1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 21 */ 22 23 #include <linux/sched.h> 24 #include <linux/latencytop.h> 25 #include <linux/cpumask.h> 26 #include <linux/cpuidle.h> 27 #include <linux/slab.h> 28 #include <linux/profile.h> 29 #include <linux/interrupt.h> 30 #include <linux/mempolicy.h> 31 #include <linux/migrate.h> 32 #include <linux/task_work.h> 33 34 #include <trace/events/sched.h> 35 36 #include "sched.h" 37 38 /* 39 * Targeted preemption latency for CPU-bound tasks: 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 41 * 42 * NOTE: this latency value is not the same as the concept of 43 * 'timeslice length' - timeslices in CFS are of variable length 44 * and have no persistent notion like in traditional, time-slice 45 * based scheduling concepts. 46 * 47 * (to see the precise effective timeslice length of your workload, 48 * run vmstat and monitor the context-switches (cs) field) 49 */ 50 unsigned int sysctl_sched_latency = 6000000ULL; 51 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 52 53 /* 54 * The initial- and re-scaling of tunables is configurable 55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 56 * 57 * Options are: 58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 61 */ 62 enum sched_tunable_scaling sysctl_sched_tunable_scaling 63 = SCHED_TUNABLESCALING_LOG; 64 65 /* 66 * Minimal preemption granularity for CPU-bound tasks: 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 68 */ 69 unsigned int sysctl_sched_min_granularity = 750000ULL; 70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 71 72 /* 73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 74 */ 75 static unsigned int sched_nr_latency = 8; 76 77 /* 78 * After fork, child runs first. If set to 0 (default) then 79 * parent will (try to) run first. 80 */ 81 unsigned int sysctl_sched_child_runs_first __read_mostly; 82 83 /* 84 * SCHED_OTHER wake-up granularity. 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 86 * 87 * This option delays the preemption effects of decoupled workloads 88 * and reduces their over-scheduling. Synchronous workloads will still 89 * have immediate wakeup/sleep latencies. 90 */ 91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 93 94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 95 96 /* 97 * The exponential sliding window over which load is averaged for shares 98 * distribution. 99 * (default: 10msec) 100 */ 101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 102 103 #ifdef CONFIG_CFS_BANDWIDTH 104 /* 105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 106 * each time a cfs_rq requests quota. 107 * 108 * Note: in the case that the slice exceeds the runtime remaining (either due 109 * to consumption or the quota being specified to be smaller than the slice) 110 * we will always only issue the remaining available time. 111 * 112 * default: 5 msec, units: microseconds 113 */ 114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 115 #endif 116 117 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 118 { 119 lw->weight += inc; 120 lw->inv_weight = 0; 121 } 122 123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 124 { 125 lw->weight -= dec; 126 lw->inv_weight = 0; 127 } 128 129 static inline void update_load_set(struct load_weight *lw, unsigned long w) 130 { 131 lw->weight = w; 132 lw->inv_weight = 0; 133 } 134 135 /* 136 * Increase the granularity value when there are more CPUs, 137 * because with more CPUs the 'effective latency' as visible 138 * to users decreases. But the relationship is not linear, 139 * so pick a second-best guess by going with the log2 of the 140 * number of CPUs. 141 * 142 * This idea comes from the SD scheduler of Con Kolivas: 143 */ 144 static unsigned int get_update_sysctl_factor(void) 145 { 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 147 unsigned int factor; 148 149 switch (sysctl_sched_tunable_scaling) { 150 case SCHED_TUNABLESCALING_NONE: 151 factor = 1; 152 break; 153 case SCHED_TUNABLESCALING_LINEAR: 154 factor = cpus; 155 break; 156 case SCHED_TUNABLESCALING_LOG: 157 default: 158 factor = 1 + ilog2(cpus); 159 break; 160 } 161 162 return factor; 163 } 164 165 static void update_sysctl(void) 166 { 167 unsigned int factor = get_update_sysctl_factor(); 168 169 #define SET_SYSCTL(name) \ 170 (sysctl_##name = (factor) * normalized_sysctl_##name) 171 SET_SYSCTL(sched_min_granularity); 172 SET_SYSCTL(sched_latency); 173 SET_SYSCTL(sched_wakeup_granularity); 174 #undef SET_SYSCTL 175 } 176 177 void sched_init_granularity(void) 178 { 179 update_sysctl(); 180 } 181 182 #define WMULT_CONST (~0U) 183 #define WMULT_SHIFT 32 184 185 static void __update_inv_weight(struct load_weight *lw) 186 { 187 unsigned long w; 188 189 if (likely(lw->inv_weight)) 190 return; 191 192 w = scale_load_down(lw->weight); 193 194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 195 lw->inv_weight = 1; 196 else if (unlikely(!w)) 197 lw->inv_weight = WMULT_CONST; 198 else 199 lw->inv_weight = WMULT_CONST / w; 200 } 201 202 /* 203 * delta_exec * weight / lw.weight 204 * OR 205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 206 * 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 208 * we're guaranteed shift stays positive because inv_weight is guaranteed to 209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 210 * 211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 212 * weight/lw.weight <= 1, and therefore our shift will also be positive. 213 */ 214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 215 { 216 u64 fact = scale_load_down(weight); 217 int shift = WMULT_SHIFT; 218 219 __update_inv_weight(lw); 220 221 if (unlikely(fact >> 32)) { 222 while (fact >> 32) { 223 fact >>= 1; 224 shift--; 225 } 226 } 227 228 /* hint to use a 32x32->64 mul */ 229 fact = (u64)(u32)fact * lw->inv_weight; 230 231 while (fact >> 32) { 232 fact >>= 1; 233 shift--; 234 } 235 236 return mul_u64_u32_shr(delta_exec, fact, shift); 237 } 238 239 240 const struct sched_class fair_sched_class; 241 242 /************************************************************** 243 * CFS operations on generic schedulable entities: 244 */ 245 246 #ifdef CONFIG_FAIR_GROUP_SCHED 247 248 /* cpu runqueue to which this cfs_rq is attached */ 249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 250 { 251 return cfs_rq->rq; 252 } 253 254 /* An entity is a task if it doesn't "own" a runqueue */ 255 #define entity_is_task(se) (!se->my_q) 256 257 static inline struct task_struct *task_of(struct sched_entity *se) 258 { 259 #ifdef CONFIG_SCHED_DEBUG 260 WARN_ON_ONCE(!entity_is_task(se)); 261 #endif 262 return container_of(se, struct task_struct, se); 263 } 264 265 /* Walk up scheduling entities hierarchy */ 266 #define for_each_sched_entity(se) \ 267 for (; se; se = se->parent) 268 269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 270 { 271 return p->se.cfs_rq; 272 } 273 274 /* runqueue on which this entity is (to be) queued */ 275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 276 { 277 return se->cfs_rq; 278 } 279 280 /* runqueue "owned" by this group */ 281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 282 { 283 return grp->my_q; 284 } 285 286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 287 { 288 if (!cfs_rq->on_list) { 289 /* 290 * Ensure we either appear before our parent (if already 291 * enqueued) or force our parent to appear after us when it is 292 * enqueued. The fact that we always enqueue bottom-up 293 * reduces this to two cases. 294 */ 295 if (cfs_rq->tg->parent && 296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 298 &rq_of(cfs_rq)->leaf_cfs_rq_list); 299 } else { 300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 301 &rq_of(cfs_rq)->leaf_cfs_rq_list); 302 } 303 304 cfs_rq->on_list = 1; 305 } 306 } 307 308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 309 { 310 if (cfs_rq->on_list) { 311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 312 cfs_rq->on_list = 0; 313 } 314 } 315 316 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 319 320 /* Do the two (enqueued) entities belong to the same group ? */ 321 static inline struct cfs_rq * 322 is_same_group(struct sched_entity *se, struct sched_entity *pse) 323 { 324 if (se->cfs_rq == pse->cfs_rq) 325 return se->cfs_rq; 326 327 return NULL; 328 } 329 330 static inline struct sched_entity *parent_entity(struct sched_entity *se) 331 { 332 return se->parent; 333 } 334 335 static void 336 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 337 { 338 int se_depth, pse_depth; 339 340 /* 341 * preemption test can be made between sibling entities who are in the 342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 343 * both tasks until we find their ancestors who are siblings of common 344 * parent. 345 */ 346 347 /* First walk up until both entities are at same depth */ 348 se_depth = (*se)->depth; 349 pse_depth = (*pse)->depth; 350 351 while (se_depth > pse_depth) { 352 se_depth--; 353 *se = parent_entity(*se); 354 } 355 356 while (pse_depth > se_depth) { 357 pse_depth--; 358 *pse = parent_entity(*pse); 359 } 360 361 while (!is_same_group(*se, *pse)) { 362 *se = parent_entity(*se); 363 *pse = parent_entity(*pse); 364 } 365 } 366 367 #else /* !CONFIG_FAIR_GROUP_SCHED */ 368 369 static inline struct task_struct *task_of(struct sched_entity *se) 370 { 371 return container_of(se, struct task_struct, se); 372 } 373 374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 375 { 376 return container_of(cfs_rq, struct rq, cfs); 377 } 378 379 #define entity_is_task(se) 1 380 381 #define for_each_sched_entity(se) \ 382 for (; se; se = NULL) 383 384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 385 { 386 return &task_rq(p)->cfs; 387 } 388 389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 390 { 391 struct task_struct *p = task_of(se); 392 struct rq *rq = task_rq(p); 393 394 return &rq->cfs; 395 } 396 397 /* runqueue "owned" by this group */ 398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 399 { 400 return NULL; 401 } 402 403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 404 { 405 } 406 407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 408 { 409 } 410 411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 413 414 static inline struct sched_entity *parent_entity(struct sched_entity *se) 415 { 416 return NULL; 417 } 418 419 static inline void 420 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 421 { 422 } 423 424 #endif /* CONFIG_FAIR_GROUP_SCHED */ 425 426 static __always_inline 427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 428 429 /************************************************************** 430 * Scheduling class tree data structure manipulation methods: 431 */ 432 433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 434 { 435 s64 delta = (s64)(vruntime - max_vruntime); 436 if (delta > 0) 437 max_vruntime = vruntime; 438 439 return max_vruntime; 440 } 441 442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 443 { 444 s64 delta = (s64)(vruntime - min_vruntime); 445 if (delta < 0) 446 min_vruntime = vruntime; 447 448 return min_vruntime; 449 } 450 451 static inline int entity_before(struct sched_entity *a, 452 struct sched_entity *b) 453 { 454 return (s64)(a->vruntime - b->vruntime) < 0; 455 } 456 457 static void update_min_vruntime(struct cfs_rq *cfs_rq) 458 { 459 u64 vruntime = cfs_rq->min_vruntime; 460 461 if (cfs_rq->curr) 462 vruntime = cfs_rq->curr->vruntime; 463 464 if (cfs_rq->rb_leftmost) { 465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 466 struct sched_entity, 467 run_node); 468 469 if (!cfs_rq->curr) 470 vruntime = se->vruntime; 471 else 472 vruntime = min_vruntime(vruntime, se->vruntime); 473 } 474 475 /* ensure we never gain time by being placed backwards. */ 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 477 #ifndef CONFIG_64BIT 478 smp_wmb(); 479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 480 #endif 481 } 482 483 /* 484 * Enqueue an entity into the rb-tree: 485 */ 486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 487 { 488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 489 struct rb_node *parent = NULL; 490 struct sched_entity *entry; 491 int leftmost = 1; 492 493 /* 494 * Find the right place in the rbtree: 495 */ 496 while (*link) { 497 parent = *link; 498 entry = rb_entry(parent, struct sched_entity, run_node); 499 /* 500 * We dont care about collisions. Nodes with 501 * the same key stay together. 502 */ 503 if (entity_before(se, entry)) { 504 link = &parent->rb_left; 505 } else { 506 link = &parent->rb_right; 507 leftmost = 0; 508 } 509 } 510 511 /* 512 * Maintain a cache of leftmost tree entries (it is frequently 513 * used): 514 */ 515 if (leftmost) 516 cfs_rq->rb_leftmost = &se->run_node; 517 518 rb_link_node(&se->run_node, parent, link); 519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 520 } 521 522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 523 { 524 if (cfs_rq->rb_leftmost == &se->run_node) { 525 struct rb_node *next_node; 526 527 next_node = rb_next(&se->run_node); 528 cfs_rq->rb_leftmost = next_node; 529 } 530 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 532 } 533 534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 535 { 536 struct rb_node *left = cfs_rq->rb_leftmost; 537 538 if (!left) 539 return NULL; 540 541 return rb_entry(left, struct sched_entity, run_node); 542 } 543 544 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 545 { 546 struct rb_node *next = rb_next(&se->run_node); 547 548 if (!next) 549 return NULL; 550 551 return rb_entry(next, struct sched_entity, run_node); 552 } 553 554 #ifdef CONFIG_SCHED_DEBUG 555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 556 { 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 558 559 if (!last) 560 return NULL; 561 562 return rb_entry(last, struct sched_entity, run_node); 563 } 564 565 /************************************************************** 566 * Scheduling class statistics methods: 567 */ 568 569 int sched_proc_update_handler(struct ctl_table *table, int write, 570 void __user *buffer, size_t *lenp, 571 loff_t *ppos) 572 { 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 574 unsigned int factor = get_update_sysctl_factor(); 575 576 if (ret || !write) 577 return ret; 578 579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 580 sysctl_sched_min_granularity); 581 582 #define WRT_SYSCTL(name) \ 583 (normalized_sysctl_##name = sysctl_##name / (factor)) 584 WRT_SYSCTL(sched_min_granularity); 585 WRT_SYSCTL(sched_latency); 586 WRT_SYSCTL(sched_wakeup_granularity); 587 #undef WRT_SYSCTL 588 589 return 0; 590 } 591 #endif 592 593 /* 594 * delta /= w 595 */ 596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 597 { 598 if (unlikely(se->load.weight != NICE_0_LOAD)) 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 600 601 return delta; 602 } 603 604 /* 605 * The idea is to set a period in which each task runs once. 606 * 607 * When there are too many tasks (sched_nr_latency) we have to stretch 608 * this period because otherwise the slices get too small. 609 * 610 * p = (nr <= nl) ? l : l*nr/nl 611 */ 612 static u64 __sched_period(unsigned long nr_running) 613 { 614 if (unlikely(nr_running > sched_nr_latency)) 615 return nr_running * sysctl_sched_min_granularity; 616 else 617 return sysctl_sched_latency; 618 } 619 620 /* 621 * We calculate the wall-time slice from the period by taking a part 622 * proportional to the weight. 623 * 624 * s = p*P[w/rw] 625 */ 626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 627 { 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 629 630 for_each_sched_entity(se) { 631 struct load_weight *load; 632 struct load_weight lw; 633 634 cfs_rq = cfs_rq_of(se); 635 load = &cfs_rq->load; 636 637 if (unlikely(!se->on_rq)) { 638 lw = cfs_rq->load; 639 640 update_load_add(&lw, se->load.weight); 641 load = &lw; 642 } 643 slice = __calc_delta(slice, se->load.weight, load); 644 } 645 return slice; 646 } 647 648 /* 649 * We calculate the vruntime slice of a to-be-inserted task. 650 * 651 * vs = s/w 652 */ 653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 654 { 655 return calc_delta_fair(sched_slice(cfs_rq, se), se); 656 } 657 658 #ifdef CONFIG_SMP 659 static int select_idle_sibling(struct task_struct *p, int cpu); 660 static unsigned long task_h_load(struct task_struct *p); 661 662 /* 663 * We choose a half-life close to 1 scheduling period. 664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are 665 * dependent on this value. 666 */ 667 #define LOAD_AVG_PERIOD 32 668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */ 670 671 /* Give new sched_entity start runnable values to heavy its load in infant time */ 672 void init_entity_runnable_average(struct sched_entity *se) 673 { 674 struct sched_avg *sa = &se->avg; 675 676 sa->last_update_time = 0; 677 /* 678 * sched_avg's period_contrib should be strictly less then 1024, so 679 * we give it 1023 to make sure it is almost a period (1024us), and 680 * will definitely be update (after enqueue). 681 */ 682 sa->period_contrib = 1023; 683 sa->load_avg = scale_load_down(se->load.weight); 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX; 685 /* 686 * At this point, util_avg won't be used in select_task_rq_fair anyway 687 */ 688 sa->util_avg = 0; 689 sa->util_sum = 0; 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 691 } 692 693 /* 694 * With new tasks being created, their initial util_avgs are extrapolated 695 * based on the cfs_rq's current util_avg: 696 * 697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 698 * 699 * However, in many cases, the above util_avg does not give a desired 700 * value. Moreover, the sum of the util_avgs may be divergent, such 701 * as when the series is a harmonic series. 702 * 703 * To solve this problem, we also cap the util_avg of successive tasks to 704 * only 1/2 of the left utilization budget: 705 * 706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n 707 * 708 * where n denotes the nth task. 709 * 710 * For example, a simplest series from the beginning would be like: 711 * 712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 714 * 715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 716 * if util_avg > util_avg_cap. 717 */ 718 void post_init_entity_util_avg(struct sched_entity *se) 719 { 720 struct cfs_rq *cfs_rq = cfs_rq_of(se); 721 struct sched_avg *sa = &se->avg; 722 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; 723 724 if (cap > 0) { 725 if (cfs_rq->avg.util_avg != 0) { 726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 727 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 728 729 if (sa->util_avg > cap) 730 sa->util_avg = cap; 731 } else { 732 sa->util_avg = cap; 733 } 734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX; 735 } 736 } 737 738 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq); 739 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq); 740 #else 741 void init_entity_runnable_average(struct sched_entity *se) 742 { 743 } 744 void post_init_entity_util_avg(struct sched_entity *se) 745 { 746 } 747 #endif 748 749 /* 750 * Update the current task's runtime statistics. 751 */ 752 static void update_curr(struct cfs_rq *cfs_rq) 753 { 754 struct sched_entity *curr = cfs_rq->curr; 755 u64 now = rq_clock_task(rq_of(cfs_rq)); 756 u64 delta_exec; 757 758 if (unlikely(!curr)) 759 return; 760 761 delta_exec = now - curr->exec_start; 762 if (unlikely((s64)delta_exec <= 0)) 763 return; 764 765 curr->exec_start = now; 766 767 schedstat_set(curr->statistics.exec_max, 768 max(delta_exec, curr->statistics.exec_max)); 769 770 curr->sum_exec_runtime += delta_exec; 771 schedstat_add(cfs_rq, exec_clock, delta_exec); 772 773 curr->vruntime += calc_delta_fair(delta_exec, curr); 774 update_min_vruntime(cfs_rq); 775 776 if (entity_is_task(curr)) { 777 struct task_struct *curtask = task_of(curr); 778 779 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 780 cpuacct_charge(curtask, delta_exec); 781 account_group_exec_runtime(curtask, delta_exec); 782 } 783 784 account_cfs_rq_runtime(cfs_rq, delta_exec); 785 } 786 787 static void update_curr_fair(struct rq *rq) 788 { 789 update_curr(cfs_rq_of(&rq->curr->se)); 790 } 791 792 #ifdef CONFIG_SCHEDSTATS 793 static inline void 794 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 795 { 796 u64 wait_start = rq_clock(rq_of(cfs_rq)); 797 798 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 799 likely(wait_start > se->statistics.wait_start)) 800 wait_start -= se->statistics.wait_start; 801 802 se->statistics.wait_start = wait_start; 803 } 804 805 static void 806 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 807 { 808 struct task_struct *p; 809 u64 delta; 810 811 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start; 812 813 if (entity_is_task(se)) { 814 p = task_of(se); 815 if (task_on_rq_migrating(p)) { 816 /* 817 * Preserve migrating task's wait time so wait_start 818 * time stamp can be adjusted to accumulate wait time 819 * prior to migration. 820 */ 821 se->statistics.wait_start = delta; 822 return; 823 } 824 trace_sched_stat_wait(p, delta); 825 } 826 827 se->statistics.wait_max = max(se->statistics.wait_max, delta); 828 se->statistics.wait_count++; 829 se->statistics.wait_sum += delta; 830 se->statistics.wait_start = 0; 831 } 832 833 /* 834 * Task is being enqueued - update stats: 835 */ 836 static inline void 837 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 838 { 839 /* 840 * Are we enqueueing a waiting task? (for current tasks 841 * a dequeue/enqueue event is a NOP) 842 */ 843 if (se != cfs_rq->curr) 844 update_stats_wait_start(cfs_rq, se); 845 } 846 847 static inline void 848 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 849 { 850 /* 851 * Mark the end of the wait period if dequeueing a 852 * waiting task: 853 */ 854 if (se != cfs_rq->curr) 855 update_stats_wait_end(cfs_rq, se); 856 857 if (flags & DEQUEUE_SLEEP) { 858 if (entity_is_task(se)) { 859 struct task_struct *tsk = task_of(se); 860 861 if (tsk->state & TASK_INTERRUPTIBLE) 862 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 863 if (tsk->state & TASK_UNINTERRUPTIBLE) 864 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 865 } 866 } 867 868 } 869 #else 870 static inline void 871 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 872 { 873 } 874 875 static inline void 876 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 877 { 878 } 879 880 static inline void 881 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 882 { 883 } 884 885 static inline void 886 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 887 { 888 } 889 #endif 890 891 /* 892 * We are picking a new current task - update its stats: 893 */ 894 static inline void 895 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 896 { 897 /* 898 * We are starting a new run period: 899 */ 900 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 901 } 902 903 /************************************************** 904 * Scheduling class queueing methods: 905 */ 906 907 #ifdef CONFIG_NUMA_BALANCING 908 /* 909 * Approximate time to scan a full NUMA task in ms. The task scan period is 910 * calculated based on the tasks virtual memory size and 911 * numa_balancing_scan_size. 912 */ 913 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 914 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 915 916 /* Portion of address space to scan in MB */ 917 unsigned int sysctl_numa_balancing_scan_size = 256; 918 919 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 920 unsigned int sysctl_numa_balancing_scan_delay = 1000; 921 922 static unsigned int task_nr_scan_windows(struct task_struct *p) 923 { 924 unsigned long rss = 0; 925 unsigned long nr_scan_pages; 926 927 /* 928 * Calculations based on RSS as non-present and empty pages are skipped 929 * by the PTE scanner and NUMA hinting faults should be trapped based 930 * on resident pages 931 */ 932 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 933 rss = get_mm_rss(p->mm); 934 if (!rss) 935 rss = nr_scan_pages; 936 937 rss = round_up(rss, nr_scan_pages); 938 return rss / nr_scan_pages; 939 } 940 941 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 942 #define MAX_SCAN_WINDOW 2560 943 944 static unsigned int task_scan_min(struct task_struct *p) 945 { 946 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 947 unsigned int scan, floor; 948 unsigned int windows = 1; 949 950 if (scan_size < MAX_SCAN_WINDOW) 951 windows = MAX_SCAN_WINDOW / scan_size; 952 floor = 1000 / windows; 953 954 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 955 return max_t(unsigned int, floor, scan); 956 } 957 958 static unsigned int task_scan_max(struct task_struct *p) 959 { 960 unsigned int smin = task_scan_min(p); 961 unsigned int smax; 962 963 /* Watch for min being lower than max due to floor calculations */ 964 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 965 return max(smin, smax); 966 } 967 968 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 969 { 970 rq->nr_numa_running += (p->numa_preferred_nid != -1); 971 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 972 } 973 974 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 975 { 976 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 977 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 978 } 979 980 struct numa_group { 981 atomic_t refcount; 982 983 spinlock_t lock; /* nr_tasks, tasks */ 984 int nr_tasks; 985 pid_t gid; 986 int active_nodes; 987 988 struct rcu_head rcu; 989 unsigned long total_faults; 990 unsigned long max_faults_cpu; 991 /* 992 * Faults_cpu is used to decide whether memory should move 993 * towards the CPU. As a consequence, these stats are weighted 994 * more by CPU use than by memory faults. 995 */ 996 unsigned long *faults_cpu; 997 unsigned long faults[0]; 998 }; 999 1000 /* Shared or private faults. */ 1001 #define NR_NUMA_HINT_FAULT_TYPES 2 1002 1003 /* Memory and CPU locality */ 1004 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1005 1006 /* Averaged statistics, and temporary buffers. */ 1007 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1008 1009 pid_t task_numa_group_id(struct task_struct *p) 1010 { 1011 return p->numa_group ? p->numa_group->gid : 0; 1012 } 1013 1014 /* 1015 * The averaged statistics, shared & private, memory & cpu, 1016 * occupy the first half of the array. The second half of the 1017 * array is for current counters, which are averaged into the 1018 * first set by task_numa_placement. 1019 */ 1020 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1021 { 1022 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1023 } 1024 1025 static inline unsigned long task_faults(struct task_struct *p, int nid) 1026 { 1027 if (!p->numa_faults) 1028 return 0; 1029 1030 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1031 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1032 } 1033 1034 static inline unsigned long group_faults(struct task_struct *p, int nid) 1035 { 1036 if (!p->numa_group) 1037 return 0; 1038 1039 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1040 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1041 } 1042 1043 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1044 { 1045 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1046 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1047 } 1048 1049 /* 1050 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1051 * considered part of a numa group's pseudo-interleaving set. Migrations 1052 * between these nodes are slowed down, to allow things to settle down. 1053 */ 1054 #define ACTIVE_NODE_FRACTION 3 1055 1056 static bool numa_is_active_node(int nid, struct numa_group *ng) 1057 { 1058 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1059 } 1060 1061 /* Handle placement on systems where not all nodes are directly connected. */ 1062 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1063 int maxdist, bool task) 1064 { 1065 unsigned long score = 0; 1066 int node; 1067 1068 /* 1069 * All nodes are directly connected, and the same distance 1070 * from each other. No need for fancy placement algorithms. 1071 */ 1072 if (sched_numa_topology_type == NUMA_DIRECT) 1073 return 0; 1074 1075 /* 1076 * This code is called for each node, introducing N^2 complexity, 1077 * which should be ok given the number of nodes rarely exceeds 8. 1078 */ 1079 for_each_online_node(node) { 1080 unsigned long faults; 1081 int dist = node_distance(nid, node); 1082 1083 /* 1084 * The furthest away nodes in the system are not interesting 1085 * for placement; nid was already counted. 1086 */ 1087 if (dist == sched_max_numa_distance || node == nid) 1088 continue; 1089 1090 /* 1091 * On systems with a backplane NUMA topology, compare groups 1092 * of nodes, and move tasks towards the group with the most 1093 * memory accesses. When comparing two nodes at distance 1094 * "hoplimit", only nodes closer by than "hoplimit" are part 1095 * of each group. Skip other nodes. 1096 */ 1097 if (sched_numa_topology_type == NUMA_BACKPLANE && 1098 dist > maxdist) 1099 continue; 1100 1101 /* Add up the faults from nearby nodes. */ 1102 if (task) 1103 faults = task_faults(p, node); 1104 else 1105 faults = group_faults(p, node); 1106 1107 /* 1108 * On systems with a glueless mesh NUMA topology, there are 1109 * no fixed "groups of nodes". Instead, nodes that are not 1110 * directly connected bounce traffic through intermediate 1111 * nodes; a numa_group can occupy any set of nodes. 1112 * The further away a node is, the less the faults count. 1113 * This seems to result in good task placement. 1114 */ 1115 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1116 faults *= (sched_max_numa_distance - dist); 1117 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1118 } 1119 1120 score += faults; 1121 } 1122 1123 return score; 1124 } 1125 1126 /* 1127 * These return the fraction of accesses done by a particular task, or 1128 * task group, on a particular numa node. The group weight is given a 1129 * larger multiplier, in order to group tasks together that are almost 1130 * evenly spread out between numa nodes. 1131 */ 1132 static inline unsigned long task_weight(struct task_struct *p, int nid, 1133 int dist) 1134 { 1135 unsigned long faults, total_faults; 1136 1137 if (!p->numa_faults) 1138 return 0; 1139 1140 total_faults = p->total_numa_faults; 1141 1142 if (!total_faults) 1143 return 0; 1144 1145 faults = task_faults(p, nid); 1146 faults += score_nearby_nodes(p, nid, dist, true); 1147 1148 return 1000 * faults / total_faults; 1149 } 1150 1151 static inline unsigned long group_weight(struct task_struct *p, int nid, 1152 int dist) 1153 { 1154 unsigned long faults, total_faults; 1155 1156 if (!p->numa_group) 1157 return 0; 1158 1159 total_faults = p->numa_group->total_faults; 1160 1161 if (!total_faults) 1162 return 0; 1163 1164 faults = group_faults(p, nid); 1165 faults += score_nearby_nodes(p, nid, dist, false); 1166 1167 return 1000 * faults / total_faults; 1168 } 1169 1170 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1171 int src_nid, int dst_cpu) 1172 { 1173 struct numa_group *ng = p->numa_group; 1174 int dst_nid = cpu_to_node(dst_cpu); 1175 int last_cpupid, this_cpupid; 1176 1177 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1178 1179 /* 1180 * Multi-stage node selection is used in conjunction with a periodic 1181 * migration fault to build a temporal task<->page relation. By using 1182 * a two-stage filter we remove short/unlikely relations. 1183 * 1184 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1185 * a task's usage of a particular page (n_p) per total usage of this 1186 * page (n_t) (in a given time-span) to a probability. 1187 * 1188 * Our periodic faults will sample this probability and getting the 1189 * same result twice in a row, given these samples are fully 1190 * independent, is then given by P(n)^2, provided our sample period 1191 * is sufficiently short compared to the usage pattern. 1192 * 1193 * This quadric squishes small probabilities, making it less likely we 1194 * act on an unlikely task<->page relation. 1195 */ 1196 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1197 if (!cpupid_pid_unset(last_cpupid) && 1198 cpupid_to_nid(last_cpupid) != dst_nid) 1199 return false; 1200 1201 /* Always allow migrate on private faults */ 1202 if (cpupid_match_pid(p, last_cpupid)) 1203 return true; 1204 1205 /* A shared fault, but p->numa_group has not been set up yet. */ 1206 if (!ng) 1207 return true; 1208 1209 /* 1210 * Destination node is much more heavily used than the source 1211 * node? Allow migration. 1212 */ 1213 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1214 ACTIVE_NODE_FRACTION) 1215 return true; 1216 1217 /* 1218 * Distribute memory according to CPU & memory use on each node, 1219 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1220 * 1221 * faults_cpu(dst) 3 faults_cpu(src) 1222 * --------------- * - > --------------- 1223 * faults_mem(dst) 4 faults_mem(src) 1224 */ 1225 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1226 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1227 } 1228 1229 static unsigned long weighted_cpuload(const int cpu); 1230 static unsigned long source_load(int cpu, int type); 1231 static unsigned long target_load(int cpu, int type); 1232 static unsigned long capacity_of(int cpu); 1233 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1234 1235 /* Cached statistics for all CPUs within a node */ 1236 struct numa_stats { 1237 unsigned long nr_running; 1238 unsigned long load; 1239 1240 /* Total compute capacity of CPUs on a node */ 1241 unsigned long compute_capacity; 1242 1243 /* Approximate capacity in terms of runnable tasks on a node */ 1244 unsigned long task_capacity; 1245 int has_free_capacity; 1246 }; 1247 1248 /* 1249 * XXX borrowed from update_sg_lb_stats 1250 */ 1251 static void update_numa_stats(struct numa_stats *ns, int nid) 1252 { 1253 int smt, cpu, cpus = 0; 1254 unsigned long capacity; 1255 1256 memset(ns, 0, sizeof(*ns)); 1257 for_each_cpu(cpu, cpumask_of_node(nid)) { 1258 struct rq *rq = cpu_rq(cpu); 1259 1260 ns->nr_running += rq->nr_running; 1261 ns->load += weighted_cpuload(cpu); 1262 ns->compute_capacity += capacity_of(cpu); 1263 1264 cpus++; 1265 } 1266 1267 /* 1268 * If we raced with hotplug and there are no CPUs left in our mask 1269 * the @ns structure is NULL'ed and task_numa_compare() will 1270 * not find this node attractive. 1271 * 1272 * We'll either bail at !has_free_capacity, or we'll detect a huge 1273 * imbalance and bail there. 1274 */ 1275 if (!cpus) 1276 return; 1277 1278 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1279 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1280 capacity = cpus / smt; /* cores */ 1281 1282 ns->task_capacity = min_t(unsigned, capacity, 1283 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1284 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1285 } 1286 1287 struct task_numa_env { 1288 struct task_struct *p; 1289 1290 int src_cpu, src_nid; 1291 int dst_cpu, dst_nid; 1292 1293 struct numa_stats src_stats, dst_stats; 1294 1295 int imbalance_pct; 1296 int dist; 1297 1298 struct task_struct *best_task; 1299 long best_imp; 1300 int best_cpu; 1301 }; 1302 1303 static void task_numa_assign(struct task_numa_env *env, 1304 struct task_struct *p, long imp) 1305 { 1306 if (env->best_task) 1307 put_task_struct(env->best_task); 1308 1309 env->best_task = p; 1310 env->best_imp = imp; 1311 env->best_cpu = env->dst_cpu; 1312 } 1313 1314 static bool load_too_imbalanced(long src_load, long dst_load, 1315 struct task_numa_env *env) 1316 { 1317 long imb, old_imb; 1318 long orig_src_load, orig_dst_load; 1319 long src_capacity, dst_capacity; 1320 1321 /* 1322 * The load is corrected for the CPU capacity available on each node. 1323 * 1324 * src_load dst_load 1325 * ------------ vs --------- 1326 * src_capacity dst_capacity 1327 */ 1328 src_capacity = env->src_stats.compute_capacity; 1329 dst_capacity = env->dst_stats.compute_capacity; 1330 1331 /* We care about the slope of the imbalance, not the direction. */ 1332 if (dst_load < src_load) 1333 swap(dst_load, src_load); 1334 1335 /* Is the difference below the threshold? */ 1336 imb = dst_load * src_capacity * 100 - 1337 src_load * dst_capacity * env->imbalance_pct; 1338 if (imb <= 0) 1339 return false; 1340 1341 /* 1342 * The imbalance is above the allowed threshold. 1343 * Compare it with the old imbalance. 1344 */ 1345 orig_src_load = env->src_stats.load; 1346 orig_dst_load = env->dst_stats.load; 1347 1348 if (orig_dst_load < orig_src_load) 1349 swap(orig_dst_load, orig_src_load); 1350 1351 old_imb = orig_dst_load * src_capacity * 100 - 1352 orig_src_load * dst_capacity * env->imbalance_pct; 1353 1354 /* Would this change make things worse? */ 1355 return (imb > old_imb); 1356 } 1357 1358 /* 1359 * This checks if the overall compute and NUMA accesses of the system would 1360 * be improved if the source tasks was migrated to the target dst_cpu taking 1361 * into account that it might be best if task running on the dst_cpu should 1362 * be exchanged with the source task 1363 */ 1364 static void task_numa_compare(struct task_numa_env *env, 1365 long taskimp, long groupimp) 1366 { 1367 struct rq *src_rq = cpu_rq(env->src_cpu); 1368 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1369 struct task_struct *cur; 1370 long src_load, dst_load; 1371 long load; 1372 long imp = env->p->numa_group ? groupimp : taskimp; 1373 long moveimp = imp; 1374 int dist = env->dist; 1375 bool assigned = false; 1376 1377 rcu_read_lock(); 1378 1379 raw_spin_lock_irq(&dst_rq->lock); 1380 cur = dst_rq->curr; 1381 /* 1382 * No need to move the exiting task or idle task. 1383 */ 1384 if ((cur->flags & PF_EXITING) || is_idle_task(cur)) 1385 cur = NULL; 1386 else { 1387 /* 1388 * The task_struct must be protected here to protect the 1389 * p->numa_faults access in the task_weight since the 1390 * numa_faults could already be freed in the following path: 1391 * finish_task_switch() 1392 * --> put_task_struct() 1393 * --> __put_task_struct() 1394 * --> task_numa_free() 1395 */ 1396 get_task_struct(cur); 1397 } 1398 1399 raw_spin_unlock_irq(&dst_rq->lock); 1400 1401 /* 1402 * Because we have preemption enabled we can get migrated around and 1403 * end try selecting ourselves (current == env->p) as a swap candidate. 1404 */ 1405 if (cur == env->p) 1406 goto unlock; 1407 1408 /* 1409 * "imp" is the fault differential for the source task between the 1410 * source and destination node. Calculate the total differential for 1411 * the source task and potential destination task. The more negative 1412 * the value is, the more rmeote accesses that would be expected to 1413 * be incurred if the tasks were swapped. 1414 */ 1415 if (cur) { 1416 /* Skip this swap candidate if cannot move to the source cpu */ 1417 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1418 goto unlock; 1419 1420 /* 1421 * If dst and source tasks are in the same NUMA group, or not 1422 * in any group then look only at task weights. 1423 */ 1424 if (cur->numa_group == env->p->numa_group) { 1425 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1426 task_weight(cur, env->dst_nid, dist); 1427 /* 1428 * Add some hysteresis to prevent swapping the 1429 * tasks within a group over tiny differences. 1430 */ 1431 if (cur->numa_group) 1432 imp -= imp/16; 1433 } else { 1434 /* 1435 * Compare the group weights. If a task is all by 1436 * itself (not part of a group), use the task weight 1437 * instead. 1438 */ 1439 if (cur->numa_group) 1440 imp += group_weight(cur, env->src_nid, dist) - 1441 group_weight(cur, env->dst_nid, dist); 1442 else 1443 imp += task_weight(cur, env->src_nid, dist) - 1444 task_weight(cur, env->dst_nid, dist); 1445 } 1446 } 1447 1448 if (imp <= env->best_imp && moveimp <= env->best_imp) 1449 goto unlock; 1450 1451 if (!cur) { 1452 /* Is there capacity at our destination? */ 1453 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1454 !env->dst_stats.has_free_capacity) 1455 goto unlock; 1456 1457 goto balance; 1458 } 1459 1460 /* Balance doesn't matter much if we're running a task per cpu */ 1461 if (imp > env->best_imp && src_rq->nr_running == 1 && 1462 dst_rq->nr_running == 1) 1463 goto assign; 1464 1465 /* 1466 * In the overloaded case, try and keep the load balanced. 1467 */ 1468 balance: 1469 load = task_h_load(env->p); 1470 dst_load = env->dst_stats.load + load; 1471 src_load = env->src_stats.load - load; 1472 1473 if (moveimp > imp && moveimp > env->best_imp) { 1474 /* 1475 * If the improvement from just moving env->p direction is 1476 * better than swapping tasks around, check if a move is 1477 * possible. Store a slightly smaller score than moveimp, 1478 * so an actually idle CPU will win. 1479 */ 1480 if (!load_too_imbalanced(src_load, dst_load, env)) { 1481 imp = moveimp - 1; 1482 put_task_struct(cur); 1483 cur = NULL; 1484 goto assign; 1485 } 1486 } 1487 1488 if (imp <= env->best_imp) 1489 goto unlock; 1490 1491 if (cur) { 1492 load = task_h_load(cur); 1493 dst_load -= load; 1494 src_load += load; 1495 } 1496 1497 if (load_too_imbalanced(src_load, dst_load, env)) 1498 goto unlock; 1499 1500 /* 1501 * One idle CPU per node is evaluated for a task numa move. 1502 * Call select_idle_sibling to maybe find a better one. 1503 */ 1504 if (!cur) 1505 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu); 1506 1507 assign: 1508 assigned = true; 1509 task_numa_assign(env, cur, imp); 1510 unlock: 1511 rcu_read_unlock(); 1512 /* 1513 * The dst_rq->curr isn't assigned. The protection for task_struct is 1514 * finished. 1515 */ 1516 if (cur && !assigned) 1517 put_task_struct(cur); 1518 } 1519 1520 static void task_numa_find_cpu(struct task_numa_env *env, 1521 long taskimp, long groupimp) 1522 { 1523 int cpu; 1524 1525 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1526 /* Skip this CPU if the source task cannot migrate */ 1527 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1528 continue; 1529 1530 env->dst_cpu = cpu; 1531 task_numa_compare(env, taskimp, groupimp); 1532 } 1533 } 1534 1535 /* Only move tasks to a NUMA node less busy than the current node. */ 1536 static bool numa_has_capacity(struct task_numa_env *env) 1537 { 1538 struct numa_stats *src = &env->src_stats; 1539 struct numa_stats *dst = &env->dst_stats; 1540 1541 if (src->has_free_capacity && !dst->has_free_capacity) 1542 return false; 1543 1544 /* 1545 * Only consider a task move if the source has a higher load 1546 * than the destination, corrected for CPU capacity on each node. 1547 * 1548 * src->load dst->load 1549 * --------------------- vs --------------------- 1550 * src->compute_capacity dst->compute_capacity 1551 */ 1552 if (src->load * dst->compute_capacity * env->imbalance_pct > 1553 1554 dst->load * src->compute_capacity * 100) 1555 return true; 1556 1557 return false; 1558 } 1559 1560 static int task_numa_migrate(struct task_struct *p) 1561 { 1562 struct task_numa_env env = { 1563 .p = p, 1564 1565 .src_cpu = task_cpu(p), 1566 .src_nid = task_node(p), 1567 1568 .imbalance_pct = 112, 1569 1570 .best_task = NULL, 1571 .best_imp = 0, 1572 .best_cpu = -1, 1573 }; 1574 struct sched_domain *sd; 1575 unsigned long taskweight, groupweight; 1576 int nid, ret, dist; 1577 long taskimp, groupimp; 1578 1579 /* 1580 * Pick the lowest SD_NUMA domain, as that would have the smallest 1581 * imbalance and would be the first to start moving tasks about. 1582 * 1583 * And we want to avoid any moving of tasks about, as that would create 1584 * random movement of tasks -- counter the numa conditions we're trying 1585 * to satisfy here. 1586 */ 1587 rcu_read_lock(); 1588 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1589 if (sd) 1590 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1591 rcu_read_unlock(); 1592 1593 /* 1594 * Cpusets can break the scheduler domain tree into smaller 1595 * balance domains, some of which do not cross NUMA boundaries. 1596 * Tasks that are "trapped" in such domains cannot be migrated 1597 * elsewhere, so there is no point in (re)trying. 1598 */ 1599 if (unlikely(!sd)) { 1600 p->numa_preferred_nid = task_node(p); 1601 return -EINVAL; 1602 } 1603 1604 env.dst_nid = p->numa_preferred_nid; 1605 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1606 taskweight = task_weight(p, env.src_nid, dist); 1607 groupweight = group_weight(p, env.src_nid, dist); 1608 update_numa_stats(&env.src_stats, env.src_nid); 1609 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1610 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1611 update_numa_stats(&env.dst_stats, env.dst_nid); 1612 1613 /* Try to find a spot on the preferred nid. */ 1614 if (numa_has_capacity(&env)) 1615 task_numa_find_cpu(&env, taskimp, groupimp); 1616 1617 /* 1618 * Look at other nodes in these cases: 1619 * - there is no space available on the preferred_nid 1620 * - the task is part of a numa_group that is interleaved across 1621 * multiple NUMA nodes; in order to better consolidate the group, 1622 * we need to check other locations. 1623 */ 1624 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1625 for_each_online_node(nid) { 1626 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1627 continue; 1628 1629 dist = node_distance(env.src_nid, env.dst_nid); 1630 if (sched_numa_topology_type == NUMA_BACKPLANE && 1631 dist != env.dist) { 1632 taskweight = task_weight(p, env.src_nid, dist); 1633 groupweight = group_weight(p, env.src_nid, dist); 1634 } 1635 1636 /* Only consider nodes where both task and groups benefit */ 1637 taskimp = task_weight(p, nid, dist) - taskweight; 1638 groupimp = group_weight(p, nid, dist) - groupweight; 1639 if (taskimp < 0 && groupimp < 0) 1640 continue; 1641 1642 env.dist = dist; 1643 env.dst_nid = nid; 1644 update_numa_stats(&env.dst_stats, env.dst_nid); 1645 if (numa_has_capacity(&env)) 1646 task_numa_find_cpu(&env, taskimp, groupimp); 1647 } 1648 } 1649 1650 /* 1651 * If the task is part of a workload that spans multiple NUMA nodes, 1652 * and is migrating into one of the workload's active nodes, remember 1653 * this node as the task's preferred numa node, so the workload can 1654 * settle down. 1655 * A task that migrated to a second choice node will be better off 1656 * trying for a better one later. Do not set the preferred node here. 1657 */ 1658 if (p->numa_group) { 1659 struct numa_group *ng = p->numa_group; 1660 1661 if (env.best_cpu == -1) 1662 nid = env.src_nid; 1663 else 1664 nid = env.dst_nid; 1665 1666 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) 1667 sched_setnuma(p, env.dst_nid); 1668 } 1669 1670 /* No better CPU than the current one was found. */ 1671 if (env.best_cpu == -1) 1672 return -EAGAIN; 1673 1674 /* 1675 * Reset the scan period if the task is being rescheduled on an 1676 * alternative node to recheck if the tasks is now properly placed. 1677 */ 1678 p->numa_scan_period = task_scan_min(p); 1679 1680 if (env.best_task == NULL) { 1681 ret = migrate_task_to(p, env.best_cpu); 1682 if (ret != 0) 1683 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1684 return ret; 1685 } 1686 1687 ret = migrate_swap(p, env.best_task); 1688 if (ret != 0) 1689 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1690 put_task_struct(env.best_task); 1691 return ret; 1692 } 1693 1694 /* Attempt to migrate a task to a CPU on the preferred node. */ 1695 static void numa_migrate_preferred(struct task_struct *p) 1696 { 1697 unsigned long interval = HZ; 1698 1699 /* This task has no NUMA fault statistics yet */ 1700 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1701 return; 1702 1703 /* Periodically retry migrating the task to the preferred node */ 1704 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1705 p->numa_migrate_retry = jiffies + interval; 1706 1707 /* Success if task is already running on preferred CPU */ 1708 if (task_node(p) == p->numa_preferred_nid) 1709 return; 1710 1711 /* Otherwise, try migrate to a CPU on the preferred node */ 1712 task_numa_migrate(p); 1713 } 1714 1715 /* 1716 * Find out how many nodes on the workload is actively running on. Do this by 1717 * tracking the nodes from which NUMA hinting faults are triggered. This can 1718 * be different from the set of nodes where the workload's memory is currently 1719 * located. 1720 */ 1721 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1722 { 1723 unsigned long faults, max_faults = 0; 1724 int nid, active_nodes = 0; 1725 1726 for_each_online_node(nid) { 1727 faults = group_faults_cpu(numa_group, nid); 1728 if (faults > max_faults) 1729 max_faults = faults; 1730 } 1731 1732 for_each_online_node(nid) { 1733 faults = group_faults_cpu(numa_group, nid); 1734 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1735 active_nodes++; 1736 } 1737 1738 numa_group->max_faults_cpu = max_faults; 1739 numa_group->active_nodes = active_nodes; 1740 } 1741 1742 /* 1743 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1744 * increments. The more local the fault statistics are, the higher the scan 1745 * period will be for the next scan window. If local/(local+remote) ratio is 1746 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1747 * the scan period will decrease. Aim for 70% local accesses. 1748 */ 1749 #define NUMA_PERIOD_SLOTS 10 1750 #define NUMA_PERIOD_THRESHOLD 7 1751 1752 /* 1753 * Increase the scan period (slow down scanning) if the majority of 1754 * our memory is already on our local node, or if the majority of 1755 * the page accesses are shared with other processes. 1756 * Otherwise, decrease the scan period. 1757 */ 1758 static void update_task_scan_period(struct task_struct *p, 1759 unsigned long shared, unsigned long private) 1760 { 1761 unsigned int period_slot; 1762 int ratio; 1763 int diff; 1764 1765 unsigned long remote = p->numa_faults_locality[0]; 1766 unsigned long local = p->numa_faults_locality[1]; 1767 1768 /* 1769 * If there were no record hinting faults then either the task is 1770 * completely idle or all activity is areas that are not of interest 1771 * to automatic numa balancing. Related to that, if there were failed 1772 * migration then it implies we are migrating too quickly or the local 1773 * node is overloaded. In either case, scan slower 1774 */ 1775 if (local + shared == 0 || p->numa_faults_locality[2]) { 1776 p->numa_scan_period = min(p->numa_scan_period_max, 1777 p->numa_scan_period << 1); 1778 1779 p->mm->numa_next_scan = jiffies + 1780 msecs_to_jiffies(p->numa_scan_period); 1781 1782 return; 1783 } 1784 1785 /* 1786 * Prepare to scale scan period relative to the current period. 1787 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1788 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1789 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1790 */ 1791 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1792 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1793 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1794 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1795 if (!slot) 1796 slot = 1; 1797 diff = slot * period_slot; 1798 } else { 1799 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1800 1801 /* 1802 * Scale scan rate increases based on sharing. There is an 1803 * inverse relationship between the degree of sharing and 1804 * the adjustment made to the scanning period. Broadly 1805 * speaking the intent is that there is little point 1806 * scanning faster if shared accesses dominate as it may 1807 * simply bounce migrations uselessly 1808 */ 1809 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); 1810 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1811 } 1812 1813 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1814 task_scan_min(p), task_scan_max(p)); 1815 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1816 } 1817 1818 /* 1819 * Get the fraction of time the task has been running since the last 1820 * NUMA placement cycle. The scheduler keeps similar statistics, but 1821 * decays those on a 32ms period, which is orders of magnitude off 1822 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1823 * stats only if the task is so new there are no NUMA statistics yet. 1824 */ 1825 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1826 { 1827 u64 runtime, delta, now; 1828 /* Use the start of this time slice to avoid calculations. */ 1829 now = p->se.exec_start; 1830 runtime = p->se.sum_exec_runtime; 1831 1832 if (p->last_task_numa_placement) { 1833 delta = runtime - p->last_sum_exec_runtime; 1834 *period = now - p->last_task_numa_placement; 1835 } else { 1836 delta = p->se.avg.load_sum / p->se.load.weight; 1837 *period = LOAD_AVG_MAX; 1838 } 1839 1840 p->last_sum_exec_runtime = runtime; 1841 p->last_task_numa_placement = now; 1842 1843 return delta; 1844 } 1845 1846 /* 1847 * Determine the preferred nid for a task in a numa_group. This needs to 1848 * be done in a way that produces consistent results with group_weight, 1849 * otherwise workloads might not converge. 1850 */ 1851 static int preferred_group_nid(struct task_struct *p, int nid) 1852 { 1853 nodemask_t nodes; 1854 int dist; 1855 1856 /* Direct connections between all NUMA nodes. */ 1857 if (sched_numa_topology_type == NUMA_DIRECT) 1858 return nid; 1859 1860 /* 1861 * On a system with glueless mesh NUMA topology, group_weight 1862 * scores nodes according to the number of NUMA hinting faults on 1863 * both the node itself, and on nearby nodes. 1864 */ 1865 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1866 unsigned long score, max_score = 0; 1867 int node, max_node = nid; 1868 1869 dist = sched_max_numa_distance; 1870 1871 for_each_online_node(node) { 1872 score = group_weight(p, node, dist); 1873 if (score > max_score) { 1874 max_score = score; 1875 max_node = node; 1876 } 1877 } 1878 return max_node; 1879 } 1880 1881 /* 1882 * Finding the preferred nid in a system with NUMA backplane 1883 * interconnect topology is more involved. The goal is to locate 1884 * tasks from numa_groups near each other in the system, and 1885 * untangle workloads from different sides of the system. This requires 1886 * searching down the hierarchy of node groups, recursively searching 1887 * inside the highest scoring group of nodes. The nodemask tricks 1888 * keep the complexity of the search down. 1889 */ 1890 nodes = node_online_map; 1891 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 1892 unsigned long max_faults = 0; 1893 nodemask_t max_group = NODE_MASK_NONE; 1894 int a, b; 1895 1896 /* Are there nodes at this distance from each other? */ 1897 if (!find_numa_distance(dist)) 1898 continue; 1899 1900 for_each_node_mask(a, nodes) { 1901 unsigned long faults = 0; 1902 nodemask_t this_group; 1903 nodes_clear(this_group); 1904 1905 /* Sum group's NUMA faults; includes a==b case. */ 1906 for_each_node_mask(b, nodes) { 1907 if (node_distance(a, b) < dist) { 1908 faults += group_faults(p, b); 1909 node_set(b, this_group); 1910 node_clear(b, nodes); 1911 } 1912 } 1913 1914 /* Remember the top group. */ 1915 if (faults > max_faults) { 1916 max_faults = faults; 1917 max_group = this_group; 1918 /* 1919 * subtle: at the smallest distance there is 1920 * just one node left in each "group", the 1921 * winner is the preferred nid. 1922 */ 1923 nid = a; 1924 } 1925 } 1926 /* Next round, evaluate the nodes within max_group. */ 1927 if (!max_faults) 1928 break; 1929 nodes = max_group; 1930 } 1931 return nid; 1932 } 1933 1934 static void task_numa_placement(struct task_struct *p) 1935 { 1936 int seq, nid, max_nid = -1, max_group_nid = -1; 1937 unsigned long max_faults = 0, max_group_faults = 0; 1938 unsigned long fault_types[2] = { 0, 0 }; 1939 unsigned long total_faults; 1940 u64 runtime, period; 1941 spinlock_t *group_lock = NULL; 1942 1943 /* 1944 * The p->mm->numa_scan_seq field gets updated without 1945 * exclusive access. Use READ_ONCE() here to ensure 1946 * that the field is read in a single access: 1947 */ 1948 seq = READ_ONCE(p->mm->numa_scan_seq); 1949 if (p->numa_scan_seq == seq) 1950 return; 1951 p->numa_scan_seq = seq; 1952 p->numa_scan_period_max = task_scan_max(p); 1953 1954 total_faults = p->numa_faults_locality[0] + 1955 p->numa_faults_locality[1]; 1956 runtime = numa_get_avg_runtime(p, &period); 1957 1958 /* If the task is part of a group prevent parallel updates to group stats */ 1959 if (p->numa_group) { 1960 group_lock = &p->numa_group->lock; 1961 spin_lock_irq(group_lock); 1962 } 1963 1964 /* Find the node with the highest number of faults */ 1965 for_each_online_node(nid) { 1966 /* Keep track of the offsets in numa_faults array */ 1967 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 1968 unsigned long faults = 0, group_faults = 0; 1969 int priv; 1970 1971 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 1972 long diff, f_diff, f_weight; 1973 1974 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 1975 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 1976 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 1977 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 1978 1979 /* Decay existing window, copy faults since last scan */ 1980 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 1981 fault_types[priv] += p->numa_faults[membuf_idx]; 1982 p->numa_faults[membuf_idx] = 0; 1983 1984 /* 1985 * Normalize the faults_from, so all tasks in a group 1986 * count according to CPU use, instead of by the raw 1987 * number of faults. Tasks with little runtime have 1988 * little over-all impact on throughput, and thus their 1989 * faults are less important. 1990 */ 1991 f_weight = div64_u64(runtime << 16, period + 1); 1992 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 1993 (total_faults + 1); 1994 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 1995 p->numa_faults[cpubuf_idx] = 0; 1996 1997 p->numa_faults[mem_idx] += diff; 1998 p->numa_faults[cpu_idx] += f_diff; 1999 faults += p->numa_faults[mem_idx]; 2000 p->total_numa_faults += diff; 2001 if (p->numa_group) { 2002 /* 2003 * safe because we can only change our own group 2004 * 2005 * mem_idx represents the offset for a given 2006 * nid and priv in a specific region because it 2007 * is at the beginning of the numa_faults array. 2008 */ 2009 p->numa_group->faults[mem_idx] += diff; 2010 p->numa_group->faults_cpu[mem_idx] += f_diff; 2011 p->numa_group->total_faults += diff; 2012 group_faults += p->numa_group->faults[mem_idx]; 2013 } 2014 } 2015 2016 if (faults > max_faults) { 2017 max_faults = faults; 2018 max_nid = nid; 2019 } 2020 2021 if (group_faults > max_group_faults) { 2022 max_group_faults = group_faults; 2023 max_group_nid = nid; 2024 } 2025 } 2026 2027 update_task_scan_period(p, fault_types[0], fault_types[1]); 2028 2029 if (p->numa_group) { 2030 numa_group_count_active_nodes(p->numa_group); 2031 spin_unlock_irq(group_lock); 2032 max_nid = preferred_group_nid(p, max_group_nid); 2033 } 2034 2035 if (max_faults) { 2036 /* Set the new preferred node */ 2037 if (max_nid != p->numa_preferred_nid) 2038 sched_setnuma(p, max_nid); 2039 2040 if (task_node(p) != p->numa_preferred_nid) 2041 numa_migrate_preferred(p); 2042 } 2043 } 2044 2045 static inline int get_numa_group(struct numa_group *grp) 2046 { 2047 return atomic_inc_not_zero(&grp->refcount); 2048 } 2049 2050 static inline void put_numa_group(struct numa_group *grp) 2051 { 2052 if (atomic_dec_and_test(&grp->refcount)) 2053 kfree_rcu(grp, rcu); 2054 } 2055 2056 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2057 int *priv) 2058 { 2059 struct numa_group *grp, *my_grp; 2060 struct task_struct *tsk; 2061 bool join = false; 2062 int cpu = cpupid_to_cpu(cpupid); 2063 int i; 2064 2065 if (unlikely(!p->numa_group)) { 2066 unsigned int size = sizeof(struct numa_group) + 2067 4*nr_node_ids*sizeof(unsigned long); 2068 2069 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2070 if (!grp) 2071 return; 2072 2073 atomic_set(&grp->refcount, 1); 2074 grp->active_nodes = 1; 2075 grp->max_faults_cpu = 0; 2076 spin_lock_init(&grp->lock); 2077 grp->gid = p->pid; 2078 /* Second half of the array tracks nids where faults happen */ 2079 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2080 nr_node_ids; 2081 2082 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2083 grp->faults[i] = p->numa_faults[i]; 2084 2085 grp->total_faults = p->total_numa_faults; 2086 2087 grp->nr_tasks++; 2088 rcu_assign_pointer(p->numa_group, grp); 2089 } 2090 2091 rcu_read_lock(); 2092 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2093 2094 if (!cpupid_match_pid(tsk, cpupid)) 2095 goto no_join; 2096 2097 grp = rcu_dereference(tsk->numa_group); 2098 if (!grp) 2099 goto no_join; 2100 2101 my_grp = p->numa_group; 2102 if (grp == my_grp) 2103 goto no_join; 2104 2105 /* 2106 * Only join the other group if its bigger; if we're the bigger group, 2107 * the other task will join us. 2108 */ 2109 if (my_grp->nr_tasks > grp->nr_tasks) 2110 goto no_join; 2111 2112 /* 2113 * Tie-break on the grp address. 2114 */ 2115 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2116 goto no_join; 2117 2118 /* Always join threads in the same process. */ 2119 if (tsk->mm == current->mm) 2120 join = true; 2121 2122 /* Simple filter to avoid false positives due to PID collisions */ 2123 if (flags & TNF_SHARED) 2124 join = true; 2125 2126 /* Update priv based on whether false sharing was detected */ 2127 *priv = !join; 2128 2129 if (join && !get_numa_group(grp)) 2130 goto no_join; 2131 2132 rcu_read_unlock(); 2133 2134 if (!join) 2135 return; 2136 2137 BUG_ON(irqs_disabled()); 2138 double_lock_irq(&my_grp->lock, &grp->lock); 2139 2140 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2141 my_grp->faults[i] -= p->numa_faults[i]; 2142 grp->faults[i] += p->numa_faults[i]; 2143 } 2144 my_grp->total_faults -= p->total_numa_faults; 2145 grp->total_faults += p->total_numa_faults; 2146 2147 my_grp->nr_tasks--; 2148 grp->nr_tasks++; 2149 2150 spin_unlock(&my_grp->lock); 2151 spin_unlock_irq(&grp->lock); 2152 2153 rcu_assign_pointer(p->numa_group, grp); 2154 2155 put_numa_group(my_grp); 2156 return; 2157 2158 no_join: 2159 rcu_read_unlock(); 2160 return; 2161 } 2162 2163 void task_numa_free(struct task_struct *p) 2164 { 2165 struct numa_group *grp = p->numa_group; 2166 void *numa_faults = p->numa_faults; 2167 unsigned long flags; 2168 int i; 2169 2170 if (grp) { 2171 spin_lock_irqsave(&grp->lock, flags); 2172 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2173 grp->faults[i] -= p->numa_faults[i]; 2174 grp->total_faults -= p->total_numa_faults; 2175 2176 grp->nr_tasks--; 2177 spin_unlock_irqrestore(&grp->lock, flags); 2178 RCU_INIT_POINTER(p->numa_group, NULL); 2179 put_numa_group(grp); 2180 } 2181 2182 p->numa_faults = NULL; 2183 kfree(numa_faults); 2184 } 2185 2186 /* 2187 * Got a PROT_NONE fault for a page on @node. 2188 */ 2189 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2190 { 2191 struct task_struct *p = current; 2192 bool migrated = flags & TNF_MIGRATED; 2193 int cpu_node = task_node(current); 2194 int local = !!(flags & TNF_FAULT_LOCAL); 2195 struct numa_group *ng; 2196 int priv; 2197 2198 if (!static_branch_likely(&sched_numa_balancing)) 2199 return; 2200 2201 /* for example, ksmd faulting in a user's mm */ 2202 if (!p->mm) 2203 return; 2204 2205 /* Allocate buffer to track faults on a per-node basis */ 2206 if (unlikely(!p->numa_faults)) { 2207 int size = sizeof(*p->numa_faults) * 2208 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2209 2210 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2211 if (!p->numa_faults) 2212 return; 2213 2214 p->total_numa_faults = 0; 2215 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2216 } 2217 2218 /* 2219 * First accesses are treated as private, otherwise consider accesses 2220 * to be private if the accessing pid has not changed 2221 */ 2222 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2223 priv = 1; 2224 } else { 2225 priv = cpupid_match_pid(p, last_cpupid); 2226 if (!priv && !(flags & TNF_NO_GROUP)) 2227 task_numa_group(p, last_cpupid, flags, &priv); 2228 } 2229 2230 /* 2231 * If a workload spans multiple NUMA nodes, a shared fault that 2232 * occurs wholly within the set of nodes that the workload is 2233 * actively using should be counted as local. This allows the 2234 * scan rate to slow down when a workload has settled down. 2235 */ 2236 ng = p->numa_group; 2237 if (!priv && !local && ng && ng->active_nodes > 1 && 2238 numa_is_active_node(cpu_node, ng) && 2239 numa_is_active_node(mem_node, ng)) 2240 local = 1; 2241 2242 task_numa_placement(p); 2243 2244 /* 2245 * Retry task to preferred node migration periodically, in case it 2246 * case it previously failed, or the scheduler moved us. 2247 */ 2248 if (time_after(jiffies, p->numa_migrate_retry)) 2249 numa_migrate_preferred(p); 2250 2251 if (migrated) 2252 p->numa_pages_migrated += pages; 2253 if (flags & TNF_MIGRATE_FAIL) 2254 p->numa_faults_locality[2] += pages; 2255 2256 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2257 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2258 p->numa_faults_locality[local] += pages; 2259 } 2260 2261 static void reset_ptenuma_scan(struct task_struct *p) 2262 { 2263 /* 2264 * We only did a read acquisition of the mmap sem, so 2265 * p->mm->numa_scan_seq is written to without exclusive access 2266 * and the update is not guaranteed to be atomic. That's not 2267 * much of an issue though, since this is just used for 2268 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2269 * expensive, to avoid any form of compiler optimizations: 2270 */ 2271 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2272 p->mm->numa_scan_offset = 0; 2273 } 2274 2275 /* 2276 * The expensive part of numa migration is done from task_work context. 2277 * Triggered from task_tick_numa(). 2278 */ 2279 void task_numa_work(struct callback_head *work) 2280 { 2281 unsigned long migrate, next_scan, now = jiffies; 2282 struct task_struct *p = current; 2283 struct mm_struct *mm = p->mm; 2284 u64 runtime = p->se.sum_exec_runtime; 2285 struct vm_area_struct *vma; 2286 unsigned long start, end; 2287 unsigned long nr_pte_updates = 0; 2288 long pages, virtpages; 2289 2290 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 2291 2292 work->next = work; /* protect against double add */ 2293 /* 2294 * Who cares about NUMA placement when they're dying. 2295 * 2296 * NOTE: make sure not to dereference p->mm before this check, 2297 * exit_task_work() happens _after_ exit_mm() so we could be called 2298 * without p->mm even though we still had it when we enqueued this 2299 * work. 2300 */ 2301 if (p->flags & PF_EXITING) 2302 return; 2303 2304 if (!mm->numa_next_scan) { 2305 mm->numa_next_scan = now + 2306 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2307 } 2308 2309 /* 2310 * Enforce maximal scan/migration frequency.. 2311 */ 2312 migrate = mm->numa_next_scan; 2313 if (time_before(now, migrate)) 2314 return; 2315 2316 if (p->numa_scan_period == 0) { 2317 p->numa_scan_period_max = task_scan_max(p); 2318 p->numa_scan_period = task_scan_min(p); 2319 } 2320 2321 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2322 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2323 return; 2324 2325 /* 2326 * Delay this task enough that another task of this mm will likely win 2327 * the next time around. 2328 */ 2329 p->node_stamp += 2 * TICK_NSEC; 2330 2331 start = mm->numa_scan_offset; 2332 pages = sysctl_numa_balancing_scan_size; 2333 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2334 virtpages = pages * 8; /* Scan up to this much virtual space */ 2335 if (!pages) 2336 return; 2337 2338 2339 down_read(&mm->mmap_sem); 2340 vma = find_vma(mm, start); 2341 if (!vma) { 2342 reset_ptenuma_scan(p); 2343 start = 0; 2344 vma = mm->mmap; 2345 } 2346 for (; vma; vma = vma->vm_next) { 2347 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2348 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2349 continue; 2350 } 2351 2352 /* 2353 * Shared library pages mapped by multiple processes are not 2354 * migrated as it is expected they are cache replicated. Avoid 2355 * hinting faults in read-only file-backed mappings or the vdso 2356 * as migrating the pages will be of marginal benefit. 2357 */ 2358 if (!vma->vm_mm || 2359 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2360 continue; 2361 2362 /* 2363 * Skip inaccessible VMAs to avoid any confusion between 2364 * PROT_NONE and NUMA hinting ptes 2365 */ 2366 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2367 continue; 2368 2369 do { 2370 start = max(start, vma->vm_start); 2371 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2372 end = min(end, vma->vm_end); 2373 nr_pte_updates = change_prot_numa(vma, start, end); 2374 2375 /* 2376 * Try to scan sysctl_numa_balancing_size worth of 2377 * hpages that have at least one present PTE that 2378 * is not already pte-numa. If the VMA contains 2379 * areas that are unused or already full of prot_numa 2380 * PTEs, scan up to virtpages, to skip through those 2381 * areas faster. 2382 */ 2383 if (nr_pte_updates) 2384 pages -= (end - start) >> PAGE_SHIFT; 2385 virtpages -= (end - start) >> PAGE_SHIFT; 2386 2387 start = end; 2388 if (pages <= 0 || virtpages <= 0) 2389 goto out; 2390 2391 cond_resched(); 2392 } while (end != vma->vm_end); 2393 } 2394 2395 out: 2396 /* 2397 * It is possible to reach the end of the VMA list but the last few 2398 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2399 * would find the !migratable VMA on the next scan but not reset the 2400 * scanner to the start so check it now. 2401 */ 2402 if (vma) 2403 mm->numa_scan_offset = start; 2404 else 2405 reset_ptenuma_scan(p); 2406 up_read(&mm->mmap_sem); 2407 2408 /* 2409 * Make sure tasks use at least 32x as much time to run other code 2410 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2411 * Usually update_task_scan_period slows down scanning enough; on an 2412 * overloaded system we need to limit overhead on a per task basis. 2413 */ 2414 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2415 u64 diff = p->se.sum_exec_runtime - runtime; 2416 p->node_stamp += 32 * diff; 2417 } 2418 } 2419 2420 /* 2421 * Drive the periodic memory faults.. 2422 */ 2423 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2424 { 2425 struct callback_head *work = &curr->numa_work; 2426 u64 period, now; 2427 2428 /* 2429 * We don't care about NUMA placement if we don't have memory. 2430 */ 2431 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2432 return; 2433 2434 /* 2435 * Using runtime rather than walltime has the dual advantage that 2436 * we (mostly) drive the selection from busy threads and that the 2437 * task needs to have done some actual work before we bother with 2438 * NUMA placement. 2439 */ 2440 now = curr->se.sum_exec_runtime; 2441 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2442 2443 if (now > curr->node_stamp + period) { 2444 if (!curr->node_stamp) 2445 curr->numa_scan_period = task_scan_min(curr); 2446 curr->node_stamp += period; 2447 2448 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2449 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2450 task_work_add(curr, work, true); 2451 } 2452 } 2453 } 2454 #else 2455 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2456 { 2457 } 2458 2459 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2460 { 2461 } 2462 2463 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2464 { 2465 } 2466 #endif /* CONFIG_NUMA_BALANCING */ 2467 2468 static void 2469 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2470 { 2471 update_load_add(&cfs_rq->load, se->load.weight); 2472 if (!parent_entity(se)) 2473 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2474 #ifdef CONFIG_SMP 2475 if (entity_is_task(se)) { 2476 struct rq *rq = rq_of(cfs_rq); 2477 2478 account_numa_enqueue(rq, task_of(se)); 2479 list_add(&se->group_node, &rq->cfs_tasks); 2480 } 2481 #endif 2482 cfs_rq->nr_running++; 2483 } 2484 2485 static void 2486 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2487 { 2488 update_load_sub(&cfs_rq->load, se->load.weight); 2489 if (!parent_entity(se)) 2490 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2491 #ifdef CONFIG_SMP 2492 if (entity_is_task(se)) { 2493 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2494 list_del_init(&se->group_node); 2495 } 2496 #endif 2497 cfs_rq->nr_running--; 2498 } 2499 2500 #ifdef CONFIG_FAIR_GROUP_SCHED 2501 # ifdef CONFIG_SMP 2502 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 2503 { 2504 long tg_weight; 2505 2506 /* 2507 * Use this CPU's real-time load instead of the last load contribution 2508 * as the updating of the contribution is delayed, and we will use the 2509 * the real-time load to calc the share. See update_tg_load_avg(). 2510 */ 2511 tg_weight = atomic_long_read(&tg->load_avg); 2512 tg_weight -= cfs_rq->tg_load_avg_contrib; 2513 tg_weight += cfs_rq->load.weight; 2514 2515 return tg_weight; 2516 } 2517 2518 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2519 { 2520 long tg_weight, load, shares; 2521 2522 tg_weight = calc_tg_weight(tg, cfs_rq); 2523 load = cfs_rq->load.weight; 2524 2525 shares = (tg->shares * load); 2526 if (tg_weight) 2527 shares /= tg_weight; 2528 2529 if (shares < MIN_SHARES) 2530 shares = MIN_SHARES; 2531 if (shares > tg->shares) 2532 shares = tg->shares; 2533 2534 return shares; 2535 } 2536 # else /* CONFIG_SMP */ 2537 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2538 { 2539 return tg->shares; 2540 } 2541 # endif /* CONFIG_SMP */ 2542 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2543 unsigned long weight) 2544 { 2545 if (se->on_rq) { 2546 /* commit outstanding execution time */ 2547 if (cfs_rq->curr == se) 2548 update_curr(cfs_rq); 2549 account_entity_dequeue(cfs_rq, se); 2550 } 2551 2552 update_load_set(&se->load, weight); 2553 2554 if (se->on_rq) 2555 account_entity_enqueue(cfs_rq, se); 2556 } 2557 2558 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2559 2560 static void update_cfs_shares(struct cfs_rq *cfs_rq) 2561 { 2562 struct task_group *tg; 2563 struct sched_entity *se; 2564 long shares; 2565 2566 tg = cfs_rq->tg; 2567 se = tg->se[cpu_of(rq_of(cfs_rq))]; 2568 if (!se || throttled_hierarchy(cfs_rq)) 2569 return; 2570 #ifndef CONFIG_SMP 2571 if (likely(se->load.weight == tg->shares)) 2572 return; 2573 #endif 2574 shares = calc_cfs_shares(cfs_rq, tg); 2575 2576 reweight_entity(cfs_rq_of(se), se, shares); 2577 } 2578 #else /* CONFIG_FAIR_GROUP_SCHED */ 2579 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 2580 { 2581 } 2582 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2583 2584 #ifdef CONFIG_SMP 2585 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 2586 static const u32 runnable_avg_yN_inv[] = { 2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 2592 0x85aac367, 0x82cd8698, 2593 }; 2594 2595 /* 2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 2597 * over-estimates when re-combining. 2598 */ 2599 static const u32 runnable_avg_yN_sum[] = { 2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 2603 }; 2604 2605 /* 2606 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to 2607 * lower integers. See Documentation/scheduler/sched-avg.txt how these 2608 * were generated: 2609 */ 2610 static const u32 __accumulated_sum_N32[] = { 2611 0, 23371, 35056, 40899, 43820, 45281, 2612 46011, 46376, 46559, 46650, 46696, 46719, 2613 }; 2614 2615 /* 2616 * Approximate: 2617 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2618 */ 2619 static __always_inline u64 decay_load(u64 val, u64 n) 2620 { 2621 unsigned int local_n; 2622 2623 if (!n) 2624 return val; 2625 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2626 return 0; 2627 2628 /* after bounds checking we can collapse to 32-bit */ 2629 local_n = n; 2630 2631 /* 2632 * As y^PERIOD = 1/2, we can combine 2633 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 2634 * With a look-up table which covers y^n (n<PERIOD) 2635 * 2636 * To achieve constant time decay_load. 2637 */ 2638 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2639 val >>= local_n / LOAD_AVG_PERIOD; 2640 local_n %= LOAD_AVG_PERIOD; 2641 } 2642 2643 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 2644 return val; 2645 } 2646 2647 /* 2648 * For updates fully spanning n periods, the contribution to runnable 2649 * average will be: \Sum 1024*y^n 2650 * 2651 * We can compute this reasonably efficiently by combining: 2652 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2653 */ 2654 static u32 __compute_runnable_contrib(u64 n) 2655 { 2656 u32 contrib = 0; 2657 2658 if (likely(n <= LOAD_AVG_PERIOD)) 2659 return runnable_avg_yN_sum[n]; 2660 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2661 return LOAD_AVG_MAX; 2662 2663 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */ 2664 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD]; 2665 n %= LOAD_AVG_PERIOD; 2666 contrib = decay_load(contrib, n); 2667 return contrib + runnable_avg_yN_sum[n]; 2668 } 2669 2670 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 2671 2672 /* 2673 * We can represent the historical contribution to runnable average as the 2674 * coefficients of a geometric series. To do this we sub-divide our runnable 2675 * history into segments of approximately 1ms (1024us); label the segment that 2676 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2677 * 2678 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2679 * p0 p1 p2 2680 * (now) (~1ms ago) (~2ms ago) 2681 * 2682 * Let u_i denote the fraction of p_i that the entity was runnable. 2683 * 2684 * We then designate the fractions u_i as our co-efficients, yielding the 2685 * following representation of historical load: 2686 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2687 * 2688 * We choose y based on the with of a reasonably scheduling period, fixing: 2689 * y^32 = 0.5 2690 * 2691 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2692 * approximately half as much as the contribution to load within the last ms 2693 * (u_0). 2694 * 2695 * When a period "rolls over" and we have new u_0`, multiplying the previous 2696 * sum again by y is sufficient to update: 2697 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2698 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2699 */ 2700 static __always_inline int 2701 __update_load_avg(u64 now, int cpu, struct sched_avg *sa, 2702 unsigned long weight, int running, struct cfs_rq *cfs_rq) 2703 { 2704 u64 delta, scaled_delta, periods; 2705 u32 contrib; 2706 unsigned int delta_w, scaled_delta_w, decayed = 0; 2707 unsigned long scale_freq, scale_cpu; 2708 2709 delta = now - sa->last_update_time; 2710 /* 2711 * This should only happen when time goes backwards, which it 2712 * unfortunately does during sched clock init when we swap over to TSC. 2713 */ 2714 if ((s64)delta < 0) { 2715 sa->last_update_time = now; 2716 return 0; 2717 } 2718 2719 /* 2720 * Use 1024ns as the unit of measurement since it's a reasonable 2721 * approximation of 1us and fast to compute. 2722 */ 2723 delta >>= 10; 2724 if (!delta) 2725 return 0; 2726 sa->last_update_time = now; 2727 2728 scale_freq = arch_scale_freq_capacity(NULL, cpu); 2729 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 2730 2731 /* delta_w is the amount already accumulated against our next period */ 2732 delta_w = sa->period_contrib; 2733 if (delta + delta_w >= 1024) { 2734 decayed = 1; 2735 2736 /* how much left for next period will start over, we don't know yet */ 2737 sa->period_contrib = 0; 2738 2739 /* 2740 * Now that we know we're crossing a period boundary, figure 2741 * out how much from delta we need to complete the current 2742 * period and accrue it. 2743 */ 2744 delta_w = 1024 - delta_w; 2745 scaled_delta_w = cap_scale(delta_w, scale_freq); 2746 if (weight) { 2747 sa->load_sum += weight * scaled_delta_w; 2748 if (cfs_rq) { 2749 cfs_rq->runnable_load_sum += 2750 weight * scaled_delta_w; 2751 } 2752 } 2753 if (running) 2754 sa->util_sum += scaled_delta_w * scale_cpu; 2755 2756 delta -= delta_w; 2757 2758 /* Figure out how many additional periods this update spans */ 2759 periods = delta / 1024; 2760 delta %= 1024; 2761 2762 sa->load_sum = decay_load(sa->load_sum, periods + 1); 2763 if (cfs_rq) { 2764 cfs_rq->runnable_load_sum = 2765 decay_load(cfs_rq->runnable_load_sum, periods + 1); 2766 } 2767 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1); 2768 2769 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2770 contrib = __compute_runnable_contrib(periods); 2771 contrib = cap_scale(contrib, scale_freq); 2772 if (weight) { 2773 sa->load_sum += weight * contrib; 2774 if (cfs_rq) 2775 cfs_rq->runnable_load_sum += weight * contrib; 2776 } 2777 if (running) 2778 sa->util_sum += contrib * scale_cpu; 2779 } 2780 2781 /* Remainder of delta accrued against u_0` */ 2782 scaled_delta = cap_scale(delta, scale_freq); 2783 if (weight) { 2784 sa->load_sum += weight * scaled_delta; 2785 if (cfs_rq) 2786 cfs_rq->runnable_load_sum += weight * scaled_delta; 2787 } 2788 if (running) 2789 sa->util_sum += scaled_delta * scale_cpu; 2790 2791 sa->period_contrib += delta; 2792 2793 if (decayed) { 2794 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX); 2795 if (cfs_rq) { 2796 cfs_rq->runnable_load_avg = 2797 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX); 2798 } 2799 sa->util_avg = sa->util_sum / LOAD_AVG_MAX; 2800 } 2801 2802 return decayed; 2803 } 2804 2805 #ifdef CONFIG_FAIR_GROUP_SCHED 2806 /* 2807 * Updating tg's load_avg is necessary before update_cfs_share (which is done) 2808 * and effective_load (which is not done because it is too costly). 2809 */ 2810 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 2811 { 2812 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 2813 2814 /* 2815 * No need to update load_avg for root_task_group as it is not used. 2816 */ 2817 if (cfs_rq->tg == &root_task_group) 2818 return; 2819 2820 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 2821 atomic_long_add(delta, &cfs_rq->tg->load_avg); 2822 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 2823 } 2824 } 2825 2826 /* 2827 * Called within set_task_rq() right before setting a task's cpu. The 2828 * caller only guarantees p->pi_lock is held; no other assumptions, 2829 * including the state of rq->lock, should be made. 2830 */ 2831 void set_task_rq_fair(struct sched_entity *se, 2832 struct cfs_rq *prev, struct cfs_rq *next) 2833 { 2834 if (!sched_feat(ATTACH_AGE_LOAD)) 2835 return; 2836 2837 /* 2838 * We are supposed to update the task to "current" time, then its up to 2839 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 2840 * getting what current time is, so simply throw away the out-of-date 2841 * time. This will result in the wakee task is less decayed, but giving 2842 * the wakee more load sounds not bad. 2843 */ 2844 if (se->avg.last_update_time && prev) { 2845 u64 p_last_update_time; 2846 u64 n_last_update_time; 2847 2848 #ifndef CONFIG_64BIT 2849 u64 p_last_update_time_copy; 2850 u64 n_last_update_time_copy; 2851 2852 do { 2853 p_last_update_time_copy = prev->load_last_update_time_copy; 2854 n_last_update_time_copy = next->load_last_update_time_copy; 2855 2856 smp_rmb(); 2857 2858 p_last_update_time = prev->avg.last_update_time; 2859 n_last_update_time = next->avg.last_update_time; 2860 2861 } while (p_last_update_time != p_last_update_time_copy || 2862 n_last_update_time != n_last_update_time_copy); 2863 #else 2864 p_last_update_time = prev->avg.last_update_time; 2865 n_last_update_time = next->avg.last_update_time; 2866 #endif 2867 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)), 2868 &se->avg, 0, 0, NULL); 2869 se->avg.last_update_time = n_last_update_time; 2870 } 2871 } 2872 #else /* CONFIG_FAIR_GROUP_SCHED */ 2873 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 2874 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2875 2876 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 2877 2878 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq) 2879 { 2880 struct rq *rq = rq_of(cfs_rq); 2881 int cpu = cpu_of(rq); 2882 2883 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) { 2884 unsigned long max = rq->cpu_capacity_orig; 2885 2886 /* 2887 * There are a few boundary cases this might miss but it should 2888 * get called often enough that that should (hopefully) not be 2889 * a real problem -- added to that it only calls on the local 2890 * CPU, so if we enqueue remotely we'll miss an update, but 2891 * the next tick/schedule should update. 2892 * 2893 * It will not get called when we go idle, because the idle 2894 * thread is a different class (!fair), nor will the utilization 2895 * number include things like RT tasks. 2896 * 2897 * As is, the util number is not freq-invariant (we'd have to 2898 * implement arch_scale_freq_capacity() for that). 2899 * 2900 * See cpu_util(). 2901 */ 2902 cpufreq_update_util(rq_clock(rq), 2903 min(cfs_rq->avg.util_avg, max), max); 2904 } 2905 } 2906 2907 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */ 2908 static inline int 2909 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq) 2910 { 2911 struct sched_avg *sa = &cfs_rq->avg; 2912 int decayed, removed_load = 0, removed_util = 0; 2913 2914 if (atomic_long_read(&cfs_rq->removed_load_avg)) { 2915 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); 2916 sa->load_avg = max_t(long, sa->load_avg - r, 0); 2917 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0); 2918 removed_load = 1; 2919 } 2920 2921 if (atomic_long_read(&cfs_rq->removed_util_avg)) { 2922 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); 2923 sa->util_avg = max_t(long, sa->util_avg - r, 0); 2924 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0); 2925 removed_util = 1; 2926 } 2927 2928 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 2929 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq); 2930 2931 #ifndef CONFIG_64BIT 2932 smp_wmb(); 2933 cfs_rq->load_last_update_time_copy = sa->last_update_time; 2934 #endif 2935 2936 if (update_freq && (decayed || removed_util)) 2937 cfs_rq_util_change(cfs_rq); 2938 2939 return decayed || removed_load; 2940 } 2941 2942 /* Update task and its cfs_rq load average */ 2943 static inline void update_load_avg(struct sched_entity *se, int update_tg) 2944 { 2945 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2946 u64 now = cfs_rq_clock_task(cfs_rq); 2947 struct rq *rq = rq_of(cfs_rq); 2948 int cpu = cpu_of(rq); 2949 2950 /* 2951 * Track task load average for carrying it to new CPU after migrated, and 2952 * track group sched_entity load average for task_h_load calc in migration 2953 */ 2954 __update_load_avg(now, cpu, &se->avg, 2955 se->on_rq * scale_load_down(se->load.weight), 2956 cfs_rq->curr == se, NULL); 2957 2958 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg) 2959 update_tg_load_avg(cfs_rq, 0); 2960 } 2961 2962 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2963 { 2964 if (!sched_feat(ATTACH_AGE_LOAD)) 2965 goto skip_aging; 2966 2967 /* 2968 * If we got migrated (either between CPUs or between cgroups) we'll 2969 * have aged the average right before clearing @last_update_time. 2970 */ 2971 if (se->avg.last_update_time) { 2972 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), 2973 &se->avg, 0, 0, NULL); 2974 2975 /* 2976 * XXX: we could have just aged the entire load away if we've been 2977 * absent from the fair class for too long. 2978 */ 2979 } 2980 2981 skip_aging: 2982 se->avg.last_update_time = cfs_rq->avg.last_update_time; 2983 cfs_rq->avg.load_avg += se->avg.load_avg; 2984 cfs_rq->avg.load_sum += se->avg.load_sum; 2985 cfs_rq->avg.util_avg += se->avg.util_avg; 2986 cfs_rq->avg.util_sum += se->avg.util_sum; 2987 2988 cfs_rq_util_change(cfs_rq); 2989 } 2990 2991 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2992 { 2993 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), 2994 &se->avg, se->on_rq * scale_load_down(se->load.weight), 2995 cfs_rq->curr == se, NULL); 2996 2997 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0); 2998 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0); 2999 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0); 3000 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0); 3001 3002 cfs_rq_util_change(cfs_rq); 3003 } 3004 3005 /* Add the load generated by se into cfs_rq's load average */ 3006 static inline void 3007 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3008 { 3009 struct sched_avg *sa = &se->avg; 3010 u64 now = cfs_rq_clock_task(cfs_rq); 3011 int migrated, decayed; 3012 3013 migrated = !sa->last_update_time; 3014 if (!migrated) { 3015 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 3016 se->on_rq * scale_load_down(se->load.weight), 3017 cfs_rq->curr == se, NULL); 3018 } 3019 3020 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated); 3021 3022 cfs_rq->runnable_load_avg += sa->load_avg; 3023 cfs_rq->runnable_load_sum += sa->load_sum; 3024 3025 if (migrated) 3026 attach_entity_load_avg(cfs_rq, se); 3027 3028 if (decayed || migrated) 3029 update_tg_load_avg(cfs_rq, 0); 3030 } 3031 3032 /* Remove the runnable load generated by se from cfs_rq's runnable load average */ 3033 static inline void 3034 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3035 { 3036 update_load_avg(se, 1); 3037 3038 cfs_rq->runnable_load_avg = 3039 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0); 3040 cfs_rq->runnable_load_sum = 3041 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0); 3042 } 3043 3044 #ifndef CONFIG_64BIT 3045 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3046 { 3047 u64 last_update_time_copy; 3048 u64 last_update_time; 3049 3050 do { 3051 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3052 smp_rmb(); 3053 last_update_time = cfs_rq->avg.last_update_time; 3054 } while (last_update_time != last_update_time_copy); 3055 3056 return last_update_time; 3057 } 3058 #else 3059 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3060 { 3061 return cfs_rq->avg.last_update_time; 3062 } 3063 #endif 3064 3065 /* 3066 * Task first catches up with cfs_rq, and then subtract 3067 * itself from the cfs_rq (task must be off the queue now). 3068 */ 3069 void remove_entity_load_avg(struct sched_entity *se) 3070 { 3071 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3072 u64 last_update_time; 3073 3074 /* 3075 * Newly created task or never used group entity should not be removed 3076 * from its (source) cfs_rq 3077 */ 3078 if (se->avg.last_update_time == 0) 3079 return; 3080 3081 last_update_time = cfs_rq_last_update_time(cfs_rq); 3082 3083 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL); 3084 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg); 3085 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg); 3086 } 3087 3088 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3089 { 3090 return cfs_rq->runnable_load_avg; 3091 } 3092 3093 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3094 { 3095 return cfs_rq->avg.load_avg; 3096 } 3097 3098 static int idle_balance(struct rq *this_rq); 3099 3100 #else /* CONFIG_SMP */ 3101 3102 static inline void update_load_avg(struct sched_entity *se, int not_used) 3103 { 3104 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3105 struct rq *rq = rq_of(cfs_rq); 3106 3107 cpufreq_trigger_update(rq_clock(rq)); 3108 } 3109 3110 static inline void 3111 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3112 static inline void 3113 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3114 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3115 3116 static inline void 3117 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3118 static inline void 3119 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3120 3121 static inline int idle_balance(struct rq *rq) 3122 { 3123 return 0; 3124 } 3125 3126 #endif /* CONFIG_SMP */ 3127 3128 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 3129 { 3130 #ifdef CONFIG_SCHEDSTATS 3131 struct task_struct *tsk = NULL; 3132 3133 if (entity_is_task(se)) 3134 tsk = task_of(se); 3135 3136 if (se->statistics.sleep_start) { 3137 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 3138 3139 if ((s64)delta < 0) 3140 delta = 0; 3141 3142 if (unlikely(delta > se->statistics.sleep_max)) 3143 se->statistics.sleep_max = delta; 3144 3145 se->statistics.sleep_start = 0; 3146 se->statistics.sum_sleep_runtime += delta; 3147 3148 if (tsk) { 3149 account_scheduler_latency(tsk, delta >> 10, 1); 3150 trace_sched_stat_sleep(tsk, delta); 3151 } 3152 } 3153 if (se->statistics.block_start) { 3154 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 3155 3156 if ((s64)delta < 0) 3157 delta = 0; 3158 3159 if (unlikely(delta > se->statistics.block_max)) 3160 se->statistics.block_max = delta; 3161 3162 se->statistics.block_start = 0; 3163 se->statistics.sum_sleep_runtime += delta; 3164 3165 if (tsk) { 3166 if (tsk->in_iowait) { 3167 se->statistics.iowait_sum += delta; 3168 se->statistics.iowait_count++; 3169 trace_sched_stat_iowait(tsk, delta); 3170 } 3171 3172 trace_sched_stat_blocked(tsk, delta); 3173 3174 /* 3175 * Blocking time is in units of nanosecs, so shift by 3176 * 20 to get a milliseconds-range estimation of the 3177 * amount of time that the task spent sleeping: 3178 */ 3179 if (unlikely(prof_on == SLEEP_PROFILING)) { 3180 profile_hits(SLEEP_PROFILING, 3181 (void *)get_wchan(tsk), 3182 delta >> 20); 3183 } 3184 account_scheduler_latency(tsk, delta >> 10, 0); 3185 } 3186 } 3187 #endif 3188 } 3189 3190 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3191 { 3192 #ifdef CONFIG_SCHED_DEBUG 3193 s64 d = se->vruntime - cfs_rq->min_vruntime; 3194 3195 if (d < 0) 3196 d = -d; 3197 3198 if (d > 3*sysctl_sched_latency) 3199 schedstat_inc(cfs_rq, nr_spread_over); 3200 #endif 3201 } 3202 3203 static void 3204 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3205 { 3206 u64 vruntime = cfs_rq->min_vruntime; 3207 3208 /* 3209 * The 'current' period is already promised to the current tasks, 3210 * however the extra weight of the new task will slow them down a 3211 * little, place the new task so that it fits in the slot that 3212 * stays open at the end. 3213 */ 3214 if (initial && sched_feat(START_DEBIT)) 3215 vruntime += sched_vslice(cfs_rq, se); 3216 3217 /* sleeps up to a single latency don't count. */ 3218 if (!initial) { 3219 unsigned long thresh = sysctl_sched_latency; 3220 3221 /* 3222 * Halve their sleep time's effect, to allow 3223 * for a gentler effect of sleepers: 3224 */ 3225 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3226 thresh >>= 1; 3227 3228 vruntime -= thresh; 3229 } 3230 3231 /* ensure we never gain time by being placed backwards. */ 3232 se->vruntime = max_vruntime(se->vruntime, vruntime); 3233 } 3234 3235 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3236 3237 static inline void check_schedstat_required(void) 3238 { 3239 #ifdef CONFIG_SCHEDSTATS 3240 if (schedstat_enabled()) 3241 return; 3242 3243 /* Force schedstat enabled if a dependent tracepoint is active */ 3244 if (trace_sched_stat_wait_enabled() || 3245 trace_sched_stat_sleep_enabled() || 3246 trace_sched_stat_iowait_enabled() || 3247 trace_sched_stat_blocked_enabled() || 3248 trace_sched_stat_runtime_enabled()) { 3249 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3250 "stat_blocked and stat_runtime require the " 3251 "kernel parameter schedstats=enabled or " 3252 "kernel.sched_schedstats=1\n"); 3253 } 3254 #endif 3255 } 3256 3257 3258 /* 3259 * MIGRATION 3260 * 3261 * dequeue 3262 * update_curr() 3263 * update_min_vruntime() 3264 * vruntime -= min_vruntime 3265 * 3266 * enqueue 3267 * update_curr() 3268 * update_min_vruntime() 3269 * vruntime += min_vruntime 3270 * 3271 * this way the vruntime transition between RQs is done when both 3272 * min_vruntime are up-to-date. 3273 * 3274 * WAKEUP (remote) 3275 * 3276 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3277 * vruntime -= min_vruntime 3278 * 3279 * enqueue 3280 * update_curr() 3281 * update_min_vruntime() 3282 * vruntime += min_vruntime 3283 * 3284 * this way we don't have the most up-to-date min_vruntime on the originating 3285 * CPU and an up-to-date min_vruntime on the destination CPU. 3286 */ 3287 3288 static void 3289 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3290 { 3291 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3292 bool curr = cfs_rq->curr == se; 3293 3294 /* 3295 * If we're the current task, we must renormalise before calling 3296 * update_curr(). 3297 */ 3298 if (renorm && curr) 3299 se->vruntime += cfs_rq->min_vruntime; 3300 3301 update_curr(cfs_rq); 3302 3303 /* 3304 * Otherwise, renormalise after, such that we're placed at the current 3305 * moment in time, instead of some random moment in the past. Being 3306 * placed in the past could significantly boost this task to the 3307 * fairness detriment of existing tasks. 3308 */ 3309 if (renorm && !curr) 3310 se->vruntime += cfs_rq->min_vruntime; 3311 3312 enqueue_entity_load_avg(cfs_rq, se); 3313 account_entity_enqueue(cfs_rq, se); 3314 update_cfs_shares(cfs_rq); 3315 3316 if (flags & ENQUEUE_WAKEUP) { 3317 place_entity(cfs_rq, se, 0); 3318 if (schedstat_enabled()) 3319 enqueue_sleeper(cfs_rq, se); 3320 } 3321 3322 check_schedstat_required(); 3323 if (schedstat_enabled()) { 3324 update_stats_enqueue(cfs_rq, se); 3325 check_spread(cfs_rq, se); 3326 } 3327 if (!curr) 3328 __enqueue_entity(cfs_rq, se); 3329 se->on_rq = 1; 3330 3331 if (cfs_rq->nr_running == 1) { 3332 list_add_leaf_cfs_rq(cfs_rq); 3333 check_enqueue_throttle(cfs_rq); 3334 } 3335 } 3336 3337 static void __clear_buddies_last(struct sched_entity *se) 3338 { 3339 for_each_sched_entity(se) { 3340 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3341 if (cfs_rq->last != se) 3342 break; 3343 3344 cfs_rq->last = NULL; 3345 } 3346 } 3347 3348 static void __clear_buddies_next(struct sched_entity *se) 3349 { 3350 for_each_sched_entity(se) { 3351 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3352 if (cfs_rq->next != se) 3353 break; 3354 3355 cfs_rq->next = NULL; 3356 } 3357 } 3358 3359 static void __clear_buddies_skip(struct sched_entity *se) 3360 { 3361 for_each_sched_entity(se) { 3362 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3363 if (cfs_rq->skip != se) 3364 break; 3365 3366 cfs_rq->skip = NULL; 3367 } 3368 } 3369 3370 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3371 { 3372 if (cfs_rq->last == se) 3373 __clear_buddies_last(se); 3374 3375 if (cfs_rq->next == se) 3376 __clear_buddies_next(se); 3377 3378 if (cfs_rq->skip == se) 3379 __clear_buddies_skip(se); 3380 } 3381 3382 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3383 3384 static void 3385 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3386 { 3387 /* 3388 * Update run-time statistics of the 'current'. 3389 */ 3390 update_curr(cfs_rq); 3391 dequeue_entity_load_avg(cfs_rq, se); 3392 3393 if (schedstat_enabled()) 3394 update_stats_dequeue(cfs_rq, se, flags); 3395 3396 clear_buddies(cfs_rq, se); 3397 3398 if (se != cfs_rq->curr) 3399 __dequeue_entity(cfs_rq, se); 3400 se->on_rq = 0; 3401 account_entity_dequeue(cfs_rq, se); 3402 3403 /* 3404 * Normalize the entity after updating the min_vruntime because the 3405 * update can refer to the ->curr item and we need to reflect this 3406 * movement in our normalized position. 3407 */ 3408 if (!(flags & DEQUEUE_SLEEP)) 3409 se->vruntime -= cfs_rq->min_vruntime; 3410 3411 /* return excess runtime on last dequeue */ 3412 return_cfs_rq_runtime(cfs_rq); 3413 3414 update_min_vruntime(cfs_rq); 3415 update_cfs_shares(cfs_rq); 3416 } 3417 3418 /* 3419 * Preempt the current task with a newly woken task if needed: 3420 */ 3421 static void 3422 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3423 { 3424 unsigned long ideal_runtime, delta_exec; 3425 struct sched_entity *se; 3426 s64 delta; 3427 3428 ideal_runtime = sched_slice(cfs_rq, curr); 3429 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3430 if (delta_exec > ideal_runtime) { 3431 resched_curr(rq_of(cfs_rq)); 3432 /* 3433 * The current task ran long enough, ensure it doesn't get 3434 * re-elected due to buddy favours. 3435 */ 3436 clear_buddies(cfs_rq, curr); 3437 return; 3438 } 3439 3440 /* 3441 * Ensure that a task that missed wakeup preemption by a 3442 * narrow margin doesn't have to wait for a full slice. 3443 * This also mitigates buddy induced latencies under load. 3444 */ 3445 if (delta_exec < sysctl_sched_min_granularity) 3446 return; 3447 3448 se = __pick_first_entity(cfs_rq); 3449 delta = curr->vruntime - se->vruntime; 3450 3451 if (delta < 0) 3452 return; 3453 3454 if (delta > ideal_runtime) 3455 resched_curr(rq_of(cfs_rq)); 3456 } 3457 3458 static void 3459 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3460 { 3461 /* 'current' is not kept within the tree. */ 3462 if (se->on_rq) { 3463 /* 3464 * Any task has to be enqueued before it get to execute on 3465 * a CPU. So account for the time it spent waiting on the 3466 * runqueue. 3467 */ 3468 if (schedstat_enabled()) 3469 update_stats_wait_end(cfs_rq, se); 3470 __dequeue_entity(cfs_rq, se); 3471 update_load_avg(se, 1); 3472 } 3473 3474 update_stats_curr_start(cfs_rq, se); 3475 cfs_rq->curr = se; 3476 #ifdef CONFIG_SCHEDSTATS 3477 /* 3478 * Track our maximum slice length, if the CPU's load is at 3479 * least twice that of our own weight (i.e. dont track it 3480 * when there are only lesser-weight tasks around): 3481 */ 3482 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3483 se->statistics.slice_max = max(se->statistics.slice_max, 3484 se->sum_exec_runtime - se->prev_sum_exec_runtime); 3485 } 3486 #endif 3487 se->prev_sum_exec_runtime = se->sum_exec_runtime; 3488 } 3489 3490 static int 3491 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 3492 3493 /* 3494 * Pick the next process, keeping these things in mind, in this order: 3495 * 1) keep things fair between processes/task groups 3496 * 2) pick the "next" process, since someone really wants that to run 3497 * 3) pick the "last" process, for cache locality 3498 * 4) do not run the "skip" process, if something else is available 3499 */ 3500 static struct sched_entity * 3501 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3502 { 3503 struct sched_entity *left = __pick_first_entity(cfs_rq); 3504 struct sched_entity *se; 3505 3506 /* 3507 * If curr is set we have to see if its left of the leftmost entity 3508 * still in the tree, provided there was anything in the tree at all. 3509 */ 3510 if (!left || (curr && entity_before(curr, left))) 3511 left = curr; 3512 3513 se = left; /* ideally we run the leftmost entity */ 3514 3515 /* 3516 * Avoid running the skip buddy, if running something else can 3517 * be done without getting too unfair. 3518 */ 3519 if (cfs_rq->skip == se) { 3520 struct sched_entity *second; 3521 3522 if (se == curr) { 3523 second = __pick_first_entity(cfs_rq); 3524 } else { 3525 second = __pick_next_entity(se); 3526 if (!second || (curr && entity_before(curr, second))) 3527 second = curr; 3528 } 3529 3530 if (second && wakeup_preempt_entity(second, left) < 1) 3531 se = second; 3532 } 3533 3534 /* 3535 * Prefer last buddy, try to return the CPU to a preempted task. 3536 */ 3537 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3538 se = cfs_rq->last; 3539 3540 /* 3541 * Someone really wants this to run. If it's not unfair, run it. 3542 */ 3543 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3544 se = cfs_rq->next; 3545 3546 clear_buddies(cfs_rq, se); 3547 3548 return se; 3549 } 3550 3551 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3552 3553 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3554 { 3555 /* 3556 * If still on the runqueue then deactivate_task() 3557 * was not called and update_curr() has to be done: 3558 */ 3559 if (prev->on_rq) 3560 update_curr(cfs_rq); 3561 3562 /* throttle cfs_rqs exceeding runtime */ 3563 check_cfs_rq_runtime(cfs_rq); 3564 3565 if (schedstat_enabled()) { 3566 check_spread(cfs_rq, prev); 3567 if (prev->on_rq) 3568 update_stats_wait_start(cfs_rq, prev); 3569 } 3570 3571 if (prev->on_rq) { 3572 /* Put 'current' back into the tree. */ 3573 __enqueue_entity(cfs_rq, prev); 3574 /* in !on_rq case, update occurred at dequeue */ 3575 update_load_avg(prev, 0); 3576 } 3577 cfs_rq->curr = NULL; 3578 } 3579 3580 static void 3581 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3582 { 3583 /* 3584 * Update run-time statistics of the 'current'. 3585 */ 3586 update_curr(cfs_rq); 3587 3588 /* 3589 * Ensure that runnable average is periodically updated. 3590 */ 3591 update_load_avg(curr, 1); 3592 update_cfs_shares(cfs_rq); 3593 3594 #ifdef CONFIG_SCHED_HRTICK 3595 /* 3596 * queued ticks are scheduled to match the slice, so don't bother 3597 * validating it and just reschedule. 3598 */ 3599 if (queued) { 3600 resched_curr(rq_of(cfs_rq)); 3601 return; 3602 } 3603 /* 3604 * don't let the period tick interfere with the hrtick preemption 3605 */ 3606 if (!sched_feat(DOUBLE_TICK) && 3607 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3608 return; 3609 #endif 3610 3611 if (cfs_rq->nr_running > 1) 3612 check_preempt_tick(cfs_rq, curr); 3613 } 3614 3615 3616 /************************************************** 3617 * CFS bandwidth control machinery 3618 */ 3619 3620 #ifdef CONFIG_CFS_BANDWIDTH 3621 3622 #ifdef HAVE_JUMP_LABEL 3623 static struct static_key __cfs_bandwidth_used; 3624 3625 static inline bool cfs_bandwidth_used(void) 3626 { 3627 return static_key_false(&__cfs_bandwidth_used); 3628 } 3629 3630 void cfs_bandwidth_usage_inc(void) 3631 { 3632 static_key_slow_inc(&__cfs_bandwidth_used); 3633 } 3634 3635 void cfs_bandwidth_usage_dec(void) 3636 { 3637 static_key_slow_dec(&__cfs_bandwidth_used); 3638 } 3639 #else /* HAVE_JUMP_LABEL */ 3640 static bool cfs_bandwidth_used(void) 3641 { 3642 return true; 3643 } 3644 3645 void cfs_bandwidth_usage_inc(void) {} 3646 void cfs_bandwidth_usage_dec(void) {} 3647 #endif /* HAVE_JUMP_LABEL */ 3648 3649 /* 3650 * default period for cfs group bandwidth. 3651 * default: 0.1s, units: nanoseconds 3652 */ 3653 static inline u64 default_cfs_period(void) 3654 { 3655 return 100000000ULL; 3656 } 3657 3658 static inline u64 sched_cfs_bandwidth_slice(void) 3659 { 3660 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3661 } 3662 3663 /* 3664 * Replenish runtime according to assigned quota and update expiration time. 3665 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 3666 * additional synchronization around rq->lock. 3667 * 3668 * requires cfs_b->lock 3669 */ 3670 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 3671 { 3672 u64 now; 3673 3674 if (cfs_b->quota == RUNTIME_INF) 3675 return; 3676 3677 now = sched_clock_cpu(smp_processor_id()); 3678 cfs_b->runtime = cfs_b->quota; 3679 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 3680 } 3681 3682 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3683 { 3684 return &tg->cfs_bandwidth; 3685 } 3686 3687 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 3688 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3689 { 3690 if (unlikely(cfs_rq->throttle_count)) 3691 return cfs_rq->throttled_clock_task; 3692 3693 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 3694 } 3695 3696 /* returns 0 on failure to allocate runtime */ 3697 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3698 { 3699 struct task_group *tg = cfs_rq->tg; 3700 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 3701 u64 amount = 0, min_amount, expires; 3702 3703 /* note: this is a positive sum as runtime_remaining <= 0 */ 3704 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 3705 3706 raw_spin_lock(&cfs_b->lock); 3707 if (cfs_b->quota == RUNTIME_INF) 3708 amount = min_amount; 3709 else { 3710 start_cfs_bandwidth(cfs_b); 3711 3712 if (cfs_b->runtime > 0) { 3713 amount = min(cfs_b->runtime, min_amount); 3714 cfs_b->runtime -= amount; 3715 cfs_b->idle = 0; 3716 } 3717 } 3718 expires = cfs_b->runtime_expires; 3719 raw_spin_unlock(&cfs_b->lock); 3720 3721 cfs_rq->runtime_remaining += amount; 3722 /* 3723 * we may have advanced our local expiration to account for allowed 3724 * spread between our sched_clock and the one on which runtime was 3725 * issued. 3726 */ 3727 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 3728 cfs_rq->runtime_expires = expires; 3729 3730 return cfs_rq->runtime_remaining > 0; 3731 } 3732 3733 /* 3734 * Note: This depends on the synchronization provided by sched_clock and the 3735 * fact that rq->clock snapshots this value. 3736 */ 3737 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3738 { 3739 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3740 3741 /* if the deadline is ahead of our clock, nothing to do */ 3742 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 3743 return; 3744 3745 if (cfs_rq->runtime_remaining < 0) 3746 return; 3747 3748 /* 3749 * If the local deadline has passed we have to consider the 3750 * possibility that our sched_clock is 'fast' and the global deadline 3751 * has not truly expired. 3752 * 3753 * Fortunately we can check determine whether this the case by checking 3754 * whether the global deadline has advanced. It is valid to compare 3755 * cfs_b->runtime_expires without any locks since we only care about 3756 * exact equality, so a partial write will still work. 3757 */ 3758 3759 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 3760 /* extend local deadline, drift is bounded above by 2 ticks */ 3761 cfs_rq->runtime_expires += TICK_NSEC; 3762 } else { 3763 /* global deadline is ahead, expiration has passed */ 3764 cfs_rq->runtime_remaining = 0; 3765 } 3766 } 3767 3768 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3769 { 3770 /* dock delta_exec before expiring quota (as it could span periods) */ 3771 cfs_rq->runtime_remaining -= delta_exec; 3772 expire_cfs_rq_runtime(cfs_rq); 3773 3774 if (likely(cfs_rq->runtime_remaining > 0)) 3775 return; 3776 3777 /* 3778 * if we're unable to extend our runtime we resched so that the active 3779 * hierarchy can be throttled 3780 */ 3781 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3782 resched_curr(rq_of(cfs_rq)); 3783 } 3784 3785 static __always_inline 3786 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3787 { 3788 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3789 return; 3790 3791 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3792 } 3793 3794 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3795 { 3796 return cfs_bandwidth_used() && cfs_rq->throttled; 3797 } 3798 3799 /* check whether cfs_rq, or any parent, is throttled */ 3800 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3801 { 3802 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3803 } 3804 3805 /* 3806 * Ensure that neither of the group entities corresponding to src_cpu or 3807 * dest_cpu are members of a throttled hierarchy when performing group 3808 * load-balance operations. 3809 */ 3810 static inline int throttled_lb_pair(struct task_group *tg, 3811 int src_cpu, int dest_cpu) 3812 { 3813 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3814 3815 src_cfs_rq = tg->cfs_rq[src_cpu]; 3816 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3817 3818 return throttled_hierarchy(src_cfs_rq) || 3819 throttled_hierarchy(dest_cfs_rq); 3820 } 3821 3822 /* updated child weight may affect parent so we have to do this bottom up */ 3823 static int tg_unthrottle_up(struct task_group *tg, void *data) 3824 { 3825 struct rq *rq = data; 3826 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3827 3828 cfs_rq->throttle_count--; 3829 #ifdef CONFIG_SMP 3830 if (!cfs_rq->throttle_count) { 3831 /* adjust cfs_rq_clock_task() */ 3832 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3833 cfs_rq->throttled_clock_task; 3834 } 3835 #endif 3836 3837 return 0; 3838 } 3839 3840 static int tg_throttle_down(struct task_group *tg, void *data) 3841 { 3842 struct rq *rq = data; 3843 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3844 3845 /* group is entering throttled state, stop time */ 3846 if (!cfs_rq->throttle_count) 3847 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3848 cfs_rq->throttle_count++; 3849 3850 return 0; 3851 } 3852 3853 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3854 { 3855 struct rq *rq = rq_of(cfs_rq); 3856 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3857 struct sched_entity *se; 3858 long task_delta, dequeue = 1; 3859 bool empty; 3860 3861 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3862 3863 /* freeze hierarchy runnable averages while throttled */ 3864 rcu_read_lock(); 3865 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3866 rcu_read_unlock(); 3867 3868 task_delta = cfs_rq->h_nr_running; 3869 for_each_sched_entity(se) { 3870 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3871 /* throttled entity or throttle-on-deactivate */ 3872 if (!se->on_rq) 3873 break; 3874 3875 if (dequeue) 3876 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3877 qcfs_rq->h_nr_running -= task_delta; 3878 3879 if (qcfs_rq->load.weight) 3880 dequeue = 0; 3881 } 3882 3883 if (!se) 3884 sub_nr_running(rq, task_delta); 3885 3886 cfs_rq->throttled = 1; 3887 cfs_rq->throttled_clock = rq_clock(rq); 3888 raw_spin_lock(&cfs_b->lock); 3889 empty = list_empty(&cfs_b->throttled_cfs_rq); 3890 3891 /* 3892 * Add to the _head_ of the list, so that an already-started 3893 * distribute_cfs_runtime will not see us 3894 */ 3895 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3896 3897 /* 3898 * If we're the first throttled task, make sure the bandwidth 3899 * timer is running. 3900 */ 3901 if (empty) 3902 start_cfs_bandwidth(cfs_b); 3903 3904 raw_spin_unlock(&cfs_b->lock); 3905 } 3906 3907 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3908 { 3909 struct rq *rq = rq_of(cfs_rq); 3910 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3911 struct sched_entity *se; 3912 int enqueue = 1; 3913 long task_delta; 3914 3915 se = cfs_rq->tg->se[cpu_of(rq)]; 3916 3917 cfs_rq->throttled = 0; 3918 3919 update_rq_clock(rq); 3920 3921 raw_spin_lock(&cfs_b->lock); 3922 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 3923 list_del_rcu(&cfs_rq->throttled_list); 3924 raw_spin_unlock(&cfs_b->lock); 3925 3926 /* update hierarchical throttle state */ 3927 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 3928 3929 if (!cfs_rq->load.weight) 3930 return; 3931 3932 task_delta = cfs_rq->h_nr_running; 3933 for_each_sched_entity(se) { 3934 if (se->on_rq) 3935 enqueue = 0; 3936 3937 cfs_rq = cfs_rq_of(se); 3938 if (enqueue) 3939 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 3940 cfs_rq->h_nr_running += task_delta; 3941 3942 if (cfs_rq_throttled(cfs_rq)) 3943 break; 3944 } 3945 3946 if (!se) 3947 add_nr_running(rq, task_delta); 3948 3949 /* determine whether we need to wake up potentially idle cpu */ 3950 if (rq->curr == rq->idle && rq->cfs.nr_running) 3951 resched_curr(rq); 3952 } 3953 3954 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 3955 u64 remaining, u64 expires) 3956 { 3957 struct cfs_rq *cfs_rq; 3958 u64 runtime; 3959 u64 starting_runtime = remaining; 3960 3961 rcu_read_lock(); 3962 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 3963 throttled_list) { 3964 struct rq *rq = rq_of(cfs_rq); 3965 3966 raw_spin_lock(&rq->lock); 3967 if (!cfs_rq_throttled(cfs_rq)) 3968 goto next; 3969 3970 runtime = -cfs_rq->runtime_remaining + 1; 3971 if (runtime > remaining) 3972 runtime = remaining; 3973 remaining -= runtime; 3974 3975 cfs_rq->runtime_remaining += runtime; 3976 cfs_rq->runtime_expires = expires; 3977 3978 /* we check whether we're throttled above */ 3979 if (cfs_rq->runtime_remaining > 0) 3980 unthrottle_cfs_rq(cfs_rq); 3981 3982 next: 3983 raw_spin_unlock(&rq->lock); 3984 3985 if (!remaining) 3986 break; 3987 } 3988 rcu_read_unlock(); 3989 3990 return starting_runtime - remaining; 3991 } 3992 3993 /* 3994 * Responsible for refilling a task_group's bandwidth and unthrottling its 3995 * cfs_rqs as appropriate. If there has been no activity within the last 3996 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 3997 * used to track this state. 3998 */ 3999 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4000 { 4001 u64 runtime, runtime_expires; 4002 int throttled; 4003 4004 /* no need to continue the timer with no bandwidth constraint */ 4005 if (cfs_b->quota == RUNTIME_INF) 4006 goto out_deactivate; 4007 4008 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4009 cfs_b->nr_periods += overrun; 4010 4011 /* 4012 * idle depends on !throttled (for the case of a large deficit), and if 4013 * we're going inactive then everything else can be deferred 4014 */ 4015 if (cfs_b->idle && !throttled) 4016 goto out_deactivate; 4017 4018 __refill_cfs_bandwidth_runtime(cfs_b); 4019 4020 if (!throttled) { 4021 /* mark as potentially idle for the upcoming period */ 4022 cfs_b->idle = 1; 4023 return 0; 4024 } 4025 4026 /* account preceding periods in which throttling occurred */ 4027 cfs_b->nr_throttled += overrun; 4028 4029 runtime_expires = cfs_b->runtime_expires; 4030 4031 /* 4032 * This check is repeated as we are holding onto the new bandwidth while 4033 * we unthrottle. This can potentially race with an unthrottled group 4034 * trying to acquire new bandwidth from the global pool. This can result 4035 * in us over-using our runtime if it is all used during this loop, but 4036 * only by limited amounts in that extreme case. 4037 */ 4038 while (throttled && cfs_b->runtime > 0) { 4039 runtime = cfs_b->runtime; 4040 raw_spin_unlock(&cfs_b->lock); 4041 /* we can't nest cfs_b->lock while distributing bandwidth */ 4042 runtime = distribute_cfs_runtime(cfs_b, runtime, 4043 runtime_expires); 4044 raw_spin_lock(&cfs_b->lock); 4045 4046 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4047 4048 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4049 } 4050 4051 /* 4052 * While we are ensured activity in the period following an 4053 * unthrottle, this also covers the case in which the new bandwidth is 4054 * insufficient to cover the existing bandwidth deficit. (Forcing the 4055 * timer to remain active while there are any throttled entities.) 4056 */ 4057 cfs_b->idle = 0; 4058 4059 return 0; 4060 4061 out_deactivate: 4062 return 1; 4063 } 4064 4065 /* a cfs_rq won't donate quota below this amount */ 4066 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4067 /* minimum remaining period time to redistribute slack quota */ 4068 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4069 /* how long we wait to gather additional slack before distributing */ 4070 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4071 4072 /* 4073 * Are we near the end of the current quota period? 4074 * 4075 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4076 * hrtimer base being cleared by hrtimer_start. In the case of 4077 * migrate_hrtimers, base is never cleared, so we are fine. 4078 */ 4079 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4080 { 4081 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4082 u64 remaining; 4083 4084 /* if the call-back is running a quota refresh is already occurring */ 4085 if (hrtimer_callback_running(refresh_timer)) 4086 return 1; 4087 4088 /* is a quota refresh about to occur? */ 4089 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4090 if (remaining < min_expire) 4091 return 1; 4092 4093 return 0; 4094 } 4095 4096 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4097 { 4098 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4099 4100 /* if there's a quota refresh soon don't bother with slack */ 4101 if (runtime_refresh_within(cfs_b, min_left)) 4102 return; 4103 4104 hrtimer_start(&cfs_b->slack_timer, 4105 ns_to_ktime(cfs_bandwidth_slack_period), 4106 HRTIMER_MODE_REL); 4107 } 4108 4109 /* we know any runtime found here is valid as update_curr() precedes return */ 4110 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4111 { 4112 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4113 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4114 4115 if (slack_runtime <= 0) 4116 return; 4117 4118 raw_spin_lock(&cfs_b->lock); 4119 if (cfs_b->quota != RUNTIME_INF && 4120 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4121 cfs_b->runtime += slack_runtime; 4122 4123 /* we are under rq->lock, defer unthrottling using a timer */ 4124 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4125 !list_empty(&cfs_b->throttled_cfs_rq)) 4126 start_cfs_slack_bandwidth(cfs_b); 4127 } 4128 raw_spin_unlock(&cfs_b->lock); 4129 4130 /* even if it's not valid for return we don't want to try again */ 4131 cfs_rq->runtime_remaining -= slack_runtime; 4132 } 4133 4134 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4135 { 4136 if (!cfs_bandwidth_used()) 4137 return; 4138 4139 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4140 return; 4141 4142 __return_cfs_rq_runtime(cfs_rq); 4143 } 4144 4145 /* 4146 * This is done with a timer (instead of inline with bandwidth return) since 4147 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4148 */ 4149 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4150 { 4151 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4152 u64 expires; 4153 4154 /* confirm we're still not at a refresh boundary */ 4155 raw_spin_lock(&cfs_b->lock); 4156 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4157 raw_spin_unlock(&cfs_b->lock); 4158 return; 4159 } 4160 4161 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4162 runtime = cfs_b->runtime; 4163 4164 expires = cfs_b->runtime_expires; 4165 raw_spin_unlock(&cfs_b->lock); 4166 4167 if (!runtime) 4168 return; 4169 4170 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4171 4172 raw_spin_lock(&cfs_b->lock); 4173 if (expires == cfs_b->runtime_expires) 4174 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4175 raw_spin_unlock(&cfs_b->lock); 4176 } 4177 4178 /* 4179 * When a group wakes up we want to make sure that its quota is not already 4180 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4181 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4182 */ 4183 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4184 { 4185 if (!cfs_bandwidth_used()) 4186 return; 4187 4188 /* an active group must be handled by the update_curr()->put() path */ 4189 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4190 return; 4191 4192 /* ensure the group is not already throttled */ 4193 if (cfs_rq_throttled(cfs_rq)) 4194 return; 4195 4196 /* update runtime allocation */ 4197 account_cfs_rq_runtime(cfs_rq, 0); 4198 if (cfs_rq->runtime_remaining <= 0) 4199 throttle_cfs_rq(cfs_rq); 4200 } 4201 4202 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4203 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4204 { 4205 if (!cfs_bandwidth_used()) 4206 return false; 4207 4208 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4209 return false; 4210 4211 /* 4212 * it's possible for a throttled entity to be forced into a running 4213 * state (e.g. set_curr_task), in this case we're finished. 4214 */ 4215 if (cfs_rq_throttled(cfs_rq)) 4216 return true; 4217 4218 throttle_cfs_rq(cfs_rq); 4219 return true; 4220 } 4221 4222 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4223 { 4224 struct cfs_bandwidth *cfs_b = 4225 container_of(timer, struct cfs_bandwidth, slack_timer); 4226 4227 do_sched_cfs_slack_timer(cfs_b); 4228 4229 return HRTIMER_NORESTART; 4230 } 4231 4232 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4233 { 4234 struct cfs_bandwidth *cfs_b = 4235 container_of(timer, struct cfs_bandwidth, period_timer); 4236 int overrun; 4237 int idle = 0; 4238 4239 raw_spin_lock(&cfs_b->lock); 4240 for (;;) { 4241 overrun = hrtimer_forward_now(timer, cfs_b->period); 4242 if (!overrun) 4243 break; 4244 4245 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4246 } 4247 if (idle) 4248 cfs_b->period_active = 0; 4249 raw_spin_unlock(&cfs_b->lock); 4250 4251 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4252 } 4253 4254 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4255 { 4256 raw_spin_lock_init(&cfs_b->lock); 4257 cfs_b->runtime = 0; 4258 cfs_b->quota = RUNTIME_INF; 4259 cfs_b->period = ns_to_ktime(default_cfs_period()); 4260 4261 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4262 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4263 cfs_b->period_timer.function = sched_cfs_period_timer; 4264 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4265 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4266 } 4267 4268 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4269 { 4270 cfs_rq->runtime_enabled = 0; 4271 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4272 } 4273 4274 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4275 { 4276 lockdep_assert_held(&cfs_b->lock); 4277 4278 if (!cfs_b->period_active) { 4279 cfs_b->period_active = 1; 4280 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4281 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4282 } 4283 } 4284 4285 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4286 { 4287 /* init_cfs_bandwidth() was not called */ 4288 if (!cfs_b->throttled_cfs_rq.next) 4289 return; 4290 4291 hrtimer_cancel(&cfs_b->period_timer); 4292 hrtimer_cancel(&cfs_b->slack_timer); 4293 } 4294 4295 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4296 { 4297 struct cfs_rq *cfs_rq; 4298 4299 for_each_leaf_cfs_rq(rq, cfs_rq) { 4300 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; 4301 4302 raw_spin_lock(&cfs_b->lock); 4303 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4304 raw_spin_unlock(&cfs_b->lock); 4305 } 4306 } 4307 4308 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4309 { 4310 struct cfs_rq *cfs_rq; 4311 4312 for_each_leaf_cfs_rq(rq, cfs_rq) { 4313 if (!cfs_rq->runtime_enabled) 4314 continue; 4315 4316 /* 4317 * clock_task is not advancing so we just need to make sure 4318 * there's some valid quota amount 4319 */ 4320 cfs_rq->runtime_remaining = 1; 4321 /* 4322 * Offline rq is schedulable till cpu is completely disabled 4323 * in take_cpu_down(), so we prevent new cfs throttling here. 4324 */ 4325 cfs_rq->runtime_enabled = 0; 4326 4327 if (cfs_rq_throttled(cfs_rq)) 4328 unthrottle_cfs_rq(cfs_rq); 4329 } 4330 } 4331 4332 #else /* CONFIG_CFS_BANDWIDTH */ 4333 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4334 { 4335 return rq_clock_task(rq_of(cfs_rq)); 4336 } 4337 4338 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4339 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4340 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4341 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4342 4343 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4344 { 4345 return 0; 4346 } 4347 4348 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4349 { 4350 return 0; 4351 } 4352 4353 static inline int throttled_lb_pair(struct task_group *tg, 4354 int src_cpu, int dest_cpu) 4355 { 4356 return 0; 4357 } 4358 4359 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4360 4361 #ifdef CONFIG_FAIR_GROUP_SCHED 4362 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4363 #endif 4364 4365 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4366 { 4367 return NULL; 4368 } 4369 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4370 static inline void update_runtime_enabled(struct rq *rq) {} 4371 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4372 4373 #endif /* CONFIG_CFS_BANDWIDTH */ 4374 4375 /************************************************** 4376 * CFS operations on tasks: 4377 */ 4378 4379 #ifdef CONFIG_SCHED_HRTICK 4380 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4381 { 4382 struct sched_entity *se = &p->se; 4383 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4384 4385 WARN_ON(task_rq(p) != rq); 4386 4387 if (cfs_rq->nr_running > 1) { 4388 u64 slice = sched_slice(cfs_rq, se); 4389 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4390 s64 delta = slice - ran; 4391 4392 if (delta < 0) { 4393 if (rq->curr == p) 4394 resched_curr(rq); 4395 return; 4396 } 4397 hrtick_start(rq, delta); 4398 } 4399 } 4400 4401 /* 4402 * called from enqueue/dequeue and updates the hrtick when the 4403 * current task is from our class and nr_running is low enough 4404 * to matter. 4405 */ 4406 static void hrtick_update(struct rq *rq) 4407 { 4408 struct task_struct *curr = rq->curr; 4409 4410 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4411 return; 4412 4413 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4414 hrtick_start_fair(rq, curr); 4415 } 4416 #else /* !CONFIG_SCHED_HRTICK */ 4417 static inline void 4418 hrtick_start_fair(struct rq *rq, struct task_struct *p) 4419 { 4420 } 4421 4422 static inline void hrtick_update(struct rq *rq) 4423 { 4424 } 4425 #endif 4426 4427 /* 4428 * The enqueue_task method is called before nr_running is 4429 * increased. Here we update the fair scheduling stats and 4430 * then put the task into the rbtree: 4431 */ 4432 static void 4433 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4434 { 4435 struct cfs_rq *cfs_rq; 4436 struct sched_entity *se = &p->se; 4437 4438 for_each_sched_entity(se) { 4439 if (se->on_rq) 4440 break; 4441 cfs_rq = cfs_rq_of(se); 4442 enqueue_entity(cfs_rq, se, flags); 4443 4444 /* 4445 * end evaluation on encountering a throttled cfs_rq 4446 * 4447 * note: in the case of encountering a throttled cfs_rq we will 4448 * post the final h_nr_running increment below. 4449 */ 4450 if (cfs_rq_throttled(cfs_rq)) 4451 break; 4452 cfs_rq->h_nr_running++; 4453 4454 flags = ENQUEUE_WAKEUP; 4455 } 4456 4457 for_each_sched_entity(se) { 4458 cfs_rq = cfs_rq_of(se); 4459 cfs_rq->h_nr_running++; 4460 4461 if (cfs_rq_throttled(cfs_rq)) 4462 break; 4463 4464 update_load_avg(se, 1); 4465 update_cfs_shares(cfs_rq); 4466 } 4467 4468 if (!se) 4469 add_nr_running(rq, 1); 4470 4471 hrtick_update(rq); 4472 } 4473 4474 static void set_next_buddy(struct sched_entity *se); 4475 4476 /* 4477 * The dequeue_task method is called before nr_running is 4478 * decreased. We remove the task from the rbtree and 4479 * update the fair scheduling stats: 4480 */ 4481 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4482 { 4483 struct cfs_rq *cfs_rq; 4484 struct sched_entity *se = &p->se; 4485 int task_sleep = flags & DEQUEUE_SLEEP; 4486 4487 for_each_sched_entity(se) { 4488 cfs_rq = cfs_rq_of(se); 4489 dequeue_entity(cfs_rq, se, flags); 4490 4491 /* 4492 * end evaluation on encountering a throttled cfs_rq 4493 * 4494 * note: in the case of encountering a throttled cfs_rq we will 4495 * post the final h_nr_running decrement below. 4496 */ 4497 if (cfs_rq_throttled(cfs_rq)) 4498 break; 4499 cfs_rq->h_nr_running--; 4500 4501 /* Don't dequeue parent if it has other entities besides us */ 4502 if (cfs_rq->load.weight) { 4503 /* 4504 * Bias pick_next to pick a task from this cfs_rq, as 4505 * p is sleeping when it is within its sched_slice. 4506 */ 4507 if (task_sleep && parent_entity(se)) 4508 set_next_buddy(parent_entity(se)); 4509 4510 /* avoid re-evaluating load for this entity */ 4511 se = parent_entity(se); 4512 break; 4513 } 4514 flags |= DEQUEUE_SLEEP; 4515 } 4516 4517 for_each_sched_entity(se) { 4518 cfs_rq = cfs_rq_of(se); 4519 cfs_rq->h_nr_running--; 4520 4521 if (cfs_rq_throttled(cfs_rq)) 4522 break; 4523 4524 update_load_avg(se, 1); 4525 update_cfs_shares(cfs_rq); 4526 } 4527 4528 if (!se) 4529 sub_nr_running(rq, 1); 4530 4531 hrtick_update(rq); 4532 } 4533 4534 #ifdef CONFIG_SMP 4535 #ifdef CONFIG_NO_HZ_COMMON 4536 /* 4537 * per rq 'load' arrray crap; XXX kill this. 4538 */ 4539 4540 /* 4541 * The exact cpuload calculated at every tick would be: 4542 * 4543 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 4544 * 4545 * If a cpu misses updates for n ticks (as it was idle) and update gets 4546 * called on the n+1-th tick when cpu may be busy, then we have: 4547 * 4548 * load_n = (1 - 1/2^i)^n * load_0 4549 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 4550 * 4551 * decay_load_missed() below does efficient calculation of 4552 * 4553 * load' = (1 - 1/2^i)^n * load 4554 * 4555 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 4556 * This allows us to precompute the above in said factors, thereby allowing the 4557 * reduction of an arbitrary n in O(log_2 n) steps. (See also 4558 * fixed_power_int()) 4559 * 4560 * The calculation is approximated on a 128 point scale. 4561 */ 4562 #define DEGRADE_SHIFT 7 4563 4564 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 4565 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 4566 { 0, 0, 0, 0, 0, 0, 0, 0 }, 4567 { 64, 32, 8, 0, 0, 0, 0, 0 }, 4568 { 96, 72, 40, 12, 1, 0, 0, 0 }, 4569 { 112, 98, 75, 43, 15, 1, 0, 0 }, 4570 { 120, 112, 98, 76, 45, 16, 2, 0 } 4571 }; 4572 4573 /* 4574 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 4575 * would be when CPU is idle and so we just decay the old load without 4576 * adding any new load. 4577 */ 4578 static unsigned long 4579 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 4580 { 4581 int j = 0; 4582 4583 if (!missed_updates) 4584 return load; 4585 4586 if (missed_updates >= degrade_zero_ticks[idx]) 4587 return 0; 4588 4589 if (idx == 1) 4590 return load >> missed_updates; 4591 4592 while (missed_updates) { 4593 if (missed_updates % 2) 4594 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 4595 4596 missed_updates >>= 1; 4597 j++; 4598 } 4599 return load; 4600 } 4601 #endif /* CONFIG_NO_HZ_COMMON */ 4602 4603 /** 4604 * __cpu_load_update - update the rq->cpu_load[] statistics 4605 * @this_rq: The rq to update statistics for 4606 * @this_load: The current load 4607 * @pending_updates: The number of missed updates 4608 * 4609 * Update rq->cpu_load[] statistics. This function is usually called every 4610 * scheduler tick (TICK_NSEC). 4611 * 4612 * This function computes a decaying average: 4613 * 4614 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 4615 * 4616 * Because of NOHZ it might not get called on every tick which gives need for 4617 * the @pending_updates argument. 4618 * 4619 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 4620 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 4621 * = A * (A * load[i]_n-2 + B) + B 4622 * = A * (A * (A * load[i]_n-3 + B) + B) + B 4623 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 4624 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 4625 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 4626 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 4627 * 4628 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 4629 * any change in load would have resulted in the tick being turned back on. 4630 * 4631 * For regular NOHZ, this reduces to: 4632 * 4633 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 4634 * 4635 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 4636 * term. 4637 */ 4638 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 4639 unsigned long pending_updates) 4640 { 4641 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 4642 int i, scale; 4643 4644 this_rq->nr_load_updates++; 4645 4646 /* Update our load: */ 4647 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 4648 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 4649 unsigned long old_load, new_load; 4650 4651 /* scale is effectively 1 << i now, and >> i divides by scale */ 4652 4653 old_load = this_rq->cpu_load[i]; 4654 #ifdef CONFIG_NO_HZ_COMMON 4655 old_load = decay_load_missed(old_load, pending_updates - 1, i); 4656 if (tickless_load) { 4657 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 4658 /* 4659 * old_load can never be a negative value because a 4660 * decayed tickless_load cannot be greater than the 4661 * original tickless_load. 4662 */ 4663 old_load += tickless_load; 4664 } 4665 #endif 4666 new_load = this_load; 4667 /* 4668 * Round up the averaging division if load is increasing. This 4669 * prevents us from getting stuck on 9 if the load is 10, for 4670 * example. 4671 */ 4672 if (new_load > old_load) 4673 new_load += scale - 1; 4674 4675 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 4676 } 4677 4678 sched_avg_update(this_rq); 4679 } 4680 4681 /* Used instead of source_load when we know the type == 0 */ 4682 static unsigned long weighted_cpuload(const int cpu) 4683 { 4684 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs); 4685 } 4686 4687 #ifdef CONFIG_NO_HZ_COMMON 4688 /* 4689 * There is no sane way to deal with nohz on smp when using jiffies because the 4690 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 4691 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 4692 * 4693 * Therefore we need to avoid the delta approach from the regular tick when 4694 * possible since that would seriously skew the load calculation. This is why we 4695 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 4696 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 4697 * loop exit, nohz_idle_balance, nohz full exit...) 4698 * 4699 * This means we might still be one tick off for nohz periods. 4700 */ 4701 4702 static void cpu_load_update_nohz(struct rq *this_rq, 4703 unsigned long curr_jiffies, 4704 unsigned long load) 4705 { 4706 unsigned long pending_updates; 4707 4708 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 4709 if (pending_updates) { 4710 this_rq->last_load_update_tick = curr_jiffies; 4711 /* 4712 * In the regular NOHZ case, we were idle, this means load 0. 4713 * In the NOHZ_FULL case, we were non-idle, we should consider 4714 * its weighted load. 4715 */ 4716 cpu_load_update(this_rq, load, pending_updates); 4717 } 4718 } 4719 4720 /* 4721 * Called from nohz_idle_balance() to update the load ratings before doing the 4722 * idle balance. 4723 */ 4724 static void cpu_load_update_idle(struct rq *this_rq) 4725 { 4726 /* 4727 * bail if there's load or we're actually up-to-date. 4728 */ 4729 if (weighted_cpuload(cpu_of(this_rq))) 4730 return; 4731 4732 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 4733 } 4734 4735 /* 4736 * Record CPU load on nohz entry so we know the tickless load to account 4737 * on nohz exit. cpu_load[0] happens then to be updated more frequently 4738 * than other cpu_load[idx] but it should be fine as cpu_load readers 4739 * shouldn't rely into synchronized cpu_load[*] updates. 4740 */ 4741 void cpu_load_update_nohz_start(void) 4742 { 4743 struct rq *this_rq = this_rq(); 4744 4745 /* 4746 * This is all lockless but should be fine. If weighted_cpuload changes 4747 * concurrently we'll exit nohz. And cpu_load write can race with 4748 * cpu_load_update_idle() but both updater would be writing the same. 4749 */ 4750 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq)); 4751 } 4752 4753 /* 4754 * Account the tickless load in the end of a nohz frame. 4755 */ 4756 void cpu_load_update_nohz_stop(void) 4757 { 4758 unsigned long curr_jiffies = READ_ONCE(jiffies); 4759 struct rq *this_rq = this_rq(); 4760 unsigned long load; 4761 4762 if (curr_jiffies == this_rq->last_load_update_tick) 4763 return; 4764 4765 load = weighted_cpuload(cpu_of(this_rq)); 4766 raw_spin_lock(&this_rq->lock); 4767 update_rq_clock(this_rq); 4768 cpu_load_update_nohz(this_rq, curr_jiffies, load); 4769 raw_spin_unlock(&this_rq->lock); 4770 } 4771 #else /* !CONFIG_NO_HZ_COMMON */ 4772 static inline void cpu_load_update_nohz(struct rq *this_rq, 4773 unsigned long curr_jiffies, 4774 unsigned long load) { } 4775 #endif /* CONFIG_NO_HZ_COMMON */ 4776 4777 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 4778 { 4779 #ifdef CONFIG_NO_HZ_COMMON 4780 /* See the mess around cpu_load_update_nohz(). */ 4781 this_rq->last_load_update_tick = READ_ONCE(jiffies); 4782 #endif 4783 cpu_load_update(this_rq, load, 1); 4784 } 4785 4786 /* 4787 * Called from scheduler_tick() 4788 */ 4789 void cpu_load_update_active(struct rq *this_rq) 4790 { 4791 unsigned long load = weighted_cpuload(cpu_of(this_rq)); 4792 4793 if (tick_nohz_tick_stopped()) 4794 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 4795 else 4796 cpu_load_update_periodic(this_rq, load); 4797 } 4798 4799 /* 4800 * Return a low guess at the load of a migration-source cpu weighted 4801 * according to the scheduling class and "nice" value. 4802 * 4803 * We want to under-estimate the load of migration sources, to 4804 * balance conservatively. 4805 */ 4806 static unsigned long source_load(int cpu, int type) 4807 { 4808 struct rq *rq = cpu_rq(cpu); 4809 unsigned long total = weighted_cpuload(cpu); 4810 4811 if (type == 0 || !sched_feat(LB_BIAS)) 4812 return total; 4813 4814 return min(rq->cpu_load[type-1], total); 4815 } 4816 4817 /* 4818 * Return a high guess at the load of a migration-target cpu weighted 4819 * according to the scheduling class and "nice" value. 4820 */ 4821 static unsigned long target_load(int cpu, int type) 4822 { 4823 struct rq *rq = cpu_rq(cpu); 4824 unsigned long total = weighted_cpuload(cpu); 4825 4826 if (type == 0 || !sched_feat(LB_BIAS)) 4827 return total; 4828 4829 return max(rq->cpu_load[type-1], total); 4830 } 4831 4832 static unsigned long capacity_of(int cpu) 4833 { 4834 return cpu_rq(cpu)->cpu_capacity; 4835 } 4836 4837 static unsigned long capacity_orig_of(int cpu) 4838 { 4839 return cpu_rq(cpu)->cpu_capacity_orig; 4840 } 4841 4842 static unsigned long cpu_avg_load_per_task(int cpu) 4843 { 4844 struct rq *rq = cpu_rq(cpu); 4845 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 4846 unsigned long load_avg = weighted_cpuload(cpu); 4847 4848 if (nr_running) 4849 return load_avg / nr_running; 4850 4851 return 0; 4852 } 4853 4854 #ifdef CONFIG_FAIR_GROUP_SCHED 4855 /* 4856 * effective_load() calculates the load change as seen from the root_task_group 4857 * 4858 * Adding load to a group doesn't make a group heavier, but can cause movement 4859 * of group shares between cpus. Assuming the shares were perfectly aligned one 4860 * can calculate the shift in shares. 4861 * 4862 * Calculate the effective load difference if @wl is added (subtracted) to @tg 4863 * on this @cpu and results in a total addition (subtraction) of @wg to the 4864 * total group weight. 4865 * 4866 * Given a runqueue weight distribution (rw_i) we can compute a shares 4867 * distribution (s_i) using: 4868 * 4869 * s_i = rw_i / \Sum rw_j (1) 4870 * 4871 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 4872 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 4873 * shares distribution (s_i): 4874 * 4875 * rw_i = { 2, 4, 1, 0 } 4876 * s_i = { 2/7, 4/7, 1/7, 0 } 4877 * 4878 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 4879 * task used to run on and the CPU the waker is running on), we need to 4880 * compute the effect of waking a task on either CPU and, in case of a sync 4881 * wakeup, compute the effect of the current task going to sleep. 4882 * 4883 * So for a change of @wl to the local @cpu with an overall group weight change 4884 * of @wl we can compute the new shares distribution (s'_i) using: 4885 * 4886 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 4887 * 4888 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 4889 * differences in waking a task to CPU 0. The additional task changes the 4890 * weight and shares distributions like: 4891 * 4892 * rw'_i = { 3, 4, 1, 0 } 4893 * s'_i = { 3/8, 4/8, 1/8, 0 } 4894 * 4895 * We can then compute the difference in effective weight by using: 4896 * 4897 * dw_i = S * (s'_i - s_i) (3) 4898 * 4899 * Where 'S' is the group weight as seen by its parent. 4900 * 4901 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 4902 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 4903 * 4/7) times the weight of the group. 4904 */ 4905 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4906 { 4907 struct sched_entity *se = tg->se[cpu]; 4908 4909 if (!tg->parent) /* the trivial, non-cgroup case */ 4910 return wl; 4911 4912 for_each_sched_entity(se) { 4913 long w, W; 4914 4915 tg = se->my_q->tg; 4916 4917 /* 4918 * W = @wg + \Sum rw_j 4919 */ 4920 W = wg + calc_tg_weight(tg, se->my_q); 4921 4922 /* 4923 * w = rw_i + @wl 4924 */ 4925 w = cfs_rq_load_avg(se->my_q) + wl; 4926 4927 /* 4928 * wl = S * s'_i; see (2) 4929 */ 4930 if (W > 0 && w < W) 4931 wl = (w * (long)tg->shares) / W; 4932 else 4933 wl = tg->shares; 4934 4935 /* 4936 * Per the above, wl is the new se->load.weight value; since 4937 * those are clipped to [MIN_SHARES, ...) do so now. See 4938 * calc_cfs_shares(). 4939 */ 4940 if (wl < MIN_SHARES) 4941 wl = MIN_SHARES; 4942 4943 /* 4944 * wl = dw_i = S * (s'_i - s_i); see (3) 4945 */ 4946 wl -= se->avg.load_avg; 4947 4948 /* 4949 * Recursively apply this logic to all parent groups to compute 4950 * the final effective load change on the root group. Since 4951 * only the @tg group gets extra weight, all parent groups can 4952 * only redistribute existing shares. @wl is the shift in shares 4953 * resulting from this level per the above. 4954 */ 4955 wg = 0; 4956 } 4957 4958 return wl; 4959 } 4960 #else 4961 4962 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4963 { 4964 return wl; 4965 } 4966 4967 #endif 4968 4969 static void record_wakee(struct task_struct *p) 4970 { 4971 /* 4972 * Only decay a single time; tasks that have less then 1 wakeup per 4973 * jiffy will not have built up many flips. 4974 */ 4975 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 4976 current->wakee_flips >>= 1; 4977 current->wakee_flip_decay_ts = jiffies; 4978 } 4979 4980 if (current->last_wakee != p) { 4981 current->last_wakee = p; 4982 current->wakee_flips++; 4983 } 4984 } 4985 4986 /* 4987 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 4988 * 4989 * A waker of many should wake a different task than the one last awakened 4990 * at a frequency roughly N times higher than one of its wakees. 4991 * 4992 * In order to determine whether we should let the load spread vs consolidating 4993 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 4994 * partner, and a factor of lls_size higher frequency in the other. 4995 * 4996 * With both conditions met, we can be relatively sure that the relationship is 4997 * non-monogamous, with partner count exceeding socket size. 4998 * 4999 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5000 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5001 * socket size. 5002 */ 5003 static int wake_wide(struct task_struct *p) 5004 { 5005 unsigned int master = current->wakee_flips; 5006 unsigned int slave = p->wakee_flips; 5007 int factor = this_cpu_read(sd_llc_size); 5008 5009 if (master < slave) 5010 swap(master, slave); 5011 if (slave < factor || master < slave * factor) 5012 return 0; 5013 return 1; 5014 } 5015 5016 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 5017 { 5018 s64 this_load, load; 5019 s64 this_eff_load, prev_eff_load; 5020 int idx, this_cpu, prev_cpu; 5021 struct task_group *tg; 5022 unsigned long weight; 5023 int balanced; 5024 5025 idx = sd->wake_idx; 5026 this_cpu = smp_processor_id(); 5027 prev_cpu = task_cpu(p); 5028 load = source_load(prev_cpu, idx); 5029 this_load = target_load(this_cpu, idx); 5030 5031 /* 5032 * If sync wakeup then subtract the (maximum possible) 5033 * effect of the currently running task from the load 5034 * of the current CPU: 5035 */ 5036 if (sync) { 5037 tg = task_group(current); 5038 weight = current->se.avg.load_avg; 5039 5040 this_load += effective_load(tg, this_cpu, -weight, -weight); 5041 load += effective_load(tg, prev_cpu, 0, -weight); 5042 } 5043 5044 tg = task_group(p); 5045 weight = p->se.avg.load_avg; 5046 5047 /* 5048 * In low-load situations, where prev_cpu is idle and this_cpu is idle 5049 * due to the sync cause above having dropped this_load to 0, we'll 5050 * always have an imbalance, but there's really nothing you can do 5051 * about that, so that's good too. 5052 * 5053 * Otherwise check if either cpus are near enough in load to allow this 5054 * task to be woken on this_cpu. 5055 */ 5056 this_eff_load = 100; 5057 this_eff_load *= capacity_of(prev_cpu); 5058 5059 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 5060 prev_eff_load *= capacity_of(this_cpu); 5061 5062 if (this_load > 0) { 5063 this_eff_load *= this_load + 5064 effective_load(tg, this_cpu, weight, weight); 5065 5066 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 5067 } 5068 5069 balanced = this_eff_load <= prev_eff_load; 5070 5071 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 5072 5073 if (!balanced) 5074 return 0; 5075 5076 schedstat_inc(sd, ttwu_move_affine); 5077 schedstat_inc(p, se.statistics.nr_wakeups_affine); 5078 5079 return 1; 5080 } 5081 5082 /* 5083 * find_idlest_group finds and returns the least busy CPU group within the 5084 * domain. 5085 */ 5086 static struct sched_group * 5087 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5088 int this_cpu, int sd_flag) 5089 { 5090 struct sched_group *idlest = NULL, *group = sd->groups; 5091 unsigned long min_load = ULONG_MAX, this_load = 0; 5092 int load_idx = sd->forkexec_idx; 5093 int imbalance = 100 + (sd->imbalance_pct-100)/2; 5094 5095 if (sd_flag & SD_BALANCE_WAKE) 5096 load_idx = sd->wake_idx; 5097 5098 do { 5099 unsigned long load, avg_load; 5100 int local_group; 5101 int i; 5102 5103 /* Skip over this group if it has no CPUs allowed */ 5104 if (!cpumask_intersects(sched_group_cpus(group), 5105 tsk_cpus_allowed(p))) 5106 continue; 5107 5108 local_group = cpumask_test_cpu(this_cpu, 5109 sched_group_cpus(group)); 5110 5111 /* Tally up the load of all CPUs in the group */ 5112 avg_load = 0; 5113 5114 for_each_cpu(i, sched_group_cpus(group)) { 5115 /* Bias balancing toward cpus of our domain */ 5116 if (local_group) 5117 load = source_load(i, load_idx); 5118 else 5119 load = target_load(i, load_idx); 5120 5121 avg_load += load; 5122 } 5123 5124 /* Adjust by relative CPU capacity of the group */ 5125 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; 5126 5127 if (local_group) { 5128 this_load = avg_load; 5129 } else if (avg_load < min_load) { 5130 min_load = avg_load; 5131 idlest = group; 5132 } 5133 } while (group = group->next, group != sd->groups); 5134 5135 if (!idlest || 100*this_load < imbalance*min_load) 5136 return NULL; 5137 return idlest; 5138 } 5139 5140 /* 5141 * find_idlest_cpu - find the idlest cpu among the cpus in group. 5142 */ 5143 static int 5144 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5145 { 5146 unsigned long load, min_load = ULONG_MAX; 5147 unsigned int min_exit_latency = UINT_MAX; 5148 u64 latest_idle_timestamp = 0; 5149 int least_loaded_cpu = this_cpu; 5150 int shallowest_idle_cpu = -1; 5151 int i; 5152 5153 /* Traverse only the allowed CPUs */ 5154 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 5155 if (idle_cpu(i)) { 5156 struct rq *rq = cpu_rq(i); 5157 struct cpuidle_state *idle = idle_get_state(rq); 5158 if (idle && idle->exit_latency < min_exit_latency) { 5159 /* 5160 * We give priority to a CPU whose idle state 5161 * has the smallest exit latency irrespective 5162 * of any idle timestamp. 5163 */ 5164 min_exit_latency = idle->exit_latency; 5165 latest_idle_timestamp = rq->idle_stamp; 5166 shallowest_idle_cpu = i; 5167 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5168 rq->idle_stamp > latest_idle_timestamp) { 5169 /* 5170 * If equal or no active idle state, then 5171 * the most recently idled CPU might have 5172 * a warmer cache. 5173 */ 5174 latest_idle_timestamp = rq->idle_stamp; 5175 shallowest_idle_cpu = i; 5176 } 5177 } else if (shallowest_idle_cpu == -1) { 5178 load = weighted_cpuload(i); 5179 if (load < min_load || (load == min_load && i == this_cpu)) { 5180 min_load = load; 5181 least_loaded_cpu = i; 5182 } 5183 } 5184 } 5185 5186 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5187 } 5188 5189 /* 5190 * Try and locate an idle CPU in the sched_domain. 5191 */ 5192 static int select_idle_sibling(struct task_struct *p, int target) 5193 { 5194 struct sched_domain *sd; 5195 struct sched_group *sg; 5196 int i = task_cpu(p); 5197 5198 if (idle_cpu(target)) 5199 return target; 5200 5201 /* 5202 * If the prevous cpu is cache affine and idle, don't be stupid. 5203 */ 5204 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 5205 return i; 5206 5207 /* 5208 * Otherwise, iterate the domains and find an eligible idle cpu. 5209 * 5210 * A completely idle sched group at higher domains is more 5211 * desirable than an idle group at a lower level, because lower 5212 * domains have smaller groups and usually share hardware 5213 * resources which causes tasks to contend on them, e.g. x86 5214 * hyperthread siblings in the lowest domain (SMT) can contend 5215 * on the shared cpu pipeline. 5216 * 5217 * However, while we prefer idle groups at higher domains 5218 * finding an idle cpu at the lowest domain is still better than 5219 * returning 'target', which we've already established, isn't 5220 * idle. 5221 */ 5222 sd = rcu_dereference(per_cpu(sd_llc, target)); 5223 for_each_lower_domain(sd) { 5224 sg = sd->groups; 5225 do { 5226 if (!cpumask_intersects(sched_group_cpus(sg), 5227 tsk_cpus_allowed(p))) 5228 goto next; 5229 5230 /* Ensure the entire group is idle */ 5231 for_each_cpu(i, sched_group_cpus(sg)) { 5232 if (i == target || !idle_cpu(i)) 5233 goto next; 5234 } 5235 5236 /* 5237 * It doesn't matter which cpu we pick, the 5238 * whole group is idle. 5239 */ 5240 target = cpumask_first_and(sched_group_cpus(sg), 5241 tsk_cpus_allowed(p)); 5242 goto done; 5243 next: 5244 sg = sg->next; 5245 } while (sg != sd->groups); 5246 } 5247 done: 5248 return target; 5249 } 5250 5251 /* 5252 * cpu_util returns the amount of capacity of a CPU that is used by CFS 5253 * tasks. The unit of the return value must be the one of capacity so we can 5254 * compare the utilization with the capacity of the CPU that is available for 5255 * CFS task (ie cpu_capacity). 5256 * 5257 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 5258 * recent utilization of currently non-runnable tasks on a CPU. It represents 5259 * the amount of utilization of a CPU in the range [0..capacity_orig] where 5260 * capacity_orig is the cpu_capacity available at the highest frequency 5261 * (arch_scale_freq_capacity()). 5262 * The utilization of a CPU converges towards a sum equal to or less than the 5263 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 5264 * the running time on this CPU scaled by capacity_curr. 5265 * 5266 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 5267 * higher than capacity_orig because of unfortunate rounding in 5268 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 5269 * the average stabilizes with the new running time. We need to check that the 5270 * utilization stays within the range of [0..capacity_orig] and cap it if 5271 * necessary. Without utilization capping, a group could be seen as overloaded 5272 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 5273 * available capacity. We allow utilization to overshoot capacity_curr (but not 5274 * capacity_orig) as it useful for predicting the capacity required after task 5275 * migrations (scheduler-driven DVFS). 5276 */ 5277 static int cpu_util(int cpu) 5278 { 5279 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; 5280 unsigned long capacity = capacity_orig_of(cpu); 5281 5282 return (util >= capacity) ? capacity : util; 5283 } 5284 5285 /* 5286 * select_task_rq_fair: Select target runqueue for the waking task in domains 5287 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 5288 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 5289 * 5290 * Balances load by selecting the idlest cpu in the idlest group, or under 5291 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 5292 * 5293 * Returns the target cpu number. 5294 * 5295 * preempt must be disabled. 5296 */ 5297 static int 5298 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 5299 { 5300 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 5301 int cpu = smp_processor_id(); 5302 int new_cpu = prev_cpu; 5303 int want_affine = 0; 5304 int sync = wake_flags & WF_SYNC; 5305 5306 if (sd_flag & SD_BALANCE_WAKE) { 5307 record_wakee(p); 5308 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); 5309 } 5310 5311 rcu_read_lock(); 5312 for_each_domain(cpu, tmp) { 5313 if (!(tmp->flags & SD_LOAD_BALANCE)) 5314 break; 5315 5316 /* 5317 * If both cpu and prev_cpu are part of this domain, 5318 * cpu is a valid SD_WAKE_AFFINE target. 5319 */ 5320 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 5321 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 5322 affine_sd = tmp; 5323 break; 5324 } 5325 5326 if (tmp->flags & sd_flag) 5327 sd = tmp; 5328 else if (!want_affine) 5329 break; 5330 } 5331 5332 if (affine_sd) { 5333 sd = NULL; /* Prefer wake_affine over balance flags */ 5334 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 5335 new_cpu = cpu; 5336 } 5337 5338 if (!sd) { 5339 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ 5340 new_cpu = select_idle_sibling(p, new_cpu); 5341 5342 } else while (sd) { 5343 struct sched_group *group; 5344 int weight; 5345 5346 if (!(sd->flags & sd_flag)) { 5347 sd = sd->child; 5348 continue; 5349 } 5350 5351 group = find_idlest_group(sd, p, cpu, sd_flag); 5352 if (!group) { 5353 sd = sd->child; 5354 continue; 5355 } 5356 5357 new_cpu = find_idlest_cpu(group, p, cpu); 5358 if (new_cpu == -1 || new_cpu == cpu) { 5359 /* Now try balancing at a lower domain level of cpu */ 5360 sd = sd->child; 5361 continue; 5362 } 5363 5364 /* Now try balancing at a lower domain level of new_cpu */ 5365 cpu = new_cpu; 5366 weight = sd->span_weight; 5367 sd = NULL; 5368 for_each_domain(cpu, tmp) { 5369 if (weight <= tmp->span_weight) 5370 break; 5371 if (tmp->flags & sd_flag) 5372 sd = tmp; 5373 } 5374 /* while loop will break here if sd == NULL */ 5375 } 5376 rcu_read_unlock(); 5377 5378 return new_cpu; 5379 } 5380 5381 /* 5382 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 5383 * cfs_rq_of(p) references at time of call are still valid and identify the 5384 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 5385 */ 5386 static void migrate_task_rq_fair(struct task_struct *p) 5387 { 5388 /* 5389 * As blocked tasks retain absolute vruntime the migration needs to 5390 * deal with this by subtracting the old and adding the new 5391 * min_vruntime -- the latter is done by enqueue_entity() when placing 5392 * the task on the new runqueue. 5393 */ 5394 if (p->state == TASK_WAKING) { 5395 struct sched_entity *se = &p->se; 5396 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5397 u64 min_vruntime; 5398 5399 #ifndef CONFIG_64BIT 5400 u64 min_vruntime_copy; 5401 5402 do { 5403 min_vruntime_copy = cfs_rq->min_vruntime_copy; 5404 smp_rmb(); 5405 min_vruntime = cfs_rq->min_vruntime; 5406 } while (min_vruntime != min_vruntime_copy); 5407 #else 5408 min_vruntime = cfs_rq->min_vruntime; 5409 #endif 5410 5411 se->vruntime -= min_vruntime; 5412 } 5413 5414 /* 5415 * We are supposed to update the task to "current" time, then its up to date 5416 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting 5417 * what current time is, so simply throw away the out-of-date time. This 5418 * will result in the wakee task is less decayed, but giving the wakee more 5419 * load sounds not bad. 5420 */ 5421 remove_entity_load_avg(&p->se); 5422 5423 /* Tell new CPU we are migrated */ 5424 p->se.avg.last_update_time = 0; 5425 5426 /* We have migrated, no longer consider this task hot */ 5427 p->se.exec_start = 0; 5428 } 5429 5430 static void task_dead_fair(struct task_struct *p) 5431 { 5432 remove_entity_load_avg(&p->se); 5433 } 5434 #endif /* CONFIG_SMP */ 5435 5436 static unsigned long 5437 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 5438 { 5439 unsigned long gran = sysctl_sched_wakeup_granularity; 5440 5441 /* 5442 * Since its curr running now, convert the gran from real-time 5443 * to virtual-time in his units. 5444 * 5445 * By using 'se' instead of 'curr' we penalize light tasks, so 5446 * they get preempted easier. That is, if 'se' < 'curr' then 5447 * the resulting gran will be larger, therefore penalizing the 5448 * lighter, if otoh 'se' > 'curr' then the resulting gran will 5449 * be smaller, again penalizing the lighter task. 5450 * 5451 * This is especially important for buddies when the leftmost 5452 * task is higher priority than the buddy. 5453 */ 5454 return calc_delta_fair(gran, se); 5455 } 5456 5457 /* 5458 * Should 'se' preempt 'curr'. 5459 * 5460 * |s1 5461 * |s2 5462 * |s3 5463 * g 5464 * |<--->|c 5465 * 5466 * w(c, s1) = -1 5467 * w(c, s2) = 0 5468 * w(c, s3) = 1 5469 * 5470 */ 5471 static int 5472 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 5473 { 5474 s64 gran, vdiff = curr->vruntime - se->vruntime; 5475 5476 if (vdiff <= 0) 5477 return -1; 5478 5479 gran = wakeup_gran(curr, se); 5480 if (vdiff > gran) 5481 return 1; 5482 5483 return 0; 5484 } 5485 5486 static void set_last_buddy(struct sched_entity *se) 5487 { 5488 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 5489 return; 5490 5491 for_each_sched_entity(se) 5492 cfs_rq_of(se)->last = se; 5493 } 5494 5495 static void set_next_buddy(struct sched_entity *se) 5496 { 5497 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 5498 return; 5499 5500 for_each_sched_entity(se) 5501 cfs_rq_of(se)->next = se; 5502 } 5503 5504 static void set_skip_buddy(struct sched_entity *se) 5505 { 5506 for_each_sched_entity(se) 5507 cfs_rq_of(se)->skip = se; 5508 } 5509 5510 /* 5511 * Preempt the current task with a newly woken task if needed: 5512 */ 5513 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 5514 { 5515 struct task_struct *curr = rq->curr; 5516 struct sched_entity *se = &curr->se, *pse = &p->se; 5517 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5518 int scale = cfs_rq->nr_running >= sched_nr_latency; 5519 int next_buddy_marked = 0; 5520 5521 if (unlikely(se == pse)) 5522 return; 5523 5524 /* 5525 * This is possible from callers such as attach_tasks(), in which we 5526 * unconditionally check_prempt_curr() after an enqueue (which may have 5527 * lead to a throttle). This both saves work and prevents false 5528 * next-buddy nomination below. 5529 */ 5530 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 5531 return; 5532 5533 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 5534 set_next_buddy(pse); 5535 next_buddy_marked = 1; 5536 } 5537 5538 /* 5539 * We can come here with TIF_NEED_RESCHED already set from new task 5540 * wake up path. 5541 * 5542 * Note: this also catches the edge-case of curr being in a throttled 5543 * group (e.g. via set_curr_task), since update_curr() (in the 5544 * enqueue of curr) will have resulted in resched being set. This 5545 * prevents us from potentially nominating it as a false LAST_BUDDY 5546 * below. 5547 */ 5548 if (test_tsk_need_resched(curr)) 5549 return; 5550 5551 /* Idle tasks are by definition preempted by non-idle tasks. */ 5552 if (unlikely(curr->policy == SCHED_IDLE) && 5553 likely(p->policy != SCHED_IDLE)) 5554 goto preempt; 5555 5556 /* 5557 * Batch and idle tasks do not preempt non-idle tasks (their preemption 5558 * is driven by the tick): 5559 */ 5560 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 5561 return; 5562 5563 find_matching_se(&se, &pse); 5564 update_curr(cfs_rq_of(se)); 5565 BUG_ON(!pse); 5566 if (wakeup_preempt_entity(se, pse) == 1) { 5567 /* 5568 * Bias pick_next to pick the sched entity that is 5569 * triggering this preemption. 5570 */ 5571 if (!next_buddy_marked) 5572 set_next_buddy(pse); 5573 goto preempt; 5574 } 5575 5576 return; 5577 5578 preempt: 5579 resched_curr(rq); 5580 /* 5581 * Only set the backward buddy when the current task is still 5582 * on the rq. This can happen when a wakeup gets interleaved 5583 * with schedule on the ->pre_schedule() or idle_balance() 5584 * point, either of which can * drop the rq lock. 5585 * 5586 * Also, during early boot the idle thread is in the fair class, 5587 * for obvious reasons its a bad idea to schedule back to it. 5588 */ 5589 if (unlikely(!se->on_rq || curr == rq->idle)) 5590 return; 5591 5592 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 5593 set_last_buddy(se); 5594 } 5595 5596 static struct task_struct * 5597 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie) 5598 { 5599 struct cfs_rq *cfs_rq = &rq->cfs; 5600 struct sched_entity *se; 5601 struct task_struct *p; 5602 int new_tasks; 5603 5604 again: 5605 #ifdef CONFIG_FAIR_GROUP_SCHED 5606 if (!cfs_rq->nr_running) 5607 goto idle; 5608 5609 if (prev->sched_class != &fair_sched_class) 5610 goto simple; 5611 5612 /* 5613 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 5614 * likely that a next task is from the same cgroup as the current. 5615 * 5616 * Therefore attempt to avoid putting and setting the entire cgroup 5617 * hierarchy, only change the part that actually changes. 5618 */ 5619 5620 do { 5621 struct sched_entity *curr = cfs_rq->curr; 5622 5623 /* 5624 * Since we got here without doing put_prev_entity() we also 5625 * have to consider cfs_rq->curr. If it is still a runnable 5626 * entity, update_curr() will update its vruntime, otherwise 5627 * forget we've ever seen it. 5628 */ 5629 if (curr) { 5630 if (curr->on_rq) 5631 update_curr(cfs_rq); 5632 else 5633 curr = NULL; 5634 5635 /* 5636 * This call to check_cfs_rq_runtime() will do the 5637 * throttle and dequeue its entity in the parent(s). 5638 * Therefore the 'simple' nr_running test will indeed 5639 * be correct. 5640 */ 5641 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 5642 goto simple; 5643 } 5644 5645 se = pick_next_entity(cfs_rq, curr); 5646 cfs_rq = group_cfs_rq(se); 5647 } while (cfs_rq); 5648 5649 p = task_of(se); 5650 5651 /* 5652 * Since we haven't yet done put_prev_entity and if the selected task 5653 * is a different task than we started out with, try and touch the 5654 * least amount of cfs_rqs. 5655 */ 5656 if (prev != p) { 5657 struct sched_entity *pse = &prev->se; 5658 5659 while (!(cfs_rq = is_same_group(se, pse))) { 5660 int se_depth = se->depth; 5661 int pse_depth = pse->depth; 5662 5663 if (se_depth <= pse_depth) { 5664 put_prev_entity(cfs_rq_of(pse), pse); 5665 pse = parent_entity(pse); 5666 } 5667 if (se_depth >= pse_depth) { 5668 set_next_entity(cfs_rq_of(se), se); 5669 se = parent_entity(se); 5670 } 5671 } 5672 5673 put_prev_entity(cfs_rq, pse); 5674 set_next_entity(cfs_rq, se); 5675 } 5676 5677 if (hrtick_enabled(rq)) 5678 hrtick_start_fair(rq, p); 5679 5680 return p; 5681 simple: 5682 cfs_rq = &rq->cfs; 5683 #endif 5684 5685 if (!cfs_rq->nr_running) 5686 goto idle; 5687 5688 put_prev_task(rq, prev); 5689 5690 do { 5691 se = pick_next_entity(cfs_rq, NULL); 5692 set_next_entity(cfs_rq, se); 5693 cfs_rq = group_cfs_rq(se); 5694 } while (cfs_rq); 5695 5696 p = task_of(se); 5697 5698 if (hrtick_enabled(rq)) 5699 hrtick_start_fair(rq, p); 5700 5701 return p; 5702 5703 idle: 5704 /* 5705 * This is OK, because current is on_cpu, which avoids it being picked 5706 * for load-balance and preemption/IRQs are still disabled avoiding 5707 * further scheduler activity on it and we're being very careful to 5708 * re-start the picking loop. 5709 */ 5710 lockdep_unpin_lock(&rq->lock, cookie); 5711 new_tasks = idle_balance(rq); 5712 lockdep_repin_lock(&rq->lock, cookie); 5713 /* 5714 * Because idle_balance() releases (and re-acquires) rq->lock, it is 5715 * possible for any higher priority task to appear. In that case we 5716 * must re-start the pick_next_entity() loop. 5717 */ 5718 if (new_tasks < 0) 5719 return RETRY_TASK; 5720 5721 if (new_tasks > 0) 5722 goto again; 5723 5724 return NULL; 5725 } 5726 5727 /* 5728 * Account for a descheduled task: 5729 */ 5730 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 5731 { 5732 struct sched_entity *se = &prev->se; 5733 struct cfs_rq *cfs_rq; 5734 5735 for_each_sched_entity(se) { 5736 cfs_rq = cfs_rq_of(se); 5737 put_prev_entity(cfs_rq, se); 5738 } 5739 } 5740 5741 /* 5742 * sched_yield() is very simple 5743 * 5744 * The magic of dealing with the ->skip buddy is in pick_next_entity. 5745 */ 5746 static void yield_task_fair(struct rq *rq) 5747 { 5748 struct task_struct *curr = rq->curr; 5749 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5750 struct sched_entity *se = &curr->se; 5751 5752 /* 5753 * Are we the only task in the tree? 5754 */ 5755 if (unlikely(rq->nr_running == 1)) 5756 return; 5757 5758 clear_buddies(cfs_rq, se); 5759 5760 if (curr->policy != SCHED_BATCH) { 5761 update_rq_clock(rq); 5762 /* 5763 * Update run-time statistics of the 'current'. 5764 */ 5765 update_curr(cfs_rq); 5766 /* 5767 * Tell update_rq_clock() that we've just updated, 5768 * so we don't do microscopic update in schedule() 5769 * and double the fastpath cost. 5770 */ 5771 rq_clock_skip_update(rq, true); 5772 } 5773 5774 set_skip_buddy(se); 5775 } 5776 5777 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 5778 { 5779 struct sched_entity *se = &p->se; 5780 5781 /* throttled hierarchies are not runnable */ 5782 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 5783 return false; 5784 5785 /* Tell the scheduler that we'd really like pse to run next. */ 5786 set_next_buddy(se); 5787 5788 yield_task_fair(rq); 5789 5790 return true; 5791 } 5792 5793 #ifdef CONFIG_SMP 5794 /************************************************** 5795 * Fair scheduling class load-balancing methods. 5796 * 5797 * BASICS 5798 * 5799 * The purpose of load-balancing is to achieve the same basic fairness the 5800 * per-cpu scheduler provides, namely provide a proportional amount of compute 5801 * time to each task. This is expressed in the following equation: 5802 * 5803 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 5804 * 5805 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 5806 * W_i,0 is defined as: 5807 * 5808 * W_i,0 = \Sum_j w_i,j (2) 5809 * 5810 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 5811 * is derived from the nice value as per sched_prio_to_weight[]. 5812 * 5813 * The weight average is an exponential decay average of the instantaneous 5814 * weight: 5815 * 5816 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 5817 * 5818 * C_i is the compute capacity of cpu i, typically it is the 5819 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 5820 * can also include other factors [XXX]. 5821 * 5822 * To achieve this balance we define a measure of imbalance which follows 5823 * directly from (1): 5824 * 5825 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 5826 * 5827 * We them move tasks around to minimize the imbalance. In the continuous 5828 * function space it is obvious this converges, in the discrete case we get 5829 * a few fun cases generally called infeasible weight scenarios. 5830 * 5831 * [XXX expand on: 5832 * - infeasible weights; 5833 * - local vs global optima in the discrete case. ] 5834 * 5835 * 5836 * SCHED DOMAINS 5837 * 5838 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 5839 * for all i,j solution, we create a tree of cpus that follows the hardware 5840 * topology where each level pairs two lower groups (or better). This results 5841 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 5842 * tree to only the first of the previous level and we decrease the frequency 5843 * of load-balance at each level inv. proportional to the number of cpus in 5844 * the groups. 5845 * 5846 * This yields: 5847 * 5848 * log_2 n 1 n 5849 * \Sum { --- * --- * 2^i } = O(n) (5) 5850 * i = 0 2^i 2^i 5851 * `- size of each group 5852 * | | `- number of cpus doing load-balance 5853 * | `- freq 5854 * `- sum over all levels 5855 * 5856 * Coupled with a limit on how many tasks we can migrate every balance pass, 5857 * this makes (5) the runtime complexity of the balancer. 5858 * 5859 * An important property here is that each CPU is still (indirectly) connected 5860 * to every other cpu in at most O(log n) steps: 5861 * 5862 * The adjacency matrix of the resulting graph is given by: 5863 * 5864 * log_2 n 5865 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 5866 * k = 0 5867 * 5868 * And you'll find that: 5869 * 5870 * A^(log_2 n)_i,j != 0 for all i,j (7) 5871 * 5872 * Showing there's indeed a path between every cpu in at most O(log n) steps. 5873 * The task movement gives a factor of O(m), giving a convergence complexity 5874 * of: 5875 * 5876 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 5877 * 5878 * 5879 * WORK CONSERVING 5880 * 5881 * In order to avoid CPUs going idle while there's still work to do, new idle 5882 * balancing is more aggressive and has the newly idle cpu iterate up the domain 5883 * tree itself instead of relying on other CPUs to bring it work. 5884 * 5885 * This adds some complexity to both (5) and (8) but it reduces the total idle 5886 * time. 5887 * 5888 * [XXX more?] 5889 * 5890 * 5891 * CGROUPS 5892 * 5893 * Cgroups make a horror show out of (2), instead of a simple sum we get: 5894 * 5895 * s_k,i 5896 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 5897 * S_k 5898 * 5899 * Where 5900 * 5901 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 5902 * 5903 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 5904 * 5905 * The big problem is S_k, its a global sum needed to compute a local (W_i) 5906 * property. 5907 * 5908 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 5909 * rewrite all of this once again.] 5910 */ 5911 5912 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 5913 5914 enum fbq_type { regular, remote, all }; 5915 5916 #define LBF_ALL_PINNED 0x01 5917 #define LBF_NEED_BREAK 0x02 5918 #define LBF_DST_PINNED 0x04 5919 #define LBF_SOME_PINNED 0x08 5920 5921 struct lb_env { 5922 struct sched_domain *sd; 5923 5924 struct rq *src_rq; 5925 int src_cpu; 5926 5927 int dst_cpu; 5928 struct rq *dst_rq; 5929 5930 struct cpumask *dst_grpmask; 5931 int new_dst_cpu; 5932 enum cpu_idle_type idle; 5933 long imbalance; 5934 /* The set of CPUs under consideration for load-balancing */ 5935 struct cpumask *cpus; 5936 5937 unsigned int flags; 5938 5939 unsigned int loop; 5940 unsigned int loop_break; 5941 unsigned int loop_max; 5942 5943 enum fbq_type fbq_type; 5944 struct list_head tasks; 5945 }; 5946 5947 /* 5948 * Is this task likely cache-hot: 5949 */ 5950 static int task_hot(struct task_struct *p, struct lb_env *env) 5951 { 5952 s64 delta; 5953 5954 lockdep_assert_held(&env->src_rq->lock); 5955 5956 if (p->sched_class != &fair_sched_class) 5957 return 0; 5958 5959 if (unlikely(p->policy == SCHED_IDLE)) 5960 return 0; 5961 5962 /* 5963 * Buddy candidates are cache hot: 5964 */ 5965 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 5966 (&p->se == cfs_rq_of(&p->se)->next || 5967 &p->se == cfs_rq_of(&p->se)->last)) 5968 return 1; 5969 5970 if (sysctl_sched_migration_cost == -1) 5971 return 1; 5972 if (sysctl_sched_migration_cost == 0) 5973 return 0; 5974 5975 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 5976 5977 return delta < (s64)sysctl_sched_migration_cost; 5978 } 5979 5980 #ifdef CONFIG_NUMA_BALANCING 5981 /* 5982 * Returns 1, if task migration degrades locality 5983 * Returns 0, if task migration improves locality i.e migration preferred. 5984 * Returns -1, if task migration is not affected by locality. 5985 */ 5986 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 5987 { 5988 struct numa_group *numa_group = rcu_dereference(p->numa_group); 5989 unsigned long src_faults, dst_faults; 5990 int src_nid, dst_nid; 5991 5992 if (!static_branch_likely(&sched_numa_balancing)) 5993 return -1; 5994 5995 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 5996 return -1; 5997 5998 src_nid = cpu_to_node(env->src_cpu); 5999 dst_nid = cpu_to_node(env->dst_cpu); 6000 6001 if (src_nid == dst_nid) 6002 return -1; 6003 6004 /* Migrating away from the preferred node is always bad. */ 6005 if (src_nid == p->numa_preferred_nid) { 6006 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 6007 return 1; 6008 else 6009 return -1; 6010 } 6011 6012 /* Encourage migration to the preferred node. */ 6013 if (dst_nid == p->numa_preferred_nid) 6014 return 0; 6015 6016 if (numa_group) { 6017 src_faults = group_faults(p, src_nid); 6018 dst_faults = group_faults(p, dst_nid); 6019 } else { 6020 src_faults = task_faults(p, src_nid); 6021 dst_faults = task_faults(p, dst_nid); 6022 } 6023 6024 return dst_faults < src_faults; 6025 } 6026 6027 #else 6028 static inline int migrate_degrades_locality(struct task_struct *p, 6029 struct lb_env *env) 6030 { 6031 return -1; 6032 } 6033 #endif 6034 6035 /* 6036 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 6037 */ 6038 static 6039 int can_migrate_task(struct task_struct *p, struct lb_env *env) 6040 { 6041 int tsk_cache_hot; 6042 6043 lockdep_assert_held(&env->src_rq->lock); 6044 6045 /* 6046 * We do not migrate tasks that are: 6047 * 1) throttled_lb_pair, or 6048 * 2) cannot be migrated to this CPU due to cpus_allowed, or 6049 * 3) running (obviously), or 6050 * 4) are cache-hot on their current CPU. 6051 */ 6052 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 6053 return 0; 6054 6055 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 6056 int cpu; 6057 6058 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 6059 6060 env->flags |= LBF_SOME_PINNED; 6061 6062 /* 6063 * Remember if this task can be migrated to any other cpu in 6064 * our sched_group. We may want to revisit it if we couldn't 6065 * meet load balance goals by pulling other tasks on src_cpu. 6066 * 6067 * Also avoid computing new_dst_cpu if we have already computed 6068 * one in current iteration. 6069 */ 6070 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 6071 return 0; 6072 6073 /* Prevent to re-select dst_cpu via env's cpus */ 6074 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 6075 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 6076 env->flags |= LBF_DST_PINNED; 6077 env->new_dst_cpu = cpu; 6078 break; 6079 } 6080 } 6081 6082 return 0; 6083 } 6084 6085 /* Record that we found atleast one task that could run on dst_cpu */ 6086 env->flags &= ~LBF_ALL_PINNED; 6087 6088 if (task_running(env->src_rq, p)) { 6089 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 6090 return 0; 6091 } 6092 6093 /* 6094 * Aggressive migration if: 6095 * 1) destination numa is preferred 6096 * 2) task is cache cold, or 6097 * 3) too many balance attempts have failed. 6098 */ 6099 tsk_cache_hot = migrate_degrades_locality(p, env); 6100 if (tsk_cache_hot == -1) 6101 tsk_cache_hot = task_hot(p, env); 6102 6103 if (tsk_cache_hot <= 0 || 6104 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 6105 if (tsk_cache_hot == 1) { 6106 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 6107 schedstat_inc(p, se.statistics.nr_forced_migrations); 6108 } 6109 return 1; 6110 } 6111 6112 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 6113 return 0; 6114 } 6115 6116 /* 6117 * detach_task() -- detach the task for the migration specified in env 6118 */ 6119 static void detach_task(struct task_struct *p, struct lb_env *env) 6120 { 6121 lockdep_assert_held(&env->src_rq->lock); 6122 6123 p->on_rq = TASK_ON_RQ_MIGRATING; 6124 deactivate_task(env->src_rq, p, 0); 6125 set_task_cpu(p, env->dst_cpu); 6126 } 6127 6128 /* 6129 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 6130 * part of active balancing operations within "domain". 6131 * 6132 * Returns a task if successful and NULL otherwise. 6133 */ 6134 static struct task_struct *detach_one_task(struct lb_env *env) 6135 { 6136 struct task_struct *p, *n; 6137 6138 lockdep_assert_held(&env->src_rq->lock); 6139 6140 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 6141 if (!can_migrate_task(p, env)) 6142 continue; 6143 6144 detach_task(p, env); 6145 6146 /* 6147 * Right now, this is only the second place where 6148 * lb_gained[env->idle] is updated (other is detach_tasks) 6149 * so we can safely collect stats here rather than 6150 * inside detach_tasks(). 6151 */ 6152 schedstat_inc(env->sd, lb_gained[env->idle]); 6153 return p; 6154 } 6155 return NULL; 6156 } 6157 6158 static const unsigned int sched_nr_migrate_break = 32; 6159 6160 /* 6161 * detach_tasks() -- tries to detach up to imbalance weighted load from 6162 * busiest_rq, as part of a balancing operation within domain "sd". 6163 * 6164 * Returns number of detached tasks if successful and 0 otherwise. 6165 */ 6166 static int detach_tasks(struct lb_env *env) 6167 { 6168 struct list_head *tasks = &env->src_rq->cfs_tasks; 6169 struct task_struct *p; 6170 unsigned long load; 6171 int detached = 0; 6172 6173 lockdep_assert_held(&env->src_rq->lock); 6174 6175 if (env->imbalance <= 0) 6176 return 0; 6177 6178 while (!list_empty(tasks)) { 6179 /* 6180 * We don't want to steal all, otherwise we may be treated likewise, 6181 * which could at worst lead to a livelock crash. 6182 */ 6183 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 6184 break; 6185 6186 p = list_first_entry(tasks, struct task_struct, se.group_node); 6187 6188 env->loop++; 6189 /* We've more or less seen every task there is, call it quits */ 6190 if (env->loop > env->loop_max) 6191 break; 6192 6193 /* take a breather every nr_migrate tasks */ 6194 if (env->loop > env->loop_break) { 6195 env->loop_break += sched_nr_migrate_break; 6196 env->flags |= LBF_NEED_BREAK; 6197 break; 6198 } 6199 6200 if (!can_migrate_task(p, env)) 6201 goto next; 6202 6203 load = task_h_load(p); 6204 6205 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 6206 goto next; 6207 6208 if ((load / 2) > env->imbalance) 6209 goto next; 6210 6211 detach_task(p, env); 6212 list_add(&p->se.group_node, &env->tasks); 6213 6214 detached++; 6215 env->imbalance -= load; 6216 6217 #ifdef CONFIG_PREEMPT 6218 /* 6219 * NEWIDLE balancing is a source of latency, so preemptible 6220 * kernels will stop after the first task is detached to minimize 6221 * the critical section. 6222 */ 6223 if (env->idle == CPU_NEWLY_IDLE) 6224 break; 6225 #endif 6226 6227 /* 6228 * We only want to steal up to the prescribed amount of 6229 * weighted load. 6230 */ 6231 if (env->imbalance <= 0) 6232 break; 6233 6234 continue; 6235 next: 6236 list_move_tail(&p->se.group_node, tasks); 6237 } 6238 6239 /* 6240 * Right now, this is one of only two places we collect this stat 6241 * so we can safely collect detach_one_task() stats here rather 6242 * than inside detach_one_task(). 6243 */ 6244 schedstat_add(env->sd, lb_gained[env->idle], detached); 6245 6246 return detached; 6247 } 6248 6249 /* 6250 * attach_task() -- attach the task detached by detach_task() to its new rq. 6251 */ 6252 static void attach_task(struct rq *rq, struct task_struct *p) 6253 { 6254 lockdep_assert_held(&rq->lock); 6255 6256 BUG_ON(task_rq(p) != rq); 6257 activate_task(rq, p, 0); 6258 p->on_rq = TASK_ON_RQ_QUEUED; 6259 check_preempt_curr(rq, p, 0); 6260 } 6261 6262 /* 6263 * attach_one_task() -- attaches the task returned from detach_one_task() to 6264 * its new rq. 6265 */ 6266 static void attach_one_task(struct rq *rq, struct task_struct *p) 6267 { 6268 raw_spin_lock(&rq->lock); 6269 attach_task(rq, p); 6270 raw_spin_unlock(&rq->lock); 6271 } 6272 6273 /* 6274 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 6275 * new rq. 6276 */ 6277 static void attach_tasks(struct lb_env *env) 6278 { 6279 struct list_head *tasks = &env->tasks; 6280 struct task_struct *p; 6281 6282 raw_spin_lock(&env->dst_rq->lock); 6283 6284 while (!list_empty(tasks)) { 6285 p = list_first_entry(tasks, struct task_struct, se.group_node); 6286 list_del_init(&p->se.group_node); 6287 6288 attach_task(env->dst_rq, p); 6289 } 6290 6291 raw_spin_unlock(&env->dst_rq->lock); 6292 } 6293 6294 #ifdef CONFIG_FAIR_GROUP_SCHED 6295 static void update_blocked_averages(int cpu) 6296 { 6297 struct rq *rq = cpu_rq(cpu); 6298 struct cfs_rq *cfs_rq; 6299 unsigned long flags; 6300 6301 raw_spin_lock_irqsave(&rq->lock, flags); 6302 update_rq_clock(rq); 6303 6304 /* 6305 * Iterates the task_group tree in a bottom up fashion, see 6306 * list_add_leaf_cfs_rq() for details. 6307 */ 6308 for_each_leaf_cfs_rq(rq, cfs_rq) { 6309 /* throttled entities do not contribute to load */ 6310 if (throttled_hierarchy(cfs_rq)) 6311 continue; 6312 6313 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true)) 6314 update_tg_load_avg(cfs_rq, 0); 6315 } 6316 raw_spin_unlock_irqrestore(&rq->lock, flags); 6317 } 6318 6319 /* 6320 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 6321 * This needs to be done in a top-down fashion because the load of a child 6322 * group is a fraction of its parents load. 6323 */ 6324 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 6325 { 6326 struct rq *rq = rq_of(cfs_rq); 6327 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 6328 unsigned long now = jiffies; 6329 unsigned long load; 6330 6331 if (cfs_rq->last_h_load_update == now) 6332 return; 6333 6334 cfs_rq->h_load_next = NULL; 6335 for_each_sched_entity(se) { 6336 cfs_rq = cfs_rq_of(se); 6337 cfs_rq->h_load_next = se; 6338 if (cfs_rq->last_h_load_update == now) 6339 break; 6340 } 6341 6342 if (!se) { 6343 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 6344 cfs_rq->last_h_load_update = now; 6345 } 6346 6347 while ((se = cfs_rq->h_load_next) != NULL) { 6348 load = cfs_rq->h_load; 6349 load = div64_ul(load * se->avg.load_avg, 6350 cfs_rq_load_avg(cfs_rq) + 1); 6351 cfs_rq = group_cfs_rq(se); 6352 cfs_rq->h_load = load; 6353 cfs_rq->last_h_load_update = now; 6354 } 6355 } 6356 6357 static unsigned long task_h_load(struct task_struct *p) 6358 { 6359 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6360 6361 update_cfs_rq_h_load(cfs_rq); 6362 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 6363 cfs_rq_load_avg(cfs_rq) + 1); 6364 } 6365 #else 6366 static inline void update_blocked_averages(int cpu) 6367 { 6368 struct rq *rq = cpu_rq(cpu); 6369 struct cfs_rq *cfs_rq = &rq->cfs; 6370 unsigned long flags; 6371 6372 raw_spin_lock_irqsave(&rq->lock, flags); 6373 update_rq_clock(rq); 6374 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true); 6375 raw_spin_unlock_irqrestore(&rq->lock, flags); 6376 } 6377 6378 static unsigned long task_h_load(struct task_struct *p) 6379 { 6380 return p->se.avg.load_avg; 6381 } 6382 #endif 6383 6384 /********** Helpers for find_busiest_group ************************/ 6385 6386 enum group_type { 6387 group_other = 0, 6388 group_imbalanced, 6389 group_overloaded, 6390 }; 6391 6392 /* 6393 * sg_lb_stats - stats of a sched_group required for load_balancing 6394 */ 6395 struct sg_lb_stats { 6396 unsigned long avg_load; /*Avg load across the CPUs of the group */ 6397 unsigned long group_load; /* Total load over the CPUs of the group */ 6398 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 6399 unsigned long load_per_task; 6400 unsigned long group_capacity; 6401 unsigned long group_util; /* Total utilization of the group */ 6402 unsigned int sum_nr_running; /* Nr tasks running in the group */ 6403 unsigned int idle_cpus; 6404 unsigned int group_weight; 6405 enum group_type group_type; 6406 int group_no_capacity; 6407 #ifdef CONFIG_NUMA_BALANCING 6408 unsigned int nr_numa_running; 6409 unsigned int nr_preferred_running; 6410 #endif 6411 }; 6412 6413 /* 6414 * sd_lb_stats - Structure to store the statistics of a sched_domain 6415 * during load balancing. 6416 */ 6417 struct sd_lb_stats { 6418 struct sched_group *busiest; /* Busiest group in this sd */ 6419 struct sched_group *local; /* Local group in this sd */ 6420 unsigned long total_load; /* Total load of all groups in sd */ 6421 unsigned long total_capacity; /* Total capacity of all groups in sd */ 6422 unsigned long avg_load; /* Average load across all groups in sd */ 6423 6424 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 6425 struct sg_lb_stats local_stat; /* Statistics of the local group */ 6426 }; 6427 6428 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 6429 { 6430 /* 6431 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 6432 * local_stat because update_sg_lb_stats() does a full clear/assignment. 6433 * We must however clear busiest_stat::avg_load because 6434 * update_sd_pick_busiest() reads this before assignment. 6435 */ 6436 *sds = (struct sd_lb_stats){ 6437 .busiest = NULL, 6438 .local = NULL, 6439 .total_load = 0UL, 6440 .total_capacity = 0UL, 6441 .busiest_stat = { 6442 .avg_load = 0UL, 6443 .sum_nr_running = 0, 6444 .group_type = group_other, 6445 }, 6446 }; 6447 } 6448 6449 /** 6450 * get_sd_load_idx - Obtain the load index for a given sched domain. 6451 * @sd: The sched_domain whose load_idx is to be obtained. 6452 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 6453 * 6454 * Return: The load index. 6455 */ 6456 static inline int get_sd_load_idx(struct sched_domain *sd, 6457 enum cpu_idle_type idle) 6458 { 6459 int load_idx; 6460 6461 switch (idle) { 6462 case CPU_NOT_IDLE: 6463 load_idx = sd->busy_idx; 6464 break; 6465 6466 case CPU_NEWLY_IDLE: 6467 load_idx = sd->newidle_idx; 6468 break; 6469 default: 6470 load_idx = sd->idle_idx; 6471 break; 6472 } 6473 6474 return load_idx; 6475 } 6476 6477 static unsigned long scale_rt_capacity(int cpu) 6478 { 6479 struct rq *rq = cpu_rq(cpu); 6480 u64 total, used, age_stamp, avg; 6481 s64 delta; 6482 6483 /* 6484 * Since we're reading these variables without serialization make sure 6485 * we read them once before doing sanity checks on them. 6486 */ 6487 age_stamp = READ_ONCE(rq->age_stamp); 6488 avg = READ_ONCE(rq->rt_avg); 6489 delta = __rq_clock_broken(rq) - age_stamp; 6490 6491 if (unlikely(delta < 0)) 6492 delta = 0; 6493 6494 total = sched_avg_period() + delta; 6495 6496 used = div_u64(avg, total); 6497 6498 if (likely(used < SCHED_CAPACITY_SCALE)) 6499 return SCHED_CAPACITY_SCALE - used; 6500 6501 return 1; 6502 } 6503 6504 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 6505 { 6506 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); 6507 struct sched_group *sdg = sd->groups; 6508 6509 cpu_rq(cpu)->cpu_capacity_orig = capacity; 6510 6511 capacity *= scale_rt_capacity(cpu); 6512 capacity >>= SCHED_CAPACITY_SHIFT; 6513 6514 if (!capacity) 6515 capacity = 1; 6516 6517 cpu_rq(cpu)->cpu_capacity = capacity; 6518 sdg->sgc->capacity = capacity; 6519 } 6520 6521 void update_group_capacity(struct sched_domain *sd, int cpu) 6522 { 6523 struct sched_domain *child = sd->child; 6524 struct sched_group *group, *sdg = sd->groups; 6525 unsigned long capacity; 6526 unsigned long interval; 6527 6528 interval = msecs_to_jiffies(sd->balance_interval); 6529 interval = clamp(interval, 1UL, max_load_balance_interval); 6530 sdg->sgc->next_update = jiffies + interval; 6531 6532 if (!child) { 6533 update_cpu_capacity(sd, cpu); 6534 return; 6535 } 6536 6537 capacity = 0; 6538 6539 if (child->flags & SD_OVERLAP) { 6540 /* 6541 * SD_OVERLAP domains cannot assume that child groups 6542 * span the current group. 6543 */ 6544 6545 for_each_cpu(cpu, sched_group_cpus(sdg)) { 6546 struct sched_group_capacity *sgc; 6547 struct rq *rq = cpu_rq(cpu); 6548 6549 /* 6550 * build_sched_domains() -> init_sched_groups_capacity() 6551 * gets here before we've attached the domains to the 6552 * runqueues. 6553 * 6554 * Use capacity_of(), which is set irrespective of domains 6555 * in update_cpu_capacity(). 6556 * 6557 * This avoids capacity from being 0 and 6558 * causing divide-by-zero issues on boot. 6559 */ 6560 if (unlikely(!rq->sd)) { 6561 capacity += capacity_of(cpu); 6562 continue; 6563 } 6564 6565 sgc = rq->sd->groups->sgc; 6566 capacity += sgc->capacity; 6567 } 6568 } else { 6569 /* 6570 * !SD_OVERLAP domains can assume that child groups 6571 * span the current group. 6572 */ 6573 6574 group = child->groups; 6575 do { 6576 capacity += group->sgc->capacity; 6577 group = group->next; 6578 } while (group != child->groups); 6579 } 6580 6581 sdg->sgc->capacity = capacity; 6582 } 6583 6584 /* 6585 * Check whether the capacity of the rq has been noticeably reduced by side 6586 * activity. The imbalance_pct is used for the threshold. 6587 * Return true is the capacity is reduced 6588 */ 6589 static inline int 6590 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 6591 { 6592 return ((rq->cpu_capacity * sd->imbalance_pct) < 6593 (rq->cpu_capacity_orig * 100)); 6594 } 6595 6596 /* 6597 * Group imbalance indicates (and tries to solve) the problem where balancing 6598 * groups is inadequate due to tsk_cpus_allowed() constraints. 6599 * 6600 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 6601 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 6602 * Something like: 6603 * 6604 * { 0 1 2 3 } { 4 5 6 7 } 6605 * * * * * 6606 * 6607 * If we were to balance group-wise we'd place two tasks in the first group and 6608 * two tasks in the second group. Clearly this is undesired as it will overload 6609 * cpu 3 and leave one of the cpus in the second group unused. 6610 * 6611 * The current solution to this issue is detecting the skew in the first group 6612 * by noticing the lower domain failed to reach balance and had difficulty 6613 * moving tasks due to affinity constraints. 6614 * 6615 * When this is so detected; this group becomes a candidate for busiest; see 6616 * update_sd_pick_busiest(). And calculate_imbalance() and 6617 * find_busiest_group() avoid some of the usual balance conditions to allow it 6618 * to create an effective group imbalance. 6619 * 6620 * This is a somewhat tricky proposition since the next run might not find the 6621 * group imbalance and decide the groups need to be balanced again. A most 6622 * subtle and fragile situation. 6623 */ 6624 6625 static inline int sg_imbalanced(struct sched_group *group) 6626 { 6627 return group->sgc->imbalance; 6628 } 6629 6630 /* 6631 * group_has_capacity returns true if the group has spare capacity that could 6632 * be used by some tasks. 6633 * We consider that a group has spare capacity if the * number of task is 6634 * smaller than the number of CPUs or if the utilization is lower than the 6635 * available capacity for CFS tasks. 6636 * For the latter, we use a threshold to stabilize the state, to take into 6637 * account the variance of the tasks' load and to return true if the available 6638 * capacity in meaningful for the load balancer. 6639 * As an example, an available capacity of 1% can appear but it doesn't make 6640 * any benefit for the load balance. 6641 */ 6642 static inline bool 6643 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 6644 { 6645 if (sgs->sum_nr_running < sgs->group_weight) 6646 return true; 6647 6648 if ((sgs->group_capacity * 100) > 6649 (sgs->group_util * env->sd->imbalance_pct)) 6650 return true; 6651 6652 return false; 6653 } 6654 6655 /* 6656 * group_is_overloaded returns true if the group has more tasks than it can 6657 * handle. 6658 * group_is_overloaded is not equals to !group_has_capacity because a group 6659 * with the exact right number of tasks, has no more spare capacity but is not 6660 * overloaded so both group_has_capacity and group_is_overloaded return 6661 * false. 6662 */ 6663 static inline bool 6664 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 6665 { 6666 if (sgs->sum_nr_running <= sgs->group_weight) 6667 return false; 6668 6669 if ((sgs->group_capacity * 100) < 6670 (sgs->group_util * env->sd->imbalance_pct)) 6671 return true; 6672 6673 return false; 6674 } 6675 6676 static inline enum 6677 group_type group_classify(struct sched_group *group, 6678 struct sg_lb_stats *sgs) 6679 { 6680 if (sgs->group_no_capacity) 6681 return group_overloaded; 6682 6683 if (sg_imbalanced(group)) 6684 return group_imbalanced; 6685 6686 return group_other; 6687 } 6688 6689 /** 6690 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 6691 * @env: The load balancing environment. 6692 * @group: sched_group whose statistics are to be updated. 6693 * @load_idx: Load index of sched_domain of this_cpu for load calc. 6694 * @local_group: Does group contain this_cpu. 6695 * @sgs: variable to hold the statistics for this group. 6696 * @overload: Indicate more than one runnable task for any CPU. 6697 */ 6698 static inline void update_sg_lb_stats(struct lb_env *env, 6699 struct sched_group *group, int load_idx, 6700 int local_group, struct sg_lb_stats *sgs, 6701 bool *overload) 6702 { 6703 unsigned long load; 6704 int i, nr_running; 6705 6706 memset(sgs, 0, sizeof(*sgs)); 6707 6708 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6709 struct rq *rq = cpu_rq(i); 6710 6711 /* Bias balancing toward cpus of our domain */ 6712 if (local_group) 6713 load = target_load(i, load_idx); 6714 else 6715 load = source_load(i, load_idx); 6716 6717 sgs->group_load += load; 6718 sgs->group_util += cpu_util(i); 6719 sgs->sum_nr_running += rq->cfs.h_nr_running; 6720 6721 nr_running = rq->nr_running; 6722 if (nr_running > 1) 6723 *overload = true; 6724 6725 #ifdef CONFIG_NUMA_BALANCING 6726 sgs->nr_numa_running += rq->nr_numa_running; 6727 sgs->nr_preferred_running += rq->nr_preferred_running; 6728 #endif 6729 sgs->sum_weighted_load += weighted_cpuload(i); 6730 /* 6731 * No need to call idle_cpu() if nr_running is not 0 6732 */ 6733 if (!nr_running && idle_cpu(i)) 6734 sgs->idle_cpus++; 6735 } 6736 6737 /* Adjust by relative CPU capacity of the group */ 6738 sgs->group_capacity = group->sgc->capacity; 6739 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 6740 6741 if (sgs->sum_nr_running) 6742 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 6743 6744 sgs->group_weight = group->group_weight; 6745 6746 sgs->group_no_capacity = group_is_overloaded(env, sgs); 6747 sgs->group_type = group_classify(group, sgs); 6748 } 6749 6750 /** 6751 * update_sd_pick_busiest - return 1 on busiest group 6752 * @env: The load balancing environment. 6753 * @sds: sched_domain statistics 6754 * @sg: sched_group candidate to be checked for being the busiest 6755 * @sgs: sched_group statistics 6756 * 6757 * Determine if @sg is a busier group than the previously selected 6758 * busiest group. 6759 * 6760 * Return: %true if @sg is a busier group than the previously selected 6761 * busiest group. %false otherwise. 6762 */ 6763 static bool update_sd_pick_busiest(struct lb_env *env, 6764 struct sd_lb_stats *sds, 6765 struct sched_group *sg, 6766 struct sg_lb_stats *sgs) 6767 { 6768 struct sg_lb_stats *busiest = &sds->busiest_stat; 6769 6770 if (sgs->group_type > busiest->group_type) 6771 return true; 6772 6773 if (sgs->group_type < busiest->group_type) 6774 return false; 6775 6776 if (sgs->avg_load <= busiest->avg_load) 6777 return false; 6778 6779 /* This is the busiest node in its class. */ 6780 if (!(env->sd->flags & SD_ASYM_PACKING)) 6781 return true; 6782 6783 /* No ASYM_PACKING if target cpu is already busy */ 6784 if (env->idle == CPU_NOT_IDLE) 6785 return true; 6786 /* 6787 * ASYM_PACKING needs to move all the work to the lowest 6788 * numbered CPUs in the group, therefore mark all groups 6789 * higher than ourself as busy. 6790 */ 6791 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) { 6792 if (!sds->busiest) 6793 return true; 6794 6795 /* Prefer to move from highest possible cpu's work */ 6796 if (group_first_cpu(sds->busiest) < group_first_cpu(sg)) 6797 return true; 6798 } 6799 6800 return false; 6801 } 6802 6803 #ifdef CONFIG_NUMA_BALANCING 6804 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6805 { 6806 if (sgs->sum_nr_running > sgs->nr_numa_running) 6807 return regular; 6808 if (sgs->sum_nr_running > sgs->nr_preferred_running) 6809 return remote; 6810 return all; 6811 } 6812 6813 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6814 { 6815 if (rq->nr_running > rq->nr_numa_running) 6816 return regular; 6817 if (rq->nr_running > rq->nr_preferred_running) 6818 return remote; 6819 return all; 6820 } 6821 #else 6822 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6823 { 6824 return all; 6825 } 6826 6827 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6828 { 6829 return regular; 6830 } 6831 #endif /* CONFIG_NUMA_BALANCING */ 6832 6833 /** 6834 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 6835 * @env: The load balancing environment. 6836 * @sds: variable to hold the statistics for this sched_domain. 6837 */ 6838 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 6839 { 6840 struct sched_domain *child = env->sd->child; 6841 struct sched_group *sg = env->sd->groups; 6842 struct sg_lb_stats tmp_sgs; 6843 int load_idx, prefer_sibling = 0; 6844 bool overload = false; 6845 6846 if (child && child->flags & SD_PREFER_SIBLING) 6847 prefer_sibling = 1; 6848 6849 load_idx = get_sd_load_idx(env->sd, env->idle); 6850 6851 do { 6852 struct sg_lb_stats *sgs = &tmp_sgs; 6853 int local_group; 6854 6855 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 6856 if (local_group) { 6857 sds->local = sg; 6858 sgs = &sds->local_stat; 6859 6860 if (env->idle != CPU_NEWLY_IDLE || 6861 time_after_eq(jiffies, sg->sgc->next_update)) 6862 update_group_capacity(env->sd, env->dst_cpu); 6863 } 6864 6865 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 6866 &overload); 6867 6868 if (local_group) 6869 goto next_group; 6870 6871 /* 6872 * In case the child domain prefers tasks go to siblings 6873 * first, lower the sg capacity so that we'll try 6874 * and move all the excess tasks away. We lower the capacity 6875 * of a group only if the local group has the capacity to fit 6876 * these excess tasks. The extra check prevents the case where 6877 * you always pull from the heaviest group when it is already 6878 * under-utilized (possible with a large weight task outweighs 6879 * the tasks on the system). 6880 */ 6881 if (prefer_sibling && sds->local && 6882 group_has_capacity(env, &sds->local_stat) && 6883 (sgs->sum_nr_running > 1)) { 6884 sgs->group_no_capacity = 1; 6885 sgs->group_type = group_classify(sg, sgs); 6886 } 6887 6888 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 6889 sds->busiest = sg; 6890 sds->busiest_stat = *sgs; 6891 } 6892 6893 next_group: 6894 /* Now, start updating sd_lb_stats */ 6895 sds->total_load += sgs->group_load; 6896 sds->total_capacity += sgs->group_capacity; 6897 6898 sg = sg->next; 6899 } while (sg != env->sd->groups); 6900 6901 if (env->sd->flags & SD_NUMA) 6902 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 6903 6904 if (!env->sd->parent) { 6905 /* update overload indicator if we are at root domain */ 6906 if (env->dst_rq->rd->overload != overload) 6907 env->dst_rq->rd->overload = overload; 6908 } 6909 6910 } 6911 6912 /** 6913 * check_asym_packing - Check to see if the group is packed into the 6914 * sched doman. 6915 * 6916 * This is primarily intended to used at the sibling level. Some 6917 * cores like POWER7 prefer to use lower numbered SMT threads. In the 6918 * case of POWER7, it can move to lower SMT modes only when higher 6919 * threads are idle. When in lower SMT modes, the threads will 6920 * perform better since they share less core resources. Hence when we 6921 * have idle threads, we want them to be the higher ones. 6922 * 6923 * This packing function is run on idle threads. It checks to see if 6924 * the busiest CPU in this domain (core in the P7 case) has a higher 6925 * CPU number than the packing function is being run on. Here we are 6926 * assuming lower CPU number will be equivalent to lower a SMT thread 6927 * number. 6928 * 6929 * Return: 1 when packing is required and a task should be moved to 6930 * this CPU. The amount of the imbalance is returned in *imbalance. 6931 * 6932 * @env: The load balancing environment. 6933 * @sds: Statistics of the sched_domain which is to be packed 6934 */ 6935 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 6936 { 6937 int busiest_cpu; 6938 6939 if (!(env->sd->flags & SD_ASYM_PACKING)) 6940 return 0; 6941 6942 if (env->idle == CPU_NOT_IDLE) 6943 return 0; 6944 6945 if (!sds->busiest) 6946 return 0; 6947 6948 busiest_cpu = group_first_cpu(sds->busiest); 6949 if (env->dst_cpu > busiest_cpu) 6950 return 0; 6951 6952 env->imbalance = DIV_ROUND_CLOSEST( 6953 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 6954 SCHED_CAPACITY_SCALE); 6955 6956 return 1; 6957 } 6958 6959 /** 6960 * fix_small_imbalance - Calculate the minor imbalance that exists 6961 * amongst the groups of a sched_domain, during 6962 * load balancing. 6963 * @env: The load balancing environment. 6964 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 6965 */ 6966 static inline 6967 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6968 { 6969 unsigned long tmp, capa_now = 0, capa_move = 0; 6970 unsigned int imbn = 2; 6971 unsigned long scaled_busy_load_per_task; 6972 struct sg_lb_stats *local, *busiest; 6973 6974 local = &sds->local_stat; 6975 busiest = &sds->busiest_stat; 6976 6977 if (!local->sum_nr_running) 6978 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 6979 else if (busiest->load_per_task > local->load_per_task) 6980 imbn = 1; 6981 6982 scaled_busy_load_per_task = 6983 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 6984 busiest->group_capacity; 6985 6986 if (busiest->avg_load + scaled_busy_load_per_task >= 6987 local->avg_load + (scaled_busy_load_per_task * imbn)) { 6988 env->imbalance = busiest->load_per_task; 6989 return; 6990 } 6991 6992 /* 6993 * OK, we don't have enough imbalance to justify moving tasks, 6994 * however we may be able to increase total CPU capacity used by 6995 * moving them. 6996 */ 6997 6998 capa_now += busiest->group_capacity * 6999 min(busiest->load_per_task, busiest->avg_load); 7000 capa_now += local->group_capacity * 7001 min(local->load_per_task, local->avg_load); 7002 capa_now /= SCHED_CAPACITY_SCALE; 7003 7004 /* Amount of load we'd subtract */ 7005 if (busiest->avg_load > scaled_busy_load_per_task) { 7006 capa_move += busiest->group_capacity * 7007 min(busiest->load_per_task, 7008 busiest->avg_load - scaled_busy_load_per_task); 7009 } 7010 7011 /* Amount of load we'd add */ 7012 if (busiest->avg_load * busiest->group_capacity < 7013 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 7014 tmp = (busiest->avg_load * busiest->group_capacity) / 7015 local->group_capacity; 7016 } else { 7017 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7018 local->group_capacity; 7019 } 7020 capa_move += local->group_capacity * 7021 min(local->load_per_task, local->avg_load + tmp); 7022 capa_move /= SCHED_CAPACITY_SCALE; 7023 7024 /* Move if we gain throughput */ 7025 if (capa_move > capa_now) 7026 env->imbalance = busiest->load_per_task; 7027 } 7028 7029 /** 7030 * calculate_imbalance - Calculate the amount of imbalance present within the 7031 * groups of a given sched_domain during load balance. 7032 * @env: load balance environment 7033 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 7034 */ 7035 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7036 { 7037 unsigned long max_pull, load_above_capacity = ~0UL; 7038 struct sg_lb_stats *local, *busiest; 7039 7040 local = &sds->local_stat; 7041 busiest = &sds->busiest_stat; 7042 7043 if (busiest->group_type == group_imbalanced) { 7044 /* 7045 * In the group_imb case we cannot rely on group-wide averages 7046 * to ensure cpu-load equilibrium, look at wider averages. XXX 7047 */ 7048 busiest->load_per_task = 7049 min(busiest->load_per_task, sds->avg_load); 7050 } 7051 7052 /* 7053 * Avg load of busiest sg can be less and avg load of local sg can 7054 * be greater than avg load across all sgs of sd because avg load 7055 * factors in sg capacity and sgs with smaller group_type are 7056 * skipped when updating the busiest sg: 7057 */ 7058 if (busiest->avg_load <= sds->avg_load || 7059 local->avg_load >= sds->avg_load) { 7060 env->imbalance = 0; 7061 return fix_small_imbalance(env, sds); 7062 } 7063 7064 /* 7065 * If there aren't any idle cpus, avoid creating some. 7066 */ 7067 if (busiest->group_type == group_overloaded && 7068 local->group_type == group_overloaded) { 7069 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 7070 if (load_above_capacity > busiest->group_capacity) { 7071 load_above_capacity -= busiest->group_capacity; 7072 load_above_capacity *= NICE_0_LOAD; 7073 load_above_capacity /= busiest->group_capacity; 7074 } else 7075 load_above_capacity = ~0UL; 7076 } 7077 7078 /* 7079 * We're trying to get all the cpus to the average_load, so we don't 7080 * want to push ourselves above the average load, nor do we wish to 7081 * reduce the max loaded cpu below the average load. At the same time, 7082 * we also don't want to reduce the group load below the group 7083 * capacity. Thus we look for the minimum possible imbalance. 7084 */ 7085 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 7086 7087 /* How much load to actually move to equalise the imbalance */ 7088 env->imbalance = min( 7089 max_pull * busiest->group_capacity, 7090 (sds->avg_load - local->avg_load) * local->group_capacity 7091 ) / SCHED_CAPACITY_SCALE; 7092 7093 /* 7094 * if *imbalance is less than the average load per runnable task 7095 * there is no guarantee that any tasks will be moved so we'll have 7096 * a think about bumping its value to force at least one task to be 7097 * moved 7098 */ 7099 if (env->imbalance < busiest->load_per_task) 7100 return fix_small_imbalance(env, sds); 7101 } 7102 7103 /******* find_busiest_group() helpers end here *********************/ 7104 7105 /** 7106 * find_busiest_group - Returns the busiest group within the sched_domain 7107 * if there is an imbalance. 7108 * 7109 * Also calculates the amount of weighted load which should be moved 7110 * to restore balance. 7111 * 7112 * @env: The load balancing environment. 7113 * 7114 * Return: - The busiest group if imbalance exists. 7115 */ 7116 static struct sched_group *find_busiest_group(struct lb_env *env) 7117 { 7118 struct sg_lb_stats *local, *busiest; 7119 struct sd_lb_stats sds; 7120 7121 init_sd_lb_stats(&sds); 7122 7123 /* 7124 * Compute the various statistics relavent for load balancing at 7125 * this level. 7126 */ 7127 update_sd_lb_stats(env, &sds); 7128 local = &sds.local_stat; 7129 busiest = &sds.busiest_stat; 7130 7131 /* ASYM feature bypasses nice load balance check */ 7132 if (check_asym_packing(env, &sds)) 7133 return sds.busiest; 7134 7135 /* There is no busy sibling group to pull tasks from */ 7136 if (!sds.busiest || busiest->sum_nr_running == 0) 7137 goto out_balanced; 7138 7139 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 7140 / sds.total_capacity; 7141 7142 /* 7143 * If the busiest group is imbalanced the below checks don't 7144 * work because they assume all things are equal, which typically 7145 * isn't true due to cpus_allowed constraints and the like. 7146 */ 7147 if (busiest->group_type == group_imbalanced) 7148 goto force_balance; 7149 7150 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 7151 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && 7152 busiest->group_no_capacity) 7153 goto force_balance; 7154 7155 /* 7156 * If the local group is busier than the selected busiest group 7157 * don't try and pull any tasks. 7158 */ 7159 if (local->avg_load >= busiest->avg_load) 7160 goto out_balanced; 7161 7162 /* 7163 * Don't pull any tasks if this group is already above the domain 7164 * average load. 7165 */ 7166 if (local->avg_load >= sds.avg_load) 7167 goto out_balanced; 7168 7169 if (env->idle == CPU_IDLE) { 7170 /* 7171 * This cpu is idle. If the busiest group is not overloaded 7172 * and there is no imbalance between this and busiest group 7173 * wrt idle cpus, it is balanced. The imbalance becomes 7174 * significant if the diff is greater than 1 otherwise we 7175 * might end up to just move the imbalance on another group 7176 */ 7177 if ((busiest->group_type != group_overloaded) && 7178 (local->idle_cpus <= (busiest->idle_cpus + 1))) 7179 goto out_balanced; 7180 } else { 7181 /* 7182 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 7183 * imbalance_pct to be conservative. 7184 */ 7185 if (100 * busiest->avg_load <= 7186 env->sd->imbalance_pct * local->avg_load) 7187 goto out_balanced; 7188 } 7189 7190 force_balance: 7191 /* Looks like there is an imbalance. Compute it */ 7192 calculate_imbalance(env, &sds); 7193 return sds.busiest; 7194 7195 out_balanced: 7196 env->imbalance = 0; 7197 return NULL; 7198 } 7199 7200 /* 7201 * find_busiest_queue - find the busiest runqueue among the cpus in group. 7202 */ 7203 static struct rq *find_busiest_queue(struct lb_env *env, 7204 struct sched_group *group) 7205 { 7206 struct rq *busiest = NULL, *rq; 7207 unsigned long busiest_load = 0, busiest_capacity = 1; 7208 int i; 7209 7210 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 7211 unsigned long capacity, wl; 7212 enum fbq_type rt; 7213 7214 rq = cpu_rq(i); 7215 rt = fbq_classify_rq(rq); 7216 7217 /* 7218 * We classify groups/runqueues into three groups: 7219 * - regular: there are !numa tasks 7220 * - remote: there are numa tasks that run on the 'wrong' node 7221 * - all: there is no distinction 7222 * 7223 * In order to avoid migrating ideally placed numa tasks, 7224 * ignore those when there's better options. 7225 * 7226 * If we ignore the actual busiest queue to migrate another 7227 * task, the next balance pass can still reduce the busiest 7228 * queue by moving tasks around inside the node. 7229 * 7230 * If we cannot move enough load due to this classification 7231 * the next pass will adjust the group classification and 7232 * allow migration of more tasks. 7233 * 7234 * Both cases only affect the total convergence complexity. 7235 */ 7236 if (rt > env->fbq_type) 7237 continue; 7238 7239 capacity = capacity_of(i); 7240 7241 wl = weighted_cpuload(i); 7242 7243 /* 7244 * When comparing with imbalance, use weighted_cpuload() 7245 * which is not scaled with the cpu capacity. 7246 */ 7247 7248 if (rq->nr_running == 1 && wl > env->imbalance && 7249 !check_cpu_capacity(rq, env->sd)) 7250 continue; 7251 7252 /* 7253 * For the load comparisons with the other cpu's, consider 7254 * the weighted_cpuload() scaled with the cpu capacity, so 7255 * that the load can be moved away from the cpu that is 7256 * potentially running at a lower capacity. 7257 * 7258 * Thus we're looking for max(wl_i / capacity_i), crosswise 7259 * multiplication to rid ourselves of the division works out 7260 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 7261 * our previous maximum. 7262 */ 7263 if (wl * busiest_capacity > busiest_load * capacity) { 7264 busiest_load = wl; 7265 busiest_capacity = capacity; 7266 busiest = rq; 7267 } 7268 } 7269 7270 return busiest; 7271 } 7272 7273 /* 7274 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 7275 * so long as it is large enough. 7276 */ 7277 #define MAX_PINNED_INTERVAL 512 7278 7279 /* Working cpumask for load_balance and load_balance_newidle. */ 7280 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7281 7282 static int need_active_balance(struct lb_env *env) 7283 { 7284 struct sched_domain *sd = env->sd; 7285 7286 if (env->idle == CPU_NEWLY_IDLE) { 7287 7288 /* 7289 * ASYM_PACKING needs to force migrate tasks from busy but 7290 * higher numbered CPUs in order to pack all tasks in the 7291 * lowest numbered CPUs. 7292 */ 7293 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 7294 return 1; 7295 } 7296 7297 /* 7298 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 7299 * It's worth migrating the task if the src_cpu's capacity is reduced 7300 * because of other sched_class or IRQs if more capacity stays 7301 * available on dst_cpu. 7302 */ 7303 if ((env->idle != CPU_NOT_IDLE) && 7304 (env->src_rq->cfs.h_nr_running == 1)) { 7305 if ((check_cpu_capacity(env->src_rq, sd)) && 7306 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 7307 return 1; 7308 } 7309 7310 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 7311 } 7312 7313 static int active_load_balance_cpu_stop(void *data); 7314 7315 static int should_we_balance(struct lb_env *env) 7316 { 7317 struct sched_group *sg = env->sd->groups; 7318 struct cpumask *sg_cpus, *sg_mask; 7319 int cpu, balance_cpu = -1; 7320 7321 /* 7322 * In the newly idle case, we will allow all the cpu's 7323 * to do the newly idle load balance. 7324 */ 7325 if (env->idle == CPU_NEWLY_IDLE) 7326 return 1; 7327 7328 sg_cpus = sched_group_cpus(sg); 7329 sg_mask = sched_group_mask(sg); 7330 /* Try to find first idle cpu */ 7331 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 7332 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 7333 continue; 7334 7335 balance_cpu = cpu; 7336 break; 7337 } 7338 7339 if (balance_cpu == -1) 7340 balance_cpu = group_balance_cpu(sg); 7341 7342 /* 7343 * First idle cpu or the first cpu(busiest) in this sched group 7344 * is eligible for doing load balancing at this and above domains. 7345 */ 7346 return balance_cpu == env->dst_cpu; 7347 } 7348 7349 /* 7350 * Check this_cpu to ensure it is balanced within domain. Attempt to move 7351 * tasks if there is an imbalance. 7352 */ 7353 static int load_balance(int this_cpu, struct rq *this_rq, 7354 struct sched_domain *sd, enum cpu_idle_type idle, 7355 int *continue_balancing) 7356 { 7357 int ld_moved, cur_ld_moved, active_balance = 0; 7358 struct sched_domain *sd_parent = sd->parent; 7359 struct sched_group *group; 7360 struct rq *busiest; 7361 unsigned long flags; 7362 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 7363 7364 struct lb_env env = { 7365 .sd = sd, 7366 .dst_cpu = this_cpu, 7367 .dst_rq = this_rq, 7368 .dst_grpmask = sched_group_cpus(sd->groups), 7369 .idle = idle, 7370 .loop_break = sched_nr_migrate_break, 7371 .cpus = cpus, 7372 .fbq_type = all, 7373 .tasks = LIST_HEAD_INIT(env.tasks), 7374 }; 7375 7376 /* 7377 * For NEWLY_IDLE load_balancing, we don't need to consider 7378 * other cpus in our group 7379 */ 7380 if (idle == CPU_NEWLY_IDLE) 7381 env.dst_grpmask = NULL; 7382 7383 cpumask_copy(cpus, cpu_active_mask); 7384 7385 schedstat_inc(sd, lb_count[idle]); 7386 7387 redo: 7388 if (!should_we_balance(&env)) { 7389 *continue_balancing = 0; 7390 goto out_balanced; 7391 } 7392 7393 group = find_busiest_group(&env); 7394 if (!group) { 7395 schedstat_inc(sd, lb_nobusyg[idle]); 7396 goto out_balanced; 7397 } 7398 7399 busiest = find_busiest_queue(&env, group); 7400 if (!busiest) { 7401 schedstat_inc(sd, lb_nobusyq[idle]); 7402 goto out_balanced; 7403 } 7404 7405 BUG_ON(busiest == env.dst_rq); 7406 7407 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 7408 7409 env.src_cpu = busiest->cpu; 7410 env.src_rq = busiest; 7411 7412 ld_moved = 0; 7413 if (busiest->nr_running > 1) { 7414 /* 7415 * Attempt to move tasks. If find_busiest_group has found 7416 * an imbalance but busiest->nr_running <= 1, the group is 7417 * still unbalanced. ld_moved simply stays zero, so it is 7418 * correctly treated as an imbalance. 7419 */ 7420 env.flags |= LBF_ALL_PINNED; 7421 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 7422 7423 more_balance: 7424 raw_spin_lock_irqsave(&busiest->lock, flags); 7425 7426 /* 7427 * cur_ld_moved - load moved in current iteration 7428 * ld_moved - cumulative load moved across iterations 7429 */ 7430 cur_ld_moved = detach_tasks(&env); 7431 7432 /* 7433 * We've detached some tasks from busiest_rq. Every 7434 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 7435 * unlock busiest->lock, and we are able to be sure 7436 * that nobody can manipulate the tasks in parallel. 7437 * See task_rq_lock() family for the details. 7438 */ 7439 7440 raw_spin_unlock(&busiest->lock); 7441 7442 if (cur_ld_moved) { 7443 attach_tasks(&env); 7444 ld_moved += cur_ld_moved; 7445 } 7446 7447 local_irq_restore(flags); 7448 7449 if (env.flags & LBF_NEED_BREAK) { 7450 env.flags &= ~LBF_NEED_BREAK; 7451 goto more_balance; 7452 } 7453 7454 /* 7455 * Revisit (affine) tasks on src_cpu that couldn't be moved to 7456 * us and move them to an alternate dst_cpu in our sched_group 7457 * where they can run. The upper limit on how many times we 7458 * iterate on same src_cpu is dependent on number of cpus in our 7459 * sched_group. 7460 * 7461 * This changes load balance semantics a bit on who can move 7462 * load to a given_cpu. In addition to the given_cpu itself 7463 * (or a ilb_cpu acting on its behalf where given_cpu is 7464 * nohz-idle), we now have balance_cpu in a position to move 7465 * load to given_cpu. In rare situations, this may cause 7466 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 7467 * _independently_ and at _same_ time to move some load to 7468 * given_cpu) causing exceess load to be moved to given_cpu. 7469 * This however should not happen so much in practice and 7470 * moreover subsequent load balance cycles should correct the 7471 * excess load moved. 7472 */ 7473 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 7474 7475 /* Prevent to re-select dst_cpu via env's cpus */ 7476 cpumask_clear_cpu(env.dst_cpu, env.cpus); 7477 7478 env.dst_rq = cpu_rq(env.new_dst_cpu); 7479 env.dst_cpu = env.new_dst_cpu; 7480 env.flags &= ~LBF_DST_PINNED; 7481 env.loop = 0; 7482 env.loop_break = sched_nr_migrate_break; 7483 7484 /* 7485 * Go back to "more_balance" rather than "redo" since we 7486 * need to continue with same src_cpu. 7487 */ 7488 goto more_balance; 7489 } 7490 7491 /* 7492 * We failed to reach balance because of affinity. 7493 */ 7494 if (sd_parent) { 7495 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7496 7497 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 7498 *group_imbalance = 1; 7499 } 7500 7501 /* All tasks on this runqueue were pinned by CPU affinity */ 7502 if (unlikely(env.flags & LBF_ALL_PINNED)) { 7503 cpumask_clear_cpu(cpu_of(busiest), cpus); 7504 if (!cpumask_empty(cpus)) { 7505 env.loop = 0; 7506 env.loop_break = sched_nr_migrate_break; 7507 goto redo; 7508 } 7509 goto out_all_pinned; 7510 } 7511 } 7512 7513 if (!ld_moved) { 7514 schedstat_inc(sd, lb_failed[idle]); 7515 /* 7516 * Increment the failure counter only on periodic balance. 7517 * We do not want newidle balance, which can be very 7518 * frequent, pollute the failure counter causing 7519 * excessive cache_hot migrations and active balances. 7520 */ 7521 if (idle != CPU_NEWLY_IDLE) 7522 sd->nr_balance_failed++; 7523 7524 if (need_active_balance(&env)) { 7525 raw_spin_lock_irqsave(&busiest->lock, flags); 7526 7527 /* don't kick the active_load_balance_cpu_stop, 7528 * if the curr task on busiest cpu can't be 7529 * moved to this_cpu 7530 */ 7531 if (!cpumask_test_cpu(this_cpu, 7532 tsk_cpus_allowed(busiest->curr))) { 7533 raw_spin_unlock_irqrestore(&busiest->lock, 7534 flags); 7535 env.flags |= LBF_ALL_PINNED; 7536 goto out_one_pinned; 7537 } 7538 7539 /* 7540 * ->active_balance synchronizes accesses to 7541 * ->active_balance_work. Once set, it's cleared 7542 * only after active load balance is finished. 7543 */ 7544 if (!busiest->active_balance) { 7545 busiest->active_balance = 1; 7546 busiest->push_cpu = this_cpu; 7547 active_balance = 1; 7548 } 7549 raw_spin_unlock_irqrestore(&busiest->lock, flags); 7550 7551 if (active_balance) { 7552 stop_one_cpu_nowait(cpu_of(busiest), 7553 active_load_balance_cpu_stop, busiest, 7554 &busiest->active_balance_work); 7555 } 7556 7557 /* We've kicked active balancing, force task migration. */ 7558 sd->nr_balance_failed = sd->cache_nice_tries+1; 7559 } 7560 } else 7561 sd->nr_balance_failed = 0; 7562 7563 if (likely(!active_balance)) { 7564 /* We were unbalanced, so reset the balancing interval */ 7565 sd->balance_interval = sd->min_interval; 7566 } else { 7567 /* 7568 * If we've begun active balancing, start to back off. This 7569 * case may not be covered by the all_pinned logic if there 7570 * is only 1 task on the busy runqueue (because we don't call 7571 * detach_tasks). 7572 */ 7573 if (sd->balance_interval < sd->max_interval) 7574 sd->balance_interval *= 2; 7575 } 7576 7577 goto out; 7578 7579 out_balanced: 7580 /* 7581 * We reach balance although we may have faced some affinity 7582 * constraints. Clear the imbalance flag if it was set. 7583 */ 7584 if (sd_parent) { 7585 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7586 7587 if (*group_imbalance) 7588 *group_imbalance = 0; 7589 } 7590 7591 out_all_pinned: 7592 /* 7593 * We reach balance because all tasks are pinned at this level so 7594 * we can't migrate them. Let the imbalance flag set so parent level 7595 * can try to migrate them. 7596 */ 7597 schedstat_inc(sd, lb_balanced[idle]); 7598 7599 sd->nr_balance_failed = 0; 7600 7601 out_one_pinned: 7602 /* tune up the balancing interval */ 7603 if (((env.flags & LBF_ALL_PINNED) && 7604 sd->balance_interval < MAX_PINNED_INTERVAL) || 7605 (sd->balance_interval < sd->max_interval)) 7606 sd->balance_interval *= 2; 7607 7608 ld_moved = 0; 7609 out: 7610 return ld_moved; 7611 } 7612 7613 static inline unsigned long 7614 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 7615 { 7616 unsigned long interval = sd->balance_interval; 7617 7618 if (cpu_busy) 7619 interval *= sd->busy_factor; 7620 7621 /* scale ms to jiffies */ 7622 interval = msecs_to_jiffies(interval); 7623 interval = clamp(interval, 1UL, max_load_balance_interval); 7624 7625 return interval; 7626 } 7627 7628 static inline void 7629 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) 7630 { 7631 unsigned long interval, next; 7632 7633 interval = get_sd_balance_interval(sd, cpu_busy); 7634 next = sd->last_balance + interval; 7635 7636 if (time_after(*next_balance, next)) 7637 *next_balance = next; 7638 } 7639 7640 /* 7641 * idle_balance is called by schedule() if this_cpu is about to become 7642 * idle. Attempts to pull tasks from other CPUs. 7643 */ 7644 static int idle_balance(struct rq *this_rq) 7645 { 7646 unsigned long next_balance = jiffies + HZ; 7647 int this_cpu = this_rq->cpu; 7648 struct sched_domain *sd; 7649 int pulled_task = 0; 7650 u64 curr_cost = 0; 7651 7652 /* 7653 * We must set idle_stamp _before_ calling idle_balance(), such that we 7654 * measure the duration of idle_balance() as idle time. 7655 */ 7656 this_rq->idle_stamp = rq_clock(this_rq); 7657 7658 if (this_rq->avg_idle < sysctl_sched_migration_cost || 7659 !this_rq->rd->overload) { 7660 rcu_read_lock(); 7661 sd = rcu_dereference_check_sched_domain(this_rq->sd); 7662 if (sd) 7663 update_next_balance(sd, 0, &next_balance); 7664 rcu_read_unlock(); 7665 7666 goto out; 7667 } 7668 7669 raw_spin_unlock(&this_rq->lock); 7670 7671 update_blocked_averages(this_cpu); 7672 rcu_read_lock(); 7673 for_each_domain(this_cpu, sd) { 7674 int continue_balancing = 1; 7675 u64 t0, domain_cost; 7676 7677 if (!(sd->flags & SD_LOAD_BALANCE)) 7678 continue; 7679 7680 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 7681 update_next_balance(sd, 0, &next_balance); 7682 break; 7683 } 7684 7685 if (sd->flags & SD_BALANCE_NEWIDLE) { 7686 t0 = sched_clock_cpu(this_cpu); 7687 7688 pulled_task = load_balance(this_cpu, this_rq, 7689 sd, CPU_NEWLY_IDLE, 7690 &continue_balancing); 7691 7692 domain_cost = sched_clock_cpu(this_cpu) - t0; 7693 if (domain_cost > sd->max_newidle_lb_cost) 7694 sd->max_newidle_lb_cost = domain_cost; 7695 7696 curr_cost += domain_cost; 7697 } 7698 7699 update_next_balance(sd, 0, &next_balance); 7700 7701 /* 7702 * Stop searching for tasks to pull if there are 7703 * now runnable tasks on this rq. 7704 */ 7705 if (pulled_task || this_rq->nr_running > 0) 7706 break; 7707 } 7708 rcu_read_unlock(); 7709 7710 raw_spin_lock(&this_rq->lock); 7711 7712 if (curr_cost > this_rq->max_idle_balance_cost) 7713 this_rq->max_idle_balance_cost = curr_cost; 7714 7715 /* 7716 * While browsing the domains, we released the rq lock, a task could 7717 * have been enqueued in the meantime. Since we're not going idle, 7718 * pretend we pulled a task. 7719 */ 7720 if (this_rq->cfs.h_nr_running && !pulled_task) 7721 pulled_task = 1; 7722 7723 out: 7724 /* Move the next balance forward */ 7725 if (time_after(this_rq->next_balance, next_balance)) 7726 this_rq->next_balance = next_balance; 7727 7728 /* Is there a task of a high priority class? */ 7729 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 7730 pulled_task = -1; 7731 7732 if (pulled_task) 7733 this_rq->idle_stamp = 0; 7734 7735 return pulled_task; 7736 } 7737 7738 /* 7739 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 7740 * running tasks off the busiest CPU onto idle CPUs. It requires at 7741 * least 1 task to be running on each physical CPU where possible, and 7742 * avoids physical / logical imbalances. 7743 */ 7744 static int active_load_balance_cpu_stop(void *data) 7745 { 7746 struct rq *busiest_rq = data; 7747 int busiest_cpu = cpu_of(busiest_rq); 7748 int target_cpu = busiest_rq->push_cpu; 7749 struct rq *target_rq = cpu_rq(target_cpu); 7750 struct sched_domain *sd; 7751 struct task_struct *p = NULL; 7752 7753 raw_spin_lock_irq(&busiest_rq->lock); 7754 7755 /* make sure the requested cpu hasn't gone down in the meantime */ 7756 if (unlikely(busiest_cpu != smp_processor_id() || 7757 !busiest_rq->active_balance)) 7758 goto out_unlock; 7759 7760 /* Is there any task to move? */ 7761 if (busiest_rq->nr_running <= 1) 7762 goto out_unlock; 7763 7764 /* 7765 * This condition is "impossible", if it occurs 7766 * we need to fix it. Originally reported by 7767 * Bjorn Helgaas on a 128-cpu setup. 7768 */ 7769 BUG_ON(busiest_rq == target_rq); 7770 7771 /* Search for an sd spanning us and the target CPU. */ 7772 rcu_read_lock(); 7773 for_each_domain(target_cpu, sd) { 7774 if ((sd->flags & SD_LOAD_BALANCE) && 7775 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 7776 break; 7777 } 7778 7779 if (likely(sd)) { 7780 struct lb_env env = { 7781 .sd = sd, 7782 .dst_cpu = target_cpu, 7783 .dst_rq = target_rq, 7784 .src_cpu = busiest_rq->cpu, 7785 .src_rq = busiest_rq, 7786 .idle = CPU_IDLE, 7787 }; 7788 7789 schedstat_inc(sd, alb_count); 7790 7791 p = detach_one_task(&env); 7792 if (p) { 7793 schedstat_inc(sd, alb_pushed); 7794 /* Active balancing done, reset the failure counter. */ 7795 sd->nr_balance_failed = 0; 7796 } else { 7797 schedstat_inc(sd, alb_failed); 7798 } 7799 } 7800 rcu_read_unlock(); 7801 out_unlock: 7802 busiest_rq->active_balance = 0; 7803 raw_spin_unlock(&busiest_rq->lock); 7804 7805 if (p) 7806 attach_one_task(target_rq, p); 7807 7808 local_irq_enable(); 7809 7810 return 0; 7811 } 7812 7813 static inline int on_null_domain(struct rq *rq) 7814 { 7815 return unlikely(!rcu_dereference_sched(rq->sd)); 7816 } 7817 7818 #ifdef CONFIG_NO_HZ_COMMON 7819 /* 7820 * idle load balancing details 7821 * - When one of the busy CPUs notice that there may be an idle rebalancing 7822 * needed, they will kick the idle load balancer, which then does idle 7823 * load balancing for all the idle CPUs. 7824 */ 7825 static struct { 7826 cpumask_var_t idle_cpus_mask; 7827 atomic_t nr_cpus; 7828 unsigned long next_balance; /* in jiffy units */ 7829 } nohz ____cacheline_aligned; 7830 7831 static inline int find_new_ilb(void) 7832 { 7833 int ilb = cpumask_first(nohz.idle_cpus_mask); 7834 7835 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 7836 return ilb; 7837 7838 return nr_cpu_ids; 7839 } 7840 7841 /* 7842 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 7843 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 7844 * CPU (if there is one). 7845 */ 7846 static void nohz_balancer_kick(void) 7847 { 7848 int ilb_cpu; 7849 7850 nohz.next_balance++; 7851 7852 ilb_cpu = find_new_ilb(); 7853 7854 if (ilb_cpu >= nr_cpu_ids) 7855 return; 7856 7857 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 7858 return; 7859 /* 7860 * Use smp_send_reschedule() instead of resched_cpu(). 7861 * This way we generate a sched IPI on the target cpu which 7862 * is idle. And the softirq performing nohz idle load balance 7863 * will be run before returning from the IPI. 7864 */ 7865 smp_send_reschedule(ilb_cpu); 7866 return; 7867 } 7868 7869 void nohz_balance_exit_idle(unsigned int cpu) 7870 { 7871 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 7872 /* 7873 * Completely isolated CPUs don't ever set, so we must test. 7874 */ 7875 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 7876 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 7877 atomic_dec(&nohz.nr_cpus); 7878 } 7879 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7880 } 7881 } 7882 7883 static inline void set_cpu_sd_state_busy(void) 7884 { 7885 struct sched_domain *sd; 7886 int cpu = smp_processor_id(); 7887 7888 rcu_read_lock(); 7889 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7890 7891 if (!sd || !sd->nohz_idle) 7892 goto unlock; 7893 sd->nohz_idle = 0; 7894 7895 atomic_inc(&sd->groups->sgc->nr_busy_cpus); 7896 unlock: 7897 rcu_read_unlock(); 7898 } 7899 7900 void set_cpu_sd_state_idle(void) 7901 { 7902 struct sched_domain *sd; 7903 int cpu = smp_processor_id(); 7904 7905 rcu_read_lock(); 7906 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7907 7908 if (!sd || sd->nohz_idle) 7909 goto unlock; 7910 sd->nohz_idle = 1; 7911 7912 atomic_dec(&sd->groups->sgc->nr_busy_cpus); 7913 unlock: 7914 rcu_read_unlock(); 7915 } 7916 7917 /* 7918 * This routine will record that the cpu is going idle with tick stopped. 7919 * This info will be used in performing idle load balancing in the future. 7920 */ 7921 void nohz_balance_enter_idle(int cpu) 7922 { 7923 /* 7924 * If this cpu is going down, then nothing needs to be done. 7925 */ 7926 if (!cpu_active(cpu)) 7927 return; 7928 7929 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 7930 return; 7931 7932 /* 7933 * If we're a completely isolated CPU, we don't play. 7934 */ 7935 if (on_null_domain(cpu_rq(cpu))) 7936 return; 7937 7938 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 7939 atomic_inc(&nohz.nr_cpus); 7940 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7941 } 7942 #endif 7943 7944 static DEFINE_SPINLOCK(balancing); 7945 7946 /* 7947 * Scale the max load_balance interval with the number of CPUs in the system. 7948 * This trades load-balance latency on larger machines for less cross talk. 7949 */ 7950 void update_max_interval(void) 7951 { 7952 max_load_balance_interval = HZ*num_online_cpus()/10; 7953 } 7954 7955 /* 7956 * It checks each scheduling domain to see if it is due to be balanced, 7957 * and initiates a balancing operation if so. 7958 * 7959 * Balancing parameters are set up in init_sched_domains. 7960 */ 7961 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 7962 { 7963 int continue_balancing = 1; 7964 int cpu = rq->cpu; 7965 unsigned long interval; 7966 struct sched_domain *sd; 7967 /* Earliest time when we have to do rebalance again */ 7968 unsigned long next_balance = jiffies + 60*HZ; 7969 int update_next_balance = 0; 7970 int need_serialize, need_decay = 0; 7971 u64 max_cost = 0; 7972 7973 update_blocked_averages(cpu); 7974 7975 rcu_read_lock(); 7976 for_each_domain(cpu, sd) { 7977 /* 7978 * Decay the newidle max times here because this is a regular 7979 * visit to all the domains. Decay ~1% per second. 7980 */ 7981 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 7982 sd->max_newidle_lb_cost = 7983 (sd->max_newidle_lb_cost * 253) / 256; 7984 sd->next_decay_max_lb_cost = jiffies + HZ; 7985 need_decay = 1; 7986 } 7987 max_cost += sd->max_newidle_lb_cost; 7988 7989 if (!(sd->flags & SD_LOAD_BALANCE)) 7990 continue; 7991 7992 /* 7993 * Stop the load balance at this level. There is another 7994 * CPU in our sched group which is doing load balancing more 7995 * actively. 7996 */ 7997 if (!continue_balancing) { 7998 if (need_decay) 7999 continue; 8000 break; 8001 } 8002 8003 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8004 8005 need_serialize = sd->flags & SD_SERIALIZE; 8006 if (need_serialize) { 8007 if (!spin_trylock(&balancing)) 8008 goto out; 8009 } 8010 8011 if (time_after_eq(jiffies, sd->last_balance + interval)) { 8012 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 8013 /* 8014 * The LBF_DST_PINNED logic could have changed 8015 * env->dst_cpu, so we can't know our idle 8016 * state even if we migrated tasks. Update it. 8017 */ 8018 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 8019 } 8020 sd->last_balance = jiffies; 8021 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8022 } 8023 if (need_serialize) 8024 spin_unlock(&balancing); 8025 out: 8026 if (time_after(next_balance, sd->last_balance + interval)) { 8027 next_balance = sd->last_balance + interval; 8028 update_next_balance = 1; 8029 } 8030 } 8031 if (need_decay) { 8032 /* 8033 * Ensure the rq-wide value also decays but keep it at a 8034 * reasonable floor to avoid funnies with rq->avg_idle. 8035 */ 8036 rq->max_idle_balance_cost = 8037 max((u64)sysctl_sched_migration_cost, max_cost); 8038 } 8039 rcu_read_unlock(); 8040 8041 /* 8042 * next_balance will be updated only when there is a need. 8043 * When the cpu is attached to null domain for ex, it will not be 8044 * updated. 8045 */ 8046 if (likely(update_next_balance)) { 8047 rq->next_balance = next_balance; 8048 8049 #ifdef CONFIG_NO_HZ_COMMON 8050 /* 8051 * If this CPU has been elected to perform the nohz idle 8052 * balance. Other idle CPUs have already rebalanced with 8053 * nohz_idle_balance() and nohz.next_balance has been 8054 * updated accordingly. This CPU is now running the idle load 8055 * balance for itself and we need to update the 8056 * nohz.next_balance accordingly. 8057 */ 8058 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 8059 nohz.next_balance = rq->next_balance; 8060 #endif 8061 } 8062 } 8063 8064 #ifdef CONFIG_NO_HZ_COMMON 8065 /* 8066 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 8067 * rebalancing for all the cpus for whom scheduler ticks are stopped. 8068 */ 8069 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 8070 { 8071 int this_cpu = this_rq->cpu; 8072 struct rq *rq; 8073 int balance_cpu; 8074 /* Earliest time when we have to do rebalance again */ 8075 unsigned long next_balance = jiffies + 60*HZ; 8076 int update_next_balance = 0; 8077 8078 if (idle != CPU_IDLE || 8079 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 8080 goto end; 8081 8082 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 8083 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 8084 continue; 8085 8086 /* 8087 * If this cpu gets work to do, stop the load balancing 8088 * work being done for other cpus. Next load 8089 * balancing owner will pick it up. 8090 */ 8091 if (need_resched()) 8092 break; 8093 8094 rq = cpu_rq(balance_cpu); 8095 8096 /* 8097 * If time for next balance is due, 8098 * do the balance. 8099 */ 8100 if (time_after_eq(jiffies, rq->next_balance)) { 8101 raw_spin_lock_irq(&rq->lock); 8102 update_rq_clock(rq); 8103 cpu_load_update_idle(rq); 8104 raw_spin_unlock_irq(&rq->lock); 8105 rebalance_domains(rq, CPU_IDLE); 8106 } 8107 8108 if (time_after(next_balance, rq->next_balance)) { 8109 next_balance = rq->next_balance; 8110 update_next_balance = 1; 8111 } 8112 } 8113 8114 /* 8115 * next_balance will be updated only when there is a need. 8116 * When the CPU is attached to null domain for ex, it will not be 8117 * updated. 8118 */ 8119 if (likely(update_next_balance)) 8120 nohz.next_balance = next_balance; 8121 end: 8122 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 8123 } 8124 8125 /* 8126 * Current heuristic for kicking the idle load balancer in the presence 8127 * of an idle cpu in the system. 8128 * - This rq has more than one task. 8129 * - This rq has at least one CFS task and the capacity of the CPU is 8130 * significantly reduced because of RT tasks or IRQs. 8131 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 8132 * multiple busy cpu. 8133 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 8134 * domain span are idle. 8135 */ 8136 static inline bool nohz_kick_needed(struct rq *rq) 8137 { 8138 unsigned long now = jiffies; 8139 struct sched_domain *sd; 8140 struct sched_group_capacity *sgc; 8141 int nr_busy, cpu = rq->cpu; 8142 bool kick = false; 8143 8144 if (unlikely(rq->idle_balance)) 8145 return false; 8146 8147 /* 8148 * We may be recently in ticked or tickless idle mode. At the first 8149 * busy tick after returning from idle, we will update the busy stats. 8150 */ 8151 set_cpu_sd_state_busy(); 8152 nohz_balance_exit_idle(cpu); 8153 8154 /* 8155 * None are in tickless mode and hence no need for NOHZ idle load 8156 * balancing. 8157 */ 8158 if (likely(!atomic_read(&nohz.nr_cpus))) 8159 return false; 8160 8161 if (time_before(now, nohz.next_balance)) 8162 return false; 8163 8164 if (rq->nr_running >= 2) 8165 return true; 8166 8167 rcu_read_lock(); 8168 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 8169 if (sd) { 8170 sgc = sd->groups->sgc; 8171 nr_busy = atomic_read(&sgc->nr_busy_cpus); 8172 8173 if (nr_busy > 1) { 8174 kick = true; 8175 goto unlock; 8176 } 8177 8178 } 8179 8180 sd = rcu_dereference(rq->sd); 8181 if (sd) { 8182 if ((rq->cfs.h_nr_running >= 1) && 8183 check_cpu_capacity(rq, sd)) { 8184 kick = true; 8185 goto unlock; 8186 } 8187 } 8188 8189 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 8190 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 8191 sched_domain_span(sd)) < cpu)) { 8192 kick = true; 8193 goto unlock; 8194 } 8195 8196 unlock: 8197 rcu_read_unlock(); 8198 return kick; 8199 } 8200 #else 8201 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 8202 #endif 8203 8204 /* 8205 * run_rebalance_domains is triggered when needed from the scheduler tick. 8206 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 8207 */ 8208 static void run_rebalance_domains(struct softirq_action *h) 8209 { 8210 struct rq *this_rq = this_rq(); 8211 enum cpu_idle_type idle = this_rq->idle_balance ? 8212 CPU_IDLE : CPU_NOT_IDLE; 8213 8214 /* 8215 * If this cpu has a pending nohz_balance_kick, then do the 8216 * balancing on behalf of the other idle cpus whose ticks are 8217 * stopped. Do nohz_idle_balance *before* rebalance_domains to 8218 * give the idle cpus a chance to load balance. Else we may 8219 * load balance only within the local sched_domain hierarchy 8220 * and abort nohz_idle_balance altogether if we pull some load. 8221 */ 8222 nohz_idle_balance(this_rq, idle); 8223 rebalance_domains(this_rq, idle); 8224 } 8225 8226 /* 8227 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 8228 */ 8229 void trigger_load_balance(struct rq *rq) 8230 { 8231 /* Don't need to rebalance while attached to NULL domain */ 8232 if (unlikely(on_null_domain(rq))) 8233 return; 8234 8235 if (time_after_eq(jiffies, rq->next_balance)) 8236 raise_softirq(SCHED_SOFTIRQ); 8237 #ifdef CONFIG_NO_HZ_COMMON 8238 if (nohz_kick_needed(rq)) 8239 nohz_balancer_kick(); 8240 #endif 8241 } 8242 8243 static void rq_online_fair(struct rq *rq) 8244 { 8245 update_sysctl(); 8246 8247 update_runtime_enabled(rq); 8248 } 8249 8250 static void rq_offline_fair(struct rq *rq) 8251 { 8252 update_sysctl(); 8253 8254 /* Ensure any throttled groups are reachable by pick_next_task */ 8255 unthrottle_offline_cfs_rqs(rq); 8256 } 8257 8258 #endif /* CONFIG_SMP */ 8259 8260 /* 8261 * scheduler tick hitting a task of our scheduling class: 8262 */ 8263 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 8264 { 8265 struct cfs_rq *cfs_rq; 8266 struct sched_entity *se = &curr->se; 8267 8268 for_each_sched_entity(se) { 8269 cfs_rq = cfs_rq_of(se); 8270 entity_tick(cfs_rq, se, queued); 8271 } 8272 8273 if (static_branch_unlikely(&sched_numa_balancing)) 8274 task_tick_numa(rq, curr); 8275 } 8276 8277 /* 8278 * called on fork with the child task as argument from the parent's context 8279 * - child not yet on the tasklist 8280 * - preemption disabled 8281 */ 8282 static void task_fork_fair(struct task_struct *p) 8283 { 8284 struct cfs_rq *cfs_rq; 8285 struct sched_entity *se = &p->se, *curr; 8286 int this_cpu = smp_processor_id(); 8287 struct rq *rq = this_rq(); 8288 unsigned long flags; 8289 8290 raw_spin_lock_irqsave(&rq->lock, flags); 8291 8292 update_rq_clock(rq); 8293 8294 cfs_rq = task_cfs_rq(current); 8295 curr = cfs_rq->curr; 8296 8297 /* 8298 * Not only the cpu but also the task_group of the parent might have 8299 * been changed after parent->se.parent,cfs_rq were copied to 8300 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those 8301 * of child point to valid ones. 8302 */ 8303 rcu_read_lock(); 8304 __set_task_cpu(p, this_cpu); 8305 rcu_read_unlock(); 8306 8307 update_curr(cfs_rq); 8308 8309 if (curr) 8310 se->vruntime = curr->vruntime; 8311 place_entity(cfs_rq, se, 1); 8312 8313 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 8314 /* 8315 * Upon rescheduling, sched_class::put_prev_task() will place 8316 * 'current' within the tree based on its new key value. 8317 */ 8318 swap(curr->vruntime, se->vruntime); 8319 resched_curr(rq); 8320 } 8321 8322 se->vruntime -= cfs_rq->min_vruntime; 8323 8324 raw_spin_unlock_irqrestore(&rq->lock, flags); 8325 } 8326 8327 /* 8328 * Priority of the task has changed. Check to see if we preempt 8329 * the current task. 8330 */ 8331 static void 8332 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 8333 { 8334 if (!task_on_rq_queued(p)) 8335 return; 8336 8337 /* 8338 * Reschedule if we are currently running on this runqueue and 8339 * our priority decreased, or if we are not currently running on 8340 * this runqueue and our priority is higher than the current's 8341 */ 8342 if (rq->curr == p) { 8343 if (p->prio > oldprio) 8344 resched_curr(rq); 8345 } else 8346 check_preempt_curr(rq, p, 0); 8347 } 8348 8349 static inline bool vruntime_normalized(struct task_struct *p) 8350 { 8351 struct sched_entity *se = &p->se; 8352 8353 /* 8354 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 8355 * the dequeue_entity(.flags=0) will already have normalized the 8356 * vruntime. 8357 */ 8358 if (p->on_rq) 8359 return true; 8360 8361 /* 8362 * When !on_rq, vruntime of the task has usually NOT been normalized. 8363 * But there are some cases where it has already been normalized: 8364 * 8365 * - A forked child which is waiting for being woken up by 8366 * wake_up_new_task(). 8367 * - A task which has been woken up by try_to_wake_up() and 8368 * waiting for actually being woken up by sched_ttwu_pending(). 8369 */ 8370 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 8371 return true; 8372 8373 return false; 8374 } 8375 8376 static void detach_task_cfs_rq(struct task_struct *p) 8377 { 8378 struct sched_entity *se = &p->se; 8379 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8380 8381 if (!vruntime_normalized(p)) { 8382 /* 8383 * Fix up our vruntime so that the current sleep doesn't 8384 * cause 'unlimited' sleep bonus. 8385 */ 8386 place_entity(cfs_rq, se, 0); 8387 se->vruntime -= cfs_rq->min_vruntime; 8388 } 8389 8390 /* Catch up with the cfs_rq and remove our load when we leave */ 8391 detach_entity_load_avg(cfs_rq, se); 8392 } 8393 8394 static void attach_task_cfs_rq(struct task_struct *p) 8395 { 8396 struct sched_entity *se = &p->se; 8397 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8398 8399 #ifdef CONFIG_FAIR_GROUP_SCHED 8400 /* 8401 * Since the real-depth could have been changed (only FAIR 8402 * class maintain depth value), reset depth properly. 8403 */ 8404 se->depth = se->parent ? se->parent->depth + 1 : 0; 8405 #endif 8406 8407 /* Synchronize task with its cfs_rq */ 8408 attach_entity_load_avg(cfs_rq, se); 8409 8410 if (!vruntime_normalized(p)) 8411 se->vruntime += cfs_rq->min_vruntime; 8412 } 8413 8414 static void switched_from_fair(struct rq *rq, struct task_struct *p) 8415 { 8416 detach_task_cfs_rq(p); 8417 } 8418 8419 static void switched_to_fair(struct rq *rq, struct task_struct *p) 8420 { 8421 attach_task_cfs_rq(p); 8422 8423 if (task_on_rq_queued(p)) { 8424 /* 8425 * We were most likely switched from sched_rt, so 8426 * kick off the schedule if running, otherwise just see 8427 * if we can still preempt the current task. 8428 */ 8429 if (rq->curr == p) 8430 resched_curr(rq); 8431 else 8432 check_preempt_curr(rq, p, 0); 8433 } 8434 } 8435 8436 /* Account for a task changing its policy or group. 8437 * 8438 * This routine is mostly called to set cfs_rq->curr field when a task 8439 * migrates between groups/classes. 8440 */ 8441 static void set_curr_task_fair(struct rq *rq) 8442 { 8443 struct sched_entity *se = &rq->curr->se; 8444 8445 for_each_sched_entity(se) { 8446 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8447 8448 set_next_entity(cfs_rq, se); 8449 /* ensure bandwidth has been allocated on our new cfs_rq */ 8450 account_cfs_rq_runtime(cfs_rq, 0); 8451 } 8452 } 8453 8454 void init_cfs_rq(struct cfs_rq *cfs_rq) 8455 { 8456 cfs_rq->tasks_timeline = RB_ROOT; 8457 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 8458 #ifndef CONFIG_64BIT 8459 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 8460 #endif 8461 #ifdef CONFIG_SMP 8462 atomic_long_set(&cfs_rq->removed_load_avg, 0); 8463 atomic_long_set(&cfs_rq->removed_util_avg, 0); 8464 #endif 8465 } 8466 8467 #ifdef CONFIG_FAIR_GROUP_SCHED 8468 static void task_move_group_fair(struct task_struct *p) 8469 { 8470 detach_task_cfs_rq(p); 8471 set_task_rq(p, task_cpu(p)); 8472 8473 #ifdef CONFIG_SMP 8474 /* Tell se's cfs_rq has been changed -- migrated */ 8475 p->se.avg.last_update_time = 0; 8476 #endif 8477 attach_task_cfs_rq(p); 8478 } 8479 8480 void free_fair_sched_group(struct task_group *tg) 8481 { 8482 int i; 8483 8484 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8485 8486 for_each_possible_cpu(i) { 8487 if (tg->cfs_rq) 8488 kfree(tg->cfs_rq[i]); 8489 if (tg->se) 8490 kfree(tg->se[i]); 8491 } 8492 8493 kfree(tg->cfs_rq); 8494 kfree(tg->se); 8495 } 8496 8497 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8498 { 8499 struct cfs_rq *cfs_rq; 8500 struct sched_entity *se; 8501 int i; 8502 8503 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 8504 if (!tg->cfs_rq) 8505 goto err; 8506 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 8507 if (!tg->se) 8508 goto err; 8509 8510 tg->shares = NICE_0_LOAD; 8511 8512 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8513 8514 for_each_possible_cpu(i) { 8515 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 8516 GFP_KERNEL, cpu_to_node(i)); 8517 if (!cfs_rq) 8518 goto err; 8519 8520 se = kzalloc_node(sizeof(struct sched_entity), 8521 GFP_KERNEL, cpu_to_node(i)); 8522 if (!se) 8523 goto err_free_rq; 8524 8525 init_cfs_rq(cfs_rq); 8526 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 8527 init_entity_runnable_average(se); 8528 post_init_entity_util_avg(se); 8529 } 8530 8531 return 1; 8532 8533 err_free_rq: 8534 kfree(cfs_rq); 8535 err: 8536 return 0; 8537 } 8538 8539 void unregister_fair_sched_group(struct task_group *tg) 8540 { 8541 unsigned long flags; 8542 struct rq *rq; 8543 int cpu; 8544 8545 for_each_possible_cpu(cpu) { 8546 if (tg->se[cpu]) 8547 remove_entity_load_avg(tg->se[cpu]); 8548 8549 /* 8550 * Only empty task groups can be destroyed; so we can speculatively 8551 * check on_list without danger of it being re-added. 8552 */ 8553 if (!tg->cfs_rq[cpu]->on_list) 8554 continue; 8555 8556 rq = cpu_rq(cpu); 8557 8558 raw_spin_lock_irqsave(&rq->lock, flags); 8559 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 8560 raw_spin_unlock_irqrestore(&rq->lock, flags); 8561 } 8562 } 8563 8564 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 8565 struct sched_entity *se, int cpu, 8566 struct sched_entity *parent) 8567 { 8568 struct rq *rq = cpu_rq(cpu); 8569 8570 cfs_rq->tg = tg; 8571 cfs_rq->rq = rq; 8572 init_cfs_rq_runtime(cfs_rq); 8573 8574 tg->cfs_rq[cpu] = cfs_rq; 8575 tg->se[cpu] = se; 8576 8577 /* se could be NULL for root_task_group */ 8578 if (!se) 8579 return; 8580 8581 if (!parent) { 8582 se->cfs_rq = &rq->cfs; 8583 se->depth = 0; 8584 } else { 8585 se->cfs_rq = parent->my_q; 8586 se->depth = parent->depth + 1; 8587 } 8588 8589 se->my_q = cfs_rq; 8590 /* guarantee group entities always have weight */ 8591 update_load_set(&se->load, NICE_0_LOAD); 8592 se->parent = parent; 8593 } 8594 8595 static DEFINE_MUTEX(shares_mutex); 8596 8597 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 8598 { 8599 int i; 8600 unsigned long flags; 8601 8602 /* 8603 * We can't change the weight of the root cgroup. 8604 */ 8605 if (!tg->se[0]) 8606 return -EINVAL; 8607 8608 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 8609 8610 mutex_lock(&shares_mutex); 8611 if (tg->shares == shares) 8612 goto done; 8613 8614 tg->shares = shares; 8615 for_each_possible_cpu(i) { 8616 struct rq *rq = cpu_rq(i); 8617 struct sched_entity *se; 8618 8619 se = tg->se[i]; 8620 /* Propagate contribution to hierarchy */ 8621 raw_spin_lock_irqsave(&rq->lock, flags); 8622 8623 /* Possible calls to update_curr() need rq clock */ 8624 update_rq_clock(rq); 8625 for_each_sched_entity(se) 8626 update_cfs_shares(group_cfs_rq(se)); 8627 raw_spin_unlock_irqrestore(&rq->lock, flags); 8628 } 8629 8630 done: 8631 mutex_unlock(&shares_mutex); 8632 return 0; 8633 } 8634 #else /* CONFIG_FAIR_GROUP_SCHED */ 8635 8636 void free_fair_sched_group(struct task_group *tg) { } 8637 8638 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8639 { 8640 return 1; 8641 } 8642 8643 void unregister_fair_sched_group(struct task_group *tg) { } 8644 8645 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8646 8647 8648 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 8649 { 8650 struct sched_entity *se = &task->se; 8651 unsigned int rr_interval = 0; 8652 8653 /* 8654 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 8655 * idle runqueue: 8656 */ 8657 if (rq->cfs.load.weight) 8658 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 8659 8660 return rr_interval; 8661 } 8662 8663 /* 8664 * All the scheduling class methods: 8665 */ 8666 const struct sched_class fair_sched_class = { 8667 .next = &idle_sched_class, 8668 .enqueue_task = enqueue_task_fair, 8669 .dequeue_task = dequeue_task_fair, 8670 .yield_task = yield_task_fair, 8671 .yield_to_task = yield_to_task_fair, 8672 8673 .check_preempt_curr = check_preempt_wakeup, 8674 8675 .pick_next_task = pick_next_task_fair, 8676 .put_prev_task = put_prev_task_fair, 8677 8678 #ifdef CONFIG_SMP 8679 .select_task_rq = select_task_rq_fair, 8680 .migrate_task_rq = migrate_task_rq_fair, 8681 8682 .rq_online = rq_online_fair, 8683 .rq_offline = rq_offline_fair, 8684 8685 .task_dead = task_dead_fair, 8686 .set_cpus_allowed = set_cpus_allowed_common, 8687 #endif 8688 8689 .set_curr_task = set_curr_task_fair, 8690 .task_tick = task_tick_fair, 8691 .task_fork = task_fork_fair, 8692 8693 .prio_changed = prio_changed_fair, 8694 .switched_from = switched_from_fair, 8695 .switched_to = switched_to_fair, 8696 8697 .get_rr_interval = get_rr_interval_fair, 8698 8699 .update_curr = update_curr_fair, 8700 8701 #ifdef CONFIG_FAIR_GROUP_SCHED 8702 .task_move_group = task_move_group_fair, 8703 #endif 8704 }; 8705 8706 #ifdef CONFIG_SCHED_DEBUG 8707 void print_cfs_stats(struct seq_file *m, int cpu) 8708 { 8709 struct cfs_rq *cfs_rq; 8710 8711 rcu_read_lock(); 8712 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 8713 print_cfs_rq(m, cpu, cfs_rq); 8714 rcu_read_unlock(); 8715 } 8716 8717 #ifdef CONFIG_NUMA_BALANCING 8718 void show_numa_stats(struct task_struct *p, struct seq_file *m) 8719 { 8720 int node; 8721 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 8722 8723 for_each_online_node(node) { 8724 if (p->numa_faults) { 8725 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 8726 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 8727 } 8728 if (p->numa_group) { 8729 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 8730 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 8731 } 8732 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 8733 } 8734 } 8735 #endif /* CONFIG_NUMA_BALANCING */ 8736 #endif /* CONFIG_SCHED_DEBUG */ 8737 8738 __init void init_sched_fair_class(void) 8739 { 8740 #ifdef CONFIG_SMP 8741 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 8742 8743 #ifdef CONFIG_NO_HZ_COMMON 8744 nohz.next_balance = jiffies; 8745 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 8746 #endif 8747 #endif /* SMP */ 8748 8749 } 8750