1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 24 #include <linux/sched/mm.h> 25 #include <linux/sched/topology.h> 26 27 #include <linux/latencytop.h> 28 #include <linux/cpumask.h> 29 #include <linux/cpuidle.h> 30 #include <linux/slab.h> 31 #include <linux/profile.h> 32 #include <linux/interrupt.h> 33 #include <linux/mempolicy.h> 34 #include <linux/migrate.h> 35 #include <linux/task_work.h> 36 #include <linux/sched/isolation.h> 37 38 #include <trace/events/sched.h> 39 40 #include "sched.h" 41 42 /* 43 * Targeted preemption latency for CPU-bound tasks: 44 * 45 * NOTE: this latency value is not the same as the concept of 46 * 'timeslice length' - timeslices in CFS are of variable length 47 * and have no persistent notion like in traditional, time-slice 48 * based scheduling concepts. 49 * 50 * (to see the precise effective timeslice length of your workload, 51 * run vmstat and monitor the context-switches (cs) field) 52 * 53 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 54 */ 55 unsigned int sysctl_sched_latency = 6000000ULL; 56 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_min_granularity = 750000ULL; 77 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 78 79 /* 80 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 81 */ 82 static unsigned int sched_nr_latency = 8; 83 84 /* 85 * After fork, child runs first. If set to 0 (default) then 86 * parent will (try to) run first. 87 */ 88 unsigned int sysctl_sched_child_runs_first __read_mostly; 89 90 /* 91 * SCHED_OTHER wake-up granularity. 92 * 93 * This option delays the preemption effects of decoupled workloads 94 * and reduces their over-scheduling. Synchronous workloads will still 95 * have immediate wakeup/sleep latencies. 96 * 97 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 98 */ 99 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 100 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 101 102 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 103 104 #ifdef CONFIG_SMP 105 /* 106 * For asym packing, by default the lower numbered cpu has higher priority. 107 */ 108 int __weak arch_asym_cpu_priority(int cpu) 109 { 110 return -cpu; 111 } 112 #endif 113 114 #ifdef CONFIG_CFS_BANDWIDTH 115 /* 116 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 117 * each time a cfs_rq requests quota. 118 * 119 * Note: in the case that the slice exceeds the runtime remaining (either due 120 * to consumption or the quota being specified to be smaller than the slice) 121 * we will always only issue the remaining available time. 122 * 123 * (default: 5 msec, units: microseconds) 124 */ 125 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 126 #endif 127 128 /* 129 * The margin used when comparing utilization with CPU capacity: 130 * util * margin < capacity * 1024 131 * 132 * (default: ~20%) 133 */ 134 unsigned int capacity_margin = 1280; 135 136 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 137 { 138 lw->weight += inc; 139 lw->inv_weight = 0; 140 } 141 142 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 143 { 144 lw->weight -= dec; 145 lw->inv_weight = 0; 146 } 147 148 static inline void update_load_set(struct load_weight *lw, unsigned long w) 149 { 150 lw->weight = w; 151 lw->inv_weight = 0; 152 } 153 154 /* 155 * Increase the granularity value when there are more CPUs, 156 * because with more CPUs the 'effective latency' as visible 157 * to users decreases. But the relationship is not linear, 158 * so pick a second-best guess by going with the log2 of the 159 * number of CPUs. 160 * 161 * This idea comes from the SD scheduler of Con Kolivas: 162 */ 163 static unsigned int get_update_sysctl_factor(void) 164 { 165 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 166 unsigned int factor; 167 168 switch (sysctl_sched_tunable_scaling) { 169 case SCHED_TUNABLESCALING_NONE: 170 factor = 1; 171 break; 172 case SCHED_TUNABLESCALING_LINEAR: 173 factor = cpus; 174 break; 175 case SCHED_TUNABLESCALING_LOG: 176 default: 177 factor = 1 + ilog2(cpus); 178 break; 179 } 180 181 return factor; 182 } 183 184 static void update_sysctl(void) 185 { 186 unsigned int factor = get_update_sysctl_factor(); 187 188 #define SET_SYSCTL(name) \ 189 (sysctl_##name = (factor) * normalized_sysctl_##name) 190 SET_SYSCTL(sched_min_granularity); 191 SET_SYSCTL(sched_latency); 192 SET_SYSCTL(sched_wakeup_granularity); 193 #undef SET_SYSCTL 194 } 195 196 void sched_init_granularity(void) 197 { 198 update_sysctl(); 199 } 200 201 #define WMULT_CONST (~0U) 202 #define WMULT_SHIFT 32 203 204 static void __update_inv_weight(struct load_weight *lw) 205 { 206 unsigned long w; 207 208 if (likely(lw->inv_weight)) 209 return; 210 211 w = scale_load_down(lw->weight); 212 213 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 214 lw->inv_weight = 1; 215 else if (unlikely(!w)) 216 lw->inv_weight = WMULT_CONST; 217 else 218 lw->inv_weight = WMULT_CONST / w; 219 } 220 221 /* 222 * delta_exec * weight / lw.weight 223 * OR 224 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 225 * 226 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 227 * we're guaranteed shift stays positive because inv_weight is guaranteed to 228 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 229 * 230 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 231 * weight/lw.weight <= 1, and therefore our shift will also be positive. 232 */ 233 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 234 { 235 u64 fact = scale_load_down(weight); 236 int shift = WMULT_SHIFT; 237 238 __update_inv_weight(lw); 239 240 if (unlikely(fact >> 32)) { 241 while (fact >> 32) { 242 fact >>= 1; 243 shift--; 244 } 245 } 246 247 /* hint to use a 32x32->64 mul */ 248 fact = (u64)(u32)fact * lw->inv_weight; 249 250 while (fact >> 32) { 251 fact >>= 1; 252 shift--; 253 } 254 255 return mul_u64_u32_shr(delta_exec, fact, shift); 256 } 257 258 259 const struct sched_class fair_sched_class; 260 261 /************************************************************** 262 * CFS operations on generic schedulable entities: 263 */ 264 265 #ifdef CONFIG_FAIR_GROUP_SCHED 266 267 /* cpu runqueue to which this cfs_rq is attached */ 268 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 269 { 270 return cfs_rq->rq; 271 } 272 273 /* An entity is a task if it doesn't "own" a runqueue */ 274 #define entity_is_task(se) (!se->my_q) 275 276 static inline struct task_struct *task_of(struct sched_entity *se) 277 { 278 SCHED_WARN_ON(!entity_is_task(se)); 279 return container_of(se, struct task_struct, se); 280 } 281 282 /* Walk up scheduling entities hierarchy */ 283 #define for_each_sched_entity(se) \ 284 for (; se; se = se->parent) 285 286 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 287 { 288 return p->se.cfs_rq; 289 } 290 291 /* runqueue on which this entity is (to be) queued */ 292 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 293 { 294 return se->cfs_rq; 295 } 296 297 /* runqueue "owned" by this group */ 298 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 299 { 300 return grp->my_q; 301 } 302 303 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 304 { 305 if (!cfs_rq->on_list) { 306 struct rq *rq = rq_of(cfs_rq); 307 int cpu = cpu_of(rq); 308 /* 309 * Ensure we either appear before our parent (if already 310 * enqueued) or force our parent to appear after us when it is 311 * enqueued. The fact that we always enqueue bottom-up 312 * reduces this to two cases and a special case for the root 313 * cfs_rq. Furthermore, it also means that we will always reset 314 * tmp_alone_branch either when the branch is connected 315 * to a tree or when we reach the beg of the tree 316 */ 317 if (cfs_rq->tg->parent && 318 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 319 /* 320 * If parent is already on the list, we add the child 321 * just before. Thanks to circular linked property of 322 * the list, this means to put the child at the tail 323 * of the list that starts by parent. 324 */ 325 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 326 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 327 /* 328 * The branch is now connected to its tree so we can 329 * reset tmp_alone_branch to the beginning of the 330 * list. 331 */ 332 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 333 } else if (!cfs_rq->tg->parent) { 334 /* 335 * cfs rq without parent should be put 336 * at the tail of the list. 337 */ 338 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 339 &rq->leaf_cfs_rq_list); 340 /* 341 * We have reach the beg of a tree so we can reset 342 * tmp_alone_branch to the beginning of the list. 343 */ 344 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 345 } else { 346 /* 347 * The parent has not already been added so we want to 348 * make sure that it will be put after us. 349 * tmp_alone_branch points to the beg of the branch 350 * where we will add parent. 351 */ 352 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 353 rq->tmp_alone_branch); 354 /* 355 * update tmp_alone_branch to points to the new beg 356 * of the branch 357 */ 358 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 359 } 360 361 cfs_rq->on_list = 1; 362 } 363 } 364 365 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 366 { 367 if (cfs_rq->on_list) { 368 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 369 cfs_rq->on_list = 0; 370 } 371 } 372 373 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 374 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 375 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 376 leaf_cfs_rq_list) 377 378 /* Do the two (enqueued) entities belong to the same group ? */ 379 static inline struct cfs_rq * 380 is_same_group(struct sched_entity *se, struct sched_entity *pse) 381 { 382 if (se->cfs_rq == pse->cfs_rq) 383 return se->cfs_rq; 384 385 return NULL; 386 } 387 388 static inline struct sched_entity *parent_entity(struct sched_entity *se) 389 { 390 return se->parent; 391 } 392 393 static void 394 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 395 { 396 int se_depth, pse_depth; 397 398 /* 399 * preemption test can be made between sibling entities who are in the 400 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 401 * both tasks until we find their ancestors who are siblings of common 402 * parent. 403 */ 404 405 /* First walk up until both entities are at same depth */ 406 se_depth = (*se)->depth; 407 pse_depth = (*pse)->depth; 408 409 while (se_depth > pse_depth) { 410 se_depth--; 411 *se = parent_entity(*se); 412 } 413 414 while (pse_depth > se_depth) { 415 pse_depth--; 416 *pse = parent_entity(*pse); 417 } 418 419 while (!is_same_group(*se, *pse)) { 420 *se = parent_entity(*se); 421 *pse = parent_entity(*pse); 422 } 423 } 424 425 #else /* !CONFIG_FAIR_GROUP_SCHED */ 426 427 static inline struct task_struct *task_of(struct sched_entity *se) 428 { 429 return container_of(se, struct task_struct, se); 430 } 431 432 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 433 { 434 return container_of(cfs_rq, struct rq, cfs); 435 } 436 437 #define entity_is_task(se) 1 438 439 #define for_each_sched_entity(se) \ 440 for (; se; se = NULL) 441 442 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 443 { 444 return &task_rq(p)->cfs; 445 } 446 447 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 448 { 449 struct task_struct *p = task_of(se); 450 struct rq *rq = task_rq(p); 451 452 return &rq->cfs; 453 } 454 455 /* runqueue "owned" by this group */ 456 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 457 { 458 return NULL; 459 } 460 461 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 462 { 463 } 464 465 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 466 { 467 } 468 469 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 470 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 471 472 static inline struct sched_entity *parent_entity(struct sched_entity *se) 473 { 474 return NULL; 475 } 476 477 static inline void 478 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 479 { 480 } 481 482 #endif /* CONFIG_FAIR_GROUP_SCHED */ 483 484 static __always_inline 485 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 486 487 /************************************************************** 488 * Scheduling class tree data structure manipulation methods: 489 */ 490 491 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 492 { 493 s64 delta = (s64)(vruntime - max_vruntime); 494 if (delta > 0) 495 max_vruntime = vruntime; 496 497 return max_vruntime; 498 } 499 500 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 501 { 502 s64 delta = (s64)(vruntime - min_vruntime); 503 if (delta < 0) 504 min_vruntime = vruntime; 505 506 return min_vruntime; 507 } 508 509 static inline int entity_before(struct sched_entity *a, 510 struct sched_entity *b) 511 { 512 return (s64)(a->vruntime - b->vruntime) < 0; 513 } 514 515 static void update_min_vruntime(struct cfs_rq *cfs_rq) 516 { 517 struct sched_entity *curr = cfs_rq->curr; 518 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 519 520 u64 vruntime = cfs_rq->min_vruntime; 521 522 if (curr) { 523 if (curr->on_rq) 524 vruntime = curr->vruntime; 525 else 526 curr = NULL; 527 } 528 529 if (leftmost) { /* non-empty tree */ 530 struct sched_entity *se; 531 se = rb_entry(leftmost, struct sched_entity, run_node); 532 533 if (!curr) 534 vruntime = se->vruntime; 535 else 536 vruntime = min_vruntime(vruntime, se->vruntime); 537 } 538 539 /* ensure we never gain time by being placed backwards. */ 540 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 541 #ifndef CONFIG_64BIT 542 smp_wmb(); 543 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 544 #endif 545 } 546 547 /* 548 * Enqueue an entity into the rb-tree: 549 */ 550 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 551 { 552 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 553 struct rb_node *parent = NULL; 554 struct sched_entity *entry; 555 bool leftmost = true; 556 557 /* 558 * Find the right place in the rbtree: 559 */ 560 while (*link) { 561 parent = *link; 562 entry = rb_entry(parent, struct sched_entity, run_node); 563 /* 564 * We dont care about collisions. Nodes with 565 * the same key stay together. 566 */ 567 if (entity_before(se, entry)) { 568 link = &parent->rb_left; 569 } else { 570 link = &parent->rb_right; 571 leftmost = false; 572 } 573 } 574 575 rb_link_node(&se->run_node, parent, link); 576 rb_insert_color_cached(&se->run_node, 577 &cfs_rq->tasks_timeline, leftmost); 578 } 579 580 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 581 { 582 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 583 } 584 585 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 586 { 587 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 588 589 if (!left) 590 return NULL; 591 592 return rb_entry(left, struct sched_entity, run_node); 593 } 594 595 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 596 { 597 struct rb_node *next = rb_next(&se->run_node); 598 599 if (!next) 600 return NULL; 601 602 return rb_entry(next, struct sched_entity, run_node); 603 } 604 605 #ifdef CONFIG_SCHED_DEBUG 606 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 607 { 608 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 609 610 if (!last) 611 return NULL; 612 613 return rb_entry(last, struct sched_entity, run_node); 614 } 615 616 /************************************************************** 617 * Scheduling class statistics methods: 618 */ 619 620 int sched_proc_update_handler(struct ctl_table *table, int write, 621 void __user *buffer, size_t *lenp, 622 loff_t *ppos) 623 { 624 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 625 unsigned int factor = get_update_sysctl_factor(); 626 627 if (ret || !write) 628 return ret; 629 630 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 631 sysctl_sched_min_granularity); 632 633 #define WRT_SYSCTL(name) \ 634 (normalized_sysctl_##name = sysctl_##name / (factor)) 635 WRT_SYSCTL(sched_min_granularity); 636 WRT_SYSCTL(sched_latency); 637 WRT_SYSCTL(sched_wakeup_granularity); 638 #undef WRT_SYSCTL 639 640 return 0; 641 } 642 #endif 643 644 /* 645 * delta /= w 646 */ 647 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 648 { 649 if (unlikely(se->load.weight != NICE_0_LOAD)) 650 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 651 652 return delta; 653 } 654 655 /* 656 * The idea is to set a period in which each task runs once. 657 * 658 * When there are too many tasks (sched_nr_latency) we have to stretch 659 * this period because otherwise the slices get too small. 660 * 661 * p = (nr <= nl) ? l : l*nr/nl 662 */ 663 static u64 __sched_period(unsigned long nr_running) 664 { 665 if (unlikely(nr_running > sched_nr_latency)) 666 return nr_running * sysctl_sched_min_granularity; 667 else 668 return sysctl_sched_latency; 669 } 670 671 /* 672 * We calculate the wall-time slice from the period by taking a part 673 * proportional to the weight. 674 * 675 * s = p*P[w/rw] 676 */ 677 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 678 { 679 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 680 681 for_each_sched_entity(se) { 682 struct load_weight *load; 683 struct load_weight lw; 684 685 cfs_rq = cfs_rq_of(se); 686 load = &cfs_rq->load; 687 688 if (unlikely(!se->on_rq)) { 689 lw = cfs_rq->load; 690 691 update_load_add(&lw, se->load.weight); 692 load = &lw; 693 } 694 slice = __calc_delta(slice, se->load.weight, load); 695 } 696 return slice; 697 } 698 699 /* 700 * We calculate the vruntime slice of a to-be-inserted task. 701 * 702 * vs = s/w 703 */ 704 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 705 { 706 return calc_delta_fair(sched_slice(cfs_rq, se), se); 707 } 708 709 #ifdef CONFIG_SMP 710 711 #include "sched-pelt.h" 712 713 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 714 static unsigned long task_h_load(struct task_struct *p); 715 716 /* Give new sched_entity start runnable values to heavy its load in infant time */ 717 void init_entity_runnable_average(struct sched_entity *se) 718 { 719 struct sched_avg *sa = &se->avg; 720 721 memset(sa, 0, sizeof(*sa)); 722 723 /* 724 * Tasks are intialized with full load to be seen as heavy tasks until 725 * they get a chance to stabilize to their real load level. 726 * Group entities are intialized with zero load to reflect the fact that 727 * nothing has been attached to the task group yet. 728 */ 729 if (entity_is_task(se)) 730 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 731 732 se->runnable_weight = se->load.weight; 733 734 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 735 } 736 737 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 738 static void attach_entity_cfs_rq(struct sched_entity *se); 739 740 /* 741 * With new tasks being created, their initial util_avgs are extrapolated 742 * based on the cfs_rq's current util_avg: 743 * 744 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 745 * 746 * However, in many cases, the above util_avg does not give a desired 747 * value. Moreover, the sum of the util_avgs may be divergent, such 748 * as when the series is a harmonic series. 749 * 750 * To solve this problem, we also cap the util_avg of successive tasks to 751 * only 1/2 of the left utilization budget: 752 * 753 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n 754 * 755 * where n denotes the nth task. 756 * 757 * For example, a simplest series from the beginning would be like: 758 * 759 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 760 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 761 * 762 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 763 * if util_avg > util_avg_cap. 764 */ 765 void post_init_entity_util_avg(struct sched_entity *se) 766 { 767 struct cfs_rq *cfs_rq = cfs_rq_of(se); 768 struct sched_avg *sa = &se->avg; 769 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; 770 771 if (cap > 0) { 772 if (cfs_rq->avg.util_avg != 0) { 773 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 774 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 775 776 if (sa->util_avg > cap) 777 sa->util_avg = cap; 778 } else { 779 sa->util_avg = cap; 780 } 781 } 782 783 if (entity_is_task(se)) { 784 struct task_struct *p = task_of(se); 785 if (p->sched_class != &fair_sched_class) { 786 /* 787 * For !fair tasks do: 788 * 789 update_cfs_rq_load_avg(now, cfs_rq); 790 attach_entity_load_avg(cfs_rq, se); 791 switched_from_fair(rq, p); 792 * 793 * such that the next switched_to_fair() has the 794 * expected state. 795 */ 796 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); 797 return; 798 } 799 } 800 801 attach_entity_cfs_rq(se); 802 } 803 804 #else /* !CONFIG_SMP */ 805 void init_entity_runnable_average(struct sched_entity *se) 806 { 807 } 808 void post_init_entity_util_avg(struct sched_entity *se) 809 { 810 } 811 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 812 { 813 } 814 #endif /* CONFIG_SMP */ 815 816 /* 817 * Update the current task's runtime statistics. 818 */ 819 static void update_curr(struct cfs_rq *cfs_rq) 820 { 821 struct sched_entity *curr = cfs_rq->curr; 822 u64 now = rq_clock_task(rq_of(cfs_rq)); 823 u64 delta_exec; 824 825 if (unlikely(!curr)) 826 return; 827 828 delta_exec = now - curr->exec_start; 829 if (unlikely((s64)delta_exec <= 0)) 830 return; 831 832 curr->exec_start = now; 833 834 schedstat_set(curr->statistics.exec_max, 835 max(delta_exec, curr->statistics.exec_max)); 836 837 curr->sum_exec_runtime += delta_exec; 838 schedstat_add(cfs_rq->exec_clock, delta_exec); 839 840 curr->vruntime += calc_delta_fair(delta_exec, curr); 841 update_min_vruntime(cfs_rq); 842 843 if (entity_is_task(curr)) { 844 struct task_struct *curtask = task_of(curr); 845 846 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 847 cgroup_account_cputime(curtask, delta_exec); 848 account_group_exec_runtime(curtask, delta_exec); 849 } 850 851 account_cfs_rq_runtime(cfs_rq, delta_exec); 852 } 853 854 static void update_curr_fair(struct rq *rq) 855 { 856 update_curr(cfs_rq_of(&rq->curr->se)); 857 } 858 859 static inline void 860 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 861 { 862 u64 wait_start, prev_wait_start; 863 864 if (!schedstat_enabled()) 865 return; 866 867 wait_start = rq_clock(rq_of(cfs_rq)); 868 prev_wait_start = schedstat_val(se->statistics.wait_start); 869 870 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 871 likely(wait_start > prev_wait_start)) 872 wait_start -= prev_wait_start; 873 874 schedstat_set(se->statistics.wait_start, wait_start); 875 } 876 877 static inline void 878 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 879 { 880 struct task_struct *p; 881 u64 delta; 882 883 if (!schedstat_enabled()) 884 return; 885 886 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 887 888 if (entity_is_task(se)) { 889 p = task_of(se); 890 if (task_on_rq_migrating(p)) { 891 /* 892 * Preserve migrating task's wait time so wait_start 893 * time stamp can be adjusted to accumulate wait time 894 * prior to migration. 895 */ 896 schedstat_set(se->statistics.wait_start, delta); 897 return; 898 } 899 trace_sched_stat_wait(p, delta); 900 } 901 902 schedstat_set(se->statistics.wait_max, 903 max(schedstat_val(se->statistics.wait_max), delta)); 904 schedstat_inc(se->statistics.wait_count); 905 schedstat_add(se->statistics.wait_sum, delta); 906 schedstat_set(se->statistics.wait_start, 0); 907 } 908 909 static inline void 910 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 911 { 912 struct task_struct *tsk = NULL; 913 u64 sleep_start, block_start; 914 915 if (!schedstat_enabled()) 916 return; 917 918 sleep_start = schedstat_val(se->statistics.sleep_start); 919 block_start = schedstat_val(se->statistics.block_start); 920 921 if (entity_is_task(se)) 922 tsk = task_of(se); 923 924 if (sleep_start) { 925 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 926 927 if ((s64)delta < 0) 928 delta = 0; 929 930 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 931 schedstat_set(se->statistics.sleep_max, delta); 932 933 schedstat_set(se->statistics.sleep_start, 0); 934 schedstat_add(se->statistics.sum_sleep_runtime, delta); 935 936 if (tsk) { 937 account_scheduler_latency(tsk, delta >> 10, 1); 938 trace_sched_stat_sleep(tsk, delta); 939 } 940 } 941 if (block_start) { 942 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 943 944 if ((s64)delta < 0) 945 delta = 0; 946 947 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 948 schedstat_set(se->statistics.block_max, delta); 949 950 schedstat_set(se->statistics.block_start, 0); 951 schedstat_add(se->statistics.sum_sleep_runtime, delta); 952 953 if (tsk) { 954 if (tsk->in_iowait) { 955 schedstat_add(se->statistics.iowait_sum, delta); 956 schedstat_inc(se->statistics.iowait_count); 957 trace_sched_stat_iowait(tsk, delta); 958 } 959 960 trace_sched_stat_blocked(tsk, delta); 961 962 /* 963 * Blocking time is in units of nanosecs, so shift by 964 * 20 to get a milliseconds-range estimation of the 965 * amount of time that the task spent sleeping: 966 */ 967 if (unlikely(prof_on == SLEEP_PROFILING)) { 968 profile_hits(SLEEP_PROFILING, 969 (void *)get_wchan(tsk), 970 delta >> 20); 971 } 972 account_scheduler_latency(tsk, delta >> 10, 0); 973 } 974 } 975 } 976 977 /* 978 * Task is being enqueued - update stats: 979 */ 980 static inline void 981 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 982 { 983 if (!schedstat_enabled()) 984 return; 985 986 /* 987 * Are we enqueueing a waiting task? (for current tasks 988 * a dequeue/enqueue event is a NOP) 989 */ 990 if (se != cfs_rq->curr) 991 update_stats_wait_start(cfs_rq, se); 992 993 if (flags & ENQUEUE_WAKEUP) 994 update_stats_enqueue_sleeper(cfs_rq, se); 995 } 996 997 static inline void 998 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 999 { 1000 1001 if (!schedstat_enabled()) 1002 return; 1003 1004 /* 1005 * Mark the end of the wait period if dequeueing a 1006 * waiting task: 1007 */ 1008 if (se != cfs_rq->curr) 1009 update_stats_wait_end(cfs_rq, se); 1010 1011 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1012 struct task_struct *tsk = task_of(se); 1013 1014 if (tsk->state & TASK_INTERRUPTIBLE) 1015 schedstat_set(se->statistics.sleep_start, 1016 rq_clock(rq_of(cfs_rq))); 1017 if (tsk->state & TASK_UNINTERRUPTIBLE) 1018 schedstat_set(se->statistics.block_start, 1019 rq_clock(rq_of(cfs_rq))); 1020 } 1021 } 1022 1023 /* 1024 * We are picking a new current task - update its stats: 1025 */ 1026 static inline void 1027 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1028 { 1029 /* 1030 * We are starting a new run period: 1031 */ 1032 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1033 } 1034 1035 /************************************************** 1036 * Scheduling class queueing methods: 1037 */ 1038 1039 #ifdef CONFIG_NUMA_BALANCING 1040 /* 1041 * Approximate time to scan a full NUMA task in ms. The task scan period is 1042 * calculated based on the tasks virtual memory size and 1043 * numa_balancing_scan_size. 1044 */ 1045 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1046 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1047 1048 /* Portion of address space to scan in MB */ 1049 unsigned int sysctl_numa_balancing_scan_size = 256; 1050 1051 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1052 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1053 1054 struct numa_group { 1055 atomic_t refcount; 1056 1057 spinlock_t lock; /* nr_tasks, tasks */ 1058 int nr_tasks; 1059 pid_t gid; 1060 int active_nodes; 1061 1062 struct rcu_head rcu; 1063 unsigned long total_faults; 1064 unsigned long max_faults_cpu; 1065 /* 1066 * Faults_cpu is used to decide whether memory should move 1067 * towards the CPU. As a consequence, these stats are weighted 1068 * more by CPU use than by memory faults. 1069 */ 1070 unsigned long *faults_cpu; 1071 unsigned long faults[0]; 1072 }; 1073 1074 static inline unsigned long group_faults_priv(struct numa_group *ng); 1075 static inline unsigned long group_faults_shared(struct numa_group *ng); 1076 1077 static unsigned int task_nr_scan_windows(struct task_struct *p) 1078 { 1079 unsigned long rss = 0; 1080 unsigned long nr_scan_pages; 1081 1082 /* 1083 * Calculations based on RSS as non-present and empty pages are skipped 1084 * by the PTE scanner and NUMA hinting faults should be trapped based 1085 * on resident pages 1086 */ 1087 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1088 rss = get_mm_rss(p->mm); 1089 if (!rss) 1090 rss = nr_scan_pages; 1091 1092 rss = round_up(rss, nr_scan_pages); 1093 return rss / nr_scan_pages; 1094 } 1095 1096 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1097 #define MAX_SCAN_WINDOW 2560 1098 1099 static unsigned int task_scan_min(struct task_struct *p) 1100 { 1101 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1102 unsigned int scan, floor; 1103 unsigned int windows = 1; 1104 1105 if (scan_size < MAX_SCAN_WINDOW) 1106 windows = MAX_SCAN_WINDOW / scan_size; 1107 floor = 1000 / windows; 1108 1109 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1110 return max_t(unsigned int, floor, scan); 1111 } 1112 1113 static unsigned int task_scan_start(struct task_struct *p) 1114 { 1115 unsigned long smin = task_scan_min(p); 1116 unsigned long period = smin; 1117 1118 /* Scale the maximum scan period with the amount of shared memory. */ 1119 if (p->numa_group) { 1120 struct numa_group *ng = p->numa_group; 1121 unsigned long shared = group_faults_shared(ng); 1122 unsigned long private = group_faults_priv(ng); 1123 1124 period *= atomic_read(&ng->refcount); 1125 period *= shared + 1; 1126 period /= private + shared + 1; 1127 } 1128 1129 return max(smin, period); 1130 } 1131 1132 static unsigned int task_scan_max(struct task_struct *p) 1133 { 1134 unsigned long smin = task_scan_min(p); 1135 unsigned long smax; 1136 1137 /* Watch for min being lower than max due to floor calculations */ 1138 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1139 1140 /* Scale the maximum scan period with the amount of shared memory. */ 1141 if (p->numa_group) { 1142 struct numa_group *ng = p->numa_group; 1143 unsigned long shared = group_faults_shared(ng); 1144 unsigned long private = group_faults_priv(ng); 1145 unsigned long period = smax; 1146 1147 period *= atomic_read(&ng->refcount); 1148 period *= shared + 1; 1149 period /= private + shared + 1; 1150 1151 smax = max(smax, period); 1152 } 1153 1154 return max(smin, smax); 1155 } 1156 1157 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1158 { 1159 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1160 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1161 } 1162 1163 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1164 { 1165 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1166 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1167 } 1168 1169 /* Shared or private faults. */ 1170 #define NR_NUMA_HINT_FAULT_TYPES 2 1171 1172 /* Memory and CPU locality */ 1173 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1174 1175 /* Averaged statistics, and temporary buffers. */ 1176 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1177 1178 pid_t task_numa_group_id(struct task_struct *p) 1179 { 1180 return p->numa_group ? p->numa_group->gid : 0; 1181 } 1182 1183 /* 1184 * The averaged statistics, shared & private, memory & cpu, 1185 * occupy the first half of the array. The second half of the 1186 * array is for current counters, which are averaged into the 1187 * first set by task_numa_placement. 1188 */ 1189 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1190 { 1191 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1192 } 1193 1194 static inline unsigned long task_faults(struct task_struct *p, int nid) 1195 { 1196 if (!p->numa_faults) 1197 return 0; 1198 1199 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1200 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1201 } 1202 1203 static inline unsigned long group_faults(struct task_struct *p, int nid) 1204 { 1205 if (!p->numa_group) 1206 return 0; 1207 1208 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1209 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1210 } 1211 1212 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1213 { 1214 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1215 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1216 } 1217 1218 static inline unsigned long group_faults_priv(struct numa_group *ng) 1219 { 1220 unsigned long faults = 0; 1221 int node; 1222 1223 for_each_online_node(node) { 1224 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1225 } 1226 1227 return faults; 1228 } 1229 1230 static inline unsigned long group_faults_shared(struct numa_group *ng) 1231 { 1232 unsigned long faults = 0; 1233 int node; 1234 1235 for_each_online_node(node) { 1236 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1237 } 1238 1239 return faults; 1240 } 1241 1242 /* 1243 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1244 * considered part of a numa group's pseudo-interleaving set. Migrations 1245 * between these nodes are slowed down, to allow things to settle down. 1246 */ 1247 #define ACTIVE_NODE_FRACTION 3 1248 1249 static bool numa_is_active_node(int nid, struct numa_group *ng) 1250 { 1251 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1252 } 1253 1254 /* Handle placement on systems where not all nodes are directly connected. */ 1255 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1256 int maxdist, bool task) 1257 { 1258 unsigned long score = 0; 1259 int node; 1260 1261 /* 1262 * All nodes are directly connected, and the same distance 1263 * from each other. No need for fancy placement algorithms. 1264 */ 1265 if (sched_numa_topology_type == NUMA_DIRECT) 1266 return 0; 1267 1268 /* 1269 * This code is called for each node, introducing N^2 complexity, 1270 * which should be ok given the number of nodes rarely exceeds 8. 1271 */ 1272 for_each_online_node(node) { 1273 unsigned long faults; 1274 int dist = node_distance(nid, node); 1275 1276 /* 1277 * The furthest away nodes in the system are not interesting 1278 * for placement; nid was already counted. 1279 */ 1280 if (dist == sched_max_numa_distance || node == nid) 1281 continue; 1282 1283 /* 1284 * On systems with a backplane NUMA topology, compare groups 1285 * of nodes, and move tasks towards the group with the most 1286 * memory accesses. When comparing two nodes at distance 1287 * "hoplimit", only nodes closer by than "hoplimit" are part 1288 * of each group. Skip other nodes. 1289 */ 1290 if (sched_numa_topology_type == NUMA_BACKPLANE && 1291 dist > maxdist) 1292 continue; 1293 1294 /* Add up the faults from nearby nodes. */ 1295 if (task) 1296 faults = task_faults(p, node); 1297 else 1298 faults = group_faults(p, node); 1299 1300 /* 1301 * On systems with a glueless mesh NUMA topology, there are 1302 * no fixed "groups of nodes". Instead, nodes that are not 1303 * directly connected bounce traffic through intermediate 1304 * nodes; a numa_group can occupy any set of nodes. 1305 * The further away a node is, the less the faults count. 1306 * This seems to result in good task placement. 1307 */ 1308 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1309 faults *= (sched_max_numa_distance - dist); 1310 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1311 } 1312 1313 score += faults; 1314 } 1315 1316 return score; 1317 } 1318 1319 /* 1320 * These return the fraction of accesses done by a particular task, or 1321 * task group, on a particular numa node. The group weight is given a 1322 * larger multiplier, in order to group tasks together that are almost 1323 * evenly spread out between numa nodes. 1324 */ 1325 static inline unsigned long task_weight(struct task_struct *p, int nid, 1326 int dist) 1327 { 1328 unsigned long faults, total_faults; 1329 1330 if (!p->numa_faults) 1331 return 0; 1332 1333 total_faults = p->total_numa_faults; 1334 1335 if (!total_faults) 1336 return 0; 1337 1338 faults = task_faults(p, nid); 1339 faults += score_nearby_nodes(p, nid, dist, true); 1340 1341 return 1000 * faults / total_faults; 1342 } 1343 1344 static inline unsigned long group_weight(struct task_struct *p, int nid, 1345 int dist) 1346 { 1347 unsigned long faults, total_faults; 1348 1349 if (!p->numa_group) 1350 return 0; 1351 1352 total_faults = p->numa_group->total_faults; 1353 1354 if (!total_faults) 1355 return 0; 1356 1357 faults = group_faults(p, nid); 1358 faults += score_nearby_nodes(p, nid, dist, false); 1359 1360 return 1000 * faults / total_faults; 1361 } 1362 1363 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1364 int src_nid, int dst_cpu) 1365 { 1366 struct numa_group *ng = p->numa_group; 1367 int dst_nid = cpu_to_node(dst_cpu); 1368 int last_cpupid, this_cpupid; 1369 1370 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1371 1372 /* 1373 * Multi-stage node selection is used in conjunction with a periodic 1374 * migration fault to build a temporal task<->page relation. By using 1375 * a two-stage filter we remove short/unlikely relations. 1376 * 1377 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1378 * a task's usage of a particular page (n_p) per total usage of this 1379 * page (n_t) (in a given time-span) to a probability. 1380 * 1381 * Our periodic faults will sample this probability and getting the 1382 * same result twice in a row, given these samples are fully 1383 * independent, is then given by P(n)^2, provided our sample period 1384 * is sufficiently short compared to the usage pattern. 1385 * 1386 * This quadric squishes small probabilities, making it less likely we 1387 * act on an unlikely task<->page relation. 1388 */ 1389 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1390 if (!cpupid_pid_unset(last_cpupid) && 1391 cpupid_to_nid(last_cpupid) != dst_nid) 1392 return false; 1393 1394 /* Always allow migrate on private faults */ 1395 if (cpupid_match_pid(p, last_cpupid)) 1396 return true; 1397 1398 /* A shared fault, but p->numa_group has not been set up yet. */ 1399 if (!ng) 1400 return true; 1401 1402 /* 1403 * Destination node is much more heavily used than the source 1404 * node? Allow migration. 1405 */ 1406 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1407 ACTIVE_NODE_FRACTION) 1408 return true; 1409 1410 /* 1411 * Distribute memory according to CPU & memory use on each node, 1412 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1413 * 1414 * faults_cpu(dst) 3 faults_cpu(src) 1415 * --------------- * - > --------------- 1416 * faults_mem(dst) 4 faults_mem(src) 1417 */ 1418 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1419 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1420 } 1421 1422 static unsigned long weighted_cpuload(struct rq *rq); 1423 static unsigned long source_load(int cpu, int type); 1424 static unsigned long target_load(int cpu, int type); 1425 static unsigned long capacity_of(int cpu); 1426 1427 /* Cached statistics for all CPUs within a node */ 1428 struct numa_stats { 1429 unsigned long nr_running; 1430 unsigned long load; 1431 1432 /* Total compute capacity of CPUs on a node */ 1433 unsigned long compute_capacity; 1434 1435 /* Approximate capacity in terms of runnable tasks on a node */ 1436 unsigned long task_capacity; 1437 int has_free_capacity; 1438 }; 1439 1440 /* 1441 * XXX borrowed from update_sg_lb_stats 1442 */ 1443 static void update_numa_stats(struct numa_stats *ns, int nid) 1444 { 1445 int smt, cpu, cpus = 0; 1446 unsigned long capacity; 1447 1448 memset(ns, 0, sizeof(*ns)); 1449 for_each_cpu(cpu, cpumask_of_node(nid)) { 1450 struct rq *rq = cpu_rq(cpu); 1451 1452 ns->nr_running += rq->nr_running; 1453 ns->load += weighted_cpuload(rq); 1454 ns->compute_capacity += capacity_of(cpu); 1455 1456 cpus++; 1457 } 1458 1459 /* 1460 * If we raced with hotplug and there are no CPUs left in our mask 1461 * the @ns structure is NULL'ed and task_numa_compare() will 1462 * not find this node attractive. 1463 * 1464 * We'll either bail at !has_free_capacity, or we'll detect a huge 1465 * imbalance and bail there. 1466 */ 1467 if (!cpus) 1468 return; 1469 1470 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1471 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1472 capacity = cpus / smt; /* cores */ 1473 1474 ns->task_capacity = min_t(unsigned, capacity, 1475 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1476 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1477 } 1478 1479 struct task_numa_env { 1480 struct task_struct *p; 1481 1482 int src_cpu, src_nid; 1483 int dst_cpu, dst_nid; 1484 1485 struct numa_stats src_stats, dst_stats; 1486 1487 int imbalance_pct; 1488 int dist; 1489 1490 struct task_struct *best_task; 1491 long best_imp; 1492 int best_cpu; 1493 }; 1494 1495 static void task_numa_assign(struct task_numa_env *env, 1496 struct task_struct *p, long imp) 1497 { 1498 if (env->best_task) 1499 put_task_struct(env->best_task); 1500 if (p) 1501 get_task_struct(p); 1502 1503 env->best_task = p; 1504 env->best_imp = imp; 1505 env->best_cpu = env->dst_cpu; 1506 } 1507 1508 static bool load_too_imbalanced(long src_load, long dst_load, 1509 struct task_numa_env *env) 1510 { 1511 long imb, old_imb; 1512 long orig_src_load, orig_dst_load; 1513 long src_capacity, dst_capacity; 1514 1515 /* 1516 * The load is corrected for the CPU capacity available on each node. 1517 * 1518 * src_load dst_load 1519 * ------------ vs --------- 1520 * src_capacity dst_capacity 1521 */ 1522 src_capacity = env->src_stats.compute_capacity; 1523 dst_capacity = env->dst_stats.compute_capacity; 1524 1525 /* We care about the slope of the imbalance, not the direction. */ 1526 if (dst_load < src_load) 1527 swap(dst_load, src_load); 1528 1529 /* Is the difference below the threshold? */ 1530 imb = dst_load * src_capacity * 100 - 1531 src_load * dst_capacity * env->imbalance_pct; 1532 if (imb <= 0) 1533 return false; 1534 1535 /* 1536 * The imbalance is above the allowed threshold. 1537 * Compare it with the old imbalance. 1538 */ 1539 orig_src_load = env->src_stats.load; 1540 orig_dst_load = env->dst_stats.load; 1541 1542 if (orig_dst_load < orig_src_load) 1543 swap(orig_dst_load, orig_src_load); 1544 1545 old_imb = orig_dst_load * src_capacity * 100 - 1546 orig_src_load * dst_capacity * env->imbalance_pct; 1547 1548 /* Would this change make things worse? */ 1549 return (imb > old_imb); 1550 } 1551 1552 /* 1553 * This checks if the overall compute and NUMA accesses of the system would 1554 * be improved if the source tasks was migrated to the target dst_cpu taking 1555 * into account that it might be best if task running on the dst_cpu should 1556 * be exchanged with the source task 1557 */ 1558 static void task_numa_compare(struct task_numa_env *env, 1559 long taskimp, long groupimp) 1560 { 1561 struct rq *src_rq = cpu_rq(env->src_cpu); 1562 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1563 struct task_struct *cur; 1564 long src_load, dst_load; 1565 long load; 1566 long imp = env->p->numa_group ? groupimp : taskimp; 1567 long moveimp = imp; 1568 int dist = env->dist; 1569 1570 rcu_read_lock(); 1571 cur = task_rcu_dereference(&dst_rq->curr); 1572 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1573 cur = NULL; 1574 1575 /* 1576 * Because we have preemption enabled we can get migrated around and 1577 * end try selecting ourselves (current == env->p) as a swap candidate. 1578 */ 1579 if (cur == env->p) 1580 goto unlock; 1581 1582 /* 1583 * "imp" is the fault differential for the source task between the 1584 * source and destination node. Calculate the total differential for 1585 * the source task and potential destination task. The more negative 1586 * the value is, the more rmeote accesses that would be expected to 1587 * be incurred if the tasks were swapped. 1588 */ 1589 if (cur) { 1590 /* Skip this swap candidate if cannot move to the source cpu */ 1591 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1592 goto unlock; 1593 1594 /* 1595 * If dst and source tasks are in the same NUMA group, or not 1596 * in any group then look only at task weights. 1597 */ 1598 if (cur->numa_group == env->p->numa_group) { 1599 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1600 task_weight(cur, env->dst_nid, dist); 1601 /* 1602 * Add some hysteresis to prevent swapping the 1603 * tasks within a group over tiny differences. 1604 */ 1605 if (cur->numa_group) 1606 imp -= imp/16; 1607 } else { 1608 /* 1609 * Compare the group weights. If a task is all by 1610 * itself (not part of a group), use the task weight 1611 * instead. 1612 */ 1613 if (cur->numa_group) 1614 imp += group_weight(cur, env->src_nid, dist) - 1615 group_weight(cur, env->dst_nid, dist); 1616 else 1617 imp += task_weight(cur, env->src_nid, dist) - 1618 task_weight(cur, env->dst_nid, dist); 1619 } 1620 } 1621 1622 if (imp <= env->best_imp && moveimp <= env->best_imp) 1623 goto unlock; 1624 1625 if (!cur) { 1626 /* Is there capacity at our destination? */ 1627 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1628 !env->dst_stats.has_free_capacity) 1629 goto unlock; 1630 1631 goto balance; 1632 } 1633 1634 /* Balance doesn't matter much if we're running a task per cpu */ 1635 if (imp > env->best_imp && src_rq->nr_running == 1 && 1636 dst_rq->nr_running == 1) 1637 goto assign; 1638 1639 /* 1640 * In the overloaded case, try and keep the load balanced. 1641 */ 1642 balance: 1643 load = task_h_load(env->p); 1644 dst_load = env->dst_stats.load + load; 1645 src_load = env->src_stats.load - load; 1646 1647 if (moveimp > imp && moveimp > env->best_imp) { 1648 /* 1649 * If the improvement from just moving env->p direction is 1650 * better than swapping tasks around, check if a move is 1651 * possible. Store a slightly smaller score than moveimp, 1652 * so an actually idle CPU will win. 1653 */ 1654 if (!load_too_imbalanced(src_load, dst_load, env)) { 1655 imp = moveimp - 1; 1656 cur = NULL; 1657 goto assign; 1658 } 1659 } 1660 1661 if (imp <= env->best_imp) 1662 goto unlock; 1663 1664 if (cur) { 1665 load = task_h_load(cur); 1666 dst_load -= load; 1667 src_load += load; 1668 } 1669 1670 if (load_too_imbalanced(src_load, dst_load, env)) 1671 goto unlock; 1672 1673 /* 1674 * One idle CPU per node is evaluated for a task numa move. 1675 * Call select_idle_sibling to maybe find a better one. 1676 */ 1677 if (!cur) { 1678 /* 1679 * select_idle_siblings() uses an per-cpu cpumask that 1680 * can be used from IRQ context. 1681 */ 1682 local_irq_disable(); 1683 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1684 env->dst_cpu); 1685 local_irq_enable(); 1686 } 1687 1688 assign: 1689 task_numa_assign(env, cur, imp); 1690 unlock: 1691 rcu_read_unlock(); 1692 } 1693 1694 static void task_numa_find_cpu(struct task_numa_env *env, 1695 long taskimp, long groupimp) 1696 { 1697 int cpu; 1698 1699 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1700 /* Skip this CPU if the source task cannot migrate */ 1701 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1702 continue; 1703 1704 env->dst_cpu = cpu; 1705 task_numa_compare(env, taskimp, groupimp); 1706 } 1707 } 1708 1709 /* Only move tasks to a NUMA node less busy than the current node. */ 1710 static bool numa_has_capacity(struct task_numa_env *env) 1711 { 1712 struct numa_stats *src = &env->src_stats; 1713 struct numa_stats *dst = &env->dst_stats; 1714 1715 if (src->has_free_capacity && !dst->has_free_capacity) 1716 return false; 1717 1718 /* 1719 * Only consider a task move if the source has a higher load 1720 * than the destination, corrected for CPU capacity on each node. 1721 * 1722 * src->load dst->load 1723 * --------------------- vs --------------------- 1724 * src->compute_capacity dst->compute_capacity 1725 */ 1726 if (src->load * dst->compute_capacity * env->imbalance_pct > 1727 1728 dst->load * src->compute_capacity * 100) 1729 return true; 1730 1731 return false; 1732 } 1733 1734 static int task_numa_migrate(struct task_struct *p) 1735 { 1736 struct task_numa_env env = { 1737 .p = p, 1738 1739 .src_cpu = task_cpu(p), 1740 .src_nid = task_node(p), 1741 1742 .imbalance_pct = 112, 1743 1744 .best_task = NULL, 1745 .best_imp = 0, 1746 .best_cpu = -1, 1747 }; 1748 struct sched_domain *sd; 1749 unsigned long taskweight, groupweight; 1750 int nid, ret, dist; 1751 long taskimp, groupimp; 1752 1753 /* 1754 * Pick the lowest SD_NUMA domain, as that would have the smallest 1755 * imbalance and would be the first to start moving tasks about. 1756 * 1757 * And we want to avoid any moving of tasks about, as that would create 1758 * random movement of tasks -- counter the numa conditions we're trying 1759 * to satisfy here. 1760 */ 1761 rcu_read_lock(); 1762 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1763 if (sd) 1764 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1765 rcu_read_unlock(); 1766 1767 /* 1768 * Cpusets can break the scheduler domain tree into smaller 1769 * balance domains, some of which do not cross NUMA boundaries. 1770 * Tasks that are "trapped" in such domains cannot be migrated 1771 * elsewhere, so there is no point in (re)trying. 1772 */ 1773 if (unlikely(!sd)) { 1774 p->numa_preferred_nid = task_node(p); 1775 return -EINVAL; 1776 } 1777 1778 env.dst_nid = p->numa_preferred_nid; 1779 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1780 taskweight = task_weight(p, env.src_nid, dist); 1781 groupweight = group_weight(p, env.src_nid, dist); 1782 update_numa_stats(&env.src_stats, env.src_nid); 1783 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1784 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1785 update_numa_stats(&env.dst_stats, env.dst_nid); 1786 1787 /* Try to find a spot on the preferred nid. */ 1788 if (numa_has_capacity(&env)) 1789 task_numa_find_cpu(&env, taskimp, groupimp); 1790 1791 /* 1792 * Look at other nodes in these cases: 1793 * - there is no space available on the preferred_nid 1794 * - the task is part of a numa_group that is interleaved across 1795 * multiple NUMA nodes; in order to better consolidate the group, 1796 * we need to check other locations. 1797 */ 1798 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1799 for_each_online_node(nid) { 1800 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1801 continue; 1802 1803 dist = node_distance(env.src_nid, env.dst_nid); 1804 if (sched_numa_topology_type == NUMA_BACKPLANE && 1805 dist != env.dist) { 1806 taskweight = task_weight(p, env.src_nid, dist); 1807 groupweight = group_weight(p, env.src_nid, dist); 1808 } 1809 1810 /* Only consider nodes where both task and groups benefit */ 1811 taskimp = task_weight(p, nid, dist) - taskweight; 1812 groupimp = group_weight(p, nid, dist) - groupweight; 1813 if (taskimp < 0 && groupimp < 0) 1814 continue; 1815 1816 env.dist = dist; 1817 env.dst_nid = nid; 1818 update_numa_stats(&env.dst_stats, env.dst_nid); 1819 if (numa_has_capacity(&env)) 1820 task_numa_find_cpu(&env, taskimp, groupimp); 1821 } 1822 } 1823 1824 /* 1825 * If the task is part of a workload that spans multiple NUMA nodes, 1826 * and is migrating into one of the workload's active nodes, remember 1827 * this node as the task's preferred numa node, so the workload can 1828 * settle down. 1829 * A task that migrated to a second choice node will be better off 1830 * trying for a better one later. Do not set the preferred node here. 1831 */ 1832 if (p->numa_group) { 1833 struct numa_group *ng = p->numa_group; 1834 1835 if (env.best_cpu == -1) 1836 nid = env.src_nid; 1837 else 1838 nid = env.dst_nid; 1839 1840 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) 1841 sched_setnuma(p, env.dst_nid); 1842 } 1843 1844 /* No better CPU than the current one was found. */ 1845 if (env.best_cpu == -1) 1846 return -EAGAIN; 1847 1848 /* 1849 * Reset the scan period if the task is being rescheduled on an 1850 * alternative node to recheck if the tasks is now properly placed. 1851 */ 1852 p->numa_scan_period = task_scan_start(p); 1853 1854 if (env.best_task == NULL) { 1855 ret = migrate_task_to(p, env.best_cpu); 1856 if (ret != 0) 1857 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1858 return ret; 1859 } 1860 1861 ret = migrate_swap(p, env.best_task); 1862 if (ret != 0) 1863 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1864 put_task_struct(env.best_task); 1865 return ret; 1866 } 1867 1868 /* Attempt to migrate a task to a CPU on the preferred node. */ 1869 static void numa_migrate_preferred(struct task_struct *p) 1870 { 1871 unsigned long interval = HZ; 1872 1873 /* This task has no NUMA fault statistics yet */ 1874 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1875 return; 1876 1877 /* Periodically retry migrating the task to the preferred node */ 1878 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1879 p->numa_migrate_retry = jiffies + interval; 1880 1881 /* Success if task is already running on preferred CPU */ 1882 if (task_node(p) == p->numa_preferred_nid) 1883 return; 1884 1885 /* Otherwise, try migrate to a CPU on the preferred node */ 1886 task_numa_migrate(p); 1887 } 1888 1889 /* 1890 * Find out how many nodes on the workload is actively running on. Do this by 1891 * tracking the nodes from which NUMA hinting faults are triggered. This can 1892 * be different from the set of nodes where the workload's memory is currently 1893 * located. 1894 */ 1895 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1896 { 1897 unsigned long faults, max_faults = 0; 1898 int nid, active_nodes = 0; 1899 1900 for_each_online_node(nid) { 1901 faults = group_faults_cpu(numa_group, nid); 1902 if (faults > max_faults) 1903 max_faults = faults; 1904 } 1905 1906 for_each_online_node(nid) { 1907 faults = group_faults_cpu(numa_group, nid); 1908 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1909 active_nodes++; 1910 } 1911 1912 numa_group->max_faults_cpu = max_faults; 1913 numa_group->active_nodes = active_nodes; 1914 } 1915 1916 /* 1917 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1918 * increments. The more local the fault statistics are, the higher the scan 1919 * period will be for the next scan window. If local/(local+remote) ratio is 1920 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1921 * the scan period will decrease. Aim for 70% local accesses. 1922 */ 1923 #define NUMA_PERIOD_SLOTS 10 1924 #define NUMA_PERIOD_THRESHOLD 7 1925 1926 /* 1927 * Increase the scan period (slow down scanning) if the majority of 1928 * our memory is already on our local node, or if the majority of 1929 * the page accesses are shared with other processes. 1930 * Otherwise, decrease the scan period. 1931 */ 1932 static void update_task_scan_period(struct task_struct *p, 1933 unsigned long shared, unsigned long private) 1934 { 1935 unsigned int period_slot; 1936 int lr_ratio, ps_ratio; 1937 int diff; 1938 1939 unsigned long remote = p->numa_faults_locality[0]; 1940 unsigned long local = p->numa_faults_locality[1]; 1941 1942 /* 1943 * If there were no record hinting faults then either the task is 1944 * completely idle or all activity is areas that are not of interest 1945 * to automatic numa balancing. Related to that, if there were failed 1946 * migration then it implies we are migrating too quickly or the local 1947 * node is overloaded. In either case, scan slower 1948 */ 1949 if (local + shared == 0 || p->numa_faults_locality[2]) { 1950 p->numa_scan_period = min(p->numa_scan_period_max, 1951 p->numa_scan_period << 1); 1952 1953 p->mm->numa_next_scan = jiffies + 1954 msecs_to_jiffies(p->numa_scan_period); 1955 1956 return; 1957 } 1958 1959 /* 1960 * Prepare to scale scan period relative to the current period. 1961 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1962 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1963 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1964 */ 1965 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1966 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1967 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1968 1969 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1970 /* 1971 * Most memory accesses are local. There is no need to 1972 * do fast NUMA scanning, since memory is already local. 1973 */ 1974 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1975 if (!slot) 1976 slot = 1; 1977 diff = slot * period_slot; 1978 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1979 /* 1980 * Most memory accesses are shared with other tasks. 1981 * There is no point in continuing fast NUMA scanning, 1982 * since other tasks may just move the memory elsewhere. 1983 */ 1984 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1985 if (!slot) 1986 slot = 1; 1987 diff = slot * period_slot; 1988 } else { 1989 /* 1990 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1991 * yet they are not on the local NUMA node. Speed up 1992 * NUMA scanning to get the memory moved over. 1993 */ 1994 int ratio = max(lr_ratio, ps_ratio); 1995 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1996 } 1997 1998 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1999 task_scan_min(p), task_scan_max(p)); 2000 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2001 } 2002 2003 /* 2004 * Get the fraction of time the task has been running since the last 2005 * NUMA placement cycle. The scheduler keeps similar statistics, but 2006 * decays those on a 32ms period, which is orders of magnitude off 2007 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2008 * stats only if the task is so new there are no NUMA statistics yet. 2009 */ 2010 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2011 { 2012 u64 runtime, delta, now; 2013 /* Use the start of this time slice to avoid calculations. */ 2014 now = p->se.exec_start; 2015 runtime = p->se.sum_exec_runtime; 2016 2017 if (p->last_task_numa_placement) { 2018 delta = runtime - p->last_sum_exec_runtime; 2019 *period = now - p->last_task_numa_placement; 2020 } else { 2021 delta = p->se.avg.load_sum; 2022 *period = LOAD_AVG_MAX; 2023 } 2024 2025 p->last_sum_exec_runtime = runtime; 2026 p->last_task_numa_placement = now; 2027 2028 return delta; 2029 } 2030 2031 /* 2032 * Determine the preferred nid for a task in a numa_group. This needs to 2033 * be done in a way that produces consistent results with group_weight, 2034 * otherwise workloads might not converge. 2035 */ 2036 static int preferred_group_nid(struct task_struct *p, int nid) 2037 { 2038 nodemask_t nodes; 2039 int dist; 2040 2041 /* Direct connections between all NUMA nodes. */ 2042 if (sched_numa_topology_type == NUMA_DIRECT) 2043 return nid; 2044 2045 /* 2046 * On a system with glueless mesh NUMA topology, group_weight 2047 * scores nodes according to the number of NUMA hinting faults on 2048 * both the node itself, and on nearby nodes. 2049 */ 2050 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2051 unsigned long score, max_score = 0; 2052 int node, max_node = nid; 2053 2054 dist = sched_max_numa_distance; 2055 2056 for_each_online_node(node) { 2057 score = group_weight(p, node, dist); 2058 if (score > max_score) { 2059 max_score = score; 2060 max_node = node; 2061 } 2062 } 2063 return max_node; 2064 } 2065 2066 /* 2067 * Finding the preferred nid in a system with NUMA backplane 2068 * interconnect topology is more involved. The goal is to locate 2069 * tasks from numa_groups near each other in the system, and 2070 * untangle workloads from different sides of the system. This requires 2071 * searching down the hierarchy of node groups, recursively searching 2072 * inside the highest scoring group of nodes. The nodemask tricks 2073 * keep the complexity of the search down. 2074 */ 2075 nodes = node_online_map; 2076 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2077 unsigned long max_faults = 0; 2078 nodemask_t max_group = NODE_MASK_NONE; 2079 int a, b; 2080 2081 /* Are there nodes at this distance from each other? */ 2082 if (!find_numa_distance(dist)) 2083 continue; 2084 2085 for_each_node_mask(a, nodes) { 2086 unsigned long faults = 0; 2087 nodemask_t this_group; 2088 nodes_clear(this_group); 2089 2090 /* Sum group's NUMA faults; includes a==b case. */ 2091 for_each_node_mask(b, nodes) { 2092 if (node_distance(a, b) < dist) { 2093 faults += group_faults(p, b); 2094 node_set(b, this_group); 2095 node_clear(b, nodes); 2096 } 2097 } 2098 2099 /* Remember the top group. */ 2100 if (faults > max_faults) { 2101 max_faults = faults; 2102 max_group = this_group; 2103 /* 2104 * subtle: at the smallest distance there is 2105 * just one node left in each "group", the 2106 * winner is the preferred nid. 2107 */ 2108 nid = a; 2109 } 2110 } 2111 /* Next round, evaluate the nodes within max_group. */ 2112 if (!max_faults) 2113 break; 2114 nodes = max_group; 2115 } 2116 return nid; 2117 } 2118 2119 static void task_numa_placement(struct task_struct *p) 2120 { 2121 int seq, nid, max_nid = -1, max_group_nid = -1; 2122 unsigned long max_faults = 0, max_group_faults = 0; 2123 unsigned long fault_types[2] = { 0, 0 }; 2124 unsigned long total_faults; 2125 u64 runtime, period; 2126 spinlock_t *group_lock = NULL; 2127 2128 /* 2129 * The p->mm->numa_scan_seq field gets updated without 2130 * exclusive access. Use READ_ONCE() here to ensure 2131 * that the field is read in a single access: 2132 */ 2133 seq = READ_ONCE(p->mm->numa_scan_seq); 2134 if (p->numa_scan_seq == seq) 2135 return; 2136 p->numa_scan_seq = seq; 2137 p->numa_scan_period_max = task_scan_max(p); 2138 2139 total_faults = p->numa_faults_locality[0] + 2140 p->numa_faults_locality[1]; 2141 runtime = numa_get_avg_runtime(p, &period); 2142 2143 /* If the task is part of a group prevent parallel updates to group stats */ 2144 if (p->numa_group) { 2145 group_lock = &p->numa_group->lock; 2146 spin_lock_irq(group_lock); 2147 } 2148 2149 /* Find the node with the highest number of faults */ 2150 for_each_online_node(nid) { 2151 /* Keep track of the offsets in numa_faults array */ 2152 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2153 unsigned long faults = 0, group_faults = 0; 2154 int priv; 2155 2156 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2157 long diff, f_diff, f_weight; 2158 2159 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2160 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2161 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2162 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2163 2164 /* Decay existing window, copy faults since last scan */ 2165 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2166 fault_types[priv] += p->numa_faults[membuf_idx]; 2167 p->numa_faults[membuf_idx] = 0; 2168 2169 /* 2170 * Normalize the faults_from, so all tasks in a group 2171 * count according to CPU use, instead of by the raw 2172 * number of faults. Tasks with little runtime have 2173 * little over-all impact on throughput, and thus their 2174 * faults are less important. 2175 */ 2176 f_weight = div64_u64(runtime << 16, period + 1); 2177 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2178 (total_faults + 1); 2179 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2180 p->numa_faults[cpubuf_idx] = 0; 2181 2182 p->numa_faults[mem_idx] += diff; 2183 p->numa_faults[cpu_idx] += f_diff; 2184 faults += p->numa_faults[mem_idx]; 2185 p->total_numa_faults += diff; 2186 if (p->numa_group) { 2187 /* 2188 * safe because we can only change our own group 2189 * 2190 * mem_idx represents the offset for a given 2191 * nid and priv in a specific region because it 2192 * is at the beginning of the numa_faults array. 2193 */ 2194 p->numa_group->faults[mem_idx] += diff; 2195 p->numa_group->faults_cpu[mem_idx] += f_diff; 2196 p->numa_group->total_faults += diff; 2197 group_faults += p->numa_group->faults[mem_idx]; 2198 } 2199 } 2200 2201 if (faults > max_faults) { 2202 max_faults = faults; 2203 max_nid = nid; 2204 } 2205 2206 if (group_faults > max_group_faults) { 2207 max_group_faults = group_faults; 2208 max_group_nid = nid; 2209 } 2210 } 2211 2212 update_task_scan_period(p, fault_types[0], fault_types[1]); 2213 2214 if (p->numa_group) { 2215 numa_group_count_active_nodes(p->numa_group); 2216 spin_unlock_irq(group_lock); 2217 max_nid = preferred_group_nid(p, max_group_nid); 2218 } 2219 2220 if (max_faults) { 2221 /* Set the new preferred node */ 2222 if (max_nid != p->numa_preferred_nid) 2223 sched_setnuma(p, max_nid); 2224 2225 if (task_node(p) != p->numa_preferred_nid) 2226 numa_migrate_preferred(p); 2227 } 2228 } 2229 2230 static inline int get_numa_group(struct numa_group *grp) 2231 { 2232 return atomic_inc_not_zero(&grp->refcount); 2233 } 2234 2235 static inline void put_numa_group(struct numa_group *grp) 2236 { 2237 if (atomic_dec_and_test(&grp->refcount)) 2238 kfree_rcu(grp, rcu); 2239 } 2240 2241 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2242 int *priv) 2243 { 2244 struct numa_group *grp, *my_grp; 2245 struct task_struct *tsk; 2246 bool join = false; 2247 int cpu = cpupid_to_cpu(cpupid); 2248 int i; 2249 2250 if (unlikely(!p->numa_group)) { 2251 unsigned int size = sizeof(struct numa_group) + 2252 4*nr_node_ids*sizeof(unsigned long); 2253 2254 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2255 if (!grp) 2256 return; 2257 2258 atomic_set(&grp->refcount, 1); 2259 grp->active_nodes = 1; 2260 grp->max_faults_cpu = 0; 2261 spin_lock_init(&grp->lock); 2262 grp->gid = p->pid; 2263 /* Second half of the array tracks nids where faults happen */ 2264 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2265 nr_node_ids; 2266 2267 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2268 grp->faults[i] = p->numa_faults[i]; 2269 2270 grp->total_faults = p->total_numa_faults; 2271 2272 grp->nr_tasks++; 2273 rcu_assign_pointer(p->numa_group, grp); 2274 } 2275 2276 rcu_read_lock(); 2277 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2278 2279 if (!cpupid_match_pid(tsk, cpupid)) 2280 goto no_join; 2281 2282 grp = rcu_dereference(tsk->numa_group); 2283 if (!grp) 2284 goto no_join; 2285 2286 my_grp = p->numa_group; 2287 if (grp == my_grp) 2288 goto no_join; 2289 2290 /* 2291 * Only join the other group if its bigger; if we're the bigger group, 2292 * the other task will join us. 2293 */ 2294 if (my_grp->nr_tasks > grp->nr_tasks) 2295 goto no_join; 2296 2297 /* 2298 * Tie-break on the grp address. 2299 */ 2300 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2301 goto no_join; 2302 2303 /* Always join threads in the same process. */ 2304 if (tsk->mm == current->mm) 2305 join = true; 2306 2307 /* Simple filter to avoid false positives due to PID collisions */ 2308 if (flags & TNF_SHARED) 2309 join = true; 2310 2311 /* Update priv based on whether false sharing was detected */ 2312 *priv = !join; 2313 2314 if (join && !get_numa_group(grp)) 2315 goto no_join; 2316 2317 rcu_read_unlock(); 2318 2319 if (!join) 2320 return; 2321 2322 BUG_ON(irqs_disabled()); 2323 double_lock_irq(&my_grp->lock, &grp->lock); 2324 2325 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2326 my_grp->faults[i] -= p->numa_faults[i]; 2327 grp->faults[i] += p->numa_faults[i]; 2328 } 2329 my_grp->total_faults -= p->total_numa_faults; 2330 grp->total_faults += p->total_numa_faults; 2331 2332 my_grp->nr_tasks--; 2333 grp->nr_tasks++; 2334 2335 spin_unlock(&my_grp->lock); 2336 spin_unlock_irq(&grp->lock); 2337 2338 rcu_assign_pointer(p->numa_group, grp); 2339 2340 put_numa_group(my_grp); 2341 return; 2342 2343 no_join: 2344 rcu_read_unlock(); 2345 return; 2346 } 2347 2348 void task_numa_free(struct task_struct *p) 2349 { 2350 struct numa_group *grp = p->numa_group; 2351 void *numa_faults = p->numa_faults; 2352 unsigned long flags; 2353 int i; 2354 2355 if (grp) { 2356 spin_lock_irqsave(&grp->lock, flags); 2357 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2358 grp->faults[i] -= p->numa_faults[i]; 2359 grp->total_faults -= p->total_numa_faults; 2360 2361 grp->nr_tasks--; 2362 spin_unlock_irqrestore(&grp->lock, flags); 2363 RCU_INIT_POINTER(p->numa_group, NULL); 2364 put_numa_group(grp); 2365 } 2366 2367 p->numa_faults = NULL; 2368 kfree(numa_faults); 2369 } 2370 2371 /* 2372 * Got a PROT_NONE fault for a page on @node. 2373 */ 2374 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2375 { 2376 struct task_struct *p = current; 2377 bool migrated = flags & TNF_MIGRATED; 2378 int cpu_node = task_node(current); 2379 int local = !!(flags & TNF_FAULT_LOCAL); 2380 struct numa_group *ng; 2381 int priv; 2382 2383 if (!static_branch_likely(&sched_numa_balancing)) 2384 return; 2385 2386 /* for example, ksmd faulting in a user's mm */ 2387 if (!p->mm) 2388 return; 2389 2390 /* Allocate buffer to track faults on a per-node basis */ 2391 if (unlikely(!p->numa_faults)) { 2392 int size = sizeof(*p->numa_faults) * 2393 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2394 2395 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2396 if (!p->numa_faults) 2397 return; 2398 2399 p->total_numa_faults = 0; 2400 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2401 } 2402 2403 /* 2404 * First accesses are treated as private, otherwise consider accesses 2405 * to be private if the accessing pid has not changed 2406 */ 2407 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2408 priv = 1; 2409 } else { 2410 priv = cpupid_match_pid(p, last_cpupid); 2411 if (!priv && !(flags & TNF_NO_GROUP)) 2412 task_numa_group(p, last_cpupid, flags, &priv); 2413 } 2414 2415 /* 2416 * If a workload spans multiple NUMA nodes, a shared fault that 2417 * occurs wholly within the set of nodes that the workload is 2418 * actively using should be counted as local. This allows the 2419 * scan rate to slow down when a workload has settled down. 2420 */ 2421 ng = p->numa_group; 2422 if (!priv && !local && ng && ng->active_nodes > 1 && 2423 numa_is_active_node(cpu_node, ng) && 2424 numa_is_active_node(mem_node, ng)) 2425 local = 1; 2426 2427 task_numa_placement(p); 2428 2429 /* 2430 * Retry task to preferred node migration periodically, in case it 2431 * case it previously failed, or the scheduler moved us. 2432 */ 2433 if (time_after(jiffies, p->numa_migrate_retry)) 2434 numa_migrate_preferred(p); 2435 2436 if (migrated) 2437 p->numa_pages_migrated += pages; 2438 if (flags & TNF_MIGRATE_FAIL) 2439 p->numa_faults_locality[2] += pages; 2440 2441 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2442 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2443 p->numa_faults_locality[local] += pages; 2444 } 2445 2446 static void reset_ptenuma_scan(struct task_struct *p) 2447 { 2448 /* 2449 * We only did a read acquisition of the mmap sem, so 2450 * p->mm->numa_scan_seq is written to without exclusive access 2451 * and the update is not guaranteed to be atomic. That's not 2452 * much of an issue though, since this is just used for 2453 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2454 * expensive, to avoid any form of compiler optimizations: 2455 */ 2456 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2457 p->mm->numa_scan_offset = 0; 2458 } 2459 2460 /* 2461 * The expensive part of numa migration is done from task_work context. 2462 * Triggered from task_tick_numa(). 2463 */ 2464 void task_numa_work(struct callback_head *work) 2465 { 2466 unsigned long migrate, next_scan, now = jiffies; 2467 struct task_struct *p = current; 2468 struct mm_struct *mm = p->mm; 2469 u64 runtime = p->se.sum_exec_runtime; 2470 struct vm_area_struct *vma; 2471 unsigned long start, end; 2472 unsigned long nr_pte_updates = 0; 2473 long pages, virtpages; 2474 2475 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2476 2477 work->next = work; /* protect against double add */ 2478 /* 2479 * Who cares about NUMA placement when they're dying. 2480 * 2481 * NOTE: make sure not to dereference p->mm before this check, 2482 * exit_task_work() happens _after_ exit_mm() so we could be called 2483 * without p->mm even though we still had it when we enqueued this 2484 * work. 2485 */ 2486 if (p->flags & PF_EXITING) 2487 return; 2488 2489 if (!mm->numa_next_scan) { 2490 mm->numa_next_scan = now + 2491 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2492 } 2493 2494 /* 2495 * Enforce maximal scan/migration frequency.. 2496 */ 2497 migrate = mm->numa_next_scan; 2498 if (time_before(now, migrate)) 2499 return; 2500 2501 if (p->numa_scan_period == 0) { 2502 p->numa_scan_period_max = task_scan_max(p); 2503 p->numa_scan_period = task_scan_start(p); 2504 } 2505 2506 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2507 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2508 return; 2509 2510 /* 2511 * Delay this task enough that another task of this mm will likely win 2512 * the next time around. 2513 */ 2514 p->node_stamp += 2 * TICK_NSEC; 2515 2516 start = mm->numa_scan_offset; 2517 pages = sysctl_numa_balancing_scan_size; 2518 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2519 virtpages = pages * 8; /* Scan up to this much virtual space */ 2520 if (!pages) 2521 return; 2522 2523 2524 if (!down_read_trylock(&mm->mmap_sem)) 2525 return; 2526 vma = find_vma(mm, start); 2527 if (!vma) { 2528 reset_ptenuma_scan(p); 2529 start = 0; 2530 vma = mm->mmap; 2531 } 2532 for (; vma; vma = vma->vm_next) { 2533 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2534 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2535 continue; 2536 } 2537 2538 /* 2539 * Shared library pages mapped by multiple processes are not 2540 * migrated as it is expected they are cache replicated. Avoid 2541 * hinting faults in read-only file-backed mappings or the vdso 2542 * as migrating the pages will be of marginal benefit. 2543 */ 2544 if (!vma->vm_mm || 2545 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2546 continue; 2547 2548 /* 2549 * Skip inaccessible VMAs to avoid any confusion between 2550 * PROT_NONE and NUMA hinting ptes 2551 */ 2552 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2553 continue; 2554 2555 do { 2556 start = max(start, vma->vm_start); 2557 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2558 end = min(end, vma->vm_end); 2559 nr_pte_updates = change_prot_numa(vma, start, end); 2560 2561 /* 2562 * Try to scan sysctl_numa_balancing_size worth of 2563 * hpages that have at least one present PTE that 2564 * is not already pte-numa. If the VMA contains 2565 * areas that are unused or already full of prot_numa 2566 * PTEs, scan up to virtpages, to skip through those 2567 * areas faster. 2568 */ 2569 if (nr_pte_updates) 2570 pages -= (end - start) >> PAGE_SHIFT; 2571 virtpages -= (end - start) >> PAGE_SHIFT; 2572 2573 start = end; 2574 if (pages <= 0 || virtpages <= 0) 2575 goto out; 2576 2577 cond_resched(); 2578 } while (end != vma->vm_end); 2579 } 2580 2581 out: 2582 /* 2583 * It is possible to reach the end of the VMA list but the last few 2584 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2585 * would find the !migratable VMA on the next scan but not reset the 2586 * scanner to the start so check it now. 2587 */ 2588 if (vma) 2589 mm->numa_scan_offset = start; 2590 else 2591 reset_ptenuma_scan(p); 2592 up_read(&mm->mmap_sem); 2593 2594 /* 2595 * Make sure tasks use at least 32x as much time to run other code 2596 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2597 * Usually update_task_scan_period slows down scanning enough; on an 2598 * overloaded system we need to limit overhead on a per task basis. 2599 */ 2600 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2601 u64 diff = p->se.sum_exec_runtime - runtime; 2602 p->node_stamp += 32 * diff; 2603 } 2604 } 2605 2606 /* 2607 * Drive the periodic memory faults.. 2608 */ 2609 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2610 { 2611 struct callback_head *work = &curr->numa_work; 2612 u64 period, now; 2613 2614 /* 2615 * We don't care about NUMA placement if we don't have memory. 2616 */ 2617 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2618 return; 2619 2620 /* 2621 * Using runtime rather than walltime has the dual advantage that 2622 * we (mostly) drive the selection from busy threads and that the 2623 * task needs to have done some actual work before we bother with 2624 * NUMA placement. 2625 */ 2626 now = curr->se.sum_exec_runtime; 2627 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2628 2629 if (now > curr->node_stamp + period) { 2630 if (!curr->node_stamp) 2631 curr->numa_scan_period = task_scan_start(curr); 2632 curr->node_stamp += period; 2633 2634 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2635 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2636 task_work_add(curr, work, true); 2637 } 2638 } 2639 } 2640 2641 #else 2642 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2643 { 2644 } 2645 2646 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2647 { 2648 } 2649 2650 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2651 { 2652 } 2653 2654 #endif /* CONFIG_NUMA_BALANCING */ 2655 2656 static void 2657 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2658 { 2659 update_load_add(&cfs_rq->load, se->load.weight); 2660 if (!parent_entity(se)) 2661 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2662 #ifdef CONFIG_SMP 2663 if (entity_is_task(se)) { 2664 struct rq *rq = rq_of(cfs_rq); 2665 2666 account_numa_enqueue(rq, task_of(se)); 2667 list_add(&se->group_node, &rq->cfs_tasks); 2668 } 2669 #endif 2670 cfs_rq->nr_running++; 2671 } 2672 2673 static void 2674 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2675 { 2676 update_load_sub(&cfs_rq->load, se->load.weight); 2677 if (!parent_entity(se)) 2678 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2679 #ifdef CONFIG_SMP 2680 if (entity_is_task(se)) { 2681 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2682 list_del_init(&se->group_node); 2683 } 2684 #endif 2685 cfs_rq->nr_running--; 2686 } 2687 2688 /* 2689 * Signed add and clamp on underflow. 2690 * 2691 * Explicitly do a load-store to ensure the intermediate value never hits 2692 * memory. This allows lockless observations without ever seeing the negative 2693 * values. 2694 */ 2695 #define add_positive(_ptr, _val) do { \ 2696 typeof(_ptr) ptr = (_ptr); \ 2697 typeof(_val) val = (_val); \ 2698 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2699 \ 2700 res = var + val; \ 2701 \ 2702 if (val < 0 && res > var) \ 2703 res = 0; \ 2704 \ 2705 WRITE_ONCE(*ptr, res); \ 2706 } while (0) 2707 2708 /* 2709 * Unsigned subtract and clamp on underflow. 2710 * 2711 * Explicitly do a load-store to ensure the intermediate value never hits 2712 * memory. This allows lockless observations without ever seeing the negative 2713 * values. 2714 */ 2715 #define sub_positive(_ptr, _val) do { \ 2716 typeof(_ptr) ptr = (_ptr); \ 2717 typeof(*ptr) val = (_val); \ 2718 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2719 res = var - val; \ 2720 if (res > var) \ 2721 res = 0; \ 2722 WRITE_ONCE(*ptr, res); \ 2723 } while (0) 2724 2725 #ifdef CONFIG_SMP 2726 /* 2727 * XXX we want to get rid of these helpers and use the full load resolution. 2728 */ 2729 static inline long se_weight(struct sched_entity *se) 2730 { 2731 return scale_load_down(se->load.weight); 2732 } 2733 2734 static inline long se_runnable(struct sched_entity *se) 2735 { 2736 return scale_load_down(se->runnable_weight); 2737 } 2738 2739 static inline void 2740 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2741 { 2742 cfs_rq->runnable_weight += se->runnable_weight; 2743 2744 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2745 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2746 } 2747 2748 static inline void 2749 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2750 { 2751 cfs_rq->runnable_weight -= se->runnable_weight; 2752 2753 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2754 sub_positive(&cfs_rq->avg.runnable_load_sum, 2755 se_runnable(se) * se->avg.runnable_load_sum); 2756 } 2757 2758 static inline void 2759 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2760 { 2761 cfs_rq->avg.load_avg += se->avg.load_avg; 2762 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2763 } 2764 2765 static inline void 2766 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2767 { 2768 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2769 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2770 } 2771 #else 2772 static inline void 2773 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2774 static inline void 2775 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2776 static inline void 2777 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2778 static inline void 2779 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2780 #endif 2781 2782 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2783 unsigned long weight, unsigned long runnable) 2784 { 2785 if (se->on_rq) { 2786 /* commit outstanding execution time */ 2787 if (cfs_rq->curr == se) 2788 update_curr(cfs_rq); 2789 account_entity_dequeue(cfs_rq, se); 2790 dequeue_runnable_load_avg(cfs_rq, se); 2791 } 2792 dequeue_load_avg(cfs_rq, se); 2793 2794 se->runnable_weight = runnable; 2795 update_load_set(&se->load, weight); 2796 2797 #ifdef CONFIG_SMP 2798 do { 2799 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2800 2801 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2802 se->avg.runnable_load_avg = 2803 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2804 } while (0); 2805 #endif 2806 2807 enqueue_load_avg(cfs_rq, se); 2808 if (se->on_rq) { 2809 account_entity_enqueue(cfs_rq, se); 2810 enqueue_runnable_load_avg(cfs_rq, se); 2811 } 2812 } 2813 2814 void reweight_task(struct task_struct *p, int prio) 2815 { 2816 struct sched_entity *se = &p->se; 2817 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2818 struct load_weight *load = &se->load; 2819 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2820 2821 reweight_entity(cfs_rq, se, weight, weight); 2822 load->inv_weight = sched_prio_to_wmult[prio]; 2823 } 2824 2825 #ifdef CONFIG_FAIR_GROUP_SCHED 2826 # ifdef CONFIG_SMP 2827 /* 2828 * All this does is approximate the hierarchical proportion which includes that 2829 * global sum we all love to hate. 2830 * 2831 * That is, the weight of a group entity, is the proportional share of the 2832 * group weight based on the group runqueue weights. That is: 2833 * 2834 * tg->weight * grq->load.weight 2835 * ge->load.weight = ----------------------------- (1) 2836 * \Sum grq->load.weight 2837 * 2838 * Now, because computing that sum is prohibitively expensive to compute (been 2839 * there, done that) we approximate it with this average stuff. The average 2840 * moves slower and therefore the approximation is cheaper and more stable. 2841 * 2842 * So instead of the above, we substitute: 2843 * 2844 * grq->load.weight -> grq->avg.load_avg (2) 2845 * 2846 * which yields the following: 2847 * 2848 * tg->weight * grq->avg.load_avg 2849 * ge->load.weight = ------------------------------ (3) 2850 * tg->load_avg 2851 * 2852 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2853 * 2854 * That is shares_avg, and it is right (given the approximation (2)). 2855 * 2856 * The problem with it is that because the average is slow -- it was designed 2857 * to be exactly that of course -- this leads to transients in boundary 2858 * conditions. In specific, the case where the group was idle and we start the 2859 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2860 * yielding bad latency etc.. 2861 * 2862 * Now, in that special case (1) reduces to: 2863 * 2864 * tg->weight * grq->load.weight 2865 * ge->load.weight = ----------------------------- = tg->weight (4) 2866 * grp->load.weight 2867 * 2868 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2869 * 2870 * So what we do is modify our approximation (3) to approach (4) in the (near) 2871 * UP case, like: 2872 * 2873 * ge->load.weight = 2874 * 2875 * tg->weight * grq->load.weight 2876 * --------------------------------------------------- (5) 2877 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2878 * 2879 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2880 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2881 * 2882 * 2883 * tg->weight * grq->load.weight 2884 * ge->load.weight = ----------------------------- (6) 2885 * tg_load_avg' 2886 * 2887 * Where: 2888 * 2889 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2890 * max(grq->load.weight, grq->avg.load_avg) 2891 * 2892 * And that is shares_weight and is icky. In the (near) UP case it approaches 2893 * (4) while in the normal case it approaches (3). It consistently 2894 * overestimates the ge->load.weight and therefore: 2895 * 2896 * \Sum ge->load.weight >= tg->weight 2897 * 2898 * hence icky! 2899 */ 2900 static long calc_group_shares(struct cfs_rq *cfs_rq) 2901 { 2902 long tg_weight, tg_shares, load, shares; 2903 struct task_group *tg = cfs_rq->tg; 2904 2905 tg_shares = READ_ONCE(tg->shares); 2906 2907 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 2908 2909 tg_weight = atomic_long_read(&tg->load_avg); 2910 2911 /* Ensure tg_weight >= load */ 2912 tg_weight -= cfs_rq->tg_load_avg_contrib; 2913 tg_weight += load; 2914 2915 shares = (tg_shares * load); 2916 if (tg_weight) 2917 shares /= tg_weight; 2918 2919 /* 2920 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2921 * of a group with small tg->shares value. It is a floor value which is 2922 * assigned as a minimum load.weight to the sched_entity representing 2923 * the group on a CPU. 2924 * 2925 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2926 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2927 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2928 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2929 * instead of 0. 2930 */ 2931 return clamp_t(long, shares, MIN_SHARES, tg_shares); 2932 } 2933 2934 /* 2935 * This calculates the effective runnable weight for a group entity based on 2936 * the group entity weight calculated above. 2937 * 2938 * Because of the above approximation (2), our group entity weight is 2939 * an load_avg based ratio (3). This means that it includes blocked load and 2940 * does not represent the runnable weight. 2941 * 2942 * Approximate the group entity's runnable weight per ratio from the group 2943 * runqueue: 2944 * 2945 * grq->avg.runnable_load_avg 2946 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 2947 * grq->avg.load_avg 2948 * 2949 * However, analogous to above, since the avg numbers are slow, this leads to 2950 * transients in the from-idle case. Instead we use: 2951 * 2952 * ge->runnable_weight = ge->load.weight * 2953 * 2954 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 2955 * ----------------------------------------------------- (8) 2956 * max(grq->avg.load_avg, grq->load.weight) 2957 * 2958 * Where these max() serve both to use the 'instant' values to fix the slow 2959 * from-idle and avoid the /0 on to-idle, similar to (6). 2960 */ 2961 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 2962 { 2963 long runnable, load_avg; 2964 2965 load_avg = max(cfs_rq->avg.load_avg, 2966 scale_load_down(cfs_rq->load.weight)); 2967 2968 runnable = max(cfs_rq->avg.runnable_load_avg, 2969 scale_load_down(cfs_rq->runnable_weight)); 2970 2971 runnable *= shares; 2972 if (load_avg) 2973 runnable /= load_avg; 2974 2975 return clamp_t(long, runnable, MIN_SHARES, shares); 2976 } 2977 # endif /* CONFIG_SMP */ 2978 2979 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2980 2981 /* 2982 * Recomputes the group entity based on the current state of its group 2983 * runqueue. 2984 */ 2985 static void update_cfs_group(struct sched_entity *se) 2986 { 2987 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 2988 long shares, runnable; 2989 2990 if (!gcfs_rq) 2991 return; 2992 2993 if (throttled_hierarchy(gcfs_rq)) 2994 return; 2995 2996 #ifndef CONFIG_SMP 2997 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 2998 2999 if (likely(se->load.weight == shares)) 3000 return; 3001 #else 3002 shares = calc_group_shares(gcfs_rq); 3003 runnable = calc_group_runnable(gcfs_rq, shares); 3004 #endif 3005 3006 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3007 } 3008 3009 #else /* CONFIG_FAIR_GROUP_SCHED */ 3010 static inline void update_cfs_group(struct sched_entity *se) 3011 { 3012 } 3013 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3014 3015 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq) 3016 { 3017 struct rq *rq = rq_of(cfs_rq); 3018 3019 if (&rq->cfs == cfs_rq) { 3020 /* 3021 * There are a few boundary cases this might miss but it should 3022 * get called often enough that that should (hopefully) not be 3023 * a real problem -- added to that it only calls on the local 3024 * CPU, so if we enqueue remotely we'll miss an update, but 3025 * the next tick/schedule should update. 3026 * 3027 * It will not get called when we go idle, because the idle 3028 * thread is a different class (!fair), nor will the utilization 3029 * number include things like RT tasks. 3030 * 3031 * As is, the util number is not freq-invariant (we'd have to 3032 * implement arch_scale_freq_capacity() for that). 3033 * 3034 * See cpu_util(). 3035 */ 3036 cpufreq_update_util(rq, 0); 3037 } 3038 } 3039 3040 #ifdef CONFIG_SMP 3041 /* 3042 * Approximate: 3043 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 3044 */ 3045 static u64 decay_load(u64 val, u64 n) 3046 { 3047 unsigned int local_n; 3048 3049 if (unlikely(n > LOAD_AVG_PERIOD * 63)) 3050 return 0; 3051 3052 /* after bounds checking we can collapse to 32-bit */ 3053 local_n = n; 3054 3055 /* 3056 * As y^PERIOD = 1/2, we can combine 3057 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 3058 * With a look-up table which covers y^n (n<PERIOD) 3059 * 3060 * To achieve constant time decay_load. 3061 */ 3062 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 3063 val >>= local_n / LOAD_AVG_PERIOD; 3064 local_n %= LOAD_AVG_PERIOD; 3065 } 3066 3067 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 3068 return val; 3069 } 3070 3071 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) 3072 { 3073 u32 c1, c2, c3 = d3; /* y^0 == 1 */ 3074 3075 /* 3076 * c1 = d1 y^p 3077 */ 3078 c1 = decay_load((u64)d1, periods); 3079 3080 /* 3081 * p-1 3082 * c2 = 1024 \Sum y^n 3083 * n=1 3084 * 3085 * inf inf 3086 * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) 3087 * n=0 n=p 3088 */ 3089 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; 3090 3091 return c1 + c2 + c3; 3092 } 3093 3094 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 3095 3096 /* 3097 * Accumulate the three separate parts of the sum; d1 the remainder 3098 * of the last (incomplete) period, d2 the span of full periods and d3 3099 * the remainder of the (incomplete) current period. 3100 * 3101 * d1 d2 d3 3102 * ^ ^ ^ 3103 * | | | 3104 * |<->|<----------------->|<--->| 3105 * ... |---x---|------| ... |------|-----x (now) 3106 * 3107 * p-1 3108 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 3109 * n=1 3110 * 3111 * = u y^p + (Step 1) 3112 * 3113 * p-1 3114 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) 3115 * n=1 3116 */ 3117 static __always_inline u32 3118 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa, 3119 unsigned long load, unsigned long runnable, int running) 3120 { 3121 unsigned long scale_freq, scale_cpu; 3122 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ 3123 u64 periods; 3124 3125 scale_freq = arch_scale_freq_capacity(NULL, cpu); 3126 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 3127 3128 delta += sa->period_contrib; 3129 periods = delta / 1024; /* A period is 1024us (~1ms) */ 3130 3131 /* 3132 * Step 1: decay old *_sum if we crossed period boundaries. 3133 */ 3134 if (periods) { 3135 sa->load_sum = decay_load(sa->load_sum, periods); 3136 sa->runnable_load_sum = 3137 decay_load(sa->runnable_load_sum, periods); 3138 sa->util_sum = decay_load((u64)(sa->util_sum), periods); 3139 3140 /* 3141 * Step 2 3142 */ 3143 delta %= 1024; 3144 contrib = __accumulate_pelt_segments(periods, 3145 1024 - sa->period_contrib, delta); 3146 } 3147 sa->period_contrib = delta; 3148 3149 contrib = cap_scale(contrib, scale_freq); 3150 if (load) 3151 sa->load_sum += load * contrib; 3152 if (runnable) 3153 sa->runnable_load_sum += runnable * contrib; 3154 if (running) 3155 sa->util_sum += contrib * scale_cpu; 3156 3157 return periods; 3158 } 3159 3160 /* 3161 * We can represent the historical contribution to runnable average as the 3162 * coefficients of a geometric series. To do this we sub-divide our runnable 3163 * history into segments of approximately 1ms (1024us); label the segment that 3164 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 3165 * 3166 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 3167 * p0 p1 p2 3168 * (now) (~1ms ago) (~2ms ago) 3169 * 3170 * Let u_i denote the fraction of p_i that the entity was runnable. 3171 * 3172 * We then designate the fractions u_i as our co-efficients, yielding the 3173 * following representation of historical load: 3174 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 3175 * 3176 * We choose y based on the with of a reasonably scheduling period, fixing: 3177 * y^32 = 0.5 3178 * 3179 * This means that the contribution to load ~32ms ago (u_32) will be weighted 3180 * approximately half as much as the contribution to load within the last ms 3181 * (u_0). 3182 * 3183 * When a period "rolls over" and we have new u_0`, multiplying the previous 3184 * sum again by y is sufficient to update: 3185 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 3186 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 3187 */ 3188 static __always_inline int 3189 ___update_load_sum(u64 now, int cpu, struct sched_avg *sa, 3190 unsigned long load, unsigned long runnable, int running) 3191 { 3192 u64 delta; 3193 3194 delta = now - sa->last_update_time; 3195 /* 3196 * This should only happen when time goes backwards, which it 3197 * unfortunately does during sched clock init when we swap over to TSC. 3198 */ 3199 if ((s64)delta < 0) { 3200 sa->last_update_time = now; 3201 return 0; 3202 } 3203 3204 /* 3205 * Use 1024ns as the unit of measurement since it's a reasonable 3206 * approximation of 1us and fast to compute. 3207 */ 3208 delta >>= 10; 3209 if (!delta) 3210 return 0; 3211 3212 sa->last_update_time += delta << 10; 3213 3214 /* 3215 * running is a subset of runnable (weight) so running can't be set if 3216 * runnable is clear. But there are some corner cases where the current 3217 * se has been already dequeued but cfs_rq->curr still points to it. 3218 * This means that weight will be 0 but not running for a sched_entity 3219 * but also for a cfs_rq if the latter becomes idle. As an example, 3220 * this happens during idle_balance() which calls 3221 * update_blocked_averages() 3222 */ 3223 if (!load) 3224 runnable = running = 0; 3225 3226 /* 3227 * Now we know we crossed measurement unit boundaries. The *_avg 3228 * accrues by two steps: 3229 * 3230 * Step 1: accumulate *_sum since last_update_time. If we haven't 3231 * crossed period boundaries, finish. 3232 */ 3233 if (!accumulate_sum(delta, cpu, sa, load, runnable, running)) 3234 return 0; 3235 3236 return 1; 3237 } 3238 3239 static __always_inline void 3240 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable) 3241 { 3242 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3243 3244 /* 3245 * Step 2: update *_avg. 3246 */ 3247 sa->load_avg = div_u64(load * sa->load_sum, divider); 3248 sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider); 3249 sa->util_avg = sa->util_sum / divider; 3250 } 3251 3252 /* 3253 * sched_entity: 3254 * 3255 * task: 3256 * se_runnable() == se_weight() 3257 * 3258 * group: [ see update_cfs_group() ] 3259 * se_weight() = tg->weight * grq->load_avg / tg->load_avg 3260 * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg 3261 * 3262 * load_sum := runnable_sum 3263 * load_avg = se_weight(se) * runnable_avg 3264 * 3265 * runnable_load_sum := runnable_sum 3266 * runnable_load_avg = se_runnable(se) * runnable_avg 3267 * 3268 * XXX collapse load_sum and runnable_load_sum 3269 * 3270 * cfq_rs: 3271 * 3272 * load_sum = \Sum se_weight(se) * se->avg.load_sum 3273 * load_avg = \Sum se->avg.load_avg 3274 * 3275 * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum 3276 * runnable_load_avg = \Sum se->avg.runable_load_avg 3277 */ 3278 3279 static int 3280 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se) 3281 { 3282 if (entity_is_task(se)) 3283 se->runnable_weight = se->load.weight; 3284 3285 if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) { 3286 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 3287 return 1; 3288 } 3289 3290 return 0; 3291 } 3292 3293 static int 3294 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se) 3295 { 3296 if (entity_is_task(se)) 3297 se->runnable_weight = se->load.weight; 3298 3299 if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq, 3300 cfs_rq->curr == se)) { 3301 3302 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 3303 return 1; 3304 } 3305 3306 return 0; 3307 } 3308 3309 static int 3310 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq) 3311 { 3312 if (___update_load_sum(now, cpu, &cfs_rq->avg, 3313 scale_load_down(cfs_rq->load.weight), 3314 scale_load_down(cfs_rq->runnable_weight), 3315 cfs_rq->curr != NULL)) { 3316 3317 ___update_load_avg(&cfs_rq->avg, 1, 1); 3318 return 1; 3319 } 3320 3321 return 0; 3322 } 3323 3324 #ifdef CONFIG_FAIR_GROUP_SCHED 3325 /** 3326 * update_tg_load_avg - update the tg's load avg 3327 * @cfs_rq: the cfs_rq whose avg changed 3328 * @force: update regardless of how small the difference 3329 * 3330 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3331 * However, because tg->load_avg is a global value there are performance 3332 * considerations. 3333 * 3334 * In order to avoid having to look at the other cfs_rq's, we use a 3335 * differential update where we store the last value we propagated. This in 3336 * turn allows skipping updates if the differential is 'small'. 3337 * 3338 * Updating tg's load_avg is necessary before update_cfs_share(). 3339 */ 3340 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3341 { 3342 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3343 3344 /* 3345 * No need to update load_avg for root_task_group as it is not used. 3346 */ 3347 if (cfs_rq->tg == &root_task_group) 3348 return; 3349 3350 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3351 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3352 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3353 } 3354 } 3355 3356 /* 3357 * Called within set_task_rq() right before setting a task's cpu. The 3358 * caller only guarantees p->pi_lock is held; no other assumptions, 3359 * including the state of rq->lock, should be made. 3360 */ 3361 void set_task_rq_fair(struct sched_entity *se, 3362 struct cfs_rq *prev, struct cfs_rq *next) 3363 { 3364 u64 p_last_update_time; 3365 u64 n_last_update_time; 3366 3367 if (!sched_feat(ATTACH_AGE_LOAD)) 3368 return; 3369 3370 /* 3371 * We are supposed to update the task to "current" time, then its up to 3372 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3373 * getting what current time is, so simply throw away the out-of-date 3374 * time. This will result in the wakee task is less decayed, but giving 3375 * the wakee more load sounds not bad. 3376 */ 3377 if (!(se->avg.last_update_time && prev)) 3378 return; 3379 3380 #ifndef CONFIG_64BIT 3381 { 3382 u64 p_last_update_time_copy; 3383 u64 n_last_update_time_copy; 3384 3385 do { 3386 p_last_update_time_copy = prev->load_last_update_time_copy; 3387 n_last_update_time_copy = next->load_last_update_time_copy; 3388 3389 smp_rmb(); 3390 3391 p_last_update_time = prev->avg.last_update_time; 3392 n_last_update_time = next->avg.last_update_time; 3393 3394 } while (p_last_update_time != p_last_update_time_copy || 3395 n_last_update_time != n_last_update_time_copy); 3396 } 3397 #else 3398 p_last_update_time = prev->avg.last_update_time; 3399 n_last_update_time = next->avg.last_update_time; 3400 #endif 3401 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se); 3402 se->avg.last_update_time = n_last_update_time; 3403 } 3404 3405 3406 /* 3407 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3408 * propagate its contribution. The key to this propagation is the invariant 3409 * that for each group: 3410 * 3411 * ge->avg == grq->avg (1) 3412 * 3413 * _IFF_ we look at the pure running and runnable sums. Because they 3414 * represent the very same entity, just at different points in the hierarchy. 3415 * 3416 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3417 * sum over (but still wrong, because the group entity and group rq do not have 3418 * their PELT windows aligned). 3419 * 3420 * However, update_tg_cfs_runnable() is more complex. So we have: 3421 * 3422 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3423 * 3424 * And since, like util, the runnable part should be directly transferable, 3425 * the following would _appear_ to be the straight forward approach: 3426 * 3427 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3428 * 3429 * And per (1) we have: 3430 * 3431 * ge->avg.runnable_avg == grq->avg.runnable_avg 3432 * 3433 * Which gives: 3434 * 3435 * ge->load.weight * grq->avg.load_avg 3436 * ge->avg.load_avg = ----------------------------------- (4) 3437 * grq->load.weight 3438 * 3439 * Except that is wrong! 3440 * 3441 * Because while for entities historical weight is not important and we 3442 * really only care about our future and therefore can consider a pure 3443 * runnable sum, runqueues can NOT do this. 3444 * 3445 * We specifically want runqueues to have a load_avg that includes 3446 * historical weights. Those represent the blocked load, the load we expect 3447 * to (shortly) return to us. This only works by keeping the weights as 3448 * integral part of the sum. We therefore cannot decompose as per (3). 3449 * 3450 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3451 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3452 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3453 * runnable section of these tasks overlap (or not). If they were to perfectly 3454 * align the rq as a whole would be runnable 2/3 of the time. If however we 3455 * always have at least 1 runnable task, the rq as a whole is always runnable. 3456 * 3457 * So we'll have to approximate.. :/ 3458 * 3459 * Given the constraint: 3460 * 3461 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3462 * 3463 * We can construct a rule that adds runnable to a rq by assuming minimal 3464 * overlap. 3465 * 3466 * On removal, we'll assume each task is equally runnable; which yields: 3467 * 3468 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3469 * 3470 * XXX: only do this for the part of runnable > running ? 3471 * 3472 */ 3473 3474 static inline void 3475 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3476 { 3477 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3478 3479 /* Nothing to update */ 3480 if (!delta) 3481 return; 3482 3483 /* 3484 * The relation between sum and avg is: 3485 * 3486 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3487 * 3488 * however, the PELT windows are not aligned between grq and gse. 3489 */ 3490 3491 /* Set new sched_entity's utilization */ 3492 se->avg.util_avg = gcfs_rq->avg.util_avg; 3493 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3494 3495 /* Update parent cfs_rq utilization */ 3496 add_positive(&cfs_rq->avg.util_avg, delta); 3497 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3498 } 3499 3500 static inline void 3501 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3502 { 3503 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3504 unsigned long runnable_load_avg, load_avg; 3505 u64 runnable_load_sum, load_sum = 0; 3506 s64 delta_sum; 3507 3508 if (!runnable_sum) 3509 return; 3510 3511 gcfs_rq->prop_runnable_sum = 0; 3512 3513 if (runnable_sum >= 0) { 3514 /* 3515 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3516 * the CPU is saturated running == runnable. 3517 */ 3518 runnable_sum += se->avg.load_sum; 3519 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3520 } else { 3521 /* 3522 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3523 * assuming all tasks are equally runnable. 3524 */ 3525 if (scale_load_down(gcfs_rq->load.weight)) { 3526 load_sum = div_s64(gcfs_rq->avg.load_sum, 3527 scale_load_down(gcfs_rq->load.weight)); 3528 } 3529 3530 /* But make sure to not inflate se's runnable */ 3531 runnable_sum = min(se->avg.load_sum, load_sum); 3532 } 3533 3534 /* 3535 * runnable_sum can't be lower than running_sum 3536 * As running sum is scale with cpu capacity wehreas the runnable sum 3537 * is not we rescale running_sum 1st 3538 */ 3539 running_sum = se->avg.util_sum / 3540 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 3541 runnable_sum = max(runnable_sum, running_sum); 3542 3543 load_sum = (s64)se_weight(se) * runnable_sum; 3544 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3545 3546 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3547 delta_avg = load_avg - se->avg.load_avg; 3548 3549 se->avg.load_sum = runnable_sum; 3550 se->avg.load_avg = load_avg; 3551 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3552 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3553 3554 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3555 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3556 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3557 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3558 3559 se->avg.runnable_load_sum = runnable_sum; 3560 se->avg.runnable_load_avg = runnable_load_avg; 3561 3562 if (se->on_rq) { 3563 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3564 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3565 } 3566 } 3567 3568 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3569 { 3570 cfs_rq->propagate = 1; 3571 cfs_rq->prop_runnable_sum += runnable_sum; 3572 } 3573 3574 /* Update task and its cfs_rq load average */ 3575 static inline int propagate_entity_load_avg(struct sched_entity *se) 3576 { 3577 struct cfs_rq *cfs_rq, *gcfs_rq; 3578 3579 if (entity_is_task(se)) 3580 return 0; 3581 3582 gcfs_rq = group_cfs_rq(se); 3583 if (!gcfs_rq->propagate) 3584 return 0; 3585 3586 gcfs_rq->propagate = 0; 3587 3588 cfs_rq = cfs_rq_of(se); 3589 3590 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3591 3592 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3593 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3594 3595 return 1; 3596 } 3597 3598 /* 3599 * Check if we need to update the load and the utilization of a blocked 3600 * group_entity: 3601 */ 3602 static inline bool skip_blocked_update(struct sched_entity *se) 3603 { 3604 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3605 3606 /* 3607 * If sched_entity still have not zero load or utilization, we have to 3608 * decay it: 3609 */ 3610 if (se->avg.load_avg || se->avg.util_avg) 3611 return false; 3612 3613 /* 3614 * If there is a pending propagation, we have to update the load and 3615 * the utilization of the sched_entity: 3616 */ 3617 if (gcfs_rq->propagate) 3618 return false; 3619 3620 /* 3621 * Otherwise, the load and the utilization of the sched_entity is 3622 * already zero and there is no pending propagation, so it will be a 3623 * waste of time to try to decay it: 3624 */ 3625 return true; 3626 } 3627 3628 #else /* CONFIG_FAIR_GROUP_SCHED */ 3629 3630 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3631 3632 static inline int propagate_entity_load_avg(struct sched_entity *se) 3633 { 3634 return 0; 3635 } 3636 3637 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3638 3639 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3640 3641 /** 3642 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3643 * @now: current time, as per cfs_rq_clock_task() 3644 * @cfs_rq: cfs_rq to update 3645 * 3646 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3647 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3648 * post_init_entity_util_avg(). 3649 * 3650 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3651 * 3652 * Returns true if the load decayed or we removed load. 3653 * 3654 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3655 * call update_tg_load_avg() when this function returns true. 3656 */ 3657 static inline int 3658 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3659 { 3660 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3661 struct sched_avg *sa = &cfs_rq->avg; 3662 int decayed = 0; 3663 3664 if (cfs_rq->removed.nr) { 3665 unsigned long r; 3666 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3667 3668 raw_spin_lock(&cfs_rq->removed.lock); 3669 swap(cfs_rq->removed.util_avg, removed_util); 3670 swap(cfs_rq->removed.load_avg, removed_load); 3671 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3672 cfs_rq->removed.nr = 0; 3673 raw_spin_unlock(&cfs_rq->removed.lock); 3674 3675 r = removed_load; 3676 sub_positive(&sa->load_avg, r); 3677 sub_positive(&sa->load_sum, r * divider); 3678 3679 r = removed_util; 3680 sub_positive(&sa->util_avg, r); 3681 sub_positive(&sa->util_sum, r * divider); 3682 3683 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3684 3685 decayed = 1; 3686 } 3687 3688 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq); 3689 3690 #ifndef CONFIG_64BIT 3691 smp_wmb(); 3692 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3693 #endif 3694 3695 if (decayed) 3696 cfs_rq_util_change(cfs_rq); 3697 3698 return decayed; 3699 } 3700 3701 /** 3702 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3703 * @cfs_rq: cfs_rq to attach to 3704 * @se: sched_entity to attach 3705 * 3706 * Must call update_cfs_rq_load_avg() before this, since we rely on 3707 * cfs_rq->avg.last_update_time being current. 3708 */ 3709 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3710 { 3711 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3712 3713 /* 3714 * When we attach the @se to the @cfs_rq, we must align the decay 3715 * window because without that, really weird and wonderful things can 3716 * happen. 3717 * 3718 * XXX illustrate 3719 */ 3720 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3721 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3722 3723 /* 3724 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3725 * period_contrib. This isn't strictly correct, but since we're 3726 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3727 * _sum a little. 3728 */ 3729 se->avg.util_sum = se->avg.util_avg * divider; 3730 3731 se->avg.load_sum = divider; 3732 if (se_weight(se)) { 3733 se->avg.load_sum = 3734 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3735 } 3736 3737 se->avg.runnable_load_sum = se->avg.load_sum; 3738 3739 enqueue_load_avg(cfs_rq, se); 3740 cfs_rq->avg.util_avg += se->avg.util_avg; 3741 cfs_rq->avg.util_sum += se->avg.util_sum; 3742 3743 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3744 3745 cfs_rq_util_change(cfs_rq); 3746 } 3747 3748 /** 3749 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3750 * @cfs_rq: cfs_rq to detach from 3751 * @se: sched_entity to detach 3752 * 3753 * Must call update_cfs_rq_load_avg() before this, since we rely on 3754 * cfs_rq->avg.last_update_time being current. 3755 */ 3756 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3757 { 3758 dequeue_load_avg(cfs_rq, se); 3759 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3760 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3761 3762 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3763 3764 cfs_rq_util_change(cfs_rq); 3765 } 3766 3767 /* 3768 * Optional action to be done while updating the load average 3769 */ 3770 #define UPDATE_TG 0x1 3771 #define SKIP_AGE_LOAD 0x2 3772 #define DO_ATTACH 0x4 3773 3774 /* Update task and its cfs_rq load average */ 3775 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3776 { 3777 u64 now = cfs_rq_clock_task(cfs_rq); 3778 struct rq *rq = rq_of(cfs_rq); 3779 int cpu = cpu_of(rq); 3780 int decayed; 3781 3782 /* 3783 * Track task load average for carrying it to new CPU after migrated, and 3784 * track group sched_entity load average for task_h_load calc in migration 3785 */ 3786 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3787 __update_load_avg_se(now, cpu, cfs_rq, se); 3788 3789 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3790 decayed |= propagate_entity_load_avg(se); 3791 3792 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3793 3794 attach_entity_load_avg(cfs_rq, se); 3795 update_tg_load_avg(cfs_rq, 0); 3796 3797 } else if (decayed && (flags & UPDATE_TG)) 3798 update_tg_load_avg(cfs_rq, 0); 3799 } 3800 3801 #ifndef CONFIG_64BIT 3802 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3803 { 3804 u64 last_update_time_copy; 3805 u64 last_update_time; 3806 3807 do { 3808 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3809 smp_rmb(); 3810 last_update_time = cfs_rq->avg.last_update_time; 3811 } while (last_update_time != last_update_time_copy); 3812 3813 return last_update_time; 3814 } 3815 #else 3816 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3817 { 3818 return cfs_rq->avg.last_update_time; 3819 } 3820 #endif 3821 3822 /* 3823 * Synchronize entity load avg of dequeued entity without locking 3824 * the previous rq. 3825 */ 3826 void sync_entity_load_avg(struct sched_entity *se) 3827 { 3828 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3829 u64 last_update_time; 3830 3831 last_update_time = cfs_rq_last_update_time(cfs_rq); 3832 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se); 3833 } 3834 3835 /* 3836 * Task first catches up with cfs_rq, and then subtract 3837 * itself from the cfs_rq (task must be off the queue now). 3838 */ 3839 void remove_entity_load_avg(struct sched_entity *se) 3840 { 3841 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3842 unsigned long flags; 3843 3844 /* 3845 * tasks cannot exit without having gone through wake_up_new_task() -> 3846 * post_init_entity_util_avg() which will have added things to the 3847 * cfs_rq, so we can remove unconditionally. 3848 * 3849 * Similarly for groups, they will have passed through 3850 * post_init_entity_util_avg() before unregister_sched_fair_group() 3851 * calls this. 3852 */ 3853 3854 sync_entity_load_avg(se); 3855 3856 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3857 ++cfs_rq->removed.nr; 3858 cfs_rq->removed.util_avg += se->avg.util_avg; 3859 cfs_rq->removed.load_avg += se->avg.load_avg; 3860 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3861 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3862 } 3863 3864 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3865 { 3866 return cfs_rq->avg.runnable_load_avg; 3867 } 3868 3869 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3870 { 3871 return cfs_rq->avg.load_avg; 3872 } 3873 3874 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3875 3876 #else /* CONFIG_SMP */ 3877 3878 static inline int 3879 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3880 { 3881 return 0; 3882 } 3883 3884 #define UPDATE_TG 0x0 3885 #define SKIP_AGE_LOAD 0x0 3886 #define DO_ATTACH 0x0 3887 3888 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3889 { 3890 cfs_rq_util_change(cfs_rq); 3891 } 3892 3893 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3894 3895 static inline void 3896 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3897 static inline void 3898 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3899 3900 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3901 { 3902 return 0; 3903 } 3904 3905 #endif /* CONFIG_SMP */ 3906 3907 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3908 { 3909 #ifdef CONFIG_SCHED_DEBUG 3910 s64 d = se->vruntime - cfs_rq->min_vruntime; 3911 3912 if (d < 0) 3913 d = -d; 3914 3915 if (d > 3*sysctl_sched_latency) 3916 schedstat_inc(cfs_rq->nr_spread_over); 3917 #endif 3918 } 3919 3920 static void 3921 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3922 { 3923 u64 vruntime = cfs_rq->min_vruntime; 3924 3925 /* 3926 * The 'current' period is already promised to the current tasks, 3927 * however the extra weight of the new task will slow them down a 3928 * little, place the new task so that it fits in the slot that 3929 * stays open at the end. 3930 */ 3931 if (initial && sched_feat(START_DEBIT)) 3932 vruntime += sched_vslice(cfs_rq, se); 3933 3934 /* sleeps up to a single latency don't count. */ 3935 if (!initial) { 3936 unsigned long thresh = sysctl_sched_latency; 3937 3938 /* 3939 * Halve their sleep time's effect, to allow 3940 * for a gentler effect of sleepers: 3941 */ 3942 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3943 thresh >>= 1; 3944 3945 vruntime -= thresh; 3946 } 3947 3948 /* ensure we never gain time by being placed backwards. */ 3949 se->vruntime = max_vruntime(se->vruntime, vruntime); 3950 } 3951 3952 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3953 3954 static inline void check_schedstat_required(void) 3955 { 3956 #ifdef CONFIG_SCHEDSTATS 3957 if (schedstat_enabled()) 3958 return; 3959 3960 /* Force schedstat enabled if a dependent tracepoint is active */ 3961 if (trace_sched_stat_wait_enabled() || 3962 trace_sched_stat_sleep_enabled() || 3963 trace_sched_stat_iowait_enabled() || 3964 trace_sched_stat_blocked_enabled() || 3965 trace_sched_stat_runtime_enabled()) { 3966 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3967 "stat_blocked and stat_runtime require the " 3968 "kernel parameter schedstats=enable or " 3969 "kernel.sched_schedstats=1\n"); 3970 } 3971 #endif 3972 } 3973 3974 3975 /* 3976 * MIGRATION 3977 * 3978 * dequeue 3979 * update_curr() 3980 * update_min_vruntime() 3981 * vruntime -= min_vruntime 3982 * 3983 * enqueue 3984 * update_curr() 3985 * update_min_vruntime() 3986 * vruntime += min_vruntime 3987 * 3988 * this way the vruntime transition between RQs is done when both 3989 * min_vruntime are up-to-date. 3990 * 3991 * WAKEUP (remote) 3992 * 3993 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3994 * vruntime -= min_vruntime 3995 * 3996 * enqueue 3997 * update_curr() 3998 * update_min_vruntime() 3999 * vruntime += min_vruntime 4000 * 4001 * this way we don't have the most up-to-date min_vruntime on the originating 4002 * CPU and an up-to-date min_vruntime on the destination CPU. 4003 */ 4004 4005 static void 4006 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4007 { 4008 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4009 bool curr = cfs_rq->curr == se; 4010 4011 /* 4012 * If we're the current task, we must renormalise before calling 4013 * update_curr(). 4014 */ 4015 if (renorm && curr) 4016 se->vruntime += cfs_rq->min_vruntime; 4017 4018 update_curr(cfs_rq); 4019 4020 /* 4021 * Otherwise, renormalise after, such that we're placed at the current 4022 * moment in time, instead of some random moment in the past. Being 4023 * placed in the past could significantly boost this task to the 4024 * fairness detriment of existing tasks. 4025 */ 4026 if (renorm && !curr) 4027 se->vruntime += cfs_rq->min_vruntime; 4028 4029 /* 4030 * When enqueuing a sched_entity, we must: 4031 * - Update loads to have both entity and cfs_rq synced with now. 4032 * - Add its load to cfs_rq->runnable_avg 4033 * - For group_entity, update its weight to reflect the new share of 4034 * its group cfs_rq 4035 * - Add its new weight to cfs_rq->load.weight 4036 */ 4037 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4038 update_cfs_group(se); 4039 enqueue_runnable_load_avg(cfs_rq, se); 4040 account_entity_enqueue(cfs_rq, se); 4041 4042 if (flags & ENQUEUE_WAKEUP) 4043 place_entity(cfs_rq, se, 0); 4044 4045 check_schedstat_required(); 4046 update_stats_enqueue(cfs_rq, se, flags); 4047 check_spread(cfs_rq, se); 4048 if (!curr) 4049 __enqueue_entity(cfs_rq, se); 4050 se->on_rq = 1; 4051 4052 if (cfs_rq->nr_running == 1) { 4053 list_add_leaf_cfs_rq(cfs_rq); 4054 check_enqueue_throttle(cfs_rq); 4055 } 4056 } 4057 4058 static void __clear_buddies_last(struct sched_entity *se) 4059 { 4060 for_each_sched_entity(se) { 4061 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4062 if (cfs_rq->last != se) 4063 break; 4064 4065 cfs_rq->last = NULL; 4066 } 4067 } 4068 4069 static void __clear_buddies_next(struct sched_entity *se) 4070 { 4071 for_each_sched_entity(se) { 4072 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4073 if (cfs_rq->next != se) 4074 break; 4075 4076 cfs_rq->next = NULL; 4077 } 4078 } 4079 4080 static void __clear_buddies_skip(struct sched_entity *se) 4081 { 4082 for_each_sched_entity(se) { 4083 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4084 if (cfs_rq->skip != se) 4085 break; 4086 4087 cfs_rq->skip = NULL; 4088 } 4089 } 4090 4091 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4092 { 4093 if (cfs_rq->last == se) 4094 __clear_buddies_last(se); 4095 4096 if (cfs_rq->next == se) 4097 __clear_buddies_next(se); 4098 4099 if (cfs_rq->skip == se) 4100 __clear_buddies_skip(se); 4101 } 4102 4103 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4104 4105 static void 4106 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4107 { 4108 /* 4109 * Update run-time statistics of the 'current'. 4110 */ 4111 update_curr(cfs_rq); 4112 4113 /* 4114 * When dequeuing a sched_entity, we must: 4115 * - Update loads to have both entity and cfs_rq synced with now. 4116 * - Substract its load from the cfs_rq->runnable_avg. 4117 * - Substract its previous weight from cfs_rq->load.weight. 4118 * - For group entity, update its weight to reflect the new share 4119 * of its group cfs_rq. 4120 */ 4121 update_load_avg(cfs_rq, se, UPDATE_TG); 4122 dequeue_runnable_load_avg(cfs_rq, se); 4123 4124 update_stats_dequeue(cfs_rq, se, flags); 4125 4126 clear_buddies(cfs_rq, se); 4127 4128 if (se != cfs_rq->curr) 4129 __dequeue_entity(cfs_rq, se); 4130 se->on_rq = 0; 4131 account_entity_dequeue(cfs_rq, se); 4132 4133 /* 4134 * Normalize after update_curr(); which will also have moved 4135 * min_vruntime if @se is the one holding it back. But before doing 4136 * update_min_vruntime() again, which will discount @se's position and 4137 * can move min_vruntime forward still more. 4138 */ 4139 if (!(flags & DEQUEUE_SLEEP)) 4140 se->vruntime -= cfs_rq->min_vruntime; 4141 4142 /* return excess runtime on last dequeue */ 4143 return_cfs_rq_runtime(cfs_rq); 4144 4145 update_cfs_group(se); 4146 4147 /* 4148 * Now advance min_vruntime if @se was the entity holding it back, 4149 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4150 * put back on, and if we advance min_vruntime, we'll be placed back 4151 * further than we started -- ie. we'll be penalized. 4152 */ 4153 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 4154 update_min_vruntime(cfs_rq); 4155 } 4156 4157 /* 4158 * Preempt the current task with a newly woken task if needed: 4159 */ 4160 static void 4161 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4162 { 4163 unsigned long ideal_runtime, delta_exec; 4164 struct sched_entity *se; 4165 s64 delta; 4166 4167 ideal_runtime = sched_slice(cfs_rq, curr); 4168 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4169 if (delta_exec > ideal_runtime) { 4170 resched_curr(rq_of(cfs_rq)); 4171 /* 4172 * The current task ran long enough, ensure it doesn't get 4173 * re-elected due to buddy favours. 4174 */ 4175 clear_buddies(cfs_rq, curr); 4176 return; 4177 } 4178 4179 /* 4180 * Ensure that a task that missed wakeup preemption by a 4181 * narrow margin doesn't have to wait for a full slice. 4182 * This also mitigates buddy induced latencies under load. 4183 */ 4184 if (delta_exec < sysctl_sched_min_granularity) 4185 return; 4186 4187 se = __pick_first_entity(cfs_rq); 4188 delta = curr->vruntime - se->vruntime; 4189 4190 if (delta < 0) 4191 return; 4192 4193 if (delta > ideal_runtime) 4194 resched_curr(rq_of(cfs_rq)); 4195 } 4196 4197 static void 4198 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4199 { 4200 /* 'current' is not kept within the tree. */ 4201 if (se->on_rq) { 4202 /* 4203 * Any task has to be enqueued before it get to execute on 4204 * a CPU. So account for the time it spent waiting on the 4205 * runqueue. 4206 */ 4207 update_stats_wait_end(cfs_rq, se); 4208 __dequeue_entity(cfs_rq, se); 4209 update_load_avg(cfs_rq, se, UPDATE_TG); 4210 } 4211 4212 update_stats_curr_start(cfs_rq, se); 4213 cfs_rq->curr = se; 4214 4215 /* 4216 * Track our maximum slice length, if the CPU's load is at 4217 * least twice that of our own weight (i.e. dont track it 4218 * when there are only lesser-weight tasks around): 4219 */ 4220 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 4221 schedstat_set(se->statistics.slice_max, 4222 max((u64)schedstat_val(se->statistics.slice_max), 4223 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4224 } 4225 4226 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4227 } 4228 4229 static int 4230 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4231 4232 /* 4233 * Pick the next process, keeping these things in mind, in this order: 4234 * 1) keep things fair between processes/task groups 4235 * 2) pick the "next" process, since someone really wants that to run 4236 * 3) pick the "last" process, for cache locality 4237 * 4) do not run the "skip" process, if something else is available 4238 */ 4239 static struct sched_entity * 4240 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4241 { 4242 struct sched_entity *left = __pick_first_entity(cfs_rq); 4243 struct sched_entity *se; 4244 4245 /* 4246 * If curr is set we have to see if its left of the leftmost entity 4247 * still in the tree, provided there was anything in the tree at all. 4248 */ 4249 if (!left || (curr && entity_before(curr, left))) 4250 left = curr; 4251 4252 se = left; /* ideally we run the leftmost entity */ 4253 4254 /* 4255 * Avoid running the skip buddy, if running something else can 4256 * be done without getting too unfair. 4257 */ 4258 if (cfs_rq->skip == se) { 4259 struct sched_entity *second; 4260 4261 if (se == curr) { 4262 second = __pick_first_entity(cfs_rq); 4263 } else { 4264 second = __pick_next_entity(se); 4265 if (!second || (curr && entity_before(curr, second))) 4266 second = curr; 4267 } 4268 4269 if (second && wakeup_preempt_entity(second, left) < 1) 4270 se = second; 4271 } 4272 4273 /* 4274 * Prefer last buddy, try to return the CPU to a preempted task. 4275 */ 4276 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4277 se = cfs_rq->last; 4278 4279 /* 4280 * Someone really wants this to run. If it's not unfair, run it. 4281 */ 4282 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4283 se = cfs_rq->next; 4284 4285 clear_buddies(cfs_rq, se); 4286 4287 return se; 4288 } 4289 4290 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4291 4292 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4293 { 4294 /* 4295 * If still on the runqueue then deactivate_task() 4296 * was not called and update_curr() has to be done: 4297 */ 4298 if (prev->on_rq) 4299 update_curr(cfs_rq); 4300 4301 /* throttle cfs_rqs exceeding runtime */ 4302 check_cfs_rq_runtime(cfs_rq); 4303 4304 check_spread(cfs_rq, prev); 4305 4306 if (prev->on_rq) { 4307 update_stats_wait_start(cfs_rq, prev); 4308 /* Put 'current' back into the tree. */ 4309 __enqueue_entity(cfs_rq, prev); 4310 /* in !on_rq case, update occurred at dequeue */ 4311 update_load_avg(cfs_rq, prev, 0); 4312 } 4313 cfs_rq->curr = NULL; 4314 } 4315 4316 static void 4317 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4318 { 4319 /* 4320 * Update run-time statistics of the 'current'. 4321 */ 4322 update_curr(cfs_rq); 4323 4324 /* 4325 * Ensure that runnable average is periodically updated. 4326 */ 4327 update_load_avg(cfs_rq, curr, UPDATE_TG); 4328 update_cfs_group(curr); 4329 4330 #ifdef CONFIG_SCHED_HRTICK 4331 /* 4332 * queued ticks are scheduled to match the slice, so don't bother 4333 * validating it and just reschedule. 4334 */ 4335 if (queued) { 4336 resched_curr(rq_of(cfs_rq)); 4337 return; 4338 } 4339 /* 4340 * don't let the period tick interfere with the hrtick preemption 4341 */ 4342 if (!sched_feat(DOUBLE_TICK) && 4343 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4344 return; 4345 #endif 4346 4347 if (cfs_rq->nr_running > 1) 4348 check_preempt_tick(cfs_rq, curr); 4349 } 4350 4351 4352 /************************************************** 4353 * CFS bandwidth control machinery 4354 */ 4355 4356 #ifdef CONFIG_CFS_BANDWIDTH 4357 4358 #ifdef HAVE_JUMP_LABEL 4359 static struct static_key __cfs_bandwidth_used; 4360 4361 static inline bool cfs_bandwidth_used(void) 4362 { 4363 return static_key_false(&__cfs_bandwidth_used); 4364 } 4365 4366 void cfs_bandwidth_usage_inc(void) 4367 { 4368 static_key_slow_inc(&__cfs_bandwidth_used); 4369 } 4370 4371 void cfs_bandwidth_usage_dec(void) 4372 { 4373 static_key_slow_dec(&__cfs_bandwidth_used); 4374 } 4375 #else /* HAVE_JUMP_LABEL */ 4376 static bool cfs_bandwidth_used(void) 4377 { 4378 return true; 4379 } 4380 4381 void cfs_bandwidth_usage_inc(void) {} 4382 void cfs_bandwidth_usage_dec(void) {} 4383 #endif /* HAVE_JUMP_LABEL */ 4384 4385 /* 4386 * default period for cfs group bandwidth. 4387 * default: 0.1s, units: nanoseconds 4388 */ 4389 static inline u64 default_cfs_period(void) 4390 { 4391 return 100000000ULL; 4392 } 4393 4394 static inline u64 sched_cfs_bandwidth_slice(void) 4395 { 4396 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4397 } 4398 4399 /* 4400 * Replenish runtime according to assigned quota and update expiration time. 4401 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4402 * additional synchronization around rq->lock. 4403 * 4404 * requires cfs_b->lock 4405 */ 4406 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4407 { 4408 u64 now; 4409 4410 if (cfs_b->quota == RUNTIME_INF) 4411 return; 4412 4413 now = sched_clock_cpu(smp_processor_id()); 4414 cfs_b->runtime = cfs_b->quota; 4415 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4416 } 4417 4418 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4419 { 4420 return &tg->cfs_bandwidth; 4421 } 4422 4423 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4424 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4425 { 4426 if (unlikely(cfs_rq->throttle_count)) 4427 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4428 4429 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4430 } 4431 4432 /* returns 0 on failure to allocate runtime */ 4433 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4434 { 4435 struct task_group *tg = cfs_rq->tg; 4436 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4437 u64 amount = 0, min_amount, expires; 4438 4439 /* note: this is a positive sum as runtime_remaining <= 0 */ 4440 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4441 4442 raw_spin_lock(&cfs_b->lock); 4443 if (cfs_b->quota == RUNTIME_INF) 4444 amount = min_amount; 4445 else { 4446 start_cfs_bandwidth(cfs_b); 4447 4448 if (cfs_b->runtime > 0) { 4449 amount = min(cfs_b->runtime, min_amount); 4450 cfs_b->runtime -= amount; 4451 cfs_b->idle = 0; 4452 } 4453 } 4454 expires = cfs_b->runtime_expires; 4455 raw_spin_unlock(&cfs_b->lock); 4456 4457 cfs_rq->runtime_remaining += amount; 4458 /* 4459 * we may have advanced our local expiration to account for allowed 4460 * spread between our sched_clock and the one on which runtime was 4461 * issued. 4462 */ 4463 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 4464 cfs_rq->runtime_expires = expires; 4465 4466 return cfs_rq->runtime_remaining > 0; 4467 } 4468 4469 /* 4470 * Note: This depends on the synchronization provided by sched_clock and the 4471 * fact that rq->clock snapshots this value. 4472 */ 4473 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4474 { 4475 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4476 4477 /* if the deadline is ahead of our clock, nothing to do */ 4478 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4479 return; 4480 4481 if (cfs_rq->runtime_remaining < 0) 4482 return; 4483 4484 /* 4485 * If the local deadline has passed we have to consider the 4486 * possibility that our sched_clock is 'fast' and the global deadline 4487 * has not truly expired. 4488 * 4489 * Fortunately we can check determine whether this the case by checking 4490 * whether the global deadline has advanced. It is valid to compare 4491 * cfs_b->runtime_expires without any locks since we only care about 4492 * exact equality, so a partial write will still work. 4493 */ 4494 4495 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 4496 /* extend local deadline, drift is bounded above by 2 ticks */ 4497 cfs_rq->runtime_expires += TICK_NSEC; 4498 } else { 4499 /* global deadline is ahead, expiration has passed */ 4500 cfs_rq->runtime_remaining = 0; 4501 } 4502 } 4503 4504 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4505 { 4506 /* dock delta_exec before expiring quota (as it could span periods) */ 4507 cfs_rq->runtime_remaining -= delta_exec; 4508 expire_cfs_rq_runtime(cfs_rq); 4509 4510 if (likely(cfs_rq->runtime_remaining > 0)) 4511 return; 4512 4513 /* 4514 * if we're unable to extend our runtime we resched so that the active 4515 * hierarchy can be throttled 4516 */ 4517 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4518 resched_curr(rq_of(cfs_rq)); 4519 } 4520 4521 static __always_inline 4522 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4523 { 4524 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4525 return; 4526 4527 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4528 } 4529 4530 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4531 { 4532 return cfs_bandwidth_used() && cfs_rq->throttled; 4533 } 4534 4535 /* check whether cfs_rq, or any parent, is throttled */ 4536 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4537 { 4538 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4539 } 4540 4541 /* 4542 * Ensure that neither of the group entities corresponding to src_cpu or 4543 * dest_cpu are members of a throttled hierarchy when performing group 4544 * load-balance operations. 4545 */ 4546 static inline int throttled_lb_pair(struct task_group *tg, 4547 int src_cpu, int dest_cpu) 4548 { 4549 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4550 4551 src_cfs_rq = tg->cfs_rq[src_cpu]; 4552 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4553 4554 return throttled_hierarchy(src_cfs_rq) || 4555 throttled_hierarchy(dest_cfs_rq); 4556 } 4557 4558 /* updated child weight may affect parent so we have to do this bottom up */ 4559 static int tg_unthrottle_up(struct task_group *tg, void *data) 4560 { 4561 struct rq *rq = data; 4562 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4563 4564 cfs_rq->throttle_count--; 4565 if (!cfs_rq->throttle_count) { 4566 /* adjust cfs_rq_clock_task() */ 4567 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4568 cfs_rq->throttled_clock_task; 4569 } 4570 4571 return 0; 4572 } 4573 4574 static int tg_throttle_down(struct task_group *tg, void *data) 4575 { 4576 struct rq *rq = data; 4577 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4578 4579 /* group is entering throttled state, stop time */ 4580 if (!cfs_rq->throttle_count) 4581 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4582 cfs_rq->throttle_count++; 4583 4584 return 0; 4585 } 4586 4587 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4588 { 4589 struct rq *rq = rq_of(cfs_rq); 4590 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4591 struct sched_entity *se; 4592 long task_delta, dequeue = 1; 4593 bool empty; 4594 4595 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4596 4597 /* freeze hierarchy runnable averages while throttled */ 4598 rcu_read_lock(); 4599 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4600 rcu_read_unlock(); 4601 4602 task_delta = cfs_rq->h_nr_running; 4603 for_each_sched_entity(se) { 4604 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4605 /* throttled entity or throttle-on-deactivate */ 4606 if (!se->on_rq) 4607 break; 4608 4609 if (dequeue) 4610 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4611 qcfs_rq->h_nr_running -= task_delta; 4612 4613 if (qcfs_rq->load.weight) 4614 dequeue = 0; 4615 } 4616 4617 if (!se) 4618 sub_nr_running(rq, task_delta); 4619 4620 cfs_rq->throttled = 1; 4621 cfs_rq->throttled_clock = rq_clock(rq); 4622 raw_spin_lock(&cfs_b->lock); 4623 empty = list_empty(&cfs_b->throttled_cfs_rq); 4624 4625 /* 4626 * Add to the _head_ of the list, so that an already-started 4627 * distribute_cfs_runtime will not see us 4628 */ 4629 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4630 4631 /* 4632 * If we're the first throttled task, make sure the bandwidth 4633 * timer is running. 4634 */ 4635 if (empty) 4636 start_cfs_bandwidth(cfs_b); 4637 4638 raw_spin_unlock(&cfs_b->lock); 4639 } 4640 4641 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4642 { 4643 struct rq *rq = rq_of(cfs_rq); 4644 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4645 struct sched_entity *se; 4646 int enqueue = 1; 4647 long task_delta; 4648 4649 se = cfs_rq->tg->se[cpu_of(rq)]; 4650 4651 cfs_rq->throttled = 0; 4652 4653 update_rq_clock(rq); 4654 4655 raw_spin_lock(&cfs_b->lock); 4656 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4657 list_del_rcu(&cfs_rq->throttled_list); 4658 raw_spin_unlock(&cfs_b->lock); 4659 4660 /* update hierarchical throttle state */ 4661 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4662 4663 if (!cfs_rq->load.weight) 4664 return; 4665 4666 task_delta = cfs_rq->h_nr_running; 4667 for_each_sched_entity(se) { 4668 if (se->on_rq) 4669 enqueue = 0; 4670 4671 cfs_rq = cfs_rq_of(se); 4672 if (enqueue) 4673 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4674 cfs_rq->h_nr_running += task_delta; 4675 4676 if (cfs_rq_throttled(cfs_rq)) 4677 break; 4678 } 4679 4680 if (!se) 4681 add_nr_running(rq, task_delta); 4682 4683 /* determine whether we need to wake up potentially idle cpu */ 4684 if (rq->curr == rq->idle && rq->cfs.nr_running) 4685 resched_curr(rq); 4686 } 4687 4688 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4689 u64 remaining, u64 expires) 4690 { 4691 struct cfs_rq *cfs_rq; 4692 u64 runtime; 4693 u64 starting_runtime = remaining; 4694 4695 rcu_read_lock(); 4696 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4697 throttled_list) { 4698 struct rq *rq = rq_of(cfs_rq); 4699 struct rq_flags rf; 4700 4701 rq_lock(rq, &rf); 4702 if (!cfs_rq_throttled(cfs_rq)) 4703 goto next; 4704 4705 runtime = -cfs_rq->runtime_remaining + 1; 4706 if (runtime > remaining) 4707 runtime = remaining; 4708 remaining -= runtime; 4709 4710 cfs_rq->runtime_remaining += runtime; 4711 cfs_rq->runtime_expires = expires; 4712 4713 /* we check whether we're throttled above */ 4714 if (cfs_rq->runtime_remaining > 0) 4715 unthrottle_cfs_rq(cfs_rq); 4716 4717 next: 4718 rq_unlock(rq, &rf); 4719 4720 if (!remaining) 4721 break; 4722 } 4723 rcu_read_unlock(); 4724 4725 return starting_runtime - remaining; 4726 } 4727 4728 /* 4729 * Responsible for refilling a task_group's bandwidth and unthrottling its 4730 * cfs_rqs as appropriate. If there has been no activity within the last 4731 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4732 * used to track this state. 4733 */ 4734 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4735 { 4736 u64 runtime, runtime_expires; 4737 int throttled; 4738 4739 /* no need to continue the timer with no bandwidth constraint */ 4740 if (cfs_b->quota == RUNTIME_INF) 4741 goto out_deactivate; 4742 4743 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4744 cfs_b->nr_periods += overrun; 4745 4746 /* 4747 * idle depends on !throttled (for the case of a large deficit), and if 4748 * we're going inactive then everything else can be deferred 4749 */ 4750 if (cfs_b->idle && !throttled) 4751 goto out_deactivate; 4752 4753 __refill_cfs_bandwidth_runtime(cfs_b); 4754 4755 if (!throttled) { 4756 /* mark as potentially idle for the upcoming period */ 4757 cfs_b->idle = 1; 4758 return 0; 4759 } 4760 4761 /* account preceding periods in which throttling occurred */ 4762 cfs_b->nr_throttled += overrun; 4763 4764 runtime_expires = cfs_b->runtime_expires; 4765 4766 /* 4767 * This check is repeated as we are holding onto the new bandwidth while 4768 * we unthrottle. This can potentially race with an unthrottled group 4769 * trying to acquire new bandwidth from the global pool. This can result 4770 * in us over-using our runtime if it is all used during this loop, but 4771 * only by limited amounts in that extreme case. 4772 */ 4773 while (throttled && cfs_b->runtime > 0) { 4774 runtime = cfs_b->runtime; 4775 raw_spin_unlock(&cfs_b->lock); 4776 /* we can't nest cfs_b->lock while distributing bandwidth */ 4777 runtime = distribute_cfs_runtime(cfs_b, runtime, 4778 runtime_expires); 4779 raw_spin_lock(&cfs_b->lock); 4780 4781 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4782 4783 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4784 } 4785 4786 /* 4787 * While we are ensured activity in the period following an 4788 * unthrottle, this also covers the case in which the new bandwidth is 4789 * insufficient to cover the existing bandwidth deficit. (Forcing the 4790 * timer to remain active while there are any throttled entities.) 4791 */ 4792 cfs_b->idle = 0; 4793 4794 return 0; 4795 4796 out_deactivate: 4797 return 1; 4798 } 4799 4800 /* a cfs_rq won't donate quota below this amount */ 4801 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4802 /* minimum remaining period time to redistribute slack quota */ 4803 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4804 /* how long we wait to gather additional slack before distributing */ 4805 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4806 4807 /* 4808 * Are we near the end of the current quota period? 4809 * 4810 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4811 * hrtimer base being cleared by hrtimer_start. In the case of 4812 * migrate_hrtimers, base is never cleared, so we are fine. 4813 */ 4814 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4815 { 4816 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4817 u64 remaining; 4818 4819 /* if the call-back is running a quota refresh is already occurring */ 4820 if (hrtimer_callback_running(refresh_timer)) 4821 return 1; 4822 4823 /* is a quota refresh about to occur? */ 4824 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4825 if (remaining < min_expire) 4826 return 1; 4827 4828 return 0; 4829 } 4830 4831 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4832 { 4833 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4834 4835 /* if there's a quota refresh soon don't bother with slack */ 4836 if (runtime_refresh_within(cfs_b, min_left)) 4837 return; 4838 4839 hrtimer_start(&cfs_b->slack_timer, 4840 ns_to_ktime(cfs_bandwidth_slack_period), 4841 HRTIMER_MODE_REL); 4842 } 4843 4844 /* we know any runtime found here is valid as update_curr() precedes return */ 4845 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4846 { 4847 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4848 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4849 4850 if (slack_runtime <= 0) 4851 return; 4852 4853 raw_spin_lock(&cfs_b->lock); 4854 if (cfs_b->quota != RUNTIME_INF && 4855 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4856 cfs_b->runtime += slack_runtime; 4857 4858 /* we are under rq->lock, defer unthrottling using a timer */ 4859 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4860 !list_empty(&cfs_b->throttled_cfs_rq)) 4861 start_cfs_slack_bandwidth(cfs_b); 4862 } 4863 raw_spin_unlock(&cfs_b->lock); 4864 4865 /* even if it's not valid for return we don't want to try again */ 4866 cfs_rq->runtime_remaining -= slack_runtime; 4867 } 4868 4869 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4870 { 4871 if (!cfs_bandwidth_used()) 4872 return; 4873 4874 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4875 return; 4876 4877 __return_cfs_rq_runtime(cfs_rq); 4878 } 4879 4880 /* 4881 * This is done with a timer (instead of inline with bandwidth return) since 4882 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4883 */ 4884 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4885 { 4886 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4887 u64 expires; 4888 4889 /* confirm we're still not at a refresh boundary */ 4890 raw_spin_lock(&cfs_b->lock); 4891 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4892 raw_spin_unlock(&cfs_b->lock); 4893 return; 4894 } 4895 4896 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4897 runtime = cfs_b->runtime; 4898 4899 expires = cfs_b->runtime_expires; 4900 raw_spin_unlock(&cfs_b->lock); 4901 4902 if (!runtime) 4903 return; 4904 4905 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4906 4907 raw_spin_lock(&cfs_b->lock); 4908 if (expires == cfs_b->runtime_expires) 4909 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4910 raw_spin_unlock(&cfs_b->lock); 4911 } 4912 4913 /* 4914 * When a group wakes up we want to make sure that its quota is not already 4915 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4916 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4917 */ 4918 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4919 { 4920 if (!cfs_bandwidth_used()) 4921 return; 4922 4923 /* an active group must be handled by the update_curr()->put() path */ 4924 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4925 return; 4926 4927 /* ensure the group is not already throttled */ 4928 if (cfs_rq_throttled(cfs_rq)) 4929 return; 4930 4931 /* update runtime allocation */ 4932 account_cfs_rq_runtime(cfs_rq, 0); 4933 if (cfs_rq->runtime_remaining <= 0) 4934 throttle_cfs_rq(cfs_rq); 4935 } 4936 4937 static void sync_throttle(struct task_group *tg, int cpu) 4938 { 4939 struct cfs_rq *pcfs_rq, *cfs_rq; 4940 4941 if (!cfs_bandwidth_used()) 4942 return; 4943 4944 if (!tg->parent) 4945 return; 4946 4947 cfs_rq = tg->cfs_rq[cpu]; 4948 pcfs_rq = tg->parent->cfs_rq[cpu]; 4949 4950 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4951 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4952 } 4953 4954 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4955 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4956 { 4957 if (!cfs_bandwidth_used()) 4958 return false; 4959 4960 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4961 return false; 4962 4963 /* 4964 * it's possible for a throttled entity to be forced into a running 4965 * state (e.g. set_curr_task), in this case we're finished. 4966 */ 4967 if (cfs_rq_throttled(cfs_rq)) 4968 return true; 4969 4970 throttle_cfs_rq(cfs_rq); 4971 return true; 4972 } 4973 4974 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4975 { 4976 struct cfs_bandwidth *cfs_b = 4977 container_of(timer, struct cfs_bandwidth, slack_timer); 4978 4979 do_sched_cfs_slack_timer(cfs_b); 4980 4981 return HRTIMER_NORESTART; 4982 } 4983 4984 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4985 { 4986 struct cfs_bandwidth *cfs_b = 4987 container_of(timer, struct cfs_bandwidth, period_timer); 4988 int overrun; 4989 int idle = 0; 4990 4991 raw_spin_lock(&cfs_b->lock); 4992 for (;;) { 4993 overrun = hrtimer_forward_now(timer, cfs_b->period); 4994 if (!overrun) 4995 break; 4996 4997 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4998 } 4999 if (idle) 5000 cfs_b->period_active = 0; 5001 raw_spin_unlock(&cfs_b->lock); 5002 5003 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5004 } 5005 5006 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5007 { 5008 raw_spin_lock_init(&cfs_b->lock); 5009 cfs_b->runtime = 0; 5010 cfs_b->quota = RUNTIME_INF; 5011 cfs_b->period = ns_to_ktime(default_cfs_period()); 5012 5013 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5014 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5015 cfs_b->period_timer.function = sched_cfs_period_timer; 5016 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5017 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5018 } 5019 5020 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5021 { 5022 cfs_rq->runtime_enabled = 0; 5023 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5024 } 5025 5026 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5027 { 5028 lockdep_assert_held(&cfs_b->lock); 5029 5030 if (!cfs_b->period_active) { 5031 cfs_b->period_active = 1; 5032 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5033 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5034 } 5035 } 5036 5037 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5038 { 5039 /* init_cfs_bandwidth() was not called */ 5040 if (!cfs_b->throttled_cfs_rq.next) 5041 return; 5042 5043 hrtimer_cancel(&cfs_b->period_timer); 5044 hrtimer_cancel(&cfs_b->slack_timer); 5045 } 5046 5047 /* 5048 * Both these cpu hotplug callbacks race against unregister_fair_sched_group() 5049 * 5050 * The race is harmless, since modifying bandwidth settings of unhooked group 5051 * bits doesn't do much. 5052 */ 5053 5054 /* cpu online calback */ 5055 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5056 { 5057 struct task_group *tg; 5058 5059 lockdep_assert_held(&rq->lock); 5060 5061 rcu_read_lock(); 5062 list_for_each_entry_rcu(tg, &task_groups, list) { 5063 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5064 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5065 5066 raw_spin_lock(&cfs_b->lock); 5067 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5068 raw_spin_unlock(&cfs_b->lock); 5069 } 5070 rcu_read_unlock(); 5071 } 5072 5073 /* cpu offline callback */ 5074 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5075 { 5076 struct task_group *tg; 5077 5078 lockdep_assert_held(&rq->lock); 5079 5080 rcu_read_lock(); 5081 list_for_each_entry_rcu(tg, &task_groups, list) { 5082 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5083 5084 if (!cfs_rq->runtime_enabled) 5085 continue; 5086 5087 /* 5088 * clock_task is not advancing so we just need to make sure 5089 * there's some valid quota amount 5090 */ 5091 cfs_rq->runtime_remaining = 1; 5092 /* 5093 * Offline rq is schedulable till cpu is completely disabled 5094 * in take_cpu_down(), so we prevent new cfs throttling here. 5095 */ 5096 cfs_rq->runtime_enabled = 0; 5097 5098 if (cfs_rq_throttled(cfs_rq)) 5099 unthrottle_cfs_rq(cfs_rq); 5100 } 5101 rcu_read_unlock(); 5102 } 5103 5104 #else /* CONFIG_CFS_BANDWIDTH */ 5105 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 5106 { 5107 return rq_clock_task(rq_of(cfs_rq)); 5108 } 5109 5110 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5111 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5112 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5113 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5114 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5115 5116 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5117 { 5118 return 0; 5119 } 5120 5121 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5122 { 5123 return 0; 5124 } 5125 5126 static inline int throttled_lb_pair(struct task_group *tg, 5127 int src_cpu, int dest_cpu) 5128 { 5129 return 0; 5130 } 5131 5132 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5133 5134 #ifdef CONFIG_FAIR_GROUP_SCHED 5135 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5136 #endif 5137 5138 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5139 { 5140 return NULL; 5141 } 5142 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5143 static inline void update_runtime_enabled(struct rq *rq) {} 5144 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5145 5146 #endif /* CONFIG_CFS_BANDWIDTH */ 5147 5148 /************************************************** 5149 * CFS operations on tasks: 5150 */ 5151 5152 #ifdef CONFIG_SCHED_HRTICK 5153 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5154 { 5155 struct sched_entity *se = &p->se; 5156 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5157 5158 SCHED_WARN_ON(task_rq(p) != rq); 5159 5160 if (rq->cfs.h_nr_running > 1) { 5161 u64 slice = sched_slice(cfs_rq, se); 5162 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5163 s64 delta = slice - ran; 5164 5165 if (delta < 0) { 5166 if (rq->curr == p) 5167 resched_curr(rq); 5168 return; 5169 } 5170 hrtick_start(rq, delta); 5171 } 5172 } 5173 5174 /* 5175 * called from enqueue/dequeue and updates the hrtick when the 5176 * current task is from our class and nr_running is low enough 5177 * to matter. 5178 */ 5179 static void hrtick_update(struct rq *rq) 5180 { 5181 struct task_struct *curr = rq->curr; 5182 5183 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5184 return; 5185 5186 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5187 hrtick_start_fair(rq, curr); 5188 } 5189 #else /* !CONFIG_SCHED_HRTICK */ 5190 static inline void 5191 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5192 { 5193 } 5194 5195 static inline void hrtick_update(struct rq *rq) 5196 { 5197 } 5198 #endif 5199 5200 /* 5201 * The enqueue_task method is called before nr_running is 5202 * increased. Here we update the fair scheduling stats and 5203 * then put the task into the rbtree: 5204 */ 5205 static void 5206 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5207 { 5208 struct cfs_rq *cfs_rq; 5209 struct sched_entity *se = &p->se; 5210 5211 /* 5212 * If in_iowait is set, the code below may not trigger any cpufreq 5213 * utilization updates, so do it here explicitly with the IOWAIT flag 5214 * passed. 5215 */ 5216 if (p->in_iowait) 5217 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5218 5219 for_each_sched_entity(se) { 5220 if (se->on_rq) 5221 break; 5222 cfs_rq = cfs_rq_of(se); 5223 enqueue_entity(cfs_rq, se, flags); 5224 5225 /* 5226 * end evaluation on encountering a throttled cfs_rq 5227 * 5228 * note: in the case of encountering a throttled cfs_rq we will 5229 * post the final h_nr_running increment below. 5230 */ 5231 if (cfs_rq_throttled(cfs_rq)) 5232 break; 5233 cfs_rq->h_nr_running++; 5234 5235 flags = ENQUEUE_WAKEUP; 5236 } 5237 5238 for_each_sched_entity(se) { 5239 cfs_rq = cfs_rq_of(se); 5240 cfs_rq->h_nr_running++; 5241 5242 if (cfs_rq_throttled(cfs_rq)) 5243 break; 5244 5245 update_load_avg(cfs_rq, se, UPDATE_TG); 5246 update_cfs_group(se); 5247 } 5248 5249 if (!se) 5250 add_nr_running(rq, 1); 5251 5252 hrtick_update(rq); 5253 } 5254 5255 static void set_next_buddy(struct sched_entity *se); 5256 5257 /* 5258 * The dequeue_task method is called before nr_running is 5259 * decreased. We remove the task from the rbtree and 5260 * update the fair scheduling stats: 5261 */ 5262 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5263 { 5264 struct cfs_rq *cfs_rq; 5265 struct sched_entity *se = &p->se; 5266 int task_sleep = flags & DEQUEUE_SLEEP; 5267 5268 for_each_sched_entity(se) { 5269 cfs_rq = cfs_rq_of(se); 5270 dequeue_entity(cfs_rq, se, flags); 5271 5272 /* 5273 * end evaluation on encountering a throttled cfs_rq 5274 * 5275 * note: in the case of encountering a throttled cfs_rq we will 5276 * post the final h_nr_running decrement below. 5277 */ 5278 if (cfs_rq_throttled(cfs_rq)) 5279 break; 5280 cfs_rq->h_nr_running--; 5281 5282 /* Don't dequeue parent if it has other entities besides us */ 5283 if (cfs_rq->load.weight) { 5284 /* Avoid re-evaluating load for this entity: */ 5285 se = parent_entity(se); 5286 /* 5287 * Bias pick_next to pick a task from this cfs_rq, as 5288 * p is sleeping when it is within its sched_slice. 5289 */ 5290 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5291 set_next_buddy(se); 5292 break; 5293 } 5294 flags |= DEQUEUE_SLEEP; 5295 } 5296 5297 for_each_sched_entity(se) { 5298 cfs_rq = cfs_rq_of(se); 5299 cfs_rq->h_nr_running--; 5300 5301 if (cfs_rq_throttled(cfs_rq)) 5302 break; 5303 5304 update_load_avg(cfs_rq, se, UPDATE_TG); 5305 update_cfs_group(se); 5306 } 5307 5308 if (!se) 5309 sub_nr_running(rq, 1); 5310 5311 hrtick_update(rq); 5312 } 5313 5314 #ifdef CONFIG_SMP 5315 5316 /* Working cpumask for: load_balance, load_balance_newidle. */ 5317 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5318 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5319 5320 #ifdef CONFIG_NO_HZ_COMMON 5321 /* 5322 * per rq 'load' arrray crap; XXX kill this. 5323 */ 5324 5325 /* 5326 * The exact cpuload calculated at every tick would be: 5327 * 5328 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 5329 * 5330 * If a cpu misses updates for n ticks (as it was idle) and update gets 5331 * called on the n+1-th tick when cpu may be busy, then we have: 5332 * 5333 * load_n = (1 - 1/2^i)^n * load_0 5334 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 5335 * 5336 * decay_load_missed() below does efficient calculation of 5337 * 5338 * load' = (1 - 1/2^i)^n * load 5339 * 5340 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 5341 * This allows us to precompute the above in said factors, thereby allowing the 5342 * reduction of an arbitrary n in O(log_2 n) steps. (See also 5343 * fixed_power_int()) 5344 * 5345 * The calculation is approximated on a 128 point scale. 5346 */ 5347 #define DEGRADE_SHIFT 7 5348 5349 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 5350 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 5351 { 0, 0, 0, 0, 0, 0, 0, 0 }, 5352 { 64, 32, 8, 0, 0, 0, 0, 0 }, 5353 { 96, 72, 40, 12, 1, 0, 0, 0 }, 5354 { 112, 98, 75, 43, 15, 1, 0, 0 }, 5355 { 120, 112, 98, 76, 45, 16, 2, 0 } 5356 }; 5357 5358 /* 5359 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 5360 * would be when CPU is idle and so we just decay the old load without 5361 * adding any new load. 5362 */ 5363 static unsigned long 5364 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 5365 { 5366 int j = 0; 5367 5368 if (!missed_updates) 5369 return load; 5370 5371 if (missed_updates >= degrade_zero_ticks[idx]) 5372 return 0; 5373 5374 if (idx == 1) 5375 return load >> missed_updates; 5376 5377 while (missed_updates) { 5378 if (missed_updates % 2) 5379 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 5380 5381 missed_updates >>= 1; 5382 j++; 5383 } 5384 return load; 5385 } 5386 #endif /* CONFIG_NO_HZ_COMMON */ 5387 5388 /** 5389 * __cpu_load_update - update the rq->cpu_load[] statistics 5390 * @this_rq: The rq to update statistics for 5391 * @this_load: The current load 5392 * @pending_updates: The number of missed updates 5393 * 5394 * Update rq->cpu_load[] statistics. This function is usually called every 5395 * scheduler tick (TICK_NSEC). 5396 * 5397 * This function computes a decaying average: 5398 * 5399 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 5400 * 5401 * Because of NOHZ it might not get called on every tick which gives need for 5402 * the @pending_updates argument. 5403 * 5404 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 5405 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 5406 * = A * (A * load[i]_n-2 + B) + B 5407 * = A * (A * (A * load[i]_n-3 + B) + B) + B 5408 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 5409 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 5410 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 5411 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 5412 * 5413 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 5414 * any change in load would have resulted in the tick being turned back on. 5415 * 5416 * For regular NOHZ, this reduces to: 5417 * 5418 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 5419 * 5420 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 5421 * term. 5422 */ 5423 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 5424 unsigned long pending_updates) 5425 { 5426 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 5427 int i, scale; 5428 5429 this_rq->nr_load_updates++; 5430 5431 /* Update our load: */ 5432 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 5433 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 5434 unsigned long old_load, new_load; 5435 5436 /* scale is effectively 1 << i now, and >> i divides by scale */ 5437 5438 old_load = this_rq->cpu_load[i]; 5439 #ifdef CONFIG_NO_HZ_COMMON 5440 old_load = decay_load_missed(old_load, pending_updates - 1, i); 5441 if (tickless_load) { 5442 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 5443 /* 5444 * old_load can never be a negative value because a 5445 * decayed tickless_load cannot be greater than the 5446 * original tickless_load. 5447 */ 5448 old_load += tickless_load; 5449 } 5450 #endif 5451 new_load = this_load; 5452 /* 5453 * Round up the averaging division if load is increasing. This 5454 * prevents us from getting stuck on 9 if the load is 10, for 5455 * example. 5456 */ 5457 if (new_load > old_load) 5458 new_load += scale - 1; 5459 5460 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5461 } 5462 5463 sched_avg_update(this_rq); 5464 } 5465 5466 /* Used instead of source_load when we know the type == 0 */ 5467 static unsigned long weighted_cpuload(struct rq *rq) 5468 { 5469 return cfs_rq_runnable_load_avg(&rq->cfs); 5470 } 5471 5472 #ifdef CONFIG_NO_HZ_COMMON 5473 /* 5474 * There is no sane way to deal with nohz on smp when using jiffies because the 5475 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 5476 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5477 * 5478 * Therefore we need to avoid the delta approach from the regular tick when 5479 * possible since that would seriously skew the load calculation. This is why we 5480 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5481 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5482 * loop exit, nohz_idle_balance, nohz full exit...) 5483 * 5484 * This means we might still be one tick off for nohz periods. 5485 */ 5486 5487 static void cpu_load_update_nohz(struct rq *this_rq, 5488 unsigned long curr_jiffies, 5489 unsigned long load) 5490 { 5491 unsigned long pending_updates; 5492 5493 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5494 if (pending_updates) { 5495 this_rq->last_load_update_tick = curr_jiffies; 5496 /* 5497 * In the regular NOHZ case, we were idle, this means load 0. 5498 * In the NOHZ_FULL case, we were non-idle, we should consider 5499 * its weighted load. 5500 */ 5501 cpu_load_update(this_rq, load, pending_updates); 5502 } 5503 } 5504 5505 /* 5506 * Called from nohz_idle_balance() to update the load ratings before doing the 5507 * idle balance. 5508 */ 5509 static void cpu_load_update_idle(struct rq *this_rq) 5510 { 5511 /* 5512 * bail if there's load or we're actually up-to-date. 5513 */ 5514 if (weighted_cpuload(this_rq)) 5515 return; 5516 5517 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5518 } 5519 5520 /* 5521 * Record CPU load on nohz entry so we know the tickless load to account 5522 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5523 * than other cpu_load[idx] but it should be fine as cpu_load readers 5524 * shouldn't rely into synchronized cpu_load[*] updates. 5525 */ 5526 void cpu_load_update_nohz_start(void) 5527 { 5528 struct rq *this_rq = this_rq(); 5529 5530 /* 5531 * This is all lockless but should be fine. If weighted_cpuload changes 5532 * concurrently we'll exit nohz. And cpu_load write can race with 5533 * cpu_load_update_idle() but both updater would be writing the same. 5534 */ 5535 this_rq->cpu_load[0] = weighted_cpuload(this_rq); 5536 } 5537 5538 /* 5539 * Account the tickless load in the end of a nohz frame. 5540 */ 5541 void cpu_load_update_nohz_stop(void) 5542 { 5543 unsigned long curr_jiffies = READ_ONCE(jiffies); 5544 struct rq *this_rq = this_rq(); 5545 unsigned long load; 5546 struct rq_flags rf; 5547 5548 if (curr_jiffies == this_rq->last_load_update_tick) 5549 return; 5550 5551 load = weighted_cpuload(this_rq); 5552 rq_lock(this_rq, &rf); 5553 update_rq_clock(this_rq); 5554 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5555 rq_unlock(this_rq, &rf); 5556 } 5557 #else /* !CONFIG_NO_HZ_COMMON */ 5558 static inline void cpu_load_update_nohz(struct rq *this_rq, 5559 unsigned long curr_jiffies, 5560 unsigned long load) { } 5561 #endif /* CONFIG_NO_HZ_COMMON */ 5562 5563 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5564 { 5565 #ifdef CONFIG_NO_HZ_COMMON 5566 /* See the mess around cpu_load_update_nohz(). */ 5567 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5568 #endif 5569 cpu_load_update(this_rq, load, 1); 5570 } 5571 5572 /* 5573 * Called from scheduler_tick() 5574 */ 5575 void cpu_load_update_active(struct rq *this_rq) 5576 { 5577 unsigned long load = weighted_cpuload(this_rq); 5578 5579 if (tick_nohz_tick_stopped()) 5580 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5581 else 5582 cpu_load_update_periodic(this_rq, load); 5583 } 5584 5585 /* 5586 * Return a low guess at the load of a migration-source cpu weighted 5587 * according to the scheduling class and "nice" value. 5588 * 5589 * We want to under-estimate the load of migration sources, to 5590 * balance conservatively. 5591 */ 5592 static unsigned long source_load(int cpu, int type) 5593 { 5594 struct rq *rq = cpu_rq(cpu); 5595 unsigned long total = weighted_cpuload(rq); 5596 5597 if (type == 0 || !sched_feat(LB_BIAS)) 5598 return total; 5599 5600 return min(rq->cpu_load[type-1], total); 5601 } 5602 5603 /* 5604 * Return a high guess at the load of a migration-target cpu weighted 5605 * according to the scheduling class and "nice" value. 5606 */ 5607 static unsigned long target_load(int cpu, int type) 5608 { 5609 struct rq *rq = cpu_rq(cpu); 5610 unsigned long total = weighted_cpuload(rq); 5611 5612 if (type == 0 || !sched_feat(LB_BIAS)) 5613 return total; 5614 5615 return max(rq->cpu_load[type-1], total); 5616 } 5617 5618 static unsigned long capacity_of(int cpu) 5619 { 5620 return cpu_rq(cpu)->cpu_capacity; 5621 } 5622 5623 static unsigned long capacity_orig_of(int cpu) 5624 { 5625 return cpu_rq(cpu)->cpu_capacity_orig; 5626 } 5627 5628 static unsigned long cpu_avg_load_per_task(int cpu) 5629 { 5630 struct rq *rq = cpu_rq(cpu); 5631 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5632 unsigned long load_avg = weighted_cpuload(rq); 5633 5634 if (nr_running) 5635 return load_avg / nr_running; 5636 5637 return 0; 5638 } 5639 5640 static void record_wakee(struct task_struct *p) 5641 { 5642 /* 5643 * Only decay a single time; tasks that have less then 1 wakeup per 5644 * jiffy will not have built up many flips. 5645 */ 5646 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5647 current->wakee_flips >>= 1; 5648 current->wakee_flip_decay_ts = jiffies; 5649 } 5650 5651 if (current->last_wakee != p) { 5652 current->last_wakee = p; 5653 current->wakee_flips++; 5654 } 5655 } 5656 5657 /* 5658 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5659 * 5660 * A waker of many should wake a different task than the one last awakened 5661 * at a frequency roughly N times higher than one of its wakees. 5662 * 5663 * In order to determine whether we should let the load spread vs consolidating 5664 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5665 * partner, and a factor of lls_size higher frequency in the other. 5666 * 5667 * With both conditions met, we can be relatively sure that the relationship is 5668 * non-monogamous, with partner count exceeding socket size. 5669 * 5670 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5671 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5672 * socket size. 5673 */ 5674 static int wake_wide(struct task_struct *p) 5675 { 5676 unsigned int master = current->wakee_flips; 5677 unsigned int slave = p->wakee_flips; 5678 int factor = this_cpu_read(sd_llc_size); 5679 5680 if (master < slave) 5681 swap(master, slave); 5682 if (slave < factor || master < slave * factor) 5683 return 0; 5684 return 1; 5685 } 5686 5687 /* 5688 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5689 * soonest. For the purpose of speed we only consider the waking and previous 5690 * CPU. 5691 * 5692 * wake_affine_idle() - only considers 'now', it check if the waking CPU is (or 5693 * will be) idle. 5694 * 5695 * wake_affine_weight() - considers the weight to reflect the average 5696 * scheduling latency of the CPUs. This seems to work 5697 * for the overloaded case. 5698 */ 5699 5700 static bool 5701 wake_affine_idle(struct sched_domain *sd, struct task_struct *p, 5702 int this_cpu, int prev_cpu, int sync) 5703 { 5704 if (idle_cpu(this_cpu)) 5705 return true; 5706 5707 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5708 return true; 5709 5710 return false; 5711 } 5712 5713 static bool 5714 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5715 int this_cpu, int prev_cpu, int sync) 5716 { 5717 s64 this_eff_load, prev_eff_load; 5718 unsigned long task_load; 5719 5720 this_eff_load = target_load(this_cpu, sd->wake_idx); 5721 prev_eff_load = source_load(prev_cpu, sd->wake_idx); 5722 5723 if (sync) { 5724 unsigned long current_load = task_h_load(current); 5725 5726 if (current_load > this_eff_load) 5727 return true; 5728 5729 this_eff_load -= current_load; 5730 } 5731 5732 task_load = task_h_load(p); 5733 5734 this_eff_load += task_load; 5735 if (sched_feat(WA_BIAS)) 5736 this_eff_load *= 100; 5737 this_eff_load *= capacity_of(prev_cpu); 5738 5739 prev_eff_load -= task_load; 5740 if (sched_feat(WA_BIAS)) 5741 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5742 prev_eff_load *= capacity_of(this_cpu); 5743 5744 return this_eff_load <= prev_eff_load; 5745 } 5746 5747 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5748 int prev_cpu, int sync) 5749 { 5750 int this_cpu = smp_processor_id(); 5751 bool affine = false; 5752 5753 if (sched_feat(WA_IDLE) && !affine) 5754 affine = wake_affine_idle(sd, p, this_cpu, prev_cpu, sync); 5755 5756 if (sched_feat(WA_WEIGHT) && !affine) 5757 affine = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5758 5759 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5760 if (affine) { 5761 schedstat_inc(sd->ttwu_move_affine); 5762 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5763 } 5764 5765 return affine; 5766 } 5767 5768 static inline int task_util(struct task_struct *p); 5769 static int cpu_util_wake(int cpu, struct task_struct *p); 5770 5771 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p) 5772 { 5773 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p); 5774 } 5775 5776 /* 5777 * find_idlest_group finds and returns the least busy CPU group within the 5778 * domain. 5779 * 5780 * Assumes p is allowed on at least one CPU in sd. 5781 */ 5782 static struct sched_group * 5783 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5784 int this_cpu, int sd_flag) 5785 { 5786 struct sched_group *idlest = NULL, *group = sd->groups; 5787 struct sched_group *most_spare_sg = NULL; 5788 unsigned long min_runnable_load = ULONG_MAX; 5789 unsigned long this_runnable_load = ULONG_MAX; 5790 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 5791 unsigned long most_spare = 0, this_spare = 0; 5792 int load_idx = sd->forkexec_idx; 5793 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5794 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5795 (sd->imbalance_pct-100) / 100; 5796 5797 if (sd_flag & SD_BALANCE_WAKE) 5798 load_idx = sd->wake_idx; 5799 5800 do { 5801 unsigned long load, avg_load, runnable_load; 5802 unsigned long spare_cap, max_spare_cap; 5803 int local_group; 5804 int i; 5805 5806 /* Skip over this group if it has no CPUs allowed */ 5807 if (!cpumask_intersects(sched_group_span(group), 5808 &p->cpus_allowed)) 5809 continue; 5810 5811 local_group = cpumask_test_cpu(this_cpu, 5812 sched_group_span(group)); 5813 5814 /* 5815 * Tally up the load of all CPUs in the group and find 5816 * the group containing the CPU with most spare capacity. 5817 */ 5818 avg_load = 0; 5819 runnable_load = 0; 5820 max_spare_cap = 0; 5821 5822 for_each_cpu(i, sched_group_span(group)) { 5823 /* Bias balancing toward cpus of our domain */ 5824 if (local_group) 5825 load = source_load(i, load_idx); 5826 else 5827 load = target_load(i, load_idx); 5828 5829 runnable_load += load; 5830 5831 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5832 5833 spare_cap = capacity_spare_wake(i, p); 5834 5835 if (spare_cap > max_spare_cap) 5836 max_spare_cap = spare_cap; 5837 } 5838 5839 /* Adjust by relative CPU capacity of the group */ 5840 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5841 group->sgc->capacity; 5842 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5843 group->sgc->capacity; 5844 5845 if (local_group) { 5846 this_runnable_load = runnable_load; 5847 this_avg_load = avg_load; 5848 this_spare = max_spare_cap; 5849 } else { 5850 if (min_runnable_load > (runnable_load + imbalance)) { 5851 /* 5852 * The runnable load is significantly smaller 5853 * so we can pick this new cpu 5854 */ 5855 min_runnable_load = runnable_load; 5856 min_avg_load = avg_load; 5857 idlest = group; 5858 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5859 (100*min_avg_load > imbalance_scale*avg_load)) { 5860 /* 5861 * The runnable loads are close so take the 5862 * blocked load into account through avg_load. 5863 */ 5864 min_avg_load = avg_load; 5865 idlest = group; 5866 } 5867 5868 if (most_spare < max_spare_cap) { 5869 most_spare = max_spare_cap; 5870 most_spare_sg = group; 5871 } 5872 } 5873 } while (group = group->next, group != sd->groups); 5874 5875 /* 5876 * The cross-over point between using spare capacity or least load 5877 * is too conservative for high utilization tasks on partially 5878 * utilized systems if we require spare_capacity > task_util(p), 5879 * so we allow for some task stuffing by using 5880 * spare_capacity > task_util(p)/2. 5881 * 5882 * Spare capacity can't be used for fork because the utilization has 5883 * not been set yet, we must first select a rq to compute the initial 5884 * utilization. 5885 */ 5886 if (sd_flag & SD_BALANCE_FORK) 5887 goto skip_spare; 5888 5889 if (this_spare > task_util(p) / 2 && 5890 imbalance_scale*this_spare > 100*most_spare) 5891 return NULL; 5892 5893 if (most_spare > task_util(p) / 2) 5894 return most_spare_sg; 5895 5896 skip_spare: 5897 if (!idlest) 5898 return NULL; 5899 5900 if (min_runnable_load > (this_runnable_load + imbalance)) 5901 return NULL; 5902 5903 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5904 (100*this_avg_load < imbalance_scale*min_avg_load)) 5905 return NULL; 5906 5907 return idlest; 5908 } 5909 5910 /* 5911 * find_idlest_group_cpu - find the idlest cpu among the cpus in group. 5912 */ 5913 static int 5914 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5915 { 5916 unsigned long load, min_load = ULONG_MAX; 5917 unsigned int min_exit_latency = UINT_MAX; 5918 u64 latest_idle_timestamp = 0; 5919 int least_loaded_cpu = this_cpu; 5920 int shallowest_idle_cpu = -1; 5921 int i; 5922 5923 /* Check if we have any choice: */ 5924 if (group->group_weight == 1) 5925 return cpumask_first(sched_group_span(group)); 5926 5927 /* Traverse only the allowed CPUs */ 5928 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { 5929 if (idle_cpu(i)) { 5930 struct rq *rq = cpu_rq(i); 5931 struct cpuidle_state *idle = idle_get_state(rq); 5932 if (idle && idle->exit_latency < min_exit_latency) { 5933 /* 5934 * We give priority to a CPU whose idle state 5935 * has the smallest exit latency irrespective 5936 * of any idle timestamp. 5937 */ 5938 min_exit_latency = idle->exit_latency; 5939 latest_idle_timestamp = rq->idle_stamp; 5940 shallowest_idle_cpu = i; 5941 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5942 rq->idle_stamp > latest_idle_timestamp) { 5943 /* 5944 * If equal or no active idle state, then 5945 * the most recently idled CPU might have 5946 * a warmer cache. 5947 */ 5948 latest_idle_timestamp = rq->idle_stamp; 5949 shallowest_idle_cpu = i; 5950 } 5951 } else if (shallowest_idle_cpu == -1) { 5952 load = weighted_cpuload(cpu_rq(i)); 5953 if (load < min_load || (load == min_load && i == this_cpu)) { 5954 min_load = load; 5955 least_loaded_cpu = i; 5956 } 5957 } 5958 } 5959 5960 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5961 } 5962 5963 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5964 int cpu, int prev_cpu, int sd_flag) 5965 { 5966 int new_cpu = cpu; 5967 5968 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed)) 5969 return prev_cpu; 5970 5971 while (sd) { 5972 struct sched_group *group; 5973 struct sched_domain *tmp; 5974 int weight; 5975 5976 if (!(sd->flags & sd_flag)) { 5977 sd = sd->child; 5978 continue; 5979 } 5980 5981 group = find_idlest_group(sd, p, cpu, sd_flag); 5982 if (!group) { 5983 sd = sd->child; 5984 continue; 5985 } 5986 5987 new_cpu = find_idlest_group_cpu(group, p, cpu); 5988 if (new_cpu == cpu) { 5989 /* Now try balancing at a lower domain level of cpu */ 5990 sd = sd->child; 5991 continue; 5992 } 5993 5994 /* Now try balancing at a lower domain level of new_cpu */ 5995 cpu = new_cpu; 5996 weight = sd->span_weight; 5997 sd = NULL; 5998 for_each_domain(cpu, tmp) { 5999 if (weight <= tmp->span_weight) 6000 break; 6001 if (tmp->flags & sd_flag) 6002 sd = tmp; 6003 } 6004 /* while loop will break here if sd == NULL */ 6005 } 6006 6007 return new_cpu; 6008 } 6009 6010 #ifdef CONFIG_SCHED_SMT 6011 6012 static inline void set_idle_cores(int cpu, int val) 6013 { 6014 struct sched_domain_shared *sds; 6015 6016 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6017 if (sds) 6018 WRITE_ONCE(sds->has_idle_cores, val); 6019 } 6020 6021 static inline bool test_idle_cores(int cpu, bool def) 6022 { 6023 struct sched_domain_shared *sds; 6024 6025 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6026 if (sds) 6027 return READ_ONCE(sds->has_idle_cores); 6028 6029 return def; 6030 } 6031 6032 /* 6033 * Scans the local SMT mask to see if the entire core is idle, and records this 6034 * information in sd_llc_shared->has_idle_cores. 6035 * 6036 * Since SMT siblings share all cache levels, inspecting this limited remote 6037 * state should be fairly cheap. 6038 */ 6039 void __update_idle_core(struct rq *rq) 6040 { 6041 int core = cpu_of(rq); 6042 int cpu; 6043 6044 rcu_read_lock(); 6045 if (test_idle_cores(core, true)) 6046 goto unlock; 6047 6048 for_each_cpu(cpu, cpu_smt_mask(core)) { 6049 if (cpu == core) 6050 continue; 6051 6052 if (!idle_cpu(cpu)) 6053 goto unlock; 6054 } 6055 6056 set_idle_cores(core, 1); 6057 unlock: 6058 rcu_read_unlock(); 6059 } 6060 6061 /* 6062 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6063 * there are no idle cores left in the system; tracked through 6064 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6065 */ 6066 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6067 { 6068 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6069 int core, cpu; 6070 6071 if (!static_branch_likely(&sched_smt_present)) 6072 return -1; 6073 6074 if (!test_idle_cores(target, false)) 6075 return -1; 6076 6077 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 6078 6079 for_each_cpu_wrap(core, cpus, target) { 6080 bool idle = true; 6081 6082 for_each_cpu(cpu, cpu_smt_mask(core)) { 6083 cpumask_clear_cpu(cpu, cpus); 6084 if (!idle_cpu(cpu)) 6085 idle = false; 6086 } 6087 6088 if (idle) 6089 return core; 6090 } 6091 6092 /* 6093 * Failed to find an idle core; stop looking for one. 6094 */ 6095 set_idle_cores(target, 0); 6096 6097 return -1; 6098 } 6099 6100 /* 6101 * Scan the local SMT mask for idle CPUs. 6102 */ 6103 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6104 { 6105 int cpu; 6106 6107 if (!static_branch_likely(&sched_smt_present)) 6108 return -1; 6109 6110 for_each_cpu(cpu, cpu_smt_mask(target)) { 6111 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6112 continue; 6113 if (idle_cpu(cpu)) 6114 return cpu; 6115 } 6116 6117 return -1; 6118 } 6119 6120 #else /* CONFIG_SCHED_SMT */ 6121 6122 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6123 { 6124 return -1; 6125 } 6126 6127 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6128 { 6129 return -1; 6130 } 6131 6132 #endif /* CONFIG_SCHED_SMT */ 6133 6134 /* 6135 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6136 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6137 * average idle time for this rq (as found in rq->avg_idle). 6138 */ 6139 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6140 { 6141 struct sched_domain *this_sd; 6142 u64 avg_cost, avg_idle; 6143 u64 time, cost; 6144 s64 delta; 6145 int cpu, nr = INT_MAX; 6146 6147 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6148 if (!this_sd) 6149 return -1; 6150 6151 /* 6152 * Due to large variance we need a large fuzz factor; hackbench in 6153 * particularly is sensitive here. 6154 */ 6155 avg_idle = this_rq()->avg_idle / 512; 6156 avg_cost = this_sd->avg_scan_cost + 1; 6157 6158 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 6159 return -1; 6160 6161 if (sched_feat(SIS_PROP)) { 6162 u64 span_avg = sd->span_weight * avg_idle; 6163 if (span_avg > 4*avg_cost) 6164 nr = div_u64(span_avg, avg_cost); 6165 else 6166 nr = 4; 6167 } 6168 6169 time = local_clock(); 6170 6171 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 6172 if (!--nr) 6173 return -1; 6174 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6175 continue; 6176 if (idle_cpu(cpu)) 6177 break; 6178 } 6179 6180 time = local_clock() - time; 6181 cost = this_sd->avg_scan_cost; 6182 delta = (s64)(time - cost) / 8; 6183 this_sd->avg_scan_cost += delta; 6184 6185 return cpu; 6186 } 6187 6188 /* 6189 * Try and locate an idle core/thread in the LLC cache domain. 6190 */ 6191 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6192 { 6193 struct sched_domain *sd; 6194 int i; 6195 6196 if (idle_cpu(target)) 6197 return target; 6198 6199 /* 6200 * If the previous cpu is cache affine and idle, don't be stupid. 6201 */ 6202 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev)) 6203 return prev; 6204 6205 sd = rcu_dereference(per_cpu(sd_llc, target)); 6206 if (!sd) 6207 return target; 6208 6209 i = select_idle_core(p, sd, target); 6210 if ((unsigned)i < nr_cpumask_bits) 6211 return i; 6212 6213 i = select_idle_cpu(p, sd, target); 6214 if ((unsigned)i < nr_cpumask_bits) 6215 return i; 6216 6217 i = select_idle_smt(p, sd, target); 6218 if ((unsigned)i < nr_cpumask_bits) 6219 return i; 6220 6221 return target; 6222 } 6223 6224 /* 6225 * cpu_util returns the amount of capacity of a CPU that is used by CFS 6226 * tasks. The unit of the return value must be the one of capacity so we can 6227 * compare the utilization with the capacity of the CPU that is available for 6228 * CFS task (ie cpu_capacity). 6229 * 6230 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6231 * recent utilization of currently non-runnable tasks on a CPU. It represents 6232 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6233 * capacity_orig is the cpu_capacity available at the highest frequency 6234 * (arch_scale_freq_capacity()). 6235 * The utilization of a CPU converges towards a sum equal to or less than the 6236 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6237 * the running time on this CPU scaled by capacity_curr. 6238 * 6239 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6240 * higher than capacity_orig because of unfortunate rounding in 6241 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6242 * the average stabilizes with the new running time. We need to check that the 6243 * utilization stays within the range of [0..capacity_orig] and cap it if 6244 * necessary. Without utilization capping, a group could be seen as overloaded 6245 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6246 * available capacity. We allow utilization to overshoot capacity_curr (but not 6247 * capacity_orig) as it useful for predicting the capacity required after task 6248 * migrations (scheduler-driven DVFS). 6249 */ 6250 static int cpu_util(int cpu) 6251 { 6252 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; 6253 unsigned long capacity = capacity_orig_of(cpu); 6254 6255 return (util >= capacity) ? capacity : util; 6256 } 6257 6258 static inline int task_util(struct task_struct *p) 6259 { 6260 return p->se.avg.util_avg; 6261 } 6262 6263 /* 6264 * cpu_util_wake: Compute cpu utilization with any contributions from 6265 * the waking task p removed. 6266 */ 6267 static int cpu_util_wake(int cpu, struct task_struct *p) 6268 { 6269 unsigned long util, capacity; 6270 6271 /* Task has no contribution or is new */ 6272 if (cpu != task_cpu(p) || !p->se.avg.last_update_time) 6273 return cpu_util(cpu); 6274 6275 capacity = capacity_orig_of(cpu); 6276 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0); 6277 6278 return (util >= capacity) ? capacity : util; 6279 } 6280 6281 /* 6282 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6283 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6284 * 6285 * In that case WAKE_AFFINE doesn't make sense and we'll let 6286 * BALANCE_WAKE sort things out. 6287 */ 6288 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6289 { 6290 long min_cap, max_cap; 6291 6292 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6293 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6294 6295 /* Minimum capacity is close to max, no need to abort wake_affine */ 6296 if (max_cap - min_cap < max_cap >> 3) 6297 return 0; 6298 6299 /* Bring task utilization in sync with prev_cpu */ 6300 sync_entity_load_avg(&p->se); 6301 6302 return min_cap * 1024 < task_util(p) * capacity_margin; 6303 } 6304 6305 /* 6306 * select_task_rq_fair: Select target runqueue for the waking task in domains 6307 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6308 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6309 * 6310 * Balances load by selecting the idlest cpu in the idlest group, or under 6311 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 6312 * 6313 * Returns the target cpu number. 6314 * 6315 * preempt must be disabled. 6316 */ 6317 static int 6318 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6319 { 6320 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 6321 int cpu = smp_processor_id(); 6322 int new_cpu = prev_cpu; 6323 int want_affine = 0; 6324 int sync = wake_flags & WF_SYNC; 6325 6326 if (sd_flag & SD_BALANCE_WAKE) { 6327 record_wakee(p); 6328 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) 6329 && cpumask_test_cpu(cpu, &p->cpus_allowed); 6330 } 6331 6332 rcu_read_lock(); 6333 for_each_domain(cpu, tmp) { 6334 if (!(tmp->flags & SD_LOAD_BALANCE)) 6335 break; 6336 6337 /* 6338 * If both cpu and prev_cpu are part of this domain, 6339 * cpu is a valid SD_WAKE_AFFINE target. 6340 */ 6341 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6342 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6343 affine_sd = tmp; 6344 break; 6345 } 6346 6347 if (tmp->flags & sd_flag) 6348 sd = tmp; 6349 else if (!want_affine) 6350 break; 6351 } 6352 6353 if (affine_sd) { 6354 sd = NULL; /* Prefer wake_affine over balance flags */ 6355 if (cpu == prev_cpu) 6356 goto pick_cpu; 6357 6358 if (wake_affine(affine_sd, p, prev_cpu, sync)) 6359 new_cpu = cpu; 6360 } 6361 6362 if (sd && !(sd_flag & SD_BALANCE_FORK)) { 6363 /* 6364 * We're going to need the task's util for capacity_spare_wake 6365 * in find_idlest_group. Sync it up to prev_cpu's 6366 * last_update_time. 6367 */ 6368 sync_entity_load_avg(&p->se); 6369 } 6370 6371 if (!sd) { 6372 pick_cpu: 6373 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ 6374 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6375 6376 } else { 6377 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6378 } 6379 rcu_read_unlock(); 6380 6381 return new_cpu; 6382 } 6383 6384 static void detach_entity_cfs_rq(struct sched_entity *se); 6385 6386 /* 6387 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 6388 * cfs_rq_of(p) references at time of call are still valid and identify the 6389 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6390 */ 6391 static void migrate_task_rq_fair(struct task_struct *p) 6392 { 6393 /* 6394 * As blocked tasks retain absolute vruntime the migration needs to 6395 * deal with this by subtracting the old and adding the new 6396 * min_vruntime -- the latter is done by enqueue_entity() when placing 6397 * the task on the new runqueue. 6398 */ 6399 if (p->state == TASK_WAKING) { 6400 struct sched_entity *se = &p->se; 6401 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6402 u64 min_vruntime; 6403 6404 #ifndef CONFIG_64BIT 6405 u64 min_vruntime_copy; 6406 6407 do { 6408 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6409 smp_rmb(); 6410 min_vruntime = cfs_rq->min_vruntime; 6411 } while (min_vruntime != min_vruntime_copy); 6412 #else 6413 min_vruntime = cfs_rq->min_vruntime; 6414 #endif 6415 6416 se->vruntime -= min_vruntime; 6417 } 6418 6419 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6420 /* 6421 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6422 * rq->lock and can modify state directly. 6423 */ 6424 lockdep_assert_held(&task_rq(p)->lock); 6425 detach_entity_cfs_rq(&p->se); 6426 6427 } else { 6428 /* 6429 * We are supposed to update the task to "current" time, then 6430 * its up to date and ready to go to new CPU/cfs_rq. But we 6431 * have difficulty in getting what current time is, so simply 6432 * throw away the out-of-date time. This will result in the 6433 * wakee task is less decayed, but giving the wakee more load 6434 * sounds not bad. 6435 */ 6436 remove_entity_load_avg(&p->se); 6437 } 6438 6439 /* Tell new CPU we are migrated */ 6440 p->se.avg.last_update_time = 0; 6441 6442 /* We have migrated, no longer consider this task hot */ 6443 p->se.exec_start = 0; 6444 } 6445 6446 static void task_dead_fair(struct task_struct *p) 6447 { 6448 remove_entity_load_avg(&p->se); 6449 } 6450 #endif /* CONFIG_SMP */ 6451 6452 static unsigned long 6453 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 6454 { 6455 unsigned long gran = sysctl_sched_wakeup_granularity; 6456 6457 /* 6458 * Since its curr running now, convert the gran from real-time 6459 * to virtual-time in his units. 6460 * 6461 * By using 'se' instead of 'curr' we penalize light tasks, so 6462 * they get preempted easier. That is, if 'se' < 'curr' then 6463 * the resulting gran will be larger, therefore penalizing the 6464 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6465 * be smaller, again penalizing the lighter task. 6466 * 6467 * This is especially important for buddies when the leftmost 6468 * task is higher priority than the buddy. 6469 */ 6470 return calc_delta_fair(gran, se); 6471 } 6472 6473 /* 6474 * Should 'se' preempt 'curr'. 6475 * 6476 * |s1 6477 * |s2 6478 * |s3 6479 * g 6480 * |<--->|c 6481 * 6482 * w(c, s1) = -1 6483 * w(c, s2) = 0 6484 * w(c, s3) = 1 6485 * 6486 */ 6487 static int 6488 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6489 { 6490 s64 gran, vdiff = curr->vruntime - se->vruntime; 6491 6492 if (vdiff <= 0) 6493 return -1; 6494 6495 gran = wakeup_gran(curr, se); 6496 if (vdiff > gran) 6497 return 1; 6498 6499 return 0; 6500 } 6501 6502 static void set_last_buddy(struct sched_entity *se) 6503 { 6504 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6505 return; 6506 6507 for_each_sched_entity(se) { 6508 if (SCHED_WARN_ON(!se->on_rq)) 6509 return; 6510 cfs_rq_of(se)->last = se; 6511 } 6512 } 6513 6514 static void set_next_buddy(struct sched_entity *se) 6515 { 6516 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6517 return; 6518 6519 for_each_sched_entity(se) { 6520 if (SCHED_WARN_ON(!se->on_rq)) 6521 return; 6522 cfs_rq_of(se)->next = se; 6523 } 6524 } 6525 6526 static void set_skip_buddy(struct sched_entity *se) 6527 { 6528 for_each_sched_entity(se) 6529 cfs_rq_of(se)->skip = se; 6530 } 6531 6532 /* 6533 * Preempt the current task with a newly woken task if needed: 6534 */ 6535 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6536 { 6537 struct task_struct *curr = rq->curr; 6538 struct sched_entity *se = &curr->se, *pse = &p->se; 6539 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6540 int scale = cfs_rq->nr_running >= sched_nr_latency; 6541 int next_buddy_marked = 0; 6542 6543 if (unlikely(se == pse)) 6544 return; 6545 6546 /* 6547 * This is possible from callers such as attach_tasks(), in which we 6548 * unconditionally check_prempt_curr() after an enqueue (which may have 6549 * lead to a throttle). This both saves work and prevents false 6550 * next-buddy nomination below. 6551 */ 6552 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6553 return; 6554 6555 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6556 set_next_buddy(pse); 6557 next_buddy_marked = 1; 6558 } 6559 6560 /* 6561 * We can come here with TIF_NEED_RESCHED already set from new task 6562 * wake up path. 6563 * 6564 * Note: this also catches the edge-case of curr being in a throttled 6565 * group (e.g. via set_curr_task), since update_curr() (in the 6566 * enqueue of curr) will have resulted in resched being set. This 6567 * prevents us from potentially nominating it as a false LAST_BUDDY 6568 * below. 6569 */ 6570 if (test_tsk_need_resched(curr)) 6571 return; 6572 6573 /* Idle tasks are by definition preempted by non-idle tasks. */ 6574 if (unlikely(curr->policy == SCHED_IDLE) && 6575 likely(p->policy != SCHED_IDLE)) 6576 goto preempt; 6577 6578 /* 6579 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6580 * is driven by the tick): 6581 */ 6582 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6583 return; 6584 6585 find_matching_se(&se, &pse); 6586 update_curr(cfs_rq_of(se)); 6587 BUG_ON(!pse); 6588 if (wakeup_preempt_entity(se, pse) == 1) { 6589 /* 6590 * Bias pick_next to pick the sched entity that is 6591 * triggering this preemption. 6592 */ 6593 if (!next_buddy_marked) 6594 set_next_buddy(pse); 6595 goto preempt; 6596 } 6597 6598 return; 6599 6600 preempt: 6601 resched_curr(rq); 6602 /* 6603 * Only set the backward buddy when the current task is still 6604 * on the rq. This can happen when a wakeup gets interleaved 6605 * with schedule on the ->pre_schedule() or idle_balance() 6606 * point, either of which can * drop the rq lock. 6607 * 6608 * Also, during early boot the idle thread is in the fair class, 6609 * for obvious reasons its a bad idea to schedule back to it. 6610 */ 6611 if (unlikely(!se->on_rq || curr == rq->idle)) 6612 return; 6613 6614 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6615 set_last_buddy(se); 6616 } 6617 6618 static struct task_struct * 6619 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6620 { 6621 struct cfs_rq *cfs_rq = &rq->cfs; 6622 struct sched_entity *se; 6623 struct task_struct *p; 6624 int new_tasks; 6625 6626 again: 6627 if (!cfs_rq->nr_running) 6628 goto idle; 6629 6630 #ifdef CONFIG_FAIR_GROUP_SCHED 6631 if (prev->sched_class != &fair_sched_class) 6632 goto simple; 6633 6634 /* 6635 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6636 * likely that a next task is from the same cgroup as the current. 6637 * 6638 * Therefore attempt to avoid putting and setting the entire cgroup 6639 * hierarchy, only change the part that actually changes. 6640 */ 6641 6642 do { 6643 struct sched_entity *curr = cfs_rq->curr; 6644 6645 /* 6646 * Since we got here without doing put_prev_entity() we also 6647 * have to consider cfs_rq->curr. If it is still a runnable 6648 * entity, update_curr() will update its vruntime, otherwise 6649 * forget we've ever seen it. 6650 */ 6651 if (curr) { 6652 if (curr->on_rq) 6653 update_curr(cfs_rq); 6654 else 6655 curr = NULL; 6656 6657 /* 6658 * This call to check_cfs_rq_runtime() will do the 6659 * throttle and dequeue its entity in the parent(s). 6660 * Therefore the nr_running test will indeed 6661 * be correct. 6662 */ 6663 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6664 cfs_rq = &rq->cfs; 6665 6666 if (!cfs_rq->nr_running) 6667 goto idle; 6668 6669 goto simple; 6670 } 6671 } 6672 6673 se = pick_next_entity(cfs_rq, curr); 6674 cfs_rq = group_cfs_rq(se); 6675 } while (cfs_rq); 6676 6677 p = task_of(se); 6678 6679 /* 6680 * Since we haven't yet done put_prev_entity and if the selected task 6681 * is a different task than we started out with, try and touch the 6682 * least amount of cfs_rqs. 6683 */ 6684 if (prev != p) { 6685 struct sched_entity *pse = &prev->se; 6686 6687 while (!(cfs_rq = is_same_group(se, pse))) { 6688 int se_depth = se->depth; 6689 int pse_depth = pse->depth; 6690 6691 if (se_depth <= pse_depth) { 6692 put_prev_entity(cfs_rq_of(pse), pse); 6693 pse = parent_entity(pse); 6694 } 6695 if (se_depth >= pse_depth) { 6696 set_next_entity(cfs_rq_of(se), se); 6697 se = parent_entity(se); 6698 } 6699 } 6700 6701 put_prev_entity(cfs_rq, pse); 6702 set_next_entity(cfs_rq, se); 6703 } 6704 6705 goto done; 6706 simple: 6707 #endif 6708 6709 put_prev_task(rq, prev); 6710 6711 do { 6712 se = pick_next_entity(cfs_rq, NULL); 6713 set_next_entity(cfs_rq, se); 6714 cfs_rq = group_cfs_rq(se); 6715 } while (cfs_rq); 6716 6717 p = task_of(se); 6718 6719 done: __maybe_unused 6720 #ifdef CONFIG_SMP 6721 /* 6722 * Move the next running task to the front of 6723 * the list, so our cfs_tasks list becomes MRU 6724 * one. 6725 */ 6726 list_move(&p->se.group_node, &rq->cfs_tasks); 6727 #endif 6728 6729 if (hrtick_enabled(rq)) 6730 hrtick_start_fair(rq, p); 6731 6732 return p; 6733 6734 idle: 6735 new_tasks = idle_balance(rq, rf); 6736 6737 /* 6738 * Because idle_balance() releases (and re-acquires) rq->lock, it is 6739 * possible for any higher priority task to appear. In that case we 6740 * must re-start the pick_next_entity() loop. 6741 */ 6742 if (new_tasks < 0) 6743 return RETRY_TASK; 6744 6745 if (new_tasks > 0) 6746 goto again; 6747 6748 return NULL; 6749 } 6750 6751 /* 6752 * Account for a descheduled task: 6753 */ 6754 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6755 { 6756 struct sched_entity *se = &prev->se; 6757 struct cfs_rq *cfs_rq; 6758 6759 for_each_sched_entity(se) { 6760 cfs_rq = cfs_rq_of(se); 6761 put_prev_entity(cfs_rq, se); 6762 } 6763 } 6764 6765 /* 6766 * sched_yield() is very simple 6767 * 6768 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6769 */ 6770 static void yield_task_fair(struct rq *rq) 6771 { 6772 struct task_struct *curr = rq->curr; 6773 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6774 struct sched_entity *se = &curr->se; 6775 6776 /* 6777 * Are we the only task in the tree? 6778 */ 6779 if (unlikely(rq->nr_running == 1)) 6780 return; 6781 6782 clear_buddies(cfs_rq, se); 6783 6784 if (curr->policy != SCHED_BATCH) { 6785 update_rq_clock(rq); 6786 /* 6787 * Update run-time statistics of the 'current'. 6788 */ 6789 update_curr(cfs_rq); 6790 /* 6791 * Tell update_rq_clock() that we've just updated, 6792 * so we don't do microscopic update in schedule() 6793 * and double the fastpath cost. 6794 */ 6795 rq_clock_skip_update(rq, true); 6796 } 6797 6798 set_skip_buddy(se); 6799 } 6800 6801 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6802 { 6803 struct sched_entity *se = &p->se; 6804 6805 /* throttled hierarchies are not runnable */ 6806 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6807 return false; 6808 6809 /* Tell the scheduler that we'd really like pse to run next. */ 6810 set_next_buddy(se); 6811 6812 yield_task_fair(rq); 6813 6814 return true; 6815 } 6816 6817 #ifdef CONFIG_SMP 6818 /************************************************** 6819 * Fair scheduling class load-balancing methods. 6820 * 6821 * BASICS 6822 * 6823 * The purpose of load-balancing is to achieve the same basic fairness the 6824 * per-cpu scheduler provides, namely provide a proportional amount of compute 6825 * time to each task. This is expressed in the following equation: 6826 * 6827 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6828 * 6829 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 6830 * W_i,0 is defined as: 6831 * 6832 * W_i,0 = \Sum_j w_i,j (2) 6833 * 6834 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 6835 * is derived from the nice value as per sched_prio_to_weight[]. 6836 * 6837 * The weight average is an exponential decay average of the instantaneous 6838 * weight: 6839 * 6840 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6841 * 6842 * C_i is the compute capacity of cpu i, typically it is the 6843 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6844 * can also include other factors [XXX]. 6845 * 6846 * To achieve this balance we define a measure of imbalance which follows 6847 * directly from (1): 6848 * 6849 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6850 * 6851 * We them move tasks around to minimize the imbalance. In the continuous 6852 * function space it is obvious this converges, in the discrete case we get 6853 * a few fun cases generally called infeasible weight scenarios. 6854 * 6855 * [XXX expand on: 6856 * - infeasible weights; 6857 * - local vs global optima in the discrete case. ] 6858 * 6859 * 6860 * SCHED DOMAINS 6861 * 6862 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6863 * for all i,j solution, we create a tree of cpus that follows the hardware 6864 * topology where each level pairs two lower groups (or better). This results 6865 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 6866 * tree to only the first of the previous level and we decrease the frequency 6867 * of load-balance at each level inv. proportional to the number of cpus in 6868 * the groups. 6869 * 6870 * This yields: 6871 * 6872 * log_2 n 1 n 6873 * \Sum { --- * --- * 2^i } = O(n) (5) 6874 * i = 0 2^i 2^i 6875 * `- size of each group 6876 * | | `- number of cpus doing load-balance 6877 * | `- freq 6878 * `- sum over all levels 6879 * 6880 * Coupled with a limit on how many tasks we can migrate every balance pass, 6881 * this makes (5) the runtime complexity of the balancer. 6882 * 6883 * An important property here is that each CPU is still (indirectly) connected 6884 * to every other cpu in at most O(log n) steps: 6885 * 6886 * The adjacency matrix of the resulting graph is given by: 6887 * 6888 * log_2 n 6889 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 6890 * k = 0 6891 * 6892 * And you'll find that: 6893 * 6894 * A^(log_2 n)_i,j != 0 for all i,j (7) 6895 * 6896 * Showing there's indeed a path between every cpu in at most O(log n) steps. 6897 * The task movement gives a factor of O(m), giving a convergence complexity 6898 * of: 6899 * 6900 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 6901 * 6902 * 6903 * WORK CONSERVING 6904 * 6905 * In order to avoid CPUs going idle while there's still work to do, new idle 6906 * balancing is more aggressive and has the newly idle cpu iterate up the domain 6907 * tree itself instead of relying on other CPUs to bring it work. 6908 * 6909 * This adds some complexity to both (5) and (8) but it reduces the total idle 6910 * time. 6911 * 6912 * [XXX more?] 6913 * 6914 * 6915 * CGROUPS 6916 * 6917 * Cgroups make a horror show out of (2), instead of a simple sum we get: 6918 * 6919 * s_k,i 6920 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 6921 * S_k 6922 * 6923 * Where 6924 * 6925 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 6926 * 6927 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 6928 * 6929 * The big problem is S_k, its a global sum needed to compute a local (W_i) 6930 * property. 6931 * 6932 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 6933 * rewrite all of this once again.] 6934 */ 6935 6936 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 6937 6938 enum fbq_type { regular, remote, all }; 6939 6940 #define LBF_ALL_PINNED 0x01 6941 #define LBF_NEED_BREAK 0x02 6942 #define LBF_DST_PINNED 0x04 6943 #define LBF_SOME_PINNED 0x08 6944 6945 struct lb_env { 6946 struct sched_domain *sd; 6947 6948 struct rq *src_rq; 6949 int src_cpu; 6950 6951 int dst_cpu; 6952 struct rq *dst_rq; 6953 6954 struct cpumask *dst_grpmask; 6955 int new_dst_cpu; 6956 enum cpu_idle_type idle; 6957 long imbalance; 6958 /* The set of CPUs under consideration for load-balancing */ 6959 struct cpumask *cpus; 6960 6961 unsigned int flags; 6962 6963 unsigned int loop; 6964 unsigned int loop_break; 6965 unsigned int loop_max; 6966 6967 enum fbq_type fbq_type; 6968 struct list_head tasks; 6969 }; 6970 6971 /* 6972 * Is this task likely cache-hot: 6973 */ 6974 static int task_hot(struct task_struct *p, struct lb_env *env) 6975 { 6976 s64 delta; 6977 6978 lockdep_assert_held(&env->src_rq->lock); 6979 6980 if (p->sched_class != &fair_sched_class) 6981 return 0; 6982 6983 if (unlikely(p->policy == SCHED_IDLE)) 6984 return 0; 6985 6986 /* 6987 * Buddy candidates are cache hot: 6988 */ 6989 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 6990 (&p->se == cfs_rq_of(&p->se)->next || 6991 &p->se == cfs_rq_of(&p->se)->last)) 6992 return 1; 6993 6994 if (sysctl_sched_migration_cost == -1) 6995 return 1; 6996 if (sysctl_sched_migration_cost == 0) 6997 return 0; 6998 6999 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7000 7001 return delta < (s64)sysctl_sched_migration_cost; 7002 } 7003 7004 #ifdef CONFIG_NUMA_BALANCING 7005 /* 7006 * Returns 1, if task migration degrades locality 7007 * Returns 0, if task migration improves locality i.e migration preferred. 7008 * Returns -1, if task migration is not affected by locality. 7009 */ 7010 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7011 { 7012 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7013 unsigned long src_faults, dst_faults; 7014 int src_nid, dst_nid; 7015 7016 if (!static_branch_likely(&sched_numa_balancing)) 7017 return -1; 7018 7019 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7020 return -1; 7021 7022 src_nid = cpu_to_node(env->src_cpu); 7023 dst_nid = cpu_to_node(env->dst_cpu); 7024 7025 if (src_nid == dst_nid) 7026 return -1; 7027 7028 /* Migrating away from the preferred node is always bad. */ 7029 if (src_nid == p->numa_preferred_nid) { 7030 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7031 return 1; 7032 else 7033 return -1; 7034 } 7035 7036 /* Encourage migration to the preferred node. */ 7037 if (dst_nid == p->numa_preferred_nid) 7038 return 0; 7039 7040 /* Leaving a core idle is often worse than degrading locality. */ 7041 if (env->idle != CPU_NOT_IDLE) 7042 return -1; 7043 7044 if (numa_group) { 7045 src_faults = group_faults(p, src_nid); 7046 dst_faults = group_faults(p, dst_nid); 7047 } else { 7048 src_faults = task_faults(p, src_nid); 7049 dst_faults = task_faults(p, dst_nid); 7050 } 7051 7052 return dst_faults < src_faults; 7053 } 7054 7055 #else 7056 static inline int migrate_degrades_locality(struct task_struct *p, 7057 struct lb_env *env) 7058 { 7059 return -1; 7060 } 7061 #endif 7062 7063 /* 7064 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7065 */ 7066 static 7067 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7068 { 7069 int tsk_cache_hot; 7070 7071 lockdep_assert_held(&env->src_rq->lock); 7072 7073 /* 7074 * We do not migrate tasks that are: 7075 * 1) throttled_lb_pair, or 7076 * 2) cannot be migrated to this CPU due to cpus_allowed, or 7077 * 3) running (obviously), or 7078 * 4) are cache-hot on their current CPU. 7079 */ 7080 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7081 return 0; 7082 7083 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 7084 int cpu; 7085 7086 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7087 7088 env->flags |= LBF_SOME_PINNED; 7089 7090 /* 7091 * Remember if this task can be migrated to any other cpu in 7092 * our sched_group. We may want to revisit it if we couldn't 7093 * meet load balance goals by pulling other tasks on src_cpu. 7094 * 7095 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7096 * already computed one in current iteration. 7097 */ 7098 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7099 return 0; 7100 7101 /* Prevent to re-select dst_cpu via env's cpus */ 7102 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7103 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 7104 env->flags |= LBF_DST_PINNED; 7105 env->new_dst_cpu = cpu; 7106 break; 7107 } 7108 } 7109 7110 return 0; 7111 } 7112 7113 /* Record that we found atleast one task that could run on dst_cpu */ 7114 env->flags &= ~LBF_ALL_PINNED; 7115 7116 if (task_running(env->src_rq, p)) { 7117 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7118 return 0; 7119 } 7120 7121 /* 7122 * Aggressive migration if: 7123 * 1) destination numa is preferred 7124 * 2) task is cache cold, or 7125 * 3) too many balance attempts have failed. 7126 */ 7127 tsk_cache_hot = migrate_degrades_locality(p, env); 7128 if (tsk_cache_hot == -1) 7129 tsk_cache_hot = task_hot(p, env); 7130 7131 if (tsk_cache_hot <= 0 || 7132 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7133 if (tsk_cache_hot == 1) { 7134 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7135 schedstat_inc(p->se.statistics.nr_forced_migrations); 7136 } 7137 return 1; 7138 } 7139 7140 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7141 return 0; 7142 } 7143 7144 /* 7145 * detach_task() -- detach the task for the migration specified in env 7146 */ 7147 static void detach_task(struct task_struct *p, struct lb_env *env) 7148 { 7149 lockdep_assert_held(&env->src_rq->lock); 7150 7151 p->on_rq = TASK_ON_RQ_MIGRATING; 7152 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7153 set_task_cpu(p, env->dst_cpu); 7154 } 7155 7156 /* 7157 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7158 * part of active balancing operations within "domain". 7159 * 7160 * Returns a task if successful and NULL otherwise. 7161 */ 7162 static struct task_struct *detach_one_task(struct lb_env *env) 7163 { 7164 struct task_struct *p; 7165 7166 lockdep_assert_held(&env->src_rq->lock); 7167 7168 list_for_each_entry_reverse(p, 7169 &env->src_rq->cfs_tasks, se.group_node) { 7170 if (!can_migrate_task(p, env)) 7171 continue; 7172 7173 detach_task(p, env); 7174 7175 /* 7176 * Right now, this is only the second place where 7177 * lb_gained[env->idle] is updated (other is detach_tasks) 7178 * so we can safely collect stats here rather than 7179 * inside detach_tasks(). 7180 */ 7181 schedstat_inc(env->sd->lb_gained[env->idle]); 7182 return p; 7183 } 7184 return NULL; 7185 } 7186 7187 static const unsigned int sched_nr_migrate_break = 32; 7188 7189 /* 7190 * detach_tasks() -- tries to detach up to imbalance weighted load from 7191 * busiest_rq, as part of a balancing operation within domain "sd". 7192 * 7193 * Returns number of detached tasks if successful and 0 otherwise. 7194 */ 7195 static int detach_tasks(struct lb_env *env) 7196 { 7197 struct list_head *tasks = &env->src_rq->cfs_tasks; 7198 struct task_struct *p; 7199 unsigned long load; 7200 int detached = 0; 7201 7202 lockdep_assert_held(&env->src_rq->lock); 7203 7204 if (env->imbalance <= 0) 7205 return 0; 7206 7207 while (!list_empty(tasks)) { 7208 /* 7209 * We don't want to steal all, otherwise we may be treated likewise, 7210 * which could at worst lead to a livelock crash. 7211 */ 7212 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7213 break; 7214 7215 p = list_last_entry(tasks, struct task_struct, se.group_node); 7216 7217 env->loop++; 7218 /* We've more or less seen every task there is, call it quits */ 7219 if (env->loop > env->loop_max) 7220 break; 7221 7222 /* take a breather every nr_migrate tasks */ 7223 if (env->loop > env->loop_break) { 7224 env->loop_break += sched_nr_migrate_break; 7225 env->flags |= LBF_NEED_BREAK; 7226 break; 7227 } 7228 7229 if (!can_migrate_task(p, env)) 7230 goto next; 7231 7232 load = task_h_load(p); 7233 7234 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7235 goto next; 7236 7237 if ((load / 2) > env->imbalance) 7238 goto next; 7239 7240 detach_task(p, env); 7241 list_add(&p->se.group_node, &env->tasks); 7242 7243 detached++; 7244 env->imbalance -= load; 7245 7246 #ifdef CONFIG_PREEMPT 7247 /* 7248 * NEWIDLE balancing is a source of latency, so preemptible 7249 * kernels will stop after the first task is detached to minimize 7250 * the critical section. 7251 */ 7252 if (env->idle == CPU_NEWLY_IDLE) 7253 break; 7254 #endif 7255 7256 /* 7257 * We only want to steal up to the prescribed amount of 7258 * weighted load. 7259 */ 7260 if (env->imbalance <= 0) 7261 break; 7262 7263 continue; 7264 next: 7265 list_move(&p->se.group_node, tasks); 7266 } 7267 7268 /* 7269 * Right now, this is one of only two places we collect this stat 7270 * so we can safely collect detach_one_task() stats here rather 7271 * than inside detach_one_task(). 7272 */ 7273 schedstat_add(env->sd->lb_gained[env->idle], detached); 7274 7275 return detached; 7276 } 7277 7278 /* 7279 * attach_task() -- attach the task detached by detach_task() to its new rq. 7280 */ 7281 static void attach_task(struct rq *rq, struct task_struct *p) 7282 { 7283 lockdep_assert_held(&rq->lock); 7284 7285 BUG_ON(task_rq(p) != rq); 7286 activate_task(rq, p, ENQUEUE_NOCLOCK); 7287 p->on_rq = TASK_ON_RQ_QUEUED; 7288 check_preempt_curr(rq, p, 0); 7289 } 7290 7291 /* 7292 * attach_one_task() -- attaches the task returned from detach_one_task() to 7293 * its new rq. 7294 */ 7295 static void attach_one_task(struct rq *rq, struct task_struct *p) 7296 { 7297 struct rq_flags rf; 7298 7299 rq_lock(rq, &rf); 7300 update_rq_clock(rq); 7301 attach_task(rq, p); 7302 rq_unlock(rq, &rf); 7303 } 7304 7305 /* 7306 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7307 * new rq. 7308 */ 7309 static void attach_tasks(struct lb_env *env) 7310 { 7311 struct list_head *tasks = &env->tasks; 7312 struct task_struct *p; 7313 struct rq_flags rf; 7314 7315 rq_lock(env->dst_rq, &rf); 7316 update_rq_clock(env->dst_rq); 7317 7318 while (!list_empty(tasks)) { 7319 p = list_first_entry(tasks, struct task_struct, se.group_node); 7320 list_del_init(&p->se.group_node); 7321 7322 attach_task(env->dst_rq, p); 7323 } 7324 7325 rq_unlock(env->dst_rq, &rf); 7326 } 7327 7328 #ifdef CONFIG_FAIR_GROUP_SCHED 7329 7330 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7331 { 7332 if (cfs_rq->load.weight) 7333 return false; 7334 7335 if (cfs_rq->avg.load_sum) 7336 return false; 7337 7338 if (cfs_rq->avg.util_sum) 7339 return false; 7340 7341 if (cfs_rq->avg.runnable_load_sum) 7342 return false; 7343 7344 return true; 7345 } 7346 7347 static void update_blocked_averages(int cpu) 7348 { 7349 struct rq *rq = cpu_rq(cpu); 7350 struct cfs_rq *cfs_rq, *pos; 7351 struct rq_flags rf; 7352 7353 rq_lock_irqsave(rq, &rf); 7354 update_rq_clock(rq); 7355 7356 /* 7357 * Iterates the task_group tree in a bottom up fashion, see 7358 * list_add_leaf_cfs_rq() for details. 7359 */ 7360 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7361 struct sched_entity *se; 7362 7363 /* throttled entities do not contribute to load */ 7364 if (throttled_hierarchy(cfs_rq)) 7365 continue; 7366 7367 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) 7368 update_tg_load_avg(cfs_rq, 0); 7369 7370 /* Propagate pending load changes to the parent, if any: */ 7371 se = cfs_rq->tg->se[cpu]; 7372 if (se && !skip_blocked_update(se)) 7373 update_load_avg(cfs_rq_of(se), se, 0); 7374 7375 /* 7376 * There can be a lot of idle CPU cgroups. Don't let fully 7377 * decayed cfs_rqs linger on the list. 7378 */ 7379 if (cfs_rq_is_decayed(cfs_rq)) 7380 list_del_leaf_cfs_rq(cfs_rq); 7381 } 7382 rq_unlock_irqrestore(rq, &rf); 7383 } 7384 7385 /* 7386 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7387 * This needs to be done in a top-down fashion because the load of a child 7388 * group is a fraction of its parents load. 7389 */ 7390 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7391 { 7392 struct rq *rq = rq_of(cfs_rq); 7393 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7394 unsigned long now = jiffies; 7395 unsigned long load; 7396 7397 if (cfs_rq->last_h_load_update == now) 7398 return; 7399 7400 cfs_rq->h_load_next = NULL; 7401 for_each_sched_entity(se) { 7402 cfs_rq = cfs_rq_of(se); 7403 cfs_rq->h_load_next = se; 7404 if (cfs_rq->last_h_load_update == now) 7405 break; 7406 } 7407 7408 if (!se) { 7409 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7410 cfs_rq->last_h_load_update = now; 7411 } 7412 7413 while ((se = cfs_rq->h_load_next) != NULL) { 7414 load = cfs_rq->h_load; 7415 load = div64_ul(load * se->avg.load_avg, 7416 cfs_rq_load_avg(cfs_rq) + 1); 7417 cfs_rq = group_cfs_rq(se); 7418 cfs_rq->h_load = load; 7419 cfs_rq->last_h_load_update = now; 7420 } 7421 } 7422 7423 static unsigned long task_h_load(struct task_struct *p) 7424 { 7425 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7426 7427 update_cfs_rq_h_load(cfs_rq); 7428 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7429 cfs_rq_load_avg(cfs_rq) + 1); 7430 } 7431 #else 7432 static inline void update_blocked_averages(int cpu) 7433 { 7434 struct rq *rq = cpu_rq(cpu); 7435 struct cfs_rq *cfs_rq = &rq->cfs; 7436 struct rq_flags rf; 7437 7438 rq_lock_irqsave(rq, &rf); 7439 update_rq_clock(rq); 7440 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); 7441 rq_unlock_irqrestore(rq, &rf); 7442 } 7443 7444 static unsigned long task_h_load(struct task_struct *p) 7445 { 7446 return p->se.avg.load_avg; 7447 } 7448 #endif 7449 7450 /********** Helpers for find_busiest_group ************************/ 7451 7452 enum group_type { 7453 group_other = 0, 7454 group_imbalanced, 7455 group_overloaded, 7456 }; 7457 7458 /* 7459 * sg_lb_stats - stats of a sched_group required for load_balancing 7460 */ 7461 struct sg_lb_stats { 7462 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7463 unsigned long group_load; /* Total load over the CPUs of the group */ 7464 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7465 unsigned long load_per_task; 7466 unsigned long group_capacity; 7467 unsigned long group_util; /* Total utilization of the group */ 7468 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7469 unsigned int idle_cpus; 7470 unsigned int group_weight; 7471 enum group_type group_type; 7472 int group_no_capacity; 7473 #ifdef CONFIG_NUMA_BALANCING 7474 unsigned int nr_numa_running; 7475 unsigned int nr_preferred_running; 7476 #endif 7477 }; 7478 7479 /* 7480 * sd_lb_stats - Structure to store the statistics of a sched_domain 7481 * during load balancing. 7482 */ 7483 struct sd_lb_stats { 7484 struct sched_group *busiest; /* Busiest group in this sd */ 7485 struct sched_group *local; /* Local group in this sd */ 7486 unsigned long total_running; 7487 unsigned long total_load; /* Total load of all groups in sd */ 7488 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7489 unsigned long avg_load; /* Average load across all groups in sd */ 7490 7491 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7492 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7493 }; 7494 7495 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7496 { 7497 /* 7498 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7499 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7500 * We must however clear busiest_stat::avg_load because 7501 * update_sd_pick_busiest() reads this before assignment. 7502 */ 7503 *sds = (struct sd_lb_stats){ 7504 .busiest = NULL, 7505 .local = NULL, 7506 .total_running = 0UL, 7507 .total_load = 0UL, 7508 .total_capacity = 0UL, 7509 .busiest_stat = { 7510 .avg_load = 0UL, 7511 .sum_nr_running = 0, 7512 .group_type = group_other, 7513 }, 7514 }; 7515 } 7516 7517 /** 7518 * get_sd_load_idx - Obtain the load index for a given sched domain. 7519 * @sd: The sched_domain whose load_idx is to be obtained. 7520 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7521 * 7522 * Return: The load index. 7523 */ 7524 static inline int get_sd_load_idx(struct sched_domain *sd, 7525 enum cpu_idle_type idle) 7526 { 7527 int load_idx; 7528 7529 switch (idle) { 7530 case CPU_NOT_IDLE: 7531 load_idx = sd->busy_idx; 7532 break; 7533 7534 case CPU_NEWLY_IDLE: 7535 load_idx = sd->newidle_idx; 7536 break; 7537 default: 7538 load_idx = sd->idle_idx; 7539 break; 7540 } 7541 7542 return load_idx; 7543 } 7544 7545 static unsigned long scale_rt_capacity(int cpu) 7546 { 7547 struct rq *rq = cpu_rq(cpu); 7548 u64 total, used, age_stamp, avg; 7549 s64 delta; 7550 7551 /* 7552 * Since we're reading these variables without serialization make sure 7553 * we read them once before doing sanity checks on them. 7554 */ 7555 age_stamp = READ_ONCE(rq->age_stamp); 7556 avg = READ_ONCE(rq->rt_avg); 7557 delta = __rq_clock_broken(rq) - age_stamp; 7558 7559 if (unlikely(delta < 0)) 7560 delta = 0; 7561 7562 total = sched_avg_period() + delta; 7563 7564 used = div_u64(avg, total); 7565 7566 if (likely(used < SCHED_CAPACITY_SCALE)) 7567 return SCHED_CAPACITY_SCALE - used; 7568 7569 return 1; 7570 } 7571 7572 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7573 { 7574 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); 7575 struct sched_group *sdg = sd->groups; 7576 7577 cpu_rq(cpu)->cpu_capacity_orig = capacity; 7578 7579 capacity *= scale_rt_capacity(cpu); 7580 capacity >>= SCHED_CAPACITY_SHIFT; 7581 7582 if (!capacity) 7583 capacity = 1; 7584 7585 cpu_rq(cpu)->cpu_capacity = capacity; 7586 sdg->sgc->capacity = capacity; 7587 sdg->sgc->min_capacity = capacity; 7588 } 7589 7590 void update_group_capacity(struct sched_domain *sd, int cpu) 7591 { 7592 struct sched_domain *child = sd->child; 7593 struct sched_group *group, *sdg = sd->groups; 7594 unsigned long capacity, min_capacity; 7595 unsigned long interval; 7596 7597 interval = msecs_to_jiffies(sd->balance_interval); 7598 interval = clamp(interval, 1UL, max_load_balance_interval); 7599 sdg->sgc->next_update = jiffies + interval; 7600 7601 if (!child) { 7602 update_cpu_capacity(sd, cpu); 7603 return; 7604 } 7605 7606 capacity = 0; 7607 min_capacity = ULONG_MAX; 7608 7609 if (child->flags & SD_OVERLAP) { 7610 /* 7611 * SD_OVERLAP domains cannot assume that child groups 7612 * span the current group. 7613 */ 7614 7615 for_each_cpu(cpu, sched_group_span(sdg)) { 7616 struct sched_group_capacity *sgc; 7617 struct rq *rq = cpu_rq(cpu); 7618 7619 /* 7620 * build_sched_domains() -> init_sched_groups_capacity() 7621 * gets here before we've attached the domains to the 7622 * runqueues. 7623 * 7624 * Use capacity_of(), which is set irrespective of domains 7625 * in update_cpu_capacity(). 7626 * 7627 * This avoids capacity from being 0 and 7628 * causing divide-by-zero issues on boot. 7629 */ 7630 if (unlikely(!rq->sd)) { 7631 capacity += capacity_of(cpu); 7632 } else { 7633 sgc = rq->sd->groups->sgc; 7634 capacity += sgc->capacity; 7635 } 7636 7637 min_capacity = min(capacity, min_capacity); 7638 } 7639 } else { 7640 /* 7641 * !SD_OVERLAP domains can assume that child groups 7642 * span the current group. 7643 */ 7644 7645 group = child->groups; 7646 do { 7647 struct sched_group_capacity *sgc = group->sgc; 7648 7649 capacity += sgc->capacity; 7650 min_capacity = min(sgc->min_capacity, min_capacity); 7651 group = group->next; 7652 } while (group != child->groups); 7653 } 7654 7655 sdg->sgc->capacity = capacity; 7656 sdg->sgc->min_capacity = min_capacity; 7657 } 7658 7659 /* 7660 * Check whether the capacity of the rq has been noticeably reduced by side 7661 * activity. The imbalance_pct is used for the threshold. 7662 * Return true is the capacity is reduced 7663 */ 7664 static inline int 7665 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7666 { 7667 return ((rq->cpu_capacity * sd->imbalance_pct) < 7668 (rq->cpu_capacity_orig * 100)); 7669 } 7670 7671 /* 7672 * Group imbalance indicates (and tries to solve) the problem where balancing 7673 * groups is inadequate due to ->cpus_allowed constraints. 7674 * 7675 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 7676 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 7677 * Something like: 7678 * 7679 * { 0 1 2 3 } { 4 5 6 7 } 7680 * * * * * 7681 * 7682 * If we were to balance group-wise we'd place two tasks in the first group and 7683 * two tasks in the second group. Clearly this is undesired as it will overload 7684 * cpu 3 and leave one of the cpus in the second group unused. 7685 * 7686 * The current solution to this issue is detecting the skew in the first group 7687 * by noticing the lower domain failed to reach balance and had difficulty 7688 * moving tasks due to affinity constraints. 7689 * 7690 * When this is so detected; this group becomes a candidate for busiest; see 7691 * update_sd_pick_busiest(). And calculate_imbalance() and 7692 * find_busiest_group() avoid some of the usual balance conditions to allow it 7693 * to create an effective group imbalance. 7694 * 7695 * This is a somewhat tricky proposition since the next run might not find the 7696 * group imbalance and decide the groups need to be balanced again. A most 7697 * subtle and fragile situation. 7698 */ 7699 7700 static inline int sg_imbalanced(struct sched_group *group) 7701 { 7702 return group->sgc->imbalance; 7703 } 7704 7705 /* 7706 * group_has_capacity returns true if the group has spare capacity that could 7707 * be used by some tasks. 7708 * We consider that a group has spare capacity if the * number of task is 7709 * smaller than the number of CPUs or if the utilization is lower than the 7710 * available capacity for CFS tasks. 7711 * For the latter, we use a threshold to stabilize the state, to take into 7712 * account the variance of the tasks' load and to return true if the available 7713 * capacity in meaningful for the load balancer. 7714 * As an example, an available capacity of 1% can appear but it doesn't make 7715 * any benefit for the load balance. 7716 */ 7717 static inline bool 7718 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7719 { 7720 if (sgs->sum_nr_running < sgs->group_weight) 7721 return true; 7722 7723 if ((sgs->group_capacity * 100) > 7724 (sgs->group_util * env->sd->imbalance_pct)) 7725 return true; 7726 7727 return false; 7728 } 7729 7730 /* 7731 * group_is_overloaded returns true if the group has more tasks than it can 7732 * handle. 7733 * group_is_overloaded is not equals to !group_has_capacity because a group 7734 * with the exact right number of tasks, has no more spare capacity but is not 7735 * overloaded so both group_has_capacity and group_is_overloaded return 7736 * false. 7737 */ 7738 static inline bool 7739 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 7740 { 7741 if (sgs->sum_nr_running <= sgs->group_weight) 7742 return false; 7743 7744 if ((sgs->group_capacity * 100) < 7745 (sgs->group_util * env->sd->imbalance_pct)) 7746 return true; 7747 7748 return false; 7749 } 7750 7751 /* 7752 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller 7753 * per-CPU capacity than sched_group ref. 7754 */ 7755 static inline bool 7756 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7757 { 7758 return sg->sgc->min_capacity * capacity_margin < 7759 ref->sgc->min_capacity * 1024; 7760 } 7761 7762 static inline enum 7763 group_type group_classify(struct sched_group *group, 7764 struct sg_lb_stats *sgs) 7765 { 7766 if (sgs->group_no_capacity) 7767 return group_overloaded; 7768 7769 if (sg_imbalanced(group)) 7770 return group_imbalanced; 7771 7772 return group_other; 7773 } 7774 7775 /** 7776 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 7777 * @env: The load balancing environment. 7778 * @group: sched_group whose statistics are to be updated. 7779 * @load_idx: Load index of sched_domain of this_cpu for load calc. 7780 * @local_group: Does group contain this_cpu. 7781 * @sgs: variable to hold the statistics for this group. 7782 * @overload: Indicate more than one runnable task for any CPU. 7783 */ 7784 static inline void update_sg_lb_stats(struct lb_env *env, 7785 struct sched_group *group, int load_idx, 7786 int local_group, struct sg_lb_stats *sgs, 7787 bool *overload) 7788 { 7789 unsigned long load; 7790 int i, nr_running; 7791 7792 memset(sgs, 0, sizeof(*sgs)); 7793 7794 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 7795 struct rq *rq = cpu_rq(i); 7796 7797 /* Bias balancing toward cpus of our domain */ 7798 if (local_group) 7799 load = target_load(i, load_idx); 7800 else 7801 load = source_load(i, load_idx); 7802 7803 sgs->group_load += load; 7804 sgs->group_util += cpu_util(i); 7805 sgs->sum_nr_running += rq->cfs.h_nr_running; 7806 7807 nr_running = rq->nr_running; 7808 if (nr_running > 1) 7809 *overload = true; 7810 7811 #ifdef CONFIG_NUMA_BALANCING 7812 sgs->nr_numa_running += rq->nr_numa_running; 7813 sgs->nr_preferred_running += rq->nr_preferred_running; 7814 #endif 7815 sgs->sum_weighted_load += weighted_cpuload(rq); 7816 /* 7817 * No need to call idle_cpu() if nr_running is not 0 7818 */ 7819 if (!nr_running && idle_cpu(i)) 7820 sgs->idle_cpus++; 7821 } 7822 7823 /* Adjust by relative CPU capacity of the group */ 7824 sgs->group_capacity = group->sgc->capacity; 7825 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 7826 7827 if (sgs->sum_nr_running) 7828 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 7829 7830 sgs->group_weight = group->group_weight; 7831 7832 sgs->group_no_capacity = group_is_overloaded(env, sgs); 7833 sgs->group_type = group_classify(group, sgs); 7834 } 7835 7836 /** 7837 * update_sd_pick_busiest - return 1 on busiest group 7838 * @env: The load balancing environment. 7839 * @sds: sched_domain statistics 7840 * @sg: sched_group candidate to be checked for being the busiest 7841 * @sgs: sched_group statistics 7842 * 7843 * Determine if @sg is a busier group than the previously selected 7844 * busiest group. 7845 * 7846 * Return: %true if @sg is a busier group than the previously selected 7847 * busiest group. %false otherwise. 7848 */ 7849 static bool update_sd_pick_busiest(struct lb_env *env, 7850 struct sd_lb_stats *sds, 7851 struct sched_group *sg, 7852 struct sg_lb_stats *sgs) 7853 { 7854 struct sg_lb_stats *busiest = &sds->busiest_stat; 7855 7856 if (sgs->group_type > busiest->group_type) 7857 return true; 7858 7859 if (sgs->group_type < busiest->group_type) 7860 return false; 7861 7862 if (sgs->avg_load <= busiest->avg_load) 7863 return false; 7864 7865 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 7866 goto asym_packing; 7867 7868 /* 7869 * Candidate sg has no more than one task per CPU and 7870 * has higher per-CPU capacity. Migrating tasks to less 7871 * capable CPUs may harm throughput. Maximize throughput, 7872 * power/energy consequences are not considered. 7873 */ 7874 if (sgs->sum_nr_running <= sgs->group_weight && 7875 group_smaller_cpu_capacity(sds->local, sg)) 7876 return false; 7877 7878 asym_packing: 7879 /* This is the busiest node in its class. */ 7880 if (!(env->sd->flags & SD_ASYM_PACKING)) 7881 return true; 7882 7883 /* No ASYM_PACKING if target cpu is already busy */ 7884 if (env->idle == CPU_NOT_IDLE) 7885 return true; 7886 /* 7887 * ASYM_PACKING needs to move all the work to the highest 7888 * prority CPUs in the group, therefore mark all groups 7889 * of lower priority than ourself as busy. 7890 */ 7891 if (sgs->sum_nr_running && 7892 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 7893 if (!sds->busiest) 7894 return true; 7895 7896 /* Prefer to move from lowest priority cpu's work */ 7897 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 7898 sg->asym_prefer_cpu)) 7899 return true; 7900 } 7901 7902 return false; 7903 } 7904 7905 #ifdef CONFIG_NUMA_BALANCING 7906 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7907 { 7908 if (sgs->sum_nr_running > sgs->nr_numa_running) 7909 return regular; 7910 if (sgs->sum_nr_running > sgs->nr_preferred_running) 7911 return remote; 7912 return all; 7913 } 7914 7915 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7916 { 7917 if (rq->nr_running > rq->nr_numa_running) 7918 return regular; 7919 if (rq->nr_running > rq->nr_preferred_running) 7920 return remote; 7921 return all; 7922 } 7923 #else 7924 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7925 { 7926 return all; 7927 } 7928 7929 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7930 { 7931 return regular; 7932 } 7933 #endif /* CONFIG_NUMA_BALANCING */ 7934 7935 /** 7936 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 7937 * @env: The load balancing environment. 7938 * @sds: variable to hold the statistics for this sched_domain. 7939 */ 7940 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 7941 { 7942 struct sched_domain *child = env->sd->child; 7943 struct sched_group *sg = env->sd->groups; 7944 struct sg_lb_stats *local = &sds->local_stat; 7945 struct sg_lb_stats tmp_sgs; 7946 int load_idx, prefer_sibling = 0; 7947 bool overload = false; 7948 7949 if (child && child->flags & SD_PREFER_SIBLING) 7950 prefer_sibling = 1; 7951 7952 load_idx = get_sd_load_idx(env->sd, env->idle); 7953 7954 do { 7955 struct sg_lb_stats *sgs = &tmp_sgs; 7956 int local_group; 7957 7958 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 7959 if (local_group) { 7960 sds->local = sg; 7961 sgs = local; 7962 7963 if (env->idle != CPU_NEWLY_IDLE || 7964 time_after_eq(jiffies, sg->sgc->next_update)) 7965 update_group_capacity(env->sd, env->dst_cpu); 7966 } 7967 7968 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 7969 &overload); 7970 7971 if (local_group) 7972 goto next_group; 7973 7974 /* 7975 * In case the child domain prefers tasks go to siblings 7976 * first, lower the sg capacity so that we'll try 7977 * and move all the excess tasks away. We lower the capacity 7978 * of a group only if the local group has the capacity to fit 7979 * these excess tasks. The extra check prevents the case where 7980 * you always pull from the heaviest group when it is already 7981 * under-utilized (possible with a large weight task outweighs 7982 * the tasks on the system). 7983 */ 7984 if (prefer_sibling && sds->local && 7985 group_has_capacity(env, local) && 7986 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 7987 sgs->group_no_capacity = 1; 7988 sgs->group_type = group_classify(sg, sgs); 7989 } 7990 7991 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 7992 sds->busiest = sg; 7993 sds->busiest_stat = *sgs; 7994 } 7995 7996 next_group: 7997 /* Now, start updating sd_lb_stats */ 7998 sds->total_running += sgs->sum_nr_running; 7999 sds->total_load += sgs->group_load; 8000 sds->total_capacity += sgs->group_capacity; 8001 8002 sg = sg->next; 8003 } while (sg != env->sd->groups); 8004 8005 if (env->sd->flags & SD_NUMA) 8006 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8007 8008 if (!env->sd->parent) { 8009 /* update overload indicator if we are at root domain */ 8010 if (env->dst_rq->rd->overload != overload) 8011 env->dst_rq->rd->overload = overload; 8012 } 8013 } 8014 8015 /** 8016 * check_asym_packing - Check to see if the group is packed into the 8017 * sched domain. 8018 * 8019 * This is primarily intended to used at the sibling level. Some 8020 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8021 * case of POWER7, it can move to lower SMT modes only when higher 8022 * threads are idle. When in lower SMT modes, the threads will 8023 * perform better since they share less core resources. Hence when we 8024 * have idle threads, we want them to be the higher ones. 8025 * 8026 * This packing function is run on idle threads. It checks to see if 8027 * the busiest CPU in this domain (core in the P7 case) has a higher 8028 * CPU number than the packing function is being run on. Here we are 8029 * assuming lower CPU number will be equivalent to lower a SMT thread 8030 * number. 8031 * 8032 * Return: 1 when packing is required and a task should be moved to 8033 * this CPU. The amount of the imbalance is returned in env->imbalance. 8034 * 8035 * @env: The load balancing environment. 8036 * @sds: Statistics of the sched_domain which is to be packed 8037 */ 8038 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8039 { 8040 int busiest_cpu; 8041 8042 if (!(env->sd->flags & SD_ASYM_PACKING)) 8043 return 0; 8044 8045 if (env->idle == CPU_NOT_IDLE) 8046 return 0; 8047 8048 if (!sds->busiest) 8049 return 0; 8050 8051 busiest_cpu = sds->busiest->asym_prefer_cpu; 8052 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8053 return 0; 8054 8055 env->imbalance = DIV_ROUND_CLOSEST( 8056 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 8057 SCHED_CAPACITY_SCALE); 8058 8059 return 1; 8060 } 8061 8062 /** 8063 * fix_small_imbalance - Calculate the minor imbalance that exists 8064 * amongst the groups of a sched_domain, during 8065 * load balancing. 8066 * @env: The load balancing environment. 8067 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8068 */ 8069 static inline 8070 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8071 { 8072 unsigned long tmp, capa_now = 0, capa_move = 0; 8073 unsigned int imbn = 2; 8074 unsigned long scaled_busy_load_per_task; 8075 struct sg_lb_stats *local, *busiest; 8076 8077 local = &sds->local_stat; 8078 busiest = &sds->busiest_stat; 8079 8080 if (!local->sum_nr_running) 8081 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8082 else if (busiest->load_per_task > local->load_per_task) 8083 imbn = 1; 8084 8085 scaled_busy_load_per_task = 8086 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8087 busiest->group_capacity; 8088 8089 if (busiest->avg_load + scaled_busy_load_per_task >= 8090 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8091 env->imbalance = busiest->load_per_task; 8092 return; 8093 } 8094 8095 /* 8096 * OK, we don't have enough imbalance to justify moving tasks, 8097 * however we may be able to increase total CPU capacity used by 8098 * moving them. 8099 */ 8100 8101 capa_now += busiest->group_capacity * 8102 min(busiest->load_per_task, busiest->avg_load); 8103 capa_now += local->group_capacity * 8104 min(local->load_per_task, local->avg_load); 8105 capa_now /= SCHED_CAPACITY_SCALE; 8106 8107 /* Amount of load we'd subtract */ 8108 if (busiest->avg_load > scaled_busy_load_per_task) { 8109 capa_move += busiest->group_capacity * 8110 min(busiest->load_per_task, 8111 busiest->avg_load - scaled_busy_load_per_task); 8112 } 8113 8114 /* Amount of load we'd add */ 8115 if (busiest->avg_load * busiest->group_capacity < 8116 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8117 tmp = (busiest->avg_load * busiest->group_capacity) / 8118 local->group_capacity; 8119 } else { 8120 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8121 local->group_capacity; 8122 } 8123 capa_move += local->group_capacity * 8124 min(local->load_per_task, local->avg_load + tmp); 8125 capa_move /= SCHED_CAPACITY_SCALE; 8126 8127 /* Move if we gain throughput */ 8128 if (capa_move > capa_now) 8129 env->imbalance = busiest->load_per_task; 8130 } 8131 8132 /** 8133 * calculate_imbalance - Calculate the amount of imbalance present within the 8134 * groups of a given sched_domain during load balance. 8135 * @env: load balance environment 8136 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8137 */ 8138 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8139 { 8140 unsigned long max_pull, load_above_capacity = ~0UL; 8141 struct sg_lb_stats *local, *busiest; 8142 8143 local = &sds->local_stat; 8144 busiest = &sds->busiest_stat; 8145 8146 if (busiest->group_type == group_imbalanced) { 8147 /* 8148 * In the group_imb case we cannot rely on group-wide averages 8149 * to ensure cpu-load equilibrium, look at wider averages. XXX 8150 */ 8151 busiest->load_per_task = 8152 min(busiest->load_per_task, sds->avg_load); 8153 } 8154 8155 /* 8156 * Avg load of busiest sg can be less and avg load of local sg can 8157 * be greater than avg load across all sgs of sd because avg load 8158 * factors in sg capacity and sgs with smaller group_type are 8159 * skipped when updating the busiest sg: 8160 */ 8161 if (busiest->avg_load <= sds->avg_load || 8162 local->avg_load >= sds->avg_load) { 8163 env->imbalance = 0; 8164 return fix_small_imbalance(env, sds); 8165 } 8166 8167 /* 8168 * If there aren't any idle cpus, avoid creating some. 8169 */ 8170 if (busiest->group_type == group_overloaded && 8171 local->group_type == group_overloaded) { 8172 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8173 if (load_above_capacity > busiest->group_capacity) { 8174 load_above_capacity -= busiest->group_capacity; 8175 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8176 load_above_capacity /= busiest->group_capacity; 8177 } else 8178 load_above_capacity = ~0UL; 8179 } 8180 8181 /* 8182 * We're trying to get all the cpus to the average_load, so we don't 8183 * want to push ourselves above the average load, nor do we wish to 8184 * reduce the max loaded cpu below the average load. At the same time, 8185 * we also don't want to reduce the group load below the group 8186 * capacity. Thus we look for the minimum possible imbalance. 8187 */ 8188 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8189 8190 /* How much load to actually move to equalise the imbalance */ 8191 env->imbalance = min( 8192 max_pull * busiest->group_capacity, 8193 (sds->avg_load - local->avg_load) * local->group_capacity 8194 ) / SCHED_CAPACITY_SCALE; 8195 8196 /* 8197 * if *imbalance is less than the average load per runnable task 8198 * there is no guarantee that any tasks will be moved so we'll have 8199 * a think about bumping its value to force at least one task to be 8200 * moved 8201 */ 8202 if (env->imbalance < busiest->load_per_task) 8203 return fix_small_imbalance(env, sds); 8204 } 8205 8206 /******* find_busiest_group() helpers end here *********************/ 8207 8208 /** 8209 * find_busiest_group - Returns the busiest group within the sched_domain 8210 * if there is an imbalance. 8211 * 8212 * Also calculates the amount of weighted load which should be moved 8213 * to restore balance. 8214 * 8215 * @env: The load balancing environment. 8216 * 8217 * Return: - The busiest group if imbalance exists. 8218 */ 8219 static struct sched_group *find_busiest_group(struct lb_env *env) 8220 { 8221 struct sg_lb_stats *local, *busiest; 8222 struct sd_lb_stats sds; 8223 8224 init_sd_lb_stats(&sds); 8225 8226 /* 8227 * Compute the various statistics relavent for load balancing at 8228 * this level. 8229 */ 8230 update_sd_lb_stats(env, &sds); 8231 local = &sds.local_stat; 8232 busiest = &sds.busiest_stat; 8233 8234 /* ASYM feature bypasses nice load balance check */ 8235 if (check_asym_packing(env, &sds)) 8236 return sds.busiest; 8237 8238 /* There is no busy sibling group to pull tasks from */ 8239 if (!sds.busiest || busiest->sum_nr_running == 0) 8240 goto out_balanced; 8241 8242 /* XXX broken for overlapping NUMA groups */ 8243 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8244 / sds.total_capacity; 8245 8246 /* 8247 * If the busiest group is imbalanced the below checks don't 8248 * work because they assume all things are equal, which typically 8249 * isn't true due to cpus_allowed constraints and the like. 8250 */ 8251 if (busiest->group_type == group_imbalanced) 8252 goto force_balance; 8253 8254 /* 8255 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8256 * capacities from resulting in underutilization due to avg_load. 8257 */ 8258 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8259 busiest->group_no_capacity) 8260 goto force_balance; 8261 8262 /* 8263 * If the local group is busier than the selected busiest group 8264 * don't try and pull any tasks. 8265 */ 8266 if (local->avg_load >= busiest->avg_load) 8267 goto out_balanced; 8268 8269 /* 8270 * Don't pull any tasks if this group is already above the domain 8271 * average load. 8272 */ 8273 if (local->avg_load >= sds.avg_load) 8274 goto out_balanced; 8275 8276 if (env->idle == CPU_IDLE) { 8277 /* 8278 * This cpu is idle. If the busiest group is not overloaded 8279 * and there is no imbalance between this and busiest group 8280 * wrt idle cpus, it is balanced. The imbalance becomes 8281 * significant if the diff is greater than 1 otherwise we 8282 * might end up to just move the imbalance on another group 8283 */ 8284 if ((busiest->group_type != group_overloaded) && 8285 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8286 goto out_balanced; 8287 } else { 8288 /* 8289 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8290 * imbalance_pct to be conservative. 8291 */ 8292 if (100 * busiest->avg_load <= 8293 env->sd->imbalance_pct * local->avg_load) 8294 goto out_balanced; 8295 } 8296 8297 force_balance: 8298 /* Looks like there is an imbalance. Compute it */ 8299 calculate_imbalance(env, &sds); 8300 return sds.busiest; 8301 8302 out_balanced: 8303 env->imbalance = 0; 8304 return NULL; 8305 } 8306 8307 /* 8308 * find_busiest_queue - find the busiest runqueue among the cpus in group. 8309 */ 8310 static struct rq *find_busiest_queue(struct lb_env *env, 8311 struct sched_group *group) 8312 { 8313 struct rq *busiest = NULL, *rq; 8314 unsigned long busiest_load = 0, busiest_capacity = 1; 8315 int i; 8316 8317 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8318 unsigned long capacity, wl; 8319 enum fbq_type rt; 8320 8321 rq = cpu_rq(i); 8322 rt = fbq_classify_rq(rq); 8323 8324 /* 8325 * We classify groups/runqueues into three groups: 8326 * - regular: there are !numa tasks 8327 * - remote: there are numa tasks that run on the 'wrong' node 8328 * - all: there is no distinction 8329 * 8330 * In order to avoid migrating ideally placed numa tasks, 8331 * ignore those when there's better options. 8332 * 8333 * If we ignore the actual busiest queue to migrate another 8334 * task, the next balance pass can still reduce the busiest 8335 * queue by moving tasks around inside the node. 8336 * 8337 * If we cannot move enough load due to this classification 8338 * the next pass will adjust the group classification and 8339 * allow migration of more tasks. 8340 * 8341 * Both cases only affect the total convergence complexity. 8342 */ 8343 if (rt > env->fbq_type) 8344 continue; 8345 8346 capacity = capacity_of(i); 8347 8348 wl = weighted_cpuload(rq); 8349 8350 /* 8351 * When comparing with imbalance, use weighted_cpuload() 8352 * which is not scaled with the cpu capacity. 8353 */ 8354 8355 if (rq->nr_running == 1 && wl > env->imbalance && 8356 !check_cpu_capacity(rq, env->sd)) 8357 continue; 8358 8359 /* 8360 * For the load comparisons with the other cpu's, consider 8361 * the weighted_cpuload() scaled with the cpu capacity, so 8362 * that the load can be moved away from the cpu that is 8363 * potentially running at a lower capacity. 8364 * 8365 * Thus we're looking for max(wl_i / capacity_i), crosswise 8366 * multiplication to rid ourselves of the division works out 8367 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 8368 * our previous maximum. 8369 */ 8370 if (wl * busiest_capacity > busiest_load * capacity) { 8371 busiest_load = wl; 8372 busiest_capacity = capacity; 8373 busiest = rq; 8374 } 8375 } 8376 8377 return busiest; 8378 } 8379 8380 /* 8381 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8382 * so long as it is large enough. 8383 */ 8384 #define MAX_PINNED_INTERVAL 512 8385 8386 static int need_active_balance(struct lb_env *env) 8387 { 8388 struct sched_domain *sd = env->sd; 8389 8390 if (env->idle == CPU_NEWLY_IDLE) { 8391 8392 /* 8393 * ASYM_PACKING needs to force migrate tasks from busy but 8394 * lower priority CPUs in order to pack all tasks in the 8395 * highest priority CPUs. 8396 */ 8397 if ((sd->flags & SD_ASYM_PACKING) && 8398 sched_asym_prefer(env->dst_cpu, env->src_cpu)) 8399 return 1; 8400 } 8401 8402 /* 8403 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8404 * It's worth migrating the task if the src_cpu's capacity is reduced 8405 * because of other sched_class or IRQs if more capacity stays 8406 * available on dst_cpu. 8407 */ 8408 if ((env->idle != CPU_NOT_IDLE) && 8409 (env->src_rq->cfs.h_nr_running == 1)) { 8410 if ((check_cpu_capacity(env->src_rq, sd)) && 8411 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8412 return 1; 8413 } 8414 8415 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8416 } 8417 8418 static int active_load_balance_cpu_stop(void *data); 8419 8420 static int should_we_balance(struct lb_env *env) 8421 { 8422 struct sched_group *sg = env->sd->groups; 8423 int cpu, balance_cpu = -1; 8424 8425 /* 8426 * Ensure the balancing environment is consistent; can happen 8427 * when the softirq triggers 'during' hotplug. 8428 */ 8429 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8430 return 0; 8431 8432 /* 8433 * In the newly idle case, we will allow all the cpu's 8434 * to do the newly idle load balance. 8435 */ 8436 if (env->idle == CPU_NEWLY_IDLE) 8437 return 1; 8438 8439 /* Try to find first idle cpu */ 8440 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8441 if (!idle_cpu(cpu)) 8442 continue; 8443 8444 balance_cpu = cpu; 8445 break; 8446 } 8447 8448 if (balance_cpu == -1) 8449 balance_cpu = group_balance_cpu(sg); 8450 8451 /* 8452 * First idle cpu or the first cpu(busiest) in this sched group 8453 * is eligible for doing load balancing at this and above domains. 8454 */ 8455 return balance_cpu == env->dst_cpu; 8456 } 8457 8458 /* 8459 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8460 * tasks if there is an imbalance. 8461 */ 8462 static int load_balance(int this_cpu, struct rq *this_rq, 8463 struct sched_domain *sd, enum cpu_idle_type idle, 8464 int *continue_balancing) 8465 { 8466 int ld_moved, cur_ld_moved, active_balance = 0; 8467 struct sched_domain *sd_parent = sd->parent; 8468 struct sched_group *group; 8469 struct rq *busiest; 8470 struct rq_flags rf; 8471 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8472 8473 struct lb_env env = { 8474 .sd = sd, 8475 .dst_cpu = this_cpu, 8476 .dst_rq = this_rq, 8477 .dst_grpmask = sched_group_span(sd->groups), 8478 .idle = idle, 8479 .loop_break = sched_nr_migrate_break, 8480 .cpus = cpus, 8481 .fbq_type = all, 8482 .tasks = LIST_HEAD_INIT(env.tasks), 8483 }; 8484 8485 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8486 8487 schedstat_inc(sd->lb_count[idle]); 8488 8489 redo: 8490 if (!should_we_balance(&env)) { 8491 *continue_balancing = 0; 8492 goto out_balanced; 8493 } 8494 8495 group = find_busiest_group(&env); 8496 if (!group) { 8497 schedstat_inc(sd->lb_nobusyg[idle]); 8498 goto out_balanced; 8499 } 8500 8501 busiest = find_busiest_queue(&env, group); 8502 if (!busiest) { 8503 schedstat_inc(sd->lb_nobusyq[idle]); 8504 goto out_balanced; 8505 } 8506 8507 BUG_ON(busiest == env.dst_rq); 8508 8509 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8510 8511 env.src_cpu = busiest->cpu; 8512 env.src_rq = busiest; 8513 8514 ld_moved = 0; 8515 if (busiest->nr_running > 1) { 8516 /* 8517 * Attempt to move tasks. If find_busiest_group has found 8518 * an imbalance but busiest->nr_running <= 1, the group is 8519 * still unbalanced. ld_moved simply stays zero, so it is 8520 * correctly treated as an imbalance. 8521 */ 8522 env.flags |= LBF_ALL_PINNED; 8523 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8524 8525 more_balance: 8526 rq_lock_irqsave(busiest, &rf); 8527 update_rq_clock(busiest); 8528 8529 /* 8530 * cur_ld_moved - load moved in current iteration 8531 * ld_moved - cumulative load moved across iterations 8532 */ 8533 cur_ld_moved = detach_tasks(&env); 8534 8535 /* 8536 * We've detached some tasks from busiest_rq. Every 8537 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8538 * unlock busiest->lock, and we are able to be sure 8539 * that nobody can manipulate the tasks in parallel. 8540 * See task_rq_lock() family for the details. 8541 */ 8542 8543 rq_unlock(busiest, &rf); 8544 8545 if (cur_ld_moved) { 8546 attach_tasks(&env); 8547 ld_moved += cur_ld_moved; 8548 } 8549 8550 local_irq_restore(rf.flags); 8551 8552 if (env.flags & LBF_NEED_BREAK) { 8553 env.flags &= ~LBF_NEED_BREAK; 8554 goto more_balance; 8555 } 8556 8557 /* 8558 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8559 * us and move them to an alternate dst_cpu in our sched_group 8560 * where they can run. The upper limit on how many times we 8561 * iterate on same src_cpu is dependent on number of cpus in our 8562 * sched_group. 8563 * 8564 * This changes load balance semantics a bit on who can move 8565 * load to a given_cpu. In addition to the given_cpu itself 8566 * (or a ilb_cpu acting on its behalf where given_cpu is 8567 * nohz-idle), we now have balance_cpu in a position to move 8568 * load to given_cpu. In rare situations, this may cause 8569 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8570 * _independently_ and at _same_ time to move some load to 8571 * given_cpu) causing exceess load to be moved to given_cpu. 8572 * This however should not happen so much in practice and 8573 * moreover subsequent load balance cycles should correct the 8574 * excess load moved. 8575 */ 8576 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8577 8578 /* Prevent to re-select dst_cpu via env's cpus */ 8579 cpumask_clear_cpu(env.dst_cpu, env.cpus); 8580 8581 env.dst_rq = cpu_rq(env.new_dst_cpu); 8582 env.dst_cpu = env.new_dst_cpu; 8583 env.flags &= ~LBF_DST_PINNED; 8584 env.loop = 0; 8585 env.loop_break = sched_nr_migrate_break; 8586 8587 /* 8588 * Go back to "more_balance" rather than "redo" since we 8589 * need to continue with same src_cpu. 8590 */ 8591 goto more_balance; 8592 } 8593 8594 /* 8595 * We failed to reach balance because of affinity. 8596 */ 8597 if (sd_parent) { 8598 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8599 8600 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8601 *group_imbalance = 1; 8602 } 8603 8604 /* All tasks on this runqueue were pinned by CPU affinity */ 8605 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8606 cpumask_clear_cpu(cpu_of(busiest), cpus); 8607 /* 8608 * Attempting to continue load balancing at the current 8609 * sched_domain level only makes sense if there are 8610 * active CPUs remaining as possible busiest CPUs to 8611 * pull load from which are not contained within the 8612 * destination group that is receiving any migrated 8613 * load. 8614 */ 8615 if (!cpumask_subset(cpus, env.dst_grpmask)) { 8616 env.loop = 0; 8617 env.loop_break = sched_nr_migrate_break; 8618 goto redo; 8619 } 8620 goto out_all_pinned; 8621 } 8622 } 8623 8624 if (!ld_moved) { 8625 schedstat_inc(sd->lb_failed[idle]); 8626 /* 8627 * Increment the failure counter only on periodic balance. 8628 * We do not want newidle balance, which can be very 8629 * frequent, pollute the failure counter causing 8630 * excessive cache_hot migrations and active balances. 8631 */ 8632 if (idle != CPU_NEWLY_IDLE) 8633 sd->nr_balance_failed++; 8634 8635 if (need_active_balance(&env)) { 8636 unsigned long flags; 8637 8638 raw_spin_lock_irqsave(&busiest->lock, flags); 8639 8640 /* don't kick the active_load_balance_cpu_stop, 8641 * if the curr task on busiest cpu can't be 8642 * moved to this_cpu 8643 */ 8644 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 8645 raw_spin_unlock_irqrestore(&busiest->lock, 8646 flags); 8647 env.flags |= LBF_ALL_PINNED; 8648 goto out_one_pinned; 8649 } 8650 8651 /* 8652 * ->active_balance synchronizes accesses to 8653 * ->active_balance_work. Once set, it's cleared 8654 * only after active load balance is finished. 8655 */ 8656 if (!busiest->active_balance) { 8657 busiest->active_balance = 1; 8658 busiest->push_cpu = this_cpu; 8659 active_balance = 1; 8660 } 8661 raw_spin_unlock_irqrestore(&busiest->lock, flags); 8662 8663 if (active_balance) { 8664 stop_one_cpu_nowait(cpu_of(busiest), 8665 active_load_balance_cpu_stop, busiest, 8666 &busiest->active_balance_work); 8667 } 8668 8669 /* We've kicked active balancing, force task migration. */ 8670 sd->nr_balance_failed = sd->cache_nice_tries+1; 8671 } 8672 } else 8673 sd->nr_balance_failed = 0; 8674 8675 if (likely(!active_balance)) { 8676 /* We were unbalanced, so reset the balancing interval */ 8677 sd->balance_interval = sd->min_interval; 8678 } else { 8679 /* 8680 * If we've begun active balancing, start to back off. This 8681 * case may not be covered by the all_pinned logic if there 8682 * is only 1 task on the busy runqueue (because we don't call 8683 * detach_tasks). 8684 */ 8685 if (sd->balance_interval < sd->max_interval) 8686 sd->balance_interval *= 2; 8687 } 8688 8689 goto out; 8690 8691 out_balanced: 8692 /* 8693 * We reach balance although we may have faced some affinity 8694 * constraints. Clear the imbalance flag if it was set. 8695 */ 8696 if (sd_parent) { 8697 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8698 8699 if (*group_imbalance) 8700 *group_imbalance = 0; 8701 } 8702 8703 out_all_pinned: 8704 /* 8705 * We reach balance because all tasks are pinned at this level so 8706 * we can't migrate them. Let the imbalance flag set so parent level 8707 * can try to migrate them. 8708 */ 8709 schedstat_inc(sd->lb_balanced[idle]); 8710 8711 sd->nr_balance_failed = 0; 8712 8713 out_one_pinned: 8714 /* tune up the balancing interval */ 8715 if (((env.flags & LBF_ALL_PINNED) && 8716 sd->balance_interval < MAX_PINNED_INTERVAL) || 8717 (sd->balance_interval < sd->max_interval)) 8718 sd->balance_interval *= 2; 8719 8720 ld_moved = 0; 8721 out: 8722 return ld_moved; 8723 } 8724 8725 static inline unsigned long 8726 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 8727 { 8728 unsigned long interval = sd->balance_interval; 8729 8730 if (cpu_busy) 8731 interval *= sd->busy_factor; 8732 8733 /* scale ms to jiffies */ 8734 interval = msecs_to_jiffies(interval); 8735 interval = clamp(interval, 1UL, max_load_balance_interval); 8736 8737 return interval; 8738 } 8739 8740 static inline void 8741 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 8742 { 8743 unsigned long interval, next; 8744 8745 /* used by idle balance, so cpu_busy = 0 */ 8746 interval = get_sd_balance_interval(sd, 0); 8747 next = sd->last_balance + interval; 8748 8749 if (time_after(*next_balance, next)) 8750 *next_balance = next; 8751 } 8752 8753 /* 8754 * idle_balance is called by schedule() if this_cpu is about to become 8755 * idle. Attempts to pull tasks from other CPUs. 8756 */ 8757 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 8758 { 8759 unsigned long next_balance = jiffies + HZ; 8760 int this_cpu = this_rq->cpu; 8761 struct sched_domain *sd; 8762 int pulled_task = 0; 8763 u64 curr_cost = 0; 8764 8765 /* 8766 * We must set idle_stamp _before_ calling idle_balance(), such that we 8767 * measure the duration of idle_balance() as idle time. 8768 */ 8769 this_rq->idle_stamp = rq_clock(this_rq); 8770 8771 /* 8772 * Do not pull tasks towards !active CPUs... 8773 */ 8774 if (!cpu_active(this_cpu)) 8775 return 0; 8776 8777 /* 8778 * This is OK, because current is on_cpu, which avoids it being picked 8779 * for load-balance and preemption/IRQs are still disabled avoiding 8780 * further scheduler activity on it and we're being very careful to 8781 * re-start the picking loop. 8782 */ 8783 rq_unpin_lock(this_rq, rf); 8784 8785 if (this_rq->avg_idle < sysctl_sched_migration_cost || 8786 !this_rq->rd->overload) { 8787 rcu_read_lock(); 8788 sd = rcu_dereference_check_sched_domain(this_rq->sd); 8789 if (sd) 8790 update_next_balance(sd, &next_balance); 8791 rcu_read_unlock(); 8792 8793 goto out; 8794 } 8795 8796 raw_spin_unlock(&this_rq->lock); 8797 8798 update_blocked_averages(this_cpu); 8799 rcu_read_lock(); 8800 for_each_domain(this_cpu, sd) { 8801 int continue_balancing = 1; 8802 u64 t0, domain_cost; 8803 8804 if (!(sd->flags & SD_LOAD_BALANCE)) 8805 continue; 8806 8807 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 8808 update_next_balance(sd, &next_balance); 8809 break; 8810 } 8811 8812 if (sd->flags & SD_BALANCE_NEWIDLE) { 8813 t0 = sched_clock_cpu(this_cpu); 8814 8815 pulled_task = load_balance(this_cpu, this_rq, 8816 sd, CPU_NEWLY_IDLE, 8817 &continue_balancing); 8818 8819 domain_cost = sched_clock_cpu(this_cpu) - t0; 8820 if (domain_cost > sd->max_newidle_lb_cost) 8821 sd->max_newidle_lb_cost = domain_cost; 8822 8823 curr_cost += domain_cost; 8824 } 8825 8826 update_next_balance(sd, &next_balance); 8827 8828 /* 8829 * Stop searching for tasks to pull if there are 8830 * now runnable tasks on this rq. 8831 */ 8832 if (pulled_task || this_rq->nr_running > 0) 8833 break; 8834 } 8835 rcu_read_unlock(); 8836 8837 raw_spin_lock(&this_rq->lock); 8838 8839 if (curr_cost > this_rq->max_idle_balance_cost) 8840 this_rq->max_idle_balance_cost = curr_cost; 8841 8842 /* 8843 * While browsing the domains, we released the rq lock, a task could 8844 * have been enqueued in the meantime. Since we're not going idle, 8845 * pretend we pulled a task. 8846 */ 8847 if (this_rq->cfs.h_nr_running && !pulled_task) 8848 pulled_task = 1; 8849 8850 out: 8851 /* Move the next balance forward */ 8852 if (time_after(this_rq->next_balance, next_balance)) 8853 this_rq->next_balance = next_balance; 8854 8855 /* Is there a task of a high priority class? */ 8856 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 8857 pulled_task = -1; 8858 8859 if (pulled_task) 8860 this_rq->idle_stamp = 0; 8861 8862 rq_repin_lock(this_rq, rf); 8863 8864 return pulled_task; 8865 } 8866 8867 /* 8868 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 8869 * running tasks off the busiest CPU onto idle CPUs. It requires at 8870 * least 1 task to be running on each physical CPU where possible, and 8871 * avoids physical / logical imbalances. 8872 */ 8873 static int active_load_balance_cpu_stop(void *data) 8874 { 8875 struct rq *busiest_rq = data; 8876 int busiest_cpu = cpu_of(busiest_rq); 8877 int target_cpu = busiest_rq->push_cpu; 8878 struct rq *target_rq = cpu_rq(target_cpu); 8879 struct sched_domain *sd; 8880 struct task_struct *p = NULL; 8881 struct rq_flags rf; 8882 8883 rq_lock_irq(busiest_rq, &rf); 8884 /* 8885 * Between queueing the stop-work and running it is a hole in which 8886 * CPUs can become inactive. We should not move tasks from or to 8887 * inactive CPUs. 8888 */ 8889 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 8890 goto out_unlock; 8891 8892 /* make sure the requested cpu hasn't gone down in the meantime */ 8893 if (unlikely(busiest_cpu != smp_processor_id() || 8894 !busiest_rq->active_balance)) 8895 goto out_unlock; 8896 8897 /* Is there any task to move? */ 8898 if (busiest_rq->nr_running <= 1) 8899 goto out_unlock; 8900 8901 /* 8902 * This condition is "impossible", if it occurs 8903 * we need to fix it. Originally reported by 8904 * Bjorn Helgaas on a 128-cpu setup. 8905 */ 8906 BUG_ON(busiest_rq == target_rq); 8907 8908 /* Search for an sd spanning us and the target CPU. */ 8909 rcu_read_lock(); 8910 for_each_domain(target_cpu, sd) { 8911 if ((sd->flags & SD_LOAD_BALANCE) && 8912 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 8913 break; 8914 } 8915 8916 if (likely(sd)) { 8917 struct lb_env env = { 8918 .sd = sd, 8919 .dst_cpu = target_cpu, 8920 .dst_rq = target_rq, 8921 .src_cpu = busiest_rq->cpu, 8922 .src_rq = busiest_rq, 8923 .idle = CPU_IDLE, 8924 /* 8925 * can_migrate_task() doesn't need to compute new_dst_cpu 8926 * for active balancing. Since we have CPU_IDLE, but no 8927 * @dst_grpmask we need to make that test go away with lying 8928 * about DST_PINNED. 8929 */ 8930 .flags = LBF_DST_PINNED, 8931 }; 8932 8933 schedstat_inc(sd->alb_count); 8934 update_rq_clock(busiest_rq); 8935 8936 p = detach_one_task(&env); 8937 if (p) { 8938 schedstat_inc(sd->alb_pushed); 8939 /* Active balancing done, reset the failure counter. */ 8940 sd->nr_balance_failed = 0; 8941 } else { 8942 schedstat_inc(sd->alb_failed); 8943 } 8944 } 8945 rcu_read_unlock(); 8946 out_unlock: 8947 busiest_rq->active_balance = 0; 8948 rq_unlock(busiest_rq, &rf); 8949 8950 if (p) 8951 attach_one_task(target_rq, p); 8952 8953 local_irq_enable(); 8954 8955 return 0; 8956 } 8957 8958 static inline int on_null_domain(struct rq *rq) 8959 { 8960 return unlikely(!rcu_dereference_sched(rq->sd)); 8961 } 8962 8963 #ifdef CONFIG_NO_HZ_COMMON 8964 /* 8965 * idle load balancing details 8966 * - When one of the busy CPUs notice that there may be an idle rebalancing 8967 * needed, they will kick the idle load balancer, which then does idle 8968 * load balancing for all the idle CPUs. 8969 */ 8970 static struct { 8971 cpumask_var_t idle_cpus_mask; 8972 atomic_t nr_cpus; 8973 unsigned long next_balance; /* in jiffy units */ 8974 } nohz ____cacheline_aligned; 8975 8976 static inline int find_new_ilb(void) 8977 { 8978 int ilb = cpumask_first(nohz.idle_cpus_mask); 8979 8980 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 8981 return ilb; 8982 8983 return nr_cpu_ids; 8984 } 8985 8986 /* 8987 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 8988 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 8989 * CPU (if there is one). 8990 */ 8991 static void nohz_balancer_kick(void) 8992 { 8993 int ilb_cpu; 8994 8995 nohz.next_balance++; 8996 8997 ilb_cpu = find_new_ilb(); 8998 8999 if (ilb_cpu >= nr_cpu_ids) 9000 return; 9001 9002 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 9003 return; 9004 /* 9005 * Use smp_send_reschedule() instead of resched_cpu(). 9006 * This way we generate a sched IPI on the target cpu which 9007 * is idle. And the softirq performing nohz idle load balance 9008 * will be run before returning from the IPI. 9009 */ 9010 smp_send_reschedule(ilb_cpu); 9011 return; 9012 } 9013 9014 void nohz_balance_exit_idle(unsigned int cpu) 9015 { 9016 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 9017 /* 9018 * Completely isolated CPUs don't ever set, so we must test. 9019 */ 9020 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 9021 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 9022 atomic_dec(&nohz.nr_cpus); 9023 } 9024 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 9025 } 9026 } 9027 9028 static inline void set_cpu_sd_state_busy(void) 9029 { 9030 struct sched_domain *sd; 9031 int cpu = smp_processor_id(); 9032 9033 rcu_read_lock(); 9034 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9035 9036 if (!sd || !sd->nohz_idle) 9037 goto unlock; 9038 sd->nohz_idle = 0; 9039 9040 atomic_inc(&sd->shared->nr_busy_cpus); 9041 unlock: 9042 rcu_read_unlock(); 9043 } 9044 9045 void set_cpu_sd_state_idle(void) 9046 { 9047 struct sched_domain *sd; 9048 int cpu = smp_processor_id(); 9049 9050 rcu_read_lock(); 9051 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9052 9053 if (!sd || sd->nohz_idle) 9054 goto unlock; 9055 sd->nohz_idle = 1; 9056 9057 atomic_dec(&sd->shared->nr_busy_cpus); 9058 unlock: 9059 rcu_read_unlock(); 9060 } 9061 9062 /* 9063 * This routine will record that the cpu is going idle with tick stopped. 9064 * This info will be used in performing idle load balancing in the future. 9065 */ 9066 void nohz_balance_enter_idle(int cpu) 9067 { 9068 /* 9069 * If this cpu is going down, then nothing needs to be done. 9070 */ 9071 if (!cpu_active(cpu)) 9072 return; 9073 9074 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9075 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9076 return; 9077 9078 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 9079 return; 9080 9081 /* 9082 * If we're a completely isolated CPU, we don't play. 9083 */ 9084 if (on_null_domain(cpu_rq(cpu))) 9085 return; 9086 9087 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9088 atomic_inc(&nohz.nr_cpus); 9089 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 9090 } 9091 #endif 9092 9093 static DEFINE_SPINLOCK(balancing); 9094 9095 /* 9096 * Scale the max load_balance interval with the number of CPUs in the system. 9097 * This trades load-balance latency on larger machines for less cross talk. 9098 */ 9099 void update_max_interval(void) 9100 { 9101 max_load_balance_interval = HZ*num_online_cpus()/10; 9102 } 9103 9104 /* 9105 * It checks each scheduling domain to see if it is due to be balanced, 9106 * and initiates a balancing operation if so. 9107 * 9108 * Balancing parameters are set up in init_sched_domains. 9109 */ 9110 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9111 { 9112 int continue_balancing = 1; 9113 int cpu = rq->cpu; 9114 unsigned long interval; 9115 struct sched_domain *sd; 9116 /* Earliest time when we have to do rebalance again */ 9117 unsigned long next_balance = jiffies + 60*HZ; 9118 int update_next_balance = 0; 9119 int need_serialize, need_decay = 0; 9120 u64 max_cost = 0; 9121 9122 update_blocked_averages(cpu); 9123 9124 rcu_read_lock(); 9125 for_each_domain(cpu, sd) { 9126 /* 9127 * Decay the newidle max times here because this is a regular 9128 * visit to all the domains. Decay ~1% per second. 9129 */ 9130 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9131 sd->max_newidle_lb_cost = 9132 (sd->max_newidle_lb_cost * 253) / 256; 9133 sd->next_decay_max_lb_cost = jiffies + HZ; 9134 need_decay = 1; 9135 } 9136 max_cost += sd->max_newidle_lb_cost; 9137 9138 if (!(sd->flags & SD_LOAD_BALANCE)) 9139 continue; 9140 9141 /* 9142 * Stop the load balance at this level. There is another 9143 * CPU in our sched group which is doing load balancing more 9144 * actively. 9145 */ 9146 if (!continue_balancing) { 9147 if (need_decay) 9148 continue; 9149 break; 9150 } 9151 9152 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9153 9154 need_serialize = sd->flags & SD_SERIALIZE; 9155 if (need_serialize) { 9156 if (!spin_trylock(&balancing)) 9157 goto out; 9158 } 9159 9160 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9161 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9162 /* 9163 * The LBF_DST_PINNED logic could have changed 9164 * env->dst_cpu, so we can't know our idle 9165 * state even if we migrated tasks. Update it. 9166 */ 9167 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9168 } 9169 sd->last_balance = jiffies; 9170 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9171 } 9172 if (need_serialize) 9173 spin_unlock(&balancing); 9174 out: 9175 if (time_after(next_balance, sd->last_balance + interval)) { 9176 next_balance = sd->last_balance + interval; 9177 update_next_balance = 1; 9178 } 9179 } 9180 if (need_decay) { 9181 /* 9182 * Ensure the rq-wide value also decays but keep it at a 9183 * reasonable floor to avoid funnies with rq->avg_idle. 9184 */ 9185 rq->max_idle_balance_cost = 9186 max((u64)sysctl_sched_migration_cost, max_cost); 9187 } 9188 rcu_read_unlock(); 9189 9190 /* 9191 * next_balance will be updated only when there is a need. 9192 * When the cpu is attached to null domain for ex, it will not be 9193 * updated. 9194 */ 9195 if (likely(update_next_balance)) { 9196 rq->next_balance = next_balance; 9197 9198 #ifdef CONFIG_NO_HZ_COMMON 9199 /* 9200 * If this CPU has been elected to perform the nohz idle 9201 * balance. Other idle CPUs have already rebalanced with 9202 * nohz_idle_balance() and nohz.next_balance has been 9203 * updated accordingly. This CPU is now running the idle load 9204 * balance for itself and we need to update the 9205 * nohz.next_balance accordingly. 9206 */ 9207 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9208 nohz.next_balance = rq->next_balance; 9209 #endif 9210 } 9211 } 9212 9213 #ifdef CONFIG_NO_HZ_COMMON 9214 /* 9215 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9216 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9217 */ 9218 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9219 { 9220 int this_cpu = this_rq->cpu; 9221 struct rq *rq; 9222 int balance_cpu; 9223 /* Earliest time when we have to do rebalance again */ 9224 unsigned long next_balance = jiffies + 60*HZ; 9225 int update_next_balance = 0; 9226 9227 if (idle != CPU_IDLE || 9228 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 9229 goto end; 9230 9231 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9232 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9233 continue; 9234 9235 /* 9236 * If this cpu gets work to do, stop the load balancing 9237 * work being done for other cpus. Next load 9238 * balancing owner will pick it up. 9239 */ 9240 if (need_resched()) 9241 break; 9242 9243 rq = cpu_rq(balance_cpu); 9244 9245 /* 9246 * If time for next balance is due, 9247 * do the balance. 9248 */ 9249 if (time_after_eq(jiffies, rq->next_balance)) { 9250 struct rq_flags rf; 9251 9252 rq_lock_irq(rq, &rf); 9253 update_rq_clock(rq); 9254 cpu_load_update_idle(rq); 9255 rq_unlock_irq(rq, &rf); 9256 9257 rebalance_domains(rq, CPU_IDLE); 9258 } 9259 9260 if (time_after(next_balance, rq->next_balance)) { 9261 next_balance = rq->next_balance; 9262 update_next_balance = 1; 9263 } 9264 } 9265 9266 /* 9267 * next_balance will be updated only when there is a need. 9268 * When the CPU is attached to null domain for ex, it will not be 9269 * updated. 9270 */ 9271 if (likely(update_next_balance)) 9272 nohz.next_balance = next_balance; 9273 end: 9274 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 9275 } 9276 9277 /* 9278 * Current heuristic for kicking the idle load balancer in the presence 9279 * of an idle cpu in the system. 9280 * - This rq has more than one task. 9281 * - This rq has at least one CFS task and the capacity of the CPU is 9282 * significantly reduced because of RT tasks or IRQs. 9283 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 9284 * multiple busy cpu. 9285 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 9286 * domain span are idle. 9287 */ 9288 static inline bool nohz_kick_needed(struct rq *rq) 9289 { 9290 unsigned long now = jiffies; 9291 struct sched_domain_shared *sds; 9292 struct sched_domain *sd; 9293 int nr_busy, i, cpu = rq->cpu; 9294 bool kick = false; 9295 9296 if (unlikely(rq->idle_balance)) 9297 return false; 9298 9299 /* 9300 * We may be recently in ticked or tickless idle mode. At the first 9301 * busy tick after returning from idle, we will update the busy stats. 9302 */ 9303 set_cpu_sd_state_busy(); 9304 nohz_balance_exit_idle(cpu); 9305 9306 /* 9307 * None are in tickless mode and hence no need for NOHZ idle load 9308 * balancing. 9309 */ 9310 if (likely(!atomic_read(&nohz.nr_cpus))) 9311 return false; 9312 9313 if (time_before(now, nohz.next_balance)) 9314 return false; 9315 9316 if (rq->nr_running >= 2) 9317 return true; 9318 9319 rcu_read_lock(); 9320 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9321 if (sds) { 9322 /* 9323 * XXX: write a coherent comment on why we do this. 9324 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com 9325 */ 9326 nr_busy = atomic_read(&sds->nr_busy_cpus); 9327 if (nr_busy > 1) { 9328 kick = true; 9329 goto unlock; 9330 } 9331 9332 } 9333 9334 sd = rcu_dereference(rq->sd); 9335 if (sd) { 9336 if ((rq->cfs.h_nr_running >= 1) && 9337 check_cpu_capacity(rq, sd)) { 9338 kick = true; 9339 goto unlock; 9340 } 9341 } 9342 9343 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 9344 if (sd) { 9345 for_each_cpu(i, sched_domain_span(sd)) { 9346 if (i == cpu || 9347 !cpumask_test_cpu(i, nohz.idle_cpus_mask)) 9348 continue; 9349 9350 if (sched_asym_prefer(i, cpu)) { 9351 kick = true; 9352 goto unlock; 9353 } 9354 } 9355 } 9356 unlock: 9357 rcu_read_unlock(); 9358 return kick; 9359 } 9360 #else 9361 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 9362 #endif 9363 9364 /* 9365 * run_rebalance_domains is triggered when needed from the scheduler tick. 9366 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 9367 */ 9368 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 9369 { 9370 struct rq *this_rq = this_rq(); 9371 enum cpu_idle_type idle = this_rq->idle_balance ? 9372 CPU_IDLE : CPU_NOT_IDLE; 9373 9374 /* 9375 * If this cpu has a pending nohz_balance_kick, then do the 9376 * balancing on behalf of the other idle cpus whose ticks are 9377 * stopped. Do nohz_idle_balance *before* rebalance_domains to 9378 * give the idle cpus a chance to load balance. Else we may 9379 * load balance only within the local sched_domain hierarchy 9380 * and abort nohz_idle_balance altogether if we pull some load. 9381 */ 9382 nohz_idle_balance(this_rq, idle); 9383 rebalance_domains(this_rq, idle); 9384 } 9385 9386 /* 9387 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 9388 */ 9389 void trigger_load_balance(struct rq *rq) 9390 { 9391 /* Don't need to rebalance while attached to NULL domain */ 9392 if (unlikely(on_null_domain(rq))) 9393 return; 9394 9395 if (time_after_eq(jiffies, rq->next_balance)) 9396 raise_softirq(SCHED_SOFTIRQ); 9397 #ifdef CONFIG_NO_HZ_COMMON 9398 if (nohz_kick_needed(rq)) 9399 nohz_balancer_kick(); 9400 #endif 9401 } 9402 9403 static void rq_online_fair(struct rq *rq) 9404 { 9405 update_sysctl(); 9406 9407 update_runtime_enabled(rq); 9408 } 9409 9410 static void rq_offline_fair(struct rq *rq) 9411 { 9412 update_sysctl(); 9413 9414 /* Ensure any throttled groups are reachable by pick_next_task */ 9415 unthrottle_offline_cfs_rqs(rq); 9416 } 9417 9418 #endif /* CONFIG_SMP */ 9419 9420 /* 9421 * scheduler tick hitting a task of our scheduling class: 9422 */ 9423 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9424 { 9425 struct cfs_rq *cfs_rq; 9426 struct sched_entity *se = &curr->se; 9427 9428 for_each_sched_entity(se) { 9429 cfs_rq = cfs_rq_of(se); 9430 entity_tick(cfs_rq, se, queued); 9431 } 9432 9433 if (static_branch_unlikely(&sched_numa_balancing)) 9434 task_tick_numa(rq, curr); 9435 } 9436 9437 /* 9438 * called on fork with the child task as argument from the parent's context 9439 * - child not yet on the tasklist 9440 * - preemption disabled 9441 */ 9442 static void task_fork_fair(struct task_struct *p) 9443 { 9444 struct cfs_rq *cfs_rq; 9445 struct sched_entity *se = &p->se, *curr; 9446 struct rq *rq = this_rq(); 9447 struct rq_flags rf; 9448 9449 rq_lock(rq, &rf); 9450 update_rq_clock(rq); 9451 9452 cfs_rq = task_cfs_rq(current); 9453 curr = cfs_rq->curr; 9454 if (curr) { 9455 update_curr(cfs_rq); 9456 se->vruntime = curr->vruntime; 9457 } 9458 place_entity(cfs_rq, se, 1); 9459 9460 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9461 /* 9462 * Upon rescheduling, sched_class::put_prev_task() will place 9463 * 'current' within the tree based on its new key value. 9464 */ 9465 swap(curr->vruntime, se->vruntime); 9466 resched_curr(rq); 9467 } 9468 9469 se->vruntime -= cfs_rq->min_vruntime; 9470 rq_unlock(rq, &rf); 9471 } 9472 9473 /* 9474 * Priority of the task has changed. Check to see if we preempt 9475 * the current task. 9476 */ 9477 static void 9478 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9479 { 9480 if (!task_on_rq_queued(p)) 9481 return; 9482 9483 /* 9484 * Reschedule if we are currently running on this runqueue and 9485 * our priority decreased, or if we are not currently running on 9486 * this runqueue and our priority is higher than the current's 9487 */ 9488 if (rq->curr == p) { 9489 if (p->prio > oldprio) 9490 resched_curr(rq); 9491 } else 9492 check_preempt_curr(rq, p, 0); 9493 } 9494 9495 static inline bool vruntime_normalized(struct task_struct *p) 9496 { 9497 struct sched_entity *se = &p->se; 9498 9499 /* 9500 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 9501 * the dequeue_entity(.flags=0) will already have normalized the 9502 * vruntime. 9503 */ 9504 if (p->on_rq) 9505 return true; 9506 9507 /* 9508 * When !on_rq, vruntime of the task has usually NOT been normalized. 9509 * But there are some cases where it has already been normalized: 9510 * 9511 * - A forked child which is waiting for being woken up by 9512 * wake_up_new_task(). 9513 * - A task which has been woken up by try_to_wake_up() and 9514 * waiting for actually being woken up by sched_ttwu_pending(). 9515 */ 9516 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 9517 return true; 9518 9519 return false; 9520 } 9521 9522 #ifdef CONFIG_FAIR_GROUP_SCHED 9523 /* 9524 * Propagate the changes of the sched_entity across the tg tree to make it 9525 * visible to the root 9526 */ 9527 static void propagate_entity_cfs_rq(struct sched_entity *se) 9528 { 9529 struct cfs_rq *cfs_rq; 9530 9531 /* Start to propagate at parent */ 9532 se = se->parent; 9533 9534 for_each_sched_entity(se) { 9535 cfs_rq = cfs_rq_of(se); 9536 9537 if (cfs_rq_throttled(cfs_rq)) 9538 break; 9539 9540 update_load_avg(cfs_rq, se, UPDATE_TG); 9541 } 9542 } 9543 #else 9544 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 9545 #endif 9546 9547 static void detach_entity_cfs_rq(struct sched_entity *se) 9548 { 9549 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9550 9551 /* Catch up with the cfs_rq and remove our load when we leave */ 9552 update_load_avg(cfs_rq, se, 0); 9553 detach_entity_load_avg(cfs_rq, se); 9554 update_tg_load_avg(cfs_rq, false); 9555 propagate_entity_cfs_rq(se); 9556 } 9557 9558 static void attach_entity_cfs_rq(struct sched_entity *se) 9559 { 9560 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9561 9562 #ifdef CONFIG_FAIR_GROUP_SCHED 9563 /* 9564 * Since the real-depth could have been changed (only FAIR 9565 * class maintain depth value), reset depth properly. 9566 */ 9567 se->depth = se->parent ? se->parent->depth + 1 : 0; 9568 #endif 9569 9570 /* Synchronize entity with its cfs_rq */ 9571 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 9572 attach_entity_load_avg(cfs_rq, se); 9573 update_tg_load_avg(cfs_rq, false); 9574 propagate_entity_cfs_rq(se); 9575 } 9576 9577 static void detach_task_cfs_rq(struct task_struct *p) 9578 { 9579 struct sched_entity *se = &p->se; 9580 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9581 9582 if (!vruntime_normalized(p)) { 9583 /* 9584 * Fix up our vruntime so that the current sleep doesn't 9585 * cause 'unlimited' sleep bonus. 9586 */ 9587 place_entity(cfs_rq, se, 0); 9588 se->vruntime -= cfs_rq->min_vruntime; 9589 } 9590 9591 detach_entity_cfs_rq(se); 9592 } 9593 9594 static void attach_task_cfs_rq(struct task_struct *p) 9595 { 9596 struct sched_entity *se = &p->se; 9597 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9598 9599 attach_entity_cfs_rq(se); 9600 9601 if (!vruntime_normalized(p)) 9602 se->vruntime += cfs_rq->min_vruntime; 9603 } 9604 9605 static void switched_from_fair(struct rq *rq, struct task_struct *p) 9606 { 9607 detach_task_cfs_rq(p); 9608 } 9609 9610 static void switched_to_fair(struct rq *rq, struct task_struct *p) 9611 { 9612 attach_task_cfs_rq(p); 9613 9614 if (task_on_rq_queued(p)) { 9615 /* 9616 * We were most likely switched from sched_rt, so 9617 * kick off the schedule if running, otherwise just see 9618 * if we can still preempt the current task. 9619 */ 9620 if (rq->curr == p) 9621 resched_curr(rq); 9622 else 9623 check_preempt_curr(rq, p, 0); 9624 } 9625 } 9626 9627 /* Account for a task changing its policy or group. 9628 * 9629 * This routine is mostly called to set cfs_rq->curr field when a task 9630 * migrates between groups/classes. 9631 */ 9632 static void set_curr_task_fair(struct rq *rq) 9633 { 9634 struct sched_entity *se = &rq->curr->se; 9635 9636 for_each_sched_entity(se) { 9637 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9638 9639 set_next_entity(cfs_rq, se); 9640 /* ensure bandwidth has been allocated on our new cfs_rq */ 9641 account_cfs_rq_runtime(cfs_rq, 0); 9642 } 9643 } 9644 9645 void init_cfs_rq(struct cfs_rq *cfs_rq) 9646 { 9647 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 9648 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 9649 #ifndef CONFIG_64BIT 9650 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 9651 #endif 9652 #ifdef CONFIG_SMP 9653 raw_spin_lock_init(&cfs_rq->removed.lock); 9654 #endif 9655 } 9656 9657 #ifdef CONFIG_FAIR_GROUP_SCHED 9658 static void task_set_group_fair(struct task_struct *p) 9659 { 9660 struct sched_entity *se = &p->se; 9661 9662 set_task_rq(p, task_cpu(p)); 9663 se->depth = se->parent ? se->parent->depth + 1 : 0; 9664 } 9665 9666 static void task_move_group_fair(struct task_struct *p) 9667 { 9668 detach_task_cfs_rq(p); 9669 set_task_rq(p, task_cpu(p)); 9670 9671 #ifdef CONFIG_SMP 9672 /* Tell se's cfs_rq has been changed -- migrated */ 9673 p->se.avg.last_update_time = 0; 9674 #endif 9675 attach_task_cfs_rq(p); 9676 } 9677 9678 static void task_change_group_fair(struct task_struct *p, int type) 9679 { 9680 switch (type) { 9681 case TASK_SET_GROUP: 9682 task_set_group_fair(p); 9683 break; 9684 9685 case TASK_MOVE_GROUP: 9686 task_move_group_fair(p); 9687 break; 9688 } 9689 } 9690 9691 void free_fair_sched_group(struct task_group *tg) 9692 { 9693 int i; 9694 9695 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9696 9697 for_each_possible_cpu(i) { 9698 if (tg->cfs_rq) 9699 kfree(tg->cfs_rq[i]); 9700 if (tg->se) 9701 kfree(tg->se[i]); 9702 } 9703 9704 kfree(tg->cfs_rq); 9705 kfree(tg->se); 9706 } 9707 9708 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9709 { 9710 struct sched_entity *se; 9711 struct cfs_rq *cfs_rq; 9712 int i; 9713 9714 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 9715 if (!tg->cfs_rq) 9716 goto err; 9717 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 9718 if (!tg->se) 9719 goto err; 9720 9721 tg->shares = NICE_0_LOAD; 9722 9723 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9724 9725 for_each_possible_cpu(i) { 9726 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 9727 GFP_KERNEL, cpu_to_node(i)); 9728 if (!cfs_rq) 9729 goto err; 9730 9731 se = kzalloc_node(sizeof(struct sched_entity), 9732 GFP_KERNEL, cpu_to_node(i)); 9733 if (!se) 9734 goto err_free_rq; 9735 9736 init_cfs_rq(cfs_rq); 9737 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 9738 init_entity_runnable_average(se); 9739 } 9740 9741 return 1; 9742 9743 err_free_rq: 9744 kfree(cfs_rq); 9745 err: 9746 return 0; 9747 } 9748 9749 void online_fair_sched_group(struct task_group *tg) 9750 { 9751 struct sched_entity *se; 9752 struct rq *rq; 9753 int i; 9754 9755 for_each_possible_cpu(i) { 9756 rq = cpu_rq(i); 9757 se = tg->se[i]; 9758 9759 raw_spin_lock_irq(&rq->lock); 9760 update_rq_clock(rq); 9761 attach_entity_cfs_rq(se); 9762 sync_throttle(tg, i); 9763 raw_spin_unlock_irq(&rq->lock); 9764 } 9765 } 9766 9767 void unregister_fair_sched_group(struct task_group *tg) 9768 { 9769 unsigned long flags; 9770 struct rq *rq; 9771 int cpu; 9772 9773 for_each_possible_cpu(cpu) { 9774 if (tg->se[cpu]) 9775 remove_entity_load_avg(tg->se[cpu]); 9776 9777 /* 9778 * Only empty task groups can be destroyed; so we can speculatively 9779 * check on_list without danger of it being re-added. 9780 */ 9781 if (!tg->cfs_rq[cpu]->on_list) 9782 continue; 9783 9784 rq = cpu_rq(cpu); 9785 9786 raw_spin_lock_irqsave(&rq->lock, flags); 9787 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 9788 raw_spin_unlock_irqrestore(&rq->lock, flags); 9789 } 9790 } 9791 9792 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 9793 struct sched_entity *se, int cpu, 9794 struct sched_entity *parent) 9795 { 9796 struct rq *rq = cpu_rq(cpu); 9797 9798 cfs_rq->tg = tg; 9799 cfs_rq->rq = rq; 9800 init_cfs_rq_runtime(cfs_rq); 9801 9802 tg->cfs_rq[cpu] = cfs_rq; 9803 tg->se[cpu] = se; 9804 9805 /* se could be NULL for root_task_group */ 9806 if (!se) 9807 return; 9808 9809 if (!parent) { 9810 se->cfs_rq = &rq->cfs; 9811 se->depth = 0; 9812 } else { 9813 se->cfs_rq = parent->my_q; 9814 se->depth = parent->depth + 1; 9815 } 9816 9817 se->my_q = cfs_rq; 9818 /* guarantee group entities always have weight */ 9819 update_load_set(&se->load, NICE_0_LOAD); 9820 se->parent = parent; 9821 } 9822 9823 static DEFINE_MUTEX(shares_mutex); 9824 9825 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 9826 { 9827 int i; 9828 9829 /* 9830 * We can't change the weight of the root cgroup. 9831 */ 9832 if (!tg->se[0]) 9833 return -EINVAL; 9834 9835 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 9836 9837 mutex_lock(&shares_mutex); 9838 if (tg->shares == shares) 9839 goto done; 9840 9841 tg->shares = shares; 9842 for_each_possible_cpu(i) { 9843 struct rq *rq = cpu_rq(i); 9844 struct sched_entity *se = tg->se[i]; 9845 struct rq_flags rf; 9846 9847 /* Propagate contribution to hierarchy */ 9848 rq_lock_irqsave(rq, &rf); 9849 update_rq_clock(rq); 9850 for_each_sched_entity(se) { 9851 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9852 update_cfs_group(se); 9853 } 9854 rq_unlock_irqrestore(rq, &rf); 9855 } 9856 9857 done: 9858 mutex_unlock(&shares_mutex); 9859 return 0; 9860 } 9861 #else /* CONFIG_FAIR_GROUP_SCHED */ 9862 9863 void free_fair_sched_group(struct task_group *tg) { } 9864 9865 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9866 { 9867 return 1; 9868 } 9869 9870 void online_fair_sched_group(struct task_group *tg) { } 9871 9872 void unregister_fair_sched_group(struct task_group *tg) { } 9873 9874 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9875 9876 9877 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 9878 { 9879 struct sched_entity *se = &task->se; 9880 unsigned int rr_interval = 0; 9881 9882 /* 9883 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 9884 * idle runqueue: 9885 */ 9886 if (rq->cfs.load.weight) 9887 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 9888 9889 return rr_interval; 9890 } 9891 9892 /* 9893 * All the scheduling class methods: 9894 */ 9895 const struct sched_class fair_sched_class = { 9896 .next = &idle_sched_class, 9897 .enqueue_task = enqueue_task_fair, 9898 .dequeue_task = dequeue_task_fair, 9899 .yield_task = yield_task_fair, 9900 .yield_to_task = yield_to_task_fair, 9901 9902 .check_preempt_curr = check_preempt_wakeup, 9903 9904 .pick_next_task = pick_next_task_fair, 9905 .put_prev_task = put_prev_task_fair, 9906 9907 #ifdef CONFIG_SMP 9908 .select_task_rq = select_task_rq_fair, 9909 .migrate_task_rq = migrate_task_rq_fair, 9910 9911 .rq_online = rq_online_fair, 9912 .rq_offline = rq_offline_fair, 9913 9914 .task_dead = task_dead_fair, 9915 .set_cpus_allowed = set_cpus_allowed_common, 9916 #endif 9917 9918 .set_curr_task = set_curr_task_fair, 9919 .task_tick = task_tick_fair, 9920 .task_fork = task_fork_fair, 9921 9922 .prio_changed = prio_changed_fair, 9923 .switched_from = switched_from_fair, 9924 .switched_to = switched_to_fair, 9925 9926 .get_rr_interval = get_rr_interval_fair, 9927 9928 .update_curr = update_curr_fair, 9929 9930 #ifdef CONFIG_FAIR_GROUP_SCHED 9931 .task_change_group = task_change_group_fair, 9932 #endif 9933 }; 9934 9935 #ifdef CONFIG_SCHED_DEBUG 9936 void print_cfs_stats(struct seq_file *m, int cpu) 9937 { 9938 struct cfs_rq *cfs_rq, *pos; 9939 9940 rcu_read_lock(); 9941 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 9942 print_cfs_rq(m, cpu, cfs_rq); 9943 rcu_read_unlock(); 9944 } 9945 9946 #ifdef CONFIG_NUMA_BALANCING 9947 void show_numa_stats(struct task_struct *p, struct seq_file *m) 9948 { 9949 int node; 9950 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 9951 9952 for_each_online_node(node) { 9953 if (p->numa_faults) { 9954 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 9955 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 9956 } 9957 if (p->numa_group) { 9958 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 9959 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 9960 } 9961 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 9962 } 9963 } 9964 #endif /* CONFIG_NUMA_BALANCING */ 9965 #endif /* CONFIG_SCHED_DEBUG */ 9966 9967 __init void init_sched_fair_class(void) 9968 { 9969 #ifdef CONFIG_SMP 9970 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 9971 9972 #ifdef CONFIG_NO_HZ_COMMON 9973 nohz.next_balance = jiffies; 9974 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 9975 #endif 9976 #endif /* SMP */ 9977 9978 } 9979