xref: /openbmc/linux/kernel/sched/fair.c (revision 3ca9760fdfa411f7e5db54b3437fbb858d2ec825)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21  */
22 
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33 
34 #include <trace/events/sched.h>
35 
36 #include "sched.h"
37 
38 /*
39  * Targeted preemption latency for CPU-bound tasks:
40  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41  *
42  * NOTE: this latency value is not the same as the concept of
43  * 'timeslice length' - timeslices in CFS are of variable length
44  * and have no persistent notion like in traditional, time-slice
45  * based scheduling concepts.
46  *
47  * (to see the precise effective timeslice length of your workload,
48  *  run vmstat and monitor the context-switches (cs) field)
49  */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52 
53 /*
54  * The initial- and re-scaling of tunables is configurable
55  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56  *
57  * Options are:
58  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61  */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 	= SCHED_TUNABLESCALING_LOG;
64 
65 /*
66  * Minimal preemption granularity for CPU-bound tasks:
67  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68  */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 
72 /*
73  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74  */
75 static unsigned int sched_nr_latency = 8;
76 
77 /*
78  * After fork, child runs first. If set to 0 (default) then
79  * parent will (try to) run first.
80  */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82 
83 /*
84  * SCHED_OTHER wake-up granularity.
85  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86  *
87  * This option delays the preemption effects of decoupled workloads
88  * and reduces their over-scheduling. Synchronous workloads will still
89  * have immediate wakeup/sleep latencies.
90  */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95 
96 /*
97  * The exponential sliding  window over which load is averaged for shares
98  * distribution.
99  * (default: 10msec)
100  */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106  * each time a cfs_rq requests quota.
107  *
108  * Note: in the case that the slice exceeds the runtime remaining (either due
109  * to consumption or the quota being specified to be smaller than the slice)
110  * we will always only issue the remaining available time.
111  *
112  * default: 5 msec, units: microseconds
113   */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116 
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 	lw->weight += inc;
120 	lw->inv_weight = 0;
121 }
122 
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 	lw->weight -= dec;
126 	lw->inv_weight = 0;
127 }
128 
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 	lw->weight = w;
132 	lw->inv_weight = 0;
133 }
134 
135 /*
136  * Increase the granularity value when there are more CPUs,
137  * because with more CPUs the 'effective latency' as visible
138  * to users decreases. But the relationship is not linear,
139  * so pick a second-best guess by going with the log2 of the
140  * number of CPUs.
141  *
142  * This idea comes from the SD scheduler of Con Kolivas:
143  */
144 static unsigned int get_update_sysctl_factor(void)
145 {
146 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 	unsigned int factor;
148 
149 	switch (sysctl_sched_tunable_scaling) {
150 	case SCHED_TUNABLESCALING_NONE:
151 		factor = 1;
152 		break;
153 	case SCHED_TUNABLESCALING_LINEAR:
154 		factor = cpus;
155 		break;
156 	case SCHED_TUNABLESCALING_LOG:
157 	default:
158 		factor = 1 + ilog2(cpus);
159 		break;
160 	}
161 
162 	return factor;
163 }
164 
165 static void update_sysctl(void)
166 {
167 	unsigned int factor = get_update_sysctl_factor();
168 
169 #define SET_SYSCTL(name) \
170 	(sysctl_##name = (factor) * normalized_sysctl_##name)
171 	SET_SYSCTL(sched_min_granularity);
172 	SET_SYSCTL(sched_latency);
173 	SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176 
177 void sched_init_granularity(void)
178 {
179 	update_sysctl();
180 }
181 
182 #define WMULT_CONST	(~0U)
183 #define WMULT_SHIFT	32
184 
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 	unsigned long w;
188 
189 	if (likely(lw->inv_weight))
190 		return;
191 
192 	w = scale_load_down(lw->weight);
193 
194 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 		lw->inv_weight = 1;
196 	else if (unlikely(!w))
197 		lw->inv_weight = WMULT_CONST;
198 	else
199 		lw->inv_weight = WMULT_CONST / w;
200 }
201 
202 /*
203  * delta_exec * weight / lw.weight
204  *   OR
205  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206  *
207  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
208  * we're guaranteed shift stays positive because inv_weight is guaranteed to
209  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210  *
211  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212  * weight/lw.weight <= 1, and therefore our shift will also be positive.
213  */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 	u64 fact = scale_load_down(weight);
217 	int shift = WMULT_SHIFT;
218 
219 	__update_inv_weight(lw);
220 
221 	if (unlikely(fact >> 32)) {
222 		while (fact >> 32) {
223 			fact >>= 1;
224 			shift--;
225 		}
226 	}
227 
228 	/* hint to use a 32x32->64 mul */
229 	fact = (u64)(u32)fact * lw->inv_weight;
230 
231 	while (fact >> 32) {
232 		fact >>= 1;
233 		shift--;
234 	}
235 
236 	return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238 
239 
240 const struct sched_class fair_sched_class;
241 
242 /**************************************************************
243  * CFS operations on generic schedulable entities:
244  */
245 
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247 
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 	return cfs_rq->rq;
252 }
253 
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se)	(!se->my_q)
256 
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 	WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 	return container_of(se, struct task_struct, se);
263 }
264 
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 		for (; se; se = se->parent)
268 
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 	return p->se.cfs_rq;
272 }
273 
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 	return se->cfs_rq;
278 }
279 
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 	return grp->my_q;
284 }
285 
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 	if (!cfs_rq->on_list) {
289 		/*
290 		 * Ensure we either appear before our parent (if already
291 		 * enqueued) or force our parent to appear after us when it is
292 		 * enqueued.  The fact that we always enqueue bottom-up
293 		 * reduces this to two cases.
294 		 */
295 		if (cfs_rq->tg->parent &&
296 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
299 		} else {
300 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302 		}
303 
304 		cfs_rq->on_list = 1;
305 	}
306 }
307 
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309 {
310 	if (cfs_rq->on_list) {
311 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 		cfs_rq->on_list = 0;
313 	}
314 }
315 
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319 
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
323 {
324 	if (se->cfs_rq == pse->cfs_rq)
325 		return se->cfs_rq;
326 
327 	return NULL;
328 }
329 
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
331 {
332 	return se->parent;
333 }
334 
335 static void
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337 {
338 	int se_depth, pse_depth;
339 
340 	/*
341 	 * preemption test can be made between sibling entities who are in the
342 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 	 * both tasks until we find their ancestors who are siblings of common
344 	 * parent.
345 	 */
346 
347 	/* First walk up until both entities are at same depth */
348 	se_depth = (*se)->depth;
349 	pse_depth = (*pse)->depth;
350 
351 	while (se_depth > pse_depth) {
352 		se_depth--;
353 		*se = parent_entity(*se);
354 	}
355 
356 	while (pse_depth > se_depth) {
357 		pse_depth--;
358 		*pse = parent_entity(*pse);
359 	}
360 
361 	while (!is_same_group(*se, *pse)) {
362 		*se = parent_entity(*se);
363 		*pse = parent_entity(*pse);
364 	}
365 }
366 
367 #else	/* !CONFIG_FAIR_GROUP_SCHED */
368 
369 static inline struct task_struct *task_of(struct sched_entity *se)
370 {
371 	return container_of(se, struct task_struct, se);
372 }
373 
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375 {
376 	return container_of(cfs_rq, struct rq, cfs);
377 }
378 
379 #define entity_is_task(se)	1
380 
381 #define for_each_sched_entity(se) \
382 		for (; se; se = NULL)
383 
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385 {
386 	return &task_rq(p)->cfs;
387 }
388 
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390 {
391 	struct task_struct *p = task_of(se);
392 	struct rq *rq = task_rq(p);
393 
394 	return &rq->cfs;
395 }
396 
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399 {
400 	return NULL;
401 }
402 
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404 {
405 }
406 
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410 
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413 
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
415 {
416 	return NULL;
417 }
418 
419 static inline void
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421 {
422 }
423 
424 #endif	/* CONFIG_FAIR_GROUP_SCHED */
425 
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428 
429 /**************************************************************
430  * Scheduling class tree data structure manipulation methods:
431  */
432 
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434 {
435 	s64 delta = (s64)(vruntime - max_vruntime);
436 	if (delta > 0)
437 		max_vruntime = vruntime;
438 
439 	return max_vruntime;
440 }
441 
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443 {
444 	s64 delta = (s64)(vruntime - min_vruntime);
445 	if (delta < 0)
446 		min_vruntime = vruntime;
447 
448 	return min_vruntime;
449 }
450 
451 static inline int entity_before(struct sched_entity *a,
452 				struct sched_entity *b)
453 {
454 	return (s64)(a->vruntime - b->vruntime) < 0;
455 }
456 
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
458 {
459 	u64 vruntime = cfs_rq->min_vruntime;
460 
461 	if (cfs_rq->curr)
462 		vruntime = cfs_rq->curr->vruntime;
463 
464 	if (cfs_rq->rb_leftmost) {
465 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 						   struct sched_entity,
467 						   run_node);
468 
469 		if (!cfs_rq->curr)
470 			vruntime = se->vruntime;
471 		else
472 			vruntime = min_vruntime(vruntime, se->vruntime);
473 	}
474 
475 	/* ensure we never gain time by being placed backwards. */
476 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 	smp_wmb();
479 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482 
483 /*
484  * Enqueue an entity into the rb-tree:
485  */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 	struct rb_node *parent = NULL;
490 	struct sched_entity *entry;
491 	int leftmost = 1;
492 
493 	/*
494 	 * Find the right place in the rbtree:
495 	 */
496 	while (*link) {
497 		parent = *link;
498 		entry = rb_entry(parent, struct sched_entity, run_node);
499 		/*
500 		 * We dont care about collisions. Nodes with
501 		 * the same key stay together.
502 		 */
503 		if (entity_before(se, entry)) {
504 			link = &parent->rb_left;
505 		} else {
506 			link = &parent->rb_right;
507 			leftmost = 0;
508 		}
509 	}
510 
511 	/*
512 	 * Maintain a cache of leftmost tree entries (it is frequently
513 	 * used):
514 	 */
515 	if (leftmost)
516 		cfs_rq->rb_leftmost = &se->run_node;
517 
518 	rb_link_node(&se->run_node, parent, link);
519 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521 
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 	if (cfs_rq->rb_leftmost == &se->run_node) {
525 		struct rb_node *next_node;
526 
527 		next_node = rb_next(&se->run_node);
528 		cfs_rq->rb_leftmost = next_node;
529 	}
530 
531 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533 
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 	struct rb_node *left = cfs_rq->rb_leftmost;
537 
538 	if (!left)
539 		return NULL;
540 
541 	return rb_entry(left, struct sched_entity, run_node);
542 }
543 
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 	struct rb_node *next = rb_next(&se->run_node);
547 
548 	if (!next)
549 		return NULL;
550 
551 	return rb_entry(next, struct sched_entity, run_node);
552 }
553 
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558 
559 	if (!last)
560 		return NULL;
561 
562 	return rb_entry(last, struct sched_entity, run_node);
563 }
564 
565 /**************************************************************
566  * Scheduling class statistics methods:
567  */
568 
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 		void __user *buffer, size_t *lenp,
571 		loff_t *ppos)
572 {
573 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 	unsigned int factor = get_update_sysctl_factor();
575 
576 	if (ret || !write)
577 		return ret;
578 
579 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 					sysctl_sched_min_granularity);
581 
582 #define WRT_SYSCTL(name) \
583 	(normalized_sysctl_##name = sysctl_##name / (factor))
584 	WRT_SYSCTL(sched_min_granularity);
585 	WRT_SYSCTL(sched_latency);
586 	WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588 
589 	return 0;
590 }
591 #endif
592 
593 /*
594  * delta /= w
595  */
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597 {
598 	if (unlikely(se->load.weight != NICE_0_LOAD))
599 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600 
601 	return delta;
602 }
603 
604 /*
605  * The idea is to set a period in which each task runs once.
606  *
607  * When there are too many tasks (sched_nr_latency) we have to stretch
608  * this period because otherwise the slices get too small.
609  *
610  * p = (nr <= nl) ? l : l*nr/nl
611  */
612 static u64 __sched_period(unsigned long nr_running)
613 {
614 	if (unlikely(nr_running > sched_nr_latency))
615 		return nr_running * sysctl_sched_min_granularity;
616 	else
617 		return sysctl_sched_latency;
618 }
619 
620 /*
621  * We calculate the wall-time slice from the period by taking a part
622  * proportional to the weight.
623  *
624  * s = p*P[w/rw]
625  */
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629 
630 	for_each_sched_entity(se) {
631 		struct load_weight *load;
632 		struct load_weight lw;
633 
634 		cfs_rq = cfs_rq_of(se);
635 		load = &cfs_rq->load;
636 
637 		if (unlikely(!se->on_rq)) {
638 			lw = cfs_rq->load;
639 
640 			update_load_add(&lw, se->load.weight);
641 			load = &lw;
642 		}
643 		slice = __calc_delta(slice, se->load.weight, load);
644 	}
645 	return slice;
646 }
647 
648 /*
649  * We calculate the vruntime slice of a to-be-inserted task.
650  *
651  * vs = s/w
652  */
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 }
657 
658 #ifdef CONFIG_SMP
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
661 
662 /*
663  * We choose a half-life close to 1 scheduling period.
664  * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665  * dependent on this value.
666  */
667 #define LOAD_AVG_PERIOD 32
668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670 
671 /* Give new sched_entity start runnable values to heavy its load in infant time */
672 void init_entity_runnable_average(struct sched_entity *se)
673 {
674 	struct sched_avg *sa = &se->avg;
675 
676 	sa->last_update_time = 0;
677 	/*
678 	 * sched_avg's period_contrib should be strictly less then 1024, so
679 	 * we give it 1023 to make sure it is almost a period (1024us), and
680 	 * will definitely be update (after enqueue).
681 	 */
682 	sa->period_contrib = 1023;
683 	sa->load_avg = scale_load_down(se->load.weight);
684 	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 	/*
686 	 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 	 */
688 	sa->util_avg = 0;
689 	sa->util_sum = 0;
690 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
691 }
692 
693 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
694 static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
695 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
696 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
697 
698 /*
699  * With new tasks being created, their initial util_avgs are extrapolated
700  * based on the cfs_rq's current util_avg:
701  *
702  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
703  *
704  * However, in many cases, the above util_avg does not give a desired
705  * value. Moreover, the sum of the util_avgs may be divergent, such
706  * as when the series is a harmonic series.
707  *
708  * To solve this problem, we also cap the util_avg of successive tasks to
709  * only 1/2 of the left utilization budget:
710  *
711  *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
712  *
713  * where n denotes the nth task.
714  *
715  * For example, a simplest series from the beginning would be like:
716  *
717  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
718  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
719  *
720  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
721  * if util_avg > util_avg_cap.
722  */
723 void post_init_entity_util_avg(struct sched_entity *se)
724 {
725 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
726 	struct sched_avg *sa = &se->avg;
727 	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
728 	u64 now = cfs_rq_clock_task(cfs_rq);
729 	int tg_update;
730 
731 	if (cap > 0) {
732 		if (cfs_rq->avg.util_avg != 0) {
733 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
734 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
735 
736 			if (sa->util_avg > cap)
737 				sa->util_avg = cap;
738 		} else {
739 			sa->util_avg = cap;
740 		}
741 		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
742 	}
743 
744 	if (entity_is_task(se)) {
745 		struct task_struct *p = task_of(se);
746 		if (p->sched_class != &fair_sched_class) {
747 			/*
748 			 * For !fair tasks do:
749 			 *
750 			update_cfs_rq_load_avg(now, cfs_rq, false);
751 			attach_entity_load_avg(cfs_rq, se);
752 			switched_from_fair(rq, p);
753 			 *
754 			 * such that the next switched_to_fair() has the
755 			 * expected state.
756 			 */
757 			se->avg.last_update_time = now;
758 			return;
759 		}
760 	}
761 
762 	tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
763 	attach_entity_load_avg(cfs_rq, se);
764 	if (tg_update)
765 		update_tg_load_avg(cfs_rq, false);
766 }
767 
768 #else /* !CONFIG_SMP */
769 void init_entity_runnable_average(struct sched_entity *se)
770 {
771 }
772 void post_init_entity_util_avg(struct sched_entity *se)
773 {
774 }
775 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
776 {
777 }
778 #endif /* CONFIG_SMP */
779 
780 /*
781  * Update the current task's runtime statistics.
782  */
783 static void update_curr(struct cfs_rq *cfs_rq)
784 {
785 	struct sched_entity *curr = cfs_rq->curr;
786 	u64 now = rq_clock_task(rq_of(cfs_rq));
787 	u64 delta_exec;
788 
789 	if (unlikely(!curr))
790 		return;
791 
792 	delta_exec = now - curr->exec_start;
793 	if (unlikely((s64)delta_exec <= 0))
794 		return;
795 
796 	curr->exec_start = now;
797 
798 	schedstat_set(curr->statistics.exec_max,
799 		      max(delta_exec, curr->statistics.exec_max));
800 
801 	curr->sum_exec_runtime += delta_exec;
802 	schedstat_add(cfs_rq, exec_clock, delta_exec);
803 
804 	curr->vruntime += calc_delta_fair(delta_exec, curr);
805 	update_min_vruntime(cfs_rq);
806 
807 	if (entity_is_task(curr)) {
808 		struct task_struct *curtask = task_of(curr);
809 
810 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
811 		cpuacct_charge(curtask, delta_exec);
812 		account_group_exec_runtime(curtask, delta_exec);
813 	}
814 
815 	account_cfs_rq_runtime(cfs_rq, delta_exec);
816 }
817 
818 static void update_curr_fair(struct rq *rq)
819 {
820 	update_curr(cfs_rq_of(&rq->curr->se));
821 }
822 
823 #ifdef CONFIG_SCHEDSTATS
824 static inline void
825 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
826 {
827 	u64 wait_start = rq_clock(rq_of(cfs_rq));
828 
829 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
830 	    likely(wait_start > se->statistics.wait_start))
831 		wait_start -= se->statistics.wait_start;
832 
833 	se->statistics.wait_start = wait_start;
834 }
835 
836 static void
837 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
838 {
839 	struct task_struct *p;
840 	u64 delta;
841 
842 	delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
843 
844 	if (entity_is_task(se)) {
845 		p = task_of(se);
846 		if (task_on_rq_migrating(p)) {
847 			/*
848 			 * Preserve migrating task's wait time so wait_start
849 			 * time stamp can be adjusted to accumulate wait time
850 			 * prior to migration.
851 			 */
852 			se->statistics.wait_start = delta;
853 			return;
854 		}
855 		trace_sched_stat_wait(p, delta);
856 	}
857 
858 	se->statistics.wait_max = max(se->statistics.wait_max, delta);
859 	se->statistics.wait_count++;
860 	se->statistics.wait_sum += delta;
861 	se->statistics.wait_start = 0;
862 }
863 
864 /*
865  * Task is being enqueued - update stats:
866  */
867 static inline void
868 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
869 {
870 	/*
871 	 * Are we enqueueing a waiting task? (for current tasks
872 	 * a dequeue/enqueue event is a NOP)
873 	 */
874 	if (se != cfs_rq->curr)
875 		update_stats_wait_start(cfs_rq, se);
876 }
877 
878 static inline void
879 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
880 {
881 	/*
882 	 * Mark the end of the wait period if dequeueing a
883 	 * waiting task:
884 	 */
885 	if (se != cfs_rq->curr)
886 		update_stats_wait_end(cfs_rq, se);
887 
888 	if (flags & DEQUEUE_SLEEP) {
889 		if (entity_is_task(se)) {
890 			struct task_struct *tsk = task_of(se);
891 
892 			if (tsk->state & TASK_INTERRUPTIBLE)
893 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
894 			if (tsk->state & TASK_UNINTERRUPTIBLE)
895 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
896 		}
897 	}
898 
899 }
900 #else
901 static inline void
902 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
903 {
904 }
905 
906 static inline void
907 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
908 {
909 }
910 
911 static inline void
912 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
913 {
914 }
915 
916 static inline void
917 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
918 {
919 }
920 #endif
921 
922 /*
923  * We are picking a new current task - update its stats:
924  */
925 static inline void
926 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
927 {
928 	/*
929 	 * We are starting a new run period:
930 	 */
931 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
932 }
933 
934 /**************************************************
935  * Scheduling class queueing methods:
936  */
937 
938 #ifdef CONFIG_NUMA_BALANCING
939 /*
940  * Approximate time to scan a full NUMA task in ms. The task scan period is
941  * calculated based on the tasks virtual memory size and
942  * numa_balancing_scan_size.
943  */
944 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
945 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
946 
947 /* Portion of address space to scan in MB */
948 unsigned int sysctl_numa_balancing_scan_size = 256;
949 
950 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
951 unsigned int sysctl_numa_balancing_scan_delay = 1000;
952 
953 static unsigned int task_nr_scan_windows(struct task_struct *p)
954 {
955 	unsigned long rss = 0;
956 	unsigned long nr_scan_pages;
957 
958 	/*
959 	 * Calculations based on RSS as non-present and empty pages are skipped
960 	 * by the PTE scanner and NUMA hinting faults should be trapped based
961 	 * on resident pages
962 	 */
963 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
964 	rss = get_mm_rss(p->mm);
965 	if (!rss)
966 		rss = nr_scan_pages;
967 
968 	rss = round_up(rss, nr_scan_pages);
969 	return rss / nr_scan_pages;
970 }
971 
972 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
973 #define MAX_SCAN_WINDOW 2560
974 
975 static unsigned int task_scan_min(struct task_struct *p)
976 {
977 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
978 	unsigned int scan, floor;
979 	unsigned int windows = 1;
980 
981 	if (scan_size < MAX_SCAN_WINDOW)
982 		windows = MAX_SCAN_WINDOW / scan_size;
983 	floor = 1000 / windows;
984 
985 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
986 	return max_t(unsigned int, floor, scan);
987 }
988 
989 static unsigned int task_scan_max(struct task_struct *p)
990 {
991 	unsigned int smin = task_scan_min(p);
992 	unsigned int smax;
993 
994 	/* Watch for min being lower than max due to floor calculations */
995 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
996 	return max(smin, smax);
997 }
998 
999 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1000 {
1001 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1002 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1003 }
1004 
1005 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1006 {
1007 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1008 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1009 }
1010 
1011 struct numa_group {
1012 	atomic_t refcount;
1013 
1014 	spinlock_t lock; /* nr_tasks, tasks */
1015 	int nr_tasks;
1016 	pid_t gid;
1017 	int active_nodes;
1018 
1019 	struct rcu_head rcu;
1020 	unsigned long total_faults;
1021 	unsigned long max_faults_cpu;
1022 	/*
1023 	 * Faults_cpu is used to decide whether memory should move
1024 	 * towards the CPU. As a consequence, these stats are weighted
1025 	 * more by CPU use than by memory faults.
1026 	 */
1027 	unsigned long *faults_cpu;
1028 	unsigned long faults[0];
1029 };
1030 
1031 /* Shared or private faults. */
1032 #define NR_NUMA_HINT_FAULT_TYPES 2
1033 
1034 /* Memory and CPU locality */
1035 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1036 
1037 /* Averaged statistics, and temporary buffers. */
1038 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1039 
1040 pid_t task_numa_group_id(struct task_struct *p)
1041 {
1042 	return p->numa_group ? p->numa_group->gid : 0;
1043 }
1044 
1045 /*
1046  * The averaged statistics, shared & private, memory & cpu,
1047  * occupy the first half of the array. The second half of the
1048  * array is for current counters, which are averaged into the
1049  * first set by task_numa_placement.
1050  */
1051 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1052 {
1053 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1054 }
1055 
1056 static inline unsigned long task_faults(struct task_struct *p, int nid)
1057 {
1058 	if (!p->numa_faults)
1059 		return 0;
1060 
1061 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1062 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1063 }
1064 
1065 static inline unsigned long group_faults(struct task_struct *p, int nid)
1066 {
1067 	if (!p->numa_group)
1068 		return 0;
1069 
1070 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1071 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1072 }
1073 
1074 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1075 {
1076 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1077 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1078 }
1079 
1080 /*
1081  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1082  * considered part of a numa group's pseudo-interleaving set. Migrations
1083  * between these nodes are slowed down, to allow things to settle down.
1084  */
1085 #define ACTIVE_NODE_FRACTION 3
1086 
1087 static bool numa_is_active_node(int nid, struct numa_group *ng)
1088 {
1089 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1090 }
1091 
1092 /* Handle placement on systems where not all nodes are directly connected. */
1093 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1094 					int maxdist, bool task)
1095 {
1096 	unsigned long score = 0;
1097 	int node;
1098 
1099 	/*
1100 	 * All nodes are directly connected, and the same distance
1101 	 * from each other. No need for fancy placement algorithms.
1102 	 */
1103 	if (sched_numa_topology_type == NUMA_DIRECT)
1104 		return 0;
1105 
1106 	/*
1107 	 * This code is called for each node, introducing N^2 complexity,
1108 	 * which should be ok given the number of nodes rarely exceeds 8.
1109 	 */
1110 	for_each_online_node(node) {
1111 		unsigned long faults;
1112 		int dist = node_distance(nid, node);
1113 
1114 		/*
1115 		 * The furthest away nodes in the system are not interesting
1116 		 * for placement; nid was already counted.
1117 		 */
1118 		if (dist == sched_max_numa_distance || node == nid)
1119 			continue;
1120 
1121 		/*
1122 		 * On systems with a backplane NUMA topology, compare groups
1123 		 * of nodes, and move tasks towards the group with the most
1124 		 * memory accesses. When comparing two nodes at distance
1125 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1126 		 * of each group. Skip other nodes.
1127 		 */
1128 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1129 					dist > maxdist)
1130 			continue;
1131 
1132 		/* Add up the faults from nearby nodes. */
1133 		if (task)
1134 			faults = task_faults(p, node);
1135 		else
1136 			faults = group_faults(p, node);
1137 
1138 		/*
1139 		 * On systems with a glueless mesh NUMA topology, there are
1140 		 * no fixed "groups of nodes". Instead, nodes that are not
1141 		 * directly connected bounce traffic through intermediate
1142 		 * nodes; a numa_group can occupy any set of nodes.
1143 		 * The further away a node is, the less the faults count.
1144 		 * This seems to result in good task placement.
1145 		 */
1146 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1147 			faults *= (sched_max_numa_distance - dist);
1148 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1149 		}
1150 
1151 		score += faults;
1152 	}
1153 
1154 	return score;
1155 }
1156 
1157 /*
1158  * These return the fraction of accesses done by a particular task, or
1159  * task group, on a particular numa node.  The group weight is given a
1160  * larger multiplier, in order to group tasks together that are almost
1161  * evenly spread out between numa nodes.
1162  */
1163 static inline unsigned long task_weight(struct task_struct *p, int nid,
1164 					int dist)
1165 {
1166 	unsigned long faults, total_faults;
1167 
1168 	if (!p->numa_faults)
1169 		return 0;
1170 
1171 	total_faults = p->total_numa_faults;
1172 
1173 	if (!total_faults)
1174 		return 0;
1175 
1176 	faults = task_faults(p, nid);
1177 	faults += score_nearby_nodes(p, nid, dist, true);
1178 
1179 	return 1000 * faults / total_faults;
1180 }
1181 
1182 static inline unsigned long group_weight(struct task_struct *p, int nid,
1183 					 int dist)
1184 {
1185 	unsigned long faults, total_faults;
1186 
1187 	if (!p->numa_group)
1188 		return 0;
1189 
1190 	total_faults = p->numa_group->total_faults;
1191 
1192 	if (!total_faults)
1193 		return 0;
1194 
1195 	faults = group_faults(p, nid);
1196 	faults += score_nearby_nodes(p, nid, dist, false);
1197 
1198 	return 1000 * faults / total_faults;
1199 }
1200 
1201 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1202 				int src_nid, int dst_cpu)
1203 {
1204 	struct numa_group *ng = p->numa_group;
1205 	int dst_nid = cpu_to_node(dst_cpu);
1206 	int last_cpupid, this_cpupid;
1207 
1208 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1209 
1210 	/*
1211 	 * Multi-stage node selection is used in conjunction with a periodic
1212 	 * migration fault to build a temporal task<->page relation. By using
1213 	 * a two-stage filter we remove short/unlikely relations.
1214 	 *
1215 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1216 	 * a task's usage of a particular page (n_p) per total usage of this
1217 	 * page (n_t) (in a given time-span) to a probability.
1218 	 *
1219 	 * Our periodic faults will sample this probability and getting the
1220 	 * same result twice in a row, given these samples are fully
1221 	 * independent, is then given by P(n)^2, provided our sample period
1222 	 * is sufficiently short compared to the usage pattern.
1223 	 *
1224 	 * This quadric squishes small probabilities, making it less likely we
1225 	 * act on an unlikely task<->page relation.
1226 	 */
1227 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1228 	if (!cpupid_pid_unset(last_cpupid) &&
1229 				cpupid_to_nid(last_cpupid) != dst_nid)
1230 		return false;
1231 
1232 	/* Always allow migrate on private faults */
1233 	if (cpupid_match_pid(p, last_cpupid))
1234 		return true;
1235 
1236 	/* A shared fault, but p->numa_group has not been set up yet. */
1237 	if (!ng)
1238 		return true;
1239 
1240 	/*
1241 	 * Destination node is much more heavily used than the source
1242 	 * node? Allow migration.
1243 	 */
1244 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1245 					ACTIVE_NODE_FRACTION)
1246 		return true;
1247 
1248 	/*
1249 	 * Distribute memory according to CPU & memory use on each node,
1250 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1251 	 *
1252 	 * faults_cpu(dst)   3   faults_cpu(src)
1253 	 * --------------- * - > ---------------
1254 	 * faults_mem(dst)   4   faults_mem(src)
1255 	 */
1256 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1257 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1258 }
1259 
1260 static unsigned long weighted_cpuload(const int cpu);
1261 static unsigned long source_load(int cpu, int type);
1262 static unsigned long target_load(int cpu, int type);
1263 static unsigned long capacity_of(int cpu);
1264 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1265 
1266 /* Cached statistics for all CPUs within a node */
1267 struct numa_stats {
1268 	unsigned long nr_running;
1269 	unsigned long load;
1270 
1271 	/* Total compute capacity of CPUs on a node */
1272 	unsigned long compute_capacity;
1273 
1274 	/* Approximate capacity in terms of runnable tasks on a node */
1275 	unsigned long task_capacity;
1276 	int has_free_capacity;
1277 };
1278 
1279 /*
1280  * XXX borrowed from update_sg_lb_stats
1281  */
1282 static void update_numa_stats(struct numa_stats *ns, int nid)
1283 {
1284 	int smt, cpu, cpus = 0;
1285 	unsigned long capacity;
1286 
1287 	memset(ns, 0, sizeof(*ns));
1288 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1289 		struct rq *rq = cpu_rq(cpu);
1290 
1291 		ns->nr_running += rq->nr_running;
1292 		ns->load += weighted_cpuload(cpu);
1293 		ns->compute_capacity += capacity_of(cpu);
1294 
1295 		cpus++;
1296 	}
1297 
1298 	/*
1299 	 * If we raced with hotplug and there are no CPUs left in our mask
1300 	 * the @ns structure is NULL'ed and task_numa_compare() will
1301 	 * not find this node attractive.
1302 	 *
1303 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1304 	 * imbalance and bail there.
1305 	 */
1306 	if (!cpus)
1307 		return;
1308 
1309 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1310 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1311 	capacity = cpus / smt; /* cores */
1312 
1313 	ns->task_capacity = min_t(unsigned, capacity,
1314 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1315 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1316 }
1317 
1318 struct task_numa_env {
1319 	struct task_struct *p;
1320 
1321 	int src_cpu, src_nid;
1322 	int dst_cpu, dst_nid;
1323 
1324 	struct numa_stats src_stats, dst_stats;
1325 
1326 	int imbalance_pct;
1327 	int dist;
1328 
1329 	struct task_struct *best_task;
1330 	long best_imp;
1331 	int best_cpu;
1332 };
1333 
1334 static void task_numa_assign(struct task_numa_env *env,
1335 			     struct task_struct *p, long imp)
1336 {
1337 	if (env->best_task)
1338 		put_task_struct(env->best_task);
1339 	if (p)
1340 		get_task_struct(p);
1341 
1342 	env->best_task = p;
1343 	env->best_imp = imp;
1344 	env->best_cpu = env->dst_cpu;
1345 }
1346 
1347 static bool load_too_imbalanced(long src_load, long dst_load,
1348 				struct task_numa_env *env)
1349 {
1350 	long imb, old_imb;
1351 	long orig_src_load, orig_dst_load;
1352 	long src_capacity, dst_capacity;
1353 
1354 	/*
1355 	 * The load is corrected for the CPU capacity available on each node.
1356 	 *
1357 	 * src_load        dst_load
1358 	 * ------------ vs ---------
1359 	 * src_capacity    dst_capacity
1360 	 */
1361 	src_capacity = env->src_stats.compute_capacity;
1362 	dst_capacity = env->dst_stats.compute_capacity;
1363 
1364 	/* We care about the slope of the imbalance, not the direction. */
1365 	if (dst_load < src_load)
1366 		swap(dst_load, src_load);
1367 
1368 	/* Is the difference below the threshold? */
1369 	imb = dst_load * src_capacity * 100 -
1370 	      src_load * dst_capacity * env->imbalance_pct;
1371 	if (imb <= 0)
1372 		return false;
1373 
1374 	/*
1375 	 * The imbalance is above the allowed threshold.
1376 	 * Compare it with the old imbalance.
1377 	 */
1378 	orig_src_load = env->src_stats.load;
1379 	orig_dst_load = env->dst_stats.load;
1380 
1381 	if (orig_dst_load < orig_src_load)
1382 		swap(orig_dst_load, orig_src_load);
1383 
1384 	old_imb = orig_dst_load * src_capacity * 100 -
1385 		  orig_src_load * dst_capacity * env->imbalance_pct;
1386 
1387 	/* Would this change make things worse? */
1388 	return (imb > old_imb);
1389 }
1390 
1391 /*
1392  * This checks if the overall compute and NUMA accesses of the system would
1393  * be improved if the source tasks was migrated to the target dst_cpu taking
1394  * into account that it might be best if task running on the dst_cpu should
1395  * be exchanged with the source task
1396  */
1397 static void task_numa_compare(struct task_numa_env *env,
1398 			      long taskimp, long groupimp)
1399 {
1400 	struct rq *src_rq = cpu_rq(env->src_cpu);
1401 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1402 	struct task_struct *cur;
1403 	long src_load, dst_load;
1404 	long load;
1405 	long imp = env->p->numa_group ? groupimp : taskimp;
1406 	long moveimp = imp;
1407 	int dist = env->dist;
1408 
1409 	rcu_read_lock();
1410 	cur = task_rcu_dereference(&dst_rq->curr);
1411 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1412 		cur = NULL;
1413 
1414 	/*
1415 	 * Because we have preemption enabled we can get migrated around and
1416 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1417 	 */
1418 	if (cur == env->p)
1419 		goto unlock;
1420 
1421 	/*
1422 	 * "imp" is the fault differential for the source task between the
1423 	 * source and destination node. Calculate the total differential for
1424 	 * the source task and potential destination task. The more negative
1425 	 * the value is, the more rmeote accesses that would be expected to
1426 	 * be incurred if the tasks were swapped.
1427 	 */
1428 	if (cur) {
1429 		/* Skip this swap candidate if cannot move to the source cpu */
1430 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1431 			goto unlock;
1432 
1433 		/*
1434 		 * If dst and source tasks are in the same NUMA group, or not
1435 		 * in any group then look only at task weights.
1436 		 */
1437 		if (cur->numa_group == env->p->numa_group) {
1438 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1439 			      task_weight(cur, env->dst_nid, dist);
1440 			/*
1441 			 * Add some hysteresis to prevent swapping the
1442 			 * tasks within a group over tiny differences.
1443 			 */
1444 			if (cur->numa_group)
1445 				imp -= imp/16;
1446 		} else {
1447 			/*
1448 			 * Compare the group weights. If a task is all by
1449 			 * itself (not part of a group), use the task weight
1450 			 * instead.
1451 			 */
1452 			if (cur->numa_group)
1453 				imp += group_weight(cur, env->src_nid, dist) -
1454 				       group_weight(cur, env->dst_nid, dist);
1455 			else
1456 				imp += task_weight(cur, env->src_nid, dist) -
1457 				       task_weight(cur, env->dst_nid, dist);
1458 		}
1459 	}
1460 
1461 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1462 		goto unlock;
1463 
1464 	if (!cur) {
1465 		/* Is there capacity at our destination? */
1466 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1467 		    !env->dst_stats.has_free_capacity)
1468 			goto unlock;
1469 
1470 		goto balance;
1471 	}
1472 
1473 	/* Balance doesn't matter much if we're running a task per cpu */
1474 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1475 			dst_rq->nr_running == 1)
1476 		goto assign;
1477 
1478 	/*
1479 	 * In the overloaded case, try and keep the load balanced.
1480 	 */
1481 balance:
1482 	load = task_h_load(env->p);
1483 	dst_load = env->dst_stats.load + load;
1484 	src_load = env->src_stats.load - load;
1485 
1486 	if (moveimp > imp && moveimp > env->best_imp) {
1487 		/*
1488 		 * If the improvement from just moving env->p direction is
1489 		 * better than swapping tasks around, check if a move is
1490 		 * possible. Store a slightly smaller score than moveimp,
1491 		 * so an actually idle CPU will win.
1492 		 */
1493 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1494 			imp = moveimp - 1;
1495 			cur = NULL;
1496 			goto assign;
1497 		}
1498 	}
1499 
1500 	if (imp <= env->best_imp)
1501 		goto unlock;
1502 
1503 	if (cur) {
1504 		load = task_h_load(cur);
1505 		dst_load -= load;
1506 		src_load += load;
1507 	}
1508 
1509 	if (load_too_imbalanced(src_load, dst_load, env))
1510 		goto unlock;
1511 
1512 	/*
1513 	 * One idle CPU per node is evaluated for a task numa move.
1514 	 * Call select_idle_sibling to maybe find a better one.
1515 	 */
1516 	if (!cur)
1517 		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1518 
1519 assign:
1520 	task_numa_assign(env, cur, imp);
1521 unlock:
1522 	rcu_read_unlock();
1523 }
1524 
1525 static void task_numa_find_cpu(struct task_numa_env *env,
1526 				long taskimp, long groupimp)
1527 {
1528 	int cpu;
1529 
1530 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1531 		/* Skip this CPU if the source task cannot migrate */
1532 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1533 			continue;
1534 
1535 		env->dst_cpu = cpu;
1536 		task_numa_compare(env, taskimp, groupimp);
1537 	}
1538 }
1539 
1540 /* Only move tasks to a NUMA node less busy than the current node. */
1541 static bool numa_has_capacity(struct task_numa_env *env)
1542 {
1543 	struct numa_stats *src = &env->src_stats;
1544 	struct numa_stats *dst = &env->dst_stats;
1545 
1546 	if (src->has_free_capacity && !dst->has_free_capacity)
1547 		return false;
1548 
1549 	/*
1550 	 * Only consider a task move if the source has a higher load
1551 	 * than the destination, corrected for CPU capacity on each node.
1552 	 *
1553 	 *      src->load                dst->load
1554 	 * --------------------- vs ---------------------
1555 	 * src->compute_capacity    dst->compute_capacity
1556 	 */
1557 	if (src->load * dst->compute_capacity * env->imbalance_pct >
1558 
1559 	    dst->load * src->compute_capacity * 100)
1560 		return true;
1561 
1562 	return false;
1563 }
1564 
1565 static int task_numa_migrate(struct task_struct *p)
1566 {
1567 	struct task_numa_env env = {
1568 		.p = p,
1569 
1570 		.src_cpu = task_cpu(p),
1571 		.src_nid = task_node(p),
1572 
1573 		.imbalance_pct = 112,
1574 
1575 		.best_task = NULL,
1576 		.best_imp = 0,
1577 		.best_cpu = -1,
1578 	};
1579 	struct sched_domain *sd;
1580 	unsigned long taskweight, groupweight;
1581 	int nid, ret, dist;
1582 	long taskimp, groupimp;
1583 
1584 	/*
1585 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1586 	 * imbalance and would be the first to start moving tasks about.
1587 	 *
1588 	 * And we want to avoid any moving of tasks about, as that would create
1589 	 * random movement of tasks -- counter the numa conditions we're trying
1590 	 * to satisfy here.
1591 	 */
1592 	rcu_read_lock();
1593 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1594 	if (sd)
1595 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1596 	rcu_read_unlock();
1597 
1598 	/*
1599 	 * Cpusets can break the scheduler domain tree into smaller
1600 	 * balance domains, some of which do not cross NUMA boundaries.
1601 	 * Tasks that are "trapped" in such domains cannot be migrated
1602 	 * elsewhere, so there is no point in (re)trying.
1603 	 */
1604 	if (unlikely(!sd)) {
1605 		p->numa_preferred_nid = task_node(p);
1606 		return -EINVAL;
1607 	}
1608 
1609 	env.dst_nid = p->numa_preferred_nid;
1610 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1611 	taskweight = task_weight(p, env.src_nid, dist);
1612 	groupweight = group_weight(p, env.src_nid, dist);
1613 	update_numa_stats(&env.src_stats, env.src_nid);
1614 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1615 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1616 	update_numa_stats(&env.dst_stats, env.dst_nid);
1617 
1618 	/* Try to find a spot on the preferred nid. */
1619 	if (numa_has_capacity(&env))
1620 		task_numa_find_cpu(&env, taskimp, groupimp);
1621 
1622 	/*
1623 	 * Look at other nodes in these cases:
1624 	 * - there is no space available on the preferred_nid
1625 	 * - the task is part of a numa_group that is interleaved across
1626 	 *   multiple NUMA nodes; in order to better consolidate the group,
1627 	 *   we need to check other locations.
1628 	 */
1629 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1630 		for_each_online_node(nid) {
1631 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1632 				continue;
1633 
1634 			dist = node_distance(env.src_nid, env.dst_nid);
1635 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1636 						dist != env.dist) {
1637 				taskweight = task_weight(p, env.src_nid, dist);
1638 				groupweight = group_weight(p, env.src_nid, dist);
1639 			}
1640 
1641 			/* Only consider nodes where both task and groups benefit */
1642 			taskimp = task_weight(p, nid, dist) - taskweight;
1643 			groupimp = group_weight(p, nid, dist) - groupweight;
1644 			if (taskimp < 0 && groupimp < 0)
1645 				continue;
1646 
1647 			env.dist = dist;
1648 			env.dst_nid = nid;
1649 			update_numa_stats(&env.dst_stats, env.dst_nid);
1650 			if (numa_has_capacity(&env))
1651 				task_numa_find_cpu(&env, taskimp, groupimp);
1652 		}
1653 	}
1654 
1655 	/*
1656 	 * If the task is part of a workload that spans multiple NUMA nodes,
1657 	 * and is migrating into one of the workload's active nodes, remember
1658 	 * this node as the task's preferred numa node, so the workload can
1659 	 * settle down.
1660 	 * A task that migrated to a second choice node will be better off
1661 	 * trying for a better one later. Do not set the preferred node here.
1662 	 */
1663 	if (p->numa_group) {
1664 		struct numa_group *ng = p->numa_group;
1665 
1666 		if (env.best_cpu == -1)
1667 			nid = env.src_nid;
1668 		else
1669 			nid = env.dst_nid;
1670 
1671 		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1672 			sched_setnuma(p, env.dst_nid);
1673 	}
1674 
1675 	/* No better CPU than the current one was found. */
1676 	if (env.best_cpu == -1)
1677 		return -EAGAIN;
1678 
1679 	/*
1680 	 * Reset the scan period if the task is being rescheduled on an
1681 	 * alternative node to recheck if the tasks is now properly placed.
1682 	 */
1683 	p->numa_scan_period = task_scan_min(p);
1684 
1685 	if (env.best_task == NULL) {
1686 		ret = migrate_task_to(p, env.best_cpu);
1687 		if (ret != 0)
1688 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1689 		return ret;
1690 	}
1691 
1692 	ret = migrate_swap(p, env.best_task);
1693 	if (ret != 0)
1694 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1695 	put_task_struct(env.best_task);
1696 	return ret;
1697 }
1698 
1699 /* Attempt to migrate a task to a CPU on the preferred node. */
1700 static void numa_migrate_preferred(struct task_struct *p)
1701 {
1702 	unsigned long interval = HZ;
1703 
1704 	/* This task has no NUMA fault statistics yet */
1705 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1706 		return;
1707 
1708 	/* Periodically retry migrating the task to the preferred node */
1709 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1710 	p->numa_migrate_retry = jiffies + interval;
1711 
1712 	/* Success if task is already running on preferred CPU */
1713 	if (task_node(p) == p->numa_preferred_nid)
1714 		return;
1715 
1716 	/* Otherwise, try migrate to a CPU on the preferred node */
1717 	task_numa_migrate(p);
1718 }
1719 
1720 /*
1721  * Find out how many nodes on the workload is actively running on. Do this by
1722  * tracking the nodes from which NUMA hinting faults are triggered. This can
1723  * be different from the set of nodes where the workload's memory is currently
1724  * located.
1725  */
1726 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1727 {
1728 	unsigned long faults, max_faults = 0;
1729 	int nid, active_nodes = 0;
1730 
1731 	for_each_online_node(nid) {
1732 		faults = group_faults_cpu(numa_group, nid);
1733 		if (faults > max_faults)
1734 			max_faults = faults;
1735 	}
1736 
1737 	for_each_online_node(nid) {
1738 		faults = group_faults_cpu(numa_group, nid);
1739 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1740 			active_nodes++;
1741 	}
1742 
1743 	numa_group->max_faults_cpu = max_faults;
1744 	numa_group->active_nodes = active_nodes;
1745 }
1746 
1747 /*
1748  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1749  * increments. The more local the fault statistics are, the higher the scan
1750  * period will be for the next scan window. If local/(local+remote) ratio is
1751  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1752  * the scan period will decrease. Aim for 70% local accesses.
1753  */
1754 #define NUMA_PERIOD_SLOTS 10
1755 #define NUMA_PERIOD_THRESHOLD 7
1756 
1757 /*
1758  * Increase the scan period (slow down scanning) if the majority of
1759  * our memory is already on our local node, or if the majority of
1760  * the page accesses are shared with other processes.
1761  * Otherwise, decrease the scan period.
1762  */
1763 static void update_task_scan_period(struct task_struct *p,
1764 			unsigned long shared, unsigned long private)
1765 {
1766 	unsigned int period_slot;
1767 	int ratio;
1768 	int diff;
1769 
1770 	unsigned long remote = p->numa_faults_locality[0];
1771 	unsigned long local = p->numa_faults_locality[1];
1772 
1773 	/*
1774 	 * If there were no record hinting faults then either the task is
1775 	 * completely idle or all activity is areas that are not of interest
1776 	 * to automatic numa balancing. Related to that, if there were failed
1777 	 * migration then it implies we are migrating too quickly or the local
1778 	 * node is overloaded. In either case, scan slower
1779 	 */
1780 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1781 		p->numa_scan_period = min(p->numa_scan_period_max,
1782 			p->numa_scan_period << 1);
1783 
1784 		p->mm->numa_next_scan = jiffies +
1785 			msecs_to_jiffies(p->numa_scan_period);
1786 
1787 		return;
1788 	}
1789 
1790 	/*
1791 	 * Prepare to scale scan period relative to the current period.
1792 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1793 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1794 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1795 	 */
1796 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1797 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1798 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1799 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1800 		if (!slot)
1801 			slot = 1;
1802 		diff = slot * period_slot;
1803 	} else {
1804 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1805 
1806 		/*
1807 		 * Scale scan rate increases based on sharing. There is an
1808 		 * inverse relationship between the degree of sharing and
1809 		 * the adjustment made to the scanning period. Broadly
1810 		 * speaking the intent is that there is little point
1811 		 * scanning faster if shared accesses dominate as it may
1812 		 * simply bounce migrations uselessly
1813 		 */
1814 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1815 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1816 	}
1817 
1818 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1819 			task_scan_min(p), task_scan_max(p));
1820 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1821 }
1822 
1823 /*
1824  * Get the fraction of time the task has been running since the last
1825  * NUMA placement cycle. The scheduler keeps similar statistics, but
1826  * decays those on a 32ms period, which is orders of magnitude off
1827  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1828  * stats only if the task is so new there are no NUMA statistics yet.
1829  */
1830 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1831 {
1832 	u64 runtime, delta, now;
1833 	/* Use the start of this time slice to avoid calculations. */
1834 	now = p->se.exec_start;
1835 	runtime = p->se.sum_exec_runtime;
1836 
1837 	if (p->last_task_numa_placement) {
1838 		delta = runtime - p->last_sum_exec_runtime;
1839 		*period = now - p->last_task_numa_placement;
1840 	} else {
1841 		delta = p->se.avg.load_sum / p->se.load.weight;
1842 		*period = LOAD_AVG_MAX;
1843 	}
1844 
1845 	p->last_sum_exec_runtime = runtime;
1846 	p->last_task_numa_placement = now;
1847 
1848 	return delta;
1849 }
1850 
1851 /*
1852  * Determine the preferred nid for a task in a numa_group. This needs to
1853  * be done in a way that produces consistent results with group_weight,
1854  * otherwise workloads might not converge.
1855  */
1856 static int preferred_group_nid(struct task_struct *p, int nid)
1857 {
1858 	nodemask_t nodes;
1859 	int dist;
1860 
1861 	/* Direct connections between all NUMA nodes. */
1862 	if (sched_numa_topology_type == NUMA_DIRECT)
1863 		return nid;
1864 
1865 	/*
1866 	 * On a system with glueless mesh NUMA topology, group_weight
1867 	 * scores nodes according to the number of NUMA hinting faults on
1868 	 * both the node itself, and on nearby nodes.
1869 	 */
1870 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1871 		unsigned long score, max_score = 0;
1872 		int node, max_node = nid;
1873 
1874 		dist = sched_max_numa_distance;
1875 
1876 		for_each_online_node(node) {
1877 			score = group_weight(p, node, dist);
1878 			if (score > max_score) {
1879 				max_score = score;
1880 				max_node = node;
1881 			}
1882 		}
1883 		return max_node;
1884 	}
1885 
1886 	/*
1887 	 * Finding the preferred nid in a system with NUMA backplane
1888 	 * interconnect topology is more involved. The goal is to locate
1889 	 * tasks from numa_groups near each other in the system, and
1890 	 * untangle workloads from different sides of the system. This requires
1891 	 * searching down the hierarchy of node groups, recursively searching
1892 	 * inside the highest scoring group of nodes. The nodemask tricks
1893 	 * keep the complexity of the search down.
1894 	 */
1895 	nodes = node_online_map;
1896 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1897 		unsigned long max_faults = 0;
1898 		nodemask_t max_group = NODE_MASK_NONE;
1899 		int a, b;
1900 
1901 		/* Are there nodes at this distance from each other? */
1902 		if (!find_numa_distance(dist))
1903 			continue;
1904 
1905 		for_each_node_mask(a, nodes) {
1906 			unsigned long faults = 0;
1907 			nodemask_t this_group;
1908 			nodes_clear(this_group);
1909 
1910 			/* Sum group's NUMA faults; includes a==b case. */
1911 			for_each_node_mask(b, nodes) {
1912 				if (node_distance(a, b) < dist) {
1913 					faults += group_faults(p, b);
1914 					node_set(b, this_group);
1915 					node_clear(b, nodes);
1916 				}
1917 			}
1918 
1919 			/* Remember the top group. */
1920 			if (faults > max_faults) {
1921 				max_faults = faults;
1922 				max_group = this_group;
1923 				/*
1924 				 * subtle: at the smallest distance there is
1925 				 * just one node left in each "group", the
1926 				 * winner is the preferred nid.
1927 				 */
1928 				nid = a;
1929 			}
1930 		}
1931 		/* Next round, evaluate the nodes within max_group. */
1932 		if (!max_faults)
1933 			break;
1934 		nodes = max_group;
1935 	}
1936 	return nid;
1937 }
1938 
1939 static void task_numa_placement(struct task_struct *p)
1940 {
1941 	int seq, nid, max_nid = -1, max_group_nid = -1;
1942 	unsigned long max_faults = 0, max_group_faults = 0;
1943 	unsigned long fault_types[2] = { 0, 0 };
1944 	unsigned long total_faults;
1945 	u64 runtime, period;
1946 	spinlock_t *group_lock = NULL;
1947 
1948 	/*
1949 	 * The p->mm->numa_scan_seq field gets updated without
1950 	 * exclusive access. Use READ_ONCE() here to ensure
1951 	 * that the field is read in a single access:
1952 	 */
1953 	seq = READ_ONCE(p->mm->numa_scan_seq);
1954 	if (p->numa_scan_seq == seq)
1955 		return;
1956 	p->numa_scan_seq = seq;
1957 	p->numa_scan_period_max = task_scan_max(p);
1958 
1959 	total_faults = p->numa_faults_locality[0] +
1960 		       p->numa_faults_locality[1];
1961 	runtime = numa_get_avg_runtime(p, &period);
1962 
1963 	/* If the task is part of a group prevent parallel updates to group stats */
1964 	if (p->numa_group) {
1965 		group_lock = &p->numa_group->lock;
1966 		spin_lock_irq(group_lock);
1967 	}
1968 
1969 	/* Find the node with the highest number of faults */
1970 	for_each_online_node(nid) {
1971 		/* Keep track of the offsets in numa_faults array */
1972 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1973 		unsigned long faults = 0, group_faults = 0;
1974 		int priv;
1975 
1976 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1977 			long diff, f_diff, f_weight;
1978 
1979 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1980 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1981 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1982 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1983 
1984 			/* Decay existing window, copy faults since last scan */
1985 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1986 			fault_types[priv] += p->numa_faults[membuf_idx];
1987 			p->numa_faults[membuf_idx] = 0;
1988 
1989 			/*
1990 			 * Normalize the faults_from, so all tasks in a group
1991 			 * count according to CPU use, instead of by the raw
1992 			 * number of faults. Tasks with little runtime have
1993 			 * little over-all impact on throughput, and thus their
1994 			 * faults are less important.
1995 			 */
1996 			f_weight = div64_u64(runtime << 16, period + 1);
1997 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1998 				   (total_faults + 1);
1999 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2000 			p->numa_faults[cpubuf_idx] = 0;
2001 
2002 			p->numa_faults[mem_idx] += diff;
2003 			p->numa_faults[cpu_idx] += f_diff;
2004 			faults += p->numa_faults[mem_idx];
2005 			p->total_numa_faults += diff;
2006 			if (p->numa_group) {
2007 				/*
2008 				 * safe because we can only change our own group
2009 				 *
2010 				 * mem_idx represents the offset for a given
2011 				 * nid and priv in a specific region because it
2012 				 * is at the beginning of the numa_faults array.
2013 				 */
2014 				p->numa_group->faults[mem_idx] += diff;
2015 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2016 				p->numa_group->total_faults += diff;
2017 				group_faults += p->numa_group->faults[mem_idx];
2018 			}
2019 		}
2020 
2021 		if (faults > max_faults) {
2022 			max_faults = faults;
2023 			max_nid = nid;
2024 		}
2025 
2026 		if (group_faults > max_group_faults) {
2027 			max_group_faults = group_faults;
2028 			max_group_nid = nid;
2029 		}
2030 	}
2031 
2032 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2033 
2034 	if (p->numa_group) {
2035 		numa_group_count_active_nodes(p->numa_group);
2036 		spin_unlock_irq(group_lock);
2037 		max_nid = preferred_group_nid(p, max_group_nid);
2038 	}
2039 
2040 	if (max_faults) {
2041 		/* Set the new preferred node */
2042 		if (max_nid != p->numa_preferred_nid)
2043 			sched_setnuma(p, max_nid);
2044 
2045 		if (task_node(p) != p->numa_preferred_nid)
2046 			numa_migrate_preferred(p);
2047 	}
2048 }
2049 
2050 static inline int get_numa_group(struct numa_group *grp)
2051 {
2052 	return atomic_inc_not_zero(&grp->refcount);
2053 }
2054 
2055 static inline void put_numa_group(struct numa_group *grp)
2056 {
2057 	if (atomic_dec_and_test(&grp->refcount))
2058 		kfree_rcu(grp, rcu);
2059 }
2060 
2061 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2062 			int *priv)
2063 {
2064 	struct numa_group *grp, *my_grp;
2065 	struct task_struct *tsk;
2066 	bool join = false;
2067 	int cpu = cpupid_to_cpu(cpupid);
2068 	int i;
2069 
2070 	if (unlikely(!p->numa_group)) {
2071 		unsigned int size = sizeof(struct numa_group) +
2072 				    4*nr_node_ids*sizeof(unsigned long);
2073 
2074 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2075 		if (!grp)
2076 			return;
2077 
2078 		atomic_set(&grp->refcount, 1);
2079 		grp->active_nodes = 1;
2080 		grp->max_faults_cpu = 0;
2081 		spin_lock_init(&grp->lock);
2082 		grp->gid = p->pid;
2083 		/* Second half of the array tracks nids where faults happen */
2084 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2085 						nr_node_ids;
2086 
2087 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2088 			grp->faults[i] = p->numa_faults[i];
2089 
2090 		grp->total_faults = p->total_numa_faults;
2091 
2092 		grp->nr_tasks++;
2093 		rcu_assign_pointer(p->numa_group, grp);
2094 	}
2095 
2096 	rcu_read_lock();
2097 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2098 
2099 	if (!cpupid_match_pid(tsk, cpupid))
2100 		goto no_join;
2101 
2102 	grp = rcu_dereference(tsk->numa_group);
2103 	if (!grp)
2104 		goto no_join;
2105 
2106 	my_grp = p->numa_group;
2107 	if (grp == my_grp)
2108 		goto no_join;
2109 
2110 	/*
2111 	 * Only join the other group if its bigger; if we're the bigger group,
2112 	 * the other task will join us.
2113 	 */
2114 	if (my_grp->nr_tasks > grp->nr_tasks)
2115 		goto no_join;
2116 
2117 	/*
2118 	 * Tie-break on the grp address.
2119 	 */
2120 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2121 		goto no_join;
2122 
2123 	/* Always join threads in the same process. */
2124 	if (tsk->mm == current->mm)
2125 		join = true;
2126 
2127 	/* Simple filter to avoid false positives due to PID collisions */
2128 	if (flags & TNF_SHARED)
2129 		join = true;
2130 
2131 	/* Update priv based on whether false sharing was detected */
2132 	*priv = !join;
2133 
2134 	if (join && !get_numa_group(grp))
2135 		goto no_join;
2136 
2137 	rcu_read_unlock();
2138 
2139 	if (!join)
2140 		return;
2141 
2142 	BUG_ON(irqs_disabled());
2143 	double_lock_irq(&my_grp->lock, &grp->lock);
2144 
2145 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2146 		my_grp->faults[i] -= p->numa_faults[i];
2147 		grp->faults[i] += p->numa_faults[i];
2148 	}
2149 	my_grp->total_faults -= p->total_numa_faults;
2150 	grp->total_faults += p->total_numa_faults;
2151 
2152 	my_grp->nr_tasks--;
2153 	grp->nr_tasks++;
2154 
2155 	spin_unlock(&my_grp->lock);
2156 	spin_unlock_irq(&grp->lock);
2157 
2158 	rcu_assign_pointer(p->numa_group, grp);
2159 
2160 	put_numa_group(my_grp);
2161 	return;
2162 
2163 no_join:
2164 	rcu_read_unlock();
2165 	return;
2166 }
2167 
2168 void task_numa_free(struct task_struct *p)
2169 {
2170 	struct numa_group *grp = p->numa_group;
2171 	void *numa_faults = p->numa_faults;
2172 	unsigned long flags;
2173 	int i;
2174 
2175 	if (grp) {
2176 		spin_lock_irqsave(&grp->lock, flags);
2177 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2178 			grp->faults[i] -= p->numa_faults[i];
2179 		grp->total_faults -= p->total_numa_faults;
2180 
2181 		grp->nr_tasks--;
2182 		spin_unlock_irqrestore(&grp->lock, flags);
2183 		RCU_INIT_POINTER(p->numa_group, NULL);
2184 		put_numa_group(grp);
2185 	}
2186 
2187 	p->numa_faults = NULL;
2188 	kfree(numa_faults);
2189 }
2190 
2191 /*
2192  * Got a PROT_NONE fault for a page on @node.
2193  */
2194 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2195 {
2196 	struct task_struct *p = current;
2197 	bool migrated = flags & TNF_MIGRATED;
2198 	int cpu_node = task_node(current);
2199 	int local = !!(flags & TNF_FAULT_LOCAL);
2200 	struct numa_group *ng;
2201 	int priv;
2202 
2203 	if (!static_branch_likely(&sched_numa_balancing))
2204 		return;
2205 
2206 	/* for example, ksmd faulting in a user's mm */
2207 	if (!p->mm)
2208 		return;
2209 
2210 	/* Allocate buffer to track faults on a per-node basis */
2211 	if (unlikely(!p->numa_faults)) {
2212 		int size = sizeof(*p->numa_faults) *
2213 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2214 
2215 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2216 		if (!p->numa_faults)
2217 			return;
2218 
2219 		p->total_numa_faults = 0;
2220 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2221 	}
2222 
2223 	/*
2224 	 * First accesses are treated as private, otherwise consider accesses
2225 	 * to be private if the accessing pid has not changed
2226 	 */
2227 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2228 		priv = 1;
2229 	} else {
2230 		priv = cpupid_match_pid(p, last_cpupid);
2231 		if (!priv && !(flags & TNF_NO_GROUP))
2232 			task_numa_group(p, last_cpupid, flags, &priv);
2233 	}
2234 
2235 	/*
2236 	 * If a workload spans multiple NUMA nodes, a shared fault that
2237 	 * occurs wholly within the set of nodes that the workload is
2238 	 * actively using should be counted as local. This allows the
2239 	 * scan rate to slow down when a workload has settled down.
2240 	 */
2241 	ng = p->numa_group;
2242 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2243 				numa_is_active_node(cpu_node, ng) &&
2244 				numa_is_active_node(mem_node, ng))
2245 		local = 1;
2246 
2247 	task_numa_placement(p);
2248 
2249 	/*
2250 	 * Retry task to preferred node migration periodically, in case it
2251 	 * case it previously failed, or the scheduler moved us.
2252 	 */
2253 	if (time_after(jiffies, p->numa_migrate_retry))
2254 		numa_migrate_preferred(p);
2255 
2256 	if (migrated)
2257 		p->numa_pages_migrated += pages;
2258 	if (flags & TNF_MIGRATE_FAIL)
2259 		p->numa_faults_locality[2] += pages;
2260 
2261 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2262 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2263 	p->numa_faults_locality[local] += pages;
2264 }
2265 
2266 static void reset_ptenuma_scan(struct task_struct *p)
2267 {
2268 	/*
2269 	 * We only did a read acquisition of the mmap sem, so
2270 	 * p->mm->numa_scan_seq is written to without exclusive access
2271 	 * and the update is not guaranteed to be atomic. That's not
2272 	 * much of an issue though, since this is just used for
2273 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2274 	 * expensive, to avoid any form of compiler optimizations:
2275 	 */
2276 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2277 	p->mm->numa_scan_offset = 0;
2278 }
2279 
2280 /*
2281  * The expensive part of numa migration is done from task_work context.
2282  * Triggered from task_tick_numa().
2283  */
2284 void task_numa_work(struct callback_head *work)
2285 {
2286 	unsigned long migrate, next_scan, now = jiffies;
2287 	struct task_struct *p = current;
2288 	struct mm_struct *mm = p->mm;
2289 	u64 runtime = p->se.sum_exec_runtime;
2290 	struct vm_area_struct *vma;
2291 	unsigned long start, end;
2292 	unsigned long nr_pte_updates = 0;
2293 	long pages, virtpages;
2294 
2295 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2296 
2297 	work->next = work; /* protect against double add */
2298 	/*
2299 	 * Who cares about NUMA placement when they're dying.
2300 	 *
2301 	 * NOTE: make sure not to dereference p->mm before this check,
2302 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2303 	 * without p->mm even though we still had it when we enqueued this
2304 	 * work.
2305 	 */
2306 	if (p->flags & PF_EXITING)
2307 		return;
2308 
2309 	if (!mm->numa_next_scan) {
2310 		mm->numa_next_scan = now +
2311 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2312 	}
2313 
2314 	/*
2315 	 * Enforce maximal scan/migration frequency..
2316 	 */
2317 	migrate = mm->numa_next_scan;
2318 	if (time_before(now, migrate))
2319 		return;
2320 
2321 	if (p->numa_scan_period == 0) {
2322 		p->numa_scan_period_max = task_scan_max(p);
2323 		p->numa_scan_period = task_scan_min(p);
2324 	}
2325 
2326 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2327 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2328 		return;
2329 
2330 	/*
2331 	 * Delay this task enough that another task of this mm will likely win
2332 	 * the next time around.
2333 	 */
2334 	p->node_stamp += 2 * TICK_NSEC;
2335 
2336 	start = mm->numa_scan_offset;
2337 	pages = sysctl_numa_balancing_scan_size;
2338 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2339 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2340 	if (!pages)
2341 		return;
2342 
2343 
2344 	down_read(&mm->mmap_sem);
2345 	vma = find_vma(mm, start);
2346 	if (!vma) {
2347 		reset_ptenuma_scan(p);
2348 		start = 0;
2349 		vma = mm->mmap;
2350 	}
2351 	for (; vma; vma = vma->vm_next) {
2352 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2353 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2354 			continue;
2355 		}
2356 
2357 		/*
2358 		 * Shared library pages mapped by multiple processes are not
2359 		 * migrated as it is expected they are cache replicated. Avoid
2360 		 * hinting faults in read-only file-backed mappings or the vdso
2361 		 * as migrating the pages will be of marginal benefit.
2362 		 */
2363 		if (!vma->vm_mm ||
2364 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2365 			continue;
2366 
2367 		/*
2368 		 * Skip inaccessible VMAs to avoid any confusion between
2369 		 * PROT_NONE and NUMA hinting ptes
2370 		 */
2371 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2372 			continue;
2373 
2374 		do {
2375 			start = max(start, vma->vm_start);
2376 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2377 			end = min(end, vma->vm_end);
2378 			nr_pte_updates = change_prot_numa(vma, start, end);
2379 
2380 			/*
2381 			 * Try to scan sysctl_numa_balancing_size worth of
2382 			 * hpages that have at least one present PTE that
2383 			 * is not already pte-numa. If the VMA contains
2384 			 * areas that are unused or already full of prot_numa
2385 			 * PTEs, scan up to virtpages, to skip through those
2386 			 * areas faster.
2387 			 */
2388 			if (nr_pte_updates)
2389 				pages -= (end - start) >> PAGE_SHIFT;
2390 			virtpages -= (end - start) >> PAGE_SHIFT;
2391 
2392 			start = end;
2393 			if (pages <= 0 || virtpages <= 0)
2394 				goto out;
2395 
2396 			cond_resched();
2397 		} while (end != vma->vm_end);
2398 	}
2399 
2400 out:
2401 	/*
2402 	 * It is possible to reach the end of the VMA list but the last few
2403 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2404 	 * would find the !migratable VMA on the next scan but not reset the
2405 	 * scanner to the start so check it now.
2406 	 */
2407 	if (vma)
2408 		mm->numa_scan_offset = start;
2409 	else
2410 		reset_ptenuma_scan(p);
2411 	up_read(&mm->mmap_sem);
2412 
2413 	/*
2414 	 * Make sure tasks use at least 32x as much time to run other code
2415 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2416 	 * Usually update_task_scan_period slows down scanning enough; on an
2417 	 * overloaded system we need to limit overhead on a per task basis.
2418 	 */
2419 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2420 		u64 diff = p->se.sum_exec_runtime - runtime;
2421 		p->node_stamp += 32 * diff;
2422 	}
2423 }
2424 
2425 /*
2426  * Drive the periodic memory faults..
2427  */
2428 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2429 {
2430 	struct callback_head *work = &curr->numa_work;
2431 	u64 period, now;
2432 
2433 	/*
2434 	 * We don't care about NUMA placement if we don't have memory.
2435 	 */
2436 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2437 		return;
2438 
2439 	/*
2440 	 * Using runtime rather than walltime has the dual advantage that
2441 	 * we (mostly) drive the selection from busy threads and that the
2442 	 * task needs to have done some actual work before we bother with
2443 	 * NUMA placement.
2444 	 */
2445 	now = curr->se.sum_exec_runtime;
2446 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2447 
2448 	if (now > curr->node_stamp + period) {
2449 		if (!curr->node_stamp)
2450 			curr->numa_scan_period = task_scan_min(curr);
2451 		curr->node_stamp += period;
2452 
2453 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2454 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2455 			task_work_add(curr, work, true);
2456 		}
2457 	}
2458 }
2459 #else
2460 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2461 {
2462 }
2463 
2464 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2465 {
2466 }
2467 
2468 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2469 {
2470 }
2471 #endif /* CONFIG_NUMA_BALANCING */
2472 
2473 static void
2474 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2475 {
2476 	update_load_add(&cfs_rq->load, se->load.weight);
2477 	if (!parent_entity(se))
2478 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2479 #ifdef CONFIG_SMP
2480 	if (entity_is_task(se)) {
2481 		struct rq *rq = rq_of(cfs_rq);
2482 
2483 		account_numa_enqueue(rq, task_of(se));
2484 		list_add(&se->group_node, &rq->cfs_tasks);
2485 	}
2486 #endif
2487 	cfs_rq->nr_running++;
2488 }
2489 
2490 static void
2491 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2492 {
2493 	update_load_sub(&cfs_rq->load, se->load.weight);
2494 	if (!parent_entity(se))
2495 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2496 #ifdef CONFIG_SMP
2497 	if (entity_is_task(se)) {
2498 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2499 		list_del_init(&se->group_node);
2500 	}
2501 #endif
2502 	cfs_rq->nr_running--;
2503 }
2504 
2505 #ifdef CONFIG_FAIR_GROUP_SCHED
2506 # ifdef CONFIG_SMP
2507 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2508 {
2509 	long tg_weight, load, shares;
2510 
2511 	/*
2512 	 * This really should be: cfs_rq->avg.load_avg, but instead we use
2513 	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2514 	 * the shares for small weight interactive tasks.
2515 	 */
2516 	load = scale_load_down(cfs_rq->load.weight);
2517 
2518 	tg_weight = atomic_long_read(&tg->load_avg);
2519 
2520 	/* Ensure tg_weight >= load */
2521 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2522 	tg_weight += load;
2523 
2524 	shares = (tg->shares * load);
2525 	if (tg_weight)
2526 		shares /= tg_weight;
2527 
2528 	if (shares < MIN_SHARES)
2529 		shares = MIN_SHARES;
2530 	if (shares > tg->shares)
2531 		shares = tg->shares;
2532 
2533 	return shares;
2534 }
2535 # else /* CONFIG_SMP */
2536 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2537 {
2538 	return tg->shares;
2539 }
2540 # endif /* CONFIG_SMP */
2541 
2542 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2543 			    unsigned long weight)
2544 {
2545 	if (se->on_rq) {
2546 		/* commit outstanding execution time */
2547 		if (cfs_rq->curr == se)
2548 			update_curr(cfs_rq);
2549 		account_entity_dequeue(cfs_rq, se);
2550 	}
2551 
2552 	update_load_set(&se->load, weight);
2553 
2554 	if (se->on_rq)
2555 		account_entity_enqueue(cfs_rq, se);
2556 }
2557 
2558 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2559 
2560 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2561 {
2562 	struct task_group *tg;
2563 	struct sched_entity *se;
2564 	long shares;
2565 
2566 	tg = cfs_rq->tg;
2567 	se = tg->se[cpu_of(rq_of(cfs_rq))];
2568 	if (!se || throttled_hierarchy(cfs_rq))
2569 		return;
2570 #ifndef CONFIG_SMP
2571 	if (likely(se->load.weight == tg->shares))
2572 		return;
2573 #endif
2574 	shares = calc_cfs_shares(cfs_rq, tg);
2575 
2576 	reweight_entity(cfs_rq_of(se), se, shares);
2577 }
2578 #else /* CONFIG_FAIR_GROUP_SCHED */
2579 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2580 {
2581 }
2582 #endif /* CONFIG_FAIR_GROUP_SCHED */
2583 
2584 #ifdef CONFIG_SMP
2585 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2586 static const u32 runnable_avg_yN_inv[] = {
2587 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2588 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2589 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2590 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2591 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2592 	0x85aac367, 0x82cd8698,
2593 };
2594 
2595 /*
2596  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2597  * over-estimates when re-combining.
2598  */
2599 static const u32 runnable_avg_yN_sum[] = {
2600 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2601 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2602 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2603 };
2604 
2605 /*
2606  * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2607  * lower integers. See Documentation/scheduler/sched-avg.txt how these
2608  * were generated:
2609  */
2610 static const u32 __accumulated_sum_N32[] = {
2611 	    0, 23371, 35056, 40899, 43820, 45281,
2612 	46011, 46376, 46559, 46650, 46696, 46719,
2613 };
2614 
2615 /*
2616  * Approximate:
2617  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2618  */
2619 static __always_inline u64 decay_load(u64 val, u64 n)
2620 {
2621 	unsigned int local_n;
2622 
2623 	if (!n)
2624 		return val;
2625 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2626 		return 0;
2627 
2628 	/* after bounds checking we can collapse to 32-bit */
2629 	local_n = n;
2630 
2631 	/*
2632 	 * As y^PERIOD = 1/2, we can combine
2633 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2634 	 * With a look-up table which covers y^n (n<PERIOD)
2635 	 *
2636 	 * To achieve constant time decay_load.
2637 	 */
2638 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2639 		val >>= local_n / LOAD_AVG_PERIOD;
2640 		local_n %= LOAD_AVG_PERIOD;
2641 	}
2642 
2643 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2644 	return val;
2645 }
2646 
2647 /*
2648  * For updates fully spanning n periods, the contribution to runnable
2649  * average will be: \Sum 1024*y^n
2650  *
2651  * We can compute this reasonably efficiently by combining:
2652  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2653  */
2654 static u32 __compute_runnable_contrib(u64 n)
2655 {
2656 	u32 contrib = 0;
2657 
2658 	if (likely(n <= LOAD_AVG_PERIOD))
2659 		return runnable_avg_yN_sum[n];
2660 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2661 		return LOAD_AVG_MAX;
2662 
2663 	/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2664 	contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2665 	n %= LOAD_AVG_PERIOD;
2666 	contrib = decay_load(contrib, n);
2667 	return contrib + runnable_avg_yN_sum[n];
2668 }
2669 
2670 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2671 
2672 /*
2673  * We can represent the historical contribution to runnable average as the
2674  * coefficients of a geometric series.  To do this we sub-divide our runnable
2675  * history into segments of approximately 1ms (1024us); label the segment that
2676  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2677  *
2678  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2679  *      p0            p1           p2
2680  *     (now)       (~1ms ago)  (~2ms ago)
2681  *
2682  * Let u_i denote the fraction of p_i that the entity was runnable.
2683  *
2684  * We then designate the fractions u_i as our co-efficients, yielding the
2685  * following representation of historical load:
2686  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2687  *
2688  * We choose y based on the with of a reasonably scheduling period, fixing:
2689  *   y^32 = 0.5
2690  *
2691  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2692  * approximately half as much as the contribution to load within the last ms
2693  * (u_0).
2694  *
2695  * When a period "rolls over" and we have new u_0`, multiplying the previous
2696  * sum again by y is sufficient to update:
2697  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2698  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2699  */
2700 static __always_inline int
2701 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2702 		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2703 {
2704 	u64 delta, scaled_delta, periods;
2705 	u32 contrib;
2706 	unsigned int delta_w, scaled_delta_w, decayed = 0;
2707 	unsigned long scale_freq, scale_cpu;
2708 
2709 	delta = now - sa->last_update_time;
2710 	/*
2711 	 * This should only happen when time goes backwards, which it
2712 	 * unfortunately does during sched clock init when we swap over to TSC.
2713 	 */
2714 	if ((s64)delta < 0) {
2715 		sa->last_update_time = now;
2716 		return 0;
2717 	}
2718 
2719 	/*
2720 	 * Use 1024ns as the unit of measurement since it's a reasonable
2721 	 * approximation of 1us and fast to compute.
2722 	 */
2723 	delta >>= 10;
2724 	if (!delta)
2725 		return 0;
2726 	sa->last_update_time = now;
2727 
2728 	scale_freq = arch_scale_freq_capacity(NULL, cpu);
2729 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2730 
2731 	/* delta_w is the amount already accumulated against our next period */
2732 	delta_w = sa->period_contrib;
2733 	if (delta + delta_w >= 1024) {
2734 		decayed = 1;
2735 
2736 		/* how much left for next period will start over, we don't know yet */
2737 		sa->period_contrib = 0;
2738 
2739 		/*
2740 		 * Now that we know we're crossing a period boundary, figure
2741 		 * out how much from delta we need to complete the current
2742 		 * period and accrue it.
2743 		 */
2744 		delta_w = 1024 - delta_w;
2745 		scaled_delta_w = cap_scale(delta_w, scale_freq);
2746 		if (weight) {
2747 			sa->load_sum += weight * scaled_delta_w;
2748 			if (cfs_rq) {
2749 				cfs_rq->runnable_load_sum +=
2750 						weight * scaled_delta_w;
2751 			}
2752 		}
2753 		if (running)
2754 			sa->util_sum += scaled_delta_w * scale_cpu;
2755 
2756 		delta -= delta_w;
2757 
2758 		/* Figure out how many additional periods this update spans */
2759 		periods = delta / 1024;
2760 		delta %= 1024;
2761 
2762 		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2763 		if (cfs_rq) {
2764 			cfs_rq->runnable_load_sum =
2765 				decay_load(cfs_rq->runnable_load_sum, periods + 1);
2766 		}
2767 		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2768 
2769 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2770 		contrib = __compute_runnable_contrib(periods);
2771 		contrib = cap_scale(contrib, scale_freq);
2772 		if (weight) {
2773 			sa->load_sum += weight * contrib;
2774 			if (cfs_rq)
2775 				cfs_rq->runnable_load_sum += weight * contrib;
2776 		}
2777 		if (running)
2778 			sa->util_sum += contrib * scale_cpu;
2779 	}
2780 
2781 	/* Remainder of delta accrued against u_0` */
2782 	scaled_delta = cap_scale(delta, scale_freq);
2783 	if (weight) {
2784 		sa->load_sum += weight * scaled_delta;
2785 		if (cfs_rq)
2786 			cfs_rq->runnable_load_sum += weight * scaled_delta;
2787 	}
2788 	if (running)
2789 		sa->util_sum += scaled_delta * scale_cpu;
2790 
2791 	sa->period_contrib += delta;
2792 
2793 	if (decayed) {
2794 		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2795 		if (cfs_rq) {
2796 			cfs_rq->runnable_load_avg =
2797 				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2798 		}
2799 		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2800 	}
2801 
2802 	return decayed;
2803 }
2804 
2805 #ifdef CONFIG_FAIR_GROUP_SCHED
2806 /*
2807  * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2808  * and effective_load (which is not done because it is too costly).
2809  */
2810 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2811 {
2812 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2813 
2814 	/*
2815 	 * No need to update load_avg for root_task_group as it is not used.
2816 	 */
2817 	if (cfs_rq->tg == &root_task_group)
2818 		return;
2819 
2820 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2821 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
2822 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2823 	}
2824 }
2825 
2826 /*
2827  * Called within set_task_rq() right before setting a task's cpu. The
2828  * caller only guarantees p->pi_lock is held; no other assumptions,
2829  * including the state of rq->lock, should be made.
2830  */
2831 void set_task_rq_fair(struct sched_entity *se,
2832 		      struct cfs_rq *prev, struct cfs_rq *next)
2833 {
2834 	if (!sched_feat(ATTACH_AGE_LOAD))
2835 		return;
2836 
2837 	/*
2838 	 * We are supposed to update the task to "current" time, then its up to
2839 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2840 	 * getting what current time is, so simply throw away the out-of-date
2841 	 * time. This will result in the wakee task is less decayed, but giving
2842 	 * the wakee more load sounds not bad.
2843 	 */
2844 	if (se->avg.last_update_time && prev) {
2845 		u64 p_last_update_time;
2846 		u64 n_last_update_time;
2847 
2848 #ifndef CONFIG_64BIT
2849 		u64 p_last_update_time_copy;
2850 		u64 n_last_update_time_copy;
2851 
2852 		do {
2853 			p_last_update_time_copy = prev->load_last_update_time_copy;
2854 			n_last_update_time_copy = next->load_last_update_time_copy;
2855 
2856 			smp_rmb();
2857 
2858 			p_last_update_time = prev->avg.last_update_time;
2859 			n_last_update_time = next->avg.last_update_time;
2860 
2861 		} while (p_last_update_time != p_last_update_time_copy ||
2862 			 n_last_update_time != n_last_update_time_copy);
2863 #else
2864 		p_last_update_time = prev->avg.last_update_time;
2865 		n_last_update_time = next->avg.last_update_time;
2866 #endif
2867 		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2868 				  &se->avg, 0, 0, NULL);
2869 		se->avg.last_update_time = n_last_update_time;
2870 	}
2871 }
2872 #else /* CONFIG_FAIR_GROUP_SCHED */
2873 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2874 #endif /* CONFIG_FAIR_GROUP_SCHED */
2875 
2876 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2877 {
2878 	struct rq *rq = rq_of(cfs_rq);
2879 	int cpu = cpu_of(rq);
2880 
2881 	if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2882 		unsigned long max = rq->cpu_capacity_orig;
2883 
2884 		/*
2885 		 * There are a few boundary cases this might miss but it should
2886 		 * get called often enough that that should (hopefully) not be
2887 		 * a real problem -- added to that it only calls on the local
2888 		 * CPU, so if we enqueue remotely we'll miss an update, but
2889 		 * the next tick/schedule should update.
2890 		 *
2891 		 * It will not get called when we go idle, because the idle
2892 		 * thread is a different class (!fair), nor will the utilization
2893 		 * number include things like RT tasks.
2894 		 *
2895 		 * As is, the util number is not freq-invariant (we'd have to
2896 		 * implement arch_scale_freq_capacity() for that).
2897 		 *
2898 		 * See cpu_util().
2899 		 */
2900 		cpufreq_update_util(rq_clock(rq),
2901 				    min(cfs_rq->avg.util_avg, max), max);
2902 	}
2903 }
2904 
2905 /*
2906  * Unsigned subtract and clamp on underflow.
2907  *
2908  * Explicitly do a load-store to ensure the intermediate value never hits
2909  * memory. This allows lockless observations without ever seeing the negative
2910  * values.
2911  */
2912 #define sub_positive(_ptr, _val) do {				\
2913 	typeof(_ptr) ptr = (_ptr);				\
2914 	typeof(*ptr) val = (_val);				\
2915 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2916 	res = var - val;					\
2917 	if (res > var)						\
2918 		res = 0;					\
2919 	WRITE_ONCE(*ptr, res);					\
2920 } while (0)
2921 
2922 /**
2923  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
2924  * @now: current time, as per cfs_rq_clock_task()
2925  * @cfs_rq: cfs_rq to update
2926  * @update_freq: should we call cfs_rq_util_change() or will the call do so
2927  *
2928  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
2929  * avg. The immediate corollary is that all (fair) tasks must be attached, see
2930  * post_init_entity_util_avg().
2931  *
2932  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
2933  *
2934  * Returns true if the load decayed or we removed utilization. It is expected
2935  * that one calls update_tg_load_avg() on this condition, but after you've
2936  * modified the cfs_rq avg (attach/detach), such that we propagate the new
2937  * avg up.
2938  */
2939 static inline int
2940 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2941 {
2942 	struct sched_avg *sa = &cfs_rq->avg;
2943 	int decayed, removed_load = 0, removed_util = 0;
2944 
2945 	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2946 		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2947 		sub_positive(&sa->load_avg, r);
2948 		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
2949 		removed_load = 1;
2950 	}
2951 
2952 	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2953 		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2954 		sub_positive(&sa->util_avg, r);
2955 		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
2956 		removed_util = 1;
2957 	}
2958 
2959 	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2960 		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2961 
2962 #ifndef CONFIG_64BIT
2963 	smp_wmb();
2964 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
2965 #endif
2966 
2967 	if (update_freq && (decayed || removed_util))
2968 		cfs_rq_util_change(cfs_rq);
2969 
2970 	return decayed || removed_load;
2971 }
2972 
2973 /* Update task and its cfs_rq load average */
2974 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2975 {
2976 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2977 	u64 now = cfs_rq_clock_task(cfs_rq);
2978 	struct rq *rq = rq_of(cfs_rq);
2979 	int cpu = cpu_of(rq);
2980 
2981 	/*
2982 	 * Track task load average for carrying it to new CPU after migrated, and
2983 	 * track group sched_entity load average for task_h_load calc in migration
2984 	 */
2985 	__update_load_avg(now, cpu, &se->avg,
2986 			  se->on_rq * scale_load_down(se->load.weight),
2987 			  cfs_rq->curr == se, NULL);
2988 
2989 	if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
2990 		update_tg_load_avg(cfs_rq, 0);
2991 }
2992 
2993 /**
2994  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
2995  * @cfs_rq: cfs_rq to attach to
2996  * @se: sched_entity to attach
2997  *
2998  * Must call update_cfs_rq_load_avg() before this, since we rely on
2999  * cfs_rq->avg.last_update_time being current.
3000  */
3001 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3002 {
3003 	if (!sched_feat(ATTACH_AGE_LOAD))
3004 		goto skip_aging;
3005 
3006 	/*
3007 	 * If we got migrated (either between CPUs or between cgroups) we'll
3008 	 * have aged the average right before clearing @last_update_time.
3009 	 *
3010 	 * Or we're fresh through post_init_entity_util_avg().
3011 	 */
3012 	if (se->avg.last_update_time) {
3013 		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3014 				  &se->avg, 0, 0, NULL);
3015 
3016 		/*
3017 		 * XXX: we could have just aged the entire load away if we've been
3018 		 * absent from the fair class for too long.
3019 		 */
3020 	}
3021 
3022 skip_aging:
3023 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3024 	cfs_rq->avg.load_avg += se->avg.load_avg;
3025 	cfs_rq->avg.load_sum += se->avg.load_sum;
3026 	cfs_rq->avg.util_avg += se->avg.util_avg;
3027 	cfs_rq->avg.util_sum += se->avg.util_sum;
3028 
3029 	cfs_rq_util_change(cfs_rq);
3030 }
3031 
3032 /**
3033  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3034  * @cfs_rq: cfs_rq to detach from
3035  * @se: sched_entity to detach
3036  *
3037  * Must call update_cfs_rq_load_avg() before this, since we rely on
3038  * cfs_rq->avg.last_update_time being current.
3039  */
3040 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3041 {
3042 	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3043 			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
3044 			  cfs_rq->curr == se, NULL);
3045 
3046 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3047 	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3048 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3049 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3050 
3051 	cfs_rq_util_change(cfs_rq);
3052 }
3053 
3054 /* Add the load generated by se into cfs_rq's load average */
3055 static inline void
3056 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3057 {
3058 	struct sched_avg *sa = &se->avg;
3059 	u64 now = cfs_rq_clock_task(cfs_rq);
3060 	int migrated, decayed;
3061 
3062 	migrated = !sa->last_update_time;
3063 	if (!migrated) {
3064 		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3065 			se->on_rq * scale_load_down(se->load.weight),
3066 			cfs_rq->curr == se, NULL);
3067 	}
3068 
3069 	decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
3070 
3071 	cfs_rq->runnable_load_avg += sa->load_avg;
3072 	cfs_rq->runnable_load_sum += sa->load_sum;
3073 
3074 	if (migrated)
3075 		attach_entity_load_avg(cfs_rq, se);
3076 
3077 	if (decayed || migrated)
3078 		update_tg_load_avg(cfs_rq, 0);
3079 }
3080 
3081 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3082 static inline void
3083 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3084 {
3085 	update_load_avg(se, 1);
3086 
3087 	cfs_rq->runnable_load_avg =
3088 		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3089 	cfs_rq->runnable_load_sum =
3090 		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3091 }
3092 
3093 #ifndef CONFIG_64BIT
3094 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3095 {
3096 	u64 last_update_time_copy;
3097 	u64 last_update_time;
3098 
3099 	do {
3100 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3101 		smp_rmb();
3102 		last_update_time = cfs_rq->avg.last_update_time;
3103 	} while (last_update_time != last_update_time_copy);
3104 
3105 	return last_update_time;
3106 }
3107 #else
3108 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3109 {
3110 	return cfs_rq->avg.last_update_time;
3111 }
3112 #endif
3113 
3114 /*
3115  * Task first catches up with cfs_rq, and then subtract
3116  * itself from the cfs_rq (task must be off the queue now).
3117  */
3118 void remove_entity_load_avg(struct sched_entity *se)
3119 {
3120 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3121 	u64 last_update_time;
3122 
3123 	/*
3124 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3125 	 * post_init_entity_util_avg() which will have added things to the
3126 	 * cfs_rq, so we can remove unconditionally.
3127 	 *
3128 	 * Similarly for groups, they will have passed through
3129 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3130 	 * calls this.
3131 	 */
3132 
3133 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3134 
3135 	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3136 	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3137 	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3138 }
3139 
3140 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3141 {
3142 	return cfs_rq->runnable_load_avg;
3143 }
3144 
3145 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3146 {
3147 	return cfs_rq->avg.load_avg;
3148 }
3149 
3150 static int idle_balance(struct rq *this_rq);
3151 
3152 #else /* CONFIG_SMP */
3153 
3154 static inline int
3155 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3156 {
3157 	return 0;
3158 }
3159 
3160 static inline void update_load_avg(struct sched_entity *se, int not_used)
3161 {
3162 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3163 	struct rq *rq = rq_of(cfs_rq);
3164 
3165 	cpufreq_trigger_update(rq_clock(rq));
3166 }
3167 
3168 static inline void
3169 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3170 static inline void
3171 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3172 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3173 
3174 static inline void
3175 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3176 static inline void
3177 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3178 
3179 static inline int idle_balance(struct rq *rq)
3180 {
3181 	return 0;
3182 }
3183 
3184 #endif /* CONFIG_SMP */
3185 
3186 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3187 {
3188 #ifdef CONFIG_SCHEDSTATS
3189 	struct task_struct *tsk = NULL;
3190 
3191 	if (entity_is_task(se))
3192 		tsk = task_of(se);
3193 
3194 	if (se->statistics.sleep_start) {
3195 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3196 
3197 		if ((s64)delta < 0)
3198 			delta = 0;
3199 
3200 		if (unlikely(delta > se->statistics.sleep_max))
3201 			se->statistics.sleep_max = delta;
3202 
3203 		se->statistics.sleep_start = 0;
3204 		se->statistics.sum_sleep_runtime += delta;
3205 
3206 		if (tsk) {
3207 			account_scheduler_latency(tsk, delta >> 10, 1);
3208 			trace_sched_stat_sleep(tsk, delta);
3209 		}
3210 	}
3211 	if (se->statistics.block_start) {
3212 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3213 
3214 		if ((s64)delta < 0)
3215 			delta = 0;
3216 
3217 		if (unlikely(delta > se->statistics.block_max))
3218 			se->statistics.block_max = delta;
3219 
3220 		se->statistics.block_start = 0;
3221 		se->statistics.sum_sleep_runtime += delta;
3222 
3223 		if (tsk) {
3224 			if (tsk->in_iowait) {
3225 				se->statistics.iowait_sum += delta;
3226 				se->statistics.iowait_count++;
3227 				trace_sched_stat_iowait(tsk, delta);
3228 			}
3229 
3230 			trace_sched_stat_blocked(tsk, delta);
3231 
3232 			/*
3233 			 * Blocking time is in units of nanosecs, so shift by
3234 			 * 20 to get a milliseconds-range estimation of the
3235 			 * amount of time that the task spent sleeping:
3236 			 */
3237 			if (unlikely(prof_on == SLEEP_PROFILING)) {
3238 				profile_hits(SLEEP_PROFILING,
3239 						(void *)get_wchan(tsk),
3240 						delta >> 20);
3241 			}
3242 			account_scheduler_latency(tsk, delta >> 10, 0);
3243 		}
3244 	}
3245 #endif
3246 }
3247 
3248 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3249 {
3250 #ifdef CONFIG_SCHED_DEBUG
3251 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3252 
3253 	if (d < 0)
3254 		d = -d;
3255 
3256 	if (d > 3*sysctl_sched_latency)
3257 		schedstat_inc(cfs_rq, nr_spread_over);
3258 #endif
3259 }
3260 
3261 static void
3262 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3263 {
3264 	u64 vruntime = cfs_rq->min_vruntime;
3265 
3266 	/*
3267 	 * The 'current' period is already promised to the current tasks,
3268 	 * however the extra weight of the new task will slow them down a
3269 	 * little, place the new task so that it fits in the slot that
3270 	 * stays open at the end.
3271 	 */
3272 	if (initial && sched_feat(START_DEBIT))
3273 		vruntime += sched_vslice(cfs_rq, se);
3274 
3275 	/* sleeps up to a single latency don't count. */
3276 	if (!initial) {
3277 		unsigned long thresh = sysctl_sched_latency;
3278 
3279 		/*
3280 		 * Halve their sleep time's effect, to allow
3281 		 * for a gentler effect of sleepers:
3282 		 */
3283 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3284 			thresh >>= 1;
3285 
3286 		vruntime -= thresh;
3287 	}
3288 
3289 	/* ensure we never gain time by being placed backwards. */
3290 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3291 }
3292 
3293 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3294 
3295 static inline void check_schedstat_required(void)
3296 {
3297 #ifdef CONFIG_SCHEDSTATS
3298 	if (schedstat_enabled())
3299 		return;
3300 
3301 	/* Force schedstat enabled if a dependent tracepoint is active */
3302 	if (trace_sched_stat_wait_enabled()    ||
3303 			trace_sched_stat_sleep_enabled()   ||
3304 			trace_sched_stat_iowait_enabled()  ||
3305 			trace_sched_stat_blocked_enabled() ||
3306 			trace_sched_stat_runtime_enabled())  {
3307 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3308 			     "stat_blocked and stat_runtime require the "
3309 			     "kernel parameter schedstats=enabled or "
3310 			     "kernel.sched_schedstats=1\n");
3311 	}
3312 #endif
3313 }
3314 
3315 
3316 /*
3317  * MIGRATION
3318  *
3319  *	dequeue
3320  *	  update_curr()
3321  *	    update_min_vruntime()
3322  *	  vruntime -= min_vruntime
3323  *
3324  *	enqueue
3325  *	  update_curr()
3326  *	    update_min_vruntime()
3327  *	  vruntime += min_vruntime
3328  *
3329  * this way the vruntime transition between RQs is done when both
3330  * min_vruntime are up-to-date.
3331  *
3332  * WAKEUP (remote)
3333  *
3334  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3335  *	  vruntime -= min_vruntime
3336  *
3337  *	enqueue
3338  *	  update_curr()
3339  *	    update_min_vruntime()
3340  *	  vruntime += min_vruntime
3341  *
3342  * this way we don't have the most up-to-date min_vruntime on the originating
3343  * CPU and an up-to-date min_vruntime on the destination CPU.
3344  */
3345 
3346 static void
3347 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3348 {
3349 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3350 	bool curr = cfs_rq->curr == se;
3351 
3352 	/*
3353 	 * If we're the current task, we must renormalise before calling
3354 	 * update_curr().
3355 	 */
3356 	if (renorm && curr)
3357 		se->vruntime += cfs_rq->min_vruntime;
3358 
3359 	update_curr(cfs_rq);
3360 
3361 	/*
3362 	 * Otherwise, renormalise after, such that we're placed at the current
3363 	 * moment in time, instead of some random moment in the past. Being
3364 	 * placed in the past could significantly boost this task to the
3365 	 * fairness detriment of existing tasks.
3366 	 */
3367 	if (renorm && !curr)
3368 		se->vruntime += cfs_rq->min_vruntime;
3369 
3370 	enqueue_entity_load_avg(cfs_rq, se);
3371 	account_entity_enqueue(cfs_rq, se);
3372 	update_cfs_shares(cfs_rq);
3373 
3374 	if (flags & ENQUEUE_WAKEUP) {
3375 		place_entity(cfs_rq, se, 0);
3376 		if (schedstat_enabled())
3377 			enqueue_sleeper(cfs_rq, se);
3378 	}
3379 
3380 	check_schedstat_required();
3381 	if (schedstat_enabled()) {
3382 		update_stats_enqueue(cfs_rq, se);
3383 		check_spread(cfs_rq, se);
3384 	}
3385 	if (!curr)
3386 		__enqueue_entity(cfs_rq, se);
3387 	se->on_rq = 1;
3388 
3389 	if (cfs_rq->nr_running == 1) {
3390 		list_add_leaf_cfs_rq(cfs_rq);
3391 		check_enqueue_throttle(cfs_rq);
3392 	}
3393 }
3394 
3395 static void __clear_buddies_last(struct sched_entity *se)
3396 {
3397 	for_each_sched_entity(se) {
3398 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3399 		if (cfs_rq->last != se)
3400 			break;
3401 
3402 		cfs_rq->last = NULL;
3403 	}
3404 }
3405 
3406 static void __clear_buddies_next(struct sched_entity *se)
3407 {
3408 	for_each_sched_entity(se) {
3409 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3410 		if (cfs_rq->next != se)
3411 			break;
3412 
3413 		cfs_rq->next = NULL;
3414 	}
3415 }
3416 
3417 static void __clear_buddies_skip(struct sched_entity *se)
3418 {
3419 	for_each_sched_entity(se) {
3420 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3421 		if (cfs_rq->skip != se)
3422 			break;
3423 
3424 		cfs_rq->skip = NULL;
3425 	}
3426 }
3427 
3428 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3429 {
3430 	if (cfs_rq->last == se)
3431 		__clear_buddies_last(se);
3432 
3433 	if (cfs_rq->next == se)
3434 		__clear_buddies_next(se);
3435 
3436 	if (cfs_rq->skip == se)
3437 		__clear_buddies_skip(se);
3438 }
3439 
3440 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3441 
3442 static void
3443 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3444 {
3445 	/*
3446 	 * Update run-time statistics of the 'current'.
3447 	 */
3448 	update_curr(cfs_rq);
3449 	dequeue_entity_load_avg(cfs_rq, se);
3450 
3451 	if (schedstat_enabled())
3452 		update_stats_dequeue(cfs_rq, se, flags);
3453 
3454 	clear_buddies(cfs_rq, se);
3455 
3456 	if (se != cfs_rq->curr)
3457 		__dequeue_entity(cfs_rq, se);
3458 	se->on_rq = 0;
3459 	account_entity_dequeue(cfs_rq, se);
3460 
3461 	/*
3462 	 * Normalize the entity after updating the min_vruntime because the
3463 	 * update can refer to the ->curr item and we need to reflect this
3464 	 * movement in our normalized position.
3465 	 */
3466 	if (!(flags & DEQUEUE_SLEEP))
3467 		se->vruntime -= cfs_rq->min_vruntime;
3468 
3469 	/* return excess runtime on last dequeue */
3470 	return_cfs_rq_runtime(cfs_rq);
3471 
3472 	update_min_vruntime(cfs_rq);
3473 	update_cfs_shares(cfs_rq);
3474 }
3475 
3476 /*
3477  * Preempt the current task with a newly woken task if needed:
3478  */
3479 static void
3480 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3481 {
3482 	unsigned long ideal_runtime, delta_exec;
3483 	struct sched_entity *se;
3484 	s64 delta;
3485 
3486 	ideal_runtime = sched_slice(cfs_rq, curr);
3487 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3488 	if (delta_exec > ideal_runtime) {
3489 		resched_curr(rq_of(cfs_rq));
3490 		/*
3491 		 * The current task ran long enough, ensure it doesn't get
3492 		 * re-elected due to buddy favours.
3493 		 */
3494 		clear_buddies(cfs_rq, curr);
3495 		return;
3496 	}
3497 
3498 	/*
3499 	 * Ensure that a task that missed wakeup preemption by a
3500 	 * narrow margin doesn't have to wait for a full slice.
3501 	 * This also mitigates buddy induced latencies under load.
3502 	 */
3503 	if (delta_exec < sysctl_sched_min_granularity)
3504 		return;
3505 
3506 	se = __pick_first_entity(cfs_rq);
3507 	delta = curr->vruntime - se->vruntime;
3508 
3509 	if (delta < 0)
3510 		return;
3511 
3512 	if (delta > ideal_runtime)
3513 		resched_curr(rq_of(cfs_rq));
3514 }
3515 
3516 static void
3517 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3518 {
3519 	/* 'current' is not kept within the tree. */
3520 	if (se->on_rq) {
3521 		/*
3522 		 * Any task has to be enqueued before it get to execute on
3523 		 * a CPU. So account for the time it spent waiting on the
3524 		 * runqueue.
3525 		 */
3526 		if (schedstat_enabled())
3527 			update_stats_wait_end(cfs_rq, se);
3528 		__dequeue_entity(cfs_rq, se);
3529 		update_load_avg(se, 1);
3530 	}
3531 
3532 	update_stats_curr_start(cfs_rq, se);
3533 	cfs_rq->curr = se;
3534 #ifdef CONFIG_SCHEDSTATS
3535 	/*
3536 	 * Track our maximum slice length, if the CPU's load is at
3537 	 * least twice that of our own weight (i.e. dont track it
3538 	 * when there are only lesser-weight tasks around):
3539 	 */
3540 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3541 		se->statistics.slice_max = max(se->statistics.slice_max,
3542 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
3543 	}
3544 #endif
3545 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3546 }
3547 
3548 static int
3549 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3550 
3551 /*
3552  * Pick the next process, keeping these things in mind, in this order:
3553  * 1) keep things fair between processes/task groups
3554  * 2) pick the "next" process, since someone really wants that to run
3555  * 3) pick the "last" process, for cache locality
3556  * 4) do not run the "skip" process, if something else is available
3557  */
3558 static struct sched_entity *
3559 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3560 {
3561 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3562 	struct sched_entity *se;
3563 
3564 	/*
3565 	 * If curr is set we have to see if its left of the leftmost entity
3566 	 * still in the tree, provided there was anything in the tree at all.
3567 	 */
3568 	if (!left || (curr && entity_before(curr, left)))
3569 		left = curr;
3570 
3571 	se = left; /* ideally we run the leftmost entity */
3572 
3573 	/*
3574 	 * Avoid running the skip buddy, if running something else can
3575 	 * be done without getting too unfair.
3576 	 */
3577 	if (cfs_rq->skip == se) {
3578 		struct sched_entity *second;
3579 
3580 		if (se == curr) {
3581 			second = __pick_first_entity(cfs_rq);
3582 		} else {
3583 			second = __pick_next_entity(se);
3584 			if (!second || (curr && entity_before(curr, second)))
3585 				second = curr;
3586 		}
3587 
3588 		if (second && wakeup_preempt_entity(second, left) < 1)
3589 			se = second;
3590 	}
3591 
3592 	/*
3593 	 * Prefer last buddy, try to return the CPU to a preempted task.
3594 	 */
3595 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3596 		se = cfs_rq->last;
3597 
3598 	/*
3599 	 * Someone really wants this to run. If it's not unfair, run it.
3600 	 */
3601 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3602 		se = cfs_rq->next;
3603 
3604 	clear_buddies(cfs_rq, se);
3605 
3606 	return se;
3607 }
3608 
3609 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3610 
3611 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3612 {
3613 	/*
3614 	 * If still on the runqueue then deactivate_task()
3615 	 * was not called and update_curr() has to be done:
3616 	 */
3617 	if (prev->on_rq)
3618 		update_curr(cfs_rq);
3619 
3620 	/* throttle cfs_rqs exceeding runtime */
3621 	check_cfs_rq_runtime(cfs_rq);
3622 
3623 	if (schedstat_enabled()) {
3624 		check_spread(cfs_rq, prev);
3625 		if (prev->on_rq)
3626 			update_stats_wait_start(cfs_rq, prev);
3627 	}
3628 
3629 	if (prev->on_rq) {
3630 		/* Put 'current' back into the tree. */
3631 		__enqueue_entity(cfs_rq, prev);
3632 		/* in !on_rq case, update occurred at dequeue */
3633 		update_load_avg(prev, 0);
3634 	}
3635 	cfs_rq->curr = NULL;
3636 }
3637 
3638 static void
3639 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3640 {
3641 	/*
3642 	 * Update run-time statistics of the 'current'.
3643 	 */
3644 	update_curr(cfs_rq);
3645 
3646 	/*
3647 	 * Ensure that runnable average is periodically updated.
3648 	 */
3649 	update_load_avg(curr, 1);
3650 	update_cfs_shares(cfs_rq);
3651 
3652 #ifdef CONFIG_SCHED_HRTICK
3653 	/*
3654 	 * queued ticks are scheduled to match the slice, so don't bother
3655 	 * validating it and just reschedule.
3656 	 */
3657 	if (queued) {
3658 		resched_curr(rq_of(cfs_rq));
3659 		return;
3660 	}
3661 	/*
3662 	 * don't let the period tick interfere with the hrtick preemption
3663 	 */
3664 	if (!sched_feat(DOUBLE_TICK) &&
3665 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3666 		return;
3667 #endif
3668 
3669 	if (cfs_rq->nr_running > 1)
3670 		check_preempt_tick(cfs_rq, curr);
3671 }
3672 
3673 
3674 /**************************************************
3675  * CFS bandwidth control machinery
3676  */
3677 
3678 #ifdef CONFIG_CFS_BANDWIDTH
3679 
3680 #ifdef HAVE_JUMP_LABEL
3681 static struct static_key __cfs_bandwidth_used;
3682 
3683 static inline bool cfs_bandwidth_used(void)
3684 {
3685 	return static_key_false(&__cfs_bandwidth_used);
3686 }
3687 
3688 void cfs_bandwidth_usage_inc(void)
3689 {
3690 	static_key_slow_inc(&__cfs_bandwidth_used);
3691 }
3692 
3693 void cfs_bandwidth_usage_dec(void)
3694 {
3695 	static_key_slow_dec(&__cfs_bandwidth_used);
3696 }
3697 #else /* HAVE_JUMP_LABEL */
3698 static bool cfs_bandwidth_used(void)
3699 {
3700 	return true;
3701 }
3702 
3703 void cfs_bandwidth_usage_inc(void) {}
3704 void cfs_bandwidth_usage_dec(void) {}
3705 #endif /* HAVE_JUMP_LABEL */
3706 
3707 /*
3708  * default period for cfs group bandwidth.
3709  * default: 0.1s, units: nanoseconds
3710  */
3711 static inline u64 default_cfs_period(void)
3712 {
3713 	return 100000000ULL;
3714 }
3715 
3716 static inline u64 sched_cfs_bandwidth_slice(void)
3717 {
3718 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3719 }
3720 
3721 /*
3722  * Replenish runtime according to assigned quota and update expiration time.
3723  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3724  * additional synchronization around rq->lock.
3725  *
3726  * requires cfs_b->lock
3727  */
3728 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3729 {
3730 	u64 now;
3731 
3732 	if (cfs_b->quota == RUNTIME_INF)
3733 		return;
3734 
3735 	now = sched_clock_cpu(smp_processor_id());
3736 	cfs_b->runtime = cfs_b->quota;
3737 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3738 }
3739 
3740 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3741 {
3742 	return &tg->cfs_bandwidth;
3743 }
3744 
3745 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3746 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3747 {
3748 	if (unlikely(cfs_rq->throttle_count))
3749 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
3750 
3751 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3752 }
3753 
3754 /* returns 0 on failure to allocate runtime */
3755 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3756 {
3757 	struct task_group *tg = cfs_rq->tg;
3758 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3759 	u64 amount = 0, min_amount, expires;
3760 
3761 	/* note: this is a positive sum as runtime_remaining <= 0 */
3762 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3763 
3764 	raw_spin_lock(&cfs_b->lock);
3765 	if (cfs_b->quota == RUNTIME_INF)
3766 		amount = min_amount;
3767 	else {
3768 		start_cfs_bandwidth(cfs_b);
3769 
3770 		if (cfs_b->runtime > 0) {
3771 			amount = min(cfs_b->runtime, min_amount);
3772 			cfs_b->runtime -= amount;
3773 			cfs_b->idle = 0;
3774 		}
3775 	}
3776 	expires = cfs_b->runtime_expires;
3777 	raw_spin_unlock(&cfs_b->lock);
3778 
3779 	cfs_rq->runtime_remaining += amount;
3780 	/*
3781 	 * we may have advanced our local expiration to account for allowed
3782 	 * spread between our sched_clock and the one on which runtime was
3783 	 * issued.
3784 	 */
3785 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3786 		cfs_rq->runtime_expires = expires;
3787 
3788 	return cfs_rq->runtime_remaining > 0;
3789 }
3790 
3791 /*
3792  * Note: This depends on the synchronization provided by sched_clock and the
3793  * fact that rq->clock snapshots this value.
3794  */
3795 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3796 {
3797 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3798 
3799 	/* if the deadline is ahead of our clock, nothing to do */
3800 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3801 		return;
3802 
3803 	if (cfs_rq->runtime_remaining < 0)
3804 		return;
3805 
3806 	/*
3807 	 * If the local deadline has passed we have to consider the
3808 	 * possibility that our sched_clock is 'fast' and the global deadline
3809 	 * has not truly expired.
3810 	 *
3811 	 * Fortunately we can check determine whether this the case by checking
3812 	 * whether the global deadline has advanced. It is valid to compare
3813 	 * cfs_b->runtime_expires without any locks since we only care about
3814 	 * exact equality, so a partial write will still work.
3815 	 */
3816 
3817 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3818 		/* extend local deadline, drift is bounded above by 2 ticks */
3819 		cfs_rq->runtime_expires += TICK_NSEC;
3820 	} else {
3821 		/* global deadline is ahead, expiration has passed */
3822 		cfs_rq->runtime_remaining = 0;
3823 	}
3824 }
3825 
3826 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3827 {
3828 	/* dock delta_exec before expiring quota (as it could span periods) */
3829 	cfs_rq->runtime_remaining -= delta_exec;
3830 	expire_cfs_rq_runtime(cfs_rq);
3831 
3832 	if (likely(cfs_rq->runtime_remaining > 0))
3833 		return;
3834 
3835 	/*
3836 	 * if we're unable to extend our runtime we resched so that the active
3837 	 * hierarchy can be throttled
3838 	 */
3839 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3840 		resched_curr(rq_of(cfs_rq));
3841 }
3842 
3843 static __always_inline
3844 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3845 {
3846 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3847 		return;
3848 
3849 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3850 }
3851 
3852 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3853 {
3854 	return cfs_bandwidth_used() && cfs_rq->throttled;
3855 }
3856 
3857 /* check whether cfs_rq, or any parent, is throttled */
3858 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3859 {
3860 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3861 }
3862 
3863 /*
3864  * Ensure that neither of the group entities corresponding to src_cpu or
3865  * dest_cpu are members of a throttled hierarchy when performing group
3866  * load-balance operations.
3867  */
3868 static inline int throttled_lb_pair(struct task_group *tg,
3869 				    int src_cpu, int dest_cpu)
3870 {
3871 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3872 
3873 	src_cfs_rq = tg->cfs_rq[src_cpu];
3874 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3875 
3876 	return throttled_hierarchy(src_cfs_rq) ||
3877 	       throttled_hierarchy(dest_cfs_rq);
3878 }
3879 
3880 /* updated child weight may affect parent so we have to do this bottom up */
3881 static int tg_unthrottle_up(struct task_group *tg, void *data)
3882 {
3883 	struct rq *rq = data;
3884 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3885 
3886 	cfs_rq->throttle_count--;
3887 	if (!cfs_rq->throttle_count) {
3888 		/* adjust cfs_rq_clock_task() */
3889 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3890 					     cfs_rq->throttled_clock_task;
3891 	}
3892 
3893 	return 0;
3894 }
3895 
3896 static int tg_throttle_down(struct task_group *tg, void *data)
3897 {
3898 	struct rq *rq = data;
3899 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3900 
3901 	/* group is entering throttled state, stop time */
3902 	if (!cfs_rq->throttle_count)
3903 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3904 	cfs_rq->throttle_count++;
3905 
3906 	return 0;
3907 }
3908 
3909 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3910 {
3911 	struct rq *rq = rq_of(cfs_rq);
3912 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3913 	struct sched_entity *se;
3914 	long task_delta, dequeue = 1;
3915 	bool empty;
3916 
3917 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3918 
3919 	/* freeze hierarchy runnable averages while throttled */
3920 	rcu_read_lock();
3921 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3922 	rcu_read_unlock();
3923 
3924 	task_delta = cfs_rq->h_nr_running;
3925 	for_each_sched_entity(se) {
3926 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3927 		/* throttled entity or throttle-on-deactivate */
3928 		if (!se->on_rq)
3929 			break;
3930 
3931 		if (dequeue)
3932 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3933 		qcfs_rq->h_nr_running -= task_delta;
3934 
3935 		if (qcfs_rq->load.weight)
3936 			dequeue = 0;
3937 	}
3938 
3939 	if (!se)
3940 		sub_nr_running(rq, task_delta);
3941 
3942 	cfs_rq->throttled = 1;
3943 	cfs_rq->throttled_clock = rq_clock(rq);
3944 	raw_spin_lock(&cfs_b->lock);
3945 	empty = list_empty(&cfs_b->throttled_cfs_rq);
3946 
3947 	/*
3948 	 * Add to the _head_ of the list, so that an already-started
3949 	 * distribute_cfs_runtime will not see us
3950 	 */
3951 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3952 
3953 	/*
3954 	 * If we're the first throttled task, make sure the bandwidth
3955 	 * timer is running.
3956 	 */
3957 	if (empty)
3958 		start_cfs_bandwidth(cfs_b);
3959 
3960 	raw_spin_unlock(&cfs_b->lock);
3961 }
3962 
3963 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3964 {
3965 	struct rq *rq = rq_of(cfs_rq);
3966 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3967 	struct sched_entity *se;
3968 	int enqueue = 1;
3969 	long task_delta;
3970 
3971 	se = cfs_rq->tg->se[cpu_of(rq)];
3972 
3973 	cfs_rq->throttled = 0;
3974 
3975 	update_rq_clock(rq);
3976 
3977 	raw_spin_lock(&cfs_b->lock);
3978 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3979 	list_del_rcu(&cfs_rq->throttled_list);
3980 	raw_spin_unlock(&cfs_b->lock);
3981 
3982 	/* update hierarchical throttle state */
3983 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3984 
3985 	if (!cfs_rq->load.weight)
3986 		return;
3987 
3988 	task_delta = cfs_rq->h_nr_running;
3989 	for_each_sched_entity(se) {
3990 		if (se->on_rq)
3991 			enqueue = 0;
3992 
3993 		cfs_rq = cfs_rq_of(se);
3994 		if (enqueue)
3995 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3996 		cfs_rq->h_nr_running += task_delta;
3997 
3998 		if (cfs_rq_throttled(cfs_rq))
3999 			break;
4000 	}
4001 
4002 	if (!se)
4003 		add_nr_running(rq, task_delta);
4004 
4005 	/* determine whether we need to wake up potentially idle cpu */
4006 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4007 		resched_curr(rq);
4008 }
4009 
4010 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4011 		u64 remaining, u64 expires)
4012 {
4013 	struct cfs_rq *cfs_rq;
4014 	u64 runtime;
4015 	u64 starting_runtime = remaining;
4016 
4017 	rcu_read_lock();
4018 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4019 				throttled_list) {
4020 		struct rq *rq = rq_of(cfs_rq);
4021 
4022 		raw_spin_lock(&rq->lock);
4023 		if (!cfs_rq_throttled(cfs_rq))
4024 			goto next;
4025 
4026 		runtime = -cfs_rq->runtime_remaining + 1;
4027 		if (runtime > remaining)
4028 			runtime = remaining;
4029 		remaining -= runtime;
4030 
4031 		cfs_rq->runtime_remaining += runtime;
4032 		cfs_rq->runtime_expires = expires;
4033 
4034 		/* we check whether we're throttled above */
4035 		if (cfs_rq->runtime_remaining > 0)
4036 			unthrottle_cfs_rq(cfs_rq);
4037 
4038 next:
4039 		raw_spin_unlock(&rq->lock);
4040 
4041 		if (!remaining)
4042 			break;
4043 	}
4044 	rcu_read_unlock();
4045 
4046 	return starting_runtime - remaining;
4047 }
4048 
4049 /*
4050  * Responsible for refilling a task_group's bandwidth and unthrottling its
4051  * cfs_rqs as appropriate. If there has been no activity within the last
4052  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4053  * used to track this state.
4054  */
4055 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4056 {
4057 	u64 runtime, runtime_expires;
4058 	int throttled;
4059 
4060 	/* no need to continue the timer with no bandwidth constraint */
4061 	if (cfs_b->quota == RUNTIME_INF)
4062 		goto out_deactivate;
4063 
4064 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4065 	cfs_b->nr_periods += overrun;
4066 
4067 	/*
4068 	 * idle depends on !throttled (for the case of a large deficit), and if
4069 	 * we're going inactive then everything else can be deferred
4070 	 */
4071 	if (cfs_b->idle && !throttled)
4072 		goto out_deactivate;
4073 
4074 	__refill_cfs_bandwidth_runtime(cfs_b);
4075 
4076 	if (!throttled) {
4077 		/* mark as potentially idle for the upcoming period */
4078 		cfs_b->idle = 1;
4079 		return 0;
4080 	}
4081 
4082 	/* account preceding periods in which throttling occurred */
4083 	cfs_b->nr_throttled += overrun;
4084 
4085 	runtime_expires = cfs_b->runtime_expires;
4086 
4087 	/*
4088 	 * This check is repeated as we are holding onto the new bandwidth while
4089 	 * we unthrottle. This can potentially race with an unthrottled group
4090 	 * trying to acquire new bandwidth from the global pool. This can result
4091 	 * in us over-using our runtime if it is all used during this loop, but
4092 	 * only by limited amounts in that extreme case.
4093 	 */
4094 	while (throttled && cfs_b->runtime > 0) {
4095 		runtime = cfs_b->runtime;
4096 		raw_spin_unlock(&cfs_b->lock);
4097 		/* we can't nest cfs_b->lock while distributing bandwidth */
4098 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4099 						 runtime_expires);
4100 		raw_spin_lock(&cfs_b->lock);
4101 
4102 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4103 
4104 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4105 	}
4106 
4107 	/*
4108 	 * While we are ensured activity in the period following an
4109 	 * unthrottle, this also covers the case in which the new bandwidth is
4110 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4111 	 * timer to remain active while there are any throttled entities.)
4112 	 */
4113 	cfs_b->idle = 0;
4114 
4115 	return 0;
4116 
4117 out_deactivate:
4118 	return 1;
4119 }
4120 
4121 /* a cfs_rq won't donate quota below this amount */
4122 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4123 /* minimum remaining period time to redistribute slack quota */
4124 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4125 /* how long we wait to gather additional slack before distributing */
4126 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4127 
4128 /*
4129  * Are we near the end of the current quota period?
4130  *
4131  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4132  * hrtimer base being cleared by hrtimer_start. In the case of
4133  * migrate_hrtimers, base is never cleared, so we are fine.
4134  */
4135 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4136 {
4137 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4138 	u64 remaining;
4139 
4140 	/* if the call-back is running a quota refresh is already occurring */
4141 	if (hrtimer_callback_running(refresh_timer))
4142 		return 1;
4143 
4144 	/* is a quota refresh about to occur? */
4145 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4146 	if (remaining < min_expire)
4147 		return 1;
4148 
4149 	return 0;
4150 }
4151 
4152 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4153 {
4154 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4155 
4156 	/* if there's a quota refresh soon don't bother with slack */
4157 	if (runtime_refresh_within(cfs_b, min_left))
4158 		return;
4159 
4160 	hrtimer_start(&cfs_b->slack_timer,
4161 			ns_to_ktime(cfs_bandwidth_slack_period),
4162 			HRTIMER_MODE_REL);
4163 }
4164 
4165 /* we know any runtime found here is valid as update_curr() precedes return */
4166 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4167 {
4168 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4169 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4170 
4171 	if (slack_runtime <= 0)
4172 		return;
4173 
4174 	raw_spin_lock(&cfs_b->lock);
4175 	if (cfs_b->quota != RUNTIME_INF &&
4176 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4177 		cfs_b->runtime += slack_runtime;
4178 
4179 		/* we are under rq->lock, defer unthrottling using a timer */
4180 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4181 		    !list_empty(&cfs_b->throttled_cfs_rq))
4182 			start_cfs_slack_bandwidth(cfs_b);
4183 	}
4184 	raw_spin_unlock(&cfs_b->lock);
4185 
4186 	/* even if it's not valid for return we don't want to try again */
4187 	cfs_rq->runtime_remaining -= slack_runtime;
4188 }
4189 
4190 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4191 {
4192 	if (!cfs_bandwidth_used())
4193 		return;
4194 
4195 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4196 		return;
4197 
4198 	__return_cfs_rq_runtime(cfs_rq);
4199 }
4200 
4201 /*
4202  * This is done with a timer (instead of inline with bandwidth return) since
4203  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4204  */
4205 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4206 {
4207 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4208 	u64 expires;
4209 
4210 	/* confirm we're still not at a refresh boundary */
4211 	raw_spin_lock(&cfs_b->lock);
4212 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4213 		raw_spin_unlock(&cfs_b->lock);
4214 		return;
4215 	}
4216 
4217 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4218 		runtime = cfs_b->runtime;
4219 
4220 	expires = cfs_b->runtime_expires;
4221 	raw_spin_unlock(&cfs_b->lock);
4222 
4223 	if (!runtime)
4224 		return;
4225 
4226 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4227 
4228 	raw_spin_lock(&cfs_b->lock);
4229 	if (expires == cfs_b->runtime_expires)
4230 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4231 	raw_spin_unlock(&cfs_b->lock);
4232 }
4233 
4234 /*
4235  * When a group wakes up we want to make sure that its quota is not already
4236  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4237  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4238  */
4239 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4240 {
4241 	if (!cfs_bandwidth_used())
4242 		return;
4243 
4244 	/* an active group must be handled by the update_curr()->put() path */
4245 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4246 		return;
4247 
4248 	/* ensure the group is not already throttled */
4249 	if (cfs_rq_throttled(cfs_rq))
4250 		return;
4251 
4252 	/* update runtime allocation */
4253 	account_cfs_rq_runtime(cfs_rq, 0);
4254 	if (cfs_rq->runtime_remaining <= 0)
4255 		throttle_cfs_rq(cfs_rq);
4256 }
4257 
4258 static void sync_throttle(struct task_group *tg, int cpu)
4259 {
4260 	struct cfs_rq *pcfs_rq, *cfs_rq;
4261 
4262 	if (!cfs_bandwidth_used())
4263 		return;
4264 
4265 	if (!tg->parent)
4266 		return;
4267 
4268 	cfs_rq = tg->cfs_rq[cpu];
4269 	pcfs_rq = tg->parent->cfs_rq[cpu];
4270 
4271 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4272 	pcfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4273 }
4274 
4275 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4276 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4277 {
4278 	if (!cfs_bandwidth_used())
4279 		return false;
4280 
4281 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4282 		return false;
4283 
4284 	/*
4285 	 * it's possible for a throttled entity to be forced into a running
4286 	 * state (e.g. set_curr_task), in this case we're finished.
4287 	 */
4288 	if (cfs_rq_throttled(cfs_rq))
4289 		return true;
4290 
4291 	throttle_cfs_rq(cfs_rq);
4292 	return true;
4293 }
4294 
4295 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4296 {
4297 	struct cfs_bandwidth *cfs_b =
4298 		container_of(timer, struct cfs_bandwidth, slack_timer);
4299 
4300 	do_sched_cfs_slack_timer(cfs_b);
4301 
4302 	return HRTIMER_NORESTART;
4303 }
4304 
4305 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4306 {
4307 	struct cfs_bandwidth *cfs_b =
4308 		container_of(timer, struct cfs_bandwidth, period_timer);
4309 	int overrun;
4310 	int idle = 0;
4311 
4312 	raw_spin_lock(&cfs_b->lock);
4313 	for (;;) {
4314 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4315 		if (!overrun)
4316 			break;
4317 
4318 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4319 	}
4320 	if (idle)
4321 		cfs_b->period_active = 0;
4322 	raw_spin_unlock(&cfs_b->lock);
4323 
4324 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4325 }
4326 
4327 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4328 {
4329 	raw_spin_lock_init(&cfs_b->lock);
4330 	cfs_b->runtime = 0;
4331 	cfs_b->quota = RUNTIME_INF;
4332 	cfs_b->period = ns_to_ktime(default_cfs_period());
4333 
4334 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4335 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4336 	cfs_b->period_timer.function = sched_cfs_period_timer;
4337 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4338 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4339 }
4340 
4341 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4342 {
4343 	cfs_rq->runtime_enabled = 0;
4344 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4345 }
4346 
4347 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4348 {
4349 	lockdep_assert_held(&cfs_b->lock);
4350 
4351 	if (!cfs_b->period_active) {
4352 		cfs_b->period_active = 1;
4353 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4354 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4355 	}
4356 }
4357 
4358 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4359 {
4360 	/* init_cfs_bandwidth() was not called */
4361 	if (!cfs_b->throttled_cfs_rq.next)
4362 		return;
4363 
4364 	hrtimer_cancel(&cfs_b->period_timer);
4365 	hrtimer_cancel(&cfs_b->slack_timer);
4366 }
4367 
4368 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4369 {
4370 	struct cfs_rq *cfs_rq;
4371 
4372 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4373 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4374 
4375 		raw_spin_lock(&cfs_b->lock);
4376 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4377 		raw_spin_unlock(&cfs_b->lock);
4378 	}
4379 }
4380 
4381 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4382 {
4383 	struct cfs_rq *cfs_rq;
4384 
4385 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4386 		if (!cfs_rq->runtime_enabled)
4387 			continue;
4388 
4389 		/*
4390 		 * clock_task is not advancing so we just need to make sure
4391 		 * there's some valid quota amount
4392 		 */
4393 		cfs_rq->runtime_remaining = 1;
4394 		/*
4395 		 * Offline rq is schedulable till cpu is completely disabled
4396 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4397 		 */
4398 		cfs_rq->runtime_enabled = 0;
4399 
4400 		if (cfs_rq_throttled(cfs_rq))
4401 			unthrottle_cfs_rq(cfs_rq);
4402 	}
4403 }
4404 
4405 #else /* CONFIG_CFS_BANDWIDTH */
4406 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4407 {
4408 	return rq_clock_task(rq_of(cfs_rq));
4409 }
4410 
4411 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4412 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4413 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4414 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4415 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4416 
4417 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4418 {
4419 	return 0;
4420 }
4421 
4422 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4423 {
4424 	return 0;
4425 }
4426 
4427 static inline int throttled_lb_pair(struct task_group *tg,
4428 				    int src_cpu, int dest_cpu)
4429 {
4430 	return 0;
4431 }
4432 
4433 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4434 
4435 #ifdef CONFIG_FAIR_GROUP_SCHED
4436 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4437 #endif
4438 
4439 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4440 {
4441 	return NULL;
4442 }
4443 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4444 static inline void update_runtime_enabled(struct rq *rq) {}
4445 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4446 
4447 #endif /* CONFIG_CFS_BANDWIDTH */
4448 
4449 /**************************************************
4450  * CFS operations on tasks:
4451  */
4452 
4453 #ifdef CONFIG_SCHED_HRTICK
4454 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4455 {
4456 	struct sched_entity *se = &p->se;
4457 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4458 
4459 	WARN_ON(task_rq(p) != rq);
4460 
4461 	if (cfs_rq->nr_running > 1) {
4462 		u64 slice = sched_slice(cfs_rq, se);
4463 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4464 		s64 delta = slice - ran;
4465 
4466 		if (delta < 0) {
4467 			if (rq->curr == p)
4468 				resched_curr(rq);
4469 			return;
4470 		}
4471 		hrtick_start(rq, delta);
4472 	}
4473 }
4474 
4475 /*
4476  * called from enqueue/dequeue and updates the hrtick when the
4477  * current task is from our class and nr_running is low enough
4478  * to matter.
4479  */
4480 static void hrtick_update(struct rq *rq)
4481 {
4482 	struct task_struct *curr = rq->curr;
4483 
4484 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4485 		return;
4486 
4487 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4488 		hrtick_start_fair(rq, curr);
4489 }
4490 #else /* !CONFIG_SCHED_HRTICK */
4491 static inline void
4492 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4493 {
4494 }
4495 
4496 static inline void hrtick_update(struct rq *rq)
4497 {
4498 }
4499 #endif
4500 
4501 /*
4502  * The enqueue_task method is called before nr_running is
4503  * increased. Here we update the fair scheduling stats and
4504  * then put the task into the rbtree:
4505  */
4506 static void
4507 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4508 {
4509 	struct cfs_rq *cfs_rq;
4510 	struct sched_entity *se = &p->se;
4511 
4512 	for_each_sched_entity(se) {
4513 		if (se->on_rq)
4514 			break;
4515 		cfs_rq = cfs_rq_of(se);
4516 		enqueue_entity(cfs_rq, se, flags);
4517 
4518 		/*
4519 		 * end evaluation on encountering a throttled cfs_rq
4520 		 *
4521 		 * note: in the case of encountering a throttled cfs_rq we will
4522 		 * post the final h_nr_running increment below.
4523 		 */
4524 		if (cfs_rq_throttled(cfs_rq))
4525 			break;
4526 		cfs_rq->h_nr_running++;
4527 
4528 		flags = ENQUEUE_WAKEUP;
4529 	}
4530 
4531 	for_each_sched_entity(se) {
4532 		cfs_rq = cfs_rq_of(se);
4533 		cfs_rq->h_nr_running++;
4534 
4535 		if (cfs_rq_throttled(cfs_rq))
4536 			break;
4537 
4538 		update_load_avg(se, 1);
4539 		update_cfs_shares(cfs_rq);
4540 	}
4541 
4542 	if (!se)
4543 		add_nr_running(rq, 1);
4544 
4545 	hrtick_update(rq);
4546 }
4547 
4548 static void set_next_buddy(struct sched_entity *se);
4549 
4550 /*
4551  * The dequeue_task method is called before nr_running is
4552  * decreased. We remove the task from the rbtree and
4553  * update the fair scheduling stats:
4554  */
4555 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4556 {
4557 	struct cfs_rq *cfs_rq;
4558 	struct sched_entity *se = &p->se;
4559 	int task_sleep = flags & DEQUEUE_SLEEP;
4560 
4561 	for_each_sched_entity(se) {
4562 		cfs_rq = cfs_rq_of(se);
4563 		dequeue_entity(cfs_rq, se, flags);
4564 
4565 		/*
4566 		 * end evaluation on encountering a throttled cfs_rq
4567 		 *
4568 		 * note: in the case of encountering a throttled cfs_rq we will
4569 		 * post the final h_nr_running decrement below.
4570 		*/
4571 		if (cfs_rq_throttled(cfs_rq))
4572 			break;
4573 		cfs_rq->h_nr_running--;
4574 
4575 		/* Don't dequeue parent if it has other entities besides us */
4576 		if (cfs_rq->load.weight) {
4577 			/* Avoid re-evaluating load for this entity: */
4578 			se = parent_entity(se);
4579 			/*
4580 			 * Bias pick_next to pick a task from this cfs_rq, as
4581 			 * p is sleeping when it is within its sched_slice.
4582 			 */
4583 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4584 				set_next_buddy(se);
4585 			break;
4586 		}
4587 		flags |= DEQUEUE_SLEEP;
4588 	}
4589 
4590 	for_each_sched_entity(se) {
4591 		cfs_rq = cfs_rq_of(se);
4592 		cfs_rq->h_nr_running--;
4593 
4594 		if (cfs_rq_throttled(cfs_rq))
4595 			break;
4596 
4597 		update_load_avg(se, 1);
4598 		update_cfs_shares(cfs_rq);
4599 	}
4600 
4601 	if (!se)
4602 		sub_nr_running(rq, 1);
4603 
4604 	hrtick_update(rq);
4605 }
4606 
4607 #ifdef CONFIG_SMP
4608 #ifdef CONFIG_NO_HZ_COMMON
4609 /*
4610  * per rq 'load' arrray crap; XXX kill this.
4611  */
4612 
4613 /*
4614  * The exact cpuload calculated at every tick would be:
4615  *
4616  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4617  *
4618  * If a cpu misses updates for n ticks (as it was idle) and update gets
4619  * called on the n+1-th tick when cpu may be busy, then we have:
4620  *
4621  *   load_n   = (1 - 1/2^i)^n * load_0
4622  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4623  *
4624  * decay_load_missed() below does efficient calculation of
4625  *
4626  *   load' = (1 - 1/2^i)^n * load
4627  *
4628  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4629  * This allows us to precompute the above in said factors, thereby allowing the
4630  * reduction of an arbitrary n in O(log_2 n) steps. (See also
4631  * fixed_power_int())
4632  *
4633  * The calculation is approximated on a 128 point scale.
4634  */
4635 #define DEGRADE_SHIFT		7
4636 
4637 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4638 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4639 	{   0,   0,  0,  0,  0,  0, 0, 0 },
4640 	{  64,  32,  8,  0,  0,  0, 0, 0 },
4641 	{  96,  72, 40, 12,  1,  0, 0, 0 },
4642 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
4643 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
4644 };
4645 
4646 /*
4647  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4648  * would be when CPU is idle and so we just decay the old load without
4649  * adding any new load.
4650  */
4651 static unsigned long
4652 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4653 {
4654 	int j = 0;
4655 
4656 	if (!missed_updates)
4657 		return load;
4658 
4659 	if (missed_updates >= degrade_zero_ticks[idx])
4660 		return 0;
4661 
4662 	if (idx == 1)
4663 		return load >> missed_updates;
4664 
4665 	while (missed_updates) {
4666 		if (missed_updates % 2)
4667 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4668 
4669 		missed_updates >>= 1;
4670 		j++;
4671 	}
4672 	return load;
4673 }
4674 #endif /* CONFIG_NO_HZ_COMMON */
4675 
4676 /**
4677  * __cpu_load_update - update the rq->cpu_load[] statistics
4678  * @this_rq: The rq to update statistics for
4679  * @this_load: The current load
4680  * @pending_updates: The number of missed updates
4681  *
4682  * Update rq->cpu_load[] statistics. This function is usually called every
4683  * scheduler tick (TICK_NSEC).
4684  *
4685  * This function computes a decaying average:
4686  *
4687  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4688  *
4689  * Because of NOHZ it might not get called on every tick which gives need for
4690  * the @pending_updates argument.
4691  *
4692  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4693  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4694  *             = A * (A * load[i]_n-2 + B) + B
4695  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
4696  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4697  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4698  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4699  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4700  *
4701  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4702  * any change in load would have resulted in the tick being turned back on.
4703  *
4704  * For regular NOHZ, this reduces to:
4705  *
4706  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
4707  *
4708  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4709  * term.
4710  */
4711 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4712 			    unsigned long pending_updates)
4713 {
4714 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4715 	int i, scale;
4716 
4717 	this_rq->nr_load_updates++;
4718 
4719 	/* Update our load: */
4720 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4721 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4722 		unsigned long old_load, new_load;
4723 
4724 		/* scale is effectively 1 << i now, and >> i divides by scale */
4725 
4726 		old_load = this_rq->cpu_load[i];
4727 #ifdef CONFIG_NO_HZ_COMMON
4728 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4729 		if (tickless_load) {
4730 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4731 			/*
4732 			 * old_load can never be a negative value because a
4733 			 * decayed tickless_load cannot be greater than the
4734 			 * original tickless_load.
4735 			 */
4736 			old_load += tickless_load;
4737 		}
4738 #endif
4739 		new_load = this_load;
4740 		/*
4741 		 * Round up the averaging division if load is increasing. This
4742 		 * prevents us from getting stuck on 9 if the load is 10, for
4743 		 * example.
4744 		 */
4745 		if (new_load > old_load)
4746 			new_load += scale - 1;
4747 
4748 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4749 	}
4750 
4751 	sched_avg_update(this_rq);
4752 }
4753 
4754 /* Used instead of source_load when we know the type == 0 */
4755 static unsigned long weighted_cpuload(const int cpu)
4756 {
4757 	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4758 }
4759 
4760 #ifdef CONFIG_NO_HZ_COMMON
4761 /*
4762  * There is no sane way to deal with nohz on smp when using jiffies because the
4763  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4764  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4765  *
4766  * Therefore we need to avoid the delta approach from the regular tick when
4767  * possible since that would seriously skew the load calculation. This is why we
4768  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4769  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4770  * loop exit, nohz_idle_balance, nohz full exit...)
4771  *
4772  * This means we might still be one tick off for nohz periods.
4773  */
4774 
4775 static void cpu_load_update_nohz(struct rq *this_rq,
4776 				 unsigned long curr_jiffies,
4777 				 unsigned long load)
4778 {
4779 	unsigned long pending_updates;
4780 
4781 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4782 	if (pending_updates) {
4783 		this_rq->last_load_update_tick = curr_jiffies;
4784 		/*
4785 		 * In the regular NOHZ case, we were idle, this means load 0.
4786 		 * In the NOHZ_FULL case, we were non-idle, we should consider
4787 		 * its weighted load.
4788 		 */
4789 		cpu_load_update(this_rq, load, pending_updates);
4790 	}
4791 }
4792 
4793 /*
4794  * Called from nohz_idle_balance() to update the load ratings before doing the
4795  * idle balance.
4796  */
4797 static void cpu_load_update_idle(struct rq *this_rq)
4798 {
4799 	/*
4800 	 * bail if there's load or we're actually up-to-date.
4801 	 */
4802 	if (weighted_cpuload(cpu_of(this_rq)))
4803 		return;
4804 
4805 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
4806 }
4807 
4808 /*
4809  * Record CPU load on nohz entry so we know the tickless load to account
4810  * on nohz exit. cpu_load[0] happens then to be updated more frequently
4811  * than other cpu_load[idx] but it should be fine as cpu_load readers
4812  * shouldn't rely into synchronized cpu_load[*] updates.
4813  */
4814 void cpu_load_update_nohz_start(void)
4815 {
4816 	struct rq *this_rq = this_rq();
4817 
4818 	/*
4819 	 * This is all lockless but should be fine. If weighted_cpuload changes
4820 	 * concurrently we'll exit nohz. And cpu_load write can race with
4821 	 * cpu_load_update_idle() but both updater would be writing the same.
4822 	 */
4823 	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4824 }
4825 
4826 /*
4827  * Account the tickless load in the end of a nohz frame.
4828  */
4829 void cpu_load_update_nohz_stop(void)
4830 {
4831 	unsigned long curr_jiffies = READ_ONCE(jiffies);
4832 	struct rq *this_rq = this_rq();
4833 	unsigned long load;
4834 
4835 	if (curr_jiffies == this_rq->last_load_update_tick)
4836 		return;
4837 
4838 	load = weighted_cpuload(cpu_of(this_rq));
4839 	raw_spin_lock(&this_rq->lock);
4840 	update_rq_clock(this_rq);
4841 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
4842 	raw_spin_unlock(&this_rq->lock);
4843 }
4844 #else /* !CONFIG_NO_HZ_COMMON */
4845 static inline void cpu_load_update_nohz(struct rq *this_rq,
4846 					unsigned long curr_jiffies,
4847 					unsigned long load) { }
4848 #endif /* CONFIG_NO_HZ_COMMON */
4849 
4850 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4851 {
4852 #ifdef CONFIG_NO_HZ_COMMON
4853 	/* See the mess around cpu_load_update_nohz(). */
4854 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
4855 #endif
4856 	cpu_load_update(this_rq, load, 1);
4857 }
4858 
4859 /*
4860  * Called from scheduler_tick()
4861  */
4862 void cpu_load_update_active(struct rq *this_rq)
4863 {
4864 	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4865 
4866 	if (tick_nohz_tick_stopped())
4867 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4868 	else
4869 		cpu_load_update_periodic(this_rq, load);
4870 }
4871 
4872 /*
4873  * Return a low guess at the load of a migration-source cpu weighted
4874  * according to the scheduling class and "nice" value.
4875  *
4876  * We want to under-estimate the load of migration sources, to
4877  * balance conservatively.
4878  */
4879 static unsigned long source_load(int cpu, int type)
4880 {
4881 	struct rq *rq = cpu_rq(cpu);
4882 	unsigned long total = weighted_cpuload(cpu);
4883 
4884 	if (type == 0 || !sched_feat(LB_BIAS))
4885 		return total;
4886 
4887 	return min(rq->cpu_load[type-1], total);
4888 }
4889 
4890 /*
4891  * Return a high guess at the load of a migration-target cpu weighted
4892  * according to the scheduling class and "nice" value.
4893  */
4894 static unsigned long target_load(int cpu, int type)
4895 {
4896 	struct rq *rq = cpu_rq(cpu);
4897 	unsigned long total = weighted_cpuload(cpu);
4898 
4899 	if (type == 0 || !sched_feat(LB_BIAS))
4900 		return total;
4901 
4902 	return max(rq->cpu_load[type-1], total);
4903 }
4904 
4905 static unsigned long capacity_of(int cpu)
4906 {
4907 	return cpu_rq(cpu)->cpu_capacity;
4908 }
4909 
4910 static unsigned long capacity_orig_of(int cpu)
4911 {
4912 	return cpu_rq(cpu)->cpu_capacity_orig;
4913 }
4914 
4915 static unsigned long cpu_avg_load_per_task(int cpu)
4916 {
4917 	struct rq *rq = cpu_rq(cpu);
4918 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4919 	unsigned long load_avg = weighted_cpuload(cpu);
4920 
4921 	if (nr_running)
4922 		return load_avg / nr_running;
4923 
4924 	return 0;
4925 }
4926 
4927 #ifdef CONFIG_FAIR_GROUP_SCHED
4928 /*
4929  * effective_load() calculates the load change as seen from the root_task_group
4930  *
4931  * Adding load to a group doesn't make a group heavier, but can cause movement
4932  * of group shares between cpus. Assuming the shares were perfectly aligned one
4933  * can calculate the shift in shares.
4934  *
4935  * Calculate the effective load difference if @wl is added (subtracted) to @tg
4936  * on this @cpu and results in a total addition (subtraction) of @wg to the
4937  * total group weight.
4938  *
4939  * Given a runqueue weight distribution (rw_i) we can compute a shares
4940  * distribution (s_i) using:
4941  *
4942  *   s_i = rw_i / \Sum rw_j						(1)
4943  *
4944  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4945  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4946  * shares distribution (s_i):
4947  *
4948  *   rw_i = {   2,   4,   1,   0 }
4949  *   s_i  = { 2/7, 4/7, 1/7,   0 }
4950  *
4951  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4952  * task used to run on and the CPU the waker is running on), we need to
4953  * compute the effect of waking a task on either CPU and, in case of a sync
4954  * wakeup, compute the effect of the current task going to sleep.
4955  *
4956  * So for a change of @wl to the local @cpu with an overall group weight change
4957  * of @wl we can compute the new shares distribution (s'_i) using:
4958  *
4959  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4960  *
4961  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4962  * differences in waking a task to CPU 0. The additional task changes the
4963  * weight and shares distributions like:
4964  *
4965  *   rw'_i = {   3,   4,   1,   0 }
4966  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4967  *
4968  * We can then compute the difference in effective weight by using:
4969  *
4970  *   dw_i = S * (s'_i - s_i)						(3)
4971  *
4972  * Where 'S' is the group weight as seen by its parent.
4973  *
4974  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4975  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4976  * 4/7) times the weight of the group.
4977  */
4978 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4979 {
4980 	struct sched_entity *se = tg->se[cpu];
4981 
4982 	if (!tg->parent)	/* the trivial, non-cgroup case */
4983 		return wl;
4984 
4985 	for_each_sched_entity(se) {
4986 		struct cfs_rq *cfs_rq = se->my_q;
4987 		long W, w = cfs_rq_load_avg(cfs_rq);
4988 
4989 		tg = cfs_rq->tg;
4990 
4991 		/*
4992 		 * W = @wg + \Sum rw_j
4993 		 */
4994 		W = wg + atomic_long_read(&tg->load_avg);
4995 
4996 		/* Ensure \Sum rw_j >= rw_i */
4997 		W -= cfs_rq->tg_load_avg_contrib;
4998 		W += w;
4999 
5000 		/*
5001 		 * w = rw_i + @wl
5002 		 */
5003 		w += wl;
5004 
5005 		/*
5006 		 * wl = S * s'_i; see (2)
5007 		 */
5008 		if (W > 0 && w < W)
5009 			wl = (w * (long)tg->shares) / W;
5010 		else
5011 			wl = tg->shares;
5012 
5013 		/*
5014 		 * Per the above, wl is the new se->load.weight value; since
5015 		 * those are clipped to [MIN_SHARES, ...) do so now. See
5016 		 * calc_cfs_shares().
5017 		 */
5018 		if (wl < MIN_SHARES)
5019 			wl = MIN_SHARES;
5020 
5021 		/*
5022 		 * wl = dw_i = S * (s'_i - s_i); see (3)
5023 		 */
5024 		wl -= se->avg.load_avg;
5025 
5026 		/*
5027 		 * Recursively apply this logic to all parent groups to compute
5028 		 * the final effective load change on the root group. Since
5029 		 * only the @tg group gets extra weight, all parent groups can
5030 		 * only redistribute existing shares. @wl is the shift in shares
5031 		 * resulting from this level per the above.
5032 		 */
5033 		wg = 0;
5034 	}
5035 
5036 	return wl;
5037 }
5038 #else
5039 
5040 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5041 {
5042 	return wl;
5043 }
5044 
5045 #endif
5046 
5047 static void record_wakee(struct task_struct *p)
5048 {
5049 	/*
5050 	 * Only decay a single time; tasks that have less then 1 wakeup per
5051 	 * jiffy will not have built up many flips.
5052 	 */
5053 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5054 		current->wakee_flips >>= 1;
5055 		current->wakee_flip_decay_ts = jiffies;
5056 	}
5057 
5058 	if (current->last_wakee != p) {
5059 		current->last_wakee = p;
5060 		current->wakee_flips++;
5061 	}
5062 }
5063 
5064 /*
5065  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5066  *
5067  * A waker of many should wake a different task than the one last awakened
5068  * at a frequency roughly N times higher than one of its wakees.
5069  *
5070  * In order to determine whether we should let the load spread vs consolidating
5071  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5072  * partner, and a factor of lls_size higher frequency in the other.
5073  *
5074  * With both conditions met, we can be relatively sure that the relationship is
5075  * non-monogamous, with partner count exceeding socket size.
5076  *
5077  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5078  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5079  * socket size.
5080  */
5081 static int wake_wide(struct task_struct *p)
5082 {
5083 	unsigned int master = current->wakee_flips;
5084 	unsigned int slave = p->wakee_flips;
5085 	int factor = this_cpu_read(sd_llc_size);
5086 
5087 	if (master < slave)
5088 		swap(master, slave);
5089 	if (slave < factor || master < slave * factor)
5090 		return 0;
5091 	return 1;
5092 }
5093 
5094 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
5095 {
5096 	s64 this_load, load;
5097 	s64 this_eff_load, prev_eff_load;
5098 	int idx, this_cpu, prev_cpu;
5099 	struct task_group *tg;
5100 	unsigned long weight;
5101 	int balanced;
5102 
5103 	idx	  = sd->wake_idx;
5104 	this_cpu  = smp_processor_id();
5105 	prev_cpu  = task_cpu(p);
5106 	load	  = source_load(prev_cpu, idx);
5107 	this_load = target_load(this_cpu, idx);
5108 
5109 	/*
5110 	 * If sync wakeup then subtract the (maximum possible)
5111 	 * effect of the currently running task from the load
5112 	 * of the current CPU:
5113 	 */
5114 	if (sync) {
5115 		tg = task_group(current);
5116 		weight = current->se.avg.load_avg;
5117 
5118 		this_load += effective_load(tg, this_cpu, -weight, -weight);
5119 		load += effective_load(tg, prev_cpu, 0, -weight);
5120 	}
5121 
5122 	tg = task_group(p);
5123 	weight = p->se.avg.load_avg;
5124 
5125 	/*
5126 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5127 	 * due to the sync cause above having dropped this_load to 0, we'll
5128 	 * always have an imbalance, but there's really nothing you can do
5129 	 * about that, so that's good too.
5130 	 *
5131 	 * Otherwise check if either cpus are near enough in load to allow this
5132 	 * task to be woken on this_cpu.
5133 	 */
5134 	this_eff_load = 100;
5135 	this_eff_load *= capacity_of(prev_cpu);
5136 
5137 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5138 	prev_eff_load *= capacity_of(this_cpu);
5139 
5140 	if (this_load > 0) {
5141 		this_eff_load *= this_load +
5142 			effective_load(tg, this_cpu, weight, weight);
5143 
5144 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5145 	}
5146 
5147 	balanced = this_eff_load <= prev_eff_load;
5148 
5149 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
5150 
5151 	if (!balanced)
5152 		return 0;
5153 
5154 	schedstat_inc(sd, ttwu_move_affine);
5155 	schedstat_inc(p, se.statistics.nr_wakeups_affine);
5156 
5157 	return 1;
5158 }
5159 
5160 /*
5161  * find_idlest_group finds and returns the least busy CPU group within the
5162  * domain.
5163  */
5164 static struct sched_group *
5165 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5166 		  int this_cpu, int sd_flag)
5167 {
5168 	struct sched_group *idlest = NULL, *group = sd->groups;
5169 	unsigned long min_load = ULONG_MAX, this_load = 0;
5170 	int load_idx = sd->forkexec_idx;
5171 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
5172 
5173 	if (sd_flag & SD_BALANCE_WAKE)
5174 		load_idx = sd->wake_idx;
5175 
5176 	do {
5177 		unsigned long load, avg_load;
5178 		int local_group;
5179 		int i;
5180 
5181 		/* Skip over this group if it has no CPUs allowed */
5182 		if (!cpumask_intersects(sched_group_cpus(group),
5183 					tsk_cpus_allowed(p)))
5184 			continue;
5185 
5186 		local_group = cpumask_test_cpu(this_cpu,
5187 					       sched_group_cpus(group));
5188 
5189 		/* Tally up the load of all CPUs in the group */
5190 		avg_load = 0;
5191 
5192 		for_each_cpu(i, sched_group_cpus(group)) {
5193 			/* Bias balancing toward cpus of our domain */
5194 			if (local_group)
5195 				load = source_load(i, load_idx);
5196 			else
5197 				load = target_load(i, load_idx);
5198 
5199 			avg_load += load;
5200 		}
5201 
5202 		/* Adjust by relative CPU capacity of the group */
5203 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5204 
5205 		if (local_group) {
5206 			this_load = avg_load;
5207 		} else if (avg_load < min_load) {
5208 			min_load = avg_load;
5209 			idlest = group;
5210 		}
5211 	} while (group = group->next, group != sd->groups);
5212 
5213 	if (!idlest || 100*this_load < imbalance*min_load)
5214 		return NULL;
5215 	return idlest;
5216 }
5217 
5218 /*
5219  * find_idlest_cpu - find the idlest cpu among the cpus in group.
5220  */
5221 static int
5222 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5223 {
5224 	unsigned long load, min_load = ULONG_MAX;
5225 	unsigned int min_exit_latency = UINT_MAX;
5226 	u64 latest_idle_timestamp = 0;
5227 	int least_loaded_cpu = this_cpu;
5228 	int shallowest_idle_cpu = -1;
5229 	int i;
5230 
5231 	/* Traverse only the allowed CPUs */
5232 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5233 		if (idle_cpu(i)) {
5234 			struct rq *rq = cpu_rq(i);
5235 			struct cpuidle_state *idle = idle_get_state(rq);
5236 			if (idle && idle->exit_latency < min_exit_latency) {
5237 				/*
5238 				 * We give priority to a CPU whose idle state
5239 				 * has the smallest exit latency irrespective
5240 				 * of any idle timestamp.
5241 				 */
5242 				min_exit_latency = idle->exit_latency;
5243 				latest_idle_timestamp = rq->idle_stamp;
5244 				shallowest_idle_cpu = i;
5245 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5246 				   rq->idle_stamp > latest_idle_timestamp) {
5247 				/*
5248 				 * If equal or no active idle state, then
5249 				 * the most recently idled CPU might have
5250 				 * a warmer cache.
5251 				 */
5252 				latest_idle_timestamp = rq->idle_stamp;
5253 				shallowest_idle_cpu = i;
5254 			}
5255 		} else if (shallowest_idle_cpu == -1) {
5256 			load = weighted_cpuload(i);
5257 			if (load < min_load || (load == min_load && i == this_cpu)) {
5258 				min_load = load;
5259 				least_loaded_cpu = i;
5260 			}
5261 		}
5262 	}
5263 
5264 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5265 }
5266 
5267 /*
5268  * Try and locate an idle CPU in the sched_domain.
5269  */
5270 static int select_idle_sibling(struct task_struct *p, int target)
5271 {
5272 	struct sched_domain *sd;
5273 	struct sched_group *sg;
5274 	int i = task_cpu(p);
5275 
5276 	if (idle_cpu(target))
5277 		return target;
5278 
5279 	/*
5280 	 * If the prevous cpu is cache affine and idle, don't be stupid.
5281 	 */
5282 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5283 		return i;
5284 
5285 	/*
5286 	 * Otherwise, iterate the domains and find an eligible idle cpu.
5287 	 *
5288 	 * A completely idle sched group at higher domains is more
5289 	 * desirable than an idle group at a lower level, because lower
5290 	 * domains have smaller groups and usually share hardware
5291 	 * resources which causes tasks to contend on them, e.g. x86
5292 	 * hyperthread siblings in the lowest domain (SMT) can contend
5293 	 * on the shared cpu pipeline.
5294 	 *
5295 	 * However, while we prefer idle groups at higher domains
5296 	 * finding an idle cpu at the lowest domain is still better than
5297 	 * returning 'target', which we've already established, isn't
5298 	 * idle.
5299 	 */
5300 	sd = rcu_dereference(per_cpu(sd_llc, target));
5301 	for_each_lower_domain(sd) {
5302 		sg = sd->groups;
5303 		do {
5304 			if (!cpumask_intersects(sched_group_cpus(sg),
5305 						tsk_cpus_allowed(p)))
5306 				goto next;
5307 
5308 			/* Ensure the entire group is idle */
5309 			for_each_cpu(i, sched_group_cpus(sg)) {
5310 				if (i == target || !idle_cpu(i))
5311 					goto next;
5312 			}
5313 
5314 			/*
5315 			 * It doesn't matter which cpu we pick, the
5316 			 * whole group is idle.
5317 			 */
5318 			target = cpumask_first_and(sched_group_cpus(sg),
5319 					tsk_cpus_allowed(p));
5320 			goto done;
5321 next:
5322 			sg = sg->next;
5323 		} while (sg != sd->groups);
5324 	}
5325 done:
5326 	return target;
5327 }
5328 
5329 /*
5330  * cpu_util returns the amount of capacity of a CPU that is used by CFS
5331  * tasks. The unit of the return value must be the one of capacity so we can
5332  * compare the utilization with the capacity of the CPU that is available for
5333  * CFS task (ie cpu_capacity).
5334  *
5335  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5336  * recent utilization of currently non-runnable tasks on a CPU. It represents
5337  * the amount of utilization of a CPU in the range [0..capacity_orig] where
5338  * capacity_orig is the cpu_capacity available at the highest frequency
5339  * (arch_scale_freq_capacity()).
5340  * The utilization of a CPU converges towards a sum equal to or less than the
5341  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5342  * the running time on this CPU scaled by capacity_curr.
5343  *
5344  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5345  * higher than capacity_orig because of unfortunate rounding in
5346  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5347  * the average stabilizes with the new running time. We need to check that the
5348  * utilization stays within the range of [0..capacity_orig] and cap it if
5349  * necessary. Without utilization capping, a group could be seen as overloaded
5350  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5351  * available capacity. We allow utilization to overshoot capacity_curr (but not
5352  * capacity_orig) as it useful for predicting the capacity required after task
5353  * migrations (scheduler-driven DVFS).
5354  */
5355 static int cpu_util(int cpu)
5356 {
5357 	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5358 	unsigned long capacity = capacity_orig_of(cpu);
5359 
5360 	return (util >= capacity) ? capacity : util;
5361 }
5362 
5363 /*
5364  * select_task_rq_fair: Select target runqueue for the waking task in domains
5365  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5366  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5367  *
5368  * Balances load by selecting the idlest cpu in the idlest group, or under
5369  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5370  *
5371  * Returns the target cpu number.
5372  *
5373  * preempt must be disabled.
5374  */
5375 static int
5376 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5377 {
5378 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5379 	int cpu = smp_processor_id();
5380 	int new_cpu = prev_cpu;
5381 	int want_affine = 0;
5382 	int sync = wake_flags & WF_SYNC;
5383 
5384 	if (sd_flag & SD_BALANCE_WAKE) {
5385 		record_wakee(p);
5386 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5387 	}
5388 
5389 	rcu_read_lock();
5390 	for_each_domain(cpu, tmp) {
5391 		if (!(tmp->flags & SD_LOAD_BALANCE))
5392 			break;
5393 
5394 		/*
5395 		 * If both cpu and prev_cpu are part of this domain,
5396 		 * cpu is a valid SD_WAKE_AFFINE target.
5397 		 */
5398 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5399 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5400 			affine_sd = tmp;
5401 			break;
5402 		}
5403 
5404 		if (tmp->flags & sd_flag)
5405 			sd = tmp;
5406 		else if (!want_affine)
5407 			break;
5408 	}
5409 
5410 	if (affine_sd) {
5411 		sd = NULL; /* Prefer wake_affine over balance flags */
5412 		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5413 			new_cpu = cpu;
5414 	}
5415 
5416 	if (!sd) {
5417 		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5418 			new_cpu = select_idle_sibling(p, new_cpu);
5419 
5420 	} else while (sd) {
5421 		struct sched_group *group;
5422 		int weight;
5423 
5424 		if (!(sd->flags & sd_flag)) {
5425 			sd = sd->child;
5426 			continue;
5427 		}
5428 
5429 		group = find_idlest_group(sd, p, cpu, sd_flag);
5430 		if (!group) {
5431 			sd = sd->child;
5432 			continue;
5433 		}
5434 
5435 		new_cpu = find_idlest_cpu(group, p, cpu);
5436 		if (new_cpu == -1 || new_cpu == cpu) {
5437 			/* Now try balancing at a lower domain level of cpu */
5438 			sd = sd->child;
5439 			continue;
5440 		}
5441 
5442 		/* Now try balancing at a lower domain level of new_cpu */
5443 		cpu = new_cpu;
5444 		weight = sd->span_weight;
5445 		sd = NULL;
5446 		for_each_domain(cpu, tmp) {
5447 			if (weight <= tmp->span_weight)
5448 				break;
5449 			if (tmp->flags & sd_flag)
5450 				sd = tmp;
5451 		}
5452 		/* while loop will break here if sd == NULL */
5453 	}
5454 	rcu_read_unlock();
5455 
5456 	return new_cpu;
5457 }
5458 
5459 /*
5460  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5461  * cfs_rq_of(p) references at time of call are still valid and identify the
5462  * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5463  */
5464 static void migrate_task_rq_fair(struct task_struct *p)
5465 {
5466 	/*
5467 	 * As blocked tasks retain absolute vruntime the migration needs to
5468 	 * deal with this by subtracting the old and adding the new
5469 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
5470 	 * the task on the new runqueue.
5471 	 */
5472 	if (p->state == TASK_WAKING) {
5473 		struct sched_entity *se = &p->se;
5474 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5475 		u64 min_vruntime;
5476 
5477 #ifndef CONFIG_64BIT
5478 		u64 min_vruntime_copy;
5479 
5480 		do {
5481 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
5482 			smp_rmb();
5483 			min_vruntime = cfs_rq->min_vruntime;
5484 		} while (min_vruntime != min_vruntime_copy);
5485 #else
5486 		min_vruntime = cfs_rq->min_vruntime;
5487 #endif
5488 
5489 		se->vruntime -= min_vruntime;
5490 	}
5491 
5492 	/*
5493 	 * We are supposed to update the task to "current" time, then its up to date
5494 	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5495 	 * what current time is, so simply throw away the out-of-date time. This
5496 	 * will result in the wakee task is less decayed, but giving the wakee more
5497 	 * load sounds not bad.
5498 	 */
5499 	remove_entity_load_avg(&p->se);
5500 
5501 	/* Tell new CPU we are migrated */
5502 	p->se.avg.last_update_time = 0;
5503 
5504 	/* We have migrated, no longer consider this task hot */
5505 	p->se.exec_start = 0;
5506 }
5507 
5508 static void task_dead_fair(struct task_struct *p)
5509 {
5510 	remove_entity_load_avg(&p->se);
5511 }
5512 #endif /* CONFIG_SMP */
5513 
5514 static unsigned long
5515 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5516 {
5517 	unsigned long gran = sysctl_sched_wakeup_granularity;
5518 
5519 	/*
5520 	 * Since its curr running now, convert the gran from real-time
5521 	 * to virtual-time in his units.
5522 	 *
5523 	 * By using 'se' instead of 'curr' we penalize light tasks, so
5524 	 * they get preempted easier. That is, if 'se' < 'curr' then
5525 	 * the resulting gran will be larger, therefore penalizing the
5526 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5527 	 * be smaller, again penalizing the lighter task.
5528 	 *
5529 	 * This is especially important for buddies when the leftmost
5530 	 * task is higher priority than the buddy.
5531 	 */
5532 	return calc_delta_fair(gran, se);
5533 }
5534 
5535 /*
5536  * Should 'se' preempt 'curr'.
5537  *
5538  *             |s1
5539  *        |s2
5540  *   |s3
5541  *         g
5542  *      |<--->|c
5543  *
5544  *  w(c, s1) = -1
5545  *  w(c, s2) =  0
5546  *  w(c, s3) =  1
5547  *
5548  */
5549 static int
5550 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5551 {
5552 	s64 gran, vdiff = curr->vruntime - se->vruntime;
5553 
5554 	if (vdiff <= 0)
5555 		return -1;
5556 
5557 	gran = wakeup_gran(curr, se);
5558 	if (vdiff > gran)
5559 		return 1;
5560 
5561 	return 0;
5562 }
5563 
5564 static void set_last_buddy(struct sched_entity *se)
5565 {
5566 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5567 		return;
5568 
5569 	for_each_sched_entity(se)
5570 		cfs_rq_of(se)->last = se;
5571 }
5572 
5573 static void set_next_buddy(struct sched_entity *se)
5574 {
5575 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5576 		return;
5577 
5578 	for_each_sched_entity(se)
5579 		cfs_rq_of(se)->next = se;
5580 }
5581 
5582 static void set_skip_buddy(struct sched_entity *se)
5583 {
5584 	for_each_sched_entity(se)
5585 		cfs_rq_of(se)->skip = se;
5586 }
5587 
5588 /*
5589  * Preempt the current task with a newly woken task if needed:
5590  */
5591 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5592 {
5593 	struct task_struct *curr = rq->curr;
5594 	struct sched_entity *se = &curr->se, *pse = &p->se;
5595 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5596 	int scale = cfs_rq->nr_running >= sched_nr_latency;
5597 	int next_buddy_marked = 0;
5598 
5599 	if (unlikely(se == pse))
5600 		return;
5601 
5602 	/*
5603 	 * This is possible from callers such as attach_tasks(), in which we
5604 	 * unconditionally check_prempt_curr() after an enqueue (which may have
5605 	 * lead to a throttle).  This both saves work and prevents false
5606 	 * next-buddy nomination below.
5607 	 */
5608 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5609 		return;
5610 
5611 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5612 		set_next_buddy(pse);
5613 		next_buddy_marked = 1;
5614 	}
5615 
5616 	/*
5617 	 * We can come here with TIF_NEED_RESCHED already set from new task
5618 	 * wake up path.
5619 	 *
5620 	 * Note: this also catches the edge-case of curr being in a throttled
5621 	 * group (e.g. via set_curr_task), since update_curr() (in the
5622 	 * enqueue of curr) will have resulted in resched being set.  This
5623 	 * prevents us from potentially nominating it as a false LAST_BUDDY
5624 	 * below.
5625 	 */
5626 	if (test_tsk_need_resched(curr))
5627 		return;
5628 
5629 	/* Idle tasks are by definition preempted by non-idle tasks. */
5630 	if (unlikely(curr->policy == SCHED_IDLE) &&
5631 	    likely(p->policy != SCHED_IDLE))
5632 		goto preempt;
5633 
5634 	/*
5635 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5636 	 * is driven by the tick):
5637 	 */
5638 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5639 		return;
5640 
5641 	find_matching_se(&se, &pse);
5642 	update_curr(cfs_rq_of(se));
5643 	BUG_ON(!pse);
5644 	if (wakeup_preempt_entity(se, pse) == 1) {
5645 		/*
5646 		 * Bias pick_next to pick the sched entity that is
5647 		 * triggering this preemption.
5648 		 */
5649 		if (!next_buddy_marked)
5650 			set_next_buddy(pse);
5651 		goto preempt;
5652 	}
5653 
5654 	return;
5655 
5656 preempt:
5657 	resched_curr(rq);
5658 	/*
5659 	 * Only set the backward buddy when the current task is still
5660 	 * on the rq. This can happen when a wakeup gets interleaved
5661 	 * with schedule on the ->pre_schedule() or idle_balance()
5662 	 * point, either of which can * drop the rq lock.
5663 	 *
5664 	 * Also, during early boot the idle thread is in the fair class,
5665 	 * for obvious reasons its a bad idea to schedule back to it.
5666 	 */
5667 	if (unlikely(!se->on_rq || curr == rq->idle))
5668 		return;
5669 
5670 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5671 		set_last_buddy(se);
5672 }
5673 
5674 static struct task_struct *
5675 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
5676 {
5677 	struct cfs_rq *cfs_rq = &rq->cfs;
5678 	struct sched_entity *se;
5679 	struct task_struct *p;
5680 	int new_tasks;
5681 
5682 again:
5683 #ifdef CONFIG_FAIR_GROUP_SCHED
5684 	if (!cfs_rq->nr_running)
5685 		goto idle;
5686 
5687 	if (prev->sched_class != &fair_sched_class)
5688 		goto simple;
5689 
5690 	/*
5691 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5692 	 * likely that a next task is from the same cgroup as the current.
5693 	 *
5694 	 * Therefore attempt to avoid putting and setting the entire cgroup
5695 	 * hierarchy, only change the part that actually changes.
5696 	 */
5697 
5698 	do {
5699 		struct sched_entity *curr = cfs_rq->curr;
5700 
5701 		/*
5702 		 * Since we got here without doing put_prev_entity() we also
5703 		 * have to consider cfs_rq->curr. If it is still a runnable
5704 		 * entity, update_curr() will update its vruntime, otherwise
5705 		 * forget we've ever seen it.
5706 		 */
5707 		if (curr) {
5708 			if (curr->on_rq)
5709 				update_curr(cfs_rq);
5710 			else
5711 				curr = NULL;
5712 
5713 			/*
5714 			 * This call to check_cfs_rq_runtime() will do the
5715 			 * throttle and dequeue its entity in the parent(s).
5716 			 * Therefore the 'simple' nr_running test will indeed
5717 			 * be correct.
5718 			 */
5719 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5720 				goto simple;
5721 		}
5722 
5723 		se = pick_next_entity(cfs_rq, curr);
5724 		cfs_rq = group_cfs_rq(se);
5725 	} while (cfs_rq);
5726 
5727 	p = task_of(se);
5728 
5729 	/*
5730 	 * Since we haven't yet done put_prev_entity and if the selected task
5731 	 * is a different task than we started out with, try and touch the
5732 	 * least amount of cfs_rqs.
5733 	 */
5734 	if (prev != p) {
5735 		struct sched_entity *pse = &prev->se;
5736 
5737 		while (!(cfs_rq = is_same_group(se, pse))) {
5738 			int se_depth = se->depth;
5739 			int pse_depth = pse->depth;
5740 
5741 			if (se_depth <= pse_depth) {
5742 				put_prev_entity(cfs_rq_of(pse), pse);
5743 				pse = parent_entity(pse);
5744 			}
5745 			if (se_depth >= pse_depth) {
5746 				set_next_entity(cfs_rq_of(se), se);
5747 				se = parent_entity(se);
5748 			}
5749 		}
5750 
5751 		put_prev_entity(cfs_rq, pse);
5752 		set_next_entity(cfs_rq, se);
5753 	}
5754 
5755 	if (hrtick_enabled(rq))
5756 		hrtick_start_fair(rq, p);
5757 
5758 	return p;
5759 simple:
5760 	cfs_rq = &rq->cfs;
5761 #endif
5762 
5763 	if (!cfs_rq->nr_running)
5764 		goto idle;
5765 
5766 	put_prev_task(rq, prev);
5767 
5768 	do {
5769 		se = pick_next_entity(cfs_rq, NULL);
5770 		set_next_entity(cfs_rq, se);
5771 		cfs_rq = group_cfs_rq(se);
5772 	} while (cfs_rq);
5773 
5774 	p = task_of(se);
5775 
5776 	if (hrtick_enabled(rq))
5777 		hrtick_start_fair(rq, p);
5778 
5779 	return p;
5780 
5781 idle:
5782 	/*
5783 	 * This is OK, because current is on_cpu, which avoids it being picked
5784 	 * for load-balance and preemption/IRQs are still disabled avoiding
5785 	 * further scheduler activity on it and we're being very careful to
5786 	 * re-start the picking loop.
5787 	 */
5788 	lockdep_unpin_lock(&rq->lock, cookie);
5789 	new_tasks = idle_balance(rq);
5790 	lockdep_repin_lock(&rq->lock, cookie);
5791 	/*
5792 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5793 	 * possible for any higher priority task to appear. In that case we
5794 	 * must re-start the pick_next_entity() loop.
5795 	 */
5796 	if (new_tasks < 0)
5797 		return RETRY_TASK;
5798 
5799 	if (new_tasks > 0)
5800 		goto again;
5801 
5802 	return NULL;
5803 }
5804 
5805 /*
5806  * Account for a descheduled task:
5807  */
5808 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5809 {
5810 	struct sched_entity *se = &prev->se;
5811 	struct cfs_rq *cfs_rq;
5812 
5813 	for_each_sched_entity(se) {
5814 		cfs_rq = cfs_rq_of(se);
5815 		put_prev_entity(cfs_rq, se);
5816 	}
5817 }
5818 
5819 /*
5820  * sched_yield() is very simple
5821  *
5822  * The magic of dealing with the ->skip buddy is in pick_next_entity.
5823  */
5824 static void yield_task_fair(struct rq *rq)
5825 {
5826 	struct task_struct *curr = rq->curr;
5827 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5828 	struct sched_entity *se = &curr->se;
5829 
5830 	/*
5831 	 * Are we the only task in the tree?
5832 	 */
5833 	if (unlikely(rq->nr_running == 1))
5834 		return;
5835 
5836 	clear_buddies(cfs_rq, se);
5837 
5838 	if (curr->policy != SCHED_BATCH) {
5839 		update_rq_clock(rq);
5840 		/*
5841 		 * Update run-time statistics of the 'current'.
5842 		 */
5843 		update_curr(cfs_rq);
5844 		/*
5845 		 * Tell update_rq_clock() that we've just updated,
5846 		 * so we don't do microscopic update in schedule()
5847 		 * and double the fastpath cost.
5848 		 */
5849 		rq_clock_skip_update(rq, true);
5850 	}
5851 
5852 	set_skip_buddy(se);
5853 }
5854 
5855 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5856 {
5857 	struct sched_entity *se = &p->se;
5858 
5859 	/* throttled hierarchies are not runnable */
5860 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5861 		return false;
5862 
5863 	/* Tell the scheduler that we'd really like pse to run next. */
5864 	set_next_buddy(se);
5865 
5866 	yield_task_fair(rq);
5867 
5868 	return true;
5869 }
5870 
5871 #ifdef CONFIG_SMP
5872 /**************************************************
5873  * Fair scheduling class load-balancing methods.
5874  *
5875  * BASICS
5876  *
5877  * The purpose of load-balancing is to achieve the same basic fairness the
5878  * per-cpu scheduler provides, namely provide a proportional amount of compute
5879  * time to each task. This is expressed in the following equation:
5880  *
5881  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
5882  *
5883  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5884  * W_i,0 is defined as:
5885  *
5886  *   W_i,0 = \Sum_j w_i,j                                             (2)
5887  *
5888  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5889  * is derived from the nice value as per sched_prio_to_weight[].
5890  *
5891  * The weight average is an exponential decay average of the instantaneous
5892  * weight:
5893  *
5894  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5895  *
5896  * C_i is the compute capacity of cpu i, typically it is the
5897  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5898  * can also include other factors [XXX].
5899  *
5900  * To achieve this balance we define a measure of imbalance which follows
5901  * directly from (1):
5902  *
5903  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5904  *
5905  * We them move tasks around to minimize the imbalance. In the continuous
5906  * function space it is obvious this converges, in the discrete case we get
5907  * a few fun cases generally called infeasible weight scenarios.
5908  *
5909  * [XXX expand on:
5910  *     - infeasible weights;
5911  *     - local vs global optima in the discrete case. ]
5912  *
5913  *
5914  * SCHED DOMAINS
5915  *
5916  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5917  * for all i,j solution, we create a tree of cpus that follows the hardware
5918  * topology where each level pairs two lower groups (or better). This results
5919  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5920  * tree to only the first of the previous level and we decrease the frequency
5921  * of load-balance at each level inv. proportional to the number of cpus in
5922  * the groups.
5923  *
5924  * This yields:
5925  *
5926  *     log_2 n     1     n
5927  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5928  *     i = 0      2^i   2^i
5929  *                               `- size of each group
5930  *         |         |     `- number of cpus doing load-balance
5931  *         |         `- freq
5932  *         `- sum over all levels
5933  *
5934  * Coupled with a limit on how many tasks we can migrate every balance pass,
5935  * this makes (5) the runtime complexity of the balancer.
5936  *
5937  * An important property here is that each CPU is still (indirectly) connected
5938  * to every other cpu in at most O(log n) steps:
5939  *
5940  * The adjacency matrix of the resulting graph is given by:
5941  *
5942  *             log_2 n
5943  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5944  *             k = 0
5945  *
5946  * And you'll find that:
5947  *
5948  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5949  *
5950  * Showing there's indeed a path between every cpu in at most O(log n) steps.
5951  * The task movement gives a factor of O(m), giving a convergence complexity
5952  * of:
5953  *
5954  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5955  *
5956  *
5957  * WORK CONSERVING
5958  *
5959  * In order to avoid CPUs going idle while there's still work to do, new idle
5960  * balancing is more aggressive and has the newly idle cpu iterate up the domain
5961  * tree itself instead of relying on other CPUs to bring it work.
5962  *
5963  * This adds some complexity to both (5) and (8) but it reduces the total idle
5964  * time.
5965  *
5966  * [XXX more?]
5967  *
5968  *
5969  * CGROUPS
5970  *
5971  * Cgroups make a horror show out of (2), instead of a simple sum we get:
5972  *
5973  *                                s_k,i
5974  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5975  *                                 S_k
5976  *
5977  * Where
5978  *
5979  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5980  *
5981  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5982  *
5983  * The big problem is S_k, its a global sum needed to compute a local (W_i)
5984  * property.
5985  *
5986  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5987  *      rewrite all of this once again.]
5988  */
5989 
5990 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5991 
5992 enum fbq_type { regular, remote, all };
5993 
5994 #define LBF_ALL_PINNED	0x01
5995 #define LBF_NEED_BREAK	0x02
5996 #define LBF_DST_PINNED  0x04
5997 #define LBF_SOME_PINNED	0x08
5998 
5999 struct lb_env {
6000 	struct sched_domain	*sd;
6001 
6002 	struct rq		*src_rq;
6003 	int			src_cpu;
6004 
6005 	int			dst_cpu;
6006 	struct rq		*dst_rq;
6007 
6008 	struct cpumask		*dst_grpmask;
6009 	int			new_dst_cpu;
6010 	enum cpu_idle_type	idle;
6011 	long			imbalance;
6012 	/* The set of CPUs under consideration for load-balancing */
6013 	struct cpumask		*cpus;
6014 
6015 	unsigned int		flags;
6016 
6017 	unsigned int		loop;
6018 	unsigned int		loop_break;
6019 	unsigned int		loop_max;
6020 
6021 	enum fbq_type		fbq_type;
6022 	struct list_head	tasks;
6023 };
6024 
6025 /*
6026  * Is this task likely cache-hot:
6027  */
6028 static int task_hot(struct task_struct *p, struct lb_env *env)
6029 {
6030 	s64 delta;
6031 
6032 	lockdep_assert_held(&env->src_rq->lock);
6033 
6034 	if (p->sched_class != &fair_sched_class)
6035 		return 0;
6036 
6037 	if (unlikely(p->policy == SCHED_IDLE))
6038 		return 0;
6039 
6040 	/*
6041 	 * Buddy candidates are cache hot:
6042 	 */
6043 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6044 			(&p->se == cfs_rq_of(&p->se)->next ||
6045 			 &p->se == cfs_rq_of(&p->se)->last))
6046 		return 1;
6047 
6048 	if (sysctl_sched_migration_cost == -1)
6049 		return 1;
6050 	if (sysctl_sched_migration_cost == 0)
6051 		return 0;
6052 
6053 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6054 
6055 	return delta < (s64)sysctl_sched_migration_cost;
6056 }
6057 
6058 #ifdef CONFIG_NUMA_BALANCING
6059 /*
6060  * Returns 1, if task migration degrades locality
6061  * Returns 0, if task migration improves locality i.e migration preferred.
6062  * Returns -1, if task migration is not affected by locality.
6063  */
6064 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6065 {
6066 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6067 	unsigned long src_faults, dst_faults;
6068 	int src_nid, dst_nid;
6069 
6070 	if (!static_branch_likely(&sched_numa_balancing))
6071 		return -1;
6072 
6073 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6074 		return -1;
6075 
6076 	src_nid = cpu_to_node(env->src_cpu);
6077 	dst_nid = cpu_to_node(env->dst_cpu);
6078 
6079 	if (src_nid == dst_nid)
6080 		return -1;
6081 
6082 	/* Migrating away from the preferred node is always bad. */
6083 	if (src_nid == p->numa_preferred_nid) {
6084 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6085 			return 1;
6086 		else
6087 			return -1;
6088 	}
6089 
6090 	/* Encourage migration to the preferred node. */
6091 	if (dst_nid == p->numa_preferred_nid)
6092 		return 0;
6093 
6094 	if (numa_group) {
6095 		src_faults = group_faults(p, src_nid);
6096 		dst_faults = group_faults(p, dst_nid);
6097 	} else {
6098 		src_faults = task_faults(p, src_nid);
6099 		dst_faults = task_faults(p, dst_nid);
6100 	}
6101 
6102 	return dst_faults < src_faults;
6103 }
6104 
6105 #else
6106 static inline int migrate_degrades_locality(struct task_struct *p,
6107 					     struct lb_env *env)
6108 {
6109 	return -1;
6110 }
6111 #endif
6112 
6113 /*
6114  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6115  */
6116 static
6117 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6118 {
6119 	int tsk_cache_hot;
6120 
6121 	lockdep_assert_held(&env->src_rq->lock);
6122 
6123 	/*
6124 	 * We do not migrate tasks that are:
6125 	 * 1) throttled_lb_pair, or
6126 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6127 	 * 3) running (obviously), or
6128 	 * 4) are cache-hot on their current CPU.
6129 	 */
6130 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6131 		return 0;
6132 
6133 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6134 		int cpu;
6135 
6136 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
6137 
6138 		env->flags |= LBF_SOME_PINNED;
6139 
6140 		/*
6141 		 * Remember if this task can be migrated to any other cpu in
6142 		 * our sched_group. We may want to revisit it if we couldn't
6143 		 * meet load balance goals by pulling other tasks on src_cpu.
6144 		 *
6145 		 * Also avoid computing new_dst_cpu if we have already computed
6146 		 * one in current iteration.
6147 		 */
6148 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6149 			return 0;
6150 
6151 		/* Prevent to re-select dst_cpu via env's cpus */
6152 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6153 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6154 				env->flags |= LBF_DST_PINNED;
6155 				env->new_dst_cpu = cpu;
6156 				break;
6157 			}
6158 		}
6159 
6160 		return 0;
6161 	}
6162 
6163 	/* Record that we found atleast one task that could run on dst_cpu */
6164 	env->flags &= ~LBF_ALL_PINNED;
6165 
6166 	if (task_running(env->src_rq, p)) {
6167 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
6168 		return 0;
6169 	}
6170 
6171 	/*
6172 	 * Aggressive migration if:
6173 	 * 1) destination numa is preferred
6174 	 * 2) task is cache cold, or
6175 	 * 3) too many balance attempts have failed.
6176 	 */
6177 	tsk_cache_hot = migrate_degrades_locality(p, env);
6178 	if (tsk_cache_hot == -1)
6179 		tsk_cache_hot = task_hot(p, env);
6180 
6181 	if (tsk_cache_hot <= 0 ||
6182 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6183 		if (tsk_cache_hot == 1) {
6184 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6185 			schedstat_inc(p, se.statistics.nr_forced_migrations);
6186 		}
6187 		return 1;
6188 	}
6189 
6190 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6191 	return 0;
6192 }
6193 
6194 /*
6195  * detach_task() -- detach the task for the migration specified in env
6196  */
6197 static void detach_task(struct task_struct *p, struct lb_env *env)
6198 {
6199 	lockdep_assert_held(&env->src_rq->lock);
6200 
6201 	p->on_rq = TASK_ON_RQ_MIGRATING;
6202 	deactivate_task(env->src_rq, p, 0);
6203 	set_task_cpu(p, env->dst_cpu);
6204 }
6205 
6206 /*
6207  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6208  * part of active balancing operations within "domain".
6209  *
6210  * Returns a task if successful and NULL otherwise.
6211  */
6212 static struct task_struct *detach_one_task(struct lb_env *env)
6213 {
6214 	struct task_struct *p, *n;
6215 
6216 	lockdep_assert_held(&env->src_rq->lock);
6217 
6218 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6219 		if (!can_migrate_task(p, env))
6220 			continue;
6221 
6222 		detach_task(p, env);
6223 
6224 		/*
6225 		 * Right now, this is only the second place where
6226 		 * lb_gained[env->idle] is updated (other is detach_tasks)
6227 		 * so we can safely collect stats here rather than
6228 		 * inside detach_tasks().
6229 		 */
6230 		schedstat_inc(env->sd, lb_gained[env->idle]);
6231 		return p;
6232 	}
6233 	return NULL;
6234 }
6235 
6236 static const unsigned int sched_nr_migrate_break = 32;
6237 
6238 /*
6239  * detach_tasks() -- tries to detach up to imbalance weighted load from
6240  * busiest_rq, as part of a balancing operation within domain "sd".
6241  *
6242  * Returns number of detached tasks if successful and 0 otherwise.
6243  */
6244 static int detach_tasks(struct lb_env *env)
6245 {
6246 	struct list_head *tasks = &env->src_rq->cfs_tasks;
6247 	struct task_struct *p;
6248 	unsigned long load;
6249 	int detached = 0;
6250 
6251 	lockdep_assert_held(&env->src_rq->lock);
6252 
6253 	if (env->imbalance <= 0)
6254 		return 0;
6255 
6256 	while (!list_empty(tasks)) {
6257 		/*
6258 		 * We don't want to steal all, otherwise we may be treated likewise,
6259 		 * which could at worst lead to a livelock crash.
6260 		 */
6261 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6262 			break;
6263 
6264 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6265 
6266 		env->loop++;
6267 		/* We've more or less seen every task there is, call it quits */
6268 		if (env->loop > env->loop_max)
6269 			break;
6270 
6271 		/* take a breather every nr_migrate tasks */
6272 		if (env->loop > env->loop_break) {
6273 			env->loop_break += sched_nr_migrate_break;
6274 			env->flags |= LBF_NEED_BREAK;
6275 			break;
6276 		}
6277 
6278 		if (!can_migrate_task(p, env))
6279 			goto next;
6280 
6281 		load = task_h_load(p);
6282 
6283 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6284 			goto next;
6285 
6286 		if ((load / 2) > env->imbalance)
6287 			goto next;
6288 
6289 		detach_task(p, env);
6290 		list_add(&p->se.group_node, &env->tasks);
6291 
6292 		detached++;
6293 		env->imbalance -= load;
6294 
6295 #ifdef CONFIG_PREEMPT
6296 		/*
6297 		 * NEWIDLE balancing is a source of latency, so preemptible
6298 		 * kernels will stop after the first task is detached to minimize
6299 		 * the critical section.
6300 		 */
6301 		if (env->idle == CPU_NEWLY_IDLE)
6302 			break;
6303 #endif
6304 
6305 		/*
6306 		 * We only want to steal up to the prescribed amount of
6307 		 * weighted load.
6308 		 */
6309 		if (env->imbalance <= 0)
6310 			break;
6311 
6312 		continue;
6313 next:
6314 		list_move_tail(&p->se.group_node, tasks);
6315 	}
6316 
6317 	/*
6318 	 * Right now, this is one of only two places we collect this stat
6319 	 * so we can safely collect detach_one_task() stats here rather
6320 	 * than inside detach_one_task().
6321 	 */
6322 	schedstat_add(env->sd, lb_gained[env->idle], detached);
6323 
6324 	return detached;
6325 }
6326 
6327 /*
6328  * attach_task() -- attach the task detached by detach_task() to its new rq.
6329  */
6330 static void attach_task(struct rq *rq, struct task_struct *p)
6331 {
6332 	lockdep_assert_held(&rq->lock);
6333 
6334 	BUG_ON(task_rq(p) != rq);
6335 	activate_task(rq, p, 0);
6336 	p->on_rq = TASK_ON_RQ_QUEUED;
6337 	check_preempt_curr(rq, p, 0);
6338 }
6339 
6340 /*
6341  * attach_one_task() -- attaches the task returned from detach_one_task() to
6342  * its new rq.
6343  */
6344 static void attach_one_task(struct rq *rq, struct task_struct *p)
6345 {
6346 	raw_spin_lock(&rq->lock);
6347 	attach_task(rq, p);
6348 	raw_spin_unlock(&rq->lock);
6349 }
6350 
6351 /*
6352  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6353  * new rq.
6354  */
6355 static void attach_tasks(struct lb_env *env)
6356 {
6357 	struct list_head *tasks = &env->tasks;
6358 	struct task_struct *p;
6359 
6360 	raw_spin_lock(&env->dst_rq->lock);
6361 
6362 	while (!list_empty(tasks)) {
6363 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6364 		list_del_init(&p->se.group_node);
6365 
6366 		attach_task(env->dst_rq, p);
6367 	}
6368 
6369 	raw_spin_unlock(&env->dst_rq->lock);
6370 }
6371 
6372 #ifdef CONFIG_FAIR_GROUP_SCHED
6373 static void update_blocked_averages(int cpu)
6374 {
6375 	struct rq *rq = cpu_rq(cpu);
6376 	struct cfs_rq *cfs_rq;
6377 	unsigned long flags;
6378 
6379 	raw_spin_lock_irqsave(&rq->lock, flags);
6380 	update_rq_clock(rq);
6381 
6382 	/*
6383 	 * Iterates the task_group tree in a bottom up fashion, see
6384 	 * list_add_leaf_cfs_rq() for details.
6385 	 */
6386 	for_each_leaf_cfs_rq(rq, cfs_rq) {
6387 		/* throttled entities do not contribute to load */
6388 		if (throttled_hierarchy(cfs_rq))
6389 			continue;
6390 
6391 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6392 			update_tg_load_avg(cfs_rq, 0);
6393 	}
6394 	raw_spin_unlock_irqrestore(&rq->lock, flags);
6395 }
6396 
6397 /*
6398  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6399  * This needs to be done in a top-down fashion because the load of a child
6400  * group is a fraction of its parents load.
6401  */
6402 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6403 {
6404 	struct rq *rq = rq_of(cfs_rq);
6405 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6406 	unsigned long now = jiffies;
6407 	unsigned long load;
6408 
6409 	if (cfs_rq->last_h_load_update == now)
6410 		return;
6411 
6412 	cfs_rq->h_load_next = NULL;
6413 	for_each_sched_entity(se) {
6414 		cfs_rq = cfs_rq_of(se);
6415 		cfs_rq->h_load_next = se;
6416 		if (cfs_rq->last_h_load_update == now)
6417 			break;
6418 	}
6419 
6420 	if (!se) {
6421 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6422 		cfs_rq->last_h_load_update = now;
6423 	}
6424 
6425 	while ((se = cfs_rq->h_load_next) != NULL) {
6426 		load = cfs_rq->h_load;
6427 		load = div64_ul(load * se->avg.load_avg,
6428 			cfs_rq_load_avg(cfs_rq) + 1);
6429 		cfs_rq = group_cfs_rq(se);
6430 		cfs_rq->h_load = load;
6431 		cfs_rq->last_h_load_update = now;
6432 	}
6433 }
6434 
6435 static unsigned long task_h_load(struct task_struct *p)
6436 {
6437 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6438 
6439 	update_cfs_rq_h_load(cfs_rq);
6440 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6441 			cfs_rq_load_avg(cfs_rq) + 1);
6442 }
6443 #else
6444 static inline void update_blocked_averages(int cpu)
6445 {
6446 	struct rq *rq = cpu_rq(cpu);
6447 	struct cfs_rq *cfs_rq = &rq->cfs;
6448 	unsigned long flags;
6449 
6450 	raw_spin_lock_irqsave(&rq->lock, flags);
6451 	update_rq_clock(rq);
6452 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6453 	raw_spin_unlock_irqrestore(&rq->lock, flags);
6454 }
6455 
6456 static unsigned long task_h_load(struct task_struct *p)
6457 {
6458 	return p->se.avg.load_avg;
6459 }
6460 #endif
6461 
6462 /********** Helpers for find_busiest_group ************************/
6463 
6464 enum group_type {
6465 	group_other = 0,
6466 	group_imbalanced,
6467 	group_overloaded,
6468 };
6469 
6470 /*
6471  * sg_lb_stats - stats of a sched_group required for load_balancing
6472  */
6473 struct sg_lb_stats {
6474 	unsigned long avg_load; /*Avg load across the CPUs of the group */
6475 	unsigned long group_load; /* Total load over the CPUs of the group */
6476 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6477 	unsigned long load_per_task;
6478 	unsigned long group_capacity;
6479 	unsigned long group_util; /* Total utilization of the group */
6480 	unsigned int sum_nr_running; /* Nr tasks running in the group */
6481 	unsigned int idle_cpus;
6482 	unsigned int group_weight;
6483 	enum group_type group_type;
6484 	int group_no_capacity;
6485 #ifdef CONFIG_NUMA_BALANCING
6486 	unsigned int nr_numa_running;
6487 	unsigned int nr_preferred_running;
6488 #endif
6489 };
6490 
6491 /*
6492  * sd_lb_stats - Structure to store the statistics of a sched_domain
6493  *		 during load balancing.
6494  */
6495 struct sd_lb_stats {
6496 	struct sched_group *busiest;	/* Busiest group in this sd */
6497 	struct sched_group *local;	/* Local group in this sd */
6498 	unsigned long total_load;	/* Total load of all groups in sd */
6499 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
6500 	unsigned long avg_load;	/* Average load across all groups in sd */
6501 
6502 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6503 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
6504 };
6505 
6506 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6507 {
6508 	/*
6509 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6510 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6511 	 * We must however clear busiest_stat::avg_load because
6512 	 * update_sd_pick_busiest() reads this before assignment.
6513 	 */
6514 	*sds = (struct sd_lb_stats){
6515 		.busiest = NULL,
6516 		.local = NULL,
6517 		.total_load = 0UL,
6518 		.total_capacity = 0UL,
6519 		.busiest_stat = {
6520 			.avg_load = 0UL,
6521 			.sum_nr_running = 0,
6522 			.group_type = group_other,
6523 		},
6524 	};
6525 }
6526 
6527 /**
6528  * get_sd_load_idx - Obtain the load index for a given sched domain.
6529  * @sd: The sched_domain whose load_idx is to be obtained.
6530  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6531  *
6532  * Return: The load index.
6533  */
6534 static inline int get_sd_load_idx(struct sched_domain *sd,
6535 					enum cpu_idle_type idle)
6536 {
6537 	int load_idx;
6538 
6539 	switch (idle) {
6540 	case CPU_NOT_IDLE:
6541 		load_idx = sd->busy_idx;
6542 		break;
6543 
6544 	case CPU_NEWLY_IDLE:
6545 		load_idx = sd->newidle_idx;
6546 		break;
6547 	default:
6548 		load_idx = sd->idle_idx;
6549 		break;
6550 	}
6551 
6552 	return load_idx;
6553 }
6554 
6555 static unsigned long scale_rt_capacity(int cpu)
6556 {
6557 	struct rq *rq = cpu_rq(cpu);
6558 	u64 total, used, age_stamp, avg;
6559 	s64 delta;
6560 
6561 	/*
6562 	 * Since we're reading these variables without serialization make sure
6563 	 * we read them once before doing sanity checks on them.
6564 	 */
6565 	age_stamp = READ_ONCE(rq->age_stamp);
6566 	avg = READ_ONCE(rq->rt_avg);
6567 	delta = __rq_clock_broken(rq) - age_stamp;
6568 
6569 	if (unlikely(delta < 0))
6570 		delta = 0;
6571 
6572 	total = sched_avg_period() + delta;
6573 
6574 	used = div_u64(avg, total);
6575 
6576 	if (likely(used < SCHED_CAPACITY_SCALE))
6577 		return SCHED_CAPACITY_SCALE - used;
6578 
6579 	return 1;
6580 }
6581 
6582 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6583 {
6584 	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6585 	struct sched_group *sdg = sd->groups;
6586 
6587 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6588 
6589 	capacity *= scale_rt_capacity(cpu);
6590 	capacity >>= SCHED_CAPACITY_SHIFT;
6591 
6592 	if (!capacity)
6593 		capacity = 1;
6594 
6595 	cpu_rq(cpu)->cpu_capacity = capacity;
6596 	sdg->sgc->capacity = capacity;
6597 }
6598 
6599 void update_group_capacity(struct sched_domain *sd, int cpu)
6600 {
6601 	struct sched_domain *child = sd->child;
6602 	struct sched_group *group, *sdg = sd->groups;
6603 	unsigned long capacity;
6604 	unsigned long interval;
6605 
6606 	interval = msecs_to_jiffies(sd->balance_interval);
6607 	interval = clamp(interval, 1UL, max_load_balance_interval);
6608 	sdg->sgc->next_update = jiffies + interval;
6609 
6610 	if (!child) {
6611 		update_cpu_capacity(sd, cpu);
6612 		return;
6613 	}
6614 
6615 	capacity = 0;
6616 
6617 	if (child->flags & SD_OVERLAP) {
6618 		/*
6619 		 * SD_OVERLAP domains cannot assume that child groups
6620 		 * span the current group.
6621 		 */
6622 
6623 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6624 			struct sched_group_capacity *sgc;
6625 			struct rq *rq = cpu_rq(cpu);
6626 
6627 			/*
6628 			 * build_sched_domains() -> init_sched_groups_capacity()
6629 			 * gets here before we've attached the domains to the
6630 			 * runqueues.
6631 			 *
6632 			 * Use capacity_of(), which is set irrespective of domains
6633 			 * in update_cpu_capacity().
6634 			 *
6635 			 * This avoids capacity from being 0 and
6636 			 * causing divide-by-zero issues on boot.
6637 			 */
6638 			if (unlikely(!rq->sd)) {
6639 				capacity += capacity_of(cpu);
6640 				continue;
6641 			}
6642 
6643 			sgc = rq->sd->groups->sgc;
6644 			capacity += sgc->capacity;
6645 		}
6646 	} else  {
6647 		/*
6648 		 * !SD_OVERLAP domains can assume that child groups
6649 		 * span the current group.
6650 		 */
6651 
6652 		group = child->groups;
6653 		do {
6654 			capacity += group->sgc->capacity;
6655 			group = group->next;
6656 		} while (group != child->groups);
6657 	}
6658 
6659 	sdg->sgc->capacity = capacity;
6660 }
6661 
6662 /*
6663  * Check whether the capacity of the rq has been noticeably reduced by side
6664  * activity. The imbalance_pct is used for the threshold.
6665  * Return true is the capacity is reduced
6666  */
6667 static inline int
6668 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6669 {
6670 	return ((rq->cpu_capacity * sd->imbalance_pct) <
6671 				(rq->cpu_capacity_orig * 100));
6672 }
6673 
6674 /*
6675  * Group imbalance indicates (and tries to solve) the problem where balancing
6676  * groups is inadequate due to tsk_cpus_allowed() constraints.
6677  *
6678  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6679  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6680  * Something like:
6681  *
6682  * 	{ 0 1 2 3 } { 4 5 6 7 }
6683  * 	        *     * * *
6684  *
6685  * If we were to balance group-wise we'd place two tasks in the first group and
6686  * two tasks in the second group. Clearly this is undesired as it will overload
6687  * cpu 3 and leave one of the cpus in the second group unused.
6688  *
6689  * The current solution to this issue is detecting the skew in the first group
6690  * by noticing the lower domain failed to reach balance and had difficulty
6691  * moving tasks due to affinity constraints.
6692  *
6693  * When this is so detected; this group becomes a candidate for busiest; see
6694  * update_sd_pick_busiest(). And calculate_imbalance() and
6695  * find_busiest_group() avoid some of the usual balance conditions to allow it
6696  * to create an effective group imbalance.
6697  *
6698  * This is a somewhat tricky proposition since the next run might not find the
6699  * group imbalance and decide the groups need to be balanced again. A most
6700  * subtle and fragile situation.
6701  */
6702 
6703 static inline int sg_imbalanced(struct sched_group *group)
6704 {
6705 	return group->sgc->imbalance;
6706 }
6707 
6708 /*
6709  * group_has_capacity returns true if the group has spare capacity that could
6710  * be used by some tasks.
6711  * We consider that a group has spare capacity if the  * number of task is
6712  * smaller than the number of CPUs or if the utilization is lower than the
6713  * available capacity for CFS tasks.
6714  * For the latter, we use a threshold to stabilize the state, to take into
6715  * account the variance of the tasks' load and to return true if the available
6716  * capacity in meaningful for the load balancer.
6717  * As an example, an available capacity of 1% can appear but it doesn't make
6718  * any benefit for the load balance.
6719  */
6720 static inline bool
6721 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6722 {
6723 	if (sgs->sum_nr_running < sgs->group_weight)
6724 		return true;
6725 
6726 	if ((sgs->group_capacity * 100) >
6727 			(sgs->group_util * env->sd->imbalance_pct))
6728 		return true;
6729 
6730 	return false;
6731 }
6732 
6733 /*
6734  *  group_is_overloaded returns true if the group has more tasks than it can
6735  *  handle.
6736  *  group_is_overloaded is not equals to !group_has_capacity because a group
6737  *  with the exact right number of tasks, has no more spare capacity but is not
6738  *  overloaded so both group_has_capacity and group_is_overloaded return
6739  *  false.
6740  */
6741 static inline bool
6742 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6743 {
6744 	if (sgs->sum_nr_running <= sgs->group_weight)
6745 		return false;
6746 
6747 	if ((sgs->group_capacity * 100) <
6748 			(sgs->group_util * env->sd->imbalance_pct))
6749 		return true;
6750 
6751 	return false;
6752 }
6753 
6754 static inline enum
6755 group_type group_classify(struct sched_group *group,
6756 			  struct sg_lb_stats *sgs)
6757 {
6758 	if (sgs->group_no_capacity)
6759 		return group_overloaded;
6760 
6761 	if (sg_imbalanced(group))
6762 		return group_imbalanced;
6763 
6764 	return group_other;
6765 }
6766 
6767 /**
6768  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6769  * @env: The load balancing environment.
6770  * @group: sched_group whose statistics are to be updated.
6771  * @load_idx: Load index of sched_domain of this_cpu for load calc.
6772  * @local_group: Does group contain this_cpu.
6773  * @sgs: variable to hold the statistics for this group.
6774  * @overload: Indicate more than one runnable task for any CPU.
6775  */
6776 static inline void update_sg_lb_stats(struct lb_env *env,
6777 			struct sched_group *group, int load_idx,
6778 			int local_group, struct sg_lb_stats *sgs,
6779 			bool *overload)
6780 {
6781 	unsigned long load;
6782 	int i, nr_running;
6783 
6784 	memset(sgs, 0, sizeof(*sgs));
6785 
6786 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6787 		struct rq *rq = cpu_rq(i);
6788 
6789 		/* Bias balancing toward cpus of our domain */
6790 		if (local_group)
6791 			load = target_load(i, load_idx);
6792 		else
6793 			load = source_load(i, load_idx);
6794 
6795 		sgs->group_load += load;
6796 		sgs->group_util += cpu_util(i);
6797 		sgs->sum_nr_running += rq->cfs.h_nr_running;
6798 
6799 		nr_running = rq->nr_running;
6800 		if (nr_running > 1)
6801 			*overload = true;
6802 
6803 #ifdef CONFIG_NUMA_BALANCING
6804 		sgs->nr_numa_running += rq->nr_numa_running;
6805 		sgs->nr_preferred_running += rq->nr_preferred_running;
6806 #endif
6807 		sgs->sum_weighted_load += weighted_cpuload(i);
6808 		/*
6809 		 * No need to call idle_cpu() if nr_running is not 0
6810 		 */
6811 		if (!nr_running && idle_cpu(i))
6812 			sgs->idle_cpus++;
6813 	}
6814 
6815 	/* Adjust by relative CPU capacity of the group */
6816 	sgs->group_capacity = group->sgc->capacity;
6817 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6818 
6819 	if (sgs->sum_nr_running)
6820 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6821 
6822 	sgs->group_weight = group->group_weight;
6823 
6824 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6825 	sgs->group_type = group_classify(group, sgs);
6826 }
6827 
6828 /**
6829  * update_sd_pick_busiest - return 1 on busiest group
6830  * @env: The load balancing environment.
6831  * @sds: sched_domain statistics
6832  * @sg: sched_group candidate to be checked for being the busiest
6833  * @sgs: sched_group statistics
6834  *
6835  * Determine if @sg is a busier group than the previously selected
6836  * busiest group.
6837  *
6838  * Return: %true if @sg is a busier group than the previously selected
6839  * busiest group. %false otherwise.
6840  */
6841 static bool update_sd_pick_busiest(struct lb_env *env,
6842 				   struct sd_lb_stats *sds,
6843 				   struct sched_group *sg,
6844 				   struct sg_lb_stats *sgs)
6845 {
6846 	struct sg_lb_stats *busiest = &sds->busiest_stat;
6847 
6848 	if (sgs->group_type > busiest->group_type)
6849 		return true;
6850 
6851 	if (sgs->group_type < busiest->group_type)
6852 		return false;
6853 
6854 	if (sgs->avg_load <= busiest->avg_load)
6855 		return false;
6856 
6857 	/* This is the busiest node in its class. */
6858 	if (!(env->sd->flags & SD_ASYM_PACKING))
6859 		return true;
6860 
6861 	/* No ASYM_PACKING if target cpu is already busy */
6862 	if (env->idle == CPU_NOT_IDLE)
6863 		return true;
6864 	/*
6865 	 * ASYM_PACKING needs to move all the work to the lowest
6866 	 * numbered CPUs in the group, therefore mark all groups
6867 	 * higher than ourself as busy.
6868 	 */
6869 	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6870 		if (!sds->busiest)
6871 			return true;
6872 
6873 		/* Prefer to move from highest possible cpu's work */
6874 		if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
6875 			return true;
6876 	}
6877 
6878 	return false;
6879 }
6880 
6881 #ifdef CONFIG_NUMA_BALANCING
6882 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6883 {
6884 	if (sgs->sum_nr_running > sgs->nr_numa_running)
6885 		return regular;
6886 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
6887 		return remote;
6888 	return all;
6889 }
6890 
6891 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6892 {
6893 	if (rq->nr_running > rq->nr_numa_running)
6894 		return regular;
6895 	if (rq->nr_running > rq->nr_preferred_running)
6896 		return remote;
6897 	return all;
6898 }
6899 #else
6900 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6901 {
6902 	return all;
6903 }
6904 
6905 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6906 {
6907 	return regular;
6908 }
6909 #endif /* CONFIG_NUMA_BALANCING */
6910 
6911 /**
6912  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6913  * @env: The load balancing environment.
6914  * @sds: variable to hold the statistics for this sched_domain.
6915  */
6916 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6917 {
6918 	struct sched_domain *child = env->sd->child;
6919 	struct sched_group *sg = env->sd->groups;
6920 	struct sg_lb_stats tmp_sgs;
6921 	int load_idx, prefer_sibling = 0;
6922 	bool overload = false;
6923 
6924 	if (child && child->flags & SD_PREFER_SIBLING)
6925 		prefer_sibling = 1;
6926 
6927 	load_idx = get_sd_load_idx(env->sd, env->idle);
6928 
6929 	do {
6930 		struct sg_lb_stats *sgs = &tmp_sgs;
6931 		int local_group;
6932 
6933 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6934 		if (local_group) {
6935 			sds->local = sg;
6936 			sgs = &sds->local_stat;
6937 
6938 			if (env->idle != CPU_NEWLY_IDLE ||
6939 			    time_after_eq(jiffies, sg->sgc->next_update))
6940 				update_group_capacity(env->sd, env->dst_cpu);
6941 		}
6942 
6943 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6944 						&overload);
6945 
6946 		if (local_group)
6947 			goto next_group;
6948 
6949 		/*
6950 		 * In case the child domain prefers tasks go to siblings
6951 		 * first, lower the sg capacity so that we'll try
6952 		 * and move all the excess tasks away. We lower the capacity
6953 		 * of a group only if the local group has the capacity to fit
6954 		 * these excess tasks. The extra check prevents the case where
6955 		 * you always pull from the heaviest group when it is already
6956 		 * under-utilized (possible with a large weight task outweighs
6957 		 * the tasks on the system).
6958 		 */
6959 		if (prefer_sibling && sds->local &&
6960 		    group_has_capacity(env, &sds->local_stat) &&
6961 		    (sgs->sum_nr_running > 1)) {
6962 			sgs->group_no_capacity = 1;
6963 			sgs->group_type = group_classify(sg, sgs);
6964 		}
6965 
6966 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6967 			sds->busiest = sg;
6968 			sds->busiest_stat = *sgs;
6969 		}
6970 
6971 next_group:
6972 		/* Now, start updating sd_lb_stats */
6973 		sds->total_load += sgs->group_load;
6974 		sds->total_capacity += sgs->group_capacity;
6975 
6976 		sg = sg->next;
6977 	} while (sg != env->sd->groups);
6978 
6979 	if (env->sd->flags & SD_NUMA)
6980 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6981 
6982 	if (!env->sd->parent) {
6983 		/* update overload indicator if we are at root domain */
6984 		if (env->dst_rq->rd->overload != overload)
6985 			env->dst_rq->rd->overload = overload;
6986 	}
6987 
6988 }
6989 
6990 /**
6991  * check_asym_packing - Check to see if the group is packed into the
6992  *			sched doman.
6993  *
6994  * This is primarily intended to used at the sibling level.  Some
6995  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6996  * case of POWER7, it can move to lower SMT modes only when higher
6997  * threads are idle.  When in lower SMT modes, the threads will
6998  * perform better since they share less core resources.  Hence when we
6999  * have idle threads, we want them to be the higher ones.
7000  *
7001  * This packing function is run on idle threads.  It checks to see if
7002  * the busiest CPU in this domain (core in the P7 case) has a higher
7003  * CPU number than the packing function is being run on.  Here we are
7004  * assuming lower CPU number will be equivalent to lower a SMT thread
7005  * number.
7006  *
7007  * Return: 1 when packing is required and a task should be moved to
7008  * this CPU.  The amount of the imbalance is returned in *imbalance.
7009  *
7010  * @env: The load balancing environment.
7011  * @sds: Statistics of the sched_domain which is to be packed
7012  */
7013 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7014 {
7015 	int busiest_cpu;
7016 
7017 	if (!(env->sd->flags & SD_ASYM_PACKING))
7018 		return 0;
7019 
7020 	if (env->idle == CPU_NOT_IDLE)
7021 		return 0;
7022 
7023 	if (!sds->busiest)
7024 		return 0;
7025 
7026 	busiest_cpu = group_first_cpu(sds->busiest);
7027 	if (env->dst_cpu > busiest_cpu)
7028 		return 0;
7029 
7030 	env->imbalance = DIV_ROUND_CLOSEST(
7031 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7032 		SCHED_CAPACITY_SCALE);
7033 
7034 	return 1;
7035 }
7036 
7037 /**
7038  * fix_small_imbalance - Calculate the minor imbalance that exists
7039  *			amongst the groups of a sched_domain, during
7040  *			load balancing.
7041  * @env: The load balancing environment.
7042  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7043  */
7044 static inline
7045 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7046 {
7047 	unsigned long tmp, capa_now = 0, capa_move = 0;
7048 	unsigned int imbn = 2;
7049 	unsigned long scaled_busy_load_per_task;
7050 	struct sg_lb_stats *local, *busiest;
7051 
7052 	local = &sds->local_stat;
7053 	busiest = &sds->busiest_stat;
7054 
7055 	if (!local->sum_nr_running)
7056 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7057 	else if (busiest->load_per_task > local->load_per_task)
7058 		imbn = 1;
7059 
7060 	scaled_busy_load_per_task =
7061 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7062 		busiest->group_capacity;
7063 
7064 	if (busiest->avg_load + scaled_busy_load_per_task >=
7065 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
7066 		env->imbalance = busiest->load_per_task;
7067 		return;
7068 	}
7069 
7070 	/*
7071 	 * OK, we don't have enough imbalance to justify moving tasks,
7072 	 * however we may be able to increase total CPU capacity used by
7073 	 * moving them.
7074 	 */
7075 
7076 	capa_now += busiest->group_capacity *
7077 			min(busiest->load_per_task, busiest->avg_load);
7078 	capa_now += local->group_capacity *
7079 			min(local->load_per_task, local->avg_load);
7080 	capa_now /= SCHED_CAPACITY_SCALE;
7081 
7082 	/* Amount of load we'd subtract */
7083 	if (busiest->avg_load > scaled_busy_load_per_task) {
7084 		capa_move += busiest->group_capacity *
7085 			    min(busiest->load_per_task,
7086 				busiest->avg_load - scaled_busy_load_per_task);
7087 	}
7088 
7089 	/* Amount of load we'd add */
7090 	if (busiest->avg_load * busiest->group_capacity <
7091 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7092 		tmp = (busiest->avg_load * busiest->group_capacity) /
7093 		      local->group_capacity;
7094 	} else {
7095 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7096 		      local->group_capacity;
7097 	}
7098 	capa_move += local->group_capacity *
7099 		    min(local->load_per_task, local->avg_load + tmp);
7100 	capa_move /= SCHED_CAPACITY_SCALE;
7101 
7102 	/* Move if we gain throughput */
7103 	if (capa_move > capa_now)
7104 		env->imbalance = busiest->load_per_task;
7105 }
7106 
7107 /**
7108  * calculate_imbalance - Calculate the amount of imbalance present within the
7109  *			 groups of a given sched_domain during load balance.
7110  * @env: load balance environment
7111  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7112  */
7113 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7114 {
7115 	unsigned long max_pull, load_above_capacity = ~0UL;
7116 	struct sg_lb_stats *local, *busiest;
7117 
7118 	local = &sds->local_stat;
7119 	busiest = &sds->busiest_stat;
7120 
7121 	if (busiest->group_type == group_imbalanced) {
7122 		/*
7123 		 * In the group_imb case we cannot rely on group-wide averages
7124 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
7125 		 */
7126 		busiest->load_per_task =
7127 			min(busiest->load_per_task, sds->avg_load);
7128 	}
7129 
7130 	/*
7131 	 * Avg load of busiest sg can be less and avg load of local sg can
7132 	 * be greater than avg load across all sgs of sd because avg load
7133 	 * factors in sg capacity and sgs with smaller group_type are
7134 	 * skipped when updating the busiest sg:
7135 	 */
7136 	if (busiest->avg_load <= sds->avg_load ||
7137 	    local->avg_load >= sds->avg_load) {
7138 		env->imbalance = 0;
7139 		return fix_small_imbalance(env, sds);
7140 	}
7141 
7142 	/*
7143 	 * If there aren't any idle cpus, avoid creating some.
7144 	 */
7145 	if (busiest->group_type == group_overloaded &&
7146 	    local->group_type   == group_overloaded) {
7147 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7148 		if (load_above_capacity > busiest->group_capacity) {
7149 			load_above_capacity -= busiest->group_capacity;
7150 			load_above_capacity *= NICE_0_LOAD;
7151 			load_above_capacity /= busiest->group_capacity;
7152 		} else
7153 			load_above_capacity = ~0UL;
7154 	}
7155 
7156 	/*
7157 	 * We're trying to get all the cpus to the average_load, so we don't
7158 	 * want to push ourselves above the average load, nor do we wish to
7159 	 * reduce the max loaded cpu below the average load. At the same time,
7160 	 * we also don't want to reduce the group load below the group
7161 	 * capacity. Thus we look for the minimum possible imbalance.
7162 	 */
7163 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7164 
7165 	/* How much load to actually move to equalise the imbalance */
7166 	env->imbalance = min(
7167 		max_pull * busiest->group_capacity,
7168 		(sds->avg_load - local->avg_load) * local->group_capacity
7169 	) / SCHED_CAPACITY_SCALE;
7170 
7171 	/*
7172 	 * if *imbalance is less than the average load per runnable task
7173 	 * there is no guarantee that any tasks will be moved so we'll have
7174 	 * a think about bumping its value to force at least one task to be
7175 	 * moved
7176 	 */
7177 	if (env->imbalance < busiest->load_per_task)
7178 		return fix_small_imbalance(env, sds);
7179 }
7180 
7181 /******* find_busiest_group() helpers end here *********************/
7182 
7183 /**
7184  * find_busiest_group - Returns the busiest group within the sched_domain
7185  * if there is an imbalance.
7186  *
7187  * Also calculates the amount of weighted load which should be moved
7188  * to restore balance.
7189  *
7190  * @env: The load balancing environment.
7191  *
7192  * Return:	- The busiest group if imbalance exists.
7193  */
7194 static struct sched_group *find_busiest_group(struct lb_env *env)
7195 {
7196 	struct sg_lb_stats *local, *busiest;
7197 	struct sd_lb_stats sds;
7198 
7199 	init_sd_lb_stats(&sds);
7200 
7201 	/*
7202 	 * Compute the various statistics relavent for load balancing at
7203 	 * this level.
7204 	 */
7205 	update_sd_lb_stats(env, &sds);
7206 	local = &sds.local_stat;
7207 	busiest = &sds.busiest_stat;
7208 
7209 	/* ASYM feature bypasses nice load balance check */
7210 	if (check_asym_packing(env, &sds))
7211 		return sds.busiest;
7212 
7213 	/* There is no busy sibling group to pull tasks from */
7214 	if (!sds.busiest || busiest->sum_nr_running == 0)
7215 		goto out_balanced;
7216 
7217 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7218 						/ sds.total_capacity;
7219 
7220 	/*
7221 	 * If the busiest group is imbalanced the below checks don't
7222 	 * work because they assume all things are equal, which typically
7223 	 * isn't true due to cpus_allowed constraints and the like.
7224 	 */
7225 	if (busiest->group_type == group_imbalanced)
7226 		goto force_balance;
7227 
7228 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7229 	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7230 	    busiest->group_no_capacity)
7231 		goto force_balance;
7232 
7233 	/*
7234 	 * If the local group is busier than the selected busiest group
7235 	 * don't try and pull any tasks.
7236 	 */
7237 	if (local->avg_load >= busiest->avg_load)
7238 		goto out_balanced;
7239 
7240 	/*
7241 	 * Don't pull any tasks if this group is already above the domain
7242 	 * average load.
7243 	 */
7244 	if (local->avg_load >= sds.avg_load)
7245 		goto out_balanced;
7246 
7247 	if (env->idle == CPU_IDLE) {
7248 		/*
7249 		 * This cpu is idle. If the busiest group is not overloaded
7250 		 * and there is no imbalance between this and busiest group
7251 		 * wrt idle cpus, it is balanced. The imbalance becomes
7252 		 * significant if the diff is greater than 1 otherwise we
7253 		 * might end up to just move the imbalance on another group
7254 		 */
7255 		if ((busiest->group_type != group_overloaded) &&
7256 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7257 			goto out_balanced;
7258 	} else {
7259 		/*
7260 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7261 		 * imbalance_pct to be conservative.
7262 		 */
7263 		if (100 * busiest->avg_load <=
7264 				env->sd->imbalance_pct * local->avg_load)
7265 			goto out_balanced;
7266 	}
7267 
7268 force_balance:
7269 	/* Looks like there is an imbalance. Compute it */
7270 	calculate_imbalance(env, &sds);
7271 	return sds.busiest;
7272 
7273 out_balanced:
7274 	env->imbalance = 0;
7275 	return NULL;
7276 }
7277 
7278 /*
7279  * find_busiest_queue - find the busiest runqueue among the cpus in group.
7280  */
7281 static struct rq *find_busiest_queue(struct lb_env *env,
7282 				     struct sched_group *group)
7283 {
7284 	struct rq *busiest = NULL, *rq;
7285 	unsigned long busiest_load = 0, busiest_capacity = 1;
7286 	int i;
7287 
7288 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7289 		unsigned long capacity, wl;
7290 		enum fbq_type rt;
7291 
7292 		rq = cpu_rq(i);
7293 		rt = fbq_classify_rq(rq);
7294 
7295 		/*
7296 		 * We classify groups/runqueues into three groups:
7297 		 *  - regular: there are !numa tasks
7298 		 *  - remote:  there are numa tasks that run on the 'wrong' node
7299 		 *  - all:     there is no distinction
7300 		 *
7301 		 * In order to avoid migrating ideally placed numa tasks,
7302 		 * ignore those when there's better options.
7303 		 *
7304 		 * If we ignore the actual busiest queue to migrate another
7305 		 * task, the next balance pass can still reduce the busiest
7306 		 * queue by moving tasks around inside the node.
7307 		 *
7308 		 * If we cannot move enough load due to this classification
7309 		 * the next pass will adjust the group classification and
7310 		 * allow migration of more tasks.
7311 		 *
7312 		 * Both cases only affect the total convergence complexity.
7313 		 */
7314 		if (rt > env->fbq_type)
7315 			continue;
7316 
7317 		capacity = capacity_of(i);
7318 
7319 		wl = weighted_cpuload(i);
7320 
7321 		/*
7322 		 * When comparing with imbalance, use weighted_cpuload()
7323 		 * which is not scaled with the cpu capacity.
7324 		 */
7325 
7326 		if (rq->nr_running == 1 && wl > env->imbalance &&
7327 		    !check_cpu_capacity(rq, env->sd))
7328 			continue;
7329 
7330 		/*
7331 		 * For the load comparisons with the other cpu's, consider
7332 		 * the weighted_cpuload() scaled with the cpu capacity, so
7333 		 * that the load can be moved away from the cpu that is
7334 		 * potentially running at a lower capacity.
7335 		 *
7336 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7337 		 * multiplication to rid ourselves of the division works out
7338 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
7339 		 * our previous maximum.
7340 		 */
7341 		if (wl * busiest_capacity > busiest_load * capacity) {
7342 			busiest_load = wl;
7343 			busiest_capacity = capacity;
7344 			busiest = rq;
7345 		}
7346 	}
7347 
7348 	return busiest;
7349 }
7350 
7351 /*
7352  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7353  * so long as it is large enough.
7354  */
7355 #define MAX_PINNED_INTERVAL	512
7356 
7357 /* Working cpumask for load_balance and load_balance_newidle. */
7358 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7359 
7360 static int need_active_balance(struct lb_env *env)
7361 {
7362 	struct sched_domain *sd = env->sd;
7363 
7364 	if (env->idle == CPU_NEWLY_IDLE) {
7365 
7366 		/*
7367 		 * ASYM_PACKING needs to force migrate tasks from busy but
7368 		 * higher numbered CPUs in order to pack all tasks in the
7369 		 * lowest numbered CPUs.
7370 		 */
7371 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7372 			return 1;
7373 	}
7374 
7375 	/*
7376 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7377 	 * It's worth migrating the task if the src_cpu's capacity is reduced
7378 	 * because of other sched_class or IRQs if more capacity stays
7379 	 * available on dst_cpu.
7380 	 */
7381 	if ((env->idle != CPU_NOT_IDLE) &&
7382 	    (env->src_rq->cfs.h_nr_running == 1)) {
7383 		if ((check_cpu_capacity(env->src_rq, sd)) &&
7384 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7385 			return 1;
7386 	}
7387 
7388 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7389 }
7390 
7391 static int active_load_balance_cpu_stop(void *data);
7392 
7393 static int should_we_balance(struct lb_env *env)
7394 {
7395 	struct sched_group *sg = env->sd->groups;
7396 	struct cpumask *sg_cpus, *sg_mask;
7397 	int cpu, balance_cpu = -1;
7398 
7399 	/*
7400 	 * In the newly idle case, we will allow all the cpu's
7401 	 * to do the newly idle load balance.
7402 	 */
7403 	if (env->idle == CPU_NEWLY_IDLE)
7404 		return 1;
7405 
7406 	sg_cpus = sched_group_cpus(sg);
7407 	sg_mask = sched_group_mask(sg);
7408 	/* Try to find first idle cpu */
7409 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7410 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7411 			continue;
7412 
7413 		balance_cpu = cpu;
7414 		break;
7415 	}
7416 
7417 	if (balance_cpu == -1)
7418 		balance_cpu = group_balance_cpu(sg);
7419 
7420 	/*
7421 	 * First idle cpu or the first cpu(busiest) in this sched group
7422 	 * is eligible for doing load balancing at this and above domains.
7423 	 */
7424 	return balance_cpu == env->dst_cpu;
7425 }
7426 
7427 /*
7428  * Check this_cpu to ensure it is balanced within domain. Attempt to move
7429  * tasks if there is an imbalance.
7430  */
7431 static int load_balance(int this_cpu, struct rq *this_rq,
7432 			struct sched_domain *sd, enum cpu_idle_type idle,
7433 			int *continue_balancing)
7434 {
7435 	int ld_moved, cur_ld_moved, active_balance = 0;
7436 	struct sched_domain *sd_parent = sd->parent;
7437 	struct sched_group *group;
7438 	struct rq *busiest;
7439 	unsigned long flags;
7440 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7441 
7442 	struct lb_env env = {
7443 		.sd		= sd,
7444 		.dst_cpu	= this_cpu,
7445 		.dst_rq		= this_rq,
7446 		.dst_grpmask    = sched_group_cpus(sd->groups),
7447 		.idle		= idle,
7448 		.loop_break	= sched_nr_migrate_break,
7449 		.cpus		= cpus,
7450 		.fbq_type	= all,
7451 		.tasks		= LIST_HEAD_INIT(env.tasks),
7452 	};
7453 
7454 	/*
7455 	 * For NEWLY_IDLE load_balancing, we don't need to consider
7456 	 * other cpus in our group
7457 	 */
7458 	if (idle == CPU_NEWLY_IDLE)
7459 		env.dst_grpmask = NULL;
7460 
7461 	cpumask_copy(cpus, cpu_active_mask);
7462 
7463 	schedstat_inc(sd, lb_count[idle]);
7464 
7465 redo:
7466 	if (!should_we_balance(&env)) {
7467 		*continue_balancing = 0;
7468 		goto out_balanced;
7469 	}
7470 
7471 	group = find_busiest_group(&env);
7472 	if (!group) {
7473 		schedstat_inc(sd, lb_nobusyg[idle]);
7474 		goto out_balanced;
7475 	}
7476 
7477 	busiest = find_busiest_queue(&env, group);
7478 	if (!busiest) {
7479 		schedstat_inc(sd, lb_nobusyq[idle]);
7480 		goto out_balanced;
7481 	}
7482 
7483 	BUG_ON(busiest == env.dst_rq);
7484 
7485 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7486 
7487 	env.src_cpu = busiest->cpu;
7488 	env.src_rq = busiest;
7489 
7490 	ld_moved = 0;
7491 	if (busiest->nr_running > 1) {
7492 		/*
7493 		 * Attempt to move tasks. If find_busiest_group has found
7494 		 * an imbalance but busiest->nr_running <= 1, the group is
7495 		 * still unbalanced. ld_moved simply stays zero, so it is
7496 		 * correctly treated as an imbalance.
7497 		 */
7498 		env.flags |= LBF_ALL_PINNED;
7499 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7500 
7501 more_balance:
7502 		raw_spin_lock_irqsave(&busiest->lock, flags);
7503 
7504 		/*
7505 		 * cur_ld_moved - load moved in current iteration
7506 		 * ld_moved     - cumulative load moved across iterations
7507 		 */
7508 		cur_ld_moved = detach_tasks(&env);
7509 
7510 		/*
7511 		 * We've detached some tasks from busiest_rq. Every
7512 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7513 		 * unlock busiest->lock, and we are able to be sure
7514 		 * that nobody can manipulate the tasks in parallel.
7515 		 * See task_rq_lock() family for the details.
7516 		 */
7517 
7518 		raw_spin_unlock(&busiest->lock);
7519 
7520 		if (cur_ld_moved) {
7521 			attach_tasks(&env);
7522 			ld_moved += cur_ld_moved;
7523 		}
7524 
7525 		local_irq_restore(flags);
7526 
7527 		if (env.flags & LBF_NEED_BREAK) {
7528 			env.flags &= ~LBF_NEED_BREAK;
7529 			goto more_balance;
7530 		}
7531 
7532 		/*
7533 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7534 		 * us and move them to an alternate dst_cpu in our sched_group
7535 		 * where they can run. The upper limit on how many times we
7536 		 * iterate on same src_cpu is dependent on number of cpus in our
7537 		 * sched_group.
7538 		 *
7539 		 * This changes load balance semantics a bit on who can move
7540 		 * load to a given_cpu. In addition to the given_cpu itself
7541 		 * (or a ilb_cpu acting on its behalf where given_cpu is
7542 		 * nohz-idle), we now have balance_cpu in a position to move
7543 		 * load to given_cpu. In rare situations, this may cause
7544 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7545 		 * _independently_ and at _same_ time to move some load to
7546 		 * given_cpu) causing exceess load to be moved to given_cpu.
7547 		 * This however should not happen so much in practice and
7548 		 * moreover subsequent load balance cycles should correct the
7549 		 * excess load moved.
7550 		 */
7551 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7552 
7553 			/* Prevent to re-select dst_cpu via env's cpus */
7554 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
7555 
7556 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7557 			env.dst_cpu	 = env.new_dst_cpu;
7558 			env.flags	&= ~LBF_DST_PINNED;
7559 			env.loop	 = 0;
7560 			env.loop_break	 = sched_nr_migrate_break;
7561 
7562 			/*
7563 			 * Go back to "more_balance" rather than "redo" since we
7564 			 * need to continue with same src_cpu.
7565 			 */
7566 			goto more_balance;
7567 		}
7568 
7569 		/*
7570 		 * We failed to reach balance because of affinity.
7571 		 */
7572 		if (sd_parent) {
7573 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7574 
7575 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7576 				*group_imbalance = 1;
7577 		}
7578 
7579 		/* All tasks on this runqueue were pinned by CPU affinity */
7580 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7581 			cpumask_clear_cpu(cpu_of(busiest), cpus);
7582 			if (!cpumask_empty(cpus)) {
7583 				env.loop = 0;
7584 				env.loop_break = sched_nr_migrate_break;
7585 				goto redo;
7586 			}
7587 			goto out_all_pinned;
7588 		}
7589 	}
7590 
7591 	if (!ld_moved) {
7592 		schedstat_inc(sd, lb_failed[idle]);
7593 		/*
7594 		 * Increment the failure counter only on periodic balance.
7595 		 * We do not want newidle balance, which can be very
7596 		 * frequent, pollute the failure counter causing
7597 		 * excessive cache_hot migrations and active balances.
7598 		 */
7599 		if (idle != CPU_NEWLY_IDLE)
7600 			sd->nr_balance_failed++;
7601 
7602 		if (need_active_balance(&env)) {
7603 			raw_spin_lock_irqsave(&busiest->lock, flags);
7604 
7605 			/* don't kick the active_load_balance_cpu_stop,
7606 			 * if the curr task on busiest cpu can't be
7607 			 * moved to this_cpu
7608 			 */
7609 			if (!cpumask_test_cpu(this_cpu,
7610 					tsk_cpus_allowed(busiest->curr))) {
7611 				raw_spin_unlock_irqrestore(&busiest->lock,
7612 							    flags);
7613 				env.flags |= LBF_ALL_PINNED;
7614 				goto out_one_pinned;
7615 			}
7616 
7617 			/*
7618 			 * ->active_balance synchronizes accesses to
7619 			 * ->active_balance_work.  Once set, it's cleared
7620 			 * only after active load balance is finished.
7621 			 */
7622 			if (!busiest->active_balance) {
7623 				busiest->active_balance = 1;
7624 				busiest->push_cpu = this_cpu;
7625 				active_balance = 1;
7626 			}
7627 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7628 
7629 			if (active_balance) {
7630 				stop_one_cpu_nowait(cpu_of(busiest),
7631 					active_load_balance_cpu_stop, busiest,
7632 					&busiest->active_balance_work);
7633 			}
7634 
7635 			/* We've kicked active balancing, force task migration. */
7636 			sd->nr_balance_failed = sd->cache_nice_tries+1;
7637 		}
7638 	} else
7639 		sd->nr_balance_failed = 0;
7640 
7641 	if (likely(!active_balance)) {
7642 		/* We were unbalanced, so reset the balancing interval */
7643 		sd->balance_interval = sd->min_interval;
7644 	} else {
7645 		/*
7646 		 * If we've begun active balancing, start to back off. This
7647 		 * case may not be covered by the all_pinned logic if there
7648 		 * is only 1 task on the busy runqueue (because we don't call
7649 		 * detach_tasks).
7650 		 */
7651 		if (sd->balance_interval < sd->max_interval)
7652 			sd->balance_interval *= 2;
7653 	}
7654 
7655 	goto out;
7656 
7657 out_balanced:
7658 	/*
7659 	 * We reach balance although we may have faced some affinity
7660 	 * constraints. Clear the imbalance flag if it was set.
7661 	 */
7662 	if (sd_parent) {
7663 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7664 
7665 		if (*group_imbalance)
7666 			*group_imbalance = 0;
7667 	}
7668 
7669 out_all_pinned:
7670 	/*
7671 	 * We reach balance because all tasks are pinned at this level so
7672 	 * we can't migrate them. Let the imbalance flag set so parent level
7673 	 * can try to migrate them.
7674 	 */
7675 	schedstat_inc(sd, lb_balanced[idle]);
7676 
7677 	sd->nr_balance_failed = 0;
7678 
7679 out_one_pinned:
7680 	/* tune up the balancing interval */
7681 	if (((env.flags & LBF_ALL_PINNED) &&
7682 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7683 			(sd->balance_interval < sd->max_interval))
7684 		sd->balance_interval *= 2;
7685 
7686 	ld_moved = 0;
7687 out:
7688 	return ld_moved;
7689 }
7690 
7691 static inline unsigned long
7692 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7693 {
7694 	unsigned long interval = sd->balance_interval;
7695 
7696 	if (cpu_busy)
7697 		interval *= sd->busy_factor;
7698 
7699 	/* scale ms to jiffies */
7700 	interval = msecs_to_jiffies(interval);
7701 	interval = clamp(interval, 1UL, max_load_balance_interval);
7702 
7703 	return interval;
7704 }
7705 
7706 static inline void
7707 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7708 {
7709 	unsigned long interval, next;
7710 
7711 	interval = get_sd_balance_interval(sd, cpu_busy);
7712 	next = sd->last_balance + interval;
7713 
7714 	if (time_after(*next_balance, next))
7715 		*next_balance = next;
7716 }
7717 
7718 /*
7719  * idle_balance is called by schedule() if this_cpu is about to become
7720  * idle. Attempts to pull tasks from other CPUs.
7721  */
7722 static int idle_balance(struct rq *this_rq)
7723 {
7724 	unsigned long next_balance = jiffies + HZ;
7725 	int this_cpu = this_rq->cpu;
7726 	struct sched_domain *sd;
7727 	int pulled_task = 0;
7728 	u64 curr_cost = 0;
7729 
7730 	/*
7731 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
7732 	 * measure the duration of idle_balance() as idle time.
7733 	 */
7734 	this_rq->idle_stamp = rq_clock(this_rq);
7735 
7736 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7737 	    !this_rq->rd->overload) {
7738 		rcu_read_lock();
7739 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
7740 		if (sd)
7741 			update_next_balance(sd, 0, &next_balance);
7742 		rcu_read_unlock();
7743 
7744 		goto out;
7745 	}
7746 
7747 	raw_spin_unlock(&this_rq->lock);
7748 
7749 	update_blocked_averages(this_cpu);
7750 	rcu_read_lock();
7751 	for_each_domain(this_cpu, sd) {
7752 		int continue_balancing = 1;
7753 		u64 t0, domain_cost;
7754 
7755 		if (!(sd->flags & SD_LOAD_BALANCE))
7756 			continue;
7757 
7758 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7759 			update_next_balance(sd, 0, &next_balance);
7760 			break;
7761 		}
7762 
7763 		if (sd->flags & SD_BALANCE_NEWIDLE) {
7764 			t0 = sched_clock_cpu(this_cpu);
7765 
7766 			pulled_task = load_balance(this_cpu, this_rq,
7767 						   sd, CPU_NEWLY_IDLE,
7768 						   &continue_balancing);
7769 
7770 			domain_cost = sched_clock_cpu(this_cpu) - t0;
7771 			if (domain_cost > sd->max_newidle_lb_cost)
7772 				sd->max_newidle_lb_cost = domain_cost;
7773 
7774 			curr_cost += domain_cost;
7775 		}
7776 
7777 		update_next_balance(sd, 0, &next_balance);
7778 
7779 		/*
7780 		 * Stop searching for tasks to pull if there are
7781 		 * now runnable tasks on this rq.
7782 		 */
7783 		if (pulled_task || this_rq->nr_running > 0)
7784 			break;
7785 	}
7786 	rcu_read_unlock();
7787 
7788 	raw_spin_lock(&this_rq->lock);
7789 
7790 	if (curr_cost > this_rq->max_idle_balance_cost)
7791 		this_rq->max_idle_balance_cost = curr_cost;
7792 
7793 	/*
7794 	 * While browsing the domains, we released the rq lock, a task could
7795 	 * have been enqueued in the meantime. Since we're not going idle,
7796 	 * pretend we pulled a task.
7797 	 */
7798 	if (this_rq->cfs.h_nr_running && !pulled_task)
7799 		pulled_task = 1;
7800 
7801 out:
7802 	/* Move the next balance forward */
7803 	if (time_after(this_rq->next_balance, next_balance))
7804 		this_rq->next_balance = next_balance;
7805 
7806 	/* Is there a task of a high priority class? */
7807 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7808 		pulled_task = -1;
7809 
7810 	if (pulled_task)
7811 		this_rq->idle_stamp = 0;
7812 
7813 	return pulled_task;
7814 }
7815 
7816 /*
7817  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7818  * running tasks off the busiest CPU onto idle CPUs. It requires at
7819  * least 1 task to be running on each physical CPU where possible, and
7820  * avoids physical / logical imbalances.
7821  */
7822 static int active_load_balance_cpu_stop(void *data)
7823 {
7824 	struct rq *busiest_rq = data;
7825 	int busiest_cpu = cpu_of(busiest_rq);
7826 	int target_cpu = busiest_rq->push_cpu;
7827 	struct rq *target_rq = cpu_rq(target_cpu);
7828 	struct sched_domain *sd;
7829 	struct task_struct *p = NULL;
7830 
7831 	raw_spin_lock_irq(&busiest_rq->lock);
7832 
7833 	/* make sure the requested cpu hasn't gone down in the meantime */
7834 	if (unlikely(busiest_cpu != smp_processor_id() ||
7835 		     !busiest_rq->active_balance))
7836 		goto out_unlock;
7837 
7838 	/* Is there any task to move? */
7839 	if (busiest_rq->nr_running <= 1)
7840 		goto out_unlock;
7841 
7842 	/*
7843 	 * This condition is "impossible", if it occurs
7844 	 * we need to fix it. Originally reported by
7845 	 * Bjorn Helgaas on a 128-cpu setup.
7846 	 */
7847 	BUG_ON(busiest_rq == target_rq);
7848 
7849 	/* Search for an sd spanning us and the target CPU. */
7850 	rcu_read_lock();
7851 	for_each_domain(target_cpu, sd) {
7852 		if ((sd->flags & SD_LOAD_BALANCE) &&
7853 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7854 				break;
7855 	}
7856 
7857 	if (likely(sd)) {
7858 		struct lb_env env = {
7859 			.sd		= sd,
7860 			.dst_cpu	= target_cpu,
7861 			.dst_rq		= target_rq,
7862 			.src_cpu	= busiest_rq->cpu,
7863 			.src_rq		= busiest_rq,
7864 			.idle		= CPU_IDLE,
7865 		};
7866 
7867 		schedstat_inc(sd, alb_count);
7868 
7869 		p = detach_one_task(&env);
7870 		if (p) {
7871 			schedstat_inc(sd, alb_pushed);
7872 			/* Active balancing done, reset the failure counter. */
7873 			sd->nr_balance_failed = 0;
7874 		} else {
7875 			schedstat_inc(sd, alb_failed);
7876 		}
7877 	}
7878 	rcu_read_unlock();
7879 out_unlock:
7880 	busiest_rq->active_balance = 0;
7881 	raw_spin_unlock(&busiest_rq->lock);
7882 
7883 	if (p)
7884 		attach_one_task(target_rq, p);
7885 
7886 	local_irq_enable();
7887 
7888 	return 0;
7889 }
7890 
7891 static inline int on_null_domain(struct rq *rq)
7892 {
7893 	return unlikely(!rcu_dereference_sched(rq->sd));
7894 }
7895 
7896 #ifdef CONFIG_NO_HZ_COMMON
7897 /*
7898  * idle load balancing details
7899  * - When one of the busy CPUs notice that there may be an idle rebalancing
7900  *   needed, they will kick the idle load balancer, which then does idle
7901  *   load balancing for all the idle CPUs.
7902  */
7903 static struct {
7904 	cpumask_var_t idle_cpus_mask;
7905 	atomic_t nr_cpus;
7906 	unsigned long next_balance;     /* in jiffy units */
7907 } nohz ____cacheline_aligned;
7908 
7909 static inline int find_new_ilb(void)
7910 {
7911 	int ilb = cpumask_first(nohz.idle_cpus_mask);
7912 
7913 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
7914 		return ilb;
7915 
7916 	return nr_cpu_ids;
7917 }
7918 
7919 /*
7920  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7921  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7922  * CPU (if there is one).
7923  */
7924 static void nohz_balancer_kick(void)
7925 {
7926 	int ilb_cpu;
7927 
7928 	nohz.next_balance++;
7929 
7930 	ilb_cpu = find_new_ilb();
7931 
7932 	if (ilb_cpu >= nr_cpu_ids)
7933 		return;
7934 
7935 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7936 		return;
7937 	/*
7938 	 * Use smp_send_reschedule() instead of resched_cpu().
7939 	 * This way we generate a sched IPI on the target cpu which
7940 	 * is idle. And the softirq performing nohz idle load balance
7941 	 * will be run before returning from the IPI.
7942 	 */
7943 	smp_send_reschedule(ilb_cpu);
7944 	return;
7945 }
7946 
7947 void nohz_balance_exit_idle(unsigned int cpu)
7948 {
7949 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7950 		/*
7951 		 * Completely isolated CPUs don't ever set, so we must test.
7952 		 */
7953 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7954 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7955 			atomic_dec(&nohz.nr_cpus);
7956 		}
7957 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7958 	}
7959 }
7960 
7961 static inline void set_cpu_sd_state_busy(void)
7962 {
7963 	struct sched_domain *sd;
7964 	int cpu = smp_processor_id();
7965 
7966 	rcu_read_lock();
7967 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7968 
7969 	if (!sd || !sd->nohz_idle)
7970 		goto unlock;
7971 	sd->nohz_idle = 0;
7972 
7973 	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7974 unlock:
7975 	rcu_read_unlock();
7976 }
7977 
7978 void set_cpu_sd_state_idle(void)
7979 {
7980 	struct sched_domain *sd;
7981 	int cpu = smp_processor_id();
7982 
7983 	rcu_read_lock();
7984 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7985 
7986 	if (!sd || sd->nohz_idle)
7987 		goto unlock;
7988 	sd->nohz_idle = 1;
7989 
7990 	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7991 unlock:
7992 	rcu_read_unlock();
7993 }
7994 
7995 /*
7996  * This routine will record that the cpu is going idle with tick stopped.
7997  * This info will be used in performing idle load balancing in the future.
7998  */
7999 void nohz_balance_enter_idle(int cpu)
8000 {
8001 	/*
8002 	 * If this cpu is going down, then nothing needs to be done.
8003 	 */
8004 	if (!cpu_active(cpu))
8005 		return;
8006 
8007 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8008 		return;
8009 
8010 	/*
8011 	 * If we're a completely isolated CPU, we don't play.
8012 	 */
8013 	if (on_null_domain(cpu_rq(cpu)))
8014 		return;
8015 
8016 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8017 	atomic_inc(&nohz.nr_cpus);
8018 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8019 }
8020 #endif
8021 
8022 static DEFINE_SPINLOCK(balancing);
8023 
8024 /*
8025  * Scale the max load_balance interval with the number of CPUs in the system.
8026  * This trades load-balance latency on larger machines for less cross talk.
8027  */
8028 void update_max_interval(void)
8029 {
8030 	max_load_balance_interval = HZ*num_online_cpus()/10;
8031 }
8032 
8033 /*
8034  * It checks each scheduling domain to see if it is due to be balanced,
8035  * and initiates a balancing operation if so.
8036  *
8037  * Balancing parameters are set up in init_sched_domains.
8038  */
8039 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8040 {
8041 	int continue_balancing = 1;
8042 	int cpu = rq->cpu;
8043 	unsigned long interval;
8044 	struct sched_domain *sd;
8045 	/* Earliest time when we have to do rebalance again */
8046 	unsigned long next_balance = jiffies + 60*HZ;
8047 	int update_next_balance = 0;
8048 	int need_serialize, need_decay = 0;
8049 	u64 max_cost = 0;
8050 
8051 	update_blocked_averages(cpu);
8052 
8053 	rcu_read_lock();
8054 	for_each_domain(cpu, sd) {
8055 		/*
8056 		 * Decay the newidle max times here because this is a regular
8057 		 * visit to all the domains. Decay ~1% per second.
8058 		 */
8059 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8060 			sd->max_newidle_lb_cost =
8061 				(sd->max_newidle_lb_cost * 253) / 256;
8062 			sd->next_decay_max_lb_cost = jiffies + HZ;
8063 			need_decay = 1;
8064 		}
8065 		max_cost += sd->max_newidle_lb_cost;
8066 
8067 		if (!(sd->flags & SD_LOAD_BALANCE))
8068 			continue;
8069 
8070 		/*
8071 		 * Stop the load balance at this level. There is another
8072 		 * CPU in our sched group which is doing load balancing more
8073 		 * actively.
8074 		 */
8075 		if (!continue_balancing) {
8076 			if (need_decay)
8077 				continue;
8078 			break;
8079 		}
8080 
8081 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8082 
8083 		need_serialize = sd->flags & SD_SERIALIZE;
8084 		if (need_serialize) {
8085 			if (!spin_trylock(&balancing))
8086 				goto out;
8087 		}
8088 
8089 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8090 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8091 				/*
8092 				 * The LBF_DST_PINNED logic could have changed
8093 				 * env->dst_cpu, so we can't know our idle
8094 				 * state even if we migrated tasks. Update it.
8095 				 */
8096 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8097 			}
8098 			sd->last_balance = jiffies;
8099 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8100 		}
8101 		if (need_serialize)
8102 			spin_unlock(&balancing);
8103 out:
8104 		if (time_after(next_balance, sd->last_balance + interval)) {
8105 			next_balance = sd->last_balance + interval;
8106 			update_next_balance = 1;
8107 		}
8108 	}
8109 	if (need_decay) {
8110 		/*
8111 		 * Ensure the rq-wide value also decays but keep it at a
8112 		 * reasonable floor to avoid funnies with rq->avg_idle.
8113 		 */
8114 		rq->max_idle_balance_cost =
8115 			max((u64)sysctl_sched_migration_cost, max_cost);
8116 	}
8117 	rcu_read_unlock();
8118 
8119 	/*
8120 	 * next_balance will be updated only when there is a need.
8121 	 * When the cpu is attached to null domain for ex, it will not be
8122 	 * updated.
8123 	 */
8124 	if (likely(update_next_balance)) {
8125 		rq->next_balance = next_balance;
8126 
8127 #ifdef CONFIG_NO_HZ_COMMON
8128 		/*
8129 		 * If this CPU has been elected to perform the nohz idle
8130 		 * balance. Other idle CPUs have already rebalanced with
8131 		 * nohz_idle_balance() and nohz.next_balance has been
8132 		 * updated accordingly. This CPU is now running the idle load
8133 		 * balance for itself and we need to update the
8134 		 * nohz.next_balance accordingly.
8135 		 */
8136 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8137 			nohz.next_balance = rq->next_balance;
8138 #endif
8139 	}
8140 }
8141 
8142 #ifdef CONFIG_NO_HZ_COMMON
8143 /*
8144  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8145  * rebalancing for all the cpus for whom scheduler ticks are stopped.
8146  */
8147 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8148 {
8149 	int this_cpu = this_rq->cpu;
8150 	struct rq *rq;
8151 	int balance_cpu;
8152 	/* Earliest time when we have to do rebalance again */
8153 	unsigned long next_balance = jiffies + 60*HZ;
8154 	int update_next_balance = 0;
8155 
8156 	if (idle != CPU_IDLE ||
8157 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8158 		goto end;
8159 
8160 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8161 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8162 			continue;
8163 
8164 		/*
8165 		 * If this cpu gets work to do, stop the load balancing
8166 		 * work being done for other cpus. Next load
8167 		 * balancing owner will pick it up.
8168 		 */
8169 		if (need_resched())
8170 			break;
8171 
8172 		rq = cpu_rq(balance_cpu);
8173 
8174 		/*
8175 		 * If time for next balance is due,
8176 		 * do the balance.
8177 		 */
8178 		if (time_after_eq(jiffies, rq->next_balance)) {
8179 			raw_spin_lock_irq(&rq->lock);
8180 			update_rq_clock(rq);
8181 			cpu_load_update_idle(rq);
8182 			raw_spin_unlock_irq(&rq->lock);
8183 			rebalance_domains(rq, CPU_IDLE);
8184 		}
8185 
8186 		if (time_after(next_balance, rq->next_balance)) {
8187 			next_balance = rq->next_balance;
8188 			update_next_balance = 1;
8189 		}
8190 	}
8191 
8192 	/*
8193 	 * next_balance will be updated only when there is a need.
8194 	 * When the CPU is attached to null domain for ex, it will not be
8195 	 * updated.
8196 	 */
8197 	if (likely(update_next_balance))
8198 		nohz.next_balance = next_balance;
8199 end:
8200 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8201 }
8202 
8203 /*
8204  * Current heuristic for kicking the idle load balancer in the presence
8205  * of an idle cpu in the system.
8206  *   - This rq has more than one task.
8207  *   - This rq has at least one CFS task and the capacity of the CPU is
8208  *     significantly reduced because of RT tasks or IRQs.
8209  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
8210  *     multiple busy cpu.
8211  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8212  *     domain span are idle.
8213  */
8214 static inline bool nohz_kick_needed(struct rq *rq)
8215 {
8216 	unsigned long now = jiffies;
8217 	struct sched_domain *sd;
8218 	struct sched_group_capacity *sgc;
8219 	int nr_busy, cpu = rq->cpu;
8220 	bool kick = false;
8221 
8222 	if (unlikely(rq->idle_balance))
8223 		return false;
8224 
8225        /*
8226 	* We may be recently in ticked or tickless idle mode. At the first
8227 	* busy tick after returning from idle, we will update the busy stats.
8228 	*/
8229 	set_cpu_sd_state_busy();
8230 	nohz_balance_exit_idle(cpu);
8231 
8232 	/*
8233 	 * None are in tickless mode and hence no need for NOHZ idle load
8234 	 * balancing.
8235 	 */
8236 	if (likely(!atomic_read(&nohz.nr_cpus)))
8237 		return false;
8238 
8239 	if (time_before(now, nohz.next_balance))
8240 		return false;
8241 
8242 	if (rq->nr_running >= 2)
8243 		return true;
8244 
8245 	rcu_read_lock();
8246 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
8247 	if (sd) {
8248 		sgc = sd->groups->sgc;
8249 		nr_busy = atomic_read(&sgc->nr_busy_cpus);
8250 
8251 		if (nr_busy > 1) {
8252 			kick = true;
8253 			goto unlock;
8254 		}
8255 
8256 	}
8257 
8258 	sd = rcu_dereference(rq->sd);
8259 	if (sd) {
8260 		if ((rq->cfs.h_nr_running >= 1) &&
8261 				check_cpu_capacity(rq, sd)) {
8262 			kick = true;
8263 			goto unlock;
8264 		}
8265 	}
8266 
8267 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8268 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8269 				  sched_domain_span(sd)) < cpu)) {
8270 		kick = true;
8271 		goto unlock;
8272 	}
8273 
8274 unlock:
8275 	rcu_read_unlock();
8276 	return kick;
8277 }
8278 #else
8279 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8280 #endif
8281 
8282 /*
8283  * run_rebalance_domains is triggered when needed from the scheduler tick.
8284  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8285  */
8286 static void run_rebalance_domains(struct softirq_action *h)
8287 {
8288 	struct rq *this_rq = this_rq();
8289 	enum cpu_idle_type idle = this_rq->idle_balance ?
8290 						CPU_IDLE : CPU_NOT_IDLE;
8291 
8292 	/*
8293 	 * If this cpu has a pending nohz_balance_kick, then do the
8294 	 * balancing on behalf of the other idle cpus whose ticks are
8295 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8296 	 * give the idle cpus a chance to load balance. Else we may
8297 	 * load balance only within the local sched_domain hierarchy
8298 	 * and abort nohz_idle_balance altogether if we pull some load.
8299 	 */
8300 	nohz_idle_balance(this_rq, idle);
8301 	rebalance_domains(this_rq, idle);
8302 }
8303 
8304 /*
8305  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8306  */
8307 void trigger_load_balance(struct rq *rq)
8308 {
8309 	/* Don't need to rebalance while attached to NULL domain */
8310 	if (unlikely(on_null_domain(rq)))
8311 		return;
8312 
8313 	if (time_after_eq(jiffies, rq->next_balance))
8314 		raise_softirq(SCHED_SOFTIRQ);
8315 #ifdef CONFIG_NO_HZ_COMMON
8316 	if (nohz_kick_needed(rq))
8317 		nohz_balancer_kick();
8318 #endif
8319 }
8320 
8321 static void rq_online_fair(struct rq *rq)
8322 {
8323 	update_sysctl();
8324 
8325 	update_runtime_enabled(rq);
8326 }
8327 
8328 static void rq_offline_fair(struct rq *rq)
8329 {
8330 	update_sysctl();
8331 
8332 	/* Ensure any throttled groups are reachable by pick_next_task */
8333 	unthrottle_offline_cfs_rqs(rq);
8334 }
8335 
8336 #endif /* CONFIG_SMP */
8337 
8338 /*
8339  * scheduler tick hitting a task of our scheduling class:
8340  */
8341 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8342 {
8343 	struct cfs_rq *cfs_rq;
8344 	struct sched_entity *se = &curr->se;
8345 
8346 	for_each_sched_entity(se) {
8347 		cfs_rq = cfs_rq_of(se);
8348 		entity_tick(cfs_rq, se, queued);
8349 	}
8350 
8351 	if (static_branch_unlikely(&sched_numa_balancing))
8352 		task_tick_numa(rq, curr);
8353 }
8354 
8355 /*
8356  * called on fork with the child task as argument from the parent's context
8357  *  - child not yet on the tasklist
8358  *  - preemption disabled
8359  */
8360 static void task_fork_fair(struct task_struct *p)
8361 {
8362 	struct cfs_rq *cfs_rq;
8363 	struct sched_entity *se = &p->se, *curr;
8364 	struct rq *rq = this_rq();
8365 
8366 	raw_spin_lock(&rq->lock);
8367 	update_rq_clock(rq);
8368 
8369 	cfs_rq = task_cfs_rq(current);
8370 	curr = cfs_rq->curr;
8371 	if (curr) {
8372 		update_curr(cfs_rq);
8373 		se->vruntime = curr->vruntime;
8374 	}
8375 	place_entity(cfs_rq, se, 1);
8376 
8377 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8378 		/*
8379 		 * Upon rescheduling, sched_class::put_prev_task() will place
8380 		 * 'current' within the tree based on its new key value.
8381 		 */
8382 		swap(curr->vruntime, se->vruntime);
8383 		resched_curr(rq);
8384 	}
8385 
8386 	se->vruntime -= cfs_rq->min_vruntime;
8387 	raw_spin_unlock(&rq->lock);
8388 }
8389 
8390 /*
8391  * Priority of the task has changed. Check to see if we preempt
8392  * the current task.
8393  */
8394 static void
8395 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8396 {
8397 	if (!task_on_rq_queued(p))
8398 		return;
8399 
8400 	/*
8401 	 * Reschedule if we are currently running on this runqueue and
8402 	 * our priority decreased, or if we are not currently running on
8403 	 * this runqueue and our priority is higher than the current's
8404 	 */
8405 	if (rq->curr == p) {
8406 		if (p->prio > oldprio)
8407 			resched_curr(rq);
8408 	} else
8409 		check_preempt_curr(rq, p, 0);
8410 }
8411 
8412 static inline bool vruntime_normalized(struct task_struct *p)
8413 {
8414 	struct sched_entity *se = &p->se;
8415 
8416 	/*
8417 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8418 	 * the dequeue_entity(.flags=0) will already have normalized the
8419 	 * vruntime.
8420 	 */
8421 	if (p->on_rq)
8422 		return true;
8423 
8424 	/*
8425 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
8426 	 * But there are some cases where it has already been normalized:
8427 	 *
8428 	 * - A forked child which is waiting for being woken up by
8429 	 *   wake_up_new_task().
8430 	 * - A task which has been woken up by try_to_wake_up() and
8431 	 *   waiting for actually being woken up by sched_ttwu_pending().
8432 	 */
8433 	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8434 		return true;
8435 
8436 	return false;
8437 }
8438 
8439 static void detach_task_cfs_rq(struct task_struct *p)
8440 {
8441 	struct sched_entity *se = &p->se;
8442 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8443 	u64 now = cfs_rq_clock_task(cfs_rq);
8444 	int tg_update;
8445 
8446 	if (!vruntime_normalized(p)) {
8447 		/*
8448 		 * Fix up our vruntime so that the current sleep doesn't
8449 		 * cause 'unlimited' sleep bonus.
8450 		 */
8451 		place_entity(cfs_rq, se, 0);
8452 		se->vruntime -= cfs_rq->min_vruntime;
8453 	}
8454 
8455 	/* Catch up with the cfs_rq and remove our load when we leave */
8456 	tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
8457 	detach_entity_load_avg(cfs_rq, se);
8458 	if (tg_update)
8459 		update_tg_load_avg(cfs_rq, false);
8460 }
8461 
8462 static void attach_task_cfs_rq(struct task_struct *p)
8463 {
8464 	struct sched_entity *se = &p->se;
8465 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8466 	u64 now = cfs_rq_clock_task(cfs_rq);
8467 	int tg_update;
8468 
8469 #ifdef CONFIG_FAIR_GROUP_SCHED
8470 	/*
8471 	 * Since the real-depth could have been changed (only FAIR
8472 	 * class maintain depth value), reset depth properly.
8473 	 */
8474 	se->depth = se->parent ? se->parent->depth + 1 : 0;
8475 #endif
8476 
8477 	/* Synchronize task with its cfs_rq */
8478 	tg_update = update_cfs_rq_load_avg(now, cfs_rq, false);
8479 	attach_entity_load_avg(cfs_rq, se);
8480 	if (tg_update)
8481 		update_tg_load_avg(cfs_rq, false);
8482 
8483 	if (!vruntime_normalized(p))
8484 		se->vruntime += cfs_rq->min_vruntime;
8485 }
8486 
8487 static void switched_from_fair(struct rq *rq, struct task_struct *p)
8488 {
8489 	detach_task_cfs_rq(p);
8490 }
8491 
8492 static void switched_to_fair(struct rq *rq, struct task_struct *p)
8493 {
8494 	attach_task_cfs_rq(p);
8495 
8496 	if (task_on_rq_queued(p)) {
8497 		/*
8498 		 * We were most likely switched from sched_rt, so
8499 		 * kick off the schedule if running, otherwise just see
8500 		 * if we can still preempt the current task.
8501 		 */
8502 		if (rq->curr == p)
8503 			resched_curr(rq);
8504 		else
8505 			check_preempt_curr(rq, p, 0);
8506 	}
8507 }
8508 
8509 /* Account for a task changing its policy or group.
8510  *
8511  * This routine is mostly called to set cfs_rq->curr field when a task
8512  * migrates between groups/classes.
8513  */
8514 static void set_curr_task_fair(struct rq *rq)
8515 {
8516 	struct sched_entity *se = &rq->curr->se;
8517 
8518 	for_each_sched_entity(se) {
8519 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
8520 
8521 		set_next_entity(cfs_rq, se);
8522 		/* ensure bandwidth has been allocated on our new cfs_rq */
8523 		account_cfs_rq_runtime(cfs_rq, 0);
8524 	}
8525 }
8526 
8527 void init_cfs_rq(struct cfs_rq *cfs_rq)
8528 {
8529 	cfs_rq->tasks_timeline = RB_ROOT;
8530 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8531 #ifndef CONFIG_64BIT
8532 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8533 #endif
8534 #ifdef CONFIG_SMP
8535 	atomic_long_set(&cfs_rq->removed_load_avg, 0);
8536 	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8537 #endif
8538 }
8539 
8540 #ifdef CONFIG_FAIR_GROUP_SCHED
8541 static void task_set_group_fair(struct task_struct *p)
8542 {
8543 	struct sched_entity *se = &p->se;
8544 
8545 	set_task_rq(p, task_cpu(p));
8546 	se->depth = se->parent ? se->parent->depth + 1 : 0;
8547 }
8548 
8549 static void task_move_group_fair(struct task_struct *p)
8550 {
8551 	detach_task_cfs_rq(p);
8552 	set_task_rq(p, task_cpu(p));
8553 
8554 #ifdef CONFIG_SMP
8555 	/* Tell se's cfs_rq has been changed -- migrated */
8556 	p->se.avg.last_update_time = 0;
8557 #endif
8558 	attach_task_cfs_rq(p);
8559 }
8560 
8561 static void task_change_group_fair(struct task_struct *p, int type)
8562 {
8563 	switch (type) {
8564 	case TASK_SET_GROUP:
8565 		task_set_group_fair(p);
8566 		break;
8567 
8568 	case TASK_MOVE_GROUP:
8569 		task_move_group_fair(p);
8570 		break;
8571 	}
8572 }
8573 
8574 void free_fair_sched_group(struct task_group *tg)
8575 {
8576 	int i;
8577 
8578 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8579 
8580 	for_each_possible_cpu(i) {
8581 		if (tg->cfs_rq)
8582 			kfree(tg->cfs_rq[i]);
8583 		if (tg->se)
8584 			kfree(tg->se[i]);
8585 	}
8586 
8587 	kfree(tg->cfs_rq);
8588 	kfree(tg->se);
8589 }
8590 
8591 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8592 {
8593 	struct sched_entity *se;
8594 	struct cfs_rq *cfs_rq;
8595 	struct rq *rq;
8596 	int i;
8597 
8598 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8599 	if (!tg->cfs_rq)
8600 		goto err;
8601 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8602 	if (!tg->se)
8603 		goto err;
8604 
8605 	tg->shares = NICE_0_LOAD;
8606 
8607 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8608 
8609 	for_each_possible_cpu(i) {
8610 		rq = cpu_rq(i);
8611 
8612 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8613 				      GFP_KERNEL, cpu_to_node(i));
8614 		if (!cfs_rq)
8615 			goto err;
8616 
8617 		se = kzalloc_node(sizeof(struct sched_entity),
8618 				  GFP_KERNEL, cpu_to_node(i));
8619 		if (!se)
8620 			goto err_free_rq;
8621 
8622 		init_cfs_rq(cfs_rq);
8623 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8624 		init_entity_runnable_average(se);
8625 	}
8626 
8627 	return 1;
8628 
8629 err_free_rq:
8630 	kfree(cfs_rq);
8631 err:
8632 	return 0;
8633 }
8634 
8635 void online_fair_sched_group(struct task_group *tg)
8636 {
8637 	struct sched_entity *se;
8638 	struct rq *rq;
8639 	int i;
8640 
8641 	for_each_possible_cpu(i) {
8642 		rq = cpu_rq(i);
8643 		se = tg->se[i];
8644 
8645 		raw_spin_lock_irq(&rq->lock);
8646 		post_init_entity_util_avg(se);
8647 		sync_throttle(tg, i);
8648 		raw_spin_unlock_irq(&rq->lock);
8649 	}
8650 }
8651 
8652 void unregister_fair_sched_group(struct task_group *tg)
8653 {
8654 	unsigned long flags;
8655 	struct rq *rq;
8656 	int cpu;
8657 
8658 	for_each_possible_cpu(cpu) {
8659 		if (tg->se[cpu])
8660 			remove_entity_load_avg(tg->se[cpu]);
8661 
8662 		/*
8663 		 * Only empty task groups can be destroyed; so we can speculatively
8664 		 * check on_list without danger of it being re-added.
8665 		 */
8666 		if (!tg->cfs_rq[cpu]->on_list)
8667 			continue;
8668 
8669 		rq = cpu_rq(cpu);
8670 
8671 		raw_spin_lock_irqsave(&rq->lock, flags);
8672 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8673 		raw_spin_unlock_irqrestore(&rq->lock, flags);
8674 	}
8675 }
8676 
8677 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8678 			struct sched_entity *se, int cpu,
8679 			struct sched_entity *parent)
8680 {
8681 	struct rq *rq = cpu_rq(cpu);
8682 
8683 	cfs_rq->tg = tg;
8684 	cfs_rq->rq = rq;
8685 	init_cfs_rq_runtime(cfs_rq);
8686 
8687 	tg->cfs_rq[cpu] = cfs_rq;
8688 	tg->se[cpu] = se;
8689 
8690 	/* se could be NULL for root_task_group */
8691 	if (!se)
8692 		return;
8693 
8694 	if (!parent) {
8695 		se->cfs_rq = &rq->cfs;
8696 		se->depth = 0;
8697 	} else {
8698 		se->cfs_rq = parent->my_q;
8699 		se->depth = parent->depth + 1;
8700 	}
8701 
8702 	se->my_q = cfs_rq;
8703 	/* guarantee group entities always have weight */
8704 	update_load_set(&se->load, NICE_0_LOAD);
8705 	se->parent = parent;
8706 }
8707 
8708 static DEFINE_MUTEX(shares_mutex);
8709 
8710 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8711 {
8712 	int i;
8713 	unsigned long flags;
8714 
8715 	/*
8716 	 * We can't change the weight of the root cgroup.
8717 	 */
8718 	if (!tg->se[0])
8719 		return -EINVAL;
8720 
8721 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8722 
8723 	mutex_lock(&shares_mutex);
8724 	if (tg->shares == shares)
8725 		goto done;
8726 
8727 	tg->shares = shares;
8728 	for_each_possible_cpu(i) {
8729 		struct rq *rq = cpu_rq(i);
8730 		struct sched_entity *se;
8731 
8732 		se = tg->se[i];
8733 		/* Propagate contribution to hierarchy */
8734 		raw_spin_lock_irqsave(&rq->lock, flags);
8735 
8736 		/* Possible calls to update_curr() need rq clock */
8737 		update_rq_clock(rq);
8738 		for_each_sched_entity(se)
8739 			update_cfs_shares(group_cfs_rq(se));
8740 		raw_spin_unlock_irqrestore(&rq->lock, flags);
8741 	}
8742 
8743 done:
8744 	mutex_unlock(&shares_mutex);
8745 	return 0;
8746 }
8747 #else /* CONFIG_FAIR_GROUP_SCHED */
8748 
8749 void free_fair_sched_group(struct task_group *tg) { }
8750 
8751 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8752 {
8753 	return 1;
8754 }
8755 
8756 void online_fair_sched_group(struct task_group *tg) { }
8757 
8758 void unregister_fair_sched_group(struct task_group *tg) { }
8759 
8760 #endif /* CONFIG_FAIR_GROUP_SCHED */
8761 
8762 
8763 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8764 {
8765 	struct sched_entity *se = &task->se;
8766 	unsigned int rr_interval = 0;
8767 
8768 	/*
8769 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8770 	 * idle runqueue:
8771 	 */
8772 	if (rq->cfs.load.weight)
8773 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8774 
8775 	return rr_interval;
8776 }
8777 
8778 /*
8779  * All the scheduling class methods:
8780  */
8781 const struct sched_class fair_sched_class = {
8782 	.next			= &idle_sched_class,
8783 	.enqueue_task		= enqueue_task_fair,
8784 	.dequeue_task		= dequeue_task_fair,
8785 	.yield_task		= yield_task_fair,
8786 	.yield_to_task		= yield_to_task_fair,
8787 
8788 	.check_preempt_curr	= check_preempt_wakeup,
8789 
8790 	.pick_next_task		= pick_next_task_fair,
8791 	.put_prev_task		= put_prev_task_fair,
8792 
8793 #ifdef CONFIG_SMP
8794 	.select_task_rq		= select_task_rq_fair,
8795 	.migrate_task_rq	= migrate_task_rq_fair,
8796 
8797 	.rq_online		= rq_online_fair,
8798 	.rq_offline		= rq_offline_fair,
8799 
8800 	.task_dead		= task_dead_fair,
8801 	.set_cpus_allowed	= set_cpus_allowed_common,
8802 #endif
8803 
8804 	.set_curr_task          = set_curr_task_fair,
8805 	.task_tick		= task_tick_fair,
8806 	.task_fork		= task_fork_fair,
8807 
8808 	.prio_changed		= prio_changed_fair,
8809 	.switched_from		= switched_from_fair,
8810 	.switched_to		= switched_to_fair,
8811 
8812 	.get_rr_interval	= get_rr_interval_fair,
8813 
8814 	.update_curr		= update_curr_fair,
8815 
8816 #ifdef CONFIG_FAIR_GROUP_SCHED
8817 	.task_change_group	= task_change_group_fair,
8818 #endif
8819 };
8820 
8821 #ifdef CONFIG_SCHED_DEBUG
8822 void print_cfs_stats(struct seq_file *m, int cpu)
8823 {
8824 	struct cfs_rq *cfs_rq;
8825 
8826 	rcu_read_lock();
8827 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8828 		print_cfs_rq(m, cpu, cfs_rq);
8829 	rcu_read_unlock();
8830 }
8831 
8832 #ifdef CONFIG_NUMA_BALANCING
8833 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8834 {
8835 	int node;
8836 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8837 
8838 	for_each_online_node(node) {
8839 		if (p->numa_faults) {
8840 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8841 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8842 		}
8843 		if (p->numa_group) {
8844 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8845 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8846 		}
8847 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8848 	}
8849 }
8850 #endif /* CONFIG_NUMA_BALANCING */
8851 #endif /* CONFIG_SCHED_DEBUG */
8852 
8853 __init void init_sched_fair_class(void)
8854 {
8855 #ifdef CONFIG_SMP
8856 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8857 
8858 #ifdef CONFIG_NO_HZ_COMMON
8859 	nohz.next_balance = jiffies;
8860 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8861 #endif
8862 #endif /* SMP */
8863 
8864 }
8865