() when this function returns true.
3392  */
3393 static inline int
3394 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3395 {
3396 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3397 	struct sched_avg *sa = &cfs_rq->avg;
3398 	int decayed = 0;
3399 
3400 	if (cfs_rq->removed.nr) {
3401 		unsigned long r;
3402 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3403 
3404 		raw_spin_lock(&cfs_rq->removed.lock);
3405 		swap(cfs_rq->removed.util_avg, removed_util);
3406 		swap(cfs_rq->removed.load_avg, removed_load);
3407 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3408 		cfs_rq->removed.nr = 0;
3409 		raw_spin_unlock(&cfs_rq->removed.lock);
3410 
3411 		r = removed_load;
3412 		sub_positive(&sa->load_avg, r);
3413 		sub_positive(&sa->load_sum, r * divider);
3414 
3415 		r = removed_util;
3416 		sub_positive(&sa->util_avg, r);
3417 		sub_positive(&sa->util_sum, r * divider);
3418 
3419 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3420 
3421 		decayed = 1;
3422 	}
3423 
3424 	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3425 
3426 #ifndef CONFIG_64BIT
3427 	smp_wmb();
3428 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3429 #endif
3430 
3431 	if (decayed)
3432 		cfs_rq_util_change(cfs_rq, 0);
3433 
3434 	return decayed;
3435 }
3436 
3437 /**
3438  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3439  * @cfs_rq: cfs_rq to attach to
3440  * @se: sched_entity to attach
3441  * @flags: migration hints
3442  *
3443  * Must call update_cfs_rq_load_avg() before this, since we rely on
3444  * cfs_rq->avg.last_update_time being current.
3445  */
3446 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3447 {
3448 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3449 
3450 	/*
3451 	 * When we attach the @se to the @cfs_rq, we must align the decay
3452 	 * window because without that, really weird and wonderful things can
3453 	 * happen.
3454 	 *
3455 	 * XXX illustrate
3456 	 */
3457 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3458 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3459 
3460 	/*
3461 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3462 	 * period_contrib. This isn't strictly correct, but since we're
3463 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3464 	 * _sum a little.
3465 	 */
3466 	se->avg.util_sum = se->avg.util_avg * divider;
3467 
3468 	se->avg.load_sum = divider;
3469 	if (se_weight(se)) {
3470 		se->avg.load_sum =
3471 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3472 	}
3473 
3474 	se->avg.runnable_load_sum = se->avg.load_sum;
3475 
3476 	enqueue_load_avg(cfs_rq, se);
3477 	cfs_rq->avg.util_avg += se->avg.util_avg;
3478 	cfs_rq->avg.util_sum += se->avg.util_sum;
3479 
3480 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3481 
3482 	cfs_rq_util_change(cfs_rq, flags);
3483 }
3484 
3485 /**
3486  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3487  * @cfs_rq: cfs_rq to detach from
3488  * @se: sched_entity to detach
3489  *
3490  * Must call update_cfs_rq_load_avg() before this, since we rely on
3491  * cfs_rq->avg.last_update_time being current.
3492  */
3493 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3494 {
3495 	dequeue_load_avg(cfs_rq, se);
3496 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3497 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3498 
3499 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3500 
3501 	cfs_rq_util_change(cfs_rq, 0);
3502 }
3503 
3504 /*
3505  * Optional action to be done while updating the load average
3506  */
3507 #define UPDATE_TG	0x1
3508 #define SKIP_AGE_LOAD	0x2
3509 #define DO_ATTACH	0x4
3510 
3511 /* Update task and its cfs_rq load average */
3512 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3513 {
3514 	u64 now = cfs_rq_clock_task(cfs_rq);
3515 	struct rq *rq = rq_of(cfs_rq);
3516 	int cpu = cpu_of(rq);
3517 	int decayed;
3518 
3519 	/*
3520 	 * Track task load average for carrying it to new CPU after migrated, and
3521 	 * track group sched_entity load average for task_h_load calc in migration
3522 	 */
3523 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3524 		__update_load_avg_se(now, cpu, cfs_rq, se);
3525 
3526 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3527 	decayed |= propagate_entity_load_avg(se);
3528 
3529 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3530 
3531 		/*
3532 		 * DO_ATTACH means we're here from enqueue_entity().
3533 		 * !last_update_time means we've passed through
3534 		 * migrate_task_rq_fair() indicating we migrated.
3535 		 *
3536 		 * IOW we're enqueueing a task on a new CPU.
3537 		 */
3538 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3539 		update_tg_load_avg(cfs_rq, 0);
3540 
3541 	} else if (decayed && (flags & UPDATE_TG))
3542 		update_tg_load_avg(cfs_rq, 0);
3543 }
3544 
3545 #ifndef CONFIG_64BIT
3546 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3547 {
3548 	u64 last_update_time_copy;
3549 	u64 last_update_time;
3550 
3551 	do {
3552 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3553 		smp_rmb();
3554 		last_update_time = cfs_rq->avg.last_update_time;
3555 	} while (last_update_time != last_update_time_copy);
3556 
3557 	return last_update_time;
3558 }
3559 #else
3560 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3561 {
3562 	return cfs_rq->avg.last_update_time;
3563 }
3564 #endif
3565 
3566 /*
3567  * Synchronize entity load avg of dequeued entity without locking
3568  * the previous rq.
3569  */
3570 void sync_entity_load_avg(struct sched_entity *se)
3571 {
3572 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3573 	u64 last_update_time;
3574 
3575 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3576 	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3577 }
3578 
3579 /*
3580  * Task first catches up with cfs_rq, and then subtract
3581  * itself from the cfs_rq (task must be off the queue now).
3582  */
3583 void remove_entity_load_avg(struct sched_entity *se)
3584 {
3585 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3586 	unsigned long flags;
3587 
3588 	/*
3589 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3590 	 * post_init_entity_util_avg() which will have added things to the
3591 	 * cfs_rq, so we can remove unconditionally.
3592 	 *
3593 	 * Similarly for groups, they will have passed through
3594 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3595 	 * calls this.
3596 	 */
3597 
3598 	sync_entity_load_avg(se);
3599 
3600 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3601 	++cfs_rq->removed.nr;
3602 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3603 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3604 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3605 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3606 }
3607 
3608 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3609 {
3610 	return cfs_rq->avg.runnable_load_avg;
3611 }
3612 
3613 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3614 {
3615 	return cfs_rq->avg.load_avg;
3616 }
3617 
3618 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3619 
3620 static inline unsigned long task_util(struct task_struct *p)
3621 {
3622 	return READ_ONCE(p->se.avg.util_avg);
3623 }
3624 
3625 static inline unsigned long _task_util_est(struct task_struct *p)
3626 {
3627 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3628 
3629 	return max(ue.ewma, ue.enqueued);
3630 }
3631 
3632 static inline unsigned long task_util_est(struct task_struct *p)
3633 {
3634 	return max(task_util(p), _task_util_est(p));
3635 }
3636 
3637 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3638 				    struct task_struct *p)
3639 {
3640 	unsigned int enqueued;
3641 
3642 	if (!sched_feat(UTIL_EST))
3643 		return;
3644 
3645 	/* Update root cfs_rq's estimated utilization */
3646 	enqueued  = cfs_rq->avg.util_est.enqueued;
3647 	enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3648 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3649 }
3650 
3651 /*
3652  * Check if a (signed) value is within a specified (unsigned) margin,
3653  * based on the observation that:
3654  *
3655  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3656  *
3657  * NOTE: this only works when value + maring < INT_MAX.
3658  */
3659 static inline bool within_margin(int value, int margin)
3660 {
3661 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3662 }
3663 
3664 static void
3665 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3666 {
3667 	long last_ewma_diff;
3668 	struct util_est ue;
3669 
3670 	if (!sched_feat(UTIL_EST))
3671 		return;
3672 
3673 	/* Update root cfs_rq's estimated utilization */
3674 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3675 	ue.enqueued -= min_t(unsigned int, ue.enqueued,
3676 			     (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3677 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3678 
3679 	/*
3680 	 * Skip update of task's estimated utilization when the task has not
3681 	 * yet completed an activation, e.g. being migrated.
3682 	 */
3683 	if (!task_sleep)
3684 		return;
3685 
3686 	/*
3687 	 * If the PELT values haven't changed since enqueue time,
3688 	 * skip the util_est update.
3689 	 */
3690 	ue = p->se.avg.util_est;
3691 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3692 		return;
3693 
3694 	/*
3695 	 * Skip update of task's estimated utilization when its EWMA is
3696 	 * already ~1% close to its last activation value.
3697 	 */
3698 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3699 	last_ewma_diff = ue.enqueued - ue.ewma;
3700 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3701 		return;
3702 
3703 	/*
3704 	 * Update Task's estimated utilization
3705 	 *
3706 	 * When *p completes an activation we can consolidate another sample
3707 	 * of the task size. This is done by storing the current PELT value
3708 	 * as ue.enqueued and by using this value to update the Exponential
3709 	 * Weighted Moving Average (EWMA):
3710 	 *
3711 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3712 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3713 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3714 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3715 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3716 	 *
3717 	 * Where 'w' is the weight of new samples, which is configured to be
3718 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3719 	 */
3720 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3721 	ue.ewma  += last_ewma_diff;
3722 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3723 	WRITE_ONCE(p->se.avg.util_est, ue);
3724 }
3725 
3726 #else /* CONFIG_SMP */
3727 
3728 #define UPDATE_TG	0x0
3729 #define SKIP_AGE_LOAD	0x0
3730 #define DO_ATTACH	0x0
3731 
3732 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3733 {
3734 	cfs_rq_util_change(cfs_rq, 0);
3735 }
3736 
3737 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3738 
3739 static inline void
3740 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3741 static inline void
3742 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3743 
3744 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3745 {
3746 	return 0;
3747 }
3748 
3749 static inline void
3750 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3751 
3752 static inline void
3753 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3754 		 bool task_sleep) {}
3755 
3756 #endif /* CONFIG_SMP */
3757 
3758 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3759 {
3760 #ifdef CONFIG_SCHED_DEBUG
3761 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3762 
3763 	if (d < 0)
3764 		d = -d;
3765 
3766 	if (d > 3*sysctl_sched_latency)
3767 		schedstat_inc(cfs_rq->nr_spread_over);
3768 #endif
3769 }
3770 
3771 static void
3772 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3773 {
3774 	u64 vruntime = cfs_rq->min_vruntime;
3775 
3776 	/*
3777 	 * The 'current' period is already promised to the current tasks,
3778 	 * however the extra weight of the new task will slow them down a
3779 	 * little, place the new task so that it fits in the slot that
3780 	 * stays open at the end.
3781 	 */
3782 	if (initial && sched_feat(START_DEBIT))
3783 		vruntime += sched_vslice(cfs_rq, se);
3784 
3785 	/* sleeps up to a single latency don't count. */
3786 	if (!initial) {
3787 		unsigned long thresh = sysctl_sched_latency;
3788 
3789 		/*
3790 		 * Halve their sleep time's effect, to allow
3791 		 * for a gentler effect of sleepers:
3792 		 */
3793 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3794 			thresh >>= 1;
3795 
3796 		vruntime -= thresh;
3797 	}
3798 
3799 	/* ensure we never gain time by being placed backwards. */
3800 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3801 }
3802 
3803 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3804 
3805 static inline void check_schedstat_required(void)
3806 {
3807 #ifdef CONFIG_SCHEDSTATS
3808 	if (schedstat_enabled())
3809 		return;
3810 
3811 	/* Force schedstat enabled if a dependent tracepoint is active */
3812 	if (trace_sched_stat_wait_enabled()    ||
3813 			trace_sched_stat_sleep_enabled()   ||
3814 			trace_sched_stat_iowait_enabled()  ||
3815 			trace_sched_stat_blocked_enabled() ||
3816 			trace_sched_stat_runtime_enabled())  {
3817 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3818 			     "stat_blocked and stat_runtime require the "
3819 			     "kernel parameter schedstats=enable or "
3820 			     "kernel.sched_schedstats=1\n");
3821 	}
3822 #endif
3823 }
3824 
3825 
3826 /*
3827  * MIGRATION
3828  *
3829  *	dequeue
3830  *	  update_curr()
3831  *	    update_min_vruntime()
3832  *	  vruntime -= min_vruntime
3833  *
3834  *	enqueue
3835  *	  update_curr()
3836  *	    update_min_vruntime()
3837  *	  vruntime += min_vruntime
3838  *
3839  * this way the vruntime transition between RQs is done when both
3840  * min_vruntime are up-to-date.
3841  *
3842  * WAKEUP (remote)
3843  *
3844  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3845  *	  vruntime -= min_vruntime
3846  *
3847  *	enqueue
3848  *	  update_curr()
3849  *	    update_min_vruntime()
3850  *	  vruntime += min_vruntime
3851  *
3852  * this way we don't have the most up-to-date min_vruntime on the originating
3853  * CPU and an up-to-date min_vruntime on the destination CPU.
3854  */
3855 
3856 static void
3857 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3858 {
3859 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3860 	bool curr = cfs_rq->curr == se;
3861 
3862 	/*
3863 	 * If we're the current task, we must renormalise before calling
3864 	 * update_curr().
3865 	 */
3866 	if (renorm && curr)
3867 		se->vruntime += cfs_rq->min_vruntime;
3868 
3869 	update_curr(cfs_rq);
3870 
3871 	/*
3872 	 * Otherwise, renormalise after, such that we're placed at the current
3873 	 * moment in time, instead of some random moment in the past. Being
3874 	 * placed in the past could significantly boost this task to the
3875 	 * fairness detriment of existing tasks.
3876 	 */
3877 	if (renorm && !curr)
3878 		se->vruntime += cfs_rq->min_vruntime;
3879 
3880 	/*
3881 	 * When enqueuing a sched_entity, we must:
3882 	 *   - Update loads to have both entity and cfs_rq synced with now.
3883 	 *   - Add its load to cfs_rq->runnable_avg
3884 	 *   - For group_entity, update its weight to reflect the new share of
3885 	 *     its group cfs_rq
3886 	 *   - Add its new weight to cfs_rq->load.weight
3887 	 */
3888 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3889 	update_cfs_group(se);
3890 	enqueue_runnable_load_avg(cfs_rq, se);
3891 	account_entity_enqueue(cfs_rq, se);
3892 
3893 	if (flags & ENQUEUE_WAKEUP)
3894 		place_entity(cfs_rq, se, 0);
3895 
3896 	check_schedstat_required();
3897 	update_stats_enqueue(cfs_rq, se, flags);
3898 	check_spread(cfs_rq, se);
3899 	if (!curr)
3900 		__enqueue_entity(cfs_rq, se);
3901 	se->on_rq = 1;
3902 
3903 	if (cfs_rq->nr_running == 1) {
3904 		list_add_leaf_cfs_rq(cfs_rq);
3905 		check_enqueue_throttle(cfs_rq);
3906 	}
3907 }
3908 
3909 static void __clear_buddies_last(struct sched_entity *se)
3910 {
3911 	for_each_sched_entity(se) {
3912 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3913 		if (cfs_rq->last != se)
3914 			break;
3915 
3916 		cfs_rq->last = NULL;
3917 	}
3918 }
3919 
3920 static void __clear_buddies_next(struct sched_entity *se)
3921 {
3922 	for_each_sched_entity(se) {
3923 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3924 		if (cfs_rq->next != se)
3925 			break;
3926 
3927 		cfs_rq->next = NULL;
3928 	}
3929 }
3930 
3931 static void __clear_buddies_skip(struct sched_entity *se)
3932 {
3933 	for_each_sched_entity(se) {
3934 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3935 		if (cfs_rq->skip != se)
3936 			break;
3937 
3938 		cfs_rq->skip = NULL;
3939 	}
3940 }
3941 
3942 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3943 {
3944 	if (cfs_rq->last == se)
3945 		__clear_buddies_last(se);
3946 
3947 	if (cfs_rq->next == se)
3948 		__clear_buddies_next(se);
3949 
3950 	if (cfs_rq->skip == se)
3951 		__clear_buddies_skip(se);
3952 }
3953 
3954 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3955 
3956 static void
3957 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3958 {
3959 	/*
3960 	 * Update run-time statistics of the 'current'.
3961 	 */
3962 	update_curr(cfs_rq);
3963 
3964 	/*
3965 	 * When dequeuing a sched_entity, we must:
3966 	 *   - Update loads to have both entity and cfs_rq synced with now.
3967 	 *   - Substract its load from the cfs_rq->runnable_avg.
3968 	 *   - Substract its previous weight from cfs_rq->load.weight.
3969 	 *   - For group entity, update its weight to reflect the new share
3970 	 *     of its group cfs_rq.
3971 	 */
3972 	update_load_avg(cfs_rq, se, UPDATE_TG);
3973 	dequeue_runnable_load_avg(cfs_rq, se);
3974 
3975 	update_stats_dequeue(cfs_rq, se, flags);
3976 
3977 	clear_buddies(cfs_rq, se);
3978 
3979 	if (se != cfs_rq->curr)
3980 		__dequeue_entity(cfs_rq, se);
3981 	se->on_rq = 0;
3982 	account_entity_dequeue(cfs_rq, se);
3983 
3984 	/*
3985 	 * Normalize after update_curr(); which will also have moved
3986 	 * min_vruntime if @se is the one holding it back. But before doing
3987 	 * update_min_vruntime() again, which will discount @se's position and
3988 	 * can move min_vruntime forward still more.
3989 	 */
3990 	if (!(flags & DEQUEUE_SLEEP))
3991 		se->vruntime -= cfs_rq->min_vruntime;
3992 
3993 	/* return excess runtime on last dequeue */
3994 	return_cfs_rq_runtime(cfs_rq);
3995 
3996 	update_cfs_group(se);
3997 
3998 	/*
3999 	 * Now advance min_vruntime if @se was the entity holding it back,
4000 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4001 	 * put back on, and if we advance min_vruntime, we'll be placed back
4002 	 * further than we started -- ie. we'll be penalized.
4003 	 */
4004 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
4005 		update_min_vruntime(cfs_rq);
4006 }
4007 
4008 /*
4009  * Preempt the current task with a newly woken task if needed:
4010  */
4011 static void
4012 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4013 {
4014 	unsigned long ideal_runtime, delta_exec;
4015 	struct sched_entity *se;
4016 	s64 delta;
4017 
4018 	ideal_runtime = sched_slice(cfs_rq, curr);
4019 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4020 	if (delta_exec > ideal_runtime) {
4021 		resched_curr(rq_of(cfs_rq));
4022 		/*
4023 		 * The current task ran long enough, ensure it doesn't get
4024 		 * re-elected due to buddy favours.
4025 		 */
4026 		clear_buddies(cfs_rq, curr);
4027 		return;
4028 	}
4029 
4030 	/*
4031 	 * Ensure that a task that missed wakeup preemption by a
4032 	 * narrow margin doesn't have to wait for a full slice.
4033 	 * This also mitigates buddy induced latencies under load.
4034 	 */
4035 	if (delta_exec < sysctl_sched_min_granularity)
4036 		return;
4037 
4038 	se = __pick_first_entity(cfs_rq);
4039 	delta = curr->vruntime - se->vruntime;
4040 
4041 	if (delta < 0)
4042 		return;
4043 
4044 	if (delta > ideal_runtime)
4045 		resched_curr(rq_of(cfs_rq));
4046 }
4047 
4048 static void
4049 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4050 {
4051 	/* 'current' is not kept within the tree. */
4052 	if (se->on_rq) {
4053 		/*
4054 		 * Any task has to be enqueued before it get to execute on
4055 		 * a CPU. So account for the time it spent waiting on the
4056 		 * runqueue.
4057 		 */
4058 		update_stats_wait_end(cfs_rq, se);
4059 		__dequeue_entity(cfs_rq, se);
4060 		update_load_avg(cfs_rq, se, UPDATE_TG);
4061 	}
4062 
4063 	update_stats_curr_start(cfs_rq, se);
4064 	cfs_rq->curr = se;
4065 
4066 	/*
4067 	 * Track our maximum slice length, if the CPU's load is at
4068 	 * least twice that of our own weight (i.e. dont track it
4069 	 * when there are only lesser-weight tasks around):
4070 	 */
4071 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4072 		schedstat_set(se->statistics.slice_max,
4073 			max((u64)schedstat_val(se->statistics.slice_max),
4074 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4075 	}
4076 
4077 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4078 }
4079 
4080 static int
4081 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4082 
4083 /*
4084  * Pick the next process, keeping these things in mind, in this order:
4085  * 1) keep things fair between processes/task groups
4086  * 2) pick the "next" process, since someone really wants that to run
4087  * 3) pick the "last" process, for cache locality
4088  * 4) do not run the "skip" process, if something else is available
4089  */
4090 static struct sched_entity *
4091 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4092 {
4093 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4094 	struct sched_entity *se;
4095 
4096 	/*
4097 	 * If curr is set we have to see if its left of the leftmost entity
4098 	 * still in the tree, provided there was anything in the tree at all.
4099 	 */
4100 	if (!left || (curr && entity_before(curr, left)))
4101 		left = curr;
4102 
4103 	se = left; /* ideally we run the leftmost entity */
4104 
4105 	/*
4106 	 * Avoid running the skip buddy, if running something else can
4107 	 * be done without getting too unfair.
4108 	 */
4109 	if (cfs_rq->skip == se) {
4110 		struct sched_entity *second;
4111 
4112 		if (se == curr) {
4113 			second = __pick_first_entity(cfs_rq);
4114 		} else {
4115 			second = __pick_next_entity(se);
4116 			if (!second || (curr && entity_before(curr, second)))
4117 				second = curr;
4118 		}
4119 
4120 		if (second && wakeup_preempt_entity(second, left) < 1)
4121 			se = second;
4122 	}
4123 
4124 	/*
4125 	 * Prefer last buddy, try to return the CPU to a preempted task.
4126 	 */
4127 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4128 		se = cfs_rq->last;
4129 
4130 	/*
4131 	 * Someone really wants this to run. If it's not unfair, run it.
4132 	 */
4133 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4134 		se = cfs_rq->next;
4135 
4136 	clear_buddies(cfs_rq, se);
4137 
4138 	return se;
4139 }
4140 
4141 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4142 
4143 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4144 {
4145 	/*
4146 	 * If still on the runqueue then deactivate_task()
4147 	 * was not called and update_curr() has to be done:
4148 	 */
4149 	if (prev->on_rq)
4150 		update_curr(cfs_rq);
4151 
4152 	/* throttle cfs_rqs exceeding runtime */
4153 	check_cfs_rq_runtime(cfs_rq);
4154 
4155 	check_spread(cfs_rq, prev);
4156 
4157 	if (prev->on_rq) {
4158 		update_stats_wait_start(cfs_rq, prev);
4159 		/* Put 'current' back into the tree. */
4160 		__enqueue_entity(cfs_rq, prev);
4161 		/* in !on_rq case, update occurred at dequeue */
4162 		update_load_avg(cfs_rq, prev, 0);
4163 	}
4164 	cfs_rq->curr = NULL;
4165 }
4166 
4167 static void
4168 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4169 {
4170 	/*
4171 	 * Update run-time statistics of the 'current'.
4172 	 */
4173 	update_curr(cfs_rq);
4174 
4175 	/*
4176 	 * Ensure that runnable average is periodically updated.
4177 	 */
4178 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4179 	update_cfs_group(curr);
4180 
4181 #ifdef CONFIG_SCHED_HRTICK
4182 	/*
4183 	 * queued ticks are scheduled to match the slice, so don't bother
4184 	 * validating it and just reschedule.
4185 	 */
4186 	if (queued) {
4187 		resched_curr(rq_of(cfs_rq));
4188 		return;
4189 	}
4190 	/*
4191 	 * don't let the period tick interfere with the hrtick preemption
4192 	 */
4193 	if (!sched_feat(DOUBLE_TICK) &&
4194 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4195 		return;
4196 #endif
4197 
4198 	if (cfs_rq->nr_running > 1)
4199 		check_preempt_tick(cfs_rq, curr);
4200 }
4201 
4202 
4203 /**************************************************
4204  * CFS bandwidth control machinery
4205  */
4206 
4207 #ifdef CONFIG_CFS_BANDWIDTH
4208 
4209 #ifdef HAVE_JUMP_LABEL
4210 static struct static_key __cfs_bandwidth_used;
4211 
4212 static inline bool cfs_bandwidth_used(void)
4213 {
4214 	return static_key_false(&__cfs_bandwidth_used);
4215 }
4216 
4217 void cfs_bandwidth_usage_inc(void)
4218 {
4219 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4220 }
4221 
4222 void cfs_bandwidth_usage_dec(void)
4223 {
4224 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4225 }
4226 #else /* HAVE_JUMP_LABEL */
4227 static bool cfs_bandwidth_used(void)
4228 {
4229 	return true;
4230 }
4231 
4232 void cfs_bandwidth_usage_inc(void) {}
4233 void cfs_bandwidth_usage_dec(void) {}
4234 #endif /* HAVE_JUMP_LABEL */
4235 
4236 /*
4237  * default period for cfs group bandwidth.
4238  * default: 0.1s, units: nanoseconds
4239  */
4240 static inline u64 default_cfs_period(void)
4241 {
4242 	return 100000000ULL;
4243 }
4244 
4245 static inline u64 sched_cfs_bandwidth_slice(void)
4246 {
4247 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4248 }
4249 
4250 /*
4251  * Replenish runtime according to assigned quota and update expiration time.
4252  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4253  * additional synchronization around rq->lock.
4254  *
4255  * requires cfs_b->lock
4256  */
4257 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4258 {
4259 	u64 now;
4260 
4261 	if (cfs_b->quota == RUNTIME_INF)
4262 		return;
4263 
4264 	now = sched_clock_cpu(smp_processor_id());
4265 	cfs_b->runtime = cfs_b->quota;
4266 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4267 	cfs_b->expires_seq++;
4268 }
4269 
4270 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4271 {
4272 	return &tg->cfs_bandwidth;
4273 }
4274 
4275 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4276 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4277 {
4278 	if (unlikely(cfs_rq->throttle_count))
4279 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4280 
4281 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4282 }
4283 
4284 /* returns 0 on failure to allocate runtime */
4285 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4286 {
4287 	struct task_group *tg = cfs_rq->tg;
4288 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4289 	u64 amount = 0, min_amount, expires;
4290 	int expires_seq;
4291 
4292 	/* note: this is a positive sum as runtime_remaining <= 0 */
4293 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4294 
4295 	raw_spin_lock(&cfs_b->lock);
4296 	if (cfs_b->quota == RUNTIME_INF)
4297 		amount = min_amount;
4298 	else {
4299 		start_cfs_bandwidth(cfs_b);
4300 
4301 		if (cfs_b->runtime > 0) {
4302 			amount = min(cfs_b->runtime, min_amount);
4303 			cfs_b->runtime -= amount;
4304 			cfs_b->idle = 0;
4305 		}
4306 	}
4307 	expires_seq = cfs_b->expires_seq;
4308 	expires = cfs_b->runtime_expires;
4309 	raw_spin_unlock(&cfs_b->lock);
4310 
4311 	cfs_rq->runtime_remaining += amount;
4312 	/*
4313 	 * we may have advanced our local expiration to account for allowed
4314 	 * spread between our sched_clock and the one on which runtime was
4315 	 * issued.
4316 	 */
4317 	if (cfs_rq->expires_seq != expires_seq) {
4318 		cfs_rq->expires_seq = expires_seq;
4319 		cfs_rq->runtime_expires = expires;
4320 	}
4321 
4322 	return cfs_rq->runtime_remaining > 0;
4323 }
4324 
4325 /*
4326  * Note: This depends on the synchronization provided by sched_clock and the
4327  * fact that rq->clock snapshots this value.
4328  */
4329 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4330 {
4331 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4332 
4333 	/* if the deadline is ahead of our clock, nothing to do */
4334 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4335 		return;
4336 
4337 	if (cfs_rq->runtime_remaining < 0)
4338 		return;
4339 
4340 	/*
4341 	 * If the local deadline has passed we have to consider the
4342 	 * possibility that our sched_clock is 'fast' and the global deadline
4343 	 * has not truly expired.
4344 	 *
4345 	 * Fortunately we can check determine whether this the case by checking
4346 	 * whether the global deadline(cfs_b->expires_seq) has advanced.
4347 	 */
4348 	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
4349 		/* extend local deadline, drift is bounded above by 2 ticks */
4350 		cfs_rq->runtime_expires += TICK_NSEC;
4351 	} else {
4352 		/* global deadline is ahead, expiration has passed */
4353 		cfs_rq->runtime_remaining = 0;
4354 	}
4355 }
4356 
4357 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4358 {
4359 	/* dock delta_exec before expiring quota (as it could span periods) */
4360 	cfs_rq->runtime_remaining -= delta_exec;
4361 	expire_cfs_rq_runtime(cfs_rq);
4362 
4363 	if (likely(cfs_rq->runtime_remaining > 0))
4364 		return;
4365 
4366 	/*
4367 	 * if we're unable to extend our runtime we resched so that the active
4368 	 * hierarchy can be throttled
4369 	 */
4370 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4371 		resched_curr(rq_of(cfs_rq));
4372 }
4373 
4374 static __always_inline
4375 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4376 {
4377 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4378 		return;
4379 
4380 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4381 }
4382 
4383 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4384 {
4385 	return cfs_bandwidth_used() && cfs_rq->throttled;
4386 }
4387 
4388 /* check whether cfs_rq, or any parent, is throttled */
4389 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4390 {
4391 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4392 }
4393 
4394 /*
4395  * Ensure that neither of the group entities corresponding to src_cpu or
4396  * dest_cpu are members of a throttled hierarchy when performing group
4397  * load-balance operations.
4398  */
4399 static inline int throttled_lb_pair(struct task_group *tg,
4400 				    int src_cpu, int dest_cpu)
4401 {
4402 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4403 
4404 	src_cfs_rq = tg->cfs_rq[src_cpu];
4405 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4406 
4407 	return throttled_hierarchy(src_cfs_rq) ||
4408 	       throttled_hierarchy(dest_cfs_rq);
4409 }
4410 
4411 static int tg_unthrottle_up(struct task_group *tg, void *data)
4412 {
4413 	struct rq *rq = data;
4414 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4415 
4416 	cfs_rq->throttle_count--;
4417 	if (!cfs_rq->throttle_count) {
4418 		/* adjust cfs_rq_clock_task() */
4419 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4420 					     cfs_rq->throttled_clock_task;
4421 	}
4422 
4423 	return 0;
4424 }
4425 
4426 static int tg_throttle_down(struct task_group *tg, void *data)
4427 {
4428 	struct rq *rq = data;
4429 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4430 
4431 	/* group is entering throttled state, stop time */
4432 	if (!cfs_rq->throttle_count)
4433 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4434 	cfs_rq->throttle_count++;
4435 
4436 	return 0;
4437 }
4438 
4439 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4440 {
4441 	struct rq *rq = rq_of(cfs_rq);
4442 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4443 	struct sched_entity *se;
4444 	long task_delta, dequeue = 1;
4445 	bool empty;
4446 
4447 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4448 
4449 	/* freeze hierarchy runnable averages while throttled */
4450 	rcu_read_lock();
4451 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4452 	rcu_read_unlock();
4453 
4454 	task_delta = cfs_rq->h_nr_running;
4455 	for_each_sched_entity(se) {
4456 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4457 		/* throttled entity or throttle-on-deactivate */
4458 		if (!se->on_rq)
4459 			break;
4460 
4461 		if (dequeue)
4462 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4463 		qcfs_rq->h_nr_running -= task_delta;
4464 
4465 		if (qcfs_rq->load.weight)
4466 			dequeue = 0;
4467 	}
4468 
4469 	if (!se)
4470 		sub_nr_running(rq, task_delta);
4471 
4472 	cfs_rq->throttled = 1;
4473 	cfs_rq->throttled_clock = rq_clock(rq);
4474 	raw_spin_lock(&cfs_b->lock);
4475 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4476 
4477 	/*
4478 	 * Add to the _head_ of the list, so that an already-started
4479 	 * distribute_cfs_runtime will not see us
4480 	 */
4481 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4482 
4483 	/*
4484 	 * If we're the first throttled task, make sure the bandwidth
4485 	 * timer is running.
4486 	 */
4487 	if (empty)
4488 		start_cfs_bandwidth(cfs_b);
4489 
4490 	raw_spin_unlock(&cfs_b->lock);
4491 }
4492 
4493 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4494 {
4495 	struct rq *rq = rq_of(cfs_rq);
4496 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4497 	struct sched_entity *se;
4498 	int enqueue = 1;
4499 	long task_delta;
4500 
4501 	se = cfs_rq->tg->se[cpu_of(rq)];
4502 
4503 	cfs_rq->throttled = 0;
4504 
4505 	update_rq_clock(rq);
4506 
4507 	raw_spin_lock(&cfs_b->lock);
4508 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4509 	list_del_rcu(&cfs_rq->throttled_list);
4510 	raw_spin_unlock(&cfs_b->lock);
4511 
4512 	/* update hierarchical throttle state */
4513 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4514 
4515 	if (!cfs_rq->load.weight)
4516 		return;
4517 
4518 	task_delta = cfs_rq->h_nr_running;
4519 	for_each_sched_entity(se) {
4520 		if (se->on_rq)
4521 			enqueue = 0;
4522 
4523 		cfs_rq = cfs_rq_of(se);
4524 		if (enqueue)
4525 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4526 		cfs_rq->h_nr_running += task_delta;
4527 
4528 		if (cfs_rq_throttled(cfs_rq))
4529 			break;
4530 	}
4531 
4532 	if (!se)
4533 		add_nr_running(rq, task_delta);
4534 
4535 	/* Determine whether we need to wake up potentially idle CPU: */
4536 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4537 		resched_curr(rq);
4538 }
4539 
4540 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4541 		u64 remaining, u64 expires)
4542 {
4543 	struct cfs_rq *cfs_rq;
4544 	u64 runtime;
4545 	u64 starting_runtime = remaining;
4546 
4547 	rcu_read_lock();
4548 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4549 				throttled_list) {
4550 		struct rq *rq = rq_of(cfs_rq);
4551 		struct rq_flags rf;
4552 
4553 		rq_lock(rq, &rf);
4554 		if (!cfs_rq_throttled(cfs_rq))
4555 			goto next;
4556 
4557 		runtime = -cfs_rq->runtime_remaining + 1;
4558 		if (runtime > remaining)
4559 			runtime = remaining;
4560 		remaining -= runtime;
4561 
4562 		cfs_rq->runtime_remaining += runtime;
4563 		cfs_rq->runtime_expires = expires;
4564 
4565 		/* we check whether we're throttled above */
4566 		if (cfs_rq->runtime_remaining > 0)
4567 			unthrottle_cfs_rq(cfs_rq);
4568 
4569 next:
4570 		rq_unlock(rq, &rf);
4571 
4572 		if (!remaining)
4573 			break;
4574 	}
4575 	rcu_read_unlock();
4576 
4577 	return starting_runtime - remaining;
4578 }
4579 
4580 /*
4581  * Responsible for refilling a task_group's bandwidth and unthrottling its
4582  * cfs_rqs as appropriate. If there has been no activity within the last
4583  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4584  * used to track this state.
4585  */
4586 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4587 {
4588 	u64 runtime, runtime_expires;
4589 	int throttled;
4590 
4591 	/* no need to continue the timer with no bandwidth constraint */
4592 	if (cfs_b->quota == RUNTIME_INF)
4593 		goto out_deactivate;
4594 
4595 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4596 	cfs_b->nr_periods += overrun;
4597 
4598 	/*
4599 	 * idle depends on !throttled (for the case of a large deficit), and if
4600 	 * we're going inactive then everything else can be deferred
4601 	 */
4602 	if (cfs_b->idle && !throttled)
4603 		goto out_deactivate;
4604 
4605 	__refill_cfs_bandwidth_runtime(cfs_b);
4606 
4607 	if (!throttled) {
4608 		/* mark as potentially idle for the upcoming period */
4609 		cfs_b->idle = 1;
4610 		return 0;
4611 	}
4612 
4613 	/* account preceding periods in which throttling occurred */
4614 	cfs_b->nr_throttled += overrun;
4615 
4616 	runtime_expires = cfs_b->runtime_expires;
4617 
4618 	/*
4619 	 * This check is repeated as we are holding onto the new bandwidth while
4620 	 * we unthrottle. This can potentially race with an unthrottled group
4621 	 * trying to acquire new bandwidth from the global pool. This can result
4622 	 * in us over-using our runtime if it is all used during this loop, but
4623 	 * only by limited amounts in that extreme case.
4624 	 */
4625 	while (throttled && cfs_b->runtime > 0) {
4626 		runtime = cfs_b->runtime;
4627 		raw_spin_unlock(&cfs_b->lock);
4628 		/* we can't nest cfs_b->lock while distributing bandwidth */
4629 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4630 						 runtime_expires);
4631 		raw_spin_lock(&cfs_b->lock);
4632 
4633 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4634 
4635 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4636 	}
4637 
4638 	/*
4639 	 * While we are ensured activity in the period following an
4640 	 * unthrottle, this also covers the case in which the new bandwidth is
4641 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4642 	 * timer to remain active while there are any throttled entities.)
4643 	 */
4644 	cfs_b->idle = 0;
4645 
4646 	return 0;
4647 
4648 out_deactivate:
4649 	return 1;
4650 }
4651 
4652 /* a cfs_rq won't donate quota below this amount */
4653 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4654 /* minimum remaining period time to redistribute slack quota */
4655 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4656 /* how long we wait to gather additional slack before distributing */
4657 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4658 
4659 /*
4660  * Are we near the end of the current quota period?
4661  *
4662  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4663  * hrtimer base being cleared by hrtimer_start. In the case of
4664  * migrate_hrtimers, base is never cleared, so we are fine.
4665  */
4666 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4667 {
4668 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4669 	u64 remaining;
4670 
4671 	/* if the call-back is running a quota refresh is already occurring */
4672 	if (hrtimer_callback_running(refresh_timer))
4673 		return 1;
4674 
4675 	/* is a quota refresh about to occur? */
4676 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4677 	if (remaining < min_expire)
4678 		return 1;
4679 
4680 	return 0;
4681 }
4682 
4683 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4684 {
4685 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4686 
4687 	/* if there's a quota refresh soon don't bother with slack */
4688 	if (runtime_refresh_within(cfs_b, min_left))
4689 		return;
4690 
4691 	hrtimer_start(&cfs_b->slack_timer,
4692 			ns_to_ktime(cfs_bandwidth_slack_period),
4693 			HRTIMER_MODE_REL);
4694 }
4695 
4696 /* we know any runtime found here is valid as update_curr() precedes return */
4697 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4698 {
4699 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4700 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4701 
4702 	if (slack_runtime <= 0)
4703 		return;
4704 
4705 	raw_spin_lock(&cfs_b->lock);
4706 	if (cfs_b->quota != RUNTIME_INF &&
4707 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4708 		cfs_b->runtime += slack_runtime;
4709 
4710 		/* we are under rq->lock, defer unthrottling using a timer */
4711 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4712 		    !list_empty(&cfs_b->throttled_cfs_rq))
4713 			start_cfs_slack_bandwidth(cfs_b);
4714 	}
4715 	raw_spin_unlock(&cfs_b->lock);
4716 
4717 	/* even if it's not valid for return we don't want to try again */
4718 	cfs_rq->runtime_remaining -= slack_runtime;
4719 }
4720 
4721 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4722 {
4723 	if (!cfs_bandwidth_used())
4724 		return;
4725 
4726 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4727 		return;
4728 
4729 	__return_cfs_rq_runtime(cfs_rq);
4730 }
4731 
4732 /*
4733  * This is done with a timer (instead of inline with bandwidth return) since
4734  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4735  */
4736 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4737 {
4738 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4739 	u64 expires;
4740 
4741 	/* confirm we're still not at a refresh boundary */
4742 	raw_spin_lock(&cfs_b->lock);
4743 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4744 		raw_spin_unlock(&cfs_b->lock);
4745 		return;
4746 	}
4747 
4748 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4749 		runtime = cfs_b->runtime;
4750 
4751 	expires = cfs_b->runtime_expires;
4752 	raw_spin_unlock(&cfs_b->lock);
4753 
4754 	if (!runtime)
4755 		return;
4756 
4757 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4758 
4759 	raw_spin_lock(&cfs_b->lock);
4760 	if (expires == cfs_b->runtime_expires)
4761 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4762 	raw_spin_unlock(&cfs_b->lock);
4763 }
4764 
4765 /*
4766  * When a group wakes up we want to make sure that its quota is not already
4767  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4768  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4769  */
4770 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4771 {
4772 	if (!cfs_bandwidth_used())
4773 		return;
4774 
4775 	/* an active group must be handled by the update_curr()->put() path */
4776 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4777 		return;
4778 
4779 	/* ensure the group is not already throttled */
4780 	if (cfs_rq_throttled(cfs_rq))
4781 		return;
4782 
4783 	/* update runtime allocation */
4784 	account_cfs_rq_runtime(cfs_rq, 0);
4785 	if (cfs_rq->runtime_remaining <= 0)
4786 		throttle_cfs_rq(cfs_rq);
4787 }
4788 
4789 static void sync_throttle(struct task_group *tg, int cpu)
4790 {
4791 	struct cfs_rq *pcfs_rq, *cfs_rq;
4792 
4793 	if (!cfs_bandwidth_used())
4794 		return;
4795 
4796 	if (!tg->parent)
4797 		return;
4798 
4799 	cfs_rq = tg->cfs_rq[cpu];
4800 	pcfs_rq = tg->parent->cfs_rq[cpu];
4801 
4802 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4803 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4804 }
4805 
4806 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4807 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4808 {
4809 	if (!cfs_bandwidth_used())
4810 		return false;
4811 
4812 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4813 		return false;
4814 
4815 	/*
4816 	 * it's possible for a throttled entity to be forced into a running
4817 	 * state (e.g. set_curr_task), in this case we're finished.
4818 	 */
4819 	if (cfs_rq_throttled(cfs_rq))
4820 		return true;
4821 
4822 	throttle_cfs_rq(cfs_rq);
4823 	return true;
4824 }
4825 
4826 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4827 {
4828 	struct cfs_bandwidth *cfs_b =
4829 		container_of(timer, struct cfs_bandwidth, slack_timer);
4830 
4831 	do_sched_cfs_slack_timer(cfs_b);
4832 
4833 	return HRTIMER_NORESTART;
4834 }
4835 
4836 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4837 {
4838 	struct cfs_bandwidth *cfs_b =
4839 		container_of(timer, struct cfs_bandwidth, period_timer);
4840 	int overrun;
4841 	int idle = 0;
4842 
4843 	raw_spin_lock(&cfs_b->lock);
4844 	for (;;) {
4845 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4846 		if (!overrun)
4847 			break;
4848 
4849 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4850 	}
4851 	if (idle)
4852 		cfs_b->period_active = 0;
4853 	raw_spin_unlock(&cfs_b->lock);
4854 
4855 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4856 }
4857 
4858 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4859 {
4860 	raw_spin_lock_init(&cfs_b->lock);
4861 	cfs_b->runtime = 0;
4862 	cfs_b->quota = RUNTIME_INF;
4863 	cfs_b->period = ns_to_ktime(default_cfs_period());
4864 
4865 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4866 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4867 	cfs_b->period_timer.function = sched_cfs_period_timer;
4868 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4869 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4870 }
4871 
4872 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4873 {
4874 	cfs_rq->runtime_enabled = 0;
4875 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4876 }
4877 
4878 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4879 {
4880 	u64 overrun;
4881 
4882 	lockdep_assert_held(&cfs_b->lock);
4883 
4884 	if (cfs_b->period_active)
4885 		return;
4886 
4887 	cfs_b->period_active = 1;
4888 	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4889 	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4890 	cfs_b->expires_seq++;
4891 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4892 }
4893 
4894 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4895 {
4896 	/* init_cfs_bandwidth() was not called */
4897 	if (!cfs_b->throttled_cfs_rq.next)
4898 		return;
4899 
4900 	hrtimer_cancel(&cfs_b->period_timer);
4901 	hrtimer_cancel(&cfs_b->slack_timer);
4902 }
4903 
4904 /*
4905  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4906  *
4907  * The race is harmless, since modifying bandwidth settings of unhooked group
4908  * bits doesn't do much.
4909  */
4910 
4911 /* cpu online calback */
4912 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4913 {
4914 	struct task_group *tg;
4915 
4916 	lockdep_assert_held(&rq->lock);
4917 
4918 	rcu_read_lock();
4919 	list_for_each_entry_rcu(tg, &task_groups, list) {
4920 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4921 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4922 
4923 		raw_spin_lock(&cfs_b->lock);
4924 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4925 		raw_spin_unlock(&cfs_b->lock);
4926 	}
4927 	rcu_read_unlock();
4928 }
4929 
4930 /* cpu offline callback */
4931 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4932 {
4933 	struct task_group *tg;
4934 
4935 	lockdep_assert_held(&rq->lock);
4936 
4937 	rcu_read_lock();
4938 	list_for_each_entry_rcu(tg, &task_groups, list) {
4939 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4940 
4941 		if (!cfs_rq->runtime_enabled)
4942 			continue;
4943 
4944 		/*
4945 		 * clock_task is not advancing so we just need to make sure
4946 		 * there's some valid quota amount
4947 		 */
4948 		cfs_rq->runtime_remaining = 1;
4949 		/*
4950 		 * Offline rq is schedulable till CPU is completely disabled
4951 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4952 		 */
4953 		cfs_rq->runtime_enabled = 0;
4954 
4955 		if (cfs_rq_throttled(cfs_rq))
4956 			unthrottle_cfs_rq(cfs_rq);
4957 	}
4958 	rcu_read_unlock();
4959 }
4960 
4961 #else /* CONFIG_CFS_BANDWIDTH */
4962 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4963 {
4964 	return rq_clock_task(rq_of(cfs_rq));
4965 }
4966 
4967 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4968 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4969 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4970 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4971 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4972 
4973 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4974 {
4975 	return 0;
4976 }
4977 
4978 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4979 {
4980 	return 0;
4981 }
4982 
4983 static inline int throttled_lb_pair(struct task_group *tg,
4984 				    int src_cpu, int dest_cpu)
4985 {
4986 	return 0;
4987 }
4988 
4989 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4990 
4991 #ifdef CONFIG_FAIR_GROUP_SCHED
4992 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4993 #endif
4994 
4995 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4996 {
4997 	return NULL;
4998 }
4999 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5000 static inline void update_runtime_enabled(struct rq *rq) {}
5001 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5002 
5003 #endif /* CONFIG_CFS_BANDWIDTH */
5004 
5005 /**************************************************
5006  * CFS operations on tasks:
5007  */
5008 
5009 #ifdef CONFIG_SCHED_HRTICK
5010 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5011 {
5012 	struct sched_entity *se = &p->se;
5013 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5014 
5015 	SCHED_WARN_ON(task_rq(p) != rq);
5016 
5017 	if (rq->cfs.h_nr_running > 1) {
5018 		u64 slice = sched_slice(cfs_rq, se);
5019 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5020 		s64 delta = slice - ran;
5021 
5022 		if (delta < 0) {
5023 			if (rq->curr == p)
5024 				resched_curr(rq);
5025 			return;
5026 		}
5027 		hrtick_start(rq, delta);
5028 	}
5029 }
5030 
5031 /*
5032  * called from enqueue/dequeue and updates the hrtick when the
5033  * current task is from our class and nr_running is low enough
5034  * to matter.
5035  */
5036 static void hrtick_update(struct rq *rq)
5037 {
5038 	struct task_struct *curr = rq->curr;
5039 
5040 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5041 		return;
5042 
5043 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5044 		hrtick_start_fair(rq, curr);
5045 }
5046 #else /* !CONFIG_SCHED_HRTICK */
5047 static inline void
5048 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5049 {
5050 }
5051 
5052 static inline void hrtick_update(struct rq *rq)
5053 {
5054 }
5055 #endif
5056 
5057 /*
5058  * The enqueue_task method is called before nr_running is
5059  * increased. Here we update the fair scheduling stats and
5060  * then put the task into the rbtree:
5061  */
5062 static void
5063 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5064 {
5065 	struct cfs_rq *cfs_rq;
5066 	struct sched_entity *se = &p->se;
5067 
5068 	/*
5069 	 * The code below (indirectly) updates schedutil which looks at
5070 	 * the cfs_rq utilization to select a frequency.
5071 	 * Let's add the task's estimated utilization to the cfs_rq's
5072 	 * estimated utilization, before we update schedutil.
5073 	 */
5074 	util_est_enqueue(&rq->cfs, p);
5075 
5076 	/*
5077 	 * If in_iowait is set, the code below may not trigger any cpufreq
5078 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5079 	 * passed.
5080 	 */
5081 	if (p->in_iowait)
5082 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5083 
5084 	for_each_sched_entity(se) {
5085 		if (se->on_rq)
5086 			break;
5087 		cfs_rq = cfs_rq_of(se);
5088 		enqueue_entity(cfs_rq, se, flags);
5089 
5090 		/*
5091 		 * end evaluation on encountering a throttled cfs_rq
5092 		 *
5093 		 * note: in the case of encountering a throttled cfs_rq we will
5094 		 * post the final h_nr_running increment below.
5095 		 */
5096 		if (cfs_rq_throttled(cfs_rq))
5097 			break;
5098 		cfs_rq->h_nr_running++;
5099 
5100 		flags = ENQUEUE_WAKEUP;
5101 	}
5102 
5103 	for_each_sched_entity(se) {
5104 		cfs_rq = cfs_rq_of(se);
5105 		cfs_rq->h_nr_running++;
5106 
5107 		if (cfs_rq_throttled(cfs_rq))
5108 			break;
5109 
5110 		update_load_avg(cfs_rq, se, UPDATE_TG);
5111 		update_cfs_group(se);
5112 	}
5113 
5114 	if (!se)
5115 		add_nr_running(rq, 1);
5116 
5117 	hrtick_update(rq);
5118 }
5119 
5120 static void set_next_buddy(struct sched_entity *se);
5121 
5122 /*
5123  * The dequeue_task method is called before nr_running is
5124  * decreased. We remove the task from the rbtree and
5125  * update the fair scheduling stats:
5126  */
5127 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5128 {
5129 	struct cfs_rq *cfs_rq;
5130 	struct sched_entity *se = &p->se;
5131 	int task_sleep = flags & DEQUEUE_SLEEP;
5132 
5133 	for_each_sched_entity(se) {
5134 		cfs_rq = cfs_rq_of(se);
5135 		dequeue_entity(cfs_rq, se, flags);
5136 
5137 		/*
5138 		 * end evaluation on encountering a throttled cfs_rq
5139 		 *
5140 		 * note: in the case of encountering a throttled cfs_rq we will
5141 		 * post the final h_nr_running decrement below.
5142 		*/
5143 		if (cfs_rq_throttled(cfs_rq))
5144 			break;
5145 		cfs_rq->h_nr_running--;
5146 
5147 		/* Don't dequeue parent if it has other entities besides us */
5148 		if (cfs_rq->load.weight) {
5149 			/* Avoid re-evaluating load for this entity: */
5150 			se = parent_entity(se);
5151 			/*
5152 			 * Bias pick_next to pick a task from this cfs_rq, as
5153 			 * p is sleeping when it is within its sched_slice.
5154 			 */
5155 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5156 				set_next_buddy(se);
5157 			break;
5158 		}
5159 		flags |= DEQUEUE_SLEEP;
5160 	}
5161 
5162 	for_each_sched_entity(se) {
5163 		cfs_rq = cfs_rq_of(se);
5164 		cfs_rq->h_nr_running--;
5165 
5166 		if (cfs_rq_throttled(cfs_rq))
5167 			break;
5168 
5169 		update_load_avg(cfs_rq, se, UPDATE_TG);
5170 		update_cfs_group(se);
5171 	}
5172 
5173 	if (!se)
5174 		sub_nr_running(rq, 1);
5175 
5176 	util_est_dequeue(&rq->cfs, p, task_sleep);
5177 	hrtick_update(rq);
5178 }
5179 
5180 #ifdef CONFIG_SMP
5181 
5182 /* Working cpumask for: load_balance, load_balance_newidle. */
5183 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5184 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5185 
5186 #ifdef CONFIG_NO_HZ_COMMON
5187 /*
5188  * per rq 'load' arrray crap; XXX kill this.
5189  */
5190 
5191 /*
5192  * The exact cpuload calculated at every tick would be:
5193  *
5194  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5195  *
5196  * If a CPU misses updates for n ticks (as it was idle) and update gets
5197  * called on the n+1-th tick when CPU may be busy, then we have:
5198  *
5199  *   load_n   = (1 - 1/2^i)^n * load_0
5200  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5201  *
5202  * decay_load_missed() below does efficient calculation of
5203  *
5204  *   load' = (1 - 1/2^i)^n * load
5205  *
5206  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5207  * This allows us to precompute the above in said factors, thereby allowing the
5208  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5209  * fixed_power_int())
5210  *
5211  * The calculation is approximated on a 128 point scale.
5212  */
5213 #define DEGRADE_SHIFT		7
5214 
5215 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5216 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5217 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5218 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5219 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5220 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5221 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5222 };
5223 
5224 /*
5225  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5226  * would be when CPU is idle and so we just decay the old load without
5227  * adding any new load.
5228  */
5229 static unsigned long
5230 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5231 {
5232 	int j = 0;
5233 
5234 	if (!missed_updates)
5235 		return load;
5236 
5237 	if (missed_updates >= degrade_zero_ticks[idx])
5238 		return 0;
5239 
5240 	if (idx == 1)
5241 		return load >> missed_updates;
5242 
5243 	while (missed_updates) {
5244 		if (missed_updates % 2)
5245 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5246 
5247 		missed_updates >>= 1;
5248 		j++;
5249 	}
5250 	return load;
5251 }
5252 
5253 static struct {
5254 	cpumask_var_t idle_cpus_mask;
5255 	atomic_t nr_cpus;
5256 	int has_blocked;		/* Idle CPUS has blocked load */
5257 	unsigned long next_balance;     /* in jiffy units */
5258 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5259 } nohz ____cacheline_aligned;
5260 
5261 #endif /* CONFIG_NO_HZ_COMMON */
5262 
5263 /**
5264  * __cpu_load_update - update the rq->cpu_load[] statistics
5265  * @this_rq: The rq to update statistics for
5266  * @this_load: The current load
5267  * @pending_updates: The number of missed updates
5268  *
5269  * Update rq->cpu_load[] statistics. This function is usually called every
5270  * scheduler tick (TICK_NSEC).
5271  *
5272  * This function computes a decaying average:
5273  *
5274  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5275  *
5276  * Because of NOHZ it might not get called on every tick which gives need for
5277  * the @pending_updates argument.
5278  *
5279  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5280  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5281  *             = A * (A * load[i]_n-2 + B) + B
5282  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5283  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5284  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5285  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5286  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5287  *
5288  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5289  * any change in load would have resulted in the tick being turned back on.
5290  *
5291  * For regular NOHZ, this reduces to:
5292  *
5293  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5294  *
5295  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5296  * term.
5297  */
5298 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5299 			    unsigned long pending_updates)
5300 {
5301 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5302 	int i, scale;
5303 
5304 	this_rq->nr_load_updates++;
5305 
5306 	/* Update our load: */
5307 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5308 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5309 		unsigned long old_load, new_load;
5310 
5311 		/* scale is effectively 1 << i now, and >> i divides by scale */
5312 
5313 		old_load = this_rq->cpu_load[i];
5314 #ifdef CONFIG_NO_HZ_COMMON
5315 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5316 		if (tickless_load) {
5317 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5318 			/*
5319 			 * old_load can never be a negative value because a
5320 			 * decayed tickless_load cannot be greater than the
5321 			 * original tickless_load.
5322 			 */
5323 			old_load += tickless_load;
5324 		}
5325 #endif
5326 		new_load = this_load;
5327 		/*
5328 		 * Round up the averaging division if load is increasing. This
5329 		 * prevents us from getting stuck on 9 if the load is 10, for
5330 		 * example.
5331 		 */
5332 		if (new_load > old_load)
5333 			new_load += scale - 1;
5334 
5335 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5336 	}
5337 }
5338 
5339 /* Used instead of source_load when we know the type == 0 */
5340 static unsigned long weighted_cpuload(struct rq *rq)
5341 {
5342 	return cfs_rq_runnable_load_avg(&rq->cfs);
5343 }
5344 
5345 #ifdef CONFIG_NO_HZ_COMMON
5346 /*
5347  * There is no sane way to deal with nohz on smp when using jiffies because the
5348  * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5349  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5350  *
5351  * Therefore we need to avoid the delta approach from the regular tick when
5352  * possible since that would seriously skew the load calculation. This is why we
5353  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5354  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5355  * loop exit, nohz_idle_balance, nohz full exit...)
5356  *
5357  * This means we might still be one tick off for nohz periods.
5358  */
5359 
5360 static void cpu_load_update_nohz(struct rq *this_rq,
5361 				 unsigned long curr_jiffies,
5362 				 unsigned long load)
5363 {
5364 	unsigned long pending_updates;
5365 
5366 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5367 	if (pending_updates) {
5368 		this_rq->last_load_update_tick = curr_jiffies;
5369 		/*
5370 		 * In the regular NOHZ case, we were idle, this means load 0.
5371 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5372 		 * its weighted load.
5373 		 */
5374 		cpu_load_update(this_rq, load, pending_updates);
5375 	}
5376 }
5377 
5378 /*
5379  * Called from nohz_idle_balance() to update the load ratings before doing the
5380  * idle balance.
5381  */
5382 static void cpu_load_update_idle(struct rq *this_rq)
5383 {
5384 	/*
5385 	 * bail if there's load or we're actually up-to-date.
5386 	 */
5387 	if (weighted_cpuload(this_rq))
5388 		return;
5389 
5390 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5391 }
5392 
5393 /*
5394  * Record CPU load on nohz entry so we know the tickless load to account
5395  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5396  * than other cpu_load[idx] but it should be fine as cpu_load readers
5397  * shouldn't rely into synchronized cpu_load[*] updates.
5398  */
5399 void cpu_load_update_nohz_start(void)
5400 {
5401 	struct rq *this_rq = this_rq();
5402 
5403 	/*
5404 	 * This is all lockless but should be fine. If weighted_cpuload changes
5405 	 * concurrently we'll exit nohz. And cpu_load write can race with
5406 	 * cpu_load_update_idle() but both updater would be writing the same.
5407 	 */
5408 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5409 }
5410 
5411 /*
5412  * Account the tickless load in the end of a nohz frame.
5413  */
5414 void cpu_load_update_nohz_stop(void)
5415 {
5416 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5417 	struct rq *this_rq = this_rq();
5418 	unsigned long load;
5419 	struct rq_flags rf;
5420 
5421 	if (curr_jiffies == this_rq->last_load_update_tick)
5422 		return;
5423 
5424 	load = weighted_cpuload(this_rq);
5425 	rq_lock(this_rq, &rf);
5426 	update_rq_clock(this_rq);
5427 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5428 	rq_unlock(this_rq, &rf);
5429 }
5430 #else /* !CONFIG_NO_HZ_COMMON */
5431 static inline void cpu_load_update_nohz(struct rq *this_rq,
5432 					unsigned long curr_jiffies,
5433 					unsigned long load) { }
5434 #endif /* CONFIG_NO_HZ_COMMON */
5435 
5436 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5437 {
5438 #ifdef CONFIG_NO_HZ_COMMON
5439 	/* See the mess around cpu_load_update_nohz(). */
5440 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5441 #endif
5442 	cpu_load_update(this_rq, load, 1);
5443 }
5444 
5445 /*
5446  * Called from scheduler_tick()
5447  */
5448 void cpu_load_update_active(struct rq *this_rq)
5449 {
5450 	unsigned long load = weighted_cpuload(this_rq);
5451 
5452 	if (tick_nohz_tick_stopped())
5453 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5454 	else
5455 		cpu_load_update_periodic(this_rq, load);
5456 }
5457 
5458 /*
5459  * Return a low guess at the load of a migration-source CPU weighted
5460  * according to the scheduling class and "nice" value.
5461  *
5462  * We want to under-estimate the load of migration sources, to
5463  * balance conservatively.
5464  */
5465 static unsigned long source_load(int cpu, int type)
5466 {
5467 	struct rq *rq = cpu_rq(cpu);
5468 	unsigned long total = weighted_cpuload(rq);
5469 
5470 	if (type == 0 || !sched_feat(LB_BIAS))
5471 		return total;
5472 
5473 	return min(rq->cpu_load[type-1], total);
5474 }
5475 
5476 /*
5477  * Return a high guess at the load of a migration-target CPU weighted
5478  * according to the scheduling class and "nice" value.
5479  */
5480 static unsigned long target_load(int cpu, int type)
5481 {
5482 	struct rq *rq = cpu_rq(cpu);
5483 	unsigned long total = weighted_cpuload(rq);
5484 
5485 	if (type == 0 || !sched_feat(LB_BIAS))
5486 		return total;
5487 
5488 	return max(rq->cpu_load[type-1], total);
5489 }
5490 
5491 static unsigned long capacity_of(int cpu)
5492 {
5493 	return cpu_rq(cpu)->cpu_capacity;
5494 }
5495 
5496 static unsigned long capacity_orig_of(int cpu)
5497 {
5498 	return cpu_rq(cpu)->cpu_capacity_orig;
5499 }
5500 
5501 static unsigned long cpu_avg_load_per_task(int cpu)
5502 {
5503 	struct rq *rq = cpu_rq(cpu);
5504 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5505 	unsigned long load_avg = weighted_cpuload(rq);
5506 
5507 	if (nr_running)
5508 		return load_avg / nr_running;
5509 
5510 	return 0;
5511 }
5512 
5513 static void record_wakee(struct task_struct *p)
5514 {
5515 	/*
5516 	 * Only decay a single time; tasks that have less then 1 wakeup per
5517 	 * jiffy will not have built up many flips.
5518 	 */
5519 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5520 		current->wakee_flips >>= 1;
5521 		current->wakee_flip_decay_ts = jiffies;
5522 	}
5523 
5524 	if (current->last_wakee != p) {
5525 		current->last_wakee = p;
5526 		current->wakee_flips++;
5527 	}
5528 }
5529 
5530 /*
5531  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5532  *
5533  * A waker of many should wake a different task than the one last awakened
5534  * at a frequency roughly N times higher than one of its wakees.
5535  *
5536  * In order to determine whether we should let the load spread vs consolidating
5537  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5538  * partner, and a factor of lls_size higher frequency in the other.
5539  *
5540  * With both conditions met, we can be relatively sure that the relationship is
5541  * non-monogamous, with partner count exceeding socket size.
5542  *
5543  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5544  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5545  * socket size.
5546  */
5547 static int wake_wide(struct task_struct *p)
5548 {
5549 	unsigned int master = current->wakee_flips;
5550 	unsigned int slave = p->wakee_flips;
5551 	int factor = this_cpu_read(sd_llc_size);
5552 
5553 	if (master < slave)
5554 		swap(master, slave);
5555 	if (slave < factor || master < slave * factor)
5556 		return 0;
5557 	return 1;
5558 }
5559 
5560 /*
5561  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5562  * soonest. For the purpose of speed we only consider the waking and previous
5563  * CPU.
5564  *
5565  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5566  *			cache-affine and is (or	will be) idle.
5567  *
5568  * wake_affine_weight() - considers the weight to reflect the average
5569  *			  scheduling latency of the CPUs. This seems to work
5570  *			  for the overloaded case.
5571  */
5572 static int
5573 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5574 {
5575 	/*
5576 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5577 	 * context. Only allow the move if cache is shared. Otherwise an
5578 	 * interrupt intensive workload could force all tasks onto one
5579 	 * node depending on the IO topology or IRQ affinity settings.
5580 	 *
5581 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5582 	 * There is no guarantee that the cache hot data from an interrupt
5583 	 * is more important than cache hot data on the prev_cpu and from
5584 	 * a cpufreq perspective, it's better to have higher utilisation
5585 	 * on one CPU.
5586 	 */
5587 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5588 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5589 
5590 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5591 		return this_cpu;
5592 
5593 	return nr_cpumask_bits;
5594 }
5595 
5596 static int
5597 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5598 		   int this_cpu, int prev_cpu, int sync)
5599 {
5600 	s64 this_eff_load, prev_eff_load;
5601 	unsigned long task_load;
5602 
5603 	this_eff_load = target_load(this_cpu, sd->wake_idx);
5604 
5605 	if (sync) {
5606 		unsigned long current_load = task_h_load(current);
5607 
5608 		if (current_load > this_eff_load)
5609 			return this_cpu;
5610 
5611 		this_eff_load -= current_load;
5612 	}
5613 
5614 	task_load = task_h_load(p);
5615 
5616 	this_eff_load += task_load;
5617 	if (sched_feat(WA_BIAS))
5618 		this_eff_load *= 100;
5619 	this_eff_load *= capacity_of(prev_cpu);
5620 
5621 	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5622 	prev_eff_load -= task_load;
5623 	if (sched_feat(WA_BIAS))
5624 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5625 	prev_eff_load *= capacity_of(this_cpu);
5626 
5627 	/*
5628 	 * If sync, adjust the weight of prev_eff_load such that if
5629 	 * prev_eff == this_eff that select_idle_sibling() will consider
5630 	 * stacking the wakee on top of the waker if no other CPU is
5631 	 * idle.
5632 	 */
5633 	if (sync)
5634 		prev_eff_load += 1;
5635 
5636 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5637 }
5638 
5639 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5640 		       int this_cpu, int prev_cpu, int sync)
5641 {
5642 	int target = nr_cpumask_bits;
5643 
5644 	if (sched_feat(WA_IDLE))
5645 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5646 
5647 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5648 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5649 
5650 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5651 	if (target == nr_cpumask_bits)
5652 		return prev_cpu;
5653 
5654 	schedstat_inc(sd->ttwu_move_affine);
5655 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5656 	return target;
5657 }
5658 
5659 static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5660 
5661 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5662 {
5663 	return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5664 }
5665 
5666 /*
5667  * find_idlest_group finds and returns the least busy CPU group within the
5668  * domain.
5669  *
5670  * Assumes p is allowed on at least one CPU in sd.
5671  */
5672 static struct sched_group *
5673 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5674 		  int this_cpu, int sd_flag)
5675 {
5676 	struct sched_group *idlest = NULL, *group = sd->groups;
5677 	struct sched_group *most_spare_sg = NULL;
5678 	unsigned long min_runnable_load = ULONG_MAX;
5679 	unsigned long this_runnable_load = ULONG_MAX;
5680 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5681 	unsigned long most_spare = 0, this_spare = 0;
5682 	int load_idx = sd->forkexec_idx;
5683 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5684 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5685 				(sd->imbalance_pct-100) / 100;
5686 
5687 	if (sd_flag & SD_BALANCE_WAKE)
5688 		load_idx = sd->wake_idx;
5689 
5690 	do {
5691 		unsigned long load, avg_load, runnable_load;
5692 		unsigned long spare_cap, max_spare_cap;
5693 		int local_group;
5694 		int i;
5695 
5696 		/* Skip over this group if it has no CPUs allowed */
5697 		if (!cpumask_intersects(sched_group_span(group),
5698 					&p->cpus_allowed))
5699 			continue;
5700 
5701 		local_group = cpumask_test_cpu(this_cpu,
5702 					       sched_group_span(group));
5703 
5704 		/*
5705 		 * Tally up the load of all CPUs in the group and find
5706 		 * the group containing the CPU with most spare capacity.
5707 		 */
5708 		avg_load = 0;
5709 		runnable_load = 0;
5710 		max_spare_cap = 0;
5711 
5712 		for_each_cpu(i, sched_group_span(group)) {
5713 			/* Bias balancing toward CPUs of our domain */
5714 			if (local_group)
5715 				load = source_load(i, load_idx);
5716 			else
5717 				load = target_load(i, load_idx);
5718 
5719 			runnable_load += load;
5720 
5721 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5722 
5723 			spare_cap = capacity_spare_wake(i, p);
5724 
5725 			if (spare_cap > max_spare_cap)
5726 				max_spare_cap = spare_cap;
5727 		}
5728 
5729 		/* Adjust by relative CPU capacity of the group */
5730 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5731 					group->sgc->capacity;
5732 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5733 					group->sgc->capacity;
5734 
5735 		if (local_group) {
5736 			this_runnable_load = runnable_load;
5737 			this_avg_load = avg_load;
5738 			this_spare = max_spare_cap;
5739 		} else {
5740 			if (min_runnable_load > (runnable_load + imbalance)) {
5741 				/*
5742 				 * The runnable load is significantly smaller
5743 				 * so we can pick this new CPU:
5744 				 */
5745 				min_runnable_load = runnable_load;
5746 				min_avg_load = avg_load;
5747 				idlest = group;
5748 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5749 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5750 				/*
5751 				 * The runnable loads are close so take the
5752 				 * blocked load into account through avg_load:
5753 				 */
5754 				min_avg_load = avg_load;
5755 				idlest = group;
5756 			}
5757 
5758 			if (most_spare < max_spare_cap) {
5759 				most_spare = max_spare_cap;
5760 				most_spare_sg = group;
5761 			}
5762 		}
5763 	} while (group = group->next, group != sd->groups);
5764 
5765 	/*
5766 	 * The cross-over point between using spare capacity or least load
5767 	 * is too conservative for high utilization tasks on partially
5768 	 * utilized systems if we require spare_capacity > task_util(p),
5769 	 * so we allow for some task stuffing by using
5770 	 * spare_capacity > task_util(p)/2.
5771 	 *
5772 	 * Spare capacity can't be used for fork because the utilization has
5773 	 * not been set yet, we must first select a rq to compute the initial
5774 	 * utilization.
5775 	 */
5776 	if (sd_flag & SD_BALANCE_FORK)
5777 		goto skip_spare;
5778 
5779 	if (this_spare > task_util(p) / 2 &&
5780 	    imbalance_scale*this_spare > 100*most_spare)
5781 		return NULL;
5782 
5783 	if (most_spare > task_util(p) / 2)
5784 		return most_spare_sg;
5785 
5786 skip_spare:
5787 	if (!idlest)
5788 		return NULL;
5789 
5790 	/*
5791 	 * When comparing groups across NUMA domains, it's possible for the
5792 	 * local domain to be very lightly loaded relative to the remote
5793 	 * domains but "imbalance" skews the comparison making remote CPUs
5794 	 * look much more favourable. When considering cross-domain, add
5795 	 * imbalance to the runnable load on the remote node and consider
5796 	 * staying local.
5797 	 */
5798 	if ((sd->flags & SD_NUMA) &&
5799 	    min_runnable_load + imbalance >= this_runnable_load)
5800 		return NULL;
5801 
5802 	if (min_runnable_load > (this_runnable_load + imbalance))
5803 		return NULL;
5804 
5805 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5806 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5807 		return NULL;
5808 
5809 	return idlest;
5810 }
5811 
5812 /*
5813  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5814  */
5815 static int
5816 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5817 {
5818 	unsigned long load, min_load = ULONG_MAX;
5819 	unsigned int min_exit_latency = UINT_MAX;
5820 	u64 latest_idle_timestamp = 0;
5821 	int least_loaded_cpu = this_cpu;
5822 	int shallowest_idle_cpu = -1;
5823 	int i;
5824 
5825 	/* Check if we have any choice: */
5826 	if (group->group_weight == 1)
5827 		return cpumask_first(sched_group_span(group));
5828 
5829 	/* Traverse only the allowed CPUs */
5830 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5831 		if (available_idle_cpu(i)) {
5832 			struct rq *rq = cpu_rq(i);
5833 			struct cpuidle_state *idle = idle_get_state(rq);
5834 			if (idle && idle->exit_latency < min_exit_latency) {
5835 				/*
5836 				 * We give priority to a CPU whose idle state
5837 				 * has the smallest exit latency irrespective
5838 				 * of any idle timestamp.
5839 				 */
5840 				min_exit_latency = idle->exit_latency;
5841 				latest_idle_timestamp = rq->idle_stamp;
5842 				shallowest_idle_cpu = i;
5843 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5844 				   rq->idle_stamp > latest_idle_timestamp) {
5845 				/*
5846 				 * If equal or no active idle state, then
5847 				 * the most recently idled CPU might have
5848 				 * a warmer cache.
5849 				 */
5850 				latest_idle_timestamp = rq->idle_stamp;
5851 				shallowest_idle_cpu = i;
5852 			}
5853 		} else if (shallowest_idle_cpu == -1) {
5854 			load = weighted_cpuload(cpu_rq(i));
5855 			if (load < min_load) {
5856 				min_load = load;
5857 				least_loaded_cpu = i;
5858 			}
5859 		}
5860 	}
5861 
5862 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5863 }
5864 
5865 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5866 				  int cpu, int prev_cpu, int sd_flag)
5867 {
5868 	int new_cpu = cpu;
5869 
5870 	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5871 		return prev_cpu;
5872 
5873 	/*
5874 	 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's
5875 	 * last_update_time.
5876 	 */
5877 	if (!(sd_flag & SD_BALANCE_FORK))
5878 		sync_entity_load_avg(&p->se);
5879 
5880 	while (sd) {
5881 		struct sched_group *group;
5882 		struct sched_domain *tmp;
5883 		int weight;
5884 
5885 		if (!(sd->flags & sd_flag)) {
5886 			sd = sd->child;
5887 			continue;
5888 		}
5889 
5890 		group = find_idlest_group(sd, p, cpu, sd_flag);
5891 		if (!group) {
5892 			sd = sd->child;
5893 			continue;
5894 		}
5895 
5896 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5897 		if (new_cpu == cpu) {
5898 			/* Now try balancing at a lower domain level of 'cpu': */
5899 			sd = sd->child;
5900 			continue;
5901 		}
5902 
5903 		/* Now try balancing at a lower domain level of 'new_cpu': */
5904 		cpu = new_cpu;
5905 		weight = sd->span_weight;
5906 		sd = NULL;
5907 		for_each_domain(cpu, tmp) {
5908 			if (weight <= tmp->span_weight)
5909 				break;
5910 			if (tmp->flags & sd_flag)
5911 				sd = tmp;
5912 		}
5913 	}
5914 
5915 	return new_cpu;
5916 }
5917 
5918 #ifdef CONFIG_SCHED_SMT
5919 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5920 
5921 static inline void set_idle_cores(int cpu, int val)
5922 {
5923 	struct sched_domain_shared *sds;
5924 
5925 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5926 	if (sds)
5927 		WRITE_ONCE(sds->has_idle_cores, val);
5928 }
5929 
5930 static inline bool test_idle_cores(int cpu, bool def)
5931 {
5932 	struct sched_domain_shared *sds;
5933 
5934 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5935 	if (sds)
5936 		return READ_ONCE(sds->has_idle_cores);
5937 
5938 	return def;
5939 }
5940 
5941 /*
5942  * Scans the local SMT mask to see if the entire core is idle, and records this
5943  * information in sd_llc_shared->has_idle_cores.
5944  *
5945  * Since SMT siblings share all cache levels, inspecting this limited remote
5946  * state should be fairly cheap.
5947  */
5948 void __update_idle_core(struct rq *rq)
5949 {
5950 	int core = cpu_of(rq);
5951 	int cpu;
5952 
5953 	rcu_read_lock();
5954 	if (test_idle_cores(core, true))
5955 		goto unlock;
5956 
5957 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5958 		if (cpu == core)
5959 			continue;
5960 
5961 		if (!available_idle_cpu(cpu))
5962 			goto unlock;
5963 	}
5964 
5965 	set_idle_cores(core, 1);
5966 unlock:
5967 	rcu_read_unlock();
5968 }
5969 
5970 /*
5971  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5972  * there are no idle cores left in the system; tracked through
5973  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5974  */
5975 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5976 {
5977 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5978 	int core, cpu;
5979 
5980 	if (!static_branch_likely(&sched_smt_present))
5981 		return -1;
5982 
5983 	if (!test_idle_cores(target, false))
5984 		return -1;
5985 
5986 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5987 
5988 	for_each_cpu_wrap(core, cpus, target) {
5989 		bool idle = true;
5990 
5991 		for_each_cpu(cpu, cpu_smt_mask(core)) {
5992 			cpumask_clear_cpu(cpu, cpus);
5993 			if (!available_idle_cpu(cpu))
5994 				idle = false;
5995 		}
5996 
5997 		if (idle)
5998 			return core;
5999 	}
6000 
6001 	/*
6002 	 * Failed to find an idle core; stop looking for one.
6003 	 */
6004 	set_idle_cores(target, 0);
6005 
6006 	return -1;
6007 }
6008 
6009 /*
6010  * Scan the local SMT mask for idle CPUs.
6011  */
6012 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6013 {
6014 	int cpu;
6015 
6016 	if (!static_branch_likely(&sched_smt_present))
6017 		return -1;
6018 
6019 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6020 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6021 			continue;
6022 		if (available_idle_cpu(cpu))
6023 			return cpu;
6024 	}
6025 
6026 	return -1;
6027 }
6028 
6029 #else /* CONFIG_SCHED_SMT */
6030 
6031 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6032 {
6033 	return -1;
6034 }
6035 
6036 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6037 {
6038 	return -1;
6039 }
6040 
6041 #endif /* CONFIG_SCHED_SMT */
6042 
6043 /*
6044  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6045  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6046  * average idle time for this rq (as found in rq->avg_idle).
6047  */
6048 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6049 {
6050 	struct sched_domain *this_sd;
6051 	u64 avg_cost, avg_idle;
6052 	u64 time, cost;
6053 	s64 delta;
6054 	int cpu, nr = INT_MAX;
6055 
6056 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6057 	if (!this_sd)
6058 		return -1;
6059 
6060 	/*
6061 	 * Due to large variance we need a large fuzz factor; hackbench in
6062 	 * particularly is sensitive here.
6063 	 */
6064 	avg_idle = this_rq()->avg_idle / 512;
6065 	avg_cost = this_sd->avg_scan_cost + 1;
6066 
6067 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6068 		return -1;
6069 
6070 	if (sched_feat(SIS_PROP)) {
6071 		u64 span_avg = sd->span_weight * avg_idle;
6072 		if (span_avg > 4*avg_cost)
6073 			nr = div_u64(span_avg, avg_cost);
6074 		else
6075 			nr = 4;
6076 	}
6077 
6078 	time = local_clock();
6079 
6080 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6081 		if (!--nr)
6082 			return -1;
6083 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6084 			continue;
6085 		if (available_idle_cpu(cpu))
6086 			break;
6087 	}
6088 
6089 	time = local_clock() - time;
6090 	cost = this_sd->avg_scan_cost;
6091 	delta = (s64)(time - cost) / 8;
6092 	this_sd->avg_scan_cost += delta;
6093 
6094 	return cpu;
6095 }
6096 
6097 /*
6098  * Try and locate an idle core/thread in the LLC cache domain.
6099  */
6100 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6101 {
6102 	struct sched_domain *sd;
6103 	int i, recent_used_cpu;
6104 
6105 	if (available_idle_cpu(target))
6106 		return target;
6107 
6108 	/*
6109 	 * If the previous CPU is cache affine and idle, don't be stupid:
6110 	 */
6111 	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6112 		return prev;
6113 
6114 	/* Check a recently used CPU as a potential idle candidate: */
6115 	recent_used_cpu = p->recent_used_cpu;
6116 	if (recent_used_cpu != prev &&
6117 	    recent_used_cpu != target &&
6118 	    cpus_share_cache(recent_used_cpu, target) &&
6119 	    available_idle_cpu(recent_used_cpu) &&
6120 	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6121 		/*
6122 		 * Replace recent_used_cpu with prev as it is a potential
6123 		 * candidate for the next wake:
6124 		 */
6125 		p->recent_used_cpu = prev;
6126 		return recent_used_cpu;
6127 	}
6128 
6129 	sd = rcu_dereference(per_cpu(sd_llc, target));
6130 	if (!sd)
6131 		return target;
6132 
6133 	i = select_idle_core(p, sd, target);
6134 	if ((unsigned)i < nr_cpumask_bits)
6135 		return i;
6136 
6137 	i = select_idle_cpu(p, sd, target);
6138 	if ((unsigned)i < nr_cpumask_bits)
6139 		return i;
6140 
6141 	i = select_idle_smt(p, sd, target);
6142 	if ((unsigned)i < nr_cpumask_bits)
6143 		return i;
6144 
6145 	return target;
6146 }
6147 
6148 /**
6149  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6150  * @cpu: the CPU to get the utilization of
6151  *
6152  * The unit of the return value must be the one of capacity so we can compare
6153  * the utilization with the capacity of the CPU that is available for CFS task
6154  * (ie cpu_capacity).
6155  *
6156  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6157  * recent utilization of currently non-runnable tasks on a CPU. It represents
6158  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6159  * capacity_orig is the cpu_capacity available at the highest frequency
6160  * (arch_scale_freq_capacity()).
6161  * The utilization of a CPU converges towards a sum equal to or less than the
6162  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6163  * the running time on this CPU scaled by capacity_curr.
6164  *
6165  * The estimated utilization of a CPU is defined to be the maximum between its
6166  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6167  * currently RUNNABLE on that CPU.
6168  * This allows to properly represent the expected utilization of a CPU which
6169  * has just got a big task running since a long sleep period. At the same time
6170  * however it preserves the benefits of the "blocked utilization" in
6171  * describing the potential for other tasks waking up on the same CPU.
6172  *
6173  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6174  * higher than capacity_orig because of unfortunate rounding in
6175  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6176  * the average stabilizes with the new running time. We need to check that the
6177  * utilization stays within the range of [0..capacity_orig] and cap it if
6178  * necessary. Without utilization capping, a group could be seen as overloaded
6179  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6180  * available capacity. We allow utilization to overshoot capacity_curr (but not
6181  * capacity_orig) as it useful for predicting the capacity required after task
6182  * migrations (scheduler-driven DVFS).
6183  *
6184  * Return: the (estimated) utilization for the specified CPU
6185  */
6186 static inline unsigned long cpu_util(int cpu)
6187 {
6188 	struct cfs_rq *cfs_rq;
6189 	unsigned int util;
6190 
6191 	cfs_rq = &cpu_rq(cpu)->cfs;
6192 	util = READ_ONCE(cfs_rq->avg.util_avg);
6193 
6194 	if (sched_feat(UTIL_EST))
6195 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6196 
6197 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6198 }
6199 
6200 /*
6201  * cpu_util_wake: Compute CPU utilization with any contributions from
6202  * the waking task p removed.
6203  */
6204 static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6205 {
6206 	struct cfs_rq *cfs_rq;
6207 	unsigned int util;
6208 
6209 	/* Task has no contribution or is new */
6210 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6211 		return cpu_util(cpu);
6212 
6213 	cfs_rq = &cpu_rq(cpu)->cfs;
6214 	util = READ_ONCE(cfs_rq->avg.util_avg);
6215 
6216 	/* Discount task's blocked util from CPU's util */
6217 	util -= min_t(unsigned int, util, task_util(p));
6218 
6219 	/*
6220 	 * Covered cases:
6221 	 *
6222 	 * a) if *p is the only task sleeping on this CPU, then:
6223 	 *      cpu_util (== task_util) > util_est (== 0)
6224 	 *    and thus we return:
6225 	 *      cpu_util_wake = (cpu_util - task_util) = 0
6226 	 *
6227 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6228 	 *    IDLE, then:
6229 	 *      cpu_util >= task_util
6230 	 *      cpu_util > util_est (== 0)
6231 	 *    and thus we discount *p's blocked utilization to return:
6232 	 *      cpu_util_wake = (cpu_util - task_util) >= 0
6233 	 *
6234 	 * c) if other tasks are RUNNABLE on that CPU and
6235 	 *      util_est > cpu_util
6236 	 *    then we use util_est since it returns a more restrictive
6237 	 *    estimation of the spare capacity on that CPU, by just
6238 	 *    considering the expected utilization of tasks already
6239 	 *    runnable on that CPU.
6240 	 *
6241 	 * Cases a) and b) are covered by the above code, while case c) is
6242 	 * covered by the following code when estimated utilization is
6243 	 * enabled.
6244 	 */
6245 	if (sched_feat(UTIL_EST))
6246 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6247 
6248 	/*
6249 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6250 	 * clamp to the maximum CPU capacity to ensure consistency with
6251 	 * the cpu_util call.
6252 	 */
6253 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6254 }
6255 
6256 /*
6257  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6258  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6259  *
6260  * In that case WAKE_AFFINE doesn't make sense and we'll let
6261  * BALANCE_WAKE sort things out.
6262  */
6263 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6264 {
6265 	long min_cap, max_cap;
6266 
6267 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6268 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6269 
6270 	/* Minimum capacity is close to max, no need to abort wake_affine */
6271 	if (max_cap - min_cap < max_cap >> 3)
6272 		return 0;
6273 
6274 	/* Bring task utilization in sync with prev_cpu */
6275 	sync_entity_load_avg(&p->se);
6276 
6277 	return min_cap * 1024 < task_util(p) * capacity_margin;
6278 }
6279 
6280 /*
6281  * select_task_rq_fair: Select target runqueue for the waking task in domains
6282  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6283  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6284  *
6285  * Balances load by selecting the idlest CPU in the idlest group, or under
6286  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6287  *
6288  * Returns the target CPU number.
6289  *
6290  * preempt must be disabled.
6291  */
6292 static int
6293 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6294 {
6295 	struct sched_domain *tmp, *sd = NULL;
6296 	int cpu = smp_processor_id();
6297 	int new_cpu = prev_cpu;
6298 	int want_affine = 0;
6299 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6300 
6301 	if (sd_flag & SD_BALANCE_WAKE) {
6302 		record_wakee(p);
6303 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6304 			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
6305 	}
6306 
6307 	rcu_read_lock();
6308 	for_each_domain(cpu, tmp) {
6309 		if (!(tmp->flags & SD_LOAD_BALANCE))
6310 			break;
6311 
6312 		/*
6313 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6314 		 * cpu is a valid SD_WAKE_AFFINE target.
6315 		 */
6316 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6317 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6318 			if (cpu != prev_cpu)
6319 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6320 
6321 			sd = NULL; /* Prefer wake_affine over balance flags */
6322 			break;
6323 		}
6324 
6325 		if (tmp->flags & sd_flag)
6326 			sd = tmp;
6327 		else if (!want_affine)
6328 			break;
6329 	}
6330 
6331 	if (unlikely(sd)) {
6332 		/* Slow path */
6333 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6334 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6335 		/* Fast path */
6336 
6337 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6338 
6339 		if (want_affine)
6340 			current->recent_used_cpu = cpu;
6341 	}
6342 	rcu_read_unlock();
6343 
6344 	return new_cpu;
6345 }
6346 
6347 static void detach_entity_cfs_rq(struct sched_entity *se);
6348 
6349 /*
6350  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6351  * cfs_rq_of(p) references at time of call are still valid and identify the
6352  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6353  */
6354 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6355 {
6356 	/*
6357 	 * As blocked tasks retain absolute vruntime the migration needs to
6358 	 * deal with this by subtracting the old and adding the new
6359 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6360 	 * the task on the new runqueue.
6361 	 */
6362 	if (p->state == TASK_WAKING) {
6363 		struct sched_entity *se = &p->se;
6364 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6365 		u64 min_vruntime;
6366 
6367 #ifndef CONFIG_64BIT
6368 		u64 min_vruntime_copy;
6369 
6370 		do {
6371 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6372 			smp_rmb();
6373 			min_vruntime = cfs_rq->min_vruntime;
6374 		} while (min_vruntime != min_vruntime_copy);
6375 #else
6376 		min_vruntime = cfs_rq->min_vruntime;
6377 #endif
6378 
6379 		se->vruntime -= min_vruntime;
6380 	}
6381 
6382 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6383 		/*
6384 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6385 		 * rq->lock and can modify state directly.
6386 		 */
6387 		lockdep_assert_held(&task_rq(p)->lock);
6388 		detach_entity_cfs_rq(&p->se);
6389 
6390 	} else {
6391 		/*
6392 		 * We are supposed to update the task to "current" time, then
6393 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6394 		 * have difficulty in getting what current time is, so simply
6395 		 * throw away the out-of-date time. This will result in the
6396 		 * wakee task is less decayed, but giving the wakee more load
6397 		 * sounds not bad.
6398 		 */
6399 		remove_entity_load_avg(&p->se);
6400 	}
6401 
6402 	/* Tell new CPU we are migrated */
6403 	p->se.avg.last_update_time = 0;
6404 
6405 	/* We have migrated, no longer consider this task hot */
6406 	p->se.exec_start = 0;
6407 
6408 	update_scan_period(p, new_cpu);
6409 }
6410 
6411 static void task_dead_fair(struct task_struct *p)
6412 {
6413 	remove_entity_load_avg(&p->se);
6414 }
6415 #endif /* CONFIG_SMP */
6416 
6417 static unsigned long wakeup_gran(struct sched_entity *se)
6418 {
6419 	unsigned long gran = sysctl_sched_wakeup_granularity;
6420 
6421 	/*
6422 	 * Since its curr running now, convert the gran from real-time
6423 	 * to virtual-time in his units.
6424 	 *
6425 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6426 	 * they get preempted easier. That is, if 'se' < 'curr' then
6427 	 * the resulting gran will be larger, therefore penalizing the
6428 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6429 	 * be smaller, again penalizing the lighter task.
6430 	 *
6431 	 * This is especially important for buddies when the leftmost
6432 	 * task is higher priority than the buddy.
6433 	 */
6434 	return calc_delta_fair(gran, se);
6435 }
6436 
6437 /*
6438  * Should 'se' preempt 'curr'.
6439  *
6440  *             |s1
6441  *        |s2
6442  *   |s3
6443  *         g
6444  *      |<--->|c
6445  *
6446  *  w(c, s1) = -1
6447  *  w(c, s2) =  0
6448  *  w(c, s3) =  1
6449  *
6450  */
6451 static int
6452 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6453 {
6454 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6455 
6456 	if (vdiff <= 0)
6457 		return -1;
6458 
6459 	gran = wakeup_gran(se);
6460 	if (vdiff > gran)
6461 		return 1;
6462 
6463 	return 0;
6464 }
6465 
6466 static void set_last_buddy(struct sched_entity *se)
6467 {
6468 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6469 		return;
6470 
6471 	for_each_sched_entity(se) {
6472 		if (SCHED_WARN_ON(!se->on_rq))
6473 			return;
6474 		cfs_rq_of(se)->last = se;
6475 	}
6476 }
6477 
6478 static void set_next_buddy(struct sched_entity *se)
6479 {
6480 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6481 		return;
6482 
6483 	for_each_sched_entity(se) {
6484 		if (SCHED_WARN_ON(!se->on_rq))
6485 			return;
6486 		cfs_rq_of(se)->next = se;
6487 	}
6488 }
6489 
6490 static void set_skip_buddy(struct sched_entity *se)
6491 {
6492 	for_each_sched_entity(se)
6493 		cfs_rq_of(se)->skip = se;
6494 }
6495 
6496 /*
6497  * Preempt the current task with a newly woken task if needed:
6498  */
6499 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6500 {
6501 	struct task_struct *curr = rq->curr;
6502 	struct sched_entity *se = &curr->se, *pse = &p->se;
6503 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6504 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6505 	int next_buddy_marked = 0;
6506 
6507 	if (unlikely(se == pse))
6508 		return;
6509 
6510 	/*
6511 	 * This is possible from callers such as attach_tasks(), in which we
6512 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6513 	 * lead to a throttle).  This both saves work and prevents false
6514 	 * next-buddy nomination below.
6515 	 */
6516 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6517 		return;
6518 
6519 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6520 		set_next_buddy(pse);
6521 		next_buddy_marked = 1;
6522 	}
6523 
6524 	/*
6525 	 * We can come here with TIF_NEED_RESCHED already set from new task
6526 	 * wake up path.
6527 	 *
6528 	 * Note: this also catches the edge-case of curr being in a throttled
6529 	 * group (e.g. via set_curr_task), since update_curr() (in the
6530 	 * enqueue of curr) will have resulted in resched being set.  This
6531 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6532 	 * below.
6533 	 */
6534 	if (test_tsk_need_resched(curr))
6535 		return;
6536 
6537 	/* Idle tasks are by definition preempted by non-idle tasks. */
6538 	if (unlikely(curr->policy == SCHED_IDLE) &&
6539 	    likely(p->policy != SCHED_IDLE))
6540 		goto preempt;
6541 
6542 	/*
6543 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6544 	 * is driven by the tick):
6545 	 */
6546 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6547 		return;
6548 
6549 	find_matching_se(&se, &pse);
6550 	update_curr(cfs_rq_of(se));
6551 	BUG_ON(!pse);
6552 	if (wakeup_preempt_entity(se, pse) == 1) {
6553 		/*
6554 		 * Bias pick_next to pick the sched entity that is
6555 		 * triggering this preemption.
6556 		 */
6557 		if (!next_buddy_marked)
6558 			set_next_buddy(pse);
6559 		goto preempt;
6560 	}
6561 
6562 	return;
6563 
6564 preempt:
6565 	resched_curr(rq);
6566 	/*
6567 	 * Only set the backward buddy when the current task is still
6568 	 * on the rq. This can happen when a wakeup gets interleaved
6569 	 * with schedule on the ->pre_schedule() or idle_balance()
6570 	 * point, either of which can * drop the rq lock.
6571 	 *
6572 	 * Also, during early boot the idle thread is in the fair class,
6573 	 * for obvious reasons its a bad idea to schedule back to it.
6574 	 */
6575 	if (unlikely(!se->on_rq || curr == rq->idle))
6576 		return;
6577 
6578 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6579 		set_last_buddy(se);
6580 }
6581 
6582 static struct task_struct *
6583 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6584 {
6585 	struct cfs_rq *cfs_rq = &rq->cfs;
6586 	struct sched_entity *se;
6587 	struct task_struct *p;
6588 	int new_tasks;
6589 
6590 again:
6591 	if (!cfs_rq->nr_running)
6592 		goto idle;
6593 
6594 #ifdef CONFIG_FAIR_GROUP_SCHED
6595 	if (prev->sched_class != &fair_sched_class)
6596 		goto simple;
6597 
6598 	/*
6599 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6600 	 * likely that a next task is from the same cgroup as the current.
6601 	 *
6602 	 * Therefore attempt to avoid putting and setting the entire cgroup
6603 	 * hierarchy, only change the part that actually changes.
6604 	 */
6605 
6606 	do {
6607 		struct sched_entity *curr = cfs_rq->curr;
6608 
6609 		/*
6610 		 * Since we got here without doing put_prev_entity() we also
6611 		 * have to consider cfs_rq->curr. If it is still a runnable
6612 		 * entity, update_curr() will update its vruntime, otherwise
6613 		 * forget we've ever seen it.
6614 		 */
6615 		if (curr) {
6616 			if (curr->on_rq)
6617 				update_curr(cfs_rq);
6618 			else
6619 				curr = NULL;
6620 
6621 			/*
6622 			 * This call to check_cfs_rq_runtime() will do the
6623 			 * throttle and dequeue its entity in the parent(s).
6624 			 * Therefore the nr_running test will indeed
6625 			 * be correct.
6626 			 */
6627 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6628 				cfs_rq = &rq->cfs;
6629 
6630 				if (!cfs_rq->nr_running)
6631 					goto idle;
6632 
6633 				goto simple;
6634 			}
6635 		}
6636 
6637 		se = pick_next_entity(cfs_rq, curr);
6638 		cfs_rq = group_cfs_rq(se);
6639 	} while (cfs_rq);
6640 
6641 	p = task_of(se);
6642 
6643 	/*
6644 	 * Since we haven't yet done put_prev_entity and if the selected task
6645 	 * is a different task than we started out with, try and touch the
6646 	 * least amount of cfs_rqs.
6647 	 */
6648 	if (prev != p) {
6649 		struct sched_entity *pse = &prev->se;
6650 
6651 		while (!(cfs_rq = is_same_group(se, pse))) {
6652 			int se_depth = se->depth;
6653 			int pse_depth = pse->depth;
6654 
6655 			if (se_depth <= pse_depth) {
6656 				put_prev_entity(cfs_rq_of(pse), pse);
6657 				pse = parent_entity(pse);
6658 			}
6659 			if (se_depth >= pse_depth) {
6660 				set_next_entity(cfs_rq_of(se), se);
6661 				se = parent_entity(se);
6662 			}
6663 		}
6664 
6665 		put_prev_entity(cfs_rq, pse);
6666 		set_next_entity(cfs_rq, se);
6667 	}
6668 
6669 	goto done;
6670 simple:
6671 #endif
6672 
6673 	put_prev_task(rq, prev);
6674 
6675 	do {
6676 		se = pick_next_entity(cfs_rq, NULL);
6677 		set_next_entity(cfs_rq, se);
6678 		cfs_rq = group_cfs_rq(se);
6679 	} while (cfs_rq);
6680 
6681 	p = task_of(se);
6682 
6683 done: __maybe_unused;
6684 #ifdef CONFIG_SMP
6685 	/*
6686 	 * Move the next running task to the front of
6687 	 * the list, so our cfs_tasks list becomes MRU
6688 	 * one.
6689 	 */
6690 	list_move(&p->se.group_node, &rq->cfs_tasks);
6691 #endif
6692 
6693 	if (hrtick_enabled(rq))
6694 		hrtick_start_fair(rq, p);
6695 
6696 	return p;
6697 
6698 idle:
6699 	new_tasks = idle_balance(rq, rf);
6700 
6701 	/*
6702 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6703 	 * possible for any higher priority task to appear. In that case we
6704 	 * must re-start the pick_next_entity() loop.
6705 	 */
6706 	if (new_tasks < 0)
6707 		return RETRY_TASK;
6708 
6709 	if (new_tasks > 0)
6710 		goto again;
6711 
6712 	return NULL;
6713 }
6714 
6715 /*
6716  * Account for a descheduled task:
6717  */
6718 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6719 {
6720 	struct sched_entity *se = &prev->se;
6721 	struct cfs_rq *cfs_rq;
6722 
6723 	for_each_sched_entity(se) {
6724 		cfs_rq = cfs_rq_of(se);
6725 		put_prev_entity(cfs_rq, se);
6726 	}
6727 }
6728 
6729 /*
6730  * sched_yield() is very simple
6731  *
6732  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6733  */
6734 static void yield_task_fair(struct rq *rq)
6735 {
6736 	struct task_struct *curr = rq->curr;
6737 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6738 	struct sched_entity *se = &curr->se;
6739 
6740 	/*
6741 	 * Are we the only task in the tree?
6742 	 */
6743 	if (unlikely(rq->nr_running == 1))
6744 		return;
6745 
6746 	clear_buddies(cfs_rq, se);
6747 
6748 	if (curr->policy != SCHED_BATCH) {
6749 		update_rq_clock(rq);
6750 		/*
6751 		 * Update run-time statistics of the 'current'.
6752 		 */
6753 		update_curr(cfs_rq);
6754 		/*
6755 		 * Tell update_rq_clock() that we've just updated,
6756 		 * so we don't do microscopic update in schedule()
6757 		 * and double the fastpath cost.
6758 		 */
6759 		rq_clock_skip_update(rq);
6760 	}
6761 
6762 	set_skip_buddy(se);
6763 }
6764 
6765 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6766 {
6767 	struct sched_entity *se = &p->se;
6768 
6769 	/* throttled hierarchies are not runnable */
6770 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6771 		return false;
6772 
6773 	/* Tell the scheduler that we'd really like pse to run next. */
6774 	set_next_buddy(se);
6775 
6776 	yield_task_fair(rq);
6777 
6778 	return true;
6779 }
6780 
6781 #ifdef CONFIG_SMP
6782 /**************************************************
6783  * Fair scheduling class load-balancing methods.
6784  *
6785  * BASICS
6786  *
6787  * The purpose of load-balancing is to achieve the same basic fairness the
6788  * per-CPU scheduler provides, namely provide a proportional amount of compute
6789  * time to each task. This is expressed in the following equation:
6790  *
6791  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6792  *
6793  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
6794  * W_i,0 is defined as:
6795  *
6796  *   W_i,0 = \Sum_j w_i,j                                             (2)
6797  *
6798  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6799  * is derived from the nice value as per sched_prio_to_weight[].
6800  *
6801  * The weight average is an exponential decay average of the instantaneous
6802  * weight:
6803  *
6804  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6805  *
6806  * C_i is the compute capacity of CPU i, typically it is the
6807  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6808  * can also include other factors [XXX].
6809  *
6810  * To achieve this balance we define a measure of imbalance which follows
6811  * directly from (1):
6812  *
6813  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6814  *
6815  * We them move tasks around to minimize the imbalance. In the continuous
6816  * function space it is obvious this converges, in the discrete case we get
6817  * a few fun cases generally called infeasible weight scenarios.
6818  *
6819  * [XXX expand on:
6820  *     - infeasible weights;
6821  *     - local vs global optima in the discrete case. ]
6822  *
6823  *
6824  * SCHED DOMAINS
6825  *
6826  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6827  * for all i,j solution, we create a tree of CPUs that follows the hardware
6828  * topology where each level pairs two lower groups (or better). This results
6829  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
6830  * tree to only the first of the previous level and we decrease the frequency
6831  * of load-balance at each level inv. proportional to the number of CPUs in
6832  * the groups.
6833  *
6834  * This yields:
6835  *
6836  *     log_2 n     1     n
6837  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6838  *     i = 0      2^i   2^i
6839  *                               `- size of each group
6840  *         |         |     `- number of CPUs doing load-balance
6841  *         |         `- freq
6842  *         `- sum over all levels
6843  *
6844  * Coupled with a limit on how many tasks we can migrate every balance pass,
6845  * this makes (5) the runtime complexity of the balancer.
6846  *
6847  * An important property here is that each CPU is still (indirectly) connected
6848  * to every other CPU in at most O(log n) steps:
6849  *
6850  * The adjacency matrix of the resulting graph is given by:
6851  *
6852  *             log_2 n
6853  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6854  *             k = 0
6855  *
6856  * And you'll find that:
6857  *
6858  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6859  *
6860  * Showing there's indeed a path between every CPU in at most O(log n) steps.
6861  * The task movement gives a factor of O(m), giving a convergence complexity
6862  * of:
6863  *
6864  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6865  *
6866  *
6867  * WORK CONSERVING
6868  *
6869  * In order to avoid CPUs going idle while there's still work to do, new idle
6870  * balancing is more aggressive and has the newly idle CPU iterate up the domain
6871  * tree itself instead of relying on other CPUs to bring it work.
6872  *
6873  * This adds some complexity to both (5) and (8) but it reduces the total idle
6874  * time.
6875  *
6876  * [XXX more?]
6877  *
6878  *
6879  * CGROUPS
6880  *
6881  * Cgroups make a horror show out of (2), instead of a simple sum we get:
6882  *
6883  *                                s_k,i
6884  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6885  *                                 S_k
6886  *
6887  * Where
6888  *
6889  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6890  *
6891  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
6892  *
6893  * The big problem is S_k, its a global sum needed to compute a local (W_i)
6894  * property.
6895  *
6896  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6897  *      rewrite all of this once again.]
6898  */
6899 
6900 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6901 
6902 enum fbq_type { regular, remote, all };
6903 
6904 #define LBF_ALL_PINNED	0x01
6905 #define LBF_NEED_BREAK	0x02
6906 #define LBF_DST_PINNED  0x04
6907 #define LBF_SOME_PINNED	0x08
6908 #define LBF_NOHZ_STATS	0x10
6909 #define LBF_NOHZ_AGAIN	0x20
6910 
6911 struct lb_env {
6912 	struct sched_domain	*sd;
6913 
6914 	struct rq		*src_rq;
6915 	int			src_cpu;
6916 
6917 	int			dst_cpu;
6918 	struct rq		*dst_rq;
6919 
6920 	struct cpumask		*dst_grpmask;
6921 	int			new_dst_cpu;
6922 	enum cpu_idle_type	idle;
6923 	long			imbalance;
6924 	/* The set of CPUs under consideration for load-balancing */
6925 	struct cpumask		*cpus;
6926 
6927 	unsigned int		flags;
6928 
6929 	unsigned int		loop;
6930 	unsigned int		loop_break;
6931 	unsigned int		loop_max;
6932 
6933 	enum fbq_type		fbq_type;
6934 	struct list_head	tasks;
6935 };
6936 
6937 /*
6938  * Is this task likely cache-hot:
6939  */
6940 static int task_hot(struct task_struct *p, struct lb_env *env)
6941 {
6942 	s64 delta;
6943 
6944 	lockdep_assert_held(&env->src_rq->lock);
6945 
6946 	if (p->sched_class != &fair_sched_class)
6947 		return 0;
6948 
6949 	if (unlikely(p->policy == SCHED_IDLE))
6950 		return 0;
6951 
6952 	/*
6953 	 * Buddy candidates are cache hot:
6954 	 */
6955 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6956 			(&p->se == cfs_rq_of(&p->se)->next ||
6957 			 &p->se == cfs_rq_of(&p->se)->last))
6958 		return 1;
6959 
6960 	if (sysctl_sched_migration_cost == -1)
6961 		return 1;
6962 	if (sysctl_sched_migration_cost == 0)
6963 		return 0;
6964 
6965 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6966 
6967 	return delta < (s64)sysctl_sched_migration_cost;
6968 }
6969 
6970 #ifdef CONFIG_NUMA_BALANCING
6971 /*
6972  * Returns 1, if task migration degrades locality
6973  * Returns 0, if task migration improves locality i.e migration preferred.
6974  * Returns -1, if task migration is not affected by locality.
6975  */
6976 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6977 {
6978 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6979 	unsigned long src_weight, dst_weight;
6980 	int src_nid, dst_nid, dist;
6981 
6982 	if (!static_branch_likely(&sched_numa_balancing))
6983 		return -1;
6984 
6985 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6986 		return -1;
6987 
6988 	src_nid = cpu_to_node(env->src_cpu);
6989 	dst_nid = cpu_to_node(env->dst_cpu);
6990 
6991 	if (src_nid == dst_nid)
6992 		return -1;
6993 
6994 	/* Migrating away from the preferred node is always bad. */
6995 	if (src_nid == p->numa_preferred_nid) {
6996 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6997 			return 1;
6998 		else
6999 			return -1;
7000 	}
7001 
7002 	/* Encourage migration to the preferred node. */
7003 	if (dst_nid == p->numa_preferred_nid)
7004 		return 0;
7005 
7006 	/* Leaving a core idle is often worse than degrading locality. */
7007 	if (env->idle == CPU_IDLE)
7008 		return -1;
7009 
7010 	dist = node_distance(src_nid, dst_nid);
7011 	if (numa_group) {
7012 		src_weight = group_weight(p, src_nid, dist);
7013 		dst_weight = group_weight(p, dst_nid, dist);
7014 	} else {
7015 		src_weight = task_weight(p, src_nid, dist);
7016 		dst_weight = task_weight(p, dst_nid, dist);
7017 	}
7018 
7019 	return dst_weight < src_weight;
7020 }
7021 
7022 #else
7023 static inline int migrate_degrades_locality(struct task_struct *p,
7024 					     struct lb_env *env)
7025 {
7026 	return -1;
7027 }
7028 #endif
7029 
7030 /*
7031  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7032  */
7033 static
7034 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7035 {
7036 	int tsk_cache_hot;
7037 
7038 	lockdep_assert_held(&env->src_rq->lock);
7039 
7040 	/*
7041 	 * We do not migrate tasks that are:
7042 	 * 1) throttled_lb_pair, or
7043 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7044 	 * 3) running (obviously), or
7045 	 * 4) are cache-hot on their current CPU.
7046 	 */
7047 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7048 		return 0;
7049 
7050 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7051 		int cpu;
7052 
7053 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7054 
7055 		env->flags |= LBF_SOME_PINNED;
7056 
7057 		/*
7058 		 * Remember if this task can be migrated to any other CPU in
7059 		 * our sched_group. We may want to revisit it if we couldn't
7060 		 * meet load balance goals by pulling other tasks on src_cpu.
7061 		 *
7062 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7063 		 * already computed one in current iteration.
7064 		 */
7065 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7066 			return 0;
7067 
7068 		/* Prevent to re-select dst_cpu via env's CPUs: */
7069 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7070 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7071 				env->flags |= LBF_DST_PINNED;
7072 				env->new_dst_cpu = cpu;
7073 				break;
7074 			}
7075 		}
7076 
7077 		return 0;
7078 	}
7079 
7080 	/* Record that we found atleast one task that could run on dst_cpu */
7081 	env->flags &= ~LBF_ALL_PINNED;
7082 
7083 	if (task_running(env->src_rq, p)) {
7084 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7085 		return 0;
7086 	}
7087 
7088 	/*
7089 	 * Aggressive migration if:
7090 	 * 1) destination numa is preferred
7091 	 * 2) task is cache cold, or
7092 	 * 3) too many balance attempts have failed.
7093 	 */
7094 	tsk_cache_hot = migrate_degrades_locality(p, env);
7095 	if (tsk_cache_hot == -1)
7096 		tsk_cache_hot = task_hot(p, env);
7097 
7098 	if (tsk_cache_hot <= 0 ||
7099 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7100 		if (tsk_cache_hot == 1) {
7101 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7102 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7103 		}
7104 		return 1;
7105 	}
7106 
7107 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7108 	return 0;
7109 }
7110 
7111 /*
7112  * detach_task() -- detach the task for the migration specified in env
7113  */
7114 static void detach_task(struct task_struct *p, struct lb_env *env)
7115 {
7116 	lockdep_assert_held(&env->src_rq->lock);
7117 
7118 	p->on_rq = TASK_ON_RQ_MIGRATING;
7119 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7120 	set_task_cpu(p, env->dst_cpu);
7121 }
7122 
7123 /*
7124  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7125  * part of active balancing operations within "domain".
7126  *
7127  * Returns a task if successful and NULL otherwise.
7128  */
7129 static struct task_struct *detach_one_task(struct lb_env *env)
7130 {
7131 	struct task_struct *p;
7132 
7133 	lockdep_assert_held(&env->src_rq->lock);
7134 
7135 	list_for_each_entry_reverse(p,
7136 			&env->src_rq->cfs_tasks, se.group_node) {
7137 		if (!can_migrate_task(p, env))
7138 			continue;
7139 
7140 		detach_task(p, env);
7141 
7142 		/*
7143 		 * Right now, this is only the second place where
7144 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7145 		 * so we can safely collect stats here rather than
7146 		 * inside detach_tasks().
7147 		 */
7148 		schedstat_inc(env->sd->lb_gained[env->idle]);
7149 		return p;
7150 	}
7151 	return NULL;
7152 }
7153 
7154 static const unsigned int sched_nr_migrate_break = 32;
7155 
7156 /*
7157  * detach_tasks() -- tries to detach up to imbalance weighted load from
7158  * busiest_rq, as part of a balancing operation within domain "sd".
7159  *
7160  * Returns number of detached tasks if successful and 0 otherwise.
7161  */
7162 static int detach_tasks(struct lb_env *env)
7163 {
7164 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7165 	struct task_struct *p;
7166 	unsigned long load;
7167 	int detached = 0;
7168 
7169 	lockdep_assert_held(&env->src_rq->lock);
7170 
7171 	if (env->imbalance <= 0)
7172 		return 0;
7173 
7174 	while (!list_empty(tasks)) {
7175 		/*
7176 		 * We don't want to steal all, otherwise we may be treated likewise,
7177 		 * which could at worst lead to a livelock crash.
7178 		 */
7179 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7180 			break;
7181 
7182 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7183 
7184 		env->loop++;
7185 		/* We've more or less seen every task there is, call it quits */
7186 		if (env->loop > env->loop_max)
7187 			break;
7188 
7189 		/* take a breather every nr_migrate tasks */
7190 		if (env->loop > env->loop_break) {
7191 			env->loop_break += sched_nr_migrate_break;
7192 			env->flags |= LBF_NEED_BREAK;
7193 			break;
7194 		}
7195 
7196 		if (!can_migrate_task(p, env))
7197 			goto next;
7198 
7199 		load = task_h_load(p);
7200 
7201 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7202 			goto next;
7203 
7204 		if ((load / 2) > env->imbalance)
7205 			goto next;
7206 
7207 		detach_task(p, env);
7208 		list_add(&p->se.group_node, &env->tasks);
7209 
7210 		detached++;
7211 		env->imbalance -= load;
7212 
7213 #ifdef CONFIG_PREEMPT
7214 		/*
7215 		 * NEWIDLE balancing is a source of latency, so preemptible
7216 		 * kernels will stop after the first task is detached to minimize
7217 		 * the critical section.
7218 		 */
7219 		if (env->idle == CPU_NEWLY_IDLE)
7220 			break;
7221 #endif
7222 
7223 		/*
7224 		 * We only want to steal up to the prescribed amount of
7225 		 * weighted load.
7226 		 */
7227 		if (env->imbalance <= 0)
7228 			break;
7229 
7230 		continue;
7231 next:
7232 		list_move(&p->se.group_node, tasks);
7233 	}
7234 
7235 	/*
7236 	 * Right now, this is one of only two places we collect this stat
7237 	 * so we can safely collect detach_one_task() stats here rather
7238 	 * than inside detach_one_task().
7239 	 */
7240 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7241 
7242 	return detached;
7243 }
7244 
7245 /*
7246  * attach_task() -- attach the task detached by detach_task() to its new rq.
7247  */
7248 static void attach_task(struct rq *rq, struct task_struct *p)
7249 {
7250 	lockdep_assert_held(&rq->lock);
7251 
7252 	BUG_ON(task_rq(p) != rq);
7253 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7254 	p->on_rq = TASK_ON_RQ_QUEUED;
7255 	check_preempt_curr(rq, p, 0);
7256 }
7257 
7258 /*
7259  * attach_one_task() -- attaches the task returned from detach_one_task() to
7260  * its new rq.
7261  */
7262 static void attach_one_task(struct rq *rq, struct task_struct *p)
7263 {
7264 	struct rq_flags rf;
7265 
7266 	rq_lock(rq, &rf);
7267 	update_rq_clock(rq);
7268 	attach_task(rq, p);
7269 	rq_unlock(rq, &rf);
7270 }
7271 
7272 /*
7273  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7274  * new rq.
7275  */
7276 static void attach_tasks(struct lb_env *env)
7277 {
7278 	struct list_head *tasks = &env->tasks;
7279 	struct task_struct *p;
7280 	struct rq_flags rf;
7281 
7282 	rq_lock(env->dst_rq, &rf);
7283 	update_rq_clock(env->dst_rq);
7284 
7285 	while (!list_empty(tasks)) {
7286 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7287 		list_del_init(&p->se.group_node);
7288 
7289 		attach_task(env->dst_rq, p);
7290 	}
7291 
7292 	rq_unlock(env->dst_rq, &rf);
7293 }
7294 
7295 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7296 {
7297 	if (cfs_rq->avg.load_avg)
7298 		return true;
7299 
7300 	if (cfs_rq->avg.util_avg)
7301 		return true;
7302 
7303 	return false;
7304 }
7305 
7306 static inline bool others_have_blocked(struct rq *rq)
7307 {
7308 	if (READ_ONCE(rq->avg_rt.util_avg))
7309 		return true;
7310 
7311 	if (READ_ONCE(rq->avg_dl.util_avg))
7312 		return true;
7313 
7314 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
7315 	if (READ_ONCE(rq->avg_irq.util_avg))
7316 		return true;
7317 #endif
7318 
7319 	return false;
7320 }
7321 
7322 #ifdef CONFIG_FAIR_GROUP_SCHED
7323 
7324 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7325 {
7326 	if (cfs_rq->load.weight)
7327 		return false;
7328 
7329 	if (cfs_rq->avg.load_sum)
7330 		return false;
7331 
7332 	if (cfs_rq->avg.util_sum)
7333 		return false;
7334 
7335 	if (cfs_rq->avg.runnable_load_sum)
7336 		return false;
7337 
7338 	return true;
7339 }
7340 
7341 static void update_blocked_averages(int cpu)
7342 {
7343 	struct rq *rq = cpu_rq(cpu);
7344 	struct cfs_rq *cfs_rq, *pos;
7345 	const struct sched_class *curr_class;
7346 	struct rq_flags rf;
7347 	bool done = true;
7348 
7349 	rq_lock_irqsave(rq, &rf);
7350 	update_rq_clock(rq);
7351 
7352 	/*
7353 	 * Iterates the task_group tree in a bottom up fashion, see
7354 	 * list_add_leaf_cfs_rq() for details.
7355 	 */
7356 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7357 		struct sched_entity *se;
7358 
7359 		/* throttled entities do not contribute to load */
7360 		if (throttled_hierarchy(cfs_rq))
7361 			continue;
7362 
7363 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7364 			update_tg_load_avg(cfs_rq, 0);
7365 
7366 		/* Propagate pending load changes to the parent, if any: */
7367 		se = cfs_rq->tg->se[cpu];
7368 		if (se && !skip_blocked_update(se))
7369 			update_load_avg(cfs_rq_of(se), se, 0);
7370 
7371 		/*
7372 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7373 		 * decayed cfs_rqs linger on the list.
7374 		 */
7375 		if (cfs_rq_is_decayed(cfs_rq))
7376 			list_del_leaf_cfs_rq(cfs_rq);
7377 
7378 		/* Don't need periodic decay once load/util_avg are null */
7379 		if (cfs_rq_has_blocked(cfs_rq))
7380 			done = false;
7381 	}
7382 
7383 	curr_class = rq->curr->sched_class;
7384 	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7385 	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7386 	update_irq_load_avg(rq, 0);
7387 	/* Don't need periodic decay once load/util_avg are null */
7388 	if (others_have_blocked(rq))
7389 		done = false;
7390 
7391 #ifdef CONFIG_NO_HZ_COMMON
7392 	rq->last_blocked_load_update_tick = jiffies;
7393 	if (done)
7394 		rq->has_blocked_load = 0;
7395 #endif
7396 	rq_unlock_irqrestore(rq, &rf);
7397 }
7398 
7399 /*
7400  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7401  * This needs to be done in a top-down fashion because the load of a child
7402  * group is a fraction of its parents load.
7403  */
7404 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7405 {
7406 	struct rq *rq = rq_of(cfs_rq);
7407 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7408 	unsigned long now = jiffies;
7409 	unsigned long load;
7410 
7411 	if (cfs_rq->last_h_load_update == now)
7412 		return;
7413 
7414 	cfs_rq->h_load_next = NULL;
7415 	for_each_sched_entity(se) {
7416 		cfs_rq = cfs_rq_of(se);
7417 		cfs_rq->h_load_next = se;
7418 		if (cfs_rq->last_h_load_update == now)
7419 			break;
7420 	}
7421 
7422 	if (!se) {
7423 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7424 		cfs_rq->last_h_load_update = now;
7425 	}
7426 
7427 	while ((se = cfs_rq->h_load_next) != NULL) {
7428 		load = cfs_rq->h_load;
7429 		load = div64_ul(load * se->avg.load_avg,
7430 			cfs_rq_load_avg(cfs_rq) + 1);
7431 		cfs_rq = group_cfs_rq(se);
7432 		cfs_rq->h_load = load;
7433 		cfs_rq->last_h_load_update = now;
7434 	}
7435 }
7436 
7437 static unsigned long task_h_load(struct task_struct *p)
7438 {
7439 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7440 
7441 	update_cfs_rq_h_load(cfs_rq);
7442 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7443 			cfs_rq_load_avg(cfs_rq) + 1);
7444 }
7445 #else
7446 static inline void update_blocked_averages(int cpu)
7447 {
7448 	struct rq *rq = cpu_rq(cpu);
7449 	struct cfs_rq *cfs_rq = &rq->cfs;
7450 	const struct sched_class *curr_class;
7451 	struct rq_flags rf;
7452 
7453 	rq_lock_irqsave(rq, &rf);
7454 	update_rq_clock(rq);
7455 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7456 
7457 	curr_class = rq->curr->sched_class;
7458 	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7459 	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7460 	update_irq_load_avg(rq, 0);
7461 #ifdef CONFIG_NO_HZ_COMMON
7462 	rq->last_blocked_load_update_tick = jiffies;
7463 	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7464 		rq->has_blocked_load = 0;
7465 #endif
7466 	rq_unlock_irqrestore(rq, &rf);
7467 }
7468 
7469 static unsigned long task_h_load(struct task_struct *p)
7470 {
7471 	return p->se.avg.load_avg;
7472 }
7473 #endif
7474 
7475 /********** Helpers for find_busiest_group ************************/
7476 
7477 enum group_type {
7478 	group_other = 0,
7479 	group_imbalanced,
7480 	group_overloaded,
7481 };
7482 
7483 /*
7484  * sg_lb_stats - stats of a sched_group required for load_balancing
7485  */
7486 struct sg_lb_stats {
7487 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7488 	unsigned long group_load; /* Total load over the CPUs of the group */
7489 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7490 	unsigned long load_per_task;
7491 	unsigned long group_capacity;
7492 	unsigned long group_util; /* Total utilization of the group */
7493 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7494 	unsigned int idle_cpus;
7495 	unsigned int group_weight;
7496 	enum group_type group_type;
7497 	int group_no_capacity;
7498 #ifdef CONFIG_NUMA_BALANCING
7499 	unsigned int nr_numa_running;
7500 	unsigned int nr_preferred_running;
7501 #endif
7502 };
7503 
7504 /*
7505  * sd_lb_stats - Structure to store the statistics of a sched_domain
7506  *		 during load balancing.
7507  */
7508 struct sd_lb_stats {
7509 	struct sched_group *busiest;	/* Busiest group in this sd */
7510 	struct sched_group *local;	/* Local group in this sd */
7511 	unsigned long total_running;
7512 	unsigned long total_load;	/* Total load of all groups in sd */
7513 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7514 	unsigned long avg_load;	/* Average load across all groups in sd */
7515 
7516 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7517 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7518 };
7519 
7520 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7521 {
7522 	/*
7523 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7524 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7525 	 * We must however clear busiest_stat::avg_load because
7526 	 * update_sd_pick_busiest() reads this before assignment.
7527 	 */
7528 	*sds = (struct sd_lb_stats){
7529 		.busiest = NULL,
7530 		.local = NULL,
7531 		.total_running = 0UL,
7532 		.total_load = 0UL,
7533 		.total_capacity = 0UL,
7534 		.busiest_stat = {
7535 			.avg_load = 0UL,
7536 			.sum_nr_running = 0,
7537 			.group_type = group_other,
7538 		},
7539 	};
7540 }
7541 
7542 /**
7543  * get_sd_load_idx - Obtain the load index for a given sched domain.
7544  * @sd: The sched_domain whose load_idx is to be obtained.
7545  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7546  *
7547  * Return: The load index.
7548  */
7549 static inline int get_sd_load_idx(struct sched_domain *sd,
7550 					enum cpu_idle_type idle)
7551 {
7552 	int load_idx;
7553 
7554 	switch (idle) {
7555 	case CPU_NOT_IDLE:
7556 		load_idx = sd->busy_idx;
7557 		break;
7558 
7559 	case CPU_NEWLY_IDLE:
7560 		load_idx = sd->newidle_idx;
7561 		break;
7562 	default:
7563 		load_idx = sd->idle_idx;
7564 		break;
7565 	}
7566 
7567 	return load_idx;
7568 }
7569 
7570 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7571 {
7572 	struct rq *rq = cpu_rq(cpu);
7573 	unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7574 	unsigned long used, free;
7575 	unsigned long irq;
7576 
7577 	irq = cpu_util_irq(rq);
7578 
7579 	if (unlikely(irq >= max))
7580 		return 1;
7581 
7582 	used = READ_ONCE(rq->avg_rt.util_avg);
7583 	used += READ_ONCE(rq->avg_dl.util_avg);
7584 
7585 	if (unlikely(used >= max))
7586 		return 1;
7587 
7588 	free = max - used;
7589 
7590 	return scale_irq_capacity(free, irq, max);
7591 }
7592 
7593 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7594 {
7595 	unsigned long capacity = scale_rt_capacity(sd, cpu);
7596 	struct sched_group *sdg = sd->groups;
7597 
7598 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7599 
7600 	if (!capacity)
7601 		capacity = 1;
7602 
7603 	cpu_rq(cpu)->cpu_capacity = capacity;
7604 	sdg->sgc->capacity = capacity;
7605 	sdg->sgc->min_capacity = capacity;
7606 }
7607 
7608 void update_group_capacity(struct sched_domain *sd, int cpu)
7609 {
7610 	struct sched_domain *child = sd->child;
7611 	struct sched_group *group, *sdg = sd->groups;
7612 	unsigned long capacity, min_capacity;
7613 	unsigned long interval;
7614 
7615 	interval = msecs_to_jiffies(sd->balance_interval);
7616 	interval = clamp(interval, 1UL, max_load_balance_interval);
7617 	sdg->sgc->next_update = jiffies + interval;
7618 
7619 	if (!child) {
7620 		update_cpu_capacity(sd, cpu);
7621 		return;
7622 	}
7623 
7624 	capacity = 0;
7625 	min_capacity = ULONG_MAX;
7626 
7627 	if (child->flags & SD_OVERLAP) {
7628 		/*
7629 		 * SD_OVERLAP domains cannot assume that child groups
7630 		 * span the current group.
7631 		 */
7632 
7633 		for_each_cpu(cpu, sched_group_span(sdg)) {
7634 			struct sched_group_capacity *sgc;
7635 			struct rq *rq = cpu_rq(cpu);
7636 
7637 			/*
7638 			 * build_sched_domains() -> init_sched_groups_capacity()
7639 			 * gets here before we've attached the domains to the
7640 			 * runqueues.
7641 			 *
7642 			 * Use capacity_of(), which is set irrespective of domains
7643 			 * in update_cpu_capacity().
7644 			 *
7645 			 * This avoids capacity from being 0 and
7646 			 * causing divide-by-zero issues on boot.
7647 			 */
7648 			if (unlikely(!rq->sd)) {
7649 				capacity += capacity_of(cpu);
7650 			} else {
7651 				sgc = rq->sd->groups->sgc;
7652 				capacity += sgc->capacity;
7653 			}
7654 
7655 			min_capacity = min(capacity, min_capacity);
7656 		}
7657 	} else  {
7658 		/*
7659 		 * !SD_OVERLAP domains can assume that child groups
7660 		 * span the current group.
7661 		 */
7662 
7663 		group = child->groups;
7664 		do {
7665 			struct sched_group_capacity *sgc = group->sgc;
7666 
7667 			capacity += sgc->capacity;
7668 			min_capacity = min(sgc->min_capacity, min_capacity);
7669 			group = group->next;
7670 		} while (group != child->groups);
7671 	}
7672 
7673 	sdg->sgc->capacity = capacity;
7674 	sdg->sgc->min_capacity = min_capacity;
7675 }
7676 
7677 /*
7678  * Check whether the capacity of the rq has been noticeably reduced by side
7679  * activity. The imbalance_pct is used for the threshold.
7680  * Return true is the capacity is reduced
7681  */
7682 static inline int
7683 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7684 {
7685 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7686 				(rq->cpu_capacity_orig * 100));
7687 }
7688 
7689 /*
7690  * Group imbalance indicates (and tries to solve) the problem where balancing
7691  * groups is inadequate due to ->cpus_allowed constraints.
7692  *
7693  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7694  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7695  * Something like:
7696  *
7697  *	{ 0 1 2 3 } { 4 5 6 7 }
7698  *	        *     * * *
7699  *
7700  * If we were to balance group-wise we'd place two tasks in the first group and
7701  * two tasks in the second group. Clearly this is undesired as it will overload
7702  * cpu 3 and leave one of the CPUs in the second group unused.
7703  *
7704  * The current solution to this issue is detecting the skew in the first group
7705  * by noticing the lower domain failed to reach balance and had difficulty
7706  * moving tasks due to affinity constraints.
7707  *
7708  * When this is so detected; this group becomes a candidate for busiest; see
7709  * update_sd_pick_busiest(). And calculate_imbalance() and
7710  * find_busiest_group() avoid some of the usual balance conditions to allow it
7711  * to create an effective group imbalance.
7712  *
7713  * This is a somewhat tricky proposition since the next run might not find the
7714  * group imbalance and decide the groups need to be balanced again. A most
7715  * subtle and fragile situation.
7716  */
7717 
7718 static inline int sg_imbalanced(struct sched_group *group)
7719 {
7720 	return group->sgc->imbalance;
7721 }
7722 
7723 /*
7724  * group_has_capacity returns true if the group has spare capacity that could
7725  * be used by some tasks.
7726  * We consider that a group has spare capacity if the  * number of task is
7727  * smaller than the number of CPUs or if the utilization is lower than the
7728  * available capacity for CFS tasks.
7729  * For the latter, we use a threshold to stabilize the state, to take into
7730  * account the variance of the tasks' load and to return true if the available
7731  * capacity in meaningful for the load balancer.
7732  * As an example, an available capacity of 1% can appear but it doesn't make
7733  * any benefit for the load balance.
7734  */
7735 static inline bool
7736 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7737 {
7738 	if (sgs->sum_nr_running < sgs->group_weight)
7739 		return true;
7740 
7741 	if ((sgs->group_capacity * 100) >
7742 			(sgs->group_util * env->sd->imbalance_pct))
7743 		return true;
7744 
7745 	return false;
7746 }
7747 
7748 /*
7749  *  group_is_overloaded returns true if the group has more tasks than it can
7750  *  handle.
7751  *  group_is_overloaded is not equals to !group_has_capacity because a group
7752  *  with the exact right number of tasks, has no more spare capacity but is not
7753  *  overloaded so both group_has_capacity and group_is_overloaded return
7754  *  false.
7755  */
7756 static inline bool
7757 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7758 {
7759 	if (sgs->sum_nr_running <= sgs->group_weight)
7760 		return false;
7761 
7762 	if ((sgs->group_capacity * 100) <
7763 			(sgs->group_util * env->sd->imbalance_pct))
7764 		return true;
7765 
7766 	return false;
7767 }
7768 
7769 /*
7770  * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7771  * per-CPU capacity than sched_group ref.
7772  */
7773 static inline bool
7774 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7775 {
7776 	return sg->sgc->min_capacity * capacity_margin <
7777 						ref->sgc->min_capacity * 1024;
7778 }
7779 
7780 static inline enum
7781 group_type group_classify(struct sched_group *group,
7782 			  struct sg_lb_stats *sgs)
7783 {
7784 	if (sgs->group_no_capacity)
7785 		return group_overloaded;
7786 
7787 	if (sg_imbalanced(group))
7788 		return group_imbalanced;
7789 
7790 	return group_other;
7791 }
7792 
7793 static bool update_nohz_stats(struct rq *rq, bool force)
7794 {
7795 #ifdef CONFIG_NO_HZ_COMMON
7796 	unsigned int cpu = rq->cpu;
7797 
7798 	if (!rq->has_blocked_load)
7799 		return false;
7800 
7801 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7802 		return false;
7803 
7804 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7805 		return true;
7806 
7807 	update_blocked_averages(cpu);
7808 
7809 	return rq->has_blocked_load;
7810 #else
7811 	return false;
7812 #endif
7813 }
7814 
7815 /**
7816  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7817  * @env: The load balancing environment.
7818  * @group: sched_group whose statistics are to be updated.
7819  * @load_idx: Load index of sched_domain of this_cpu for load calc.
7820  * @local_group: Does group contain this_cpu.
7821  * @sgs: variable to hold the statistics for this group.
7822  * @overload: Indicate more than one runnable task for any CPU.
7823  */
7824 static inline void update_sg_lb_stats(struct lb_env *env,
7825 			struct sched_group *group, int load_idx,
7826 			int local_group, struct sg_lb_stats *sgs,
7827 			bool *overload)
7828 {
7829 	unsigned long load;
7830 	int i, nr_running;
7831 
7832 	memset(sgs, 0, sizeof(*sgs));
7833 
7834 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7835 		struct rq *rq = cpu_rq(i);
7836 
7837 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7838 			env->flags |= LBF_NOHZ_AGAIN;
7839 
7840 		/* Bias balancing toward CPUs of our domain: */
7841 		if (local_group)
7842 			load = target_load(i, load_idx);
7843 		else
7844 			load = source_load(i, load_idx);
7845 
7846 		sgs->group_load += load;
7847 		sgs->group_util += cpu_util(i);
7848 		sgs->sum_nr_running += rq->cfs.h_nr_running;
7849 
7850 		nr_running = rq->nr_running;
7851 		if (nr_running > 1)
7852 			*overload = true;
7853 
7854 #ifdef CONFIG_NUMA_BALANCING
7855 		sgs->nr_numa_running += rq->nr_numa_running;
7856 		sgs->nr_preferred_running += rq->nr_preferred_running;
7857 #endif
7858 		sgs->sum_weighted_load += weighted_cpuload(rq);
7859 		/*
7860 		 * No need to call idle_cpu() if nr_running is not 0
7861 		 */
7862 		if (!nr_running && idle_cpu(i))
7863 			sgs->idle_cpus++;
7864 	}
7865 
7866 	/* Adjust by relative CPU capacity of the group */
7867 	sgs->group_capacity = group->sgc->capacity;
7868 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7869 
7870 	if (sgs->sum_nr_running)
7871 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7872 
7873 	sgs->group_weight = group->group_weight;
7874 
7875 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7876 	sgs->group_type = group_classify(group, sgs);
7877 }
7878 
7879 /**
7880  * update_sd_pick_busiest - return 1 on busiest group
7881  * @env: The load balancing environment.
7882  * @sds: sched_domain statistics
7883  * @sg: sched_group candidate to be checked for being the busiest
7884  * @sgs: sched_group statistics
7885  *
7886  * Determine if @sg is a busier group than the previously selected
7887  * busiest group.
7888  *
7889  * Return: %true if @sg is a busier group than the previously selected
7890  * busiest group. %false otherwise.
7891  */
7892 static bool update_sd_pick_busiest(struct lb_env *env,
7893 				   struct sd_lb_stats *sds,
7894 				   struct sched_group *sg,
7895 				   struct sg_lb_stats *sgs)
7896 {
7897 	struct sg_lb_stats *busiest = &sds->busiest_stat;
7898 
7899 	if (sgs->group_type > busiest->group_type)
7900 		return true;
7901 
7902 	if (sgs->group_type < busiest->group_type)
7903 		return false;
7904 
7905 	if (sgs->avg_load <= busiest->avg_load)
7906 		return false;
7907 
7908 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7909 		goto asym_packing;
7910 
7911 	/*
7912 	 * Candidate sg has no more than one task per CPU and
7913 	 * has higher per-CPU capacity. Migrating tasks to less
7914 	 * capable CPUs may harm throughput. Maximize throughput,
7915 	 * power/energy consequences are not considered.
7916 	 */
7917 	if (sgs->sum_nr_running <= sgs->group_weight &&
7918 	    group_smaller_cpu_capacity(sds->local, sg))
7919 		return false;
7920 
7921 asym_packing:
7922 	/* This is the busiest node in its class. */
7923 	if (!(env->sd->flags & SD_ASYM_PACKING))
7924 		return true;
7925 
7926 	/* No ASYM_PACKING if target CPU is already busy */
7927 	if (env->idle == CPU_NOT_IDLE)
7928 		return true;
7929 	/*
7930 	 * ASYM_PACKING needs to move all the work to the highest
7931 	 * prority CPUs in the group, therefore mark all groups
7932 	 * of lower priority than ourself as busy.
7933 	 */
7934 	if (sgs->sum_nr_running &&
7935 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7936 		if (!sds->busiest)
7937 			return true;
7938 
7939 		/* Prefer to move from lowest priority CPU's work */
7940 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7941 				      sg->asym_prefer_cpu))
7942 			return true;
7943 	}
7944 
7945 	return false;
7946 }
7947 
7948 #ifdef CONFIG_NUMA_BALANCING
7949 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7950 {
7951 	if (sgs->sum_nr_running > sgs->nr_numa_running)
7952 		return regular;
7953 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
7954 		return remote;
7955 	return all;
7956 }
7957 
7958 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7959 {
7960 	if (rq->nr_running > rq->nr_numa_running)
7961 		return regular;
7962 	if (rq->nr_running > rq->nr_preferred_running)
7963 		return remote;
7964 	return all;
7965 }
7966 #else
7967 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7968 {
7969 	return all;
7970 }
7971 
7972 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7973 {
7974 	return regular;
7975 }
7976 #endif /* CONFIG_NUMA_BALANCING */
7977 
7978 /**
7979  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7980  * @env: The load balancing environment.
7981  * @sds: variable to hold the statistics for this sched_domain.
7982  */
7983 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7984 {
7985 	struct sched_domain *child = env->sd->child;
7986 	struct sched_group *sg = env->sd->groups;
7987 	struct sg_lb_stats *local = &sds->local_stat;
7988 	struct sg_lb_stats tmp_sgs;
7989 	int load_idx, prefer_sibling = 0;
7990 	bool overload = false;
7991 
7992 	if (child && child->flags & SD_PREFER_SIBLING)
7993 		prefer_sibling = 1;
7994 
7995 #ifdef CONFIG_NO_HZ_COMMON
7996 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
7997 		env->flags |= LBF_NOHZ_STATS;
7998 #endif
7999 
8000 	load_idx = get_sd_load_idx(env->sd, env->idle);
8001 
8002 	do {
8003 		struct sg_lb_stats *sgs = &tmp_sgs;
8004 		int local_group;
8005 
8006 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8007 		if (local_group) {
8008 			sds->local = sg;
8009 			sgs = local;
8010 
8011 			if (env->idle != CPU_NEWLY_IDLE ||
8012 			    time_after_eq(jiffies, sg->sgc->next_update))
8013 				update_group_capacity(env->sd, env->dst_cpu);
8014 		}
8015 
8016 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
8017 						&overload);
8018 
8019 		if (local_group)
8020 			goto next_group;
8021 
8022 		/*
8023 		 * In case the child domain prefers tasks go to siblings
8024 		 * first, lower the sg capacity so that we'll try
8025 		 * and move all the excess tasks away. We lower the capacity
8026 		 * of a group only if the local group has the capacity to fit
8027 		 * these excess tasks. The extra check prevents the case where
8028 		 * you always pull from the heaviest group when it is already
8029 		 * under-utilized (possible with a large weight task outweighs
8030 		 * the tasks on the system).
8031 		 */
8032 		if (prefer_sibling && sds->local &&
8033 		    group_has_capacity(env, local) &&
8034 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8035 			sgs->group_no_capacity = 1;
8036 			sgs->group_type = group_classify(sg, sgs);
8037 		}
8038 
8039 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8040 			sds->busiest = sg;
8041 			sds->busiest_stat = *sgs;
8042 		}
8043 
8044 next_group:
8045 		/* Now, start updating sd_lb_stats */
8046 		sds->total_running += sgs->sum_nr_running;
8047 		sds->total_load += sgs->group_load;
8048 		sds->total_capacity += sgs->group_capacity;
8049 
8050 		sg = sg->next;
8051 	} while (sg != env->sd->groups);
8052 
8053 #ifdef CONFIG_NO_HZ_COMMON
8054 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8055 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8056 
8057 		WRITE_ONCE(nohz.next_blocked,
8058 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8059 	}
8060 #endif
8061 
8062 	if (env->sd->flags & SD_NUMA)
8063 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8064 
8065 	if (!env->sd->parent) {
8066 		/* update overload indicator if we are at root domain */
8067 		if (env->dst_rq->rd->overload != overload)
8068 			env->dst_rq->rd->overload = overload;
8069 	}
8070 }
8071 
8072 /**
8073  * check_asym_packing - Check to see if the group is packed into the
8074  *			sched domain.
8075  *
8076  * This is primarily intended to used at the sibling level.  Some
8077  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8078  * case of POWER7, it can move to lower SMT modes only when higher
8079  * threads are idle.  When in lower SMT modes, the threads will
8080  * perform better since they share less core resources.  Hence when we
8081  * have idle threads, we want them to be the higher ones.
8082  *
8083  * This packing function is run on idle threads.  It checks to see if
8084  * the busiest CPU in this domain (core in the P7 case) has a higher
8085  * CPU number than the packing function is being run on.  Here we are
8086  * assuming lower CPU number will be equivalent to lower a SMT thread
8087  * number.
8088  *
8089  * Return: 1 when packing is required and a task should be moved to
8090  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8091  *
8092  * @env: The load balancing environment.
8093  * @sds: Statistics of the sched_domain which is to be packed
8094  */
8095 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8096 {
8097 	int busiest_cpu;
8098 
8099 	if (!(env->sd->flags & SD_ASYM_PACKING))
8100 		return 0;
8101 
8102 	if (env->idle == CPU_NOT_IDLE)
8103 		return 0;
8104 
8105 	if (!sds->busiest)
8106 		return 0;
8107 
8108 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8109 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8110 		return 0;
8111 
8112 	env->imbalance = DIV_ROUND_CLOSEST(
8113 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8114 		SCHED_CAPACITY_SCALE);
8115 
8116 	return 1;
8117 }
8118 
8119 /**
8120  * fix_small_imbalance - Calculate the minor imbalance that exists
8121  *			amongst the groups of a sched_domain, during
8122  *			load balancing.
8123  * @env: The load balancing environment.
8124  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8125  */
8126 static inline
8127 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8128 {
8129 	unsigned long tmp, capa_now = 0, capa_move = 0;
8130 	unsigned int imbn = 2;
8131 	unsigned long scaled_busy_load_per_task;
8132 	struct sg_lb_stats *local, *busiest;
8133 
8134 	local = &sds->local_stat;
8135 	busiest = &sds->busiest_stat;
8136 
8137 	if (!local->sum_nr_running)
8138 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8139 	else if (busiest->load_per_task > local->load_per_task)
8140 		imbn = 1;
8141 
8142 	scaled_busy_load_per_task =
8143 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8144 		busiest->group_capacity;
8145 
8146 	if (busiest->avg_load + scaled_busy_load_per_task >=
8147 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8148 		env->imbalance = busiest->load_per_task;
8149 		return;
8150 	}
8151 
8152 	/*
8153 	 * OK, we don't have enough imbalance to justify moving tasks,
8154 	 * however we may be able to increase total CPU capacity used by
8155 	 * moving them.
8156 	 */
8157 
8158 	capa_now += busiest->group_capacity *
8159 			min(busiest->load_per_task, busiest->avg_load);
8160 	capa_now += local->group_capacity *
8161 			min(local->load_per_task, local->avg_load);
8162 	capa_now /= SCHED_CAPACITY_SCALE;
8163 
8164 	/* Amount of load we'd subtract */
8165 	if (busiest->avg_load > scaled_busy_load_per_task) {
8166 		capa_move += busiest->group_capacity *
8167 			    min(busiest->load_per_task,
8168 				busiest->avg_load - scaled_busy_load_per_task);
8169 	}
8170 
8171 	/* Amount of load we'd add */
8172 	if (busiest->avg_load * busiest->group_capacity <
8173 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8174 		tmp = (busiest->avg_load * busiest->group_capacity) /
8175 		      local->group_capacity;
8176 	} else {
8177 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8178 		      local->group_capacity;
8179 	}
8180 	capa_move += local->group_capacity *
8181 		    min(local->load_per_task, local->avg_load + tmp);
8182 	capa_move /= SCHED_CAPACITY_SCALE;
8183 
8184 	/* Move if we gain throughput */
8185 	if (capa_move > capa_now)
8186 		env->imbalance = busiest->load_per_task;
8187 }
8188 
8189 /**
8190  * calculate_imbalance - Calculate the amount of imbalance present within the
8191  *			 groups of a given sched_domain during load balance.
8192  * @env: load balance environment
8193  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8194  */
8195 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8196 {
8197 	unsigned long max_pull, load_above_capacity = ~0UL;
8198 	struct sg_lb_stats *local, *busiest;
8199 
8200 	local = &sds->local_stat;
8201 	busiest = &sds->busiest_stat;
8202 
8203 	if (busiest->group_type == group_imbalanced) {
8204 		/*
8205 		 * In the group_imb case we cannot rely on group-wide averages
8206 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8207 		 */
8208 		busiest->load_per_task =
8209 			min(busiest->load_per_task, sds->avg_load);
8210 	}
8211 
8212 	/*
8213 	 * Avg load of busiest sg can be less and avg load of local sg can
8214 	 * be greater than avg load across all sgs of sd because avg load
8215 	 * factors in sg capacity and sgs with smaller group_type are
8216 	 * skipped when updating the busiest sg:
8217 	 */
8218 	if (busiest->avg_load <= sds->avg_load ||
8219 	    local->avg_load >= sds->avg_load) {
8220 		env->imbalance = 0;
8221 		return fix_small_imbalance(env, sds);
8222 	}
8223 
8224 	/*
8225 	 * If there aren't any idle CPUs, avoid creating some.
8226 	 */
8227 	if (busiest->group_type == group_overloaded &&
8228 	    local->group_type   == group_overloaded) {
8229 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8230 		if (load_above_capacity > busiest->group_capacity) {
8231 			load_above_capacity -= busiest->group_capacity;
8232 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8233 			load_above_capacity /= busiest->group_capacity;
8234 		} else
8235 			load_above_capacity = ~0UL;
8236 	}
8237 
8238 	/*
8239 	 * We're trying to get all the CPUs to the average_load, so we don't
8240 	 * want to push ourselves above the average load, nor do we wish to
8241 	 * reduce the max loaded CPU below the average load. At the same time,
8242 	 * we also don't want to reduce the group load below the group
8243 	 * capacity. Thus we look for the minimum possible imbalance.
8244 	 */
8245 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8246 
8247 	/* How much load to actually move to equalise the imbalance */
8248 	env->imbalance = min(
8249 		max_pull * busiest->group_capacity,
8250 		(sds->avg_load - local->avg_load) * local->group_capacity
8251 	) / SCHED_CAPACITY_SCALE;
8252 
8253 	/*
8254 	 * if *imbalance is less than the average load per runnable task
8255 	 * there is no guarantee that any tasks will be moved so we'll have
8256 	 * a think about bumping its value to force at least one task to be
8257 	 * moved
8258 	 */
8259 	if (env->imbalance < busiest->load_per_task)
8260 		return fix_small_imbalance(env, sds);
8261 }
8262 
8263 /******* find_busiest_group() helpers end here *********************/
8264 
8265 /**
8266  * find_busiest_group - Returns the busiest group within the sched_domain
8267  * if there is an imbalance.
8268  *
8269  * Also calculates the amount of weighted load which should be moved
8270  * to restore balance.
8271  *
8272  * @env: The load balancing environment.
8273  *
8274  * Return:	- The busiest group if imbalance exists.
8275  */
8276 static struct sched_group *find_busiest_group(struct lb_env *env)
8277 {
8278 	struct sg_lb_stats *local, *busiest;
8279 	struct sd_lb_stats sds;
8280 
8281 	init_sd_lb_stats(&sds);
8282 
8283 	/*
8284 	 * Compute the various statistics relavent for load balancing at
8285 	 * this level.
8286 	 */
8287 	update_sd_lb_stats(env, &sds);
8288 	local = &sds.local_stat;
8289 	busiest = &sds.busiest_stat;
8290 
8291 	/* ASYM feature bypasses nice load balance check */
8292 	if (check_asym_packing(env, &sds))
8293 		return sds.busiest;
8294 
8295 	/* There is no busy sibling group to pull tasks from */
8296 	if (!sds.busiest || busiest->sum_nr_running == 0)
8297 		goto out_balanced;
8298 
8299 	/* XXX broken for overlapping NUMA groups */
8300 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8301 						/ sds.total_capacity;
8302 
8303 	/*
8304 	 * If the busiest group is imbalanced the below checks don't
8305 	 * work because they assume all things are equal, which typically
8306 	 * isn't true due to cpus_allowed constraints and the like.
8307 	 */
8308 	if (busiest->group_type == group_imbalanced)
8309 		goto force_balance;
8310 
8311 	/*
8312 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8313 	 * capacities from resulting in underutilization due to avg_load.
8314 	 */
8315 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8316 	    busiest->group_no_capacity)
8317 		goto force_balance;
8318 
8319 	/*
8320 	 * If the local group is busier than the selected busiest group
8321 	 * don't try and pull any tasks.
8322 	 */
8323 	if (local->avg_load >= busiest->avg_load)
8324 		goto out_balanced;
8325 
8326 	/*
8327 	 * Don't pull any tasks if this group is already above the domain
8328 	 * average load.
8329 	 */
8330 	if (local->avg_load >= sds.avg_load)
8331 		goto out_balanced;
8332 
8333 	if (env->idle == CPU_IDLE) {
8334 		/*
8335 		 * This CPU is idle. If the busiest group is not overloaded
8336 		 * and there is no imbalance between this and busiest group
8337 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8338 		 * significant if the diff is greater than 1 otherwise we
8339 		 * might end up to just move the imbalance on another group
8340 		 */
8341 		if ((busiest->group_type != group_overloaded) &&
8342 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8343 			goto out_balanced;
8344 	} else {
8345 		/*
8346 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8347 		 * imbalance_pct to be conservative.
8348 		 */
8349 		if (100 * busiest->avg_load <=
8350 				env->sd->imbalance_pct * local->avg_load)
8351 			goto out_balanced;
8352 	}
8353 
8354 force_balance:
8355 	/* Looks like there is an imbalance. Compute it */
8356 	calculate_imbalance(env, &sds);
8357 	return env->imbalance ? sds.busiest : NULL;
8358 
8359 out_balanced:
8360 	env->imbalance = 0;
8361 	return NULL;
8362 }
8363 
8364 /*
8365  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8366  */
8367 static struct rq *find_busiest_queue(struct lb_env *env,
8368 				     struct sched_group *group)
8369 {
8370 	struct rq *busiest = NULL, *rq;
8371 	unsigned long busiest_load = 0, busiest_capacity = 1;
8372 	int i;
8373 
8374 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8375 		unsigned long capacity, wl;
8376 		enum fbq_type rt;
8377 
8378 		rq = cpu_rq(i);
8379 		rt = fbq_classify_rq(rq);
8380 
8381 		/*
8382 		 * We classify groups/runqueues into three groups:
8383 		 *  - regular: there are !numa tasks
8384 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8385 		 *  - all:     there is no distinction
8386 		 *
8387 		 * In order to avoid migrating ideally placed numa tasks,
8388 		 * ignore those when there's better options.
8389 		 *
8390 		 * If we ignore the actual busiest queue to migrate another
8391 		 * task, the next balance pass can still reduce the busiest
8392 		 * queue by moving tasks around inside the node.
8393 		 *
8394 		 * If we cannot move enough load due to this classification
8395 		 * the next pass will adjust the group classification and
8396 		 * allow migration of more tasks.
8397 		 *
8398 		 * Both cases only affect the total convergence complexity.
8399 		 */
8400 		if (rt > env->fbq_type)
8401 			continue;
8402 
8403 		capacity = capacity_of(i);
8404 
8405 		wl = weighted_cpuload(rq);
8406 
8407 		/*
8408 		 * When comparing with imbalance, use weighted_cpuload()
8409 		 * which is not scaled with the CPU capacity.
8410 		 */
8411 
8412 		if (rq->nr_running == 1 && wl > env->imbalance &&
8413 		    !check_cpu_capacity(rq, env->sd))
8414 			continue;
8415 
8416 		/*
8417 		 * For the load comparisons with the other CPU's, consider
8418 		 * the weighted_cpuload() scaled with the CPU capacity, so
8419 		 * that the load can be moved away from the CPU that is
8420 		 * potentially running at a lower capacity.
8421 		 *
8422 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8423 		 * multiplication to rid ourselves of the division works out
8424 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8425 		 * our previous maximum.
8426 		 */
8427 		if (wl * busiest_capacity > busiest_load * capacity) {
8428 			busiest_load = wl;
8429 			busiest_capacity = capacity;
8430 			busiest = rq;
8431 		}
8432 	}
8433 
8434 	return busiest;
8435 }
8436 
8437 /*
8438  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8439  * so long as it is large enough.
8440  */
8441 #define MAX_PINNED_INTERVAL	512
8442 
8443 static int need_active_balance(struct lb_env *env)
8444 {
8445 	struct sched_domain *sd = env->sd;
8446 
8447 	if (env->idle == CPU_NEWLY_IDLE) {
8448 
8449 		/*
8450 		 * ASYM_PACKING needs to force migrate tasks from busy but
8451 		 * lower priority CPUs in order to pack all tasks in the
8452 		 * highest priority CPUs.
8453 		 */
8454 		if ((sd->flags & SD_ASYM_PACKING) &&
8455 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8456 			return 1;
8457 	}
8458 
8459 	/*
8460 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8461 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8462 	 * because of other sched_class or IRQs if more capacity stays
8463 	 * available on dst_cpu.
8464 	 */
8465 	if ((env->idle != CPU_NOT_IDLE) &&
8466 	    (env->src_rq->cfs.h_nr_running == 1)) {
8467 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8468 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8469 			return 1;
8470 	}
8471 
8472 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8473 }
8474 
8475 static int active_load_balance_cpu_stop(void *data);
8476 
8477 static int should_we_balance(struct lb_env *env)
8478 {
8479 	struct sched_group *sg = env->sd->groups;
8480 	int cpu, balance_cpu = -1;
8481 
8482 	/*
8483 	 * Ensure the balancing environment is consistent; can happen
8484 	 * when the softirq triggers 'during' hotplug.
8485 	 */
8486 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8487 		return 0;
8488 
8489 	/*
8490 	 * In the newly idle case, we will allow all the CPUs
8491 	 * to do the newly idle load balance.
8492 	 */
8493 	if (env->idle == CPU_NEWLY_IDLE)
8494 		return 1;
8495 
8496 	/* Try to find first idle CPU */
8497 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8498 		if (!idle_cpu(cpu))
8499 			continue;
8500 
8501 		balance_cpu = cpu;
8502 		break;
8503 	}
8504 
8505 	if (balance_cpu == -1)
8506 		balance_cpu = group_balance_cpu(sg);
8507 
8508 	/*
8509 	 * First idle CPU or the first CPU(busiest) in this sched group
8510 	 * is eligible for doing load balancing at this and above domains.
8511 	 */
8512 	return balance_cpu == env->dst_cpu;
8513 }
8514 
8515 /*
8516  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8517  * tasks if there is an imbalance.
8518  */
8519 static int load_balance(int this_cpu, struct rq *this_rq,
8520 			struct sched_domain *sd, enum cpu_idle_type idle,
8521 			int *continue_balancing)
8522 {
8523 	int ld_moved, cur_ld_moved, active_balance = 0;
8524 	struct sched_domain *sd_parent = sd->parent;
8525 	struct sched_group *group;
8526 	struct rq *busiest;
8527 	struct rq_flags rf;
8528 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8529 
8530 	struct lb_env env = {
8531 		.sd		= sd,
8532 		.dst_cpu	= this_cpu,
8533 		.dst_rq		= this_rq,
8534 		.dst_grpmask    = sched_group_span(sd->groups),
8535 		.idle		= idle,
8536 		.loop_break	= sched_nr_migrate_break,
8537 		.cpus		= cpus,
8538 		.fbq_type	= all,
8539 		.tasks		= LIST_HEAD_INIT(env.tasks),
8540 	};
8541 
8542 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8543 
8544 	schedstat_inc(sd->lb_count[idle]);
8545 
8546 redo:
8547 	if (!should_we_balance(&env)) {
8548 		*continue_balancing = 0;
8549 		goto out_balanced;
8550 	}
8551 
8552 	group = find_busiest_group(&env);
8553 	if (!group) {
8554 		schedstat_inc(sd->lb_nobusyg[idle]);
8555 		goto out_balanced;
8556 	}
8557 
8558 	busiest = find_busiest_queue(&env, group);
8559 	if (!busiest) {
8560 		schedstat_inc(sd->lb_nobusyq[idle]);
8561 		goto out_balanced;
8562 	}
8563 
8564 	BUG_ON(busiest == env.dst_rq);
8565 
8566 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8567 
8568 	env.src_cpu = busiest->cpu;
8569 	env.src_rq = busiest;
8570 
8571 	ld_moved = 0;
8572 	if (busiest->nr_running > 1) {
8573 		/*
8574 		 * Attempt to move tasks. If find_busiest_group has found
8575 		 * an imbalance but busiest->nr_running <= 1, the group is
8576 		 * still unbalanced. ld_moved simply stays zero, so it is
8577 		 * correctly treated as an imbalance.
8578 		 */
8579 		env.flags |= LBF_ALL_PINNED;
8580 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8581 
8582 more_balance:
8583 		rq_lock_irqsave(busiest, &rf);
8584 		update_rq_clock(busiest);
8585 
8586 		/*
8587 		 * cur_ld_moved - load moved in current iteration
8588 		 * ld_moved     - cumulative load moved across iterations
8589 		 */
8590 		cur_ld_moved = detach_tasks(&env);
8591 
8592 		/*
8593 		 * We've detached some tasks from busiest_rq. Every
8594 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8595 		 * unlock busiest->lock, and we are able to be sure
8596 		 * that nobody can manipulate the tasks in parallel.
8597 		 * See task_rq_lock() family for the details.
8598 		 */
8599 
8600 		rq_unlock(busiest, &rf);
8601 
8602 		if (cur_ld_moved) {
8603 			attach_tasks(&env);
8604 			ld_moved += cur_ld_moved;
8605 		}
8606 
8607 		local_irq_restore(rf.flags);
8608 
8609 		if (env.flags & LBF_NEED_BREAK) {
8610 			env.flags &= ~LBF_NEED_BREAK;
8611 			goto more_balance;
8612 		}
8613 
8614 		/*
8615 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8616 		 * us and move them to an alternate dst_cpu in our sched_group
8617 		 * where they can run. The upper limit on how many times we
8618 		 * iterate on same src_cpu is dependent on number of CPUs in our
8619 		 * sched_group.
8620 		 *
8621 		 * This changes load balance semantics a bit on who can move
8622 		 * load to a given_cpu. In addition to the given_cpu itself
8623 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8624 		 * nohz-idle), we now have balance_cpu in a position to move
8625 		 * load to given_cpu. In rare situations, this may cause
8626 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8627 		 * _independently_ and at _same_ time to move some load to
8628 		 * given_cpu) causing exceess load to be moved to given_cpu.
8629 		 * This however should not happen so much in practice and
8630 		 * moreover subsequent load balance cycles should correct the
8631 		 * excess load moved.
8632 		 */
8633 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8634 
8635 			/* Prevent to re-select dst_cpu via env's CPUs */
8636 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
8637 
8638 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8639 			env.dst_cpu	 = env.new_dst_cpu;
8640 			env.flags	&= ~LBF_DST_PINNED;
8641 			env.loop	 = 0;
8642 			env.loop_break	 = sched_nr_migrate_break;
8643 
8644 			/*
8645 			 * Go back to "more_balance" rather than "redo" since we
8646 			 * need to continue with same src_cpu.
8647 			 */
8648 			goto more_balance;
8649 		}
8650 
8651 		/*
8652 		 * We failed to reach balance because of affinity.
8653 		 */
8654 		if (sd_parent) {
8655 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8656 
8657 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8658 				*group_imbalance = 1;
8659 		}
8660 
8661 		/* All tasks on this runqueue were pinned by CPU affinity */
8662 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8663 			cpumask_clear_cpu(cpu_of(busiest), cpus);
8664 			/*
8665 			 * Attempting to continue load balancing at the current
8666 			 * sched_domain level only makes sense if there are
8667 			 * active CPUs remaining as possible busiest CPUs to
8668 			 * pull load from which are not contained within the
8669 			 * destination group that is receiving any migrated
8670 			 * load.
8671 			 */
8672 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8673 				env.loop = 0;
8674 				env.loop_break = sched_nr_migrate_break;
8675 				goto redo;
8676 			}
8677 			goto out_all_pinned;
8678 		}
8679 	}
8680 
8681 	if (!ld_moved) {
8682 		schedstat_inc(sd->lb_failed[idle]);
8683 		/*
8684 		 * Increment the failure counter only on periodic balance.
8685 		 * We do not want newidle balance, which can be very
8686 		 * frequent, pollute the failure counter causing
8687 		 * excessive cache_hot migrations and active balances.
8688 		 */
8689 		if (idle != CPU_NEWLY_IDLE)
8690 			sd->nr_balance_failed++;
8691 
8692 		if (need_active_balance(&env)) {
8693 			unsigned long flags;
8694 
8695 			raw_spin_lock_irqsave(&busiest->lock, flags);
8696 
8697 			/*
8698 			 * Don't kick the active_load_balance_cpu_stop,
8699 			 * if the curr task on busiest CPU can't be
8700 			 * moved to this_cpu:
8701 			 */
8702 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8703 				raw_spin_unlock_irqrestore(&busiest->lock,
8704 							    flags);
8705 				env.flags |= LBF_ALL_PINNED;
8706 				goto out_one_pinned;
8707 			}
8708 
8709 			/*
8710 			 * ->active_balance synchronizes accesses to
8711 			 * ->active_balance_work.  Once set, it's cleared
8712 			 * only after active load balance is finished.
8713 			 */
8714 			if (!busiest->active_balance) {
8715 				busiest->active_balance = 1;
8716 				busiest->push_cpu = this_cpu;
8717 				active_balance = 1;
8718 			}
8719 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8720 
8721 			if (active_balance) {
8722 				stop_one_cpu_nowait(cpu_of(busiest),
8723 					active_load_balance_cpu_stop, busiest,
8724 					&busiest->active_balance_work);
8725 			}
8726 
8727 			/* We've kicked active balancing, force task migration. */
8728 			sd->nr_balance_failed = sd->cache_nice_tries+1;
8729 		}
8730 	} else
8731 		sd->nr_balance_failed = 0;
8732 
8733 	if (likely(!active_balance)) {
8734 		/* We were unbalanced, so reset the balancing interval */
8735 		sd->balance_interval = sd->min_interval;
8736 	} else {
8737 		/*
8738 		 * If we've begun active balancing, start to back off. This
8739 		 * case may not be covered by the all_pinned logic if there
8740 		 * is only 1 task on the busy runqueue (because we don't call
8741 		 * detach_tasks).
8742 		 */
8743 		if (sd->balance_interval < sd->max_interval)
8744 			sd->balance_interval *= 2;
8745 	}
8746 
8747 	goto out;
8748 
8749 out_balanced:
8750 	/*
8751 	 * We reach balance although we may have faced some affinity
8752 	 * constraints. Clear the imbalance flag if it was set.
8753 	 */
8754 	if (sd_parent) {
8755 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8756 
8757 		if (*group_imbalance)
8758 			*group_imbalance = 0;
8759 	}
8760 
8761 out_all_pinned:
8762 	/*
8763 	 * We reach balance because all tasks are pinned at this level so
8764 	 * we can't migrate them. Let the imbalance flag set so parent level
8765 	 * can try to migrate them.
8766 	 */
8767 	schedstat_inc(sd->lb_balanced[idle]);
8768 
8769 	sd->nr_balance_failed = 0;
8770 
8771 out_one_pinned:
8772 	/* tune up the balancing interval */
8773 	if (((env.flags & LBF_ALL_PINNED) &&
8774 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8775 			(sd->balance_interval < sd->max_interval))
8776 		sd->balance_interval *= 2;
8777 
8778 	ld_moved = 0;
8779 out:
8780 	return ld_moved;
8781 }
8782 
8783 static inline unsigned long
8784 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8785 {
8786 	unsigned long interval = sd->balance_interval;
8787 
8788 	if (cpu_busy)
8789 		interval *= sd->busy_factor;
8790 
8791 	/* scale ms to jiffies */
8792 	interval = msecs_to_jiffies(interval);
8793 	interval = clamp(interval, 1UL, max_load_balance_interval);
8794 
8795 	return interval;
8796 }
8797 
8798 static inline void
8799 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8800 {
8801 	unsigned long interval, next;
8802 
8803 	/* used by idle balance, so cpu_busy = 0 */
8804 	interval = get_sd_balance_interval(sd, 0);
8805 	next = sd->last_balance + interval;
8806 
8807 	if (time_after(*next_balance, next))
8808 		*next_balance = next;
8809 }
8810 
8811 /*
8812  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
8813  * running tasks off the busiest CPU onto idle CPUs. It requires at
8814  * least 1 task to be running on each physical CPU where possible, and
8815  * avoids physical / logical imbalances.
8816  */
8817 static int active_load_balance_cpu_stop(void *data)
8818 {
8819 	struct rq *busiest_rq = data;
8820 	int busiest_cpu = cpu_of(busiest_rq);
8821 	int target_cpu = busiest_rq->push_cpu;
8822 	struct rq *target_rq = cpu_rq(target_cpu);
8823 	struct sched_domain *sd;
8824 	struct task_struct *p = NULL;
8825 	struct rq_flags rf;
8826 
8827 	rq_lock_irq(busiest_rq, &rf);
8828 	/*
8829 	 * Between queueing the stop-work and running it is a hole in which
8830 	 * CPUs can become inactive. We should not move tasks from or to
8831 	 * inactive CPUs.
8832 	 */
8833 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8834 		goto out_unlock;
8835 
8836 	/* Make sure the requested CPU hasn't gone down in the meantime: */
8837 	if (unlikely(busiest_cpu != smp_processor_id() ||
8838 		     !busiest_rq->active_balance))
8839 		goto out_unlock;
8840 
8841 	/* Is there any task to move? */
8842 	if (busiest_rq->nr_running <= 1)
8843 		goto out_unlock;
8844 
8845 	/*
8846 	 * This condition is "impossible", if it occurs
8847 	 * we need to fix it. Originally reported by
8848 	 * Bjorn Helgaas on a 128-CPU setup.
8849 	 */
8850 	BUG_ON(busiest_rq == target_rq);
8851 
8852 	/* Search for an sd spanning us and the target CPU. */
8853 	rcu_read_lock();
8854 	for_each_domain(target_cpu, sd) {
8855 		if ((sd->flags & SD_LOAD_BALANCE) &&
8856 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8857 				break;
8858 	}
8859 
8860 	if (likely(sd)) {
8861 		struct lb_env env = {
8862 			.sd		= sd,
8863 			.dst_cpu	= target_cpu,
8864 			.dst_rq		= target_rq,
8865 			.src_cpu	= busiest_rq->cpu,
8866 			.src_rq		= busiest_rq,
8867 			.idle		= CPU_IDLE,
8868 			/*
8869 			 * can_migrate_task() doesn't need to compute new_dst_cpu
8870 			 * for active balancing. Since we have CPU_IDLE, but no
8871 			 * @dst_grpmask we need to make that test go away with lying
8872 			 * about DST_PINNED.
8873 			 */
8874 			.flags		= LBF_DST_PINNED,
8875 		};
8876 
8877 		schedstat_inc(sd->alb_count);
8878 		update_rq_clock(busiest_rq);
8879 
8880 		p = detach_one_task(&env);
8881 		if (p) {
8882 			schedstat_inc(sd->alb_pushed);
8883 			/* Active balancing done, reset the failure counter. */
8884 			sd->nr_balance_failed = 0;
8885 		} else {
8886 			schedstat_inc(sd->alb_failed);
8887 		}
8888 	}
8889 	rcu_read_unlock();
8890 out_unlock:
8891 	busiest_rq->active_balance = 0;
8892 	rq_unlock(busiest_rq, &rf);
8893 
8894 	if (p)
8895 		attach_one_task(target_rq, p);
8896 
8897 	local_irq_enable();
8898 
8899 	return 0;
8900 }
8901 
8902 static DEFINE_SPINLOCK(balancing);
8903 
8904 /*
8905  * Scale the max load_balance interval with the number of CPUs in the system.
8906  * This trades load-balance latency on larger machines for less cross talk.
8907  */
8908 void update_max_interval(void)
8909 {
8910 	max_load_balance_interval = HZ*num_online_cpus()/10;
8911 }
8912 
8913 /*
8914  * It checks each scheduling domain to see if it is due to be balanced,
8915  * and initiates a balancing operation if so.
8916  *
8917  * Balancing parameters are set up in init_sched_domains.
8918  */
8919 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8920 {
8921 	int continue_balancing = 1;
8922 	int cpu = rq->cpu;
8923 	unsigned long interval;
8924 	struct sched_domain *sd;
8925 	/* Earliest time when we have to do rebalance again */
8926 	unsigned long next_balance = jiffies + 60*HZ;
8927 	int update_next_balance = 0;
8928 	int need_serialize, need_decay = 0;
8929 	u64 max_cost = 0;
8930 
8931 	rcu_read_lock();
8932 	for_each_domain(cpu, sd) {
8933 		/*
8934 		 * Decay the newidle max times here because this is a regular
8935 		 * visit to all the domains. Decay ~1% per second.
8936 		 */
8937 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8938 			sd->max_newidle_lb_cost =
8939 				(sd->max_newidle_lb_cost * 253) / 256;
8940 			sd->next_decay_max_lb_cost = jiffies + HZ;
8941 			need_decay = 1;
8942 		}
8943 		max_cost += sd->max_newidle_lb_cost;
8944 
8945 		if (!(sd->flags & SD_LOAD_BALANCE))
8946 			continue;
8947 
8948 		/*
8949 		 * Stop the load balance at this level. There is another
8950 		 * CPU in our sched group which is doing load balancing more
8951 		 * actively.
8952 		 */
8953 		if (!continue_balancing) {
8954 			if (need_decay)
8955 				continue;
8956 			break;
8957 		}
8958 
8959 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8960 
8961 		need_serialize = sd->flags & SD_SERIALIZE;
8962 		if (need_serialize) {
8963 			if (!spin_trylock(&balancing))
8964 				goto out;
8965 		}
8966 
8967 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8968 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8969 				/*
8970 				 * The LBF_DST_PINNED logic could have changed
8971 				 * env->dst_cpu, so we can't know our idle
8972 				 * state even if we migrated tasks. Update it.
8973 				 */
8974 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8975 			}
8976 			sd->last_balance = jiffies;
8977 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8978 		}
8979 		if (need_serialize)
8980 			spin_unlock(&balancing);
8981 out:
8982 		if (time_after(next_balance, sd->last_balance + interval)) {
8983 			next_balance = sd->last_balance + interval;
8984 			update_next_balance = 1;
8985 		}
8986 	}
8987 	if (need_decay) {
8988 		/*
8989 		 * Ensure the rq-wide value also decays but keep it at a
8990 		 * reasonable floor to avoid funnies with rq->avg_idle.
8991 		 */
8992 		rq->max_idle_balance_cost =
8993 			max((u64)sysctl_sched_migration_cost, max_cost);
8994 	}
8995 	rcu_read_unlock();
8996 
8997 	/*
8998 	 * next_balance will be updated only when there is a need.
8999 	 * When the cpu is attached to null domain for ex, it will not be
9000 	 * updated.
9001 	 */
9002 	if (likely(update_next_balance)) {
9003 		rq->next_balance = next_balance;
9004 
9005 #ifdef CONFIG_NO_HZ_COMMON
9006 		/*
9007 		 * If this CPU has been elected to perform the nohz idle
9008 		 * balance. Other idle CPUs have already rebalanced with
9009 		 * nohz_idle_balance() and nohz.next_balance has been
9010 		 * updated accordingly. This CPU is now running the idle load
9011 		 * balance for itself and we need to update the
9012 		 * nohz.next_balance accordingly.
9013 		 */
9014 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9015 			nohz.next_balance = rq->next_balance;
9016 #endif
9017 	}
9018 }
9019 
9020 static inline int on_null_domain(struct rq *rq)
9021 {
9022 	return unlikely(!rcu_dereference_sched(rq->sd));
9023 }
9024 
9025 #ifdef CONFIG_NO_HZ_COMMON
9026 /*
9027  * idle load balancing details
9028  * - When one of the busy CPUs notice that there may be an idle rebalancing
9029  *   needed, they will kick the idle load balancer, which then does idle
9030  *   load balancing for all the idle CPUs.
9031  */
9032 
9033 static inline int find_new_ilb(void)
9034 {
9035 	int ilb = cpumask_first(nohz.idle_cpus_mask);
9036 
9037 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
9038 		return ilb;
9039 
9040 	return nr_cpu_ids;
9041 }
9042 
9043 /*
9044  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9045  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9046  * CPU (if there is one).
9047  */
9048 static void kick_ilb(unsigned int flags)
9049 {
9050 	int ilb_cpu;
9051 
9052 	nohz.next_balance++;
9053 
9054 	ilb_cpu = find_new_ilb();
9055 
9056 	if (ilb_cpu >= nr_cpu_ids)
9057 		return;
9058 
9059 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9060 	if (flags & NOHZ_KICK_MASK)
9061 		return;
9062 
9063 	/*
9064 	 * Use smp_send_reschedule() instead of resched_cpu().
9065 	 * This way we generate a sched IPI on the target CPU which
9066 	 * is idle. And the softirq performing nohz idle load balance
9067 	 * will be run before returning from the IPI.
9068 	 */
9069 	smp_send_reschedule(ilb_cpu);
9070 }
9071 
9072 /*
9073  * Current heuristic for kicking the idle load balancer in the presence
9074  * of an idle cpu in the system.
9075  *   - This rq has more than one task.
9076  *   - This rq has at least one CFS task and the capacity of the CPU is
9077  *     significantly reduced because of RT tasks or IRQs.
9078  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
9079  *     multiple busy cpu.
9080  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9081  *     domain span are idle.
9082  */
9083 static void nohz_balancer_kick(struct rq *rq)
9084 {
9085 	unsigned long now = jiffies;
9086 	struct sched_domain_shared *sds;
9087 	struct sched_domain *sd;
9088 	int nr_busy, i, cpu = rq->cpu;
9089 	unsigned int flags = 0;
9090 
9091 	if (unlikely(rq->idle_balance))
9092 		return;
9093 
9094 	/*
9095 	 * We may be recently in ticked or tickless idle mode. At the first
9096 	 * busy tick after returning from idle, we will update the busy stats.
9097 	 */
9098 	nohz_balance_exit_idle(rq);
9099 
9100 	/*
9101 	 * None are in tickless mode and hence no need for NOHZ idle load
9102 	 * balancing.
9103 	 */
9104 	if (likely(!atomic_read(&nohz.nr_cpus)))
9105 		return;
9106 
9107 	if (READ_ONCE(nohz.has_blocked) &&
9108 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9109 		flags = NOHZ_STATS_KICK;
9110 
9111 	if (time_before(now, nohz.next_balance))
9112 		goto out;
9113 
9114 	if (rq->nr_running >= 2) {
9115 		flags = NOHZ_KICK_MASK;
9116 		goto out;
9117 	}
9118 
9119 	rcu_read_lock();
9120 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9121 	if (sds) {
9122 		/*
9123 		 * XXX: write a coherent comment on why we do this.
9124 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9125 		 */
9126 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9127 		if (nr_busy > 1) {
9128 			flags = NOHZ_KICK_MASK;
9129 			goto unlock;
9130 		}
9131 
9132 	}
9133 
9134 	sd = rcu_dereference(rq->sd);
9135 	if (sd) {
9136 		if ((rq->cfs.h_nr_running >= 1) &&
9137 				check_cpu_capacity(rq, sd)) {
9138 			flags = NOHZ_KICK_MASK;
9139 			goto unlock;
9140 		}
9141 	}
9142 
9143 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
9144 	if (sd) {
9145 		for_each_cpu(i, sched_domain_span(sd)) {
9146 			if (i == cpu ||
9147 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9148 				continue;
9149 
9150 			if (sched_asym_prefer(i, cpu)) {
9151 				flags = NOHZ_KICK_MASK;
9152 				goto unlock;
9153 			}
9154 		}
9155 	}
9156 unlock:
9157 	rcu_read_unlock();
9158 out:
9159 	if (flags)
9160 		kick_ilb(flags);
9161 }
9162 
9163 static void set_cpu_sd_state_busy(int cpu)
9164 {
9165 	struct sched_domain *sd;
9166 
9167 	rcu_read_lock();
9168 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9169 
9170 	if (!sd || !sd->nohz_idle)
9171 		goto unlock;
9172 	sd->nohz_idle = 0;
9173 
9174 	atomic_inc(&sd->shared->nr_busy_cpus);
9175 unlock:
9176 	rcu_read_unlock();
9177 }
9178 
9179 void nohz_balance_exit_idle(struct rq *rq)
9180 {
9181 	SCHED_WARN_ON(rq != this_rq());
9182 
9183 	if (likely(!rq->nohz_tick_stopped))
9184 		return;
9185 
9186 	rq->nohz_tick_stopped = 0;
9187 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9188 	atomic_dec(&nohz.nr_cpus);
9189 
9190 	set_cpu_sd_state_busy(rq->cpu);
9191 }
9192 
9193 static void set_cpu_sd_state_idle(int cpu)
9194 {
9195 	struct sched_domain *sd;
9196 
9197 	rcu_read_lock();
9198 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9199 
9200 	if (!sd || sd->nohz_idle)
9201 		goto unlock;
9202 	sd->nohz_idle = 1;
9203 
9204 	atomic_dec(&sd->shared->nr_busy_cpus);
9205 unlock:
9206 	rcu_read_unlock();
9207 }
9208 
9209 /*
9210  * This routine will record that the CPU is going idle with tick stopped.
9211  * This info will be used in performing idle load balancing in the future.
9212  */
9213 void nohz_balance_enter_idle(int cpu)
9214 {
9215 	struct rq *rq = cpu_rq(cpu);
9216 
9217 	SCHED_WARN_ON(cpu != smp_processor_id());
9218 
9219 	/* If this CPU is going down, then nothing needs to be done: */
9220 	if (!cpu_active(cpu))
9221 		return;
9222 
9223 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9224 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9225 		return;
9226 
9227 	/*
9228 	 * Can be set safely without rq->lock held
9229 	 * If a clear happens, it will have evaluated last additions because
9230 	 * rq->lock is held during the check and the clear
9231 	 */
9232 	rq->has_blocked_load = 1;
9233 
9234 	/*
9235 	 * The tick is still stopped but load could have been added in the
9236 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9237 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9238 	 * of nohz.has_blocked can only happen after checking the new load
9239 	 */
9240 	if (rq->nohz_tick_stopped)
9241 		goto out;
9242 
9243 	/* If we're a completely isolated CPU, we don't play: */
9244 	if (on_null_domain(rq))
9245 		return;
9246 
9247 	rq->nohz_tick_stopped = 1;
9248 
9249 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9250 	atomic_inc(&nohz.nr_cpus);
9251 
9252 	/*
9253 	 * Ensures that if nohz_idle_balance() fails to observe our
9254 	 * @idle_cpus_mask store, it must observe the @has_blocked
9255 	 * store.
9256 	 */
9257 	smp_mb__after_atomic();
9258 
9259 	set_cpu_sd_state_idle(cpu);
9260 
9261 out:
9262 	/*
9263 	 * Each time a cpu enter idle, we assume that it has blocked load and
9264 	 * enable the periodic update of the load of idle cpus
9265 	 */
9266 	WRITE_ONCE(nohz.has_blocked, 1);
9267 }
9268 
9269 /*
9270  * Internal function that runs load balance for all idle cpus. The load balance
9271  * can be a simple update of blocked load or a complete load balance with
9272  * tasks movement depending of flags.
9273  * The function returns false if the loop has stopped before running
9274  * through all idle CPUs.
9275  */
9276 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9277 			       enum cpu_idle_type idle)
9278 {
9279 	/* Earliest time when we have to do rebalance again */
9280 	unsigned long now = jiffies;
9281 	unsigned long next_balance = now + 60*HZ;
9282 	bool has_blocked_load = false;
9283 	int update_next_balance = 0;
9284 	int this_cpu = this_rq->cpu;
9285 	int balance_cpu;
9286 	int ret = false;
9287 	struct rq *rq;
9288 
9289 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9290 
9291 	/*
9292 	 * We assume there will be no idle load after this update and clear
9293 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9294 	 * set the has_blocked flag and trig another update of idle load.
9295 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9296 	 * setting the flag, we are sure to not clear the state and not
9297 	 * check the load of an idle cpu.
9298 	 */
9299 	WRITE_ONCE(nohz.has_blocked, 0);
9300 
9301 	/*
9302 	 * Ensures that if we miss the CPU, we must see the has_blocked
9303 	 * store from nohz_balance_enter_idle().
9304 	 */
9305 	smp_mb();
9306 
9307 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9308 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9309 			continue;
9310 
9311 		/*
9312 		 * If this CPU gets work to do, stop the load balancing
9313 		 * work being done for other CPUs. Next load
9314 		 * balancing owner will pick it up.
9315 		 */
9316 		if (need_resched()) {
9317 			has_blocked_load = true;
9318 			goto abort;
9319 		}
9320 
9321 		rq = cpu_rq(balance_cpu);
9322 
9323 		has_blocked_load |= update_nohz_stats(rq, true);
9324 
9325 		/*
9326 		 * If time for next balance is due,
9327 		 * do the balance.
9328 		 */
9329 		if (time_after_eq(jiffies, rq->next_balance)) {
9330 			struct rq_flags rf;
9331 
9332 			rq_lock_irqsave(rq, &rf);
9333 			update_rq_clock(rq);
9334 			cpu_load_update_idle(rq);
9335 			rq_unlock_irqrestore(rq, &rf);
9336 
9337 			if (flags & NOHZ_BALANCE_KICK)
9338 				rebalance_domains(rq, CPU_IDLE);
9339 		}
9340 
9341 		if (time_after(next_balance, rq->next_balance)) {
9342 			next_balance = rq->next_balance;
9343 			update_next_balance = 1;
9344 		}
9345 	}
9346 
9347 	/* Newly idle CPU doesn't need an update */
9348 	if (idle != CPU_NEWLY_IDLE) {
9349 		update_blocked_averages(this_cpu);
9350 		has_blocked_load |= this_rq->has_blocked_load;
9351 	}
9352 
9353 	if (flags & NOHZ_BALANCE_KICK)
9354 		rebalance_domains(this_rq, CPU_IDLE);
9355 
9356 	WRITE_ONCE(nohz.next_blocked,
9357 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9358 
9359 	/* The full idle balance loop has been done */
9360 	ret = true;
9361 
9362 abort:
9363 	/* There is still blocked load, enable periodic update */
9364 	if (has_blocked_load)
9365 		WRITE_ONCE(nohz.has_blocked, 1);
9366 
9367 	/*
9368 	 * next_balance will be updated only when there is a need.
9369 	 * When the CPU is attached to null domain for ex, it will not be
9370 	 * updated.
9371 	 */
9372 	if (likely(update_next_balance))
9373 		nohz.next_balance = next_balance;
9374 
9375 	return ret;
9376 }
9377 
9378 /*
9379  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9380  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9381  */
9382 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9383 {
9384 	int this_cpu = this_rq->cpu;
9385 	unsigned int flags;
9386 
9387 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9388 		return false;
9389 
9390 	if (idle != CPU_IDLE) {
9391 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9392 		return false;
9393 	}
9394 
9395 	/*
9396 	 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
9397 	 */
9398 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9399 	if (!(flags & NOHZ_KICK_MASK))
9400 		return false;
9401 
9402 	_nohz_idle_balance(this_rq, flags, idle);
9403 
9404 	return true;
9405 }
9406 
9407 static void nohz_newidle_balance(struct rq *this_rq)
9408 {
9409 	int this_cpu = this_rq->cpu;
9410 
9411 	/*
9412 	 * This CPU doesn't want to be disturbed by scheduler
9413 	 * housekeeping
9414 	 */
9415 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9416 		return;
9417 
9418 	/* Will wake up very soon. No time for doing anything else*/
9419 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
9420 		return;
9421 
9422 	/* Don't need to update blocked load of idle CPUs*/
9423 	if (!READ_ONCE(nohz.has_blocked) ||
9424 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9425 		return;
9426 
9427 	raw_spin_unlock(&this_rq->lock);
9428 	/*
9429 	 * This CPU is going to be idle and blocked load of idle CPUs
9430 	 * need to be updated. Run the ilb locally as it is a good
9431 	 * candidate for ilb instead of waking up another idle CPU.
9432 	 * Kick an normal ilb if we failed to do the update.
9433 	 */
9434 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9435 		kick_ilb(NOHZ_STATS_KICK);
9436 	raw_spin_lock(&this_rq->lock);
9437 }
9438 
9439 #else /* !CONFIG_NO_HZ_COMMON */
9440 static inline void nohz_balancer_kick(struct rq *rq) { }
9441 
9442 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9443 {
9444 	return false;
9445 }
9446 
9447 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9448 #endif /* CONFIG_NO_HZ_COMMON */
9449 
9450 /*
9451  * idle_balance is called by schedule() if this_cpu is about to become
9452  * idle. Attempts to pull tasks from other CPUs.
9453  */
9454 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9455 {
9456 	unsigned long next_balance = jiffies + HZ;
9457 	int this_cpu = this_rq->cpu;
9458 	struct sched_domain *sd;
9459 	int pulled_task = 0;
9460 	u64 curr_cost = 0;
9461 
9462 	/*
9463 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
9464 	 * measure the duration of idle_balance() as idle time.
9465 	 */
9466 	this_rq->idle_stamp = rq_clock(this_rq);
9467 
9468 	/*
9469 	 * Do not pull tasks towards !active CPUs...
9470 	 */
9471 	if (!cpu_active(this_cpu))
9472 		return 0;
9473 
9474 	/*
9475 	 * This is OK, because current is on_cpu, which avoids it being picked
9476 	 * for load-balance and preemption/IRQs are still disabled avoiding
9477 	 * further scheduler activity on it and we're being very careful to
9478 	 * re-start the picking loop.
9479 	 */
9480 	rq_unpin_lock(this_rq, rf);
9481 
9482 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9483 	    !this_rq->rd->overload) {
9484 
9485 		rcu_read_lock();
9486 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
9487 		if (sd)
9488 			update_next_balance(sd, &next_balance);
9489 		rcu_read_unlock();
9490 
9491 		nohz_newidle_balance(this_rq);
9492 
9493 		goto out;
9494 	}
9495 
9496 	raw_spin_unlock(&this_rq->lock);
9497 
9498 	update_blocked_averages(this_cpu);
9499 	rcu_read_lock();
9500 	for_each_domain(this_cpu, sd) {
9501 		int continue_balancing = 1;
9502 		u64 t0, domain_cost;
9503 
9504 		if (!(sd->flags & SD_LOAD_BALANCE))
9505 			continue;
9506 
9507 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9508 			update_next_balance(sd, &next_balance);
9509 			break;
9510 		}
9511 
9512 		if (sd->flags & SD_BALANCE_NEWIDLE) {
9513 			t0 = sched_clock_cpu(this_cpu);
9514 
9515 			pulled_task = load_balance(this_cpu, this_rq,
9516 						   sd, CPU_NEWLY_IDLE,
9517 						   &continue_balancing);
9518 
9519 			domain_cost = sched_clock_cpu(this_cpu) - t0;
9520 			if (domain_cost > sd->max_newidle_lb_cost)
9521 				sd->max_newidle_lb_cost = domain_cost;
9522 
9523 			curr_cost += domain_cost;
9524 		}
9525 
9526 		update_next_balance(sd, &next_balance);
9527 
9528 		/*
9529 		 * Stop searching for tasks to pull if there are
9530 		 * now runnable tasks on this rq.
9531 		 */
9532 		if (pulled_task || this_rq->nr_running > 0)
9533 			break;
9534 	}
9535 	rcu_read_unlock();
9536 
9537 	raw_spin_lock(&this_rq->lock);
9538 
9539 	if (curr_cost > this_rq->max_idle_balance_cost)
9540 		this_rq->max_idle_balance_cost = curr_cost;
9541 
9542 out:
9543 	/*
9544 	 * While browsing the domains, we released the rq lock, a task could
9545 	 * have been enqueued in the meantime. Since we're not going idle,
9546 	 * pretend we pulled a task.
9547 	 */
9548 	if (this_rq->cfs.h_nr_running && !pulled_task)
9549 		pulled_task = 1;
9550 
9551 	/* Move the next balance forward */
9552 	if (time_after(this_rq->next_balance, next_balance))
9553 		this_rq->next_balance = next_balance;
9554 
9555 	/* Is there a task of a high priority class? */
9556 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9557 		pulled_task = -1;
9558 
9559 	if (pulled_task)
9560 		this_rq->idle_stamp = 0;
9561 
9562 	rq_repin_lock(this_rq, rf);
9563 
9564 	return pulled_task;
9565 }
9566 
9567 /*
9568  * run_rebalance_domains is triggered when needed from the scheduler tick.
9569  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9570  */
9571 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9572 {
9573 	struct rq *this_rq = this_rq();
9574 	enum cpu_idle_type idle = this_rq->idle_balance ?
9575 						CPU_IDLE : CPU_NOT_IDLE;
9576 
9577 	/*
9578 	 * If this CPU has a pending nohz_balance_kick, then do the
9579 	 * balancing on behalf of the other idle CPUs whose ticks are
9580 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9581 	 * give the idle CPUs a chance to load balance. Else we may
9582 	 * load balance only within the local sched_domain hierarchy
9583 	 * and abort nohz_idle_balance altogether if we pull some load.
9584 	 */
9585 	if (nohz_idle_balance(this_rq, idle))
9586 		return;
9587 
9588 	/* normal load balance */
9589 	update_blocked_averages(this_rq->cpu);
9590 	rebalance_domains(this_rq, idle);
9591 }
9592 
9593 /*
9594  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9595  */
9596 void trigger_load_balance(struct rq *rq)
9597 {
9598 	/* Don't need to rebalance while attached to NULL domain */
9599 	if (unlikely(on_null_domain(rq)))
9600 		return;
9601 
9602 	if (time_after_eq(jiffies, rq->next_balance))
9603 		raise_softirq(SCHED_SOFTIRQ);
9604 
9605 	nohz_balancer_kick(rq);
9606 }
9607 
9608 static void rq_online_fair(struct rq *rq)
9609 {
9610 	update_sysctl();
9611 
9612 	update_runtime_enabled(rq);
9613 }
9614 
9615 static void rq_offline_fair(struct rq *rq)
9616 {
9617 	update_sysctl();
9618 
9619 	/* Ensure any throttled groups are reachable by pick_next_task */
9620 	unthrottle_offline_cfs_rqs(rq);
9621 }
9622 
9623 #endif /* CONFIG_SMP */
9624 
9625 /*
9626  * scheduler tick hitting a task of our scheduling class.
9627  *
9628  * NOTE: This function can be called remotely by the tick offload that
9629  * goes along full dynticks. Therefore no local assumption can be made
9630  * and everything must be accessed through the @rq and @curr passed in
9631  * parameters.
9632  */
9633 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9634 {
9635 	struct cfs_rq *cfs_rq;
9636 	struct sched_entity *se = &curr->se;
9637 
9638 	for_each_sched_entity(se) {
9639 		cfs_rq = cfs_rq_of(se);
9640 		entity_tick(cfs_rq, se, queued);
9641 	}
9642 
9643 	if (static_branch_unlikely(&sched_numa_balancing))
9644 		task_tick_numa(rq, curr);
9645 }
9646 
9647 /*
9648  * called on fork with the child task as argument from the parent's context
9649  *  - child not yet on the tasklist
9650  *  - preemption disabled
9651  */
9652 static void task_fork_fair(struct task_struct *p)
9653 {
9654 	struct cfs_rq *cfs_rq;
9655 	struct sched_entity *se = &p->se, *curr;
9656 	struct rq *rq = this_rq();
9657 	struct rq_flags rf;
9658 
9659 	rq_lock(rq, &rf);
9660 	update_rq_clock(rq);
9661 
9662 	cfs_rq = task_cfs_rq(current);
9663 	curr = cfs_rq->curr;
9664 	if (curr) {
9665 		update_curr(cfs_rq);
9666 		se->vruntime = curr->vruntime;
9667 	}
9668 	place_entity(cfs_rq, se, 1);
9669 
9670 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9671 		/*
9672 		 * Upon rescheduling, sched_class::put_prev_task() will place
9673 		 * 'current' within the tree based on its new key value.
9674 		 */
9675 		swap(curr->vruntime, se->vruntime);
9676 		resched_curr(rq);
9677 	}
9678 
9679 	se->vruntime -= cfs_rq->min_vruntime;
9680 	rq_unlock(rq, &rf);
9681 }
9682 
9683 /*
9684  * Priority of the task has changed. Check to see if we preempt
9685  * the current task.
9686  */
9687 static void
9688 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9689 {
9690 	if (!task_on_rq_queued(p))
9691 		return;
9692 
9693 	/*
9694 	 * Reschedule if we are currently running on this runqueue and
9695 	 * our priority decreased, or if we are not currently running on
9696 	 * this runqueue and our priority is higher than the current's
9697 	 */
9698 	if (rq->curr == p) {
9699 		if (p->prio > oldprio)
9700 			resched_curr(rq);
9701 	} else
9702 		check_preempt_curr(rq, p, 0);
9703 }
9704 
9705 static inline bool vruntime_normalized(struct task_struct *p)
9706 {
9707 	struct sched_entity *se = &p->se;
9708 
9709 	/*
9710 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9711 	 * the dequeue_entity(.flags=0) will already have normalized the
9712 	 * vruntime.
9713 	 */
9714 	if (p->on_rq)
9715 		return true;
9716 
9717 	/*
9718 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
9719 	 * But there are some cases where it has already been normalized:
9720 	 *
9721 	 * - A forked child which is waiting for being woken up by
9722 	 *   wake_up_new_task().
9723 	 * - A task which has been woken up by try_to_wake_up() and
9724 	 *   waiting for actually being woken up by sched_ttwu_pending().
9725 	 */
9726 	if (!se->sum_exec_runtime ||
9727 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
9728 		return true;
9729 
9730 	return false;
9731 }
9732 
9733 #ifdef CONFIG_FAIR_GROUP_SCHED
9734 /*
9735  * Propagate the changes of the sched_entity across the tg tree to make it
9736  * visible to the root
9737  */
9738 static void propagate_entity_cfs_rq(struct sched_entity *se)
9739 {
9740 	struct cfs_rq *cfs_rq;
9741 
9742 	/* Start to propagate at parent */
9743 	se = se->parent;
9744 
9745 	for_each_sched_entity(se) {
9746 		cfs_rq = cfs_rq_of(se);
9747 
9748 		if (cfs_rq_throttled(cfs_rq))
9749 			break;
9750 
9751 		update_load_avg(cfs_rq, se, UPDATE_TG);
9752 	}
9753 }
9754 #else
9755 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9756 #endif
9757 
9758 static void detach_entity_cfs_rq(struct sched_entity *se)
9759 {
9760 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9761 
9762 	/* Catch up with the cfs_rq and remove our load when we leave */
9763 	update_load_avg(cfs_rq, se, 0);
9764 	detach_entity_load_avg(cfs_rq, se);
9765 	update_tg_load_avg(cfs_rq, false);
9766 	propagate_entity_cfs_rq(se);
9767 }
9768 
9769 static void attach_entity_cfs_rq(struct sched_entity *se)
9770 {
9771 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9772 
9773 #ifdef CONFIG_FAIR_GROUP_SCHED
9774 	/*
9775 	 * Since the real-depth could have been changed (only FAIR
9776 	 * class maintain depth value), reset depth properly.
9777 	 */
9778 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9779 #endif
9780 
9781 	/* Synchronize entity with its cfs_rq */
9782 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9783 	attach_entity_load_avg(cfs_rq, se, 0);
9784 	update_tg_load_avg(cfs_rq, false);
9785 	propagate_entity_cfs_rq(se);
9786 }
9787 
9788 static void detach_task_cfs_rq(struct task_struct *p)
9789 {
9790 	struct sched_entity *se = &p->se;
9791 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9792 
9793 	if (!vruntime_normalized(p)) {
9794 		/*
9795 		 * Fix up our vruntime so that the current sleep doesn't
9796 		 * cause 'unlimited' sleep bonus.
9797 		 */
9798 		place_entity(cfs_rq, se, 0);
9799 		se->vruntime -= cfs_rq->min_vruntime;
9800 	}
9801 
9802 	detach_entity_cfs_rq(se);
9803 }
9804 
9805 static void attach_task_cfs_rq(struct task_struct *p)
9806 {
9807 	struct sched_entity *se = &p->se;
9808 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9809 
9810 	attach_entity_cfs_rq(se);
9811 
9812 	if (!vruntime_normalized(p))
9813 		se->vruntime += cfs_rq->min_vruntime;
9814 }
9815 
9816 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9817 {
9818 	detach_task_cfs_rq(p);
9819 }
9820 
9821 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9822 {
9823 	attach_task_cfs_rq(p);
9824 
9825 	if (task_on_rq_queued(p)) {
9826 		/*
9827 		 * We were most likely switched from sched_rt, so
9828 		 * kick off the schedule if running, otherwise just see
9829 		 * if we can still preempt the current task.
9830 		 */
9831 		if (rq->curr == p)
9832 			resched_curr(rq);
9833 		else
9834 			check_preempt_curr(rq, p, 0);
9835 	}
9836 }
9837 
9838 /* Account for a task changing its policy or group.
9839  *
9840  * This routine is mostly called to set cfs_rq->curr field when a task
9841  * migrates between groups/classes.
9842  */
9843 static void set_curr_task_fair(struct rq *rq)
9844 {
9845 	struct sched_entity *se = &rq->curr->se;
9846 
9847 	for_each_sched_entity(se) {
9848 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
9849 
9850 		set_next_entity(cfs_rq, se);
9851 		/* ensure bandwidth has been allocated on our new cfs_rq */
9852 		account_cfs_rq_runtime(cfs_rq, 0);
9853 	}
9854 }
9855 
9856 void init_cfs_rq(struct cfs_rq *cfs_rq)
9857 {
9858 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9859 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9860 #ifndef CONFIG_64BIT
9861 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9862 #endif
9863 #ifdef CONFIG_SMP
9864 	raw_spin_lock_init(&cfs_rq->removed.lock);
9865 #endif
9866 }
9867 
9868 #ifdef CONFIG_FAIR_GROUP_SCHED
9869 static void task_set_group_fair(struct task_struct *p)
9870 {
9871 	struct sched_entity *se = &p->se;
9872 
9873 	set_task_rq(p, task_cpu(p));
9874 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9875 }
9876 
9877 static void task_move_group_fair(struct task_struct *p)
9878 {
9879 	detach_task_cfs_rq(p);
9880 	set_task_rq(p, task_cpu(p));
9881 
9882 #ifdef CONFIG_SMP
9883 	/* Tell se's cfs_rq has been changed -- migrated */
9884 	p->se.avg.last_update_time = 0;
9885 #endif
9886 	attach_task_cfs_rq(p);
9887 }
9888 
9889 static void task_change_group_fair(struct task_struct *p, int type)
9890 {
9891 	switch (type) {
9892 	case TASK_SET_GROUP:
9893 		task_set_group_fair(p);
9894 		break;
9895 
9896 	case TASK_MOVE_GROUP:
9897 		task_move_group_fair(p);
9898 		break;
9899 	}
9900 }
9901 
9902 void free_fair_sched_group(struct task_group *tg)
9903 {
9904 	int i;
9905 
9906 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9907 
9908 	for_each_possible_cpu(i) {
9909 		if (tg->cfs_rq)
9910 			kfree(tg->cfs_rq[i]);
9911 		if (tg->se)
9912 			kfree(tg->se[i]);
9913 	}
9914 
9915 	kfree(tg->cfs_rq);
9916 	kfree(tg->se);
9917 }
9918 
9919 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9920 {
9921 	struct sched_entity *se;
9922 	struct cfs_rq *cfs_rq;
9923 	int i;
9924 
9925 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
9926 	if (!tg->cfs_rq)
9927 		goto err;
9928 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
9929 	if (!tg->se)
9930 		goto err;
9931 
9932 	tg->shares = NICE_0_LOAD;
9933 
9934 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9935 
9936 	for_each_possible_cpu(i) {
9937 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9938 				      GFP_KERNEL, cpu_to_node(i));
9939 		if (!cfs_rq)
9940 			goto err;
9941 
9942 		se = kzalloc_node(sizeof(struct sched_entity),
9943 				  GFP_KERNEL, cpu_to_node(i));
9944 		if (!se)
9945 			goto err_free_rq;
9946 
9947 		init_cfs_rq(cfs_rq);
9948 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9949 		init_entity_runnable_average(se);
9950 	}
9951 
9952 	return 1;
9953 
9954 err_free_rq:
9955 	kfree(cfs_rq);
9956 err:
9957 	return 0;
9958 }
9959 
9960 void online_fair_sched_group(struct task_group *tg)
9961 {
9962 	struct sched_entity *se;
9963 	struct rq *rq;
9964 	int i;
9965 
9966 	for_each_possible_cpu(i) {
9967 		rq = cpu_rq(i);
9968 		se = tg->se[i];
9969 
9970 		raw_spin_lock_irq(&rq->lock);
9971 		update_rq_clock(rq);
9972 		attach_entity_cfs_rq(se);
9973 		sync_throttle(tg, i);
9974 		raw_spin_unlock_irq(&rq->lock);
9975 	}
9976 }
9977 
9978 void unregister_fair_sched_group(struct task_group *tg)
9979 {
9980 	unsigned long flags;
9981 	struct rq *rq;
9982 	int cpu;
9983 
9984 	for_each_possible_cpu(cpu) {
9985 		if (tg->se[cpu])
9986 			remove_entity_load_avg(tg->se[cpu]);
9987 
9988 		/*
9989 		 * Only empty task groups can be destroyed; so we can speculatively
9990 		 * check on_list without danger of it being re-added.
9991 		 */
9992 		if (!tg->cfs_rq[cpu]->on_list)
9993 			continue;
9994 
9995 		rq = cpu_rq(cpu);
9996 
9997 		raw_spin_lock_irqsave(&rq->lock, flags);
9998 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9999 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10000 	}
10001 }
10002 
10003 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10004 			struct sched_entity *se, int cpu,
10005 			struct sched_entity *parent)
10006 {
10007 	struct rq *rq = cpu_rq(cpu);
10008 
10009 	cfs_rq->tg = tg;
10010 	cfs_rq->rq = rq;
10011 	init_cfs_rq_runtime(cfs_rq);
10012 
10013 	tg->cfs_rq[cpu] = cfs_rq;
10014 	tg->se[cpu] = se;
10015 
10016 	/* se could be NULL for root_task_group */
10017 	if (!se)
10018 		return;
10019 
10020 	if (!parent) {
10021 		se->cfs_rq = &rq->cfs;
10022 		se->depth = 0;
10023 	} else {
10024 		se->cfs_rq = parent->my_q;
10025 		se->depth = parent->depth + 1;
10026 	}
10027 
10028 	se->my_q = cfs_rq;
10029 	/* guarantee group entities always have weight */
10030 	update_load_set(&se->load, NICE_0_LOAD);
10031 	se->parent = parent;
10032 }
10033 
10034 static DEFINE_MUTEX(shares_mutex);
10035 
10036 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10037 {
10038 	int i;
10039 
10040 	/*
10041 	 * We can't change the weight of the root cgroup.
10042 	 */
10043 	if (!tg->se[0])
10044 		return -EINVAL;
10045 
10046 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10047 
10048 	mutex_lock(&shares_mutex);
10049 	if (tg->shares == shares)
10050 		goto done;
10051 
10052 	tg->shares = shares;
10053 	for_each_possible_cpu(i) {
10054 		struct rq *rq = cpu_rq(i);
10055 		struct sched_entity *se = tg->se[i];
10056 		struct rq_flags rf;
10057 
10058 		/* Propagate contribution to hierarchy */
10059 		rq_lock_irqsave(rq, &rf);
10060 		update_rq_clock(rq);
10061 		for_each_sched_entity(se) {
10062 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10063 			update_cfs_group(se);
10064 		}
10065 		rq_unlock_irqrestore(rq, &rf);
10066 	}
10067 
10068 done:
10069 	mutex_unlock(&shares_mutex);
10070 	return 0;
10071 }
10072 #else /* CONFIG_FAIR_GROUP_SCHED */
10073 
10074 void free_fair_sched_group(struct task_group *tg) { }
10075 
10076 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10077 {
10078 	return 1;
10079 }
10080 
10081 void online_fair_sched_group(struct task_group *tg) { }
10082 
10083 void unregister_fair_sched_group(struct task_group *tg) { }
10084 
10085 #endif /* CONFIG_FAIR_GROUP_SCHED */
10086 
10087 
10088 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10089 {
10090 	struct sched_entity *se = &task->se;
10091 	unsigned int rr_interval = 0;
10092 
10093 	/*
10094 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10095 	 * idle runqueue:
10096 	 */
10097 	if (rq->cfs.load.weight)
10098 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10099 
10100 	return rr_interval;
10101 }
10102 
10103 /*
10104  * All the scheduling class methods:
10105  */
10106 const struct sched_class fair_sched_class = {
10107 	.next			= &idle_sched_class,
10108 	.enqueue_task		= enqueue_task_fair,
10109 	.dequeue_task		= dequeue_task_fair,
10110 	.yield_task		= yield_task_fair,
10111 	.yield_to_task		= yield_to_task_fair,
10112 
10113 	.check_preempt_curr	= check_preempt_wakeup,
10114 
10115 	.pick_next_task		= pick_next_task_fair,
10116 	.put_prev_task		= put_prev_task_fair,
10117 
10118 #ifdef CONFIG_SMP
10119 	.select_task_rq		= select_task_rq_fair,
10120 	.migrate_task_rq	= migrate_task_rq_fair,
10121 
10122 	.rq_online		= rq_online_fair,
10123 	.rq_offline		= rq_offline_fair,
10124 
10125 	.task_dead		= task_dead_fair,
10126 	.set_cpus_allowed	= set_cpus_allowed_common,
10127 #endif
10128 
10129 	.set_curr_task          = set_curr_task_fair,
10130 	.task_tick		= task_tick_fair,
10131 	.task_fork		= task_fork_fair,
10132 
10133 	.prio_changed		= prio_changed_fair,
10134 	.switched_from		= switched_from_fair,
10135 	.switched_to		= switched_to_fair,
10136 
10137 	.get_rr_interval	= get_rr_interval_fair,
10138 
10139 	.update_curr		= update_curr_fair,
10140 
10141 #ifdef CONFIG_FAIR_GROUP_SCHED
10142 	.task_change_group	= task_change_group_fair,
10143 #endif
10144 };
10145 
10146 #ifdef CONFIG_SCHED_DEBUG
10147 void print_cfs_stats(struct seq_file *m, int cpu)
10148 {
10149 	struct cfs_rq *cfs_rq, *pos;
10150 
10151 	rcu_read_lock();
10152 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10153 		print_cfs_rq(m, cpu, cfs_rq);
10154 	rcu_read_unlock();
10155 }
10156 
10157 #ifdef CONFIG_NUMA_BALANCING
10158 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10159 {
10160 	int node;
10161 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10162 
10163 	for_each_online_node(node) {
10164 		if (p->numa_faults) {
10165 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10166 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10167 		}
10168 		if (p->numa_group) {
10169 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10170 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10171 		}
10172 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10173 	}
10174 }
10175 #endif /* CONFIG_NUMA_BALANCING */
10176 #endif /* CONFIG_SCHED_DEBUG */
10177 
10178 __init void init_sched_fair_class(void)
10179 {
10180 #ifdef CONFIG_SMP
10181 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10182 
10183 #ifdef CONFIG_NO_HZ_COMMON
10184 	nohz.next_balance = jiffies;
10185 	nohz.next_blocked = jiffies;
10186 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10187 #endif
10188 #endif /* SMP */
10189 
10190 }
10191