1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include <linux/sched/cond_resched.h> 55 56 #include "sched.h" 57 #include "stats.h" 58 #include "autogroup.h" 59 60 /* 61 * The initial- and re-scaling of tunables is configurable 62 * 63 * Options are: 64 * 65 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 66 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 67 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 68 * 69 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 70 */ 71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 72 73 /* 74 * Minimal preemption granularity for CPU-bound tasks: 75 * 76 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 77 */ 78 unsigned int sysctl_sched_base_slice = 750000ULL; 79 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 80 81 /* 82 * After fork, child runs first. If set to 0 (default) then 83 * parent will (try to) run first. 84 */ 85 unsigned int sysctl_sched_child_runs_first __read_mostly; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 int sched_thermal_decay_shift; 90 static int __init setup_sched_thermal_decay_shift(char *str) 91 { 92 int _shift = 0; 93 94 if (kstrtoint(str, 0, &_shift)) 95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 96 97 sched_thermal_decay_shift = clamp(_shift, 0, 10); 98 return 1; 99 } 100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 101 102 #ifdef CONFIG_SMP 103 /* 104 * For asym packing, by default the lower numbered CPU has higher priority. 105 */ 106 int __weak arch_asym_cpu_priority(int cpu) 107 { 108 return -cpu; 109 } 110 111 /* 112 * The margin used when comparing utilization with CPU capacity. 113 * 114 * (default: ~20%) 115 */ 116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 117 118 /* 119 * The margin used when comparing CPU capacities. 120 * is 'cap1' noticeably greater than 'cap2' 121 * 122 * (default: ~5%) 123 */ 124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 125 #endif 126 127 #ifdef CONFIG_CFS_BANDWIDTH 128 /* 129 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 130 * each time a cfs_rq requests quota. 131 * 132 * Note: in the case that the slice exceeds the runtime remaining (either due 133 * to consumption or the quota being specified to be smaller than the slice) 134 * we will always only issue the remaining available time. 135 * 136 * (default: 5 msec, units: microseconds) 137 */ 138 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 139 #endif 140 141 #ifdef CONFIG_NUMA_BALANCING 142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 144 #endif 145 146 #ifdef CONFIG_SYSCTL 147 static struct ctl_table sched_fair_sysctls[] = { 148 { 149 .procname = "sched_child_runs_first", 150 .data = &sysctl_sched_child_runs_first, 151 .maxlen = sizeof(unsigned int), 152 .mode = 0644, 153 .proc_handler = proc_dointvec, 154 }, 155 #ifdef CONFIG_CFS_BANDWIDTH 156 { 157 .procname = "sched_cfs_bandwidth_slice_us", 158 .data = &sysctl_sched_cfs_bandwidth_slice, 159 .maxlen = sizeof(unsigned int), 160 .mode = 0644, 161 .proc_handler = proc_dointvec_minmax, 162 .extra1 = SYSCTL_ONE, 163 }, 164 #endif 165 #ifdef CONFIG_NUMA_BALANCING 166 { 167 .procname = "numa_balancing_promote_rate_limit_MBps", 168 .data = &sysctl_numa_balancing_promote_rate_limit, 169 .maxlen = sizeof(unsigned int), 170 .mode = 0644, 171 .proc_handler = proc_dointvec_minmax, 172 .extra1 = SYSCTL_ZERO, 173 }, 174 #endif /* CONFIG_NUMA_BALANCING */ 175 {} 176 }; 177 178 static int __init sched_fair_sysctl_init(void) 179 { 180 register_sysctl_init("kernel", sched_fair_sysctls); 181 return 0; 182 } 183 late_initcall(sched_fair_sysctl_init); 184 #endif 185 186 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 187 { 188 lw->weight += inc; 189 lw->inv_weight = 0; 190 } 191 192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 193 { 194 lw->weight -= dec; 195 lw->inv_weight = 0; 196 } 197 198 static inline void update_load_set(struct load_weight *lw, unsigned long w) 199 { 200 lw->weight = w; 201 lw->inv_weight = 0; 202 } 203 204 /* 205 * Increase the granularity value when there are more CPUs, 206 * because with more CPUs the 'effective latency' as visible 207 * to users decreases. But the relationship is not linear, 208 * so pick a second-best guess by going with the log2 of the 209 * number of CPUs. 210 * 211 * This idea comes from the SD scheduler of Con Kolivas: 212 */ 213 static unsigned int get_update_sysctl_factor(void) 214 { 215 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 216 unsigned int factor; 217 218 switch (sysctl_sched_tunable_scaling) { 219 case SCHED_TUNABLESCALING_NONE: 220 factor = 1; 221 break; 222 case SCHED_TUNABLESCALING_LINEAR: 223 factor = cpus; 224 break; 225 case SCHED_TUNABLESCALING_LOG: 226 default: 227 factor = 1 + ilog2(cpus); 228 break; 229 } 230 231 return factor; 232 } 233 234 static void update_sysctl(void) 235 { 236 unsigned int factor = get_update_sysctl_factor(); 237 238 #define SET_SYSCTL(name) \ 239 (sysctl_##name = (factor) * normalized_sysctl_##name) 240 SET_SYSCTL(sched_base_slice); 241 #undef SET_SYSCTL 242 } 243 244 void __init sched_init_granularity(void) 245 { 246 update_sysctl(); 247 } 248 249 #define WMULT_CONST (~0U) 250 #define WMULT_SHIFT 32 251 252 static void __update_inv_weight(struct load_weight *lw) 253 { 254 unsigned long w; 255 256 if (likely(lw->inv_weight)) 257 return; 258 259 w = scale_load_down(lw->weight); 260 261 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 262 lw->inv_weight = 1; 263 else if (unlikely(!w)) 264 lw->inv_weight = WMULT_CONST; 265 else 266 lw->inv_weight = WMULT_CONST / w; 267 } 268 269 /* 270 * delta_exec * weight / lw.weight 271 * OR 272 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 273 * 274 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 275 * we're guaranteed shift stays positive because inv_weight is guaranteed to 276 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 277 * 278 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 279 * weight/lw.weight <= 1, and therefore our shift will also be positive. 280 */ 281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 282 { 283 u64 fact = scale_load_down(weight); 284 u32 fact_hi = (u32)(fact >> 32); 285 int shift = WMULT_SHIFT; 286 int fs; 287 288 __update_inv_weight(lw); 289 290 if (unlikely(fact_hi)) { 291 fs = fls(fact_hi); 292 shift -= fs; 293 fact >>= fs; 294 } 295 296 fact = mul_u32_u32(fact, lw->inv_weight); 297 298 fact_hi = (u32)(fact >> 32); 299 if (fact_hi) { 300 fs = fls(fact_hi); 301 shift -= fs; 302 fact >>= fs; 303 } 304 305 return mul_u64_u32_shr(delta_exec, fact, shift); 306 } 307 308 /* 309 * delta /= w 310 */ 311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 312 { 313 if (unlikely(se->load.weight != NICE_0_LOAD)) 314 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 315 316 return delta; 317 } 318 319 const struct sched_class fair_sched_class; 320 321 /************************************************************** 322 * CFS operations on generic schedulable entities: 323 */ 324 325 #ifdef CONFIG_FAIR_GROUP_SCHED 326 327 /* Walk up scheduling entities hierarchy */ 328 #define for_each_sched_entity(se) \ 329 for (; se; se = se->parent) 330 331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 332 { 333 struct rq *rq = rq_of(cfs_rq); 334 int cpu = cpu_of(rq); 335 336 if (cfs_rq->on_list) 337 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 338 339 cfs_rq->on_list = 1; 340 341 /* 342 * Ensure we either appear before our parent (if already 343 * enqueued) or force our parent to appear after us when it is 344 * enqueued. The fact that we always enqueue bottom-up 345 * reduces this to two cases and a special case for the root 346 * cfs_rq. Furthermore, it also means that we will always reset 347 * tmp_alone_branch either when the branch is connected 348 * to a tree or when we reach the top of the tree 349 */ 350 if (cfs_rq->tg->parent && 351 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 352 /* 353 * If parent is already on the list, we add the child 354 * just before. Thanks to circular linked property of 355 * the list, this means to put the child at the tail 356 * of the list that starts by parent. 357 */ 358 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 359 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 360 /* 361 * The branch is now connected to its tree so we can 362 * reset tmp_alone_branch to the beginning of the 363 * list. 364 */ 365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 366 return true; 367 } 368 369 if (!cfs_rq->tg->parent) { 370 /* 371 * cfs rq without parent should be put 372 * at the tail of the list. 373 */ 374 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 375 &rq->leaf_cfs_rq_list); 376 /* 377 * We have reach the top of a tree so we can reset 378 * tmp_alone_branch to the beginning of the list. 379 */ 380 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 381 return true; 382 } 383 384 /* 385 * The parent has not already been added so we want to 386 * make sure that it will be put after us. 387 * tmp_alone_branch points to the begin of the branch 388 * where we will add parent. 389 */ 390 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 391 /* 392 * update tmp_alone_branch to points to the new begin 393 * of the branch 394 */ 395 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 396 return false; 397 } 398 399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 400 { 401 if (cfs_rq->on_list) { 402 struct rq *rq = rq_of(cfs_rq); 403 404 /* 405 * With cfs_rq being unthrottled/throttled during an enqueue, 406 * it can happen the tmp_alone_branch points the a leaf that 407 * we finally want to del. In this case, tmp_alone_branch moves 408 * to the prev element but it will point to rq->leaf_cfs_rq_list 409 * at the end of the enqueue. 410 */ 411 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 412 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 413 414 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 415 cfs_rq->on_list = 0; 416 } 417 } 418 419 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 420 { 421 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 422 } 423 424 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 426 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 427 leaf_cfs_rq_list) 428 429 /* Do the two (enqueued) entities belong to the same group ? */ 430 static inline struct cfs_rq * 431 is_same_group(struct sched_entity *se, struct sched_entity *pse) 432 { 433 if (se->cfs_rq == pse->cfs_rq) 434 return se->cfs_rq; 435 436 return NULL; 437 } 438 439 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 440 { 441 return se->parent; 442 } 443 444 static void 445 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 446 { 447 int se_depth, pse_depth; 448 449 /* 450 * preemption test can be made between sibling entities who are in the 451 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 452 * both tasks until we find their ancestors who are siblings of common 453 * parent. 454 */ 455 456 /* First walk up until both entities are at same depth */ 457 se_depth = (*se)->depth; 458 pse_depth = (*pse)->depth; 459 460 while (se_depth > pse_depth) { 461 se_depth--; 462 *se = parent_entity(*se); 463 } 464 465 while (pse_depth > se_depth) { 466 pse_depth--; 467 *pse = parent_entity(*pse); 468 } 469 470 while (!is_same_group(*se, *pse)) { 471 *se = parent_entity(*se); 472 *pse = parent_entity(*pse); 473 } 474 } 475 476 static int tg_is_idle(struct task_group *tg) 477 { 478 return tg->idle > 0; 479 } 480 481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 482 { 483 return cfs_rq->idle > 0; 484 } 485 486 static int se_is_idle(struct sched_entity *se) 487 { 488 if (entity_is_task(se)) 489 return task_has_idle_policy(task_of(se)); 490 return cfs_rq_is_idle(group_cfs_rq(se)); 491 } 492 493 #else /* !CONFIG_FAIR_GROUP_SCHED */ 494 495 #define for_each_sched_entity(se) \ 496 for (; se; se = NULL) 497 498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 499 { 500 return true; 501 } 502 503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 504 { 505 } 506 507 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 508 { 509 } 510 511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 512 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 513 514 static inline struct sched_entity *parent_entity(struct sched_entity *se) 515 { 516 return NULL; 517 } 518 519 static inline void 520 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 521 { 522 } 523 524 static inline int tg_is_idle(struct task_group *tg) 525 { 526 return 0; 527 } 528 529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 530 { 531 return 0; 532 } 533 534 static int se_is_idle(struct sched_entity *se) 535 { 536 return 0; 537 } 538 539 #endif /* CONFIG_FAIR_GROUP_SCHED */ 540 541 static __always_inline 542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 543 544 /************************************************************** 545 * Scheduling class tree data structure manipulation methods: 546 */ 547 548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 549 { 550 s64 delta = (s64)(vruntime - max_vruntime); 551 if (delta > 0) 552 max_vruntime = vruntime; 553 554 return max_vruntime; 555 } 556 557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 558 { 559 s64 delta = (s64)(vruntime - min_vruntime); 560 if (delta < 0) 561 min_vruntime = vruntime; 562 563 return min_vruntime; 564 } 565 566 static inline bool entity_before(const struct sched_entity *a, 567 const struct sched_entity *b) 568 { 569 return (s64)(a->vruntime - b->vruntime) < 0; 570 } 571 572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 573 { 574 return (s64)(se->vruntime - cfs_rq->min_vruntime); 575 } 576 577 #define __node_2_se(node) \ 578 rb_entry((node), struct sched_entity, run_node) 579 580 /* 581 * Compute virtual time from the per-task service numbers: 582 * 583 * Fair schedulers conserve lag: 584 * 585 * \Sum lag_i = 0 586 * 587 * Where lag_i is given by: 588 * 589 * lag_i = S - s_i = w_i * (V - v_i) 590 * 591 * Where S is the ideal service time and V is it's virtual time counterpart. 592 * Therefore: 593 * 594 * \Sum lag_i = 0 595 * \Sum w_i * (V - v_i) = 0 596 * \Sum w_i * V - w_i * v_i = 0 597 * 598 * From which we can solve an expression for V in v_i (which we have in 599 * se->vruntime): 600 * 601 * \Sum v_i * w_i \Sum v_i * w_i 602 * V = -------------- = -------------- 603 * \Sum w_i W 604 * 605 * Specifically, this is the weighted average of all entity virtual runtimes. 606 * 607 * [[ NOTE: this is only equal to the ideal scheduler under the condition 608 * that join/leave operations happen at lag_i = 0, otherwise the 609 * virtual time has non-continguous motion equivalent to: 610 * 611 * V +-= lag_i / W 612 * 613 * Also see the comment in place_entity() that deals with this. ]] 614 * 615 * However, since v_i is u64, and the multiplcation could easily overflow 616 * transform it into a relative form that uses smaller quantities: 617 * 618 * Substitute: v_i == (v_i - v0) + v0 619 * 620 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 621 * V = ---------------------------- = --------------------- + v0 622 * W W 623 * 624 * Which we track using: 625 * 626 * v0 := cfs_rq->min_vruntime 627 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 628 * \Sum w_i := cfs_rq->avg_load 629 * 630 * Since min_vruntime is a monotonic increasing variable that closely tracks 631 * the per-task service, these deltas: (v_i - v), will be in the order of the 632 * maximal (virtual) lag induced in the system due to quantisation. 633 * 634 * Also, we use scale_load_down() to reduce the size. 635 * 636 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 637 */ 638 static void 639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 640 { 641 unsigned long weight = scale_load_down(se->load.weight); 642 s64 key = entity_key(cfs_rq, se); 643 644 cfs_rq->avg_vruntime += key * weight; 645 cfs_rq->avg_load += weight; 646 } 647 648 static void 649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 650 { 651 unsigned long weight = scale_load_down(se->load.weight); 652 s64 key = entity_key(cfs_rq, se); 653 654 cfs_rq->avg_vruntime -= key * weight; 655 cfs_rq->avg_load -= weight; 656 } 657 658 static inline 659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 660 { 661 /* 662 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 663 */ 664 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 665 } 666 667 /* 668 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 669 * For this to be so, the result of this function must have a left bias. 670 */ 671 u64 avg_vruntime(struct cfs_rq *cfs_rq) 672 { 673 struct sched_entity *curr = cfs_rq->curr; 674 s64 avg = cfs_rq->avg_vruntime; 675 long load = cfs_rq->avg_load; 676 677 if (curr && curr->on_rq) { 678 unsigned long weight = scale_load_down(curr->load.weight); 679 680 avg += entity_key(cfs_rq, curr) * weight; 681 load += weight; 682 } 683 684 if (load) { 685 /* sign flips effective floor / ceil */ 686 if (avg < 0) 687 avg -= (load - 1); 688 avg = div_s64(avg, load); 689 } 690 691 return cfs_rq->min_vruntime + avg; 692 } 693 694 /* 695 * lag_i = S - s_i = w_i * (V - v_i) 696 * 697 * However, since V is approximated by the weighted average of all entities it 698 * is possible -- by addition/removal/reweight to the tree -- to move V around 699 * and end up with a larger lag than we started with. 700 * 701 * Limit this to either double the slice length with a minimum of TICK_NSEC 702 * since that is the timing granularity. 703 * 704 * EEVDF gives the following limit for a steady state system: 705 * 706 * -r_max < lag < max(r_max, q) 707 * 708 * XXX could add max_slice to the augmented data to track this. 709 */ 710 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 711 { 712 s64 lag, limit; 713 714 SCHED_WARN_ON(!se->on_rq); 715 lag = avg_vruntime(cfs_rq) - se->vruntime; 716 717 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 718 se->vlag = clamp(lag, -limit, limit); 719 } 720 721 /* 722 * Entity is eligible once it received less service than it ought to have, 723 * eg. lag >= 0. 724 * 725 * lag_i = S - s_i = w_i*(V - v_i) 726 * 727 * lag_i >= 0 -> V >= v_i 728 * 729 * \Sum (v_i - v)*w_i 730 * V = ------------------ + v 731 * \Sum w_i 732 * 733 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 734 * 735 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due 736 * to the loss in precision caused by the division. 737 */ 738 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 739 { 740 struct sched_entity *curr = cfs_rq->curr; 741 s64 avg = cfs_rq->avg_vruntime; 742 long load = cfs_rq->avg_load; 743 744 if (curr && curr->on_rq) { 745 unsigned long weight = scale_load_down(curr->load.weight); 746 747 avg += entity_key(cfs_rq, curr) * weight; 748 load += weight; 749 } 750 751 return avg >= entity_key(cfs_rq, se) * load; 752 } 753 754 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 755 { 756 u64 min_vruntime = cfs_rq->min_vruntime; 757 /* 758 * open coded max_vruntime() to allow updating avg_vruntime 759 */ 760 s64 delta = (s64)(vruntime - min_vruntime); 761 if (delta > 0) { 762 avg_vruntime_update(cfs_rq, delta); 763 min_vruntime = vruntime; 764 } 765 return min_vruntime; 766 } 767 768 static void update_min_vruntime(struct cfs_rq *cfs_rq) 769 { 770 struct sched_entity *se = __pick_first_entity(cfs_rq); 771 struct sched_entity *curr = cfs_rq->curr; 772 773 u64 vruntime = cfs_rq->min_vruntime; 774 775 if (curr) { 776 if (curr->on_rq) 777 vruntime = curr->vruntime; 778 else 779 curr = NULL; 780 } 781 782 if (se) { 783 if (!curr) 784 vruntime = se->vruntime; 785 else 786 vruntime = min_vruntime(vruntime, se->vruntime); 787 } 788 789 /* ensure we never gain time by being placed backwards. */ 790 u64_u32_store(cfs_rq->min_vruntime, 791 __update_min_vruntime(cfs_rq, vruntime)); 792 } 793 794 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 795 { 796 return entity_before(__node_2_se(a), __node_2_se(b)); 797 } 798 799 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 800 801 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node) 802 { 803 if (node) { 804 struct sched_entity *rse = __node_2_se(node); 805 if (deadline_gt(min_deadline, se, rse)) 806 se->min_deadline = rse->min_deadline; 807 } 808 } 809 810 /* 811 * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline) 812 */ 813 static inline bool min_deadline_update(struct sched_entity *se, bool exit) 814 { 815 u64 old_min_deadline = se->min_deadline; 816 struct rb_node *node = &se->run_node; 817 818 se->min_deadline = se->deadline; 819 __update_min_deadline(se, node->rb_right); 820 __update_min_deadline(se, node->rb_left); 821 822 return se->min_deadline == old_min_deadline; 823 } 824 825 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity, 826 run_node, min_deadline, min_deadline_update); 827 828 /* 829 * Enqueue an entity into the rb-tree: 830 */ 831 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 832 { 833 avg_vruntime_add(cfs_rq, se); 834 se->min_deadline = se->deadline; 835 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 836 __entity_less, &min_deadline_cb); 837 } 838 839 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 840 { 841 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 842 &min_deadline_cb); 843 avg_vruntime_sub(cfs_rq, se); 844 } 845 846 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 847 { 848 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 849 850 if (!left) 851 return NULL; 852 853 return __node_2_se(left); 854 } 855 856 /* 857 * Earliest Eligible Virtual Deadline First 858 * 859 * In order to provide latency guarantees for different request sizes 860 * EEVDF selects the best runnable task from two criteria: 861 * 862 * 1) the task must be eligible (must be owed service) 863 * 864 * 2) from those tasks that meet 1), we select the one 865 * with the earliest virtual deadline. 866 * 867 * We can do this in O(log n) time due to an augmented RB-tree. The 868 * tree keeps the entries sorted on service, but also functions as a 869 * heap based on the deadline by keeping: 870 * 871 * se->min_deadline = min(se->deadline, se->{left,right}->min_deadline) 872 * 873 * Which allows an EDF like search on (sub)trees. 874 */ 875 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq) 876 { 877 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 878 struct sched_entity *curr = cfs_rq->curr; 879 struct sched_entity *best = NULL; 880 struct sched_entity *best_left = NULL; 881 882 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 883 curr = NULL; 884 best = curr; 885 886 /* 887 * Once selected, run a task until it either becomes non-eligible or 888 * until it gets a new slice. See the HACK in set_next_entity(). 889 */ 890 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 891 return curr; 892 893 while (node) { 894 struct sched_entity *se = __node_2_se(node); 895 896 /* 897 * If this entity is not eligible, try the left subtree. 898 */ 899 if (!entity_eligible(cfs_rq, se)) { 900 node = node->rb_left; 901 continue; 902 } 903 904 /* 905 * Now we heap search eligible trees for the best (min_)deadline 906 */ 907 if (!best || deadline_gt(deadline, best, se)) 908 best = se; 909 910 /* 911 * Every se in a left branch is eligible, keep track of the 912 * branch with the best min_deadline 913 */ 914 if (node->rb_left) { 915 struct sched_entity *left = __node_2_se(node->rb_left); 916 917 if (!best_left || deadline_gt(min_deadline, best_left, left)) 918 best_left = left; 919 920 /* 921 * min_deadline is in the left branch. rb_left and all 922 * descendants are eligible, so immediately switch to the second 923 * loop. 924 */ 925 if (left->min_deadline == se->min_deadline) 926 break; 927 } 928 929 /* min_deadline is at this node, no need to look right */ 930 if (se->deadline == se->min_deadline) 931 break; 932 933 /* else min_deadline is in the right branch. */ 934 node = node->rb_right; 935 } 936 937 /* 938 * We ran into an eligible node which is itself the best. 939 * (Or nr_running == 0 and both are NULL) 940 */ 941 if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0) 942 return best; 943 944 /* 945 * Now best_left and all of its children are eligible, and we are just 946 * looking for deadline == min_deadline 947 */ 948 node = &best_left->run_node; 949 while (node) { 950 struct sched_entity *se = __node_2_se(node); 951 952 /* min_deadline is the current node */ 953 if (se->deadline == se->min_deadline) 954 return se; 955 956 /* min_deadline is in the left branch */ 957 if (node->rb_left && 958 __node_2_se(node->rb_left)->min_deadline == se->min_deadline) { 959 node = node->rb_left; 960 continue; 961 } 962 963 /* else min_deadline is in the right branch */ 964 node = node->rb_right; 965 } 966 return NULL; 967 } 968 969 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 970 { 971 struct sched_entity *se = __pick_eevdf(cfs_rq); 972 973 if (!se) { 974 struct sched_entity *left = __pick_first_entity(cfs_rq); 975 if (left) { 976 pr_err("EEVDF scheduling fail, picking leftmost\n"); 977 return left; 978 } 979 } 980 981 return se; 982 } 983 984 #ifdef CONFIG_SCHED_DEBUG 985 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 986 { 987 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 988 989 if (!last) 990 return NULL; 991 992 return __node_2_se(last); 993 } 994 995 /************************************************************** 996 * Scheduling class statistics methods: 997 */ 998 #ifdef CONFIG_SMP 999 int sched_update_scaling(void) 1000 { 1001 unsigned int factor = get_update_sysctl_factor(); 1002 1003 #define WRT_SYSCTL(name) \ 1004 (normalized_sysctl_##name = sysctl_##name / (factor)) 1005 WRT_SYSCTL(sched_base_slice); 1006 #undef WRT_SYSCTL 1007 1008 return 0; 1009 } 1010 #endif 1011 #endif 1012 1013 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1014 1015 /* 1016 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1017 * this is probably good enough. 1018 */ 1019 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1020 { 1021 if ((s64)(se->vruntime - se->deadline) < 0) 1022 return; 1023 1024 /* 1025 * For EEVDF the virtual time slope is determined by w_i (iow. 1026 * nice) while the request time r_i is determined by 1027 * sysctl_sched_base_slice. 1028 */ 1029 se->slice = sysctl_sched_base_slice; 1030 1031 /* 1032 * EEVDF: vd_i = ve_i + r_i / w_i 1033 */ 1034 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1035 1036 /* 1037 * The task has consumed its request, reschedule. 1038 */ 1039 if (cfs_rq->nr_running > 1) { 1040 resched_curr(rq_of(cfs_rq)); 1041 clear_buddies(cfs_rq, se); 1042 } 1043 } 1044 1045 #include "pelt.h" 1046 #ifdef CONFIG_SMP 1047 1048 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1049 static unsigned long task_h_load(struct task_struct *p); 1050 static unsigned long capacity_of(int cpu); 1051 1052 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1053 void init_entity_runnable_average(struct sched_entity *se) 1054 { 1055 struct sched_avg *sa = &se->avg; 1056 1057 memset(sa, 0, sizeof(*sa)); 1058 1059 /* 1060 * Tasks are initialized with full load to be seen as heavy tasks until 1061 * they get a chance to stabilize to their real load level. 1062 * Group entities are initialized with zero load to reflect the fact that 1063 * nothing has been attached to the task group yet. 1064 */ 1065 if (entity_is_task(se)) 1066 sa->load_avg = scale_load_down(se->load.weight); 1067 1068 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 1069 } 1070 1071 /* 1072 * With new tasks being created, their initial util_avgs are extrapolated 1073 * based on the cfs_rq's current util_avg: 1074 * 1075 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 1076 * 1077 * However, in many cases, the above util_avg does not give a desired 1078 * value. Moreover, the sum of the util_avgs may be divergent, such 1079 * as when the series is a harmonic series. 1080 * 1081 * To solve this problem, we also cap the util_avg of successive tasks to 1082 * only 1/2 of the left utilization budget: 1083 * 1084 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1085 * 1086 * where n denotes the nth task and cpu_scale the CPU capacity. 1087 * 1088 * For example, for a CPU with 1024 of capacity, a simplest series from 1089 * the beginning would be like: 1090 * 1091 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1092 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1093 * 1094 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1095 * if util_avg > util_avg_cap. 1096 */ 1097 void post_init_entity_util_avg(struct task_struct *p) 1098 { 1099 struct sched_entity *se = &p->se; 1100 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1101 struct sched_avg *sa = &se->avg; 1102 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1103 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1104 1105 if (p->sched_class != &fair_sched_class) { 1106 /* 1107 * For !fair tasks do: 1108 * 1109 update_cfs_rq_load_avg(now, cfs_rq); 1110 attach_entity_load_avg(cfs_rq, se); 1111 switched_from_fair(rq, p); 1112 * 1113 * such that the next switched_to_fair() has the 1114 * expected state. 1115 */ 1116 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1117 return; 1118 } 1119 1120 if (cap > 0) { 1121 if (cfs_rq->avg.util_avg != 0) { 1122 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 1123 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1124 1125 if (sa->util_avg > cap) 1126 sa->util_avg = cap; 1127 } else { 1128 sa->util_avg = cap; 1129 } 1130 } 1131 1132 sa->runnable_avg = sa->util_avg; 1133 } 1134 1135 #else /* !CONFIG_SMP */ 1136 void init_entity_runnable_average(struct sched_entity *se) 1137 { 1138 } 1139 void post_init_entity_util_avg(struct task_struct *p) 1140 { 1141 } 1142 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1143 { 1144 } 1145 #endif /* CONFIG_SMP */ 1146 1147 /* 1148 * Update the current task's runtime statistics. 1149 */ 1150 static void update_curr(struct cfs_rq *cfs_rq) 1151 { 1152 struct sched_entity *curr = cfs_rq->curr; 1153 u64 now = rq_clock_task(rq_of(cfs_rq)); 1154 u64 delta_exec; 1155 1156 if (unlikely(!curr)) 1157 return; 1158 1159 delta_exec = now - curr->exec_start; 1160 if (unlikely((s64)delta_exec <= 0)) 1161 return; 1162 1163 curr->exec_start = now; 1164 1165 if (schedstat_enabled()) { 1166 struct sched_statistics *stats; 1167 1168 stats = __schedstats_from_se(curr); 1169 __schedstat_set(stats->exec_max, 1170 max(delta_exec, stats->exec_max)); 1171 } 1172 1173 curr->sum_exec_runtime += delta_exec; 1174 schedstat_add(cfs_rq->exec_clock, delta_exec); 1175 1176 curr->vruntime += calc_delta_fair(delta_exec, curr); 1177 update_deadline(cfs_rq, curr); 1178 update_min_vruntime(cfs_rq); 1179 1180 if (entity_is_task(curr)) { 1181 struct task_struct *curtask = task_of(curr); 1182 1183 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 1184 cgroup_account_cputime(curtask, delta_exec); 1185 account_group_exec_runtime(curtask, delta_exec); 1186 } 1187 1188 account_cfs_rq_runtime(cfs_rq, delta_exec); 1189 } 1190 1191 static void update_curr_fair(struct rq *rq) 1192 { 1193 update_curr(cfs_rq_of(&rq->curr->se)); 1194 } 1195 1196 static inline void 1197 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1198 { 1199 struct sched_statistics *stats; 1200 struct task_struct *p = NULL; 1201 1202 if (!schedstat_enabled()) 1203 return; 1204 1205 stats = __schedstats_from_se(se); 1206 1207 if (entity_is_task(se)) 1208 p = task_of(se); 1209 1210 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1211 } 1212 1213 static inline void 1214 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1215 { 1216 struct sched_statistics *stats; 1217 struct task_struct *p = NULL; 1218 1219 if (!schedstat_enabled()) 1220 return; 1221 1222 stats = __schedstats_from_se(se); 1223 1224 /* 1225 * When the sched_schedstat changes from 0 to 1, some sched se 1226 * maybe already in the runqueue, the se->statistics.wait_start 1227 * will be 0.So it will let the delta wrong. We need to avoid this 1228 * scenario. 1229 */ 1230 if (unlikely(!schedstat_val(stats->wait_start))) 1231 return; 1232 1233 if (entity_is_task(se)) 1234 p = task_of(se); 1235 1236 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1237 } 1238 1239 static inline void 1240 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1241 { 1242 struct sched_statistics *stats; 1243 struct task_struct *tsk = NULL; 1244 1245 if (!schedstat_enabled()) 1246 return; 1247 1248 stats = __schedstats_from_se(se); 1249 1250 if (entity_is_task(se)) 1251 tsk = task_of(se); 1252 1253 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1254 } 1255 1256 /* 1257 * Task is being enqueued - update stats: 1258 */ 1259 static inline void 1260 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1261 { 1262 if (!schedstat_enabled()) 1263 return; 1264 1265 /* 1266 * Are we enqueueing a waiting task? (for current tasks 1267 * a dequeue/enqueue event is a NOP) 1268 */ 1269 if (se != cfs_rq->curr) 1270 update_stats_wait_start_fair(cfs_rq, se); 1271 1272 if (flags & ENQUEUE_WAKEUP) 1273 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1274 } 1275 1276 static inline void 1277 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1278 { 1279 1280 if (!schedstat_enabled()) 1281 return; 1282 1283 /* 1284 * Mark the end of the wait period if dequeueing a 1285 * waiting task: 1286 */ 1287 if (se != cfs_rq->curr) 1288 update_stats_wait_end_fair(cfs_rq, se); 1289 1290 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1291 struct task_struct *tsk = task_of(se); 1292 unsigned int state; 1293 1294 /* XXX racy against TTWU */ 1295 state = READ_ONCE(tsk->__state); 1296 if (state & TASK_INTERRUPTIBLE) 1297 __schedstat_set(tsk->stats.sleep_start, 1298 rq_clock(rq_of(cfs_rq))); 1299 if (state & TASK_UNINTERRUPTIBLE) 1300 __schedstat_set(tsk->stats.block_start, 1301 rq_clock(rq_of(cfs_rq))); 1302 } 1303 } 1304 1305 /* 1306 * We are picking a new current task - update its stats: 1307 */ 1308 static inline void 1309 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1310 { 1311 /* 1312 * We are starting a new run period: 1313 */ 1314 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1315 } 1316 1317 /************************************************** 1318 * Scheduling class queueing methods: 1319 */ 1320 1321 static inline bool is_core_idle(int cpu) 1322 { 1323 #ifdef CONFIG_SCHED_SMT 1324 int sibling; 1325 1326 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1327 if (cpu == sibling) 1328 continue; 1329 1330 if (!idle_cpu(sibling)) 1331 return false; 1332 } 1333 #endif 1334 1335 return true; 1336 } 1337 1338 #ifdef CONFIG_NUMA 1339 #define NUMA_IMBALANCE_MIN 2 1340 1341 static inline long 1342 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1343 { 1344 /* 1345 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1346 * threshold. Above this threshold, individual tasks may be contending 1347 * for both memory bandwidth and any shared HT resources. This is an 1348 * approximation as the number of running tasks may not be related to 1349 * the number of busy CPUs due to sched_setaffinity. 1350 */ 1351 if (dst_running > imb_numa_nr) 1352 return imbalance; 1353 1354 /* 1355 * Allow a small imbalance based on a simple pair of communicating 1356 * tasks that remain local when the destination is lightly loaded. 1357 */ 1358 if (imbalance <= NUMA_IMBALANCE_MIN) 1359 return 0; 1360 1361 return imbalance; 1362 } 1363 #endif /* CONFIG_NUMA */ 1364 1365 #ifdef CONFIG_NUMA_BALANCING 1366 /* 1367 * Approximate time to scan a full NUMA task in ms. The task scan period is 1368 * calculated based on the tasks virtual memory size and 1369 * numa_balancing_scan_size. 1370 */ 1371 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1372 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1373 1374 /* Portion of address space to scan in MB */ 1375 unsigned int sysctl_numa_balancing_scan_size = 256; 1376 1377 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1378 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1379 1380 /* The page with hint page fault latency < threshold in ms is considered hot */ 1381 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1382 1383 struct numa_group { 1384 refcount_t refcount; 1385 1386 spinlock_t lock; /* nr_tasks, tasks */ 1387 int nr_tasks; 1388 pid_t gid; 1389 int active_nodes; 1390 1391 struct rcu_head rcu; 1392 unsigned long total_faults; 1393 unsigned long max_faults_cpu; 1394 /* 1395 * faults[] array is split into two regions: faults_mem and faults_cpu. 1396 * 1397 * Faults_cpu is used to decide whether memory should move 1398 * towards the CPU. As a consequence, these stats are weighted 1399 * more by CPU use than by memory faults. 1400 */ 1401 unsigned long faults[]; 1402 }; 1403 1404 /* 1405 * For functions that can be called in multiple contexts that permit reading 1406 * ->numa_group (see struct task_struct for locking rules). 1407 */ 1408 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1409 { 1410 return rcu_dereference_check(p->numa_group, p == current || 1411 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1412 } 1413 1414 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1415 { 1416 return rcu_dereference_protected(p->numa_group, p == current); 1417 } 1418 1419 static inline unsigned long group_faults_priv(struct numa_group *ng); 1420 static inline unsigned long group_faults_shared(struct numa_group *ng); 1421 1422 static unsigned int task_nr_scan_windows(struct task_struct *p) 1423 { 1424 unsigned long rss = 0; 1425 unsigned long nr_scan_pages; 1426 1427 /* 1428 * Calculations based on RSS as non-present and empty pages are skipped 1429 * by the PTE scanner and NUMA hinting faults should be trapped based 1430 * on resident pages 1431 */ 1432 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1433 rss = get_mm_rss(p->mm); 1434 if (!rss) 1435 rss = nr_scan_pages; 1436 1437 rss = round_up(rss, nr_scan_pages); 1438 return rss / nr_scan_pages; 1439 } 1440 1441 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1442 #define MAX_SCAN_WINDOW 2560 1443 1444 static unsigned int task_scan_min(struct task_struct *p) 1445 { 1446 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1447 unsigned int scan, floor; 1448 unsigned int windows = 1; 1449 1450 if (scan_size < MAX_SCAN_WINDOW) 1451 windows = MAX_SCAN_WINDOW / scan_size; 1452 floor = 1000 / windows; 1453 1454 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1455 return max_t(unsigned int, floor, scan); 1456 } 1457 1458 static unsigned int task_scan_start(struct task_struct *p) 1459 { 1460 unsigned long smin = task_scan_min(p); 1461 unsigned long period = smin; 1462 struct numa_group *ng; 1463 1464 /* Scale the maximum scan period with the amount of shared memory. */ 1465 rcu_read_lock(); 1466 ng = rcu_dereference(p->numa_group); 1467 if (ng) { 1468 unsigned long shared = group_faults_shared(ng); 1469 unsigned long private = group_faults_priv(ng); 1470 1471 period *= refcount_read(&ng->refcount); 1472 period *= shared + 1; 1473 period /= private + shared + 1; 1474 } 1475 rcu_read_unlock(); 1476 1477 return max(smin, period); 1478 } 1479 1480 static unsigned int task_scan_max(struct task_struct *p) 1481 { 1482 unsigned long smin = task_scan_min(p); 1483 unsigned long smax; 1484 struct numa_group *ng; 1485 1486 /* Watch for min being lower than max due to floor calculations */ 1487 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1488 1489 /* Scale the maximum scan period with the amount of shared memory. */ 1490 ng = deref_curr_numa_group(p); 1491 if (ng) { 1492 unsigned long shared = group_faults_shared(ng); 1493 unsigned long private = group_faults_priv(ng); 1494 unsigned long period = smax; 1495 1496 period *= refcount_read(&ng->refcount); 1497 period *= shared + 1; 1498 period /= private + shared + 1; 1499 1500 smax = max(smax, period); 1501 } 1502 1503 return max(smin, smax); 1504 } 1505 1506 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1507 { 1508 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1509 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1510 } 1511 1512 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1513 { 1514 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1515 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1516 } 1517 1518 /* Shared or private faults. */ 1519 #define NR_NUMA_HINT_FAULT_TYPES 2 1520 1521 /* Memory and CPU locality */ 1522 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1523 1524 /* Averaged statistics, and temporary buffers. */ 1525 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1526 1527 pid_t task_numa_group_id(struct task_struct *p) 1528 { 1529 struct numa_group *ng; 1530 pid_t gid = 0; 1531 1532 rcu_read_lock(); 1533 ng = rcu_dereference(p->numa_group); 1534 if (ng) 1535 gid = ng->gid; 1536 rcu_read_unlock(); 1537 1538 return gid; 1539 } 1540 1541 /* 1542 * The averaged statistics, shared & private, memory & CPU, 1543 * occupy the first half of the array. The second half of the 1544 * array is for current counters, which are averaged into the 1545 * first set by task_numa_placement. 1546 */ 1547 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1548 { 1549 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1550 } 1551 1552 static inline unsigned long task_faults(struct task_struct *p, int nid) 1553 { 1554 if (!p->numa_faults) 1555 return 0; 1556 1557 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1558 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1559 } 1560 1561 static inline unsigned long group_faults(struct task_struct *p, int nid) 1562 { 1563 struct numa_group *ng = deref_task_numa_group(p); 1564 1565 if (!ng) 1566 return 0; 1567 1568 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1569 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1570 } 1571 1572 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1573 { 1574 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1575 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1576 } 1577 1578 static inline unsigned long group_faults_priv(struct numa_group *ng) 1579 { 1580 unsigned long faults = 0; 1581 int node; 1582 1583 for_each_online_node(node) { 1584 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1585 } 1586 1587 return faults; 1588 } 1589 1590 static inline unsigned long group_faults_shared(struct numa_group *ng) 1591 { 1592 unsigned long faults = 0; 1593 int node; 1594 1595 for_each_online_node(node) { 1596 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1597 } 1598 1599 return faults; 1600 } 1601 1602 /* 1603 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1604 * considered part of a numa group's pseudo-interleaving set. Migrations 1605 * between these nodes are slowed down, to allow things to settle down. 1606 */ 1607 #define ACTIVE_NODE_FRACTION 3 1608 1609 static bool numa_is_active_node(int nid, struct numa_group *ng) 1610 { 1611 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1612 } 1613 1614 /* Handle placement on systems where not all nodes are directly connected. */ 1615 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1616 int lim_dist, bool task) 1617 { 1618 unsigned long score = 0; 1619 int node, max_dist; 1620 1621 /* 1622 * All nodes are directly connected, and the same distance 1623 * from each other. No need for fancy placement algorithms. 1624 */ 1625 if (sched_numa_topology_type == NUMA_DIRECT) 1626 return 0; 1627 1628 /* sched_max_numa_distance may be changed in parallel. */ 1629 max_dist = READ_ONCE(sched_max_numa_distance); 1630 /* 1631 * This code is called for each node, introducing N^2 complexity, 1632 * which should be ok given the number of nodes rarely exceeds 8. 1633 */ 1634 for_each_online_node(node) { 1635 unsigned long faults; 1636 int dist = node_distance(nid, node); 1637 1638 /* 1639 * The furthest away nodes in the system are not interesting 1640 * for placement; nid was already counted. 1641 */ 1642 if (dist >= max_dist || node == nid) 1643 continue; 1644 1645 /* 1646 * On systems with a backplane NUMA topology, compare groups 1647 * of nodes, and move tasks towards the group with the most 1648 * memory accesses. When comparing two nodes at distance 1649 * "hoplimit", only nodes closer by than "hoplimit" are part 1650 * of each group. Skip other nodes. 1651 */ 1652 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1653 continue; 1654 1655 /* Add up the faults from nearby nodes. */ 1656 if (task) 1657 faults = task_faults(p, node); 1658 else 1659 faults = group_faults(p, node); 1660 1661 /* 1662 * On systems with a glueless mesh NUMA topology, there are 1663 * no fixed "groups of nodes". Instead, nodes that are not 1664 * directly connected bounce traffic through intermediate 1665 * nodes; a numa_group can occupy any set of nodes. 1666 * The further away a node is, the less the faults count. 1667 * This seems to result in good task placement. 1668 */ 1669 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1670 faults *= (max_dist - dist); 1671 faults /= (max_dist - LOCAL_DISTANCE); 1672 } 1673 1674 score += faults; 1675 } 1676 1677 return score; 1678 } 1679 1680 /* 1681 * These return the fraction of accesses done by a particular task, or 1682 * task group, on a particular numa node. The group weight is given a 1683 * larger multiplier, in order to group tasks together that are almost 1684 * evenly spread out between numa nodes. 1685 */ 1686 static inline unsigned long task_weight(struct task_struct *p, int nid, 1687 int dist) 1688 { 1689 unsigned long faults, total_faults; 1690 1691 if (!p->numa_faults) 1692 return 0; 1693 1694 total_faults = p->total_numa_faults; 1695 1696 if (!total_faults) 1697 return 0; 1698 1699 faults = task_faults(p, nid); 1700 faults += score_nearby_nodes(p, nid, dist, true); 1701 1702 return 1000 * faults / total_faults; 1703 } 1704 1705 static inline unsigned long group_weight(struct task_struct *p, int nid, 1706 int dist) 1707 { 1708 struct numa_group *ng = deref_task_numa_group(p); 1709 unsigned long faults, total_faults; 1710 1711 if (!ng) 1712 return 0; 1713 1714 total_faults = ng->total_faults; 1715 1716 if (!total_faults) 1717 return 0; 1718 1719 faults = group_faults(p, nid); 1720 faults += score_nearby_nodes(p, nid, dist, false); 1721 1722 return 1000 * faults / total_faults; 1723 } 1724 1725 /* 1726 * If memory tiering mode is enabled, cpupid of slow memory page is 1727 * used to record scan time instead of CPU and PID. When tiering mode 1728 * is disabled at run time, the scan time (in cpupid) will be 1729 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1730 * access out of array bound. 1731 */ 1732 static inline bool cpupid_valid(int cpupid) 1733 { 1734 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1735 } 1736 1737 /* 1738 * For memory tiering mode, if there are enough free pages (more than 1739 * enough watermark defined here) in fast memory node, to take full 1740 * advantage of fast memory capacity, all recently accessed slow 1741 * memory pages will be migrated to fast memory node without 1742 * considering hot threshold. 1743 */ 1744 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1745 { 1746 int z; 1747 unsigned long enough_wmark; 1748 1749 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1750 pgdat->node_present_pages >> 4); 1751 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1752 struct zone *zone = pgdat->node_zones + z; 1753 1754 if (!populated_zone(zone)) 1755 continue; 1756 1757 if (zone_watermark_ok(zone, 0, 1758 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1759 ZONE_MOVABLE, 0)) 1760 return true; 1761 } 1762 return false; 1763 } 1764 1765 /* 1766 * For memory tiering mode, when page tables are scanned, the scan 1767 * time will be recorded in struct page in addition to make page 1768 * PROT_NONE for slow memory page. So when the page is accessed, in 1769 * hint page fault handler, the hint page fault latency is calculated 1770 * via, 1771 * 1772 * hint page fault latency = hint page fault time - scan time 1773 * 1774 * The smaller the hint page fault latency, the higher the possibility 1775 * for the page to be hot. 1776 */ 1777 static int numa_hint_fault_latency(struct page *page) 1778 { 1779 int last_time, time; 1780 1781 time = jiffies_to_msecs(jiffies); 1782 last_time = xchg_page_access_time(page, time); 1783 1784 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1785 } 1786 1787 /* 1788 * For memory tiering mode, too high promotion/demotion throughput may 1789 * hurt application latency. So we provide a mechanism to rate limit 1790 * the number of pages that are tried to be promoted. 1791 */ 1792 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1793 unsigned long rate_limit, int nr) 1794 { 1795 unsigned long nr_cand; 1796 unsigned int now, start; 1797 1798 now = jiffies_to_msecs(jiffies); 1799 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1800 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1801 start = pgdat->nbp_rl_start; 1802 if (now - start > MSEC_PER_SEC && 1803 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1804 pgdat->nbp_rl_nr_cand = nr_cand; 1805 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1806 return true; 1807 return false; 1808 } 1809 1810 #define NUMA_MIGRATION_ADJUST_STEPS 16 1811 1812 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1813 unsigned long rate_limit, 1814 unsigned int ref_th) 1815 { 1816 unsigned int now, start, th_period, unit_th, th; 1817 unsigned long nr_cand, ref_cand, diff_cand; 1818 1819 now = jiffies_to_msecs(jiffies); 1820 th_period = sysctl_numa_balancing_scan_period_max; 1821 start = pgdat->nbp_th_start; 1822 if (now - start > th_period && 1823 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1824 ref_cand = rate_limit * 1825 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1826 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1827 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1828 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1829 th = pgdat->nbp_threshold ? : ref_th; 1830 if (diff_cand > ref_cand * 11 / 10) 1831 th = max(th - unit_th, unit_th); 1832 else if (diff_cand < ref_cand * 9 / 10) 1833 th = min(th + unit_th, ref_th * 2); 1834 pgdat->nbp_th_nr_cand = nr_cand; 1835 pgdat->nbp_threshold = th; 1836 } 1837 } 1838 1839 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1840 int src_nid, int dst_cpu) 1841 { 1842 struct numa_group *ng = deref_curr_numa_group(p); 1843 int dst_nid = cpu_to_node(dst_cpu); 1844 int last_cpupid, this_cpupid; 1845 1846 /* 1847 * The pages in slow memory node should be migrated according 1848 * to hot/cold instead of private/shared. 1849 */ 1850 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1851 !node_is_toptier(src_nid)) { 1852 struct pglist_data *pgdat; 1853 unsigned long rate_limit; 1854 unsigned int latency, th, def_th; 1855 1856 pgdat = NODE_DATA(dst_nid); 1857 if (pgdat_free_space_enough(pgdat)) { 1858 /* workload changed, reset hot threshold */ 1859 pgdat->nbp_threshold = 0; 1860 return true; 1861 } 1862 1863 def_th = sysctl_numa_balancing_hot_threshold; 1864 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1865 (20 - PAGE_SHIFT); 1866 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1867 1868 th = pgdat->nbp_threshold ? : def_th; 1869 latency = numa_hint_fault_latency(page); 1870 if (latency >= th) 1871 return false; 1872 1873 return !numa_promotion_rate_limit(pgdat, rate_limit, 1874 thp_nr_pages(page)); 1875 } 1876 1877 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1878 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1879 1880 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1881 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1882 return false; 1883 1884 /* 1885 * Allow first faults or private faults to migrate immediately early in 1886 * the lifetime of a task. The magic number 4 is based on waiting for 1887 * two full passes of the "multi-stage node selection" test that is 1888 * executed below. 1889 */ 1890 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1891 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1892 return true; 1893 1894 /* 1895 * Multi-stage node selection is used in conjunction with a periodic 1896 * migration fault to build a temporal task<->page relation. By using 1897 * a two-stage filter we remove short/unlikely relations. 1898 * 1899 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1900 * a task's usage of a particular page (n_p) per total usage of this 1901 * page (n_t) (in a given time-span) to a probability. 1902 * 1903 * Our periodic faults will sample this probability and getting the 1904 * same result twice in a row, given these samples are fully 1905 * independent, is then given by P(n)^2, provided our sample period 1906 * is sufficiently short compared to the usage pattern. 1907 * 1908 * This quadric squishes small probabilities, making it less likely we 1909 * act on an unlikely task<->page relation. 1910 */ 1911 if (!cpupid_pid_unset(last_cpupid) && 1912 cpupid_to_nid(last_cpupid) != dst_nid) 1913 return false; 1914 1915 /* Always allow migrate on private faults */ 1916 if (cpupid_match_pid(p, last_cpupid)) 1917 return true; 1918 1919 /* A shared fault, but p->numa_group has not been set up yet. */ 1920 if (!ng) 1921 return true; 1922 1923 /* 1924 * Destination node is much more heavily used than the source 1925 * node? Allow migration. 1926 */ 1927 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1928 ACTIVE_NODE_FRACTION) 1929 return true; 1930 1931 /* 1932 * Distribute memory according to CPU & memory use on each node, 1933 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1934 * 1935 * faults_cpu(dst) 3 faults_cpu(src) 1936 * --------------- * - > --------------- 1937 * faults_mem(dst) 4 faults_mem(src) 1938 */ 1939 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1940 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1941 } 1942 1943 /* 1944 * 'numa_type' describes the node at the moment of load balancing. 1945 */ 1946 enum numa_type { 1947 /* The node has spare capacity that can be used to run more tasks. */ 1948 node_has_spare = 0, 1949 /* 1950 * The node is fully used and the tasks don't compete for more CPU 1951 * cycles. Nevertheless, some tasks might wait before running. 1952 */ 1953 node_fully_busy, 1954 /* 1955 * The node is overloaded and can't provide expected CPU cycles to all 1956 * tasks. 1957 */ 1958 node_overloaded 1959 }; 1960 1961 /* Cached statistics for all CPUs within a node */ 1962 struct numa_stats { 1963 unsigned long load; 1964 unsigned long runnable; 1965 unsigned long util; 1966 /* Total compute capacity of CPUs on a node */ 1967 unsigned long compute_capacity; 1968 unsigned int nr_running; 1969 unsigned int weight; 1970 enum numa_type node_type; 1971 int idle_cpu; 1972 }; 1973 1974 struct task_numa_env { 1975 struct task_struct *p; 1976 1977 int src_cpu, src_nid; 1978 int dst_cpu, dst_nid; 1979 int imb_numa_nr; 1980 1981 struct numa_stats src_stats, dst_stats; 1982 1983 int imbalance_pct; 1984 int dist; 1985 1986 struct task_struct *best_task; 1987 long best_imp; 1988 int best_cpu; 1989 }; 1990 1991 static unsigned long cpu_load(struct rq *rq); 1992 static unsigned long cpu_runnable(struct rq *rq); 1993 1994 static inline enum 1995 numa_type numa_classify(unsigned int imbalance_pct, 1996 struct numa_stats *ns) 1997 { 1998 if ((ns->nr_running > ns->weight) && 1999 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2000 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2001 return node_overloaded; 2002 2003 if ((ns->nr_running < ns->weight) || 2004 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2005 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2006 return node_has_spare; 2007 2008 return node_fully_busy; 2009 } 2010 2011 #ifdef CONFIG_SCHED_SMT 2012 /* Forward declarations of select_idle_sibling helpers */ 2013 static inline bool test_idle_cores(int cpu); 2014 static inline int numa_idle_core(int idle_core, int cpu) 2015 { 2016 if (!static_branch_likely(&sched_smt_present) || 2017 idle_core >= 0 || !test_idle_cores(cpu)) 2018 return idle_core; 2019 2020 /* 2021 * Prefer cores instead of packing HT siblings 2022 * and triggering future load balancing. 2023 */ 2024 if (is_core_idle(cpu)) 2025 idle_core = cpu; 2026 2027 return idle_core; 2028 } 2029 #else 2030 static inline int numa_idle_core(int idle_core, int cpu) 2031 { 2032 return idle_core; 2033 } 2034 #endif 2035 2036 /* 2037 * Gather all necessary information to make NUMA balancing placement 2038 * decisions that are compatible with standard load balancer. This 2039 * borrows code and logic from update_sg_lb_stats but sharing a 2040 * common implementation is impractical. 2041 */ 2042 static void update_numa_stats(struct task_numa_env *env, 2043 struct numa_stats *ns, int nid, 2044 bool find_idle) 2045 { 2046 int cpu, idle_core = -1; 2047 2048 memset(ns, 0, sizeof(*ns)); 2049 ns->idle_cpu = -1; 2050 2051 rcu_read_lock(); 2052 for_each_cpu(cpu, cpumask_of_node(nid)) { 2053 struct rq *rq = cpu_rq(cpu); 2054 2055 ns->load += cpu_load(rq); 2056 ns->runnable += cpu_runnable(rq); 2057 ns->util += cpu_util_cfs(cpu); 2058 ns->nr_running += rq->cfs.h_nr_running; 2059 ns->compute_capacity += capacity_of(cpu); 2060 2061 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2062 if (READ_ONCE(rq->numa_migrate_on) || 2063 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2064 continue; 2065 2066 if (ns->idle_cpu == -1) 2067 ns->idle_cpu = cpu; 2068 2069 idle_core = numa_idle_core(idle_core, cpu); 2070 } 2071 } 2072 rcu_read_unlock(); 2073 2074 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2075 2076 ns->node_type = numa_classify(env->imbalance_pct, ns); 2077 2078 if (idle_core >= 0) 2079 ns->idle_cpu = idle_core; 2080 } 2081 2082 static void task_numa_assign(struct task_numa_env *env, 2083 struct task_struct *p, long imp) 2084 { 2085 struct rq *rq = cpu_rq(env->dst_cpu); 2086 2087 /* Check if run-queue part of active NUMA balance. */ 2088 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2089 int cpu; 2090 int start = env->dst_cpu; 2091 2092 /* Find alternative idle CPU. */ 2093 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2094 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2095 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2096 continue; 2097 } 2098 2099 env->dst_cpu = cpu; 2100 rq = cpu_rq(env->dst_cpu); 2101 if (!xchg(&rq->numa_migrate_on, 1)) 2102 goto assign; 2103 } 2104 2105 /* Failed to find an alternative idle CPU */ 2106 return; 2107 } 2108 2109 assign: 2110 /* 2111 * Clear previous best_cpu/rq numa-migrate flag, since task now 2112 * found a better CPU to move/swap. 2113 */ 2114 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2115 rq = cpu_rq(env->best_cpu); 2116 WRITE_ONCE(rq->numa_migrate_on, 0); 2117 } 2118 2119 if (env->best_task) 2120 put_task_struct(env->best_task); 2121 if (p) 2122 get_task_struct(p); 2123 2124 env->best_task = p; 2125 env->best_imp = imp; 2126 env->best_cpu = env->dst_cpu; 2127 } 2128 2129 static bool load_too_imbalanced(long src_load, long dst_load, 2130 struct task_numa_env *env) 2131 { 2132 long imb, old_imb; 2133 long orig_src_load, orig_dst_load; 2134 long src_capacity, dst_capacity; 2135 2136 /* 2137 * The load is corrected for the CPU capacity available on each node. 2138 * 2139 * src_load dst_load 2140 * ------------ vs --------- 2141 * src_capacity dst_capacity 2142 */ 2143 src_capacity = env->src_stats.compute_capacity; 2144 dst_capacity = env->dst_stats.compute_capacity; 2145 2146 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2147 2148 orig_src_load = env->src_stats.load; 2149 orig_dst_load = env->dst_stats.load; 2150 2151 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2152 2153 /* Would this change make things worse? */ 2154 return (imb > old_imb); 2155 } 2156 2157 /* 2158 * Maximum NUMA importance can be 1998 (2*999); 2159 * SMALLIMP @ 30 would be close to 1998/64. 2160 * Used to deter task migration. 2161 */ 2162 #define SMALLIMP 30 2163 2164 /* 2165 * This checks if the overall compute and NUMA accesses of the system would 2166 * be improved if the source tasks was migrated to the target dst_cpu taking 2167 * into account that it might be best if task running on the dst_cpu should 2168 * be exchanged with the source task 2169 */ 2170 static bool task_numa_compare(struct task_numa_env *env, 2171 long taskimp, long groupimp, bool maymove) 2172 { 2173 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2174 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2175 long imp = p_ng ? groupimp : taskimp; 2176 struct task_struct *cur; 2177 long src_load, dst_load; 2178 int dist = env->dist; 2179 long moveimp = imp; 2180 long load; 2181 bool stopsearch = false; 2182 2183 if (READ_ONCE(dst_rq->numa_migrate_on)) 2184 return false; 2185 2186 rcu_read_lock(); 2187 cur = rcu_dereference(dst_rq->curr); 2188 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2189 cur = NULL; 2190 2191 /* 2192 * Because we have preemption enabled we can get migrated around and 2193 * end try selecting ourselves (current == env->p) as a swap candidate. 2194 */ 2195 if (cur == env->p) { 2196 stopsearch = true; 2197 goto unlock; 2198 } 2199 2200 if (!cur) { 2201 if (maymove && moveimp >= env->best_imp) 2202 goto assign; 2203 else 2204 goto unlock; 2205 } 2206 2207 /* Skip this swap candidate if cannot move to the source cpu. */ 2208 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2209 goto unlock; 2210 2211 /* 2212 * Skip this swap candidate if it is not moving to its preferred 2213 * node and the best task is. 2214 */ 2215 if (env->best_task && 2216 env->best_task->numa_preferred_nid == env->src_nid && 2217 cur->numa_preferred_nid != env->src_nid) { 2218 goto unlock; 2219 } 2220 2221 /* 2222 * "imp" is the fault differential for the source task between the 2223 * source and destination node. Calculate the total differential for 2224 * the source task and potential destination task. The more negative 2225 * the value is, the more remote accesses that would be expected to 2226 * be incurred if the tasks were swapped. 2227 * 2228 * If dst and source tasks are in the same NUMA group, or not 2229 * in any group then look only at task weights. 2230 */ 2231 cur_ng = rcu_dereference(cur->numa_group); 2232 if (cur_ng == p_ng) { 2233 /* 2234 * Do not swap within a group or between tasks that have 2235 * no group if there is spare capacity. Swapping does 2236 * not address the load imbalance and helps one task at 2237 * the cost of punishing another. 2238 */ 2239 if (env->dst_stats.node_type == node_has_spare) 2240 goto unlock; 2241 2242 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2243 task_weight(cur, env->dst_nid, dist); 2244 /* 2245 * Add some hysteresis to prevent swapping the 2246 * tasks within a group over tiny differences. 2247 */ 2248 if (cur_ng) 2249 imp -= imp / 16; 2250 } else { 2251 /* 2252 * Compare the group weights. If a task is all by itself 2253 * (not part of a group), use the task weight instead. 2254 */ 2255 if (cur_ng && p_ng) 2256 imp += group_weight(cur, env->src_nid, dist) - 2257 group_weight(cur, env->dst_nid, dist); 2258 else 2259 imp += task_weight(cur, env->src_nid, dist) - 2260 task_weight(cur, env->dst_nid, dist); 2261 } 2262 2263 /* Discourage picking a task already on its preferred node */ 2264 if (cur->numa_preferred_nid == env->dst_nid) 2265 imp -= imp / 16; 2266 2267 /* 2268 * Encourage picking a task that moves to its preferred node. 2269 * This potentially makes imp larger than it's maximum of 2270 * 1998 (see SMALLIMP and task_weight for why) but in this 2271 * case, it does not matter. 2272 */ 2273 if (cur->numa_preferred_nid == env->src_nid) 2274 imp += imp / 8; 2275 2276 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2277 imp = moveimp; 2278 cur = NULL; 2279 goto assign; 2280 } 2281 2282 /* 2283 * Prefer swapping with a task moving to its preferred node over a 2284 * task that is not. 2285 */ 2286 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2287 env->best_task->numa_preferred_nid != env->src_nid) { 2288 goto assign; 2289 } 2290 2291 /* 2292 * If the NUMA importance is less than SMALLIMP, 2293 * task migration might only result in ping pong 2294 * of tasks and also hurt performance due to cache 2295 * misses. 2296 */ 2297 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2298 goto unlock; 2299 2300 /* 2301 * In the overloaded case, try and keep the load balanced. 2302 */ 2303 load = task_h_load(env->p) - task_h_load(cur); 2304 if (!load) 2305 goto assign; 2306 2307 dst_load = env->dst_stats.load + load; 2308 src_load = env->src_stats.load - load; 2309 2310 if (load_too_imbalanced(src_load, dst_load, env)) 2311 goto unlock; 2312 2313 assign: 2314 /* Evaluate an idle CPU for a task numa move. */ 2315 if (!cur) { 2316 int cpu = env->dst_stats.idle_cpu; 2317 2318 /* Nothing cached so current CPU went idle since the search. */ 2319 if (cpu < 0) 2320 cpu = env->dst_cpu; 2321 2322 /* 2323 * If the CPU is no longer truly idle and the previous best CPU 2324 * is, keep using it. 2325 */ 2326 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2327 idle_cpu(env->best_cpu)) { 2328 cpu = env->best_cpu; 2329 } 2330 2331 env->dst_cpu = cpu; 2332 } 2333 2334 task_numa_assign(env, cur, imp); 2335 2336 /* 2337 * If a move to idle is allowed because there is capacity or load 2338 * balance improves then stop the search. While a better swap 2339 * candidate may exist, a search is not free. 2340 */ 2341 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2342 stopsearch = true; 2343 2344 /* 2345 * If a swap candidate must be identified and the current best task 2346 * moves its preferred node then stop the search. 2347 */ 2348 if (!maymove && env->best_task && 2349 env->best_task->numa_preferred_nid == env->src_nid) { 2350 stopsearch = true; 2351 } 2352 unlock: 2353 rcu_read_unlock(); 2354 2355 return stopsearch; 2356 } 2357 2358 static void task_numa_find_cpu(struct task_numa_env *env, 2359 long taskimp, long groupimp) 2360 { 2361 bool maymove = false; 2362 int cpu; 2363 2364 /* 2365 * If dst node has spare capacity, then check if there is an 2366 * imbalance that would be overruled by the load balancer. 2367 */ 2368 if (env->dst_stats.node_type == node_has_spare) { 2369 unsigned int imbalance; 2370 int src_running, dst_running; 2371 2372 /* 2373 * Would movement cause an imbalance? Note that if src has 2374 * more running tasks that the imbalance is ignored as the 2375 * move improves the imbalance from the perspective of the 2376 * CPU load balancer. 2377 * */ 2378 src_running = env->src_stats.nr_running - 1; 2379 dst_running = env->dst_stats.nr_running + 1; 2380 imbalance = max(0, dst_running - src_running); 2381 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2382 env->imb_numa_nr); 2383 2384 /* Use idle CPU if there is no imbalance */ 2385 if (!imbalance) { 2386 maymove = true; 2387 if (env->dst_stats.idle_cpu >= 0) { 2388 env->dst_cpu = env->dst_stats.idle_cpu; 2389 task_numa_assign(env, NULL, 0); 2390 return; 2391 } 2392 } 2393 } else { 2394 long src_load, dst_load, load; 2395 /* 2396 * If the improvement from just moving env->p direction is better 2397 * than swapping tasks around, check if a move is possible. 2398 */ 2399 load = task_h_load(env->p); 2400 dst_load = env->dst_stats.load + load; 2401 src_load = env->src_stats.load - load; 2402 maymove = !load_too_imbalanced(src_load, dst_load, env); 2403 } 2404 2405 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2406 /* Skip this CPU if the source task cannot migrate */ 2407 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2408 continue; 2409 2410 env->dst_cpu = cpu; 2411 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2412 break; 2413 } 2414 } 2415 2416 static int task_numa_migrate(struct task_struct *p) 2417 { 2418 struct task_numa_env env = { 2419 .p = p, 2420 2421 .src_cpu = task_cpu(p), 2422 .src_nid = task_node(p), 2423 2424 .imbalance_pct = 112, 2425 2426 .best_task = NULL, 2427 .best_imp = 0, 2428 .best_cpu = -1, 2429 }; 2430 unsigned long taskweight, groupweight; 2431 struct sched_domain *sd; 2432 long taskimp, groupimp; 2433 struct numa_group *ng; 2434 struct rq *best_rq; 2435 int nid, ret, dist; 2436 2437 /* 2438 * Pick the lowest SD_NUMA domain, as that would have the smallest 2439 * imbalance and would be the first to start moving tasks about. 2440 * 2441 * And we want to avoid any moving of tasks about, as that would create 2442 * random movement of tasks -- counter the numa conditions we're trying 2443 * to satisfy here. 2444 */ 2445 rcu_read_lock(); 2446 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2447 if (sd) { 2448 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2449 env.imb_numa_nr = sd->imb_numa_nr; 2450 } 2451 rcu_read_unlock(); 2452 2453 /* 2454 * Cpusets can break the scheduler domain tree into smaller 2455 * balance domains, some of which do not cross NUMA boundaries. 2456 * Tasks that are "trapped" in such domains cannot be migrated 2457 * elsewhere, so there is no point in (re)trying. 2458 */ 2459 if (unlikely(!sd)) { 2460 sched_setnuma(p, task_node(p)); 2461 return -EINVAL; 2462 } 2463 2464 env.dst_nid = p->numa_preferred_nid; 2465 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2466 taskweight = task_weight(p, env.src_nid, dist); 2467 groupweight = group_weight(p, env.src_nid, dist); 2468 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2469 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2470 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2471 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2472 2473 /* Try to find a spot on the preferred nid. */ 2474 task_numa_find_cpu(&env, taskimp, groupimp); 2475 2476 /* 2477 * Look at other nodes in these cases: 2478 * - there is no space available on the preferred_nid 2479 * - the task is part of a numa_group that is interleaved across 2480 * multiple NUMA nodes; in order to better consolidate the group, 2481 * we need to check other locations. 2482 */ 2483 ng = deref_curr_numa_group(p); 2484 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2485 for_each_node_state(nid, N_CPU) { 2486 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2487 continue; 2488 2489 dist = node_distance(env.src_nid, env.dst_nid); 2490 if (sched_numa_topology_type == NUMA_BACKPLANE && 2491 dist != env.dist) { 2492 taskweight = task_weight(p, env.src_nid, dist); 2493 groupweight = group_weight(p, env.src_nid, dist); 2494 } 2495 2496 /* Only consider nodes where both task and groups benefit */ 2497 taskimp = task_weight(p, nid, dist) - taskweight; 2498 groupimp = group_weight(p, nid, dist) - groupweight; 2499 if (taskimp < 0 && groupimp < 0) 2500 continue; 2501 2502 env.dist = dist; 2503 env.dst_nid = nid; 2504 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2505 task_numa_find_cpu(&env, taskimp, groupimp); 2506 } 2507 } 2508 2509 /* 2510 * If the task is part of a workload that spans multiple NUMA nodes, 2511 * and is migrating into one of the workload's active nodes, remember 2512 * this node as the task's preferred numa node, so the workload can 2513 * settle down. 2514 * A task that migrated to a second choice node will be better off 2515 * trying for a better one later. Do not set the preferred node here. 2516 */ 2517 if (ng) { 2518 if (env.best_cpu == -1) 2519 nid = env.src_nid; 2520 else 2521 nid = cpu_to_node(env.best_cpu); 2522 2523 if (nid != p->numa_preferred_nid) 2524 sched_setnuma(p, nid); 2525 } 2526 2527 /* No better CPU than the current one was found. */ 2528 if (env.best_cpu == -1) { 2529 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2530 return -EAGAIN; 2531 } 2532 2533 best_rq = cpu_rq(env.best_cpu); 2534 if (env.best_task == NULL) { 2535 ret = migrate_task_to(p, env.best_cpu); 2536 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2537 if (ret != 0) 2538 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2539 return ret; 2540 } 2541 2542 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2543 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2544 2545 if (ret != 0) 2546 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2547 put_task_struct(env.best_task); 2548 return ret; 2549 } 2550 2551 /* Attempt to migrate a task to a CPU on the preferred node. */ 2552 static void numa_migrate_preferred(struct task_struct *p) 2553 { 2554 unsigned long interval = HZ; 2555 2556 /* This task has no NUMA fault statistics yet */ 2557 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2558 return; 2559 2560 /* Periodically retry migrating the task to the preferred node */ 2561 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2562 p->numa_migrate_retry = jiffies + interval; 2563 2564 /* Success if task is already running on preferred CPU */ 2565 if (task_node(p) == p->numa_preferred_nid) 2566 return; 2567 2568 /* Otherwise, try migrate to a CPU on the preferred node */ 2569 task_numa_migrate(p); 2570 } 2571 2572 /* 2573 * Find out how many nodes the workload is actively running on. Do this by 2574 * tracking the nodes from which NUMA hinting faults are triggered. This can 2575 * be different from the set of nodes where the workload's memory is currently 2576 * located. 2577 */ 2578 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2579 { 2580 unsigned long faults, max_faults = 0; 2581 int nid, active_nodes = 0; 2582 2583 for_each_node_state(nid, N_CPU) { 2584 faults = group_faults_cpu(numa_group, nid); 2585 if (faults > max_faults) 2586 max_faults = faults; 2587 } 2588 2589 for_each_node_state(nid, N_CPU) { 2590 faults = group_faults_cpu(numa_group, nid); 2591 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2592 active_nodes++; 2593 } 2594 2595 numa_group->max_faults_cpu = max_faults; 2596 numa_group->active_nodes = active_nodes; 2597 } 2598 2599 /* 2600 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2601 * increments. The more local the fault statistics are, the higher the scan 2602 * period will be for the next scan window. If local/(local+remote) ratio is 2603 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2604 * the scan period will decrease. Aim for 70% local accesses. 2605 */ 2606 #define NUMA_PERIOD_SLOTS 10 2607 #define NUMA_PERIOD_THRESHOLD 7 2608 2609 /* 2610 * Increase the scan period (slow down scanning) if the majority of 2611 * our memory is already on our local node, or if the majority of 2612 * the page accesses are shared with other processes. 2613 * Otherwise, decrease the scan period. 2614 */ 2615 static void update_task_scan_period(struct task_struct *p, 2616 unsigned long shared, unsigned long private) 2617 { 2618 unsigned int period_slot; 2619 int lr_ratio, ps_ratio; 2620 int diff; 2621 2622 unsigned long remote = p->numa_faults_locality[0]; 2623 unsigned long local = p->numa_faults_locality[1]; 2624 2625 /* 2626 * If there were no record hinting faults then either the task is 2627 * completely idle or all activity is in areas that are not of interest 2628 * to automatic numa balancing. Related to that, if there were failed 2629 * migration then it implies we are migrating too quickly or the local 2630 * node is overloaded. In either case, scan slower 2631 */ 2632 if (local + shared == 0 || p->numa_faults_locality[2]) { 2633 p->numa_scan_period = min(p->numa_scan_period_max, 2634 p->numa_scan_period << 1); 2635 2636 p->mm->numa_next_scan = jiffies + 2637 msecs_to_jiffies(p->numa_scan_period); 2638 2639 return; 2640 } 2641 2642 /* 2643 * Prepare to scale scan period relative to the current period. 2644 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2645 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2646 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2647 */ 2648 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2649 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2650 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2651 2652 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2653 /* 2654 * Most memory accesses are local. There is no need to 2655 * do fast NUMA scanning, since memory is already local. 2656 */ 2657 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2658 if (!slot) 2659 slot = 1; 2660 diff = slot * period_slot; 2661 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2662 /* 2663 * Most memory accesses are shared with other tasks. 2664 * There is no point in continuing fast NUMA scanning, 2665 * since other tasks may just move the memory elsewhere. 2666 */ 2667 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2668 if (!slot) 2669 slot = 1; 2670 diff = slot * period_slot; 2671 } else { 2672 /* 2673 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2674 * yet they are not on the local NUMA node. Speed up 2675 * NUMA scanning to get the memory moved over. 2676 */ 2677 int ratio = max(lr_ratio, ps_ratio); 2678 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2679 } 2680 2681 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2682 task_scan_min(p), task_scan_max(p)); 2683 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2684 } 2685 2686 /* 2687 * Get the fraction of time the task has been running since the last 2688 * NUMA placement cycle. The scheduler keeps similar statistics, but 2689 * decays those on a 32ms period, which is orders of magnitude off 2690 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2691 * stats only if the task is so new there are no NUMA statistics yet. 2692 */ 2693 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2694 { 2695 u64 runtime, delta, now; 2696 /* Use the start of this time slice to avoid calculations. */ 2697 now = p->se.exec_start; 2698 runtime = p->se.sum_exec_runtime; 2699 2700 if (p->last_task_numa_placement) { 2701 delta = runtime - p->last_sum_exec_runtime; 2702 *period = now - p->last_task_numa_placement; 2703 2704 /* Avoid time going backwards, prevent potential divide error: */ 2705 if (unlikely((s64)*period < 0)) 2706 *period = 0; 2707 } else { 2708 delta = p->se.avg.load_sum; 2709 *period = LOAD_AVG_MAX; 2710 } 2711 2712 p->last_sum_exec_runtime = runtime; 2713 p->last_task_numa_placement = now; 2714 2715 return delta; 2716 } 2717 2718 /* 2719 * Determine the preferred nid for a task in a numa_group. This needs to 2720 * be done in a way that produces consistent results with group_weight, 2721 * otherwise workloads might not converge. 2722 */ 2723 static int preferred_group_nid(struct task_struct *p, int nid) 2724 { 2725 nodemask_t nodes; 2726 int dist; 2727 2728 /* Direct connections between all NUMA nodes. */ 2729 if (sched_numa_topology_type == NUMA_DIRECT) 2730 return nid; 2731 2732 /* 2733 * On a system with glueless mesh NUMA topology, group_weight 2734 * scores nodes according to the number of NUMA hinting faults on 2735 * both the node itself, and on nearby nodes. 2736 */ 2737 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2738 unsigned long score, max_score = 0; 2739 int node, max_node = nid; 2740 2741 dist = sched_max_numa_distance; 2742 2743 for_each_node_state(node, N_CPU) { 2744 score = group_weight(p, node, dist); 2745 if (score > max_score) { 2746 max_score = score; 2747 max_node = node; 2748 } 2749 } 2750 return max_node; 2751 } 2752 2753 /* 2754 * Finding the preferred nid in a system with NUMA backplane 2755 * interconnect topology is more involved. The goal is to locate 2756 * tasks from numa_groups near each other in the system, and 2757 * untangle workloads from different sides of the system. This requires 2758 * searching down the hierarchy of node groups, recursively searching 2759 * inside the highest scoring group of nodes. The nodemask tricks 2760 * keep the complexity of the search down. 2761 */ 2762 nodes = node_states[N_CPU]; 2763 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2764 unsigned long max_faults = 0; 2765 nodemask_t max_group = NODE_MASK_NONE; 2766 int a, b; 2767 2768 /* Are there nodes at this distance from each other? */ 2769 if (!find_numa_distance(dist)) 2770 continue; 2771 2772 for_each_node_mask(a, nodes) { 2773 unsigned long faults = 0; 2774 nodemask_t this_group; 2775 nodes_clear(this_group); 2776 2777 /* Sum group's NUMA faults; includes a==b case. */ 2778 for_each_node_mask(b, nodes) { 2779 if (node_distance(a, b) < dist) { 2780 faults += group_faults(p, b); 2781 node_set(b, this_group); 2782 node_clear(b, nodes); 2783 } 2784 } 2785 2786 /* Remember the top group. */ 2787 if (faults > max_faults) { 2788 max_faults = faults; 2789 max_group = this_group; 2790 /* 2791 * subtle: at the smallest distance there is 2792 * just one node left in each "group", the 2793 * winner is the preferred nid. 2794 */ 2795 nid = a; 2796 } 2797 } 2798 /* Next round, evaluate the nodes within max_group. */ 2799 if (!max_faults) 2800 break; 2801 nodes = max_group; 2802 } 2803 return nid; 2804 } 2805 2806 static void task_numa_placement(struct task_struct *p) 2807 { 2808 int seq, nid, max_nid = NUMA_NO_NODE; 2809 unsigned long max_faults = 0; 2810 unsigned long fault_types[2] = { 0, 0 }; 2811 unsigned long total_faults; 2812 u64 runtime, period; 2813 spinlock_t *group_lock = NULL; 2814 struct numa_group *ng; 2815 2816 /* 2817 * The p->mm->numa_scan_seq field gets updated without 2818 * exclusive access. Use READ_ONCE() here to ensure 2819 * that the field is read in a single access: 2820 */ 2821 seq = READ_ONCE(p->mm->numa_scan_seq); 2822 if (p->numa_scan_seq == seq) 2823 return; 2824 p->numa_scan_seq = seq; 2825 p->numa_scan_period_max = task_scan_max(p); 2826 2827 total_faults = p->numa_faults_locality[0] + 2828 p->numa_faults_locality[1]; 2829 runtime = numa_get_avg_runtime(p, &period); 2830 2831 /* If the task is part of a group prevent parallel updates to group stats */ 2832 ng = deref_curr_numa_group(p); 2833 if (ng) { 2834 group_lock = &ng->lock; 2835 spin_lock_irq(group_lock); 2836 } 2837 2838 /* Find the node with the highest number of faults */ 2839 for_each_online_node(nid) { 2840 /* Keep track of the offsets in numa_faults array */ 2841 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2842 unsigned long faults = 0, group_faults = 0; 2843 int priv; 2844 2845 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2846 long diff, f_diff, f_weight; 2847 2848 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2849 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2850 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2851 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2852 2853 /* Decay existing window, copy faults since last scan */ 2854 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2855 fault_types[priv] += p->numa_faults[membuf_idx]; 2856 p->numa_faults[membuf_idx] = 0; 2857 2858 /* 2859 * Normalize the faults_from, so all tasks in a group 2860 * count according to CPU use, instead of by the raw 2861 * number of faults. Tasks with little runtime have 2862 * little over-all impact on throughput, and thus their 2863 * faults are less important. 2864 */ 2865 f_weight = div64_u64(runtime << 16, period + 1); 2866 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2867 (total_faults + 1); 2868 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2869 p->numa_faults[cpubuf_idx] = 0; 2870 2871 p->numa_faults[mem_idx] += diff; 2872 p->numa_faults[cpu_idx] += f_diff; 2873 faults += p->numa_faults[mem_idx]; 2874 p->total_numa_faults += diff; 2875 if (ng) { 2876 /* 2877 * safe because we can only change our own group 2878 * 2879 * mem_idx represents the offset for a given 2880 * nid and priv in a specific region because it 2881 * is at the beginning of the numa_faults array. 2882 */ 2883 ng->faults[mem_idx] += diff; 2884 ng->faults[cpu_idx] += f_diff; 2885 ng->total_faults += diff; 2886 group_faults += ng->faults[mem_idx]; 2887 } 2888 } 2889 2890 if (!ng) { 2891 if (faults > max_faults) { 2892 max_faults = faults; 2893 max_nid = nid; 2894 } 2895 } else if (group_faults > max_faults) { 2896 max_faults = group_faults; 2897 max_nid = nid; 2898 } 2899 } 2900 2901 /* Cannot migrate task to CPU-less node */ 2902 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2903 int near_nid = max_nid; 2904 int distance, near_distance = INT_MAX; 2905 2906 for_each_node_state(nid, N_CPU) { 2907 distance = node_distance(max_nid, nid); 2908 if (distance < near_distance) { 2909 near_nid = nid; 2910 near_distance = distance; 2911 } 2912 } 2913 max_nid = near_nid; 2914 } 2915 2916 if (ng) { 2917 numa_group_count_active_nodes(ng); 2918 spin_unlock_irq(group_lock); 2919 max_nid = preferred_group_nid(p, max_nid); 2920 } 2921 2922 if (max_faults) { 2923 /* Set the new preferred node */ 2924 if (max_nid != p->numa_preferred_nid) 2925 sched_setnuma(p, max_nid); 2926 } 2927 2928 update_task_scan_period(p, fault_types[0], fault_types[1]); 2929 } 2930 2931 static inline int get_numa_group(struct numa_group *grp) 2932 { 2933 return refcount_inc_not_zero(&grp->refcount); 2934 } 2935 2936 static inline void put_numa_group(struct numa_group *grp) 2937 { 2938 if (refcount_dec_and_test(&grp->refcount)) 2939 kfree_rcu(grp, rcu); 2940 } 2941 2942 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2943 int *priv) 2944 { 2945 struct numa_group *grp, *my_grp; 2946 struct task_struct *tsk; 2947 bool join = false; 2948 int cpu = cpupid_to_cpu(cpupid); 2949 int i; 2950 2951 if (unlikely(!deref_curr_numa_group(p))) { 2952 unsigned int size = sizeof(struct numa_group) + 2953 NR_NUMA_HINT_FAULT_STATS * 2954 nr_node_ids * sizeof(unsigned long); 2955 2956 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2957 if (!grp) 2958 return; 2959 2960 refcount_set(&grp->refcount, 1); 2961 grp->active_nodes = 1; 2962 grp->max_faults_cpu = 0; 2963 spin_lock_init(&grp->lock); 2964 grp->gid = p->pid; 2965 2966 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2967 grp->faults[i] = p->numa_faults[i]; 2968 2969 grp->total_faults = p->total_numa_faults; 2970 2971 grp->nr_tasks++; 2972 rcu_assign_pointer(p->numa_group, grp); 2973 } 2974 2975 rcu_read_lock(); 2976 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2977 2978 if (!cpupid_match_pid(tsk, cpupid)) 2979 goto no_join; 2980 2981 grp = rcu_dereference(tsk->numa_group); 2982 if (!grp) 2983 goto no_join; 2984 2985 my_grp = deref_curr_numa_group(p); 2986 if (grp == my_grp) 2987 goto no_join; 2988 2989 /* 2990 * Only join the other group if its bigger; if we're the bigger group, 2991 * the other task will join us. 2992 */ 2993 if (my_grp->nr_tasks > grp->nr_tasks) 2994 goto no_join; 2995 2996 /* 2997 * Tie-break on the grp address. 2998 */ 2999 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3000 goto no_join; 3001 3002 /* Always join threads in the same process. */ 3003 if (tsk->mm == current->mm) 3004 join = true; 3005 3006 /* Simple filter to avoid false positives due to PID collisions */ 3007 if (flags & TNF_SHARED) 3008 join = true; 3009 3010 /* Update priv based on whether false sharing was detected */ 3011 *priv = !join; 3012 3013 if (join && !get_numa_group(grp)) 3014 goto no_join; 3015 3016 rcu_read_unlock(); 3017 3018 if (!join) 3019 return; 3020 3021 WARN_ON_ONCE(irqs_disabled()); 3022 double_lock_irq(&my_grp->lock, &grp->lock); 3023 3024 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3025 my_grp->faults[i] -= p->numa_faults[i]; 3026 grp->faults[i] += p->numa_faults[i]; 3027 } 3028 my_grp->total_faults -= p->total_numa_faults; 3029 grp->total_faults += p->total_numa_faults; 3030 3031 my_grp->nr_tasks--; 3032 grp->nr_tasks++; 3033 3034 spin_unlock(&my_grp->lock); 3035 spin_unlock_irq(&grp->lock); 3036 3037 rcu_assign_pointer(p->numa_group, grp); 3038 3039 put_numa_group(my_grp); 3040 return; 3041 3042 no_join: 3043 rcu_read_unlock(); 3044 return; 3045 } 3046 3047 /* 3048 * Get rid of NUMA statistics associated with a task (either current or dead). 3049 * If @final is set, the task is dead and has reached refcount zero, so we can 3050 * safely free all relevant data structures. Otherwise, there might be 3051 * concurrent reads from places like load balancing and procfs, and we should 3052 * reset the data back to default state without freeing ->numa_faults. 3053 */ 3054 void task_numa_free(struct task_struct *p, bool final) 3055 { 3056 /* safe: p either is current or is being freed by current */ 3057 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3058 unsigned long *numa_faults = p->numa_faults; 3059 unsigned long flags; 3060 int i; 3061 3062 if (!numa_faults) 3063 return; 3064 3065 if (grp) { 3066 spin_lock_irqsave(&grp->lock, flags); 3067 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3068 grp->faults[i] -= p->numa_faults[i]; 3069 grp->total_faults -= p->total_numa_faults; 3070 3071 grp->nr_tasks--; 3072 spin_unlock_irqrestore(&grp->lock, flags); 3073 RCU_INIT_POINTER(p->numa_group, NULL); 3074 put_numa_group(grp); 3075 } 3076 3077 if (final) { 3078 p->numa_faults = NULL; 3079 kfree(numa_faults); 3080 } else { 3081 p->total_numa_faults = 0; 3082 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3083 numa_faults[i] = 0; 3084 } 3085 } 3086 3087 /* 3088 * Got a PROT_NONE fault for a page on @node. 3089 */ 3090 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3091 { 3092 struct task_struct *p = current; 3093 bool migrated = flags & TNF_MIGRATED; 3094 int cpu_node = task_node(current); 3095 int local = !!(flags & TNF_FAULT_LOCAL); 3096 struct numa_group *ng; 3097 int priv; 3098 3099 if (!static_branch_likely(&sched_numa_balancing)) 3100 return; 3101 3102 /* for example, ksmd faulting in a user's mm */ 3103 if (!p->mm) 3104 return; 3105 3106 /* 3107 * NUMA faults statistics are unnecessary for the slow memory 3108 * node for memory tiering mode. 3109 */ 3110 if (!node_is_toptier(mem_node) && 3111 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3112 !cpupid_valid(last_cpupid))) 3113 return; 3114 3115 /* Allocate buffer to track faults on a per-node basis */ 3116 if (unlikely(!p->numa_faults)) { 3117 int size = sizeof(*p->numa_faults) * 3118 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3119 3120 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3121 if (!p->numa_faults) 3122 return; 3123 3124 p->total_numa_faults = 0; 3125 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3126 } 3127 3128 /* 3129 * First accesses are treated as private, otherwise consider accesses 3130 * to be private if the accessing pid has not changed 3131 */ 3132 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3133 priv = 1; 3134 } else { 3135 priv = cpupid_match_pid(p, last_cpupid); 3136 if (!priv && !(flags & TNF_NO_GROUP)) 3137 task_numa_group(p, last_cpupid, flags, &priv); 3138 } 3139 3140 /* 3141 * If a workload spans multiple NUMA nodes, a shared fault that 3142 * occurs wholly within the set of nodes that the workload is 3143 * actively using should be counted as local. This allows the 3144 * scan rate to slow down when a workload has settled down. 3145 */ 3146 ng = deref_curr_numa_group(p); 3147 if (!priv && !local && ng && ng->active_nodes > 1 && 3148 numa_is_active_node(cpu_node, ng) && 3149 numa_is_active_node(mem_node, ng)) 3150 local = 1; 3151 3152 /* 3153 * Retry to migrate task to preferred node periodically, in case it 3154 * previously failed, or the scheduler moved us. 3155 */ 3156 if (time_after(jiffies, p->numa_migrate_retry)) { 3157 task_numa_placement(p); 3158 numa_migrate_preferred(p); 3159 } 3160 3161 if (migrated) 3162 p->numa_pages_migrated += pages; 3163 if (flags & TNF_MIGRATE_FAIL) 3164 p->numa_faults_locality[2] += pages; 3165 3166 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3167 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3168 p->numa_faults_locality[local] += pages; 3169 } 3170 3171 static void reset_ptenuma_scan(struct task_struct *p) 3172 { 3173 /* 3174 * We only did a read acquisition of the mmap sem, so 3175 * p->mm->numa_scan_seq is written to without exclusive access 3176 * and the update is not guaranteed to be atomic. That's not 3177 * much of an issue though, since this is just used for 3178 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3179 * expensive, to avoid any form of compiler optimizations: 3180 */ 3181 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3182 p->mm->numa_scan_offset = 0; 3183 } 3184 3185 static bool vma_is_accessed(struct vm_area_struct *vma) 3186 { 3187 unsigned long pids; 3188 /* 3189 * Allow unconditional access first two times, so that all the (pages) 3190 * of VMAs get prot_none fault introduced irrespective of accesses. 3191 * This is also done to avoid any side effect of task scanning 3192 * amplifying the unfairness of disjoint set of VMAs' access. 3193 */ 3194 if (READ_ONCE(current->mm->numa_scan_seq) < 2) 3195 return true; 3196 3197 pids = vma->numab_state->access_pids[0] | vma->numab_state->access_pids[1]; 3198 return test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids); 3199 } 3200 3201 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3202 3203 /* 3204 * The expensive part of numa migration is done from task_work context. 3205 * Triggered from task_tick_numa(). 3206 */ 3207 static void task_numa_work(struct callback_head *work) 3208 { 3209 unsigned long migrate, next_scan, now = jiffies; 3210 struct task_struct *p = current; 3211 struct mm_struct *mm = p->mm; 3212 u64 runtime = p->se.sum_exec_runtime; 3213 struct vm_area_struct *vma; 3214 unsigned long start, end; 3215 unsigned long nr_pte_updates = 0; 3216 long pages, virtpages; 3217 struct vma_iterator vmi; 3218 3219 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3220 3221 work->next = work; 3222 /* 3223 * Who cares about NUMA placement when they're dying. 3224 * 3225 * NOTE: make sure not to dereference p->mm before this check, 3226 * exit_task_work() happens _after_ exit_mm() so we could be called 3227 * without p->mm even though we still had it when we enqueued this 3228 * work. 3229 */ 3230 if (p->flags & PF_EXITING) 3231 return; 3232 3233 if (!mm->numa_next_scan) { 3234 mm->numa_next_scan = now + 3235 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3236 } 3237 3238 /* 3239 * Enforce maximal scan/migration frequency.. 3240 */ 3241 migrate = mm->numa_next_scan; 3242 if (time_before(now, migrate)) 3243 return; 3244 3245 if (p->numa_scan_period == 0) { 3246 p->numa_scan_period_max = task_scan_max(p); 3247 p->numa_scan_period = task_scan_start(p); 3248 } 3249 3250 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3251 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3252 return; 3253 3254 /* 3255 * Delay this task enough that another task of this mm will likely win 3256 * the next time around. 3257 */ 3258 p->node_stamp += 2 * TICK_NSEC; 3259 3260 start = mm->numa_scan_offset; 3261 pages = sysctl_numa_balancing_scan_size; 3262 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3263 virtpages = pages * 8; /* Scan up to this much virtual space */ 3264 if (!pages) 3265 return; 3266 3267 3268 if (!mmap_read_trylock(mm)) 3269 return; 3270 vma_iter_init(&vmi, mm, start); 3271 vma = vma_next(&vmi); 3272 if (!vma) { 3273 reset_ptenuma_scan(p); 3274 start = 0; 3275 vma_iter_set(&vmi, start); 3276 vma = vma_next(&vmi); 3277 } 3278 3279 do { 3280 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3281 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3282 continue; 3283 } 3284 3285 /* 3286 * Shared library pages mapped by multiple processes are not 3287 * migrated as it is expected they are cache replicated. Avoid 3288 * hinting faults in read-only file-backed mappings or the vdso 3289 * as migrating the pages will be of marginal benefit. 3290 */ 3291 if (!vma->vm_mm || 3292 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 3293 continue; 3294 3295 /* 3296 * Skip inaccessible VMAs to avoid any confusion between 3297 * PROT_NONE and NUMA hinting ptes 3298 */ 3299 if (!vma_is_accessible(vma)) 3300 continue; 3301 3302 /* Initialise new per-VMA NUMAB state. */ 3303 if (!vma->numab_state) { 3304 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3305 GFP_KERNEL); 3306 if (!vma->numab_state) 3307 continue; 3308 3309 vma->numab_state->next_scan = now + 3310 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3311 3312 /* Reset happens after 4 times scan delay of scan start */ 3313 vma->numab_state->next_pid_reset = vma->numab_state->next_scan + 3314 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3315 } 3316 3317 /* 3318 * Scanning the VMA's of short lived tasks add more overhead. So 3319 * delay the scan for new VMAs. 3320 */ 3321 if (mm->numa_scan_seq && time_before(jiffies, 3322 vma->numab_state->next_scan)) 3323 continue; 3324 3325 /* Do not scan the VMA if task has not accessed */ 3326 if (!vma_is_accessed(vma)) 3327 continue; 3328 3329 /* 3330 * RESET access PIDs regularly for old VMAs. Resetting after checking 3331 * vma for recent access to avoid clearing PID info before access.. 3332 */ 3333 if (mm->numa_scan_seq && 3334 time_after(jiffies, vma->numab_state->next_pid_reset)) { 3335 vma->numab_state->next_pid_reset = vma->numab_state->next_pid_reset + 3336 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3337 vma->numab_state->access_pids[0] = READ_ONCE(vma->numab_state->access_pids[1]); 3338 vma->numab_state->access_pids[1] = 0; 3339 } 3340 3341 do { 3342 start = max(start, vma->vm_start); 3343 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3344 end = min(end, vma->vm_end); 3345 nr_pte_updates = change_prot_numa(vma, start, end); 3346 3347 /* 3348 * Try to scan sysctl_numa_balancing_size worth of 3349 * hpages that have at least one present PTE that 3350 * is not already pte-numa. If the VMA contains 3351 * areas that are unused or already full of prot_numa 3352 * PTEs, scan up to virtpages, to skip through those 3353 * areas faster. 3354 */ 3355 if (nr_pte_updates) 3356 pages -= (end - start) >> PAGE_SHIFT; 3357 virtpages -= (end - start) >> PAGE_SHIFT; 3358 3359 start = end; 3360 if (pages <= 0 || virtpages <= 0) 3361 goto out; 3362 3363 cond_resched(); 3364 } while (end != vma->vm_end); 3365 } for_each_vma(vmi, vma); 3366 3367 out: 3368 /* 3369 * It is possible to reach the end of the VMA list but the last few 3370 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3371 * would find the !migratable VMA on the next scan but not reset the 3372 * scanner to the start so check it now. 3373 */ 3374 if (vma) 3375 mm->numa_scan_offset = start; 3376 else 3377 reset_ptenuma_scan(p); 3378 mmap_read_unlock(mm); 3379 3380 /* 3381 * Make sure tasks use at least 32x as much time to run other code 3382 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3383 * Usually update_task_scan_period slows down scanning enough; on an 3384 * overloaded system we need to limit overhead on a per task basis. 3385 */ 3386 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3387 u64 diff = p->se.sum_exec_runtime - runtime; 3388 p->node_stamp += 32 * diff; 3389 } 3390 } 3391 3392 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3393 { 3394 int mm_users = 0; 3395 struct mm_struct *mm = p->mm; 3396 3397 if (mm) { 3398 mm_users = atomic_read(&mm->mm_users); 3399 if (mm_users == 1) { 3400 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3401 mm->numa_scan_seq = 0; 3402 } 3403 } 3404 p->node_stamp = 0; 3405 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3406 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3407 p->numa_migrate_retry = 0; 3408 /* Protect against double add, see task_tick_numa and task_numa_work */ 3409 p->numa_work.next = &p->numa_work; 3410 p->numa_faults = NULL; 3411 p->numa_pages_migrated = 0; 3412 p->total_numa_faults = 0; 3413 RCU_INIT_POINTER(p->numa_group, NULL); 3414 p->last_task_numa_placement = 0; 3415 p->last_sum_exec_runtime = 0; 3416 3417 init_task_work(&p->numa_work, task_numa_work); 3418 3419 /* New address space, reset the preferred nid */ 3420 if (!(clone_flags & CLONE_VM)) { 3421 p->numa_preferred_nid = NUMA_NO_NODE; 3422 return; 3423 } 3424 3425 /* 3426 * New thread, keep existing numa_preferred_nid which should be copied 3427 * already by arch_dup_task_struct but stagger when scans start. 3428 */ 3429 if (mm) { 3430 unsigned int delay; 3431 3432 delay = min_t(unsigned int, task_scan_max(current), 3433 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3434 delay += 2 * TICK_NSEC; 3435 p->node_stamp = delay; 3436 } 3437 } 3438 3439 /* 3440 * Drive the periodic memory faults.. 3441 */ 3442 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3443 { 3444 struct callback_head *work = &curr->numa_work; 3445 u64 period, now; 3446 3447 /* 3448 * We don't care about NUMA placement if we don't have memory. 3449 */ 3450 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3451 return; 3452 3453 /* 3454 * Using runtime rather than walltime has the dual advantage that 3455 * we (mostly) drive the selection from busy threads and that the 3456 * task needs to have done some actual work before we bother with 3457 * NUMA placement. 3458 */ 3459 now = curr->se.sum_exec_runtime; 3460 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3461 3462 if (now > curr->node_stamp + period) { 3463 if (!curr->node_stamp) 3464 curr->numa_scan_period = task_scan_start(curr); 3465 curr->node_stamp += period; 3466 3467 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3468 task_work_add(curr, work, TWA_RESUME); 3469 } 3470 } 3471 3472 static void update_scan_period(struct task_struct *p, int new_cpu) 3473 { 3474 int src_nid = cpu_to_node(task_cpu(p)); 3475 int dst_nid = cpu_to_node(new_cpu); 3476 3477 if (!static_branch_likely(&sched_numa_balancing)) 3478 return; 3479 3480 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3481 return; 3482 3483 if (src_nid == dst_nid) 3484 return; 3485 3486 /* 3487 * Allow resets if faults have been trapped before one scan 3488 * has completed. This is most likely due to a new task that 3489 * is pulled cross-node due to wakeups or load balancing. 3490 */ 3491 if (p->numa_scan_seq) { 3492 /* 3493 * Avoid scan adjustments if moving to the preferred 3494 * node or if the task was not previously running on 3495 * the preferred node. 3496 */ 3497 if (dst_nid == p->numa_preferred_nid || 3498 (p->numa_preferred_nid != NUMA_NO_NODE && 3499 src_nid != p->numa_preferred_nid)) 3500 return; 3501 } 3502 3503 p->numa_scan_period = task_scan_start(p); 3504 } 3505 3506 #else 3507 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3508 { 3509 } 3510 3511 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3512 { 3513 } 3514 3515 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3516 { 3517 } 3518 3519 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3520 { 3521 } 3522 3523 #endif /* CONFIG_NUMA_BALANCING */ 3524 3525 static void 3526 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3527 { 3528 update_load_add(&cfs_rq->load, se->load.weight); 3529 #ifdef CONFIG_SMP 3530 if (entity_is_task(se)) { 3531 struct rq *rq = rq_of(cfs_rq); 3532 3533 account_numa_enqueue(rq, task_of(se)); 3534 list_add(&se->group_node, &rq->cfs_tasks); 3535 } 3536 #endif 3537 cfs_rq->nr_running++; 3538 if (se_is_idle(se)) 3539 cfs_rq->idle_nr_running++; 3540 } 3541 3542 static void 3543 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3544 { 3545 update_load_sub(&cfs_rq->load, se->load.weight); 3546 #ifdef CONFIG_SMP 3547 if (entity_is_task(se)) { 3548 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3549 list_del_init(&se->group_node); 3550 } 3551 #endif 3552 cfs_rq->nr_running--; 3553 if (se_is_idle(se)) 3554 cfs_rq->idle_nr_running--; 3555 } 3556 3557 /* 3558 * Signed add and clamp on underflow. 3559 * 3560 * Explicitly do a load-store to ensure the intermediate value never hits 3561 * memory. This allows lockless observations without ever seeing the negative 3562 * values. 3563 */ 3564 #define add_positive(_ptr, _val) do { \ 3565 typeof(_ptr) ptr = (_ptr); \ 3566 typeof(_val) val = (_val); \ 3567 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3568 \ 3569 res = var + val; \ 3570 \ 3571 if (val < 0 && res > var) \ 3572 res = 0; \ 3573 \ 3574 WRITE_ONCE(*ptr, res); \ 3575 } while (0) 3576 3577 /* 3578 * Unsigned subtract and clamp on underflow. 3579 * 3580 * Explicitly do a load-store to ensure the intermediate value never hits 3581 * memory. This allows lockless observations without ever seeing the negative 3582 * values. 3583 */ 3584 #define sub_positive(_ptr, _val) do { \ 3585 typeof(_ptr) ptr = (_ptr); \ 3586 typeof(*ptr) val = (_val); \ 3587 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3588 res = var - val; \ 3589 if (res > var) \ 3590 res = 0; \ 3591 WRITE_ONCE(*ptr, res); \ 3592 } while (0) 3593 3594 /* 3595 * Remove and clamp on negative, from a local variable. 3596 * 3597 * A variant of sub_positive(), which does not use explicit load-store 3598 * and is thus optimized for local variable updates. 3599 */ 3600 #define lsub_positive(_ptr, _val) do { \ 3601 typeof(_ptr) ptr = (_ptr); \ 3602 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3603 } while (0) 3604 3605 #ifdef CONFIG_SMP 3606 static inline void 3607 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3608 { 3609 cfs_rq->avg.load_avg += se->avg.load_avg; 3610 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3611 } 3612 3613 static inline void 3614 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3615 { 3616 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3617 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3618 /* See update_cfs_rq_load_avg() */ 3619 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3620 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3621 } 3622 #else 3623 static inline void 3624 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3625 static inline void 3626 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3627 #endif 3628 3629 static void reweight_eevdf(struct cfs_rq *cfs_rq, struct sched_entity *se, 3630 unsigned long weight) 3631 { 3632 unsigned long old_weight = se->load.weight; 3633 u64 avruntime = avg_vruntime(cfs_rq); 3634 s64 vlag, vslice; 3635 3636 /* 3637 * VRUNTIME 3638 * ======== 3639 * 3640 * COROLLARY #1: The virtual runtime of the entity needs to be 3641 * adjusted if re-weight at !0-lag point. 3642 * 3643 * Proof: For contradiction assume this is not true, so we can 3644 * re-weight without changing vruntime at !0-lag point. 3645 * 3646 * Weight VRuntime Avg-VRuntime 3647 * before w v V 3648 * after w' v' V' 3649 * 3650 * Since lag needs to be preserved through re-weight: 3651 * 3652 * lag = (V - v)*w = (V'- v')*w', where v = v' 3653 * ==> V' = (V - v)*w/w' + v (1) 3654 * 3655 * Let W be the total weight of the entities before reweight, 3656 * since V' is the new weighted average of entities: 3657 * 3658 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3659 * 3660 * by using (1) & (2) we obtain: 3661 * 3662 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3663 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3664 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3665 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3666 * 3667 * Since we are doing at !0-lag point which means V != v, we 3668 * can simplify (3): 3669 * 3670 * ==> W / (W + w' - w) = w / w' 3671 * ==> Ww' = Ww + ww' - ww 3672 * ==> W * (w' - w) = w * (w' - w) 3673 * ==> W = w (re-weight indicates w' != w) 3674 * 3675 * So the cfs_rq contains only one entity, hence vruntime of 3676 * the entity @v should always equal to the cfs_rq's weighted 3677 * average vruntime @V, which means we will always re-weight 3678 * at 0-lag point, thus breach assumption. Proof completed. 3679 * 3680 * 3681 * COROLLARY #2: Re-weight does NOT affect weighted average 3682 * vruntime of all the entities. 3683 * 3684 * Proof: According to corollary #1, Eq. (1) should be: 3685 * 3686 * (V - v)*w = (V' - v')*w' 3687 * ==> v' = V' - (V - v)*w/w' (4) 3688 * 3689 * According to the weighted average formula, we have: 3690 * 3691 * V' = (WV - wv + w'v') / (W - w + w') 3692 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3693 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3694 * = (WV + w'V' - Vw) / (W - w + w') 3695 * 3696 * ==> V'*(W - w + w') = WV + w'V' - Vw 3697 * ==> V' * (W - w) = (W - w) * V (5) 3698 * 3699 * If the entity is the only one in the cfs_rq, then reweight 3700 * always occurs at 0-lag point, so V won't change. Or else 3701 * there are other entities, hence W != w, then Eq. (5) turns 3702 * into V' = V. So V won't change in either case, proof done. 3703 * 3704 * 3705 * So according to corollary #1 & #2, the effect of re-weight 3706 * on vruntime should be: 3707 * 3708 * v' = V' - (V - v) * w / w' (4) 3709 * = V - (V - v) * w / w' 3710 * = V - vl * w / w' 3711 * = V - vl' 3712 */ 3713 if (avruntime != se->vruntime) { 3714 vlag = (s64)(avruntime - se->vruntime); 3715 vlag = div_s64(vlag * old_weight, weight); 3716 se->vruntime = avruntime - vlag; 3717 } 3718 3719 /* 3720 * DEADLINE 3721 * ======== 3722 * 3723 * When the weight changes, the virtual time slope changes and 3724 * we should adjust the relative virtual deadline accordingly. 3725 * 3726 * d' = v' + (d - v)*w/w' 3727 * = V' - (V - v)*w/w' + (d - v)*w/w' 3728 * = V - (V - v)*w/w' + (d - v)*w/w' 3729 * = V + (d - V)*w/w' 3730 */ 3731 vslice = (s64)(se->deadline - avruntime); 3732 vslice = div_s64(vslice * old_weight, weight); 3733 se->deadline = avruntime + vslice; 3734 } 3735 3736 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3737 unsigned long weight) 3738 { 3739 bool curr = cfs_rq->curr == se; 3740 3741 if (se->on_rq) { 3742 /* commit outstanding execution time */ 3743 if (curr) 3744 update_curr(cfs_rq); 3745 else 3746 __dequeue_entity(cfs_rq, se); 3747 update_load_sub(&cfs_rq->load, se->load.weight); 3748 } 3749 dequeue_load_avg(cfs_rq, se); 3750 3751 if (!se->on_rq) { 3752 /* 3753 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3754 * we need to scale se->vlag when w_i changes. 3755 */ 3756 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3757 } else { 3758 reweight_eevdf(cfs_rq, se, weight); 3759 } 3760 3761 update_load_set(&se->load, weight); 3762 3763 #ifdef CONFIG_SMP 3764 do { 3765 u32 divider = get_pelt_divider(&se->avg); 3766 3767 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3768 } while (0); 3769 #endif 3770 3771 enqueue_load_avg(cfs_rq, se); 3772 if (se->on_rq) { 3773 update_load_add(&cfs_rq->load, se->load.weight); 3774 if (!curr) 3775 __enqueue_entity(cfs_rq, se); 3776 3777 /* 3778 * The entity's vruntime has been adjusted, so let's check 3779 * whether the rq-wide min_vruntime needs updated too. Since 3780 * the calculations above require stable min_vruntime rather 3781 * than up-to-date one, we do the update at the end of the 3782 * reweight process. 3783 */ 3784 update_min_vruntime(cfs_rq); 3785 } 3786 } 3787 3788 void reweight_task(struct task_struct *p, int prio) 3789 { 3790 struct sched_entity *se = &p->se; 3791 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3792 struct load_weight *load = &se->load; 3793 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3794 3795 reweight_entity(cfs_rq, se, weight); 3796 load->inv_weight = sched_prio_to_wmult[prio]; 3797 } 3798 3799 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3800 3801 #ifdef CONFIG_FAIR_GROUP_SCHED 3802 #ifdef CONFIG_SMP 3803 /* 3804 * All this does is approximate the hierarchical proportion which includes that 3805 * global sum we all love to hate. 3806 * 3807 * That is, the weight of a group entity, is the proportional share of the 3808 * group weight based on the group runqueue weights. That is: 3809 * 3810 * tg->weight * grq->load.weight 3811 * ge->load.weight = ----------------------------- (1) 3812 * \Sum grq->load.weight 3813 * 3814 * Now, because computing that sum is prohibitively expensive to compute (been 3815 * there, done that) we approximate it with this average stuff. The average 3816 * moves slower and therefore the approximation is cheaper and more stable. 3817 * 3818 * So instead of the above, we substitute: 3819 * 3820 * grq->load.weight -> grq->avg.load_avg (2) 3821 * 3822 * which yields the following: 3823 * 3824 * tg->weight * grq->avg.load_avg 3825 * ge->load.weight = ------------------------------ (3) 3826 * tg->load_avg 3827 * 3828 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3829 * 3830 * That is shares_avg, and it is right (given the approximation (2)). 3831 * 3832 * The problem with it is that because the average is slow -- it was designed 3833 * to be exactly that of course -- this leads to transients in boundary 3834 * conditions. In specific, the case where the group was idle and we start the 3835 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3836 * yielding bad latency etc.. 3837 * 3838 * Now, in that special case (1) reduces to: 3839 * 3840 * tg->weight * grq->load.weight 3841 * ge->load.weight = ----------------------------- = tg->weight (4) 3842 * grp->load.weight 3843 * 3844 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3845 * 3846 * So what we do is modify our approximation (3) to approach (4) in the (near) 3847 * UP case, like: 3848 * 3849 * ge->load.weight = 3850 * 3851 * tg->weight * grq->load.weight 3852 * --------------------------------------------------- (5) 3853 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3854 * 3855 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3856 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3857 * 3858 * 3859 * tg->weight * grq->load.weight 3860 * ge->load.weight = ----------------------------- (6) 3861 * tg_load_avg' 3862 * 3863 * Where: 3864 * 3865 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3866 * max(grq->load.weight, grq->avg.load_avg) 3867 * 3868 * And that is shares_weight and is icky. In the (near) UP case it approaches 3869 * (4) while in the normal case it approaches (3). It consistently 3870 * overestimates the ge->load.weight and therefore: 3871 * 3872 * \Sum ge->load.weight >= tg->weight 3873 * 3874 * hence icky! 3875 */ 3876 static long calc_group_shares(struct cfs_rq *cfs_rq) 3877 { 3878 long tg_weight, tg_shares, load, shares; 3879 struct task_group *tg = cfs_rq->tg; 3880 3881 tg_shares = READ_ONCE(tg->shares); 3882 3883 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3884 3885 tg_weight = atomic_long_read(&tg->load_avg); 3886 3887 /* Ensure tg_weight >= load */ 3888 tg_weight -= cfs_rq->tg_load_avg_contrib; 3889 tg_weight += load; 3890 3891 shares = (tg_shares * load); 3892 if (tg_weight) 3893 shares /= tg_weight; 3894 3895 /* 3896 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3897 * of a group with small tg->shares value. It is a floor value which is 3898 * assigned as a minimum load.weight to the sched_entity representing 3899 * the group on a CPU. 3900 * 3901 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3902 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3903 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3904 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3905 * instead of 0. 3906 */ 3907 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3908 } 3909 #endif /* CONFIG_SMP */ 3910 3911 /* 3912 * Recomputes the group entity based on the current state of its group 3913 * runqueue. 3914 */ 3915 static void update_cfs_group(struct sched_entity *se) 3916 { 3917 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3918 long shares; 3919 3920 if (!gcfs_rq) 3921 return; 3922 3923 if (throttled_hierarchy(gcfs_rq)) 3924 return; 3925 3926 #ifndef CONFIG_SMP 3927 shares = READ_ONCE(gcfs_rq->tg->shares); 3928 #else 3929 shares = calc_group_shares(gcfs_rq); 3930 #endif 3931 if (unlikely(se->load.weight != shares)) 3932 reweight_entity(cfs_rq_of(se), se, shares); 3933 } 3934 3935 #else /* CONFIG_FAIR_GROUP_SCHED */ 3936 static inline void update_cfs_group(struct sched_entity *se) 3937 { 3938 } 3939 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3940 3941 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3942 { 3943 struct rq *rq = rq_of(cfs_rq); 3944 3945 if (&rq->cfs == cfs_rq) { 3946 /* 3947 * There are a few boundary cases this might miss but it should 3948 * get called often enough that that should (hopefully) not be 3949 * a real problem. 3950 * 3951 * It will not get called when we go idle, because the idle 3952 * thread is a different class (!fair), nor will the utilization 3953 * number include things like RT tasks. 3954 * 3955 * As is, the util number is not freq-invariant (we'd have to 3956 * implement arch_scale_freq_capacity() for that). 3957 * 3958 * See cpu_util_cfs(). 3959 */ 3960 cpufreq_update_util(rq, flags); 3961 } 3962 } 3963 3964 #ifdef CONFIG_SMP 3965 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3966 { 3967 if (sa->load_sum) 3968 return false; 3969 3970 if (sa->util_sum) 3971 return false; 3972 3973 if (sa->runnable_sum) 3974 return false; 3975 3976 /* 3977 * _avg must be null when _sum are null because _avg = _sum / divider 3978 * Make sure that rounding and/or propagation of PELT values never 3979 * break this. 3980 */ 3981 SCHED_WARN_ON(sa->load_avg || 3982 sa->util_avg || 3983 sa->runnable_avg); 3984 3985 return true; 3986 } 3987 3988 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3989 { 3990 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3991 cfs_rq->last_update_time_copy); 3992 } 3993 #ifdef CONFIG_FAIR_GROUP_SCHED 3994 /* 3995 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3996 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3997 * bottom-up, we only have to test whether the cfs_rq before us on the list 3998 * is our child. 3999 * If cfs_rq is not on the list, test whether a child needs its to be added to 4000 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4001 */ 4002 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4003 { 4004 struct cfs_rq *prev_cfs_rq; 4005 struct list_head *prev; 4006 4007 if (cfs_rq->on_list) { 4008 prev = cfs_rq->leaf_cfs_rq_list.prev; 4009 } else { 4010 struct rq *rq = rq_of(cfs_rq); 4011 4012 prev = rq->tmp_alone_branch; 4013 } 4014 4015 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4016 4017 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4018 } 4019 4020 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4021 { 4022 if (cfs_rq->load.weight) 4023 return false; 4024 4025 if (!load_avg_is_decayed(&cfs_rq->avg)) 4026 return false; 4027 4028 if (child_cfs_rq_on_list(cfs_rq)) 4029 return false; 4030 4031 return true; 4032 } 4033 4034 /** 4035 * update_tg_load_avg - update the tg's load avg 4036 * @cfs_rq: the cfs_rq whose avg changed 4037 * 4038 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4039 * However, because tg->load_avg is a global value there are performance 4040 * considerations. 4041 * 4042 * In order to avoid having to look at the other cfs_rq's, we use a 4043 * differential update where we store the last value we propagated. This in 4044 * turn allows skipping updates if the differential is 'small'. 4045 * 4046 * Updating tg's load_avg is necessary before update_cfs_share(). 4047 */ 4048 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4049 { 4050 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4051 4052 /* 4053 * No need to update load_avg for root_task_group as it is not used. 4054 */ 4055 if (cfs_rq->tg == &root_task_group) 4056 return; 4057 4058 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4059 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4060 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4061 } 4062 } 4063 4064 /* 4065 * Called within set_task_rq() right before setting a task's CPU. The 4066 * caller only guarantees p->pi_lock is held; no other assumptions, 4067 * including the state of rq->lock, should be made. 4068 */ 4069 void set_task_rq_fair(struct sched_entity *se, 4070 struct cfs_rq *prev, struct cfs_rq *next) 4071 { 4072 u64 p_last_update_time; 4073 u64 n_last_update_time; 4074 4075 if (!sched_feat(ATTACH_AGE_LOAD)) 4076 return; 4077 4078 /* 4079 * We are supposed to update the task to "current" time, then its up to 4080 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4081 * getting what current time is, so simply throw away the out-of-date 4082 * time. This will result in the wakee task is less decayed, but giving 4083 * the wakee more load sounds not bad. 4084 */ 4085 if (!(se->avg.last_update_time && prev)) 4086 return; 4087 4088 p_last_update_time = cfs_rq_last_update_time(prev); 4089 n_last_update_time = cfs_rq_last_update_time(next); 4090 4091 __update_load_avg_blocked_se(p_last_update_time, se); 4092 se->avg.last_update_time = n_last_update_time; 4093 } 4094 4095 /* 4096 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4097 * propagate its contribution. The key to this propagation is the invariant 4098 * that for each group: 4099 * 4100 * ge->avg == grq->avg (1) 4101 * 4102 * _IFF_ we look at the pure running and runnable sums. Because they 4103 * represent the very same entity, just at different points in the hierarchy. 4104 * 4105 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4106 * and simply copies the running/runnable sum over (but still wrong, because 4107 * the group entity and group rq do not have their PELT windows aligned). 4108 * 4109 * However, update_tg_cfs_load() is more complex. So we have: 4110 * 4111 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4112 * 4113 * And since, like util, the runnable part should be directly transferable, 4114 * the following would _appear_ to be the straight forward approach: 4115 * 4116 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4117 * 4118 * And per (1) we have: 4119 * 4120 * ge->avg.runnable_avg == grq->avg.runnable_avg 4121 * 4122 * Which gives: 4123 * 4124 * ge->load.weight * grq->avg.load_avg 4125 * ge->avg.load_avg = ----------------------------------- (4) 4126 * grq->load.weight 4127 * 4128 * Except that is wrong! 4129 * 4130 * Because while for entities historical weight is not important and we 4131 * really only care about our future and therefore can consider a pure 4132 * runnable sum, runqueues can NOT do this. 4133 * 4134 * We specifically want runqueues to have a load_avg that includes 4135 * historical weights. Those represent the blocked load, the load we expect 4136 * to (shortly) return to us. This only works by keeping the weights as 4137 * integral part of the sum. We therefore cannot decompose as per (3). 4138 * 4139 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4140 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4141 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4142 * runnable section of these tasks overlap (or not). If they were to perfectly 4143 * align the rq as a whole would be runnable 2/3 of the time. If however we 4144 * always have at least 1 runnable task, the rq as a whole is always runnable. 4145 * 4146 * So we'll have to approximate.. :/ 4147 * 4148 * Given the constraint: 4149 * 4150 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4151 * 4152 * We can construct a rule that adds runnable to a rq by assuming minimal 4153 * overlap. 4154 * 4155 * On removal, we'll assume each task is equally runnable; which yields: 4156 * 4157 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4158 * 4159 * XXX: only do this for the part of runnable > running ? 4160 * 4161 */ 4162 static inline void 4163 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4164 { 4165 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4166 u32 new_sum, divider; 4167 4168 /* Nothing to update */ 4169 if (!delta_avg) 4170 return; 4171 4172 /* 4173 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4174 * See ___update_load_avg() for details. 4175 */ 4176 divider = get_pelt_divider(&cfs_rq->avg); 4177 4178 4179 /* Set new sched_entity's utilization */ 4180 se->avg.util_avg = gcfs_rq->avg.util_avg; 4181 new_sum = se->avg.util_avg * divider; 4182 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4183 se->avg.util_sum = new_sum; 4184 4185 /* Update parent cfs_rq utilization */ 4186 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4187 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4188 4189 /* See update_cfs_rq_load_avg() */ 4190 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4191 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4192 } 4193 4194 static inline void 4195 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4196 { 4197 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4198 u32 new_sum, divider; 4199 4200 /* Nothing to update */ 4201 if (!delta_avg) 4202 return; 4203 4204 /* 4205 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4206 * See ___update_load_avg() for details. 4207 */ 4208 divider = get_pelt_divider(&cfs_rq->avg); 4209 4210 /* Set new sched_entity's runnable */ 4211 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4212 new_sum = se->avg.runnable_avg * divider; 4213 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4214 se->avg.runnable_sum = new_sum; 4215 4216 /* Update parent cfs_rq runnable */ 4217 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4218 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4219 /* See update_cfs_rq_load_avg() */ 4220 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4221 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4222 } 4223 4224 static inline void 4225 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4226 { 4227 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4228 unsigned long load_avg; 4229 u64 load_sum = 0; 4230 s64 delta_sum; 4231 u32 divider; 4232 4233 if (!runnable_sum) 4234 return; 4235 4236 gcfs_rq->prop_runnable_sum = 0; 4237 4238 /* 4239 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4240 * See ___update_load_avg() for details. 4241 */ 4242 divider = get_pelt_divider(&cfs_rq->avg); 4243 4244 if (runnable_sum >= 0) { 4245 /* 4246 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4247 * the CPU is saturated running == runnable. 4248 */ 4249 runnable_sum += se->avg.load_sum; 4250 runnable_sum = min_t(long, runnable_sum, divider); 4251 } else { 4252 /* 4253 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4254 * assuming all tasks are equally runnable. 4255 */ 4256 if (scale_load_down(gcfs_rq->load.weight)) { 4257 load_sum = div_u64(gcfs_rq->avg.load_sum, 4258 scale_load_down(gcfs_rq->load.weight)); 4259 } 4260 4261 /* But make sure to not inflate se's runnable */ 4262 runnable_sum = min(se->avg.load_sum, load_sum); 4263 } 4264 4265 /* 4266 * runnable_sum can't be lower than running_sum 4267 * Rescale running sum to be in the same range as runnable sum 4268 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4269 * runnable_sum is in [0 : LOAD_AVG_MAX] 4270 */ 4271 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4272 runnable_sum = max(runnable_sum, running_sum); 4273 4274 load_sum = se_weight(se) * runnable_sum; 4275 load_avg = div_u64(load_sum, divider); 4276 4277 delta_avg = load_avg - se->avg.load_avg; 4278 if (!delta_avg) 4279 return; 4280 4281 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4282 4283 se->avg.load_sum = runnable_sum; 4284 se->avg.load_avg = load_avg; 4285 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4286 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4287 /* See update_cfs_rq_load_avg() */ 4288 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4289 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4290 } 4291 4292 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4293 { 4294 cfs_rq->propagate = 1; 4295 cfs_rq->prop_runnable_sum += runnable_sum; 4296 } 4297 4298 /* Update task and its cfs_rq load average */ 4299 static inline int propagate_entity_load_avg(struct sched_entity *se) 4300 { 4301 struct cfs_rq *cfs_rq, *gcfs_rq; 4302 4303 if (entity_is_task(se)) 4304 return 0; 4305 4306 gcfs_rq = group_cfs_rq(se); 4307 if (!gcfs_rq->propagate) 4308 return 0; 4309 4310 gcfs_rq->propagate = 0; 4311 4312 cfs_rq = cfs_rq_of(se); 4313 4314 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4315 4316 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4317 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4318 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4319 4320 trace_pelt_cfs_tp(cfs_rq); 4321 trace_pelt_se_tp(se); 4322 4323 return 1; 4324 } 4325 4326 /* 4327 * Check if we need to update the load and the utilization of a blocked 4328 * group_entity: 4329 */ 4330 static inline bool skip_blocked_update(struct sched_entity *se) 4331 { 4332 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4333 4334 /* 4335 * If sched_entity still have not zero load or utilization, we have to 4336 * decay it: 4337 */ 4338 if (se->avg.load_avg || se->avg.util_avg) 4339 return false; 4340 4341 /* 4342 * If there is a pending propagation, we have to update the load and 4343 * the utilization of the sched_entity: 4344 */ 4345 if (gcfs_rq->propagate) 4346 return false; 4347 4348 /* 4349 * Otherwise, the load and the utilization of the sched_entity is 4350 * already zero and there is no pending propagation, so it will be a 4351 * waste of time to try to decay it: 4352 */ 4353 return true; 4354 } 4355 4356 #else /* CONFIG_FAIR_GROUP_SCHED */ 4357 4358 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4359 4360 static inline int propagate_entity_load_avg(struct sched_entity *se) 4361 { 4362 return 0; 4363 } 4364 4365 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4366 4367 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4368 4369 #ifdef CONFIG_NO_HZ_COMMON 4370 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4371 { 4372 u64 throttled = 0, now, lut; 4373 struct cfs_rq *cfs_rq; 4374 struct rq *rq; 4375 bool is_idle; 4376 4377 if (load_avg_is_decayed(&se->avg)) 4378 return; 4379 4380 cfs_rq = cfs_rq_of(se); 4381 rq = rq_of(cfs_rq); 4382 4383 rcu_read_lock(); 4384 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4385 rcu_read_unlock(); 4386 4387 /* 4388 * The lag estimation comes with a cost we don't want to pay all the 4389 * time. Hence, limiting to the case where the source CPU is idle and 4390 * we know we are at the greatest risk to have an outdated clock. 4391 */ 4392 if (!is_idle) 4393 return; 4394 4395 /* 4396 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4397 * 4398 * last_update_time (the cfs_rq's last_update_time) 4399 * = cfs_rq_clock_pelt()@cfs_rq_idle 4400 * = rq_clock_pelt()@cfs_rq_idle 4401 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4402 * 4403 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4404 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4405 * 4406 * rq_idle_lag (delta between now and rq's update) 4407 * = sched_clock_cpu() - rq_clock()@rq_idle 4408 * 4409 * We can then write: 4410 * 4411 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4412 * sched_clock_cpu() - rq_clock()@rq_idle 4413 * Where: 4414 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4415 * rq_clock()@rq_idle is rq->clock_idle 4416 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4417 * is cfs_rq->throttled_pelt_idle 4418 */ 4419 4420 #ifdef CONFIG_CFS_BANDWIDTH 4421 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4422 /* The clock has been stopped for throttling */ 4423 if (throttled == U64_MAX) 4424 return; 4425 #endif 4426 now = u64_u32_load(rq->clock_pelt_idle); 4427 /* 4428 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4429 * is observed the old clock_pelt_idle value and the new clock_idle, 4430 * which lead to an underestimation. The opposite would lead to an 4431 * overestimation. 4432 */ 4433 smp_rmb(); 4434 lut = cfs_rq_last_update_time(cfs_rq); 4435 4436 now -= throttled; 4437 if (now < lut) 4438 /* 4439 * cfs_rq->avg.last_update_time is more recent than our 4440 * estimation, let's use it. 4441 */ 4442 now = lut; 4443 else 4444 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4445 4446 __update_load_avg_blocked_se(now, se); 4447 } 4448 #else 4449 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4450 #endif 4451 4452 /** 4453 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4454 * @now: current time, as per cfs_rq_clock_pelt() 4455 * @cfs_rq: cfs_rq to update 4456 * 4457 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4458 * avg. The immediate corollary is that all (fair) tasks must be attached. 4459 * 4460 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4461 * 4462 * Return: true if the load decayed or we removed load. 4463 * 4464 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4465 * call update_tg_load_avg() when this function returns true. 4466 */ 4467 static inline int 4468 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4469 { 4470 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4471 struct sched_avg *sa = &cfs_rq->avg; 4472 int decayed = 0; 4473 4474 if (cfs_rq->removed.nr) { 4475 unsigned long r; 4476 u32 divider = get_pelt_divider(&cfs_rq->avg); 4477 4478 raw_spin_lock(&cfs_rq->removed.lock); 4479 swap(cfs_rq->removed.util_avg, removed_util); 4480 swap(cfs_rq->removed.load_avg, removed_load); 4481 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4482 cfs_rq->removed.nr = 0; 4483 raw_spin_unlock(&cfs_rq->removed.lock); 4484 4485 r = removed_load; 4486 sub_positive(&sa->load_avg, r); 4487 sub_positive(&sa->load_sum, r * divider); 4488 /* See sa->util_sum below */ 4489 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4490 4491 r = removed_util; 4492 sub_positive(&sa->util_avg, r); 4493 sub_positive(&sa->util_sum, r * divider); 4494 /* 4495 * Because of rounding, se->util_sum might ends up being +1 more than 4496 * cfs->util_sum. Although this is not a problem by itself, detaching 4497 * a lot of tasks with the rounding problem between 2 updates of 4498 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4499 * cfs_util_avg is not. 4500 * Check that util_sum is still above its lower bound for the new 4501 * util_avg. Given that period_contrib might have moved since the last 4502 * sync, we are only sure that util_sum must be above or equal to 4503 * util_avg * minimum possible divider 4504 */ 4505 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4506 4507 r = removed_runnable; 4508 sub_positive(&sa->runnable_avg, r); 4509 sub_positive(&sa->runnable_sum, r * divider); 4510 /* See sa->util_sum above */ 4511 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4512 sa->runnable_avg * PELT_MIN_DIVIDER); 4513 4514 /* 4515 * removed_runnable is the unweighted version of removed_load so we 4516 * can use it to estimate removed_load_sum. 4517 */ 4518 add_tg_cfs_propagate(cfs_rq, 4519 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4520 4521 decayed = 1; 4522 } 4523 4524 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4525 u64_u32_store_copy(sa->last_update_time, 4526 cfs_rq->last_update_time_copy, 4527 sa->last_update_time); 4528 return decayed; 4529 } 4530 4531 /** 4532 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4533 * @cfs_rq: cfs_rq to attach to 4534 * @se: sched_entity to attach 4535 * 4536 * Must call update_cfs_rq_load_avg() before this, since we rely on 4537 * cfs_rq->avg.last_update_time being current. 4538 */ 4539 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4540 { 4541 /* 4542 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4543 * See ___update_load_avg() for details. 4544 */ 4545 u32 divider = get_pelt_divider(&cfs_rq->avg); 4546 4547 /* 4548 * When we attach the @se to the @cfs_rq, we must align the decay 4549 * window because without that, really weird and wonderful things can 4550 * happen. 4551 * 4552 * XXX illustrate 4553 */ 4554 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4555 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4556 4557 /* 4558 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4559 * period_contrib. This isn't strictly correct, but since we're 4560 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4561 * _sum a little. 4562 */ 4563 se->avg.util_sum = se->avg.util_avg * divider; 4564 4565 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4566 4567 se->avg.load_sum = se->avg.load_avg * divider; 4568 if (se_weight(se) < se->avg.load_sum) 4569 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4570 else 4571 se->avg.load_sum = 1; 4572 4573 enqueue_load_avg(cfs_rq, se); 4574 cfs_rq->avg.util_avg += se->avg.util_avg; 4575 cfs_rq->avg.util_sum += se->avg.util_sum; 4576 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4577 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4578 4579 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4580 4581 cfs_rq_util_change(cfs_rq, 0); 4582 4583 trace_pelt_cfs_tp(cfs_rq); 4584 } 4585 4586 /** 4587 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4588 * @cfs_rq: cfs_rq to detach from 4589 * @se: sched_entity to detach 4590 * 4591 * Must call update_cfs_rq_load_avg() before this, since we rely on 4592 * cfs_rq->avg.last_update_time being current. 4593 */ 4594 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4595 { 4596 dequeue_load_avg(cfs_rq, se); 4597 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4598 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4599 /* See update_cfs_rq_load_avg() */ 4600 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4601 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4602 4603 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4604 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4605 /* See update_cfs_rq_load_avg() */ 4606 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4607 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4608 4609 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4610 4611 cfs_rq_util_change(cfs_rq, 0); 4612 4613 trace_pelt_cfs_tp(cfs_rq); 4614 } 4615 4616 /* 4617 * Optional action to be done while updating the load average 4618 */ 4619 #define UPDATE_TG 0x1 4620 #define SKIP_AGE_LOAD 0x2 4621 #define DO_ATTACH 0x4 4622 #define DO_DETACH 0x8 4623 4624 /* Update task and its cfs_rq load average */ 4625 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4626 { 4627 u64 now = cfs_rq_clock_pelt(cfs_rq); 4628 int decayed; 4629 4630 /* 4631 * Track task load average for carrying it to new CPU after migrated, and 4632 * track group sched_entity load average for task_h_load calc in migration 4633 */ 4634 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4635 __update_load_avg_se(now, cfs_rq, se); 4636 4637 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4638 decayed |= propagate_entity_load_avg(se); 4639 4640 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4641 4642 /* 4643 * DO_ATTACH means we're here from enqueue_entity(). 4644 * !last_update_time means we've passed through 4645 * migrate_task_rq_fair() indicating we migrated. 4646 * 4647 * IOW we're enqueueing a task on a new CPU. 4648 */ 4649 attach_entity_load_avg(cfs_rq, se); 4650 update_tg_load_avg(cfs_rq); 4651 4652 } else if (flags & DO_DETACH) { 4653 /* 4654 * DO_DETACH means we're here from dequeue_entity() 4655 * and we are migrating task out of the CPU. 4656 */ 4657 detach_entity_load_avg(cfs_rq, se); 4658 update_tg_load_avg(cfs_rq); 4659 } else if (decayed) { 4660 cfs_rq_util_change(cfs_rq, 0); 4661 4662 if (flags & UPDATE_TG) 4663 update_tg_load_avg(cfs_rq); 4664 } 4665 } 4666 4667 /* 4668 * Synchronize entity load avg of dequeued entity without locking 4669 * the previous rq. 4670 */ 4671 static void sync_entity_load_avg(struct sched_entity *se) 4672 { 4673 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4674 u64 last_update_time; 4675 4676 last_update_time = cfs_rq_last_update_time(cfs_rq); 4677 __update_load_avg_blocked_se(last_update_time, se); 4678 } 4679 4680 /* 4681 * Task first catches up with cfs_rq, and then subtract 4682 * itself from the cfs_rq (task must be off the queue now). 4683 */ 4684 static void remove_entity_load_avg(struct sched_entity *se) 4685 { 4686 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4687 unsigned long flags; 4688 4689 /* 4690 * tasks cannot exit without having gone through wake_up_new_task() -> 4691 * enqueue_task_fair() which will have added things to the cfs_rq, 4692 * so we can remove unconditionally. 4693 */ 4694 4695 sync_entity_load_avg(se); 4696 4697 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4698 ++cfs_rq->removed.nr; 4699 cfs_rq->removed.util_avg += se->avg.util_avg; 4700 cfs_rq->removed.load_avg += se->avg.load_avg; 4701 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4702 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4703 } 4704 4705 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4706 { 4707 return cfs_rq->avg.runnable_avg; 4708 } 4709 4710 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4711 { 4712 return cfs_rq->avg.load_avg; 4713 } 4714 4715 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4716 4717 static inline unsigned long task_util(struct task_struct *p) 4718 { 4719 return READ_ONCE(p->se.avg.util_avg); 4720 } 4721 4722 static inline unsigned long _task_util_est(struct task_struct *p) 4723 { 4724 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4725 4726 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4727 } 4728 4729 static inline unsigned long task_util_est(struct task_struct *p) 4730 { 4731 return max(task_util(p), _task_util_est(p)); 4732 } 4733 4734 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4735 struct task_struct *p) 4736 { 4737 unsigned int enqueued; 4738 4739 if (!sched_feat(UTIL_EST)) 4740 return; 4741 4742 /* Update root cfs_rq's estimated utilization */ 4743 enqueued = cfs_rq->avg.util_est.enqueued; 4744 enqueued += _task_util_est(p); 4745 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4746 4747 trace_sched_util_est_cfs_tp(cfs_rq); 4748 } 4749 4750 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4751 struct task_struct *p) 4752 { 4753 unsigned int enqueued; 4754 4755 if (!sched_feat(UTIL_EST)) 4756 return; 4757 4758 /* Update root cfs_rq's estimated utilization */ 4759 enqueued = cfs_rq->avg.util_est.enqueued; 4760 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4761 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4762 4763 trace_sched_util_est_cfs_tp(cfs_rq); 4764 } 4765 4766 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4767 4768 /* 4769 * Check if a (signed) value is within a specified (unsigned) margin, 4770 * based on the observation that: 4771 * 4772 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4773 * 4774 * NOTE: this only works when value + margin < INT_MAX. 4775 */ 4776 static inline bool within_margin(int value, int margin) 4777 { 4778 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4779 } 4780 4781 static inline void util_est_update(struct cfs_rq *cfs_rq, 4782 struct task_struct *p, 4783 bool task_sleep) 4784 { 4785 long last_ewma_diff, last_enqueued_diff; 4786 struct util_est ue; 4787 4788 if (!sched_feat(UTIL_EST)) 4789 return; 4790 4791 /* 4792 * Skip update of task's estimated utilization when the task has not 4793 * yet completed an activation, e.g. being migrated. 4794 */ 4795 if (!task_sleep) 4796 return; 4797 4798 /* 4799 * If the PELT values haven't changed since enqueue time, 4800 * skip the util_est update. 4801 */ 4802 ue = p->se.avg.util_est; 4803 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4804 return; 4805 4806 last_enqueued_diff = ue.enqueued; 4807 4808 /* 4809 * Reset EWMA on utilization increases, the moving average is used only 4810 * to smooth utilization decreases. 4811 */ 4812 ue.enqueued = task_util(p); 4813 if (sched_feat(UTIL_EST_FASTUP)) { 4814 if (ue.ewma < ue.enqueued) { 4815 ue.ewma = ue.enqueued; 4816 goto done; 4817 } 4818 } 4819 4820 /* 4821 * Skip update of task's estimated utilization when its members are 4822 * already ~1% close to its last activation value. 4823 */ 4824 last_ewma_diff = ue.enqueued - ue.ewma; 4825 last_enqueued_diff -= ue.enqueued; 4826 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4827 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4828 goto done; 4829 4830 return; 4831 } 4832 4833 /* 4834 * To avoid overestimation of actual task utilization, skip updates if 4835 * we cannot grant there is idle time in this CPU. 4836 */ 4837 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4838 return; 4839 4840 /* 4841 * Update Task's estimated utilization 4842 * 4843 * When *p completes an activation we can consolidate another sample 4844 * of the task size. This is done by storing the current PELT value 4845 * as ue.enqueued and by using this value to update the Exponential 4846 * Weighted Moving Average (EWMA): 4847 * 4848 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4849 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4850 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4851 * = w * ( last_ewma_diff ) + ewma(t-1) 4852 * = w * (last_ewma_diff + ewma(t-1) / w) 4853 * 4854 * Where 'w' is the weight of new samples, which is configured to be 4855 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4856 */ 4857 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4858 ue.ewma += last_ewma_diff; 4859 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4860 done: 4861 ue.enqueued |= UTIL_AVG_UNCHANGED; 4862 WRITE_ONCE(p->se.avg.util_est, ue); 4863 4864 trace_sched_util_est_se_tp(&p->se); 4865 } 4866 4867 static inline int util_fits_cpu(unsigned long util, 4868 unsigned long uclamp_min, 4869 unsigned long uclamp_max, 4870 int cpu) 4871 { 4872 unsigned long capacity_orig, capacity_orig_thermal; 4873 unsigned long capacity = capacity_of(cpu); 4874 bool fits, uclamp_max_fits; 4875 4876 /* 4877 * Check if the real util fits without any uclamp boost/cap applied. 4878 */ 4879 fits = fits_capacity(util, capacity); 4880 4881 if (!uclamp_is_used()) 4882 return fits; 4883 4884 /* 4885 * We must use capacity_orig_of() for comparing against uclamp_min and 4886 * uclamp_max. We only care about capacity pressure (by using 4887 * capacity_of()) for comparing against the real util. 4888 * 4889 * If a task is boosted to 1024 for example, we don't want a tiny 4890 * pressure to skew the check whether it fits a CPU or not. 4891 * 4892 * Similarly if a task is capped to capacity_orig_of(little_cpu), it 4893 * should fit a little cpu even if there's some pressure. 4894 * 4895 * Only exception is for thermal pressure since it has a direct impact 4896 * on available OPP of the system. 4897 * 4898 * We honour it for uclamp_min only as a drop in performance level 4899 * could result in not getting the requested minimum performance level. 4900 * 4901 * For uclamp_max, we can tolerate a drop in performance level as the 4902 * goal is to cap the task. So it's okay if it's getting less. 4903 */ 4904 capacity_orig = capacity_orig_of(cpu); 4905 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 4906 4907 /* 4908 * We want to force a task to fit a cpu as implied by uclamp_max. 4909 * But we do have some corner cases to cater for.. 4910 * 4911 * 4912 * C=z 4913 * | ___ 4914 * | C=y | | 4915 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4916 * | C=x | | | | 4917 * | ___ | | | | 4918 * | | | | | | | (util somewhere in this region) 4919 * | | | | | | | 4920 * | | | | | | | 4921 * +---------------------------------------- 4922 * cpu0 cpu1 cpu2 4923 * 4924 * In the above example if a task is capped to a specific performance 4925 * point, y, then when: 4926 * 4927 * * util = 80% of x then it does not fit on cpu0 and should migrate 4928 * to cpu1 4929 * * util = 80% of y then it is forced to fit on cpu1 to honour 4930 * uclamp_max request. 4931 * 4932 * which is what we're enforcing here. A task always fits if 4933 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 4934 * the normal upmigration rules should withhold still. 4935 * 4936 * Only exception is when we are on max capacity, then we need to be 4937 * careful not to block overutilized state. This is so because: 4938 * 4939 * 1. There's no concept of capping at max_capacity! We can't go 4940 * beyond this performance level anyway. 4941 * 2. The system is being saturated when we're operating near 4942 * max capacity, it doesn't make sense to block overutilized. 4943 */ 4944 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 4945 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 4946 fits = fits || uclamp_max_fits; 4947 4948 /* 4949 * 4950 * C=z 4951 * | ___ (region a, capped, util >= uclamp_max) 4952 * | C=y | | 4953 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4954 * | C=x | | | | 4955 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 4956 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 4957 * | | | | | | | 4958 * | | | | | | | (region c, boosted, util < uclamp_min) 4959 * +---------------------------------------- 4960 * cpu0 cpu1 cpu2 4961 * 4962 * a) If util > uclamp_max, then we're capped, we don't care about 4963 * actual fitness value here. We only care if uclamp_max fits 4964 * capacity without taking margin/pressure into account. 4965 * See comment above. 4966 * 4967 * b) If uclamp_min <= util <= uclamp_max, then the normal 4968 * fits_capacity() rules apply. Except we need to ensure that we 4969 * enforce we remain within uclamp_max, see comment above. 4970 * 4971 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 4972 * need to take into account the boosted value fits the CPU without 4973 * taking margin/pressure into account. 4974 * 4975 * Cases (a) and (b) are handled in the 'fits' variable already. We 4976 * just need to consider an extra check for case (c) after ensuring we 4977 * handle the case uclamp_min > uclamp_max. 4978 */ 4979 uclamp_min = min(uclamp_min, uclamp_max); 4980 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal)) 4981 return -1; 4982 4983 return fits; 4984 } 4985 4986 static inline int task_fits_cpu(struct task_struct *p, int cpu) 4987 { 4988 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 4989 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 4990 unsigned long util = task_util_est(p); 4991 /* 4992 * Return true only if the cpu fully fits the task requirements, which 4993 * include the utilization but also the performance hints. 4994 */ 4995 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 4996 } 4997 4998 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4999 { 5000 if (!sched_asym_cpucap_active()) 5001 return; 5002 5003 if (!p || p->nr_cpus_allowed == 1) { 5004 rq->misfit_task_load = 0; 5005 return; 5006 } 5007 5008 if (task_fits_cpu(p, cpu_of(rq))) { 5009 rq->misfit_task_load = 0; 5010 return; 5011 } 5012 5013 /* 5014 * Make sure that misfit_task_load will not be null even if 5015 * task_h_load() returns 0. 5016 */ 5017 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5018 } 5019 5020 #else /* CONFIG_SMP */ 5021 5022 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5023 { 5024 return !cfs_rq->nr_running; 5025 } 5026 5027 #define UPDATE_TG 0x0 5028 #define SKIP_AGE_LOAD 0x0 5029 #define DO_ATTACH 0x0 5030 #define DO_DETACH 0x0 5031 5032 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5033 { 5034 cfs_rq_util_change(cfs_rq, 0); 5035 } 5036 5037 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5038 5039 static inline void 5040 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5041 static inline void 5042 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5043 5044 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 5045 { 5046 return 0; 5047 } 5048 5049 static inline void 5050 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5051 5052 static inline void 5053 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5054 5055 static inline void 5056 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5057 bool task_sleep) {} 5058 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5059 5060 #endif /* CONFIG_SMP */ 5061 5062 static void 5063 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5064 { 5065 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5066 s64 lag = 0; 5067 5068 se->slice = sysctl_sched_base_slice; 5069 vslice = calc_delta_fair(se->slice, se); 5070 5071 /* 5072 * Due to how V is constructed as the weighted average of entities, 5073 * adding tasks with positive lag, or removing tasks with negative lag 5074 * will move 'time' backwards, this can screw around with the lag of 5075 * other tasks. 5076 * 5077 * EEVDF: placement strategy #1 / #2 5078 */ 5079 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 5080 struct sched_entity *curr = cfs_rq->curr; 5081 unsigned long load; 5082 5083 lag = se->vlag; 5084 5085 /* 5086 * If we want to place a task and preserve lag, we have to 5087 * consider the effect of the new entity on the weighted 5088 * average and compensate for this, otherwise lag can quickly 5089 * evaporate. 5090 * 5091 * Lag is defined as: 5092 * 5093 * lag_i = S - s_i = w_i * (V - v_i) 5094 * 5095 * To avoid the 'w_i' term all over the place, we only track 5096 * the virtual lag: 5097 * 5098 * vl_i = V - v_i <=> v_i = V - vl_i 5099 * 5100 * And we take V to be the weighted average of all v: 5101 * 5102 * V = (\Sum w_j*v_j) / W 5103 * 5104 * Where W is: \Sum w_j 5105 * 5106 * Then, the weighted average after adding an entity with lag 5107 * vl_i is given by: 5108 * 5109 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5110 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5111 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5112 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5113 * = V - w_i*vl_i / (W + w_i) 5114 * 5115 * And the actual lag after adding an entity with vl_i is: 5116 * 5117 * vl'_i = V' - v_i 5118 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5119 * = vl_i - w_i*vl_i / (W + w_i) 5120 * 5121 * Which is strictly less than vl_i. So in order to preserve lag 5122 * we should inflate the lag before placement such that the 5123 * effective lag after placement comes out right. 5124 * 5125 * As such, invert the above relation for vl'_i to get the vl_i 5126 * we need to use such that the lag after placement is the lag 5127 * we computed before dequeue. 5128 * 5129 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5130 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5131 * 5132 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5133 * = W*vl_i 5134 * 5135 * vl_i = (W + w_i)*vl'_i / W 5136 */ 5137 load = cfs_rq->avg_load; 5138 if (curr && curr->on_rq) 5139 load += scale_load_down(curr->load.weight); 5140 5141 lag *= load + scale_load_down(se->load.weight); 5142 if (WARN_ON_ONCE(!load)) 5143 load = 1; 5144 lag = div_s64(lag, load); 5145 } 5146 5147 se->vruntime = vruntime - lag; 5148 5149 /* 5150 * When joining the competition; the exisiting tasks will be, 5151 * on average, halfway through their slice, as such start tasks 5152 * off with half a slice to ease into the competition. 5153 */ 5154 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5155 vslice /= 2; 5156 5157 /* 5158 * EEVDF: vd_i = ve_i + r_i/w_i 5159 */ 5160 se->deadline = se->vruntime + vslice; 5161 } 5162 5163 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5164 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5165 5166 static inline bool cfs_bandwidth_used(void); 5167 5168 static void 5169 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5170 { 5171 bool curr = cfs_rq->curr == se; 5172 5173 /* 5174 * If we're the current task, we must renormalise before calling 5175 * update_curr(). 5176 */ 5177 if (curr) 5178 place_entity(cfs_rq, se, flags); 5179 5180 update_curr(cfs_rq); 5181 5182 /* 5183 * When enqueuing a sched_entity, we must: 5184 * - Update loads to have both entity and cfs_rq synced with now. 5185 * - For group_entity, update its runnable_weight to reflect the new 5186 * h_nr_running of its group cfs_rq. 5187 * - For group_entity, update its weight to reflect the new share of 5188 * its group cfs_rq 5189 * - Add its new weight to cfs_rq->load.weight 5190 */ 5191 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5192 se_update_runnable(se); 5193 /* 5194 * XXX update_load_avg() above will have attached us to the pelt sum; 5195 * but update_cfs_group() here will re-adjust the weight and have to 5196 * undo/redo all that. Seems wasteful. 5197 */ 5198 update_cfs_group(se); 5199 5200 /* 5201 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5202 * we can place the entity. 5203 */ 5204 if (!curr) 5205 place_entity(cfs_rq, se, flags); 5206 5207 account_entity_enqueue(cfs_rq, se); 5208 5209 /* Entity has migrated, no longer consider this task hot */ 5210 if (flags & ENQUEUE_MIGRATED) 5211 se->exec_start = 0; 5212 5213 check_schedstat_required(); 5214 update_stats_enqueue_fair(cfs_rq, se, flags); 5215 if (!curr) 5216 __enqueue_entity(cfs_rq, se); 5217 se->on_rq = 1; 5218 5219 if (cfs_rq->nr_running == 1) { 5220 check_enqueue_throttle(cfs_rq); 5221 if (!throttled_hierarchy(cfs_rq)) { 5222 list_add_leaf_cfs_rq(cfs_rq); 5223 } else { 5224 #ifdef CONFIG_CFS_BANDWIDTH 5225 struct rq *rq = rq_of(cfs_rq); 5226 5227 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5228 cfs_rq->throttled_clock = rq_clock(rq); 5229 if (!cfs_rq->throttled_clock_self) 5230 cfs_rq->throttled_clock_self = rq_clock(rq); 5231 #endif 5232 } 5233 } 5234 } 5235 5236 static void __clear_buddies_next(struct sched_entity *se) 5237 { 5238 for_each_sched_entity(se) { 5239 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5240 if (cfs_rq->next != se) 5241 break; 5242 5243 cfs_rq->next = NULL; 5244 } 5245 } 5246 5247 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5248 { 5249 if (cfs_rq->next == se) 5250 __clear_buddies_next(se); 5251 } 5252 5253 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5254 5255 static void 5256 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5257 { 5258 int action = UPDATE_TG; 5259 5260 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5261 action |= DO_DETACH; 5262 5263 /* 5264 * Update run-time statistics of the 'current'. 5265 */ 5266 update_curr(cfs_rq); 5267 5268 /* 5269 * When dequeuing a sched_entity, we must: 5270 * - Update loads to have both entity and cfs_rq synced with now. 5271 * - For group_entity, update its runnable_weight to reflect the new 5272 * h_nr_running of its group cfs_rq. 5273 * - Subtract its previous weight from cfs_rq->load.weight. 5274 * - For group entity, update its weight to reflect the new share 5275 * of its group cfs_rq. 5276 */ 5277 update_load_avg(cfs_rq, se, action); 5278 se_update_runnable(se); 5279 5280 update_stats_dequeue_fair(cfs_rq, se, flags); 5281 5282 clear_buddies(cfs_rq, se); 5283 5284 update_entity_lag(cfs_rq, se); 5285 if (se != cfs_rq->curr) 5286 __dequeue_entity(cfs_rq, se); 5287 se->on_rq = 0; 5288 account_entity_dequeue(cfs_rq, se); 5289 5290 /* return excess runtime on last dequeue */ 5291 return_cfs_rq_runtime(cfs_rq); 5292 5293 update_cfs_group(se); 5294 5295 /* 5296 * Now advance min_vruntime if @se was the entity holding it back, 5297 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5298 * put back on, and if we advance min_vruntime, we'll be placed back 5299 * further than we started -- ie. we'll be penalized. 5300 */ 5301 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5302 update_min_vruntime(cfs_rq); 5303 5304 if (cfs_rq->nr_running == 0) 5305 update_idle_cfs_rq_clock_pelt(cfs_rq); 5306 } 5307 5308 static void 5309 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5310 { 5311 clear_buddies(cfs_rq, se); 5312 5313 /* 'current' is not kept within the tree. */ 5314 if (se->on_rq) { 5315 /* 5316 * Any task has to be enqueued before it get to execute on 5317 * a CPU. So account for the time it spent waiting on the 5318 * runqueue. 5319 */ 5320 update_stats_wait_end_fair(cfs_rq, se); 5321 __dequeue_entity(cfs_rq, se); 5322 update_load_avg(cfs_rq, se, UPDATE_TG); 5323 /* 5324 * HACK, stash a copy of deadline at the point of pick in vlag, 5325 * which isn't used until dequeue. 5326 */ 5327 se->vlag = se->deadline; 5328 } 5329 5330 update_stats_curr_start(cfs_rq, se); 5331 cfs_rq->curr = se; 5332 5333 /* 5334 * Track our maximum slice length, if the CPU's load is at 5335 * least twice that of our own weight (i.e. dont track it 5336 * when there are only lesser-weight tasks around): 5337 */ 5338 if (schedstat_enabled() && 5339 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5340 struct sched_statistics *stats; 5341 5342 stats = __schedstats_from_se(se); 5343 __schedstat_set(stats->slice_max, 5344 max((u64)stats->slice_max, 5345 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5346 } 5347 5348 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5349 } 5350 5351 /* 5352 * Pick the next process, keeping these things in mind, in this order: 5353 * 1) keep things fair between processes/task groups 5354 * 2) pick the "next" process, since someone really wants that to run 5355 * 3) pick the "last" process, for cache locality 5356 * 4) do not run the "skip" process, if something else is available 5357 */ 5358 static struct sched_entity * 5359 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 5360 { 5361 /* 5362 * Enabling NEXT_BUDDY will affect latency but not fairness. 5363 */ 5364 if (sched_feat(NEXT_BUDDY) && 5365 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) 5366 return cfs_rq->next; 5367 5368 return pick_eevdf(cfs_rq); 5369 } 5370 5371 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5372 5373 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5374 { 5375 /* 5376 * If still on the runqueue then deactivate_task() 5377 * was not called and update_curr() has to be done: 5378 */ 5379 if (prev->on_rq) 5380 update_curr(cfs_rq); 5381 5382 /* throttle cfs_rqs exceeding runtime */ 5383 check_cfs_rq_runtime(cfs_rq); 5384 5385 if (prev->on_rq) { 5386 update_stats_wait_start_fair(cfs_rq, prev); 5387 /* Put 'current' back into the tree. */ 5388 __enqueue_entity(cfs_rq, prev); 5389 /* in !on_rq case, update occurred at dequeue */ 5390 update_load_avg(cfs_rq, prev, 0); 5391 } 5392 cfs_rq->curr = NULL; 5393 } 5394 5395 static void 5396 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5397 { 5398 /* 5399 * Update run-time statistics of the 'current'. 5400 */ 5401 update_curr(cfs_rq); 5402 5403 /* 5404 * Ensure that runnable average is periodically updated. 5405 */ 5406 update_load_avg(cfs_rq, curr, UPDATE_TG); 5407 update_cfs_group(curr); 5408 5409 #ifdef CONFIG_SCHED_HRTICK 5410 /* 5411 * queued ticks are scheduled to match the slice, so don't bother 5412 * validating it and just reschedule. 5413 */ 5414 if (queued) { 5415 resched_curr(rq_of(cfs_rq)); 5416 return; 5417 } 5418 /* 5419 * don't let the period tick interfere with the hrtick preemption 5420 */ 5421 if (!sched_feat(DOUBLE_TICK) && 5422 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5423 return; 5424 #endif 5425 } 5426 5427 5428 /************************************************** 5429 * CFS bandwidth control machinery 5430 */ 5431 5432 #ifdef CONFIG_CFS_BANDWIDTH 5433 5434 #ifdef CONFIG_JUMP_LABEL 5435 static struct static_key __cfs_bandwidth_used; 5436 5437 static inline bool cfs_bandwidth_used(void) 5438 { 5439 return static_key_false(&__cfs_bandwidth_used); 5440 } 5441 5442 void cfs_bandwidth_usage_inc(void) 5443 { 5444 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5445 } 5446 5447 void cfs_bandwidth_usage_dec(void) 5448 { 5449 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5450 } 5451 #else /* CONFIG_JUMP_LABEL */ 5452 static bool cfs_bandwidth_used(void) 5453 { 5454 return true; 5455 } 5456 5457 void cfs_bandwidth_usage_inc(void) {} 5458 void cfs_bandwidth_usage_dec(void) {} 5459 #endif /* CONFIG_JUMP_LABEL */ 5460 5461 /* 5462 * default period for cfs group bandwidth. 5463 * default: 0.1s, units: nanoseconds 5464 */ 5465 static inline u64 default_cfs_period(void) 5466 { 5467 return 100000000ULL; 5468 } 5469 5470 static inline u64 sched_cfs_bandwidth_slice(void) 5471 { 5472 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5473 } 5474 5475 /* 5476 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5477 * directly instead of rq->clock to avoid adding additional synchronization 5478 * around rq->lock. 5479 * 5480 * requires cfs_b->lock 5481 */ 5482 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5483 { 5484 s64 runtime; 5485 5486 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5487 return; 5488 5489 cfs_b->runtime += cfs_b->quota; 5490 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5491 if (runtime > 0) { 5492 cfs_b->burst_time += runtime; 5493 cfs_b->nr_burst++; 5494 } 5495 5496 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5497 cfs_b->runtime_snap = cfs_b->runtime; 5498 } 5499 5500 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5501 { 5502 return &tg->cfs_bandwidth; 5503 } 5504 5505 /* returns 0 on failure to allocate runtime */ 5506 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5507 struct cfs_rq *cfs_rq, u64 target_runtime) 5508 { 5509 u64 min_amount, amount = 0; 5510 5511 lockdep_assert_held(&cfs_b->lock); 5512 5513 /* note: this is a positive sum as runtime_remaining <= 0 */ 5514 min_amount = target_runtime - cfs_rq->runtime_remaining; 5515 5516 if (cfs_b->quota == RUNTIME_INF) 5517 amount = min_amount; 5518 else { 5519 start_cfs_bandwidth(cfs_b); 5520 5521 if (cfs_b->runtime > 0) { 5522 amount = min(cfs_b->runtime, min_amount); 5523 cfs_b->runtime -= amount; 5524 cfs_b->idle = 0; 5525 } 5526 } 5527 5528 cfs_rq->runtime_remaining += amount; 5529 5530 return cfs_rq->runtime_remaining > 0; 5531 } 5532 5533 /* returns 0 on failure to allocate runtime */ 5534 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5535 { 5536 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5537 int ret; 5538 5539 raw_spin_lock(&cfs_b->lock); 5540 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5541 raw_spin_unlock(&cfs_b->lock); 5542 5543 return ret; 5544 } 5545 5546 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5547 { 5548 /* dock delta_exec before expiring quota (as it could span periods) */ 5549 cfs_rq->runtime_remaining -= delta_exec; 5550 5551 if (likely(cfs_rq->runtime_remaining > 0)) 5552 return; 5553 5554 if (cfs_rq->throttled) 5555 return; 5556 /* 5557 * if we're unable to extend our runtime we resched so that the active 5558 * hierarchy can be throttled 5559 */ 5560 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5561 resched_curr(rq_of(cfs_rq)); 5562 } 5563 5564 static __always_inline 5565 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5566 { 5567 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5568 return; 5569 5570 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5571 } 5572 5573 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5574 { 5575 return cfs_bandwidth_used() && cfs_rq->throttled; 5576 } 5577 5578 /* check whether cfs_rq, or any parent, is throttled */ 5579 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5580 { 5581 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5582 } 5583 5584 /* 5585 * Ensure that neither of the group entities corresponding to src_cpu or 5586 * dest_cpu are members of a throttled hierarchy when performing group 5587 * load-balance operations. 5588 */ 5589 static inline int throttled_lb_pair(struct task_group *tg, 5590 int src_cpu, int dest_cpu) 5591 { 5592 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5593 5594 src_cfs_rq = tg->cfs_rq[src_cpu]; 5595 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5596 5597 return throttled_hierarchy(src_cfs_rq) || 5598 throttled_hierarchy(dest_cfs_rq); 5599 } 5600 5601 static int tg_unthrottle_up(struct task_group *tg, void *data) 5602 { 5603 struct rq *rq = data; 5604 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5605 5606 cfs_rq->throttle_count--; 5607 if (!cfs_rq->throttle_count) { 5608 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5609 cfs_rq->throttled_clock_pelt; 5610 5611 /* Add cfs_rq with load or one or more already running entities to the list */ 5612 if (!cfs_rq_is_decayed(cfs_rq)) 5613 list_add_leaf_cfs_rq(cfs_rq); 5614 5615 if (cfs_rq->throttled_clock_self) { 5616 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5617 5618 cfs_rq->throttled_clock_self = 0; 5619 5620 if (SCHED_WARN_ON((s64)delta < 0)) 5621 delta = 0; 5622 5623 cfs_rq->throttled_clock_self_time += delta; 5624 } 5625 } 5626 5627 return 0; 5628 } 5629 5630 static int tg_throttle_down(struct task_group *tg, void *data) 5631 { 5632 struct rq *rq = data; 5633 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5634 5635 /* group is entering throttled state, stop time */ 5636 if (!cfs_rq->throttle_count) { 5637 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5638 list_del_leaf_cfs_rq(cfs_rq); 5639 5640 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5641 if (cfs_rq->nr_running) 5642 cfs_rq->throttled_clock_self = rq_clock(rq); 5643 } 5644 cfs_rq->throttle_count++; 5645 5646 return 0; 5647 } 5648 5649 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5650 { 5651 struct rq *rq = rq_of(cfs_rq); 5652 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5653 struct sched_entity *se; 5654 long task_delta, idle_task_delta, dequeue = 1; 5655 5656 raw_spin_lock(&cfs_b->lock); 5657 /* This will start the period timer if necessary */ 5658 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5659 /* 5660 * We have raced with bandwidth becoming available, and if we 5661 * actually throttled the timer might not unthrottle us for an 5662 * entire period. We additionally needed to make sure that any 5663 * subsequent check_cfs_rq_runtime calls agree not to throttle 5664 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5665 * for 1ns of runtime rather than just check cfs_b. 5666 */ 5667 dequeue = 0; 5668 } else { 5669 list_add_tail_rcu(&cfs_rq->throttled_list, 5670 &cfs_b->throttled_cfs_rq); 5671 } 5672 raw_spin_unlock(&cfs_b->lock); 5673 5674 if (!dequeue) 5675 return false; /* Throttle no longer required. */ 5676 5677 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5678 5679 /* freeze hierarchy runnable averages while throttled */ 5680 rcu_read_lock(); 5681 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5682 rcu_read_unlock(); 5683 5684 task_delta = cfs_rq->h_nr_running; 5685 idle_task_delta = cfs_rq->idle_h_nr_running; 5686 for_each_sched_entity(se) { 5687 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5688 /* throttled entity or throttle-on-deactivate */ 5689 if (!se->on_rq) 5690 goto done; 5691 5692 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5693 5694 if (cfs_rq_is_idle(group_cfs_rq(se))) 5695 idle_task_delta = cfs_rq->h_nr_running; 5696 5697 qcfs_rq->h_nr_running -= task_delta; 5698 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5699 5700 if (qcfs_rq->load.weight) { 5701 /* Avoid re-evaluating load for this entity: */ 5702 se = parent_entity(se); 5703 break; 5704 } 5705 } 5706 5707 for_each_sched_entity(se) { 5708 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5709 /* throttled entity or throttle-on-deactivate */ 5710 if (!se->on_rq) 5711 goto done; 5712 5713 update_load_avg(qcfs_rq, se, 0); 5714 se_update_runnable(se); 5715 5716 if (cfs_rq_is_idle(group_cfs_rq(se))) 5717 idle_task_delta = cfs_rq->h_nr_running; 5718 5719 qcfs_rq->h_nr_running -= task_delta; 5720 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5721 } 5722 5723 /* At this point se is NULL and we are at root level*/ 5724 sub_nr_running(rq, task_delta); 5725 5726 done: 5727 /* 5728 * Note: distribution will already see us throttled via the 5729 * throttled-list. rq->lock protects completion. 5730 */ 5731 cfs_rq->throttled = 1; 5732 SCHED_WARN_ON(cfs_rq->throttled_clock); 5733 if (cfs_rq->nr_running) 5734 cfs_rq->throttled_clock = rq_clock(rq); 5735 return true; 5736 } 5737 5738 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5739 { 5740 struct rq *rq = rq_of(cfs_rq); 5741 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5742 struct sched_entity *se; 5743 long task_delta, idle_task_delta; 5744 5745 se = cfs_rq->tg->se[cpu_of(rq)]; 5746 5747 cfs_rq->throttled = 0; 5748 5749 update_rq_clock(rq); 5750 5751 raw_spin_lock(&cfs_b->lock); 5752 if (cfs_rq->throttled_clock) { 5753 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5754 cfs_rq->throttled_clock = 0; 5755 } 5756 list_del_rcu(&cfs_rq->throttled_list); 5757 raw_spin_unlock(&cfs_b->lock); 5758 5759 /* update hierarchical throttle state */ 5760 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5761 5762 if (!cfs_rq->load.weight) { 5763 if (!cfs_rq->on_list) 5764 return; 5765 /* 5766 * Nothing to run but something to decay (on_list)? 5767 * Complete the branch. 5768 */ 5769 for_each_sched_entity(se) { 5770 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5771 break; 5772 } 5773 goto unthrottle_throttle; 5774 } 5775 5776 task_delta = cfs_rq->h_nr_running; 5777 idle_task_delta = cfs_rq->idle_h_nr_running; 5778 for_each_sched_entity(se) { 5779 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5780 5781 if (se->on_rq) 5782 break; 5783 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5784 5785 if (cfs_rq_is_idle(group_cfs_rq(se))) 5786 idle_task_delta = cfs_rq->h_nr_running; 5787 5788 qcfs_rq->h_nr_running += task_delta; 5789 qcfs_rq->idle_h_nr_running += idle_task_delta; 5790 5791 /* end evaluation on encountering a throttled cfs_rq */ 5792 if (cfs_rq_throttled(qcfs_rq)) 5793 goto unthrottle_throttle; 5794 } 5795 5796 for_each_sched_entity(se) { 5797 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5798 5799 update_load_avg(qcfs_rq, se, UPDATE_TG); 5800 se_update_runnable(se); 5801 5802 if (cfs_rq_is_idle(group_cfs_rq(se))) 5803 idle_task_delta = cfs_rq->h_nr_running; 5804 5805 qcfs_rq->h_nr_running += task_delta; 5806 qcfs_rq->idle_h_nr_running += idle_task_delta; 5807 5808 /* end evaluation on encountering a throttled cfs_rq */ 5809 if (cfs_rq_throttled(qcfs_rq)) 5810 goto unthrottle_throttle; 5811 } 5812 5813 /* At this point se is NULL and we are at root level*/ 5814 add_nr_running(rq, task_delta); 5815 5816 unthrottle_throttle: 5817 assert_list_leaf_cfs_rq(rq); 5818 5819 /* Determine whether we need to wake up potentially idle CPU: */ 5820 if (rq->curr == rq->idle && rq->cfs.nr_running) 5821 resched_curr(rq); 5822 } 5823 5824 #ifdef CONFIG_SMP 5825 static void __cfsb_csd_unthrottle(void *arg) 5826 { 5827 struct cfs_rq *cursor, *tmp; 5828 struct rq *rq = arg; 5829 struct rq_flags rf; 5830 5831 rq_lock(rq, &rf); 5832 5833 /* 5834 * Iterating over the list can trigger several call to 5835 * update_rq_clock() in unthrottle_cfs_rq(). 5836 * Do it once and skip the potential next ones. 5837 */ 5838 update_rq_clock(rq); 5839 rq_clock_start_loop_update(rq); 5840 5841 /* 5842 * Since we hold rq lock we're safe from concurrent manipulation of 5843 * the CSD list. However, this RCU critical section annotates the 5844 * fact that we pair with sched_free_group_rcu(), so that we cannot 5845 * race with group being freed in the window between removing it 5846 * from the list and advancing to the next entry in the list. 5847 */ 5848 rcu_read_lock(); 5849 5850 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5851 throttled_csd_list) { 5852 list_del_init(&cursor->throttled_csd_list); 5853 5854 if (cfs_rq_throttled(cursor)) 5855 unthrottle_cfs_rq(cursor); 5856 } 5857 5858 rcu_read_unlock(); 5859 5860 rq_clock_stop_loop_update(rq); 5861 rq_unlock(rq, &rf); 5862 } 5863 5864 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5865 { 5866 struct rq *rq = rq_of(cfs_rq); 5867 bool first; 5868 5869 if (rq == this_rq()) { 5870 unthrottle_cfs_rq(cfs_rq); 5871 return; 5872 } 5873 5874 /* Already enqueued */ 5875 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5876 return; 5877 5878 first = list_empty(&rq->cfsb_csd_list); 5879 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5880 if (first) 5881 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5882 } 5883 #else 5884 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5885 { 5886 unthrottle_cfs_rq(cfs_rq); 5887 } 5888 #endif 5889 5890 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5891 { 5892 lockdep_assert_rq_held(rq_of(cfs_rq)); 5893 5894 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 5895 cfs_rq->runtime_remaining <= 0)) 5896 return; 5897 5898 __unthrottle_cfs_rq_async(cfs_rq); 5899 } 5900 5901 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5902 { 5903 struct cfs_rq *local_unthrottle = NULL; 5904 int this_cpu = smp_processor_id(); 5905 u64 runtime, remaining = 1; 5906 bool throttled = false; 5907 struct cfs_rq *cfs_rq; 5908 struct rq_flags rf; 5909 struct rq *rq; 5910 5911 rcu_read_lock(); 5912 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5913 throttled_list) { 5914 rq = rq_of(cfs_rq); 5915 5916 if (!remaining) { 5917 throttled = true; 5918 break; 5919 } 5920 5921 rq_lock_irqsave(rq, &rf); 5922 if (!cfs_rq_throttled(cfs_rq)) 5923 goto next; 5924 5925 #ifdef CONFIG_SMP 5926 /* Already queued for async unthrottle */ 5927 if (!list_empty(&cfs_rq->throttled_csd_list)) 5928 goto next; 5929 #endif 5930 5931 /* By the above checks, this should never be true */ 5932 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5933 5934 raw_spin_lock(&cfs_b->lock); 5935 runtime = -cfs_rq->runtime_remaining + 1; 5936 if (runtime > cfs_b->runtime) 5937 runtime = cfs_b->runtime; 5938 cfs_b->runtime -= runtime; 5939 remaining = cfs_b->runtime; 5940 raw_spin_unlock(&cfs_b->lock); 5941 5942 cfs_rq->runtime_remaining += runtime; 5943 5944 /* we check whether we're throttled above */ 5945 if (cfs_rq->runtime_remaining > 0) { 5946 if (cpu_of(rq) != this_cpu || 5947 SCHED_WARN_ON(local_unthrottle)) 5948 unthrottle_cfs_rq_async(cfs_rq); 5949 else 5950 local_unthrottle = cfs_rq; 5951 } else { 5952 throttled = true; 5953 } 5954 5955 next: 5956 rq_unlock_irqrestore(rq, &rf); 5957 } 5958 rcu_read_unlock(); 5959 5960 if (local_unthrottle) { 5961 rq = cpu_rq(this_cpu); 5962 rq_lock_irqsave(rq, &rf); 5963 if (cfs_rq_throttled(local_unthrottle)) 5964 unthrottle_cfs_rq(local_unthrottle); 5965 rq_unlock_irqrestore(rq, &rf); 5966 } 5967 5968 return throttled; 5969 } 5970 5971 /* 5972 * Responsible for refilling a task_group's bandwidth and unthrottling its 5973 * cfs_rqs as appropriate. If there has been no activity within the last 5974 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5975 * used to track this state. 5976 */ 5977 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5978 { 5979 int throttled; 5980 5981 /* no need to continue the timer with no bandwidth constraint */ 5982 if (cfs_b->quota == RUNTIME_INF) 5983 goto out_deactivate; 5984 5985 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5986 cfs_b->nr_periods += overrun; 5987 5988 /* Refill extra burst quota even if cfs_b->idle */ 5989 __refill_cfs_bandwidth_runtime(cfs_b); 5990 5991 /* 5992 * idle depends on !throttled (for the case of a large deficit), and if 5993 * we're going inactive then everything else can be deferred 5994 */ 5995 if (cfs_b->idle && !throttled) 5996 goto out_deactivate; 5997 5998 if (!throttled) { 5999 /* mark as potentially idle for the upcoming period */ 6000 cfs_b->idle = 1; 6001 return 0; 6002 } 6003 6004 /* account preceding periods in which throttling occurred */ 6005 cfs_b->nr_throttled += overrun; 6006 6007 /* 6008 * This check is repeated as we release cfs_b->lock while we unthrottle. 6009 */ 6010 while (throttled && cfs_b->runtime > 0) { 6011 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6012 /* we can't nest cfs_b->lock while distributing bandwidth */ 6013 throttled = distribute_cfs_runtime(cfs_b); 6014 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6015 } 6016 6017 /* 6018 * While we are ensured activity in the period following an 6019 * unthrottle, this also covers the case in which the new bandwidth is 6020 * insufficient to cover the existing bandwidth deficit. (Forcing the 6021 * timer to remain active while there are any throttled entities.) 6022 */ 6023 cfs_b->idle = 0; 6024 6025 return 0; 6026 6027 out_deactivate: 6028 return 1; 6029 } 6030 6031 /* a cfs_rq won't donate quota below this amount */ 6032 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6033 /* minimum remaining period time to redistribute slack quota */ 6034 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6035 /* how long we wait to gather additional slack before distributing */ 6036 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6037 6038 /* 6039 * Are we near the end of the current quota period? 6040 * 6041 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6042 * hrtimer base being cleared by hrtimer_start. In the case of 6043 * migrate_hrtimers, base is never cleared, so we are fine. 6044 */ 6045 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6046 { 6047 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6048 s64 remaining; 6049 6050 /* if the call-back is running a quota refresh is already occurring */ 6051 if (hrtimer_callback_running(refresh_timer)) 6052 return 1; 6053 6054 /* is a quota refresh about to occur? */ 6055 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6056 if (remaining < (s64)min_expire) 6057 return 1; 6058 6059 return 0; 6060 } 6061 6062 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6063 { 6064 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6065 6066 /* if there's a quota refresh soon don't bother with slack */ 6067 if (runtime_refresh_within(cfs_b, min_left)) 6068 return; 6069 6070 /* don't push forwards an existing deferred unthrottle */ 6071 if (cfs_b->slack_started) 6072 return; 6073 cfs_b->slack_started = true; 6074 6075 hrtimer_start(&cfs_b->slack_timer, 6076 ns_to_ktime(cfs_bandwidth_slack_period), 6077 HRTIMER_MODE_REL); 6078 } 6079 6080 /* we know any runtime found here is valid as update_curr() precedes return */ 6081 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6082 { 6083 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6084 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6085 6086 if (slack_runtime <= 0) 6087 return; 6088 6089 raw_spin_lock(&cfs_b->lock); 6090 if (cfs_b->quota != RUNTIME_INF) { 6091 cfs_b->runtime += slack_runtime; 6092 6093 /* we are under rq->lock, defer unthrottling using a timer */ 6094 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6095 !list_empty(&cfs_b->throttled_cfs_rq)) 6096 start_cfs_slack_bandwidth(cfs_b); 6097 } 6098 raw_spin_unlock(&cfs_b->lock); 6099 6100 /* even if it's not valid for return we don't want to try again */ 6101 cfs_rq->runtime_remaining -= slack_runtime; 6102 } 6103 6104 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6105 { 6106 if (!cfs_bandwidth_used()) 6107 return; 6108 6109 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6110 return; 6111 6112 __return_cfs_rq_runtime(cfs_rq); 6113 } 6114 6115 /* 6116 * This is done with a timer (instead of inline with bandwidth return) since 6117 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6118 */ 6119 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6120 { 6121 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6122 unsigned long flags; 6123 6124 /* confirm we're still not at a refresh boundary */ 6125 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6126 cfs_b->slack_started = false; 6127 6128 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6129 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6130 return; 6131 } 6132 6133 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6134 runtime = cfs_b->runtime; 6135 6136 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6137 6138 if (!runtime) 6139 return; 6140 6141 distribute_cfs_runtime(cfs_b); 6142 } 6143 6144 /* 6145 * When a group wakes up we want to make sure that its quota is not already 6146 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6147 * runtime as update_curr() throttling can not trigger until it's on-rq. 6148 */ 6149 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6150 { 6151 if (!cfs_bandwidth_used()) 6152 return; 6153 6154 /* an active group must be handled by the update_curr()->put() path */ 6155 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6156 return; 6157 6158 /* ensure the group is not already throttled */ 6159 if (cfs_rq_throttled(cfs_rq)) 6160 return; 6161 6162 /* update runtime allocation */ 6163 account_cfs_rq_runtime(cfs_rq, 0); 6164 if (cfs_rq->runtime_remaining <= 0) 6165 throttle_cfs_rq(cfs_rq); 6166 } 6167 6168 static void sync_throttle(struct task_group *tg, int cpu) 6169 { 6170 struct cfs_rq *pcfs_rq, *cfs_rq; 6171 6172 if (!cfs_bandwidth_used()) 6173 return; 6174 6175 if (!tg->parent) 6176 return; 6177 6178 cfs_rq = tg->cfs_rq[cpu]; 6179 pcfs_rq = tg->parent->cfs_rq[cpu]; 6180 6181 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6182 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6183 } 6184 6185 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6186 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6187 { 6188 if (!cfs_bandwidth_used()) 6189 return false; 6190 6191 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6192 return false; 6193 6194 /* 6195 * it's possible for a throttled entity to be forced into a running 6196 * state (e.g. set_curr_task), in this case we're finished. 6197 */ 6198 if (cfs_rq_throttled(cfs_rq)) 6199 return true; 6200 6201 return throttle_cfs_rq(cfs_rq); 6202 } 6203 6204 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6205 { 6206 struct cfs_bandwidth *cfs_b = 6207 container_of(timer, struct cfs_bandwidth, slack_timer); 6208 6209 do_sched_cfs_slack_timer(cfs_b); 6210 6211 return HRTIMER_NORESTART; 6212 } 6213 6214 extern const u64 max_cfs_quota_period; 6215 6216 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6217 { 6218 struct cfs_bandwidth *cfs_b = 6219 container_of(timer, struct cfs_bandwidth, period_timer); 6220 unsigned long flags; 6221 int overrun; 6222 int idle = 0; 6223 int count = 0; 6224 6225 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6226 for (;;) { 6227 overrun = hrtimer_forward_now(timer, cfs_b->period); 6228 if (!overrun) 6229 break; 6230 6231 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6232 6233 if (++count > 3) { 6234 u64 new, old = ktime_to_ns(cfs_b->period); 6235 6236 /* 6237 * Grow period by a factor of 2 to avoid losing precision. 6238 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6239 * to fail. 6240 */ 6241 new = old * 2; 6242 if (new < max_cfs_quota_period) { 6243 cfs_b->period = ns_to_ktime(new); 6244 cfs_b->quota *= 2; 6245 cfs_b->burst *= 2; 6246 6247 pr_warn_ratelimited( 6248 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6249 smp_processor_id(), 6250 div_u64(new, NSEC_PER_USEC), 6251 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6252 } else { 6253 pr_warn_ratelimited( 6254 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6255 smp_processor_id(), 6256 div_u64(old, NSEC_PER_USEC), 6257 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6258 } 6259 6260 /* reset count so we don't come right back in here */ 6261 count = 0; 6262 } 6263 } 6264 if (idle) 6265 cfs_b->period_active = 0; 6266 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6267 6268 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6269 } 6270 6271 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6272 { 6273 raw_spin_lock_init(&cfs_b->lock); 6274 cfs_b->runtime = 0; 6275 cfs_b->quota = RUNTIME_INF; 6276 cfs_b->period = ns_to_ktime(default_cfs_period()); 6277 cfs_b->burst = 0; 6278 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6279 6280 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6281 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6282 cfs_b->period_timer.function = sched_cfs_period_timer; 6283 6284 /* Add a random offset so that timers interleave */ 6285 hrtimer_set_expires(&cfs_b->period_timer, 6286 get_random_u32_below(cfs_b->period)); 6287 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6288 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6289 cfs_b->slack_started = false; 6290 } 6291 6292 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6293 { 6294 cfs_rq->runtime_enabled = 0; 6295 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6296 #ifdef CONFIG_SMP 6297 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6298 #endif 6299 } 6300 6301 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6302 { 6303 lockdep_assert_held(&cfs_b->lock); 6304 6305 if (cfs_b->period_active) 6306 return; 6307 6308 cfs_b->period_active = 1; 6309 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6310 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6311 } 6312 6313 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6314 { 6315 int __maybe_unused i; 6316 6317 /* init_cfs_bandwidth() was not called */ 6318 if (!cfs_b->throttled_cfs_rq.next) 6319 return; 6320 6321 hrtimer_cancel(&cfs_b->period_timer); 6322 hrtimer_cancel(&cfs_b->slack_timer); 6323 6324 /* 6325 * It is possible that we still have some cfs_rq's pending on a CSD 6326 * list, though this race is very rare. In order for this to occur, we 6327 * must have raced with the last task leaving the group while there 6328 * exist throttled cfs_rq(s), and the period_timer must have queued the 6329 * CSD item but the remote cpu has not yet processed it. To handle this, 6330 * we can simply flush all pending CSD work inline here. We're 6331 * guaranteed at this point that no additional cfs_rq of this group can 6332 * join a CSD list. 6333 */ 6334 #ifdef CONFIG_SMP 6335 for_each_possible_cpu(i) { 6336 struct rq *rq = cpu_rq(i); 6337 unsigned long flags; 6338 6339 if (list_empty(&rq->cfsb_csd_list)) 6340 continue; 6341 6342 local_irq_save(flags); 6343 __cfsb_csd_unthrottle(rq); 6344 local_irq_restore(flags); 6345 } 6346 #endif 6347 } 6348 6349 /* 6350 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6351 * 6352 * The race is harmless, since modifying bandwidth settings of unhooked group 6353 * bits doesn't do much. 6354 */ 6355 6356 /* cpu online callback */ 6357 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6358 { 6359 struct task_group *tg; 6360 6361 lockdep_assert_rq_held(rq); 6362 6363 rcu_read_lock(); 6364 list_for_each_entry_rcu(tg, &task_groups, list) { 6365 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6366 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6367 6368 raw_spin_lock(&cfs_b->lock); 6369 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6370 raw_spin_unlock(&cfs_b->lock); 6371 } 6372 rcu_read_unlock(); 6373 } 6374 6375 /* cpu offline callback */ 6376 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6377 { 6378 struct task_group *tg; 6379 6380 lockdep_assert_rq_held(rq); 6381 6382 /* 6383 * The rq clock has already been updated in the 6384 * set_rq_offline(), so we should skip updating 6385 * the rq clock again in unthrottle_cfs_rq(). 6386 */ 6387 rq_clock_start_loop_update(rq); 6388 6389 rcu_read_lock(); 6390 list_for_each_entry_rcu(tg, &task_groups, list) { 6391 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6392 6393 if (!cfs_rq->runtime_enabled) 6394 continue; 6395 6396 /* 6397 * clock_task is not advancing so we just need to make sure 6398 * there's some valid quota amount 6399 */ 6400 cfs_rq->runtime_remaining = 1; 6401 /* 6402 * Offline rq is schedulable till CPU is completely disabled 6403 * in take_cpu_down(), so we prevent new cfs throttling here. 6404 */ 6405 cfs_rq->runtime_enabled = 0; 6406 6407 if (cfs_rq_throttled(cfs_rq)) 6408 unthrottle_cfs_rq(cfs_rq); 6409 } 6410 rcu_read_unlock(); 6411 6412 rq_clock_stop_loop_update(rq); 6413 } 6414 6415 bool cfs_task_bw_constrained(struct task_struct *p) 6416 { 6417 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6418 6419 if (!cfs_bandwidth_used()) 6420 return false; 6421 6422 if (cfs_rq->runtime_enabled || 6423 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6424 return true; 6425 6426 return false; 6427 } 6428 6429 #ifdef CONFIG_NO_HZ_FULL 6430 /* called from pick_next_task_fair() */ 6431 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6432 { 6433 int cpu = cpu_of(rq); 6434 6435 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used()) 6436 return; 6437 6438 if (!tick_nohz_full_cpu(cpu)) 6439 return; 6440 6441 if (rq->nr_running != 1) 6442 return; 6443 6444 /* 6445 * We know there is only one task runnable and we've just picked it. The 6446 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6447 * be otherwise able to stop the tick. Just need to check if we are using 6448 * bandwidth control. 6449 */ 6450 if (cfs_task_bw_constrained(p)) 6451 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6452 } 6453 #endif 6454 6455 #else /* CONFIG_CFS_BANDWIDTH */ 6456 6457 static inline bool cfs_bandwidth_used(void) 6458 { 6459 return false; 6460 } 6461 6462 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6463 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6464 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6465 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6466 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6467 6468 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6469 { 6470 return 0; 6471 } 6472 6473 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6474 { 6475 return 0; 6476 } 6477 6478 static inline int throttled_lb_pair(struct task_group *tg, 6479 int src_cpu, int dest_cpu) 6480 { 6481 return 0; 6482 } 6483 6484 #ifdef CONFIG_FAIR_GROUP_SCHED 6485 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6486 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6487 #endif 6488 6489 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6490 { 6491 return NULL; 6492 } 6493 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6494 static inline void update_runtime_enabled(struct rq *rq) {} 6495 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6496 #ifdef CONFIG_CGROUP_SCHED 6497 bool cfs_task_bw_constrained(struct task_struct *p) 6498 { 6499 return false; 6500 } 6501 #endif 6502 #endif /* CONFIG_CFS_BANDWIDTH */ 6503 6504 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6505 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6506 #endif 6507 6508 /************************************************** 6509 * CFS operations on tasks: 6510 */ 6511 6512 #ifdef CONFIG_SCHED_HRTICK 6513 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6514 { 6515 struct sched_entity *se = &p->se; 6516 6517 SCHED_WARN_ON(task_rq(p) != rq); 6518 6519 if (rq->cfs.h_nr_running > 1) { 6520 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6521 u64 slice = se->slice; 6522 s64 delta = slice - ran; 6523 6524 if (delta < 0) { 6525 if (task_current(rq, p)) 6526 resched_curr(rq); 6527 return; 6528 } 6529 hrtick_start(rq, delta); 6530 } 6531 } 6532 6533 /* 6534 * called from enqueue/dequeue and updates the hrtick when the 6535 * current task is from our class and nr_running is low enough 6536 * to matter. 6537 */ 6538 static void hrtick_update(struct rq *rq) 6539 { 6540 struct task_struct *curr = rq->curr; 6541 6542 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6543 return; 6544 6545 hrtick_start_fair(rq, curr); 6546 } 6547 #else /* !CONFIG_SCHED_HRTICK */ 6548 static inline void 6549 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6550 { 6551 } 6552 6553 static inline void hrtick_update(struct rq *rq) 6554 { 6555 } 6556 #endif 6557 6558 #ifdef CONFIG_SMP 6559 static inline bool cpu_overutilized(int cpu) 6560 { 6561 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6562 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6563 6564 /* Return true only if the utilization doesn't fit CPU's capacity */ 6565 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6566 } 6567 6568 static inline void update_overutilized_status(struct rq *rq) 6569 { 6570 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 6571 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 6572 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 6573 } 6574 } 6575 #else 6576 static inline void update_overutilized_status(struct rq *rq) { } 6577 #endif 6578 6579 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6580 static int sched_idle_rq(struct rq *rq) 6581 { 6582 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6583 rq->nr_running); 6584 } 6585 6586 #ifdef CONFIG_SMP 6587 static int sched_idle_cpu(int cpu) 6588 { 6589 return sched_idle_rq(cpu_rq(cpu)); 6590 } 6591 #endif 6592 6593 /* 6594 * The enqueue_task method is called before nr_running is 6595 * increased. Here we update the fair scheduling stats and 6596 * then put the task into the rbtree: 6597 */ 6598 static void 6599 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6600 { 6601 struct cfs_rq *cfs_rq; 6602 struct sched_entity *se = &p->se; 6603 int idle_h_nr_running = task_has_idle_policy(p); 6604 int task_new = !(flags & ENQUEUE_WAKEUP); 6605 6606 /* 6607 * The code below (indirectly) updates schedutil which looks at 6608 * the cfs_rq utilization to select a frequency. 6609 * Let's add the task's estimated utilization to the cfs_rq's 6610 * estimated utilization, before we update schedutil. 6611 */ 6612 util_est_enqueue(&rq->cfs, p); 6613 6614 /* 6615 * If in_iowait is set, the code below may not trigger any cpufreq 6616 * utilization updates, so do it here explicitly with the IOWAIT flag 6617 * passed. 6618 */ 6619 if (p->in_iowait) 6620 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6621 6622 for_each_sched_entity(se) { 6623 if (se->on_rq) 6624 break; 6625 cfs_rq = cfs_rq_of(se); 6626 enqueue_entity(cfs_rq, se, flags); 6627 6628 cfs_rq->h_nr_running++; 6629 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6630 6631 if (cfs_rq_is_idle(cfs_rq)) 6632 idle_h_nr_running = 1; 6633 6634 /* end evaluation on encountering a throttled cfs_rq */ 6635 if (cfs_rq_throttled(cfs_rq)) 6636 goto enqueue_throttle; 6637 6638 flags = ENQUEUE_WAKEUP; 6639 } 6640 6641 for_each_sched_entity(se) { 6642 cfs_rq = cfs_rq_of(se); 6643 6644 update_load_avg(cfs_rq, se, UPDATE_TG); 6645 se_update_runnable(se); 6646 update_cfs_group(se); 6647 6648 cfs_rq->h_nr_running++; 6649 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6650 6651 if (cfs_rq_is_idle(cfs_rq)) 6652 idle_h_nr_running = 1; 6653 6654 /* end evaluation on encountering a throttled cfs_rq */ 6655 if (cfs_rq_throttled(cfs_rq)) 6656 goto enqueue_throttle; 6657 } 6658 6659 /* At this point se is NULL and we are at root level*/ 6660 add_nr_running(rq, 1); 6661 6662 /* 6663 * Since new tasks are assigned an initial util_avg equal to 6664 * half of the spare capacity of their CPU, tiny tasks have the 6665 * ability to cross the overutilized threshold, which will 6666 * result in the load balancer ruining all the task placement 6667 * done by EAS. As a way to mitigate that effect, do not account 6668 * for the first enqueue operation of new tasks during the 6669 * overutilized flag detection. 6670 * 6671 * A better way of solving this problem would be to wait for 6672 * the PELT signals of tasks to converge before taking them 6673 * into account, but that is not straightforward to implement, 6674 * and the following generally works well enough in practice. 6675 */ 6676 if (!task_new) 6677 update_overutilized_status(rq); 6678 6679 enqueue_throttle: 6680 assert_list_leaf_cfs_rq(rq); 6681 6682 hrtick_update(rq); 6683 } 6684 6685 static void set_next_buddy(struct sched_entity *se); 6686 6687 /* 6688 * The dequeue_task method is called before nr_running is 6689 * decreased. We remove the task from the rbtree and 6690 * update the fair scheduling stats: 6691 */ 6692 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6693 { 6694 struct cfs_rq *cfs_rq; 6695 struct sched_entity *se = &p->se; 6696 int task_sleep = flags & DEQUEUE_SLEEP; 6697 int idle_h_nr_running = task_has_idle_policy(p); 6698 bool was_sched_idle = sched_idle_rq(rq); 6699 6700 util_est_dequeue(&rq->cfs, p); 6701 6702 for_each_sched_entity(se) { 6703 cfs_rq = cfs_rq_of(se); 6704 dequeue_entity(cfs_rq, se, flags); 6705 6706 cfs_rq->h_nr_running--; 6707 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6708 6709 if (cfs_rq_is_idle(cfs_rq)) 6710 idle_h_nr_running = 1; 6711 6712 /* end evaluation on encountering a throttled cfs_rq */ 6713 if (cfs_rq_throttled(cfs_rq)) 6714 goto dequeue_throttle; 6715 6716 /* Don't dequeue parent if it has other entities besides us */ 6717 if (cfs_rq->load.weight) { 6718 /* Avoid re-evaluating load for this entity: */ 6719 se = parent_entity(se); 6720 /* 6721 * Bias pick_next to pick a task from this cfs_rq, as 6722 * p is sleeping when it is within its sched_slice. 6723 */ 6724 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6725 set_next_buddy(se); 6726 break; 6727 } 6728 flags |= DEQUEUE_SLEEP; 6729 } 6730 6731 for_each_sched_entity(se) { 6732 cfs_rq = cfs_rq_of(se); 6733 6734 update_load_avg(cfs_rq, se, UPDATE_TG); 6735 se_update_runnable(se); 6736 update_cfs_group(se); 6737 6738 cfs_rq->h_nr_running--; 6739 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6740 6741 if (cfs_rq_is_idle(cfs_rq)) 6742 idle_h_nr_running = 1; 6743 6744 /* end evaluation on encountering a throttled cfs_rq */ 6745 if (cfs_rq_throttled(cfs_rq)) 6746 goto dequeue_throttle; 6747 6748 } 6749 6750 /* At this point se is NULL and we are at root level*/ 6751 sub_nr_running(rq, 1); 6752 6753 /* balance early to pull high priority tasks */ 6754 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6755 rq->next_balance = jiffies; 6756 6757 dequeue_throttle: 6758 util_est_update(&rq->cfs, p, task_sleep); 6759 hrtick_update(rq); 6760 } 6761 6762 #ifdef CONFIG_SMP 6763 6764 /* Working cpumask for: load_balance, load_balance_newidle. */ 6765 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6766 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6767 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 6768 6769 #ifdef CONFIG_NO_HZ_COMMON 6770 6771 static struct { 6772 cpumask_var_t idle_cpus_mask; 6773 atomic_t nr_cpus; 6774 int has_blocked; /* Idle CPUS has blocked load */ 6775 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6776 unsigned long next_balance; /* in jiffy units */ 6777 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6778 } nohz ____cacheline_aligned; 6779 6780 #endif /* CONFIG_NO_HZ_COMMON */ 6781 6782 static unsigned long cpu_load(struct rq *rq) 6783 { 6784 return cfs_rq_load_avg(&rq->cfs); 6785 } 6786 6787 /* 6788 * cpu_load_without - compute CPU load without any contributions from *p 6789 * @cpu: the CPU which load is requested 6790 * @p: the task which load should be discounted 6791 * 6792 * The load of a CPU is defined by the load of tasks currently enqueued on that 6793 * CPU as well as tasks which are currently sleeping after an execution on that 6794 * CPU. 6795 * 6796 * This method returns the load of the specified CPU by discounting the load of 6797 * the specified task, whenever the task is currently contributing to the CPU 6798 * load. 6799 */ 6800 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6801 { 6802 struct cfs_rq *cfs_rq; 6803 unsigned int load; 6804 6805 /* Task has no contribution or is new */ 6806 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6807 return cpu_load(rq); 6808 6809 cfs_rq = &rq->cfs; 6810 load = READ_ONCE(cfs_rq->avg.load_avg); 6811 6812 /* Discount task's util from CPU's util */ 6813 lsub_positive(&load, task_h_load(p)); 6814 6815 return load; 6816 } 6817 6818 static unsigned long cpu_runnable(struct rq *rq) 6819 { 6820 return cfs_rq_runnable_avg(&rq->cfs); 6821 } 6822 6823 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6824 { 6825 struct cfs_rq *cfs_rq; 6826 unsigned int runnable; 6827 6828 /* Task has no contribution or is new */ 6829 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6830 return cpu_runnable(rq); 6831 6832 cfs_rq = &rq->cfs; 6833 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6834 6835 /* Discount task's runnable from CPU's runnable */ 6836 lsub_positive(&runnable, p->se.avg.runnable_avg); 6837 6838 return runnable; 6839 } 6840 6841 static unsigned long capacity_of(int cpu) 6842 { 6843 return cpu_rq(cpu)->cpu_capacity; 6844 } 6845 6846 static void record_wakee(struct task_struct *p) 6847 { 6848 /* 6849 * Only decay a single time; tasks that have less then 1 wakeup per 6850 * jiffy will not have built up many flips. 6851 */ 6852 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6853 current->wakee_flips >>= 1; 6854 current->wakee_flip_decay_ts = jiffies; 6855 } 6856 6857 if (current->last_wakee != p) { 6858 current->last_wakee = p; 6859 current->wakee_flips++; 6860 } 6861 } 6862 6863 /* 6864 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6865 * 6866 * A waker of many should wake a different task than the one last awakened 6867 * at a frequency roughly N times higher than one of its wakees. 6868 * 6869 * In order to determine whether we should let the load spread vs consolidating 6870 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6871 * partner, and a factor of lls_size higher frequency in the other. 6872 * 6873 * With both conditions met, we can be relatively sure that the relationship is 6874 * non-monogamous, with partner count exceeding socket size. 6875 * 6876 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6877 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6878 * socket size. 6879 */ 6880 static int wake_wide(struct task_struct *p) 6881 { 6882 unsigned int master = current->wakee_flips; 6883 unsigned int slave = p->wakee_flips; 6884 int factor = __this_cpu_read(sd_llc_size); 6885 6886 if (master < slave) 6887 swap(master, slave); 6888 if (slave < factor || master < slave * factor) 6889 return 0; 6890 return 1; 6891 } 6892 6893 /* 6894 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6895 * soonest. For the purpose of speed we only consider the waking and previous 6896 * CPU. 6897 * 6898 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 6899 * cache-affine and is (or will be) idle. 6900 * 6901 * wake_affine_weight() - considers the weight to reflect the average 6902 * scheduling latency of the CPUs. This seems to work 6903 * for the overloaded case. 6904 */ 6905 static int 6906 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 6907 { 6908 /* 6909 * If this_cpu is idle, it implies the wakeup is from interrupt 6910 * context. Only allow the move if cache is shared. Otherwise an 6911 * interrupt intensive workload could force all tasks onto one 6912 * node depending on the IO topology or IRQ affinity settings. 6913 * 6914 * If the prev_cpu is idle and cache affine then avoid a migration. 6915 * There is no guarantee that the cache hot data from an interrupt 6916 * is more important than cache hot data on the prev_cpu and from 6917 * a cpufreq perspective, it's better to have higher utilisation 6918 * on one CPU. 6919 */ 6920 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6921 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6922 6923 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6924 return this_cpu; 6925 6926 if (available_idle_cpu(prev_cpu)) 6927 return prev_cpu; 6928 6929 return nr_cpumask_bits; 6930 } 6931 6932 static int 6933 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6934 int this_cpu, int prev_cpu, int sync) 6935 { 6936 s64 this_eff_load, prev_eff_load; 6937 unsigned long task_load; 6938 6939 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6940 6941 if (sync) { 6942 unsigned long current_load = task_h_load(current); 6943 6944 if (current_load > this_eff_load) 6945 return this_cpu; 6946 6947 this_eff_load -= current_load; 6948 } 6949 6950 task_load = task_h_load(p); 6951 6952 this_eff_load += task_load; 6953 if (sched_feat(WA_BIAS)) 6954 this_eff_load *= 100; 6955 this_eff_load *= capacity_of(prev_cpu); 6956 6957 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6958 prev_eff_load -= task_load; 6959 if (sched_feat(WA_BIAS)) 6960 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6961 prev_eff_load *= capacity_of(this_cpu); 6962 6963 /* 6964 * If sync, adjust the weight of prev_eff_load such that if 6965 * prev_eff == this_eff that select_idle_sibling() will consider 6966 * stacking the wakee on top of the waker if no other CPU is 6967 * idle. 6968 */ 6969 if (sync) 6970 prev_eff_load += 1; 6971 6972 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6973 } 6974 6975 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 6976 int this_cpu, int prev_cpu, int sync) 6977 { 6978 int target = nr_cpumask_bits; 6979 6980 if (sched_feat(WA_IDLE)) 6981 target = wake_affine_idle(this_cpu, prev_cpu, sync); 6982 6983 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 6984 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6985 6986 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6987 if (target != this_cpu) 6988 return prev_cpu; 6989 6990 schedstat_inc(sd->ttwu_move_affine); 6991 schedstat_inc(p->stats.nr_wakeups_affine); 6992 return target; 6993 } 6994 6995 static struct sched_group * 6996 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6997 6998 /* 6999 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 7000 */ 7001 static int 7002 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7003 { 7004 unsigned long load, min_load = ULONG_MAX; 7005 unsigned int min_exit_latency = UINT_MAX; 7006 u64 latest_idle_timestamp = 0; 7007 int least_loaded_cpu = this_cpu; 7008 int shallowest_idle_cpu = -1; 7009 int i; 7010 7011 /* Check if we have any choice: */ 7012 if (group->group_weight == 1) 7013 return cpumask_first(sched_group_span(group)); 7014 7015 /* Traverse only the allowed CPUs */ 7016 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7017 struct rq *rq = cpu_rq(i); 7018 7019 if (!sched_core_cookie_match(rq, p)) 7020 continue; 7021 7022 if (sched_idle_cpu(i)) 7023 return i; 7024 7025 if (available_idle_cpu(i)) { 7026 struct cpuidle_state *idle = idle_get_state(rq); 7027 if (idle && idle->exit_latency < min_exit_latency) { 7028 /* 7029 * We give priority to a CPU whose idle state 7030 * has the smallest exit latency irrespective 7031 * of any idle timestamp. 7032 */ 7033 min_exit_latency = idle->exit_latency; 7034 latest_idle_timestamp = rq->idle_stamp; 7035 shallowest_idle_cpu = i; 7036 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7037 rq->idle_stamp > latest_idle_timestamp) { 7038 /* 7039 * If equal or no active idle state, then 7040 * the most recently idled CPU might have 7041 * a warmer cache. 7042 */ 7043 latest_idle_timestamp = rq->idle_stamp; 7044 shallowest_idle_cpu = i; 7045 } 7046 } else if (shallowest_idle_cpu == -1) { 7047 load = cpu_load(cpu_rq(i)); 7048 if (load < min_load) { 7049 min_load = load; 7050 least_loaded_cpu = i; 7051 } 7052 } 7053 } 7054 7055 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7056 } 7057 7058 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 7059 int cpu, int prev_cpu, int sd_flag) 7060 { 7061 int new_cpu = cpu; 7062 7063 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7064 return prev_cpu; 7065 7066 /* 7067 * We need task's util for cpu_util_without, sync it up to 7068 * prev_cpu's last_update_time. 7069 */ 7070 if (!(sd_flag & SD_BALANCE_FORK)) 7071 sync_entity_load_avg(&p->se); 7072 7073 while (sd) { 7074 struct sched_group *group; 7075 struct sched_domain *tmp; 7076 int weight; 7077 7078 if (!(sd->flags & sd_flag)) { 7079 sd = sd->child; 7080 continue; 7081 } 7082 7083 group = find_idlest_group(sd, p, cpu); 7084 if (!group) { 7085 sd = sd->child; 7086 continue; 7087 } 7088 7089 new_cpu = find_idlest_group_cpu(group, p, cpu); 7090 if (new_cpu == cpu) { 7091 /* Now try balancing at a lower domain level of 'cpu': */ 7092 sd = sd->child; 7093 continue; 7094 } 7095 7096 /* Now try balancing at a lower domain level of 'new_cpu': */ 7097 cpu = new_cpu; 7098 weight = sd->span_weight; 7099 sd = NULL; 7100 for_each_domain(cpu, tmp) { 7101 if (weight <= tmp->span_weight) 7102 break; 7103 if (tmp->flags & sd_flag) 7104 sd = tmp; 7105 } 7106 } 7107 7108 return new_cpu; 7109 } 7110 7111 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7112 { 7113 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7114 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7115 return cpu; 7116 7117 return -1; 7118 } 7119 7120 #ifdef CONFIG_SCHED_SMT 7121 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7122 EXPORT_SYMBOL_GPL(sched_smt_present); 7123 7124 static inline void set_idle_cores(int cpu, int val) 7125 { 7126 struct sched_domain_shared *sds; 7127 7128 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7129 if (sds) 7130 WRITE_ONCE(sds->has_idle_cores, val); 7131 } 7132 7133 static inline bool test_idle_cores(int cpu) 7134 { 7135 struct sched_domain_shared *sds; 7136 7137 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7138 if (sds) 7139 return READ_ONCE(sds->has_idle_cores); 7140 7141 return false; 7142 } 7143 7144 /* 7145 * Scans the local SMT mask to see if the entire core is idle, and records this 7146 * information in sd_llc_shared->has_idle_cores. 7147 * 7148 * Since SMT siblings share all cache levels, inspecting this limited remote 7149 * state should be fairly cheap. 7150 */ 7151 void __update_idle_core(struct rq *rq) 7152 { 7153 int core = cpu_of(rq); 7154 int cpu; 7155 7156 rcu_read_lock(); 7157 if (test_idle_cores(core)) 7158 goto unlock; 7159 7160 for_each_cpu(cpu, cpu_smt_mask(core)) { 7161 if (cpu == core) 7162 continue; 7163 7164 if (!available_idle_cpu(cpu)) 7165 goto unlock; 7166 } 7167 7168 set_idle_cores(core, 1); 7169 unlock: 7170 rcu_read_unlock(); 7171 } 7172 7173 /* 7174 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7175 * there are no idle cores left in the system; tracked through 7176 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7177 */ 7178 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7179 { 7180 bool idle = true; 7181 int cpu; 7182 7183 for_each_cpu(cpu, cpu_smt_mask(core)) { 7184 if (!available_idle_cpu(cpu)) { 7185 idle = false; 7186 if (*idle_cpu == -1) { 7187 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 7188 *idle_cpu = cpu; 7189 break; 7190 } 7191 continue; 7192 } 7193 break; 7194 } 7195 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 7196 *idle_cpu = cpu; 7197 } 7198 7199 if (idle) 7200 return core; 7201 7202 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7203 return -1; 7204 } 7205 7206 /* 7207 * Scan the local SMT mask for idle CPUs. 7208 */ 7209 static int select_idle_smt(struct task_struct *p, int target) 7210 { 7211 int cpu; 7212 7213 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7214 if (cpu == target) 7215 continue; 7216 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7217 return cpu; 7218 } 7219 7220 return -1; 7221 } 7222 7223 #else /* CONFIG_SCHED_SMT */ 7224 7225 static inline void set_idle_cores(int cpu, int val) 7226 { 7227 } 7228 7229 static inline bool test_idle_cores(int cpu) 7230 { 7231 return false; 7232 } 7233 7234 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7235 { 7236 return __select_idle_cpu(core, p); 7237 } 7238 7239 static inline int select_idle_smt(struct task_struct *p, int target) 7240 { 7241 return -1; 7242 } 7243 7244 #endif /* CONFIG_SCHED_SMT */ 7245 7246 /* 7247 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7248 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7249 * average idle time for this rq (as found in rq->avg_idle). 7250 */ 7251 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7252 { 7253 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7254 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7255 struct sched_domain_shared *sd_share; 7256 struct rq *this_rq = this_rq(); 7257 int this = smp_processor_id(); 7258 struct sched_domain *this_sd = NULL; 7259 u64 time = 0; 7260 7261 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7262 7263 if (sched_feat(SIS_PROP) && !has_idle_core) { 7264 u64 avg_cost, avg_idle, span_avg; 7265 unsigned long now = jiffies; 7266 7267 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 7268 if (!this_sd) 7269 return -1; 7270 7271 /* 7272 * If we're busy, the assumption that the last idle period 7273 * predicts the future is flawed; age away the remaining 7274 * predicted idle time. 7275 */ 7276 if (unlikely(this_rq->wake_stamp < now)) { 7277 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 7278 this_rq->wake_stamp++; 7279 this_rq->wake_avg_idle >>= 1; 7280 } 7281 } 7282 7283 avg_idle = this_rq->wake_avg_idle; 7284 avg_cost = this_sd->avg_scan_cost + 1; 7285 7286 span_avg = sd->span_weight * avg_idle; 7287 if (span_avg > 4*avg_cost) 7288 nr = div_u64(span_avg, avg_cost); 7289 else 7290 nr = 4; 7291 7292 time = cpu_clock(this); 7293 } 7294 7295 if (sched_feat(SIS_UTIL)) { 7296 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7297 if (sd_share) { 7298 /* because !--nr is the condition to stop scan */ 7299 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7300 /* overloaded LLC is unlikely to have idle cpu/core */ 7301 if (nr == 1) 7302 return -1; 7303 } 7304 } 7305 7306 for_each_cpu_wrap(cpu, cpus, target + 1) { 7307 if (has_idle_core) { 7308 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7309 if ((unsigned int)i < nr_cpumask_bits) 7310 return i; 7311 7312 } else { 7313 if (!--nr) 7314 return -1; 7315 idle_cpu = __select_idle_cpu(cpu, p); 7316 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7317 break; 7318 } 7319 } 7320 7321 if (has_idle_core) 7322 set_idle_cores(target, false); 7323 7324 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) { 7325 time = cpu_clock(this) - time; 7326 7327 /* 7328 * Account for the scan cost of wakeups against the average 7329 * idle time. 7330 */ 7331 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 7332 7333 update_avg(&this_sd->avg_scan_cost, time); 7334 } 7335 7336 return idle_cpu; 7337 } 7338 7339 /* 7340 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7341 * the task fits. If no CPU is big enough, but there are idle ones, try to 7342 * maximize capacity. 7343 */ 7344 static int 7345 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7346 { 7347 unsigned long task_util, util_min, util_max, best_cap = 0; 7348 int fits, best_fits = 0; 7349 int cpu, best_cpu = -1; 7350 struct cpumask *cpus; 7351 7352 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7353 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7354 7355 task_util = task_util_est(p); 7356 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7357 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7358 7359 for_each_cpu_wrap(cpu, cpus, target) { 7360 unsigned long cpu_cap = capacity_of(cpu); 7361 7362 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7363 continue; 7364 7365 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7366 7367 /* This CPU fits with all requirements */ 7368 if (fits > 0) 7369 return cpu; 7370 /* 7371 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7372 * Look for the CPU with best capacity. 7373 */ 7374 else if (fits < 0) 7375 cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu)); 7376 7377 /* 7378 * First, select CPU which fits better (-1 being better than 0). 7379 * Then, select the one with best capacity at same level. 7380 */ 7381 if ((fits < best_fits) || 7382 ((fits == best_fits) && (cpu_cap > best_cap))) { 7383 best_cap = cpu_cap; 7384 best_cpu = cpu; 7385 best_fits = fits; 7386 } 7387 } 7388 7389 return best_cpu; 7390 } 7391 7392 static inline bool asym_fits_cpu(unsigned long util, 7393 unsigned long util_min, 7394 unsigned long util_max, 7395 int cpu) 7396 { 7397 if (sched_asym_cpucap_active()) 7398 /* 7399 * Return true only if the cpu fully fits the task requirements 7400 * which include the utilization and the performance hints. 7401 */ 7402 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7403 7404 return true; 7405 } 7406 7407 /* 7408 * Try and locate an idle core/thread in the LLC cache domain. 7409 */ 7410 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7411 { 7412 bool has_idle_core = false; 7413 struct sched_domain *sd; 7414 unsigned long task_util, util_min, util_max; 7415 int i, recent_used_cpu; 7416 7417 /* 7418 * On asymmetric system, update task utilization because we will check 7419 * that the task fits with cpu's capacity. 7420 */ 7421 if (sched_asym_cpucap_active()) { 7422 sync_entity_load_avg(&p->se); 7423 task_util = task_util_est(p); 7424 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7425 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7426 } 7427 7428 /* 7429 * per-cpu select_rq_mask usage 7430 */ 7431 lockdep_assert_irqs_disabled(); 7432 7433 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7434 asym_fits_cpu(task_util, util_min, util_max, target)) 7435 return target; 7436 7437 /* 7438 * If the previous CPU is cache affine and idle, don't be stupid: 7439 */ 7440 if (prev != target && cpus_share_cache(prev, target) && 7441 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7442 asym_fits_cpu(task_util, util_min, util_max, prev)) 7443 return prev; 7444 7445 /* 7446 * Allow a per-cpu kthread to stack with the wakee if the 7447 * kworker thread and the tasks previous CPUs are the same. 7448 * The assumption is that the wakee queued work for the 7449 * per-cpu kthread that is now complete and the wakeup is 7450 * essentially a sync wakeup. An obvious example of this 7451 * pattern is IO completions. 7452 */ 7453 if (is_per_cpu_kthread(current) && 7454 in_task() && 7455 prev == smp_processor_id() && 7456 this_rq()->nr_running <= 1 && 7457 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7458 return prev; 7459 } 7460 7461 /* Check a recently used CPU as a potential idle candidate: */ 7462 recent_used_cpu = p->recent_used_cpu; 7463 p->recent_used_cpu = prev; 7464 if (recent_used_cpu != prev && 7465 recent_used_cpu != target && 7466 cpus_share_cache(recent_used_cpu, target) && 7467 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7468 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7469 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7470 return recent_used_cpu; 7471 } 7472 7473 /* 7474 * For asymmetric CPU capacity systems, our domain of interest is 7475 * sd_asym_cpucapacity rather than sd_llc. 7476 */ 7477 if (sched_asym_cpucap_active()) { 7478 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7479 /* 7480 * On an asymmetric CPU capacity system where an exclusive 7481 * cpuset defines a symmetric island (i.e. one unique 7482 * capacity_orig value through the cpuset), the key will be set 7483 * but the CPUs within that cpuset will not have a domain with 7484 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7485 * capacity path. 7486 */ 7487 if (sd) { 7488 i = select_idle_capacity(p, sd, target); 7489 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7490 } 7491 } 7492 7493 sd = rcu_dereference(per_cpu(sd_llc, target)); 7494 if (!sd) 7495 return target; 7496 7497 if (sched_smt_active()) { 7498 has_idle_core = test_idle_cores(target); 7499 7500 if (!has_idle_core && cpus_share_cache(prev, target)) { 7501 i = select_idle_smt(p, prev); 7502 if ((unsigned int)i < nr_cpumask_bits) 7503 return i; 7504 } 7505 } 7506 7507 i = select_idle_cpu(p, sd, has_idle_core, target); 7508 if ((unsigned)i < nr_cpumask_bits) 7509 return i; 7510 7511 return target; 7512 } 7513 7514 /** 7515 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7516 * @cpu: the CPU to get the utilization for 7517 * @p: task for which the CPU utilization should be predicted or NULL 7518 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7519 * @boost: 1 to enable boosting, otherwise 0 7520 * 7521 * The unit of the return value must be the same as the one of CPU capacity 7522 * so that CPU utilization can be compared with CPU capacity. 7523 * 7524 * CPU utilization is the sum of running time of runnable tasks plus the 7525 * recent utilization of currently non-runnable tasks on that CPU. 7526 * It represents the amount of CPU capacity currently used by CFS tasks in 7527 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7528 * capacity at f_max. 7529 * 7530 * The estimated CPU utilization is defined as the maximum between CPU 7531 * utilization and sum of the estimated utilization of the currently 7532 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7533 * previously-executed tasks, which helps better deduce how busy a CPU will 7534 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7535 * of such a task would be significantly decayed at this point of time. 7536 * 7537 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7538 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7539 * utilization. Boosting is implemented in cpu_util() so that internal 7540 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7541 * latter via cpu_util_cfs_boost(). 7542 * 7543 * CPU utilization can be higher than the current CPU capacity 7544 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7545 * of rounding errors as well as task migrations or wakeups of new tasks. 7546 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7547 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7548 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7549 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7550 * though since this is useful for predicting the CPU capacity required 7551 * after task migrations (scheduler-driven DVFS). 7552 * 7553 * Return: (Boosted) (estimated) utilization for the specified CPU. 7554 */ 7555 static unsigned long 7556 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7557 { 7558 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7559 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7560 unsigned long runnable; 7561 7562 if (boost) { 7563 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7564 util = max(util, runnable); 7565 } 7566 7567 /* 7568 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7569 * contribution. If @p migrates from another CPU to @cpu add its 7570 * contribution. In all the other cases @cpu is not impacted by the 7571 * migration so its util_avg is already correct. 7572 */ 7573 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7574 lsub_positive(&util, task_util(p)); 7575 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7576 util += task_util(p); 7577 7578 if (sched_feat(UTIL_EST)) { 7579 unsigned long util_est; 7580 7581 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 7582 7583 /* 7584 * During wake-up @p isn't enqueued yet and doesn't contribute 7585 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 7586 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7587 * has been enqueued. 7588 * 7589 * During exec (@dst_cpu = -1) @p is enqueued and does 7590 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 7591 * Remove it to "simulate" cpu_util without @p's contribution. 7592 * 7593 * Despite the task_on_rq_queued(@p) check there is still a 7594 * small window for a possible race when an exec 7595 * select_task_rq_fair() races with LB's detach_task(). 7596 * 7597 * detach_task() 7598 * deactivate_task() 7599 * p->on_rq = TASK_ON_RQ_MIGRATING; 7600 * -------------------------------- A 7601 * dequeue_task() \ 7602 * dequeue_task_fair() + Race Time 7603 * util_est_dequeue() / 7604 * -------------------------------- B 7605 * 7606 * The additional check "current == p" is required to further 7607 * reduce the race window. 7608 */ 7609 if (dst_cpu == cpu) 7610 util_est += _task_util_est(p); 7611 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7612 lsub_positive(&util_est, _task_util_est(p)); 7613 7614 util = max(util, util_est); 7615 } 7616 7617 return min(util, capacity_orig_of(cpu)); 7618 } 7619 7620 unsigned long cpu_util_cfs(int cpu) 7621 { 7622 return cpu_util(cpu, NULL, -1, 0); 7623 } 7624 7625 unsigned long cpu_util_cfs_boost(int cpu) 7626 { 7627 return cpu_util(cpu, NULL, -1, 1); 7628 } 7629 7630 /* 7631 * cpu_util_without: compute cpu utilization without any contributions from *p 7632 * @cpu: the CPU which utilization is requested 7633 * @p: the task which utilization should be discounted 7634 * 7635 * The utilization of a CPU is defined by the utilization of tasks currently 7636 * enqueued on that CPU as well as tasks which are currently sleeping after an 7637 * execution on that CPU. 7638 * 7639 * This method returns the utilization of the specified CPU by discounting the 7640 * utilization of the specified task, whenever the task is currently 7641 * contributing to the CPU utilization. 7642 */ 7643 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7644 { 7645 /* Task has no contribution or is new */ 7646 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7647 p = NULL; 7648 7649 return cpu_util(cpu, p, -1, 0); 7650 } 7651 7652 /* 7653 * energy_env - Utilization landscape for energy estimation. 7654 * @task_busy_time: Utilization contribution by the task for which we test the 7655 * placement. Given by eenv_task_busy_time(). 7656 * @pd_busy_time: Utilization of the whole perf domain without the task 7657 * contribution. Given by eenv_pd_busy_time(). 7658 * @cpu_cap: Maximum CPU capacity for the perf domain. 7659 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7660 */ 7661 struct energy_env { 7662 unsigned long task_busy_time; 7663 unsigned long pd_busy_time; 7664 unsigned long cpu_cap; 7665 unsigned long pd_cap; 7666 }; 7667 7668 /* 7669 * Compute the task busy time for compute_energy(). This time cannot be 7670 * injected directly into effective_cpu_util() because of the IRQ scaling. 7671 * The latter only makes sense with the most recent CPUs where the task has 7672 * run. 7673 */ 7674 static inline void eenv_task_busy_time(struct energy_env *eenv, 7675 struct task_struct *p, int prev_cpu) 7676 { 7677 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7678 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7679 7680 if (unlikely(irq >= max_cap)) 7681 busy_time = max_cap; 7682 else 7683 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7684 7685 eenv->task_busy_time = busy_time; 7686 } 7687 7688 /* 7689 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7690 * utilization for each @pd_cpus, it however doesn't take into account 7691 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7692 * scale the EM reported power consumption at the (eventually clamped) 7693 * cpu_capacity. 7694 * 7695 * The contribution of the task @p for which we want to estimate the 7696 * energy cost is removed (by cpu_util()) and must be calculated 7697 * separately (see eenv_task_busy_time). This ensures: 7698 * 7699 * - A stable PD utilization, no matter which CPU of that PD we want to place 7700 * the task on. 7701 * 7702 * - A fair comparison between CPUs as the task contribution (task_util()) 7703 * will always be the same no matter which CPU utilization we rely on 7704 * (util_avg or util_est). 7705 * 7706 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7707 * exceed @eenv->pd_cap. 7708 */ 7709 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7710 struct cpumask *pd_cpus, 7711 struct task_struct *p) 7712 { 7713 unsigned long busy_time = 0; 7714 int cpu; 7715 7716 for_each_cpu(cpu, pd_cpus) { 7717 unsigned long util = cpu_util(cpu, p, -1, 0); 7718 7719 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 7720 } 7721 7722 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7723 } 7724 7725 /* 7726 * Compute the maximum utilization for compute_energy() when the task @p 7727 * is placed on the cpu @dst_cpu. 7728 * 7729 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7730 * exceed @eenv->cpu_cap. 7731 */ 7732 static inline unsigned long 7733 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7734 struct task_struct *p, int dst_cpu) 7735 { 7736 unsigned long max_util = 0; 7737 int cpu; 7738 7739 for_each_cpu(cpu, pd_cpus) { 7740 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7741 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 7742 unsigned long eff_util; 7743 7744 /* 7745 * Performance domain frequency: utilization clamping 7746 * must be considered since it affects the selection 7747 * of the performance domain frequency. 7748 * NOTE: in case RT tasks are running, by default the 7749 * FREQUENCY_UTIL's utilization can be max OPP. 7750 */ 7751 eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 7752 max_util = max(max_util, eff_util); 7753 } 7754 7755 return min(max_util, eenv->cpu_cap); 7756 } 7757 7758 /* 7759 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7760 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7761 * contribution is ignored. 7762 */ 7763 static inline unsigned long 7764 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7765 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7766 { 7767 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7768 unsigned long busy_time = eenv->pd_busy_time; 7769 7770 if (dst_cpu >= 0) 7771 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7772 7773 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7774 } 7775 7776 /* 7777 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7778 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7779 * spare capacity in each performance domain and uses it as a potential 7780 * candidate to execute the task. Then, it uses the Energy Model to figure 7781 * out which of the CPU candidates is the most energy-efficient. 7782 * 7783 * The rationale for this heuristic is as follows. In a performance domain, 7784 * all the most energy efficient CPU candidates (according to the Energy 7785 * Model) are those for which we'll request a low frequency. When there are 7786 * several CPUs for which the frequency request will be the same, we don't 7787 * have enough data to break the tie between them, because the Energy Model 7788 * only includes active power costs. With this model, if we assume that 7789 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7790 * the maximum spare capacity in a performance domain is guaranteed to be among 7791 * the best candidates of the performance domain. 7792 * 7793 * In practice, it could be preferable from an energy standpoint to pack 7794 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7795 * but that could also hurt our chances to go cluster idle, and we have no 7796 * ways to tell with the current Energy Model if this is actually a good 7797 * idea or not. So, find_energy_efficient_cpu() basically favors 7798 * cluster-packing, and spreading inside a cluster. That should at least be 7799 * a good thing for latency, and this is consistent with the idea that most 7800 * of the energy savings of EAS come from the asymmetry of the system, and 7801 * not so much from breaking the tie between identical CPUs. That's also the 7802 * reason why EAS is enabled in the topology code only for systems where 7803 * SD_ASYM_CPUCAPACITY is set. 7804 * 7805 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7806 * they don't have any useful utilization data yet and it's not possible to 7807 * forecast their impact on energy consumption. Consequently, they will be 7808 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7809 * to be energy-inefficient in some use-cases. The alternative would be to 7810 * bias new tasks towards specific types of CPUs first, or to try to infer 7811 * their util_avg from the parent task, but those heuristics could hurt 7812 * other use-cases too. So, until someone finds a better way to solve this, 7813 * let's keep things simple by re-using the existing slow path. 7814 */ 7815 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7816 { 7817 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7818 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7819 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7820 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7821 struct root_domain *rd = this_rq()->rd; 7822 int cpu, best_energy_cpu, target = -1; 7823 int prev_fits = -1, best_fits = -1; 7824 unsigned long best_thermal_cap = 0; 7825 unsigned long prev_thermal_cap = 0; 7826 struct sched_domain *sd; 7827 struct perf_domain *pd; 7828 struct energy_env eenv; 7829 7830 rcu_read_lock(); 7831 pd = rcu_dereference(rd->pd); 7832 if (!pd || READ_ONCE(rd->overutilized)) 7833 goto unlock; 7834 7835 /* 7836 * Energy-aware wake-up happens on the lowest sched_domain starting 7837 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7838 */ 7839 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7840 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7841 sd = sd->parent; 7842 if (!sd) 7843 goto unlock; 7844 7845 target = prev_cpu; 7846 7847 sync_entity_load_avg(&p->se); 7848 if (!task_util_est(p) && p_util_min == 0) 7849 goto unlock; 7850 7851 eenv_task_busy_time(&eenv, p, prev_cpu); 7852 7853 for (; pd; pd = pd->next) { 7854 unsigned long util_min = p_util_min, util_max = p_util_max; 7855 unsigned long cpu_cap, cpu_thermal_cap, util; 7856 long prev_spare_cap = -1, max_spare_cap = -1; 7857 unsigned long rq_util_min, rq_util_max; 7858 unsigned long cur_delta, base_energy; 7859 int max_spare_cap_cpu = -1; 7860 int fits, max_fits = -1; 7861 7862 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7863 7864 if (cpumask_empty(cpus)) 7865 continue; 7866 7867 /* Account thermal pressure for the energy estimation */ 7868 cpu = cpumask_first(cpus); 7869 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 7870 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 7871 7872 eenv.cpu_cap = cpu_thermal_cap; 7873 eenv.pd_cap = 0; 7874 7875 for_each_cpu(cpu, cpus) { 7876 struct rq *rq = cpu_rq(cpu); 7877 7878 eenv.pd_cap += cpu_thermal_cap; 7879 7880 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7881 continue; 7882 7883 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 7884 continue; 7885 7886 util = cpu_util(cpu, p, cpu, 0); 7887 cpu_cap = capacity_of(cpu); 7888 7889 /* 7890 * Skip CPUs that cannot satisfy the capacity request. 7891 * IOW, placing the task there would make the CPU 7892 * overutilized. Take uclamp into account to see how 7893 * much capacity we can get out of the CPU; this is 7894 * aligned with sched_cpu_util(). 7895 */ 7896 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 7897 /* 7898 * Open code uclamp_rq_util_with() except for 7899 * the clamp() part. Ie: apply max aggregation 7900 * only. util_fits_cpu() logic requires to 7901 * operate on non clamped util but must use the 7902 * max-aggregated uclamp_{min, max}. 7903 */ 7904 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 7905 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 7906 7907 util_min = max(rq_util_min, p_util_min); 7908 util_max = max(rq_util_max, p_util_max); 7909 } 7910 7911 fits = util_fits_cpu(util, util_min, util_max, cpu); 7912 if (!fits) 7913 continue; 7914 7915 lsub_positive(&cpu_cap, util); 7916 7917 if (cpu == prev_cpu) { 7918 /* Always use prev_cpu as a candidate. */ 7919 prev_spare_cap = cpu_cap; 7920 prev_fits = fits; 7921 } else if ((fits > max_fits) || 7922 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 7923 /* 7924 * Find the CPU with the maximum spare capacity 7925 * among the remaining CPUs in the performance 7926 * domain. 7927 */ 7928 max_spare_cap = cpu_cap; 7929 max_spare_cap_cpu = cpu; 7930 max_fits = fits; 7931 } 7932 } 7933 7934 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 7935 continue; 7936 7937 eenv_pd_busy_time(&eenv, cpus, p); 7938 /* Compute the 'base' energy of the pd, without @p */ 7939 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 7940 7941 /* Evaluate the energy impact of using prev_cpu. */ 7942 if (prev_spare_cap > -1) { 7943 prev_delta = compute_energy(&eenv, pd, cpus, p, 7944 prev_cpu); 7945 /* CPU utilization has changed */ 7946 if (prev_delta < base_energy) 7947 goto unlock; 7948 prev_delta -= base_energy; 7949 prev_thermal_cap = cpu_thermal_cap; 7950 best_delta = min(best_delta, prev_delta); 7951 } 7952 7953 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 7954 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 7955 /* Current best energy cpu fits better */ 7956 if (max_fits < best_fits) 7957 continue; 7958 7959 /* 7960 * Both don't fit performance hint (i.e. uclamp_min) 7961 * but best energy cpu has better capacity. 7962 */ 7963 if ((max_fits < 0) && 7964 (cpu_thermal_cap <= best_thermal_cap)) 7965 continue; 7966 7967 cur_delta = compute_energy(&eenv, pd, cpus, p, 7968 max_spare_cap_cpu); 7969 /* CPU utilization has changed */ 7970 if (cur_delta < base_energy) 7971 goto unlock; 7972 cur_delta -= base_energy; 7973 7974 /* 7975 * Both fit for the task but best energy cpu has lower 7976 * energy impact. 7977 */ 7978 if ((max_fits > 0) && (best_fits > 0) && 7979 (cur_delta >= best_delta)) 7980 continue; 7981 7982 best_delta = cur_delta; 7983 best_energy_cpu = max_spare_cap_cpu; 7984 best_fits = max_fits; 7985 best_thermal_cap = cpu_thermal_cap; 7986 } 7987 } 7988 rcu_read_unlock(); 7989 7990 if ((best_fits > prev_fits) || 7991 ((best_fits > 0) && (best_delta < prev_delta)) || 7992 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap))) 7993 target = best_energy_cpu; 7994 7995 return target; 7996 7997 unlock: 7998 rcu_read_unlock(); 7999 8000 return target; 8001 } 8002 8003 /* 8004 * select_task_rq_fair: Select target runqueue for the waking task in domains 8005 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8006 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8007 * 8008 * Balances load by selecting the idlest CPU in the idlest group, or under 8009 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8010 * 8011 * Returns the target CPU number. 8012 */ 8013 static int 8014 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8015 { 8016 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8017 struct sched_domain *tmp, *sd = NULL; 8018 int cpu = smp_processor_id(); 8019 int new_cpu = prev_cpu; 8020 int want_affine = 0; 8021 /* SD_flags and WF_flags share the first nibble */ 8022 int sd_flag = wake_flags & 0xF; 8023 8024 /* 8025 * required for stable ->cpus_allowed 8026 */ 8027 lockdep_assert_held(&p->pi_lock); 8028 if (wake_flags & WF_TTWU) { 8029 record_wakee(p); 8030 8031 if ((wake_flags & WF_CURRENT_CPU) && 8032 cpumask_test_cpu(cpu, p->cpus_ptr)) 8033 return cpu; 8034 8035 if (sched_energy_enabled()) { 8036 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8037 if (new_cpu >= 0) 8038 return new_cpu; 8039 new_cpu = prev_cpu; 8040 } 8041 8042 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8043 } 8044 8045 rcu_read_lock(); 8046 for_each_domain(cpu, tmp) { 8047 /* 8048 * If both 'cpu' and 'prev_cpu' are part of this domain, 8049 * cpu is a valid SD_WAKE_AFFINE target. 8050 */ 8051 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8052 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8053 if (cpu != prev_cpu) 8054 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8055 8056 sd = NULL; /* Prefer wake_affine over balance flags */ 8057 break; 8058 } 8059 8060 /* 8061 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8062 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8063 * will usually go to the fast path. 8064 */ 8065 if (tmp->flags & sd_flag) 8066 sd = tmp; 8067 else if (!want_affine) 8068 break; 8069 } 8070 8071 if (unlikely(sd)) { 8072 /* Slow path */ 8073 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 8074 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8075 /* Fast path */ 8076 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8077 } 8078 rcu_read_unlock(); 8079 8080 return new_cpu; 8081 } 8082 8083 /* 8084 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8085 * cfs_rq_of(p) references at time of call are still valid and identify the 8086 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8087 */ 8088 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8089 { 8090 struct sched_entity *se = &p->se; 8091 8092 if (!task_on_rq_migrating(p)) { 8093 remove_entity_load_avg(se); 8094 8095 /* 8096 * Here, the task's PELT values have been updated according to 8097 * the current rq's clock. But if that clock hasn't been 8098 * updated in a while, a substantial idle time will be missed, 8099 * leading to an inflation after wake-up on the new rq. 8100 * 8101 * Estimate the missing time from the cfs_rq last_update_time 8102 * and update sched_avg to improve the PELT continuity after 8103 * migration. 8104 */ 8105 migrate_se_pelt_lag(se); 8106 } 8107 8108 /* Tell new CPU we are migrated */ 8109 se->avg.last_update_time = 0; 8110 8111 update_scan_period(p, new_cpu); 8112 } 8113 8114 static void task_dead_fair(struct task_struct *p) 8115 { 8116 remove_entity_load_avg(&p->se); 8117 } 8118 8119 static int 8120 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8121 { 8122 if (rq->nr_running) 8123 return 1; 8124 8125 return newidle_balance(rq, rf) != 0; 8126 } 8127 #endif /* CONFIG_SMP */ 8128 8129 static void set_next_buddy(struct sched_entity *se) 8130 { 8131 for_each_sched_entity(se) { 8132 if (SCHED_WARN_ON(!se->on_rq)) 8133 return; 8134 if (se_is_idle(se)) 8135 return; 8136 cfs_rq_of(se)->next = se; 8137 } 8138 } 8139 8140 /* 8141 * Preempt the current task with a newly woken task if needed: 8142 */ 8143 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 8144 { 8145 struct task_struct *curr = rq->curr; 8146 struct sched_entity *se = &curr->se, *pse = &p->se; 8147 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8148 int next_buddy_marked = 0; 8149 int cse_is_idle, pse_is_idle; 8150 8151 if (unlikely(se == pse)) 8152 return; 8153 8154 /* 8155 * This is possible from callers such as attach_tasks(), in which we 8156 * unconditionally check_preempt_curr() after an enqueue (which may have 8157 * lead to a throttle). This both saves work and prevents false 8158 * next-buddy nomination below. 8159 */ 8160 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8161 return; 8162 8163 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8164 set_next_buddy(pse); 8165 next_buddy_marked = 1; 8166 } 8167 8168 /* 8169 * We can come here with TIF_NEED_RESCHED already set from new task 8170 * wake up path. 8171 * 8172 * Note: this also catches the edge-case of curr being in a throttled 8173 * group (e.g. via set_curr_task), since update_curr() (in the 8174 * enqueue of curr) will have resulted in resched being set. This 8175 * prevents us from potentially nominating it as a false LAST_BUDDY 8176 * below. 8177 */ 8178 if (test_tsk_need_resched(curr)) 8179 return; 8180 8181 /* Idle tasks are by definition preempted by non-idle tasks. */ 8182 if (unlikely(task_has_idle_policy(curr)) && 8183 likely(!task_has_idle_policy(p))) 8184 goto preempt; 8185 8186 /* 8187 * Batch and idle tasks do not preempt non-idle tasks (their preemption 8188 * is driven by the tick): 8189 */ 8190 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 8191 return; 8192 8193 find_matching_se(&se, &pse); 8194 WARN_ON_ONCE(!pse); 8195 8196 cse_is_idle = se_is_idle(se); 8197 pse_is_idle = se_is_idle(pse); 8198 8199 /* 8200 * Preempt an idle group in favor of a non-idle group (and don't preempt 8201 * in the inverse case). 8202 */ 8203 if (cse_is_idle && !pse_is_idle) 8204 goto preempt; 8205 if (cse_is_idle != pse_is_idle) 8206 return; 8207 8208 cfs_rq = cfs_rq_of(se); 8209 update_curr(cfs_rq); 8210 8211 /* 8212 * XXX pick_eevdf(cfs_rq) != se ? 8213 */ 8214 if (pick_eevdf(cfs_rq) == pse) 8215 goto preempt; 8216 8217 return; 8218 8219 preempt: 8220 resched_curr(rq); 8221 } 8222 8223 #ifdef CONFIG_SMP 8224 static struct task_struct *pick_task_fair(struct rq *rq) 8225 { 8226 struct sched_entity *se; 8227 struct cfs_rq *cfs_rq; 8228 8229 again: 8230 cfs_rq = &rq->cfs; 8231 if (!cfs_rq->nr_running) 8232 return NULL; 8233 8234 do { 8235 struct sched_entity *curr = cfs_rq->curr; 8236 8237 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 8238 if (curr) { 8239 if (curr->on_rq) 8240 update_curr(cfs_rq); 8241 else 8242 curr = NULL; 8243 8244 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8245 goto again; 8246 } 8247 8248 se = pick_next_entity(cfs_rq, curr); 8249 cfs_rq = group_cfs_rq(se); 8250 } while (cfs_rq); 8251 8252 return task_of(se); 8253 } 8254 #endif 8255 8256 struct task_struct * 8257 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8258 { 8259 struct cfs_rq *cfs_rq = &rq->cfs; 8260 struct sched_entity *se; 8261 struct task_struct *p; 8262 int new_tasks; 8263 8264 again: 8265 if (!sched_fair_runnable(rq)) 8266 goto idle; 8267 8268 #ifdef CONFIG_FAIR_GROUP_SCHED 8269 if (!prev || prev->sched_class != &fair_sched_class) 8270 goto simple; 8271 8272 /* 8273 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8274 * likely that a next task is from the same cgroup as the current. 8275 * 8276 * Therefore attempt to avoid putting and setting the entire cgroup 8277 * hierarchy, only change the part that actually changes. 8278 */ 8279 8280 do { 8281 struct sched_entity *curr = cfs_rq->curr; 8282 8283 /* 8284 * Since we got here without doing put_prev_entity() we also 8285 * have to consider cfs_rq->curr. If it is still a runnable 8286 * entity, update_curr() will update its vruntime, otherwise 8287 * forget we've ever seen it. 8288 */ 8289 if (curr) { 8290 if (curr->on_rq) 8291 update_curr(cfs_rq); 8292 else 8293 curr = NULL; 8294 8295 /* 8296 * This call to check_cfs_rq_runtime() will do the 8297 * throttle and dequeue its entity in the parent(s). 8298 * Therefore the nr_running test will indeed 8299 * be correct. 8300 */ 8301 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 8302 cfs_rq = &rq->cfs; 8303 8304 if (!cfs_rq->nr_running) 8305 goto idle; 8306 8307 goto simple; 8308 } 8309 } 8310 8311 se = pick_next_entity(cfs_rq, curr); 8312 cfs_rq = group_cfs_rq(se); 8313 } while (cfs_rq); 8314 8315 p = task_of(se); 8316 8317 /* 8318 * Since we haven't yet done put_prev_entity and if the selected task 8319 * is a different task than we started out with, try and touch the 8320 * least amount of cfs_rqs. 8321 */ 8322 if (prev != p) { 8323 struct sched_entity *pse = &prev->se; 8324 8325 while (!(cfs_rq = is_same_group(se, pse))) { 8326 int se_depth = se->depth; 8327 int pse_depth = pse->depth; 8328 8329 if (se_depth <= pse_depth) { 8330 put_prev_entity(cfs_rq_of(pse), pse); 8331 pse = parent_entity(pse); 8332 } 8333 if (se_depth >= pse_depth) { 8334 set_next_entity(cfs_rq_of(se), se); 8335 se = parent_entity(se); 8336 } 8337 } 8338 8339 put_prev_entity(cfs_rq, pse); 8340 set_next_entity(cfs_rq, se); 8341 } 8342 8343 goto done; 8344 simple: 8345 #endif 8346 if (prev) 8347 put_prev_task(rq, prev); 8348 8349 do { 8350 se = pick_next_entity(cfs_rq, NULL); 8351 set_next_entity(cfs_rq, se); 8352 cfs_rq = group_cfs_rq(se); 8353 } while (cfs_rq); 8354 8355 p = task_of(se); 8356 8357 done: __maybe_unused; 8358 #ifdef CONFIG_SMP 8359 /* 8360 * Move the next running task to the front of 8361 * the list, so our cfs_tasks list becomes MRU 8362 * one. 8363 */ 8364 list_move(&p->se.group_node, &rq->cfs_tasks); 8365 #endif 8366 8367 if (hrtick_enabled_fair(rq)) 8368 hrtick_start_fair(rq, p); 8369 8370 update_misfit_status(p, rq); 8371 sched_fair_update_stop_tick(rq, p); 8372 8373 return p; 8374 8375 idle: 8376 if (!rf) 8377 return NULL; 8378 8379 new_tasks = newidle_balance(rq, rf); 8380 8381 /* 8382 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 8383 * possible for any higher priority task to appear. In that case we 8384 * must re-start the pick_next_entity() loop. 8385 */ 8386 if (new_tasks < 0) 8387 return RETRY_TASK; 8388 8389 if (new_tasks > 0) 8390 goto again; 8391 8392 /* 8393 * rq is about to be idle, check if we need to update the 8394 * lost_idle_time of clock_pelt 8395 */ 8396 update_idle_rq_clock_pelt(rq); 8397 8398 return NULL; 8399 } 8400 8401 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8402 { 8403 return pick_next_task_fair(rq, NULL, NULL); 8404 } 8405 8406 /* 8407 * Account for a descheduled task: 8408 */ 8409 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8410 { 8411 struct sched_entity *se = &prev->se; 8412 struct cfs_rq *cfs_rq; 8413 8414 for_each_sched_entity(se) { 8415 cfs_rq = cfs_rq_of(se); 8416 put_prev_entity(cfs_rq, se); 8417 } 8418 } 8419 8420 /* 8421 * sched_yield() is very simple 8422 */ 8423 static void yield_task_fair(struct rq *rq) 8424 { 8425 struct task_struct *curr = rq->curr; 8426 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8427 struct sched_entity *se = &curr->se; 8428 8429 /* 8430 * Are we the only task in the tree? 8431 */ 8432 if (unlikely(rq->nr_running == 1)) 8433 return; 8434 8435 clear_buddies(cfs_rq, se); 8436 8437 update_rq_clock(rq); 8438 /* 8439 * Update run-time statistics of the 'current'. 8440 */ 8441 update_curr(cfs_rq); 8442 /* 8443 * Tell update_rq_clock() that we've just updated, 8444 * so we don't do microscopic update in schedule() 8445 * and double the fastpath cost. 8446 */ 8447 rq_clock_skip_update(rq); 8448 8449 se->deadline += calc_delta_fair(se->slice, se); 8450 } 8451 8452 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8453 { 8454 struct sched_entity *se = &p->se; 8455 8456 /* throttled hierarchies are not runnable */ 8457 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8458 return false; 8459 8460 /* Tell the scheduler that we'd really like pse to run next. */ 8461 set_next_buddy(se); 8462 8463 yield_task_fair(rq); 8464 8465 return true; 8466 } 8467 8468 #ifdef CONFIG_SMP 8469 /************************************************** 8470 * Fair scheduling class load-balancing methods. 8471 * 8472 * BASICS 8473 * 8474 * The purpose of load-balancing is to achieve the same basic fairness the 8475 * per-CPU scheduler provides, namely provide a proportional amount of compute 8476 * time to each task. This is expressed in the following equation: 8477 * 8478 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8479 * 8480 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8481 * W_i,0 is defined as: 8482 * 8483 * W_i,0 = \Sum_j w_i,j (2) 8484 * 8485 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8486 * is derived from the nice value as per sched_prio_to_weight[]. 8487 * 8488 * The weight average is an exponential decay average of the instantaneous 8489 * weight: 8490 * 8491 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8492 * 8493 * C_i is the compute capacity of CPU i, typically it is the 8494 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8495 * can also include other factors [XXX]. 8496 * 8497 * To achieve this balance we define a measure of imbalance which follows 8498 * directly from (1): 8499 * 8500 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8501 * 8502 * We them move tasks around to minimize the imbalance. In the continuous 8503 * function space it is obvious this converges, in the discrete case we get 8504 * a few fun cases generally called infeasible weight scenarios. 8505 * 8506 * [XXX expand on: 8507 * - infeasible weights; 8508 * - local vs global optima in the discrete case. ] 8509 * 8510 * 8511 * SCHED DOMAINS 8512 * 8513 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8514 * for all i,j solution, we create a tree of CPUs that follows the hardware 8515 * topology where each level pairs two lower groups (or better). This results 8516 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8517 * tree to only the first of the previous level and we decrease the frequency 8518 * of load-balance at each level inv. proportional to the number of CPUs in 8519 * the groups. 8520 * 8521 * This yields: 8522 * 8523 * log_2 n 1 n 8524 * \Sum { --- * --- * 2^i } = O(n) (5) 8525 * i = 0 2^i 2^i 8526 * `- size of each group 8527 * | | `- number of CPUs doing load-balance 8528 * | `- freq 8529 * `- sum over all levels 8530 * 8531 * Coupled with a limit on how many tasks we can migrate every balance pass, 8532 * this makes (5) the runtime complexity of the balancer. 8533 * 8534 * An important property here is that each CPU is still (indirectly) connected 8535 * to every other CPU in at most O(log n) steps: 8536 * 8537 * The adjacency matrix of the resulting graph is given by: 8538 * 8539 * log_2 n 8540 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8541 * k = 0 8542 * 8543 * And you'll find that: 8544 * 8545 * A^(log_2 n)_i,j != 0 for all i,j (7) 8546 * 8547 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8548 * The task movement gives a factor of O(m), giving a convergence complexity 8549 * of: 8550 * 8551 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8552 * 8553 * 8554 * WORK CONSERVING 8555 * 8556 * In order to avoid CPUs going idle while there's still work to do, new idle 8557 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8558 * tree itself instead of relying on other CPUs to bring it work. 8559 * 8560 * This adds some complexity to both (5) and (8) but it reduces the total idle 8561 * time. 8562 * 8563 * [XXX more?] 8564 * 8565 * 8566 * CGROUPS 8567 * 8568 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8569 * 8570 * s_k,i 8571 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8572 * S_k 8573 * 8574 * Where 8575 * 8576 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8577 * 8578 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8579 * 8580 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8581 * property. 8582 * 8583 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8584 * rewrite all of this once again.] 8585 */ 8586 8587 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8588 8589 enum fbq_type { regular, remote, all }; 8590 8591 /* 8592 * 'group_type' describes the group of CPUs at the moment of load balancing. 8593 * 8594 * The enum is ordered by pulling priority, with the group with lowest priority 8595 * first so the group_type can simply be compared when selecting the busiest 8596 * group. See update_sd_pick_busiest(). 8597 */ 8598 enum group_type { 8599 /* The group has spare capacity that can be used to run more tasks. */ 8600 group_has_spare = 0, 8601 /* 8602 * The group is fully used and the tasks don't compete for more CPU 8603 * cycles. Nevertheless, some tasks might wait before running. 8604 */ 8605 group_fully_busy, 8606 /* 8607 * One task doesn't fit with CPU's capacity and must be migrated to a 8608 * more powerful CPU. 8609 */ 8610 group_misfit_task, 8611 /* 8612 * Balance SMT group that's fully busy. Can benefit from migration 8613 * a task on SMT with busy sibling to another CPU on idle core. 8614 */ 8615 group_smt_balance, 8616 /* 8617 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8618 * and the task should be migrated to it instead of running on the 8619 * current CPU. 8620 */ 8621 group_asym_packing, 8622 /* 8623 * The tasks' affinity constraints previously prevented the scheduler 8624 * from balancing the load across the system. 8625 */ 8626 group_imbalanced, 8627 /* 8628 * The CPU is overloaded and can't provide expected CPU cycles to all 8629 * tasks. 8630 */ 8631 group_overloaded 8632 }; 8633 8634 enum migration_type { 8635 migrate_load = 0, 8636 migrate_util, 8637 migrate_task, 8638 migrate_misfit 8639 }; 8640 8641 #define LBF_ALL_PINNED 0x01 8642 #define LBF_NEED_BREAK 0x02 8643 #define LBF_DST_PINNED 0x04 8644 #define LBF_SOME_PINNED 0x08 8645 #define LBF_ACTIVE_LB 0x10 8646 8647 struct lb_env { 8648 struct sched_domain *sd; 8649 8650 struct rq *src_rq; 8651 int src_cpu; 8652 8653 int dst_cpu; 8654 struct rq *dst_rq; 8655 8656 struct cpumask *dst_grpmask; 8657 int new_dst_cpu; 8658 enum cpu_idle_type idle; 8659 long imbalance; 8660 /* The set of CPUs under consideration for load-balancing */ 8661 struct cpumask *cpus; 8662 8663 unsigned int flags; 8664 8665 unsigned int loop; 8666 unsigned int loop_break; 8667 unsigned int loop_max; 8668 8669 enum fbq_type fbq_type; 8670 enum migration_type migration_type; 8671 struct list_head tasks; 8672 }; 8673 8674 /* 8675 * Is this task likely cache-hot: 8676 */ 8677 static int task_hot(struct task_struct *p, struct lb_env *env) 8678 { 8679 s64 delta; 8680 8681 lockdep_assert_rq_held(env->src_rq); 8682 8683 if (p->sched_class != &fair_sched_class) 8684 return 0; 8685 8686 if (unlikely(task_has_idle_policy(p))) 8687 return 0; 8688 8689 /* SMT siblings share cache */ 8690 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8691 return 0; 8692 8693 /* 8694 * Buddy candidates are cache hot: 8695 */ 8696 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8697 (&p->se == cfs_rq_of(&p->se)->next)) 8698 return 1; 8699 8700 if (sysctl_sched_migration_cost == -1) 8701 return 1; 8702 8703 /* 8704 * Don't migrate task if the task's cookie does not match 8705 * with the destination CPU's core cookie. 8706 */ 8707 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8708 return 1; 8709 8710 if (sysctl_sched_migration_cost == 0) 8711 return 0; 8712 8713 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8714 8715 return delta < (s64)sysctl_sched_migration_cost; 8716 } 8717 8718 #ifdef CONFIG_NUMA_BALANCING 8719 /* 8720 * Returns 1, if task migration degrades locality 8721 * Returns 0, if task migration improves locality i.e migration preferred. 8722 * Returns -1, if task migration is not affected by locality. 8723 */ 8724 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8725 { 8726 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8727 unsigned long src_weight, dst_weight; 8728 int src_nid, dst_nid, dist; 8729 8730 if (!static_branch_likely(&sched_numa_balancing)) 8731 return -1; 8732 8733 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8734 return -1; 8735 8736 src_nid = cpu_to_node(env->src_cpu); 8737 dst_nid = cpu_to_node(env->dst_cpu); 8738 8739 if (src_nid == dst_nid) 8740 return -1; 8741 8742 /* Migrating away from the preferred node is always bad. */ 8743 if (src_nid == p->numa_preferred_nid) { 8744 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8745 return 1; 8746 else 8747 return -1; 8748 } 8749 8750 /* Encourage migration to the preferred node. */ 8751 if (dst_nid == p->numa_preferred_nid) 8752 return 0; 8753 8754 /* Leaving a core idle is often worse than degrading locality. */ 8755 if (env->idle == CPU_IDLE) 8756 return -1; 8757 8758 dist = node_distance(src_nid, dst_nid); 8759 if (numa_group) { 8760 src_weight = group_weight(p, src_nid, dist); 8761 dst_weight = group_weight(p, dst_nid, dist); 8762 } else { 8763 src_weight = task_weight(p, src_nid, dist); 8764 dst_weight = task_weight(p, dst_nid, dist); 8765 } 8766 8767 return dst_weight < src_weight; 8768 } 8769 8770 #else 8771 static inline int migrate_degrades_locality(struct task_struct *p, 8772 struct lb_env *env) 8773 { 8774 return -1; 8775 } 8776 #endif 8777 8778 /* 8779 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8780 */ 8781 static 8782 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8783 { 8784 int tsk_cache_hot; 8785 8786 lockdep_assert_rq_held(env->src_rq); 8787 8788 /* 8789 * We do not migrate tasks that are: 8790 * 1) throttled_lb_pair, or 8791 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8792 * 3) running (obviously), or 8793 * 4) are cache-hot on their current CPU. 8794 */ 8795 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8796 return 0; 8797 8798 /* Disregard pcpu kthreads; they are where they need to be. */ 8799 if (kthread_is_per_cpu(p)) 8800 return 0; 8801 8802 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8803 int cpu; 8804 8805 schedstat_inc(p->stats.nr_failed_migrations_affine); 8806 8807 env->flags |= LBF_SOME_PINNED; 8808 8809 /* 8810 * Remember if this task can be migrated to any other CPU in 8811 * our sched_group. We may want to revisit it if we couldn't 8812 * meet load balance goals by pulling other tasks on src_cpu. 8813 * 8814 * Avoid computing new_dst_cpu 8815 * - for NEWLY_IDLE 8816 * - if we have already computed one in current iteration 8817 * - if it's an active balance 8818 */ 8819 if (env->idle == CPU_NEWLY_IDLE || 8820 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8821 return 0; 8822 8823 /* Prevent to re-select dst_cpu via env's CPUs: */ 8824 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8825 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8826 env->flags |= LBF_DST_PINNED; 8827 env->new_dst_cpu = cpu; 8828 break; 8829 } 8830 } 8831 8832 return 0; 8833 } 8834 8835 /* Record that we found at least one task that could run on dst_cpu */ 8836 env->flags &= ~LBF_ALL_PINNED; 8837 8838 if (task_on_cpu(env->src_rq, p)) { 8839 schedstat_inc(p->stats.nr_failed_migrations_running); 8840 return 0; 8841 } 8842 8843 /* 8844 * Aggressive migration if: 8845 * 1) active balance 8846 * 2) destination numa is preferred 8847 * 3) task is cache cold, or 8848 * 4) too many balance attempts have failed. 8849 */ 8850 if (env->flags & LBF_ACTIVE_LB) 8851 return 1; 8852 8853 tsk_cache_hot = migrate_degrades_locality(p, env); 8854 if (tsk_cache_hot == -1) 8855 tsk_cache_hot = task_hot(p, env); 8856 8857 if (tsk_cache_hot <= 0 || 8858 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8859 if (tsk_cache_hot == 1) { 8860 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8861 schedstat_inc(p->stats.nr_forced_migrations); 8862 } 8863 return 1; 8864 } 8865 8866 schedstat_inc(p->stats.nr_failed_migrations_hot); 8867 return 0; 8868 } 8869 8870 /* 8871 * detach_task() -- detach the task for the migration specified in env 8872 */ 8873 static void detach_task(struct task_struct *p, struct lb_env *env) 8874 { 8875 lockdep_assert_rq_held(env->src_rq); 8876 8877 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 8878 set_task_cpu(p, env->dst_cpu); 8879 } 8880 8881 /* 8882 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 8883 * part of active balancing operations within "domain". 8884 * 8885 * Returns a task if successful and NULL otherwise. 8886 */ 8887 static struct task_struct *detach_one_task(struct lb_env *env) 8888 { 8889 struct task_struct *p; 8890 8891 lockdep_assert_rq_held(env->src_rq); 8892 8893 list_for_each_entry_reverse(p, 8894 &env->src_rq->cfs_tasks, se.group_node) { 8895 if (!can_migrate_task(p, env)) 8896 continue; 8897 8898 detach_task(p, env); 8899 8900 /* 8901 * Right now, this is only the second place where 8902 * lb_gained[env->idle] is updated (other is detach_tasks) 8903 * so we can safely collect stats here rather than 8904 * inside detach_tasks(). 8905 */ 8906 schedstat_inc(env->sd->lb_gained[env->idle]); 8907 return p; 8908 } 8909 return NULL; 8910 } 8911 8912 /* 8913 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 8914 * busiest_rq, as part of a balancing operation within domain "sd". 8915 * 8916 * Returns number of detached tasks if successful and 0 otherwise. 8917 */ 8918 static int detach_tasks(struct lb_env *env) 8919 { 8920 struct list_head *tasks = &env->src_rq->cfs_tasks; 8921 unsigned long util, load; 8922 struct task_struct *p; 8923 int detached = 0; 8924 8925 lockdep_assert_rq_held(env->src_rq); 8926 8927 /* 8928 * Source run queue has been emptied by another CPU, clear 8929 * LBF_ALL_PINNED flag as we will not test any task. 8930 */ 8931 if (env->src_rq->nr_running <= 1) { 8932 env->flags &= ~LBF_ALL_PINNED; 8933 return 0; 8934 } 8935 8936 if (env->imbalance <= 0) 8937 return 0; 8938 8939 while (!list_empty(tasks)) { 8940 /* 8941 * We don't want to steal all, otherwise we may be treated likewise, 8942 * which could at worst lead to a livelock crash. 8943 */ 8944 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 8945 break; 8946 8947 env->loop++; 8948 /* 8949 * We've more or less seen every task there is, call it quits 8950 * unless we haven't found any movable task yet. 8951 */ 8952 if (env->loop > env->loop_max && 8953 !(env->flags & LBF_ALL_PINNED)) 8954 break; 8955 8956 /* take a breather every nr_migrate tasks */ 8957 if (env->loop > env->loop_break) { 8958 env->loop_break += SCHED_NR_MIGRATE_BREAK; 8959 env->flags |= LBF_NEED_BREAK; 8960 break; 8961 } 8962 8963 p = list_last_entry(tasks, struct task_struct, se.group_node); 8964 8965 if (!can_migrate_task(p, env)) 8966 goto next; 8967 8968 switch (env->migration_type) { 8969 case migrate_load: 8970 /* 8971 * Depending of the number of CPUs and tasks and the 8972 * cgroup hierarchy, task_h_load() can return a null 8973 * value. Make sure that env->imbalance decreases 8974 * otherwise detach_tasks() will stop only after 8975 * detaching up to loop_max tasks. 8976 */ 8977 load = max_t(unsigned long, task_h_load(p), 1); 8978 8979 if (sched_feat(LB_MIN) && 8980 load < 16 && !env->sd->nr_balance_failed) 8981 goto next; 8982 8983 /* 8984 * Make sure that we don't migrate too much load. 8985 * Nevertheless, let relax the constraint if 8986 * scheduler fails to find a good waiting task to 8987 * migrate. 8988 */ 8989 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 8990 goto next; 8991 8992 env->imbalance -= load; 8993 break; 8994 8995 case migrate_util: 8996 util = task_util_est(p); 8997 8998 if (util > env->imbalance) 8999 goto next; 9000 9001 env->imbalance -= util; 9002 break; 9003 9004 case migrate_task: 9005 env->imbalance--; 9006 break; 9007 9008 case migrate_misfit: 9009 /* This is not a misfit task */ 9010 if (task_fits_cpu(p, env->src_cpu)) 9011 goto next; 9012 9013 env->imbalance = 0; 9014 break; 9015 } 9016 9017 detach_task(p, env); 9018 list_add(&p->se.group_node, &env->tasks); 9019 9020 detached++; 9021 9022 #ifdef CONFIG_PREEMPTION 9023 /* 9024 * NEWIDLE balancing is a source of latency, so preemptible 9025 * kernels will stop after the first task is detached to minimize 9026 * the critical section. 9027 */ 9028 if (env->idle == CPU_NEWLY_IDLE) 9029 break; 9030 #endif 9031 9032 /* 9033 * We only want to steal up to the prescribed amount of 9034 * load/util/tasks. 9035 */ 9036 if (env->imbalance <= 0) 9037 break; 9038 9039 continue; 9040 next: 9041 list_move(&p->se.group_node, tasks); 9042 } 9043 9044 /* 9045 * Right now, this is one of only two places we collect this stat 9046 * so we can safely collect detach_one_task() stats here rather 9047 * than inside detach_one_task(). 9048 */ 9049 schedstat_add(env->sd->lb_gained[env->idle], detached); 9050 9051 return detached; 9052 } 9053 9054 /* 9055 * attach_task() -- attach the task detached by detach_task() to its new rq. 9056 */ 9057 static void attach_task(struct rq *rq, struct task_struct *p) 9058 { 9059 lockdep_assert_rq_held(rq); 9060 9061 WARN_ON_ONCE(task_rq(p) != rq); 9062 activate_task(rq, p, ENQUEUE_NOCLOCK); 9063 check_preempt_curr(rq, p, 0); 9064 } 9065 9066 /* 9067 * attach_one_task() -- attaches the task returned from detach_one_task() to 9068 * its new rq. 9069 */ 9070 static void attach_one_task(struct rq *rq, struct task_struct *p) 9071 { 9072 struct rq_flags rf; 9073 9074 rq_lock(rq, &rf); 9075 update_rq_clock(rq); 9076 attach_task(rq, p); 9077 rq_unlock(rq, &rf); 9078 } 9079 9080 /* 9081 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9082 * new rq. 9083 */ 9084 static void attach_tasks(struct lb_env *env) 9085 { 9086 struct list_head *tasks = &env->tasks; 9087 struct task_struct *p; 9088 struct rq_flags rf; 9089 9090 rq_lock(env->dst_rq, &rf); 9091 update_rq_clock(env->dst_rq); 9092 9093 while (!list_empty(tasks)) { 9094 p = list_first_entry(tasks, struct task_struct, se.group_node); 9095 list_del_init(&p->se.group_node); 9096 9097 attach_task(env->dst_rq, p); 9098 } 9099 9100 rq_unlock(env->dst_rq, &rf); 9101 } 9102 9103 #ifdef CONFIG_NO_HZ_COMMON 9104 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9105 { 9106 if (cfs_rq->avg.load_avg) 9107 return true; 9108 9109 if (cfs_rq->avg.util_avg) 9110 return true; 9111 9112 return false; 9113 } 9114 9115 static inline bool others_have_blocked(struct rq *rq) 9116 { 9117 if (READ_ONCE(rq->avg_rt.util_avg)) 9118 return true; 9119 9120 if (READ_ONCE(rq->avg_dl.util_avg)) 9121 return true; 9122 9123 if (thermal_load_avg(rq)) 9124 return true; 9125 9126 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 9127 if (READ_ONCE(rq->avg_irq.util_avg)) 9128 return true; 9129 #endif 9130 9131 return false; 9132 } 9133 9134 static inline void update_blocked_load_tick(struct rq *rq) 9135 { 9136 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9137 } 9138 9139 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9140 { 9141 if (!has_blocked) 9142 rq->has_blocked_load = 0; 9143 } 9144 #else 9145 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9146 static inline bool others_have_blocked(struct rq *rq) { return false; } 9147 static inline void update_blocked_load_tick(struct rq *rq) {} 9148 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9149 #endif 9150 9151 static bool __update_blocked_others(struct rq *rq, bool *done) 9152 { 9153 const struct sched_class *curr_class; 9154 u64 now = rq_clock_pelt(rq); 9155 unsigned long thermal_pressure; 9156 bool decayed; 9157 9158 /* 9159 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9160 * DL and IRQ signals have been updated before updating CFS. 9161 */ 9162 curr_class = rq->curr->sched_class; 9163 9164 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 9165 9166 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 9167 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 9168 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 9169 update_irq_load_avg(rq, 0); 9170 9171 if (others_have_blocked(rq)) 9172 *done = false; 9173 9174 return decayed; 9175 } 9176 9177 #ifdef CONFIG_FAIR_GROUP_SCHED 9178 9179 static bool __update_blocked_fair(struct rq *rq, bool *done) 9180 { 9181 struct cfs_rq *cfs_rq, *pos; 9182 bool decayed = false; 9183 int cpu = cpu_of(rq); 9184 9185 /* 9186 * Iterates the task_group tree in a bottom up fashion, see 9187 * list_add_leaf_cfs_rq() for details. 9188 */ 9189 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9190 struct sched_entity *se; 9191 9192 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9193 update_tg_load_avg(cfs_rq); 9194 9195 if (cfs_rq->nr_running == 0) 9196 update_idle_cfs_rq_clock_pelt(cfs_rq); 9197 9198 if (cfs_rq == &rq->cfs) 9199 decayed = true; 9200 } 9201 9202 /* Propagate pending load changes to the parent, if any: */ 9203 se = cfs_rq->tg->se[cpu]; 9204 if (se && !skip_blocked_update(se)) 9205 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9206 9207 /* 9208 * There can be a lot of idle CPU cgroups. Don't let fully 9209 * decayed cfs_rqs linger on the list. 9210 */ 9211 if (cfs_rq_is_decayed(cfs_rq)) 9212 list_del_leaf_cfs_rq(cfs_rq); 9213 9214 /* Don't need periodic decay once load/util_avg are null */ 9215 if (cfs_rq_has_blocked(cfs_rq)) 9216 *done = false; 9217 } 9218 9219 return decayed; 9220 } 9221 9222 /* 9223 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9224 * This needs to be done in a top-down fashion because the load of a child 9225 * group is a fraction of its parents load. 9226 */ 9227 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9228 { 9229 struct rq *rq = rq_of(cfs_rq); 9230 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9231 unsigned long now = jiffies; 9232 unsigned long load; 9233 9234 if (cfs_rq->last_h_load_update == now) 9235 return; 9236 9237 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9238 for_each_sched_entity(se) { 9239 cfs_rq = cfs_rq_of(se); 9240 WRITE_ONCE(cfs_rq->h_load_next, se); 9241 if (cfs_rq->last_h_load_update == now) 9242 break; 9243 } 9244 9245 if (!se) { 9246 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9247 cfs_rq->last_h_load_update = now; 9248 } 9249 9250 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9251 load = cfs_rq->h_load; 9252 load = div64_ul(load * se->avg.load_avg, 9253 cfs_rq_load_avg(cfs_rq) + 1); 9254 cfs_rq = group_cfs_rq(se); 9255 cfs_rq->h_load = load; 9256 cfs_rq->last_h_load_update = now; 9257 } 9258 } 9259 9260 static unsigned long task_h_load(struct task_struct *p) 9261 { 9262 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9263 9264 update_cfs_rq_h_load(cfs_rq); 9265 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9266 cfs_rq_load_avg(cfs_rq) + 1); 9267 } 9268 #else 9269 static bool __update_blocked_fair(struct rq *rq, bool *done) 9270 { 9271 struct cfs_rq *cfs_rq = &rq->cfs; 9272 bool decayed; 9273 9274 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9275 if (cfs_rq_has_blocked(cfs_rq)) 9276 *done = false; 9277 9278 return decayed; 9279 } 9280 9281 static unsigned long task_h_load(struct task_struct *p) 9282 { 9283 return p->se.avg.load_avg; 9284 } 9285 #endif 9286 9287 static void update_blocked_averages(int cpu) 9288 { 9289 bool decayed = false, done = true; 9290 struct rq *rq = cpu_rq(cpu); 9291 struct rq_flags rf; 9292 9293 rq_lock_irqsave(rq, &rf); 9294 update_blocked_load_tick(rq); 9295 update_rq_clock(rq); 9296 9297 decayed |= __update_blocked_others(rq, &done); 9298 decayed |= __update_blocked_fair(rq, &done); 9299 9300 update_blocked_load_status(rq, !done); 9301 if (decayed) 9302 cpufreq_update_util(rq, 0); 9303 rq_unlock_irqrestore(rq, &rf); 9304 } 9305 9306 /********** Helpers for find_busiest_group ************************/ 9307 9308 /* 9309 * sg_lb_stats - stats of a sched_group required for load_balancing 9310 */ 9311 struct sg_lb_stats { 9312 unsigned long avg_load; /*Avg load across the CPUs of the group */ 9313 unsigned long group_load; /* Total load over the CPUs of the group */ 9314 unsigned long group_capacity; 9315 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9316 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9317 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 9318 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9319 unsigned int idle_cpus; 9320 unsigned int group_weight; 9321 enum group_type group_type; 9322 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9323 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9324 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9325 #ifdef CONFIG_NUMA_BALANCING 9326 unsigned int nr_numa_running; 9327 unsigned int nr_preferred_running; 9328 #endif 9329 }; 9330 9331 /* 9332 * sd_lb_stats - Structure to store the statistics of a sched_domain 9333 * during load balancing. 9334 */ 9335 struct sd_lb_stats { 9336 struct sched_group *busiest; /* Busiest group in this sd */ 9337 struct sched_group *local; /* Local group in this sd */ 9338 unsigned long total_load; /* Total load of all groups in sd */ 9339 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9340 unsigned long avg_load; /* Average load across all groups in sd */ 9341 unsigned int prefer_sibling; /* tasks should go to sibling first */ 9342 9343 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 9344 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9345 }; 9346 9347 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9348 { 9349 /* 9350 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9351 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9352 * We must however set busiest_stat::group_type and 9353 * busiest_stat::idle_cpus to the worst busiest group because 9354 * update_sd_pick_busiest() reads these before assignment. 9355 */ 9356 *sds = (struct sd_lb_stats){ 9357 .busiest = NULL, 9358 .local = NULL, 9359 .total_load = 0UL, 9360 .total_capacity = 0UL, 9361 .busiest_stat = { 9362 .idle_cpus = UINT_MAX, 9363 .group_type = group_has_spare, 9364 }, 9365 }; 9366 } 9367 9368 static unsigned long scale_rt_capacity(int cpu) 9369 { 9370 struct rq *rq = cpu_rq(cpu); 9371 unsigned long max = arch_scale_cpu_capacity(cpu); 9372 unsigned long used, free; 9373 unsigned long irq; 9374 9375 irq = cpu_util_irq(rq); 9376 9377 if (unlikely(irq >= max)) 9378 return 1; 9379 9380 /* 9381 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9382 * (running and not running) with weights 0 and 1024 respectively. 9383 * avg_thermal.load_avg tracks thermal pressure and the weighted 9384 * average uses the actual delta max capacity(load). 9385 */ 9386 used = READ_ONCE(rq->avg_rt.util_avg); 9387 used += READ_ONCE(rq->avg_dl.util_avg); 9388 used += thermal_load_avg(rq); 9389 9390 if (unlikely(used >= max)) 9391 return 1; 9392 9393 free = max - used; 9394 9395 return scale_irq_capacity(free, irq, max); 9396 } 9397 9398 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9399 { 9400 unsigned long capacity = scale_rt_capacity(cpu); 9401 struct sched_group *sdg = sd->groups; 9402 9403 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 9404 9405 if (!capacity) 9406 capacity = 1; 9407 9408 cpu_rq(cpu)->cpu_capacity = capacity; 9409 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9410 9411 sdg->sgc->capacity = capacity; 9412 sdg->sgc->min_capacity = capacity; 9413 sdg->sgc->max_capacity = capacity; 9414 } 9415 9416 void update_group_capacity(struct sched_domain *sd, int cpu) 9417 { 9418 struct sched_domain *child = sd->child; 9419 struct sched_group *group, *sdg = sd->groups; 9420 unsigned long capacity, min_capacity, max_capacity; 9421 unsigned long interval; 9422 9423 interval = msecs_to_jiffies(sd->balance_interval); 9424 interval = clamp(interval, 1UL, max_load_balance_interval); 9425 sdg->sgc->next_update = jiffies + interval; 9426 9427 if (!child) { 9428 update_cpu_capacity(sd, cpu); 9429 return; 9430 } 9431 9432 capacity = 0; 9433 min_capacity = ULONG_MAX; 9434 max_capacity = 0; 9435 9436 if (child->flags & SD_OVERLAP) { 9437 /* 9438 * SD_OVERLAP domains cannot assume that child groups 9439 * span the current group. 9440 */ 9441 9442 for_each_cpu(cpu, sched_group_span(sdg)) { 9443 unsigned long cpu_cap = capacity_of(cpu); 9444 9445 capacity += cpu_cap; 9446 min_capacity = min(cpu_cap, min_capacity); 9447 max_capacity = max(cpu_cap, max_capacity); 9448 } 9449 } else { 9450 /* 9451 * !SD_OVERLAP domains can assume that child groups 9452 * span the current group. 9453 */ 9454 9455 group = child->groups; 9456 do { 9457 struct sched_group_capacity *sgc = group->sgc; 9458 9459 capacity += sgc->capacity; 9460 min_capacity = min(sgc->min_capacity, min_capacity); 9461 max_capacity = max(sgc->max_capacity, max_capacity); 9462 group = group->next; 9463 } while (group != child->groups); 9464 } 9465 9466 sdg->sgc->capacity = capacity; 9467 sdg->sgc->min_capacity = min_capacity; 9468 sdg->sgc->max_capacity = max_capacity; 9469 } 9470 9471 /* 9472 * Check whether the capacity of the rq has been noticeably reduced by side 9473 * activity. The imbalance_pct is used for the threshold. 9474 * Return true is the capacity is reduced 9475 */ 9476 static inline int 9477 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9478 { 9479 return ((rq->cpu_capacity * sd->imbalance_pct) < 9480 (rq->cpu_capacity_orig * 100)); 9481 } 9482 9483 /* 9484 * Check whether a rq has a misfit task and if it looks like we can actually 9485 * help that task: we can migrate the task to a CPU of higher capacity, or 9486 * the task's current CPU is heavily pressured. 9487 */ 9488 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 9489 { 9490 return rq->misfit_task_load && 9491 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 9492 check_cpu_capacity(rq, sd)); 9493 } 9494 9495 /* 9496 * Group imbalance indicates (and tries to solve) the problem where balancing 9497 * groups is inadequate due to ->cpus_ptr constraints. 9498 * 9499 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9500 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9501 * Something like: 9502 * 9503 * { 0 1 2 3 } { 4 5 6 7 } 9504 * * * * * 9505 * 9506 * If we were to balance group-wise we'd place two tasks in the first group and 9507 * two tasks in the second group. Clearly this is undesired as it will overload 9508 * cpu 3 and leave one of the CPUs in the second group unused. 9509 * 9510 * The current solution to this issue is detecting the skew in the first group 9511 * by noticing the lower domain failed to reach balance and had difficulty 9512 * moving tasks due to affinity constraints. 9513 * 9514 * When this is so detected; this group becomes a candidate for busiest; see 9515 * update_sd_pick_busiest(). And calculate_imbalance() and 9516 * find_busiest_group() avoid some of the usual balance conditions to allow it 9517 * to create an effective group imbalance. 9518 * 9519 * This is a somewhat tricky proposition since the next run might not find the 9520 * group imbalance and decide the groups need to be balanced again. A most 9521 * subtle and fragile situation. 9522 */ 9523 9524 static inline int sg_imbalanced(struct sched_group *group) 9525 { 9526 return group->sgc->imbalance; 9527 } 9528 9529 /* 9530 * group_has_capacity returns true if the group has spare capacity that could 9531 * be used by some tasks. 9532 * We consider that a group has spare capacity if the number of task is 9533 * smaller than the number of CPUs or if the utilization is lower than the 9534 * available capacity for CFS tasks. 9535 * For the latter, we use a threshold to stabilize the state, to take into 9536 * account the variance of the tasks' load and to return true if the available 9537 * capacity in meaningful for the load balancer. 9538 * As an example, an available capacity of 1% can appear but it doesn't make 9539 * any benefit for the load balance. 9540 */ 9541 static inline bool 9542 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9543 { 9544 if (sgs->sum_nr_running < sgs->group_weight) 9545 return true; 9546 9547 if ((sgs->group_capacity * imbalance_pct) < 9548 (sgs->group_runnable * 100)) 9549 return false; 9550 9551 if ((sgs->group_capacity * 100) > 9552 (sgs->group_util * imbalance_pct)) 9553 return true; 9554 9555 return false; 9556 } 9557 9558 /* 9559 * group_is_overloaded returns true if the group has more tasks than it can 9560 * handle. 9561 * group_is_overloaded is not equals to !group_has_capacity because a group 9562 * with the exact right number of tasks, has no more spare capacity but is not 9563 * overloaded so both group_has_capacity and group_is_overloaded return 9564 * false. 9565 */ 9566 static inline bool 9567 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9568 { 9569 if (sgs->sum_nr_running <= sgs->group_weight) 9570 return false; 9571 9572 if ((sgs->group_capacity * 100) < 9573 (sgs->group_util * imbalance_pct)) 9574 return true; 9575 9576 if ((sgs->group_capacity * imbalance_pct) < 9577 (sgs->group_runnable * 100)) 9578 return true; 9579 9580 return false; 9581 } 9582 9583 static inline enum 9584 group_type group_classify(unsigned int imbalance_pct, 9585 struct sched_group *group, 9586 struct sg_lb_stats *sgs) 9587 { 9588 if (group_is_overloaded(imbalance_pct, sgs)) 9589 return group_overloaded; 9590 9591 if (sg_imbalanced(group)) 9592 return group_imbalanced; 9593 9594 if (sgs->group_asym_packing) 9595 return group_asym_packing; 9596 9597 if (sgs->group_smt_balance) 9598 return group_smt_balance; 9599 9600 if (sgs->group_misfit_task_load) 9601 return group_misfit_task; 9602 9603 if (!group_has_capacity(imbalance_pct, sgs)) 9604 return group_fully_busy; 9605 9606 return group_has_spare; 9607 } 9608 9609 /** 9610 * sched_use_asym_prio - Check whether asym_packing priority must be used 9611 * @sd: The scheduling domain of the load balancing 9612 * @cpu: A CPU 9613 * 9614 * Always use CPU priority when balancing load between SMT siblings. When 9615 * balancing load between cores, it is not sufficient that @cpu is idle. Only 9616 * use CPU priority if the whole core is idle. 9617 * 9618 * Returns: True if the priority of @cpu must be followed. False otherwise. 9619 */ 9620 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 9621 { 9622 if (!sched_smt_active()) 9623 return true; 9624 9625 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 9626 } 9627 9628 /** 9629 * sched_asym - Check if the destination CPU can do asym_packing load balance 9630 * @env: The load balancing environment 9631 * @sds: Load-balancing data with statistics of the local group 9632 * @sgs: Load-balancing statistics of the candidate busiest group 9633 * @group: The candidate busiest group 9634 * 9635 * @env::dst_cpu can do asym_packing if it has higher priority than the 9636 * preferred CPU of @group. 9637 * 9638 * SMT is a special case. If we are balancing load between cores, @env::dst_cpu 9639 * can do asym_packing balance only if all its SMT siblings are idle. Also, it 9640 * can only do it if @group is an SMT group and has exactly on busy CPU. Larger 9641 * imbalances in the number of CPUS are dealt with in find_busiest_group(). 9642 * 9643 * If we are balancing load within an SMT core, or at DIE domain level, always 9644 * proceed. 9645 * 9646 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 9647 * otherwise. 9648 */ 9649 static inline bool 9650 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 9651 struct sched_group *group) 9652 { 9653 /* Ensure that the whole local core is idle, if applicable. */ 9654 if (!sched_use_asym_prio(env->sd, env->dst_cpu)) 9655 return false; 9656 9657 /* 9658 * CPU priorities does not make sense for SMT cores with more than one 9659 * busy sibling. 9660 */ 9661 if (group->flags & SD_SHARE_CPUCAPACITY) { 9662 if (sgs->group_weight - sgs->idle_cpus != 1) 9663 return false; 9664 } 9665 9666 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 9667 } 9668 9669 /* One group has more than one SMT CPU while the other group does not */ 9670 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 9671 struct sched_group *sg2) 9672 { 9673 if (!sg1 || !sg2) 9674 return false; 9675 9676 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 9677 (sg2->flags & SD_SHARE_CPUCAPACITY); 9678 } 9679 9680 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 9681 struct sched_group *group) 9682 { 9683 if (env->idle == CPU_NOT_IDLE) 9684 return false; 9685 9686 /* 9687 * For SMT source group, it is better to move a task 9688 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 9689 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 9690 * will not be on. 9691 */ 9692 if (group->flags & SD_SHARE_CPUCAPACITY && 9693 sgs->sum_h_nr_running > 1) 9694 return true; 9695 9696 return false; 9697 } 9698 9699 static inline long sibling_imbalance(struct lb_env *env, 9700 struct sd_lb_stats *sds, 9701 struct sg_lb_stats *busiest, 9702 struct sg_lb_stats *local) 9703 { 9704 int ncores_busiest, ncores_local; 9705 long imbalance; 9706 9707 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running) 9708 return 0; 9709 9710 ncores_busiest = sds->busiest->cores; 9711 ncores_local = sds->local->cores; 9712 9713 if (ncores_busiest == ncores_local) { 9714 imbalance = busiest->sum_nr_running; 9715 lsub_positive(&imbalance, local->sum_nr_running); 9716 return imbalance; 9717 } 9718 9719 /* Balance such that nr_running/ncores ratio are same on both groups */ 9720 imbalance = ncores_local * busiest->sum_nr_running; 9721 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 9722 /* Normalize imbalance and do rounding on normalization */ 9723 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 9724 imbalance /= ncores_local + ncores_busiest; 9725 9726 /* Take advantage of resource in an empty sched group */ 9727 if (imbalance <= 1 && local->sum_nr_running == 0 && 9728 busiest->sum_nr_running > 1) 9729 imbalance = 2; 9730 9731 return imbalance; 9732 } 9733 9734 static inline bool 9735 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9736 { 9737 /* 9738 * When there is more than 1 task, the group_overloaded case already 9739 * takes care of cpu with reduced capacity 9740 */ 9741 if (rq->cfs.h_nr_running != 1) 9742 return false; 9743 9744 return check_cpu_capacity(rq, sd); 9745 } 9746 9747 /** 9748 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9749 * @env: The load balancing environment. 9750 * @sds: Load-balancing data with statistics of the local group. 9751 * @group: sched_group whose statistics are to be updated. 9752 * @sgs: variable to hold the statistics for this group. 9753 * @sg_status: Holds flag indicating the status of the sched_group 9754 */ 9755 static inline void update_sg_lb_stats(struct lb_env *env, 9756 struct sd_lb_stats *sds, 9757 struct sched_group *group, 9758 struct sg_lb_stats *sgs, 9759 int *sg_status) 9760 { 9761 int i, nr_running, local_group; 9762 9763 memset(sgs, 0, sizeof(*sgs)); 9764 9765 local_group = group == sds->local; 9766 9767 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9768 struct rq *rq = cpu_rq(i); 9769 unsigned long load = cpu_load(rq); 9770 9771 sgs->group_load += load; 9772 sgs->group_util += cpu_util_cfs(i); 9773 sgs->group_runnable += cpu_runnable(rq); 9774 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9775 9776 nr_running = rq->nr_running; 9777 sgs->sum_nr_running += nr_running; 9778 9779 if (nr_running > 1) 9780 *sg_status |= SG_OVERLOAD; 9781 9782 if (cpu_overutilized(i)) 9783 *sg_status |= SG_OVERUTILIZED; 9784 9785 #ifdef CONFIG_NUMA_BALANCING 9786 sgs->nr_numa_running += rq->nr_numa_running; 9787 sgs->nr_preferred_running += rq->nr_preferred_running; 9788 #endif 9789 /* 9790 * No need to call idle_cpu() if nr_running is not 0 9791 */ 9792 if (!nr_running && idle_cpu(i)) { 9793 sgs->idle_cpus++; 9794 /* Idle cpu can't have misfit task */ 9795 continue; 9796 } 9797 9798 if (local_group) 9799 continue; 9800 9801 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9802 /* Check for a misfit task on the cpu */ 9803 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9804 sgs->group_misfit_task_load = rq->misfit_task_load; 9805 *sg_status |= SG_OVERLOAD; 9806 } 9807 } else if ((env->idle != CPU_NOT_IDLE) && 9808 sched_reduced_capacity(rq, env->sd)) { 9809 /* Check for a task running on a CPU with reduced capacity */ 9810 if (sgs->group_misfit_task_load < load) 9811 sgs->group_misfit_task_load = load; 9812 } 9813 } 9814 9815 sgs->group_capacity = group->sgc->capacity; 9816 9817 sgs->group_weight = group->group_weight; 9818 9819 /* Check if dst CPU is idle and preferred to this group */ 9820 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 9821 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9822 sched_asym(env, sds, sgs, group)) { 9823 sgs->group_asym_packing = 1; 9824 } 9825 9826 /* Check for loaded SMT group to be balanced to dst CPU */ 9827 if (!local_group && smt_balance(env, sgs, group)) 9828 sgs->group_smt_balance = 1; 9829 9830 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9831 9832 /* Computing avg_load makes sense only when group is overloaded */ 9833 if (sgs->group_type == group_overloaded) 9834 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9835 sgs->group_capacity; 9836 } 9837 9838 /** 9839 * update_sd_pick_busiest - return 1 on busiest group 9840 * @env: The load balancing environment. 9841 * @sds: sched_domain statistics 9842 * @sg: sched_group candidate to be checked for being the busiest 9843 * @sgs: sched_group statistics 9844 * 9845 * Determine if @sg is a busier group than the previously selected 9846 * busiest group. 9847 * 9848 * Return: %true if @sg is a busier group than the previously selected 9849 * busiest group. %false otherwise. 9850 */ 9851 static bool update_sd_pick_busiest(struct lb_env *env, 9852 struct sd_lb_stats *sds, 9853 struct sched_group *sg, 9854 struct sg_lb_stats *sgs) 9855 { 9856 struct sg_lb_stats *busiest = &sds->busiest_stat; 9857 9858 /* Make sure that there is at least one task to pull */ 9859 if (!sgs->sum_h_nr_running) 9860 return false; 9861 9862 /* 9863 * Don't try to pull misfit tasks we can't help. 9864 * We can use max_capacity here as reduction in capacity on some 9865 * CPUs in the group should either be possible to resolve 9866 * internally or be covered by avg_load imbalance (eventually). 9867 */ 9868 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9869 (sgs->group_type == group_misfit_task) && 9870 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9871 sds->local_stat.group_type != group_has_spare)) 9872 return false; 9873 9874 if (sgs->group_type > busiest->group_type) 9875 return true; 9876 9877 if (sgs->group_type < busiest->group_type) 9878 return false; 9879 9880 /* 9881 * The candidate and the current busiest group are the same type of 9882 * group. Let check which one is the busiest according to the type. 9883 */ 9884 9885 switch (sgs->group_type) { 9886 case group_overloaded: 9887 /* Select the overloaded group with highest avg_load. */ 9888 if (sgs->avg_load <= busiest->avg_load) 9889 return false; 9890 break; 9891 9892 case group_imbalanced: 9893 /* 9894 * Select the 1st imbalanced group as we don't have any way to 9895 * choose one more than another. 9896 */ 9897 return false; 9898 9899 case group_asym_packing: 9900 /* Prefer to move from lowest priority CPU's work */ 9901 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 9902 return false; 9903 break; 9904 9905 case group_misfit_task: 9906 /* 9907 * If we have more than one misfit sg go with the biggest 9908 * misfit. 9909 */ 9910 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 9911 return false; 9912 break; 9913 9914 case group_smt_balance: 9915 /* 9916 * Check if we have spare CPUs on either SMT group to 9917 * choose has spare or fully busy handling. 9918 */ 9919 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 9920 goto has_spare; 9921 9922 fallthrough; 9923 9924 case group_fully_busy: 9925 /* 9926 * Select the fully busy group with highest avg_load. In 9927 * theory, there is no need to pull task from such kind of 9928 * group because tasks have all compute capacity that they need 9929 * but we can still improve the overall throughput by reducing 9930 * contention when accessing shared HW resources. 9931 * 9932 * XXX for now avg_load is not computed and always 0 so we 9933 * select the 1st one, except if @sg is composed of SMT 9934 * siblings. 9935 */ 9936 9937 if (sgs->avg_load < busiest->avg_load) 9938 return false; 9939 9940 if (sgs->avg_load == busiest->avg_load) { 9941 /* 9942 * SMT sched groups need more help than non-SMT groups. 9943 * If @sg happens to also be SMT, either choice is good. 9944 */ 9945 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 9946 return false; 9947 } 9948 9949 break; 9950 9951 case group_has_spare: 9952 /* 9953 * Do not pick sg with SMT CPUs over sg with pure CPUs, 9954 * as we do not want to pull task off SMT core with one task 9955 * and make the core idle. 9956 */ 9957 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 9958 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 9959 return false; 9960 else 9961 return true; 9962 } 9963 has_spare: 9964 9965 /* 9966 * Select not overloaded group with lowest number of idle cpus 9967 * and highest number of running tasks. We could also compare 9968 * the spare capacity which is more stable but it can end up 9969 * that the group has less spare capacity but finally more idle 9970 * CPUs which means less opportunity to pull tasks. 9971 */ 9972 if (sgs->idle_cpus > busiest->idle_cpus) 9973 return false; 9974 else if ((sgs->idle_cpus == busiest->idle_cpus) && 9975 (sgs->sum_nr_running <= busiest->sum_nr_running)) 9976 return false; 9977 9978 break; 9979 } 9980 9981 /* 9982 * Candidate sg has no more than one task per CPU and has higher 9983 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 9984 * throughput. Maximize throughput, power/energy consequences are not 9985 * considered. 9986 */ 9987 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9988 (sgs->group_type <= group_fully_busy) && 9989 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 9990 return false; 9991 9992 return true; 9993 } 9994 9995 #ifdef CONFIG_NUMA_BALANCING 9996 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9997 { 9998 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 9999 return regular; 10000 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10001 return remote; 10002 return all; 10003 } 10004 10005 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10006 { 10007 if (rq->nr_running > rq->nr_numa_running) 10008 return regular; 10009 if (rq->nr_running > rq->nr_preferred_running) 10010 return remote; 10011 return all; 10012 } 10013 #else 10014 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10015 { 10016 return all; 10017 } 10018 10019 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10020 { 10021 return regular; 10022 } 10023 #endif /* CONFIG_NUMA_BALANCING */ 10024 10025 10026 struct sg_lb_stats; 10027 10028 /* 10029 * task_running_on_cpu - return 1 if @p is running on @cpu. 10030 */ 10031 10032 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10033 { 10034 /* Task has no contribution or is new */ 10035 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10036 return 0; 10037 10038 if (task_on_rq_queued(p)) 10039 return 1; 10040 10041 return 0; 10042 } 10043 10044 /** 10045 * idle_cpu_without - would a given CPU be idle without p ? 10046 * @cpu: the processor on which idleness is tested. 10047 * @p: task which should be ignored. 10048 * 10049 * Return: 1 if the CPU would be idle. 0 otherwise. 10050 */ 10051 static int idle_cpu_without(int cpu, struct task_struct *p) 10052 { 10053 struct rq *rq = cpu_rq(cpu); 10054 10055 if (rq->curr != rq->idle && rq->curr != p) 10056 return 0; 10057 10058 /* 10059 * rq->nr_running can't be used but an updated version without the 10060 * impact of p on cpu must be used instead. The updated nr_running 10061 * be computed and tested before calling idle_cpu_without(). 10062 */ 10063 10064 #ifdef CONFIG_SMP 10065 if (rq->ttwu_pending) 10066 return 0; 10067 #endif 10068 10069 return 1; 10070 } 10071 10072 /* 10073 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10074 * @sd: The sched_domain level to look for idlest group. 10075 * @group: sched_group whose statistics are to be updated. 10076 * @sgs: variable to hold the statistics for this group. 10077 * @p: The task for which we look for the idlest group/CPU. 10078 */ 10079 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10080 struct sched_group *group, 10081 struct sg_lb_stats *sgs, 10082 struct task_struct *p) 10083 { 10084 int i, nr_running; 10085 10086 memset(sgs, 0, sizeof(*sgs)); 10087 10088 /* Assume that task can't fit any CPU of the group */ 10089 if (sd->flags & SD_ASYM_CPUCAPACITY) 10090 sgs->group_misfit_task_load = 1; 10091 10092 for_each_cpu(i, sched_group_span(group)) { 10093 struct rq *rq = cpu_rq(i); 10094 unsigned int local; 10095 10096 sgs->group_load += cpu_load_without(rq, p); 10097 sgs->group_util += cpu_util_without(i, p); 10098 sgs->group_runnable += cpu_runnable_without(rq, p); 10099 local = task_running_on_cpu(i, p); 10100 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10101 10102 nr_running = rq->nr_running - local; 10103 sgs->sum_nr_running += nr_running; 10104 10105 /* 10106 * No need to call idle_cpu_without() if nr_running is not 0 10107 */ 10108 if (!nr_running && idle_cpu_without(i, p)) 10109 sgs->idle_cpus++; 10110 10111 /* Check if task fits in the CPU */ 10112 if (sd->flags & SD_ASYM_CPUCAPACITY && 10113 sgs->group_misfit_task_load && 10114 task_fits_cpu(p, i)) 10115 sgs->group_misfit_task_load = 0; 10116 10117 } 10118 10119 sgs->group_capacity = group->sgc->capacity; 10120 10121 sgs->group_weight = group->group_weight; 10122 10123 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10124 10125 /* 10126 * Computing avg_load makes sense only when group is fully busy or 10127 * overloaded 10128 */ 10129 if (sgs->group_type == group_fully_busy || 10130 sgs->group_type == group_overloaded) 10131 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10132 sgs->group_capacity; 10133 } 10134 10135 static bool update_pick_idlest(struct sched_group *idlest, 10136 struct sg_lb_stats *idlest_sgs, 10137 struct sched_group *group, 10138 struct sg_lb_stats *sgs) 10139 { 10140 if (sgs->group_type < idlest_sgs->group_type) 10141 return true; 10142 10143 if (sgs->group_type > idlest_sgs->group_type) 10144 return false; 10145 10146 /* 10147 * The candidate and the current idlest group are the same type of 10148 * group. Let check which one is the idlest according to the type. 10149 */ 10150 10151 switch (sgs->group_type) { 10152 case group_overloaded: 10153 case group_fully_busy: 10154 /* Select the group with lowest avg_load. */ 10155 if (idlest_sgs->avg_load <= sgs->avg_load) 10156 return false; 10157 break; 10158 10159 case group_imbalanced: 10160 case group_asym_packing: 10161 case group_smt_balance: 10162 /* Those types are not used in the slow wakeup path */ 10163 return false; 10164 10165 case group_misfit_task: 10166 /* Select group with the highest max capacity */ 10167 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10168 return false; 10169 break; 10170 10171 case group_has_spare: 10172 /* Select group with most idle CPUs */ 10173 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10174 return false; 10175 10176 /* Select group with lowest group_util */ 10177 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10178 idlest_sgs->group_util <= sgs->group_util) 10179 return false; 10180 10181 break; 10182 } 10183 10184 return true; 10185 } 10186 10187 /* 10188 * find_idlest_group() finds and returns the least busy CPU group within the 10189 * domain. 10190 * 10191 * Assumes p is allowed on at least one CPU in sd. 10192 */ 10193 static struct sched_group * 10194 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10195 { 10196 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10197 struct sg_lb_stats local_sgs, tmp_sgs; 10198 struct sg_lb_stats *sgs; 10199 unsigned long imbalance; 10200 struct sg_lb_stats idlest_sgs = { 10201 .avg_load = UINT_MAX, 10202 .group_type = group_overloaded, 10203 }; 10204 10205 do { 10206 int local_group; 10207 10208 /* Skip over this group if it has no CPUs allowed */ 10209 if (!cpumask_intersects(sched_group_span(group), 10210 p->cpus_ptr)) 10211 continue; 10212 10213 /* Skip over this group if no cookie matched */ 10214 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10215 continue; 10216 10217 local_group = cpumask_test_cpu(this_cpu, 10218 sched_group_span(group)); 10219 10220 if (local_group) { 10221 sgs = &local_sgs; 10222 local = group; 10223 } else { 10224 sgs = &tmp_sgs; 10225 } 10226 10227 update_sg_wakeup_stats(sd, group, sgs, p); 10228 10229 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10230 idlest = group; 10231 idlest_sgs = *sgs; 10232 } 10233 10234 } while (group = group->next, group != sd->groups); 10235 10236 10237 /* There is no idlest group to push tasks to */ 10238 if (!idlest) 10239 return NULL; 10240 10241 /* The local group has been skipped because of CPU affinity */ 10242 if (!local) 10243 return idlest; 10244 10245 /* 10246 * If the local group is idler than the selected idlest group 10247 * don't try and push the task. 10248 */ 10249 if (local_sgs.group_type < idlest_sgs.group_type) 10250 return NULL; 10251 10252 /* 10253 * If the local group is busier than the selected idlest group 10254 * try and push the task. 10255 */ 10256 if (local_sgs.group_type > idlest_sgs.group_type) 10257 return idlest; 10258 10259 switch (local_sgs.group_type) { 10260 case group_overloaded: 10261 case group_fully_busy: 10262 10263 /* Calculate allowed imbalance based on load */ 10264 imbalance = scale_load_down(NICE_0_LOAD) * 10265 (sd->imbalance_pct-100) / 100; 10266 10267 /* 10268 * When comparing groups across NUMA domains, it's possible for 10269 * the local domain to be very lightly loaded relative to the 10270 * remote domains but "imbalance" skews the comparison making 10271 * remote CPUs look much more favourable. When considering 10272 * cross-domain, add imbalance to the load on the remote node 10273 * and consider staying local. 10274 */ 10275 10276 if ((sd->flags & SD_NUMA) && 10277 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10278 return NULL; 10279 10280 /* 10281 * If the local group is less loaded than the selected 10282 * idlest group don't try and push any tasks. 10283 */ 10284 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10285 return NULL; 10286 10287 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10288 return NULL; 10289 break; 10290 10291 case group_imbalanced: 10292 case group_asym_packing: 10293 case group_smt_balance: 10294 /* Those type are not used in the slow wakeup path */ 10295 return NULL; 10296 10297 case group_misfit_task: 10298 /* Select group with the highest max capacity */ 10299 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10300 return NULL; 10301 break; 10302 10303 case group_has_spare: 10304 #ifdef CONFIG_NUMA 10305 if (sd->flags & SD_NUMA) { 10306 int imb_numa_nr = sd->imb_numa_nr; 10307 #ifdef CONFIG_NUMA_BALANCING 10308 int idlest_cpu; 10309 /* 10310 * If there is spare capacity at NUMA, try to select 10311 * the preferred node 10312 */ 10313 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10314 return NULL; 10315 10316 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10317 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10318 return idlest; 10319 #endif /* CONFIG_NUMA_BALANCING */ 10320 /* 10321 * Otherwise, keep the task close to the wakeup source 10322 * and improve locality if the number of running tasks 10323 * would remain below threshold where an imbalance is 10324 * allowed while accounting for the possibility the 10325 * task is pinned to a subset of CPUs. If there is a 10326 * real need of migration, periodic load balance will 10327 * take care of it. 10328 */ 10329 if (p->nr_cpus_allowed != NR_CPUS) { 10330 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10331 10332 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10333 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10334 } 10335 10336 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10337 if (!adjust_numa_imbalance(imbalance, 10338 local_sgs.sum_nr_running + 1, 10339 imb_numa_nr)) { 10340 return NULL; 10341 } 10342 } 10343 #endif /* CONFIG_NUMA */ 10344 10345 /* 10346 * Select group with highest number of idle CPUs. We could also 10347 * compare the utilization which is more stable but it can end 10348 * up that the group has less spare capacity but finally more 10349 * idle CPUs which means more opportunity to run task. 10350 */ 10351 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10352 return NULL; 10353 break; 10354 } 10355 10356 return idlest; 10357 } 10358 10359 static void update_idle_cpu_scan(struct lb_env *env, 10360 unsigned long sum_util) 10361 { 10362 struct sched_domain_shared *sd_share; 10363 int llc_weight, pct; 10364 u64 x, y, tmp; 10365 /* 10366 * Update the number of CPUs to scan in LLC domain, which could 10367 * be used as a hint in select_idle_cpu(). The update of sd_share 10368 * could be expensive because it is within a shared cache line. 10369 * So the write of this hint only occurs during periodic load 10370 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10371 * can fire way more frequently than the former. 10372 */ 10373 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10374 return; 10375 10376 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10377 if (env->sd->span_weight != llc_weight) 10378 return; 10379 10380 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10381 if (!sd_share) 10382 return; 10383 10384 /* 10385 * The number of CPUs to search drops as sum_util increases, when 10386 * sum_util hits 85% or above, the scan stops. 10387 * The reason to choose 85% as the threshold is because this is the 10388 * imbalance_pct(117) when a LLC sched group is overloaded. 10389 * 10390 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10391 * and y'= y / SCHED_CAPACITY_SCALE 10392 * 10393 * x is the ratio of sum_util compared to the CPU capacity: 10394 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10395 * y' is the ratio of CPUs to be scanned in the LLC domain, 10396 * and the number of CPUs to scan is calculated by: 10397 * 10398 * nr_scan = llc_weight * y' [2] 10399 * 10400 * When x hits the threshold of overloaded, AKA, when 10401 * x = 100 / pct, y drops to 0. According to [1], 10402 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10403 * 10404 * Scale x by SCHED_CAPACITY_SCALE: 10405 * x' = sum_util / llc_weight; [3] 10406 * 10407 * and finally [1] becomes: 10408 * y = SCHED_CAPACITY_SCALE - 10409 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10410 * 10411 */ 10412 /* equation [3] */ 10413 x = sum_util; 10414 do_div(x, llc_weight); 10415 10416 /* equation [4] */ 10417 pct = env->sd->imbalance_pct; 10418 tmp = x * x * pct * pct; 10419 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10420 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10421 y = SCHED_CAPACITY_SCALE - tmp; 10422 10423 /* equation [2] */ 10424 y *= llc_weight; 10425 do_div(y, SCHED_CAPACITY_SCALE); 10426 if ((int)y != sd_share->nr_idle_scan) 10427 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10428 } 10429 10430 /** 10431 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10432 * @env: The load balancing environment. 10433 * @sds: variable to hold the statistics for this sched_domain. 10434 */ 10435 10436 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10437 { 10438 struct sched_group *sg = env->sd->groups; 10439 struct sg_lb_stats *local = &sds->local_stat; 10440 struct sg_lb_stats tmp_sgs; 10441 unsigned long sum_util = 0; 10442 int sg_status = 0; 10443 10444 do { 10445 struct sg_lb_stats *sgs = &tmp_sgs; 10446 int local_group; 10447 10448 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10449 if (local_group) { 10450 sds->local = sg; 10451 sgs = local; 10452 10453 if (env->idle != CPU_NEWLY_IDLE || 10454 time_after_eq(jiffies, sg->sgc->next_update)) 10455 update_group_capacity(env->sd, env->dst_cpu); 10456 } 10457 10458 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 10459 10460 if (local_group) 10461 goto next_group; 10462 10463 10464 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 10465 sds->busiest = sg; 10466 sds->busiest_stat = *sgs; 10467 } 10468 10469 next_group: 10470 /* Now, start updating sd_lb_stats */ 10471 sds->total_load += sgs->group_load; 10472 sds->total_capacity += sgs->group_capacity; 10473 10474 sum_util += sgs->group_util; 10475 sg = sg->next; 10476 } while (sg != env->sd->groups); 10477 10478 /* 10479 * Indicate that the child domain of the busiest group prefers tasks 10480 * go to a child's sibling domains first. NB the flags of a sched group 10481 * are those of the child domain. 10482 */ 10483 if (sds->busiest) 10484 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10485 10486 10487 if (env->sd->flags & SD_NUMA) 10488 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10489 10490 if (!env->sd->parent) { 10491 struct root_domain *rd = env->dst_rq->rd; 10492 10493 /* update overload indicator if we are at root domain */ 10494 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 10495 10496 /* Update over-utilization (tipping point, U >= 0) indicator */ 10497 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 10498 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 10499 } else if (sg_status & SG_OVERUTILIZED) { 10500 struct root_domain *rd = env->dst_rq->rd; 10501 10502 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 10503 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 10504 } 10505 10506 update_idle_cpu_scan(env, sum_util); 10507 } 10508 10509 /** 10510 * calculate_imbalance - Calculate the amount of imbalance present within the 10511 * groups of a given sched_domain during load balance. 10512 * @env: load balance environment 10513 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10514 */ 10515 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10516 { 10517 struct sg_lb_stats *local, *busiest; 10518 10519 local = &sds->local_stat; 10520 busiest = &sds->busiest_stat; 10521 10522 if (busiest->group_type == group_misfit_task) { 10523 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10524 /* Set imbalance to allow misfit tasks to be balanced. */ 10525 env->migration_type = migrate_misfit; 10526 env->imbalance = 1; 10527 } else { 10528 /* 10529 * Set load imbalance to allow moving task from cpu 10530 * with reduced capacity. 10531 */ 10532 env->migration_type = migrate_load; 10533 env->imbalance = busiest->group_misfit_task_load; 10534 } 10535 return; 10536 } 10537 10538 if (busiest->group_type == group_asym_packing) { 10539 /* 10540 * In case of asym capacity, we will try to migrate all load to 10541 * the preferred CPU. 10542 */ 10543 env->migration_type = migrate_task; 10544 env->imbalance = busiest->sum_h_nr_running; 10545 return; 10546 } 10547 10548 if (busiest->group_type == group_smt_balance) { 10549 /* Reduce number of tasks sharing CPU capacity */ 10550 env->migration_type = migrate_task; 10551 env->imbalance = 1; 10552 return; 10553 } 10554 10555 if (busiest->group_type == group_imbalanced) { 10556 /* 10557 * In the group_imb case we cannot rely on group-wide averages 10558 * to ensure CPU-load equilibrium, try to move any task to fix 10559 * the imbalance. The next load balance will take care of 10560 * balancing back the system. 10561 */ 10562 env->migration_type = migrate_task; 10563 env->imbalance = 1; 10564 return; 10565 } 10566 10567 /* 10568 * Try to use spare capacity of local group without overloading it or 10569 * emptying busiest. 10570 */ 10571 if (local->group_type == group_has_spare) { 10572 if ((busiest->group_type > group_fully_busy) && 10573 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 10574 /* 10575 * If busiest is overloaded, try to fill spare 10576 * capacity. This might end up creating spare capacity 10577 * in busiest or busiest still being overloaded but 10578 * there is no simple way to directly compute the 10579 * amount of load to migrate in order to balance the 10580 * system. 10581 */ 10582 env->migration_type = migrate_util; 10583 env->imbalance = max(local->group_capacity, local->group_util) - 10584 local->group_util; 10585 10586 /* 10587 * In some cases, the group's utilization is max or even 10588 * higher than capacity because of migrations but the 10589 * local CPU is (newly) idle. There is at least one 10590 * waiting task in this overloaded busiest group. Let's 10591 * try to pull it. 10592 */ 10593 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 10594 env->migration_type = migrate_task; 10595 env->imbalance = 1; 10596 } 10597 10598 return; 10599 } 10600 10601 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10602 /* 10603 * When prefer sibling, evenly spread running tasks on 10604 * groups. 10605 */ 10606 env->migration_type = migrate_task; 10607 env->imbalance = sibling_imbalance(env, sds, busiest, local); 10608 } else { 10609 10610 /* 10611 * If there is no overload, we just want to even the number of 10612 * idle cpus. 10613 */ 10614 env->migration_type = migrate_task; 10615 env->imbalance = max_t(long, 0, 10616 (local->idle_cpus - busiest->idle_cpus)); 10617 } 10618 10619 #ifdef CONFIG_NUMA 10620 /* Consider allowing a small imbalance between NUMA groups */ 10621 if (env->sd->flags & SD_NUMA) { 10622 env->imbalance = adjust_numa_imbalance(env->imbalance, 10623 local->sum_nr_running + 1, 10624 env->sd->imb_numa_nr); 10625 } 10626 #endif 10627 10628 /* Number of tasks to move to restore balance */ 10629 env->imbalance >>= 1; 10630 10631 return; 10632 } 10633 10634 /* 10635 * Local is fully busy but has to take more load to relieve the 10636 * busiest group 10637 */ 10638 if (local->group_type < group_overloaded) { 10639 /* 10640 * Local will become overloaded so the avg_load metrics are 10641 * finally needed. 10642 */ 10643 10644 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10645 local->group_capacity; 10646 10647 /* 10648 * If the local group is more loaded than the selected 10649 * busiest group don't try to pull any tasks. 10650 */ 10651 if (local->avg_load >= busiest->avg_load) { 10652 env->imbalance = 0; 10653 return; 10654 } 10655 10656 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10657 sds->total_capacity; 10658 10659 /* 10660 * If the local group is more loaded than the average system 10661 * load, don't try to pull any tasks. 10662 */ 10663 if (local->avg_load >= sds->avg_load) { 10664 env->imbalance = 0; 10665 return; 10666 } 10667 10668 } 10669 10670 /* 10671 * Both group are or will become overloaded and we're trying to get all 10672 * the CPUs to the average_load, so we don't want to push ourselves 10673 * above the average load, nor do we wish to reduce the max loaded CPU 10674 * below the average load. At the same time, we also don't want to 10675 * reduce the group load below the group capacity. Thus we look for 10676 * the minimum possible imbalance. 10677 */ 10678 env->migration_type = migrate_load; 10679 env->imbalance = min( 10680 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10681 (sds->avg_load - local->avg_load) * local->group_capacity 10682 ) / SCHED_CAPACITY_SCALE; 10683 } 10684 10685 /******* find_busiest_group() helpers end here *********************/ 10686 10687 /* 10688 * Decision matrix according to the local and busiest group type: 10689 * 10690 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10691 * has_spare nr_idle balanced N/A N/A balanced balanced 10692 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10693 * misfit_task force N/A N/A N/A N/A N/A 10694 * asym_packing force force N/A N/A force force 10695 * imbalanced force force N/A N/A force force 10696 * overloaded force force N/A N/A force avg_load 10697 * 10698 * N/A : Not Applicable because already filtered while updating 10699 * statistics. 10700 * balanced : The system is balanced for these 2 groups. 10701 * force : Calculate the imbalance as load migration is probably needed. 10702 * avg_load : Only if imbalance is significant enough. 10703 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10704 * different in groups. 10705 */ 10706 10707 /** 10708 * find_busiest_group - Returns the busiest group within the sched_domain 10709 * if there is an imbalance. 10710 * @env: The load balancing environment. 10711 * 10712 * Also calculates the amount of runnable load which should be moved 10713 * to restore balance. 10714 * 10715 * Return: - The busiest group if imbalance exists. 10716 */ 10717 static struct sched_group *find_busiest_group(struct lb_env *env) 10718 { 10719 struct sg_lb_stats *local, *busiest; 10720 struct sd_lb_stats sds; 10721 10722 init_sd_lb_stats(&sds); 10723 10724 /* 10725 * Compute the various statistics relevant for load balancing at 10726 * this level. 10727 */ 10728 update_sd_lb_stats(env, &sds); 10729 10730 /* There is no busy sibling group to pull tasks from */ 10731 if (!sds.busiest) 10732 goto out_balanced; 10733 10734 busiest = &sds.busiest_stat; 10735 10736 /* Misfit tasks should be dealt with regardless of the avg load */ 10737 if (busiest->group_type == group_misfit_task) 10738 goto force_balance; 10739 10740 if (sched_energy_enabled()) { 10741 struct root_domain *rd = env->dst_rq->rd; 10742 10743 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10744 goto out_balanced; 10745 } 10746 10747 /* ASYM feature bypasses nice load balance check */ 10748 if (busiest->group_type == group_asym_packing) 10749 goto force_balance; 10750 10751 /* 10752 * If the busiest group is imbalanced the below checks don't 10753 * work because they assume all things are equal, which typically 10754 * isn't true due to cpus_ptr constraints and the like. 10755 */ 10756 if (busiest->group_type == group_imbalanced) 10757 goto force_balance; 10758 10759 local = &sds.local_stat; 10760 /* 10761 * If the local group is busier than the selected busiest group 10762 * don't try and pull any tasks. 10763 */ 10764 if (local->group_type > busiest->group_type) 10765 goto out_balanced; 10766 10767 /* 10768 * When groups are overloaded, use the avg_load to ensure fairness 10769 * between tasks. 10770 */ 10771 if (local->group_type == group_overloaded) { 10772 /* 10773 * If the local group is more loaded than the selected 10774 * busiest group don't try to pull any tasks. 10775 */ 10776 if (local->avg_load >= busiest->avg_load) 10777 goto out_balanced; 10778 10779 /* XXX broken for overlapping NUMA groups */ 10780 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10781 sds.total_capacity; 10782 10783 /* 10784 * Don't pull any tasks if this group is already above the 10785 * domain average load. 10786 */ 10787 if (local->avg_load >= sds.avg_load) 10788 goto out_balanced; 10789 10790 /* 10791 * If the busiest group is more loaded, use imbalance_pct to be 10792 * conservative. 10793 */ 10794 if (100 * busiest->avg_load <= 10795 env->sd->imbalance_pct * local->avg_load) 10796 goto out_balanced; 10797 } 10798 10799 /* 10800 * Try to move all excess tasks to a sibling domain of the busiest 10801 * group's child domain. 10802 */ 10803 if (sds.prefer_sibling && local->group_type == group_has_spare && 10804 sibling_imbalance(env, &sds, busiest, local) > 1) 10805 goto force_balance; 10806 10807 if (busiest->group_type != group_overloaded) { 10808 if (env->idle == CPU_NOT_IDLE) { 10809 /* 10810 * If the busiest group is not overloaded (and as a 10811 * result the local one too) but this CPU is already 10812 * busy, let another idle CPU try to pull task. 10813 */ 10814 goto out_balanced; 10815 } 10816 10817 if (busiest->group_type == group_smt_balance && 10818 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 10819 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 10820 goto force_balance; 10821 } 10822 10823 if (busiest->group_weight > 1 && 10824 local->idle_cpus <= (busiest->idle_cpus + 1)) { 10825 /* 10826 * If the busiest group is not overloaded 10827 * and there is no imbalance between this and busiest 10828 * group wrt idle CPUs, it is balanced. The imbalance 10829 * becomes significant if the diff is greater than 1 10830 * otherwise we might end up to just move the imbalance 10831 * on another group. Of course this applies only if 10832 * there is more than 1 CPU per group. 10833 */ 10834 goto out_balanced; 10835 } 10836 10837 if (busiest->sum_h_nr_running == 1) { 10838 /* 10839 * busiest doesn't have any tasks waiting to run 10840 */ 10841 goto out_balanced; 10842 } 10843 } 10844 10845 force_balance: 10846 /* Looks like there is an imbalance. Compute it */ 10847 calculate_imbalance(env, &sds); 10848 return env->imbalance ? sds.busiest : NULL; 10849 10850 out_balanced: 10851 env->imbalance = 0; 10852 return NULL; 10853 } 10854 10855 /* 10856 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10857 */ 10858 static struct rq *find_busiest_queue(struct lb_env *env, 10859 struct sched_group *group) 10860 { 10861 struct rq *busiest = NULL, *rq; 10862 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10863 unsigned int busiest_nr = 0; 10864 int i; 10865 10866 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10867 unsigned long capacity, load, util; 10868 unsigned int nr_running; 10869 enum fbq_type rt; 10870 10871 rq = cpu_rq(i); 10872 rt = fbq_classify_rq(rq); 10873 10874 /* 10875 * We classify groups/runqueues into three groups: 10876 * - regular: there are !numa tasks 10877 * - remote: there are numa tasks that run on the 'wrong' node 10878 * - all: there is no distinction 10879 * 10880 * In order to avoid migrating ideally placed numa tasks, 10881 * ignore those when there's better options. 10882 * 10883 * If we ignore the actual busiest queue to migrate another 10884 * task, the next balance pass can still reduce the busiest 10885 * queue by moving tasks around inside the node. 10886 * 10887 * If we cannot move enough load due to this classification 10888 * the next pass will adjust the group classification and 10889 * allow migration of more tasks. 10890 * 10891 * Both cases only affect the total convergence complexity. 10892 */ 10893 if (rt > env->fbq_type) 10894 continue; 10895 10896 nr_running = rq->cfs.h_nr_running; 10897 if (!nr_running) 10898 continue; 10899 10900 capacity = capacity_of(i); 10901 10902 /* 10903 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 10904 * eventually lead to active_balancing high->low capacity. 10905 * Higher per-CPU capacity is considered better than balancing 10906 * average load. 10907 */ 10908 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 10909 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 10910 nr_running == 1) 10911 continue; 10912 10913 /* 10914 * Make sure we only pull tasks from a CPU of lower priority 10915 * when balancing between SMT siblings. 10916 * 10917 * If balancing between cores, let lower priority CPUs help 10918 * SMT cores with more than one busy sibling. 10919 */ 10920 if ((env->sd->flags & SD_ASYM_PACKING) && 10921 sched_use_asym_prio(env->sd, i) && 10922 sched_asym_prefer(i, env->dst_cpu) && 10923 nr_running == 1) 10924 continue; 10925 10926 switch (env->migration_type) { 10927 case migrate_load: 10928 /* 10929 * When comparing with load imbalance, use cpu_load() 10930 * which is not scaled with the CPU capacity. 10931 */ 10932 load = cpu_load(rq); 10933 10934 if (nr_running == 1 && load > env->imbalance && 10935 !check_cpu_capacity(rq, env->sd)) 10936 break; 10937 10938 /* 10939 * For the load comparisons with the other CPUs, 10940 * consider the cpu_load() scaled with the CPU 10941 * capacity, so that the load can be moved away 10942 * from the CPU that is potentially running at a 10943 * lower capacity. 10944 * 10945 * Thus we're looking for max(load_i / capacity_i), 10946 * crosswise multiplication to rid ourselves of the 10947 * division works out to: 10948 * load_i * capacity_j > load_j * capacity_i; 10949 * where j is our previous maximum. 10950 */ 10951 if (load * busiest_capacity > busiest_load * capacity) { 10952 busiest_load = load; 10953 busiest_capacity = capacity; 10954 busiest = rq; 10955 } 10956 break; 10957 10958 case migrate_util: 10959 util = cpu_util_cfs_boost(i); 10960 10961 /* 10962 * Don't try to pull utilization from a CPU with one 10963 * running task. Whatever its utilization, we will fail 10964 * detach the task. 10965 */ 10966 if (nr_running <= 1) 10967 continue; 10968 10969 if (busiest_util < util) { 10970 busiest_util = util; 10971 busiest = rq; 10972 } 10973 break; 10974 10975 case migrate_task: 10976 if (busiest_nr < nr_running) { 10977 busiest_nr = nr_running; 10978 busiest = rq; 10979 } 10980 break; 10981 10982 case migrate_misfit: 10983 /* 10984 * For ASYM_CPUCAPACITY domains with misfit tasks we 10985 * simply seek the "biggest" misfit task. 10986 */ 10987 if (rq->misfit_task_load > busiest_load) { 10988 busiest_load = rq->misfit_task_load; 10989 busiest = rq; 10990 } 10991 10992 break; 10993 10994 } 10995 } 10996 10997 return busiest; 10998 } 10999 11000 /* 11001 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11002 * so long as it is large enough. 11003 */ 11004 #define MAX_PINNED_INTERVAL 512 11005 11006 static inline bool 11007 asym_active_balance(struct lb_env *env) 11008 { 11009 /* 11010 * ASYM_PACKING needs to force migrate tasks from busy but lower 11011 * priority CPUs in order to pack all tasks in the highest priority 11012 * CPUs. When done between cores, do it only if the whole core if the 11013 * whole core is idle. 11014 * 11015 * If @env::src_cpu is an SMT core with busy siblings, let 11016 * the lower priority @env::dst_cpu help it. Do not follow 11017 * CPU priority. 11018 */ 11019 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 11020 sched_use_asym_prio(env->sd, env->dst_cpu) && 11021 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11022 !sched_use_asym_prio(env->sd, env->src_cpu)); 11023 } 11024 11025 static inline bool 11026 imbalanced_active_balance(struct lb_env *env) 11027 { 11028 struct sched_domain *sd = env->sd; 11029 11030 /* 11031 * The imbalanced case includes the case of pinned tasks preventing a fair 11032 * distribution of the load on the system but also the even distribution of the 11033 * threads on a system with spare capacity 11034 */ 11035 if ((env->migration_type == migrate_task) && 11036 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11037 return 1; 11038 11039 return 0; 11040 } 11041 11042 static int need_active_balance(struct lb_env *env) 11043 { 11044 struct sched_domain *sd = env->sd; 11045 11046 if (asym_active_balance(env)) 11047 return 1; 11048 11049 if (imbalanced_active_balance(env)) 11050 return 1; 11051 11052 /* 11053 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11054 * It's worth migrating the task if the src_cpu's capacity is reduced 11055 * because of other sched_class or IRQs if more capacity stays 11056 * available on dst_cpu. 11057 */ 11058 if ((env->idle != CPU_NOT_IDLE) && 11059 (env->src_rq->cfs.h_nr_running == 1)) { 11060 if ((check_cpu_capacity(env->src_rq, sd)) && 11061 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11062 return 1; 11063 } 11064 11065 if (env->migration_type == migrate_misfit) 11066 return 1; 11067 11068 return 0; 11069 } 11070 11071 static int active_load_balance_cpu_stop(void *data); 11072 11073 static int should_we_balance(struct lb_env *env) 11074 { 11075 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11076 struct sched_group *sg = env->sd->groups; 11077 int cpu, idle_smt = -1; 11078 11079 /* 11080 * Ensure the balancing environment is consistent; can happen 11081 * when the softirq triggers 'during' hotplug. 11082 */ 11083 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11084 return 0; 11085 11086 /* 11087 * In the newly idle case, we will allow all the CPUs 11088 * to do the newly idle load balance. 11089 * 11090 * However, we bail out if we already have tasks or a wakeup pending, 11091 * to optimize wakeup latency. 11092 */ 11093 if (env->idle == CPU_NEWLY_IDLE) { 11094 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11095 return 0; 11096 return 1; 11097 } 11098 11099 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11100 /* Try to find first idle CPU */ 11101 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11102 if (!idle_cpu(cpu)) 11103 continue; 11104 11105 /* 11106 * Don't balance to idle SMT in busy core right away when 11107 * balancing cores, but remember the first idle SMT CPU for 11108 * later consideration. Find CPU on an idle core first. 11109 */ 11110 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11111 if (idle_smt == -1) 11112 idle_smt = cpu; 11113 /* 11114 * If the core is not idle, and first SMT sibling which is 11115 * idle has been found, then its not needed to check other 11116 * SMT siblings for idleness: 11117 */ 11118 #ifdef CONFIG_SCHED_SMT 11119 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11120 #endif 11121 continue; 11122 } 11123 11124 /* 11125 * Are we the first idle core in a non-SMT domain or higher, 11126 * or the first idle CPU in a SMT domain? 11127 */ 11128 return cpu == env->dst_cpu; 11129 } 11130 11131 /* Are we the first idle CPU with busy siblings? */ 11132 if (idle_smt != -1) 11133 return idle_smt == env->dst_cpu; 11134 11135 /* Are we the first CPU of this group ? */ 11136 return group_balance_cpu(sg) == env->dst_cpu; 11137 } 11138 11139 /* 11140 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11141 * tasks if there is an imbalance. 11142 */ 11143 static int load_balance(int this_cpu, struct rq *this_rq, 11144 struct sched_domain *sd, enum cpu_idle_type idle, 11145 int *continue_balancing) 11146 { 11147 int ld_moved, cur_ld_moved, active_balance = 0; 11148 struct sched_domain *sd_parent = sd->parent; 11149 struct sched_group *group; 11150 struct rq *busiest; 11151 struct rq_flags rf; 11152 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11153 struct lb_env env = { 11154 .sd = sd, 11155 .dst_cpu = this_cpu, 11156 .dst_rq = this_rq, 11157 .dst_grpmask = group_balance_mask(sd->groups), 11158 .idle = idle, 11159 .loop_break = SCHED_NR_MIGRATE_BREAK, 11160 .cpus = cpus, 11161 .fbq_type = all, 11162 .tasks = LIST_HEAD_INIT(env.tasks), 11163 }; 11164 11165 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11166 11167 schedstat_inc(sd->lb_count[idle]); 11168 11169 redo: 11170 if (!should_we_balance(&env)) { 11171 *continue_balancing = 0; 11172 goto out_balanced; 11173 } 11174 11175 group = find_busiest_group(&env); 11176 if (!group) { 11177 schedstat_inc(sd->lb_nobusyg[idle]); 11178 goto out_balanced; 11179 } 11180 11181 busiest = find_busiest_queue(&env, group); 11182 if (!busiest) { 11183 schedstat_inc(sd->lb_nobusyq[idle]); 11184 goto out_balanced; 11185 } 11186 11187 WARN_ON_ONCE(busiest == env.dst_rq); 11188 11189 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11190 11191 env.src_cpu = busiest->cpu; 11192 env.src_rq = busiest; 11193 11194 ld_moved = 0; 11195 /* Clear this flag as soon as we find a pullable task */ 11196 env.flags |= LBF_ALL_PINNED; 11197 if (busiest->nr_running > 1) { 11198 /* 11199 * Attempt to move tasks. If find_busiest_group has found 11200 * an imbalance but busiest->nr_running <= 1, the group is 11201 * still unbalanced. ld_moved simply stays zero, so it is 11202 * correctly treated as an imbalance. 11203 */ 11204 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11205 11206 more_balance: 11207 rq_lock_irqsave(busiest, &rf); 11208 update_rq_clock(busiest); 11209 11210 /* 11211 * cur_ld_moved - load moved in current iteration 11212 * ld_moved - cumulative load moved across iterations 11213 */ 11214 cur_ld_moved = detach_tasks(&env); 11215 11216 /* 11217 * We've detached some tasks from busiest_rq. Every 11218 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11219 * unlock busiest->lock, and we are able to be sure 11220 * that nobody can manipulate the tasks in parallel. 11221 * See task_rq_lock() family for the details. 11222 */ 11223 11224 rq_unlock(busiest, &rf); 11225 11226 if (cur_ld_moved) { 11227 attach_tasks(&env); 11228 ld_moved += cur_ld_moved; 11229 } 11230 11231 local_irq_restore(rf.flags); 11232 11233 if (env.flags & LBF_NEED_BREAK) { 11234 env.flags &= ~LBF_NEED_BREAK; 11235 /* Stop if we tried all running tasks */ 11236 if (env.loop < busiest->nr_running) 11237 goto more_balance; 11238 } 11239 11240 /* 11241 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11242 * us and move them to an alternate dst_cpu in our sched_group 11243 * where they can run. The upper limit on how many times we 11244 * iterate on same src_cpu is dependent on number of CPUs in our 11245 * sched_group. 11246 * 11247 * This changes load balance semantics a bit on who can move 11248 * load to a given_cpu. In addition to the given_cpu itself 11249 * (or a ilb_cpu acting on its behalf where given_cpu is 11250 * nohz-idle), we now have balance_cpu in a position to move 11251 * load to given_cpu. In rare situations, this may cause 11252 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11253 * _independently_ and at _same_ time to move some load to 11254 * given_cpu) causing excess load to be moved to given_cpu. 11255 * This however should not happen so much in practice and 11256 * moreover subsequent load balance cycles should correct the 11257 * excess load moved. 11258 */ 11259 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11260 11261 /* Prevent to re-select dst_cpu via env's CPUs */ 11262 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11263 11264 env.dst_rq = cpu_rq(env.new_dst_cpu); 11265 env.dst_cpu = env.new_dst_cpu; 11266 env.flags &= ~LBF_DST_PINNED; 11267 env.loop = 0; 11268 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11269 11270 /* 11271 * Go back to "more_balance" rather than "redo" since we 11272 * need to continue with same src_cpu. 11273 */ 11274 goto more_balance; 11275 } 11276 11277 /* 11278 * We failed to reach balance because of affinity. 11279 */ 11280 if (sd_parent) { 11281 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11282 11283 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11284 *group_imbalance = 1; 11285 } 11286 11287 /* All tasks on this runqueue were pinned by CPU affinity */ 11288 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11289 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11290 /* 11291 * Attempting to continue load balancing at the current 11292 * sched_domain level only makes sense if there are 11293 * active CPUs remaining as possible busiest CPUs to 11294 * pull load from which are not contained within the 11295 * destination group that is receiving any migrated 11296 * load. 11297 */ 11298 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11299 env.loop = 0; 11300 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11301 goto redo; 11302 } 11303 goto out_all_pinned; 11304 } 11305 } 11306 11307 if (!ld_moved) { 11308 schedstat_inc(sd->lb_failed[idle]); 11309 /* 11310 * Increment the failure counter only on periodic balance. 11311 * We do not want newidle balance, which can be very 11312 * frequent, pollute the failure counter causing 11313 * excessive cache_hot migrations and active balances. 11314 */ 11315 if (idle != CPU_NEWLY_IDLE) 11316 sd->nr_balance_failed++; 11317 11318 if (need_active_balance(&env)) { 11319 unsigned long flags; 11320 11321 raw_spin_rq_lock_irqsave(busiest, flags); 11322 11323 /* 11324 * Don't kick the active_load_balance_cpu_stop, 11325 * if the curr task on busiest CPU can't be 11326 * moved to this_cpu: 11327 */ 11328 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11329 raw_spin_rq_unlock_irqrestore(busiest, flags); 11330 goto out_one_pinned; 11331 } 11332 11333 /* Record that we found at least one task that could run on this_cpu */ 11334 env.flags &= ~LBF_ALL_PINNED; 11335 11336 /* 11337 * ->active_balance synchronizes accesses to 11338 * ->active_balance_work. Once set, it's cleared 11339 * only after active load balance is finished. 11340 */ 11341 if (!busiest->active_balance) { 11342 busiest->active_balance = 1; 11343 busiest->push_cpu = this_cpu; 11344 active_balance = 1; 11345 } 11346 11347 preempt_disable(); 11348 raw_spin_rq_unlock_irqrestore(busiest, flags); 11349 if (active_balance) { 11350 stop_one_cpu_nowait(cpu_of(busiest), 11351 active_load_balance_cpu_stop, busiest, 11352 &busiest->active_balance_work); 11353 } 11354 preempt_enable(); 11355 } 11356 } else { 11357 sd->nr_balance_failed = 0; 11358 } 11359 11360 if (likely(!active_balance) || need_active_balance(&env)) { 11361 /* We were unbalanced, so reset the balancing interval */ 11362 sd->balance_interval = sd->min_interval; 11363 } 11364 11365 goto out; 11366 11367 out_balanced: 11368 /* 11369 * We reach balance although we may have faced some affinity 11370 * constraints. Clear the imbalance flag only if other tasks got 11371 * a chance to move and fix the imbalance. 11372 */ 11373 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11374 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11375 11376 if (*group_imbalance) 11377 *group_imbalance = 0; 11378 } 11379 11380 out_all_pinned: 11381 /* 11382 * We reach balance because all tasks are pinned at this level so 11383 * we can't migrate them. Let the imbalance flag set so parent level 11384 * can try to migrate them. 11385 */ 11386 schedstat_inc(sd->lb_balanced[idle]); 11387 11388 sd->nr_balance_failed = 0; 11389 11390 out_one_pinned: 11391 ld_moved = 0; 11392 11393 /* 11394 * newidle_balance() disregards balance intervals, so we could 11395 * repeatedly reach this code, which would lead to balance_interval 11396 * skyrocketing in a short amount of time. Skip the balance_interval 11397 * increase logic to avoid that. 11398 */ 11399 if (env.idle == CPU_NEWLY_IDLE) 11400 goto out; 11401 11402 /* tune up the balancing interval */ 11403 if ((env.flags & LBF_ALL_PINNED && 11404 sd->balance_interval < MAX_PINNED_INTERVAL) || 11405 sd->balance_interval < sd->max_interval) 11406 sd->balance_interval *= 2; 11407 out: 11408 return ld_moved; 11409 } 11410 11411 static inline unsigned long 11412 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11413 { 11414 unsigned long interval = sd->balance_interval; 11415 11416 if (cpu_busy) 11417 interval *= sd->busy_factor; 11418 11419 /* scale ms to jiffies */ 11420 interval = msecs_to_jiffies(interval); 11421 11422 /* 11423 * Reduce likelihood of busy balancing at higher domains racing with 11424 * balancing at lower domains by preventing their balancing periods 11425 * from being multiples of each other. 11426 */ 11427 if (cpu_busy) 11428 interval -= 1; 11429 11430 interval = clamp(interval, 1UL, max_load_balance_interval); 11431 11432 return interval; 11433 } 11434 11435 static inline void 11436 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11437 { 11438 unsigned long interval, next; 11439 11440 /* used by idle balance, so cpu_busy = 0 */ 11441 interval = get_sd_balance_interval(sd, 0); 11442 next = sd->last_balance + interval; 11443 11444 if (time_after(*next_balance, next)) 11445 *next_balance = next; 11446 } 11447 11448 /* 11449 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11450 * running tasks off the busiest CPU onto idle CPUs. It requires at 11451 * least 1 task to be running on each physical CPU where possible, and 11452 * avoids physical / logical imbalances. 11453 */ 11454 static int active_load_balance_cpu_stop(void *data) 11455 { 11456 struct rq *busiest_rq = data; 11457 int busiest_cpu = cpu_of(busiest_rq); 11458 int target_cpu = busiest_rq->push_cpu; 11459 struct rq *target_rq = cpu_rq(target_cpu); 11460 struct sched_domain *sd; 11461 struct task_struct *p = NULL; 11462 struct rq_flags rf; 11463 11464 rq_lock_irq(busiest_rq, &rf); 11465 /* 11466 * Between queueing the stop-work and running it is a hole in which 11467 * CPUs can become inactive. We should not move tasks from or to 11468 * inactive CPUs. 11469 */ 11470 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11471 goto out_unlock; 11472 11473 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11474 if (unlikely(busiest_cpu != smp_processor_id() || 11475 !busiest_rq->active_balance)) 11476 goto out_unlock; 11477 11478 /* Is there any task to move? */ 11479 if (busiest_rq->nr_running <= 1) 11480 goto out_unlock; 11481 11482 /* 11483 * This condition is "impossible", if it occurs 11484 * we need to fix it. Originally reported by 11485 * Bjorn Helgaas on a 128-CPU setup. 11486 */ 11487 WARN_ON_ONCE(busiest_rq == target_rq); 11488 11489 /* Search for an sd spanning us and the target CPU. */ 11490 rcu_read_lock(); 11491 for_each_domain(target_cpu, sd) { 11492 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11493 break; 11494 } 11495 11496 if (likely(sd)) { 11497 struct lb_env env = { 11498 .sd = sd, 11499 .dst_cpu = target_cpu, 11500 .dst_rq = target_rq, 11501 .src_cpu = busiest_rq->cpu, 11502 .src_rq = busiest_rq, 11503 .idle = CPU_IDLE, 11504 .flags = LBF_ACTIVE_LB, 11505 }; 11506 11507 schedstat_inc(sd->alb_count); 11508 update_rq_clock(busiest_rq); 11509 11510 p = detach_one_task(&env); 11511 if (p) { 11512 schedstat_inc(sd->alb_pushed); 11513 /* Active balancing done, reset the failure counter. */ 11514 sd->nr_balance_failed = 0; 11515 } else { 11516 schedstat_inc(sd->alb_failed); 11517 } 11518 } 11519 rcu_read_unlock(); 11520 out_unlock: 11521 busiest_rq->active_balance = 0; 11522 rq_unlock(busiest_rq, &rf); 11523 11524 if (p) 11525 attach_one_task(target_rq, p); 11526 11527 local_irq_enable(); 11528 11529 return 0; 11530 } 11531 11532 static DEFINE_SPINLOCK(balancing); 11533 11534 /* 11535 * Scale the max load_balance interval with the number of CPUs in the system. 11536 * This trades load-balance latency on larger machines for less cross talk. 11537 */ 11538 void update_max_interval(void) 11539 { 11540 max_load_balance_interval = HZ*num_online_cpus()/10; 11541 } 11542 11543 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11544 { 11545 if (cost > sd->max_newidle_lb_cost) { 11546 /* 11547 * Track max cost of a domain to make sure to not delay the 11548 * next wakeup on the CPU. 11549 */ 11550 sd->max_newidle_lb_cost = cost; 11551 sd->last_decay_max_lb_cost = jiffies; 11552 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11553 /* 11554 * Decay the newidle max times by ~1% per second to ensure that 11555 * it is not outdated and the current max cost is actually 11556 * shorter. 11557 */ 11558 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11559 sd->last_decay_max_lb_cost = jiffies; 11560 11561 return true; 11562 } 11563 11564 return false; 11565 } 11566 11567 /* 11568 * It checks each scheduling domain to see if it is due to be balanced, 11569 * and initiates a balancing operation if so. 11570 * 11571 * Balancing parameters are set up in init_sched_domains. 11572 */ 11573 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 11574 { 11575 int continue_balancing = 1; 11576 int cpu = rq->cpu; 11577 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11578 unsigned long interval; 11579 struct sched_domain *sd; 11580 /* Earliest time when we have to do rebalance again */ 11581 unsigned long next_balance = jiffies + 60*HZ; 11582 int update_next_balance = 0; 11583 int need_serialize, need_decay = 0; 11584 u64 max_cost = 0; 11585 11586 rcu_read_lock(); 11587 for_each_domain(cpu, sd) { 11588 /* 11589 * Decay the newidle max times here because this is a regular 11590 * visit to all the domains. 11591 */ 11592 need_decay = update_newidle_cost(sd, 0); 11593 max_cost += sd->max_newidle_lb_cost; 11594 11595 /* 11596 * Stop the load balance at this level. There is another 11597 * CPU in our sched group which is doing load balancing more 11598 * actively. 11599 */ 11600 if (!continue_balancing) { 11601 if (need_decay) 11602 continue; 11603 break; 11604 } 11605 11606 interval = get_sd_balance_interval(sd, busy); 11607 11608 need_serialize = sd->flags & SD_SERIALIZE; 11609 if (need_serialize) { 11610 if (!spin_trylock(&balancing)) 11611 goto out; 11612 } 11613 11614 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11615 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 11616 /* 11617 * The LBF_DST_PINNED logic could have changed 11618 * env->dst_cpu, so we can't know our idle 11619 * state even if we migrated tasks. Update it. 11620 */ 11621 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 11622 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11623 } 11624 sd->last_balance = jiffies; 11625 interval = get_sd_balance_interval(sd, busy); 11626 } 11627 if (need_serialize) 11628 spin_unlock(&balancing); 11629 out: 11630 if (time_after(next_balance, sd->last_balance + interval)) { 11631 next_balance = sd->last_balance + interval; 11632 update_next_balance = 1; 11633 } 11634 } 11635 if (need_decay) { 11636 /* 11637 * Ensure the rq-wide value also decays but keep it at a 11638 * reasonable floor to avoid funnies with rq->avg_idle. 11639 */ 11640 rq->max_idle_balance_cost = 11641 max((u64)sysctl_sched_migration_cost, max_cost); 11642 } 11643 rcu_read_unlock(); 11644 11645 /* 11646 * next_balance will be updated only when there is a need. 11647 * When the cpu is attached to null domain for ex, it will not be 11648 * updated. 11649 */ 11650 if (likely(update_next_balance)) 11651 rq->next_balance = next_balance; 11652 11653 } 11654 11655 static inline int on_null_domain(struct rq *rq) 11656 { 11657 return unlikely(!rcu_dereference_sched(rq->sd)); 11658 } 11659 11660 #ifdef CONFIG_NO_HZ_COMMON 11661 /* 11662 * idle load balancing details 11663 * - When one of the busy CPUs notice that there may be an idle rebalancing 11664 * needed, they will kick the idle load balancer, which then does idle 11665 * load balancing for all the idle CPUs. 11666 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 11667 * anywhere yet. 11668 */ 11669 11670 static inline int find_new_ilb(void) 11671 { 11672 int ilb; 11673 const struct cpumask *hk_mask; 11674 11675 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11676 11677 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 11678 11679 if (ilb == smp_processor_id()) 11680 continue; 11681 11682 if (idle_cpu(ilb)) 11683 return ilb; 11684 } 11685 11686 return nr_cpu_ids; 11687 } 11688 11689 /* 11690 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 11691 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11692 */ 11693 static void kick_ilb(unsigned int flags) 11694 { 11695 int ilb_cpu; 11696 11697 /* 11698 * Increase nohz.next_balance only when if full ilb is triggered but 11699 * not if we only update stats. 11700 */ 11701 if (flags & NOHZ_BALANCE_KICK) 11702 nohz.next_balance = jiffies+1; 11703 11704 ilb_cpu = find_new_ilb(); 11705 11706 if (ilb_cpu >= nr_cpu_ids) 11707 return; 11708 11709 /* 11710 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11711 * the first flag owns it; cleared by nohz_csd_func(). 11712 */ 11713 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11714 if (flags & NOHZ_KICK_MASK) 11715 return; 11716 11717 /* 11718 * This way we generate an IPI on the target CPU which 11719 * is idle. And the softirq performing nohz idle load balance 11720 * will be run before returning from the IPI. 11721 */ 11722 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11723 } 11724 11725 /* 11726 * Current decision point for kicking the idle load balancer in the presence 11727 * of idle CPUs in the system. 11728 */ 11729 static void nohz_balancer_kick(struct rq *rq) 11730 { 11731 unsigned long now = jiffies; 11732 struct sched_domain_shared *sds; 11733 struct sched_domain *sd; 11734 int nr_busy, i, cpu = rq->cpu; 11735 unsigned int flags = 0; 11736 11737 if (unlikely(rq->idle_balance)) 11738 return; 11739 11740 /* 11741 * We may be recently in ticked or tickless idle mode. At the first 11742 * busy tick after returning from idle, we will update the busy stats. 11743 */ 11744 nohz_balance_exit_idle(rq); 11745 11746 /* 11747 * None are in tickless mode and hence no need for NOHZ idle load 11748 * balancing. 11749 */ 11750 if (likely(!atomic_read(&nohz.nr_cpus))) 11751 return; 11752 11753 if (READ_ONCE(nohz.has_blocked) && 11754 time_after(now, READ_ONCE(nohz.next_blocked))) 11755 flags = NOHZ_STATS_KICK; 11756 11757 if (time_before(now, nohz.next_balance)) 11758 goto out; 11759 11760 if (rq->nr_running >= 2) { 11761 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11762 goto out; 11763 } 11764 11765 rcu_read_lock(); 11766 11767 sd = rcu_dereference(rq->sd); 11768 if (sd) { 11769 /* 11770 * If there's a CFS task and the current CPU has reduced 11771 * capacity; kick the ILB to see if there's a better CPU to run 11772 * on. 11773 */ 11774 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11775 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11776 goto unlock; 11777 } 11778 } 11779 11780 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11781 if (sd) { 11782 /* 11783 * When ASYM_PACKING; see if there's a more preferred CPU 11784 * currently idle; in which case, kick the ILB to move tasks 11785 * around. 11786 * 11787 * When balancing betwen cores, all the SMT siblings of the 11788 * preferred CPU must be idle. 11789 */ 11790 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11791 if (sched_use_asym_prio(sd, i) && 11792 sched_asym_prefer(i, cpu)) { 11793 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11794 goto unlock; 11795 } 11796 } 11797 } 11798 11799 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11800 if (sd) { 11801 /* 11802 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11803 * to run the misfit task on. 11804 */ 11805 if (check_misfit_status(rq, sd)) { 11806 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11807 goto unlock; 11808 } 11809 11810 /* 11811 * For asymmetric systems, we do not want to nicely balance 11812 * cache use, instead we want to embrace asymmetry and only 11813 * ensure tasks have enough CPU capacity. 11814 * 11815 * Skip the LLC logic because it's not relevant in that case. 11816 */ 11817 goto unlock; 11818 } 11819 11820 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11821 if (sds) { 11822 /* 11823 * If there is an imbalance between LLC domains (IOW we could 11824 * increase the overall cache use), we need some less-loaded LLC 11825 * domain to pull some load. Likewise, we may need to spread 11826 * load within the current LLC domain (e.g. packed SMT cores but 11827 * other CPUs are idle). We can't really know from here how busy 11828 * the others are - so just get a nohz balance going if it looks 11829 * like this LLC domain has tasks we could move. 11830 */ 11831 nr_busy = atomic_read(&sds->nr_busy_cpus); 11832 if (nr_busy > 1) { 11833 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11834 goto unlock; 11835 } 11836 } 11837 unlock: 11838 rcu_read_unlock(); 11839 out: 11840 if (READ_ONCE(nohz.needs_update)) 11841 flags |= NOHZ_NEXT_KICK; 11842 11843 if (flags) 11844 kick_ilb(flags); 11845 } 11846 11847 static void set_cpu_sd_state_busy(int cpu) 11848 { 11849 struct sched_domain *sd; 11850 11851 rcu_read_lock(); 11852 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11853 11854 if (!sd || !sd->nohz_idle) 11855 goto unlock; 11856 sd->nohz_idle = 0; 11857 11858 atomic_inc(&sd->shared->nr_busy_cpus); 11859 unlock: 11860 rcu_read_unlock(); 11861 } 11862 11863 void nohz_balance_exit_idle(struct rq *rq) 11864 { 11865 SCHED_WARN_ON(rq != this_rq()); 11866 11867 if (likely(!rq->nohz_tick_stopped)) 11868 return; 11869 11870 rq->nohz_tick_stopped = 0; 11871 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11872 atomic_dec(&nohz.nr_cpus); 11873 11874 set_cpu_sd_state_busy(rq->cpu); 11875 } 11876 11877 static void set_cpu_sd_state_idle(int cpu) 11878 { 11879 struct sched_domain *sd; 11880 11881 rcu_read_lock(); 11882 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11883 11884 if (!sd || sd->nohz_idle) 11885 goto unlock; 11886 sd->nohz_idle = 1; 11887 11888 atomic_dec(&sd->shared->nr_busy_cpus); 11889 unlock: 11890 rcu_read_unlock(); 11891 } 11892 11893 /* 11894 * This routine will record that the CPU is going idle with tick stopped. 11895 * This info will be used in performing idle load balancing in the future. 11896 */ 11897 void nohz_balance_enter_idle(int cpu) 11898 { 11899 struct rq *rq = cpu_rq(cpu); 11900 11901 SCHED_WARN_ON(cpu != smp_processor_id()); 11902 11903 /* If this CPU is going down, then nothing needs to be done: */ 11904 if (!cpu_active(cpu)) 11905 return; 11906 11907 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 11908 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 11909 return; 11910 11911 /* 11912 * Can be set safely without rq->lock held 11913 * If a clear happens, it will have evaluated last additions because 11914 * rq->lock is held during the check and the clear 11915 */ 11916 rq->has_blocked_load = 1; 11917 11918 /* 11919 * The tick is still stopped but load could have been added in the 11920 * meantime. We set the nohz.has_blocked flag to trig a check of the 11921 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 11922 * of nohz.has_blocked can only happen after checking the new load 11923 */ 11924 if (rq->nohz_tick_stopped) 11925 goto out; 11926 11927 /* If we're a completely isolated CPU, we don't play: */ 11928 if (on_null_domain(rq)) 11929 return; 11930 11931 rq->nohz_tick_stopped = 1; 11932 11933 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 11934 atomic_inc(&nohz.nr_cpus); 11935 11936 /* 11937 * Ensures that if nohz_idle_balance() fails to observe our 11938 * @idle_cpus_mask store, it must observe the @has_blocked 11939 * and @needs_update stores. 11940 */ 11941 smp_mb__after_atomic(); 11942 11943 set_cpu_sd_state_idle(cpu); 11944 11945 WRITE_ONCE(nohz.needs_update, 1); 11946 out: 11947 /* 11948 * Each time a cpu enter idle, we assume that it has blocked load and 11949 * enable the periodic update of the load of idle cpus 11950 */ 11951 WRITE_ONCE(nohz.has_blocked, 1); 11952 } 11953 11954 static bool update_nohz_stats(struct rq *rq) 11955 { 11956 unsigned int cpu = rq->cpu; 11957 11958 if (!rq->has_blocked_load) 11959 return false; 11960 11961 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 11962 return false; 11963 11964 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 11965 return true; 11966 11967 update_blocked_averages(cpu); 11968 11969 return rq->has_blocked_load; 11970 } 11971 11972 /* 11973 * Internal function that runs load balance for all idle cpus. The load balance 11974 * can be a simple update of blocked load or a complete load balance with 11975 * tasks movement depending of flags. 11976 */ 11977 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 11978 { 11979 /* Earliest time when we have to do rebalance again */ 11980 unsigned long now = jiffies; 11981 unsigned long next_balance = now + 60*HZ; 11982 bool has_blocked_load = false; 11983 int update_next_balance = 0; 11984 int this_cpu = this_rq->cpu; 11985 int balance_cpu; 11986 struct rq *rq; 11987 11988 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 11989 11990 /* 11991 * We assume there will be no idle load after this update and clear 11992 * the has_blocked flag. If a cpu enters idle in the mean time, it will 11993 * set the has_blocked flag and trigger another update of idle load. 11994 * Because a cpu that becomes idle, is added to idle_cpus_mask before 11995 * setting the flag, we are sure to not clear the state and not 11996 * check the load of an idle cpu. 11997 * 11998 * Same applies to idle_cpus_mask vs needs_update. 11999 */ 12000 if (flags & NOHZ_STATS_KICK) 12001 WRITE_ONCE(nohz.has_blocked, 0); 12002 if (flags & NOHZ_NEXT_KICK) 12003 WRITE_ONCE(nohz.needs_update, 0); 12004 12005 /* 12006 * Ensures that if we miss the CPU, we must see the has_blocked 12007 * store from nohz_balance_enter_idle(). 12008 */ 12009 smp_mb(); 12010 12011 /* 12012 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12013 * chance for other idle cpu to pull load. 12014 */ 12015 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12016 if (!idle_cpu(balance_cpu)) 12017 continue; 12018 12019 /* 12020 * If this CPU gets work to do, stop the load balancing 12021 * work being done for other CPUs. Next load 12022 * balancing owner will pick it up. 12023 */ 12024 if (need_resched()) { 12025 if (flags & NOHZ_STATS_KICK) 12026 has_blocked_load = true; 12027 if (flags & NOHZ_NEXT_KICK) 12028 WRITE_ONCE(nohz.needs_update, 1); 12029 goto abort; 12030 } 12031 12032 rq = cpu_rq(balance_cpu); 12033 12034 if (flags & NOHZ_STATS_KICK) 12035 has_blocked_load |= update_nohz_stats(rq); 12036 12037 /* 12038 * If time for next balance is due, 12039 * do the balance. 12040 */ 12041 if (time_after_eq(jiffies, rq->next_balance)) { 12042 struct rq_flags rf; 12043 12044 rq_lock_irqsave(rq, &rf); 12045 update_rq_clock(rq); 12046 rq_unlock_irqrestore(rq, &rf); 12047 12048 if (flags & NOHZ_BALANCE_KICK) 12049 rebalance_domains(rq, CPU_IDLE); 12050 } 12051 12052 if (time_after(next_balance, rq->next_balance)) { 12053 next_balance = rq->next_balance; 12054 update_next_balance = 1; 12055 } 12056 } 12057 12058 /* 12059 * next_balance will be updated only when there is a need. 12060 * When the CPU is attached to null domain for ex, it will not be 12061 * updated. 12062 */ 12063 if (likely(update_next_balance)) 12064 nohz.next_balance = next_balance; 12065 12066 if (flags & NOHZ_STATS_KICK) 12067 WRITE_ONCE(nohz.next_blocked, 12068 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12069 12070 abort: 12071 /* There is still blocked load, enable periodic update */ 12072 if (has_blocked_load) 12073 WRITE_ONCE(nohz.has_blocked, 1); 12074 } 12075 12076 /* 12077 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12078 * rebalancing for all the cpus for whom scheduler ticks are stopped. 12079 */ 12080 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12081 { 12082 unsigned int flags = this_rq->nohz_idle_balance; 12083 12084 if (!flags) 12085 return false; 12086 12087 this_rq->nohz_idle_balance = 0; 12088 12089 if (idle != CPU_IDLE) 12090 return false; 12091 12092 _nohz_idle_balance(this_rq, flags); 12093 12094 return true; 12095 } 12096 12097 /* 12098 * Check if we need to run the ILB for updating blocked load before entering 12099 * idle state. 12100 */ 12101 void nohz_run_idle_balance(int cpu) 12102 { 12103 unsigned int flags; 12104 12105 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12106 12107 /* 12108 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12109 * (ie NOHZ_STATS_KICK set) and will do the same. 12110 */ 12111 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12112 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12113 } 12114 12115 static void nohz_newidle_balance(struct rq *this_rq) 12116 { 12117 int this_cpu = this_rq->cpu; 12118 12119 /* 12120 * This CPU doesn't want to be disturbed by scheduler 12121 * housekeeping 12122 */ 12123 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12124 return; 12125 12126 /* Will wake up very soon. No time for doing anything else*/ 12127 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12128 return; 12129 12130 /* Don't need to update blocked load of idle CPUs*/ 12131 if (!READ_ONCE(nohz.has_blocked) || 12132 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12133 return; 12134 12135 /* 12136 * Set the need to trigger ILB in order to update blocked load 12137 * before entering idle state. 12138 */ 12139 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12140 } 12141 12142 #else /* !CONFIG_NO_HZ_COMMON */ 12143 static inline void nohz_balancer_kick(struct rq *rq) { } 12144 12145 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12146 { 12147 return false; 12148 } 12149 12150 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12151 #endif /* CONFIG_NO_HZ_COMMON */ 12152 12153 /* 12154 * newidle_balance is called by schedule() if this_cpu is about to become 12155 * idle. Attempts to pull tasks from other CPUs. 12156 * 12157 * Returns: 12158 * < 0 - we released the lock and there are !fair tasks present 12159 * 0 - failed, no new tasks 12160 * > 0 - success, new (fair) tasks present 12161 */ 12162 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 12163 { 12164 unsigned long next_balance = jiffies + HZ; 12165 int this_cpu = this_rq->cpu; 12166 u64 t0, t1, curr_cost = 0; 12167 struct sched_domain *sd; 12168 int pulled_task = 0; 12169 12170 update_misfit_status(NULL, this_rq); 12171 12172 /* 12173 * There is a task waiting to run. No need to search for one. 12174 * Return 0; the task will be enqueued when switching to idle. 12175 */ 12176 if (this_rq->ttwu_pending) 12177 return 0; 12178 12179 /* 12180 * We must set idle_stamp _before_ calling idle_balance(), such that we 12181 * measure the duration of idle_balance() as idle time. 12182 */ 12183 this_rq->idle_stamp = rq_clock(this_rq); 12184 12185 /* 12186 * Do not pull tasks towards !active CPUs... 12187 */ 12188 if (!cpu_active(this_cpu)) 12189 return 0; 12190 12191 /* 12192 * This is OK, because current is on_cpu, which avoids it being picked 12193 * for load-balance and preemption/IRQs are still disabled avoiding 12194 * further scheduler activity on it and we're being very careful to 12195 * re-start the picking loop. 12196 */ 12197 rq_unpin_lock(this_rq, rf); 12198 12199 rcu_read_lock(); 12200 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12201 12202 if (!READ_ONCE(this_rq->rd->overload) || 12203 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12204 12205 if (sd) 12206 update_next_balance(sd, &next_balance); 12207 rcu_read_unlock(); 12208 12209 goto out; 12210 } 12211 rcu_read_unlock(); 12212 12213 raw_spin_rq_unlock(this_rq); 12214 12215 t0 = sched_clock_cpu(this_cpu); 12216 update_blocked_averages(this_cpu); 12217 12218 rcu_read_lock(); 12219 for_each_domain(this_cpu, sd) { 12220 int continue_balancing = 1; 12221 u64 domain_cost; 12222 12223 update_next_balance(sd, &next_balance); 12224 12225 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12226 break; 12227 12228 if (sd->flags & SD_BALANCE_NEWIDLE) { 12229 12230 pulled_task = load_balance(this_cpu, this_rq, 12231 sd, CPU_NEWLY_IDLE, 12232 &continue_balancing); 12233 12234 t1 = sched_clock_cpu(this_cpu); 12235 domain_cost = t1 - t0; 12236 update_newidle_cost(sd, domain_cost); 12237 12238 curr_cost += domain_cost; 12239 t0 = t1; 12240 } 12241 12242 /* 12243 * Stop searching for tasks to pull if there are 12244 * now runnable tasks on this rq. 12245 */ 12246 if (pulled_task || this_rq->nr_running > 0 || 12247 this_rq->ttwu_pending) 12248 break; 12249 } 12250 rcu_read_unlock(); 12251 12252 raw_spin_rq_lock(this_rq); 12253 12254 if (curr_cost > this_rq->max_idle_balance_cost) 12255 this_rq->max_idle_balance_cost = curr_cost; 12256 12257 /* 12258 * While browsing the domains, we released the rq lock, a task could 12259 * have been enqueued in the meantime. Since we're not going idle, 12260 * pretend we pulled a task. 12261 */ 12262 if (this_rq->cfs.h_nr_running && !pulled_task) 12263 pulled_task = 1; 12264 12265 /* Is there a task of a high priority class? */ 12266 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12267 pulled_task = -1; 12268 12269 out: 12270 /* Move the next balance forward */ 12271 if (time_after(this_rq->next_balance, next_balance)) 12272 this_rq->next_balance = next_balance; 12273 12274 if (pulled_task) 12275 this_rq->idle_stamp = 0; 12276 else 12277 nohz_newidle_balance(this_rq); 12278 12279 rq_repin_lock(this_rq, rf); 12280 12281 return pulled_task; 12282 } 12283 12284 /* 12285 * run_rebalance_domains is triggered when needed from the scheduler tick. 12286 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 12287 */ 12288 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 12289 { 12290 struct rq *this_rq = this_rq(); 12291 enum cpu_idle_type idle = this_rq->idle_balance ? 12292 CPU_IDLE : CPU_NOT_IDLE; 12293 12294 /* 12295 * If this CPU has a pending nohz_balance_kick, then do the 12296 * balancing on behalf of the other idle CPUs whose ticks are 12297 * stopped. Do nohz_idle_balance *before* rebalance_domains to 12298 * give the idle CPUs a chance to load balance. Else we may 12299 * load balance only within the local sched_domain hierarchy 12300 * and abort nohz_idle_balance altogether if we pull some load. 12301 */ 12302 if (nohz_idle_balance(this_rq, idle)) 12303 return; 12304 12305 /* normal load balance */ 12306 update_blocked_averages(this_rq->cpu); 12307 rebalance_domains(this_rq, idle); 12308 } 12309 12310 /* 12311 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12312 */ 12313 void trigger_load_balance(struct rq *rq) 12314 { 12315 /* 12316 * Don't need to rebalance while attached to NULL domain or 12317 * runqueue CPU is not active 12318 */ 12319 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12320 return; 12321 12322 if (time_after_eq(jiffies, rq->next_balance)) 12323 raise_softirq(SCHED_SOFTIRQ); 12324 12325 nohz_balancer_kick(rq); 12326 } 12327 12328 static void rq_online_fair(struct rq *rq) 12329 { 12330 update_sysctl(); 12331 12332 update_runtime_enabled(rq); 12333 } 12334 12335 static void rq_offline_fair(struct rq *rq) 12336 { 12337 update_sysctl(); 12338 12339 /* Ensure any throttled groups are reachable by pick_next_task */ 12340 unthrottle_offline_cfs_rqs(rq); 12341 } 12342 12343 #endif /* CONFIG_SMP */ 12344 12345 #ifdef CONFIG_SCHED_CORE 12346 static inline bool 12347 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12348 { 12349 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12350 u64 slice = se->slice; 12351 12352 return (rtime * min_nr_tasks > slice); 12353 } 12354 12355 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12356 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12357 { 12358 if (!sched_core_enabled(rq)) 12359 return; 12360 12361 /* 12362 * If runqueue has only one task which used up its slice and 12363 * if the sibling is forced idle, then trigger schedule to 12364 * give forced idle task a chance. 12365 * 12366 * sched_slice() considers only this active rq and it gets the 12367 * whole slice. But during force idle, we have siblings acting 12368 * like a single runqueue and hence we need to consider runnable 12369 * tasks on this CPU and the forced idle CPU. Ideally, we should 12370 * go through the forced idle rq, but that would be a perf hit. 12371 * We can assume that the forced idle CPU has at least 12372 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12373 * if we need to give up the CPU. 12374 */ 12375 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12376 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12377 resched_curr(rq); 12378 } 12379 12380 /* 12381 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12382 */ 12383 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12384 bool forceidle) 12385 { 12386 for_each_sched_entity(se) { 12387 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12388 12389 if (forceidle) { 12390 if (cfs_rq->forceidle_seq == fi_seq) 12391 break; 12392 cfs_rq->forceidle_seq = fi_seq; 12393 } 12394 12395 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12396 } 12397 } 12398 12399 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12400 { 12401 struct sched_entity *se = &p->se; 12402 12403 if (p->sched_class != &fair_sched_class) 12404 return; 12405 12406 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12407 } 12408 12409 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12410 bool in_fi) 12411 { 12412 struct rq *rq = task_rq(a); 12413 const struct sched_entity *sea = &a->se; 12414 const struct sched_entity *seb = &b->se; 12415 struct cfs_rq *cfs_rqa; 12416 struct cfs_rq *cfs_rqb; 12417 s64 delta; 12418 12419 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12420 12421 #ifdef CONFIG_FAIR_GROUP_SCHED 12422 /* 12423 * Find an se in the hierarchy for tasks a and b, such that the se's 12424 * are immediate siblings. 12425 */ 12426 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12427 int sea_depth = sea->depth; 12428 int seb_depth = seb->depth; 12429 12430 if (sea_depth >= seb_depth) 12431 sea = parent_entity(sea); 12432 if (sea_depth <= seb_depth) 12433 seb = parent_entity(seb); 12434 } 12435 12436 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12437 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12438 12439 cfs_rqa = sea->cfs_rq; 12440 cfs_rqb = seb->cfs_rq; 12441 #else 12442 cfs_rqa = &task_rq(a)->cfs; 12443 cfs_rqb = &task_rq(b)->cfs; 12444 #endif 12445 12446 /* 12447 * Find delta after normalizing se's vruntime with its cfs_rq's 12448 * min_vruntime_fi, which would have been updated in prior calls 12449 * to se_fi_update(). 12450 */ 12451 delta = (s64)(sea->vruntime - seb->vruntime) + 12452 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12453 12454 return delta > 0; 12455 } 12456 12457 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12458 { 12459 struct cfs_rq *cfs_rq; 12460 12461 #ifdef CONFIG_FAIR_GROUP_SCHED 12462 cfs_rq = task_group(p)->cfs_rq[cpu]; 12463 #else 12464 cfs_rq = &cpu_rq(cpu)->cfs; 12465 #endif 12466 return throttled_hierarchy(cfs_rq); 12467 } 12468 #else 12469 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12470 #endif 12471 12472 /* 12473 * scheduler tick hitting a task of our scheduling class. 12474 * 12475 * NOTE: This function can be called remotely by the tick offload that 12476 * goes along full dynticks. Therefore no local assumption can be made 12477 * and everything must be accessed through the @rq and @curr passed in 12478 * parameters. 12479 */ 12480 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12481 { 12482 struct cfs_rq *cfs_rq; 12483 struct sched_entity *se = &curr->se; 12484 12485 for_each_sched_entity(se) { 12486 cfs_rq = cfs_rq_of(se); 12487 entity_tick(cfs_rq, se, queued); 12488 } 12489 12490 if (static_branch_unlikely(&sched_numa_balancing)) 12491 task_tick_numa(rq, curr); 12492 12493 update_misfit_status(curr, rq); 12494 update_overutilized_status(task_rq(curr)); 12495 12496 task_tick_core(rq, curr); 12497 } 12498 12499 /* 12500 * called on fork with the child task as argument from the parent's context 12501 * - child not yet on the tasklist 12502 * - preemption disabled 12503 */ 12504 static void task_fork_fair(struct task_struct *p) 12505 { 12506 struct sched_entity *se = &p->se, *curr; 12507 struct cfs_rq *cfs_rq; 12508 struct rq *rq = this_rq(); 12509 struct rq_flags rf; 12510 12511 rq_lock(rq, &rf); 12512 update_rq_clock(rq); 12513 12514 cfs_rq = task_cfs_rq(current); 12515 curr = cfs_rq->curr; 12516 if (curr) 12517 update_curr(cfs_rq); 12518 place_entity(cfs_rq, se, ENQUEUE_INITIAL); 12519 rq_unlock(rq, &rf); 12520 } 12521 12522 /* 12523 * Priority of the task has changed. Check to see if we preempt 12524 * the current task. 12525 */ 12526 static void 12527 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12528 { 12529 if (!task_on_rq_queued(p)) 12530 return; 12531 12532 if (rq->cfs.nr_running == 1) 12533 return; 12534 12535 /* 12536 * Reschedule if we are currently running on this runqueue and 12537 * our priority decreased, or if we are not currently running on 12538 * this runqueue and our priority is higher than the current's 12539 */ 12540 if (task_current(rq, p)) { 12541 if (p->prio > oldprio) 12542 resched_curr(rq); 12543 } else 12544 check_preempt_curr(rq, p, 0); 12545 } 12546 12547 #ifdef CONFIG_FAIR_GROUP_SCHED 12548 /* 12549 * Propagate the changes of the sched_entity across the tg tree to make it 12550 * visible to the root 12551 */ 12552 static void propagate_entity_cfs_rq(struct sched_entity *se) 12553 { 12554 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12555 12556 if (cfs_rq_throttled(cfs_rq)) 12557 return; 12558 12559 if (!throttled_hierarchy(cfs_rq)) 12560 list_add_leaf_cfs_rq(cfs_rq); 12561 12562 /* Start to propagate at parent */ 12563 se = se->parent; 12564 12565 for_each_sched_entity(se) { 12566 cfs_rq = cfs_rq_of(se); 12567 12568 update_load_avg(cfs_rq, se, UPDATE_TG); 12569 12570 if (cfs_rq_throttled(cfs_rq)) 12571 break; 12572 12573 if (!throttled_hierarchy(cfs_rq)) 12574 list_add_leaf_cfs_rq(cfs_rq); 12575 } 12576 } 12577 #else 12578 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12579 #endif 12580 12581 static void detach_entity_cfs_rq(struct sched_entity *se) 12582 { 12583 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12584 12585 #ifdef CONFIG_SMP 12586 /* 12587 * In case the task sched_avg hasn't been attached: 12588 * - A forked task which hasn't been woken up by wake_up_new_task(). 12589 * - A task which has been woken up by try_to_wake_up() but is 12590 * waiting for actually being woken up by sched_ttwu_pending(). 12591 */ 12592 if (!se->avg.last_update_time) 12593 return; 12594 #endif 12595 12596 /* Catch up with the cfs_rq and remove our load when we leave */ 12597 update_load_avg(cfs_rq, se, 0); 12598 detach_entity_load_avg(cfs_rq, se); 12599 update_tg_load_avg(cfs_rq); 12600 propagate_entity_cfs_rq(se); 12601 } 12602 12603 static void attach_entity_cfs_rq(struct sched_entity *se) 12604 { 12605 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12606 12607 /* Synchronize entity with its cfs_rq */ 12608 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12609 attach_entity_load_avg(cfs_rq, se); 12610 update_tg_load_avg(cfs_rq); 12611 propagate_entity_cfs_rq(se); 12612 } 12613 12614 static void detach_task_cfs_rq(struct task_struct *p) 12615 { 12616 struct sched_entity *se = &p->se; 12617 12618 detach_entity_cfs_rq(se); 12619 } 12620 12621 static void attach_task_cfs_rq(struct task_struct *p) 12622 { 12623 struct sched_entity *se = &p->se; 12624 12625 attach_entity_cfs_rq(se); 12626 } 12627 12628 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12629 { 12630 detach_task_cfs_rq(p); 12631 } 12632 12633 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12634 { 12635 attach_task_cfs_rq(p); 12636 12637 if (task_on_rq_queued(p)) { 12638 /* 12639 * We were most likely switched from sched_rt, so 12640 * kick off the schedule if running, otherwise just see 12641 * if we can still preempt the current task. 12642 */ 12643 if (task_current(rq, p)) 12644 resched_curr(rq); 12645 else 12646 check_preempt_curr(rq, p, 0); 12647 } 12648 } 12649 12650 /* Account for a task changing its policy or group. 12651 * 12652 * This routine is mostly called to set cfs_rq->curr field when a task 12653 * migrates between groups/classes. 12654 */ 12655 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12656 { 12657 struct sched_entity *se = &p->se; 12658 12659 #ifdef CONFIG_SMP 12660 if (task_on_rq_queued(p)) { 12661 /* 12662 * Move the next running task to the front of the list, so our 12663 * cfs_tasks list becomes MRU one. 12664 */ 12665 list_move(&se->group_node, &rq->cfs_tasks); 12666 } 12667 #endif 12668 12669 for_each_sched_entity(se) { 12670 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12671 12672 set_next_entity(cfs_rq, se); 12673 /* ensure bandwidth has been allocated on our new cfs_rq */ 12674 account_cfs_rq_runtime(cfs_rq, 0); 12675 } 12676 } 12677 12678 void init_cfs_rq(struct cfs_rq *cfs_rq) 12679 { 12680 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12681 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12682 #ifdef CONFIG_SMP 12683 raw_spin_lock_init(&cfs_rq->removed.lock); 12684 #endif 12685 } 12686 12687 #ifdef CONFIG_FAIR_GROUP_SCHED 12688 static void task_change_group_fair(struct task_struct *p) 12689 { 12690 /* 12691 * We couldn't detach or attach a forked task which 12692 * hasn't been woken up by wake_up_new_task(). 12693 */ 12694 if (READ_ONCE(p->__state) == TASK_NEW) 12695 return; 12696 12697 detach_task_cfs_rq(p); 12698 12699 #ifdef CONFIG_SMP 12700 /* Tell se's cfs_rq has been changed -- migrated */ 12701 p->se.avg.last_update_time = 0; 12702 #endif 12703 set_task_rq(p, task_cpu(p)); 12704 attach_task_cfs_rq(p); 12705 } 12706 12707 void free_fair_sched_group(struct task_group *tg) 12708 { 12709 int i; 12710 12711 for_each_possible_cpu(i) { 12712 if (tg->cfs_rq) 12713 kfree(tg->cfs_rq[i]); 12714 if (tg->se) 12715 kfree(tg->se[i]); 12716 } 12717 12718 kfree(tg->cfs_rq); 12719 kfree(tg->se); 12720 } 12721 12722 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12723 { 12724 struct sched_entity *se; 12725 struct cfs_rq *cfs_rq; 12726 int i; 12727 12728 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12729 if (!tg->cfs_rq) 12730 goto err; 12731 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12732 if (!tg->se) 12733 goto err; 12734 12735 tg->shares = NICE_0_LOAD; 12736 12737 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 12738 12739 for_each_possible_cpu(i) { 12740 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12741 GFP_KERNEL, cpu_to_node(i)); 12742 if (!cfs_rq) 12743 goto err; 12744 12745 se = kzalloc_node(sizeof(struct sched_entity_stats), 12746 GFP_KERNEL, cpu_to_node(i)); 12747 if (!se) 12748 goto err_free_rq; 12749 12750 init_cfs_rq(cfs_rq); 12751 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12752 init_entity_runnable_average(se); 12753 } 12754 12755 return 1; 12756 12757 err_free_rq: 12758 kfree(cfs_rq); 12759 err: 12760 return 0; 12761 } 12762 12763 void online_fair_sched_group(struct task_group *tg) 12764 { 12765 struct sched_entity *se; 12766 struct rq_flags rf; 12767 struct rq *rq; 12768 int i; 12769 12770 for_each_possible_cpu(i) { 12771 rq = cpu_rq(i); 12772 se = tg->se[i]; 12773 rq_lock_irq(rq, &rf); 12774 update_rq_clock(rq); 12775 attach_entity_cfs_rq(se); 12776 sync_throttle(tg, i); 12777 rq_unlock_irq(rq, &rf); 12778 } 12779 } 12780 12781 void unregister_fair_sched_group(struct task_group *tg) 12782 { 12783 unsigned long flags; 12784 struct rq *rq; 12785 int cpu; 12786 12787 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12788 12789 for_each_possible_cpu(cpu) { 12790 if (tg->se[cpu]) 12791 remove_entity_load_avg(tg->se[cpu]); 12792 12793 /* 12794 * Only empty task groups can be destroyed; so we can speculatively 12795 * check on_list without danger of it being re-added. 12796 */ 12797 if (!tg->cfs_rq[cpu]->on_list) 12798 continue; 12799 12800 rq = cpu_rq(cpu); 12801 12802 raw_spin_rq_lock_irqsave(rq, flags); 12803 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12804 raw_spin_rq_unlock_irqrestore(rq, flags); 12805 } 12806 } 12807 12808 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12809 struct sched_entity *se, int cpu, 12810 struct sched_entity *parent) 12811 { 12812 struct rq *rq = cpu_rq(cpu); 12813 12814 cfs_rq->tg = tg; 12815 cfs_rq->rq = rq; 12816 init_cfs_rq_runtime(cfs_rq); 12817 12818 tg->cfs_rq[cpu] = cfs_rq; 12819 tg->se[cpu] = se; 12820 12821 /* se could be NULL for root_task_group */ 12822 if (!se) 12823 return; 12824 12825 if (!parent) { 12826 se->cfs_rq = &rq->cfs; 12827 se->depth = 0; 12828 } else { 12829 se->cfs_rq = parent->my_q; 12830 se->depth = parent->depth + 1; 12831 } 12832 12833 se->my_q = cfs_rq; 12834 /* guarantee group entities always have weight */ 12835 update_load_set(&se->load, NICE_0_LOAD); 12836 se->parent = parent; 12837 } 12838 12839 static DEFINE_MUTEX(shares_mutex); 12840 12841 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12842 { 12843 int i; 12844 12845 lockdep_assert_held(&shares_mutex); 12846 12847 /* 12848 * We can't change the weight of the root cgroup. 12849 */ 12850 if (!tg->se[0]) 12851 return -EINVAL; 12852 12853 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12854 12855 if (tg->shares == shares) 12856 return 0; 12857 12858 tg->shares = shares; 12859 for_each_possible_cpu(i) { 12860 struct rq *rq = cpu_rq(i); 12861 struct sched_entity *se = tg->se[i]; 12862 struct rq_flags rf; 12863 12864 /* Propagate contribution to hierarchy */ 12865 rq_lock_irqsave(rq, &rf); 12866 update_rq_clock(rq); 12867 for_each_sched_entity(se) { 12868 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12869 update_cfs_group(se); 12870 } 12871 rq_unlock_irqrestore(rq, &rf); 12872 } 12873 12874 return 0; 12875 } 12876 12877 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 12878 { 12879 int ret; 12880 12881 mutex_lock(&shares_mutex); 12882 if (tg_is_idle(tg)) 12883 ret = -EINVAL; 12884 else 12885 ret = __sched_group_set_shares(tg, shares); 12886 mutex_unlock(&shares_mutex); 12887 12888 return ret; 12889 } 12890 12891 int sched_group_set_idle(struct task_group *tg, long idle) 12892 { 12893 int i; 12894 12895 if (tg == &root_task_group) 12896 return -EINVAL; 12897 12898 if (idle < 0 || idle > 1) 12899 return -EINVAL; 12900 12901 mutex_lock(&shares_mutex); 12902 12903 if (tg->idle == idle) { 12904 mutex_unlock(&shares_mutex); 12905 return 0; 12906 } 12907 12908 tg->idle = idle; 12909 12910 for_each_possible_cpu(i) { 12911 struct rq *rq = cpu_rq(i); 12912 struct sched_entity *se = tg->se[i]; 12913 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 12914 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 12915 long idle_task_delta; 12916 struct rq_flags rf; 12917 12918 rq_lock_irqsave(rq, &rf); 12919 12920 grp_cfs_rq->idle = idle; 12921 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 12922 goto next_cpu; 12923 12924 if (se->on_rq) { 12925 parent_cfs_rq = cfs_rq_of(se); 12926 if (cfs_rq_is_idle(grp_cfs_rq)) 12927 parent_cfs_rq->idle_nr_running++; 12928 else 12929 parent_cfs_rq->idle_nr_running--; 12930 } 12931 12932 idle_task_delta = grp_cfs_rq->h_nr_running - 12933 grp_cfs_rq->idle_h_nr_running; 12934 if (!cfs_rq_is_idle(grp_cfs_rq)) 12935 idle_task_delta *= -1; 12936 12937 for_each_sched_entity(se) { 12938 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12939 12940 if (!se->on_rq) 12941 break; 12942 12943 cfs_rq->idle_h_nr_running += idle_task_delta; 12944 12945 /* Already accounted at parent level and above. */ 12946 if (cfs_rq_is_idle(cfs_rq)) 12947 break; 12948 } 12949 12950 next_cpu: 12951 rq_unlock_irqrestore(rq, &rf); 12952 } 12953 12954 /* Idle groups have minimum weight. */ 12955 if (tg_is_idle(tg)) 12956 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 12957 else 12958 __sched_group_set_shares(tg, NICE_0_LOAD); 12959 12960 mutex_unlock(&shares_mutex); 12961 return 0; 12962 } 12963 12964 #else /* CONFIG_FAIR_GROUP_SCHED */ 12965 12966 void free_fair_sched_group(struct task_group *tg) { } 12967 12968 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12969 { 12970 return 1; 12971 } 12972 12973 void online_fair_sched_group(struct task_group *tg) { } 12974 12975 void unregister_fair_sched_group(struct task_group *tg) { } 12976 12977 #endif /* CONFIG_FAIR_GROUP_SCHED */ 12978 12979 12980 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 12981 { 12982 struct sched_entity *se = &task->se; 12983 unsigned int rr_interval = 0; 12984 12985 /* 12986 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 12987 * idle runqueue: 12988 */ 12989 if (rq->cfs.load.weight) 12990 rr_interval = NS_TO_JIFFIES(se->slice); 12991 12992 return rr_interval; 12993 } 12994 12995 /* 12996 * All the scheduling class methods: 12997 */ 12998 DEFINE_SCHED_CLASS(fair) = { 12999 13000 .enqueue_task = enqueue_task_fair, 13001 .dequeue_task = dequeue_task_fair, 13002 .yield_task = yield_task_fair, 13003 .yield_to_task = yield_to_task_fair, 13004 13005 .check_preempt_curr = check_preempt_wakeup, 13006 13007 .pick_next_task = __pick_next_task_fair, 13008 .put_prev_task = put_prev_task_fair, 13009 .set_next_task = set_next_task_fair, 13010 13011 #ifdef CONFIG_SMP 13012 .balance = balance_fair, 13013 .pick_task = pick_task_fair, 13014 .select_task_rq = select_task_rq_fair, 13015 .migrate_task_rq = migrate_task_rq_fair, 13016 13017 .rq_online = rq_online_fair, 13018 .rq_offline = rq_offline_fair, 13019 13020 .task_dead = task_dead_fair, 13021 .set_cpus_allowed = set_cpus_allowed_common, 13022 #endif 13023 13024 .task_tick = task_tick_fair, 13025 .task_fork = task_fork_fair, 13026 13027 .prio_changed = prio_changed_fair, 13028 .switched_from = switched_from_fair, 13029 .switched_to = switched_to_fair, 13030 13031 .get_rr_interval = get_rr_interval_fair, 13032 13033 .update_curr = update_curr_fair, 13034 13035 #ifdef CONFIG_FAIR_GROUP_SCHED 13036 .task_change_group = task_change_group_fair, 13037 #endif 13038 13039 #ifdef CONFIG_SCHED_CORE 13040 .task_is_throttled = task_is_throttled_fair, 13041 #endif 13042 13043 #ifdef CONFIG_UCLAMP_TASK 13044 .uclamp_enabled = 1, 13045 #endif 13046 }; 13047 13048 #ifdef CONFIG_SCHED_DEBUG 13049 void print_cfs_stats(struct seq_file *m, int cpu) 13050 { 13051 struct cfs_rq *cfs_rq, *pos; 13052 13053 rcu_read_lock(); 13054 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13055 print_cfs_rq(m, cpu, cfs_rq); 13056 rcu_read_unlock(); 13057 } 13058 13059 #ifdef CONFIG_NUMA_BALANCING 13060 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13061 { 13062 int node; 13063 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13064 struct numa_group *ng; 13065 13066 rcu_read_lock(); 13067 ng = rcu_dereference(p->numa_group); 13068 for_each_online_node(node) { 13069 if (p->numa_faults) { 13070 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13071 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13072 } 13073 if (ng) { 13074 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13075 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13076 } 13077 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13078 } 13079 rcu_read_unlock(); 13080 } 13081 #endif /* CONFIG_NUMA_BALANCING */ 13082 #endif /* CONFIG_SCHED_DEBUG */ 13083 13084 __init void init_sched_fair_class(void) 13085 { 13086 #ifdef CONFIG_SMP 13087 int i; 13088 13089 for_each_possible_cpu(i) { 13090 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13091 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13092 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13093 GFP_KERNEL, cpu_to_node(i)); 13094 13095 #ifdef CONFIG_CFS_BANDWIDTH 13096 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13097 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13098 #endif 13099 } 13100 13101 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 13102 13103 #ifdef CONFIG_NO_HZ_COMMON 13104 nohz.next_balance = jiffies; 13105 nohz.next_blocked = jiffies; 13106 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13107 #endif 13108 #endif /* SMP */ 13109 13110 } 13111