1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 /* 26 * Targeted preemption latency for CPU-bound tasks: 27 * 28 * NOTE: this latency value is not the same as the concept of 29 * 'timeslice length' - timeslices in CFS are of variable length 30 * and have no persistent notion like in traditional, time-slice 31 * based scheduling concepts. 32 * 33 * (to see the precise effective timeslice length of your workload, 34 * run vmstat and monitor the context-switches (cs) field) 35 * 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 37 */ 38 unsigned int sysctl_sched_latency = 6000000ULL; 39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 40 41 /* 42 * The initial- and re-scaling of tunables is configurable 43 * 44 * Options are: 45 * 46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 49 * 50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 51 */ 52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 53 54 /* 55 * Minimal preemption granularity for CPU-bound tasks: 56 * 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 58 */ 59 unsigned int sysctl_sched_min_granularity = 750000ULL; 60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 61 62 /* 63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 64 */ 65 static unsigned int sched_nr_latency = 8; 66 67 /* 68 * After fork, child runs first. If set to 0 (default) then 69 * parent will (try to) run first. 70 */ 71 unsigned int sysctl_sched_child_runs_first __read_mostly; 72 73 /* 74 * SCHED_OTHER wake-up granularity. 75 * 76 * This option delays the preemption effects of decoupled workloads 77 * and reduces their over-scheduling. Synchronous workloads will still 78 * have immediate wakeup/sleep latencies. 79 * 80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 81 */ 82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 84 85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 86 87 int sched_thermal_decay_shift; 88 static int __init setup_sched_thermal_decay_shift(char *str) 89 { 90 int _shift = 0; 91 92 if (kstrtoint(str, 0, &_shift)) 93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 94 95 sched_thermal_decay_shift = clamp(_shift, 0, 10); 96 return 1; 97 } 98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 99 100 #ifdef CONFIG_SMP 101 /* 102 * For asym packing, by default the lower numbered CPU has higher priority. 103 */ 104 int __weak arch_asym_cpu_priority(int cpu) 105 { 106 return -cpu; 107 } 108 109 /* 110 * The margin used when comparing utilization with CPU capacity. 111 * 112 * (default: ~20%) 113 */ 114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 115 116 /* 117 * The margin used when comparing CPU capacities. 118 * is 'cap1' noticeably greater than 'cap2' 119 * 120 * (default: ~5%) 121 */ 122 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 123 #endif 124 125 #ifdef CONFIG_CFS_BANDWIDTH 126 /* 127 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 128 * each time a cfs_rq requests quota. 129 * 130 * Note: in the case that the slice exceeds the runtime remaining (either due 131 * to consumption or the quota being specified to be smaller than the slice) 132 * we will always only issue the remaining available time. 133 * 134 * (default: 5 msec, units: microseconds) 135 */ 136 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 137 #endif 138 139 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 140 { 141 lw->weight += inc; 142 lw->inv_weight = 0; 143 } 144 145 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 146 { 147 lw->weight -= dec; 148 lw->inv_weight = 0; 149 } 150 151 static inline void update_load_set(struct load_weight *lw, unsigned long w) 152 { 153 lw->weight = w; 154 lw->inv_weight = 0; 155 } 156 157 /* 158 * Increase the granularity value when there are more CPUs, 159 * because with more CPUs the 'effective latency' as visible 160 * to users decreases. But the relationship is not linear, 161 * so pick a second-best guess by going with the log2 of the 162 * number of CPUs. 163 * 164 * This idea comes from the SD scheduler of Con Kolivas: 165 */ 166 static unsigned int get_update_sysctl_factor(void) 167 { 168 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 169 unsigned int factor; 170 171 switch (sysctl_sched_tunable_scaling) { 172 case SCHED_TUNABLESCALING_NONE: 173 factor = 1; 174 break; 175 case SCHED_TUNABLESCALING_LINEAR: 176 factor = cpus; 177 break; 178 case SCHED_TUNABLESCALING_LOG: 179 default: 180 factor = 1 + ilog2(cpus); 181 break; 182 } 183 184 return factor; 185 } 186 187 static void update_sysctl(void) 188 { 189 unsigned int factor = get_update_sysctl_factor(); 190 191 #define SET_SYSCTL(name) \ 192 (sysctl_##name = (factor) * normalized_sysctl_##name) 193 SET_SYSCTL(sched_min_granularity); 194 SET_SYSCTL(sched_latency); 195 SET_SYSCTL(sched_wakeup_granularity); 196 #undef SET_SYSCTL 197 } 198 199 void __init sched_init_granularity(void) 200 { 201 update_sysctl(); 202 } 203 204 #define WMULT_CONST (~0U) 205 #define WMULT_SHIFT 32 206 207 static void __update_inv_weight(struct load_weight *lw) 208 { 209 unsigned long w; 210 211 if (likely(lw->inv_weight)) 212 return; 213 214 w = scale_load_down(lw->weight); 215 216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 217 lw->inv_weight = 1; 218 else if (unlikely(!w)) 219 lw->inv_weight = WMULT_CONST; 220 else 221 lw->inv_weight = WMULT_CONST / w; 222 } 223 224 /* 225 * delta_exec * weight / lw.weight 226 * OR 227 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 228 * 229 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 230 * we're guaranteed shift stays positive because inv_weight is guaranteed to 231 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 232 * 233 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 234 * weight/lw.weight <= 1, and therefore our shift will also be positive. 235 */ 236 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 237 { 238 u64 fact = scale_load_down(weight); 239 u32 fact_hi = (u32)(fact >> 32); 240 int shift = WMULT_SHIFT; 241 int fs; 242 243 __update_inv_weight(lw); 244 245 if (unlikely(fact_hi)) { 246 fs = fls(fact_hi); 247 shift -= fs; 248 fact >>= fs; 249 } 250 251 fact = mul_u32_u32(fact, lw->inv_weight); 252 253 fact_hi = (u32)(fact >> 32); 254 if (fact_hi) { 255 fs = fls(fact_hi); 256 shift -= fs; 257 fact >>= fs; 258 } 259 260 return mul_u64_u32_shr(delta_exec, fact, shift); 261 } 262 263 264 const struct sched_class fair_sched_class; 265 266 /************************************************************** 267 * CFS operations on generic schedulable entities: 268 */ 269 270 #ifdef CONFIG_FAIR_GROUP_SCHED 271 static inline struct task_struct *task_of(struct sched_entity *se) 272 { 273 SCHED_WARN_ON(!entity_is_task(se)); 274 return container_of(se, struct task_struct, se); 275 } 276 277 /* Walk up scheduling entities hierarchy */ 278 #define for_each_sched_entity(se) \ 279 for (; se; se = se->parent) 280 281 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 282 { 283 return p->se.cfs_rq; 284 } 285 286 /* runqueue on which this entity is (to be) queued */ 287 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 288 { 289 return se->cfs_rq; 290 } 291 292 /* runqueue "owned" by this group */ 293 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 294 { 295 return grp->my_q; 296 } 297 298 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 299 { 300 if (!path) 301 return; 302 303 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 304 autogroup_path(cfs_rq->tg, path, len); 305 else if (cfs_rq && cfs_rq->tg->css.cgroup) 306 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 307 else 308 strlcpy(path, "(null)", len); 309 } 310 311 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 312 { 313 struct rq *rq = rq_of(cfs_rq); 314 int cpu = cpu_of(rq); 315 316 if (cfs_rq->on_list) 317 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 318 319 cfs_rq->on_list = 1; 320 321 /* 322 * Ensure we either appear before our parent (if already 323 * enqueued) or force our parent to appear after us when it is 324 * enqueued. The fact that we always enqueue bottom-up 325 * reduces this to two cases and a special case for the root 326 * cfs_rq. Furthermore, it also means that we will always reset 327 * tmp_alone_branch either when the branch is connected 328 * to a tree or when we reach the top of the tree 329 */ 330 if (cfs_rq->tg->parent && 331 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 332 /* 333 * If parent is already on the list, we add the child 334 * just before. Thanks to circular linked property of 335 * the list, this means to put the child at the tail 336 * of the list that starts by parent. 337 */ 338 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 339 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 340 /* 341 * The branch is now connected to its tree so we can 342 * reset tmp_alone_branch to the beginning of the 343 * list. 344 */ 345 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 346 return true; 347 } 348 349 if (!cfs_rq->tg->parent) { 350 /* 351 * cfs rq without parent should be put 352 * at the tail of the list. 353 */ 354 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 355 &rq->leaf_cfs_rq_list); 356 /* 357 * We have reach the top of a tree so we can reset 358 * tmp_alone_branch to the beginning of the list. 359 */ 360 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 361 return true; 362 } 363 364 /* 365 * The parent has not already been added so we want to 366 * make sure that it will be put after us. 367 * tmp_alone_branch points to the begin of the branch 368 * where we will add parent. 369 */ 370 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 371 /* 372 * update tmp_alone_branch to points to the new begin 373 * of the branch 374 */ 375 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 376 return false; 377 } 378 379 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 380 { 381 if (cfs_rq->on_list) { 382 struct rq *rq = rq_of(cfs_rq); 383 384 /* 385 * With cfs_rq being unthrottled/throttled during an enqueue, 386 * it can happen the tmp_alone_branch points the a leaf that 387 * we finally want to del. In this case, tmp_alone_branch moves 388 * to the prev element but it will point to rq->leaf_cfs_rq_list 389 * at the end of the enqueue. 390 */ 391 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 392 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 393 394 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 395 cfs_rq->on_list = 0; 396 } 397 } 398 399 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 400 { 401 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 402 } 403 404 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 405 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 406 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 407 leaf_cfs_rq_list) 408 409 /* Do the two (enqueued) entities belong to the same group ? */ 410 static inline struct cfs_rq * 411 is_same_group(struct sched_entity *se, struct sched_entity *pse) 412 { 413 if (se->cfs_rq == pse->cfs_rq) 414 return se->cfs_rq; 415 416 return NULL; 417 } 418 419 static inline struct sched_entity *parent_entity(struct sched_entity *se) 420 { 421 return se->parent; 422 } 423 424 static void 425 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 426 { 427 int se_depth, pse_depth; 428 429 /* 430 * preemption test can be made between sibling entities who are in the 431 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 432 * both tasks until we find their ancestors who are siblings of common 433 * parent. 434 */ 435 436 /* First walk up until both entities are at same depth */ 437 se_depth = (*se)->depth; 438 pse_depth = (*pse)->depth; 439 440 while (se_depth > pse_depth) { 441 se_depth--; 442 *se = parent_entity(*se); 443 } 444 445 while (pse_depth > se_depth) { 446 pse_depth--; 447 *pse = parent_entity(*pse); 448 } 449 450 while (!is_same_group(*se, *pse)) { 451 *se = parent_entity(*se); 452 *pse = parent_entity(*pse); 453 } 454 } 455 456 #else /* !CONFIG_FAIR_GROUP_SCHED */ 457 458 static inline struct task_struct *task_of(struct sched_entity *se) 459 { 460 return container_of(se, struct task_struct, se); 461 } 462 463 #define for_each_sched_entity(se) \ 464 for (; se; se = NULL) 465 466 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 467 { 468 return &task_rq(p)->cfs; 469 } 470 471 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 472 { 473 struct task_struct *p = task_of(se); 474 struct rq *rq = task_rq(p); 475 476 return &rq->cfs; 477 } 478 479 /* runqueue "owned" by this group */ 480 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 481 { 482 return NULL; 483 } 484 485 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 486 { 487 if (path) 488 strlcpy(path, "(null)", len); 489 } 490 491 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 492 { 493 return true; 494 } 495 496 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 497 { 498 } 499 500 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 501 { 502 } 503 504 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 505 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 506 507 static inline struct sched_entity *parent_entity(struct sched_entity *se) 508 { 509 return NULL; 510 } 511 512 static inline void 513 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 514 { 515 } 516 517 #endif /* CONFIG_FAIR_GROUP_SCHED */ 518 519 static __always_inline 520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 521 522 /************************************************************** 523 * Scheduling class tree data structure manipulation methods: 524 */ 525 526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 527 { 528 s64 delta = (s64)(vruntime - max_vruntime); 529 if (delta > 0) 530 max_vruntime = vruntime; 531 532 return max_vruntime; 533 } 534 535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 536 { 537 s64 delta = (s64)(vruntime - min_vruntime); 538 if (delta < 0) 539 min_vruntime = vruntime; 540 541 return min_vruntime; 542 } 543 544 static inline bool entity_before(struct sched_entity *a, 545 struct sched_entity *b) 546 { 547 return (s64)(a->vruntime - b->vruntime) < 0; 548 } 549 550 #define __node_2_se(node) \ 551 rb_entry((node), struct sched_entity, run_node) 552 553 static void update_min_vruntime(struct cfs_rq *cfs_rq) 554 { 555 struct sched_entity *curr = cfs_rq->curr; 556 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 557 558 u64 vruntime = cfs_rq->min_vruntime; 559 560 if (curr) { 561 if (curr->on_rq) 562 vruntime = curr->vruntime; 563 else 564 curr = NULL; 565 } 566 567 if (leftmost) { /* non-empty tree */ 568 struct sched_entity *se = __node_2_se(leftmost); 569 570 if (!curr) 571 vruntime = se->vruntime; 572 else 573 vruntime = min_vruntime(vruntime, se->vruntime); 574 } 575 576 /* ensure we never gain time by being placed backwards. */ 577 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 578 #ifndef CONFIG_64BIT 579 smp_wmb(); 580 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 581 #endif 582 } 583 584 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 585 { 586 return entity_before(__node_2_se(a), __node_2_se(b)); 587 } 588 589 /* 590 * Enqueue an entity into the rb-tree: 591 */ 592 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 593 { 594 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 595 } 596 597 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 598 { 599 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 600 } 601 602 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 603 { 604 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 605 606 if (!left) 607 return NULL; 608 609 return __node_2_se(left); 610 } 611 612 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 613 { 614 struct rb_node *next = rb_next(&se->run_node); 615 616 if (!next) 617 return NULL; 618 619 return __node_2_se(next); 620 } 621 622 #ifdef CONFIG_SCHED_DEBUG 623 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 624 { 625 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 626 627 if (!last) 628 return NULL; 629 630 return __node_2_se(last); 631 } 632 633 /************************************************************** 634 * Scheduling class statistics methods: 635 */ 636 637 int sched_update_scaling(void) 638 { 639 unsigned int factor = get_update_sysctl_factor(); 640 641 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 642 sysctl_sched_min_granularity); 643 644 #define WRT_SYSCTL(name) \ 645 (normalized_sysctl_##name = sysctl_##name / (factor)) 646 WRT_SYSCTL(sched_min_granularity); 647 WRT_SYSCTL(sched_latency); 648 WRT_SYSCTL(sched_wakeup_granularity); 649 #undef WRT_SYSCTL 650 651 return 0; 652 } 653 #endif 654 655 /* 656 * delta /= w 657 */ 658 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 659 { 660 if (unlikely(se->load.weight != NICE_0_LOAD)) 661 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 662 663 return delta; 664 } 665 666 /* 667 * The idea is to set a period in which each task runs once. 668 * 669 * When there are too many tasks (sched_nr_latency) we have to stretch 670 * this period because otherwise the slices get too small. 671 * 672 * p = (nr <= nl) ? l : l*nr/nl 673 */ 674 static u64 __sched_period(unsigned long nr_running) 675 { 676 if (unlikely(nr_running > sched_nr_latency)) 677 return nr_running * sysctl_sched_min_granularity; 678 else 679 return sysctl_sched_latency; 680 } 681 682 /* 683 * We calculate the wall-time slice from the period by taking a part 684 * proportional to the weight. 685 * 686 * s = p*P[w/rw] 687 */ 688 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 689 { 690 unsigned int nr_running = cfs_rq->nr_running; 691 u64 slice; 692 693 if (sched_feat(ALT_PERIOD)) 694 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 695 696 slice = __sched_period(nr_running + !se->on_rq); 697 698 for_each_sched_entity(se) { 699 struct load_weight *load; 700 struct load_weight lw; 701 702 cfs_rq = cfs_rq_of(se); 703 load = &cfs_rq->load; 704 705 if (unlikely(!se->on_rq)) { 706 lw = cfs_rq->load; 707 708 update_load_add(&lw, se->load.weight); 709 load = &lw; 710 } 711 slice = __calc_delta(slice, se->load.weight, load); 712 } 713 714 if (sched_feat(BASE_SLICE)) 715 slice = max(slice, (u64)sysctl_sched_min_granularity); 716 717 return slice; 718 } 719 720 /* 721 * We calculate the vruntime slice of a to-be-inserted task. 722 * 723 * vs = s/w 724 */ 725 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 726 { 727 return calc_delta_fair(sched_slice(cfs_rq, se), se); 728 } 729 730 #include "pelt.h" 731 #ifdef CONFIG_SMP 732 733 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 734 static unsigned long task_h_load(struct task_struct *p); 735 static unsigned long capacity_of(int cpu); 736 737 /* Give new sched_entity start runnable values to heavy its load in infant time */ 738 void init_entity_runnable_average(struct sched_entity *se) 739 { 740 struct sched_avg *sa = &se->avg; 741 742 memset(sa, 0, sizeof(*sa)); 743 744 /* 745 * Tasks are initialized with full load to be seen as heavy tasks until 746 * they get a chance to stabilize to their real load level. 747 * Group entities are initialized with zero load to reflect the fact that 748 * nothing has been attached to the task group yet. 749 */ 750 if (entity_is_task(se)) 751 sa->load_avg = scale_load_down(se->load.weight); 752 753 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 754 } 755 756 static void attach_entity_cfs_rq(struct sched_entity *se); 757 758 /* 759 * With new tasks being created, their initial util_avgs are extrapolated 760 * based on the cfs_rq's current util_avg: 761 * 762 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 763 * 764 * However, in many cases, the above util_avg does not give a desired 765 * value. Moreover, the sum of the util_avgs may be divergent, such 766 * as when the series is a harmonic series. 767 * 768 * To solve this problem, we also cap the util_avg of successive tasks to 769 * only 1/2 of the left utilization budget: 770 * 771 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 772 * 773 * where n denotes the nth task and cpu_scale the CPU capacity. 774 * 775 * For example, for a CPU with 1024 of capacity, a simplest series from 776 * the beginning would be like: 777 * 778 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 779 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 780 * 781 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 782 * if util_avg > util_avg_cap. 783 */ 784 void post_init_entity_util_avg(struct task_struct *p) 785 { 786 struct sched_entity *se = &p->se; 787 struct cfs_rq *cfs_rq = cfs_rq_of(se); 788 struct sched_avg *sa = &se->avg; 789 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 790 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 791 792 if (cap > 0) { 793 if (cfs_rq->avg.util_avg != 0) { 794 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 795 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 796 797 if (sa->util_avg > cap) 798 sa->util_avg = cap; 799 } else { 800 sa->util_avg = cap; 801 } 802 } 803 804 sa->runnable_avg = sa->util_avg; 805 806 if (p->sched_class != &fair_sched_class) { 807 /* 808 * For !fair tasks do: 809 * 810 update_cfs_rq_load_avg(now, cfs_rq); 811 attach_entity_load_avg(cfs_rq, se); 812 switched_from_fair(rq, p); 813 * 814 * such that the next switched_to_fair() has the 815 * expected state. 816 */ 817 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 818 return; 819 } 820 821 attach_entity_cfs_rq(se); 822 } 823 824 #else /* !CONFIG_SMP */ 825 void init_entity_runnable_average(struct sched_entity *se) 826 { 827 } 828 void post_init_entity_util_avg(struct task_struct *p) 829 { 830 } 831 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 832 { 833 } 834 #endif /* CONFIG_SMP */ 835 836 /* 837 * Update the current task's runtime statistics. 838 */ 839 static void update_curr(struct cfs_rq *cfs_rq) 840 { 841 struct sched_entity *curr = cfs_rq->curr; 842 u64 now = rq_clock_task(rq_of(cfs_rq)); 843 u64 delta_exec; 844 845 if (unlikely(!curr)) 846 return; 847 848 delta_exec = now - curr->exec_start; 849 if (unlikely((s64)delta_exec <= 0)) 850 return; 851 852 curr->exec_start = now; 853 854 schedstat_set(curr->statistics.exec_max, 855 max(delta_exec, curr->statistics.exec_max)); 856 857 curr->sum_exec_runtime += delta_exec; 858 schedstat_add(cfs_rq->exec_clock, delta_exec); 859 860 curr->vruntime += calc_delta_fair(delta_exec, curr); 861 update_min_vruntime(cfs_rq); 862 863 if (entity_is_task(curr)) { 864 struct task_struct *curtask = task_of(curr); 865 866 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 867 cgroup_account_cputime(curtask, delta_exec); 868 account_group_exec_runtime(curtask, delta_exec); 869 } 870 871 account_cfs_rq_runtime(cfs_rq, delta_exec); 872 } 873 874 static void update_curr_fair(struct rq *rq) 875 { 876 update_curr(cfs_rq_of(&rq->curr->se)); 877 } 878 879 static inline void 880 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 881 { 882 u64 wait_start, prev_wait_start; 883 884 if (!schedstat_enabled()) 885 return; 886 887 wait_start = rq_clock(rq_of(cfs_rq)); 888 prev_wait_start = schedstat_val(se->statistics.wait_start); 889 890 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 891 likely(wait_start > prev_wait_start)) 892 wait_start -= prev_wait_start; 893 894 __schedstat_set(se->statistics.wait_start, wait_start); 895 } 896 897 static inline void 898 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 899 { 900 struct task_struct *p; 901 u64 delta; 902 903 if (!schedstat_enabled()) 904 return; 905 906 /* 907 * When the sched_schedstat changes from 0 to 1, some sched se 908 * maybe already in the runqueue, the se->statistics.wait_start 909 * will be 0.So it will let the delta wrong. We need to avoid this 910 * scenario. 911 */ 912 if (unlikely(!schedstat_val(se->statistics.wait_start))) 913 return; 914 915 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 916 917 if (entity_is_task(se)) { 918 p = task_of(se); 919 if (task_on_rq_migrating(p)) { 920 /* 921 * Preserve migrating task's wait time so wait_start 922 * time stamp can be adjusted to accumulate wait time 923 * prior to migration. 924 */ 925 __schedstat_set(se->statistics.wait_start, delta); 926 return; 927 } 928 trace_sched_stat_wait(p, delta); 929 } 930 931 __schedstat_set(se->statistics.wait_max, 932 max(schedstat_val(se->statistics.wait_max), delta)); 933 __schedstat_inc(se->statistics.wait_count); 934 __schedstat_add(se->statistics.wait_sum, delta); 935 __schedstat_set(se->statistics.wait_start, 0); 936 } 937 938 static inline void 939 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 940 { 941 struct task_struct *tsk = NULL; 942 u64 sleep_start, block_start; 943 944 if (!schedstat_enabled()) 945 return; 946 947 sleep_start = schedstat_val(se->statistics.sleep_start); 948 block_start = schedstat_val(se->statistics.block_start); 949 950 if (entity_is_task(se)) 951 tsk = task_of(se); 952 953 if (sleep_start) { 954 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 955 956 if ((s64)delta < 0) 957 delta = 0; 958 959 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 960 __schedstat_set(se->statistics.sleep_max, delta); 961 962 __schedstat_set(se->statistics.sleep_start, 0); 963 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 964 965 if (tsk) { 966 account_scheduler_latency(tsk, delta >> 10, 1); 967 trace_sched_stat_sleep(tsk, delta); 968 } 969 } 970 if (block_start) { 971 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 972 973 if ((s64)delta < 0) 974 delta = 0; 975 976 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 977 __schedstat_set(se->statistics.block_max, delta); 978 979 __schedstat_set(se->statistics.block_start, 0); 980 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 981 982 if (tsk) { 983 if (tsk->in_iowait) { 984 __schedstat_add(se->statistics.iowait_sum, delta); 985 __schedstat_inc(se->statistics.iowait_count); 986 trace_sched_stat_iowait(tsk, delta); 987 } 988 989 trace_sched_stat_blocked(tsk, delta); 990 991 /* 992 * Blocking time is in units of nanosecs, so shift by 993 * 20 to get a milliseconds-range estimation of the 994 * amount of time that the task spent sleeping: 995 */ 996 if (unlikely(prof_on == SLEEP_PROFILING)) { 997 profile_hits(SLEEP_PROFILING, 998 (void *)get_wchan(tsk), 999 delta >> 20); 1000 } 1001 account_scheduler_latency(tsk, delta >> 10, 0); 1002 } 1003 } 1004 } 1005 1006 /* 1007 * Task is being enqueued - update stats: 1008 */ 1009 static inline void 1010 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1011 { 1012 if (!schedstat_enabled()) 1013 return; 1014 1015 /* 1016 * Are we enqueueing a waiting task? (for current tasks 1017 * a dequeue/enqueue event is a NOP) 1018 */ 1019 if (se != cfs_rq->curr) 1020 update_stats_wait_start(cfs_rq, se); 1021 1022 if (flags & ENQUEUE_WAKEUP) 1023 update_stats_enqueue_sleeper(cfs_rq, se); 1024 } 1025 1026 static inline void 1027 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1028 { 1029 1030 if (!schedstat_enabled()) 1031 return; 1032 1033 /* 1034 * Mark the end of the wait period if dequeueing a 1035 * waiting task: 1036 */ 1037 if (se != cfs_rq->curr) 1038 update_stats_wait_end(cfs_rq, se); 1039 1040 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1041 struct task_struct *tsk = task_of(se); 1042 1043 if (tsk->state & TASK_INTERRUPTIBLE) 1044 __schedstat_set(se->statistics.sleep_start, 1045 rq_clock(rq_of(cfs_rq))); 1046 if (tsk->state & TASK_UNINTERRUPTIBLE) 1047 __schedstat_set(se->statistics.block_start, 1048 rq_clock(rq_of(cfs_rq))); 1049 } 1050 } 1051 1052 /* 1053 * We are picking a new current task - update its stats: 1054 */ 1055 static inline void 1056 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1057 { 1058 /* 1059 * We are starting a new run period: 1060 */ 1061 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1062 } 1063 1064 /************************************************** 1065 * Scheduling class queueing methods: 1066 */ 1067 1068 #ifdef CONFIG_NUMA_BALANCING 1069 /* 1070 * Approximate time to scan a full NUMA task in ms. The task scan period is 1071 * calculated based on the tasks virtual memory size and 1072 * numa_balancing_scan_size. 1073 */ 1074 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1075 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1076 1077 /* Portion of address space to scan in MB */ 1078 unsigned int sysctl_numa_balancing_scan_size = 256; 1079 1080 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1081 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1082 1083 struct numa_group { 1084 refcount_t refcount; 1085 1086 spinlock_t lock; /* nr_tasks, tasks */ 1087 int nr_tasks; 1088 pid_t gid; 1089 int active_nodes; 1090 1091 struct rcu_head rcu; 1092 unsigned long total_faults; 1093 unsigned long max_faults_cpu; 1094 /* 1095 * Faults_cpu is used to decide whether memory should move 1096 * towards the CPU. As a consequence, these stats are weighted 1097 * more by CPU use than by memory faults. 1098 */ 1099 unsigned long *faults_cpu; 1100 unsigned long faults[]; 1101 }; 1102 1103 /* 1104 * For functions that can be called in multiple contexts that permit reading 1105 * ->numa_group (see struct task_struct for locking rules). 1106 */ 1107 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1108 { 1109 return rcu_dereference_check(p->numa_group, p == current || 1110 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu))); 1111 } 1112 1113 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1114 { 1115 return rcu_dereference_protected(p->numa_group, p == current); 1116 } 1117 1118 static inline unsigned long group_faults_priv(struct numa_group *ng); 1119 static inline unsigned long group_faults_shared(struct numa_group *ng); 1120 1121 static unsigned int task_nr_scan_windows(struct task_struct *p) 1122 { 1123 unsigned long rss = 0; 1124 unsigned long nr_scan_pages; 1125 1126 /* 1127 * Calculations based on RSS as non-present and empty pages are skipped 1128 * by the PTE scanner and NUMA hinting faults should be trapped based 1129 * on resident pages 1130 */ 1131 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1132 rss = get_mm_rss(p->mm); 1133 if (!rss) 1134 rss = nr_scan_pages; 1135 1136 rss = round_up(rss, nr_scan_pages); 1137 return rss / nr_scan_pages; 1138 } 1139 1140 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1141 #define MAX_SCAN_WINDOW 2560 1142 1143 static unsigned int task_scan_min(struct task_struct *p) 1144 { 1145 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1146 unsigned int scan, floor; 1147 unsigned int windows = 1; 1148 1149 if (scan_size < MAX_SCAN_WINDOW) 1150 windows = MAX_SCAN_WINDOW / scan_size; 1151 floor = 1000 / windows; 1152 1153 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1154 return max_t(unsigned int, floor, scan); 1155 } 1156 1157 static unsigned int task_scan_start(struct task_struct *p) 1158 { 1159 unsigned long smin = task_scan_min(p); 1160 unsigned long period = smin; 1161 struct numa_group *ng; 1162 1163 /* Scale the maximum scan period with the amount of shared memory. */ 1164 rcu_read_lock(); 1165 ng = rcu_dereference(p->numa_group); 1166 if (ng) { 1167 unsigned long shared = group_faults_shared(ng); 1168 unsigned long private = group_faults_priv(ng); 1169 1170 period *= refcount_read(&ng->refcount); 1171 period *= shared + 1; 1172 period /= private + shared + 1; 1173 } 1174 rcu_read_unlock(); 1175 1176 return max(smin, period); 1177 } 1178 1179 static unsigned int task_scan_max(struct task_struct *p) 1180 { 1181 unsigned long smin = task_scan_min(p); 1182 unsigned long smax; 1183 struct numa_group *ng; 1184 1185 /* Watch for min being lower than max due to floor calculations */ 1186 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1187 1188 /* Scale the maximum scan period with the amount of shared memory. */ 1189 ng = deref_curr_numa_group(p); 1190 if (ng) { 1191 unsigned long shared = group_faults_shared(ng); 1192 unsigned long private = group_faults_priv(ng); 1193 unsigned long period = smax; 1194 1195 period *= refcount_read(&ng->refcount); 1196 period *= shared + 1; 1197 period /= private + shared + 1; 1198 1199 smax = max(smax, period); 1200 } 1201 1202 return max(smin, smax); 1203 } 1204 1205 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1206 { 1207 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1208 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1209 } 1210 1211 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1212 { 1213 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1214 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1215 } 1216 1217 /* Shared or private faults. */ 1218 #define NR_NUMA_HINT_FAULT_TYPES 2 1219 1220 /* Memory and CPU locality */ 1221 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1222 1223 /* Averaged statistics, and temporary buffers. */ 1224 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1225 1226 pid_t task_numa_group_id(struct task_struct *p) 1227 { 1228 struct numa_group *ng; 1229 pid_t gid = 0; 1230 1231 rcu_read_lock(); 1232 ng = rcu_dereference(p->numa_group); 1233 if (ng) 1234 gid = ng->gid; 1235 rcu_read_unlock(); 1236 1237 return gid; 1238 } 1239 1240 /* 1241 * The averaged statistics, shared & private, memory & CPU, 1242 * occupy the first half of the array. The second half of the 1243 * array is for current counters, which are averaged into the 1244 * first set by task_numa_placement. 1245 */ 1246 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1247 { 1248 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1249 } 1250 1251 static inline unsigned long task_faults(struct task_struct *p, int nid) 1252 { 1253 if (!p->numa_faults) 1254 return 0; 1255 1256 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1257 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1258 } 1259 1260 static inline unsigned long group_faults(struct task_struct *p, int nid) 1261 { 1262 struct numa_group *ng = deref_task_numa_group(p); 1263 1264 if (!ng) 1265 return 0; 1266 1267 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1268 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1269 } 1270 1271 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1272 { 1273 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1274 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1275 } 1276 1277 static inline unsigned long group_faults_priv(struct numa_group *ng) 1278 { 1279 unsigned long faults = 0; 1280 int node; 1281 1282 for_each_online_node(node) { 1283 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1284 } 1285 1286 return faults; 1287 } 1288 1289 static inline unsigned long group_faults_shared(struct numa_group *ng) 1290 { 1291 unsigned long faults = 0; 1292 int node; 1293 1294 for_each_online_node(node) { 1295 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1296 } 1297 1298 return faults; 1299 } 1300 1301 /* 1302 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1303 * considered part of a numa group's pseudo-interleaving set. Migrations 1304 * between these nodes are slowed down, to allow things to settle down. 1305 */ 1306 #define ACTIVE_NODE_FRACTION 3 1307 1308 static bool numa_is_active_node(int nid, struct numa_group *ng) 1309 { 1310 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1311 } 1312 1313 /* Handle placement on systems where not all nodes are directly connected. */ 1314 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1315 int maxdist, bool task) 1316 { 1317 unsigned long score = 0; 1318 int node; 1319 1320 /* 1321 * All nodes are directly connected, and the same distance 1322 * from each other. No need for fancy placement algorithms. 1323 */ 1324 if (sched_numa_topology_type == NUMA_DIRECT) 1325 return 0; 1326 1327 /* 1328 * This code is called for each node, introducing N^2 complexity, 1329 * which should be ok given the number of nodes rarely exceeds 8. 1330 */ 1331 for_each_online_node(node) { 1332 unsigned long faults; 1333 int dist = node_distance(nid, node); 1334 1335 /* 1336 * The furthest away nodes in the system are not interesting 1337 * for placement; nid was already counted. 1338 */ 1339 if (dist == sched_max_numa_distance || node == nid) 1340 continue; 1341 1342 /* 1343 * On systems with a backplane NUMA topology, compare groups 1344 * of nodes, and move tasks towards the group with the most 1345 * memory accesses. When comparing two nodes at distance 1346 * "hoplimit", only nodes closer by than "hoplimit" are part 1347 * of each group. Skip other nodes. 1348 */ 1349 if (sched_numa_topology_type == NUMA_BACKPLANE && 1350 dist >= maxdist) 1351 continue; 1352 1353 /* Add up the faults from nearby nodes. */ 1354 if (task) 1355 faults = task_faults(p, node); 1356 else 1357 faults = group_faults(p, node); 1358 1359 /* 1360 * On systems with a glueless mesh NUMA topology, there are 1361 * no fixed "groups of nodes". Instead, nodes that are not 1362 * directly connected bounce traffic through intermediate 1363 * nodes; a numa_group can occupy any set of nodes. 1364 * The further away a node is, the less the faults count. 1365 * This seems to result in good task placement. 1366 */ 1367 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1368 faults *= (sched_max_numa_distance - dist); 1369 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1370 } 1371 1372 score += faults; 1373 } 1374 1375 return score; 1376 } 1377 1378 /* 1379 * These return the fraction of accesses done by a particular task, or 1380 * task group, on a particular numa node. The group weight is given a 1381 * larger multiplier, in order to group tasks together that are almost 1382 * evenly spread out between numa nodes. 1383 */ 1384 static inline unsigned long task_weight(struct task_struct *p, int nid, 1385 int dist) 1386 { 1387 unsigned long faults, total_faults; 1388 1389 if (!p->numa_faults) 1390 return 0; 1391 1392 total_faults = p->total_numa_faults; 1393 1394 if (!total_faults) 1395 return 0; 1396 1397 faults = task_faults(p, nid); 1398 faults += score_nearby_nodes(p, nid, dist, true); 1399 1400 return 1000 * faults / total_faults; 1401 } 1402 1403 static inline unsigned long group_weight(struct task_struct *p, int nid, 1404 int dist) 1405 { 1406 struct numa_group *ng = deref_task_numa_group(p); 1407 unsigned long faults, total_faults; 1408 1409 if (!ng) 1410 return 0; 1411 1412 total_faults = ng->total_faults; 1413 1414 if (!total_faults) 1415 return 0; 1416 1417 faults = group_faults(p, nid); 1418 faults += score_nearby_nodes(p, nid, dist, false); 1419 1420 return 1000 * faults / total_faults; 1421 } 1422 1423 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1424 int src_nid, int dst_cpu) 1425 { 1426 struct numa_group *ng = deref_curr_numa_group(p); 1427 int dst_nid = cpu_to_node(dst_cpu); 1428 int last_cpupid, this_cpupid; 1429 1430 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1431 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1432 1433 /* 1434 * Allow first faults or private faults to migrate immediately early in 1435 * the lifetime of a task. The magic number 4 is based on waiting for 1436 * two full passes of the "multi-stage node selection" test that is 1437 * executed below. 1438 */ 1439 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1440 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1441 return true; 1442 1443 /* 1444 * Multi-stage node selection is used in conjunction with a periodic 1445 * migration fault to build a temporal task<->page relation. By using 1446 * a two-stage filter we remove short/unlikely relations. 1447 * 1448 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1449 * a task's usage of a particular page (n_p) per total usage of this 1450 * page (n_t) (in a given time-span) to a probability. 1451 * 1452 * Our periodic faults will sample this probability and getting the 1453 * same result twice in a row, given these samples are fully 1454 * independent, is then given by P(n)^2, provided our sample period 1455 * is sufficiently short compared to the usage pattern. 1456 * 1457 * This quadric squishes small probabilities, making it less likely we 1458 * act on an unlikely task<->page relation. 1459 */ 1460 if (!cpupid_pid_unset(last_cpupid) && 1461 cpupid_to_nid(last_cpupid) != dst_nid) 1462 return false; 1463 1464 /* Always allow migrate on private faults */ 1465 if (cpupid_match_pid(p, last_cpupid)) 1466 return true; 1467 1468 /* A shared fault, but p->numa_group has not been set up yet. */ 1469 if (!ng) 1470 return true; 1471 1472 /* 1473 * Destination node is much more heavily used than the source 1474 * node? Allow migration. 1475 */ 1476 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1477 ACTIVE_NODE_FRACTION) 1478 return true; 1479 1480 /* 1481 * Distribute memory according to CPU & memory use on each node, 1482 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1483 * 1484 * faults_cpu(dst) 3 faults_cpu(src) 1485 * --------------- * - > --------------- 1486 * faults_mem(dst) 4 faults_mem(src) 1487 */ 1488 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1489 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1490 } 1491 1492 /* 1493 * 'numa_type' describes the node at the moment of load balancing. 1494 */ 1495 enum numa_type { 1496 /* The node has spare capacity that can be used to run more tasks. */ 1497 node_has_spare = 0, 1498 /* 1499 * The node is fully used and the tasks don't compete for more CPU 1500 * cycles. Nevertheless, some tasks might wait before running. 1501 */ 1502 node_fully_busy, 1503 /* 1504 * The node is overloaded and can't provide expected CPU cycles to all 1505 * tasks. 1506 */ 1507 node_overloaded 1508 }; 1509 1510 /* Cached statistics for all CPUs within a node */ 1511 struct numa_stats { 1512 unsigned long load; 1513 unsigned long runnable; 1514 unsigned long util; 1515 /* Total compute capacity of CPUs on a node */ 1516 unsigned long compute_capacity; 1517 unsigned int nr_running; 1518 unsigned int weight; 1519 enum numa_type node_type; 1520 int idle_cpu; 1521 }; 1522 1523 static inline bool is_core_idle(int cpu) 1524 { 1525 #ifdef CONFIG_SCHED_SMT 1526 int sibling; 1527 1528 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1529 if (cpu == sibling) 1530 continue; 1531 1532 if (!idle_cpu(cpu)) 1533 return false; 1534 } 1535 #endif 1536 1537 return true; 1538 } 1539 1540 struct task_numa_env { 1541 struct task_struct *p; 1542 1543 int src_cpu, src_nid; 1544 int dst_cpu, dst_nid; 1545 1546 struct numa_stats src_stats, dst_stats; 1547 1548 int imbalance_pct; 1549 int dist; 1550 1551 struct task_struct *best_task; 1552 long best_imp; 1553 int best_cpu; 1554 }; 1555 1556 static unsigned long cpu_load(struct rq *rq); 1557 static unsigned long cpu_runnable(struct rq *rq); 1558 static unsigned long cpu_util(int cpu); 1559 static inline long adjust_numa_imbalance(int imbalance, 1560 int dst_running, int dst_weight); 1561 1562 static inline enum 1563 numa_type numa_classify(unsigned int imbalance_pct, 1564 struct numa_stats *ns) 1565 { 1566 if ((ns->nr_running > ns->weight) && 1567 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1568 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1569 return node_overloaded; 1570 1571 if ((ns->nr_running < ns->weight) || 1572 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1573 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1574 return node_has_spare; 1575 1576 return node_fully_busy; 1577 } 1578 1579 #ifdef CONFIG_SCHED_SMT 1580 /* Forward declarations of select_idle_sibling helpers */ 1581 static inline bool test_idle_cores(int cpu, bool def); 1582 static inline int numa_idle_core(int idle_core, int cpu) 1583 { 1584 if (!static_branch_likely(&sched_smt_present) || 1585 idle_core >= 0 || !test_idle_cores(cpu, false)) 1586 return idle_core; 1587 1588 /* 1589 * Prefer cores instead of packing HT siblings 1590 * and triggering future load balancing. 1591 */ 1592 if (is_core_idle(cpu)) 1593 idle_core = cpu; 1594 1595 return idle_core; 1596 } 1597 #else 1598 static inline int numa_idle_core(int idle_core, int cpu) 1599 { 1600 return idle_core; 1601 } 1602 #endif 1603 1604 /* 1605 * Gather all necessary information to make NUMA balancing placement 1606 * decisions that are compatible with standard load balancer. This 1607 * borrows code and logic from update_sg_lb_stats but sharing a 1608 * common implementation is impractical. 1609 */ 1610 static void update_numa_stats(struct task_numa_env *env, 1611 struct numa_stats *ns, int nid, 1612 bool find_idle) 1613 { 1614 int cpu, idle_core = -1; 1615 1616 memset(ns, 0, sizeof(*ns)); 1617 ns->idle_cpu = -1; 1618 1619 rcu_read_lock(); 1620 for_each_cpu(cpu, cpumask_of_node(nid)) { 1621 struct rq *rq = cpu_rq(cpu); 1622 1623 ns->load += cpu_load(rq); 1624 ns->runnable += cpu_runnable(rq); 1625 ns->util += cpu_util(cpu); 1626 ns->nr_running += rq->cfs.h_nr_running; 1627 ns->compute_capacity += capacity_of(cpu); 1628 1629 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1630 if (READ_ONCE(rq->numa_migrate_on) || 1631 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1632 continue; 1633 1634 if (ns->idle_cpu == -1) 1635 ns->idle_cpu = cpu; 1636 1637 idle_core = numa_idle_core(idle_core, cpu); 1638 } 1639 } 1640 rcu_read_unlock(); 1641 1642 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1643 1644 ns->node_type = numa_classify(env->imbalance_pct, ns); 1645 1646 if (idle_core >= 0) 1647 ns->idle_cpu = idle_core; 1648 } 1649 1650 static void task_numa_assign(struct task_numa_env *env, 1651 struct task_struct *p, long imp) 1652 { 1653 struct rq *rq = cpu_rq(env->dst_cpu); 1654 1655 /* Check if run-queue part of active NUMA balance. */ 1656 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1657 int cpu; 1658 int start = env->dst_cpu; 1659 1660 /* Find alternative idle CPU. */ 1661 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1662 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1663 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1664 continue; 1665 } 1666 1667 env->dst_cpu = cpu; 1668 rq = cpu_rq(env->dst_cpu); 1669 if (!xchg(&rq->numa_migrate_on, 1)) 1670 goto assign; 1671 } 1672 1673 /* Failed to find an alternative idle CPU */ 1674 return; 1675 } 1676 1677 assign: 1678 /* 1679 * Clear previous best_cpu/rq numa-migrate flag, since task now 1680 * found a better CPU to move/swap. 1681 */ 1682 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1683 rq = cpu_rq(env->best_cpu); 1684 WRITE_ONCE(rq->numa_migrate_on, 0); 1685 } 1686 1687 if (env->best_task) 1688 put_task_struct(env->best_task); 1689 if (p) 1690 get_task_struct(p); 1691 1692 env->best_task = p; 1693 env->best_imp = imp; 1694 env->best_cpu = env->dst_cpu; 1695 } 1696 1697 static bool load_too_imbalanced(long src_load, long dst_load, 1698 struct task_numa_env *env) 1699 { 1700 long imb, old_imb; 1701 long orig_src_load, orig_dst_load; 1702 long src_capacity, dst_capacity; 1703 1704 /* 1705 * The load is corrected for the CPU capacity available on each node. 1706 * 1707 * src_load dst_load 1708 * ------------ vs --------- 1709 * src_capacity dst_capacity 1710 */ 1711 src_capacity = env->src_stats.compute_capacity; 1712 dst_capacity = env->dst_stats.compute_capacity; 1713 1714 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1715 1716 orig_src_load = env->src_stats.load; 1717 orig_dst_load = env->dst_stats.load; 1718 1719 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1720 1721 /* Would this change make things worse? */ 1722 return (imb > old_imb); 1723 } 1724 1725 /* 1726 * Maximum NUMA importance can be 1998 (2*999); 1727 * SMALLIMP @ 30 would be close to 1998/64. 1728 * Used to deter task migration. 1729 */ 1730 #define SMALLIMP 30 1731 1732 /* 1733 * This checks if the overall compute and NUMA accesses of the system would 1734 * be improved if the source tasks was migrated to the target dst_cpu taking 1735 * into account that it might be best if task running on the dst_cpu should 1736 * be exchanged with the source task 1737 */ 1738 static bool task_numa_compare(struct task_numa_env *env, 1739 long taskimp, long groupimp, bool maymove) 1740 { 1741 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1742 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1743 long imp = p_ng ? groupimp : taskimp; 1744 struct task_struct *cur; 1745 long src_load, dst_load; 1746 int dist = env->dist; 1747 long moveimp = imp; 1748 long load; 1749 bool stopsearch = false; 1750 1751 if (READ_ONCE(dst_rq->numa_migrate_on)) 1752 return false; 1753 1754 rcu_read_lock(); 1755 cur = rcu_dereference(dst_rq->curr); 1756 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1757 cur = NULL; 1758 1759 /* 1760 * Because we have preemption enabled we can get migrated around and 1761 * end try selecting ourselves (current == env->p) as a swap candidate. 1762 */ 1763 if (cur == env->p) { 1764 stopsearch = true; 1765 goto unlock; 1766 } 1767 1768 if (!cur) { 1769 if (maymove && moveimp >= env->best_imp) 1770 goto assign; 1771 else 1772 goto unlock; 1773 } 1774 1775 /* Skip this swap candidate if cannot move to the source cpu. */ 1776 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1777 goto unlock; 1778 1779 /* 1780 * Skip this swap candidate if it is not moving to its preferred 1781 * node and the best task is. 1782 */ 1783 if (env->best_task && 1784 env->best_task->numa_preferred_nid == env->src_nid && 1785 cur->numa_preferred_nid != env->src_nid) { 1786 goto unlock; 1787 } 1788 1789 /* 1790 * "imp" is the fault differential for the source task between the 1791 * source and destination node. Calculate the total differential for 1792 * the source task and potential destination task. The more negative 1793 * the value is, the more remote accesses that would be expected to 1794 * be incurred if the tasks were swapped. 1795 * 1796 * If dst and source tasks are in the same NUMA group, or not 1797 * in any group then look only at task weights. 1798 */ 1799 cur_ng = rcu_dereference(cur->numa_group); 1800 if (cur_ng == p_ng) { 1801 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1802 task_weight(cur, env->dst_nid, dist); 1803 /* 1804 * Add some hysteresis to prevent swapping the 1805 * tasks within a group over tiny differences. 1806 */ 1807 if (cur_ng) 1808 imp -= imp / 16; 1809 } else { 1810 /* 1811 * Compare the group weights. If a task is all by itself 1812 * (not part of a group), use the task weight instead. 1813 */ 1814 if (cur_ng && p_ng) 1815 imp += group_weight(cur, env->src_nid, dist) - 1816 group_weight(cur, env->dst_nid, dist); 1817 else 1818 imp += task_weight(cur, env->src_nid, dist) - 1819 task_weight(cur, env->dst_nid, dist); 1820 } 1821 1822 /* Discourage picking a task already on its preferred node */ 1823 if (cur->numa_preferred_nid == env->dst_nid) 1824 imp -= imp / 16; 1825 1826 /* 1827 * Encourage picking a task that moves to its preferred node. 1828 * This potentially makes imp larger than it's maximum of 1829 * 1998 (see SMALLIMP and task_weight for why) but in this 1830 * case, it does not matter. 1831 */ 1832 if (cur->numa_preferred_nid == env->src_nid) 1833 imp += imp / 8; 1834 1835 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1836 imp = moveimp; 1837 cur = NULL; 1838 goto assign; 1839 } 1840 1841 /* 1842 * Prefer swapping with a task moving to its preferred node over a 1843 * task that is not. 1844 */ 1845 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1846 env->best_task->numa_preferred_nid != env->src_nid) { 1847 goto assign; 1848 } 1849 1850 /* 1851 * If the NUMA importance is less than SMALLIMP, 1852 * task migration might only result in ping pong 1853 * of tasks and also hurt performance due to cache 1854 * misses. 1855 */ 1856 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1857 goto unlock; 1858 1859 /* 1860 * In the overloaded case, try and keep the load balanced. 1861 */ 1862 load = task_h_load(env->p) - task_h_load(cur); 1863 if (!load) 1864 goto assign; 1865 1866 dst_load = env->dst_stats.load + load; 1867 src_load = env->src_stats.load - load; 1868 1869 if (load_too_imbalanced(src_load, dst_load, env)) 1870 goto unlock; 1871 1872 assign: 1873 /* Evaluate an idle CPU for a task numa move. */ 1874 if (!cur) { 1875 int cpu = env->dst_stats.idle_cpu; 1876 1877 /* Nothing cached so current CPU went idle since the search. */ 1878 if (cpu < 0) 1879 cpu = env->dst_cpu; 1880 1881 /* 1882 * If the CPU is no longer truly idle and the previous best CPU 1883 * is, keep using it. 1884 */ 1885 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1886 idle_cpu(env->best_cpu)) { 1887 cpu = env->best_cpu; 1888 } 1889 1890 env->dst_cpu = cpu; 1891 } 1892 1893 task_numa_assign(env, cur, imp); 1894 1895 /* 1896 * If a move to idle is allowed because there is capacity or load 1897 * balance improves then stop the search. While a better swap 1898 * candidate may exist, a search is not free. 1899 */ 1900 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1901 stopsearch = true; 1902 1903 /* 1904 * If a swap candidate must be identified and the current best task 1905 * moves its preferred node then stop the search. 1906 */ 1907 if (!maymove && env->best_task && 1908 env->best_task->numa_preferred_nid == env->src_nid) { 1909 stopsearch = true; 1910 } 1911 unlock: 1912 rcu_read_unlock(); 1913 1914 return stopsearch; 1915 } 1916 1917 static void task_numa_find_cpu(struct task_numa_env *env, 1918 long taskimp, long groupimp) 1919 { 1920 bool maymove = false; 1921 int cpu; 1922 1923 /* 1924 * If dst node has spare capacity, then check if there is an 1925 * imbalance that would be overruled by the load balancer. 1926 */ 1927 if (env->dst_stats.node_type == node_has_spare) { 1928 unsigned int imbalance; 1929 int src_running, dst_running; 1930 1931 /* 1932 * Would movement cause an imbalance? Note that if src has 1933 * more running tasks that the imbalance is ignored as the 1934 * move improves the imbalance from the perspective of the 1935 * CPU load balancer. 1936 * */ 1937 src_running = env->src_stats.nr_running - 1; 1938 dst_running = env->dst_stats.nr_running + 1; 1939 imbalance = max(0, dst_running - src_running); 1940 imbalance = adjust_numa_imbalance(imbalance, dst_running, 1941 env->dst_stats.weight); 1942 1943 /* Use idle CPU if there is no imbalance */ 1944 if (!imbalance) { 1945 maymove = true; 1946 if (env->dst_stats.idle_cpu >= 0) { 1947 env->dst_cpu = env->dst_stats.idle_cpu; 1948 task_numa_assign(env, NULL, 0); 1949 return; 1950 } 1951 } 1952 } else { 1953 long src_load, dst_load, load; 1954 /* 1955 * If the improvement from just moving env->p direction is better 1956 * than swapping tasks around, check if a move is possible. 1957 */ 1958 load = task_h_load(env->p); 1959 dst_load = env->dst_stats.load + load; 1960 src_load = env->src_stats.load - load; 1961 maymove = !load_too_imbalanced(src_load, dst_load, env); 1962 } 1963 1964 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1965 /* Skip this CPU if the source task cannot migrate */ 1966 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1967 continue; 1968 1969 env->dst_cpu = cpu; 1970 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1971 break; 1972 } 1973 } 1974 1975 static int task_numa_migrate(struct task_struct *p) 1976 { 1977 struct task_numa_env env = { 1978 .p = p, 1979 1980 .src_cpu = task_cpu(p), 1981 .src_nid = task_node(p), 1982 1983 .imbalance_pct = 112, 1984 1985 .best_task = NULL, 1986 .best_imp = 0, 1987 .best_cpu = -1, 1988 }; 1989 unsigned long taskweight, groupweight; 1990 struct sched_domain *sd; 1991 long taskimp, groupimp; 1992 struct numa_group *ng; 1993 struct rq *best_rq; 1994 int nid, ret, dist; 1995 1996 /* 1997 * Pick the lowest SD_NUMA domain, as that would have the smallest 1998 * imbalance and would be the first to start moving tasks about. 1999 * 2000 * And we want to avoid any moving of tasks about, as that would create 2001 * random movement of tasks -- counter the numa conditions we're trying 2002 * to satisfy here. 2003 */ 2004 rcu_read_lock(); 2005 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2006 if (sd) 2007 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2008 rcu_read_unlock(); 2009 2010 /* 2011 * Cpusets can break the scheduler domain tree into smaller 2012 * balance domains, some of which do not cross NUMA boundaries. 2013 * Tasks that are "trapped" in such domains cannot be migrated 2014 * elsewhere, so there is no point in (re)trying. 2015 */ 2016 if (unlikely(!sd)) { 2017 sched_setnuma(p, task_node(p)); 2018 return -EINVAL; 2019 } 2020 2021 env.dst_nid = p->numa_preferred_nid; 2022 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2023 taskweight = task_weight(p, env.src_nid, dist); 2024 groupweight = group_weight(p, env.src_nid, dist); 2025 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2026 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2027 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2028 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2029 2030 /* Try to find a spot on the preferred nid. */ 2031 task_numa_find_cpu(&env, taskimp, groupimp); 2032 2033 /* 2034 * Look at other nodes in these cases: 2035 * - there is no space available on the preferred_nid 2036 * - the task is part of a numa_group that is interleaved across 2037 * multiple NUMA nodes; in order to better consolidate the group, 2038 * we need to check other locations. 2039 */ 2040 ng = deref_curr_numa_group(p); 2041 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2042 for_each_online_node(nid) { 2043 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2044 continue; 2045 2046 dist = node_distance(env.src_nid, env.dst_nid); 2047 if (sched_numa_topology_type == NUMA_BACKPLANE && 2048 dist != env.dist) { 2049 taskweight = task_weight(p, env.src_nid, dist); 2050 groupweight = group_weight(p, env.src_nid, dist); 2051 } 2052 2053 /* Only consider nodes where both task and groups benefit */ 2054 taskimp = task_weight(p, nid, dist) - taskweight; 2055 groupimp = group_weight(p, nid, dist) - groupweight; 2056 if (taskimp < 0 && groupimp < 0) 2057 continue; 2058 2059 env.dist = dist; 2060 env.dst_nid = nid; 2061 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2062 task_numa_find_cpu(&env, taskimp, groupimp); 2063 } 2064 } 2065 2066 /* 2067 * If the task is part of a workload that spans multiple NUMA nodes, 2068 * and is migrating into one of the workload's active nodes, remember 2069 * this node as the task's preferred numa node, so the workload can 2070 * settle down. 2071 * A task that migrated to a second choice node will be better off 2072 * trying for a better one later. Do not set the preferred node here. 2073 */ 2074 if (ng) { 2075 if (env.best_cpu == -1) 2076 nid = env.src_nid; 2077 else 2078 nid = cpu_to_node(env.best_cpu); 2079 2080 if (nid != p->numa_preferred_nid) 2081 sched_setnuma(p, nid); 2082 } 2083 2084 /* No better CPU than the current one was found. */ 2085 if (env.best_cpu == -1) { 2086 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2087 return -EAGAIN; 2088 } 2089 2090 best_rq = cpu_rq(env.best_cpu); 2091 if (env.best_task == NULL) { 2092 ret = migrate_task_to(p, env.best_cpu); 2093 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2094 if (ret != 0) 2095 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2096 return ret; 2097 } 2098 2099 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2100 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2101 2102 if (ret != 0) 2103 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2104 put_task_struct(env.best_task); 2105 return ret; 2106 } 2107 2108 /* Attempt to migrate a task to a CPU on the preferred node. */ 2109 static void numa_migrate_preferred(struct task_struct *p) 2110 { 2111 unsigned long interval = HZ; 2112 2113 /* This task has no NUMA fault statistics yet */ 2114 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2115 return; 2116 2117 /* Periodically retry migrating the task to the preferred node */ 2118 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2119 p->numa_migrate_retry = jiffies + interval; 2120 2121 /* Success if task is already running on preferred CPU */ 2122 if (task_node(p) == p->numa_preferred_nid) 2123 return; 2124 2125 /* Otherwise, try migrate to a CPU on the preferred node */ 2126 task_numa_migrate(p); 2127 } 2128 2129 /* 2130 * Find out how many nodes on the workload is actively running on. Do this by 2131 * tracking the nodes from which NUMA hinting faults are triggered. This can 2132 * be different from the set of nodes where the workload's memory is currently 2133 * located. 2134 */ 2135 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2136 { 2137 unsigned long faults, max_faults = 0; 2138 int nid, active_nodes = 0; 2139 2140 for_each_online_node(nid) { 2141 faults = group_faults_cpu(numa_group, nid); 2142 if (faults > max_faults) 2143 max_faults = faults; 2144 } 2145 2146 for_each_online_node(nid) { 2147 faults = group_faults_cpu(numa_group, nid); 2148 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2149 active_nodes++; 2150 } 2151 2152 numa_group->max_faults_cpu = max_faults; 2153 numa_group->active_nodes = active_nodes; 2154 } 2155 2156 /* 2157 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2158 * increments. The more local the fault statistics are, the higher the scan 2159 * period will be for the next scan window. If local/(local+remote) ratio is 2160 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2161 * the scan period will decrease. Aim for 70% local accesses. 2162 */ 2163 #define NUMA_PERIOD_SLOTS 10 2164 #define NUMA_PERIOD_THRESHOLD 7 2165 2166 /* 2167 * Increase the scan period (slow down scanning) if the majority of 2168 * our memory is already on our local node, or if the majority of 2169 * the page accesses are shared with other processes. 2170 * Otherwise, decrease the scan period. 2171 */ 2172 static void update_task_scan_period(struct task_struct *p, 2173 unsigned long shared, unsigned long private) 2174 { 2175 unsigned int period_slot; 2176 int lr_ratio, ps_ratio; 2177 int diff; 2178 2179 unsigned long remote = p->numa_faults_locality[0]; 2180 unsigned long local = p->numa_faults_locality[1]; 2181 2182 /* 2183 * If there were no record hinting faults then either the task is 2184 * completely idle or all activity is areas that are not of interest 2185 * to automatic numa balancing. Related to that, if there were failed 2186 * migration then it implies we are migrating too quickly or the local 2187 * node is overloaded. In either case, scan slower 2188 */ 2189 if (local + shared == 0 || p->numa_faults_locality[2]) { 2190 p->numa_scan_period = min(p->numa_scan_period_max, 2191 p->numa_scan_period << 1); 2192 2193 p->mm->numa_next_scan = jiffies + 2194 msecs_to_jiffies(p->numa_scan_period); 2195 2196 return; 2197 } 2198 2199 /* 2200 * Prepare to scale scan period relative to the current period. 2201 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2202 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2203 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2204 */ 2205 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2206 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2207 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2208 2209 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2210 /* 2211 * Most memory accesses are local. There is no need to 2212 * do fast NUMA scanning, since memory is already local. 2213 */ 2214 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2215 if (!slot) 2216 slot = 1; 2217 diff = slot * period_slot; 2218 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2219 /* 2220 * Most memory accesses are shared with other tasks. 2221 * There is no point in continuing fast NUMA scanning, 2222 * since other tasks may just move the memory elsewhere. 2223 */ 2224 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2225 if (!slot) 2226 slot = 1; 2227 diff = slot * period_slot; 2228 } else { 2229 /* 2230 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2231 * yet they are not on the local NUMA node. Speed up 2232 * NUMA scanning to get the memory moved over. 2233 */ 2234 int ratio = max(lr_ratio, ps_ratio); 2235 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2236 } 2237 2238 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2239 task_scan_min(p), task_scan_max(p)); 2240 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2241 } 2242 2243 /* 2244 * Get the fraction of time the task has been running since the last 2245 * NUMA placement cycle. The scheduler keeps similar statistics, but 2246 * decays those on a 32ms period, which is orders of magnitude off 2247 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2248 * stats only if the task is so new there are no NUMA statistics yet. 2249 */ 2250 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2251 { 2252 u64 runtime, delta, now; 2253 /* Use the start of this time slice to avoid calculations. */ 2254 now = p->se.exec_start; 2255 runtime = p->se.sum_exec_runtime; 2256 2257 if (p->last_task_numa_placement) { 2258 delta = runtime - p->last_sum_exec_runtime; 2259 *period = now - p->last_task_numa_placement; 2260 2261 /* Avoid time going backwards, prevent potential divide error: */ 2262 if (unlikely((s64)*period < 0)) 2263 *period = 0; 2264 } else { 2265 delta = p->se.avg.load_sum; 2266 *period = LOAD_AVG_MAX; 2267 } 2268 2269 p->last_sum_exec_runtime = runtime; 2270 p->last_task_numa_placement = now; 2271 2272 return delta; 2273 } 2274 2275 /* 2276 * Determine the preferred nid for a task in a numa_group. This needs to 2277 * be done in a way that produces consistent results with group_weight, 2278 * otherwise workloads might not converge. 2279 */ 2280 static int preferred_group_nid(struct task_struct *p, int nid) 2281 { 2282 nodemask_t nodes; 2283 int dist; 2284 2285 /* Direct connections between all NUMA nodes. */ 2286 if (sched_numa_topology_type == NUMA_DIRECT) 2287 return nid; 2288 2289 /* 2290 * On a system with glueless mesh NUMA topology, group_weight 2291 * scores nodes according to the number of NUMA hinting faults on 2292 * both the node itself, and on nearby nodes. 2293 */ 2294 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2295 unsigned long score, max_score = 0; 2296 int node, max_node = nid; 2297 2298 dist = sched_max_numa_distance; 2299 2300 for_each_online_node(node) { 2301 score = group_weight(p, node, dist); 2302 if (score > max_score) { 2303 max_score = score; 2304 max_node = node; 2305 } 2306 } 2307 return max_node; 2308 } 2309 2310 /* 2311 * Finding the preferred nid in a system with NUMA backplane 2312 * interconnect topology is more involved. The goal is to locate 2313 * tasks from numa_groups near each other in the system, and 2314 * untangle workloads from different sides of the system. This requires 2315 * searching down the hierarchy of node groups, recursively searching 2316 * inside the highest scoring group of nodes. The nodemask tricks 2317 * keep the complexity of the search down. 2318 */ 2319 nodes = node_online_map; 2320 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2321 unsigned long max_faults = 0; 2322 nodemask_t max_group = NODE_MASK_NONE; 2323 int a, b; 2324 2325 /* Are there nodes at this distance from each other? */ 2326 if (!find_numa_distance(dist)) 2327 continue; 2328 2329 for_each_node_mask(a, nodes) { 2330 unsigned long faults = 0; 2331 nodemask_t this_group; 2332 nodes_clear(this_group); 2333 2334 /* Sum group's NUMA faults; includes a==b case. */ 2335 for_each_node_mask(b, nodes) { 2336 if (node_distance(a, b) < dist) { 2337 faults += group_faults(p, b); 2338 node_set(b, this_group); 2339 node_clear(b, nodes); 2340 } 2341 } 2342 2343 /* Remember the top group. */ 2344 if (faults > max_faults) { 2345 max_faults = faults; 2346 max_group = this_group; 2347 /* 2348 * subtle: at the smallest distance there is 2349 * just one node left in each "group", the 2350 * winner is the preferred nid. 2351 */ 2352 nid = a; 2353 } 2354 } 2355 /* Next round, evaluate the nodes within max_group. */ 2356 if (!max_faults) 2357 break; 2358 nodes = max_group; 2359 } 2360 return nid; 2361 } 2362 2363 static void task_numa_placement(struct task_struct *p) 2364 { 2365 int seq, nid, max_nid = NUMA_NO_NODE; 2366 unsigned long max_faults = 0; 2367 unsigned long fault_types[2] = { 0, 0 }; 2368 unsigned long total_faults; 2369 u64 runtime, period; 2370 spinlock_t *group_lock = NULL; 2371 struct numa_group *ng; 2372 2373 /* 2374 * The p->mm->numa_scan_seq field gets updated without 2375 * exclusive access. Use READ_ONCE() here to ensure 2376 * that the field is read in a single access: 2377 */ 2378 seq = READ_ONCE(p->mm->numa_scan_seq); 2379 if (p->numa_scan_seq == seq) 2380 return; 2381 p->numa_scan_seq = seq; 2382 p->numa_scan_period_max = task_scan_max(p); 2383 2384 total_faults = p->numa_faults_locality[0] + 2385 p->numa_faults_locality[1]; 2386 runtime = numa_get_avg_runtime(p, &period); 2387 2388 /* If the task is part of a group prevent parallel updates to group stats */ 2389 ng = deref_curr_numa_group(p); 2390 if (ng) { 2391 group_lock = &ng->lock; 2392 spin_lock_irq(group_lock); 2393 } 2394 2395 /* Find the node with the highest number of faults */ 2396 for_each_online_node(nid) { 2397 /* Keep track of the offsets in numa_faults array */ 2398 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2399 unsigned long faults = 0, group_faults = 0; 2400 int priv; 2401 2402 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2403 long diff, f_diff, f_weight; 2404 2405 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2406 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2407 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2408 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2409 2410 /* Decay existing window, copy faults since last scan */ 2411 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2412 fault_types[priv] += p->numa_faults[membuf_idx]; 2413 p->numa_faults[membuf_idx] = 0; 2414 2415 /* 2416 * Normalize the faults_from, so all tasks in a group 2417 * count according to CPU use, instead of by the raw 2418 * number of faults. Tasks with little runtime have 2419 * little over-all impact on throughput, and thus their 2420 * faults are less important. 2421 */ 2422 f_weight = div64_u64(runtime << 16, period + 1); 2423 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2424 (total_faults + 1); 2425 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2426 p->numa_faults[cpubuf_idx] = 0; 2427 2428 p->numa_faults[mem_idx] += diff; 2429 p->numa_faults[cpu_idx] += f_diff; 2430 faults += p->numa_faults[mem_idx]; 2431 p->total_numa_faults += diff; 2432 if (ng) { 2433 /* 2434 * safe because we can only change our own group 2435 * 2436 * mem_idx represents the offset for a given 2437 * nid and priv in a specific region because it 2438 * is at the beginning of the numa_faults array. 2439 */ 2440 ng->faults[mem_idx] += diff; 2441 ng->faults_cpu[mem_idx] += f_diff; 2442 ng->total_faults += diff; 2443 group_faults += ng->faults[mem_idx]; 2444 } 2445 } 2446 2447 if (!ng) { 2448 if (faults > max_faults) { 2449 max_faults = faults; 2450 max_nid = nid; 2451 } 2452 } else if (group_faults > max_faults) { 2453 max_faults = group_faults; 2454 max_nid = nid; 2455 } 2456 } 2457 2458 if (ng) { 2459 numa_group_count_active_nodes(ng); 2460 spin_unlock_irq(group_lock); 2461 max_nid = preferred_group_nid(p, max_nid); 2462 } 2463 2464 if (max_faults) { 2465 /* Set the new preferred node */ 2466 if (max_nid != p->numa_preferred_nid) 2467 sched_setnuma(p, max_nid); 2468 } 2469 2470 update_task_scan_period(p, fault_types[0], fault_types[1]); 2471 } 2472 2473 static inline int get_numa_group(struct numa_group *grp) 2474 { 2475 return refcount_inc_not_zero(&grp->refcount); 2476 } 2477 2478 static inline void put_numa_group(struct numa_group *grp) 2479 { 2480 if (refcount_dec_and_test(&grp->refcount)) 2481 kfree_rcu(grp, rcu); 2482 } 2483 2484 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2485 int *priv) 2486 { 2487 struct numa_group *grp, *my_grp; 2488 struct task_struct *tsk; 2489 bool join = false; 2490 int cpu = cpupid_to_cpu(cpupid); 2491 int i; 2492 2493 if (unlikely(!deref_curr_numa_group(p))) { 2494 unsigned int size = sizeof(struct numa_group) + 2495 4*nr_node_ids*sizeof(unsigned long); 2496 2497 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2498 if (!grp) 2499 return; 2500 2501 refcount_set(&grp->refcount, 1); 2502 grp->active_nodes = 1; 2503 grp->max_faults_cpu = 0; 2504 spin_lock_init(&grp->lock); 2505 grp->gid = p->pid; 2506 /* Second half of the array tracks nids where faults happen */ 2507 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2508 nr_node_ids; 2509 2510 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2511 grp->faults[i] = p->numa_faults[i]; 2512 2513 grp->total_faults = p->total_numa_faults; 2514 2515 grp->nr_tasks++; 2516 rcu_assign_pointer(p->numa_group, grp); 2517 } 2518 2519 rcu_read_lock(); 2520 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2521 2522 if (!cpupid_match_pid(tsk, cpupid)) 2523 goto no_join; 2524 2525 grp = rcu_dereference(tsk->numa_group); 2526 if (!grp) 2527 goto no_join; 2528 2529 my_grp = deref_curr_numa_group(p); 2530 if (grp == my_grp) 2531 goto no_join; 2532 2533 /* 2534 * Only join the other group if its bigger; if we're the bigger group, 2535 * the other task will join us. 2536 */ 2537 if (my_grp->nr_tasks > grp->nr_tasks) 2538 goto no_join; 2539 2540 /* 2541 * Tie-break on the grp address. 2542 */ 2543 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2544 goto no_join; 2545 2546 /* Always join threads in the same process. */ 2547 if (tsk->mm == current->mm) 2548 join = true; 2549 2550 /* Simple filter to avoid false positives due to PID collisions */ 2551 if (flags & TNF_SHARED) 2552 join = true; 2553 2554 /* Update priv based on whether false sharing was detected */ 2555 *priv = !join; 2556 2557 if (join && !get_numa_group(grp)) 2558 goto no_join; 2559 2560 rcu_read_unlock(); 2561 2562 if (!join) 2563 return; 2564 2565 BUG_ON(irqs_disabled()); 2566 double_lock_irq(&my_grp->lock, &grp->lock); 2567 2568 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2569 my_grp->faults[i] -= p->numa_faults[i]; 2570 grp->faults[i] += p->numa_faults[i]; 2571 } 2572 my_grp->total_faults -= p->total_numa_faults; 2573 grp->total_faults += p->total_numa_faults; 2574 2575 my_grp->nr_tasks--; 2576 grp->nr_tasks++; 2577 2578 spin_unlock(&my_grp->lock); 2579 spin_unlock_irq(&grp->lock); 2580 2581 rcu_assign_pointer(p->numa_group, grp); 2582 2583 put_numa_group(my_grp); 2584 return; 2585 2586 no_join: 2587 rcu_read_unlock(); 2588 return; 2589 } 2590 2591 /* 2592 * Get rid of NUMA statistics associated with a task (either current or dead). 2593 * If @final is set, the task is dead and has reached refcount zero, so we can 2594 * safely free all relevant data structures. Otherwise, there might be 2595 * concurrent reads from places like load balancing and procfs, and we should 2596 * reset the data back to default state without freeing ->numa_faults. 2597 */ 2598 void task_numa_free(struct task_struct *p, bool final) 2599 { 2600 /* safe: p either is current or is being freed by current */ 2601 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2602 unsigned long *numa_faults = p->numa_faults; 2603 unsigned long flags; 2604 int i; 2605 2606 if (!numa_faults) 2607 return; 2608 2609 if (grp) { 2610 spin_lock_irqsave(&grp->lock, flags); 2611 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2612 grp->faults[i] -= p->numa_faults[i]; 2613 grp->total_faults -= p->total_numa_faults; 2614 2615 grp->nr_tasks--; 2616 spin_unlock_irqrestore(&grp->lock, flags); 2617 RCU_INIT_POINTER(p->numa_group, NULL); 2618 put_numa_group(grp); 2619 } 2620 2621 if (final) { 2622 p->numa_faults = NULL; 2623 kfree(numa_faults); 2624 } else { 2625 p->total_numa_faults = 0; 2626 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2627 numa_faults[i] = 0; 2628 } 2629 } 2630 2631 /* 2632 * Got a PROT_NONE fault for a page on @node. 2633 */ 2634 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2635 { 2636 struct task_struct *p = current; 2637 bool migrated = flags & TNF_MIGRATED; 2638 int cpu_node = task_node(current); 2639 int local = !!(flags & TNF_FAULT_LOCAL); 2640 struct numa_group *ng; 2641 int priv; 2642 2643 if (!static_branch_likely(&sched_numa_balancing)) 2644 return; 2645 2646 /* for example, ksmd faulting in a user's mm */ 2647 if (!p->mm) 2648 return; 2649 2650 /* Allocate buffer to track faults on a per-node basis */ 2651 if (unlikely(!p->numa_faults)) { 2652 int size = sizeof(*p->numa_faults) * 2653 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2654 2655 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2656 if (!p->numa_faults) 2657 return; 2658 2659 p->total_numa_faults = 0; 2660 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2661 } 2662 2663 /* 2664 * First accesses are treated as private, otherwise consider accesses 2665 * to be private if the accessing pid has not changed 2666 */ 2667 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2668 priv = 1; 2669 } else { 2670 priv = cpupid_match_pid(p, last_cpupid); 2671 if (!priv && !(flags & TNF_NO_GROUP)) 2672 task_numa_group(p, last_cpupid, flags, &priv); 2673 } 2674 2675 /* 2676 * If a workload spans multiple NUMA nodes, a shared fault that 2677 * occurs wholly within the set of nodes that the workload is 2678 * actively using should be counted as local. This allows the 2679 * scan rate to slow down when a workload has settled down. 2680 */ 2681 ng = deref_curr_numa_group(p); 2682 if (!priv && !local && ng && ng->active_nodes > 1 && 2683 numa_is_active_node(cpu_node, ng) && 2684 numa_is_active_node(mem_node, ng)) 2685 local = 1; 2686 2687 /* 2688 * Retry to migrate task to preferred node periodically, in case it 2689 * previously failed, or the scheduler moved us. 2690 */ 2691 if (time_after(jiffies, p->numa_migrate_retry)) { 2692 task_numa_placement(p); 2693 numa_migrate_preferred(p); 2694 } 2695 2696 if (migrated) 2697 p->numa_pages_migrated += pages; 2698 if (flags & TNF_MIGRATE_FAIL) 2699 p->numa_faults_locality[2] += pages; 2700 2701 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2702 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2703 p->numa_faults_locality[local] += pages; 2704 } 2705 2706 static void reset_ptenuma_scan(struct task_struct *p) 2707 { 2708 /* 2709 * We only did a read acquisition of the mmap sem, so 2710 * p->mm->numa_scan_seq is written to without exclusive access 2711 * and the update is not guaranteed to be atomic. That's not 2712 * much of an issue though, since this is just used for 2713 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2714 * expensive, to avoid any form of compiler optimizations: 2715 */ 2716 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2717 p->mm->numa_scan_offset = 0; 2718 } 2719 2720 /* 2721 * The expensive part of numa migration is done from task_work context. 2722 * Triggered from task_tick_numa(). 2723 */ 2724 static void task_numa_work(struct callback_head *work) 2725 { 2726 unsigned long migrate, next_scan, now = jiffies; 2727 struct task_struct *p = current; 2728 struct mm_struct *mm = p->mm; 2729 u64 runtime = p->se.sum_exec_runtime; 2730 struct vm_area_struct *vma; 2731 unsigned long start, end; 2732 unsigned long nr_pte_updates = 0; 2733 long pages, virtpages; 2734 2735 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2736 2737 work->next = work; 2738 /* 2739 * Who cares about NUMA placement when they're dying. 2740 * 2741 * NOTE: make sure not to dereference p->mm before this check, 2742 * exit_task_work() happens _after_ exit_mm() so we could be called 2743 * without p->mm even though we still had it when we enqueued this 2744 * work. 2745 */ 2746 if (p->flags & PF_EXITING) 2747 return; 2748 2749 if (!mm->numa_next_scan) { 2750 mm->numa_next_scan = now + 2751 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2752 } 2753 2754 /* 2755 * Enforce maximal scan/migration frequency.. 2756 */ 2757 migrate = mm->numa_next_scan; 2758 if (time_before(now, migrate)) 2759 return; 2760 2761 if (p->numa_scan_period == 0) { 2762 p->numa_scan_period_max = task_scan_max(p); 2763 p->numa_scan_period = task_scan_start(p); 2764 } 2765 2766 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2767 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2768 return; 2769 2770 /* 2771 * Delay this task enough that another task of this mm will likely win 2772 * the next time around. 2773 */ 2774 p->node_stamp += 2 * TICK_NSEC; 2775 2776 start = mm->numa_scan_offset; 2777 pages = sysctl_numa_balancing_scan_size; 2778 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2779 virtpages = pages * 8; /* Scan up to this much virtual space */ 2780 if (!pages) 2781 return; 2782 2783 2784 if (!mmap_read_trylock(mm)) 2785 return; 2786 vma = find_vma(mm, start); 2787 if (!vma) { 2788 reset_ptenuma_scan(p); 2789 start = 0; 2790 vma = mm->mmap; 2791 } 2792 for (; vma; vma = vma->vm_next) { 2793 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2794 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2795 continue; 2796 } 2797 2798 /* 2799 * Shared library pages mapped by multiple processes are not 2800 * migrated as it is expected they are cache replicated. Avoid 2801 * hinting faults in read-only file-backed mappings or the vdso 2802 * as migrating the pages will be of marginal benefit. 2803 */ 2804 if (!vma->vm_mm || 2805 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2806 continue; 2807 2808 /* 2809 * Skip inaccessible VMAs to avoid any confusion between 2810 * PROT_NONE and NUMA hinting ptes 2811 */ 2812 if (!vma_is_accessible(vma)) 2813 continue; 2814 2815 do { 2816 start = max(start, vma->vm_start); 2817 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2818 end = min(end, vma->vm_end); 2819 nr_pte_updates = change_prot_numa(vma, start, end); 2820 2821 /* 2822 * Try to scan sysctl_numa_balancing_size worth of 2823 * hpages that have at least one present PTE that 2824 * is not already pte-numa. If the VMA contains 2825 * areas that are unused or already full of prot_numa 2826 * PTEs, scan up to virtpages, to skip through those 2827 * areas faster. 2828 */ 2829 if (nr_pte_updates) 2830 pages -= (end - start) >> PAGE_SHIFT; 2831 virtpages -= (end - start) >> PAGE_SHIFT; 2832 2833 start = end; 2834 if (pages <= 0 || virtpages <= 0) 2835 goto out; 2836 2837 cond_resched(); 2838 } while (end != vma->vm_end); 2839 } 2840 2841 out: 2842 /* 2843 * It is possible to reach the end of the VMA list but the last few 2844 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2845 * would find the !migratable VMA on the next scan but not reset the 2846 * scanner to the start so check it now. 2847 */ 2848 if (vma) 2849 mm->numa_scan_offset = start; 2850 else 2851 reset_ptenuma_scan(p); 2852 mmap_read_unlock(mm); 2853 2854 /* 2855 * Make sure tasks use at least 32x as much time to run other code 2856 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2857 * Usually update_task_scan_period slows down scanning enough; on an 2858 * overloaded system we need to limit overhead on a per task basis. 2859 */ 2860 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2861 u64 diff = p->se.sum_exec_runtime - runtime; 2862 p->node_stamp += 32 * diff; 2863 } 2864 } 2865 2866 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2867 { 2868 int mm_users = 0; 2869 struct mm_struct *mm = p->mm; 2870 2871 if (mm) { 2872 mm_users = atomic_read(&mm->mm_users); 2873 if (mm_users == 1) { 2874 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2875 mm->numa_scan_seq = 0; 2876 } 2877 } 2878 p->node_stamp = 0; 2879 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2880 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2881 /* Protect against double add, see task_tick_numa and task_numa_work */ 2882 p->numa_work.next = &p->numa_work; 2883 p->numa_faults = NULL; 2884 RCU_INIT_POINTER(p->numa_group, NULL); 2885 p->last_task_numa_placement = 0; 2886 p->last_sum_exec_runtime = 0; 2887 2888 init_task_work(&p->numa_work, task_numa_work); 2889 2890 /* New address space, reset the preferred nid */ 2891 if (!(clone_flags & CLONE_VM)) { 2892 p->numa_preferred_nid = NUMA_NO_NODE; 2893 return; 2894 } 2895 2896 /* 2897 * New thread, keep existing numa_preferred_nid which should be copied 2898 * already by arch_dup_task_struct but stagger when scans start. 2899 */ 2900 if (mm) { 2901 unsigned int delay; 2902 2903 delay = min_t(unsigned int, task_scan_max(current), 2904 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2905 delay += 2 * TICK_NSEC; 2906 p->node_stamp = delay; 2907 } 2908 } 2909 2910 /* 2911 * Drive the periodic memory faults.. 2912 */ 2913 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2914 { 2915 struct callback_head *work = &curr->numa_work; 2916 u64 period, now; 2917 2918 /* 2919 * We don't care about NUMA placement if we don't have memory. 2920 */ 2921 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2922 return; 2923 2924 /* 2925 * Using runtime rather than walltime has the dual advantage that 2926 * we (mostly) drive the selection from busy threads and that the 2927 * task needs to have done some actual work before we bother with 2928 * NUMA placement. 2929 */ 2930 now = curr->se.sum_exec_runtime; 2931 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2932 2933 if (now > curr->node_stamp + period) { 2934 if (!curr->node_stamp) 2935 curr->numa_scan_period = task_scan_start(curr); 2936 curr->node_stamp += period; 2937 2938 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2939 task_work_add(curr, work, TWA_RESUME); 2940 } 2941 } 2942 2943 static void update_scan_period(struct task_struct *p, int new_cpu) 2944 { 2945 int src_nid = cpu_to_node(task_cpu(p)); 2946 int dst_nid = cpu_to_node(new_cpu); 2947 2948 if (!static_branch_likely(&sched_numa_balancing)) 2949 return; 2950 2951 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2952 return; 2953 2954 if (src_nid == dst_nid) 2955 return; 2956 2957 /* 2958 * Allow resets if faults have been trapped before one scan 2959 * has completed. This is most likely due to a new task that 2960 * is pulled cross-node due to wakeups or load balancing. 2961 */ 2962 if (p->numa_scan_seq) { 2963 /* 2964 * Avoid scan adjustments if moving to the preferred 2965 * node or if the task was not previously running on 2966 * the preferred node. 2967 */ 2968 if (dst_nid == p->numa_preferred_nid || 2969 (p->numa_preferred_nid != NUMA_NO_NODE && 2970 src_nid != p->numa_preferred_nid)) 2971 return; 2972 } 2973 2974 p->numa_scan_period = task_scan_start(p); 2975 } 2976 2977 #else 2978 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2979 { 2980 } 2981 2982 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2983 { 2984 } 2985 2986 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2987 { 2988 } 2989 2990 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2991 { 2992 } 2993 2994 #endif /* CONFIG_NUMA_BALANCING */ 2995 2996 static void 2997 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2998 { 2999 update_load_add(&cfs_rq->load, se->load.weight); 3000 #ifdef CONFIG_SMP 3001 if (entity_is_task(se)) { 3002 struct rq *rq = rq_of(cfs_rq); 3003 3004 account_numa_enqueue(rq, task_of(se)); 3005 list_add(&se->group_node, &rq->cfs_tasks); 3006 } 3007 #endif 3008 cfs_rq->nr_running++; 3009 } 3010 3011 static void 3012 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3013 { 3014 update_load_sub(&cfs_rq->load, se->load.weight); 3015 #ifdef CONFIG_SMP 3016 if (entity_is_task(se)) { 3017 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3018 list_del_init(&se->group_node); 3019 } 3020 #endif 3021 cfs_rq->nr_running--; 3022 } 3023 3024 /* 3025 * Signed add and clamp on underflow. 3026 * 3027 * Explicitly do a load-store to ensure the intermediate value never hits 3028 * memory. This allows lockless observations without ever seeing the negative 3029 * values. 3030 */ 3031 #define add_positive(_ptr, _val) do { \ 3032 typeof(_ptr) ptr = (_ptr); \ 3033 typeof(_val) val = (_val); \ 3034 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3035 \ 3036 res = var + val; \ 3037 \ 3038 if (val < 0 && res > var) \ 3039 res = 0; \ 3040 \ 3041 WRITE_ONCE(*ptr, res); \ 3042 } while (0) 3043 3044 /* 3045 * Unsigned subtract and clamp on underflow. 3046 * 3047 * Explicitly do a load-store to ensure the intermediate value never hits 3048 * memory. This allows lockless observations without ever seeing the negative 3049 * values. 3050 */ 3051 #define sub_positive(_ptr, _val) do { \ 3052 typeof(_ptr) ptr = (_ptr); \ 3053 typeof(*ptr) val = (_val); \ 3054 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3055 res = var - val; \ 3056 if (res > var) \ 3057 res = 0; \ 3058 WRITE_ONCE(*ptr, res); \ 3059 } while (0) 3060 3061 /* 3062 * Remove and clamp on negative, from a local variable. 3063 * 3064 * A variant of sub_positive(), which does not use explicit load-store 3065 * and is thus optimized for local variable updates. 3066 */ 3067 #define lsub_positive(_ptr, _val) do { \ 3068 typeof(_ptr) ptr = (_ptr); \ 3069 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3070 } while (0) 3071 3072 #ifdef CONFIG_SMP 3073 static inline void 3074 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3075 { 3076 cfs_rq->avg.load_avg += se->avg.load_avg; 3077 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3078 } 3079 3080 static inline void 3081 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3082 { 3083 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3084 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3085 } 3086 #else 3087 static inline void 3088 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3089 static inline void 3090 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3091 #endif 3092 3093 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3094 unsigned long weight) 3095 { 3096 if (se->on_rq) { 3097 /* commit outstanding execution time */ 3098 if (cfs_rq->curr == se) 3099 update_curr(cfs_rq); 3100 update_load_sub(&cfs_rq->load, se->load.weight); 3101 } 3102 dequeue_load_avg(cfs_rq, se); 3103 3104 update_load_set(&se->load, weight); 3105 3106 #ifdef CONFIG_SMP 3107 do { 3108 u32 divider = get_pelt_divider(&se->avg); 3109 3110 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3111 } while (0); 3112 #endif 3113 3114 enqueue_load_avg(cfs_rq, se); 3115 if (se->on_rq) 3116 update_load_add(&cfs_rq->load, se->load.weight); 3117 3118 } 3119 3120 void reweight_task(struct task_struct *p, int prio) 3121 { 3122 struct sched_entity *se = &p->se; 3123 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3124 struct load_weight *load = &se->load; 3125 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3126 3127 reweight_entity(cfs_rq, se, weight); 3128 load->inv_weight = sched_prio_to_wmult[prio]; 3129 } 3130 3131 #ifdef CONFIG_FAIR_GROUP_SCHED 3132 #ifdef CONFIG_SMP 3133 /* 3134 * All this does is approximate the hierarchical proportion which includes that 3135 * global sum we all love to hate. 3136 * 3137 * That is, the weight of a group entity, is the proportional share of the 3138 * group weight based on the group runqueue weights. That is: 3139 * 3140 * tg->weight * grq->load.weight 3141 * ge->load.weight = ----------------------------- (1) 3142 * \Sum grq->load.weight 3143 * 3144 * Now, because computing that sum is prohibitively expensive to compute (been 3145 * there, done that) we approximate it with this average stuff. The average 3146 * moves slower and therefore the approximation is cheaper and more stable. 3147 * 3148 * So instead of the above, we substitute: 3149 * 3150 * grq->load.weight -> grq->avg.load_avg (2) 3151 * 3152 * which yields the following: 3153 * 3154 * tg->weight * grq->avg.load_avg 3155 * ge->load.weight = ------------------------------ (3) 3156 * tg->load_avg 3157 * 3158 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3159 * 3160 * That is shares_avg, and it is right (given the approximation (2)). 3161 * 3162 * The problem with it is that because the average is slow -- it was designed 3163 * to be exactly that of course -- this leads to transients in boundary 3164 * conditions. In specific, the case where the group was idle and we start the 3165 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3166 * yielding bad latency etc.. 3167 * 3168 * Now, in that special case (1) reduces to: 3169 * 3170 * tg->weight * grq->load.weight 3171 * ge->load.weight = ----------------------------- = tg->weight (4) 3172 * grp->load.weight 3173 * 3174 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3175 * 3176 * So what we do is modify our approximation (3) to approach (4) in the (near) 3177 * UP case, like: 3178 * 3179 * ge->load.weight = 3180 * 3181 * tg->weight * grq->load.weight 3182 * --------------------------------------------------- (5) 3183 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3184 * 3185 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3186 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3187 * 3188 * 3189 * tg->weight * grq->load.weight 3190 * ge->load.weight = ----------------------------- (6) 3191 * tg_load_avg' 3192 * 3193 * Where: 3194 * 3195 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3196 * max(grq->load.weight, grq->avg.load_avg) 3197 * 3198 * And that is shares_weight and is icky. In the (near) UP case it approaches 3199 * (4) while in the normal case it approaches (3). It consistently 3200 * overestimates the ge->load.weight and therefore: 3201 * 3202 * \Sum ge->load.weight >= tg->weight 3203 * 3204 * hence icky! 3205 */ 3206 static long calc_group_shares(struct cfs_rq *cfs_rq) 3207 { 3208 long tg_weight, tg_shares, load, shares; 3209 struct task_group *tg = cfs_rq->tg; 3210 3211 tg_shares = READ_ONCE(tg->shares); 3212 3213 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3214 3215 tg_weight = atomic_long_read(&tg->load_avg); 3216 3217 /* Ensure tg_weight >= load */ 3218 tg_weight -= cfs_rq->tg_load_avg_contrib; 3219 tg_weight += load; 3220 3221 shares = (tg_shares * load); 3222 if (tg_weight) 3223 shares /= tg_weight; 3224 3225 /* 3226 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3227 * of a group with small tg->shares value. It is a floor value which is 3228 * assigned as a minimum load.weight to the sched_entity representing 3229 * the group on a CPU. 3230 * 3231 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3232 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3233 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3234 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3235 * instead of 0. 3236 */ 3237 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3238 } 3239 #endif /* CONFIG_SMP */ 3240 3241 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3242 3243 /* 3244 * Recomputes the group entity based on the current state of its group 3245 * runqueue. 3246 */ 3247 static void update_cfs_group(struct sched_entity *se) 3248 { 3249 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3250 long shares; 3251 3252 if (!gcfs_rq) 3253 return; 3254 3255 if (throttled_hierarchy(gcfs_rq)) 3256 return; 3257 3258 #ifndef CONFIG_SMP 3259 shares = READ_ONCE(gcfs_rq->tg->shares); 3260 3261 if (likely(se->load.weight == shares)) 3262 return; 3263 #else 3264 shares = calc_group_shares(gcfs_rq); 3265 #endif 3266 3267 reweight_entity(cfs_rq_of(se), se, shares); 3268 } 3269 3270 #else /* CONFIG_FAIR_GROUP_SCHED */ 3271 static inline void update_cfs_group(struct sched_entity *se) 3272 { 3273 } 3274 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3275 3276 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3277 { 3278 struct rq *rq = rq_of(cfs_rq); 3279 3280 if (&rq->cfs == cfs_rq) { 3281 /* 3282 * There are a few boundary cases this might miss but it should 3283 * get called often enough that that should (hopefully) not be 3284 * a real problem. 3285 * 3286 * It will not get called when we go idle, because the idle 3287 * thread is a different class (!fair), nor will the utilization 3288 * number include things like RT tasks. 3289 * 3290 * As is, the util number is not freq-invariant (we'd have to 3291 * implement arch_scale_freq_capacity() for that). 3292 * 3293 * See cpu_util(). 3294 */ 3295 cpufreq_update_util(rq, flags); 3296 } 3297 } 3298 3299 #ifdef CONFIG_SMP 3300 #ifdef CONFIG_FAIR_GROUP_SCHED 3301 /** 3302 * update_tg_load_avg - update the tg's load avg 3303 * @cfs_rq: the cfs_rq whose avg changed 3304 * 3305 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3306 * However, because tg->load_avg is a global value there are performance 3307 * considerations. 3308 * 3309 * In order to avoid having to look at the other cfs_rq's, we use a 3310 * differential update where we store the last value we propagated. This in 3311 * turn allows skipping updates if the differential is 'small'. 3312 * 3313 * Updating tg's load_avg is necessary before update_cfs_share(). 3314 */ 3315 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3316 { 3317 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3318 3319 /* 3320 * No need to update load_avg for root_task_group as it is not used. 3321 */ 3322 if (cfs_rq->tg == &root_task_group) 3323 return; 3324 3325 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3326 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3327 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3328 } 3329 } 3330 3331 /* 3332 * Called within set_task_rq() right before setting a task's CPU. The 3333 * caller only guarantees p->pi_lock is held; no other assumptions, 3334 * including the state of rq->lock, should be made. 3335 */ 3336 void set_task_rq_fair(struct sched_entity *se, 3337 struct cfs_rq *prev, struct cfs_rq *next) 3338 { 3339 u64 p_last_update_time; 3340 u64 n_last_update_time; 3341 3342 if (!sched_feat(ATTACH_AGE_LOAD)) 3343 return; 3344 3345 /* 3346 * We are supposed to update the task to "current" time, then its up to 3347 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3348 * getting what current time is, so simply throw away the out-of-date 3349 * time. This will result in the wakee task is less decayed, but giving 3350 * the wakee more load sounds not bad. 3351 */ 3352 if (!(se->avg.last_update_time && prev)) 3353 return; 3354 3355 #ifndef CONFIG_64BIT 3356 { 3357 u64 p_last_update_time_copy; 3358 u64 n_last_update_time_copy; 3359 3360 do { 3361 p_last_update_time_copy = prev->load_last_update_time_copy; 3362 n_last_update_time_copy = next->load_last_update_time_copy; 3363 3364 smp_rmb(); 3365 3366 p_last_update_time = prev->avg.last_update_time; 3367 n_last_update_time = next->avg.last_update_time; 3368 3369 } while (p_last_update_time != p_last_update_time_copy || 3370 n_last_update_time != n_last_update_time_copy); 3371 } 3372 #else 3373 p_last_update_time = prev->avg.last_update_time; 3374 n_last_update_time = next->avg.last_update_time; 3375 #endif 3376 __update_load_avg_blocked_se(p_last_update_time, se); 3377 se->avg.last_update_time = n_last_update_time; 3378 } 3379 3380 3381 /* 3382 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3383 * propagate its contribution. The key to this propagation is the invariant 3384 * that for each group: 3385 * 3386 * ge->avg == grq->avg (1) 3387 * 3388 * _IFF_ we look at the pure running and runnable sums. Because they 3389 * represent the very same entity, just at different points in the hierarchy. 3390 * 3391 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3392 * and simply copies the running/runnable sum over (but still wrong, because 3393 * the group entity and group rq do not have their PELT windows aligned). 3394 * 3395 * However, update_tg_cfs_load() is more complex. So we have: 3396 * 3397 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3398 * 3399 * And since, like util, the runnable part should be directly transferable, 3400 * the following would _appear_ to be the straight forward approach: 3401 * 3402 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3403 * 3404 * And per (1) we have: 3405 * 3406 * ge->avg.runnable_avg == grq->avg.runnable_avg 3407 * 3408 * Which gives: 3409 * 3410 * ge->load.weight * grq->avg.load_avg 3411 * ge->avg.load_avg = ----------------------------------- (4) 3412 * grq->load.weight 3413 * 3414 * Except that is wrong! 3415 * 3416 * Because while for entities historical weight is not important and we 3417 * really only care about our future and therefore can consider a pure 3418 * runnable sum, runqueues can NOT do this. 3419 * 3420 * We specifically want runqueues to have a load_avg that includes 3421 * historical weights. Those represent the blocked load, the load we expect 3422 * to (shortly) return to us. This only works by keeping the weights as 3423 * integral part of the sum. We therefore cannot decompose as per (3). 3424 * 3425 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3426 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3427 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3428 * runnable section of these tasks overlap (or not). If they were to perfectly 3429 * align the rq as a whole would be runnable 2/3 of the time. If however we 3430 * always have at least 1 runnable task, the rq as a whole is always runnable. 3431 * 3432 * So we'll have to approximate.. :/ 3433 * 3434 * Given the constraint: 3435 * 3436 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3437 * 3438 * We can construct a rule that adds runnable to a rq by assuming minimal 3439 * overlap. 3440 * 3441 * On removal, we'll assume each task is equally runnable; which yields: 3442 * 3443 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3444 * 3445 * XXX: only do this for the part of runnable > running ? 3446 * 3447 */ 3448 3449 static inline void 3450 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3451 { 3452 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3453 u32 divider; 3454 3455 /* Nothing to update */ 3456 if (!delta) 3457 return; 3458 3459 /* 3460 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3461 * See ___update_load_avg() for details. 3462 */ 3463 divider = get_pelt_divider(&cfs_rq->avg); 3464 3465 /* Set new sched_entity's utilization */ 3466 se->avg.util_avg = gcfs_rq->avg.util_avg; 3467 se->avg.util_sum = se->avg.util_avg * divider; 3468 3469 /* Update parent cfs_rq utilization */ 3470 add_positive(&cfs_rq->avg.util_avg, delta); 3471 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3472 } 3473 3474 static inline void 3475 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3476 { 3477 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3478 u32 divider; 3479 3480 /* Nothing to update */ 3481 if (!delta) 3482 return; 3483 3484 /* 3485 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3486 * See ___update_load_avg() for details. 3487 */ 3488 divider = get_pelt_divider(&cfs_rq->avg); 3489 3490 /* Set new sched_entity's runnable */ 3491 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3492 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3493 3494 /* Update parent cfs_rq runnable */ 3495 add_positive(&cfs_rq->avg.runnable_avg, delta); 3496 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3497 } 3498 3499 static inline void 3500 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3501 { 3502 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3503 unsigned long load_avg; 3504 u64 load_sum = 0; 3505 s64 delta_sum; 3506 u32 divider; 3507 3508 if (!runnable_sum) 3509 return; 3510 3511 gcfs_rq->prop_runnable_sum = 0; 3512 3513 /* 3514 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3515 * See ___update_load_avg() for details. 3516 */ 3517 divider = get_pelt_divider(&cfs_rq->avg); 3518 3519 if (runnable_sum >= 0) { 3520 /* 3521 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3522 * the CPU is saturated running == runnable. 3523 */ 3524 runnable_sum += se->avg.load_sum; 3525 runnable_sum = min_t(long, runnable_sum, divider); 3526 } else { 3527 /* 3528 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3529 * assuming all tasks are equally runnable. 3530 */ 3531 if (scale_load_down(gcfs_rq->load.weight)) { 3532 load_sum = div_s64(gcfs_rq->avg.load_sum, 3533 scale_load_down(gcfs_rq->load.weight)); 3534 } 3535 3536 /* But make sure to not inflate se's runnable */ 3537 runnable_sum = min(se->avg.load_sum, load_sum); 3538 } 3539 3540 /* 3541 * runnable_sum can't be lower than running_sum 3542 * Rescale running sum to be in the same range as runnable sum 3543 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3544 * runnable_sum is in [0 : LOAD_AVG_MAX] 3545 */ 3546 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3547 runnable_sum = max(runnable_sum, running_sum); 3548 3549 load_sum = (s64)se_weight(se) * runnable_sum; 3550 load_avg = div_s64(load_sum, divider); 3551 3552 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3553 delta_avg = load_avg - se->avg.load_avg; 3554 3555 se->avg.load_sum = runnable_sum; 3556 se->avg.load_avg = load_avg; 3557 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3558 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3559 } 3560 3561 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3562 { 3563 cfs_rq->propagate = 1; 3564 cfs_rq->prop_runnable_sum += runnable_sum; 3565 } 3566 3567 /* Update task and its cfs_rq load average */ 3568 static inline int propagate_entity_load_avg(struct sched_entity *se) 3569 { 3570 struct cfs_rq *cfs_rq, *gcfs_rq; 3571 3572 if (entity_is_task(se)) 3573 return 0; 3574 3575 gcfs_rq = group_cfs_rq(se); 3576 if (!gcfs_rq->propagate) 3577 return 0; 3578 3579 gcfs_rq->propagate = 0; 3580 3581 cfs_rq = cfs_rq_of(se); 3582 3583 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3584 3585 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3586 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3587 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3588 3589 trace_pelt_cfs_tp(cfs_rq); 3590 trace_pelt_se_tp(se); 3591 3592 return 1; 3593 } 3594 3595 /* 3596 * Check if we need to update the load and the utilization of a blocked 3597 * group_entity: 3598 */ 3599 static inline bool skip_blocked_update(struct sched_entity *se) 3600 { 3601 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3602 3603 /* 3604 * If sched_entity still have not zero load or utilization, we have to 3605 * decay it: 3606 */ 3607 if (se->avg.load_avg || se->avg.util_avg) 3608 return false; 3609 3610 /* 3611 * If there is a pending propagation, we have to update the load and 3612 * the utilization of the sched_entity: 3613 */ 3614 if (gcfs_rq->propagate) 3615 return false; 3616 3617 /* 3618 * Otherwise, the load and the utilization of the sched_entity is 3619 * already zero and there is no pending propagation, so it will be a 3620 * waste of time to try to decay it: 3621 */ 3622 return true; 3623 } 3624 3625 #else /* CONFIG_FAIR_GROUP_SCHED */ 3626 3627 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3628 3629 static inline int propagate_entity_load_avg(struct sched_entity *se) 3630 { 3631 return 0; 3632 } 3633 3634 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3635 3636 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3637 3638 /** 3639 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3640 * @now: current time, as per cfs_rq_clock_pelt() 3641 * @cfs_rq: cfs_rq to update 3642 * 3643 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3644 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3645 * post_init_entity_util_avg(). 3646 * 3647 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3648 * 3649 * Returns true if the load decayed or we removed load. 3650 * 3651 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3652 * call update_tg_load_avg() when this function returns true. 3653 */ 3654 static inline int 3655 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3656 { 3657 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3658 struct sched_avg *sa = &cfs_rq->avg; 3659 int decayed = 0; 3660 3661 if (cfs_rq->removed.nr) { 3662 unsigned long r; 3663 u32 divider = get_pelt_divider(&cfs_rq->avg); 3664 3665 raw_spin_lock(&cfs_rq->removed.lock); 3666 swap(cfs_rq->removed.util_avg, removed_util); 3667 swap(cfs_rq->removed.load_avg, removed_load); 3668 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3669 cfs_rq->removed.nr = 0; 3670 raw_spin_unlock(&cfs_rq->removed.lock); 3671 3672 r = removed_load; 3673 sub_positive(&sa->load_avg, r); 3674 sub_positive(&sa->load_sum, r * divider); 3675 3676 r = removed_util; 3677 sub_positive(&sa->util_avg, r); 3678 sub_positive(&sa->util_sum, r * divider); 3679 3680 r = removed_runnable; 3681 sub_positive(&sa->runnable_avg, r); 3682 sub_positive(&sa->runnable_sum, r * divider); 3683 3684 /* 3685 * removed_runnable is the unweighted version of removed_load so we 3686 * can use it to estimate removed_load_sum. 3687 */ 3688 add_tg_cfs_propagate(cfs_rq, 3689 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3690 3691 decayed = 1; 3692 } 3693 3694 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3695 3696 #ifndef CONFIG_64BIT 3697 smp_wmb(); 3698 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3699 #endif 3700 3701 return decayed; 3702 } 3703 3704 /** 3705 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3706 * @cfs_rq: cfs_rq to attach to 3707 * @se: sched_entity to attach 3708 * 3709 * Must call update_cfs_rq_load_avg() before this, since we rely on 3710 * cfs_rq->avg.last_update_time being current. 3711 */ 3712 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3713 { 3714 /* 3715 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3716 * See ___update_load_avg() for details. 3717 */ 3718 u32 divider = get_pelt_divider(&cfs_rq->avg); 3719 3720 /* 3721 * When we attach the @se to the @cfs_rq, we must align the decay 3722 * window because without that, really weird and wonderful things can 3723 * happen. 3724 * 3725 * XXX illustrate 3726 */ 3727 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3728 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3729 3730 /* 3731 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3732 * period_contrib. This isn't strictly correct, but since we're 3733 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3734 * _sum a little. 3735 */ 3736 se->avg.util_sum = se->avg.util_avg * divider; 3737 3738 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3739 3740 se->avg.load_sum = divider; 3741 if (se_weight(se)) { 3742 se->avg.load_sum = 3743 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3744 } 3745 3746 enqueue_load_avg(cfs_rq, se); 3747 cfs_rq->avg.util_avg += se->avg.util_avg; 3748 cfs_rq->avg.util_sum += se->avg.util_sum; 3749 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3750 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3751 3752 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3753 3754 cfs_rq_util_change(cfs_rq, 0); 3755 3756 trace_pelt_cfs_tp(cfs_rq); 3757 } 3758 3759 /** 3760 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3761 * @cfs_rq: cfs_rq to detach from 3762 * @se: sched_entity to detach 3763 * 3764 * Must call update_cfs_rq_load_avg() before this, since we rely on 3765 * cfs_rq->avg.last_update_time being current. 3766 */ 3767 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3768 { 3769 dequeue_load_avg(cfs_rq, se); 3770 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3771 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3772 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3773 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 3774 3775 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3776 3777 cfs_rq_util_change(cfs_rq, 0); 3778 3779 trace_pelt_cfs_tp(cfs_rq); 3780 } 3781 3782 /* 3783 * Optional action to be done while updating the load average 3784 */ 3785 #define UPDATE_TG 0x1 3786 #define SKIP_AGE_LOAD 0x2 3787 #define DO_ATTACH 0x4 3788 3789 /* Update task and its cfs_rq load average */ 3790 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3791 { 3792 u64 now = cfs_rq_clock_pelt(cfs_rq); 3793 int decayed; 3794 3795 /* 3796 * Track task load average for carrying it to new CPU after migrated, and 3797 * track group sched_entity load average for task_h_load calc in migration 3798 */ 3799 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3800 __update_load_avg_se(now, cfs_rq, se); 3801 3802 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3803 decayed |= propagate_entity_load_avg(se); 3804 3805 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3806 3807 /* 3808 * DO_ATTACH means we're here from enqueue_entity(). 3809 * !last_update_time means we've passed through 3810 * migrate_task_rq_fair() indicating we migrated. 3811 * 3812 * IOW we're enqueueing a task on a new CPU. 3813 */ 3814 attach_entity_load_avg(cfs_rq, se); 3815 update_tg_load_avg(cfs_rq); 3816 3817 } else if (decayed) { 3818 cfs_rq_util_change(cfs_rq, 0); 3819 3820 if (flags & UPDATE_TG) 3821 update_tg_load_avg(cfs_rq); 3822 } 3823 } 3824 3825 #ifndef CONFIG_64BIT 3826 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3827 { 3828 u64 last_update_time_copy; 3829 u64 last_update_time; 3830 3831 do { 3832 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3833 smp_rmb(); 3834 last_update_time = cfs_rq->avg.last_update_time; 3835 } while (last_update_time != last_update_time_copy); 3836 3837 return last_update_time; 3838 } 3839 #else 3840 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3841 { 3842 return cfs_rq->avg.last_update_time; 3843 } 3844 #endif 3845 3846 /* 3847 * Synchronize entity load avg of dequeued entity without locking 3848 * the previous rq. 3849 */ 3850 static void sync_entity_load_avg(struct sched_entity *se) 3851 { 3852 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3853 u64 last_update_time; 3854 3855 last_update_time = cfs_rq_last_update_time(cfs_rq); 3856 __update_load_avg_blocked_se(last_update_time, se); 3857 } 3858 3859 /* 3860 * Task first catches up with cfs_rq, and then subtract 3861 * itself from the cfs_rq (task must be off the queue now). 3862 */ 3863 static void remove_entity_load_avg(struct sched_entity *se) 3864 { 3865 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3866 unsigned long flags; 3867 3868 /* 3869 * tasks cannot exit without having gone through wake_up_new_task() -> 3870 * post_init_entity_util_avg() which will have added things to the 3871 * cfs_rq, so we can remove unconditionally. 3872 */ 3873 3874 sync_entity_load_avg(se); 3875 3876 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3877 ++cfs_rq->removed.nr; 3878 cfs_rq->removed.util_avg += se->avg.util_avg; 3879 cfs_rq->removed.load_avg += se->avg.load_avg; 3880 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 3881 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3882 } 3883 3884 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 3885 { 3886 return cfs_rq->avg.runnable_avg; 3887 } 3888 3889 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3890 { 3891 return cfs_rq->avg.load_avg; 3892 } 3893 3894 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 3895 3896 static inline unsigned long task_util(struct task_struct *p) 3897 { 3898 return READ_ONCE(p->se.avg.util_avg); 3899 } 3900 3901 static inline unsigned long _task_util_est(struct task_struct *p) 3902 { 3903 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3904 3905 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3906 } 3907 3908 static inline unsigned long task_util_est(struct task_struct *p) 3909 { 3910 return max(task_util(p), _task_util_est(p)); 3911 } 3912 3913 #ifdef CONFIG_UCLAMP_TASK 3914 static inline unsigned long uclamp_task_util(struct task_struct *p) 3915 { 3916 return clamp(task_util_est(p), 3917 uclamp_eff_value(p, UCLAMP_MIN), 3918 uclamp_eff_value(p, UCLAMP_MAX)); 3919 } 3920 #else 3921 static inline unsigned long uclamp_task_util(struct task_struct *p) 3922 { 3923 return task_util_est(p); 3924 } 3925 #endif 3926 3927 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3928 struct task_struct *p) 3929 { 3930 unsigned int enqueued; 3931 3932 if (!sched_feat(UTIL_EST)) 3933 return; 3934 3935 /* Update root cfs_rq's estimated utilization */ 3936 enqueued = cfs_rq->avg.util_est.enqueued; 3937 enqueued += _task_util_est(p); 3938 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3939 3940 trace_sched_util_est_cfs_tp(cfs_rq); 3941 } 3942 3943 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 3944 struct task_struct *p) 3945 { 3946 unsigned int enqueued; 3947 3948 if (!sched_feat(UTIL_EST)) 3949 return; 3950 3951 /* Update root cfs_rq's estimated utilization */ 3952 enqueued = cfs_rq->avg.util_est.enqueued; 3953 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 3954 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3955 3956 trace_sched_util_est_cfs_tp(cfs_rq); 3957 } 3958 3959 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 3960 3961 /* 3962 * Check if a (signed) value is within a specified (unsigned) margin, 3963 * based on the observation that: 3964 * 3965 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3966 * 3967 * NOTE: this only works when value + margin < INT_MAX. 3968 */ 3969 static inline bool within_margin(int value, int margin) 3970 { 3971 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3972 } 3973 3974 static inline void util_est_update(struct cfs_rq *cfs_rq, 3975 struct task_struct *p, 3976 bool task_sleep) 3977 { 3978 long last_ewma_diff, last_enqueued_diff; 3979 struct util_est ue; 3980 3981 if (!sched_feat(UTIL_EST)) 3982 return; 3983 3984 /* 3985 * Skip update of task's estimated utilization when the task has not 3986 * yet completed an activation, e.g. being migrated. 3987 */ 3988 if (!task_sleep) 3989 return; 3990 3991 /* 3992 * If the PELT values haven't changed since enqueue time, 3993 * skip the util_est update. 3994 */ 3995 ue = p->se.avg.util_est; 3996 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3997 return; 3998 3999 last_enqueued_diff = ue.enqueued; 4000 4001 /* 4002 * Reset EWMA on utilization increases, the moving average is used only 4003 * to smooth utilization decreases. 4004 */ 4005 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 4006 if (sched_feat(UTIL_EST_FASTUP)) { 4007 if (ue.ewma < ue.enqueued) { 4008 ue.ewma = ue.enqueued; 4009 goto done; 4010 } 4011 } 4012 4013 /* 4014 * Skip update of task's estimated utilization when its members are 4015 * already ~1% close to its last activation value. 4016 */ 4017 last_ewma_diff = ue.enqueued - ue.ewma; 4018 last_enqueued_diff -= ue.enqueued; 4019 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4020 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4021 goto done; 4022 4023 return; 4024 } 4025 4026 /* 4027 * To avoid overestimation of actual task utilization, skip updates if 4028 * we cannot grant there is idle time in this CPU. 4029 */ 4030 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4031 return; 4032 4033 /* 4034 * Update Task's estimated utilization 4035 * 4036 * When *p completes an activation we can consolidate another sample 4037 * of the task size. This is done by storing the current PELT value 4038 * as ue.enqueued and by using this value to update the Exponential 4039 * Weighted Moving Average (EWMA): 4040 * 4041 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4042 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4043 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4044 * = w * ( last_ewma_diff ) + ewma(t-1) 4045 * = w * (last_ewma_diff + ewma(t-1) / w) 4046 * 4047 * Where 'w' is the weight of new samples, which is configured to be 4048 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4049 */ 4050 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4051 ue.ewma += last_ewma_diff; 4052 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4053 done: 4054 WRITE_ONCE(p->se.avg.util_est, ue); 4055 4056 trace_sched_util_est_se_tp(&p->se); 4057 } 4058 4059 static inline int task_fits_capacity(struct task_struct *p, long capacity) 4060 { 4061 return fits_capacity(uclamp_task_util(p), capacity); 4062 } 4063 4064 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4065 { 4066 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4067 return; 4068 4069 if (!p || p->nr_cpus_allowed == 1) { 4070 rq->misfit_task_load = 0; 4071 return; 4072 } 4073 4074 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4075 rq->misfit_task_load = 0; 4076 return; 4077 } 4078 4079 /* 4080 * Make sure that misfit_task_load will not be null even if 4081 * task_h_load() returns 0. 4082 */ 4083 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4084 } 4085 4086 #else /* CONFIG_SMP */ 4087 4088 #define UPDATE_TG 0x0 4089 #define SKIP_AGE_LOAD 0x0 4090 #define DO_ATTACH 0x0 4091 4092 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4093 { 4094 cfs_rq_util_change(cfs_rq, 0); 4095 } 4096 4097 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4098 4099 static inline void 4100 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4101 static inline void 4102 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4103 4104 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4105 { 4106 return 0; 4107 } 4108 4109 static inline void 4110 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4111 4112 static inline void 4113 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4114 4115 static inline void 4116 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4117 bool task_sleep) {} 4118 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4119 4120 #endif /* CONFIG_SMP */ 4121 4122 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4123 { 4124 #ifdef CONFIG_SCHED_DEBUG 4125 s64 d = se->vruntime - cfs_rq->min_vruntime; 4126 4127 if (d < 0) 4128 d = -d; 4129 4130 if (d > 3*sysctl_sched_latency) 4131 schedstat_inc(cfs_rq->nr_spread_over); 4132 #endif 4133 } 4134 4135 static void 4136 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4137 { 4138 u64 vruntime = cfs_rq->min_vruntime; 4139 4140 /* 4141 * The 'current' period is already promised to the current tasks, 4142 * however the extra weight of the new task will slow them down a 4143 * little, place the new task so that it fits in the slot that 4144 * stays open at the end. 4145 */ 4146 if (initial && sched_feat(START_DEBIT)) 4147 vruntime += sched_vslice(cfs_rq, se); 4148 4149 /* sleeps up to a single latency don't count. */ 4150 if (!initial) { 4151 unsigned long thresh = sysctl_sched_latency; 4152 4153 /* 4154 * Halve their sleep time's effect, to allow 4155 * for a gentler effect of sleepers: 4156 */ 4157 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4158 thresh >>= 1; 4159 4160 vruntime -= thresh; 4161 } 4162 4163 /* ensure we never gain time by being placed backwards. */ 4164 se->vruntime = max_vruntime(se->vruntime, vruntime); 4165 } 4166 4167 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4168 4169 static inline void check_schedstat_required(void) 4170 { 4171 #ifdef CONFIG_SCHEDSTATS 4172 if (schedstat_enabled()) 4173 return; 4174 4175 /* Force schedstat enabled if a dependent tracepoint is active */ 4176 if (trace_sched_stat_wait_enabled() || 4177 trace_sched_stat_sleep_enabled() || 4178 trace_sched_stat_iowait_enabled() || 4179 trace_sched_stat_blocked_enabled() || 4180 trace_sched_stat_runtime_enabled()) { 4181 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 4182 "stat_blocked and stat_runtime require the " 4183 "kernel parameter schedstats=enable or " 4184 "kernel.sched_schedstats=1\n"); 4185 } 4186 #endif 4187 } 4188 4189 static inline bool cfs_bandwidth_used(void); 4190 4191 /* 4192 * MIGRATION 4193 * 4194 * dequeue 4195 * update_curr() 4196 * update_min_vruntime() 4197 * vruntime -= min_vruntime 4198 * 4199 * enqueue 4200 * update_curr() 4201 * update_min_vruntime() 4202 * vruntime += min_vruntime 4203 * 4204 * this way the vruntime transition between RQs is done when both 4205 * min_vruntime are up-to-date. 4206 * 4207 * WAKEUP (remote) 4208 * 4209 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4210 * vruntime -= min_vruntime 4211 * 4212 * enqueue 4213 * update_curr() 4214 * update_min_vruntime() 4215 * vruntime += min_vruntime 4216 * 4217 * this way we don't have the most up-to-date min_vruntime on the originating 4218 * CPU and an up-to-date min_vruntime on the destination CPU. 4219 */ 4220 4221 static void 4222 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4223 { 4224 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4225 bool curr = cfs_rq->curr == se; 4226 4227 /* 4228 * If we're the current task, we must renormalise before calling 4229 * update_curr(). 4230 */ 4231 if (renorm && curr) 4232 se->vruntime += cfs_rq->min_vruntime; 4233 4234 update_curr(cfs_rq); 4235 4236 /* 4237 * Otherwise, renormalise after, such that we're placed at the current 4238 * moment in time, instead of some random moment in the past. Being 4239 * placed in the past could significantly boost this task to the 4240 * fairness detriment of existing tasks. 4241 */ 4242 if (renorm && !curr) 4243 se->vruntime += cfs_rq->min_vruntime; 4244 4245 /* 4246 * When enqueuing a sched_entity, we must: 4247 * - Update loads to have both entity and cfs_rq synced with now. 4248 * - Add its load to cfs_rq->runnable_avg 4249 * - For group_entity, update its weight to reflect the new share of 4250 * its group cfs_rq 4251 * - Add its new weight to cfs_rq->load.weight 4252 */ 4253 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4254 se_update_runnable(se); 4255 update_cfs_group(se); 4256 account_entity_enqueue(cfs_rq, se); 4257 4258 if (flags & ENQUEUE_WAKEUP) 4259 place_entity(cfs_rq, se, 0); 4260 4261 check_schedstat_required(); 4262 update_stats_enqueue(cfs_rq, se, flags); 4263 check_spread(cfs_rq, se); 4264 if (!curr) 4265 __enqueue_entity(cfs_rq, se); 4266 se->on_rq = 1; 4267 4268 /* 4269 * When bandwidth control is enabled, cfs might have been removed 4270 * because of a parent been throttled but cfs->nr_running > 1. Try to 4271 * add it unconditionally. 4272 */ 4273 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) 4274 list_add_leaf_cfs_rq(cfs_rq); 4275 4276 if (cfs_rq->nr_running == 1) 4277 check_enqueue_throttle(cfs_rq); 4278 } 4279 4280 static void __clear_buddies_last(struct sched_entity *se) 4281 { 4282 for_each_sched_entity(se) { 4283 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4284 if (cfs_rq->last != se) 4285 break; 4286 4287 cfs_rq->last = NULL; 4288 } 4289 } 4290 4291 static void __clear_buddies_next(struct sched_entity *se) 4292 { 4293 for_each_sched_entity(se) { 4294 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4295 if (cfs_rq->next != se) 4296 break; 4297 4298 cfs_rq->next = NULL; 4299 } 4300 } 4301 4302 static void __clear_buddies_skip(struct sched_entity *se) 4303 { 4304 for_each_sched_entity(se) { 4305 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4306 if (cfs_rq->skip != se) 4307 break; 4308 4309 cfs_rq->skip = NULL; 4310 } 4311 } 4312 4313 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4314 { 4315 if (cfs_rq->last == se) 4316 __clear_buddies_last(se); 4317 4318 if (cfs_rq->next == se) 4319 __clear_buddies_next(se); 4320 4321 if (cfs_rq->skip == se) 4322 __clear_buddies_skip(se); 4323 } 4324 4325 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4326 4327 static void 4328 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4329 { 4330 /* 4331 * Update run-time statistics of the 'current'. 4332 */ 4333 update_curr(cfs_rq); 4334 4335 /* 4336 * When dequeuing a sched_entity, we must: 4337 * - Update loads to have both entity and cfs_rq synced with now. 4338 * - Subtract its load from the cfs_rq->runnable_avg. 4339 * - Subtract its previous weight from cfs_rq->load.weight. 4340 * - For group entity, update its weight to reflect the new share 4341 * of its group cfs_rq. 4342 */ 4343 update_load_avg(cfs_rq, se, UPDATE_TG); 4344 se_update_runnable(se); 4345 4346 update_stats_dequeue(cfs_rq, se, flags); 4347 4348 clear_buddies(cfs_rq, se); 4349 4350 if (se != cfs_rq->curr) 4351 __dequeue_entity(cfs_rq, se); 4352 se->on_rq = 0; 4353 account_entity_dequeue(cfs_rq, se); 4354 4355 /* 4356 * Normalize after update_curr(); which will also have moved 4357 * min_vruntime if @se is the one holding it back. But before doing 4358 * update_min_vruntime() again, which will discount @se's position and 4359 * can move min_vruntime forward still more. 4360 */ 4361 if (!(flags & DEQUEUE_SLEEP)) 4362 se->vruntime -= cfs_rq->min_vruntime; 4363 4364 /* return excess runtime on last dequeue */ 4365 return_cfs_rq_runtime(cfs_rq); 4366 4367 update_cfs_group(se); 4368 4369 /* 4370 * Now advance min_vruntime if @se was the entity holding it back, 4371 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4372 * put back on, and if we advance min_vruntime, we'll be placed back 4373 * further than we started -- ie. we'll be penalized. 4374 */ 4375 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4376 update_min_vruntime(cfs_rq); 4377 } 4378 4379 /* 4380 * Preempt the current task with a newly woken task if needed: 4381 */ 4382 static void 4383 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4384 { 4385 unsigned long ideal_runtime, delta_exec; 4386 struct sched_entity *se; 4387 s64 delta; 4388 4389 ideal_runtime = sched_slice(cfs_rq, curr); 4390 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4391 if (delta_exec > ideal_runtime) { 4392 resched_curr(rq_of(cfs_rq)); 4393 /* 4394 * The current task ran long enough, ensure it doesn't get 4395 * re-elected due to buddy favours. 4396 */ 4397 clear_buddies(cfs_rq, curr); 4398 return; 4399 } 4400 4401 /* 4402 * Ensure that a task that missed wakeup preemption by a 4403 * narrow margin doesn't have to wait for a full slice. 4404 * This also mitigates buddy induced latencies under load. 4405 */ 4406 if (delta_exec < sysctl_sched_min_granularity) 4407 return; 4408 4409 se = __pick_first_entity(cfs_rq); 4410 delta = curr->vruntime - se->vruntime; 4411 4412 if (delta < 0) 4413 return; 4414 4415 if (delta > ideal_runtime) 4416 resched_curr(rq_of(cfs_rq)); 4417 } 4418 4419 static void 4420 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4421 { 4422 /* 'current' is not kept within the tree. */ 4423 if (se->on_rq) { 4424 /* 4425 * Any task has to be enqueued before it get to execute on 4426 * a CPU. So account for the time it spent waiting on the 4427 * runqueue. 4428 */ 4429 update_stats_wait_end(cfs_rq, se); 4430 __dequeue_entity(cfs_rq, se); 4431 update_load_avg(cfs_rq, se, UPDATE_TG); 4432 } 4433 4434 update_stats_curr_start(cfs_rq, se); 4435 cfs_rq->curr = se; 4436 4437 /* 4438 * Track our maximum slice length, if the CPU's load is at 4439 * least twice that of our own weight (i.e. dont track it 4440 * when there are only lesser-weight tasks around): 4441 */ 4442 if (schedstat_enabled() && 4443 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4444 schedstat_set(se->statistics.slice_max, 4445 max((u64)schedstat_val(se->statistics.slice_max), 4446 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4447 } 4448 4449 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4450 } 4451 4452 static int 4453 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4454 4455 /* 4456 * Pick the next process, keeping these things in mind, in this order: 4457 * 1) keep things fair between processes/task groups 4458 * 2) pick the "next" process, since someone really wants that to run 4459 * 3) pick the "last" process, for cache locality 4460 * 4) do not run the "skip" process, if something else is available 4461 */ 4462 static struct sched_entity * 4463 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4464 { 4465 struct sched_entity *left = __pick_first_entity(cfs_rq); 4466 struct sched_entity *se; 4467 4468 /* 4469 * If curr is set we have to see if its left of the leftmost entity 4470 * still in the tree, provided there was anything in the tree at all. 4471 */ 4472 if (!left || (curr && entity_before(curr, left))) 4473 left = curr; 4474 4475 se = left; /* ideally we run the leftmost entity */ 4476 4477 /* 4478 * Avoid running the skip buddy, if running something else can 4479 * be done without getting too unfair. 4480 */ 4481 if (cfs_rq->skip == se) { 4482 struct sched_entity *second; 4483 4484 if (se == curr) { 4485 second = __pick_first_entity(cfs_rq); 4486 } else { 4487 second = __pick_next_entity(se); 4488 if (!second || (curr && entity_before(curr, second))) 4489 second = curr; 4490 } 4491 4492 if (second && wakeup_preempt_entity(second, left) < 1) 4493 se = second; 4494 } 4495 4496 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 4497 /* 4498 * Someone really wants this to run. If it's not unfair, run it. 4499 */ 4500 se = cfs_rq->next; 4501 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 4502 /* 4503 * Prefer last buddy, try to return the CPU to a preempted task. 4504 */ 4505 se = cfs_rq->last; 4506 } 4507 4508 clear_buddies(cfs_rq, se); 4509 4510 return se; 4511 } 4512 4513 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4514 4515 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4516 { 4517 /* 4518 * If still on the runqueue then deactivate_task() 4519 * was not called and update_curr() has to be done: 4520 */ 4521 if (prev->on_rq) 4522 update_curr(cfs_rq); 4523 4524 /* throttle cfs_rqs exceeding runtime */ 4525 check_cfs_rq_runtime(cfs_rq); 4526 4527 check_spread(cfs_rq, prev); 4528 4529 if (prev->on_rq) { 4530 update_stats_wait_start(cfs_rq, prev); 4531 /* Put 'current' back into the tree. */ 4532 __enqueue_entity(cfs_rq, prev); 4533 /* in !on_rq case, update occurred at dequeue */ 4534 update_load_avg(cfs_rq, prev, 0); 4535 } 4536 cfs_rq->curr = NULL; 4537 } 4538 4539 static void 4540 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4541 { 4542 /* 4543 * Update run-time statistics of the 'current'. 4544 */ 4545 update_curr(cfs_rq); 4546 4547 /* 4548 * Ensure that runnable average is periodically updated. 4549 */ 4550 update_load_avg(cfs_rq, curr, UPDATE_TG); 4551 update_cfs_group(curr); 4552 4553 #ifdef CONFIG_SCHED_HRTICK 4554 /* 4555 * queued ticks are scheduled to match the slice, so don't bother 4556 * validating it and just reschedule. 4557 */ 4558 if (queued) { 4559 resched_curr(rq_of(cfs_rq)); 4560 return; 4561 } 4562 /* 4563 * don't let the period tick interfere with the hrtick preemption 4564 */ 4565 if (!sched_feat(DOUBLE_TICK) && 4566 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4567 return; 4568 #endif 4569 4570 if (cfs_rq->nr_running > 1) 4571 check_preempt_tick(cfs_rq, curr); 4572 } 4573 4574 4575 /************************************************** 4576 * CFS bandwidth control machinery 4577 */ 4578 4579 #ifdef CONFIG_CFS_BANDWIDTH 4580 4581 #ifdef CONFIG_JUMP_LABEL 4582 static struct static_key __cfs_bandwidth_used; 4583 4584 static inline bool cfs_bandwidth_used(void) 4585 { 4586 return static_key_false(&__cfs_bandwidth_used); 4587 } 4588 4589 void cfs_bandwidth_usage_inc(void) 4590 { 4591 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4592 } 4593 4594 void cfs_bandwidth_usage_dec(void) 4595 { 4596 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4597 } 4598 #else /* CONFIG_JUMP_LABEL */ 4599 static bool cfs_bandwidth_used(void) 4600 { 4601 return true; 4602 } 4603 4604 void cfs_bandwidth_usage_inc(void) {} 4605 void cfs_bandwidth_usage_dec(void) {} 4606 #endif /* CONFIG_JUMP_LABEL */ 4607 4608 /* 4609 * default period for cfs group bandwidth. 4610 * default: 0.1s, units: nanoseconds 4611 */ 4612 static inline u64 default_cfs_period(void) 4613 { 4614 return 100000000ULL; 4615 } 4616 4617 static inline u64 sched_cfs_bandwidth_slice(void) 4618 { 4619 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4620 } 4621 4622 /* 4623 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4624 * directly instead of rq->clock to avoid adding additional synchronization 4625 * around rq->lock. 4626 * 4627 * requires cfs_b->lock 4628 */ 4629 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4630 { 4631 if (cfs_b->quota != RUNTIME_INF) 4632 cfs_b->runtime = cfs_b->quota; 4633 } 4634 4635 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4636 { 4637 return &tg->cfs_bandwidth; 4638 } 4639 4640 /* returns 0 on failure to allocate runtime */ 4641 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4642 struct cfs_rq *cfs_rq, u64 target_runtime) 4643 { 4644 u64 min_amount, amount = 0; 4645 4646 lockdep_assert_held(&cfs_b->lock); 4647 4648 /* note: this is a positive sum as runtime_remaining <= 0 */ 4649 min_amount = target_runtime - cfs_rq->runtime_remaining; 4650 4651 if (cfs_b->quota == RUNTIME_INF) 4652 amount = min_amount; 4653 else { 4654 start_cfs_bandwidth(cfs_b); 4655 4656 if (cfs_b->runtime > 0) { 4657 amount = min(cfs_b->runtime, min_amount); 4658 cfs_b->runtime -= amount; 4659 cfs_b->idle = 0; 4660 } 4661 } 4662 4663 cfs_rq->runtime_remaining += amount; 4664 4665 return cfs_rq->runtime_remaining > 0; 4666 } 4667 4668 /* returns 0 on failure to allocate runtime */ 4669 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4670 { 4671 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4672 int ret; 4673 4674 raw_spin_lock(&cfs_b->lock); 4675 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4676 raw_spin_unlock(&cfs_b->lock); 4677 4678 return ret; 4679 } 4680 4681 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4682 { 4683 /* dock delta_exec before expiring quota (as it could span periods) */ 4684 cfs_rq->runtime_remaining -= delta_exec; 4685 4686 if (likely(cfs_rq->runtime_remaining > 0)) 4687 return; 4688 4689 if (cfs_rq->throttled) 4690 return; 4691 /* 4692 * if we're unable to extend our runtime we resched so that the active 4693 * hierarchy can be throttled 4694 */ 4695 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4696 resched_curr(rq_of(cfs_rq)); 4697 } 4698 4699 static __always_inline 4700 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4701 { 4702 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4703 return; 4704 4705 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4706 } 4707 4708 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4709 { 4710 return cfs_bandwidth_used() && cfs_rq->throttled; 4711 } 4712 4713 /* check whether cfs_rq, or any parent, is throttled */ 4714 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4715 { 4716 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4717 } 4718 4719 /* 4720 * Ensure that neither of the group entities corresponding to src_cpu or 4721 * dest_cpu are members of a throttled hierarchy when performing group 4722 * load-balance operations. 4723 */ 4724 static inline int throttled_lb_pair(struct task_group *tg, 4725 int src_cpu, int dest_cpu) 4726 { 4727 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4728 4729 src_cfs_rq = tg->cfs_rq[src_cpu]; 4730 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4731 4732 return throttled_hierarchy(src_cfs_rq) || 4733 throttled_hierarchy(dest_cfs_rq); 4734 } 4735 4736 static int tg_unthrottle_up(struct task_group *tg, void *data) 4737 { 4738 struct rq *rq = data; 4739 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4740 4741 cfs_rq->throttle_count--; 4742 if (!cfs_rq->throttle_count) { 4743 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4744 cfs_rq->throttled_clock_task; 4745 4746 /* Add cfs_rq with already running entity in the list */ 4747 if (cfs_rq->nr_running >= 1) 4748 list_add_leaf_cfs_rq(cfs_rq); 4749 } 4750 4751 return 0; 4752 } 4753 4754 static int tg_throttle_down(struct task_group *tg, void *data) 4755 { 4756 struct rq *rq = data; 4757 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4758 4759 /* group is entering throttled state, stop time */ 4760 if (!cfs_rq->throttle_count) { 4761 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4762 list_del_leaf_cfs_rq(cfs_rq); 4763 } 4764 cfs_rq->throttle_count++; 4765 4766 return 0; 4767 } 4768 4769 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4770 { 4771 struct rq *rq = rq_of(cfs_rq); 4772 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4773 struct sched_entity *se; 4774 long task_delta, idle_task_delta, dequeue = 1; 4775 4776 raw_spin_lock(&cfs_b->lock); 4777 /* This will start the period timer if necessary */ 4778 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4779 /* 4780 * We have raced with bandwidth becoming available, and if we 4781 * actually throttled the timer might not unthrottle us for an 4782 * entire period. We additionally needed to make sure that any 4783 * subsequent check_cfs_rq_runtime calls agree not to throttle 4784 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4785 * for 1ns of runtime rather than just check cfs_b. 4786 */ 4787 dequeue = 0; 4788 } else { 4789 list_add_tail_rcu(&cfs_rq->throttled_list, 4790 &cfs_b->throttled_cfs_rq); 4791 } 4792 raw_spin_unlock(&cfs_b->lock); 4793 4794 if (!dequeue) 4795 return false; /* Throttle no longer required. */ 4796 4797 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4798 4799 /* freeze hierarchy runnable averages while throttled */ 4800 rcu_read_lock(); 4801 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4802 rcu_read_unlock(); 4803 4804 task_delta = cfs_rq->h_nr_running; 4805 idle_task_delta = cfs_rq->idle_h_nr_running; 4806 for_each_sched_entity(se) { 4807 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4808 /* throttled entity or throttle-on-deactivate */ 4809 if (!se->on_rq) 4810 goto done; 4811 4812 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4813 4814 qcfs_rq->h_nr_running -= task_delta; 4815 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4816 4817 if (qcfs_rq->load.weight) { 4818 /* Avoid re-evaluating load for this entity: */ 4819 se = parent_entity(se); 4820 break; 4821 } 4822 } 4823 4824 for_each_sched_entity(se) { 4825 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4826 /* throttled entity or throttle-on-deactivate */ 4827 if (!se->on_rq) 4828 goto done; 4829 4830 update_load_avg(qcfs_rq, se, 0); 4831 se_update_runnable(se); 4832 4833 qcfs_rq->h_nr_running -= task_delta; 4834 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4835 } 4836 4837 /* At this point se is NULL and we are at root level*/ 4838 sub_nr_running(rq, task_delta); 4839 4840 done: 4841 /* 4842 * Note: distribution will already see us throttled via the 4843 * throttled-list. rq->lock protects completion. 4844 */ 4845 cfs_rq->throttled = 1; 4846 cfs_rq->throttled_clock = rq_clock(rq); 4847 return true; 4848 } 4849 4850 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4851 { 4852 struct rq *rq = rq_of(cfs_rq); 4853 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4854 struct sched_entity *se; 4855 long task_delta, idle_task_delta; 4856 4857 se = cfs_rq->tg->se[cpu_of(rq)]; 4858 4859 cfs_rq->throttled = 0; 4860 4861 update_rq_clock(rq); 4862 4863 raw_spin_lock(&cfs_b->lock); 4864 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4865 list_del_rcu(&cfs_rq->throttled_list); 4866 raw_spin_unlock(&cfs_b->lock); 4867 4868 /* update hierarchical throttle state */ 4869 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4870 4871 if (!cfs_rq->load.weight) 4872 return; 4873 4874 task_delta = cfs_rq->h_nr_running; 4875 idle_task_delta = cfs_rq->idle_h_nr_running; 4876 for_each_sched_entity(se) { 4877 if (se->on_rq) 4878 break; 4879 cfs_rq = cfs_rq_of(se); 4880 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4881 4882 cfs_rq->h_nr_running += task_delta; 4883 cfs_rq->idle_h_nr_running += idle_task_delta; 4884 4885 /* end evaluation on encountering a throttled cfs_rq */ 4886 if (cfs_rq_throttled(cfs_rq)) 4887 goto unthrottle_throttle; 4888 } 4889 4890 for_each_sched_entity(se) { 4891 cfs_rq = cfs_rq_of(se); 4892 4893 update_load_avg(cfs_rq, se, UPDATE_TG); 4894 se_update_runnable(se); 4895 4896 cfs_rq->h_nr_running += task_delta; 4897 cfs_rq->idle_h_nr_running += idle_task_delta; 4898 4899 4900 /* end evaluation on encountering a throttled cfs_rq */ 4901 if (cfs_rq_throttled(cfs_rq)) 4902 goto unthrottle_throttle; 4903 4904 /* 4905 * One parent has been throttled and cfs_rq removed from the 4906 * list. Add it back to not break the leaf list. 4907 */ 4908 if (throttled_hierarchy(cfs_rq)) 4909 list_add_leaf_cfs_rq(cfs_rq); 4910 } 4911 4912 /* At this point se is NULL and we are at root level*/ 4913 add_nr_running(rq, task_delta); 4914 4915 unthrottle_throttle: 4916 /* 4917 * The cfs_rq_throttled() breaks in the above iteration can result in 4918 * incomplete leaf list maintenance, resulting in triggering the 4919 * assertion below. 4920 */ 4921 for_each_sched_entity(se) { 4922 cfs_rq = cfs_rq_of(se); 4923 4924 if (list_add_leaf_cfs_rq(cfs_rq)) 4925 break; 4926 } 4927 4928 assert_list_leaf_cfs_rq(rq); 4929 4930 /* Determine whether we need to wake up potentially idle CPU: */ 4931 if (rq->curr == rq->idle && rq->cfs.nr_running) 4932 resched_curr(rq); 4933 } 4934 4935 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 4936 { 4937 struct cfs_rq *cfs_rq; 4938 u64 runtime, remaining = 1; 4939 4940 rcu_read_lock(); 4941 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4942 throttled_list) { 4943 struct rq *rq = rq_of(cfs_rq); 4944 struct rq_flags rf; 4945 4946 rq_lock_irqsave(rq, &rf); 4947 if (!cfs_rq_throttled(cfs_rq)) 4948 goto next; 4949 4950 /* By the above check, this should never be true */ 4951 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 4952 4953 raw_spin_lock(&cfs_b->lock); 4954 runtime = -cfs_rq->runtime_remaining + 1; 4955 if (runtime > cfs_b->runtime) 4956 runtime = cfs_b->runtime; 4957 cfs_b->runtime -= runtime; 4958 remaining = cfs_b->runtime; 4959 raw_spin_unlock(&cfs_b->lock); 4960 4961 cfs_rq->runtime_remaining += runtime; 4962 4963 /* we check whether we're throttled above */ 4964 if (cfs_rq->runtime_remaining > 0) 4965 unthrottle_cfs_rq(cfs_rq); 4966 4967 next: 4968 rq_unlock_irqrestore(rq, &rf); 4969 4970 if (!remaining) 4971 break; 4972 } 4973 rcu_read_unlock(); 4974 } 4975 4976 /* 4977 * Responsible for refilling a task_group's bandwidth and unthrottling its 4978 * cfs_rqs as appropriate. If there has been no activity within the last 4979 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4980 * used to track this state. 4981 */ 4982 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 4983 { 4984 int throttled; 4985 4986 /* no need to continue the timer with no bandwidth constraint */ 4987 if (cfs_b->quota == RUNTIME_INF) 4988 goto out_deactivate; 4989 4990 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4991 cfs_b->nr_periods += overrun; 4992 4993 /* 4994 * idle depends on !throttled (for the case of a large deficit), and if 4995 * we're going inactive then everything else can be deferred 4996 */ 4997 if (cfs_b->idle && !throttled) 4998 goto out_deactivate; 4999 5000 __refill_cfs_bandwidth_runtime(cfs_b); 5001 5002 if (!throttled) { 5003 /* mark as potentially idle for the upcoming period */ 5004 cfs_b->idle = 1; 5005 return 0; 5006 } 5007 5008 /* account preceding periods in which throttling occurred */ 5009 cfs_b->nr_throttled += overrun; 5010 5011 /* 5012 * This check is repeated as we release cfs_b->lock while we unthrottle. 5013 */ 5014 while (throttled && cfs_b->runtime > 0) { 5015 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5016 /* we can't nest cfs_b->lock while distributing bandwidth */ 5017 distribute_cfs_runtime(cfs_b); 5018 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5019 5020 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5021 } 5022 5023 /* 5024 * While we are ensured activity in the period following an 5025 * unthrottle, this also covers the case in which the new bandwidth is 5026 * insufficient to cover the existing bandwidth deficit. (Forcing the 5027 * timer to remain active while there are any throttled entities.) 5028 */ 5029 cfs_b->idle = 0; 5030 5031 return 0; 5032 5033 out_deactivate: 5034 return 1; 5035 } 5036 5037 /* a cfs_rq won't donate quota below this amount */ 5038 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5039 /* minimum remaining period time to redistribute slack quota */ 5040 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5041 /* how long we wait to gather additional slack before distributing */ 5042 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5043 5044 /* 5045 * Are we near the end of the current quota period? 5046 * 5047 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5048 * hrtimer base being cleared by hrtimer_start. In the case of 5049 * migrate_hrtimers, base is never cleared, so we are fine. 5050 */ 5051 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5052 { 5053 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5054 u64 remaining; 5055 5056 /* if the call-back is running a quota refresh is already occurring */ 5057 if (hrtimer_callback_running(refresh_timer)) 5058 return 1; 5059 5060 /* is a quota refresh about to occur? */ 5061 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5062 if (remaining < min_expire) 5063 return 1; 5064 5065 return 0; 5066 } 5067 5068 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5069 { 5070 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5071 5072 /* if there's a quota refresh soon don't bother with slack */ 5073 if (runtime_refresh_within(cfs_b, min_left)) 5074 return; 5075 5076 /* don't push forwards an existing deferred unthrottle */ 5077 if (cfs_b->slack_started) 5078 return; 5079 cfs_b->slack_started = true; 5080 5081 hrtimer_start(&cfs_b->slack_timer, 5082 ns_to_ktime(cfs_bandwidth_slack_period), 5083 HRTIMER_MODE_REL); 5084 } 5085 5086 /* we know any runtime found here is valid as update_curr() precedes return */ 5087 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5088 { 5089 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5090 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5091 5092 if (slack_runtime <= 0) 5093 return; 5094 5095 raw_spin_lock(&cfs_b->lock); 5096 if (cfs_b->quota != RUNTIME_INF) { 5097 cfs_b->runtime += slack_runtime; 5098 5099 /* we are under rq->lock, defer unthrottling using a timer */ 5100 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5101 !list_empty(&cfs_b->throttled_cfs_rq)) 5102 start_cfs_slack_bandwidth(cfs_b); 5103 } 5104 raw_spin_unlock(&cfs_b->lock); 5105 5106 /* even if it's not valid for return we don't want to try again */ 5107 cfs_rq->runtime_remaining -= slack_runtime; 5108 } 5109 5110 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5111 { 5112 if (!cfs_bandwidth_used()) 5113 return; 5114 5115 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5116 return; 5117 5118 __return_cfs_rq_runtime(cfs_rq); 5119 } 5120 5121 /* 5122 * This is done with a timer (instead of inline with bandwidth return) since 5123 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5124 */ 5125 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5126 { 5127 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5128 unsigned long flags; 5129 5130 /* confirm we're still not at a refresh boundary */ 5131 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5132 cfs_b->slack_started = false; 5133 5134 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5135 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5136 return; 5137 } 5138 5139 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5140 runtime = cfs_b->runtime; 5141 5142 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5143 5144 if (!runtime) 5145 return; 5146 5147 distribute_cfs_runtime(cfs_b); 5148 } 5149 5150 /* 5151 * When a group wakes up we want to make sure that its quota is not already 5152 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5153 * runtime as update_curr() throttling can not trigger until it's on-rq. 5154 */ 5155 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5156 { 5157 if (!cfs_bandwidth_used()) 5158 return; 5159 5160 /* an active group must be handled by the update_curr()->put() path */ 5161 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5162 return; 5163 5164 /* ensure the group is not already throttled */ 5165 if (cfs_rq_throttled(cfs_rq)) 5166 return; 5167 5168 /* update runtime allocation */ 5169 account_cfs_rq_runtime(cfs_rq, 0); 5170 if (cfs_rq->runtime_remaining <= 0) 5171 throttle_cfs_rq(cfs_rq); 5172 } 5173 5174 static void sync_throttle(struct task_group *tg, int cpu) 5175 { 5176 struct cfs_rq *pcfs_rq, *cfs_rq; 5177 5178 if (!cfs_bandwidth_used()) 5179 return; 5180 5181 if (!tg->parent) 5182 return; 5183 5184 cfs_rq = tg->cfs_rq[cpu]; 5185 pcfs_rq = tg->parent->cfs_rq[cpu]; 5186 5187 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5188 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5189 } 5190 5191 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5192 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5193 { 5194 if (!cfs_bandwidth_used()) 5195 return false; 5196 5197 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5198 return false; 5199 5200 /* 5201 * it's possible for a throttled entity to be forced into a running 5202 * state (e.g. set_curr_task), in this case we're finished. 5203 */ 5204 if (cfs_rq_throttled(cfs_rq)) 5205 return true; 5206 5207 return throttle_cfs_rq(cfs_rq); 5208 } 5209 5210 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5211 { 5212 struct cfs_bandwidth *cfs_b = 5213 container_of(timer, struct cfs_bandwidth, slack_timer); 5214 5215 do_sched_cfs_slack_timer(cfs_b); 5216 5217 return HRTIMER_NORESTART; 5218 } 5219 5220 extern const u64 max_cfs_quota_period; 5221 5222 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5223 { 5224 struct cfs_bandwidth *cfs_b = 5225 container_of(timer, struct cfs_bandwidth, period_timer); 5226 unsigned long flags; 5227 int overrun; 5228 int idle = 0; 5229 int count = 0; 5230 5231 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5232 for (;;) { 5233 overrun = hrtimer_forward_now(timer, cfs_b->period); 5234 if (!overrun) 5235 break; 5236 5237 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5238 5239 if (++count > 3) { 5240 u64 new, old = ktime_to_ns(cfs_b->period); 5241 5242 /* 5243 * Grow period by a factor of 2 to avoid losing precision. 5244 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5245 * to fail. 5246 */ 5247 new = old * 2; 5248 if (new < max_cfs_quota_period) { 5249 cfs_b->period = ns_to_ktime(new); 5250 cfs_b->quota *= 2; 5251 5252 pr_warn_ratelimited( 5253 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5254 smp_processor_id(), 5255 div_u64(new, NSEC_PER_USEC), 5256 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5257 } else { 5258 pr_warn_ratelimited( 5259 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5260 smp_processor_id(), 5261 div_u64(old, NSEC_PER_USEC), 5262 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5263 } 5264 5265 /* reset count so we don't come right back in here */ 5266 count = 0; 5267 } 5268 } 5269 if (idle) 5270 cfs_b->period_active = 0; 5271 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5272 5273 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5274 } 5275 5276 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5277 { 5278 raw_spin_lock_init(&cfs_b->lock); 5279 cfs_b->runtime = 0; 5280 cfs_b->quota = RUNTIME_INF; 5281 cfs_b->period = ns_to_ktime(default_cfs_period()); 5282 5283 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5284 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5285 cfs_b->period_timer.function = sched_cfs_period_timer; 5286 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5287 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5288 cfs_b->slack_started = false; 5289 } 5290 5291 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5292 { 5293 cfs_rq->runtime_enabled = 0; 5294 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5295 } 5296 5297 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5298 { 5299 lockdep_assert_held(&cfs_b->lock); 5300 5301 if (cfs_b->period_active) 5302 return; 5303 5304 cfs_b->period_active = 1; 5305 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5306 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5307 } 5308 5309 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5310 { 5311 /* init_cfs_bandwidth() was not called */ 5312 if (!cfs_b->throttled_cfs_rq.next) 5313 return; 5314 5315 hrtimer_cancel(&cfs_b->period_timer); 5316 hrtimer_cancel(&cfs_b->slack_timer); 5317 } 5318 5319 /* 5320 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5321 * 5322 * The race is harmless, since modifying bandwidth settings of unhooked group 5323 * bits doesn't do much. 5324 */ 5325 5326 /* cpu online callback */ 5327 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5328 { 5329 struct task_group *tg; 5330 5331 lockdep_assert_held(&rq->lock); 5332 5333 rcu_read_lock(); 5334 list_for_each_entry_rcu(tg, &task_groups, list) { 5335 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5336 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5337 5338 raw_spin_lock(&cfs_b->lock); 5339 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5340 raw_spin_unlock(&cfs_b->lock); 5341 } 5342 rcu_read_unlock(); 5343 } 5344 5345 /* cpu offline callback */ 5346 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5347 { 5348 struct task_group *tg; 5349 5350 lockdep_assert_held(&rq->lock); 5351 5352 rcu_read_lock(); 5353 list_for_each_entry_rcu(tg, &task_groups, list) { 5354 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5355 5356 if (!cfs_rq->runtime_enabled) 5357 continue; 5358 5359 /* 5360 * clock_task is not advancing so we just need to make sure 5361 * there's some valid quota amount 5362 */ 5363 cfs_rq->runtime_remaining = 1; 5364 /* 5365 * Offline rq is schedulable till CPU is completely disabled 5366 * in take_cpu_down(), so we prevent new cfs throttling here. 5367 */ 5368 cfs_rq->runtime_enabled = 0; 5369 5370 if (cfs_rq_throttled(cfs_rq)) 5371 unthrottle_cfs_rq(cfs_rq); 5372 } 5373 rcu_read_unlock(); 5374 } 5375 5376 #else /* CONFIG_CFS_BANDWIDTH */ 5377 5378 static inline bool cfs_bandwidth_used(void) 5379 { 5380 return false; 5381 } 5382 5383 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5384 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5385 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5386 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5387 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5388 5389 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5390 { 5391 return 0; 5392 } 5393 5394 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5395 { 5396 return 0; 5397 } 5398 5399 static inline int throttled_lb_pair(struct task_group *tg, 5400 int src_cpu, int dest_cpu) 5401 { 5402 return 0; 5403 } 5404 5405 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5406 5407 #ifdef CONFIG_FAIR_GROUP_SCHED 5408 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5409 #endif 5410 5411 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5412 { 5413 return NULL; 5414 } 5415 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5416 static inline void update_runtime_enabled(struct rq *rq) {} 5417 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5418 5419 #endif /* CONFIG_CFS_BANDWIDTH */ 5420 5421 /************************************************** 5422 * CFS operations on tasks: 5423 */ 5424 5425 #ifdef CONFIG_SCHED_HRTICK 5426 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5427 { 5428 struct sched_entity *se = &p->se; 5429 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5430 5431 SCHED_WARN_ON(task_rq(p) != rq); 5432 5433 if (rq->cfs.h_nr_running > 1) { 5434 u64 slice = sched_slice(cfs_rq, se); 5435 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5436 s64 delta = slice - ran; 5437 5438 if (delta < 0) { 5439 if (task_current(rq, p)) 5440 resched_curr(rq); 5441 return; 5442 } 5443 hrtick_start(rq, delta); 5444 } 5445 } 5446 5447 /* 5448 * called from enqueue/dequeue and updates the hrtick when the 5449 * current task is from our class and nr_running is low enough 5450 * to matter. 5451 */ 5452 static void hrtick_update(struct rq *rq) 5453 { 5454 struct task_struct *curr = rq->curr; 5455 5456 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 5457 return; 5458 5459 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5460 hrtick_start_fair(rq, curr); 5461 } 5462 #else /* !CONFIG_SCHED_HRTICK */ 5463 static inline void 5464 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5465 { 5466 } 5467 5468 static inline void hrtick_update(struct rq *rq) 5469 { 5470 } 5471 #endif 5472 5473 #ifdef CONFIG_SMP 5474 static inline unsigned long cpu_util(int cpu); 5475 5476 static inline bool cpu_overutilized(int cpu) 5477 { 5478 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5479 } 5480 5481 static inline void update_overutilized_status(struct rq *rq) 5482 { 5483 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5484 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5485 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5486 } 5487 } 5488 #else 5489 static inline void update_overutilized_status(struct rq *rq) { } 5490 #endif 5491 5492 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5493 static int sched_idle_rq(struct rq *rq) 5494 { 5495 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5496 rq->nr_running); 5497 } 5498 5499 #ifdef CONFIG_SMP 5500 static int sched_idle_cpu(int cpu) 5501 { 5502 return sched_idle_rq(cpu_rq(cpu)); 5503 } 5504 #endif 5505 5506 /* 5507 * The enqueue_task method is called before nr_running is 5508 * increased. Here we update the fair scheduling stats and 5509 * then put the task into the rbtree: 5510 */ 5511 static void 5512 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5513 { 5514 struct cfs_rq *cfs_rq; 5515 struct sched_entity *se = &p->se; 5516 int idle_h_nr_running = task_has_idle_policy(p); 5517 int task_new = !(flags & ENQUEUE_WAKEUP); 5518 5519 /* 5520 * The code below (indirectly) updates schedutil which looks at 5521 * the cfs_rq utilization to select a frequency. 5522 * Let's add the task's estimated utilization to the cfs_rq's 5523 * estimated utilization, before we update schedutil. 5524 */ 5525 util_est_enqueue(&rq->cfs, p); 5526 5527 /* 5528 * If in_iowait is set, the code below may not trigger any cpufreq 5529 * utilization updates, so do it here explicitly with the IOWAIT flag 5530 * passed. 5531 */ 5532 if (p->in_iowait) 5533 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5534 5535 for_each_sched_entity(se) { 5536 if (se->on_rq) 5537 break; 5538 cfs_rq = cfs_rq_of(se); 5539 enqueue_entity(cfs_rq, se, flags); 5540 5541 cfs_rq->h_nr_running++; 5542 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5543 5544 /* end evaluation on encountering a throttled cfs_rq */ 5545 if (cfs_rq_throttled(cfs_rq)) 5546 goto enqueue_throttle; 5547 5548 flags = ENQUEUE_WAKEUP; 5549 } 5550 5551 for_each_sched_entity(se) { 5552 cfs_rq = cfs_rq_of(se); 5553 5554 update_load_avg(cfs_rq, se, UPDATE_TG); 5555 se_update_runnable(se); 5556 update_cfs_group(se); 5557 5558 cfs_rq->h_nr_running++; 5559 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5560 5561 /* end evaluation on encountering a throttled cfs_rq */ 5562 if (cfs_rq_throttled(cfs_rq)) 5563 goto enqueue_throttle; 5564 5565 /* 5566 * One parent has been throttled and cfs_rq removed from the 5567 * list. Add it back to not break the leaf list. 5568 */ 5569 if (throttled_hierarchy(cfs_rq)) 5570 list_add_leaf_cfs_rq(cfs_rq); 5571 } 5572 5573 /* At this point se is NULL and we are at root level*/ 5574 add_nr_running(rq, 1); 5575 5576 /* 5577 * Since new tasks are assigned an initial util_avg equal to 5578 * half of the spare capacity of their CPU, tiny tasks have the 5579 * ability to cross the overutilized threshold, which will 5580 * result in the load balancer ruining all the task placement 5581 * done by EAS. As a way to mitigate that effect, do not account 5582 * for the first enqueue operation of new tasks during the 5583 * overutilized flag detection. 5584 * 5585 * A better way of solving this problem would be to wait for 5586 * the PELT signals of tasks to converge before taking them 5587 * into account, but that is not straightforward to implement, 5588 * and the following generally works well enough in practice. 5589 */ 5590 if (!task_new) 5591 update_overutilized_status(rq); 5592 5593 enqueue_throttle: 5594 if (cfs_bandwidth_used()) { 5595 /* 5596 * When bandwidth control is enabled; the cfs_rq_throttled() 5597 * breaks in the above iteration can result in incomplete 5598 * leaf list maintenance, resulting in triggering the assertion 5599 * below. 5600 */ 5601 for_each_sched_entity(se) { 5602 cfs_rq = cfs_rq_of(se); 5603 5604 if (list_add_leaf_cfs_rq(cfs_rq)) 5605 break; 5606 } 5607 } 5608 5609 assert_list_leaf_cfs_rq(rq); 5610 5611 hrtick_update(rq); 5612 } 5613 5614 static void set_next_buddy(struct sched_entity *se); 5615 5616 /* 5617 * The dequeue_task method is called before nr_running is 5618 * decreased. We remove the task from the rbtree and 5619 * update the fair scheduling stats: 5620 */ 5621 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5622 { 5623 struct cfs_rq *cfs_rq; 5624 struct sched_entity *se = &p->se; 5625 int task_sleep = flags & DEQUEUE_SLEEP; 5626 int idle_h_nr_running = task_has_idle_policy(p); 5627 bool was_sched_idle = sched_idle_rq(rq); 5628 5629 util_est_dequeue(&rq->cfs, p); 5630 5631 for_each_sched_entity(se) { 5632 cfs_rq = cfs_rq_of(se); 5633 dequeue_entity(cfs_rq, se, flags); 5634 5635 cfs_rq->h_nr_running--; 5636 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5637 5638 /* end evaluation on encountering a throttled cfs_rq */ 5639 if (cfs_rq_throttled(cfs_rq)) 5640 goto dequeue_throttle; 5641 5642 /* Don't dequeue parent if it has other entities besides us */ 5643 if (cfs_rq->load.weight) { 5644 /* Avoid re-evaluating load for this entity: */ 5645 se = parent_entity(se); 5646 /* 5647 * Bias pick_next to pick a task from this cfs_rq, as 5648 * p is sleeping when it is within its sched_slice. 5649 */ 5650 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5651 set_next_buddy(se); 5652 break; 5653 } 5654 flags |= DEQUEUE_SLEEP; 5655 } 5656 5657 for_each_sched_entity(se) { 5658 cfs_rq = cfs_rq_of(se); 5659 5660 update_load_avg(cfs_rq, se, UPDATE_TG); 5661 se_update_runnable(se); 5662 update_cfs_group(se); 5663 5664 cfs_rq->h_nr_running--; 5665 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5666 5667 /* end evaluation on encountering a throttled cfs_rq */ 5668 if (cfs_rq_throttled(cfs_rq)) 5669 goto dequeue_throttle; 5670 5671 } 5672 5673 /* At this point se is NULL and we are at root level*/ 5674 sub_nr_running(rq, 1); 5675 5676 /* balance early to pull high priority tasks */ 5677 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5678 rq->next_balance = jiffies; 5679 5680 dequeue_throttle: 5681 util_est_update(&rq->cfs, p, task_sleep); 5682 hrtick_update(rq); 5683 } 5684 5685 #ifdef CONFIG_SMP 5686 5687 /* Working cpumask for: load_balance, load_balance_newidle. */ 5688 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5689 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5690 5691 #ifdef CONFIG_NO_HZ_COMMON 5692 5693 static struct { 5694 cpumask_var_t idle_cpus_mask; 5695 atomic_t nr_cpus; 5696 int has_blocked; /* Idle CPUS has blocked load */ 5697 unsigned long next_balance; /* in jiffy units */ 5698 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5699 } nohz ____cacheline_aligned; 5700 5701 #endif /* CONFIG_NO_HZ_COMMON */ 5702 5703 static unsigned long cpu_load(struct rq *rq) 5704 { 5705 return cfs_rq_load_avg(&rq->cfs); 5706 } 5707 5708 /* 5709 * cpu_load_without - compute CPU load without any contributions from *p 5710 * @cpu: the CPU which load is requested 5711 * @p: the task which load should be discounted 5712 * 5713 * The load of a CPU is defined by the load of tasks currently enqueued on that 5714 * CPU as well as tasks which are currently sleeping after an execution on that 5715 * CPU. 5716 * 5717 * This method returns the load of the specified CPU by discounting the load of 5718 * the specified task, whenever the task is currently contributing to the CPU 5719 * load. 5720 */ 5721 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5722 { 5723 struct cfs_rq *cfs_rq; 5724 unsigned int load; 5725 5726 /* Task has no contribution or is new */ 5727 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5728 return cpu_load(rq); 5729 5730 cfs_rq = &rq->cfs; 5731 load = READ_ONCE(cfs_rq->avg.load_avg); 5732 5733 /* Discount task's util from CPU's util */ 5734 lsub_positive(&load, task_h_load(p)); 5735 5736 return load; 5737 } 5738 5739 static unsigned long cpu_runnable(struct rq *rq) 5740 { 5741 return cfs_rq_runnable_avg(&rq->cfs); 5742 } 5743 5744 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5745 { 5746 struct cfs_rq *cfs_rq; 5747 unsigned int runnable; 5748 5749 /* Task has no contribution or is new */ 5750 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5751 return cpu_runnable(rq); 5752 5753 cfs_rq = &rq->cfs; 5754 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5755 5756 /* Discount task's runnable from CPU's runnable */ 5757 lsub_positive(&runnable, p->se.avg.runnable_avg); 5758 5759 return runnable; 5760 } 5761 5762 static unsigned long capacity_of(int cpu) 5763 { 5764 return cpu_rq(cpu)->cpu_capacity; 5765 } 5766 5767 static void record_wakee(struct task_struct *p) 5768 { 5769 /* 5770 * Only decay a single time; tasks that have less then 1 wakeup per 5771 * jiffy will not have built up many flips. 5772 */ 5773 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5774 current->wakee_flips >>= 1; 5775 current->wakee_flip_decay_ts = jiffies; 5776 } 5777 5778 if (current->last_wakee != p) { 5779 current->last_wakee = p; 5780 current->wakee_flips++; 5781 } 5782 } 5783 5784 /* 5785 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5786 * 5787 * A waker of many should wake a different task than the one last awakened 5788 * at a frequency roughly N times higher than one of its wakees. 5789 * 5790 * In order to determine whether we should let the load spread vs consolidating 5791 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5792 * partner, and a factor of lls_size higher frequency in the other. 5793 * 5794 * With both conditions met, we can be relatively sure that the relationship is 5795 * non-monogamous, with partner count exceeding socket size. 5796 * 5797 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5798 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5799 * socket size. 5800 */ 5801 static int wake_wide(struct task_struct *p) 5802 { 5803 unsigned int master = current->wakee_flips; 5804 unsigned int slave = p->wakee_flips; 5805 int factor = __this_cpu_read(sd_llc_size); 5806 5807 if (master < slave) 5808 swap(master, slave); 5809 if (slave < factor || master < slave * factor) 5810 return 0; 5811 return 1; 5812 } 5813 5814 /* 5815 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5816 * soonest. For the purpose of speed we only consider the waking and previous 5817 * CPU. 5818 * 5819 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5820 * cache-affine and is (or will be) idle. 5821 * 5822 * wake_affine_weight() - considers the weight to reflect the average 5823 * scheduling latency of the CPUs. This seems to work 5824 * for the overloaded case. 5825 */ 5826 static int 5827 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5828 { 5829 /* 5830 * If this_cpu is idle, it implies the wakeup is from interrupt 5831 * context. Only allow the move if cache is shared. Otherwise an 5832 * interrupt intensive workload could force all tasks onto one 5833 * node depending on the IO topology or IRQ affinity settings. 5834 * 5835 * If the prev_cpu is idle and cache affine then avoid a migration. 5836 * There is no guarantee that the cache hot data from an interrupt 5837 * is more important than cache hot data on the prev_cpu and from 5838 * a cpufreq perspective, it's better to have higher utilisation 5839 * on one CPU. 5840 */ 5841 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5842 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5843 5844 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5845 return this_cpu; 5846 5847 if (available_idle_cpu(prev_cpu)) 5848 return prev_cpu; 5849 5850 return nr_cpumask_bits; 5851 } 5852 5853 static int 5854 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5855 int this_cpu, int prev_cpu, int sync) 5856 { 5857 s64 this_eff_load, prev_eff_load; 5858 unsigned long task_load; 5859 5860 this_eff_load = cpu_load(cpu_rq(this_cpu)); 5861 5862 if (sync) { 5863 unsigned long current_load = task_h_load(current); 5864 5865 if (current_load > this_eff_load) 5866 return this_cpu; 5867 5868 this_eff_load -= current_load; 5869 } 5870 5871 task_load = task_h_load(p); 5872 5873 this_eff_load += task_load; 5874 if (sched_feat(WA_BIAS)) 5875 this_eff_load *= 100; 5876 this_eff_load *= capacity_of(prev_cpu); 5877 5878 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 5879 prev_eff_load -= task_load; 5880 if (sched_feat(WA_BIAS)) 5881 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5882 prev_eff_load *= capacity_of(this_cpu); 5883 5884 /* 5885 * If sync, adjust the weight of prev_eff_load such that if 5886 * prev_eff == this_eff that select_idle_sibling() will consider 5887 * stacking the wakee on top of the waker if no other CPU is 5888 * idle. 5889 */ 5890 if (sync) 5891 prev_eff_load += 1; 5892 5893 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5894 } 5895 5896 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5897 int this_cpu, int prev_cpu, int sync) 5898 { 5899 int target = nr_cpumask_bits; 5900 5901 if (sched_feat(WA_IDLE)) 5902 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5903 5904 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5905 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5906 5907 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5908 if (target == nr_cpumask_bits) 5909 return prev_cpu; 5910 5911 schedstat_inc(sd->ttwu_move_affine); 5912 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5913 return target; 5914 } 5915 5916 static struct sched_group * 5917 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 5918 5919 /* 5920 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5921 */ 5922 static int 5923 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5924 { 5925 unsigned long load, min_load = ULONG_MAX; 5926 unsigned int min_exit_latency = UINT_MAX; 5927 u64 latest_idle_timestamp = 0; 5928 int least_loaded_cpu = this_cpu; 5929 int shallowest_idle_cpu = -1; 5930 int i; 5931 5932 /* Check if we have any choice: */ 5933 if (group->group_weight == 1) 5934 return cpumask_first(sched_group_span(group)); 5935 5936 /* Traverse only the allowed CPUs */ 5937 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 5938 if (sched_idle_cpu(i)) 5939 return i; 5940 5941 if (available_idle_cpu(i)) { 5942 struct rq *rq = cpu_rq(i); 5943 struct cpuidle_state *idle = idle_get_state(rq); 5944 if (idle && idle->exit_latency < min_exit_latency) { 5945 /* 5946 * We give priority to a CPU whose idle state 5947 * has the smallest exit latency irrespective 5948 * of any idle timestamp. 5949 */ 5950 min_exit_latency = idle->exit_latency; 5951 latest_idle_timestamp = rq->idle_stamp; 5952 shallowest_idle_cpu = i; 5953 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5954 rq->idle_stamp > latest_idle_timestamp) { 5955 /* 5956 * If equal or no active idle state, then 5957 * the most recently idled CPU might have 5958 * a warmer cache. 5959 */ 5960 latest_idle_timestamp = rq->idle_stamp; 5961 shallowest_idle_cpu = i; 5962 } 5963 } else if (shallowest_idle_cpu == -1) { 5964 load = cpu_load(cpu_rq(i)); 5965 if (load < min_load) { 5966 min_load = load; 5967 least_loaded_cpu = i; 5968 } 5969 } 5970 } 5971 5972 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5973 } 5974 5975 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5976 int cpu, int prev_cpu, int sd_flag) 5977 { 5978 int new_cpu = cpu; 5979 5980 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 5981 return prev_cpu; 5982 5983 /* 5984 * We need task's util for cpu_util_without, sync it up to 5985 * prev_cpu's last_update_time. 5986 */ 5987 if (!(sd_flag & SD_BALANCE_FORK)) 5988 sync_entity_load_avg(&p->se); 5989 5990 while (sd) { 5991 struct sched_group *group; 5992 struct sched_domain *tmp; 5993 int weight; 5994 5995 if (!(sd->flags & sd_flag)) { 5996 sd = sd->child; 5997 continue; 5998 } 5999 6000 group = find_idlest_group(sd, p, cpu); 6001 if (!group) { 6002 sd = sd->child; 6003 continue; 6004 } 6005 6006 new_cpu = find_idlest_group_cpu(group, p, cpu); 6007 if (new_cpu == cpu) { 6008 /* Now try balancing at a lower domain level of 'cpu': */ 6009 sd = sd->child; 6010 continue; 6011 } 6012 6013 /* Now try balancing at a lower domain level of 'new_cpu': */ 6014 cpu = new_cpu; 6015 weight = sd->span_weight; 6016 sd = NULL; 6017 for_each_domain(cpu, tmp) { 6018 if (weight <= tmp->span_weight) 6019 break; 6020 if (tmp->flags & sd_flag) 6021 sd = tmp; 6022 } 6023 } 6024 6025 return new_cpu; 6026 } 6027 6028 static inline int __select_idle_cpu(int cpu) 6029 { 6030 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6031 return cpu; 6032 6033 return -1; 6034 } 6035 6036 #ifdef CONFIG_SCHED_SMT 6037 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6038 EXPORT_SYMBOL_GPL(sched_smt_present); 6039 6040 static inline void set_idle_cores(int cpu, int val) 6041 { 6042 struct sched_domain_shared *sds; 6043 6044 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6045 if (sds) 6046 WRITE_ONCE(sds->has_idle_cores, val); 6047 } 6048 6049 static inline bool test_idle_cores(int cpu, bool def) 6050 { 6051 struct sched_domain_shared *sds; 6052 6053 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6054 if (sds) 6055 return READ_ONCE(sds->has_idle_cores); 6056 6057 return def; 6058 } 6059 6060 /* 6061 * Scans the local SMT mask to see if the entire core is idle, and records this 6062 * information in sd_llc_shared->has_idle_cores. 6063 * 6064 * Since SMT siblings share all cache levels, inspecting this limited remote 6065 * state should be fairly cheap. 6066 */ 6067 void __update_idle_core(struct rq *rq) 6068 { 6069 int core = cpu_of(rq); 6070 int cpu; 6071 6072 rcu_read_lock(); 6073 if (test_idle_cores(core, true)) 6074 goto unlock; 6075 6076 for_each_cpu(cpu, cpu_smt_mask(core)) { 6077 if (cpu == core) 6078 continue; 6079 6080 if (!available_idle_cpu(cpu)) 6081 goto unlock; 6082 } 6083 6084 set_idle_cores(core, 1); 6085 unlock: 6086 rcu_read_unlock(); 6087 } 6088 6089 /* 6090 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6091 * there are no idle cores left in the system; tracked through 6092 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6093 */ 6094 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6095 { 6096 bool idle = true; 6097 int cpu; 6098 6099 if (!static_branch_likely(&sched_smt_present)) 6100 return __select_idle_cpu(core); 6101 6102 for_each_cpu(cpu, cpu_smt_mask(core)) { 6103 if (!available_idle_cpu(cpu)) { 6104 idle = false; 6105 if (*idle_cpu == -1) { 6106 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6107 *idle_cpu = cpu; 6108 break; 6109 } 6110 continue; 6111 } 6112 break; 6113 } 6114 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6115 *idle_cpu = cpu; 6116 } 6117 6118 if (idle) 6119 return core; 6120 6121 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6122 return -1; 6123 } 6124 6125 /* 6126 * Scan the local SMT mask for idle CPUs. 6127 */ 6128 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6129 { 6130 int cpu; 6131 6132 for_each_cpu(cpu, cpu_smt_mask(target)) { 6133 if (!cpumask_test_cpu(cpu, p->cpus_ptr) || 6134 !cpumask_test_cpu(cpu, sched_domain_span(sd))) 6135 continue; 6136 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6137 return cpu; 6138 } 6139 6140 return -1; 6141 } 6142 6143 #else /* CONFIG_SCHED_SMT */ 6144 6145 static inline void set_idle_cores(int cpu, int val) 6146 { 6147 } 6148 6149 static inline bool test_idle_cores(int cpu, bool def) 6150 { 6151 return def; 6152 } 6153 6154 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6155 { 6156 return __select_idle_cpu(core); 6157 } 6158 6159 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6160 { 6161 return -1; 6162 } 6163 6164 #endif /* CONFIG_SCHED_SMT */ 6165 6166 /* 6167 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6168 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6169 * average idle time for this rq (as found in rq->avg_idle). 6170 */ 6171 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6172 { 6173 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6174 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6175 int this = smp_processor_id(); 6176 struct sched_domain *this_sd; 6177 u64 time; 6178 6179 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6180 if (!this_sd) 6181 return -1; 6182 6183 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6184 6185 if (sched_feat(SIS_PROP) && !has_idle_core) { 6186 u64 avg_cost, avg_idle, span_avg; 6187 6188 /* 6189 * Due to large variance we need a large fuzz factor; 6190 * hackbench in particularly is sensitive here. 6191 */ 6192 avg_idle = this_rq()->avg_idle / 512; 6193 avg_cost = this_sd->avg_scan_cost + 1; 6194 6195 span_avg = sd->span_weight * avg_idle; 6196 if (span_avg > 4*avg_cost) 6197 nr = div_u64(span_avg, avg_cost); 6198 else 6199 nr = 4; 6200 6201 time = cpu_clock(this); 6202 } 6203 6204 for_each_cpu_wrap(cpu, cpus, target) { 6205 if (has_idle_core) { 6206 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6207 if ((unsigned int)i < nr_cpumask_bits) 6208 return i; 6209 6210 } else { 6211 if (!--nr) 6212 return -1; 6213 idle_cpu = __select_idle_cpu(cpu); 6214 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6215 break; 6216 } 6217 } 6218 6219 if (has_idle_core) 6220 set_idle_cores(target, false); 6221 6222 if (sched_feat(SIS_PROP) && !has_idle_core) { 6223 time = cpu_clock(this) - time; 6224 update_avg(&this_sd->avg_scan_cost, time); 6225 } 6226 6227 return idle_cpu; 6228 } 6229 6230 /* 6231 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6232 * the task fits. If no CPU is big enough, but there are idle ones, try to 6233 * maximize capacity. 6234 */ 6235 static int 6236 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6237 { 6238 unsigned long task_util, best_cap = 0; 6239 int cpu, best_cpu = -1; 6240 struct cpumask *cpus; 6241 6242 cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6243 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6244 6245 task_util = uclamp_task_util(p); 6246 6247 for_each_cpu_wrap(cpu, cpus, target) { 6248 unsigned long cpu_cap = capacity_of(cpu); 6249 6250 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6251 continue; 6252 if (fits_capacity(task_util, cpu_cap)) 6253 return cpu; 6254 6255 if (cpu_cap > best_cap) { 6256 best_cap = cpu_cap; 6257 best_cpu = cpu; 6258 } 6259 } 6260 6261 return best_cpu; 6262 } 6263 6264 static inline bool asym_fits_capacity(int task_util, int cpu) 6265 { 6266 if (static_branch_unlikely(&sched_asym_cpucapacity)) 6267 return fits_capacity(task_util, capacity_of(cpu)); 6268 6269 return true; 6270 } 6271 6272 /* 6273 * Try and locate an idle core/thread in the LLC cache domain. 6274 */ 6275 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6276 { 6277 bool has_idle_core = false; 6278 struct sched_domain *sd; 6279 unsigned long task_util; 6280 int i, recent_used_cpu; 6281 6282 /* 6283 * On asymmetric system, update task utilization because we will check 6284 * that the task fits with cpu's capacity. 6285 */ 6286 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6287 sync_entity_load_avg(&p->se); 6288 task_util = uclamp_task_util(p); 6289 } 6290 6291 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6292 asym_fits_capacity(task_util, target)) 6293 return target; 6294 6295 /* 6296 * If the previous CPU is cache affine and idle, don't be stupid: 6297 */ 6298 if (prev != target && cpus_share_cache(prev, target) && 6299 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6300 asym_fits_capacity(task_util, prev)) 6301 return prev; 6302 6303 /* 6304 * Allow a per-cpu kthread to stack with the wakee if the 6305 * kworker thread and the tasks previous CPUs are the same. 6306 * The assumption is that the wakee queued work for the 6307 * per-cpu kthread that is now complete and the wakeup is 6308 * essentially a sync wakeup. An obvious example of this 6309 * pattern is IO completions. 6310 */ 6311 if (is_per_cpu_kthread(current) && 6312 prev == smp_processor_id() && 6313 this_rq()->nr_running <= 1) { 6314 return prev; 6315 } 6316 6317 /* Check a recently used CPU as a potential idle candidate: */ 6318 recent_used_cpu = p->recent_used_cpu; 6319 if (recent_used_cpu != prev && 6320 recent_used_cpu != target && 6321 cpus_share_cache(recent_used_cpu, target) && 6322 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6323 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6324 asym_fits_capacity(task_util, recent_used_cpu)) { 6325 /* 6326 * Replace recent_used_cpu with prev as it is a potential 6327 * candidate for the next wake: 6328 */ 6329 p->recent_used_cpu = prev; 6330 return recent_used_cpu; 6331 } 6332 6333 /* 6334 * For asymmetric CPU capacity systems, our domain of interest is 6335 * sd_asym_cpucapacity rather than sd_llc. 6336 */ 6337 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6338 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6339 /* 6340 * On an asymmetric CPU capacity system where an exclusive 6341 * cpuset defines a symmetric island (i.e. one unique 6342 * capacity_orig value through the cpuset), the key will be set 6343 * but the CPUs within that cpuset will not have a domain with 6344 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6345 * capacity path. 6346 */ 6347 if (sd) { 6348 i = select_idle_capacity(p, sd, target); 6349 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6350 } 6351 } 6352 6353 sd = rcu_dereference(per_cpu(sd_llc, target)); 6354 if (!sd) 6355 return target; 6356 6357 if (sched_smt_active()) { 6358 has_idle_core = test_idle_cores(target, false); 6359 6360 if (!has_idle_core && cpus_share_cache(prev, target)) { 6361 i = select_idle_smt(p, sd, prev); 6362 if ((unsigned int)i < nr_cpumask_bits) 6363 return i; 6364 } 6365 } 6366 6367 i = select_idle_cpu(p, sd, has_idle_core, target); 6368 if ((unsigned)i < nr_cpumask_bits) 6369 return i; 6370 6371 return target; 6372 } 6373 6374 /** 6375 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks. 6376 * @cpu: the CPU to get the utilization of 6377 * 6378 * The unit of the return value must be the one of capacity so we can compare 6379 * the utilization with the capacity of the CPU that is available for CFS task 6380 * (ie cpu_capacity). 6381 * 6382 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6383 * recent utilization of currently non-runnable tasks on a CPU. It represents 6384 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6385 * capacity_orig is the cpu_capacity available at the highest frequency 6386 * (arch_scale_freq_capacity()). 6387 * The utilization of a CPU converges towards a sum equal to or less than the 6388 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6389 * the running time on this CPU scaled by capacity_curr. 6390 * 6391 * The estimated utilization of a CPU is defined to be the maximum between its 6392 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6393 * currently RUNNABLE on that CPU. 6394 * This allows to properly represent the expected utilization of a CPU which 6395 * has just got a big task running since a long sleep period. At the same time 6396 * however it preserves the benefits of the "blocked utilization" in 6397 * describing the potential for other tasks waking up on the same CPU. 6398 * 6399 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6400 * higher than capacity_orig because of unfortunate rounding in 6401 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6402 * the average stabilizes with the new running time. We need to check that the 6403 * utilization stays within the range of [0..capacity_orig] and cap it if 6404 * necessary. Without utilization capping, a group could be seen as overloaded 6405 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6406 * available capacity. We allow utilization to overshoot capacity_curr (but not 6407 * capacity_orig) as it useful for predicting the capacity required after task 6408 * migrations (scheduler-driven DVFS). 6409 * 6410 * Return: the (estimated) utilization for the specified CPU 6411 */ 6412 static inline unsigned long cpu_util(int cpu) 6413 { 6414 struct cfs_rq *cfs_rq; 6415 unsigned int util; 6416 6417 cfs_rq = &cpu_rq(cpu)->cfs; 6418 util = READ_ONCE(cfs_rq->avg.util_avg); 6419 6420 if (sched_feat(UTIL_EST)) 6421 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6422 6423 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6424 } 6425 6426 /* 6427 * cpu_util_without: compute cpu utilization without any contributions from *p 6428 * @cpu: the CPU which utilization is requested 6429 * @p: the task which utilization should be discounted 6430 * 6431 * The utilization of a CPU is defined by the utilization of tasks currently 6432 * enqueued on that CPU as well as tasks which are currently sleeping after an 6433 * execution on that CPU. 6434 * 6435 * This method returns the utilization of the specified CPU by discounting the 6436 * utilization of the specified task, whenever the task is currently 6437 * contributing to the CPU utilization. 6438 */ 6439 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6440 { 6441 struct cfs_rq *cfs_rq; 6442 unsigned int util; 6443 6444 /* Task has no contribution or is new */ 6445 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6446 return cpu_util(cpu); 6447 6448 cfs_rq = &cpu_rq(cpu)->cfs; 6449 util = READ_ONCE(cfs_rq->avg.util_avg); 6450 6451 /* Discount task's util from CPU's util */ 6452 lsub_positive(&util, task_util(p)); 6453 6454 /* 6455 * Covered cases: 6456 * 6457 * a) if *p is the only task sleeping on this CPU, then: 6458 * cpu_util (== task_util) > util_est (== 0) 6459 * and thus we return: 6460 * cpu_util_without = (cpu_util - task_util) = 0 6461 * 6462 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6463 * IDLE, then: 6464 * cpu_util >= task_util 6465 * cpu_util > util_est (== 0) 6466 * and thus we discount *p's blocked utilization to return: 6467 * cpu_util_without = (cpu_util - task_util) >= 0 6468 * 6469 * c) if other tasks are RUNNABLE on that CPU and 6470 * util_est > cpu_util 6471 * then we use util_est since it returns a more restrictive 6472 * estimation of the spare capacity on that CPU, by just 6473 * considering the expected utilization of tasks already 6474 * runnable on that CPU. 6475 * 6476 * Cases a) and b) are covered by the above code, while case c) is 6477 * covered by the following code when estimated utilization is 6478 * enabled. 6479 */ 6480 if (sched_feat(UTIL_EST)) { 6481 unsigned int estimated = 6482 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6483 6484 /* 6485 * Despite the following checks we still have a small window 6486 * for a possible race, when an execl's select_task_rq_fair() 6487 * races with LB's detach_task(): 6488 * 6489 * detach_task() 6490 * p->on_rq = TASK_ON_RQ_MIGRATING; 6491 * ---------------------------------- A 6492 * deactivate_task() \ 6493 * dequeue_task() + RaceTime 6494 * util_est_dequeue() / 6495 * ---------------------------------- B 6496 * 6497 * The additional check on "current == p" it's required to 6498 * properly fix the execl regression and it helps in further 6499 * reducing the chances for the above race. 6500 */ 6501 if (unlikely(task_on_rq_queued(p) || current == p)) 6502 lsub_positive(&estimated, _task_util_est(p)); 6503 6504 util = max(util, estimated); 6505 } 6506 6507 /* 6508 * Utilization (estimated) can exceed the CPU capacity, thus let's 6509 * clamp to the maximum CPU capacity to ensure consistency with 6510 * the cpu_util call. 6511 */ 6512 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6513 } 6514 6515 /* 6516 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6517 * to @dst_cpu. 6518 */ 6519 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6520 { 6521 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6522 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6523 6524 /* 6525 * If @p migrates from @cpu to another, remove its contribution. Or, 6526 * if @p migrates from another CPU to @cpu, add its contribution. In 6527 * the other cases, @cpu is not impacted by the migration, so the 6528 * util_avg should already be correct. 6529 */ 6530 if (task_cpu(p) == cpu && dst_cpu != cpu) 6531 lsub_positive(&util, task_util(p)); 6532 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6533 util += task_util(p); 6534 6535 if (sched_feat(UTIL_EST)) { 6536 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6537 6538 /* 6539 * During wake-up, the task isn't enqueued yet and doesn't 6540 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6541 * so just add it (if needed) to "simulate" what will be 6542 * cpu_util() after the task has been enqueued. 6543 */ 6544 if (dst_cpu == cpu) 6545 util_est += _task_util_est(p); 6546 6547 util = max(util, util_est); 6548 } 6549 6550 return min(util, capacity_orig_of(cpu)); 6551 } 6552 6553 /* 6554 * compute_energy(): Estimates the energy that @pd would consume if @p was 6555 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6556 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6557 * to compute what would be the energy if we decided to actually migrate that 6558 * task. 6559 */ 6560 static long 6561 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6562 { 6563 struct cpumask *pd_mask = perf_domain_span(pd); 6564 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6565 unsigned long max_util = 0, sum_util = 0; 6566 int cpu; 6567 6568 /* 6569 * The capacity state of CPUs of the current rd can be driven by CPUs 6570 * of another rd if they belong to the same pd. So, account for the 6571 * utilization of these CPUs too by masking pd with cpu_online_mask 6572 * instead of the rd span. 6573 * 6574 * If an entire pd is outside of the current rd, it will not appear in 6575 * its pd list and will not be accounted by compute_energy(). 6576 */ 6577 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6578 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu); 6579 unsigned long cpu_util, util_running = util_freq; 6580 struct task_struct *tsk = NULL; 6581 6582 /* 6583 * When @p is placed on @cpu: 6584 * 6585 * util_running = max(cpu_util, cpu_util_est) + 6586 * max(task_util, _task_util_est) 6587 * 6588 * while cpu_util_next is: max(cpu_util + task_util, 6589 * cpu_util_est + _task_util_est) 6590 */ 6591 if (cpu == dst_cpu) { 6592 tsk = p; 6593 util_running = 6594 cpu_util_next(cpu, p, -1) + task_util_est(p); 6595 } 6596 6597 /* 6598 * Busy time computation: utilization clamping is not 6599 * required since the ratio (sum_util / cpu_capacity) 6600 * is already enough to scale the EM reported power 6601 * consumption at the (eventually clamped) cpu_capacity. 6602 */ 6603 sum_util += effective_cpu_util(cpu, util_running, cpu_cap, 6604 ENERGY_UTIL, NULL); 6605 6606 /* 6607 * Performance domain frequency: utilization clamping 6608 * must be considered since it affects the selection 6609 * of the performance domain frequency. 6610 * NOTE: in case RT tasks are running, by default the 6611 * FREQUENCY_UTIL's utilization can be max OPP. 6612 */ 6613 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap, 6614 FREQUENCY_UTIL, tsk); 6615 max_util = max(max_util, cpu_util); 6616 } 6617 6618 return em_cpu_energy(pd->em_pd, max_util, sum_util); 6619 } 6620 6621 /* 6622 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6623 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6624 * spare capacity in each performance domain and uses it as a potential 6625 * candidate to execute the task. Then, it uses the Energy Model to figure 6626 * out which of the CPU candidates is the most energy-efficient. 6627 * 6628 * The rationale for this heuristic is as follows. In a performance domain, 6629 * all the most energy efficient CPU candidates (according to the Energy 6630 * Model) are those for which we'll request a low frequency. When there are 6631 * several CPUs for which the frequency request will be the same, we don't 6632 * have enough data to break the tie between them, because the Energy Model 6633 * only includes active power costs. With this model, if we assume that 6634 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6635 * the maximum spare capacity in a performance domain is guaranteed to be among 6636 * the best candidates of the performance domain. 6637 * 6638 * In practice, it could be preferable from an energy standpoint to pack 6639 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6640 * but that could also hurt our chances to go cluster idle, and we have no 6641 * ways to tell with the current Energy Model if this is actually a good 6642 * idea or not. So, find_energy_efficient_cpu() basically favors 6643 * cluster-packing, and spreading inside a cluster. That should at least be 6644 * a good thing for latency, and this is consistent with the idea that most 6645 * of the energy savings of EAS come from the asymmetry of the system, and 6646 * not so much from breaking the tie between identical CPUs. That's also the 6647 * reason why EAS is enabled in the topology code only for systems where 6648 * SD_ASYM_CPUCAPACITY is set. 6649 * 6650 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6651 * they don't have any useful utilization data yet and it's not possible to 6652 * forecast their impact on energy consumption. Consequently, they will be 6653 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6654 * to be energy-inefficient in some use-cases. The alternative would be to 6655 * bias new tasks towards specific types of CPUs first, or to try to infer 6656 * their util_avg from the parent task, but those heuristics could hurt 6657 * other use-cases too. So, until someone finds a better way to solve this, 6658 * let's keep things simple by re-using the existing slow path. 6659 */ 6660 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6661 { 6662 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6663 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6664 unsigned long cpu_cap, util, base_energy = 0; 6665 int cpu, best_energy_cpu = prev_cpu; 6666 struct sched_domain *sd; 6667 struct perf_domain *pd; 6668 6669 rcu_read_lock(); 6670 pd = rcu_dereference(rd->pd); 6671 if (!pd || READ_ONCE(rd->overutilized)) 6672 goto fail; 6673 6674 /* 6675 * Energy-aware wake-up happens on the lowest sched_domain starting 6676 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6677 */ 6678 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6679 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6680 sd = sd->parent; 6681 if (!sd) 6682 goto fail; 6683 6684 sync_entity_load_avg(&p->se); 6685 if (!task_util_est(p)) 6686 goto unlock; 6687 6688 for (; pd; pd = pd->next) { 6689 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6690 unsigned long base_energy_pd; 6691 int max_spare_cap_cpu = -1; 6692 6693 /* Compute the 'base' energy of the pd, without @p */ 6694 base_energy_pd = compute_energy(p, -1, pd); 6695 base_energy += base_energy_pd; 6696 6697 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6698 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6699 continue; 6700 6701 util = cpu_util_next(cpu, p, cpu); 6702 cpu_cap = capacity_of(cpu); 6703 spare_cap = cpu_cap; 6704 lsub_positive(&spare_cap, util); 6705 6706 /* 6707 * Skip CPUs that cannot satisfy the capacity request. 6708 * IOW, placing the task there would make the CPU 6709 * overutilized. Take uclamp into account to see how 6710 * much capacity we can get out of the CPU; this is 6711 * aligned with sched_cpu_util(). 6712 */ 6713 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6714 if (!fits_capacity(util, cpu_cap)) 6715 continue; 6716 6717 /* Always use prev_cpu as a candidate. */ 6718 if (cpu == prev_cpu) { 6719 prev_delta = compute_energy(p, prev_cpu, pd); 6720 prev_delta -= base_energy_pd; 6721 best_delta = min(best_delta, prev_delta); 6722 } 6723 6724 /* 6725 * Find the CPU with the maximum spare capacity in 6726 * the performance domain 6727 */ 6728 if (spare_cap > max_spare_cap) { 6729 max_spare_cap = spare_cap; 6730 max_spare_cap_cpu = cpu; 6731 } 6732 } 6733 6734 /* Evaluate the energy impact of using this CPU. */ 6735 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) { 6736 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6737 cur_delta -= base_energy_pd; 6738 if (cur_delta < best_delta) { 6739 best_delta = cur_delta; 6740 best_energy_cpu = max_spare_cap_cpu; 6741 } 6742 } 6743 } 6744 unlock: 6745 rcu_read_unlock(); 6746 6747 /* 6748 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6749 * least 6% of the energy used by prev_cpu. 6750 */ 6751 if (prev_delta == ULONG_MAX) 6752 return best_energy_cpu; 6753 6754 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6755 return best_energy_cpu; 6756 6757 return prev_cpu; 6758 6759 fail: 6760 rcu_read_unlock(); 6761 6762 return -1; 6763 } 6764 6765 /* 6766 * select_task_rq_fair: Select target runqueue for the waking task in domains 6767 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 6768 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6769 * 6770 * Balances load by selecting the idlest CPU in the idlest group, or under 6771 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6772 * 6773 * Returns the target CPU number. 6774 * 6775 * preempt must be disabled. 6776 */ 6777 static int 6778 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 6779 { 6780 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6781 struct sched_domain *tmp, *sd = NULL; 6782 int cpu = smp_processor_id(); 6783 int new_cpu = prev_cpu; 6784 int want_affine = 0; 6785 /* SD_flags and WF_flags share the first nibble */ 6786 int sd_flag = wake_flags & 0xF; 6787 6788 if (wake_flags & WF_TTWU) { 6789 record_wakee(p); 6790 6791 if (sched_energy_enabled()) { 6792 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6793 if (new_cpu >= 0) 6794 return new_cpu; 6795 new_cpu = prev_cpu; 6796 } 6797 6798 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 6799 } 6800 6801 rcu_read_lock(); 6802 for_each_domain(cpu, tmp) { 6803 /* 6804 * If both 'cpu' and 'prev_cpu' are part of this domain, 6805 * cpu is a valid SD_WAKE_AFFINE target. 6806 */ 6807 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6808 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6809 if (cpu != prev_cpu) 6810 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6811 6812 sd = NULL; /* Prefer wake_affine over balance flags */ 6813 break; 6814 } 6815 6816 if (tmp->flags & sd_flag) 6817 sd = tmp; 6818 else if (!want_affine) 6819 break; 6820 } 6821 6822 if (unlikely(sd)) { 6823 /* Slow path */ 6824 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6825 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 6826 /* Fast path */ 6827 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6828 6829 if (want_affine) 6830 current->recent_used_cpu = cpu; 6831 } 6832 rcu_read_unlock(); 6833 6834 return new_cpu; 6835 } 6836 6837 static void detach_entity_cfs_rq(struct sched_entity *se); 6838 6839 /* 6840 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6841 * cfs_rq_of(p) references at time of call are still valid and identify the 6842 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6843 */ 6844 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6845 { 6846 /* 6847 * As blocked tasks retain absolute vruntime the migration needs to 6848 * deal with this by subtracting the old and adding the new 6849 * min_vruntime -- the latter is done by enqueue_entity() when placing 6850 * the task on the new runqueue. 6851 */ 6852 if (p->state == TASK_WAKING) { 6853 struct sched_entity *se = &p->se; 6854 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6855 u64 min_vruntime; 6856 6857 #ifndef CONFIG_64BIT 6858 u64 min_vruntime_copy; 6859 6860 do { 6861 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6862 smp_rmb(); 6863 min_vruntime = cfs_rq->min_vruntime; 6864 } while (min_vruntime != min_vruntime_copy); 6865 #else 6866 min_vruntime = cfs_rq->min_vruntime; 6867 #endif 6868 6869 se->vruntime -= min_vruntime; 6870 } 6871 6872 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6873 /* 6874 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6875 * rq->lock and can modify state directly. 6876 */ 6877 lockdep_assert_held(&task_rq(p)->lock); 6878 detach_entity_cfs_rq(&p->se); 6879 6880 } else { 6881 /* 6882 * We are supposed to update the task to "current" time, then 6883 * its up to date and ready to go to new CPU/cfs_rq. But we 6884 * have difficulty in getting what current time is, so simply 6885 * throw away the out-of-date time. This will result in the 6886 * wakee task is less decayed, but giving the wakee more load 6887 * sounds not bad. 6888 */ 6889 remove_entity_load_avg(&p->se); 6890 } 6891 6892 /* Tell new CPU we are migrated */ 6893 p->se.avg.last_update_time = 0; 6894 6895 /* We have migrated, no longer consider this task hot */ 6896 p->se.exec_start = 0; 6897 6898 update_scan_period(p, new_cpu); 6899 } 6900 6901 static void task_dead_fair(struct task_struct *p) 6902 { 6903 remove_entity_load_avg(&p->se); 6904 } 6905 6906 static int 6907 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6908 { 6909 if (rq->nr_running) 6910 return 1; 6911 6912 return newidle_balance(rq, rf) != 0; 6913 } 6914 #endif /* CONFIG_SMP */ 6915 6916 static unsigned long wakeup_gran(struct sched_entity *se) 6917 { 6918 unsigned long gran = sysctl_sched_wakeup_granularity; 6919 6920 /* 6921 * Since its curr running now, convert the gran from real-time 6922 * to virtual-time in his units. 6923 * 6924 * By using 'se' instead of 'curr' we penalize light tasks, so 6925 * they get preempted easier. That is, if 'se' < 'curr' then 6926 * the resulting gran will be larger, therefore penalizing the 6927 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6928 * be smaller, again penalizing the lighter task. 6929 * 6930 * This is especially important for buddies when the leftmost 6931 * task is higher priority than the buddy. 6932 */ 6933 return calc_delta_fair(gran, se); 6934 } 6935 6936 /* 6937 * Should 'se' preempt 'curr'. 6938 * 6939 * |s1 6940 * |s2 6941 * |s3 6942 * g 6943 * |<--->|c 6944 * 6945 * w(c, s1) = -1 6946 * w(c, s2) = 0 6947 * w(c, s3) = 1 6948 * 6949 */ 6950 static int 6951 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6952 { 6953 s64 gran, vdiff = curr->vruntime - se->vruntime; 6954 6955 if (vdiff <= 0) 6956 return -1; 6957 6958 gran = wakeup_gran(se); 6959 if (vdiff > gran) 6960 return 1; 6961 6962 return 0; 6963 } 6964 6965 static void set_last_buddy(struct sched_entity *se) 6966 { 6967 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6968 return; 6969 6970 for_each_sched_entity(se) { 6971 if (SCHED_WARN_ON(!se->on_rq)) 6972 return; 6973 cfs_rq_of(se)->last = se; 6974 } 6975 } 6976 6977 static void set_next_buddy(struct sched_entity *se) 6978 { 6979 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6980 return; 6981 6982 for_each_sched_entity(se) { 6983 if (SCHED_WARN_ON(!se->on_rq)) 6984 return; 6985 cfs_rq_of(se)->next = se; 6986 } 6987 } 6988 6989 static void set_skip_buddy(struct sched_entity *se) 6990 { 6991 for_each_sched_entity(se) 6992 cfs_rq_of(se)->skip = se; 6993 } 6994 6995 /* 6996 * Preempt the current task with a newly woken task if needed: 6997 */ 6998 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6999 { 7000 struct task_struct *curr = rq->curr; 7001 struct sched_entity *se = &curr->se, *pse = &p->se; 7002 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7003 int scale = cfs_rq->nr_running >= sched_nr_latency; 7004 int next_buddy_marked = 0; 7005 7006 if (unlikely(se == pse)) 7007 return; 7008 7009 /* 7010 * This is possible from callers such as attach_tasks(), in which we 7011 * unconditionally check_preempt_curr() after an enqueue (which may have 7012 * lead to a throttle). This both saves work and prevents false 7013 * next-buddy nomination below. 7014 */ 7015 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7016 return; 7017 7018 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7019 set_next_buddy(pse); 7020 next_buddy_marked = 1; 7021 } 7022 7023 /* 7024 * We can come here with TIF_NEED_RESCHED already set from new task 7025 * wake up path. 7026 * 7027 * Note: this also catches the edge-case of curr being in a throttled 7028 * group (e.g. via set_curr_task), since update_curr() (in the 7029 * enqueue of curr) will have resulted in resched being set. This 7030 * prevents us from potentially nominating it as a false LAST_BUDDY 7031 * below. 7032 */ 7033 if (test_tsk_need_resched(curr)) 7034 return; 7035 7036 /* Idle tasks are by definition preempted by non-idle tasks. */ 7037 if (unlikely(task_has_idle_policy(curr)) && 7038 likely(!task_has_idle_policy(p))) 7039 goto preempt; 7040 7041 /* 7042 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7043 * is driven by the tick): 7044 */ 7045 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7046 return; 7047 7048 find_matching_se(&se, &pse); 7049 update_curr(cfs_rq_of(se)); 7050 BUG_ON(!pse); 7051 if (wakeup_preempt_entity(se, pse) == 1) { 7052 /* 7053 * Bias pick_next to pick the sched entity that is 7054 * triggering this preemption. 7055 */ 7056 if (!next_buddy_marked) 7057 set_next_buddy(pse); 7058 goto preempt; 7059 } 7060 7061 return; 7062 7063 preempt: 7064 resched_curr(rq); 7065 /* 7066 * Only set the backward buddy when the current task is still 7067 * on the rq. This can happen when a wakeup gets interleaved 7068 * with schedule on the ->pre_schedule() or idle_balance() 7069 * point, either of which can * drop the rq lock. 7070 * 7071 * Also, during early boot the idle thread is in the fair class, 7072 * for obvious reasons its a bad idea to schedule back to it. 7073 */ 7074 if (unlikely(!se->on_rq || curr == rq->idle)) 7075 return; 7076 7077 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7078 set_last_buddy(se); 7079 } 7080 7081 struct task_struct * 7082 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7083 { 7084 struct cfs_rq *cfs_rq = &rq->cfs; 7085 struct sched_entity *se; 7086 struct task_struct *p; 7087 int new_tasks; 7088 7089 again: 7090 if (!sched_fair_runnable(rq)) 7091 goto idle; 7092 7093 #ifdef CONFIG_FAIR_GROUP_SCHED 7094 if (!prev || prev->sched_class != &fair_sched_class) 7095 goto simple; 7096 7097 /* 7098 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7099 * likely that a next task is from the same cgroup as the current. 7100 * 7101 * Therefore attempt to avoid putting and setting the entire cgroup 7102 * hierarchy, only change the part that actually changes. 7103 */ 7104 7105 do { 7106 struct sched_entity *curr = cfs_rq->curr; 7107 7108 /* 7109 * Since we got here without doing put_prev_entity() we also 7110 * have to consider cfs_rq->curr. If it is still a runnable 7111 * entity, update_curr() will update its vruntime, otherwise 7112 * forget we've ever seen it. 7113 */ 7114 if (curr) { 7115 if (curr->on_rq) 7116 update_curr(cfs_rq); 7117 else 7118 curr = NULL; 7119 7120 /* 7121 * This call to check_cfs_rq_runtime() will do the 7122 * throttle and dequeue its entity in the parent(s). 7123 * Therefore the nr_running test will indeed 7124 * be correct. 7125 */ 7126 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7127 cfs_rq = &rq->cfs; 7128 7129 if (!cfs_rq->nr_running) 7130 goto idle; 7131 7132 goto simple; 7133 } 7134 } 7135 7136 se = pick_next_entity(cfs_rq, curr); 7137 cfs_rq = group_cfs_rq(se); 7138 } while (cfs_rq); 7139 7140 p = task_of(se); 7141 7142 /* 7143 * Since we haven't yet done put_prev_entity and if the selected task 7144 * is a different task than we started out with, try and touch the 7145 * least amount of cfs_rqs. 7146 */ 7147 if (prev != p) { 7148 struct sched_entity *pse = &prev->se; 7149 7150 while (!(cfs_rq = is_same_group(se, pse))) { 7151 int se_depth = se->depth; 7152 int pse_depth = pse->depth; 7153 7154 if (se_depth <= pse_depth) { 7155 put_prev_entity(cfs_rq_of(pse), pse); 7156 pse = parent_entity(pse); 7157 } 7158 if (se_depth >= pse_depth) { 7159 set_next_entity(cfs_rq_of(se), se); 7160 se = parent_entity(se); 7161 } 7162 } 7163 7164 put_prev_entity(cfs_rq, pse); 7165 set_next_entity(cfs_rq, se); 7166 } 7167 7168 goto done; 7169 simple: 7170 #endif 7171 if (prev) 7172 put_prev_task(rq, prev); 7173 7174 do { 7175 se = pick_next_entity(cfs_rq, NULL); 7176 set_next_entity(cfs_rq, se); 7177 cfs_rq = group_cfs_rq(se); 7178 } while (cfs_rq); 7179 7180 p = task_of(se); 7181 7182 done: __maybe_unused; 7183 #ifdef CONFIG_SMP 7184 /* 7185 * Move the next running task to the front of 7186 * the list, so our cfs_tasks list becomes MRU 7187 * one. 7188 */ 7189 list_move(&p->se.group_node, &rq->cfs_tasks); 7190 #endif 7191 7192 if (hrtick_enabled_fair(rq)) 7193 hrtick_start_fair(rq, p); 7194 7195 update_misfit_status(p, rq); 7196 7197 return p; 7198 7199 idle: 7200 if (!rf) 7201 return NULL; 7202 7203 new_tasks = newidle_balance(rq, rf); 7204 7205 /* 7206 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7207 * possible for any higher priority task to appear. In that case we 7208 * must re-start the pick_next_entity() loop. 7209 */ 7210 if (new_tasks < 0) 7211 return RETRY_TASK; 7212 7213 if (new_tasks > 0) 7214 goto again; 7215 7216 /* 7217 * rq is about to be idle, check if we need to update the 7218 * lost_idle_time of clock_pelt 7219 */ 7220 update_idle_rq_clock_pelt(rq); 7221 7222 return NULL; 7223 } 7224 7225 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7226 { 7227 return pick_next_task_fair(rq, NULL, NULL); 7228 } 7229 7230 /* 7231 * Account for a descheduled task: 7232 */ 7233 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7234 { 7235 struct sched_entity *se = &prev->se; 7236 struct cfs_rq *cfs_rq; 7237 7238 for_each_sched_entity(se) { 7239 cfs_rq = cfs_rq_of(se); 7240 put_prev_entity(cfs_rq, se); 7241 } 7242 } 7243 7244 /* 7245 * sched_yield() is very simple 7246 * 7247 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7248 */ 7249 static void yield_task_fair(struct rq *rq) 7250 { 7251 struct task_struct *curr = rq->curr; 7252 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7253 struct sched_entity *se = &curr->se; 7254 7255 /* 7256 * Are we the only task in the tree? 7257 */ 7258 if (unlikely(rq->nr_running == 1)) 7259 return; 7260 7261 clear_buddies(cfs_rq, se); 7262 7263 if (curr->policy != SCHED_BATCH) { 7264 update_rq_clock(rq); 7265 /* 7266 * Update run-time statistics of the 'current'. 7267 */ 7268 update_curr(cfs_rq); 7269 /* 7270 * Tell update_rq_clock() that we've just updated, 7271 * so we don't do microscopic update in schedule() 7272 * and double the fastpath cost. 7273 */ 7274 rq_clock_skip_update(rq); 7275 } 7276 7277 set_skip_buddy(se); 7278 } 7279 7280 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7281 { 7282 struct sched_entity *se = &p->se; 7283 7284 /* throttled hierarchies are not runnable */ 7285 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7286 return false; 7287 7288 /* Tell the scheduler that we'd really like pse to run next. */ 7289 set_next_buddy(se); 7290 7291 yield_task_fair(rq); 7292 7293 return true; 7294 } 7295 7296 #ifdef CONFIG_SMP 7297 /************************************************** 7298 * Fair scheduling class load-balancing methods. 7299 * 7300 * BASICS 7301 * 7302 * The purpose of load-balancing is to achieve the same basic fairness the 7303 * per-CPU scheduler provides, namely provide a proportional amount of compute 7304 * time to each task. This is expressed in the following equation: 7305 * 7306 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7307 * 7308 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7309 * W_i,0 is defined as: 7310 * 7311 * W_i,0 = \Sum_j w_i,j (2) 7312 * 7313 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7314 * is derived from the nice value as per sched_prio_to_weight[]. 7315 * 7316 * The weight average is an exponential decay average of the instantaneous 7317 * weight: 7318 * 7319 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7320 * 7321 * C_i is the compute capacity of CPU i, typically it is the 7322 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7323 * can also include other factors [XXX]. 7324 * 7325 * To achieve this balance we define a measure of imbalance which follows 7326 * directly from (1): 7327 * 7328 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7329 * 7330 * We them move tasks around to minimize the imbalance. In the continuous 7331 * function space it is obvious this converges, in the discrete case we get 7332 * a few fun cases generally called infeasible weight scenarios. 7333 * 7334 * [XXX expand on: 7335 * - infeasible weights; 7336 * - local vs global optima in the discrete case. ] 7337 * 7338 * 7339 * SCHED DOMAINS 7340 * 7341 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7342 * for all i,j solution, we create a tree of CPUs that follows the hardware 7343 * topology where each level pairs two lower groups (or better). This results 7344 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7345 * tree to only the first of the previous level and we decrease the frequency 7346 * of load-balance at each level inv. proportional to the number of CPUs in 7347 * the groups. 7348 * 7349 * This yields: 7350 * 7351 * log_2 n 1 n 7352 * \Sum { --- * --- * 2^i } = O(n) (5) 7353 * i = 0 2^i 2^i 7354 * `- size of each group 7355 * | | `- number of CPUs doing load-balance 7356 * | `- freq 7357 * `- sum over all levels 7358 * 7359 * Coupled with a limit on how many tasks we can migrate every balance pass, 7360 * this makes (5) the runtime complexity of the balancer. 7361 * 7362 * An important property here is that each CPU is still (indirectly) connected 7363 * to every other CPU in at most O(log n) steps: 7364 * 7365 * The adjacency matrix of the resulting graph is given by: 7366 * 7367 * log_2 n 7368 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7369 * k = 0 7370 * 7371 * And you'll find that: 7372 * 7373 * A^(log_2 n)_i,j != 0 for all i,j (7) 7374 * 7375 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7376 * The task movement gives a factor of O(m), giving a convergence complexity 7377 * of: 7378 * 7379 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7380 * 7381 * 7382 * WORK CONSERVING 7383 * 7384 * In order to avoid CPUs going idle while there's still work to do, new idle 7385 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7386 * tree itself instead of relying on other CPUs to bring it work. 7387 * 7388 * This adds some complexity to both (5) and (8) but it reduces the total idle 7389 * time. 7390 * 7391 * [XXX more?] 7392 * 7393 * 7394 * CGROUPS 7395 * 7396 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7397 * 7398 * s_k,i 7399 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7400 * S_k 7401 * 7402 * Where 7403 * 7404 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7405 * 7406 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7407 * 7408 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7409 * property. 7410 * 7411 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7412 * rewrite all of this once again.] 7413 */ 7414 7415 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7416 7417 enum fbq_type { regular, remote, all }; 7418 7419 /* 7420 * 'group_type' describes the group of CPUs at the moment of load balancing. 7421 * 7422 * The enum is ordered by pulling priority, with the group with lowest priority 7423 * first so the group_type can simply be compared when selecting the busiest 7424 * group. See update_sd_pick_busiest(). 7425 */ 7426 enum group_type { 7427 /* The group has spare capacity that can be used to run more tasks. */ 7428 group_has_spare = 0, 7429 /* 7430 * The group is fully used and the tasks don't compete for more CPU 7431 * cycles. Nevertheless, some tasks might wait before running. 7432 */ 7433 group_fully_busy, 7434 /* 7435 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7436 * and must be migrated to a more powerful CPU. 7437 */ 7438 group_misfit_task, 7439 /* 7440 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7441 * and the task should be migrated to it instead of running on the 7442 * current CPU. 7443 */ 7444 group_asym_packing, 7445 /* 7446 * The tasks' affinity constraints previously prevented the scheduler 7447 * from balancing the load across the system. 7448 */ 7449 group_imbalanced, 7450 /* 7451 * The CPU is overloaded and can't provide expected CPU cycles to all 7452 * tasks. 7453 */ 7454 group_overloaded 7455 }; 7456 7457 enum migration_type { 7458 migrate_load = 0, 7459 migrate_util, 7460 migrate_task, 7461 migrate_misfit 7462 }; 7463 7464 #define LBF_ALL_PINNED 0x01 7465 #define LBF_NEED_BREAK 0x02 7466 #define LBF_DST_PINNED 0x04 7467 #define LBF_SOME_PINNED 0x08 7468 #define LBF_ACTIVE_LB 0x10 7469 7470 struct lb_env { 7471 struct sched_domain *sd; 7472 7473 struct rq *src_rq; 7474 int src_cpu; 7475 7476 int dst_cpu; 7477 struct rq *dst_rq; 7478 7479 struct cpumask *dst_grpmask; 7480 int new_dst_cpu; 7481 enum cpu_idle_type idle; 7482 long imbalance; 7483 /* The set of CPUs under consideration for load-balancing */ 7484 struct cpumask *cpus; 7485 7486 unsigned int flags; 7487 7488 unsigned int loop; 7489 unsigned int loop_break; 7490 unsigned int loop_max; 7491 7492 enum fbq_type fbq_type; 7493 enum migration_type migration_type; 7494 struct list_head tasks; 7495 }; 7496 7497 /* 7498 * Is this task likely cache-hot: 7499 */ 7500 static int task_hot(struct task_struct *p, struct lb_env *env) 7501 { 7502 s64 delta; 7503 7504 lockdep_assert_held(&env->src_rq->lock); 7505 7506 if (p->sched_class != &fair_sched_class) 7507 return 0; 7508 7509 if (unlikely(task_has_idle_policy(p))) 7510 return 0; 7511 7512 /* SMT siblings share cache */ 7513 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 7514 return 0; 7515 7516 /* 7517 * Buddy candidates are cache hot: 7518 */ 7519 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7520 (&p->se == cfs_rq_of(&p->se)->next || 7521 &p->se == cfs_rq_of(&p->se)->last)) 7522 return 1; 7523 7524 if (sysctl_sched_migration_cost == -1) 7525 return 1; 7526 if (sysctl_sched_migration_cost == 0) 7527 return 0; 7528 7529 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7530 7531 return delta < (s64)sysctl_sched_migration_cost; 7532 } 7533 7534 #ifdef CONFIG_NUMA_BALANCING 7535 /* 7536 * Returns 1, if task migration degrades locality 7537 * Returns 0, if task migration improves locality i.e migration preferred. 7538 * Returns -1, if task migration is not affected by locality. 7539 */ 7540 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7541 { 7542 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7543 unsigned long src_weight, dst_weight; 7544 int src_nid, dst_nid, dist; 7545 7546 if (!static_branch_likely(&sched_numa_balancing)) 7547 return -1; 7548 7549 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7550 return -1; 7551 7552 src_nid = cpu_to_node(env->src_cpu); 7553 dst_nid = cpu_to_node(env->dst_cpu); 7554 7555 if (src_nid == dst_nid) 7556 return -1; 7557 7558 /* Migrating away from the preferred node is always bad. */ 7559 if (src_nid == p->numa_preferred_nid) { 7560 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7561 return 1; 7562 else 7563 return -1; 7564 } 7565 7566 /* Encourage migration to the preferred node. */ 7567 if (dst_nid == p->numa_preferred_nid) 7568 return 0; 7569 7570 /* Leaving a core idle is often worse than degrading locality. */ 7571 if (env->idle == CPU_IDLE) 7572 return -1; 7573 7574 dist = node_distance(src_nid, dst_nid); 7575 if (numa_group) { 7576 src_weight = group_weight(p, src_nid, dist); 7577 dst_weight = group_weight(p, dst_nid, dist); 7578 } else { 7579 src_weight = task_weight(p, src_nid, dist); 7580 dst_weight = task_weight(p, dst_nid, dist); 7581 } 7582 7583 return dst_weight < src_weight; 7584 } 7585 7586 #else 7587 static inline int migrate_degrades_locality(struct task_struct *p, 7588 struct lb_env *env) 7589 { 7590 return -1; 7591 } 7592 #endif 7593 7594 /* 7595 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7596 */ 7597 static 7598 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7599 { 7600 int tsk_cache_hot; 7601 7602 lockdep_assert_held(&env->src_rq->lock); 7603 7604 /* 7605 * We do not migrate tasks that are: 7606 * 1) throttled_lb_pair, or 7607 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7608 * 3) running (obviously), or 7609 * 4) are cache-hot on their current CPU. 7610 */ 7611 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7612 return 0; 7613 7614 /* Disregard pcpu kthreads; they are where they need to be. */ 7615 if (kthread_is_per_cpu(p)) 7616 return 0; 7617 7618 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7619 int cpu; 7620 7621 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7622 7623 env->flags |= LBF_SOME_PINNED; 7624 7625 /* 7626 * Remember if this task can be migrated to any other CPU in 7627 * our sched_group. We may want to revisit it if we couldn't 7628 * meet load balance goals by pulling other tasks on src_cpu. 7629 * 7630 * Avoid computing new_dst_cpu 7631 * - for NEWLY_IDLE 7632 * - if we have already computed one in current iteration 7633 * - if it's an active balance 7634 */ 7635 if (env->idle == CPU_NEWLY_IDLE || 7636 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 7637 return 0; 7638 7639 /* Prevent to re-select dst_cpu via env's CPUs: */ 7640 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7641 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7642 env->flags |= LBF_DST_PINNED; 7643 env->new_dst_cpu = cpu; 7644 break; 7645 } 7646 } 7647 7648 return 0; 7649 } 7650 7651 /* Record that we found at least one task that could run on dst_cpu */ 7652 env->flags &= ~LBF_ALL_PINNED; 7653 7654 if (task_running(env->src_rq, p)) { 7655 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7656 return 0; 7657 } 7658 7659 /* 7660 * Aggressive migration if: 7661 * 1) active balance 7662 * 2) destination numa is preferred 7663 * 3) task is cache cold, or 7664 * 4) too many balance attempts have failed. 7665 */ 7666 if (env->flags & LBF_ACTIVE_LB) 7667 return 1; 7668 7669 tsk_cache_hot = migrate_degrades_locality(p, env); 7670 if (tsk_cache_hot == -1) 7671 tsk_cache_hot = task_hot(p, env); 7672 7673 if (tsk_cache_hot <= 0 || 7674 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7675 if (tsk_cache_hot == 1) { 7676 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7677 schedstat_inc(p->se.statistics.nr_forced_migrations); 7678 } 7679 return 1; 7680 } 7681 7682 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7683 return 0; 7684 } 7685 7686 /* 7687 * detach_task() -- detach the task for the migration specified in env 7688 */ 7689 static void detach_task(struct task_struct *p, struct lb_env *env) 7690 { 7691 lockdep_assert_held(&env->src_rq->lock); 7692 7693 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7694 set_task_cpu(p, env->dst_cpu); 7695 } 7696 7697 /* 7698 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7699 * part of active balancing operations within "domain". 7700 * 7701 * Returns a task if successful and NULL otherwise. 7702 */ 7703 static struct task_struct *detach_one_task(struct lb_env *env) 7704 { 7705 struct task_struct *p; 7706 7707 lockdep_assert_held(&env->src_rq->lock); 7708 7709 list_for_each_entry_reverse(p, 7710 &env->src_rq->cfs_tasks, se.group_node) { 7711 if (!can_migrate_task(p, env)) 7712 continue; 7713 7714 detach_task(p, env); 7715 7716 /* 7717 * Right now, this is only the second place where 7718 * lb_gained[env->idle] is updated (other is detach_tasks) 7719 * so we can safely collect stats here rather than 7720 * inside detach_tasks(). 7721 */ 7722 schedstat_inc(env->sd->lb_gained[env->idle]); 7723 return p; 7724 } 7725 return NULL; 7726 } 7727 7728 static const unsigned int sched_nr_migrate_break = 32; 7729 7730 /* 7731 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7732 * busiest_rq, as part of a balancing operation within domain "sd". 7733 * 7734 * Returns number of detached tasks if successful and 0 otherwise. 7735 */ 7736 static int detach_tasks(struct lb_env *env) 7737 { 7738 struct list_head *tasks = &env->src_rq->cfs_tasks; 7739 unsigned long util, load; 7740 struct task_struct *p; 7741 int detached = 0; 7742 7743 lockdep_assert_held(&env->src_rq->lock); 7744 7745 /* 7746 * Source run queue has been emptied by another CPU, clear 7747 * LBF_ALL_PINNED flag as we will not test any task. 7748 */ 7749 if (env->src_rq->nr_running <= 1) { 7750 env->flags &= ~LBF_ALL_PINNED; 7751 return 0; 7752 } 7753 7754 if (env->imbalance <= 0) 7755 return 0; 7756 7757 while (!list_empty(tasks)) { 7758 /* 7759 * We don't want to steal all, otherwise we may be treated likewise, 7760 * which could at worst lead to a livelock crash. 7761 */ 7762 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7763 break; 7764 7765 p = list_last_entry(tasks, struct task_struct, se.group_node); 7766 7767 env->loop++; 7768 /* We've more or less seen every task there is, call it quits */ 7769 if (env->loop > env->loop_max) 7770 break; 7771 7772 /* take a breather every nr_migrate tasks */ 7773 if (env->loop > env->loop_break) { 7774 env->loop_break += sched_nr_migrate_break; 7775 env->flags |= LBF_NEED_BREAK; 7776 break; 7777 } 7778 7779 if (!can_migrate_task(p, env)) 7780 goto next; 7781 7782 switch (env->migration_type) { 7783 case migrate_load: 7784 /* 7785 * Depending of the number of CPUs and tasks and the 7786 * cgroup hierarchy, task_h_load() can return a null 7787 * value. Make sure that env->imbalance decreases 7788 * otherwise detach_tasks() will stop only after 7789 * detaching up to loop_max tasks. 7790 */ 7791 load = max_t(unsigned long, task_h_load(p), 1); 7792 7793 if (sched_feat(LB_MIN) && 7794 load < 16 && !env->sd->nr_balance_failed) 7795 goto next; 7796 7797 /* 7798 * Make sure that we don't migrate too much load. 7799 * Nevertheless, let relax the constraint if 7800 * scheduler fails to find a good waiting task to 7801 * migrate. 7802 */ 7803 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 7804 goto next; 7805 7806 env->imbalance -= load; 7807 break; 7808 7809 case migrate_util: 7810 util = task_util_est(p); 7811 7812 if (util > env->imbalance) 7813 goto next; 7814 7815 env->imbalance -= util; 7816 break; 7817 7818 case migrate_task: 7819 env->imbalance--; 7820 break; 7821 7822 case migrate_misfit: 7823 /* This is not a misfit task */ 7824 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 7825 goto next; 7826 7827 env->imbalance = 0; 7828 break; 7829 } 7830 7831 detach_task(p, env); 7832 list_add(&p->se.group_node, &env->tasks); 7833 7834 detached++; 7835 7836 #ifdef CONFIG_PREEMPTION 7837 /* 7838 * NEWIDLE balancing is a source of latency, so preemptible 7839 * kernels will stop after the first task is detached to minimize 7840 * the critical section. 7841 */ 7842 if (env->idle == CPU_NEWLY_IDLE) 7843 break; 7844 #endif 7845 7846 /* 7847 * We only want to steal up to the prescribed amount of 7848 * load/util/tasks. 7849 */ 7850 if (env->imbalance <= 0) 7851 break; 7852 7853 continue; 7854 next: 7855 list_move(&p->se.group_node, tasks); 7856 } 7857 7858 /* 7859 * Right now, this is one of only two places we collect this stat 7860 * so we can safely collect detach_one_task() stats here rather 7861 * than inside detach_one_task(). 7862 */ 7863 schedstat_add(env->sd->lb_gained[env->idle], detached); 7864 7865 return detached; 7866 } 7867 7868 /* 7869 * attach_task() -- attach the task detached by detach_task() to its new rq. 7870 */ 7871 static void attach_task(struct rq *rq, struct task_struct *p) 7872 { 7873 lockdep_assert_held(&rq->lock); 7874 7875 BUG_ON(task_rq(p) != rq); 7876 activate_task(rq, p, ENQUEUE_NOCLOCK); 7877 check_preempt_curr(rq, p, 0); 7878 } 7879 7880 /* 7881 * attach_one_task() -- attaches the task returned from detach_one_task() to 7882 * its new rq. 7883 */ 7884 static void attach_one_task(struct rq *rq, struct task_struct *p) 7885 { 7886 struct rq_flags rf; 7887 7888 rq_lock(rq, &rf); 7889 update_rq_clock(rq); 7890 attach_task(rq, p); 7891 rq_unlock(rq, &rf); 7892 } 7893 7894 /* 7895 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7896 * new rq. 7897 */ 7898 static void attach_tasks(struct lb_env *env) 7899 { 7900 struct list_head *tasks = &env->tasks; 7901 struct task_struct *p; 7902 struct rq_flags rf; 7903 7904 rq_lock(env->dst_rq, &rf); 7905 update_rq_clock(env->dst_rq); 7906 7907 while (!list_empty(tasks)) { 7908 p = list_first_entry(tasks, struct task_struct, se.group_node); 7909 list_del_init(&p->se.group_node); 7910 7911 attach_task(env->dst_rq, p); 7912 } 7913 7914 rq_unlock(env->dst_rq, &rf); 7915 } 7916 7917 #ifdef CONFIG_NO_HZ_COMMON 7918 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7919 { 7920 if (cfs_rq->avg.load_avg) 7921 return true; 7922 7923 if (cfs_rq->avg.util_avg) 7924 return true; 7925 7926 return false; 7927 } 7928 7929 static inline bool others_have_blocked(struct rq *rq) 7930 { 7931 if (READ_ONCE(rq->avg_rt.util_avg)) 7932 return true; 7933 7934 if (READ_ONCE(rq->avg_dl.util_avg)) 7935 return true; 7936 7937 if (thermal_load_avg(rq)) 7938 return true; 7939 7940 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7941 if (READ_ONCE(rq->avg_irq.util_avg)) 7942 return true; 7943 #endif 7944 7945 return false; 7946 } 7947 7948 static inline void update_blocked_load_tick(struct rq *rq) 7949 { 7950 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 7951 } 7952 7953 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 7954 { 7955 if (!has_blocked) 7956 rq->has_blocked_load = 0; 7957 } 7958 #else 7959 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 7960 static inline bool others_have_blocked(struct rq *rq) { return false; } 7961 static inline void update_blocked_load_tick(struct rq *rq) {} 7962 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 7963 #endif 7964 7965 static bool __update_blocked_others(struct rq *rq, bool *done) 7966 { 7967 const struct sched_class *curr_class; 7968 u64 now = rq_clock_pelt(rq); 7969 unsigned long thermal_pressure; 7970 bool decayed; 7971 7972 /* 7973 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 7974 * DL and IRQ signals have been updated before updating CFS. 7975 */ 7976 curr_class = rq->curr->sched_class; 7977 7978 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 7979 7980 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 7981 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 7982 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 7983 update_irq_load_avg(rq, 0); 7984 7985 if (others_have_blocked(rq)) 7986 *done = false; 7987 7988 return decayed; 7989 } 7990 7991 #ifdef CONFIG_FAIR_GROUP_SCHED 7992 7993 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7994 { 7995 if (cfs_rq->load.weight) 7996 return false; 7997 7998 if (cfs_rq->avg.load_sum) 7999 return false; 8000 8001 if (cfs_rq->avg.util_sum) 8002 return false; 8003 8004 if (cfs_rq->avg.runnable_sum) 8005 return false; 8006 8007 return true; 8008 } 8009 8010 static bool __update_blocked_fair(struct rq *rq, bool *done) 8011 { 8012 struct cfs_rq *cfs_rq, *pos; 8013 bool decayed = false; 8014 int cpu = cpu_of(rq); 8015 8016 /* 8017 * Iterates the task_group tree in a bottom up fashion, see 8018 * list_add_leaf_cfs_rq() for details. 8019 */ 8020 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8021 struct sched_entity *se; 8022 8023 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8024 update_tg_load_avg(cfs_rq); 8025 8026 if (cfs_rq == &rq->cfs) 8027 decayed = true; 8028 } 8029 8030 /* Propagate pending load changes to the parent, if any: */ 8031 se = cfs_rq->tg->se[cpu]; 8032 if (se && !skip_blocked_update(se)) 8033 update_load_avg(cfs_rq_of(se), se, 0); 8034 8035 /* 8036 * There can be a lot of idle CPU cgroups. Don't let fully 8037 * decayed cfs_rqs linger on the list. 8038 */ 8039 if (cfs_rq_is_decayed(cfs_rq)) 8040 list_del_leaf_cfs_rq(cfs_rq); 8041 8042 /* Don't need periodic decay once load/util_avg are null */ 8043 if (cfs_rq_has_blocked(cfs_rq)) 8044 *done = false; 8045 } 8046 8047 return decayed; 8048 } 8049 8050 /* 8051 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8052 * This needs to be done in a top-down fashion because the load of a child 8053 * group is a fraction of its parents load. 8054 */ 8055 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8056 { 8057 struct rq *rq = rq_of(cfs_rq); 8058 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8059 unsigned long now = jiffies; 8060 unsigned long load; 8061 8062 if (cfs_rq->last_h_load_update == now) 8063 return; 8064 8065 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8066 for_each_sched_entity(se) { 8067 cfs_rq = cfs_rq_of(se); 8068 WRITE_ONCE(cfs_rq->h_load_next, se); 8069 if (cfs_rq->last_h_load_update == now) 8070 break; 8071 } 8072 8073 if (!se) { 8074 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8075 cfs_rq->last_h_load_update = now; 8076 } 8077 8078 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8079 load = cfs_rq->h_load; 8080 load = div64_ul(load * se->avg.load_avg, 8081 cfs_rq_load_avg(cfs_rq) + 1); 8082 cfs_rq = group_cfs_rq(se); 8083 cfs_rq->h_load = load; 8084 cfs_rq->last_h_load_update = now; 8085 } 8086 } 8087 8088 static unsigned long task_h_load(struct task_struct *p) 8089 { 8090 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8091 8092 update_cfs_rq_h_load(cfs_rq); 8093 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8094 cfs_rq_load_avg(cfs_rq) + 1); 8095 } 8096 #else 8097 static bool __update_blocked_fair(struct rq *rq, bool *done) 8098 { 8099 struct cfs_rq *cfs_rq = &rq->cfs; 8100 bool decayed; 8101 8102 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8103 if (cfs_rq_has_blocked(cfs_rq)) 8104 *done = false; 8105 8106 return decayed; 8107 } 8108 8109 static unsigned long task_h_load(struct task_struct *p) 8110 { 8111 return p->se.avg.load_avg; 8112 } 8113 #endif 8114 8115 static void update_blocked_averages(int cpu) 8116 { 8117 bool decayed = false, done = true; 8118 struct rq *rq = cpu_rq(cpu); 8119 struct rq_flags rf; 8120 8121 rq_lock_irqsave(rq, &rf); 8122 update_blocked_load_tick(rq); 8123 update_rq_clock(rq); 8124 8125 decayed |= __update_blocked_others(rq, &done); 8126 decayed |= __update_blocked_fair(rq, &done); 8127 8128 update_blocked_load_status(rq, !done); 8129 if (decayed) 8130 cpufreq_update_util(rq, 0); 8131 rq_unlock_irqrestore(rq, &rf); 8132 } 8133 8134 /********** Helpers for find_busiest_group ************************/ 8135 8136 /* 8137 * sg_lb_stats - stats of a sched_group required for load_balancing 8138 */ 8139 struct sg_lb_stats { 8140 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8141 unsigned long group_load; /* Total load over the CPUs of the group */ 8142 unsigned long group_capacity; 8143 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8144 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8145 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8146 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8147 unsigned int idle_cpus; 8148 unsigned int group_weight; 8149 enum group_type group_type; 8150 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8151 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8152 #ifdef CONFIG_NUMA_BALANCING 8153 unsigned int nr_numa_running; 8154 unsigned int nr_preferred_running; 8155 #endif 8156 }; 8157 8158 /* 8159 * sd_lb_stats - Structure to store the statistics of a sched_domain 8160 * during load balancing. 8161 */ 8162 struct sd_lb_stats { 8163 struct sched_group *busiest; /* Busiest group in this sd */ 8164 struct sched_group *local; /* Local group in this sd */ 8165 unsigned long total_load; /* Total load of all groups in sd */ 8166 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8167 unsigned long avg_load; /* Average load across all groups in sd */ 8168 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8169 8170 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8171 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8172 }; 8173 8174 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8175 { 8176 /* 8177 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8178 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8179 * We must however set busiest_stat::group_type and 8180 * busiest_stat::idle_cpus to the worst busiest group because 8181 * update_sd_pick_busiest() reads these before assignment. 8182 */ 8183 *sds = (struct sd_lb_stats){ 8184 .busiest = NULL, 8185 .local = NULL, 8186 .total_load = 0UL, 8187 .total_capacity = 0UL, 8188 .busiest_stat = { 8189 .idle_cpus = UINT_MAX, 8190 .group_type = group_has_spare, 8191 }, 8192 }; 8193 } 8194 8195 static unsigned long scale_rt_capacity(int cpu) 8196 { 8197 struct rq *rq = cpu_rq(cpu); 8198 unsigned long max = arch_scale_cpu_capacity(cpu); 8199 unsigned long used, free; 8200 unsigned long irq; 8201 8202 irq = cpu_util_irq(rq); 8203 8204 if (unlikely(irq >= max)) 8205 return 1; 8206 8207 /* 8208 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8209 * (running and not running) with weights 0 and 1024 respectively. 8210 * avg_thermal.load_avg tracks thermal pressure and the weighted 8211 * average uses the actual delta max capacity(load). 8212 */ 8213 used = READ_ONCE(rq->avg_rt.util_avg); 8214 used += READ_ONCE(rq->avg_dl.util_avg); 8215 used += thermal_load_avg(rq); 8216 8217 if (unlikely(used >= max)) 8218 return 1; 8219 8220 free = max - used; 8221 8222 return scale_irq_capacity(free, irq, max); 8223 } 8224 8225 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8226 { 8227 unsigned long capacity = scale_rt_capacity(cpu); 8228 struct sched_group *sdg = sd->groups; 8229 8230 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8231 8232 if (!capacity) 8233 capacity = 1; 8234 8235 cpu_rq(cpu)->cpu_capacity = capacity; 8236 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 8237 8238 sdg->sgc->capacity = capacity; 8239 sdg->sgc->min_capacity = capacity; 8240 sdg->sgc->max_capacity = capacity; 8241 } 8242 8243 void update_group_capacity(struct sched_domain *sd, int cpu) 8244 { 8245 struct sched_domain *child = sd->child; 8246 struct sched_group *group, *sdg = sd->groups; 8247 unsigned long capacity, min_capacity, max_capacity; 8248 unsigned long interval; 8249 8250 interval = msecs_to_jiffies(sd->balance_interval); 8251 interval = clamp(interval, 1UL, max_load_balance_interval); 8252 sdg->sgc->next_update = jiffies + interval; 8253 8254 if (!child) { 8255 update_cpu_capacity(sd, cpu); 8256 return; 8257 } 8258 8259 capacity = 0; 8260 min_capacity = ULONG_MAX; 8261 max_capacity = 0; 8262 8263 if (child->flags & SD_OVERLAP) { 8264 /* 8265 * SD_OVERLAP domains cannot assume that child groups 8266 * span the current group. 8267 */ 8268 8269 for_each_cpu(cpu, sched_group_span(sdg)) { 8270 unsigned long cpu_cap = capacity_of(cpu); 8271 8272 capacity += cpu_cap; 8273 min_capacity = min(cpu_cap, min_capacity); 8274 max_capacity = max(cpu_cap, max_capacity); 8275 } 8276 } else { 8277 /* 8278 * !SD_OVERLAP domains can assume that child groups 8279 * span the current group. 8280 */ 8281 8282 group = child->groups; 8283 do { 8284 struct sched_group_capacity *sgc = group->sgc; 8285 8286 capacity += sgc->capacity; 8287 min_capacity = min(sgc->min_capacity, min_capacity); 8288 max_capacity = max(sgc->max_capacity, max_capacity); 8289 group = group->next; 8290 } while (group != child->groups); 8291 } 8292 8293 sdg->sgc->capacity = capacity; 8294 sdg->sgc->min_capacity = min_capacity; 8295 sdg->sgc->max_capacity = max_capacity; 8296 } 8297 8298 /* 8299 * Check whether the capacity of the rq has been noticeably reduced by side 8300 * activity. The imbalance_pct is used for the threshold. 8301 * Return true is the capacity is reduced 8302 */ 8303 static inline int 8304 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8305 { 8306 return ((rq->cpu_capacity * sd->imbalance_pct) < 8307 (rq->cpu_capacity_orig * 100)); 8308 } 8309 8310 /* 8311 * Check whether a rq has a misfit task and if it looks like we can actually 8312 * help that task: we can migrate the task to a CPU of higher capacity, or 8313 * the task's current CPU is heavily pressured. 8314 */ 8315 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8316 { 8317 return rq->misfit_task_load && 8318 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8319 check_cpu_capacity(rq, sd)); 8320 } 8321 8322 /* 8323 * Group imbalance indicates (and tries to solve) the problem where balancing 8324 * groups is inadequate due to ->cpus_ptr constraints. 8325 * 8326 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8327 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8328 * Something like: 8329 * 8330 * { 0 1 2 3 } { 4 5 6 7 } 8331 * * * * * 8332 * 8333 * If we were to balance group-wise we'd place two tasks in the first group and 8334 * two tasks in the second group. Clearly this is undesired as it will overload 8335 * cpu 3 and leave one of the CPUs in the second group unused. 8336 * 8337 * The current solution to this issue is detecting the skew in the first group 8338 * by noticing the lower domain failed to reach balance and had difficulty 8339 * moving tasks due to affinity constraints. 8340 * 8341 * When this is so detected; this group becomes a candidate for busiest; see 8342 * update_sd_pick_busiest(). And calculate_imbalance() and 8343 * find_busiest_group() avoid some of the usual balance conditions to allow it 8344 * to create an effective group imbalance. 8345 * 8346 * This is a somewhat tricky proposition since the next run might not find the 8347 * group imbalance and decide the groups need to be balanced again. A most 8348 * subtle and fragile situation. 8349 */ 8350 8351 static inline int sg_imbalanced(struct sched_group *group) 8352 { 8353 return group->sgc->imbalance; 8354 } 8355 8356 /* 8357 * group_has_capacity returns true if the group has spare capacity that could 8358 * be used by some tasks. 8359 * We consider that a group has spare capacity if the * number of task is 8360 * smaller than the number of CPUs or if the utilization is lower than the 8361 * available capacity for CFS tasks. 8362 * For the latter, we use a threshold to stabilize the state, to take into 8363 * account the variance of the tasks' load and to return true if the available 8364 * capacity in meaningful for the load balancer. 8365 * As an example, an available capacity of 1% can appear but it doesn't make 8366 * any benefit for the load balance. 8367 */ 8368 static inline bool 8369 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8370 { 8371 if (sgs->sum_nr_running < sgs->group_weight) 8372 return true; 8373 8374 if ((sgs->group_capacity * imbalance_pct) < 8375 (sgs->group_runnable * 100)) 8376 return false; 8377 8378 if ((sgs->group_capacity * 100) > 8379 (sgs->group_util * imbalance_pct)) 8380 return true; 8381 8382 return false; 8383 } 8384 8385 /* 8386 * group_is_overloaded returns true if the group has more tasks than it can 8387 * handle. 8388 * group_is_overloaded is not equals to !group_has_capacity because a group 8389 * with the exact right number of tasks, has no more spare capacity but is not 8390 * overloaded so both group_has_capacity and group_is_overloaded return 8391 * false. 8392 */ 8393 static inline bool 8394 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8395 { 8396 if (sgs->sum_nr_running <= sgs->group_weight) 8397 return false; 8398 8399 if ((sgs->group_capacity * 100) < 8400 (sgs->group_util * imbalance_pct)) 8401 return true; 8402 8403 if ((sgs->group_capacity * imbalance_pct) < 8404 (sgs->group_runnable * 100)) 8405 return true; 8406 8407 return false; 8408 } 8409 8410 static inline enum 8411 group_type group_classify(unsigned int imbalance_pct, 8412 struct sched_group *group, 8413 struct sg_lb_stats *sgs) 8414 { 8415 if (group_is_overloaded(imbalance_pct, sgs)) 8416 return group_overloaded; 8417 8418 if (sg_imbalanced(group)) 8419 return group_imbalanced; 8420 8421 if (sgs->group_asym_packing) 8422 return group_asym_packing; 8423 8424 if (sgs->group_misfit_task_load) 8425 return group_misfit_task; 8426 8427 if (!group_has_capacity(imbalance_pct, sgs)) 8428 return group_fully_busy; 8429 8430 return group_has_spare; 8431 } 8432 8433 /** 8434 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8435 * @env: The load balancing environment. 8436 * @group: sched_group whose statistics are to be updated. 8437 * @sgs: variable to hold the statistics for this group. 8438 * @sg_status: Holds flag indicating the status of the sched_group 8439 */ 8440 static inline void update_sg_lb_stats(struct lb_env *env, 8441 struct sched_group *group, 8442 struct sg_lb_stats *sgs, 8443 int *sg_status) 8444 { 8445 int i, nr_running, local_group; 8446 8447 memset(sgs, 0, sizeof(*sgs)); 8448 8449 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8450 8451 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8452 struct rq *rq = cpu_rq(i); 8453 8454 sgs->group_load += cpu_load(rq); 8455 sgs->group_util += cpu_util(i); 8456 sgs->group_runnable += cpu_runnable(rq); 8457 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8458 8459 nr_running = rq->nr_running; 8460 sgs->sum_nr_running += nr_running; 8461 8462 if (nr_running > 1) 8463 *sg_status |= SG_OVERLOAD; 8464 8465 if (cpu_overutilized(i)) 8466 *sg_status |= SG_OVERUTILIZED; 8467 8468 #ifdef CONFIG_NUMA_BALANCING 8469 sgs->nr_numa_running += rq->nr_numa_running; 8470 sgs->nr_preferred_running += rq->nr_preferred_running; 8471 #endif 8472 /* 8473 * No need to call idle_cpu() if nr_running is not 0 8474 */ 8475 if (!nr_running && idle_cpu(i)) { 8476 sgs->idle_cpus++; 8477 /* Idle cpu can't have misfit task */ 8478 continue; 8479 } 8480 8481 if (local_group) 8482 continue; 8483 8484 /* Check for a misfit task on the cpu */ 8485 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8486 sgs->group_misfit_task_load < rq->misfit_task_load) { 8487 sgs->group_misfit_task_load = rq->misfit_task_load; 8488 *sg_status |= SG_OVERLOAD; 8489 } 8490 } 8491 8492 /* Check if dst CPU is idle and preferred to this group */ 8493 if (env->sd->flags & SD_ASYM_PACKING && 8494 env->idle != CPU_NOT_IDLE && 8495 sgs->sum_h_nr_running && 8496 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) { 8497 sgs->group_asym_packing = 1; 8498 } 8499 8500 sgs->group_capacity = group->sgc->capacity; 8501 8502 sgs->group_weight = group->group_weight; 8503 8504 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8505 8506 /* Computing avg_load makes sense only when group is overloaded */ 8507 if (sgs->group_type == group_overloaded) 8508 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8509 sgs->group_capacity; 8510 } 8511 8512 /** 8513 * update_sd_pick_busiest - return 1 on busiest group 8514 * @env: The load balancing environment. 8515 * @sds: sched_domain statistics 8516 * @sg: sched_group candidate to be checked for being the busiest 8517 * @sgs: sched_group statistics 8518 * 8519 * Determine if @sg is a busier group than the previously selected 8520 * busiest group. 8521 * 8522 * Return: %true if @sg is a busier group than the previously selected 8523 * busiest group. %false otherwise. 8524 */ 8525 static bool update_sd_pick_busiest(struct lb_env *env, 8526 struct sd_lb_stats *sds, 8527 struct sched_group *sg, 8528 struct sg_lb_stats *sgs) 8529 { 8530 struct sg_lb_stats *busiest = &sds->busiest_stat; 8531 8532 /* Make sure that there is at least one task to pull */ 8533 if (!sgs->sum_h_nr_running) 8534 return false; 8535 8536 /* 8537 * Don't try to pull misfit tasks we can't help. 8538 * We can use max_capacity here as reduction in capacity on some 8539 * CPUs in the group should either be possible to resolve 8540 * internally or be covered by avg_load imbalance (eventually). 8541 */ 8542 if (sgs->group_type == group_misfit_task && 8543 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 8544 sds->local_stat.group_type != group_has_spare)) 8545 return false; 8546 8547 if (sgs->group_type > busiest->group_type) 8548 return true; 8549 8550 if (sgs->group_type < busiest->group_type) 8551 return false; 8552 8553 /* 8554 * The candidate and the current busiest group are the same type of 8555 * group. Let check which one is the busiest according to the type. 8556 */ 8557 8558 switch (sgs->group_type) { 8559 case group_overloaded: 8560 /* Select the overloaded group with highest avg_load. */ 8561 if (sgs->avg_load <= busiest->avg_load) 8562 return false; 8563 break; 8564 8565 case group_imbalanced: 8566 /* 8567 * Select the 1st imbalanced group as we don't have any way to 8568 * choose one more than another. 8569 */ 8570 return false; 8571 8572 case group_asym_packing: 8573 /* Prefer to move from lowest priority CPU's work */ 8574 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8575 return false; 8576 break; 8577 8578 case group_misfit_task: 8579 /* 8580 * If we have more than one misfit sg go with the biggest 8581 * misfit. 8582 */ 8583 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8584 return false; 8585 break; 8586 8587 case group_fully_busy: 8588 /* 8589 * Select the fully busy group with highest avg_load. In 8590 * theory, there is no need to pull task from such kind of 8591 * group because tasks have all compute capacity that they need 8592 * but we can still improve the overall throughput by reducing 8593 * contention when accessing shared HW resources. 8594 * 8595 * XXX for now avg_load is not computed and always 0 so we 8596 * select the 1st one. 8597 */ 8598 if (sgs->avg_load <= busiest->avg_load) 8599 return false; 8600 break; 8601 8602 case group_has_spare: 8603 /* 8604 * Select not overloaded group with lowest number of idle cpus 8605 * and highest number of running tasks. We could also compare 8606 * the spare capacity which is more stable but it can end up 8607 * that the group has less spare capacity but finally more idle 8608 * CPUs which means less opportunity to pull tasks. 8609 */ 8610 if (sgs->idle_cpus > busiest->idle_cpus) 8611 return false; 8612 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8613 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8614 return false; 8615 8616 break; 8617 } 8618 8619 /* 8620 * Candidate sg has no more than one task per CPU and has higher 8621 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8622 * throughput. Maximize throughput, power/energy consequences are not 8623 * considered. 8624 */ 8625 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8626 (sgs->group_type <= group_fully_busy) && 8627 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 8628 return false; 8629 8630 return true; 8631 } 8632 8633 #ifdef CONFIG_NUMA_BALANCING 8634 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8635 { 8636 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8637 return regular; 8638 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8639 return remote; 8640 return all; 8641 } 8642 8643 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8644 { 8645 if (rq->nr_running > rq->nr_numa_running) 8646 return regular; 8647 if (rq->nr_running > rq->nr_preferred_running) 8648 return remote; 8649 return all; 8650 } 8651 #else 8652 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8653 { 8654 return all; 8655 } 8656 8657 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8658 { 8659 return regular; 8660 } 8661 #endif /* CONFIG_NUMA_BALANCING */ 8662 8663 8664 struct sg_lb_stats; 8665 8666 /* 8667 * task_running_on_cpu - return 1 if @p is running on @cpu. 8668 */ 8669 8670 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8671 { 8672 /* Task has no contribution or is new */ 8673 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8674 return 0; 8675 8676 if (task_on_rq_queued(p)) 8677 return 1; 8678 8679 return 0; 8680 } 8681 8682 /** 8683 * idle_cpu_without - would a given CPU be idle without p ? 8684 * @cpu: the processor on which idleness is tested. 8685 * @p: task which should be ignored. 8686 * 8687 * Return: 1 if the CPU would be idle. 0 otherwise. 8688 */ 8689 static int idle_cpu_without(int cpu, struct task_struct *p) 8690 { 8691 struct rq *rq = cpu_rq(cpu); 8692 8693 if (rq->curr != rq->idle && rq->curr != p) 8694 return 0; 8695 8696 /* 8697 * rq->nr_running can't be used but an updated version without the 8698 * impact of p on cpu must be used instead. The updated nr_running 8699 * be computed and tested before calling idle_cpu_without(). 8700 */ 8701 8702 #ifdef CONFIG_SMP 8703 if (rq->ttwu_pending) 8704 return 0; 8705 #endif 8706 8707 return 1; 8708 } 8709 8710 /* 8711 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8712 * @sd: The sched_domain level to look for idlest group. 8713 * @group: sched_group whose statistics are to be updated. 8714 * @sgs: variable to hold the statistics for this group. 8715 * @p: The task for which we look for the idlest group/CPU. 8716 */ 8717 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8718 struct sched_group *group, 8719 struct sg_lb_stats *sgs, 8720 struct task_struct *p) 8721 { 8722 int i, nr_running; 8723 8724 memset(sgs, 0, sizeof(*sgs)); 8725 8726 for_each_cpu(i, sched_group_span(group)) { 8727 struct rq *rq = cpu_rq(i); 8728 unsigned int local; 8729 8730 sgs->group_load += cpu_load_without(rq, p); 8731 sgs->group_util += cpu_util_without(i, p); 8732 sgs->group_runnable += cpu_runnable_without(rq, p); 8733 local = task_running_on_cpu(i, p); 8734 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8735 8736 nr_running = rq->nr_running - local; 8737 sgs->sum_nr_running += nr_running; 8738 8739 /* 8740 * No need to call idle_cpu_without() if nr_running is not 0 8741 */ 8742 if (!nr_running && idle_cpu_without(i, p)) 8743 sgs->idle_cpus++; 8744 8745 } 8746 8747 /* Check if task fits in the group */ 8748 if (sd->flags & SD_ASYM_CPUCAPACITY && 8749 !task_fits_capacity(p, group->sgc->max_capacity)) { 8750 sgs->group_misfit_task_load = 1; 8751 } 8752 8753 sgs->group_capacity = group->sgc->capacity; 8754 8755 sgs->group_weight = group->group_weight; 8756 8757 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8758 8759 /* 8760 * Computing avg_load makes sense only when group is fully busy or 8761 * overloaded 8762 */ 8763 if (sgs->group_type == group_fully_busy || 8764 sgs->group_type == group_overloaded) 8765 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8766 sgs->group_capacity; 8767 } 8768 8769 static bool update_pick_idlest(struct sched_group *idlest, 8770 struct sg_lb_stats *idlest_sgs, 8771 struct sched_group *group, 8772 struct sg_lb_stats *sgs) 8773 { 8774 if (sgs->group_type < idlest_sgs->group_type) 8775 return true; 8776 8777 if (sgs->group_type > idlest_sgs->group_type) 8778 return false; 8779 8780 /* 8781 * The candidate and the current idlest group are the same type of 8782 * group. Let check which one is the idlest according to the type. 8783 */ 8784 8785 switch (sgs->group_type) { 8786 case group_overloaded: 8787 case group_fully_busy: 8788 /* Select the group with lowest avg_load. */ 8789 if (idlest_sgs->avg_load <= sgs->avg_load) 8790 return false; 8791 break; 8792 8793 case group_imbalanced: 8794 case group_asym_packing: 8795 /* Those types are not used in the slow wakeup path */ 8796 return false; 8797 8798 case group_misfit_task: 8799 /* Select group with the highest max capacity */ 8800 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 8801 return false; 8802 break; 8803 8804 case group_has_spare: 8805 /* Select group with most idle CPUs */ 8806 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 8807 return false; 8808 8809 /* Select group with lowest group_util */ 8810 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 8811 idlest_sgs->group_util <= sgs->group_util) 8812 return false; 8813 8814 break; 8815 } 8816 8817 return true; 8818 } 8819 8820 /* 8821 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain. 8822 * This is an approximation as the number of running tasks may not be 8823 * related to the number of busy CPUs due to sched_setaffinity. 8824 */ 8825 static inline bool allow_numa_imbalance(int dst_running, int dst_weight) 8826 { 8827 return (dst_running < (dst_weight >> 2)); 8828 } 8829 8830 /* 8831 * find_idlest_group() finds and returns the least busy CPU group within the 8832 * domain. 8833 * 8834 * Assumes p is allowed on at least one CPU in sd. 8835 */ 8836 static struct sched_group * 8837 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 8838 { 8839 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 8840 struct sg_lb_stats local_sgs, tmp_sgs; 8841 struct sg_lb_stats *sgs; 8842 unsigned long imbalance; 8843 struct sg_lb_stats idlest_sgs = { 8844 .avg_load = UINT_MAX, 8845 .group_type = group_overloaded, 8846 }; 8847 8848 do { 8849 int local_group; 8850 8851 /* Skip over this group if it has no CPUs allowed */ 8852 if (!cpumask_intersects(sched_group_span(group), 8853 p->cpus_ptr)) 8854 continue; 8855 8856 local_group = cpumask_test_cpu(this_cpu, 8857 sched_group_span(group)); 8858 8859 if (local_group) { 8860 sgs = &local_sgs; 8861 local = group; 8862 } else { 8863 sgs = &tmp_sgs; 8864 } 8865 8866 update_sg_wakeup_stats(sd, group, sgs, p); 8867 8868 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 8869 idlest = group; 8870 idlest_sgs = *sgs; 8871 } 8872 8873 } while (group = group->next, group != sd->groups); 8874 8875 8876 /* There is no idlest group to push tasks to */ 8877 if (!idlest) 8878 return NULL; 8879 8880 /* The local group has been skipped because of CPU affinity */ 8881 if (!local) 8882 return idlest; 8883 8884 /* 8885 * If the local group is idler than the selected idlest group 8886 * don't try and push the task. 8887 */ 8888 if (local_sgs.group_type < idlest_sgs.group_type) 8889 return NULL; 8890 8891 /* 8892 * If the local group is busier than the selected idlest group 8893 * try and push the task. 8894 */ 8895 if (local_sgs.group_type > idlest_sgs.group_type) 8896 return idlest; 8897 8898 switch (local_sgs.group_type) { 8899 case group_overloaded: 8900 case group_fully_busy: 8901 8902 /* Calculate allowed imbalance based on load */ 8903 imbalance = scale_load_down(NICE_0_LOAD) * 8904 (sd->imbalance_pct-100) / 100; 8905 8906 /* 8907 * When comparing groups across NUMA domains, it's possible for 8908 * the local domain to be very lightly loaded relative to the 8909 * remote domains but "imbalance" skews the comparison making 8910 * remote CPUs look much more favourable. When considering 8911 * cross-domain, add imbalance to the load on the remote node 8912 * and consider staying local. 8913 */ 8914 8915 if ((sd->flags & SD_NUMA) && 8916 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 8917 return NULL; 8918 8919 /* 8920 * If the local group is less loaded than the selected 8921 * idlest group don't try and push any tasks. 8922 */ 8923 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 8924 return NULL; 8925 8926 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 8927 return NULL; 8928 break; 8929 8930 case group_imbalanced: 8931 case group_asym_packing: 8932 /* Those type are not used in the slow wakeup path */ 8933 return NULL; 8934 8935 case group_misfit_task: 8936 /* Select group with the highest max capacity */ 8937 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 8938 return NULL; 8939 break; 8940 8941 case group_has_spare: 8942 if (sd->flags & SD_NUMA) { 8943 #ifdef CONFIG_NUMA_BALANCING 8944 int idlest_cpu; 8945 /* 8946 * If there is spare capacity at NUMA, try to select 8947 * the preferred node 8948 */ 8949 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 8950 return NULL; 8951 8952 idlest_cpu = cpumask_first(sched_group_span(idlest)); 8953 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 8954 return idlest; 8955 #endif 8956 /* 8957 * Otherwise, keep the task on this node to stay close 8958 * its wakeup source and improve locality. If there is 8959 * a real need of migration, periodic load balance will 8960 * take care of it. 8961 */ 8962 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight)) 8963 return NULL; 8964 } 8965 8966 /* 8967 * Select group with highest number of idle CPUs. We could also 8968 * compare the utilization which is more stable but it can end 8969 * up that the group has less spare capacity but finally more 8970 * idle CPUs which means more opportunity to run task. 8971 */ 8972 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 8973 return NULL; 8974 break; 8975 } 8976 8977 return idlest; 8978 } 8979 8980 /** 8981 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8982 * @env: The load balancing environment. 8983 * @sds: variable to hold the statistics for this sched_domain. 8984 */ 8985 8986 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8987 { 8988 struct sched_domain *child = env->sd->child; 8989 struct sched_group *sg = env->sd->groups; 8990 struct sg_lb_stats *local = &sds->local_stat; 8991 struct sg_lb_stats tmp_sgs; 8992 int sg_status = 0; 8993 8994 do { 8995 struct sg_lb_stats *sgs = &tmp_sgs; 8996 int local_group; 8997 8998 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8999 if (local_group) { 9000 sds->local = sg; 9001 sgs = local; 9002 9003 if (env->idle != CPU_NEWLY_IDLE || 9004 time_after_eq(jiffies, sg->sgc->next_update)) 9005 update_group_capacity(env->sd, env->dst_cpu); 9006 } 9007 9008 update_sg_lb_stats(env, sg, sgs, &sg_status); 9009 9010 if (local_group) 9011 goto next_group; 9012 9013 9014 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 9015 sds->busiest = sg; 9016 sds->busiest_stat = *sgs; 9017 } 9018 9019 next_group: 9020 /* Now, start updating sd_lb_stats */ 9021 sds->total_load += sgs->group_load; 9022 sds->total_capacity += sgs->group_capacity; 9023 9024 sg = sg->next; 9025 } while (sg != env->sd->groups); 9026 9027 /* Tag domain that child domain prefers tasks go to siblings first */ 9028 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 9029 9030 9031 if (env->sd->flags & SD_NUMA) 9032 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 9033 9034 if (!env->sd->parent) { 9035 struct root_domain *rd = env->dst_rq->rd; 9036 9037 /* update overload indicator if we are at root domain */ 9038 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9039 9040 /* Update over-utilization (tipping point, U >= 0) indicator */ 9041 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9042 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9043 } else if (sg_status & SG_OVERUTILIZED) { 9044 struct root_domain *rd = env->dst_rq->rd; 9045 9046 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9047 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9048 } 9049 } 9050 9051 #define NUMA_IMBALANCE_MIN 2 9052 9053 static inline long adjust_numa_imbalance(int imbalance, 9054 int dst_running, int dst_weight) 9055 { 9056 if (!allow_numa_imbalance(dst_running, dst_weight)) 9057 return imbalance; 9058 9059 /* 9060 * Allow a small imbalance based on a simple pair of communicating 9061 * tasks that remain local when the destination is lightly loaded. 9062 */ 9063 if (imbalance <= NUMA_IMBALANCE_MIN) 9064 return 0; 9065 9066 return imbalance; 9067 } 9068 9069 /** 9070 * calculate_imbalance - Calculate the amount of imbalance present within the 9071 * groups of a given sched_domain during load balance. 9072 * @env: load balance environment 9073 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9074 */ 9075 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9076 { 9077 struct sg_lb_stats *local, *busiest; 9078 9079 local = &sds->local_stat; 9080 busiest = &sds->busiest_stat; 9081 9082 if (busiest->group_type == group_misfit_task) { 9083 /* Set imbalance to allow misfit tasks to be balanced. */ 9084 env->migration_type = migrate_misfit; 9085 env->imbalance = 1; 9086 return; 9087 } 9088 9089 if (busiest->group_type == group_asym_packing) { 9090 /* 9091 * In case of asym capacity, we will try to migrate all load to 9092 * the preferred CPU. 9093 */ 9094 env->migration_type = migrate_task; 9095 env->imbalance = busiest->sum_h_nr_running; 9096 return; 9097 } 9098 9099 if (busiest->group_type == group_imbalanced) { 9100 /* 9101 * In the group_imb case we cannot rely on group-wide averages 9102 * to ensure CPU-load equilibrium, try to move any task to fix 9103 * the imbalance. The next load balance will take care of 9104 * balancing back the system. 9105 */ 9106 env->migration_type = migrate_task; 9107 env->imbalance = 1; 9108 return; 9109 } 9110 9111 /* 9112 * Try to use spare capacity of local group without overloading it or 9113 * emptying busiest. 9114 */ 9115 if (local->group_type == group_has_spare) { 9116 if ((busiest->group_type > group_fully_busy) && 9117 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9118 /* 9119 * If busiest is overloaded, try to fill spare 9120 * capacity. This might end up creating spare capacity 9121 * in busiest or busiest still being overloaded but 9122 * there is no simple way to directly compute the 9123 * amount of load to migrate in order to balance the 9124 * system. 9125 */ 9126 env->migration_type = migrate_util; 9127 env->imbalance = max(local->group_capacity, local->group_util) - 9128 local->group_util; 9129 9130 /* 9131 * In some cases, the group's utilization is max or even 9132 * higher than capacity because of migrations but the 9133 * local CPU is (newly) idle. There is at least one 9134 * waiting task in this overloaded busiest group. Let's 9135 * try to pull it. 9136 */ 9137 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9138 env->migration_type = migrate_task; 9139 env->imbalance = 1; 9140 } 9141 9142 return; 9143 } 9144 9145 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9146 unsigned int nr_diff = busiest->sum_nr_running; 9147 /* 9148 * When prefer sibling, evenly spread running tasks on 9149 * groups. 9150 */ 9151 env->migration_type = migrate_task; 9152 lsub_positive(&nr_diff, local->sum_nr_running); 9153 env->imbalance = nr_diff >> 1; 9154 } else { 9155 9156 /* 9157 * If there is no overload, we just want to even the number of 9158 * idle cpus. 9159 */ 9160 env->migration_type = migrate_task; 9161 env->imbalance = max_t(long, 0, (local->idle_cpus - 9162 busiest->idle_cpus) >> 1); 9163 } 9164 9165 /* Consider allowing a small imbalance between NUMA groups */ 9166 if (env->sd->flags & SD_NUMA) { 9167 env->imbalance = adjust_numa_imbalance(env->imbalance, 9168 busiest->sum_nr_running, busiest->group_weight); 9169 } 9170 9171 return; 9172 } 9173 9174 /* 9175 * Local is fully busy but has to take more load to relieve the 9176 * busiest group 9177 */ 9178 if (local->group_type < group_overloaded) { 9179 /* 9180 * Local will become overloaded so the avg_load metrics are 9181 * finally needed. 9182 */ 9183 9184 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9185 local->group_capacity; 9186 9187 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9188 sds->total_capacity; 9189 /* 9190 * If the local group is more loaded than the selected 9191 * busiest group don't try to pull any tasks. 9192 */ 9193 if (local->avg_load >= busiest->avg_load) { 9194 env->imbalance = 0; 9195 return; 9196 } 9197 } 9198 9199 /* 9200 * Both group are or will become overloaded and we're trying to get all 9201 * the CPUs to the average_load, so we don't want to push ourselves 9202 * above the average load, nor do we wish to reduce the max loaded CPU 9203 * below the average load. At the same time, we also don't want to 9204 * reduce the group load below the group capacity. Thus we look for 9205 * the minimum possible imbalance. 9206 */ 9207 env->migration_type = migrate_load; 9208 env->imbalance = min( 9209 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9210 (sds->avg_load - local->avg_load) * local->group_capacity 9211 ) / SCHED_CAPACITY_SCALE; 9212 } 9213 9214 /******* find_busiest_group() helpers end here *********************/ 9215 9216 /* 9217 * Decision matrix according to the local and busiest group type: 9218 * 9219 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9220 * has_spare nr_idle balanced N/A N/A balanced balanced 9221 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9222 * misfit_task force N/A N/A N/A force force 9223 * asym_packing force force N/A N/A force force 9224 * imbalanced force force N/A N/A force force 9225 * overloaded force force N/A N/A force avg_load 9226 * 9227 * N/A : Not Applicable because already filtered while updating 9228 * statistics. 9229 * balanced : The system is balanced for these 2 groups. 9230 * force : Calculate the imbalance as load migration is probably needed. 9231 * avg_load : Only if imbalance is significant enough. 9232 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9233 * different in groups. 9234 */ 9235 9236 /** 9237 * find_busiest_group - Returns the busiest group within the sched_domain 9238 * if there is an imbalance. 9239 * 9240 * Also calculates the amount of runnable load which should be moved 9241 * to restore balance. 9242 * 9243 * @env: The load balancing environment. 9244 * 9245 * Return: - The busiest group if imbalance exists. 9246 */ 9247 static struct sched_group *find_busiest_group(struct lb_env *env) 9248 { 9249 struct sg_lb_stats *local, *busiest; 9250 struct sd_lb_stats sds; 9251 9252 init_sd_lb_stats(&sds); 9253 9254 /* 9255 * Compute the various statistics relevant for load balancing at 9256 * this level. 9257 */ 9258 update_sd_lb_stats(env, &sds); 9259 9260 if (sched_energy_enabled()) { 9261 struct root_domain *rd = env->dst_rq->rd; 9262 9263 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9264 goto out_balanced; 9265 } 9266 9267 local = &sds.local_stat; 9268 busiest = &sds.busiest_stat; 9269 9270 /* There is no busy sibling group to pull tasks from */ 9271 if (!sds.busiest) 9272 goto out_balanced; 9273 9274 /* Misfit tasks should be dealt with regardless of the avg load */ 9275 if (busiest->group_type == group_misfit_task) 9276 goto force_balance; 9277 9278 /* ASYM feature bypasses nice load balance check */ 9279 if (busiest->group_type == group_asym_packing) 9280 goto force_balance; 9281 9282 /* 9283 * If the busiest group is imbalanced the below checks don't 9284 * work because they assume all things are equal, which typically 9285 * isn't true due to cpus_ptr constraints and the like. 9286 */ 9287 if (busiest->group_type == group_imbalanced) 9288 goto force_balance; 9289 9290 /* 9291 * If the local group is busier than the selected busiest group 9292 * don't try and pull any tasks. 9293 */ 9294 if (local->group_type > busiest->group_type) 9295 goto out_balanced; 9296 9297 /* 9298 * When groups are overloaded, use the avg_load to ensure fairness 9299 * between tasks. 9300 */ 9301 if (local->group_type == group_overloaded) { 9302 /* 9303 * If the local group is more loaded than the selected 9304 * busiest group don't try to pull any tasks. 9305 */ 9306 if (local->avg_load >= busiest->avg_load) 9307 goto out_balanced; 9308 9309 /* XXX broken for overlapping NUMA groups */ 9310 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9311 sds.total_capacity; 9312 9313 /* 9314 * Don't pull any tasks if this group is already above the 9315 * domain average load. 9316 */ 9317 if (local->avg_load >= sds.avg_load) 9318 goto out_balanced; 9319 9320 /* 9321 * If the busiest group is more loaded, use imbalance_pct to be 9322 * conservative. 9323 */ 9324 if (100 * busiest->avg_load <= 9325 env->sd->imbalance_pct * local->avg_load) 9326 goto out_balanced; 9327 } 9328 9329 /* Try to move all excess tasks to child's sibling domain */ 9330 if (sds.prefer_sibling && local->group_type == group_has_spare && 9331 busiest->sum_nr_running > local->sum_nr_running + 1) 9332 goto force_balance; 9333 9334 if (busiest->group_type != group_overloaded) { 9335 if (env->idle == CPU_NOT_IDLE) 9336 /* 9337 * If the busiest group is not overloaded (and as a 9338 * result the local one too) but this CPU is already 9339 * busy, let another idle CPU try to pull task. 9340 */ 9341 goto out_balanced; 9342 9343 if (busiest->group_weight > 1 && 9344 local->idle_cpus <= (busiest->idle_cpus + 1)) 9345 /* 9346 * If the busiest group is not overloaded 9347 * and there is no imbalance between this and busiest 9348 * group wrt idle CPUs, it is balanced. The imbalance 9349 * becomes significant if the diff is greater than 1 9350 * otherwise we might end up to just move the imbalance 9351 * on another group. Of course this applies only if 9352 * there is more than 1 CPU per group. 9353 */ 9354 goto out_balanced; 9355 9356 if (busiest->sum_h_nr_running == 1) 9357 /* 9358 * busiest doesn't have any tasks waiting to run 9359 */ 9360 goto out_balanced; 9361 } 9362 9363 force_balance: 9364 /* Looks like there is an imbalance. Compute it */ 9365 calculate_imbalance(env, &sds); 9366 return env->imbalance ? sds.busiest : NULL; 9367 9368 out_balanced: 9369 env->imbalance = 0; 9370 return NULL; 9371 } 9372 9373 /* 9374 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9375 */ 9376 static struct rq *find_busiest_queue(struct lb_env *env, 9377 struct sched_group *group) 9378 { 9379 struct rq *busiest = NULL, *rq; 9380 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9381 unsigned int busiest_nr = 0; 9382 int i; 9383 9384 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9385 unsigned long capacity, load, util; 9386 unsigned int nr_running; 9387 enum fbq_type rt; 9388 9389 rq = cpu_rq(i); 9390 rt = fbq_classify_rq(rq); 9391 9392 /* 9393 * We classify groups/runqueues into three groups: 9394 * - regular: there are !numa tasks 9395 * - remote: there are numa tasks that run on the 'wrong' node 9396 * - all: there is no distinction 9397 * 9398 * In order to avoid migrating ideally placed numa tasks, 9399 * ignore those when there's better options. 9400 * 9401 * If we ignore the actual busiest queue to migrate another 9402 * task, the next balance pass can still reduce the busiest 9403 * queue by moving tasks around inside the node. 9404 * 9405 * If we cannot move enough load due to this classification 9406 * the next pass will adjust the group classification and 9407 * allow migration of more tasks. 9408 * 9409 * Both cases only affect the total convergence complexity. 9410 */ 9411 if (rt > env->fbq_type) 9412 continue; 9413 9414 nr_running = rq->cfs.h_nr_running; 9415 if (!nr_running) 9416 continue; 9417 9418 capacity = capacity_of(i); 9419 9420 /* 9421 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9422 * eventually lead to active_balancing high->low capacity. 9423 * Higher per-CPU capacity is considered better than balancing 9424 * average load. 9425 */ 9426 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9427 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 9428 nr_running == 1) 9429 continue; 9430 9431 switch (env->migration_type) { 9432 case migrate_load: 9433 /* 9434 * When comparing with load imbalance, use cpu_load() 9435 * which is not scaled with the CPU capacity. 9436 */ 9437 load = cpu_load(rq); 9438 9439 if (nr_running == 1 && load > env->imbalance && 9440 !check_cpu_capacity(rq, env->sd)) 9441 break; 9442 9443 /* 9444 * For the load comparisons with the other CPUs, 9445 * consider the cpu_load() scaled with the CPU 9446 * capacity, so that the load can be moved away 9447 * from the CPU that is potentially running at a 9448 * lower capacity. 9449 * 9450 * Thus we're looking for max(load_i / capacity_i), 9451 * crosswise multiplication to rid ourselves of the 9452 * division works out to: 9453 * load_i * capacity_j > load_j * capacity_i; 9454 * where j is our previous maximum. 9455 */ 9456 if (load * busiest_capacity > busiest_load * capacity) { 9457 busiest_load = load; 9458 busiest_capacity = capacity; 9459 busiest = rq; 9460 } 9461 break; 9462 9463 case migrate_util: 9464 util = cpu_util(cpu_of(rq)); 9465 9466 /* 9467 * Don't try to pull utilization from a CPU with one 9468 * running task. Whatever its utilization, we will fail 9469 * detach the task. 9470 */ 9471 if (nr_running <= 1) 9472 continue; 9473 9474 if (busiest_util < util) { 9475 busiest_util = util; 9476 busiest = rq; 9477 } 9478 break; 9479 9480 case migrate_task: 9481 if (busiest_nr < nr_running) { 9482 busiest_nr = nr_running; 9483 busiest = rq; 9484 } 9485 break; 9486 9487 case migrate_misfit: 9488 /* 9489 * For ASYM_CPUCAPACITY domains with misfit tasks we 9490 * simply seek the "biggest" misfit task. 9491 */ 9492 if (rq->misfit_task_load > busiest_load) { 9493 busiest_load = rq->misfit_task_load; 9494 busiest = rq; 9495 } 9496 9497 break; 9498 9499 } 9500 } 9501 9502 return busiest; 9503 } 9504 9505 /* 9506 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9507 * so long as it is large enough. 9508 */ 9509 #define MAX_PINNED_INTERVAL 512 9510 9511 static inline bool 9512 asym_active_balance(struct lb_env *env) 9513 { 9514 /* 9515 * ASYM_PACKING needs to force migrate tasks from busy but 9516 * lower priority CPUs in order to pack all tasks in the 9517 * highest priority CPUs. 9518 */ 9519 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9520 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9521 } 9522 9523 static inline bool 9524 imbalanced_active_balance(struct lb_env *env) 9525 { 9526 struct sched_domain *sd = env->sd; 9527 9528 /* 9529 * The imbalanced case includes the case of pinned tasks preventing a fair 9530 * distribution of the load on the system but also the even distribution of the 9531 * threads on a system with spare capacity 9532 */ 9533 if ((env->migration_type == migrate_task) && 9534 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 9535 return 1; 9536 9537 return 0; 9538 } 9539 9540 static int need_active_balance(struct lb_env *env) 9541 { 9542 struct sched_domain *sd = env->sd; 9543 9544 if (asym_active_balance(env)) 9545 return 1; 9546 9547 if (imbalanced_active_balance(env)) 9548 return 1; 9549 9550 /* 9551 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9552 * It's worth migrating the task if the src_cpu's capacity is reduced 9553 * because of other sched_class or IRQs if more capacity stays 9554 * available on dst_cpu. 9555 */ 9556 if ((env->idle != CPU_NOT_IDLE) && 9557 (env->src_rq->cfs.h_nr_running == 1)) { 9558 if ((check_cpu_capacity(env->src_rq, sd)) && 9559 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9560 return 1; 9561 } 9562 9563 if (env->migration_type == migrate_misfit) 9564 return 1; 9565 9566 return 0; 9567 } 9568 9569 static int active_load_balance_cpu_stop(void *data); 9570 9571 static int should_we_balance(struct lb_env *env) 9572 { 9573 struct sched_group *sg = env->sd->groups; 9574 int cpu; 9575 9576 /* 9577 * Ensure the balancing environment is consistent; can happen 9578 * when the softirq triggers 'during' hotplug. 9579 */ 9580 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9581 return 0; 9582 9583 /* 9584 * In the newly idle case, we will allow all the CPUs 9585 * to do the newly idle load balance. 9586 */ 9587 if (env->idle == CPU_NEWLY_IDLE) 9588 return 1; 9589 9590 /* Try to find first idle CPU */ 9591 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9592 if (!idle_cpu(cpu)) 9593 continue; 9594 9595 /* Are we the first idle CPU? */ 9596 return cpu == env->dst_cpu; 9597 } 9598 9599 /* Are we the first CPU of this group ? */ 9600 return group_balance_cpu(sg) == env->dst_cpu; 9601 } 9602 9603 /* 9604 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9605 * tasks if there is an imbalance. 9606 */ 9607 static int load_balance(int this_cpu, struct rq *this_rq, 9608 struct sched_domain *sd, enum cpu_idle_type idle, 9609 int *continue_balancing) 9610 { 9611 int ld_moved, cur_ld_moved, active_balance = 0; 9612 struct sched_domain *sd_parent = sd->parent; 9613 struct sched_group *group; 9614 struct rq *busiest; 9615 struct rq_flags rf; 9616 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9617 9618 struct lb_env env = { 9619 .sd = sd, 9620 .dst_cpu = this_cpu, 9621 .dst_rq = this_rq, 9622 .dst_grpmask = sched_group_span(sd->groups), 9623 .idle = idle, 9624 .loop_break = sched_nr_migrate_break, 9625 .cpus = cpus, 9626 .fbq_type = all, 9627 .tasks = LIST_HEAD_INIT(env.tasks), 9628 }; 9629 9630 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9631 9632 schedstat_inc(sd->lb_count[idle]); 9633 9634 redo: 9635 if (!should_we_balance(&env)) { 9636 *continue_balancing = 0; 9637 goto out_balanced; 9638 } 9639 9640 group = find_busiest_group(&env); 9641 if (!group) { 9642 schedstat_inc(sd->lb_nobusyg[idle]); 9643 goto out_balanced; 9644 } 9645 9646 busiest = find_busiest_queue(&env, group); 9647 if (!busiest) { 9648 schedstat_inc(sd->lb_nobusyq[idle]); 9649 goto out_balanced; 9650 } 9651 9652 BUG_ON(busiest == env.dst_rq); 9653 9654 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9655 9656 env.src_cpu = busiest->cpu; 9657 env.src_rq = busiest; 9658 9659 ld_moved = 0; 9660 /* Clear this flag as soon as we find a pullable task */ 9661 env.flags |= LBF_ALL_PINNED; 9662 if (busiest->nr_running > 1) { 9663 /* 9664 * Attempt to move tasks. If find_busiest_group has found 9665 * an imbalance but busiest->nr_running <= 1, the group is 9666 * still unbalanced. ld_moved simply stays zero, so it is 9667 * correctly treated as an imbalance. 9668 */ 9669 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9670 9671 more_balance: 9672 rq_lock_irqsave(busiest, &rf); 9673 update_rq_clock(busiest); 9674 9675 /* 9676 * cur_ld_moved - load moved in current iteration 9677 * ld_moved - cumulative load moved across iterations 9678 */ 9679 cur_ld_moved = detach_tasks(&env); 9680 9681 /* 9682 * We've detached some tasks from busiest_rq. Every 9683 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9684 * unlock busiest->lock, and we are able to be sure 9685 * that nobody can manipulate the tasks in parallel. 9686 * See task_rq_lock() family for the details. 9687 */ 9688 9689 rq_unlock(busiest, &rf); 9690 9691 if (cur_ld_moved) { 9692 attach_tasks(&env); 9693 ld_moved += cur_ld_moved; 9694 } 9695 9696 local_irq_restore(rf.flags); 9697 9698 if (env.flags & LBF_NEED_BREAK) { 9699 env.flags &= ~LBF_NEED_BREAK; 9700 goto more_balance; 9701 } 9702 9703 /* 9704 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9705 * us and move them to an alternate dst_cpu in our sched_group 9706 * where they can run. The upper limit on how many times we 9707 * iterate on same src_cpu is dependent on number of CPUs in our 9708 * sched_group. 9709 * 9710 * This changes load balance semantics a bit on who can move 9711 * load to a given_cpu. In addition to the given_cpu itself 9712 * (or a ilb_cpu acting on its behalf where given_cpu is 9713 * nohz-idle), we now have balance_cpu in a position to move 9714 * load to given_cpu. In rare situations, this may cause 9715 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9716 * _independently_ and at _same_ time to move some load to 9717 * given_cpu) causing excess load to be moved to given_cpu. 9718 * This however should not happen so much in practice and 9719 * moreover subsequent load balance cycles should correct the 9720 * excess load moved. 9721 */ 9722 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9723 9724 /* Prevent to re-select dst_cpu via env's CPUs */ 9725 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9726 9727 env.dst_rq = cpu_rq(env.new_dst_cpu); 9728 env.dst_cpu = env.new_dst_cpu; 9729 env.flags &= ~LBF_DST_PINNED; 9730 env.loop = 0; 9731 env.loop_break = sched_nr_migrate_break; 9732 9733 /* 9734 * Go back to "more_balance" rather than "redo" since we 9735 * need to continue with same src_cpu. 9736 */ 9737 goto more_balance; 9738 } 9739 9740 /* 9741 * We failed to reach balance because of affinity. 9742 */ 9743 if (sd_parent) { 9744 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9745 9746 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9747 *group_imbalance = 1; 9748 } 9749 9750 /* All tasks on this runqueue were pinned by CPU affinity */ 9751 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9752 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9753 /* 9754 * Attempting to continue load balancing at the current 9755 * sched_domain level only makes sense if there are 9756 * active CPUs remaining as possible busiest CPUs to 9757 * pull load from which are not contained within the 9758 * destination group that is receiving any migrated 9759 * load. 9760 */ 9761 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9762 env.loop = 0; 9763 env.loop_break = sched_nr_migrate_break; 9764 goto redo; 9765 } 9766 goto out_all_pinned; 9767 } 9768 } 9769 9770 if (!ld_moved) { 9771 schedstat_inc(sd->lb_failed[idle]); 9772 /* 9773 * Increment the failure counter only on periodic balance. 9774 * We do not want newidle balance, which can be very 9775 * frequent, pollute the failure counter causing 9776 * excessive cache_hot migrations and active balances. 9777 */ 9778 if (idle != CPU_NEWLY_IDLE) 9779 sd->nr_balance_failed++; 9780 9781 if (need_active_balance(&env)) { 9782 unsigned long flags; 9783 9784 raw_spin_lock_irqsave(&busiest->lock, flags); 9785 9786 /* 9787 * Don't kick the active_load_balance_cpu_stop, 9788 * if the curr task on busiest CPU can't be 9789 * moved to this_cpu: 9790 */ 9791 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 9792 raw_spin_unlock_irqrestore(&busiest->lock, 9793 flags); 9794 goto out_one_pinned; 9795 } 9796 9797 /* Record that we found at least one task that could run on this_cpu */ 9798 env.flags &= ~LBF_ALL_PINNED; 9799 9800 /* 9801 * ->active_balance synchronizes accesses to 9802 * ->active_balance_work. Once set, it's cleared 9803 * only after active load balance is finished. 9804 */ 9805 if (!busiest->active_balance) { 9806 busiest->active_balance = 1; 9807 busiest->push_cpu = this_cpu; 9808 active_balance = 1; 9809 } 9810 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9811 9812 if (active_balance) { 9813 stop_one_cpu_nowait(cpu_of(busiest), 9814 active_load_balance_cpu_stop, busiest, 9815 &busiest->active_balance_work); 9816 } 9817 } 9818 } else { 9819 sd->nr_balance_failed = 0; 9820 } 9821 9822 if (likely(!active_balance) || need_active_balance(&env)) { 9823 /* We were unbalanced, so reset the balancing interval */ 9824 sd->balance_interval = sd->min_interval; 9825 } 9826 9827 goto out; 9828 9829 out_balanced: 9830 /* 9831 * We reach balance although we may have faced some affinity 9832 * constraints. Clear the imbalance flag only if other tasks got 9833 * a chance to move and fix the imbalance. 9834 */ 9835 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 9836 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9837 9838 if (*group_imbalance) 9839 *group_imbalance = 0; 9840 } 9841 9842 out_all_pinned: 9843 /* 9844 * We reach balance because all tasks are pinned at this level so 9845 * we can't migrate them. Let the imbalance flag set so parent level 9846 * can try to migrate them. 9847 */ 9848 schedstat_inc(sd->lb_balanced[idle]); 9849 9850 sd->nr_balance_failed = 0; 9851 9852 out_one_pinned: 9853 ld_moved = 0; 9854 9855 /* 9856 * newidle_balance() disregards balance intervals, so we could 9857 * repeatedly reach this code, which would lead to balance_interval 9858 * skyrocketing in a short amount of time. Skip the balance_interval 9859 * increase logic to avoid that. 9860 */ 9861 if (env.idle == CPU_NEWLY_IDLE) 9862 goto out; 9863 9864 /* tune up the balancing interval */ 9865 if ((env.flags & LBF_ALL_PINNED && 9866 sd->balance_interval < MAX_PINNED_INTERVAL) || 9867 sd->balance_interval < sd->max_interval) 9868 sd->balance_interval *= 2; 9869 out: 9870 return ld_moved; 9871 } 9872 9873 static inline unsigned long 9874 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9875 { 9876 unsigned long interval = sd->balance_interval; 9877 9878 if (cpu_busy) 9879 interval *= sd->busy_factor; 9880 9881 /* scale ms to jiffies */ 9882 interval = msecs_to_jiffies(interval); 9883 9884 /* 9885 * Reduce likelihood of busy balancing at higher domains racing with 9886 * balancing at lower domains by preventing their balancing periods 9887 * from being multiples of each other. 9888 */ 9889 if (cpu_busy) 9890 interval -= 1; 9891 9892 interval = clamp(interval, 1UL, max_load_balance_interval); 9893 9894 return interval; 9895 } 9896 9897 static inline void 9898 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9899 { 9900 unsigned long interval, next; 9901 9902 /* used by idle balance, so cpu_busy = 0 */ 9903 interval = get_sd_balance_interval(sd, 0); 9904 next = sd->last_balance + interval; 9905 9906 if (time_after(*next_balance, next)) 9907 *next_balance = next; 9908 } 9909 9910 /* 9911 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9912 * running tasks off the busiest CPU onto idle CPUs. It requires at 9913 * least 1 task to be running on each physical CPU where possible, and 9914 * avoids physical / logical imbalances. 9915 */ 9916 static int active_load_balance_cpu_stop(void *data) 9917 { 9918 struct rq *busiest_rq = data; 9919 int busiest_cpu = cpu_of(busiest_rq); 9920 int target_cpu = busiest_rq->push_cpu; 9921 struct rq *target_rq = cpu_rq(target_cpu); 9922 struct sched_domain *sd; 9923 struct task_struct *p = NULL; 9924 struct rq_flags rf; 9925 9926 rq_lock_irq(busiest_rq, &rf); 9927 /* 9928 * Between queueing the stop-work and running it is a hole in which 9929 * CPUs can become inactive. We should not move tasks from or to 9930 * inactive CPUs. 9931 */ 9932 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9933 goto out_unlock; 9934 9935 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9936 if (unlikely(busiest_cpu != smp_processor_id() || 9937 !busiest_rq->active_balance)) 9938 goto out_unlock; 9939 9940 /* Is there any task to move? */ 9941 if (busiest_rq->nr_running <= 1) 9942 goto out_unlock; 9943 9944 /* 9945 * This condition is "impossible", if it occurs 9946 * we need to fix it. Originally reported by 9947 * Bjorn Helgaas on a 128-CPU setup. 9948 */ 9949 BUG_ON(busiest_rq == target_rq); 9950 9951 /* Search for an sd spanning us and the target CPU. */ 9952 rcu_read_lock(); 9953 for_each_domain(target_cpu, sd) { 9954 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9955 break; 9956 } 9957 9958 if (likely(sd)) { 9959 struct lb_env env = { 9960 .sd = sd, 9961 .dst_cpu = target_cpu, 9962 .dst_rq = target_rq, 9963 .src_cpu = busiest_rq->cpu, 9964 .src_rq = busiest_rq, 9965 .idle = CPU_IDLE, 9966 .flags = LBF_ACTIVE_LB, 9967 }; 9968 9969 schedstat_inc(sd->alb_count); 9970 update_rq_clock(busiest_rq); 9971 9972 p = detach_one_task(&env); 9973 if (p) { 9974 schedstat_inc(sd->alb_pushed); 9975 /* Active balancing done, reset the failure counter. */ 9976 sd->nr_balance_failed = 0; 9977 } else { 9978 schedstat_inc(sd->alb_failed); 9979 } 9980 } 9981 rcu_read_unlock(); 9982 out_unlock: 9983 busiest_rq->active_balance = 0; 9984 rq_unlock(busiest_rq, &rf); 9985 9986 if (p) 9987 attach_one_task(target_rq, p); 9988 9989 local_irq_enable(); 9990 9991 return 0; 9992 } 9993 9994 static DEFINE_SPINLOCK(balancing); 9995 9996 /* 9997 * Scale the max load_balance interval with the number of CPUs in the system. 9998 * This trades load-balance latency on larger machines for less cross talk. 9999 */ 10000 void update_max_interval(void) 10001 { 10002 max_load_balance_interval = HZ*num_online_cpus()/10; 10003 } 10004 10005 /* 10006 * It checks each scheduling domain to see if it is due to be balanced, 10007 * and initiates a balancing operation if so. 10008 * 10009 * Balancing parameters are set up in init_sched_domains. 10010 */ 10011 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 10012 { 10013 int continue_balancing = 1; 10014 int cpu = rq->cpu; 10015 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10016 unsigned long interval; 10017 struct sched_domain *sd; 10018 /* Earliest time when we have to do rebalance again */ 10019 unsigned long next_balance = jiffies + 60*HZ; 10020 int update_next_balance = 0; 10021 int need_serialize, need_decay = 0; 10022 u64 max_cost = 0; 10023 10024 rcu_read_lock(); 10025 for_each_domain(cpu, sd) { 10026 /* 10027 * Decay the newidle max times here because this is a regular 10028 * visit to all the domains. Decay ~1% per second. 10029 */ 10030 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 10031 sd->max_newidle_lb_cost = 10032 (sd->max_newidle_lb_cost * 253) / 256; 10033 sd->next_decay_max_lb_cost = jiffies + HZ; 10034 need_decay = 1; 10035 } 10036 max_cost += sd->max_newidle_lb_cost; 10037 10038 /* 10039 * Stop the load balance at this level. There is another 10040 * CPU in our sched group which is doing load balancing more 10041 * actively. 10042 */ 10043 if (!continue_balancing) { 10044 if (need_decay) 10045 continue; 10046 break; 10047 } 10048 10049 interval = get_sd_balance_interval(sd, busy); 10050 10051 need_serialize = sd->flags & SD_SERIALIZE; 10052 if (need_serialize) { 10053 if (!spin_trylock(&balancing)) 10054 goto out; 10055 } 10056 10057 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10058 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10059 /* 10060 * The LBF_DST_PINNED logic could have changed 10061 * env->dst_cpu, so we can't know our idle 10062 * state even if we migrated tasks. Update it. 10063 */ 10064 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10065 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10066 } 10067 sd->last_balance = jiffies; 10068 interval = get_sd_balance_interval(sd, busy); 10069 } 10070 if (need_serialize) 10071 spin_unlock(&balancing); 10072 out: 10073 if (time_after(next_balance, sd->last_balance + interval)) { 10074 next_balance = sd->last_balance + interval; 10075 update_next_balance = 1; 10076 } 10077 } 10078 if (need_decay) { 10079 /* 10080 * Ensure the rq-wide value also decays but keep it at a 10081 * reasonable floor to avoid funnies with rq->avg_idle. 10082 */ 10083 rq->max_idle_balance_cost = 10084 max((u64)sysctl_sched_migration_cost, max_cost); 10085 } 10086 rcu_read_unlock(); 10087 10088 /* 10089 * next_balance will be updated only when there is a need. 10090 * When the cpu is attached to null domain for ex, it will not be 10091 * updated. 10092 */ 10093 if (likely(update_next_balance)) 10094 rq->next_balance = next_balance; 10095 10096 } 10097 10098 static inline int on_null_domain(struct rq *rq) 10099 { 10100 return unlikely(!rcu_dereference_sched(rq->sd)); 10101 } 10102 10103 #ifdef CONFIG_NO_HZ_COMMON 10104 /* 10105 * idle load balancing details 10106 * - When one of the busy CPUs notice that there may be an idle rebalancing 10107 * needed, they will kick the idle load balancer, which then does idle 10108 * load balancing for all the idle CPUs. 10109 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 10110 * anywhere yet. 10111 */ 10112 10113 static inline int find_new_ilb(void) 10114 { 10115 int ilb; 10116 10117 for_each_cpu_and(ilb, nohz.idle_cpus_mask, 10118 housekeeping_cpumask(HK_FLAG_MISC)) { 10119 10120 if (ilb == smp_processor_id()) 10121 continue; 10122 10123 if (idle_cpu(ilb)) 10124 return ilb; 10125 } 10126 10127 return nr_cpu_ids; 10128 } 10129 10130 /* 10131 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10132 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 10133 */ 10134 static void kick_ilb(unsigned int flags) 10135 { 10136 int ilb_cpu; 10137 10138 /* 10139 * Increase nohz.next_balance only when if full ilb is triggered but 10140 * not if we only update stats. 10141 */ 10142 if (flags & NOHZ_BALANCE_KICK) 10143 nohz.next_balance = jiffies+1; 10144 10145 ilb_cpu = find_new_ilb(); 10146 10147 if (ilb_cpu >= nr_cpu_ids) 10148 return; 10149 10150 /* 10151 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10152 * the first flag owns it; cleared by nohz_csd_func(). 10153 */ 10154 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10155 if (flags & NOHZ_KICK_MASK) 10156 return; 10157 10158 /* 10159 * This way we generate an IPI on the target CPU which 10160 * is idle. And the softirq performing nohz idle load balance 10161 * will be run before returning from the IPI. 10162 */ 10163 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10164 } 10165 10166 /* 10167 * Current decision point for kicking the idle load balancer in the presence 10168 * of idle CPUs in the system. 10169 */ 10170 static void nohz_balancer_kick(struct rq *rq) 10171 { 10172 unsigned long now = jiffies; 10173 struct sched_domain_shared *sds; 10174 struct sched_domain *sd; 10175 int nr_busy, i, cpu = rq->cpu; 10176 unsigned int flags = 0; 10177 10178 if (unlikely(rq->idle_balance)) 10179 return; 10180 10181 /* 10182 * We may be recently in ticked or tickless idle mode. At the first 10183 * busy tick after returning from idle, we will update the busy stats. 10184 */ 10185 nohz_balance_exit_idle(rq); 10186 10187 /* 10188 * None are in tickless mode and hence no need for NOHZ idle load 10189 * balancing. 10190 */ 10191 if (likely(!atomic_read(&nohz.nr_cpus))) 10192 return; 10193 10194 if (READ_ONCE(nohz.has_blocked) && 10195 time_after(now, READ_ONCE(nohz.next_blocked))) 10196 flags = NOHZ_STATS_KICK; 10197 10198 if (time_before(now, nohz.next_balance)) 10199 goto out; 10200 10201 if (rq->nr_running >= 2) { 10202 flags = NOHZ_KICK_MASK; 10203 goto out; 10204 } 10205 10206 rcu_read_lock(); 10207 10208 sd = rcu_dereference(rq->sd); 10209 if (sd) { 10210 /* 10211 * If there's a CFS task and the current CPU has reduced 10212 * capacity; kick the ILB to see if there's a better CPU to run 10213 * on. 10214 */ 10215 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10216 flags = NOHZ_KICK_MASK; 10217 goto unlock; 10218 } 10219 } 10220 10221 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10222 if (sd) { 10223 /* 10224 * When ASYM_PACKING; see if there's a more preferred CPU 10225 * currently idle; in which case, kick the ILB to move tasks 10226 * around. 10227 */ 10228 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10229 if (sched_asym_prefer(i, cpu)) { 10230 flags = NOHZ_KICK_MASK; 10231 goto unlock; 10232 } 10233 } 10234 } 10235 10236 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10237 if (sd) { 10238 /* 10239 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10240 * to run the misfit task on. 10241 */ 10242 if (check_misfit_status(rq, sd)) { 10243 flags = NOHZ_KICK_MASK; 10244 goto unlock; 10245 } 10246 10247 /* 10248 * For asymmetric systems, we do not want to nicely balance 10249 * cache use, instead we want to embrace asymmetry and only 10250 * ensure tasks have enough CPU capacity. 10251 * 10252 * Skip the LLC logic because it's not relevant in that case. 10253 */ 10254 goto unlock; 10255 } 10256 10257 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10258 if (sds) { 10259 /* 10260 * If there is an imbalance between LLC domains (IOW we could 10261 * increase the overall cache use), we need some less-loaded LLC 10262 * domain to pull some load. Likewise, we may need to spread 10263 * load within the current LLC domain (e.g. packed SMT cores but 10264 * other CPUs are idle). We can't really know from here how busy 10265 * the others are - so just get a nohz balance going if it looks 10266 * like this LLC domain has tasks we could move. 10267 */ 10268 nr_busy = atomic_read(&sds->nr_busy_cpus); 10269 if (nr_busy > 1) { 10270 flags = NOHZ_KICK_MASK; 10271 goto unlock; 10272 } 10273 } 10274 unlock: 10275 rcu_read_unlock(); 10276 out: 10277 if (flags) 10278 kick_ilb(flags); 10279 } 10280 10281 static void set_cpu_sd_state_busy(int cpu) 10282 { 10283 struct sched_domain *sd; 10284 10285 rcu_read_lock(); 10286 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10287 10288 if (!sd || !sd->nohz_idle) 10289 goto unlock; 10290 sd->nohz_idle = 0; 10291 10292 atomic_inc(&sd->shared->nr_busy_cpus); 10293 unlock: 10294 rcu_read_unlock(); 10295 } 10296 10297 void nohz_balance_exit_idle(struct rq *rq) 10298 { 10299 SCHED_WARN_ON(rq != this_rq()); 10300 10301 if (likely(!rq->nohz_tick_stopped)) 10302 return; 10303 10304 rq->nohz_tick_stopped = 0; 10305 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10306 atomic_dec(&nohz.nr_cpus); 10307 10308 set_cpu_sd_state_busy(rq->cpu); 10309 } 10310 10311 static void set_cpu_sd_state_idle(int cpu) 10312 { 10313 struct sched_domain *sd; 10314 10315 rcu_read_lock(); 10316 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10317 10318 if (!sd || sd->nohz_idle) 10319 goto unlock; 10320 sd->nohz_idle = 1; 10321 10322 atomic_dec(&sd->shared->nr_busy_cpus); 10323 unlock: 10324 rcu_read_unlock(); 10325 } 10326 10327 /* 10328 * This routine will record that the CPU is going idle with tick stopped. 10329 * This info will be used in performing idle load balancing in the future. 10330 */ 10331 void nohz_balance_enter_idle(int cpu) 10332 { 10333 struct rq *rq = cpu_rq(cpu); 10334 10335 SCHED_WARN_ON(cpu != smp_processor_id()); 10336 10337 /* If this CPU is going down, then nothing needs to be done: */ 10338 if (!cpu_active(cpu)) 10339 return; 10340 10341 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10342 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 10343 return; 10344 10345 /* 10346 * Can be set safely without rq->lock held 10347 * If a clear happens, it will have evaluated last additions because 10348 * rq->lock is held during the check and the clear 10349 */ 10350 rq->has_blocked_load = 1; 10351 10352 /* 10353 * The tick is still stopped but load could have been added in the 10354 * meantime. We set the nohz.has_blocked flag to trig a check of the 10355 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10356 * of nohz.has_blocked can only happen after checking the new load 10357 */ 10358 if (rq->nohz_tick_stopped) 10359 goto out; 10360 10361 /* If we're a completely isolated CPU, we don't play: */ 10362 if (on_null_domain(rq)) 10363 return; 10364 10365 rq->nohz_tick_stopped = 1; 10366 10367 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10368 atomic_inc(&nohz.nr_cpus); 10369 10370 /* 10371 * Ensures that if nohz_idle_balance() fails to observe our 10372 * @idle_cpus_mask store, it must observe the @has_blocked 10373 * store. 10374 */ 10375 smp_mb__after_atomic(); 10376 10377 set_cpu_sd_state_idle(cpu); 10378 10379 out: 10380 /* 10381 * Each time a cpu enter idle, we assume that it has blocked load and 10382 * enable the periodic update of the load of idle cpus 10383 */ 10384 WRITE_ONCE(nohz.has_blocked, 1); 10385 } 10386 10387 static bool update_nohz_stats(struct rq *rq) 10388 { 10389 unsigned int cpu = rq->cpu; 10390 10391 if (!rq->has_blocked_load) 10392 return false; 10393 10394 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 10395 return false; 10396 10397 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 10398 return true; 10399 10400 update_blocked_averages(cpu); 10401 10402 return rq->has_blocked_load; 10403 } 10404 10405 /* 10406 * Internal function that runs load balance for all idle cpus. The load balance 10407 * can be a simple update of blocked load or a complete load balance with 10408 * tasks movement depending of flags. 10409 */ 10410 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10411 enum cpu_idle_type idle) 10412 { 10413 /* Earliest time when we have to do rebalance again */ 10414 unsigned long now = jiffies; 10415 unsigned long next_balance = now + 60*HZ; 10416 bool has_blocked_load = false; 10417 int update_next_balance = 0; 10418 int this_cpu = this_rq->cpu; 10419 int balance_cpu; 10420 struct rq *rq; 10421 10422 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10423 10424 /* 10425 * We assume there will be no idle load after this update and clear 10426 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10427 * set the has_blocked flag and trig another update of idle load. 10428 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10429 * setting the flag, we are sure to not clear the state and not 10430 * check the load of an idle cpu. 10431 */ 10432 WRITE_ONCE(nohz.has_blocked, 0); 10433 10434 /* 10435 * Ensures that if we miss the CPU, we must see the has_blocked 10436 * store from nohz_balance_enter_idle(). 10437 */ 10438 smp_mb(); 10439 10440 /* 10441 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 10442 * chance for other idle cpu to pull load. 10443 */ 10444 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 10445 if (!idle_cpu(balance_cpu)) 10446 continue; 10447 10448 /* 10449 * If this CPU gets work to do, stop the load balancing 10450 * work being done for other CPUs. Next load 10451 * balancing owner will pick it up. 10452 */ 10453 if (need_resched()) { 10454 has_blocked_load = true; 10455 goto abort; 10456 } 10457 10458 rq = cpu_rq(balance_cpu); 10459 10460 has_blocked_load |= update_nohz_stats(rq); 10461 10462 /* 10463 * If time for next balance is due, 10464 * do the balance. 10465 */ 10466 if (time_after_eq(jiffies, rq->next_balance)) { 10467 struct rq_flags rf; 10468 10469 rq_lock_irqsave(rq, &rf); 10470 update_rq_clock(rq); 10471 rq_unlock_irqrestore(rq, &rf); 10472 10473 if (flags & NOHZ_BALANCE_KICK) 10474 rebalance_domains(rq, CPU_IDLE); 10475 } 10476 10477 if (time_after(next_balance, rq->next_balance)) { 10478 next_balance = rq->next_balance; 10479 update_next_balance = 1; 10480 } 10481 } 10482 10483 /* 10484 * next_balance will be updated only when there is a need. 10485 * When the CPU is attached to null domain for ex, it will not be 10486 * updated. 10487 */ 10488 if (likely(update_next_balance)) 10489 nohz.next_balance = next_balance; 10490 10491 WRITE_ONCE(nohz.next_blocked, 10492 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10493 10494 abort: 10495 /* There is still blocked load, enable periodic update */ 10496 if (has_blocked_load) 10497 WRITE_ONCE(nohz.has_blocked, 1); 10498 } 10499 10500 /* 10501 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10502 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10503 */ 10504 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10505 { 10506 unsigned int flags = this_rq->nohz_idle_balance; 10507 10508 if (!flags) 10509 return false; 10510 10511 this_rq->nohz_idle_balance = 0; 10512 10513 if (idle != CPU_IDLE) 10514 return false; 10515 10516 _nohz_idle_balance(this_rq, flags, idle); 10517 10518 return true; 10519 } 10520 10521 /* 10522 * Check if we need to run the ILB for updating blocked load before entering 10523 * idle state. 10524 */ 10525 void nohz_run_idle_balance(int cpu) 10526 { 10527 unsigned int flags; 10528 10529 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 10530 10531 /* 10532 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 10533 * (ie NOHZ_STATS_KICK set) and will do the same. 10534 */ 10535 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 10536 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE); 10537 } 10538 10539 static void nohz_newidle_balance(struct rq *this_rq) 10540 { 10541 int this_cpu = this_rq->cpu; 10542 10543 /* 10544 * This CPU doesn't want to be disturbed by scheduler 10545 * housekeeping 10546 */ 10547 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 10548 return; 10549 10550 /* Will wake up very soon. No time for doing anything else*/ 10551 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10552 return; 10553 10554 /* Don't need to update blocked load of idle CPUs*/ 10555 if (!READ_ONCE(nohz.has_blocked) || 10556 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10557 return; 10558 10559 /* 10560 * Set the need to trigger ILB in order to update blocked load 10561 * before entering idle state. 10562 */ 10563 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 10564 } 10565 10566 #else /* !CONFIG_NO_HZ_COMMON */ 10567 static inline void nohz_balancer_kick(struct rq *rq) { } 10568 10569 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10570 { 10571 return false; 10572 } 10573 10574 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10575 #endif /* CONFIG_NO_HZ_COMMON */ 10576 10577 /* 10578 * newidle_balance is called by schedule() if this_cpu is about to become 10579 * idle. Attempts to pull tasks from other CPUs. 10580 * 10581 * Returns: 10582 * < 0 - we released the lock and there are !fair tasks present 10583 * 0 - failed, no new tasks 10584 * > 0 - success, new (fair) tasks present 10585 */ 10586 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10587 { 10588 unsigned long next_balance = jiffies + HZ; 10589 int this_cpu = this_rq->cpu; 10590 struct sched_domain *sd; 10591 int pulled_task = 0; 10592 u64 curr_cost = 0; 10593 10594 update_misfit_status(NULL, this_rq); 10595 /* 10596 * We must set idle_stamp _before_ calling idle_balance(), such that we 10597 * measure the duration of idle_balance() as idle time. 10598 */ 10599 this_rq->idle_stamp = rq_clock(this_rq); 10600 10601 /* 10602 * Do not pull tasks towards !active CPUs... 10603 */ 10604 if (!cpu_active(this_cpu)) 10605 return 0; 10606 10607 /* 10608 * This is OK, because current is on_cpu, which avoids it being picked 10609 * for load-balance and preemption/IRQs are still disabled avoiding 10610 * further scheduler activity on it and we're being very careful to 10611 * re-start the picking loop. 10612 */ 10613 rq_unpin_lock(this_rq, rf); 10614 10615 if (this_rq->avg_idle < sysctl_sched_migration_cost || 10616 !READ_ONCE(this_rq->rd->overload)) { 10617 10618 rcu_read_lock(); 10619 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10620 if (sd) 10621 update_next_balance(sd, &next_balance); 10622 rcu_read_unlock(); 10623 10624 goto out; 10625 } 10626 10627 raw_spin_unlock(&this_rq->lock); 10628 10629 update_blocked_averages(this_cpu); 10630 rcu_read_lock(); 10631 for_each_domain(this_cpu, sd) { 10632 int continue_balancing = 1; 10633 u64 t0, domain_cost; 10634 10635 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 10636 update_next_balance(sd, &next_balance); 10637 break; 10638 } 10639 10640 if (sd->flags & SD_BALANCE_NEWIDLE) { 10641 t0 = sched_clock_cpu(this_cpu); 10642 10643 pulled_task = load_balance(this_cpu, this_rq, 10644 sd, CPU_NEWLY_IDLE, 10645 &continue_balancing); 10646 10647 domain_cost = sched_clock_cpu(this_cpu) - t0; 10648 if (domain_cost > sd->max_newidle_lb_cost) 10649 sd->max_newidle_lb_cost = domain_cost; 10650 10651 curr_cost += domain_cost; 10652 } 10653 10654 update_next_balance(sd, &next_balance); 10655 10656 /* 10657 * Stop searching for tasks to pull if there are 10658 * now runnable tasks on this rq. 10659 */ 10660 if (pulled_task || this_rq->nr_running > 0) 10661 break; 10662 } 10663 rcu_read_unlock(); 10664 10665 raw_spin_lock(&this_rq->lock); 10666 10667 if (curr_cost > this_rq->max_idle_balance_cost) 10668 this_rq->max_idle_balance_cost = curr_cost; 10669 10670 /* 10671 * While browsing the domains, we released the rq lock, a task could 10672 * have been enqueued in the meantime. Since we're not going idle, 10673 * pretend we pulled a task. 10674 */ 10675 if (this_rq->cfs.h_nr_running && !pulled_task) 10676 pulled_task = 1; 10677 10678 /* Is there a task of a high priority class? */ 10679 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10680 pulled_task = -1; 10681 10682 out: 10683 /* Move the next balance forward */ 10684 if (time_after(this_rq->next_balance, next_balance)) 10685 this_rq->next_balance = next_balance; 10686 10687 if (pulled_task) 10688 this_rq->idle_stamp = 0; 10689 else 10690 nohz_newidle_balance(this_rq); 10691 10692 rq_repin_lock(this_rq, rf); 10693 10694 return pulled_task; 10695 } 10696 10697 /* 10698 * run_rebalance_domains is triggered when needed from the scheduler tick. 10699 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10700 */ 10701 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10702 { 10703 struct rq *this_rq = this_rq(); 10704 enum cpu_idle_type idle = this_rq->idle_balance ? 10705 CPU_IDLE : CPU_NOT_IDLE; 10706 10707 /* 10708 * If this CPU has a pending nohz_balance_kick, then do the 10709 * balancing on behalf of the other idle CPUs whose ticks are 10710 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10711 * give the idle CPUs a chance to load balance. Else we may 10712 * load balance only within the local sched_domain hierarchy 10713 * and abort nohz_idle_balance altogether if we pull some load. 10714 */ 10715 if (nohz_idle_balance(this_rq, idle)) 10716 return; 10717 10718 /* normal load balance */ 10719 update_blocked_averages(this_rq->cpu); 10720 rebalance_domains(this_rq, idle); 10721 } 10722 10723 /* 10724 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10725 */ 10726 void trigger_load_balance(struct rq *rq) 10727 { 10728 /* 10729 * Don't need to rebalance while attached to NULL domain or 10730 * runqueue CPU is not active 10731 */ 10732 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 10733 return; 10734 10735 if (time_after_eq(jiffies, rq->next_balance)) 10736 raise_softirq(SCHED_SOFTIRQ); 10737 10738 nohz_balancer_kick(rq); 10739 } 10740 10741 static void rq_online_fair(struct rq *rq) 10742 { 10743 update_sysctl(); 10744 10745 update_runtime_enabled(rq); 10746 } 10747 10748 static void rq_offline_fair(struct rq *rq) 10749 { 10750 update_sysctl(); 10751 10752 /* Ensure any throttled groups are reachable by pick_next_task */ 10753 unthrottle_offline_cfs_rqs(rq); 10754 } 10755 10756 #endif /* CONFIG_SMP */ 10757 10758 /* 10759 * scheduler tick hitting a task of our scheduling class. 10760 * 10761 * NOTE: This function can be called remotely by the tick offload that 10762 * goes along full dynticks. Therefore no local assumption can be made 10763 * and everything must be accessed through the @rq and @curr passed in 10764 * parameters. 10765 */ 10766 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 10767 { 10768 struct cfs_rq *cfs_rq; 10769 struct sched_entity *se = &curr->se; 10770 10771 for_each_sched_entity(se) { 10772 cfs_rq = cfs_rq_of(se); 10773 entity_tick(cfs_rq, se, queued); 10774 } 10775 10776 if (static_branch_unlikely(&sched_numa_balancing)) 10777 task_tick_numa(rq, curr); 10778 10779 update_misfit_status(curr, rq); 10780 update_overutilized_status(task_rq(curr)); 10781 } 10782 10783 /* 10784 * called on fork with the child task as argument from the parent's context 10785 * - child not yet on the tasklist 10786 * - preemption disabled 10787 */ 10788 static void task_fork_fair(struct task_struct *p) 10789 { 10790 struct cfs_rq *cfs_rq; 10791 struct sched_entity *se = &p->se, *curr; 10792 struct rq *rq = this_rq(); 10793 struct rq_flags rf; 10794 10795 rq_lock(rq, &rf); 10796 update_rq_clock(rq); 10797 10798 cfs_rq = task_cfs_rq(current); 10799 curr = cfs_rq->curr; 10800 if (curr) { 10801 update_curr(cfs_rq); 10802 se->vruntime = curr->vruntime; 10803 } 10804 place_entity(cfs_rq, se, 1); 10805 10806 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 10807 /* 10808 * Upon rescheduling, sched_class::put_prev_task() will place 10809 * 'current' within the tree based on its new key value. 10810 */ 10811 swap(curr->vruntime, se->vruntime); 10812 resched_curr(rq); 10813 } 10814 10815 se->vruntime -= cfs_rq->min_vruntime; 10816 rq_unlock(rq, &rf); 10817 } 10818 10819 /* 10820 * Priority of the task has changed. Check to see if we preempt 10821 * the current task. 10822 */ 10823 static void 10824 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 10825 { 10826 if (!task_on_rq_queued(p)) 10827 return; 10828 10829 if (rq->cfs.nr_running == 1) 10830 return; 10831 10832 /* 10833 * Reschedule if we are currently running on this runqueue and 10834 * our priority decreased, or if we are not currently running on 10835 * this runqueue and our priority is higher than the current's 10836 */ 10837 if (task_current(rq, p)) { 10838 if (p->prio > oldprio) 10839 resched_curr(rq); 10840 } else 10841 check_preempt_curr(rq, p, 0); 10842 } 10843 10844 static inline bool vruntime_normalized(struct task_struct *p) 10845 { 10846 struct sched_entity *se = &p->se; 10847 10848 /* 10849 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10850 * the dequeue_entity(.flags=0) will already have normalized the 10851 * vruntime. 10852 */ 10853 if (p->on_rq) 10854 return true; 10855 10856 /* 10857 * When !on_rq, vruntime of the task has usually NOT been normalized. 10858 * But there are some cases where it has already been normalized: 10859 * 10860 * - A forked child which is waiting for being woken up by 10861 * wake_up_new_task(). 10862 * - A task which has been woken up by try_to_wake_up() and 10863 * waiting for actually being woken up by sched_ttwu_pending(). 10864 */ 10865 if (!se->sum_exec_runtime || 10866 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10867 return true; 10868 10869 return false; 10870 } 10871 10872 #ifdef CONFIG_FAIR_GROUP_SCHED 10873 /* 10874 * Propagate the changes of the sched_entity across the tg tree to make it 10875 * visible to the root 10876 */ 10877 static void propagate_entity_cfs_rq(struct sched_entity *se) 10878 { 10879 struct cfs_rq *cfs_rq; 10880 10881 list_add_leaf_cfs_rq(cfs_rq_of(se)); 10882 10883 /* Start to propagate at parent */ 10884 se = se->parent; 10885 10886 for_each_sched_entity(se) { 10887 cfs_rq = cfs_rq_of(se); 10888 10889 if (!cfs_rq_throttled(cfs_rq)){ 10890 update_load_avg(cfs_rq, se, UPDATE_TG); 10891 list_add_leaf_cfs_rq(cfs_rq); 10892 continue; 10893 } 10894 10895 if (list_add_leaf_cfs_rq(cfs_rq)) 10896 break; 10897 } 10898 } 10899 #else 10900 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10901 #endif 10902 10903 static void detach_entity_cfs_rq(struct sched_entity *se) 10904 { 10905 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10906 10907 /* Catch up with the cfs_rq and remove our load when we leave */ 10908 update_load_avg(cfs_rq, se, 0); 10909 detach_entity_load_avg(cfs_rq, se); 10910 update_tg_load_avg(cfs_rq); 10911 propagate_entity_cfs_rq(se); 10912 } 10913 10914 static void attach_entity_cfs_rq(struct sched_entity *se) 10915 { 10916 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10917 10918 #ifdef CONFIG_FAIR_GROUP_SCHED 10919 /* 10920 * Since the real-depth could have been changed (only FAIR 10921 * class maintain depth value), reset depth properly. 10922 */ 10923 se->depth = se->parent ? se->parent->depth + 1 : 0; 10924 #endif 10925 10926 /* Synchronize entity with its cfs_rq */ 10927 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10928 attach_entity_load_avg(cfs_rq, se); 10929 update_tg_load_avg(cfs_rq); 10930 propagate_entity_cfs_rq(se); 10931 } 10932 10933 static void detach_task_cfs_rq(struct task_struct *p) 10934 { 10935 struct sched_entity *se = &p->se; 10936 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10937 10938 if (!vruntime_normalized(p)) { 10939 /* 10940 * Fix up our vruntime so that the current sleep doesn't 10941 * cause 'unlimited' sleep bonus. 10942 */ 10943 place_entity(cfs_rq, se, 0); 10944 se->vruntime -= cfs_rq->min_vruntime; 10945 } 10946 10947 detach_entity_cfs_rq(se); 10948 } 10949 10950 static void attach_task_cfs_rq(struct task_struct *p) 10951 { 10952 struct sched_entity *se = &p->se; 10953 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10954 10955 attach_entity_cfs_rq(se); 10956 10957 if (!vruntime_normalized(p)) 10958 se->vruntime += cfs_rq->min_vruntime; 10959 } 10960 10961 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10962 { 10963 detach_task_cfs_rq(p); 10964 } 10965 10966 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10967 { 10968 attach_task_cfs_rq(p); 10969 10970 if (task_on_rq_queued(p)) { 10971 /* 10972 * We were most likely switched from sched_rt, so 10973 * kick off the schedule if running, otherwise just see 10974 * if we can still preempt the current task. 10975 */ 10976 if (task_current(rq, p)) 10977 resched_curr(rq); 10978 else 10979 check_preempt_curr(rq, p, 0); 10980 } 10981 } 10982 10983 /* Account for a task changing its policy or group. 10984 * 10985 * This routine is mostly called to set cfs_rq->curr field when a task 10986 * migrates between groups/classes. 10987 */ 10988 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 10989 { 10990 struct sched_entity *se = &p->se; 10991 10992 #ifdef CONFIG_SMP 10993 if (task_on_rq_queued(p)) { 10994 /* 10995 * Move the next running task to the front of the list, so our 10996 * cfs_tasks list becomes MRU one. 10997 */ 10998 list_move(&se->group_node, &rq->cfs_tasks); 10999 } 11000 #endif 11001 11002 for_each_sched_entity(se) { 11003 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11004 11005 set_next_entity(cfs_rq, se); 11006 /* ensure bandwidth has been allocated on our new cfs_rq */ 11007 account_cfs_rq_runtime(cfs_rq, 0); 11008 } 11009 } 11010 11011 void init_cfs_rq(struct cfs_rq *cfs_rq) 11012 { 11013 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 11014 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 11015 #ifndef CONFIG_64BIT 11016 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 11017 #endif 11018 #ifdef CONFIG_SMP 11019 raw_spin_lock_init(&cfs_rq->removed.lock); 11020 #endif 11021 } 11022 11023 #ifdef CONFIG_FAIR_GROUP_SCHED 11024 static void task_set_group_fair(struct task_struct *p) 11025 { 11026 struct sched_entity *se = &p->se; 11027 11028 set_task_rq(p, task_cpu(p)); 11029 se->depth = se->parent ? se->parent->depth + 1 : 0; 11030 } 11031 11032 static void task_move_group_fair(struct task_struct *p) 11033 { 11034 detach_task_cfs_rq(p); 11035 set_task_rq(p, task_cpu(p)); 11036 11037 #ifdef CONFIG_SMP 11038 /* Tell se's cfs_rq has been changed -- migrated */ 11039 p->se.avg.last_update_time = 0; 11040 #endif 11041 attach_task_cfs_rq(p); 11042 } 11043 11044 static void task_change_group_fair(struct task_struct *p, int type) 11045 { 11046 switch (type) { 11047 case TASK_SET_GROUP: 11048 task_set_group_fair(p); 11049 break; 11050 11051 case TASK_MOVE_GROUP: 11052 task_move_group_fair(p); 11053 break; 11054 } 11055 } 11056 11057 void free_fair_sched_group(struct task_group *tg) 11058 { 11059 int i; 11060 11061 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11062 11063 for_each_possible_cpu(i) { 11064 if (tg->cfs_rq) 11065 kfree(tg->cfs_rq[i]); 11066 if (tg->se) 11067 kfree(tg->se[i]); 11068 } 11069 11070 kfree(tg->cfs_rq); 11071 kfree(tg->se); 11072 } 11073 11074 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11075 { 11076 struct sched_entity *se; 11077 struct cfs_rq *cfs_rq; 11078 int i; 11079 11080 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 11081 if (!tg->cfs_rq) 11082 goto err; 11083 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 11084 if (!tg->se) 11085 goto err; 11086 11087 tg->shares = NICE_0_LOAD; 11088 11089 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11090 11091 for_each_possible_cpu(i) { 11092 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 11093 GFP_KERNEL, cpu_to_node(i)); 11094 if (!cfs_rq) 11095 goto err; 11096 11097 se = kzalloc_node(sizeof(struct sched_entity), 11098 GFP_KERNEL, cpu_to_node(i)); 11099 if (!se) 11100 goto err_free_rq; 11101 11102 init_cfs_rq(cfs_rq); 11103 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 11104 init_entity_runnable_average(se); 11105 } 11106 11107 return 1; 11108 11109 err_free_rq: 11110 kfree(cfs_rq); 11111 err: 11112 return 0; 11113 } 11114 11115 void online_fair_sched_group(struct task_group *tg) 11116 { 11117 struct sched_entity *se; 11118 struct rq_flags rf; 11119 struct rq *rq; 11120 int i; 11121 11122 for_each_possible_cpu(i) { 11123 rq = cpu_rq(i); 11124 se = tg->se[i]; 11125 rq_lock_irq(rq, &rf); 11126 update_rq_clock(rq); 11127 attach_entity_cfs_rq(se); 11128 sync_throttle(tg, i); 11129 rq_unlock_irq(rq, &rf); 11130 } 11131 } 11132 11133 void unregister_fair_sched_group(struct task_group *tg) 11134 { 11135 unsigned long flags; 11136 struct rq *rq; 11137 int cpu; 11138 11139 for_each_possible_cpu(cpu) { 11140 if (tg->se[cpu]) 11141 remove_entity_load_avg(tg->se[cpu]); 11142 11143 /* 11144 * Only empty task groups can be destroyed; so we can speculatively 11145 * check on_list without danger of it being re-added. 11146 */ 11147 if (!tg->cfs_rq[cpu]->on_list) 11148 continue; 11149 11150 rq = cpu_rq(cpu); 11151 11152 raw_spin_lock_irqsave(&rq->lock, flags); 11153 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11154 raw_spin_unlock_irqrestore(&rq->lock, flags); 11155 } 11156 } 11157 11158 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11159 struct sched_entity *se, int cpu, 11160 struct sched_entity *parent) 11161 { 11162 struct rq *rq = cpu_rq(cpu); 11163 11164 cfs_rq->tg = tg; 11165 cfs_rq->rq = rq; 11166 init_cfs_rq_runtime(cfs_rq); 11167 11168 tg->cfs_rq[cpu] = cfs_rq; 11169 tg->se[cpu] = se; 11170 11171 /* se could be NULL for root_task_group */ 11172 if (!se) 11173 return; 11174 11175 if (!parent) { 11176 se->cfs_rq = &rq->cfs; 11177 se->depth = 0; 11178 } else { 11179 se->cfs_rq = parent->my_q; 11180 se->depth = parent->depth + 1; 11181 } 11182 11183 se->my_q = cfs_rq; 11184 /* guarantee group entities always have weight */ 11185 update_load_set(&se->load, NICE_0_LOAD); 11186 se->parent = parent; 11187 } 11188 11189 static DEFINE_MUTEX(shares_mutex); 11190 11191 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11192 { 11193 int i; 11194 11195 /* 11196 * We can't change the weight of the root cgroup. 11197 */ 11198 if (!tg->se[0]) 11199 return -EINVAL; 11200 11201 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11202 11203 mutex_lock(&shares_mutex); 11204 if (tg->shares == shares) 11205 goto done; 11206 11207 tg->shares = shares; 11208 for_each_possible_cpu(i) { 11209 struct rq *rq = cpu_rq(i); 11210 struct sched_entity *se = tg->se[i]; 11211 struct rq_flags rf; 11212 11213 /* Propagate contribution to hierarchy */ 11214 rq_lock_irqsave(rq, &rf); 11215 update_rq_clock(rq); 11216 for_each_sched_entity(se) { 11217 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11218 update_cfs_group(se); 11219 } 11220 rq_unlock_irqrestore(rq, &rf); 11221 } 11222 11223 done: 11224 mutex_unlock(&shares_mutex); 11225 return 0; 11226 } 11227 #else /* CONFIG_FAIR_GROUP_SCHED */ 11228 11229 void free_fair_sched_group(struct task_group *tg) { } 11230 11231 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11232 { 11233 return 1; 11234 } 11235 11236 void online_fair_sched_group(struct task_group *tg) { } 11237 11238 void unregister_fair_sched_group(struct task_group *tg) { } 11239 11240 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11241 11242 11243 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11244 { 11245 struct sched_entity *se = &task->se; 11246 unsigned int rr_interval = 0; 11247 11248 /* 11249 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11250 * idle runqueue: 11251 */ 11252 if (rq->cfs.load.weight) 11253 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11254 11255 return rr_interval; 11256 } 11257 11258 /* 11259 * All the scheduling class methods: 11260 */ 11261 DEFINE_SCHED_CLASS(fair) = { 11262 11263 .enqueue_task = enqueue_task_fair, 11264 .dequeue_task = dequeue_task_fair, 11265 .yield_task = yield_task_fair, 11266 .yield_to_task = yield_to_task_fair, 11267 11268 .check_preempt_curr = check_preempt_wakeup, 11269 11270 .pick_next_task = __pick_next_task_fair, 11271 .put_prev_task = put_prev_task_fair, 11272 .set_next_task = set_next_task_fair, 11273 11274 #ifdef CONFIG_SMP 11275 .balance = balance_fair, 11276 .select_task_rq = select_task_rq_fair, 11277 .migrate_task_rq = migrate_task_rq_fair, 11278 11279 .rq_online = rq_online_fair, 11280 .rq_offline = rq_offline_fair, 11281 11282 .task_dead = task_dead_fair, 11283 .set_cpus_allowed = set_cpus_allowed_common, 11284 #endif 11285 11286 .task_tick = task_tick_fair, 11287 .task_fork = task_fork_fair, 11288 11289 .prio_changed = prio_changed_fair, 11290 .switched_from = switched_from_fair, 11291 .switched_to = switched_to_fair, 11292 11293 .get_rr_interval = get_rr_interval_fair, 11294 11295 .update_curr = update_curr_fair, 11296 11297 #ifdef CONFIG_FAIR_GROUP_SCHED 11298 .task_change_group = task_change_group_fair, 11299 #endif 11300 11301 #ifdef CONFIG_UCLAMP_TASK 11302 .uclamp_enabled = 1, 11303 #endif 11304 }; 11305 11306 #ifdef CONFIG_SCHED_DEBUG 11307 void print_cfs_stats(struct seq_file *m, int cpu) 11308 { 11309 struct cfs_rq *cfs_rq, *pos; 11310 11311 rcu_read_lock(); 11312 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 11313 print_cfs_rq(m, cpu, cfs_rq); 11314 rcu_read_unlock(); 11315 } 11316 11317 #ifdef CONFIG_NUMA_BALANCING 11318 void show_numa_stats(struct task_struct *p, struct seq_file *m) 11319 { 11320 int node; 11321 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 11322 struct numa_group *ng; 11323 11324 rcu_read_lock(); 11325 ng = rcu_dereference(p->numa_group); 11326 for_each_online_node(node) { 11327 if (p->numa_faults) { 11328 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 11329 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 11330 } 11331 if (ng) { 11332 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 11333 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 11334 } 11335 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 11336 } 11337 rcu_read_unlock(); 11338 } 11339 #endif /* CONFIG_NUMA_BALANCING */ 11340 #endif /* CONFIG_SCHED_DEBUG */ 11341 11342 __init void init_sched_fair_class(void) 11343 { 11344 #ifdef CONFIG_SMP 11345 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 11346 11347 #ifdef CONFIG_NO_HZ_COMMON 11348 nohz.next_balance = jiffies; 11349 nohz.next_blocked = jiffies; 11350 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 11351 #endif 11352 #endif /* SMP */ 11353 11354 } 11355 11356 /* 11357 * Helper functions to facilitate extracting info from tracepoints. 11358 */ 11359 11360 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 11361 { 11362 #ifdef CONFIG_SMP 11363 return cfs_rq ? &cfs_rq->avg : NULL; 11364 #else 11365 return NULL; 11366 #endif 11367 } 11368 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 11369 11370 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 11371 { 11372 if (!cfs_rq) { 11373 if (str) 11374 strlcpy(str, "(null)", len); 11375 else 11376 return NULL; 11377 } 11378 11379 cfs_rq_tg_path(cfs_rq, str, len); 11380 return str; 11381 } 11382 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 11383 11384 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 11385 { 11386 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 11387 } 11388 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 11389 11390 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 11391 { 11392 #ifdef CONFIG_SMP 11393 return rq ? &rq->avg_rt : NULL; 11394 #else 11395 return NULL; 11396 #endif 11397 } 11398 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 11399 11400 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 11401 { 11402 #ifdef CONFIG_SMP 11403 return rq ? &rq->avg_dl : NULL; 11404 #else 11405 return NULL; 11406 #endif 11407 } 11408 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 11409 11410 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 11411 { 11412 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 11413 return rq ? &rq->avg_irq : NULL; 11414 #else 11415 return NULL; 11416 #endif 11417 } 11418 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 11419 11420 int sched_trace_rq_cpu(struct rq *rq) 11421 { 11422 return rq ? cpu_of(rq) : -1; 11423 } 11424 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 11425 11426 int sched_trace_rq_cpu_capacity(struct rq *rq) 11427 { 11428 return rq ? 11429 #ifdef CONFIG_SMP 11430 rq->cpu_capacity 11431 #else 11432 SCHED_CAPACITY_SCALE 11433 #endif 11434 : -1; 11435 } 11436 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity); 11437 11438 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 11439 { 11440 #ifdef CONFIG_SMP 11441 return rd ? rd->span : NULL; 11442 #else 11443 return NULL; 11444 #endif 11445 } 11446 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 11447 11448 int sched_trace_rq_nr_running(struct rq *rq) 11449 { 11450 return rq ? rq->nr_running : -1; 11451 } 11452 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running); 11453