xref: /openbmc/linux/kernel/sched/fair.c (revision 39f555fb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include <linux/sched/cond_resched.h>
55 
56 #include "sched.h"
57 #include "stats.h"
58 #include "autogroup.h"
59 
60 /*
61  * The initial- and re-scaling of tunables is configurable
62  *
63  * Options are:
64  *
65  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
66  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
67  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
68  *
69  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
70  */
71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
72 
73 /*
74  * Minimal preemption granularity for CPU-bound tasks:
75  *
76  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
77  */
78 unsigned int sysctl_sched_base_slice			= 750000ULL;
79 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
80 
81 /*
82  * After fork, child runs first. If set to 0 (default) then
83  * parent will (try to) run first.
84  */
85 unsigned int sysctl_sched_child_runs_first __read_mostly;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 int sched_thermal_decay_shift;
90 static int __init setup_sched_thermal_decay_shift(char *str)
91 {
92 	int _shift = 0;
93 
94 	if (kstrtoint(str, 0, &_shift))
95 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
96 
97 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 	return 1;
99 }
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
101 
102 #ifdef CONFIG_SMP
103 /*
104  * For asym packing, by default the lower numbered CPU has higher priority.
105  */
106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 	return -cpu;
109 }
110 
111 /*
112  * The margin used when comparing utilization with CPU capacity.
113  *
114  * (default: ~20%)
115  */
116 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
117 
118 /*
119  * The margin used when comparing CPU capacities.
120  * is 'cap1' noticeably greater than 'cap2'
121  *
122  * (default: ~5%)
123  */
124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
125 #endif
126 
127 #ifdef CONFIG_CFS_BANDWIDTH
128 /*
129  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
130  * each time a cfs_rq requests quota.
131  *
132  * Note: in the case that the slice exceeds the runtime remaining (either due
133  * to consumption or the quota being specified to be smaller than the slice)
134  * we will always only issue the remaining available time.
135  *
136  * (default: 5 msec, units: microseconds)
137  */
138 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
139 #endif
140 
141 #ifdef CONFIG_NUMA_BALANCING
142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
144 #endif
145 
146 #ifdef CONFIG_SYSCTL
147 static struct ctl_table sched_fair_sysctls[] = {
148 	{
149 		.procname       = "sched_child_runs_first",
150 		.data           = &sysctl_sched_child_runs_first,
151 		.maxlen         = sizeof(unsigned int),
152 		.mode           = 0644,
153 		.proc_handler   = proc_dointvec,
154 	},
155 #ifdef CONFIG_CFS_BANDWIDTH
156 	{
157 		.procname       = "sched_cfs_bandwidth_slice_us",
158 		.data           = &sysctl_sched_cfs_bandwidth_slice,
159 		.maxlen         = sizeof(unsigned int),
160 		.mode           = 0644,
161 		.proc_handler   = proc_dointvec_minmax,
162 		.extra1         = SYSCTL_ONE,
163 	},
164 #endif
165 #ifdef CONFIG_NUMA_BALANCING
166 	{
167 		.procname	= "numa_balancing_promote_rate_limit_MBps",
168 		.data		= &sysctl_numa_balancing_promote_rate_limit,
169 		.maxlen		= sizeof(unsigned int),
170 		.mode		= 0644,
171 		.proc_handler	= proc_dointvec_minmax,
172 		.extra1		= SYSCTL_ZERO,
173 	},
174 #endif /* CONFIG_NUMA_BALANCING */
175 	{}
176 };
177 
178 static int __init sched_fair_sysctl_init(void)
179 {
180 	register_sysctl_init("kernel", sched_fair_sysctls);
181 	return 0;
182 }
183 late_initcall(sched_fair_sysctl_init);
184 #endif
185 
186 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
187 {
188 	lw->weight += inc;
189 	lw->inv_weight = 0;
190 }
191 
192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
193 {
194 	lw->weight -= dec;
195 	lw->inv_weight = 0;
196 }
197 
198 static inline void update_load_set(struct load_weight *lw, unsigned long w)
199 {
200 	lw->weight = w;
201 	lw->inv_weight = 0;
202 }
203 
204 /*
205  * Increase the granularity value when there are more CPUs,
206  * because with more CPUs the 'effective latency' as visible
207  * to users decreases. But the relationship is not linear,
208  * so pick a second-best guess by going with the log2 of the
209  * number of CPUs.
210  *
211  * This idea comes from the SD scheduler of Con Kolivas:
212  */
213 static unsigned int get_update_sysctl_factor(void)
214 {
215 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
216 	unsigned int factor;
217 
218 	switch (sysctl_sched_tunable_scaling) {
219 	case SCHED_TUNABLESCALING_NONE:
220 		factor = 1;
221 		break;
222 	case SCHED_TUNABLESCALING_LINEAR:
223 		factor = cpus;
224 		break;
225 	case SCHED_TUNABLESCALING_LOG:
226 	default:
227 		factor = 1 + ilog2(cpus);
228 		break;
229 	}
230 
231 	return factor;
232 }
233 
234 static void update_sysctl(void)
235 {
236 	unsigned int factor = get_update_sysctl_factor();
237 
238 #define SET_SYSCTL(name) \
239 	(sysctl_##name = (factor) * normalized_sysctl_##name)
240 	SET_SYSCTL(sched_base_slice);
241 #undef SET_SYSCTL
242 }
243 
244 void __init sched_init_granularity(void)
245 {
246 	update_sysctl();
247 }
248 
249 #define WMULT_CONST	(~0U)
250 #define WMULT_SHIFT	32
251 
252 static void __update_inv_weight(struct load_weight *lw)
253 {
254 	unsigned long w;
255 
256 	if (likely(lw->inv_weight))
257 		return;
258 
259 	w = scale_load_down(lw->weight);
260 
261 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
262 		lw->inv_weight = 1;
263 	else if (unlikely(!w))
264 		lw->inv_weight = WMULT_CONST;
265 	else
266 		lw->inv_weight = WMULT_CONST / w;
267 }
268 
269 /*
270  * delta_exec * weight / lw.weight
271  *   OR
272  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
273  *
274  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
275  * we're guaranteed shift stays positive because inv_weight is guaranteed to
276  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
277  *
278  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
279  * weight/lw.weight <= 1, and therefore our shift will also be positive.
280  */
281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
282 {
283 	u64 fact = scale_load_down(weight);
284 	u32 fact_hi = (u32)(fact >> 32);
285 	int shift = WMULT_SHIFT;
286 	int fs;
287 
288 	__update_inv_weight(lw);
289 
290 	if (unlikely(fact_hi)) {
291 		fs = fls(fact_hi);
292 		shift -= fs;
293 		fact >>= fs;
294 	}
295 
296 	fact = mul_u32_u32(fact, lw->inv_weight);
297 
298 	fact_hi = (u32)(fact >> 32);
299 	if (fact_hi) {
300 		fs = fls(fact_hi);
301 		shift -= fs;
302 		fact >>= fs;
303 	}
304 
305 	return mul_u64_u32_shr(delta_exec, fact, shift);
306 }
307 
308 /*
309  * delta /= w
310  */
311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
312 {
313 	if (unlikely(se->load.weight != NICE_0_LOAD))
314 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
315 
316 	return delta;
317 }
318 
319 const struct sched_class fair_sched_class;
320 
321 /**************************************************************
322  * CFS operations on generic schedulable entities:
323  */
324 
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 
327 /* Walk up scheduling entities hierarchy */
328 #define for_each_sched_entity(se) \
329 		for (; se; se = se->parent)
330 
331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
332 {
333 	struct rq *rq = rq_of(cfs_rq);
334 	int cpu = cpu_of(rq);
335 
336 	if (cfs_rq->on_list)
337 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
338 
339 	cfs_rq->on_list = 1;
340 
341 	/*
342 	 * Ensure we either appear before our parent (if already
343 	 * enqueued) or force our parent to appear after us when it is
344 	 * enqueued. The fact that we always enqueue bottom-up
345 	 * reduces this to two cases and a special case for the root
346 	 * cfs_rq. Furthermore, it also means that we will always reset
347 	 * tmp_alone_branch either when the branch is connected
348 	 * to a tree or when we reach the top of the tree
349 	 */
350 	if (cfs_rq->tg->parent &&
351 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
352 		/*
353 		 * If parent is already on the list, we add the child
354 		 * just before. Thanks to circular linked property of
355 		 * the list, this means to put the child at the tail
356 		 * of the list that starts by parent.
357 		 */
358 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
359 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
360 		/*
361 		 * The branch is now connected to its tree so we can
362 		 * reset tmp_alone_branch to the beginning of the
363 		 * list.
364 		 */
365 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 		return true;
367 	}
368 
369 	if (!cfs_rq->tg->parent) {
370 		/*
371 		 * cfs rq without parent should be put
372 		 * at the tail of the list.
373 		 */
374 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
375 			&rq->leaf_cfs_rq_list);
376 		/*
377 		 * We have reach the top of a tree so we can reset
378 		 * tmp_alone_branch to the beginning of the list.
379 		 */
380 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
381 		return true;
382 	}
383 
384 	/*
385 	 * The parent has not already been added so we want to
386 	 * make sure that it will be put after us.
387 	 * tmp_alone_branch points to the begin of the branch
388 	 * where we will add parent.
389 	 */
390 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
391 	/*
392 	 * update tmp_alone_branch to points to the new begin
393 	 * of the branch
394 	 */
395 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
396 	return false;
397 }
398 
399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
400 {
401 	if (cfs_rq->on_list) {
402 		struct rq *rq = rq_of(cfs_rq);
403 
404 		/*
405 		 * With cfs_rq being unthrottled/throttled during an enqueue,
406 		 * it can happen the tmp_alone_branch points the a leaf that
407 		 * we finally want to del. In this case, tmp_alone_branch moves
408 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
409 		 * at the end of the enqueue.
410 		 */
411 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
412 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
413 
414 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
415 		cfs_rq->on_list = 0;
416 	}
417 }
418 
419 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
420 {
421 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
422 }
423 
424 /* Iterate thr' all leaf cfs_rq's on a runqueue */
425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
426 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
427 				 leaf_cfs_rq_list)
428 
429 /* Do the two (enqueued) entities belong to the same group ? */
430 static inline struct cfs_rq *
431 is_same_group(struct sched_entity *se, struct sched_entity *pse)
432 {
433 	if (se->cfs_rq == pse->cfs_rq)
434 		return se->cfs_rq;
435 
436 	return NULL;
437 }
438 
439 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
440 {
441 	return se->parent;
442 }
443 
444 static void
445 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
446 {
447 	int se_depth, pse_depth;
448 
449 	/*
450 	 * preemption test can be made between sibling entities who are in the
451 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
452 	 * both tasks until we find their ancestors who are siblings of common
453 	 * parent.
454 	 */
455 
456 	/* First walk up until both entities are at same depth */
457 	se_depth = (*se)->depth;
458 	pse_depth = (*pse)->depth;
459 
460 	while (se_depth > pse_depth) {
461 		se_depth--;
462 		*se = parent_entity(*se);
463 	}
464 
465 	while (pse_depth > se_depth) {
466 		pse_depth--;
467 		*pse = parent_entity(*pse);
468 	}
469 
470 	while (!is_same_group(*se, *pse)) {
471 		*se = parent_entity(*se);
472 		*pse = parent_entity(*pse);
473 	}
474 }
475 
476 static int tg_is_idle(struct task_group *tg)
477 {
478 	return tg->idle > 0;
479 }
480 
481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
482 {
483 	return cfs_rq->idle > 0;
484 }
485 
486 static int se_is_idle(struct sched_entity *se)
487 {
488 	if (entity_is_task(se))
489 		return task_has_idle_policy(task_of(se));
490 	return cfs_rq_is_idle(group_cfs_rq(se));
491 }
492 
493 #else	/* !CONFIG_FAIR_GROUP_SCHED */
494 
495 #define for_each_sched_entity(se) \
496 		for (; se; se = NULL)
497 
498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
499 {
500 	return true;
501 }
502 
503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
504 {
505 }
506 
507 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
508 {
509 }
510 
511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
512 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
513 
514 static inline struct sched_entity *parent_entity(struct sched_entity *se)
515 {
516 	return NULL;
517 }
518 
519 static inline void
520 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
521 {
522 }
523 
524 static inline int tg_is_idle(struct task_group *tg)
525 {
526 	return 0;
527 }
528 
529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
530 {
531 	return 0;
532 }
533 
534 static int se_is_idle(struct sched_entity *se)
535 {
536 	return 0;
537 }
538 
539 #endif	/* CONFIG_FAIR_GROUP_SCHED */
540 
541 static __always_inline
542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
543 
544 /**************************************************************
545  * Scheduling class tree data structure manipulation methods:
546  */
547 
548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
549 {
550 	s64 delta = (s64)(vruntime - max_vruntime);
551 	if (delta > 0)
552 		max_vruntime = vruntime;
553 
554 	return max_vruntime;
555 }
556 
557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
558 {
559 	s64 delta = (s64)(vruntime - min_vruntime);
560 	if (delta < 0)
561 		min_vruntime = vruntime;
562 
563 	return min_vruntime;
564 }
565 
566 static inline bool entity_before(const struct sched_entity *a,
567 				 const struct sched_entity *b)
568 {
569 	return (s64)(a->vruntime - b->vruntime) < 0;
570 }
571 
572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
573 {
574 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
575 }
576 
577 #define __node_2_se(node) \
578 	rb_entry((node), struct sched_entity, run_node)
579 
580 /*
581  * Compute virtual time from the per-task service numbers:
582  *
583  * Fair schedulers conserve lag:
584  *
585  *   \Sum lag_i = 0
586  *
587  * Where lag_i is given by:
588  *
589  *   lag_i = S - s_i = w_i * (V - v_i)
590  *
591  * Where S is the ideal service time and V is it's virtual time counterpart.
592  * Therefore:
593  *
594  *   \Sum lag_i = 0
595  *   \Sum w_i * (V - v_i) = 0
596  *   \Sum w_i * V - w_i * v_i = 0
597  *
598  * From which we can solve an expression for V in v_i (which we have in
599  * se->vruntime):
600  *
601  *       \Sum v_i * w_i   \Sum v_i * w_i
602  *   V = -------------- = --------------
603  *          \Sum w_i            W
604  *
605  * Specifically, this is the weighted average of all entity virtual runtimes.
606  *
607  * [[ NOTE: this is only equal to the ideal scheduler under the condition
608  *          that join/leave operations happen at lag_i = 0, otherwise the
609  *          virtual time has non-continguous motion equivalent to:
610  *
611  *	      V +-= lag_i / W
612  *
613  *	    Also see the comment in place_entity() that deals with this. ]]
614  *
615  * However, since v_i is u64, and the multiplcation could easily overflow
616  * transform it into a relative form that uses smaller quantities:
617  *
618  * Substitute: v_i == (v_i - v0) + v0
619  *
620  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
621  * V = ---------------------------- = --------------------- + v0
622  *                  W                            W
623  *
624  * Which we track using:
625  *
626  *                    v0 := cfs_rq->min_vruntime
627  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
628  *              \Sum w_i := cfs_rq->avg_load
629  *
630  * Since min_vruntime is a monotonic increasing variable that closely tracks
631  * the per-task service, these deltas: (v_i - v), will be in the order of the
632  * maximal (virtual) lag induced in the system due to quantisation.
633  *
634  * Also, we use scale_load_down() to reduce the size.
635  *
636  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
637  */
638 static void
639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 {
641 	unsigned long weight = scale_load_down(se->load.weight);
642 	s64 key = entity_key(cfs_rq, se);
643 
644 	cfs_rq->avg_vruntime += key * weight;
645 	cfs_rq->avg_load += weight;
646 }
647 
648 static void
649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
650 {
651 	unsigned long weight = scale_load_down(se->load.weight);
652 	s64 key = entity_key(cfs_rq, se);
653 
654 	cfs_rq->avg_vruntime -= key * weight;
655 	cfs_rq->avg_load -= weight;
656 }
657 
658 static inline
659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
660 {
661 	/*
662 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
663 	 */
664 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
665 }
666 
667 /*
668  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
669  * For this to be so, the result of this function must have a left bias.
670  */
671 u64 avg_vruntime(struct cfs_rq *cfs_rq)
672 {
673 	struct sched_entity *curr = cfs_rq->curr;
674 	s64 avg = cfs_rq->avg_vruntime;
675 	long load = cfs_rq->avg_load;
676 
677 	if (curr && curr->on_rq) {
678 		unsigned long weight = scale_load_down(curr->load.weight);
679 
680 		avg += entity_key(cfs_rq, curr) * weight;
681 		load += weight;
682 	}
683 
684 	if (load) {
685 		/* sign flips effective floor / ceil */
686 		if (avg < 0)
687 			avg -= (load - 1);
688 		avg = div_s64(avg, load);
689 	}
690 
691 	return cfs_rq->min_vruntime + avg;
692 }
693 
694 /*
695  * lag_i = S - s_i = w_i * (V - v_i)
696  *
697  * However, since V is approximated by the weighted average of all entities it
698  * is possible -- by addition/removal/reweight to the tree -- to move V around
699  * and end up with a larger lag than we started with.
700  *
701  * Limit this to either double the slice length with a minimum of TICK_NSEC
702  * since that is the timing granularity.
703  *
704  * EEVDF gives the following limit for a steady state system:
705  *
706  *   -r_max < lag < max(r_max, q)
707  *
708  * XXX could add max_slice to the augmented data to track this.
709  */
710 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
711 {
712 	s64 lag, limit;
713 
714 	SCHED_WARN_ON(!se->on_rq);
715 	lag = avg_vruntime(cfs_rq) - se->vruntime;
716 
717 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
718 	se->vlag = clamp(lag, -limit, limit);
719 }
720 
721 /*
722  * Entity is eligible once it received less service than it ought to have,
723  * eg. lag >= 0.
724  *
725  * lag_i = S - s_i = w_i*(V - v_i)
726  *
727  * lag_i >= 0 -> V >= v_i
728  *
729  *     \Sum (v_i - v)*w_i
730  * V = ------------------ + v
731  *          \Sum w_i
732  *
733  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
734  *
735  * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
736  *       to the loss in precision caused by the division.
737  */
738 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740 	struct sched_entity *curr = cfs_rq->curr;
741 	s64 avg = cfs_rq->avg_vruntime;
742 	long load = cfs_rq->avg_load;
743 
744 	if (curr && curr->on_rq) {
745 		unsigned long weight = scale_load_down(curr->load.weight);
746 
747 		avg += entity_key(cfs_rq, curr) * weight;
748 		load += weight;
749 	}
750 
751 	return avg >= entity_key(cfs_rq, se) * load;
752 }
753 
754 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
755 {
756 	u64 min_vruntime = cfs_rq->min_vruntime;
757 	/*
758 	 * open coded max_vruntime() to allow updating avg_vruntime
759 	 */
760 	s64 delta = (s64)(vruntime - min_vruntime);
761 	if (delta > 0) {
762 		avg_vruntime_update(cfs_rq, delta);
763 		min_vruntime = vruntime;
764 	}
765 	return min_vruntime;
766 }
767 
768 static void update_min_vruntime(struct cfs_rq *cfs_rq)
769 {
770 	struct sched_entity *se = __pick_first_entity(cfs_rq);
771 	struct sched_entity *curr = cfs_rq->curr;
772 
773 	u64 vruntime = cfs_rq->min_vruntime;
774 
775 	if (curr) {
776 		if (curr->on_rq)
777 			vruntime = curr->vruntime;
778 		else
779 			curr = NULL;
780 	}
781 
782 	if (se) {
783 		if (!curr)
784 			vruntime = se->vruntime;
785 		else
786 			vruntime = min_vruntime(vruntime, se->vruntime);
787 	}
788 
789 	/* ensure we never gain time by being placed backwards. */
790 	u64_u32_store(cfs_rq->min_vruntime,
791 		      __update_min_vruntime(cfs_rq, vruntime));
792 }
793 
794 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
795 {
796 	return entity_before(__node_2_se(a), __node_2_se(b));
797 }
798 
799 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
800 
801 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node)
802 {
803 	if (node) {
804 		struct sched_entity *rse = __node_2_se(node);
805 		if (deadline_gt(min_deadline, se, rse))
806 			se->min_deadline = rse->min_deadline;
807 	}
808 }
809 
810 /*
811  * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline)
812  */
813 static inline bool min_deadline_update(struct sched_entity *se, bool exit)
814 {
815 	u64 old_min_deadline = se->min_deadline;
816 	struct rb_node *node = &se->run_node;
817 
818 	se->min_deadline = se->deadline;
819 	__update_min_deadline(se, node->rb_right);
820 	__update_min_deadline(se, node->rb_left);
821 
822 	return se->min_deadline == old_min_deadline;
823 }
824 
825 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity,
826 		     run_node, min_deadline, min_deadline_update);
827 
828 /*
829  * Enqueue an entity into the rb-tree:
830  */
831 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
832 {
833 	avg_vruntime_add(cfs_rq, se);
834 	se->min_deadline = se->deadline;
835 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
836 				__entity_less, &min_deadline_cb);
837 }
838 
839 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
840 {
841 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
842 				  &min_deadline_cb);
843 	avg_vruntime_sub(cfs_rq, se);
844 }
845 
846 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
847 {
848 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
849 
850 	if (!left)
851 		return NULL;
852 
853 	return __node_2_se(left);
854 }
855 
856 /*
857  * Earliest Eligible Virtual Deadline First
858  *
859  * In order to provide latency guarantees for different request sizes
860  * EEVDF selects the best runnable task from two criteria:
861  *
862  *  1) the task must be eligible (must be owed service)
863  *
864  *  2) from those tasks that meet 1), we select the one
865  *     with the earliest virtual deadline.
866  *
867  * We can do this in O(log n) time due to an augmented RB-tree. The
868  * tree keeps the entries sorted on service, but also functions as a
869  * heap based on the deadline by keeping:
870  *
871  *  se->min_deadline = min(se->deadline, se->{left,right}->min_deadline)
872  *
873  * Which allows an EDF like search on (sub)trees.
874  */
875 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq)
876 {
877 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
878 	struct sched_entity *curr = cfs_rq->curr;
879 	struct sched_entity *best = NULL;
880 	struct sched_entity *best_left = NULL;
881 
882 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
883 		curr = NULL;
884 	best = curr;
885 
886 	/*
887 	 * Once selected, run a task until it either becomes non-eligible or
888 	 * until it gets a new slice. See the HACK in set_next_entity().
889 	 */
890 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
891 		return curr;
892 
893 	while (node) {
894 		struct sched_entity *se = __node_2_se(node);
895 
896 		/*
897 		 * If this entity is not eligible, try the left subtree.
898 		 */
899 		if (!entity_eligible(cfs_rq, se)) {
900 			node = node->rb_left;
901 			continue;
902 		}
903 
904 		/*
905 		 * Now we heap search eligible trees for the best (min_)deadline
906 		 */
907 		if (!best || deadline_gt(deadline, best, se))
908 			best = se;
909 
910 		/*
911 		 * Every se in a left branch is eligible, keep track of the
912 		 * branch with the best min_deadline
913 		 */
914 		if (node->rb_left) {
915 			struct sched_entity *left = __node_2_se(node->rb_left);
916 
917 			if (!best_left || deadline_gt(min_deadline, best_left, left))
918 				best_left = left;
919 
920 			/*
921 			 * min_deadline is in the left branch. rb_left and all
922 			 * descendants are eligible, so immediately switch to the second
923 			 * loop.
924 			 */
925 			if (left->min_deadline == se->min_deadline)
926 				break;
927 		}
928 
929 		/* min_deadline is at this node, no need to look right */
930 		if (se->deadline == se->min_deadline)
931 			break;
932 
933 		/* else min_deadline is in the right branch. */
934 		node = node->rb_right;
935 	}
936 
937 	/*
938 	 * We ran into an eligible node which is itself the best.
939 	 * (Or nr_running == 0 and both are NULL)
940 	 */
941 	if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0)
942 		return best;
943 
944 	/*
945 	 * Now best_left and all of its children are eligible, and we are just
946 	 * looking for deadline == min_deadline
947 	 */
948 	node = &best_left->run_node;
949 	while (node) {
950 		struct sched_entity *se = __node_2_se(node);
951 
952 		/* min_deadline is the current node */
953 		if (se->deadline == se->min_deadline)
954 			return se;
955 
956 		/* min_deadline is in the left branch */
957 		if (node->rb_left &&
958 		    __node_2_se(node->rb_left)->min_deadline == se->min_deadline) {
959 			node = node->rb_left;
960 			continue;
961 		}
962 
963 		/* else min_deadline is in the right branch */
964 		node = node->rb_right;
965 	}
966 	return NULL;
967 }
968 
969 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
970 {
971 	struct sched_entity *se = __pick_eevdf(cfs_rq);
972 
973 	if (!se) {
974 		struct sched_entity *left = __pick_first_entity(cfs_rq);
975 		if (left) {
976 			pr_err("EEVDF scheduling fail, picking leftmost\n");
977 			return left;
978 		}
979 	}
980 
981 	return se;
982 }
983 
984 #ifdef CONFIG_SCHED_DEBUG
985 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
986 {
987 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
988 
989 	if (!last)
990 		return NULL;
991 
992 	return __node_2_se(last);
993 }
994 
995 /**************************************************************
996  * Scheduling class statistics methods:
997  */
998 #ifdef CONFIG_SMP
999 int sched_update_scaling(void)
1000 {
1001 	unsigned int factor = get_update_sysctl_factor();
1002 
1003 #define WRT_SYSCTL(name) \
1004 	(normalized_sysctl_##name = sysctl_##name / (factor))
1005 	WRT_SYSCTL(sched_base_slice);
1006 #undef WRT_SYSCTL
1007 
1008 	return 0;
1009 }
1010 #endif
1011 #endif
1012 
1013 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1014 
1015 /*
1016  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1017  * this is probably good enough.
1018  */
1019 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1020 {
1021 	if ((s64)(se->vruntime - se->deadline) < 0)
1022 		return;
1023 
1024 	/*
1025 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1026 	 * nice) while the request time r_i is determined by
1027 	 * sysctl_sched_base_slice.
1028 	 */
1029 	se->slice = sysctl_sched_base_slice;
1030 
1031 	/*
1032 	 * EEVDF: vd_i = ve_i + r_i / w_i
1033 	 */
1034 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1035 
1036 	/*
1037 	 * The task has consumed its request, reschedule.
1038 	 */
1039 	if (cfs_rq->nr_running > 1) {
1040 		resched_curr(rq_of(cfs_rq));
1041 		clear_buddies(cfs_rq, se);
1042 	}
1043 }
1044 
1045 #include "pelt.h"
1046 #ifdef CONFIG_SMP
1047 
1048 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1049 static unsigned long task_h_load(struct task_struct *p);
1050 static unsigned long capacity_of(int cpu);
1051 
1052 /* Give new sched_entity start runnable values to heavy its load in infant time */
1053 void init_entity_runnable_average(struct sched_entity *se)
1054 {
1055 	struct sched_avg *sa = &se->avg;
1056 
1057 	memset(sa, 0, sizeof(*sa));
1058 
1059 	/*
1060 	 * Tasks are initialized with full load to be seen as heavy tasks until
1061 	 * they get a chance to stabilize to their real load level.
1062 	 * Group entities are initialized with zero load to reflect the fact that
1063 	 * nothing has been attached to the task group yet.
1064 	 */
1065 	if (entity_is_task(se))
1066 		sa->load_avg = scale_load_down(se->load.weight);
1067 
1068 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1069 }
1070 
1071 /*
1072  * With new tasks being created, their initial util_avgs are extrapolated
1073  * based on the cfs_rq's current util_avg:
1074  *
1075  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1076  *
1077  * However, in many cases, the above util_avg does not give a desired
1078  * value. Moreover, the sum of the util_avgs may be divergent, such
1079  * as when the series is a harmonic series.
1080  *
1081  * To solve this problem, we also cap the util_avg of successive tasks to
1082  * only 1/2 of the left utilization budget:
1083  *
1084  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1085  *
1086  * where n denotes the nth task and cpu_scale the CPU capacity.
1087  *
1088  * For example, for a CPU with 1024 of capacity, a simplest series from
1089  * the beginning would be like:
1090  *
1091  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1092  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1093  *
1094  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1095  * if util_avg > util_avg_cap.
1096  */
1097 void post_init_entity_util_avg(struct task_struct *p)
1098 {
1099 	struct sched_entity *se = &p->se;
1100 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1101 	struct sched_avg *sa = &se->avg;
1102 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1103 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1104 
1105 	if (p->sched_class != &fair_sched_class) {
1106 		/*
1107 		 * For !fair tasks do:
1108 		 *
1109 		update_cfs_rq_load_avg(now, cfs_rq);
1110 		attach_entity_load_avg(cfs_rq, se);
1111 		switched_from_fair(rq, p);
1112 		 *
1113 		 * such that the next switched_to_fair() has the
1114 		 * expected state.
1115 		 */
1116 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1117 		return;
1118 	}
1119 
1120 	if (cap > 0) {
1121 		if (cfs_rq->avg.util_avg != 0) {
1122 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
1123 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1124 
1125 			if (sa->util_avg > cap)
1126 				sa->util_avg = cap;
1127 		} else {
1128 			sa->util_avg = cap;
1129 		}
1130 	}
1131 
1132 	sa->runnable_avg = sa->util_avg;
1133 }
1134 
1135 #else /* !CONFIG_SMP */
1136 void init_entity_runnable_average(struct sched_entity *se)
1137 {
1138 }
1139 void post_init_entity_util_avg(struct task_struct *p)
1140 {
1141 }
1142 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1143 {
1144 }
1145 #endif /* CONFIG_SMP */
1146 
1147 /*
1148  * Update the current task's runtime statistics.
1149  */
1150 static void update_curr(struct cfs_rq *cfs_rq)
1151 {
1152 	struct sched_entity *curr = cfs_rq->curr;
1153 	u64 now = rq_clock_task(rq_of(cfs_rq));
1154 	u64 delta_exec;
1155 
1156 	if (unlikely(!curr))
1157 		return;
1158 
1159 	delta_exec = now - curr->exec_start;
1160 	if (unlikely((s64)delta_exec <= 0))
1161 		return;
1162 
1163 	curr->exec_start = now;
1164 
1165 	if (schedstat_enabled()) {
1166 		struct sched_statistics *stats;
1167 
1168 		stats = __schedstats_from_se(curr);
1169 		__schedstat_set(stats->exec_max,
1170 				max(delta_exec, stats->exec_max));
1171 	}
1172 
1173 	curr->sum_exec_runtime += delta_exec;
1174 	schedstat_add(cfs_rq->exec_clock, delta_exec);
1175 
1176 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1177 	update_deadline(cfs_rq, curr);
1178 	update_min_vruntime(cfs_rq);
1179 
1180 	if (entity_is_task(curr)) {
1181 		struct task_struct *curtask = task_of(curr);
1182 
1183 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
1184 		cgroup_account_cputime(curtask, delta_exec);
1185 		account_group_exec_runtime(curtask, delta_exec);
1186 	}
1187 
1188 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1189 }
1190 
1191 static void update_curr_fair(struct rq *rq)
1192 {
1193 	update_curr(cfs_rq_of(&rq->curr->se));
1194 }
1195 
1196 static inline void
1197 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1198 {
1199 	struct sched_statistics *stats;
1200 	struct task_struct *p = NULL;
1201 
1202 	if (!schedstat_enabled())
1203 		return;
1204 
1205 	stats = __schedstats_from_se(se);
1206 
1207 	if (entity_is_task(se))
1208 		p = task_of(se);
1209 
1210 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1211 }
1212 
1213 static inline void
1214 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1215 {
1216 	struct sched_statistics *stats;
1217 	struct task_struct *p = NULL;
1218 
1219 	if (!schedstat_enabled())
1220 		return;
1221 
1222 	stats = __schedstats_from_se(se);
1223 
1224 	/*
1225 	 * When the sched_schedstat changes from 0 to 1, some sched se
1226 	 * maybe already in the runqueue, the se->statistics.wait_start
1227 	 * will be 0.So it will let the delta wrong. We need to avoid this
1228 	 * scenario.
1229 	 */
1230 	if (unlikely(!schedstat_val(stats->wait_start)))
1231 		return;
1232 
1233 	if (entity_is_task(se))
1234 		p = task_of(se);
1235 
1236 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1237 }
1238 
1239 static inline void
1240 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1241 {
1242 	struct sched_statistics *stats;
1243 	struct task_struct *tsk = NULL;
1244 
1245 	if (!schedstat_enabled())
1246 		return;
1247 
1248 	stats = __schedstats_from_se(se);
1249 
1250 	if (entity_is_task(se))
1251 		tsk = task_of(se);
1252 
1253 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1254 }
1255 
1256 /*
1257  * Task is being enqueued - update stats:
1258  */
1259 static inline void
1260 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1261 {
1262 	if (!schedstat_enabled())
1263 		return;
1264 
1265 	/*
1266 	 * Are we enqueueing a waiting task? (for current tasks
1267 	 * a dequeue/enqueue event is a NOP)
1268 	 */
1269 	if (se != cfs_rq->curr)
1270 		update_stats_wait_start_fair(cfs_rq, se);
1271 
1272 	if (flags & ENQUEUE_WAKEUP)
1273 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1274 }
1275 
1276 static inline void
1277 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1278 {
1279 
1280 	if (!schedstat_enabled())
1281 		return;
1282 
1283 	/*
1284 	 * Mark the end of the wait period if dequeueing a
1285 	 * waiting task:
1286 	 */
1287 	if (se != cfs_rq->curr)
1288 		update_stats_wait_end_fair(cfs_rq, se);
1289 
1290 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1291 		struct task_struct *tsk = task_of(se);
1292 		unsigned int state;
1293 
1294 		/* XXX racy against TTWU */
1295 		state = READ_ONCE(tsk->__state);
1296 		if (state & TASK_INTERRUPTIBLE)
1297 			__schedstat_set(tsk->stats.sleep_start,
1298 				      rq_clock(rq_of(cfs_rq)));
1299 		if (state & TASK_UNINTERRUPTIBLE)
1300 			__schedstat_set(tsk->stats.block_start,
1301 				      rq_clock(rq_of(cfs_rq)));
1302 	}
1303 }
1304 
1305 /*
1306  * We are picking a new current task - update its stats:
1307  */
1308 static inline void
1309 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1310 {
1311 	/*
1312 	 * We are starting a new run period:
1313 	 */
1314 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1315 }
1316 
1317 /**************************************************
1318  * Scheduling class queueing methods:
1319  */
1320 
1321 static inline bool is_core_idle(int cpu)
1322 {
1323 #ifdef CONFIG_SCHED_SMT
1324 	int sibling;
1325 
1326 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1327 		if (cpu == sibling)
1328 			continue;
1329 
1330 		if (!idle_cpu(sibling))
1331 			return false;
1332 	}
1333 #endif
1334 
1335 	return true;
1336 }
1337 
1338 #ifdef CONFIG_NUMA
1339 #define NUMA_IMBALANCE_MIN 2
1340 
1341 static inline long
1342 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1343 {
1344 	/*
1345 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1346 	 * threshold. Above this threshold, individual tasks may be contending
1347 	 * for both memory bandwidth and any shared HT resources.  This is an
1348 	 * approximation as the number of running tasks may not be related to
1349 	 * the number of busy CPUs due to sched_setaffinity.
1350 	 */
1351 	if (dst_running > imb_numa_nr)
1352 		return imbalance;
1353 
1354 	/*
1355 	 * Allow a small imbalance based on a simple pair of communicating
1356 	 * tasks that remain local when the destination is lightly loaded.
1357 	 */
1358 	if (imbalance <= NUMA_IMBALANCE_MIN)
1359 		return 0;
1360 
1361 	return imbalance;
1362 }
1363 #endif /* CONFIG_NUMA */
1364 
1365 #ifdef CONFIG_NUMA_BALANCING
1366 /*
1367  * Approximate time to scan a full NUMA task in ms. The task scan period is
1368  * calculated based on the tasks virtual memory size and
1369  * numa_balancing_scan_size.
1370  */
1371 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1372 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1373 
1374 /* Portion of address space to scan in MB */
1375 unsigned int sysctl_numa_balancing_scan_size = 256;
1376 
1377 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1378 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1379 
1380 /* The page with hint page fault latency < threshold in ms is considered hot */
1381 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1382 
1383 struct numa_group {
1384 	refcount_t refcount;
1385 
1386 	spinlock_t lock; /* nr_tasks, tasks */
1387 	int nr_tasks;
1388 	pid_t gid;
1389 	int active_nodes;
1390 
1391 	struct rcu_head rcu;
1392 	unsigned long total_faults;
1393 	unsigned long max_faults_cpu;
1394 	/*
1395 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1396 	 *
1397 	 * Faults_cpu is used to decide whether memory should move
1398 	 * towards the CPU. As a consequence, these stats are weighted
1399 	 * more by CPU use than by memory faults.
1400 	 */
1401 	unsigned long faults[];
1402 };
1403 
1404 /*
1405  * For functions that can be called in multiple contexts that permit reading
1406  * ->numa_group (see struct task_struct for locking rules).
1407  */
1408 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1409 {
1410 	return rcu_dereference_check(p->numa_group, p == current ||
1411 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1412 }
1413 
1414 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1415 {
1416 	return rcu_dereference_protected(p->numa_group, p == current);
1417 }
1418 
1419 static inline unsigned long group_faults_priv(struct numa_group *ng);
1420 static inline unsigned long group_faults_shared(struct numa_group *ng);
1421 
1422 static unsigned int task_nr_scan_windows(struct task_struct *p)
1423 {
1424 	unsigned long rss = 0;
1425 	unsigned long nr_scan_pages;
1426 
1427 	/*
1428 	 * Calculations based on RSS as non-present and empty pages are skipped
1429 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1430 	 * on resident pages
1431 	 */
1432 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1433 	rss = get_mm_rss(p->mm);
1434 	if (!rss)
1435 		rss = nr_scan_pages;
1436 
1437 	rss = round_up(rss, nr_scan_pages);
1438 	return rss / nr_scan_pages;
1439 }
1440 
1441 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1442 #define MAX_SCAN_WINDOW 2560
1443 
1444 static unsigned int task_scan_min(struct task_struct *p)
1445 {
1446 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1447 	unsigned int scan, floor;
1448 	unsigned int windows = 1;
1449 
1450 	if (scan_size < MAX_SCAN_WINDOW)
1451 		windows = MAX_SCAN_WINDOW / scan_size;
1452 	floor = 1000 / windows;
1453 
1454 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1455 	return max_t(unsigned int, floor, scan);
1456 }
1457 
1458 static unsigned int task_scan_start(struct task_struct *p)
1459 {
1460 	unsigned long smin = task_scan_min(p);
1461 	unsigned long period = smin;
1462 	struct numa_group *ng;
1463 
1464 	/* Scale the maximum scan period with the amount of shared memory. */
1465 	rcu_read_lock();
1466 	ng = rcu_dereference(p->numa_group);
1467 	if (ng) {
1468 		unsigned long shared = group_faults_shared(ng);
1469 		unsigned long private = group_faults_priv(ng);
1470 
1471 		period *= refcount_read(&ng->refcount);
1472 		period *= shared + 1;
1473 		period /= private + shared + 1;
1474 	}
1475 	rcu_read_unlock();
1476 
1477 	return max(smin, period);
1478 }
1479 
1480 static unsigned int task_scan_max(struct task_struct *p)
1481 {
1482 	unsigned long smin = task_scan_min(p);
1483 	unsigned long smax;
1484 	struct numa_group *ng;
1485 
1486 	/* Watch for min being lower than max due to floor calculations */
1487 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1488 
1489 	/* Scale the maximum scan period with the amount of shared memory. */
1490 	ng = deref_curr_numa_group(p);
1491 	if (ng) {
1492 		unsigned long shared = group_faults_shared(ng);
1493 		unsigned long private = group_faults_priv(ng);
1494 		unsigned long period = smax;
1495 
1496 		period *= refcount_read(&ng->refcount);
1497 		period *= shared + 1;
1498 		period /= private + shared + 1;
1499 
1500 		smax = max(smax, period);
1501 	}
1502 
1503 	return max(smin, smax);
1504 }
1505 
1506 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1507 {
1508 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1509 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1510 }
1511 
1512 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1513 {
1514 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1515 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1516 }
1517 
1518 /* Shared or private faults. */
1519 #define NR_NUMA_HINT_FAULT_TYPES 2
1520 
1521 /* Memory and CPU locality */
1522 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1523 
1524 /* Averaged statistics, and temporary buffers. */
1525 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1526 
1527 pid_t task_numa_group_id(struct task_struct *p)
1528 {
1529 	struct numa_group *ng;
1530 	pid_t gid = 0;
1531 
1532 	rcu_read_lock();
1533 	ng = rcu_dereference(p->numa_group);
1534 	if (ng)
1535 		gid = ng->gid;
1536 	rcu_read_unlock();
1537 
1538 	return gid;
1539 }
1540 
1541 /*
1542  * The averaged statistics, shared & private, memory & CPU,
1543  * occupy the first half of the array. The second half of the
1544  * array is for current counters, which are averaged into the
1545  * first set by task_numa_placement.
1546  */
1547 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1548 {
1549 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1550 }
1551 
1552 static inline unsigned long task_faults(struct task_struct *p, int nid)
1553 {
1554 	if (!p->numa_faults)
1555 		return 0;
1556 
1557 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1558 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1559 }
1560 
1561 static inline unsigned long group_faults(struct task_struct *p, int nid)
1562 {
1563 	struct numa_group *ng = deref_task_numa_group(p);
1564 
1565 	if (!ng)
1566 		return 0;
1567 
1568 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1569 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1570 }
1571 
1572 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1573 {
1574 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1575 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1576 }
1577 
1578 static inline unsigned long group_faults_priv(struct numa_group *ng)
1579 {
1580 	unsigned long faults = 0;
1581 	int node;
1582 
1583 	for_each_online_node(node) {
1584 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1585 	}
1586 
1587 	return faults;
1588 }
1589 
1590 static inline unsigned long group_faults_shared(struct numa_group *ng)
1591 {
1592 	unsigned long faults = 0;
1593 	int node;
1594 
1595 	for_each_online_node(node) {
1596 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1597 	}
1598 
1599 	return faults;
1600 }
1601 
1602 /*
1603  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1604  * considered part of a numa group's pseudo-interleaving set. Migrations
1605  * between these nodes are slowed down, to allow things to settle down.
1606  */
1607 #define ACTIVE_NODE_FRACTION 3
1608 
1609 static bool numa_is_active_node(int nid, struct numa_group *ng)
1610 {
1611 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1612 }
1613 
1614 /* Handle placement on systems where not all nodes are directly connected. */
1615 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1616 					int lim_dist, bool task)
1617 {
1618 	unsigned long score = 0;
1619 	int node, max_dist;
1620 
1621 	/*
1622 	 * All nodes are directly connected, and the same distance
1623 	 * from each other. No need for fancy placement algorithms.
1624 	 */
1625 	if (sched_numa_topology_type == NUMA_DIRECT)
1626 		return 0;
1627 
1628 	/* sched_max_numa_distance may be changed in parallel. */
1629 	max_dist = READ_ONCE(sched_max_numa_distance);
1630 	/*
1631 	 * This code is called for each node, introducing N^2 complexity,
1632 	 * which should be ok given the number of nodes rarely exceeds 8.
1633 	 */
1634 	for_each_online_node(node) {
1635 		unsigned long faults;
1636 		int dist = node_distance(nid, node);
1637 
1638 		/*
1639 		 * The furthest away nodes in the system are not interesting
1640 		 * for placement; nid was already counted.
1641 		 */
1642 		if (dist >= max_dist || node == nid)
1643 			continue;
1644 
1645 		/*
1646 		 * On systems with a backplane NUMA topology, compare groups
1647 		 * of nodes, and move tasks towards the group with the most
1648 		 * memory accesses. When comparing two nodes at distance
1649 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1650 		 * of each group. Skip other nodes.
1651 		 */
1652 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1653 			continue;
1654 
1655 		/* Add up the faults from nearby nodes. */
1656 		if (task)
1657 			faults = task_faults(p, node);
1658 		else
1659 			faults = group_faults(p, node);
1660 
1661 		/*
1662 		 * On systems with a glueless mesh NUMA topology, there are
1663 		 * no fixed "groups of nodes". Instead, nodes that are not
1664 		 * directly connected bounce traffic through intermediate
1665 		 * nodes; a numa_group can occupy any set of nodes.
1666 		 * The further away a node is, the less the faults count.
1667 		 * This seems to result in good task placement.
1668 		 */
1669 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1670 			faults *= (max_dist - dist);
1671 			faults /= (max_dist - LOCAL_DISTANCE);
1672 		}
1673 
1674 		score += faults;
1675 	}
1676 
1677 	return score;
1678 }
1679 
1680 /*
1681  * These return the fraction of accesses done by a particular task, or
1682  * task group, on a particular numa node.  The group weight is given a
1683  * larger multiplier, in order to group tasks together that are almost
1684  * evenly spread out between numa nodes.
1685  */
1686 static inline unsigned long task_weight(struct task_struct *p, int nid,
1687 					int dist)
1688 {
1689 	unsigned long faults, total_faults;
1690 
1691 	if (!p->numa_faults)
1692 		return 0;
1693 
1694 	total_faults = p->total_numa_faults;
1695 
1696 	if (!total_faults)
1697 		return 0;
1698 
1699 	faults = task_faults(p, nid);
1700 	faults += score_nearby_nodes(p, nid, dist, true);
1701 
1702 	return 1000 * faults / total_faults;
1703 }
1704 
1705 static inline unsigned long group_weight(struct task_struct *p, int nid,
1706 					 int dist)
1707 {
1708 	struct numa_group *ng = deref_task_numa_group(p);
1709 	unsigned long faults, total_faults;
1710 
1711 	if (!ng)
1712 		return 0;
1713 
1714 	total_faults = ng->total_faults;
1715 
1716 	if (!total_faults)
1717 		return 0;
1718 
1719 	faults = group_faults(p, nid);
1720 	faults += score_nearby_nodes(p, nid, dist, false);
1721 
1722 	return 1000 * faults / total_faults;
1723 }
1724 
1725 /*
1726  * If memory tiering mode is enabled, cpupid of slow memory page is
1727  * used to record scan time instead of CPU and PID.  When tiering mode
1728  * is disabled at run time, the scan time (in cpupid) will be
1729  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1730  * access out of array bound.
1731  */
1732 static inline bool cpupid_valid(int cpupid)
1733 {
1734 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1735 }
1736 
1737 /*
1738  * For memory tiering mode, if there are enough free pages (more than
1739  * enough watermark defined here) in fast memory node, to take full
1740  * advantage of fast memory capacity, all recently accessed slow
1741  * memory pages will be migrated to fast memory node without
1742  * considering hot threshold.
1743  */
1744 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1745 {
1746 	int z;
1747 	unsigned long enough_wmark;
1748 
1749 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1750 			   pgdat->node_present_pages >> 4);
1751 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1752 		struct zone *zone = pgdat->node_zones + z;
1753 
1754 		if (!populated_zone(zone))
1755 			continue;
1756 
1757 		if (zone_watermark_ok(zone, 0,
1758 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1759 				      ZONE_MOVABLE, 0))
1760 			return true;
1761 	}
1762 	return false;
1763 }
1764 
1765 /*
1766  * For memory tiering mode, when page tables are scanned, the scan
1767  * time will be recorded in struct page in addition to make page
1768  * PROT_NONE for slow memory page.  So when the page is accessed, in
1769  * hint page fault handler, the hint page fault latency is calculated
1770  * via,
1771  *
1772  *	hint page fault latency = hint page fault time - scan time
1773  *
1774  * The smaller the hint page fault latency, the higher the possibility
1775  * for the page to be hot.
1776  */
1777 static int numa_hint_fault_latency(struct page *page)
1778 {
1779 	int last_time, time;
1780 
1781 	time = jiffies_to_msecs(jiffies);
1782 	last_time = xchg_page_access_time(page, time);
1783 
1784 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1785 }
1786 
1787 /*
1788  * For memory tiering mode, too high promotion/demotion throughput may
1789  * hurt application latency.  So we provide a mechanism to rate limit
1790  * the number of pages that are tried to be promoted.
1791  */
1792 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1793 				      unsigned long rate_limit, int nr)
1794 {
1795 	unsigned long nr_cand;
1796 	unsigned int now, start;
1797 
1798 	now = jiffies_to_msecs(jiffies);
1799 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1800 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1801 	start = pgdat->nbp_rl_start;
1802 	if (now - start > MSEC_PER_SEC &&
1803 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1804 		pgdat->nbp_rl_nr_cand = nr_cand;
1805 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1806 		return true;
1807 	return false;
1808 }
1809 
1810 #define NUMA_MIGRATION_ADJUST_STEPS	16
1811 
1812 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1813 					    unsigned long rate_limit,
1814 					    unsigned int ref_th)
1815 {
1816 	unsigned int now, start, th_period, unit_th, th;
1817 	unsigned long nr_cand, ref_cand, diff_cand;
1818 
1819 	now = jiffies_to_msecs(jiffies);
1820 	th_period = sysctl_numa_balancing_scan_period_max;
1821 	start = pgdat->nbp_th_start;
1822 	if (now - start > th_period &&
1823 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1824 		ref_cand = rate_limit *
1825 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1826 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1827 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1828 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1829 		th = pgdat->nbp_threshold ? : ref_th;
1830 		if (diff_cand > ref_cand * 11 / 10)
1831 			th = max(th - unit_th, unit_th);
1832 		else if (diff_cand < ref_cand * 9 / 10)
1833 			th = min(th + unit_th, ref_th * 2);
1834 		pgdat->nbp_th_nr_cand = nr_cand;
1835 		pgdat->nbp_threshold = th;
1836 	}
1837 }
1838 
1839 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1840 				int src_nid, int dst_cpu)
1841 {
1842 	struct numa_group *ng = deref_curr_numa_group(p);
1843 	int dst_nid = cpu_to_node(dst_cpu);
1844 	int last_cpupid, this_cpupid;
1845 
1846 	/*
1847 	 * The pages in slow memory node should be migrated according
1848 	 * to hot/cold instead of private/shared.
1849 	 */
1850 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1851 	    !node_is_toptier(src_nid)) {
1852 		struct pglist_data *pgdat;
1853 		unsigned long rate_limit;
1854 		unsigned int latency, th, def_th;
1855 
1856 		pgdat = NODE_DATA(dst_nid);
1857 		if (pgdat_free_space_enough(pgdat)) {
1858 			/* workload changed, reset hot threshold */
1859 			pgdat->nbp_threshold = 0;
1860 			return true;
1861 		}
1862 
1863 		def_th = sysctl_numa_balancing_hot_threshold;
1864 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1865 			(20 - PAGE_SHIFT);
1866 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1867 
1868 		th = pgdat->nbp_threshold ? : def_th;
1869 		latency = numa_hint_fault_latency(page);
1870 		if (latency >= th)
1871 			return false;
1872 
1873 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1874 						  thp_nr_pages(page));
1875 	}
1876 
1877 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1878 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1879 
1880 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1881 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1882 		return false;
1883 
1884 	/*
1885 	 * Allow first faults or private faults to migrate immediately early in
1886 	 * the lifetime of a task. The magic number 4 is based on waiting for
1887 	 * two full passes of the "multi-stage node selection" test that is
1888 	 * executed below.
1889 	 */
1890 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1891 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1892 		return true;
1893 
1894 	/*
1895 	 * Multi-stage node selection is used in conjunction with a periodic
1896 	 * migration fault to build a temporal task<->page relation. By using
1897 	 * a two-stage filter we remove short/unlikely relations.
1898 	 *
1899 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1900 	 * a task's usage of a particular page (n_p) per total usage of this
1901 	 * page (n_t) (in a given time-span) to a probability.
1902 	 *
1903 	 * Our periodic faults will sample this probability and getting the
1904 	 * same result twice in a row, given these samples are fully
1905 	 * independent, is then given by P(n)^2, provided our sample period
1906 	 * is sufficiently short compared to the usage pattern.
1907 	 *
1908 	 * This quadric squishes small probabilities, making it less likely we
1909 	 * act on an unlikely task<->page relation.
1910 	 */
1911 	if (!cpupid_pid_unset(last_cpupid) &&
1912 				cpupid_to_nid(last_cpupid) != dst_nid)
1913 		return false;
1914 
1915 	/* Always allow migrate on private faults */
1916 	if (cpupid_match_pid(p, last_cpupid))
1917 		return true;
1918 
1919 	/* A shared fault, but p->numa_group has not been set up yet. */
1920 	if (!ng)
1921 		return true;
1922 
1923 	/*
1924 	 * Destination node is much more heavily used than the source
1925 	 * node? Allow migration.
1926 	 */
1927 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1928 					ACTIVE_NODE_FRACTION)
1929 		return true;
1930 
1931 	/*
1932 	 * Distribute memory according to CPU & memory use on each node,
1933 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1934 	 *
1935 	 * faults_cpu(dst)   3   faults_cpu(src)
1936 	 * --------------- * - > ---------------
1937 	 * faults_mem(dst)   4   faults_mem(src)
1938 	 */
1939 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1940 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1941 }
1942 
1943 /*
1944  * 'numa_type' describes the node at the moment of load balancing.
1945  */
1946 enum numa_type {
1947 	/* The node has spare capacity that can be used to run more tasks.  */
1948 	node_has_spare = 0,
1949 	/*
1950 	 * The node is fully used and the tasks don't compete for more CPU
1951 	 * cycles. Nevertheless, some tasks might wait before running.
1952 	 */
1953 	node_fully_busy,
1954 	/*
1955 	 * The node is overloaded and can't provide expected CPU cycles to all
1956 	 * tasks.
1957 	 */
1958 	node_overloaded
1959 };
1960 
1961 /* Cached statistics for all CPUs within a node */
1962 struct numa_stats {
1963 	unsigned long load;
1964 	unsigned long runnable;
1965 	unsigned long util;
1966 	/* Total compute capacity of CPUs on a node */
1967 	unsigned long compute_capacity;
1968 	unsigned int nr_running;
1969 	unsigned int weight;
1970 	enum numa_type node_type;
1971 	int idle_cpu;
1972 };
1973 
1974 struct task_numa_env {
1975 	struct task_struct *p;
1976 
1977 	int src_cpu, src_nid;
1978 	int dst_cpu, dst_nid;
1979 	int imb_numa_nr;
1980 
1981 	struct numa_stats src_stats, dst_stats;
1982 
1983 	int imbalance_pct;
1984 	int dist;
1985 
1986 	struct task_struct *best_task;
1987 	long best_imp;
1988 	int best_cpu;
1989 };
1990 
1991 static unsigned long cpu_load(struct rq *rq);
1992 static unsigned long cpu_runnable(struct rq *rq);
1993 
1994 static inline enum
1995 numa_type numa_classify(unsigned int imbalance_pct,
1996 			 struct numa_stats *ns)
1997 {
1998 	if ((ns->nr_running > ns->weight) &&
1999 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2000 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2001 		return node_overloaded;
2002 
2003 	if ((ns->nr_running < ns->weight) ||
2004 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2005 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2006 		return node_has_spare;
2007 
2008 	return node_fully_busy;
2009 }
2010 
2011 #ifdef CONFIG_SCHED_SMT
2012 /* Forward declarations of select_idle_sibling helpers */
2013 static inline bool test_idle_cores(int cpu);
2014 static inline int numa_idle_core(int idle_core, int cpu)
2015 {
2016 	if (!static_branch_likely(&sched_smt_present) ||
2017 	    idle_core >= 0 || !test_idle_cores(cpu))
2018 		return idle_core;
2019 
2020 	/*
2021 	 * Prefer cores instead of packing HT siblings
2022 	 * and triggering future load balancing.
2023 	 */
2024 	if (is_core_idle(cpu))
2025 		idle_core = cpu;
2026 
2027 	return idle_core;
2028 }
2029 #else
2030 static inline int numa_idle_core(int idle_core, int cpu)
2031 {
2032 	return idle_core;
2033 }
2034 #endif
2035 
2036 /*
2037  * Gather all necessary information to make NUMA balancing placement
2038  * decisions that are compatible with standard load balancer. This
2039  * borrows code and logic from update_sg_lb_stats but sharing a
2040  * common implementation is impractical.
2041  */
2042 static void update_numa_stats(struct task_numa_env *env,
2043 			      struct numa_stats *ns, int nid,
2044 			      bool find_idle)
2045 {
2046 	int cpu, idle_core = -1;
2047 
2048 	memset(ns, 0, sizeof(*ns));
2049 	ns->idle_cpu = -1;
2050 
2051 	rcu_read_lock();
2052 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2053 		struct rq *rq = cpu_rq(cpu);
2054 
2055 		ns->load += cpu_load(rq);
2056 		ns->runnable += cpu_runnable(rq);
2057 		ns->util += cpu_util_cfs(cpu);
2058 		ns->nr_running += rq->cfs.h_nr_running;
2059 		ns->compute_capacity += capacity_of(cpu);
2060 
2061 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2062 			if (READ_ONCE(rq->numa_migrate_on) ||
2063 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2064 				continue;
2065 
2066 			if (ns->idle_cpu == -1)
2067 				ns->idle_cpu = cpu;
2068 
2069 			idle_core = numa_idle_core(idle_core, cpu);
2070 		}
2071 	}
2072 	rcu_read_unlock();
2073 
2074 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2075 
2076 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2077 
2078 	if (idle_core >= 0)
2079 		ns->idle_cpu = idle_core;
2080 }
2081 
2082 static void task_numa_assign(struct task_numa_env *env,
2083 			     struct task_struct *p, long imp)
2084 {
2085 	struct rq *rq = cpu_rq(env->dst_cpu);
2086 
2087 	/* Check if run-queue part of active NUMA balance. */
2088 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2089 		int cpu;
2090 		int start = env->dst_cpu;
2091 
2092 		/* Find alternative idle CPU. */
2093 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2094 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2095 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2096 				continue;
2097 			}
2098 
2099 			env->dst_cpu = cpu;
2100 			rq = cpu_rq(env->dst_cpu);
2101 			if (!xchg(&rq->numa_migrate_on, 1))
2102 				goto assign;
2103 		}
2104 
2105 		/* Failed to find an alternative idle CPU */
2106 		return;
2107 	}
2108 
2109 assign:
2110 	/*
2111 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2112 	 * found a better CPU to move/swap.
2113 	 */
2114 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2115 		rq = cpu_rq(env->best_cpu);
2116 		WRITE_ONCE(rq->numa_migrate_on, 0);
2117 	}
2118 
2119 	if (env->best_task)
2120 		put_task_struct(env->best_task);
2121 	if (p)
2122 		get_task_struct(p);
2123 
2124 	env->best_task = p;
2125 	env->best_imp = imp;
2126 	env->best_cpu = env->dst_cpu;
2127 }
2128 
2129 static bool load_too_imbalanced(long src_load, long dst_load,
2130 				struct task_numa_env *env)
2131 {
2132 	long imb, old_imb;
2133 	long orig_src_load, orig_dst_load;
2134 	long src_capacity, dst_capacity;
2135 
2136 	/*
2137 	 * The load is corrected for the CPU capacity available on each node.
2138 	 *
2139 	 * src_load        dst_load
2140 	 * ------------ vs ---------
2141 	 * src_capacity    dst_capacity
2142 	 */
2143 	src_capacity = env->src_stats.compute_capacity;
2144 	dst_capacity = env->dst_stats.compute_capacity;
2145 
2146 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2147 
2148 	orig_src_load = env->src_stats.load;
2149 	orig_dst_load = env->dst_stats.load;
2150 
2151 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2152 
2153 	/* Would this change make things worse? */
2154 	return (imb > old_imb);
2155 }
2156 
2157 /*
2158  * Maximum NUMA importance can be 1998 (2*999);
2159  * SMALLIMP @ 30 would be close to 1998/64.
2160  * Used to deter task migration.
2161  */
2162 #define SMALLIMP	30
2163 
2164 /*
2165  * This checks if the overall compute and NUMA accesses of the system would
2166  * be improved if the source tasks was migrated to the target dst_cpu taking
2167  * into account that it might be best if task running on the dst_cpu should
2168  * be exchanged with the source task
2169  */
2170 static bool task_numa_compare(struct task_numa_env *env,
2171 			      long taskimp, long groupimp, bool maymove)
2172 {
2173 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2174 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2175 	long imp = p_ng ? groupimp : taskimp;
2176 	struct task_struct *cur;
2177 	long src_load, dst_load;
2178 	int dist = env->dist;
2179 	long moveimp = imp;
2180 	long load;
2181 	bool stopsearch = false;
2182 
2183 	if (READ_ONCE(dst_rq->numa_migrate_on))
2184 		return false;
2185 
2186 	rcu_read_lock();
2187 	cur = rcu_dereference(dst_rq->curr);
2188 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2189 		cur = NULL;
2190 
2191 	/*
2192 	 * Because we have preemption enabled we can get migrated around and
2193 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2194 	 */
2195 	if (cur == env->p) {
2196 		stopsearch = true;
2197 		goto unlock;
2198 	}
2199 
2200 	if (!cur) {
2201 		if (maymove && moveimp >= env->best_imp)
2202 			goto assign;
2203 		else
2204 			goto unlock;
2205 	}
2206 
2207 	/* Skip this swap candidate if cannot move to the source cpu. */
2208 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2209 		goto unlock;
2210 
2211 	/*
2212 	 * Skip this swap candidate if it is not moving to its preferred
2213 	 * node and the best task is.
2214 	 */
2215 	if (env->best_task &&
2216 	    env->best_task->numa_preferred_nid == env->src_nid &&
2217 	    cur->numa_preferred_nid != env->src_nid) {
2218 		goto unlock;
2219 	}
2220 
2221 	/*
2222 	 * "imp" is the fault differential for the source task between the
2223 	 * source and destination node. Calculate the total differential for
2224 	 * the source task and potential destination task. The more negative
2225 	 * the value is, the more remote accesses that would be expected to
2226 	 * be incurred if the tasks were swapped.
2227 	 *
2228 	 * If dst and source tasks are in the same NUMA group, or not
2229 	 * in any group then look only at task weights.
2230 	 */
2231 	cur_ng = rcu_dereference(cur->numa_group);
2232 	if (cur_ng == p_ng) {
2233 		/*
2234 		 * Do not swap within a group or between tasks that have
2235 		 * no group if there is spare capacity. Swapping does
2236 		 * not address the load imbalance and helps one task at
2237 		 * the cost of punishing another.
2238 		 */
2239 		if (env->dst_stats.node_type == node_has_spare)
2240 			goto unlock;
2241 
2242 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2243 		      task_weight(cur, env->dst_nid, dist);
2244 		/*
2245 		 * Add some hysteresis to prevent swapping the
2246 		 * tasks within a group over tiny differences.
2247 		 */
2248 		if (cur_ng)
2249 			imp -= imp / 16;
2250 	} else {
2251 		/*
2252 		 * Compare the group weights. If a task is all by itself
2253 		 * (not part of a group), use the task weight instead.
2254 		 */
2255 		if (cur_ng && p_ng)
2256 			imp += group_weight(cur, env->src_nid, dist) -
2257 			       group_weight(cur, env->dst_nid, dist);
2258 		else
2259 			imp += task_weight(cur, env->src_nid, dist) -
2260 			       task_weight(cur, env->dst_nid, dist);
2261 	}
2262 
2263 	/* Discourage picking a task already on its preferred node */
2264 	if (cur->numa_preferred_nid == env->dst_nid)
2265 		imp -= imp / 16;
2266 
2267 	/*
2268 	 * Encourage picking a task that moves to its preferred node.
2269 	 * This potentially makes imp larger than it's maximum of
2270 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2271 	 * case, it does not matter.
2272 	 */
2273 	if (cur->numa_preferred_nid == env->src_nid)
2274 		imp += imp / 8;
2275 
2276 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2277 		imp = moveimp;
2278 		cur = NULL;
2279 		goto assign;
2280 	}
2281 
2282 	/*
2283 	 * Prefer swapping with a task moving to its preferred node over a
2284 	 * task that is not.
2285 	 */
2286 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2287 	    env->best_task->numa_preferred_nid != env->src_nid) {
2288 		goto assign;
2289 	}
2290 
2291 	/*
2292 	 * If the NUMA importance is less than SMALLIMP,
2293 	 * task migration might only result in ping pong
2294 	 * of tasks and also hurt performance due to cache
2295 	 * misses.
2296 	 */
2297 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2298 		goto unlock;
2299 
2300 	/*
2301 	 * In the overloaded case, try and keep the load balanced.
2302 	 */
2303 	load = task_h_load(env->p) - task_h_load(cur);
2304 	if (!load)
2305 		goto assign;
2306 
2307 	dst_load = env->dst_stats.load + load;
2308 	src_load = env->src_stats.load - load;
2309 
2310 	if (load_too_imbalanced(src_load, dst_load, env))
2311 		goto unlock;
2312 
2313 assign:
2314 	/* Evaluate an idle CPU for a task numa move. */
2315 	if (!cur) {
2316 		int cpu = env->dst_stats.idle_cpu;
2317 
2318 		/* Nothing cached so current CPU went idle since the search. */
2319 		if (cpu < 0)
2320 			cpu = env->dst_cpu;
2321 
2322 		/*
2323 		 * If the CPU is no longer truly idle and the previous best CPU
2324 		 * is, keep using it.
2325 		 */
2326 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2327 		    idle_cpu(env->best_cpu)) {
2328 			cpu = env->best_cpu;
2329 		}
2330 
2331 		env->dst_cpu = cpu;
2332 	}
2333 
2334 	task_numa_assign(env, cur, imp);
2335 
2336 	/*
2337 	 * If a move to idle is allowed because there is capacity or load
2338 	 * balance improves then stop the search. While a better swap
2339 	 * candidate may exist, a search is not free.
2340 	 */
2341 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2342 		stopsearch = true;
2343 
2344 	/*
2345 	 * If a swap candidate must be identified and the current best task
2346 	 * moves its preferred node then stop the search.
2347 	 */
2348 	if (!maymove && env->best_task &&
2349 	    env->best_task->numa_preferred_nid == env->src_nid) {
2350 		stopsearch = true;
2351 	}
2352 unlock:
2353 	rcu_read_unlock();
2354 
2355 	return stopsearch;
2356 }
2357 
2358 static void task_numa_find_cpu(struct task_numa_env *env,
2359 				long taskimp, long groupimp)
2360 {
2361 	bool maymove = false;
2362 	int cpu;
2363 
2364 	/*
2365 	 * If dst node has spare capacity, then check if there is an
2366 	 * imbalance that would be overruled by the load balancer.
2367 	 */
2368 	if (env->dst_stats.node_type == node_has_spare) {
2369 		unsigned int imbalance;
2370 		int src_running, dst_running;
2371 
2372 		/*
2373 		 * Would movement cause an imbalance? Note that if src has
2374 		 * more running tasks that the imbalance is ignored as the
2375 		 * move improves the imbalance from the perspective of the
2376 		 * CPU load balancer.
2377 		 * */
2378 		src_running = env->src_stats.nr_running - 1;
2379 		dst_running = env->dst_stats.nr_running + 1;
2380 		imbalance = max(0, dst_running - src_running);
2381 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2382 						  env->imb_numa_nr);
2383 
2384 		/* Use idle CPU if there is no imbalance */
2385 		if (!imbalance) {
2386 			maymove = true;
2387 			if (env->dst_stats.idle_cpu >= 0) {
2388 				env->dst_cpu = env->dst_stats.idle_cpu;
2389 				task_numa_assign(env, NULL, 0);
2390 				return;
2391 			}
2392 		}
2393 	} else {
2394 		long src_load, dst_load, load;
2395 		/*
2396 		 * If the improvement from just moving env->p direction is better
2397 		 * than swapping tasks around, check if a move is possible.
2398 		 */
2399 		load = task_h_load(env->p);
2400 		dst_load = env->dst_stats.load + load;
2401 		src_load = env->src_stats.load - load;
2402 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2403 	}
2404 
2405 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2406 		/* Skip this CPU if the source task cannot migrate */
2407 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2408 			continue;
2409 
2410 		env->dst_cpu = cpu;
2411 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2412 			break;
2413 	}
2414 }
2415 
2416 static int task_numa_migrate(struct task_struct *p)
2417 {
2418 	struct task_numa_env env = {
2419 		.p = p,
2420 
2421 		.src_cpu = task_cpu(p),
2422 		.src_nid = task_node(p),
2423 
2424 		.imbalance_pct = 112,
2425 
2426 		.best_task = NULL,
2427 		.best_imp = 0,
2428 		.best_cpu = -1,
2429 	};
2430 	unsigned long taskweight, groupweight;
2431 	struct sched_domain *sd;
2432 	long taskimp, groupimp;
2433 	struct numa_group *ng;
2434 	struct rq *best_rq;
2435 	int nid, ret, dist;
2436 
2437 	/*
2438 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2439 	 * imbalance and would be the first to start moving tasks about.
2440 	 *
2441 	 * And we want to avoid any moving of tasks about, as that would create
2442 	 * random movement of tasks -- counter the numa conditions we're trying
2443 	 * to satisfy here.
2444 	 */
2445 	rcu_read_lock();
2446 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2447 	if (sd) {
2448 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2449 		env.imb_numa_nr = sd->imb_numa_nr;
2450 	}
2451 	rcu_read_unlock();
2452 
2453 	/*
2454 	 * Cpusets can break the scheduler domain tree into smaller
2455 	 * balance domains, some of which do not cross NUMA boundaries.
2456 	 * Tasks that are "trapped" in such domains cannot be migrated
2457 	 * elsewhere, so there is no point in (re)trying.
2458 	 */
2459 	if (unlikely(!sd)) {
2460 		sched_setnuma(p, task_node(p));
2461 		return -EINVAL;
2462 	}
2463 
2464 	env.dst_nid = p->numa_preferred_nid;
2465 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2466 	taskweight = task_weight(p, env.src_nid, dist);
2467 	groupweight = group_weight(p, env.src_nid, dist);
2468 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2469 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2470 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2471 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2472 
2473 	/* Try to find a spot on the preferred nid. */
2474 	task_numa_find_cpu(&env, taskimp, groupimp);
2475 
2476 	/*
2477 	 * Look at other nodes in these cases:
2478 	 * - there is no space available on the preferred_nid
2479 	 * - the task is part of a numa_group that is interleaved across
2480 	 *   multiple NUMA nodes; in order to better consolidate the group,
2481 	 *   we need to check other locations.
2482 	 */
2483 	ng = deref_curr_numa_group(p);
2484 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2485 		for_each_node_state(nid, N_CPU) {
2486 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2487 				continue;
2488 
2489 			dist = node_distance(env.src_nid, env.dst_nid);
2490 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2491 						dist != env.dist) {
2492 				taskweight = task_weight(p, env.src_nid, dist);
2493 				groupweight = group_weight(p, env.src_nid, dist);
2494 			}
2495 
2496 			/* Only consider nodes where both task and groups benefit */
2497 			taskimp = task_weight(p, nid, dist) - taskweight;
2498 			groupimp = group_weight(p, nid, dist) - groupweight;
2499 			if (taskimp < 0 && groupimp < 0)
2500 				continue;
2501 
2502 			env.dist = dist;
2503 			env.dst_nid = nid;
2504 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2505 			task_numa_find_cpu(&env, taskimp, groupimp);
2506 		}
2507 	}
2508 
2509 	/*
2510 	 * If the task is part of a workload that spans multiple NUMA nodes,
2511 	 * and is migrating into one of the workload's active nodes, remember
2512 	 * this node as the task's preferred numa node, so the workload can
2513 	 * settle down.
2514 	 * A task that migrated to a second choice node will be better off
2515 	 * trying for a better one later. Do not set the preferred node here.
2516 	 */
2517 	if (ng) {
2518 		if (env.best_cpu == -1)
2519 			nid = env.src_nid;
2520 		else
2521 			nid = cpu_to_node(env.best_cpu);
2522 
2523 		if (nid != p->numa_preferred_nid)
2524 			sched_setnuma(p, nid);
2525 	}
2526 
2527 	/* No better CPU than the current one was found. */
2528 	if (env.best_cpu == -1) {
2529 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2530 		return -EAGAIN;
2531 	}
2532 
2533 	best_rq = cpu_rq(env.best_cpu);
2534 	if (env.best_task == NULL) {
2535 		ret = migrate_task_to(p, env.best_cpu);
2536 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2537 		if (ret != 0)
2538 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2539 		return ret;
2540 	}
2541 
2542 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2543 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2544 
2545 	if (ret != 0)
2546 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2547 	put_task_struct(env.best_task);
2548 	return ret;
2549 }
2550 
2551 /* Attempt to migrate a task to a CPU on the preferred node. */
2552 static void numa_migrate_preferred(struct task_struct *p)
2553 {
2554 	unsigned long interval = HZ;
2555 
2556 	/* This task has no NUMA fault statistics yet */
2557 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2558 		return;
2559 
2560 	/* Periodically retry migrating the task to the preferred node */
2561 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2562 	p->numa_migrate_retry = jiffies + interval;
2563 
2564 	/* Success if task is already running on preferred CPU */
2565 	if (task_node(p) == p->numa_preferred_nid)
2566 		return;
2567 
2568 	/* Otherwise, try migrate to a CPU on the preferred node */
2569 	task_numa_migrate(p);
2570 }
2571 
2572 /*
2573  * Find out how many nodes the workload is actively running on. Do this by
2574  * tracking the nodes from which NUMA hinting faults are triggered. This can
2575  * be different from the set of nodes where the workload's memory is currently
2576  * located.
2577  */
2578 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2579 {
2580 	unsigned long faults, max_faults = 0;
2581 	int nid, active_nodes = 0;
2582 
2583 	for_each_node_state(nid, N_CPU) {
2584 		faults = group_faults_cpu(numa_group, nid);
2585 		if (faults > max_faults)
2586 			max_faults = faults;
2587 	}
2588 
2589 	for_each_node_state(nid, N_CPU) {
2590 		faults = group_faults_cpu(numa_group, nid);
2591 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2592 			active_nodes++;
2593 	}
2594 
2595 	numa_group->max_faults_cpu = max_faults;
2596 	numa_group->active_nodes = active_nodes;
2597 }
2598 
2599 /*
2600  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2601  * increments. The more local the fault statistics are, the higher the scan
2602  * period will be for the next scan window. If local/(local+remote) ratio is
2603  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2604  * the scan period will decrease. Aim for 70% local accesses.
2605  */
2606 #define NUMA_PERIOD_SLOTS 10
2607 #define NUMA_PERIOD_THRESHOLD 7
2608 
2609 /*
2610  * Increase the scan period (slow down scanning) if the majority of
2611  * our memory is already on our local node, or if the majority of
2612  * the page accesses are shared with other processes.
2613  * Otherwise, decrease the scan period.
2614  */
2615 static void update_task_scan_period(struct task_struct *p,
2616 			unsigned long shared, unsigned long private)
2617 {
2618 	unsigned int period_slot;
2619 	int lr_ratio, ps_ratio;
2620 	int diff;
2621 
2622 	unsigned long remote = p->numa_faults_locality[0];
2623 	unsigned long local = p->numa_faults_locality[1];
2624 
2625 	/*
2626 	 * If there were no record hinting faults then either the task is
2627 	 * completely idle or all activity is in areas that are not of interest
2628 	 * to automatic numa balancing. Related to that, if there were failed
2629 	 * migration then it implies we are migrating too quickly or the local
2630 	 * node is overloaded. In either case, scan slower
2631 	 */
2632 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2633 		p->numa_scan_period = min(p->numa_scan_period_max,
2634 			p->numa_scan_period << 1);
2635 
2636 		p->mm->numa_next_scan = jiffies +
2637 			msecs_to_jiffies(p->numa_scan_period);
2638 
2639 		return;
2640 	}
2641 
2642 	/*
2643 	 * Prepare to scale scan period relative to the current period.
2644 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2645 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2646 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2647 	 */
2648 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2649 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2650 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2651 
2652 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2653 		/*
2654 		 * Most memory accesses are local. There is no need to
2655 		 * do fast NUMA scanning, since memory is already local.
2656 		 */
2657 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2658 		if (!slot)
2659 			slot = 1;
2660 		diff = slot * period_slot;
2661 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2662 		/*
2663 		 * Most memory accesses are shared with other tasks.
2664 		 * There is no point in continuing fast NUMA scanning,
2665 		 * since other tasks may just move the memory elsewhere.
2666 		 */
2667 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2668 		if (!slot)
2669 			slot = 1;
2670 		diff = slot * period_slot;
2671 	} else {
2672 		/*
2673 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2674 		 * yet they are not on the local NUMA node. Speed up
2675 		 * NUMA scanning to get the memory moved over.
2676 		 */
2677 		int ratio = max(lr_ratio, ps_ratio);
2678 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2679 	}
2680 
2681 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2682 			task_scan_min(p), task_scan_max(p));
2683 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2684 }
2685 
2686 /*
2687  * Get the fraction of time the task has been running since the last
2688  * NUMA placement cycle. The scheduler keeps similar statistics, but
2689  * decays those on a 32ms period, which is orders of magnitude off
2690  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2691  * stats only if the task is so new there are no NUMA statistics yet.
2692  */
2693 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2694 {
2695 	u64 runtime, delta, now;
2696 	/* Use the start of this time slice to avoid calculations. */
2697 	now = p->se.exec_start;
2698 	runtime = p->se.sum_exec_runtime;
2699 
2700 	if (p->last_task_numa_placement) {
2701 		delta = runtime - p->last_sum_exec_runtime;
2702 		*period = now - p->last_task_numa_placement;
2703 
2704 		/* Avoid time going backwards, prevent potential divide error: */
2705 		if (unlikely((s64)*period < 0))
2706 			*period = 0;
2707 	} else {
2708 		delta = p->se.avg.load_sum;
2709 		*period = LOAD_AVG_MAX;
2710 	}
2711 
2712 	p->last_sum_exec_runtime = runtime;
2713 	p->last_task_numa_placement = now;
2714 
2715 	return delta;
2716 }
2717 
2718 /*
2719  * Determine the preferred nid for a task in a numa_group. This needs to
2720  * be done in a way that produces consistent results with group_weight,
2721  * otherwise workloads might not converge.
2722  */
2723 static int preferred_group_nid(struct task_struct *p, int nid)
2724 {
2725 	nodemask_t nodes;
2726 	int dist;
2727 
2728 	/* Direct connections between all NUMA nodes. */
2729 	if (sched_numa_topology_type == NUMA_DIRECT)
2730 		return nid;
2731 
2732 	/*
2733 	 * On a system with glueless mesh NUMA topology, group_weight
2734 	 * scores nodes according to the number of NUMA hinting faults on
2735 	 * both the node itself, and on nearby nodes.
2736 	 */
2737 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2738 		unsigned long score, max_score = 0;
2739 		int node, max_node = nid;
2740 
2741 		dist = sched_max_numa_distance;
2742 
2743 		for_each_node_state(node, N_CPU) {
2744 			score = group_weight(p, node, dist);
2745 			if (score > max_score) {
2746 				max_score = score;
2747 				max_node = node;
2748 			}
2749 		}
2750 		return max_node;
2751 	}
2752 
2753 	/*
2754 	 * Finding the preferred nid in a system with NUMA backplane
2755 	 * interconnect topology is more involved. The goal is to locate
2756 	 * tasks from numa_groups near each other in the system, and
2757 	 * untangle workloads from different sides of the system. This requires
2758 	 * searching down the hierarchy of node groups, recursively searching
2759 	 * inside the highest scoring group of nodes. The nodemask tricks
2760 	 * keep the complexity of the search down.
2761 	 */
2762 	nodes = node_states[N_CPU];
2763 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2764 		unsigned long max_faults = 0;
2765 		nodemask_t max_group = NODE_MASK_NONE;
2766 		int a, b;
2767 
2768 		/* Are there nodes at this distance from each other? */
2769 		if (!find_numa_distance(dist))
2770 			continue;
2771 
2772 		for_each_node_mask(a, nodes) {
2773 			unsigned long faults = 0;
2774 			nodemask_t this_group;
2775 			nodes_clear(this_group);
2776 
2777 			/* Sum group's NUMA faults; includes a==b case. */
2778 			for_each_node_mask(b, nodes) {
2779 				if (node_distance(a, b) < dist) {
2780 					faults += group_faults(p, b);
2781 					node_set(b, this_group);
2782 					node_clear(b, nodes);
2783 				}
2784 			}
2785 
2786 			/* Remember the top group. */
2787 			if (faults > max_faults) {
2788 				max_faults = faults;
2789 				max_group = this_group;
2790 				/*
2791 				 * subtle: at the smallest distance there is
2792 				 * just one node left in each "group", the
2793 				 * winner is the preferred nid.
2794 				 */
2795 				nid = a;
2796 			}
2797 		}
2798 		/* Next round, evaluate the nodes within max_group. */
2799 		if (!max_faults)
2800 			break;
2801 		nodes = max_group;
2802 	}
2803 	return nid;
2804 }
2805 
2806 static void task_numa_placement(struct task_struct *p)
2807 {
2808 	int seq, nid, max_nid = NUMA_NO_NODE;
2809 	unsigned long max_faults = 0;
2810 	unsigned long fault_types[2] = { 0, 0 };
2811 	unsigned long total_faults;
2812 	u64 runtime, period;
2813 	spinlock_t *group_lock = NULL;
2814 	struct numa_group *ng;
2815 
2816 	/*
2817 	 * The p->mm->numa_scan_seq field gets updated without
2818 	 * exclusive access. Use READ_ONCE() here to ensure
2819 	 * that the field is read in a single access:
2820 	 */
2821 	seq = READ_ONCE(p->mm->numa_scan_seq);
2822 	if (p->numa_scan_seq == seq)
2823 		return;
2824 	p->numa_scan_seq = seq;
2825 	p->numa_scan_period_max = task_scan_max(p);
2826 
2827 	total_faults = p->numa_faults_locality[0] +
2828 		       p->numa_faults_locality[1];
2829 	runtime = numa_get_avg_runtime(p, &period);
2830 
2831 	/* If the task is part of a group prevent parallel updates to group stats */
2832 	ng = deref_curr_numa_group(p);
2833 	if (ng) {
2834 		group_lock = &ng->lock;
2835 		spin_lock_irq(group_lock);
2836 	}
2837 
2838 	/* Find the node with the highest number of faults */
2839 	for_each_online_node(nid) {
2840 		/* Keep track of the offsets in numa_faults array */
2841 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2842 		unsigned long faults = 0, group_faults = 0;
2843 		int priv;
2844 
2845 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2846 			long diff, f_diff, f_weight;
2847 
2848 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2849 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2850 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2851 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2852 
2853 			/* Decay existing window, copy faults since last scan */
2854 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2855 			fault_types[priv] += p->numa_faults[membuf_idx];
2856 			p->numa_faults[membuf_idx] = 0;
2857 
2858 			/*
2859 			 * Normalize the faults_from, so all tasks in a group
2860 			 * count according to CPU use, instead of by the raw
2861 			 * number of faults. Tasks with little runtime have
2862 			 * little over-all impact on throughput, and thus their
2863 			 * faults are less important.
2864 			 */
2865 			f_weight = div64_u64(runtime << 16, period + 1);
2866 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2867 				   (total_faults + 1);
2868 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2869 			p->numa_faults[cpubuf_idx] = 0;
2870 
2871 			p->numa_faults[mem_idx] += diff;
2872 			p->numa_faults[cpu_idx] += f_diff;
2873 			faults += p->numa_faults[mem_idx];
2874 			p->total_numa_faults += diff;
2875 			if (ng) {
2876 				/*
2877 				 * safe because we can only change our own group
2878 				 *
2879 				 * mem_idx represents the offset for a given
2880 				 * nid and priv in a specific region because it
2881 				 * is at the beginning of the numa_faults array.
2882 				 */
2883 				ng->faults[mem_idx] += diff;
2884 				ng->faults[cpu_idx] += f_diff;
2885 				ng->total_faults += diff;
2886 				group_faults += ng->faults[mem_idx];
2887 			}
2888 		}
2889 
2890 		if (!ng) {
2891 			if (faults > max_faults) {
2892 				max_faults = faults;
2893 				max_nid = nid;
2894 			}
2895 		} else if (group_faults > max_faults) {
2896 			max_faults = group_faults;
2897 			max_nid = nid;
2898 		}
2899 	}
2900 
2901 	/* Cannot migrate task to CPU-less node */
2902 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2903 		int near_nid = max_nid;
2904 		int distance, near_distance = INT_MAX;
2905 
2906 		for_each_node_state(nid, N_CPU) {
2907 			distance = node_distance(max_nid, nid);
2908 			if (distance < near_distance) {
2909 				near_nid = nid;
2910 				near_distance = distance;
2911 			}
2912 		}
2913 		max_nid = near_nid;
2914 	}
2915 
2916 	if (ng) {
2917 		numa_group_count_active_nodes(ng);
2918 		spin_unlock_irq(group_lock);
2919 		max_nid = preferred_group_nid(p, max_nid);
2920 	}
2921 
2922 	if (max_faults) {
2923 		/* Set the new preferred node */
2924 		if (max_nid != p->numa_preferred_nid)
2925 			sched_setnuma(p, max_nid);
2926 	}
2927 
2928 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2929 }
2930 
2931 static inline int get_numa_group(struct numa_group *grp)
2932 {
2933 	return refcount_inc_not_zero(&grp->refcount);
2934 }
2935 
2936 static inline void put_numa_group(struct numa_group *grp)
2937 {
2938 	if (refcount_dec_and_test(&grp->refcount))
2939 		kfree_rcu(grp, rcu);
2940 }
2941 
2942 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2943 			int *priv)
2944 {
2945 	struct numa_group *grp, *my_grp;
2946 	struct task_struct *tsk;
2947 	bool join = false;
2948 	int cpu = cpupid_to_cpu(cpupid);
2949 	int i;
2950 
2951 	if (unlikely(!deref_curr_numa_group(p))) {
2952 		unsigned int size = sizeof(struct numa_group) +
2953 				    NR_NUMA_HINT_FAULT_STATS *
2954 				    nr_node_ids * sizeof(unsigned long);
2955 
2956 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2957 		if (!grp)
2958 			return;
2959 
2960 		refcount_set(&grp->refcount, 1);
2961 		grp->active_nodes = 1;
2962 		grp->max_faults_cpu = 0;
2963 		spin_lock_init(&grp->lock);
2964 		grp->gid = p->pid;
2965 
2966 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2967 			grp->faults[i] = p->numa_faults[i];
2968 
2969 		grp->total_faults = p->total_numa_faults;
2970 
2971 		grp->nr_tasks++;
2972 		rcu_assign_pointer(p->numa_group, grp);
2973 	}
2974 
2975 	rcu_read_lock();
2976 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2977 
2978 	if (!cpupid_match_pid(tsk, cpupid))
2979 		goto no_join;
2980 
2981 	grp = rcu_dereference(tsk->numa_group);
2982 	if (!grp)
2983 		goto no_join;
2984 
2985 	my_grp = deref_curr_numa_group(p);
2986 	if (grp == my_grp)
2987 		goto no_join;
2988 
2989 	/*
2990 	 * Only join the other group if its bigger; if we're the bigger group,
2991 	 * the other task will join us.
2992 	 */
2993 	if (my_grp->nr_tasks > grp->nr_tasks)
2994 		goto no_join;
2995 
2996 	/*
2997 	 * Tie-break on the grp address.
2998 	 */
2999 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3000 		goto no_join;
3001 
3002 	/* Always join threads in the same process. */
3003 	if (tsk->mm == current->mm)
3004 		join = true;
3005 
3006 	/* Simple filter to avoid false positives due to PID collisions */
3007 	if (flags & TNF_SHARED)
3008 		join = true;
3009 
3010 	/* Update priv based on whether false sharing was detected */
3011 	*priv = !join;
3012 
3013 	if (join && !get_numa_group(grp))
3014 		goto no_join;
3015 
3016 	rcu_read_unlock();
3017 
3018 	if (!join)
3019 		return;
3020 
3021 	WARN_ON_ONCE(irqs_disabled());
3022 	double_lock_irq(&my_grp->lock, &grp->lock);
3023 
3024 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3025 		my_grp->faults[i] -= p->numa_faults[i];
3026 		grp->faults[i] += p->numa_faults[i];
3027 	}
3028 	my_grp->total_faults -= p->total_numa_faults;
3029 	grp->total_faults += p->total_numa_faults;
3030 
3031 	my_grp->nr_tasks--;
3032 	grp->nr_tasks++;
3033 
3034 	spin_unlock(&my_grp->lock);
3035 	spin_unlock_irq(&grp->lock);
3036 
3037 	rcu_assign_pointer(p->numa_group, grp);
3038 
3039 	put_numa_group(my_grp);
3040 	return;
3041 
3042 no_join:
3043 	rcu_read_unlock();
3044 	return;
3045 }
3046 
3047 /*
3048  * Get rid of NUMA statistics associated with a task (either current or dead).
3049  * If @final is set, the task is dead and has reached refcount zero, so we can
3050  * safely free all relevant data structures. Otherwise, there might be
3051  * concurrent reads from places like load balancing and procfs, and we should
3052  * reset the data back to default state without freeing ->numa_faults.
3053  */
3054 void task_numa_free(struct task_struct *p, bool final)
3055 {
3056 	/* safe: p either is current or is being freed by current */
3057 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3058 	unsigned long *numa_faults = p->numa_faults;
3059 	unsigned long flags;
3060 	int i;
3061 
3062 	if (!numa_faults)
3063 		return;
3064 
3065 	if (grp) {
3066 		spin_lock_irqsave(&grp->lock, flags);
3067 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3068 			grp->faults[i] -= p->numa_faults[i];
3069 		grp->total_faults -= p->total_numa_faults;
3070 
3071 		grp->nr_tasks--;
3072 		spin_unlock_irqrestore(&grp->lock, flags);
3073 		RCU_INIT_POINTER(p->numa_group, NULL);
3074 		put_numa_group(grp);
3075 	}
3076 
3077 	if (final) {
3078 		p->numa_faults = NULL;
3079 		kfree(numa_faults);
3080 	} else {
3081 		p->total_numa_faults = 0;
3082 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3083 			numa_faults[i] = 0;
3084 	}
3085 }
3086 
3087 /*
3088  * Got a PROT_NONE fault for a page on @node.
3089  */
3090 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3091 {
3092 	struct task_struct *p = current;
3093 	bool migrated = flags & TNF_MIGRATED;
3094 	int cpu_node = task_node(current);
3095 	int local = !!(flags & TNF_FAULT_LOCAL);
3096 	struct numa_group *ng;
3097 	int priv;
3098 
3099 	if (!static_branch_likely(&sched_numa_balancing))
3100 		return;
3101 
3102 	/* for example, ksmd faulting in a user's mm */
3103 	if (!p->mm)
3104 		return;
3105 
3106 	/*
3107 	 * NUMA faults statistics are unnecessary for the slow memory
3108 	 * node for memory tiering mode.
3109 	 */
3110 	if (!node_is_toptier(mem_node) &&
3111 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3112 	     !cpupid_valid(last_cpupid)))
3113 		return;
3114 
3115 	/* Allocate buffer to track faults on a per-node basis */
3116 	if (unlikely(!p->numa_faults)) {
3117 		int size = sizeof(*p->numa_faults) *
3118 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3119 
3120 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3121 		if (!p->numa_faults)
3122 			return;
3123 
3124 		p->total_numa_faults = 0;
3125 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3126 	}
3127 
3128 	/*
3129 	 * First accesses are treated as private, otherwise consider accesses
3130 	 * to be private if the accessing pid has not changed
3131 	 */
3132 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3133 		priv = 1;
3134 	} else {
3135 		priv = cpupid_match_pid(p, last_cpupid);
3136 		if (!priv && !(flags & TNF_NO_GROUP))
3137 			task_numa_group(p, last_cpupid, flags, &priv);
3138 	}
3139 
3140 	/*
3141 	 * If a workload spans multiple NUMA nodes, a shared fault that
3142 	 * occurs wholly within the set of nodes that the workload is
3143 	 * actively using should be counted as local. This allows the
3144 	 * scan rate to slow down when a workload has settled down.
3145 	 */
3146 	ng = deref_curr_numa_group(p);
3147 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3148 				numa_is_active_node(cpu_node, ng) &&
3149 				numa_is_active_node(mem_node, ng))
3150 		local = 1;
3151 
3152 	/*
3153 	 * Retry to migrate task to preferred node periodically, in case it
3154 	 * previously failed, or the scheduler moved us.
3155 	 */
3156 	if (time_after(jiffies, p->numa_migrate_retry)) {
3157 		task_numa_placement(p);
3158 		numa_migrate_preferred(p);
3159 	}
3160 
3161 	if (migrated)
3162 		p->numa_pages_migrated += pages;
3163 	if (flags & TNF_MIGRATE_FAIL)
3164 		p->numa_faults_locality[2] += pages;
3165 
3166 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3167 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3168 	p->numa_faults_locality[local] += pages;
3169 }
3170 
3171 static void reset_ptenuma_scan(struct task_struct *p)
3172 {
3173 	/*
3174 	 * We only did a read acquisition of the mmap sem, so
3175 	 * p->mm->numa_scan_seq is written to without exclusive access
3176 	 * and the update is not guaranteed to be atomic. That's not
3177 	 * much of an issue though, since this is just used for
3178 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3179 	 * expensive, to avoid any form of compiler optimizations:
3180 	 */
3181 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3182 	p->mm->numa_scan_offset = 0;
3183 }
3184 
3185 static bool vma_is_accessed(struct vm_area_struct *vma)
3186 {
3187 	unsigned long pids;
3188 	/*
3189 	 * Allow unconditional access first two times, so that all the (pages)
3190 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3191 	 * This is also done to avoid any side effect of task scanning
3192 	 * amplifying the unfairness of disjoint set of VMAs' access.
3193 	 */
3194 	if (READ_ONCE(current->mm->numa_scan_seq) < 2)
3195 		return true;
3196 
3197 	pids = vma->numab_state->access_pids[0] | vma->numab_state->access_pids[1];
3198 	return test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids);
3199 }
3200 
3201 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3202 
3203 /*
3204  * The expensive part of numa migration is done from task_work context.
3205  * Triggered from task_tick_numa().
3206  */
3207 static void task_numa_work(struct callback_head *work)
3208 {
3209 	unsigned long migrate, next_scan, now = jiffies;
3210 	struct task_struct *p = current;
3211 	struct mm_struct *mm = p->mm;
3212 	u64 runtime = p->se.sum_exec_runtime;
3213 	struct vm_area_struct *vma;
3214 	unsigned long start, end;
3215 	unsigned long nr_pte_updates = 0;
3216 	long pages, virtpages;
3217 	struct vma_iterator vmi;
3218 
3219 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3220 
3221 	work->next = work;
3222 	/*
3223 	 * Who cares about NUMA placement when they're dying.
3224 	 *
3225 	 * NOTE: make sure not to dereference p->mm before this check,
3226 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3227 	 * without p->mm even though we still had it when we enqueued this
3228 	 * work.
3229 	 */
3230 	if (p->flags & PF_EXITING)
3231 		return;
3232 
3233 	if (!mm->numa_next_scan) {
3234 		mm->numa_next_scan = now +
3235 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3236 	}
3237 
3238 	/*
3239 	 * Enforce maximal scan/migration frequency..
3240 	 */
3241 	migrate = mm->numa_next_scan;
3242 	if (time_before(now, migrate))
3243 		return;
3244 
3245 	if (p->numa_scan_period == 0) {
3246 		p->numa_scan_period_max = task_scan_max(p);
3247 		p->numa_scan_period = task_scan_start(p);
3248 	}
3249 
3250 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3251 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3252 		return;
3253 
3254 	/*
3255 	 * Delay this task enough that another task of this mm will likely win
3256 	 * the next time around.
3257 	 */
3258 	p->node_stamp += 2 * TICK_NSEC;
3259 
3260 	start = mm->numa_scan_offset;
3261 	pages = sysctl_numa_balancing_scan_size;
3262 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3263 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3264 	if (!pages)
3265 		return;
3266 
3267 
3268 	if (!mmap_read_trylock(mm))
3269 		return;
3270 	vma_iter_init(&vmi, mm, start);
3271 	vma = vma_next(&vmi);
3272 	if (!vma) {
3273 		reset_ptenuma_scan(p);
3274 		start = 0;
3275 		vma_iter_set(&vmi, start);
3276 		vma = vma_next(&vmi);
3277 	}
3278 
3279 	do {
3280 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3281 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3282 			continue;
3283 		}
3284 
3285 		/*
3286 		 * Shared library pages mapped by multiple processes are not
3287 		 * migrated as it is expected they are cache replicated. Avoid
3288 		 * hinting faults in read-only file-backed mappings or the vdso
3289 		 * as migrating the pages will be of marginal benefit.
3290 		 */
3291 		if (!vma->vm_mm ||
3292 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
3293 			continue;
3294 
3295 		/*
3296 		 * Skip inaccessible VMAs to avoid any confusion between
3297 		 * PROT_NONE and NUMA hinting ptes
3298 		 */
3299 		if (!vma_is_accessible(vma))
3300 			continue;
3301 
3302 		/* Initialise new per-VMA NUMAB state. */
3303 		if (!vma->numab_state) {
3304 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3305 				GFP_KERNEL);
3306 			if (!vma->numab_state)
3307 				continue;
3308 
3309 			vma->numab_state->next_scan = now +
3310 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3311 
3312 			/* Reset happens after 4 times scan delay of scan start */
3313 			vma->numab_state->next_pid_reset =  vma->numab_state->next_scan +
3314 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3315 		}
3316 
3317 		/*
3318 		 * Scanning the VMA's of short lived tasks add more overhead. So
3319 		 * delay the scan for new VMAs.
3320 		 */
3321 		if (mm->numa_scan_seq && time_before(jiffies,
3322 						vma->numab_state->next_scan))
3323 			continue;
3324 
3325 		/* Do not scan the VMA if task has not accessed */
3326 		if (!vma_is_accessed(vma))
3327 			continue;
3328 
3329 		/*
3330 		 * RESET access PIDs regularly for old VMAs. Resetting after checking
3331 		 * vma for recent access to avoid clearing PID info before access..
3332 		 */
3333 		if (mm->numa_scan_seq &&
3334 				time_after(jiffies, vma->numab_state->next_pid_reset)) {
3335 			vma->numab_state->next_pid_reset = vma->numab_state->next_pid_reset +
3336 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3337 			vma->numab_state->access_pids[0] = READ_ONCE(vma->numab_state->access_pids[1]);
3338 			vma->numab_state->access_pids[1] = 0;
3339 		}
3340 
3341 		do {
3342 			start = max(start, vma->vm_start);
3343 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3344 			end = min(end, vma->vm_end);
3345 			nr_pte_updates = change_prot_numa(vma, start, end);
3346 
3347 			/*
3348 			 * Try to scan sysctl_numa_balancing_size worth of
3349 			 * hpages that have at least one present PTE that
3350 			 * is not already pte-numa. If the VMA contains
3351 			 * areas that are unused or already full of prot_numa
3352 			 * PTEs, scan up to virtpages, to skip through those
3353 			 * areas faster.
3354 			 */
3355 			if (nr_pte_updates)
3356 				pages -= (end - start) >> PAGE_SHIFT;
3357 			virtpages -= (end - start) >> PAGE_SHIFT;
3358 
3359 			start = end;
3360 			if (pages <= 0 || virtpages <= 0)
3361 				goto out;
3362 
3363 			cond_resched();
3364 		} while (end != vma->vm_end);
3365 	} for_each_vma(vmi, vma);
3366 
3367 out:
3368 	/*
3369 	 * It is possible to reach the end of the VMA list but the last few
3370 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3371 	 * would find the !migratable VMA on the next scan but not reset the
3372 	 * scanner to the start so check it now.
3373 	 */
3374 	if (vma)
3375 		mm->numa_scan_offset = start;
3376 	else
3377 		reset_ptenuma_scan(p);
3378 	mmap_read_unlock(mm);
3379 
3380 	/*
3381 	 * Make sure tasks use at least 32x as much time to run other code
3382 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3383 	 * Usually update_task_scan_period slows down scanning enough; on an
3384 	 * overloaded system we need to limit overhead on a per task basis.
3385 	 */
3386 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3387 		u64 diff = p->se.sum_exec_runtime - runtime;
3388 		p->node_stamp += 32 * diff;
3389 	}
3390 }
3391 
3392 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3393 {
3394 	int mm_users = 0;
3395 	struct mm_struct *mm = p->mm;
3396 
3397 	if (mm) {
3398 		mm_users = atomic_read(&mm->mm_users);
3399 		if (mm_users == 1) {
3400 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3401 			mm->numa_scan_seq = 0;
3402 		}
3403 	}
3404 	p->node_stamp			= 0;
3405 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3406 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3407 	p->numa_migrate_retry		= 0;
3408 	/* Protect against double add, see task_tick_numa and task_numa_work */
3409 	p->numa_work.next		= &p->numa_work;
3410 	p->numa_faults			= NULL;
3411 	p->numa_pages_migrated		= 0;
3412 	p->total_numa_faults		= 0;
3413 	RCU_INIT_POINTER(p->numa_group, NULL);
3414 	p->last_task_numa_placement	= 0;
3415 	p->last_sum_exec_runtime	= 0;
3416 
3417 	init_task_work(&p->numa_work, task_numa_work);
3418 
3419 	/* New address space, reset the preferred nid */
3420 	if (!(clone_flags & CLONE_VM)) {
3421 		p->numa_preferred_nid = NUMA_NO_NODE;
3422 		return;
3423 	}
3424 
3425 	/*
3426 	 * New thread, keep existing numa_preferred_nid which should be copied
3427 	 * already by arch_dup_task_struct but stagger when scans start.
3428 	 */
3429 	if (mm) {
3430 		unsigned int delay;
3431 
3432 		delay = min_t(unsigned int, task_scan_max(current),
3433 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3434 		delay += 2 * TICK_NSEC;
3435 		p->node_stamp = delay;
3436 	}
3437 }
3438 
3439 /*
3440  * Drive the periodic memory faults..
3441  */
3442 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3443 {
3444 	struct callback_head *work = &curr->numa_work;
3445 	u64 period, now;
3446 
3447 	/*
3448 	 * We don't care about NUMA placement if we don't have memory.
3449 	 */
3450 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3451 		return;
3452 
3453 	/*
3454 	 * Using runtime rather than walltime has the dual advantage that
3455 	 * we (mostly) drive the selection from busy threads and that the
3456 	 * task needs to have done some actual work before we bother with
3457 	 * NUMA placement.
3458 	 */
3459 	now = curr->se.sum_exec_runtime;
3460 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3461 
3462 	if (now > curr->node_stamp + period) {
3463 		if (!curr->node_stamp)
3464 			curr->numa_scan_period = task_scan_start(curr);
3465 		curr->node_stamp += period;
3466 
3467 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3468 			task_work_add(curr, work, TWA_RESUME);
3469 	}
3470 }
3471 
3472 static void update_scan_period(struct task_struct *p, int new_cpu)
3473 {
3474 	int src_nid = cpu_to_node(task_cpu(p));
3475 	int dst_nid = cpu_to_node(new_cpu);
3476 
3477 	if (!static_branch_likely(&sched_numa_balancing))
3478 		return;
3479 
3480 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3481 		return;
3482 
3483 	if (src_nid == dst_nid)
3484 		return;
3485 
3486 	/*
3487 	 * Allow resets if faults have been trapped before one scan
3488 	 * has completed. This is most likely due to a new task that
3489 	 * is pulled cross-node due to wakeups or load balancing.
3490 	 */
3491 	if (p->numa_scan_seq) {
3492 		/*
3493 		 * Avoid scan adjustments if moving to the preferred
3494 		 * node or if the task was not previously running on
3495 		 * the preferred node.
3496 		 */
3497 		if (dst_nid == p->numa_preferred_nid ||
3498 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3499 			src_nid != p->numa_preferred_nid))
3500 			return;
3501 	}
3502 
3503 	p->numa_scan_period = task_scan_start(p);
3504 }
3505 
3506 #else
3507 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3508 {
3509 }
3510 
3511 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3512 {
3513 }
3514 
3515 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3516 {
3517 }
3518 
3519 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3520 {
3521 }
3522 
3523 #endif /* CONFIG_NUMA_BALANCING */
3524 
3525 static void
3526 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3527 {
3528 	update_load_add(&cfs_rq->load, se->load.weight);
3529 #ifdef CONFIG_SMP
3530 	if (entity_is_task(se)) {
3531 		struct rq *rq = rq_of(cfs_rq);
3532 
3533 		account_numa_enqueue(rq, task_of(se));
3534 		list_add(&se->group_node, &rq->cfs_tasks);
3535 	}
3536 #endif
3537 	cfs_rq->nr_running++;
3538 	if (se_is_idle(se))
3539 		cfs_rq->idle_nr_running++;
3540 }
3541 
3542 static void
3543 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3544 {
3545 	update_load_sub(&cfs_rq->load, se->load.weight);
3546 #ifdef CONFIG_SMP
3547 	if (entity_is_task(se)) {
3548 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3549 		list_del_init(&se->group_node);
3550 	}
3551 #endif
3552 	cfs_rq->nr_running--;
3553 	if (se_is_idle(se))
3554 		cfs_rq->idle_nr_running--;
3555 }
3556 
3557 /*
3558  * Signed add and clamp on underflow.
3559  *
3560  * Explicitly do a load-store to ensure the intermediate value never hits
3561  * memory. This allows lockless observations without ever seeing the negative
3562  * values.
3563  */
3564 #define add_positive(_ptr, _val) do {                           \
3565 	typeof(_ptr) ptr = (_ptr);                              \
3566 	typeof(_val) val = (_val);                              \
3567 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3568 								\
3569 	res = var + val;                                        \
3570 								\
3571 	if (val < 0 && res > var)                               \
3572 		res = 0;                                        \
3573 								\
3574 	WRITE_ONCE(*ptr, res);                                  \
3575 } while (0)
3576 
3577 /*
3578  * Unsigned subtract and clamp on underflow.
3579  *
3580  * Explicitly do a load-store to ensure the intermediate value never hits
3581  * memory. This allows lockless observations without ever seeing the negative
3582  * values.
3583  */
3584 #define sub_positive(_ptr, _val) do {				\
3585 	typeof(_ptr) ptr = (_ptr);				\
3586 	typeof(*ptr) val = (_val);				\
3587 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3588 	res = var - val;					\
3589 	if (res > var)						\
3590 		res = 0;					\
3591 	WRITE_ONCE(*ptr, res);					\
3592 } while (0)
3593 
3594 /*
3595  * Remove and clamp on negative, from a local variable.
3596  *
3597  * A variant of sub_positive(), which does not use explicit load-store
3598  * and is thus optimized for local variable updates.
3599  */
3600 #define lsub_positive(_ptr, _val) do {				\
3601 	typeof(_ptr) ptr = (_ptr);				\
3602 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3603 } while (0)
3604 
3605 #ifdef CONFIG_SMP
3606 static inline void
3607 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3608 {
3609 	cfs_rq->avg.load_avg += se->avg.load_avg;
3610 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3611 }
3612 
3613 static inline void
3614 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3615 {
3616 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3617 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3618 	/* See update_cfs_rq_load_avg() */
3619 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3620 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3621 }
3622 #else
3623 static inline void
3624 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3625 static inline void
3626 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3627 #endif
3628 
3629 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3630 			    unsigned long weight)
3631 {
3632 	unsigned long old_weight = se->load.weight;
3633 
3634 	if (se->on_rq) {
3635 		/* commit outstanding execution time */
3636 		if (cfs_rq->curr == se)
3637 			update_curr(cfs_rq);
3638 		else
3639 			avg_vruntime_sub(cfs_rq, se);
3640 		update_load_sub(&cfs_rq->load, se->load.weight);
3641 	}
3642 	dequeue_load_avg(cfs_rq, se);
3643 
3644 	update_load_set(&se->load, weight);
3645 
3646 	if (!se->on_rq) {
3647 		/*
3648 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3649 		 * we need to scale se->vlag when w_i changes.
3650 		 */
3651 		se->vlag = div_s64(se->vlag * old_weight, weight);
3652 	} else {
3653 		s64 deadline = se->deadline - se->vruntime;
3654 		/*
3655 		 * When the weight changes, the virtual time slope changes and
3656 		 * we should adjust the relative virtual deadline accordingly.
3657 		 */
3658 		deadline = div_s64(deadline * old_weight, weight);
3659 		se->deadline = se->vruntime + deadline;
3660 		if (se != cfs_rq->curr)
3661 			min_deadline_cb_propagate(&se->run_node, NULL);
3662 	}
3663 
3664 #ifdef CONFIG_SMP
3665 	do {
3666 		u32 divider = get_pelt_divider(&se->avg);
3667 
3668 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3669 	} while (0);
3670 #endif
3671 
3672 	enqueue_load_avg(cfs_rq, se);
3673 	if (se->on_rq) {
3674 		update_load_add(&cfs_rq->load, se->load.weight);
3675 		if (cfs_rq->curr != se)
3676 			avg_vruntime_add(cfs_rq, se);
3677 	}
3678 }
3679 
3680 void reweight_task(struct task_struct *p, int prio)
3681 {
3682 	struct sched_entity *se = &p->se;
3683 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3684 	struct load_weight *load = &se->load;
3685 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3686 
3687 	reweight_entity(cfs_rq, se, weight);
3688 	load->inv_weight = sched_prio_to_wmult[prio];
3689 }
3690 
3691 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3692 
3693 #ifdef CONFIG_FAIR_GROUP_SCHED
3694 #ifdef CONFIG_SMP
3695 /*
3696  * All this does is approximate the hierarchical proportion which includes that
3697  * global sum we all love to hate.
3698  *
3699  * That is, the weight of a group entity, is the proportional share of the
3700  * group weight based on the group runqueue weights. That is:
3701  *
3702  *                     tg->weight * grq->load.weight
3703  *   ge->load.weight = -----------------------------               (1)
3704  *                       \Sum grq->load.weight
3705  *
3706  * Now, because computing that sum is prohibitively expensive to compute (been
3707  * there, done that) we approximate it with this average stuff. The average
3708  * moves slower and therefore the approximation is cheaper and more stable.
3709  *
3710  * So instead of the above, we substitute:
3711  *
3712  *   grq->load.weight -> grq->avg.load_avg                         (2)
3713  *
3714  * which yields the following:
3715  *
3716  *                     tg->weight * grq->avg.load_avg
3717  *   ge->load.weight = ------------------------------              (3)
3718  *                             tg->load_avg
3719  *
3720  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3721  *
3722  * That is shares_avg, and it is right (given the approximation (2)).
3723  *
3724  * The problem with it is that because the average is slow -- it was designed
3725  * to be exactly that of course -- this leads to transients in boundary
3726  * conditions. In specific, the case where the group was idle and we start the
3727  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3728  * yielding bad latency etc..
3729  *
3730  * Now, in that special case (1) reduces to:
3731  *
3732  *                     tg->weight * grq->load.weight
3733  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3734  *                         grp->load.weight
3735  *
3736  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3737  *
3738  * So what we do is modify our approximation (3) to approach (4) in the (near)
3739  * UP case, like:
3740  *
3741  *   ge->load.weight =
3742  *
3743  *              tg->weight * grq->load.weight
3744  *     ---------------------------------------------------         (5)
3745  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3746  *
3747  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3748  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3749  *
3750  *
3751  *                     tg->weight * grq->load.weight
3752  *   ge->load.weight = -----------------------------		   (6)
3753  *                             tg_load_avg'
3754  *
3755  * Where:
3756  *
3757  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3758  *                  max(grq->load.weight, grq->avg.load_avg)
3759  *
3760  * And that is shares_weight and is icky. In the (near) UP case it approaches
3761  * (4) while in the normal case it approaches (3). It consistently
3762  * overestimates the ge->load.weight and therefore:
3763  *
3764  *   \Sum ge->load.weight >= tg->weight
3765  *
3766  * hence icky!
3767  */
3768 static long calc_group_shares(struct cfs_rq *cfs_rq)
3769 {
3770 	long tg_weight, tg_shares, load, shares;
3771 	struct task_group *tg = cfs_rq->tg;
3772 
3773 	tg_shares = READ_ONCE(tg->shares);
3774 
3775 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3776 
3777 	tg_weight = atomic_long_read(&tg->load_avg);
3778 
3779 	/* Ensure tg_weight >= load */
3780 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3781 	tg_weight += load;
3782 
3783 	shares = (tg_shares * load);
3784 	if (tg_weight)
3785 		shares /= tg_weight;
3786 
3787 	/*
3788 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3789 	 * of a group with small tg->shares value. It is a floor value which is
3790 	 * assigned as a minimum load.weight to the sched_entity representing
3791 	 * the group on a CPU.
3792 	 *
3793 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3794 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3795 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3796 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3797 	 * instead of 0.
3798 	 */
3799 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3800 }
3801 #endif /* CONFIG_SMP */
3802 
3803 /*
3804  * Recomputes the group entity based on the current state of its group
3805  * runqueue.
3806  */
3807 static void update_cfs_group(struct sched_entity *se)
3808 {
3809 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3810 	long shares;
3811 
3812 	if (!gcfs_rq)
3813 		return;
3814 
3815 	if (throttled_hierarchy(gcfs_rq))
3816 		return;
3817 
3818 #ifndef CONFIG_SMP
3819 	shares = READ_ONCE(gcfs_rq->tg->shares);
3820 
3821 	if (likely(se->load.weight == shares))
3822 		return;
3823 #else
3824 	shares   = calc_group_shares(gcfs_rq);
3825 #endif
3826 
3827 	reweight_entity(cfs_rq_of(se), se, shares);
3828 }
3829 
3830 #else /* CONFIG_FAIR_GROUP_SCHED */
3831 static inline void update_cfs_group(struct sched_entity *se)
3832 {
3833 }
3834 #endif /* CONFIG_FAIR_GROUP_SCHED */
3835 
3836 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3837 {
3838 	struct rq *rq = rq_of(cfs_rq);
3839 
3840 	if (&rq->cfs == cfs_rq) {
3841 		/*
3842 		 * There are a few boundary cases this might miss but it should
3843 		 * get called often enough that that should (hopefully) not be
3844 		 * a real problem.
3845 		 *
3846 		 * It will not get called when we go idle, because the idle
3847 		 * thread is a different class (!fair), nor will the utilization
3848 		 * number include things like RT tasks.
3849 		 *
3850 		 * As is, the util number is not freq-invariant (we'd have to
3851 		 * implement arch_scale_freq_capacity() for that).
3852 		 *
3853 		 * See cpu_util_cfs().
3854 		 */
3855 		cpufreq_update_util(rq, flags);
3856 	}
3857 }
3858 
3859 #ifdef CONFIG_SMP
3860 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3861 {
3862 	if (sa->load_sum)
3863 		return false;
3864 
3865 	if (sa->util_sum)
3866 		return false;
3867 
3868 	if (sa->runnable_sum)
3869 		return false;
3870 
3871 	/*
3872 	 * _avg must be null when _sum are null because _avg = _sum / divider
3873 	 * Make sure that rounding and/or propagation of PELT values never
3874 	 * break this.
3875 	 */
3876 	SCHED_WARN_ON(sa->load_avg ||
3877 		      sa->util_avg ||
3878 		      sa->runnable_avg);
3879 
3880 	return true;
3881 }
3882 
3883 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3884 {
3885 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3886 				 cfs_rq->last_update_time_copy);
3887 }
3888 #ifdef CONFIG_FAIR_GROUP_SCHED
3889 /*
3890  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3891  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3892  * bottom-up, we only have to test whether the cfs_rq before us on the list
3893  * is our child.
3894  * If cfs_rq is not on the list, test whether a child needs its to be added to
3895  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3896  */
3897 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3898 {
3899 	struct cfs_rq *prev_cfs_rq;
3900 	struct list_head *prev;
3901 
3902 	if (cfs_rq->on_list) {
3903 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3904 	} else {
3905 		struct rq *rq = rq_of(cfs_rq);
3906 
3907 		prev = rq->tmp_alone_branch;
3908 	}
3909 
3910 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3911 
3912 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3913 }
3914 
3915 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3916 {
3917 	if (cfs_rq->load.weight)
3918 		return false;
3919 
3920 	if (!load_avg_is_decayed(&cfs_rq->avg))
3921 		return false;
3922 
3923 	if (child_cfs_rq_on_list(cfs_rq))
3924 		return false;
3925 
3926 	return true;
3927 }
3928 
3929 /**
3930  * update_tg_load_avg - update the tg's load avg
3931  * @cfs_rq: the cfs_rq whose avg changed
3932  *
3933  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3934  * However, because tg->load_avg is a global value there are performance
3935  * considerations.
3936  *
3937  * In order to avoid having to look at the other cfs_rq's, we use a
3938  * differential update where we store the last value we propagated. This in
3939  * turn allows skipping updates if the differential is 'small'.
3940  *
3941  * Updating tg's load_avg is necessary before update_cfs_share().
3942  */
3943 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3944 {
3945 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3946 
3947 	/*
3948 	 * No need to update load_avg for root_task_group as it is not used.
3949 	 */
3950 	if (cfs_rq->tg == &root_task_group)
3951 		return;
3952 
3953 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3954 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3955 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3956 	}
3957 }
3958 
3959 /*
3960  * Called within set_task_rq() right before setting a task's CPU. The
3961  * caller only guarantees p->pi_lock is held; no other assumptions,
3962  * including the state of rq->lock, should be made.
3963  */
3964 void set_task_rq_fair(struct sched_entity *se,
3965 		      struct cfs_rq *prev, struct cfs_rq *next)
3966 {
3967 	u64 p_last_update_time;
3968 	u64 n_last_update_time;
3969 
3970 	if (!sched_feat(ATTACH_AGE_LOAD))
3971 		return;
3972 
3973 	/*
3974 	 * We are supposed to update the task to "current" time, then its up to
3975 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3976 	 * getting what current time is, so simply throw away the out-of-date
3977 	 * time. This will result in the wakee task is less decayed, but giving
3978 	 * the wakee more load sounds not bad.
3979 	 */
3980 	if (!(se->avg.last_update_time && prev))
3981 		return;
3982 
3983 	p_last_update_time = cfs_rq_last_update_time(prev);
3984 	n_last_update_time = cfs_rq_last_update_time(next);
3985 
3986 	__update_load_avg_blocked_se(p_last_update_time, se);
3987 	se->avg.last_update_time = n_last_update_time;
3988 }
3989 
3990 /*
3991  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3992  * propagate its contribution. The key to this propagation is the invariant
3993  * that for each group:
3994  *
3995  *   ge->avg == grq->avg						(1)
3996  *
3997  * _IFF_ we look at the pure running and runnable sums. Because they
3998  * represent the very same entity, just at different points in the hierarchy.
3999  *
4000  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4001  * and simply copies the running/runnable sum over (but still wrong, because
4002  * the group entity and group rq do not have their PELT windows aligned).
4003  *
4004  * However, update_tg_cfs_load() is more complex. So we have:
4005  *
4006  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4007  *
4008  * And since, like util, the runnable part should be directly transferable,
4009  * the following would _appear_ to be the straight forward approach:
4010  *
4011  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4012  *
4013  * And per (1) we have:
4014  *
4015  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4016  *
4017  * Which gives:
4018  *
4019  *                      ge->load.weight * grq->avg.load_avg
4020  *   ge->avg.load_avg = -----------------------------------		(4)
4021  *                               grq->load.weight
4022  *
4023  * Except that is wrong!
4024  *
4025  * Because while for entities historical weight is not important and we
4026  * really only care about our future and therefore can consider a pure
4027  * runnable sum, runqueues can NOT do this.
4028  *
4029  * We specifically want runqueues to have a load_avg that includes
4030  * historical weights. Those represent the blocked load, the load we expect
4031  * to (shortly) return to us. This only works by keeping the weights as
4032  * integral part of the sum. We therefore cannot decompose as per (3).
4033  *
4034  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4035  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4036  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4037  * runnable section of these tasks overlap (or not). If they were to perfectly
4038  * align the rq as a whole would be runnable 2/3 of the time. If however we
4039  * always have at least 1 runnable task, the rq as a whole is always runnable.
4040  *
4041  * So we'll have to approximate.. :/
4042  *
4043  * Given the constraint:
4044  *
4045  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4046  *
4047  * We can construct a rule that adds runnable to a rq by assuming minimal
4048  * overlap.
4049  *
4050  * On removal, we'll assume each task is equally runnable; which yields:
4051  *
4052  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4053  *
4054  * XXX: only do this for the part of runnable > running ?
4055  *
4056  */
4057 static inline void
4058 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4059 {
4060 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4061 	u32 new_sum, divider;
4062 
4063 	/* Nothing to update */
4064 	if (!delta_avg)
4065 		return;
4066 
4067 	/*
4068 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4069 	 * See ___update_load_avg() for details.
4070 	 */
4071 	divider = get_pelt_divider(&cfs_rq->avg);
4072 
4073 
4074 	/* Set new sched_entity's utilization */
4075 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4076 	new_sum = se->avg.util_avg * divider;
4077 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4078 	se->avg.util_sum = new_sum;
4079 
4080 	/* Update parent cfs_rq utilization */
4081 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4082 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4083 
4084 	/* See update_cfs_rq_load_avg() */
4085 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4086 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4087 }
4088 
4089 static inline void
4090 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4091 {
4092 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4093 	u32 new_sum, divider;
4094 
4095 	/* Nothing to update */
4096 	if (!delta_avg)
4097 		return;
4098 
4099 	/*
4100 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4101 	 * See ___update_load_avg() for details.
4102 	 */
4103 	divider = get_pelt_divider(&cfs_rq->avg);
4104 
4105 	/* Set new sched_entity's runnable */
4106 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4107 	new_sum = se->avg.runnable_avg * divider;
4108 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4109 	se->avg.runnable_sum = new_sum;
4110 
4111 	/* Update parent cfs_rq runnable */
4112 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4113 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4114 	/* See update_cfs_rq_load_avg() */
4115 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4116 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4117 }
4118 
4119 static inline void
4120 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4121 {
4122 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4123 	unsigned long load_avg;
4124 	u64 load_sum = 0;
4125 	s64 delta_sum;
4126 	u32 divider;
4127 
4128 	if (!runnable_sum)
4129 		return;
4130 
4131 	gcfs_rq->prop_runnable_sum = 0;
4132 
4133 	/*
4134 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4135 	 * See ___update_load_avg() for details.
4136 	 */
4137 	divider = get_pelt_divider(&cfs_rq->avg);
4138 
4139 	if (runnable_sum >= 0) {
4140 		/*
4141 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4142 		 * the CPU is saturated running == runnable.
4143 		 */
4144 		runnable_sum += se->avg.load_sum;
4145 		runnable_sum = min_t(long, runnable_sum, divider);
4146 	} else {
4147 		/*
4148 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4149 		 * assuming all tasks are equally runnable.
4150 		 */
4151 		if (scale_load_down(gcfs_rq->load.weight)) {
4152 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4153 				scale_load_down(gcfs_rq->load.weight));
4154 		}
4155 
4156 		/* But make sure to not inflate se's runnable */
4157 		runnable_sum = min(se->avg.load_sum, load_sum);
4158 	}
4159 
4160 	/*
4161 	 * runnable_sum can't be lower than running_sum
4162 	 * Rescale running sum to be in the same range as runnable sum
4163 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4164 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4165 	 */
4166 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4167 	runnable_sum = max(runnable_sum, running_sum);
4168 
4169 	load_sum = se_weight(se) * runnable_sum;
4170 	load_avg = div_u64(load_sum, divider);
4171 
4172 	delta_avg = load_avg - se->avg.load_avg;
4173 	if (!delta_avg)
4174 		return;
4175 
4176 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4177 
4178 	se->avg.load_sum = runnable_sum;
4179 	se->avg.load_avg = load_avg;
4180 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4181 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4182 	/* See update_cfs_rq_load_avg() */
4183 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4184 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4185 }
4186 
4187 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4188 {
4189 	cfs_rq->propagate = 1;
4190 	cfs_rq->prop_runnable_sum += runnable_sum;
4191 }
4192 
4193 /* Update task and its cfs_rq load average */
4194 static inline int propagate_entity_load_avg(struct sched_entity *se)
4195 {
4196 	struct cfs_rq *cfs_rq, *gcfs_rq;
4197 
4198 	if (entity_is_task(se))
4199 		return 0;
4200 
4201 	gcfs_rq = group_cfs_rq(se);
4202 	if (!gcfs_rq->propagate)
4203 		return 0;
4204 
4205 	gcfs_rq->propagate = 0;
4206 
4207 	cfs_rq = cfs_rq_of(se);
4208 
4209 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4210 
4211 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4212 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4213 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4214 
4215 	trace_pelt_cfs_tp(cfs_rq);
4216 	trace_pelt_se_tp(se);
4217 
4218 	return 1;
4219 }
4220 
4221 /*
4222  * Check if we need to update the load and the utilization of a blocked
4223  * group_entity:
4224  */
4225 static inline bool skip_blocked_update(struct sched_entity *se)
4226 {
4227 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4228 
4229 	/*
4230 	 * If sched_entity still have not zero load or utilization, we have to
4231 	 * decay it:
4232 	 */
4233 	if (se->avg.load_avg || se->avg.util_avg)
4234 		return false;
4235 
4236 	/*
4237 	 * If there is a pending propagation, we have to update the load and
4238 	 * the utilization of the sched_entity:
4239 	 */
4240 	if (gcfs_rq->propagate)
4241 		return false;
4242 
4243 	/*
4244 	 * Otherwise, the load and the utilization of the sched_entity is
4245 	 * already zero and there is no pending propagation, so it will be a
4246 	 * waste of time to try to decay it:
4247 	 */
4248 	return true;
4249 }
4250 
4251 #else /* CONFIG_FAIR_GROUP_SCHED */
4252 
4253 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4254 
4255 static inline int propagate_entity_load_avg(struct sched_entity *se)
4256 {
4257 	return 0;
4258 }
4259 
4260 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4261 
4262 #endif /* CONFIG_FAIR_GROUP_SCHED */
4263 
4264 #ifdef CONFIG_NO_HZ_COMMON
4265 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4266 {
4267 	u64 throttled = 0, now, lut;
4268 	struct cfs_rq *cfs_rq;
4269 	struct rq *rq;
4270 	bool is_idle;
4271 
4272 	if (load_avg_is_decayed(&se->avg))
4273 		return;
4274 
4275 	cfs_rq = cfs_rq_of(se);
4276 	rq = rq_of(cfs_rq);
4277 
4278 	rcu_read_lock();
4279 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4280 	rcu_read_unlock();
4281 
4282 	/*
4283 	 * The lag estimation comes with a cost we don't want to pay all the
4284 	 * time. Hence, limiting to the case where the source CPU is idle and
4285 	 * we know we are at the greatest risk to have an outdated clock.
4286 	 */
4287 	if (!is_idle)
4288 		return;
4289 
4290 	/*
4291 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4292 	 *
4293 	 *   last_update_time (the cfs_rq's last_update_time)
4294 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4295 	 *      = rq_clock_pelt()@cfs_rq_idle
4296 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4297 	 *
4298 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4299 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4300 	 *
4301 	 *   rq_idle_lag (delta between now and rq's update)
4302 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4303 	 *
4304 	 * We can then write:
4305 	 *
4306 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4307 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4308 	 * Where:
4309 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4310 	 *      rq_clock()@rq_idle      is rq->clock_idle
4311 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4312 	 *                              is cfs_rq->throttled_pelt_idle
4313 	 */
4314 
4315 #ifdef CONFIG_CFS_BANDWIDTH
4316 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4317 	/* The clock has been stopped for throttling */
4318 	if (throttled == U64_MAX)
4319 		return;
4320 #endif
4321 	now = u64_u32_load(rq->clock_pelt_idle);
4322 	/*
4323 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4324 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4325 	 * which lead to an underestimation. The opposite would lead to an
4326 	 * overestimation.
4327 	 */
4328 	smp_rmb();
4329 	lut = cfs_rq_last_update_time(cfs_rq);
4330 
4331 	now -= throttled;
4332 	if (now < lut)
4333 		/*
4334 		 * cfs_rq->avg.last_update_time is more recent than our
4335 		 * estimation, let's use it.
4336 		 */
4337 		now = lut;
4338 	else
4339 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4340 
4341 	__update_load_avg_blocked_se(now, se);
4342 }
4343 #else
4344 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4345 #endif
4346 
4347 /**
4348  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4349  * @now: current time, as per cfs_rq_clock_pelt()
4350  * @cfs_rq: cfs_rq to update
4351  *
4352  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4353  * avg. The immediate corollary is that all (fair) tasks must be attached.
4354  *
4355  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4356  *
4357  * Return: true if the load decayed or we removed load.
4358  *
4359  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4360  * call update_tg_load_avg() when this function returns true.
4361  */
4362 static inline int
4363 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4364 {
4365 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4366 	struct sched_avg *sa = &cfs_rq->avg;
4367 	int decayed = 0;
4368 
4369 	if (cfs_rq->removed.nr) {
4370 		unsigned long r;
4371 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4372 
4373 		raw_spin_lock(&cfs_rq->removed.lock);
4374 		swap(cfs_rq->removed.util_avg, removed_util);
4375 		swap(cfs_rq->removed.load_avg, removed_load);
4376 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4377 		cfs_rq->removed.nr = 0;
4378 		raw_spin_unlock(&cfs_rq->removed.lock);
4379 
4380 		r = removed_load;
4381 		sub_positive(&sa->load_avg, r);
4382 		sub_positive(&sa->load_sum, r * divider);
4383 		/* See sa->util_sum below */
4384 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4385 
4386 		r = removed_util;
4387 		sub_positive(&sa->util_avg, r);
4388 		sub_positive(&sa->util_sum, r * divider);
4389 		/*
4390 		 * Because of rounding, se->util_sum might ends up being +1 more than
4391 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4392 		 * a lot of tasks with the rounding problem between 2 updates of
4393 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4394 		 * cfs_util_avg is not.
4395 		 * Check that util_sum is still above its lower bound for the new
4396 		 * util_avg. Given that period_contrib might have moved since the last
4397 		 * sync, we are only sure that util_sum must be above or equal to
4398 		 *    util_avg * minimum possible divider
4399 		 */
4400 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4401 
4402 		r = removed_runnable;
4403 		sub_positive(&sa->runnable_avg, r);
4404 		sub_positive(&sa->runnable_sum, r * divider);
4405 		/* See sa->util_sum above */
4406 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4407 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4408 
4409 		/*
4410 		 * removed_runnable is the unweighted version of removed_load so we
4411 		 * can use it to estimate removed_load_sum.
4412 		 */
4413 		add_tg_cfs_propagate(cfs_rq,
4414 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4415 
4416 		decayed = 1;
4417 	}
4418 
4419 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4420 	u64_u32_store_copy(sa->last_update_time,
4421 			   cfs_rq->last_update_time_copy,
4422 			   sa->last_update_time);
4423 	return decayed;
4424 }
4425 
4426 /**
4427  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4428  * @cfs_rq: cfs_rq to attach to
4429  * @se: sched_entity to attach
4430  *
4431  * Must call update_cfs_rq_load_avg() before this, since we rely on
4432  * cfs_rq->avg.last_update_time being current.
4433  */
4434 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4435 {
4436 	/*
4437 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4438 	 * See ___update_load_avg() for details.
4439 	 */
4440 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4441 
4442 	/*
4443 	 * When we attach the @se to the @cfs_rq, we must align the decay
4444 	 * window because without that, really weird and wonderful things can
4445 	 * happen.
4446 	 *
4447 	 * XXX illustrate
4448 	 */
4449 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4450 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4451 
4452 	/*
4453 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4454 	 * period_contrib. This isn't strictly correct, but since we're
4455 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4456 	 * _sum a little.
4457 	 */
4458 	se->avg.util_sum = se->avg.util_avg * divider;
4459 
4460 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4461 
4462 	se->avg.load_sum = se->avg.load_avg * divider;
4463 	if (se_weight(se) < se->avg.load_sum)
4464 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4465 	else
4466 		se->avg.load_sum = 1;
4467 
4468 	enqueue_load_avg(cfs_rq, se);
4469 	cfs_rq->avg.util_avg += se->avg.util_avg;
4470 	cfs_rq->avg.util_sum += se->avg.util_sum;
4471 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4472 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4473 
4474 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4475 
4476 	cfs_rq_util_change(cfs_rq, 0);
4477 
4478 	trace_pelt_cfs_tp(cfs_rq);
4479 }
4480 
4481 /**
4482  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4483  * @cfs_rq: cfs_rq to detach from
4484  * @se: sched_entity to detach
4485  *
4486  * Must call update_cfs_rq_load_avg() before this, since we rely on
4487  * cfs_rq->avg.last_update_time being current.
4488  */
4489 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4490 {
4491 	dequeue_load_avg(cfs_rq, se);
4492 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4493 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4494 	/* See update_cfs_rq_load_avg() */
4495 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4496 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4497 
4498 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4499 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4500 	/* See update_cfs_rq_load_avg() */
4501 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4502 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4503 
4504 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4505 
4506 	cfs_rq_util_change(cfs_rq, 0);
4507 
4508 	trace_pelt_cfs_tp(cfs_rq);
4509 }
4510 
4511 /*
4512  * Optional action to be done while updating the load average
4513  */
4514 #define UPDATE_TG	0x1
4515 #define SKIP_AGE_LOAD	0x2
4516 #define DO_ATTACH	0x4
4517 #define DO_DETACH	0x8
4518 
4519 /* Update task and its cfs_rq load average */
4520 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4521 {
4522 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4523 	int decayed;
4524 
4525 	/*
4526 	 * Track task load average for carrying it to new CPU after migrated, and
4527 	 * track group sched_entity load average for task_h_load calc in migration
4528 	 */
4529 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4530 		__update_load_avg_se(now, cfs_rq, se);
4531 
4532 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4533 	decayed |= propagate_entity_load_avg(se);
4534 
4535 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4536 
4537 		/*
4538 		 * DO_ATTACH means we're here from enqueue_entity().
4539 		 * !last_update_time means we've passed through
4540 		 * migrate_task_rq_fair() indicating we migrated.
4541 		 *
4542 		 * IOW we're enqueueing a task on a new CPU.
4543 		 */
4544 		attach_entity_load_avg(cfs_rq, se);
4545 		update_tg_load_avg(cfs_rq);
4546 
4547 	} else if (flags & DO_DETACH) {
4548 		/*
4549 		 * DO_DETACH means we're here from dequeue_entity()
4550 		 * and we are migrating task out of the CPU.
4551 		 */
4552 		detach_entity_load_avg(cfs_rq, se);
4553 		update_tg_load_avg(cfs_rq);
4554 	} else if (decayed) {
4555 		cfs_rq_util_change(cfs_rq, 0);
4556 
4557 		if (flags & UPDATE_TG)
4558 			update_tg_load_avg(cfs_rq);
4559 	}
4560 }
4561 
4562 /*
4563  * Synchronize entity load avg of dequeued entity without locking
4564  * the previous rq.
4565  */
4566 static void sync_entity_load_avg(struct sched_entity *se)
4567 {
4568 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4569 	u64 last_update_time;
4570 
4571 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4572 	__update_load_avg_blocked_se(last_update_time, se);
4573 }
4574 
4575 /*
4576  * Task first catches up with cfs_rq, and then subtract
4577  * itself from the cfs_rq (task must be off the queue now).
4578  */
4579 static void remove_entity_load_avg(struct sched_entity *se)
4580 {
4581 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4582 	unsigned long flags;
4583 
4584 	/*
4585 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4586 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4587 	 * so we can remove unconditionally.
4588 	 */
4589 
4590 	sync_entity_load_avg(se);
4591 
4592 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4593 	++cfs_rq->removed.nr;
4594 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4595 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4596 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4597 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4598 }
4599 
4600 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4601 {
4602 	return cfs_rq->avg.runnable_avg;
4603 }
4604 
4605 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4606 {
4607 	return cfs_rq->avg.load_avg;
4608 }
4609 
4610 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4611 
4612 static inline unsigned long task_util(struct task_struct *p)
4613 {
4614 	return READ_ONCE(p->se.avg.util_avg);
4615 }
4616 
4617 static inline unsigned long _task_util_est(struct task_struct *p)
4618 {
4619 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4620 
4621 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4622 }
4623 
4624 static inline unsigned long task_util_est(struct task_struct *p)
4625 {
4626 	return max(task_util(p), _task_util_est(p));
4627 }
4628 
4629 #ifdef CONFIG_UCLAMP_TASK
4630 static inline unsigned long uclamp_task_util(struct task_struct *p,
4631 					     unsigned long uclamp_min,
4632 					     unsigned long uclamp_max)
4633 {
4634 	return clamp(task_util_est(p), uclamp_min, uclamp_max);
4635 }
4636 #else
4637 static inline unsigned long uclamp_task_util(struct task_struct *p,
4638 					     unsigned long uclamp_min,
4639 					     unsigned long uclamp_max)
4640 {
4641 	return task_util_est(p);
4642 }
4643 #endif
4644 
4645 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4646 				    struct task_struct *p)
4647 {
4648 	unsigned int enqueued;
4649 
4650 	if (!sched_feat(UTIL_EST))
4651 		return;
4652 
4653 	/* Update root cfs_rq's estimated utilization */
4654 	enqueued  = cfs_rq->avg.util_est.enqueued;
4655 	enqueued += _task_util_est(p);
4656 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4657 
4658 	trace_sched_util_est_cfs_tp(cfs_rq);
4659 }
4660 
4661 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4662 				    struct task_struct *p)
4663 {
4664 	unsigned int enqueued;
4665 
4666 	if (!sched_feat(UTIL_EST))
4667 		return;
4668 
4669 	/* Update root cfs_rq's estimated utilization */
4670 	enqueued  = cfs_rq->avg.util_est.enqueued;
4671 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4672 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4673 
4674 	trace_sched_util_est_cfs_tp(cfs_rq);
4675 }
4676 
4677 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4678 
4679 /*
4680  * Check if a (signed) value is within a specified (unsigned) margin,
4681  * based on the observation that:
4682  *
4683  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4684  *
4685  * NOTE: this only works when value + margin < INT_MAX.
4686  */
4687 static inline bool within_margin(int value, int margin)
4688 {
4689 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4690 }
4691 
4692 static inline void util_est_update(struct cfs_rq *cfs_rq,
4693 				   struct task_struct *p,
4694 				   bool task_sleep)
4695 {
4696 	long last_ewma_diff, last_enqueued_diff;
4697 	struct util_est ue;
4698 
4699 	if (!sched_feat(UTIL_EST))
4700 		return;
4701 
4702 	/*
4703 	 * Skip update of task's estimated utilization when the task has not
4704 	 * yet completed an activation, e.g. being migrated.
4705 	 */
4706 	if (!task_sleep)
4707 		return;
4708 
4709 	/*
4710 	 * If the PELT values haven't changed since enqueue time,
4711 	 * skip the util_est update.
4712 	 */
4713 	ue = p->se.avg.util_est;
4714 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4715 		return;
4716 
4717 	last_enqueued_diff = ue.enqueued;
4718 
4719 	/*
4720 	 * Reset EWMA on utilization increases, the moving average is used only
4721 	 * to smooth utilization decreases.
4722 	 */
4723 	ue.enqueued = task_util(p);
4724 	if (sched_feat(UTIL_EST_FASTUP)) {
4725 		if (ue.ewma < ue.enqueued) {
4726 			ue.ewma = ue.enqueued;
4727 			goto done;
4728 		}
4729 	}
4730 
4731 	/*
4732 	 * Skip update of task's estimated utilization when its members are
4733 	 * already ~1% close to its last activation value.
4734 	 */
4735 	last_ewma_diff = ue.enqueued - ue.ewma;
4736 	last_enqueued_diff -= ue.enqueued;
4737 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4738 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4739 			goto done;
4740 
4741 		return;
4742 	}
4743 
4744 	/*
4745 	 * To avoid overestimation of actual task utilization, skip updates if
4746 	 * we cannot grant there is idle time in this CPU.
4747 	 */
4748 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4749 		return;
4750 
4751 	/*
4752 	 * Update Task's estimated utilization
4753 	 *
4754 	 * When *p completes an activation we can consolidate another sample
4755 	 * of the task size. This is done by storing the current PELT value
4756 	 * as ue.enqueued and by using this value to update the Exponential
4757 	 * Weighted Moving Average (EWMA):
4758 	 *
4759 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4760 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4761 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4762 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4763 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4764 	 *
4765 	 * Where 'w' is the weight of new samples, which is configured to be
4766 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4767 	 */
4768 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4769 	ue.ewma  += last_ewma_diff;
4770 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4771 done:
4772 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4773 	WRITE_ONCE(p->se.avg.util_est, ue);
4774 
4775 	trace_sched_util_est_se_tp(&p->se);
4776 }
4777 
4778 static inline int util_fits_cpu(unsigned long util,
4779 				unsigned long uclamp_min,
4780 				unsigned long uclamp_max,
4781 				int cpu)
4782 {
4783 	unsigned long capacity_orig, capacity_orig_thermal;
4784 	unsigned long capacity = capacity_of(cpu);
4785 	bool fits, uclamp_max_fits;
4786 
4787 	/*
4788 	 * Check if the real util fits without any uclamp boost/cap applied.
4789 	 */
4790 	fits = fits_capacity(util, capacity);
4791 
4792 	if (!uclamp_is_used())
4793 		return fits;
4794 
4795 	/*
4796 	 * We must use capacity_orig_of() for comparing against uclamp_min and
4797 	 * uclamp_max. We only care about capacity pressure (by using
4798 	 * capacity_of()) for comparing against the real util.
4799 	 *
4800 	 * If a task is boosted to 1024 for example, we don't want a tiny
4801 	 * pressure to skew the check whether it fits a CPU or not.
4802 	 *
4803 	 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4804 	 * should fit a little cpu even if there's some pressure.
4805 	 *
4806 	 * Only exception is for thermal pressure since it has a direct impact
4807 	 * on available OPP of the system.
4808 	 *
4809 	 * We honour it for uclamp_min only as a drop in performance level
4810 	 * could result in not getting the requested minimum performance level.
4811 	 *
4812 	 * For uclamp_max, we can tolerate a drop in performance level as the
4813 	 * goal is to cap the task. So it's okay if it's getting less.
4814 	 */
4815 	capacity_orig = capacity_orig_of(cpu);
4816 	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4817 
4818 	/*
4819 	 * We want to force a task to fit a cpu as implied by uclamp_max.
4820 	 * But we do have some corner cases to cater for..
4821 	 *
4822 	 *
4823 	 *                                 C=z
4824 	 *   |                             ___
4825 	 *   |                  C=y       |   |
4826 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
4827 	 *   |      C=x        |   |      |   |
4828 	 *   |      ___        |   |      |   |
4829 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
4830 	 *   |     |   |       |   |      |   |
4831 	 *   |     |   |       |   |      |   |
4832 	 *   +----------------------------------------
4833 	 *         cpu0        cpu1       cpu2
4834 	 *
4835 	 *   In the above example if a task is capped to a specific performance
4836 	 *   point, y, then when:
4837 	 *
4838 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
4839 	 *     to cpu1
4840 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
4841 	 *     uclamp_max request.
4842 	 *
4843 	 *   which is what we're enforcing here. A task always fits if
4844 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4845 	 *   the normal upmigration rules should withhold still.
4846 	 *
4847 	 *   Only exception is when we are on max capacity, then we need to be
4848 	 *   careful not to block overutilized state. This is so because:
4849 	 *
4850 	 *     1. There's no concept of capping at max_capacity! We can't go
4851 	 *        beyond this performance level anyway.
4852 	 *     2. The system is being saturated when we're operating near
4853 	 *        max capacity, it doesn't make sense to block overutilized.
4854 	 */
4855 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
4856 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
4857 	fits = fits || uclamp_max_fits;
4858 
4859 	/*
4860 	 *
4861 	 *                                 C=z
4862 	 *   |                             ___       (region a, capped, util >= uclamp_max)
4863 	 *   |                  C=y       |   |
4864 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4865 	 *   |      C=x        |   |      |   |
4866 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
4867 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
4868 	 *   |     |   |       |   |      |   |
4869 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
4870 	 *   +----------------------------------------
4871 	 *         cpu0        cpu1       cpu2
4872 	 *
4873 	 * a) If util > uclamp_max, then we're capped, we don't care about
4874 	 *    actual fitness value here. We only care if uclamp_max fits
4875 	 *    capacity without taking margin/pressure into account.
4876 	 *    See comment above.
4877 	 *
4878 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
4879 	 *    fits_capacity() rules apply. Except we need to ensure that we
4880 	 *    enforce we remain within uclamp_max, see comment above.
4881 	 *
4882 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
4883 	 *    need to take into account the boosted value fits the CPU without
4884 	 *    taking margin/pressure into account.
4885 	 *
4886 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
4887 	 * just need to consider an extra check for case (c) after ensuring we
4888 	 * handle the case uclamp_min > uclamp_max.
4889 	 */
4890 	uclamp_min = min(uclamp_min, uclamp_max);
4891 	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
4892 		return -1;
4893 
4894 	return fits;
4895 }
4896 
4897 static inline int task_fits_cpu(struct task_struct *p, int cpu)
4898 {
4899 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
4900 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
4901 	unsigned long util = task_util_est(p);
4902 	/*
4903 	 * Return true only if the cpu fully fits the task requirements, which
4904 	 * include the utilization but also the performance hints.
4905 	 */
4906 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
4907 }
4908 
4909 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4910 {
4911 	if (!sched_asym_cpucap_active())
4912 		return;
4913 
4914 	if (!p || p->nr_cpus_allowed == 1) {
4915 		rq->misfit_task_load = 0;
4916 		return;
4917 	}
4918 
4919 	if (task_fits_cpu(p, cpu_of(rq))) {
4920 		rq->misfit_task_load = 0;
4921 		return;
4922 	}
4923 
4924 	/*
4925 	 * Make sure that misfit_task_load will not be null even if
4926 	 * task_h_load() returns 0.
4927 	 */
4928 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4929 }
4930 
4931 #else /* CONFIG_SMP */
4932 
4933 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4934 {
4935 	return true;
4936 }
4937 
4938 #define UPDATE_TG	0x0
4939 #define SKIP_AGE_LOAD	0x0
4940 #define DO_ATTACH	0x0
4941 #define DO_DETACH	0x0
4942 
4943 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4944 {
4945 	cfs_rq_util_change(cfs_rq, 0);
4946 }
4947 
4948 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4949 
4950 static inline void
4951 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4952 static inline void
4953 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4954 
4955 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4956 {
4957 	return 0;
4958 }
4959 
4960 static inline void
4961 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4962 
4963 static inline void
4964 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4965 
4966 static inline void
4967 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4968 		bool task_sleep) {}
4969 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4970 
4971 #endif /* CONFIG_SMP */
4972 
4973 static void
4974 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4975 {
4976 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
4977 	s64 lag = 0;
4978 
4979 	se->slice = sysctl_sched_base_slice;
4980 	vslice = calc_delta_fair(se->slice, se);
4981 
4982 	/*
4983 	 * Due to how V is constructed as the weighted average of entities,
4984 	 * adding tasks with positive lag, or removing tasks with negative lag
4985 	 * will move 'time' backwards, this can screw around with the lag of
4986 	 * other tasks.
4987 	 *
4988 	 * EEVDF: placement strategy #1 / #2
4989 	 */
4990 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
4991 		struct sched_entity *curr = cfs_rq->curr;
4992 		unsigned long load;
4993 
4994 		lag = se->vlag;
4995 
4996 		/*
4997 		 * If we want to place a task and preserve lag, we have to
4998 		 * consider the effect of the new entity on the weighted
4999 		 * average and compensate for this, otherwise lag can quickly
5000 		 * evaporate.
5001 		 *
5002 		 * Lag is defined as:
5003 		 *
5004 		 *   lag_i = S - s_i = w_i * (V - v_i)
5005 		 *
5006 		 * To avoid the 'w_i' term all over the place, we only track
5007 		 * the virtual lag:
5008 		 *
5009 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5010 		 *
5011 		 * And we take V to be the weighted average of all v:
5012 		 *
5013 		 *   V = (\Sum w_j*v_j) / W
5014 		 *
5015 		 * Where W is: \Sum w_j
5016 		 *
5017 		 * Then, the weighted average after adding an entity with lag
5018 		 * vl_i is given by:
5019 		 *
5020 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5021 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5022 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5023 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5024 		 *      = V - w_i*vl_i / (W + w_i)
5025 		 *
5026 		 * And the actual lag after adding an entity with vl_i is:
5027 		 *
5028 		 *   vl'_i = V' - v_i
5029 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5030 		 *         = vl_i - w_i*vl_i / (W + w_i)
5031 		 *
5032 		 * Which is strictly less than vl_i. So in order to preserve lag
5033 		 * we should inflate the lag before placement such that the
5034 		 * effective lag after placement comes out right.
5035 		 *
5036 		 * As such, invert the above relation for vl'_i to get the vl_i
5037 		 * we need to use such that the lag after placement is the lag
5038 		 * we computed before dequeue.
5039 		 *
5040 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5041 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5042 		 *
5043 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5044 		 *                   = W*vl_i
5045 		 *
5046 		 *   vl_i = (W + w_i)*vl'_i / W
5047 		 */
5048 		load = cfs_rq->avg_load;
5049 		if (curr && curr->on_rq)
5050 			load += scale_load_down(curr->load.weight);
5051 
5052 		lag *= load + scale_load_down(se->load.weight);
5053 		if (WARN_ON_ONCE(!load))
5054 			load = 1;
5055 		lag = div_s64(lag, load);
5056 	}
5057 
5058 	se->vruntime = vruntime - lag;
5059 
5060 	/*
5061 	 * When joining the competition; the exisiting tasks will be,
5062 	 * on average, halfway through their slice, as such start tasks
5063 	 * off with half a slice to ease into the competition.
5064 	 */
5065 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5066 		vslice /= 2;
5067 
5068 	/*
5069 	 * EEVDF: vd_i = ve_i + r_i/w_i
5070 	 */
5071 	se->deadline = se->vruntime + vslice;
5072 }
5073 
5074 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5075 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5076 
5077 static inline bool cfs_bandwidth_used(void);
5078 
5079 static void
5080 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5081 {
5082 	bool curr = cfs_rq->curr == se;
5083 
5084 	/*
5085 	 * If we're the current task, we must renormalise before calling
5086 	 * update_curr().
5087 	 */
5088 	if (curr)
5089 		place_entity(cfs_rq, se, flags);
5090 
5091 	update_curr(cfs_rq);
5092 
5093 	/*
5094 	 * When enqueuing a sched_entity, we must:
5095 	 *   - Update loads to have both entity and cfs_rq synced with now.
5096 	 *   - For group_entity, update its runnable_weight to reflect the new
5097 	 *     h_nr_running of its group cfs_rq.
5098 	 *   - For group_entity, update its weight to reflect the new share of
5099 	 *     its group cfs_rq
5100 	 *   - Add its new weight to cfs_rq->load.weight
5101 	 */
5102 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5103 	se_update_runnable(se);
5104 	/*
5105 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5106 	 * but update_cfs_group() here will re-adjust the weight and have to
5107 	 * undo/redo all that. Seems wasteful.
5108 	 */
5109 	update_cfs_group(se);
5110 
5111 	/*
5112 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5113 	 * we can place the entity.
5114 	 */
5115 	if (!curr)
5116 		place_entity(cfs_rq, se, flags);
5117 
5118 	account_entity_enqueue(cfs_rq, se);
5119 
5120 	/* Entity has migrated, no longer consider this task hot */
5121 	if (flags & ENQUEUE_MIGRATED)
5122 		se->exec_start = 0;
5123 
5124 	check_schedstat_required();
5125 	update_stats_enqueue_fair(cfs_rq, se, flags);
5126 	if (!curr)
5127 		__enqueue_entity(cfs_rq, se);
5128 	se->on_rq = 1;
5129 
5130 	if (cfs_rq->nr_running == 1) {
5131 		check_enqueue_throttle(cfs_rq);
5132 		if (!throttled_hierarchy(cfs_rq)) {
5133 			list_add_leaf_cfs_rq(cfs_rq);
5134 		} else {
5135 #ifdef CONFIG_CFS_BANDWIDTH
5136 			struct rq *rq = rq_of(cfs_rq);
5137 
5138 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5139 				cfs_rq->throttled_clock = rq_clock(rq);
5140 			if (!cfs_rq->throttled_clock_self)
5141 				cfs_rq->throttled_clock_self = rq_clock(rq);
5142 #endif
5143 		}
5144 	}
5145 }
5146 
5147 static void __clear_buddies_next(struct sched_entity *se)
5148 {
5149 	for_each_sched_entity(se) {
5150 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5151 		if (cfs_rq->next != se)
5152 			break;
5153 
5154 		cfs_rq->next = NULL;
5155 	}
5156 }
5157 
5158 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5159 {
5160 	if (cfs_rq->next == se)
5161 		__clear_buddies_next(se);
5162 }
5163 
5164 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5165 
5166 static void
5167 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5168 {
5169 	int action = UPDATE_TG;
5170 
5171 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5172 		action |= DO_DETACH;
5173 
5174 	/*
5175 	 * Update run-time statistics of the 'current'.
5176 	 */
5177 	update_curr(cfs_rq);
5178 
5179 	/*
5180 	 * When dequeuing a sched_entity, we must:
5181 	 *   - Update loads to have both entity and cfs_rq synced with now.
5182 	 *   - For group_entity, update its runnable_weight to reflect the new
5183 	 *     h_nr_running of its group cfs_rq.
5184 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5185 	 *   - For group entity, update its weight to reflect the new share
5186 	 *     of its group cfs_rq.
5187 	 */
5188 	update_load_avg(cfs_rq, se, action);
5189 	se_update_runnable(se);
5190 
5191 	update_stats_dequeue_fair(cfs_rq, se, flags);
5192 
5193 	clear_buddies(cfs_rq, se);
5194 
5195 	update_entity_lag(cfs_rq, se);
5196 	if (se != cfs_rq->curr)
5197 		__dequeue_entity(cfs_rq, se);
5198 	se->on_rq = 0;
5199 	account_entity_dequeue(cfs_rq, se);
5200 
5201 	/* return excess runtime on last dequeue */
5202 	return_cfs_rq_runtime(cfs_rq);
5203 
5204 	update_cfs_group(se);
5205 
5206 	/*
5207 	 * Now advance min_vruntime if @se was the entity holding it back,
5208 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5209 	 * put back on, and if we advance min_vruntime, we'll be placed back
5210 	 * further than we started -- ie. we'll be penalized.
5211 	 */
5212 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5213 		update_min_vruntime(cfs_rq);
5214 
5215 	if (cfs_rq->nr_running == 0)
5216 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5217 }
5218 
5219 static void
5220 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5221 {
5222 	clear_buddies(cfs_rq, se);
5223 
5224 	/* 'current' is not kept within the tree. */
5225 	if (se->on_rq) {
5226 		/*
5227 		 * Any task has to be enqueued before it get to execute on
5228 		 * a CPU. So account for the time it spent waiting on the
5229 		 * runqueue.
5230 		 */
5231 		update_stats_wait_end_fair(cfs_rq, se);
5232 		__dequeue_entity(cfs_rq, se);
5233 		update_load_avg(cfs_rq, se, UPDATE_TG);
5234 		/*
5235 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5236 		 * which isn't used until dequeue.
5237 		 */
5238 		se->vlag = se->deadline;
5239 	}
5240 
5241 	update_stats_curr_start(cfs_rq, se);
5242 	cfs_rq->curr = se;
5243 
5244 	/*
5245 	 * Track our maximum slice length, if the CPU's load is at
5246 	 * least twice that of our own weight (i.e. dont track it
5247 	 * when there are only lesser-weight tasks around):
5248 	 */
5249 	if (schedstat_enabled() &&
5250 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5251 		struct sched_statistics *stats;
5252 
5253 		stats = __schedstats_from_se(se);
5254 		__schedstat_set(stats->slice_max,
5255 				max((u64)stats->slice_max,
5256 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5257 	}
5258 
5259 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5260 }
5261 
5262 /*
5263  * Pick the next process, keeping these things in mind, in this order:
5264  * 1) keep things fair between processes/task groups
5265  * 2) pick the "next" process, since someone really wants that to run
5266  * 3) pick the "last" process, for cache locality
5267  * 4) do not run the "skip" process, if something else is available
5268  */
5269 static struct sched_entity *
5270 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
5271 {
5272 	/*
5273 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5274 	 */
5275 	if (sched_feat(NEXT_BUDDY) &&
5276 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5277 		return cfs_rq->next;
5278 
5279 	return pick_eevdf(cfs_rq);
5280 }
5281 
5282 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5283 
5284 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5285 {
5286 	/*
5287 	 * If still on the runqueue then deactivate_task()
5288 	 * was not called and update_curr() has to be done:
5289 	 */
5290 	if (prev->on_rq)
5291 		update_curr(cfs_rq);
5292 
5293 	/* throttle cfs_rqs exceeding runtime */
5294 	check_cfs_rq_runtime(cfs_rq);
5295 
5296 	if (prev->on_rq) {
5297 		update_stats_wait_start_fair(cfs_rq, prev);
5298 		/* Put 'current' back into the tree. */
5299 		__enqueue_entity(cfs_rq, prev);
5300 		/* in !on_rq case, update occurred at dequeue */
5301 		update_load_avg(cfs_rq, prev, 0);
5302 	}
5303 	cfs_rq->curr = NULL;
5304 }
5305 
5306 static void
5307 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5308 {
5309 	/*
5310 	 * Update run-time statistics of the 'current'.
5311 	 */
5312 	update_curr(cfs_rq);
5313 
5314 	/*
5315 	 * Ensure that runnable average is periodically updated.
5316 	 */
5317 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5318 	update_cfs_group(curr);
5319 
5320 #ifdef CONFIG_SCHED_HRTICK
5321 	/*
5322 	 * queued ticks are scheduled to match the slice, so don't bother
5323 	 * validating it and just reschedule.
5324 	 */
5325 	if (queued) {
5326 		resched_curr(rq_of(cfs_rq));
5327 		return;
5328 	}
5329 	/*
5330 	 * don't let the period tick interfere with the hrtick preemption
5331 	 */
5332 	if (!sched_feat(DOUBLE_TICK) &&
5333 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5334 		return;
5335 #endif
5336 }
5337 
5338 
5339 /**************************************************
5340  * CFS bandwidth control machinery
5341  */
5342 
5343 #ifdef CONFIG_CFS_BANDWIDTH
5344 
5345 #ifdef CONFIG_JUMP_LABEL
5346 static struct static_key __cfs_bandwidth_used;
5347 
5348 static inline bool cfs_bandwidth_used(void)
5349 {
5350 	return static_key_false(&__cfs_bandwidth_used);
5351 }
5352 
5353 void cfs_bandwidth_usage_inc(void)
5354 {
5355 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5356 }
5357 
5358 void cfs_bandwidth_usage_dec(void)
5359 {
5360 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5361 }
5362 #else /* CONFIG_JUMP_LABEL */
5363 static bool cfs_bandwidth_used(void)
5364 {
5365 	return true;
5366 }
5367 
5368 void cfs_bandwidth_usage_inc(void) {}
5369 void cfs_bandwidth_usage_dec(void) {}
5370 #endif /* CONFIG_JUMP_LABEL */
5371 
5372 /*
5373  * default period for cfs group bandwidth.
5374  * default: 0.1s, units: nanoseconds
5375  */
5376 static inline u64 default_cfs_period(void)
5377 {
5378 	return 100000000ULL;
5379 }
5380 
5381 static inline u64 sched_cfs_bandwidth_slice(void)
5382 {
5383 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5384 }
5385 
5386 /*
5387  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5388  * directly instead of rq->clock to avoid adding additional synchronization
5389  * around rq->lock.
5390  *
5391  * requires cfs_b->lock
5392  */
5393 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5394 {
5395 	s64 runtime;
5396 
5397 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5398 		return;
5399 
5400 	cfs_b->runtime += cfs_b->quota;
5401 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5402 	if (runtime > 0) {
5403 		cfs_b->burst_time += runtime;
5404 		cfs_b->nr_burst++;
5405 	}
5406 
5407 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5408 	cfs_b->runtime_snap = cfs_b->runtime;
5409 }
5410 
5411 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5412 {
5413 	return &tg->cfs_bandwidth;
5414 }
5415 
5416 /* returns 0 on failure to allocate runtime */
5417 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5418 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5419 {
5420 	u64 min_amount, amount = 0;
5421 
5422 	lockdep_assert_held(&cfs_b->lock);
5423 
5424 	/* note: this is a positive sum as runtime_remaining <= 0 */
5425 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5426 
5427 	if (cfs_b->quota == RUNTIME_INF)
5428 		amount = min_amount;
5429 	else {
5430 		start_cfs_bandwidth(cfs_b);
5431 
5432 		if (cfs_b->runtime > 0) {
5433 			amount = min(cfs_b->runtime, min_amount);
5434 			cfs_b->runtime -= amount;
5435 			cfs_b->idle = 0;
5436 		}
5437 	}
5438 
5439 	cfs_rq->runtime_remaining += amount;
5440 
5441 	return cfs_rq->runtime_remaining > 0;
5442 }
5443 
5444 /* returns 0 on failure to allocate runtime */
5445 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5446 {
5447 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5448 	int ret;
5449 
5450 	raw_spin_lock(&cfs_b->lock);
5451 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5452 	raw_spin_unlock(&cfs_b->lock);
5453 
5454 	return ret;
5455 }
5456 
5457 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5458 {
5459 	/* dock delta_exec before expiring quota (as it could span periods) */
5460 	cfs_rq->runtime_remaining -= delta_exec;
5461 
5462 	if (likely(cfs_rq->runtime_remaining > 0))
5463 		return;
5464 
5465 	if (cfs_rq->throttled)
5466 		return;
5467 	/*
5468 	 * if we're unable to extend our runtime we resched so that the active
5469 	 * hierarchy can be throttled
5470 	 */
5471 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5472 		resched_curr(rq_of(cfs_rq));
5473 }
5474 
5475 static __always_inline
5476 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5477 {
5478 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5479 		return;
5480 
5481 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5482 }
5483 
5484 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5485 {
5486 	return cfs_bandwidth_used() && cfs_rq->throttled;
5487 }
5488 
5489 /* check whether cfs_rq, or any parent, is throttled */
5490 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5491 {
5492 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5493 }
5494 
5495 /*
5496  * Ensure that neither of the group entities corresponding to src_cpu or
5497  * dest_cpu are members of a throttled hierarchy when performing group
5498  * load-balance operations.
5499  */
5500 static inline int throttled_lb_pair(struct task_group *tg,
5501 				    int src_cpu, int dest_cpu)
5502 {
5503 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5504 
5505 	src_cfs_rq = tg->cfs_rq[src_cpu];
5506 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5507 
5508 	return throttled_hierarchy(src_cfs_rq) ||
5509 	       throttled_hierarchy(dest_cfs_rq);
5510 }
5511 
5512 static int tg_unthrottle_up(struct task_group *tg, void *data)
5513 {
5514 	struct rq *rq = data;
5515 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5516 
5517 	cfs_rq->throttle_count--;
5518 	if (!cfs_rq->throttle_count) {
5519 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5520 					     cfs_rq->throttled_clock_pelt;
5521 
5522 		/* Add cfs_rq with load or one or more already running entities to the list */
5523 		if (!cfs_rq_is_decayed(cfs_rq))
5524 			list_add_leaf_cfs_rq(cfs_rq);
5525 
5526 		if (cfs_rq->throttled_clock_self) {
5527 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5528 
5529 			cfs_rq->throttled_clock_self = 0;
5530 
5531 			if (SCHED_WARN_ON((s64)delta < 0))
5532 				delta = 0;
5533 
5534 			cfs_rq->throttled_clock_self_time += delta;
5535 		}
5536 	}
5537 
5538 	return 0;
5539 }
5540 
5541 static int tg_throttle_down(struct task_group *tg, void *data)
5542 {
5543 	struct rq *rq = data;
5544 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5545 
5546 	/* group is entering throttled state, stop time */
5547 	if (!cfs_rq->throttle_count) {
5548 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5549 		list_del_leaf_cfs_rq(cfs_rq);
5550 
5551 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5552 		if (cfs_rq->nr_running)
5553 			cfs_rq->throttled_clock_self = rq_clock(rq);
5554 	}
5555 	cfs_rq->throttle_count++;
5556 
5557 	return 0;
5558 }
5559 
5560 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5561 {
5562 	struct rq *rq = rq_of(cfs_rq);
5563 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5564 	struct sched_entity *se;
5565 	long task_delta, idle_task_delta, dequeue = 1;
5566 
5567 	raw_spin_lock(&cfs_b->lock);
5568 	/* This will start the period timer if necessary */
5569 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5570 		/*
5571 		 * We have raced with bandwidth becoming available, and if we
5572 		 * actually throttled the timer might not unthrottle us for an
5573 		 * entire period. We additionally needed to make sure that any
5574 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5575 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5576 		 * for 1ns of runtime rather than just check cfs_b.
5577 		 */
5578 		dequeue = 0;
5579 	} else {
5580 		list_add_tail_rcu(&cfs_rq->throttled_list,
5581 				  &cfs_b->throttled_cfs_rq);
5582 	}
5583 	raw_spin_unlock(&cfs_b->lock);
5584 
5585 	if (!dequeue)
5586 		return false;  /* Throttle no longer required. */
5587 
5588 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5589 
5590 	/* freeze hierarchy runnable averages while throttled */
5591 	rcu_read_lock();
5592 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5593 	rcu_read_unlock();
5594 
5595 	task_delta = cfs_rq->h_nr_running;
5596 	idle_task_delta = cfs_rq->idle_h_nr_running;
5597 	for_each_sched_entity(se) {
5598 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5599 		/* throttled entity or throttle-on-deactivate */
5600 		if (!se->on_rq)
5601 			goto done;
5602 
5603 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5604 
5605 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5606 			idle_task_delta = cfs_rq->h_nr_running;
5607 
5608 		qcfs_rq->h_nr_running -= task_delta;
5609 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5610 
5611 		if (qcfs_rq->load.weight) {
5612 			/* Avoid re-evaluating load for this entity: */
5613 			se = parent_entity(se);
5614 			break;
5615 		}
5616 	}
5617 
5618 	for_each_sched_entity(se) {
5619 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5620 		/* throttled entity or throttle-on-deactivate */
5621 		if (!se->on_rq)
5622 			goto done;
5623 
5624 		update_load_avg(qcfs_rq, se, 0);
5625 		se_update_runnable(se);
5626 
5627 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5628 			idle_task_delta = cfs_rq->h_nr_running;
5629 
5630 		qcfs_rq->h_nr_running -= task_delta;
5631 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5632 	}
5633 
5634 	/* At this point se is NULL and we are at root level*/
5635 	sub_nr_running(rq, task_delta);
5636 
5637 done:
5638 	/*
5639 	 * Note: distribution will already see us throttled via the
5640 	 * throttled-list.  rq->lock protects completion.
5641 	 */
5642 	cfs_rq->throttled = 1;
5643 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5644 	if (cfs_rq->nr_running)
5645 		cfs_rq->throttled_clock = rq_clock(rq);
5646 	return true;
5647 }
5648 
5649 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5650 {
5651 	struct rq *rq = rq_of(cfs_rq);
5652 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5653 	struct sched_entity *se;
5654 	long task_delta, idle_task_delta;
5655 
5656 	se = cfs_rq->tg->se[cpu_of(rq)];
5657 
5658 	cfs_rq->throttled = 0;
5659 
5660 	update_rq_clock(rq);
5661 
5662 	raw_spin_lock(&cfs_b->lock);
5663 	if (cfs_rq->throttled_clock) {
5664 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5665 		cfs_rq->throttled_clock = 0;
5666 	}
5667 	list_del_rcu(&cfs_rq->throttled_list);
5668 	raw_spin_unlock(&cfs_b->lock);
5669 
5670 	/* update hierarchical throttle state */
5671 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5672 
5673 	if (!cfs_rq->load.weight) {
5674 		if (!cfs_rq->on_list)
5675 			return;
5676 		/*
5677 		 * Nothing to run but something to decay (on_list)?
5678 		 * Complete the branch.
5679 		 */
5680 		for_each_sched_entity(se) {
5681 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5682 				break;
5683 		}
5684 		goto unthrottle_throttle;
5685 	}
5686 
5687 	task_delta = cfs_rq->h_nr_running;
5688 	idle_task_delta = cfs_rq->idle_h_nr_running;
5689 	for_each_sched_entity(se) {
5690 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5691 
5692 		if (se->on_rq)
5693 			break;
5694 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5695 
5696 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5697 			idle_task_delta = cfs_rq->h_nr_running;
5698 
5699 		qcfs_rq->h_nr_running += task_delta;
5700 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5701 
5702 		/* end evaluation on encountering a throttled cfs_rq */
5703 		if (cfs_rq_throttled(qcfs_rq))
5704 			goto unthrottle_throttle;
5705 	}
5706 
5707 	for_each_sched_entity(se) {
5708 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5709 
5710 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5711 		se_update_runnable(se);
5712 
5713 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5714 			idle_task_delta = cfs_rq->h_nr_running;
5715 
5716 		qcfs_rq->h_nr_running += task_delta;
5717 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5718 
5719 		/* end evaluation on encountering a throttled cfs_rq */
5720 		if (cfs_rq_throttled(qcfs_rq))
5721 			goto unthrottle_throttle;
5722 	}
5723 
5724 	/* At this point se is NULL and we are at root level*/
5725 	add_nr_running(rq, task_delta);
5726 
5727 unthrottle_throttle:
5728 	assert_list_leaf_cfs_rq(rq);
5729 
5730 	/* Determine whether we need to wake up potentially idle CPU: */
5731 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5732 		resched_curr(rq);
5733 }
5734 
5735 #ifdef CONFIG_SMP
5736 static void __cfsb_csd_unthrottle(void *arg)
5737 {
5738 	struct cfs_rq *cursor, *tmp;
5739 	struct rq *rq = arg;
5740 	struct rq_flags rf;
5741 
5742 	rq_lock(rq, &rf);
5743 
5744 	/*
5745 	 * Iterating over the list can trigger several call to
5746 	 * update_rq_clock() in unthrottle_cfs_rq().
5747 	 * Do it once and skip the potential next ones.
5748 	 */
5749 	update_rq_clock(rq);
5750 	rq_clock_start_loop_update(rq);
5751 
5752 	/*
5753 	 * Since we hold rq lock we're safe from concurrent manipulation of
5754 	 * the CSD list. However, this RCU critical section annotates the
5755 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5756 	 * race with group being freed in the window between removing it
5757 	 * from the list and advancing to the next entry in the list.
5758 	 */
5759 	rcu_read_lock();
5760 
5761 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5762 				 throttled_csd_list) {
5763 		list_del_init(&cursor->throttled_csd_list);
5764 
5765 		if (cfs_rq_throttled(cursor))
5766 			unthrottle_cfs_rq(cursor);
5767 	}
5768 
5769 	rcu_read_unlock();
5770 
5771 	rq_clock_stop_loop_update(rq);
5772 	rq_unlock(rq, &rf);
5773 }
5774 
5775 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5776 {
5777 	struct rq *rq = rq_of(cfs_rq);
5778 	bool first;
5779 
5780 	if (rq == this_rq()) {
5781 		unthrottle_cfs_rq(cfs_rq);
5782 		return;
5783 	}
5784 
5785 	/* Already enqueued */
5786 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5787 		return;
5788 
5789 	first = list_empty(&rq->cfsb_csd_list);
5790 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5791 	if (first)
5792 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5793 }
5794 #else
5795 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5796 {
5797 	unthrottle_cfs_rq(cfs_rq);
5798 }
5799 #endif
5800 
5801 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5802 {
5803 	lockdep_assert_rq_held(rq_of(cfs_rq));
5804 
5805 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5806 	    cfs_rq->runtime_remaining <= 0))
5807 		return;
5808 
5809 	__unthrottle_cfs_rq_async(cfs_rq);
5810 }
5811 
5812 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5813 {
5814 	struct cfs_rq *local_unthrottle = NULL;
5815 	int this_cpu = smp_processor_id();
5816 	u64 runtime, remaining = 1;
5817 	bool throttled = false;
5818 	struct cfs_rq *cfs_rq;
5819 	struct rq_flags rf;
5820 	struct rq *rq;
5821 
5822 	rcu_read_lock();
5823 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5824 				throttled_list) {
5825 		rq = rq_of(cfs_rq);
5826 
5827 		if (!remaining) {
5828 			throttled = true;
5829 			break;
5830 		}
5831 
5832 		rq_lock_irqsave(rq, &rf);
5833 		if (!cfs_rq_throttled(cfs_rq))
5834 			goto next;
5835 
5836 #ifdef CONFIG_SMP
5837 		/* Already queued for async unthrottle */
5838 		if (!list_empty(&cfs_rq->throttled_csd_list))
5839 			goto next;
5840 #endif
5841 
5842 		/* By the above checks, this should never be true */
5843 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5844 
5845 		raw_spin_lock(&cfs_b->lock);
5846 		runtime = -cfs_rq->runtime_remaining + 1;
5847 		if (runtime > cfs_b->runtime)
5848 			runtime = cfs_b->runtime;
5849 		cfs_b->runtime -= runtime;
5850 		remaining = cfs_b->runtime;
5851 		raw_spin_unlock(&cfs_b->lock);
5852 
5853 		cfs_rq->runtime_remaining += runtime;
5854 
5855 		/* we check whether we're throttled above */
5856 		if (cfs_rq->runtime_remaining > 0) {
5857 			if (cpu_of(rq) != this_cpu ||
5858 			    SCHED_WARN_ON(local_unthrottle))
5859 				unthrottle_cfs_rq_async(cfs_rq);
5860 			else
5861 				local_unthrottle = cfs_rq;
5862 		} else {
5863 			throttled = true;
5864 		}
5865 
5866 next:
5867 		rq_unlock_irqrestore(rq, &rf);
5868 	}
5869 	rcu_read_unlock();
5870 
5871 	if (local_unthrottle) {
5872 		rq = cpu_rq(this_cpu);
5873 		rq_lock_irqsave(rq, &rf);
5874 		if (cfs_rq_throttled(local_unthrottle))
5875 			unthrottle_cfs_rq(local_unthrottle);
5876 		rq_unlock_irqrestore(rq, &rf);
5877 	}
5878 
5879 	return throttled;
5880 }
5881 
5882 /*
5883  * Responsible for refilling a task_group's bandwidth and unthrottling its
5884  * cfs_rqs as appropriate. If there has been no activity within the last
5885  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5886  * used to track this state.
5887  */
5888 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5889 {
5890 	int throttled;
5891 
5892 	/* no need to continue the timer with no bandwidth constraint */
5893 	if (cfs_b->quota == RUNTIME_INF)
5894 		goto out_deactivate;
5895 
5896 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5897 	cfs_b->nr_periods += overrun;
5898 
5899 	/* Refill extra burst quota even if cfs_b->idle */
5900 	__refill_cfs_bandwidth_runtime(cfs_b);
5901 
5902 	/*
5903 	 * idle depends on !throttled (for the case of a large deficit), and if
5904 	 * we're going inactive then everything else can be deferred
5905 	 */
5906 	if (cfs_b->idle && !throttled)
5907 		goto out_deactivate;
5908 
5909 	if (!throttled) {
5910 		/* mark as potentially idle for the upcoming period */
5911 		cfs_b->idle = 1;
5912 		return 0;
5913 	}
5914 
5915 	/* account preceding periods in which throttling occurred */
5916 	cfs_b->nr_throttled += overrun;
5917 
5918 	/*
5919 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5920 	 */
5921 	while (throttled && cfs_b->runtime > 0) {
5922 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5923 		/* we can't nest cfs_b->lock while distributing bandwidth */
5924 		throttled = distribute_cfs_runtime(cfs_b);
5925 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5926 	}
5927 
5928 	/*
5929 	 * While we are ensured activity in the period following an
5930 	 * unthrottle, this also covers the case in which the new bandwidth is
5931 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5932 	 * timer to remain active while there are any throttled entities.)
5933 	 */
5934 	cfs_b->idle = 0;
5935 
5936 	return 0;
5937 
5938 out_deactivate:
5939 	return 1;
5940 }
5941 
5942 /* a cfs_rq won't donate quota below this amount */
5943 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5944 /* minimum remaining period time to redistribute slack quota */
5945 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5946 /* how long we wait to gather additional slack before distributing */
5947 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5948 
5949 /*
5950  * Are we near the end of the current quota period?
5951  *
5952  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5953  * hrtimer base being cleared by hrtimer_start. In the case of
5954  * migrate_hrtimers, base is never cleared, so we are fine.
5955  */
5956 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5957 {
5958 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5959 	s64 remaining;
5960 
5961 	/* if the call-back is running a quota refresh is already occurring */
5962 	if (hrtimer_callback_running(refresh_timer))
5963 		return 1;
5964 
5965 	/* is a quota refresh about to occur? */
5966 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5967 	if (remaining < (s64)min_expire)
5968 		return 1;
5969 
5970 	return 0;
5971 }
5972 
5973 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5974 {
5975 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5976 
5977 	/* if there's a quota refresh soon don't bother with slack */
5978 	if (runtime_refresh_within(cfs_b, min_left))
5979 		return;
5980 
5981 	/* don't push forwards an existing deferred unthrottle */
5982 	if (cfs_b->slack_started)
5983 		return;
5984 	cfs_b->slack_started = true;
5985 
5986 	hrtimer_start(&cfs_b->slack_timer,
5987 			ns_to_ktime(cfs_bandwidth_slack_period),
5988 			HRTIMER_MODE_REL);
5989 }
5990 
5991 /* we know any runtime found here is valid as update_curr() precedes return */
5992 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5993 {
5994 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5995 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5996 
5997 	if (slack_runtime <= 0)
5998 		return;
5999 
6000 	raw_spin_lock(&cfs_b->lock);
6001 	if (cfs_b->quota != RUNTIME_INF) {
6002 		cfs_b->runtime += slack_runtime;
6003 
6004 		/* we are under rq->lock, defer unthrottling using a timer */
6005 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6006 		    !list_empty(&cfs_b->throttled_cfs_rq))
6007 			start_cfs_slack_bandwidth(cfs_b);
6008 	}
6009 	raw_spin_unlock(&cfs_b->lock);
6010 
6011 	/* even if it's not valid for return we don't want to try again */
6012 	cfs_rq->runtime_remaining -= slack_runtime;
6013 }
6014 
6015 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6016 {
6017 	if (!cfs_bandwidth_used())
6018 		return;
6019 
6020 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6021 		return;
6022 
6023 	__return_cfs_rq_runtime(cfs_rq);
6024 }
6025 
6026 /*
6027  * This is done with a timer (instead of inline with bandwidth return) since
6028  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6029  */
6030 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6031 {
6032 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6033 	unsigned long flags;
6034 
6035 	/* confirm we're still not at a refresh boundary */
6036 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6037 	cfs_b->slack_started = false;
6038 
6039 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6040 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6041 		return;
6042 	}
6043 
6044 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6045 		runtime = cfs_b->runtime;
6046 
6047 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6048 
6049 	if (!runtime)
6050 		return;
6051 
6052 	distribute_cfs_runtime(cfs_b);
6053 }
6054 
6055 /*
6056  * When a group wakes up we want to make sure that its quota is not already
6057  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6058  * runtime as update_curr() throttling can not trigger until it's on-rq.
6059  */
6060 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6061 {
6062 	if (!cfs_bandwidth_used())
6063 		return;
6064 
6065 	/* an active group must be handled by the update_curr()->put() path */
6066 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6067 		return;
6068 
6069 	/* ensure the group is not already throttled */
6070 	if (cfs_rq_throttled(cfs_rq))
6071 		return;
6072 
6073 	/* update runtime allocation */
6074 	account_cfs_rq_runtime(cfs_rq, 0);
6075 	if (cfs_rq->runtime_remaining <= 0)
6076 		throttle_cfs_rq(cfs_rq);
6077 }
6078 
6079 static void sync_throttle(struct task_group *tg, int cpu)
6080 {
6081 	struct cfs_rq *pcfs_rq, *cfs_rq;
6082 
6083 	if (!cfs_bandwidth_used())
6084 		return;
6085 
6086 	if (!tg->parent)
6087 		return;
6088 
6089 	cfs_rq = tg->cfs_rq[cpu];
6090 	pcfs_rq = tg->parent->cfs_rq[cpu];
6091 
6092 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6093 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6094 }
6095 
6096 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6097 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6098 {
6099 	if (!cfs_bandwidth_used())
6100 		return false;
6101 
6102 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6103 		return false;
6104 
6105 	/*
6106 	 * it's possible for a throttled entity to be forced into a running
6107 	 * state (e.g. set_curr_task), in this case we're finished.
6108 	 */
6109 	if (cfs_rq_throttled(cfs_rq))
6110 		return true;
6111 
6112 	return throttle_cfs_rq(cfs_rq);
6113 }
6114 
6115 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6116 {
6117 	struct cfs_bandwidth *cfs_b =
6118 		container_of(timer, struct cfs_bandwidth, slack_timer);
6119 
6120 	do_sched_cfs_slack_timer(cfs_b);
6121 
6122 	return HRTIMER_NORESTART;
6123 }
6124 
6125 extern const u64 max_cfs_quota_period;
6126 
6127 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6128 {
6129 	struct cfs_bandwidth *cfs_b =
6130 		container_of(timer, struct cfs_bandwidth, period_timer);
6131 	unsigned long flags;
6132 	int overrun;
6133 	int idle = 0;
6134 	int count = 0;
6135 
6136 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6137 	for (;;) {
6138 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6139 		if (!overrun)
6140 			break;
6141 
6142 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6143 
6144 		if (++count > 3) {
6145 			u64 new, old = ktime_to_ns(cfs_b->period);
6146 
6147 			/*
6148 			 * Grow period by a factor of 2 to avoid losing precision.
6149 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6150 			 * to fail.
6151 			 */
6152 			new = old * 2;
6153 			if (new < max_cfs_quota_period) {
6154 				cfs_b->period = ns_to_ktime(new);
6155 				cfs_b->quota *= 2;
6156 				cfs_b->burst *= 2;
6157 
6158 				pr_warn_ratelimited(
6159 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6160 					smp_processor_id(),
6161 					div_u64(new, NSEC_PER_USEC),
6162 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6163 			} else {
6164 				pr_warn_ratelimited(
6165 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6166 					smp_processor_id(),
6167 					div_u64(old, NSEC_PER_USEC),
6168 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6169 			}
6170 
6171 			/* reset count so we don't come right back in here */
6172 			count = 0;
6173 		}
6174 	}
6175 	if (idle)
6176 		cfs_b->period_active = 0;
6177 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6178 
6179 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6180 }
6181 
6182 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6183 {
6184 	raw_spin_lock_init(&cfs_b->lock);
6185 	cfs_b->runtime = 0;
6186 	cfs_b->quota = RUNTIME_INF;
6187 	cfs_b->period = ns_to_ktime(default_cfs_period());
6188 	cfs_b->burst = 0;
6189 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6190 
6191 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6192 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6193 	cfs_b->period_timer.function = sched_cfs_period_timer;
6194 
6195 	/* Add a random offset so that timers interleave */
6196 	hrtimer_set_expires(&cfs_b->period_timer,
6197 			    get_random_u32_below(cfs_b->period));
6198 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6199 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6200 	cfs_b->slack_started = false;
6201 }
6202 
6203 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6204 {
6205 	cfs_rq->runtime_enabled = 0;
6206 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6207 #ifdef CONFIG_SMP
6208 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6209 #endif
6210 }
6211 
6212 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6213 {
6214 	lockdep_assert_held(&cfs_b->lock);
6215 
6216 	if (cfs_b->period_active)
6217 		return;
6218 
6219 	cfs_b->period_active = 1;
6220 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6221 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6222 }
6223 
6224 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6225 {
6226 	int __maybe_unused i;
6227 
6228 	/* init_cfs_bandwidth() was not called */
6229 	if (!cfs_b->throttled_cfs_rq.next)
6230 		return;
6231 
6232 	hrtimer_cancel(&cfs_b->period_timer);
6233 	hrtimer_cancel(&cfs_b->slack_timer);
6234 
6235 	/*
6236 	 * It is possible that we still have some cfs_rq's pending on a CSD
6237 	 * list, though this race is very rare. In order for this to occur, we
6238 	 * must have raced with the last task leaving the group while there
6239 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6240 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6241 	 * we can simply flush all pending CSD work inline here. We're
6242 	 * guaranteed at this point that no additional cfs_rq of this group can
6243 	 * join a CSD list.
6244 	 */
6245 #ifdef CONFIG_SMP
6246 	for_each_possible_cpu(i) {
6247 		struct rq *rq = cpu_rq(i);
6248 		unsigned long flags;
6249 
6250 		if (list_empty(&rq->cfsb_csd_list))
6251 			continue;
6252 
6253 		local_irq_save(flags);
6254 		__cfsb_csd_unthrottle(rq);
6255 		local_irq_restore(flags);
6256 	}
6257 #endif
6258 }
6259 
6260 /*
6261  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6262  *
6263  * The race is harmless, since modifying bandwidth settings of unhooked group
6264  * bits doesn't do much.
6265  */
6266 
6267 /* cpu online callback */
6268 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6269 {
6270 	struct task_group *tg;
6271 
6272 	lockdep_assert_rq_held(rq);
6273 
6274 	rcu_read_lock();
6275 	list_for_each_entry_rcu(tg, &task_groups, list) {
6276 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6277 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6278 
6279 		raw_spin_lock(&cfs_b->lock);
6280 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6281 		raw_spin_unlock(&cfs_b->lock);
6282 	}
6283 	rcu_read_unlock();
6284 }
6285 
6286 /* cpu offline callback */
6287 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6288 {
6289 	struct task_group *tg;
6290 
6291 	lockdep_assert_rq_held(rq);
6292 
6293 	/*
6294 	 * The rq clock has already been updated in the
6295 	 * set_rq_offline(), so we should skip updating
6296 	 * the rq clock again in unthrottle_cfs_rq().
6297 	 */
6298 	rq_clock_start_loop_update(rq);
6299 
6300 	rcu_read_lock();
6301 	list_for_each_entry_rcu(tg, &task_groups, list) {
6302 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6303 
6304 		if (!cfs_rq->runtime_enabled)
6305 			continue;
6306 
6307 		/*
6308 		 * clock_task is not advancing so we just need to make sure
6309 		 * there's some valid quota amount
6310 		 */
6311 		cfs_rq->runtime_remaining = 1;
6312 		/*
6313 		 * Offline rq is schedulable till CPU is completely disabled
6314 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6315 		 */
6316 		cfs_rq->runtime_enabled = 0;
6317 
6318 		if (cfs_rq_throttled(cfs_rq))
6319 			unthrottle_cfs_rq(cfs_rq);
6320 	}
6321 	rcu_read_unlock();
6322 
6323 	rq_clock_stop_loop_update(rq);
6324 }
6325 
6326 bool cfs_task_bw_constrained(struct task_struct *p)
6327 {
6328 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6329 
6330 	if (!cfs_bandwidth_used())
6331 		return false;
6332 
6333 	if (cfs_rq->runtime_enabled ||
6334 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6335 		return true;
6336 
6337 	return false;
6338 }
6339 
6340 #ifdef CONFIG_NO_HZ_FULL
6341 /* called from pick_next_task_fair() */
6342 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6343 {
6344 	int cpu = cpu_of(rq);
6345 
6346 	if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6347 		return;
6348 
6349 	if (!tick_nohz_full_cpu(cpu))
6350 		return;
6351 
6352 	if (rq->nr_running != 1)
6353 		return;
6354 
6355 	/*
6356 	 *  We know there is only one task runnable and we've just picked it. The
6357 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6358 	 *  be otherwise able to stop the tick. Just need to check if we are using
6359 	 *  bandwidth control.
6360 	 */
6361 	if (cfs_task_bw_constrained(p))
6362 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6363 }
6364 #endif
6365 
6366 #else /* CONFIG_CFS_BANDWIDTH */
6367 
6368 static inline bool cfs_bandwidth_used(void)
6369 {
6370 	return false;
6371 }
6372 
6373 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6374 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6375 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6376 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6377 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6378 
6379 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6380 {
6381 	return 0;
6382 }
6383 
6384 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6385 {
6386 	return 0;
6387 }
6388 
6389 static inline int throttled_lb_pair(struct task_group *tg,
6390 				    int src_cpu, int dest_cpu)
6391 {
6392 	return 0;
6393 }
6394 
6395 #ifdef CONFIG_FAIR_GROUP_SCHED
6396 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6397 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6398 #endif
6399 
6400 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6401 {
6402 	return NULL;
6403 }
6404 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6405 static inline void update_runtime_enabled(struct rq *rq) {}
6406 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6407 #ifdef CONFIG_CGROUP_SCHED
6408 bool cfs_task_bw_constrained(struct task_struct *p)
6409 {
6410 	return false;
6411 }
6412 #endif
6413 #endif /* CONFIG_CFS_BANDWIDTH */
6414 
6415 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6416 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6417 #endif
6418 
6419 /**************************************************
6420  * CFS operations on tasks:
6421  */
6422 
6423 #ifdef CONFIG_SCHED_HRTICK
6424 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6425 {
6426 	struct sched_entity *se = &p->se;
6427 
6428 	SCHED_WARN_ON(task_rq(p) != rq);
6429 
6430 	if (rq->cfs.h_nr_running > 1) {
6431 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6432 		u64 slice = se->slice;
6433 		s64 delta = slice - ran;
6434 
6435 		if (delta < 0) {
6436 			if (task_current(rq, p))
6437 				resched_curr(rq);
6438 			return;
6439 		}
6440 		hrtick_start(rq, delta);
6441 	}
6442 }
6443 
6444 /*
6445  * called from enqueue/dequeue and updates the hrtick when the
6446  * current task is from our class and nr_running is low enough
6447  * to matter.
6448  */
6449 static void hrtick_update(struct rq *rq)
6450 {
6451 	struct task_struct *curr = rq->curr;
6452 
6453 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6454 		return;
6455 
6456 	hrtick_start_fair(rq, curr);
6457 }
6458 #else /* !CONFIG_SCHED_HRTICK */
6459 static inline void
6460 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6461 {
6462 }
6463 
6464 static inline void hrtick_update(struct rq *rq)
6465 {
6466 }
6467 #endif
6468 
6469 #ifdef CONFIG_SMP
6470 static inline bool cpu_overutilized(int cpu)
6471 {
6472 	unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6473 	unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6474 
6475 	/* Return true only if the utilization doesn't fit CPU's capacity */
6476 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6477 }
6478 
6479 static inline void update_overutilized_status(struct rq *rq)
6480 {
6481 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6482 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6483 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6484 	}
6485 }
6486 #else
6487 static inline void update_overutilized_status(struct rq *rq) { }
6488 #endif
6489 
6490 /* Runqueue only has SCHED_IDLE tasks enqueued */
6491 static int sched_idle_rq(struct rq *rq)
6492 {
6493 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6494 			rq->nr_running);
6495 }
6496 
6497 #ifdef CONFIG_SMP
6498 static int sched_idle_cpu(int cpu)
6499 {
6500 	return sched_idle_rq(cpu_rq(cpu));
6501 }
6502 #endif
6503 
6504 /*
6505  * The enqueue_task method is called before nr_running is
6506  * increased. Here we update the fair scheduling stats and
6507  * then put the task into the rbtree:
6508  */
6509 static void
6510 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6511 {
6512 	struct cfs_rq *cfs_rq;
6513 	struct sched_entity *se = &p->se;
6514 	int idle_h_nr_running = task_has_idle_policy(p);
6515 	int task_new = !(flags & ENQUEUE_WAKEUP);
6516 
6517 	/*
6518 	 * The code below (indirectly) updates schedutil which looks at
6519 	 * the cfs_rq utilization to select a frequency.
6520 	 * Let's add the task's estimated utilization to the cfs_rq's
6521 	 * estimated utilization, before we update schedutil.
6522 	 */
6523 	util_est_enqueue(&rq->cfs, p);
6524 
6525 	/*
6526 	 * If in_iowait is set, the code below may not trigger any cpufreq
6527 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6528 	 * passed.
6529 	 */
6530 	if (p->in_iowait)
6531 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6532 
6533 	for_each_sched_entity(se) {
6534 		if (se->on_rq)
6535 			break;
6536 		cfs_rq = cfs_rq_of(se);
6537 		enqueue_entity(cfs_rq, se, flags);
6538 
6539 		cfs_rq->h_nr_running++;
6540 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6541 
6542 		if (cfs_rq_is_idle(cfs_rq))
6543 			idle_h_nr_running = 1;
6544 
6545 		/* end evaluation on encountering a throttled cfs_rq */
6546 		if (cfs_rq_throttled(cfs_rq))
6547 			goto enqueue_throttle;
6548 
6549 		flags = ENQUEUE_WAKEUP;
6550 	}
6551 
6552 	for_each_sched_entity(se) {
6553 		cfs_rq = cfs_rq_of(se);
6554 
6555 		update_load_avg(cfs_rq, se, UPDATE_TG);
6556 		se_update_runnable(se);
6557 		update_cfs_group(se);
6558 
6559 		cfs_rq->h_nr_running++;
6560 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6561 
6562 		if (cfs_rq_is_idle(cfs_rq))
6563 			idle_h_nr_running = 1;
6564 
6565 		/* end evaluation on encountering a throttled cfs_rq */
6566 		if (cfs_rq_throttled(cfs_rq))
6567 			goto enqueue_throttle;
6568 	}
6569 
6570 	/* At this point se is NULL and we are at root level*/
6571 	add_nr_running(rq, 1);
6572 
6573 	/*
6574 	 * Since new tasks are assigned an initial util_avg equal to
6575 	 * half of the spare capacity of their CPU, tiny tasks have the
6576 	 * ability to cross the overutilized threshold, which will
6577 	 * result in the load balancer ruining all the task placement
6578 	 * done by EAS. As a way to mitigate that effect, do not account
6579 	 * for the first enqueue operation of new tasks during the
6580 	 * overutilized flag detection.
6581 	 *
6582 	 * A better way of solving this problem would be to wait for
6583 	 * the PELT signals of tasks to converge before taking them
6584 	 * into account, but that is not straightforward to implement,
6585 	 * and the following generally works well enough in practice.
6586 	 */
6587 	if (!task_new)
6588 		update_overutilized_status(rq);
6589 
6590 enqueue_throttle:
6591 	assert_list_leaf_cfs_rq(rq);
6592 
6593 	hrtick_update(rq);
6594 }
6595 
6596 static void set_next_buddy(struct sched_entity *se);
6597 
6598 /*
6599  * The dequeue_task method is called before nr_running is
6600  * decreased. We remove the task from the rbtree and
6601  * update the fair scheduling stats:
6602  */
6603 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6604 {
6605 	struct cfs_rq *cfs_rq;
6606 	struct sched_entity *se = &p->se;
6607 	int task_sleep = flags & DEQUEUE_SLEEP;
6608 	int idle_h_nr_running = task_has_idle_policy(p);
6609 	bool was_sched_idle = sched_idle_rq(rq);
6610 
6611 	util_est_dequeue(&rq->cfs, p);
6612 
6613 	for_each_sched_entity(se) {
6614 		cfs_rq = cfs_rq_of(se);
6615 		dequeue_entity(cfs_rq, se, flags);
6616 
6617 		cfs_rq->h_nr_running--;
6618 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6619 
6620 		if (cfs_rq_is_idle(cfs_rq))
6621 			idle_h_nr_running = 1;
6622 
6623 		/* end evaluation on encountering a throttled cfs_rq */
6624 		if (cfs_rq_throttled(cfs_rq))
6625 			goto dequeue_throttle;
6626 
6627 		/* Don't dequeue parent if it has other entities besides us */
6628 		if (cfs_rq->load.weight) {
6629 			/* Avoid re-evaluating load for this entity: */
6630 			se = parent_entity(se);
6631 			/*
6632 			 * Bias pick_next to pick a task from this cfs_rq, as
6633 			 * p is sleeping when it is within its sched_slice.
6634 			 */
6635 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6636 				set_next_buddy(se);
6637 			break;
6638 		}
6639 		flags |= DEQUEUE_SLEEP;
6640 	}
6641 
6642 	for_each_sched_entity(se) {
6643 		cfs_rq = cfs_rq_of(se);
6644 
6645 		update_load_avg(cfs_rq, se, UPDATE_TG);
6646 		se_update_runnable(se);
6647 		update_cfs_group(se);
6648 
6649 		cfs_rq->h_nr_running--;
6650 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6651 
6652 		if (cfs_rq_is_idle(cfs_rq))
6653 			idle_h_nr_running = 1;
6654 
6655 		/* end evaluation on encountering a throttled cfs_rq */
6656 		if (cfs_rq_throttled(cfs_rq))
6657 			goto dequeue_throttle;
6658 
6659 	}
6660 
6661 	/* At this point se is NULL and we are at root level*/
6662 	sub_nr_running(rq, 1);
6663 
6664 	/* balance early to pull high priority tasks */
6665 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6666 		rq->next_balance = jiffies;
6667 
6668 dequeue_throttle:
6669 	util_est_update(&rq->cfs, p, task_sleep);
6670 	hrtick_update(rq);
6671 }
6672 
6673 #ifdef CONFIG_SMP
6674 
6675 /* Working cpumask for: load_balance, load_balance_newidle. */
6676 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6677 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6678 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6679 
6680 #ifdef CONFIG_NO_HZ_COMMON
6681 
6682 static struct {
6683 	cpumask_var_t idle_cpus_mask;
6684 	atomic_t nr_cpus;
6685 	int has_blocked;		/* Idle CPUS has blocked load */
6686 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6687 	unsigned long next_balance;     /* in jiffy units */
6688 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6689 } nohz ____cacheline_aligned;
6690 
6691 #endif /* CONFIG_NO_HZ_COMMON */
6692 
6693 static unsigned long cpu_load(struct rq *rq)
6694 {
6695 	return cfs_rq_load_avg(&rq->cfs);
6696 }
6697 
6698 /*
6699  * cpu_load_without - compute CPU load without any contributions from *p
6700  * @cpu: the CPU which load is requested
6701  * @p: the task which load should be discounted
6702  *
6703  * The load of a CPU is defined by the load of tasks currently enqueued on that
6704  * CPU as well as tasks which are currently sleeping after an execution on that
6705  * CPU.
6706  *
6707  * This method returns the load of the specified CPU by discounting the load of
6708  * the specified task, whenever the task is currently contributing to the CPU
6709  * load.
6710  */
6711 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6712 {
6713 	struct cfs_rq *cfs_rq;
6714 	unsigned int load;
6715 
6716 	/* Task has no contribution or is new */
6717 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6718 		return cpu_load(rq);
6719 
6720 	cfs_rq = &rq->cfs;
6721 	load = READ_ONCE(cfs_rq->avg.load_avg);
6722 
6723 	/* Discount task's util from CPU's util */
6724 	lsub_positive(&load, task_h_load(p));
6725 
6726 	return load;
6727 }
6728 
6729 static unsigned long cpu_runnable(struct rq *rq)
6730 {
6731 	return cfs_rq_runnable_avg(&rq->cfs);
6732 }
6733 
6734 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6735 {
6736 	struct cfs_rq *cfs_rq;
6737 	unsigned int runnable;
6738 
6739 	/* Task has no contribution or is new */
6740 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6741 		return cpu_runnable(rq);
6742 
6743 	cfs_rq = &rq->cfs;
6744 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6745 
6746 	/* Discount task's runnable from CPU's runnable */
6747 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6748 
6749 	return runnable;
6750 }
6751 
6752 static unsigned long capacity_of(int cpu)
6753 {
6754 	return cpu_rq(cpu)->cpu_capacity;
6755 }
6756 
6757 static void record_wakee(struct task_struct *p)
6758 {
6759 	/*
6760 	 * Only decay a single time; tasks that have less then 1 wakeup per
6761 	 * jiffy will not have built up many flips.
6762 	 */
6763 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6764 		current->wakee_flips >>= 1;
6765 		current->wakee_flip_decay_ts = jiffies;
6766 	}
6767 
6768 	if (current->last_wakee != p) {
6769 		current->last_wakee = p;
6770 		current->wakee_flips++;
6771 	}
6772 }
6773 
6774 /*
6775  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6776  *
6777  * A waker of many should wake a different task than the one last awakened
6778  * at a frequency roughly N times higher than one of its wakees.
6779  *
6780  * In order to determine whether we should let the load spread vs consolidating
6781  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6782  * partner, and a factor of lls_size higher frequency in the other.
6783  *
6784  * With both conditions met, we can be relatively sure that the relationship is
6785  * non-monogamous, with partner count exceeding socket size.
6786  *
6787  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6788  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6789  * socket size.
6790  */
6791 static int wake_wide(struct task_struct *p)
6792 {
6793 	unsigned int master = current->wakee_flips;
6794 	unsigned int slave = p->wakee_flips;
6795 	int factor = __this_cpu_read(sd_llc_size);
6796 
6797 	if (master < slave)
6798 		swap(master, slave);
6799 	if (slave < factor || master < slave * factor)
6800 		return 0;
6801 	return 1;
6802 }
6803 
6804 /*
6805  * The purpose of wake_affine() is to quickly determine on which CPU we can run
6806  * soonest. For the purpose of speed we only consider the waking and previous
6807  * CPU.
6808  *
6809  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6810  *			cache-affine and is (or	will be) idle.
6811  *
6812  * wake_affine_weight() - considers the weight to reflect the average
6813  *			  scheduling latency of the CPUs. This seems to work
6814  *			  for the overloaded case.
6815  */
6816 static int
6817 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6818 {
6819 	/*
6820 	 * If this_cpu is idle, it implies the wakeup is from interrupt
6821 	 * context. Only allow the move if cache is shared. Otherwise an
6822 	 * interrupt intensive workload could force all tasks onto one
6823 	 * node depending on the IO topology or IRQ affinity settings.
6824 	 *
6825 	 * If the prev_cpu is idle and cache affine then avoid a migration.
6826 	 * There is no guarantee that the cache hot data from an interrupt
6827 	 * is more important than cache hot data on the prev_cpu and from
6828 	 * a cpufreq perspective, it's better to have higher utilisation
6829 	 * on one CPU.
6830 	 */
6831 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6832 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6833 
6834 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
6835 		return this_cpu;
6836 
6837 	if (available_idle_cpu(prev_cpu))
6838 		return prev_cpu;
6839 
6840 	return nr_cpumask_bits;
6841 }
6842 
6843 static int
6844 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6845 		   int this_cpu, int prev_cpu, int sync)
6846 {
6847 	s64 this_eff_load, prev_eff_load;
6848 	unsigned long task_load;
6849 
6850 	this_eff_load = cpu_load(cpu_rq(this_cpu));
6851 
6852 	if (sync) {
6853 		unsigned long current_load = task_h_load(current);
6854 
6855 		if (current_load > this_eff_load)
6856 			return this_cpu;
6857 
6858 		this_eff_load -= current_load;
6859 	}
6860 
6861 	task_load = task_h_load(p);
6862 
6863 	this_eff_load += task_load;
6864 	if (sched_feat(WA_BIAS))
6865 		this_eff_load *= 100;
6866 	this_eff_load *= capacity_of(prev_cpu);
6867 
6868 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6869 	prev_eff_load -= task_load;
6870 	if (sched_feat(WA_BIAS))
6871 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6872 	prev_eff_load *= capacity_of(this_cpu);
6873 
6874 	/*
6875 	 * If sync, adjust the weight of prev_eff_load such that if
6876 	 * prev_eff == this_eff that select_idle_sibling() will consider
6877 	 * stacking the wakee on top of the waker if no other CPU is
6878 	 * idle.
6879 	 */
6880 	if (sync)
6881 		prev_eff_load += 1;
6882 
6883 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6884 }
6885 
6886 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6887 		       int this_cpu, int prev_cpu, int sync)
6888 {
6889 	int target = nr_cpumask_bits;
6890 
6891 	if (sched_feat(WA_IDLE))
6892 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
6893 
6894 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6895 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6896 
6897 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6898 	if (target != this_cpu)
6899 		return prev_cpu;
6900 
6901 	schedstat_inc(sd->ttwu_move_affine);
6902 	schedstat_inc(p->stats.nr_wakeups_affine);
6903 	return target;
6904 }
6905 
6906 static struct sched_group *
6907 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6908 
6909 /*
6910  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6911  */
6912 static int
6913 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6914 {
6915 	unsigned long load, min_load = ULONG_MAX;
6916 	unsigned int min_exit_latency = UINT_MAX;
6917 	u64 latest_idle_timestamp = 0;
6918 	int least_loaded_cpu = this_cpu;
6919 	int shallowest_idle_cpu = -1;
6920 	int i;
6921 
6922 	/* Check if we have any choice: */
6923 	if (group->group_weight == 1)
6924 		return cpumask_first(sched_group_span(group));
6925 
6926 	/* Traverse only the allowed CPUs */
6927 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6928 		struct rq *rq = cpu_rq(i);
6929 
6930 		if (!sched_core_cookie_match(rq, p))
6931 			continue;
6932 
6933 		if (sched_idle_cpu(i))
6934 			return i;
6935 
6936 		if (available_idle_cpu(i)) {
6937 			struct cpuidle_state *idle = idle_get_state(rq);
6938 			if (idle && idle->exit_latency < min_exit_latency) {
6939 				/*
6940 				 * We give priority to a CPU whose idle state
6941 				 * has the smallest exit latency irrespective
6942 				 * of any idle timestamp.
6943 				 */
6944 				min_exit_latency = idle->exit_latency;
6945 				latest_idle_timestamp = rq->idle_stamp;
6946 				shallowest_idle_cpu = i;
6947 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6948 				   rq->idle_stamp > latest_idle_timestamp) {
6949 				/*
6950 				 * If equal or no active idle state, then
6951 				 * the most recently idled CPU might have
6952 				 * a warmer cache.
6953 				 */
6954 				latest_idle_timestamp = rq->idle_stamp;
6955 				shallowest_idle_cpu = i;
6956 			}
6957 		} else if (shallowest_idle_cpu == -1) {
6958 			load = cpu_load(cpu_rq(i));
6959 			if (load < min_load) {
6960 				min_load = load;
6961 				least_loaded_cpu = i;
6962 			}
6963 		}
6964 	}
6965 
6966 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6967 }
6968 
6969 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6970 				  int cpu, int prev_cpu, int sd_flag)
6971 {
6972 	int new_cpu = cpu;
6973 
6974 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6975 		return prev_cpu;
6976 
6977 	/*
6978 	 * We need task's util for cpu_util_without, sync it up to
6979 	 * prev_cpu's last_update_time.
6980 	 */
6981 	if (!(sd_flag & SD_BALANCE_FORK))
6982 		sync_entity_load_avg(&p->se);
6983 
6984 	while (sd) {
6985 		struct sched_group *group;
6986 		struct sched_domain *tmp;
6987 		int weight;
6988 
6989 		if (!(sd->flags & sd_flag)) {
6990 			sd = sd->child;
6991 			continue;
6992 		}
6993 
6994 		group = find_idlest_group(sd, p, cpu);
6995 		if (!group) {
6996 			sd = sd->child;
6997 			continue;
6998 		}
6999 
7000 		new_cpu = find_idlest_group_cpu(group, p, cpu);
7001 		if (new_cpu == cpu) {
7002 			/* Now try balancing at a lower domain level of 'cpu': */
7003 			sd = sd->child;
7004 			continue;
7005 		}
7006 
7007 		/* Now try balancing at a lower domain level of 'new_cpu': */
7008 		cpu = new_cpu;
7009 		weight = sd->span_weight;
7010 		sd = NULL;
7011 		for_each_domain(cpu, tmp) {
7012 			if (weight <= tmp->span_weight)
7013 				break;
7014 			if (tmp->flags & sd_flag)
7015 				sd = tmp;
7016 		}
7017 	}
7018 
7019 	return new_cpu;
7020 }
7021 
7022 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7023 {
7024 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7025 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7026 		return cpu;
7027 
7028 	return -1;
7029 }
7030 
7031 #ifdef CONFIG_SCHED_SMT
7032 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7033 EXPORT_SYMBOL_GPL(sched_smt_present);
7034 
7035 static inline void set_idle_cores(int cpu, int val)
7036 {
7037 	struct sched_domain_shared *sds;
7038 
7039 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7040 	if (sds)
7041 		WRITE_ONCE(sds->has_idle_cores, val);
7042 }
7043 
7044 static inline bool test_idle_cores(int cpu)
7045 {
7046 	struct sched_domain_shared *sds;
7047 
7048 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7049 	if (sds)
7050 		return READ_ONCE(sds->has_idle_cores);
7051 
7052 	return false;
7053 }
7054 
7055 /*
7056  * Scans the local SMT mask to see if the entire core is idle, and records this
7057  * information in sd_llc_shared->has_idle_cores.
7058  *
7059  * Since SMT siblings share all cache levels, inspecting this limited remote
7060  * state should be fairly cheap.
7061  */
7062 void __update_idle_core(struct rq *rq)
7063 {
7064 	int core = cpu_of(rq);
7065 	int cpu;
7066 
7067 	rcu_read_lock();
7068 	if (test_idle_cores(core))
7069 		goto unlock;
7070 
7071 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7072 		if (cpu == core)
7073 			continue;
7074 
7075 		if (!available_idle_cpu(cpu))
7076 			goto unlock;
7077 	}
7078 
7079 	set_idle_cores(core, 1);
7080 unlock:
7081 	rcu_read_unlock();
7082 }
7083 
7084 /*
7085  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7086  * there are no idle cores left in the system; tracked through
7087  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7088  */
7089 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7090 {
7091 	bool idle = true;
7092 	int cpu;
7093 
7094 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7095 		if (!available_idle_cpu(cpu)) {
7096 			idle = false;
7097 			if (*idle_cpu == -1) {
7098 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
7099 					*idle_cpu = cpu;
7100 					break;
7101 				}
7102 				continue;
7103 			}
7104 			break;
7105 		}
7106 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
7107 			*idle_cpu = cpu;
7108 	}
7109 
7110 	if (idle)
7111 		return core;
7112 
7113 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7114 	return -1;
7115 }
7116 
7117 /*
7118  * Scan the local SMT mask for idle CPUs.
7119  */
7120 static int select_idle_smt(struct task_struct *p, int target)
7121 {
7122 	int cpu;
7123 
7124 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7125 		if (cpu == target)
7126 			continue;
7127 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7128 			return cpu;
7129 	}
7130 
7131 	return -1;
7132 }
7133 
7134 #else /* CONFIG_SCHED_SMT */
7135 
7136 static inline void set_idle_cores(int cpu, int val)
7137 {
7138 }
7139 
7140 static inline bool test_idle_cores(int cpu)
7141 {
7142 	return false;
7143 }
7144 
7145 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7146 {
7147 	return __select_idle_cpu(core, p);
7148 }
7149 
7150 static inline int select_idle_smt(struct task_struct *p, int target)
7151 {
7152 	return -1;
7153 }
7154 
7155 #endif /* CONFIG_SCHED_SMT */
7156 
7157 /*
7158  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7159  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7160  * average idle time for this rq (as found in rq->avg_idle).
7161  */
7162 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7163 {
7164 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7165 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7166 	struct sched_domain_shared *sd_share;
7167 	struct rq *this_rq = this_rq();
7168 	int this = smp_processor_id();
7169 	struct sched_domain *this_sd = NULL;
7170 	u64 time = 0;
7171 
7172 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7173 
7174 	if (sched_feat(SIS_PROP) && !has_idle_core) {
7175 		u64 avg_cost, avg_idle, span_avg;
7176 		unsigned long now = jiffies;
7177 
7178 		this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
7179 		if (!this_sd)
7180 			return -1;
7181 
7182 		/*
7183 		 * If we're busy, the assumption that the last idle period
7184 		 * predicts the future is flawed; age away the remaining
7185 		 * predicted idle time.
7186 		 */
7187 		if (unlikely(this_rq->wake_stamp < now)) {
7188 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
7189 				this_rq->wake_stamp++;
7190 				this_rq->wake_avg_idle >>= 1;
7191 			}
7192 		}
7193 
7194 		avg_idle = this_rq->wake_avg_idle;
7195 		avg_cost = this_sd->avg_scan_cost + 1;
7196 
7197 		span_avg = sd->span_weight * avg_idle;
7198 		if (span_avg > 4*avg_cost)
7199 			nr = div_u64(span_avg, avg_cost);
7200 		else
7201 			nr = 4;
7202 
7203 		time = cpu_clock(this);
7204 	}
7205 
7206 	if (sched_feat(SIS_UTIL)) {
7207 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7208 		if (sd_share) {
7209 			/* because !--nr is the condition to stop scan */
7210 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7211 			/* overloaded LLC is unlikely to have idle cpu/core */
7212 			if (nr == 1)
7213 				return -1;
7214 		}
7215 	}
7216 
7217 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7218 		if (has_idle_core) {
7219 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7220 			if ((unsigned int)i < nr_cpumask_bits)
7221 				return i;
7222 
7223 		} else {
7224 			if (!--nr)
7225 				return -1;
7226 			idle_cpu = __select_idle_cpu(cpu, p);
7227 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7228 				break;
7229 		}
7230 	}
7231 
7232 	if (has_idle_core)
7233 		set_idle_cores(target, false);
7234 
7235 	if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
7236 		time = cpu_clock(this) - time;
7237 
7238 		/*
7239 		 * Account for the scan cost of wakeups against the average
7240 		 * idle time.
7241 		 */
7242 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
7243 
7244 		update_avg(&this_sd->avg_scan_cost, time);
7245 	}
7246 
7247 	return idle_cpu;
7248 }
7249 
7250 /*
7251  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7252  * the task fits. If no CPU is big enough, but there are idle ones, try to
7253  * maximize capacity.
7254  */
7255 static int
7256 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7257 {
7258 	unsigned long task_util, util_min, util_max, best_cap = 0;
7259 	int fits, best_fits = 0;
7260 	int cpu, best_cpu = -1;
7261 	struct cpumask *cpus;
7262 
7263 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7264 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7265 
7266 	task_util = task_util_est(p);
7267 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7268 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7269 
7270 	for_each_cpu_wrap(cpu, cpus, target) {
7271 		unsigned long cpu_cap = capacity_of(cpu);
7272 
7273 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7274 			continue;
7275 
7276 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7277 
7278 		/* This CPU fits with all requirements */
7279 		if (fits > 0)
7280 			return cpu;
7281 		/*
7282 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7283 		 * Look for the CPU with best capacity.
7284 		 */
7285 		else if (fits < 0)
7286 			cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
7287 
7288 		/*
7289 		 * First, select CPU which fits better (-1 being better than 0).
7290 		 * Then, select the one with best capacity at same level.
7291 		 */
7292 		if ((fits < best_fits) ||
7293 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7294 			best_cap = cpu_cap;
7295 			best_cpu = cpu;
7296 			best_fits = fits;
7297 		}
7298 	}
7299 
7300 	return best_cpu;
7301 }
7302 
7303 static inline bool asym_fits_cpu(unsigned long util,
7304 				 unsigned long util_min,
7305 				 unsigned long util_max,
7306 				 int cpu)
7307 {
7308 	if (sched_asym_cpucap_active())
7309 		/*
7310 		 * Return true only if the cpu fully fits the task requirements
7311 		 * which include the utilization and the performance hints.
7312 		 */
7313 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7314 
7315 	return true;
7316 }
7317 
7318 /*
7319  * Try and locate an idle core/thread in the LLC cache domain.
7320  */
7321 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7322 {
7323 	bool has_idle_core = false;
7324 	struct sched_domain *sd;
7325 	unsigned long task_util, util_min, util_max;
7326 	int i, recent_used_cpu;
7327 
7328 	/*
7329 	 * On asymmetric system, update task utilization because we will check
7330 	 * that the task fits with cpu's capacity.
7331 	 */
7332 	if (sched_asym_cpucap_active()) {
7333 		sync_entity_load_avg(&p->se);
7334 		task_util = task_util_est(p);
7335 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7336 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7337 	}
7338 
7339 	/*
7340 	 * per-cpu select_rq_mask usage
7341 	 */
7342 	lockdep_assert_irqs_disabled();
7343 
7344 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7345 	    asym_fits_cpu(task_util, util_min, util_max, target))
7346 		return target;
7347 
7348 	/*
7349 	 * If the previous CPU is cache affine and idle, don't be stupid:
7350 	 */
7351 	if (prev != target && cpus_share_cache(prev, target) &&
7352 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7353 	    asym_fits_cpu(task_util, util_min, util_max, prev))
7354 		return prev;
7355 
7356 	/*
7357 	 * Allow a per-cpu kthread to stack with the wakee if the
7358 	 * kworker thread and the tasks previous CPUs are the same.
7359 	 * The assumption is that the wakee queued work for the
7360 	 * per-cpu kthread that is now complete and the wakeup is
7361 	 * essentially a sync wakeup. An obvious example of this
7362 	 * pattern is IO completions.
7363 	 */
7364 	if (is_per_cpu_kthread(current) &&
7365 	    in_task() &&
7366 	    prev == smp_processor_id() &&
7367 	    this_rq()->nr_running <= 1 &&
7368 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7369 		return prev;
7370 	}
7371 
7372 	/* Check a recently used CPU as a potential idle candidate: */
7373 	recent_used_cpu = p->recent_used_cpu;
7374 	p->recent_used_cpu = prev;
7375 	if (recent_used_cpu != prev &&
7376 	    recent_used_cpu != target &&
7377 	    cpus_share_cache(recent_used_cpu, target) &&
7378 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7379 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7380 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7381 		return recent_used_cpu;
7382 	}
7383 
7384 	/*
7385 	 * For asymmetric CPU capacity systems, our domain of interest is
7386 	 * sd_asym_cpucapacity rather than sd_llc.
7387 	 */
7388 	if (sched_asym_cpucap_active()) {
7389 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7390 		/*
7391 		 * On an asymmetric CPU capacity system where an exclusive
7392 		 * cpuset defines a symmetric island (i.e. one unique
7393 		 * capacity_orig value through the cpuset), the key will be set
7394 		 * but the CPUs within that cpuset will not have a domain with
7395 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7396 		 * capacity path.
7397 		 */
7398 		if (sd) {
7399 			i = select_idle_capacity(p, sd, target);
7400 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7401 		}
7402 	}
7403 
7404 	sd = rcu_dereference(per_cpu(sd_llc, target));
7405 	if (!sd)
7406 		return target;
7407 
7408 	if (sched_smt_active()) {
7409 		has_idle_core = test_idle_cores(target);
7410 
7411 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7412 			i = select_idle_smt(p, prev);
7413 			if ((unsigned int)i < nr_cpumask_bits)
7414 				return i;
7415 		}
7416 	}
7417 
7418 	i = select_idle_cpu(p, sd, has_idle_core, target);
7419 	if ((unsigned)i < nr_cpumask_bits)
7420 		return i;
7421 
7422 	return target;
7423 }
7424 
7425 /**
7426  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7427  * @cpu: the CPU to get the utilization for
7428  * @p: task for which the CPU utilization should be predicted or NULL
7429  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7430  * @boost: 1 to enable boosting, otherwise 0
7431  *
7432  * The unit of the return value must be the same as the one of CPU capacity
7433  * so that CPU utilization can be compared with CPU capacity.
7434  *
7435  * CPU utilization is the sum of running time of runnable tasks plus the
7436  * recent utilization of currently non-runnable tasks on that CPU.
7437  * It represents the amount of CPU capacity currently used by CFS tasks in
7438  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7439  * capacity at f_max.
7440  *
7441  * The estimated CPU utilization is defined as the maximum between CPU
7442  * utilization and sum of the estimated utilization of the currently
7443  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7444  * previously-executed tasks, which helps better deduce how busy a CPU will
7445  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7446  * of such a task would be significantly decayed at this point of time.
7447  *
7448  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7449  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7450  * utilization. Boosting is implemented in cpu_util() so that internal
7451  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7452  * latter via cpu_util_cfs_boost().
7453  *
7454  * CPU utilization can be higher than the current CPU capacity
7455  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7456  * of rounding errors as well as task migrations or wakeups of new tasks.
7457  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7458  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7459  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7460  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7461  * though since this is useful for predicting the CPU capacity required
7462  * after task migrations (scheduler-driven DVFS).
7463  *
7464  * Return: (Boosted) (estimated) utilization for the specified CPU.
7465  */
7466 static unsigned long
7467 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7468 {
7469 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7470 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7471 	unsigned long runnable;
7472 
7473 	if (boost) {
7474 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7475 		util = max(util, runnable);
7476 	}
7477 
7478 	/*
7479 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7480 	 * contribution. If @p migrates from another CPU to @cpu add its
7481 	 * contribution. In all the other cases @cpu is not impacted by the
7482 	 * migration so its util_avg is already correct.
7483 	 */
7484 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7485 		lsub_positive(&util, task_util(p));
7486 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7487 		util += task_util(p);
7488 
7489 	if (sched_feat(UTIL_EST)) {
7490 		unsigned long util_est;
7491 
7492 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7493 
7494 		/*
7495 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7496 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7497 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7498 		 * has been enqueued.
7499 		 *
7500 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7501 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7502 		 * Remove it to "simulate" cpu_util without @p's contribution.
7503 		 *
7504 		 * Despite the task_on_rq_queued(@p) check there is still a
7505 		 * small window for a possible race when an exec
7506 		 * select_task_rq_fair() races with LB's detach_task().
7507 		 *
7508 		 *   detach_task()
7509 		 *     deactivate_task()
7510 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7511 		 *       -------------------------------- A
7512 		 *       dequeue_task()                    \
7513 		 *         dequeue_task_fair()              + Race Time
7514 		 *           util_est_dequeue()            /
7515 		 *       -------------------------------- B
7516 		 *
7517 		 * The additional check "current == p" is required to further
7518 		 * reduce the race window.
7519 		 */
7520 		if (dst_cpu == cpu)
7521 			util_est += _task_util_est(p);
7522 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7523 			lsub_positive(&util_est, _task_util_est(p));
7524 
7525 		util = max(util, util_est);
7526 	}
7527 
7528 	return min(util, capacity_orig_of(cpu));
7529 }
7530 
7531 unsigned long cpu_util_cfs(int cpu)
7532 {
7533 	return cpu_util(cpu, NULL, -1, 0);
7534 }
7535 
7536 unsigned long cpu_util_cfs_boost(int cpu)
7537 {
7538 	return cpu_util(cpu, NULL, -1, 1);
7539 }
7540 
7541 /*
7542  * cpu_util_without: compute cpu utilization without any contributions from *p
7543  * @cpu: the CPU which utilization is requested
7544  * @p: the task which utilization should be discounted
7545  *
7546  * The utilization of a CPU is defined by the utilization of tasks currently
7547  * enqueued on that CPU as well as tasks which are currently sleeping after an
7548  * execution on that CPU.
7549  *
7550  * This method returns the utilization of the specified CPU by discounting the
7551  * utilization of the specified task, whenever the task is currently
7552  * contributing to the CPU utilization.
7553  */
7554 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7555 {
7556 	/* Task has no contribution or is new */
7557 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7558 		p = NULL;
7559 
7560 	return cpu_util(cpu, p, -1, 0);
7561 }
7562 
7563 /*
7564  * energy_env - Utilization landscape for energy estimation.
7565  * @task_busy_time: Utilization contribution by the task for which we test the
7566  *                  placement. Given by eenv_task_busy_time().
7567  * @pd_busy_time:   Utilization of the whole perf domain without the task
7568  *                  contribution. Given by eenv_pd_busy_time().
7569  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7570  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7571  */
7572 struct energy_env {
7573 	unsigned long task_busy_time;
7574 	unsigned long pd_busy_time;
7575 	unsigned long cpu_cap;
7576 	unsigned long pd_cap;
7577 };
7578 
7579 /*
7580  * Compute the task busy time for compute_energy(). This time cannot be
7581  * injected directly into effective_cpu_util() because of the IRQ scaling.
7582  * The latter only makes sense with the most recent CPUs where the task has
7583  * run.
7584  */
7585 static inline void eenv_task_busy_time(struct energy_env *eenv,
7586 				       struct task_struct *p, int prev_cpu)
7587 {
7588 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7589 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7590 
7591 	if (unlikely(irq >= max_cap))
7592 		busy_time = max_cap;
7593 	else
7594 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7595 
7596 	eenv->task_busy_time = busy_time;
7597 }
7598 
7599 /*
7600  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7601  * utilization for each @pd_cpus, it however doesn't take into account
7602  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7603  * scale the EM reported power consumption at the (eventually clamped)
7604  * cpu_capacity.
7605  *
7606  * The contribution of the task @p for which we want to estimate the
7607  * energy cost is removed (by cpu_util()) and must be calculated
7608  * separately (see eenv_task_busy_time). This ensures:
7609  *
7610  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7611  *     the task on.
7612  *
7613  *   - A fair comparison between CPUs as the task contribution (task_util())
7614  *     will always be the same no matter which CPU utilization we rely on
7615  *     (util_avg or util_est).
7616  *
7617  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7618  * exceed @eenv->pd_cap.
7619  */
7620 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7621 				     struct cpumask *pd_cpus,
7622 				     struct task_struct *p)
7623 {
7624 	unsigned long busy_time = 0;
7625 	int cpu;
7626 
7627 	for_each_cpu(cpu, pd_cpus) {
7628 		unsigned long util = cpu_util(cpu, p, -1, 0);
7629 
7630 		busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7631 	}
7632 
7633 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7634 }
7635 
7636 /*
7637  * Compute the maximum utilization for compute_energy() when the task @p
7638  * is placed on the cpu @dst_cpu.
7639  *
7640  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7641  * exceed @eenv->cpu_cap.
7642  */
7643 static inline unsigned long
7644 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7645 		 struct task_struct *p, int dst_cpu)
7646 {
7647 	unsigned long max_util = 0;
7648 	int cpu;
7649 
7650 	for_each_cpu(cpu, pd_cpus) {
7651 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7652 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7653 		unsigned long eff_util;
7654 
7655 		/*
7656 		 * Performance domain frequency: utilization clamping
7657 		 * must be considered since it affects the selection
7658 		 * of the performance domain frequency.
7659 		 * NOTE: in case RT tasks are running, by default the
7660 		 * FREQUENCY_UTIL's utilization can be max OPP.
7661 		 */
7662 		eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7663 		max_util = max(max_util, eff_util);
7664 	}
7665 
7666 	return min(max_util, eenv->cpu_cap);
7667 }
7668 
7669 /*
7670  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7671  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7672  * contribution is ignored.
7673  */
7674 static inline unsigned long
7675 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7676 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7677 {
7678 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7679 	unsigned long busy_time = eenv->pd_busy_time;
7680 
7681 	if (dst_cpu >= 0)
7682 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7683 
7684 	return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7685 }
7686 
7687 /*
7688  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7689  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7690  * spare capacity in each performance domain and uses it as a potential
7691  * candidate to execute the task. Then, it uses the Energy Model to figure
7692  * out which of the CPU candidates is the most energy-efficient.
7693  *
7694  * The rationale for this heuristic is as follows. In a performance domain,
7695  * all the most energy efficient CPU candidates (according to the Energy
7696  * Model) are those for which we'll request a low frequency. When there are
7697  * several CPUs for which the frequency request will be the same, we don't
7698  * have enough data to break the tie between them, because the Energy Model
7699  * only includes active power costs. With this model, if we assume that
7700  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7701  * the maximum spare capacity in a performance domain is guaranteed to be among
7702  * the best candidates of the performance domain.
7703  *
7704  * In practice, it could be preferable from an energy standpoint to pack
7705  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7706  * but that could also hurt our chances to go cluster idle, and we have no
7707  * ways to tell with the current Energy Model if this is actually a good
7708  * idea or not. So, find_energy_efficient_cpu() basically favors
7709  * cluster-packing, and spreading inside a cluster. That should at least be
7710  * a good thing for latency, and this is consistent with the idea that most
7711  * of the energy savings of EAS come from the asymmetry of the system, and
7712  * not so much from breaking the tie between identical CPUs. That's also the
7713  * reason why EAS is enabled in the topology code only for systems where
7714  * SD_ASYM_CPUCAPACITY is set.
7715  *
7716  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7717  * they don't have any useful utilization data yet and it's not possible to
7718  * forecast their impact on energy consumption. Consequently, they will be
7719  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7720  * to be energy-inefficient in some use-cases. The alternative would be to
7721  * bias new tasks towards specific types of CPUs first, or to try to infer
7722  * their util_avg from the parent task, but those heuristics could hurt
7723  * other use-cases too. So, until someone finds a better way to solve this,
7724  * let's keep things simple by re-using the existing slow path.
7725  */
7726 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7727 {
7728 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7729 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7730 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7731 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7732 	struct root_domain *rd = this_rq()->rd;
7733 	int cpu, best_energy_cpu, target = -1;
7734 	int prev_fits = -1, best_fits = -1;
7735 	unsigned long best_thermal_cap = 0;
7736 	unsigned long prev_thermal_cap = 0;
7737 	struct sched_domain *sd;
7738 	struct perf_domain *pd;
7739 	struct energy_env eenv;
7740 
7741 	rcu_read_lock();
7742 	pd = rcu_dereference(rd->pd);
7743 	if (!pd || READ_ONCE(rd->overutilized))
7744 		goto unlock;
7745 
7746 	/*
7747 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7748 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7749 	 */
7750 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7751 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7752 		sd = sd->parent;
7753 	if (!sd)
7754 		goto unlock;
7755 
7756 	target = prev_cpu;
7757 
7758 	sync_entity_load_avg(&p->se);
7759 	if (!uclamp_task_util(p, p_util_min, p_util_max))
7760 		goto unlock;
7761 
7762 	eenv_task_busy_time(&eenv, p, prev_cpu);
7763 
7764 	for (; pd; pd = pd->next) {
7765 		unsigned long util_min = p_util_min, util_max = p_util_max;
7766 		unsigned long cpu_cap, cpu_thermal_cap, util;
7767 		unsigned long cur_delta, max_spare_cap = 0;
7768 		unsigned long rq_util_min, rq_util_max;
7769 		unsigned long prev_spare_cap = 0;
7770 		int max_spare_cap_cpu = -1;
7771 		unsigned long base_energy;
7772 		int fits, max_fits = -1;
7773 
7774 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7775 
7776 		if (cpumask_empty(cpus))
7777 			continue;
7778 
7779 		/* Account thermal pressure for the energy estimation */
7780 		cpu = cpumask_first(cpus);
7781 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7782 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7783 
7784 		eenv.cpu_cap = cpu_thermal_cap;
7785 		eenv.pd_cap = 0;
7786 
7787 		for_each_cpu(cpu, cpus) {
7788 			struct rq *rq = cpu_rq(cpu);
7789 
7790 			eenv.pd_cap += cpu_thermal_cap;
7791 
7792 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7793 				continue;
7794 
7795 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7796 				continue;
7797 
7798 			util = cpu_util(cpu, p, cpu, 0);
7799 			cpu_cap = capacity_of(cpu);
7800 
7801 			/*
7802 			 * Skip CPUs that cannot satisfy the capacity request.
7803 			 * IOW, placing the task there would make the CPU
7804 			 * overutilized. Take uclamp into account to see how
7805 			 * much capacity we can get out of the CPU; this is
7806 			 * aligned with sched_cpu_util().
7807 			 */
7808 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
7809 				/*
7810 				 * Open code uclamp_rq_util_with() except for
7811 				 * the clamp() part. Ie: apply max aggregation
7812 				 * only. util_fits_cpu() logic requires to
7813 				 * operate on non clamped util but must use the
7814 				 * max-aggregated uclamp_{min, max}.
7815 				 */
7816 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
7817 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
7818 
7819 				util_min = max(rq_util_min, p_util_min);
7820 				util_max = max(rq_util_max, p_util_max);
7821 			}
7822 
7823 			fits = util_fits_cpu(util, util_min, util_max, cpu);
7824 			if (!fits)
7825 				continue;
7826 
7827 			lsub_positive(&cpu_cap, util);
7828 
7829 			if (cpu == prev_cpu) {
7830 				/* Always use prev_cpu as a candidate. */
7831 				prev_spare_cap = cpu_cap;
7832 				prev_fits = fits;
7833 			} else if ((fits > max_fits) ||
7834 				   ((fits == max_fits) && (cpu_cap > max_spare_cap))) {
7835 				/*
7836 				 * Find the CPU with the maximum spare capacity
7837 				 * among the remaining CPUs in the performance
7838 				 * domain.
7839 				 */
7840 				max_spare_cap = cpu_cap;
7841 				max_spare_cap_cpu = cpu;
7842 				max_fits = fits;
7843 			}
7844 		}
7845 
7846 		if (max_spare_cap_cpu < 0 && prev_spare_cap == 0)
7847 			continue;
7848 
7849 		eenv_pd_busy_time(&eenv, cpus, p);
7850 		/* Compute the 'base' energy of the pd, without @p */
7851 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
7852 
7853 		/* Evaluate the energy impact of using prev_cpu. */
7854 		if (prev_spare_cap > 0) {
7855 			prev_delta = compute_energy(&eenv, pd, cpus, p,
7856 						    prev_cpu);
7857 			/* CPU utilization has changed */
7858 			if (prev_delta < base_energy)
7859 				goto unlock;
7860 			prev_delta -= base_energy;
7861 			prev_thermal_cap = cpu_thermal_cap;
7862 			best_delta = min(best_delta, prev_delta);
7863 		}
7864 
7865 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
7866 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
7867 			/* Current best energy cpu fits better */
7868 			if (max_fits < best_fits)
7869 				continue;
7870 
7871 			/*
7872 			 * Both don't fit performance hint (i.e. uclamp_min)
7873 			 * but best energy cpu has better capacity.
7874 			 */
7875 			if ((max_fits < 0) &&
7876 			    (cpu_thermal_cap <= best_thermal_cap))
7877 				continue;
7878 
7879 			cur_delta = compute_energy(&eenv, pd, cpus, p,
7880 						   max_spare_cap_cpu);
7881 			/* CPU utilization has changed */
7882 			if (cur_delta < base_energy)
7883 				goto unlock;
7884 			cur_delta -= base_energy;
7885 
7886 			/*
7887 			 * Both fit for the task but best energy cpu has lower
7888 			 * energy impact.
7889 			 */
7890 			if ((max_fits > 0) && (best_fits > 0) &&
7891 			    (cur_delta >= best_delta))
7892 				continue;
7893 
7894 			best_delta = cur_delta;
7895 			best_energy_cpu = max_spare_cap_cpu;
7896 			best_fits = max_fits;
7897 			best_thermal_cap = cpu_thermal_cap;
7898 		}
7899 	}
7900 	rcu_read_unlock();
7901 
7902 	if ((best_fits > prev_fits) ||
7903 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
7904 	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
7905 		target = best_energy_cpu;
7906 
7907 	return target;
7908 
7909 unlock:
7910 	rcu_read_unlock();
7911 
7912 	return target;
7913 }
7914 
7915 /*
7916  * select_task_rq_fair: Select target runqueue for the waking task in domains
7917  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
7918  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7919  *
7920  * Balances load by selecting the idlest CPU in the idlest group, or under
7921  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
7922  *
7923  * Returns the target CPU number.
7924  */
7925 static int
7926 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
7927 {
7928 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
7929 	struct sched_domain *tmp, *sd = NULL;
7930 	int cpu = smp_processor_id();
7931 	int new_cpu = prev_cpu;
7932 	int want_affine = 0;
7933 	/* SD_flags and WF_flags share the first nibble */
7934 	int sd_flag = wake_flags & 0xF;
7935 
7936 	/*
7937 	 * required for stable ->cpus_allowed
7938 	 */
7939 	lockdep_assert_held(&p->pi_lock);
7940 	if (wake_flags & WF_TTWU) {
7941 		record_wakee(p);
7942 
7943 		if ((wake_flags & WF_CURRENT_CPU) &&
7944 		    cpumask_test_cpu(cpu, p->cpus_ptr))
7945 			return cpu;
7946 
7947 		if (sched_energy_enabled()) {
7948 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
7949 			if (new_cpu >= 0)
7950 				return new_cpu;
7951 			new_cpu = prev_cpu;
7952 		}
7953 
7954 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
7955 	}
7956 
7957 	rcu_read_lock();
7958 	for_each_domain(cpu, tmp) {
7959 		/*
7960 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
7961 		 * cpu is a valid SD_WAKE_AFFINE target.
7962 		 */
7963 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7964 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7965 			if (cpu != prev_cpu)
7966 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7967 
7968 			sd = NULL; /* Prefer wake_affine over balance flags */
7969 			break;
7970 		}
7971 
7972 		/*
7973 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
7974 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
7975 		 * will usually go to the fast path.
7976 		 */
7977 		if (tmp->flags & sd_flag)
7978 			sd = tmp;
7979 		else if (!want_affine)
7980 			break;
7981 	}
7982 
7983 	if (unlikely(sd)) {
7984 		/* Slow path */
7985 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7986 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
7987 		/* Fast path */
7988 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7989 	}
7990 	rcu_read_unlock();
7991 
7992 	return new_cpu;
7993 }
7994 
7995 /*
7996  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7997  * cfs_rq_of(p) references at time of call are still valid and identify the
7998  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7999  */
8000 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8001 {
8002 	struct sched_entity *se = &p->se;
8003 
8004 	if (!task_on_rq_migrating(p)) {
8005 		remove_entity_load_avg(se);
8006 
8007 		/*
8008 		 * Here, the task's PELT values have been updated according to
8009 		 * the current rq's clock. But if that clock hasn't been
8010 		 * updated in a while, a substantial idle time will be missed,
8011 		 * leading to an inflation after wake-up on the new rq.
8012 		 *
8013 		 * Estimate the missing time from the cfs_rq last_update_time
8014 		 * and update sched_avg to improve the PELT continuity after
8015 		 * migration.
8016 		 */
8017 		migrate_se_pelt_lag(se);
8018 	}
8019 
8020 	/* Tell new CPU we are migrated */
8021 	se->avg.last_update_time = 0;
8022 
8023 	update_scan_period(p, new_cpu);
8024 }
8025 
8026 static void task_dead_fair(struct task_struct *p)
8027 {
8028 	remove_entity_load_avg(&p->se);
8029 }
8030 
8031 static int
8032 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8033 {
8034 	if (rq->nr_running)
8035 		return 1;
8036 
8037 	return newidle_balance(rq, rf) != 0;
8038 }
8039 #endif /* CONFIG_SMP */
8040 
8041 static void set_next_buddy(struct sched_entity *se)
8042 {
8043 	for_each_sched_entity(se) {
8044 		if (SCHED_WARN_ON(!se->on_rq))
8045 			return;
8046 		if (se_is_idle(se))
8047 			return;
8048 		cfs_rq_of(se)->next = se;
8049 	}
8050 }
8051 
8052 /*
8053  * Preempt the current task with a newly woken task if needed:
8054  */
8055 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
8056 {
8057 	struct task_struct *curr = rq->curr;
8058 	struct sched_entity *se = &curr->se, *pse = &p->se;
8059 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8060 	int next_buddy_marked = 0;
8061 	int cse_is_idle, pse_is_idle;
8062 
8063 	if (unlikely(se == pse))
8064 		return;
8065 
8066 	/*
8067 	 * This is possible from callers such as attach_tasks(), in which we
8068 	 * unconditionally check_preempt_curr() after an enqueue (which may have
8069 	 * lead to a throttle).  This both saves work and prevents false
8070 	 * next-buddy nomination below.
8071 	 */
8072 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8073 		return;
8074 
8075 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8076 		set_next_buddy(pse);
8077 		next_buddy_marked = 1;
8078 	}
8079 
8080 	/*
8081 	 * We can come here with TIF_NEED_RESCHED already set from new task
8082 	 * wake up path.
8083 	 *
8084 	 * Note: this also catches the edge-case of curr being in a throttled
8085 	 * group (e.g. via set_curr_task), since update_curr() (in the
8086 	 * enqueue of curr) will have resulted in resched being set.  This
8087 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8088 	 * below.
8089 	 */
8090 	if (test_tsk_need_resched(curr))
8091 		return;
8092 
8093 	/* Idle tasks are by definition preempted by non-idle tasks. */
8094 	if (unlikely(task_has_idle_policy(curr)) &&
8095 	    likely(!task_has_idle_policy(p)))
8096 		goto preempt;
8097 
8098 	/*
8099 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8100 	 * is driven by the tick):
8101 	 */
8102 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8103 		return;
8104 
8105 	find_matching_se(&se, &pse);
8106 	WARN_ON_ONCE(!pse);
8107 
8108 	cse_is_idle = se_is_idle(se);
8109 	pse_is_idle = se_is_idle(pse);
8110 
8111 	/*
8112 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
8113 	 * in the inverse case).
8114 	 */
8115 	if (cse_is_idle && !pse_is_idle)
8116 		goto preempt;
8117 	if (cse_is_idle != pse_is_idle)
8118 		return;
8119 
8120 	cfs_rq = cfs_rq_of(se);
8121 	update_curr(cfs_rq);
8122 
8123 	/*
8124 	 * XXX pick_eevdf(cfs_rq) != se ?
8125 	 */
8126 	if (pick_eevdf(cfs_rq) == pse)
8127 		goto preempt;
8128 
8129 	return;
8130 
8131 preempt:
8132 	resched_curr(rq);
8133 }
8134 
8135 #ifdef CONFIG_SMP
8136 static struct task_struct *pick_task_fair(struct rq *rq)
8137 {
8138 	struct sched_entity *se;
8139 	struct cfs_rq *cfs_rq;
8140 
8141 again:
8142 	cfs_rq = &rq->cfs;
8143 	if (!cfs_rq->nr_running)
8144 		return NULL;
8145 
8146 	do {
8147 		struct sched_entity *curr = cfs_rq->curr;
8148 
8149 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8150 		if (curr) {
8151 			if (curr->on_rq)
8152 				update_curr(cfs_rq);
8153 			else
8154 				curr = NULL;
8155 
8156 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8157 				goto again;
8158 		}
8159 
8160 		se = pick_next_entity(cfs_rq, curr);
8161 		cfs_rq = group_cfs_rq(se);
8162 	} while (cfs_rq);
8163 
8164 	return task_of(se);
8165 }
8166 #endif
8167 
8168 struct task_struct *
8169 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8170 {
8171 	struct cfs_rq *cfs_rq = &rq->cfs;
8172 	struct sched_entity *se;
8173 	struct task_struct *p;
8174 	int new_tasks;
8175 
8176 again:
8177 	if (!sched_fair_runnable(rq))
8178 		goto idle;
8179 
8180 #ifdef CONFIG_FAIR_GROUP_SCHED
8181 	if (!prev || prev->sched_class != &fair_sched_class)
8182 		goto simple;
8183 
8184 	/*
8185 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8186 	 * likely that a next task is from the same cgroup as the current.
8187 	 *
8188 	 * Therefore attempt to avoid putting and setting the entire cgroup
8189 	 * hierarchy, only change the part that actually changes.
8190 	 */
8191 
8192 	do {
8193 		struct sched_entity *curr = cfs_rq->curr;
8194 
8195 		/*
8196 		 * Since we got here without doing put_prev_entity() we also
8197 		 * have to consider cfs_rq->curr. If it is still a runnable
8198 		 * entity, update_curr() will update its vruntime, otherwise
8199 		 * forget we've ever seen it.
8200 		 */
8201 		if (curr) {
8202 			if (curr->on_rq)
8203 				update_curr(cfs_rq);
8204 			else
8205 				curr = NULL;
8206 
8207 			/*
8208 			 * This call to check_cfs_rq_runtime() will do the
8209 			 * throttle and dequeue its entity in the parent(s).
8210 			 * Therefore the nr_running test will indeed
8211 			 * be correct.
8212 			 */
8213 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8214 				cfs_rq = &rq->cfs;
8215 
8216 				if (!cfs_rq->nr_running)
8217 					goto idle;
8218 
8219 				goto simple;
8220 			}
8221 		}
8222 
8223 		se = pick_next_entity(cfs_rq, curr);
8224 		cfs_rq = group_cfs_rq(se);
8225 	} while (cfs_rq);
8226 
8227 	p = task_of(se);
8228 
8229 	/*
8230 	 * Since we haven't yet done put_prev_entity and if the selected task
8231 	 * is a different task than we started out with, try and touch the
8232 	 * least amount of cfs_rqs.
8233 	 */
8234 	if (prev != p) {
8235 		struct sched_entity *pse = &prev->se;
8236 
8237 		while (!(cfs_rq = is_same_group(se, pse))) {
8238 			int se_depth = se->depth;
8239 			int pse_depth = pse->depth;
8240 
8241 			if (se_depth <= pse_depth) {
8242 				put_prev_entity(cfs_rq_of(pse), pse);
8243 				pse = parent_entity(pse);
8244 			}
8245 			if (se_depth >= pse_depth) {
8246 				set_next_entity(cfs_rq_of(se), se);
8247 				se = parent_entity(se);
8248 			}
8249 		}
8250 
8251 		put_prev_entity(cfs_rq, pse);
8252 		set_next_entity(cfs_rq, se);
8253 	}
8254 
8255 	goto done;
8256 simple:
8257 #endif
8258 	if (prev)
8259 		put_prev_task(rq, prev);
8260 
8261 	do {
8262 		se = pick_next_entity(cfs_rq, NULL);
8263 		set_next_entity(cfs_rq, se);
8264 		cfs_rq = group_cfs_rq(se);
8265 	} while (cfs_rq);
8266 
8267 	p = task_of(se);
8268 
8269 done: __maybe_unused;
8270 #ifdef CONFIG_SMP
8271 	/*
8272 	 * Move the next running task to the front of
8273 	 * the list, so our cfs_tasks list becomes MRU
8274 	 * one.
8275 	 */
8276 	list_move(&p->se.group_node, &rq->cfs_tasks);
8277 #endif
8278 
8279 	if (hrtick_enabled_fair(rq))
8280 		hrtick_start_fair(rq, p);
8281 
8282 	update_misfit_status(p, rq);
8283 	sched_fair_update_stop_tick(rq, p);
8284 
8285 	return p;
8286 
8287 idle:
8288 	if (!rf)
8289 		return NULL;
8290 
8291 	new_tasks = newidle_balance(rq, rf);
8292 
8293 	/*
8294 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8295 	 * possible for any higher priority task to appear. In that case we
8296 	 * must re-start the pick_next_entity() loop.
8297 	 */
8298 	if (new_tasks < 0)
8299 		return RETRY_TASK;
8300 
8301 	if (new_tasks > 0)
8302 		goto again;
8303 
8304 	/*
8305 	 * rq is about to be idle, check if we need to update the
8306 	 * lost_idle_time of clock_pelt
8307 	 */
8308 	update_idle_rq_clock_pelt(rq);
8309 
8310 	return NULL;
8311 }
8312 
8313 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8314 {
8315 	return pick_next_task_fair(rq, NULL, NULL);
8316 }
8317 
8318 /*
8319  * Account for a descheduled task:
8320  */
8321 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8322 {
8323 	struct sched_entity *se = &prev->se;
8324 	struct cfs_rq *cfs_rq;
8325 
8326 	for_each_sched_entity(se) {
8327 		cfs_rq = cfs_rq_of(se);
8328 		put_prev_entity(cfs_rq, se);
8329 	}
8330 }
8331 
8332 /*
8333  * sched_yield() is very simple
8334  */
8335 static void yield_task_fair(struct rq *rq)
8336 {
8337 	struct task_struct *curr = rq->curr;
8338 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8339 	struct sched_entity *se = &curr->se;
8340 
8341 	/*
8342 	 * Are we the only task in the tree?
8343 	 */
8344 	if (unlikely(rq->nr_running == 1))
8345 		return;
8346 
8347 	clear_buddies(cfs_rq, se);
8348 
8349 	update_rq_clock(rq);
8350 	/*
8351 	 * Update run-time statistics of the 'current'.
8352 	 */
8353 	update_curr(cfs_rq);
8354 	/*
8355 	 * Tell update_rq_clock() that we've just updated,
8356 	 * so we don't do microscopic update in schedule()
8357 	 * and double the fastpath cost.
8358 	 */
8359 	rq_clock_skip_update(rq);
8360 
8361 	se->deadline += calc_delta_fair(se->slice, se);
8362 }
8363 
8364 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8365 {
8366 	struct sched_entity *se = &p->se;
8367 
8368 	/* throttled hierarchies are not runnable */
8369 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8370 		return false;
8371 
8372 	/* Tell the scheduler that we'd really like pse to run next. */
8373 	set_next_buddy(se);
8374 
8375 	yield_task_fair(rq);
8376 
8377 	return true;
8378 }
8379 
8380 #ifdef CONFIG_SMP
8381 /**************************************************
8382  * Fair scheduling class load-balancing methods.
8383  *
8384  * BASICS
8385  *
8386  * The purpose of load-balancing is to achieve the same basic fairness the
8387  * per-CPU scheduler provides, namely provide a proportional amount of compute
8388  * time to each task. This is expressed in the following equation:
8389  *
8390  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8391  *
8392  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8393  * W_i,0 is defined as:
8394  *
8395  *   W_i,0 = \Sum_j w_i,j                                             (2)
8396  *
8397  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8398  * is derived from the nice value as per sched_prio_to_weight[].
8399  *
8400  * The weight average is an exponential decay average of the instantaneous
8401  * weight:
8402  *
8403  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8404  *
8405  * C_i is the compute capacity of CPU i, typically it is the
8406  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8407  * can also include other factors [XXX].
8408  *
8409  * To achieve this balance we define a measure of imbalance which follows
8410  * directly from (1):
8411  *
8412  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8413  *
8414  * We them move tasks around to minimize the imbalance. In the continuous
8415  * function space it is obvious this converges, in the discrete case we get
8416  * a few fun cases generally called infeasible weight scenarios.
8417  *
8418  * [XXX expand on:
8419  *     - infeasible weights;
8420  *     - local vs global optima in the discrete case. ]
8421  *
8422  *
8423  * SCHED DOMAINS
8424  *
8425  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8426  * for all i,j solution, we create a tree of CPUs that follows the hardware
8427  * topology where each level pairs two lower groups (or better). This results
8428  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8429  * tree to only the first of the previous level and we decrease the frequency
8430  * of load-balance at each level inv. proportional to the number of CPUs in
8431  * the groups.
8432  *
8433  * This yields:
8434  *
8435  *     log_2 n     1     n
8436  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8437  *     i = 0      2^i   2^i
8438  *                               `- size of each group
8439  *         |         |     `- number of CPUs doing load-balance
8440  *         |         `- freq
8441  *         `- sum over all levels
8442  *
8443  * Coupled with a limit on how many tasks we can migrate every balance pass,
8444  * this makes (5) the runtime complexity of the balancer.
8445  *
8446  * An important property here is that each CPU is still (indirectly) connected
8447  * to every other CPU in at most O(log n) steps:
8448  *
8449  * The adjacency matrix of the resulting graph is given by:
8450  *
8451  *             log_2 n
8452  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8453  *             k = 0
8454  *
8455  * And you'll find that:
8456  *
8457  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8458  *
8459  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8460  * The task movement gives a factor of O(m), giving a convergence complexity
8461  * of:
8462  *
8463  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8464  *
8465  *
8466  * WORK CONSERVING
8467  *
8468  * In order to avoid CPUs going idle while there's still work to do, new idle
8469  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8470  * tree itself instead of relying on other CPUs to bring it work.
8471  *
8472  * This adds some complexity to both (5) and (8) but it reduces the total idle
8473  * time.
8474  *
8475  * [XXX more?]
8476  *
8477  *
8478  * CGROUPS
8479  *
8480  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8481  *
8482  *                                s_k,i
8483  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8484  *                                 S_k
8485  *
8486  * Where
8487  *
8488  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8489  *
8490  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8491  *
8492  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8493  * property.
8494  *
8495  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8496  *      rewrite all of this once again.]
8497  */
8498 
8499 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8500 
8501 enum fbq_type { regular, remote, all };
8502 
8503 /*
8504  * 'group_type' describes the group of CPUs at the moment of load balancing.
8505  *
8506  * The enum is ordered by pulling priority, with the group with lowest priority
8507  * first so the group_type can simply be compared when selecting the busiest
8508  * group. See update_sd_pick_busiest().
8509  */
8510 enum group_type {
8511 	/* The group has spare capacity that can be used to run more tasks.  */
8512 	group_has_spare = 0,
8513 	/*
8514 	 * The group is fully used and the tasks don't compete for more CPU
8515 	 * cycles. Nevertheless, some tasks might wait before running.
8516 	 */
8517 	group_fully_busy,
8518 	/*
8519 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8520 	 * more powerful CPU.
8521 	 */
8522 	group_misfit_task,
8523 	/*
8524 	 * Balance SMT group that's fully busy. Can benefit from migration
8525 	 * a task on SMT with busy sibling to another CPU on idle core.
8526 	 */
8527 	group_smt_balance,
8528 	/*
8529 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8530 	 * and the task should be migrated to it instead of running on the
8531 	 * current CPU.
8532 	 */
8533 	group_asym_packing,
8534 	/*
8535 	 * The tasks' affinity constraints previously prevented the scheduler
8536 	 * from balancing the load across the system.
8537 	 */
8538 	group_imbalanced,
8539 	/*
8540 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8541 	 * tasks.
8542 	 */
8543 	group_overloaded
8544 };
8545 
8546 enum migration_type {
8547 	migrate_load = 0,
8548 	migrate_util,
8549 	migrate_task,
8550 	migrate_misfit
8551 };
8552 
8553 #define LBF_ALL_PINNED	0x01
8554 #define LBF_NEED_BREAK	0x02
8555 #define LBF_DST_PINNED  0x04
8556 #define LBF_SOME_PINNED	0x08
8557 #define LBF_ACTIVE_LB	0x10
8558 
8559 struct lb_env {
8560 	struct sched_domain	*sd;
8561 
8562 	struct rq		*src_rq;
8563 	int			src_cpu;
8564 
8565 	int			dst_cpu;
8566 	struct rq		*dst_rq;
8567 
8568 	struct cpumask		*dst_grpmask;
8569 	int			new_dst_cpu;
8570 	enum cpu_idle_type	idle;
8571 	long			imbalance;
8572 	/* The set of CPUs under consideration for load-balancing */
8573 	struct cpumask		*cpus;
8574 
8575 	unsigned int		flags;
8576 
8577 	unsigned int		loop;
8578 	unsigned int		loop_break;
8579 	unsigned int		loop_max;
8580 
8581 	enum fbq_type		fbq_type;
8582 	enum migration_type	migration_type;
8583 	struct list_head	tasks;
8584 };
8585 
8586 /*
8587  * Is this task likely cache-hot:
8588  */
8589 static int task_hot(struct task_struct *p, struct lb_env *env)
8590 {
8591 	s64 delta;
8592 
8593 	lockdep_assert_rq_held(env->src_rq);
8594 
8595 	if (p->sched_class != &fair_sched_class)
8596 		return 0;
8597 
8598 	if (unlikely(task_has_idle_policy(p)))
8599 		return 0;
8600 
8601 	/* SMT siblings share cache */
8602 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8603 		return 0;
8604 
8605 	/*
8606 	 * Buddy candidates are cache hot:
8607 	 */
8608 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8609 	    (&p->se == cfs_rq_of(&p->se)->next))
8610 		return 1;
8611 
8612 	if (sysctl_sched_migration_cost == -1)
8613 		return 1;
8614 
8615 	/*
8616 	 * Don't migrate task if the task's cookie does not match
8617 	 * with the destination CPU's core cookie.
8618 	 */
8619 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8620 		return 1;
8621 
8622 	if (sysctl_sched_migration_cost == 0)
8623 		return 0;
8624 
8625 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8626 
8627 	return delta < (s64)sysctl_sched_migration_cost;
8628 }
8629 
8630 #ifdef CONFIG_NUMA_BALANCING
8631 /*
8632  * Returns 1, if task migration degrades locality
8633  * Returns 0, if task migration improves locality i.e migration preferred.
8634  * Returns -1, if task migration is not affected by locality.
8635  */
8636 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8637 {
8638 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8639 	unsigned long src_weight, dst_weight;
8640 	int src_nid, dst_nid, dist;
8641 
8642 	if (!static_branch_likely(&sched_numa_balancing))
8643 		return -1;
8644 
8645 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8646 		return -1;
8647 
8648 	src_nid = cpu_to_node(env->src_cpu);
8649 	dst_nid = cpu_to_node(env->dst_cpu);
8650 
8651 	if (src_nid == dst_nid)
8652 		return -1;
8653 
8654 	/* Migrating away from the preferred node is always bad. */
8655 	if (src_nid == p->numa_preferred_nid) {
8656 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8657 			return 1;
8658 		else
8659 			return -1;
8660 	}
8661 
8662 	/* Encourage migration to the preferred node. */
8663 	if (dst_nid == p->numa_preferred_nid)
8664 		return 0;
8665 
8666 	/* Leaving a core idle is often worse than degrading locality. */
8667 	if (env->idle == CPU_IDLE)
8668 		return -1;
8669 
8670 	dist = node_distance(src_nid, dst_nid);
8671 	if (numa_group) {
8672 		src_weight = group_weight(p, src_nid, dist);
8673 		dst_weight = group_weight(p, dst_nid, dist);
8674 	} else {
8675 		src_weight = task_weight(p, src_nid, dist);
8676 		dst_weight = task_weight(p, dst_nid, dist);
8677 	}
8678 
8679 	return dst_weight < src_weight;
8680 }
8681 
8682 #else
8683 static inline int migrate_degrades_locality(struct task_struct *p,
8684 					     struct lb_env *env)
8685 {
8686 	return -1;
8687 }
8688 #endif
8689 
8690 /*
8691  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8692  */
8693 static
8694 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8695 {
8696 	int tsk_cache_hot;
8697 
8698 	lockdep_assert_rq_held(env->src_rq);
8699 
8700 	/*
8701 	 * We do not migrate tasks that are:
8702 	 * 1) throttled_lb_pair, or
8703 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8704 	 * 3) running (obviously), or
8705 	 * 4) are cache-hot on their current CPU.
8706 	 */
8707 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8708 		return 0;
8709 
8710 	/* Disregard pcpu kthreads; they are where they need to be. */
8711 	if (kthread_is_per_cpu(p))
8712 		return 0;
8713 
8714 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8715 		int cpu;
8716 
8717 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8718 
8719 		env->flags |= LBF_SOME_PINNED;
8720 
8721 		/*
8722 		 * Remember if this task can be migrated to any other CPU in
8723 		 * our sched_group. We may want to revisit it if we couldn't
8724 		 * meet load balance goals by pulling other tasks on src_cpu.
8725 		 *
8726 		 * Avoid computing new_dst_cpu
8727 		 * - for NEWLY_IDLE
8728 		 * - if we have already computed one in current iteration
8729 		 * - if it's an active balance
8730 		 */
8731 		if (env->idle == CPU_NEWLY_IDLE ||
8732 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8733 			return 0;
8734 
8735 		/* Prevent to re-select dst_cpu via env's CPUs: */
8736 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8737 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8738 				env->flags |= LBF_DST_PINNED;
8739 				env->new_dst_cpu = cpu;
8740 				break;
8741 			}
8742 		}
8743 
8744 		return 0;
8745 	}
8746 
8747 	/* Record that we found at least one task that could run on dst_cpu */
8748 	env->flags &= ~LBF_ALL_PINNED;
8749 
8750 	if (task_on_cpu(env->src_rq, p)) {
8751 		schedstat_inc(p->stats.nr_failed_migrations_running);
8752 		return 0;
8753 	}
8754 
8755 	/*
8756 	 * Aggressive migration if:
8757 	 * 1) active balance
8758 	 * 2) destination numa is preferred
8759 	 * 3) task is cache cold, or
8760 	 * 4) too many balance attempts have failed.
8761 	 */
8762 	if (env->flags & LBF_ACTIVE_LB)
8763 		return 1;
8764 
8765 	tsk_cache_hot = migrate_degrades_locality(p, env);
8766 	if (tsk_cache_hot == -1)
8767 		tsk_cache_hot = task_hot(p, env);
8768 
8769 	if (tsk_cache_hot <= 0 ||
8770 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8771 		if (tsk_cache_hot == 1) {
8772 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8773 			schedstat_inc(p->stats.nr_forced_migrations);
8774 		}
8775 		return 1;
8776 	}
8777 
8778 	schedstat_inc(p->stats.nr_failed_migrations_hot);
8779 	return 0;
8780 }
8781 
8782 /*
8783  * detach_task() -- detach the task for the migration specified in env
8784  */
8785 static void detach_task(struct task_struct *p, struct lb_env *env)
8786 {
8787 	lockdep_assert_rq_held(env->src_rq);
8788 
8789 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8790 	set_task_cpu(p, env->dst_cpu);
8791 }
8792 
8793 /*
8794  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8795  * part of active balancing operations within "domain".
8796  *
8797  * Returns a task if successful and NULL otherwise.
8798  */
8799 static struct task_struct *detach_one_task(struct lb_env *env)
8800 {
8801 	struct task_struct *p;
8802 
8803 	lockdep_assert_rq_held(env->src_rq);
8804 
8805 	list_for_each_entry_reverse(p,
8806 			&env->src_rq->cfs_tasks, se.group_node) {
8807 		if (!can_migrate_task(p, env))
8808 			continue;
8809 
8810 		detach_task(p, env);
8811 
8812 		/*
8813 		 * Right now, this is only the second place where
8814 		 * lb_gained[env->idle] is updated (other is detach_tasks)
8815 		 * so we can safely collect stats here rather than
8816 		 * inside detach_tasks().
8817 		 */
8818 		schedstat_inc(env->sd->lb_gained[env->idle]);
8819 		return p;
8820 	}
8821 	return NULL;
8822 }
8823 
8824 /*
8825  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8826  * busiest_rq, as part of a balancing operation within domain "sd".
8827  *
8828  * Returns number of detached tasks if successful and 0 otherwise.
8829  */
8830 static int detach_tasks(struct lb_env *env)
8831 {
8832 	struct list_head *tasks = &env->src_rq->cfs_tasks;
8833 	unsigned long util, load;
8834 	struct task_struct *p;
8835 	int detached = 0;
8836 
8837 	lockdep_assert_rq_held(env->src_rq);
8838 
8839 	/*
8840 	 * Source run queue has been emptied by another CPU, clear
8841 	 * LBF_ALL_PINNED flag as we will not test any task.
8842 	 */
8843 	if (env->src_rq->nr_running <= 1) {
8844 		env->flags &= ~LBF_ALL_PINNED;
8845 		return 0;
8846 	}
8847 
8848 	if (env->imbalance <= 0)
8849 		return 0;
8850 
8851 	while (!list_empty(tasks)) {
8852 		/*
8853 		 * We don't want to steal all, otherwise we may be treated likewise,
8854 		 * which could at worst lead to a livelock crash.
8855 		 */
8856 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8857 			break;
8858 
8859 		env->loop++;
8860 		/*
8861 		 * We've more or less seen every task there is, call it quits
8862 		 * unless we haven't found any movable task yet.
8863 		 */
8864 		if (env->loop > env->loop_max &&
8865 		    !(env->flags & LBF_ALL_PINNED))
8866 			break;
8867 
8868 		/* take a breather every nr_migrate tasks */
8869 		if (env->loop > env->loop_break) {
8870 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
8871 			env->flags |= LBF_NEED_BREAK;
8872 			break;
8873 		}
8874 
8875 		p = list_last_entry(tasks, struct task_struct, se.group_node);
8876 
8877 		if (!can_migrate_task(p, env))
8878 			goto next;
8879 
8880 		switch (env->migration_type) {
8881 		case migrate_load:
8882 			/*
8883 			 * Depending of the number of CPUs and tasks and the
8884 			 * cgroup hierarchy, task_h_load() can return a null
8885 			 * value. Make sure that env->imbalance decreases
8886 			 * otherwise detach_tasks() will stop only after
8887 			 * detaching up to loop_max tasks.
8888 			 */
8889 			load = max_t(unsigned long, task_h_load(p), 1);
8890 
8891 			if (sched_feat(LB_MIN) &&
8892 			    load < 16 && !env->sd->nr_balance_failed)
8893 				goto next;
8894 
8895 			/*
8896 			 * Make sure that we don't migrate too much load.
8897 			 * Nevertheless, let relax the constraint if
8898 			 * scheduler fails to find a good waiting task to
8899 			 * migrate.
8900 			 */
8901 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8902 				goto next;
8903 
8904 			env->imbalance -= load;
8905 			break;
8906 
8907 		case migrate_util:
8908 			util = task_util_est(p);
8909 
8910 			if (util > env->imbalance)
8911 				goto next;
8912 
8913 			env->imbalance -= util;
8914 			break;
8915 
8916 		case migrate_task:
8917 			env->imbalance--;
8918 			break;
8919 
8920 		case migrate_misfit:
8921 			/* This is not a misfit task */
8922 			if (task_fits_cpu(p, env->src_cpu))
8923 				goto next;
8924 
8925 			env->imbalance = 0;
8926 			break;
8927 		}
8928 
8929 		detach_task(p, env);
8930 		list_add(&p->se.group_node, &env->tasks);
8931 
8932 		detached++;
8933 
8934 #ifdef CONFIG_PREEMPTION
8935 		/*
8936 		 * NEWIDLE balancing is a source of latency, so preemptible
8937 		 * kernels will stop after the first task is detached to minimize
8938 		 * the critical section.
8939 		 */
8940 		if (env->idle == CPU_NEWLY_IDLE)
8941 			break;
8942 #endif
8943 
8944 		/*
8945 		 * We only want to steal up to the prescribed amount of
8946 		 * load/util/tasks.
8947 		 */
8948 		if (env->imbalance <= 0)
8949 			break;
8950 
8951 		continue;
8952 next:
8953 		list_move(&p->se.group_node, tasks);
8954 	}
8955 
8956 	/*
8957 	 * Right now, this is one of only two places we collect this stat
8958 	 * so we can safely collect detach_one_task() stats here rather
8959 	 * than inside detach_one_task().
8960 	 */
8961 	schedstat_add(env->sd->lb_gained[env->idle], detached);
8962 
8963 	return detached;
8964 }
8965 
8966 /*
8967  * attach_task() -- attach the task detached by detach_task() to its new rq.
8968  */
8969 static void attach_task(struct rq *rq, struct task_struct *p)
8970 {
8971 	lockdep_assert_rq_held(rq);
8972 
8973 	WARN_ON_ONCE(task_rq(p) != rq);
8974 	activate_task(rq, p, ENQUEUE_NOCLOCK);
8975 	check_preempt_curr(rq, p, 0);
8976 }
8977 
8978 /*
8979  * attach_one_task() -- attaches the task returned from detach_one_task() to
8980  * its new rq.
8981  */
8982 static void attach_one_task(struct rq *rq, struct task_struct *p)
8983 {
8984 	struct rq_flags rf;
8985 
8986 	rq_lock(rq, &rf);
8987 	update_rq_clock(rq);
8988 	attach_task(rq, p);
8989 	rq_unlock(rq, &rf);
8990 }
8991 
8992 /*
8993  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8994  * new rq.
8995  */
8996 static void attach_tasks(struct lb_env *env)
8997 {
8998 	struct list_head *tasks = &env->tasks;
8999 	struct task_struct *p;
9000 	struct rq_flags rf;
9001 
9002 	rq_lock(env->dst_rq, &rf);
9003 	update_rq_clock(env->dst_rq);
9004 
9005 	while (!list_empty(tasks)) {
9006 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9007 		list_del_init(&p->se.group_node);
9008 
9009 		attach_task(env->dst_rq, p);
9010 	}
9011 
9012 	rq_unlock(env->dst_rq, &rf);
9013 }
9014 
9015 #ifdef CONFIG_NO_HZ_COMMON
9016 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9017 {
9018 	if (cfs_rq->avg.load_avg)
9019 		return true;
9020 
9021 	if (cfs_rq->avg.util_avg)
9022 		return true;
9023 
9024 	return false;
9025 }
9026 
9027 static inline bool others_have_blocked(struct rq *rq)
9028 {
9029 	if (READ_ONCE(rq->avg_rt.util_avg))
9030 		return true;
9031 
9032 	if (READ_ONCE(rq->avg_dl.util_avg))
9033 		return true;
9034 
9035 	if (thermal_load_avg(rq))
9036 		return true;
9037 
9038 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9039 	if (READ_ONCE(rq->avg_irq.util_avg))
9040 		return true;
9041 #endif
9042 
9043 	return false;
9044 }
9045 
9046 static inline void update_blocked_load_tick(struct rq *rq)
9047 {
9048 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9049 }
9050 
9051 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9052 {
9053 	if (!has_blocked)
9054 		rq->has_blocked_load = 0;
9055 }
9056 #else
9057 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9058 static inline bool others_have_blocked(struct rq *rq) { return false; }
9059 static inline void update_blocked_load_tick(struct rq *rq) {}
9060 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9061 #endif
9062 
9063 static bool __update_blocked_others(struct rq *rq, bool *done)
9064 {
9065 	const struct sched_class *curr_class;
9066 	u64 now = rq_clock_pelt(rq);
9067 	unsigned long thermal_pressure;
9068 	bool decayed;
9069 
9070 	/*
9071 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9072 	 * DL and IRQ signals have been updated before updating CFS.
9073 	 */
9074 	curr_class = rq->curr->sched_class;
9075 
9076 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9077 
9078 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9079 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9080 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9081 		  update_irq_load_avg(rq, 0);
9082 
9083 	if (others_have_blocked(rq))
9084 		*done = false;
9085 
9086 	return decayed;
9087 }
9088 
9089 #ifdef CONFIG_FAIR_GROUP_SCHED
9090 
9091 static bool __update_blocked_fair(struct rq *rq, bool *done)
9092 {
9093 	struct cfs_rq *cfs_rq, *pos;
9094 	bool decayed = false;
9095 	int cpu = cpu_of(rq);
9096 
9097 	/*
9098 	 * Iterates the task_group tree in a bottom up fashion, see
9099 	 * list_add_leaf_cfs_rq() for details.
9100 	 */
9101 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9102 		struct sched_entity *se;
9103 
9104 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9105 			update_tg_load_avg(cfs_rq);
9106 
9107 			if (cfs_rq->nr_running == 0)
9108 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9109 
9110 			if (cfs_rq == &rq->cfs)
9111 				decayed = true;
9112 		}
9113 
9114 		/* Propagate pending load changes to the parent, if any: */
9115 		se = cfs_rq->tg->se[cpu];
9116 		if (se && !skip_blocked_update(se))
9117 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9118 
9119 		/*
9120 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9121 		 * decayed cfs_rqs linger on the list.
9122 		 */
9123 		if (cfs_rq_is_decayed(cfs_rq))
9124 			list_del_leaf_cfs_rq(cfs_rq);
9125 
9126 		/* Don't need periodic decay once load/util_avg are null */
9127 		if (cfs_rq_has_blocked(cfs_rq))
9128 			*done = false;
9129 	}
9130 
9131 	return decayed;
9132 }
9133 
9134 /*
9135  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9136  * This needs to be done in a top-down fashion because the load of a child
9137  * group is a fraction of its parents load.
9138  */
9139 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9140 {
9141 	struct rq *rq = rq_of(cfs_rq);
9142 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9143 	unsigned long now = jiffies;
9144 	unsigned long load;
9145 
9146 	if (cfs_rq->last_h_load_update == now)
9147 		return;
9148 
9149 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9150 	for_each_sched_entity(se) {
9151 		cfs_rq = cfs_rq_of(se);
9152 		WRITE_ONCE(cfs_rq->h_load_next, se);
9153 		if (cfs_rq->last_h_load_update == now)
9154 			break;
9155 	}
9156 
9157 	if (!se) {
9158 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9159 		cfs_rq->last_h_load_update = now;
9160 	}
9161 
9162 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9163 		load = cfs_rq->h_load;
9164 		load = div64_ul(load * se->avg.load_avg,
9165 			cfs_rq_load_avg(cfs_rq) + 1);
9166 		cfs_rq = group_cfs_rq(se);
9167 		cfs_rq->h_load = load;
9168 		cfs_rq->last_h_load_update = now;
9169 	}
9170 }
9171 
9172 static unsigned long task_h_load(struct task_struct *p)
9173 {
9174 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9175 
9176 	update_cfs_rq_h_load(cfs_rq);
9177 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9178 			cfs_rq_load_avg(cfs_rq) + 1);
9179 }
9180 #else
9181 static bool __update_blocked_fair(struct rq *rq, bool *done)
9182 {
9183 	struct cfs_rq *cfs_rq = &rq->cfs;
9184 	bool decayed;
9185 
9186 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9187 	if (cfs_rq_has_blocked(cfs_rq))
9188 		*done = false;
9189 
9190 	return decayed;
9191 }
9192 
9193 static unsigned long task_h_load(struct task_struct *p)
9194 {
9195 	return p->se.avg.load_avg;
9196 }
9197 #endif
9198 
9199 static void update_blocked_averages(int cpu)
9200 {
9201 	bool decayed = false, done = true;
9202 	struct rq *rq = cpu_rq(cpu);
9203 	struct rq_flags rf;
9204 
9205 	rq_lock_irqsave(rq, &rf);
9206 	update_blocked_load_tick(rq);
9207 	update_rq_clock(rq);
9208 
9209 	decayed |= __update_blocked_others(rq, &done);
9210 	decayed |= __update_blocked_fair(rq, &done);
9211 
9212 	update_blocked_load_status(rq, !done);
9213 	if (decayed)
9214 		cpufreq_update_util(rq, 0);
9215 	rq_unlock_irqrestore(rq, &rf);
9216 }
9217 
9218 /********** Helpers for find_busiest_group ************************/
9219 
9220 /*
9221  * sg_lb_stats - stats of a sched_group required for load_balancing
9222  */
9223 struct sg_lb_stats {
9224 	unsigned long avg_load; /*Avg load across the CPUs of the group */
9225 	unsigned long group_load; /* Total load over the CPUs of the group */
9226 	unsigned long group_capacity;
9227 	unsigned long group_util; /* Total utilization over the CPUs of the group */
9228 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9229 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
9230 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9231 	unsigned int idle_cpus;
9232 	unsigned int group_weight;
9233 	enum group_type group_type;
9234 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9235 	unsigned int group_smt_balance;  /* Task on busy SMT be moved */
9236 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9237 #ifdef CONFIG_NUMA_BALANCING
9238 	unsigned int nr_numa_running;
9239 	unsigned int nr_preferred_running;
9240 #endif
9241 };
9242 
9243 /*
9244  * sd_lb_stats - Structure to store the statistics of a sched_domain
9245  *		 during load balancing.
9246  */
9247 struct sd_lb_stats {
9248 	struct sched_group *busiest;	/* Busiest group in this sd */
9249 	struct sched_group *local;	/* Local group in this sd */
9250 	unsigned long total_load;	/* Total load of all groups in sd */
9251 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
9252 	unsigned long avg_load;	/* Average load across all groups in sd */
9253 	unsigned int prefer_sibling; /* tasks should go to sibling first */
9254 
9255 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9256 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
9257 };
9258 
9259 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9260 {
9261 	/*
9262 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9263 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9264 	 * We must however set busiest_stat::group_type and
9265 	 * busiest_stat::idle_cpus to the worst busiest group because
9266 	 * update_sd_pick_busiest() reads these before assignment.
9267 	 */
9268 	*sds = (struct sd_lb_stats){
9269 		.busiest = NULL,
9270 		.local = NULL,
9271 		.total_load = 0UL,
9272 		.total_capacity = 0UL,
9273 		.busiest_stat = {
9274 			.idle_cpus = UINT_MAX,
9275 			.group_type = group_has_spare,
9276 		},
9277 	};
9278 }
9279 
9280 static unsigned long scale_rt_capacity(int cpu)
9281 {
9282 	struct rq *rq = cpu_rq(cpu);
9283 	unsigned long max = arch_scale_cpu_capacity(cpu);
9284 	unsigned long used, free;
9285 	unsigned long irq;
9286 
9287 	irq = cpu_util_irq(rq);
9288 
9289 	if (unlikely(irq >= max))
9290 		return 1;
9291 
9292 	/*
9293 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9294 	 * (running and not running) with weights 0 and 1024 respectively.
9295 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
9296 	 * average uses the actual delta max capacity(load).
9297 	 */
9298 	used = READ_ONCE(rq->avg_rt.util_avg);
9299 	used += READ_ONCE(rq->avg_dl.util_avg);
9300 	used += thermal_load_avg(rq);
9301 
9302 	if (unlikely(used >= max))
9303 		return 1;
9304 
9305 	free = max - used;
9306 
9307 	return scale_irq_capacity(free, irq, max);
9308 }
9309 
9310 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9311 {
9312 	unsigned long capacity = scale_rt_capacity(cpu);
9313 	struct sched_group *sdg = sd->groups;
9314 
9315 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
9316 
9317 	if (!capacity)
9318 		capacity = 1;
9319 
9320 	cpu_rq(cpu)->cpu_capacity = capacity;
9321 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9322 
9323 	sdg->sgc->capacity = capacity;
9324 	sdg->sgc->min_capacity = capacity;
9325 	sdg->sgc->max_capacity = capacity;
9326 }
9327 
9328 void update_group_capacity(struct sched_domain *sd, int cpu)
9329 {
9330 	struct sched_domain *child = sd->child;
9331 	struct sched_group *group, *sdg = sd->groups;
9332 	unsigned long capacity, min_capacity, max_capacity;
9333 	unsigned long interval;
9334 
9335 	interval = msecs_to_jiffies(sd->balance_interval);
9336 	interval = clamp(interval, 1UL, max_load_balance_interval);
9337 	sdg->sgc->next_update = jiffies + interval;
9338 
9339 	if (!child) {
9340 		update_cpu_capacity(sd, cpu);
9341 		return;
9342 	}
9343 
9344 	capacity = 0;
9345 	min_capacity = ULONG_MAX;
9346 	max_capacity = 0;
9347 
9348 	if (child->flags & SD_OVERLAP) {
9349 		/*
9350 		 * SD_OVERLAP domains cannot assume that child groups
9351 		 * span the current group.
9352 		 */
9353 
9354 		for_each_cpu(cpu, sched_group_span(sdg)) {
9355 			unsigned long cpu_cap = capacity_of(cpu);
9356 
9357 			capacity += cpu_cap;
9358 			min_capacity = min(cpu_cap, min_capacity);
9359 			max_capacity = max(cpu_cap, max_capacity);
9360 		}
9361 	} else  {
9362 		/*
9363 		 * !SD_OVERLAP domains can assume that child groups
9364 		 * span the current group.
9365 		 */
9366 
9367 		group = child->groups;
9368 		do {
9369 			struct sched_group_capacity *sgc = group->sgc;
9370 
9371 			capacity += sgc->capacity;
9372 			min_capacity = min(sgc->min_capacity, min_capacity);
9373 			max_capacity = max(sgc->max_capacity, max_capacity);
9374 			group = group->next;
9375 		} while (group != child->groups);
9376 	}
9377 
9378 	sdg->sgc->capacity = capacity;
9379 	sdg->sgc->min_capacity = min_capacity;
9380 	sdg->sgc->max_capacity = max_capacity;
9381 }
9382 
9383 /*
9384  * Check whether the capacity of the rq has been noticeably reduced by side
9385  * activity. The imbalance_pct is used for the threshold.
9386  * Return true is the capacity is reduced
9387  */
9388 static inline int
9389 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9390 {
9391 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9392 				(rq->cpu_capacity_orig * 100));
9393 }
9394 
9395 /*
9396  * Check whether a rq has a misfit task and if it looks like we can actually
9397  * help that task: we can migrate the task to a CPU of higher capacity, or
9398  * the task's current CPU is heavily pressured.
9399  */
9400 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9401 {
9402 	return rq->misfit_task_load &&
9403 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
9404 		 check_cpu_capacity(rq, sd));
9405 }
9406 
9407 /*
9408  * Group imbalance indicates (and tries to solve) the problem where balancing
9409  * groups is inadequate due to ->cpus_ptr constraints.
9410  *
9411  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9412  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9413  * Something like:
9414  *
9415  *	{ 0 1 2 3 } { 4 5 6 7 }
9416  *	        *     * * *
9417  *
9418  * If we were to balance group-wise we'd place two tasks in the first group and
9419  * two tasks in the second group. Clearly this is undesired as it will overload
9420  * cpu 3 and leave one of the CPUs in the second group unused.
9421  *
9422  * The current solution to this issue is detecting the skew in the first group
9423  * by noticing the lower domain failed to reach balance and had difficulty
9424  * moving tasks due to affinity constraints.
9425  *
9426  * When this is so detected; this group becomes a candidate for busiest; see
9427  * update_sd_pick_busiest(). And calculate_imbalance() and
9428  * find_busiest_group() avoid some of the usual balance conditions to allow it
9429  * to create an effective group imbalance.
9430  *
9431  * This is a somewhat tricky proposition since the next run might not find the
9432  * group imbalance and decide the groups need to be balanced again. A most
9433  * subtle and fragile situation.
9434  */
9435 
9436 static inline int sg_imbalanced(struct sched_group *group)
9437 {
9438 	return group->sgc->imbalance;
9439 }
9440 
9441 /*
9442  * group_has_capacity returns true if the group has spare capacity that could
9443  * be used by some tasks.
9444  * We consider that a group has spare capacity if the number of task is
9445  * smaller than the number of CPUs or if the utilization is lower than the
9446  * available capacity for CFS tasks.
9447  * For the latter, we use a threshold to stabilize the state, to take into
9448  * account the variance of the tasks' load and to return true if the available
9449  * capacity in meaningful for the load balancer.
9450  * As an example, an available capacity of 1% can appear but it doesn't make
9451  * any benefit for the load balance.
9452  */
9453 static inline bool
9454 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9455 {
9456 	if (sgs->sum_nr_running < sgs->group_weight)
9457 		return true;
9458 
9459 	if ((sgs->group_capacity * imbalance_pct) <
9460 			(sgs->group_runnable * 100))
9461 		return false;
9462 
9463 	if ((sgs->group_capacity * 100) >
9464 			(sgs->group_util * imbalance_pct))
9465 		return true;
9466 
9467 	return false;
9468 }
9469 
9470 /*
9471  *  group_is_overloaded returns true if the group has more tasks than it can
9472  *  handle.
9473  *  group_is_overloaded is not equals to !group_has_capacity because a group
9474  *  with the exact right number of tasks, has no more spare capacity but is not
9475  *  overloaded so both group_has_capacity and group_is_overloaded return
9476  *  false.
9477  */
9478 static inline bool
9479 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9480 {
9481 	if (sgs->sum_nr_running <= sgs->group_weight)
9482 		return false;
9483 
9484 	if ((sgs->group_capacity * 100) <
9485 			(sgs->group_util * imbalance_pct))
9486 		return true;
9487 
9488 	if ((sgs->group_capacity * imbalance_pct) <
9489 			(sgs->group_runnable * 100))
9490 		return true;
9491 
9492 	return false;
9493 }
9494 
9495 static inline enum
9496 group_type group_classify(unsigned int imbalance_pct,
9497 			  struct sched_group *group,
9498 			  struct sg_lb_stats *sgs)
9499 {
9500 	if (group_is_overloaded(imbalance_pct, sgs))
9501 		return group_overloaded;
9502 
9503 	if (sg_imbalanced(group))
9504 		return group_imbalanced;
9505 
9506 	if (sgs->group_asym_packing)
9507 		return group_asym_packing;
9508 
9509 	if (sgs->group_smt_balance)
9510 		return group_smt_balance;
9511 
9512 	if (sgs->group_misfit_task_load)
9513 		return group_misfit_task;
9514 
9515 	if (!group_has_capacity(imbalance_pct, sgs))
9516 		return group_fully_busy;
9517 
9518 	return group_has_spare;
9519 }
9520 
9521 /**
9522  * sched_use_asym_prio - Check whether asym_packing priority must be used
9523  * @sd:		The scheduling domain of the load balancing
9524  * @cpu:	A CPU
9525  *
9526  * Always use CPU priority when balancing load between SMT siblings. When
9527  * balancing load between cores, it is not sufficient that @cpu is idle. Only
9528  * use CPU priority if the whole core is idle.
9529  *
9530  * Returns: True if the priority of @cpu must be followed. False otherwise.
9531  */
9532 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9533 {
9534 	if (!sched_smt_active())
9535 		return true;
9536 
9537 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9538 }
9539 
9540 /**
9541  * sched_asym - Check if the destination CPU can do asym_packing load balance
9542  * @env:	The load balancing environment
9543  * @sds:	Load-balancing data with statistics of the local group
9544  * @sgs:	Load-balancing statistics of the candidate busiest group
9545  * @group:	The candidate busiest group
9546  *
9547  * @env::dst_cpu can do asym_packing if it has higher priority than the
9548  * preferred CPU of @group.
9549  *
9550  * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
9551  * can do asym_packing balance only if all its SMT siblings are idle. Also, it
9552  * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
9553  * imbalances in the number of CPUS are dealt with in find_busiest_group().
9554  *
9555  * If we are balancing load within an SMT core, or at DIE domain level, always
9556  * proceed.
9557  *
9558  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9559  * otherwise.
9560  */
9561 static inline bool
9562 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
9563 	   struct sched_group *group)
9564 {
9565 	/* Ensure that the whole local core is idle, if applicable. */
9566 	if (!sched_use_asym_prio(env->sd, env->dst_cpu))
9567 		return false;
9568 
9569 	/*
9570 	 * CPU priorities does not make sense for SMT cores with more than one
9571 	 * busy sibling.
9572 	 */
9573 	if (group->flags & SD_SHARE_CPUCAPACITY) {
9574 		if (sgs->group_weight - sgs->idle_cpus != 1)
9575 			return false;
9576 	}
9577 
9578 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9579 }
9580 
9581 /* One group has more than one SMT CPU while the other group does not */
9582 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9583 				    struct sched_group *sg2)
9584 {
9585 	if (!sg1 || !sg2)
9586 		return false;
9587 
9588 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9589 		(sg2->flags & SD_SHARE_CPUCAPACITY);
9590 }
9591 
9592 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9593 			       struct sched_group *group)
9594 {
9595 	if (env->idle == CPU_NOT_IDLE)
9596 		return false;
9597 
9598 	/*
9599 	 * For SMT source group, it is better to move a task
9600 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9601 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9602 	 * will not be on.
9603 	 */
9604 	if (group->flags & SD_SHARE_CPUCAPACITY &&
9605 	    sgs->sum_h_nr_running > 1)
9606 		return true;
9607 
9608 	return false;
9609 }
9610 
9611 static inline long sibling_imbalance(struct lb_env *env,
9612 				    struct sd_lb_stats *sds,
9613 				    struct sg_lb_stats *busiest,
9614 				    struct sg_lb_stats *local)
9615 {
9616 	int ncores_busiest, ncores_local;
9617 	long imbalance;
9618 
9619 	if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9620 		return 0;
9621 
9622 	ncores_busiest = sds->busiest->cores;
9623 	ncores_local = sds->local->cores;
9624 
9625 	if (ncores_busiest == ncores_local) {
9626 		imbalance = busiest->sum_nr_running;
9627 		lsub_positive(&imbalance, local->sum_nr_running);
9628 		return imbalance;
9629 	}
9630 
9631 	/* Balance such that nr_running/ncores ratio are same on both groups */
9632 	imbalance = ncores_local * busiest->sum_nr_running;
9633 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9634 	/* Normalize imbalance and do rounding on normalization */
9635 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9636 	imbalance /= ncores_local + ncores_busiest;
9637 
9638 	/* Take advantage of resource in an empty sched group */
9639 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
9640 	    busiest->sum_nr_running > 1)
9641 		imbalance = 2;
9642 
9643 	return imbalance;
9644 }
9645 
9646 static inline bool
9647 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9648 {
9649 	/*
9650 	 * When there is more than 1 task, the group_overloaded case already
9651 	 * takes care of cpu with reduced capacity
9652 	 */
9653 	if (rq->cfs.h_nr_running != 1)
9654 		return false;
9655 
9656 	return check_cpu_capacity(rq, sd);
9657 }
9658 
9659 /**
9660  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9661  * @env: The load balancing environment.
9662  * @sds: Load-balancing data with statistics of the local group.
9663  * @group: sched_group whose statistics are to be updated.
9664  * @sgs: variable to hold the statistics for this group.
9665  * @sg_status: Holds flag indicating the status of the sched_group
9666  */
9667 static inline void update_sg_lb_stats(struct lb_env *env,
9668 				      struct sd_lb_stats *sds,
9669 				      struct sched_group *group,
9670 				      struct sg_lb_stats *sgs,
9671 				      int *sg_status)
9672 {
9673 	int i, nr_running, local_group;
9674 
9675 	memset(sgs, 0, sizeof(*sgs));
9676 
9677 	local_group = group == sds->local;
9678 
9679 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9680 		struct rq *rq = cpu_rq(i);
9681 		unsigned long load = cpu_load(rq);
9682 
9683 		sgs->group_load += load;
9684 		sgs->group_util += cpu_util_cfs(i);
9685 		sgs->group_runnable += cpu_runnable(rq);
9686 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9687 
9688 		nr_running = rq->nr_running;
9689 		sgs->sum_nr_running += nr_running;
9690 
9691 		if (nr_running > 1)
9692 			*sg_status |= SG_OVERLOAD;
9693 
9694 		if (cpu_overutilized(i))
9695 			*sg_status |= SG_OVERUTILIZED;
9696 
9697 #ifdef CONFIG_NUMA_BALANCING
9698 		sgs->nr_numa_running += rq->nr_numa_running;
9699 		sgs->nr_preferred_running += rq->nr_preferred_running;
9700 #endif
9701 		/*
9702 		 * No need to call idle_cpu() if nr_running is not 0
9703 		 */
9704 		if (!nr_running && idle_cpu(i)) {
9705 			sgs->idle_cpus++;
9706 			/* Idle cpu can't have misfit task */
9707 			continue;
9708 		}
9709 
9710 		if (local_group)
9711 			continue;
9712 
9713 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9714 			/* Check for a misfit task on the cpu */
9715 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9716 				sgs->group_misfit_task_load = rq->misfit_task_load;
9717 				*sg_status |= SG_OVERLOAD;
9718 			}
9719 		} else if ((env->idle != CPU_NOT_IDLE) &&
9720 			   sched_reduced_capacity(rq, env->sd)) {
9721 			/* Check for a task running on a CPU with reduced capacity */
9722 			if (sgs->group_misfit_task_load < load)
9723 				sgs->group_misfit_task_load = load;
9724 		}
9725 	}
9726 
9727 	sgs->group_capacity = group->sgc->capacity;
9728 
9729 	sgs->group_weight = group->group_weight;
9730 
9731 	/* Check if dst CPU is idle and preferred to this group */
9732 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9733 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9734 	    sched_asym(env, sds, sgs, group)) {
9735 		sgs->group_asym_packing = 1;
9736 	}
9737 
9738 	/* Check for loaded SMT group to be balanced to dst CPU */
9739 	if (!local_group && smt_balance(env, sgs, group))
9740 		sgs->group_smt_balance = 1;
9741 
9742 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9743 
9744 	/* Computing avg_load makes sense only when group is overloaded */
9745 	if (sgs->group_type == group_overloaded)
9746 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9747 				sgs->group_capacity;
9748 }
9749 
9750 /**
9751  * update_sd_pick_busiest - return 1 on busiest group
9752  * @env: The load balancing environment.
9753  * @sds: sched_domain statistics
9754  * @sg: sched_group candidate to be checked for being the busiest
9755  * @sgs: sched_group statistics
9756  *
9757  * Determine if @sg is a busier group than the previously selected
9758  * busiest group.
9759  *
9760  * Return: %true if @sg is a busier group than the previously selected
9761  * busiest group. %false otherwise.
9762  */
9763 static bool update_sd_pick_busiest(struct lb_env *env,
9764 				   struct sd_lb_stats *sds,
9765 				   struct sched_group *sg,
9766 				   struct sg_lb_stats *sgs)
9767 {
9768 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9769 
9770 	/* Make sure that there is at least one task to pull */
9771 	if (!sgs->sum_h_nr_running)
9772 		return false;
9773 
9774 	/*
9775 	 * Don't try to pull misfit tasks we can't help.
9776 	 * We can use max_capacity here as reduction in capacity on some
9777 	 * CPUs in the group should either be possible to resolve
9778 	 * internally or be covered by avg_load imbalance (eventually).
9779 	 */
9780 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9781 	    (sgs->group_type == group_misfit_task) &&
9782 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9783 	     sds->local_stat.group_type != group_has_spare))
9784 		return false;
9785 
9786 	if (sgs->group_type > busiest->group_type)
9787 		return true;
9788 
9789 	if (sgs->group_type < busiest->group_type)
9790 		return false;
9791 
9792 	/*
9793 	 * The candidate and the current busiest group are the same type of
9794 	 * group. Let check which one is the busiest according to the type.
9795 	 */
9796 
9797 	switch (sgs->group_type) {
9798 	case group_overloaded:
9799 		/* Select the overloaded group with highest avg_load. */
9800 		if (sgs->avg_load <= busiest->avg_load)
9801 			return false;
9802 		break;
9803 
9804 	case group_imbalanced:
9805 		/*
9806 		 * Select the 1st imbalanced group as we don't have any way to
9807 		 * choose one more than another.
9808 		 */
9809 		return false;
9810 
9811 	case group_asym_packing:
9812 		/* Prefer to move from lowest priority CPU's work */
9813 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9814 			return false;
9815 		break;
9816 
9817 	case group_misfit_task:
9818 		/*
9819 		 * If we have more than one misfit sg go with the biggest
9820 		 * misfit.
9821 		 */
9822 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9823 			return false;
9824 		break;
9825 
9826 	case group_smt_balance:
9827 		/*
9828 		 * Check if we have spare CPUs on either SMT group to
9829 		 * choose has spare or fully busy handling.
9830 		 */
9831 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
9832 			goto has_spare;
9833 
9834 		fallthrough;
9835 
9836 	case group_fully_busy:
9837 		/*
9838 		 * Select the fully busy group with highest avg_load. In
9839 		 * theory, there is no need to pull task from such kind of
9840 		 * group because tasks have all compute capacity that they need
9841 		 * but we can still improve the overall throughput by reducing
9842 		 * contention when accessing shared HW resources.
9843 		 *
9844 		 * XXX for now avg_load is not computed and always 0 so we
9845 		 * select the 1st one, except if @sg is composed of SMT
9846 		 * siblings.
9847 		 */
9848 
9849 		if (sgs->avg_load < busiest->avg_load)
9850 			return false;
9851 
9852 		if (sgs->avg_load == busiest->avg_load) {
9853 			/*
9854 			 * SMT sched groups need more help than non-SMT groups.
9855 			 * If @sg happens to also be SMT, either choice is good.
9856 			 */
9857 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
9858 				return false;
9859 		}
9860 
9861 		break;
9862 
9863 	case group_has_spare:
9864 		/*
9865 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
9866 		 * as we do not want to pull task off SMT core with one task
9867 		 * and make the core idle.
9868 		 */
9869 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
9870 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
9871 				return false;
9872 			else
9873 				return true;
9874 		}
9875 has_spare:
9876 
9877 		/*
9878 		 * Select not overloaded group with lowest number of idle cpus
9879 		 * and highest number of running tasks. We could also compare
9880 		 * the spare capacity which is more stable but it can end up
9881 		 * that the group has less spare capacity but finally more idle
9882 		 * CPUs which means less opportunity to pull tasks.
9883 		 */
9884 		if (sgs->idle_cpus > busiest->idle_cpus)
9885 			return false;
9886 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9887 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
9888 			return false;
9889 
9890 		break;
9891 	}
9892 
9893 	/*
9894 	 * Candidate sg has no more than one task per CPU and has higher
9895 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9896 	 * throughput. Maximize throughput, power/energy consequences are not
9897 	 * considered.
9898 	 */
9899 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9900 	    (sgs->group_type <= group_fully_busy) &&
9901 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
9902 		return false;
9903 
9904 	return true;
9905 }
9906 
9907 #ifdef CONFIG_NUMA_BALANCING
9908 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9909 {
9910 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
9911 		return regular;
9912 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
9913 		return remote;
9914 	return all;
9915 }
9916 
9917 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9918 {
9919 	if (rq->nr_running > rq->nr_numa_running)
9920 		return regular;
9921 	if (rq->nr_running > rq->nr_preferred_running)
9922 		return remote;
9923 	return all;
9924 }
9925 #else
9926 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9927 {
9928 	return all;
9929 }
9930 
9931 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9932 {
9933 	return regular;
9934 }
9935 #endif /* CONFIG_NUMA_BALANCING */
9936 
9937 
9938 struct sg_lb_stats;
9939 
9940 /*
9941  * task_running_on_cpu - return 1 if @p is running on @cpu.
9942  */
9943 
9944 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9945 {
9946 	/* Task has no contribution or is new */
9947 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
9948 		return 0;
9949 
9950 	if (task_on_rq_queued(p))
9951 		return 1;
9952 
9953 	return 0;
9954 }
9955 
9956 /**
9957  * idle_cpu_without - would a given CPU be idle without p ?
9958  * @cpu: the processor on which idleness is tested.
9959  * @p: task which should be ignored.
9960  *
9961  * Return: 1 if the CPU would be idle. 0 otherwise.
9962  */
9963 static int idle_cpu_without(int cpu, struct task_struct *p)
9964 {
9965 	struct rq *rq = cpu_rq(cpu);
9966 
9967 	if (rq->curr != rq->idle && rq->curr != p)
9968 		return 0;
9969 
9970 	/*
9971 	 * rq->nr_running can't be used but an updated version without the
9972 	 * impact of p on cpu must be used instead. The updated nr_running
9973 	 * be computed and tested before calling idle_cpu_without().
9974 	 */
9975 
9976 #ifdef CONFIG_SMP
9977 	if (rq->ttwu_pending)
9978 		return 0;
9979 #endif
9980 
9981 	return 1;
9982 }
9983 
9984 /*
9985  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
9986  * @sd: The sched_domain level to look for idlest group.
9987  * @group: sched_group whose statistics are to be updated.
9988  * @sgs: variable to hold the statistics for this group.
9989  * @p: The task for which we look for the idlest group/CPU.
9990  */
9991 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
9992 					  struct sched_group *group,
9993 					  struct sg_lb_stats *sgs,
9994 					  struct task_struct *p)
9995 {
9996 	int i, nr_running;
9997 
9998 	memset(sgs, 0, sizeof(*sgs));
9999 
10000 	/* Assume that task can't fit any CPU of the group */
10001 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10002 		sgs->group_misfit_task_load = 1;
10003 
10004 	for_each_cpu(i, sched_group_span(group)) {
10005 		struct rq *rq = cpu_rq(i);
10006 		unsigned int local;
10007 
10008 		sgs->group_load += cpu_load_without(rq, p);
10009 		sgs->group_util += cpu_util_without(i, p);
10010 		sgs->group_runnable += cpu_runnable_without(rq, p);
10011 		local = task_running_on_cpu(i, p);
10012 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10013 
10014 		nr_running = rq->nr_running - local;
10015 		sgs->sum_nr_running += nr_running;
10016 
10017 		/*
10018 		 * No need to call idle_cpu_without() if nr_running is not 0
10019 		 */
10020 		if (!nr_running && idle_cpu_without(i, p))
10021 			sgs->idle_cpus++;
10022 
10023 		/* Check if task fits in the CPU */
10024 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10025 		    sgs->group_misfit_task_load &&
10026 		    task_fits_cpu(p, i))
10027 			sgs->group_misfit_task_load = 0;
10028 
10029 	}
10030 
10031 	sgs->group_capacity = group->sgc->capacity;
10032 
10033 	sgs->group_weight = group->group_weight;
10034 
10035 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10036 
10037 	/*
10038 	 * Computing avg_load makes sense only when group is fully busy or
10039 	 * overloaded
10040 	 */
10041 	if (sgs->group_type == group_fully_busy ||
10042 		sgs->group_type == group_overloaded)
10043 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10044 				sgs->group_capacity;
10045 }
10046 
10047 static bool update_pick_idlest(struct sched_group *idlest,
10048 			       struct sg_lb_stats *idlest_sgs,
10049 			       struct sched_group *group,
10050 			       struct sg_lb_stats *sgs)
10051 {
10052 	if (sgs->group_type < idlest_sgs->group_type)
10053 		return true;
10054 
10055 	if (sgs->group_type > idlest_sgs->group_type)
10056 		return false;
10057 
10058 	/*
10059 	 * The candidate and the current idlest group are the same type of
10060 	 * group. Let check which one is the idlest according to the type.
10061 	 */
10062 
10063 	switch (sgs->group_type) {
10064 	case group_overloaded:
10065 	case group_fully_busy:
10066 		/* Select the group with lowest avg_load. */
10067 		if (idlest_sgs->avg_load <= sgs->avg_load)
10068 			return false;
10069 		break;
10070 
10071 	case group_imbalanced:
10072 	case group_asym_packing:
10073 	case group_smt_balance:
10074 		/* Those types are not used in the slow wakeup path */
10075 		return false;
10076 
10077 	case group_misfit_task:
10078 		/* Select group with the highest max capacity */
10079 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10080 			return false;
10081 		break;
10082 
10083 	case group_has_spare:
10084 		/* Select group with most idle CPUs */
10085 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10086 			return false;
10087 
10088 		/* Select group with lowest group_util */
10089 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10090 			idlest_sgs->group_util <= sgs->group_util)
10091 			return false;
10092 
10093 		break;
10094 	}
10095 
10096 	return true;
10097 }
10098 
10099 /*
10100  * find_idlest_group() finds and returns the least busy CPU group within the
10101  * domain.
10102  *
10103  * Assumes p is allowed on at least one CPU in sd.
10104  */
10105 static struct sched_group *
10106 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10107 {
10108 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10109 	struct sg_lb_stats local_sgs, tmp_sgs;
10110 	struct sg_lb_stats *sgs;
10111 	unsigned long imbalance;
10112 	struct sg_lb_stats idlest_sgs = {
10113 			.avg_load = UINT_MAX,
10114 			.group_type = group_overloaded,
10115 	};
10116 
10117 	do {
10118 		int local_group;
10119 
10120 		/* Skip over this group if it has no CPUs allowed */
10121 		if (!cpumask_intersects(sched_group_span(group),
10122 					p->cpus_ptr))
10123 			continue;
10124 
10125 		/* Skip over this group if no cookie matched */
10126 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10127 			continue;
10128 
10129 		local_group = cpumask_test_cpu(this_cpu,
10130 					       sched_group_span(group));
10131 
10132 		if (local_group) {
10133 			sgs = &local_sgs;
10134 			local = group;
10135 		} else {
10136 			sgs = &tmp_sgs;
10137 		}
10138 
10139 		update_sg_wakeup_stats(sd, group, sgs, p);
10140 
10141 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10142 			idlest = group;
10143 			idlest_sgs = *sgs;
10144 		}
10145 
10146 	} while (group = group->next, group != sd->groups);
10147 
10148 
10149 	/* There is no idlest group to push tasks to */
10150 	if (!idlest)
10151 		return NULL;
10152 
10153 	/* The local group has been skipped because of CPU affinity */
10154 	if (!local)
10155 		return idlest;
10156 
10157 	/*
10158 	 * If the local group is idler than the selected idlest group
10159 	 * don't try and push the task.
10160 	 */
10161 	if (local_sgs.group_type < idlest_sgs.group_type)
10162 		return NULL;
10163 
10164 	/*
10165 	 * If the local group is busier than the selected idlest group
10166 	 * try and push the task.
10167 	 */
10168 	if (local_sgs.group_type > idlest_sgs.group_type)
10169 		return idlest;
10170 
10171 	switch (local_sgs.group_type) {
10172 	case group_overloaded:
10173 	case group_fully_busy:
10174 
10175 		/* Calculate allowed imbalance based on load */
10176 		imbalance = scale_load_down(NICE_0_LOAD) *
10177 				(sd->imbalance_pct-100) / 100;
10178 
10179 		/*
10180 		 * When comparing groups across NUMA domains, it's possible for
10181 		 * the local domain to be very lightly loaded relative to the
10182 		 * remote domains but "imbalance" skews the comparison making
10183 		 * remote CPUs look much more favourable. When considering
10184 		 * cross-domain, add imbalance to the load on the remote node
10185 		 * and consider staying local.
10186 		 */
10187 
10188 		if ((sd->flags & SD_NUMA) &&
10189 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10190 			return NULL;
10191 
10192 		/*
10193 		 * If the local group is less loaded than the selected
10194 		 * idlest group don't try and push any tasks.
10195 		 */
10196 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10197 			return NULL;
10198 
10199 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10200 			return NULL;
10201 		break;
10202 
10203 	case group_imbalanced:
10204 	case group_asym_packing:
10205 	case group_smt_balance:
10206 		/* Those type are not used in the slow wakeup path */
10207 		return NULL;
10208 
10209 	case group_misfit_task:
10210 		/* Select group with the highest max capacity */
10211 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10212 			return NULL;
10213 		break;
10214 
10215 	case group_has_spare:
10216 #ifdef CONFIG_NUMA
10217 		if (sd->flags & SD_NUMA) {
10218 			int imb_numa_nr = sd->imb_numa_nr;
10219 #ifdef CONFIG_NUMA_BALANCING
10220 			int idlest_cpu;
10221 			/*
10222 			 * If there is spare capacity at NUMA, try to select
10223 			 * the preferred node
10224 			 */
10225 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10226 				return NULL;
10227 
10228 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10229 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10230 				return idlest;
10231 #endif /* CONFIG_NUMA_BALANCING */
10232 			/*
10233 			 * Otherwise, keep the task close to the wakeup source
10234 			 * and improve locality if the number of running tasks
10235 			 * would remain below threshold where an imbalance is
10236 			 * allowed while accounting for the possibility the
10237 			 * task is pinned to a subset of CPUs. If there is a
10238 			 * real need of migration, periodic load balance will
10239 			 * take care of it.
10240 			 */
10241 			if (p->nr_cpus_allowed != NR_CPUS) {
10242 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10243 
10244 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10245 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10246 			}
10247 
10248 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10249 			if (!adjust_numa_imbalance(imbalance,
10250 						   local_sgs.sum_nr_running + 1,
10251 						   imb_numa_nr)) {
10252 				return NULL;
10253 			}
10254 		}
10255 #endif /* CONFIG_NUMA */
10256 
10257 		/*
10258 		 * Select group with highest number of idle CPUs. We could also
10259 		 * compare the utilization which is more stable but it can end
10260 		 * up that the group has less spare capacity but finally more
10261 		 * idle CPUs which means more opportunity to run task.
10262 		 */
10263 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10264 			return NULL;
10265 		break;
10266 	}
10267 
10268 	return idlest;
10269 }
10270 
10271 static void update_idle_cpu_scan(struct lb_env *env,
10272 				 unsigned long sum_util)
10273 {
10274 	struct sched_domain_shared *sd_share;
10275 	int llc_weight, pct;
10276 	u64 x, y, tmp;
10277 	/*
10278 	 * Update the number of CPUs to scan in LLC domain, which could
10279 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10280 	 * could be expensive because it is within a shared cache line.
10281 	 * So the write of this hint only occurs during periodic load
10282 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10283 	 * can fire way more frequently than the former.
10284 	 */
10285 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10286 		return;
10287 
10288 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10289 	if (env->sd->span_weight != llc_weight)
10290 		return;
10291 
10292 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10293 	if (!sd_share)
10294 		return;
10295 
10296 	/*
10297 	 * The number of CPUs to search drops as sum_util increases, when
10298 	 * sum_util hits 85% or above, the scan stops.
10299 	 * The reason to choose 85% as the threshold is because this is the
10300 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10301 	 *
10302 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10303 	 * and y'= y / SCHED_CAPACITY_SCALE
10304 	 *
10305 	 * x is the ratio of sum_util compared to the CPU capacity:
10306 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10307 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10308 	 * and the number of CPUs to scan is calculated by:
10309 	 *
10310 	 * nr_scan = llc_weight * y'                                    [2]
10311 	 *
10312 	 * When x hits the threshold of overloaded, AKA, when
10313 	 * x = 100 / pct, y drops to 0. According to [1],
10314 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10315 	 *
10316 	 * Scale x by SCHED_CAPACITY_SCALE:
10317 	 * x' = sum_util / llc_weight;                                  [3]
10318 	 *
10319 	 * and finally [1] becomes:
10320 	 * y = SCHED_CAPACITY_SCALE -
10321 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10322 	 *
10323 	 */
10324 	/* equation [3] */
10325 	x = sum_util;
10326 	do_div(x, llc_weight);
10327 
10328 	/* equation [4] */
10329 	pct = env->sd->imbalance_pct;
10330 	tmp = x * x * pct * pct;
10331 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10332 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10333 	y = SCHED_CAPACITY_SCALE - tmp;
10334 
10335 	/* equation [2] */
10336 	y *= llc_weight;
10337 	do_div(y, SCHED_CAPACITY_SCALE);
10338 	if ((int)y != sd_share->nr_idle_scan)
10339 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10340 }
10341 
10342 /**
10343  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10344  * @env: The load balancing environment.
10345  * @sds: variable to hold the statistics for this sched_domain.
10346  */
10347 
10348 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10349 {
10350 	struct sched_group *sg = env->sd->groups;
10351 	struct sg_lb_stats *local = &sds->local_stat;
10352 	struct sg_lb_stats tmp_sgs;
10353 	unsigned long sum_util = 0;
10354 	int sg_status = 0;
10355 
10356 	do {
10357 		struct sg_lb_stats *sgs = &tmp_sgs;
10358 		int local_group;
10359 
10360 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10361 		if (local_group) {
10362 			sds->local = sg;
10363 			sgs = local;
10364 
10365 			if (env->idle != CPU_NEWLY_IDLE ||
10366 			    time_after_eq(jiffies, sg->sgc->next_update))
10367 				update_group_capacity(env->sd, env->dst_cpu);
10368 		}
10369 
10370 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10371 
10372 		if (local_group)
10373 			goto next_group;
10374 
10375 
10376 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10377 			sds->busiest = sg;
10378 			sds->busiest_stat = *sgs;
10379 		}
10380 
10381 next_group:
10382 		/* Now, start updating sd_lb_stats */
10383 		sds->total_load += sgs->group_load;
10384 		sds->total_capacity += sgs->group_capacity;
10385 
10386 		sum_util += sgs->group_util;
10387 		sg = sg->next;
10388 	} while (sg != env->sd->groups);
10389 
10390 	/*
10391 	 * Indicate that the child domain of the busiest group prefers tasks
10392 	 * go to a child's sibling domains first. NB the flags of a sched group
10393 	 * are those of the child domain.
10394 	 */
10395 	if (sds->busiest)
10396 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10397 
10398 
10399 	if (env->sd->flags & SD_NUMA)
10400 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10401 
10402 	if (!env->sd->parent) {
10403 		struct root_domain *rd = env->dst_rq->rd;
10404 
10405 		/* update overload indicator if we are at root domain */
10406 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10407 
10408 		/* Update over-utilization (tipping point, U >= 0) indicator */
10409 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
10410 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
10411 	} else if (sg_status & SG_OVERUTILIZED) {
10412 		struct root_domain *rd = env->dst_rq->rd;
10413 
10414 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10415 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
10416 	}
10417 
10418 	update_idle_cpu_scan(env, sum_util);
10419 }
10420 
10421 /**
10422  * calculate_imbalance - Calculate the amount of imbalance present within the
10423  *			 groups of a given sched_domain during load balance.
10424  * @env: load balance environment
10425  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10426  */
10427 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10428 {
10429 	struct sg_lb_stats *local, *busiest;
10430 
10431 	local = &sds->local_stat;
10432 	busiest = &sds->busiest_stat;
10433 
10434 	if (busiest->group_type == group_misfit_task) {
10435 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10436 			/* Set imbalance to allow misfit tasks to be balanced. */
10437 			env->migration_type = migrate_misfit;
10438 			env->imbalance = 1;
10439 		} else {
10440 			/*
10441 			 * Set load imbalance to allow moving task from cpu
10442 			 * with reduced capacity.
10443 			 */
10444 			env->migration_type = migrate_load;
10445 			env->imbalance = busiest->group_misfit_task_load;
10446 		}
10447 		return;
10448 	}
10449 
10450 	if (busiest->group_type == group_asym_packing) {
10451 		/*
10452 		 * In case of asym capacity, we will try to migrate all load to
10453 		 * the preferred CPU.
10454 		 */
10455 		env->migration_type = migrate_task;
10456 		env->imbalance = busiest->sum_h_nr_running;
10457 		return;
10458 	}
10459 
10460 	if (busiest->group_type == group_smt_balance) {
10461 		/* Reduce number of tasks sharing CPU capacity */
10462 		env->migration_type = migrate_task;
10463 		env->imbalance = 1;
10464 		return;
10465 	}
10466 
10467 	if (busiest->group_type == group_imbalanced) {
10468 		/*
10469 		 * In the group_imb case we cannot rely on group-wide averages
10470 		 * to ensure CPU-load equilibrium, try to move any task to fix
10471 		 * the imbalance. The next load balance will take care of
10472 		 * balancing back the system.
10473 		 */
10474 		env->migration_type = migrate_task;
10475 		env->imbalance = 1;
10476 		return;
10477 	}
10478 
10479 	/*
10480 	 * Try to use spare capacity of local group without overloading it or
10481 	 * emptying busiest.
10482 	 */
10483 	if (local->group_type == group_has_spare) {
10484 		if ((busiest->group_type > group_fully_busy) &&
10485 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10486 			/*
10487 			 * If busiest is overloaded, try to fill spare
10488 			 * capacity. This might end up creating spare capacity
10489 			 * in busiest or busiest still being overloaded but
10490 			 * there is no simple way to directly compute the
10491 			 * amount of load to migrate in order to balance the
10492 			 * system.
10493 			 */
10494 			env->migration_type = migrate_util;
10495 			env->imbalance = max(local->group_capacity, local->group_util) -
10496 					 local->group_util;
10497 
10498 			/*
10499 			 * In some cases, the group's utilization is max or even
10500 			 * higher than capacity because of migrations but the
10501 			 * local CPU is (newly) idle. There is at least one
10502 			 * waiting task in this overloaded busiest group. Let's
10503 			 * try to pull it.
10504 			 */
10505 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10506 				env->migration_type = migrate_task;
10507 				env->imbalance = 1;
10508 			}
10509 
10510 			return;
10511 		}
10512 
10513 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10514 			/*
10515 			 * When prefer sibling, evenly spread running tasks on
10516 			 * groups.
10517 			 */
10518 			env->migration_type = migrate_task;
10519 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
10520 		} else {
10521 
10522 			/*
10523 			 * If there is no overload, we just want to even the number of
10524 			 * idle cpus.
10525 			 */
10526 			env->migration_type = migrate_task;
10527 			env->imbalance = max_t(long, 0,
10528 					       (local->idle_cpus - busiest->idle_cpus));
10529 		}
10530 
10531 #ifdef CONFIG_NUMA
10532 		/* Consider allowing a small imbalance between NUMA groups */
10533 		if (env->sd->flags & SD_NUMA) {
10534 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10535 							       local->sum_nr_running + 1,
10536 							       env->sd->imb_numa_nr);
10537 		}
10538 #endif
10539 
10540 		/* Number of tasks to move to restore balance */
10541 		env->imbalance >>= 1;
10542 
10543 		return;
10544 	}
10545 
10546 	/*
10547 	 * Local is fully busy but has to take more load to relieve the
10548 	 * busiest group
10549 	 */
10550 	if (local->group_type < group_overloaded) {
10551 		/*
10552 		 * Local will become overloaded so the avg_load metrics are
10553 		 * finally needed.
10554 		 */
10555 
10556 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10557 				  local->group_capacity;
10558 
10559 		/*
10560 		 * If the local group is more loaded than the selected
10561 		 * busiest group don't try to pull any tasks.
10562 		 */
10563 		if (local->avg_load >= busiest->avg_load) {
10564 			env->imbalance = 0;
10565 			return;
10566 		}
10567 
10568 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10569 				sds->total_capacity;
10570 
10571 		/*
10572 		 * If the local group is more loaded than the average system
10573 		 * load, don't try to pull any tasks.
10574 		 */
10575 		if (local->avg_load >= sds->avg_load) {
10576 			env->imbalance = 0;
10577 			return;
10578 		}
10579 
10580 	}
10581 
10582 	/*
10583 	 * Both group are or will become overloaded and we're trying to get all
10584 	 * the CPUs to the average_load, so we don't want to push ourselves
10585 	 * above the average load, nor do we wish to reduce the max loaded CPU
10586 	 * below the average load. At the same time, we also don't want to
10587 	 * reduce the group load below the group capacity. Thus we look for
10588 	 * the minimum possible imbalance.
10589 	 */
10590 	env->migration_type = migrate_load;
10591 	env->imbalance = min(
10592 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10593 		(sds->avg_load - local->avg_load) * local->group_capacity
10594 	) / SCHED_CAPACITY_SCALE;
10595 }
10596 
10597 /******* find_busiest_group() helpers end here *********************/
10598 
10599 /*
10600  * Decision matrix according to the local and busiest group type:
10601  *
10602  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10603  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10604  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10605  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10606  * asym_packing     force     force      N/A    N/A  force      force
10607  * imbalanced       force     force      N/A    N/A  force      force
10608  * overloaded       force     force      N/A    N/A  force      avg_load
10609  *
10610  * N/A :      Not Applicable because already filtered while updating
10611  *            statistics.
10612  * balanced : The system is balanced for these 2 groups.
10613  * force :    Calculate the imbalance as load migration is probably needed.
10614  * avg_load : Only if imbalance is significant enough.
10615  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10616  *            different in groups.
10617  */
10618 
10619 /**
10620  * find_busiest_group - Returns the busiest group within the sched_domain
10621  * if there is an imbalance.
10622  * @env: The load balancing environment.
10623  *
10624  * Also calculates the amount of runnable load which should be moved
10625  * to restore balance.
10626  *
10627  * Return:	- The busiest group if imbalance exists.
10628  */
10629 static struct sched_group *find_busiest_group(struct lb_env *env)
10630 {
10631 	struct sg_lb_stats *local, *busiest;
10632 	struct sd_lb_stats sds;
10633 
10634 	init_sd_lb_stats(&sds);
10635 
10636 	/*
10637 	 * Compute the various statistics relevant for load balancing at
10638 	 * this level.
10639 	 */
10640 	update_sd_lb_stats(env, &sds);
10641 
10642 	/* There is no busy sibling group to pull tasks from */
10643 	if (!sds.busiest)
10644 		goto out_balanced;
10645 
10646 	busiest = &sds.busiest_stat;
10647 
10648 	/* Misfit tasks should be dealt with regardless of the avg load */
10649 	if (busiest->group_type == group_misfit_task)
10650 		goto force_balance;
10651 
10652 	if (sched_energy_enabled()) {
10653 		struct root_domain *rd = env->dst_rq->rd;
10654 
10655 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10656 			goto out_balanced;
10657 	}
10658 
10659 	/* ASYM feature bypasses nice load balance check */
10660 	if (busiest->group_type == group_asym_packing)
10661 		goto force_balance;
10662 
10663 	/*
10664 	 * If the busiest group is imbalanced the below checks don't
10665 	 * work because they assume all things are equal, which typically
10666 	 * isn't true due to cpus_ptr constraints and the like.
10667 	 */
10668 	if (busiest->group_type == group_imbalanced)
10669 		goto force_balance;
10670 
10671 	local = &sds.local_stat;
10672 	/*
10673 	 * If the local group is busier than the selected busiest group
10674 	 * don't try and pull any tasks.
10675 	 */
10676 	if (local->group_type > busiest->group_type)
10677 		goto out_balanced;
10678 
10679 	/*
10680 	 * When groups are overloaded, use the avg_load to ensure fairness
10681 	 * between tasks.
10682 	 */
10683 	if (local->group_type == group_overloaded) {
10684 		/*
10685 		 * If the local group is more loaded than the selected
10686 		 * busiest group don't try to pull any tasks.
10687 		 */
10688 		if (local->avg_load >= busiest->avg_load)
10689 			goto out_balanced;
10690 
10691 		/* XXX broken for overlapping NUMA groups */
10692 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10693 				sds.total_capacity;
10694 
10695 		/*
10696 		 * Don't pull any tasks if this group is already above the
10697 		 * domain average load.
10698 		 */
10699 		if (local->avg_load >= sds.avg_load)
10700 			goto out_balanced;
10701 
10702 		/*
10703 		 * If the busiest group is more loaded, use imbalance_pct to be
10704 		 * conservative.
10705 		 */
10706 		if (100 * busiest->avg_load <=
10707 				env->sd->imbalance_pct * local->avg_load)
10708 			goto out_balanced;
10709 	}
10710 
10711 	/*
10712 	 * Try to move all excess tasks to a sibling domain of the busiest
10713 	 * group's child domain.
10714 	 */
10715 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10716 	    sibling_imbalance(env, &sds, busiest, local) > 1)
10717 		goto force_balance;
10718 
10719 	if (busiest->group_type != group_overloaded) {
10720 		if (env->idle == CPU_NOT_IDLE) {
10721 			/*
10722 			 * If the busiest group is not overloaded (and as a
10723 			 * result the local one too) but this CPU is already
10724 			 * busy, let another idle CPU try to pull task.
10725 			 */
10726 			goto out_balanced;
10727 		}
10728 
10729 		if (busiest->group_type == group_smt_balance &&
10730 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10731 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
10732 			goto force_balance;
10733 		}
10734 
10735 		if (busiest->group_weight > 1 &&
10736 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
10737 			/*
10738 			 * If the busiest group is not overloaded
10739 			 * and there is no imbalance between this and busiest
10740 			 * group wrt idle CPUs, it is balanced. The imbalance
10741 			 * becomes significant if the diff is greater than 1
10742 			 * otherwise we might end up to just move the imbalance
10743 			 * on another group. Of course this applies only if
10744 			 * there is more than 1 CPU per group.
10745 			 */
10746 			goto out_balanced;
10747 		}
10748 
10749 		if (busiest->sum_h_nr_running == 1) {
10750 			/*
10751 			 * busiest doesn't have any tasks waiting to run
10752 			 */
10753 			goto out_balanced;
10754 		}
10755 	}
10756 
10757 force_balance:
10758 	/* Looks like there is an imbalance. Compute it */
10759 	calculate_imbalance(env, &sds);
10760 	return env->imbalance ? sds.busiest : NULL;
10761 
10762 out_balanced:
10763 	env->imbalance = 0;
10764 	return NULL;
10765 }
10766 
10767 /*
10768  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10769  */
10770 static struct rq *find_busiest_queue(struct lb_env *env,
10771 				     struct sched_group *group)
10772 {
10773 	struct rq *busiest = NULL, *rq;
10774 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10775 	unsigned int busiest_nr = 0;
10776 	int i;
10777 
10778 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10779 		unsigned long capacity, load, util;
10780 		unsigned int nr_running;
10781 		enum fbq_type rt;
10782 
10783 		rq = cpu_rq(i);
10784 		rt = fbq_classify_rq(rq);
10785 
10786 		/*
10787 		 * We classify groups/runqueues into three groups:
10788 		 *  - regular: there are !numa tasks
10789 		 *  - remote:  there are numa tasks that run on the 'wrong' node
10790 		 *  - all:     there is no distinction
10791 		 *
10792 		 * In order to avoid migrating ideally placed numa tasks,
10793 		 * ignore those when there's better options.
10794 		 *
10795 		 * If we ignore the actual busiest queue to migrate another
10796 		 * task, the next balance pass can still reduce the busiest
10797 		 * queue by moving tasks around inside the node.
10798 		 *
10799 		 * If we cannot move enough load due to this classification
10800 		 * the next pass will adjust the group classification and
10801 		 * allow migration of more tasks.
10802 		 *
10803 		 * Both cases only affect the total convergence complexity.
10804 		 */
10805 		if (rt > env->fbq_type)
10806 			continue;
10807 
10808 		nr_running = rq->cfs.h_nr_running;
10809 		if (!nr_running)
10810 			continue;
10811 
10812 		capacity = capacity_of(i);
10813 
10814 		/*
10815 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10816 		 * eventually lead to active_balancing high->low capacity.
10817 		 * Higher per-CPU capacity is considered better than balancing
10818 		 * average load.
10819 		 */
10820 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
10821 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
10822 		    nr_running == 1)
10823 			continue;
10824 
10825 		/*
10826 		 * Make sure we only pull tasks from a CPU of lower priority
10827 		 * when balancing between SMT siblings.
10828 		 *
10829 		 * If balancing between cores, let lower priority CPUs help
10830 		 * SMT cores with more than one busy sibling.
10831 		 */
10832 		if ((env->sd->flags & SD_ASYM_PACKING) &&
10833 		    sched_use_asym_prio(env->sd, i) &&
10834 		    sched_asym_prefer(i, env->dst_cpu) &&
10835 		    nr_running == 1)
10836 			continue;
10837 
10838 		switch (env->migration_type) {
10839 		case migrate_load:
10840 			/*
10841 			 * When comparing with load imbalance, use cpu_load()
10842 			 * which is not scaled with the CPU capacity.
10843 			 */
10844 			load = cpu_load(rq);
10845 
10846 			if (nr_running == 1 && load > env->imbalance &&
10847 			    !check_cpu_capacity(rq, env->sd))
10848 				break;
10849 
10850 			/*
10851 			 * For the load comparisons with the other CPUs,
10852 			 * consider the cpu_load() scaled with the CPU
10853 			 * capacity, so that the load can be moved away
10854 			 * from the CPU that is potentially running at a
10855 			 * lower capacity.
10856 			 *
10857 			 * Thus we're looking for max(load_i / capacity_i),
10858 			 * crosswise multiplication to rid ourselves of the
10859 			 * division works out to:
10860 			 * load_i * capacity_j > load_j * capacity_i;
10861 			 * where j is our previous maximum.
10862 			 */
10863 			if (load * busiest_capacity > busiest_load * capacity) {
10864 				busiest_load = load;
10865 				busiest_capacity = capacity;
10866 				busiest = rq;
10867 			}
10868 			break;
10869 
10870 		case migrate_util:
10871 			util = cpu_util_cfs_boost(i);
10872 
10873 			/*
10874 			 * Don't try to pull utilization from a CPU with one
10875 			 * running task. Whatever its utilization, we will fail
10876 			 * detach the task.
10877 			 */
10878 			if (nr_running <= 1)
10879 				continue;
10880 
10881 			if (busiest_util < util) {
10882 				busiest_util = util;
10883 				busiest = rq;
10884 			}
10885 			break;
10886 
10887 		case migrate_task:
10888 			if (busiest_nr < nr_running) {
10889 				busiest_nr = nr_running;
10890 				busiest = rq;
10891 			}
10892 			break;
10893 
10894 		case migrate_misfit:
10895 			/*
10896 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
10897 			 * simply seek the "biggest" misfit task.
10898 			 */
10899 			if (rq->misfit_task_load > busiest_load) {
10900 				busiest_load = rq->misfit_task_load;
10901 				busiest = rq;
10902 			}
10903 
10904 			break;
10905 
10906 		}
10907 	}
10908 
10909 	return busiest;
10910 }
10911 
10912 /*
10913  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
10914  * so long as it is large enough.
10915  */
10916 #define MAX_PINNED_INTERVAL	512
10917 
10918 static inline bool
10919 asym_active_balance(struct lb_env *env)
10920 {
10921 	/*
10922 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
10923 	 * priority CPUs in order to pack all tasks in the highest priority
10924 	 * CPUs. When done between cores, do it only if the whole core if the
10925 	 * whole core is idle.
10926 	 *
10927 	 * If @env::src_cpu is an SMT core with busy siblings, let
10928 	 * the lower priority @env::dst_cpu help it. Do not follow
10929 	 * CPU priority.
10930 	 */
10931 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
10932 	       sched_use_asym_prio(env->sd, env->dst_cpu) &&
10933 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
10934 		!sched_use_asym_prio(env->sd, env->src_cpu));
10935 }
10936 
10937 static inline bool
10938 imbalanced_active_balance(struct lb_env *env)
10939 {
10940 	struct sched_domain *sd = env->sd;
10941 
10942 	/*
10943 	 * The imbalanced case includes the case of pinned tasks preventing a fair
10944 	 * distribution of the load on the system but also the even distribution of the
10945 	 * threads on a system with spare capacity
10946 	 */
10947 	if ((env->migration_type == migrate_task) &&
10948 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
10949 		return 1;
10950 
10951 	return 0;
10952 }
10953 
10954 static int need_active_balance(struct lb_env *env)
10955 {
10956 	struct sched_domain *sd = env->sd;
10957 
10958 	if (asym_active_balance(env))
10959 		return 1;
10960 
10961 	if (imbalanced_active_balance(env))
10962 		return 1;
10963 
10964 	/*
10965 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10966 	 * It's worth migrating the task if the src_cpu's capacity is reduced
10967 	 * because of other sched_class or IRQs if more capacity stays
10968 	 * available on dst_cpu.
10969 	 */
10970 	if ((env->idle != CPU_NOT_IDLE) &&
10971 	    (env->src_rq->cfs.h_nr_running == 1)) {
10972 		if ((check_cpu_capacity(env->src_rq, sd)) &&
10973 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10974 			return 1;
10975 	}
10976 
10977 	if (env->migration_type == migrate_misfit)
10978 		return 1;
10979 
10980 	return 0;
10981 }
10982 
10983 static int active_load_balance_cpu_stop(void *data);
10984 
10985 static int should_we_balance(struct lb_env *env)
10986 {
10987 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
10988 	struct sched_group *sg = env->sd->groups;
10989 	int cpu, idle_smt = -1;
10990 
10991 	/*
10992 	 * Ensure the balancing environment is consistent; can happen
10993 	 * when the softirq triggers 'during' hotplug.
10994 	 */
10995 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10996 		return 0;
10997 
10998 	/*
10999 	 * In the newly idle case, we will allow all the CPUs
11000 	 * to do the newly idle load balance.
11001 	 *
11002 	 * However, we bail out if we already have tasks or a wakeup pending,
11003 	 * to optimize wakeup latency.
11004 	 */
11005 	if (env->idle == CPU_NEWLY_IDLE) {
11006 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11007 			return 0;
11008 		return 1;
11009 	}
11010 
11011 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11012 	/* Try to find first idle CPU */
11013 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11014 		if (!idle_cpu(cpu))
11015 			continue;
11016 
11017 		/*
11018 		 * Don't balance to idle SMT in busy core right away when
11019 		 * balancing cores, but remember the first idle SMT CPU for
11020 		 * later consideration.  Find CPU on an idle core first.
11021 		 */
11022 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11023 			if (idle_smt == -1)
11024 				idle_smt = cpu;
11025 			/*
11026 			 * If the core is not idle, and first SMT sibling which is
11027 			 * idle has been found, then its not needed to check other
11028 			 * SMT siblings for idleness:
11029 			 */
11030 #ifdef CONFIG_SCHED_SMT
11031 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11032 #endif
11033 			continue;
11034 		}
11035 
11036 		/* Are we the first idle CPU? */
11037 		return cpu == env->dst_cpu;
11038 	}
11039 
11040 	if (idle_smt == env->dst_cpu)
11041 		return true;
11042 
11043 	/* Are we the first CPU of this group ? */
11044 	return group_balance_cpu(sg) == env->dst_cpu;
11045 }
11046 
11047 /*
11048  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11049  * tasks if there is an imbalance.
11050  */
11051 static int load_balance(int this_cpu, struct rq *this_rq,
11052 			struct sched_domain *sd, enum cpu_idle_type idle,
11053 			int *continue_balancing)
11054 {
11055 	int ld_moved, cur_ld_moved, active_balance = 0;
11056 	struct sched_domain *sd_parent = sd->parent;
11057 	struct sched_group *group;
11058 	struct rq *busiest;
11059 	struct rq_flags rf;
11060 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11061 	struct lb_env env = {
11062 		.sd		= sd,
11063 		.dst_cpu	= this_cpu,
11064 		.dst_rq		= this_rq,
11065 		.dst_grpmask    = group_balance_mask(sd->groups),
11066 		.idle		= idle,
11067 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11068 		.cpus		= cpus,
11069 		.fbq_type	= all,
11070 		.tasks		= LIST_HEAD_INIT(env.tasks),
11071 	};
11072 
11073 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11074 
11075 	schedstat_inc(sd->lb_count[idle]);
11076 
11077 redo:
11078 	if (!should_we_balance(&env)) {
11079 		*continue_balancing = 0;
11080 		goto out_balanced;
11081 	}
11082 
11083 	group = find_busiest_group(&env);
11084 	if (!group) {
11085 		schedstat_inc(sd->lb_nobusyg[idle]);
11086 		goto out_balanced;
11087 	}
11088 
11089 	busiest = find_busiest_queue(&env, group);
11090 	if (!busiest) {
11091 		schedstat_inc(sd->lb_nobusyq[idle]);
11092 		goto out_balanced;
11093 	}
11094 
11095 	WARN_ON_ONCE(busiest == env.dst_rq);
11096 
11097 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11098 
11099 	env.src_cpu = busiest->cpu;
11100 	env.src_rq = busiest;
11101 
11102 	ld_moved = 0;
11103 	/* Clear this flag as soon as we find a pullable task */
11104 	env.flags |= LBF_ALL_PINNED;
11105 	if (busiest->nr_running > 1) {
11106 		/*
11107 		 * Attempt to move tasks. If find_busiest_group has found
11108 		 * an imbalance but busiest->nr_running <= 1, the group is
11109 		 * still unbalanced. ld_moved simply stays zero, so it is
11110 		 * correctly treated as an imbalance.
11111 		 */
11112 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11113 
11114 more_balance:
11115 		rq_lock_irqsave(busiest, &rf);
11116 		update_rq_clock(busiest);
11117 
11118 		/*
11119 		 * cur_ld_moved - load moved in current iteration
11120 		 * ld_moved     - cumulative load moved across iterations
11121 		 */
11122 		cur_ld_moved = detach_tasks(&env);
11123 
11124 		/*
11125 		 * We've detached some tasks from busiest_rq. Every
11126 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11127 		 * unlock busiest->lock, and we are able to be sure
11128 		 * that nobody can manipulate the tasks in parallel.
11129 		 * See task_rq_lock() family for the details.
11130 		 */
11131 
11132 		rq_unlock(busiest, &rf);
11133 
11134 		if (cur_ld_moved) {
11135 			attach_tasks(&env);
11136 			ld_moved += cur_ld_moved;
11137 		}
11138 
11139 		local_irq_restore(rf.flags);
11140 
11141 		if (env.flags & LBF_NEED_BREAK) {
11142 			env.flags &= ~LBF_NEED_BREAK;
11143 			/* Stop if we tried all running tasks */
11144 			if (env.loop < busiest->nr_running)
11145 				goto more_balance;
11146 		}
11147 
11148 		/*
11149 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11150 		 * us and move them to an alternate dst_cpu in our sched_group
11151 		 * where they can run. The upper limit on how many times we
11152 		 * iterate on same src_cpu is dependent on number of CPUs in our
11153 		 * sched_group.
11154 		 *
11155 		 * This changes load balance semantics a bit on who can move
11156 		 * load to a given_cpu. In addition to the given_cpu itself
11157 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11158 		 * nohz-idle), we now have balance_cpu in a position to move
11159 		 * load to given_cpu. In rare situations, this may cause
11160 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11161 		 * _independently_ and at _same_ time to move some load to
11162 		 * given_cpu) causing excess load to be moved to given_cpu.
11163 		 * This however should not happen so much in practice and
11164 		 * moreover subsequent load balance cycles should correct the
11165 		 * excess load moved.
11166 		 */
11167 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11168 
11169 			/* Prevent to re-select dst_cpu via env's CPUs */
11170 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11171 
11172 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11173 			env.dst_cpu	 = env.new_dst_cpu;
11174 			env.flags	&= ~LBF_DST_PINNED;
11175 			env.loop	 = 0;
11176 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11177 
11178 			/*
11179 			 * Go back to "more_balance" rather than "redo" since we
11180 			 * need to continue with same src_cpu.
11181 			 */
11182 			goto more_balance;
11183 		}
11184 
11185 		/*
11186 		 * We failed to reach balance because of affinity.
11187 		 */
11188 		if (sd_parent) {
11189 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11190 
11191 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11192 				*group_imbalance = 1;
11193 		}
11194 
11195 		/* All tasks on this runqueue were pinned by CPU affinity */
11196 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11197 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11198 			/*
11199 			 * Attempting to continue load balancing at the current
11200 			 * sched_domain level only makes sense if there are
11201 			 * active CPUs remaining as possible busiest CPUs to
11202 			 * pull load from which are not contained within the
11203 			 * destination group that is receiving any migrated
11204 			 * load.
11205 			 */
11206 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11207 				env.loop = 0;
11208 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11209 				goto redo;
11210 			}
11211 			goto out_all_pinned;
11212 		}
11213 	}
11214 
11215 	if (!ld_moved) {
11216 		schedstat_inc(sd->lb_failed[idle]);
11217 		/*
11218 		 * Increment the failure counter only on periodic balance.
11219 		 * We do not want newidle balance, which can be very
11220 		 * frequent, pollute the failure counter causing
11221 		 * excessive cache_hot migrations and active balances.
11222 		 */
11223 		if (idle != CPU_NEWLY_IDLE)
11224 			sd->nr_balance_failed++;
11225 
11226 		if (need_active_balance(&env)) {
11227 			unsigned long flags;
11228 
11229 			raw_spin_rq_lock_irqsave(busiest, flags);
11230 
11231 			/*
11232 			 * Don't kick the active_load_balance_cpu_stop,
11233 			 * if the curr task on busiest CPU can't be
11234 			 * moved to this_cpu:
11235 			 */
11236 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11237 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11238 				goto out_one_pinned;
11239 			}
11240 
11241 			/* Record that we found at least one task that could run on this_cpu */
11242 			env.flags &= ~LBF_ALL_PINNED;
11243 
11244 			/*
11245 			 * ->active_balance synchronizes accesses to
11246 			 * ->active_balance_work.  Once set, it's cleared
11247 			 * only after active load balance is finished.
11248 			 */
11249 			if (!busiest->active_balance) {
11250 				busiest->active_balance = 1;
11251 				busiest->push_cpu = this_cpu;
11252 				active_balance = 1;
11253 			}
11254 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11255 
11256 			if (active_balance) {
11257 				stop_one_cpu_nowait(cpu_of(busiest),
11258 					active_load_balance_cpu_stop, busiest,
11259 					&busiest->active_balance_work);
11260 			}
11261 		}
11262 	} else {
11263 		sd->nr_balance_failed = 0;
11264 	}
11265 
11266 	if (likely(!active_balance) || need_active_balance(&env)) {
11267 		/* We were unbalanced, so reset the balancing interval */
11268 		sd->balance_interval = sd->min_interval;
11269 	}
11270 
11271 	goto out;
11272 
11273 out_balanced:
11274 	/*
11275 	 * We reach balance although we may have faced some affinity
11276 	 * constraints. Clear the imbalance flag only if other tasks got
11277 	 * a chance to move and fix the imbalance.
11278 	 */
11279 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11280 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11281 
11282 		if (*group_imbalance)
11283 			*group_imbalance = 0;
11284 	}
11285 
11286 out_all_pinned:
11287 	/*
11288 	 * We reach balance because all tasks are pinned at this level so
11289 	 * we can't migrate them. Let the imbalance flag set so parent level
11290 	 * can try to migrate them.
11291 	 */
11292 	schedstat_inc(sd->lb_balanced[idle]);
11293 
11294 	sd->nr_balance_failed = 0;
11295 
11296 out_one_pinned:
11297 	ld_moved = 0;
11298 
11299 	/*
11300 	 * newidle_balance() disregards balance intervals, so we could
11301 	 * repeatedly reach this code, which would lead to balance_interval
11302 	 * skyrocketing in a short amount of time. Skip the balance_interval
11303 	 * increase logic to avoid that.
11304 	 */
11305 	if (env.idle == CPU_NEWLY_IDLE)
11306 		goto out;
11307 
11308 	/* tune up the balancing interval */
11309 	if ((env.flags & LBF_ALL_PINNED &&
11310 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11311 	    sd->balance_interval < sd->max_interval)
11312 		sd->balance_interval *= 2;
11313 out:
11314 	return ld_moved;
11315 }
11316 
11317 static inline unsigned long
11318 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11319 {
11320 	unsigned long interval = sd->balance_interval;
11321 
11322 	if (cpu_busy)
11323 		interval *= sd->busy_factor;
11324 
11325 	/* scale ms to jiffies */
11326 	interval = msecs_to_jiffies(interval);
11327 
11328 	/*
11329 	 * Reduce likelihood of busy balancing at higher domains racing with
11330 	 * balancing at lower domains by preventing their balancing periods
11331 	 * from being multiples of each other.
11332 	 */
11333 	if (cpu_busy)
11334 		interval -= 1;
11335 
11336 	interval = clamp(interval, 1UL, max_load_balance_interval);
11337 
11338 	return interval;
11339 }
11340 
11341 static inline void
11342 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11343 {
11344 	unsigned long interval, next;
11345 
11346 	/* used by idle balance, so cpu_busy = 0 */
11347 	interval = get_sd_balance_interval(sd, 0);
11348 	next = sd->last_balance + interval;
11349 
11350 	if (time_after(*next_balance, next))
11351 		*next_balance = next;
11352 }
11353 
11354 /*
11355  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11356  * running tasks off the busiest CPU onto idle CPUs. It requires at
11357  * least 1 task to be running on each physical CPU where possible, and
11358  * avoids physical / logical imbalances.
11359  */
11360 static int active_load_balance_cpu_stop(void *data)
11361 {
11362 	struct rq *busiest_rq = data;
11363 	int busiest_cpu = cpu_of(busiest_rq);
11364 	int target_cpu = busiest_rq->push_cpu;
11365 	struct rq *target_rq = cpu_rq(target_cpu);
11366 	struct sched_domain *sd;
11367 	struct task_struct *p = NULL;
11368 	struct rq_flags rf;
11369 
11370 	rq_lock_irq(busiest_rq, &rf);
11371 	/*
11372 	 * Between queueing the stop-work and running it is a hole in which
11373 	 * CPUs can become inactive. We should not move tasks from or to
11374 	 * inactive CPUs.
11375 	 */
11376 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11377 		goto out_unlock;
11378 
11379 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11380 	if (unlikely(busiest_cpu != smp_processor_id() ||
11381 		     !busiest_rq->active_balance))
11382 		goto out_unlock;
11383 
11384 	/* Is there any task to move? */
11385 	if (busiest_rq->nr_running <= 1)
11386 		goto out_unlock;
11387 
11388 	/*
11389 	 * This condition is "impossible", if it occurs
11390 	 * we need to fix it. Originally reported by
11391 	 * Bjorn Helgaas on a 128-CPU setup.
11392 	 */
11393 	WARN_ON_ONCE(busiest_rq == target_rq);
11394 
11395 	/* Search for an sd spanning us and the target CPU. */
11396 	rcu_read_lock();
11397 	for_each_domain(target_cpu, sd) {
11398 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11399 			break;
11400 	}
11401 
11402 	if (likely(sd)) {
11403 		struct lb_env env = {
11404 			.sd		= sd,
11405 			.dst_cpu	= target_cpu,
11406 			.dst_rq		= target_rq,
11407 			.src_cpu	= busiest_rq->cpu,
11408 			.src_rq		= busiest_rq,
11409 			.idle		= CPU_IDLE,
11410 			.flags		= LBF_ACTIVE_LB,
11411 		};
11412 
11413 		schedstat_inc(sd->alb_count);
11414 		update_rq_clock(busiest_rq);
11415 
11416 		p = detach_one_task(&env);
11417 		if (p) {
11418 			schedstat_inc(sd->alb_pushed);
11419 			/* Active balancing done, reset the failure counter. */
11420 			sd->nr_balance_failed = 0;
11421 		} else {
11422 			schedstat_inc(sd->alb_failed);
11423 		}
11424 	}
11425 	rcu_read_unlock();
11426 out_unlock:
11427 	busiest_rq->active_balance = 0;
11428 	rq_unlock(busiest_rq, &rf);
11429 
11430 	if (p)
11431 		attach_one_task(target_rq, p);
11432 
11433 	local_irq_enable();
11434 
11435 	return 0;
11436 }
11437 
11438 static DEFINE_SPINLOCK(balancing);
11439 
11440 /*
11441  * Scale the max load_balance interval with the number of CPUs in the system.
11442  * This trades load-balance latency on larger machines for less cross talk.
11443  */
11444 void update_max_interval(void)
11445 {
11446 	max_load_balance_interval = HZ*num_online_cpus()/10;
11447 }
11448 
11449 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11450 {
11451 	if (cost > sd->max_newidle_lb_cost) {
11452 		/*
11453 		 * Track max cost of a domain to make sure to not delay the
11454 		 * next wakeup on the CPU.
11455 		 */
11456 		sd->max_newidle_lb_cost = cost;
11457 		sd->last_decay_max_lb_cost = jiffies;
11458 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11459 		/*
11460 		 * Decay the newidle max times by ~1% per second to ensure that
11461 		 * it is not outdated and the current max cost is actually
11462 		 * shorter.
11463 		 */
11464 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11465 		sd->last_decay_max_lb_cost = jiffies;
11466 
11467 		return true;
11468 	}
11469 
11470 	return false;
11471 }
11472 
11473 /*
11474  * It checks each scheduling domain to see if it is due to be balanced,
11475  * and initiates a balancing operation if so.
11476  *
11477  * Balancing parameters are set up in init_sched_domains.
11478  */
11479 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11480 {
11481 	int continue_balancing = 1;
11482 	int cpu = rq->cpu;
11483 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11484 	unsigned long interval;
11485 	struct sched_domain *sd;
11486 	/* Earliest time when we have to do rebalance again */
11487 	unsigned long next_balance = jiffies + 60*HZ;
11488 	int update_next_balance = 0;
11489 	int need_serialize, need_decay = 0;
11490 	u64 max_cost = 0;
11491 
11492 	rcu_read_lock();
11493 	for_each_domain(cpu, sd) {
11494 		/*
11495 		 * Decay the newidle max times here because this is a regular
11496 		 * visit to all the domains.
11497 		 */
11498 		need_decay = update_newidle_cost(sd, 0);
11499 		max_cost += sd->max_newidle_lb_cost;
11500 
11501 		/*
11502 		 * Stop the load balance at this level. There is another
11503 		 * CPU in our sched group which is doing load balancing more
11504 		 * actively.
11505 		 */
11506 		if (!continue_balancing) {
11507 			if (need_decay)
11508 				continue;
11509 			break;
11510 		}
11511 
11512 		interval = get_sd_balance_interval(sd, busy);
11513 
11514 		need_serialize = sd->flags & SD_SERIALIZE;
11515 		if (need_serialize) {
11516 			if (!spin_trylock(&balancing))
11517 				goto out;
11518 		}
11519 
11520 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11521 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11522 				/*
11523 				 * The LBF_DST_PINNED logic could have changed
11524 				 * env->dst_cpu, so we can't know our idle
11525 				 * state even if we migrated tasks. Update it.
11526 				 */
11527 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11528 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11529 			}
11530 			sd->last_balance = jiffies;
11531 			interval = get_sd_balance_interval(sd, busy);
11532 		}
11533 		if (need_serialize)
11534 			spin_unlock(&balancing);
11535 out:
11536 		if (time_after(next_balance, sd->last_balance + interval)) {
11537 			next_balance = sd->last_balance + interval;
11538 			update_next_balance = 1;
11539 		}
11540 	}
11541 	if (need_decay) {
11542 		/*
11543 		 * Ensure the rq-wide value also decays but keep it at a
11544 		 * reasonable floor to avoid funnies with rq->avg_idle.
11545 		 */
11546 		rq->max_idle_balance_cost =
11547 			max((u64)sysctl_sched_migration_cost, max_cost);
11548 	}
11549 	rcu_read_unlock();
11550 
11551 	/*
11552 	 * next_balance will be updated only when there is a need.
11553 	 * When the cpu is attached to null domain for ex, it will not be
11554 	 * updated.
11555 	 */
11556 	if (likely(update_next_balance))
11557 		rq->next_balance = next_balance;
11558 
11559 }
11560 
11561 static inline int on_null_domain(struct rq *rq)
11562 {
11563 	return unlikely(!rcu_dereference_sched(rq->sd));
11564 }
11565 
11566 #ifdef CONFIG_NO_HZ_COMMON
11567 /*
11568  * idle load balancing details
11569  * - When one of the busy CPUs notice that there may be an idle rebalancing
11570  *   needed, they will kick the idle load balancer, which then does idle
11571  *   load balancing for all the idle CPUs.
11572  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
11573  *   anywhere yet.
11574  */
11575 
11576 static inline int find_new_ilb(void)
11577 {
11578 	int ilb;
11579 	const struct cpumask *hk_mask;
11580 
11581 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11582 
11583 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
11584 
11585 		if (ilb == smp_processor_id())
11586 			continue;
11587 
11588 		if (idle_cpu(ilb))
11589 			return ilb;
11590 	}
11591 
11592 	return nr_cpu_ids;
11593 }
11594 
11595 /*
11596  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
11597  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11598  */
11599 static void kick_ilb(unsigned int flags)
11600 {
11601 	int ilb_cpu;
11602 
11603 	/*
11604 	 * Increase nohz.next_balance only when if full ilb is triggered but
11605 	 * not if we only update stats.
11606 	 */
11607 	if (flags & NOHZ_BALANCE_KICK)
11608 		nohz.next_balance = jiffies+1;
11609 
11610 	ilb_cpu = find_new_ilb();
11611 
11612 	if (ilb_cpu >= nr_cpu_ids)
11613 		return;
11614 
11615 	/*
11616 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11617 	 * the first flag owns it; cleared by nohz_csd_func().
11618 	 */
11619 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11620 	if (flags & NOHZ_KICK_MASK)
11621 		return;
11622 
11623 	/*
11624 	 * This way we generate an IPI on the target CPU which
11625 	 * is idle. And the softirq performing nohz idle load balance
11626 	 * will be run before returning from the IPI.
11627 	 */
11628 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11629 }
11630 
11631 /*
11632  * Current decision point for kicking the idle load balancer in the presence
11633  * of idle CPUs in the system.
11634  */
11635 static void nohz_balancer_kick(struct rq *rq)
11636 {
11637 	unsigned long now = jiffies;
11638 	struct sched_domain_shared *sds;
11639 	struct sched_domain *sd;
11640 	int nr_busy, i, cpu = rq->cpu;
11641 	unsigned int flags = 0;
11642 
11643 	if (unlikely(rq->idle_balance))
11644 		return;
11645 
11646 	/*
11647 	 * We may be recently in ticked or tickless idle mode. At the first
11648 	 * busy tick after returning from idle, we will update the busy stats.
11649 	 */
11650 	nohz_balance_exit_idle(rq);
11651 
11652 	/*
11653 	 * None are in tickless mode and hence no need for NOHZ idle load
11654 	 * balancing.
11655 	 */
11656 	if (likely(!atomic_read(&nohz.nr_cpus)))
11657 		return;
11658 
11659 	if (READ_ONCE(nohz.has_blocked) &&
11660 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11661 		flags = NOHZ_STATS_KICK;
11662 
11663 	if (time_before(now, nohz.next_balance))
11664 		goto out;
11665 
11666 	if (rq->nr_running >= 2) {
11667 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11668 		goto out;
11669 	}
11670 
11671 	rcu_read_lock();
11672 
11673 	sd = rcu_dereference(rq->sd);
11674 	if (sd) {
11675 		/*
11676 		 * If there's a CFS task and the current CPU has reduced
11677 		 * capacity; kick the ILB to see if there's a better CPU to run
11678 		 * on.
11679 		 */
11680 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11681 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11682 			goto unlock;
11683 		}
11684 	}
11685 
11686 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11687 	if (sd) {
11688 		/*
11689 		 * When ASYM_PACKING; see if there's a more preferred CPU
11690 		 * currently idle; in which case, kick the ILB to move tasks
11691 		 * around.
11692 		 *
11693 		 * When balancing betwen cores, all the SMT siblings of the
11694 		 * preferred CPU must be idle.
11695 		 */
11696 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11697 			if (sched_use_asym_prio(sd, i) &&
11698 			    sched_asym_prefer(i, cpu)) {
11699 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11700 				goto unlock;
11701 			}
11702 		}
11703 	}
11704 
11705 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11706 	if (sd) {
11707 		/*
11708 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11709 		 * to run the misfit task on.
11710 		 */
11711 		if (check_misfit_status(rq, sd)) {
11712 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11713 			goto unlock;
11714 		}
11715 
11716 		/*
11717 		 * For asymmetric systems, we do not want to nicely balance
11718 		 * cache use, instead we want to embrace asymmetry and only
11719 		 * ensure tasks have enough CPU capacity.
11720 		 *
11721 		 * Skip the LLC logic because it's not relevant in that case.
11722 		 */
11723 		goto unlock;
11724 	}
11725 
11726 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11727 	if (sds) {
11728 		/*
11729 		 * If there is an imbalance between LLC domains (IOW we could
11730 		 * increase the overall cache use), we need some less-loaded LLC
11731 		 * domain to pull some load. Likewise, we may need to spread
11732 		 * load within the current LLC domain (e.g. packed SMT cores but
11733 		 * other CPUs are idle). We can't really know from here how busy
11734 		 * the others are - so just get a nohz balance going if it looks
11735 		 * like this LLC domain has tasks we could move.
11736 		 */
11737 		nr_busy = atomic_read(&sds->nr_busy_cpus);
11738 		if (nr_busy > 1) {
11739 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11740 			goto unlock;
11741 		}
11742 	}
11743 unlock:
11744 	rcu_read_unlock();
11745 out:
11746 	if (READ_ONCE(nohz.needs_update))
11747 		flags |= NOHZ_NEXT_KICK;
11748 
11749 	if (flags)
11750 		kick_ilb(flags);
11751 }
11752 
11753 static void set_cpu_sd_state_busy(int cpu)
11754 {
11755 	struct sched_domain *sd;
11756 
11757 	rcu_read_lock();
11758 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11759 
11760 	if (!sd || !sd->nohz_idle)
11761 		goto unlock;
11762 	sd->nohz_idle = 0;
11763 
11764 	atomic_inc(&sd->shared->nr_busy_cpus);
11765 unlock:
11766 	rcu_read_unlock();
11767 }
11768 
11769 void nohz_balance_exit_idle(struct rq *rq)
11770 {
11771 	SCHED_WARN_ON(rq != this_rq());
11772 
11773 	if (likely(!rq->nohz_tick_stopped))
11774 		return;
11775 
11776 	rq->nohz_tick_stopped = 0;
11777 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11778 	atomic_dec(&nohz.nr_cpus);
11779 
11780 	set_cpu_sd_state_busy(rq->cpu);
11781 }
11782 
11783 static void set_cpu_sd_state_idle(int cpu)
11784 {
11785 	struct sched_domain *sd;
11786 
11787 	rcu_read_lock();
11788 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11789 
11790 	if (!sd || sd->nohz_idle)
11791 		goto unlock;
11792 	sd->nohz_idle = 1;
11793 
11794 	atomic_dec(&sd->shared->nr_busy_cpus);
11795 unlock:
11796 	rcu_read_unlock();
11797 }
11798 
11799 /*
11800  * This routine will record that the CPU is going idle with tick stopped.
11801  * This info will be used in performing idle load balancing in the future.
11802  */
11803 void nohz_balance_enter_idle(int cpu)
11804 {
11805 	struct rq *rq = cpu_rq(cpu);
11806 
11807 	SCHED_WARN_ON(cpu != smp_processor_id());
11808 
11809 	/* If this CPU is going down, then nothing needs to be done: */
11810 	if (!cpu_active(cpu))
11811 		return;
11812 
11813 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
11814 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
11815 		return;
11816 
11817 	/*
11818 	 * Can be set safely without rq->lock held
11819 	 * If a clear happens, it will have evaluated last additions because
11820 	 * rq->lock is held during the check and the clear
11821 	 */
11822 	rq->has_blocked_load = 1;
11823 
11824 	/*
11825 	 * The tick is still stopped but load could have been added in the
11826 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
11827 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11828 	 * of nohz.has_blocked can only happen after checking the new load
11829 	 */
11830 	if (rq->nohz_tick_stopped)
11831 		goto out;
11832 
11833 	/* If we're a completely isolated CPU, we don't play: */
11834 	if (on_null_domain(rq))
11835 		return;
11836 
11837 	rq->nohz_tick_stopped = 1;
11838 
11839 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11840 	atomic_inc(&nohz.nr_cpus);
11841 
11842 	/*
11843 	 * Ensures that if nohz_idle_balance() fails to observe our
11844 	 * @idle_cpus_mask store, it must observe the @has_blocked
11845 	 * and @needs_update stores.
11846 	 */
11847 	smp_mb__after_atomic();
11848 
11849 	set_cpu_sd_state_idle(cpu);
11850 
11851 	WRITE_ONCE(nohz.needs_update, 1);
11852 out:
11853 	/*
11854 	 * Each time a cpu enter idle, we assume that it has blocked load and
11855 	 * enable the periodic update of the load of idle cpus
11856 	 */
11857 	WRITE_ONCE(nohz.has_blocked, 1);
11858 }
11859 
11860 static bool update_nohz_stats(struct rq *rq)
11861 {
11862 	unsigned int cpu = rq->cpu;
11863 
11864 	if (!rq->has_blocked_load)
11865 		return false;
11866 
11867 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
11868 		return false;
11869 
11870 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
11871 		return true;
11872 
11873 	update_blocked_averages(cpu);
11874 
11875 	return rq->has_blocked_load;
11876 }
11877 
11878 /*
11879  * Internal function that runs load balance for all idle cpus. The load balance
11880  * can be a simple update of blocked load or a complete load balance with
11881  * tasks movement depending of flags.
11882  */
11883 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
11884 {
11885 	/* Earliest time when we have to do rebalance again */
11886 	unsigned long now = jiffies;
11887 	unsigned long next_balance = now + 60*HZ;
11888 	bool has_blocked_load = false;
11889 	int update_next_balance = 0;
11890 	int this_cpu = this_rq->cpu;
11891 	int balance_cpu;
11892 	struct rq *rq;
11893 
11894 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
11895 
11896 	/*
11897 	 * We assume there will be no idle load after this update and clear
11898 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
11899 	 * set the has_blocked flag and trigger another update of idle load.
11900 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
11901 	 * setting the flag, we are sure to not clear the state and not
11902 	 * check the load of an idle cpu.
11903 	 *
11904 	 * Same applies to idle_cpus_mask vs needs_update.
11905 	 */
11906 	if (flags & NOHZ_STATS_KICK)
11907 		WRITE_ONCE(nohz.has_blocked, 0);
11908 	if (flags & NOHZ_NEXT_KICK)
11909 		WRITE_ONCE(nohz.needs_update, 0);
11910 
11911 	/*
11912 	 * Ensures that if we miss the CPU, we must see the has_blocked
11913 	 * store from nohz_balance_enter_idle().
11914 	 */
11915 	smp_mb();
11916 
11917 	/*
11918 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
11919 	 * chance for other idle cpu to pull load.
11920 	 */
11921 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
11922 		if (!idle_cpu(balance_cpu))
11923 			continue;
11924 
11925 		/*
11926 		 * If this CPU gets work to do, stop the load balancing
11927 		 * work being done for other CPUs. Next load
11928 		 * balancing owner will pick it up.
11929 		 */
11930 		if (need_resched()) {
11931 			if (flags & NOHZ_STATS_KICK)
11932 				has_blocked_load = true;
11933 			if (flags & NOHZ_NEXT_KICK)
11934 				WRITE_ONCE(nohz.needs_update, 1);
11935 			goto abort;
11936 		}
11937 
11938 		rq = cpu_rq(balance_cpu);
11939 
11940 		if (flags & NOHZ_STATS_KICK)
11941 			has_blocked_load |= update_nohz_stats(rq);
11942 
11943 		/*
11944 		 * If time for next balance is due,
11945 		 * do the balance.
11946 		 */
11947 		if (time_after_eq(jiffies, rq->next_balance)) {
11948 			struct rq_flags rf;
11949 
11950 			rq_lock_irqsave(rq, &rf);
11951 			update_rq_clock(rq);
11952 			rq_unlock_irqrestore(rq, &rf);
11953 
11954 			if (flags & NOHZ_BALANCE_KICK)
11955 				rebalance_domains(rq, CPU_IDLE);
11956 		}
11957 
11958 		if (time_after(next_balance, rq->next_balance)) {
11959 			next_balance = rq->next_balance;
11960 			update_next_balance = 1;
11961 		}
11962 	}
11963 
11964 	/*
11965 	 * next_balance will be updated only when there is a need.
11966 	 * When the CPU is attached to null domain for ex, it will not be
11967 	 * updated.
11968 	 */
11969 	if (likely(update_next_balance))
11970 		nohz.next_balance = next_balance;
11971 
11972 	if (flags & NOHZ_STATS_KICK)
11973 		WRITE_ONCE(nohz.next_blocked,
11974 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
11975 
11976 abort:
11977 	/* There is still blocked load, enable periodic update */
11978 	if (has_blocked_load)
11979 		WRITE_ONCE(nohz.has_blocked, 1);
11980 }
11981 
11982 /*
11983  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11984  * rebalancing for all the cpus for whom scheduler ticks are stopped.
11985  */
11986 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11987 {
11988 	unsigned int flags = this_rq->nohz_idle_balance;
11989 
11990 	if (!flags)
11991 		return false;
11992 
11993 	this_rq->nohz_idle_balance = 0;
11994 
11995 	if (idle != CPU_IDLE)
11996 		return false;
11997 
11998 	_nohz_idle_balance(this_rq, flags);
11999 
12000 	return true;
12001 }
12002 
12003 /*
12004  * Check if we need to run the ILB for updating blocked load before entering
12005  * idle state.
12006  */
12007 void nohz_run_idle_balance(int cpu)
12008 {
12009 	unsigned int flags;
12010 
12011 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12012 
12013 	/*
12014 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12015 	 * (ie NOHZ_STATS_KICK set) and will do the same.
12016 	 */
12017 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12018 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12019 }
12020 
12021 static void nohz_newidle_balance(struct rq *this_rq)
12022 {
12023 	int this_cpu = this_rq->cpu;
12024 
12025 	/*
12026 	 * This CPU doesn't want to be disturbed by scheduler
12027 	 * housekeeping
12028 	 */
12029 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12030 		return;
12031 
12032 	/* Will wake up very soon. No time for doing anything else*/
12033 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12034 		return;
12035 
12036 	/* Don't need to update blocked load of idle CPUs*/
12037 	if (!READ_ONCE(nohz.has_blocked) ||
12038 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12039 		return;
12040 
12041 	/*
12042 	 * Set the need to trigger ILB in order to update blocked load
12043 	 * before entering idle state.
12044 	 */
12045 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12046 }
12047 
12048 #else /* !CONFIG_NO_HZ_COMMON */
12049 static inline void nohz_balancer_kick(struct rq *rq) { }
12050 
12051 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12052 {
12053 	return false;
12054 }
12055 
12056 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12057 #endif /* CONFIG_NO_HZ_COMMON */
12058 
12059 /*
12060  * newidle_balance is called by schedule() if this_cpu is about to become
12061  * idle. Attempts to pull tasks from other CPUs.
12062  *
12063  * Returns:
12064  *   < 0 - we released the lock and there are !fair tasks present
12065  *     0 - failed, no new tasks
12066  *   > 0 - success, new (fair) tasks present
12067  */
12068 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12069 {
12070 	unsigned long next_balance = jiffies + HZ;
12071 	int this_cpu = this_rq->cpu;
12072 	u64 t0, t1, curr_cost = 0;
12073 	struct sched_domain *sd;
12074 	int pulled_task = 0;
12075 
12076 	update_misfit_status(NULL, this_rq);
12077 
12078 	/*
12079 	 * There is a task waiting to run. No need to search for one.
12080 	 * Return 0; the task will be enqueued when switching to idle.
12081 	 */
12082 	if (this_rq->ttwu_pending)
12083 		return 0;
12084 
12085 	/*
12086 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
12087 	 * measure the duration of idle_balance() as idle time.
12088 	 */
12089 	this_rq->idle_stamp = rq_clock(this_rq);
12090 
12091 	/*
12092 	 * Do not pull tasks towards !active CPUs...
12093 	 */
12094 	if (!cpu_active(this_cpu))
12095 		return 0;
12096 
12097 	/*
12098 	 * This is OK, because current is on_cpu, which avoids it being picked
12099 	 * for load-balance and preemption/IRQs are still disabled avoiding
12100 	 * further scheduler activity on it and we're being very careful to
12101 	 * re-start the picking loop.
12102 	 */
12103 	rq_unpin_lock(this_rq, rf);
12104 
12105 	rcu_read_lock();
12106 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12107 
12108 	if (!READ_ONCE(this_rq->rd->overload) ||
12109 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12110 
12111 		if (sd)
12112 			update_next_balance(sd, &next_balance);
12113 		rcu_read_unlock();
12114 
12115 		goto out;
12116 	}
12117 	rcu_read_unlock();
12118 
12119 	raw_spin_rq_unlock(this_rq);
12120 
12121 	t0 = sched_clock_cpu(this_cpu);
12122 	update_blocked_averages(this_cpu);
12123 
12124 	rcu_read_lock();
12125 	for_each_domain(this_cpu, sd) {
12126 		int continue_balancing = 1;
12127 		u64 domain_cost;
12128 
12129 		update_next_balance(sd, &next_balance);
12130 
12131 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12132 			break;
12133 
12134 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12135 
12136 			pulled_task = load_balance(this_cpu, this_rq,
12137 						   sd, CPU_NEWLY_IDLE,
12138 						   &continue_balancing);
12139 
12140 			t1 = sched_clock_cpu(this_cpu);
12141 			domain_cost = t1 - t0;
12142 			update_newidle_cost(sd, domain_cost);
12143 
12144 			curr_cost += domain_cost;
12145 			t0 = t1;
12146 		}
12147 
12148 		/*
12149 		 * Stop searching for tasks to pull if there are
12150 		 * now runnable tasks on this rq.
12151 		 */
12152 		if (pulled_task || this_rq->nr_running > 0 ||
12153 		    this_rq->ttwu_pending)
12154 			break;
12155 	}
12156 	rcu_read_unlock();
12157 
12158 	raw_spin_rq_lock(this_rq);
12159 
12160 	if (curr_cost > this_rq->max_idle_balance_cost)
12161 		this_rq->max_idle_balance_cost = curr_cost;
12162 
12163 	/*
12164 	 * While browsing the domains, we released the rq lock, a task could
12165 	 * have been enqueued in the meantime. Since we're not going idle,
12166 	 * pretend we pulled a task.
12167 	 */
12168 	if (this_rq->cfs.h_nr_running && !pulled_task)
12169 		pulled_task = 1;
12170 
12171 	/* Is there a task of a high priority class? */
12172 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12173 		pulled_task = -1;
12174 
12175 out:
12176 	/* Move the next balance forward */
12177 	if (time_after(this_rq->next_balance, next_balance))
12178 		this_rq->next_balance = next_balance;
12179 
12180 	if (pulled_task)
12181 		this_rq->idle_stamp = 0;
12182 	else
12183 		nohz_newidle_balance(this_rq);
12184 
12185 	rq_repin_lock(this_rq, rf);
12186 
12187 	return pulled_task;
12188 }
12189 
12190 /*
12191  * run_rebalance_domains is triggered when needed from the scheduler tick.
12192  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12193  */
12194 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12195 {
12196 	struct rq *this_rq = this_rq();
12197 	enum cpu_idle_type idle = this_rq->idle_balance ?
12198 						CPU_IDLE : CPU_NOT_IDLE;
12199 
12200 	/*
12201 	 * If this CPU has a pending nohz_balance_kick, then do the
12202 	 * balancing on behalf of the other idle CPUs whose ticks are
12203 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12204 	 * give the idle CPUs a chance to load balance. Else we may
12205 	 * load balance only within the local sched_domain hierarchy
12206 	 * and abort nohz_idle_balance altogether if we pull some load.
12207 	 */
12208 	if (nohz_idle_balance(this_rq, idle))
12209 		return;
12210 
12211 	/* normal load balance */
12212 	update_blocked_averages(this_rq->cpu);
12213 	rebalance_domains(this_rq, idle);
12214 }
12215 
12216 /*
12217  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12218  */
12219 void trigger_load_balance(struct rq *rq)
12220 {
12221 	/*
12222 	 * Don't need to rebalance while attached to NULL domain or
12223 	 * runqueue CPU is not active
12224 	 */
12225 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12226 		return;
12227 
12228 	if (time_after_eq(jiffies, rq->next_balance))
12229 		raise_softirq(SCHED_SOFTIRQ);
12230 
12231 	nohz_balancer_kick(rq);
12232 }
12233 
12234 static void rq_online_fair(struct rq *rq)
12235 {
12236 	update_sysctl();
12237 
12238 	update_runtime_enabled(rq);
12239 }
12240 
12241 static void rq_offline_fair(struct rq *rq)
12242 {
12243 	update_sysctl();
12244 
12245 	/* Ensure any throttled groups are reachable by pick_next_task */
12246 	unthrottle_offline_cfs_rqs(rq);
12247 }
12248 
12249 #endif /* CONFIG_SMP */
12250 
12251 #ifdef CONFIG_SCHED_CORE
12252 static inline bool
12253 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12254 {
12255 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12256 	u64 slice = se->slice;
12257 
12258 	return (rtime * min_nr_tasks > slice);
12259 }
12260 
12261 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12262 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12263 {
12264 	if (!sched_core_enabled(rq))
12265 		return;
12266 
12267 	/*
12268 	 * If runqueue has only one task which used up its slice and
12269 	 * if the sibling is forced idle, then trigger schedule to
12270 	 * give forced idle task a chance.
12271 	 *
12272 	 * sched_slice() considers only this active rq and it gets the
12273 	 * whole slice. But during force idle, we have siblings acting
12274 	 * like a single runqueue and hence we need to consider runnable
12275 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12276 	 * go through the forced idle rq, but that would be a perf hit.
12277 	 * We can assume that the forced idle CPU has at least
12278 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12279 	 * if we need to give up the CPU.
12280 	 */
12281 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12282 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12283 		resched_curr(rq);
12284 }
12285 
12286 /*
12287  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12288  */
12289 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12290 			 bool forceidle)
12291 {
12292 	for_each_sched_entity(se) {
12293 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12294 
12295 		if (forceidle) {
12296 			if (cfs_rq->forceidle_seq == fi_seq)
12297 				break;
12298 			cfs_rq->forceidle_seq = fi_seq;
12299 		}
12300 
12301 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12302 	}
12303 }
12304 
12305 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12306 {
12307 	struct sched_entity *se = &p->se;
12308 
12309 	if (p->sched_class != &fair_sched_class)
12310 		return;
12311 
12312 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12313 }
12314 
12315 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12316 			bool in_fi)
12317 {
12318 	struct rq *rq = task_rq(a);
12319 	const struct sched_entity *sea = &a->se;
12320 	const struct sched_entity *seb = &b->se;
12321 	struct cfs_rq *cfs_rqa;
12322 	struct cfs_rq *cfs_rqb;
12323 	s64 delta;
12324 
12325 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12326 
12327 #ifdef CONFIG_FAIR_GROUP_SCHED
12328 	/*
12329 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12330 	 * are immediate siblings.
12331 	 */
12332 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12333 		int sea_depth = sea->depth;
12334 		int seb_depth = seb->depth;
12335 
12336 		if (sea_depth >= seb_depth)
12337 			sea = parent_entity(sea);
12338 		if (sea_depth <= seb_depth)
12339 			seb = parent_entity(seb);
12340 	}
12341 
12342 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12343 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12344 
12345 	cfs_rqa = sea->cfs_rq;
12346 	cfs_rqb = seb->cfs_rq;
12347 #else
12348 	cfs_rqa = &task_rq(a)->cfs;
12349 	cfs_rqb = &task_rq(b)->cfs;
12350 #endif
12351 
12352 	/*
12353 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12354 	 * min_vruntime_fi, which would have been updated in prior calls
12355 	 * to se_fi_update().
12356 	 */
12357 	delta = (s64)(sea->vruntime - seb->vruntime) +
12358 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12359 
12360 	return delta > 0;
12361 }
12362 
12363 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12364 {
12365 	struct cfs_rq *cfs_rq;
12366 
12367 #ifdef CONFIG_FAIR_GROUP_SCHED
12368 	cfs_rq = task_group(p)->cfs_rq[cpu];
12369 #else
12370 	cfs_rq = &cpu_rq(cpu)->cfs;
12371 #endif
12372 	return throttled_hierarchy(cfs_rq);
12373 }
12374 #else
12375 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12376 #endif
12377 
12378 /*
12379  * scheduler tick hitting a task of our scheduling class.
12380  *
12381  * NOTE: This function can be called remotely by the tick offload that
12382  * goes along full dynticks. Therefore no local assumption can be made
12383  * and everything must be accessed through the @rq and @curr passed in
12384  * parameters.
12385  */
12386 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12387 {
12388 	struct cfs_rq *cfs_rq;
12389 	struct sched_entity *se = &curr->se;
12390 
12391 	for_each_sched_entity(se) {
12392 		cfs_rq = cfs_rq_of(se);
12393 		entity_tick(cfs_rq, se, queued);
12394 	}
12395 
12396 	if (static_branch_unlikely(&sched_numa_balancing))
12397 		task_tick_numa(rq, curr);
12398 
12399 	update_misfit_status(curr, rq);
12400 	update_overutilized_status(task_rq(curr));
12401 
12402 	task_tick_core(rq, curr);
12403 }
12404 
12405 /*
12406  * called on fork with the child task as argument from the parent's context
12407  *  - child not yet on the tasklist
12408  *  - preemption disabled
12409  */
12410 static void task_fork_fair(struct task_struct *p)
12411 {
12412 	struct sched_entity *se = &p->se, *curr;
12413 	struct cfs_rq *cfs_rq;
12414 	struct rq *rq = this_rq();
12415 	struct rq_flags rf;
12416 
12417 	rq_lock(rq, &rf);
12418 	update_rq_clock(rq);
12419 
12420 	cfs_rq = task_cfs_rq(current);
12421 	curr = cfs_rq->curr;
12422 	if (curr)
12423 		update_curr(cfs_rq);
12424 	place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12425 	rq_unlock(rq, &rf);
12426 }
12427 
12428 /*
12429  * Priority of the task has changed. Check to see if we preempt
12430  * the current task.
12431  */
12432 static void
12433 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12434 {
12435 	if (!task_on_rq_queued(p))
12436 		return;
12437 
12438 	if (rq->cfs.nr_running == 1)
12439 		return;
12440 
12441 	/*
12442 	 * Reschedule if we are currently running on this runqueue and
12443 	 * our priority decreased, or if we are not currently running on
12444 	 * this runqueue and our priority is higher than the current's
12445 	 */
12446 	if (task_current(rq, p)) {
12447 		if (p->prio > oldprio)
12448 			resched_curr(rq);
12449 	} else
12450 		check_preempt_curr(rq, p, 0);
12451 }
12452 
12453 #ifdef CONFIG_FAIR_GROUP_SCHED
12454 /*
12455  * Propagate the changes of the sched_entity across the tg tree to make it
12456  * visible to the root
12457  */
12458 static void propagate_entity_cfs_rq(struct sched_entity *se)
12459 {
12460 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12461 
12462 	if (cfs_rq_throttled(cfs_rq))
12463 		return;
12464 
12465 	if (!throttled_hierarchy(cfs_rq))
12466 		list_add_leaf_cfs_rq(cfs_rq);
12467 
12468 	/* Start to propagate at parent */
12469 	se = se->parent;
12470 
12471 	for_each_sched_entity(se) {
12472 		cfs_rq = cfs_rq_of(se);
12473 
12474 		update_load_avg(cfs_rq, se, UPDATE_TG);
12475 
12476 		if (cfs_rq_throttled(cfs_rq))
12477 			break;
12478 
12479 		if (!throttled_hierarchy(cfs_rq))
12480 			list_add_leaf_cfs_rq(cfs_rq);
12481 	}
12482 }
12483 #else
12484 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12485 #endif
12486 
12487 static void detach_entity_cfs_rq(struct sched_entity *se)
12488 {
12489 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12490 
12491 #ifdef CONFIG_SMP
12492 	/*
12493 	 * In case the task sched_avg hasn't been attached:
12494 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12495 	 * - A task which has been woken up by try_to_wake_up() but is
12496 	 *   waiting for actually being woken up by sched_ttwu_pending().
12497 	 */
12498 	if (!se->avg.last_update_time)
12499 		return;
12500 #endif
12501 
12502 	/* Catch up with the cfs_rq and remove our load when we leave */
12503 	update_load_avg(cfs_rq, se, 0);
12504 	detach_entity_load_avg(cfs_rq, se);
12505 	update_tg_load_avg(cfs_rq);
12506 	propagate_entity_cfs_rq(se);
12507 }
12508 
12509 static void attach_entity_cfs_rq(struct sched_entity *se)
12510 {
12511 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12512 
12513 	/* Synchronize entity with its cfs_rq */
12514 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12515 	attach_entity_load_avg(cfs_rq, se);
12516 	update_tg_load_avg(cfs_rq);
12517 	propagate_entity_cfs_rq(se);
12518 }
12519 
12520 static void detach_task_cfs_rq(struct task_struct *p)
12521 {
12522 	struct sched_entity *se = &p->se;
12523 
12524 	detach_entity_cfs_rq(se);
12525 }
12526 
12527 static void attach_task_cfs_rq(struct task_struct *p)
12528 {
12529 	struct sched_entity *se = &p->se;
12530 
12531 	attach_entity_cfs_rq(se);
12532 }
12533 
12534 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12535 {
12536 	detach_task_cfs_rq(p);
12537 }
12538 
12539 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12540 {
12541 	attach_task_cfs_rq(p);
12542 
12543 	if (task_on_rq_queued(p)) {
12544 		/*
12545 		 * We were most likely switched from sched_rt, so
12546 		 * kick off the schedule if running, otherwise just see
12547 		 * if we can still preempt the current task.
12548 		 */
12549 		if (task_current(rq, p))
12550 			resched_curr(rq);
12551 		else
12552 			check_preempt_curr(rq, p, 0);
12553 	}
12554 }
12555 
12556 /* Account for a task changing its policy or group.
12557  *
12558  * This routine is mostly called to set cfs_rq->curr field when a task
12559  * migrates between groups/classes.
12560  */
12561 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12562 {
12563 	struct sched_entity *se = &p->se;
12564 
12565 #ifdef CONFIG_SMP
12566 	if (task_on_rq_queued(p)) {
12567 		/*
12568 		 * Move the next running task to the front of the list, so our
12569 		 * cfs_tasks list becomes MRU one.
12570 		 */
12571 		list_move(&se->group_node, &rq->cfs_tasks);
12572 	}
12573 #endif
12574 
12575 	for_each_sched_entity(se) {
12576 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12577 
12578 		set_next_entity(cfs_rq, se);
12579 		/* ensure bandwidth has been allocated on our new cfs_rq */
12580 		account_cfs_rq_runtime(cfs_rq, 0);
12581 	}
12582 }
12583 
12584 void init_cfs_rq(struct cfs_rq *cfs_rq)
12585 {
12586 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12587 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12588 #ifdef CONFIG_SMP
12589 	raw_spin_lock_init(&cfs_rq->removed.lock);
12590 #endif
12591 }
12592 
12593 #ifdef CONFIG_FAIR_GROUP_SCHED
12594 static void task_change_group_fair(struct task_struct *p)
12595 {
12596 	/*
12597 	 * We couldn't detach or attach a forked task which
12598 	 * hasn't been woken up by wake_up_new_task().
12599 	 */
12600 	if (READ_ONCE(p->__state) == TASK_NEW)
12601 		return;
12602 
12603 	detach_task_cfs_rq(p);
12604 
12605 #ifdef CONFIG_SMP
12606 	/* Tell se's cfs_rq has been changed -- migrated */
12607 	p->se.avg.last_update_time = 0;
12608 #endif
12609 	set_task_rq(p, task_cpu(p));
12610 	attach_task_cfs_rq(p);
12611 }
12612 
12613 void free_fair_sched_group(struct task_group *tg)
12614 {
12615 	int i;
12616 
12617 	for_each_possible_cpu(i) {
12618 		if (tg->cfs_rq)
12619 			kfree(tg->cfs_rq[i]);
12620 		if (tg->se)
12621 			kfree(tg->se[i]);
12622 	}
12623 
12624 	kfree(tg->cfs_rq);
12625 	kfree(tg->se);
12626 }
12627 
12628 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12629 {
12630 	struct sched_entity *se;
12631 	struct cfs_rq *cfs_rq;
12632 	int i;
12633 
12634 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12635 	if (!tg->cfs_rq)
12636 		goto err;
12637 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12638 	if (!tg->se)
12639 		goto err;
12640 
12641 	tg->shares = NICE_0_LOAD;
12642 
12643 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12644 
12645 	for_each_possible_cpu(i) {
12646 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12647 				      GFP_KERNEL, cpu_to_node(i));
12648 		if (!cfs_rq)
12649 			goto err;
12650 
12651 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12652 				  GFP_KERNEL, cpu_to_node(i));
12653 		if (!se)
12654 			goto err_free_rq;
12655 
12656 		init_cfs_rq(cfs_rq);
12657 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12658 		init_entity_runnable_average(se);
12659 	}
12660 
12661 	return 1;
12662 
12663 err_free_rq:
12664 	kfree(cfs_rq);
12665 err:
12666 	return 0;
12667 }
12668 
12669 void online_fair_sched_group(struct task_group *tg)
12670 {
12671 	struct sched_entity *se;
12672 	struct rq_flags rf;
12673 	struct rq *rq;
12674 	int i;
12675 
12676 	for_each_possible_cpu(i) {
12677 		rq = cpu_rq(i);
12678 		se = tg->se[i];
12679 		rq_lock_irq(rq, &rf);
12680 		update_rq_clock(rq);
12681 		attach_entity_cfs_rq(se);
12682 		sync_throttle(tg, i);
12683 		rq_unlock_irq(rq, &rf);
12684 	}
12685 }
12686 
12687 void unregister_fair_sched_group(struct task_group *tg)
12688 {
12689 	unsigned long flags;
12690 	struct rq *rq;
12691 	int cpu;
12692 
12693 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12694 
12695 	for_each_possible_cpu(cpu) {
12696 		if (tg->se[cpu])
12697 			remove_entity_load_avg(tg->se[cpu]);
12698 
12699 		/*
12700 		 * Only empty task groups can be destroyed; so we can speculatively
12701 		 * check on_list without danger of it being re-added.
12702 		 */
12703 		if (!tg->cfs_rq[cpu]->on_list)
12704 			continue;
12705 
12706 		rq = cpu_rq(cpu);
12707 
12708 		raw_spin_rq_lock_irqsave(rq, flags);
12709 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12710 		raw_spin_rq_unlock_irqrestore(rq, flags);
12711 	}
12712 }
12713 
12714 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12715 			struct sched_entity *se, int cpu,
12716 			struct sched_entity *parent)
12717 {
12718 	struct rq *rq = cpu_rq(cpu);
12719 
12720 	cfs_rq->tg = tg;
12721 	cfs_rq->rq = rq;
12722 	init_cfs_rq_runtime(cfs_rq);
12723 
12724 	tg->cfs_rq[cpu] = cfs_rq;
12725 	tg->se[cpu] = se;
12726 
12727 	/* se could be NULL for root_task_group */
12728 	if (!se)
12729 		return;
12730 
12731 	if (!parent) {
12732 		se->cfs_rq = &rq->cfs;
12733 		se->depth = 0;
12734 	} else {
12735 		se->cfs_rq = parent->my_q;
12736 		se->depth = parent->depth + 1;
12737 	}
12738 
12739 	se->my_q = cfs_rq;
12740 	/* guarantee group entities always have weight */
12741 	update_load_set(&se->load, NICE_0_LOAD);
12742 	se->parent = parent;
12743 }
12744 
12745 static DEFINE_MUTEX(shares_mutex);
12746 
12747 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12748 {
12749 	int i;
12750 
12751 	lockdep_assert_held(&shares_mutex);
12752 
12753 	/*
12754 	 * We can't change the weight of the root cgroup.
12755 	 */
12756 	if (!tg->se[0])
12757 		return -EINVAL;
12758 
12759 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12760 
12761 	if (tg->shares == shares)
12762 		return 0;
12763 
12764 	tg->shares = shares;
12765 	for_each_possible_cpu(i) {
12766 		struct rq *rq = cpu_rq(i);
12767 		struct sched_entity *se = tg->se[i];
12768 		struct rq_flags rf;
12769 
12770 		/* Propagate contribution to hierarchy */
12771 		rq_lock_irqsave(rq, &rf);
12772 		update_rq_clock(rq);
12773 		for_each_sched_entity(se) {
12774 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12775 			update_cfs_group(se);
12776 		}
12777 		rq_unlock_irqrestore(rq, &rf);
12778 	}
12779 
12780 	return 0;
12781 }
12782 
12783 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12784 {
12785 	int ret;
12786 
12787 	mutex_lock(&shares_mutex);
12788 	if (tg_is_idle(tg))
12789 		ret = -EINVAL;
12790 	else
12791 		ret = __sched_group_set_shares(tg, shares);
12792 	mutex_unlock(&shares_mutex);
12793 
12794 	return ret;
12795 }
12796 
12797 int sched_group_set_idle(struct task_group *tg, long idle)
12798 {
12799 	int i;
12800 
12801 	if (tg == &root_task_group)
12802 		return -EINVAL;
12803 
12804 	if (idle < 0 || idle > 1)
12805 		return -EINVAL;
12806 
12807 	mutex_lock(&shares_mutex);
12808 
12809 	if (tg->idle == idle) {
12810 		mutex_unlock(&shares_mutex);
12811 		return 0;
12812 	}
12813 
12814 	tg->idle = idle;
12815 
12816 	for_each_possible_cpu(i) {
12817 		struct rq *rq = cpu_rq(i);
12818 		struct sched_entity *se = tg->se[i];
12819 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
12820 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
12821 		long idle_task_delta;
12822 		struct rq_flags rf;
12823 
12824 		rq_lock_irqsave(rq, &rf);
12825 
12826 		grp_cfs_rq->idle = idle;
12827 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
12828 			goto next_cpu;
12829 
12830 		if (se->on_rq) {
12831 			parent_cfs_rq = cfs_rq_of(se);
12832 			if (cfs_rq_is_idle(grp_cfs_rq))
12833 				parent_cfs_rq->idle_nr_running++;
12834 			else
12835 				parent_cfs_rq->idle_nr_running--;
12836 		}
12837 
12838 		idle_task_delta = grp_cfs_rq->h_nr_running -
12839 				  grp_cfs_rq->idle_h_nr_running;
12840 		if (!cfs_rq_is_idle(grp_cfs_rq))
12841 			idle_task_delta *= -1;
12842 
12843 		for_each_sched_entity(se) {
12844 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
12845 
12846 			if (!se->on_rq)
12847 				break;
12848 
12849 			cfs_rq->idle_h_nr_running += idle_task_delta;
12850 
12851 			/* Already accounted at parent level and above. */
12852 			if (cfs_rq_is_idle(cfs_rq))
12853 				break;
12854 		}
12855 
12856 next_cpu:
12857 		rq_unlock_irqrestore(rq, &rf);
12858 	}
12859 
12860 	/* Idle groups have minimum weight. */
12861 	if (tg_is_idle(tg))
12862 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
12863 	else
12864 		__sched_group_set_shares(tg, NICE_0_LOAD);
12865 
12866 	mutex_unlock(&shares_mutex);
12867 	return 0;
12868 }
12869 
12870 #else /* CONFIG_FAIR_GROUP_SCHED */
12871 
12872 void free_fair_sched_group(struct task_group *tg) { }
12873 
12874 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12875 {
12876 	return 1;
12877 }
12878 
12879 void online_fair_sched_group(struct task_group *tg) { }
12880 
12881 void unregister_fair_sched_group(struct task_group *tg) { }
12882 
12883 #endif /* CONFIG_FAIR_GROUP_SCHED */
12884 
12885 
12886 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
12887 {
12888 	struct sched_entity *se = &task->se;
12889 	unsigned int rr_interval = 0;
12890 
12891 	/*
12892 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
12893 	 * idle runqueue:
12894 	 */
12895 	if (rq->cfs.load.weight)
12896 		rr_interval = NS_TO_JIFFIES(se->slice);
12897 
12898 	return rr_interval;
12899 }
12900 
12901 /*
12902  * All the scheduling class methods:
12903  */
12904 DEFINE_SCHED_CLASS(fair) = {
12905 
12906 	.enqueue_task		= enqueue_task_fair,
12907 	.dequeue_task		= dequeue_task_fair,
12908 	.yield_task		= yield_task_fair,
12909 	.yield_to_task		= yield_to_task_fair,
12910 
12911 	.check_preempt_curr	= check_preempt_wakeup,
12912 
12913 	.pick_next_task		= __pick_next_task_fair,
12914 	.put_prev_task		= put_prev_task_fair,
12915 	.set_next_task          = set_next_task_fair,
12916 
12917 #ifdef CONFIG_SMP
12918 	.balance		= balance_fair,
12919 	.pick_task		= pick_task_fair,
12920 	.select_task_rq		= select_task_rq_fair,
12921 	.migrate_task_rq	= migrate_task_rq_fair,
12922 
12923 	.rq_online		= rq_online_fair,
12924 	.rq_offline		= rq_offline_fair,
12925 
12926 	.task_dead		= task_dead_fair,
12927 	.set_cpus_allowed	= set_cpus_allowed_common,
12928 #endif
12929 
12930 	.task_tick		= task_tick_fair,
12931 	.task_fork		= task_fork_fair,
12932 
12933 	.prio_changed		= prio_changed_fair,
12934 	.switched_from		= switched_from_fair,
12935 	.switched_to		= switched_to_fair,
12936 
12937 	.get_rr_interval	= get_rr_interval_fair,
12938 
12939 	.update_curr		= update_curr_fair,
12940 
12941 #ifdef CONFIG_FAIR_GROUP_SCHED
12942 	.task_change_group	= task_change_group_fair,
12943 #endif
12944 
12945 #ifdef CONFIG_SCHED_CORE
12946 	.task_is_throttled	= task_is_throttled_fair,
12947 #endif
12948 
12949 #ifdef CONFIG_UCLAMP_TASK
12950 	.uclamp_enabled		= 1,
12951 #endif
12952 };
12953 
12954 #ifdef CONFIG_SCHED_DEBUG
12955 void print_cfs_stats(struct seq_file *m, int cpu)
12956 {
12957 	struct cfs_rq *cfs_rq, *pos;
12958 
12959 	rcu_read_lock();
12960 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
12961 		print_cfs_rq(m, cpu, cfs_rq);
12962 	rcu_read_unlock();
12963 }
12964 
12965 #ifdef CONFIG_NUMA_BALANCING
12966 void show_numa_stats(struct task_struct *p, struct seq_file *m)
12967 {
12968 	int node;
12969 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
12970 	struct numa_group *ng;
12971 
12972 	rcu_read_lock();
12973 	ng = rcu_dereference(p->numa_group);
12974 	for_each_online_node(node) {
12975 		if (p->numa_faults) {
12976 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12977 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12978 		}
12979 		if (ng) {
12980 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
12981 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
12982 		}
12983 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12984 	}
12985 	rcu_read_unlock();
12986 }
12987 #endif /* CONFIG_NUMA_BALANCING */
12988 #endif /* CONFIG_SCHED_DEBUG */
12989 
12990 __init void init_sched_fair_class(void)
12991 {
12992 #ifdef CONFIG_SMP
12993 	int i;
12994 
12995 	for_each_possible_cpu(i) {
12996 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
12997 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
12998 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
12999 					GFP_KERNEL, cpu_to_node(i));
13000 
13001 #ifdef CONFIG_CFS_BANDWIDTH
13002 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13003 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13004 #endif
13005 	}
13006 
13007 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13008 
13009 #ifdef CONFIG_NO_HZ_COMMON
13010 	nohz.next_balance = jiffies;
13011 	nohz.next_blocked = jiffies;
13012 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13013 #endif
13014 #endif /* SMP */
13015 
13016 }
13017