xref: /openbmc/linux/kernel/sched/fair.c (revision 33ac9dba)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32 
33 #include <trace/events/sched.h>
34 
35 #include "sched.h"
36 
37 /*
38  * Targeted preemption latency for CPU-bound tasks:
39  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40  *
41  * NOTE: this latency value is not the same as the concept of
42  * 'timeslice length' - timeslices in CFS are of variable length
43  * and have no persistent notion like in traditional, time-slice
44  * based scheduling concepts.
45  *
46  * (to see the precise effective timeslice length of your workload,
47  *  run vmstat and monitor the context-switches (cs) field)
48  */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51 
52 /*
53  * The initial- and re-scaling of tunables is configurable
54  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55  *
56  * Options are:
57  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60  */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 	= SCHED_TUNABLESCALING_LOG;
63 
64 /*
65  * Minimal preemption granularity for CPU-bound tasks:
66  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67  */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 
71 /*
72  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73  */
74 static unsigned int sched_nr_latency = 8;
75 
76 /*
77  * After fork, child runs first. If set to 0 (default) then
78  * parent will (try to) run first.
79  */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81 
82 /*
83  * SCHED_OTHER wake-up granularity.
84  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85  *
86  * This option delays the preemption effects of decoupled workloads
87  * and reduces their over-scheduling. Synchronous workloads will still
88  * have immediate wakeup/sleep latencies.
89  */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92 
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94 
95 /*
96  * The exponential sliding  window over which load is averaged for shares
97  * distribution.
98  * (default: 10msec)
99  */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101 
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105  * each time a cfs_rq requests quota.
106  *
107  * Note: in the case that the slice exceeds the runtime remaining (either due
108  * to consumption or the quota being specified to be smaller than the slice)
109  * we will always only issue the remaining available time.
110  *
111  * default: 5 msec, units: microseconds
112   */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115 
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 	lw->weight += inc;
119 	lw->inv_weight = 0;
120 }
121 
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 	lw->weight -= dec;
125 	lw->inv_weight = 0;
126 }
127 
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 	lw->weight = w;
131 	lw->inv_weight = 0;
132 }
133 
134 /*
135  * Increase the granularity value when there are more CPUs,
136  * because with more CPUs the 'effective latency' as visible
137  * to users decreases. But the relationship is not linear,
138  * so pick a second-best guess by going with the log2 of the
139  * number of CPUs.
140  *
141  * This idea comes from the SD scheduler of Con Kolivas:
142  */
143 static int get_update_sysctl_factor(void)
144 {
145 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 	unsigned int factor;
147 
148 	switch (sysctl_sched_tunable_scaling) {
149 	case SCHED_TUNABLESCALING_NONE:
150 		factor = 1;
151 		break;
152 	case SCHED_TUNABLESCALING_LINEAR:
153 		factor = cpus;
154 		break;
155 	case SCHED_TUNABLESCALING_LOG:
156 	default:
157 		factor = 1 + ilog2(cpus);
158 		break;
159 	}
160 
161 	return factor;
162 }
163 
164 static void update_sysctl(void)
165 {
166 	unsigned int factor = get_update_sysctl_factor();
167 
168 #define SET_SYSCTL(name) \
169 	(sysctl_##name = (factor) * normalized_sysctl_##name)
170 	SET_SYSCTL(sched_min_granularity);
171 	SET_SYSCTL(sched_latency);
172 	SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175 
176 void sched_init_granularity(void)
177 {
178 	update_sysctl();
179 }
180 
181 #define WMULT_CONST	(~0U)
182 #define WMULT_SHIFT	32
183 
184 static void __update_inv_weight(struct load_weight *lw)
185 {
186 	unsigned long w;
187 
188 	if (likely(lw->inv_weight))
189 		return;
190 
191 	w = scale_load_down(lw->weight);
192 
193 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 		lw->inv_weight = 1;
195 	else if (unlikely(!w))
196 		lw->inv_weight = WMULT_CONST;
197 	else
198 		lw->inv_weight = WMULT_CONST / w;
199 }
200 
201 /*
202  * delta_exec * weight / lw.weight
203  *   OR
204  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205  *
206  * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207  * we're guaranteed shift stays positive because inv_weight is guaranteed to
208  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209  *
210  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211  * weight/lw.weight <= 1, and therefore our shift will also be positive.
212  */
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214 {
215 	u64 fact = scale_load_down(weight);
216 	int shift = WMULT_SHIFT;
217 
218 	__update_inv_weight(lw);
219 
220 	if (unlikely(fact >> 32)) {
221 		while (fact >> 32) {
222 			fact >>= 1;
223 			shift--;
224 		}
225 	}
226 
227 	/* hint to use a 32x32->64 mul */
228 	fact = (u64)(u32)fact * lw->inv_weight;
229 
230 	while (fact >> 32) {
231 		fact >>= 1;
232 		shift--;
233 	}
234 
235 	return mul_u64_u32_shr(delta_exec, fact, shift);
236 }
237 
238 
239 const struct sched_class fair_sched_class;
240 
241 /**************************************************************
242  * CFS operations on generic schedulable entities:
243  */
244 
245 #ifdef CONFIG_FAIR_GROUP_SCHED
246 
247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249 {
250 	return cfs_rq->rq;
251 }
252 
253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se)	(!se->my_q)
255 
256 static inline struct task_struct *task_of(struct sched_entity *se)
257 {
258 #ifdef CONFIG_SCHED_DEBUG
259 	WARN_ON_ONCE(!entity_is_task(se));
260 #endif
261 	return container_of(se, struct task_struct, se);
262 }
263 
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 		for (; se; se = se->parent)
267 
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 	return p->se.cfs_rq;
271 }
272 
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 	return se->cfs_rq;
277 }
278 
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 	return grp->my_q;
283 }
284 
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 				       int force_update);
287 
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289 {
290 	if (!cfs_rq->on_list) {
291 		/*
292 		 * Ensure we either appear before our parent (if already
293 		 * enqueued) or force our parent to appear after us when it is
294 		 * enqueued.  The fact that we always enqueue bottom-up
295 		 * reduces this to two cases.
296 		 */
297 		if (cfs_rq->tg->parent &&
298 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
301 		} else {
302 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
304 		}
305 
306 		cfs_rq->on_list = 1;
307 		/* We should have no load, but we need to update last_decay. */
308 		update_cfs_rq_blocked_load(cfs_rq, 0);
309 	}
310 }
311 
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 	if (cfs_rq->on_list) {
315 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 		cfs_rq->on_list = 0;
317 	}
318 }
319 
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323 
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline struct cfs_rq *
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
327 {
328 	if (se->cfs_rq == pse->cfs_rq)
329 		return se->cfs_rq;
330 
331 	return NULL;
332 }
333 
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
335 {
336 	return se->parent;
337 }
338 
339 static void
340 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341 {
342 	int se_depth, pse_depth;
343 
344 	/*
345 	 * preemption test can be made between sibling entities who are in the
346 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 	 * both tasks until we find their ancestors who are siblings of common
348 	 * parent.
349 	 */
350 
351 	/* First walk up until both entities are at same depth */
352 	se_depth = (*se)->depth;
353 	pse_depth = (*pse)->depth;
354 
355 	while (se_depth > pse_depth) {
356 		se_depth--;
357 		*se = parent_entity(*se);
358 	}
359 
360 	while (pse_depth > se_depth) {
361 		pse_depth--;
362 		*pse = parent_entity(*pse);
363 	}
364 
365 	while (!is_same_group(*se, *pse)) {
366 		*se = parent_entity(*se);
367 		*pse = parent_entity(*pse);
368 	}
369 }
370 
371 #else	/* !CONFIG_FAIR_GROUP_SCHED */
372 
373 static inline struct task_struct *task_of(struct sched_entity *se)
374 {
375 	return container_of(se, struct task_struct, se);
376 }
377 
378 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379 {
380 	return container_of(cfs_rq, struct rq, cfs);
381 }
382 
383 #define entity_is_task(se)	1
384 
385 #define for_each_sched_entity(se) \
386 		for (; se; se = NULL)
387 
388 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389 {
390 	return &task_rq(p)->cfs;
391 }
392 
393 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394 {
395 	struct task_struct *p = task_of(se);
396 	struct rq *rq = task_rq(p);
397 
398 	return &rq->cfs;
399 }
400 
401 /* runqueue "owned" by this group */
402 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403 {
404 	return NULL;
405 }
406 
407 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410 
411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412 {
413 }
414 
415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417 
418 static inline struct sched_entity *parent_entity(struct sched_entity *se)
419 {
420 	return NULL;
421 }
422 
423 static inline void
424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 {
426 }
427 
428 #endif	/* CONFIG_FAIR_GROUP_SCHED */
429 
430 static __always_inline
431 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432 
433 /**************************************************************
434  * Scheduling class tree data structure manipulation methods:
435  */
436 
437 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438 {
439 	s64 delta = (s64)(vruntime - max_vruntime);
440 	if (delta > 0)
441 		max_vruntime = vruntime;
442 
443 	return max_vruntime;
444 }
445 
446 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
447 {
448 	s64 delta = (s64)(vruntime - min_vruntime);
449 	if (delta < 0)
450 		min_vruntime = vruntime;
451 
452 	return min_vruntime;
453 }
454 
455 static inline int entity_before(struct sched_entity *a,
456 				struct sched_entity *b)
457 {
458 	return (s64)(a->vruntime - b->vruntime) < 0;
459 }
460 
461 static void update_min_vruntime(struct cfs_rq *cfs_rq)
462 {
463 	u64 vruntime = cfs_rq->min_vruntime;
464 
465 	if (cfs_rq->curr)
466 		vruntime = cfs_rq->curr->vruntime;
467 
468 	if (cfs_rq->rb_leftmost) {
469 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 						   struct sched_entity,
471 						   run_node);
472 
473 		if (!cfs_rq->curr)
474 			vruntime = se->vruntime;
475 		else
476 			vruntime = min_vruntime(vruntime, se->vruntime);
477 	}
478 
479 	/* ensure we never gain time by being placed backwards. */
480 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
481 #ifndef CONFIG_64BIT
482 	smp_wmb();
483 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484 #endif
485 }
486 
487 /*
488  * Enqueue an entity into the rb-tree:
489  */
490 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 {
492 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 	struct rb_node *parent = NULL;
494 	struct sched_entity *entry;
495 	int leftmost = 1;
496 
497 	/*
498 	 * Find the right place in the rbtree:
499 	 */
500 	while (*link) {
501 		parent = *link;
502 		entry = rb_entry(parent, struct sched_entity, run_node);
503 		/*
504 		 * We dont care about collisions. Nodes with
505 		 * the same key stay together.
506 		 */
507 		if (entity_before(se, entry)) {
508 			link = &parent->rb_left;
509 		} else {
510 			link = &parent->rb_right;
511 			leftmost = 0;
512 		}
513 	}
514 
515 	/*
516 	 * Maintain a cache of leftmost tree entries (it is frequently
517 	 * used):
518 	 */
519 	if (leftmost)
520 		cfs_rq->rb_leftmost = &se->run_node;
521 
522 	rb_link_node(&se->run_node, parent, link);
523 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
524 }
525 
526 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
527 {
528 	if (cfs_rq->rb_leftmost == &se->run_node) {
529 		struct rb_node *next_node;
530 
531 		next_node = rb_next(&se->run_node);
532 		cfs_rq->rb_leftmost = next_node;
533 	}
534 
535 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
536 }
537 
538 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
539 {
540 	struct rb_node *left = cfs_rq->rb_leftmost;
541 
542 	if (!left)
543 		return NULL;
544 
545 	return rb_entry(left, struct sched_entity, run_node);
546 }
547 
548 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549 {
550 	struct rb_node *next = rb_next(&se->run_node);
551 
552 	if (!next)
553 		return NULL;
554 
555 	return rb_entry(next, struct sched_entity, run_node);
556 }
557 
558 #ifdef CONFIG_SCHED_DEBUG
559 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
560 {
561 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562 
563 	if (!last)
564 		return NULL;
565 
566 	return rb_entry(last, struct sched_entity, run_node);
567 }
568 
569 /**************************************************************
570  * Scheduling class statistics methods:
571  */
572 
573 int sched_proc_update_handler(struct ctl_table *table, int write,
574 		void __user *buffer, size_t *lenp,
575 		loff_t *ppos)
576 {
577 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578 	int factor = get_update_sysctl_factor();
579 
580 	if (ret || !write)
581 		return ret;
582 
583 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 					sysctl_sched_min_granularity);
585 
586 #define WRT_SYSCTL(name) \
587 	(normalized_sysctl_##name = sysctl_##name / (factor))
588 	WRT_SYSCTL(sched_min_granularity);
589 	WRT_SYSCTL(sched_latency);
590 	WRT_SYSCTL(sched_wakeup_granularity);
591 #undef WRT_SYSCTL
592 
593 	return 0;
594 }
595 #endif
596 
597 /*
598  * delta /= w
599  */
600 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
601 {
602 	if (unlikely(se->load.weight != NICE_0_LOAD))
603 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
604 
605 	return delta;
606 }
607 
608 /*
609  * The idea is to set a period in which each task runs once.
610  *
611  * When there are too many tasks (sched_nr_latency) we have to stretch
612  * this period because otherwise the slices get too small.
613  *
614  * p = (nr <= nl) ? l : l*nr/nl
615  */
616 static u64 __sched_period(unsigned long nr_running)
617 {
618 	u64 period = sysctl_sched_latency;
619 	unsigned long nr_latency = sched_nr_latency;
620 
621 	if (unlikely(nr_running > nr_latency)) {
622 		period = sysctl_sched_min_granularity;
623 		period *= nr_running;
624 	}
625 
626 	return period;
627 }
628 
629 /*
630  * We calculate the wall-time slice from the period by taking a part
631  * proportional to the weight.
632  *
633  * s = p*P[w/rw]
634  */
635 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
636 {
637 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
638 
639 	for_each_sched_entity(se) {
640 		struct load_weight *load;
641 		struct load_weight lw;
642 
643 		cfs_rq = cfs_rq_of(se);
644 		load = &cfs_rq->load;
645 
646 		if (unlikely(!se->on_rq)) {
647 			lw = cfs_rq->load;
648 
649 			update_load_add(&lw, se->load.weight);
650 			load = &lw;
651 		}
652 		slice = __calc_delta(slice, se->load.weight, load);
653 	}
654 	return slice;
655 }
656 
657 /*
658  * We calculate the vruntime slice of a to-be-inserted task.
659  *
660  * vs = s/w
661  */
662 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
663 {
664 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
665 }
666 
667 #ifdef CONFIG_SMP
668 static unsigned long task_h_load(struct task_struct *p);
669 
670 static inline void __update_task_entity_contrib(struct sched_entity *se);
671 
672 /* Give new task start runnable values to heavy its load in infant time */
673 void init_task_runnable_average(struct task_struct *p)
674 {
675 	u32 slice;
676 
677 	p->se.avg.decay_count = 0;
678 	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 	p->se.avg.runnable_avg_sum = slice;
680 	p->se.avg.runnable_avg_period = slice;
681 	__update_task_entity_contrib(&p->se);
682 }
683 #else
684 void init_task_runnable_average(struct task_struct *p)
685 {
686 }
687 #endif
688 
689 /*
690  * Update the current task's runtime statistics.
691  */
692 static void update_curr(struct cfs_rq *cfs_rq)
693 {
694 	struct sched_entity *curr = cfs_rq->curr;
695 	u64 now = rq_clock_task(rq_of(cfs_rq));
696 	u64 delta_exec;
697 
698 	if (unlikely(!curr))
699 		return;
700 
701 	delta_exec = now - curr->exec_start;
702 	if (unlikely((s64)delta_exec <= 0))
703 		return;
704 
705 	curr->exec_start = now;
706 
707 	schedstat_set(curr->statistics.exec_max,
708 		      max(delta_exec, curr->statistics.exec_max));
709 
710 	curr->sum_exec_runtime += delta_exec;
711 	schedstat_add(cfs_rq, exec_clock, delta_exec);
712 
713 	curr->vruntime += calc_delta_fair(delta_exec, curr);
714 	update_min_vruntime(cfs_rq);
715 
716 	if (entity_is_task(curr)) {
717 		struct task_struct *curtask = task_of(curr);
718 
719 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
720 		cpuacct_charge(curtask, delta_exec);
721 		account_group_exec_runtime(curtask, delta_exec);
722 	}
723 
724 	account_cfs_rq_runtime(cfs_rq, delta_exec);
725 }
726 
727 static inline void
728 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 {
730 	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
731 }
732 
733 /*
734  * Task is being enqueued - update stats:
735  */
736 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 	/*
739 	 * Are we enqueueing a waiting task? (for current tasks
740 	 * a dequeue/enqueue event is a NOP)
741 	 */
742 	if (se != cfs_rq->curr)
743 		update_stats_wait_start(cfs_rq, se);
744 }
745 
746 static void
747 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
748 {
749 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
750 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
751 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
753 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
754 #ifdef CONFIG_SCHEDSTATS
755 	if (entity_is_task(se)) {
756 		trace_sched_stat_wait(task_of(se),
757 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
758 	}
759 #endif
760 	schedstat_set(se->statistics.wait_start, 0);
761 }
762 
763 static inline void
764 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 {
766 	/*
767 	 * Mark the end of the wait period if dequeueing a
768 	 * waiting task:
769 	 */
770 	if (se != cfs_rq->curr)
771 		update_stats_wait_end(cfs_rq, se);
772 }
773 
774 /*
775  * We are picking a new current task - update its stats:
776  */
777 static inline void
778 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 {
780 	/*
781 	 * We are starting a new run period:
782 	 */
783 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
784 }
785 
786 /**************************************************
787  * Scheduling class queueing methods:
788  */
789 
790 #ifdef CONFIG_NUMA_BALANCING
791 /*
792  * Approximate time to scan a full NUMA task in ms. The task scan period is
793  * calculated based on the tasks virtual memory size and
794  * numa_balancing_scan_size.
795  */
796 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
798 
799 /* Portion of address space to scan in MB */
800 unsigned int sysctl_numa_balancing_scan_size = 256;
801 
802 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803 unsigned int sysctl_numa_balancing_scan_delay = 1000;
804 
805 static unsigned int task_nr_scan_windows(struct task_struct *p)
806 {
807 	unsigned long rss = 0;
808 	unsigned long nr_scan_pages;
809 
810 	/*
811 	 * Calculations based on RSS as non-present and empty pages are skipped
812 	 * by the PTE scanner and NUMA hinting faults should be trapped based
813 	 * on resident pages
814 	 */
815 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 	rss = get_mm_rss(p->mm);
817 	if (!rss)
818 		rss = nr_scan_pages;
819 
820 	rss = round_up(rss, nr_scan_pages);
821 	return rss / nr_scan_pages;
822 }
823 
824 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825 #define MAX_SCAN_WINDOW 2560
826 
827 static unsigned int task_scan_min(struct task_struct *p)
828 {
829 	unsigned int scan, floor;
830 	unsigned int windows = 1;
831 
832 	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 	floor = 1000 / windows;
835 
836 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 	return max_t(unsigned int, floor, scan);
838 }
839 
840 static unsigned int task_scan_max(struct task_struct *p)
841 {
842 	unsigned int smin = task_scan_min(p);
843 	unsigned int smax;
844 
845 	/* Watch for min being lower than max due to floor calculations */
846 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 	return max(smin, smax);
848 }
849 
850 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851 {
852 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854 }
855 
856 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857 {
858 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860 }
861 
862 struct numa_group {
863 	atomic_t refcount;
864 
865 	spinlock_t lock; /* nr_tasks, tasks */
866 	int nr_tasks;
867 	pid_t gid;
868 	struct list_head task_list;
869 
870 	struct rcu_head rcu;
871 	nodemask_t active_nodes;
872 	unsigned long total_faults;
873 	/*
874 	 * Faults_cpu is used to decide whether memory should move
875 	 * towards the CPU. As a consequence, these stats are weighted
876 	 * more by CPU use than by memory faults.
877 	 */
878 	unsigned long *faults_cpu;
879 	unsigned long faults[0];
880 };
881 
882 /* Shared or private faults. */
883 #define NR_NUMA_HINT_FAULT_TYPES 2
884 
885 /* Memory and CPU locality */
886 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887 
888 /* Averaged statistics, and temporary buffers. */
889 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890 
891 pid_t task_numa_group_id(struct task_struct *p)
892 {
893 	return p->numa_group ? p->numa_group->gid : 0;
894 }
895 
896 static inline int task_faults_idx(int nid, int priv)
897 {
898 	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
899 }
900 
901 static inline unsigned long task_faults(struct task_struct *p, int nid)
902 {
903 	if (!p->numa_faults_memory)
904 		return 0;
905 
906 	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 		p->numa_faults_memory[task_faults_idx(nid, 1)];
908 }
909 
910 static inline unsigned long group_faults(struct task_struct *p, int nid)
911 {
912 	if (!p->numa_group)
913 		return 0;
914 
915 	return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 		p->numa_group->faults[task_faults_idx(nid, 1)];
917 }
918 
919 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920 {
921 	return group->faults_cpu[task_faults_idx(nid, 0)] +
922 		group->faults_cpu[task_faults_idx(nid, 1)];
923 }
924 
925 /*
926  * These return the fraction of accesses done by a particular task, or
927  * task group, on a particular numa node.  The group weight is given a
928  * larger multiplier, in order to group tasks together that are almost
929  * evenly spread out between numa nodes.
930  */
931 static inline unsigned long task_weight(struct task_struct *p, int nid)
932 {
933 	unsigned long total_faults;
934 
935 	if (!p->numa_faults_memory)
936 		return 0;
937 
938 	total_faults = p->total_numa_faults;
939 
940 	if (!total_faults)
941 		return 0;
942 
943 	return 1000 * task_faults(p, nid) / total_faults;
944 }
945 
946 static inline unsigned long group_weight(struct task_struct *p, int nid)
947 {
948 	if (!p->numa_group || !p->numa_group->total_faults)
949 		return 0;
950 
951 	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
952 }
953 
954 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 				int src_nid, int dst_cpu)
956 {
957 	struct numa_group *ng = p->numa_group;
958 	int dst_nid = cpu_to_node(dst_cpu);
959 	int last_cpupid, this_cpupid;
960 
961 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962 
963 	/*
964 	 * Multi-stage node selection is used in conjunction with a periodic
965 	 * migration fault to build a temporal task<->page relation. By using
966 	 * a two-stage filter we remove short/unlikely relations.
967 	 *
968 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 	 * a task's usage of a particular page (n_p) per total usage of this
970 	 * page (n_t) (in a given time-span) to a probability.
971 	 *
972 	 * Our periodic faults will sample this probability and getting the
973 	 * same result twice in a row, given these samples are fully
974 	 * independent, is then given by P(n)^2, provided our sample period
975 	 * is sufficiently short compared to the usage pattern.
976 	 *
977 	 * This quadric squishes small probabilities, making it less likely we
978 	 * act on an unlikely task<->page relation.
979 	 */
980 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 	if (!cpupid_pid_unset(last_cpupid) &&
982 				cpupid_to_nid(last_cpupid) != dst_nid)
983 		return false;
984 
985 	/* Always allow migrate on private faults */
986 	if (cpupid_match_pid(p, last_cpupid))
987 		return true;
988 
989 	/* A shared fault, but p->numa_group has not been set up yet. */
990 	if (!ng)
991 		return true;
992 
993 	/*
994 	 * Do not migrate if the destination is not a node that
995 	 * is actively used by this numa group.
996 	 */
997 	if (!node_isset(dst_nid, ng->active_nodes))
998 		return false;
999 
1000 	/*
1001 	 * Source is a node that is not actively used by this
1002 	 * numa group, while the destination is. Migrate.
1003 	 */
1004 	if (!node_isset(src_nid, ng->active_nodes))
1005 		return true;
1006 
1007 	/*
1008 	 * Both source and destination are nodes in active
1009 	 * use by this numa group. Maximize memory bandwidth
1010 	 * by migrating from more heavily used groups, to less
1011 	 * heavily used ones, spreading the load around.
1012 	 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 	 */
1014 	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015 }
1016 
1017 static unsigned long weighted_cpuload(const int cpu);
1018 static unsigned long source_load(int cpu, int type);
1019 static unsigned long target_load(int cpu, int type);
1020 static unsigned long capacity_of(int cpu);
1021 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022 
1023 /* Cached statistics for all CPUs within a node */
1024 struct numa_stats {
1025 	unsigned long nr_running;
1026 	unsigned long load;
1027 
1028 	/* Total compute capacity of CPUs on a node */
1029 	unsigned long compute_capacity;
1030 
1031 	/* Approximate capacity in terms of runnable tasks on a node */
1032 	unsigned long task_capacity;
1033 	int has_free_capacity;
1034 };
1035 
1036 /*
1037  * XXX borrowed from update_sg_lb_stats
1038  */
1039 static void update_numa_stats(struct numa_stats *ns, int nid)
1040 {
1041 	int cpu, cpus = 0;
1042 
1043 	memset(ns, 0, sizeof(*ns));
1044 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 		struct rq *rq = cpu_rq(cpu);
1046 
1047 		ns->nr_running += rq->nr_running;
1048 		ns->load += weighted_cpuload(cpu);
1049 		ns->compute_capacity += capacity_of(cpu);
1050 
1051 		cpus++;
1052 	}
1053 
1054 	/*
1055 	 * If we raced with hotplug and there are no CPUs left in our mask
1056 	 * the @ns structure is NULL'ed and task_numa_compare() will
1057 	 * not find this node attractive.
1058 	 *
1059 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1060 	 * imbalance and bail there.
1061 	 */
1062 	if (!cpus)
1063 		return;
1064 
1065 	ns->task_capacity =
1066 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE);
1067 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1068 }
1069 
1070 struct task_numa_env {
1071 	struct task_struct *p;
1072 
1073 	int src_cpu, src_nid;
1074 	int dst_cpu, dst_nid;
1075 
1076 	struct numa_stats src_stats, dst_stats;
1077 
1078 	int imbalance_pct;
1079 
1080 	struct task_struct *best_task;
1081 	long best_imp;
1082 	int best_cpu;
1083 };
1084 
1085 static void task_numa_assign(struct task_numa_env *env,
1086 			     struct task_struct *p, long imp)
1087 {
1088 	if (env->best_task)
1089 		put_task_struct(env->best_task);
1090 	if (p)
1091 		get_task_struct(p);
1092 
1093 	env->best_task = p;
1094 	env->best_imp = imp;
1095 	env->best_cpu = env->dst_cpu;
1096 }
1097 
1098 static bool load_too_imbalanced(long src_load, long dst_load,
1099 				struct task_numa_env *env)
1100 {
1101 	long imb, old_imb;
1102 	long orig_src_load, orig_dst_load;
1103 	long src_capacity, dst_capacity;
1104 
1105 	/*
1106 	 * The load is corrected for the CPU capacity available on each node.
1107 	 *
1108 	 * src_load        dst_load
1109 	 * ------------ vs ---------
1110 	 * src_capacity    dst_capacity
1111 	 */
1112 	src_capacity = env->src_stats.compute_capacity;
1113 	dst_capacity = env->dst_stats.compute_capacity;
1114 
1115 	/* We care about the slope of the imbalance, not the direction. */
1116 	if (dst_load < src_load)
1117 		swap(dst_load, src_load);
1118 
1119 	/* Is the difference below the threshold? */
1120 	imb = dst_load * src_capacity * 100 -
1121 	      src_load * dst_capacity * env->imbalance_pct;
1122 	if (imb <= 0)
1123 		return false;
1124 
1125 	/*
1126 	 * The imbalance is above the allowed threshold.
1127 	 * Compare it with the old imbalance.
1128 	 */
1129 	orig_src_load = env->src_stats.load;
1130 	orig_dst_load = env->dst_stats.load;
1131 
1132 	if (orig_dst_load < orig_src_load)
1133 		swap(orig_dst_load, orig_src_load);
1134 
1135 	old_imb = orig_dst_load * src_capacity * 100 -
1136 		  orig_src_load * dst_capacity * env->imbalance_pct;
1137 
1138 	/* Would this change make things worse? */
1139 	return (imb > old_imb);
1140 }
1141 
1142 /*
1143  * This checks if the overall compute and NUMA accesses of the system would
1144  * be improved if the source tasks was migrated to the target dst_cpu taking
1145  * into account that it might be best if task running on the dst_cpu should
1146  * be exchanged with the source task
1147  */
1148 static void task_numa_compare(struct task_numa_env *env,
1149 			      long taskimp, long groupimp)
1150 {
1151 	struct rq *src_rq = cpu_rq(env->src_cpu);
1152 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1153 	struct task_struct *cur;
1154 	long src_load, dst_load;
1155 	long load;
1156 	long imp = env->p->numa_group ? groupimp : taskimp;
1157 	long moveimp = imp;
1158 
1159 	rcu_read_lock();
1160 	cur = ACCESS_ONCE(dst_rq->curr);
1161 	if (cur->pid == 0) /* idle */
1162 		cur = NULL;
1163 
1164 	/*
1165 	 * "imp" is the fault differential for the source task between the
1166 	 * source and destination node. Calculate the total differential for
1167 	 * the source task and potential destination task. The more negative
1168 	 * the value is, the more rmeote accesses that would be expected to
1169 	 * be incurred if the tasks were swapped.
1170 	 */
1171 	if (cur) {
1172 		/* Skip this swap candidate if cannot move to the source cpu */
1173 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1174 			goto unlock;
1175 
1176 		/*
1177 		 * If dst and source tasks are in the same NUMA group, or not
1178 		 * in any group then look only at task weights.
1179 		 */
1180 		if (cur->numa_group == env->p->numa_group) {
1181 			imp = taskimp + task_weight(cur, env->src_nid) -
1182 			      task_weight(cur, env->dst_nid);
1183 			/*
1184 			 * Add some hysteresis to prevent swapping the
1185 			 * tasks within a group over tiny differences.
1186 			 */
1187 			if (cur->numa_group)
1188 				imp -= imp/16;
1189 		} else {
1190 			/*
1191 			 * Compare the group weights. If a task is all by
1192 			 * itself (not part of a group), use the task weight
1193 			 * instead.
1194 			 */
1195 			if (cur->numa_group)
1196 				imp += group_weight(cur, env->src_nid) -
1197 				       group_weight(cur, env->dst_nid);
1198 			else
1199 				imp += task_weight(cur, env->src_nid) -
1200 				       task_weight(cur, env->dst_nid);
1201 		}
1202 	}
1203 
1204 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1205 		goto unlock;
1206 
1207 	if (!cur) {
1208 		/* Is there capacity at our destination? */
1209 		if (env->src_stats.has_free_capacity &&
1210 		    !env->dst_stats.has_free_capacity)
1211 			goto unlock;
1212 
1213 		goto balance;
1214 	}
1215 
1216 	/* Balance doesn't matter much if we're running a task per cpu */
1217 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1218 			dst_rq->nr_running == 1)
1219 		goto assign;
1220 
1221 	/*
1222 	 * In the overloaded case, try and keep the load balanced.
1223 	 */
1224 balance:
1225 	load = task_h_load(env->p);
1226 	dst_load = env->dst_stats.load + load;
1227 	src_load = env->src_stats.load - load;
1228 
1229 	if (moveimp > imp && moveimp > env->best_imp) {
1230 		/*
1231 		 * If the improvement from just moving env->p direction is
1232 		 * better than swapping tasks around, check if a move is
1233 		 * possible. Store a slightly smaller score than moveimp,
1234 		 * so an actually idle CPU will win.
1235 		 */
1236 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1237 			imp = moveimp - 1;
1238 			cur = NULL;
1239 			goto assign;
1240 		}
1241 	}
1242 
1243 	if (imp <= env->best_imp)
1244 		goto unlock;
1245 
1246 	if (cur) {
1247 		load = task_h_load(cur);
1248 		dst_load -= load;
1249 		src_load += load;
1250 	}
1251 
1252 	if (load_too_imbalanced(src_load, dst_load, env))
1253 		goto unlock;
1254 
1255 assign:
1256 	task_numa_assign(env, cur, imp);
1257 unlock:
1258 	rcu_read_unlock();
1259 }
1260 
1261 static void task_numa_find_cpu(struct task_numa_env *env,
1262 				long taskimp, long groupimp)
1263 {
1264 	int cpu;
1265 
1266 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1267 		/* Skip this CPU if the source task cannot migrate */
1268 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1269 			continue;
1270 
1271 		env->dst_cpu = cpu;
1272 		task_numa_compare(env, taskimp, groupimp);
1273 	}
1274 }
1275 
1276 static int task_numa_migrate(struct task_struct *p)
1277 {
1278 	struct task_numa_env env = {
1279 		.p = p,
1280 
1281 		.src_cpu = task_cpu(p),
1282 		.src_nid = task_node(p),
1283 
1284 		.imbalance_pct = 112,
1285 
1286 		.best_task = NULL,
1287 		.best_imp = 0,
1288 		.best_cpu = -1
1289 	};
1290 	struct sched_domain *sd;
1291 	unsigned long taskweight, groupweight;
1292 	int nid, ret;
1293 	long taskimp, groupimp;
1294 
1295 	/*
1296 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1297 	 * imbalance and would be the first to start moving tasks about.
1298 	 *
1299 	 * And we want to avoid any moving of tasks about, as that would create
1300 	 * random movement of tasks -- counter the numa conditions we're trying
1301 	 * to satisfy here.
1302 	 */
1303 	rcu_read_lock();
1304 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1305 	if (sd)
1306 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1307 	rcu_read_unlock();
1308 
1309 	/*
1310 	 * Cpusets can break the scheduler domain tree into smaller
1311 	 * balance domains, some of which do not cross NUMA boundaries.
1312 	 * Tasks that are "trapped" in such domains cannot be migrated
1313 	 * elsewhere, so there is no point in (re)trying.
1314 	 */
1315 	if (unlikely(!sd)) {
1316 		p->numa_preferred_nid = task_node(p);
1317 		return -EINVAL;
1318 	}
1319 
1320 	taskweight = task_weight(p, env.src_nid);
1321 	groupweight = group_weight(p, env.src_nid);
1322 	update_numa_stats(&env.src_stats, env.src_nid);
1323 	env.dst_nid = p->numa_preferred_nid;
1324 	taskimp = task_weight(p, env.dst_nid) - taskweight;
1325 	groupimp = group_weight(p, env.dst_nid) - groupweight;
1326 	update_numa_stats(&env.dst_stats, env.dst_nid);
1327 
1328 	/* Try to find a spot on the preferred nid. */
1329 	task_numa_find_cpu(&env, taskimp, groupimp);
1330 
1331 	/* No space available on the preferred nid. Look elsewhere. */
1332 	if (env.best_cpu == -1) {
1333 		for_each_online_node(nid) {
1334 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1335 				continue;
1336 
1337 			/* Only consider nodes where both task and groups benefit */
1338 			taskimp = task_weight(p, nid) - taskweight;
1339 			groupimp = group_weight(p, nid) - groupweight;
1340 			if (taskimp < 0 && groupimp < 0)
1341 				continue;
1342 
1343 			env.dst_nid = nid;
1344 			update_numa_stats(&env.dst_stats, env.dst_nid);
1345 			task_numa_find_cpu(&env, taskimp, groupimp);
1346 		}
1347 	}
1348 
1349 	/*
1350 	 * If the task is part of a workload that spans multiple NUMA nodes,
1351 	 * and is migrating into one of the workload's active nodes, remember
1352 	 * this node as the task's preferred numa node, so the workload can
1353 	 * settle down.
1354 	 * A task that migrated to a second choice node will be better off
1355 	 * trying for a better one later. Do not set the preferred node here.
1356 	 */
1357 	if (p->numa_group) {
1358 		if (env.best_cpu == -1)
1359 			nid = env.src_nid;
1360 		else
1361 			nid = env.dst_nid;
1362 
1363 		if (node_isset(nid, p->numa_group->active_nodes))
1364 			sched_setnuma(p, env.dst_nid);
1365 	}
1366 
1367 	/* No better CPU than the current one was found. */
1368 	if (env.best_cpu == -1)
1369 		return -EAGAIN;
1370 
1371 	/*
1372 	 * Reset the scan period if the task is being rescheduled on an
1373 	 * alternative node to recheck if the tasks is now properly placed.
1374 	 */
1375 	p->numa_scan_period = task_scan_min(p);
1376 
1377 	if (env.best_task == NULL) {
1378 		ret = migrate_task_to(p, env.best_cpu);
1379 		if (ret != 0)
1380 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1381 		return ret;
1382 	}
1383 
1384 	ret = migrate_swap(p, env.best_task);
1385 	if (ret != 0)
1386 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1387 	put_task_struct(env.best_task);
1388 	return ret;
1389 }
1390 
1391 /* Attempt to migrate a task to a CPU on the preferred node. */
1392 static void numa_migrate_preferred(struct task_struct *p)
1393 {
1394 	unsigned long interval = HZ;
1395 
1396 	/* This task has no NUMA fault statistics yet */
1397 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1398 		return;
1399 
1400 	/* Periodically retry migrating the task to the preferred node */
1401 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1402 	p->numa_migrate_retry = jiffies + interval;
1403 
1404 	/* Success if task is already running on preferred CPU */
1405 	if (task_node(p) == p->numa_preferred_nid)
1406 		return;
1407 
1408 	/* Otherwise, try migrate to a CPU on the preferred node */
1409 	task_numa_migrate(p);
1410 }
1411 
1412 /*
1413  * Find the nodes on which the workload is actively running. We do this by
1414  * tracking the nodes from which NUMA hinting faults are triggered. This can
1415  * be different from the set of nodes where the workload's memory is currently
1416  * located.
1417  *
1418  * The bitmask is used to make smarter decisions on when to do NUMA page
1419  * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1420  * are added when they cause over 6/16 of the maximum number of faults, but
1421  * only removed when they drop below 3/16.
1422  */
1423 static void update_numa_active_node_mask(struct numa_group *numa_group)
1424 {
1425 	unsigned long faults, max_faults = 0;
1426 	int nid;
1427 
1428 	for_each_online_node(nid) {
1429 		faults = group_faults_cpu(numa_group, nid);
1430 		if (faults > max_faults)
1431 			max_faults = faults;
1432 	}
1433 
1434 	for_each_online_node(nid) {
1435 		faults = group_faults_cpu(numa_group, nid);
1436 		if (!node_isset(nid, numa_group->active_nodes)) {
1437 			if (faults > max_faults * 6 / 16)
1438 				node_set(nid, numa_group->active_nodes);
1439 		} else if (faults < max_faults * 3 / 16)
1440 			node_clear(nid, numa_group->active_nodes);
1441 	}
1442 }
1443 
1444 /*
1445  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1446  * increments. The more local the fault statistics are, the higher the scan
1447  * period will be for the next scan window. If local/(local+remote) ratio is
1448  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1449  * the scan period will decrease. Aim for 70% local accesses.
1450  */
1451 #define NUMA_PERIOD_SLOTS 10
1452 #define NUMA_PERIOD_THRESHOLD 7
1453 
1454 /*
1455  * Increase the scan period (slow down scanning) if the majority of
1456  * our memory is already on our local node, or if the majority of
1457  * the page accesses are shared with other processes.
1458  * Otherwise, decrease the scan period.
1459  */
1460 static void update_task_scan_period(struct task_struct *p,
1461 			unsigned long shared, unsigned long private)
1462 {
1463 	unsigned int period_slot;
1464 	int ratio;
1465 	int diff;
1466 
1467 	unsigned long remote = p->numa_faults_locality[0];
1468 	unsigned long local = p->numa_faults_locality[1];
1469 
1470 	/*
1471 	 * If there were no record hinting faults then either the task is
1472 	 * completely idle or all activity is areas that are not of interest
1473 	 * to automatic numa balancing. Scan slower
1474 	 */
1475 	if (local + shared == 0) {
1476 		p->numa_scan_period = min(p->numa_scan_period_max,
1477 			p->numa_scan_period << 1);
1478 
1479 		p->mm->numa_next_scan = jiffies +
1480 			msecs_to_jiffies(p->numa_scan_period);
1481 
1482 		return;
1483 	}
1484 
1485 	/*
1486 	 * Prepare to scale scan period relative to the current period.
1487 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1488 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1489 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1490 	 */
1491 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1492 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1493 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1494 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1495 		if (!slot)
1496 			slot = 1;
1497 		diff = slot * period_slot;
1498 	} else {
1499 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1500 
1501 		/*
1502 		 * Scale scan rate increases based on sharing. There is an
1503 		 * inverse relationship between the degree of sharing and
1504 		 * the adjustment made to the scanning period. Broadly
1505 		 * speaking the intent is that there is little point
1506 		 * scanning faster if shared accesses dominate as it may
1507 		 * simply bounce migrations uselessly
1508 		 */
1509 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1510 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1511 	}
1512 
1513 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1514 			task_scan_min(p), task_scan_max(p));
1515 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1516 }
1517 
1518 /*
1519  * Get the fraction of time the task has been running since the last
1520  * NUMA placement cycle. The scheduler keeps similar statistics, but
1521  * decays those on a 32ms period, which is orders of magnitude off
1522  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1523  * stats only if the task is so new there are no NUMA statistics yet.
1524  */
1525 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1526 {
1527 	u64 runtime, delta, now;
1528 	/* Use the start of this time slice to avoid calculations. */
1529 	now = p->se.exec_start;
1530 	runtime = p->se.sum_exec_runtime;
1531 
1532 	if (p->last_task_numa_placement) {
1533 		delta = runtime - p->last_sum_exec_runtime;
1534 		*period = now - p->last_task_numa_placement;
1535 	} else {
1536 		delta = p->se.avg.runnable_avg_sum;
1537 		*period = p->se.avg.runnable_avg_period;
1538 	}
1539 
1540 	p->last_sum_exec_runtime = runtime;
1541 	p->last_task_numa_placement = now;
1542 
1543 	return delta;
1544 }
1545 
1546 static void task_numa_placement(struct task_struct *p)
1547 {
1548 	int seq, nid, max_nid = -1, max_group_nid = -1;
1549 	unsigned long max_faults = 0, max_group_faults = 0;
1550 	unsigned long fault_types[2] = { 0, 0 };
1551 	unsigned long total_faults;
1552 	u64 runtime, period;
1553 	spinlock_t *group_lock = NULL;
1554 
1555 	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1556 	if (p->numa_scan_seq == seq)
1557 		return;
1558 	p->numa_scan_seq = seq;
1559 	p->numa_scan_period_max = task_scan_max(p);
1560 
1561 	total_faults = p->numa_faults_locality[0] +
1562 		       p->numa_faults_locality[1];
1563 	runtime = numa_get_avg_runtime(p, &period);
1564 
1565 	/* If the task is part of a group prevent parallel updates to group stats */
1566 	if (p->numa_group) {
1567 		group_lock = &p->numa_group->lock;
1568 		spin_lock_irq(group_lock);
1569 	}
1570 
1571 	/* Find the node with the highest number of faults */
1572 	for_each_online_node(nid) {
1573 		unsigned long faults = 0, group_faults = 0;
1574 		int priv, i;
1575 
1576 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1577 			long diff, f_diff, f_weight;
1578 
1579 			i = task_faults_idx(nid, priv);
1580 
1581 			/* Decay existing window, copy faults since last scan */
1582 			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1583 			fault_types[priv] += p->numa_faults_buffer_memory[i];
1584 			p->numa_faults_buffer_memory[i] = 0;
1585 
1586 			/*
1587 			 * Normalize the faults_from, so all tasks in a group
1588 			 * count according to CPU use, instead of by the raw
1589 			 * number of faults. Tasks with little runtime have
1590 			 * little over-all impact on throughput, and thus their
1591 			 * faults are less important.
1592 			 */
1593 			f_weight = div64_u64(runtime << 16, period + 1);
1594 			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1595 				   (total_faults + 1);
1596 			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1597 			p->numa_faults_buffer_cpu[i] = 0;
1598 
1599 			p->numa_faults_memory[i] += diff;
1600 			p->numa_faults_cpu[i] += f_diff;
1601 			faults += p->numa_faults_memory[i];
1602 			p->total_numa_faults += diff;
1603 			if (p->numa_group) {
1604 				/* safe because we can only change our own group */
1605 				p->numa_group->faults[i] += diff;
1606 				p->numa_group->faults_cpu[i] += f_diff;
1607 				p->numa_group->total_faults += diff;
1608 				group_faults += p->numa_group->faults[i];
1609 			}
1610 		}
1611 
1612 		if (faults > max_faults) {
1613 			max_faults = faults;
1614 			max_nid = nid;
1615 		}
1616 
1617 		if (group_faults > max_group_faults) {
1618 			max_group_faults = group_faults;
1619 			max_group_nid = nid;
1620 		}
1621 	}
1622 
1623 	update_task_scan_period(p, fault_types[0], fault_types[1]);
1624 
1625 	if (p->numa_group) {
1626 		update_numa_active_node_mask(p->numa_group);
1627 		spin_unlock_irq(group_lock);
1628 		max_nid = max_group_nid;
1629 	}
1630 
1631 	if (max_faults) {
1632 		/* Set the new preferred node */
1633 		if (max_nid != p->numa_preferred_nid)
1634 			sched_setnuma(p, max_nid);
1635 
1636 		if (task_node(p) != p->numa_preferred_nid)
1637 			numa_migrate_preferred(p);
1638 	}
1639 }
1640 
1641 static inline int get_numa_group(struct numa_group *grp)
1642 {
1643 	return atomic_inc_not_zero(&grp->refcount);
1644 }
1645 
1646 static inline void put_numa_group(struct numa_group *grp)
1647 {
1648 	if (atomic_dec_and_test(&grp->refcount))
1649 		kfree_rcu(grp, rcu);
1650 }
1651 
1652 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1653 			int *priv)
1654 {
1655 	struct numa_group *grp, *my_grp;
1656 	struct task_struct *tsk;
1657 	bool join = false;
1658 	int cpu = cpupid_to_cpu(cpupid);
1659 	int i;
1660 
1661 	if (unlikely(!p->numa_group)) {
1662 		unsigned int size = sizeof(struct numa_group) +
1663 				    4*nr_node_ids*sizeof(unsigned long);
1664 
1665 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1666 		if (!grp)
1667 			return;
1668 
1669 		atomic_set(&grp->refcount, 1);
1670 		spin_lock_init(&grp->lock);
1671 		INIT_LIST_HEAD(&grp->task_list);
1672 		grp->gid = p->pid;
1673 		/* Second half of the array tracks nids where faults happen */
1674 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1675 						nr_node_ids;
1676 
1677 		node_set(task_node(current), grp->active_nodes);
1678 
1679 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1680 			grp->faults[i] = p->numa_faults_memory[i];
1681 
1682 		grp->total_faults = p->total_numa_faults;
1683 
1684 		list_add(&p->numa_entry, &grp->task_list);
1685 		grp->nr_tasks++;
1686 		rcu_assign_pointer(p->numa_group, grp);
1687 	}
1688 
1689 	rcu_read_lock();
1690 	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1691 
1692 	if (!cpupid_match_pid(tsk, cpupid))
1693 		goto no_join;
1694 
1695 	grp = rcu_dereference(tsk->numa_group);
1696 	if (!grp)
1697 		goto no_join;
1698 
1699 	my_grp = p->numa_group;
1700 	if (grp == my_grp)
1701 		goto no_join;
1702 
1703 	/*
1704 	 * Only join the other group if its bigger; if we're the bigger group,
1705 	 * the other task will join us.
1706 	 */
1707 	if (my_grp->nr_tasks > grp->nr_tasks)
1708 		goto no_join;
1709 
1710 	/*
1711 	 * Tie-break on the grp address.
1712 	 */
1713 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1714 		goto no_join;
1715 
1716 	/* Always join threads in the same process. */
1717 	if (tsk->mm == current->mm)
1718 		join = true;
1719 
1720 	/* Simple filter to avoid false positives due to PID collisions */
1721 	if (flags & TNF_SHARED)
1722 		join = true;
1723 
1724 	/* Update priv based on whether false sharing was detected */
1725 	*priv = !join;
1726 
1727 	if (join && !get_numa_group(grp))
1728 		goto no_join;
1729 
1730 	rcu_read_unlock();
1731 
1732 	if (!join)
1733 		return;
1734 
1735 	BUG_ON(irqs_disabled());
1736 	double_lock_irq(&my_grp->lock, &grp->lock);
1737 
1738 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1739 		my_grp->faults[i] -= p->numa_faults_memory[i];
1740 		grp->faults[i] += p->numa_faults_memory[i];
1741 	}
1742 	my_grp->total_faults -= p->total_numa_faults;
1743 	grp->total_faults += p->total_numa_faults;
1744 
1745 	list_move(&p->numa_entry, &grp->task_list);
1746 	my_grp->nr_tasks--;
1747 	grp->nr_tasks++;
1748 
1749 	spin_unlock(&my_grp->lock);
1750 	spin_unlock_irq(&grp->lock);
1751 
1752 	rcu_assign_pointer(p->numa_group, grp);
1753 
1754 	put_numa_group(my_grp);
1755 	return;
1756 
1757 no_join:
1758 	rcu_read_unlock();
1759 	return;
1760 }
1761 
1762 void task_numa_free(struct task_struct *p)
1763 {
1764 	struct numa_group *grp = p->numa_group;
1765 	void *numa_faults = p->numa_faults_memory;
1766 	unsigned long flags;
1767 	int i;
1768 
1769 	if (grp) {
1770 		spin_lock_irqsave(&grp->lock, flags);
1771 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1772 			grp->faults[i] -= p->numa_faults_memory[i];
1773 		grp->total_faults -= p->total_numa_faults;
1774 
1775 		list_del(&p->numa_entry);
1776 		grp->nr_tasks--;
1777 		spin_unlock_irqrestore(&grp->lock, flags);
1778 		rcu_assign_pointer(p->numa_group, NULL);
1779 		put_numa_group(grp);
1780 	}
1781 
1782 	p->numa_faults_memory = NULL;
1783 	p->numa_faults_buffer_memory = NULL;
1784 	p->numa_faults_cpu= NULL;
1785 	p->numa_faults_buffer_cpu = NULL;
1786 	kfree(numa_faults);
1787 }
1788 
1789 /*
1790  * Got a PROT_NONE fault for a page on @node.
1791  */
1792 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1793 {
1794 	struct task_struct *p = current;
1795 	bool migrated = flags & TNF_MIGRATED;
1796 	int cpu_node = task_node(current);
1797 	int local = !!(flags & TNF_FAULT_LOCAL);
1798 	int priv;
1799 
1800 	if (!numabalancing_enabled)
1801 		return;
1802 
1803 	/* for example, ksmd faulting in a user's mm */
1804 	if (!p->mm)
1805 		return;
1806 
1807 	/* Do not worry about placement if exiting */
1808 	if (p->state == TASK_DEAD)
1809 		return;
1810 
1811 	/* Allocate buffer to track faults on a per-node basis */
1812 	if (unlikely(!p->numa_faults_memory)) {
1813 		int size = sizeof(*p->numa_faults_memory) *
1814 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1815 
1816 		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1817 		if (!p->numa_faults_memory)
1818 			return;
1819 
1820 		BUG_ON(p->numa_faults_buffer_memory);
1821 		/*
1822 		 * The averaged statistics, shared & private, memory & cpu,
1823 		 * occupy the first half of the array. The second half of the
1824 		 * array is for current counters, which are averaged into the
1825 		 * first set by task_numa_placement.
1826 		 */
1827 		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1828 		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1829 		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1830 		p->total_numa_faults = 0;
1831 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1832 	}
1833 
1834 	/*
1835 	 * First accesses are treated as private, otherwise consider accesses
1836 	 * to be private if the accessing pid has not changed
1837 	 */
1838 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1839 		priv = 1;
1840 	} else {
1841 		priv = cpupid_match_pid(p, last_cpupid);
1842 		if (!priv && !(flags & TNF_NO_GROUP))
1843 			task_numa_group(p, last_cpupid, flags, &priv);
1844 	}
1845 
1846 	/*
1847 	 * If a workload spans multiple NUMA nodes, a shared fault that
1848 	 * occurs wholly within the set of nodes that the workload is
1849 	 * actively using should be counted as local. This allows the
1850 	 * scan rate to slow down when a workload has settled down.
1851 	 */
1852 	if (!priv && !local && p->numa_group &&
1853 			node_isset(cpu_node, p->numa_group->active_nodes) &&
1854 			node_isset(mem_node, p->numa_group->active_nodes))
1855 		local = 1;
1856 
1857 	task_numa_placement(p);
1858 
1859 	/*
1860 	 * Retry task to preferred node migration periodically, in case it
1861 	 * case it previously failed, or the scheduler moved us.
1862 	 */
1863 	if (time_after(jiffies, p->numa_migrate_retry))
1864 		numa_migrate_preferred(p);
1865 
1866 	if (migrated)
1867 		p->numa_pages_migrated += pages;
1868 
1869 	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1870 	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1871 	p->numa_faults_locality[local] += pages;
1872 }
1873 
1874 static void reset_ptenuma_scan(struct task_struct *p)
1875 {
1876 	ACCESS_ONCE(p->mm->numa_scan_seq)++;
1877 	p->mm->numa_scan_offset = 0;
1878 }
1879 
1880 /*
1881  * The expensive part of numa migration is done from task_work context.
1882  * Triggered from task_tick_numa().
1883  */
1884 void task_numa_work(struct callback_head *work)
1885 {
1886 	unsigned long migrate, next_scan, now = jiffies;
1887 	struct task_struct *p = current;
1888 	struct mm_struct *mm = p->mm;
1889 	struct vm_area_struct *vma;
1890 	unsigned long start, end;
1891 	unsigned long nr_pte_updates = 0;
1892 	long pages;
1893 
1894 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1895 
1896 	work->next = work; /* protect against double add */
1897 	/*
1898 	 * Who cares about NUMA placement when they're dying.
1899 	 *
1900 	 * NOTE: make sure not to dereference p->mm before this check,
1901 	 * exit_task_work() happens _after_ exit_mm() so we could be called
1902 	 * without p->mm even though we still had it when we enqueued this
1903 	 * work.
1904 	 */
1905 	if (p->flags & PF_EXITING)
1906 		return;
1907 
1908 	if (!mm->numa_next_scan) {
1909 		mm->numa_next_scan = now +
1910 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1911 	}
1912 
1913 	/*
1914 	 * Enforce maximal scan/migration frequency..
1915 	 */
1916 	migrate = mm->numa_next_scan;
1917 	if (time_before(now, migrate))
1918 		return;
1919 
1920 	if (p->numa_scan_period == 0) {
1921 		p->numa_scan_period_max = task_scan_max(p);
1922 		p->numa_scan_period = task_scan_min(p);
1923 	}
1924 
1925 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1926 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1927 		return;
1928 
1929 	/*
1930 	 * Delay this task enough that another task of this mm will likely win
1931 	 * the next time around.
1932 	 */
1933 	p->node_stamp += 2 * TICK_NSEC;
1934 
1935 	start = mm->numa_scan_offset;
1936 	pages = sysctl_numa_balancing_scan_size;
1937 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1938 	if (!pages)
1939 		return;
1940 
1941 	down_read(&mm->mmap_sem);
1942 	vma = find_vma(mm, start);
1943 	if (!vma) {
1944 		reset_ptenuma_scan(p);
1945 		start = 0;
1946 		vma = mm->mmap;
1947 	}
1948 	for (; vma; vma = vma->vm_next) {
1949 		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1950 			continue;
1951 
1952 		/*
1953 		 * Shared library pages mapped by multiple processes are not
1954 		 * migrated as it is expected they are cache replicated. Avoid
1955 		 * hinting faults in read-only file-backed mappings or the vdso
1956 		 * as migrating the pages will be of marginal benefit.
1957 		 */
1958 		if (!vma->vm_mm ||
1959 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1960 			continue;
1961 
1962 		/*
1963 		 * Skip inaccessible VMAs to avoid any confusion between
1964 		 * PROT_NONE and NUMA hinting ptes
1965 		 */
1966 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1967 			continue;
1968 
1969 		do {
1970 			start = max(start, vma->vm_start);
1971 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1972 			end = min(end, vma->vm_end);
1973 			nr_pte_updates += change_prot_numa(vma, start, end);
1974 
1975 			/*
1976 			 * Scan sysctl_numa_balancing_scan_size but ensure that
1977 			 * at least one PTE is updated so that unused virtual
1978 			 * address space is quickly skipped.
1979 			 */
1980 			if (nr_pte_updates)
1981 				pages -= (end - start) >> PAGE_SHIFT;
1982 
1983 			start = end;
1984 			if (pages <= 0)
1985 				goto out;
1986 
1987 			cond_resched();
1988 		} while (end != vma->vm_end);
1989 	}
1990 
1991 out:
1992 	/*
1993 	 * It is possible to reach the end of the VMA list but the last few
1994 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1995 	 * would find the !migratable VMA on the next scan but not reset the
1996 	 * scanner to the start so check it now.
1997 	 */
1998 	if (vma)
1999 		mm->numa_scan_offset = start;
2000 	else
2001 		reset_ptenuma_scan(p);
2002 	up_read(&mm->mmap_sem);
2003 }
2004 
2005 /*
2006  * Drive the periodic memory faults..
2007  */
2008 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2009 {
2010 	struct callback_head *work = &curr->numa_work;
2011 	u64 period, now;
2012 
2013 	/*
2014 	 * We don't care about NUMA placement if we don't have memory.
2015 	 */
2016 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2017 		return;
2018 
2019 	/*
2020 	 * Using runtime rather than walltime has the dual advantage that
2021 	 * we (mostly) drive the selection from busy threads and that the
2022 	 * task needs to have done some actual work before we bother with
2023 	 * NUMA placement.
2024 	 */
2025 	now = curr->se.sum_exec_runtime;
2026 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2027 
2028 	if (now - curr->node_stamp > period) {
2029 		if (!curr->node_stamp)
2030 			curr->numa_scan_period = task_scan_min(curr);
2031 		curr->node_stamp += period;
2032 
2033 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2034 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2035 			task_work_add(curr, work, true);
2036 		}
2037 	}
2038 }
2039 #else
2040 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2041 {
2042 }
2043 
2044 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2045 {
2046 }
2047 
2048 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2049 {
2050 }
2051 #endif /* CONFIG_NUMA_BALANCING */
2052 
2053 static void
2054 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2055 {
2056 	update_load_add(&cfs_rq->load, se->load.weight);
2057 	if (!parent_entity(se))
2058 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2059 #ifdef CONFIG_SMP
2060 	if (entity_is_task(se)) {
2061 		struct rq *rq = rq_of(cfs_rq);
2062 
2063 		account_numa_enqueue(rq, task_of(se));
2064 		list_add(&se->group_node, &rq->cfs_tasks);
2065 	}
2066 #endif
2067 	cfs_rq->nr_running++;
2068 }
2069 
2070 static void
2071 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2072 {
2073 	update_load_sub(&cfs_rq->load, se->load.weight);
2074 	if (!parent_entity(se))
2075 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2076 	if (entity_is_task(se)) {
2077 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2078 		list_del_init(&se->group_node);
2079 	}
2080 	cfs_rq->nr_running--;
2081 }
2082 
2083 #ifdef CONFIG_FAIR_GROUP_SCHED
2084 # ifdef CONFIG_SMP
2085 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2086 {
2087 	long tg_weight;
2088 
2089 	/*
2090 	 * Use this CPU's actual weight instead of the last load_contribution
2091 	 * to gain a more accurate current total weight. See
2092 	 * update_cfs_rq_load_contribution().
2093 	 */
2094 	tg_weight = atomic_long_read(&tg->load_avg);
2095 	tg_weight -= cfs_rq->tg_load_contrib;
2096 	tg_weight += cfs_rq->load.weight;
2097 
2098 	return tg_weight;
2099 }
2100 
2101 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2102 {
2103 	long tg_weight, load, shares;
2104 
2105 	tg_weight = calc_tg_weight(tg, cfs_rq);
2106 	load = cfs_rq->load.weight;
2107 
2108 	shares = (tg->shares * load);
2109 	if (tg_weight)
2110 		shares /= tg_weight;
2111 
2112 	if (shares < MIN_SHARES)
2113 		shares = MIN_SHARES;
2114 	if (shares > tg->shares)
2115 		shares = tg->shares;
2116 
2117 	return shares;
2118 }
2119 # else /* CONFIG_SMP */
2120 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2121 {
2122 	return tg->shares;
2123 }
2124 # endif /* CONFIG_SMP */
2125 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2126 			    unsigned long weight)
2127 {
2128 	if (se->on_rq) {
2129 		/* commit outstanding execution time */
2130 		if (cfs_rq->curr == se)
2131 			update_curr(cfs_rq);
2132 		account_entity_dequeue(cfs_rq, se);
2133 	}
2134 
2135 	update_load_set(&se->load, weight);
2136 
2137 	if (se->on_rq)
2138 		account_entity_enqueue(cfs_rq, se);
2139 }
2140 
2141 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2142 
2143 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2144 {
2145 	struct task_group *tg;
2146 	struct sched_entity *se;
2147 	long shares;
2148 
2149 	tg = cfs_rq->tg;
2150 	se = tg->se[cpu_of(rq_of(cfs_rq))];
2151 	if (!se || throttled_hierarchy(cfs_rq))
2152 		return;
2153 #ifndef CONFIG_SMP
2154 	if (likely(se->load.weight == tg->shares))
2155 		return;
2156 #endif
2157 	shares = calc_cfs_shares(cfs_rq, tg);
2158 
2159 	reweight_entity(cfs_rq_of(se), se, shares);
2160 }
2161 #else /* CONFIG_FAIR_GROUP_SCHED */
2162 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2163 {
2164 }
2165 #endif /* CONFIG_FAIR_GROUP_SCHED */
2166 
2167 #ifdef CONFIG_SMP
2168 /*
2169  * We choose a half-life close to 1 scheduling period.
2170  * Note: The tables below are dependent on this value.
2171  */
2172 #define LOAD_AVG_PERIOD 32
2173 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2174 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2175 
2176 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2177 static const u32 runnable_avg_yN_inv[] = {
2178 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2179 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2180 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2181 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2182 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2183 	0x85aac367, 0x82cd8698,
2184 };
2185 
2186 /*
2187  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2188  * over-estimates when re-combining.
2189  */
2190 static const u32 runnable_avg_yN_sum[] = {
2191 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2192 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2193 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2194 };
2195 
2196 /*
2197  * Approximate:
2198  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2199  */
2200 static __always_inline u64 decay_load(u64 val, u64 n)
2201 {
2202 	unsigned int local_n;
2203 
2204 	if (!n)
2205 		return val;
2206 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2207 		return 0;
2208 
2209 	/* after bounds checking we can collapse to 32-bit */
2210 	local_n = n;
2211 
2212 	/*
2213 	 * As y^PERIOD = 1/2, we can combine
2214 	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2215 	 * With a look-up table which covers k^n (n<PERIOD)
2216 	 *
2217 	 * To achieve constant time decay_load.
2218 	 */
2219 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2220 		val >>= local_n / LOAD_AVG_PERIOD;
2221 		local_n %= LOAD_AVG_PERIOD;
2222 	}
2223 
2224 	val *= runnable_avg_yN_inv[local_n];
2225 	/* We don't use SRR here since we always want to round down. */
2226 	return val >> 32;
2227 }
2228 
2229 /*
2230  * For updates fully spanning n periods, the contribution to runnable
2231  * average will be: \Sum 1024*y^n
2232  *
2233  * We can compute this reasonably efficiently by combining:
2234  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2235  */
2236 static u32 __compute_runnable_contrib(u64 n)
2237 {
2238 	u32 contrib = 0;
2239 
2240 	if (likely(n <= LOAD_AVG_PERIOD))
2241 		return runnable_avg_yN_sum[n];
2242 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2243 		return LOAD_AVG_MAX;
2244 
2245 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2246 	do {
2247 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2248 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2249 
2250 		n -= LOAD_AVG_PERIOD;
2251 	} while (n > LOAD_AVG_PERIOD);
2252 
2253 	contrib = decay_load(contrib, n);
2254 	return contrib + runnable_avg_yN_sum[n];
2255 }
2256 
2257 /*
2258  * We can represent the historical contribution to runnable average as the
2259  * coefficients of a geometric series.  To do this we sub-divide our runnable
2260  * history into segments of approximately 1ms (1024us); label the segment that
2261  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2262  *
2263  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2264  *      p0            p1           p2
2265  *     (now)       (~1ms ago)  (~2ms ago)
2266  *
2267  * Let u_i denote the fraction of p_i that the entity was runnable.
2268  *
2269  * We then designate the fractions u_i as our co-efficients, yielding the
2270  * following representation of historical load:
2271  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2272  *
2273  * We choose y based on the with of a reasonably scheduling period, fixing:
2274  *   y^32 = 0.5
2275  *
2276  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2277  * approximately half as much as the contribution to load within the last ms
2278  * (u_0).
2279  *
2280  * When a period "rolls over" and we have new u_0`, multiplying the previous
2281  * sum again by y is sufficient to update:
2282  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2283  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2284  */
2285 static __always_inline int __update_entity_runnable_avg(u64 now,
2286 							struct sched_avg *sa,
2287 							int runnable)
2288 {
2289 	u64 delta, periods;
2290 	u32 runnable_contrib;
2291 	int delta_w, decayed = 0;
2292 
2293 	delta = now - sa->last_runnable_update;
2294 	/*
2295 	 * This should only happen when time goes backwards, which it
2296 	 * unfortunately does during sched clock init when we swap over to TSC.
2297 	 */
2298 	if ((s64)delta < 0) {
2299 		sa->last_runnable_update = now;
2300 		return 0;
2301 	}
2302 
2303 	/*
2304 	 * Use 1024ns as the unit of measurement since it's a reasonable
2305 	 * approximation of 1us and fast to compute.
2306 	 */
2307 	delta >>= 10;
2308 	if (!delta)
2309 		return 0;
2310 	sa->last_runnable_update = now;
2311 
2312 	/* delta_w is the amount already accumulated against our next period */
2313 	delta_w = sa->runnable_avg_period % 1024;
2314 	if (delta + delta_w >= 1024) {
2315 		/* period roll-over */
2316 		decayed = 1;
2317 
2318 		/*
2319 		 * Now that we know we're crossing a period boundary, figure
2320 		 * out how much from delta we need to complete the current
2321 		 * period and accrue it.
2322 		 */
2323 		delta_w = 1024 - delta_w;
2324 		if (runnable)
2325 			sa->runnable_avg_sum += delta_w;
2326 		sa->runnable_avg_period += delta_w;
2327 
2328 		delta -= delta_w;
2329 
2330 		/* Figure out how many additional periods this update spans */
2331 		periods = delta / 1024;
2332 		delta %= 1024;
2333 
2334 		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2335 						  periods + 1);
2336 		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2337 						     periods + 1);
2338 
2339 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2340 		runnable_contrib = __compute_runnable_contrib(periods);
2341 		if (runnable)
2342 			sa->runnable_avg_sum += runnable_contrib;
2343 		sa->runnable_avg_period += runnable_contrib;
2344 	}
2345 
2346 	/* Remainder of delta accrued against u_0` */
2347 	if (runnable)
2348 		sa->runnable_avg_sum += delta;
2349 	sa->runnable_avg_period += delta;
2350 
2351 	return decayed;
2352 }
2353 
2354 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2355 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2356 {
2357 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2358 	u64 decays = atomic64_read(&cfs_rq->decay_counter);
2359 
2360 	decays -= se->avg.decay_count;
2361 	if (!decays)
2362 		return 0;
2363 
2364 	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2365 	se->avg.decay_count = 0;
2366 
2367 	return decays;
2368 }
2369 
2370 #ifdef CONFIG_FAIR_GROUP_SCHED
2371 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2372 						 int force_update)
2373 {
2374 	struct task_group *tg = cfs_rq->tg;
2375 	long tg_contrib;
2376 
2377 	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2378 	tg_contrib -= cfs_rq->tg_load_contrib;
2379 
2380 	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2381 		atomic_long_add(tg_contrib, &tg->load_avg);
2382 		cfs_rq->tg_load_contrib += tg_contrib;
2383 	}
2384 }
2385 
2386 /*
2387  * Aggregate cfs_rq runnable averages into an equivalent task_group
2388  * representation for computing load contributions.
2389  */
2390 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2391 						  struct cfs_rq *cfs_rq)
2392 {
2393 	struct task_group *tg = cfs_rq->tg;
2394 	long contrib;
2395 
2396 	/* The fraction of a cpu used by this cfs_rq */
2397 	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2398 			  sa->runnable_avg_period + 1);
2399 	contrib -= cfs_rq->tg_runnable_contrib;
2400 
2401 	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2402 		atomic_add(contrib, &tg->runnable_avg);
2403 		cfs_rq->tg_runnable_contrib += contrib;
2404 	}
2405 }
2406 
2407 static inline void __update_group_entity_contrib(struct sched_entity *se)
2408 {
2409 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2410 	struct task_group *tg = cfs_rq->tg;
2411 	int runnable_avg;
2412 
2413 	u64 contrib;
2414 
2415 	contrib = cfs_rq->tg_load_contrib * tg->shares;
2416 	se->avg.load_avg_contrib = div_u64(contrib,
2417 				     atomic_long_read(&tg->load_avg) + 1);
2418 
2419 	/*
2420 	 * For group entities we need to compute a correction term in the case
2421 	 * that they are consuming <1 cpu so that we would contribute the same
2422 	 * load as a task of equal weight.
2423 	 *
2424 	 * Explicitly co-ordinating this measurement would be expensive, but
2425 	 * fortunately the sum of each cpus contribution forms a usable
2426 	 * lower-bound on the true value.
2427 	 *
2428 	 * Consider the aggregate of 2 contributions.  Either they are disjoint
2429 	 * (and the sum represents true value) or they are disjoint and we are
2430 	 * understating by the aggregate of their overlap.
2431 	 *
2432 	 * Extending this to N cpus, for a given overlap, the maximum amount we
2433 	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2434 	 * cpus that overlap for this interval and w_i is the interval width.
2435 	 *
2436 	 * On a small machine; the first term is well-bounded which bounds the
2437 	 * total error since w_i is a subset of the period.  Whereas on a
2438 	 * larger machine, while this first term can be larger, if w_i is the
2439 	 * of consequential size guaranteed to see n_i*w_i quickly converge to
2440 	 * our upper bound of 1-cpu.
2441 	 */
2442 	runnable_avg = atomic_read(&tg->runnable_avg);
2443 	if (runnable_avg < NICE_0_LOAD) {
2444 		se->avg.load_avg_contrib *= runnable_avg;
2445 		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2446 	}
2447 }
2448 
2449 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2450 {
2451 	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2452 	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2453 }
2454 #else /* CONFIG_FAIR_GROUP_SCHED */
2455 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2456 						 int force_update) {}
2457 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2458 						  struct cfs_rq *cfs_rq) {}
2459 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2460 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2461 #endif /* CONFIG_FAIR_GROUP_SCHED */
2462 
2463 static inline void __update_task_entity_contrib(struct sched_entity *se)
2464 {
2465 	u32 contrib;
2466 
2467 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2468 	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2469 	contrib /= (se->avg.runnable_avg_period + 1);
2470 	se->avg.load_avg_contrib = scale_load(contrib);
2471 }
2472 
2473 /* Compute the current contribution to load_avg by se, return any delta */
2474 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2475 {
2476 	long old_contrib = se->avg.load_avg_contrib;
2477 
2478 	if (entity_is_task(se)) {
2479 		__update_task_entity_contrib(se);
2480 	} else {
2481 		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2482 		__update_group_entity_contrib(se);
2483 	}
2484 
2485 	return se->avg.load_avg_contrib - old_contrib;
2486 }
2487 
2488 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2489 						 long load_contrib)
2490 {
2491 	if (likely(load_contrib < cfs_rq->blocked_load_avg))
2492 		cfs_rq->blocked_load_avg -= load_contrib;
2493 	else
2494 		cfs_rq->blocked_load_avg = 0;
2495 }
2496 
2497 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2498 
2499 /* Update a sched_entity's runnable average */
2500 static inline void update_entity_load_avg(struct sched_entity *se,
2501 					  int update_cfs_rq)
2502 {
2503 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2504 	long contrib_delta;
2505 	u64 now;
2506 
2507 	/*
2508 	 * For a group entity we need to use their owned cfs_rq_clock_task() in
2509 	 * case they are the parent of a throttled hierarchy.
2510 	 */
2511 	if (entity_is_task(se))
2512 		now = cfs_rq_clock_task(cfs_rq);
2513 	else
2514 		now = cfs_rq_clock_task(group_cfs_rq(se));
2515 
2516 	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2517 		return;
2518 
2519 	contrib_delta = __update_entity_load_avg_contrib(se);
2520 
2521 	if (!update_cfs_rq)
2522 		return;
2523 
2524 	if (se->on_rq)
2525 		cfs_rq->runnable_load_avg += contrib_delta;
2526 	else
2527 		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2528 }
2529 
2530 /*
2531  * Decay the load contributed by all blocked children and account this so that
2532  * their contribution may appropriately discounted when they wake up.
2533  */
2534 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2535 {
2536 	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2537 	u64 decays;
2538 
2539 	decays = now - cfs_rq->last_decay;
2540 	if (!decays && !force_update)
2541 		return;
2542 
2543 	if (atomic_long_read(&cfs_rq->removed_load)) {
2544 		unsigned long removed_load;
2545 		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2546 		subtract_blocked_load_contrib(cfs_rq, removed_load);
2547 	}
2548 
2549 	if (decays) {
2550 		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2551 						      decays);
2552 		atomic64_add(decays, &cfs_rq->decay_counter);
2553 		cfs_rq->last_decay = now;
2554 	}
2555 
2556 	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2557 }
2558 
2559 /* Add the load generated by se into cfs_rq's child load-average */
2560 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2561 						  struct sched_entity *se,
2562 						  int wakeup)
2563 {
2564 	/*
2565 	 * We track migrations using entity decay_count <= 0, on a wake-up
2566 	 * migration we use a negative decay count to track the remote decays
2567 	 * accumulated while sleeping.
2568 	 *
2569 	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2570 	 * are seen by enqueue_entity_load_avg() as a migration with an already
2571 	 * constructed load_avg_contrib.
2572 	 */
2573 	if (unlikely(se->avg.decay_count <= 0)) {
2574 		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2575 		if (se->avg.decay_count) {
2576 			/*
2577 			 * In a wake-up migration we have to approximate the
2578 			 * time sleeping.  This is because we can't synchronize
2579 			 * clock_task between the two cpus, and it is not
2580 			 * guaranteed to be read-safe.  Instead, we can
2581 			 * approximate this using our carried decays, which are
2582 			 * explicitly atomically readable.
2583 			 */
2584 			se->avg.last_runnable_update -= (-se->avg.decay_count)
2585 							<< 20;
2586 			update_entity_load_avg(se, 0);
2587 			/* Indicate that we're now synchronized and on-rq */
2588 			se->avg.decay_count = 0;
2589 		}
2590 		wakeup = 0;
2591 	} else {
2592 		__synchronize_entity_decay(se);
2593 	}
2594 
2595 	/* migrated tasks did not contribute to our blocked load */
2596 	if (wakeup) {
2597 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2598 		update_entity_load_avg(se, 0);
2599 	}
2600 
2601 	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2602 	/* we force update consideration on load-balancer moves */
2603 	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2604 }
2605 
2606 /*
2607  * Remove se's load from this cfs_rq child load-average, if the entity is
2608  * transitioning to a blocked state we track its projected decay using
2609  * blocked_load_avg.
2610  */
2611 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2612 						  struct sched_entity *se,
2613 						  int sleep)
2614 {
2615 	update_entity_load_avg(se, 1);
2616 	/* we force update consideration on load-balancer moves */
2617 	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2618 
2619 	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2620 	if (sleep) {
2621 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2622 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2623 	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2624 }
2625 
2626 /*
2627  * Update the rq's load with the elapsed running time before entering
2628  * idle. if the last scheduled task is not a CFS task, idle_enter will
2629  * be the only way to update the runnable statistic.
2630  */
2631 void idle_enter_fair(struct rq *this_rq)
2632 {
2633 	update_rq_runnable_avg(this_rq, 1);
2634 }
2635 
2636 /*
2637  * Update the rq's load with the elapsed idle time before a task is
2638  * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2639  * be the only way to update the runnable statistic.
2640  */
2641 void idle_exit_fair(struct rq *this_rq)
2642 {
2643 	update_rq_runnable_avg(this_rq, 0);
2644 }
2645 
2646 static int idle_balance(struct rq *this_rq);
2647 
2648 #else /* CONFIG_SMP */
2649 
2650 static inline void update_entity_load_avg(struct sched_entity *se,
2651 					  int update_cfs_rq) {}
2652 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2653 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2654 					   struct sched_entity *se,
2655 					   int wakeup) {}
2656 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2657 					   struct sched_entity *se,
2658 					   int sleep) {}
2659 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2660 					      int force_update) {}
2661 
2662 static inline int idle_balance(struct rq *rq)
2663 {
2664 	return 0;
2665 }
2666 
2667 #endif /* CONFIG_SMP */
2668 
2669 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2670 {
2671 #ifdef CONFIG_SCHEDSTATS
2672 	struct task_struct *tsk = NULL;
2673 
2674 	if (entity_is_task(se))
2675 		tsk = task_of(se);
2676 
2677 	if (se->statistics.sleep_start) {
2678 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2679 
2680 		if ((s64)delta < 0)
2681 			delta = 0;
2682 
2683 		if (unlikely(delta > se->statistics.sleep_max))
2684 			se->statistics.sleep_max = delta;
2685 
2686 		se->statistics.sleep_start = 0;
2687 		se->statistics.sum_sleep_runtime += delta;
2688 
2689 		if (tsk) {
2690 			account_scheduler_latency(tsk, delta >> 10, 1);
2691 			trace_sched_stat_sleep(tsk, delta);
2692 		}
2693 	}
2694 	if (se->statistics.block_start) {
2695 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2696 
2697 		if ((s64)delta < 0)
2698 			delta = 0;
2699 
2700 		if (unlikely(delta > se->statistics.block_max))
2701 			se->statistics.block_max = delta;
2702 
2703 		se->statistics.block_start = 0;
2704 		se->statistics.sum_sleep_runtime += delta;
2705 
2706 		if (tsk) {
2707 			if (tsk->in_iowait) {
2708 				se->statistics.iowait_sum += delta;
2709 				se->statistics.iowait_count++;
2710 				trace_sched_stat_iowait(tsk, delta);
2711 			}
2712 
2713 			trace_sched_stat_blocked(tsk, delta);
2714 
2715 			/*
2716 			 * Blocking time is in units of nanosecs, so shift by
2717 			 * 20 to get a milliseconds-range estimation of the
2718 			 * amount of time that the task spent sleeping:
2719 			 */
2720 			if (unlikely(prof_on == SLEEP_PROFILING)) {
2721 				profile_hits(SLEEP_PROFILING,
2722 						(void *)get_wchan(tsk),
2723 						delta >> 20);
2724 			}
2725 			account_scheduler_latency(tsk, delta >> 10, 0);
2726 		}
2727 	}
2728 #endif
2729 }
2730 
2731 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2732 {
2733 #ifdef CONFIG_SCHED_DEBUG
2734 	s64 d = se->vruntime - cfs_rq->min_vruntime;
2735 
2736 	if (d < 0)
2737 		d = -d;
2738 
2739 	if (d > 3*sysctl_sched_latency)
2740 		schedstat_inc(cfs_rq, nr_spread_over);
2741 #endif
2742 }
2743 
2744 static void
2745 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2746 {
2747 	u64 vruntime = cfs_rq->min_vruntime;
2748 
2749 	/*
2750 	 * The 'current' period is already promised to the current tasks,
2751 	 * however the extra weight of the new task will slow them down a
2752 	 * little, place the new task so that it fits in the slot that
2753 	 * stays open at the end.
2754 	 */
2755 	if (initial && sched_feat(START_DEBIT))
2756 		vruntime += sched_vslice(cfs_rq, se);
2757 
2758 	/* sleeps up to a single latency don't count. */
2759 	if (!initial) {
2760 		unsigned long thresh = sysctl_sched_latency;
2761 
2762 		/*
2763 		 * Halve their sleep time's effect, to allow
2764 		 * for a gentler effect of sleepers:
2765 		 */
2766 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
2767 			thresh >>= 1;
2768 
2769 		vruntime -= thresh;
2770 	}
2771 
2772 	/* ensure we never gain time by being placed backwards. */
2773 	se->vruntime = max_vruntime(se->vruntime, vruntime);
2774 }
2775 
2776 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2777 
2778 static void
2779 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2780 {
2781 	/*
2782 	 * Update the normalized vruntime before updating min_vruntime
2783 	 * through calling update_curr().
2784 	 */
2785 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2786 		se->vruntime += cfs_rq->min_vruntime;
2787 
2788 	/*
2789 	 * Update run-time statistics of the 'current'.
2790 	 */
2791 	update_curr(cfs_rq);
2792 	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2793 	account_entity_enqueue(cfs_rq, se);
2794 	update_cfs_shares(cfs_rq);
2795 
2796 	if (flags & ENQUEUE_WAKEUP) {
2797 		place_entity(cfs_rq, se, 0);
2798 		enqueue_sleeper(cfs_rq, se);
2799 	}
2800 
2801 	update_stats_enqueue(cfs_rq, se);
2802 	check_spread(cfs_rq, se);
2803 	if (se != cfs_rq->curr)
2804 		__enqueue_entity(cfs_rq, se);
2805 	se->on_rq = 1;
2806 
2807 	if (cfs_rq->nr_running == 1) {
2808 		list_add_leaf_cfs_rq(cfs_rq);
2809 		check_enqueue_throttle(cfs_rq);
2810 	}
2811 }
2812 
2813 static void __clear_buddies_last(struct sched_entity *se)
2814 {
2815 	for_each_sched_entity(se) {
2816 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2817 		if (cfs_rq->last != se)
2818 			break;
2819 
2820 		cfs_rq->last = NULL;
2821 	}
2822 }
2823 
2824 static void __clear_buddies_next(struct sched_entity *se)
2825 {
2826 	for_each_sched_entity(se) {
2827 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2828 		if (cfs_rq->next != se)
2829 			break;
2830 
2831 		cfs_rq->next = NULL;
2832 	}
2833 }
2834 
2835 static void __clear_buddies_skip(struct sched_entity *se)
2836 {
2837 	for_each_sched_entity(se) {
2838 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2839 		if (cfs_rq->skip != se)
2840 			break;
2841 
2842 		cfs_rq->skip = NULL;
2843 	}
2844 }
2845 
2846 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2847 {
2848 	if (cfs_rq->last == se)
2849 		__clear_buddies_last(se);
2850 
2851 	if (cfs_rq->next == se)
2852 		__clear_buddies_next(se);
2853 
2854 	if (cfs_rq->skip == se)
2855 		__clear_buddies_skip(se);
2856 }
2857 
2858 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2859 
2860 static void
2861 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2862 {
2863 	/*
2864 	 * Update run-time statistics of the 'current'.
2865 	 */
2866 	update_curr(cfs_rq);
2867 	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2868 
2869 	update_stats_dequeue(cfs_rq, se);
2870 	if (flags & DEQUEUE_SLEEP) {
2871 #ifdef CONFIG_SCHEDSTATS
2872 		if (entity_is_task(se)) {
2873 			struct task_struct *tsk = task_of(se);
2874 
2875 			if (tsk->state & TASK_INTERRUPTIBLE)
2876 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2877 			if (tsk->state & TASK_UNINTERRUPTIBLE)
2878 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2879 		}
2880 #endif
2881 	}
2882 
2883 	clear_buddies(cfs_rq, se);
2884 
2885 	if (se != cfs_rq->curr)
2886 		__dequeue_entity(cfs_rq, se);
2887 	se->on_rq = 0;
2888 	account_entity_dequeue(cfs_rq, se);
2889 
2890 	/*
2891 	 * Normalize the entity after updating the min_vruntime because the
2892 	 * update can refer to the ->curr item and we need to reflect this
2893 	 * movement in our normalized position.
2894 	 */
2895 	if (!(flags & DEQUEUE_SLEEP))
2896 		se->vruntime -= cfs_rq->min_vruntime;
2897 
2898 	/* return excess runtime on last dequeue */
2899 	return_cfs_rq_runtime(cfs_rq);
2900 
2901 	update_min_vruntime(cfs_rq);
2902 	update_cfs_shares(cfs_rq);
2903 }
2904 
2905 /*
2906  * Preempt the current task with a newly woken task if needed:
2907  */
2908 static void
2909 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2910 {
2911 	unsigned long ideal_runtime, delta_exec;
2912 	struct sched_entity *se;
2913 	s64 delta;
2914 
2915 	ideal_runtime = sched_slice(cfs_rq, curr);
2916 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2917 	if (delta_exec > ideal_runtime) {
2918 		resched_curr(rq_of(cfs_rq));
2919 		/*
2920 		 * The current task ran long enough, ensure it doesn't get
2921 		 * re-elected due to buddy favours.
2922 		 */
2923 		clear_buddies(cfs_rq, curr);
2924 		return;
2925 	}
2926 
2927 	/*
2928 	 * Ensure that a task that missed wakeup preemption by a
2929 	 * narrow margin doesn't have to wait for a full slice.
2930 	 * This also mitigates buddy induced latencies under load.
2931 	 */
2932 	if (delta_exec < sysctl_sched_min_granularity)
2933 		return;
2934 
2935 	se = __pick_first_entity(cfs_rq);
2936 	delta = curr->vruntime - se->vruntime;
2937 
2938 	if (delta < 0)
2939 		return;
2940 
2941 	if (delta > ideal_runtime)
2942 		resched_curr(rq_of(cfs_rq));
2943 }
2944 
2945 static void
2946 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2947 {
2948 	/* 'current' is not kept within the tree. */
2949 	if (se->on_rq) {
2950 		/*
2951 		 * Any task has to be enqueued before it get to execute on
2952 		 * a CPU. So account for the time it spent waiting on the
2953 		 * runqueue.
2954 		 */
2955 		update_stats_wait_end(cfs_rq, se);
2956 		__dequeue_entity(cfs_rq, se);
2957 	}
2958 
2959 	update_stats_curr_start(cfs_rq, se);
2960 	cfs_rq->curr = se;
2961 #ifdef CONFIG_SCHEDSTATS
2962 	/*
2963 	 * Track our maximum slice length, if the CPU's load is at
2964 	 * least twice that of our own weight (i.e. dont track it
2965 	 * when there are only lesser-weight tasks around):
2966 	 */
2967 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2968 		se->statistics.slice_max = max(se->statistics.slice_max,
2969 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
2970 	}
2971 #endif
2972 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2973 }
2974 
2975 static int
2976 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2977 
2978 /*
2979  * Pick the next process, keeping these things in mind, in this order:
2980  * 1) keep things fair between processes/task groups
2981  * 2) pick the "next" process, since someone really wants that to run
2982  * 3) pick the "last" process, for cache locality
2983  * 4) do not run the "skip" process, if something else is available
2984  */
2985 static struct sched_entity *
2986 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2987 {
2988 	struct sched_entity *left = __pick_first_entity(cfs_rq);
2989 	struct sched_entity *se;
2990 
2991 	/*
2992 	 * If curr is set we have to see if its left of the leftmost entity
2993 	 * still in the tree, provided there was anything in the tree at all.
2994 	 */
2995 	if (!left || (curr && entity_before(curr, left)))
2996 		left = curr;
2997 
2998 	se = left; /* ideally we run the leftmost entity */
2999 
3000 	/*
3001 	 * Avoid running the skip buddy, if running something else can
3002 	 * be done without getting too unfair.
3003 	 */
3004 	if (cfs_rq->skip == se) {
3005 		struct sched_entity *second;
3006 
3007 		if (se == curr) {
3008 			second = __pick_first_entity(cfs_rq);
3009 		} else {
3010 			second = __pick_next_entity(se);
3011 			if (!second || (curr && entity_before(curr, second)))
3012 				second = curr;
3013 		}
3014 
3015 		if (second && wakeup_preempt_entity(second, left) < 1)
3016 			se = second;
3017 	}
3018 
3019 	/*
3020 	 * Prefer last buddy, try to return the CPU to a preempted task.
3021 	 */
3022 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3023 		se = cfs_rq->last;
3024 
3025 	/*
3026 	 * Someone really wants this to run. If it's not unfair, run it.
3027 	 */
3028 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3029 		se = cfs_rq->next;
3030 
3031 	clear_buddies(cfs_rq, se);
3032 
3033 	return se;
3034 }
3035 
3036 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3037 
3038 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3039 {
3040 	/*
3041 	 * If still on the runqueue then deactivate_task()
3042 	 * was not called and update_curr() has to be done:
3043 	 */
3044 	if (prev->on_rq)
3045 		update_curr(cfs_rq);
3046 
3047 	/* throttle cfs_rqs exceeding runtime */
3048 	check_cfs_rq_runtime(cfs_rq);
3049 
3050 	check_spread(cfs_rq, prev);
3051 	if (prev->on_rq) {
3052 		update_stats_wait_start(cfs_rq, prev);
3053 		/* Put 'current' back into the tree. */
3054 		__enqueue_entity(cfs_rq, prev);
3055 		/* in !on_rq case, update occurred at dequeue */
3056 		update_entity_load_avg(prev, 1);
3057 	}
3058 	cfs_rq->curr = NULL;
3059 }
3060 
3061 static void
3062 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3063 {
3064 	/*
3065 	 * Update run-time statistics of the 'current'.
3066 	 */
3067 	update_curr(cfs_rq);
3068 
3069 	/*
3070 	 * Ensure that runnable average is periodically updated.
3071 	 */
3072 	update_entity_load_avg(curr, 1);
3073 	update_cfs_rq_blocked_load(cfs_rq, 1);
3074 	update_cfs_shares(cfs_rq);
3075 
3076 #ifdef CONFIG_SCHED_HRTICK
3077 	/*
3078 	 * queued ticks are scheduled to match the slice, so don't bother
3079 	 * validating it and just reschedule.
3080 	 */
3081 	if (queued) {
3082 		resched_curr(rq_of(cfs_rq));
3083 		return;
3084 	}
3085 	/*
3086 	 * don't let the period tick interfere with the hrtick preemption
3087 	 */
3088 	if (!sched_feat(DOUBLE_TICK) &&
3089 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3090 		return;
3091 #endif
3092 
3093 	if (cfs_rq->nr_running > 1)
3094 		check_preempt_tick(cfs_rq, curr);
3095 }
3096 
3097 
3098 /**************************************************
3099  * CFS bandwidth control machinery
3100  */
3101 
3102 #ifdef CONFIG_CFS_BANDWIDTH
3103 
3104 #ifdef HAVE_JUMP_LABEL
3105 static struct static_key __cfs_bandwidth_used;
3106 
3107 static inline bool cfs_bandwidth_used(void)
3108 {
3109 	return static_key_false(&__cfs_bandwidth_used);
3110 }
3111 
3112 void cfs_bandwidth_usage_inc(void)
3113 {
3114 	static_key_slow_inc(&__cfs_bandwidth_used);
3115 }
3116 
3117 void cfs_bandwidth_usage_dec(void)
3118 {
3119 	static_key_slow_dec(&__cfs_bandwidth_used);
3120 }
3121 #else /* HAVE_JUMP_LABEL */
3122 static bool cfs_bandwidth_used(void)
3123 {
3124 	return true;
3125 }
3126 
3127 void cfs_bandwidth_usage_inc(void) {}
3128 void cfs_bandwidth_usage_dec(void) {}
3129 #endif /* HAVE_JUMP_LABEL */
3130 
3131 /*
3132  * default period for cfs group bandwidth.
3133  * default: 0.1s, units: nanoseconds
3134  */
3135 static inline u64 default_cfs_period(void)
3136 {
3137 	return 100000000ULL;
3138 }
3139 
3140 static inline u64 sched_cfs_bandwidth_slice(void)
3141 {
3142 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3143 }
3144 
3145 /*
3146  * Replenish runtime according to assigned quota and update expiration time.
3147  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3148  * additional synchronization around rq->lock.
3149  *
3150  * requires cfs_b->lock
3151  */
3152 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3153 {
3154 	u64 now;
3155 
3156 	if (cfs_b->quota == RUNTIME_INF)
3157 		return;
3158 
3159 	now = sched_clock_cpu(smp_processor_id());
3160 	cfs_b->runtime = cfs_b->quota;
3161 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3162 }
3163 
3164 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3165 {
3166 	return &tg->cfs_bandwidth;
3167 }
3168 
3169 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3170 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3171 {
3172 	if (unlikely(cfs_rq->throttle_count))
3173 		return cfs_rq->throttled_clock_task;
3174 
3175 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3176 }
3177 
3178 /* returns 0 on failure to allocate runtime */
3179 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3180 {
3181 	struct task_group *tg = cfs_rq->tg;
3182 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3183 	u64 amount = 0, min_amount, expires;
3184 
3185 	/* note: this is a positive sum as runtime_remaining <= 0 */
3186 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3187 
3188 	raw_spin_lock(&cfs_b->lock);
3189 	if (cfs_b->quota == RUNTIME_INF)
3190 		amount = min_amount;
3191 	else {
3192 		/*
3193 		 * If the bandwidth pool has become inactive, then at least one
3194 		 * period must have elapsed since the last consumption.
3195 		 * Refresh the global state and ensure bandwidth timer becomes
3196 		 * active.
3197 		 */
3198 		if (!cfs_b->timer_active) {
3199 			__refill_cfs_bandwidth_runtime(cfs_b);
3200 			__start_cfs_bandwidth(cfs_b, false);
3201 		}
3202 
3203 		if (cfs_b->runtime > 0) {
3204 			amount = min(cfs_b->runtime, min_amount);
3205 			cfs_b->runtime -= amount;
3206 			cfs_b->idle = 0;
3207 		}
3208 	}
3209 	expires = cfs_b->runtime_expires;
3210 	raw_spin_unlock(&cfs_b->lock);
3211 
3212 	cfs_rq->runtime_remaining += amount;
3213 	/*
3214 	 * we may have advanced our local expiration to account for allowed
3215 	 * spread between our sched_clock and the one on which runtime was
3216 	 * issued.
3217 	 */
3218 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3219 		cfs_rq->runtime_expires = expires;
3220 
3221 	return cfs_rq->runtime_remaining > 0;
3222 }
3223 
3224 /*
3225  * Note: This depends on the synchronization provided by sched_clock and the
3226  * fact that rq->clock snapshots this value.
3227  */
3228 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3229 {
3230 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3231 
3232 	/* if the deadline is ahead of our clock, nothing to do */
3233 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3234 		return;
3235 
3236 	if (cfs_rq->runtime_remaining < 0)
3237 		return;
3238 
3239 	/*
3240 	 * If the local deadline has passed we have to consider the
3241 	 * possibility that our sched_clock is 'fast' and the global deadline
3242 	 * has not truly expired.
3243 	 *
3244 	 * Fortunately we can check determine whether this the case by checking
3245 	 * whether the global deadline has advanced. It is valid to compare
3246 	 * cfs_b->runtime_expires without any locks since we only care about
3247 	 * exact equality, so a partial write will still work.
3248 	 */
3249 
3250 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3251 		/* extend local deadline, drift is bounded above by 2 ticks */
3252 		cfs_rq->runtime_expires += TICK_NSEC;
3253 	} else {
3254 		/* global deadline is ahead, expiration has passed */
3255 		cfs_rq->runtime_remaining = 0;
3256 	}
3257 }
3258 
3259 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3260 {
3261 	/* dock delta_exec before expiring quota (as it could span periods) */
3262 	cfs_rq->runtime_remaining -= delta_exec;
3263 	expire_cfs_rq_runtime(cfs_rq);
3264 
3265 	if (likely(cfs_rq->runtime_remaining > 0))
3266 		return;
3267 
3268 	/*
3269 	 * if we're unable to extend our runtime we resched so that the active
3270 	 * hierarchy can be throttled
3271 	 */
3272 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3273 		resched_curr(rq_of(cfs_rq));
3274 }
3275 
3276 static __always_inline
3277 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3278 {
3279 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3280 		return;
3281 
3282 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3283 }
3284 
3285 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3286 {
3287 	return cfs_bandwidth_used() && cfs_rq->throttled;
3288 }
3289 
3290 /* check whether cfs_rq, or any parent, is throttled */
3291 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3292 {
3293 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3294 }
3295 
3296 /*
3297  * Ensure that neither of the group entities corresponding to src_cpu or
3298  * dest_cpu are members of a throttled hierarchy when performing group
3299  * load-balance operations.
3300  */
3301 static inline int throttled_lb_pair(struct task_group *tg,
3302 				    int src_cpu, int dest_cpu)
3303 {
3304 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3305 
3306 	src_cfs_rq = tg->cfs_rq[src_cpu];
3307 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3308 
3309 	return throttled_hierarchy(src_cfs_rq) ||
3310 	       throttled_hierarchy(dest_cfs_rq);
3311 }
3312 
3313 /* updated child weight may affect parent so we have to do this bottom up */
3314 static int tg_unthrottle_up(struct task_group *tg, void *data)
3315 {
3316 	struct rq *rq = data;
3317 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3318 
3319 	cfs_rq->throttle_count--;
3320 #ifdef CONFIG_SMP
3321 	if (!cfs_rq->throttle_count) {
3322 		/* adjust cfs_rq_clock_task() */
3323 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3324 					     cfs_rq->throttled_clock_task;
3325 	}
3326 #endif
3327 
3328 	return 0;
3329 }
3330 
3331 static int tg_throttle_down(struct task_group *tg, void *data)
3332 {
3333 	struct rq *rq = data;
3334 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3335 
3336 	/* group is entering throttled state, stop time */
3337 	if (!cfs_rq->throttle_count)
3338 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3339 	cfs_rq->throttle_count++;
3340 
3341 	return 0;
3342 }
3343 
3344 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3345 {
3346 	struct rq *rq = rq_of(cfs_rq);
3347 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3348 	struct sched_entity *se;
3349 	long task_delta, dequeue = 1;
3350 
3351 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3352 
3353 	/* freeze hierarchy runnable averages while throttled */
3354 	rcu_read_lock();
3355 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3356 	rcu_read_unlock();
3357 
3358 	task_delta = cfs_rq->h_nr_running;
3359 	for_each_sched_entity(se) {
3360 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3361 		/* throttled entity or throttle-on-deactivate */
3362 		if (!se->on_rq)
3363 			break;
3364 
3365 		if (dequeue)
3366 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3367 		qcfs_rq->h_nr_running -= task_delta;
3368 
3369 		if (qcfs_rq->load.weight)
3370 			dequeue = 0;
3371 	}
3372 
3373 	if (!se)
3374 		sub_nr_running(rq, task_delta);
3375 
3376 	cfs_rq->throttled = 1;
3377 	cfs_rq->throttled_clock = rq_clock(rq);
3378 	raw_spin_lock(&cfs_b->lock);
3379 	/*
3380 	 * Add to the _head_ of the list, so that an already-started
3381 	 * distribute_cfs_runtime will not see us
3382 	 */
3383 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3384 	if (!cfs_b->timer_active)
3385 		__start_cfs_bandwidth(cfs_b, false);
3386 	raw_spin_unlock(&cfs_b->lock);
3387 }
3388 
3389 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3390 {
3391 	struct rq *rq = rq_of(cfs_rq);
3392 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3393 	struct sched_entity *se;
3394 	int enqueue = 1;
3395 	long task_delta;
3396 
3397 	se = cfs_rq->tg->se[cpu_of(rq)];
3398 
3399 	cfs_rq->throttled = 0;
3400 
3401 	update_rq_clock(rq);
3402 
3403 	raw_spin_lock(&cfs_b->lock);
3404 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3405 	list_del_rcu(&cfs_rq->throttled_list);
3406 	raw_spin_unlock(&cfs_b->lock);
3407 
3408 	/* update hierarchical throttle state */
3409 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3410 
3411 	if (!cfs_rq->load.weight)
3412 		return;
3413 
3414 	task_delta = cfs_rq->h_nr_running;
3415 	for_each_sched_entity(se) {
3416 		if (se->on_rq)
3417 			enqueue = 0;
3418 
3419 		cfs_rq = cfs_rq_of(se);
3420 		if (enqueue)
3421 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3422 		cfs_rq->h_nr_running += task_delta;
3423 
3424 		if (cfs_rq_throttled(cfs_rq))
3425 			break;
3426 	}
3427 
3428 	if (!se)
3429 		add_nr_running(rq, task_delta);
3430 
3431 	/* determine whether we need to wake up potentially idle cpu */
3432 	if (rq->curr == rq->idle && rq->cfs.nr_running)
3433 		resched_curr(rq);
3434 }
3435 
3436 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3437 		u64 remaining, u64 expires)
3438 {
3439 	struct cfs_rq *cfs_rq;
3440 	u64 runtime;
3441 	u64 starting_runtime = remaining;
3442 
3443 	rcu_read_lock();
3444 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3445 				throttled_list) {
3446 		struct rq *rq = rq_of(cfs_rq);
3447 
3448 		raw_spin_lock(&rq->lock);
3449 		if (!cfs_rq_throttled(cfs_rq))
3450 			goto next;
3451 
3452 		runtime = -cfs_rq->runtime_remaining + 1;
3453 		if (runtime > remaining)
3454 			runtime = remaining;
3455 		remaining -= runtime;
3456 
3457 		cfs_rq->runtime_remaining += runtime;
3458 		cfs_rq->runtime_expires = expires;
3459 
3460 		/* we check whether we're throttled above */
3461 		if (cfs_rq->runtime_remaining > 0)
3462 			unthrottle_cfs_rq(cfs_rq);
3463 
3464 next:
3465 		raw_spin_unlock(&rq->lock);
3466 
3467 		if (!remaining)
3468 			break;
3469 	}
3470 	rcu_read_unlock();
3471 
3472 	return starting_runtime - remaining;
3473 }
3474 
3475 /*
3476  * Responsible for refilling a task_group's bandwidth and unthrottling its
3477  * cfs_rqs as appropriate. If there has been no activity within the last
3478  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3479  * used to track this state.
3480  */
3481 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3482 {
3483 	u64 runtime, runtime_expires;
3484 	int throttled;
3485 
3486 	/* no need to continue the timer with no bandwidth constraint */
3487 	if (cfs_b->quota == RUNTIME_INF)
3488 		goto out_deactivate;
3489 
3490 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3491 	cfs_b->nr_periods += overrun;
3492 
3493 	/*
3494 	 * idle depends on !throttled (for the case of a large deficit), and if
3495 	 * we're going inactive then everything else can be deferred
3496 	 */
3497 	if (cfs_b->idle && !throttled)
3498 		goto out_deactivate;
3499 
3500 	/*
3501 	 * if we have relooped after returning idle once, we need to update our
3502 	 * status as actually running, so that other cpus doing
3503 	 * __start_cfs_bandwidth will stop trying to cancel us.
3504 	 */
3505 	cfs_b->timer_active = 1;
3506 
3507 	__refill_cfs_bandwidth_runtime(cfs_b);
3508 
3509 	if (!throttled) {
3510 		/* mark as potentially idle for the upcoming period */
3511 		cfs_b->idle = 1;
3512 		return 0;
3513 	}
3514 
3515 	/* account preceding periods in which throttling occurred */
3516 	cfs_b->nr_throttled += overrun;
3517 
3518 	runtime_expires = cfs_b->runtime_expires;
3519 
3520 	/*
3521 	 * This check is repeated as we are holding onto the new bandwidth while
3522 	 * we unthrottle. This can potentially race with an unthrottled group
3523 	 * trying to acquire new bandwidth from the global pool. This can result
3524 	 * in us over-using our runtime if it is all used during this loop, but
3525 	 * only by limited amounts in that extreme case.
3526 	 */
3527 	while (throttled && cfs_b->runtime > 0) {
3528 		runtime = cfs_b->runtime;
3529 		raw_spin_unlock(&cfs_b->lock);
3530 		/* we can't nest cfs_b->lock while distributing bandwidth */
3531 		runtime = distribute_cfs_runtime(cfs_b, runtime,
3532 						 runtime_expires);
3533 		raw_spin_lock(&cfs_b->lock);
3534 
3535 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3536 
3537 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3538 	}
3539 
3540 	/*
3541 	 * While we are ensured activity in the period following an
3542 	 * unthrottle, this also covers the case in which the new bandwidth is
3543 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3544 	 * timer to remain active while there are any throttled entities.)
3545 	 */
3546 	cfs_b->idle = 0;
3547 
3548 	return 0;
3549 
3550 out_deactivate:
3551 	cfs_b->timer_active = 0;
3552 	return 1;
3553 }
3554 
3555 /* a cfs_rq won't donate quota below this amount */
3556 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3557 /* minimum remaining period time to redistribute slack quota */
3558 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3559 /* how long we wait to gather additional slack before distributing */
3560 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3561 
3562 /*
3563  * Are we near the end of the current quota period?
3564  *
3565  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3566  * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3567  * migrate_hrtimers, base is never cleared, so we are fine.
3568  */
3569 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3570 {
3571 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3572 	u64 remaining;
3573 
3574 	/* if the call-back is running a quota refresh is already occurring */
3575 	if (hrtimer_callback_running(refresh_timer))
3576 		return 1;
3577 
3578 	/* is a quota refresh about to occur? */
3579 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3580 	if (remaining < min_expire)
3581 		return 1;
3582 
3583 	return 0;
3584 }
3585 
3586 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3587 {
3588 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3589 
3590 	/* if there's a quota refresh soon don't bother with slack */
3591 	if (runtime_refresh_within(cfs_b, min_left))
3592 		return;
3593 
3594 	start_bandwidth_timer(&cfs_b->slack_timer,
3595 				ns_to_ktime(cfs_bandwidth_slack_period));
3596 }
3597 
3598 /* we know any runtime found here is valid as update_curr() precedes return */
3599 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3600 {
3601 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3602 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3603 
3604 	if (slack_runtime <= 0)
3605 		return;
3606 
3607 	raw_spin_lock(&cfs_b->lock);
3608 	if (cfs_b->quota != RUNTIME_INF &&
3609 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3610 		cfs_b->runtime += slack_runtime;
3611 
3612 		/* we are under rq->lock, defer unthrottling using a timer */
3613 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3614 		    !list_empty(&cfs_b->throttled_cfs_rq))
3615 			start_cfs_slack_bandwidth(cfs_b);
3616 	}
3617 	raw_spin_unlock(&cfs_b->lock);
3618 
3619 	/* even if it's not valid for return we don't want to try again */
3620 	cfs_rq->runtime_remaining -= slack_runtime;
3621 }
3622 
3623 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3624 {
3625 	if (!cfs_bandwidth_used())
3626 		return;
3627 
3628 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3629 		return;
3630 
3631 	__return_cfs_rq_runtime(cfs_rq);
3632 }
3633 
3634 /*
3635  * This is done with a timer (instead of inline with bandwidth return) since
3636  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3637  */
3638 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3639 {
3640 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3641 	u64 expires;
3642 
3643 	/* confirm we're still not at a refresh boundary */
3644 	raw_spin_lock(&cfs_b->lock);
3645 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3646 		raw_spin_unlock(&cfs_b->lock);
3647 		return;
3648 	}
3649 
3650 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3651 		runtime = cfs_b->runtime;
3652 
3653 	expires = cfs_b->runtime_expires;
3654 	raw_spin_unlock(&cfs_b->lock);
3655 
3656 	if (!runtime)
3657 		return;
3658 
3659 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3660 
3661 	raw_spin_lock(&cfs_b->lock);
3662 	if (expires == cfs_b->runtime_expires)
3663 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3664 	raw_spin_unlock(&cfs_b->lock);
3665 }
3666 
3667 /*
3668  * When a group wakes up we want to make sure that its quota is not already
3669  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3670  * runtime as update_curr() throttling can not not trigger until it's on-rq.
3671  */
3672 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3673 {
3674 	if (!cfs_bandwidth_used())
3675 		return;
3676 
3677 	/* an active group must be handled by the update_curr()->put() path */
3678 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3679 		return;
3680 
3681 	/* ensure the group is not already throttled */
3682 	if (cfs_rq_throttled(cfs_rq))
3683 		return;
3684 
3685 	/* update runtime allocation */
3686 	account_cfs_rq_runtime(cfs_rq, 0);
3687 	if (cfs_rq->runtime_remaining <= 0)
3688 		throttle_cfs_rq(cfs_rq);
3689 }
3690 
3691 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3692 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3693 {
3694 	if (!cfs_bandwidth_used())
3695 		return false;
3696 
3697 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3698 		return false;
3699 
3700 	/*
3701 	 * it's possible for a throttled entity to be forced into a running
3702 	 * state (e.g. set_curr_task), in this case we're finished.
3703 	 */
3704 	if (cfs_rq_throttled(cfs_rq))
3705 		return true;
3706 
3707 	throttle_cfs_rq(cfs_rq);
3708 	return true;
3709 }
3710 
3711 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3712 {
3713 	struct cfs_bandwidth *cfs_b =
3714 		container_of(timer, struct cfs_bandwidth, slack_timer);
3715 	do_sched_cfs_slack_timer(cfs_b);
3716 
3717 	return HRTIMER_NORESTART;
3718 }
3719 
3720 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3721 {
3722 	struct cfs_bandwidth *cfs_b =
3723 		container_of(timer, struct cfs_bandwidth, period_timer);
3724 	ktime_t now;
3725 	int overrun;
3726 	int idle = 0;
3727 
3728 	raw_spin_lock(&cfs_b->lock);
3729 	for (;;) {
3730 		now = hrtimer_cb_get_time(timer);
3731 		overrun = hrtimer_forward(timer, now, cfs_b->period);
3732 
3733 		if (!overrun)
3734 			break;
3735 
3736 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
3737 	}
3738 	raw_spin_unlock(&cfs_b->lock);
3739 
3740 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3741 }
3742 
3743 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3744 {
3745 	raw_spin_lock_init(&cfs_b->lock);
3746 	cfs_b->runtime = 0;
3747 	cfs_b->quota = RUNTIME_INF;
3748 	cfs_b->period = ns_to_ktime(default_cfs_period());
3749 
3750 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3751 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3752 	cfs_b->period_timer.function = sched_cfs_period_timer;
3753 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3754 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
3755 }
3756 
3757 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3758 {
3759 	cfs_rq->runtime_enabled = 0;
3760 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
3761 }
3762 
3763 /* requires cfs_b->lock, may release to reprogram timer */
3764 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3765 {
3766 	/*
3767 	 * The timer may be active because we're trying to set a new bandwidth
3768 	 * period or because we're racing with the tear-down path
3769 	 * (timer_active==0 becomes visible before the hrtimer call-back
3770 	 * terminates).  In either case we ensure that it's re-programmed
3771 	 */
3772 	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3773 	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3774 		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3775 		raw_spin_unlock(&cfs_b->lock);
3776 		cpu_relax();
3777 		raw_spin_lock(&cfs_b->lock);
3778 		/* if someone else restarted the timer then we're done */
3779 		if (!force && cfs_b->timer_active)
3780 			return;
3781 	}
3782 
3783 	cfs_b->timer_active = 1;
3784 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3785 }
3786 
3787 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3788 {
3789 	hrtimer_cancel(&cfs_b->period_timer);
3790 	hrtimer_cancel(&cfs_b->slack_timer);
3791 }
3792 
3793 static void __maybe_unused update_runtime_enabled(struct rq *rq)
3794 {
3795 	struct cfs_rq *cfs_rq;
3796 
3797 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3798 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3799 
3800 		raw_spin_lock(&cfs_b->lock);
3801 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3802 		raw_spin_unlock(&cfs_b->lock);
3803 	}
3804 }
3805 
3806 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3807 {
3808 	struct cfs_rq *cfs_rq;
3809 
3810 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3811 		if (!cfs_rq->runtime_enabled)
3812 			continue;
3813 
3814 		/*
3815 		 * clock_task is not advancing so we just need to make sure
3816 		 * there's some valid quota amount
3817 		 */
3818 		cfs_rq->runtime_remaining = 1;
3819 		/*
3820 		 * Offline rq is schedulable till cpu is completely disabled
3821 		 * in take_cpu_down(), so we prevent new cfs throttling here.
3822 		 */
3823 		cfs_rq->runtime_enabled = 0;
3824 
3825 		if (cfs_rq_throttled(cfs_rq))
3826 			unthrottle_cfs_rq(cfs_rq);
3827 	}
3828 }
3829 
3830 #else /* CONFIG_CFS_BANDWIDTH */
3831 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3832 {
3833 	return rq_clock_task(rq_of(cfs_rq));
3834 }
3835 
3836 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3837 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3838 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3839 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3840 
3841 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3842 {
3843 	return 0;
3844 }
3845 
3846 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3847 {
3848 	return 0;
3849 }
3850 
3851 static inline int throttled_lb_pair(struct task_group *tg,
3852 				    int src_cpu, int dest_cpu)
3853 {
3854 	return 0;
3855 }
3856 
3857 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3858 
3859 #ifdef CONFIG_FAIR_GROUP_SCHED
3860 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3861 #endif
3862 
3863 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3864 {
3865 	return NULL;
3866 }
3867 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3868 static inline void update_runtime_enabled(struct rq *rq) {}
3869 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3870 
3871 #endif /* CONFIG_CFS_BANDWIDTH */
3872 
3873 /**************************************************
3874  * CFS operations on tasks:
3875  */
3876 
3877 #ifdef CONFIG_SCHED_HRTICK
3878 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3879 {
3880 	struct sched_entity *se = &p->se;
3881 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3882 
3883 	WARN_ON(task_rq(p) != rq);
3884 
3885 	if (cfs_rq->nr_running > 1) {
3886 		u64 slice = sched_slice(cfs_rq, se);
3887 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3888 		s64 delta = slice - ran;
3889 
3890 		if (delta < 0) {
3891 			if (rq->curr == p)
3892 				resched_curr(rq);
3893 			return;
3894 		}
3895 
3896 		/*
3897 		 * Don't schedule slices shorter than 10000ns, that just
3898 		 * doesn't make sense. Rely on vruntime for fairness.
3899 		 */
3900 		if (rq->curr != p)
3901 			delta = max_t(s64, 10000LL, delta);
3902 
3903 		hrtick_start(rq, delta);
3904 	}
3905 }
3906 
3907 /*
3908  * called from enqueue/dequeue and updates the hrtick when the
3909  * current task is from our class and nr_running is low enough
3910  * to matter.
3911  */
3912 static void hrtick_update(struct rq *rq)
3913 {
3914 	struct task_struct *curr = rq->curr;
3915 
3916 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3917 		return;
3918 
3919 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3920 		hrtick_start_fair(rq, curr);
3921 }
3922 #else /* !CONFIG_SCHED_HRTICK */
3923 static inline void
3924 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3925 {
3926 }
3927 
3928 static inline void hrtick_update(struct rq *rq)
3929 {
3930 }
3931 #endif
3932 
3933 /*
3934  * The enqueue_task method is called before nr_running is
3935  * increased. Here we update the fair scheduling stats and
3936  * then put the task into the rbtree:
3937  */
3938 static void
3939 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3940 {
3941 	struct cfs_rq *cfs_rq;
3942 	struct sched_entity *se = &p->se;
3943 
3944 	for_each_sched_entity(se) {
3945 		if (se->on_rq)
3946 			break;
3947 		cfs_rq = cfs_rq_of(se);
3948 		enqueue_entity(cfs_rq, se, flags);
3949 
3950 		/*
3951 		 * end evaluation on encountering a throttled cfs_rq
3952 		 *
3953 		 * note: in the case of encountering a throttled cfs_rq we will
3954 		 * post the final h_nr_running increment below.
3955 		*/
3956 		if (cfs_rq_throttled(cfs_rq))
3957 			break;
3958 		cfs_rq->h_nr_running++;
3959 
3960 		flags = ENQUEUE_WAKEUP;
3961 	}
3962 
3963 	for_each_sched_entity(se) {
3964 		cfs_rq = cfs_rq_of(se);
3965 		cfs_rq->h_nr_running++;
3966 
3967 		if (cfs_rq_throttled(cfs_rq))
3968 			break;
3969 
3970 		update_cfs_shares(cfs_rq);
3971 		update_entity_load_avg(se, 1);
3972 	}
3973 
3974 	if (!se) {
3975 		update_rq_runnable_avg(rq, rq->nr_running);
3976 		add_nr_running(rq, 1);
3977 	}
3978 	hrtick_update(rq);
3979 }
3980 
3981 static void set_next_buddy(struct sched_entity *se);
3982 
3983 /*
3984  * The dequeue_task method is called before nr_running is
3985  * decreased. We remove the task from the rbtree and
3986  * update the fair scheduling stats:
3987  */
3988 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3989 {
3990 	struct cfs_rq *cfs_rq;
3991 	struct sched_entity *se = &p->se;
3992 	int task_sleep = flags & DEQUEUE_SLEEP;
3993 
3994 	for_each_sched_entity(se) {
3995 		cfs_rq = cfs_rq_of(se);
3996 		dequeue_entity(cfs_rq, se, flags);
3997 
3998 		/*
3999 		 * end evaluation on encountering a throttled cfs_rq
4000 		 *
4001 		 * note: in the case of encountering a throttled cfs_rq we will
4002 		 * post the final h_nr_running decrement below.
4003 		*/
4004 		if (cfs_rq_throttled(cfs_rq))
4005 			break;
4006 		cfs_rq->h_nr_running--;
4007 
4008 		/* Don't dequeue parent if it has other entities besides us */
4009 		if (cfs_rq->load.weight) {
4010 			/*
4011 			 * Bias pick_next to pick a task from this cfs_rq, as
4012 			 * p is sleeping when it is within its sched_slice.
4013 			 */
4014 			if (task_sleep && parent_entity(se))
4015 				set_next_buddy(parent_entity(se));
4016 
4017 			/* avoid re-evaluating load for this entity */
4018 			se = parent_entity(se);
4019 			break;
4020 		}
4021 		flags |= DEQUEUE_SLEEP;
4022 	}
4023 
4024 	for_each_sched_entity(se) {
4025 		cfs_rq = cfs_rq_of(se);
4026 		cfs_rq->h_nr_running--;
4027 
4028 		if (cfs_rq_throttled(cfs_rq))
4029 			break;
4030 
4031 		update_cfs_shares(cfs_rq);
4032 		update_entity_load_avg(se, 1);
4033 	}
4034 
4035 	if (!se) {
4036 		sub_nr_running(rq, 1);
4037 		update_rq_runnable_avg(rq, 1);
4038 	}
4039 	hrtick_update(rq);
4040 }
4041 
4042 #ifdef CONFIG_SMP
4043 /* Used instead of source_load when we know the type == 0 */
4044 static unsigned long weighted_cpuload(const int cpu)
4045 {
4046 	return cpu_rq(cpu)->cfs.runnable_load_avg;
4047 }
4048 
4049 /*
4050  * Return a low guess at the load of a migration-source cpu weighted
4051  * according to the scheduling class and "nice" value.
4052  *
4053  * We want to under-estimate the load of migration sources, to
4054  * balance conservatively.
4055  */
4056 static unsigned long source_load(int cpu, int type)
4057 {
4058 	struct rq *rq = cpu_rq(cpu);
4059 	unsigned long total = weighted_cpuload(cpu);
4060 
4061 	if (type == 0 || !sched_feat(LB_BIAS))
4062 		return total;
4063 
4064 	return min(rq->cpu_load[type-1], total);
4065 }
4066 
4067 /*
4068  * Return a high guess at the load of a migration-target cpu weighted
4069  * according to the scheduling class and "nice" value.
4070  */
4071 static unsigned long target_load(int cpu, int type)
4072 {
4073 	struct rq *rq = cpu_rq(cpu);
4074 	unsigned long total = weighted_cpuload(cpu);
4075 
4076 	if (type == 0 || !sched_feat(LB_BIAS))
4077 		return total;
4078 
4079 	return max(rq->cpu_load[type-1], total);
4080 }
4081 
4082 static unsigned long capacity_of(int cpu)
4083 {
4084 	return cpu_rq(cpu)->cpu_capacity;
4085 }
4086 
4087 static unsigned long cpu_avg_load_per_task(int cpu)
4088 {
4089 	struct rq *rq = cpu_rq(cpu);
4090 	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4091 	unsigned long load_avg = rq->cfs.runnable_load_avg;
4092 
4093 	if (nr_running)
4094 		return load_avg / nr_running;
4095 
4096 	return 0;
4097 }
4098 
4099 static void record_wakee(struct task_struct *p)
4100 {
4101 	/*
4102 	 * Rough decay (wiping) for cost saving, don't worry
4103 	 * about the boundary, really active task won't care
4104 	 * about the loss.
4105 	 */
4106 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4107 		current->wakee_flips >>= 1;
4108 		current->wakee_flip_decay_ts = jiffies;
4109 	}
4110 
4111 	if (current->last_wakee != p) {
4112 		current->last_wakee = p;
4113 		current->wakee_flips++;
4114 	}
4115 }
4116 
4117 static void task_waking_fair(struct task_struct *p)
4118 {
4119 	struct sched_entity *se = &p->se;
4120 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4121 	u64 min_vruntime;
4122 
4123 #ifndef CONFIG_64BIT
4124 	u64 min_vruntime_copy;
4125 
4126 	do {
4127 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4128 		smp_rmb();
4129 		min_vruntime = cfs_rq->min_vruntime;
4130 	} while (min_vruntime != min_vruntime_copy);
4131 #else
4132 	min_vruntime = cfs_rq->min_vruntime;
4133 #endif
4134 
4135 	se->vruntime -= min_vruntime;
4136 	record_wakee(p);
4137 }
4138 
4139 #ifdef CONFIG_FAIR_GROUP_SCHED
4140 /*
4141  * effective_load() calculates the load change as seen from the root_task_group
4142  *
4143  * Adding load to a group doesn't make a group heavier, but can cause movement
4144  * of group shares between cpus. Assuming the shares were perfectly aligned one
4145  * can calculate the shift in shares.
4146  *
4147  * Calculate the effective load difference if @wl is added (subtracted) to @tg
4148  * on this @cpu and results in a total addition (subtraction) of @wg to the
4149  * total group weight.
4150  *
4151  * Given a runqueue weight distribution (rw_i) we can compute a shares
4152  * distribution (s_i) using:
4153  *
4154  *   s_i = rw_i / \Sum rw_j						(1)
4155  *
4156  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4157  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4158  * shares distribution (s_i):
4159  *
4160  *   rw_i = {   2,   4,   1,   0 }
4161  *   s_i  = { 2/7, 4/7, 1/7,   0 }
4162  *
4163  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4164  * task used to run on and the CPU the waker is running on), we need to
4165  * compute the effect of waking a task on either CPU and, in case of a sync
4166  * wakeup, compute the effect of the current task going to sleep.
4167  *
4168  * So for a change of @wl to the local @cpu with an overall group weight change
4169  * of @wl we can compute the new shares distribution (s'_i) using:
4170  *
4171  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4172  *
4173  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4174  * differences in waking a task to CPU 0. The additional task changes the
4175  * weight and shares distributions like:
4176  *
4177  *   rw'_i = {   3,   4,   1,   0 }
4178  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4179  *
4180  * We can then compute the difference in effective weight by using:
4181  *
4182  *   dw_i = S * (s'_i - s_i)						(3)
4183  *
4184  * Where 'S' is the group weight as seen by its parent.
4185  *
4186  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4187  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4188  * 4/7) times the weight of the group.
4189  */
4190 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4191 {
4192 	struct sched_entity *se = tg->se[cpu];
4193 
4194 	if (!tg->parent)	/* the trivial, non-cgroup case */
4195 		return wl;
4196 
4197 	for_each_sched_entity(se) {
4198 		long w, W;
4199 
4200 		tg = se->my_q->tg;
4201 
4202 		/*
4203 		 * W = @wg + \Sum rw_j
4204 		 */
4205 		W = wg + calc_tg_weight(tg, se->my_q);
4206 
4207 		/*
4208 		 * w = rw_i + @wl
4209 		 */
4210 		w = se->my_q->load.weight + wl;
4211 
4212 		/*
4213 		 * wl = S * s'_i; see (2)
4214 		 */
4215 		if (W > 0 && w < W)
4216 			wl = (w * tg->shares) / W;
4217 		else
4218 			wl = tg->shares;
4219 
4220 		/*
4221 		 * Per the above, wl is the new se->load.weight value; since
4222 		 * those are clipped to [MIN_SHARES, ...) do so now. See
4223 		 * calc_cfs_shares().
4224 		 */
4225 		if (wl < MIN_SHARES)
4226 			wl = MIN_SHARES;
4227 
4228 		/*
4229 		 * wl = dw_i = S * (s'_i - s_i); see (3)
4230 		 */
4231 		wl -= se->load.weight;
4232 
4233 		/*
4234 		 * Recursively apply this logic to all parent groups to compute
4235 		 * the final effective load change on the root group. Since
4236 		 * only the @tg group gets extra weight, all parent groups can
4237 		 * only redistribute existing shares. @wl is the shift in shares
4238 		 * resulting from this level per the above.
4239 		 */
4240 		wg = 0;
4241 	}
4242 
4243 	return wl;
4244 }
4245 #else
4246 
4247 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4248 {
4249 	return wl;
4250 }
4251 
4252 #endif
4253 
4254 static int wake_wide(struct task_struct *p)
4255 {
4256 	int factor = this_cpu_read(sd_llc_size);
4257 
4258 	/*
4259 	 * Yeah, it's the switching-frequency, could means many wakee or
4260 	 * rapidly switch, use factor here will just help to automatically
4261 	 * adjust the loose-degree, so bigger node will lead to more pull.
4262 	 */
4263 	if (p->wakee_flips > factor) {
4264 		/*
4265 		 * wakee is somewhat hot, it needs certain amount of cpu
4266 		 * resource, so if waker is far more hot, prefer to leave
4267 		 * it alone.
4268 		 */
4269 		if (current->wakee_flips > (factor * p->wakee_flips))
4270 			return 1;
4271 	}
4272 
4273 	return 0;
4274 }
4275 
4276 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4277 {
4278 	s64 this_load, load;
4279 	int idx, this_cpu, prev_cpu;
4280 	unsigned long tl_per_task;
4281 	struct task_group *tg;
4282 	unsigned long weight;
4283 	int balanced;
4284 
4285 	/*
4286 	 * If we wake multiple tasks be careful to not bounce
4287 	 * ourselves around too much.
4288 	 */
4289 	if (wake_wide(p))
4290 		return 0;
4291 
4292 	idx	  = sd->wake_idx;
4293 	this_cpu  = smp_processor_id();
4294 	prev_cpu  = task_cpu(p);
4295 	load	  = source_load(prev_cpu, idx);
4296 	this_load = target_load(this_cpu, idx);
4297 
4298 	/*
4299 	 * If sync wakeup then subtract the (maximum possible)
4300 	 * effect of the currently running task from the load
4301 	 * of the current CPU:
4302 	 */
4303 	if (sync) {
4304 		tg = task_group(current);
4305 		weight = current->se.load.weight;
4306 
4307 		this_load += effective_load(tg, this_cpu, -weight, -weight);
4308 		load += effective_load(tg, prev_cpu, 0, -weight);
4309 	}
4310 
4311 	tg = task_group(p);
4312 	weight = p->se.load.weight;
4313 
4314 	/*
4315 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4316 	 * due to the sync cause above having dropped this_load to 0, we'll
4317 	 * always have an imbalance, but there's really nothing you can do
4318 	 * about that, so that's good too.
4319 	 *
4320 	 * Otherwise check if either cpus are near enough in load to allow this
4321 	 * task to be woken on this_cpu.
4322 	 */
4323 	if (this_load > 0) {
4324 		s64 this_eff_load, prev_eff_load;
4325 
4326 		this_eff_load = 100;
4327 		this_eff_load *= capacity_of(prev_cpu);
4328 		this_eff_load *= this_load +
4329 			effective_load(tg, this_cpu, weight, weight);
4330 
4331 		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4332 		prev_eff_load *= capacity_of(this_cpu);
4333 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4334 
4335 		balanced = this_eff_load <= prev_eff_load;
4336 	} else
4337 		balanced = true;
4338 
4339 	/*
4340 	 * If the currently running task will sleep within
4341 	 * a reasonable amount of time then attract this newly
4342 	 * woken task:
4343 	 */
4344 	if (sync && balanced)
4345 		return 1;
4346 
4347 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4348 	tl_per_task = cpu_avg_load_per_task(this_cpu);
4349 
4350 	if (balanced ||
4351 	    (this_load <= load &&
4352 	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4353 		/*
4354 		 * This domain has SD_WAKE_AFFINE and
4355 		 * p is cache cold in this domain, and
4356 		 * there is no bad imbalance.
4357 		 */
4358 		schedstat_inc(sd, ttwu_move_affine);
4359 		schedstat_inc(p, se.statistics.nr_wakeups_affine);
4360 
4361 		return 1;
4362 	}
4363 	return 0;
4364 }
4365 
4366 /*
4367  * find_idlest_group finds and returns the least busy CPU group within the
4368  * domain.
4369  */
4370 static struct sched_group *
4371 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4372 		  int this_cpu, int sd_flag)
4373 {
4374 	struct sched_group *idlest = NULL, *group = sd->groups;
4375 	unsigned long min_load = ULONG_MAX, this_load = 0;
4376 	int load_idx = sd->forkexec_idx;
4377 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4378 
4379 	if (sd_flag & SD_BALANCE_WAKE)
4380 		load_idx = sd->wake_idx;
4381 
4382 	do {
4383 		unsigned long load, avg_load;
4384 		int local_group;
4385 		int i;
4386 
4387 		/* Skip over this group if it has no CPUs allowed */
4388 		if (!cpumask_intersects(sched_group_cpus(group),
4389 					tsk_cpus_allowed(p)))
4390 			continue;
4391 
4392 		local_group = cpumask_test_cpu(this_cpu,
4393 					       sched_group_cpus(group));
4394 
4395 		/* Tally up the load of all CPUs in the group */
4396 		avg_load = 0;
4397 
4398 		for_each_cpu(i, sched_group_cpus(group)) {
4399 			/* Bias balancing toward cpus of our domain */
4400 			if (local_group)
4401 				load = source_load(i, load_idx);
4402 			else
4403 				load = target_load(i, load_idx);
4404 
4405 			avg_load += load;
4406 		}
4407 
4408 		/* Adjust by relative CPU capacity of the group */
4409 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4410 
4411 		if (local_group) {
4412 			this_load = avg_load;
4413 		} else if (avg_load < min_load) {
4414 			min_load = avg_load;
4415 			idlest = group;
4416 		}
4417 	} while (group = group->next, group != sd->groups);
4418 
4419 	if (!idlest || 100*this_load < imbalance*min_load)
4420 		return NULL;
4421 	return idlest;
4422 }
4423 
4424 /*
4425  * find_idlest_cpu - find the idlest cpu among the cpus in group.
4426  */
4427 static int
4428 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4429 {
4430 	unsigned long load, min_load = ULONG_MAX;
4431 	int idlest = -1;
4432 	int i;
4433 
4434 	/* Traverse only the allowed CPUs */
4435 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4436 		load = weighted_cpuload(i);
4437 
4438 		if (load < min_load || (load == min_load && i == this_cpu)) {
4439 			min_load = load;
4440 			idlest = i;
4441 		}
4442 	}
4443 
4444 	return idlest;
4445 }
4446 
4447 /*
4448  * Try and locate an idle CPU in the sched_domain.
4449  */
4450 static int select_idle_sibling(struct task_struct *p, int target)
4451 {
4452 	struct sched_domain *sd;
4453 	struct sched_group *sg;
4454 	int i = task_cpu(p);
4455 
4456 	if (idle_cpu(target))
4457 		return target;
4458 
4459 	/*
4460 	 * If the prevous cpu is cache affine and idle, don't be stupid.
4461 	 */
4462 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4463 		return i;
4464 
4465 	/*
4466 	 * Otherwise, iterate the domains and find an elegible idle cpu.
4467 	 */
4468 	sd = rcu_dereference(per_cpu(sd_llc, target));
4469 	for_each_lower_domain(sd) {
4470 		sg = sd->groups;
4471 		do {
4472 			if (!cpumask_intersects(sched_group_cpus(sg),
4473 						tsk_cpus_allowed(p)))
4474 				goto next;
4475 
4476 			for_each_cpu(i, sched_group_cpus(sg)) {
4477 				if (i == target || !idle_cpu(i))
4478 					goto next;
4479 			}
4480 
4481 			target = cpumask_first_and(sched_group_cpus(sg),
4482 					tsk_cpus_allowed(p));
4483 			goto done;
4484 next:
4485 			sg = sg->next;
4486 		} while (sg != sd->groups);
4487 	}
4488 done:
4489 	return target;
4490 }
4491 
4492 /*
4493  * select_task_rq_fair: Select target runqueue for the waking task in domains
4494  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4495  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4496  *
4497  * Balances load by selecting the idlest cpu in the idlest group, or under
4498  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4499  *
4500  * Returns the target cpu number.
4501  *
4502  * preempt must be disabled.
4503  */
4504 static int
4505 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4506 {
4507 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4508 	int cpu = smp_processor_id();
4509 	int new_cpu = cpu;
4510 	int want_affine = 0;
4511 	int sync = wake_flags & WF_SYNC;
4512 
4513 	if (p->nr_cpus_allowed == 1)
4514 		return prev_cpu;
4515 
4516 	if (sd_flag & SD_BALANCE_WAKE) {
4517 		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4518 			want_affine = 1;
4519 		new_cpu = prev_cpu;
4520 	}
4521 
4522 	rcu_read_lock();
4523 	for_each_domain(cpu, tmp) {
4524 		if (!(tmp->flags & SD_LOAD_BALANCE))
4525 			continue;
4526 
4527 		/*
4528 		 * If both cpu and prev_cpu are part of this domain,
4529 		 * cpu is a valid SD_WAKE_AFFINE target.
4530 		 */
4531 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4532 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4533 			affine_sd = tmp;
4534 			break;
4535 		}
4536 
4537 		if (tmp->flags & sd_flag)
4538 			sd = tmp;
4539 	}
4540 
4541 	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4542 		prev_cpu = cpu;
4543 
4544 	if (sd_flag & SD_BALANCE_WAKE) {
4545 		new_cpu = select_idle_sibling(p, prev_cpu);
4546 		goto unlock;
4547 	}
4548 
4549 	while (sd) {
4550 		struct sched_group *group;
4551 		int weight;
4552 
4553 		if (!(sd->flags & sd_flag)) {
4554 			sd = sd->child;
4555 			continue;
4556 		}
4557 
4558 		group = find_idlest_group(sd, p, cpu, sd_flag);
4559 		if (!group) {
4560 			sd = sd->child;
4561 			continue;
4562 		}
4563 
4564 		new_cpu = find_idlest_cpu(group, p, cpu);
4565 		if (new_cpu == -1 || new_cpu == cpu) {
4566 			/* Now try balancing at a lower domain level of cpu */
4567 			sd = sd->child;
4568 			continue;
4569 		}
4570 
4571 		/* Now try balancing at a lower domain level of new_cpu */
4572 		cpu = new_cpu;
4573 		weight = sd->span_weight;
4574 		sd = NULL;
4575 		for_each_domain(cpu, tmp) {
4576 			if (weight <= tmp->span_weight)
4577 				break;
4578 			if (tmp->flags & sd_flag)
4579 				sd = tmp;
4580 		}
4581 		/* while loop will break here if sd == NULL */
4582 	}
4583 unlock:
4584 	rcu_read_unlock();
4585 
4586 	return new_cpu;
4587 }
4588 
4589 /*
4590  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4591  * cfs_rq_of(p) references at time of call are still valid and identify the
4592  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4593  * other assumptions, including the state of rq->lock, should be made.
4594  */
4595 static void
4596 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4597 {
4598 	struct sched_entity *se = &p->se;
4599 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4600 
4601 	/*
4602 	 * Load tracking: accumulate removed load so that it can be processed
4603 	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
4604 	 * to blocked load iff they have a positive decay-count.  It can never
4605 	 * be negative here since on-rq tasks have decay-count == 0.
4606 	 */
4607 	if (se->avg.decay_count) {
4608 		se->avg.decay_count = -__synchronize_entity_decay(se);
4609 		atomic_long_add(se->avg.load_avg_contrib,
4610 						&cfs_rq->removed_load);
4611 	}
4612 
4613 	/* We have migrated, no longer consider this task hot */
4614 	se->exec_start = 0;
4615 }
4616 #endif /* CONFIG_SMP */
4617 
4618 static unsigned long
4619 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4620 {
4621 	unsigned long gran = sysctl_sched_wakeup_granularity;
4622 
4623 	/*
4624 	 * Since its curr running now, convert the gran from real-time
4625 	 * to virtual-time in his units.
4626 	 *
4627 	 * By using 'se' instead of 'curr' we penalize light tasks, so
4628 	 * they get preempted easier. That is, if 'se' < 'curr' then
4629 	 * the resulting gran will be larger, therefore penalizing the
4630 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4631 	 * be smaller, again penalizing the lighter task.
4632 	 *
4633 	 * This is especially important for buddies when the leftmost
4634 	 * task is higher priority than the buddy.
4635 	 */
4636 	return calc_delta_fair(gran, se);
4637 }
4638 
4639 /*
4640  * Should 'se' preempt 'curr'.
4641  *
4642  *             |s1
4643  *        |s2
4644  *   |s3
4645  *         g
4646  *      |<--->|c
4647  *
4648  *  w(c, s1) = -1
4649  *  w(c, s2) =  0
4650  *  w(c, s3) =  1
4651  *
4652  */
4653 static int
4654 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4655 {
4656 	s64 gran, vdiff = curr->vruntime - se->vruntime;
4657 
4658 	if (vdiff <= 0)
4659 		return -1;
4660 
4661 	gran = wakeup_gran(curr, se);
4662 	if (vdiff > gran)
4663 		return 1;
4664 
4665 	return 0;
4666 }
4667 
4668 static void set_last_buddy(struct sched_entity *se)
4669 {
4670 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4671 		return;
4672 
4673 	for_each_sched_entity(se)
4674 		cfs_rq_of(se)->last = se;
4675 }
4676 
4677 static void set_next_buddy(struct sched_entity *se)
4678 {
4679 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4680 		return;
4681 
4682 	for_each_sched_entity(se)
4683 		cfs_rq_of(se)->next = se;
4684 }
4685 
4686 static void set_skip_buddy(struct sched_entity *se)
4687 {
4688 	for_each_sched_entity(se)
4689 		cfs_rq_of(se)->skip = se;
4690 }
4691 
4692 /*
4693  * Preempt the current task with a newly woken task if needed:
4694  */
4695 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4696 {
4697 	struct task_struct *curr = rq->curr;
4698 	struct sched_entity *se = &curr->se, *pse = &p->se;
4699 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4700 	int scale = cfs_rq->nr_running >= sched_nr_latency;
4701 	int next_buddy_marked = 0;
4702 
4703 	if (unlikely(se == pse))
4704 		return;
4705 
4706 	/*
4707 	 * This is possible from callers such as move_task(), in which we
4708 	 * unconditionally check_prempt_curr() after an enqueue (which may have
4709 	 * lead to a throttle).  This both saves work and prevents false
4710 	 * next-buddy nomination below.
4711 	 */
4712 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4713 		return;
4714 
4715 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4716 		set_next_buddy(pse);
4717 		next_buddy_marked = 1;
4718 	}
4719 
4720 	/*
4721 	 * We can come here with TIF_NEED_RESCHED already set from new task
4722 	 * wake up path.
4723 	 *
4724 	 * Note: this also catches the edge-case of curr being in a throttled
4725 	 * group (e.g. via set_curr_task), since update_curr() (in the
4726 	 * enqueue of curr) will have resulted in resched being set.  This
4727 	 * prevents us from potentially nominating it as a false LAST_BUDDY
4728 	 * below.
4729 	 */
4730 	if (test_tsk_need_resched(curr))
4731 		return;
4732 
4733 	/* Idle tasks are by definition preempted by non-idle tasks. */
4734 	if (unlikely(curr->policy == SCHED_IDLE) &&
4735 	    likely(p->policy != SCHED_IDLE))
4736 		goto preempt;
4737 
4738 	/*
4739 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4740 	 * is driven by the tick):
4741 	 */
4742 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4743 		return;
4744 
4745 	find_matching_se(&se, &pse);
4746 	update_curr(cfs_rq_of(se));
4747 	BUG_ON(!pse);
4748 	if (wakeup_preempt_entity(se, pse) == 1) {
4749 		/*
4750 		 * Bias pick_next to pick the sched entity that is
4751 		 * triggering this preemption.
4752 		 */
4753 		if (!next_buddy_marked)
4754 			set_next_buddy(pse);
4755 		goto preempt;
4756 	}
4757 
4758 	return;
4759 
4760 preempt:
4761 	resched_curr(rq);
4762 	/*
4763 	 * Only set the backward buddy when the current task is still
4764 	 * on the rq. This can happen when a wakeup gets interleaved
4765 	 * with schedule on the ->pre_schedule() or idle_balance()
4766 	 * point, either of which can * drop the rq lock.
4767 	 *
4768 	 * Also, during early boot the idle thread is in the fair class,
4769 	 * for obvious reasons its a bad idea to schedule back to it.
4770 	 */
4771 	if (unlikely(!se->on_rq || curr == rq->idle))
4772 		return;
4773 
4774 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4775 		set_last_buddy(se);
4776 }
4777 
4778 static struct task_struct *
4779 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4780 {
4781 	struct cfs_rq *cfs_rq = &rq->cfs;
4782 	struct sched_entity *se;
4783 	struct task_struct *p;
4784 	int new_tasks;
4785 
4786 again:
4787 #ifdef CONFIG_FAIR_GROUP_SCHED
4788 	if (!cfs_rq->nr_running)
4789 		goto idle;
4790 
4791 	if (prev->sched_class != &fair_sched_class)
4792 		goto simple;
4793 
4794 	/*
4795 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4796 	 * likely that a next task is from the same cgroup as the current.
4797 	 *
4798 	 * Therefore attempt to avoid putting and setting the entire cgroup
4799 	 * hierarchy, only change the part that actually changes.
4800 	 */
4801 
4802 	do {
4803 		struct sched_entity *curr = cfs_rq->curr;
4804 
4805 		/*
4806 		 * Since we got here without doing put_prev_entity() we also
4807 		 * have to consider cfs_rq->curr. If it is still a runnable
4808 		 * entity, update_curr() will update its vruntime, otherwise
4809 		 * forget we've ever seen it.
4810 		 */
4811 		if (curr && curr->on_rq)
4812 			update_curr(cfs_rq);
4813 		else
4814 			curr = NULL;
4815 
4816 		/*
4817 		 * This call to check_cfs_rq_runtime() will do the throttle and
4818 		 * dequeue its entity in the parent(s). Therefore the 'simple'
4819 		 * nr_running test will indeed be correct.
4820 		 */
4821 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4822 			goto simple;
4823 
4824 		se = pick_next_entity(cfs_rq, curr);
4825 		cfs_rq = group_cfs_rq(se);
4826 	} while (cfs_rq);
4827 
4828 	p = task_of(se);
4829 
4830 	/*
4831 	 * Since we haven't yet done put_prev_entity and if the selected task
4832 	 * is a different task than we started out with, try and touch the
4833 	 * least amount of cfs_rqs.
4834 	 */
4835 	if (prev != p) {
4836 		struct sched_entity *pse = &prev->se;
4837 
4838 		while (!(cfs_rq = is_same_group(se, pse))) {
4839 			int se_depth = se->depth;
4840 			int pse_depth = pse->depth;
4841 
4842 			if (se_depth <= pse_depth) {
4843 				put_prev_entity(cfs_rq_of(pse), pse);
4844 				pse = parent_entity(pse);
4845 			}
4846 			if (se_depth >= pse_depth) {
4847 				set_next_entity(cfs_rq_of(se), se);
4848 				se = parent_entity(se);
4849 			}
4850 		}
4851 
4852 		put_prev_entity(cfs_rq, pse);
4853 		set_next_entity(cfs_rq, se);
4854 	}
4855 
4856 	if (hrtick_enabled(rq))
4857 		hrtick_start_fair(rq, p);
4858 
4859 	return p;
4860 simple:
4861 	cfs_rq = &rq->cfs;
4862 #endif
4863 
4864 	if (!cfs_rq->nr_running)
4865 		goto idle;
4866 
4867 	put_prev_task(rq, prev);
4868 
4869 	do {
4870 		se = pick_next_entity(cfs_rq, NULL);
4871 		set_next_entity(cfs_rq, se);
4872 		cfs_rq = group_cfs_rq(se);
4873 	} while (cfs_rq);
4874 
4875 	p = task_of(se);
4876 
4877 	if (hrtick_enabled(rq))
4878 		hrtick_start_fair(rq, p);
4879 
4880 	return p;
4881 
4882 idle:
4883 	new_tasks = idle_balance(rq);
4884 	/*
4885 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4886 	 * possible for any higher priority task to appear. In that case we
4887 	 * must re-start the pick_next_entity() loop.
4888 	 */
4889 	if (new_tasks < 0)
4890 		return RETRY_TASK;
4891 
4892 	if (new_tasks > 0)
4893 		goto again;
4894 
4895 	return NULL;
4896 }
4897 
4898 /*
4899  * Account for a descheduled task:
4900  */
4901 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4902 {
4903 	struct sched_entity *se = &prev->se;
4904 	struct cfs_rq *cfs_rq;
4905 
4906 	for_each_sched_entity(se) {
4907 		cfs_rq = cfs_rq_of(se);
4908 		put_prev_entity(cfs_rq, se);
4909 	}
4910 }
4911 
4912 /*
4913  * sched_yield() is very simple
4914  *
4915  * The magic of dealing with the ->skip buddy is in pick_next_entity.
4916  */
4917 static void yield_task_fair(struct rq *rq)
4918 {
4919 	struct task_struct *curr = rq->curr;
4920 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4921 	struct sched_entity *se = &curr->se;
4922 
4923 	/*
4924 	 * Are we the only task in the tree?
4925 	 */
4926 	if (unlikely(rq->nr_running == 1))
4927 		return;
4928 
4929 	clear_buddies(cfs_rq, se);
4930 
4931 	if (curr->policy != SCHED_BATCH) {
4932 		update_rq_clock(rq);
4933 		/*
4934 		 * Update run-time statistics of the 'current'.
4935 		 */
4936 		update_curr(cfs_rq);
4937 		/*
4938 		 * Tell update_rq_clock() that we've just updated,
4939 		 * so we don't do microscopic update in schedule()
4940 		 * and double the fastpath cost.
4941 		 */
4942 		 rq->skip_clock_update = 1;
4943 	}
4944 
4945 	set_skip_buddy(se);
4946 }
4947 
4948 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4949 {
4950 	struct sched_entity *se = &p->se;
4951 
4952 	/* throttled hierarchies are not runnable */
4953 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4954 		return false;
4955 
4956 	/* Tell the scheduler that we'd really like pse to run next. */
4957 	set_next_buddy(se);
4958 
4959 	yield_task_fair(rq);
4960 
4961 	return true;
4962 }
4963 
4964 #ifdef CONFIG_SMP
4965 /**************************************************
4966  * Fair scheduling class load-balancing methods.
4967  *
4968  * BASICS
4969  *
4970  * The purpose of load-balancing is to achieve the same basic fairness the
4971  * per-cpu scheduler provides, namely provide a proportional amount of compute
4972  * time to each task. This is expressed in the following equation:
4973  *
4974  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
4975  *
4976  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4977  * W_i,0 is defined as:
4978  *
4979  *   W_i,0 = \Sum_j w_i,j                                             (2)
4980  *
4981  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4982  * is derived from the nice value as per prio_to_weight[].
4983  *
4984  * The weight average is an exponential decay average of the instantaneous
4985  * weight:
4986  *
4987  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
4988  *
4989  * C_i is the compute capacity of cpu i, typically it is the
4990  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4991  * can also include other factors [XXX].
4992  *
4993  * To achieve this balance we define a measure of imbalance which follows
4994  * directly from (1):
4995  *
4996  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
4997  *
4998  * We them move tasks around to minimize the imbalance. In the continuous
4999  * function space it is obvious this converges, in the discrete case we get
5000  * a few fun cases generally called infeasible weight scenarios.
5001  *
5002  * [XXX expand on:
5003  *     - infeasible weights;
5004  *     - local vs global optima in the discrete case. ]
5005  *
5006  *
5007  * SCHED DOMAINS
5008  *
5009  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5010  * for all i,j solution, we create a tree of cpus that follows the hardware
5011  * topology where each level pairs two lower groups (or better). This results
5012  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5013  * tree to only the first of the previous level and we decrease the frequency
5014  * of load-balance at each level inv. proportional to the number of cpus in
5015  * the groups.
5016  *
5017  * This yields:
5018  *
5019  *     log_2 n     1     n
5020  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5021  *     i = 0      2^i   2^i
5022  *                               `- size of each group
5023  *         |         |     `- number of cpus doing load-balance
5024  *         |         `- freq
5025  *         `- sum over all levels
5026  *
5027  * Coupled with a limit on how many tasks we can migrate every balance pass,
5028  * this makes (5) the runtime complexity of the balancer.
5029  *
5030  * An important property here is that each CPU is still (indirectly) connected
5031  * to every other cpu in at most O(log n) steps:
5032  *
5033  * The adjacency matrix of the resulting graph is given by:
5034  *
5035  *             log_2 n
5036  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5037  *             k = 0
5038  *
5039  * And you'll find that:
5040  *
5041  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5042  *
5043  * Showing there's indeed a path between every cpu in at most O(log n) steps.
5044  * The task movement gives a factor of O(m), giving a convergence complexity
5045  * of:
5046  *
5047  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5048  *
5049  *
5050  * WORK CONSERVING
5051  *
5052  * In order to avoid CPUs going idle while there's still work to do, new idle
5053  * balancing is more aggressive and has the newly idle cpu iterate up the domain
5054  * tree itself instead of relying on other CPUs to bring it work.
5055  *
5056  * This adds some complexity to both (5) and (8) but it reduces the total idle
5057  * time.
5058  *
5059  * [XXX more?]
5060  *
5061  *
5062  * CGROUPS
5063  *
5064  * Cgroups make a horror show out of (2), instead of a simple sum we get:
5065  *
5066  *                                s_k,i
5067  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5068  *                                 S_k
5069  *
5070  * Where
5071  *
5072  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5073  *
5074  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5075  *
5076  * The big problem is S_k, its a global sum needed to compute a local (W_i)
5077  * property.
5078  *
5079  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5080  *      rewrite all of this once again.]
5081  */
5082 
5083 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5084 
5085 enum fbq_type { regular, remote, all };
5086 
5087 #define LBF_ALL_PINNED	0x01
5088 #define LBF_NEED_BREAK	0x02
5089 #define LBF_DST_PINNED  0x04
5090 #define LBF_SOME_PINNED	0x08
5091 
5092 struct lb_env {
5093 	struct sched_domain	*sd;
5094 
5095 	struct rq		*src_rq;
5096 	int			src_cpu;
5097 
5098 	int			dst_cpu;
5099 	struct rq		*dst_rq;
5100 
5101 	struct cpumask		*dst_grpmask;
5102 	int			new_dst_cpu;
5103 	enum cpu_idle_type	idle;
5104 	long			imbalance;
5105 	/* The set of CPUs under consideration for load-balancing */
5106 	struct cpumask		*cpus;
5107 
5108 	unsigned int		flags;
5109 
5110 	unsigned int		loop;
5111 	unsigned int		loop_break;
5112 	unsigned int		loop_max;
5113 
5114 	enum fbq_type		fbq_type;
5115 };
5116 
5117 /*
5118  * move_task - move a task from one runqueue to another runqueue.
5119  * Both runqueues must be locked.
5120  */
5121 static void move_task(struct task_struct *p, struct lb_env *env)
5122 {
5123 	deactivate_task(env->src_rq, p, 0);
5124 	set_task_cpu(p, env->dst_cpu);
5125 	activate_task(env->dst_rq, p, 0);
5126 	check_preempt_curr(env->dst_rq, p, 0);
5127 }
5128 
5129 /*
5130  * Is this task likely cache-hot:
5131  */
5132 static int task_hot(struct task_struct *p, struct lb_env *env)
5133 {
5134 	s64 delta;
5135 
5136 	if (p->sched_class != &fair_sched_class)
5137 		return 0;
5138 
5139 	if (unlikely(p->policy == SCHED_IDLE))
5140 		return 0;
5141 
5142 	/*
5143 	 * Buddy candidates are cache hot:
5144 	 */
5145 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5146 			(&p->se == cfs_rq_of(&p->se)->next ||
5147 			 &p->se == cfs_rq_of(&p->se)->last))
5148 		return 1;
5149 
5150 	if (sysctl_sched_migration_cost == -1)
5151 		return 1;
5152 	if (sysctl_sched_migration_cost == 0)
5153 		return 0;
5154 
5155 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5156 
5157 	return delta < (s64)sysctl_sched_migration_cost;
5158 }
5159 
5160 #ifdef CONFIG_NUMA_BALANCING
5161 /* Returns true if the destination node has incurred more faults */
5162 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5163 {
5164 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5165 	int src_nid, dst_nid;
5166 
5167 	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5168 	    !(env->sd->flags & SD_NUMA)) {
5169 		return false;
5170 	}
5171 
5172 	src_nid = cpu_to_node(env->src_cpu);
5173 	dst_nid = cpu_to_node(env->dst_cpu);
5174 
5175 	if (src_nid == dst_nid)
5176 		return false;
5177 
5178 	if (numa_group) {
5179 		/* Task is already in the group's interleave set. */
5180 		if (node_isset(src_nid, numa_group->active_nodes))
5181 			return false;
5182 
5183 		/* Task is moving into the group's interleave set. */
5184 		if (node_isset(dst_nid, numa_group->active_nodes))
5185 			return true;
5186 
5187 		return group_faults(p, dst_nid) > group_faults(p, src_nid);
5188 	}
5189 
5190 	/* Encourage migration to the preferred node. */
5191 	if (dst_nid == p->numa_preferred_nid)
5192 		return true;
5193 
5194 	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5195 }
5196 
5197 
5198 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5199 {
5200 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5201 	int src_nid, dst_nid;
5202 
5203 	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5204 		return false;
5205 
5206 	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5207 		return false;
5208 
5209 	src_nid = cpu_to_node(env->src_cpu);
5210 	dst_nid = cpu_to_node(env->dst_cpu);
5211 
5212 	if (src_nid == dst_nid)
5213 		return false;
5214 
5215 	if (numa_group) {
5216 		/* Task is moving within/into the group's interleave set. */
5217 		if (node_isset(dst_nid, numa_group->active_nodes))
5218 			return false;
5219 
5220 		/* Task is moving out of the group's interleave set. */
5221 		if (node_isset(src_nid, numa_group->active_nodes))
5222 			return true;
5223 
5224 		return group_faults(p, dst_nid) < group_faults(p, src_nid);
5225 	}
5226 
5227 	/* Migrating away from the preferred node is always bad. */
5228 	if (src_nid == p->numa_preferred_nid)
5229 		return true;
5230 
5231 	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5232 }
5233 
5234 #else
5235 static inline bool migrate_improves_locality(struct task_struct *p,
5236 					     struct lb_env *env)
5237 {
5238 	return false;
5239 }
5240 
5241 static inline bool migrate_degrades_locality(struct task_struct *p,
5242 					     struct lb_env *env)
5243 {
5244 	return false;
5245 }
5246 #endif
5247 
5248 /*
5249  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5250  */
5251 static
5252 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5253 {
5254 	int tsk_cache_hot = 0;
5255 	/*
5256 	 * We do not migrate tasks that are:
5257 	 * 1) throttled_lb_pair, or
5258 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5259 	 * 3) running (obviously), or
5260 	 * 4) are cache-hot on their current CPU.
5261 	 */
5262 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5263 		return 0;
5264 
5265 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5266 		int cpu;
5267 
5268 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5269 
5270 		env->flags |= LBF_SOME_PINNED;
5271 
5272 		/*
5273 		 * Remember if this task can be migrated to any other cpu in
5274 		 * our sched_group. We may want to revisit it if we couldn't
5275 		 * meet load balance goals by pulling other tasks on src_cpu.
5276 		 *
5277 		 * Also avoid computing new_dst_cpu if we have already computed
5278 		 * one in current iteration.
5279 		 */
5280 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5281 			return 0;
5282 
5283 		/* Prevent to re-select dst_cpu via env's cpus */
5284 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5285 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5286 				env->flags |= LBF_DST_PINNED;
5287 				env->new_dst_cpu = cpu;
5288 				break;
5289 			}
5290 		}
5291 
5292 		return 0;
5293 	}
5294 
5295 	/* Record that we found atleast one task that could run on dst_cpu */
5296 	env->flags &= ~LBF_ALL_PINNED;
5297 
5298 	if (task_running(env->src_rq, p)) {
5299 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5300 		return 0;
5301 	}
5302 
5303 	/*
5304 	 * Aggressive migration if:
5305 	 * 1) destination numa is preferred
5306 	 * 2) task is cache cold, or
5307 	 * 3) too many balance attempts have failed.
5308 	 */
5309 	tsk_cache_hot = task_hot(p, env);
5310 	if (!tsk_cache_hot)
5311 		tsk_cache_hot = migrate_degrades_locality(p, env);
5312 
5313 	if (migrate_improves_locality(p, env)) {
5314 #ifdef CONFIG_SCHEDSTATS
5315 		if (tsk_cache_hot) {
5316 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5317 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5318 		}
5319 #endif
5320 		return 1;
5321 	}
5322 
5323 	if (!tsk_cache_hot ||
5324 		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5325 
5326 		if (tsk_cache_hot) {
5327 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5328 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5329 		}
5330 
5331 		return 1;
5332 	}
5333 
5334 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5335 	return 0;
5336 }
5337 
5338 /*
5339  * move_one_task tries to move exactly one task from busiest to this_rq, as
5340  * part of active balancing operations within "domain".
5341  * Returns 1 if successful and 0 otherwise.
5342  *
5343  * Called with both runqueues locked.
5344  */
5345 static int move_one_task(struct lb_env *env)
5346 {
5347 	struct task_struct *p, *n;
5348 
5349 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5350 		if (!can_migrate_task(p, env))
5351 			continue;
5352 
5353 		move_task(p, env);
5354 		/*
5355 		 * Right now, this is only the second place move_task()
5356 		 * is called, so we can safely collect move_task()
5357 		 * stats here rather than inside move_task().
5358 		 */
5359 		schedstat_inc(env->sd, lb_gained[env->idle]);
5360 		return 1;
5361 	}
5362 	return 0;
5363 }
5364 
5365 static const unsigned int sched_nr_migrate_break = 32;
5366 
5367 /*
5368  * move_tasks tries to move up to imbalance weighted load from busiest to
5369  * this_rq, as part of a balancing operation within domain "sd".
5370  * Returns 1 if successful and 0 otherwise.
5371  *
5372  * Called with both runqueues locked.
5373  */
5374 static int move_tasks(struct lb_env *env)
5375 {
5376 	struct list_head *tasks = &env->src_rq->cfs_tasks;
5377 	struct task_struct *p;
5378 	unsigned long load;
5379 	int pulled = 0;
5380 
5381 	if (env->imbalance <= 0)
5382 		return 0;
5383 
5384 	while (!list_empty(tasks)) {
5385 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5386 
5387 		env->loop++;
5388 		/* We've more or less seen every task there is, call it quits */
5389 		if (env->loop > env->loop_max)
5390 			break;
5391 
5392 		/* take a breather every nr_migrate tasks */
5393 		if (env->loop > env->loop_break) {
5394 			env->loop_break += sched_nr_migrate_break;
5395 			env->flags |= LBF_NEED_BREAK;
5396 			break;
5397 		}
5398 
5399 		if (!can_migrate_task(p, env))
5400 			goto next;
5401 
5402 		load = task_h_load(p);
5403 
5404 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5405 			goto next;
5406 
5407 		if ((load / 2) > env->imbalance)
5408 			goto next;
5409 
5410 		move_task(p, env);
5411 		pulled++;
5412 		env->imbalance -= load;
5413 
5414 #ifdef CONFIG_PREEMPT
5415 		/*
5416 		 * NEWIDLE balancing is a source of latency, so preemptible
5417 		 * kernels will stop after the first task is pulled to minimize
5418 		 * the critical section.
5419 		 */
5420 		if (env->idle == CPU_NEWLY_IDLE)
5421 			break;
5422 #endif
5423 
5424 		/*
5425 		 * We only want to steal up to the prescribed amount of
5426 		 * weighted load.
5427 		 */
5428 		if (env->imbalance <= 0)
5429 			break;
5430 
5431 		continue;
5432 next:
5433 		list_move_tail(&p->se.group_node, tasks);
5434 	}
5435 
5436 	/*
5437 	 * Right now, this is one of only two places move_task() is called,
5438 	 * so we can safely collect move_task() stats here rather than
5439 	 * inside move_task().
5440 	 */
5441 	schedstat_add(env->sd, lb_gained[env->idle], pulled);
5442 
5443 	return pulled;
5444 }
5445 
5446 #ifdef CONFIG_FAIR_GROUP_SCHED
5447 /*
5448  * update tg->load_weight by folding this cpu's load_avg
5449  */
5450 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5451 {
5452 	struct sched_entity *se = tg->se[cpu];
5453 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5454 
5455 	/* throttled entities do not contribute to load */
5456 	if (throttled_hierarchy(cfs_rq))
5457 		return;
5458 
5459 	update_cfs_rq_blocked_load(cfs_rq, 1);
5460 
5461 	if (se) {
5462 		update_entity_load_avg(se, 1);
5463 		/*
5464 		 * We pivot on our runnable average having decayed to zero for
5465 		 * list removal.  This generally implies that all our children
5466 		 * have also been removed (modulo rounding error or bandwidth
5467 		 * control); however, such cases are rare and we can fix these
5468 		 * at enqueue.
5469 		 *
5470 		 * TODO: fix up out-of-order children on enqueue.
5471 		 */
5472 		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5473 			list_del_leaf_cfs_rq(cfs_rq);
5474 	} else {
5475 		struct rq *rq = rq_of(cfs_rq);
5476 		update_rq_runnable_avg(rq, rq->nr_running);
5477 	}
5478 }
5479 
5480 static void update_blocked_averages(int cpu)
5481 {
5482 	struct rq *rq = cpu_rq(cpu);
5483 	struct cfs_rq *cfs_rq;
5484 	unsigned long flags;
5485 
5486 	raw_spin_lock_irqsave(&rq->lock, flags);
5487 	update_rq_clock(rq);
5488 	/*
5489 	 * Iterates the task_group tree in a bottom up fashion, see
5490 	 * list_add_leaf_cfs_rq() for details.
5491 	 */
5492 	for_each_leaf_cfs_rq(rq, cfs_rq) {
5493 		/*
5494 		 * Note: We may want to consider periodically releasing
5495 		 * rq->lock about these updates so that creating many task
5496 		 * groups does not result in continually extending hold time.
5497 		 */
5498 		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5499 	}
5500 
5501 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5502 }
5503 
5504 /*
5505  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5506  * This needs to be done in a top-down fashion because the load of a child
5507  * group is a fraction of its parents load.
5508  */
5509 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5510 {
5511 	struct rq *rq = rq_of(cfs_rq);
5512 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5513 	unsigned long now = jiffies;
5514 	unsigned long load;
5515 
5516 	if (cfs_rq->last_h_load_update == now)
5517 		return;
5518 
5519 	cfs_rq->h_load_next = NULL;
5520 	for_each_sched_entity(se) {
5521 		cfs_rq = cfs_rq_of(se);
5522 		cfs_rq->h_load_next = se;
5523 		if (cfs_rq->last_h_load_update == now)
5524 			break;
5525 	}
5526 
5527 	if (!se) {
5528 		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5529 		cfs_rq->last_h_load_update = now;
5530 	}
5531 
5532 	while ((se = cfs_rq->h_load_next) != NULL) {
5533 		load = cfs_rq->h_load;
5534 		load = div64_ul(load * se->avg.load_avg_contrib,
5535 				cfs_rq->runnable_load_avg + 1);
5536 		cfs_rq = group_cfs_rq(se);
5537 		cfs_rq->h_load = load;
5538 		cfs_rq->last_h_load_update = now;
5539 	}
5540 }
5541 
5542 static unsigned long task_h_load(struct task_struct *p)
5543 {
5544 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5545 
5546 	update_cfs_rq_h_load(cfs_rq);
5547 	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5548 			cfs_rq->runnable_load_avg + 1);
5549 }
5550 #else
5551 static inline void update_blocked_averages(int cpu)
5552 {
5553 }
5554 
5555 static unsigned long task_h_load(struct task_struct *p)
5556 {
5557 	return p->se.avg.load_avg_contrib;
5558 }
5559 #endif
5560 
5561 /********** Helpers for find_busiest_group ************************/
5562 /*
5563  * sg_lb_stats - stats of a sched_group required for load_balancing
5564  */
5565 struct sg_lb_stats {
5566 	unsigned long avg_load; /*Avg load across the CPUs of the group */
5567 	unsigned long group_load; /* Total load over the CPUs of the group */
5568 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5569 	unsigned long load_per_task;
5570 	unsigned long group_capacity;
5571 	unsigned int sum_nr_running; /* Nr tasks running in the group */
5572 	unsigned int group_capacity_factor;
5573 	unsigned int idle_cpus;
5574 	unsigned int group_weight;
5575 	int group_imb; /* Is there an imbalance in the group ? */
5576 	int group_has_free_capacity;
5577 #ifdef CONFIG_NUMA_BALANCING
5578 	unsigned int nr_numa_running;
5579 	unsigned int nr_preferred_running;
5580 #endif
5581 };
5582 
5583 /*
5584  * sd_lb_stats - Structure to store the statistics of a sched_domain
5585  *		 during load balancing.
5586  */
5587 struct sd_lb_stats {
5588 	struct sched_group *busiest;	/* Busiest group in this sd */
5589 	struct sched_group *local;	/* Local group in this sd */
5590 	unsigned long total_load;	/* Total load of all groups in sd */
5591 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
5592 	unsigned long avg_load;	/* Average load across all groups in sd */
5593 
5594 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5595 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5596 };
5597 
5598 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5599 {
5600 	/*
5601 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5602 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5603 	 * We must however clear busiest_stat::avg_load because
5604 	 * update_sd_pick_busiest() reads this before assignment.
5605 	 */
5606 	*sds = (struct sd_lb_stats){
5607 		.busiest = NULL,
5608 		.local = NULL,
5609 		.total_load = 0UL,
5610 		.total_capacity = 0UL,
5611 		.busiest_stat = {
5612 			.avg_load = 0UL,
5613 		},
5614 	};
5615 }
5616 
5617 /**
5618  * get_sd_load_idx - Obtain the load index for a given sched domain.
5619  * @sd: The sched_domain whose load_idx is to be obtained.
5620  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5621  *
5622  * Return: The load index.
5623  */
5624 static inline int get_sd_load_idx(struct sched_domain *sd,
5625 					enum cpu_idle_type idle)
5626 {
5627 	int load_idx;
5628 
5629 	switch (idle) {
5630 	case CPU_NOT_IDLE:
5631 		load_idx = sd->busy_idx;
5632 		break;
5633 
5634 	case CPU_NEWLY_IDLE:
5635 		load_idx = sd->newidle_idx;
5636 		break;
5637 	default:
5638 		load_idx = sd->idle_idx;
5639 		break;
5640 	}
5641 
5642 	return load_idx;
5643 }
5644 
5645 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5646 {
5647 	return SCHED_CAPACITY_SCALE;
5648 }
5649 
5650 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5651 {
5652 	return default_scale_capacity(sd, cpu);
5653 }
5654 
5655 static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
5656 {
5657 	unsigned long weight = sd->span_weight;
5658 	unsigned long smt_gain = sd->smt_gain;
5659 
5660 	smt_gain /= weight;
5661 
5662 	return smt_gain;
5663 }
5664 
5665 unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
5666 {
5667 	return default_scale_smt_capacity(sd, cpu);
5668 }
5669 
5670 static unsigned long scale_rt_capacity(int cpu)
5671 {
5672 	struct rq *rq = cpu_rq(cpu);
5673 	u64 total, available, age_stamp, avg;
5674 	s64 delta;
5675 
5676 	/*
5677 	 * Since we're reading these variables without serialization make sure
5678 	 * we read them once before doing sanity checks on them.
5679 	 */
5680 	age_stamp = ACCESS_ONCE(rq->age_stamp);
5681 	avg = ACCESS_ONCE(rq->rt_avg);
5682 
5683 	delta = rq_clock(rq) - age_stamp;
5684 	if (unlikely(delta < 0))
5685 		delta = 0;
5686 
5687 	total = sched_avg_period() + delta;
5688 
5689 	if (unlikely(total < avg)) {
5690 		/* Ensures that capacity won't end up being negative */
5691 		available = 0;
5692 	} else {
5693 		available = total - avg;
5694 	}
5695 
5696 	if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5697 		total = SCHED_CAPACITY_SCALE;
5698 
5699 	total >>= SCHED_CAPACITY_SHIFT;
5700 
5701 	return div_u64(available, total);
5702 }
5703 
5704 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5705 {
5706 	unsigned long weight = sd->span_weight;
5707 	unsigned long capacity = SCHED_CAPACITY_SCALE;
5708 	struct sched_group *sdg = sd->groups;
5709 
5710 	if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
5711 		if (sched_feat(ARCH_CAPACITY))
5712 			capacity *= arch_scale_smt_capacity(sd, cpu);
5713 		else
5714 			capacity *= default_scale_smt_capacity(sd, cpu);
5715 
5716 		capacity >>= SCHED_CAPACITY_SHIFT;
5717 	}
5718 
5719 	sdg->sgc->capacity_orig = capacity;
5720 
5721 	if (sched_feat(ARCH_CAPACITY))
5722 		capacity *= arch_scale_freq_capacity(sd, cpu);
5723 	else
5724 		capacity *= default_scale_capacity(sd, cpu);
5725 
5726 	capacity >>= SCHED_CAPACITY_SHIFT;
5727 
5728 	capacity *= scale_rt_capacity(cpu);
5729 	capacity >>= SCHED_CAPACITY_SHIFT;
5730 
5731 	if (!capacity)
5732 		capacity = 1;
5733 
5734 	cpu_rq(cpu)->cpu_capacity = capacity;
5735 	sdg->sgc->capacity = capacity;
5736 }
5737 
5738 void update_group_capacity(struct sched_domain *sd, int cpu)
5739 {
5740 	struct sched_domain *child = sd->child;
5741 	struct sched_group *group, *sdg = sd->groups;
5742 	unsigned long capacity, capacity_orig;
5743 	unsigned long interval;
5744 
5745 	interval = msecs_to_jiffies(sd->balance_interval);
5746 	interval = clamp(interval, 1UL, max_load_balance_interval);
5747 	sdg->sgc->next_update = jiffies + interval;
5748 
5749 	if (!child) {
5750 		update_cpu_capacity(sd, cpu);
5751 		return;
5752 	}
5753 
5754 	capacity_orig = capacity = 0;
5755 
5756 	if (child->flags & SD_OVERLAP) {
5757 		/*
5758 		 * SD_OVERLAP domains cannot assume that child groups
5759 		 * span the current group.
5760 		 */
5761 
5762 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5763 			struct sched_group_capacity *sgc;
5764 			struct rq *rq = cpu_rq(cpu);
5765 
5766 			/*
5767 			 * build_sched_domains() -> init_sched_groups_capacity()
5768 			 * gets here before we've attached the domains to the
5769 			 * runqueues.
5770 			 *
5771 			 * Use capacity_of(), which is set irrespective of domains
5772 			 * in update_cpu_capacity().
5773 			 *
5774 			 * This avoids capacity/capacity_orig from being 0 and
5775 			 * causing divide-by-zero issues on boot.
5776 			 *
5777 			 * Runtime updates will correct capacity_orig.
5778 			 */
5779 			if (unlikely(!rq->sd)) {
5780 				capacity_orig += capacity_of(cpu);
5781 				capacity += capacity_of(cpu);
5782 				continue;
5783 			}
5784 
5785 			sgc = rq->sd->groups->sgc;
5786 			capacity_orig += sgc->capacity_orig;
5787 			capacity += sgc->capacity;
5788 		}
5789 	} else  {
5790 		/*
5791 		 * !SD_OVERLAP domains can assume that child groups
5792 		 * span the current group.
5793 		 */
5794 
5795 		group = child->groups;
5796 		do {
5797 			capacity_orig += group->sgc->capacity_orig;
5798 			capacity += group->sgc->capacity;
5799 			group = group->next;
5800 		} while (group != child->groups);
5801 	}
5802 
5803 	sdg->sgc->capacity_orig = capacity_orig;
5804 	sdg->sgc->capacity = capacity;
5805 }
5806 
5807 /*
5808  * Try and fix up capacity for tiny siblings, this is needed when
5809  * things like SD_ASYM_PACKING need f_b_g to select another sibling
5810  * which on its own isn't powerful enough.
5811  *
5812  * See update_sd_pick_busiest() and check_asym_packing().
5813  */
5814 static inline int
5815 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5816 {
5817 	/*
5818 	 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
5819 	 */
5820 	if (!(sd->flags & SD_SHARE_CPUCAPACITY))
5821 		return 0;
5822 
5823 	/*
5824 	 * If ~90% of the cpu_capacity is still there, we're good.
5825 	 */
5826 	if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
5827 		return 1;
5828 
5829 	return 0;
5830 }
5831 
5832 /*
5833  * Group imbalance indicates (and tries to solve) the problem where balancing
5834  * groups is inadequate due to tsk_cpus_allowed() constraints.
5835  *
5836  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5837  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5838  * Something like:
5839  *
5840  * 	{ 0 1 2 3 } { 4 5 6 7 }
5841  * 	        *     * * *
5842  *
5843  * If we were to balance group-wise we'd place two tasks in the first group and
5844  * two tasks in the second group. Clearly this is undesired as it will overload
5845  * cpu 3 and leave one of the cpus in the second group unused.
5846  *
5847  * The current solution to this issue is detecting the skew in the first group
5848  * by noticing the lower domain failed to reach balance and had difficulty
5849  * moving tasks due to affinity constraints.
5850  *
5851  * When this is so detected; this group becomes a candidate for busiest; see
5852  * update_sd_pick_busiest(). And calculate_imbalance() and
5853  * find_busiest_group() avoid some of the usual balance conditions to allow it
5854  * to create an effective group imbalance.
5855  *
5856  * This is a somewhat tricky proposition since the next run might not find the
5857  * group imbalance and decide the groups need to be balanced again. A most
5858  * subtle and fragile situation.
5859  */
5860 
5861 static inline int sg_imbalanced(struct sched_group *group)
5862 {
5863 	return group->sgc->imbalance;
5864 }
5865 
5866 /*
5867  * Compute the group capacity factor.
5868  *
5869  * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
5870  * first dividing out the smt factor and computing the actual number of cores
5871  * and limit unit capacity with that.
5872  */
5873 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
5874 {
5875 	unsigned int capacity_factor, smt, cpus;
5876 	unsigned int capacity, capacity_orig;
5877 
5878 	capacity = group->sgc->capacity;
5879 	capacity_orig = group->sgc->capacity_orig;
5880 	cpus = group->group_weight;
5881 
5882 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
5883 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
5884 	capacity_factor = cpus / smt; /* cores */
5885 
5886 	capacity_factor = min_t(unsigned,
5887 		capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
5888 	if (!capacity_factor)
5889 		capacity_factor = fix_small_capacity(env->sd, group);
5890 
5891 	return capacity_factor;
5892 }
5893 
5894 /**
5895  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5896  * @env: The load balancing environment.
5897  * @group: sched_group whose statistics are to be updated.
5898  * @load_idx: Load index of sched_domain of this_cpu for load calc.
5899  * @local_group: Does group contain this_cpu.
5900  * @sgs: variable to hold the statistics for this group.
5901  * @overload: Indicate more than one runnable task for any CPU.
5902  */
5903 static inline void update_sg_lb_stats(struct lb_env *env,
5904 			struct sched_group *group, int load_idx,
5905 			int local_group, struct sg_lb_stats *sgs,
5906 			bool *overload)
5907 {
5908 	unsigned long load;
5909 	int i;
5910 
5911 	memset(sgs, 0, sizeof(*sgs));
5912 
5913 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5914 		struct rq *rq = cpu_rq(i);
5915 
5916 		/* Bias balancing toward cpus of our domain */
5917 		if (local_group)
5918 			load = target_load(i, load_idx);
5919 		else
5920 			load = source_load(i, load_idx);
5921 
5922 		sgs->group_load += load;
5923 		sgs->sum_nr_running += rq->nr_running;
5924 
5925 		if (rq->nr_running > 1)
5926 			*overload = true;
5927 
5928 #ifdef CONFIG_NUMA_BALANCING
5929 		sgs->nr_numa_running += rq->nr_numa_running;
5930 		sgs->nr_preferred_running += rq->nr_preferred_running;
5931 #endif
5932 		sgs->sum_weighted_load += weighted_cpuload(i);
5933 		if (idle_cpu(i))
5934 			sgs->idle_cpus++;
5935 	}
5936 
5937 	/* Adjust by relative CPU capacity of the group */
5938 	sgs->group_capacity = group->sgc->capacity;
5939 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
5940 
5941 	if (sgs->sum_nr_running)
5942 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5943 
5944 	sgs->group_weight = group->group_weight;
5945 
5946 	sgs->group_imb = sg_imbalanced(group);
5947 	sgs->group_capacity_factor = sg_capacity_factor(env, group);
5948 
5949 	if (sgs->group_capacity_factor > sgs->sum_nr_running)
5950 		sgs->group_has_free_capacity = 1;
5951 }
5952 
5953 /**
5954  * update_sd_pick_busiest - return 1 on busiest group
5955  * @env: The load balancing environment.
5956  * @sds: sched_domain statistics
5957  * @sg: sched_group candidate to be checked for being the busiest
5958  * @sgs: sched_group statistics
5959  *
5960  * Determine if @sg is a busier group than the previously selected
5961  * busiest group.
5962  *
5963  * Return: %true if @sg is a busier group than the previously selected
5964  * busiest group. %false otherwise.
5965  */
5966 static bool update_sd_pick_busiest(struct lb_env *env,
5967 				   struct sd_lb_stats *sds,
5968 				   struct sched_group *sg,
5969 				   struct sg_lb_stats *sgs)
5970 {
5971 	if (sgs->avg_load <= sds->busiest_stat.avg_load)
5972 		return false;
5973 
5974 	if (sgs->sum_nr_running > sgs->group_capacity_factor)
5975 		return true;
5976 
5977 	if (sgs->group_imb)
5978 		return true;
5979 
5980 	/*
5981 	 * ASYM_PACKING needs to move all the work to the lowest
5982 	 * numbered CPUs in the group, therefore mark all groups
5983 	 * higher than ourself as busy.
5984 	 */
5985 	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5986 	    env->dst_cpu < group_first_cpu(sg)) {
5987 		if (!sds->busiest)
5988 			return true;
5989 
5990 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5991 			return true;
5992 	}
5993 
5994 	return false;
5995 }
5996 
5997 #ifdef CONFIG_NUMA_BALANCING
5998 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5999 {
6000 	if (sgs->sum_nr_running > sgs->nr_numa_running)
6001 		return regular;
6002 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
6003 		return remote;
6004 	return all;
6005 }
6006 
6007 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6008 {
6009 	if (rq->nr_running > rq->nr_numa_running)
6010 		return regular;
6011 	if (rq->nr_running > rq->nr_preferred_running)
6012 		return remote;
6013 	return all;
6014 }
6015 #else
6016 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6017 {
6018 	return all;
6019 }
6020 
6021 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6022 {
6023 	return regular;
6024 }
6025 #endif /* CONFIG_NUMA_BALANCING */
6026 
6027 /**
6028  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6029  * @env: The load balancing environment.
6030  * @sds: variable to hold the statistics for this sched_domain.
6031  */
6032 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6033 {
6034 	struct sched_domain *child = env->sd->child;
6035 	struct sched_group *sg = env->sd->groups;
6036 	struct sg_lb_stats tmp_sgs;
6037 	int load_idx, prefer_sibling = 0;
6038 	bool overload = false;
6039 
6040 	if (child && child->flags & SD_PREFER_SIBLING)
6041 		prefer_sibling = 1;
6042 
6043 	load_idx = get_sd_load_idx(env->sd, env->idle);
6044 
6045 	do {
6046 		struct sg_lb_stats *sgs = &tmp_sgs;
6047 		int local_group;
6048 
6049 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6050 		if (local_group) {
6051 			sds->local = sg;
6052 			sgs = &sds->local_stat;
6053 
6054 			if (env->idle != CPU_NEWLY_IDLE ||
6055 			    time_after_eq(jiffies, sg->sgc->next_update))
6056 				update_group_capacity(env->sd, env->dst_cpu);
6057 		}
6058 
6059 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6060 						&overload);
6061 
6062 		if (local_group)
6063 			goto next_group;
6064 
6065 		/*
6066 		 * In case the child domain prefers tasks go to siblings
6067 		 * first, lower the sg capacity factor to one so that we'll try
6068 		 * and move all the excess tasks away. We lower the capacity
6069 		 * of a group only if the local group has the capacity to fit
6070 		 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6071 		 * extra check prevents the case where you always pull from the
6072 		 * heaviest group when it is already under-utilized (possible
6073 		 * with a large weight task outweighs the tasks on the system).
6074 		 */
6075 		if (prefer_sibling && sds->local &&
6076 		    sds->local_stat.group_has_free_capacity)
6077 			sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6078 
6079 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6080 			sds->busiest = sg;
6081 			sds->busiest_stat = *sgs;
6082 		}
6083 
6084 next_group:
6085 		/* Now, start updating sd_lb_stats */
6086 		sds->total_load += sgs->group_load;
6087 		sds->total_capacity += sgs->group_capacity;
6088 
6089 		sg = sg->next;
6090 	} while (sg != env->sd->groups);
6091 
6092 	if (env->sd->flags & SD_NUMA)
6093 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6094 
6095 	if (!env->sd->parent) {
6096 		/* update overload indicator if we are at root domain */
6097 		if (env->dst_rq->rd->overload != overload)
6098 			env->dst_rq->rd->overload = overload;
6099 	}
6100 
6101 }
6102 
6103 /**
6104  * check_asym_packing - Check to see if the group is packed into the
6105  *			sched doman.
6106  *
6107  * This is primarily intended to used at the sibling level.  Some
6108  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6109  * case of POWER7, it can move to lower SMT modes only when higher
6110  * threads are idle.  When in lower SMT modes, the threads will
6111  * perform better since they share less core resources.  Hence when we
6112  * have idle threads, we want them to be the higher ones.
6113  *
6114  * This packing function is run on idle threads.  It checks to see if
6115  * the busiest CPU in this domain (core in the P7 case) has a higher
6116  * CPU number than the packing function is being run on.  Here we are
6117  * assuming lower CPU number will be equivalent to lower a SMT thread
6118  * number.
6119  *
6120  * Return: 1 when packing is required and a task should be moved to
6121  * this CPU.  The amount of the imbalance is returned in *imbalance.
6122  *
6123  * @env: The load balancing environment.
6124  * @sds: Statistics of the sched_domain which is to be packed
6125  */
6126 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6127 {
6128 	int busiest_cpu;
6129 
6130 	if (!(env->sd->flags & SD_ASYM_PACKING))
6131 		return 0;
6132 
6133 	if (!sds->busiest)
6134 		return 0;
6135 
6136 	busiest_cpu = group_first_cpu(sds->busiest);
6137 	if (env->dst_cpu > busiest_cpu)
6138 		return 0;
6139 
6140 	env->imbalance = DIV_ROUND_CLOSEST(
6141 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6142 		SCHED_CAPACITY_SCALE);
6143 
6144 	return 1;
6145 }
6146 
6147 /**
6148  * fix_small_imbalance - Calculate the minor imbalance that exists
6149  *			amongst the groups of a sched_domain, during
6150  *			load balancing.
6151  * @env: The load balancing environment.
6152  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6153  */
6154 static inline
6155 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6156 {
6157 	unsigned long tmp, capa_now = 0, capa_move = 0;
6158 	unsigned int imbn = 2;
6159 	unsigned long scaled_busy_load_per_task;
6160 	struct sg_lb_stats *local, *busiest;
6161 
6162 	local = &sds->local_stat;
6163 	busiest = &sds->busiest_stat;
6164 
6165 	if (!local->sum_nr_running)
6166 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6167 	else if (busiest->load_per_task > local->load_per_task)
6168 		imbn = 1;
6169 
6170 	scaled_busy_load_per_task =
6171 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6172 		busiest->group_capacity;
6173 
6174 	if (busiest->avg_load + scaled_busy_load_per_task >=
6175 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6176 		env->imbalance = busiest->load_per_task;
6177 		return;
6178 	}
6179 
6180 	/*
6181 	 * OK, we don't have enough imbalance to justify moving tasks,
6182 	 * however we may be able to increase total CPU capacity used by
6183 	 * moving them.
6184 	 */
6185 
6186 	capa_now += busiest->group_capacity *
6187 			min(busiest->load_per_task, busiest->avg_load);
6188 	capa_now += local->group_capacity *
6189 			min(local->load_per_task, local->avg_load);
6190 	capa_now /= SCHED_CAPACITY_SCALE;
6191 
6192 	/* Amount of load we'd subtract */
6193 	if (busiest->avg_load > scaled_busy_load_per_task) {
6194 		capa_move += busiest->group_capacity *
6195 			    min(busiest->load_per_task,
6196 				busiest->avg_load - scaled_busy_load_per_task);
6197 	}
6198 
6199 	/* Amount of load we'd add */
6200 	if (busiest->avg_load * busiest->group_capacity <
6201 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6202 		tmp = (busiest->avg_load * busiest->group_capacity) /
6203 		      local->group_capacity;
6204 	} else {
6205 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6206 		      local->group_capacity;
6207 	}
6208 	capa_move += local->group_capacity *
6209 		    min(local->load_per_task, local->avg_load + tmp);
6210 	capa_move /= SCHED_CAPACITY_SCALE;
6211 
6212 	/* Move if we gain throughput */
6213 	if (capa_move > capa_now)
6214 		env->imbalance = busiest->load_per_task;
6215 }
6216 
6217 /**
6218  * calculate_imbalance - Calculate the amount of imbalance present within the
6219  *			 groups of a given sched_domain during load balance.
6220  * @env: load balance environment
6221  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6222  */
6223 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6224 {
6225 	unsigned long max_pull, load_above_capacity = ~0UL;
6226 	struct sg_lb_stats *local, *busiest;
6227 
6228 	local = &sds->local_stat;
6229 	busiest = &sds->busiest_stat;
6230 
6231 	if (busiest->group_imb) {
6232 		/*
6233 		 * In the group_imb case we cannot rely on group-wide averages
6234 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6235 		 */
6236 		busiest->load_per_task =
6237 			min(busiest->load_per_task, sds->avg_load);
6238 	}
6239 
6240 	/*
6241 	 * In the presence of smp nice balancing, certain scenarios can have
6242 	 * max load less than avg load(as we skip the groups at or below
6243 	 * its cpu_capacity, while calculating max_load..)
6244 	 */
6245 	if (busiest->avg_load <= sds->avg_load ||
6246 	    local->avg_load >= sds->avg_load) {
6247 		env->imbalance = 0;
6248 		return fix_small_imbalance(env, sds);
6249 	}
6250 
6251 	if (!busiest->group_imb) {
6252 		/*
6253 		 * Don't want to pull so many tasks that a group would go idle.
6254 		 * Except of course for the group_imb case, since then we might
6255 		 * have to drop below capacity to reach cpu-load equilibrium.
6256 		 */
6257 		load_above_capacity =
6258 			(busiest->sum_nr_running - busiest->group_capacity_factor);
6259 
6260 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6261 		load_above_capacity /= busiest->group_capacity;
6262 	}
6263 
6264 	/*
6265 	 * We're trying to get all the cpus to the average_load, so we don't
6266 	 * want to push ourselves above the average load, nor do we wish to
6267 	 * reduce the max loaded cpu below the average load. At the same time,
6268 	 * we also don't want to reduce the group load below the group capacity
6269 	 * (so that we can implement power-savings policies etc). Thus we look
6270 	 * for the minimum possible imbalance.
6271 	 */
6272 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6273 
6274 	/* How much load to actually move to equalise the imbalance */
6275 	env->imbalance = min(
6276 		max_pull * busiest->group_capacity,
6277 		(sds->avg_load - local->avg_load) * local->group_capacity
6278 	) / SCHED_CAPACITY_SCALE;
6279 
6280 	/*
6281 	 * if *imbalance is less than the average load per runnable task
6282 	 * there is no guarantee that any tasks will be moved so we'll have
6283 	 * a think about bumping its value to force at least one task to be
6284 	 * moved
6285 	 */
6286 	if (env->imbalance < busiest->load_per_task)
6287 		return fix_small_imbalance(env, sds);
6288 }
6289 
6290 /******* find_busiest_group() helpers end here *********************/
6291 
6292 /**
6293  * find_busiest_group - Returns the busiest group within the sched_domain
6294  * if there is an imbalance. If there isn't an imbalance, and
6295  * the user has opted for power-savings, it returns a group whose
6296  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6297  * such a group exists.
6298  *
6299  * Also calculates the amount of weighted load which should be moved
6300  * to restore balance.
6301  *
6302  * @env: The load balancing environment.
6303  *
6304  * Return:	- The busiest group if imbalance exists.
6305  *		- If no imbalance and user has opted for power-savings balance,
6306  *		   return the least loaded group whose CPUs can be
6307  *		   put to idle by rebalancing its tasks onto our group.
6308  */
6309 static struct sched_group *find_busiest_group(struct lb_env *env)
6310 {
6311 	struct sg_lb_stats *local, *busiest;
6312 	struct sd_lb_stats sds;
6313 
6314 	init_sd_lb_stats(&sds);
6315 
6316 	/*
6317 	 * Compute the various statistics relavent for load balancing at
6318 	 * this level.
6319 	 */
6320 	update_sd_lb_stats(env, &sds);
6321 	local = &sds.local_stat;
6322 	busiest = &sds.busiest_stat;
6323 
6324 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6325 	    check_asym_packing(env, &sds))
6326 		return sds.busiest;
6327 
6328 	/* There is no busy sibling group to pull tasks from */
6329 	if (!sds.busiest || busiest->sum_nr_running == 0)
6330 		goto out_balanced;
6331 
6332 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6333 						/ sds.total_capacity;
6334 
6335 	/*
6336 	 * If the busiest group is imbalanced the below checks don't
6337 	 * work because they assume all things are equal, which typically
6338 	 * isn't true due to cpus_allowed constraints and the like.
6339 	 */
6340 	if (busiest->group_imb)
6341 		goto force_balance;
6342 
6343 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6344 	if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6345 	    !busiest->group_has_free_capacity)
6346 		goto force_balance;
6347 
6348 	/*
6349 	 * If the local group is more busy than the selected busiest group
6350 	 * don't try and pull any tasks.
6351 	 */
6352 	if (local->avg_load >= busiest->avg_load)
6353 		goto out_balanced;
6354 
6355 	/*
6356 	 * Don't pull any tasks if this group is already above the domain
6357 	 * average load.
6358 	 */
6359 	if (local->avg_load >= sds.avg_load)
6360 		goto out_balanced;
6361 
6362 	if (env->idle == CPU_IDLE) {
6363 		/*
6364 		 * This cpu is idle. If the busiest group load doesn't
6365 		 * have more tasks than the number of available cpu's and
6366 		 * there is no imbalance between this and busiest group
6367 		 * wrt to idle cpu's, it is balanced.
6368 		 */
6369 		if ((local->idle_cpus < busiest->idle_cpus) &&
6370 		    busiest->sum_nr_running <= busiest->group_weight)
6371 			goto out_balanced;
6372 	} else {
6373 		/*
6374 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6375 		 * imbalance_pct to be conservative.
6376 		 */
6377 		if (100 * busiest->avg_load <=
6378 				env->sd->imbalance_pct * local->avg_load)
6379 			goto out_balanced;
6380 	}
6381 
6382 force_balance:
6383 	/* Looks like there is an imbalance. Compute it */
6384 	calculate_imbalance(env, &sds);
6385 	return sds.busiest;
6386 
6387 out_balanced:
6388 	env->imbalance = 0;
6389 	return NULL;
6390 }
6391 
6392 /*
6393  * find_busiest_queue - find the busiest runqueue among the cpus in group.
6394  */
6395 static struct rq *find_busiest_queue(struct lb_env *env,
6396 				     struct sched_group *group)
6397 {
6398 	struct rq *busiest = NULL, *rq;
6399 	unsigned long busiest_load = 0, busiest_capacity = 1;
6400 	int i;
6401 
6402 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6403 		unsigned long capacity, capacity_factor, wl;
6404 		enum fbq_type rt;
6405 
6406 		rq = cpu_rq(i);
6407 		rt = fbq_classify_rq(rq);
6408 
6409 		/*
6410 		 * We classify groups/runqueues into three groups:
6411 		 *  - regular: there are !numa tasks
6412 		 *  - remote:  there are numa tasks that run on the 'wrong' node
6413 		 *  - all:     there is no distinction
6414 		 *
6415 		 * In order to avoid migrating ideally placed numa tasks,
6416 		 * ignore those when there's better options.
6417 		 *
6418 		 * If we ignore the actual busiest queue to migrate another
6419 		 * task, the next balance pass can still reduce the busiest
6420 		 * queue by moving tasks around inside the node.
6421 		 *
6422 		 * If we cannot move enough load due to this classification
6423 		 * the next pass will adjust the group classification and
6424 		 * allow migration of more tasks.
6425 		 *
6426 		 * Both cases only affect the total convergence complexity.
6427 		 */
6428 		if (rt > env->fbq_type)
6429 			continue;
6430 
6431 		capacity = capacity_of(i);
6432 		capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6433 		if (!capacity_factor)
6434 			capacity_factor = fix_small_capacity(env->sd, group);
6435 
6436 		wl = weighted_cpuload(i);
6437 
6438 		/*
6439 		 * When comparing with imbalance, use weighted_cpuload()
6440 		 * which is not scaled with the cpu capacity.
6441 		 */
6442 		if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6443 			continue;
6444 
6445 		/*
6446 		 * For the load comparisons with the other cpu's, consider
6447 		 * the weighted_cpuload() scaled with the cpu capacity, so
6448 		 * that the load can be moved away from the cpu that is
6449 		 * potentially running at a lower capacity.
6450 		 *
6451 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6452 		 * multiplication to rid ourselves of the division works out
6453 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
6454 		 * our previous maximum.
6455 		 */
6456 		if (wl * busiest_capacity > busiest_load * capacity) {
6457 			busiest_load = wl;
6458 			busiest_capacity = capacity;
6459 			busiest = rq;
6460 		}
6461 	}
6462 
6463 	return busiest;
6464 }
6465 
6466 /*
6467  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6468  * so long as it is large enough.
6469  */
6470 #define MAX_PINNED_INTERVAL	512
6471 
6472 /* Working cpumask for load_balance and load_balance_newidle. */
6473 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6474 
6475 static int need_active_balance(struct lb_env *env)
6476 {
6477 	struct sched_domain *sd = env->sd;
6478 
6479 	if (env->idle == CPU_NEWLY_IDLE) {
6480 
6481 		/*
6482 		 * ASYM_PACKING needs to force migrate tasks from busy but
6483 		 * higher numbered CPUs in order to pack all tasks in the
6484 		 * lowest numbered CPUs.
6485 		 */
6486 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6487 			return 1;
6488 	}
6489 
6490 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6491 }
6492 
6493 static int active_load_balance_cpu_stop(void *data);
6494 
6495 static int should_we_balance(struct lb_env *env)
6496 {
6497 	struct sched_group *sg = env->sd->groups;
6498 	struct cpumask *sg_cpus, *sg_mask;
6499 	int cpu, balance_cpu = -1;
6500 
6501 	/*
6502 	 * In the newly idle case, we will allow all the cpu's
6503 	 * to do the newly idle load balance.
6504 	 */
6505 	if (env->idle == CPU_NEWLY_IDLE)
6506 		return 1;
6507 
6508 	sg_cpus = sched_group_cpus(sg);
6509 	sg_mask = sched_group_mask(sg);
6510 	/* Try to find first idle cpu */
6511 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6512 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6513 			continue;
6514 
6515 		balance_cpu = cpu;
6516 		break;
6517 	}
6518 
6519 	if (balance_cpu == -1)
6520 		balance_cpu = group_balance_cpu(sg);
6521 
6522 	/*
6523 	 * First idle cpu or the first cpu(busiest) in this sched group
6524 	 * is eligible for doing load balancing at this and above domains.
6525 	 */
6526 	return balance_cpu == env->dst_cpu;
6527 }
6528 
6529 /*
6530  * Check this_cpu to ensure it is balanced within domain. Attempt to move
6531  * tasks if there is an imbalance.
6532  */
6533 static int load_balance(int this_cpu, struct rq *this_rq,
6534 			struct sched_domain *sd, enum cpu_idle_type idle,
6535 			int *continue_balancing)
6536 {
6537 	int ld_moved, cur_ld_moved, active_balance = 0;
6538 	struct sched_domain *sd_parent = sd->parent;
6539 	struct sched_group *group;
6540 	struct rq *busiest;
6541 	unsigned long flags;
6542 	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6543 
6544 	struct lb_env env = {
6545 		.sd		= sd,
6546 		.dst_cpu	= this_cpu,
6547 		.dst_rq		= this_rq,
6548 		.dst_grpmask    = sched_group_cpus(sd->groups),
6549 		.idle		= idle,
6550 		.loop_break	= sched_nr_migrate_break,
6551 		.cpus		= cpus,
6552 		.fbq_type	= all,
6553 	};
6554 
6555 	/*
6556 	 * For NEWLY_IDLE load_balancing, we don't need to consider
6557 	 * other cpus in our group
6558 	 */
6559 	if (idle == CPU_NEWLY_IDLE)
6560 		env.dst_grpmask = NULL;
6561 
6562 	cpumask_copy(cpus, cpu_active_mask);
6563 
6564 	schedstat_inc(sd, lb_count[idle]);
6565 
6566 redo:
6567 	if (!should_we_balance(&env)) {
6568 		*continue_balancing = 0;
6569 		goto out_balanced;
6570 	}
6571 
6572 	group = find_busiest_group(&env);
6573 	if (!group) {
6574 		schedstat_inc(sd, lb_nobusyg[idle]);
6575 		goto out_balanced;
6576 	}
6577 
6578 	busiest = find_busiest_queue(&env, group);
6579 	if (!busiest) {
6580 		schedstat_inc(sd, lb_nobusyq[idle]);
6581 		goto out_balanced;
6582 	}
6583 
6584 	BUG_ON(busiest == env.dst_rq);
6585 
6586 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6587 
6588 	ld_moved = 0;
6589 	if (busiest->nr_running > 1) {
6590 		/*
6591 		 * Attempt to move tasks. If find_busiest_group has found
6592 		 * an imbalance but busiest->nr_running <= 1, the group is
6593 		 * still unbalanced. ld_moved simply stays zero, so it is
6594 		 * correctly treated as an imbalance.
6595 		 */
6596 		env.flags |= LBF_ALL_PINNED;
6597 		env.src_cpu   = busiest->cpu;
6598 		env.src_rq    = busiest;
6599 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6600 
6601 more_balance:
6602 		local_irq_save(flags);
6603 		double_rq_lock(env.dst_rq, busiest);
6604 
6605 		/*
6606 		 * cur_ld_moved - load moved in current iteration
6607 		 * ld_moved     - cumulative load moved across iterations
6608 		 */
6609 		cur_ld_moved = move_tasks(&env);
6610 		ld_moved += cur_ld_moved;
6611 		double_rq_unlock(env.dst_rq, busiest);
6612 		local_irq_restore(flags);
6613 
6614 		/*
6615 		 * some other cpu did the load balance for us.
6616 		 */
6617 		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6618 			resched_cpu(env.dst_cpu);
6619 
6620 		if (env.flags & LBF_NEED_BREAK) {
6621 			env.flags &= ~LBF_NEED_BREAK;
6622 			goto more_balance;
6623 		}
6624 
6625 		/*
6626 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6627 		 * us and move them to an alternate dst_cpu in our sched_group
6628 		 * where they can run. The upper limit on how many times we
6629 		 * iterate on same src_cpu is dependent on number of cpus in our
6630 		 * sched_group.
6631 		 *
6632 		 * This changes load balance semantics a bit on who can move
6633 		 * load to a given_cpu. In addition to the given_cpu itself
6634 		 * (or a ilb_cpu acting on its behalf where given_cpu is
6635 		 * nohz-idle), we now have balance_cpu in a position to move
6636 		 * load to given_cpu. In rare situations, this may cause
6637 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6638 		 * _independently_ and at _same_ time to move some load to
6639 		 * given_cpu) causing exceess load to be moved to given_cpu.
6640 		 * This however should not happen so much in practice and
6641 		 * moreover subsequent load balance cycles should correct the
6642 		 * excess load moved.
6643 		 */
6644 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6645 
6646 			/* Prevent to re-select dst_cpu via env's cpus */
6647 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
6648 
6649 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6650 			env.dst_cpu	 = env.new_dst_cpu;
6651 			env.flags	&= ~LBF_DST_PINNED;
6652 			env.loop	 = 0;
6653 			env.loop_break	 = sched_nr_migrate_break;
6654 
6655 			/*
6656 			 * Go back to "more_balance" rather than "redo" since we
6657 			 * need to continue with same src_cpu.
6658 			 */
6659 			goto more_balance;
6660 		}
6661 
6662 		/*
6663 		 * We failed to reach balance because of affinity.
6664 		 */
6665 		if (sd_parent) {
6666 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6667 
6668 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6669 				*group_imbalance = 1;
6670 			} else if (*group_imbalance)
6671 				*group_imbalance = 0;
6672 		}
6673 
6674 		/* All tasks on this runqueue were pinned by CPU affinity */
6675 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6676 			cpumask_clear_cpu(cpu_of(busiest), cpus);
6677 			if (!cpumask_empty(cpus)) {
6678 				env.loop = 0;
6679 				env.loop_break = sched_nr_migrate_break;
6680 				goto redo;
6681 			}
6682 			goto out_balanced;
6683 		}
6684 	}
6685 
6686 	if (!ld_moved) {
6687 		schedstat_inc(sd, lb_failed[idle]);
6688 		/*
6689 		 * Increment the failure counter only on periodic balance.
6690 		 * We do not want newidle balance, which can be very
6691 		 * frequent, pollute the failure counter causing
6692 		 * excessive cache_hot migrations and active balances.
6693 		 */
6694 		if (idle != CPU_NEWLY_IDLE)
6695 			sd->nr_balance_failed++;
6696 
6697 		if (need_active_balance(&env)) {
6698 			raw_spin_lock_irqsave(&busiest->lock, flags);
6699 
6700 			/* don't kick the active_load_balance_cpu_stop,
6701 			 * if the curr task on busiest cpu can't be
6702 			 * moved to this_cpu
6703 			 */
6704 			if (!cpumask_test_cpu(this_cpu,
6705 					tsk_cpus_allowed(busiest->curr))) {
6706 				raw_spin_unlock_irqrestore(&busiest->lock,
6707 							    flags);
6708 				env.flags |= LBF_ALL_PINNED;
6709 				goto out_one_pinned;
6710 			}
6711 
6712 			/*
6713 			 * ->active_balance synchronizes accesses to
6714 			 * ->active_balance_work.  Once set, it's cleared
6715 			 * only after active load balance is finished.
6716 			 */
6717 			if (!busiest->active_balance) {
6718 				busiest->active_balance = 1;
6719 				busiest->push_cpu = this_cpu;
6720 				active_balance = 1;
6721 			}
6722 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6723 
6724 			if (active_balance) {
6725 				stop_one_cpu_nowait(cpu_of(busiest),
6726 					active_load_balance_cpu_stop, busiest,
6727 					&busiest->active_balance_work);
6728 			}
6729 
6730 			/*
6731 			 * We've kicked active balancing, reset the failure
6732 			 * counter.
6733 			 */
6734 			sd->nr_balance_failed = sd->cache_nice_tries+1;
6735 		}
6736 	} else
6737 		sd->nr_balance_failed = 0;
6738 
6739 	if (likely(!active_balance)) {
6740 		/* We were unbalanced, so reset the balancing interval */
6741 		sd->balance_interval = sd->min_interval;
6742 	} else {
6743 		/*
6744 		 * If we've begun active balancing, start to back off. This
6745 		 * case may not be covered by the all_pinned logic if there
6746 		 * is only 1 task on the busy runqueue (because we don't call
6747 		 * move_tasks).
6748 		 */
6749 		if (sd->balance_interval < sd->max_interval)
6750 			sd->balance_interval *= 2;
6751 	}
6752 
6753 	goto out;
6754 
6755 out_balanced:
6756 	schedstat_inc(sd, lb_balanced[idle]);
6757 
6758 	sd->nr_balance_failed = 0;
6759 
6760 out_one_pinned:
6761 	/* tune up the balancing interval */
6762 	if (((env.flags & LBF_ALL_PINNED) &&
6763 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6764 			(sd->balance_interval < sd->max_interval))
6765 		sd->balance_interval *= 2;
6766 
6767 	ld_moved = 0;
6768 out:
6769 	return ld_moved;
6770 }
6771 
6772 static inline unsigned long
6773 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6774 {
6775 	unsigned long interval = sd->balance_interval;
6776 
6777 	if (cpu_busy)
6778 		interval *= sd->busy_factor;
6779 
6780 	/* scale ms to jiffies */
6781 	interval = msecs_to_jiffies(interval);
6782 	interval = clamp(interval, 1UL, max_load_balance_interval);
6783 
6784 	return interval;
6785 }
6786 
6787 static inline void
6788 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6789 {
6790 	unsigned long interval, next;
6791 
6792 	interval = get_sd_balance_interval(sd, cpu_busy);
6793 	next = sd->last_balance + interval;
6794 
6795 	if (time_after(*next_balance, next))
6796 		*next_balance = next;
6797 }
6798 
6799 /*
6800  * idle_balance is called by schedule() if this_cpu is about to become
6801  * idle. Attempts to pull tasks from other CPUs.
6802  */
6803 static int idle_balance(struct rq *this_rq)
6804 {
6805 	unsigned long next_balance = jiffies + HZ;
6806 	int this_cpu = this_rq->cpu;
6807 	struct sched_domain *sd;
6808 	int pulled_task = 0;
6809 	u64 curr_cost = 0;
6810 
6811 	idle_enter_fair(this_rq);
6812 
6813 	/*
6814 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
6815 	 * measure the duration of idle_balance() as idle time.
6816 	 */
6817 	this_rq->idle_stamp = rq_clock(this_rq);
6818 
6819 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6820 	    !this_rq->rd->overload) {
6821 		rcu_read_lock();
6822 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
6823 		if (sd)
6824 			update_next_balance(sd, 0, &next_balance);
6825 		rcu_read_unlock();
6826 
6827 		goto out;
6828 	}
6829 
6830 	/*
6831 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
6832 	 */
6833 	raw_spin_unlock(&this_rq->lock);
6834 
6835 	update_blocked_averages(this_cpu);
6836 	rcu_read_lock();
6837 	for_each_domain(this_cpu, sd) {
6838 		int continue_balancing = 1;
6839 		u64 t0, domain_cost;
6840 
6841 		if (!(sd->flags & SD_LOAD_BALANCE))
6842 			continue;
6843 
6844 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6845 			update_next_balance(sd, 0, &next_balance);
6846 			break;
6847 		}
6848 
6849 		if (sd->flags & SD_BALANCE_NEWIDLE) {
6850 			t0 = sched_clock_cpu(this_cpu);
6851 
6852 			pulled_task = load_balance(this_cpu, this_rq,
6853 						   sd, CPU_NEWLY_IDLE,
6854 						   &continue_balancing);
6855 
6856 			domain_cost = sched_clock_cpu(this_cpu) - t0;
6857 			if (domain_cost > sd->max_newidle_lb_cost)
6858 				sd->max_newidle_lb_cost = domain_cost;
6859 
6860 			curr_cost += domain_cost;
6861 		}
6862 
6863 		update_next_balance(sd, 0, &next_balance);
6864 
6865 		/*
6866 		 * Stop searching for tasks to pull if there are
6867 		 * now runnable tasks on this rq.
6868 		 */
6869 		if (pulled_task || this_rq->nr_running > 0)
6870 			break;
6871 	}
6872 	rcu_read_unlock();
6873 
6874 	raw_spin_lock(&this_rq->lock);
6875 
6876 	if (curr_cost > this_rq->max_idle_balance_cost)
6877 		this_rq->max_idle_balance_cost = curr_cost;
6878 
6879 	/*
6880 	 * While browsing the domains, we released the rq lock, a task could
6881 	 * have been enqueued in the meantime. Since we're not going idle,
6882 	 * pretend we pulled a task.
6883 	 */
6884 	if (this_rq->cfs.h_nr_running && !pulled_task)
6885 		pulled_task = 1;
6886 
6887 out:
6888 	/* Move the next balance forward */
6889 	if (time_after(this_rq->next_balance, next_balance))
6890 		this_rq->next_balance = next_balance;
6891 
6892 	/* Is there a task of a high priority class? */
6893 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
6894 		pulled_task = -1;
6895 
6896 	if (pulled_task) {
6897 		idle_exit_fair(this_rq);
6898 		this_rq->idle_stamp = 0;
6899 	}
6900 
6901 	return pulled_task;
6902 }
6903 
6904 /*
6905  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6906  * running tasks off the busiest CPU onto idle CPUs. It requires at
6907  * least 1 task to be running on each physical CPU where possible, and
6908  * avoids physical / logical imbalances.
6909  */
6910 static int active_load_balance_cpu_stop(void *data)
6911 {
6912 	struct rq *busiest_rq = data;
6913 	int busiest_cpu = cpu_of(busiest_rq);
6914 	int target_cpu = busiest_rq->push_cpu;
6915 	struct rq *target_rq = cpu_rq(target_cpu);
6916 	struct sched_domain *sd;
6917 
6918 	raw_spin_lock_irq(&busiest_rq->lock);
6919 
6920 	/* make sure the requested cpu hasn't gone down in the meantime */
6921 	if (unlikely(busiest_cpu != smp_processor_id() ||
6922 		     !busiest_rq->active_balance))
6923 		goto out_unlock;
6924 
6925 	/* Is there any task to move? */
6926 	if (busiest_rq->nr_running <= 1)
6927 		goto out_unlock;
6928 
6929 	/*
6930 	 * This condition is "impossible", if it occurs
6931 	 * we need to fix it. Originally reported by
6932 	 * Bjorn Helgaas on a 128-cpu setup.
6933 	 */
6934 	BUG_ON(busiest_rq == target_rq);
6935 
6936 	/* move a task from busiest_rq to target_rq */
6937 	double_lock_balance(busiest_rq, target_rq);
6938 
6939 	/* Search for an sd spanning us and the target CPU. */
6940 	rcu_read_lock();
6941 	for_each_domain(target_cpu, sd) {
6942 		if ((sd->flags & SD_LOAD_BALANCE) &&
6943 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6944 				break;
6945 	}
6946 
6947 	if (likely(sd)) {
6948 		struct lb_env env = {
6949 			.sd		= sd,
6950 			.dst_cpu	= target_cpu,
6951 			.dst_rq		= target_rq,
6952 			.src_cpu	= busiest_rq->cpu,
6953 			.src_rq		= busiest_rq,
6954 			.idle		= CPU_IDLE,
6955 		};
6956 
6957 		schedstat_inc(sd, alb_count);
6958 
6959 		if (move_one_task(&env))
6960 			schedstat_inc(sd, alb_pushed);
6961 		else
6962 			schedstat_inc(sd, alb_failed);
6963 	}
6964 	rcu_read_unlock();
6965 	double_unlock_balance(busiest_rq, target_rq);
6966 out_unlock:
6967 	busiest_rq->active_balance = 0;
6968 	raw_spin_unlock_irq(&busiest_rq->lock);
6969 	return 0;
6970 }
6971 
6972 static inline int on_null_domain(struct rq *rq)
6973 {
6974 	return unlikely(!rcu_dereference_sched(rq->sd));
6975 }
6976 
6977 #ifdef CONFIG_NO_HZ_COMMON
6978 /*
6979  * idle load balancing details
6980  * - When one of the busy CPUs notice that there may be an idle rebalancing
6981  *   needed, they will kick the idle load balancer, which then does idle
6982  *   load balancing for all the idle CPUs.
6983  */
6984 static struct {
6985 	cpumask_var_t idle_cpus_mask;
6986 	atomic_t nr_cpus;
6987 	unsigned long next_balance;     /* in jiffy units */
6988 } nohz ____cacheline_aligned;
6989 
6990 static inline int find_new_ilb(void)
6991 {
6992 	int ilb = cpumask_first(nohz.idle_cpus_mask);
6993 
6994 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
6995 		return ilb;
6996 
6997 	return nr_cpu_ids;
6998 }
6999 
7000 /*
7001  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7002  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7003  * CPU (if there is one).
7004  */
7005 static void nohz_balancer_kick(void)
7006 {
7007 	int ilb_cpu;
7008 
7009 	nohz.next_balance++;
7010 
7011 	ilb_cpu = find_new_ilb();
7012 
7013 	if (ilb_cpu >= nr_cpu_ids)
7014 		return;
7015 
7016 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7017 		return;
7018 	/*
7019 	 * Use smp_send_reschedule() instead of resched_cpu().
7020 	 * This way we generate a sched IPI on the target cpu which
7021 	 * is idle. And the softirq performing nohz idle load balance
7022 	 * will be run before returning from the IPI.
7023 	 */
7024 	smp_send_reschedule(ilb_cpu);
7025 	return;
7026 }
7027 
7028 static inline void nohz_balance_exit_idle(int cpu)
7029 {
7030 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7031 		/*
7032 		 * Completely isolated CPUs don't ever set, so we must test.
7033 		 */
7034 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7035 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7036 			atomic_dec(&nohz.nr_cpus);
7037 		}
7038 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7039 	}
7040 }
7041 
7042 static inline void set_cpu_sd_state_busy(void)
7043 {
7044 	struct sched_domain *sd;
7045 	int cpu = smp_processor_id();
7046 
7047 	rcu_read_lock();
7048 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7049 
7050 	if (!sd || !sd->nohz_idle)
7051 		goto unlock;
7052 	sd->nohz_idle = 0;
7053 
7054 	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7055 unlock:
7056 	rcu_read_unlock();
7057 }
7058 
7059 void set_cpu_sd_state_idle(void)
7060 {
7061 	struct sched_domain *sd;
7062 	int cpu = smp_processor_id();
7063 
7064 	rcu_read_lock();
7065 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7066 
7067 	if (!sd || sd->nohz_idle)
7068 		goto unlock;
7069 	sd->nohz_idle = 1;
7070 
7071 	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7072 unlock:
7073 	rcu_read_unlock();
7074 }
7075 
7076 /*
7077  * This routine will record that the cpu is going idle with tick stopped.
7078  * This info will be used in performing idle load balancing in the future.
7079  */
7080 void nohz_balance_enter_idle(int cpu)
7081 {
7082 	/*
7083 	 * If this cpu is going down, then nothing needs to be done.
7084 	 */
7085 	if (!cpu_active(cpu))
7086 		return;
7087 
7088 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7089 		return;
7090 
7091 	/*
7092 	 * If we're a completely isolated CPU, we don't play.
7093 	 */
7094 	if (on_null_domain(cpu_rq(cpu)))
7095 		return;
7096 
7097 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7098 	atomic_inc(&nohz.nr_cpus);
7099 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7100 }
7101 
7102 static int sched_ilb_notifier(struct notifier_block *nfb,
7103 					unsigned long action, void *hcpu)
7104 {
7105 	switch (action & ~CPU_TASKS_FROZEN) {
7106 	case CPU_DYING:
7107 		nohz_balance_exit_idle(smp_processor_id());
7108 		return NOTIFY_OK;
7109 	default:
7110 		return NOTIFY_DONE;
7111 	}
7112 }
7113 #endif
7114 
7115 static DEFINE_SPINLOCK(balancing);
7116 
7117 /*
7118  * Scale the max load_balance interval with the number of CPUs in the system.
7119  * This trades load-balance latency on larger machines for less cross talk.
7120  */
7121 void update_max_interval(void)
7122 {
7123 	max_load_balance_interval = HZ*num_online_cpus()/10;
7124 }
7125 
7126 /*
7127  * It checks each scheduling domain to see if it is due to be balanced,
7128  * and initiates a balancing operation if so.
7129  *
7130  * Balancing parameters are set up in init_sched_domains.
7131  */
7132 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7133 {
7134 	int continue_balancing = 1;
7135 	int cpu = rq->cpu;
7136 	unsigned long interval;
7137 	struct sched_domain *sd;
7138 	/* Earliest time when we have to do rebalance again */
7139 	unsigned long next_balance = jiffies + 60*HZ;
7140 	int update_next_balance = 0;
7141 	int need_serialize, need_decay = 0;
7142 	u64 max_cost = 0;
7143 
7144 	update_blocked_averages(cpu);
7145 
7146 	rcu_read_lock();
7147 	for_each_domain(cpu, sd) {
7148 		/*
7149 		 * Decay the newidle max times here because this is a regular
7150 		 * visit to all the domains. Decay ~1% per second.
7151 		 */
7152 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7153 			sd->max_newidle_lb_cost =
7154 				(sd->max_newidle_lb_cost * 253) / 256;
7155 			sd->next_decay_max_lb_cost = jiffies + HZ;
7156 			need_decay = 1;
7157 		}
7158 		max_cost += sd->max_newidle_lb_cost;
7159 
7160 		if (!(sd->flags & SD_LOAD_BALANCE))
7161 			continue;
7162 
7163 		/*
7164 		 * Stop the load balance at this level. There is another
7165 		 * CPU in our sched group which is doing load balancing more
7166 		 * actively.
7167 		 */
7168 		if (!continue_balancing) {
7169 			if (need_decay)
7170 				continue;
7171 			break;
7172 		}
7173 
7174 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7175 
7176 		need_serialize = sd->flags & SD_SERIALIZE;
7177 		if (need_serialize) {
7178 			if (!spin_trylock(&balancing))
7179 				goto out;
7180 		}
7181 
7182 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7183 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7184 				/*
7185 				 * The LBF_DST_PINNED logic could have changed
7186 				 * env->dst_cpu, so we can't know our idle
7187 				 * state even if we migrated tasks. Update it.
7188 				 */
7189 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7190 			}
7191 			sd->last_balance = jiffies;
7192 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7193 		}
7194 		if (need_serialize)
7195 			spin_unlock(&balancing);
7196 out:
7197 		if (time_after(next_balance, sd->last_balance + interval)) {
7198 			next_balance = sd->last_balance + interval;
7199 			update_next_balance = 1;
7200 		}
7201 	}
7202 	if (need_decay) {
7203 		/*
7204 		 * Ensure the rq-wide value also decays but keep it at a
7205 		 * reasonable floor to avoid funnies with rq->avg_idle.
7206 		 */
7207 		rq->max_idle_balance_cost =
7208 			max((u64)sysctl_sched_migration_cost, max_cost);
7209 	}
7210 	rcu_read_unlock();
7211 
7212 	/*
7213 	 * next_balance will be updated only when there is a need.
7214 	 * When the cpu is attached to null domain for ex, it will not be
7215 	 * updated.
7216 	 */
7217 	if (likely(update_next_balance))
7218 		rq->next_balance = next_balance;
7219 }
7220 
7221 #ifdef CONFIG_NO_HZ_COMMON
7222 /*
7223  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7224  * rebalancing for all the cpus for whom scheduler ticks are stopped.
7225  */
7226 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7227 {
7228 	int this_cpu = this_rq->cpu;
7229 	struct rq *rq;
7230 	int balance_cpu;
7231 
7232 	if (idle != CPU_IDLE ||
7233 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7234 		goto end;
7235 
7236 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7237 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7238 			continue;
7239 
7240 		/*
7241 		 * If this cpu gets work to do, stop the load balancing
7242 		 * work being done for other cpus. Next load
7243 		 * balancing owner will pick it up.
7244 		 */
7245 		if (need_resched())
7246 			break;
7247 
7248 		rq = cpu_rq(balance_cpu);
7249 
7250 		/*
7251 		 * If time for next balance is due,
7252 		 * do the balance.
7253 		 */
7254 		if (time_after_eq(jiffies, rq->next_balance)) {
7255 			raw_spin_lock_irq(&rq->lock);
7256 			update_rq_clock(rq);
7257 			update_idle_cpu_load(rq);
7258 			raw_spin_unlock_irq(&rq->lock);
7259 			rebalance_domains(rq, CPU_IDLE);
7260 		}
7261 
7262 		if (time_after(this_rq->next_balance, rq->next_balance))
7263 			this_rq->next_balance = rq->next_balance;
7264 	}
7265 	nohz.next_balance = this_rq->next_balance;
7266 end:
7267 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7268 }
7269 
7270 /*
7271  * Current heuristic for kicking the idle load balancer in the presence
7272  * of an idle cpu is the system.
7273  *   - This rq has more than one task.
7274  *   - At any scheduler domain level, this cpu's scheduler group has multiple
7275  *     busy cpu's exceeding the group's capacity.
7276  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7277  *     domain span are idle.
7278  */
7279 static inline int nohz_kick_needed(struct rq *rq)
7280 {
7281 	unsigned long now = jiffies;
7282 	struct sched_domain *sd;
7283 	struct sched_group_capacity *sgc;
7284 	int nr_busy, cpu = rq->cpu;
7285 
7286 	if (unlikely(rq->idle_balance))
7287 		return 0;
7288 
7289        /*
7290 	* We may be recently in ticked or tickless idle mode. At the first
7291 	* busy tick after returning from idle, we will update the busy stats.
7292 	*/
7293 	set_cpu_sd_state_busy();
7294 	nohz_balance_exit_idle(cpu);
7295 
7296 	/*
7297 	 * None are in tickless mode and hence no need for NOHZ idle load
7298 	 * balancing.
7299 	 */
7300 	if (likely(!atomic_read(&nohz.nr_cpus)))
7301 		return 0;
7302 
7303 	if (time_before(now, nohz.next_balance))
7304 		return 0;
7305 
7306 	if (rq->nr_running >= 2)
7307 		goto need_kick;
7308 
7309 	rcu_read_lock();
7310 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7311 
7312 	if (sd) {
7313 		sgc = sd->groups->sgc;
7314 		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7315 
7316 		if (nr_busy > 1)
7317 			goto need_kick_unlock;
7318 	}
7319 
7320 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7321 
7322 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7323 				  sched_domain_span(sd)) < cpu))
7324 		goto need_kick_unlock;
7325 
7326 	rcu_read_unlock();
7327 	return 0;
7328 
7329 need_kick_unlock:
7330 	rcu_read_unlock();
7331 need_kick:
7332 	return 1;
7333 }
7334 #else
7335 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7336 #endif
7337 
7338 /*
7339  * run_rebalance_domains is triggered when needed from the scheduler tick.
7340  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7341  */
7342 static void run_rebalance_domains(struct softirq_action *h)
7343 {
7344 	struct rq *this_rq = this_rq();
7345 	enum cpu_idle_type idle = this_rq->idle_balance ?
7346 						CPU_IDLE : CPU_NOT_IDLE;
7347 
7348 	rebalance_domains(this_rq, idle);
7349 
7350 	/*
7351 	 * If this cpu has a pending nohz_balance_kick, then do the
7352 	 * balancing on behalf of the other idle cpus whose ticks are
7353 	 * stopped.
7354 	 */
7355 	nohz_idle_balance(this_rq, idle);
7356 }
7357 
7358 /*
7359  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7360  */
7361 void trigger_load_balance(struct rq *rq)
7362 {
7363 	/* Don't need to rebalance while attached to NULL domain */
7364 	if (unlikely(on_null_domain(rq)))
7365 		return;
7366 
7367 	if (time_after_eq(jiffies, rq->next_balance))
7368 		raise_softirq(SCHED_SOFTIRQ);
7369 #ifdef CONFIG_NO_HZ_COMMON
7370 	if (nohz_kick_needed(rq))
7371 		nohz_balancer_kick();
7372 #endif
7373 }
7374 
7375 static void rq_online_fair(struct rq *rq)
7376 {
7377 	update_sysctl();
7378 
7379 	update_runtime_enabled(rq);
7380 }
7381 
7382 static void rq_offline_fair(struct rq *rq)
7383 {
7384 	update_sysctl();
7385 
7386 	/* Ensure any throttled groups are reachable by pick_next_task */
7387 	unthrottle_offline_cfs_rqs(rq);
7388 }
7389 
7390 #endif /* CONFIG_SMP */
7391 
7392 /*
7393  * scheduler tick hitting a task of our scheduling class:
7394  */
7395 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7396 {
7397 	struct cfs_rq *cfs_rq;
7398 	struct sched_entity *se = &curr->se;
7399 
7400 	for_each_sched_entity(se) {
7401 		cfs_rq = cfs_rq_of(se);
7402 		entity_tick(cfs_rq, se, queued);
7403 	}
7404 
7405 	if (numabalancing_enabled)
7406 		task_tick_numa(rq, curr);
7407 
7408 	update_rq_runnable_avg(rq, 1);
7409 }
7410 
7411 /*
7412  * called on fork with the child task as argument from the parent's context
7413  *  - child not yet on the tasklist
7414  *  - preemption disabled
7415  */
7416 static void task_fork_fair(struct task_struct *p)
7417 {
7418 	struct cfs_rq *cfs_rq;
7419 	struct sched_entity *se = &p->se, *curr;
7420 	int this_cpu = smp_processor_id();
7421 	struct rq *rq = this_rq();
7422 	unsigned long flags;
7423 
7424 	raw_spin_lock_irqsave(&rq->lock, flags);
7425 
7426 	update_rq_clock(rq);
7427 
7428 	cfs_rq = task_cfs_rq(current);
7429 	curr = cfs_rq->curr;
7430 
7431 	/*
7432 	 * Not only the cpu but also the task_group of the parent might have
7433 	 * been changed after parent->se.parent,cfs_rq were copied to
7434 	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7435 	 * of child point to valid ones.
7436 	 */
7437 	rcu_read_lock();
7438 	__set_task_cpu(p, this_cpu);
7439 	rcu_read_unlock();
7440 
7441 	update_curr(cfs_rq);
7442 
7443 	if (curr)
7444 		se->vruntime = curr->vruntime;
7445 	place_entity(cfs_rq, se, 1);
7446 
7447 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7448 		/*
7449 		 * Upon rescheduling, sched_class::put_prev_task() will place
7450 		 * 'current' within the tree based on its new key value.
7451 		 */
7452 		swap(curr->vruntime, se->vruntime);
7453 		resched_curr(rq);
7454 	}
7455 
7456 	se->vruntime -= cfs_rq->min_vruntime;
7457 
7458 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7459 }
7460 
7461 /*
7462  * Priority of the task has changed. Check to see if we preempt
7463  * the current task.
7464  */
7465 static void
7466 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7467 {
7468 	if (!p->se.on_rq)
7469 		return;
7470 
7471 	/*
7472 	 * Reschedule if we are currently running on this runqueue and
7473 	 * our priority decreased, or if we are not currently running on
7474 	 * this runqueue and our priority is higher than the current's
7475 	 */
7476 	if (rq->curr == p) {
7477 		if (p->prio > oldprio)
7478 			resched_curr(rq);
7479 	} else
7480 		check_preempt_curr(rq, p, 0);
7481 }
7482 
7483 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7484 {
7485 	struct sched_entity *se = &p->se;
7486 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7487 
7488 	/*
7489 	 * Ensure the task's vruntime is normalized, so that when it's
7490 	 * switched back to the fair class the enqueue_entity(.flags=0) will
7491 	 * do the right thing.
7492 	 *
7493 	 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7494 	 * have normalized the vruntime, if it's !on_rq, then only when
7495 	 * the task is sleeping will it still have non-normalized vruntime.
7496 	 */
7497 	if (!p->on_rq && p->state != TASK_RUNNING) {
7498 		/*
7499 		 * Fix up our vruntime so that the current sleep doesn't
7500 		 * cause 'unlimited' sleep bonus.
7501 		 */
7502 		place_entity(cfs_rq, se, 0);
7503 		se->vruntime -= cfs_rq->min_vruntime;
7504 	}
7505 
7506 #ifdef CONFIG_SMP
7507 	/*
7508 	* Remove our load from contribution when we leave sched_fair
7509 	* and ensure we don't carry in an old decay_count if we
7510 	* switch back.
7511 	*/
7512 	if (se->avg.decay_count) {
7513 		__synchronize_entity_decay(se);
7514 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7515 	}
7516 #endif
7517 }
7518 
7519 /*
7520  * We switched to the sched_fair class.
7521  */
7522 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7523 {
7524 	struct sched_entity *se = &p->se;
7525 #ifdef CONFIG_FAIR_GROUP_SCHED
7526 	/*
7527 	 * Since the real-depth could have been changed (only FAIR
7528 	 * class maintain depth value), reset depth properly.
7529 	 */
7530 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7531 #endif
7532 	if (!se->on_rq)
7533 		return;
7534 
7535 	/*
7536 	 * We were most likely switched from sched_rt, so
7537 	 * kick off the schedule if running, otherwise just see
7538 	 * if we can still preempt the current task.
7539 	 */
7540 	if (rq->curr == p)
7541 		resched_curr(rq);
7542 	else
7543 		check_preempt_curr(rq, p, 0);
7544 }
7545 
7546 /* Account for a task changing its policy or group.
7547  *
7548  * This routine is mostly called to set cfs_rq->curr field when a task
7549  * migrates between groups/classes.
7550  */
7551 static void set_curr_task_fair(struct rq *rq)
7552 {
7553 	struct sched_entity *se = &rq->curr->se;
7554 
7555 	for_each_sched_entity(se) {
7556 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7557 
7558 		set_next_entity(cfs_rq, se);
7559 		/* ensure bandwidth has been allocated on our new cfs_rq */
7560 		account_cfs_rq_runtime(cfs_rq, 0);
7561 	}
7562 }
7563 
7564 void init_cfs_rq(struct cfs_rq *cfs_rq)
7565 {
7566 	cfs_rq->tasks_timeline = RB_ROOT;
7567 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7568 #ifndef CONFIG_64BIT
7569 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7570 #endif
7571 #ifdef CONFIG_SMP
7572 	atomic64_set(&cfs_rq->decay_counter, 1);
7573 	atomic_long_set(&cfs_rq->removed_load, 0);
7574 #endif
7575 }
7576 
7577 #ifdef CONFIG_FAIR_GROUP_SCHED
7578 static void task_move_group_fair(struct task_struct *p, int on_rq)
7579 {
7580 	struct sched_entity *se = &p->se;
7581 	struct cfs_rq *cfs_rq;
7582 
7583 	/*
7584 	 * If the task was not on the rq at the time of this cgroup movement
7585 	 * it must have been asleep, sleeping tasks keep their ->vruntime
7586 	 * absolute on their old rq until wakeup (needed for the fair sleeper
7587 	 * bonus in place_entity()).
7588 	 *
7589 	 * If it was on the rq, we've just 'preempted' it, which does convert
7590 	 * ->vruntime to a relative base.
7591 	 *
7592 	 * Make sure both cases convert their relative position when migrating
7593 	 * to another cgroup's rq. This does somewhat interfere with the
7594 	 * fair sleeper stuff for the first placement, but who cares.
7595 	 */
7596 	/*
7597 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
7598 	 * But there are some cases where it has already been normalized:
7599 	 *
7600 	 * - Moving a forked child which is waiting for being woken up by
7601 	 *   wake_up_new_task().
7602 	 * - Moving a task which has been woken up by try_to_wake_up() and
7603 	 *   waiting for actually being woken up by sched_ttwu_pending().
7604 	 *
7605 	 * To prevent boost or penalty in the new cfs_rq caused by delta
7606 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7607 	 */
7608 	if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7609 		on_rq = 1;
7610 
7611 	if (!on_rq)
7612 		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7613 	set_task_rq(p, task_cpu(p));
7614 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7615 	if (!on_rq) {
7616 		cfs_rq = cfs_rq_of(se);
7617 		se->vruntime += cfs_rq->min_vruntime;
7618 #ifdef CONFIG_SMP
7619 		/*
7620 		 * migrate_task_rq_fair() will have removed our previous
7621 		 * contribution, but we must synchronize for ongoing future
7622 		 * decay.
7623 		 */
7624 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7625 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7626 #endif
7627 	}
7628 }
7629 
7630 void free_fair_sched_group(struct task_group *tg)
7631 {
7632 	int i;
7633 
7634 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7635 
7636 	for_each_possible_cpu(i) {
7637 		if (tg->cfs_rq)
7638 			kfree(tg->cfs_rq[i]);
7639 		if (tg->se)
7640 			kfree(tg->se[i]);
7641 	}
7642 
7643 	kfree(tg->cfs_rq);
7644 	kfree(tg->se);
7645 }
7646 
7647 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7648 {
7649 	struct cfs_rq *cfs_rq;
7650 	struct sched_entity *se;
7651 	int i;
7652 
7653 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7654 	if (!tg->cfs_rq)
7655 		goto err;
7656 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7657 	if (!tg->se)
7658 		goto err;
7659 
7660 	tg->shares = NICE_0_LOAD;
7661 
7662 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7663 
7664 	for_each_possible_cpu(i) {
7665 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7666 				      GFP_KERNEL, cpu_to_node(i));
7667 		if (!cfs_rq)
7668 			goto err;
7669 
7670 		se = kzalloc_node(sizeof(struct sched_entity),
7671 				  GFP_KERNEL, cpu_to_node(i));
7672 		if (!se)
7673 			goto err_free_rq;
7674 
7675 		init_cfs_rq(cfs_rq);
7676 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7677 	}
7678 
7679 	return 1;
7680 
7681 err_free_rq:
7682 	kfree(cfs_rq);
7683 err:
7684 	return 0;
7685 }
7686 
7687 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7688 {
7689 	struct rq *rq = cpu_rq(cpu);
7690 	unsigned long flags;
7691 
7692 	/*
7693 	* Only empty task groups can be destroyed; so we can speculatively
7694 	* check on_list without danger of it being re-added.
7695 	*/
7696 	if (!tg->cfs_rq[cpu]->on_list)
7697 		return;
7698 
7699 	raw_spin_lock_irqsave(&rq->lock, flags);
7700 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7701 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7702 }
7703 
7704 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7705 			struct sched_entity *se, int cpu,
7706 			struct sched_entity *parent)
7707 {
7708 	struct rq *rq = cpu_rq(cpu);
7709 
7710 	cfs_rq->tg = tg;
7711 	cfs_rq->rq = rq;
7712 	init_cfs_rq_runtime(cfs_rq);
7713 
7714 	tg->cfs_rq[cpu] = cfs_rq;
7715 	tg->se[cpu] = se;
7716 
7717 	/* se could be NULL for root_task_group */
7718 	if (!se)
7719 		return;
7720 
7721 	if (!parent) {
7722 		se->cfs_rq = &rq->cfs;
7723 		se->depth = 0;
7724 	} else {
7725 		se->cfs_rq = parent->my_q;
7726 		se->depth = parent->depth + 1;
7727 	}
7728 
7729 	se->my_q = cfs_rq;
7730 	/* guarantee group entities always have weight */
7731 	update_load_set(&se->load, NICE_0_LOAD);
7732 	se->parent = parent;
7733 }
7734 
7735 static DEFINE_MUTEX(shares_mutex);
7736 
7737 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7738 {
7739 	int i;
7740 	unsigned long flags;
7741 
7742 	/*
7743 	 * We can't change the weight of the root cgroup.
7744 	 */
7745 	if (!tg->se[0])
7746 		return -EINVAL;
7747 
7748 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7749 
7750 	mutex_lock(&shares_mutex);
7751 	if (tg->shares == shares)
7752 		goto done;
7753 
7754 	tg->shares = shares;
7755 	for_each_possible_cpu(i) {
7756 		struct rq *rq = cpu_rq(i);
7757 		struct sched_entity *se;
7758 
7759 		se = tg->se[i];
7760 		/* Propagate contribution to hierarchy */
7761 		raw_spin_lock_irqsave(&rq->lock, flags);
7762 
7763 		/* Possible calls to update_curr() need rq clock */
7764 		update_rq_clock(rq);
7765 		for_each_sched_entity(se)
7766 			update_cfs_shares(group_cfs_rq(se));
7767 		raw_spin_unlock_irqrestore(&rq->lock, flags);
7768 	}
7769 
7770 done:
7771 	mutex_unlock(&shares_mutex);
7772 	return 0;
7773 }
7774 #else /* CONFIG_FAIR_GROUP_SCHED */
7775 
7776 void free_fair_sched_group(struct task_group *tg) { }
7777 
7778 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7779 {
7780 	return 1;
7781 }
7782 
7783 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7784 
7785 #endif /* CONFIG_FAIR_GROUP_SCHED */
7786 
7787 
7788 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7789 {
7790 	struct sched_entity *se = &task->se;
7791 	unsigned int rr_interval = 0;
7792 
7793 	/*
7794 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7795 	 * idle runqueue:
7796 	 */
7797 	if (rq->cfs.load.weight)
7798 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7799 
7800 	return rr_interval;
7801 }
7802 
7803 /*
7804  * All the scheduling class methods:
7805  */
7806 const struct sched_class fair_sched_class = {
7807 	.next			= &idle_sched_class,
7808 	.enqueue_task		= enqueue_task_fair,
7809 	.dequeue_task		= dequeue_task_fair,
7810 	.yield_task		= yield_task_fair,
7811 	.yield_to_task		= yield_to_task_fair,
7812 
7813 	.check_preempt_curr	= check_preempt_wakeup,
7814 
7815 	.pick_next_task		= pick_next_task_fair,
7816 	.put_prev_task		= put_prev_task_fair,
7817 
7818 #ifdef CONFIG_SMP
7819 	.select_task_rq		= select_task_rq_fair,
7820 	.migrate_task_rq	= migrate_task_rq_fair,
7821 
7822 	.rq_online		= rq_online_fair,
7823 	.rq_offline		= rq_offline_fair,
7824 
7825 	.task_waking		= task_waking_fair,
7826 #endif
7827 
7828 	.set_curr_task          = set_curr_task_fair,
7829 	.task_tick		= task_tick_fair,
7830 	.task_fork		= task_fork_fair,
7831 
7832 	.prio_changed		= prio_changed_fair,
7833 	.switched_from		= switched_from_fair,
7834 	.switched_to		= switched_to_fair,
7835 
7836 	.get_rr_interval	= get_rr_interval_fair,
7837 
7838 #ifdef CONFIG_FAIR_GROUP_SCHED
7839 	.task_move_group	= task_move_group_fair,
7840 #endif
7841 };
7842 
7843 #ifdef CONFIG_SCHED_DEBUG
7844 void print_cfs_stats(struct seq_file *m, int cpu)
7845 {
7846 	struct cfs_rq *cfs_rq;
7847 
7848 	rcu_read_lock();
7849 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7850 		print_cfs_rq(m, cpu, cfs_rq);
7851 	rcu_read_unlock();
7852 }
7853 #endif
7854 
7855 __init void init_sched_fair_class(void)
7856 {
7857 #ifdef CONFIG_SMP
7858 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7859 
7860 #ifdef CONFIG_NO_HZ_COMMON
7861 	nohz.next_balance = jiffies;
7862 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7863 	cpu_notifier(sched_ilb_notifier, 0);
7864 #endif
7865 #endif /* SMP */
7866 
7867 }
7868