1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 #endif 98 99 #ifdef CONFIG_CFS_BANDWIDTH 100 /* 101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 102 * each time a cfs_rq requests quota. 103 * 104 * Note: in the case that the slice exceeds the runtime remaining (either due 105 * to consumption or the quota being specified to be smaller than the slice) 106 * we will always only issue the remaining available time. 107 * 108 * (default: 5 msec, units: microseconds) 109 */ 110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 111 #endif 112 113 /* 114 * The margin used when comparing utilization with CPU capacity: 115 * util * margin < capacity * 1024 116 * 117 * (default: ~20%) 118 */ 119 unsigned int capacity_margin = 1280; 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 /* hint to use a 32x32->64 mul */ 233 fact = (u64)(u32)fact * lw->inv_weight; 234 235 while (fact >> 32) { 236 fact >>= 1; 237 shift--; 238 } 239 240 return mul_u64_u32_shr(delta_exec, fact, shift); 241 } 242 243 244 const struct sched_class fair_sched_class; 245 246 /************************************************************** 247 * CFS operations on generic schedulable entities: 248 */ 249 250 #ifdef CONFIG_FAIR_GROUP_SCHED 251 252 /* cpu runqueue to which this cfs_rq is attached */ 253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 254 { 255 return cfs_rq->rq; 256 } 257 258 static inline struct task_struct *task_of(struct sched_entity *se) 259 { 260 SCHED_WARN_ON(!entity_is_task(se)); 261 return container_of(se, struct task_struct, se); 262 } 263 264 /* Walk up scheduling entities hierarchy */ 265 #define for_each_sched_entity(se) \ 266 for (; se; se = se->parent) 267 268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 269 { 270 return p->se.cfs_rq; 271 } 272 273 /* runqueue on which this entity is (to be) queued */ 274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 275 { 276 return se->cfs_rq; 277 } 278 279 /* runqueue "owned" by this group */ 280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 281 { 282 return grp->my_q; 283 } 284 285 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 286 { 287 if (!cfs_rq->on_list) { 288 struct rq *rq = rq_of(cfs_rq); 289 int cpu = cpu_of(rq); 290 /* 291 * Ensure we either appear before our parent (if already 292 * enqueued) or force our parent to appear after us when it is 293 * enqueued. The fact that we always enqueue bottom-up 294 * reduces this to two cases and a special case for the root 295 * cfs_rq. Furthermore, it also means that we will always reset 296 * tmp_alone_branch either when the branch is connected 297 * to a tree or when we reach the beg of the tree 298 */ 299 if (cfs_rq->tg->parent && 300 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 301 /* 302 * If parent is already on the list, we add the child 303 * just before. Thanks to circular linked property of 304 * the list, this means to put the child at the tail 305 * of the list that starts by parent. 306 */ 307 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 308 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 309 /* 310 * The branch is now connected to its tree so we can 311 * reset tmp_alone_branch to the beginning of the 312 * list. 313 */ 314 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 315 } else if (!cfs_rq->tg->parent) { 316 /* 317 * cfs rq without parent should be put 318 * at the tail of the list. 319 */ 320 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 321 &rq->leaf_cfs_rq_list); 322 /* 323 * We have reach the beg of a tree so we can reset 324 * tmp_alone_branch to the beginning of the list. 325 */ 326 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 327 } else { 328 /* 329 * The parent has not already been added so we want to 330 * make sure that it will be put after us. 331 * tmp_alone_branch points to the beg of the branch 332 * where we will add parent. 333 */ 334 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 335 rq->tmp_alone_branch); 336 /* 337 * update tmp_alone_branch to points to the new beg 338 * of the branch 339 */ 340 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 341 } 342 343 cfs_rq->on_list = 1; 344 } 345 } 346 347 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 348 { 349 if (cfs_rq->on_list) { 350 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 351 cfs_rq->on_list = 0; 352 } 353 } 354 355 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 356 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 357 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 358 leaf_cfs_rq_list) 359 360 /* Do the two (enqueued) entities belong to the same group ? */ 361 static inline struct cfs_rq * 362 is_same_group(struct sched_entity *se, struct sched_entity *pse) 363 { 364 if (se->cfs_rq == pse->cfs_rq) 365 return se->cfs_rq; 366 367 return NULL; 368 } 369 370 static inline struct sched_entity *parent_entity(struct sched_entity *se) 371 { 372 return se->parent; 373 } 374 375 static void 376 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 377 { 378 int se_depth, pse_depth; 379 380 /* 381 * preemption test can be made between sibling entities who are in the 382 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 383 * both tasks until we find their ancestors who are siblings of common 384 * parent. 385 */ 386 387 /* First walk up until both entities are at same depth */ 388 se_depth = (*se)->depth; 389 pse_depth = (*pse)->depth; 390 391 while (se_depth > pse_depth) { 392 se_depth--; 393 *se = parent_entity(*se); 394 } 395 396 while (pse_depth > se_depth) { 397 pse_depth--; 398 *pse = parent_entity(*pse); 399 } 400 401 while (!is_same_group(*se, *pse)) { 402 *se = parent_entity(*se); 403 *pse = parent_entity(*pse); 404 } 405 } 406 407 #else /* !CONFIG_FAIR_GROUP_SCHED */ 408 409 static inline struct task_struct *task_of(struct sched_entity *se) 410 { 411 return container_of(se, struct task_struct, se); 412 } 413 414 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 415 { 416 return container_of(cfs_rq, struct rq, cfs); 417 } 418 419 420 #define for_each_sched_entity(se) \ 421 for (; se; se = NULL) 422 423 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 424 { 425 return &task_rq(p)->cfs; 426 } 427 428 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 429 { 430 struct task_struct *p = task_of(se); 431 struct rq *rq = task_rq(p); 432 433 return &rq->cfs; 434 } 435 436 /* runqueue "owned" by this group */ 437 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 438 { 439 return NULL; 440 } 441 442 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 443 { 444 } 445 446 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 447 { 448 } 449 450 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 451 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 452 453 static inline struct sched_entity *parent_entity(struct sched_entity *se) 454 { 455 return NULL; 456 } 457 458 static inline void 459 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 460 { 461 } 462 463 #endif /* CONFIG_FAIR_GROUP_SCHED */ 464 465 static __always_inline 466 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 467 468 /************************************************************** 469 * Scheduling class tree data structure manipulation methods: 470 */ 471 472 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 473 { 474 s64 delta = (s64)(vruntime - max_vruntime); 475 if (delta > 0) 476 max_vruntime = vruntime; 477 478 return max_vruntime; 479 } 480 481 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 482 { 483 s64 delta = (s64)(vruntime - min_vruntime); 484 if (delta < 0) 485 min_vruntime = vruntime; 486 487 return min_vruntime; 488 } 489 490 static inline int entity_before(struct sched_entity *a, 491 struct sched_entity *b) 492 { 493 return (s64)(a->vruntime - b->vruntime) < 0; 494 } 495 496 static void update_min_vruntime(struct cfs_rq *cfs_rq) 497 { 498 struct sched_entity *curr = cfs_rq->curr; 499 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 500 501 u64 vruntime = cfs_rq->min_vruntime; 502 503 if (curr) { 504 if (curr->on_rq) 505 vruntime = curr->vruntime; 506 else 507 curr = NULL; 508 } 509 510 if (leftmost) { /* non-empty tree */ 511 struct sched_entity *se; 512 se = rb_entry(leftmost, struct sched_entity, run_node); 513 514 if (!curr) 515 vruntime = se->vruntime; 516 else 517 vruntime = min_vruntime(vruntime, se->vruntime); 518 } 519 520 /* ensure we never gain time by being placed backwards. */ 521 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 522 #ifndef CONFIG_64BIT 523 smp_wmb(); 524 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 525 #endif 526 } 527 528 /* 529 * Enqueue an entity into the rb-tree: 530 */ 531 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 532 { 533 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 534 struct rb_node *parent = NULL; 535 struct sched_entity *entry; 536 bool leftmost = true; 537 538 /* 539 * Find the right place in the rbtree: 540 */ 541 while (*link) { 542 parent = *link; 543 entry = rb_entry(parent, struct sched_entity, run_node); 544 /* 545 * We dont care about collisions. Nodes with 546 * the same key stay together. 547 */ 548 if (entity_before(se, entry)) { 549 link = &parent->rb_left; 550 } else { 551 link = &parent->rb_right; 552 leftmost = false; 553 } 554 } 555 556 rb_link_node(&se->run_node, parent, link); 557 rb_insert_color_cached(&se->run_node, 558 &cfs_rq->tasks_timeline, leftmost); 559 } 560 561 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 562 { 563 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 564 } 565 566 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 567 { 568 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 569 570 if (!left) 571 return NULL; 572 573 return rb_entry(left, struct sched_entity, run_node); 574 } 575 576 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 577 { 578 struct rb_node *next = rb_next(&se->run_node); 579 580 if (!next) 581 return NULL; 582 583 return rb_entry(next, struct sched_entity, run_node); 584 } 585 586 #ifdef CONFIG_SCHED_DEBUG 587 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 588 { 589 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 590 591 if (!last) 592 return NULL; 593 594 return rb_entry(last, struct sched_entity, run_node); 595 } 596 597 /************************************************************** 598 * Scheduling class statistics methods: 599 */ 600 601 int sched_proc_update_handler(struct ctl_table *table, int write, 602 void __user *buffer, size_t *lenp, 603 loff_t *ppos) 604 { 605 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 606 unsigned int factor = get_update_sysctl_factor(); 607 608 if (ret || !write) 609 return ret; 610 611 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 612 sysctl_sched_min_granularity); 613 614 #define WRT_SYSCTL(name) \ 615 (normalized_sysctl_##name = sysctl_##name / (factor)) 616 WRT_SYSCTL(sched_min_granularity); 617 WRT_SYSCTL(sched_latency); 618 WRT_SYSCTL(sched_wakeup_granularity); 619 #undef WRT_SYSCTL 620 621 return 0; 622 } 623 #endif 624 625 /* 626 * delta /= w 627 */ 628 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 629 { 630 if (unlikely(se->load.weight != NICE_0_LOAD)) 631 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 632 633 return delta; 634 } 635 636 /* 637 * The idea is to set a period in which each task runs once. 638 * 639 * When there are too many tasks (sched_nr_latency) we have to stretch 640 * this period because otherwise the slices get too small. 641 * 642 * p = (nr <= nl) ? l : l*nr/nl 643 */ 644 static u64 __sched_period(unsigned long nr_running) 645 { 646 if (unlikely(nr_running > sched_nr_latency)) 647 return nr_running * sysctl_sched_min_granularity; 648 else 649 return sysctl_sched_latency; 650 } 651 652 /* 653 * We calculate the wall-time slice from the period by taking a part 654 * proportional to the weight. 655 * 656 * s = p*P[w/rw] 657 */ 658 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 659 { 660 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 661 662 for_each_sched_entity(se) { 663 struct load_weight *load; 664 struct load_weight lw; 665 666 cfs_rq = cfs_rq_of(se); 667 load = &cfs_rq->load; 668 669 if (unlikely(!se->on_rq)) { 670 lw = cfs_rq->load; 671 672 update_load_add(&lw, se->load.weight); 673 load = &lw; 674 } 675 slice = __calc_delta(slice, se->load.weight, load); 676 } 677 return slice; 678 } 679 680 /* 681 * We calculate the vruntime slice of a to-be-inserted task. 682 * 683 * vs = s/w 684 */ 685 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 686 { 687 return calc_delta_fair(sched_slice(cfs_rq, se), se); 688 } 689 690 #ifdef CONFIG_SMP 691 #include "pelt.h" 692 #include "sched-pelt.h" 693 694 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 695 static unsigned long task_h_load(struct task_struct *p); 696 697 /* Give new sched_entity start runnable values to heavy its load in infant time */ 698 void init_entity_runnable_average(struct sched_entity *se) 699 { 700 struct sched_avg *sa = &se->avg; 701 702 memset(sa, 0, sizeof(*sa)); 703 704 /* 705 * Tasks are intialized with full load to be seen as heavy tasks until 706 * they get a chance to stabilize to their real load level. 707 * Group entities are intialized with zero load to reflect the fact that 708 * nothing has been attached to the task group yet. 709 */ 710 if (entity_is_task(se)) 711 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 712 713 se->runnable_weight = se->load.weight; 714 715 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 716 } 717 718 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 719 static void attach_entity_cfs_rq(struct sched_entity *se); 720 721 /* 722 * With new tasks being created, their initial util_avgs are extrapolated 723 * based on the cfs_rq's current util_avg: 724 * 725 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 726 * 727 * However, in many cases, the above util_avg does not give a desired 728 * value. Moreover, the sum of the util_avgs may be divergent, such 729 * as when the series is a harmonic series. 730 * 731 * To solve this problem, we also cap the util_avg of successive tasks to 732 * only 1/2 of the left utilization budget: 733 * 734 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 735 * 736 * where n denotes the nth task and cpu_scale the CPU capacity. 737 * 738 * For example, for a CPU with 1024 of capacity, a simplest series from 739 * the beginning would be like: 740 * 741 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 742 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 743 * 744 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 745 * if util_avg > util_avg_cap. 746 */ 747 void post_init_entity_util_avg(struct sched_entity *se) 748 { 749 struct cfs_rq *cfs_rq = cfs_rq_of(se); 750 struct sched_avg *sa = &se->avg; 751 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 752 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 753 754 if (cap > 0) { 755 if (cfs_rq->avg.util_avg != 0) { 756 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 757 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 758 759 if (sa->util_avg > cap) 760 sa->util_avg = cap; 761 } else { 762 sa->util_avg = cap; 763 } 764 } 765 766 if (entity_is_task(se)) { 767 struct task_struct *p = task_of(se); 768 if (p->sched_class != &fair_sched_class) { 769 /* 770 * For !fair tasks do: 771 * 772 update_cfs_rq_load_avg(now, cfs_rq); 773 attach_entity_load_avg(cfs_rq, se, 0); 774 switched_from_fair(rq, p); 775 * 776 * such that the next switched_to_fair() has the 777 * expected state. 778 */ 779 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); 780 return; 781 } 782 } 783 784 attach_entity_cfs_rq(se); 785 } 786 787 #else /* !CONFIG_SMP */ 788 void init_entity_runnable_average(struct sched_entity *se) 789 { 790 } 791 void post_init_entity_util_avg(struct sched_entity *se) 792 { 793 } 794 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 795 { 796 } 797 #endif /* CONFIG_SMP */ 798 799 /* 800 * Update the current task's runtime statistics. 801 */ 802 static void update_curr(struct cfs_rq *cfs_rq) 803 { 804 struct sched_entity *curr = cfs_rq->curr; 805 u64 now = rq_clock_task(rq_of(cfs_rq)); 806 u64 delta_exec; 807 808 if (unlikely(!curr)) 809 return; 810 811 delta_exec = now - curr->exec_start; 812 if (unlikely((s64)delta_exec <= 0)) 813 return; 814 815 curr->exec_start = now; 816 817 schedstat_set(curr->statistics.exec_max, 818 max(delta_exec, curr->statistics.exec_max)); 819 820 curr->sum_exec_runtime += delta_exec; 821 schedstat_add(cfs_rq->exec_clock, delta_exec); 822 823 curr->vruntime += calc_delta_fair(delta_exec, curr); 824 update_min_vruntime(cfs_rq); 825 826 if (entity_is_task(curr)) { 827 struct task_struct *curtask = task_of(curr); 828 829 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 830 cgroup_account_cputime(curtask, delta_exec); 831 account_group_exec_runtime(curtask, delta_exec); 832 } 833 834 account_cfs_rq_runtime(cfs_rq, delta_exec); 835 } 836 837 static void update_curr_fair(struct rq *rq) 838 { 839 update_curr(cfs_rq_of(&rq->curr->se)); 840 } 841 842 static inline void 843 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 844 { 845 u64 wait_start, prev_wait_start; 846 847 if (!schedstat_enabled()) 848 return; 849 850 wait_start = rq_clock(rq_of(cfs_rq)); 851 prev_wait_start = schedstat_val(se->statistics.wait_start); 852 853 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 854 likely(wait_start > prev_wait_start)) 855 wait_start -= prev_wait_start; 856 857 __schedstat_set(se->statistics.wait_start, wait_start); 858 } 859 860 static inline void 861 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 862 { 863 struct task_struct *p; 864 u64 delta; 865 866 if (!schedstat_enabled()) 867 return; 868 869 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 870 871 if (entity_is_task(se)) { 872 p = task_of(se); 873 if (task_on_rq_migrating(p)) { 874 /* 875 * Preserve migrating task's wait time so wait_start 876 * time stamp can be adjusted to accumulate wait time 877 * prior to migration. 878 */ 879 __schedstat_set(se->statistics.wait_start, delta); 880 return; 881 } 882 trace_sched_stat_wait(p, delta); 883 } 884 885 __schedstat_set(se->statistics.wait_max, 886 max(schedstat_val(se->statistics.wait_max), delta)); 887 __schedstat_inc(se->statistics.wait_count); 888 __schedstat_add(se->statistics.wait_sum, delta); 889 __schedstat_set(se->statistics.wait_start, 0); 890 } 891 892 static inline void 893 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 894 { 895 struct task_struct *tsk = NULL; 896 u64 sleep_start, block_start; 897 898 if (!schedstat_enabled()) 899 return; 900 901 sleep_start = schedstat_val(se->statistics.sleep_start); 902 block_start = schedstat_val(se->statistics.block_start); 903 904 if (entity_is_task(se)) 905 tsk = task_of(se); 906 907 if (sleep_start) { 908 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 909 910 if ((s64)delta < 0) 911 delta = 0; 912 913 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 914 __schedstat_set(se->statistics.sleep_max, delta); 915 916 __schedstat_set(se->statistics.sleep_start, 0); 917 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 918 919 if (tsk) { 920 account_scheduler_latency(tsk, delta >> 10, 1); 921 trace_sched_stat_sleep(tsk, delta); 922 } 923 } 924 if (block_start) { 925 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 926 927 if ((s64)delta < 0) 928 delta = 0; 929 930 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 931 __schedstat_set(se->statistics.block_max, delta); 932 933 __schedstat_set(se->statistics.block_start, 0); 934 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 935 936 if (tsk) { 937 if (tsk->in_iowait) { 938 __schedstat_add(se->statistics.iowait_sum, delta); 939 __schedstat_inc(se->statistics.iowait_count); 940 trace_sched_stat_iowait(tsk, delta); 941 } 942 943 trace_sched_stat_blocked(tsk, delta); 944 945 /* 946 * Blocking time is in units of nanosecs, so shift by 947 * 20 to get a milliseconds-range estimation of the 948 * amount of time that the task spent sleeping: 949 */ 950 if (unlikely(prof_on == SLEEP_PROFILING)) { 951 profile_hits(SLEEP_PROFILING, 952 (void *)get_wchan(tsk), 953 delta >> 20); 954 } 955 account_scheduler_latency(tsk, delta >> 10, 0); 956 } 957 } 958 } 959 960 /* 961 * Task is being enqueued - update stats: 962 */ 963 static inline void 964 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 965 { 966 if (!schedstat_enabled()) 967 return; 968 969 /* 970 * Are we enqueueing a waiting task? (for current tasks 971 * a dequeue/enqueue event is a NOP) 972 */ 973 if (se != cfs_rq->curr) 974 update_stats_wait_start(cfs_rq, se); 975 976 if (flags & ENQUEUE_WAKEUP) 977 update_stats_enqueue_sleeper(cfs_rq, se); 978 } 979 980 static inline void 981 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 982 { 983 984 if (!schedstat_enabled()) 985 return; 986 987 /* 988 * Mark the end of the wait period if dequeueing a 989 * waiting task: 990 */ 991 if (se != cfs_rq->curr) 992 update_stats_wait_end(cfs_rq, se); 993 994 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 995 struct task_struct *tsk = task_of(se); 996 997 if (tsk->state & TASK_INTERRUPTIBLE) 998 __schedstat_set(se->statistics.sleep_start, 999 rq_clock(rq_of(cfs_rq))); 1000 if (tsk->state & TASK_UNINTERRUPTIBLE) 1001 __schedstat_set(se->statistics.block_start, 1002 rq_clock(rq_of(cfs_rq))); 1003 } 1004 } 1005 1006 /* 1007 * We are picking a new current task - update its stats: 1008 */ 1009 static inline void 1010 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1011 { 1012 /* 1013 * We are starting a new run period: 1014 */ 1015 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1016 } 1017 1018 /************************************************** 1019 * Scheduling class queueing methods: 1020 */ 1021 1022 #ifdef CONFIG_NUMA_BALANCING 1023 /* 1024 * Approximate time to scan a full NUMA task in ms. The task scan period is 1025 * calculated based on the tasks virtual memory size and 1026 * numa_balancing_scan_size. 1027 */ 1028 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1029 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1030 1031 /* Portion of address space to scan in MB */ 1032 unsigned int sysctl_numa_balancing_scan_size = 256; 1033 1034 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1035 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1036 1037 struct numa_group { 1038 atomic_t refcount; 1039 1040 spinlock_t lock; /* nr_tasks, tasks */ 1041 int nr_tasks; 1042 pid_t gid; 1043 int active_nodes; 1044 1045 struct rcu_head rcu; 1046 unsigned long total_faults; 1047 unsigned long max_faults_cpu; 1048 /* 1049 * Faults_cpu is used to decide whether memory should move 1050 * towards the CPU. As a consequence, these stats are weighted 1051 * more by CPU use than by memory faults. 1052 */ 1053 unsigned long *faults_cpu; 1054 unsigned long faults[0]; 1055 }; 1056 1057 static inline unsigned long group_faults_priv(struct numa_group *ng); 1058 static inline unsigned long group_faults_shared(struct numa_group *ng); 1059 1060 static unsigned int task_nr_scan_windows(struct task_struct *p) 1061 { 1062 unsigned long rss = 0; 1063 unsigned long nr_scan_pages; 1064 1065 /* 1066 * Calculations based on RSS as non-present and empty pages are skipped 1067 * by the PTE scanner and NUMA hinting faults should be trapped based 1068 * on resident pages 1069 */ 1070 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1071 rss = get_mm_rss(p->mm); 1072 if (!rss) 1073 rss = nr_scan_pages; 1074 1075 rss = round_up(rss, nr_scan_pages); 1076 return rss / nr_scan_pages; 1077 } 1078 1079 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1080 #define MAX_SCAN_WINDOW 2560 1081 1082 static unsigned int task_scan_min(struct task_struct *p) 1083 { 1084 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1085 unsigned int scan, floor; 1086 unsigned int windows = 1; 1087 1088 if (scan_size < MAX_SCAN_WINDOW) 1089 windows = MAX_SCAN_WINDOW / scan_size; 1090 floor = 1000 / windows; 1091 1092 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1093 return max_t(unsigned int, floor, scan); 1094 } 1095 1096 static unsigned int task_scan_start(struct task_struct *p) 1097 { 1098 unsigned long smin = task_scan_min(p); 1099 unsigned long period = smin; 1100 1101 /* Scale the maximum scan period with the amount of shared memory. */ 1102 if (p->numa_group) { 1103 struct numa_group *ng = p->numa_group; 1104 unsigned long shared = group_faults_shared(ng); 1105 unsigned long private = group_faults_priv(ng); 1106 1107 period *= atomic_read(&ng->refcount); 1108 period *= shared + 1; 1109 period /= private + shared + 1; 1110 } 1111 1112 return max(smin, period); 1113 } 1114 1115 static unsigned int task_scan_max(struct task_struct *p) 1116 { 1117 unsigned long smin = task_scan_min(p); 1118 unsigned long smax; 1119 1120 /* Watch for min being lower than max due to floor calculations */ 1121 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1122 1123 /* Scale the maximum scan period with the amount of shared memory. */ 1124 if (p->numa_group) { 1125 struct numa_group *ng = p->numa_group; 1126 unsigned long shared = group_faults_shared(ng); 1127 unsigned long private = group_faults_priv(ng); 1128 unsigned long period = smax; 1129 1130 period *= atomic_read(&ng->refcount); 1131 period *= shared + 1; 1132 period /= private + shared + 1; 1133 1134 smax = max(smax, period); 1135 } 1136 1137 return max(smin, smax); 1138 } 1139 1140 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1141 { 1142 int mm_users = 0; 1143 struct mm_struct *mm = p->mm; 1144 1145 if (mm) { 1146 mm_users = atomic_read(&mm->mm_users); 1147 if (mm_users == 1) { 1148 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1149 mm->numa_scan_seq = 0; 1150 } 1151 } 1152 p->node_stamp = 0; 1153 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 1154 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1155 p->numa_work.next = &p->numa_work; 1156 p->numa_faults = NULL; 1157 p->numa_group = NULL; 1158 p->last_task_numa_placement = 0; 1159 p->last_sum_exec_runtime = 0; 1160 1161 /* New address space, reset the preferred nid */ 1162 if (!(clone_flags & CLONE_VM)) { 1163 p->numa_preferred_nid = -1; 1164 return; 1165 } 1166 1167 /* 1168 * New thread, keep existing numa_preferred_nid which should be copied 1169 * already by arch_dup_task_struct but stagger when scans start. 1170 */ 1171 if (mm) { 1172 unsigned int delay; 1173 1174 delay = min_t(unsigned int, task_scan_max(current), 1175 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 1176 delay += 2 * TICK_NSEC; 1177 p->node_stamp = delay; 1178 } 1179 } 1180 1181 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1182 { 1183 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1184 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1185 } 1186 1187 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1188 { 1189 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1190 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1191 } 1192 1193 /* Shared or private faults. */ 1194 #define NR_NUMA_HINT_FAULT_TYPES 2 1195 1196 /* Memory and CPU locality */ 1197 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1198 1199 /* Averaged statistics, and temporary buffers. */ 1200 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1201 1202 pid_t task_numa_group_id(struct task_struct *p) 1203 { 1204 return p->numa_group ? p->numa_group->gid : 0; 1205 } 1206 1207 /* 1208 * The averaged statistics, shared & private, memory & CPU, 1209 * occupy the first half of the array. The second half of the 1210 * array is for current counters, which are averaged into the 1211 * first set by task_numa_placement. 1212 */ 1213 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1214 { 1215 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1216 } 1217 1218 static inline unsigned long task_faults(struct task_struct *p, int nid) 1219 { 1220 if (!p->numa_faults) 1221 return 0; 1222 1223 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1224 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1225 } 1226 1227 static inline unsigned long group_faults(struct task_struct *p, int nid) 1228 { 1229 if (!p->numa_group) 1230 return 0; 1231 1232 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1233 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1234 } 1235 1236 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1237 { 1238 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1239 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1240 } 1241 1242 static inline unsigned long group_faults_priv(struct numa_group *ng) 1243 { 1244 unsigned long faults = 0; 1245 int node; 1246 1247 for_each_online_node(node) { 1248 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1249 } 1250 1251 return faults; 1252 } 1253 1254 static inline unsigned long group_faults_shared(struct numa_group *ng) 1255 { 1256 unsigned long faults = 0; 1257 int node; 1258 1259 for_each_online_node(node) { 1260 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1261 } 1262 1263 return faults; 1264 } 1265 1266 /* 1267 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1268 * considered part of a numa group's pseudo-interleaving set. Migrations 1269 * between these nodes are slowed down, to allow things to settle down. 1270 */ 1271 #define ACTIVE_NODE_FRACTION 3 1272 1273 static bool numa_is_active_node(int nid, struct numa_group *ng) 1274 { 1275 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1276 } 1277 1278 /* Handle placement on systems where not all nodes are directly connected. */ 1279 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1280 int maxdist, bool task) 1281 { 1282 unsigned long score = 0; 1283 int node; 1284 1285 /* 1286 * All nodes are directly connected, and the same distance 1287 * from each other. No need for fancy placement algorithms. 1288 */ 1289 if (sched_numa_topology_type == NUMA_DIRECT) 1290 return 0; 1291 1292 /* 1293 * This code is called for each node, introducing N^2 complexity, 1294 * which should be ok given the number of nodes rarely exceeds 8. 1295 */ 1296 for_each_online_node(node) { 1297 unsigned long faults; 1298 int dist = node_distance(nid, node); 1299 1300 /* 1301 * The furthest away nodes in the system are not interesting 1302 * for placement; nid was already counted. 1303 */ 1304 if (dist == sched_max_numa_distance || node == nid) 1305 continue; 1306 1307 /* 1308 * On systems with a backplane NUMA topology, compare groups 1309 * of nodes, and move tasks towards the group with the most 1310 * memory accesses. When comparing two nodes at distance 1311 * "hoplimit", only nodes closer by than "hoplimit" are part 1312 * of each group. Skip other nodes. 1313 */ 1314 if (sched_numa_topology_type == NUMA_BACKPLANE && 1315 dist >= maxdist) 1316 continue; 1317 1318 /* Add up the faults from nearby nodes. */ 1319 if (task) 1320 faults = task_faults(p, node); 1321 else 1322 faults = group_faults(p, node); 1323 1324 /* 1325 * On systems with a glueless mesh NUMA topology, there are 1326 * no fixed "groups of nodes". Instead, nodes that are not 1327 * directly connected bounce traffic through intermediate 1328 * nodes; a numa_group can occupy any set of nodes. 1329 * The further away a node is, the less the faults count. 1330 * This seems to result in good task placement. 1331 */ 1332 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1333 faults *= (sched_max_numa_distance - dist); 1334 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1335 } 1336 1337 score += faults; 1338 } 1339 1340 return score; 1341 } 1342 1343 /* 1344 * These return the fraction of accesses done by a particular task, or 1345 * task group, on a particular numa node. The group weight is given a 1346 * larger multiplier, in order to group tasks together that are almost 1347 * evenly spread out between numa nodes. 1348 */ 1349 static inline unsigned long task_weight(struct task_struct *p, int nid, 1350 int dist) 1351 { 1352 unsigned long faults, total_faults; 1353 1354 if (!p->numa_faults) 1355 return 0; 1356 1357 total_faults = p->total_numa_faults; 1358 1359 if (!total_faults) 1360 return 0; 1361 1362 faults = task_faults(p, nid); 1363 faults += score_nearby_nodes(p, nid, dist, true); 1364 1365 return 1000 * faults / total_faults; 1366 } 1367 1368 static inline unsigned long group_weight(struct task_struct *p, int nid, 1369 int dist) 1370 { 1371 unsigned long faults, total_faults; 1372 1373 if (!p->numa_group) 1374 return 0; 1375 1376 total_faults = p->numa_group->total_faults; 1377 1378 if (!total_faults) 1379 return 0; 1380 1381 faults = group_faults(p, nid); 1382 faults += score_nearby_nodes(p, nid, dist, false); 1383 1384 return 1000 * faults / total_faults; 1385 } 1386 1387 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1388 int src_nid, int dst_cpu) 1389 { 1390 struct numa_group *ng = p->numa_group; 1391 int dst_nid = cpu_to_node(dst_cpu); 1392 int last_cpupid, this_cpupid; 1393 1394 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1395 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1396 1397 /* 1398 * Allow first faults or private faults to migrate immediately early in 1399 * the lifetime of a task. The magic number 4 is based on waiting for 1400 * two full passes of the "multi-stage node selection" test that is 1401 * executed below. 1402 */ 1403 if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) && 1404 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1405 return true; 1406 1407 /* 1408 * Multi-stage node selection is used in conjunction with a periodic 1409 * migration fault to build a temporal task<->page relation. By using 1410 * a two-stage filter we remove short/unlikely relations. 1411 * 1412 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1413 * a task's usage of a particular page (n_p) per total usage of this 1414 * page (n_t) (in a given time-span) to a probability. 1415 * 1416 * Our periodic faults will sample this probability and getting the 1417 * same result twice in a row, given these samples are fully 1418 * independent, is then given by P(n)^2, provided our sample period 1419 * is sufficiently short compared to the usage pattern. 1420 * 1421 * This quadric squishes small probabilities, making it less likely we 1422 * act on an unlikely task<->page relation. 1423 */ 1424 if (!cpupid_pid_unset(last_cpupid) && 1425 cpupid_to_nid(last_cpupid) != dst_nid) 1426 return false; 1427 1428 /* Always allow migrate on private faults */ 1429 if (cpupid_match_pid(p, last_cpupid)) 1430 return true; 1431 1432 /* A shared fault, but p->numa_group has not been set up yet. */ 1433 if (!ng) 1434 return true; 1435 1436 /* 1437 * Destination node is much more heavily used than the source 1438 * node? Allow migration. 1439 */ 1440 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1441 ACTIVE_NODE_FRACTION) 1442 return true; 1443 1444 /* 1445 * Distribute memory according to CPU & memory use on each node, 1446 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1447 * 1448 * faults_cpu(dst) 3 faults_cpu(src) 1449 * --------------- * - > --------------- 1450 * faults_mem(dst) 4 faults_mem(src) 1451 */ 1452 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1453 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1454 } 1455 1456 static unsigned long weighted_cpuload(struct rq *rq); 1457 static unsigned long source_load(int cpu, int type); 1458 static unsigned long target_load(int cpu, int type); 1459 static unsigned long capacity_of(int cpu); 1460 1461 /* Cached statistics for all CPUs within a node */ 1462 struct numa_stats { 1463 unsigned long load; 1464 1465 /* Total compute capacity of CPUs on a node */ 1466 unsigned long compute_capacity; 1467 1468 unsigned int nr_running; 1469 }; 1470 1471 /* 1472 * XXX borrowed from update_sg_lb_stats 1473 */ 1474 static void update_numa_stats(struct numa_stats *ns, int nid) 1475 { 1476 int smt, cpu, cpus = 0; 1477 unsigned long capacity; 1478 1479 memset(ns, 0, sizeof(*ns)); 1480 for_each_cpu(cpu, cpumask_of_node(nid)) { 1481 struct rq *rq = cpu_rq(cpu); 1482 1483 ns->nr_running += rq->nr_running; 1484 ns->load += weighted_cpuload(rq); 1485 ns->compute_capacity += capacity_of(cpu); 1486 1487 cpus++; 1488 } 1489 1490 /* 1491 * If we raced with hotplug and there are no CPUs left in our mask 1492 * the @ns structure is NULL'ed and task_numa_compare() will 1493 * not find this node attractive. 1494 * 1495 * We'll detect a huge imbalance and bail there. 1496 */ 1497 if (!cpus) 1498 return; 1499 1500 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1501 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1502 capacity = cpus / smt; /* cores */ 1503 1504 capacity = min_t(unsigned, capacity, 1505 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1506 } 1507 1508 struct task_numa_env { 1509 struct task_struct *p; 1510 1511 int src_cpu, src_nid; 1512 int dst_cpu, dst_nid; 1513 1514 struct numa_stats src_stats, dst_stats; 1515 1516 int imbalance_pct; 1517 int dist; 1518 1519 struct task_struct *best_task; 1520 long best_imp; 1521 int best_cpu; 1522 }; 1523 1524 static void task_numa_assign(struct task_numa_env *env, 1525 struct task_struct *p, long imp) 1526 { 1527 struct rq *rq = cpu_rq(env->dst_cpu); 1528 1529 /* Bail out if run-queue part of active NUMA balance. */ 1530 if (xchg(&rq->numa_migrate_on, 1)) 1531 return; 1532 1533 /* 1534 * Clear previous best_cpu/rq numa-migrate flag, since task now 1535 * found a better CPU to move/swap. 1536 */ 1537 if (env->best_cpu != -1) { 1538 rq = cpu_rq(env->best_cpu); 1539 WRITE_ONCE(rq->numa_migrate_on, 0); 1540 } 1541 1542 if (env->best_task) 1543 put_task_struct(env->best_task); 1544 if (p) 1545 get_task_struct(p); 1546 1547 env->best_task = p; 1548 env->best_imp = imp; 1549 env->best_cpu = env->dst_cpu; 1550 } 1551 1552 static bool load_too_imbalanced(long src_load, long dst_load, 1553 struct task_numa_env *env) 1554 { 1555 long imb, old_imb; 1556 long orig_src_load, orig_dst_load; 1557 long src_capacity, dst_capacity; 1558 1559 /* 1560 * The load is corrected for the CPU capacity available on each node. 1561 * 1562 * src_load dst_load 1563 * ------------ vs --------- 1564 * src_capacity dst_capacity 1565 */ 1566 src_capacity = env->src_stats.compute_capacity; 1567 dst_capacity = env->dst_stats.compute_capacity; 1568 1569 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1570 1571 orig_src_load = env->src_stats.load; 1572 orig_dst_load = env->dst_stats.load; 1573 1574 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1575 1576 /* Would this change make things worse? */ 1577 return (imb > old_imb); 1578 } 1579 1580 /* 1581 * Maximum NUMA importance can be 1998 (2*999); 1582 * SMALLIMP @ 30 would be close to 1998/64. 1583 * Used to deter task migration. 1584 */ 1585 #define SMALLIMP 30 1586 1587 /* 1588 * This checks if the overall compute and NUMA accesses of the system would 1589 * be improved if the source tasks was migrated to the target dst_cpu taking 1590 * into account that it might be best if task running on the dst_cpu should 1591 * be exchanged with the source task 1592 */ 1593 static void task_numa_compare(struct task_numa_env *env, 1594 long taskimp, long groupimp, bool maymove) 1595 { 1596 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1597 struct task_struct *cur; 1598 long src_load, dst_load; 1599 long load; 1600 long imp = env->p->numa_group ? groupimp : taskimp; 1601 long moveimp = imp; 1602 int dist = env->dist; 1603 1604 if (READ_ONCE(dst_rq->numa_migrate_on)) 1605 return; 1606 1607 rcu_read_lock(); 1608 cur = task_rcu_dereference(&dst_rq->curr); 1609 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1610 cur = NULL; 1611 1612 /* 1613 * Because we have preemption enabled we can get migrated around and 1614 * end try selecting ourselves (current == env->p) as a swap candidate. 1615 */ 1616 if (cur == env->p) 1617 goto unlock; 1618 1619 if (!cur) { 1620 if (maymove && moveimp >= env->best_imp) 1621 goto assign; 1622 else 1623 goto unlock; 1624 } 1625 1626 /* 1627 * "imp" is the fault differential for the source task between the 1628 * source and destination node. Calculate the total differential for 1629 * the source task and potential destination task. The more negative 1630 * the value is, the more remote accesses that would be expected to 1631 * be incurred if the tasks were swapped. 1632 */ 1633 /* Skip this swap candidate if cannot move to the source cpu */ 1634 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1635 goto unlock; 1636 1637 /* 1638 * If dst and source tasks are in the same NUMA group, or not 1639 * in any group then look only at task weights. 1640 */ 1641 if (cur->numa_group == env->p->numa_group) { 1642 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1643 task_weight(cur, env->dst_nid, dist); 1644 /* 1645 * Add some hysteresis to prevent swapping the 1646 * tasks within a group over tiny differences. 1647 */ 1648 if (cur->numa_group) 1649 imp -= imp / 16; 1650 } else { 1651 /* 1652 * Compare the group weights. If a task is all by itself 1653 * (not part of a group), use the task weight instead. 1654 */ 1655 if (cur->numa_group && env->p->numa_group) 1656 imp += group_weight(cur, env->src_nid, dist) - 1657 group_weight(cur, env->dst_nid, dist); 1658 else 1659 imp += task_weight(cur, env->src_nid, dist) - 1660 task_weight(cur, env->dst_nid, dist); 1661 } 1662 1663 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1664 imp = moveimp; 1665 cur = NULL; 1666 goto assign; 1667 } 1668 1669 /* 1670 * If the NUMA importance is less than SMALLIMP, 1671 * task migration might only result in ping pong 1672 * of tasks and also hurt performance due to cache 1673 * misses. 1674 */ 1675 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1676 goto unlock; 1677 1678 /* 1679 * In the overloaded case, try and keep the load balanced. 1680 */ 1681 load = task_h_load(env->p) - task_h_load(cur); 1682 if (!load) 1683 goto assign; 1684 1685 dst_load = env->dst_stats.load + load; 1686 src_load = env->src_stats.load - load; 1687 1688 if (load_too_imbalanced(src_load, dst_load, env)) 1689 goto unlock; 1690 1691 assign: 1692 /* 1693 * One idle CPU per node is evaluated for a task numa move. 1694 * Call select_idle_sibling to maybe find a better one. 1695 */ 1696 if (!cur) { 1697 /* 1698 * select_idle_siblings() uses an per-CPU cpumask that 1699 * can be used from IRQ context. 1700 */ 1701 local_irq_disable(); 1702 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1703 env->dst_cpu); 1704 local_irq_enable(); 1705 } 1706 1707 task_numa_assign(env, cur, imp); 1708 unlock: 1709 rcu_read_unlock(); 1710 } 1711 1712 static void task_numa_find_cpu(struct task_numa_env *env, 1713 long taskimp, long groupimp) 1714 { 1715 long src_load, dst_load, load; 1716 bool maymove = false; 1717 int cpu; 1718 1719 load = task_h_load(env->p); 1720 dst_load = env->dst_stats.load + load; 1721 src_load = env->src_stats.load - load; 1722 1723 /* 1724 * If the improvement from just moving env->p direction is better 1725 * than swapping tasks around, check if a move is possible. 1726 */ 1727 maymove = !load_too_imbalanced(src_load, dst_load, env); 1728 1729 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1730 /* Skip this CPU if the source task cannot migrate */ 1731 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1732 continue; 1733 1734 env->dst_cpu = cpu; 1735 task_numa_compare(env, taskimp, groupimp, maymove); 1736 } 1737 } 1738 1739 static int task_numa_migrate(struct task_struct *p) 1740 { 1741 struct task_numa_env env = { 1742 .p = p, 1743 1744 .src_cpu = task_cpu(p), 1745 .src_nid = task_node(p), 1746 1747 .imbalance_pct = 112, 1748 1749 .best_task = NULL, 1750 .best_imp = 0, 1751 .best_cpu = -1, 1752 }; 1753 struct sched_domain *sd; 1754 struct rq *best_rq; 1755 unsigned long taskweight, groupweight; 1756 int nid, ret, dist; 1757 long taskimp, groupimp; 1758 1759 /* 1760 * Pick the lowest SD_NUMA domain, as that would have the smallest 1761 * imbalance and would be the first to start moving tasks about. 1762 * 1763 * And we want to avoid any moving of tasks about, as that would create 1764 * random movement of tasks -- counter the numa conditions we're trying 1765 * to satisfy here. 1766 */ 1767 rcu_read_lock(); 1768 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1769 if (sd) 1770 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1771 rcu_read_unlock(); 1772 1773 /* 1774 * Cpusets can break the scheduler domain tree into smaller 1775 * balance domains, some of which do not cross NUMA boundaries. 1776 * Tasks that are "trapped" in such domains cannot be migrated 1777 * elsewhere, so there is no point in (re)trying. 1778 */ 1779 if (unlikely(!sd)) { 1780 sched_setnuma(p, task_node(p)); 1781 return -EINVAL; 1782 } 1783 1784 env.dst_nid = p->numa_preferred_nid; 1785 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1786 taskweight = task_weight(p, env.src_nid, dist); 1787 groupweight = group_weight(p, env.src_nid, dist); 1788 update_numa_stats(&env.src_stats, env.src_nid); 1789 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1790 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1791 update_numa_stats(&env.dst_stats, env.dst_nid); 1792 1793 /* Try to find a spot on the preferred nid. */ 1794 task_numa_find_cpu(&env, taskimp, groupimp); 1795 1796 /* 1797 * Look at other nodes in these cases: 1798 * - there is no space available on the preferred_nid 1799 * - the task is part of a numa_group that is interleaved across 1800 * multiple NUMA nodes; in order to better consolidate the group, 1801 * we need to check other locations. 1802 */ 1803 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1804 for_each_online_node(nid) { 1805 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1806 continue; 1807 1808 dist = node_distance(env.src_nid, env.dst_nid); 1809 if (sched_numa_topology_type == NUMA_BACKPLANE && 1810 dist != env.dist) { 1811 taskweight = task_weight(p, env.src_nid, dist); 1812 groupweight = group_weight(p, env.src_nid, dist); 1813 } 1814 1815 /* Only consider nodes where both task and groups benefit */ 1816 taskimp = task_weight(p, nid, dist) - taskweight; 1817 groupimp = group_weight(p, nid, dist) - groupweight; 1818 if (taskimp < 0 && groupimp < 0) 1819 continue; 1820 1821 env.dist = dist; 1822 env.dst_nid = nid; 1823 update_numa_stats(&env.dst_stats, env.dst_nid); 1824 task_numa_find_cpu(&env, taskimp, groupimp); 1825 } 1826 } 1827 1828 /* 1829 * If the task is part of a workload that spans multiple NUMA nodes, 1830 * and is migrating into one of the workload's active nodes, remember 1831 * this node as the task's preferred numa node, so the workload can 1832 * settle down. 1833 * A task that migrated to a second choice node will be better off 1834 * trying for a better one later. Do not set the preferred node here. 1835 */ 1836 if (p->numa_group) { 1837 if (env.best_cpu == -1) 1838 nid = env.src_nid; 1839 else 1840 nid = cpu_to_node(env.best_cpu); 1841 1842 if (nid != p->numa_preferred_nid) 1843 sched_setnuma(p, nid); 1844 } 1845 1846 /* No better CPU than the current one was found. */ 1847 if (env.best_cpu == -1) 1848 return -EAGAIN; 1849 1850 best_rq = cpu_rq(env.best_cpu); 1851 if (env.best_task == NULL) { 1852 ret = migrate_task_to(p, env.best_cpu); 1853 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1854 if (ret != 0) 1855 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1856 return ret; 1857 } 1858 1859 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 1860 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1861 1862 if (ret != 0) 1863 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1864 put_task_struct(env.best_task); 1865 return ret; 1866 } 1867 1868 /* Attempt to migrate a task to a CPU on the preferred node. */ 1869 static void numa_migrate_preferred(struct task_struct *p) 1870 { 1871 unsigned long interval = HZ; 1872 1873 /* This task has no NUMA fault statistics yet */ 1874 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1875 return; 1876 1877 /* Periodically retry migrating the task to the preferred node */ 1878 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1879 p->numa_migrate_retry = jiffies + interval; 1880 1881 /* Success if task is already running on preferred CPU */ 1882 if (task_node(p) == p->numa_preferred_nid) 1883 return; 1884 1885 /* Otherwise, try migrate to a CPU on the preferred node */ 1886 task_numa_migrate(p); 1887 } 1888 1889 /* 1890 * Find out how many nodes on the workload is actively running on. Do this by 1891 * tracking the nodes from which NUMA hinting faults are triggered. This can 1892 * be different from the set of nodes where the workload's memory is currently 1893 * located. 1894 */ 1895 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1896 { 1897 unsigned long faults, max_faults = 0; 1898 int nid, active_nodes = 0; 1899 1900 for_each_online_node(nid) { 1901 faults = group_faults_cpu(numa_group, nid); 1902 if (faults > max_faults) 1903 max_faults = faults; 1904 } 1905 1906 for_each_online_node(nid) { 1907 faults = group_faults_cpu(numa_group, nid); 1908 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1909 active_nodes++; 1910 } 1911 1912 numa_group->max_faults_cpu = max_faults; 1913 numa_group->active_nodes = active_nodes; 1914 } 1915 1916 /* 1917 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1918 * increments. The more local the fault statistics are, the higher the scan 1919 * period will be for the next scan window. If local/(local+remote) ratio is 1920 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1921 * the scan period will decrease. Aim for 70% local accesses. 1922 */ 1923 #define NUMA_PERIOD_SLOTS 10 1924 #define NUMA_PERIOD_THRESHOLD 7 1925 1926 /* 1927 * Increase the scan period (slow down scanning) if the majority of 1928 * our memory is already on our local node, or if the majority of 1929 * the page accesses are shared with other processes. 1930 * Otherwise, decrease the scan period. 1931 */ 1932 static void update_task_scan_period(struct task_struct *p, 1933 unsigned long shared, unsigned long private) 1934 { 1935 unsigned int period_slot; 1936 int lr_ratio, ps_ratio; 1937 int diff; 1938 1939 unsigned long remote = p->numa_faults_locality[0]; 1940 unsigned long local = p->numa_faults_locality[1]; 1941 1942 /* 1943 * If there were no record hinting faults then either the task is 1944 * completely idle or all activity is areas that are not of interest 1945 * to automatic numa balancing. Related to that, if there were failed 1946 * migration then it implies we are migrating too quickly or the local 1947 * node is overloaded. In either case, scan slower 1948 */ 1949 if (local + shared == 0 || p->numa_faults_locality[2]) { 1950 p->numa_scan_period = min(p->numa_scan_period_max, 1951 p->numa_scan_period << 1); 1952 1953 p->mm->numa_next_scan = jiffies + 1954 msecs_to_jiffies(p->numa_scan_period); 1955 1956 return; 1957 } 1958 1959 /* 1960 * Prepare to scale scan period relative to the current period. 1961 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1962 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1963 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1964 */ 1965 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1966 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1967 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1968 1969 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1970 /* 1971 * Most memory accesses are local. There is no need to 1972 * do fast NUMA scanning, since memory is already local. 1973 */ 1974 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1975 if (!slot) 1976 slot = 1; 1977 diff = slot * period_slot; 1978 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1979 /* 1980 * Most memory accesses are shared with other tasks. 1981 * There is no point in continuing fast NUMA scanning, 1982 * since other tasks may just move the memory elsewhere. 1983 */ 1984 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1985 if (!slot) 1986 slot = 1; 1987 diff = slot * period_slot; 1988 } else { 1989 /* 1990 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1991 * yet they are not on the local NUMA node. Speed up 1992 * NUMA scanning to get the memory moved over. 1993 */ 1994 int ratio = max(lr_ratio, ps_ratio); 1995 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1996 } 1997 1998 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1999 task_scan_min(p), task_scan_max(p)); 2000 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2001 } 2002 2003 /* 2004 * Get the fraction of time the task has been running since the last 2005 * NUMA placement cycle. The scheduler keeps similar statistics, but 2006 * decays those on a 32ms period, which is orders of magnitude off 2007 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2008 * stats only if the task is so new there are no NUMA statistics yet. 2009 */ 2010 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2011 { 2012 u64 runtime, delta, now; 2013 /* Use the start of this time slice to avoid calculations. */ 2014 now = p->se.exec_start; 2015 runtime = p->se.sum_exec_runtime; 2016 2017 if (p->last_task_numa_placement) { 2018 delta = runtime - p->last_sum_exec_runtime; 2019 *period = now - p->last_task_numa_placement; 2020 } else { 2021 delta = p->se.avg.load_sum; 2022 *period = LOAD_AVG_MAX; 2023 } 2024 2025 p->last_sum_exec_runtime = runtime; 2026 p->last_task_numa_placement = now; 2027 2028 return delta; 2029 } 2030 2031 /* 2032 * Determine the preferred nid for a task in a numa_group. This needs to 2033 * be done in a way that produces consistent results with group_weight, 2034 * otherwise workloads might not converge. 2035 */ 2036 static int preferred_group_nid(struct task_struct *p, int nid) 2037 { 2038 nodemask_t nodes; 2039 int dist; 2040 2041 /* Direct connections between all NUMA nodes. */ 2042 if (sched_numa_topology_type == NUMA_DIRECT) 2043 return nid; 2044 2045 /* 2046 * On a system with glueless mesh NUMA topology, group_weight 2047 * scores nodes according to the number of NUMA hinting faults on 2048 * both the node itself, and on nearby nodes. 2049 */ 2050 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2051 unsigned long score, max_score = 0; 2052 int node, max_node = nid; 2053 2054 dist = sched_max_numa_distance; 2055 2056 for_each_online_node(node) { 2057 score = group_weight(p, node, dist); 2058 if (score > max_score) { 2059 max_score = score; 2060 max_node = node; 2061 } 2062 } 2063 return max_node; 2064 } 2065 2066 /* 2067 * Finding the preferred nid in a system with NUMA backplane 2068 * interconnect topology is more involved. The goal is to locate 2069 * tasks from numa_groups near each other in the system, and 2070 * untangle workloads from different sides of the system. This requires 2071 * searching down the hierarchy of node groups, recursively searching 2072 * inside the highest scoring group of nodes. The nodemask tricks 2073 * keep the complexity of the search down. 2074 */ 2075 nodes = node_online_map; 2076 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2077 unsigned long max_faults = 0; 2078 nodemask_t max_group = NODE_MASK_NONE; 2079 int a, b; 2080 2081 /* Are there nodes at this distance from each other? */ 2082 if (!find_numa_distance(dist)) 2083 continue; 2084 2085 for_each_node_mask(a, nodes) { 2086 unsigned long faults = 0; 2087 nodemask_t this_group; 2088 nodes_clear(this_group); 2089 2090 /* Sum group's NUMA faults; includes a==b case. */ 2091 for_each_node_mask(b, nodes) { 2092 if (node_distance(a, b) < dist) { 2093 faults += group_faults(p, b); 2094 node_set(b, this_group); 2095 node_clear(b, nodes); 2096 } 2097 } 2098 2099 /* Remember the top group. */ 2100 if (faults > max_faults) { 2101 max_faults = faults; 2102 max_group = this_group; 2103 /* 2104 * subtle: at the smallest distance there is 2105 * just one node left in each "group", the 2106 * winner is the preferred nid. 2107 */ 2108 nid = a; 2109 } 2110 } 2111 /* Next round, evaluate the nodes within max_group. */ 2112 if (!max_faults) 2113 break; 2114 nodes = max_group; 2115 } 2116 return nid; 2117 } 2118 2119 static void task_numa_placement(struct task_struct *p) 2120 { 2121 int seq, nid, max_nid = -1; 2122 unsigned long max_faults = 0; 2123 unsigned long fault_types[2] = { 0, 0 }; 2124 unsigned long total_faults; 2125 u64 runtime, period; 2126 spinlock_t *group_lock = NULL; 2127 2128 /* 2129 * The p->mm->numa_scan_seq field gets updated without 2130 * exclusive access. Use READ_ONCE() here to ensure 2131 * that the field is read in a single access: 2132 */ 2133 seq = READ_ONCE(p->mm->numa_scan_seq); 2134 if (p->numa_scan_seq == seq) 2135 return; 2136 p->numa_scan_seq = seq; 2137 p->numa_scan_period_max = task_scan_max(p); 2138 2139 total_faults = p->numa_faults_locality[0] + 2140 p->numa_faults_locality[1]; 2141 runtime = numa_get_avg_runtime(p, &period); 2142 2143 /* If the task is part of a group prevent parallel updates to group stats */ 2144 if (p->numa_group) { 2145 group_lock = &p->numa_group->lock; 2146 spin_lock_irq(group_lock); 2147 } 2148 2149 /* Find the node with the highest number of faults */ 2150 for_each_online_node(nid) { 2151 /* Keep track of the offsets in numa_faults array */ 2152 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2153 unsigned long faults = 0, group_faults = 0; 2154 int priv; 2155 2156 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2157 long diff, f_diff, f_weight; 2158 2159 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2160 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2161 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2162 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2163 2164 /* Decay existing window, copy faults since last scan */ 2165 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2166 fault_types[priv] += p->numa_faults[membuf_idx]; 2167 p->numa_faults[membuf_idx] = 0; 2168 2169 /* 2170 * Normalize the faults_from, so all tasks in a group 2171 * count according to CPU use, instead of by the raw 2172 * number of faults. Tasks with little runtime have 2173 * little over-all impact on throughput, and thus their 2174 * faults are less important. 2175 */ 2176 f_weight = div64_u64(runtime << 16, period + 1); 2177 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2178 (total_faults + 1); 2179 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2180 p->numa_faults[cpubuf_idx] = 0; 2181 2182 p->numa_faults[mem_idx] += diff; 2183 p->numa_faults[cpu_idx] += f_diff; 2184 faults += p->numa_faults[mem_idx]; 2185 p->total_numa_faults += diff; 2186 if (p->numa_group) { 2187 /* 2188 * safe because we can only change our own group 2189 * 2190 * mem_idx represents the offset for a given 2191 * nid and priv in a specific region because it 2192 * is at the beginning of the numa_faults array. 2193 */ 2194 p->numa_group->faults[mem_idx] += diff; 2195 p->numa_group->faults_cpu[mem_idx] += f_diff; 2196 p->numa_group->total_faults += diff; 2197 group_faults += p->numa_group->faults[mem_idx]; 2198 } 2199 } 2200 2201 if (!p->numa_group) { 2202 if (faults > max_faults) { 2203 max_faults = faults; 2204 max_nid = nid; 2205 } 2206 } else if (group_faults > max_faults) { 2207 max_faults = group_faults; 2208 max_nid = nid; 2209 } 2210 } 2211 2212 if (p->numa_group) { 2213 numa_group_count_active_nodes(p->numa_group); 2214 spin_unlock_irq(group_lock); 2215 max_nid = preferred_group_nid(p, max_nid); 2216 } 2217 2218 if (max_faults) { 2219 /* Set the new preferred node */ 2220 if (max_nid != p->numa_preferred_nid) 2221 sched_setnuma(p, max_nid); 2222 } 2223 2224 update_task_scan_period(p, fault_types[0], fault_types[1]); 2225 } 2226 2227 static inline int get_numa_group(struct numa_group *grp) 2228 { 2229 return atomic_inc_not_zero(&grp->refcount); 2230 } 2231 2232 static inline void put_numa_group(struct numa_group *grp) 2233 { 2234 if (atomic_dec_and_test(&grp->refcount)) 2235 kfree_rcu(grp, rcu); 2236 } 2237 2238 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2239 int *priv) 2240 { 2241 struct numa_group *grp, *my_grp; 2242 struct task_struct *tsk; 2243 bool join = false; 2244 int cpu = cpupid_to_cpu(cpupid); 2245 int i; 2246 2247 if (unlikely(!p->numa_group)) { 2248 unsigned int size = sizeof(struct numa_group) + 2249 4*nr_node_ids*sizeof(unsigned long); 2250 2251 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2252 if (!grp) 2253 return; 2254 2255 atomic_set(&grp->refcount, 1); 2256 grp->active_nodes = 1; 2257 grp->max_faults_cpu = 0; 2258 spin_lock_init(&grp->lock); 2259 grp->gid = p->pid; 2260 /* Second half of the array tracks nids where faults happen */ 2261 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2262 nr_node_ids; 2263 2264 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2265 grp->faults[i] = p->numa_faults[i]; 2266 2267 grp->total_faults = p->total_numa_faults; 2268 2269 grp->nr_tasks++; 2270 rcu_assign_pointer(p->numa_group, grp); 2271 } 2272 2273 rcu_read_lock(); 2274 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2275 2276 if (!cpupid_match_pid(tsk, cpupid)) 2277 goto no_join; 2278 2279 grp = rcu_dereference(tsk->numa_group); 2280 if (!grp) 2281 goto no_join; 2282 2283 my_grp = p->numa_group; 2284 if (grp == my_grp) 2285 goto no_join; 2286 2287 /* 2288 * Only join the other group if its bigger; if we're the bigger group, 2289 * the other task will join us. 2290 */ 2291 if (my_grp->nr_tasks > grp->nr_tasks) 2292 goto no_join; 2293 2294 /* 2295 * Tie-break on the grp address. 2296 */ 2297 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2298 goto no_join; 2299 2300 /* Always join threads in the same process. */ 2301 if (tsk->mm == current->mm) 2302 join = true; 2303 2304 /* Simple filter to avoid false positives due to PID collisions */ 2305 if (flags & TNF_SHARED) 2306 join = true; 2307 2308 /* Update priv based on whether false sharing was detected */ 2309 *priv = !join; 2310 2311 if (join && !get_numa_group(grp)) 2312 goto no_join; 2313 2314 rcu_read_unlock(); 2315 2316 if (!join) 2317 return; 2318 2319 BUG_ON(irqs_disabled()); 2320 double_lock_irq(&my_grp->lock, &grp->lock); 2321 2322 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2323 my_grp->faults[i] -= p->numa_faults[i]; 2324 grp->faults[i] += p->numa_faults[i]; 2325 } 2326 my_grp->total_faults -= p->total_numa_faults; 2327 grp->total_faults += p->total_numa_faults; 2328 2329 my_grp->nr_tasks--; 2330 grp->nr_tasks++; 2331 2332 spin_unlock(&my_grp->lock); 2333 spin_unlock_irq(&grp->lock); 2334 2335 rcu_assign_pointer(p->numa_group, grp); 2336 2337 put_numa_group(my_grp); 2338 return; 2339 2340 no_join: 2341 rcu_read_unlock(); 2342 return; 2343 } 2344 2345 void task_numa_free(struct task_struct *p) 2346 { 2347 struct numa_group *grp = p->numa_group; 2348 void *numa_faults = p->numa_faults; 2349 unsigned long flags; 2350 int i; 2351 2352 if (grp) { 2353 spin_lock_irqsave(&grp->lock, flags); 2354 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2355 grp->faults[i] -= p->numa_faults[i]; 2356 grp->total_faults -= p->total_numa_faults; 2357 2358 grp->nr_tasks--; 2359 spin_unlock_irqrestore(&grp->lock, flags); 2360 RCU_INIT_POINTER(p->numa_group, NULL); 2361 put_numa_group(grp); 2362 } 2363 2364 p->numa_faults = NULL; 2365 kfree(numa_faults); 2366 } 2367 2368 /* 2369 * Got a PROT_NONE fault for a page on @node. 2370 */ 2371 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2372 { 2373 struct task_struct *p = current; 2374 bool migrated = flags & TNF_MIGRATED; 2375 int cpu_node = task_node(current); 2376 int local = !!(flags & TNF_FAULT_LOCAL); 2377 struct numa_group *ng; 2378 int priv; 2379 2380 if (!static_branch_likely(&sched_numa_balancing)) 2381 return; 2382 2383 /* for example, ksmd faulting in a user's mm */ 2384 if (!p->mm) 2385 return; 2386 2387 /* Allocate buffer to track faults on a per-node basis */ 2388 if (unlikely(!p->numa_faults)) { 2389 int size = sizeof(*p->numa_faults) * 2390 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2391 2392 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2393 if (!p->numa_faults) 2394 return; 2395 2396 p->total_numa_faults = 0; 2397 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2398 } 2399 2400 /* 2401 * First accesses are treated as private, otherwise consider accesses 2402 * to be private if the accessing pid has not changed 2403 */ 2404 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2405 priv = 1; 2406 } else { 2407 priv = cpupid_match_pid(p, last_cpupid); 2408 if (!priv && !(flags & TNF_NO_GROUP)) 2409 task_numa_group(p, last_cpupid, flags, &priv); 2410 } 2411 2412 /* 2413 * If a workload spans multiple NUMA nodes, a shared fault that 2414 * occurs wholly within the set of nodes that the workload is 2415 * actively using should be counted as local. This allows the 2416 * scan rate to slow down when a workload has settled down. 2417 */ 2418 ng = p->numa_group; 2419 if (!priv && !local && ng && ng->active_nodes > 1 && 2420 numa_is_active_node(cpu_node, ng) && 2421 numa_is_active_node(mem_node, ng)) 2422 local = 1; 2423 2424 /* 2425 * Retry task to preferred node migration periodically, in case it 2426 * case it previously failed, or the scheduler moved us. 2427 */ 2428 if (time_after(jiffies, p->numa_migrate_retry)) { 2429 task_numa_placement(p); 2430 numa_migrate_preferred(p); 2431 } 2432 2433 if (migrated) 2434 p->numa_pages_migrated += pages; 2435 if (flags & TNF_MIGRATE_FAIL) 2436 p->numa_faults_locality[2] += pages; 2437 2438 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2439 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2440 p->numa_faults_locality[local] += pages; 2441 } 2442 2443 static void reset_ptenuma_scan(struct task_struct *p) 2444 { 2445 /* 2446 * We only did a read acquisition of the mmap sem, so 2447 * p->mm->numa_scan_seq is written to without exclusive access 2448 * and the update is not guaranteed to be atomic. That's not 2449 * much of an issue though, since this is just used for 2450 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2451 * expensive, to avoid any form of compiler optimizations: 2452 */ 2453 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2454 p->mm->numa_scan_offset = 0; 2455 } 2456 2457 /* 2458 * The expensive part of numa migration is done from task_work context. 2459 * Triggered from task_tick_numa(). 2460 */ 2461 void task_numa_work(struct callback_head *work) 2462 { 2463 unsigned long migrate, next_scan, now = jiffies; 2464 struct task_struct *p = current; 2465 struct mm_struct *mm = p->mm; 2466 u64 runtime = p->se.sum_exec_runtime; 2467 struct vm_area_struct *vma; 2468 unsigned long start, end; 2469 unsigned long nr_pte_updates = 0; 2470 long pages, virtpages; 2471 2472 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2473 2474 work->next = work; /* protect against double add */ 2475 /* 2476 * Who cares about NUMA placement when they're dying. 2477 * 2478 * NOTE: make sure not to dereference p->mm before this check, 2479 * exit_task_work() happens _after_ exit_mm() so we could be called 2480 * without p->mm even though we still had it when we enqueued this 2481 * work. 2482 */ 2483 if (p->flags & PF_EXITING) 2484 return; 2485 2486 if (!mm->numa_next_scan) { 2487 mm->numa_next_scan = now + 2488 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2489 } 2490 2491 /* 2492 * Enforce maximal scan/migration frequency.. 2493 */ 2494 migrate = mm->numa_next_scan; 2495 if (time_before(now, migrate)) 2496 return; 2497 2498 if (p->numa_scan_period == 0) { 2499 p->numa_scan_period_max = task_scan_max(p); 2500 p->numa_scan_period = task_scan_start(p); 2501 } 2502 2503 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2504 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2505 return; 2506 2507 /* 2508 * Delay this task enough that another task of this mm will likely win 2509 * the next time around. 2510 */ 2511 p->node_stamp += 2 * TICK_NSEC; 2512 2513 start = mm->numa_scan_offset; 2514 pages = sysctl_numa_balancing_scan_size; 2515 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2516 virtpages = pages * 8; /* Scan up to this much virtual space */ 2517 if (!pages) 2518 return; 2519 2520 2521 if (!down_read_trylock(&mm->mmap_sem)) 2522 return; 2523 vma = find_vma(mm, start); 2524 if (!vma) { 2525 reset_ptenuma_scan(p); 2526 start = 0; 2527 vma = mm->mmap; 2528 } 2529 for (; vma; vma = vma->vm_next) { 2530 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2531 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2532 continue; 2533 } 2534 2535 /* 2536 * Shared library pages mapped by multiple processes are not 2537 * migrated as it is expected they are cache replicated. Avoid 2538 * hinting faults in read-only file-backed mappings or the vdso 2539 * as migrating the pages will be of marginal benefit. 2540 */ 2541 if (!vma->vm_mm || 2542 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2543 continue; 2544 2545 /* 2546 * Skip inaccessible VMAs to avoid any confusion between 2547 * PROT_NONE and NUMA hinting ptes 2548 */ 2549 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2550 continue; 2551 2552 do { 2553 start = max(start, vma->vm_start); 2554 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2555 end = min(end, vma->vm_end); 2556 nr_pte_updates = change_prot_numa(vma, start, end); 2557 2558 /* 2559 * Try to scan sysctl_numa_balancing_size worth of 2560 * hpages that have at least one present PTE that 2561 * is not already pte-numa. If the VMA contains 2562 * areas that are unused or already full of prot_numa 2563 * PTEs, scan up to virtpages, to skip through those 2564 * areas faster. 2565 */ 2566 if (nr_pte_updates) 2567 pages -= (end - start) >> PAGE_SHIFT; 2568 virtpages -= (end - start) >> PAGE_SHIFT; 2569 2570 start = end; 2571 if (pages <= 0 || virtpages <= 0) 2572 goto out; 2573 2574 cond_resched(); 2575 } while (end != vma->vm_end); 2576 } 2577 2578 out: 2579 /* 2580 * It is possible to reach the end of the VMA list but the last few 2581 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2582 * would find the !migratable VMA on the next scan but not reset the 2583 * scanner to the start so check it now. 2584 */ 2585 if (vma) 2586 mm->numa_scan_offset = start; 2587 else 2588 reset_ptenuma_scan(p); 2589 up_read(&mm->mmap_sem); 2590 2591 /* 2592 * Make sure tasks use at least 32x as much time to run other code 2593 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2594 * Usually update_task_scan_period slows down scanning enough; on an 2595 * overloaded system we need to limit overhead on a per task basis. 2596 */ 2597 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2598 u64 diff = p->se.sum_exec_runtime - runtime; 2599 p->node_stamp += 32 * diff; 2600 } 2601 } 2602 2603 /* 2604 * Drive the periodic memory faults.. 2605 */ 2606 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2607 { 2608 struct callback_head *work = &curr->numa_work; 2609 u64 period, now; 2610 2611 /* 2612 * We don't care about NUMA placement if we don't have memory. 2613 */ 2614 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2615 return; 2616 2617 /* 2618 * Using runtime rather than walltime has the dual advantage that 2619 * we (mostly) drive the selection from busy threads and that the 2620 * task needs to have done some actual work before we bother with 2621 * NUMA placement. 2622 */ 2623 now = curr->se.sum_exec_runtime; 2624 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2625 2626 if (now > curr->node_stamp + period) { 2627 if (!curr->node_stamp) 2628 curr->numa_scan_period = task_scan_start(curr); 2629 curr->node_stamp += period; 2630 2631 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2632 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2633 task_work_add(curr, work, true); 2634 } 2635 } 2636 } 2637 2638 static void update_scan_period(struct task_struct *p, int new_cpu) 2639 { 2640 int src_nid = cpu_to_node(task_cpu(p)); 2641 int dst_nid = cpu_to_node(new_cpu); 2642 2643 if (!static_branch_likely(&sched_numa_balancing)) 2644 return; 2645 2646 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2647 return; 2648 2649 if (src_nid == dst_nid) 2650 return; 2651 2652 /* 2653 * Allow resets if faults have been trapped before one scan 2654 * has completed. This is most likely due to a new task that 2655 * is pulled cross-node due to wakeups or load balancing. 2656 */ 2657 if (p->numa_scan_seq) { 2658 /* 2659 * Avoid scan adjustments if moving to the preferred 2660 * node or if the task was not previously running on 2661 * the preferred node. 2662 */ 2663 if (dst_nid == p->numa_preferred_nid || 2664 (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid)) 2665 return; 2666 } 2667 2668 p->numa_scan_period = task_scan_start(p); 2669 } 2670 2671 #else 2672 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2673 { 2674 } 2675 2676 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2677 { 2678 } 2679 2680 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2681 { 2682 } 2683 2684 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2685 { 2686 } 2687 2688 #endif /* CONFIG_NUMA_BALANCING */ 2689 2690 static void 2691 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2692 { 2693 update_load_add(&cfs_rq->load, se->load.weight); 2694 if (!parent_entity(se)) 2695 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2696 #ifdef CONFIG_SMP 2697 if (entity_is_task(se)) { 2698 struct rq *rq = rq_of(cfs_rq); 2699 2700 account_numa_enqueue(rq, task_of(se)); 2701 list_add(&se->group_node, &rq->cfs_tasks); 2702 } 2703 #endif 2704 cfs_rq->nr_running++; 2705 } 2706 2707 static void 2708 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2709 { 2710 update_load_sub(&cfs_rq->load, se->load.weight); 2711 if (!parent_entity(se)) 2712 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2713 #ifdef CONFIG_SMP 2714 if (entity_is_task(se)) { 2715 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2716 list_del_init(&se->group_node); 2717 } 2718 #endif 2719 cfs_rq->nr_running--; 2720 } 2721 2722 /* 2723 * Signed add and clamp on underflow. 2724 * 2725 * Explicitly do a load-store to ensure the intermediate value never hits 2726 * memory. This allows lockless observations without ever seeing the negative 2727 * values. 2728 */ 2729 #define add_positive(_ptr, _val) do { \ 2730 typeof(_ptr) ptr = (_ptr); \ 2731 typeof(_val) val = (_val); \ 2732 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2733 \ 2734 res = var + val; \ 2735 \ 2736 if (val < 0 && res > var) \ 2737 res = 0; \ 2738 \ 2739 WRITE_ONCE(*ptr, res); \ 2740 } while (0) 2741 2742 /* 2743 * Unsigned subtract and clamp on underflow. 2744 * 2745 * Explicitly do a load-store to ensure the intermediate value never hits 2746 * memory. This allows lockless observations without ever seeing the negative 2747 * values. 2748 */ 2749 #define sub_positive(_ptr, _val) do { \ 2750 typeof(_ptr) ptr = (_ptr); \ 2751 typeof(*ptr) val = (_val); \ 2752 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2753 res = var - val; \ 2754 if (res > var) \ 2755 res = 0; \ 2756 WRITE_ONCE(*ptr, res); \ 2757 } while (0) 2758 2759 #ifdef CONFIG_SMP 2760 static inline void 2761 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2762 { 2763 cfs_rq->runnable_weight += se->runnable_weight; 2764 2765 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2766 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2767 } 2768 2769 static inline void 2770 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2771 { 2772 cfs_rq->runnable_weight -= se->runnable_weight; 2773 2774 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2775 sub_positive(&cfs_rq->avg.runnable_load_sum, 2776 se_runnable(se) * se->avg.runnable_load_sum); 2777 } 2778 2779 static inline void 2780 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2781 { 2782 cfs_rq->avg.load_avg += se->avg.load_avg; 2783 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2784 } 2785 2786 static inline void 2787 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2788 { 2789 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2790 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2791 } 2792 #else 2793 static inline void 2794 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2795 static inline void 2796 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2797 static inline void 2798 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2799 static inline void 2800 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2801 #endif 2802 2803 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2804 unsigned long weight, unsigned long runnable) 2805 { 2806 if (se->on_rq) { 2807 /* commit outstanding execution time */ 2808 if (cfs_rq->curr == se) 2809 update_curr(cfs_rq); 2810 account_entity_dequeue(cfs_rq, se); 2811 dequeue_runnable_load_avg(cfs_rq, se); 2812 } 2813 dequeue_load_avg(cfs_rq, se); 2814 2815 se->runnable_weight = runnable; 2816 update_load_set(&se->load, weight); 2817 2818 #ifdef CONFIG_SMP 2819 do { 2820 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2821 2822 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2823 se->avg.runnable_load_avg = 2824 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2825 } while (0); 2826 #endif 2827 2828 enqueue_load_avg(cfs_rq, se); 2829 if (se->on_rq) { 2830 account_entity_enqueue(cfs_rq, se); 2831 enqueue_runnable_load_avg(cfs_rq, se); 2832 } 2833 } 2834 2835 void reweight_task(struct task_struct *p, int prio) 2836 { 2837 struct sched_entity *se = &p->se; 2838 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2839 struct load_weight *load = &se->load; 2840 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2841 2842 reweight_entity(cfs_rq, se, weight, weight); 2843 load->inv_weight = sched_prio_to_wmult[prio]; 2844 } 2845 2846 #ifdef CONFIG_FAIR_GROUP_SCHED 2847 #ifdef CONFIG_SMP 2848 /* 2849 * All this does is approximate the hierarchical proportion which includes that 2850 * global sum we all love to hate. 2851 * 2852 * That is, the weight of a group entity, is the proportional share of the 2853 * group weight based on the group runqueue weights. That is: 2854 * 2855 * tg->weight * grq->load.weight 2856 * ge->load.weight = ----------------------------- (1) 2857 * \Sum grq->load.weight 2858 * 2859 * Now, because computing that sum is prohibitively expensive to compute (been 2860 * there, done that) we approximate it with this average stuff. The average 2861 * moves slower and therefore the approximation is cheaper and more stable. 2862 * 2863 * So instead of the above, we substitute: 2864 * 2865 * grq->load.weight -> grq->avg.load_avg (2) 2866 * 2867 * which yields the following: 2868 * 2869 * tg->weight * grq->avg.load_avg 2870 * ge->load.weight = ------------------------------ (3) 2871 * tg->load_avg 2872 * 2873 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2874 * 2875 * That is shares_avg, and it is right (given the approximation (2)). 2876 * 2877 * The problem with it is that because the average is slow -- it was designed 2878 * to be exactly that of course -- this leads to transients in boundary 2879 * conditions. In specific, the case where the group was idle and we start the 2880 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2881 * yielding bad latency etc.. 2882 * 2883 * Now, in that special case (1) reduces to: 2884 * 2885 * tg->weight * grq->load.weight 2886 * ge->load.weight = ----------------------------- = tg->weight (4) 2887 * grp->load.weight 2888 * 2889 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2890 * 2891 * So what we do is modify our approximation (3) to approach (4) in the (near) 2892 * UP case, like: 2893 * 2894 * ge->load.weight = 2895 * 2896 * tg->weight * grq->load.weight 2897 * --------------------------------------------------- (5) 2898 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2899 * 2900 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2901 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2902 * 2903 * 2904 * tg->weight * grq->load.weight 2905 * ge->load.weight = ----------------------------- (6) 2906 * tg_load_avg' 2907 * 2908 * Where: 2909 * 2910 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2911 * max(grq->load.weight, grq->avg.load_avg) 2912 * 2913 * And that is shares_weight and is icky. In the (near) UP case it approaches 2914 * (4) while in the normal case it approaches (3). It consistently 2915 * overestimates the ge->load.weight and therefore: 2916 * 2917 * \Sum ge->load.weight >= tg->weight 2918 * 2919 * hence icky! 2920 */ 2921 static long calc_group_shares(struct cfs_rq *cfs_rq) 2922 { 2923 long tg_weight, tg_shares, load, shares; 2924 struct task_group *tg = cfs_rq->tg; 2925 2926 tg_shares = READ_ONCE(tg->shares); 2927 2928 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 2929 2930 tg_weight = atomic_long_read(&tg->load_avg); 2931 2932 /* Ensure tg_weight >= load */ 2933 tg_weight -= cfs_rq->tg_load_avg_contrib; 2934 tg_weight += load; 2935 2936 shares = (tg_shares * load); 2937 if (tg_weight) 2938 shares /= tg_weight; 2939 2940 /* 2941 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2942 * of a group with small tg->shares value. It is a floor value which is 2943 * assigned as a minimum load.weight to the sched_entity representing 2944 * the group on a CPU. 2945 * 2946 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2947 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2948 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2949 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2950 * instead of 0. 2951 */ 2952 return clamp_t(long, shares, MIN_SHARES, tg_shares); 2953 } 2954 2955 /* 2956 * This calculates the effective runnable weight for a group entity based on 2957 * the group entity weight calculated above. 2958 * 2959 * Because of the above approximation (2), our group entity weight is 2960 * an load_avg based ratio (3). This means that it includes blocked load and 2961 * does not represent the runnable weight. 2962 * 2963 * Approximate the group entity's runnable weight per ratio from the group 2964 * runqueue: 2965 * 2966 * grq->avg.runnable_load_avg 2967 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 2968 * grq->avg.load_avg 2969 * 2970 * However, analogous to above, since the avg numbers are slow, this leads to 2971 * transients in the from-idle case. Instead we use: 2972 * 2973 * ge->runnable_weight = ge->load.weight * 2974 * 2975 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 2976 * ----------------------------------------------------- (8) 2977 * max(grq->avg.load_avg, grq->load.weight) 2978 * 2979 * Where these max() serve both to use the 'instant' values to fix the slow 2980 * from-idle and avoid the /0 on to-idle, similar to (6). 2981 */ 2982 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 2983 { 2984 long runnable, load_avg; 2985 2986 load_avg = max(cfs_rq->avg.load_avg, 2987 scale_load_down(cfs_rq->load.weight)); 2988 2989 runnable = max(cfs_rq->avg.runnable_load_avg, 2990 scale_load_down(cfs_rq->runnable_weight)); 2991 2992 runnable *= shares; 2993 if (load_avg) 2994 runnable /= load_avg; 2995 2996 return clamp_t(long, runnable, MIN_SHARES, shares); 2997 } 2998 #endif /* CONFIG_SMP */ 2999 3000 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3001 3002 /* 3003 * Recomputes the group entity based on the current state of its group 3004 * runqueue. 3005 */ 3006 static void update_cfs_group(struct sched_entity *se) 3007 { 3008 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3009 long shares, runnable; 3010 3011 if (!gcfs_rq) 3012 return; 3013 3014 if (throttled_hierarchy(gcfs_rq)) 3015 return; 3016 3017 #ifndef CONFIG_SMP 3018 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 3019 3020 if (likely(se->load.weight == shares)) 3021 return; 3022 #else 3023 shares = calc_group_shares(gcfs_rq); 3024 runnable = calc_group_runnable(gcfs_rq, shares); 3025 #endif 3026 3027 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3028 } 3029 3030 #else /* CONFIG_FAIR_GROUP_SCHED */ 3031 static inline void update_cfs_group(struct sched_entity *se) 3032 { 3033 } 3034 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3035 3036 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3037 { 3038 struct rq *rq = rq_of(cfs_rq); 3039 3040 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { 3041 /* 3042 * There are a few boundary cases this might miss but it should 3043 * get called often enough that that should (hopefully) not be 3044 * a real problem. 3045 * 3046 * It will not get called when we go idle, because the idle 3047 * thread is a different class (!fair), nor will the utilization 3048 * number include things like RT tasks. 3049 * 3050 * As is, the util number is not freq-invariant (we'd have to 3051 * implement arch_scale_freq_capacity() for that). 3052 * 3053 * See cpu_util(). 3054 */ 3055 cpufreq_update_util(rq, flags); 3056 } 3057 } 3058 3059 #ifdef CONFIG_SMP 3060 #ifdef CONFIG_FAIR_GROUP_SCHED 3061 /** 3062 * update_tg_load_avg - update the tg's load avg 3063 * @cfs_rq: the cfs_rq whose avg changed 3064 * @force: update regardless of how small the difference 3065 * 3066 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3067 * However, because tg->load_avg is a global value there are performance 3068 * considerations. 3069 * 3070 * In order to avoid having to look at the other cfs_rq's, we use a 3071 * differential update where we store the last value we propagated. This in 3072 * turn allows skipping updates if the differential is 'small'. 3073 * 3074 * Updating tg's load_avg is necessary before update_cfs_share(). 3075 */ 3076 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3077 { 3078 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3079 3080 /* 3081 * No need to update load_avg for root_task_group as it is not used. 3082 */ 3083 if (cfs_rq->tg == &root_task_group) 3084 return; 3085 3086 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3087 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3088 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3089 } 3090 } 3091 3092 /* 3093 * Called within set_task_rq() right before setting a task's CPU. The 3094 * caller only guarantees p->pi_lock is held; no other assumptions, 3095 * including the state of rq->lock, should be made. 3096 */ 3097 void set_task_rq_fair(struct sched_entity *se, 3098 struct cfs_rq *prev, struct cfs_rq *next) 3099 { 3100 u64 p_last_update_time; 3101 u64 n_last_update_time; 3102 3103 if (!sched_feat(ATTACH_AGE_LOAD)) 3104 return; 3105 3106 /* 3107 * We are supposed to update the task to "current" time, then its up to 3108 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3109 * getting what current time is, so simply throw away the out-of-date 3110 * time. This will result in the wakee task is less decayed, but giving 3111 * the wakee more load sounds not bad. 3112 */ 3113 if (!(se->avg.last_update_time && prev)) 3114 return; 3115 3116 #ifndef CONFIG_64BIT 3117 { 3118 u64 p_last_update_time_copy; 3119 u64 n_last_update_time_copy; 3120 3121 do { 3122 p_last_update_time_copy = prev->load_last_update_time_copy; 3123 n_last_update_time_copy = next->load_last_update_time_copy; 3124 3125 smp_rmb(); 3126 3127 p_last_update_time = prev->avg.last_update_time; 3128 n_last_update_time = next->avg.last_update_time; 3129 3130 } while (p_last_update_time != p_last_update_time_copy || 3131 n_last_update_time != n_last_update_time_copy); 3132 } 3133 #else 3134 p_last_update_time = prev->avg.last_update_time; 3135 n_last_update_time = next->avg.last_update_time; 3136 #endif 3137 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se); 3138 se->avg.last_update_time = n_last_update_time; 3139 } 3140 3141 3142 /* 3143 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3144 * propagate its contribution. The key to this propagation is the invariant 3145 * that for each group: 3146 * 3147 * ge->avg == grq->avg (1) 3148 * 3149 * _IFF_ we look at the pure running and runnable sums. Because they 3150 * represent the very same entity, just at different points in the hierarchy. 3151 * 3152 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3153 * sum over (but still wrong, because the group entity and group rq do not have 3154 * their PELT windows aligned). 3155 * 3156 * However, update_tg_cfs_runnable() is more complex. So we have: 3157 * 3158 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3159 * 3160 * And since, like util, the runnable part should be directly transferable, 3161 * the following would _appear_ to be the straight forward approach: 3162 * 3163 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3164 * 3165 * And per (1) we have: 3166 * 3167 * ge->avg.runnable_avg == grq->avg.runnable_avg 3168 * 3169 * Which gives: 3170 * 3171 * ge->load.weight * grq->avg.load_avg 3172 * ge->avg.load_avg = ----------------------------------- (4) 3173 * grq->load.weight 3174 * 3175 * Except that is wrong! 3176 * 3177 * Because while for entities historical weight is not important and we 3178 * really only care about our future and therefore can consider a pure 3179 * runnable sum, runqueues can NOT do this. 3180 * 3181 * We specifically want runqueues to have a load_avg that includes 3182 * historical weights. Those represent the blocked load, the load we expect 3183 * to (shortly) return to us. This only works by keeping the weights as 3184 * integral part of the sum. We therefore cannot decompose as per (3). 3185 * 3186 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3187 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3188 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3189 * runnable section of these tasks overlap (or not). If they were to perfectly 3190 * align the rq as a whole would be runnable 2/3 of the time. If however we 3191 * always have at least 1 runnable task, the rq as a whole is always runnable. 3192 * 3193 * So we'll have to approximate.. :/ 3194 * 3195 * Given the constraint: 3196 * 3197 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3198 * 3199 * We can construct a rule that adds runnable to a rq by assuming minimal 3200 * overlap. 3201 * 3202 * On removal, we'll assume each task is equally runnable; which yields: 3203 * 3204 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3205 * 3206 * XXX: only do this for the part of runnable > running ? 3207 * 3208 */ 3209 3210 static inline void 3211 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3212 { 3213 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3214 3215 /* Nothing to update */ 3216 if (!delta) 3217 return; 3218 3219 /* 3220 * The relation between sum and avg is: 3221 * 3222 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3223 * 3224 * however, the PELT windows are not aligned between grq and gse. 3225 */ 3226 3227 /* Set new sched_entity's utilization */ 3228 se->avg.util_avg = gcfs_rq->avg.util_avg; 3229 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3230 3231 /* Update parent cfs_rq utilization */ 3232 add_positive(&cfs_rq->avg.util_avg, delta); 3233 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3234 } 3235 3236 static inline void 3237 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3238 { 3239 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3240 unsigned long runnable_load_avg, load_avg; 3241 u64 runnable_load_sum, load_sum = 0; 3242 s64 delta_sum; 3243 3244 if (!runnable_sum) 3245 return; 3246 3247 gcfs_rq->prop_runnable_sum = 0; 3248 3249 if (runnable_sum >= 0) { 3250 /* 3251 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3252 * the CPU is saturated running == runnable. 3253 */ 3254 runnable_sum += se->avg.load_sum; 3255 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3256 } else { 3257 /* 3258 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3259 * assuming all tasks are equally runnable. 3260 */ 3261 if (scale_load_down(gcfs_rq->load.weight)) { 3262 load_sum = div_s64(gcfs_rq->avg.load_sum, 3263 scale_load_down(gcfs_rq->load.weight)); 3264 } 3265 3266 /* But make sure to not inflate se's runnable */ 3267 runnable_sum = min(se->avg.load_sum, load_sum); 3268 } 3269 3270 /* 3271 * runnable_sum can't be lower than running_sum 3272 * As running sum is scale with CPU capacity wehreas the runnable sum 3273 * is not we rescale running_sum 1st 3274 */ 3275 running_sum = se->avg.util_sum / 3276 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 3277 runnable_sum = max(runnable_sum, running_sum); 3278 3279 load_sum = (s64)se_weight(se) * runnable_sum; 3280 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3281 3282 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3283 delta_avg = load_avg - se->avg.load_avg; 3284 3285 se->avg.load_sum = runnable_sum; 3286 se->avg.load_avg = load_avg; 3287 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3288 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3289 3290 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3291 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3292 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3293 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3294 3295 se->avg.runnable_load_sum = runnable_sum; 3296 se->avg.runnable_load_avg = runnable_load_avg; 3297 3298 if (se->on_rq) { 3299 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3300 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3301 } 3302 } 3303 3304 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3305 { 3306 cfs_rq->propagate = 1; 3307 cfs_rq->prop_runnable_sum += runnable_sum; 3308 } 3309 3310 /* Update task and its cfs_rq load average */ 3311 static inline int propagate_entity_load_avg(struct sched_entity *se) 3312 { 3313 struct cfs_rq *cfs_rq, *gcfs_rq; 3314 3315 if (entity_is_task(se)) 3316 return 0; 3317 3318 gcfs_rq = group_cfs_rq(se); 3319 if (!gcfs_rq->propagate) 3320 return 0; 3321 3322 gcfs_rq->propagate = 0; 3323 3324 cfs_rq = cfs_rq_of(se); 3325 3326 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3327 3328 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3329 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3330 3331 return 1; 3332 } 3333 3334 /* 3335 * Check if we need to update the load and the utilization of a blocked 3336 * group_entity: 3337 */ 3338 static inline bool skip_blocked_update(struct sched_entity *se) 3339 { 3340 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3341 3342 /* 3343 * If sched_entity still have not zero load or utilization, we have to 3344 * decay it: 3345 */ 3346 if (se->avg.load_avg || se->avg.util_avg) 3347 return false; 3348 3349 /* 3350 * If there is a pending propagation, we have to update the load and 3351 * the utilization of the sched_entity: 3352 */ 3353 if (gcfs_rq->propagate) 3354 return false; 3355 3356 /* 3357 * Otherwise, the load and the utilization of the sched_entity is 3358 * already zero and there is no pending propagation, so it will be a 3359 * waste of time to try to decay it: 3360 */ 3361 return true; 3362 } 3363 3364 #else /* CONFIG_FAIR_GROUP_SCHED */ 3365 3366 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3367 3368 static inline int propagate_entity_load_avg(struct sched_entity *se) 3369 { 3370 return 0; 3371 } 3372 3373 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3374 3375 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3376 3377 /** 3378 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3379 * @now: current time, as per cfs_rq_clock_task() 3380 * @cfs_rq: cfs_rq to update 3381 * 3382 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3383 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3384 * post_init_entity_util_avg(). 3385 * 3386 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3387 * 3388 * Returns true if the load decayed or we removed load. 3389 * 3390 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3391 * call update_tg_load_avg() when this function returns true. 3392 */ 3393 static inline int 3394 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3395 { 3396 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3397 struct sched_avg *sa = &cfs_rq->avg; 3398 int decayed = 0; 3399 3400 if (cfs_rq->removed.nr) { 3401 unsigned long r; 3402 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3403 3404 raw_spin_lock(&cfs_rq->removed.lock); 3405 swap(cfs_rq->removed.util_avg, removed_util); 3406 swap(cfs_rq->removed.load_avg, removed_load); 3407 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3408 cfs_rq->removed.nr = 0; 3409 raw_spin_unlock(&cfs_rq->removed.lock); 3410 3411 r = removed_load; 3412 sub_positive(&sa->load_avg, r); 3413 sub_positive(&sa->load_sum, r * divider); 3414 3415 r = removed_util; 3416 sub_positive(&sa->util_avg, r); 3417 sub_positive(&sa->util_sum, r * divider); 3418 3419 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3420 3421 decayed = 1; 3422 } 3423 3424 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq); 3425 3426 #ifndef CONFIG_64BIT 3427 smp_wmb(); 3428 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3429 #endif 3430 3431 if (decayed) 3432 cfs_rq_util_change(cfs_rq, 0); 3433 3434 return decayed; 3435 } 3436 3437 /** 3438 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3439 * @cfs_rq: cfs_rq to attach to 3440 * @se: sched_entity to attach 3441 * @flags: migration hints 3442 * 3443 * Must call update_cfs_rq_load_avg() before this, since we rely on 3444 * cfs_rq->avg.last_update_time being current. 3445 */ 3446 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3447 { 3448 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3449 3450 /* 3451 * When we attach the @se to the @cfs_rq, we must align the decay 3452 * window because without that, really weird and wonderful things can 3453 * happen. 3454 * 3455 * XXX illustrate 3456 */ 3457 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3458 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3459 3460 /* 3461 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3462 * period_contrib. This isn't strictly correct, but since we're 3463 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3464 * _sum a little. 3465 */ 3466 se->avg.util_sum = se->avg.util_avg * divider; 3467 3468 se->avg.load_sum = divider; 3469 if (se_weight(se)) { 3470 se->avg.load_sum = 3471 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3472 } 3473 3474 se->avg.runnable_load_sum = se->avg.load_sum; 3475 3476 enqueue_load_avg(cfs_rq, se); 3477 cfs_rq->avg.util_avg += se->avg.util_avg; 3478 cfs_rq->avg.util_sum += se->avg.util_sum; 3479 3480 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3481 3482 cfs_rq_util_change(cfs_rq, flags); 3483 } 3484 3485 /** 3486 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3487 * @cfs_rq: cfs_rq to detach from 3488 * @se: sched_entity to detach 3489 * 3490 * Must call update_cfs_rq_load_avg() before this, since we rely on 3491 * cfs_rq->avg.last_update_time being current. 3492 */ 3493 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3494 { 3495 dequeue_load_avg(cfs_rq, se); 3496 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3497 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3498 3499 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3500 3501 cfs_rq_util_change(cfs_rq, 0); 3502 } 3503 3504 /* 3505 * Optional action to be done while updating the load average 3506 */ 3507 #define UPDATE_TG 0x1 3508 #define SKIP_AGE_LOAD 0x2 3509 #define DO_ATTACH 0x4 3510 3511 /* Update task and its cfs_rq load average */ 3512 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3513 { 3514 u64 now = cfs_rq_clock_task(cfs_rq); 3515 struct rq *rq = rq_of(cfs_rq); 3516 int cpu = cpu_of(rq); 3517 int decayed; 3518 3519 /* 3520 * Track task load average for carrying it to new CPU after migrated, and 3521 * track group sched_entity load average for task_h_load calc in migration 3522 */ 3523 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3524 __update_load_avg_se(now, cpu, cfs_rq, se); 3525 3526 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3527 decayed |= propagate_entity_load_avg(se); 3528 3529 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3530 3531 /* 3532 * DO_ATTACH means we're here from enqueue_entity(). 3533 * !last_update_time means we've passed through 3534 * migrate_task_rq_fair() indicating we migrated. 3535 * 3536 * IOW we're enqueueing a task on a new CPU. 3537 */ 3538 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); 3539 update_tg_load_avg(cfs_rq, 0); 3540 3541 } else if (decayed && (flags & UPDATE_TG)) 3542 update_tg_load_avg(cfs_rq, 0); 3543 } 3544 3545 #ifndef CONFIG_64BIT 3546 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3547 { 3548 u64 last_update_time_copy; 3549 u64 last_update_time; 3550 3551 do { 3552 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3553 smp_rmb(); 3554 last_update_time = cfs_rq->avg.last_update_time; 3555 } while (last_update_time != last_update_time_copy); 3556 3557 return last_update_time; 3558 } 3559 #else 3560 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3561 { 3562 return cfs_rq->avg.last_update_time; 3563 } 3564 #endif 3565 3566 /* 3567 * Synchronize entity load avg of dequeued entity without locking 3568 * the previous rq. 3569 */ 3570 void sync_entity_load_avg(struct sched_entity *se) 3571 { 3572 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3573 u64 last_update_time; 3574 3575 last_update_time = cfs_rq_last_update_time(cfs_rq); 3576 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se); 3577 } 3578 3579 /* 3580 * Task first catches up with cfs_rq, and then subtract 3581 * itself from the cfs_rq (task must be off the queue now). 3582 */ 3583 void remove_entity_load_avg(struct sched_entity *se) 3584 { 3585 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3586 unsigned long flags; 3587 3588 /* 3589 * tasks cannot exit without having gone through wake_up_new_task() -> 3590 * post_init_entity_util_avg() which will have added things to the 3591 * cfs_rq, so we can remove unconditionally. 3592 * 3593 * Similarly for groups, they will have passed through 3594 * post_init_entity_util_avg() before unregister_sched_fair_group() 3595 * calls this. 3596 */ 3597 3598 sync_entity_load_avg(se); 3599 3600 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3601 ++cfs_rq->removed.nr; 3602 cfs_rq->removed.util_avg += se->avg.util_avg; 3603 cfs_rq->removed.load_avg += se->avg.load_avg; 3604 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3605 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3606 } 3607 3608 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3609 { 3610 return cfs_rq->avg.runnable_load_avg; 3611 } 3612 3613 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3614 { 3615 return cfs_rq->avg.load_avg; 3616 } 3617 3618 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3619 3620 static inline unsigned long task_util(struct task_struct *p) 3621 { 3622 return READ_ONCE(p->se.avg.util_avg); 3623 } 3624 3625 static inline unsigned long _task_util_est(struct task_struct *p) 3626 { 3627 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3628 3629 return max(ue.ewma, ue.enqueued); 3630 } 3631 3632 static inline unsigned long task_util_est(struct task_struct *p) 3633 { 3634 return max(task_util(p), _task_util_est(p)); 3635 } 3636 3637 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3638 struct task_struct *p) 3639 { 3640 unsigned int enqueued; 3641 3642 if (!sched_feat(UTIL_EST)) 3643 return; 3644 3645 /* Update root cfs_rq's estimated utilization */ 3646 enqueued = cfs_rq->avg.util_est.enqueued; 3647 enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED); 3648 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3649 } 3650 3651 /* 3652 * Check if a (signed) value is within a specified (unsigned) margin, 3653 * based on the observation that: 3654 * 3655 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3656 * 3657 * NOTE: this only works when value + maring < INT_MAX. 3658 */ 3659 static inline bool within_margin(int value, int margin) 3660 { 3661 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3662 } 3663 3664 static void 3665 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3666 { 3667 long last_ewma_diff; 3668 struct util_est ue; 3669 3670 if (!sched_feat(UTIL_EST)) 3671 return; 3672 3673 /* Update root cfs_rq's estimated utilization */ 3674 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3675 ue.enqueued -= min_t(unsigned int, ue.enqueued, 3676 (_task_util_est(p) | UTIL_AVG_UNCHANGED)); 3677 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3678 3679 /* 3680 * Skip update of task's estimated utilization when the task has not 3681 * yet completed an activation, e.g. being migrated. 3682 */ 3683 if (!task_sleep) 3684 return; 3685 3686 /* 3687 * If the PELT values haven't changed since enqueue time, 3688 * skip the util_est update. 3689 */ 3690 ue = p->se.avg.util_est; 3691 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3692 return; 3693 3694 /* 3695 * Skip update of task's estimated utilization when its EWMA is 3696 * already ~1% close to its last activation value. 3697 */ 3698 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3699 last_ewma_diff = ue.enqueued - ue.ewma; 3700 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3701 return; 3702 3703 /* 3704 * Update Task's estimated utilization 3705 * 3706 * When *p completes an activation we can consolidate another sample 3707 * of the task size. This is done by storing the current PELT value 3708 * as ue.enqueued and by using this value to update the Exponential 3709 * Weighted Moving Average (EWMA): 3710 * 3711 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 3712 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 3713 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 3714 * = w * ( last_ewma_diff ) + ewma(t-1) 3715 * = w * (last_ewma_diff + ewma(t-1) / w) 3716 * 3717 * Where 'w' is the weight of new samples, which is configured to be 3718 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 3719 */ 3720 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 3721 ue.ewma += last_ewma_diff; 3722 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 3723 WRITE_ONCE(p->se.avg.util_est, ue); 3724 } 3725 3726 #else /* CONFIG_SMP */ 3727 3728 #define UPDATE_TG 0x0 3729 #define SKIP_AGE_LOAD 0x0 3730 #define DO_ATTACH 0x0 3731 3732 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3733 { 3734 cfs_rq_util_change(cfs_rq, 0); 3735 } 3736 3737 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3738 3739 static inline void 3740 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} 3741 static inline void 3742 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3743 3744 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3745 { 3746 return 0; 3747 } 3748 3749 static inline void 3750 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 3751 3752 static inline void 3753 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 3754 bool task_sleep) {} 3755 3756 #endif /* CONFIG_SMP */ 3757 3758 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3759 { 3760 #ifdef CONFIG_SCHED_DEBUG 3761 s64 d = se->vruntime - cfs_rq->min_vruntime; 3762 3763 if (d < 0) 3764 d = -d; 3765 3766 if (d > 3*sysctl_sched_latency) 3767 schedstat_inc(cfs_rq->nr_spread_over); 3768 #endif 3769 } 3770 3771 static void 3772 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3773 { 3774 u64 vruntime = cfs_rq->min_vruntime; 3775 3776 /* 3777 * The 'current' period is already promised to the current tasks, 3778 * however the extra weight of the new task will slow them down a 3779 * little, place the new task so that it fits in the slot that 3780 * stays open at the end. 3781 */ 3782 if (initial && sched_feat(START_DEBIT)) 3783 vruntime += sched_vslice(cfs_rq, se); 3784 3785 /* sleeps up to a single latency don't count. */ 3786 if (!initial) { 3787 unsigned long thresh = sysctl_sched_latency; 3788 3789 /* 3790 * Halve their sleep time's effect, to allow 3791 * for a gentler effect of sleepers: 3792 */ 3793 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3794 thresh >>= 1; 3795 3796 vruntime -= thresh; 3797 } 3798 3799 /* ensure we never gain time by being placed backwards. */ 3800 se->vruntime = max_vruntime(se->vruntime, vruntime); 3801 } 3802 3803 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3804 3805 static inline void check_schedstat_required(void) 3806 { 3807 #ifdef CONFIG_SCHEDSTATS 3808 if (schedstat_enabled()) 3809 return; 3810 3811 /* Force schedstat enabled if a dependent tracepoint is active */ 3812 if (trace_sched_stat_wait_enabled() || 3813 trace_sched_stat_sleep_enabled() || 3814 trace_sched_stat_iowait_enabled() || 3815 trace_sched_stat_blocked_enabled() || 3816 trace_sched_stat_runtime_enabled()) { 3817 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3818 "stat_blocked and stat_runtime require the " 3819 "kernel parameter schedstats=enable or " 3820 "kernel.sched_schedstats=1\n"); 3821 } 3822 #endif 3823 } 3824 3825 3826 /* 3827 * MIGRATION 3828 * 3829 * dequeue 3830 * update_curr() 3831 * update_min_vruntime() 3832 * vruntime -= min_vruntime 3833 * 3834 * enqueue 3835 * update_curr() 3836 * update_min_vruntime() 3837 * vruntime += min_vruntime 3838 * 3839 * this way the vruntime transition between RQs is done when both 3840 * min_vruntime are up-to-date. 3841 * 3842 * WAKEUP (remote) 3843 * 3844 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3845 * vruntime -= min_vruntime 3846 * 3847 * enqueue 3848 * update_curr() 3849 * update_min_vruntime() 3850 * vruntime += min_vruntime 3851 * 3852 * this way we don't have the most up-to-date min_vruntime on the originating 3853 * CPU and an up-to-date min_vruntime on the destination CPU. 3854 */ 3855 3856 static void 3857 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3858 { 3859 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3860 bool curr = cfs_rq->curr == se; 3861 3862 /* 3863 * If we're the current task, we must renormalise before calling 3864 * update_curr(). 3865 */ 3866 if (renorm && curr) 3867 se->vruntime += cfs_rq->min_vruntime; 3868 3869 update_curr(cfs_rq); 3870 3871 /* 3872 * Otherwise, renormalise after, such that we're placed at the current 3873 * moment in time, instead of some random moment in the past. Being 3874 * placed in the past could significantly boost this task to the 3875 * fairness detriment of existing tasks. 3876 */ 3877 if (renorm && !curr) 3878 se->vruntime += cfs_rq->min_vruntime; 3879 3880 /* 3881 * When enqueuing a sched_entity, we must: 3882 * - Update loads to have both entity and cfs_rq synced with now. 3883 * - Add its load to cfs_rq->runnable_avg 3884 * - For group_entity, update its weight to reflect the new share of 3885 * its group cfs_rq 3886 * - Add its new weight to cfs_rq->load.weight 3887 */ 3888 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 3889 update_cfs_group(se); 3890 enqueue_runnable_load_avg(cfs_rq, se); 3891 account_entity_enqueue(cfs_rq, se); 3892 3893 if (flags & ENQUEUE_WAKEUP) 3894 place_entity(cfs_rq, se, 0); 3895 3896 check_schedstat_required(); 3897 update_stats_enqueue(cfs_rq, se, flags); 3898 check_spread(cfs_rq, se); 3899 if (!curr) 3900 __enqueue_entity(cfs_rq, se); 3901 se->on_rq = 1; 3902 3903 if (cfs_rq->nr_running == 1) { 3904 list_add_leaf_cfs_rq(cfs_rq); 3905 check_enqueue_throttle(cfs_rq); 3906 } 3907 } 3908 3909 static void __clear_buddies_last(struct sched_entity *se) 3910 { 3911 for_each_sched_entity(se) { 3912 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3913 if (cfs_rq->last != se) 3914 break; 3915 3916 cfs_rq->last = NULL; 3917 } 3918 } 3919 3920 static void __clear_buddies_next(struct sched_entity *se) 3921 { 3922 for_each_sched_entity(se) { 3923 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3924 if (cfs_rq->next != se) 3925 break; 3926 3927 cfs_rq->next = NULL; 3928 } 3929 } 3930 3931 static void __clear_buddies_skip(struct sched_entity *se) 3932 { 3933 for_each_sched_entity(se) { 3934 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3935 if (cfs_rq->skip != se) 3936 break; 3937 3938 cfs_rq->skip = NULL; 3939 } 3940 } 3941 3942 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3943 { 3944 if (cfs_rq->last == se) 3945 __clear_buddies_last(se); 3946 3947 if (cfs_rq->next == se) 3948 __clear_buddies_next(se); 3949 3950 if (cfs_rq->skip == se) 3951 __clear_buddies_skip(se); 3952 } 3953 3954 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3955 3956 static void 3957 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3958 { 3959 /* 3960 * Update run-time statistics of the 'current'. 3961 */ 3962 update_curr(cfs_rq); 3963 3964 /* 3965 * When dequeuing a sched_entity, we must: 3966 * - Update loads to have both entity and cfs_rq synced with now. 3967 * - Substract its load from the cfs_rq->runnable_avg. 3968 * - Substract its previous weight from cfs_rq->load.weight. 3969 * - For group entity, update its weight to reflect the new share 3970 * of its group cfs_rq. 3971 */ 3972 update_load_avg(cfs_rq, se, UPDATE_TG); 3973 dequeue_runnable_load_avg(cfs_rq, se); 3974 3975 update_stats_dequeue(cfs_rq, se, flags); 3976 3977 clear_buddies(cfs_rq, se); 3978 3979 if (se != cfs_rq->curr) 3980 __dequeue_entity(cfs_rq, se); 3981 se->on_rq = 0; 3982 account_entity_dequeue(cfs_rq, se); 3983 3984 /* 3985 * Normalize after update_curr(); which will also have moved 3986 * min_vruntime if @se is the one holding it back. But before doing 3987 * update_min_vruntime() again, which will discount @se's position and 3988 * can move min_vruntime forward still more. 3989 */ 3990 if (!(flags & DEQUEUE_SLEEP)) 3991 se->vruntime -= cfs_rq->min_vruntime; 3992 3993 /* return excess runtime on last dequeue */ 3994 return_cfs_rq_runtime(cfs_rq); 3995 3996 update_cfs_group(se); 3997 3998 /* 3999 * Now advance min_vruntime if @se was the entity holding it back, 4000 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4001 * put back on, and if we advance min_vruntime, we'll be placed back 4002 * further than we started -- ie. we'll be penalized. 4003 */ 4004 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 4005 update_min_vruntime(cfs_rq); 4006 } 4007 4008 /* 4009 * Preempt the current task with a newly woken task if needed: 4010 */ 4011 static void 4012 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4013 { 4014 unsigned long ideal_runtime, delta_exec; 4015 struct sched_entity *se; 4016 s64 delta; 4017 4018 ideal_runtime = sched_slice(cfs_rq, curr); 4019 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4020 if (delta_exec > ideal_runtime) { 4021 resched_curr(rq_of(cfs_rq)); 4022 /* 4023 * The current task ran long enough, ensure it doesn't get 4024 * re-elected due to buddy favours. 4025 */ 4026 clear_buddies(cfs_rq, curr); 4027 return; 4028 } 4029 4030 /* 4031 * Ensure that a task that missed wakeup preemption by a 4032 * narrow margin doesn't have to wait for a full slice. 4033 * This also mitigates buddy induced latencies under load. 4034 */ 4035 if (delta_exec < sysctl_sched_min_granularity) 4036 return; 4037 4038 se = __pick_first_entity(cfs_rq); 4039 delta = curr->vruntime - se->vruntime; 4040 4041 if (delta < 0) 4042 return; 4043 4044 if (delta > ideal_runtime) 4045 resched_curr(rq_of(cfs_rq)); 4046 } 4047 4048 static void 4049 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4050 { 4051 /* 'current' is not kept within the tree. */ 4052 if (se->on_rq) { 4053 /* 4054 * Any task has to be enqueued before it get to execute on 4055 * a CPU. So account for the time it spent waiting on the 4056 * runqueue. 4057 */ 4058 update_stats_wait_end(cfs_rq, se); 4059 __dequeue_entity(cfs_rq, se); 4060 update_load_avg(cfs_rq, se, UPDATE_TG); 4061 } 4062 4063 update_stats_curr_start(cfs_rq, se); 4064 cfs_rq->curr = se; 4065 4066 /* 4067 * Track our maximum slice length, if the CPU's load is at 4068 * least twice that of our own weight (i.e. dont track it 4069 * when there are only lesser-weight tasks around): 4070 */ 4071 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 4072 schedstat_set(se->statistics.slice_max, 4073 max((u64)schedstat_val(se->statistics.slice_max), 4074 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4075 } 4076 4077 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4078 } 4079 4080 static int 4081 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4082 4083 /* 4084 * Pick the next process, keeping these things in mind, in this order: 4085 * 1) keep things fair between processes/task groups 4086 * 2) pick the "next" process, since someone really wants that to run 4087 * 3) pick the "last" process, for cache locality 4088 * 4) do not run the "skip" process, if something else is available 4089 */ 4090 static struct sched_entity * 4091 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4092 { 4093 struct sched_entity *left = __pick_first_entity(cfs_rq); 4094 struct sched_entity *se; 4095 4096 /* 4097 * If curr is set we have to see if its left of the leftmost entity 4098 * still in the tree, provided there was anything in the tree at all. 4099 */ 4100 if (!left || (curr && entity_before(curr, left))) 4101 left = curr; 4102 4103 se = left; /* ideally we run the leftmost entity */ 4104 4105 /* 4106 * Avoid running the skip buddy, if running something else can 4107 * be done without getting too unfair. 4108 */ 4109 if (cfs_rq->skip == se) { 4110 struct sched_entity *second; 4111 4112 if (se == curr) { 4113 second = __pick_first_entity(cfs_rq); 4114 } else { 4115 second = __pick_next_entity(se); 4116 if (!second || (curr && entity_before(curr, second))) 4117 second = curr; 4118 } 4119 4120 if (second && wakeup_preempt_entity(second, left) < 1) 4121 se = second; 4122 } 4123 4124 /* 4125 * Prefer last buddy, try to return the CPU to a preempted task. 4126 */ 4127 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4128 se = cfs_rq->last; 4129 4130 /* 4131 * Someone really wants this to run. If it's not unfair, run it. 4132 */ 4133 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4134 se = cfs_rq->next; 4135 4136 clear_buddies(cfs_rq, se); 4137 4138 return se; 4139 } 4140 4141 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4142 4143 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4144 { 4145 /* 4146 * If still on the runqueue then deactivate_task() 4147 * was not called and update_curr() has to be done: 4148 */ 4149 if (prev->on_rq) 4150 update_curr(cfs_rq); 4151 4152 /* throttle cfs_rqs exceeding runtime */ 4153 check_cfs_rq_runtime(cfs_rq); 4154 4155 check_spread(cfs_rq, prev); 4156 4157 if (prev->on_rq) { 4158 update_stats_wait_start(cfs_rq, prev); 4159 /* Put 'current' back into the tree. */ 4160 __enqueue_entity(cfs_rq, prev); 4161 /* in !on_rq case, update occurred at dequeue */ 4162 update_load_avg(cfs_rq, prev, 0); 4163 } 4164 cfs_rq->curr = NULL; 4165 } 4166 4167 static void 4168 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4169 { 4170 /* 4171 * Update run-time statistics of the 'current'. 4172 */ 4173 update_curr(cfs_rq); 4174 4175 /* 4176 * Ensure that runnable average is periodically updated. 4177 */ 4178 update_load_avg(cfs_rq, curr, UPDATE_TG); 4179 update_cfs_group(curr); 4180 4181 #ifdef CONFIG_SCHED_HRTICK 4182 /* 4183 * queued ticks are scheduled to match the slice, so don't bother 4184 * validating it and just reschedule. 4185 */ 4186 if (queued) { 4187 resched_curr(rq_of(cfs_rq)); 4188 return; 4189 } 4190 /* 4191 * don't let the period tick interfere with the hrtick preemption 4192 */ 4193 if (!sched_feat(DOUBLE_TICK) && 4194 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4195 return; 4196 #endif 4197 4198 if (cfs_rq->nr_running > 1) 4199 check_preempt_tick(cfs_rq, curr); 4200 } 4201 4202 4203 /************************************************** 4204 * CFS bandwidth control machinery 4205 */ 4206 4207 #ifdef CONFIG_CFS_BANDWIDTH 4208 4209 #ifdef HAVE_JUMP_LABEL 4210 static struct static_key __cfs_bandwidth_used; 4211 4212 static inline bool cfs_bandwidth_used(void) 4213 { 4214 return static_key_false(&__cfs_bandwidth_used); 4215 } 4216 4217 void cfs_bandwidth_usage_inc(void) 4218 { 4219 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4220 } 4221 4222 void cfs_bandwidth_usage_dec(void) 4223 { 4224 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4225 } 4226 #else /* HAVE_JUMP_LABEL */ 4227 static bool cfs_bandwidth_used(void) 4228 { 4229 return true; 4230 } 4231 4232 void cfs_bandwidth_usage_inc(void) {} 4233 void cfs_bandwidth_usage_dec(void) {} 4234 #endif /* HAVE_JUMP_LABEL */ 4235 4236 /* 4237 * default period for cfs group bandwidth. 4238 * default: 0.1s, units: nanoseconds 4239 */ 4240 static inline u64 default_cfs_period(void) 4241 { 4242 return 100000000ULL; 4243 } 4244 4245 static inline u64 sched_cfs_bandwidth_slice(void) 4246 { 4247 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4248 } 4249 4250 /* 4251 * Replenish runtime according to assigned quota and update expiration time. 4252 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4253 * additional synchronization around rq->lock. 4254 * 4255 * requires cfs_b->lock 4256 */ 4257 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4258 { 4259 u64 now; 4260 4261 if (cfs_b->quota == RUNTIME_INF) 4262 return; 4263 4264 now = sched_clock_cpu(smp_processor_id()); 4265 cfs_b->runtime = cfs_b->quota; 4266 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4267 cfs_b->expires_seq++; 4268 } 4269 4270 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4271 { 4272 return &tg->cfs_bandwidth; 4273 } 4274 4275 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4276 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4277 { 4278 if (unlikely(cfs_rq->throttle_count)) 4279 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4280 4281 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4282 } 4283 4284 /* returns 0 on failure to allocate runtime */ 4285 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4286 { 4287 struct task_group *tg = cfs_rq->tg; 4288 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4289 u64 amount = 0, min_amount, expires; 4290 int expires_seq; 4291 4292 /* note: this is a positive sum as runtime_remaining <= 0 */ 4293 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4294 4295 raw_spin_lock(&cfs_b->lock); 4296 if (cfs_b->quota == RUNTIME_INF) 4297 amount = min_amount; 4298 else { 4299 start_cfs_bandwidth(cfs_b); 4300 4301 if (cfs_b->runtime > 0) { 4302 amount = min(cfs_b->runtime, min_amount); 4303 cfs_b->runtime -= amount; 4304 cfs_b->idle = 0; 4305 } 4306 } 4307 expires_seq = cfs_b->expires_seq; 4308 expires = cfs_b->runtime_expires; 4309 raw_spin_unlock(&cfs_b->lock); 4310 4311 cfs_rq->runtime_remaining += amount; 4312 /* 4313 * we may have advanced our local expiration to account for allowed 4314 * spread between our sched_clock and the one on which runtime was 4315 * issued. 4316 */ 4317 if (cfs_rq->expires_seq != expires_seq) { 4318 cfs_rq->expires_seq = expires_seq; 4319 cfs_rq->runtime_expires = expires; 4320 } 4321 4322 return cfs_rq->runtime_remaining > 0; 4323 } 4324 4325 /* 4326 * Note: This depends on the synchronization provided by sched_clock and the 4327 * fact that rq->clock snapshots this value. 4328 */ 4329 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4330 { 4331 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4332 4333 /* if the deadline is ahead of our clock, nothing to do */ 4334 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4335 return; 4336 4337 if (cfs_rq->runtime_remaining < 0) 4338 return; 4339 4340 /* 4341 * If the local deadline has passed we have to consider the 4342 * possibility that our sched_clock is 'fast' and the global deadline 4343 * has not truly expired. 4344 * 4345 * Fortunately we can check determine whether this the case by checking 4346 * whether the global deadline(cfs_b->expires_seq) has advanced. 4347 */ 4348 if (cfs_rq->expires_seq == cfs_b->expires_seq) { 4349 /* extend local deadline, drift is bounded above by 2 ticks */ 4350 cfs_rq->runtime_expires += TICK_NSEC; 4351 } else { 4352 /* global deadline is ahead, expiration has passed */ 4353 cfs_rq->runtime_remaining = 0; 4354 } 4355 } 4356 4357 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4358 { 4359 /* dock delta_exec before expiring quota (as it could span periods) */ 4360 cfs_rq->runtime_remaining -= delta_exec; 4361 expire_cfs_rq_runtime(cfs_rq); 4362 4363 if (likely(cfs_rq->runtime_remaining > 0)) 4364 return; 4365 4366 /* 4367 * if we're unable to extend our runtime we resched so that the active 4368 * hierarchy can be throttled 4369 */ 4370 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4371 resched_curr(rq_of(cfs_rq)); 4372 } 4373 4374 static __always_inline 4375 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4376 { 4377 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4378 return; 4379 4380 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4381 } 4382 4383 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4384 { 4385 return cfs_bandwidth_used() && cfs_rq->throttled; 4386 } 4387 4388 /* check whether cfs_rq, or any parent, is throttled */ 4389 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4390 { 4391 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4392 } 4393 4394 /* 4395 * Ensure that neither of the group entities corresponding to src_cpu or 4396 * dest_cpu are members of a throttled hierarchy when performing group 4397 * load-balance operations. 4398 */ 4399 static inline int throttled_lb_pair(struct task_group *tg, 4400 int src_cpu, int dest_cpu) 4401 { 4402 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4403 4404 src_cfs_rq = tg->cfs_rq[src_cpu]; 4405 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4406 4407 return throttled_hierarchy(src_cfs_rq) || 4408 throttled_hierarchy(dest_cfs_rq); 4409 } 4410 4411 static int tg_unthrottle_up(struct task_group *tg, void *data) 4412 { 4413 struct rq *rq = data; 4414 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4415 4416 cfs_rq->throttle_count--; 4417 if (!cfs_rq->throttle_count) { 4418 /* adjust cfs_rq_clock_task() */ 4419 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4420 cfs_rq->throttled_clock_task; 4421 } 4422 4423 return 0; 4424 } 4425 4426 static int tg_throttle_down(struct task_group *tg, void *data) 4427 { 4428 struct rq *rq = data; 4429 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4430 4431 /* group is entering throttled state, stop time */ 4432 if (!cfs_rq->throttle_count) 4433 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4434 cfs_rq->throttle_count++; 4435 4436 return 0; 4437 } 4438 4439 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4440 { 4441 struct rq *rq = rq_of(cfs_rq); 4442 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4443 struct sched_entity *se; 4444 long task_delta, dequeue = 1; 4445 bool empty; 4446 4447 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4448 4449 /* freeze hierarchy runnable averages while throttled */ 4450 rcu_read_lock(); 4451 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4452 rcu_read_unlock(); 4453 4454 task_delta = cfs_rq->h_nr_running; 4455 for_each_sched_entity(se) { 4456 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4457 /* throttled entity or throttle-on-deactivate */ 4458 if (!se->on_rq) 4459 break; 4460 4461 if (dequeue) 4462 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4463 qcfs_rq->h_nr_running -= task_delta; 4464 4465 if (qcfs_rq->load.weight) 4466 dequeue = 0; 4467 } 4468 4469 if (!se) 4470 sub_nr_running(rq, task_delta); 4471 4472 cfs_rq->throttled = 1; 4473 cfs_rq->throttled_clock = rq_clock(rq); 4474 raw_spin_lock(&cfs_b->lock); 4475 empty = list_empty(&cfs_b->throttled_cfs_rq); 4476 4477 /* 4478 * Add to the _head_ of the list, so that an already-started 4479 * distribute_cfs_runtime will not see us 4480 */ 4481 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4482 4483 /* 4484 * If we're the first throttled task, make sure the bandwidth 4485 * timer is running. 4486 */ 4487 if (empty) 4488 start_cfs_bandwidth(cfs_b); 4489 4490 raw_spin_unlock(&cfs_b->lock); 4491 } 4492 4493 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4494 { 4495 struct rq *rq = rq_of(cfs_rq); 4496 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4497 struct sched_entity *se; 4498 int enqueue = 1; 4499 long task_delta; 4500 4501 se = cfs_rq->tg->se[cpu_of(rq)]; 4502 4503 cfs_rq->throttled = 0; 4504 4505 update_rq_clock(rq); 4506 4507 raw_spin_lock(&cfs_b->lock); 4508 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4509 list_del_rcu(&cfs_rq->throttled_list); 4510 raw_spin_unlock(&cfs_b->lock); 4511 4512 /* update hierarchical throttle state */ 4513 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4514 4515 if (!cfs_rq->load.weight) 4516 return; 4517 4518 task_delta = cfs_rq->h_nr_running; 4519 for_each_sched_entity(se) { 4520 if (se->on_rq) 4521 enqueue = 0; 4522 4523 cfs_rq = cfs_rq_of(se); 4524 if (enqueue) 4525 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4526 cfs_rq->h_nr_running += task_delta; 4527 4528 if (cfs_rq_throttled(cfs_rq)) 4529 break; 4530 } 4531 4532 if (!se) 4533 add_nr_running(rq, task_delta); 4534 4535 /* Determine whether we need to wake up potentially idle CPU: */ 4536 if (rq->curr == rq->idle && rq->cfs.nr_running) 4537 resched_curr(rq); 4538 } 4539 4540 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4541 u64 remaining, u64 expires) 4542 { 4543 struct cfs_rq *cfs_rq; 4544 u64 runtime; 4545 u64 starting_runtime = remaining; 4546 4547 rcu_read_lock(); 4548 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4549 throttled_list) { 4550 struct rq *rq = rq_of(cfs_rq); 4551 struct rq_flags rf; 4552 4553 rq_lock(rq, &rf); 4554 if (!cfs_rq_throttled(cfs_rq)) 4555 goto next; 4556 4557 runtime = -cfs_rq->runtime_remaining + 1; 4558 if (runtime > remaining) 4559 runtime = remaining; 4560 remaining -= runtime; 4561 4562 cfs_rq->runtime_remaining += runtime; 4563 cfs_rq->runtime_expires = expires; 4564 4565 /* we check whether we're throttled above */ 4566 if (cfs_rq->runtime_remaining > 0) 4567 unthrottle_cfs_rq(cfs_rq); 4568 4569 next: 4570 rq_unlock(rq, &rf); 4571 4572 if (!remaining) 4573 break; 4574 } 4575 rcu_read_unlock(); 4576 4577 return starting_runtime - remaining; 4578 } 4579 4580 /* 4581 * Responsible for refilling a task_group's bandwidth and unthrottling its 4582 * cfs_rqs as appropriate. If there has been no activity within the last 4583 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4584 * used to track this state. 4585 */ 4586 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4587 { 4588 u64 runtime, runtime_expires; 4589 int throttled; 4590 4591 /* no need to continue the timer with no bandwidth constraint */ 4592 if (cfs_b->quota == RUNTIME_INF) 4593 goto out_deactivate; 4594 4595 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4596 cfs_b->nr_periods += overrun; 4597 4598 /* 4599 * idle depends on !throttled (for the case of a large deficit), and if 4600 * we're going inactive then everything else can be deferred 4601 */ 4602 if (cfs_b->idle && !throttled) 4603 goto out_deactivate; 4604 4605 __refill_cfs_bandwidth_runtime(cfs_b); 4606 4607 if (!throttled) { 4608 /* mark as potentially idle for the upcoming period */ 4609 cfs_b->idle = 1; 4610 return 0; 4611 } 4612 4613 /* account preceding periods in which throttling occurred */ 4614 cfs_b->nr_throttled += overrun; 4615 4616 runtime_expires = cfs_b->runtime_expires; 4617 4618 /* 4619 * This check is repeated as we are holding onto the new bandwidth while 4620 * we unthrottle. This can potentially race with an unthrottled group 4621 * trying to acquire new bandwidth from the global pool. This can result 4622 * in us over-using our runtime if it is all used during this loop, but 4623 * only by limited amounts in that extreme case. 4624 */ 4625 while (throttled && cfs_b->runtime > 0) { 4626 runtime = cfs_b->runtime; 4627 raw_spin_unlock(&cfs_b->lock); 4628 /* we can't nest cfs_b->lock while distributing bandwidth */ 4629 runtime = distribute_cfs_runtime(cfs_b, runtime, 4630 runtime_expires); 4631 raw_spin_lock(&cfs_b->lock); 4632 4633 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4634 4635 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4636 } 4637 4638 /* 4639 * While we are ensured activity in the period following an 4640 * unthrottle, this also covers the case in which the new bandwidth is 4641 * insufficient to cover the existing bandwidth deficit. (Forcing the 4642 * timer to remain active while there are any throttled entities.) 4643 */ 4644 cfs_b->idle = 0; 4645 4646 return 0; 4647 4648 out_deactivate: 4649 return 1; 4650 } 4651 4652 /* a cfs_rq won't donate quota below this amount */ 4653 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4654 /* minimum remaining period time to redistribute slack quota */ 4655 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4656 /* how long we wait to gather additional slack before distributing */ 4657 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4658 4659 /* 4660 * Are we near the end of the current quota period? 4661 * 4662 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4663 * hrtimer base being cleared by hrtimer_start. In the case of 4664 * migrate_hrtimers, base is never cleared, so we are fine. 4665 */ 4666 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4667 { 4668 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4669 u64 remaining; 4670 4671 /* if the call-back is running a quota refresh is already occurring */ 4672 if (hrtimer_callback_running(refresh_timer)) 4673 return 1; 4674 4675 /* is a quota refresh about to occur? */ 4676 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4677 if (remaining < min_expire) 4678 return 1; 4679 4680 return 0; 4681 } 4682 4683 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4684 { 4685 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4686 4687 /* if there's a quota refresh soon don't bother with slack */ 4688 if (runtime_refresh_within(cfs_b, min_left)) 4689 return; 4690 4691 hrtimer_start(&cfs_b->slack_timer, 4692 ns_to_ktime(cfs_bandwidth_slack_period), 4693 HRTIMER_MODE_REL); 4694 } 4695 4696 /* we know any runtime found here is valid as update_curr() precedes return */ 4697 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4698 { 4699 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4700 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4701 4702 if (slack_runtime <= 0) 4703 return; 4704 4705 raw_spin_lock(&cfs_b->lock); 4706 if (cfs_b->quota != RUNTIME_INF && 4707 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4708 cfs_b->runtime += slack_runtime; 4709 4710 /* we are under rq->lock, defer unthrottling using a timer */ 4711 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4712 !list_empty(&cfs_b->throttled_cfs_rq)) 4713 start_cfs_slack_bandwidth(cfs_b); 4714 } 4715 raw_spin_unlock(&cfs_b->lock); 4716 4717 /* even if it's not valid for return we don't want to try again */ 4718 cfs_rq->runtime_remaining -= slack_runtime; 4719 } 4720 4721 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4722 { 4723 if (!cfs_bandwidth_used()) 4724 return; 4725 4726 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4727 return; 4728 4729 __return_cfs_rq_runtime(cfs_rq); 4730 } 4731 4732 /* 4733 * This is done with a timer (instead of inline with bandwidth return) since 4734 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4735 */ 4736 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4737 { 4738 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4739 u64 expires; 4740 4741 /* confirm we're still not at a refresh boundary */ 4742 raw_spin_lock(&cfs_b->lock); 4743 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4744 raw_spin_unlock(&cfs_b->lock); 4745 return; 4746 } 4747 4748 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4749 runtime = cfs_b->runtime; 4750 4751 expires = cfs_b->runtime_expires; 4752 raw_spin_unlock(&cfs_b->lock); 4753 4754 if (!runtime) 4755 return; 4756 4757 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4758 4759 raw_spin_lock(&cfs_b->lock); 4760 if (expires == cfs_b->runtime_expires) 4761 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4762 raw_spin_unlock(&cfs_b->lock); 4763 } 4764 4765 /* 4766 * When a group wakes up we want to make sure that its quota is not already 4767 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4768 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4769 */ 4770 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4771 { 4772 if (!cfs_bandwidth_used()) 4773 return; 4774 4775 /* an active group must be handled by the update_curr()->put() path */ 4776 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4777 return; 4778 4779 /* ensure the group is not already throttled */ 4780 if (cfs_rq_throttled(cfs_rq)) 4781 return; 4782 4783 /* update runtime allocation */ 4784 account_cfs_rq_runtime(cfs_rq, 0); 4785 if (cfs_rq->runtime_remaining <= 0) 4786 throttle_cfs_rq(cfs_rq); 4787 } 4788 4789 static void sync_throttle(struct task_group *tg, int cpu) 4790 { 4791 struct cfs_rq *pcfs_rq, *cfs_rq; 4792 4793 if (!cfs_bandwidth_used()) 4794 return; 4795 4796 if (!tg->parent) 4797 return; 4798 4799 cfs_rq = tg->cfs_rq[cpu]; 4800 pcfs_rq = tg->parent->cfs_rq[cpu]; 4801 4802 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4803 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4804 } 4805 4806 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4807 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4808 { 4809 if (!cfs_bandwidth_used()) 4810 return false; 4811 4812 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4813 return false; 4814 4815 /* 4816 * it's possible for a throttled entity to be forced into a running 4817 * state (e.g. set_curr_task), in this case we're finished. 4818 */ 4819 if (cfs_rq_throttled(cfs_rq)) 4820 return true; 4821 4822 throttle_cfs_rq(cfs_rq); 4823 return true; 4824 } 4825 4826 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4827 { 4828 struct cfs_bandwidth *cfs_b = 4829 container_of(timer, struct cfs_bandwidth, slack_timer); 4830 4831 do_sched_cfs_slack_timer(cfs_b); 4832 4833 return HRTIMER_NORESTART; 4834 } 4835 4836 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4837 { 4838 struct cfs_bandwidth *cfs_b = 4839 container_of(timer, struct cfs_bandwidth, period_timer); 4840 int overrun; 4841 int idle = 0; 4842 4843 raw_spin_lock(&cfs_b->lock); 4844 for (;;) { 4845 overrun = hrtimer_forward_now(timer, cfs_b->period); 4846 if (!overrun) 4847 break; 4848 4849 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4850 } 4851 if (idle) 4852 cfs_b->period_active = 0; 4853 raw_spin_unlock(&cfs_b->lock); 4854 4855 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4856 } 4857 4858 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4859 { 4860 raw_spin_lock_init(&cfs_b->lock); 4861 cfs_b->runtime = 0; 4862 cfs_b->quota = RUNTIME_INF; 4863 cfs_b->period = ns_to_ktime(default_cfs_period()); 4864 4865 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4866 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4867 cfs_b->period_timer.function = sched_cfs_period_timer; 4868 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4869 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4870 } 4871 4872 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4873 { 4874 cfs_rq->runtime_enabled = 0; 4875 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4876 } 4877 4878 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4879 { 4880 u64 overrun; 4881 4882 lockdep_assert_held(&cfs_b->lock); 4883 4884 if (cfs_b->period_active) 4885 return; 4886 4887 cfs_b->period_active = 1; 4888 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4889 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period); 4890 cfs_b->expires_seq++; 4891 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4892 } 4893 4894 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4895 { 4896 /* init_cfs_bandwidth() was not called */ 4897 if (!cfs_b->throttled_cfs_rq.next) 4898 return; 4899 4900 hrtimer_cancel(&cfs_b->period_timer); 4901 hrtimer_cancel(&cfs_b->slack_timer); 4902 } 4903 4904 /* 4905 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 4906 * 4907 * The race is harmless, since modifying bandwidth settings of unhooked group 4908 * bits doesn't do much. 4909 */ 4910 4911 /* cpu online calback */ 4912 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4913 { 4914 struct task_group *tg; 4915 4916 lockdep_assert_held(&rq->lock); 4917 4918 rcu_read_lock(); 4919 list_for_each_entry_rcu(tg, &task_groups, list) { 4920 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 4921 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4922 4923 raw_spin_lock(&cfs_b->lock); 4924 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4925 raw_spin_unlock(&cfs_b->lock); 4926 } 4927 rcu_read_unlock(); 4928 } 4929 4930 /* cpu offline callback */ 4931 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4932 { 4933 struct task_group *tg; 4934 4935 lockdep_assert_held(&rq->lock); 4936 4937 rcu_read_lock(); 4938 list_for_each_entry_rcu(tg, &task_groups, list) { 4939 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4940 4941 if (!cfs_rq->runtime_enabled) 4942 continue; 4943 4944 /* 4945 * clock_task is not advancing so we just need to make sure 4946 * there's some valid quota amount 4947 */ 4948 cfs_rq->runtime_remaining = 1; 4949 /* 4950 * Offline rq is schedulable till CPU is completely disabled 4951 * in take_cpu_down(), so we prevent new cfs throttling here. 4952 */ 4953 cfs_rq->runtime_enabled = 0; 4954 4955 if (cfs_rq_throttled(cfs_rq)) 4956 unthrottle_cfs_rq(cfs_rq); 4957 } 4958 rcu_read_unlock(); 4959 } 4960 4961 #else /* CONFIG_CFS_BANDWIDTH */ 4962 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4963 { 4964 return rq_clock_task(rq_of(cfs_rq)); 4965 } 4966 4967 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4968 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4969 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4970 static inline void sync_throttle(struct task_group *tg, int cpu) {} 4971 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4972 4973 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4974 { 4975 return 0; 4976 } 4977 4978 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4979 { 4980 return 0; 4981 } 4982 4983 static inline int throttled_lb_pair(struct task_group *tg, 4984 int src_cpu, int dest_cpu) 4985 { 4986 return 0; 4987 } 4988 4989 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4990 4991 #ifdef CONFIG_FAIR_GROUP_SCHED 4992 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4993 #endif 4994 4995 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4996 { 4997 return NULL; 4998 } 4999 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5000 static inline void update_runtime_enabled(struct rq *rq) {} 5001 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5002 5003 #endif /* CONFIG_CFS_BANDWIDTH */ 5004 5005 /************************************************** 5006 * CFS operations on tasks: 5007 */ 5008 5009 #ifdef CONFIG_SCHED_HRTICK 5010 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5011 { 5012 struct sched_entity *se = &p->se; 5013 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5014 5015 SCHED_WARN_ON(task_rq(p) != rq); 5016 5017 if (rq->cfs.h_nr_running > 1) { 5018 u64 slice = sched_slice(cfs_rq, se); 5019 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5020 s64 delta = slice - ran; 5021 5022 if (delta < 0) { 5023 if (rq->curr == p) 5024 resched_curr(rq); 5025 return; 5026 } 5027 hrtick_start(rq, delta); 5028 } 5029 } 5030 5031 /* 5032 * called from enqueue/dequeue and updates the hrtick when the 5033 * current task is from our class and nr_running is low enough 5034 * to matter. 5035 */ 5036 static void hrtick_update(struct rq *rq) 5037 { 5038 struct task_struct *curr = rq->curr; 5039 5040 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5041 return; 5042 5043 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5044 hrtick_start_fair(rq, curr); 5045 } 5046 #else /* !CONFIG_SCHED_HRTICK */ 5047 static inline void 5048 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5049 { 5050 } 5051 5052 static inline void hrtick_update(struct rq *rq) 5053 { 5054 } 5055 #endif 5056 5057 /* 5058 * The enqueue_task method is called before nr_running is 5059 * increased. Here we update the fair scheduling stats and 5060 * then put the task into the rbtree: 5061 */ 5062 static void 5063 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5064 { 5065 struct cfs_rq *cfs_rq; 5066 struct sched_entity *se = &p->se; 5067 5068 /* 5069 * The code below (indirectly) updates schedutil which looks at 5070 * the cfs_rq utilization to select a frequency. 5071 * Let's add the task's estimated utilization to the cfs_rq's 5072 * estimated utilization, before we update schedutil. 5073 */ 5074 util_est_enqueue(&rq->cfs, p); 5075 5076 /* 5077 * If in_iowait is set, the code below may not trigger any cpufreq 5078 * utilization updates, so do it here explicitly with the IOWAIT flag 5079 * passed. 5080 */ 5081 if (p->in_iowait) 5082 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5083 5084 for_each_sched_entity(se) { 5085 if (se->on_rq) 5086 break; 5087 cfs_rq = cfs_rq_of(se); 5088 enqueue_entity(cfs_rq, se, flags); 5089 5090 /* 5091 * end evaluation on encountering a throttled cfs_rq 5092 * 5093 * note: in the case of encountering a throttled cfs_rq we will 5094 * post the final h_nr_running increment below. 5095 */ 5096 if (cfs_rq_throttled(cfs_rq)) 5097 break; 5098 cfs_rq->h_nr_running++; 5099 5100 flags = ENQUEUE_WAKEUP; 5101 } 5102 5103 for_each_sched_entity(se) { 5104 cfs_rq = cfs_rq_of(se); 5105 cfs_rq->h_nr_running++; 5106 5107 if (cfs_rq_throttled(cfs_rq)) 5108 break; 5109 5110 update_load_avg(cfs_rq, se, UPDATE_TG); 5111 update_cfs_group(se); 5112 } 5113 5114 if (!se) 5115 add_nr_running(rq, 1); 5116 5117 hrtick_update(rq); 5118 } 5119 5120 static void set_next_buddy(struct sched_entity *se); 5121 5122 /* 5123 * The dequeue_task method is called before nr_running is 5124 * decreased. We remove the task from the rbtree and 5125 * update the fair scheduling stats: 5126 */ 5127 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5128 { 5129 struct cfs_rq *cfs_rq; 5130 struct sched_entity *se = &p->se; 5131 int task_sleep = flags & DEQUEUE_SLEEP; 5132 5133 for_each_sched_entity(se) { 5134 cfs_rq = cfs_rq_of(se); 5135 dequeue_entity(cfs_rq, se, flags); 5136 5137 /* 5138 * end evaluation on encountering a throttled cfs_rq 5139 * 5140 * note: in the case of encountering a throttled cfs_rq we will 5141 * post the final h_nr_running decrement below. 5142 */ 5143 if (cfs_rq_throttled(cfs_rq)) 5144 break; 5145 cfs_rq->h_nr_running--; 5146 5147 /* Don't dequeue parent if it has other entities besides us */ 5148 if (cfs_rq->load.weight) { 5149 /* Avoid re-evaluating load for this entity: */ 5150 se = parent_entity(se); 5151 /* 5152 * Bias pick_next to pick a task from this cfs_rq, as 5153 * p is sleeping when it is within its sched_slice. 5154 */ 5155 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5156 set_next_buddy(se); 5157 break; 5158 } 5159 flags |= DEQUEUE_SLEEP; 5160 } 5161 5162 for_each_sched_entity(se) { 5163 cfs_rq = cfs_rq_of(se); 5164 cfs_rq->h_nr_running--; 5165 5166 if (cfs_rq_throttled(cfs_rq)) 5167 break; 5168 5169 update_load_avg(cfs_rq, se, UPDATE_TG); 5170 update_cfs_group(se); 5171 } 5172 5173 if (!se) 5174 sub_nr_running(rq, 1); 5175 5176 util_est_dequeue(&rq->cfs, p, task_sleep); 5177 hrtick_update(rq); 5178 } 5179 5180 #ifdef CONFIG_SMP 5181 5182 /* Working cpumask for: load_balance, load_balance_newidle. */ 5183 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5184 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5185 5186 #ifdef CONFIG_NO_HZ_COMMON 5187 /* 5188 * per rq 'load' arrray crap; XXX kill this. 5189 */ 5190 5191 /* 5192 * The exact cpuload calculated at every tick would be: 5193 * 5194 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 5195 * 5196 * If a CPU misses updates for n ticks (as it was idle) and update gets 5197 * called on the n+1-th tick when CPU may be busy, then we have: 5198 * 5199 * load_n = (1 - 1/2^i)^n * load_0 5200 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 5201 * 5202 * decay_load_missed() below does efficient calculation of 5203 * 5204 * load' = (1 - 1/2^i)^n * load 5205 * 5206 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 5207 * This allows us to precompute the above in said factors, thereby allowing the 5208 * reduction of an arbitrary n in O(log_2 n) steps. (See also 5209 * fixed_power_int()) 5210 * 5211 * The calculation is approximated on a 128 point scale. 5212 */ 5213 #define DEGRADE_SHIFT 7 5214 5215 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 5216 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 5217 { 0, 0, 0, 0, 0, 0, 0, 0 }, 5218 { 64, 32, 8, 0, 0, 0, 0, 0 }, 5219 { 96, 72, 40, 12, 1, 0, 0, 0 }, 5220 { 112, 98, 75, 43, 15, 1, 0, 0 }, 5221 { 120, 112, 98, 76, 45, 16, 2, 0 } 5222 }; 5223 5224 /* 5225 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 5226 * would be when CPU is idle and so we just decay the old load without 5227 * adding any new load. 5228 */ 5229 static unsigned long 5230 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 5231 { 5232 int j = 0; 5233 5234 if (!missed_updates) 5235 return load; 5236 5237 if (missed_updates >= degrade_zero_ticks[idx]) 5238 return 0; 5239 5240 if (idx == 1) 5241 return load >> missed_updates; 5242 5243 while (missed_updates) { 5244 if (missed_updates % 2) 5245 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 5246 5247 missed_updates >>= 1; 5248 j++; 5249 } 5250 return load; 5251 } 5252 5253 static struct { 5254 cpumask_var_t idle_cpus_mask; 5255 atomic_t nr_cpus; 5256 int has_blocked; /* Idle CPUS has blocked load */ 5257 unsigned long next_balance; /* in jiffy units */ 5258 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5259 } nohz ____cacheline_aligned; 5260 5261 #endif /* CONFIG_NO_HZ_COMMON */ 5262 5263 /** 5264 * __cpu_load_update - update the rq->cpu_load[] statistics 5265 * @this_rq: The rq to update statistics for 5266 * @this_load: The current load 5267 * @pending_updates: The number of missed updates 5268 * 5269 * Update rq->cpu_load[] statistics. This function is usually called every 5270 * scheduler tick (TICK_NSEC). 5271 * 5272 * This function computes a decaying average: 5273 * 5274 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 5275 * 5276 * Because of NOHZ it might not get called on every tick which gives need for 5277 * the @pending_updates argument. 5278 * 5279 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 5280 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 5281 * = A * (A * load[i]_n-2 + B) + B 5282 * = A * (A * (A * load[i]_n-3 + B) + B) + B 5283 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 5284 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 5285 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 5286 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 5287 * 5288 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 5289 * any change in load would have resulted in the tick being turned back on. 5290 * 5291 * For regular NOHZ, this reduces to: 5292 * 5293 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 5294 * 5295 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 5296 * term. 5297 */ 5298 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 5299 unsigned long pending_updates) 5300 { 5301 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 5302 int i, scale; 5303 5304 this_rq->nr_load_updates++; 5305 5306 /* Update our load: */ 5307 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 5308 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 5309 unsigned long old_load, new_load; 5310 5311 /* scale is effectively 1 << i now, and >> i divides by scale */ 5312 5313 old_load = this_rq->cpu_load[i]; 5314 #ifdef CONFIG_NO_HZ_COMMON 5315 old_load = decay_load_missed(old_load, pending_updates - 1, i); 5316 if (tickless_load) { 5317 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 5318 /* 5319 * old_load can never be a negative value because a 5320 * decayed tickless_load cannot be greater than the 5321 * original tickless_load. 5322 */ 5323 old_load += tickless_load; 5324 } 5325 #endif 5326 new_load = this_load; 5327 /* 5328 * Round up the averaging division if load is increasing. This 5329 * prevents us from getting stuck on 9 if the load is 10, for 5330 * example. 5331 */ 5332 if (new_load > old_load) 5333 new_load += scale - 1; 5334 5335 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5336 } 5337 } 5338 5339 /* Used instead of source_load when we know the type == 0 */ 5340 static unsigned long weighted_cpuload(struct rq *rq) 5341 { 5342 return cfs_rq_runnable_load_avg(&rq->cfs); 5343 } 5344 5345 #ifdef CONFIG_NO_HZ_COMMON 5346 /* 5347 * There is no sane way to deal with nohz on smp when using jiffies because the 5348 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading 5349 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5350 * 5351 * Therefore we need to avoid the delta approach from the regular tick when 5352 * possible since that would seriously skew the load calculation. This is why we 5353 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5354 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5355 * loop exit, nohz_idle_balance, nohz full exit...) 5356 * 5357 * This means we might still be one tick off for nohz periods. 5358 */ 5359 5360 static void cpu_load_update_nohz(struct rq *this_rq, 5361 unsigned long curr_jiffies, 5362 unsigned long load) 5363 { 5364 unsigned long pending_updates; 5365 5366 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5367 if (pending_updates) { 5368 this_rq->last_load_update_tick = curr_jiffies; 5369 /* 5370 * In the regular NOHZ case, we were idle, this means load 0. 5371 * In the NOHZ_FULL case, we were non-idle, we should consider 5372 * its weighted load. 5373 */ 5374 cpu_load_update(this_rq, load, pending_updates); 5375 } 5376 } 5377 5378 /* 5379 * Called from nohz_idle_balance() to update the load ratings before doing the 5380 * idle balance. 5381 */ 5382 static void cpu_load_update_idle(struct rq *this_rq) 5383 { 5384 /* 5385 * bail if there's load or we're actually up-to-date. 5386 */ 5387 if (weighted_cpuload(this_rq)) 5388 return; 5389 5390 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5391 } 5392 5393 /* 5394 * Record CPU load on nohz entry so we know the tickless load to account 5395 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5396 * than other cpu_load[idx] but it should be fine as cpu_load readers 5397 * shouldn't rely into synchronized cpu_load[*] updates. 5398 */ 5399 void cpu_load_update_nohz_start(void) 5400 { 5401 struct rq *this_rq = this_rq(); 5402 5403 /* 5404 * This is all lockless but should be fine. If weighted_cpuload changes 5405 * concurrently we'll exit nohz. And cpu_load write can race with 5406 * cpu_load_update_idle() but both updater would be writing the same. 5407 */ 5408 this_rq->cpu_load[0] = weighted_cpuload(this_rq); 5409 } 5410 5411 /* 5412 * Account the tickless load in the end of a nohz frame. 5413 */ 5414 void cpu_load_update_nohz_stop(void) 5415 { 5416 unsigned long curr_jiffies = READ_ONCE(jiffies); 5417 struct rq *this_rq = this_rq(); 5418 unsigned long load; 5419 struct rq_flags rf; 5420 5421 if (curr_jiffies == this_rq->last_load_update_tick) 5422 return; 5423 5424 load = weighted_cpuload(this_rq); 5425 rq_lock(this_rq, &rf); 5426 update_rq_clock(this_rq); 5427 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5428 rq_unlock(this_rq, &rf); 5429 } 5430 #else /* !CONFIG_NO_HZ_COMMON */ 5431 static inline void cpu_load_update_nohz(struct rq *this_rq, 5432 unsigned long curr_jiffies, 5433 unsigned long load) { } 5434 #endif /* CONFIG_NO_HZ_COMMON */ 5435 5436 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5437 { 5438 #ifdef CONFIG_NO_HZ_COMMON 5439 /* See the mess around cpu_load_update_nohz(). */ 5440 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5441 #endif 5442 cpu_load_update(this_rq, load, 1); 5443 } 5444 5445 /* 5446 * Called from scheduler_tick() 5447 */ 5448 void cpu_load_update_active(struct rq *this_rq) 5449 { 5450 unsigned long load = weighted_cpuload(this_rq); 5451 5452 if (tick_nohz_tick_stopped()) 5453 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5454 else 5455 cpu_load_update_periodic(this_rq, load); 5456 } 5457 5458 /* 5459 * Return a low guess at the load of a migration-source CPU weighted 5460 * according to the scheduling class and "nice" value. 5461 * 5462 * We want to under-estimate the load of migration sources, to 5463 * balance conservatively. 5464 */ 5465 static unsigned long source_load(int cpu, int type) 5466 { 5467 struct rq *rq = cpu_rq(cpu); 5468 unsigned long total = weighted_cpuload(rq); 5469 5470 if (type == 0 || !sched_feat(LB_BIAS)) 5471 return total; 5472 5473 return min(rq->cpu_load[type-1], total); 5474 } 5475 5476 /* 5477 * Return a high guess at the load of a migration-target CPU weighted 5478 * according to the scheduling class and "nice" value. 5479 */ 5480 static unsigned long target_load(int cpu, int type) 5481 { 5482 struct rq *rq = cpu_rq(cpu); 5483 unsigned long total = weighted_cpuload(rq); 5484 5485 if (type == 0 || !sched_feat(LB_BIAS)) 5486 return total; 5487 5488 return max(rq->cpu_load[type-1], total); 5489 } 5490 5491 static unsigned long capacity_of(int cpu) 5492 { 5493 return cpu_rq(cpu)->cpu_capacity; 5494 } 5495 5496 static unsigned long capacity_orig_of(int cpu) 5497 { 5498 return cpu_rq(cpu)->cpu_capacity_orig; 5499 } 5500 5501 static unsigned long cpu_avg_load_per_task(int cpu) 5502 { 5503 struct rq *rq = cpu_rq(cpu); 5504 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5505 unsigned long load_avg = weighted_cpuload(rq); 5506 5507 if (nr_running) 5508 return load_avg / nr_running; 5509 5510 return 0; 5511 } 5512 5513 static void record_wakee(struct task_struct *p) 5514 { 5515 /* 5516 * Only decay a single time; tasks that have less then 1 wakeup per 5517 * jiffy will not have built up many flips. 5518 */ 5519 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5520 current->wakee_flips >>= 1; 5521 current->wakee_flip_decay_ts = jiffies; 5522 } 5523 5524 if (current->last_wakee != p) { 5525 current->last_wakee = p; 5526 current->wakee_flips++; 5527 } 5528 } 5529 5530 /* 5531 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5532 * 5533 * A waker of many should wake a different task than the one last awakened 5534 * at a frequency roughly N times higher than one of its wakees. 5535 * 5536 * In order to determine whether we should let the load spread vs consolidating 5537 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5538 * partner, and a factor of lls_size higher frequency in the other. 5539 * 5540 * With both conditions met, we can be relatively sure that the relationship is 5541 * non-monogamous, with partner count exceeding socket size. 5542 * 5543 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5544 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5545 * socket size. 5546 */ 5547 static int wake_wide(struct task_struct *p) 5548 { 5549 unsigned int master = current->wakee_flips; 5550 unsigned int slave = p->wakee_flips; 5551 int factor = this_cpu_read(sd_llc_size); 5552 5553 if (master < slave) 5554 swap(master, slave); 5555 if (slave < factor || master < slave * factor) 5556 return 0; 5557 return 1; 5558 } 5559 5560 /* 5561 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5562 * soonest. For the purpose of speed we only consider the waking and previous 5563 * CPU. 5564 * 5565 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5566 * cache-affine and is (or will be) idle. 5567 * 5568 * wake_affine_weight() - considers the weight to reflect the average 5569 * scheduling latency of the CPUs. This seems to work 5570 * for the overloaded case. 5571 */ 5572 static int 5573 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5574 { 5575 /* 5576 * If this_cpu is idle, it implies the wakeup is from interrupt 5577 * context. Only allow the move if cache is shared. Otherwise an 5578 * interrupt intensive workload could force all tasks onto one 5579 * node depending on the IO topology or IRQ affinity settings. 5580 * 5581 * If the prev_cpu is idle and cache affine then avoid a migration. 5582 * There is no guarantee that the cache hot data from an interrupt 5583 * is more important than cache hot data on the prev_cpu and from 5584 * a cpufreq perspective, it's better to have higher utilisation 5585 * on one CPU. 5586 */ 5587 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5588 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5589 5590 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5591 return this_cpu; 5592 5593 return nr_cpumask_bits; 5594 } 5595 5596 static int 5597 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5598 int this_cpu, int prev_cpu, int sync) 5599 { 5600 s64 this_eff_load, prev_eff_load; 5601 unsigned long task_load; 5602 5603 this_eff_load = target_load(this_cpu, sd->wake_idx); 5604 5605 if (sync) { 5606 unsigned long current_load = task_h_load(current); 5607 5608 if (current_load > this_eff_load) 5609 return this_cpu; 5610 5611 this_eff_load -= current_load; 5612 } 5613 5614 task_load = task_h_load(p); 5615 5616 this_eff_load += task_load; 5617 if (sched_feat(WA_BIAS)) 5618 this_eff_load *= 100; 5619 this_eff_load *= capacity_of(prev_cpu); 5620 5621 prev_eff_load = source_load(prev_cpu, sd->wake_idx); 5622 prev_eff_load -= task_load; 5623 if (sched_feat(WA_BIAS)) 5624 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5625 prev_eff_load *= capacity_of(this_cpu); 5626 5627 /* 5628 * If sync, adjust the weight of prev_eff_load such that if 5629 * prev_eff == this_eff that select_idle_sibling() will consider 5630 * stacking the wakee on top of the waker if no other CPU is 5631 * idle. 5632 */ 5633 if (sync) 5634 prev_eff_load += 1; 5635 5636 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5637 } 5638 5639 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5640 int this_cpu, int prev_cpu, int sync) 5641 { 5642 int target = nr_cpumask_bits; 5643 5644 if (sched_feat(WA_IDLE)) 5645 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5646 5647 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5648 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5649 5650 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5651 if (target == nr_cpumask_bits) 5652 return prev_cpu; 5653 5654 schedstat_inc(sd->ttwu_move_affine); 5655 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5656 return target; 5657 } 5658 5659 static unsigned long cpu_util_wake(int cpu, struct task_struct *p); 5660 5661 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p) 5662 { 5663 return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0); 5664 } 5665 5666 /* 5667 * find_idlest_group finds and returns the least busy CPU group within the 5668 * domain. 5669 * 5670 * Assumes p is allowed on at least one CPU in sd. 5671 */ 5672 static struct sched_group * 5673 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5674 int this_cpu, int sd_flag) 5675 { 5676 struct sched_group *idlest = NULL, *group = sd->groups; 5677 struct sched_group *most_spare_sg = NULL; 5678 unsigned long min_runnable_load = ULONG_MAX; 5679 unsigned long this_runnable_load = ULONG_MAX; 5680 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 5681 unsigned long most_spare = 0, this_spare = 0; 5682 int load_idx = sd->forkexec_idx; 5683 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5684 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5685 (sd->imbalance_pct-100) / 100; 5686 5687 if (sd_flag & SD_BALANCE_WAKE) 5688 load_idx = sd->wake_idx; 5689 5690 do { 5691 unsigned long load, avg_load, runnable_load; 5692 unsigned long spare_cap, max_spare_cap; 5693 int local_group; 5694 int i; 5695 5696 /* Skip over this group if it has no CPUs allowed */ 5697 if (!cpumask_intersects(sched_group_span(group), 5698 &p->cpus_allowed)) 5699 continue; 5700 5701 local_group = cpumask_test_cpu(this_cpu, 5702 sched_group_span(group)); 5703 5704 /* 5705 * Tally up the load of all CPUs in the group and find 5706 * the group containing the CPU with most spare capacity. 5707 */ 5708 avg_load = 0; 5709 runnable_load = 0; 5710 max_spare_cap = 0; 5711 5712 for_each_cpu(i, sched_group_span(group)) { 5713 /* Bias balancing toward CPUs of our domain */ 5714 if (local_group) 5715 load = source_load(i, load_idx); 5716 else 5717 load = target_load(i, load_idx); 5718 5719 runnable_load += load; 5720 5721 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5722 5723 spare_cap = capacity_spare_wake(i, p); 5724 5725 if (spare_cap > max_spare_cap) 5726 max_spare_cap = spare_cap; 5727 } 5728 5729 /* Adjust by relative CPU capacity of the group */ 5730 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5731 group->sgc->capacity; 5732 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5733 group->sgc->capacity; 5734 5735 if (local_group) { 5736 this_runnable_load = runnable_load; 5737 this_avg_load = avg_load; 5738 this_spare = max_spare_cap; 5739 } else { 5740 if (min_runnable_load > (runnable_load + imbalance)) { 5741 /* 5742 * The runnable load is significantly smaller 5743 * so we can pick this new CPU: 5744 */ 5745 min_runnable_load = runnable_load; 5746 min_avg_load = avg_load; 5747 idlest = group; 5748 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5749 (100*min_avg_load > imbalance_scale*avg_load)) { 5750 /* 5751 * The runnable loads are close so take the 5752 * blocked load into account through avg_load: 5753 */ 5754 min_avg_load = avg_load; 5755 idlest = group; 5756 } 5757 5758 if (most_spare < max_spare_cap) { 5759 most_spare = max_spare_cap; 5760 most_spare_sg = group; 5761 } 5762 } 5763 } while (group = group->next, group != sd->groups); 5764 5765 /* 5766 * The cross-over point between using spare capacity or least load 5767 * is too conservative for high utilization tasks on partially 5768 * utilized systems if we require spare_capacity > task_util(p), 5769 * so we allow for some task stuffing by using 5770 * spare_capacity > task_util(p)/2. 5771 * 5772 * Spare capacity can't be used for fork because the utilization has 5773 * not been set yet, we must first select a rq to compute the initial 5774 * utilization. 5775 */ 5776 if (sd_flag & SD_BALANCE_FORK) 5777 goto skip_spare; 5778 5779 if (this_spare > task_util(p) / 2 && 5780 imbalance_scale*this_spare > 100*most_spare) 5781 return NULL; 5782 5783 if (most_spare > task_util(p) / 2) 5784 return most_spare_sg; 5785 5786 skip_spare: 5787 if (!idlest) 5788 return NULL; 5789 5790 /* 5791 * When comparing groups across NUMA domains, it's possible for the 5792 * local domain to be very lightly loaded relative to the remote 5793 * domains but "imbalance" skews the comparison making remote CPUs 5794 * look much more favourable. When considering cross-domain, add 5795 * imbalance to the runnable load on the remote node and consider 5796 * staying local. 5797 */ 5798 if ((sd->flags & SD_NUMA) && 5799 min_runnable_load + imbalance >= this_runnable_load) 5800 return NULL; 5801 5802 if (min_runnable_load > (this_runnable_load + imbalance)) 5803 return NULL; 5804 5805 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5806 (100*this_avg_load < imbalance_scale*min_avg_load)) 5807 return NULL; 5808 5809 return idlest; 5810 } 5811 5812 /* 5813 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5814 */ 5815 static int 5816 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5817 { 5818 unsigned long load, min_load = ULONG_MAX; 5819 unsigned int min_exit_latency = UINT_MAX; 5820 u64 latest_idle_timestamp = 0; 5821 int least_loaded_cpu = this_cpu; 5822 int shallowest_idle_cpu = -1; 5823 int i; 5824 5825 /* Check if we have any choice: */ 5826 if (group->group_weight == 1) 5827 return cpumask_first(sched_group_span(group)); 5828 5829 /* Traverse only the allowed CPUs */ 5830 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { 5831 if (available_idle_cpu(i)) { 5832 struct rq *rq = cpu_rq(i); 5833 struct cpuidle_state *idle = idle_get_state(rq); 5834 if (idle && idle->exit_latency < min_exit_latency) { 5835 /* 5836 * We give priority to a CPU whose idle state 5837 * has the smallest exit latency irrespective 5838 * of any idle timestamp. 5839 */ 5840 min_exit_latency = idle->exit_latency; 5841 latest_idle_timestamp = rq->idle_stamp; 5842 shallowest_idle_cpu = i; 5843 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5844 rq->idle_stamp > latest_idle_timestamp) { 5845 /* 5846 * If equal or no active idle state, then 5847 * the most recently idled CPU might have 5848 * a warmer cache. 5849 */ 5850 latest_idle_timestamp = rq->idle_stamp; 5851 shallowest_idle_cpu = i; 5852 } 5853 } else if (shallowest_idle_cpu == -1) { 5854 load = weighted_cpuload(cpu_rq(i)); 5855 if (load < min_load) { 5856 min_load = load; 5857 least_loaded_cpu = i; 5858 } 5859 } 5860 } 5861 5862 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5863 } 5864 5865 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5866 int cpu, int prev_cpu, int sd_flag) 5867 { 5868 int new_cpu = cpu; 5869 5870 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed)) 5871 return prev_cpu; 5872 5873 /* 5874 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's 5875 * last_update_time. 5876 */ 5877 if (!(sd_flag & SD_BALANCE_FORK)) 5878 sync_entity_load_avg(&p->se); 5879 5880 while (sd) { 5881 struct sched_group *group; 5882 struct sched_domain *tmp; 5883 int weight; 5884 5885 if (!(sd->flags & sd_flag)) { 5886 sd = sd->child; 5887 continue; 5888 } 5889 5890 group = find_idlest_group(sd, p, cpu, sd_flag); 5891 if (!group) { 5892 sd = sd->child; 5893 continue; 5894 } 5895 5896 new_cpu = find_idlest_group_cpu(group, p, cpu); 5897 if (new_cpu == cpu) { 5898 /* Now try balancing at a lower domain level of 'cpu': */ 5899 sd = sd->child; 5900 continue; 5901 } 5902 5903 /* Now try balancing at a lower domain level of 'new_cpu': */ 5904 cpu = new_cpu; 5905 weight = sd->span_weight; 5906 sd = NULL; 5907 for_each_domain(cpu, tmp) { 5908 if (weight <= tmp->span_weight) 5909 break; 5910 if (tmp->flags & sd_flag) 5911 sd = tmp; 5912 } 5913 } 5914 5915 return new_cpu; 5916 } 5917 5918 #ifdef CONFIG_SCHED_SMT 5919 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5920 5921 static inline void set_idle_cores(int cpu, int val) 5922 { 5923 struct sched_domain_shared *sds; 5924 5925 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5926 if (sds) 5927 WRITE_ONCE(sds->has_idle_cores, val); 5928 } 5929 5930 static inline bool test_idle_cores(int cpu, bool def) 5931 { 5932 struct sched_domain_shared *sds; 5933 5934 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5935 if (sds) 5936 return READ_ONCE(sds->has_idle_cores); 5937 5938 return def; 5939 } 5940 5941 /* 5942 * Scans the local SMT mask to see if the entire core is idle, and records this 5943 * information in sd_llc_shared->has_idle_cores. 5944 * 5945 * Since SMT siblings share all cache levels, inspecting this limited remote 5946 * state should be fairly cheap. 5947 */ 5948 void __update_idle_core(struct rq *rq) 5949 { 5950 int core = cpu_of(rq); 5951 int cpu; 5952 5953 rcu_read_lock(); 5954 if (test_idle_cores(core, true)) 5955 goto unlock; 5956 5957 for_each_cpu(cpu, cpu_smt_mask(core)) { 5958 if (cpu == core) 5959 continue; 5960 5961 if (!available_idle_cpu(cpu)) 5962 goto unlock; 5963 } 5964 5965 set_idle_cores(core, 1); 5966 unlock: 5967 rcu_read_unlock(); 5968 } 5969 5970 /* 5971 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5972 * there are no idle cores left in the system; tracked through 5973 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5974 */ 5975 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5976 { 5977 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5978 int core, cpu; 5979 5980 if (!static_branch_likely(&sched_smt_present)) 5981 return -1; 5982 5983 if (!test_idle_cores(target, false)) 5984 return -1; 5985 5986 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 5987 5988 for_each_cpu_wrap(core, cpus, target) { 5989 bool idle = true; 5990 5991 for_each_cpu(cpu, cpu_smt_mask(core)) { 5992 cpumask_clear_cpu(cpu, cpus); 5993 if (!available_idle_cpu(cpu)) 5994 idle = false; 5995 } 5996 5997 if (idle) 5998 return core; 5999 } 6000 6001 /* 6002 * Failed to find an idle core; stop looking for one. 6003 */ 6004 set_idle_cores(target, 0); 6005 6006 return -1; 6007 } 6008 6009 /* 6010 * Scan the local SMT mask for idle CPUs. 6011 */ 6012 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6013 { 6014 int cpu; 6015 6016 if (!static_branch_likely(&sched_smt_present)) 6017 return -1; 6018 6019 for_each_cpu(cpu, cpu_smt_mask(target)) { 6020 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6021 continue; 6022 if (available_idle_cpu(cpu)) 6023 return cpu; 6024 } 6025 6026 return -1; 6027 } 6028 6029 #else /* CONFIG_SCHED_SMT */ 6030 6031 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6032 { 6033 return -1; 6034 } 6035 6036 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6037 { 6038 return -1; 6039 } 6040 6041 #endif /* CONFIG_SCHED_SMT */ 6042 6043 /* 6044 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6045 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6046 * average idle time for this rq (as found in rq->avg_idle). 6047 */ 6048 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6049 { 6050 struct sched_domain *this_sd; 6051 u64 avg_cost, avg_idle; 6052 u64 time, cost; 6053 s64 delta; 6054 int cpu, nr = INT_MAX; 6055 6056 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6057 if (!this_sd) 6058 return -1; 6059 6060 /* 6061 * Due to large variance we need a large fuzz factor; hackbench in 6062 * particularly is sensitive here. 6063 */ 6064 avg_idle = this_rq()->avg_idle / 512; 6065 avg_cost = this_sd->avg_scan_cost + 1; 6066 6067 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 6068 return -1; 6069 6070 if (sched_feat(SIS_PROP)) { 6071 u64 span_avg = sd->span_weight * avg_idle; 6072 if (span_avg > 4*avg_cost) 6073 nr = div_u64(span_avg, avg_cost); 6074 else 6075 nr = 4; 6076 } 6077 6078 time = local_clock(); 6079 6080 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 6081 if (!--nr) 6082 return -1; 6083 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6084 continue; 6085 if (available_idle_cpu(cpu)) 6086 break; 6087 } 6088 6089 time = local_clock() - time; 6090 cost = this_sd->avg_scan_cost; 6091 delta = (s64)(time - cost) / 8; 6092 this_sd->avg_scan_cost += delta; 6093 6094 return cpu; 6095 } 6096 6097 /* 6098 * Try and locate an idle core/thread in the LLC cache domain. 6099 */ 6100 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6101 { 6102 struct sched_domain *sd; 6103 int i, recent_used_cpu; 6104 6105 if (available_idle_cpu(target)) 6106 return target; 6107 6108 /* 6109 * If the previous CPU is cache affine and idle, don't be stupid: 6110 */ 6111 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev)) 6112 return prev; 6113 6114 /* Check a recently used CPU as a potential idle candidate: */ 6115 recent_used_cpu = p->recent_used_cpu; 6116 if (recent_used_cpu != prev && 6117 recent_used_cpu != target && 6118 cpus_share_cache(recent_used_cpu, target) && 6119 available_idle_cpu(recent_used_cpu) && 6120 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) { 6121 /* 6122 * Replace recent_used_cpu with prev as it is a potential 6123 * candidate for the next wake: 6124 */ 6125 p->recent_used_cpu = prev; 6126 return recent_used_cpu; 6127 } 6128 6129 sd = rcu_dereference(per_cpu(sd_llc, target)); 6130 if (!sd) 6131 return target; 6132 6133 i = select_idle_core(p, sd, target); 6134 if ((unsigned)i < nr_cpumask_bits) 6135 return i; 6136 6137 i = select_idle_cpu(p, sd, target); 6138 if ((unsigned)i < nr_cpumask_bits) 6139 return i; 6140 6141 i = select_idle_smt(p, sd, target); 6142 if ((unsigned)i < nr_cpumask_bits) 6143 return i; 6144 6145 return target; 6146 } 6147 6148 /** 6149 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6150 * @cpu: the CPU to get the utilization of 6151 * 6152 * The unit of the return value must be the one of capacity so we can compare 6153 * the utilization with the capacity of the CPU that is available for CFS task 6154 * (ie cpu_capacity). 6155 * 6156 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6157 * recent utilization of currently non-runnable tasks on a CPU. It represents 6158 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6159 * capacity_orig is the cpu_capacity available at the highest frequency 6160 * (arch_scale_freq_capacity()). 6161 * The utilization of a CPU converges towards a sum equal to or less than the 6162 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6163 * the running time on this CPU scaled by capacity_curr. 6164 * 6165 * The estimated utilization of a CPU is defined to be the maximum between its 6166 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6167 * currently RUNNABLE on that CPU. 6168 * This allows to properly represent the expected utilization of a CPU which 6169 * has just got a big task running since a long sleep period. At the same time 6170 * however it preserves the benefits of the "blocked utilization" in 6171 * describing the potential for other tasks waking up on the same CPU. 6172 * 6173 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6174 * higher than capacity_orig because of unfortunate rounding in 6175 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6176 * the average stabilizes with the new running time. We need to check that the 6177 * utilization stays within the range of [0..capacity_orig] and cap it if 6178 * necessary. Without utilization capping, a group could be seen as overloaded 6179 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6180 * available capacity. We allow utilization to overshoot capacity_curr (but not 6181 * capacity_orig) as it useful for predicting the capacity required after task 6182 * migrations (scheduler-driven DVFS). 6183 * 6184 * Return: the (estimated) utilization for the specified CPU 6185 */ 6186 static inline unsigned long cpu_util(int cpu) 6187 { 6188 struct cfs_rq *cfs_rq; 6189 unsigned int util; 6190 6191 cfs_rq = &cpu_rq(cpu)->cfs; 6192 util = READ_ONCE(cfs_rq->avg.util_avg); 6193 6194 if (sched_feat(UTIL_EST)) 6195 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6196 6197 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6198 } 6199 6200 /* 6201 * cpu_util_wake: Compute CPU utilization with any contributions from 6202 * the waking task p removed. 6203 */ 6204 static unsigned long cpu_util_wake(int cpu, struct task_struct *p) 6205 { 6206 struct cfs_rq *cfs_rq; 6207 unsigned int util; 6208 6209 /* Task has no contribution or is new */ 6210 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6211 return cpu_util(cpu); 6212 6213 cfs_rq = &cpu_rq(cpu)->cfs; 6214 util = READ_ONCE(cfs_rq->avg.util_avg); 6215 6216 /* Discount task's blocked util from CPU's util */ 6217 util -= min_t(unsigned int, util, task_util(p)); 6218 6219 /* 6220 * Covered cases: 6221 * 6222 * a) if *p is the only task sleeping on this CPU, then: 6223 * cpu_util (== task_util) > util_est (== 0) 6224 * and thus we return: 6225 * cpu_util_wake = (cpu_util - task_util) = 0 6226 * 6227 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6228 * IDLE, then: 6229 * cpu_util >= task_util 6230 * cpu_util > util_est (== 0) 6231 * and thus we discount *p's blocked utilization to return: 6232 * cpu_util_wake = (cpu_util - task_util) >= 0 6233 * 6234 * c) if other tasks are RUNNABLE on that CPU and 6235 * util_est > cpu_util 6236 * then we use util_est since it returns a more restrictive 6237 * estimation of the spare capacity on that CPU, by just 6238 * considering the expected utilization of tasks already 6239 * runnable on that CPU. 6240 * 6241 * Cases a) and b) are covered by the above code, while case c) is 6242 * covered by the following code when estimated utilization is 6243 * enabled. 6244 */ 6245 if (sched_feat(UTIL_EST)) 6246 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6247 6248 /* 6249 * Utilization (estimated) can exceed the CPU capacity, thus let's 6250 * clamp to the maximum CPU capacity to ensure consistency with 6251 * the cpu_util call. 6252 */ 6253 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6254 } 6255 6256 /* 6257 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6258 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6259 * 6260 * In that case WAKE_AFFINE doesn't make sense and we'll let 6261 * BALANCE_WAKE sort things out. 6262 */ 6263 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6264 { 6265 long min_cap, max_cap; 6266 6267 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6268 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6269 6270 /* Minimum capacity is close to max, no need to abort wake_affine */ 6271 if (max_cap - min_cap < max_cap >> 3) 6272 return 0; 6273 6274 /* Bring task utilization in sync with prev_cpu */ 6275 sync_entity_load_avg(&p->se); 6276 6277 return min_cap * 1024 < task_util(p) * capacity_margin; 6278 } 6279 6280 /* 6281 * select_task_rq_fair: Select target runqueue for the waking task in domains 6282 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6283 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6284 * 6285 * Balances load by selecting the idlest CPU in the idlest group, or under 6286 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6287 * 6288 * Returns the target CPU number. 6289 * 6290 * preempt must be disabled. 6291 */ 6292 static int 6293 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6294 { 6295 struct sched_domain *tmp, *sd = NULL; 6296 int cpu = smp_processor_id(); 6297 int new_cpu = prev_cpu; 6298 int want_affine = 0; 6299 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6300 6301 if (sd_flag & SD_BALANCE_WAKE) { 6302 record_wakee(p); 6303 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) 6304 && cpumask_test_cpu(cpu, &p->cpus_allowed); 6305 } 6306 6307 rcu_read_lock(); 6308 for_each_domain(cpu, tmp) { 6309 if (!(tmp->flags & SD_LOAD_BALANCE)) 6310 break; 6311 6312 /* 6313 * If both 'cpu' and 'prev_cpu' are part of this domain, 6314 * cpu is a valid SD_WAKE_AFFINE target. 6315 */ 6316 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6317 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6318 if (cpu != prev_cpu) 6319 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6320 6321 sd = NULL; /* Prefer wake_affine over balance flags */ 6322 break; 6323 } 6324 6325 if (tmp->flags & sd_flag) 6326 sd = tmp; 6327 else if (!want_affine) 6328 break; 6329 } 6330 6331 if (unlikely(sd)) { 6332 /* Slow path */ 6333 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6334 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6335 /* Fast path */ 6336 6337 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6338 6339 if (want_affine) 6340 current->recent_used_cpu = cpu; 6341 } 6342 rcu_read_unlock(); 6343 6344 return new_cpu; 6345 } 6346 6347 static void detach_entity_cfs_rq(struct sched_entity *se); 6348 6349 /* 6350 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6351 * cfs_rq_of(p) references at time of call are still valid and identify the 6352 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6353 */ 6354 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6355 { 6356 /* 6357 * As blocked tasks retain absolute vruntime the migration needs to 6358 * deal with this by subtracting the old and adding the new 6359 * min_vruntime -- the latter is done by enqueue_entity() when placing 6360 * the task on the new runqueue. 6361 */ 6362 if (p->state == TASK_WAKING) { 6363 struct sched_entity *se = &p->se; 6364 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6365 u64 min_vruntime; 6366 6367 #ifndef CONFIG_64BIT 6368 u64 min_vruntime_copy; 6369 6370 do { 6371 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6372 smp_rmb(); 6373 min_vruntime = cfs_rq->min_vruntime; 6374 } while (min_vruntime != min_vruntime_copy); 6375 #else 6376 min_vruntime = cfs_rq->min_vruntime; 6377 #endif 6378 6379 se->vruntime -= min_vruntime; 6380 } 6381 6382 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6383 /* 6384 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6385 * rq->lock and can modify state directly. 6386 */ 6387 lockdep_assert_held(&task_rq(p)->lock); 6388 detach_entity_cfs_rq(&p->se); 6389 6390 } else { 6391 /* 6392 * We are supposed to update the task to "current" time, then 6393 * its up to date and ready to go to new CPU/cfs_rq. But we 6394 * have difficulty in getting what current time is, so simply 6395 * throw away the out-of-date time. This will result in the 6396 * wakee task is less decayed, but giving the wakee more load 6397 * sounds not bad. 6398 */ 6399 remove_entity_load_avg(&p->se); 6400 } 6401 6402 /* Tell new CPU we are migrated */ 6403 p->se.avg.last_update_time = 0; 6404 6405 /* We have migrated, no longer consider this task hot */ 6406 p->se.exec_start = 0; 6407 6408 update_scan_period(p, new_cpu); 6409 } 6410 6411 static void task_dead_fair(struct task_struct *p) 6412 { 6413 remove_entity_load_avg(&p->se); 6414 } 6415 #endif /* CONFIG_SMP */ 6416 6417 static unsigned long wakeup_gran(struct sched_entity *se) 6418 { 6419 unsigned long gran = sysctl_sched_wakeup_granularity; 6420 6421 /* 6422 * Since its curr running now, convert the gran from real-time 6423 * to virtual-time in his units. 6424 * 6425 * By using 'se' instead of 'curr' we penalize light tasks, so 6426 * they get preempted easier. That is, if 'se' < 'curr' then 6427 * the resulting gran will be larger, therefore penalizing the 6428 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6429 * be smaller, again penalizing the lighter task. 6430 * 6431 * This is especially important for buddies when the leftmost 6432 * task is higher priority than the buddy. 6433 */ 6434 return calc_delta_fair(gran, se); 6435 } 6436 6437 /* 6438 * Should 'se' preempt 'curr'. 6439 * 6440 * |s1 6441 * |s2 6442 * |s3 6443 * g 6444 * |<--->|c 6445 * 6446 * w(c, s1) = -1 6447 * w(c, s2) = 0 6448 * w(c, s3) = 1 6449 * 6450 */ 6451 static int 6452 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6453 { 6454 s64 gran, vdiff = curr->vruntime - se->vruntime; 6455 6456 if (vdiff <= 0) 6457 return -1; 6458 6459 gran = wakeup_gran(se); 6460 if (vdiff > gran) 6461 return 1; 6462 6463 return 0; 6464 } 6465 6466 static void set_last_buddy(struct sched_entity *se) 6467 { 6468 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6469 return; 6470 6471 for_each_sched_entity(se) { 6472 if (SCHED_WARN_ON(!se->on_rq)) 6473 return; 6474 cfs_rq_of(se)->last = se; 6475 } 6476 } 6477 6478 static void set_next_buddy(struct sched_entity *se) 6479 { 6480 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6481 return; 6482 6483 for_each_sched_entity(se) { 6484 if (SCHED_WARN_ON(!se->on_rq)) 6485 return; 6486 cfs_rq_of(se)->next = se; 6487 } 6488 } 6489 6490 static void set_skip_buddy(struct sched_entity *se) 6491 { 6492 for_each_sched_entity(se) 6493 cfs_rq_of(se)->skip = se; 6494 } 6495 6496 /* 6497 * Preempt the current task with a newly woken task if needed: 6498 */ 6499 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6500 { 6501 struct task_struct *curr = rq->curr; 6502 struct sched_entity *se = &curr->se, *pse = &p->se; 6503 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6504 int scale = cfs_rq->nr_running >= sched_nr_latency; 6505 int next_buddy_marked = 0; 6506 6507 if (unlikely(se == pse)) 6508 return; 6509 6510 /* 6511 * This is possible from callers such as attach_tasks(), in which we 6512 * unconditionally check_prempt_curr() after an enqueue (which may have 6513 * lead to a throttle). This both saves work and prevents false 6514 * next-buddy nomination below. 6515 */ 6516 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6517 return; 6518 6519 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6520 set_next_buddy(pse); 6521 next_buddy_marked = 1; 6522 } 6523 6524 /* 6525 * We can come here with TIF_NEED_RESCHED already set from new task 6526 * wake up path. 6527 * 6528 * Note: this also catches the edge-case of curr being in a throttled 6529 * group (e.g. via set_curr_task), since update_curr() (in the 6530 * enqueue of curr) will have resulted in resched being set. This 6531 * prevents us from potentially nominating it as a false LAST_BUDDY 6532 * below. 6533 */ 6534 if (test_tsk_need_resched(curr)) 6535 return; 6536 6537 /* Idle tasks are by definition preempted by non-idle tasks. */ 6538 if (unlikely(curr->policy == SCHED_IDLE) && 6539 likely(p->policy != SCHED_IDLE)) 6540 goto preempt; 6541 6542 /* 6543 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6544 * is driven by the tick): 6545 */ 6546 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6547 return; 6548 6549 find_matching_se(&se, &pse); 6550 update_curr(cfs_rq_of(se)); 6551 BUG_ON(!pse); 6552 if (wakeup_preempt_entity(se, pse) == 1) { 6553 /* 6554 * Bias pick_next to pick the sched entity that is 6555 * triggering this preemption. 6556 */ 6557 if (!next_buddy_marked) 6558 set_next_buddy(pse); 6559 goto preempt; 6560 } 6561 6562 return; 6563 6564 preempt: 6565 resched_curr(rq); 6566 /* 6567 * Only set the backward buddy when the current task is still 6568 * on the rq. This can happen when a wakeup gets interleaved 6569 * with schedule on the ->pre_schedule() or idle_balance() 6570 * point, either of which can * drop the rq lock. 6571 * 6572 * Also, during early boot the idle thread is in the fair class, 6573 * for obvious reasons its a bad idea to schedule back to it. 6574 */ 6575 if (unlikely(!se->on_rq || curr == rq->idle)) 6576 return; 6577 6578 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6579 set_last_buddy(se); 6580 } 6581 6582 static struct task_struct * 6583 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6584 { 6585 struct cfs_rq *cfs_rq = &rq->cfs; 6586 struct sched_entity *se; 6587 struct task_struct *p; 6588 int new_tasks; 6589 6590 again: 6591 if (!cfs_rq->nr_running) 6592 goto idle; 6593 6594 #ifdef CONFIG_FAIR_GROUP_SCHED 6595 if (prev->sched_class != &fair_sched_class) 6596 goto simple; 6597 6598 /* 6599 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6600 * likely that a next task is from the same cgroup as the current. 6601 * 6602 * Therefore attempt to avoid putting and setting the entire cgroup 6603 * hierarchy, only change the part that actually changes. 6604 */ 6605 6606 do { 6607 struct sched_entity *curr = cfs_rq->curr; 6608 6609 /* 6610 * Since we got here without doing put_prev_entity() we also 6611 * have to consider cfs_rq->curr. If it is still a runnable 6612 * entity, update_curr() will update its vruntime, otherwise 6613 * forget we've ever seen it. 6614 */ 6615 if (curr) { 6616 if (curr->on_rq) 6617 update_curr(cfs_rq); 6618 else 6619 curr = NULL; 6620 6621 /* 6622 * This call to check_cfs_rq_runtime() will do the 6623 * throttle and dequeue its entity in the parent(s). 6624 * Therefore the nr_running test will indeed 6625 * be correct. 6626 */ 6627 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6628 cfs_rq = &rq->cfs; 6629 6630 if (!cfs_rq->nr_running) 6631 goto idle; 6632 6633 goto simple; 6634 } 6635 } 6636 6637 se = pick_next_entity(cfs_rq, curr); 6638 cfs_rq = group_cfs_rq(se); 6639 } while (cfs_rq); 6640 6641 p = task_of(se); 6642 6643 /* 6644 * Since we haven't yet done put_prev_entity and if the selected task 6645 * is a different task than we started out with, try and touch the 6646 * least amount of cfs_rqs. 6647 */ 6648 if (prev != p) { 6649 struct sched_entity *pse = &prev->se; 6650 6651 while (!(cfs_rq = is_same_group(se, pse))) { 6652 int se_depth = se->depth; 6653 int pse_depth = pse->depth; 6654 6655 if (se_depth <= pse_depth) { 6656 put_prev_entity(cfs_rq_of(pse), pse); 6657 pse = parent_entity(pse); 6658 } 6659 if (se_depth >= pse_depth) { 6660 set_next_entity(cfs_rq_of(se), se); 6661 se = parent_entity(se); 6662 } 6663 } 6664 6665 put_prev_entity(cfs_rq, pse); 6666 set_next_entity(cfs_rq, se); 6667 } 6668 6669 goto done; 6670 simple: 6671 #endif 6672 6673 put_prev_task(rq, prev); 6674 6675 do { 6676 se = pick_next_entity(cfs_rq, NULL); 6677 set_next_entity(cfs_rq, se); 6678 cfs_rq = group_cfs_rq(se); 6679 } while (cfs_rq); 6680 6681 p = task_of(se); 6682 6683 done: __maybe_unused; 6684 #ifdef CONFIG_SMP 6685 /* 6686 * Move the next running task to the front of 6687 * the list, so our cfs_tasks list becomes MRU 6688 * one. 6689 */ 6690 list_move(&p->se.group_node, &rq->cfs_tasks); 6691 #endif 6692 6693 if (hrtick_enabled(rq)) 6694 hrtick_start_fair(rq, p); 6695 6696 return p; 6697 6698 idle: 6699 new_tasks = idle_balance(rq, rf); 6700 6701 /* 6702 * Because idle_balance() releases (and re-acquires) rq->lock, it is 6703 * possible for any higher priority task to appear. In that case we 6704 * must re-start the pick_next_entity() loop. 6705 */ 6706 if (new_tasks < 0) 6707 return RETRY_TASK; 6708 6709 if (new_tasks > 0) 6710 goto again; 6711 6712 return NULL; 6713 } 6714 6715 /* 6716 * Account for a descheduled task: 6717 */ 6718 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6719 { 6720 struct sched_entity *se = &prev->se; 6721 struct cfs_rq *cfs_rq; 6722 6723 for_each_sched_entity(se) { 6724 cfs_rq = cfs_rq_of(se); 6725 put_prev_entity(cfs_rq, se); 6726 } 6727 } 6728 6729 /* 6730 * sched_yield() is very simple 6731 * 6732 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6733 */ 6734 static void yield_task_fair(struct rq *rq) 6735 { 6736 struct task_struct *curr = rq->curr; 6737 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6738 struct sched_entity *se = &curr->se; 6739 6740 /* 6741 * Are we the only task in the tree? 6742 */ 6743 if (unlikely(rq->nr_running == 1)) 6744 return; 6745 6746 clear_buddies(cfs_rq, se); 6747 6748 if (curr->policy != SCHED_BATCH) { 6749 update_rq_clock(rq); 6750 /* 6751 * Update run-time statistics of the 'current'. 6752 */ 6753 update_curr(cfs_rq); 6754 /* 6755 * Tell update_rq_clock() that we've just updated, 6756 * so we don't do microscopic update in schedule() 6757 * and double the fastpath cost. 6758 */ 6759 rq_clock_skip_update(rq); 6760 } 6761 6762 set_skip_buddy(se); 6763 } 6764 6765 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6766 { 6767 struct sched_entity *se = &p->se; 6768 6769 /* throttled hierarchies are not runnable */ 6770 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6771 return false; 6772 6773 /* Tell the scheduler that we'd really like pse to run next. */ 6774 set_next_buddy(se); 6775 6776 yield_task_fair(rq); 6777 6778 return true; 6779 } 6780 6781 #ifdef CONFIG_SMP 6782 /************************************************** 6783 * Fair scheduling class load-balancing methods. 6784 * 6785 * BASICS 6786 * 6787 * The purpose of load-balancing is to achieve the same basic fairness the 6788 * per-CPU scheduler provides, namely provide a proportional amount of compute 6789 * time to each task. This is expressed in the following equation: 6790 * 6791 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6792 * 6793 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 6794 * W_i,0 is defined as: 6795 * 6796 * W_i,0 = \Sum_j w_i,j (2) 6797 * 6798 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 6799 * is derived from the nice value as per sched_prio_to_weight[]. 6800 * 6801 * The weight average is an exponential decay average of the instantaneous 6802 * weight: 6803 * 6804 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6805 * 6806 * C_i is the compute capacity of CPU i, typically it is the 6807 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6808 * can also include other factors [XXX]. 6809 * 6810 * To achieve this balance we define a measure of imbalance which follows 6811 * directly from (1): 6812 * 6813 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6814 * 6815 * We them move tasks around to minimize the imbalance. In the continuous 6816 * function space it is obvious this converges, in the discrete case we get 6817 * a few fun cases generally called infeasible weight scenarios. 6818 * 6819 * [XXX expand on: 6820 * - infeasible weights; 6821 * - local vs global optima in the discrete case. ] 6822 * 6823 * 6824 * SCHED DOMAINS 6825 * 6826 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6827 * for all i,j solution, we create a tree of CPUs that follows the hardware 6828 * topology where each level pairs two lower groups (or better). This results 6829 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 6830 * tree to only the first of the previous level and we decrease the frequency 6831 * of load-balance at each level inv. proportional to the number of CPUs in 6832 * the groups. 6833 * 6834 * This yields: 6835 * 6836 * log_2 n 1 n 6837 * \Sum { --- * --- * 2^i } = O(n) (5) 6838 * i = 0 2^i 2^i 6839 * `- size of each group 6840 * | | `- number of CPUs doing load-balance 6841 * | `- freq 6842 * `- sum over all levels 6843 * 6844 * Coupled with a limit on how many tasks we can migrate every balance pass, 6845 * this makes (5) the runtime complexity of the balancer. 6846 * 6847 * An important property here is that each CPU is still (indirectly) connected 6848 * to every other CPU in at most O(log n) steps: 6849 * 6850 * The adjacency matrix of the resulting graph is given by: 6851 * 6852 * log_2 n 6853 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 6854 * k = 0 6855 * 6856 * And you'll find that: 6857 * 6858 * A^(log_2 n)_i,j != 0 for all i,j (7) 6859 * 6860 * Showing there's indeed a path between every CPU in at most O(log n) steps. 6861 * The task movement gives a factor of O(m), giving a convergence complexity 6862 * of: 6863 * 6864 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 6865 * 6866 * 6867 * WORK CONSERVING 6868 * 6869 * In order to avoid CPUs going idle while there's still work to do, new idle 6870 * balancing is more aggressive and has the newly idle CPU iterate up the domain 6871 * tree itself instead of relying on other CPUs to bring it work. 6872 * 6873 * This adds some complexity to both (5) and (8) but it reduces the total idle 6874 * time. 6875 * 6876 * [XXX more?] 6877 * 6878 * 6879 * CGROUPS 6880 * 6881 * Cgroups make a horror show out of (2), instead of a simple sum we get: 6882 * 6883 * s_k,i 6884 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 6885 * S_k 6886 * 6887 * Where 6888 * 6889 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 6890 * 6891 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 6892 * 6893 * The big problem is S_k, its a global sum needed to compute a local (W_i) 6894 * property. 6895 * 6896 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 6897 * rewrite all of this once again.] 6898 */ 6899 6900 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 6901 6902 enum fbq_type { regular, remote, all }; 6903 6904 #define LBF_ALL_PINNED 0x01 6905 #define LBF_NEED_BREAK 0x02 6906 #define LBF_DST_PINNED 0x04 6907 #define LBF_SOME_PINNED 0x08 6908 #define LBF_NOHZ_STATS 0x10 6909 #define LBF_NOHZ_AGAIN 0x20 6910 6911 struct lb_env { 6912 struct sched_domain *sd; 6913 6914 struct rq *src_rq; 6915 int src_cpu; 6916 6917 int dst_cpu; 6918 struct rq *dst_rq; 6919 6920 struct cpumask *dst_grpmask; 6921 int new_dst_cpu; 6922 enum cpu_idle_type idle; 6923 long imbalance; 6924 /* The set of CPUs under consideration for load-balancing */ 6925 struct cpumask *cpus; 6926 6927 unsigned int flags; 6928 6929 unsigned int loop; 6930 unsigned int loop_break; 6931 unsigned int loop_max; 6932 6933 enum fbq_type fbq_type; 6934 struct list_head tasks; 6935 }; 6936 6937 /* 6938 * Is this task likely cache-hot: 6939 */ 6940 static int task_hot(struct task_struct *p, struct lb_env *env) 6941 { 6942 s64 delta; 6943 6944 lockdep_assert_held(&env->src_rq->lock); 6945 6946 if (p->sched_class != &fair_sched_class) 6947 return 0; 6948 6949 if (unlikely(p->policy == SCHED_IDLE)) 6950 return 0; 6951 6952 /* 6953 * Buddy candidates are cache hot: 6954 */ 6955 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 6956 (&p->se == cfs_rq_of(&p->se)->next || 6957 &p->se == cfs_rq_of(&p->se)->last)) 6958 return 1; 6959 6960 if (sysctl_sched_migration_cost == -1) 6961 return 1; 6962 if (sysctl_sched_migration_cost == 0) 6963 return 0; 6964 6965 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 6966 6967 return delta < (s64)sysctl_sched_migration_cost; 6968 } 6969 6970 #ifdef CONFIG_NUMA_BALANCING 6971 /* 6972 * Returns 1, if task migration degrades locality 6973 * Returns 0, if task migration improves locality i.e migration preferred. 6974 * Returns -1, if task migration is not affected by locality. 6975 */ 6976 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 6977 { 6978 struct numa_group *numa_group = rcu_dereference(p->numa_group); 6979 unsigned long src_weight, dst_weight; 6980 int src_nid, dst_nid, dist; 6981 6982 if (!static_branch_likely(&sched_numa_balancing)) 6983 return -1; 6984 6985 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 6986 return -1; 6987 6988 src_nid = cpu_to_node(env->src_cpu); 6989 dst_nid = cpu_to_node(env->dst_cpu); 6990 6991 if (src_nid == dst_nid) 6992 return -1; 6993 6994 /* Migrating away from the preferred node is always bad. */ 6995 if (src_nid == p->numa_preferred_nid) { 6996 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 6997 return 1; 6998 else 6999 return -1; 7000 } 7001 7002 /* Encourage migration to the preferred node. */ 7003 if (dst_nid == p->numa_preferred_nid) 7004 return 0; 7005 7006 /* Leaving a core idle is often worse than degrading locality. */ 7007 if (env->idle == CPU_IDLE) 7008 return -1; 7009 7010 dist = node_distance(src_nid, dst_nid); 7011 if (numa_group) { 7012 src_weight = group_weight(p, src_nid, dist); 7013 dst_weight = group_weight(p, dst_nid, dist); 7014 } else { 7015 src_weight = task_weight(p, src_nid, dist); 7016 dst_weight = task_weight(p, dst_nid, dist); 7017 } 7018 7019 return dst_weight < src_weight; 7020 } 7021 7022 #else 7023 static inline int migrate_degrades_locality(struct task_struct *p, 7024 struct lb_env *env) 7025 { 7026 return -1; 7027 } 7028 #endif 7029 7030 /* 7031 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7032 */ 7033 static 7034 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7035 { 7036 int tsk_cache_hot; 7037 7038 lockdep_assert_held(&env->src_rq->lock); 7039 7040 /* 7041 * We do not migrate tasks that are: 7042 * 1) throttled_lb_pair, or 7043 * 2) cannot be migrated to this CPU due to cpus_allowed, or 7044 * 3) running (obviously), or 7045 * 4) are cache-hot on their current CPU. 7046 */ 7047 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7048 return 0; 7049 7050 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 7051 int cpu; 7052 7053 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7054 7055 env->flags |= LBF_SOME_PINNED; 7056 7057 /* 7058 * Remember if this task can be migrated to any other CPU in 7059 * our sched_group. We may want to revisit it if we couldn't 7060 * meet load balance goals by pulling other tasks on src_cpu. 7061 * 7062 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7063 * already computed one in current iteration. 7064 */ 7065 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7066 return 0; 7067 7068 /* Prevent to re-select dst_cpu via env's CPUs: */ 7069 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7070 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 7071 env->flags |= LBF_DST_PINNED; 7072 env->new_dst_cpu = cpu; 7073 break; 7074 } 7075 } 7076 7077 return 0; 7078 } 7079 7080 /* Record that we found atleast one task that could run on dst_cpu */ 7081 env->flags &= ~LBF_ALL_PINNED; 7082 7083 if (task_running(env->src_rq, p)) { 7084 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7085 return 0; 7086 } 7087 7088 /* 7089 * Aggressive migration if: 7090 * 1) destination numa is preferred 7091 * 2) task is cache cold, or 7092 * 3) too many balance attempts have failed. 7093 */ 7094 tsk_cache_hot = migrate_degrades_locality(p, env); 7095 if (tsk_cache_hot == -1) 7096 tsk_cache_hot = task_hot(p, env); 7097 7098 if (tsk_cache_hot <= 0 || 7099 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7100 if (tsk_cache_hot == 1) { 7101 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7102 schedstat_inc(p->se.statistics.nr_forced_migrations); 7103 } 7104 return 1; 7105 } 7106 7107 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7108 return 0; 7109 } 7110 7111 /* 7112 * detach_task() -- detach the task for the migration specified in env 7113 */ 7114 static void detach_task(struct task_struct *p, struct lb_env *env) 7115 { 7116 lockdep_assert_held(&env->src_rq->lock); 7117 7118 p->on_rq = TASK_ON_RQ_MIGRATING; 7119 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7120 set_task_cpu(p, env->dst_cpu); 7121 } 7122 7123 /* 7124 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7125 * part of active balancing operations within "domain". 7126 * 7127 * Returns a task if successful and NULL otherwise. 7128 */ 7129 static struct task_struct *detach_one_task(struct lb_env *env) 7130 { 7131 struct task_struct *p; 7132 7133 lockdep_assert_held(&env->src_rq->lock); 7134 7135 list_for_each_entry_reverse(p, 7136 &env->src_rq->cfs_tasks, se.group_node) { 7137 if (!can_migrate_task(p, env)) 7138 continue; 7139 7140 detach_task(p, env); 7141 7142 /* 7143 * Right now, this is only the second place where 7144 * lb_gained[env->idle] is updated (other is detach_tasks) 7145 * so we can safely collect stats here rather than 7146 * inside detach_tasks(). 7147 */ 7148 schedstat_inc(env->sd->lb_gained[env->idle]); 7149 return p; 7150 } 7151 return NULL; 7152 } 7153 7154 static const unsigned int sched_nr_migrate_break = 32; 7155 7156 /* 7157 * detach_tasks() -- tries to detach up to imbalance weighted load from 7158 * busiest_rq, as part of a balancing operation within domain "sd". 7159 * 7160 * Returns number of detached tasks if successful and 0 otherwise. 7161 */ 7162 static int detach_tasks(struct lb_env *env) 7163 { 7164 struct list_head *tasks = &env->src_rq->cfs_tasks; 7165 struct task_struct *p; 7166 unsigned long load; 7167 int detached = 0; 7168 7169 lockdep_assert_held(&env->src_rq->lock); 7170 7171 if (env->imbalance <= 0) 7172 return 0; 7173 7174 while (!list_empty(tasks)) { 7175 /* 7176 * We don't want to steal all, otherwise we may be treated likewise, 7177 * which could at worst lead to a livelock crash. 7178 */ 7179 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7180 break; 7181 7182 p = list_last_entry(tasks, struct task_struct, se.group_node); 7183 7184 env->loop++; 7185 /* We've more or less seen every task there is, call it quits */ 7186 if (env->loop > env->loop_max) 7187 break; 7188 7189 /* take a breather every nr_migrate tasks */ 7190 if (env->loop > env->loop_break) { 7191 env->loop_break += sched_nr_migrate_break; 7192 env->flags |= LBF_NEED_BREAK; 7193 break; 7194 } 7195 7196 if (!can_migrate_task(p, env)) 7197 goto next; 7198 7199 load = task_h_load(p); 7200 7201 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7202 goto next; 7203 7204 if ((load / 2) > env->imbalance) 7205 goto next; 7206 7207 detach_task(p, env); 7208 list_add(&p->se.group_node, &env->tasks); 7209 7210 detached++; 7211 env->imbalance -= load; 7212 7213 #ifdef CONFIG_PREEMPT 7214 /* 7215 * NEWIDLE balancing is a source of latency, so preemptible 7216 * kernels will stop after the first task is detached to minimize 7217 * the critical section. 7218 */ 7219 if (env->idle == CPU_NEWLY_IDLE) 7220 break; 7221 #endif 7222 7223 /* 7224 * We only want to steal up to the prescribed amount of 7225 * weighted load. 7226 */ 7227 if (env->imbalance <= 0) 7228 break; 7229 7230 continue; 7231 next: 7232 list_move(&p->se.group_node, tasks); 7233 } 7234 7235 /* 7236 * Right now, this is one of only two places we collect this stat 7237 * so we can safely collect detach_one_task() stats here rather 7238 * than inside detach_one_task(). 7239 */ 7240 schedstat_add(env->sd->lb_gained[env->idle], detached); 7241 7242 return detached; 7243 } 7244 7245 /* 7246 * attach_task() -- attach the task detached by detach_task() to its new rq. 7247 */ 7248 static void attach_task(struct rq *rq, struct task_struct *p) 7249 { 7250 lockdep_assert_held(&rq->lock); 7251 7252 BUG_ON(task_rq(p) != rq); 7253 activate_task(rq, p, ENQUEUE_NOCLOCK); 7254 p->on_rq = TASK_ON_RQ_QUEUED; 7255 check_preempt_curr(rq, p, 0); 7256 } 7257 7258 /* 7259 * attach_one_task() -- attaches the task returned from detach_one_task() to 7260 * its new rq. 7261 */ 7262 static void attach_one_task(struct rq *rq, struct task_struct *p) 7263 { 7264 struct rq_flags rf; 7265 7266 rq_lock(rq, &rf); 7267 update_rq_clock(rq); 7268 attach_task(rq, p); 7269 rq_unlock(rq, &rf); 7270 } 7271 7272 /* 7273 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7274 * new rq. 7275 */ 7276 static void attach_tasks(struct lb_env *env) 7277 { 7278 struct list_head *tasks = &env->tasks; 7279 struct task_struct *p; 7280 struct rq_flags rf; 7281 7282 rq_lock(env->dst_rq, &rf); 7283 update_rq_clock(env->dst_rq); 7284 7285 while (!list_empty(tasks)) { 7286 p = list_first_entry(tasks, struct task_struct, se.group_node); 7287 list_del_init(&p->se.group_node); 7288 7289 attach_task(env->dst_rq, p); 7290 } 7291 7292 rq_unlock(env->dst_rq, &rf); 7293 } 7294 7295 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7296 { 7297 if (cfs_rq->avg.load_avg) 7298 return true; 7299 7300 if (cfs_rq->avg.util_avg) 7301 return true; 7302 7303 return false; 7304 } 7305 7306 static inline bool others_have_blocked(struct rq *rq) 7307 { 7308 if (READ_ONCE(rq->avg_rt.util_avg)) 7309 return true; 7310 7311 if (READ_ONCE(rq->avg_dl.util_avg)) 7312 return true; 7313 7314 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) 7315 if (READ_ONCE(rq->avg_irq.util_avg)) 7316 return true; 7317 #endif 7318 7319 return false; 7320 } 7321 7322 #ifdef CONFIG_FAIR_GROUP_SCHED 7323 7324 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7325 { 7326 if (cfs_rq->load.weight) 7327 return false; 7328 7329 if (cfs_rq->avg.load_sum) 7330 return false; 7331 7332 if (cfs_rq->avg.util_sum) 7333 return false; 7334 7335 if (cfs_rq->avg.runnable_load_sum) 7336 return false; 7337 7338 return true; 7339 } 7340 7341 static void update_blocked_averages(int cpu) 7342 { 7343 struct rq *rq = cpu_rq(cpu); 7344 struct cfs_rq *cfs_rq, *pos; 7345 const struct sched_class *curr_class; 7346 struct rq_flags rf; 7347 bool done = true; 7348 7349 rq_lock_irqsave(rq, &rf); 7350 update_rq_clock(rq); 7351 7352 /* 7353 * Iterates the task_group tree in a bottom up fashion, see 7354 * list_add_leaf_cfs_rq() for details. 7355 */ 7356 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7357 struct sched_entity *se; 7358 7359 /* throttled entities do not contribute to load */ 7360 if (throttled_hierarchy(cfs_rq)) 7361 continue; 7362 7363 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) 7364 update_tg_load_avg(cfs_rq, 0); 7365 7366 /* Propagate pending load changes to the parent, if any: */ 7367 se = cfs_rq->tg->se[cpu]; 7368 if (se && !skip_blocked_update(se)) 7369 update_load_avg(cfs_rq_of(se), se, 0); 7370 7371 /* 7372 * There can be a lot of idle CPU cgroups. Don't let fully 7373 * decayed cfs_rqs linger on the list. 7374 */ 7375 if (cfs_rq_is_decayed(cfs_rq)) 7376 list_del_leaf_cfs_rq(cfs_rq); 7377 7378 /* Don't need periodic decay once load/util_avg are null */ 7379 if (cfs_rq_has_blocked(cfs_rq)) 7380 done = false; 7381 } 7382 7383 curr_class = rq->curr->sched_class; 7384 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class); 7385 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class); 7386 update_irq_load_avg(rq, 0); 7387 /* Don't need periodic decay once load/util_avg are null */ 7388 if (others_have_blocked(rq)) 7389 done = false; 7390 7391 #ifdef CONFIG_NO_HZ_COMMON 7392 rq->last_blocked_load_update_tick = jiffies; 7393 if (done) 7394 rq->has_blocked_load = 0; 7395 #endif 7396 rq_unlock_irqrestore(rq, &rf); 7397 } 7398 7399 /* 7400 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7401 * This needs to be done in a top-down fashion because the load of a child 7402 * group is a fraction of its parents load. 7403 */ 7404 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7405 { 7406 struct rq *rq = rq_of(cfs_rq); 7407 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7408 unsigned long now = jiffies; 7409 unsigned long load; 7410 7411 if (cfs_rq->last_h_load_update == now) 7412 return; 7413 7414 cfs_rq->h_load_next = NULL; 7415 for_each_sched_entity(se) { 7416 cfs_rq = cfs_rq_of(se); 7417 cfs_rq->h_load_next = se; 7418 if (cfs_rq->last_h_load_update == now) 7419 break; 7420 } 7421 7422 if (!se) { 7423 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7424 cfs_rq->last_h_load_update = now; 7425 } 7426 7427 while ((se = cfs_rq->h_load_next) != NULL) { 7428 load = cfs_rq->h_load; 7429 load = div64_ul(load * se->avg.load_avg, 7430 cfs_rq_load_avg(cfs_rq) + 1); 7431 cfs_rq = group_cfs_rq(se); 7432 cfs_rq->h_load = load; 7433 cfs_rq->last_h_load_update = now; 7434 } 7435 } 7436 7437 static unsigned long task_h_load(struct task_struct *p) 7438 { 7439 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7440 7441 update_cfs_rq_h_load(cfs_rq); 7442 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7443 cfs_rq_load_avg(cfs_rq) + 1); 7444 } 7445 #else 7446 static inline void update_blocked_averages(int cpu) 7447 { 7448 struct rq *rq = cpu_rq(cpu); 7449 struct cfs_rq *cfs_rq = &rq->cfs; 7450 const struct sched_class *curr_class; 7451 struct rq_flags rf; 7452 7453 rq_lock_irqsave(rq, &rf); 7454 update_rq_clock(rq); 7455 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); 7456 7457 curr_class = rq->curr->sched_class; 7458 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class); 7459 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class); 7460 update_irq_load_avg(rq, 0); 7461 #ifdef CONFIG_NO_HZ_COMMON 7462 rq->last_blocked_load_update_tick = jiffies; 7463 if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq)) 7464 rq->has_blocked_load = 0; 7465 #endif 7466 rq_unlock_irqrestore(rq, &rf); 7467 } 7468 7469 static unsigned long task_h_load(struct task_struct *p) 7470 { 7471 return p->se.avg.load_avg; 7472 } 7473 #endif 7474 7475 /********** Helpers for find_busiest_group ************************/ 7476 7477 enum group_type { 7478 group_other = 0, 7479 group_imbalanced, 7480 group_overloaded, 7481 }; 7482 7483 /* 7484 * sg_lb_stats - stats of a sched_group required for load_balancing 7485 */ 7486 struct sg_lb_stats { 7487 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7488 unsigned long group_load; /* Total load over the CPUs of the group */ 7489 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7490 unsigned long load_per_task; 7491 unsigned long group_capacity; 7492 unsigned long group_util; /* Total utilization of the group */ 7493 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7494 unsigned int idle_cpus; 7495 unsigned int group_weight; 7496 enum group_type group_type; 7497 int group_no_capacity; 7498 #ifdef CONFIG_NUMA_BALANCING 7499 unsigned int nr_numa_running; 7500 unsigned int nr_preferred_running; 7501 #endif 7502 }; 7503 7504 /* 7505 * sd_lb_stats - Structure to store the statistics of a sched_domain 7506 * during load balancing. 7507 */ 7508 struct sd_lb_stats { 7509 struct sched_group *busiest; /* Busiest group in this sd */ 7510 struct sched_group *local; /* Local group in this sd */ 7511 unsigned long total_running; 7512 unsigned long total_load; /* Total load of all groups in sd */ 7513 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7514 unsigned long avg_load; /* Average load across all groups in sd */ 7515 7516 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7517 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7518 }; 7519 7520 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7521 { 7522 /* 7523 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7524 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7525 * We must however clear busiest_stat::avg_load because 7526 * update_sd_pick_busiest() reads this before assignment. 7527 */ 7528 *sds = (struct sd_lb_stats){ 7529 .busiest = NULL, 7530 .local = NULL, 7531 .total_running = 0UL, 7532 .total_load = 0UL, 7533 .total_capacity = 0UL, 7534 .busiest_stat = { 7535 .avg_load = 0UL, 7536 .sum_nr_running = 0, 7537 .group_type = group_other, 7538 }, 7539 }; 7540 } 7541 7542 /** 7543 * get_sd_load_idx - Obtain the load index for a given sched domain. 7544 * @sd: The sched_domain whose load_idx is to be obtained. 7545 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7546 * 7547 * Return: The load index. 7548 */ 7549 static inline int get_sd_load_idx(struct sched_domain *sd, 7550 enum cpu_idle_type idle) 7551 { 7552 int load_idx; 7553 7554 switch (idle) { 7555 case CPU_NOT_IDLE: 7556 load_idx = sd->busy_idx; 7557 break; 7558 7559 case CPU_NEWLY_IDLE: 7560 load_idx = sd->newidle_idx; 7561 break; 7562 default: 7563 load_idx = sd->idle_idx; 7564 break; 7565 } 7566 7567 return load_idx; 7568 } 7569 7570 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) 7571 { 7572 struct rq *rq = cpu_rq(cpu); 7573 unsigned long max = arch_scale_cpu_capacity(sd, cpu); 7574 unsigned long used, free; 7575 unsigned long irq; 7576 7577 irq = cpu_util_irq(rq); 7578 7579 if (unlikely(irq >= max)) 7580 return 1; 7581 7582 used = READ_ONCE(rq->avg_rt.util_avg); 7583 used += READ_ONCE(rq->avg_dl.util_avg); 7584 7585 if (unlikely(used >= max)) 7586 return 1; 7587 7588 free = max - used; 7589 7590 return scale_irq_capacity(free, irq, max); 7591 } 7592 7593 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7594 { 7595 unsigned long capacity = scale_rt_capacity(sd, cpu); 7596 struct sched_group *sdg = sd->groups; 7597 7598 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu); 7599 7600 if (!capacity) 7601 capacity = 1; 7602 7603 cpu_rq(cpu)->cpu_capacity = capacity; 7604 sdg->sgc->capacity = capacity; 7605 sdg->sgc->min_capacity = capacity; 7606 } 7607 7608 void update_group_capacity(struct sched_domain *sd, int cpu) 7609 { 7610 struct sched_domain *child = sd->child; 7611 struct sched_group *group, *sdg = sd->groups; 7612 unsigned long capacity, min_capacity; 7613 unsigned long interval; 7614 7615 interval = msecs_to_jiffies(sd->balance_interval); 7616 interval = clamp(interval, 1UL, max_load_balance_interval); 7617 sdg->sgc->next_update = jiffies + interval; 7618 7619 if (!child) { 7620 update_cpu_capacity(sd, cpu); 7621 return; 7622 } 7623 7624 capacity = 0; 7625 min_capacity = ULONG_MAX; 7626 7627 if (child->flags & SD_OVERLAP) { 7628 /* 7629 * SD_OVERLAP domains cannot assume that child groups 7630 * span the current group. 7631 */ 7632 7633 for_each_cpu(cpu, sched_group_span(sdg)) { 7634 struct sched_group_capacity *sgc; 7635 struct rq *rq = cpu_rq(cpu); 7636 7637 /* 7638 * build_sched_domains() -> init_sched_groups_capacity() 7639 * gets here before we've attached the domains to the 7640 * runqueues. 7641 * 7642 * Use capacity_of(), which is set irrespective of domains 7643 * in update_cpu_capacity(). 7644 * 7645 * This avoids capacity from being 0 and 7646 * causing divide-by-zero issues on boot. 7647 */ 7648 if (unlikely(!rq->sd)) { 7649 capacity += capacity_of(cpu); 7650 } else { 7651 sgc = rq->sd->groups->sgc; 7652 capacity += sgc->capacity; 7653 } 7654 7655 min_capacity = min(capacity, min_capacity); 7656 } 7657 } else { 7658 /* 7659 * !SD_OVERLAP domains can assume that child groups 7660 * span the current group. 7661 */ 7662 7663 group = child->groups; 7664 do { 7665 struct sched_group_capacity *sgc = group->sgc; 7666 7667 capacity += sgc->capacity; 7668 min_capacity = min(sgc->min_capacity, min_capacity); 7669 group = group->next; 7670 } while (group != child->groups); 7671 } 7672 7673 sdg->sgc->capacity = capacity; 7674 sdg->sgc->min_capacity = min_capacity; 7675 } 7676 7677 /* 7678 * Check whether the capacity of the rq has been noticeably reduced by side 7679 * activity. The imbalance_pct is used for the threshold. 7680 * Return true is the capacity is reduced 7681 */ 7682 static inline int 7683 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7684 { 7685 return ((rq->cpu_capacity * sd->imbalance_pct) < 7686 (rq->cpu_capacity_orig * 100)); 7687 } 7688 7689 /* 7690 * Group imbalance indicates (and tries to solve) the problem where balancing 7691 * groups is inadequate due to ->cpus_allowed constraints. 7692 * 7693 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 7694 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 7695 * Something like: 7696 * 7697 * { 0 1 2 3 } { 4 5 6 7 } 7698 * * * * * 7699 * 7700 * If we were to balance group-wise we'd place two tasks in the first group and 7701 * two tasks in the second group. Clearly this is undesired as it will overload 7702 * cpu 3 and leave one of the CPUs in the second group unused. 7703 * 7704 * The current solution to this issue is detecting the skew in the first group 7705 * by noticing the lower domain failed to reach balance and had difficulty 7706 * moving tasks due to affinity constraints. 7707 * 7708 * When this is so detected; this group becomes a candidate for busiest; see 7709 * update_sd_pick_busiest(). And calculate_imbalance() and 7710 * find_busiest_group() avoid some of the usual balance conditions to allow it 7711 * to create an effective group imbalance. 7712 * 7713 * This is a somewhat tricky proposition since the next run might not find the 7714 * group imbalance and decide the groups need to be balanced again. A most 7715 * subtle and fragile situation. 7716 */ 7717 7718 static inline int sg_imbalanced(struct sched_group *group) 7719 { 7720 return group->sgc->imbalance; 7721 } 7722 7723 /* 7724 * group_has_capacity returns true if the group has spare capacity that could 7725 * be used by some tasks. 7726 * We consider that a group has spare capacity if the * number of task is 7727 * smaller than the number of CPUs or if the utilization is lower than the 7728 * available capacity for CFS tasks. 7729 * For the latter, we use a threshold to stabilize the state, to take into 7730 * account the variance of the tasks' load and to return true if the available 7731 * capacity in meaningful for the load balancer. 7732 * As an example, an available capacity of 1% can appear but it doesn't make 7733 * any benefit for the load balance. 7734 */ 7735 static inline bool 7736 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7737 { 7738 if (sgs->sum_nr_running < sgs->group_weight) 7739 return true; 7740 7741 if ((sgs->group_capacity * 100) > 7742 (sgs->group_util * env->sd->imbalance_pct)) 7743 return true; 7744 7745 return false; 7746 } 7747 7748 /* 7749 * group_is_overloaded returns true if the group has more tasks than it can 7750 * handle. 7751 * group_is_overloaded is not equals to !group_has_capacity because a group 7752 * with the exact right number of tasks, has no more spare capacity but is not 7753 * overloaded so both group_has_capacity and group_is_overloaded return 7754 * false. 7755 */ 7756 static inline bool 7757 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 7758 { 7759 if (sgs->sum_nr_running <= sgs->group_weight) 7760 return false; 7761 7762 if ((sgs->group_capacity * 100) < 7763 (sgs->group_util * env->sd->imbalance_pct)) 7764 return true; 7765 7766 return false; 7767 } 7768 7769 /* 7770 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller 7771 * per-CPU capacity than sched_group ref. 7772 */ 7773 static inline bool 7774 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7775 { 7776 return sg->sgc->min_capacity * capacity_margin < 7777 ref->sgc->min_capacity * 1024; 7778 } 7779 7780 static inline enum 7781 group_type group_classify(struct sched_group *group, 7782 struct sg_lb_stats *sgs) 7783 { 7784 if (sgs->group_no_capacity) 7785 return group_overloaded; 7786 7787 if (sg_imbalanced(group)) 7788 return group_imbalanced; 7789 7790 return group_other; 7791 } 7792 7793 static bool update_nohz_stats(struct rq *rq, bool force) 7794 { 7795 #ifdef CONFIG_NO_HZ_COMMON 7796 unsigned int cpu = rq->cpu; 7797 7798 if (!rq->has_blocked_load) 7799 return false; 7800 7801 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 7802 return false; 7803 7804 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 7805 return true; 7806 7807 update_blocked_averages(cpu); 7808 7809 return rq->has_blocked_load; 7810 #else 7811 return false; 7812 #endif 7813 } 7814 7815 /** 7816 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 7817 * @env: The load balancing environment. 7818 * @group: sched_group whose statistics are to be updated. 7819 * @load_idx: Load index of sched_domain of this_cpu for load calc. 7820 * @local_group: Does group contain this_cpu. 7821 * @sgs: variable to hold the statistics for this group. 7822 * @overload: Indicate more than one runnable task for any CPU. 7823 */ 7824 static inline void update_sg_lb_stats(struct lb_env *env, 7825 struct sched_group *group, int load_idx, 7826 int local_group, struct sg_lb_stats *sgs, 7827 bool *overload) 7828 { 7829 unsigned long load; 7830 int i, nr_running; 7831 7832 memset(sgs, 0, sizeof(*sgs)); 7833 7834 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 7835 struct rq *rq = cpu_rq(i); 7836 7837 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 7838 env->flags |= LBF_NOHZ_AGAIN; 7839 7840 /* Bias balancing toward CPUs of our domain: */ 7841 if (local_group) 7842 load = target_load(i, load_idx); 7843 else 7844 load = source_load(i, load_idx); 7845 7846 sgs->group_load += load; 7847 sgs->group_util += cpu_util(i); 7848 sgs->sum_nr_running += rq->cfs.h_nr_running; 7849 7850 nr_running = rq->nr_running; 7851 if (nr_running > 1) 7852 *overload = true; 7853 7854 #ifdef CONFIG_NUMA_BALANCING 7855 sgs->nr_numa_running += rq->nr_numa_running; 7856 sgs->nr_preferred_running += rq->nr_preferred_running; 7857 #endif 7858 sgs->sum_weighted_load += weighted_cpuload(rq); 7859 /* 7860 * No need to call idle_cpu() if nr_running is not 0 7861 */ 7862 if (!nr_running && idle_cpu(i)) 7863 sgs->idle_cpus++; 7864 } 7865 7866 /* Adjust by relative CPU capacity of the group */ 7867 sgs->group_capacity = group->sgc->capacity; 7868 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 7869 7870 if (sgs->sum_nr_running) 7871 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 7872 7873 sgs->group_weight = group->group_weight; 7874 7875 sgs->group_no_capacity = group_is_overloaded(env, sgs); 7876 sgs->group_type = group_classify(group, sgs); 7877 } 7878 7879 /** 7880 * update_sd_pick_busiest - return 1 on busiest group 7881 * @env: The load balancing environment. 7882 * @sds: sched_domain statistics 7883 * @sg: sched_group candidate to be checked for being the busiest 7884 * @sgs: sched_group statistics 7885 * 7886 * Determine if @sg is a busier group than the previously selected 7887 * busiest group. 7888 * 7889 * Return: %true if @sg is a busier group than the previously selected 7890 * busiest group. %false otherwise. 7891 */ 7892 static bool update_sd_pick_busiest(struct lb_env *env, 7893 struct sd_lb_stats *sds, 7894 struct sched_group *sg, 7895 struct sg_lb_stats *sgs) 7896 { 7897 struct sg_lb_stats *busiest = &sds->busiest_stat; 7898 7899 if (sgs->group_type > busiest->group_type) 7900 return true; 7901 7902 if (sgs->group_type < busiest->group_type) 7903 return false; 7904 7905 if (sgs->avg_load <= busiest->avg_load) 7906 return false; 7907 7908 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 7909 goto asym_packing; 7910 7911 /* 7912 * Candidate sg has no more than one task per CPU and 7913 * has higher per-CPU capacity. Migrating tasks to less 7914 * capable CPUs may harm throughput. Maximize throughput, 7915 * power/energy consequences are not considered. 7916 */ 7917 if (sgs->sum_nr_running <= sgs->group_weight && 7918 group_smaller_cpu_capacity(sds->local, sg)) 7919 return false; 7920 7921 asym_packing: 7922 /* This is the busiest node in its class. */ 7923 if (!(env->sd->flags & SD_ASYM_PACKING)) 7924 return true; 7925 7926 /* No ASYM_PACKING if target CPU is already busy */ 7927 if (env->idle == CPU_NOT_IDLE) 7928 return true; 7929 /* 7930 * ASYM_PACKING needs to move all the work to the highest 7931 * prority CPUs in the group, therefore mark all groups 7932 * of lower priority than ourself as busy. 7933 */ 7934 if (sgs->sum_nr_running && 7935 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 7936 if (!sds->busiest) 7937 return true; 7938 7939 /* Prefer to move from lowest priority CPU's work */ 7940 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 7941 sg->asym_prefer_cpu)) 7942 return true; 7943 } 7944 7945 return false; 7946 } 7947 7948 #ifdef CONFIG_NUMA_BALANCING 7949 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7950 { 7951 if (sgs->sum_nr_running > sgs->nr_numa_running) 7952 return regular; 7953 if (sgs->sum_nr_running > sgs->nr_preferred_running) 7954 return remote; 7955 return all; 7956 } 7957 7958 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7959 { 7960 if (rq->nr_running > rq->nr_numa_running) 7961 return regular; 7962 if (rq->nr_running > rq->nr_preferred_running) 7963 return remote; 7964 return all; 7965 } 7966 #else 7967 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7968 { 7969 return all; 7970 } 7971 7972 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7973 { 7974 return regular; 7975 } 7976 #endif /* CONFIG_NUMA_BALANCING */ 7977 7978 /** 7979 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 7980 * @env: The load balancing environment. 7981 * @sds: variable to hold the statistics for this sched_domain. 7982 */ 7983 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 7984 { 7985 struct sched_domain *child = env->sd->child; 7986 struct sched_group *sg = env->sd->groups; 7987 struct sg_lb_stats *local = &sds->local_stat; 7988 struct sg_lb_stats tmp_sgs; 7989 int load_idx, prefer_sibling = 0; 7990 bool overload = false; 7991 7992 if (child && child->flags & SD_PREFER_SIBLING) 7993 prefer_sibling = 1; 7994 7995 #ifdef CONFIG_NO_HZ_COMMON 7996 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 7997 env->flags |= LBF_NOHZ_STATS; 7998 #endif 7999 8000 load_idx = get_sd_load_idx(env->sd, env->idle); 8001 8002 do { 8003 struct sg_lb_stats *sgs = &tmp_sgs; 8004 int local_group; 8005 8006 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8007 if (local_group) { 8008 sds->local = sg; 8009 sgs = local; 8010 8011 if (env->idle != CPU_NEWLY_IDLE || 8012 time_after_eq(jiffies, sg->sgc->next_update)) 8013 update_group_capacity(env->sd, env->dst_cpu); 8014 } 8015 8016 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 8017 &overload); 8018 8019 if (local_group) 8020 goto next_group; 8021 8022 /* 8023 * In case the child domain prefers tasks go to siblings 8024 * first, lower the sg capacity so that we'll try 8025 * and move all the excess tasks away. We lower the capacity 8026 * of a group only if the local group has the capacity to fit 8027 * these excess tasks. The extra check prevents the case where 8028 * you always pull from the heaviest group when it is already 8029 * under-utilized (possible with a large weight task outweighs 8030 * the tasks on the system). 8031 */ 8032 if (prefer_sibling && sds->local && 8033 group_has_capacity(env, local) && 8034 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 8035 sgs->group_no_capacity = 1; 8036 sgs->group_type = group_classify(sg, sgs); 8037 } 8038 8039 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8040 sds->busiest = sg; 8041 sds->busiest_stat = *sgs; 8042 } 8043 8044 next_group: 8045 /* Now, start updating sd_lb_stats */ 8046 sds->total_running += sgs->sum_nr_running; 8047 sds->total_load += sgs->group_load; 8048 sds->total_capacity += sgs->group_capacity; 8049 8050 sg = sg->next; 8051 } while (sg != env->sd->groups); 8052 8053 #ifdef CONFIG_NO_HZ_COMMON 8054 if ((env->flags & LBF_NOHZ_AGAIN) && 8055 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8056 8057 WRITE_ONCE(nohz.next_blocked, 8058 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8059 } 8060 #endif 8061 8062 if (env->sd->flags & SD_NUMA) 8063 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8064 8065 if (!env->sd->parent) { 8066 /* update overload indicator if we are at root domain */ 8067 if (env->dst_rq->rd->overload != overload) 8068 env->dst_rq->rd->overload = overload; 8069 } 8070 } 8071 8072 /** 8073 * check_asym_packing - Check to see if the group is packed into the 8074 * sched domain. 8075 * 8076 * This is primarily intended to used at the sibling level. Some 8077 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8078 * case of POWER7, it can move to lower SMT modes only when higher 8079 * threads are idle. When in lower SMT modes, the threads will 8080 * perform better since they share less core resources. Hence when we 8081 * have idle threads, we want them to be the higher ones. 8082 * 8083 * This packing function is run on idle threads. It checks to see if 8084 * the busiest CPU in this domain (core in the P7 case) has a higher 8085 * CPU number than the packing function is being run on. Here we are 8086 * assuming lower CPU number will be equivalent to lower a SMT thread 8087 * number. 8088 * 8089 * Return: 1 when packing is required and a task should be moved to 8090 * this CPU. The amount of the imbalance is returned in env->imbalance. 8091 * 8092 * @env: The load balancing environment. 8093 * @sds: Statistics of the sched_domain which is to be packed 8094 */ 8095 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8096 { 8097 int busiest_cpu; 8098 8099 if (!(env->sd->flags & SD_ASYM_PACKING)) 8100 return 0; 8101 8102 if (env->idle == CPU_NOT_IDLE) 8103 return 0; 8104 8105 if (!sds->busiest) 8106 return 0; 8107 8108 busiest_cpu = sds->busiest->asym_prefer_cpu; 8109 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8110 return 0; 8111 8112 env->imbalance = DIV_ROUND_CLOSEST( 8113 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 8114 SCHED_CAPACITY_SCALE); 8115 8116 return 1; 8117 } 8118 8119 /** 8120 * fix_small_imbalance - Calculate the minor imbalance that exists 8121 * amongst the groups of a sched_domain, during 8122 * load balancing. 8123 * @env: The load balancing environment. 8124 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8125 */ 8126 static inline 8127 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8128 { 8129 unsigned long tmp, capa_now = 0, capa_move = 0; 8130 unsigned int imbn = 2; 8131 unsigned long scaled_busy_load_per_task; 8132 struct sg_lb_stats *local, *busiest; 8133 8134 local = &sds->local_stat; 8135 busiest = &sds->busiest_stat; 8136 8137 if (!local->sum_nr_running) 8138 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8139 else if (busiest->load_per_task > local->load_per_task) 8140 imbn = 1; 8141 8142 scaled_busy_load_per_task = 8143 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8144 busiest->group_capacity; 8145 8146 if (busiest->avg_load + scaled_busy_load_per_task >= 8147 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8148 env->imbalance = busiest->load_per_task; 8149 return; 8150 } 8151 8152 /* 8153 * OK, we don't have enough imbalance to justify moving tasks, 8154 * however we may be able to increase total CPU capacity used by 8155 * moving them. 8156 */ 8157 8158 capa_now += busiest->group_capacity * 8159 min(busiest->load_per_task, busiest->avg_load); 8160 capa_now += local->group_capacity * 8161 min(local->load_per_task, local->avg_load); 8162 capa_now /= SCHED_CAPACITY_SCALE; 8163 8164 /* Amount of load we'd subtract */ 8165 if (busiest->avg_load > scaled_busy_load_per_task) { 8166 capa_move += busiest->group_capacity * 8167 min(busiest->load_per_task, 8168 busiest->avg_load - scaled_busy_load_per_task); 8169 } 8170 8171 /* Amount of load we'd add */ 8172 if (busiest->avg_load * busiest->group_capacity < 8173 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8174 tmp = (busiest->avg_load * busiest->group_capacity) / 8175 local->group_capacity; 8176 } else { 8177 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8178 local->group_capacity; 8179 } 8180 capa_move += local->group_capacity * 8181 min(local->load_per_task, local->avg_load + tmp); 8182 capa_move /= SCHED_CAPACITY_SCALE; 8183 8184 /* Move if we gain throughput */ 8185 if (capa_move > capa_now) 8186 env->imbalance = busiest->load_per_task; 8187 } 8188 8189 /** 8190 * calculate_imbalance - Calculate the amount of imbalance present within the 8191 * groups of a given sched_domain during load balance. 8192 * @env: load balance environment 8193 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8194 */ 8195 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8196 { 8197 unsigned long max_pull, load_above_capacity = ~0UL; 8198 struct sg_lb_stats *local, *busiest; 8199 8200 local = &sds->local_stat; 8201 busiest = &sds->busiest_stat; 8202 8203 if (busiest->group_type == group_imbalanced) { 8204 /* 8205 * In the group_imb case we cannot rely on group-wide averages 8206 * to ensure CPU-load equilibrium, look at wider averages. XXX 8207 */ 8208 busiest->load_per_task = 8209 min(busiest->load_per_task, sds->avg_load); 8210 } 8211 8212 /* 8213 * Avg load of busiest sg can be less and avg load of local sg can 8214 * be greater than avg load across all sgs of sd because avg load 8215 * factors in sg capacity and sgs with smaller group_type are 8216 * skipped when updating the busiest sg: 8217 */ 8218 if (busiest->avg_load <= sds->avg_load || 8219 local->avg_load >= sds->avg_load) { 8220 env->imbalance = 0; 8221 return fix_small_imbalance(env, sds); 8222 } 8223 8224 /* 8225 * If there aren't any idle CPUs, avoid creating some. 8226 */ 8227 if (busiest->group_type == group_overloaded && 8228 local->group_type == group_overloaded) { 8229 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8230 if (load_above_capacity > busiest->group_capacity) { 8231 load_above_capacity -= busiest->group_capacity; 8232 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8233 load_above_capacity /= busiest->group_capacity; 8234 } else 8235 load_above_capacity = ~0UL; 8236 } 8237 8238 /* 8239 * We're trying to get all the CPUs to the average_load, so we don't 8240 * want to push ourselves above the average load, nor do we wish to 8241 * reduce the max loaded CPU below the average load. At the same time, 8242 * we also don't want to reduce the group load below the group 8243 * capacity. Thus we look for the minimum possible imbalance. 8244 */ 8245 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8246 8247 /* How much load to actually move to equalise the imbalance */ 8248 env->imbalance = min( 8249 max_pull * busiest->group_capacity, 8250 (sds->avg_load - local->avg_load) * local->group_capacity 8251 ) / SCHED_CAPACITY_SCALE; 8252 8253 /* 8254 * if *imbalance is less than the average load per runnable task 8255 * there is no guarantee that any tasks will be moved so we'll have 8256 * a think about bumping its value to force at least one task to be 8257 * moved 8258 */ 8259 if (env->imbalance < busiest->load_per_task) 8260 return fix_small_imbalance(env, sds); 8261 } 8262 8263 /******* find_busiest_group() helpers end here *********************/ 8264 8265 /** 8266 * find_busiest_group - Returns the busiest group within the sched_domain 8267 * if there is an imbalance. 8268 * 8269 * Also calculates the amount of weighted load which should be moved 8270 * to restore balance. 8271 * 8272 * @env: The load balancing environment. 8273 * 8274 * Return: - The busiest group if imbalance exists. 8275 */ 8276 static struct sched_group *find_busiest_group(struct lb_env *env) 8277 { 8278 struct sg_lb_stats *local, *busiest; 8279 struct sd_lb_stats sds; 8280 8281 init_sd_lb_stats(&sds); 8282 8283 /* 8284 * Compute the various statistics relavent for load balancing at 8285 * this level. 8286 */ 8287 update_sd_lb_stats(env, &sds); 8288 local = &sds.local_stat; 8289 busiest = &sds.busiest_stat; 8290 8291 /* ASYM feature bypasses nice load balance check */ 8292 if (check_asym_packing(env, &sds)) 8293 return sds.busiest; 8294 8295 /* There is no busy sibling group to pull tasks from */ 8296 if (!sds.busiest || busiest->sum_nr_running == 0) 8297 goto out_balanced; 8298 8299 /* XXX broken for overlapping NUMA groups */ 8300 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8301 / sds.total_capacity; 8302 8303 /* 8304 * If the busiest group is imbalanced the below checks don't 8305 * work because they assume all things are equal, which typically 8306 * isn't true due to cpus_allowed constraints and the like. 8307 */ 8308 if (busiest->group_type == group_imbalanced) 8309 goto force_balance; 8310 8311 /* 8312 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8313 * capacities from resulting in underutilization due to avg_load. 8314 */ 8315 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8316 busiest->group_no_capacity) 8317 goto force_balance; 8318 8319 /* 8320 * If the local group is busier than the selected busiest group 8321 * don't try and pull any tasks. 8322 */ 8323 if (local->avg_load >= busiest->avg_load) 8324 goto out_balanced; 8325 8326 /* 8327 * Don't pull any tasks if this group is already above the domain 8328 * average load. 8329 */ 8330 if (local->avg_load >= sds.avg_load) 8331 goto out_balanced; 8332 8333 if (env->idle == CPU_IDLE) { 8334 /* 8335 * This CPU is idle. If the busiest group is not overloaded 8336 * and there is no imbalance between this and busiest group 8337 * wrt idle CPUs, it is balanced. The imbalance becomes 8338 * significant if the diff is greater than 1 otherwise we 8339 * might end up to just move the imbalance on another group 8340 */ 8341 if ((busiest->group_type != group_overloaded) && 8342 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8343 goto out_balanced; 8344 } else { 8345 /* 8346 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8347 * imbalance_pct to be conservative. 8348 */ 8349 if (100 * busiest->avg_load <= 8350 env->sd->imbalance_pct * local->avg_load) 8351 goto out_balanced; 8352 } 8353 8354 force_balance: 8355 /* Looks like there is an imbalance. Compute it */ 8356 calculate_imbalance(env, &sds); 8357 return env->imbalance ? sds.busiest : NULL; 8358 8359 out_balanced: 8360 env->imbalance = 0; 8361 return NULL; 8362 } 8363 8364 /* 8365 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8366 */ 8367 static struct rq *find_busiest_queue(struct lb_env *env, 8368 struct sched_group *group) 8369 { 8370 struct rq *busiest = NULL, *rq; 8371 unsigned long busiest_load = 0, busiest_capacity = 1; 8372 int i; 8373 8374 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8375 unsigned long capacity, wl; 8376 enum fbq_type rt; 8377 8378 rq = cpu_rq(i); 8379 rt = fbq_classify_rq(rq); 8380 8381 /* 8382 * We classify groups/runqueues into three groups: 8383 * - regular: there are !numa tasks 8384 * - remote: there are numa tasks that run on the 'wrong' node 8385 * - all: there is no distinction 8386 * 8387 * In order to avoid migrating ideally placed numa tasks, 8388 * ignore those when there's better options. 8389 * 8390 * If we ignore the actual busiest queue to migrate another 8391 * task, the next balance pass can still reduce the busiest 8392 * queue by moving tasks around inside the node. 8393 * 8394 * If we cannot move enough load due to this classification 8395 * the next pass will adjust the group classification and 8396 * allow migration of more tasks. 8397 * 8398 * Both cases only affect the total convergence complexity. 8399 */ 8400 if (rt > env->fbq_type) 8401 continue; 8402 8403 capacity = capacity_of(i); 8404 8405 wl = weighted_cpuload(rq); 8406 8407 /* 8408 * When comparing with imbalance, use weighted_cpuload() 8409 * which is not scaled with the CPU capacity. 8410 */ 8411 8412 if (rq->nr_running == 1 && wl > env->imbalance && 8413 !check_cpu_capacity(rq, env->sd)) 8414 continue; 8415 8416 /* 8417 * For the load comparisons with the other CPU's, consider 8418 * the weighted_cpuload() scaled with the CPU capacity, so 8419 * that the load can be moved away from the CPU that is 8420 * potentially running at a lower capacity. 8421 * 8422 * Thus we're looking for max(wl_i / capacity_i), crosswise 8423 * multiplication to rid ourselves of the division works out 8424 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 8425 * our previous maximum. 8426 */ 8427 if (wl * busiest_capacity > busiest_load * capacity) { 8428 busiest_load = wl; 8429 busiest_capacity = capacity; 8430 busiest = rq; 8431 } 8432 } 8433 8434 return busiest; 8435 } 8436 8437 /* 8438 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8439 * so long as it is large enough. 8440 */ 8441 #define MAX_PINNED_INTERVAL 512 8442 8443 static int need_active_balance(struct lb_env *env) 8444 { 8445 struct sched_domain *sd = env->sd; 8446 8447 if (env->idle == CPU_NEWLY_IDLE) { 8448 8449 /* 8450 * ASYM_PACKING needs to force migrate tasks from busy but 8451 * lower priority CPUs in order to pack all tasks in the 8452 * highest priority CPUs. 8453 */ 8454 if ((sd->flags & SD_ASYM_PACKING) && 8455 sched_asym_prefer(env->dst_cpu, env->src_cpu)) 8456 return 1; 8457 } 8458 8459 /* 8460 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8461 * It's worth migrating the task if the src_cpu's capacity is reduced 8462 * because of other sched_class or IRQs if more capacity stays 8463 * available on dst_cpu. 8464 */ 8465 if ((env->idle != CPU_NOT_IDLE) && 8466 (env->src_rq->cfs.h_nr_running == 1)) { 8467 if ((check_cpu_capacity(env->src_rq, sd)) && 8468 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8469 return 1; 8470 } 8471 8472 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8473 } 8474 8475 static int active_load_balance_cpu_stop(void *data); 8476 8477 static int should_we_balance(struct lb_env *env) 8478 { 8479 struct sched_group *sg = env->sd->groups; 8480 int cpu, balance_cpu = -1; 8481 8482 /* 8483 * Ensure the balancing environment is consistent; can happen 8484 * when the softirq triggers 'during' hotplug. 8485 */ 8486 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8487 return 0; 8488 8489 /* 8490 * In the newly idle case, we will allow all the CPUs 8491 * to do the newly idle load balance. 8492 */ 8493 if (env->idle == CPU_NEWLY_IDLE) 8494 return 1; 8495 8496 /* Try to find first idle CPU */ 8497 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8498 if (!idle_cpu(cpu)) 8499 continue; 8500 8501 balance_cpu = cpu; 8502 break; 8503 } 8504 8505 if (balance_cpu == -1) 8506 balance_cpu = group_balance_cpu(sg); 8507 8508 /* 8509 * First idle CPU or the first CPU(busiest) in this sched group 8510 * is eligible for doing load balancing at this and above domains. 8511 */ 8512 return balance_cpu == env->dst_cpu; 8513 } 8514 8515 /* 8516 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8517 * tasks if there is an imbalance. 8518 */ 8519 static int load_balance(int this_cpu, struct rq *this_rq, 8520 struct sched_domain *sd, enum cpu_idle_type idle, 8521 int *continue_balancing) 8522 { 8523 int ld_moved, cur_ld_moved, active_balance = 0; 8524 struct sched_domain *sd_parent = sd->parent; 8525 struct sched_group *group; 8526 struct rq *busiest; 8527 struct rq_flags rf; 8528 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8529 8530 struct lb_env env = { 8531 .sd = sd, 8532 .dst_cpu = this_cpu, 8533 .dst_rq = this_rq, 8534 .dst_grpmask = sched_group_span(sd->groups), 8535 .idle = idle, 8536 .loop_break = sched_nr_migrate_break, 8537 .cpus = cpus, 8538 .fbq_type = all, 8539 .tasks = LIST_HEAD_INIT(env.tasks), 8540 }; 8541 8542 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8543 8544 schedstat_inc(sd->lb_count[idle]); 8545 8546 redo: 8547 if (!should_we_balance(&env)) { 8548 *continue_balancing = 0; 8549 goto out_balanced; 8550 } 8551 8552 group = find_busiest_group(&env); 8553 if (!group) { 8554 schedstat_inc(sd->lb_nobusyg[idle]); 8555 goto out_balanced; 8556 } 8557 8558 busiest = find_busiest_queue(&env, group); 8559 if (!busiest) { 8560 schedstat_inc(sd->lb_nobusyq[idle]); 8561 goto out_balanced; 8562 } 8563 8564 BUG_ON(busiest == env.dst_rq); 8565 8566 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8567 8568 env.src_cpu = busiest->cpu; 8569 env.src_rq = busiest; 8570 8571 ld_moved = 0; 8572 if (busiest->nr_running > 1) { 8573 /* 8574 * Attempt to move tasks. If find_busiest_group has found 8575 * an imbalance but busiest->nr_running <= 1, the group is 8576 * still unbalanced. ld_moved simply stays zero, so it is 8577 * correctly treated as an imbalance. 8578 */ 8579 env.flags |= LBF_ALL_PINNED; 8580 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8581 8582 more_balance: 8583 rq_lock_irqsave(busiest, &rf); 8584 update_rq_clock(busiest); 8585 8586 /* 8587 * cur_ld_moved - load moved in current iteration 8588 * ld_moved - cumulative load moved across iterations 8589 */ 8590 cur_ld_moved = detach_tasks(&env); 8591 8592 /* 8593 * We've detached some tasks from busiest_rq. Every 8594 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8595 * unlock busiest->lock, and we are able to be sure 8596 * that nobody can manipulate the tasks in parallel. 8597 * See task_rq_lock() family for the details. 8598 */ 8599 8600 rq_unlock(busiest, &rf); 8601 8602 if (cur_ld_moved) { 8603 attach_tasks(&env); 8604 ld_moved += cur_ld_moved; 8605 } 8606 8607 local_irq_restore(rf.flags); 8608 8609 if (env.flags & LBF_NEED_BREAK) { 8610 env.flags &= ~LBF_NEED_BREAK; 8611 goto more_balance; 8612 } 8613 8614 /* 8615 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8616 * us and move them to an alternate dst_cpu in our sched_group 8617 * where they can run. The upper limit on how many times we 8618 * iterate on same src_cpu is dependent on number of CPUs in our 8619 * sched_group. 8620 * 8621 * This changes load balance semantics a bit on who can move 8622 * load to a given_cpu. In addition to the given_cpu itself 8623 * (or a ilb_cpu acting on its behalf where given_cpu is 8624 * nohz-idle), we now have balance_cpu in a position to move 8625 * load to given_cpu. In rare situations, this may cause 8626 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8627 * _independently_ and at _same_ time to move some load to 8628 * given_cpu) causing exceess load to be moved to given_cpu. 8629 * This however should not happen so much in practice and 8630 * moreover subsequent load balance cycles should correct the 8631 * excess load moved. 8632 */ 8633 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8634 8635 /* Prevent to re-select dst_cpu via env's CPUs */ 8636 cpumask_clear_cpu(env.dst_cpu, env.cpus); 8637 8638 env.dst_rq = cpu_rq(env.new_dst_cpu); 8639 env.dst_cpu = env.new_dst_cpu; 8640 env.flags &= ~LBF_DST_PINNED; 8641 env.loop = 0; 8642 env.loop_break = sched_nr_migrate_break; 8643 8644 /* 8645 * Go back to "more_balance" rather than "redo" since we 8646 * need to continue with same src_cpu. 8647 */ 8648 goto more_balance; 8649 } 8650 8651 /* 8652 * We failed to reach balance because of affinity. 8653 */ 8654 if (sd_parent) { 8655 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8656 8657 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8658 *group_imbalance = 1; 8659 } 8660 8661 /* All tasks on this runqueue were pinned by CPU affinity */ 8662 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8663 cpumask_clear_cpu(cpu_of(busiest), cpus); 8664 /* 8665 * Attempting to continue load balancing at the current 8666 * sched_domain level only makes sense if there are 8667 * active CPUs remaining as possible busiest CPUs to 8668 * pull load from which are not contained within the 8669 * destination group that is receiving any migrated 8670 * load. 8671 */ 8672 if (!cpumask_subset(cpus, env.dst_grpmask)) { 8673 env.loop = 0; 8674 env.loop_break = sched_nr_migrate_break; 8675 goto redo; 8676 } 8677 goto out_all_pinned; 8678 } 8679 } 8680 8681 if (!ld_moved) { 8682 schedstat_inc(sd->lb_failed[idle]); 8683 /* 8684 * Increment the failure counter only on periodic balance. 8685 * We do not want newidle balance, which can be very 8686 * frequent, pollute the failure counter causing 8687 * excessive cache_hot migrations and active balances. 8688 */ 8689 if (idle != CPU_NEWLY_IDLE) 8690 sd->nr_balance_failed++; 8691 8692 if (need_active_balance(&env)) { 8693 unsigned long flags; 8694 8695 raw_spin_lock_irqsave(&busiest->lock, flags); 8696 8697 /* 8698 * Don't kick the active_load_balance_cpu_stop, 8699 * if the curr task on busiest CPU can't be 8700 * moved to this_cpu: 8701 */ 8702 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 8703 raw_spin_unlock_irqrestore(&busiest->lock, 8704 flags); 8705 env.flags |= LBF_ALL_PINNED; 8706 goto out_one_pinned; 8707 } 8708 8709 /* 8710 * ->active_balance synchronizes accesses to 8711 * ->active_balance_work. Once set, it's cleared 8712 * only after active load balance is finished. 8713 */ 8714 if (!busiest->active_balance) { 8715 busiest->active_balance = 1; 8716 busiest->push_cpu = this_cpu; 8717 active_balance = 1; 8718 } 8719 raw_spin_unlock_irqrestore(&busiest->lock, flags); 8720 8721 if (active_balance) { 8722 stop_one_cpu_nowait(cpu_of(busiest), 8723 active_load_balance_cpu_stop, busiest, 8724 &busiest->active_balance_work); 8725 } 8726 8727 /* We've kicked active balancing, force task migration. */ 8728 sd->nr_balance_failed = sd->cache_nice_tries+1; 8729 } 8730 } else 8731 sd->nr_balance_failed = 0; 8732 8733 if (likely(!active_balance)) { 8734 /* We were unbalanced, so reset the balancing interval */ 8735 sd->balance_interval = sd->min_interval; 8736 } else { 8737 /* 8738 * If we've begun active balancing, start to back off. This 8739 * case may not be covered by the all_pinned logic if there 8740 * is only 1 task on the busy runqueue (because we don't call 8741 * detach_tasks). 8742 */ 8743 if (sd->balance_interval < sd->max_interval) 8744 sd->balance_interval *= 2; 8745 } 8746 8747 goto out; 8748 8749 out_balanced: 8750 /* 8751 * We reach balance although we may have faced some affinity 8752 * constraints. Clear the imbalance flag if it was set. 8753 */ 8754 if (sd_parent) { 8755 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8756 8757 if (*group_imbalance) 8758 *group_imbalance = 0; 8759 } 8760 8761 out_all_pinned: 8762 /* 8763 * We reach balance because all tasks are pinned at this level so 8764 * we can't migrate them. Let the imbalance flag set so parent level 8765 * can try to migrate them. 8766 */ 8767 schedstat_inc(sd->lb_balanced[idle]); 8768 8769 sd->nr_balance_failed = 0; 8770 8771 out_one_pinned: 8772 /* tune up the balancing interval */ 8773 if (((env.flags & LBF_ALL_PINNED) && 8774 sd->balance_interval < MAX_PINNED_INTERVAL) || 8775 (sd->balance_interval < sd->max_interval)) 8776 sd->balance_interval *= 2; 8777 8778 ld_moved = 0; 8779 out: 8780 return ld_moved; 8781 } 8782 8783 static inline unsigned long 8784 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 8785 { 8786 unsigned long interval = sd->balance_interval; 8787 8788 if (cpu_busy) 8789 interval *= sd->busy_factor; 8790 8791 /* scale ms to jiffies */ 8792 interval = msecs_to_jiffies(interval); 8793 interval = clamp(interval, 1UL, max_load_balance_interval); 8794 8795 return interval; 8796 } 8797 8798 static inline void 8799 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 8800 { 8801 unsigned long interval, next; 8802 8803 /* used by idle balance, so cpu_busy = 0 */ 8804 interval = get_sd_balance_interval(sd, 0); 8805 next = sd->last_balance + interval; 8806 8807 if (time_after(*next_balance, next)) 8808 *next_balance = next; 8809 } 8810 8811 /* 8812 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 8813 * running tasks off the busiest CPU onto idle CPUs. It requires at 8814 * least 1 task to be running on each physical CPU where possible, and 8815 * avoids physical / logical imbalances. 8816 */ 8817 static int active_load_balance_cpu_stop(void *data) 8818 { 8819 struct rq *busiest_rq = data; 8820 int busiest_cpu = cpu_of(busiest_rq); 8821 int target_cpu = busiest_rq->push_cpu; 8822 struct rq *target_rq = cpu_rq(target_cpu); 8823 struct sched_domain *sd; 8824 struct task_struct *p = NULL; 8825 struct rq_flags rf; 8826 8827 rq_lock_irq(busiest_rq, &rf); 8828 /* 8829 * Between queueing the stop-work and running it is a hole in which 8830 * CPUs can become inactive. We should not move tasks from or to 8831 * inactive CPUs. 8832 */ 8833 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 8834 goto out_unlock; 8835 8836 /* Make sure the requested CPU hasn't gone down in the meantime: */ 8837 if (unlikely(busiest_cpu != smp_processor_id() || 8838 !busiest_rq->active_balance)) 8839 goto out_unlock; 8840 8841 /* Is there any task to move? */ 8842 if (busiest_rq->nr_running <= 1) 8843 goto out_unlock; 8844 8845 /* 8846 * This condition is "impossible", if it occurs 8847 * we need to fix it. Originally reported by 8848 * Bjorn Helgaas on a 128-CPU setup. 8849 */ 8850 BUG_ON(busiest_rq == target_rq); 8851 8852 /* Search for an sd spanning us and the target CPU. */ 8853 rcu_read_lock(); 8854 for_each_domain(target_cpu, sd) { 8855 if ((sd->flags & SD_LOAD_BALANCE) && 8856 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 8857 break; 8858 } 8859 8860 if (likely(sd)) { 8861 struct lb_env env = { 8862 .sd = sd, 8863 .dst_cpu = target_cpu, 8864 .dst_rq = target_rq, 8865 .src_cpu = busiest_rq->cpu, 8866 .src_rq = busiest_rq, 8867 .idle = CPU_IDLE, 8868 /* 8869 * can_migrate_task() doesn't need to compute new_dst_cpu 8870 * for active balancing. Since we have CPU_IDLE, but no 8871 * @dst_grpmask we need to make that test go away with lying 8872 * about DST_PINNED. 8873 */ 8874 .flags = LBF_DST_PINNED, 8875 }; 8876 8877 schedstat_inc(sd->alb_count); 8878 update_rq_clock(busiest_rq); 8879 8880 p = detach_one_task(&env); 8881 if (p) { 8882 schedstat_inc(sd->alb_pushed); 8883 /* Active balancing done, reset the failure counter. */ 8884 sd->nr_balance_failed = 0; 8885 } else { 8886 schedstat_inc(sd->alb_failed); 8887 } 8888 } 8889 rcu_read_unlock(); 8890 out_unlock: 8891 busiest_rq->active_balance = 0; 8892 rq_unlock(busiest_rq, &rf); 8893 8894 if (p) 8895 attach_one_task(target_rq, p); 8896 8897 local_irq_enable(); 8898 8899 return 0; 8900 } 8901 8902 static DEFINE_SPINLOCK(balancing); 8903 8904 /* 8905 * Scale the max load_balance interval with the number of CPUs in the system. 8906 * This trades load-balance latency on larger machines for less cross talk. 8907 */ 8908 void update_max_interval(void) 8909 { 8910 max_load_balance_interval = HZ*num_online_cpus()/10; 8911 } 8912 8913 /* 8914 * It checks each scheduling domain to see if it is due to be balanced, 8915 * and initiates a balancing operation if so. 8916 * 8917 * Balancing parameters are set up in init_sched_domains. 8918 */ 8919 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 8920 { 8921 int continue_balancing = 1; 8922 int cpu = rq->cpu; 8923 unsigned long interval; 8924 struct sched_domain *sd; 8925 /* Earliest time when we have to do rebalance again */ 8926 unsigned long next_balance = jiffies + 60*HZ; 8927 int update_next_balance = 0; 8928 int need_serialize, need_decay = 0; 8929 u64 max_cost = 0; 8930 8931 rcu_read_lock(); 8932 for_each_domain(cpu, sd) { 8933 /* 8934 * Decay the newidle max times here because this is a regular 8935 * visit to all the domains. Decay ~1% per second. 8936 */ 8937 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 8938 sd->max_newidle_lb_cost = 8939 (sd->max_newidle_lb_cost * 253) / 256; 8940 sd->next_decay_max_lb_cost = jiffies + HZ; 8941 need_decay = 1; 8942 } 8943 max_cost += sd->max_newidle_lb_cost; 8944 8945 if (!(sd->flags & SD_LOAD_BALANCE)) 8946 continue; 8947 8948 /* 8949 * Stop the load balance at this level. There is another 8950 * CPU in our sched group which is doing load balancing more 8951 * actively. 8952 */ 8953 if (!continue_balancing) { 8954 if (need_decay) 8955 continue; 8956 break; 8957 } 8958 8959 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8960 8961 need_serialize = sd->flags & SD_SERIALIZE; 8962 if (need_serialize) { 8963 if (!spin_trylock(&balancing)) 8964 goto out; 8965 } 8966 8967 if (time_after_eq(jiffies, sd->last_balance + interval)) { 8968 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 8969 /* 8970 * The LBF_DST_PINNED logic could have changed 8971 * env->dst_cpu, so we can't know our idle 8972 * state even if we migrated tasks. Update it. 8973 */ 8974 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 8975 } 8976 sd->last_balance = jiffies; 8977 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8978 } 8979 if (need_serialize) 8980 spin_unlock(&balancing); 8981 out: 8982 if (time_after(next_balance, sd->last_balance + interval)) { 8983 next_balance = sd->last_balance + interval; 8984 update_next_balance = 1; 8985 } 8986 } 8987 if (need_decay) { 8988 /* 8989 * Ensure the rq-wide value also decays but keep it at a 8990 * reasonable floor to avoid funnies with rq->avg_idle. 8991 */ 8992 rq->max_idle_balance_cost = 8993 max((u64)sysctl_sched_migration_cost, max_cost); 8994 } 8995 rcu_read_unlock(); 8996 8997 /* 8998 * next_balance will be updated only when there is a need. 8999 * When the cpu is attached to null domain for ex, it will not be 9000 * updated. 9001 */ 9002 if (likely(update_next_balance)) { 9003 rq->next_balance = next_balance; 9004 9005 #ifdef CONFIG_NO_HZ_COMMON 9006 /* 9007 * If this CPU has been elected to perform the nohz idle 9008 * balance. Other idle CPUs have already rebalanced with 9009 * nohz_idle_balance() and nohz.next_balance has been 9010 * updated accordingly. This CPU is now running the idle load 9011 * balance for itself and we need to update the 9012 * nohz.next_balance accordingly. 9013 */ 9014 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9015 nohz.next_balance = rq->next_balance; 9016 #endif 9017 } 9018 } 9019 9020 static inline int on_null_domain(struct rq *rq) 9021 { 9022 return unlikely(!rcu_dereference_sched(rq->sd)); 9023 } 9024 9025 #ifdef CONFIG_NO_HZ_COMMON 9026 /* 9027 * idle load balancing details 9028 * - When one of the busy CPUs notice that there may be an idle rebalancing 9029 * needed, they will kick the idle load balancer, which then does idle 9030 * load balancing for all the idle CPUs. 9031 */ 9032 9033 static inline int find_new_ilb(void) 9034 { 9035 int ilb = cpumask_first(nohz.idle_cpus_mask); 9036 9037 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 9038 return ilb; 9039 9040 return nr_cpu_ids; 9041 } 9042 9043 /* 9044 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 9045 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 9046 * CPU (if there is one). 9047 */ 9048 static void kick_ilb(unsigned int flags) 9049 { 9050 int ilb_cpu; 9051 9052 nohz.next_balance++; 9053 9054 ilb_cpu = find_new_ilb(); 9055 9056 if (ilb_cpu >= nr_cpu_ids) 9057 return; 9058 9059 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 9060 if (flags & NOHZ_KICK_MASK) 9061 return; 9062 9063 /* 9064 * Use smp_send_reschedule() instead of resched_cpu(). 9065 * This way we generate a sched IPI on the target CPU which 9066 * is idle. And the softirq performing nohz idle load balance 9067 * will be run before returning from the IPI. 9068 */ 9069 smp_send_reschedule(ilb_cpu); 9070 } 9071 9072 /* 9073 * Current heuristic for kicking the idle load balancer in the presence 9074 * of an idle cpu in the system. 9075 * - This rq has more than one task. 9076 * - This rq has at least one CFS task and the capacity of the CPU is 9077 * significantly reduced because of RT tasks or IRQs. 9078 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 9079 * multiple busy cpu. 9080 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 9081 * domain span are idle. 9082 */ 9083 static void nohz_balancer_kick(struct rq *rq) 9084 { 9085 unsigned long now = jiffies; 9086 struct sched_domain_shared *sds; 9087 struct sched_domain *sd; 9088 int nr_busy, i, cpu = rq->cpu; 9089 unsigned int flags = 0; 9090 9091 if (unlikely(rq->idle_balance)) 9092 return; 9093 9094 /* 9095 * We may be recently in ticked or tickless idle mode. At the first 9096 * busy tick after returning from idle, we will update the busy stats. 9097 */ 9098 nohz_balance_exit_idle(rq); 9099 9100 /* 9101 * None are in tickless mode and hence no need for NOHZ idle load 9102 * balancing. 9103 */ 9104 if (likely(!atomic_read(&nohz.nr_cpus))) 9105 return; 9106 9107 if (READ_ONCE(nohz.has_blocked) && 9108 time_after(now, READ_ONCE(nohz.next_blocked))) 9109 flags = NOHZ_STATS_KICK; 9110 9111 if (time_before(now, nohz.next_balance)) 9112 goto out; 9113 9114 if (rq->nr_running >= 2) { 9115 flags = NOHZ_KICK_MASK; 9116 goto out; 9117 } 9118 9119 rcu_read_lock(); 9120 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9121 if (sds) { 9122 /* 9123 * XXX: write a coherent comment on why we do this. 9124 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com 9125 */ 9126 nr_busy = atomic_read(&sds->nr_busy_cpus); 9127 if (nr_busy > 1) { 9128 flags = NOHZ_KICK_MASK; 9129 goto unlock; 9130 } 9131 9132 } 9133 9134 sd = rcu_dereference(rq->sd); 9135 if (sd) { 9136 if ((rq->cfs.h_nr_running >= 1) && 9137 check_cpu_capacity(rq, sd)) { 9138 flags = NOHZ_KICK_MASK; 9139 goto unlock; 9140 } 9141 } 9142 9143 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 9144 if (sd) { 9145 for_each_cpu(i, sched_domain_span(sd)) { 9146 if (i == cpu || 9147 !cpumask_test_cpu(i, nohz.idle_cpus_mask)) 9148 continue; 9149 9150 if (sched_asym_prefer(i, cpu)) { 9151 flags = NOHZ_KICK_MASK; 9152 goto unlock; 9153 } 9154 } 9155 } 9156 unlock: 9157 rcu_read_unlock(); 9158 out: 9159 if (flags) 9160 kick_ilb(flags); 9161 } 9162 9163 static void set_cpu_sd_state_busy(int cpu) 9164 { 9165 struct sched_domain *sd; 9166 9167 rcu_read_lock(); 9168 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9169 9170 if (!sd || !sd->nohz_idle) 9171 goto unlock; 9172 sd->nohz_idle = 0; 9173 9174 atomic_inc(&sd->shared->nr_busy_cpus); 9175 unlock: 9176 rcu_read_unlock(); 9177 } 9178 9179 void nohz_balance_exit_idle(struct rq *rq) 9180 { 9181 SCHED_WARN_ON(rq != this_rq()); 9182 9183 if (likely(!rq->nohz_tick_stopped)) 9184 return; 9185 9186 rq->nohz_tick_stopped = 0; 9187 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9188 atomic_dec(&nohz.nr_cpus); 9189 9190 set_cpu_sd_state_busy(rq->cpu); 9191 } 9192 9193 static void set_cpu_sd_state_idle(int cpu) 9194 { 9195 struct sched_domain *sd; 9196 9197 rcu_read_lock(); 9198 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9199 9200 if (!sd || sd->nohz_idle) 9201 goto unlock; 9202 sd->nohz_idle = 1; 9203 9204 atomic_dec(&sd->shared->nr_busy_cpus); 9205 unlock: 9206 rcu_read_unlock(); 9207 } 9208 9209 /* 9210 * This routine will record that the CPU is going idle with tick stopped. 9211 * This info will be used in performing idle load balancing in the future. 9212 */ 9213 void nohz_balance_enter_idle(int cpu) 9214 { 9215 struct rq *rq = cpu_rq(cpu); 9216 9217 SCHED_WARN_ON(cpu != smp_processor_id()); 9218 9219 /* If this CPU is going down, then nothing needs to be done: */ 9220 if (!cpu_active(cpu)) 9221 return; 9222 9223 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9224 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9225 return; 9226 9227 /* 9228 * Can be set safely without rq->lock held 9229 * If a clear happens, it will have evaluated last additions because 9230 * rq->lock is held during the check and the clear 9231 */ 9232 rq->has_blocked_load = 1; 9233 9234 /* 9235 * The tick is still stopped but load could have been added in the 9236 * meantime. We set the nohz.has_blocked flag to trig a check of the 9237 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9238 * of nohz.has_blocked can only happen after checking the new load 9239 */ 9240 if (rq->nohz_tick_stopped) 9241 goto out; 9242 9243 /* If we're a completely isolated CPU, we don't play: */ 9244 if (on_null_domain(rq)) 9245 return; 9246 9247 rq->nohz_tick_stopped = 1; 9248 9249 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9250 atomic_inc(&nohz.nr_cpus); 9251 9252 /* 9253 * Ensures that if nohz_idle_balance() fails to observe our 9254 * @idle_cpus_mask store, it must observe the @has_blocked 9255 * store. 9256 */ 9257 smp_mb__after_atomic(); 9258 9259 set_cpu_sd_state_idle(cpu); 9260 9261 out: 9262 /* 9263 * Each time a cpu enter idle, we assume that it has blocked load and 9264 * enable the periodic update of the load of idle cpus 9265 */ 9266 WRITE_ONCE(nohz.has_blocked, 1); 9267 } 9268 9269 /* 9270 * Internal function that runs load balance for all idle cpus. The load balance 9271 * can be a simple update of blocked load or a complete load balance with 9272 * tasks movement depending of flags. 9273 * The function returns false if the loop has stopped before running 9274 * through all idle CPUs. 9275 */ 9276 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9277 enum cpu_idle_type idle) 9278 { 9279 /* Earliest time when we have to do rebalance again */ 9280 unsigned long now = jiffies; 9281 unsigned long next_balance = now + 60*HZ; 9282 bool has_blocked_load = false; 9283 int update_next_balance = 0; 9284 int this_cpu = this_rq->cpu; 9285 int balance_cpu; 9286 int ret = false; 9287 struct rq *rq; 9288 9289 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9290 9291 /* 9292 * We assume there will be no idle load after this update and clear 9293 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9294 * set the has_blocked flag and trig another update of idle load. 9295 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9296 * setting the flag, we are sure to not clear the state and not 9297 * check the load of an idle cpu. 9298 */ 9299 WRITE_ONCE(nohz.has_blocked, 0); 9300 9301 /* 9302 * Ensures that if we miss the CPU, we must see the has_blocked 9303 * store from nohz_balance_enter_idle(). 9304 */ 9305 smp_mb(); 9306 9307 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9308 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9309 continue; 9310 9311 /* 9312 * If this CPU gets work to do, stop the load balancing 9313 * work being done for other CPUs. Next load 9314 * balancing owner will pick it up. 9315 */ 9316 if (need_resched()) { 9317 has_blocked_load = true; 9318 goto abort; 9319 } 9320 9321 rq = cpu_rq(balance_cpu); 9322 9323 has_blocked_load |= update_nohz_stats(rq, true); 9324 9325 /* 9326 * If time for next balance is due, 9327 * do the balance. 9328 */ 9329 if (time_after_eq(jiffies, rq->next_balance)) { 9330 struct rq_flags rf; 9331 9332 rq_lock_irqsave(rq, &rf); 9333 update_rq_clock(rq); 9334 cpu_load_update_idle(rq); 9335 rq_unlock_irqrestore(rq, &rf); 9336 9337 if (flags & NOHZ_BALANCE_KICK) 9338 rebalance_domains(rq, CPU_IDLE); 9339 } 9340 9341 if (time_after(next_balance, rq->next_balance)) { 9342 next_balance = rq->next_balance; 9343 update_next_balance = 1; 9344 } 9345 } 9346 9347 /* Newly idle CPU doesn't need an update */ 9348 if (idle != CPU_NEWLY_IDLE) { 9349 update_blocked_averages(this_cpu); 9350 has_blocked_load |= this_rq->has_blocked_load; 9351 } 9352 9353 if (flags & NOHZ_BALANCE_KICK) 9354 rebalance_domains(this_rq, CPU_IDLE); 9355 9356 WRITE_ONCE(nohz.next_blocked, 9357 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9358 9359 /* The full idle balance loop has been done */ 9360 ret = true; 9361 9362 abort: 9363 /* There is still blocked load, enable periodic update */ 9364 if (has_blocked_load) 9365 WRITE_ONCE(nohz.has_blocked, 1); 9366 9367 /* 9368 * next_balance will be updated only when there is a need. 9369 * When the CPU is attached to null domain for ex, it will not be 9370 * updated. 9371 */ 9372 if (likely(update_next_balance)) 9373 nohz.next_balance = next_balance; 9374 9375 return ret; 9376 } 9377 9378 /* 9379 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9380 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9381 */ 9382 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9383 { 9384 int this_cpu = this_rq->cpu; 9385 unsigned int flags; 9386 9387 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 9388 return false; 9389 9390 if (idle != CPU_IDLE) { 9391 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9392 return false; 9393 } 9394 9395 /* 9396 * barrier, pairs with nohz_balance_enter_idle(), ensures ... 9397 */ 9398 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9399 if (!(flags & NOHZ_KICK_MASK)) 9400 return false; 9401 9402 _nohz_idle_balance(this_rq, flags, idle); 9403 9404 return true; 9405 } 9406 9407 static void nohz_newidle_balance(struct rq *this_rq) 9408 { 9409 int this_cpu = this_rq->cpu; 9410 9411 /* 9412 * This CPU doesn't want to be disturbed by scheduler 9413 * housekeeping 9414 */ 9415 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 9416 return; 9417 9418 /* Will wake up very soon. No time for doing anything else*/ 9419 if (this_rq->avg_idle < sysctl_sched_migration_cost) 9420 return; 9421 9422 /* Don't need to update blocked load of idle CPUs*/ 9423 if (!READ_ONCE(nohz.has_blocked) || 9424 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 9425 return; 9426 9427 raw_spin_unlock(&this_rq->lock); 9428 /* 9429 * This CPU is going to be idle and blocked load of idle CPUs 9430 * need to be updated. Run the ilb locally as it is a good 9431 * candidate for ilb instead of waking up another idle CPU. 9432 * Kick an normal ilb if we failed to do the update. 9433 */ 9434 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 9435 kick_ilb(NOHZ_STATS_KICK); 9436 raw_spin_lock(&this_rq->lock); 9437 } 9438 9439 #else /* !CONFIG_NO_HZ_COMMON */ 9440 static inline void nohz_balancer_kick(struct rq *rq) { } 9441 9442 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9443 { 9444 return false; 9445 } 9446 9447 static inline void nohz_newidle_balance(struct rq *this_rq) { } 9448 #endif /* CONFIG_NO_HZ_COMMON */ 9449 9450 /* 9451 * idle_balance is called by schedule() if this_cpu is about to become 9452 * idle. Attempts to pull tasks from other CPUs. 9453 */ 9454 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 9455 { 9456 unsigned long next_balance = jiffies + HZ; 9457 int this_cpu = this_rq->cpu; 9458 struct sched_domain *sd; 9459 int pulled_task = 0; 9460 u64 curr_cost = 0; 9461 9462 /* 9463 * We must set idle_stamp _before_ calling idle_balance(), such that we 9464 * measure the duration of idle_balance() as idle time. 9465 */ 9466 this_rq->idle_stamp = rq_clock(this_rq); 9467 9468 /* 9469 * Do not pull tasks towards !active CPUs... 9470 */ 9471 if (!cpu_active(this_cpu)) 9472 return 0; 9473 9474 /* 9475 * This is OK, because current is on_cpu, which avoids it being picked 9476 * for load-balance and preemption/IRQs are still disabled avoiding 9477 * further scheduler activity on it and we're being very careful to 9478 * re-start the picking loop. 9479 */ 9480 rq_unpin_lock(this_rq, rf); 9481 9482 if (this_rq->avg_idle < sysctl_sched_migration_cost || 9483 !this_rq->rd->overload) { 9484 9485 rcu_read_lock(); 9486 sd = rcu_dereference_check_sched_domain(this_rq->sd); 9487 if (sd) 9488 update_next_balance(sd, &next_balance); 9489 rcu_read_unlock(); 9490 9491 nohz_newidle_balance(this_rq); 9492 9493 goto out; 9494 } 9495 9496 raw_spin_unlock(&this_rq->lock); 9497 9498 update_blocked_averages(this_cpu); 9499 rcu_read_lock(); 9500 for_each_domain(this_cpu, sd) { 9501 int continue_balancing = 1; 9502 u64 t0, domain_cost; 9503 9504 if (!(sd->flags & SD_LOAD_BALANCE)) 9505 continue; 9506 9507 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 9508 update_next_balance(sd, &next_balance); 9509 break; 9510 } 9511 9512 if (sd->flags & SD_BALANCE_NEWIDLE) { 9513 t0 = sched_clock_cpu(this_cpu); 9514 9515 pulled_task = load_balance(this_cpu, this_rq, 9516 sd, CPU_NEWLY_IDLE, 9517 &continue_balancing); 9518 9519 domain_cost = sched_clock_cpu(this_cpu) - t0; 9520 if (domain_cost > sd->max_newidle_lb_cost) 9521 sd->max_newidle_lb_cost = domain_cost; 9522 9523 curr_cost += domain_cost; 9524 } 9525 9526 update_next_balance(sd, &next_balance); 9527 9528 /* 9529 * Stop searching for tasks to pull if there are 9530 * now runnable tasks on this rq. 9531 */ 9532 if (pulled_task || this_rq->nr_running > 0) 9533 break; 9534 } 9535 rcu_read_unlock(); 9536 9537 raw_spin_lock(&this_rq->lock); 9538 9539 if (curr_cost > this_rq->max_idle_balance_cost) 9540 this_rq->max_idle_balance_cost = curr_cost; 9541 9542 out: 9543 /* 9544 * While browsing the domains, we released the rq lock, a task could 9545 * have been enqueued in the meantime. Since we're not going idle, 9546 * pretend we pulled a task. 9547 */ 9548 if (this_rq->cfs.h_nr_running && !pulled_task) 9549 pulled_task = 1; 9550 9551 /* Move the next balance forward */ 9552 if (time_after(this_rq->next_balance, next_balance)) 9553 this_rq->next_balance = next_balance; 9554 9555 /* Is there a task of a high priority class? */ 9556 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 9557 pulled_task = -1; 9558 9559 if (pulled_task) 9560 this_rq->idle_stamp = 0; 9561 9562 rq_repin_lock(this_rq, rf); 9563 9564 return pulled_task; 9565 } 9566 9567 /* 9568 * run_rebalance_domains is triggered when needed from the scheduler tick. 9569 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 9570 */ 9571 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 9572 { 9573 struct rq *this_rq = this_rq(); 9574 enum cpu_idle_type idle = this_rq->idle_balance ? 9575 CPU_IDLE : CPU_NOT_IDLE; 9576 9577 /* 9578 * If this CPU has a pending nohz_balance_kick, then do the 9579 * balancing on behalf of the other idle CPUs whose ticks are 9580 * stopped. Do nohz_idle_balance *before* rebalance_domains to 9581 * give the idle CPUs a chance to load balance. Else we may 9582 * load balance only within the local sched_domain hierarchy 9583 * and abort nohz_idle_balance altogether if we pull some load. 9584 */ 9585 if (nohz_idle_balance(this_rq, idle)) 9586 return; 9587 9588 /* normal load balance */ 9589 update_blocked_averages(this_rq->cpu); 9590 rebalance_domains(this_rq, idle); 9591 } 9592 9593 /* 9594 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 9595 */ 9596 void trigger_load_balance(struct rq *rq) 9597 { 9598 /* Don't need to rebalance while attached to NULL domain */ 9599 if (unlikely(on_null_domain(rq))) 9600 return; 9601 9602 if (time_after_eq(jiffies, rq->next_balance)) 9603 raise_softirq(SCHED_SOFTIRQ); 9604 9605 nohz_balancer_kick(rq); 9606 } 9607 9608 static void rq_online_fair(struct rq *rq) 9609 { 9610 update_sysctl(); 9611 9612 update_runtime_enabled(rq); 9613 } 9614 9615 static void rq_offline_fair(struct rq *rq) 9616 { 9617 update_sysctl(); 9618 9619 /* Ensure any throttled groups are reachable by pick_next_task */ 9620 unthrottle_offline_cfs_rqs(rq); 9621 } 9622 9623 #endif /* CONFIG_SMP */ 9624 9625 /* 9626 * scheduler tick hitting a task of our scheduling class. 9627 * 9628 * NOTE: This function can be called remotely by the tick offload that 9629 * goes along full dynticks. Therefore no local assumption can be made 9630 * and everything must be accessed through the @rq and @curr passed in 9631 * parameters. 9632 */ 9633 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9634 { 9635 struct cfs_rq *cfs_rq; 9636 struct sched_entity *se = &curr->se; 9637 9638 for_each_sched_entity(se) { 9639 cfs_rq = cfs_rq_of(se); 9640 entity_tick(cfs_rq, se, queued); 9641 } 9642 9643 if (static_branch_unlikely(&sched_numa_balancing)) 9644 task_tick_numa(rq, curr); 9645 } 9646 9647 /* 9648 * called on fork with the child task as argument from the parent's context 9649 * - child not yet on the tasklist 9650 * - preemption disabled 9651 */ 9652 static void task_fork_fair(struct task_struct *p) 9653 { 9654 struct cfs_rq *cfs_rq; 9655 struct sched_entity *se = &p->se, *curr; 9656 struct rq *rq = this_rq(); 9657 struct rq_flags rf; 9658 9659 rq_lock(rq, &rf); 9660 update_rq_clock(rq); 9661 9662 cfs_rq = task_cfs_rq(current); 9663 curr = cfs_rq->curr; 9664 if (curr) { 9665 update_curr(cfs_rq); 9666 se->vruntime = curr->vruntime; 9667 } 9668 place_entity(cfs_rq, se, 1); 9669 9670 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9671 /* 9672 * Upon rescheduling, sched_class::put_prev_task() will place 9673 * 'current' within the tree based on its new key value. 9674 */ 9675 swap(curr->vruntime, se->vruntime); 9676 resched_curr(rq); 9677 } 9678 9679 se->vruntime -= cfs_rq->min_vruntime; 9680 rq_unlock(rq, &rf); 9681 } 9682 9683 /* 9684 * Priority of the task has changed. Check to see if we preempt 9685 * the current task. 9686 */ 9687 static void 9688 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9689 { 9690 if (!task_on_rq_queued(p)) 9691 return; 9692 9693 /* 9694 * Reschedule if we are currently running on this runqueue and 9695 * our priority decreased, or if we are not currently running on 9696 * this runqueue and our priority is higher than the current's 9697 */ 9698 if (rq->curr == p) { 9699 if (p->prio > oldprio) 9700 resched_curr(rq); 9701 } else 9702 check_preempt_curr(rq, p, 0); 9703 } 9704 9705 static inline bool vruntime_normalized(struct task_struct *p) 9706 { 9707 struct sched_entity *se = &p->se; 9708 9709 /* 9710 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 9711 * the dequeue_entity(.flags=0) will already have normalized the 9712 * vruntime. 9713 */ 9714 if (p->on_rq) 9715 return true; 9716 9717 /* 9718 * When !on_rq, vruntime of the task has usually NOT been normalized. 9719 * But there are some cases where it has already been normalized: 9720 * 9721 * - A forked child which is waiting for being woken up by 9722 * wake_up_new_task(). 9723 * - A task which has been woken up by try_to_wake_up() and 9724 * waiting for actually being woken up by sched_ttwu_pending(). 9725 */ 9726 if (!se->sum_exec_runtime || 9727 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 9728 return true; 9729 9730 return false; 9731 } 9732 9733 #ifdef CONFIG_FAIR_GROUP_SCHED 9734 /* 9735 * Propagate the changes of the sched_entity across the tg tree to make it 9736 * visible to the root 9737 */ 9738 static void propagate_entity_cfs_rq(struct sched_entity *se) 9739 { 9740 struct cfs_rq *cfs_rq; 9741 9742 /* Start to propagate at parent */ 9743 se = se->parent; 9744 9745 for_each_sched_entity(se) { 9746 cfs_rq = cfs_rq_of(se); 9747 9748 if (cfs_rq_throttled(cfs_rq)) 9749 break; 9750 9751 update_load_avg(cfs_rq, se, UPDATE_TG); 9752 } 9753 } 9754 #else 9755 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 9756 #endif 9757 9758 static void detach_entity_cfs_rq(struct sched_entity *se) 9759 { 9760 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9761 9762 /* Catch up with the cfs_rq and remove our load when we leave */ 9763 update_load_avg(cfs_rq, se, 0); 9764 detach_entity_load_avg(cfs_rq, se); 9765 update_tg_load_avg(cfs_rq, false); 9766 propagate_entity_cfs_rq(se); 9767 } 9768 9769 static void attach_entity_cfs_rq(struct sched_entity *se) 9770 { 9771 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9772 9773 #ifdef CONFIG_FAIR_GROUP_SCHED 9774 /* 9775 * Since the real-depth could have been changed (only FAIR 9776 * class maintain depth value), reset depth properly. 9777 */ 9778 se->depth = se->parent ? se->parent->depth + 1 : 0; 9779 #endif 9780 9781 /* Synchronize entity with its cfs_rq */ 9782 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 9783 attach_entity_load_avg(cfs_rq, se, 0); 9784 update_tg_load_avg(cfs_rq, false); 9785 propagate_entity_cfs_rq(se); 9786 } 9787 9788 static void detach_task_cfs_rq(struct task_struct *p) 9789 { 9790 struct sched_entity *se = &p->se; 9791 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9792 9793 if (!vruntime_normalized(p)) { 9794 /* 9795 * Fix up our vruntime so that the current sleep doesn't 9796 * cause 'unlimited' sleep bonus. 9797 */ 9798 place_entity(cfs_rq, se, 0); 9799 se->vruntime -= cfs_rq->min_vruntime; 9800 } 9801 9802 detach_entity_cfs_rq(se); 9803 } 9804 9805 static void attach_task_cfs_rq(struct task_struct *p) 9806 { 9807 struct sched_entity *se = &p->se; 9808 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9809 9810 attach_entity_cfs_rq(se); 9811 9812 if (!vruntime_normalized(p)) 9813 se->vruntime += cfs_rq->min_vruntime; 9814 } 9815 9816 static void switched_from_fair(struct rq *rq, struct task_struct *p) 9817 { 9818 detach_task_cfs_rq(p); 9819 } 9820 9821 static void switched_to_fair(struct rq *rq, struct task_struct *p) 9822 { 9823 attach_task_cfs_rq(p); 9824 9825 if (task_on_rq_queued(p)) { 9826 /* 9827 * We were most likely switched from sched_rt, so 9828 * kick off the schedule if running, otherwise just see 9829 * if we can still preempt the current task. 9830 */ 9831 if (rq->curr == p) 9832 resched_curr(rq); 9833 else 9834 check_preempt_curr(rq, p, 0); 9835 } 9836 } 9837 9838 /* Account for a task changing its policy or group. 9839 * 9840 * This routine is mostly called to set cfs_rq->curr field when a task 9841 * migrates between groups/classes. 9842 */ 9843 static void set_curr_task_fair(struct rq *rq) 9844 { 9845 struct sched_entity *se = &rq->curr->se; 9846 9847 for_each_sched_entity(se) { 9848 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9849 9850 set_next_entity(cfs_rq, se); 9851 /* ensure bandwidth has been allocated on our new cfs_rq */ 9852 account_cfs_rq_runtime(cfs_rq, 0); 9853 } 9854 } 9855 9856 void init_cfs_rq(struct cfs_rq *cfs_rq) 9857 { 9858 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 9859 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 9860 #ifndef CONFIG_64BIT 9861 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 9862 #endif 9863 #ifdef CONFIG_SMP 9864 raw_spin_lock_init(&cfs_rq->removed.lock); 9865 #endif 9866 } 9867 9868 #ifdef CONFIG_FAIR_GROUP_SCHED 9869 static void task_set_group_fair(struct task_struct *p) 9870 { 9871 struct sched_entity *se = &p->se; 9872 9873 set_task_rq(p, task_cpu(p)); 9874 se->depth = se->parent ? se->parent->depth + 1 : 0; 9875 } 9876 9877 static void task_move_group_fair(struct task_struct *p) 9878 { 9879 detach_task_cfs_rq(p); 9880 set_task_rq(p, task_cpu(p)); 9881 9882 #ifdef CONFIG_SMP 9883 /* Tell se's cfs_rq has been changed -- migrated */ 9884 p->se.avg.last_update_time = 0; 9885 #endif 9886 attach_task_cfs_rq(p); 9887 } 9888 9889 static void task_change_group_fair(struct task_struct *p, int type) 9890 { 9891 switch (type) { 9892 case TASK_SET_GROUP: 9893 task_set_group_fair(p); 9894 break; 9895 9896 case TASK_MOVE_GROUP: 9897 task_move_group_fair(p); 9898 break; 9899 } 9900 } 9901 9902 void free_fair_sched_group(struct task_group *tg) 9903 { 9904 int i; 9905 9906 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9907 9908 for_each_possible_cpu(i) { 9909 if (tg->cfs_rq) 9910 kfree(tg->cfs_rq[i]); 9911 if (tg->se) 9912 kfree(tg->se[i]); 9913 } 9914 9915 kfree(tg->cfs_rq); 9916 kfree(tg->se); 9917 } 9918 9919 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9920 { 9921 struct sched_entity *se; 9922 struct cfs_rq *cfs_rq; 9923 int i; 9924 9925 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 9926 if (!tg->cfs_rq) 9927 goto err; 9928 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 9929 if (!tg->se) 9930 goto err; 9931 9932 tg->shares = NICE_0_LOAD; 9933 9934 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9935 9936 for_each_possible_cpu(i) { 9937 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 9938 GFP_KERNEL, cpu_to_node(i)); 9939 if (!cfs_rq) 9940 goto err; 9941 9942 se = kzalloc_node(sizeof(struct sched_entity), 9943 GFP_KERNEL, cpu_to_node(i)); 9944 if (!se) 9945 goto err_free_rq; 9946 9947 init_cfs_rq(cfs_rq); 9948 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 9949 init_entity_runnable_average(se); 9950 } 9951 9952 return 1; 9953 9954 err_free_rq: 9955 kfree(cfs_rq); 9956 err: 9957 return 0; 9958 } 9959 9960 void online_fair_sched_group(struct task_group *tg) 9961 { 9962 struct sched_entity *se; 9963 struct rq *rq; 9964 int i; 9965 9966 for_each_possible_cpu(i) { 9967 rq = cpu_rq(i); 9968 se = tg->se[i]; 9969 9970 raw_spin_lock_irq(&rq->lock); 9971 update_rq_clock(rq); 9972 attach_entity_cfs_rq(se); 9973 sync_throttle(tg, i); 9974 raw_spin_unlock_irq(&rq->lock); 9975 } 9976 } 9977 9978 void unregister_fair_sched_group(struct task_group *tg) 9979 { 9980 unsigned long flags; 9981 struct rq *rq; 9982 int cpu; 9983 9984 for_each_possible_cpu(cpu) { 9985 if (tg->se[cpu]) 9986 remove_entity_load_avg(tg->se[cpu]); 9987 9988 /* 9989 * Only empty task groups can be destroyed; so we can speculatively 9990 * check on_list without danger of it being re-added. 9991 */ 9992 if (!tg->cfs_rq[cpu]->on_list) 9993 continue; 9994 9995 rq = cpu_rq(cpu); 9996 9997 raw_spin_lock_irqsave(&rq->lock, flags); 9998 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 9999 raw_spin_unlock_irqrestore(&rq->lock, flags); 10000 } 10001 } 10002 10003 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 10004 struct sched_entity *se, int cpu, 10005 struct sched_entity *parent) 10006 { 10007 struct rq *rq = cpu_rq(cpu); 10008 10009 cfs_rq->tg = tg; 10010 cfs_rq->rq = rq; 10011 init_cfs_rq_runtime(cfs_rq); 10012 10013 tg->cfs_rq[cpu] = cfs_rq; 10014 tg->se[cpu] = se; 10015 10016 /* se could be NULL for root_task_group */ 10017 if (!se) 10018 return; 10019 10020 if (!parent) { 10021 se->cfs_rq = &rq->cfs; 10022 se->depth = 0; 10023 } else { 10024 se->cfs_rq = parent->my_q; 10025 se->depth = parent->depth + 1; 10026 } 10027 10028 se->my_q = cfs_rq; 10029 /* guarantee group entities always have weight */ 10030 update_load_set(&se->load, NICE_0_LOAD); 10031 se->parent = parent; 10032 } 10033 10034 static DEFINE_MUTEX(shares_mutex); 10035 10036 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 10037 { 10038 int i; 10039 10040 /* 10041 * We can't change the weight of the root cgroup. 10042 */ 10043 if (!tg->se[0]) 10044 return -EINVAL; 10045 10046 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 10047 10048 mutex_lock(&shares_mutex); 10049 if (tg->shares == shares) 10050 goto done; 10051 10052 tg->shares = shares; 10053 for_each_possible_cpu(i) { 10054 struct rq *rq = cpu_rq(i); 10055 struct sched_entity *se = tg->se[i]; 10056 struct rq_flags rf; 10057 10058 /* Propagate contribution to hierarchy */ 10059 rq_lock_irqsave(rq, &rf); 10060 update_rq_clock(rq); 10061 for_each_sched_entity(se) { 10062 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 10063 update_cfs_group(se); 10064 } 10065 rq_unlock_irqrestore(rq, &rf); 10066 } 10067 10068 done: 10069 mutex_unlock(&shares_mutex); 10070 return 0; 10071 } 10072 #else /* CONFIG_FAIR_GROUP_SCHED */ 10073 10074 void free_fair_sched_group(struct task_group *tg) { } 10075 10076 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10077 { 10078 return 1; 10079 } 10080 10081 void online_fair_sched_group(struct task_group *tg) { } 10082 10083 void unregister_fair_sched_group(struct task_group *tg) { } 10084 10085 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10086 10087 10088 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10089 { 10090 struct sched_entity *se = &task->se; 10091 unsigned int rr_interval = 0; 10092 10093 /* 10094 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10095 * idle runqueue: 10096 */ 10097 if (rq->cfs.load.weight) 10098 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10099 10100 return rr_interval; 10101 } 10102 10103 /* 10104 * All the scheduling class methods: 10105 */ 10106 const struct sched_class fair_sched_class = { 10107 .next = &idle_sched_class, 10108 .enqueue_task = enqueue_task_fair, 10109 .dequeue_task = dequeue_task_fair, 10110 .yield_task = yield_task_fair, 10111 .yield_to_task = yield_to_task_fair, 10112 10113 .check_preempt_curr = check_preempt_wakeup, 10114 10115 .pick_next_task = pick_next_task_fair, 10116 .put_prev_task = put_prev_task_fair, 10117 10118 #ifdef CONFIG_SMP 10119 .select_task_rq = select_task_rq_fair, 10120 .migrate_task_rq = migrate_task_rq_fair, 10121 10122 .rq_online = rq_online_fair, 10123 .rq_offline = rq_offline_fair, 10124 10125 .task_dead = task_dead_fair, 10126 .set_cpus_allowed = set_cpus_allowed_common, 10127 #endif 10128 10129 .set_curr_task = set_curr_task_fair, 10130 .task_tick = task_tick_fair, 10131 .task_fork = task_fork_fair, 10132 10133 .prio_changed = prio_changed_fair, 10134 .switched_from = switched_from_fair, 10135 .switched_to = switched_to_fair, 10136 10137 .get_rr_interval = get_rr_interval_fair, 10138 10139 .update_curr = update_curr_fair, 10140 10141 #ifdef CONFIG_FAIR_GROUP_SCHED 10142 .task_change_group = task_change_group_fair, 10143 #endif 10144 }; 10145 10146 #ifdef CONFIG_SCHED_DEBUG 10147 void print_cfs_stats(struct seq_file *m, int cpu) 10148 { 10149 struct cfs_rq *cfs_rq, *pos; 10150 10151 rcu_read_lock(); 10152 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10153 print_cfs_rq(m, cpu, cfs_rq); 10154 rcu_read_unlock(); 10155 } 10156 10157 #ifdef CONFIG_NUMA_BALANCING 10158 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10159 { 10160 int node; 10161 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10162 10163 for_each_online_node(node) { 10164 if (p->numa_faults) { 10165 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10166 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10167 } 10168 if (p->numa_group) { 10169 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 10170 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10171 } 10172 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10173 } 10174 } 10175 #endif /* CONFIG_NUMA_BALANCING */ 10176 #endif /* CONFIG_SCHED_DEBUG */ 10177 10178 __init void init_sched_fair_class(void) 10179 { 10180 #ifdef CONFIG_SMP 10181 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10182 10183 #ifdef CONFIG_NO_HZ_COMMON 10184 nohz.next_balance = jiffies; 10185 nohz.next_blocked = jiffies; 10186 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10187 #endif 10188 #endif /* SMP */ 10189 10190 } 10191