xref: /openbmc/linux/kernel/sched/fair.c (revision 3b27d139)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33 
34 #include <trace/events/sched.h>
35 
36 #include "sched.h"
37 
38 /*
39  * Targeted preemption latency for CPU-bound tasks:
40  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41  *
42  * NOTE: this latency value is not the same as the concept of
43  * 'timeslice length' - timeslices in CFS are of variable length
44  * and have no persistent notion like in traditional, time-slice
45  * based scheduling concepts.
46  *
47  * (to see the precise effective timeslice length of your workload,
48  *  run vmstat and monitor the context-switches (cs) field)
49  */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52 
53 /*
54  * The initial- and re-scaling of tunables is configurable
55  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56  *
57  * Options are:
58  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61  */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 	= SCHED_TUNABLESCALING_LOG;
64 
65 /*
66  * Minimal preemption granularity for CPU-bound tasks:
67  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68  */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 
72 /*
73  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74  */
75 static unsigned int sched_nr_latency = 8;
76 
77 /*
78  * After fork, child runs first. If set to 0 (default) then
79  * parent will (try to) run first.
80  */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82 
83 /*
84  * SCHED_OTHER wake-up granularity.
85  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86  *
87  * This option delays the preemption effects of decoupled workloads
88  * and reduces their over-scheduling. Synchronous workloads will still
89  * have immediate wakeup/sleep latencies.
90  */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95 
96 /*
97  * The exponential sliding  window over which load is averaged for shares
98  * distribution.
99  * (default: 10msec)
100  */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106  * each time a cfs_rq requests quota.
107  *
108  * Note: in the case that the slice exceeds the runtime remaining (either due
109  * to consumption or the quota being specified to be smaller than the slice)
110  * we will always only issue the remaining available time.
111  *
112  * default: 5 msec, units: microseconds
113   */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116 
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 	lw->weight += inc;
120 	lw->inv_weight = 0;
121 }
122 
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 	lw->weight -= dec;
126 	lw->inv_weight = 0;
127 }
128 
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 	lw->weight = w;
132 	lw->inv_weight = 0;
133 }
134 
135 /*
136  * Increase the granularity value when there are more CPUs,
137  * because with more CPUs the 'effective latency' as visible
138  * to users decreases. But the relationship is not linear,
139  * so pick a second-best guess by going with the log2 of the
140  * number of CPUs.
141  *
142  * This idea comes from the SD scheduler of Con Kolivas:
143  */
144 static unsigned int get_update_sysctl_factor(void)
145 {
146 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 	unsigned int factor;
148 
149 	switch (sysctl_sched_tunable_scaling) {
150 	case SCHED_TUNABLESCALING_NONE:
151 		factor = 1;
152 		break;
153 	case SCHED_TUNABLESCALING_LINEAR:
154 		factor = cpus;
155 		break;
156 	case SCHED_TUNABLESCALING_LOG:
157 	default:
158 		factor = 1 + ilog2(cpus);
159 		break;
160 	}
161 
162 	return factor;
163 }
164 
165 static void update_sysctl(void)
166 {
167 	unsigned int factor = get_update_sysctl_factor();
168 
169 #define SET_SYSCTL(name) \
170 	(sysctl_##name = (factor) * normalized_sysctl_##name)
171 	SET_SYSCTL(sched_min_granularity);
172 	SET_SYSCTL(sched_latency);
173 	SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176 
177 void sched_init_granularity(void)
178 {
179 	update_sysctl();
180 }
181 
182 #define WMULT_CONST	(~0U)
183 #define WMULT_SHIFT	32
184 
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 	unsigned long w;
188 
189 	if (likely(lw->inv_weight))
190 		return;
191 
192 	w = scale_load_down(lw->weight);
193 
194 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 		lw->inv_weight = 1;
196 	else if (unlikely(!w))
197 		lw->inv_weight = WMULT_CONST;
198 	else
199 		lw->inv_weight = WMULT_CONST / w;
200 }
201 
202 /*
203  * delta_exec * weight / lw.weight
204  *   OR
205  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206  *
207  * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208  * we're guaranteed shift stays positive because inv_weight is guaranteed to
209  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210  *
211  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212  * weight/lw.weight <= 1, and therefore our shift will also be positive.
213  */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 	u64 fact = scale_load_down(weight);
217 	int shift = WMULT_SHIFT;
218 
219 	__update_inv_weight(lw);
220 
221 	if (unlikely(fact >> 32)) {
222 		while (fact >> 32) {
223 			fact >>= 1;
224 			shift--;
225 		}
226 	}
227 
228 	/* hint to use a 32x32->64 mul */
229 	fact = (u64)(u32)fact * lw->inv_weight;
230 
231 	while (fact >> 32) {
232 		fact >>= 1;
233 		shift--;
234 	}
235 
236 	return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238 
239 
240 const struct sched_class fair_sched_class;
241 
242 /**************************************************************
243  * CFS operations on generic schedulable entities:
244  */
245 
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247 
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 	return cfs_rq->rq;
252 }
253 
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se)	(!se->my_q)
256 
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 	WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 	return container_of(se, struct task_struct, se);
263 }
264 
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 		for (; se; se = se->parent)
268 
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 	return p->se.cfs_rq;
272 }
273 
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 	return se->cfs_rq;
278 }
279 
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 	return grp->my_q;
284 }
285 
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 	if (!cfs_rq->on_list) {
289 		/*
290 		 * Ensure we either appear before our parent (if already
291 		 * enqueued) or force our parent to appear after us when it is
292 		 * enqueued.  The fact that we always enqueue bottom-up
293 		 * reduces this to two cases.
294 		 */
295 		if (cfs_rq->tg->parent &&
296 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
299 		} else {
300 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302 		}
303 
304 		cfs_rq->on_list = 1;
305 	}
306 }
307 
308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309 {
310 	if (cfs_rq->on_list) {
311 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 		cfs_rq->on_list = 0;
313 	}
314 }
315 
316 /* Iterate thr' all leaf cfs_rq's on a runqueue */
317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319 
320 /* Do the two (enqueued) entities belong to the same group ? */
321 static inline struct cfs_rq *
322 is_same_group(struct sched_entity *se, struct sched_entity *pse)
323 {
324 	if (se->cfs_rq == pse->cfs_rq)
325 		return se->cfs_rq;
326 
327 	return NULL;
328 }
329 
330 static inline struct sched_entity *parent_entity(struct sched_entity *se)
331 {
332 	return se->parent;
333 }
334 
335 static void
336 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337 {
338 	int se_depth, pse_depth;
339 
340 	/*
341 	 * preemption test can be made between sibling entities who are in the
342 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 	 * both tasks until we find their ancestors who are siblings of common
344 	 * parent.
345 	 */
346 
347 	/* First walk up until both entities are at same depth */
348 	se_depth = (*se)->depth;
349 	pse_depth = (*pse)->depth;
350 
351 	while (se_depth > pse_depth) {
352 		se_depth--;
353 		*se = parent_entity(*se);
354 	}
355 
356 	while (pse_depth > se_depth) {
357 		pse_depth--;
358 		*pse = parent_entity(*pse);
359 	}
360 
361 	while (!is_same_group(*se, *pse)) {
362 		*se = parent_entity(*se);
363 		*pse = parent_entity(*pse);
364 	}
365 }
366 
367 #else	/* !CONFIG_FAIR_GROUP_SCHED */
368 
369 static inline struct task_struct *task_of(struct sched_entity *se)
370 {
371 	return container_of(se, struct task_struct, se);
372 }
373 
374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375 {
376 	return container_of(cfs_rq, struct rq, cfs);
377 }
378 
379 #define entity_is_task(se)	1
380 
381 #define for_each_sched_entity(se) \
382 		for (; se; se = NULL)
383 
384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385 {
386 	return &task_rq(p)->cfs;
387 }
388 
389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390 {
391 	struct task_struct *p = task_of(se);
392 	struct rq *rq = task_rq(p);
393 
394 	return &rq->cfs;
395 }
396 
397 /* runqueue "owned" by this group */
398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399 {
400 	return NULL;
401 }
402 
403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404 {
405 }
406 
407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410 
411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413 
414 static inline struct sched_entity *parent_entity(struct sched_entity *se)
415 {
416 	return NULL;
417 }
418 
419 static inline void
420 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421 {
422 }
423 
424 #endif	/* CONFIG_FAIR_GROUP_SCHED */
425 
426 static __always_inline
427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428 
429 /**************************************************************
430  * Scheduling class tree data structure manipulation methods:
431  */
432 
433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434 {
435 	s64 delta = (s64)(vruntime - max_vruntime);
436 	if (delta > 0)
437 		max_vruntime = vruntime;
438 
439 	return max_vruntime;
440 }
441 
442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443 {
444 	s64 delta = (s64)(vruntime - min_vruntime);
445 	if (delta < 0)
446 		min_vruntime = vruntime;
447 
448 	return min_vruntime;
449 }
450 
451 static inline int entity_before(struct sched_entity *a,
452 				struct sched_entity *b)
453 {
454 	return (s64)(a->vruntime - b->vruntime) < 0;
455 }
456 
457 static void update_min_vruntime(struct cfs_rq *cfs_rq)
458 {
459 	u64 vruntime = cfs_rq->min_vruntime;
460 
461 	if (cfs_rq->curr)
462 		vruntime = cfs_rq->curr->vruntime;
463 
464 	if (cfs_rq->rb_leftmost) {
465 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 						   struct sched_entity,
467 						   run_node);
468 
469 		if (!cfs_rq->curr)
470 			vruntime = se->vruntime;
471 		else
472 			vruntime = min_vruntime(vruntime, se->vruntime);
473 	}
474 
475 	/* ensure we never gain time by being placed backwards. */
476 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 #ifndef CONFIG_64BIT
478 	smp_wmb();
479 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480 #endif
481 }
482 
483 /*
484  * Enqueue an entity into the rb-tree:
485  */
486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 {
488 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 	struct rb_node *parent = NULL;
490 	struct sched_entity *entry;
491 	int leftmost = 1;
492 
493 	/*
494 	 * Find the right place in the rbtree:
495 	 */
496 	while (*link) {
497 		parent = *link;
498 		entry = rb_entry(parent, struct sched_entity, run_node);
499 		/*
500 		 * We dont care about collisions. Nodes with
501 		 * the same key stay together.
502 		 */
503 		if (entity_before(se, entry)) {
504 			link = &parent->rb_left;
505 		} else {
506 			link = &parent->rb_right;
507 			leftmost = 0;
508 		}
509 	}
510 
511 	/*
512 	 * Maintain a cache of leftmost tree entries (it is frequently
513 	 * used):
514 	 */
515 	if (leftmost)
516 		cfs_rq->rb_leftmost = &se->run_node;
517 
518 	rb_link_node(&se->run_node, parent, link);
519 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520 }
521 
522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 	if (cfs_rq->rb_leftmost == &se->run_node) {
525 		struct rb_node *next_node;
526 
527 		next_node = rb_next(&se->run_node);
528 		cfs_rq->rb_leftmost = next_node;
529 	}
530 
531 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532 }
533 
534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535 {
536 	struct rb_node *left = cfs_rq->rb_leftmost;
537 
538 	if (!left)
539 		return NULL;
540 
541 	return rb_entry(left, struct sched_entity, run_node);
542 }
543 
544 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545 {
546 	struct rb_node *next = rb_next(&se->run_node);
547 
548 	if (!next)
549 		return NULL;
550 
551 	return rb_entry(next, struct sched_entity, run_node);
552 }
553 
554 #ifdef CONFIG_SCHED_DEBUG
555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556 {
557 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558 
559 	if (!last)
560 		return NULL;
561 
562 	return rb_entry(last, struct sched_entity, run_node);
563 }
564 
565 /**************************************************************
566  * Scheduling class statistics methods:
567  */
568 
569 int sched_proc_update_handler(struct ctl_table *table, int write,
570 		void __user *buffer, size_t *lenp,
571 		loff_t *ppos)
572 {
573 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 	unsigned int factor = get_update_sysctl_factor();
575 
576 	if (ret || !write)
577 		return ret;
578 
579 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 					sysctl_sched_min_granularity);
581 
582 #define WRT_SYSCTL(name) \
583 	(normalized_sysctl_##name = sysctl_##name / (factor))
584 	WRT_SYSCTL(sched_min_granularity);
585 	WRT_SYSCTL(sched_latency);
586 	WRT_SYSCTL(sched_wakeup_granularity);
587 #undef WRT_SYSCTL
588 
589 	return 0;
590 }
591 #endif
592 
593 /*
594  * delta /= w
595  */
596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597 {
598 	if (unlikely(se->load.weight != NICE_0_LOAD))
599 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600 
601 	return delta;
602 }
603 
604 /*
605  * The idea is to set a period in which each task runs once.
606  *
607  * When there are too many tasks (sched_nr_latency) we have to stretch
608  * this period because otherwise the slices get too small.
609  *
610  * p = (nr <= nl) ? l : l*nr/nl
611  */
612 static u64 __sched_period(unsigned long nr_running)
613 {
614 	if (unlikely(nr_running > sched_nr_latency))
615 		return nr_running * sysctl_sched_min_granularity;
616 	else
617 		return sysctl_sched_latency;
618 }
619 
620 /*
621  * We calculate the wall-time slice from the period by taking a part
622  * proportional to the weight.
623  *
624  * s = p*P[w/rw]
625  */
626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629 
630 	for_each_sched_entity(se) {
631 		struct load_weight *load;
632 		struct load_weight lw;
633 
634 		cfs_rq = cfs_rq_of(se);
635 		load = &cfs_rq->load;
636 
637 		if (unlikely(!se->on_rq)) {
638 			lw = cfs_rq->load;
639 
640 			update_load_add(&lw, se->load.weight);
641 			load = &lw;
642 		}
643 		slice = __calc_delta(slice, se->load.weight, load);
644 	}
645 	return slice;
646 }
647 
648 /*
649  * We calculate the vruntime slice of a to-be-inserted task.
650  *
651  * vs = s/w
652  */
653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 }
657 
658 #ifdef CONFIG_SMP
659 static int select_idle_sibling(struct task_struct *p, int cpu);
660 static unsigned long task_h_load(struct task_struct *p);
661 
662 /*
663  * We choose a half-life close to 1 scheduling period.
664  * Note: The tables below are dependent on this value.
665  */
666 #define LOAD_AVG_PERIOD 32
667 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
668 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
669 
670 /* Give new sched_entity start runnable values to heavy its load in infant time */
671 void init_entity_runnable_average(struct sched_entity *se)
672 {
673 	struct sched_avg *sa = &se->avg;
674 
675 	sa->last_update_time = 0;
676 	/*
677 	 * sched_avg's period_contrib should be strictly less then 1024, so
678 	 * we give it 1023 to make sure it is almost a period (1024us), and
679 	 * will definitely be update (after enqueue).
680 	 */
681 	sa->period_contrib = 1023;
682 	sa->load_avg = scale_load_down(se->load.weight);
683 	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
684 	sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
685 	sa->util_sum = LOAD_AVG_MAX;
686 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
687 }
688 
689 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
690 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
691 #else
692 void init_entity_runnable_average(struct sched_entity *se)
693 {
694 }
695 #endif
696 
697 /*
698  * Update the current task's runtime statistics.
699  */
700 static void update_curr(struct cfs_rq *cfs_rq)
701 {
702 	struct sched_entity *curr = cfs_rq->curr;
703 	u64 now = rq_clock_task(rq_of(cfs_rq));
704 	u64 delta_exec;
705 
706 	if (unlikely(!curr))
707 		return;
708 
709 	delta_exec = now - curr->exec_start;
710 	if (unlikely((s64)delta_exec <= 0))
711 		return;
712 
713 	curr->exec_start = now;
714 
715 	schedstat_set(curr->statistics.exec_max,
716 		      max(delta_exec, curr->statistics.exec_max));
717 
718 	curr->sum_exec_runtime += delta_exec;
719 	schedstat_add(cfs_rq, exec_clock, delta_exec);
720 
721 	curr->vruntime += calc_delta_fair(delta_exec, curr);
722 	update_min_vruntime(cfs_rq);
723 
724 	if (entity_is_task(curr)) {
725 		struct task_struct *curtask = task_of(curr);
726 
727 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
728 		cpuacct_charge(curtask, delta_exec);
729 		account_group_exec_runtime(curtask, delta_exec);
730 	}
731 
732 	account_cfs_rq_runtime(cfs_rq, delta_exec);
733 }
734 
735 static void update_curr_fair(struct rq *rq)
736 {
737 	update_curr(cfs_rq_of(&rq->curr->se));
738 }
739 
740 static inline void
741 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
742 {
743 	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
744 }
745 
746 /*
747  * Task is being enqueued - update stats:
748  */
749 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
750 {
751 	/*
752 	 * Are we enqueueing a waiting task? (for current tasks
753 	 * a dequeue/enqueue event is a NOP)
754 	 */
755 	if (se != cfs_rq->curr)
756 		update_stats_wait_start(cfs_rq, se);
757 }
758 
759 static void
760 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
761 {
762 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
763 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
764 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
765 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
766 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
767 #ifdef CONFIG_SCHEDSTATS
768 	if (entity_is_task(se)) {
769 		trace_sched_stat_wait(task_of(se),
770 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
771 	}
772 #endif
773 	schedstat_set(se->statistics.wait_start, 0);
774 }
775 
776 static inline void
777 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
778 {
779 	/*
780 	 * Mark the end of the wait period if dequeueing a
781 	 * waiting task:
782 	 */
783 	if (se != cfs_rq->curr)
784 		update_stats_wait_end(cfs_rq, se);
785 }
786 
787 /*
788  * We are picking a new current task - update its stats:
789  */
790 static inline void
791 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
792 {
793 	/*
794 	 * We are starting a new run period:
795 	 */
796 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
797 }
798 
799 /**************************************************
800  * Scheduling class queueing methods:
801  */
802 
803 #ifdef CONFIG_NUMA_BALANCING
804 /*
805  * Approximate time to scan a full NUMA task in ms. The task scan period is
806  * calculated based on the tasks virtual memory size and
807  * numa_balancing_scan_size.
808  */
809 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
810 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
811 
812 /* Portion of address space to scan in MB */
813 unsigned int sysctl_numa_balancing_scan_size = 256;
814 
815 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
816 unsigned int sysctl_numa_balancing_scan_delay = 1000;
817 
818 static unsigned int task_nr_scan_windows(struct task_struct *p)
819 {
820 	unsigned long rss = 0;
821 	unsigned long nr_scan_pages;
822 
823 	/*
824 	 * Calculations based on RSS as non-present and empty pages are skipped
825 	 * by the PTE scanner and NUMA hinting faults should be trapped based
826 	 * on resident pages
827 	 */
828 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
829 	rss = get_mm_rss(p->mm);
830 	if (!rss)
831 		rss = nr_scan_pages;
832 
833 	rss = round_up(rss, nr_scan_pages);
834 	return rss / nr_scan_pages;
835 }
836 
837 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
838 #define MAX_SCAN_WINDOW 2560
839 
840 static unsigned int task_scan_min(struct task_struct *p)
841 {
842 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
843 	unsigned int scan, floor;
844 	unsigned int windows = 1;
845 
846 	if (scan_size < MAX_SCAN_WINDOW)
847 		windows = MAX_SCAN_WINDOW / scan_size;
848 	floor = 1000 / windows;
849 
850 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
851 	return max_t(unsigned int, floor, scan);
852 }
853 
854 static unsigned int task_scan_max(struct task_struct *p)
855 {
856 	unsigned int smin = task_scan_min(p);
857 	unsigned int smax;
858 
859 	/* Watch for min being lower than max due to floor calculations */
860 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
861 	return max(smin, smax);
862 }
863 
864 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
865 {
866 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
867 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
868 }
869 
870 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
871 {
872 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
873 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
874 }
875 
876 struct numa_group {
877 	atomic_t refcount;
878 
879 	spinlock_t lock; /* nr_tasks, tasks */
880 	int nr_tasks;
881 	pid_t gid;
882 
883 	struct rcu_head rcu;
884 	nodemask_t active_nodes;
885 	unsigned long total_faults;
886 	/*
887 	 * Faults_cpu is used to decide whether memory should move
888 	 * towards the CPU. As a consequence, these stats are weighted
889 	 * more by CPU use than by memory faults.
890 	 */
891 	unsigned long *faults_cpu;
892 	unsigned long faults[0];
893 };
894 
895 /* Shared or private faults. */
896 #define NR_NUMA_HINT_FAULT_TYPES 2
897 
898 /* Memory and CPU locality */
899 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
900 
901 /* Averaged statistics, and temporary buffers. */
902 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
903 
904 pid_t task_numa_group_id(struct task_struct *p)
905 {
906 	return p->numa_group ? p->numa_group->gid : 0;
907 }
908 
909 /*
910  * The averaged statistics, shared & private, memory & cpu,
911  * occupy the first half of the array. The second half of the
912  * array is for current counters, which are averaged into the
913  * first set by task_numa_placement.
914  */
915 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
916 {
917 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
918 }
919 
920 static inline unsigned long task_faults(struct task_struct *p, int nid)
921 {
922 	if (!p->numa_faults)
923 		return 0;
924 
925 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
926 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
927 }
928 
929 static inline unsigned long group_faults(struct task_struct *p, int nid)
930 {
931 	if (!p->numa_group)
932 		return 0;
933 
934 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
935 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
936 }
937 
938 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
939 {
940 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
941 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
942 }
943 
944 /* Handle placement on systems where not all nodes are directly connected. */
945 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
946 					int maxdist, bool task)
947 {
948 	unsigned long score = 0;
949 	int node;
950 
951 	/*
952 	 * All nodes are directly connected, and the same distance
953 	 * from each other. No need for fancy placement algorithms.
954 	 */
955 	if (sched_numa_topology_type == NUMA_DIRECT)
956 		return 0;
957 
958 	/*
959 	 * This code is called for each node, introducing N^2 complexity,
960 	 * which should be ok given the number of nodes rarely exceeds 8.
961 	 */
962 	for_each_online_node(node) {
963 		unsigned long faults;
964 		int dist = node_distance(nid, node);
965 
966 		/*
967 		 * The furthest away nodes in the system are not interesting
968 		 * for placement; nid was already counted.
969 		 */
970 		if (dist == sched_max_numa_distance || node == nid)
971 			continue;
972 
973 		/*
974 		 * On systems with a backplane NUMA topology, compare groups
975 		 * of nodes, and move tasks towards the group with the most
976 		 * memory accesses. When comparing two nodes at distance
977 		 * "hoplimit", only nodes closer by than "hoplimit" are part
978 		 * of each group. Skip other nodes.
979 		 */
980 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
981 					dist > maxdist)
982 			continue;
983 
984 		/* Add up the faults from nearby nodes. */
985 		if (task)
986 			faults = task_faults(p, node);
987 		else
988 			faults = group_faults(p, node);
989 
990 		/*
991 		 * On systems with a glueless mesh NUMA topology, there are
992 		 * no fixed "groups of nodes". Instead, nodes that are not
993 		 * directly connected bounce traffic through intermediate
994 		 * nodes; a numa_group can occupy any set of nodes.
995 		 * The further away a node is, the less the faults count.
996 		 * This seems to result in good task placement.
997 		 */
998 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
999 			faults *= (sched_max_numa_distance - dist);
1000 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1001 		}
1002 
1003 		score += faults;
1004 	}
1005 
1006 	return score;
1007 }
1008 
1009 /*
1010  * These return the fraction of accesses done by a particular task, or
1011  * task group, on a particular numa node.  The group weight is given a
1012  * larger multiplier, in order to group tasks together that are almost
1013  * evenly spread out between numa nodes.
1014  */
1015 static inline unsigned long task_weight(struct task_struct *p, int nid,
1016 					int dist)
1017 {
1018 	unsigned long faults, total_faults;
1019 
1020 	if (!p->numa_faults)
1021 		return 0;
1022 
1023 	total_faults = p->total_numa_faults;
1024 
1025 	if (!total_faults)
1026 		return 0;
1027 
1028 	faults = task_faults(p, nid);
1029 	faults += score_nearby_nodes(p, nid, dist, true);
1030 
1031 	return 1000 * faults / total_faults;
1032 }
1033 
1034 static inline unsigned long group_weight(struct task_struct *p, int nid,
1035 					 int dist)
1036 {
1037 	unsigned long faults, total_faults;
1038 
1039 	if (!p->numa_group)
1040 		return 0;
1041 
1042 	total_faults = p->numa_group->total_faults;
1043 
1044 	if (!total_faults)
1045 		return 0;
1046 
1047 	faults = group_faults(p, nid);
1048 	faults += score_nearby_nodes(p, nid, dist, false);
1049 
1050 	return 1000 * faults / total_faults;
1051 }
1052 
1053 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1054 				int src_nid, int dst_cpu)
1055 {
1056 	struct numa_group *ng = p->numa_group;
1057 	int dst_nid = cpu_to_node(dst_cpu);
1058 	int last_cpupid, this_cpupid;
1059 
1060 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1061 
1062 	/*
1063 	 * Multi-stage node selection is used in conjunction with a periodic
1064 	 * migration fault to build a temporal task<->page relation. By using
1065 	 * a two-stage filter we remove short/unlikely relations.
1066 	 *
1067 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1068 	 * a task's usage of a particular page (n_p) per total usage of this
1069 	 * page (n_t) (in a given time-span) to a probability.
1070 	 *
1071 	 * Our periodic faults will sample this probability and getting the
1072 	 * same result twice in a row, given these samples are fully
1073 	 * independent, is then given by P(n)^2, provided our sample period
1074 	 * is sufficiently short compared to the usage pattern.
1075 	 *
1076 	 * This quadric squishes small probabilities, making it less likely we
1077 	 * act on an unlikely task<->page relation.
1078 	 */
1079 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1080 	if (!cpupid_pid_unset(last_cpupid) &&
1081 				cpupid_to_nid(last_cpupid) != dst_nid)
1082 		return false;
1083 
1084 	/* Always allow migrate on private faults */
1085 	if (cpupid_match_pid(p, last_cpupid))
1086 		return true;
1087 
1088 	/* A shared fault, but p->numa_group has not been set up yet. */
1089 	if (!ng)
1090 		return true;
1091 
1092 	/*
1093 	 * Do not migrate if the destination is not a node that
1094 	 * is actively used by this numa group.
1095 	 */
1096 	if (!node_isset(dst_nid, ng->active_nodes))
1097 		return false;
1098 
1099 	/*
1100 	 * Source is a node that is not actively used by this
1101 	 * numa group, while the destination is. Migrate.
1102 	 */
1103 	if (!node_isset(src_nid, ng->active_nodes))
1104 		return true;
1105 
1106 	/*
1107 	 * Both source and destination are nodes in active
1108 	 * use by this numa group. Maximize memory bandwidth
1109 	 * by migrating from more heavily used groups, to less
1110 	 * heavily used ones, spreading the load around.
1111 	 * Use a 1/4 hysteresis to avoid spurious page movement.
1112 	 */
1113 	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1114 }
1115 
1116 static unsigned long weighted_cpuload(const int cpu);
1117 static unsigned long source_load(int cpu, int type);
1118 static unsigned long target_load(int cpu, int type);
1119 static unsigned long capacity_of(int cpu);
1120 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1121 
1122 /* Cached statistics for all CPUs within a node */
1123 struct numa_stats {
1124 	unsigned long nr_running;
1125 	unsigned long load;
1126 
1127 	/* Total compute capacity of CPUs on a node */
1128 	unsigned long compute_capacity;
1129 
1130 	/* Approximate capacity in terms of runnable tasks on a node */
1131 	unsigned long task_capacity;
1132 	int has_free_capacity;
1133 };
1134 
1135 /*
1136  * XXX borrowed from update_sg_lb_stats
1137  */
1138 static void update_numa_stats(struct numa_stats *ns, int nid)
1139 {
1140 	int smt, cpu, cpus = 0;
1141 	unsigned long capacity;
1142 
1143 	memset(ns, 0, sizeof(*ns));
1144 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1145 		struct rq *rq = cpu_rq(cpu);
1146 
1147 		ns->nr_running += rq->nr_running;
1148 		ns->load += weighted_cpuload(cpu);
1149 		ns->compute_capacity += capacity_of(cpu);
1150 
1151 		cpus++;
1152 	}
1153 
1154 	/*
1155 	 * If we raced with hotplug and there are no CPUs left in our mask
1156 	 * the @ns structure is NULL'ed and task_numa_compare() will
1157 	 * not find this node attractive.
1158 	 *
1159 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1160 	 * imbalance and bail there.
1161 	 */
1162 	if (!cpus)
1163 		return;
1164 
1165 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1166 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1167 	capacity = cpus / smt; /* cores */
1168 
1169 	ns->task_capacity = min_t(unsigned, capacity,
1170 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1171 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1172 }
1173 
1174 struct task_numa_env {
1175 	struct task_struct *p;
1176 
1177 	int src_cpu, src_nid;
1178 	int dst_cpu, dst_nid;
1179 
1180 	struct numa_stats src_stats, dst_stats;
1181 
1182 	int imbalance_pct;
1183 	int dist;
1184 
1185 	struct task_struct *best_task;
1186 	long best_imp;
1187 	int best_cpu;
1188 };
1189 
1190 static void task_numa_assign(struct task_numa_env *env,
1191 			     struct task_struct *p, long imp)
1192 {
1193 	if (env->best_task)
1194 		put_task_struct(env->best_task);
1195 	if (p)
1196 		get_task_struct(p);
1197 
1198 	env->best_task = p;
1199 	env->best_imp = imp;
1200 	env->best_cpu = env->dst_cpu;
1201 }
1202 
1203 static bool load_too_imbalanced(long src_load, long dst_load,
1204 				struct task_numa_env *env)
1205 {
1206 	long imb, old_imb;
1207 	long orig_src_load, orig_dst_load;
1208 	long src_capacity, dst_capacity;
1209 
1210 	/*
1211 	 * The load is corrected for the CPU capacity available on each node.
1212 	 *
1213 	 * src_load        dst_load
1214 	 * ------------ vs ---------
1215 	 * src_capacity    dst_capacity
1216 	 */
1217 	src_capacity = env->src_stats.compute_capacity;
1218 	dst_capacity = env->dst_stats.compute_capacity;
1219 
1220 	/* We care about the slope of the imbalance, not the direction. */
1221 	if (dst_load < src_load)
1222 		swap(dst_load, src_load);
1223 
1224 	/* Is the difference below the threshold? */
1225 	imb = dst_load * src_capacity * 100 -
1226 	      src_load * dst_capacity * env->imbalance_pct;
1227 	if (imb <= 0)
1228 		return false;
1229 
1230 	/*
1231 	 * The imbalance is above the allowed threshold.
1232 	 * Compare it with the old imbalance.
1233 	 */
1234 	orig_src_load = env->src_stats.load;
1235 	orig_dst_load = env->dst_stats.load;
1236 
1237 	if (orig_dst_load < orig_src_load)
1238 		swap(orig_dst_load, orig_src_load);
1239 
1240 	old_imb = orig_dst_load * src_capacity * 100 -
1241 		  orig_src_load * dst_capacity * env->imbalance_pct;
1242 
1243 	/* Would this change make things worse? */
1244 	return (imb > old_imb);
1245 }
1246 
1247 /*
1248  * This checks if the overall compute and NUMA accesses of the system would
1249  * be improved if the source tasks was migrated to the target dst_cpu taking
1250  * into account that it might be best if task running on the dst_cpu should
1251  * be exchanged with the source task
1252  */
1253 static void task_numa_compare(struct task_numa_env *env,
1254 			      long taskimp, long groupimp)
1255 {
1256 	struct rq *src_rq = cpu_rq(env->src_cpu);
1257 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1258 	struct task_struct *cur;
1259 	long src_load, dst_load;
1260 	long load;
1261 	long imp = env->p->numa_group ? groupimp : taskimp;
1262 	long moveimp = imp;
1263 	int dist = env->dist;
1264 
1265 	rcu_read_lock();
1266 
1267 	raw_spin_lock_irq(&dst_rq->lock);
1268 	cur = dst_rq->curr;
1269 	/*
1270 	 * No need to move the exiting task, and this ensures that ->curr
1271 	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1272 	 * is safe under RCU read lock.
1273 	 * Note that rcu_read_lock() itself can't protect from the final
1274 	 * put_task_struct() after the last schedule().
1275 	 */
1276 	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1277 		cur = NULL;
1278 	raw_spin_unlock_irq(&dst_rq->lock);
1279 
1280 	/*
1281 	 * Because we have preemption enabled we can get migrated around and
1282 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1283 	 */
1284 	if (cur == env->p)
1285 		goto unlock;
1286 
1287 	/*
1288 	 * "imp" is the fault differential for the source task between the
1289 	 * source and destination node. Calculate the total differential for
1290 	 * the source task and potential destination task. The more negative
1291 	 * the value is, the more rmeote accesses that would be expected to
1292 	 * be incurred if the tasks were swapped.
1293 	 */
1294 	if (cur) {
1295 		/* Skip this swap candidate if cannot move to the source cpu */
1296 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1297 			goto unlock;
1298 
1299 		/*
1300 		 * If dst and source tasks are in the same NUMA group, or not
1301 		 * in any group then look only at task weights.
1302 		 */
1303 		if (cur->numa_group == env->p->numa_group) {
1304 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1305 			      task_weight(cur, env->dst_nid, dist);
1306 			/*
1307 			 * Add some hysteresis to prevent swapping the
1308 			 * tasks within a group over tiny differences.
1309 			 */
1310 			if (cur->numa_group)
1311 				imp -= imp/16;
1312 		} else {
1313 			/*
1314 			 * Compare the group weights. If a task is all by
1315 			 * itself (not part of a group), use the task weight
1316 			 * instead.
1317 			 */
1318 			if (cur->numa_group)
1319 				imp += group_weight(cur, env->src_nid, dist) -
1320 				       group_weight(cur, env->dst_nid, dist);
1321 			else
1322 				imp += task_weight(cur, env->src_nid, dist) -
1323 				       task_weight(cur, env->dst_nid, dist);
1324 		}
1325 	}
1326 
1327 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1328 		goto unlock;
1329 
1330 	if (!cur) {
1331 		/* Is there capacity at our destination? */
1332 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1333 		    !env->dst_stats.has_free_capacity)
1334 			goto unlock;
1335 
1336 		goto balance;
1337 	}
1338 
1339 	/* Balance doesn't matter much if we're running a task per cpu */
1340 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1341 			dst_rq->nr_running == 1)
1342 		goto assign;
1343 
1344 	/*
1345 	 * In the overloaded case, try and keep the load balanced.
1346 	 */
1347 balance:
1348 	load = task_h_load(env->p);
1349 	dst_load = env->dst_stats.load + load;
1350 	src_load = env->src_stats.load - load;
1351 
1352 	if (moveimp > imp && moveimp > env->best_imp) {
1353 		/*
1354 		 * If the improvement from just moving env->p direction is
1355 		 * better than swapping tasks around, check if a move is
1356 		 * possible. Store a slightly smaller score than moveimp,
1357 		 * so an actually idle CPU will win.
1358 		 */
1359 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1360 			imp = moveimp - 1;
1361 			cur = NULL;
1362 			goto assign;
1363 		}
1364 	}
1365 
1366 	if (imp <= env->best_imp)
1367 		goto unlock;
1368 
1369 	if (cur) {
1370 		load = task_h_load(cur);
1371 		dst_load -= load;
1372 		src_load += load;
1373 	}
1374 
1375 	if (load_too_imbalanced(src_load, dst_load, env))
1376 		goto unlock;
1377 
1378 	/*
1379 	 * One idle CPU per node is evaluated for a task numa move.
1380 	 * Call select_idle_sibling to maybe find a better one.
1381 	 */
1382 	if (!cur)
1383 		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1384 
1385 assign:
1386 	task_numa_assign(env, cur, imp);
1387 unlock:
1388 	rcu_read_unlock();
1389 }
1390 
1391 static void task_numa_find_cpu(struct task_numa_env *env,
1392 				long taskimp, long groupimp)
1393 {
1394 	int cpu;
1395 
1396 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1397 		/* Skip this CPU if the source task cannot migrate */
1398 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1399 			continue;
1400 
1401 		env->dst_cpu = cpu;
1402 		task_numa_compare(env, taskimp, groupimp);
1403 	}
1404 }
1405 
1406 /* Only move tasks to a NUMA node less busy than the current node. */
1407 static bool numa_has_capacity(struct task_numa_env *env)
1408 {
1409 	struct numa_stats *src = &env->src_stats;
1410 	struct numa_stats *dst = &env->dst_stats;
1411 
1412 	if (src->has_free_capacity && !dst->has_free_capacity)
1413 		return false;
1414 
1415 	/*
1416 	 * Only consider a task move if the source has a higher load
1417 	 * than the destination, corrected for CPU capacity on each node.
1418 	 *
1419 	 *      src->load                dst->load
1420 	 * --------------------- vs ---------------------
1421 	 * src->compute_capacity    dst->compute_capacity
1422 	 */
1423 	if (src->load * dst->compute_capacity * env->imbalance_pct >
1424 
1425 	    dst->load * src->compute_capacity * 100)
1426 		return true;
1427 
1428 	return false;
1429 }
1430 
1431 static int task_numa_migrate(struct task_struct *p)
1432 {
1433 	struct task_numa_env env = {
1434 		.p = p,
1435 
1436 		.src_cpu = task_cpu(p),
1437 		.src_nid = task_node(p),
1438 
1439 		.imbalance_pct = 112,
1440 
1441 		.best_task = NULL,
1442 		.best_imp = 0,
1443 		.best_cpu = -1
1444 	};
1445 	struct sched_domain *sd;
1446 	unsigned long taskweight, groupweight;
1447 	int nid, ret, dist;
1448 	long taskimp, groupimp;
1449 
1450 	/*
1451 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1452 	 * imbalance and would be the first to start moving tasks about.
1453 	 *
1454 	 * And we want to avoid any moving of tasks about, as that would create
1455 	 * random movement of tasks -- counter the numa conditions we're trying
1456 	 * to satisfy here.
1457 	 */
1458 	rcu_read_lock();
1459 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1460 	if (sd)
1461 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1462 	rcu_read_unlock();
1463 
1464 	/*
1465 	 * Cpusets can break the scheduler domain tree into smaller
1466 	 * balance domains, some of which do not cross NUMA boundaries.
1467 	 * Tasks that are "trapped" in such domains cannot be migrated
1468 	 * elsewhere, so there is no point in (re)trying.
1469 	 */
1470 	if (unlikely(!sd)) {
1471 		p->numa_preferred_nid = task_node(p);
1472 		return -EINVAL;
1473 	}
1474 
1475 	env.dst_nid = p->numa_preferred_nid;
1476 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1477 	taskweight = task_weight(p, env.src_nid, dist);
1478 	groupweight = group_weight(p, env.src_nid, dist);
1479 	update_numa_stats(&env.src_stats, env.src_nid);
1480 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1481 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1482 	update_numa_stats(&env.dst_stats, env.dst_nid);
1483 
1484 	/* Try to find a spot on the preferred nid. */
1485 	if (numa_has_capacity(&env))
1486 		task_numa_find_cpu(&env, taskimp, groupimp);
1487 
1488 	/*
1489 	 * Look at other nodes in these cases:
1490 	 * - there is no space available on the preferred_nid
1491 	 * - the task is part of a numa_group that is interleaved across
1492 	 *   multiple NUMA nodes; in order to better consolidate the group,
1493 	 *   we need to check other locations.
1494 	 */
1495 	if (env.best_cpu == -1 || (p->numa_group &&
1496 			nodes_weight(p->numa_group->active_nodes) > 1)) {
1497 		for_each_online_node(nid) {
1498 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1499 				continue;
1500 
1501 			dist = node_distance(env.src_nid, env.dst_nid);
1502 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1503 						dist != env.dist) {
1504 				taskweight = task_weight(p, env.src_nid, dist);
1505 				groupweight = group_weight(p, env.src_nid, dist);
1506 			}
1507 
1508 			/* Only consider nodes where both task and groups benefit */
1509 			taskimp = task_weight(p, nid, dist) - taskweight;
1510 			groupimp = group_weight(p, nid, dist) - groupweight;
1511 			if (taskimp < 0 && groupimp < 0)
1512 				continue;
1513 
1514 			env.dist = dist;
1515 			env.dst_nid = nid;
1516 			update_numa_stats(&env.dst_stats, env.dst_nid);
1517 			if (numa_has_capacity(&env))
1518 				task_numa_find_cpu(&env, taskimp, groupimp);
1519 		}
1520 	}
1521 
1522 	/*
1523 	 * If the task is part of a workload that spans multiple NUMA nodes,
1524 	 * and is migrating into one of the workload's active nodes, remember
1525 	 * this node as the task's preferred numa node, so the workload can
1526 	 * settle down.
1527 	 * A task that migrated to a second choice node will be better off
1528 	 * trying for a better one later. Do not set the preferred node here.
1529 	 */
1530 	if (p->numa_group) {
1531 		if (env.best_cpu == -1)
1532 			nid = env.src_nid;
1533 		else
1534 			nid = env.dst_nid;
1535 
1536 		if (node_isset(nid, p->numa_group->active_nodes))
1537 			sched_setnuma(p, env.dst_nid);
1538 	}
1539 
1540 	/* No better CPU than the current one was found. */
1541 	if (env.best_cpu == -1)
1542 		return -EAGAIN;
1543 
1544 	/*
1545 	 * Reset the scan period if the task is being rescheduled on an
1546 	 * alternative node to recheck if the tasks is now properly placed.
1547 	 */
1548 	p->numa_scan_period = task_scan_min(p);
1549 
1550 	if (env.best_task == NULL) {
1551 		ret = migrate_task_to(p, env.best_cpu);
1552 		if (ret != 0)
1553 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1554 		return ret;
1555 	}
1556 
1557 	ret = migrate_swap(p, env.best_task);
1558 	if (ret != 0)
1559 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1560 	put_task_struct(env.best_task);
1561 	return ret;
1562 }
1563 
1564 /* Attempt to migrate a task to a CPU on the preferred node. */
1565 static void numa_migrate_preferred(struct task_struct *p)
1566 {
1567 	unsigned long interval = HZ;
1568 
1569 	/* This task has no NUMA fault statistics yet */
1570 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1571 		return;
1572 
1573 	/* Periodically retry migrating the task to the preferred node */
1574 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1575 	p->numa_migrate_retry = jiffies + interval;
1576 
1577 	/* Success if task is already running on preferred CPU */
1578 	if (task_node(p) == p->numa_preferred_nid)
1579 		return;
1580 
1581 	/* Otherwise, try migrate to a CPU on the preferred node */
1582 	task_numa_migrate(p);
1583 }
1584 
1585 /*
1586  * Find the nodes on which the workload is actively running. We do this by
1587  * tracking the nodes from which NUMA hinting faults are triggered. This can
1588  * be different from the set of nodes where the workload's memory is currently
1589  * located.
1590  *
1591  * The bitmask is used to make smarter decisions on when to do NUMA page
1592  * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1593  * are added when they cause over 6/16 of the maximum number of faults, but
1594  * only removed when they drop below 3/16.
1595  */
1596 static void update_numa_active_node_mask(struct numa_group *numa_group)
1597 {
1598 	unsigned long faults, max_faults = 0;
1599 	int nid;
1600 
1601 	for_each_online_node(nid) {
1602 		faults = group_faults_cpu(numa_group, nid);
1603 		if (faults > max_faults)
1604 			max_faults = faults;
1605 	}
1606 
1607 	for_each_online_node(nid) {
1608 		faults = group_faults_cpu(numa_group, nid);
1609 		if (!node_isset(nid, numa_group->active_nodes)) {
1610 			if (faults > max_faults * 6 / 16)
1611 				node_set(nid, numa_group->active_nodes);
1612 		} else if (faults < max_faults * 3 / 16)
1613 			node_clear(nid, numa_group->active_nodes);
1614 	}
1615 }
1616 
1617 /*
1618  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1619  * increments. The more local the fault statistics are, the higher the scan
1620  * period will be for the next scan window. If local/(local+remote) ratio is
1621  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1622  * the scan period will decrease. Aim for 70% local accesses.
1623  */
1624 #define NUMA_PERIOD_SLOTS 10
1625 #define NUMA_PERIOD_THRESHOLD 7
1626 
1627 /*
1628  * Increase the scan period (slow down scanning) if the majority of
1629  * our memory is already on our local node, or if the majority of
1630  * the page accesses are shared with other processes.
1631  * Otherwise, decrease the scan period.
1632  */
1633 static void update_task_scan_period(struct task_struct *p,
1634 			unsigned long shared, unsigned long private)
1635 {
1636 	unsigned int period_slot;
1637 	int ratio;
1638 	int diff;
1639 
1640 	unsigned long remote = p->numa_faults_locality[0];
1641 	unsigned long local = p->numa_faults_locality[1];
1642 
1643 	/*
1644 	 * If there were no record hinting faults then either the task is
1645 	 * completely idle or all activity is areas that are not of interest
1646 	 * to automatic numa balancing. Related to that, if there were failed
1647 	 * migration then it implies we are migrating too quickly or the local
1648 	 * node is overloaded. In either case, scan slower
1649 	 */
1650 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1651 		p->numa_scan_period = min(p->numa_scan_period_max,
1652 			p->numa_scan_period << 1);
1653 
1654 		p->mm->numa_next_scan = jiffies +
1655 			msecs_to_jiffies(p->numa_scan_period);
1656 
1657 		return;
1658 	}
1659 
1660 	/*
1661 	 * Prepare to scale scan period relative to the current period.
1662 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1663 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1664 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1665 	 */
1666 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1667 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1668 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1669 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1670 		if (!slot)
1671 			slot = 1;
1672 		diff = slot * period_slot;
1673 	} else {
1674 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1675 
1676 		/*
1677 		 * Scale scan rate increases based on sharing. There is an
1678 		 * inverse relationship between the degree of sharing and
1679 		 * the adjustment made to the scanning period. Broadly
1680 		 * speaking the intent is that there is little point
1681 		 * scanning faster if shared accesses dominate as it may
1682 		 * simply bounce migrations uselessly
1683 		 */
1684 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1685 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1686 	}
1687 
1688 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1689 			task_scan_min(p), task_scan_max(p));
1690 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1691 }
1692 
1693 /*
1694  * Get the fraction of time the task has been running since the last
1695  * NUMA placement cycle. The scheduler keeps similar statistics, but
1696  * decays those on a 32ms period, which is orders of magnitude off
1697  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1698  * stats only if the task is so new there are no NUMA statistics yet.
1699  */
1700 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1701 {
1702 	u64 runtime, delta, now;
1703 	/* Use the start of this time slice to avoid calculations. */
1704 	now = p->se.exec_start;
1705 	runtime = p->se.sum_exec_runtime;
1706 
1707 	if (p->last_task_numa_placement) {
1708 		delta = runtime - p->last_sum_exec_runtime;
1709 		*period = now - p->last_task_numa_placement;
1710 	} else {
1711 		delta = p->se.avg.load_sum / p->se.load.weight;
1712 		*period = LOAD_AVG_MAX;
1713 	}
1714 
1715 	p->last_sum_exec_runtime = runtime;
1716 	p->last_task_numa_placement = now;
1717 
1718 	return delta;
1719 }
1720 
1721 /*
1722  * Determine the preferred nid for a task in a numa_group. This needs to
1723  * be done in a way that produces consistent results with group_weight,
1724  * otherwise workloads might not converge.
1725  */
1726 static int preferred_group_nid(struct task_struct *p, int nid)
1727 {
1728 	nodemask_t nodes;
1729 	int dist;
1730 
1731 	/* Direct connections between all NUMA nodes. */
1732 	if (sched_numa_topology_type == NUMA_DIRECT)
1733 		return nid;
1734 
1735 	/*
1736 	 * On a system with glueless mesh NUMA topology, group_weight
1737 	 * scores nodes according to the number of NUMA hinting faults on
1738 	 * both the node itself, and on nearby nodes.
1739 	 */
1740 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1741 		unsigned long score, max_score = 0;
1742 		int node, max_node = nid;
1743 
1744 		dist = sched_max_numa_distance;
1745 
1746 		for_each_online_node(node) {
1747 			score = group_weight(p, node, dist);
1748 			if (score > max_score) {
1749 				max_score = score;
1750 				max_node = node;
1751 			}
1752 		}
1753 		return max_node;
1754 	}
1755 
1756 	/*
1757 	 * Finding the preferred nid in a system with NUMA backplane
1758 	 * interconnect topology is more involved. The goal is to locate
1759 	 * tasks from numa_groups near each other in the system, and
1760 	 * untangle workloads from different sides of the system. This requires
1761 	 * searching down the hierarchy of node groups, recursively searching
1762 	 * inside the highest scoring group of nodes. The nodemask tricks
1763 	 * keep the complexity of the search down.
1764 	 */
1765 	nodes = node_online_map;
1766 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1767 		unsigned long max_faults = 0;
1768 		nodemask_t max_group = NODE_MASK_NONE;
1769 		int a, b;
1770 
1771 		/* Are there nodes at this distance from each other? */
1772 		if (!find_numa_distance(dist))
1773 			continue;
1774 
1775 		for_each_node_mask(a, nodes) {
1776 			unsigned long faults = 0;
1777 			nodemask_t this_group;
1778 			nodes_clear(this_group);
1779 
1780 			/* Sum group's NUMA faults; includes a==b case. */
1781 			for_each_node_mask(b, nodes) {
1782 				if (node_distance(a, b) < dist) {
1783 					faults += group_faults(p, b);
1784 					node_set(b, this_group);
1785 					node_clear(b, nodes);
1786 				}
1787 			}
1788 
1789 			/* Remember the top group. */
1790 			if (faults > max_faults) {
1791 				max_faults = faults;
1792 				max_group = this_group;
1793 				/*
1794 				 * subtle: at the smallest distance there is
1795 				 * just one node left in each "group", the
1796 				 * winner is the preferred nid.
1797 				 */
1798 				nid = a;
1799 			}
1800 		}
1801 		/* Next round, evaluate the nodes within max_group. */
1802 		if (!max_faults)
1803 			break;
1804 		nodes = max_group;
1805 	}
1806 	return nid;
1807 }
1808 
1809 static void task_numa_placement(struct task_struct *p)
1810 {
1811 	int seq, nid, max_nid = -1, max_group_nid = -1;
1812 	unsigned long max_faults = 0, max_group_faults = 0;
1813 	unsigned long fault_types[2] = { 0, 0 };
1814 	unsigned long total_faults;
1815 	u64 runtime, period;
1816 	spinlock_t *group_lock = NULL;
1817 
1818 	/*
1819 	 * The p->mm->numa_scan_seq field gets updated without
1820 	 * exclusive access. Use READ_ONCE() here to ensure
1821 	 * that the field is read in a single access:
1822 	 */
1823 	seq = READ_ONCE(p->mm->numa_scan_seq);
1824 	if (p->numa_scan_seq == seq)
1825 		return;
1826 	p->numa_scan_seq = seq;
1827 	p->numa_scan_period_max = task_scan_max(p);
1828 
1829 	total_faults = p->numa_faults_locality[0] +
1830 		       p->numa_faults_locality[1];
1831 	runtime = numa_get_avg_runtime(p, &period);
1832 
1833 	/* If the task is part of a group prevent parallel updates to group stats */
1834 	if (p->numa_group) {
1835 		group_lock = &p->numa_group->lock;
1836 		spin_lock_irq(group_lock);
1837 	}
1838 
1839 	/* Find the node with the highest number of faults */
1840 	for_each_online_node(nid) {
1841 		/* Keep track of the offsets in numa_faults array */
1842 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1843 		unsigned long faults = 0, group_faults = 0;
1844 		int priv;
1845 
1846 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1847 			long diff, f_diff, f_weight;
1848 
1849 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1850 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1851 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1852 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1853 
1854 			/* Decay existing window, copy faults since last scan */
1855 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1856 			fault_types[priv] += p->numa_faults[membuf_idx];
1857 			p->numa_faults[membuf_idx] = 0;
1858 
1859 			/*
1860 			 * Normalize the faults_from, so all tasks in a group
1861 			 * count according to CPU use, instead of by the raw
1862 			 * number of faults. Tasks with little runtime have
1863 			 * little over-all impact on throughput, and thus their
1864 			 * faults are less important.
1865 			 */
1866 			f_weight = div64_u64(runtime << 16, period + 1);
1867 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1868 				   (total_faults + 1);
1869 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1870 			p->numa_faults[cpubuf_idx] = 0;
1871 
1872 			p->numa_faults[mem_idx] += diff;
1873 			p->numa_faults[cpu_idx] += f_diff;
1874 			faults += p->numa_faults[mem_idx];
1875 			p->total_numa_faults += diff;
1876 			if (p->numa_group) {
1877 				/*
1878 				 * safe because we can only change our own group
1879 				 *
1880 				 * mem_idx represents the offset for a given
1881 				 * nid and priv in a specific region because it
1882 				 * is at the beginning of the numa_faults array.
1883 				 */
1884 				p->numa_group->faults[mem_idx] += diff;
1885 				p->numa_group->faults_cpu[mem_idx] += f_diff;
1886 				p->numa_group->total_faults += diff;
1887 				group_faults += p->numa_group->faults[mem_idx];
1888 			}
1889 		}
1890 
1891 		if (faults > max_faults) {
1892 			max_faults = faults;
1893 			max_nid = nid;
1894 		}
1895 
1896 		if (group_faults > max_group_faults) {
1897 			max_group_faults = group_faults;
1898 			max_group_nid = nid;
1899 		}
1900 	}
1901 
1902 	update_task_scan_period(p, fault_types[0], fault_types[1]);
1903 
1904 	if (p->numa_group) {
1905 		update_numa_active_node_mask(p->numa_group);
1906 		spin_unlock_irq(group_lock);
1907 		max_nid = preferred_group_nid(p, max_group_nid);
1908 	}
1909 
1910 	if (max_faults) {
1911 		/* Set the new preferred node */
1912 		if (max_nid != p->numa_preferred_nid)
1913 			sched_setnuma(p, max_nid);
1914 
1915 		if (task_node(p) != p->numa_preferred_nid)
1916 			numa_migrate_preferred(p);
1917 	}
1918 }
1919 
1920 static inline int get_numa_group(struct numa_group *grp)
1921 {
1922 	return atomic_inc_not_zero(&grp->refcount);
1923 }
1924 
1925 static inline void put_numa_group(struct numa_group *grp)
1926 {
1927 	if (atomic_dec_and_test(&grp->refcount))
1928 		kfree_rcu(grp, rcu);
1929 }
1930 
1931 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1932 			int *priv)
1933 {
1934 	struct numa_group *grp, *my_grp;
1935 	struct task_struct *tsk;
1936 	bool join = false;
1937 	int cpu = cpupid_to_cpu(cpupid);
1938 	int i;
1939 
1940 	if (unlikely(!p->numa_group)) {
1941 		unsigned int size = sizeof(struct numa_group) +
1942 				    4*nr_node_ids*sizeof(unsigned long);
1943 
1944 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1945 		if (!grp)
1946 			return;
1947 
1948 		atomic_set(&grp->refcount, 1);
1949 		spin_lock_init(&grp->lock);
1950 		grp->gid = p->pid;
1951 		/* Second half of the array tracks nids where faults happen */
1952 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1953 						nr_node_ids;
1954 
1955 		node_set(task_node(current), grp->active_nodes);
1956 
1957 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1958 			grp->faults[i] = p->numa_faults[i];
1959 
1960 		grp->total_faults = p->total_numa_faults;
1961 
1962 		grp->nr_tasks++;
1963 		rcu_assign_pointer(p->numa_group, grp);
1964 	}
1965 
1966 	rcu_read_lock();
1967 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
1968 
1969 	if (!cpupid_match_pid(tsk, cpupid))
1970 		goto no_join;
1971 
1972 	grp = rcu_dereference(tsk->numa_group);
1973 	if (!grp)
1974 		goto no_join;
1975 
1976 	my_grp = p->numa_group;
1977 	if (grp == my_grp)
1978 		goto no_join;
1979 
1980 	/*
1981 	 * Only join the other group if its bigger; if we're the bigger group,
1982 	 * the other task will join us.
1983 	 */
1984 	if (my_grp->nr_tasks > grp->nr_tasks)
1985 		goto no_join;
1986 
1987 	/*
1988 	 * Tie-break on the grp address.
1989 	 */
1990 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1991 		goto no_join;
1992 
1993 	/* Always join threads in the same process. */
1994 	if (tsk->mm == current->mm)
1995 		join = true;
1996 
1997 	/* Simple filter to avoid false positives due to PID collisions */
1998 	if (flags & TNF_SHARED)
1999 		join = true;
2000 
2001 	/* Update priv based on whether false sharing was detected */
2002 	*priv = !join;
2003 
2004 	if (join && !get_numa_group(grp))
2005 		goto no_join;
2006 
2007 	rcu_read_unlock();
2008 
2009 	if (!join)
2010 		return;
2011 
2012 	BUG_ON(irqs_disabled());
2013 	double_lock_irq(&my_grp->lock, &grp->lock);
2014 
2015 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2016 		my_grp->faults[i] -= p->numa_faults[i];
2017 		grp->faults[i] += p->numa_faults[i];
2018 	}
2019 	my_grp->total_faults -= p->total_numa_faults;
2020 	grp->total_faults += p->total_numa_faults;
2021 
2022 	my_grp->nr_tasks--;
2023 	grp->nr_tasks++;
2024 
2025 	spin_unlock(&my_grp->lock);
2026 	spin_unlock_irq(&grp->lock);
2027 
2028 	rcu_assign_pointer(p->numa_group, grp);
2029 
2030 	put_numa_group(my_grp);
2031 	return;
2032 
2033 no_join:
2034 	rcu_read_unlock();
2035 	return;
2036 }
2037 
2038 void task_numa_free(struct task_struct *p)
2039 {
2040 	struct numa_group *grp = p->numa_group;
2041 	void *numa_faults = p->numa_faults;
2042 	unsigned long flags;
2043 	int i;
2044 
2045 	if (grp) {
2046 		spin_lock_irqsave(&grp->lock, flags);
2047 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2048 			grp->faults[i] -= p->numa_faults[i];
2049 		grp->total_faults -= p->total_numa_faults;
2050 
2051 		grp->nr_tasks--;
2052 		spin_unlock_irqrestore(&grp->lock, flags);
2053 		RCU_INIT_POINTER(p->numa_group, NULL);
2054 		put_numa_group(grp);
2055 	}
2056 
2057 	p->numa_faults = NULL;
2058 	kfree(numa_faults);
2059 }
2060 
2061 /*
2062  * Got a PROT_NONE fault for a page on @node.
2063  */
2064 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2065 {
2066 	struct task_struct *p = current;
2067 	bool migrated = flags & TNF_MIGRATED;
2068 	int cpu_node = task_node(current);
2069 	int local = !!(flags & TNF_FAULT_LOCAL);
2070 	int priv;
2071 
2072 	if (!numabalancing_enabled)
2073 		return;
2074 
2075 	/* for example, ksmd faulting in a user's mm */
2076 	if (!p->mm)
2077 		return;
2078 
2079 	/* Allocate buffer to track faults on a per-node basis */
2080 	if (unlikely(!p->numa_faults)) {
2081 		int size = sizeof(*p->numa_faults) *
2082 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2083 
2084 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2085 		if (!p->numa_faults)
2086 			return;
2087 
2088 		p->total_numa_faults = 0;
2089 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2090 	}
2091 
2092 	/*
2093 	 * First accesses are treated as private, otherwise consider accesses
2094 	 * to be private if the accessing pid has not changed
2095 	 */
2096 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2097 		priv = 1;
2098 	} else {
2099 		priv = cpupid_match_pid(p, last_cpupid);
2100 		if (!priv && !(flags & TNF_NO_GROUP))
2101 			task_numa_group(p, last_cpupid, flags, &priv);
2102 	}
2103 
2104 	/*
2105 	 * If a workload spans multiple NUMA nodes, a shared fault that
2106 	 * occurs wholly within the set of nodes that the workload is
2107 	 * actively using should be counted as local. This allows the
2108 	 * scan rate to slow down when a workload has settled down.
2109 	 */
2110 	if (!priv && !local && p->numa_group &&
2111 			node_isset(cpu_node, p->numa_group->active_nodes) &&
2112 			node_isset(mem_node, p->numa_group->active_nodes))
2113 		local = 1;
2114 
2115 	task_numa_placement(p);
2116 
2117 	/*
2118 	 * Retry task to preferred node migration periodically, in case it
2119 	 * case it previously failed, or the scheduler moved us.
2120 	 */
2121 	if (time_after(jiffies, p->numa_migrate_retry))
2122 		numa_migrate_preferred(p);
2123 
2124 	if (migrated)
2125 		p->numa_pages_migrated += pages;
2126 	if (flags & TNF_MIGRATE_FAIL)
2127 		p->numa_faults_locality[2] += pages;
2128 
2129 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2130 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2131 	p->numa_faults_locality[local] += pages;
2132 }
2133 
2134 static void reset_ptenuma_scan(struct task_struct *p)
2135 {
2136 	/*
2137 	 * We only did a read acquisition of the mmap sem, so
2138 	 * p->mm->numa_scan_seq is written to without exclusive access
2139 	 * and the update is not guaranteed to be atomic. That's not
2140 	 * much of an issue though, since this is just used for
2141 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2142 	 * expensive, to avoid any form of compiler optimizations:
2143 	 */
2144 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2145 	p->mm->numa_scan_offset = 0;
2146 }
2147 
2148 /*
2149  * The expensive part of numa migration is done from task_work context.
2150  * Triggered from task_tick_numa().
2151  */
2152 void task_numa_work(struct callback_head *work)
2153 {
2154 	unsigned long migrate, next_scan, now = jiffies;
2155 	struct task_struct *p = current;
2156 	struct mm_struct *mm = p->mm;
2157 	struct vm_area_struct *vma;
2158 	unsigned long start, end;
2159 	unsigned long nr_pte_updates = 0;
2160 	long pages;
2161 
2162 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2163 
2164 	work->next = work; /* protect against double add */
2165 	/*
2166 	 * Who cares about NUMA placement when they're dying.
2167 	 *
2168 	 * NOTE: make sure not to dereference p->mm before this check,
2169 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2170 	 * without p->mm even though we still had it when we enqueued this
2171 	 * work.
2172 	 */
2173 	if (p->flags & PF_EXITING)
2174 		return;
2175 
2176 	if (!mm->numa_next_scan) {
2177 		mm->numa_next_scan = now +
2178 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2179 	}
2180 
2181 	/*
2182 	 * Enforce maximal scan/migration frequency..
2183 	 */
2184 	migrate = mm->numa_next_scan;
2185 	if (time_before(now, migrate))
2186 		return;
2187 
2188 	if (p->numa_scan_period == 0) {
2189 		p->numa_scan_period_max = task_scan_max(p);
2190 		p->numa_scan_period = task_scan_min(p);
2191 	}
2192 
2193 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2194 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2195 		return;
2196 
2197 	/*
2198 	 * Delay this task enough that another task of this mm will likely win
2199 	 * the next time around.
2200 	 */
2201 	p->node_stamp += 2 * TICK_NSEC;
2202 
2203 	start = mm->numa_scan_offset;
2204 	pages = sysctl_numa_balancing_scan_size;
2205 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2206 	if (!pages)
2207 		return;
2208 
2209 	down_read(&mm->mmap_sem);
2210 	vma = find_vma(mm, start);
2211 	if (!vma) {
2212 		reset_ptenuma_scan(p);
2213 		start = 0;
2214 		vma = mm->mmap;
2215 	}
2216 	for (; vma; vma = vma->vm_next) {
2217 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2218 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2219 			continue;
2220 		}
2221 
2222 		/*
2223 		 * Shared library pages mapped by multiple processes are not
2224 		 * migrated as it is expected they are cache replicated. Avoid
2225 		 * hinting faults in read-only file-backed mappings or the vdso
2226 		 * as migrating the pages will be of marginal benefit.
2227 		 */
2228 		if (!vma->vm_mm ||
2229 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2230 			continue;
2231 
2232 		/*
2233 		 * Skip inaccessible VMAs to avoid any confusion between
2234 		 * PROT_NONE and NUMA hinting ptes
2235 		 */
2236 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2237 			continue;
2238 
2239 		do {
2240 			start = max(start, vma->vm_start);
2241 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2242 			end = min(end, vma->vm_end);
2243 			nr_pte_updates += change_prot_numa(vma, start, end);
2244 
2245 			/*
2246 			 * Scan sysctl_numa_balancing_scan_size but ensure that
2247 			 * at least one PTE is updated so that unused virtual
2248 			 * address space is quickly skipped.
2249 			 */
2250 			if (nr_pte_updates)
2251 				pages -= (end - start) >> PAGE_SHIFT;
2252 
2253 			start = end;
2254 			if (pages <= 0)
2255 				goto out;
2256 
2257 			cond_resched();
2258 		} while (end != vma->vm_end);
2259 	}
2260 
2261 out:
2262 	/*
2263 	 * It is possible to reach the end of the VMA list but the last few
2264 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2265 	 * would find the !migratable VMA on the next scan but not reset the
2266 	 * scanner to the start so check it now.
2267 	 */
2268 	if (vma)
2269 		mm->numa_scan_offset = start;
2270 	else
2271 		reset_ptenuma_scan(p);
2272 	up_read(&mm->mmap_sem);
2273 }
2274 
2275 /*
2276  * Drive the periodic memory faults..
2277  */
2278 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2279 {
2280 	struct callback_head *work = &curr->numa_work;
2281 	u64 period, now;
2282 
2283 	/*
2284 	 * We don't care about NUMA placement if we don't have memory.
2285 	 */
2286 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2287 		return;
2288 
2289 	/*
2290 	 * Using runtime rather than walltime has the dual advantage that
2291 	 * we (mostly) drive the selection from busy threads and that the
2292 	 * task needs to have done some actual work before we bother with
2293 	 * NUMA placement.
2294 	 */
2295 	now = curr->se.sum_exec_runtime;
2296 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2297 
2298 	if (now - curr->node_stamp > period) {
2299 		if (!curr->node_stamp)
2300 			curr->numa_scan_period = task_scan_min(curr);
2301 		curr->node_stamp += period;
2302 
2303 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2304 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2305 			task_work_add(curr, work, true);
2306 		}
2307 	}
2308 }
2309 #else
2310 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2311 {
2312 }
2313 
2314 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2315 {
2316 }
2317 
2318 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2319 {
2320 }
2321 #endif /* CONFIG_NUMA_BALANCING */
2322 
2323 static void
2324 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2325 {
2326 	update_load_add(&cfs_rq->load, se->load.weight);
2327 	if (!parent_entity(se))
2328 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2329 #ifdef CONFIG_SMP
2330 	if (entity_is_task(se)) {
2331 		struct rq *rq = rq_of(cfs_rq);
2332 
2333 		account_numa_enqueue(rq, task_of(se));
2334 		list_add(&se->group_node, &rq->cfs_tasks);
2335 	}
2336 #endif
2337 	cfs_rq->nr_running++;
2338 }
2339 
2340 static void
2341 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2342 {
2343 	update_load_sub(&cfs_rq->load, se->load.weight);
2344 	if (!parent_entity(se))
2345 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2346 	if (entity_is_task(se)) {
2347 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2348 		list_del_init(&se->group_node);
2349 	}
2350 	cfs_rq->nr_running--;
2351 }
2352 
2353 #ifdef CONFIG_FAIR_GROUP_SCHED
2354 # ifdef CONFIG_SMP
2355 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2356 {
2357 	long tg_weight;
2358 
2359 	/*
2360 	 * Use this CPU's real-time load instead of the last load contribution
2361 	 * as the updating of the contribution is delayed, and we will use the
2362 	 * the real-time load to calc the share. See update_tg_load_avg().
2363 	 */
2364 	tg_weight = atomic_long_read(&tg->load_avg);
2365 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2366 	tg_weight += cfs_rq_load_avg(cfs_rq);
2367 
2368 	return tg_weight;
2369 }
2370 
2371 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2372 {
2373 	long tg_weight, load, shares;
2374 
2375 	tg_weight = calc_tg_weight(tg, cfs_rq);
2376 	load = cfs_rq_load_avg(cfs_rq);
2377 
2378 	shares = (tg->shares * load);
2379 	if (tg_weight)
2380 		shares /= tg_weight;
2381 
2382 	if (shares < MIN_SHARES)
2383 		shares = MIN_SHARES;
2384 	if (shares > tg->shares)
2385 		shares = tg->shares;
2386 
2387 	return shares;
2388 }
2389 # else /* CONFIG_SMP */
2390 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2391 {
2392 	return tg->shares;
2393 }
2394 # endif /* CONFIG_SMP */
2395 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2396 			    unsigned long weight)
2397 {
2398 	if (se->on_rq) {
2399 		/* commit outstanding execution time */
2400 		if (cfs_rq->curr == se)
2401 			update_curr(cfs_rq);
2402 		account_entity_dequeue(cfs_rq, se);
2403 	}
2404 
2405 	update_load_set(&se->load, weight);
2406 
2407 	if (se->on_rq)
2408 		account_entity_enqueue(cfs_rq, se);
2409 }
2410 
2411 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2412 
2413 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2414 {
2415 	struct task_group *tg;
2416 	struct sched_entity *se;
2417 	long shares;
2418 
2419 	tg = cfs_rq->tg;
2420 	se = tg->se[cpu_of(rq_of(cfs_rq))];
2421 	if (!se || throttled_hierarchy(cfs_rq))
2422 		return;
2423 #ifndef CONFIG_SMP
2424 	if (likely(se->load.weight == tg->shares))
2425 		return;
2426 #endif
2427 	shares = calc_cfs_shares(cfs_rq, tg);
2428 
2429 	reweight_entity(cfs_rq_of(se), se, shares);
2430 }
2431 #else /* CONFIG_FAIR_GROUP_SCHED */
2432 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2433 {
2434 }
2435 #endif /* CONFIG_FAIR_GROUP_SCHED */
2436 
2437 #ifdef CONFIG_SMP
2438 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2439 static const u32 runnable_avg_yN_inv[] = {
2440 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2441 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2442 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2443 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2444 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2445 	0x85aac367, 0x82cd8698,
2446 };
2447 
2448 /*
2449  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2450  * over-estimates when re-combining.
2451  */
2452 static const u32 runnable_avg_yN_sum[] = {
2453 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2454 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2455 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2456 };
2457 
2458 /*
2459  * Approximate:
2460  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2461  */
2462 static __always_inline u64 decay_load(u64 val, u64 n)
2463 {
2464 	unsigned int local_n;
2465 
2466 	if (!n)
2467 		return val;
2468 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2469 		return 0;
2470 
2471 	/* after bounds checking we can collapse to 32-bit */
2472 	local_n = n;
2473 
2474 	/*
2475 	 * As y^PERIOD = 1/2, we can combine
2476 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2477 	 * With a look-up table which covers y^n (n<PERIOD)
2478 	 *
2479 	 * To achieve constant time decay_load.
2480 	 */
2481 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2482 		val >>= local_n / LOAD_AVG_PERIOD;
2483 		local_n %= LOAD_AVG_PERIOD;
2484 	}
2485 
2486 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2487 	return val;
2488 }
2489 
2490 /*
2491  * For updates fully spanning n periods, the contribution to runnable
2492  * average will be: \Sum 1024*y^n
2493  *
2494  * We can compute this reasonably efficiently by combining:
2495  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2496  */
2497 static u32 __compute_runnable_contrib(u64 n)
2498 {
2499 	u32 contrib = 0;
2500 
2501 	if (likely(n <= LOAD_AVG_PERIOD))
2502 		return runnable_avg_yN_sum[n];
2503 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2504 		return LOAD_AVG_MAX;
2505 
2506 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2507 	do {
2508 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2509 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2510 
2511 		n -= LOAD_AVG_PERIOD;
2512 	} while (n > LOAD_AVG_PERIOD);
2513 
2514 	contrib = decay_load(contrib, n);
2515 	return contrib + runnable_avg_yN_sum[n];
2516 }
2517 
2518 /*
2519  * We can represent the historical contribution to runnable average as the
2520  * coefficients of a geometric series.  To do this we sub-divide our runnable
2521  * history into segments of approximately 1ms (1024us); label the segment that
2522  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2523  *
2524  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2525  *      p0            p1           p2
2526  *     (now)       (~1ms ago)  (~2ms ago)
2527  *
2528  * Let u_i denote the fraction of p_i that the entity was runnable.
2529  *
2530  * We then designate the fractions u_i as our co-efficients, yielding the
2531  * following representation of historical load:
2532  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2533  *
2534  * We choose y based on the with of a reasonably scheduling period, fixing:
2535  *   y^32 = 0.5
2536  *
2537  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2538  * approximately half as much as the contribution to load within the last ms
2539  * (u_0).
2540  *
2541  * When a period "rolls over" and we have new u_0`, multiplying the previous
2542  * sum again by y is sufficient to update:
2543  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2544  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2545  */
2546 static __always_inline int
2547 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2548 		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2549 {
2550 	u64 delta, periods;
2551 	u32 contrib;
2552 	int delta_w, decayed = 0;
2553 	unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
2554 
2555 	delta = now - sa->last_update_time;
2556 	/*
2557 	 * This should only happen when time goes backwards, which it
2558 	 * unfortunately does during sched clock init when we swap over to TSC.
2559 	 */
2560 	if ((s64)delta < 0) {
2561 		sa->last_update_time = now;
2562 		return 0;
2563 	}
2564 
2565 	/*
2566 	 * Use 1024ns as the unit of measurement since it's a reasonable
2567 	 * approximation of 1us and fast to compute.
2568 	 */
2569 	delta >>= 10;
2570 	if (!delta)
2571 		return 0;
2572 	sa->last_update_time = now;
2573 
2574 	/* delta_w is the amount already accumulated against our next period */
2575 	delta_w = sa->period_contrib;
2576 	if (delta + delta_w >= 1024) {
2577 		decayed = 1;
2578 
2579 		/* how much left for next period will start over, we don't know yet */
2580 		sa->period_contrib = 0;
2581 
2582 		/*
2583 		 * Now that we know we're crossing a period boundary, figure
2584 		 * out how much from delta we need to complete the current
2585 		 * period and accrue it.
2586 		 */
2587 		delta_w = 1024 - delta_w;
2588 		if (weight) {
2589 			sa->load_sum += weight * delta_w;
2590 			if (cfs_rq)
2591 				cfs_rq->runnable_load_sum += weight * delta_w;
2592 		}
2593 		if (running)
2594 			sa->util_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT;
2595 
2596 		delta -= delta_w;
2597 
2598 		/* Figure out how many additional periods this update spans */
2599 		periods = delta / 1024;
2600 		delta %= 1024;
2601 
2602 		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2603 		if (cfs_rq) {
2604 			cfs_rq->runnable_load_sum =
2605 				decay_load(cfs_rq->runnable_load_sum, periods + 1);
2606 		}
2607 		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2608 
2609 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2610 		contrib = __compute_runnable_contrib(periods);
2611 		if (weight) {
2612 			sa->load_sum += weight * contrib;
2613 			if (cfs_rq)
2614 				cfs_rq->runnable_load_sum += weight * contrib;
2615 		}
2616 		if (running)
2617 			sa->util_sum += contrib * scale_freq >> SCHED_CAPACITY_SHIFT;
2618 	}
2619 
2620 	/* Remainder of delta accrued against u_0` */
2621 	if (weight) {
2622 		sa->load_sum += weight * delta;
2623 		if (cfs_rq)
2624 			cfs_rq->runnable_load_sum += weight * delta;
2625 	}
2626 	if (running)
2627 		sa->util_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT;
2628 
2629 	sa->period_contrib += delta;
2630 
2631 	if (decayed) {
2632 		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2633 		if (cfs_rq) {
2634 			cfs_rq->runnable_load_avg =
2635 				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2636 		}
2637 		sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX;
2638 	}
2639 
2640 	return decayed;
2641 }
2642 
2643 #ifdef CONFIG_FAIR_GROUP_SCHED
2644 /*
2645  * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2646  * and effective_load (which is not done because it is too costly).
2647  */
2648 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2649 {
2650 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2651 
2652 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2653 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
2654 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2655 	}
2656 }
2657 
2658 #else /* CONFIG_FAIR_GROUP_SCHED */
2659 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2660 #endif /* CONFIG_FAIR_GROUP_SCHED */
2661 
2662 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2663 
2664 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2665 static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2666 {
2667 	int decayed;
2668 	struct sched_avg *sa = &cfs_rq->avg;
2669 
2670 	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2671 		long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2672 		sa->load_avg = max_t(long, sa->load_avg - r, 0);
2673 		sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2674 	}
2675 
2676 	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2677 		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2678 		sa->util_avg = max_t(long, sa->util_avg - r, 0);
2679 		sa->util_sum = max_t(s32, sa->util_sum -
2680 			((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0);
2681 	}
2682 
2683 	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2684 		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2685 
2686 #ifndef CONFIG_64BIT
2687 	smp_wmb();
2688 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
2689 #endif
2690 
2691 	return decayed;
2692 }
2693 
2694 /* Update task and its cfs_rq load average */
2695 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2696 {
2697 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2698 	int cpu = cpu_of(rq_of(cfs_rq));
2699 	u64 now = cfs_rq_clock_task(cfs_rq);
2700 
2701 	/*
2702 	 * Track task load average for carrying it to new CPU after migrated, and
2703 	 * track group sched_entity load average for task_h_load calc in migration
2704 	 */
2705 	__update_load_avg(now, cpu, &se->avg,
2706 		se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
2707 
2708 	if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2709 		update_tg_load_avg(cfs_rq, 0);
2710 }
2711 
2712 /* Add the load generated by se into cfs_rq's load average */
2713 static inline void
2714 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2715 {
2716 	struct sched_avg *sa = &se->avg;
2717 	u64 now = cfs_rq_clock_task(cfs_rq);
2718 	int migrated = 0, decayed;
2719 
2720 	if (sa->last_update_time == 0) {
2721 		sa->last_update_time = now;
2722 		migrated = 1;
2723 	}
2724 	else {
2725 		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2726 			se->on_rq * scale_load_down(se->load.weight),
2727 			cfs_rq->curr == se, NULL);
2728 	}
2729 
2730 	decayed = update_cfs_rq_load_avg(now, cfs_rq);
2731 
2732 	cfs_rq->runnable_load_avg += sa->load_avg;
2733 	cfs_rq->runnable_load_sum += sa->load_sum;
2734 
2735 	if (migrated) {
2736 		cfs_rq->avg.load_avg += sa->load_avg;
2737 		cfs_rq->avg.load_sum += sa->load_sum;
2738 		cfs_rq->avg.util_avg += sa->util_avg;
2739 		cfs_rq->avg.util_sum += sa->util_sum;
2740 	}
2741 
2742 	if (decayed || migrated)
2743 		update_tg_load_avg(cfs_rq, 0);
2744 }
2745 
2746 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
2747 static inline void
2748 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2749 {
2750 	update_load_avg(se, 1);
2751 
2752 	cfs_rq->runnable_load_avg =
2753 		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2754 	cfs_rq->runnable_load_sum =
2755 		max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2756 }
2757 
2758 /*
2759  * Task first catches up with cfs_rq, and then subtract
2760  * itself from the cfs_rq (task must be off the queue now).
2761  */
2762 void remove_entity_load_avg(struct sched_entity *se)
2763 {
2764 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2765 	u64 last_update_time;
2766 
2767 #ifndef CONFIG_64BIT
2768 	u64 last_update_time_copy;
2769 
2770 	do {
2771 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
2772 		smp_rmb();
2773 		last_update_time = cfs_rq->avg.last_update_time;
2774 	} while (last_update_time != last_update_time_copy);
2775 #else
2776 	last_update_time = cfs_rq->avg.last_update_time;
2777 #endif
2778 
2779 	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
2780 	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2781 	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2782 }
2783 
2784 /*
2785  * Update the rq's load with the elapsed running time before entering
2786  * idle. if the last scheduled task is not a CFS task, idle_enter will
2787  * be the only way to update the runnable statistic.
2788  */
2789 void idle_enter_fair(struct rq *this_rq)
2790 {
2791 }
2792 
2793 /*
2794  * Update the rq's load with the elapsed idle time before a task is
2795  * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2796  * be the only way to update the runnable statistic.
2797  */
2798 void idle_exit_fair(struct rq *this_rq)
2799 {
2800 }
2801 
2802 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2803 {
2804 	return cfs_rq->runnable_load_avg;
2805 }
2806 
2807 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2808 {
2809 	return cfs_rq->avg.load_avg;
2810 }
2811 
2812 static int idle_balance(struct rq *this_rq);
2813 
2814 #else /* CONFIG_SMP */
2815 
2816 static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2817 static inline void
2818 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2819 static inline void
2820 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2821 static inline void remove_entity_load_avg(struct sched_entity *se) {}
2822 
2823 static inline int idle_balance(struct rq *rq)
2824 {
2825 	return 0;
2826 }
2827 
2828 #endif /* CONFIG_SMP */
2829 
2830 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2831 {
2832 #ifdef CONFIG_SCHEDSTATS
2833 	struct task_struct *tsk = NULL;
2834 
2835 	if (entity_is_task(se))
2836 		tsk = task_of(se);
2837 
2838 	if (se->statistics.sleep_start) {
2839 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2840 
2841 		if ((s64)delta < 0)
2842 			delta = 0;
2843 
2844 		if (unlikely(delta > se->statistics.sleep_max))
2845 			se->statistics.sleep_max = delta;
2846 
2847 		se->statistics.sleep_start = 0;
2848 		se->statistics.sum_sleep_runtime += delta;
2849 
2850 		if (tsk) {
2851 			account_scheduler_latency(tsk, delta >> 10, 1);
2852 			trace_sched_stat_sleep(tsk, delta);
2853 		}
2854 	}
2855 	if (se->statistics.block_start) {
2856 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2857 
2858 		if ((s64)delta < 0)
2859 			delta = 0;
2860 
2861 		if (unlikely(delta > se->statistics.block_max))
2862 			se->statistics.block_max = delta;
2863 
2864 		se->statistics.block_start = 0;
2865 		se->statistics.sum_sleep_runtime += delta;
2866 
2867 		if (tsk) {
2868 			if (tsk->in_iowait) {
2869 				se->statistics.iowait_sum += delta;
2870 				se->statistics.iowait_count++;
2871 				trace_sched_stat_iowait(tsk, delta);
2872 			}
2873 
2874 			trace_sched_stat_blocked(tsk, delta);
2875 
2876 			/*
2877 			 * Blocking time is in units of nanosecs, so shift by
2878 			 * 20 to get a milliseconds-range estimation of the
2879 			 * amount of time that the task spent sleeping:
2880 			 */
2881 			if (unlikely(prof_on == SLEEP_PROFILING)) {
2882 				profile_hits(SLEEP_PROFILING,
2883 						(void *)get_wchan(tsk),
2884 						delta >> 20);
2885 			}
2886 			account_scheduler_latency(tsk, delta >> 10, 0);
2887 		}
2888 	}
2889 #endif
2890 }
2891 
2892 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2893 {
2894 #ifdef CONFIG_SCHED_DEBUG
2895 	s64 d = se->vruntime - cfs_rq->min_vruntime;
2896 
2897 	if (d < 0)
2898 		d = -d;
2899 
2900 	if (d > 3*sysctl_sched_latency)
2901 		schedstat_inc(cfs_rq, nr_spread_over);
2902 #endif
2903 }
2904 
2905 static void
2906 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2907 {
2908 	u64 vruntime = cfs_rq->min_vruntime;
2909 
2910 	/*
2911 	 * The 'current' period is already promised to the current tasks,
2912 	 * however the extra weight of the new task will slow them down a
2913 	 * little, place the new task so that it fits in the slot that
2914 	 * stays open at the end.
2915 	 */
2916 	if (initial && sched_feat(START_DEBIT))
2917 		vruntime += sched_vslice(cfs_rq, se);
2918 
2919 	/* sleeps up to a single latency don't count. */
2920 	if (!initial) {
2921 		unsigned long thresh = sysctl_sched_latency;
2922 
2923 		/*
2924 		 * Halve their sleep time's effect, to allow
2925 		 * for a gentler effect of sleepers:
2926 		 */
2927 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
2928 			thresh >>= 1;
2929 
2930 		vruntime -= thresh;
2931 	}
2932 
2933 	/* ensure we never gain time by being placed backwards. */
2934 	se->vruntime = max_vruntime(se->vruntime, vruntime);
2935 }
2936 
2937 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2938 
2939 static void
2940 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2941 {
2942 	/*
2943 	 * Update the normalized vruntime before updating min_vruntime
2944 	 * through calling update_curr().
2945 	 */
2946 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2947 		se->vruntime += cfs_rq->min_vruntime;
2948 
2949 	/*
2950 	 * Update run-time statistics of the 'current'.
2951 	 */
2952 	update_curr(cfs_rq);
2953 	enqueue_entity_load_avg(cfs_rq, se);
2954 	account_entity_enqueue(cfs_rq, se);
2955 	update_cfs_shares(cfs_rq);
2956 
2957 	if (flags & ENQUEUE_WAKEUP) {
2958 		place_entity(cfs_rq, se, 0);
2959 		enqueue_sleeper(cfs_rq, se);
2960 	}
2961 
2962 	update_stats_enqueue(cfs_rq, se);
2963 	check_spread(cfs_rq, se);
2964 	if (se != cfs_rq->curr)
2965 		__enqueue_entity(cfs_rq, se);
2966 	se->on_rq = 1;
2967 
2968 	if (cfs_rq->nr_running == 1) {
2969 		list_add_leaf_cfs_rq(cfs_rq);
2970 		check_enqueue_throttle(cfs_rq);
2971 	}
2972 }
2973 
2974 static void __clear_buddies_last(struct sched_entity *se)
2975 {
2976 	for_each_sched_entity(se) {
2977 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2978 		if (cfs_rq->last != se)
2979 			break;
2980 
2981 		cfs_rq->last = NULL;
2982 	}
2983 }
2984 
2985 static void __clear_buddies_next(struct sched_entity *se)
2986 {
2987 	for_each_sched_entity(se) {
2988 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2989 		if (cfs_rq->next != se)
2990 			break;
2991 
2992 		cfs_rq->next = NULL;
2993 	}
2994 }
2995 
2996 static void __clear_buddies_skip(struct sched_entity *se)
2997 {
2998 	for_each_sched_entity(se) {
2999 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3000 		if (cfs_rq->skip != se)
3001 			break;
3002 
3003 		cfs_rq->skip = NULL;
3004 	}
3005 }
3006 
3007 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3008 {
3009 	if (cfs_rq->last == se)
3010 		__clear_buddies_last(se);
3011 
3012 	if (cfs_rq->next == se)
3013 		__clear_buddies_next(se);
3014 
3015 	if (cfs_rq->skip == se)
3016 		__clear_buddies_skip(se);
3017 }
3018 
3019 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3020 
3021 static void
3022 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3023 {
3024 	/*
3025 	 * Update run-time statistics of the 'current'.
3026 	 */
3027 	update_curr(cfs_rq);
3028 	dequeue_entity_load_avg(cfs_rq, se);
3029 
3030 	update_stats_dequeue(cfs_rq, se);
3031 	if (flags & DEQUEUE_SLEEP) {
3032 #ifdef CONFIG_SCHEDSTATS
3033 		if (entity_is_task(se)) {
3034 			struct task_struct *tsk = task_of(se);
3035 
3036 			if (tsk->state & TASK_INTERRUPTIBLE)
3037 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3038 			if (tsk->state & TASK_UNINTERRUPTIBLE)
3039 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3040 		}
3041 #endif
3042 	}
3043 
3044 	clear_buddies(cfs_rq, se);
3045 
3046 	if (se != cfs_rq->curr)
3047 		__dequeue_entity(cfs_rq, se);
3048 	se->on_rq = 0;
3049 	account_entity_dequeue(cfs_rq, se);
3050 
3051 	/*
3052 	 * Normalize the entity after updating the min_vruntime because the
3053 	 * update can refer to the ->curr item and we need to reflect this
3054 	 * movement in our normalized position.
3055 	 */
3056 	if (!(flags & DEQUEUE_SLEEP))
3057 		se->vruntime -= cfs_rq->min_vruntime;
3058 
3059 	/* return excess runtime on last dequeue */
3060 	return_cfs_rq_runtime(cfs_rq);
3061 
3062 	update_min_vruntime(cfs_rq);
3063 	update_cfs_shares(cfs_rq);
3064 }
3065 
3066 /*
3067  * Preempt the current task with a newly woken task if needed:
3068  */
3069 static void
3070 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3071 {
3072 	unsigned long ideal_runtime, delta_exec;
3073 	struct sched_entity *se;
3074 	s64 delta;
3075 
3076 	ideal_runtime = sched_slice(cfs_rq, curr);
3077 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3078 	if (delta_exec > ideal_runtime) {
3079 		resched_curr(rq_of(cfs_rq));
3080 		/*
3081 		 * The current task ran long enough, ensure it doesn't get
3082 		 * re-elected due to buddy favours.
3083 		 */
3084 		clear_buddies(cfs_rq, curr);
3085 		return;
3086 	}
3087 
3088 	/*
3089 	 * Ensure that a task that missed wakeup preemption by a
3090 	 * narrow margin doesn't have to wait for a full slice.
3091 	 * This also mitigates buddy induced latencies under load.
3092 	 */
3093 	if (delta_exec < sysctl_sched_min_granularity)
3094 		return;
3095 
3096 	se = __pick_first_entity(cfs_rq);
3097 	delta = curr->vruntime - se->vruntime;
3098 
3099 	if (delta < 0)
3100 		return;
3101 
3102 	if (delta > ideal_runtime)
3103 		resched_curr(rq_of(cfs_rq));
3104 }
3105 
3106 static void
3107 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3108 {
3109 	/* 'current' is not kept within the tree. */
3110 	if (se->on_rq) {
3111 		/*
3112 		 * Any task has to be enqueued before it get to execute on
3113 		 * a CPU. So account for the time it spent waiting on the
3114 		 * runqueue.
3115 		 */
3116 		update_stats_wait_end(cfs_rq, se);
3117 		__dequeue_entity(cfs_rq, se);
3118 		update_load_avg(se, 1);
3119 	}
3120 
3121 	update_stats_curr_start(cfs_rq, se);
3122 	cfs_rq->curr = se;
3123 #ifdef CONFIG_SCHEDSTATS
3124 	/*
3125 	 * Track our maximum slice length, if the CPU's load is at
3126 	 * least twice that of our own weight (i.e. dont track it
3127 	 * when there are only lesser-weight tasks around):
3128 	 */
3129 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3130 		se->statistics.slice_max = max(se->statistics.slice_max,
3131 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
3132 	}
3133 #endif
3134 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3135 }
3136 
3137 static int
3138 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3139 
3140 /*
3141  * Pick the next process, keeping these things in mind, in this order:
3142  * 1) keep things fair between processes/task groups
3143  * 2) pick the "next" process, since someone really wants that to run
3144  * 3) pick the "last" process, for cache locality
3145  * 4) do not run the "skip" process, if something else is available
3146  */
3147 static struct sched_entity *
3148 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3149 {
3150 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3151 	struct sched_entity *se;
3152 
3153 	/*
3154 	 * If curr is set we have to see if its left of the leftmost entity
3155 	 * still in the tree, provided there was anything in the tree at all.
3156 	 */
3157 	if (!left || (curr && entity_before(curr, left)))
3158 		left = curr;
3159 
3160 	se = left; /* ideally we run the leftmost entity */
3161 
3162 	/*
3163 	 * Avoid running the skip buddy, if running something else can
3164 	 * be done without getting too unfair.
3165 	 */
3166 	if (cfs_rq->skip == se) {
3167 		struct sched_entity *second;
3168 
3169 		if (se == curr) {
3170 			second = __pick_first_entity(cfs_rq);
3171 		} else {
3172 			second = __pick_next_entity(se);
3173 			if (!second || (curr && entity_before(curr, second)))
3174 				second = curr;
3175 		}
3176 
3177 		if (second && wakeup_preempt_entity(second, left) < 1)
3178 			se = second;
3179 	}
3180 
3181 	/*
3182 	 * Prefer last buddy, try to return the CPU to a preempted task.
3183 	 */
3184 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3185 		se = cfs_rq->last;
3186 
3187 	/*
3188 	 * Someone really wants this to run. If it's not unfair, run it.
3189 	 */
3190 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3191 		se = cfs_rq->next;
3192 
3193 	clear_buddies(cfs_rq, se);
3194 
3195 	return se;
3196 }
3197 
3198 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3199 
3200 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3201 {
3202 	/*
3203 	 * If still on the runqueue then deactivate_task()
3204 	 * was not called and update_curr() has to be done:
3205 	 */
3206 	if (prev->on_rq)
3207 		update_curr(cfs_rq);
3208 
3209 	/* throttle cfs_rqs exceeding runtime */
3210 	check_cfs_rq_runtime(cfs_rq);
3211 
3212 	check_spread(cfs_rq, prev);
3213 	if (prev->on_rq) {
3214 		update_stats_wait_start(cfs_rq, prev);
3215 		/* Put 'current' back into the tree. */
3216 		__enqueue_entity(cfs_rq, prev);
3217 		/* in !on_rq case, update occurred at dequeue */
3218 		update_load_avg(prev, 0);
3219 	}
3220 	cfs_rq->curr = NULL;
3221 }
3222 
3223 static void
3224 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3225 {
3226 	/*
3227 	 * Update run-time statistics of the 'current'.
3228 	 */
3229 	update_curr(cfs_rq);
3230 
3231 	/*
3232 	 * Ensure that runnable average is periodically updated.
3233 	 */
3234 	update_load_avg(curr, 1);
3235 	update_cfs_shares(cfs_rq);
3236 
3237 #ifdef CONFIG_SCHED_HRTICK
3238 	/*
3239 	 * queued ticks are scheduled to match the slice, so don't bother
3240 	 * validating it and just reschedule.
3241 	 */
3242 	if (queued) {
3243 		resched_curr(rq_of(cfs_rq));
3244 		return;
3245 	}
3246 	/*
3247 	 * don't let the period tick interfere with the hrtick preemption
3248 	 */
3249 	if (!sched_feat(DOUBLE_TICK) &&
3250 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3251 		return;
3252 #endif
3253 
3254 	if (cfs_rq->nr_running > 1)
3255 		check_preempt_tick(cfs_rq, curr);
3256 }
3257 
3258 
3259 /**************************************************
3260  * CFS bandwidth control machinery
3261  */
3262 
3263 #ifdef CONFIG_CFS_BANDWIDTH
3264 
3265 #ifdef HAVE_JUMP_LABEL
3266 static struct static_key __cfs_bandwidth_used;
3267 
3268 static inline bool cfs_bandwidth_used(void)
3269 {
3270 	return static_key_false(&__cfs_bandwidth_used);
3271 }
3272 
3273 void cfs_bandwidth_usage_inc(void)
3274 {
3275 	static_key_slow_inc(&__cfs_bandwidth_used);
3276 }
3277 
3278 void cfs_bandwidth_usage_dec(void)
3279 {
3280 	static_key_slow_dec(&__cfs_bandwidth_used);
3281 }
3282 #else /* HAVE_JUMP_LABEL */
3283 static bool cfs_bandwidth_used(void)
3284 {
3285 	return true;
3286 }
3287 
3288 void cfs_bandwidth_usage_inc(void) {}
3289 void cfs_bandwidth_usage_dec(void) {}
3290 #endif /* HAVE_JUMP_LABEL */
3291 
3292 /*
3293  * default period for cfs group bandwidth.
3294  * default: 0.1s, units: nanoseconds
3295  */
3296 static inline u64 default_cfs_period(void)
3297 {
3298 	return 100000000ULL;
3299 }
3300 
3301 static inline u64 sched_cfs_bandwidth_slice(void)
3302 {
3303 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3304 }
3305 
3306 /*
3307  * Replenish runtime according to assigned quota and update expiration time.
3308  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3309  * additional synchronization around rq->lock.
3310  *
3311  * requires cfs_b->lock
3312  */
3313 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3314 {
3315 	u64 now;
3316 
3317 	if (cfs_b->quota == RUNTIME_INF)
3318 		return;
3319 
3320 	now = sched_clock_cpu(smp_processor_id());
3321 	cfs_b->runtime = cfs_b->quota;
3322 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3323 }
3324 
3325 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3326 {
3327 	return &tg->cfs_bandwidth;
3328 }
3329 
3330 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3331 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3332 {
3333 	if (unlikely(cfs_rq->throttle_count))
3334 		return cfs_rq->throttled_clock_task;
3335 
3336 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3337 }
3338 
3339 /* returns 0 on failure to allocate runtime */
3340 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3341 {
3342 	struct task_group *tg = cfs_rq->tg;
3343 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3344 	u64 amount = 0, min_amount, expires;
3345 
3346 	/* note: this is a positive sum as runtime_remaining <= 0 */
3347 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3348 
3349 	raw_spin_lock(&cfs_b->lock);
3350 	if (cfs_b->quota == RUNTIME_INF)
3351 		amount = min_amount;
3352 	else {
3353 		start_cfs_bandwidth(cfs_b);
3354 
3355 		if (cfs_b->runtime > 0) {
3356 			amount = min(cfs_b->runtime, min_amount);
3357 			cfs_b->runtime -= amount;
3358 			cfs_b->idle = 0;
3359 		}
3360 	}
3361 	expires = cfs_b->runtime_expires;
3362 	raw_spin_unlock(&cfs_b->lock);
3363 
3364 	cfs_rq->runtime_remaining += amount;
3365 	/*
3366 	 * we may have advanced our local expiration to account for allowed
3367 	 * spread between our sched_clock and the one on which runtime was
3368 	 * issued.
3369 	 */
3370 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3371 		cfs_rq->runtime_expires = expires;
3372 
3373 	return cfs_rq->runtime_remaining > 0;
3374 }
3375 
3376 /*
3377  * Note: This depends on the synchronization provided by sched_clock and the
3378  * fact that rq->clock snapshots this value.
3379  */
3380 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3381 {
3382 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3383 
3384 	/* if the deadline is ahead of our clock, nothing to do */
3385 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3386 		return;
3387 
3388 	if (cfs_rq->runtime_remaining < 0)
3389 		return;
3390 
3391 	/*
3392 	 * If the local deadline has passed we have to consider the
3393 	 * possibility that our sched_clock is 'fast' and the global deadline
3394 	 * has not truly expired.
3395 	 *
3396 	 * Fortunately we can check determine whether this the case by checking
3397 	 * whether the global deadline has advanced. It is valid to compare
3398 	 * cfs_b->runtime_expires without any locks since we only care about
3399 	 * exact equality, so a partial write will still work.
3400 	 */
3401 
3402 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3403 		/* extend local deadline, drift is bounded above by 2 ticks */
3404 		cfs_rq->runtime_expires += TICK_NSEC;
3405 	} else {
3406 		/* global deadline is ahead, expiration has passed */
3407 		cfs_rq->runtime_remaining = 0;
3408 	}
3409 }
3410 
3411 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3412 {
3413 	/* dock delta_exec before expiring quota (as it could span periods) */
3414 	cfs_rq->runtime_remaining -= delta_exec;
3415 	expire_cfs_rq_runtime(cfs_rq);
3416 
3417 	if (likely(cfs_rq->runtime_remaining > 0))
3418 		return;
3419 
3420 	/*
3421 	 * if we're unable to extend our runtime we resched so that the active
3422 	 * hierarchy can be throttled
3423 	 */
3424 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3425 		resched_curr(rq_of(cfs_rq));
3426 }
3427 
3428 static __always_inline
3429 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3430 {
3431 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3432 		return;
3433 
3434 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3435 }
3436 
3437 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3438 {
3439 	return cfs_bandwidth_used() && cfs_rq->throttled;
3440 }
3441 
3442 /* check whether cfs_rq, or any parent, is throttled */
3443 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3444 {
3445 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3446 }
3447 
3448 /*
3449  * Ensure that neither of the group entities corresponding to src_cpu or
3450  * dest_cpu are members of a throttled hierarchy when performing group
3451  * load-balance operations.
3452  */
3453 static inline int throttled_lb_pair(struct task_group *tg,
3454 				    int src_cpu, int dest_cpu)
3455 {
3456 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3457 
3458 	src_cfs_rq = tg->cfs_rq[src_cpu];
3459 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3460 
3461 	return throttled_hierarchy(src_cfs_rq) ||
3462 	       throttled_hierarchy(dest_cfs_rq);
3463 }
3464 
3465 /* updated child weight may affect parent so we have to do this bottom up */
3466 static int tg_unthrottle_up(struct task_group *tg, void *data)
3467 {
3468 	struct rq *rq = data;
3469 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3470 
3471 	cfs_rq->throttle_count--;
3472 #ifdef CONFIG_SMP
3473 	if (!cfs_rq->throttle_count) {
3474 		/* adjust cfs_rq_clock_task() */
3475 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3476 					     cfs_rq->throttled_clock_task;
3477 	}
3478 #endif
3479 
3480 	return 0;
3481 }
3482 
3483 static int tg_throttle_down(struct task_group *tg, void *data)
3484 {
3485 	struct rq *rq = data;
3486 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3487 
3488 	/* group is entering throttled state, stop time */
3489 	if (!cfs_rq->throttle_count)
3490 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3491 	cfs_rq->throttle_count++;
3492 
3493 	return 0;
3494 }
3495 
3496 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3497 {
3498 	struct rq *rq = rq_of(cfs_rq);
3499 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3500 	struct sched_entity *se;
3501 	long task_delta, dequeue = 1;
3502 	bool empty;
3503 
3504 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3505 
3506 	/* freeze hierarchy runnable averages while throttled */
3507 	rcu_read_lock();
3508 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3509 	rcu_read_unlock();
3510 
3511 	task_delta = cfs_rq->h_nr_running;
3512 	for_each_sched_entity(se) {
3513 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3514 		/* throttled entity or throttle-on-deactivate */
3515 		if (!se->on_rq)
3516 			break;
3517 
3518 		if (dequeue)
3519 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3520 		qcfs_rq->h_nr_running -= task_delta;
3521 
3522 		if (qcfs_rq->load.weight)
3523 			dequeue = 0;
3524 	}
3525 
3526 	if (!se)
3527 		sub_nr_running(rq, task_delta);
3528 
3529 	cfs_rq->throttled = 1;
3530 	cfs_rq->throttled_clock = rq_clock(rq);
3531 	raw_spin_lock(&cfs_b->lock);
3532 	empty = list_empty(&cfs_b->throttled_cfs_rq);
3533 
3534 	/*
3535 	 * Add to the _head_ of the list, so that an already-started
3536 	 * distribute_cfs_runtime will not see us
3537 	 */
3538 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3539 
3540 	/*
3541 	 * If we're the first throttled task, make sure the bandwidth
3542 	 * timer is running.
3543 	 */
3544 	if (empty)
3545 		start_cfs_bandwidth(cfs_b);
3546 
3547 	raw_spin_unlock(&cfs_b->lock);
3548 }
3549 
3550 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3551 {
3552 	struct rq *rq = rq_of(cfs_rq);
3553 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3554 	struct sched_entity *se;
3555 	int enqueue = 1;
3556 	long task_delta;
3557 
3558 	se = cfs_rq->tg->se[cpu_of(rq)];
3559 
3560 	cfs_rq->throttled = 0;
3561 
3562 	update_rq_clock(rq);
3563 
3564 	raw_spin_lock(&cfs_b->lock);
3565 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3566 	list_del_rcu(&cfs_rq->throttled_list);
3567 	raw_spin_unlock(&cfs_b->lock);
3568 
3569 	/* update hierarchical throttle state */
3570 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3571 
3572 	if (!cfs_rq->load.weight)
3573 		return;
3574 
3575 	task_delta = cfs_rq->h_nr_running;
3576 	for_each_sched_entity(se) {
3577 		if (se->on_rq)
3578 			enqueue = 0;
3579 
3580 		cfs_rq = cfs_rq_of(se);
3581 		if (enqueue)
3582 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3583 		cfs_rq->h_nr_running += task_delta;
3584 
3585 		if (cfs_rq_throttled(cfs_rq))
3586 			break;
3587 	}
3588 
3589 	if (!se)
3590 		add_nr_running(rq, task_delta);
3591 
3592 	/* determine whether we need to wake up potentially idle cpu */
3593 	if (rq->curr == rq->idle && rq->cfs.nr_running)
3594 		resched_curr(rq);
3595 }
3596 
3597 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3598 		u64 remaining, u64 expires)
3599 {
3600 	struct cfs_rq *cfs_rq;
3601 	u64 runtime;
3602 	u64 starting_runtime = remaining;
3603 
3604 	rcu_read_lock();
3605 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3606 				throttled_list) {
3607 		struct rq *rq = rq_of(cfs_rq);
3608 
3609 		raw_spin_lock(&rq->lock);
3610 		if (!cfs_rq_throttled(cfs_rq))
3611 			goto next;
3612 
3613 		runtime = -cfs_rq->runtime_remaining + 1;
3614 		if (runtime > remaining)
3615 			runtime = remaining;
3616 		remaining -= runtime;
3617 
3618 		cfs_rq->runtime_remaining += runtime;
3619 		cfs_rq->runtime_expires = expires;
3620 
3621 		/* we check whether we're throttled above */
3622 		if (cfs_rq->runtime_remaining > 0)
3623 			unthrottle_cfs_rq(cfs_rq);
3624 
3625 next:
3626 		raw_spin_unlock(&rq->lock);
3627 
3628 		if (!remaining)
3629 			break;
3630 	}
3631 	rcu_read_unlock();
3632 
3633 	return starting_runtime - remaining;
3634 }
3635 
3636 /*
3637  * Responsible for refilling a task_group's bandwidth and unthrottling its
3638  * cfs_rqs as appropriate. If there has been no activity within the last
3639  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3640  * used to track this state.
3641  */
3642 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3643 {
3644 	u64 runtime, runtime_expires;
3645 	int throttled;
3646 
3647 	/* no need to continue the timer with no bandwidth constraint */
3648 	if (cfs_b->quota == RUNTIME_INF)
3649 		goto out_deactivate;
3650 
3651 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3652 	cfs_b->nr_periods += overrun;
3653 
3654 	/*
3655 	 * idle depends on !throttled (for the case of a large deficit), and if
3656 	 * we're going inactive then everything else can be deferred
3657 	 */
3658 	if (cfs_b->idle && !throttled)
3659 		goto out_deactivate;
3660 
3661 	__refill_cfs_bandwidth_runtime(cfs_b);
3662 
3663 	if (!throttled) {
3664 		/* mark as potentially idle for the upcoming period */
3665 		cfs_b->idle = 1;
3666 		return 0;
3667 	}
3668 
3669 	/* account preceding periods in which throttling occurred */
3670 	cfs_b->nr_throttled += overrun;
3671 
3672 	runtime_expires = cfs_b->runtime_expires;
3673 
3674 	/*
3675 	 * This check is repeated as we are holding onto the new bandwidth while
3676 	 * we unthrottle. This can potentially race with an unthrottled group
3677 	 * trying to acquire new bandwidth from the global pool. This can result
3678 	 * in us over-using our runtime if it is all used during this loop, but
3679 	 * only by limited amounts in that extreme case.
3680 	 */
3681 	while (throttled && cfs_b->runtime > 0) {
3682 		runtime = cfs_b->runtime;
3683 		raw_spin_unlock(&cfs_b->lock);
3684 		/* we can't nest cfs_b->lock while distributing bandwidth */
3685 		runtime = distribute_cfs_runtime(cfs_b, runtime,
3686 						 runtime_expires);
3687 		raw_spin_lock(&cfs_b->lock);
3688 
3689 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3690 
3691 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3692 	}
3693 
3694 	/*
3695 	 * While we are ensured activity in the period following an
3696 	 * unthrottle, this also covers the case in which the new bandwidth is
3697 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3698 	 * timer to remain active while there are any throttled entities.)
3699 	 */
3700 	cfs_b->idle = 0;
3701 
3702 	return 0;
3703 
3704 out_deactivate:
3705 	return 1;
3706 }
3707 
3708 /* a cfs_rq won't donate quota below this amount */
3709 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3710 /* minimum remaining period time to redistribute slack quota */
3711 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3712 /* how long we wait to gather additional slack before distributing */
3713 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3714 
3715 /*
3716  * Are we near the end of the current quota period?
3717  *
3718  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3719  * hrtimer base being cleared by hrtimer_start. In the case of
3720  * migrate_hrtimers, base is never cleared, so we are fine.
3721  */
3722 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3723 {
3724 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3725 	u64 remaining;
3726 
3727 	/* if the call-back is running a quota refresh is already occurring */
3728 	if (hrtimer_callback_running(refresh_timer))
3729 		return 1;
3730 
3731 	/* is a quota refresh about to occur? */
3732 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3733 	if (remaining < min_expire)
3734 		return 1;
3735 
3736 	return 0;
3737 }
3738 
3739 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3740 {
3741 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3742 
3743 	/* if there's a quota refresh soon don't bother with slack */
3744 	if (runtime_refresh_within(cfs_b, min_left))
3745 		return;
3746 
3747 	hrtimer_start(&cfs_b->slack_timer,
3748 			ns_to_ktime(cfs_bandwidth_slack_period),
3749 			HRTIMER_MODE_REL);
3750 }
3751 
3752 /* we know any runtime found here is valid as update_curr() precedes return */
3753 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3754 {
3755 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3756 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3757 
3758 	if (slack_runtime <= 0)
3759 		return;
3760 
3761 	raw_spin_lock(&cfs_b->lock);
3762 	if (cfs_b->quota != RUNTIME_INF &&
3763 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3764 		cfs_b->runtime += slack_runtime;
3765 
3766 		/* we are under rq->lock, defer unthrottling using a timer */
3767 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3768 		    !list_empty(&cfs_b->throttled_cfs_rq))
3769 			start_cfs_slack_bandwidth(cfs_b);
3770 	}
3771 	raw_spin_unlock(&cfs_b->lock);
3772 
3773 	/* even if it's not valid for return we don't want to try again */
3774 	cfs_rq->runtime_remaining -= slack_runtime;
3775 }
3776 
3777 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3778 {
3779 	if (!cfs_bandwidth_used())
3780 		return;
3781 
3782 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3783 		return;
3784 
3785 	__return_cfs_rq_runtime(cfs_rq);
3786 }
3787 
3788 /*
3789  * This is done with a timer (instead of inline with bandwidth return) since
3790  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3791  */
3792 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3793 {
3794 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3795 	u64 expires;
3796 
3797 	/* confirm we're still not at a refresh boundary */
3798 	raw_spin_lock(&cfs_b->lock);
3799 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3800 		raw_spin_unlock(&cfs_b->lock);
3801 		return;
3802 	}
3803 
3804 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3805 		runtime = cfs_b->runtime;
3806 
3807 	expires = cfs_b->runtime_expires;
3808 	raw_spin_unlock(&cfs_b->lock);
3809 
3810 	if (!runtime)
3811 		return;
3812 
3813 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3814 
3815 	raw_spin_lock(&cfs_b->lock);
3816 	if (expires == cfs_b->runtime_expires)
3817 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3818 	raw_spin_unlock(&cfs_b->lock);
3819 }
3820 
3821 /*
3822  * When a group wakes up we want to make sure that its quota is not already
3823  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3824  * runtime as update_curr() throttling can not not trigger until it's on-rq.
3825  */
3826 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3827 {
3828 	if (!cfs_bandwidth_used())
3829 		return;
3830 
3831 	/* an active group must be handled by the update_curr()->put() path */
3832 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3833 		return;
3834 
3835 	/* ensure the group is not already throttled */
3836 	if (cfs_rq_throttled(cfs_rq))
3837 		return;
3838 
3839 	/* update runtime allocation */
3840 	account_cfs_rq_runtime(cfs_rq, 0);
3841 	if (cfs_rq->runtime_remaining <= 0)
3842 		throttle_cfs_rq(cfs_rq);
3843 }
3844 
3845 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3846 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3847 {
3848 	if (!cfs_bandwidth_used())
3849 		return false;
3850 
3851 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3852 		return false;
3853 
3854 	/*
3855 	 * it's possible for a throttled entity to be forced into a running
3856 	 * state (e.g. set_curr_task), in this case we're finished.
3857 	 */
3858 	if (cfs_rq_throttled(cfs_rq))
3859 		return true;
3860 
3861 	throttle_cfs_rq(cfs_rq);
3862 	return true;
3863 }
3864 
3865 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3866 {
3867 	struct cfs_bandwidth *cfs_b =
3868 		container_of(timer, struct cfs_bandwidth, slack_timer);
3869 
3870 	do_sched_cfs_slack_timer(cfs_b);
3871 
3872 	return HRTIMER_NORESTART;
3873 }
3874 
3875 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3876 {
3877 	struct cfs_bandwidth *cfs_b =
3878 		container_of(timer, struct cfs_bandwidth, period_timer);
3879 	int overrun;
3880 	int idle = 0;
3881 
3882 	raw_spin_lock(&cfs_b->lock);
3883 	for (;;) {
3884 		overrun = hrtimer_forward_now(timer, cfs_b->period);
3885 		if (!overrun)
3886 			break;
3887 
3888 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
3889 	}
3890 	if (idle)
3891 		cfs_b->period_active = 0;
3892 	raw_spin_unlock(&cfs_b->lock);
3893 
3894 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3895 }
3896 
3897 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3898 {
3899 	raw_spin_lock_init(&cfs_b->lock);
3900 	cfs_b->runtime = 0;
3901 	cfs_b->quota = RUNTIME_INF;
3902 	cfs_b->period = ns_to_ktime(default_cfs_period());
3903 
3904 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3905 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
3906 	cfs_b->period_timer.function = sched_cfs_period_timer;
3907 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3908 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
3909 }
3910 
3911 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3912 {
3913 	cfs_rq->runtime_enabled = 0;
3914 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
3915 }
3916 
3917 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3918 {
3919 	lockdep_assert_held(&cfs_b->lock);
3920 
3921 	if (!cfs_b->period_active) {
3922 		cfs_b->period_active = 1;
3923 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3924 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3925 	}
3926 }
3927 
3928 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3929 {
3930 	/* init_cfs_bandwidth() was not called */
3931 	if (!cfs_b->throttled_cfs_rq.next)
3932 		return;
3933 
3934 	hrtimer_cancel(&cfs_b->period_timer);
3935 	hrtimer_cancel(&cfs_b->slack_timer);
3936 }
3937 
3938 static void __maybe_unused update_runtime_enabled(struct rq *rq)
3939 {
3940 	struct cfs_rq *cfs_rq;
3941 
3942 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3943 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3944 
3945 		raw_spin_lock(&cfs_b->lock);
3946 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3947 		raw_spin_unlock(&cfs_b->lock);
3948 	}
3949 }
3950 
3951 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3952 {
3953 	struct cfs_rq *cfs_rq;
3954 
3955 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3956 		if (!cfs_rq->runtime_enabled)
3957 			continue;
3958 
3959 		/*
3960 		 * clock_task is not advancing so we just need to make sure
3961 		 * there's some valid quota amount
3962 		 */
3963 		cfs_rq->runtime_remaining = 1;
3964 		/*
3965 		 * Offline rq is schedulable till cpu is completely disabled
3966 		 * in take_cpu_down(), so we prevent new cfs throttling here.
3967 		 */
3968 		cfs_rq->runtime_enabled = 0;
3969 
3970 		if (cfs_rq_throttled(cfs_rq))
3971 			unthrottle_cfs_rq(cfs_rq);
3972 	}
3973 }
3974 
3975 #else /* CONFIG_CFS_BANDWIDTH */
3976 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3977 {
3978 	return rq_clock_task(rq_of(cfs_rq));
3979 }
3980 
3981 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3982 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3983 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3984 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3985 
3986 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3987 {
3988 	return 0;
3989 }
3990 
3991 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3992 {
3993 	return 0;
3994 }
3995 
3996 static inline int throttled_lb_pair(struct task_group *tg,
3997 				    int src_cpu, int dest_cpu)
3998 {
3999 	return 0;
4000 }
4001 
4002 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4003 
4004 #ifdef CONFIG_FAIR_GROUP_SCHED
4005 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4006 #endif
4007 
4008 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4009 {
4010 	return NULL;
4011 }
4012 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4013 static inline void update_runtime_enabled(struct rq *rq) {}
4014 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4015 
4016 #endif /* CONFIG_CFS_BANDWIDTH */
4017 
4018 /**************************************************
4019  * CFS operations on tasks:
4020  */
4021 
4022 #ifdef CONFIG_SCHED_HRTICK
4023 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4024 {
4025 	struct sched_entity *se = &p->se;
4026 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4027 
4028 	WARN_ON(task_rq(p) != rq);
4029 
4030 	if (cfs_rq->nr_running > 1) {
4031 		u64 slice = sched_slice(cfs_rq, se);
4032 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4033 		s64 delta = slice - ran;
4034 
4035 		if (delta < 0) {
4036 			if (rq->curr == p)
4037 				resched_curr(rq);
4038 			return;
4039 		}
4040 		hrtick_start(rq, delta);
4041 	}
4042 }
4043 
4044 /*
4045  * called from enqueue/dequeue and updates the hrtick when the
4046  * current task is from our class and nr_running is low enough
4047  * to matter.
4048  */
4049 static void hrtick_update(struct rq *rq)
4050 {
4051 	struct task_struct *curr = rq->curr;
4052 
4053 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4054 		return;
4055 
4056 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4057 		hrtick_start_fair(rq, curr);
4058 }
4059 #else /* !CONFIG_SCHED_HRTICK */
4060 static inline void
4061 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4062 {
4063 }
4064 
4065 static inline void hrtick_update(struct rq *rq)
4066 {
4067 }
4068 #endif
4069 
4070 /*
4071  * The enqueue_task method is called before nr_running is
4072  * increased. Here we update the fair scheduling stats and
4073  * then put the task into the rbtree:
4074  */
4075 static void
4076 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4077 {
4078 	struct cfs_rq *cfs_rq;
4079 	struct sched_entity *se = &p->se;
4080 
4081 	for_each_sched_entity(se) {
4082 		if (se->on_rq)
4083 			break;
4084 		cfs_rq = cfs_rq_of(se);
4085 		enqueue_entity(cfs_rq, se, flags);
4086 
4087 		/*
4088 		 * end evaluation on encountering a throttled cfs_rq
4089 		 *
4090 		 * note: in the case of encountering a throttled cfs_rq we will
4091 		 * post the final h_nr_running increment below.
4092 		*/
4093 		if (cfs_rq_throttled(cfs_rq))
4094 			break;
4095 		cfs_rq->h_nr_running++;
4096 
4097 		flags = ENQUEUE_WAKEUP;
4098 	}
4099 
4100 	for_each_sched_entity(se) {
4101 		cfs_rq = cfs_rq_of(se);
4102 		cfs_rq->h_nr_running++;
4103 
4104 		if (cfs_rq_throttled(cfs_rq))
4105 			break;
4106 
4107 		update_load_avg(se, 1);
4108 		update_cfs_shares(cfs_rq);
4109 	}
4110 
4111 	if (!se)
4112 		add_nr_running(rq, 1);
4113 
4114 	hrtick_update(rq);
4115 }
4116 
4117 static void set_next_buddy(struct sched_entity *se);
4118 
4119 /*
4120  * The dequeue_task method is called before nr_running is
4121  * decreased. We remove the task from the rbtree and
4122  * update the fair scheduling stats:
4123  */
4124 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4125 {
4126 	struct cfs_rq *cfs_rq;
4127 	struct sched_entity *se = &p->se;
4128 	int task_sleep = flags & DEQUEUE_SLEEP;
4129 
4130 	for_each_sched_entity(se) {
4131 		cfs_rq = cfs_rq_of(se);
4132 		dequeue_entity(cfs_rq, se, flags);
4133 
4134 		/*
4135 		 * end evaluation on encountering a throttled cfs_rq
4136 		 *
4137 		 * note: in the case of encountering a throttled cfs_rq we will
4138 		 * post the final h_nr_running decrement below.
4139 		*/
4140 		if (cfs_rq_throttled(cfs_rq))
4141 			break;
4142 		cfs_rq->h_nr_running--;
4143 
4144 		/* Don't dequeue parent if it has other entities besides us */
4145 		if (cfs_rq->load.weight) {
4146 			/*
4147 			 * Bias pick_next to pick a task from this cfs_rq, as
4148 			 * p is sleeping when it is within its sched_slice.
4149 			 */
4150 			if (task_sleep && parent_entity(se))
4151 				set_next_buddy(parent_entity(se));
4152 
4153 			/* avoid re-evaluating load for this entity */
4154 			se = parent_entity(se);
4155 			break;
4156 		}
4157 		flags |= DEQUEUE_SLEEP;
4158 	}
4159 
4160 	for_each_sched_entity(se) {
4161 		cfs_rq = cfs_rq_of(se);
4162 		cfs_rq->h_nr_running--;
4163 
4164 		if (cfs_rq_throttled(cfs_rq))
4165 			break;
4166 
4167 		update_load_avg(se, 1);
4168 		update_cfs_shares(cfs_rq);
4169 	}
4170 
4171 	if (!se)
4172 		sub_nr_running(rq, 1);
4173 
4174 	hrtick_update(rq);
4175 }
4176 
4177 #ifdef CONFIG_SMP
4178 
4179 /*
4180  * per rq 'load' arrray crap; XXX kill this.
4181  */
4182 
4183 /*
4184  * The exact cpuload at various idx values, calculated at every tick would be
4185  * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4186  *
4187  * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4188  * on nth tick when cpu may be busy, then we have:
4189  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4190  * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4191  *
4192  * decay_load_missed() below does efficient calculation of
4193  * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4194  * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4195  *
4196  * The calculation is approximated on a 128 point scale.
4197  * degrade_zero_ticks is the number of ticks after which load at any
4198  * particular idx is approximated to be zero.
4199  * degrade_factor is a precomputed table, a row for each load idx.
4200  * Each column corresponds to degradation factor for a power of two ticks,
4201  * based on 128 point scale.
4202  * Example:
4203  * row 2, col 3 (=12) says that the degradation at load idx 2 after
4204  * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4205  *
4206  * With this power of 2 load factors, we can degrade the load n times
4207  * by looking at 1 bits in n and doing as many mult/shift instead of
4208  * n mult/shifts needed by the exact degradation.
4209  */
4210 #define DEGRADE_SHIFT		7
4211 static const unsigned char
4212 		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4213 static const unsigned char
4214 		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4215 					{0, 0, 0, 0, 0, 0, 0, 0},
4216 					{64, 32, 8, 0, 0, 0, 0, 0},
4217 					{96, 72, 40, 12, 1, 0, 0},
4218 					{112, 98, 75, 43, 15, 1, 0},
4219 					{120, 112, 98, 76, 45, 16, 2} };
4220 
4221 /*
4222  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4223  * would be when CPU is idle and so we just decay the old load without
4224  * adding any new load.
4225  */
4226 static unsigned long
4227 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4228 {
4229 	int j = 0;
4230 
4231 	if (!missed_updates)
4232 		return load;
4233 
4234 	if (missed_updates >= degrade_zero_ticks[idx])
4235 		return 0;
4236 
4237 	if (idx == 1)
4238 		return load >> missed_updates;
4239 
4240 	while (missed_updates) {
4241 		if (missed_updates % 2)
4242 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4243 
4244 		missed_updates >>= 1;
4245 		j++;
4246 	}
4247 	return load;
4248 }
4249 
4250 /*
4251  * Update rq->cpu_load[] statistics. This function is usually called every
4252  * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4253  * every tick. We fix it up based on jiffies.
4254  */
4255 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4256 			      unsigned long pending_updates)
4257 {
4258 	int i, scale;
4259 
4260 	this_rq->nr_load_updates++;
4261 
4262 	/* Update our load: */
4263 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4264 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4265 		unsigned long old_load, new_load;
4266 
4267 		/* scale is effectively 1 << i now, and >> i divides by scale */
4268 
4269 		old_load = this_rq->cpu_load[i];
4270 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4271 		new_load = this_load;
4272 		/*
4273 		 * Round up the averaging division if load is increasing. This
4274 		 * prevents us from getting stuck on 9 if the load is 10, for
4275 		 * example.
4276 		 */
4277 		if (new_load > old_load)
4278 			new_load += scale - 1;
4279 
4280 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4281 	}
4282 
4283 	sched_avg_update(this_rq);
4284 }
4285 
4286 /* Used instead of source_load when we know the type == 0 */
4287 static unsigned long weighted_cpuload(const int cpu)
4288 {
4289 	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4290 }
4291 
4292 #ifdef CONFIG_NO_HZ_COMMON
4293 /*
4294  * There is no sane way to deal with nohz on smp when using jiffies because the
4295  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4296  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4297  *
4298  * Therefore we cannot use the delta approach from the regular tick since that
4299  * would seriously skew the load calculation. However we'll make do for those
4300  * updates happening while idle (nohz_idle_balance) or coming out of idle
4301  * (tick_nohz_idle_exit).
4302  *
4303  * This means we might still be one tick off for nohz periods.
4304  */
4305 
4306 /*
4307  * Called from nohz_idle_balance() to update the load ratings before doing the
4308  * idle balance.
4309  */
4310 static void update_idle_cpu_load(struct rq *this_rq)
4311 {
4312 	unsigned long curr_jiffies = READ_ONCE(jiffies);
4313 	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4314 	unsigned long pending_updates;
4315 
4316 	/*
4317 	 * bail if there's load or we're actually up-to-date.
4318 	 */
4319 	if (load || curr_jiffies == this_rq->last_load_update_tick)
4320 		return;
4321 
4322 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4323 	this_rq->last_load_update_tick = curr_jiffies;
4324 
4325 	__update_cpu_load(this_rq, load, pending_updates);
4326 }
4327 
4328 /*
4329  * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4330  */
4331 void update_cpu_load_nohz(void)
4332 {
4333 	struct rq *this_rq = this_rq();
4334 	unsigned long curr_jiffies = READ_ONCE(jiffies);
4335 	unsigned long pending_updates;
4336 
4337 	if (curr_jiffies == this_rq->last_load_update_tick)
4338 		return;
4339 
4340 	raw_spin_lock(&this_rq->lock);
4341 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4342 	if (pending_updates) {
4343 		this_rq->last_load_update_tick = curr_jiffies;
4344 		/*
4345 		 * We were idle, this means load 0, the current load might be
4346 		 * !0 due to remote wakeups and the sort.
4347 		 */
4348 		__update_cpu_load(this_rq, 0, pending_updates);
4349 	}
4350 	raw_spin_unlock(&this_rq->lock);
4351 }
4352 #endif /* CONFIG_NO_HZ */
4353 
4354 /*
4355  * Called from scheduler_tick()
4356  */
4357 void update_cpu_load_active(struct rq *this_rq)
4358 {
4359 	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4360 	/*
4361 	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4362 	 */
4363 	this_rq->last_load_update_tick = jiffies;
4364 	__update_cpu_load(this_rq, load, 1);
4365 }
4366 
4367 /*
4368  * Return a low guess at the load of a migration-source cpu weighted
4369  * according to the scheduling class and "nice" value.
4370  *
4371  * We want to under-estimate the load of migration sources, to
4372  * balance conservatively.
4373  */
4374 static unsigned long source_load(int cpu, int type)
4375 {
4376 	struct rq *rq = cpu_rq(cpu);
4377 	unsigned long total = weighted_cpuload(cpu);
4378 
4379 	if (type == 0 || !sched_feat(LB_BIAS))
4380 		return total;
4381 
4382 	return min(rq->cpu_load[type-1], total);
4383 }
4384 
4385 /*
4386  * Return a high guess at the load of a migration-target cpu weighted
4387  * according to the scheduling class and "nice" value.
4388  */
4389 static unsigned long target_load(int cpu, int type)
4390 {
4391 	struct rq *rq = cpu_rq(cpu);
4392 	unsigned long total = weighted_cpuload(cpu);
4393 
4394 	if (type == 0 || !sched_feat(LB_BIAS))
4395 		return total;
4396 
4397 	return max(rq->cpu_load[type-1], total);
4398 }
4399 
4400 static unsigned long capacity_of(int cpu)
4401 {
4402 	return cpu_rq(cpu)->cpu_capacity;
4403 }
4404 
4405 static unsigned long capacity_orig_of(int cpu)
4406 {
4407 	return cpu_rq(cpu)->cpu_capacity_orig;
4408 }
4409 
4410 static unsigned long cpu_avg_load_per_task(int cpu)
4411 {
4412 	struct rq *rq = cpu_rq(cpu);
4413 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4414 	unsigned long load_avg = weighted_cpuload(cpu);
4415 
4416 	if (nr_running)
4417 		return load_avg / nr_running;
4418 
4419 	return 0;
4420 }
4421 
4422 static void record_wakee(struct task_struct *p)
4423 {
4424 	/*
4425 	 * Rough decay (wiping) for cost saving, don't worry
4426 	 * about the boundary, really active task won't care
4427 	 * about the loss.
4428 	 */
4429 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4430 		current->wakee_flips >>= 1;
4431 		current->wakee_flip_decay_ts = jiffies;
4432 	}
4433 
4434 	if (current->last_wakee != p) {
4435 		current->last_wakee = p;
4436 		current->wakee_flips++;
4437 	}
4438 }
4439 
4440 static void task_waking_fair(struct task_struct *p)
4441 {
4442 	struct sched_entity *se = &p->se;
4443 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4444 	u64 min_vruntime;
4445 
4446 #ifndef CONFIG_64BIT
4447 	u64 min_vruntime_copy;
4448 
4449 	do {
4450 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4451 		smp_rmb();
4452 		min_vruntime = cfs_rq->min_vruntime;
4453 	} while (min_vruntime != min_vruntime_copy);
4454 #else
4455 	min_vruntime = cfs_rq->min_vruntime;
4456 #endif
4457 
4458 	se->vruntime -= min_vruntime;
4459 	record_wakee(p);
4460 }
4461 
4462 #ifdef CONFIG_FAIR_GROUP_SCHED
4463 /*
4464  * effective_load() calculates the load change as seen from the root_task_group
4465  *
4466  * Adding load to a group doesn't make a group heavier, but can cause movement
4467  * of group shares between cpus. Assuming the shares were perfectly aligned one
4468  * can calculate the shift in shares.
4469  *
4470  * Calculate the effective load difference if @wl is added (subtracted) to @tg
4471  * on this @cpu and results in a total addition (subtraction) of @wg to the
4472  * total group weight.
4473  *
4474  * Given a runqueue weight distribution (rw_i) we can compute a shares
4475  * distribution (s_i) using:
4476  *
4477  *   s_i = rw_i / \Sum rw_j						(1)
4478  *
4479  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4480  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4481  * shares distribution (s_i):
4482  *
4483  *   rw_i = {   2,   4,   1,   0 }
4484  *   s_i  = { 2/7, 4/7, 1/7,   0 }
4485  *
4486  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4487  * task used to run on and the CPU the waker is running on), we need to
4488  * compute the effect of waking a task on either CPU and, in case of a sync
4489  * wakeup, compute the effect of the current task going to sleep.
4490  *
4491  * So for a change of @wl to the local @cpu with an overall group weight change
4492  * of @wl we can compute the new shares distribution (s'_i) using:
4493  *
4494  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4495  *
4496  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4497  * differences in waking a task to CPU 0. The additional task changes the
4498  * weight and shares distributions like:
4499  *
4500  *   rw'_i = {   3,   4,   1,   0 }
4501  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4502  *
4503  * We can then compute the difference in effective weight by using:
4504  *
4505  *   dw_i = S * (s'_i - s_i)						(3)
4506  *
4507  * Where 'S' is the group weight as seen by its parent.
4508  *
4509  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4510  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4511  * 4/7) times the weight of the group.
4512  */
4513 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4514 {
4515 	struct sched_entity *se = tg->se[cpu];
4516 
4517 	if (!tg->parent)	/* the trivial, non-cgroup case */
4518 		return wl;
4519 
4520 	for_each_sched_entity(se) {
4521 		long w, W;
4522 
4523 		tg = se->my_q->tg;
4524 
4525 		/*
4526 		 * W = @wg + \Sum rw_j
4527 		 */
4528 		W = wg + calc_tg_weight(tg, se->my_q);
4529 
4530 		/*
4531 		 * w = rw_i + @wl
4532 		 */
4533 		w = cfs_rq_load_avg(se->my_q) + wl;
4534 
4535 		/*
4536 		 * wl = S * s'_i; see (2)
4537 		 */
4538 		if (W > 0 && w < W)
4539 			wl = (w * (long)tg->shares) / W;
4540 		else
4541 			wl = tg->shares;
4542 
4543 		/*
4544 		 * Per the above, wl is the new se->load.weight value; since
4545 		 * those are clipped to [MIN_SHARES, ...) do so now. See
4546 		 * calc_cfs_shares().
4547 		 */
4548 		if (wl < MIN_SHARES)
4549 			wl = MIN_SHARES;
4550 
4551 		/*
4552 		 * wl = dw_i = S * (s'_i - s_i); see (3)
4553 		 */
4554 		wl -= se->avg.load_avg;
4555 
4556 		/*
4557 		 * Recursively apply this logic to all parent groups to compute
4558 		 * the final effective load change on the root group. Since
4559 		 * only the @tg group gets extra weight, all parent groups can
4560 		 * only redistribute existing shares. @wl is the shift in shares
4561 		 * resulting from this level per the above.
4562 		 */
4563 		wg = 0;
4564 	}
4565 
4566 	return wl;
4567 }
4568 #else
4569 
4570 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4571 {
4572 	return wl;
4573 }
4574 
4575 #endif
4576 
4577 /*
4578  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4579  * A waker of many should wake a different task than the one last awakened
4580  * at a frequency roughly N times higher than one of its wakees.  In order
4581  * to determine whether we should let the load spread vs consolodating to
4582  * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4583  * partner, and a factor of lls_size higher frequency in the other.  With
4584  * both conditions met, we can be relatively sure that the relationship is
4585  * non-monogamous, with partner count exceeding socket size.  Waker/wakee
4586  * being client/server, worker/dispatcher, interrupt source or whatever is
4587  * irrelevant, spread criteria is apparent partner count exceeds socket size.
4588  */
4589 static int wake_wide(struct task_struct *p)
4590 {
4591 	unsigned int master = current->wakee_flips;
4592 	unsigned int slave = p->wakee_flips;
4593 	int factor = this_cpu_read(sd_llc_size);
4594 
4595 	if (master < slave)
4596 		swap(master, slave);
4597 	if (slave < factor || master < slave * factor)
4598 		return 0;
4599 	return 1;
4600 }
4601 
4602 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4603 {
4604 	s64 this_load, load;
4605 	s64 this_eff_load, prev_eff_load;
4606 	int idx, this_cpu, prev_cpu;
4607 	struct task_group *tg;
4608 	unsigned long weight;
4609 	int balanced;
4610 
4611 	idx	  = sd->wake_idx;
4612 	this_cpu  = smp_processor_id();
4613 	prev_cpu  = task_cpu(p);
4614 	load	  = source_load(prev_cpu, idx);
4615 	this_load = target_load(this_cpu, idx);
4616 
4617 	/*
4618 	 * If sync wakeup then subtract the (maximum possible)
4619 	 * effect of the currently running task from the load
4620 	 * of the current CPU:
4621 	 */
4622 	if (sync) {
4623 		tg = task_group(current);
4624 		weight = current->se.avg.load_avg;
4625 
4626 		this_load += effective_load(tg, this_cpu, -weight, -weight);
4627 		load += effective_load(tg, prev_cpu, 0, -weight);
4628 	}
4629 
4630 	tg = task_group(p);
4631 	weight = p->se.avg.load_avg;
4632 
4633 	/*
4634 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4635 	 * due to the sync cause above having dropped this_load to 0, we'll
4636 	 * always have an imbalance, but there's really nothing you can do
4637 	 * about that, so that's good too.
4638 	 *
4639 	 * Otherwise check if either cpus are near enough in load to allow this
4640 	 * task to be woken on this_cpu.
4641 	 */
4642 	this_eff_load = 100;
4643 	this_eff_load *= capacity_of(prev_cpu);
4644 
4645 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4646 	prev_eff_load *= capacity_of(this_cpu);
4647 
4648 	if (this_load > 0) {
4649 		this_eff_load *= this_load +
4650 			effective_load(tg, this_cpu, weight, weight);
4651 
4652 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4653 	}
4654 
4655 	balanced = this_eff_load <= prev_eff_load;
4656 
4657 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4658 
4659 	if (!balanced)
4660 		return 0;
4661 
4662 	schedstat_inc(sd, ttwu_move_affine);
4663 	schedstat_inc(p, se.statistics.nr_wakeups_affine);
4664 
4665 	return 1;
4666 }
4667 
4668 /*
4669  * find_idlest_group finds and returns the least busy CPU group within the
4670  * domain.
4671  */
4672 static struct sched_group *
4673 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4674 		  int this_cpu, int sd_flag)
4675 {
4676 	struct sched_group *idlest = NULL, *group = sd->groups;
4677 	unsigned long min_load = ULONG_MAX, this_load = 0;
4678 	int load_idx = sd->forkexec_idx;
4679 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4680 
4681 	if (sd_flag & SD_BALANCE_WAKE)
4682 		load_idx = sd->wake_idx;
4683 
4684 	do {
4685 		unsigned long load, avg_load;
4686 		int local_group;
4687 		int i;
4688 
4689 		/* Skip over this group if it has no CPUs allowed */
4690 		if (!cpumask_intersects(sched_group_cpus(group),
4691 					tsk_cpus_allowed(p)))
4692 			continue;
4693 
4694 		local_group = cpumask_test_cpu(this_cpu,
4695 					       sched_group_cpus(group));
4696 
4697 		/* Tally up the load of all CPUs in the group */
4698 		avg_load = 0;
4699 
4700 		for_each_cpu(i, sched_group_cpus(group)) {
4701 			/* Bias balancing toward cpus of our domain */
4702 			if (local_group)
4703 				load = source_load(i, load_idx);
4704 			else
4705 				load = target_load(i, load_idx);
4706 
4707 			avg_load += load;
4708 		}
4709 
4710 		/* Adjust by relative CPU capacity of the group */
4711 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4712 
4713 		if (local_group) {
4714 			this_load = avg_load;
4715 		} else if (avg_load < min_load) {
4716 			min_load = avg_load;
4717 			idlest = group;
4718 		}
4719 	} while (group = group->next, group != sd->groups);
4720 
4721 	if (!idlest || 100*this_load < imbalance*min_load)
4722 		return NULL;
4723 	return idlest;
4724 }
4725 
4726 /*
4727  * find_idlest_cpu - find the idlest cpu among the cpus in group.
4728  */
4729 static int
4730 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4731 {
4732 	unsigned long load, min_load = ULONG_MAX;
4733 	unsigned int min_exit_latency = UINT_MAX;
4734 	u64 latest_idle_timestamp = 0;
4735 	int least_loaded_cpu = this_cpu;
4736 	int shallowest_idle_cpu = -1;
4737 	int i;
4738 
4739 	/* Traverse only the allowed CPUs */
4740 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4741 		if (idle_cpu(i)) {
4742 			struct rq *rq = cpu_rq(i);
4743 			struct cpuidle_state *idle = idle_get_state(rq);
4744 			if (idle && idle->exit_latency < min_exit_latency) {
4745 				/*
4746 				 * We give priority to a CPU whose idle state
4747 				 * has the smallest exit latency irrespective
4748 				 * of any idle timestamp.
4749 				 */
4750 				min_exit_latency = idle->exit_latency;
4751 				latest_idle_timestamp = rq->idle_stamp;
4752 				shallowest_idle_cpu = i;
4753 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
4754 				   rq->idle_stamp > latest_idle_timestamp) {
4755 				/*
4756 				 * If equal or no active idle state, then
4757 				 * the most recently idled CPU might have
4758 				 * a warmer cache.
4759 				 */
4760 				latest_idle_timestamp = rq->idle_stamp;
4761 				shallowest_idle_cpu = i;
4762 			}
4763 		} else if (shallowest_idle_cpu == -1) {
4764 			load = weighted_cpuload(i);
4765 			if (load < min_load || (load == min_load && i == this_cpu)) {
4766 				min_load = load;
4767 				least_loaded_cpu = i;
4768 			}
4769 		}
4770 	}
4771 
4772 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4773 }
4774 
4775 /*
4776  * Try and locate an idle CPU in the sched_domain.
4777  */
4778 static int select_idle_sibling(struct task_struct *p, int target)
4779 {
4780 	struct sched_domain *sd;
4781 	struct sched_group *sg;
4782 	int i = task_cpu(p);
4783 
4784 	if (idle_cpu(target))
4785 		return target;
4786 
4787 	/*
4788 	 * If the prevous cpu is cache affine and idle, don't be stupid.
4789 	 */
4790 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4791 		return i;
4792 
4793 	/*
4794 	 * Otherwise, iterate the domains and find an elegible idle cpu.
4795 	 */
4796 	sd = rcu_dereference(per_cpu(sd_llc, target));
4797 	for_each_lower_domain(sd) {
4798 		sg = sd->groups;
4799 		do {
4800 			if (!cpumask_intersects(sched_group_cpus(sg),
4801 						tsk_cpus_allowed(p)))
4802 				goto next;
4803 
4804 			for_each_cpu(i, sched_group_cpus(sg)) {
4805 				if (i == target || !idle_cpu(i))
4806 					goto next;
4807 			}
4808 
4809 			target = cpumask_first_and(sched_group_cpus(sg),
4810 					tsk_cpus_allowed(p));
4811 			goto done;
4812 next:
4813 			sg = sg->next;
4814 		} while (sg != sd->groups);
4815 	}
4816 done:
4817 	return target;
4818 }
4819 /*
4820  * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4821  * tasks. The unit of the return value must be the one of capacity so we can
4822  * compare the usage with the capacity of the CPU that is available for CFS
4823  * task (ie cpu_capacity).
4824  * cfs.avg.util_avg is the sum of running time of runnable tasks on a
4825  * CPU. It represents the amount of utilization of a CPU in the range
4826  * [0..SCHED_LOAD_SCALE].  The usage of a CPU can't be higher than the full
4827  * capacity of the CPU because it's about the running time on this CPU.
4828  * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE
4829  * because of unfortunate rounding in util_avg or just
4830  * after migrating tasks until the average stabilizes with the new running
4831  * time. So we need to check that the usage stays into the range
4832  * [0..cpu_capacity_orig] and cap if necessary.
4833  * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4834  * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4835  */
4836 static int get_cpu_usage(int cpu)
4837 {
4838 	unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg;
4839 	unsigned long capacity = capacity_orig_of(cpu);
4840 
4841 	if (usage >= SCHED_LOAD_SCALE)
4842 		return capacity;
4843 
4844 	return (usage * capacity) >> SCHED_LOAD_SHIFT;
4845 }
4846 
4847 /*
4848  * select_task_rq_fair: Select target runqueue for the waking task in domains
4849  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4850  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4851  *
4852  * Balances load by selecting the idlest cpu in the idlest group, or under
4853  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4854  *
4855  * Returns the target cpu number.
4856  *
4857  * preempt must be disabled.
4858  */
4859 static int
4860 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4861 {
4862 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4863 	int cpu = smp_processor_id();
4864 	int new_cpu = prev_cpu;
4865 	int want_affine = 0;
4866 	int sync = wake_flags & WF_SYNC;
4867 
4868 	if (sd_flag & SD_BALANCE_WAKE)
4869 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4870 
4871 	rcu_read_lock();
4872 	for_each_domain(cpu, tmp) {
4873 		if (!(tmp->flags & SD_LOAD_BALANCE))
4874 			break;
4875 
4876 		/*
4877 		 * If both cpu and prev_cpu are part of this domain,
4878 		 * cpu is a valid SD_WAKE_AFFINE target.
4879 		 */
4880 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4881 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4882 			affine_sd = tmp;
4883 			break;
4884 		}
4885 
4886 		if (tmp->flags & sd_flag)
4887 			sd = tmp;
4888 		else if (!want_affine)
4889 			break;
4890 	}
4891 
4892 	if (affine_sd) {
4893 		sd = NULL; /* Prefer wake_affine over balance flags */
4894 		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4895 			new_cpu = cpu;
4896 	}
4897 
4898 	if (!sd) {
4899 		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
4900 			new_cpu = select_idle_sibling(p, new_cpu);
4901 
4902 	} else while (sd) {
4903 		struct sched_group *group;
4904 		int weight;
4905 
4906 		if (!(sd->flags & sd_flag)) {
4907 			sd = sd->child;
4908 			continue;
4909 		}
4910 
4911 		group = find_idlest_group(sd, p, cpu, sd_flag);
4912 		if (!group) {
4913 			sd = sd->child;
4914 			continue;
4915 		}
4916 
4917 		new_cpu = find_idlest_cpu(group, p, cpu);
4918 		if (new_cpu == -1 || new_cpu == cpu) {
4919 			/* Now try balancing at a lower domain level of cpu */
4920 			sd = sd->child;
4921 			continue;
4922 		}
4923 
4924 		/* Now try balancing at a lower domain level of new_cpu */
4925 		cpu = new_cpu;
4926 		weight = sd->span_weight;
4927 		sd = NULL;
4928 		for_each_domain(cpu, tmp) {
4929 			if (weight <= tmp->span_weight)
4930 				break;
4931 			if (tmp->flags & sd_flag)
4932 				sd = tmp;
4933 		}
4934 		/* while loop will break here if sd == NULL */
4935 	}
4936 	rcu_read_unlock();
4937 
4938 	return new_cpu;
4939 }
4940 
4941 /*
4942  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4943  * cfs_rq_of(p) references at time of call are still valid and identify the
4944  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4945  * other assumptions, including the state of rq->lock, should be made.
4946  */
4947 static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4948 {
4949 	/*
4950 	 * We are supposed to update the task to "current" time, then its up to date
4951 	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
4952 	 * what current time is, so simply throw away the out-of-date time. This
4953 	 * will result in the wakee task is less decayed, but giving the wakee more
4954 	 * load sounds not bad.
4955 	 */
4956 	remove_entity_load_avg(&p->se);
4957 
4958 	/* Tell new CPU we are migrated */
4959 	p->se.avg.last_update_time = 0;
4960 
4961 	/* We have migrated, no longer consider this task hot */
4962 	p->se.exec_start = 0;
4963 }
4964 
4965 static void task_dead_fair(struct task_struct *p)
4966 {
4967 	remove_entity_load_avg(&p->se);
4968 }
4969 #endif /* CONFIG_SMP */
4970 
4971 static unsigned long
4972 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4973 {
4974 	unsigned long gran = sysctl_sched_wakeup_granularity;
4975 
4976 	/*
4977 	 * Since its curr running now, convert the gran from real-time
4978 	 * to virtual-time in his units.
4979 	 *
4980 	 * By using 'se' instead of 'curr' we penalize light tasks, so
4981 	 * they get preempted easier. That is, if 'se' < 'curr' then
4982 	 * the resulting gran will be larger, therefore penalizing the
4983 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4984 	 * be smaller, again penalizing the lighter task.
4985 	 *
4986 	 * This is especially important for buddies when the leftmost
4987 	 * task is higher priority than the buddy.
4988 	 */
4989 	return calc_delta_fair(gran, se);
4990 }
4991 
4992 /*
4993  * Should 'se' preempt 'curr'.
4994  *
4995  *             |s1
4996  *        |s2
4997  *   |s3
4998  *         g
4999  *      |<--->|c
5000  *
5001  *  w(c, s1) = -1
5002  *  w(c, s2) =  0
5003  *  w(c, s3) =  1
5004  *
5005  */
5006 static int
5007 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5008 {
5009 	s64 gran, vdiff = curr->vruntime - se->vruntime;
5010 
5011 	if (vdiff <= 0)
5012 		return -1;
5013 
5014 	gran = wakeup_gran(curr, se);
5015 	if (vdiff > gran)
5016 		return 1;
5017 
5018 	return 0;
5019 }
5020 
5021 static void set_last_buddy(struct sched_entity *se)
5022 {
5023 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5024 		return;
5025 
5026 	for_each_sched_entity(se)
5027 		cfs_rq_of(se)->last = se;
5028 }
5029 
5030 static void set_next_buddy(struct sched_entity *se)
5031 {
5032 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5033 		return;
5034 
5035 	for_each_sched_entity(se)
5036 		cfs_rq_of(se)->next = se;
5037 }
5038 
5039 static void set_skip_buddy(struct sched_entity *se)
5040 {
5041 	for_each_sched_entity(se)
5042 		cfs_rq_of(se)->skip = se;
5043 }
5044 
5045 /*
5046  * Preempt the current task with a newly woken task if needed:
5047  */
5048 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5049 {
5050 	struct task_struct *curr = rq->curr;
5051 	struct sched_entity *se = &curr->se, *pse = &p->se;
5052 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5053 	int scale = cfs_rq->nr_running >= sched_nr_latency;
5054 	int next_buddy_marked = 0;
5055 
5056 	if (unlikely(se == pse))
5057 		return;
5058 
5059 	/*
5060 	 * This is possible from callers such as attach_tasks(), in which we
5061 	 * unconditionally check_prempt_curr() after an enqueue (which may have
5062 	 * lead to a throttle).  This both saves work and prevents false
5063 	 * next-buddy nomination below.
5064 	 */
5065 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5066 		return;
5067 
5068 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5069 		set_next_buddy(pse);
5070 		next_buddy_marked = 1;
5071 	}
5072 
5073 	/*
5074 	 * We can come here with TIF_NEED_RESCHED already set from new task
5075 	 * wake up path.
5076 	 *
5077 	 * Note: this also catches the edge-case of curr being in a throttled
5078 	 * group (e.g. via set_curr_task), since update_curr() (in the
5079 	 * enqueue of curr) will have resulted in resched being set.  This
5080 	 * prevents us from potentially nominating it as a false LAST_BUDDY
5081 	 * below.
5082 	 */
5083 	if (test_tsk_need_resched(curr))
5084 		return;
5085 
5086 	/* Idle tasks are by definition preempted by non-idle tasks. */
5087 	if (unlikely(curr->policy == SCHED_IDLE) &&
5088 	    likely(p->policy != SCHED_IDLE))
5089 		goto preempt;
5090 
5091 	/*
5092 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5093 	 * is driven by the tick):
5094 	 */
5095 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5096 		return;
5097 
5098 	find_matching_se(&se, &pse);
5099 	update_curr(cfs_rq_of(se));
5100 	BUG_ON(!pse);
5101 	if (wakeup_preempt_entity(se, pse) == 1) {
5102 		/*
5103 		 * Bias pick_next to pick the sched entity that is
5104 		 * triggering this preemption.
5105 		 */
5106 		if (!next_buddy_marked)
5107 			set_next_buddy(pse);
5108 		goto preempt;
5109 	}
5110 
5111 	return;
5112 
5113 preempt:
5114 	resched_curr(rq);
5115 	/*
5116 	 * Only set the backward buddy when the current task is still
5117 	 * on the rq. This can happen when a wakeup gets interleaved
5118 	 * with schedule on the ->pre_schedule() or idle_balance()
5119 	 * point, either of which can * drop the rq lock.
5120 	 *
5121 	 * Also, during early boot the idle thread is in the fair class,
5122 	 * for obvious reasons its a bad idea to schedule back to it.
5123 	 */
5124 	if (unlikely(!se->on_rq || curr == rq->idle))
5125 		return;
5126 
5127 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5128 		set_last_buddy(se);
5129 }
5130 
5131 static struct task_struct *
5132 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5133 {
5134 	struct cfs_rq *cfs_rq = &rq->cfs;
5135 	struct sched_entity *se;
5136 	struct task_struct *p;
5137 	int new_tasks;
5138 
5139 again:
5140 #ifdef CONFIG_FAIR_GROUP_SCHED
5141 	if (!cfs_rq->nr_running)
5142 		goto idle;
5143 
5144 	if (prev->sched_class != &fair_sched_class)
5145 		goto simple;
5146 
5147 	/*
5148 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5149 	 * likely that a next task is from the same cgroup as the current.
5150 	 *
5151 	 * Therefore attempt to avoid putting and setting the entire cgroup
5152 	 * hierarchy, only change the part that actually changes.
5153 	 */
5154 
5155 	do {
5156 		struct sched_entity *curr = cfs_rq->curr;
5157 
5158 		/*
5159 		 * Since we got here without doing put_prev_entity() we also
5160 		 * have to consider cfs_rq->curr. If it is still a runnable
5161 		 * entity, update_curr() will update its vruntime, otherwise
5162 		 * forget we've ever seen it.
5163 		 */
5164 		if (curr) {
5165 			if (curr->on_rq)
5166 				update_curr(cfs_rq);
5167 			else
5168 				curr = NULL;
5169 
5170 			/*
5171 			 * This call to check_cfs_rq_runtime() will do the
5172 			 * throttle and dequeue its entity in the parent(s).
5173 			 * Therefore the 'simple' nr_running test will indeed
5174 			 * be correct.
5175 			 */
5176 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5177 				goto simple;
5178 		}
5179 
5180 		se = pick_next_entity(cfs_rq, curr);
5181 		cfs_rq = group_cfs_rq(se);
5182 	} while (cfs_rq);
5183 
5184 	p = task_of(se);
5185 
5186 	/*
5187 	 * Since we haven't yet done put_prev_entity and if the selected task
5188 	 * is a different task than we started out with, try and touch the
5189 	 * least amount of cfs_rqs.
5190 	 */
5191 	if (prev != p) {
5192 		struct sched_entity *pse = &prev->se;
5193 
5194 		while (!(cfs_rq = is_same_group(se, pse))) {
5195 			int se_depth = se->depth;
5196 			int pse_depth = pse->depth;
5197 
5198 			if (se_depth <= pse_depth) {
5199 				put_prev_entity(cfs_rq_of(pse), pse);
5200 				pse = parent_entity(pse);
5201 			}
5202 			if (se_depth >= pse_depth) {
5203 				set_next_entity(cfs_rq_of(se), se);
5204 				se = parent_entity(se);
5205 			}
5206 		}
5207 
5208 		put_prev_entity(cfs_rq, pse);
5209 		set_next_entity(cfs_rq, se);
5210 	}
5211 
5212 	if (hrtick_enabled(rq))
5213 		hrtick_start_fair(rq, p);
5214 
5215 	return p;
5216 simple:
5217 	cfs_rq = &rq->cfs;
5218 #endif
5219 
5220 	if (!cfs_rq->nr_running)
5221 		goto idle;
5222 
5223 	put_prev_task(rq, prev);
5224 
5225 	do {
5226 		se = pick_next_entity(cfs_rq, NULL);
5227 		set_next_entity(cfs_rq, se);
5228 		cfs_rq = group_cfs_rq(se);
5229 	} while (cfs_rq);
5230 
5231 	p = task_of(se);
5232 
5233 	if (hrtick_enabled(rq))
5234 		hrtick_start_fair(rq, p);
5235 
5236 	return p;
5237 
5238 idle:
5239 	/*
5240 	 * This is OK, because current is on_cpu, which avoids it being picked
5241 	 * for load-balance and preemption/IRQs are still disabled avoiding
5242 	 * further scheduler activity on it and we're being very careful to
5243 	 * re-start the picking loop.
5244 	 */
5245 	lockdep_unpin_lock(&rq->lock);
5246 	new_tasks = idle_balance(rq);
5247 	lockdep_pin_lock(&rq->lock);
5248 	/*
5249 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5250 	 * possible for any higher priority task to appear. In that case we
5251 	 * must re-start the pick_next_entity() loop.
5252 	 */
5253 	if (new_tasks < 0)
5254 		return RETRY_TASK;
5255 
5256 	if (new_tasks > 0)
5257 		goto again;
5258 
5259 	return NULL;
5260 }
5261 
5262 /*
5263  * Account for a descheduled task:
5264  */
5265 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5266 {
5267 	struct sched_entity *se = &prev->se;
5268 	struct cfs_rq *cfs_rq;
5269 
5270 	for_each_sched_entity(se) {
5271 		cfs_rq = cfs_rq_of(se);
5272 		put_prev_entity(cfs_rq, se);
5273 	}
5274 }
5275 
5276 /*
5277  * sched_yield() is very simple
5278  *
5279  * The magic of dealing with the ->skip buddy is in pick_next_entity.
5280  */
5281 static void yield_task_fair(struct rq *rq)
5282 {
5283 	struct task_struct *curr = rq->curr;
5284 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5285 	struct sched_entity *se = &curr->se;
5286 
5287 	/*
5288 	 * Are we the only task in the tree?
5289 	 */
5290 	if (unlikely(rq->nr_running == 1))
5291 		return;
5292 
5293 	clear_buddies(cfs_rq, se);
5294 
5295 	if (curr->policy != SCHED_BATCH) {
5296 		update_rq_clock(rq);
5297 		/*
5298 		 * Update run-time statistics of the 'current'.
5299 		 */
5300 		update_curr(cfs_rq);
5301 		/*
5302 		 * Tell update_rq_clock() that we've just updated,
5303 		 * so we don't do microscopic update in schedule()
5304 		 * and double the fastpath cost.
5305 		 */
5306 		rq_clock_skip_update(rq, true);
5307 	}
5308 
5309 	set_skip_buddy(se);
5310 }
5311 
5312 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5313 {
5314 	struct sched_entity *se = &p->se;
5315 
5316 	/* throttled hierarchies are not runnable */
5317 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5318 		return false;
5319 
5320 	/* Tell the scheduler that we'd really like pse to run next. */
5321 	set_next_buddy(se);
5322 
5323 	yield_task_fair(rq);
5324 
5325 	return true;
5326 }
5327 
5328 #ifdef CONFIG_SMP
5329 /**************************************************
5330  * Fair scheduling class load-balancing methods.
5331  *
5332  * BASICS
5333  *
5334  * The purpose of load-balancing is to achieve the same basic fairness the
5335  * per-cpu scheduler provides, namely provide a proportional amount of compute
5336  * time to each task. This is expressed in the following equation:
5337  *
5338  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
5339  *
5340  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5341  * W_i,0 is defined as:
5342  *
5343  *   W_i,0 = \Sum_j w_i,j                                             (2)
5344  *
5345  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5346  * is derived from the nice value as per prio_to_weight[].
5347  *
5348  * The weight average is an exponential decay average of the instantaneous
5349  * weight:
5350  *
5351  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5352  *
5353  * C_i is the compute capacity of cpu i, typically it is the
5354  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5355  * can also include other factors [XXX].
5356  *
5357  * To achieve this balance we define a measure of imbalance which follows
5358  * directly from (1):
5359  *
5360  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5361  *
5362  * We them move tasks around to minimize the imbalance. In the continuous
5363  * function space it is obvious this converges, in the discrete case we get
5364  * a few fun cases generally called infeasible weight scenarios.
5365  *
5366  * [XXX expand on:
5367  *     - infeasible weights;
5368  *     - local vs global optima in the discrete case. ]
5369  *
5370  *
5371  * SCHED DOMAINS
5372  *
5373  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5374  * for all i,j solution, we create a tree of cpus that follows the hardware
5375  * topology where each level pairs two lower groups (or better). This results
5376  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5377  * tree to only the first of the previous level and we decrease the frequency
5378  * of load-balance at each level inv. proportional to the number of cpus in
5379  * the groups.
5380  *
5381  * This yields:
5382  *
5383  *     log_2 n     1     n
5384  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5385  *     i = 0      2^i   2^i
5386  *                               `- size of each group
5387  *         |         |     `- number of cpus doing load-balance
5388  *         |         `- freq
5389  *         `- sum over all levels
5390  *
5391  * Coupled with a limit on how many tasks we can migrate every balance pass,
5392  * this makes (5) the runtime complexity of the balancer.
5393  *
5394  * An important property here is that each CPU is still (indirectly) connected
5395  * to every other cpu in at most O(log n) steps:
5396  *
5397  * The adjacency matrix of the resulting graph is given by:
5398  *
5399  *             log_2 n
5400  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5401  *             k = 0
5402  *
5403  * And you'll find that:
5404  *
5405  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5406  *
5407  * Showing there's indeed a path between every cpu in at most O(log n) steps.
5408  * The task movement gives a factor of O(m), giving a convergence complexity
5409  * of:
5410  *
5411  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5412  *
5413  *
5414  * WORK CONSERVING
5415  *
5416  * In order to avoid CPUs going idle while there's still work to do, new idle
5417  * balancing is more aggressive and has the newly idle cpu iterate up the domain
5418  * tree itself instead of relying on other CPUs to bring it work.
5419  *
5420  * This adds some complexity to both (5) and (8) but it reduces the total idle
5421  * time.
5422  *
5423  * [XXX more?]
5424  *
5425  *
5426  * CGROUPS
5427  *
5428  * Cgroups make a horror show out of (2), instead of a simple sum we get:
5429  *
5430  *                                s_k,i
5431  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5432  *                                 S_k
5433  *
5434  * Where
5435  *
5436  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5437  *
5438  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5439  *
5440  * The big problem is S_k, its a global sum needed to compute a local (W_i)
5441  * property.
5442  *
5443  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5444  *      rewrite all of this once again.]
5445  */
5446 
5447 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5448 
5449 enum fbq_type { regular, remote, all };
5450 
5451 #define LBF_ALL_PINNED	0x01
5452 #define LBF_NEED_BREAK	0x02
5453 #define LBF_DST_PINNED  0x04
5454 #define LBF_SOME_PINNED	0x08
5455 
5456 struct lb_env {
5457 	struct sched_domain	*sd;
5458 
5459 	struct rq		*src_rq;
5460 	int			src_cpu;
5461 
5462 	int			dst_cpu;
5463 	struct rq		*dst_rq;
5464 
5465 	struct cpumask		*dst_grpmask;
5466 	int			new_dst_cpu;
5467 	enum cpu_idle_type	idle;
5468 	long			imbalance;
5469 	/* The set of CPUs under consideration for load-balancing */
5470 	struct cpumask		*cpus;
5471 
5472 	unsigned int		flags;
5473 
5474 	unsigned int		loop;
5475 	unsigned int		loop_break;
5476 	unsigned int		loop_max;
5477 
5478 	enum fbq_type		fbq_type;
5479 	struct list_head	tasks;
5480 };
5481 
5482 /*
5483  * Is this task likely cache-hot:
5484  */
5485 static int task_hot(struct task_struct *p, struct lb_env *env)
5486 {
5487 	s64 delta;
5488 
5489 	lockdep_assert_held(&env->src_rq->lock);
5490 
5491 	if (p->sched_class != &fair_sched_class)
5492 		return 0;
5493 
5494 	if (unlikely(p->policy == SCHED_IDLE))
5495 		return 0;
5496 
5497 	/*
5498 	 * Buddy candidates are cache hot:
5499 	 */
5500 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5501 			(&p->se == cfs_rq_of(&p->se)->next ||
5502 			 &p->se == cfs_rq_of(&p->se)->last))
5503 		return 1;
5504 
5505 	if (sysctl_sched_migration_cost == -1)
5506 		return 1;
5507 	if (sysctl_sched_migration_cost == 0)
5508 		return 0;
5509 
5510 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5511 
5512 	return delta < (s64)sysctl_sched_migration_cost;
5513 }
5514 
5515 #ifdef CONFIG_NUMA_BALANCING
5516 /*
5517  * Returns 1, if task migration degrades locality
5518  * Returns 0, if task migration improves locality i.e migration preferred.
5519  * Returns -1, if task migration is not affected by locality.
5520  */
5521 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5522 {
5523 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5524 	unsigned long src_faults, dst_faults;
5525 	int src_nid, dst_nid;
5526 
5527 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5528 		return -1;
5529 
5530 	if (!sched_feat(NUMA))
5531 		return -1;
5532 
5533 	src_nid = cpu_to_node(env->src_cpu);
5534 	dst_nid = cpu_to_node(env->dst_cpu);
5535 
5536 	if (src_nid == dst_nid)
5537 		return -1;
5538 
5539 	/* Migrating away from the preferred node is always bad. */
5540 	if (src_nid == p->numa_preferred_nid) {
5541 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5542 			return 1;
5543 		else
5544 			return -1;
5545 	}
5546 
5547 	/* Encourage migration to the preferred node. */
5548 	if (dst_nid == p->numa_preferred_nid)
5549 		return 0;
5550 
5551 	if (numa_group) {
5552 		src_faults = group_faults(p, src_nid);
5553 		dst_faults = group_faults(p, dst_nid);
5554 	} else {
5555 		src_faults = task_faults(p, src_nid);
5556 		dst_faults = task_faults(p, dst_nid);
5557 	}
5558 
5559 	return dst_faults < src_faults;
5560 }
5561 
5562 #else
5563 static inline int migrate_degrades_locality(struct task_struct *p,
5564 					     struct lb_env *env)
5565 {
5566 	return -1;
5567 }
5568 #endif
5569 
5570 /*
5571  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5572  */
5573 static
5574 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5575 {
5576 	int tsk_cache_hot;
5577 
5578 	lockdep_assert_held(&env->src_rq->lock);
5579 
5580 	/*
5581 	 * We do not migrate tasks that are:
5582 	 * 1) throttled_lb_pair, or
5583 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5584 	 * 3) running (obviously), or
5585 	 * 4) are cache-hot on their current CPU.
5586 	 */
5587 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5588 		return 0;
5589 
5590 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5591 		int cpu;
5592 
5593 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5594 
5595 		env->flags |= LBF_SOME_PINNED;
5596 
5597 		/*
5598 		 * Remember if this task can be migrated to any other cpu in
5599 		 * our sched_group. We may want to revisit it if we couldn't
5600 		 * meet load balance goals by pulling other tasks on src_cpu.
5601 		 *
5602 		 * Also avoid computing new_dst_cpu if we have already computed
5603 		 * one in current iteration.
5604 		 */
5605 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5606 			return 0;
5607 
5608 		/* Prevent to re-select dst_cpu via env's cpus */
5609 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5610 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5611 				env->flags |= LBF_DST_PINNED;
5612 				env->new_dst_cpu = cpu;
5613 				break;
5614 			}
5615 		}
5616 
5617 		return 0;
5618 	}
5619 
5620 	/* Record that we found atleast one task that could run on dst_cpu */
5621 	env->flags &= ~LBF_ALL_PINNED;
5622 
5623 	if (task_running(env->src_rq, p)) {
5624 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5625 		return 0;
5626 	}
5627 
5628 	/*
5629 	 * Aggressive migration if:
5630 	 * 1) destination numa is preferred
5631 	 * 2) task is cache cold, or
5632 	 * 3) too many balance attempts have failed.
5633 	 */
5634 	tsk_cache_hot = migrate_degrades_locality(p, env);
5635 	if (tsk_cache_hot == -1)
5636 		tsk_cache_hot = task_hot(p, env);
5637 
5638 	if (tsk_cache_hot <= 0 ||
5639 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5640 		if (tsk_cache_hot == 1) {
5641 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5642 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5643 		}
5644 		return 1;
5645 	}
5646 
5647 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5648 	return 0;
5649 }
5650 
5651 /*
5652  * detach_task() -- detach the task for the migration specified in env
5653  */
5654 static void detach_task(struct task_struct *p, struct lb_env *env)
5655 {
5656 	lockdep_assert_held(&env->src_rq->lock);
5657 
5658 	deactivate_task(env->src_rq, p, 0);
5659 	p->on_rq = TASK_ON_RQ_MIGRATING;
5660 	set_task_cpu(p, env->dst_cpu);
5661 }
5662 
5663 /*
5664  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5665  * part of active balancing operations within "domain".
5666  *
5667  * Returns a task if successful and NULL otherwise.
5668  */
5669 static struct task_struct *detach_one_task(struct lb_env *env)
5670 {
5671 	struct task_struct *p, *n;
5672 
5673 	lockdep_assert_held(&env->src_rq->lock);
5674 
5675 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5676 		if (!can_migrate_task(p, env))
5677 			continue;
5678 
5679 		detach_task(p, env);
5680 
5681 		/*
5682 		 * Right now, this is only the second place where
5683 		 * lb_gained[env->idle] is updated (other is detach_tasks)
5684 		 * so we can safely collect stats here rather than
5685 		 * inside detach_tasks().
5686 		 */
5687 		schedstat_inc(env->sd, lb_gained[env->idle]);
5688 		return p;
5689 	}
5690 	return NULL;
5691 }
5692 
5693 static const unsigned int sched_nr_migrate_break = 32;
5694 
5695 /*
5696  * detach_tasks() -- tries to detach up to imbalance weighted load from
5697  * busiest_rq, as part of a balancing operation within domain "sd".
5698  *
5699  * Returns number of detached tasks if successful and 0 otherwise.
5700  */
5701 static int detach_tasks(struct lb_env *env)
5702 {
5703 	struct list_head *tasks = &env->src_rq->cfs_tasks;
5704 	struct task_struct *p;
5705 	unsigned long load;
5706 	int detached = 0;
5707 
5708 	lockdep_assert_held(&env->src_rq->lock);
5709 
5710 	if (env->imbalance <= 0)
5711 		return 0;
5712 
5713 	while (!list_empty(tasks)) {
5714 		/*
5715 		 * We don't want to steal all, otherwise we may be treated likewise,
5716 		 * which could at worst lead to a livelock crash.
5717 		 */
5718 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5719 			break;
5720 
5721 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5722 
5723 		env->loop++;
5724 		/* We've more or less seen every task there is, call it quits */
5725 		if (env->loop > env->loop_max)
5726 			break;
5727 
5728 		/* take a breather every nr_migrate tasks */
5729 		if (env->loop > env->loop_break) {
5730 			env->loop_break += sched_nr_migrate_break;
5731 			env->flags |= LBF_NEED_BREAK;
5732 			break;
5733 		}
5734 
5735 		if (!can_migrate_task(p, env))
5736 			goto next;
5737 
5738 		load = task_h_load(p);
5739 
5740 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5741 			goto next;
5742 
5743 		if ((load / 2) > env->imbalance)
5744 			goto next;
5745 
5746 		detach_task(p, env);
5747 		list_add(&p->se.group_node, &env->tasks);
5748 
5749 		detached++;
5750 		env->imbalance -= load;
5751 
5752 #ifdef CONFIG_PREEMPT
5753 		/*
5754 		 * NEWIDLE balancing is a source of latency, so preemptible
5755 		 * kernels will stop after the first task is detached to minimize
5756 		 * the critical section.
5757 		 */
5758 		if (env->idle == CPU_NEWLY_IDLE)
5759 			break;
5760 #endif
5761 
5762 		/*
5763 		 * We only want to steal up to the prescribed amount of
5764 		 * weighted load.
5765 		 */
5766 		if (env->imbalance <= 0)
5767 			break;
5768 
5769 		continue;
5770 next:
5771 		list_move_tail(&p->se.group_node, tasks);
5772 	}
5773 
5774 	/*
5775 	 * Right now, this is one of only two places we collect this stat
5776 	 * so we can safely collect detach_one_task() stats here rather
5777 	 * than inside detach_one_task().
5778 	 */
5779 	schedstat_add(env->sd, lb_gained[env->idle], detached);
5780 
5781 	return detached;
5782 }
5783 
5784 /*
5785  * attach_task() -- attach the task detached by detach_task() to its new rq.
5786  */
5787 static void attach_task(struct rq *rq, struct task_struct *p)
5788 {
5789 	lockdep_assert_held(&rq->lock);
5790 
5791 	BUG_ON(task_rq(p) != rq);
5792 	p->on_rq = TASK_ON_RQ_QUEUED;
5793 	activate_task(rq, p, 0);
5794 	check_preempt_curr(rq, p, 0);
5795 }
5796 
5797 /*
5798  * attach_one_task() -- attaches the task returned from detach_one_task() to
5799  * its new rq.
5800  */
5801 static void attach_one_task(struct rq *rq, struct task_struct *p)
5802 {
5803 	raw_spin_lock(&rq->lock);
5804 	attach_task(rq, p);
5805 	raw_spin_unlock(&rq->lock);
5806 }
5807 
5808 /*
5809  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5810  * new rq.
5811  */
5812 static void attach_tasks(struct lb_env *env)
5813 {
5814 	struct list_head *tasks = &env->tasks;
5815 	struct task_struct *p;
5816 
5817 	raw_spin_lock(&env->dst_rq->lock);
5818 
5819 	while (!list_empty(tasks)) {
5820 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5821 		list_del_init(&p->se.group_node);
5822 
5823 		attach_task(env->dst_rq, p);
5824 	}
5825 
5826 	raw_spin_unlock(&env->dst_rq->lock);
5827 }
5828 
5829 #ifdef CONFIG_FAIR_GROUP_SCHED
5830 static void update_blocked_averages(int cpu)
5831 {
5832 	struct rq *rq = cpu_rq(cpu);
5833 	struct cfs_rq *cfs_rq;
5834 	unsigned long flags;
5835 
5836 	raw_spin_lock_irqsave(&rq->lock, flags);
5837 	update_rq_clock(rq);
5838 
5839 	/*
5840 	 * Iterates the task_group tree in a bottom up fashion, see
5841 	 * list_add_leaf_cfs_rq() for details.
5842 	 */
5843 	for_each_leaf_cfs_rq(rq, cfs_rq) {
5844 		/* throttled entities do not contribute to load */
5845 		if (throttled_hierarchy(cfs_rq))
5846 			continue;
5847 
5848 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5849 			update_tg_load_avg(cfs_rq, 0);
5850 	}
5851 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5852 }
5853 
5854 /*
5855  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5856  * This needs to be done in a top-down fashion because the load of a child
5857  * group is a fraction of its parents load.
5858  */
5859 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5860 {
5861 	struct rq *rq = rq_of(cfs_rq);
5862 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5863 	unsigned long now = jiffies;
5864 	unsigned long load;
5865 
5866 	if (cfs_rq->last_h_load_update == now)
5867 		return;
5868 
5869 	cfs_rq->h_load_next = NULL;
5870 	for_each_sched_entity(se) {
5871 		cfs_rq = cfs_rq_of(se);
5872 		cfs_rq->h_load_next = se;
5873 		if (cfs_rq->last_h_load_update == now)
5874 			break;
5875 	}
5876 
5877 	if (!se) {
5878 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
5879 		cfs_rq->last_h_load_update = now;
5880 	}
5881 
5882 	while ((se = cfs_rq->h_load_next) != NULL) {
5883 		load = cfs_rq->h_load;
5884 		load = div64_ul(load * se->avg.load_avg,
5885 			cfs_rq_load_avg(cfs_rq) + 1);
5886 		cfs_rq = group_cfs_rq(se);
5887 		cfs_rq->h_load = load;
5888 		cfs_rq->last_h_load_update = now;
5889 	}
5890 }
5891 
5892 static unsigned long task_h_load(struct task_struct *p)
5893 {
5894 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5895 
5896 	update_cfs_rq_h_load(cfs_rq);
5897 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
5898 			cfs_rq_load_avg(cfs_rq) + 1);
5899 }
5900 #else
5901 static inline void update_blocked_averages(int cpu)
5902 {
5903 	struct rq *rq = cpu_rq(cpu);
5904 	struct cfs_rq *cfs_rq = &rq->cfs;
5905 	unsigned long flags;
5906 
5907 	raw_spin_lock_irqsave(&rq->lock, flags);
5908 	update_rq_clock(rq);
5909 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5910 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5911 }
5912 
5913 static unsigned long task_h_load(struct task_struct *p)
5914 {
5915 	return p->se.avg.load_avg;
5916 }
5917 #endif
5918 
5919 /********** Helpers for find_busiest_group ************************/
5920 
5921 enum group_type {
5922 	group_other = 0,
5923 	group_imbalanced,
5924 	group_overloaded,
5925 };
5926 
5927 /*
5928  * sg_lb_stats - stats of a sched_group required for load_balancing
5929  */
5930 struct sg_lb_stats {
5931 	unsigned long avg_load; /*Avg load across the CPUs of the group */
5932 	unsigned long group_load; /* Total load over the CPUs of the group */
5933 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5934 	unsigned long load_per_task;
5935 	unsigned long group_capacity;
5936 	unsigned long group_usage; /* Total usage of the group */
5937 	unsigned int sum_nr_running; /* Nr tasks running in the group */
5938 	unsigned int idle_cpus;
5939 	unsigned int group_weight;
5940 	enum group_type group_type;
5941 	int group_no_capacity;
5942 #ifdef CONFIG_NUMA_BALANCING
5943 	unsigned int nr_numa_running;
5944 	unsigned int nr_preferred_running;
5945 #endif
5946 };
5947 
5948 /*
5949  * sd_lb_stats - Structure to store the statistics of a sched_domain
5950  *		 during load balancing.
5951  */
5952 struct sd_lb_stats {
5953 	struct sched_group *busiest;	/* Busiest group in this sd */
5954 	struct sched_group *local;	/* Local group in this sd */
5955 	unsigned long total_load;	/* Total load of all groups in sd */
5956 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
5957 	unsigned long avg_load;	/* Average load across all groups in sd */
5958 
5959 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5960 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5961 };
5962 
5963 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5964 {
5965 	/*
5966 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5967 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5968 	 * We must however clear busiest_stat::avg_load because
5969 	 * update_sd_pick_busiest() reads this before assignment.
5970 	 */
5971 	*sds = (struct sd_lb_stats){
5972 		.busiest = NULL,
5973 		.local = NULL,
5974 		.total_load = 0UL,
5975 		.total_capacity = 0UL,
5976 		.busiest_stat = {
5977 			.avg_load = 0UL,
5978 			.sum_nr_running = 0,
5979 			.group_type = group_other,
5980 		},
5981 	};
5982 }
5983 
5984 /**
5985  * get_sd_load_idx - Obtain the load index for a given sched domain.
5986  * @sd: The sched_domain whose load_idx is to be obtained.
5987  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5988  *
5989  * Return: The load index.
5990  */
5991 static inline int get_sd_load_idx(struct sched_domain *sd,
5992 					enum cpu_idle_type idle)
5993 {
5994 	int load_idx;
5995 
5996 	switch (idle) {
5997 	case CPU_NOT_IDLE:
5998 		load_idx = sd->busy_idx;
5999 		break;
6000 
6001 	case CPU_NEWLY_IDLE:
6002 		load_idx = sd->newidle_idx;
6003 		break;
6004 	default:
6005 		load_idx = sd->idle_idx;
6006 		break;
6007 	}
6008 
6009 	return load_idx;
6010 }
6011 
6012 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6013 {
6014 	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6015 		return sd->smt_gain / sd->span_weight;
6016 
6017 	return SCHED_CAPACITY_SCALE;
6018 }
6019 
6020 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6021 {
6022 	return default_scale_cpu_capacity(sd, cpu);
6023 }
6024 
6025 static unsigned long scale_rt_capacity(int cpu)
6026 {
6027 	struct rq *rq = cpu_rq(cpu);
6028 	u64 total, used, age_stamp, avg;
6029 	s64 delta;
6030 
6031 	/*
6032 	 * Since we're reading these variables without serialization make sure
6033 	 * we read them once before doing sanity checks on them.
6034 	 */
6035 	age_stamp = READ_ONCE(rq->age_stamp);
6036 	avg = READ_ONCE(rq->rt_avg);
6037 	delta = __rq_clock_broken(rq) - age_stamp;
6038 
6039 	if (unlikely(delta < 0))
6040 		delta = 0;
6041 
6042 	total = sched_avg_period() + delta;
6043 
6044 	used = div_u64(avg, total);
6045 
6046 	if (likely(used < SCHED_CAPACITY_SCALE))
6047 		return SCHED_CAPACITY_SCALE - used;
6048 
6049 	return 1;
6050 }
6051 
6052 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6053 {
6054 	unsigned long capacity = SCHED_CAPACITY_SCALE;
6055 	struct sched_group *sdg = sd->groups;
6056 
6057 	if (sched_feat(ARCH_CAPACITY))
6058 		capacity *= arch_scale_cpu_capacity(sd, cpu);
6059 	else
6060 		capacity *= default_scale_cpu_capacity(sd, cpu);
6061 
6062 	capacity >>= SCHED_CAPACITY_SHIFT;
6063 
6064 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6065 
6066 	capacity *= scale_rt_capacity(cpu);
6067 	capacity >>= SCHED_CAPACITY_SHIFT;
6068 
6069 	if (!capacity)
6070 		capacity = 1;
6071 
6072 	cpu_rq(cpu)->cpu_capacity = capacity;
6073 	sdg->sgc->capacity = capacity;
6074 }
6075 
6076 void update_group_capacity(struct sched_domain *sd, int cpu)
6077 {
6078 	struct sched_domain *child = sd->child;
6079 	struct sched_group *group, *sdg = sd->groups;
6080 	unsigned long capacity;
6081 	unsigned long interval;
6082 
6083 	interval = msecs_to_jiffies(sd->balance_interval);
6084 	interval = clamp(interval, 1UL, max_load_balance_interval);
6085 	sdg->sgc->next_update = jiffies + interval;
6086 
6087 	if (!child) {
6088 		update_cpu_capacity(sd, cpu);
6089 		return;
6090 	}
6091 
6092 	capacity = 0;
6093 
6094 	if (child->flags & SD_OVERLAP) {
6095 		/*
6096 		 * SD_OVERLAP domains cannot assume that child groups
6097 		 * span the current group.
6098 		 */
6099 
6100 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6101 			struct sched_group_capacity *sgc;
6102 			struct rq *rq = cpu_rq(cpu);
6103 
6104 			/*
6105 			 * build_sched_domains() -> init_sched_groups_capacity()
6106 			 * gets here before we've attached the domains to the
6107 			 * runqueues.
6108 			 *
6109 			 * Use capacity_of(), which is set irrespective of domains
6110 			 * in update_cpu_capacity().
6111 			 *
6112 			 * This avoids capacity from being 0 and
6113 			 * causing divide-by-zero issues on boot.
6114 			 */
6115 			if (unlikely(!rq->sd)) {
6116 				capacity += capacity_of(cpu);
6117 				continue;
6118 			}
6119 
6120 			sgc = rq->sd->groups->sgc;
6121 			capacity += sgc->capacity;
6122 		}
6123 	} else  {
6124 		/*
6125 		 * !SD_OVERLAP domains can assume that child groups
6126 		 * span the current group.
6127 		 */
6128 
6129 		group = child->groups;
6130 		do {
6131 			capacity += group->sgc->capacity;
6132 			group = group->next;
6133 		} while (group != child->groups);
6134 	}
6135 
6136 	sdg->sgc->capacity = capacity;
6137 }
6138 
6139 /*
6140  * Check whether the capacity of the rq has been noticeably reduced by side
6141  * activity. The imbalance_pct is used for the threshold.
6142  * Return true is the capacity is reduced
6143  */
6144 static inline int
6145 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6146 {
6147 	return ((rq->cpu_capacity * sd->imbalance_pct) <
6148 				(rq->cpu_capacity_orig * 100));
6149 }
6150 
6151 /*
6152  * Group imbalance indicates (and tries to solve) the problem where balancing
6153  * groups is inadequate due to tsk_cpus_allowed() constraints.
6154  *
6155  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6156  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6157  * Something like:
6158  *
6159  * 	{ 0 1 2 3 } { 4 5 6 7 }
6160  * 	        *     * * *
6161  *
6162  * If we were to balance group-wise we'd place two tasks in the first group and
6163  * two tasks in the second group. Clearly this is undesired as it will overload
6164  * cpu 3 and leave one of the cpus in the second group unused.
6165  *
6166  * The current solution to this issue is detecting the skew in the first group
6167  * by noticing the lower domain failed to reach balance and had difficulty
6168  * moving tasks due to affinity constraints.
6169  *
6170  * When this is so detected; this group becomes a candidate for busiest; see
6171  * update_sd_pick_busiest(). And calculate_imbalance() and
6172  * find_busiest_group() avoid some of the usual balance conditions to allow it
6173  * to create an effective group imbalance.
6174  *
6175  * This is a somewhat tricky proposition since the next run might not find the
6176  * group imbalance and decide the groups need to be balanced again. A most
6177  * subtle and fragile situation.
6178  */
6179 
6180 static inline int sg_imbalanced(struct sched_group *group)
6181 {
6182 	return group->sgc->imbalance;
6183 }
6184 
6185 /*
6186  * group_has_capacity returns true if the group has spare capacity that could
6187  * be used by some tasks.
6188  * We consider that a group has spare capacity if the  * number of task is
6189  * smaller than the number of CPUs or if the usage is lower than the available
6190  * capacity for CFS tasks.
6191  * For the latter, we use a threshold to stabilize the state, to take into
6192  * account the variance of the tasks' load and to return true if the available
6193  * capacity in meaningful for the load balancer.
6194  * As an example, an available capacity of 1% can appear but it doesn't make
6195  * any benefit for the load balance.
6196  */
6197 static inline bool
6198 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6199 {
6200 	if (sgs->sum_nr_running < sgs->group_weight)
6201 		return true;
6202 
6203 	if ((sgs->group_capacity * 100) >
6204 			(sgs->group_usage * env->sd->imbalance_pct))
6205 		return true;
6206 
6207 	return false;
6208 }
6209 
6210 /*
6211  *  group_is_overloaded returns true if the group has more tasks than it can
6212  *  handle.
6213  *  group_is_overloaded is not equals to !group_has_capacity because a group
6214  *  with the exact right number of tasks, has no more spare capacity but is not
6215  *  overloaded so both group_has_capacity and group_is_overloaded return
6216  *  false.
6217  */
6218 static inline bool
6219 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6220 {
6221 	if (sgs->sum_nr_running <= sgs->group_weight)
6222 		return false;
6223 
6224 	if ((sgs->group_capacity * 100) <
6225 			(sgs->group_usage * env->sd->imbalance_pct))
6226 		return true;
6227 
6228 	return false;
6229 }
6230 
6231 static enum group_type group_classify(struct lb_env *env,
6232 		struct sched_group *group,
6233 		struct sg_lb_stats *sgs)
6234 {
6235 	if (sgs->group_no_capacity)
6236 		return group_overloaded;
6237 
6238 	if (sg_imbalanced(group))
6239 		return group_imbalanced;
6240 
6241 	return group_other;
6242 }
6243 
6244 /**
6245  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6246  * @env: The load balancing environment.
6247  * @group: sched_group whose statistics are to be updated.
6248  * @load_idx: Load index of sched_domain of this_cpu for load calc.
6249  * @local_group: Does group contain this_cpu.
6250  * @sgs: variable to hold the statistics for this group.
6251  * @overload: Indicate more than one runnable task for any CPU.
6252  */
6253 static inline void update_sg_lb_stats(struct lb_env *env,
6254 			struct sched_group *group, int load_idx,
6255 			int local_group, struct sg_lb_stats *sgs,
6256 			bool *overload)
6257 {
6258 	unsigned long load;
6259 	int i;
6260 
6261 	memset(sgs, 0, sizeof(*sgs));
6262 
6263 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6264 		struct rq *rq = cpu_rq(i);
6265 
6266 		/* Bias balancing toward cpus of our domain */
6267 		if (local_group)
6268 			load = target_load(i, load_idx);
6269 		else
6270 			load = source_load(i, load_idx);
6271 
6272 		sgs->group_load += load;
6273 		sgs->group_usage += get_cpu_usage(i);
6274 		sgs->sum_nr_running += rq->cfs.h_nr_running;
6275 
6276 		if (rq->nr_running > 1)
6277 			*overload = true;
6278 
6279 #ifdef CONFIG_NUMA_BALANCING
6280 		sgs->nr_numa_running += rq->nr_numa_running;
6281 		sgs->nr_preferred_running += rq->nr_preferred_running;
6282 #endif
6283 		sgs->sum_weighted_load += weighted_cpuload(i);
6284 		if (idle_cpu(i))
6285 			sgs->idle_cpus++;
6286 	}
6287 
6288 	/* Adjust by relative CPU capacity of the group */
6289 	sgs->group_capacity = group->sgc->capacity;
6290 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6291 
6292 	if (sgs->sum_nr_running)
6293 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6294 
6295 	sgs->group_weight = group->group_weight;
6296 
6297 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6298 	sgs->group_type = group_classify(env, group, sgs);
6299 }
6300 
6301 /**
6302  * update_sd_pick_busiest - return 1 on busiest group
6303  * @env: The load balancing environment.
6304  * @sds: sched_domain statistics
6305  * @sg: sched_group candidate to be checked for being the busiest
6306  * @sgs: sched_group statistics
6307  *
6308  * Determine if @sg is a busier group than the previously selected
6309  * busiest group.
6310  *
6311  * Return: %true if @sg is a busier group than the previously selected
6312  * busiest group. %false otherwise.
6313  */
6314 static bool update_sd_pick_busiest(struct lb_env *env,
6315 				   struct sd_lb_stats *sds,
6316 				   struct sched_group *sg,
6317 				   struct sg_lb_stats *sgs)
6318 {
6319 	struct sg_lb_stats *busiest = &sds->busiest_stat;
6320 
6321 	if (sgs->group_type > busiest->group_type)
6322 		return true;
6323 
6324 	if (sgs->group_type < busiest->group_type)
6325 		return false;
6326 
6327 	if (sgs->avg_load <= busiest->avg_load)
6328 		return false;
6329 
6330 	/* This is the busiest node in its class. */
6331 	if (!(env->sd->flags & SD_ASYM_PACKING))
6332 		return true;
6333 
6334 	/*
6335 	 * ASYM_PACKING needs to move all the work to the lowest
6336 	 * numbered CPUs in the group, therefore mark all groups
6337 	 * higher than ourself as busy.
6338 	 */
6339 	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6340 		if (!sds->busiest)
6341 			return true;
6342 
6343 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6344 			return true;
6345 	}
6346 
6347 	return false;
6348 }
6349 
6350 #ifdef CONFIG_NUMA_BALANCING
6351 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6352 {
6353 	if (sgs->sum_nr_running > sgs->nr_numa_running)
6354 		return regular;
6355 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
6356 		return remote;
6357 	return all;
6358 }
6359 
6360 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6361 {
6362 	if (rq->nr_running > rq->nr_numa_running)
6363 		return regular;
6364 	if (rq->nr_running > rq->nr_preferred_running)
6365 		return remote;
6366 	return all;
6367 }
6368 #else
6369 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6370 {
6371 	return all;
6372 }
6373 
6374 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6375 {
6376 	return regular;
6377 }
6378 #endif /* CONFIG_NUMA_BALANCING */
6379 
6380 /**
6381  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6382  * @env: The load balancing environment.
6383  * @sds: variable to hold the statistics for this sched_domain.
6384  */
6385 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6386 {
6387 	struct sched_domain *child = env->sd->child;
6388 	struct sched_group *sg = env->sd->groups;
6389 	struct sg_lb_stats tmp_sgs;
6390 	int load_idx, prefer_sibling = 0;
6391 	bool overload = false;
6392 
6393 	if (child && child->flags & SD_PREFER_SIBLING)
6394 		prefer_sibling = 1;
6395 
6396 	load_idx = get_sd_load_idx(env->sd, env->idle);
6397 
6398 	do {
6399 		struct sg_lb_stats *sgs = &tmp_sgs;
6400 		int local_group;
6401 
6402 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6403 		if (local_group) {
6404 			sds->local = sg;
6405 			sgs = &sds->local_stat;
6406 
6407 			if (env->idle != CPU_NEWLY_IDLE ||
6408 			    time_after_eq(jiffies, sg->sgc->next_update))
6409 				update_group_capacity(env->sd, env->dst_cpu);
6410 		}
6411 
6412 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6413 						&overload);
6414 
6415 		if (local_group)
6416 			goto next_group;
6417 
6418 		/*
6419 		 * In case the child domain prefers tasks go to siblings
6420 		 * first, lower the sg capacity so that we'll try
6421 		 * and move all the excess tasks away. We lower the capacity
6422 		 * of a group only if the local group has the capacity to fit
6423 		 * these excess tasks. The extra check prevents the case where
6424 		 * you always pull from the heaviest group when it is already
6425 		 * under-utilized (possible with a large weight task outweighs
6426 		 * the tasks on the system).
6427 		 */
6428 		if (prefer_sibling && sds->local &&
6429 		    group_has_capacity(env, &sds->local_stat) &&
6430 		    (sgs->sum_nr_running > 1)) {
6431 			sgs->group_no_capacity = 1;
6432 			sgs->group_type = group_overloaded;
6433 		}
6434 
6435 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6436 			sds->busiest = sg;
6437 			sds->busiest_stat = *sgs;
6438 		}
6439 
6440 next_group:
6441 		/* Now, start updating sd_lb_stats */
6442 		sds->total_load += sgs->group_load;
6443 		sds->total_capacity += sgs->group_capacity;
6444 
6445 		sg = sg->next;
6446 	} while (sg != env->sd->groups);
6447 
6448 	if (env->sd->flags & SD_NUMA)
6449 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6450 
6451 	if (!env->sd->parent) {
6452 		/* update overload indicator if we are at root domain */
6453 		if (env->dst_rq->rd->overload != overload)
6454 			env->dst_rq->rd->overload = overload;
6455 	}
6456 
6457 }
6458 
6459 /**
6460  * check_asym_packing - Check to see if the group is packed into the
6461  *			sched doman.
6462  *
6463  * This is primarily intended to used at the sibling level.  Some
6464  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6465  * case of POWER7, it can move to lower SMT modes only when higher
6466  * threads are idle.  When in lower SMT modes, the threads will
6467  * perform better since they share less core resources.  Hence when we
6468  * have idle threads, we want them to be the higher ones.
6469  *
6470  * This packing function is run on idle threads.  It checks to see if
6471  * the busiest CPU in this domain (core in the P7 case) has a higher
6472  * CPU number than the packing function is being run on.  Here we are
6473  * assuming lower CPU number will be equivalent to lower a SMT thread
6474  * number.
6475  *
6476  * Return: 1 when packing is required and a task should be moved to
6477  * this CPU.  The amount of the imbalance is returned in *imbalance.
6478  *
6479  * @env: The load balancing environment.
6480  * @sds: Statistics of the sched_domain which is to be packed
6481  */
6482 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6483 {
6484 	int busiest_cpu;
6485 
6486 	if (!(env->sd->flags & SD_ASYM_PACKING))
6487 		return 0;
6488 
6489 	if (!sds->busiest)
6490 		return 0;
6491 
6492 	busiest_cpu = group_first_cpu(sds->busiest);
6493 	if (env->dst_cpu > busiest_cpu)
6494 		return 0;
6495 
6496 	env->imbalance = DIV_ROUND_CLOSEST(
6497 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6498 		SCHED_CAPACITY_SCALE);
6499 
6500 	return 1;
6501 }
6502 
6503 /**
6504  * fix_small_imbalance - Calculate the minor imbalance that exists
6505  *			amongst the groups of a sched_domain, during
6506  *			load balancing.
6507  * @env: The load balancing environment.
6508  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6509  */
6510 static inline
6511 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6512 {
6513 	unsigned long tmp, capa_now = 0, capa_move = 0;
6514 	unsigned int imbn = 2;
6515 	unsigned long scaled_busy_load_per_task;
6516 	struct sg_lb_stats *local, *busiest;
6517 
6518 	local = &sds->local_stat;
6519 	busiest = &sds->busiest_stat;
6520 
6521 	if (!local->sum_nr_running)
6522 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6523 	else if (busiest->load_per_task > local->load_per_task)
6524 		imbn = 1;
6525 
6526 	scaled_busy_load_per_task =
6527 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6528 		busiest->group_capacity;
6529 
6530 	if (busiest->avg_load + scaled_busy_load_per_task >=
6531 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6532 		env->imbalance = busiest->load_per_task;
6533 		return;
6534 	}
6535 
6536 	/*
6537 	 * OK, we don't have enough imbalance to justify moving tasks,
6538 	 * however we may be able to increase total CPU capacity used by
6539 	 * moving them.
6540 	 */
6541 
6542 	capa_now += busiest->group_capacity *
6543 			min(busiest->load_per_task, busiest->avg_load);
6544 	capa_now += local->group_capacity *
6545 			min(local->load_per_task, local->avg_load);
6546 	capa_now /= SCHED_CAPACITY_SCALE;
6547 
6548 	/* Amount of load we'd subtract */
6549 	if (busiest->avg_load > scaled_busy_load_per_task) {
6550 		capa_move += busiest->group_capacity *
6551 			    min(busiest->load_per_task,
6552 				busiest->avg_load - scaled_busy_load_per_task);
6553 	}
6554 
6555 	/* Amount of load we'd add */
6556 	if (busiest->avg_load * busiest->group_capacity <
6557 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6558 		tmp = (busiest->avg_load * busiest->group_capacity) /
6559 		      local->group_capacity;
6560 	} else {
6561 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6562 		      local->group_capacity;
6563 	}
6564 	capa_move += local->group_capacity *
6565 		    min(local->load_per_task, local->avg_load + tmp);
6566 	capa_move /= SCHED_CAPACITY_SCALE;
6567 
6568 	/* Move if we gain throughput */
6569 	if (capa_move > capa_now)
6570 		env->imbalance = busiest->load_per_task;
6571 }
6572 
6573 /**
6574  * calculate_imbalance - Calculate the amount of imbalance present within the
6575  *			 groups of a given sched_domain during load balance.
6576  * @env: load balance environment
6577  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6578  */
6579 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6580 {
6581 	unsigned long max_pull, load_above_capacity = ~0UL;
6582 	struct sg_lb_stats *local, *busiest;
6583 
6584 	local = &sds->local_stat;
6585 	busiest = &sds->busiest_stat;
6586 
6587 	if (busiest->group_type == group_imbalanced) {
6588 		/*
6589 		 * In the group_imb case we cannot rely on group-wide averages
6590 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6591 		 */
6592 		busiest->load_per_task =
6593 			min(busiest->load_per_task, sds->avg_load);
6594 	}
6595 
6596 	/*
6597 	 * In the presence of smp nice balancing, certain scenarios can have
6598 	 * max load less than avg load(as we skip the groups at or below
6599 	 * its cpu_capacity, while calculating max_load..)
6600 	 */
6601 	if (busiest->avg_load <= sds->avg_load ||
6602 	    local->avg_load >= sds->avg_load) {
6603 		env->imbalance = 0;
6604 		return fix_small_imbalance(env, sds);
6605 	}
6606 
6607 	/*
6608 	 * If there aren't any idle cpus, avoid creating some.
6609 	 */
6610 	if (busiest->group_type == group_overloaded &&
6611 	    local->group_type   == group_overloaded) {
6612 		load_above_capacity = busiest->sum_nr_running *
6613 					SCHED_LOAD_SCALE;
6614 		if (load_above_capacity > busiest->group_capacity)
6615 			load_above_capacity -= busiest->group_capacity;
6616 		else
6617 			load_above_capacity = ~0UL;
6618 	}
6619 
6620 	/*
6621 	 * We're trying to get all the cpus to the average_load, so we don't
6622 	 * want to push ourselves above the average load, nor do we wish to
6623 	 * reduce the max loaded cpu below the average load. At the same time,
6624 	 * we also don't want to reduce the group load below the group capacity
6625 	 * (so that we can implement power-savings policies etc). Thus we look
6626 	 * for the minimum possible imbalance.
6627 	 */
6628 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6629 
6630 	/* How much load to actually move to equalise the imbalance */
6631 	env->imbalance = min(
6632 		max_pull * busiest->group_capacity,
6633 		(sds->avg_load - local->avg_load) * local->group_capacity
6634 	) / SCHED_CAPACITY_SCALE;
6635 
6636 	/*
6637 	 * if *imbalance is less than the average load per runnable task
6638 	 * there is no guarantee that any tasks will be moved so we'll have
6639 	 * a think about bumping its value to force at least one task to be
6640 	 * moved
6641 	 */
6642 	if (env->imbalance < busiest->load_per_task)
6643 		return fix_small_imbalance(env, sds);
6644 }
6645 
6646 /******* find_busiest_group() helpers end here *********************/
6647 
6648 /**
6649  * find_busiest_group - Returns the busiest group within the sched_domain
6650  * if there is an imbalance. If there isn't an imbalance, and
6651  * the user has opted for power-savings, it returns a group whose
6652  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6653  * such a group exists.
6654  *
6655  * Also calculates the amount of weighted load which should be moved
6656  * to restore balance.
6657  *
6658  * @env: The load balancing environment.
6659  *
6660  * Return:	- The busiest group if imbalance exists.
6661  *		- If no imbalance and user has opted for power-savings balance,
6662  *		   return the least loaded group whose CPUs can be
6663  *		   put to idle by rebalancing its tasks onto our group.
6664  */
6665 static struct sched_group *find_busiest_group(struct lb_env *env)
6666 {
6667 	struct sg_lb_stats *local, *busiest;
6668 	struct sd_lb_stats sds;
6669 
6670 	init_sd_lb_stats(&sds);
6671 
6672 	/*
6673 	 * Compute the various statistics relavent for load balancing at
6674 	 * this level.
6675 	 */
6676 	update_sd_lb_stats(env, &sds);
6677 	local = &sds.local_stat;
6678 	busiest = &sds.busiest_stat;
6679 
6680 	/* ASYM feature bypasses nice load balance check */
6681 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6682 	    check_asym_packing(env, &sds))
6683 		return sds.busiest;
6684 
6685 	/* There is no busy sibling group to pull tasks from */
6686 	if (!sds.busiest || busiest->sum_nr_running == 0)
6687 		goto out_balanced;
6688 
6689 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6690 						/ sds.total_capacity;
6691 
6692 	/*
6693 	 * If the busiest group is imbalanced the below checks don't
6694 	 * work because they assume all things are equal, which typically
6695 	 * isn't true due to cpus_allowed constraints and the like.
6696 	 */
6697 	if (busiest->group_type == group_imbalanced)
6698 		goto force_balance;
6699 
6700 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6701 	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6702 	    busiest->group_no_capacity)
6703 		goto force_balance;
6704 
6705 	/*
6706 	 * If the local group is busier than the selected busiest group
6707 	 * don't try and pull any tasks.
6708 	 */
6709 	if (local->avg_load >= busiest->avg_load)
6710 		goto out_balanced;
6711 
6712 	/*
6713 	 * Don't pull any tasks if this group is already above the domain
6714 	 * average load.
6715 	 */
6716 	if (local->avg_load >= sds.avg_load)
6717 		goto out_balanced;
6718 
6719 	if (env->idle == CPU_IDLE) {
6720 		/*
6721 		 * This cpu is idle. If the busiest group is not overloaded
6722 		 * and there is no imbalance between this and busiest group
6723 		 * wrt idle cpus, it is balanced. The imbalance becomes
6724 		 * significant if the diff is greater than 1 otherwise we
6725 		 * might end up to just move the imbalance on another group
6726 		 */
6727 		if ((busiest->group_type != group_overloaded) &&
6728 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6729 			goto out_balanced;
6730 	} else {
6731 		/*
6732 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6733 		 * imbalance_pct to be conservative.
6734 		 */
6735 		if (100 * busiest->avg_load <=
6736 				env->sd->imbalance_pct * local->avg_load)
6737 			goto out_balanced;
6738 	}
6739 
6740 force_balance:
6741 	/* Looks like there is an imbalance. Compute it */
6742 	calculate_imbalance(env, &sds);
6743 	return sds.busiest;
6744 
6745 out_balanced:
6746 	env->imbalance = 0;
6747 	return NULL;
6748 }
6749 
6750 /*
6751  * find_busiest_queue - find the busiest runqueue among the cpus in group.
6752  */
6753 static struct rq *find_busiest_queue(struct lb_env *env,
6754 				     struct sched_group *group)
6755 {
6756 	struct rq *busiest = NULL, *rq;
6757 	unsigned long busiest_load = 0, busiest_capacity = 1;
6758 	int i;
6759 
6760 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6761 		unsigned long capacity, wl;
6762 		enum fbq_type rt;
6763 
6764 		rq = cpu_rq(i);
6765 		rt = fbq_classify_rq(rq);
6766 
6767 		/*
6768 		 * We classify groups/runqueues into three groups:
6769 		 *  - regular: there are !numa tasks
6770 		 *  - remote:  there are numa tasks that run on the 'wrong' node
6771 		 *  - all:     there is no distinction
6772 		 *
6773 		 * In order to avoid migrating ideally placed numa tasks,
6774 		 * ignore those when there's better options.
6775 		 *
6776 		 * If we ignore the actual busiest queue to migrate another
6777 		 * task, the next balance pass can still reduce the busiest
6778 		 * queue by moving tasks around inside the node.
6779 		 *
6780 		 * If we cannot move enough load due to this classification
6781 		 * the next pass will adjust the group classification and
6782 		 * allow migration of more tasks.
6783 		 *
6784 		 * Both cases only affect the total convergence complexity.
6785 		 */
6786 		if (rt > env->fbq_type)
6787 			continue;
6788 
6789 		capacity = capacity_of(i);
6790 
6791 		wl = weighted_cpuload(i);
6792 
6793 		/*
6794 		 * When comparing with imbalance, use weighted_cpuload()
6795 		 * which is not scaled with the cpu capacity.
6796 		 */
6797 
6798 		if (rq->nr_running == 1 && wl > env->imbalance &&
6799 		    !check_cpu_capacity(rq, env->sd))
6800 			continue;
6801 
6802 		/*
6803 		 * For the load comparisons with the other cpu's, consider
6804 		 * the weighted_cpuload() scaled with the cpu capacity, so
6805 		 * that the load can be moved away from the cpu that is
6806 		 * potentially running at a lower capacity.
6807 		 *
6808 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6809 		 * multiplication to rid ourselves of the division works out
6810 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
6811 		 * our previous maximum.
6812 		 */
6813 		if (wl * busiest_capacity > busiest_load * capacity) {
6814 			busiest_load = wl;
6815 			busiest_capacity = capacity;
6816 			busiest = rq;
6817 		}
6818 	}
6819 
6820 	return busiest;
6821 }
6822 
6823 /*
6824  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6825  * so long as it is large enough.
6826  */
6827 #define MAX_PINNED_INTERVAL	512
6828 
6829 /* Working cpumask for load_balance and load_balance_newidle. */
6830 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6831 
6832 static int need_active_balance(struct lb_env *env)
6833 {
6834 	struct sched_domain *sd = env->sd;
6835 
6836 	if (env->idle == CPU_NEWLY_IDLE) {
6837 
6838 		/*
6839 		 * ASYM_PACKING needs to force migrate tasks from busy but
6840 		 * higher numbered CPUs in order to pack all tasks in the
6841 		 * lowest numbered CPUs.
6842 		 */
6843 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6844 			return 1;
6845 	}
6846 
6847 	/*
6848 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6849 	 * It's worth migrating the task if the src_cpu's capacity is reduced
6850 	 * because of other sched_class or IRQs if more capacity stays
6851 	 * available on dst_cpu.
6852 	 */
6853 	if ((env->idle != CPU_NOT_IDLE) &&
6854 	    (env->src_rq->cfs.h_nr_running == 1)) {
6855 		if ((check_cpu_capacity(env->src_rq, sd)) &&
6856 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6857 			return 1;
6858 	}
6859 
6860 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6861 }
6862 
6863 static int active_load_balance_cpu_stop(void *data);
6864 
6865 static int should_we_balance(struct lb_env *env)
6866 {
6867 	struct sched_group *sg = env->sd->groups;
6868 	struct cpumask *sg_cpus, *sg_mask;
6869 	int cpu, balance_cpu = -1;
6870 
6871 	/*
6872 	 * In the newly idle case, we will allow all the cpu's
6873 	 * to do the newly idle load balance.
6874 	 */
6875 	if (env->idle == CPU_NEWLY_IDLE)
6876 		return 1;
6877 
6878 	sg_cpus = sched_group_cpus(sg);
6879 	sg_mask = sched_group_mask(sg);
6880 	/* Try to find first idle cpu */
6881 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6882 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6883 			continue;
6884 
6885 		balance_cpu = cpu;
6886 		break;
6887 	}
6888 
6889 	if (balance_cpu == -1)
6890 		balance_cpu = group_balance_cpu(sg);
6891 
6892 	/*
6893 	 * First idle cpu or the first cpu(busiest) in this sched group
6894 	 * is eligible for doing load balancing at this and above domains.
6895 	 */
6896 	return balance_cpu == env->dst_cpu;
6897 }
6898 
6899 /*
6900  * Check this_cpu to ensure it is balanced within domain. Attempt to move
6901  * tasks if there is an imbalance.
6902  */
6903 static int load_balance(int this_cpu, struct rq *this_rq,
6904 			struct sched_domain *sd, enum cpu_idle_type idle,
6905 			int *continue_balancing)
6906 {
6907 	int ld_moved, cur_ld_moved, active_balance = 0;
6908 	struct sched_domain *sd_parent = sd->parent;
6909 	struct sched_group *group;
6910 	struct rq *busiest;
6911 	unsigned long flags;
6912 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6913 
6914 	struct lb_env env = {
6915 		.sd		= sd,
6916 		.dst_cpu	= this_cpu,
6917 		.dst_rq		= this_rq,
6918 		.dst_grpmask    = sched_group_cpus(sd->groups),
6919 		.idle		= idle,
6920 		.loop_break	= sched_nr_migrate_break,
6921 		.cpus		= cpus,
6922 		.fbq_type	= all,
6923 		.tasks		= LIST_HEAD_INIT(env.tasks),
6924 	};
6925 
6926 	/*
6927 	 * For NEWLY_IDLE load_balancing, we don't need to consider
6928 	 * other cpus in our group
6929 	 */
6930 	if (idle == CPU_NEWLY_IDLE)
6931 		env.dst_grpmask = NULL;
6932 
6933 	cpumask_copy(cpus, cpu_active_mask);
6934 
6935 	schedstat_inc(sd, lb_count[idle]);
6936 
6937 redo:
6938 	if (!should_we_balance(&env)) {
6939 		*continue_balancing = 0;
6940 		goto out_balanced;
6941 	}
6942 
6943 	group = find_busiest_group(&env);
6944 	if (!group) {
6945 		schedstat_inc(sd, lb_nobusyg[idle]);
6946 		goto out_balanced;
6947 	}
6948 
6949 	busiest = find_busiest_queue(&env, group);
6950 	if (!busiest) {
6951 		schedstat_inc(sd, lb_nobusyq[idle]);
6952 		goto out_balanced;
6953 	}
6954 
6955 	BUG_ON(busiest == env.dst_rq);
6956 
6957 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6958 
6959 	env.src_cpu = busiest->cpu;
6960 	env.src_rq = busiest;
6961 
6962 	ld_moved = 0;
6963 	if (busiest->nr_running > 1) {
6964 		/*
6965 		 * Attempt to move tasks. If find_busiest_group has found
6966 		 * an imbalance but busiest->nr_running <= 1, the group is
6967 		 * still unbalanced. ld_moved simply stays zero, so it is
6968 		 * correctly treated as an imbalance.
6969 		 */
6970 		env.flags |= LBF_ALL_PINNED;
6971 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6972 
6973 more_balance:
6974 		raw_spin_lock_irqsave(&busiest->lock, flags);
6975 
6976 		/*
6977 		 * cur_ld_moved - load moved in current iteration
6978 		 * ld_moved     - cumulative load moved across iterations
6979 		 */
6980 		cur_ld_moved = detach_tasks(&env);
6981 
6982 		/*
6983 		 * We've detached some tasks from busiest_rq. Every
6984 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6985 		 * unlock busiest->lock, and we are able to be sure
6986 		 * that nobody can manipulate the tasks in parallel.
6987 		 * See task_rq_lock() family for the details.
6988 		 */
6989 
6990 		raw_spin_unlock(&busiest->lock);
6991 
6992 		if (cur_ld_moved) {
6993 			attach_tasks(&env);
6994 			ld_moved += cur_ld_moved;
6995 		}
6996 
6997 		local_irq_restore(flags);
6998 
6999 		if (env.flags & LBF_NEED_BREAK) {
7000 			env.flags &= ~LBF_NEED_BREAK;
7001 			goto more_balance;
7002 		}
7003 
7004 		/*
7005 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7006 		 * us and move them to an alternate dst_cpu in our sched_group
7007 		 * where they can run. The upper limit on how many times we
7008 		 * iterate on same src_cpu is dependent on number of cpus in our
7009 		 * sched_group.
7010 		 *
7011 		 * This changes load balance semantics a bit on who can move
7012 		 * load to a given_cpu. In addition to the given_cpu itself
7013 		 * (or a ilb_cpu acting on its behalf where given_cpu is
7014 		 * nohz-idle), we now have balance_cpu in a position to move
7015 		 * load to given_cpu. In rare situations, this may cause
7016 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7017 		 * _independently_ and at _same_ time to move some load to
7018 		 * given_cpu) causing exceess load to be moved to given_cpu.
7019 		 * This however should not happen so much in practice and
7020 		 * moreover subsequent load balance cycles should correct the
7021 		 * excess load moved.
7022 		 */
7023 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7024 
7025 			/* Prevent to re-select dst_cpu via env's cpus */
7026 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
7027 
7028 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7029 			env.dst_cpu	 = env.new_dst_cpu;
7030 			env.flags	&= ~LBF_DST_PINNED;
7031 			env.loop	 = 0;
7032 			env.loop_break	 = sched_nr_migrate_break;
7033 
7034 			/*
7035 			 * Go back to "more_balance" rather than "redo" since we
7036 			 * need to continue with same src_cpu.
7037 			 */
7038 			goto more_balance;
7039 		}
7040 
7041 		/*
7042 		 * We failed to reach balance because of affinity.
7043 		 */
7044 		if (sd_parent) {
7045 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7046 
7047 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7048 				*group_imbalance = 1;
7049 		}
7050 
7051 		/* All tasks on this runqueue were pinned by CPU affinity */
7052 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7053 			cpumask_clear_cpu(cpu_of(busiest), cpus);
7054 			if (!cpumask_empty(cpus)) {
7055 				env.loop = 0;
7056 				env.loop_break = sched_nr_migrate_break;
7057 				goto redo;
7058 			}
7059 			goto out_all_pinned;
7060 		}
7061 	}
7062 
7063 	if (!ld_moved) {
7064 		schedstat_inc(sd, lb_failed[idle]);
7065 		/*
7066 		 * Increment the failure counter only on periodic balance.
7067 		 * We do not want newidle balance, which can be very
7068 		 * frequent, pollute the failure counter causing
7069 		 * excessive cache_hot migrations and active balances.
7070 		 */
7071 		if (idle != CPU_NEWLY_IDLE)
7072 			sd->nr_balance_failed++;
7073 
7074 		if (need_active_balance(&env)) {
7075 			raw_spin_lock_irqsave(&busiest->lock, flags);
7076 
7077 			/* don't kick the active_load_balance_cpu_stop,
7078 			 * if the curr task on busiest cpu can't be
7079 			 * moved to this_cpu
7080 			 */
7081 			if (!cpumask_test_cpu(this_cpu,
7082 					tsk_cpus_allowed(busiest->curr))) {
7083 				raw_spin_unlock_irqrestore(&busiest->lock,
7084 							    flags);
7085 				env.flags |= LBF_ALL_PINNED;
7086 				goto out_one_pinned;
7087 			}
7088 
7089 			/*
7090 			 * ->active_balance synchronizes accesses to
7091 			 * ->active_balance_work.  Once set, it's cleared
7092 			 * only after active load balance is finished.
7093 			 */
7094 			if (!busiest->active_balance) {
7095 				busiest->active_balance = 1;
7096 				busiest->push_cpu = this_cpu;
7097 				active_balance = 1;
7098 			}
7099 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7100 
7101 			if (active_balance) {
7102 				stop_one_cpu_nowait(cpu_of(busiest),
7103 					active_load_balance_cpu_stop, busiest,
7104 					&busiest->active_balance_work);
7105 			}
7106 
7107 			/*
7108 			 * We've kicked active balancing, reset the failure
7109 			 * counter.
7110 			 */
7111 			sd->nr_balance_failed = sd->cache_nice_tries+1;
7112 		}
7113 	} else
7114 		sd->nr_balance_failed = 0;
7115 
7116 	if (likely(!active_balance)) {
7117 		/* We were unbalanced, so reset the balancing interval */
7118 		sd->balance_interval = sd->min_interval;
7119 	} else {
7120 		/*
7121 		 * If we've begun active balancing, start to back off. This
7122 		 * case may not be covered by the all_pinned logic if there
7123 		 * is only 1 task on the busy runqueue (because we don't call
7124 		 * detach_tasks).
7125 		 */
7126 		if (sd->balance_interval < sd->max_interval)
7127 			sd->balance_interval *= 2;
7128 	}
7129 
7130 	goto out;
7131 
7132 out_balanced:
7133 	/*
7134 	 * We reach balance although we may have faced some affinity
7135 	 * constraints. Clear the imbalance flag if it was set.
7136 	 */
7137 	if (sd_parent) {
7138 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7139 
7140 		if (*group_imbalance)
7141 			*group_imbalance = 0;
7142 	}
7143 
7144 out_all_pinned:
7145 	/*
7146 	 * We reach balance because all tasks are pinned at this level so
7147 	 * we can't migrate them. Let the imbalance flag set so parent level
7148 	 * can try to migrate them.
7149 	 */
7150 	schedstat_inc(sd, lb_balanced[idle]);
7151 
7152 	sd->nr_balance_failed = 0;
7153 
7154 out_one_pinned:
7155 	/* tune up the balancing interval */
7156 	if (((env.flags & LBF_ALL_PINNED) &&
7157 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7158 			(sd->balance_interval < sd->max_interval))
7159 		sd->balance_interval *= 2;
7160 
7161 	ld_moved = 0;
7162 out:
7163 	return ld_moved;
7164 }
7165 
7166 static inline unsigned long
7167 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7168 {
7169 	unsigned long interval = sd->balance_interval;
7170 
7171 	if (cpu_busy)
7172 		interval *= sd->busy_factor;
7173 
7174 	/* scale ms to jiffies */
7175 	interval = msecs_to_jiffies(interval);
7176 	interval = clamp(interval, 1UL, max_load_balance_interval);
7177 
7178 	return interval;
7179 }
7180 
7181 static inline void
7182 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7183 {
7184 	unsigned long interval, next;
7185 
7186 	interval = get_sd_balance_interval(sd, cpu_busy);
7187 	next = sd->last_balance + interval;
7188 
7189 	if (time_after(*next_balance, next))
7190 		*next_balance = next;
7191 }
7192 
7193 /*
7194  * idle_balance is called by schedule() if this_cpu is about to become
7195  * idle. Attempts to pull tasks from other CPUs.
7196  */
7197 static int idle_balance(struct rq *this_rq)
7198 {
7199 	unsigned long next_balance = jiffies + HZ;
7200 	int this_cpu = this_rq->cpu;
7201 	struct sched_domain *sd;
7202 	int pulled_task = 0;
7203 	u64 curr_cost = 0;
7204 
7205 	idle_enter_fair(this_rq);
7206 
7207 	/*
7208 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
7209 	 * measure the duration of idle_balance() as idle time.
7210 	 */
7211 	this_rq->idle_stamp = rq_clock(this_rq);
7212 
7213 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7214 	    !this_rq->rd->overload) {
7215 		rcu_read_lock();
7216 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
7217 		if (sd)
7218 			update_next_balance(sd, 0, &next_balance);
7219 		rcu_read_unlock();
7220 
7221 		goto out;
7222 	}
7223 
7224 	raw_spin_unlock(&this_rq->lock);
7225 
7226 	update_blocked_averages(this_cpu);
7227 	rcu_read_lock();
7228 	for_each_domain(this_cpu, sd) {
7229 		int continue_balancing = 1;
7230 		u64 t0, domain_cost;
7231 
7232 		if (!(sd->flags & SD_LOAD_BALANCE))
7233 			continue;
7234 
7235 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7236 			update_next_balance(sd, 0, &next_balance);
7237 			break;
7238 		}
7239 
7240 		if (sd->flags & SD_BALANCE_NEWIDLE) {
7241 			t0 = sched_clock_cpu(this_cpu);
7242 
7243 			pulled_task = load_balance(this_cpu, this_rq,
7244 						   sd, CPU_NEWLY_IDLE,
7245 						   &continue_balancing);
7246 
7247 			domain_cost = sched_clock_cpu(this_cpu) - t0;
7248 			if (domain_cost > sd->max_newidle_lb_cost)
7249 				sd->max_newidle_lb_cost = domain_cost;
7250 
7251 			curr_cost += domain_cost;
7252 		}
7253 
7254 		update_next_balance(sd, 0, &next_balance);
7255 
7256 		/*
7257 		 * Stop searching for tasks to pull if there are
7258 		 * now runnable tasks on this rq.
7259 		 */
7260 		if (pulled_task || this_rq->nr_running > 0)
7261 			break;
7262 	}
7263 	rcu_read_unlock();
7264 
7265 	raw_spin_lock(&this_rq->lock);
7266 
7267 	if (curr_cost > this_rq->max_idle_balance_cost)
7268 		this_rq->max_idle_balance_cost = curr_cost;
7269 
7270 	/*
7271 	 * While browsing the domains, we released the rq lock, a task could
7272 	 * have been enqueued in the meantime. Since we're not going idle,
7273 	 * pretend we pulled a task.
7274 	 */
7275 	if (this_rq->cfs.h_nr_running && !pulled_task)
7276 		pulled_task = 1;
7277 
7278 out:
7279 	/* Move the next balance forward */
7280 	if (time_after(this_rq->next_balance, next_balance))
7281 		this_rq->next_balance = next_balance;
7282 
7283 	/* Is there a task of a high priority class? */
7284 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7285 		pulled_task = -1;
7286 
7287 	if (pulled_task) {
7288 		idle_exit_fair(this_rq);
7289 		this_rq->idle_stamp = 0;
7290 	}
7291 
7292 	return pulled_task;
7293 }
7294 
7295 /*
7296  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7297  * running tasks off the busiest CPU onto idle CPUs. It requires at
7298  * least 1 task to be running on each physical CPU where possible, and
7299  * avoids physical / logical imbalances.
7300  */
7301 static int active_load_balance_cpu_stop(void *data)
7302 {
7303 	struct rq *busiest_rq = data;
7304 	int busiest_cpu = cpu_of(busiest_rq);
7305 	int target_cpu = busiest_rq->push_cpu;
7306 	struct rq *target_rq = cpu_rq(target_cpu);
7307 	struct sched_domain *sd;
7308 	struct task_struct *p = NULL;
7309 
7310 	raw_spin_lock_irq(&busiest_rq->lock);
7311 
7312 	/* make sure the requested cpu hasn't gone down in the meantime */
7313 	if (unlikely(busiest_cpu != smp_processor_id() ||
7314 		     !busiest_rq->active_balance))
7315 		goto out_unlock;
7316 
7317 	/* Is there any task to move? */
7318 	if (busiest_rq->nr_running <= 1)
7319 		goto out_unlock;
7320 
7321 	/*
7322 	 * This condition is "impossible", if it occurs
7323 	 * we need to fix it. Originally reported by
7324 	 * Bjorn Helgaas on a 128-cpu setup.
7325 	 */
7326 	BUG_ON(busiest_rq == target_rq);
7327 
7328 	/* Search for an sd spanning us and the target CPU. */
7329 	rcu_read_lock();
7330 	for_each_domain(target_cpu, sd) {
7331 		if ((sd->flags & SD_LOAD_BALANCE) &&
7332 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7333 				break;
7334 	}
7335 
7336 	if (likely(sd)) {
7337 		struct lb_env env = {
7338 			.sd		= sd,
7339 			.dst_cpu	= target_cpu,
7340 			.dst_rq		= target_rq,
7341 			.src_cpu	= busiest_rq->cpu,
7342 			.src_rq		= busiest_rq,
7343 			.idle		= CPU_IDLE,
7344 		};
7345 
7346 		schedstat_inc(sd, alb_count);
7347 
7348 		p = detach_one_task(&env);
7349 		if (p)
7350 			schedstat_inc(sd, alb_pushed);
7351 		else
7352 			schedstat_inc(sd, alb_failed);
7353 	}
7354 	rcu_read_unlock();
7355 out_unlock:
7356 	busiest_rq->active_balance = 0;
7357 	raw_spin_unlock(&busiest_rq->lock);
7358 
7359 	if (p)
7360 		attach_one_task(target_rq, p);
7361 
7362 	local_irq_enable();
7363 
7364 	return 0;
7365 }
7366 
7367 static inline int on_null_domain(struct rq *rq)
7368 {
7369 	return unlikely(!rcu_dereference_sched(rq->sd));
7370 }
7371 
7372 #ifdef CONFIG_NO_HZ_COMMON
7373 /*
7374  * idle load balancing details
7375  * - When one of the busy CPUs notice that there may be an idle rebalancing
7376  *   needed, they will kick the idle load balancer, which then does idle
7377  *   load balancing for all the idle CPUs.
7378  */
7379 static struct {
7380 	cpumask_var_t idle_cpus_mask;
7381 	atomic_t nr_cpus;
7382 	unsigned long next_balance;     /* in jiffy units */
7383 } nohz ____cacheline_aligned;
7384 
7385 static inline int find_new_ilb(void)
7386 {
7387 	int ilb = cpumask_first(nohz.idle_cpus_mask);
7388 
7389 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
7390 		return ilb;
7391 
7392 	return nr_cpu_ids;
7393 }
7394 
7395 /*
7396  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7397  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7398  * CPU (if there is one).
7399  */
7400 static void nohz_balancer_kick(void)
7401 {
7402 	int ilb_cpu;
7403 
7404 	nohz.next_balance++;
7405 
7406 	ilb_cpu = find_new_ilb();
7407 
7408 	if (ilb_cpu >= nr_cpu_ids)
7409 		return;
7410 
7411 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7412 		return;
7413 	/*
7414 	 * Use smp_send_reschedule() instead of resched_cpu().
7415 	 * This way we generate a sched IPI on the target cpu which
7416 	 * is idle. And the softirq performing nohz idle load balance
7417 	 * will be run before returning from the IPI.
7418 	 */
7419 	smp_send_reschedule(ilb_cpu);
7420 	return;
7421 }
7422 
7423 static inline void nohz_balance_exit_idle(int cpu)
7424 {
7425 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7426 		/*
7427 		 * Completely isolated CPUs don't ever set, so we must test.
7428 		 */
7429 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7430 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7431 			atomic_dec(&nohz.nr_cpus);
7432 		}
7433 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7434 	}
7435 }
7436 
7437 static inline void set_cpu_sd_state_busy(void)
7438 {
7439 	struct sched_domain *sd;
7440 	int cpu = smp_processor_id();
7441 
7442 	rcu_read_lock();
7443 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7444 
7445 	if (!sd || !sd->nohz_idle)
7446 		goto unlock;
7447 	sd->nohz_idle = 0;
7448 
7449 	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7450 unlock:
7451 	rcu_read_unlock();
7452 }
7453 
7454 void set_cpu_sd_state_idle(void)
7455 {
7456 	struct sched_domain *sd;
7457 	int cpu = smp_processor_id();
7458 
7459 	rcu_read_lock();
7460 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7461 
7462 	if (!sd || sd->nohz_idle)
7463 		goto unlock;
7464 	sd->nohz_idle = 1;
7465 
7466 	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7467 unlock:
7468 	rcu_read_unlock();
7469 }
7470 
7471 /*
7472  * This routine will record that the cpu is going idle with tick stopped.
7473  * This info will be used in performing idle load balancing in the future.
7474  */
7475 void nohz_balance_enter_idle(int cpu)
7476 {
7477 	/*
7478 	 * If this cpu is going down, then nothing needs to be done.
7479 	 */
7480 	if (!cpu_active(cpu))
7481 		return;
7482 
7483 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7484 		return;
7485 
7486 	/*
7487 	 * If we're a completely isolated CPU, we don't play.
7488 	 */
7489 	if (on_null_domain(cpu_rq(cpu)))
7490 		return;
7491 
7492 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7493 	atomic_inc(&nohz.nr_cpus);
7494 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7495 }
7496 
7497 static int sched_ilb_notifier(struct notifier_block *nfb,
7498 					unsigned long action, void *hcpu)
7499 {
7500 	switch (action & ~CPU_TASKS_FROZEN) {
7501 	case CPU_DYING:
7502 		nohz_balance_exit_idle(smp_processor_id());
7503 		return NOTIFY_OK;
7504 	default:
7505 		return NOTIFY_DONE;
7506 	}
7507 }
7508 #endif
7509 
7510 static DEFINE_SPINLOCK(balancing);
7511 
7512 /*
7513  * Scale the max load_balance interval with the number of CPUs in the system.
7514  * This trades load-balance latency on larger machines for less cross talk.
7515  */
7516 void update_max_interval(void)
7517 {
7518 	max_load_balance_interval = HZ*num_online_cpus()/10;
7519 }
7520 
7521 /*
7522  * It checks each scheduling domain to see if it is due to be balanced,
7523  * and initiates a balancing operation if so.
7524  *
7525  * Balancing parameters are set up in init_sched_domains.
7526  */
7527 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7528 {
7529 	int continue_balancing = 1;
7530 	int cpu = rq->cpu;
7531 	unsigned long interval;
7532 	struct sched_domain *sd;
7533 	/* Earliest time when we have to do rebalance again */
7534 	unsigned long next_balance = jiffies + 60*HZ;
7535 	int update_next_balance = 0;
7536 	int need_serialize, need_decay = 0;
7537 	u64 max_cost = 0;
7538 
7539 	update_blocked_averages(cpu);
7540 
7541 	rcu_read_lock();
7542 	for_each_domain(cpu, sd) {
7543 		/*
7544 		 * Decay the newidle max times here because this is a regular
7545 		 * visit to all the domains. Decay ~1% per second.
7546 		 */
7547 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7548 			sd->max_newidle_lb_cost =
7549 				(sd->max_newidle_lb_cost * 253) / 256;
7550 			sd->next_decay_max_lb_cost = jiffies + HZ;
7551 			need_decay = 1;
7552 		}
7553 		max_cost += sd->max_newidle_lb_cost;
7554 
7555 		if (!(sd->flags & SD_LOAD_BALANCE))
7556 			continue;
7557 
7558 		/*
7559 		 * Stop the load balance at this level. There is another
7560 		 * CPU in our sched group which is doing load balancing more
7561 		 * actively.
7562 		 */
7563 		if (!continue_balancing) {
7564 			if (need_decay)
7565 				continue;
7566 			break;
7567 		}
7568 
7569 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7570 
7571 		need_serialize = sd->flags & SD_SERIALIZE;
7572 		if (need_serialize) {
7573 			if (!spin_trylock(&balancing))
7574 				goto out;
7575 		}
7576 
7577 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7578 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7579 				/*
7580 				 * The LBF_DST_PINNED logic could have changed
7581 				 * env->dst_cpu, so we can't know our idle
7582 				 * state even if we migrated tasks. Update it.
7583 				 */
7584 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7585 			}
7586 			sd->last_balance = jiffies;
7587 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7588 		}
7589 		if (need_serialize)
7590 			spin_unlock(&balancing);
7591 out:
7592 		if (time_after(next_balance, sd->last_balance + interval)) {
7593 			next_balance = sd->last_balance + interval;
7594 			update_next_balance = 1;
7595 		}
7596 	}
7597 	if (need_decay) {
7598 		/*
7599 		 * Ensure the rq-wide value also decays but keep it at a
7600 		 * reasonable floor to avoid funnies with rq->avg_idle.
7601 		 */
7602 		rq->max_idle_balance_cost =
7603 			max((u64)sysctl_sched_migration_cost, max_cost);
7604 	}
7605 	rcu_read_unlock();
7606 
7607 	/*
7608 	 * next_balance will be updated only when there is a need.
7609 	 * When the cpu is attached to null domain for ex, it will not be
7610 	 * updated.
7611 	 */
7612 	if (likely(update_next_balance))
7613 		rq->next_balance = next_balance;
7614 }
7615 
7616 #ifdef CONFIG_NO_HZ_COMMON
7617 /*
7618  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7619  * rebalancing for all the cpus for whom scheduler ticks are stopped.
7620  */
7621 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7622 {
7623 	int this_cpu = this_rq->cpu;
7624 	struct rq *rq;
7625 	int balance_cpu;
7626 
7627 	if (idle != CPU_IDLE ||
7628 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7629 		goto end;
7630 
7631 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7632 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7633 			continue;
7634 
7635 		/*
7636 		 * If this cpu gets work to do, stop the load balancing
7637 		 * work being done for other cpus. Next load
7638 		 * balancing owner will pick it up.
7639 		 */
7640 		if (need_resched())
7641 			break;
7642 
7643 		rq = cpu_rq(balance_cpu);
7644 
7645 		/*
7646 		 * If time for next balance is due,
7647 		 * do the balance.
7648 		 */
7649 		if (time_after_eq(jiffies, rq->next_balance)) {
7650 			raw_spin_lock_irq(&rq->lock);
7651 			update_rq_clock(rq);
7652 			update_idle_cpu_load(rq);
7653 			raw_spin_unlock_irq(&rq->lock);
7654 			rebalance_domains(rq, CPU_IDLE);
7655 		}
7656 
7657 		if (time_after(this_rq->next_balance, rq->next_balance))
7658 			this_rq->next_balance = rq->next_balance;
7659 	}
7660 	nohz.next_balance = this_rq->next_balance;
7661 end:
7662 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7663 }
7664 
7665 /*
7666  * Current heuristic for kicking the idle load balancer in the presence
7667  * of an idle cpu in the system.
7668  *   - This rq has more than one task.
7669  *   - This rq has at least one CFS task and the capacity of the CPU is
7670  *     significantly reduced because of RT tasks or IRQs.
7671  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
7672  *     multiple busy cpu.
7673  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7674  *     domain span are idle.
7675  */
7676 static inline bool nohz_kick_needed(struct rq *rq)
7677 {
7678 	unsigned long now = jiffies;
7679 	struct sched_domain *sd;
7680 	struct sched_group_capacity *sgc;
7681 	int nr_busy, cpu = rq->cpu;
7682 	bool kick = false;
7683 
7684 	if (unlikely(rq->idle_balance))
7685 		return false;
7686 
7687        /*
7688 	* We may be recently in ticked or tickless idle mode. At the first
7689 	* busy tick after returning from idle, we will update the busy stats.
7690 	*/
7691 	set_cpu_sd_state_busy();
7692 	nohz_balance_exit_idle(cpu);
7693 
7694 	/*
7695 	 * None are in tickless mode and hence no need for NOHZ idle load
7696 	 * balancing.
7697 	 */
7698 	if (likely(!atomic_read(&nohz.nr_cpus)))
7699 		return false;
7700 
7701 	if (time_before(now, nohz.next_balance))
7702 		return false;
7703 
7704 	if (rq->nr_running >= 2)
7705 		return true;
7706 
7707 	rcu_read_lock();
7708 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7709 	if (sd) {
7710 		sgc = sd->groups->sgc;
7711 		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7712 
7713 		if (nr_busy > 1) {
7714 			kick = true;
7715 			goto unlock;
7716 		}
7717 
7718 	}
7719 
7720 	sd = rcu_dereference(rq->sd);
7721 	if (sd) {
7722 		if ((rq->cfs.h_nr_running >= 1) &&
7723 				check_cpu_capacity(rq, sd)) {
7724 			kick = true;
7725 			goto unlock;
7726 		}
7727 	}
7728 
7729 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7730 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7731 				  sched_domain_span(sd)) < cpu)) {
7732 		kick = true;
7733 		goto unlock;
7734 	}
7735 
7736 unlock:
7737 	rcu_read_unlock();
7738 	return kick;
7739 }
7740 #else
7741 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7742 #endif
7743 
7744 /*
7745  * run_rebalance_domains is triggered when needed from the scheduler tick.
7746  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7747  */
7748 static void run_rebalance_domains(struct softirq_action *h)
7749 {
7750 	struct rq *this_rq = this_rq();
7751 	enum cpu_idle_type idle = this_rq->idle_balance ?
7752 						CPU_IDLE : CPU_NOT_IDLE;
7753 
7754 	/*
7755 	 * If this cpu has a pending nohz_balance_kick, then do the
7756 	 * balancing on behalf of the other idle cpus whose ticks are
7757 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7758 	 * give the idle cpus a chance to load balance. Else we may
7759 	 * load balance only within the local sched_domain hierarchy
7760 	 * and abort nohz_idle_balance altogether if we pull some load.
7761 	 */
7762 	nohz_idle_balance(this_rq, idle);
7763 	rebalance_domains(this_rq, idle);
7764 }
7765 
7766 /*
7767  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7768  */
7769 void trigger_load_balance(struct rq *rq)
7770 {
7771 	/* Don't need to rebalance while attached to NULL domain */
7772 	if (unlikely(on_null_domain(rq)))
7773 		return;
7774 
7775 	if (time_after_eq(jiffies, rq->next_balance))
7776 		raise_softirq(SCHED_SOFTIRQ);
7777 #ifdef CONFIG_NO_HZ_COMMON
7778 	if (nohz_kick_needed(rq))
7779 		nohz_balancer_kick();
7780 #endif
7781 }
7782 
7783 static void rq_online_fair(struct rq *rq)
7784 {
7785 	update_sysctl();
7786 
7787 	update_runtime_enabled(rq);
7788 }
7789 
7790 static void rq_offline_fair(struct rq *rq)
7791 {
7792 	update_sysctl();
7793 
7794 	/* Ensure any throttled groups are reachable by pick_next_task */
7795 	unthrottle_offline_cfs_rqs(rq);
7796 }
7797 
7798 #endif /* CONFIG_SMP */
7799 
7800 /*
7801  * scheduler tick hitting a task of our scheduling class:
7802  */
7803 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7804 {
7805 	struct cfs_rq *cfs_rq;
7806 	struct sched_entity *se = &curr->se;
7807 
7808 	for_each_sched_entity(se) {
7809 		cfs_rq = cfs_rq_of(se);
7810 		entity_tick(cfs_rq, se, queued);
7811 	}
7812 
7813 	if (numabalancing_enabled)
7814 		task_tick_numa(rq, curr);
7815 }
7816 
7817 /*
7818  * called on fork with the child task as argument from the parent's context
7819  *  - child not yet on the tasklist
7820  *  - preemption disabled
7821  */
7822 static void task_fork_fair(struct task_struct *p)
7823 {
7824 	struct cfs_rq *cfs_rq;
7825 	struct sched_entity *se = &p->se, *curr;
7826 	int this_cpu = smp_processor_id();
7827 	struct rq *rq = this_rq();
7828 	unsigned long flags;
7829 
7830 	raw_spin_lock_irqsave(&rq->lock, flags);
7831 
7832 	update_rq_clock(rq);
7833 
7834 	cfs_rq = task_cfs_rq(current);
7835 	curr = cfs_rq->curr;
7836 
7837 	/*
7838 	 * Not only the cpu but also the task_group of the parent might have
7839 	 * been changed after parent->se.parent,cfs_rq were copied to
7840 	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7841 	 * of child point to valid ones.
7842 	 */
7843 	rcu_read_lock();
7844 	__set_task_cpu(p, this_cpu);
7845 	rcu_read_unlock();
7846 
7847 	update_curr(cfs_rq);
7848 
7849 	if (curr)
7850 		se->vruntime = curr->vruntime;
7851 	place_entity(cfs_rq, se, 1);
7852 
7853 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7854 		/*
7855 		 * Upon rescheduling, sched_class::put_prev_task() will place
7856 		 * 'current' within the tree based on its new key value.
7857 		 */
7858 		swap(curr->vruntime, se->vruntime);
7859 		resched_curr(rq);
7860 	}
7861 
7862 	se->vruntime -= cfs_rq->min_vruntime;
7863 
7864 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7865 }
7866 
7867 /*
7868  * Priority of the task has changed. Check to see if we preempt
7869  * the current task.
7870  */
7871 static void
7872 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7873 {
7874 	if (!task_on_rq_queued(p))
7875 		return;
7876 
7877 	/*
7878 	 * Reschedule if we are currently running on this runqueue and
7879 	 * our priority decreased, or if we are not currently running on
7880 	 * this runqueue and our priority is higher than the current's
7881 	 */
7882 	if (rq->curr == p) {
7883 		if (p->prio > oldprio)
7884 			resched_curr(rq);
7885 	} else
7886 		check_preempt_curr(rq, p, 0);
7887 }
7888 
7889 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7890 {
7891 	struct sched_entity *se = &p->se;
7892 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7893 
7894 	/*
7895 	 * Ensure the task's vruntime is normalized, so that when it's
7896 	 * switched back to the fair class the enqueue_entity(.flags=0) will
7897 	 * do the right thing.
7898 	 *
7899 	 * If it's queued, then the dequeue_entity(.flags=0) will already
7900 	 * have normalized the vruntime, if it's !queued, then only when
7901 	 * the task is sleeping will it still have non-normalized vruntime.
7902 	 */
7903 	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7904 		/*
7905 		 * Fix up our vruntime so that the current sleep doesn't
7906 		 * cause 'unlimited' sleep bonus.
7907 		 */
7908 		place_entity(cfs_rq, se, 0);
7909 		se->vruntime -= cfs_rq->min_vruntime;
7910 	}
7911 
7912 #ifdef CONFIG_SMP
7913 	/* Catch up with the cfs_rq and remove our load when we leave */
7914 	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq), &se->avg,
7915 		se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
7916 
7917 	cfs_rq->avg.load_avg =
7918 		max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
7919 	cfs_rq->avg.load_sum =
7920 		max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
7921 	cfs_rq->avg.util_avg =
7922 		max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
7923 	cfs_rq->avg.util_sum =
7924 		max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
7925 #endif
7926 }
7927 
7928 /*
7929  * We switched to the sched_fair class.
7930  */
7931 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7932 {
7933 	struct sched_entity *se = &p->se;
7934 
7935 #ifdef CONFIG_FAIR_GROUP_SCHED
7936 	/*
7937 	 * Since the real-depth could have been changed (only FAIR
7938 	 * class maintain depth value), reset depth properly.
7939 	 */
7940 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7941 #endif
7942 
7943 	if (!task_on_rq_queued(p)) {
7944 
7945 		/*
7946 		 * Ensure the task has a non-normalized vruntime when it is switched
7947 		 * back to the fair class with !queued, so that enqueue_entity() at
7948 		 * wake-up time will do the right thing.
7949 		 *
7950 		 * If it's queued, then the enqueue_entity(.flags=0) makes the task
7951 		 * has non-normalized vruntime, if it's !queued, then it still has
7952 		 * normalized vruntime.
7953 		 */
7954 		if (p->state != TASK_RUNNING)
7955 			se->vruntime += cfs_rq_of(se)->min_vruntime;
7956 		return;
7957 	}
7958 
7959 	/*
7960 	 * We were most likely switched from sched_rt, so
7961 	 * kick off the schedule if running, otherwise just see
7962 	 * if we can still preempt the current task.
7963 	 */
7964 	if (rq->curr == p)
7965 		resched_curr(rq);
7966 	else
7967 		check_preempt_curr(rq, p, 0);
7968 }
7969 
7970 /* Account for a task changing its policy or group.
7971  *
7972  * This routine is mostly called to set cfs_rq->curr field when a task
7973  * migrates between groups/classes.
7974  */
7975 static void set_curr_task_fair(struct rq *rq)
7976 {
7977 	struct sched_entity *se = &rq->curr->se;
7978 
7979 	for_each_sched_entity(se) {
7980 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7981 
7982 		set_next_entity(cfs_rq, se);
7983 		/* ensure bandwidth has been allocated on our new cfs_rq */
7984 		account_cfs_rq_runtime(cfs_rq, 0);
7985 	}
7986 }
7987 
7988 void init_cfs_rq(struct cfs_rq *cfs_rq)
7989 {
7990 	cfs_rq->tasks_timeline = RB_ROOT;
7991 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7992 #ifndef CONFIG_64BIT
7993 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7994 #endif
7995 #ifdef CONFIG_SMP
7996 	atomic_long_set(&cfs_rq->removed_load_avg, 0);
7997 	atomic_long_set(&cfs_rq->removed_util_avg, 0);
7998 #endif
7999 }
8000 
8001 #ifdef CONFIG_FAIR_GROUP_SCHED
8002 static void task_move_group_fair(struct task_struct *p, int queued)
8003 {
8004 	struct sched_entity *se = &p->se;
8005 	struct cfs_rq *cfs_rq;
8006 
8007 	/*
8008 	 * If the task was not on the rq at the time of this cgroup movement
8009 	 * it must have been asleep, sleeping tasks keep their ->vruntime
8010 	 * absolute on their old rq until wakeup (needed for the fair sleeper
8011 	 * bonus in place_entity()).
8012 	 *
8013 	 * If it was on the rq, we've just 'preempted' it, which does convert
8014 	 * ->vruntime to a relative base.
8015 	 *
8016 	 * Make sure both cases convert their relative position when migrating
8017 	 * to another cgroup's rq. This does somewhat interfere with the
8018 	 * fair sleeper stuff for the first placement, but who cares.
8019 	 */
8020 	/*
8021 	 * When !queued, vruntime of the task has usually NOT been normalized.
8022 	 * But there are some cases where it has already been normalized:
8023 	 *
8024 	 * - Moving a forked child which is waiting for being woken up by
8025 	 *   wake_up_new_task().
8026 	 * - Moving a task which has been woken up by try_to_wake_up() and
8027 	 *   waiting for actually being woken up by sched_ttwu_pending().
8028 	 *
8029 	 * To prevent boost or penalty in the new cfs_rq caused by delta
8030 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8031 	 */
8032 	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8033 		queued = 1;
8034 
8035 	if (!queued)
8036 		se->vruntime -= cfs_rq_of(se)->min_vruntime;
8037 	set_task_rq(p, task_cpu(p));
8038 	se->depth = se->parent ? se->parent->depth + 1 : 0;
8039 	if (!queued) {
8040 		cfs_rq = cfs_rq_of(se);
8041 		se->vruntime += cfs_rq->min_vruntime;
8042 
8043 #ifdef CONFIG_SMP
8044 		/* Virtually synchronize task with its new cfs_rq */
8045 		p->se.avg.last_update_time = cfs_rq->avg.last_update_time;
8046 		cfs_rq->avg.load_avg += p->se.avg.load_avg;
8047 		cfs_rq->avg.load_sum += p->se.avg.load_sum;
8048 		cfs_rq->avg.util_avg += p->se.avg.util_avg;
8049 		cfs_rq->avg.util_sum += p->se.avg.util_sum;
8050 #endif
8051 	}
8052 }
8053 
8054 void free_fair_sched_group(struct task_group *tg)
8055 {
8056 	int i;
8057 
8058 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8059 
8060 	for_each_possible_cpu(i) {
8061 		if (tg->cfs_rq)
8062 			kfree(tg->cfs_rq[i]);
8063 		if (tg->se) {
8064 			if (tg->se[i])
8065 				remove_entity_load_avg(tg->se[i]);
8066 			kfree(tg->se[i]);
8067 		}
8068 	}
8069 
8070 	kfree(tg->cfs_rq);
8071 	kfree(tg->se);
8072 }
8073 
8074 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8075 {
8076 	struct cfs_rq *cfs_rq;
8077 	struct sched_entity *se;
8078 	int i;
8079 
8080 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8081 	if (!tg->cfs_rq)
8082 		goto err;
8083 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8084 	if (!tg->se)
8085 		goto err;
8086 
8087 	tg->shares = NICE_0_LOAD;
8088 
8089 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8090 
8091 	for_each_possible_cpu(i) {
8092 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8093 				      GFP_KERNEL, cpu_to_node(i));
8094 		if (!cfs_rq)
8095 			goto err;
8096 
8097 		se = kzalloc_node(sizeof(struct sched_entity),
8098 				  GFP_KERNEL, cpu_to_node(i));
8099 		if (!se)
8100 			goto err_free_rq;
8101 
8102 		init_cfs_rq(cfs_rq);
8103 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8104 		init_entity_runnable_average(se);
8105 	}
8106 
8107 	return 1;
8108 
8109 err_free_rq:
8110 	kfree(cfs_rq);
8111 err:
8112 	return 0;
8113 }
8114 
8115 void unregister_fair_sched_group(struct task_group *tg, int cpu)
8116 {
8117 	struct rq *rq = cpu_rq(cpu);
8118 	unsigned long flags;
8119 
8120 	/*
8121 	* Only empty task groups can be destroyed; so we can speculatively
8122 	* check on_list without danger of it being re-added.
8123 	*/
8124 	if (!tg->cfs_rq[cpu]->on_list)
8125 		return;
8126 
8127 	raw_spin_lock_irqsave(&rq->lock, flags);
8128 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8129 	raw_spin_unlock_irqrestore(&rq->lock, flags);
8130 }
8131 
8132 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8133 			struct sched_entity *se, int cpu,
8134 			struct sched_entity *parent)
8135 {
8136 	struct rq *rq = cpu_rq(cpu);
8137 
8138 	cfs_rq->tg = tg;
8139 	cfs_rq->rq = rq;
8140 	init_cfs_rq_runtime(cfs_rq);
8141 
8142 	tg->cfs_rq[cpu] = cfs_rq;
8143 	tg->se[cpu] = se;
8144 
8145 	/* se could be NULL for root_task_group */
8146 	if (!se)
8147 		return;
8148 
8149 	if (!parent) {
8150 		se->cfs_rq = &rq->cfs;
8151 		se->depth = 0;
8152 	} else {
8153 		se->cfs_rq = parent->my_q;
8154 		se->depth = parent->depth + 1;
8155 	}
8156 
8157 	se->my_q = cfs_rq;
8158 	/* guarantee group entities always have weight */
8159 	update_load_set(&se->load, NICE_0_LOAD);
8160 	se->parent = parent;
8161 }
8162 
8163 static DEFINE_MUTEX(shares_mutex);
8164 
8165 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8166 {
8167 	int i;
8168 	unsigned long flags;
8169 
8170 	/*
8171 	 * We can't change the weight of the root cgroup.
8172 	 */
8173 	if (!tg->se[0])
8174 		return -EINVAL;
8175 
8176 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8177 
8178 	mutex_lock(&shares_mutex);
8179 	if (tg->shares == shares)
8180 		goto done;
8181 
8182 	tg->shares = shares;
8183 	for_each_possible_cpu(i) {
8184 		struct rq *rq = cpu_rq(i);
8185 		struct sched_entity *se;
8186 
8187 		se = tg->se[i];
8188 		/* Propagate contribution to hierarchy */
8189 		raw_spin_lock_irqsave(&rq->lock, flags);
8190 
8191 		/* Possible calls to update_curr() need rq clock */
8192 		update_rq_clock(rq);
8193 		for_each_sched_entity(se)
8194 			update_cfs_shares(group_cfs_rq(se));
8195 		raw_spin_unlock_irqrestore(&rq->lock, flags);
8196 	}
8197 
8198 done:
8199 	mutex_unlock(&shares_mutex);
8200 	return 0;
8201 }
8202 #else /* CONFIG_FAIR_GROUP_SCHED */
8203 
8204 void free_fair_sched_group(struct task_group *tg) { }
8205 
8206 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8207 {
8208 	return 1;
8209 }
8210 
8211 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8212 
8213 #endif /* CONFIG_FAIR_GROUP_SCHED */
8214 
8215 
8216 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8217 {
8218 	struct sched_entity *se = &task->se;
8219 	unsigned int rr_interval = 0;
8220 
8221 	/*
8222 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8223 	 * idle runqueue:
8224 	 */
8225 	if (rq->cfs.load.weight)
8226 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8227 
8228 	return rr_interval;
8229 }
8230 
8231 /*
8232  * All the scheduling class methods:
8233  */
8234 const struct sched_class fair_sched_class = {
8235 	.next			= &idle_sched_class,
8236 	.enqueue_task		= enqueue_task_fair,
8237 	.dequeue_task		= dequeue_task_fair,
8238 	.yield_task		= yield_task_fair,
8239 	.yield_to_task		= yield_to_task_fair,
8240 
8241 	.check_preempt_curr	= check_preempt_wakeup,
8242 
8243 	.pick_next_task		= pick_next_task_fair,
8244 	.put_prev_task		= put_prev_task_fair,
8245 
8246 #ifdef CONFIG_SMP
8247 	.select_task_rq		= select_task_rq_fair,
8248 	.migrate_task_rq	= migrate_task_rq_fair,
8249 
8250 	.rq_online		= rq_online_fair,
8251 	.rq_offline		= rq_offline_fair,
8252 
8253 	.task_waking		= task_waking_fair,
8254 	.task_dead		= task_dead_fair,
8255 	.set_cpus_allowed	= set_cpus_allowed_common,
8256 #endif
8257 
8258 	.set_curr_task          = set_curr_task_fair,
8259 	.task_tick		= task_tick_fair,
8260 	.task_fork		= task_fork_fair,
8261 
8262 	.prio_changed		= prio_changed_fair,
8263 	.switched_from		= switched_from_fair,
8264 	.switched_to		= switched_to_fair,
8265 
8266 	.get_rr_interval	= get_rr_interval_fair,
8267 
8268 	.update_curr		= update_curr_fair,
8269 
8270 #ifdef CONFIG_FAIR_GROUP_SCHED
8271 	.task_move_group	= task_move_group_fair,
8272 #endif
8273 };
8274 
8275 #ifdef CONFIG_SCHED_DEBUG
8276 void print_cfs_stats(struct seq_file *m, int cpu)
8277 {
8278 	struct cfs_rq *cfs_rq;
8279 
8280 	rcu_read_lock();
8281 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8282 		print_cfs_rq(m, cpu, cfs_rq);
8283 	rcu_read_unlock();
8284 }
8285 
8286 #ifdef CONFIG_NUMA_BALANCING
8287 void show_numa_stats(struct task_struct *p, struct seq_file *m)
8288 {
8289 	int node;
8290 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8291 
8292 	for_each_online_node(node) {
8293 		if (p->numa_faults) {
8294 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8295 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8296 		}
8297 		if (p->numa_group) {
8298 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8299 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8300 		}
8301 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8302 	}
8303 }
8304 #endif /* CONFIG_NUMA_BALANCING */
8305 #endif /* CONFIG_SCHED_DEBUG */
8306 
8307 __init void init_sched_fair_class(void)
8308 {
8309 #ifdef CONFIG_SMP
8310 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8311 
8312 #ifdef CONFIG_NO_HZ_COMMON
8313 	nohz.next_balance = jiffies;
8314 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8315 	cpu_notifier(sched_ilb_notifier, 0);
8316 #endif
8317 #endif /* SMP */
8318 
8319 }
8320