1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 21 */ 22 23 #include <linux/sched.h> 24 #include <linux/latencytop.h> 25 #include <linux/cpumask.h> 26 #include <linux/cpuidle.h> 27 #include <linux/slab.h> 28 #include <linux/profile.h> 29 #include <linux/interrupt.h> 30 #include <linux/mempolicy.h> 31 #include <linux/migrate.h> 32 #include <linux/task_work.h> 33 34 #include <trace/events/sched.h> 35 36 #include "sched.h" 37 38 /* 39 * Targeted preemption latency for CPU-bound tasks: 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 41 * 42 * NOTE: this latency value is not the same as the concept of 43 * 'timeslice length' - timeslices in CFS are of variable length 44 * and have no persistent notion like in traditional, time-slice 45 * based scheduling concepts. 46 * 47 * (to see the precise effective timeslice length of your workload, 48 * run vmstat and monitor the context-switches (cs) field) 49 */ 50 unsigned int sysctl_sched_latency = 6000000ULL; 51 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 52 53 /* 54 * The initial- and re-scaling of tunables is configurable 55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 56 * 57 * Options are: 58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 61 */ 62 enum sched_tunable_scaling sysctl_sched_tunable_scaling 63 = SCHED_TUNABLESCALING_LOG; 64 65 /* 66 * Minimal preemption granularity for CPU-bound tasks: 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 68 */ 69 unsigned int sysctl_sched_min_granularity = 750000ULL; 70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 71 72 /* 73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 74 */ 75 static unsigned int sched_nr_latency = 8; 76 77 /* 78 * After fork, child runs first. If set to 0 (default) then 79 * parent will (try to) run first. 80 */ 81 unsigned int sysctl_sched_child_runs_first __read_mostly; 82 83 /* 84 * SCHED_OTHER wake-up granularity. 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 86 * 87 * This option delays the preemption effects of decoupled workloads 88 * and reduces their over-scheduling. Synchronous workloads will still 89 * have immediate wakeup/sleep latencies. 90 */ 91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 93 94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 95 96 /* 97 * The exponential sliding window over which load is averaged for shares 98 * distribution. 99 * (default: 10msec) 100 */ 101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 102 103 #ifdef CONFIG_CFS_BANDWIDTH 104 /* 105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 106 * each time a cfs_rq requests quota. 107 * 108 * Note: in the case that the slice exceeds the runtime remaining (either due 109 * to consumption or the quota being specified to be smaller than the slice) 110 * we will always only issue the remaining available time. 111 * 112 * default: 5 msec, units: microseconds 113 */ 114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 115 #endif 116 117 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 118 { 119 lw->weight += inc; 120 lw->inv_weight = 0; 121 } 122 123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 124 { 125 lw->weight -= dec; 126 lw->inv_weight = 0; 127 } 128 129 static inline void update_load_set(struct load_weight *lw, unsigned long w) 130 { 131 lw->weight = w; 132 lw->inv_weight = 0; 133 } 134 135 /* 136 * Increase the granularity value when there are more CPUs, 137 * because with more CPUs the 'effective latency' as visible 138 * to users decreases. But the relationship is not linear, 139 * so pick a second-best guess by going with the log2 of the 140 * number of CPUs. 141 * 142 * This idea comes from the SD scheduler of Con Kolivas: 143 */ 144 static unsigned int get_update_sysctl_factor(void) 145 { 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 147 unsigned int factor; 148 149 switch (sysctl_sched_tunable_scaling) { 150 case SCHED_TUNABLESCALING_NONE: 151 factor = 1; 152 break; 153 case SCHED_TUNABLESCALING_LINEAR: 154 factor = cpus; 155 break; 156 case SCHED_TUNABLESCALING_LOG: 157 default: 158 factor = 1 + ilog2(cpus); 159 break; 160 } 161 162 return factor; 163 } 164 165 static void update_sysctl(void) 166 { 167 unsigned int factor = get_update_sysctl_factor(); 168 169 #define SET_SYSCTL(name) \ 170 (sysctl_##name = (factor) * normalized_sysctl_##name) 171 SET_SYSCTL(sched_min_granularity); 172 SET_SYSCTL(sched_latency); 173 SET_SYSCTL(sched_wakeup_granularity); 174 #undef SET_SYSCTL 175 } 176 177 void sched_init_granularity(void) 178 { 179 update_sysctl(); 180 } 181 182 #define WMULT_CONST (~0U) 183 #define WMULT_SHIFT 32 184 185 static void __update_inv_weight(struct load_weight *lw) 186 { 187 unsigned long w; 188 189 if (likely(lw->inv_weight)) 190 return; 191 192 w = scale_load_down(lw->weight); 193 194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 195 lw->inv_weight = 1; 196 else if (unlikely(!w)) 197 lw->inv_weight = WMULT_CONST; 198 else 199 lw->inv_weight = WMULT_CONST / w; 200 } 201 202 /* 203 * delta_exec * weight / lw.weight 204 * OR 205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 206 * 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 208 * we're guaranteed shift stays positive because inv_weight is guaranteed to 209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 210 * 211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 212 * weight/lw.weight <= 1, and therefore our shift will also be positive. 213 */ 214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 215 { 216 u64 fact = scale_load_down(weight); 217 int shift = WMULT_SHIFT; 218 219 __update_inv_weight(lw); 220 221 if (unlikely(fact >> 32)) { 222 while (fact >> 32) { 223 fact >>= 1; 224 shift--; 225 } 226 } 227 228 /* hint to use a 32x32->64 mul */ 229 fact = (u64)(u32)fact * lw->inv_weight; 230 231 while (fact >> 32) { 232 fact >>= 1; 233 shift--; 234 } 235 236 return mul_u64_u32_shr(delta_exec, fact, shift); 237 } 238 239 240 const struct sched_class fair_sched_class; 241 242 /************************************************************** 243 * CFS operations on generic schedulable entities: 244 */ 245 246 #ifdef CONFIG_FAIR_GROUP_SCHED 247 248 /* cpu runqueue to which this cfs_rq is attached */ 249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 250 { 251 return cfs_rq->rq; 252 } 253 254 /* An entity is a task if it doesn't "own" a runqueue */ 255 #define entity_is_task(se) (!se->my_q) 256 257 static inline struct task_struct *task_of(struct sched_entity *se) 258 { 259 #ifdef CONFIG_SCHED_DEBUG 260 WARN_ON_ONCE(!entity_is_task(se)); 261 #endif 262 return container_of(se, struct task_struct, se); 263 } 264 265 /* Walk up scheduling entities hierarchy */ 266 #define for_each_sched_entity(se) \ 267 for (; se; se = se->parent) 268 269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 270 { 271 return p->se.cfs_rq; 272 } 273 274 /* runqueue on which this entity is (to be) queued */ 275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 276 { 277 return se->cfs_rq; 278 } 279 280 /* runqueue "owned" by this group */ 281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 282 { 283 return grp->my_q; 284 } 285 286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 287 { 288 if (!cfs_rq->on_list) { 289 /* 290 * Ensure we either appear before our parent (if already 291 * enqueued) or force our parent to appear after us when it is 292 * enqueued. The fact that we always enqueue bottom-up 293 * reduces this to two cases. 294 */ 295 if (cfs_rq->tg->parent && 296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 298 &rq_of(cfs_rq)->leaf_cfs_rq_list); 299 } else { 300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 301 &rq_of(cfs_rq)->leaf_cfs_rq_list); 302 } 303 304 cfs_rq->on_list = 1; 305 } 306 } 307 308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 309 { 310 if (cfs_rq->on_list) { 311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 312 cfs_rq->on_list = 0; 313 } 314 } 315 316 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 319 320 /* Do the two (enqueued) entities belong to the same group ? */ 321 static inline struct cfs_rq * 322 is_same_group(struct sched_entity *se, struct sched_entity *pse) 323 { 324 if (se->cfs_rq == pse->cfs_rq) 325 return se->cfs_rq; 326 327 return NULL; 328 } 329 330 static inline struct sched_entity *parent_entity(struct sched_entity *se) 331 { 332 return se->parent; 333 } 334 335 static void 336 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 337 { 338 int se_depth, pse_depth; 339 340 /* 341 * preemption test can be made between sibling entities who are in the 342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 343 * both tasks until we find their ancestors who are siblings of common 344 * parent. 345 */ 346 347 /* First walk up until both entities are at same depth */ 348 se_depth = (*se)->depth; 349 pse_depth = (*pse)->depth; 350 351 while (se_depth > pse_depth) { 352 se_depth--; 353 *se = parent_entity(*se); 354 } 355 356 while (pse_depth > se_depth) { 357 pse_depth--; 358 *pse = parent_entity(*pse); 359 } 360 361 while (!is_same_group(*se, *pse)) { 362 *se = parent_entity(*se); 363 *pse = parent_entity(*pse); 364 } 365 } 366 367 #else /* !CONFIG_FAIR_GROUP_SCHED */ 368 369 static inline struct task_struct *task_of(struct sched_entity *se) 370 { 371 return container_of(se, struct task_struct, se); 372 } 373 374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 375 { 376 return container_of(cfs_rq, struct rq, cfs); 377 } 378 379 #define entity_is_task(se) 1 380 381 #define for_each_sched_entity(se) \ 382 for (; se; se = NULL) 383 384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 385 { 386 return &task_rq(p)->cfs; 387 } 388 389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 390 { 391 struct task_struct *p = task_of(se); 392 struct rq *rq = task_rq(p); 393 394 return &rq->cfs; 395 } 396 397 /* runqueue "owned" by this group */ 398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 399 { 400 return NULL; 401 } 402 403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 404 { 405 } 406 407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 408 { 409 } 410 411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 413 414 static inline struct sched_entity *parent_entity(struct sched_entity *se) 415 { 416 return NULL; 417 } 418 419 static inline void 420 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 421 { 422 } 423 424 #endif /* CONFIG_FAIR_GROUP_SCHED */ 425 426 static __always_inline 427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 428 429 /************************************************************** 430 * Scheduling class tree data structure manipulation methods: 431 */ 432 433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 434 { 435 s64 delta = (s64)(vruntime - max_vruntime); 436 if (delta > 0) 437 max_vruntime = vruntime; 438 439 return max_vruntime; 440 } 441 442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 443 { 444 s64 delta = (s64)(vruntime - min_vruntime); 445 if (delta < 0) 446 min_vruntime = vruntime; 447 448 return min_vruntime; 449 } 450 451 static inline int entity_before(struct sched_entity *a, 452 struct sched_entity *b) 453 { 454 return (s64)(a->vruntime - b->vruntime) < 0; 455 } 456 457 static void update_min_vruntime(struct cfs_rq *cfs_rq) 458 { 459 u64 vruntime = cfs_rq->min_vruntime; 460 461 if (cfs_rq->curr) 462 vruntime = cfs_rq->curr->vruntime; 463 464 if (cfs_rq->rb_leftmost) { 465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 466 struct sched_entity, 467 run_node); 468 469 if (!cfs_rq->curr) 470 vruntime = se->vruntime; 471 else 472 vruntime = min_vruntime(vruntime, se->vruntime); 473 } 474 475 /* ensure we never gain time by being placed backwards. */ 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 477 #ifndef CONFIG_64BIT 478 smp_wmb(); 479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 480 #endif 481 } 482 483 /* 484 * Enqueue an entity into the rb-tree: 485 */ 486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 487 { 488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 489 struct rb_node *parent = NULL; 490 struct sched_entity *entry; 491 int leftmost = 1; 492 493 /* 494 * Find the right place in the rbtree: 495 */ 496 while (*link) { 497 parent = *link; 498 entry = rb_entry(parent, struct sched_entity, run_node); 499 /* 500 * We dont care about collisions. Nodes with 501 * the same key stay together. 502 */ 503 if (entity_before(se, entry)) { 504 link = &parent->rb_left; 505 } else { 506 link = &parent->rb_right; 507 leftmost = 0; 508 } 509 } 510 511 /* 512 * Maintain a cache of leftmost tree entries (it is frequently 513 * used): 514 */ 515 if (leftmost) 516 cfs_rq->rb_leftmost = &se->run_node; 517 518 rb_link_node(&se->run_node, parent, link); 519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 520 } 521 522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 523 { 524 if (cfs_rq->rb_leftmost == &se->run_node) { 525 struct rb_node *next_node; 526 527 next_node = rb_next(&se->run_node); 528 cfs_rq->rb_leftmost = next_node; 529 } 530 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 532 } 533 534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 535 { 536 struct rb_node *left = cfs_rq->rb_leftmost; 537 538 if (!left) 539 return NULL; 540 541 return rb_entry(left, struct sched_entity, run_node); 542 } 543 544 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 545 { 546 struct rb_node *next = rb_next(&se->run_node); 547 548 if (!next) 549 return NULL; 550 551 return rb_entry(next, struct sched_entity, run_node); 552 } 553 554 #ifdef CONFIG_SCHED_DEBUG 555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 556 { 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 558 559 if (!last) 560 return NULL; 561 562 return rb_entry(last, struct sched_entity, run_node); 563 } 564 565 /************************************************************** 566 * Scheduling class statistics methods: 567 */ 568 569 int sched_proc_update_handler(struct ctl_table *table, int write, 570 void __user *buffer, size_t *lenp, 571 loff_t *ppos) 572 { 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 574 unsigned int factor = get_update_sysctl_factor(); 575 576 if (ret || !write) 577 return ret; 578 579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 580 sysctl_sched_min_granularity); 581 582 #define WRT_SYSCTL(name) \ 583 (normalized_sysctl_##name = sysctl_##name / (factor)) 584 WRT_SYSCTL(sched_min_granularity); 585 WRT_SYSCTL(sched_latency); 586 WRT_SYSCTL(sched_wakeup_granularity); 587 #undef WRT_SYSCTL 588 589 return 0; 590 } 591 #endif 592 593 /* 594 * delta /= w 595 */ 596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 597 { 598 if (unlikely(se->load.weight != NICE_0_LOAD)) 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 600 601 return delta; 602 } 603 604 /* 605 * The idea is to set a period in which each task runs once. 606 * 607 * When there are too many tasks (sched_nr_latency) we have to stretch 608 * this period because otherwise the slices get too small. 609 * 610 * p = (nr <= nl) ? l : l*nr/nl 611 */ 612 static u64 __sched_period(unsigned long nr_running) 613 { 614 if (unlikely(nr_running > sched_nr_latency)) 615 return nr_running * sysctl_sched_min_granularity; 616 else 617 return sysctl_sched_latency; 618 } 619 620 /* 621 * We calculate the wall-time slice from the period by taking a part 622 * proportional to the weight. 623 * 624 * s = p*P[w/rw] 625 */ 626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 627 { 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 629 630 for_each_sched_entity(se) { 631 struct load_weight *load; 632 struct load_weight lw; 633 634 cfs_rq = cfs_rq_of(se); 635 load = &cfs_rq->load; 636 637 if (unlikely(!se->on_rq)) { 638 lw = cfs_rq->load; 639 640 update_load_add(&lw, se->load.weight); 641 load = &lw; 642 } 643 slice = __calc_delta(slice, se->load.weight, load); 644 } 645 return slice; 646 } 647 648 /* 649 * We calculate the vruntime slice of a to-be-inserted task. 650 * 651 * vs = s/w 652 */ 653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 654 { 655 return calc_delta_fair(sched_slice(cfs_rq, se), se); 656 } 657 658 #ifdef CONFIG_SMP 659 static int select_idle_sibling(struct task_struct *p, int cpu); 660 static unsigned long task_h_load(struct task_struct *p); 661 662 /* 663 * We choose a half-life close to 1 scheduling period. 664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are 665 * dependent on this value. 666 */ 667 #define LOAD_AVG_PERIOD 32 668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */ 670 671 /* Give new sched_entity start runnable values to heavy its load in infant time */ 672 void init_entity_runnable_average(struct sched_entity *se) 673 { 674 struct sched_avg *sa = &se->avg; 675 676 sa->last_update_time = 0; 677 /* 678 * sched_avg's period_contrib should be strictly less then 1024, so 679 * we give it 1023 to make sure it is almost a period (1024us), and 680 * will definitely be update (after enqueue). 681 */ 682 sa->period_contrib = 1023; 683 sa->load_avg = scale_load_down(se->load.weight); 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX; 685 /* 686 * At this point, util_avg won't be used in select_task_rq_fair anyway 687 */ 688 sa->util_avg = 0; 689 sa->util_sum = 0; 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 691 } 692 693 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 694 static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq); 695 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force); 696 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se); 697 698 /* 699 * With new tasks being created, their initial util_avgs are extrapolated 700 * based on the cfs_rq's current util_avg: 701 * 702 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 703 * 704 * However, in many cases, the above util_avg does not give a desired 705 * value. Moreover, the sum of the util_avgs may be divergent, such 706 * as when the series is a harmonic series. 707 * 708 * To solve this problem, we also cap the util_avg of successive tasks to 709 * only 1/2 of the left utilization budget: 710 * 711 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n 712 * 713 * where n denotes the nth task. 714 * 715 * For example, a simplest series from the beginning would be like: 716 * 717 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 718 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 719 * 720 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 721 * if util_avg > util_avg_cap. 722 */ 723 void post_init_entity_util_avg(struct sched_entity *se) 724 { 725 struct cfs_rq *cfs_rq = cfs_rq_of(se); 726 struct sched_avg *sa = &se->avg; 727 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; 728 u64 now = cfs_rq_clock_task(cfs_rq); 729 int tg_update; 730 731 if (cap > 0) { 732 if (cfs_rq->avg.util_avg != 0) { 733 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 734 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 735 736 if (sa->util_avg > cap) 737 sa->util_avg = cap; 738 } else { 739 sa->util_avg = cap; 740 } 741 sa->util_sum = sa->util_avg * LOAD_AVG_MAX; 742 } 743 744 if (entity_is_task(se)) { 745 struct task_struct *p = task_of(se); 746 if (p->sched_class != &fair_sched_class) { 747 /* 748 * For !fair tasks do: 749 * 750 update_cfs_rq_load_avg(now, cfs_rq, false); 751 attach_entity_load_avg(cfs_rq, se); 752 switched_from_fair(rq, p); 753 * 754 * such that the next switched_to_fair() has the 755 * expected state. 756 */ 757 se->avg.last_update_time = now; 758 return; 759 } 760 } 761 762 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false); 763 attach_entity_load_avg(cfs_rq, se); 764 if (tg_update) 765 update_tg_load_avg(cfs_rq, false); 766 } 767 768 #else /* !CONFIG_SMP */ 769 void init_entity_runnable_average(struct sched_entity *se) 770 { 771 } 772 void post_init_entity_util_avg(struct sched_entity *se) 773 { 774 } 775 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 776 { 777 } 778 #endif /* CONFIG_SMP */ 779 780 /* 781 * Update the current task's runtime statistics. 782 */ 783 static void update_curr(struct cfs_rq *cfs_rq) 784 { 785 struct sched_entity *curr = cfs_rq->curr; 786 u64 now = rq_clock_task(rq_of(cfs_rq)); 787 u64 delta_exec; 788 789 if (unlikely(!curr)) 790 return; 791 792 delta_exec = now - curr->exec_start; 793 if (unlikely((s64)delta_exec <= 0)) 794 return; 795 796 curr->exec_start = now; 797 798 schedstat_set(curr->statistics.exec_max, 799 max(delta_exec, curr->statistics.exec_max)); 800 801 curr->sum_exec_runtime += delta_exec; 802 schedstat_add(cfs_rq, exec_clock, delta_exec); 803 804 curr->vruntime += calc_delta_fair(delta_exec, curr); 805 update_min_vruntime(cfs_rq); 806 807 if (entity_is_task(curr)) { 808 struct task_struct *curtask = task_of(curr); 809 810 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 811 cpuacct_charge(curtask, delta_exec); 812 account_group_exec_runtime(curtask, delta_exec); 813 } 814 815 account_cfs_rq_runtime(cfs_rq, delta_exec); 816 } 817 818 static void update_curr_fair(struct rq *rq) 819 { 820 update_curr(cfs_rq_of(&rq->curr->se)); 821 } 822 823 #ifdef CONFIG_SCHEDSTATS 824 static inline void 825 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 826 { 827 u64 wait_start = rq_clock(rq_of(cfs_rq)); 828 829 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 830 likely(wait_start > se->statistics.wait_start)) 831 wait_start -= se->statistics.wait_start; 832 833 se->statistics.wait_start = wait_start; 834 } 835 836 static void 837 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 838 { 839 struct task_struct *p; 840 u64 delta; 841 842 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start; 843 844 if (entity_is_task(se)) { 845 p = task_of(se); 846 if (task_on_rq_migrating(p)) { 847 /* 848 * Preserve migrating task's wait time so wait_start 849 * time stamp can be adjusted to accumulate wait time 850 * prior to migration. 851 */ 852 se->statistics.wait_start = delta; 853 return; 854 } 855 trace_sched_stat_wait(p, delta); 856 } 857 858 se->statistics.wait_max = max(se->statistics.wait_max, delta); 859 se->statistics.wait_count++; 860 se->statistics.wait_sum += delta; 861 se->statistics.wait_start = 0; 862 } 863 864 /* 865 * Task is being enqueued - update stats: 866 */ 867 static inline void 868 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 869 { 870 /* 871 * Are we enqueueing a waiting task? (for current tasks 872 * a dequeue/enqueue event is a NOP) 873 */ 874 if (se != cfs_rq->curr) 875 update_stats_wait_start(cfs_rq, se); 876 } 877 878 static inline void 879 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 880 { 881 /* 882 * Mark the end of the wait period if dequeueing a 883 * waiting task: 884 */ 885 if (se != cfs_rq->curr) 886 update_stats_wait_end(cfs_rq, se); 887 888 if (flags & DEQUEUE_SLEEP) { 889 if (entity_is_task(se)) { 890 struct task_struct *tsk = task_of(se); 891 892 if (tsk->state & TASK_INTERRUPTIBLE) 893 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 894 if (tsk->state & TASK_UNINTERRUPTIBLE) 895 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 896 } 897 } 898 899 } 900 #else 901 static inline void 902 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 903 { 904 } 905 906 static inline void 907 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 908 { 909 } 910 911 static inline void 912 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 913 { 914 } 915 916 static inline void 917 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 918 { 919 } 920 #endif 921 922 /* 923 * We are picking a new current task - update its stats: 924 */ 925 static inline void 926 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 927 { 928 /* 929 * We are starting a new run period: 930 */ 931 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 932 } 933 934 /************************************************** 935 * Scheduling class queueing methods: 936 */ 937 938 #ifdef CONFIG_NUMA_BALANCING 939 /* 940 * Approximate time to scan a full NUMA task in ms. The task scan period is 941 * calculated based on the tasks virtual memory size and 942 * numa_balancing_scan_size. 943 */ 944 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 945 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 946 947 /* Portion of address space to scan in MB */ 948 unsigned int sysctl_numa_balancing_scan_size = 256; 949 950 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 951 unsigned int sysctl_numa_balancing_scan_delay = 1000; 952 953 static unsigned int task_nr_scan_windows(struct task_struct *p) 954 { 955 unsigned long rss = 0; 956 unsigned long nr_scan_pages; 957 958 /* 959 * Calculations based on RSS as non-present and empty pages are skipped 960 * by the PTE scanner and NUMA hinting faults should be trapped based 961 * on resident pages 962 */ 963 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 964 rss = get_mm_rss(p->mm); 965 if (!rss) 966 rss = nr_scan_pages; 967 968 rss = round_up(rss, nr_scan_pages); 969 return rss / nr_scan_pages; 970 } 971 972 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 973 #define MAX_SCAN_WINDOW 2560 974 975 static unsigned int task_scan_min(struct task_struct *p) 976 { 977 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 978 unsigned int scan, floor; 979 unsigned int windows = 1; 980 981 if (scan_size < MAX_SCAN_WINDOW) 982 windows = MAX_SCAN_WINDOW / scan_size; 983 floor = 1000 / windows; 984 985 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 986 return max_t(unsigned int, floor, scan); 987 } 988 989 static unsigned int task_scan_max(struct task_struct *p) 990 { 991 unsigned int smin = task_scan_min(p); 992 unsigned int smax; 993 994 /* Watch for min being lower than max due to floor calculations */ 995 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 996 return max(smin, smax); 997 } 998 999 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1000 { 1001 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1002 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1003 } 1004 1005 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1006 { 1007 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1008 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1009 } 1010 1011 struct numa_group { 1012 atomic_t refcount; 1013 1014 spinlock_t lock; /* nr_tasks, tasks */ 1015 int nr_tasks; 1016 pid_t gid; 1017 int active_nodes; 1018 1019 struct rcu_head rcu; 1020 unsigned long total_faults; 1021 unsigned long max_faults_cpu; 1022 /* 1023 * Faults_cpu is used to decide whether memory should move 1024 * towards the CPU. As a consequence, these stats are weighted 1025 * more by CPU use than by memory faults. 1026 */ 1027 unsigned long *faults_cpu; 1028 unsigned long faults[0]; 1029 }; 1030 1031 /* Shared or private faults. */ 1032 #define NR_NUMA_HINT_FAULT_TYPES 2 1033 1034 /* Memory and CPU locality */ 1035 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1036 1037 /* Averaged statistics, and temporary buffers. */ 1038 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1039 1040 pid_t task_numa_group_id(struct task_struct *p) 1041 { 1042 return p->numa_group ? p->numa_group->gid : 0; 1043 } 1044 1045 /* 1046 * The averaged statistics, shared & private, memory & cpu, 1047 * occupy the first half of the array. The second half of the 1048 * array is for current counters, which are averaged into the 1049 * first set by task_numa_placement. 1050 */ 1051 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1052 { 1053 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1054 } 1055 1056 static inline unsigned long task_faults(struct task_struct *p, int nid) 1057 { 1058 if (!p->numa_faults) 1059 return 0; 1060 1061 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1062 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1063 } 1064 1065 static inline unsigned long group_faults(struct task_struct *p, int nid) 1066 { 1067 if (!p->numa_group) 1068 return 0; 1069 1070 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1071 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1072 } 1073 1074 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1075 { 1076 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1077 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1078 } 1079 1080 /* 1081 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1082 * considered part of a numa group's pseudo-interleaving set. Migrations 1083 * between these nodes are slowed down, to allow things to settle down. 1084 */ 1085 #define ACTIVE_NODE_FRACTION 3 1086 1087 static bool numa_is_active_node(int nid, struct numa_group *ng) 1088 { 1089 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1090 } 1091 1092 /* Handle placement on systems where not all nodes are directly connected. */ 1093 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1094 int maxdist, bool task) 1095 { 1096 unsigned long score = 0; 1097 int node; 1098 1099 /* 1100 * All nodes are directly connected, and the same distance 1101 * from each other. No need for fancy placement algorithms. 1102 */ 1103 if (sched_numa_topology_type == NUMA_DIRECT) 1104 return 0; 1105 1106 /* 1107 * This code is called for each node, introducing N^2 complexity, 1108 * which should be ok given the number of nodes rarely exceeds 8. 1109 */ 1110 for_each_online_node(node) { 1111 unsigned long faults; 1112 int dist = node_distance(nid, node); 1113 1114 /* 1115 * The furthest away nodes in the system are not interesting 1116 * for placement; nid was already counted. 1117 */ 1118 if (dist == sched_max_numa_distance || node == nid) 1119 continue; 1120 1121 /* 1122 * On systems with a backplane NUMA topology, compare groups 1123 * of nodes, and move tasks towards the group with the most 1124 * memory accesses. When comparing two nodes at distance 1125 * "hoplimit", only nodes closer by than "hoplimit" are part 1126 * of each group. Skip other nodes. 1127 */ 1128 if (sched_numa_topology_type == NUMA_BACKPLANE && 1129 dist > maxdist) 1130 continue; 1131 1132 /* Add up the faults from nearby nodes. */ 1133 if (task) 1134 faults = task_faults(p, node); 1135 else 1136 faults = group_faults(p, node); 1137 1138 /* 1139 * On systems with a glueless mesh NUMA topology, there are 1140 * no fixed "groups of nodes". Instead, nodes that are not 1141 * directly connected bounce traffic through intermediate 1142 * nodes; a numa_group can occupy any set of nodes. 1143 * The further away a node is, the less the faults count. 1144 * This seems to result in good task placement. 1145 */ 1146 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1147 faults *= (sched_max_numa_distance - dist); 1148 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1149 } 1150 1151 score += faults; 1152 } 1153 1154 return score; 1155 } 1156 1157 /* 1158 * These return the fraction of accesses done by a particular task, or 1159 * task group, on a particular numa node. The group weight is given a 1160 * larger multiplier, in order to group tasks together that are almost 1161 * evenly spread out between numa nodes. 1162 */ 1163 static inline unsigned long task_weight(struct task_struct *p, int nid, 1164 int dist) 1165 { 1166 unsigned long faults, total_faults; 1167 1168 if (!p->numa_faults) 1169 return 0; 1170 1171 total_faults = p->total_numa_faults; 1172 1173 if (!total_faults) 1174 return 0; 1175 1176 faults = task_faults(p, nid); 1177 faults += score_nearby_nodes(p, nid, dist, true); 1178 1179 return 1000 * faults / total_faults; 1180 } 1181 1182 static inline unsigned long group_weight(struct task_struct *p, int nid, 1183 int dist) 1184 { 1185 unsigned long faults, total_faults; 1186 1187 if (!p->numa_group) 1188 return 0; 1189 1190 total_faults = p->numa_group->total_faults; 1191 1192 if (!total_faults) 1193 return 0; 1194 1195 faults = group_faults(p, nid); 1196 faults += score_nearby_nodes(p, nid, dist, false); 1197 1198 return 1000 * faults / total_faults; 1199 } 1200 1201 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1202 int src_nid, int dst_cpu) 1203 { 1204 struct numa_group *ng = p->numa_group; 1205 int dst_nid = cpu_to_node(dst_cpu); 1206 int last_cpupid, this_cpupid; 1207 1208 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1209 1210 /* 1211 * Multi-stage node selection is used in conjunction with a periodic 1212 * migration fault to build a temporal task<->page relation. By using 1213 * a two-stage filter we remove short/unlikely relations. 1214 * 1215 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1216 * a task's usage of a particular page (n_p) per total usage of this 1217 * page (n_t) (in a given time-span) to a probability. 1218 * 1219 * Our periodic faults will sample this probability and getting the 1220 * same result twice in a row, given these samples are fully 1221 * independent, is then given by P(n)^2, provided our sample period 1222 * is sufficiently short compared to the usage pattern. 1223 * 1224 * This quadric squishes small probabilities, making it less likely we 1225 * act on an unlikely task<->page relation. 1226 */ 1227 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1228 if (!cpupid_pid_unset(last_cpupid) && 1229 cpupid_to_nid(last_cpupid) != dst_nid) 1230 return false; 1231 1232 /* Always allow migrate on private faults */ 1233 if (cpupid_match_pid(p, last_cpupid)) 1234 return true; 1235 1236 /* A shared fault, but p->numa_group has not been set up yet. */ 1237 if (!ng) 1238 return true; 1239 1240 /* 1241 * Destination node is much more heavily used than the source 1242 * node? Allow migration. 1243 */ 1244 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1245 ACTIVE_NODE_FRACTION) 1246 return true; 1247 1248 /* 1249 * Distribute memory according to CPU & memory use on each node, 1250 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1251 * 1252 * faults_cpu(dst) 3 faults_cpu(src) 1253 * --------------- * - > --------------- 1254 * faults_mem(dst) 4 faults_mem(src) 1255 */ 1256 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1257 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1258 } 1259 1260 static unsigned long weighted_cpuload(const int cpu); 1261 static unsigned long source_load(int cpu, int type); 1262 static unsigned long target_load(int cpu, int type); 1263 static unsigned long capacity_of(int cpu); 1264 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1265 1266 /* Cached statistics for all CPUs within a node */ 1267 struct numa_stats { 1268 unsigned long nr_running; 1269 unsigned long load; 1270 1271 /* Total compute capacity of CPUs on a node */ 1272 unsigned long compute_capacity; 1273 1274 /* Approximate capacity in terms of runnable tasks on a node */ 1275 unsigned long task_capacity; 1276 int has_free_capacity; 1277 }; 1278 1279 /* 1280 * XXX borrowed from update_sg_lb_stats 1281 */ 1282 static void update_numa_stats(struct numa_stats *ns, int nid) 1283 { 1284 int smt, cpu, cpus = 0; 1285 unsigned long capacity; 1286 1287 memset(ns, 0, sizeof(*ns)); 1288 for_each_cpu(cpu, cpumask_of_node(nid)) { 1289 struct rq *rq = cpu_rq(cpu); 1290 1291 ns->nr_running += rq->nr_running; 1292 ns->load += weighted_cpuload(cpu); 1293 ns->compute_capacity += capacity_of(cpu); 1294 1295 cpus++; 1296 } 1297 1298 /* 1299 * If we raced with hotplug and there are no CPUs left in our mask 1300 * the @ns structure is NULL'ed and task_numa_compare() will 1301 * not find this node attractive. 1302 * 1303 * We'll either bail at !has_free_capacity, or we'll detect a huge 1304 * imbalance and bail there. 1305 */ 1306 if (!cpus) 1307 return; 1308 1309 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1310 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1311 capacity = cpus / smt; /* cores */ 1312 1313 ns->task_capacity = min_t(unsigned, capacity, 1314 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1315 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1316 } 1317 1318 struct task_numa_env { 1319 struct task_struct *p; 1320 1321 int src_cpu, src_nid; 1322 int dst_cpu, dst_nid; 1323 1324 struct numa_stats src_stats, dst_stats; 1325 1326 int imbalance_pct; 1327 int dist; 1328 1329 struct task_struct *best_task; 1330 long best_imp; 1331 int best_cpu; 1332 }; 1333 1334 static void task_numa_assign(struct task_numa_env *env, 1335 struct task_struct *p, long imp) 1336 { 1337 if (env->best_task) 1338 put_task_struct(env->best_task); 1339 if (p) 1340 get_task_struct(p); 1341 1342 env->best_task = p; 1343 env->best_imp = imp; 1344 env->best_cpu = env->dst_cpu; 1345 } 1346 1347 static bool load_too_imbalanced(long src_load, long dst_load, 1348 struct task_numa_env *env) 1349 { 1350 long imb, old_imb; 1351 long orig_src_load, orig_dst_load; 1352 long src_capacity, dst_capacity; 1353 1354 /* 1355 * The load is corrected for the CPU capacity available on each node. 1356 * 1357 * src_load dst_load 1358 * ------------ vs --------- 1359 * src_capacity dst_capacity 1360 */ 1361 src_capacity = env->src_stats.compute_capacity; 1362 dst_capacity = env->dst_stats.compute_capacity; 1363 1364 /* We care about the slope of the imbalance, not the direction. */ 1365 if (dst_load < src_load) 1366 swap(dst_load, src_load); 1367 1368 /* Is the difference below the threshold? */ 1369 imb = dst_load * src_capacity * 100 - 1370 src_load * dst_capacity * env->imbalance_pct; 1371 if (imb <= 0) 1372 return false; 1373 1374 /* 1375 * The imbalance is above the allowed threshold. 1376 * Compare it with the old imbalance. 1377 */ 1378 orig_src_load = env->src_stats.load; 1379 orig_dst_load = env->dst_stats.load; 1380 1381 if (orig_dst_load < orig_src_load) 1382 swap(orig_dst_load, orig_src_load); 1383 1384 old_imb = orig_dst_load * src_capacity * 100 - 1385 orig_src_load * dst_capacity * env->imbalance_pct; 1386 1387 /* Would this change make things worse? */ 1388 return (imb > old_imb); 1389 } 1390 1391 /* 1392 * This checks if the overall compute and NUMA accesses of the system would 1393 * be improved if the source tasks was migrated to the target dst_cpu taking 1394 * into account that it might be best if task running on the dst_cpu should 1395 * be exchanged with the source task 1396 */ 1397 static void task_numa_compare(struct task_numa_env *env, 1398 long taskimp, long groupimp) 1399 { 1400 struct rq *src_rq = cpu_rq(env->src_cpu); 1401 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1402 struct task_struct *cur; 1403 long src_load, dst_load; 1404 long load; 1405 long imp = env->p->numa_group ? groupimp : taskimp; 1406 long moveimp = imp; 1407 int dist = env->dist; 1408 1409 rcu_read_lock(); 1410 cur = task_rcu_dereference(&dst_rq->curr); 1411 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1412 cur = NULL; 1413 1414 /* 1415 * Because we have preemption enabled we can get migrated around and 1416 * end try selecting ourselves (current == env->p) as a swap candidate. 1417 */ 1418 if (cur == env->p) 1419 goto unlock; 1420 1421 /* 1422 * "imp" is the fault differential for the source task between the 1423 * source and destination node. Calculate the total differential for 1424 * the source task and potential destination task. The more negative 1425 * the value is, the more rmeote accesses that would be expected to 1426 * be incurred if the tasks were swapped. 1427 */ 1428 if (cur) { 1429 /* Skip this swap candidate if cannot move to the source cpu */ 1430 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1431 goto unlock; 1432 1433 /* 1434 * If dst and source tasks are in the same NUMA group, or not 1435 * in any group then look only at task weights. 1436 */ 1437 if (cur->numa_group == env->p->numa_group) { 1438 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1439 task_weight(cur, env->dst_nid, dist); 1440 /* 1441 * Add some hysteresis to prevent swapping the 1442 * tasks within a group over tiny differences. 1443 */ 1444 if (cur->numa_group) 1445 imp -= imp/16; 1446 } else { 1447 /* 1448 * Compare the group weights. If a task is all by 1449 * itself (not part of a group), use the task weight 1450 * instead. 1451 */ 1452 if (cur->numa_group) 1453 imp += group_weight(cur, env->src_nid, dist) - 1454 group_weight(cur, env->dst_nid, dist); 1455 else 1456 imp += task_weight(cur, env->src_nid, dist) - 1457 task_weight(cur, env->dst_nid, dist); 1458 } 1459 } 1460 1461 if (imp <= env->best_imp && moveimp <= env->best_imp) 1462 goto unlock; 1463 1464 if (!cur) { 1465 /* Is there capacity at our destination? */ 1466 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1467 !env->dst_stats.has_free_capacity) 1468 goto unlock; 1469 1470 goto balance; 1471 } 1472 1473 /* Balance doesn't matter much if we're running a task per cpu */ 1474 if (imp > env->best_imp && src_rq->nr_running == 1 && 1475 dst_rq->nr_running == 1) 1476 goto assign; 1477 1478 /* 1479 * In the overloaded case, try and keep the load balanced. 1480 */ 1481 balance: 1482 load = task_h_load(env->p); 1483 dst_load = env->dst_stats.load + load; 1484 src_load = env->src_stats.load - load; 1485 1486 if (moveimp > imp && moveimp > env->best_imp) { 1487 /* 1488 * If the improvement from just moving env->p direction is 1489 * better than swapping tasks around, check if a move is 1490 * possible. Store a slightly smaller score than moveimp, 1491 * so an actually idle CPU will win. 1492 */ 1493 if (!load_too_imbalanced(src_load, dst_load, env)) { 1494 imp = moveimp - 1; 1495 cur = NULL; 1496 goto assign; 1497 } 1498 } 1499 1500 if (imp <= env->best_imp) 1501 goto unlock; 1502 1503 if (cur) { 1504 load = task_h_load(cur); 1505 dst_load -= load; 1506 src_load += load; 1507 } 1508 1509 if (load_too_imbalanced(src_load, dst_load, env)) 1510 goto unlock; 1511 1512 /* 1513 * One idle CPU per node is evaluated for a task numa move. 1514 * Call select_idle_sibling to maybe find a better one. 1515 */ 1516 if (!cur) 1517 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu); 1518 1519 assign: 1520 task_numa_assign(env, cur, imp); 1521 unlock: 1522 rcu_read_unlock(); 1523 } 1524 1525 static void task_numa_find_cpu(struct task_numa_env *env, 1526 long taskimp, long groupimp) 1527 { 1528 int cpu; 1529 1530 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1531 /* Skip this CPU if the source task cannot migrate */ 1532 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1533 continue; 1534 1535 env->dst_cpu = cpu; 1536 task_numa_compare(env, taskimp, groupimp); 1537 } 1538 } 1539 1540 /* Only move tasks to a NUMA node less busy than the current node. */ 1541 static bool numa_has_capacity(struct task_numa_env *env) 1542 { 1543 struct numa_stats *src = &env->src_stats; 1544 struct numa_stats *dst = &env->dst_stats; 1545 1546 if (src->has_free_capacity && !dst->has_free_capacity) 1547 return false; 1548 1549 /* 1550 * Only consider a task move if the source has a higher load 1551 * than the destination, corrected for CPU capacity on each node. 1552 * 1553 * src->load dst->load 1554 * --------------------- vs --------------------- 1555 * src->compute_capacity dst->compute_capacity 1556 */ 1557 if (src->load * dst->compute_capacity * env->imbalance_pct > 1558 1559 dst->load * src->compute_capacity * 100) 1560 return true; 1561 1562 return false; 1563 } 1564 1565 static int task_numa_migrate(struct task_struct *p) 1566 { 1567 struct task_numa_env env = { 1568 .p = p, 1569 1570 .src_cpu = task_cpu(p), 1571 .src_nid = task_node(p), 1572 1573 .imbalance_pct = 112, 1574 1575 .best_task = NULL, 1576 .best_imp = 0, 1577 .best_cpu = -1, 1578 }; 1579 struct sched_domain *sd; 1580 unsigned long taskweight, groupweight; 1581 int nid, ret, dist; 1582 long taskimp, groupimp; 1583 1584 /* 1585 * Pick the lowest SD_NUMA domain, as that would have the smallest 1586 * imbalance and would be the first to start moving tasks about. 1587 * 1588 * And we want to avoid any moving of tasks about, as that would create 1589 * random movement of tasks -- counter the numa conditions we're trying 1590 * to satisfy here. 1591 */ 1592 rcu_read_lock(); 1593 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1594 if (sd) 1595 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1596 rcu_read_unlock(); 1597 1598 /* 1599 * Cpusets can break the scheduler domain tree into smaller 1600 * balance domains, some of which do not cross NUMA boundaries. 1601 * Tasks that are "trapped" in such domains cannot be migrated 1602 * elsewhere, so there is no point in (re)trying. 1603 */ 1604 if (unlikely(!sd)) { 1605 p->numa_preferred_nid = task_node(p); 1606 return -EINVAL; 1607 } 1608 1609 env.dst_nid = p->numa_preferred_nid; 1610 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1611 taskweight = task_weight(p, env.src_nid, dist); 1612 groupweight = group_weight(p, env.src_nid, dist); 1613 update_numa_stats(&env.src_stats, env.src_nid); 1614 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1615 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1616 update_numa_stats(&env.dst_stats, env.dst_nid); 1617 1618 /* Try to find a spot on the preferred nid. */ 1619 if (numa_has_capacity(&env)) 1620 task_numa_find_cpu(&env, taskimp, groupimp); 1621 1622 /* 1623 * Look at other nodes in these cases: 1624 * - there is no space available on the preferred_nid 1625 * - the task is part of a numa_group that is interleaved across 1626 * multiple NUMA nodes; in order to better consolidate the group, 1627 * we need to check other locations. 1628 */ 1629 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1630 for_each_online_node(nid) { 1631 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1632 continue; 1633 1634 dist = node_distance(env.src_nid, env.dst_nid); 1635 if (sched_numa_topology_type == NUMA_BACKPLANE && 1636 dist != env.dist) { 1637 taskweight = task_weight(p, env.src_nid, dist); 1638 groupweight = group_weight(p, env.src_nid, dist); 1639 } 1640 1641 /* Only consider nodes where both task and groups benefit */ 1642 taskimp = task_weight(p, nid, dist) - taskweight; 1643 groupimp = group_weight(p, nid, dist) - groupweight; 1644 if (taskimp < 0 && groupimp < 0) 1645 continue; 1646 1647 env.dist = dist; 1648 env.dst_nid = nid; 1649 update_numa_stats(&env.dst_stats, env.dst_nid); 1650 if (numa_has_capacity(&env)) 1651 task_numa_find_cpu(&env, taskimp, groupimp); 1652 } 1653 } 1654 1655 /* 1656 * If the task is part of a workload that spans multiple NUMA nodes, 1657 * and is migrating into one of the workload's active nodes, remember 1658 * this node as the task's preferred numa node, so the workload can 1659 * settle down. 1660 * A task that migrated to a second choice node will be better off 1661 * trying for a better one later. Do not set the preferred node here. 1662 */ 1663 if (p->numa_group) { 1664 struct numa_group *ng = p->numa_group; 1665 1666 if (env.best_cpu == -1) 1667 nid = env.src_nid; 1668 else 1669 nid = env.dst_nid; 1670 1671 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) 1672 sched_setnuma(p, env.dst_nid); 1673 } 1674 1675 /* No better CPU than the current one was found. */ 1676 if (env.best_cpu == -1) 1677 return -EAGAIN; 1678 1679 /* 1680 * Reset the scan period if the task is being rescheduled on an 1681 * alternative node to recheck if the tasks is now properly placed. 1682 */ 1683 p->numa_scan_period = task_scan_min(p); 1684 1685 if (env.best_task == NULL) { 1686 ret = migrate_task_to(p, env.best_cpu); 1687 if (ret != 0) 1688 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1689 return ret; 1690 } 1691 1692 ret = migrate_swap(p, env.best_task); 1693 if (ret != 0) 1694 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1695 put_task_struct(env.best_task); 1696 return ret; 1697 } 1698 1699 /* Attempt to migrate a task to a CPU on the preferred node. */ 1700 static void numa_migrate_preferred(struct task_struct *p) 1701 { 1702 unsigned long interval = HZ; 1703 1704 /* This task has no NUMA fault statistics yet */ 1705 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1706 return; 1707 1708 /* Periodically retry migrating the task to the preferred node */ 1709 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1710 p->numa_migrate_retry = jiffies + interval; 1711 1712 /* Success if task is already running on preferred CPU */ 1713 if (task_node(p) == p->numa_preferred_nid) 1714 return; 1715 1716 /* Otherwise, try migrate to a CPU on the preferred node */ 1717 task_numa_migrate(p); 1718 } 1719 1720 /* 1721 * Find out how many nodes on the workload is actively running on. Do this by 1722 * tracking the nodes from which NUMA hinting faults are triggered. This can 1723 * be different from the set of nodes where the workload's memory is currently 1724 * located. 1725 */ 1726 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1727 { 1728 unsigned long faults, max_faults = 0; 1729 int nid, active_nodes = 0; 1730 1731 for_each_online_node(nid) { 1732 faults = group_faults_cpu(numa_group, nid); 1733 if (faults > max_faults) 1734 max_faults = faults; 1735 } 1736 1737 for_each_online_node(nid) { 1738 faults = group_faults_cpu(numa_group, nid); 1739 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1740 active_nodes++; 1741 } 1742 1743 numa_group->max_faults_cpu = max_faults; 1744 numa_group->active_nodes = active_nodes; 1745 } 1746 1747 /* 1748 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1749 * increments. The more local the fault statistics are, the higher the scan 1750 * period will be for the next scan window. If local/(local+remote) ratio is 1751 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1752 * the scan period will decrease. Aim for 70% local accesses. 1753 */ 1754 #define NUMA_PERIOD_SLOTS 10 1755 #define NUMA_PERIOD_THRESHOLD 7 1756 1757 /* 1758 * Increase the scan period (slow down scanning) if the majority of 1759 * our memory is already on our local node, or if the majority of 1760 * the page accesses are shared with other processes. 1761 * Otherwise, decrease the scan period. 1762 */ 1763 static void update_task_scan_period(struct task_struct *p, 1764 unsigned long shared, unsigned long private) 1765 { 1766 unsigned int period_slot; 1767 int ratio; 1768 int diff; 1769 1770 unsigned long remote = p->numa_faults_locality[0]; 1771 unsigned long local = p->numa_faults_locality[1]; 1772 1773 /* 1774 * If there were no record hinting faults then either the task is 1775 * completely idle or all activity is areas that are not of interest 1776 * to automatic numa balancing. Related to that, if there were failed 1777 * migration then it implies we are migrating too quickly or the local 1778 * node is overloaded. In either case, scan slower 1779 */ 1780 if (local + shared == 0 || p->numa_faults_locality[2]) { 1781 p->numa_scan_period = min(p->numa_scan_period_max, 1782 p->numa_scan_period << 1); 1783 1784 p->mm->numa_next_scan = jiffies + 1785 msecs_to_jiffies(p->numa_scan_period); 1786 1787 return; 1788 } 1789 1790 /* 1791 * Prepare to scale scan period relative to the current period. 1792 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1793 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1794 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1795 */ 1796 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1797 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1798 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1799 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1800 if (!slot) 1801 slot = 1; 1802 diff = slot * period_slot; 1803 } else { 1804 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1805 1806 /* 1807 * Scale scan rate increases based on sharing. There is an 1808 * inverse relationship between the degree of sharing and 1809 * the adjustment made to the scanning period. Broadly 1810 * speaking the intent is that there is little point 1811 * scanning faster if shared accesses dominate as it may 1812 * simply bounce migrations uselessly 1813 */ 1814 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); 1815 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1816 } 1817 1818 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1819 task_scan_min(p), task_scan_max(p)); 1820 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1821 } 1822 1823 /* 1824 * Get the fraction of time the task has been running since the last 1825 * NUMA placement cycle. The scheduler keeps similar statistics, but 1826 * decays those on a 32ms period, which is orders of magnitude off 1827 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1828 * stats only if the task is so new there are no NUMA statistics yet. 1829 */ 1830 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1831 { 1832 u64 runtime, delta, now; 1833 /* Use the start of this time slice to avoid calculations. */ 1834 now = p->se.exec_start; 1835 runtime = p->se.sum_exec_runtime; 1836 1837 if (p->last_task_numa_placement) { 1838 delta = runtime - p->last_sum_exec_runtime; 1839 *period = now - p->last_task_numa_placement; 1840 } else { 1841 delta = p->se.avg.load_sum / p->se.load.weight; 1842 *period = LOAD_AVG_MAX; 1843 } 1844 1845 p->last_sum_exec_runtime = runtime; 1846 p->last_task_numa_placement = now; 1847 1848 return delta; 1849 } 1850 1851 /* 1852 * Determine the preferred nid for a task in a numa_group. This needs to 1853 * be done in a way that produces consistent results with group_weight, 1854 * otherwise workloads might not converge. 1855 */ 1856 static int preferred_group_nid(struct task_struct *p, int nid) 1857 { 1858 nodemask_t nodes; 1859 int dist; 1860 1861 /* Direct connections between all NUMA nodes. */ 1862 if (sched_numa_topology_type == NUMA_DIRECT) 1863 return nid; 1864 1865 /* 1866 * On a system with glueless mesh NUMA topology, group_weight 1867 * scores nodes according to the number of NUMA hinting faults on 1868 * both the node itself, and on nearby nodes. 1869 */ 1870 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1871 unsigned long score, max_score = 0; 1872 int node, max_node = nid; 1873 1874 dist = sched_max_numa_distance; 1875 1876 for_each_online_node(node) { 1877 score = group_weight(p, node, dist); 1878 if (score > max_score) { 1879 max_score = score; 1880 max_node = node; 1881 } 1882 } 1883 return max_node; 1884 } 1885 1886 /* 1887 * Finding the preferred nid in a system with NUMA backplane 1888 * interconnect topology is more involved. The goal is to locate 1889 * tasks from numa_groups near each other in the system, and 1890 * untangle workloads from different sides of the system. This requires 1891 * searching down the hierarchy of node groups, recursively searching 1892 * inside the highest scoring group of nodes. The nodemask tricks 1893 * keep the complexity of the search down. 1894 */ 1895 nodes = node_online_map; 1896 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 1897 unsigned long max_faults = 0; 1898 nodemask_t max_group = NODE_MASK_NONE; 1899 int a, b; 1900 1901 /* Are there nodes at this distance from each other? */ 1902 if (!find_numa_distance(dist)) 1903 continue; 1904 1905 for_each_node_mask(a, nodes) { 1906 unsigned long faults = 0; 1907 nodemask_t this_group; 1908 nodes_clear(this_group); 1909 1910 /* Sum group's NUMA faults; includes a==b case. */ 1911 for_each_node_mask(b, nodes) { 1912 if (node_distance(a, b) < dist) { 1913 faults += group_faults(p, b); 1914 node_set(b, this_group); 1915 node_clear(b, nodes); 1916 } 1917 } 1918 1919 /* Remember the top group. */ 1920 if (faults > max_faults) { 1921 max_faults = faults; 1922 max_group = this_group; 1923 /* 1924 * subtle: at the smallest distance there is 1925 * just one node left in each "group", the 1926 * winner is the preferred nid. 1927 */ 1928 nid = a; 1929 } 1930 } 1931 /* Next round, evaluate the nodes within max_group. */ 1932 if (!max_faults) 1933 break; 1934 nodes = max_group; 1935 } 1936 return nid; 1937 } 1938 1939 static void task_numa_placement(struct task_struct *p) 1940 { 1941 int seq, nid, max_nid = -1, max_group_nid = -1; 1942 unsigned long max_faults = 0, max_group_faults = 0; 1943 unsigned long fault_types[2] = { 0, 0 }; 1944 unsigned long total_faults; 1945 u64 runtime, period; 1946 spinlock_t *group_lock = NULL; 1947 1948 /* 1949 * The p->mm->numa_scan_seq field gets updated without 1950 * exclusive access. Use READ_ONCE() here to ensure 1951 * that the field is read in a single access: 1952 */ 1953 seq = READ_ONCE(p->mm->numa_scan_seq); 1954 if (p->numa_scan_seq == seq) 1955 return; 1956 p->numa_scan_seq = seq; 1957 p->numa_scan_period_max = task_scan_max(p); 1958 1959 total_faults = p->numa_faults_locality[0] + 1960 p->numa_faults_locality[1]; 1961 runtime = numa_get_avg_runtime(p, &period); 1962 1963 /* If the task is part of a group prevent parallel updates to group stats */ 1964 if (p->numa_group) { 1965 group_lock = &p->numa_group->lock; 1966 spin_lock_irq(group_lock); 1967 } 1968 1969 /* Find the node with the highest number of faults */ 1970 for_each_online_node(nid) { 1971 /* Keep track of the offsets in numa_faults array */ 1972 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 1973 unsigned long faults = 0, group_faults = 0; 1974 int priv; 1975 1976 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 1977 long diff, f_diff, f_weight; 1978 1979 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 1980 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 1981 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 1982 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 1983 1984 /* Decay existing window, copy faults since last scan */ 1985 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 1986 fault_types[priv] += p->numa_faults[membuf_idx]; 1987 p->numa_faults[membuf_idx] = 0; 1988 1989 /* 1990 * Normalize the faults_from, so all tasks in a group 1991 * count according to CPU use, instead of by the raw 1992 * number of faults. Tasks with little runtime have 1993 * little over-all impact on throughput, and thus their 1994 * faults are less important. 1995 */ 1996 f_weight = div64_u64(runtime << 16, period + 1); 1997 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 1998 (total_faults + 1); 1999 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2000 p->numa_faults[cpubuf_idx] = 0; 2001 2002 p->numa_faults[mem_idx] += diff; 2003 p->numa_faults[cpu_idx] += f_diff; 2004 faults += p->numa_faults[mem_idx]; 2005 p->total_numa_faults += diff; 2006 if (p->numa_group) { 2007 /* 2008 * safe because we can only change our own group 2009 * 2010 * mem_idx represents the offset for a given 2011 * nid and priv in a specific region because it 2012 * is at the beginning of the numa_faults array. 2013 */ 2014 p->numa_group->faults[mem_idx] += diff; 2015 p->numa_group->faults_cpu[mem_idx] += f_diff; 2016 p->numa_group->total_faults += diff; 2017 group_faults += p->numa_group->faults[mem_idx]; 2018 } 2019 } 2020 2021 if (faults > max_faults) { 2022 max_faults = faults; 2023 max_nid = nid; 2024 } 2025 2026 if (group_faults > max_group_faults) { 2027 max_group_faults = group_faults; 2028 max_group_nid = nid; 2029 } 2030 } 2031 2032 update_task_scan_period(p, fault_types[0], fault_types[1]); 2033 2034 if (p->numa_group) { 2035 numa_group_count_active_nodes(p->numa_group); 2036 spin_unlock_irq(group_lock); 2037 max_nid = preferred_group_nid(p, max_group_nid); 2038 } 2039 2040 if (max_faults) { 2041 /* Set the new preferred node */ 2042 if (max_nid != p->numa_preferred_nid) 2043 sched_setnuma(p, max_nid); 2044 2045 if (task_node(p) != p->numa_preferred_nid) 2046 numa_migrate_preferred(p); 2047 } 2048 } 2049 2050 static inline int get_numa_group(struct numa_group *grp) 2051 { 2052 return atomic_inc_not_zero(&grp->refcount); 2053 } 2054 2055 static inline void put_numa_group(struct numa_group *grp) 2056 { 2057 if (atomic_dec_and_test(&grp->refcount)) 2058 kfree_rcu(grp, rcu); 2059 } 2060 2061 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2062 int *priv) 2063 { 2064 struct numa_group *grp, *my_grp; 2065 struct task_struct *tsk; 2066 bool join = false; 2067 int cpu = cpupid_to_cpu(cpupid); 2068 int i; 2069 2070 if (unlikely(!p->numa_group)) { 2071 unsigned int size = sizeof(struct numa_group) + 2072 4*nr_node_ids*sizeof(unsigned long); 2073 2074 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2075 if (!grp) 2076 return; 2077 2078 atomic_set(&grp->refcount, 1); 2079 grp->active_nodes = 1; 2080 grp->max_faults_cpu = 0; 2081 spin_lock_init(&grp->lock); 2082 grp->gid = p->pid; 2083 /* Second half of the array tracks nids where faults happen */ 2084 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2085 nr_node_ids; 2086 2087 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2088 grp->faults[i] = p->numa_faults[i]; 2089 2090 grp->total_faults = p->total_numa_faults; 2091 2092 grp->nr_tasks++; 2093 rcu_assign_pointer(p->numa_group, grp); 2094 } 2095 2096 rcu_read_lock(); 2097 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2098 2099 if (!cpupid_match_pid(tsk, cpupid)) 2100 goto no_join; 2101 2102 grp = rcu_dereference(tsk->numa_group); 2103 if (!grp) 2104 goto no_join; 2105 2106 my_grp = p->numa_group; 2107 if (grp == my_grp) 2108 goto no_join; 2109 2110 /* 2111 * Only join the other group if its bigger; if we're the bigger group, 2112 * the other task will join us. 2113 */ 2114 if (my_grp->nr_tasks > grp->nr_tasks) 2115 goto no_join; 2116 2117 /* 2118 * Tie-break on the grp address. 2119 */ 2120 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2121 goto no_join; 2122 2123 /* Always join threads in the same process. */ 2124 if (tsk->mm == current->mm) 2125 join = true; 2126 2127 /* Simple filter to avoid false positives due to PID collisions */ 2128 if (flags & TNF_SHARED) 2129 join = true; 2130 2131 /* Update priv based on whether false sharing was detected */ 2132 *priv = !join; 2133 2134 if (join && !get_numa_group(grp)) 2135 goto no_join; 2136 2137 rcu_read_unlock(); 2138 2139 if (!join) 2140 return; 2141 2142 BUG_ON(irqs_disabled()); 2143 double_lock_irq(&my_grp->lock, &grp->lock); 2144 2145 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2146 my_grp->faults[i] -= p->numa_faults[i]; 2147 grp->faults[i] += p->numa_faults[i]; 2148 } 2149 my_grp->total_faults -= p->total_numa_faults; 2150 grp->total_faults += p->total_numa_faults; 2151 2152 my_grp->nr_tasks--; 2153 grp->nr_tasks++; 2154 2155 spin_unlock(&my_grp->lock); 2156 spin_unlock_irq(&grp->lock); 2157 2158 rcu_assign_pointer(p->numa_group, grp); 2159 2160 put_numa_group(my_grp); 2161 return; 2162 2163 no_join: 2164 rcu_read_unlock(); 2165 return; 2166 } 2167 2168 void task_numa_free(struct task_struct *p) 2169 { 2170 struct numa_group *grp = p->numa_group; 2171 void *numa_faults = p->numa_faults; 2172 unsigned long flags; 2173 int i; 2174 2175 if (grp) { 2176 spin_lock_irqsave(&grp->lock, flags); 2177 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2178 grp->faults[i] -= p->numa_faults[i]; 2179 grp->total_faults -= p->total_numa_faults; 2180 2181 grp->nr_tasks--; 2182 spin_unlock_irqrestore(&grp->lock, flags); 2183 RCU_INIT_POINTER(p->numa_group, NULL); 2184 put_numa_group(grp); 2185 } 2186 2187 p->numa_faults = NULL; 2188 kfree(numa_faults); 2189 } 2190 2191 /* 2192 * Got a PROT_NONE fault for a page on @node. 2193 */ 2194 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2195 { 2196 struct task_struct *p = current; 2197 bool migrated = flags & TNF_MIGRATED; 2198 int cpu_node = task_node(current); 2199 int local = !!(flags & TNF_FAULT_LOCAL); 2200 struct numa_group *ng; 2201 int priv; 2202 2203 if (!static_branch_likely(&sched_numa_balancing)) 2204 return; 2205 2206 /* for example, ksmd faulting in a user's mm */ 2207 if (!p->mm) 2208 return; 2209 2210 /* Allocate buffer to track faults on a per-node basis */ 2211 if (unlikely(!p->numa_faults)) { 2212 int size = sizeof(*p->numa_faults) * 2213 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2214 2215 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2216 if (!p->numa_faults) 2217 return; 2218 2219 p->total_numa_faults = 0; 2220 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2221 } 2222 2223 /* 2224 * First accesses are treated as private, otherwise consider accesses 2225 * to be private if the accessing pid has not changed 2226 */ 2227 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2228 priv = 1; 2229 } else { 2230 priv = cpupid_match_pid(p, last_cpupid); 2231 if (!priv && !(flags & TNF_NO_GROUP)) 2232 task_numa_group(p, last_cpupid, flags, &priv); 2233 } 2234 2235 /* 2236 * If a workload spans multiple NUMA nodes, a shared fault that 2237 * occurs wholly within the set of nodes that the workload is 2238 * actively using should be counted as local. This allows the 2239 * scan rate to slow down when a workload has settled down. 2240 */ 2241 ng = p->numa_group; 2242 if (!priv && !local && ng && ng->active_nodes > 1 && 2243 numa_is_active_node(cpu_node, ng) && 2244 numa_is_active_node(mem_node, ng)) 2245 local = 1; 2246 2247 task_numa_placement(p); 2248 2249 /* 2250 * Retry task to preferred node migration periodically, in case it 2251 * case it previously failed, or the scheduler moved us. 2252 */ 2253 if (time_after(jiffies, p->numa_migrate_retry)) 2254 numa_migrate_preferred(p); 2255 2256 if (migrated) 2257 p->numa_pages_migrated += pages; 2258 if (flags & TNF_MIGRATE_FAIL) 2259 p->numa_faults_locality[2] += pages; 2260 2261 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2262 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2263 p->numa_faults_locality[local] += pages; 2264 } 2265 2266 static void reset_ptenuma_scan(struct task_struct *p) 2267 { 2268 /* 2269 * We only did a read acquisition of the mmap sem, so 2270 * p->mm->numa_scan_seq is written to without exclusive access 2271 * and the update is not guaranteed to be atomic. That's not 2272 * much of an issue though, since this is just used for 2273 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2274 * expensive, to avoid any form of compiler optimizations: 2275 */ 2276 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2277 p->mm->numa_scan_offset = 0; 2278 } 2279 2280 /* 2281 * The expensive part of numa migration is done from task_work context. 2282 * Triggered from task_tick_numa(). 2283 */ 2284 void task_numa_work(struct callback_head *work) 2285 { 2286 unsigned long migrate, next_scan, now = jiffies; 2287 struct task_struct *p = current; 2288 struct mm_struct *mm = p->mm; 2289 u64 runtime = p->se.sum_exec_runtime; 2290 struct vm_area_struct *vma; 2291 unsigned long start, end; 2292 unsigned long nr_pte_updates = 0; 2293 long pages, virtpages; 2294 2295 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 2296 2297 work->next = work; /* protect against double add */ 2298 /* 2299 * Who cares about NUMA placement when they're dying. 2300 * 2301 * NOTE: make sure not to dereference p->mm before this check, 2302 * exit_task_work() happens _after_ exit_mm() so we could be called 2303 * without p->mm even though we still had it when we enqueued this 2304 * work. 2305 */ 2306 if (p->flags & PF_EXITING) 2307 return; 2308 2309 if (!mm->numa_next_scan) { 2310 mm->numa_next_scan = now + 2311 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2312 } 2313 2314 /* 2315 * Enforce maximal scan/migration frequency.. 2316 */ 2317 migrate = mm->numa_next_scan; 2318 if (time_before(now, migrate)) 2319 return; 2320 2321 if (p->numa_scan_period == 0) { 2322 p->numa_scan_period_max = task_scan_max(p); 2323 p->numa_scan_period = task_scan_min(p); 2324 } 2325 2326 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2327 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2328 return; 2329 2330 /* 2331 * Delay this task enough that another task of this mm will likely win 2332 * the next time around. 2333 */ 2334 p->node_stamp += 2 * TICK_NSEC; 2335 2336 start = mm->numa_scan_offset; 2337 pages = sysctl_numa_balancing_scan_size; 2338 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2339 virtpages = pages * 8; /* Scan up to this much virtual space */ 2340 if (!pages) 2341 return; 2342 2343 2344 down_read(&mm->mmap_sem); 2345 vma = find_vma(mm, start); 2346 if (!vma) { 2347 reset_ptenuma_scan(p); 2348 start = 0; 2349 vma = mm->mmap; 2350 } 2351 for (; vma; vma = vma->vm_next) { 2352 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2353 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2354 continue; 2355 } 2356 2357 /* 2358 * Shared library pages mapped by multiple processes are not 2359 * migrated as it is expected they are cache replicated. Avoid 2360 * hinting faults in read-only file-backed mappings or the vdso 2361 * as migrating the pages will be of marginal benefit. 2362 */ 2363 if (!vma->vm_mm || 2364 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2365 continue; 2366 2367 /* 2368 * Skip inaccessible VMAs to avoid any confusion between 2369 * PROT_NONE and NUMA hinting ptes 2370 */ 2371 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2372 continue; 2373 2374 do { 2375 start = max(start, vma->vm_start); 2376 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2377 end = min(end, vma->vm_end); 2378 nr_pte_updates = change_prot_numa(vma, start, end); 2379 2380 /* 2381 * Try to scan sysctl_numa_balancing_size worth of 2382 * hpages that have at least one present PTE that 2383 * is not already pte-numa. If the VMA contains 2384 * areas that are unused or already full of prot_numa 2385 * PTEs, scan up to virtpages, to skip through those 2386 * areas faster. 2387 */ 2388 if (nr_pte_updates) 2389 pages -= (end - start) >> PAGE_SHIFT; 2390 virtpages -= (end - start) >> PAGE_SHIFT; 2391 2392 start = end; 2393 if (pages <= 0 || virtpages <= 0) 2394 goto out; 2395 2396 cond_resched(); 2397 } while (end != vma->vm_end); 2398 } 2399 2400 out: 2401 /* 2402 * It is possible to reach the end of the VMA list but the last few 2403 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2404 * would find the !migratable VMA on the next scan but not reset the 2405 * scanner to the start so check it now. 2406 */ 2407 if (vma) 2408 mm->numa_scan_offset = start; 2409 else 2410 reset_ptenuma_scan(p); 2411 up_read(&mm->mmap_sem); 2412 2413 /* 2414 * Make sure tasks use at least 32x as much time to run other code 2415 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2416 * Usually update_task_scan_period slows down scanning enough; on an 2417 * overloaded system we need to limit overhead on a per task basis. 2418 */ 2419 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2420 u64 diff = p->se.sum_exec_runtime - runtime; 2421 p->node_stamp += 32 * diff; 2422 } 2423 } 2424 2425 /* 2426 * Drive the periodic memory faults.. 2427 */ 2428 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2429 { 2430 struct callback_head *work = &curr->numa_work; 2431 u64 period, now; 2432 2433 /* 2434 * We don't care about NUMA placement if we don't have memory. 2435 */ 2436 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2437 return; 2438 2439 /* 2440 * Using runtime rather than walltime has the dual advantage that 2441 * we (mostly) drive the selection from busy threads and that the 2442 * task needs to have done some actual work before we bother with 2443 * NUMA placement. 2444 */ 2445 now = curr->se.sum_exec_runtime; 2446 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2447 2448 if (now > curr->node_stamp + period) { 2449 if (!curr->node_stamp) 2450 curr->numa_scan_period = task_scan_min(curr); 2451 curr->node_stamp += period; 2452 2453 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2454 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2455 task_work_add(curr, work, true); 2456 } 2457 } 2458 } 2459 #else 2460 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2461 { 2462 } 2463 2464 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2465 { 2466 } 2467 2468 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2469 { 2470 } 2471 #endif /* CONFIG_NUMA_BALANCING */ 2472 2473 static void 2474 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2475 { 2476 update_load_add(&cfs_rq->load, se->load.weight); 2477 if (!parent_entity(se)) 2478 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2479 #ifdef CONFIG_SMP 2480 if (entity_is_task(se)) { 2481 struct rq *rq = rq_of(cfs_rq); 2482 2483 account_numa_enqueue(rq, task_of(se)); 2484 list_add(&se->group_node, &rq->cfs_tasks); 2485 } 2486 #endif 2487 cfs_rq->nr_running++; 2488 } 2489 2490 static void 2491 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2492 { 2493 update_load_sub(&cfs_rq->load, se->load.weight); 2494 if (!parent_entity(se)) 2495 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2496 #ifdef CONFIG_SMP 2497 if (entity_is_task(se)) { 2498 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2499 list_del_init(&se->group_node); 2500 } 2501 #endif 2502 cfs_rq->nr_running--; 2503 } 2504 2505 #ifdef CONFIG_FAIR_GROUP_SCHED 2506 # ifdef CONFIG_SMP 2507 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2508 { 2509 long tg_weight, load, shares; 2510 2511 /* 2512 * This really should be: cfs_rq->avg.load_avg, but instead we use 2513 * cfs_rq->load.weight, which is its upper bound. This helps ramp up 2514 * the shares for small weight interactive tasks. 2515 */ 2516 load = scale_load_down(cfs_rq->load.weight); 2517 2518 tg_weight = atomic_long_read(&tg->load_avg); 2519 2520 /* Ensure tg_weight >= load */ 2521 tg_weight -= cfs_rq->tg_load_avg_contrib; 2522 tg_weight += load; 2523 2524 shares = (tg->shares * load); 2525 if (tg_weight) 2526 shares /= tg_weight; 2527 2528 if (shares < MIN_SHARES) 2529 shares = MIN_SHARES; 2530 if (shares > tg->shares) 2531 shares = tg->shares; 2532 2533 return shares; 2534 } 2535 # else /* CONFIG_SMP */ 2536 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2537 { 2538 return tg->shares; 2539 } 2540 # endif /* CONFIG_SMP */ 2541 2542 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2543 unsigned long weight) 2544 { 2545 if (se->on_rq) { 2546 /* commit outstanding execution time */ 2547 if (cfs_rq->curr == se) 2548 update_curr(cfs_rq); 2549 account_entity_dequeue(cfs_rq, se); 2550 } 2551 2552 update_load_set(&se->load, weight); 2553 2554 if (se->on_rq) 2555 account_entity_enqueue(cfs_rq, se); 2556 } 2557 2558 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2559 2560 static void update_cfs_shares(struct cfs_rq *cfs_rq) 2561 { 2562 struct task_group *tg; 2563 struct sched_entity *se; 2564 long shares; 2565 2566 tg = cfs_rq->tg; 2567 se = tg->se[cpu_of(rq_of(cfs_rq))]; 2568 if (!se || throttled_hierarchy(cfs_rq)) 2569 return; 2570 #ifndef CONFIG_SMP 2571 if (likely(se->load.weight == tg->shares)) 2572 return; 2573 #endif 2574 shares = calc_cfs_shares(cfs_rq, tg); 2575 2576 reweight_entity(cfs_rq_of(se), se, shares); 2577 } 2578 #else /* CONFIG_FAIR_GROUP_SCHED */ 2579 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 2580 { 2581 } 2582 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2583 2584 #ifdef CONFIG_SMP 2585 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 2586 static const u32 runnable_avg_yN_inv[] = { 2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 2592 0x85aac367, 0x82cd8698, 2593 }; 2594 2595 /* 2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 2597 * over-estimates when re-combining. 2598 */ 2599 static const u32 runnable_avg_yN_sum[] = { 2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 2603 }; 2604 2605 /* 2606 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to 2607 * lower integers. See Documentation/scheduler/sched-avg.txt how these 2608 * were generated: 2609 */ 2610 static const u32 __accumulated_sum_N32[] = { 2611 0, 23371, 35056, 40899, 43820, 45281, 2612 46011, 46376, 46559, 46650, 46696, 46719, 2613 }; 2614 2615 /* 2616 * Approximate: 2617 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2618 */ 2619 static __always_inline u64 decay_load(u64 val, u64 n) 2620 { 2621 unsigned int local_n; 2622 2623 if (!n) 2624 return val; 2625 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2626 return 0; 2627 2628 /* after bounds checking we can collapse to 32-bit */ 2629 local_n = n; 2630 2631 /* 2632 * As y^PERIOD = 1/2, we can combine 2633 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 2634 * With a look-up table which covers y^n (n<PERIOD) 2635 * 2636 * To achieve constant time decay_load. 2637 */ 2638 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2639 val >>= local_n / LOAD_AVG_PERIOD; 2640 local_n %= LOAD_AVG_PERIOD; 2641 } 2642 2643 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 2644 return val; 2645 } 2646 2647 /* 2648 * For updates fully spanning n periods, the contribution to runnable 2649 * average will be: \Sum 1024*y^n 2650 * 2651 * We can compute this reasonably efficiently by combining: 2652 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2653 */ 2654 static u32 __compute_runnable_contrib(u64 n) 2655 { 2656 u32 contrib = 0; 2657 2658 if (likely(n <= LOAD_AVG_PERIOD)) 2659 return runnable_avg_yN_sum[n]; 2660 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2661 return LOAD_AVG_MAX; 2662 2663 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */ 2664 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD]; 2665 n %= LOAD_AVG_PERIOD; 2666 contrib = decay_load(contrib, n); 2667 return contrib + runnable_avg_yN_sum[n]; 2668 } 2669 2670 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 2671 2672 /* 2673 * We can represent the historical contribution to runnable average as the 2674 * coefficients of a geometric series. To do this we sub-divide our runnable 2675 * history into segments of approximately 1ms (1024us); label the segment that 2676 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2677 * 2678 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2679 * p0 p1 p2 2680 * (now) (~1ms ago) (~2ms ago) 2681 * 2682 * Let u_i denote the fraction of p_i that the entity was runnable. 2683 * 2684 * We then designate the fractions u_i as our co-efficients, yielding the 2685 * following representation of historical load: 2686 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2687 * 2688 * We choose y based on the with of a reasonably scheduling period, fixing: 2689 * y^32 = 0.5 2690 * 2691 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2692 * approximately half as much as the contribution to load within the last ms 2693 * (u_0). 2694 * 2695 * When a period "rolls over" and we have new u_0`, multiplying the previous 2696 * sum again by y is sufficient to update: 2697 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2698 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2699 */ 2700 static __always_inline int 2701 __update_load_avg(u64 now, int cpu, struct sched_avg *sa, 2702 unsigned long weight, int running, struct cfs_rq *cfs_rq) 2703 { 2704 u64 delta, scaled_delta, periods; 2705 u32 contrib; 2706 unsigned int delta_w, scaled_delta_w, decayed = 0; 2707 unsigned long scale_freq, scale_cpu; 2708 2709 delta = now - sa->last_update_time; 2710 /* 2711 * This should only happen when time goes backwards, which it 2712 * unfortunately does during sched clock init when we swap over to TSC. 2713 */ 2714 if ((s64)delta < 0) { 2715 sa->last_update_time = now; 2716 return 0; 2717 } 2718 2719 /* 2720 * Use 1024ns as the unit of measurement since it's a reasonable 2721 * approximation of 1us and fast to compute. 2722 */ 2723 delta >>= 10; 2724 if (!delta) 2725 return 0; 2726 sa->last_update_time = now; 2727 2728 scale_freq = arch_scale_freq_capacity(NULL, cpu); 2729 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 2730 2731 /* delta_w is the amount already accumulated against our next period */ 2732 delta_w = sa->period_contrib; 2733 if (delta + delta_w >= 1024) { 2734 decayed = 1; 2735 2736 /* how much left for next period will start over, we don't know yet */ 2737 sa->period_contrib = 0; 2738 2739 /* 2740 * Now that we know we're crossing a period boundary, figure 2741 * out how much from delta we need to complete the current 2742 * period and accrue it. 2743 */ 2744 delta_w = 1024 - delta_w; 2745 scaled_delta_w = cap_scale(delta_w, scale_freq); 2746 if (weight) { 2747 sa->load_sum += weight * scaled_delta_w; 2748 if (cfs_rq) { 2749 cfs_rq->runnable_load_sum += 2750 weight * scaled_delta_w; 2751 } 2752 } 2753 if (running) 2754 sa->util_sum += scaled_delta_w * scale_cpu; 2755 2756 delta -= delta_w; 2757 2758 /* Figure out how many additional periods this update spans */ 2759 periods = delta / 1024; 2760 delta %= 1024; 2761 2762 sa->load_sum = decay_load(sa->load_sum, periods + 1); 2763 if (cfs_rq) { 2764 cfs_rq->runnable_load_sum = 2765 decay_load(cfs_rq->runnable_load_sum, periods + 1); 2766 } 2767 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1); 2768 2769 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2770 contrib = __compute_runnable_contrib(periods); 2771 contrib = cap_scale(contrib, scale_freq); 2772 if (weight) { 2773 sa->load_sum += weight * contrib; 2774 if (cfs_rq) 2775 cfs_rq->runnable_load_sum += weight * contrib; 2776 } 2777 if (running) 2778 sa->util_sum += contrib * scale_cpu; 2779 } 2780 2781 /* Remainder of delta accrued against u_0` */ 2782 scaled_delta = cap_scale(delta, scale_freq); 2783 if (weight) { 2784 sa->load_sum += weight * scaled_delta; 2785 if (cfs_rq) 2786 cfs_rq->runnable_load_sum += weight * scaled_delta; 2787 } 2788 if (running) 2789 sa->util_sum += scaled_delta * scale_cpu; 2790 2791 sa->period_contrib += delta; 2792 2793 if (decayed) { 2794 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX); 2795 if (cfs_rq) { 2796 cfs_rq->runnable_load_avg = 2797 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX); 2798 } 2799 sa->util_avg = sa->util_sum / LOAD_AVG_MAX; 2800 } 2801 2802 return decayed; 2803 } 2804 2805 #ifdef CONFIG_FAIR_GROUP_SCHED 2806 /* 2807 * Updating tg's load_avg is necessary before update_cfs_share (which is done) 2808 * and effective_load (which is not done because it is too costly). 2809 */ 2810 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 2811 { 2812 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 2813 2814 /* 2815 * No need to update load_avg for root_task_group as it is not used. 2816 */ 2817 if (cfs_rq->tg == &root_task_group) 2818 return; 2819 2820 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 2821 atomic_long_add(delta, &cfs_rq->tg->load_avg); 2822 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 2823 } 2824 } 2825 2826 /* 2827 * Called within set_task_rq() right before setting a task's cpu. The 2828 * caller only guarantees p->pi_lock is held; no other assumptions, 2829 * including the state of rq->lock, should be made. 2830 */ 2831 void set_task_rq_fair(struct sched_entity *se, 2832 struct cfs_rq *prev, struct cfs_rq *next) 2833 { 2834 if (!sched_feat(ATTACH_AGE_LOAD)) 2835 return; 2836 2837 /* 2838 * We are supposed to update the task to "current" time, then its up to 2839 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 2840 * getting what current time is, so simply throw away the out-of-date 2841 * time. This will result in the wakee task is less decayed, but giving 2842 * the wakee more load sounds not bad. 2843 */ 2844 if (se->avg.last_update_time && prev) { 2845 u64 p_last_update_time; 2846 u64 n_last_update_time; 2847 2848 #ifndef CONFIG_64BIT 2849 u64 p_last_update_time_copy; 2850 u64 n_last_update_time_copy; 2851 2852 do { 2853 p_last_update_time_copy = prev->load_last_update_time_copy; 2854 n_last_update_time_copy = next->load_last_update_time_copy; 2855 2856 smp_rmb(); 2857 2858 p_last_update_time = prev->avg.last_update_time; 2859 n_last_update_time = next->avg.last_update_time; 2860 2861 } while (p_last_update_time != p_last_update_time_copy || 2862 n_last_update_time != n_last_update_time_copy); 2863 #else 2864 p_last_update_time = prev->avg.last_update_time; 2865 n_last_update_time = next->avg.last_update_time; 2866 #endif 2867 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)), 2868 &se->avg, 0, 0, NULL); 2869 se->avg.last_update_time = n_last_update_time; 2870 } 2871 } 2872 #else /* CONFIG_FAIR_GROUP_SCHED */ 2873 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 2874 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2875 2876 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq) 2877 { 2878 struct rq *rq = rq_of(cfs_rq); 2879 int cpu = cpu_of(rq); 2880 2881 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) { 2882 unsigned long max = rq->cpu_capacity_orig; 2883 2884 /* 2885 * There are a few boundary cases this might miss but it should 2886 * get called often enough that that should (hopefully) not be 2887 * a real problem -- added to that it only calls on the local 2888 * CPU, so if we enqueue remotely we'll miss an update, but 2889 * the next tick/schedule should update. 2890 * 2891 * It will not get called when we go idle, because the idle 2892 * thread is a different class (!fair), nor will the utilization 2893 * number include things like RT tasks. 2894 * 2895 * As is, the util number is not freq-invariant (we'd have to 2896 * implement arch_scale_freq_capacity() for that). 2897 * 2898 * See cpu_util(). 2899 */ 2900 cpufreq_update_util(rq_clock(rq), 2901 min(cfs_rq->avg.util_avg, max), max); 2902 } 2903 } 2904 2905 /* 2906 * Unsigned subtract and clamp on underflow. 2907 * 2908 * Explicitly do a load-store to ensure the intermediate value never hits 2909 * memory. This allows lockless observations without ever seeing the negative 2910 * values. 2911 */ 2912 #define sub_positive(_ptr, _val) do { \ 2913 typeof(_ptr) ptr = (_ptr); \ 2914 typeof(*ptr) val = (_val); \ 2915 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2916 res = var - val; \ 2917 if (res > var) \ 2918 res = 0; \ 2919 WRITE_ONCE(*ptr, res); \ 2920 } while (0) 2921 2922 /** 2923 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 2924 * @now: current time, as per cfs_rq_clock_task() 2925 * @cfs_rq: cfs_rq to update 2926 * @update_freq: should we call cfs_rq_util_change() or will the call do so 2927 * 2928 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 2929 * avg. The immediate corollary is that all (fair) tasks must be attached, see 2930 * post_init_entity_util_avg(). 2931 * 2932 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 2933 * 2934 * Returns true if the load decayed or we removed utilization. It is expected 2935 * that one calls update_tg_load_avg() on this condition, but after you've 2936 * modified the cfs_rq avg (attach/detach), such that we propagate the new 2937 * avg up. 2938 */ 2939 static inline int 2940 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq) 2941 { 2942 struct sched_avg *sa = &cfs_rq->avg; 2943 int decayed, removed_load = 0, removed_util = 0; 2944 2945 if (atomic_long_read(&cfs_rq->removed_load_avg)) { 2946 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); 2947 sub_positive(&sa->load_avg, r); 2948 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX); 2949 removed_load = 1; 2950 } 2951 2952 if (atomic_long_read(&cfs_rq->removed_util_avg)) { 2953 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); 2954 sub_positive(&sa->util_avg, r); 2955 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX); 2956 removed_util = 1; 2957 } 2958 2959 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 2960 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq); 2961 2962 #ifndef CONFIG_64BIT 2963 smp_wmb(); 2964 cfs_rq->load_last_update_time_copy = sa->last_update_time; 2965 #endif 2966 2967 if (update_freq && (decayed || removed_util)) 2968 cfs_rq_util_change(cfs_rq); 2969 2970 return decayed || removed_load; 2971 } 2972 2973 /* Update task and its cfs_rq load average */ 2974 static inline void update_load_avg(struct sched_entity *se, int update_tg) 2975 { 2976 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2977 u64 now = cfs_rq_clock_task(cfs_rq); 2978 struct rq *rq = rq_of(cfs_rq); 2979 int cpu = cpu_of(rq); 2980 2981 /* 2982 * Track task load average for carrying it to new CPU after migrated, and 2983 * track group sched_entity load average for task_h_load calc in migration 2984 */ 2985 __update_load_avg(now, cpu, &se->avg, 2986 se->on_rq * scale_load_down(se->load.weight), 2987 cfs_rq->curr == se, NULL); 2988 2989 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg) 2990 update_tg_load_avg(cfs_rq, 0); 2991 } 2992 2993 /** 2994 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 2995 * @cfs_rq: cfs_rq to attach to 2996 * @se: sched_entity to attach 2997 * 2998 * Must call update_cfs_rq_load_avg() before this, since we rely on 2999 * cfs_rq->avg.last_update_time being current. 3000 */ 3001 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3002 { 3003 if (!sched_feat(ATTACH_AGE_LOAD)) 3004 goto skip_aging; 3005 3006 /* 3007 * If we got migrated (either between CPUs or between cgroups) we'll 3008 * have aged the average right before clearing @last_update_time. 3009 * 3010 * Or we're fresh through post_init_entity_util_avg(). 3011 */ 3012 if (se->avg.last_update_time) { 3013 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), 3014 &se->avg, 0, 0, NULL); 3015 3016 /* 3017 * XXX: we could have just aged the entire load away if we've been 3018 * absent from the fair class for too long. 3019 */ 3020 } 3021 3022 skip_aging: 3023 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3024 cfs_rq->avg.load_avg += se->avg.load_avg; 3025 cfs_rq->avg.load_sum += se->avg.load_sum; 3026 cfs_rq->avg.util_avg += se->avg.util_avg; 3027 cfs_rq->avg.util_sum += se->avg.util_sum; 3028 3029 cfs_rq_util_change(cfs_rq); 3030 } 3031 3032 /** 3033 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3034 * @cfs_rq: cfs_rq to detach from 3035 * @se: sched_entity to detach 3036 * 3037 * Must call update_cfs_rq_load_avg() before this, since we rely on 3038 * cfs_rq->avg.last_update_time being current. 3039 */ 3040 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3041 { 3042 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), 3043 &se->avg, se->on_rq * scale_load_down(se->load.weight), 3044 cfs_rq->curr == se, NULL); 3045 3046 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3047 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum); 3048 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3049 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3050 3051 cfs_rq_util_change(cfs_rq); 3052 } 3053 3054 /* Add the load generated by se into cfs_rq's load average */ 3055 static inline void 3056 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3057 { 3058 struct sched_avg *sa = &se->avg; 3059 u64 now = cfs_rq_clock_task(cfs_rq); 3060 int migrated, decayed; 3061 3062 migrated = !sa->last_update_time; 3063 if (!migrated) { 3064 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 3065 se->on_rq * scale_load_down(se->load.weight), 3066 cfs_rq->curr == se, NULL); 3067 } 3068 3069 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated); 3070 3071 cfs_rq->runnable_load_avg += sa->load_avg; 3072 cfs_rq->runnable_load_sum += sa->load_sum; 3073 3074 if (migrated) 3075 attach_entity_load_avg(cfs_rq, se); 3076 3077 if (decayed || migrated) 3078 update_tg_load_avg(cfs_rq, 0); 3079 } 3080 3081 /* Remove the runnable load generated by se from cfs_rq's runnable load average */ 3082 static inline void 3083 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3084 { 3085 update_load_avg(se, 1); 3086 3087 cfs_rq->runnable_load_avg = 3088 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0); 3089 cfs_rq->runnable_load_sum = 3090 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0); 3091 } 3092 3093 #ifndef CONFIG_64BIT 3094 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3095 { 3096 u64 last_update_time_copy; 3097 u64 last_update_time; 3098 3099 do { 3100 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3101 smp_rmb(); 3102 last_update_time = cfs_rq->avg.last_update_time; 3103 } while (last_update_time != last_update_time_copy); 3104 3105 return last_update_time; 3106 } 3107 #else 3108 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3109 { 3110 return cfs_rq->avg.last_update_time; 3111 } 3112 #endif 3113 3114 /* 3115 * Task first catches up with cfs_rq, and then subtract 3116 * itself from the cfs_rq (task must be off the queue now). 3117 */ 3118 void remove_entity_load_avg(struct sched_entity *se) 3119 { 3120 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3121 u64 last_update_time; 3122 3123 /* 3124 * tasks cannot exit without having gone through wake_up_new_task() -> 3125 * post_init_entity_util_avg() which will have added things to the 3126 * cfs_rq, so we can remove unconditionally. 3127 * 3128 * Similarly for groups, they will have passed through 3129 * post_init_entity_util_avg() before unregister_sched_fair_group() 3130 * calls this. 3131 */ 3132 3133 last_update_time = cfs_rq_last_update_time(cfs_rq); 3134 3135 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL); 3136 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg); 3137 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg); 3138 } 3139 3140 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3141 { 3142 return cfs_rq->runnable_load_avg; 3143 } 3144 3145 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3146 { 3147 return cfs_rq->avg.load_avg; 3148 } 3149 3150 static int idle_balance(struct rq *this_rq); 3151 3152 #else /* CONFIG_SMP */ 3153 3154 static inline int 3155 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq) 3156 { 3157 return 0; 3158 } 3159 3160 static inline void update_load_avg(struct sched_entity *se, int not_used) 3161 { 3162 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3163 struct rq *rq = rq_of(cfs_rq); 3164 3165 cpufreq_trigger_update(rq_clock(rq)); 3166 } 3167 3168 static inline void 3169 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3170 static inline void 3171 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3172 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3173 3174 static inline void 3175 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3176 static inline void 3177 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3178 3179 static inline int idle_balance(struct rq *rq) 3180 { 3181 return 0; 3182 } 3183 3184 #endif /* CONFIG_SMP */ 3185 3186 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 3187 { 3188 #ifdef CONFIG_SCHEDSTATS 3189 struct task_struct *tsk = NULL; 3190 3191 if (entity_is_task(se)) 3192 tsk = task_of(se); 3193 3194 if (se->statistics.sleep_start) { 3195 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 3196 3197 if ((s64)delta < 0) 3198 delta = 0; 3199 3200 if (unlikely(delta > se->statistics.sleep_max)) 3201 se->statistics.sleep_max = delta; 3202 3203 se->statistics.sleep_start = 0; 3204 se->statistics.sum_sleep_runtime += delta; 3205 3206 if (tsk) { 3207 account_scheduler_latency(tsk, delta >> 10, 1); 3208 trace_sched_stat_sleep(tsk, delta); 3209 } 3210 } 3211 if (se->statistics.block_start) { 3212 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 3213 3214 if ((s64)delta < 0) 3215 delta = 0; 3216 3217 if (unlikely(delta > se->statistics.block_max)) 3218 se->statistics.block_max = delta; 3219 3220 se->statistics.block_start = 0; 3221 se->statistics.sum_sleep_runtime += delta; 3222 3223 if (tsk) { 3224 if (tsk->in_iowait) { 3225 se->statistics.iowait_sum += delta; 3226 se->statistics.iowait_count++; 3227 trace_sched_stat_iowait(tsk, delta); 3228 } 3229 3230 trace_sched_stat_blocked(tsk, delta); 3231 3232 /* 3233 * Blocking time is in units of nanosecs, so shift by 3234 * 20 to get a milliseconds-range estimation of the 3235 * amount of time that the task spent sleeping: 3236 */ 3237 if (unlikely(prof_on == SLEEP_PROFILING)) { 3238 profile_hits(SLEEP_PROFILING, 3239 (void *)get_wchan(tsk), 3240 delta >> 20); 3241 } 3242 account_scheduler_latency(tsk, delta >> 10, 0); 3243 } 3244 } 3245 #endif 3246 } 3247 3248 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3249 { 3250 #ifdef CONFIG_SCHED_DEBUG 3251 s64 d = se->vruntime - cfs_rq->min_vruntime; 3252 3253 if (d < 0) 3254 d = -d; 3255 3256 if (d > 3*sysctl_sched_latency) 3257 schedstat_inc(cfs_rq, nr_spread_over); 3258 #endif 3259 } 3260 3261 static void 3262 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3263 { 3264 u64 vruntime = cfs_rq->min_vruntime; 3265 3266 /* 3267 * The 'current' period is already promised to the current tasks, 3268 * however the extra weight of the new task will slow them down a 3269 * little, place the new task so that it fits in the slot that 3270 * stays open at the end. 3271 */ 3272 if (initial && sched_feat(START_DEBIT)) 3273 vruntime += sched_vslice(cfs_rq, se); 3274 3275 /* sleeps up to a single latency don't count. */ 3276 if (!initial) { 3277 unsigned long thresh = sysctl_sched_latency; 3278 3279 /* 3280 * Halve their sleep time's effect, to allow 3281 * for a gentler effect of sleepers: 3282 */ 3283 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3284 thresh >>= 1; 3285 3286 vruntime -= thresh; 3287 } 3288 3289 /* ensure we never gain time by being placed backwards. */ 3290 se->vruntime = max_vruntime(se->vruntime, vruntime); 3291 } 3292 3293 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3294 3295 static inline void check_schedstat_required(void) 3296 { 3297 #ifdef CONFIG_SCHEDSTATS 3298 if (schedstat_enabled()) 3299 return; 3300 3301 /* Force schedstat enabled if a dependent tracepoint is active */ 3302 if (trace_sched_stat_wait_enabled() || 3303 trace_sched_stat_sleep_enabled() || 3304 trace_sched_stat_iowait_enabled() || 3305 trace_sched_stat_blocked_enabled() || 3306 trace_sched_stat_runtime_enabled()) { 3307 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3308 "stat_blocked and stat_runtime require the " 3309 "kernel parameter schedstats=enabled or " 3310 "kernel.sched_schedstats=1\n"); 3311 } 3312 #endif 3313 } 3314 3315 3316 /* 3317 * MIGRATION 3318 * 3319 * dequeue 3320 * update_curr() 3321 * update_min_vruntime() 3322 * vruntime -= min_vruntime 3323 * 3324 * enqueue 3325 * update_curr() 3326 * update_min_vruntime() 3327 * vruntime += min_vruntime 3328 * 3329 * this way the vruntime transition between RQs is done when both 3330 * min_vruntime are up-to-date. 3331 * 3332 * WAKEUP (remote) 3333 * 3334 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3335 * vruntime -= min_vruntime 3336 * 3337 * enqueue 3338 * update_curr() 3339 * update_min_vruntime() 3340 * vruntime += min_vruntime 3341 * 3342 * this way we don't have the most up-to-date min_vruntime on the originating 3343 * CPU and an up-to-date min_vruntime on the destination CPU. 3344 */ 3345 3346 static void 3347 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3348 { 3349 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3350 bool curr = cfs_rq->curr == se; 3351 3352 /* 3353 * If we're the current task, we must renormalise before calling 3354 * update_curr(). 3355 */ 3356 if (renorm && curr) 3357 se->vruntime += cfs_rq->min_vruntime; 3358 3359 update_curr(cfs_rq); 3360 3361 /* 3362 * Otherwise, renormalise after, such that we're placed at the current 3363 * moment in time, instead of some random moment in the past. Being 3364 * placed in the past could significantly boost this task to the 3365 * fairness detriment of existing tasks. 3366 */ 3367 if (renorm && !curr) 3368 se->vruntime += cfs_rq->min_vruntime; 3369 3370 enqueue_entity_load_avg(cfs_rq, se); 3371 account_entity_enqueue(cfs_rq, se); 3372 update_cfs_shares(cfs_rq); 3373 3374 if (flags & ENQUEUE_WAKEUP) { 3375 place_entity(cfs_rq, se, 0); 3376 if (schedstat_enabled()) 3377 enqueue_sleeper(cfs_rq, se); 3378 } 3379 3380 check_schedstat_required(); 3381 if (schedstat_enabled()) { 3382 update_stats_enqueue(cfs_rq, se); 3383 check_spread(cfs_rq, se); 3384 } 3385 if (!curr) 3386 __enqueue_entity(cfs_rq, se); 3387 se->on_rq = 1; 3388 3389 if (cfs_rq->nr_running == 1) { 3390 list_add_leaf_cfs_rq(cfs_rq); 3391 check_enqueue_throttle(cfs_rq); 3392 } 3393 } 3394 3395 static void __clear_buddies_last(struct sched_entity *se) 3396 { 3397 for_each_sched_entity(se) { 3398 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3399 if (cfs_rq->last != se) 3400 break; 3401 3402 cfs_rq->last = NULL; 3403 } 3404 } 3405 3406 static void __clear_buddies_next(struct sched_entity *se) 3407 { 3408 for_each_sched_entity(se) { 3409 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3410 if (cfs_rq->next != se) 3411 break; 3412 3413 cfs_rq->next = NULL; 3414 } 3415 } 3416 3417 static void __clear_buddies_skip(struct sched_entity *se) 3418 { 3419 for_each_sched_entity(se) { 3420 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3421 if (cfs_rq->skip != se) 3422 break; 3423 3424 cfs_rq->skip = NULL; 3425 } 3426 } 3427 3428 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3429 { 3430 if (cfs_rq->last == se) 3431 __clear_buddies_last(se); 3432 3433 if (cfs_rq->next == se) 3434 __clear_buddies_next(se); 3435 3436 if (cfs_rq->skip == se) 3437 __clear_buddies_skip(se); 3438 } 3439 3440 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3441 3442 static void 3443 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3444 { 3445 /* 3446 * Update run-time statistics of the 'current'. 3447 */ 3448 update_curr(cfs_rq); 3449 dequeue_entity_load_avg(cfs_rq, se); 3450 3451 if (schedstat_enabled()) 3452 update_stats_dequeue(cfs_rq, se, flags); 3453 3454 clear_buddies(cfs_rq, se); 3455 3456 if (se != cfs_rq->curr) 3457 __dequeue_entity(cfs_rq, se); 3458 se->on_rq = 0; 3459 account_entity_dequeue(cfs_rq, se); 3460 3461 /* 3462 * Normalize the entity after updating the min_vruntime because the 3463 * update can refer to the ->curr item and we need to reflect this 3464 * movement in our normalized position. 3465 */ 3466 if (!(flags & DEQUEUE_SLEEP)) 3467 se->vruntime -= cfs_rq->min_vruntime; 3468 3469 /* return excess runtime on last dequeue */ 3470 return_cfs_rq_runtime(cfs_rq); 3471 3472 update_min_vruntime(cfs_rq); 3473 update_cfs_shares(cfs_rq); 3474 } 3475 3476 /* 3477 * Preempt the current task with a newly woken task if needed: 3478 */ 3479 static void 3480 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3481 { 3482 unsigned long ideal_runtime, delta_exec; 3483 struct sched_entity *se; 3484 s64 delta; 3485 3486 ideal_runtime = sched_slice(cfs_rq, curr); 3487 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3488 if (delta_exec > ideal_runtime) { 3489 resched_curr(rq_of(cfs_rq)); 3490 /* 3491 * The current task ran long enough, ensure it doesn't get 3492 * re-elected due to buddy favours. 3493 */ 3494 clear_buddies(cfs_rq, curr); 3495 return; 3496 } 3497 3498 /* 3499 * Ensure that a task that missed wakeup preemption by a 3500 * narrow margin doesn't have to wait for a full slice. 3501 * This also mitigates buddy induced latencies under load. 3502 */ 3503 if (delta_exec < sysctl_sched_min_granularity) 3504 return; 3505 3506 se = __pick_first_entity(cfs_rq); 3507 delta = curr->vruntime - se->vruntime; 3508 3509 if (delta < 0) 3510 return; 3511 3512 if (delta > ideal_runtime) 3513 resched_curr(rq_of(cfs_rq)); 3514 } 3515 3516 static void 3517 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3518 { 3519 /* 'current' is not kept within the tree. */ 3520 if (se->on_rq) { 3521 /* 3522 * Any task has to be enqueued before it get to execute on 3523 * a CPU. So account for the time it spent waiting on the 3524 * runqueue. 3525 */ 3526 if (schedstat_enabled()) 3527 update_stats_wait_end(cfs_rq, se); 3528 __dequeue_entity(cfs_rq, se); 3529 update_load_avg(se, 1); 3530 } 3531 3532 update_stats_curr_start(cfs_rq, se); 3533 cfs_rq->curr = se; 3534 #ifdef CONFIG_SCHEDSTATS 3535 /* 3536 * Track our maximum slice length, if the CPU's load is at 3537 * least twice that of our own weight (i.e. dont track it 3538 * when there are only lesser-weight tasks around): 3539 */ 3540 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3541 se->statistics.slice_max = max(se->statistics.slice_max, 3542 se->sum_exec_runtime - se->prev_sum_exec_runtime); 3543 } 3544 #endif 3545 se->prev_sum_exec_runtime = se->sum_exec_runtime; 3546 } 3547 3548 static int 3549 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 3550 3551 /* 3552 * Pick the next process, keeping these things in mind, in this order: 3553 * 1) keep things fair between processes/task groups 3554 * 2) pick the "next" process, since someone really wants that to run 3555 * 3) pick the "last" process, for cache locality 3556 * 4) do not run the "skip" process, if something else is available 3557 */ 3558 static struct sched_entity * 3559 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3560 { 3561 struct sched_entity *left = __pick_first_entity(cfs_rq); 3562 struct sched_entity *se; 3563 3564 /* 3565 * If curr is set we have to see if its left of the leftmost entity 3566 * still in the tree, provided there was anything in the tree at all. 3567 */ 3568 if (!left || (curr && entity_before(curr, left))) 3569 left = curr; 3570 3571 se = left; /* ideally we run the leftmost entity */ 3572 3573 /* 3574 * Avoid running the skip buddy, if running something else can 3575 * be done without getting too unfair. 3576 */ 3577 if (cfs_rq->skip == se) { 3578 struct sched_entity *second; 3579 3580 if (se == curr) { 3581 second = __pick_first_entity(cfs_rq); 3582 } else { 3583 second = __pick_next_entity(se); 3584 if (!second || (curr && entity_before(curr, second))) 3585 second = curr; 3586 } 3587 3588 if (second && wakeup_preempt_entity(second, left) < 1) 3589 se = second; 3590 } 3591 3592 /* 3593 * Prefer last buddy, try to return the CPU to a preempted task. 3594 */ 3595 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3596 se = cfs_rq->last; 3597 3598 /* 3599 * Someone really wants this to run. If it's not unfair, run it. 3600 */ 3601 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3602 se = cfs_rq->next; 3603 3604 clear_buddies(cfs_rq, se); 3605 3606 return se; 3607 } 3608 3609 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3610 3611 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3612 { 3613 /* 3614 * If still on the runqueue then deactivate_task() 3615 * was not called and update_curr() has to be done: 3616 */ 3617 if (prev->on_rq) 3618 update_curr(cfs_rq); 3619 3620 /* throttle cfs_rqs exceeding runtime */ 3621 check_cfs_rq_runtime(cfs_rq); 3622 3623 if (schedstat_enabled()) { 3624 check_spread(cfs_rq, prev); 3625 if (prev->on_rq) 3626 update_stats_wait_start(cfs_rq, prev); 3627 } 3628 3629 if (prev->on_rq) { 3630 /* Put 'current' back into the tree. */ 3631 __enqueue_entity(cfs_rq, prev); 3632 /* in !on_rq case, update occurred at dequeue */ 3633 update_load_avg(prev, 0); 3634 } 3635 cfs_rq->curr = NULL; 3636 } 3637 3638 static void 3639 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3640 { 3641 /* 3642 * Update run-time statistics of the 'current'. 3643 */ 3644 update_curr(cfs_rq); 3645 3646 /* 3647 * Ensure that runnable average is periodically updated. 3648 */ 3649 update_load_avg(curr, 1); 3650 update_cfs_shares(cfs_rq); 3651 3652 #ifdef CONFIG_SCHED_HRTICK 3653 /* 3654 * queued ticks are scheduled to match the slice, so don't bother 3655 * validating it and just reschedule. 3656 */ 3657 if (queued) { 3658 resched_curr(rq_of(cfs_rq)); 3659 return; 3660 } 3661 /* 3662 * don't let the period tick interfere with the hrtick preemption 3663 */ 3664 if (!sched_feat(DOUBLE_TICK) && 3665 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3666 return; 3667 #endif 3668 3669 if (cfs_rq->nr_running > 1) 3670 check_preempt_tick(cfs_rq, curr); 3671 } 3672 3673 3674 /************************************************** 3675 * CFS bandwidth control machinery 3676 */ 3677 3678 #ifdef CONFIG_CFS_BANDWIDTH 3679 3680 #ifdef HAVE_JUMP_LABEL 3681 static struct static_key __cfs_bandwidth_used; 3682 3683 static inline bool cfs_bandwidth_used(void) 3684 { 3685 return static_key_false(&__cfs_bandwidth_used); 3686 } 3687 3688 void cfs_bandwidth_usage_inc(void) 3689 { 3690 static_key_slow_inc(&__cfs_bandwidth_used); 3691 } 3692 3693 void cfs_bandwidth_usage_dec(void) 3694 { 3695 static_key_slow_dec(&__cfs_bandwidth_used); 3696 } 3697 #else /* HAVE_JUMP_LABEL */ 3698 static bool cfs_bandwidth_used(void) 3699 { 3700 return true; 3701 } 3702 3703 void cfs_bandwidth_usage_inc(void) {} 3704 void cfs_bandwidth_usage_dec(void) {} 3705 #endif /* HAVE_JUMP_LABEL */ 3706 3707 /* 3708 * default period for cfs group bandwidth. 3709 * default: 0.1s, units: nanoseconds 3710 */ 3711 static inline u64 default_cfs_period(void) 3712 { 3713 return 100000000ULL; 3714 } 3715 3716 static inline u64 sched_cfs_bandwidth_slice(void) 3717 { 3718 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3719 } 3720 3721 /* 3722 * Replenish runtime according to assigned quota and update expiration time. 3723 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 3724 * additional synchronization around rq->lock. 3725 * 3726 * requires cfs_b->lock 3727 */ 3728 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 3729 { 3730 u64 now; 3731 3732 if (cfs_b->quota == RUNTIME_INF) 3733 return; 3734 3735 now = sched_clock_cpu(smp_processor_id()); 3736 cfs_b->runtime = cfs_b->quota; 3737 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 3738 } 3739 3740 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3741 { 3742 return &tg->cfs_bandwidth; 3743 } 3744 3745 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 3746 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3747 { 3748 if (unlikely(cfs_rq->throttle_count)) 3749 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 3750 3751 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 3752 } 3753 3754 /* returns 0 on failure to allocate runtime */ 3755 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3756 { 3757 struct task_group *tg = cfs_rq->tg; 3758 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 3759 u64 amount = 0, min_amount, expires; 3760 3761 /* note: this is a positive sum as runtime_remaining <= 0 */ 3762 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 3763 3764 raw_spin_lock(&cfs_b->lock); 3765 if (cfs_b->quota == RUNTIME_INF) 3766 amount = min_amount; 3767 else { 3768 start_cfs_bandwidth(cfs_b); 3769 3770 if (cfs_b->runtime > 0) { 3771 amount = min(cfs_b->runtime, min_amount); 3772 cfs_b->runtime -= amount; 3773 cfs_b->idle = 0; 3774 } 3775 } 3776 expires = cfs_b->runtime_expires; 3777 raw_spin_unlock(&cfs_b->lock); 3778 3779 cfs_rq->runtime_remaining += amount; 3780 /* 3781 * we may have advanced our local expiration to account for allowed 3782 * spread between our sched_clock and the one on which runtime was 3783 * issued. 3784 */ 3785 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 3786 cfs_rq->runtime_expires = expires; 3787 3788 return cfs_rq->runtime_remaining > 0; 3789 } 3790 3791 /* 3792 * Note: This depends on the synchronization provided by sched_clock and the 3793 * fact that rq->clock snapshots this value. 3794 */ 3795 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3796 { 3797 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3798 3799 /* if the deadline is ahead of our clock, nothing to do */ 3800 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 3801 return; 3802 3803 if (cfs_rq->runtime_remaining < 0) 3804 return; 3805 3806 /* 3807 * If the local deadline has passed we have to consider the 3808 * possibility that our sched_clock is 'fast' and the global deadline 3809 * has not truly expired. 3810 * 3811 * Fortunately we can check determine whether this the case by checking 3812 * whether the global deadline has advanced. It is valid to compare 3813 * cfs_b->runtime_expires without any locks since we only care about 3814 * exact equality, so a partial write will still work. 3815 */ 3816 3817 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 3818 /* extend local deadline, drift is bounded above by 2 ticks */ 3819 cfs_rq->runtime_expires += TICK_NSEC; 3820 } else { 3821 /* global deadline is ahead, expiration has passed */ 3822 cfs_rq->runtime_remaining = 0; 3823 } 3824 } 3825 3826 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3827 { 3828 /* dock delta_exec before expiring quota (as it could span periods) */ 3829 cfs_rq->runtime_remaining -= delta_exec; 3830 expire_cfs_rq_runtime(cfs_rq); 3831 3832 if (likely(cfs_rq->runtime_remaining > 0)) 3833 return; 3834 3835 /* 3836 * if we're unable to extend our runtime we resched so that the active 3837 * hierarchy can be throttled 3838 */ 3839 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3840 resched_curr(rq_of(cfs_rq)); 3841 } 3842 3843 static __always_inline 3844 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3845 { 3846 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3847 return; 3848 3849 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3850 } 3851 3852 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3853 { 3854 return cfs_bandwidth_used() && cfs_rq->throttled; 3855 } 3856 3857 /* check whether cfs_rq, or any parent, is throttled */ 3858 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3859 { 3860 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3861 } 3862 3863 /* 3864 * Ensure that neither of the group entities corresponding to src_cpu or 3865 * dest_cpu are members of a throttled hierarchy when performing group 3866 * load-balance operations. 3867 */ 3868 static inline int throttled_lb_pair(struct task_group *tg, 3869 int src_cpu, int dest_cpu) 3870 { 3871 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3872 3873 src_cfs_rq = tg->cfs_rq[src_cpu]; 3874 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3875 3876 return throttled_hierarchy(src_cfs_rq) || 3877 throttled_hierarchy(dest_cfs_rq); 3878 } 3879 3880 /* updated child weight may affect parent so we have to do this bottom up */ 3881 static int tg_unthrottle_up(struct task_group *tg, void *data) 3882 { 3883 struct rq *rq = data; 3884 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3885 3886 cfs_rq->throttle_count--; 3887 if (!cfs_rq->throttle_count) { 3888 /* adjust cfs_rq_clock_task() */ 3889 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3890 cfs_rq->throttled_clock_task; 3891 } 3892 3893 return 0; 3894 } 3895 3896 static int tg_throttle_down(struct task_group *tg, void *data) 3897 { 3898 struct rq *rq = data; 3899 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3900 3901 /* group is entering throttled state, stop time */ 3902 if (!cfs_rq->throttle_count) 3903 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3904 cfs_rq->throttle_count++; 3905 3906 return 0; 3907 } 3908 3909 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3910 { 3911 struct rq *rq = rq_of(cfs_rq); 3912 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3913 struct sched_entity *se; 3914 long task_delta, dequeue = 1; 3915 bool empty; 3916 3917 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3918 3919 /* freeze hierarchy runnable averages while throttled */ 3920 rcu_read_lock(); 3921 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3922 rcu_read_unlock(); 3923 3924 task_delta = cfs_rq->h_nr_running; 3925 for_each_sched_entity(se) { 3926 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3927 /* throttled entity or throttle-on-deactivate */ 3928 if (!se->on_rq) 3929 break; 3930 3931 if (dequeue) 3932 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3933 qcfs_rq->h_nr_running -= task_delta; 3934 3935 if (qcfs_rq->load.weight) 3936 dequeue = 0; 3937 } 3938 3939 if (!se) 3940 sub_nr_running(rq, task_delta); 3941 3942 cfs_rq->throttled = 1; 3943 cfs_rq->throttled_clock = rq_clock(rq); 3944 raw_spin_lock(&cfs_b->lock); 3945 empty = list_empty(&cfs_b->throttled_cfs_rq); 3946 3947 /* 3948 * Add to the _head_ of the list, so that an already-started 3949 * distribute_cfs_runtime will not see us 3950 */ 3951 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3952 3953 /* 3954 * If we're the first throttled task, make sure the bandwidth 3955 * timer is running. 3956 */ 3957 if (empty) 3958 start_cfs_bandwidth(cfs_b); 3959 3960 raw_spin_unlock(&cfs_b->lock); 3961 } 3962 3963 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3964 { 3965 struct rq *rq = rq_of(cfs_rq); 3966 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3967 struct sched_entity *se; 3968 int enqueue = 1; 3969 long task_delta; 3970 3971 se = cfs_rq->tg->se[cpu_of(rq)]; 3972 3973 cfs_rq->throttled = 0; 3974 3975 update_rq_clock(rq); 3976 3977 raw_spin_lock(&cfs_b->lock); 3978 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 3979 list_del_rcu(&cfs_rq->throttled_list); 3980 raw_spin_unlock(&cfs_b->lock); 3981 3982 /* update hierarchical throttle state */ 3983 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 3984 3985 if (!cfs_rq->load.weight) 3986 return; 3987 3988 task_delta = cfs_rq->h_nr_running; 3989 for_each_sched_entity(se) { 3990 if (se->on_rq) 3991 enqueue = 0; 3992 3993 cfs_rq = cfs_rq_of(se); 3994 if (enqueue) 3995 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 3996 cfs_rq->h_nr_running += task_delta; 3997 3998 if (cfs_rq_throttled(cfs_rq)) 3999 break; 4000 } 4001 4002 if (!se) 4003 add_nr_running(rq, task_delta); 4004 4005 /* determine whether we need to wake up potentially idle cpu */ 4006 if (rq->curr == rq->idle && rq->cfs.nr_running) 4007 resched_curr(rq); 4008 } 4009 4010 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4011 u64 remaining, u64 expires) 4012 { 4013 struct cfs_rq *cfs_rq; 4014 u64 runtime; 4015 u64 starting_runtime = remaining; 4016 4017 rcu_read_lock(); 4018 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4019 throttled_list) { 4020 struct rq *rq = rq_of(cfs_rq); 4021 4022 raw_spin_lock(&rq->lock); 4023 if (!cfs_rq_throttled(cfs_rq)) 4024 goto next; 4025 4026 runtime = -cfs_rq->runtime_remaining + 1; 4027 if (runtime > remaining) 4028 runtime = remaining; 4029 remaining -= runtime; 4030 4031 cfs_rq->runtime_remaining += runtime; 4032 cfs_rq->runtime_expires = expires; 4033 4034 /* we check whether we're throttled above */ 4035 if (cfs_rq->runtime_remaining > 0) 4036 unthrottle_cfs_rq(cfs_rq); 4037 4038 next: 4039 raw_spin_unlock(&rq->lock); 4040 4041 if (!remaining) 4042 break; 4043 } 4044 rcu_read_unlock(); 4045 4046 return starting_runtime - remaining; 4047 } 4048 4049 /* 4050 * Responsible for refilling a task_group's bandwidth and unthrottling its 4051 * cfs_rqs as appropriate. If there has been no activity within the last 4052 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4053 * used to track this state. 4054 */ 4055 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4056 { 4057 u64 runtime, runtime_expires; 4058 int throttled; 4059 4060 /* no need to continue the timer with no bandwidth constraint */ 4061 if (cfs_b->quota == RUNTIME_INF) 4062 goto out_deactivate; 4063 4064 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4065 cfs_b->nr_periods += overrun; 4066 4067 /* 4068 * idle depends on !throttled (for the case of a large deficit), and if 4069 * we're going inactive then everything else can be deferred 4070 */ 4071 if (cfs_b->idle && !throttled) 4072 goto out_deactivate; 4073 4074 __refill_cfs_bandwidth_runtime(cfs_b); 4075 4076 if (!throttled) { 4077 /* mark as potentially idle for the upcoming period */ 4078 cfs_b->idle = 1; 4079 return 0; 4080 } 4081 4082 /* account preceding periods in which throttling occurred */ 4083 cfs_b->nr_throttled += overrun; 4084 4085 runtime_expires = cfs_b->runtime_expires; 4086 4087 /* 4088 * This check is repeated as we are holding onto the new bandwidth while 4089 * we unthrottle. This can potentially race with an unthrottled group 4090 * trying to acquire new bandwidth from the global pool. This can result 4091 * in us over-using our runtime if it is all used during this loop, but 4092 * only by limited amounts in that extreme case. 4093 */ 4094 while (throttled && cfs_b->runtime > 0) { 4095 runtime = cfs_b->runtime; 4096 raw_spin_unlock(&cfs_b->lock); 4097 /* we can't nest cfs_b->lock while distributing bandwidth */ 4098 runtime = distribute_cfs_runtime(cfs_b, runtime, 4099 runtime_expires); 4100 raw_spin_lock(&cfs_b->lock); 4101 4102 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4103 4104 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4105 } 4106 4107 /* 4108 * While we are ensured activity in the period following an 4109 * unthrottle, this also covers the case in which the new bandwidth is 4110 * insufficient to cover the existing bandwidth deficit. (Forcing the 4111 * timer to remain active while there are any throttled entities.) 4112 */ 4113 cfs_b->idle = 0; 4114 4115 return 0; 4116 4117 out_deactivate: 4118 return 1; 4119 } 4120 4121 /* a cfs_rq won't donate quota below this amount */ 4122 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4123 /* minimum remaining period time to redistribute slack quota */ 4124 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4125 /* how long we wait to gather additional slack before distributing */ 4126 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4127 4128 /* 4129 * Are we near the end of the current quota period? 4130 * 4131 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4132 * hrtimer base being cleared by hrtimer_start. In the case of 4133 * migrate_hrtimers, base is never cleared, so we are fine. 4134 */ 4135 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4136 { 4137 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4138 u64 remaining; 4139 4140 /* if the call-back is running a quota refresh is already occurring */ 4141 if (hrtimer_callback_running(refresh_timer)) 4142 return 1; 4143 4144 /* is a quota refresh about to occur? */ 4145 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4146 if (remaining < min_expire) 4147 return 1; 4148 4149 return 0; 4150 } 4151 4152 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4153 { 4154 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4155 4156 /* if there's a quota refresh soon don't bother with slack */ 4157 if (runtime_refresh_within(cfs_b, min_left)) 4158 return; 4159 4160 hrtimer_start(&cfs_b->slack_timer, 4161 ns_to_ktime(cfs_bandwidth_slack_period), 4162 HRTIMER_MODE_REL); 4163 } 4164 4165 /* we know any runtime found here is valid as update_curr() precedes return */ 4166 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4167 { 4168 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4169 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4170 4171 if (slack_runtime <= 0) 4172 return; 4173 4174 raw_spin_lock(&cfs_b->lock); 4175 if (cfs_b->quota != RUNTIME_INF && 4176 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4177 cfs_b->runtime += slack_runtime; 4178 4179 /* we are under rq->lock, defer unthrottling using a timer */ 4180 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4181 !list_empty(&cfs_b->throttled_cfs_rq)) 4182 start_cfs_slack_bandwidth(cfs_b); 4183 } 4184 raw_spin_unlock(&cfs_b->lock); 4185 4186 /* even if it's not valid for return we don't want to try again */ 4187 cfs_rq->runtime_remaining -= slack_runtime; 4188 } 4189 4190 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4191 { 4192 if (!cfs_bandwidth_used()) 4193 return; 4194 4195 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4196 return; 4197 4198 __return_cfs_rq_runtime(cfs_rq); 4199 } 4200 4201 /* 4202 * This is done with a timer (instead of inline with bandwidth return) since 4203 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4204 */ 4205 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4206 { 4207 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4208 u64 expires; 4209 4210 /* confirm we're still not at a refresh boundary */ 4211 raw_spin_lock(&cfs_b->lock); 4212 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4213 raw_spin_unlock(&cfs_b->lock); 4214 return; 4215 } 4216 4217 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4218 runtime = cfs_b->runtime; 4219 4220 expires = cfs_b->runtime_expires; 4221 raw_spin_unlock(&cfs_b->lock); 4222 4223 if (!runtime) 4224 return; 4225 4226 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4227 4228 raw_spin_lock(&cfs_b->lock); 4229 if (expires == cfs_b->runtime_expires) 4230 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4231 raw_spin_unlock(&cfs_b->lock); 4232 } 4233 4234 /* 4235 * When a group wakes up we want to make sure that its quota is not already 4236 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4237 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4238 */ 4239 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4240 { 4241 if (!cfs_bandwidth_used()) 4242 return; 4243 4244 /* an active group must be handled by the update_curr()->put() path */ 4245 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4246 return; 4247 4248 /* ensure the group is not already throttled */ 4249 if (cfs_rq_throttled(cfs_rq)) 4250 return; 4251 4252 /* update runtime allocation */ 4253 account_cfs_rq_runtime(cfs_rq, 0); 4254 if (cfs_rq->runtime_remaining <= 0) 4255 throttle_cfs_rq(cfs_rq); 4256 } 4257 4258 static void sync_throttle(struct task_group *tg, int cpu) 4259 { 4260 struct cfs_rq *pcfs_rq, *cfs_rq; 4261 4262 if (!cfs_bandwidth_used()) 4263 return; 4264 4265 if (!tg->parent) 4266 return; 4267 4268 cfs_rq = tg->cfs_rq[cpu]; 4269 pcfs_rq = tg->parent->cfs_rq[cpu]; 4270 4271 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4272 pcfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4273 } 4274 4275 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4276 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4277 { 4278 if (!cfs_bandwidth_used()) 4279 return false; 4280 4281 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4282 return false; 4283 4284 /* 4285 * it's possible for a throttled entity to be forced into a running 4286 * state (e.g. set_curr_task), in this case we're finished. 4287 */ 4288 if (cfs_rq_throttled(cfs_rq)) 4289 return true; 4290 4291 throttle_cfs_rq(cfs_rq); 4292 return true; 4293 } 4294 4295 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4296 { 4297 struct cfs_bandwidth *cfs_b = 4298 container_of(timer, struct cfs_bandwidth, slack_timer); 4299 4300 do_sched_cfs_slack_timer(cfs_b); 4301 4302 return HRTIMER_NORESTART; 4303 } 4304 4305 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4306 { 4307 struct cfs_bandwidth *cfs_b = 4308 container_of(timer, struct cfs_bandwidth, period_timer); 4309 int overrun; 4310 int idle = 0; 4311 4312 raw_spin_lock(&cfs_b->lock); 4313 for (;;) { 4314 overrun = hrtimer_forward_now(timer, cfs_b->period); 4315 if (!overrun) 4316 break; 4317 4318 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4319 } 4320 if (idle) 4321 cfs_b->period_active = 0; 4322 raw_spin_unlock(&cfs_b->lock); 4323 4324 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4325 } 4326 4327 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4328 { 4329 raw_spin_lock_init(&cfs_b->lock); 4330 cfs_b->runtime = 0; 4331 cfs_b->quota = RUNTIME_INF; 4332 cfs_b->period = ns_to_ktime(default_cfs_period()); 4333 4334 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4335 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4336 cfs_b->period_timer.function = sched_cfs_period_timer; 4337 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4338 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4339 } 4340 4341 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4342 { 4343 cfs_rq->runtime_enabled = 0; 4344 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4345 } 4346 4347 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4348 { 4349 lockdep_assert_held(&cfs_b->lock); 4350 4351 if (!cfs_b->period_active) { 4352 cfs_b->period_active = 1; 4353 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4354 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4355 } 4356 } 4357 4358 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4359 { 4360 /* init_cfs_bandwidth() was not called */ 4361 if (!cfs_b->throttled_cfs_rq.next) 4362 return; 4363 4364 hrtimer_cancel(&cfs_b->period_timer); 4365 hrtimer_cancel(&cfs_b->slack_timer); 4366 } 4367 4368 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4369 { 4370 struct cfs_rq *cfs_rq; 4371 4372 for_each_leaf_cfs_rq(rq, cfs_rq) { 4373 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; 4374 4375 raw_spin_lock(&cfs_b->lock); 4376 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4377 raw_spin_unlock(&cfs_b->lock); 4378 } 4379 } 4380 4381 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4382 { 4383 struct cfs_rq *cfs_rq; 4384 4385 for_each_leaf_cfs_rq(rq, cfs_rq) { 4386 if (!cfs_rq->runtime_enabled) 4387 continue; 4388 4389 /* 4390 * clock_task is not advancing so we just need to make sure 4391 * there's some valid quota amount 4392 */ 4393 cfs_rq->runtime_remaining = 1; 4394 /* 4395 * Offline rq is schedulable till cpu is completely disabled 4396 * in take_cpu_down(), so we prevent new cfs throttling here. 4397 */ 4398 cfs_rq->runtime_enabled = 0; 4399 4400 if (cfs_rq_throttled(cfs_rq)) 4401 unthrottle_cfs_rq(cfs_rq); 4402 } 4403 } 4404 4405 #else /* CONFIG_CFS_BANDWIDTH */ 4406 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4407 { 4408 return rq_clock_task(rq_of(cfs_rq)); 4409 } 4410 4411 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4412 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4413 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4414 static inline void sync_throttle(struct task_group *tg, int cpu) {} 4415 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4416 4417 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4418 { 4419 return 0; 4420 } 4421 4422 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4423 { 4424 return 0; 4425 } 4426 4427 static inline int throttled_lb_pair(struct task_group *tg, 4428 int src_cpu, int dest_cpu) 4429 { 4430 return 0; 4431 } 4432 4433 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4434 4435 #ifdef CONFIG_FAIR_GROUP_SCHED 4436 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4437 #endif 4438 4439 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4440 { 4441 return NULL; 4442 } 4443 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4444 static inline void update_runtime_enabled(struct rq *rq) {} 4445 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4446 4447 #endif /* CONFIG_CFS_BANDWIDTH */ 4448 4449 /************************************************** 4450 * CFS operations on tasks: 4451 */ 4452 4453 #ifdef CONFIG_SCHED_HRTICK 4454 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4455 { 4456 struct sched_entity *se = &p->se; 4457 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4458 4459 WARN_ON(task_rq(p) != rq); 4460 4461 if (cfs_rq->nr_running > 1) { 4462 u64 slice = sched_slice(cfs_rq, se); 4463 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4464 s64 delta = slice - ran; 4465 4466 if (delta < 0) { 4467 if (rq->curr == p) 4468 resched_curr(rq); 4469 return; 4470 } 4471 hrtick_start(rq, delta); 4472 } 4473 } 4474 4475 /* 4476 * called from enqueue/dequeue and updates the hrtick when the 4477 * current task is from our class and nr_running is low enough 4478 * to matter. 4479 */ 4480 static void hrtick_update(struct rq *rq) 4481 { 4482 struct task_struct *curr = rq->curr; 4483 4484 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4485 return; 4486 4487 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4488 hrtick_start_fair(rq, curr); 4489 } 4490 #else /* !CONFIG_SCHED_HRTICK */ 4491 static inline void 4492 hrtick_start_fair(struct rq *rq, struct task_struct *p) 4493 { 4494 } 4495 4496 static inline void hrtick_update(struct rq *rq) 4497 { 4498 } 4499 #endif 4500 4501 /* 4502 * The enqueue_task method is called before nr_running is 4503 * increased. Here we update the fair scheduling stats and 4504 * then put the task into the rbtree: 4505 */ 4506 static void 4507 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4508 { 4509 struct cfs_rq *cfs_rq; 4510 struct sched_entity *se = &p->se; 4511 4512 for_each_sched_entity(se) { 4513 if (se->on_rq) 4514 break; 4515 cfs_rq = cfs_rq_of(se); 4516 enqueue_entity(cfs_rq, se, flags); 4517 4518 /* 4519 * end evaluation on encountering a throttled cfs_rq 4520 * 4521 * note: in the case of encountering a throttled cfs_rq we will 4522 * post the final h_nr_running increment below. 4523 */ 4524 if (cfs_rq_throttled(cfs_rq)) 4525 break; 4526 cfs_rq->h_nr_running++; 4527 4528 flags = ENQUEUE_WAKEUP; 4529 } 4530 4531 for_each_sched_entity(se) { 4532 cfs_rq = cfs_rq_of(se); 4533 cfs_rq->h_nr_running++; 4534 4535 if (cfs_rq_throttled(cfs_rq)) 4536 break; 4537 4538 update_load_avg(se, 1); 4539 update_cfs_shares(cfs_rq); 4540 } 4541 4542 if (!se) 4543 add_nr_running(rq, 1); 4544 4545 hrtick_update(rq); 4546 } 4547 4548 static void set_next_buddy(struct sched_entity *se); 4549 4550 /* 4551 * The dequeue_task method is called before nr_running is 4552 * decreased. We remove the task from the rbtree and 4553 * update the fair scheduling stats: 4554 */ 4555 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4556 { 4557 struct cfs_rq *cfs_rq; 4558 struct sched_entity *se = &p->se; 4559 int task_sleep = flags & DEQUEUE_SLEEP; 4560 4561 for_each_sched_entity(se) { 4562 cfs_rq = cfs_rq_of(se); 4563 dequeue_entity(cfs_rq, se, flags); 4564 4565 /* 4566 * end evaluation on encountering a throttled cfs_rq 4567 * 4568 * note: in the case of encountering a throttled cfs_rq we will 4569 * post the final h_nr_running decrement below. 4570 */ 4571 if (cfs_rq_throttled(cfs_rq)) 4572 break; 4573 cfs_rq->h_nr_running--; 4574 4575 /* Don't dequeue parent if it has other entities besides us */ 4576 if (cfs_rq->load.weight) { 4577 /* Avoid re-evaluating load for this entity: */ 4578 se = parent_entity(se); 4579 /* 4580 * Bias pick_next to pick a task from this cfs_rq, as 4581 * p is sleeping when it is within its sched_slice. 4582 */ 4583 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 4584 set_next_buddy(se); 4585 break; 4586 } 4587 flags |= DEQUEUE_SLEEP; 4588 } 4589 4590 for_each_sched_entity(se) { 4591 cfs_rq = cfs_rq_of(se); 4592 cfs_rq->h_nr_running--; 4593 4594 if (cfs_rq_throttled(cfs_rq)) 4595 break; 4596 4597 update_load_avg(se, 1); 4598 update_cfs_shares(cfs_rq); 4599 } 4600 4601 if (!se) 4602 sub_nr_running(rq, 1); 4603 4604 hrtick_update(rq); 4605 } 4606 4607 #ifdef CONFIG_SMP 4608 #ifdef CONFIG_NO_HZ_COMMON 4609 /* 4610 * per rq 'load' arrray crap; XXX kill this. 4611 */ 4612 4613 /* 4614 * The exact cpuload calculated at every tick would be: 4615 * 4616 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 4617 * 4618 * If a cpu misses updates for n ticks (as it was idle) and update gets 4619 * called on the n+1-th tick when cpu may be busy, then we have: 4620 * 4621 * load_n = (1 - 1/2^i)^n * load_0 4622 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 4623 * 4624 * decay_load_missed() below does efficient calculation of 4625 * 4626 * load' = (1 - 1/2^i)^n * load 4627 * 4628 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 4629 * This allows us to precompute the above in said factors, thereby allowing the 4630 * reduction of an arbitrary n in O(log_2 n) steps. (See also 4631 * fixed_power_int()) 4632 * 4633 * The calculation is approximated on a 128 point scale. 4634 */ 4635 #define DEGRADE_SHIFT 7 4636 4637 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 4638 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 4639 { 0, 0, 0, 0, 0, 0, 0, 0 }, 4640 { 64, 32, 8, 0, 0, 0, 0, 0 }, 4641 { 96, 72, 40, 12, 1, 0, 0, 0 }, 4642 { 112, 98, 75, 43, 15, 1, 0, 0 }, 4643 { 120, 112, 98, 76, 45, 16, 2, 0 } 4644 }; 4645 4646 /* 4647 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 4648 * would be when CPU is idle and so we just decay the old load without 4649 * adding any new load. 4650 */ 4651 static unsigned long 4652 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 4653 { 4654 int j = 0; 4655 4656 if (!missed_updates) 4657 return load; 4658 4659 if (missed_updates >= degrade_zero_ticks[idx]) 4660 return 0; 4661 4662 if (idx == 1) 4663 return load >> missed_updates; 4664 4665 while (missed_updates) { 4666 if (missed_updates % 2) 4667 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 4668 4669 missed_updates >>= 1; 4670 j++; 4671 } 4672 return load; 4673 } 4674 #endif /* CONFIG_NO_HZ_COMMON */ 4675 4676 /** 4677 * __cpu_load_update - update the rq->cpu_load[] statistics 4678 * @this_rq: The rq to update statistics for 4679 * @this_load: The current load 4680 * @pending_updates: The number of missed updates 4681 * 4682 * Update rq->cpu_load[] statistics. This function is usually called every 4683 * scheduler tick (TICK_NSEC). 4684 * 4685 * This function computes a decaying average: 4686 * 4687 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 4688 * 4689 * Because of NOHZ it might not get called on every tick which gives need for 4690 * the @pending_updates argument. 4691 * 4692 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 4693 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 4694 * = A * (A * load[i]_n-2 + B) + B 4695 * = A * (A * (A * load[i]_n-3 + B) + B) + B 4696 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 4697 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 4698 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 4699 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 4700 * 4701 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 4702 * any change in load would have resulted in the tick being turned back on. 4703 * 4704 * For regular NOHZ, this reduces to: 4705 * 4706 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 4707 * 4708 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 4709 * term. 4710 */ 4711 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 4712 unsigned long pending_updates) 4713 { 4714 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 4715 int i, scale; 4716 4717 this_rq->nr_load_updates++; 4718 4719 /* Update our load: */ 4720 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 4721 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 4722 unsigned long old_load, new_load; 4723 4724 /* scale is effectively 1 << i now, and >> i divides by scale */ 4725 4726 old_load = this_rq->cpu_load[i]; 4727 #ifdef CONFIG_NO_HZ_COMMON 4728 old_load = decay_load_missed(old_load, pending_updates - 1, i); 4729 if (tickless_load) { 4730 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 4731 /* 4732 * old_load can never be a negative value because a 4733 * decayed tickless_load cannot be greater than the 4734 * original tickless_load. 4735 */ 4736 old_load += tickless_load; 4737 } 4738 #endif 4739 new_load = this_load; 4740 /* 4741 * Round up the averaging division if load is increasing. This 4742 * prevents us from getting stuck on 9 if the load is 10, for 4743 * example. 4744 */ 4745 if (new_load > old_load) 4746 new_load += scale - 1; 4747 4748 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 4749 } 4750 4751 sched_avg_update(this_rq); 4752 } 4753 4754 /* Used instead of source_load when we know the type == 0 */ 4755 static unsigned long weighted_cpuload(const int cpu) 4756 { 4757 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs); 4758 } 4759 4760 #ifdef CONFIG_NO_HZ_COMMON 4761 /* 4762 * There is no sane way to deal with nohz on smp when using jiffies because the 4763 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 4764 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 4765 * 4766 * Therefore we need to avoid the delta approach from the regular tick when 4767 * possible since that would seriously skew the load calculation. This is why we 4768 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 4769 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 4770 * loop exit, nohz_idle_balance, nohz full exit...) 4771 * 4772 * This means we might still be one tick off for nohz periods. 4773 */ 4774 4775 static void cpu_load_update_nohz(struct rq *this_rq, 4776 unsigned long curr_jiffies, 4777 unsigned long load) 4778 { 4779 unsigned long pending_updates; 4780 4781 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 4782 if (pending_updates) { 4783 this_rq->last_load_update_tick = curr_jiffies; 4784 /* 4785 * In the regular NOHZ case, we were idle, this means load 0. 4786 * In the NOHZ_FULL case, we were non-idle, we should consider 4787 * its weighted load. 4788 */ 4789 cpu_load_update(this_rq, load, pending_updates); 4790 } 4791 } 4792 4793 /* 4794 * Called from nohz_idle_balance() to update the load ratings before doing the 4795 * idle balance. 4796 */ 4797 static void cpu_load_update_idle(struct rq *this_rq) 4798 { 4799 /* 4800 * bail if there's load or we're actually up-to-date. 4801 */ 4802 if (weighted_cpuload(cpu_of(this_rq))) 4803 return; 4804 4805 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 4806 } 4807 4808 /* 4809 * Record CPU load on nohz entry so we know the tickless load to account 4810 * on nohz exit. cpu_load[0] happens then to be updated more frequently 4811 * than other cpu_load[idx] but it should be fine as cpu_load readers 4812 * shouldn't rely into synchronized cpu_load[*] updates. 4813 */ 4814 void cpu_load_update_nohz_start(void) 4815 { 4816 struct rq *this_rq = this_rq(); 4817 4818 /* 4819 * This is all lockless but should be fine. If weighted_cpuload changes 4820 * concurrently we'll exit nohz. And cpu_load write can race with 4821 * cpu_load_update_idle() but both updater would be writing the same. 4822 */ 4823 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq)); 4824 } 4825 4826 /* 4827 * Account the tickless load in the end of a nohz frame. 4828 */ 4829 void cpu_load_update_nohz_stop(void) 4830 { 4831 unsigned long curr_jiffies = READ_ONCE(jiffies); 4832 struct rq *this_rq = this_rq(); 4833 unsigned long load; 4834 4835 if (curr_jiffies == this_rq->last_load_update_tick) 4836 return; 4837 4838 load = weighted_cpuload(cpu_of(this_rq)); 4839 raw_spin_lock(&this_rq->lock); 4840 update_rq_clock(this_rq); 4841 cpu_load_update_nohz(this_rq, curr_jiffies, load); 4842 raw_spin_unlock(&this_rq->lock); 4843 } 4844 #else /* !CONFIG_NO_HZ_COMMON */ 4845 static inline void cpu_load_update_nohz(struct rq *this_rq, 4846 unsigned long curr_jiffies, 4847 unsigned long load) { } 4848 #endif /* CONFIG_NO_HZ_COMMON */ 4849 4850 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 4851 { 4852 #ifdef CONFIG_NO_HZ_COMMON 4853 /* See the mess around cpu_load_update_nohz(). */ 4854 this_rq->last_load_update_tick = READ_ONCE(jiffies); 4855 #endif 4856 cpu_load_update(this_rq, load, 1); 4857 } 4858 4859 /* 4860 * Called from scheduler_tick() 4861 */ 4862 void cpu_load_update_active(struct rq *this_rq) 4863 { 4864 unsigned long load = weighted_cpuload(cpu_of(this_rq)); 4865 4866 if (tick_nohz_tick_stopped()) 4867 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 4868 else 4869 cpu_load_update_periodic(this_rq, load); 4870 } 4871 4872 /* 4873 * Return a low guess at the load of a migration-source cpu weighted 4874 * according to the scheduling class and "nice" value. 4875 * 4876 * We want to under-estimate the load of migration sources, to 4877 * balance conservatively. 4878 */ 4879 static unsigned long source_load(int cpu, int type) 4880 { 4881 struct rq *rq = cpu_rq(cpu); 4882 unsigned long total = weighted_cpuload(cpu); 4883 4884 if (type == 0 || !sched_feat(LB_BIAS)) 4885 return total; 4886 4887 return min(rq->cpu_load[type-1], total); 4888 } 4889 4890 /* 4891 * Return a high guess at the load of a migration-target cpu weighted 4892 * according to the scheduling class and "nice" value. 4893 */ 4894 static unsigned long target_load(int cpu, int type) 4895 { 4896 struct rq *rq = cpu_rq(cpu); 4897 unsigned long total = weighted_cpuload(cpu); 4898 4899 if (type == 0 || !sched_feat(LB_BIAS)) 4900 return total; 4901 4902 return max(rq->cpu_load[type-1], total); 4903 } 4904 4905 static unsigned long capacity_of(int cpu) 4906 { 4907 return cpu_rq(cpu)->cpu_capacity; 4908 } 4909 4910 static unsigned long capacity_orig_of(int cpu) 4911 { 4912 return cpu_rq(cpu)->cpu_capacity_orig; 4913 } 4914 4915 static unsigned long cpu_avg_load_per_task(int cpu) 4916 { 4917 struct rq *rq = cpu_rq(cpu); 4918 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 4919 unsigned long load_avg = weighted_cpuload(cpu); 4920 4921 if (nr_running) 4922 return load_avg / nr_running; 4923 4924 return 0; 4925 } 4926 4927 #ifdef CONFIG_FAIR_GROUP_SCHED 4928 /* 4929 * effective_load() calculates the load change as seen from the root_task_group 4930 * 4931 * Adding load to a group doesn't make a group heavier, but can cause movement 4932 * of group shares between cpus. Assuming the shares were perfectly aligned one 4933 * can calculate the shift in shares. 4934 * 4935 * Calculate the effective load difference if @wl is added (subtracted) to @tg 4936 * on this @cpu and results in a total addition (subtraction) of @wg to the 4937 * total group weight. 4938 * 4939 * Given a runqueue weight distribution (rw_i) we can compute a shares 4940 * distribution (s_i) using: 4941 * 4942 * s_i = rw_i / \Sum rw_j (1) 4943 * 4944 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 4945 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 4946 * shares distribution (s_i): 4947 * 4948 * rw_i = { 2, 4, 1, 0 } 4949 * s_i = { 2/7, 4/7, 1/7, 0 } 4950 * 4951 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 4952 * task used to run on and the CPU the waker is running on), we need to 4953 * compute the effect of waking a task on either CPU and, in case of a sync 4954 * wakeup, compute the effect of the current task going to sleep. 4955 * 4956 * So for a change of @wl to the local @cpu with an overall group weight change 4957 * of @wl we can compute the new shares distribution (s'_i) using: 4958 * 4959 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 4960 * 4961 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 4962 * differences in waking a task to CPU 0. The additional task changes the 4963 * weight and shares distributions like: 4964 * 4965 * rw'_i = { 3, 4, 1, 0 } 4966 * s'_i = { 3/8, 4/8, 1/8, 0 } 4967 * 4968 * We can then compute the difference in effective weight by using: 4969 * 4970 * dw_i = S * (s'_i - s_i) (3) 4971 * 4972 * Where 'S' is the group weight as seen by its parent. 4973 * 4974 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 4975 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 4976 * 4/7) times the weight of the group. 4977 */ 4978 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4979 { 4980 struct sched_entity *se = tg->se[cpu]; 4981 4982 if (!tg->parent) /* the trivial, non-cgroup case */ 4983 return wl; 4984 4985 for_each_sched_entity(se) { 4986 struct cfs_rq *cfs_rq = se->my_q; 4987 long W, w = cfs_rq_load_avg(cfs_rq); 4988 4989 tg = cfs_rq->tg; 4990 4991 /* 4992 * W = @wg + \Sum rw_j 4993 */ 4994 W = wg + atomic_long_read(&tg->load_avg); 4995 4996 /* Ensure \Sum rw_j >= rw_i */ 4997 W -= cfs_rq->tg_load_avg_contrib; 4998 W += w; 4999 5000 /* 5001 * w = rw_i + @wl 5002 */ 5003 w += wl; 5004 5005 /* 5006 * wl = S * s'_i; see (2) 5007 */ 5008 if (W > 0 && w < W) 5009 wl = (w * (long)tg->shares) / W; 5010 else 5011 wl = tg->shares; 5012 5013 /* 5014 * Per the above, wl is the new se->load.weight value; since 5015 * those are clipped to [MIN_SHARES, ...) do so now. See 5016 * calc_cfs_shares(). 5017 */ 5018 if (wl < MIN_SHARES) 5019 wl = MIN_SHARES; 5020 5021 /* 5022 * wl = dw_i = S * (s'_i - s_i); see (3) 5023 */ 5024 wl -= se->avg.load_avg; 5025 5026 /* 5027 * Recursively apply this logic to all parent groups to compute 5028 * the final effective load change on the root group. Since 5029 * only the @tg group gets extra weight, all parent groups can 5030 * only redistribute existing shares. @wl is the shift in shares 5031 * resulting from this level per the above. 5032 */ 5033 wg = 0; 5034 } 5035 5036 return wl; 5037 } 5038 #else 5039 5040 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 5041 { 5042 return wl; 5043 } 5044 5045 #endif 5046 5047 static void record_wakee(struct task_struct *p) 5048 { 5049 /* 5050 * Only decay a single time; tasks that have less then 1 wakeup per 5051 * jiffy will not have built up many flips. 5052 */ 5053 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5054 current->wakee_flips >>= 1; 5055 current->wakee_flip_decay_ts = jiffies; 5056 } 5057 5058 if (current->last_wakee != p) { 5059 current->last_wakee = p; 5060 current->wakee_flips++; 5061 } 5062 } 5063 5064 /* 5065 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5066 * 5067 * A waker of many should wake a different task than the one last awakened 5068 * at a frequency roughly N times higher than one of its wakees. 5069 * 5070 * In order to determine whether we should let the load spread vs consolidating 5071 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5072 * partner, and a factor of lls_size higher frequency in the other. 5073 * 5074 * With both conditions met, we can be relatively sure that the relationship is 5075 * non-monogamous, with partner count exceeding socket size. 5076 * 5077 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5078 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5079 * socket size. 5080 */ 5081 static int wake_wide(struct task_struct *p) 5082 { 5083 unsigned int master = current->wakee_flips; 5084 unsigned int slave = p->wakee_flips; 5085 int factor = this_cpu_read(sd_llc_size); 5086 5087 if (master < slave) 5088 swap(master, slave); 5089 if (slave < factor || master < slave * factor) 5090 return 0; 5091 return 1; 5092 } 5093 5094 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 5095 { 5096 s64 this_load, load; 5097 s64 this_eff_load, prev_eff_load; 5098 int idx, this_cpu, prev_cpu; 5099 struct task_group *tg; 5100 unsigned long weight; 5101 int balanced; 5102 5103 idx = sd->wake_idx; 5104 this_cpu = smp_processor_id(); 5105 prev_cpu = task_cpu(p); 5106 load = source_load(prev_cpu, idx); 5107 this_load = target_load(this_cpu, idx); 5108 5109 /* 5110 * If sync wakeup then subtract the (maximum possible) 5111 * effect of the currently running task from the load 5112 * of the current CPU: 5113 */ 5114 if (sync) { 5115 tg = task_group(current); 5116 weight = current->se.avg.load_avg; 5117 5118 this_load += effective_load(tg, this_cpu, -weight, -weight); 5119 load += effective_load(tg, prev_cpu, 0, -weight); 5120 } 5121 5122 tg = task_group(p); 5123 weight = p->se.avg.load_avg; 5124 5125 /* 5126 * In low-load situations, where prev_cpu is idle and this_cpu is idle 5127 * due to the sync cause above having dropped this_load to 0, we'll 5128 * always have an imbalance, but there's really nothing you can do 5129 * about that, so that's good too. 5130 * 5131 * Otherwise check if either cpus are near enough in load to allow this 5132 * task to be woken on this_cpu. 5133 */ 5134 this_eff_load = 100; 5135 this_eff_load *= capacity_of(prev_cpu); 5136 5137 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 5138 prev_eff_load *= capacity_of(this_cpu); 5139 5140 if (this_load > 0) { 5141 this_eff_load *= this_load + 5142 effective_load(tg, this_cpu, weight, weight); 5143 5144 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 5145 } 5146 5147 balanced = this_eff_load <= prev_eff_load; 5148 5149 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 5150 5151 if (!balanced) 5152 return 0; 5153 5154 schedstat_inc(sd, ttwu_move_affine); 5155 schedstat_inc(p, se.statistics.nr_wakeups_affine); 5156 5157 return 1; 5158 } 5159 5160 /* 5161 * find_idlest_group finds and returns the least busy CPU group within the 5162 * domain. 5163 */ 5164 static struct sched_group * 5165 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5166 int this_cpu, int sd_flag) 5167 { 5168 struct sched_group *idlest = NULL, *group = sd->groups; 5169 unsigned long min_load = ULONG_MAX, this_load = 0; 5170 int load_idx = sd->forkexec_idx; 5171 int imbalance = 100 + (sd->imbalance_pct-100)/2; 5172 5173 if (sd_flag & SD_BALANCE_WAKE) 5174 load_idx = sd->wake_idx; 5175 5176 do { 5177 unsigned long load, avg_load; 5178 int local_group; 5179 int i; 5180 5181 /* Skip over this group if it has no CPUs allowed */ 5182 if (!cpumask_intersects(sched_group_cpus(group), 5183 tsk_cpus_allowed(p))) 5184 continue; 5185 5186 local_group = cpumask_test_cpu(this_cpu, 5187 sched_group_cpus(group)); 5188 5189 /* Tally up the load of all CPUs in the group */ 5190 avg_load = 0; 5191 5192 for_each_cpu(i, sched_group_cpus(group)) { 5193 /* Bias balancing toward cpus of our domain */ 5194 if (local_group) 5195 load = source_load(i, load_idx); 5196 else 5197 load = target_load(i, load_idx); 5198 5199 avg_load += load; 5200 } 5201 5202 /* Adjust by relative CPU capacity of the group */ 5203 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; 5204 5205 if (local_group) { 5206 this_load = avg_load; 5207 } else if (avg_load < min_load) { 5208 min_load = avg_load; 5209 idlest = group; 5210 } 5211 } while (group = group->next, group != sd->groups); 5212 5213 if (!idlest || 100*this_load < imbalance*min_load) 5214 return NULL; 5215 return idlest; 5216 } 5217 5218 /* 5219 * find_idlest_cpu - find the idlest cpu among the cpus in group. 5220 */ 5221 static int 5222 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5223 { 5224 unsigned long load, min_load = ULONG_MAX; 5225 unsigned int min_exit_latency = UINT_MAX; 5226 u64 latest_idle_timestamp = 0; 5227 int least_loaded_cpu = this_cpu; 5228 int shallowest_idle_cpu = -1; 5229 int i; 5230 5231 /* Traverse only the allowed CPUs */ 5232 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 5233 if (idle_cpu(i)) { 5234 struct rq *rq = cpu_rq(i); 5235 struct cpuidle_state *idle = idle_get_state(rq); 5236 if (idle && idle->exit_latency < min_exit_latency) { 5237 /* 5238 * We give priority to a CPU whose idle state 5239 * has the smallest exit latency irrespective 5240 * of any idle timestamp. 5241 */ 5242 min_exit_latency = idle->exit_latency; 5243 latest_idle_timestamp = rq->idle_stamp; 5244 shallowest_idle_cpu = i; 5245 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5246 rq->idle_stamp > latest_idle_timestamp) { 5247 /* 5248 * If equal or no active idle state, then 5249 * the most recently idled CPU might have 5250 * a warmer cache. 5251 */ 5252 latest_idle_timestamp = rq->idle_stamp; 5253 shallowest_idle_cpu = i; 5254 } 5255 } else if (shallowest_idle_cpu == -1) { 5256 load = weighted_cpuload(i); 5257 if (load < min_load || (load == min_load && i == this_cpu)) { 5258 min_load = load; 5259 least_loaded_cpu = i; 5260 } 5261 } 5262 } 5263 5264 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5265 } 5266 5267 /* 5268 * Try and locate an idle CPU in the sched_domain. 5269 */ 5270 static int select_idle_sibling(struct task_struct *p, int target) 5271 { 5272 struct sched_domain *sd; 5273 struct sched_group *sg; 5274 int i = task_cpu(p); 5275 5276 if (idle_cpu(target)) 5277 return target; 5278 5279 /* 5280 * If the prevous cpu is cache affine and idle, don't be stupid. 5281 */ 5282 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 5283 return i; 5284 5285 /* 5286 * Otherwise, iterate the domains and find an eligible idle cpu. 5287 * 5288 * A completely idle sched group at higher domains is more 5289 * desirable than an idle group at a lower level, because lower 5290 * domains have smaller groups and usually share hardware 5291 * resources which causes tasks to contend on them, e.g. x86 5292 * hyperthread siblings in the lowest domain (SMT) can contend 5293 * on the shared cpu pipeline. 5294 * 5295 * However, while we prefer idle groups at higher domains 5296 * finding an idle cpu at the lowest domain is still better than 5297 * returning 'target', which we've already established, isn't 5298 * idle. 5299 */ 5300 sd = rcu_dereference(per_cpu(sd_llc, target)); 5301 for_each_lower_domain(sd) { 5302 sg = sd->groups; 5303 do { 5304 if (!cpumask_intersects(sched_group_cpus(sg), 5305 tsk_cpus_allowed(p))) 5306 goto next; 5307 5308 /* Ensure the entire group is idle */ 5309 for_each_cpu(i, sched_group_cpus(sg)) { 5310 if (i == target || !idle_cpu(i)) 5311 goto next; 5312 } 5313 5314 /* 5315 * It doesn't matter which cpu we pick, the 5316 * whole group is idle. 5317 */ 5318 target = cpumask_first_and(sched_group_cpus(sg), 5319 tsk_cpus_allowed(p)); 5320 goto done; 5321 next: 5322 sg = sg->next; 5323 } while (sg != sd->groups); 5324 } 5325 done: 5326 return target; 5327 } 5328 5329 /* 5330 * cpu_util returns the amount of capacity of a CPU that is used by CFS 5331 * tasks. The unit of the return value must be the one of capacity so we can 5332 * compare the utilization with the capacity of the CPU that is available for 5333 * CFS task (ie cpu_capacity). 5334 * 5335 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 5336 * recent utilization of currently non-runnable tasks on a CPU. It represents 5337 * the amount of utilization of a CPU in the range [0..capacity_orig] where 5338 * capacity_orig is the cpu_capacity available at the highest frequency 5339 * (arch_scale_freq_capacity()). 5340 * The utilization of a CPU converges towards a sum equal to or less than the 5341 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 5342 * the running time on this CPU scaled by capacity_curr. 5343 * 5344 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 5345 * higher than capacity_orig because of unfortunate rounding in 5346 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 5347 * the average stabilizes with the new running time. We need to check that the 5348 * utilization stays within the range of [0..capacity_orig] and cap it if 5349 * necessary. Without utilization capping, a group could be seen as overloaded 5350 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 5351 * available capacity. We allow utilization to overshoot capacity_curr (but not 5352 * capacity_orig) as it useful for predicting the capacity required after task 5353 * migrations (scheduler-driven DVFS). 5354 */ 5355 static int cpu_util(int cpu) 5356 { 5357 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; 5358 unsigned long capacity = capacity_orig_of(cpu); 5359 5360 return (util >= capacity) ? capacity : util; 5361 } 5362 5363 /* 5364 * select_task_rq_fair: Select target runqueue for the waking task in domains 5365 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 5366 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 5367 * 5368 * Balances load by selecting the idlest cpu in the idlest group, or under 5369 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 5370 * 5371 * Returns the target cpu number. 5372 * 5373 * preempt must be disabled. 5374 */ 5375 static int 5376 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 5377 { 5378 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 5379 int cpu = smp_processor_id(); 5380 int new_cpu = prev_cpu; 5381 int want_affine = 0; 5382 int sync = wake_flags & WF_SYNC; 5383 5384 if (sd_flag & SD_BALANCE_WAKE) { 5385 record_wakee(p); 5386 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); 5387 } 5388 5389 rcu_read_lock(); 5390 for_each_domain(cpu, tmp) { 5391 if (!(tmp->flags & SD_LOAD_BALANCE)) 5392 break; 5393 5394 /* 5395 * If both cpu and prev_cpu are part of this domain, 5396 * cpu is a valid SD_WAKE_AFFINE target. 5397 */ 5398 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 5399 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 5400 affine_sd = tmp; 5401 break; 5402 } 5403 5404 if (tmp->flags & sd_flag) 5405 sd = tmp; 5406 else if (!want_affine) 5407 break; 5408 } 5409 5410 if (affine_sd) { 5411 sd = NULL; /* Prefer wake_affine over balance flags */ 5412 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 5413 new_cpu = cpu; 5414 } 5415 5416 if (!sd) { 5417 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ 5418 new_cpu = select_idle_sibling(p, new_cpu); 5419 5420 } else while (sd) { 5421 struct sched_group *group; 5422 int weight; 5423 5424 if (!(sd->flags & sd_flag)) { 5425 sd = sd->child; 5426 continue; 5427 } 5428 5429 group = find_idlest_group(sd, p, cpu, sd_flag); 5430 if (!group) { 5431 sd = sd->child; 5432 continue; 5433 } 5434 5435 new_cpu = find_idlest_cpu(group, p, cpu); 5436 if (new_cpu == -1 || new_cpu == cpu) { 5437 /* Now try balancing at a lower domain level of cpu */ 5438 sd = sd->child; 5439 continue; 5440 } 5441 5442 /* Now try balancing at a lower domain level of new_cpu */ 5443 cpu = new_cpu; 5444 weight = sd->span_weight; 5445 sd = NULL; 5446 for_each_domain(cpu, tmp) { 5447 if (weight <= tmp->span_weight) 5448 break; 5449 if (tmp->flags & sd_flag) 5450 sd = tmp; 5451 } 5452 /* while loop will break here if sd == NULL */ 5453 } 5454 rcu_read_unlock(); 5455 5456 return new_cpu; 5457 } 5458 5459 /* 5460 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 5461 * cfs_rq_of(p) references at time of call are still valid and identify the 5462 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 5463 */ 5464 static void migrate_task_rq_fair(struct task_struct *p) 5465 { 5466 /* 5467 * As blocked tasks retain absolute vruntime the migration needs to 5468 * deal with this by subtracting the old and adding the new 5469 * min_vruntime -- the latter is done by enqueue_entity() when placing 5470 * the task on the new runqueue. 5471 */ 5472 if (p->state == TASK_WAKING) { 5473 struct sched_entity *se = &p->se; 5474 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5475 u64 min_vruntime; 5476 5477 #ifndef CONFIG_64BIT 5478 u64 min_vruntime_copy; 5479 5480 do { 5481 min_vruntime_copy = cfs_rq->min_vruntime_copy; 5482 smp_rmb(); 5483 min_vruntime = cfs_rq->min_vruntime; 5484 } while (min_vruntime != min_vruntime_copy); 5485 #else 5486 min_vruntime = cfs_rq->min_vruntime; 5487 #endif 5488 5489 se->vruntime -= min_vruntime; 5490 } 5491 5492 /* 5493 * We are supposed to update the task to "current" time, then its up to date 5494 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting 5495 * what current time is, so simply throw away the out-of-date time. This 5496 * will result in the wakee task is less decayed, but giving the wakee more 5497 * load sounds not bad. 5498 */ 5499 remove_entity_load_avg(&p->se); 5500 5501 /* Tell new CPU we are migrated */ 5502 p->se.avg.last_update_time = 0; 5503 5504 /* We have migrated, no longer consider this task hot */ 5505 p->se.exec_start = 0; 5506 } 5507 5508 static void task_dead_fair(struct task_struct *p) 5509 { 5510 remove_entity_load_avg(&p->se); 5511 } 5512 #endif /* CONFIG_SMP */ 5513 5514 static unsigned long 5515 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 5516 { 5517 unsigned long gran = sysctl_sched_wakeup_granularity; 5518 5519 /* 5520 * Since its curr running now, convert the gran from real-time 5521 * to virtual-time in his units. 5522 * 5523 * By using 'se' instead of 'curr' we penalize light tasks, so 5524 * they get preempted easier. That is, if 'se' < 'curr' then 5525 * the resulting gran will be larger, therefore penalizing the 5526 * lighter, if otoh 'se' > 'curr' then the resulting gran will 5527 * be smaller, again penalizing the lighter task. 5528 * 5529 * This is especially important for buddies when the leftmost 5530 * task is higher priority than the buddy. 5531 */ 5532 return calc_delta_fair(gran, se); 5533 } 5534 5535 /* 5536 * Should 'se' preempt 'curr'. 5537 * 5538 * |s1 5539 * |s2 5540 * |s3 5541 * g 5542 * |<--->|c 5543 * 5544 * w(c, s1) = -1 5545 * w(c, s2) = 0 5546 * w(c, s3) = 1 5547 * 5548 */ 5549 static int 5550 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 5551 { 5552 s64 gran, vdiff = curr->vruntime - se->vruntime; 5553 5554 if (vdiff <= 0) 5555 return -1; 5556 5557 gran = wakeup_gran(curr, se); 5558 if (vdiff > gran) 5559 return 1; 5560 5561 return 0; 5562 } 5563 5564 static void set_last_buddy(struct sched_entity *se) 5565 { 5566 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 5567 return; 5568 5569 for_each_sched_entity(se) 5570 cfs_rq_of(se)->last = se; 5571 } 5572 5573 static void set_next_buddy(struct sched_entity *se) 5574 { 5575 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 5576 return; 5577 5578 for_each_sched_entity(se) 5579 cfs_rq_of(se)->next = se; 5580 } 5581 5582 static void set_skip_buddy(struct sched_entity *se) 5583 { 5584 for_each_sched_entity(se) 5585 cfs_rq_of(se)->skip = se; 5586 } 5587 5588 /* 5589 * Preempt the current task with a newly woken task if needed: 5590 */ 5591 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 5592 { 5593 struct task_struct *curr = rq->curr; 5594 struct sched_entity *se = &curr->se, *pse = &p->se; 5595 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5596 int scale = cfs_rq->nr_running >= sched_nr_latency; 5597 int next_buddy_marked = 0; 5598 5599 if (unlikely(se == pse)) 5600 return; 5601 5602 /* 5603 * This is possible from callers such as attach_tasks(), in which we 5604 * unconditionally check_prempt_curr() after an enqueue (which may have 5605 * lead to a throttle). This both saves work and prevents false 5606 * next-buddy nomination below. 5607 */ 5608 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 5609 return; 5610 5611 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 5612 set_next_buddy(pse); 5613 next_buddy_marked = 1; 5614 } 5615 5616 /* 5617 * We can come here with TIF_NEED_RESCHED already set from new task 5618 * wake up path. 5619 * 5620 * Note: this also catches the edge-case of curr being in a throttled 5621 * group (e.g. via set_curr_task), since update_curr() (in the 5622 * enqueue of curr) will have resulted in resched being set. This 5623 * prevents us from potentially nominating it as a false LAST_BUDDY 5624 * below. 5625 */ 5626 if (test_tsk_need_resched(curr)) 5627 return; 5628 5629 /* Idle tasks are by definition preempted by non-idle tasks. */ 5630 if (unlikely(curr->policy == SCHED_IDLE) && 5631 likely(p->policy != SCHED_IDLE)) 5632 goto preempt; 5633 5634 /* 5635 * Batch and idle tasks do not preempt non-idle tasks (their preemption 5636 * is driven by the tick): 5637 */ 5638 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 5639 return; 5640 5641 find_matching_se(&se, &pse); 5642 update_curr(cfs_rq_of(se)); 5643 BUG_ON(!pse); 5644 if (wakeup_preempt_entity(se, pse) == 1) { 5645 /* 5646 * Bias pick_next to pick the sched entity that is 5647 * triggering this preemption. 5648 */ 5649 if (!next_buddy_marked) 5650 set_next_buddy(pse); 5651 goto preempt; 5652 } 5653 5654 return; 5655 5656 preempt: 5657 resched_curr(rq); 5658 /* 5659 * Only set the backward buddy when the current task is still 5660 * on the rq. This can happen when a wakeup gets interleaved 5661 * with schedule on the ->pre_schedule() or idle_balance() 5662 * point, either of which can * drop the rq lock. 5663 * 5664 * Also, during early boot the idle thread is in the fair class, 5665 * for obvious reasons its a bad idea to schedule back to it. 5666 */ 5667 if (unlikely(!se->on_rq || curr == rq->idle)) 5668 return; 5669 5670 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 5671 set_last_buddy(se); 5672 } 5673 5674 static struct task_struct * 5675 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie) 5676 { 5677 struct cfs_rq *cfs_rq = &rq->cfs; 5678 struct sched_entity *se; 5679 struct task_struct *p; 5680 int new_tasks; 5681 5682 again: 5683 #ifdef CONFIG_FAIR_GROUP_SCHED 5684 if (!cfs_rq->nr_running) 5685 goto idle; 5686 5687 if (prev->sched_class != &fair_sched_class) 5688 goto simple; 5689 5690 /* 5691 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 5692 * likely that a next task is from the same cgroup as the current. 5693 * 5694 * Therefore attempt to avoid putting and setting the entire cgroup 5695 * hierarchy, only change the part that actually changes. 5696 */ 5697 5698 do { 5699 struct sched_entity *curr = cfs_rq->curr; 5700 5701 /* 5702 * Since we got here without doing put_prev_entity() we also 5703 * have to consider cfs_rq->curr. If it is still a runnable 5704 * entity, update_curr() will update its vruntime, otherwise 5705 * forget we've ever seen it. 5706 */ 5707 if (curr) { 5708 if (curr->on_rq) 5709 update_curr(cfs_rq); 5710 else 5711 curr = NULL; 5712 5713 /* 5714 * This call to check_cfs_rq_runtime() will do the 5715 * throttle and dequeue its entity in the parent(s). 5716 * Therefore the 'simple' nr_running test will indeed 5717 * be correct. 5718 */ 5719 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 5720 goto simple; 5721 } 5722 5723 se = pick_next_entity(cfs_rq, curr); 5724 cfs_rq = group_cfs_rq(se); 5725 } while (cfs_rq); 5726 5727 p = task_of(se); 5728 5729 /* 5730 * Since we haven't yet done put_prev_entity and if the selected task 5731 * is a different task than we started out with, try and touch the 5732 * least amount of cfs_rqs. 5733 */ 5734 if (prev != p) { 5735 struct sched_entity *pse = &prev->se; 5736 5737 while (!(cfs_rq = is_same_group(se, pse))) { 5738 int se_depth = se->depth; 5739 int pse_depth = pse->depth; 5740 5741 if (se_depth <= pse_depth) { 5742 put_prev_entity(cfs_rq_of(pse), pse); 5743 pse = parent_entity(pse); 5744 } 5745 if (se_depth >= pse_depth) { 5746 set_next_entity(cfs_rq_of(se), se); 5747 se = parent_entity(se); 5748 } 5749 } 5750 5751 put_prev_entity(cfs_rq, pse); 5752 set_next_entity(cfs_rq, se); 5753 } 5754 5755 if (hrtick_enabled(rq)) 5756 hrtick_start_fair(rq, p); 5757 5758 return p; 5759 simple: 5760 cfs_rq = &rq->cfs; 5761 #endif 5762 5763 if (!cfs_rq->nr_running) 5764 goto idle; 5765 5766 put_prev_task(rq, prev); 5767 5768 do { 5769 se = pick_next_entity(cfs_rq, NULL); 5770 set_next_entity(cfs_rq, se); 5771 cfs_rq = group_cfs_rq(se); 5772 } while (cfs_rq); 5773 5774 p = task_of(se); 5775 5776 if (hrtick_enabled(rq)) 5777 hrtick_start_fair(rq, p); 5778 5779 return p; 5780 5781 idle: 5782 /* 5783 * This is OK, because current is on_cpu, which avoids it being picked 5784 * for load-balance and preemption/IRQs are still disabled avoiding 5785 * further scheduler activity on it and we're being very careful to 5786 * re-start the picking loop. 5787 */ 5788 lockdep_unpin_lock(&rq->lock, cookie); 5789 new_tasks = idle_balance(rq); 5790 lockdep_repin_lock(&rq->lock, cookie); 5791 /* 5792 * Because idle_balance() releases (and re-acquires) rq->lock, it is 5793 * possible for any higher priority task to appear. In that case we 5794 * must re-start the pick_next_entity() loop. 5795 */ 5796 if (new_tasks < 0) 5797 return RETRY_TASK; 5798 5799 if (new_tasks > 0) 5800 goto again; 5801 5802 return NULL; 5803 } 5804 5805 /* 5806 * Account for a descheduled task: 5807 */ 5808 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 5809 { 5810 struct sched_entity *se = &prev->se; 5811 struct cfs_rq *cfs_rq; 5812 5813 for_each_sched_entity(se) { 5814 cfs_rq = cfs_rq_of(se); 5815 put_prev_entity(cfs_rq, se); 5816 } 5817 } 5818 5819 /* 5820 * sched_yield() is very simple 5821 * 5822 * The magic of dealing with the ->skip buddy is in pick_next_entity. 5823 */ 5824 static void yield_task_fair(struct rq *rq) 5825 { 5826 struct task_struct *curr = rq->curr; 5827 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5828 struct sched_entity *se = &curr->se; 5829 5830 /* 5831 * Are we the only task in the tree? 5832 */ 5833 if (unlikely(rq->nr_running == 1)) 5834 return; 5835 5836 clear_buddies(cfs_rq, se); 5837 5838 if (curr->policy != SCHED_BATCH) { 5839 update_rq_clock(rq); 5840 /* 5841 * Update run-time statistics of the 'current'. 5842 */ 5843 update_curr(cfs_rq); 5844 /* 5845 * Tell update_rq_clock() that we've just updated, 5846 * so we don't do microscopic update in schedule() 5847 * and double the fastpath cost. 5848 */ 5849 rq_clock_skip_update(rq, true); 5850 } 5851 5852 set_skip_buddy(se); 5853 } 5854 5855 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 5856 { 5857 struct sched_entity *se = &p->se; 5858 5859 /* throttled hierarchies are not runnable */ 5860 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 5861 return false; 5862 5863 /* Tell the scheduler that we'd really like pse to run next. */ 5864 set_next_buddy(se); 5865 5866 yield_task_fair(rq); 5867 5868 return true; 5869 } 5870 5871 #ifdef CONFIG_SMP 5872 /************************************************** 5873 * Fair scheduling class load-balancing methods. 5874 * 5875 * BASICS 5876 * 5877 * The purpose of load-balancing is to achieve the same basic fairness the 5878 * per-cpu scheduler provides, namely provide a proportional amount of compute 5879 * time to each task. This is expressed in the following equation: 5880 * 5881 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 5882 * 5883 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 5884 * W_i,0 is defined as: 5885 * 5886 * W_i,0 = \Sum_j w_i,j (2) 5887 * 5888 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 5889 * is derived from the nice value as per sched_prio_to_weight[]. 5890 * 5891 * The weight average is an exponential decay average of the instantaneous 5892 * weight: 5893 * 5894 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 5895 * 5896 * C_i is the compute capacity of cpu i, typically it is the 5897 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 5898 * can also include other factors [XXX]. 5899 * 5900 * To achieve this balance we define a measure of imbalance which follows 5901 * directly from (1): 5902 * 5903 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 5904 * 5905 * We them move tasks around to minimize the imbalance. In the continuous 5906 * function space it is obvious this converges, in the discrete case we get 5907 * a few fun cases generally called infeasible weight scenarios. 5908 * 5909 * [XXX expand on: 5910 * - infeasible weights; 5911 * - local vs global optima in the discrete case. ] 5912 * 5913 * 5914 * SCHED DOMAINS 5915 * 5916 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 5917 * for all i,j solution, we create a tree of cpus that follows the hardware 5918 * topology where each level pairs two lower groups (or better). This results 5919 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 5920 * tree to only the first of the previous level and we decrease the frequency 5921 * of load-balance at each level inv. proportional to the number of cpus in 5922 * the groups. 5923 * 5924 * This yields: 5925 * 5926 * log_2 n 1 n 5927 * \Sum { --- * --- * 2^i } = O(n) (5) 5928 * i = 0 2^i 2^i 5929 * `- size of each group 5930 * | | `- number of cpus doing load-balance 5931 * | `- freq 5932 * `- sum over all levels 5933 * 5934 * Coupled with a limit on how many tasks we can migrate every balance pass, 5935 * this makes (5) the runtime complexity of the balancer. 5936 * 5937 * An important property here is that each CPU is still (indirectly) connected 5938 * to every other cpu in at most O(log n) steps: 5939 * 5940 * The adjacency matrix of the resulting graph is given by: 5941 * 5942 * log_2 n 5943 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 5944 * k = 0 5945 * 5946 * And you'll find that: 5947 * 5948 * A^(log_2 n)_i,j != 0 for all i,j (7) 5949 * 5950 * Showing there's indeed a path between every cpu in at most O(log n) steps. 5951 * The task movement gives a factor of O(m), giving a convergence complexity 5952 * of: 5953 * 5954 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 5955 * 5956 * 5957 * WORK CONSERVING 5958 * 5959 * In order to avoid CPUs going idle while there's still work to do, new idle 5960 * balancing is more aggressive and has the newly idle cpu iterate up the domain 5961 * tree itself instead of relying on other CPUs to bring it work. 5962 * 5963 * This adds some complexity to both (5) and (8) but it reduces the total idle 5964 * time. 5965 * 5966 * [XXX more?] 5967 * 5968 * 5969 * CGROUPS 5970 * 5971 * Cgroups make a horror show out of (2), instead of a simple sum we get: 5972 * 5973 * s_k,i 5974 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 5975 * S_k 5976 * 5977 * Where 5978 * 5979 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 5980 * 5981 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 5982 * 5983 * The big problem is S_k, its a global sum needed to compute a local (W_i) 5984 * property. 5985 * 5986 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 5987 * rewrite all of this once again.] 5988 */ 5989 5990 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 5991 5992 enum fbq_type { regular, remote, all }; 5993 5994 #define LBF_ALL_PINNED 0x01 5995 #define LBF_NEED_BREAK 0x02 5996 #define LBF_DST_PINNED 0x04 5997 #define LBF_SOME_PINNED 0x08 5998 5999 struct lb_env { 6000 struct sched_domain *sd; 6001 6002 struct rq *src_rq; 6003 int src_cpu; 6004 6005 int dst_cpu; 6006 struct rq *dst_rq; 6007 6008 struct cpumask *dst_grpmask; 6009 int new_dst_cpu; 6010 enum cpu_idle_type idle; 6011 long imbalance; 6012 /* The set of CPUs under consideration for load-balancing */ 6013 struct cpumask *cpus; 6014 6015 unsigned int flags; 6016 6017 unsigned int loop; 6018 unsigned int loop_break; 6019 unsigned int loop_max; 6020 6021 enum fbq_type fbq_type; 6022 struct list_head tasks; 6023 }; 6024 6025 /* 6026 * Is this task likely cache-hot: 6027 */ 6028 static int task_hot(struct task_struct *p, struct lb_env *env) 6029 { 6030 s64 delta; 6031 6032 lockdep_assert_held(&env->src_rq->lock); 6033 6034 if (p->sched_class != &fair_sched_class) 6035 return 0; 6036 6037 if (unlikely(p->policy == SCHED_IDLE)) 6038 return 0; 6039 6040 /* 6041 * Buddy candidates are cache hot: 6042 */ 6043 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 6044 (&p->se == cfs_rq_of(&p->se)->next || 6045 &p->se == cfs_rq_of(&p->se)->last)) 6046 return 1; 6047 6048 if (sysctl_sched_migration_cost == -1) 6049 return 1; 6050 if (sysctl_sched_migration_cost == 0) 6051 return 0; 6052 6053 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 6054 6055 return delta < (s64)sysctl_sched_migration_cost; 6056 } 6057 6058 #ifdef CONFIG_NUMA_BALANCING 6059 /* 6060 * Returns 1, if task migration degrades locality 6061 * Returns 0, if task migration improves locality i.e migration preferred. 6062 * Returns -1, if task migration is not affected by locality. 6063 */ 6064 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 6065 { 6066 struct numa_group *numa_group = rcu_dereference(p->numa_group); 6067 unsigned long src_faults, dst_faults; 6068 int src_nid, dst_nid; 6069 6070 if (!static_branch_likely(&sched_numa_balancing)) 6071 return -1; 6072 6073 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 6074 return -1; 6075 6076 src_nid = cpu_to_node(env->src_cpu); 6077 dst_nid = cpu_to_node(env->dst_cpu); 6078 6079 if (src_nid == dst_nid) 6080 return -1; 6081 6082 /* Migrating away from the preferred node is always bad. */ 6083 if (src_nid == p->numa_preferred_nid) { 6084 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 6085 return 1; 6086 else 6087 return -1; 6088 } 6089 6090 /* Encourage migration to the preferred node. */ 6091 if (dst_nid == p->numa_preferred_nid) 6092 return 0; 6093 6094 if (numa_group) { 6095 src_faults = group_faults(p, src_nid); 6096 dst_faults = group_faults(p, dst_nid); 6097 } else { 6098 src_faults = task_faults(p, src_nid); 6099 dst_faults = task_faults(p, dst_nid); 6100 } 6101 6102 return dst_faults < src_faults; 6103 } 6104 6105 #else 6106 static inline int migrate_degrades_locality(struct task_struct *p, 6107 struct lb_env *env) 6108 { 6109 return -1; 6110 } 6111 #endif 6112 6113 /* 6114 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 6115 */ 6116 static 6117 int can_migrate_task(struct task_struct *p, struct lb_env *env) 6118 { 6119 int tsk_cache_hot; 6120 6121 lockdep_assert_held(&env->src_rq->lock); 6122 6123 /* 6124 * We do not migrate tasks that are: 6125 * 1) throttled_lb_pair, or 6126 * 2) cannot be migrated to this CPU due to cpus_allowed, or 6127 * 3) running (obviously), or 6128 * 4) are cache-hot on their current CPU. 6129 */ 6130 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 6131 return 0; 6132 6133 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 6134 int cpu; 6135 6136 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 6137 6138 env->flags |= LBF_SOME_PINNED; 6139 6140 /* 6141 * Remember if this task can be migrated to any other cpu in 6142 * our sched_group. We may want to revisit it if we couldn't 6143 * meet load balance goals by pulling other tasks on src_cpu. 6144 * 6145 * Also avoid computing new_dst_cpu if we have already computed 6146 * one in current iteration. 6147 */ 6148 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 6149 return 0; 6150 6151 /* Prevent to re-select dst_cpu via env's cpus */ 6152 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 6153 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 6154 env->flags |= LBF_DST_PINNED; 6155 env->new_dst_cpu = cpu; 6156 break; 6157 } 6158 } 6159 6160 return 0; 6161 } 6162 6163 /* Record that we found atleast one task that could run on dst_cpu */ 6164 env->flags &= ~LBF_ALL_PINNED; 6165 6166 if (task_running(env->src_rq, p)) { 6167 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 6168 return 0; 6169 } 6170 6171 /* 6172 * Aggressive migration if: 6173 * 1) destination numa is preferred 6174 * 2) task is cache cold, or 6175 * 3) too many balance attempts have failed. 6176 */ 6177 tsk_cache_hot = migrate_degrades_locality(p, env); 6178 if (tsk_cache_hot == -1) 6179 tsk_cache_hot = task_hot(p, env); 6180 6181 if (tsk_cache_hot <= 0 || 6182 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 6183 if (tsk_cache_hot == 1) { 6184 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 6185 schedstat_inc(p, se.statistics.nr_forced_migrations); 6186 } 6187 return 1; 6188 } 6189 6190 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 6191 return 0; 6192 } 6193 6194 /* 6195 * detach_task() -- detach the task for the migration specified in env 6196 */ 6197 static void detach_task(struct task_struct *p, struct lb_env *env) 6198 { 6199 lockdep_assert_held(&env->src_rq->lock); 6200 6201 p->on_rq = TASK_ON_RQ_MIGRATING; 6202 deactivate_task(env->src_rq, p, 0); 6203 set_task_cpu(p, env->dst_cpu); 6204 } 6205 6206 /* 6207 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 6208 * part of active balancing operations within "domain". 6209 * 6210 * Returns a task if successful and NULL otherwise. 6211 */ 6212 static struct task_struct *detach_one_task(struct lb_env *env) 6213 { 6214 struct task_struct *p, *n; 6215 6216 lockdep_assert_held(&env->src_rq->lock); 6217 6218 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 6219 if (!can_migrate_task(p, env)) 6220 continue; 6221 6222 detach_task(p, env); 6223 6224 /* 6225 * Right now, this is only the second place where 6226 * lb_gained[env->idle] is updated (other is detach_tasks) 6227 * so we can safely collect stats here rather than 6228 * inside detach_tasks(). 6229 */ 6230 schedstat_inc(env->sd, lb_gained[env->idle]); 6231 return p; 6232 } 6233 return NULL; 6234 } 6235 6236 static const unsigned int sched_nr_migrate_break = 32; 6237 6238 /* 6239 * detach_tasks() -- tries to detach up to imbalance weighted load from 6240 * busiest_rq, as part of a balancing operation within domain "sd". 6241 * 6242 * Returns number of detached tasks if successful and 0 otherwise. 6243 */ 6244 static int detach_tasks(struct lb_env *env) 6245 { 6246 struct list_head *tasks = &env->src_rq->cfs_tasks; 6247 struct task_struct *p; 6248 unsigned long load; 6249 int detached = 0; 6250 6251 lockdep_assert_held(&env->src_rq->lock); 6252 6253 if (env->imbalance <= 0) 6254 return 0; 6255 6256 while (!list_empty(tasks)) { 6257 /* 6258 * We don't want to steal all, otherwise we may be treated likewise, 6259 * which could at worst lead to a livelock crash. 6260 */ 6261 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 6262 break; 6263 6264 p = list_first_entry(tasks, struct task_struct, se.group_node); 6265 6266 env->loop++; 6267 /* We've more or less seen every task there is, call it quits */ 6268 if (env->loop > env->loop_max) 6269 break; 6270 6271 /* take a breather every nr_migrate tasks */ 6272 if (env->loop > env->loop_break) { 6273 env->loop_break += sched_nr_migrate_break; 6274 env->flags |= LBF_NEED_BREAK; 6275 break; 6276 } 6277 6278 if (!can_migrate_task(p, env)) 6279 goto next; 6280 6281 load = task_h_load(p); 6282 6283 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 6284 goto next; 6285 6286 if ((load / 2) > env->imbalance) 6287 goto next; 6288 6289 detach_task(p, env); 6290 list_add(&p->se.group_node, &env->tasks); 6291 6292 detached++; 6293 env->imbalance -= load; 6294 6295 #ifdef CONFIG_PREEMPT 6296 /* 6297 * NEWIDLE balancing is a source of latency, so preemptible 6298 * kernels will stop after the first task is detached to minimize 6299 * the critical section. 6300 */ 6301 if (env->idle == CPU_NEWLY_IDLE) 6302 break; 6303 #endif 6304 6305 /* 6306 * We only want to steal up to the prescribed amount of 6307 * weighted load. 6308 */ 6309 if (env->imbalance <= 0) 6310 break; 6311 6312 continue; 6313 next: 6314 list_move_tail(&p->se.group_node, tasks); 6315 } 6316 6317 /* 6318 * Right now, this is one of only two places we collect this stat 6319 * so we can safely collect detach_one_task() stats here rather 6320 * than inside detach_one_task(). 6321 */ 6322 schedstat_add(env->sd, lb_gained[env->idle], detached); 6323 6324 return detached; 6325 } 6326 6327 /* 6328 * attach_task() -- attach the task detached by detach_task() to its new rq. 6329 */ 6330 static void attach_task(struct rq *rq, struct task_struct *p) 6331 { 6332 lockdep_assert_held(&rq->lock); 6333 6334 BUG_ON(task_rq(p) != rq); 6335 activate_task(rq, p, 0); 6336 p->on_rq = TASK_ON_RQ_QUEUED; 6337 check_preempt_curr(rq, p, 0); 6338 } 6339 6340 /* 6341 * attach_one_task() -- attaches the task returned from detach_one_task() to 6342 * its new rq. 6343 */ 6344 static void attach_one_task(struct rq *rq, struct task_struct *p) 6345 { 6346 raw_spin_lock(&rq->lock); 6347 attach_task(rq, p); 6348 raw_spin_unlock(&rq->lock); 6349 } 6350 6351 /* 6352 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 6353 * new rq. 6354 */ 6355 static void attach_tasks(struct lb_env *env) 6356 { 6357 struct list_head *tasks = &env->tasks; 6358 struct task_struct *p; 6359 6360 raw_spin_lock(&env->dst_rq->lock); 6361 6362 while (!list_empty(tasks)) { 6363 p = list_first_entry(tasks, struct task_struct, se.group_node); 6364 list_del_init(&p->se.group_node); 6365 6366 attach_task(env->dst_rq, p); 6367 } 6368 6369 raw_spin_unlock(&env->dst_rq->lock); 6370 } 6371 6372 #ifdef CONFIG_FAIR_GROUP_SCHED 6373 static void update_blocked_averages(int cpu) 6374 { 6375 struct rq *rq = cpu_rq(cpu); 6376 struct cfs_rq *cfs_rq; 6377 unsigned long flags; 6378 6379 raw_spin_lock_irqsave(&rq->lock, flags); 6380 update_rq_clock(rq); 6381 6382 /* 6383 * Iterates the task_group tree in a bottom up fashion, see 6384 * list_add_leaf_cfs_rq() for details. 6385 */ 6386 for_each_leaf_cfs_rq(rq, cfs_rq) { 6387 /* throttled entities do not contribute to load */ 6388 if (throttled_hierarchy(cfs_rq)) 6389 continue; 6390 6391 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true)) 6392 update_tg_load_avg(cfs_rq, 0); 6393 } 6394 raw_spin_unlock_irqrestore(&rq->lock, flags); 6395 } 6396 6397 /* 6398 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 6399 * This needs to be done in a top-down fashion because the load of a child 6400 * group is a fraction of its parents load. 6401 */ 6402 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 6403 { 6404 struct rq *rq = rq_of(cfs_rq); 6405 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 6406 unsigned long now = jiffies; 6407 unsigned long load; 6408 6409 if (cfs_rq->last_h_load_update == now) 6410 return; 6411 6412 cfs_rq->h_load_next = NULL; 6413 for_each_sched_entity(se) { 6414 cfs_rq = cfs_rq_of(se); 6415 cfs_rq->h_load_next = se; 6416 if (cfs_rq->last_h_load_update == now) 6417 break; 6418 } 6419 6420 if (!se) { 6421 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 6422 cfs_rq->last_h_load_update = now; 6423 } 6424 6425 while ((se = cfs_rq->h_load_next) != NULL) { 6426 load = cfs_rq->h_load; 6427 load = div64_ul(load * se->avg.load_avg, 6428 cfs_rq_load_avg(cfs_rq) + 1); 6429 cfs_rq = group_cfs_rq(se); 6430 cfs_rq->h_load = load; 6431 cfs_rq->last_h_load_update = now; 6432 } 6433 } 6434 6435 static unsigned long task_h_load(struct task_struct *p) 6436 { 6437 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6438 6439 update_cfs_rq_h_load(cfs_rq); 6440 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 6441 cfs_rq_load_avg(cfs_rq) + 1); 6442 } 6443 #else 6444 static inline void update_blocked_averages(int cpu) 6445 { 6446 struct rq *rq = cpu_rq(cpu); 6447 struct cfs_rq *cfs_rq = &rq->cfs; 6448 unsigned long flags; 6449 6450 raw_spin_lock_irqsave(&rq->lock, flags); 6451 update_rq_clock(rq); 6452 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true); 6453 raw_spin_unlock_irqrestore(&rq->lock, flags); 6454 } 6455 6456 static unsigned long task_h_load(struct task_struct *p) 6457 { 6458 return p->se.avg.load_avg; 6459 } 6460 #endif 6461 6462 /********** Helpers for find_busiest_group ************************/ 6463 6464 enum group_type { 6465 group_other = 0, 6466 group_imbalanced, 6467 group_overloaded, 6468 }; 6469 6470 /* 6471 * sg_lb_stats - stats of a sched_group required for load_balancing 6472 */ 6473 struct sg_lb_stats { 6474 unsigned long avg_load; /*Avg load across the CPUs of the group */ 6475 unsigned long group_load; /* Total load over the CPUs of the group */ 6476 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 6477 unsigned long load_per_task; 6478 unsigned long group_capacity; 6479 unsigned long group_util; /* Total utilization of the group */ 6480 unsigned int sum_nr_running; /* Nr tasks running in the group */ 6481 unsigned int idle_cpus; 6482 unsigned int group_weight; 6483 enum group_type group_type; 6484 int group_no_capacity; 6485 #ifdef CONFIG_NUMA_BALANCING 6486 unsigned int nr_numa_running; 6487 unsigned int nr_preferred_running; 6488 #endif 6489 }; 6490 6491 /* 6492 * sd_lb_stats - Structure to store the statistics of a sched_domain 6493 * during load balancing. 6494 */ 6495 struct sd_lb_stats { 6496 struct sched_group *busiest; /* Busiest group in this sd */ 6497 struct sched_group *local; /* Local group in this sd */ 6498 unsigned long total_load; /* Total load of all groups in sd */ 6499 unsigned long total_capacity; /* Total capacity of all groups in sd */ 6500 unsigned long avg_load; /* Average load across all groups in sd */ 6501 6502 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 6503 struct sg_lb_stats local_stat; /* Statistics of the local group */ 6504 }; 6505 6506 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 6507 { 6508 /* 6509 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 6510 * local_stat because update_sg_lb_stats() does a full clear/assignment. 6511 * We must however clear busiest_stat::avg_load because 6512 * update_sd_pick_busiest() reads this before assignment. 6513 */ 6514 *sds = (struct sd_lb_stats){ 6515 .busiest = NULL, 6516 .local = NULL, 6517 .total_load = 0UL, 6518 .total_capacity = 0UL, 6519 .busiest_stat = { 6520 .avg_load = 0UL, 6521 .sum_nr_running = 0, 6522 .group_type = group_other, 6523 }, 6524 }; 6525 } 6526 6527 /** 6528 * get_sd_load_idx - Obtain the load index for a given sched domain. 6529 * @sd: The sched_domain whose load_idx is to be obtained. 6530 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 6531 * 6532 * Return: The load index. 6533 */ 6534 static inline int get_sd_load_idx(struct sched_domain *sd, 6535 enum cpu_idle_type idle) 6536 { 6537 int load_idx; 6538 6539 switch (idle) { 6540 case CPU_NOT_IDLE: 6541 load_idx = sd->busy_idx; 6542 break; 6543 6544 case CPU_NEWLY_IDLE: 6545 load_idx = sd->newidle_idx; 6546 break; 6547 default: 6548 load_idx = sd->idle_idx; 6549 break; 6550 } 6551 6552 return load_idx; 6553 } 6554 6555 static unsigned long scale_rt_capacity(int cpu) 6556 { 6557 struct rq *rq = cpu_rq(cpu); 6558 u64 total, used, age_stamp, avg; 6559 s64 delta; 6560 6561 /* 6562 * Since we're reading these variables without serialization make sure 6563 * we read them once before doing sanity checks on them. 6564 */ 6565 age_stamp = READ_ONCE(rq->age_stamp); 6566 avg = READ_ONCE(rq->rt_avg); 6567 delta = __rq_clock_broken(rq) - age_stamp; 6568 6569 if (unlikely(delta < 0)) 6570 delta = 0; 6571 6572 total = sched_avg_period() + delta; 6573 6574 used = div_u64(avg, total); 6575 6576 if (likely(used < SCHED_CAPACITY_SCALE)) 6577 return SCHED_CAPACITY_SCALE - used; 6578 6579 return 1; 6580 } 6581 6582 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 6583 { 6584 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); 6585 struct sched_group *sdg = sd->groups; 6586 6587 cpu_rq(cpu)->cpu_capacity_orig = capacity; 6588 6589 capacity *= scale_rt_capacity(cpu); 6590 capacity >>= SCHED_CAPACITY_SHIFT; 6591 6592 if (!capacity) 6593 capacity = 1; 6594 6595 cpu_rq(cpu)->cpu_capacity = capacity; 6596 sdg->sgc->capacity = capacity; 6597 } 6598 6599 void update_group_capacity(struct sched_domain *sd, int cpu) 6600 { 6601 struct sched_domain *child = sd->child; 6602 struct sched_group *group, *sdg = sd->groups; 6603 unsigned long capacity; 6604 unsigned long interval; 6605 6606 interval = msecs_to_jiffies(sd->balance_interval); 6607 interval = clamp(interval, 1UL, max_load_balance_interval); 6608 sdg->sgc->next_update = jiffies + interval; 6609 6610 if (!child) { 6611 update_cpu_capacity(sd, cpu); 6612 return; 6613 } 6614 6615 capacity = 0; 6616 6617 if (child->flags & SD_OVERLAP) { 6618 /* 6619 * SD_OVERLAP domains cannot assume that child groups 6620 * span the current group. 6621 */ 6622 6623 for_each_cpu(cpu, sched_group_cpus(sdg)) { 6624 struct sched_group_capacity *sgc; 6625 struct rq *rq = cpu_rq(cpu); 6626 6627 /* 6628 * build_sched_domains() -> init_sched_groups_capacity() 6629 * gets here before we've attached the domains to the 6630 * runqueues. 6631 * 6632 * Use capacity_of(), which is set irrespective of domains 6633 * in update_cpu_capacity(). 6634 * 6635 * This avoids capacity from being 0 and 6636 * causing divide-by-zero issues on boot. 6637 */ 6638 if (unlikely(!rq->sd)) { 6639 capacity += capacity_of(cpu); 6640 continue; 6641 } 6642 6643 sgc = rq->sd->groups->sgc; 6644 capacity += sgc->capacity; 6645 } 6646 } else { 6647 /* 6648 * !SD_OVERLAP domains can assume that child groups 6649 * span the current group. 6650 */ 6651 6652 group = child->groups; 6653 do { 6654 capacity += group->sgc->capacity; 6655 group = group->next; 6656 } while (group != child->groups); 6657 } 6658 6659 sdg->sgc->capacity = capacity; 6660 } 6661 6662 /* 6663 * Check whether the capacity of the rq has been noticeably reduced by side 6664 * activity. The imbalance_pct is used for the threshold. 6665 * Return true is the capacity is reduced 6666 */ 6667 static inline int 6668 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 6669 { 6670 return ((rq->cpu_capacity * sd->imbalance_pct) < 6671 (rq->cpu_capacity_orig * 100)); 6672 } 6673 6674 /* 6675 * Group imbalance indicates (and tries to solve) the problem where balancing 6676 * groups is inadequate due to tsk_cpus_allowed() constraints. 6677 * 6678 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 6679 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 6680 * Something like: 6681 * 6682 * { 0 1 2 3 } { 4 5 6 7 } 6683 * * * * * 6684 * 6685 * If we were to balance group-wise we'd place two tasks in the first group and 6686 * two tasks in the second group. Clearly this is undesired as it will overload 6687 * cpu 3 and leave one of the cpus in the second group unused. 6688 * 6689 * The current solution to this issue is detecting the skew in the first group 6690 * by noticing the lower domain failed to reach balance and had difficulty 6691 * moving tasks due to affinity constraints. 6692 * 6693 * When this is so detected; this group becomes a candidate for busiest; see 6694 * update_sd_pick_busiest(). And calculate_imbalance() and 6695 * find_busiest_group() avoid some of the usual balance conditions to allow it 6696 * to create an effective group imbalance. 6697 * 6698 * This is a somewhat tricky proposition since the next run might not find the 6699 * group imbalance and decide the groups need to be balanced again. A most 6700 * subtle and fragile situation. 6701 */ 6702 6703 static inline int sg_imbalanced(struct sched_group *group) 6704 { 6705 return group->sgc->imbalance; 6706 } 6707 6708 /* 6709 * group_has_capacity returns true if the group has spare capacity that could 6710 * be used by some tasks. 6711 * We consider that a group has spare capacity if the * number of task is 6712 * smaller than the number of CPUs or if the utilization is lower than the 6713 * available capacity for CFS tasks. 6714 * For the latter, we use a threshold to stabilize the state, to take into 6715 * account the variance of the tasks' load and to return true if the available 6716 * capacity in meaningful for the load balancer. 6717 * As an example, an available capacity of 1% can appear but it doesn't make 6718 * any benefit for the load balance. 6719 */ 6720 static inline bool 6721 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 6722 { 6723 if (sgs->sum_nr_running < sgs->group_weight) 6724 return true; 6725 6726 if ((sgs->group_capacity * 100) > 6727 (sgs->group_util * env->sd->imbalance_pct)) 6728 return true; 6729 6730 return false; 6731 } 6732 6733 /* 6734 * group_is_overloaded returns true if the group has more tasks than it can 6735 * handle. 6736 * group_is_overloaded is not equals to !group_has_capacity because a group 6737 * with the exact right number of tasks, has no more spare capacity but is not 6738 * overloaded so both group_has_capacity and group_is_overloaded return 6739 * false. 6740 */ 6741 static inline bool 6742 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 6743 { 6744 if (sgs->sum_nr_running <= sgs->group_weight) 6745 return false; 6746 6747 if ((sgs->group_capacity * 100) < 6748 (sgs->group_util * env->sd->imbalance_pct)) 6749 return true; 6750 6751 return false; 6752 } 6753 6754 static inline enum 6755 group_type group_classify(struct sched_group *group, 6756 struct sg_lb_stats *sgs) 6757 { 6758 if (sgs->group_no_capacity) 6759 return group_overloaded; 6760 6761 if (sg_imbalanced(group)) 6762 return group_imbalanced; 6763 6764 return group_other; 6765 } 6766 6767 /** 6768 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 6769 * @env: The load balancing environment. 6770 * @group: sched_group whose statistics are to be updated. 6771 * @load_idx: Load index of sched_domain of this_cpu for load calc. 6772 * @local_group: Does group contain this_cpu. 6773 * @sgs: variable to hold the statistics for this group. 6774 * @overload: Indicate more than one runnable task for any CPU. 6775 */ 6776 static inline void update_sg_lb_stats(struct lb_env *env, 6777 struct sched_group *group, int load_idx, 6778 int local_group, struct sg_lb_stats *sgs, 6779 bool *overload) 6780 { 6781 unsigned long load; 6782 int i, nr_running; 6783 6784 memset(sgs, 0, sizeof(*sgs)); 6785 6786 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6787 struct rq *rq = cpu_rq(i); 6788 6789 /* Bias balancing toward cpus of our domain */ 6790 if (local_group) 6791 load = target_load(i, load_idx); 6792 else 6793 load = source_load(i, load_idx); 6794 6795 sgs->group_load += load; 6796 sgs->group_util += cpu_util(i); 6797 sgs->sum_nr_running += rq->cfs.h_nr_running; 6798 6799 nr_running = rq->nr_running; 6800 if (nr_running > 1) 6801 *overload = true; 6802 6803 #ifdef CONFIG_NUMA_BALANCING 6804 sgs->nr_numa_running += rq->nr_numa_running; 6805 sgs->nr_preferred_running += rq->nr_preferred_running; 6806 #endif 6807 sgs->sum_weighted_load += weighted_cpuload(i); 6808 /* 6809 * No need to call idle_cpu() if nr_running is not 0 6810 */ 6811 if (!nr_running && idle_cpu(i)) 6812 sgs->idle_cpus++; 6813 } 6814 6815 /* Adjust by relative CPU capacity of the group */ 6816 sgs->group_capacity = group->sgc->capacity; 6817 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 6818 6819 if (sgs->sum_nr_running) 6820 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 6821 6822 sgs->group_weight = group->group_weight; 6823 6824 sgs->group_no_capacity = group_is_overloaded(env, sgs); 6825 sgs->group_type = group_classify(group, sgs); 6826 } 6827 6828 /** 6829 * update_sd_pick_busiest - return 1 on busiest group 6830 * @env: The load balancing environment. 6831 * @sds: sched_domain statistics 6832 * @sg: sched_group candidate to be checked for being the busiest 6833 * @sgs: sched_group statistics 6834 * 6835 * Determine if @sg is a busier group than the previously selected 6836 * busiest group. 6837 * 6838 * Return: %true if @sg is a busier group than the previously selected 6839 * busiest group. %false otherwise. 6840 */ 6841 static bool update_sd_pick_busiest(struct lb_env *env, 6842 struct sd_lb_stats *sds, 6843 struct sched_group *sg, 6844 struct sg_lb_stats *sgs) 6845 { 6846 struct sg_lb_stats *busiest = &sds->busiest_stat; 6847 6848 if (sgs->group_type > busiest->group_type) 6849 return true; 6850 6851 if (sgs->group_type < busiest->group_type) 6852 return false; 6853 6854 if (sgs->avg_load <= busiest->avg_load) 6855 return false; 6856 6857 /* This is the busiest node in its class. */ 6858 if (!(env->sd->flags & SD_ASYM_PACKING)) 6859 return true; 6860 6861 /* No ASYM_PACKING if target cpu is already busy */ 6862 if (env->idle == CPU_NOT_IDLE) 6863 return true; 6864 /* 6865 * ASYM_PACKING needs to move all the work to the lowest 6866 * numbered CPUs in the group, therefore mark all groups 6867 * higher than ourself as busy. 6868 */ 6869 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) { 6870 if (!sds->busiest) 6871 return true; 6872 6873 /* Prefer to move from highest possible cpu's work */ 6874 if (group_first_cpu(sds->busiest) < group_first_cpu(sg)) 6875 return true; 6876 } 6877 6878 return false; 6879 } 6880 6881 #ifdef CONFIG_NUMA_BALANCING 6882 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6883 { 6884 if (sgs->sum_nr_running > sgs->nr_numa_running) 6885 return regular; 6886 if (sgs->sum_nr_running > sgs->nr_preferred_running) 6887 return remote; 6888 return all; 6889 } 6890 6891 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6892 { 6893 if (rq->nr_running > rq->nr_numa_running) 6894 return regular; 6895 if (rq->nr_running > rq->nr_preferred_running) 6896 return remote; 6897 return all; 6898 } 6899 #else 6900 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6901 { 6902 return all; 6903 } 6904 6905 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6906 { 6907 return regular; 6908 } 6909 #endif /* CONFIG_NUMA_BALANCING */ 6910 6911 /** 6912 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 6913 * @env: The load balancing environment. 6914 * @sds: variable to hold the statistics for this sched_domain. 6915 */ 6916 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 6917 { 6918 struct sched_domain *child = env->sd->child; 6919 struct sched_group *sg = env->sd->groups; 6920 struct sg_lb_stats tmp_sgs; 6921 int load_idx, prefer_sibling = 0; 6922 bool overload = false; 6923 6924 if (child && child->flags & SD_PREFER_SIBLING) 6925 prefer_sibling = 1; 6926 6927 load_idx = get_sd_load_idx(env->sd, env->idle); 6928 6929 do { 6930 struct sg_lb_stats *sgs = &tmp_sgs; 6931 int local_group; 6932 6933 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 6934 if (local_group) { 6935 sds->local = sg; 6936 sgs = &sds->local_stat; 6937 6938 if (env->idle != CPU_NEWLY_IDLE || 6939 time_after_eq(jiffies, sg->sgc->next_update)) 6940 update_group_capacity(env->sd, env->dst_cpu); 6941 } 6942 6943 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 6944 &overload); 6945 6946 if (local_group) 6947 goto next_group; 6948 6949 /* 6950 * In case the child domain prefers tasks go to siblings 6951 * first, lower the sg capacity so that we'll try 6952 * and move all the excess tasks away. We lower the capacity 6953 * of a group only if the local group has the capacity to fit 6954 * these excess tasks. The extra check prevents the case where 6955 * you always pull from the heaviest group when it is already 6956 * under-utilized (possible with a large weight task outweighs 6957 * the tasks on the system). 6958 */ 6959 if (prefer_sibling && sds->local && 6960 group_has_capacity(env, &sds->local_stat) && 6961 (sgs->sum_nr_running > 1)) { 6962 sgs->group_no_capacity = 1; 6963 sgs->group_type = group_classify(sg, sgs); 6964 } 6965 6966 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 6967 sds->busiest = sg; 6968 sds->busiest_stat = *sgs; 6969 } 6970 6971 next_group: 6972 /* Now, start updating sd_lb_stats */ 6973 sds->total_load += sgs->group_load; 6974 sds->total_capacity += sgs->group_capacity; 6975 6976 sg = sg->next; 6977 } while (sg != env->sd->groups); 6978 6979 if (env->sd->flags & SD_NUMA) 6980 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 6981 6982 if (!env->sd->parent) { 6983 /* update overload indicator if we are at root domain */ 6984 if (env->dst_rq->rd->overload != overload) 6985 env->dst_rq->rd->overload = overload; 6986 } 6987 6988 } 6989 6990 /** 6991 * check_asym_packing - Check to see if the group is packed into the 6992 * sched doman. 6993 * 6994 * This is primarily intended to used at the sibling level. Some 6995 * cores like POWER7 prefer to use lower numbered SMT threads. In the 6996 * case of POWER7, it can move to lower SMT modes only when higher 6997 * threads are idle. When in lower SMT modes, the threads will 6998 * perform better since they share less core resources. Hence when we 6999 * have idle threads, we want them to be the higher ones. 7000 * 7001 * This packing function is run on idle threads. It checks to see if 7002 * the busiest CPU in this domain (core in the P7 case) has a higher 7003 * CPU number than the packing function is being run on. Here we are 7004 * assuming lower CPU number will be equivalent to lower a SMT thread 7005 * number. 7006 * 7007 * Return: 1 when packing is required and a task should be moved to 7008 * this CPU. The amount of the imbalance is returned in *imbalance. 7009 * 7010 * @env: The load balancing environment. 7011 * @sds: Statistics of the sched_domain which is to be packed 7012 */ 7013 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 7014 { 7015 int busiest_cpu; 7016 7017 if (!(env->sd->flags & SD_ASYM_PACKING)) 7018 return 0; 7019 7020 if (env->idle == CPU_NOT_IDLE) 7021 return 0; 7022 7023 if (!sds->busiest) 7024 return 0; 7025 7026 busiest_cpu = group_first_cpu(sds->busiest); 7027 if (env->dst_cpu > busiest_cpu) 7028 return 0; 7029 7030 env->imbalance = DIV_ROUND_CLOSEST( 7031 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 7032 SCHED_CAPACITY_SCALE); 7033 7034 return 1; 7035 } 7036 7037 /** 7038 * fix_small_imbalance - Calculate the minor imbalance that exists 7039 * amongst the groups of a sched_domain, during 7040 * load balancing. 7041 * @env: The load balancing environment. 7042 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 7043 */ 7044 static inline 7045 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7046 { 7047 unsigned long tmp, capa_now = 0, capa_move = 0; 7048 unsigned int imbn = 2; 7049 unsigned long scaled_busy_load_per_task; 7050 struct sg_lb_stats *local, *busiest; 7051 7052 local = &sds->local_stat; 7053 busiest = &sds->busiest_stat; 7054 7055 if (!local->sum_nr_running) 7056 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 7057 else if (busiest->load_per_task > local->load_per_task) 7058 imbn = 1; 7059 7060 scaled_busy_load_per_task = 7061 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7062 busiest->group_capacity; 7063 7064 if (busiest->avg_load + scaled_busy_load_per_task >= 7065 local->avg_load + (scaled_busy_load_per_task * imbn)) { 7066 env->imbalance = busiest->load_per_task; 7067 return; 7068 } 7069 7070 /* 7071 * OK, we don't have enough imbalance to justify moving tasks, 7072 * however we may be able to increase total CPU capacity used by 7073 * moving them. 7074 */ 7075 7076 capa_now += busiest->group_capacity * 7077 min(busiest->load_per_task, busiest->avg_load); 7078 capa_now += local->group_capacity * 7079 min(local->load_per_task, local->avg_load); 7080 capa_now /= SCHED_CAPACITY_SCALE; 7081 7082 /* Amount of load we'd subtract */ 7083 if (busiest->avg_load > scaled_busy_load_per_task) { 7084 capa_move += busiest->group_capacity * 7085 min(busiest->load_per_task, 7086 busiest->avg_load - scaled_busy_load_per_task); 7087 } 7088 7089 /* Amount of load we'd add */ 7090 if (busiest->avg_load * busiest->group_capacity < 7091 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 7092 tmp = (busiest->avg_load * busiest->group_capacity) / 7093 local->group_capacity; 7094 } else { 7095 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7096 local->group_capacity; 7097 } 7098 capa_move += local->group_capacity * 7099 min(local->load_per_task, local->avg_load + tmp); 7100 capa_move /= SCHED_CAPACITY_SCALE; 7101 7102 /* Move if we gain throughput */ 7103 if (capa_move > capa_now) 7104 env->imbalance = busiest->load_per_task; 7105 } 7106 7107 /** 7108 * calculate_imbalance - Calculate the amount of imbalance present within the 7109 * groups of a given sched_domain during load balance. 7110 * @env: load balance environment 7111 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 7112 */ 7113 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7114 { 7115 unsigned long max_pull, load_above_capacity = ~0UL; 7116 struct sg_lb_stats *local, *busiest; 7117 7118 local = &sds->local_stat; 7119 busiest = &sds->busiest_stat; 7120 7121 if (busiest->group_type == group_imbalanced) { 7122 /* 7123 * In the group_imb case we cannot rely on group-wide averages 7124 * to ensure cpu-load equilibrium, look at wider averages. XXX 7125 */ 7126 busiest->load_per_task = 7127 min(busiest->load_per_task, sds->avg_load); 7128 } 7129 7130 /* 7131 * Avg load of busiest sg can be less and avg load of local sg can 7132 * be greater than avg load across all sgs of sd because avg load 7133 * factors in sg capacity and sgs with smaller group_type are 7134 * skipped when updating the busiest sg: 7135 */ 7136 if (busiest->avg_load <= sds->avg_load || 7137 local->avg_load >= sds->avg_load) { 7138 env->imbalance = 0; 7139 return fix_small_imbalance(env, sds); 7140 } 7141 7142 /* 7143 * If there aren't any idle cpus, avoid creating some. 7144 */ 7145 if (busiest->group_type == group_overloaded && 7146 local->group_type == group_overloaded) { 7147 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 7148 if (load_above_capacity > busiest->group_capacity) { 7149 load_above_capacity -= busiest->group_capacity; 7150 load_above_capacity *= NICE_0_LOAD; 7151 load_above_capacity /= busiest->group_capacity; 7152 } else 7153 load_above_capacity = ~0UL; 7154 } 7155 7156 /* 7157 * We're trying to get all the cpus to the average_load, so we don't 7158 * want to push ourselves above the average load, nor do we wish to 7159 * reduce the max loaded cpu below the average load. At the same time, 7160 * we also don't want to reduce the group load below the group 7161 * capacity. Thus we look for the minimum possible imbalance. 7162 */ 7163 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 7164 7165 /* How much load to actually move to equalise the imbalance */ 7166 env->imbalance = min( 7167 max_pull * busiest->group_capacity, 7168 (sds->avg_load - local->avg_load) * local->group_capacity 7169 ) / SCHED_CAPACITY_SCALE; 7170 7171 /* 7172 * if *imbalance is less than the average load per runnable task 7173 * there is no guarantee that any tasks will be moved so we'll have 7174 * a think about bumping its value to force at least one task to be 7175 * moved 7176 */ 7177 if (env->imbalance < busiest->load_per_task) 7178 return fix_small_imbalance(env, sds); 7179 } 7180 7181 /******* find_busiest_group() helpers end here *********************/ 7182 7183 /** 7184 * find_busiest_group - Returns the busiest group within the sched_domain 7185 * if there is an imbalance. 7186 * 7187 * Also calculates the amount of weighted load which should be moved 7188 * to restore balance. 7189 * 7190 * @env: The load balancing environment. 7191 * 7192 * Return: - The busiest group if imbalance exists. 7193 */ 7194 static struct sched_group *find_busiest_group(struct lb_env *env) 7195 { 7196 struct sg_lb_stats *local, *busiest; 7197 struct sd_lb_stats sds; 7198 7199 init_sd_lb_stats(&sds); 7200 7201 /* 7202 * Compute the various statistics relavent for load balancing at 7203 * this level. 7204 */ 7205 update_sd_lb_stats(env, &sds); 7206 local = &sds.local_stat; 7207 busiest = &sds.busiest_stat; 7208 7209 /* ASYM feature bypasses nice load balance check */ 7210 if (check_asym_packing(env, &sds)) 7211 return sds.busiest; 7212 7213 /* There is no busy sibling group to pull tasks from */ 7214 if (!sds.busiest || busiest->sum_nr_running == 0) 7215 goto out_balanced; 7216 7217 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 7218 / sds.total_capacity; 7219 7220 /* 7221 * If the busiest group is imbalanced the below checks don't 7222 * work because they assume all things are equal, which typically 7223 * isn't true due to cpus_allowed constraints and the like. 7224 */ 7225 if (busiest->group_type == group_imbalanced) 7226 goto force_balance; 7227 7228 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 7229 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && 7230 busiest->group_no_capacity) 7231 goto force_balance; 7232 7233 /* 7234 * If the local group is busier than the selected busiest group 7235 * don't try and pull any tasks. 7236 */ 7237 if (local->avg_load >= busiest->avg_load) 7238 goto out_balanced; 7239 7240 /* 7241 * Don't pull any tasks if this group is already above the domain 7242 * average load. 7243 */ 7244 if (local->avg_load >= sds.avg_load) 7245 goto out_balanced; 7246 7247 if (env->idle == CPU_IDLE) { 7248 /* 7249 * This cpu is idle. If the busiest group is not overloaded 7250 * and there is no imbalance between this and busiest group 7251 * wrt idle cpus, it is balanced. The imbalance becomes 7252 * significant if the diff is greater than 1 otherwise we 7253 * might end up to just move the imbalance on another group 7254 */ 7255 if ((busiest->group_type != group_overloaded) && 7256 (local->idle_cpus <= (busiest->idle_cpus + 1))) 7257 goto out_balanced; 7258 } else { 7259 /* 7260 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 7261 * imbalance_pct to be conservative. 7262 */ 7263 if (100 * busiest->avg_load <= 7264 env->sd->imbalance_pct * local->avg_load) 7265 goto out_balanced; 7266 } 7267 7268 force_balance: 7269 /* Looks like there is an imbalance. Compute it */ 7270 calculate_imbalance(env, &sds); 7271 return sds.busiest; 7272 7273 out_balanced: 7274 env->imbalance = 0; 7275 return NULL; 7276 } 7277 7278 /* 7279 * find_busiest_queue - find the busiest runqueue among the cpus in group. 7280 */ 7281 static struct rq *find_busiest_queue(struct lb_env *env, 7282 struct sched_group *group) 7283 { 7284 struct rq *busiest = NULL, *rq; 7285 unsigned long busiest_load = 0, busiest_capacity = 1; 7286 int i; 7287 7288 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 7289 unsigned long capacity, wl; 7290 enum fbq_type rt; 7291 7292 rq = cpu_rq(i); 7293 rt = fbq_classify_rq(rq); 7294 7295 /* 7296 * We classify groups/runqueues into three groups: 7297 * - regular: there are !numa tasks 7298 * - remote: there are numa tasks that run on the 'wrong' node 7299 * - all: there is no distinction 7300 * 7301 * In order to avoid migrating ideally placed numa tasks, 7302 * ignore those when there's better options. 7303 * 7304 * If we ignore the actual busiest queue to migrate another 7305 * task, the next balance pass can still reduce the busiest 7306 * queue by moving tasks around inside the node. 7307 * 7308 * If we cannot move enough load due to this classification 7309 * the next pass will adjust the group classification and 7310 * allow migration of more tasks. 7311 * 7312 * Both cases only affect the total convergence complexity. 7313 */ 7314 if (rt > env->fbq_type) 7315 continue; 7316 7317 capacity = capacity_of(i); 7318 7319 wl = weighted_cpuload(i); 7320 7321 /* 7322 * When comparing with imbalance, use weighted_cpuload() 7323 * which is not scaled with the cpu capacity. 7324 */ 7325 7326 if (rq->nr_running == 1 && wl > env->imbalance && 7327 !check_cpu_capacity(rq, env->sd)) 7328 continue; 7329 7330 /* 7331 * For the load comparisons with the other cpu's, consider 7332 * the weighted_cpuload() scaled with the cpu capacity, so 7333 * that the load can be moved away from the cpu that is 7334 * potentially running at a lower capacity. 7335 * 7336 * Thus we're looking for max(wl_i / capacity_i), crosswise 7337 * multiplication to rid ourselves of the division works out 7338 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 7339 * our previous maximum. 7340 */ 7341 if (wl * busiest_capacity > busiest_load * capacity) { 7342 busiest_load = wl; 7343 busiest_capacity = capacity; 7344 busiest = rq; 7345 } 7346 } 7347 7348 return busiest; 7349 } 7350 7351 /* 7352 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 7353 * so long as it is large enough. 7354 */ 7355 #define MAX_PINNED_INTERVAL 512 7356 7357 /* Working cpumask for load_balance and load_balance_newidle. */ 7358 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7359 7360 static int need_active_balance(struct lb_env *env) 7361 { 7362 struct sched_domain *sd = env->sd; 7363 7364 if (env->idle == CPU_NEWLY_IDLE) { 7365 7366 /* 7367 * ASYM_PACKING needs to force migrate tasks from busy but 7368 * higher numbered CPUs in order to pack all tasks in the 7369 * lowest numbered CPUs. 7370 */ 7371 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 7372 return 1; 7373 } 7374 7375 /* 7376 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 7377 * It's worth migrating the task if the src_cpu's capacity is reduced 7378 * because of other sched_class or IRQs if more capacity stays 7379 * available on dst_cpu. 7380 */ 7381 if ((env->idle != CPU_NOT_IDLE) && 7382 (env->src_rq->cfs.h_nr_running == 1)) { 7383 if ((check_cpu_capacity(env->src_rq, sd)) && 7384 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 7385 return 1; 7386 } 7387 7388 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 7389 } 7390 7391 static int active_load_balance_cpu_stop(void *data); 7392 7393 static int should_we_balance(struct lb_env *env) 7394 { 7395 struct sched_group *sg = env->sd->groups; 7396 struct cpumask *sg_cpus, *sg_mask; 7397 int cpu, balance_cpu = -1; 7398 7399 /* 7400 * In the newly idle case, we will allow all the cpu's 7401 * to do the newly idle load balance. 7402 */ 7403 if (env->idle == CPU_NEWLY_IDLE) 7404 return 1; 7405 7406 sg_cpus = sched_group_cpus(sg); 7407 sg_mask = sched_group_mask(sg); 7408 /* Try to find first idle cpu */ 7409 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 7410 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 7411 continue; 7412 7413 balance_cpu = cpu; 7414 break; 7415 } 7416 7417 if (balance_cpu == -1) 7418 balance_cpu = group_balance_cpu(sg); 7419 7420 /* 7421 * First idle cpu or the first cpu(busiest) in this sched group 7422 * is eligible for doing load balancing at this and above domains. 7423 */ 7424 return balance_cpu == env->dst_cpu; 7425 } 7426 7427 /* 7428 * Check this_cpu to ensure it is balanced within domain. Attempt to move 7429 * tasks if there is an imbalance. 7430 */ 7431 static int load_balance(int this_cpu, struct rq *this_rq, 7432 struct sched_domain *sd, enum cpu_idle_type idle, 7433 int *continue_balancing) 7434 { 7435 int ld_moved, cur_ld_moved, active_balance = 0; 7436 struct sched_domain *sd_parent = sd->parent; 7437 struct sched_group *group; 7438 struct rq *busiest; 7439 unsigned long flags; 7440 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 7441 7442 struct lb_env env = { 7443 .sd = sd, 7444 .dst_cpu = this_cpu, 7445 .dst_rq = this_rq, 7446 .dst_grpmask = sched_group_cpus(sd->groups), 7447 .idle = idle, 7448 .loop_break = sched_nr_migrate_break, 7449 .cpus = cpus, 7450 .fbq_type = all, 7451 .tasks = LIST_HEAD_INIT(env.tasks), 7452 }; 7453 7454 /* 7455 * For NEWLY_IDLE load_balancing, we don't need to consider 7456 * other cpus in our group 7457 */ 7458 if (idle == CPU_NEWLY_IDLE) 7459 env.dst_grpmask = NULL; 7460 7461 cpumask_copy(cpus, cpu_active_mask); 7462 7463 schedstat_inc(sd, lb_count[idle]); 7464 7465 redo: 7466 if (!should_we_balance(&env)) { 7467 *continue_balancing = 0; 7468 goto out_balanced; 7469 } 7470 7471 group = find_busiest_group(&env); 7472 if (!group) { 7473 schedstat_inc(sd, lb_nobusyg[idle]); 7474 goto out_balanced; 7475 } 7476 7477 busiest = find_busiest_queue(&env, group); 7478 if (!busiest) { 7479 schedstat_inc(sd, lb_nobusyq[idle]); 7480 goto out_balanced; 7481 } 7482 7483 BUG_ON(busiest == env.dst_rq); 7484 7485 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 7486 7487 env.src_cpu = busiest->cpu; 7488 env.src_rq = busiest; 7489 7490 ld_moved = 0; 7491 if (busiest->nr_running > 1) { 7492 /* 7493 * Attempt to move tasks. If find_busiest_group has found 7494 * an imbalance but busiest->nr_running <= 1, the group is 7495 * still unbalanced. ld_moved simply stays zero, so it is 7496 * correctly treated as an imbalance. 7497 */ 7498 env.flags |= LBF_ALL_PINNED; 7499 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 7500 7501 more_balance: 7502 raw_spin_lock_irqsave(&busiest->lock, flags); 7503 7504 /* 7505 * cur_ld_moved - load moved in current iteration 7506 * ld_moved - cumulative load moved across iterations 7507 */ 7508 cur_ld_moved = detach_tasks(&env); 7509 7510 /* 7511 * We've detached some tasks from busiest_rq. Every 7512 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 7513 * unlock busiest->lock, and we are able to be sure 7514 * that nobody can manipulate the tasks in parallel. 7515 * See task_rq_lock() family for the details. 7516 */ 7517 7518 raw_spin_unlock(&busiest->lock); 7519 7520 if (cur_ld_moved) { 7521 attach_tasks(&env); 7522 ld_moved += cur_ld_moved; 7523 } 7524 7525 local_irq_restore(flags); 7526 7527 if (env.flags & LBF_NEED_BREAK) { 7528 env.flags &= ~LBF_NEED_BREAK; 7529 goto more_balance; 7530 } 7531 7532 /* 7533 * Revisit (affine) tasks on src_cpu that couldn't be moved to 7534 * us and move them to an alternate dst_cpu in our sched_group 7535 * where they can run. The upper limit on how many times we 7536 * iterate on same src_cpu is dependent on number of cpus in our 7537 * sched_group. 7538 * 7539 * This changes load balance semantics a bit on who can move 7540 * load to a given_cpu. In addition to the given_cpu itself 7541 * (or a ilb_cpu acting on its behalf where given_cpu is 7542 * nohz-idle), we now have balance_cpu in a position to move 7543 * load to given_cpu. In rare situations, this may cause 7544 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 7545 * _independently_ and at _same_ time to move some load to 7546 * given_cpu) causing exceess load to be moved to given_cpu. 7547 * This however should not happen so much in practice and 7548 * moreover subsequent load balance cycles should correct the 7549 * excess load moved. 7550 */ 7551 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 7552 7553 /* Prevent to re-select dst_cpu via env's cpus */ 7554 cpumask_clear_cpu(env.dst_cpu, env.cpus); 7555 7556 env.dst_rq = cpu_rq(env.new_dst_cpu); 7557 env.dst_cpu = env.new_dst_cpu; 7558 env.flags &= ~LBF_DST_PINNED; 7559 env.loop = 0; 7560 env.loop_break = sched_nr_migrate_break; 7561 7562 /* 7563 * Go back to "more_balance" rather than "redo" since we 7564 * need to continue with same src_cpu. 7565 */ 7566 goto more_balance; 7567 } 7568 7569 /* 7570 * We failed to reach balance because of affinity. 7571 */ 7572 if (sd_parent) { 7573 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7574 7575 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 7576 *group_imbalance = 1; 7577 } 7578 7579 /* All tasks on this runqueue were pinned by CPU affinity */ 7580 if (unlikely(env.flags & LBF_ALL_PINNED)) { 7581 cpumask_clear_cpu(cpu_of(busiest), cpus); 7582 if (!cpumask_empty(cpus)) { 7583 env.loop = 0; 7584 env.loop_break = sched_nr_migrate_break; 7585 goto redo; 7586 } 7587 goto out_all_pinned; 7588 } 7589 } 7590 7591 if (!ld_moved) { 7592 schedstat_inc(sd, lb_failed[idle]); 7593 /* 7594 * Increment the failure counter only on periodic balance. 7595 * We do not want newidle balance, which can be very 7596 * frequent, pollute the failure counter causing 7597 * excessive cache_hot migrations and active balances. 7598 */ 7599 if (idle != CPU_NEWLY_IDLE) 7600 sd->nr_balance_failed++; 7601 7602 if (need_active_balance(&env)) { 7603 raw_spin_lock_irqsave(&busiest->lock, flags); 7604 7605 /* don't kick the active_load_balance_cpu_stop, 7606 * if the curr task on busiest cpu can't be 7607 * moved to this_cpu 7608 */ 7609 if (!cpumask_test_cpu(this_cpu, 7610 tsk_cpus_allowed(busiest->curr))) { 7611 raw_spin_unlock_irqrestore(&busiest->lock, 7612 flags); 7613 env.flags |= LBF_ALL_PINNED; 7614 goto out_one_pinned; 7615 } 7616 7617 /* 7618 * ->active_balance synchronizes accesses to 7619 * ->active_balance_work. Once set, it's cleared 7620 * only after active load balance is finished. 7621 */ 7622 if (!busiest->active_balance) { 7623 busiest->active_balance = 1; 7624 busiest->push_cpu = this_cpu; 7625 active_balance = 1; 7626 } 7627 raw_spin_unlock_irqrestore(&busiest->lock, flags); 7628 7629 if (active_balance) { 7630 stop_one_cpu_nowait(cpu_of(busiest), 7631 active_load_balance_cpu_stop, busiest, 7632 &busiest->active_balance_work); 7633 } 7634 7635 /* We've kicked active balancing, force task migration. */ 7636 sd->nr_balance_failed = sd->cache_nice_tries+1; 7637 } 7638 } else 7639 sd->nr_balance_failed = 0; 7640 7641 if (likely(!active_balance)) { 7642 /* We were unbalanced, so reset the balancing interval */ 7643 sd->balance_interval = sd->min_interval; 7644 } else { 7645 /* 7646 * If we've begun active balancing, start to back off. This 7647 * case may not be covered by the all_pinned logic if there 7648 * is only 1 task on the busy runqueue (because we don't call 7649 * detach_tasks). 7650 */ 7651 if (sd->balance_interval < sd->max_interval) 7652 sd->balance_interval *= 2; 7653 } 7654 7655 goto out; 7656 7657 out_balanced: 7658 /* 7659 * We reach balance although we may have faced some affinity 7660 * constraints. Clear the imbalance flag if it was set. 7661 */ 7662 if (sd_parent) { 7663 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7664 7665 if (*group_imbalance) 7666 *group_imbalance = 0; 7667 } 7668 7669 out_all_pinned: 7670 /* 7671 * We reach balance because all tasks are pinned at this level so 7672 * we can't migrate them. Let the imbalance flag set so parent level 7673 * can try to migrate them. 7674 */ 7675 schedstat_inc(sd, lb_balanced[idle]); 7676 7677 sd->nr_balance_failed = 0; 7678 7679 out_one_pinned: 7680 /* tune up the balancing interval */ 7681 if (((env.flags & LBF_ALL_PINNED) && 7682 sd->balance_interval < MAX_PINNED_INTERVAL) || 7683 (sd->balance_interval < sd->max_interval)) 7684 sd->balance_interval *= 2; 7685 7686 ld_moved = 0; 7687 out: 7688 return ld_moved; 7689 } 7690 7691 static inline unsigned long 7692 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 7693 { 7694 unsigned long interval = sd->balance_interval; 7695 7696 if (cpu_busy) 7697 interval *= sd->busy_factor; 7698 7699 /* scale ms to jiffies */ 7700 interval = msecs_to_jiffies(interval); 7701 interval = clamp(interval, 1UL, max_load_balance_interval); 7702 7703 return interval; 7704 } 7705 7706 static inline void 7707 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) 7708 { 7709 unsigned long interval, next; 7710 7711 interval = get_sd_balance_interval(sd, cpu_busy); 7712 next = sd->last_balance + interval; 7713 7714 if (time_after(*next_balance, next)) 7715 *next_balance = next; 7716 } 7717 7718 /* 7719 * idle_balance is called by schedule() if this_cpu is about to become 7720 * idle. Attempts to pull tasks from other CPUs. 7721 */ 7722 static int idle_balance(struct rq *this_rq) 7723 { 7724 unsigned long next_balance = jiffies + HZ; 7725 int this_cpu = this_rq->cpu; 7726 struct sched_domain *sd; 7727 int pulled_task = 0; 7728 u64 curr_cost = 0; 7729 7730 /* 7731 * We must set idle_stamp _before_ calling idle_balance(), such that we 7732 * measure the duration of idle_balance() as idle time. 7733 */ 7734 this_rq->idle_stamp = rq_clock(this_rq); 7735 7736 if (this_rq->avg_idle < sysctl_sched_migration_cost || 7737 !this_rq->rd->overload) { 7738 rcu_read_lock(); 7739 sd = rcu_dereference_check_sched_domain(this_rq->sd); 7740 if (sd) 7741 update_next_balance(sd, 0, &next_balance); 7742 rcu_read_unlock(); 7743 7744 goto out; 7745 } 7746 7747 raw_spin_unlock(&this_rq->lock); 7748 7749 update_blocked_averages(this_cpu); 7750 rcu_read_lock(); 7751 for_each_domain(this_cpu, sd) { 7752 int continue_balancing = 1; 7753 u64 t0, domain_cost; 7754 7755 if (!(sd->flags & SD_LOAD_BALANCE)) 7756 continue; 7757 7758 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 7759 update_next_balance(sd, 0, &next_balance); 7760 break; 7761 } 7762 7763 if (sd->flags & SD_BALANCE_NEWIDLE) { 7764 t0 = sched_clock_cpu(this_cpu); 7765 7766 pulled_task = load_balance(this_cpu, this_rq, 7767 sd, CPU_NEWLY_IDLE, 7768 &continue_balancing); 7769 7770 domain_cost = sched_clock_cpu(this_cpu) - t0; 7771 if (domain_cost > sd->max_newidle_lb_cost) 7772 sd->max_newidle_lb_cost = domain_cost; 7773 7774 curr_cost += domain_cost; 7775 } 7776 7777 update_next_balance(sd, 0, &next_balance); 7778 7779 /* 7780 * Stop searching for tasks to pull if there are 7781 * now runnable tasks on this rq. 7782 */ 7783 if (pulled_task || this_rq->nr_running > 0) 7784 break; 7785 } 7786 rcu_read_unlock(); 7787 7788 raw_spin_lock(&this_rq->lock); 7789 7790 if (curr_cost > this_rq->max_idle_balance_cost) 7791 this_rq->max_idle_balance_cost = curr_cost; 7792 7793 /* 7794 * While browsing the domains, we released the rq lock, a task could 7795 * have been enqueued in the meantime. Since we're not going idle, 7796 * pretend we pulled a task. 7797 */ 7798 if (this_rq->cfs.h_nr_running && !pulled_task) 7799 pulled_task = 1; 7800 7801 out: 7802 /* Move the next balance forward */ 7803 if (time_after(this_rq->next_balance, next_balance)) 7804 this_rq->next_balance = next_balance; 7805 7806 /* Is there a task of a high priority class? */ 7807 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 7808 pulled_task = -1; 7809 7810 if (pulled_task) 7811 this_rq->idle_stamp = 0; 7812 7813 return pulled_task; 7814 } 7815 7816 /* 7817 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 7818 * running tasks off the busiest CPU onto idle CPUs. It requires at 7819 * least 1 task to be running on each physical CPU where possible, and 7820 * avoids physical / logical imbalances. 7821 */ 7822 static int active_load_balance_cpu_stop(void *data) 7823 { 7824 struct rq *busiest_rq = data; 7825 int busiest_cpu = cpu_of(busiest_rq); 7826 int target_cpu = busiest_rq->push_cpu; 7827 struct rq *target_rq = cpu_rq(target_cpu); 7828 struct sched_domain *sd; 7829 struct task_struct *p = NULL; 7830 7831 raw_spin_lock_irq(&busiest_rq->lock); 7832 7833 /* make sure the requested cpu hasn't gone down in the meantime */ 7834 if (unlikely(busiest_cpu != smp_processor_id() || 7835 !busiest_rq->active_balance)) 7836 goto out_unlock; 7837 7838 /* Is there any task to move? */ 7839 if (busiest_rq->nr_running <= 1) 7840 goto out_unlock; 7841 7842 /* 7843 * This condition is "impossible", if it occurs 7844 * we need to fix it. Originally reported by 7845 * Bjorn Helgaas on a 128-cpu setup. 7846 */ 7847 BUG_ON(busiest_rq == target_rq); 7848 7849 /* Search for an sd spanning us and the target CPU. */ 7850 rcu_read_lock(); 7851 for_each_domain(target_cpu, sd) { 7852 if ((sd->flags & SD_LOAD_BALANCE) && 7853 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 7854 break; 7855 } 7856 7857 if (likely(sd)) { 7858 struct lb_env env = { 7859 .sd = sd, 7860 .dst_cpu = target_cpu, 7861 .dst_rq = target_rq, 7862 .src_cpu = busiest_rq->cpu, 7863 .src_rq = busiest_rq, 7864 .idle = CPU_IDLE, 7865 }; 7866 7867 schedstat_inc(sd, alb_count); 7868 7869 p = detach_one_task(&env); 7870 if (p) { 7871 schedstat_inc(sd, alb_pushed); 7872 /* Active balancing done, reset the failure counter. */ 7873 sd->nr_balance_failed = 0; 7874 } else { 7875 schedstat_inc(sd, alb_failed); 7876 } 7877 } 7878 rcu_read_unlock(); 7879 out_unlock: 7880 busiest_rq->active_balance = 0; 7881 raw_spin_unlock(&busiest_rq->lock); 7882 7883 if (p) 7884 attach_one_task(target_rq, p); 7885 7886 local_irq_enable(); 7887 7888 return 0; 7889 } 7890 7891 static inline int on_null_domain(struct rq *rq) 7892 { 7893 return unlikely(!rcu_dereference_sched(rq->sd)); 7894 } 7895 7896 #ifdef CONFIG_NO_HZ_COMMON 7897 /* 7898 * idle load balancing details 7899 * - When one of the busy CPUs notice that there may be an idle rebalancing 7900 * needed, they will kick the idle load balancer, which then does idle 7901 * load balancing for all the idle CPUs. 7902 */ 7903 static struct { 7904 cpumask_var_t idle_cpus_mask; 7905 atomic_t nr_cpus; 7906 unsigned long next_balance; /* in jiffy units */ 7907 } nohz ____cacheline_aligned; 7908 7909 static inline int find_new_ilb(void) 7910 { 7911 int ilb = cpumask_first(nohz.idle_cpus_mask); 7912 7913 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 7914 return ilb; 7915 7916 return nr_cpu_ids; 7917 } 7918 7919 /* 7920 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 7921 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 7922 * CPU (if there is one). 7923 */ 7924 static void nohz_balancer_kick(void) 7925 { 7926 int ilb_cpu; 7927 7928 nohz.next_balance++; 7929 7930 ilb_cpu = find_new_ilb(); 7931 7932 if (ilb_cpu >= nr_cpu_ids) 7933 return; 7934 7935 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 7936 return; 7937 /* 7938 * Use smp_send_reschedule() instead of resched_cpu(). 7939 * This way we generate a sched IPI on the target cpu which 7940 * is idle. And the softirq performing nohz idle load balance 7941 * will be run before returning from the IPI. 7942 */ 7943 smp_send_reschedule(ilb_cpu); 7944 return; 7945 } 7946 7947 void nohz_balance_exit_idle(unsigned int cpu) 7948 { 7949 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 7950 /* 7951 * Completely isolated CPUs don't ever set, so we must test. 7952 */ 7953 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 7954 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 7955 atomic_dec(&nohz.nr_cpus); 7956 } 7957 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7958 } 7959 } 7960 7961 static inline void set_cpu_sd_state_busy(void) 7962 { 7963 struct sched_domain *sd; 7964 int cpu = smp_processor_id(); 7965 7966 rcu_read_lock(); 7967 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7968 7969 if (!sd || !sd->nohz_idle) 7970 goto unlock; 7971 sd->nohz_idle = 0; 7972 7973 atomic_inc(&sd->groups->sgc->nr_busy_cpus); 7974 unlock: 7975 rcu_read_unlock(); 7976 } 7977 7978 void set_cpu_sd_state_idle(void) 7979 { 7980 struct sched_domain *sd; 7981 int cpu = smp_processor_id(); 7982 7983 rcu_read_lock(); 7984 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7985 7986 if (!sd || sd->nohz_idle) 7987 goto unlock; 7988 sd->nohz_idle = 1; 7989 7990 atomic_dec(&sd->groups->sgc->nr_busy_cpus); 7991 unlock: 7992 rcu_read_unlock(); 7993 } 7994 7995 /* 7996 * This routine will record that the cpu is going idle with tick stopped. 7997 * This info will be used in performing idle load balancing in the future. 7998 */ 7999 void nohz_balance_enter_idle(int cpu) 8000 { 8001 /* 8002 * If this cpu is going down, then nothing needs to be done. 8003 */ 8004 if (!cpu_active(cpu)) 8005 return; 8006 8007 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 8008 return; 8009 8010 /* 8011 * If we're a completely isolated CPU, we don't play. 8012 */ 8013 if (on_null_domain(cpu_rq(cpu))) 8014 return; 8015 8016 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 8017 atomic_inc(&nohz.nr_cpus); 8018 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 8019 } 8020 #endif 8021 8022 static DEFINE_SPINLOCK(balancing); 8023 8024 /* 8025 * Scale the max load_balance interval with the number of CPUs in the system. 8026 * This trades load-balance latency on larger machines for less cross talk. 8027 */ 8028 void update_max_interval(void) 8029 { 8030 max_load_balance_interval = HZ*num_online_cpus()/10; 8031 } 8032 8033 /* 8034 * It checks each scheduling domain to see if it is due to be balanced, 8035 * and initiates a balancing operation if so. 8036 * 8037 * Balancing parameters are set up in init_sched_domains. 8038 */ 8039 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 8040 { 8041 int continue_balancing = 1; 8042 int cpu = rq->cpu; 8043 unsigned long interval; 8044 struct sched_domain *sd; 8045 /* Earliest time when we have to do rebalance again */ 8046 unsigned long next_balance = jiffies + 60*HZ; 8047 int update_next_balance = 0; 8048 int need_serialize, need_decay = 0; 8049 u64 max_cost = 0; 8050 8051 update_blocked_averages(cpu); 8052 8053 rcu_read_lock(); 8054 for_each_domain(cpu, sd) { 8055 /* 8056 * Decay the newidle max times here because this is a regular 8057 * visit to all the domains. Decay ~1% per second. 8058 */ 8059 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 8060 sd->max_newidle_lb_cost = 8061 (sd->max_newidle_lb_cost * 253) / 256; 8062 sd->next_decay_max_lb_cost = jiffies + HZ; 8063 need_decay = 1; 8064 } 8065 max_cost += sd->max_newidle_lb_cost; 8066 8067 if (!(sd->flags & SD_LOAD_BALANCE)) 8068 continue; 8069 8070 /* 8071 * Stop the load balance at this level. There is another 8072 * CPU in our sched group which is doing load balancing more 8073 * actively. 8074 */ 8075 if (!continue_balancing) { 8076 if (need_decay) 8077 continue; 8078 break; 8079 } 8080 8081 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8082 8083 need_serialize = sd->flags & SD_SERIALIZE; 8084 if (need_serialize) { 8085 if (!spin_trylock(&balancing)) 8086 goto out; 8087 } 8088 8089 if (time_after_eq(jiffies, sd->last_balance + interval)) { 8090 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 8091 /* 8092 * The LBF_DST_PINNED logic could have changed 8093 * env->dst_cpu, so we can't know our idle 8094 * state even if we migrated tasks. Update it. 8095 */ 8096 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 8097 } 8098 sd->last_balance = jiffies; 8099 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8100 } 8101 if (need_serialize) 8102 spin_unlock(&balancing); 8103 out: 8104 if (time_after(next_balance, sd->last_balance + interval)) { 8105 next_balance = sd->last_balance + interval; 8106 update_next_balance = 1; 8107 } 8108 } 8109 if (need_decay) { 8110 /* 8111 * Ensure the rq-wide value also decays but keep it at a 8112 * reasonable floor to avoid funnies with rq->avg_idle. 8113 */ 8114 rq->max_idle_balance_cost = 8115 max((u64)sysctl_sched_migration_cost, max_cost); 8116 } 8117 rcu_read_unlock(); 8118 8119 /* 8120 * next_balance will be updated only when there is a need. 8121 * When the cpu is attached to null domain for ex, it will not be 8122 * updated. 8123 */ 8124 if (likely(update_next_balance)) { 8125 rq->next_balance = next_balance; 8126 8127 #ifdef CONFIG_NO_HZ_COMMON 8128 /* 8129 * If this CPU has been elected to perform the nohz idle 8130 * balance. Other idle CPUs have already rebalanced with 8131 * nohz_idle_balance() and nohz.next_balance has been 8132 * updated accordingly. This CPU is now running the idle load 8133 * balance for itself and we need to update the 8134 * nohz.next_balance accordingly. 8135 */ 8136 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 8137 nohz.next_balance = rq->next_balance; 8138 #endif 8139 } 8140 } 8141 8142 #ifdef CONFIG_NO_HZ_COMMON 8143 /* 8144 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 8145 * rebalancing for all the cpus for whom scheduler ticks are stopped. 8146 */ 8147 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 8148 { 8149 int this_cpu = this_rq->cpu; 8150 struct rq *rq; 8151 int balance_cpu; 8152 /* Earliest time when we have to do rebalance again */ 8153 unsigned long next_balance = jiffies + 60*HZ; 8154 int update_next_balance = 0; 8155 8156 if (idle != CPU_IDLE || 8157 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 8158 goto end; 8159 8160 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 8161 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 8162 continue; 8163 8164 /* 8165 * If this cpu gets work to do, stop the load balancing 8166 * work being done for other cpus. Next load 8167 * balancing owner will pick it up. 8168 */ 8169 if (need_resched()) 8170 break; 8171 8172 rq = cpu_rq(balance_cpu); 8173 8174 /* 8175 * If time for next balance is due, 8176 * do the balance. 8177 */ 8178 if (time_after_eq(jiffies, rq->next_balance)) { 8179 raw_spin_lock_irq(&rq->lock); 8180 update_rq_clock(rq); 8181 cpu_load_update_idle(rq); 8182 raw_spin_unlock_irq(&rq->lock); 8183 rebalance_domains(rq, CPU_IDLE); 8184 } 8185 8186 if (time_after(next_balance, rq->next_balance)) { 8187 next_balance = rq->next_balance; 8188 update_next_balance = 1; 8189 } 8190 } 8191 8192 /* 8193 * next_balance will be updated only when there is a need. 8194 * When the CPU is attached to null domain for ex, it will not be 8195 * updated. 8196 */ 8197 if (likely(update_next_balance)) 8198 nohz.next_balance = next_balance; 8199 end: 8200 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 8201 } 8202 8203 /* 8204 * Current heuristic for kicking the idle load balancer in the presence 8205 * of an idle cpu in the system. 8206 * - This rq has more than one task. 8207 * - This rq has at least one CFS task and the capacity of the CPU is 8208 * significantly reduced because of RT tasks or IRQs. 8209 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 8210 * multiple busy cpu. 8211 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 8212 * domain span are idle. 8213 */ 8214 static inline bool nohz_kick_needed(struct rq *rq) 8215 { 8216 unsigned long now = jiffies; 8217 struct sched_domain *sd; 8218 struct sched_group_capacity *sgc; 8219 int nr_busy, cpu = rq->cpu; 8220 bool kick = false; 8221 8222 if (unlikely(rq->idle_balance)) 8223 return false; 8224 8225 /* 8226 * We may be recently in ticked or tickless idle mode. At the first 8227 * busy tick after returning from idle, we will update the busy stats. 8228 */ 8229 set_cpu_sd_state_busy(); 8230 nohz_balance_exit_idle(cpu); 8231 8232 /* 8233 * None are in tickless mode and hence no need for NOHZ idle load 8234 * balancing. 8235 */ 8236 if (likely(!atomic_read(&nohz.nr_cpus))) 8237 return false; 8238 8239 if (time_before(now, nohz.next_balance)) 8240 return false; 8241 8242 if (rq->nr_running >= 2) 8243 return true; 8244 8245 rcu_read_lock(); 8246 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 8247 if (sd) { 8248 sgc = sd->groups->sgc; 8249 nr_busy = atomic_read(&sgc->nr_busy_cpus); 8250 8251 if (nr_busy > 1) { 8252 kick = true; 8253 goto unlock; 8254 } 8255 8256 } 8257 8258 sd = rcu_dereference(rq->sd); 8259 if (sd) { 8260 if ((rq->cfs.h_nr_running >= 1) && 8261 check_cpu_capacity(rq, sd)) { 8262 kick = true; 8263 goto unlock; 8264 } 8265 } 8266 8267 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 8268 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 8269 sched_domain_span(sd)) < cpu)) { 8270 kick = true; 8271 goto unlock; 8272 } 8273 8274 unlock: 8275 rcu_read_unlock(); 8276 return kick; 8277 } 8278 #else 8279 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 8280 #endif 8281 8282 /* 8283 * run_rebalance_domains is triggered when needed from the scheduler tick. 8284 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 8285 */ 8286 static void run_rebalance_domains(struct softirq_action *h) 8287 { 8288 struct rq *this_rq = this_rq(); 8289 enum cpu_idle_type idle = this_rq->idle_balance ? 8290 CPU_IDLE : CPU_NOT_IDLE; 8291 8292 /* 8293 * If this cpu has a pending nohz_balance_kick, then do the 8294 * balancing on behalf of the other idle cpus whose ticks are 8295 * stopped. Do nohz_idle_balance *before* rebalance_domains to 8296 * give the idle cpus a chance to load balance. Else we may 8297 * load balance only within the local sched_domain hierarchy 8298 * and abort nohz_idle_balance altogether if we pull some load. 8299 */ 8300 nohz_idle_balance(this_rq, idle); 8301 rebalance_domains(this_rq, idle); 8302 } 8303 8304 /* 8305 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 8306 */ 8307 void trigger_load_balance(struct rq *rq) 8308 { 8309 /* Don't need to rebalance while attached to NULL domain */ 8310 if (unlikely(on_null_domain(rq))) 8311 return; 8312 8313 if (time_after_eq(jiffies, rq->next_balance)) 8314 raise_softirq(SCHED_SOFTIRQ); 8315 #ifdef CONFIG_NO_HZ_COMMON 8316 if (nohz_kick_needed(rq)) 8317 nohz_balancer_kick(); 8318 #endif 8319 } 8320 8321 static void rq_online_fair(struct rq *rq) 8322 { 8323 update_sysctl(); 8324 8325 update_runtime_enabled(rq); 8326 } 8327 8328 static void rq_offline_fair(struct rq *rq) 8329 { 8330 update_sysctl(); 8331 8332 /* Ensure any throttled groups are reachable by pick_next_task */ 8333 unthrottle_offline_cfs_rqs(rq); 8334 } 8335 8336 #endif /* CONFIG_SMP */ 8337 8338 /* 8339 * scheduler tick hitting a task of our scheduling class: 8340 */ 8341 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 8342 { 8343 struct cfs_rq *cfs_rq; 8344 struct sched_entity *se = &curr->se; 8345 8346 for_each_sched_entity(se) { 8347 cfs_rq = cfs_rq_of(se); 8348 entity_tick(cfs_rq, se, queued); 8349 } 8350 8351 if (static_branch_unlikely(&sched_numa_balancing)) 8352 task_tick_numa(rq, curr); 8353 } 8354 8355 /* 8356 * called on fork with the child task as argument from the parent's context 8357 * - child not yet on the tasklist 8358 * - preemption disabled 8359 */ 8360 static void task_fork_fair(struct task_struct *p) 8361 { 8362 struct cfs_rq *cfs_rq; 8363 struct sched_entity *se = &p->se, *curr; 8364 struct rq *rq = this_rq(); 8365 8366 raw_spin_lock(&rq->lock); 8367 update_rq_clock(rq); 8368 8369 cfs_rq = task_cfs_rq(current); 8370 curr = cfs_rq->curr; 8371 if (curr) { 8372 update_curr(cfs_rq); 8373 se->vruntime = curr->vruntime; 8374 } 8375 place_entity(cfs_rq, se, 1); 8376 8377 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 8378 /* 8379 * Upon rescheduling, sched_class::put_prev_task() will place 8380 * 'current' within the tree based on its new key value. 8381 */ 8382 swap(curr->vruntime, se->vruntime); 8383 resched_curr(rq); 8384 } 8385 8386 se->vruntime -= cfs_rq->min_vruntime; 8387 raw_spin_unlock(&rq->lock); 8388 } 8389 8390 /* 8391 * Priority of the task has changed. Check to see if we preempt 8392 * the current task. 8393 */ 8394 static void 8395 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 8396 { 8397 if (!task_on_rq_queued(p)) 8398 return; 8399 8400 /* 8401 * Reschedule if we are currently running on this runqueue and 8402 * our priority decreased, or if we are not currently running on 8403 * this runqueue and our priority is higher than the current's 8404 */ 8405 if (rq->curr == p) { 8406 if (p->prio > oldprio) 8407 resched_curr(rq); 8408 } else 8409 check_preempt_curr(rq, p, 0); 8410 } 8411 8412 static inline bool vruntime_normalized(struct task_struct *p) 8413 { 8414 struct sched_entity *se = &p->se; 8415 8416 /* 8417 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 8418 * the dequeue_entity(.flags=0) will already have normalized the 8419 * vruntime. 8420 */ 8421 if (p->on_rq) 8422 return true; 8423 8424 /* 8425 * When !on_rq, vruntime of the task has usually NOT been normalized. 8426 * But there are some cases where it has already been normalized: 8427 * 8428 * - A forked child which is waiting for being woken up by 8429 * wake_up_new_task(). 8430 * - A task which has been woken up by try_to_wake_up() and 8431 * waiting for actually being woken up by sched_ttwu_pending(). 8432 */ 8433 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 8434 return true; 8435 8436 return false; 8437 } 8438 8439 static void detach_task_cfs_rq(struct task_struct *p) 8440 { 8441 struct sched_entity *se = &p->se; 8442 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8443 u64 now = cfs_rq_clock_task(cfs_rq); 8444 int tg_update; 8445 8446 if (!vruntime_normalized(p)) { 8447 /* 8448 * Fix up our vruntime so that the current sleep doesn't 8449 * cause 'unlimited' sleep bonus. 8450 */ 8451 place_entity(cfs_rq, se, 0); 8452 se->vruntime -= cfs_rq->min_vruntime; 8453 } 8454 8455 /* Catch up with the cfs_rq and remove our load when we leave */ 8456 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false); 8457 detach_entity_load_avg(cfs_rq, se); 8458 if (tg_update) 8459 update_tg_load_avg(cfs_rq, false); 8460 } 8461 8462 static void attach_task_cfs_rq(struct task_struct *p) 8463 { 8464 struct sched_entity *se = &p->se; 8465 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8466 u64 now = cfs_rq_clock_task(cfs_rq); 8467 int tg_update; 8468 8469 #ifdef CONFIG_FAIR_GROUP_SCHED 8470 /* 8471 * Since the real-depth could have been changed (only FAIR 8472 * class maintain depth value), reset depth properly. 8473 */ 8474 se->depth = se->parent ? se->parent->depth + 1 : 0; 8475 #endif 8476 8477 /* Synchronize task with its cfs_rq */ 8478 tg_update = update_cfs_rq_load_avg(now, cfs_rq, false); 8479 attach_entity_load_avg(cfs_rq, se); 8480 if (tg_update) 8481 update_tg_load_avg(cfs_rq, false); 8482 8483 if (!vruntime_normalized(p)) 8484 se->vruntime += cfs_rq->min_vruntime; 8485 } 8486 8487 static void switched_from_fair(struct rq *rq, struct task_struct *p) 8488 { 8489 detach_task_cfs_rq(p); 8490 } 8491 8492 static void switched_to_fair(struct rq *rq, struct task_struct *p) 8493 { 8494 attach_task_cfs_rq(p); 8495 8496 if (task_on_rq_queued(p)) { 8497 /* 8498 * We were most likely switched from sched_rt, so 8499 * kick off the schedule if running, otherwise just see 8500 * if we can still preempt the current task. 8501 */ 8502 if (rq->curr == p) 8503 resched_curr(rq); 8504 else 8505 check_preempt_curr(rq, p, 0); 8506 } 8507 } 8508 8509 /* Account for a task changing its policy or group. 8510 * 8511 * This routine is mostly called to set cfs_rq->curr field when a task 8512 * migrates between groups/classes. 8513 */ 8514 static void set_curr_task_fair(struct rq *rq) 8515 { 8516 struct sched_entity *se = &rq->curr->se; 8517 8518 for_each_sched_entity(se) { 8519 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8520 8521 set_next_entity(cfs_rq, se); 8522 /* ensure bandwidth has been allocated on our new cfs_rq */ 8523 account_cfs_rq_runtime(cfs_rq, 0); 8524 } 8525 } 8526 8527 void init_cfs_rq(struct cfs_rq *cfs_rq) 8528 { 8529 cfs_rq->tasks_timeline = RB_ROOT; 8530 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 8531 #ifndef CONFIG_64BIT 8532 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 8533 #endif 8534 #ifdef CONFIG_SMP 8535 atomic_long_set(&cfs_rq->removed_load_avg, 0); 8536 atomic_long_set(&cfs_rq->removed_util_avg, 0); 8537 #endif 8538 } 8539 8540 #ifdef CONFIG_FAIR_GROUP_SCHED 8541 static void task_set_group_fair(struct task_struct *p) 8542 { 8543 struct sched_entity *se = &p->se; 8544 8545 set_task_rq(p, task_cpu(p)); 8546 se->depth = se->parent ? se->parent->depth + 1 : 0; 8547 } 8548 8549 static void task_move_group_fair(struct task_struct *p) 8550 { 8551 detach_task_cfs_rq(p); 8552 set_task_rq(p, task_cpu(p)); 8553 8554 #ifdef CONFIG_SMP 8555 /* Tell se's cfs_rq has been changed -- migrated */ 8556 p->se.avg.last_update_time = 0; 8557 #endif 8558 attach_task_cfs_rq(p); 8559 } 8560 8561 static void task_change_group_fair(struct task_struct *p, int type) 8562 { 8563 switch (type) { 8564 case TASK_SET_GROUP: 8565 task_set_group_fair(p); 8566 break; 8567 8568 case TASK_MOVE_GROUP: 8569 task_move_group_fair(p); 8570 break; 8571 } 8572 } 8573 8574 void free_fair_sched_group(struct task_group *tg) 8575 { 8576 int i; 8577 8578 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8579 8580 for_each_possible_cpu(i) { 8581 if (tg->cfs_rq) 8582 kfree(tg->cfs_rq[i]); 8583 if (tg->se) 8584 kfree(tg->se[i]); 8585 } 8586 8587 kfree(tg->cfs_rq); 8588 kfree(tg->se); 8589 } 8590 8591 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8592 { 8593 struct sched_entity *se; 8594 struct cfs_rq *cfs_rq; 8595 struct rq *rq; 8596 int i; 8597 8598 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 8599 if (!tg->cfs_rq) 8600 goto err; 8601 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 8602 if (!tg->se) 8603 goto err; 8604 8605 tg->shares = NICE_0_LOAD; 8606 8607 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8608 8609 for_each_possible_cpu(i) { 8610 rq = cpu_rq(i); 8611 8612 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 8613 GFP_KERNEL, cpu_to_node(i)); 8614 if (!cfs_rq) 8615 goto err; 8616 8617 se = kzalloc_node(sizeof(struct sched_entity), 8618 GFP_KERNEL, cpu_to_node(i)); 8619 if (!se) 8620 goto err_free_rq; 8621 8622 init_cfs_rq(cfs_rq); 8623 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 8624 init_entity_runnable_average(se); 8625 } 8626 8627 return 1; 8628 8629 err_free_rq: 8630 kfree(cfs_rq); 8631 err: 8632 return 0; 8633 } 8634 8635 void online_fair_sched_group(struct task_group *tg) 8636 { 8637 struct sched_entity *se; 8638 struct rq *rq; 8639 int i; 8640 8641 for_each_possible_cpu(i) { 8642 rq = cpu_rq(i); 8643 se = tg->se[i]; 8644 8645 raw_spin_lock_irq(&rq->lock); 8646 post_init_entity_util_avg(se); 8647 sync_throttle(tg, i); 8648 raw_spin_unlock_irq(&rq->lock); 8649 } 8650 } 8651 8652 void unregister_fair_sched_group(struct task_group *tg) 8653 { 8654 unsigned long flags; 8655 struct rq *rq; 8656 int cpu; 8657 8658 for_each_possible_cpu(cpu) { 8659 if (tg->se[cpu]) 8660 remove_entity_load_avg(tg->se[cpu]); 8661 8662 /* 8663 * Only empty task groups can be destroyed; so we can speculatively 8664 * check on_list without danger of it being re-added. 8665 */ 8666 if (!tg->cfs_rq[cpu]->on_list) 8667 continue; 8668 8669 rq = cpu_rq(cpu); 8670 8671 raw_spin_lock_irqsave(&rq->lock, flags); 8672 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 8673 raw_spin_unlock_irqrestore(&rq->lock, flags); 8674 } 8675 } 8676 8677 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 8678 struct sched_entity *se, int cpu, 8679 struct sched_entity *parent) 8680 { 8681 struct rq *rq = cpu_rq(cpu); 8682 8683 cfs_rq->tg = tg; 8684 cfs_rq->rq = rq; 8685 init_cfs_rq_runtime(cfs_rq); 8686 8687 tg->cfs_rq[cpu] = cfs_rq; 8688 tg->se[cpu] = se; 8689 8690 /* se could be NULL for root_task_group */ 8691 if (!se) 8692 return; 8693 8694 if (!parent) { 8695 se->cfs_rq = &rq->cfs; 8696 se->depth = 0; 8697 } else { 8698 se->cfs_rq = parent->my_q; 8699 se->depth = parent->depth + 1; 8700 } 8701 8702 se->my_q = cfs_rq; 8703 /* guarantee group entities always have weight */ 8704 update_load_set(&se->load, NICE_0_LOAD); 8705 se->parent = parent; 8706 } 8707 8708 static DEFINE_MUTEX(shares_mutex); 8709 8710 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 8711 { 8712 int i; 8713 unsigned long flags; 8714 8715 /* 8716 * We can't change the weight of the root cgroup. 8717 */ 8718 if (!tg->se[0]) 8719 return -EINVAL; 8720 8721 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 8722 8723 mutex_lock(&shares_mutex); 8724 if (tg->shares == shares) 8725 goto done; 8726 8727 tg->shares = shares; 8728 for_each_possible_cpu(i) { 8729 struct rq *rq = cpu_rq(i); 8730 struct sched_entity *se; 8731 8732 se = tg->se[i]; 8733 /* Propagate contribution to hierarchy */ 8734 raw_spin_lock_irqsave(&rq->lock, flags); 8735 8736 /* Possible calls to update_curr() need rq clock */ 8737 update_rq_clock(rq); 8738 for_each_sched_entity(se) 8739 update_cfs_shares(group_cfs_rq(se)); 8740 raw_spin_unlock_irqrestore(&rq->lock, flags); 8741 } 8742 8743 done: 8744 mutex_unlock(&shares_mutex); 8745 return 0; 8746 } 8747 #else /* CONFIG_FAIR_GROUP_SCHED */ 8748 8749 void free_fair_sched_group(struct task_group *tg) { } 8750 8751 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8752 { 8753 return 1; 8754 } 8755 8756 void online_fair_sched_group(struct task_group *tg) { } 8757 8758 void unregister_fair_sched_group(struct task_group *tg) { } 8759 8760 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8761 8762 8763 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 8764 { 8765 struct sched_entity *se = &task->se; 8766 unsigned int rr_interval = 0; 8767 8768 /* 8769 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 8770 * idle runqueue: 8771 */ 8772 if (rq->cfs.load.weight) 8773 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 8774 8775 return rr_interval; 8776 } 8777 8778 /* 8779 * All the scheduling class methods: 8780 */ 8781 const struct sched_class fair_sched_class = { 8782 .next = &idle_sched_class, 8783 .enqueue_task = enqueue_task_fair, 8784 .dequeue_task = dequeue_task_fair, 8785 .yield_task = yield_task_fair, 8786 .yield_to_task = yield_to_task_fair, 8787 8788 .check_preempt_curr = check_preempt_wakeup, 8789 8790 .pick_next_task = pick_next_task_fair, 8791 .put_prev_task = put_prev_task_fair, 8792 8793 #ifdef CONFIG_SMP 8794 .select_task_rq = select_task_rq_fair, 8795 .migrate_task_rq = migrate_task_rq_fair, 8796 8797 .rq_online = rq_online_fair, 8798 .rq_offline = rq_offline_fair, 8799 8800 .task_dead = task_dead_fair, 8801 .set_cpus_allowed = set_cpus_allowed_common, 8802 #endif 8803 8804 .set_curr_task = set_curr_task_fair, 8805 .task_tick = task_tick_fair, 8806 .task_fork = task_fork_fair, 8807 8808 .prio_changed = prio_changed_fair, 8809 .switched_from = switched_from_fair, 8810 .switched_to = switched_to_fair, 8811 8812 .get_rr_interval = get_rr_interval_fair, 8813 8814 .update_curr = update_curr_fair, 8815 8816 #ifdef CONFIG_FAIR_GROUP_SCHED 8817 .task_change_group = task_change_group_fair, 8818 #endif 8819 }; 8820 8821 #ifdef CONFIG_SCHED_DEBUG 8822 void print_cfs_stats(struct seq_file *m, int cpu) 8823 { 8824 struct cfs_rq *cfs_rq; 8825 8826 rcu_read_lock(); 8827 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 8828 print_cfs_rq(m, cpu, cfs_rq); 8829 rcu_read_unlock(); 8830 } 8831 8832 #ifdef CONFIG_NUMA_BALANCING 8833 void show_numa_stats(struct task_struct *p, struct seq_file *m) 8834 { 8835 int node; 8836 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 8837 8838 for_each_online_node(node) { 8839 if (p->numa_faults) { 8840 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 8841 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 8842 } 8843 if (p->numa_group) { 8844 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 8845 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 8846 } 8847 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 8848 } 8849 } 8850 #endif /* CONFIG_NUMA_BALANCING */ 8851 #endif /* CONFIG_SCHED_DEBUG */ 8852 8853 __init void init_sched_fair_class(void) 8854 { 8855 #ifdef CONFIG_SMP 8856 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 8857 8858 #ifdef CONFIG_NO_HZ_COMMON 8859 nohz.next_balance = jiffies; 8860 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 8861 #endif 8862 #endif /* SMP */ 8863 8864 } 8865