xref: /openbmc/linux/kernel/sched/fair.c (revision 31b90347)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32 
33 #include <trace/events/sched.h>
34 
35 #include "sched.h"
36 
37 /*
38  * Targeted preemption latency for CPU-bound tasks:
39  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40  *
41  * NOTE: this latency value is not the same as the concept of
42  * 'timeslice length' - timeslices in CFS are of variable length
43  * and have no persistent notion like in traditional, time-slice
44  * based scheduling concepts.
45  *
46  * (to see the precise effective timeslice length of your workload,
47  *  run vmstat and monitor the context-switches (cs) field)
48  */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51 
52 /*
53  * The initial- and re-scaling of tunables is configurable
54  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55  *
56  * Options are:
57  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60  */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 	= SCHED_TUNABLESCALING_LOG;
63 
64 /*
65  * Minimal preemption granularity for CPU-bound tasks:
66  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67  */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 
71 /*
72  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73  */
74 static unsigned int sched_nr_latency = 8;
75 
76 /*
77  * After fork, child runs first. If set to 0 (default) then
78  * parent will (try to) run first.
79  */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81 
82 /*
83  * SCHED_OTHER wake-up granularity.
84  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85  *
86  * This option delays the preemption effects of decoupled workloads
87  * and reduces their over-scheduling. Synchronous workloads will still
88  * have immediate wakeup/sleep latencies.
89  */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92 
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94 
95 /*
96  * The exponential sliding  window over which load is averaged for shares
97  * distribution.
98  * (default: 10msec)
99  */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101 
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105  * each time a cfs_rq requests quota.
106  *
107  * Note: in the case that the slice exceeds the runtime remaining (either due
108  * to consumption or the quota being specified to be smaller than the slice)
109  * we will always only issue the remaining available time.
110  *
111  * default: 5 msec, units: microseconds
112   */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115 
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 	lw->weight += inc;
119 	lw->inv_weight = 0;
120 }
121 
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 	lw->weight -= dec;
125 	lw->inv_weight = 0;
126 }
127 
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 	lw->weight = w;
131 	lw->inv_weight = 0;
132 }
133 
134 /*
135  * Increase the granularity value when there are more CPUs,
136  * because with more CPUs the 'effective latency' as visible
137  * to users decreases. But the relationship is not linear,
138  * so pick a second-best guess by going with the log2 of the
139  * number of CPUs.
140  *
141  * This idea comes from the SD scheduler of Con Kolivas:
142  */
143 static int get_update_sysctl_factor(void)
144 {
145 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 	unsigned int factor;
147 
148 	switch (sysctl_sched_tunable_scaling) {
149 	case SCHED_TUNABLESCALING_NONE:
150 		factor = 1;
151 		break;
152 	case SCHED_TUNABLESCALING_LINEAR:
153 		factor = cpus;
154 		break;
155 	case SCHED_TUNABLESCALING_LOG:
156 	default:
157 		factor = 1 + ilog2(cpus);
158 		break;
159 	}
160 
161 	return factor;
162 }
163 
164 static void update_sysctl(void)
165 {
166 	unsigned int factor = get_update_sysctl_factor();
167 
168 #define SET_SYSCTL(name) \
169 	(sysctl_##name = (factor) * normalized_sysctl_##name)
170 	SET_SYSCTL(sched_min_granularity);
171 	SET_SYSCTL(sched_latency);
172 	SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175 
176 void sched_init_granularity(void)
177 {
178 	update_sysctl();
179 }
180 
181 #define WMULT_CONST	(~0U)
182 #define WMULT_SHIFT	32
183 
184 static void __update_inv_weight(struct load_weight *lw)
185 {
186 	unsigned long w;
187 
188 	if (likely(lw->inv_weight))
189 		return;
190 
191 	w = scale_load_down(lw->weight);
192 
193 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 		lw->inv_weight = 1;
195 	else if (unlikely(!w))
196 		lw->inv_weight = WMULT_CONST;
197 	else
198 		lw->inv_weight = WMULT_CONST / w;
199 }
200 
201 /*
202  * delta_exec * weight / lw.weight
203  *   OR
204  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205  *
206  * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207  * we're guaranteed shift stays positive because inv_weight is guaranteed to
208  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209  *
210  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211  * weight/lw.weight <= 1, and therefore our shift will also be positive.
212  */
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214 {
215 	u64 fact = scale_load_down(weight);
216 	int shift = WMULT_SHIFT;
217 
218 	__update_inv_weight(lw);
219 
220 	if (unlikely(fact >> 32)) {
221 		while (fact >> 32) {
222 			fact >>= 1;
223 			shift--;
224 		}
225 	}
226 
227 	/* hint to use a 32x32->64 mul */
228 	fact = (u64)(u32)fact * lw->inv_weight;
229 
230 	while (fact >> 32) {
231 		fact >>= 1;
232 		shift--;
233 	}
234 
235 	return mul_u64_u32_shr(delta_exec, fact, shift);
236 }
237 
238 
239 const struct sched_class fair_sched_class;
240 
241 /**************************************************************
242  * CFS operations on generic schedulable entities:
243  */
244 
245 #ifdef CONFIG_FAIR_GROUP_SCHED
246 
247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249 {
250 	return cfs_rq->rq;
251 }
252 
253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se)	(!se->my_q)
255 
256 static inline struct task_struct *task_of(struct sched_entity *se)
257 {
258 #ifdef CONFIG_SCHED_DEBUG
259 	WARN_ON_ONCE(!entity_is_task(se));
260 #endif
261 	return container_of(se, struct task_struct, se);
262 }
263 
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 		for (; se; se = se->parent)
267 
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 	return p->se.cfs_rq;
271 }
272 
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 	return se->cfs_rq;
277 }
278 
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 	return grp->my_q;
283 }
284 
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 				       int force_update);
287 
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289 {
290 	if (!cfs_rq->on_list) {
291 		/*
292 		 * Ensure we either appear before our parent (if already
293 		 * enqueued) or force our parent to appear after us when it is
294 		 * enqueued.  The fact that we always enqueue bottom-up
295 		 * reduces this to two cases.
296 		 */
297 		if (cfs_rq->tg->parent &&
298 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
301 		} else {
302 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
304 		}
305 
306 		cfs_rq->on_list = 1;
307 		/* We should have no load, but we need to update last_decay. */
308 		update_cfs_rq_blocked_load(cfs_rq, 0);
309 	}
310 }
311 
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 	if (cfs_rq->on_list) {
315 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 		cfs_rq->on_list = 0;
317 	}
318 }
319 
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323 
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline int
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
327 {
328 	if (se->cfs_rq == pse->cfs_rq)
329 		return 1;
330 
331 	return 0;
332 }
333 
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
335 {
336 	return se->parent;
337 }
338 
339 /* return depth at which a sched entity is present in the hierarchy */
340 static inline int depth_se(struct sched_entity *se)
341 {
342 	int depth = 0;
343 
344 	for_each_sched_entity(se)
345 		depth++;
346 
347 	return depth;
348 }
349 
350 static void
351 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
352 {
353 	int se_depth, pse_depth;
354 
355 	/*
356 	 * preemption test can be made between sibling entities who are in the
357 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
358 	 * both tasks until we find their ancestors who are siblings of common
359 	 * parent.
360 	 */
361 
362 	/* First walk up until both entities are at same depth */
363 	se_depth = depth_se(*se);
364 	pse_depth = depth_se(*pse);
365 
366 	while (se_depth > pse_depth) {
367 		se_depth--;
368 		*se = parent_entity(*se);
369 	}
370 
371 	while (pse_depth > se_depth) {
372 		pse_depth--;
373 		*pse = parent_entity(*pse);
374 	}
375 
376 	while (!is_same_group(*se, *pse)) {
377 		*se = parent_entity(*se);
378 		*pse = parent_entity(*pse);
379 	}
380 }
381 
382 #else	/* !CONFIG_FAIR_GROUP_SCHED */
383 
384 static inline struct task_struct *task_of(struct sched_entity *se)
385 {
386 	return container_of(se, struct task_struct, se);
387 }
388 
389 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
390 {
391 	return container_of(cfs_rq, struct rq, cfs);
392 }
393 
394 #define entity_is_task(se)	1
395 
396 #define for_each_sched_entity(se) \
397 		for (; se; se = NULL)
398 
399 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
400 {
401 	return &task_rq(p)->cfs;
402 }
403 
404 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
405 {
406 	struct task_struct *p = task_of(se);
407 	struct rq *rq = task_rq(p);
408 
409 	return &rq->cfs;
410 }
411 
412 /* runqueue "owned" by this group */
413 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
414 {
415 	return NULL;
416 }
417 
418 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
419 {
420 }
421 
422 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
423 {
424 }
425 
426 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
427 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428 
429 static inline int
430 is_same_group(struct sched_entity *se, struct sched_entity *pse)
431 {
432 	return 1;
433 }
434 
435 static inline struct sched_entity *parent_entity(struct sched_entity *se)
436 {
437 	return NULL;
438 }
439 
440 static inline void
441 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
442 {
443 }
444 
445 #endif	/* CONFIG_FAIR_GROUP_SCHED */
446 
447 static __always_inline
448 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
449 
450 /**************************************************************
451  * Scheduling class tree data structure manipulation methods:
452  */
453 
454 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
455 {
456 	s64 delta = (s64)(vruntime - max_vruntime);
457 	if (delta > 0)
458 		max_vruntime = vruntime;
459 
460 	return max_vruntime;
461 }
462 
463 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
464 {
465 	s64 delta = (s64)(vruntime - min_vruntime);
466 	if (delta < 0)
467 		min_vruntime = vruntime;
468 
469 	return min_vruntime;
470 }
471 
472 static inline int entity_before(struct sched_entity *a,
473 				struct sched_entity *b)
474 {
475 	return (s64)(a->vruntime - b->vruntime) < 0;
476 }
477 
478 static void update_min_vruntime(struct cfs_rq *cfs_rq)
479 {
480 	u64 vruntime = cfs_rq->min_vruntime;
481 
482 	if (cfs_rq->curr)
483 		vruntime = cfs_rq->curr->vruntime;
484 
485 	if (cfs_rq->rb_leftmost) {
486 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
487 						   struct sched_entity,
488 						   run_node);
489 
490 		if (!cfs_rq->curr)
491 			vruntime = se->vruntime;
492 		else
493 			vruntime = min_vruntime(vruntime, se->vruntime);
494 	}
495 
496 	/* ensure we never gain time by being placed backwards. */
497 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
498 #ifndef CONFIG_64BIT
499 	smp_wmb();
500 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
501 #endif
502 }
503 
504 /*
505  * Enqueue an entity into the rb-tree:
506  */
507 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
508 {
509 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
510 	struct rb_node *parent = NULL;
511 	struct sched_entity *entry;
512 	int leftmost = 1;
513 
514 	/*
515 	 * Find the right place in the rbtree:
516 	 */
517 	while (*link) {
518 		parent = *link;
519 		entry = rb_entry(parent, struct sched_entity, run_node);
520 		/*
521 		 * We dont care about collisions. Nodes with
522 		 * the same key stay together.
523 		 */
524 		if (entity_before(se, entry)) {
525 			link = &parent->rb_left;
526 		} else {
527 			link = &parent->rb_right;
528 			leftmost = 0;
529 		}
530 	}
531 
532 	/*
533 	 * Maintain a cache of leftmost tree entries (it is frequently
534 	 * used):
535 	 */
536 	if (leftmost)
537 		cfs_rq->rb_leftmost = &se->run_node;
538 
539 	rb_link_node(&se->run_node, parent, link);
540 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
541 }
542 
543 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
544 {
545 	if (cfs_rq->rb_leftmost == &se->run_node) {
546 		struct rb_node *next_node;
547 
548 		next_node = rb_next(&se->run_node);
549 		cfs_rq->rb_leftmost = next_node;
550 	}
551 
552 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
553 }
554 
555 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
556 {
557 	struct rb_node *left = cfs_rq->rb_leftmost;
558 
559 	if (!left)
560 		return NULL;
561 
562 	return rb_entry(left, struct sched_entity, run_node);
563 }
564 
565 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
566 {
567 	struct rb_node *next = rb_next(&se->run_node);
568 
569 	if (!next)
570 		return NULL;
571 
572 	return rb_entry(next, struct sched_entity, run_node);
573 }
574 
575 #ifdef CONFIG_SCHED_DEBUG
576 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
577 {
578 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
579 
580 	if (!last)
581 		return NULL;
582 
583 	return rb_entry(last, struct sched_entity, run_node);
584 }
585 
586 /**************************************************************
587  * Scheduling class statistics methods:
588  */
589 
590 int sched_proc_update_handler(struct ctl_table *table, int write,
591 		void __user *buffer, size_t *lenp,
592 		loff_t *ppos)
593 {
594 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
595 	int factor = get_update_sysctl_factor();
596 
597 	if (ret || !write)
598 		return ret;
599 
600 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
601 					sysctl_sched_min_granularity);
602 
603 #define WRT_SYSCTL(name) \
604 	(normalized_sysctl_##name = sysctl_##name / (factor))
605 	WRT_SYSCTL(sched_min_granularity);
606 	WRT_SYSCTL(sched_latency);
607 	WRT_SYSCTL(sched_wakeup_granularity);
608 #undef WRT_SYSCTL
609 
610 	return 0;
611 }
612 #endif
613 
614 /*
615  * delta /= w
616  */
617 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
618 {
619 	if (unlikely(se->load.weight != NICE_0_LOAD))
620 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
621 
622 	return delta;
623 }
624 
625 /*
626  * The idea is to set a period in which each task runs once.
627  *
628  * When there are too many tasks (sched_nr_latency) we have to stretch
629  * this period because otherwise the slices get too small.
630  *
631  * p = (nr <= nl) ? l : l*nr/nl
632  */
633 static u64 __sched_period(unsigned long nr_running)
634 {
635 	u64 period = sysctl_sched_latency;
636 	unsigned long nr_latency = sched_nr_latency;
637 
638 	if (unlikely(nr_running > nr_latency)) {
639 		period = sysctl_sched_min_granularity;
640 		period *= nr_running;
641 	}
642 
643 	return period;
644 }
645 
646 /*
647  * We calculate the wall-time slice from the period by taking a part
648  * proportional to the weight.
649  *
650  * s = p*P[w/rw]
651  */
652 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
653 {
654 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
655 
656 	for_each_sched_entity(se) {
657 		struct load_weight *load;
658 		struct load_weight lw;
659 
660 		cfs_rq = cfs_rq_of(se);
661 		load = &cfs_rq->load;
662 
663 		if (unlikely(!se->on_rq)) {
664 			lw = cfs_rq->load;
665 
666 			update_load_add(&lw, se->load.weight);
667 			load = &lw;
668 		}
669 		slice = __calc_delta(slice, se->load.weight, load);
670 	}
671 	return slice;
672 }
673 
674 /*
675  * We calculate the vruntime slice of a to-be-inserted task.
676  *
677  * vs = s/w
678  */
679 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
680 {
681 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
682 }
683 
684 #ifdef CONFIG_SMP
685 static unsigned long task_h_load(struct task_struct *p);
686 
687 static inline void __update_task_entity_contrib(struct sched_entity *se);
688 
689 /* Give new task start runnable values to heavy its load in infant time */
690 void init_task_runnable_average(struct task_struct *p)
691 {
692 	u32 slice;
693 
694 	p->se.avg.decay_count = 0;
695 	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
696 	p->se.avg.runnable_avg_sum = slice;
697 	p->se.avg.runnable_avg_period = slice;
698 	__update_task_entity_contrib(&p->se);
699 }
700 #else
701 void init_task_runnable_average(struct task_struct *p)
702 {
703 }
704 #endif
705 
706 /*
707  * Update the current task's runtime statistics.
708  */
709 static void update_curr(struct cfs_rq *cfs_rq)
710 {
711 	struct sched_entity *curr = cfs_rq->curr;
712 	u64 now = rq_clock_task(rq_of(cfs_rq));
713 	u64 delta_exec;
714 
715 	if (unlikely(!curr))
716 		return;
717 
718 	delta_exec = now - curr->exec_start;
719 	if (unlikely((s64)delta_exec <= 0))
720 		return;
721 
722 	curr->exec_start = now;
723 
724 	schedstat_set(curr->statistics.exec_max,
725 		      max(delta_exec, curr->statistics.exec_max));
726 
727 	curr->sum_exec_runtime += delta_exec;
728 	schedstat_add(cfs_rq, exec_clock, delta_exec);
729 
730 	curr->vruntime += calc_delta_fair(delta_exec, curr);
731 	update_min_vruntime(cfs_rq);
732 
733 	if (entity_is_task(curr)) {
734 		struct task_struct *curtask = task_of(curr);
735 
736 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
737 		cpuacct_charge(curtask, delta_exec);
738 		account_group_exec_runtime(curtask, delta_exec);
739 	}
740 
741 	account_cfs_rq_runtime(cfs_rq, delta_exec);
742 }
743 
744 static inline void
745 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
746 {
747 	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
748 }
749 
750 /*
751  * Task is being enqueued - update stats:
752  */
753 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 {
755 	/*
756 	 * Are we enqueueing a waiting task? (for current tasks
757 	 * a dequeue/enqueue event is a NOP)
758 	 */
759 	if (se != cfs_rq->curr)
760 		update_stats_wait_start(cfs_rq, se);
761 }
762 
763 static void
764 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 {
766 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
767 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
768 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
769 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
770 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
771 #ifdef CONFIG_SCHEDSTATS
772 	if (entity_is_task(se)) {
773 		trace_sched_stat_wait(task_of(se),
774 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
775 	}
776 #endif
777 	schedstat_set(se->statistics.wait_start, 0);
778 }
779 
780 static inline void
781 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
782 {
783 	/*
784 	 * Mark the end of the wait period if dequeueing a
785 	 * waiting task:
786 	 */
787 	if (se != cfs_rq->curr)
788 		update_stats_wait_end(cfs_rq, se);
789 }
790 
791 /*
792  * We are picking a new current task - update its stats:
793  */
794 static inline void
795 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 {
797 	/*
798 	 * We are starting a new run period:
799 	 */
800 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
801 }
802 
803 /**************************************************
804  * Scheduling class queueing methods:
805  */
806 
807 #ifdef CONFIG_NUMA_BALANCING
808 /*
809  * Approximate time to scan a full NUMA task in ms. The task scan period is
810  * calculated based on the tasks virtual memory size and
811  * numa_balancing_scan_size.
812  */
813 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
814 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
815 
816 /* Portion of address space to scan in MB */
817 unsigned int sysctl_numa_balancing_scan_size = 256;
818 
819 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
820 unsigned int sysctl_numa_balancing_scan_delay = 1000;
821 
822 /*
823  * After skipping a page migration on a shared page, skip N more numa page
824  * migrations unconditionally. This reduces the number of NUMA migrations
825  * in shared memory workloads, and has the effect of pulling tasks towards
826  * where their memory lives, over pulling the memory towards the task.
827  */
828 unsigned int sysctl_numa_balancing_migrate_deferred = 16;
829 
830 static unsigned int task_nr_scan_windows(struct task_struct *p)
831 {
832 	unsigned long rss = 0;
833 	unsigned long nr_scan_pages;
834 
835 	/*
836 	 * Calculations based on RSS as non-present and empty pages are skipped
837 	 * by the PTE scanner and NUMA hinting faults should be trapped based
838 	 * on resident pages
839 	 */
840 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
841 	rss = get_mm_rss(p->mm);
842 	if (!rss)
843 		rss = nr_scan_pages;
844 
845 	rss = round_up(rss, nr_scan_pages);
846 	return rss / nr_scan_pages;
847 }
848 
849 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
850 #define MAX_SCAN_WINDOW 2560
851 
852 static unsigned int task_scan_min(struct task_struct *p)
853 {
854 	unsigned int scan, floor;
855 	unsigned int windows = 1;
856 
857 	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
858 		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
859 	floor = 1000 / windows;
860 
861 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
862 	return max_t(unsigned int, floor, scan);
863 }
864 
865 static unsigned int task_scan_max(struct task_struct *p)
866 {
867 	unsigned int smin = task_scan_min(p);
868 	unsigned int smax;
869 
870 	/* Watch for min being lower than max due to floor calculations */
871 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
872 	return max(smin, smax);
873 }
874 
875 /*
876  * Once a preferred node is selected the scheduler balancer will prefer moving
877  * a task to that node for sysctl_numa_balancing_settle_count number of PTE
878  * scans. This will give the process the chance to accumulate more faults on
879  * the preferred node but still allow the scheduler to move the task again if
880  * the nodes CPUs are overloaded.
881  */
882 unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
883 
884 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
885 {
886 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
887 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
888 }
889 
890 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
891 {
892 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
893 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
894 }
895 
896 struct numa_group {
897 	atomic_t refcount;
898 
899 	spinlock_t lock; /* nr_tasks, tasks */
900 	int nr_tasks;
901 	pid_t gid;
902 	struct list_head task_list;
903 
904 	struct rcu_head rcu;
905 	unsigned long total_faults;
906 	unsigned long faults[0];
907 };
908 
909 pid_t task_numa_group_id(struct task_struct *p)
910 {
911 	return p->numa_group ? p->numa_group->gid : 0;
912 }
913 
914 static inline int task_faults_idx(int nid, int priv)
915 {
916 	return 2 * nid + priv;
917 }
918 
919 static inline unsigned long task_faults(struct task_struct *p, int nid)
920 {
921 	if (!p->numa_faults)
922 		return 0;
923 
924 	return p->numa_faults[task_faults_idx(nid, 0)] +
925 		p->numa_faults[task_faults_idx(nid, 1)];
926 }
927 
928 static inline unsigned long group_faults(struct task_struct *p, int nid)
929 {
930 	if (!p->numa_group)
931 		return 0;
932 
933 	return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
934 }
935 
936 /*
937  * These return the fraction of accesses done by a particular task, or
938  * task group, on a particular numa node.  The group weight is given a
939  * larger multiplier, in order to group tasks together that are almost
940  * evenly spread out between numa nodes.
941  */
942 static inline unsigned long task_weight(struct task_struct *p, int nid)
943 {
944 	unsigned long total_faults;
945 
946 	if (!p->numa_faults)
947 		return 0;
948 
949 	total_faults = p->total_numa_faults;
950 
951 	if (!total_faults)
952 		return 0;
953 
954 	return 1000 * task_faults(p, nid) / total_faults;
955 }
956 
957 static inline unsigned long group_weight(struct task_struct *p, int nid)
958 {
959 	if (!p->numa_group || !p->numa_group->total_faults)
960 		return 0;
961 
962 	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
963 }
964 
965 static unsigned long weighted_cpuload(const int cpu);
966 static unsigned long source_load(int cpu, int type);
967 static unsigned long target_load(int cpu, int type);
968 static unsigned long power_of(int cpu);
969 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
970 
971 /* Cached statistics for all CPUs within a node */
972 struct numa_stats {
973 	unsigned long nr_running;
974 	unsigned long load;
975 
976 	/* Total compute capacity of CPUs on a node */
977 	unsigned long power;
978 
979 	/* Approximate capacity in terms of runnable tasks on a node */
980 	unsigned long capacity;
981 	int has_capacity;
982 };
983 
984 /*
985  * XXX borrowed from update_sg_lb_stats
986  */
987 static void update_numa_stats(struct numa_stats *ns, int nid)
988 {
989 	int cpu, cpus = 0;
990 
991 	memset(ns, 0, sizeof(*ns));
992 	for_each_cpu(cpu, cpumask_of_node(nid)) {
993 		struct rq *rq = cpu_rq(cpu);
994 
995 		ns->nr_running += rq->nr_running;
996 		ns->load += weighted_cpuload(cpu);
997 		ns->power += power_of(cpu);
998 
999 		cpus++;
1000 	}
1001 
1002 	/*
1003 	 * If we raced with hotplug and there are no CPUs left in our mask
1004 	 * the @ns structure is NULL'ed and task_numa_compare() will
1005 	 * not find this node attractive.
1006 	 *
1007 	 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1008 	 * and bail there.
1009 	 */
1010 	if (!cpus)
1011 		return;
1012 
1013 	ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1014 	ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1015 	ns->has_capacity = (ns->nr_running < ns->capacity);
1016 }
1017 
1018 struct task_numa_env {
1019 	struct task_struct *p;
1020 
1021 	int src_cpu, src_nid;
1022 	int dst_cpu, dst_nid;
1023 
1024 	struct numa_stats src_stats, dst_stats;
1025 
1026 	int imbalance_pct, idx;
1027 
1028 	struct task_struct *best_task;
1029 	long best_imp;
1030 	int best_cpu;
1031 };
1032 
1033 static void task_numa_assign(struct task_numa_env *env,
1034 			     struct task_struct *p, long imp)
1035 {
1036 	if (env->best_task)
1037 		put_task_struct(env->best_task);
1038 	if (p)
1039 		get_task_struct(p);
1040 
1041 	env->best_task = p;
1042 	env->best_imp = imp;
1043 	env->best_cpu = env->dst_cpu;
1044 }
1045 
1046 /*
1047  * This checks if the overall compute and NUMA accesses of the system would
1048  * be improved if the source tasks was migrated to the target dst_cpu taking
1049  * into account that it might be best if task running on the dst_cpu should
1050  * be exchanged with the source task
1051  */
1052 static void task_numa_compare(struct task_numa_env *env,
1053 			      long taskimp, long groupimp)
1054 {
1055 	struct rq *src_rq = cpu_rq(env->src_cpu);
1056 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1057 	struct task_struct *cur;
1058 	long dst_load, src_load;
1059 	long load;
1060 	long imp = (groupimp > 0) ? groupimp : taskimp;
1061 
1062 	rcu_read_lock();
1063 	cur = ACCESS_ONCE(dst_rq->curr);
1064 	if (cur->pid == 0) /* idle */
1065 		cur = NULL;
1066 
1067 	/*
1068 	 * "imp" is the fault differential for the source task between the
1069 	 * source and destination node. Calculate the total differential for
1070 	 * the source task and potential destination task. The more negative
1071 	 * the value is, the more rmeote accesses that would be expected to
1072 	 * be incurred if the tasks were swapped.
1073 	 */
1074 	if (cur) {
1075 		/* Skip this swap candidate if cannot move to the source cpu */
1076 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1077 			goto unlock;
1078 
1079 		/*
1080 		 * If dst and source tasks are in the same NUMA group, or not
1081 		 * in any group then look only at task weights.
1082 		 */
1083 		if (cur->numa_group == env->p->numa_group) {
1084 			imp = taskimp + task_weight(cur, env->src_nid) -
1085 			      task_weight(cur, env->dst_nid);
1086 			/*
1087 			 * Add some hysteresis to prevent swapping the
1088 			 * tasks within a group over tiny differences.
1089 			 */
1090 			if (cur->numa_group)
1091 				imp -= imp/16;
1092 		} else {
1093 			/*
1094 			 * Compare the group weights. If a task is all by
1095 			 * itself (not part of a group), use the task weight
1096 			 * instead.
1097 			 */
1098 			if (env->p->numa_group)
1099 				imp = groupimp;
1100 			else
1101 				imp = taskimp;
1102 
1103 			if (cur->numa_group)
1104 				imp += group_weight(cur, env->src_nid) -
1105 				       group_weight(cur, env->dst_nid);
1106 			else
1107 				imp += task_weight(cur, env->src_nid) -
1108 				       task_weight(cur, env->dst_nid);
1109 		}
1110 	}
1111 
1112 	if (imp < env->best_imp)
1113 		goto unlock;
1114 
1115 	if (!cur) {
1116 		/* Is there capacity at our destination? */
1117 		if (env->src_stats.has_capacity &&
1118 		    !env->dst_stats.has_capacity)
1119 			goto unlock;
1120 
1121 		goto balance;
1122 	}
1123 
1124 	/* Balance doesn't matter much if we're running a task per cpu */
1125 	if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1126 		goto assign;
1127 
1128 	/*
1129 	 * In the overloaded case, try and keep the load balanced.
1130 	 */
1131 balance:
1132 	dst_load = env->dst_stats.load;
1133 	src_load = env->src_stats.load;
1134 
1135 	/* XXX missing power terms */
1136 	load = task_h_load(env->p);
1137 	dst_load += load;
1138 	src_load -= load;
1139 
1140 	if (cur) {
1141 		load = task_h_load(cur);
1142 		dst_load -= load;
1143 		src_load += load;
1144 	}
1145 
1146 	/* make src_load the smaller */
1147 	if (dst_load < src_load)
1148 		swap(dst_load, src_load);
1149 
1150 	if (src_load * env->imbalance_pct < dst_load * 100)
1151 		goto unlock;
1152 
1153 assign:
1154 	task_numa_assign(env, cur, imp);
1155 unlock:
1156 	rcu_read_unlock();
1157 }
1158 
1159 static void task_numa_find_cpu(struct task_numa_env *env,
1160 				long taskimp, long groupimp)
1161 {
1162 	int cpu;
1163 
1164 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1165 		/* Skip this CPU if the source task cannot migrate */
1166 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1167 			continue;
1168 
1169 		env->dst_cpu = cpu;
1170 		task_numa_compare(env, taskimp, groupimp);
1171 	}
1172 }
1173 
1174 static int task_numa_migrate(struct task_struct *p)
1175 {
1176 	struct task_numa_env env = {
1177 		.p = p,
1178 
1179 		.src_cpu = task_cpu(p),
1180 		.src_nid = task_node(p),
1181 
1182 		.imbalance_pct = 112,
1183 
1184 		.best_task = NULL,
1185 		.best_imp = 0,
1186 		.best_cpu = -1
1187 	};
1188 	struct sched_domain *sd;
1189 	unsigned long taskweight, groupweight;
1190 	int nid, ret;
1191 	long taskimp, groupimp;
1192 
1193 	/*
1194 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1195 	 * imbalance and would be the first to start moving tasks about.
1196 	 *
1197 	 * And we want to avoid any moving of tasks about, as that would create
1198 	 * random movement of tasks -- counter the numa conditions we're trying
1199 	 * to satisfy here.
1200 	 */
1201 	rcu_read_lock();
1202 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1203 	if (sd)
1204 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1205 	rcu_read_unlock();
1206 
1207 	/*
1208 	 * Cpusets can break the scheduler domain tree into smaller
1209 	 * balance domains, some of which do not cross NUMA boundaries.
1210 	 * Tasks that are "trapped" in such domains cannot be migrated
1211 	 * elsewhere, so there is no point in (re)trying.
1212 	 */
1213 	if (unlikely(!sd)) {
1214 		p->numa_preferred_nid = cpu_to_node(task_cpu(p));
1215 		return -EINVAL;
1216 	}
1217 
1218 	taskweight = task_weight(p, env.src_nid);
1219 	groupweight = group_weight(p, env.src_nid);
1220 	update_numa_stats(&env.src_stats, env.src_nid);
1221 	env.dst_nid = p->numa_preferred_nid;
1222 	taskimp = task_weight(p, env.dst_nid) - taskweight;
1223 	groupimp = group_weight(p, env.dst_nid) - groupweight;
1224 	update_numa_stats(&env.dst_stats, env.dst_nid);
1225 
1226 	/* If the preferred nid has capacity, try to use it. */
1227 	if (env.dst_stats.has_capacity)
1228 		task_numa_find_cpu(&env, taskimp, groupimp);
1229 
1230 	/* No space available on the preferred nid. Look elsewhere. */
1231 	if (env.best_cpu == -1) {
1232 		for_each_online_node(nid) {
1233 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1234 				continue;
1235 
1236 			/* Only consider nodes where both task and groups benefit */
1237 			taskimp = task_weight(p, nid) - taskweight;
1238 			groupimp = group_weight(p, nid) - groupweight;
1239 			if (taskimp < 0 && groupimp < 0)
1240 				continue;
1241 
1242 			env.dst_nid = nid;
1243 			update_numa_stats(&env.dst_stats, env.dst_nid);
1244 			task_numa_find_cpu(&env, taskimp, groupimp);
1245 		}
1246 	}
1247 
1248 	/* No better CPU than the current one was found. */
1249 	if (env.best_cpu == -1)
1250 		return -EAGAIN;
1251 
1252 	sched_setnuma(p, env.dst_nid);
1253 
1254 	/*
1255 	 * Reset the scan period if the task is being rescheduled on an
1256 	 * alternative node to recheck if the tasks is now properly placed.
1257 	 */
1258 	p->numa_scan_period = task_scan_min(p);
1259 
1260 	if (env.best_task == NULL) {
1261 		int ret = migrate_task_to(p, env.best_cpu);
1262 		return ret;
1263 	}
1264 
1265 	ret = migrate_swap(p, env.best_task);
1266 	put_task_struct(env.best_task);
1267 	return ret;
1268 }
1269 
1270 /* Attempt to migrate a task to a CPU on the preferred node. */
1271 static void numa_migrate_preferred(struct task_struct *p)
1272 {
1273 	/* This task has no NUMA fault statistics yet */
1274 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1275 		return;
1276 
1277 	/* Periodically retry migrating the task to the preferred node */
1278 	p->numa_migrate_retry = jiffies + HZ;
1279 
1280 	/* Success if task is already running on preferred CPU */
1281 	if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
1282 		return;
1283 
1284 	/* Otherwise, try migrate to a CPU on the preferred node */
1285 	task_numa_migrate(p);
1286 }
1287 
1288 /*
1289  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1290  * increments. The more local the fault statistics are, the higher the scan
1291  * period will be for the next scan window. If local/remote ratio is below
1292  * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1293  * scan period will decrease
1294  */
1295 #define NUMA_PERIOD_SLOTS 10
1296 #define NUMA_PERIOD_THRESHOLD 3
1297 
1298 /*
1299  * Increase the scan period (slow down scanning) if the majority of
1300  * our memory is already on our local node, or if the majority of
1301  * the page accesses are shared with other processes.
1302  * Otherwise, decrease the scan period.
1303  */
1304 static void update_task_scan_period(struct task_struct *p,
1305 			unsigned long shared, unsigned long private)
1306 {
1307 	unsigned int period_slot;
1308 	int ratio;
1309 	int diff;
1310 
1311 	unsigned long remote = p->numa_faults_locality[0];
1312 	unsigned long local = p->numa_faults_locality[1];
1313 
1314 	/*
1315 	 * If there were no record hinting faults then either the task is
1316 	 * completely idle or all activity is areas that are not of interest
1317 	 * to automatic numa balancing. Scan slower
1318 	 */
1319 	if (local + shared == 0) {
1320 		p->numa_scan_period = min(p->numa_scan_period_max,
1321 			p->numa_scan_period << 1);
1322 
1323 		p->mm->numa_next_scan = jiffies +
1324 			msecs_to_jiffies(p->numa_scan_period);
1325 
1326 		return;
1327 	}
1328 
1329 	/*
1330 	 * Prepare to scale scan period relative to the current period.
1331 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1332 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1333 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1334 	 */
1335 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1336 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1337 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1338 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1339 		if (!slot)
1340 			slot = 1;
1341 		diff = slot * period_slot;
1342 	} else {
1343 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1344 
1345 		/*
1346 		 * Scale scan rate increases based on sharing. There is an
1347 		 * inverse relationship between the degree of sharing and
1348 		 * the adjustment made to the scanning period. Broadly
1349 		 * speaking the intent is that there is little point
1350 		 * scanning faster if shared accesses dominate as it may
1351 		 * simply bounce migrations uselessly
1352 		 */
1353 		period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1354 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1355 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1356 	}
1357 
1358 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1359 			task_scan_min(p), task_scan_max(p));
1360 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1361 }
1362 
1363 static void task_numa_placement(struct task_struct *p)
1364 {
1365 	int seq, nid, max_nid = -1, max_group_nid = -1;
1366 	unsigned long max_faults = 0, max_group_faults = 0;
1367 	unsigned long fault_types[2] = { 0, 0 };
1368 	spinlock_t *group_lock = NULL;
1369 
1370 	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1371 	if (p->numa_scan_seq == seq)
1372 		return;
1373 	p->numa_scan_seq = seq;
1374 	p->numa_scan_period_max = task_scan_max(p);
1375 
1376 	/* If the task is part of a group prevent parallel updates to group stats */
1377 	if (p->numa_group) {
1378 		group_lock = &p->numa_group->lock;
1379 		spin_lock(group_lock);
1380 	}
1381 
1382 	/* Find the node with the highest number of faults */
1383 	for_each_online_node(nid) {
1384 		unsigned long faults = 0, group_faults = 0;
1385 		int priv, i;
1386 
1387 		for (priv = 0; priv < 2; priv++) {
1388 			long diff;
1389 
1390 			i = task_faults_idx(nid, priv);
1391 			diff = -p->numa_faults[i];
1392 
1393 			/* Decay existing window, copy faults since last scan */
1394 			p->numa_faults[i] >>= 1;
1395 			p->numa_faults[i] += p->numa_faults_buffer[i];
1396 			fault_types[priv] += p->numa_faults_buffer[i];
1397 			p->numa_faults_buffer[i] = 0;
1398 
1399 			faults += p->numa_faults[i];
1400 			diff += p->numa_faults[i];
1401 			p->total_numa_faults += diff;
1402 			if (p->numa_group) {
1403 				/* safe because we can only change our own group */
1404 				p->numa_group->faults[i] += diff;
1405 				p->numa_group->total_faults += diff;
1406 				group_faults += p->numa_group->faults[i];
1407 			}
1408 		}
1409 
1410 		if (faults > max_faults) {
1411 			max_faults = faults;
1412 			max_nid = nid;
1413 		}
1414 
1415 		if (group_faults > max_group_faults) {
1416 			max_group_faults = group_faults;
1417 			max_group_nid = nid;
1418 		}
1419 	}
1420 
1421 	update_task_scan_period(p, fault_types[0], fault_types[1]);
1422 
1423 	if (p->numa_group) {
1424 		/*
1425 		 * If the preferred task and group nids are different,
1426 		 * iterate over the nodes again to find the best place.
1427 		 */
1428 		if (max_nid != max_group_nid) {
1429 			unsigned long weight, max_weight = 0;
1430 
1431 			for_each_online_node(nid) {
1432 				weight = task_weight(p, nid) + group_weight(p, nid);
1433 				if (weight > max_weight) {
1434 					max_weight = weight;
1435 					max_nid = nid;
1436 				}
1437 			}
1438 		}
1439 
1440 		spin_unlock(group_lock);
1441 	}
1442 
1443 	/* Preferred node as the node with the most faults */
1444 	if (max_faults && max_nid != p->numa_preferred_nid) {
1445 		/* Update the preferred nid and migrate task if possible */
1446 		sched_setnuma(p, max_nid);
1447 		numa_migrate_preferred(p);
1448 	}
1449 }
1450 
1451 static inline int get_numa_group(struct numa_group *grp)
1452 {
1453 	return atomic_inc_not_zero(&grp->refcount);
1454 }
1455 
1456 static inline void put_numa_group(struct numa_group *grp)
1457 {
1458 	if (atomic_dec_and_test(&grp->refcount))
1459 		kfree_rcu(grp, rcu);
1460 }
1461 
1462 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1463 			int *priv)
1464 {
1465 	struct numa_group *grp, *my_grp;
1466 	struct task_struct *tsk;
1467 	bool join = false;
1468 	int cpu = cpupid_to_cpu(cpupid);
1469 	int i;
1470 
1471 	if (unlikely(!p->numa_group)) {
1472 		unsigned int size = sizeof(struct numa_group) +
1473 				    2*nr_node_ids*sizeof(unsigned long);
1474 
1475 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1476 		if (!grp)
1477 			return;
1478 
1479 		atomic_set(&grp->refcount, 1);
1480 		spin_lock_init(&grp->lock);
1481 		INIT_LIST_HEAD(&grp->task_list);
1482 		grp->gid = p->pid;
1483 
1484 		for (i = 0; i < 2*nr_node_ids; i++)
1485 			grp->faults[i] = p->numa_faults[i];
1486 
1487 		grp->total_faults = p->total_numa_faults;
1488 
1489 		list_add(&p->numa_entry, &grp->task_list);
1490 		grp->nr_tasks++;
1491 		rcu_assign_pointer(p->numa_group, grp);
1492 	}
1493 
1494 	rcu_read_lock();
1495 	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1496 
1497 	if (!cpupid_match_pid(tsk, cpupid))
1498 		goto no_join;
1499 
1500 	grp = rcu_dereference(tsk->numa_group);
1501 	if (!grp)
1502 		goto no_join;
1503 
1504 	my_grp = p->numa_group;
1505 	if (grp == my_grp)
1506 		goto no_join;
1507 
1508 	/*
1509 	 * Only join the other group if its bigger; if we're the bigger group,
1510 	 * the other task will join us.
1511 	 */
1512 	if (my_grp->nr_tasks > grp->nr_tasks)
1513 		goto no_join;
1514 
1515 	/*
1516 	 * Tie-break on the grp address.
1517 	 */
1518 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1519 		goto no_join;
1520 
1521 	/* Always join threads in the same process. */
1522 	if (tsk->mm == current->mm)
1523 		join = true;
1524 
1525 	/* Simple filter to avoid false positives due to PID collisions */
1526 	if (flags & TNF_SHARED)
1527 		join = true;
1528 
1529 	/* Update priv based on whether false sharing was detected */
1530 	*priv = !join;
1531 
1532 	if (join && !get_numa_group(grp))
1533 		goto no_join;
1534 
1535 	rcu_read_unlock();
1536 
1537 	if (!join)
1538 		return;
1539 
1540 	double_lock(&my_grp->lock, &grp->lock);
1541 
1542 	for (i = 0; i < 2*nr_node_ids; i++) {
1543 		my_grp->faults[i] -= p->numa_faults[i];
1544 		grp->faults[i] += p->numa_faults[i];
1545 	}
1546 	my_grp->total_faults -= p->total_numa_faults;
1547 	grp->total_faults += p->total_numa_faults;
1548 
1549 	list_move(&p->numa_entry, &grp->task_list);
1550 	my_grp->nr_tasks--;
1551 	grp->nr_tasks++;
1552 
1553 	spin_unlock(&my_grp->lock);
1554 	spin_unlock(&grp->lock);
1555 
1556 	rcu_assign_pointer(p->numa_group, grp);
1557 
1558 	put_numa_group(my_grp);
1559 	return;
1560 
1561 no_join:
1562 	rcu_read_unlock();
1563 	return;
1564 }
1565 
1566 void task_numa_free(struct task_struct *p)
1567 {
1568 	struct numa_group *grp = p->numa_group;
1569 	int i;
1570 	void *numa_faults = p->numa_faults;
1571 
1572 	if (grp) {
1573 		spin_lock(&grp->lock);
1574 		for (i = 0; i < 2*nr_node_ids; i++)
1575 			grp->faults[i] -= p->numa_faults[i];
1576 		grp->total_faults -= p->total_numa_faults;
1577 
1578 		list_del(&p->numa_entry);
1579 		grp->nr_tasks--;
1580 		spin_unlock(&grp->lock);
1581 		rcu_assign_pointer(p->numa_group, NULL);
1582 		put_numa_group(grp);
1583 	}
1584 
1585 	p->numa_faults = NULL;
1586 	p->numa_faults_buffer = NULL;
1587 	kfree(numa_faults);
1588 }
1589 
1590 /*
1591  * Got a PROT_NONE fault for a page on @node.
1592  */
1593 void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1594 {
1595 	struct task_struct *p = current;
1596 	bool migrated = flags & TNF_MIGRATED;
1597 	int priv;
1598 
1599 	if (!numabalancing_enabled)
1600 		return;
1601 
1602 	/* for example, ksmd faulting in a user's mm */
1603 	if (!p->mm)
1604 		return;
1605 
1606 	/* Do not worry about placement if exiting */
1607 	if (p->state == TASK_DEAD)
1608 		return;
1609 
1610 	/* Allocate buffer to track faults on a per-node basis */
1611 	if (unlikely(!p->numa_faults)) {
1612 		int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1613 
1614 		/* numa_faults and numa_faults_buffer share the allocation */
1615 		p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1616 		if (!p->numa_faults)
1617 			return;
1618 
1619 		BUG_ON(p->numa_faults_buffer);
1620 		p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1621 		p->total_numa_faults = 0;
1622 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1623 	}
1624 
1625 	/*
1626 	 * First accesses are treated as private, otherwise consider accesses
1627 	 * to be private if the accessing pid has not changed
1628 	 */
1629 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1630 		priv = 1;
1631 	} else {
1632 		priv = cpupid_match_pid(p, last_cpupid);
1633 		if (!priv && !(flags & TNF_NO_GROUP))
1634 			task_numa_group(p, last_cpupid, flags, &priv);
1635 	}
1636 
1637 	task_numa_placement(p);
1638 
1639 	/*
1640 	 * Retry task to preferred node migration periodically, in case it
1641 	 * case it previously failed, or the scheduler moved us.
1642 	 */
1643 	if (time_after(jiffies, p->numa_migrate_retry))
1644 		numa_migrate_preferred(p);
1645 
1646 	if (migrated)
1647 		p->numa_pages_migrated += pages;
1648 
1649 	p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1650 	p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1651 }
1652 
1653 static void reset_ptenuma_scan(struct task_struct *p)
1654 {
1655 	ACCESS_ONCE(p->mm->numa_scan_seq)++;
1656 	p->mm->numa_scan_offset = 0;
1657 }
1658 
1659 /*
1660  * The expensive part of numa migration is done from task_work context.
1661  * Triggered from task_tick_numa().
1662  */
1663 void task_numa_work(struct callback_head *work)
1664 {
1665 	unsigned long migrate, next_scan, now = jiffies;
1666 	struct task_struct *p = current;
1667 	struct mm_struct *mm = p->mm;
1668 	struct vm_area_struct *vma;
1669 	unsigned long start, end;
1670 	unsigned long nr_pte_updates = 0;
1671 	long pages;
1672 
1673 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1674 
1675 	work->next = work; /* protect against double add */
1676 	/*
1677 	 * Who cares about NUMA placement when they're dying.
1678 	 *
1679 	 * NOTE: make sure not to dereference p->mm before this check,
1680 	 * exit_task_work() happens _after_ exit_mm() so we could be called
1681 	 * without p->mm even though we still had it when we enqueued this
1682 	 * work.
1683 	 */
1684 	if (p->flags & PF_EXITING)
1685 		return;
1686 
1687 	if (!mm->numa_next_scan) {
1688 		mm->numa_next_scan = now +
1689 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1690 	}
1691 
1692 	/*
1693 	 * Enforce maximal scan/migration frequency..
1694 	 */
1695 	migrate = mm->numa_next_scan;
1696 	if (time_before(now, migrate))
1697 		return;
1698 
1699 	if (p->numa_scan_period == 0) {
1700 		p->numa_scan_period_max = task_scan_max(p);
1701 		p->numa_scan_period = task_scan_min(p);
1702 	}
1703 
1704 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1705 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1706 		return;
1707 
1708 	/*
1709 	 * Delay this task enough that another task of this mm will likely win
1710 	 * the next time around.
1711 	 */
1712 	p->node_stamp += 2 * TICK_NSEC;
1713 
1714 	start = mm->numa_scan_offset;
1715 	pages = sysctl_numa_balancing_scan_size;
1716 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1717 	if (!pages)
1718 		return;
1719 
1720 	down_read(&mm->mmap_sem);
1721 	vma = find_vma(mm, start);
1722 	if (!vma) {
1723 		reset_ptenuma_scan(p);
1724 		start = 0;
1725 		vma = mm->mmap;
1726 	}
1727 	for (; vma; vma = vma->vm_next) {
1728 		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1729 			continue;
1730 
1731 		/*
1732 		 * Shared library pages mapped by multiple processes are not
1733 		 * migrated as it is expected they are cache replicated. Avoid
1734 		 * hinting faults in read-only file-backed mappings or the vdso
1735 		 * as migrating the pages will be of marginal benefit.
1736 		 */
1737 		if (!vma->vm_mm ||
1738 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1739 			continue;
1740 
1741 		/*
1742 		 * Skip inaccessible VMAs to avoid any confusion between
1743 		 * PROT_NONE and NUMA hinting ptes
1744 		 */
1745 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1746 			continue;
1747 
1748 		do {
1749 			start = max(start, vma->vm_start);
1750 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1751 			end = min(end, vma->vm_end);
1752 			nr_pte_updates += change_prot_numa(vma, start, end);
1753 
1754 			/*
1755 			 * Scan sysctl_numa_balancing_scan_size but ensure that
1756 			 * at least one PTE is updated so that unused virtual
1757 			 * address space is quickly skipped.
1758 			 */
1759 			if (nr_pte_updates)
1760 				pages -= (end - start) >> PAGE_SHIFT;
1761 
1762 			start = end;
1763 			if (pages <= 0)
1764 				goto out;
1765 		} while (end != vma->vm_end);
1766 	}
1767 
1768 out:
1769 	/*
1770 	 * It is possible to reach the end of the VMA list but the last few
1771 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1772 	 * would find the !migratable VMA on the next scan but not reset the
1773 	 * scanner to the start so check it now.
1774 	 */
1775 	if (vma)
1776 		mm->numa_scan_offset = start;
1777 	else
1778 		reset_ptenuma_scan(p);
1779 	up_read(&mm->mmap_sem);
1780 }
1781 
1782 /*
1783  * Drive the periodic memory faults..
1784  */
1785 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1786 {
1787 	struct callback_head *work = &curr->numa_work;
1788 	u64 period, now;
1789 
1790 	/*
1791 	 * We don't care about NUMA placement if we don't have memory.
1792 	 */
1793 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1794 		return;
1795 
1796 	/*
1797 	 * Using runtime rather than walltime has the dual advantage that
1798 	 * we (mostly) drive the selection from busy threads and that the
1799 	 * task needs to have done some actual work before we bother with
1800 	 * NUMA placement.
1801 	 */
1802 	now = curr->se.sum_exec_runtime;
1803 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1804 
1805 	if (now - curr->node_stamp > period) {
1806 		if (!curr->node_stamp)
1807 			curr->numa_scan_period = task_scan_min(curr);
1808 		curr->node_stamp += period;
1809 
1810 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1811 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1812 			task_work_add(curr, work, true);
1813 		}
1814 	}
1815 }
1816 #else
1817 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1818 {
1819 }
1820 
1821 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1822 {
1823 }
1824 
1825 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1826 {
1827 }
1828 #endif /* CONFIG_NUMA_BALANCING */
1829 
1830 static void
1831 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1832 {
1833 	update_load_add(&cfs_rq->load, se->load.weight);
1834 	if (!parent_entity(se))
1835 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1836 #ifdef CONFIG_SMP
1837 	if (entity_is_task(se)) {
1838 		struct rq *rq = rq_of(cfs_rq);
1839 
1840 		account_numa_enqueue(rq, task_of(se));
1841 		list_add(&se->group_node, &rq->cfs_tasks);
1842 	}
1843 #endif
1844 	cfs_rq->nr_running++;
1845 }
1846 
1847 static void
1848 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1849 {
1850 	update_load_sub(&cfs_rq->load, se->load.weight);
1851 	if (!parent_entity(se))
1852 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1853 	if (entity_is_task(se)) {
1854 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
1855 		list_del_init(&se->group_node);
1856 	}
1857 	cfs_rq->nr_running--;
1858 }
1859 
1860 #ifdef CONFIG_FAIR_GROUP_SCHED
1861 # ifdef CONFIG_SMP
1862 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1863 {
1864 	long tg_weight;
1865 
1866 	/*
1867 	 * Use this CPU's actual weight instead of the last load_contribution
1868 	 * to gain a more accurate current total weight. See
1869 	 * update_cfs_rq_load_contribution().
1870 	 */
1871 	tg_weight = atomic_long_read(&tg->load_avg);
1872 	tg_weight -= cfs_rq->tg_load_contrib;
1873 	tg_weight += cfs_rq->load.weight;
1874 
1875 	return tg_weight;
1876 }
1877 
1878 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1879 {
1880 	long tg_weight, load, shares;
1881 
1882 	tg_weight = calc_tg_weight(tg, cfs_rq);
1883 	load = cfs_rq->load.weight;
1884 
1885 	shares = (tg->shares * load);
1886 	if (tg_weight)
1887 		shares /= tg_weight;
1888 
1889 	if (shares < MIN_SHARES)
1890 		shares = MIN_SHARES;
1891 	if (shares > tg->shares)
1892 		shares = tg->shares;
1893 
1894 	return shares;
1895 }
1896 # else /* CONFIG_SMP */
1897 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1898 {
1899 	return tg->shares;
1900 }
1901 # endif /* CONFIG_SMP */
1902 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1903 			    unsigned long weight)
1904 {
1905 	if (se->on_rq) {
1906 		/* commit outstanding execution time */
1907 		if (cfs_rq->curr == se)
1908 			update_curr(cfs_rq);
1909 		account_entity_dequeue(cfs_rq, se);
1910 	}
1911 
1912 	update_load_set(&se->load, weight);
1913 
1914 	if (se->on_rq)
1915 		account_entity_enqueue(cfs_rq, se);
1916 }
1917 
1918 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1919 
1920 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1921 {
1922 	struct task_group *tg;
1923 	struct sched_entity *se;
1924 	long shares;
1925 
1926 	tg = cfs_rq->tg;
1927 	se = tg->se[cpu_of(rq_of(cfs_rq))];
1928 	if (!se || throttled_hierarchy(cfs_rq))
1929 		return;
1930 #ifndef CONFIG_SMP
1931 	if (likely(se->load.weight == tg->shares))
1932 		return;
1933 #endif
1934 	shares = calc_cfs_shares(cfs_rq, tg);
1935 
1936 	reweight_entity(cfs_rq_of(se), se, shares);
1937 }
1938 #else /* CONFIG_FAIR_GROUP_SCHED */
1939 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1940 {
1941 }
1942 #endif /* CONFIG_FAIR_GROUP_SCHED */
1943 
1944 #ifdef CONFIG_SMP
1945 /*
1946  * We choose a half-life close to 1 scheduling period.
1947  * Note: The tables below are dependent on this value.
1948  */
1949 #define LOAD_AVG_PERIOD 32
1950 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1951 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1952 
1953 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1954 static const u32 runnable_avg_yN_inv[] = {
1955 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1956 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1957 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1958 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1959 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1960 	0x85aac367, 0x82cd8698,
1961 };
1962 
1963 /*
1964  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
1965  * over-estimates when re-combining.
1966  */
1967 static const u32 runnable_avg_yN_sum[] = {
1968 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1969 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1970 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1971 };
1972 
1973 /*
1974  * Approximate:
1975  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
1976  */
1977 static __always_inline u64 decay_load(u64 val, u64 n)
1978 {
1979 	unsigned int local_n;
1980 
1981 	if (!n)
1982 		return val;
1983 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1984 		return 0;
1985 
1986 	/* after bounds checking we can collapse to 32-bit */
1987 	local_n = n;
1988 
1989 	/*
1990 	 * As y^PERIOD = 1/2, we can combine
1991 	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1992 	 * With a look-up table which covers k^n (n<PERIOD)
1993 	 *
1994 	 * To achieve constant time decay_load.
1995 	 */
1996 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1997 		val >>= local_n / LOAD_AVG_PERIOD;
1998 		local_n %= LOAD_AVG_PERIOD;
1999 	}
2000 
2001 	val *= runnable_avg_yN_inv[local_n];
2002 	/* We don't use SRR here since we always want to round down. */
2003 	return val >> 32;
2004 }
2005 
2006 /*
2007  * For updates fully spanning n periods, the contribution to runnable
2008  * average will be: \Sum 1024*y^n
2009  *
2010  * We can compute this reasonably efficiently by combining:
2011  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2012  */
2013 static u32 __compute_runnable_contrib(u64 n)
2014 {
2015 	u32 contrib = 0;
2016 
2017 	if (likely(n <= LOAD_AVG_PERIOD))
2018 		return runnable_avg_yN_sum[n];
2019 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2020 		return LOAD_AVG_MAX;
2021 
2022 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2023 	do {
2024 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2025 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2026 
2027 		n -= LOAD_AVG_PERIOD;
2028 	} while (n > LOAD_AVG_PERIOD);
2029 
2030 	contrib = decay_load(contrib, n);
2031 	return contrib + runnable_avg_yN_sum[n];
2032 }
2033 
2034 /*
2035  * We can represent the historical contribution to runnable average as the
2036  * coefficients of a geometric series.  To do this we sub-divide our runnable
2037  * history into segments of approximately 1ms (1024us); label the segment that
2038  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2039  *
2040  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2041  *      p0            p1           p2
2042  *     (now)       (~1ms ago)  (~2ms ago)
2043  *
2044  * Let u_i denote the fraction of p_i that the entity was runnable.
2045  *
2046  * We then designate the fractions u_i as our co-efficients, yielding the
2047  * following representation of historical load:
2048  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2049  *
2050  * We choose y based on the with of a reasonably scheduling period, fixing:
2051  *   y^32 = 0.5
2052  *
2053  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2054  * approximately half as much as the contribution to load within the last ms
2055  * (u_0).
2056  *
2057  * When a period "rolls over" and we have new u_0`, multiplying the previous
2058  * sum again by y is sufficient to update:
2059  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2060  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2061  */
2062 static __always_inline int __update_entity_runnable_avg(u64 now,
2063 							struct sched_avg *sa,
2064 							int runnable)
2065 {
2066 	u64 delta, periods;
2067 	u32 runnable_contrib;
2068 	int delta_w, decayed = 0;
2069 
2070 	delta = now - sa->last_runnable_update;
2071 	/*
2072 	 * This should only happen when time goes backwards, which it
2073 	 * unfortunately does during sched clock init when we swap over to TSC.
2074 	 */
2075 	if ((s64)delta < 0) {
2076 		sa->last_runnable_update = now;
2077 		return 0;
2078 	}
2079 
2080 	/*
2081 	 * Use 1024ns as the unit of measurement since it's a reasonable
2082 	 * approximation of 1us and fast to compute.
2083 	 */
2084 	delta >>= 10;
2085 	if (!delta)
2086 		return 0;
2087 	sa->last_runnable_update = now;
2088 
2089 	/* delta_w is the amount already accumulated against our next period */
2090 	delta_w = sa->runnable_avg_period % 1024;
2091 	if (delta + delta_w >= 1024) {
2092 		/* period roll-over */
2093 		decayed = 1;
2094 
2095 		/*
2096 		 * Now that we know we're crossing a period boundary, figure
2097 		 * out how much from delta we need to complete the current
2098 		 * period and accrue it.
2099 		 */
2100 		delta_w = 1024 - delta_w;
2101 		if (runnable)
2102 			sa->runnable_avg_sum += delta_w;
2103 		sa->runnable_avg_period += delta_w;
2104 
2105 		delta -= delta_w;
2106 
2107 		/* Figure out how many additional periods this update spans */
2108 		periods = delta / 1024;
2109 		delta %= 1024;
2110 
2111 		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2112 						  periods + 1);
2113 		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2114 						     periods + 1);
2115 
2116 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2117 		runnable_contrib = __compute_runnable_contrib(periods);
2118 		if (runnable)
2119 			sa->runnable_avg_sum += runnable_contrib;
2120 		sa->runnable_avg_period += runnable_contrib;
2121 	}
2122 
2123 	/* Remainder of delta accrued against u_0` */
2124 	if (runnable)
2125 		sa->runnable_avg_sum += delta;
2126 	sa->runnable_avg_period += delta;
2127 
2128 	return decayed;
2129 }
2130 
2131 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2132 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2133 {
2134 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2135 	u64 decays = atomic64_read(&cfs_rq->decay_counter);
2136 
2137 	decays -= se->avg.decay_count;
2138 	if (!decays)
2139 		return 0;
2140 
2141 	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2142 	se->avg.decay_count = 0;
2143 
2144 	return decays;
2145 }
2146 
2147 #ifdef CONFIG_FAIR_GROUP_SCHED
2148 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2149 						 int force_update)
2150 {
2151 	struct task_group *tg = cfs_rq->tg;
2152 	long tg_contrib;
2153 
2154 	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2155 	tg_contrib -= cfs_rq->tg_load_contrib;
2156 
2157 	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2158 		atomic_long_add(tg_contrib, &tg->load_avg);
2159 		cfs_rq->tg_load_contrib += tg_contrib;
2160 	}
2161 }
2162 
2163 /*
2164  * Aggregate cfs_rq runnable averages into an equivalent task_group
2165  * representation for computing load contributions.
2166  */
2167 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2168 						  struct cfs_rq *cfs_rq)
2169 {
2170 	struct task_group *tg = cfs_rq->tg;
2171 	long contrib;
2172 
2173 	/* The fraction of a cpu used by this cfs_rq */
2174 	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2175 			  sa->runnable_avg_period + 1);
2176 	contrib -= cfs_rq->tg_runnable_contrib;
2177 
2178 	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2179 		atomic_add(contrib, &tg->runnable_avg);
2180 		cfs_rq->tg_runnable_contrib += contrib;
2181 	}
2182 }
2183 
2184 static inline void __update_group_entity_contrib(struct sched_entity *se)
2185 {
2186 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2187 	struct task_group *tg = cfs_rq->tg;
2188 	int runnable_avg;
2189 
2190 	u64 contrib;
2191 
2192 	contrib = cfs_rq->tg_load_contrib * tg->shares;
2193 	se->avg.load_avg_contrib = div_u64(contrib,
2194 				     atomic_long_read(&tg->load_avg) + 1);
2195 
2196 	/*
2197 	 * For group entities we need to compute a correction term in the case
2198 	 * that they are consuming <1 cpu so that we would contribute the same
2199 	 * load as a task of equal weight.
2200 	 *
2201 	 * Explicitly co-ordinating this measurement would be expensive, but
2202 	 * fortunately the sum of each cpus contribution forms a usable
2203 	 * lower-bound on the true value.
2204 	 *
2205 	 * Consider the aggregate of 2 contributions.  Either they are disjoint
2206 	 * (and the sum represents true value) or they are disjoint and we are
2207 	 * understating by the aggregate of their overlap.
2208 	 *
2209 	 * Extending this to N cpus, for a given overlap, the maximum amount we
2210 	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2211 	 * cpus that overlap for this interval and w_i is the interval width.
2212 	 *
2213 	 * On a small machine; the first term is well-bounded which bounds the
2214 	 * total error since w_i is a subset of the period.  Whereas on a
2215 	 * larger machine, while this first term can be larger, if w_i is the
2216 	 * of consequential size guaranteed to see n_i*w_i quickly converge to
2217 	 * our upper bound of 1-cpu.
2218 	 */
2219 	runnable_avg = atomic_read(&tg->runnable_avg);
2220 	if (runnable_avg < NICE_0_LOAD) {
2221 		se->avg.load_avg_contrib *= runnable_avg;
2222 		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2223 	}
2224 }
2225 #else
2226 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2227 						 int force_update) {}
2228 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2229 						  struct cfs_rq *cfs_rq) {}
2230 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2231 #endif
2232 
2233 static inline void __update_task_entity_contrib(struct sched_entity *se)
2234 {
2235 	u32 contrib;
2236 
2237 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2238 	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2239 	contrib /= (se->avg.runnable_avg_period + 1);
2240 	se->avg.load_avg_contrib = scale_load(contrib);
2241 }
2242 
2243 /* Compute the current contribution to load_avg by se, return any delta */
2244 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2245 {
2246 	long old_contrib = se->avg.load_avg_contrib;
2247 
2248 	if (entity_is_task(se)) {
2249 		__update_task_entity_contrib(se);
2250 	} else {
2251 		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2252 		__update_group_entity_contrib(se);
2253 	}
2254 
2255 	return se->avg.load_avg_contrib - old_contrib;
2256 }
2257 
2258 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2259 						 long load_contrib)
2260 {
2261 	if (likely(load_contrib < cfs_rq->blocked_load_avg))
2262 		cfs_rq->blocked_load_avg -= load_contrib;
2263 	else
2264 		cfs_rq->blocked_load_avg = 0;
2265 }
2266 
2267 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2268 
2269 /* Update a sched_entity's runnable average */
2270 static inline void update_entity_load_avg(struct sched_entity *se,
2271 					  int update_cfs_rq)
2272 {
2273 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2274 	long contrib_delta;
2275 	u64 now;
2276 
2277 	/*
2278 	 * For a group entity we need to use their owned cfs_rq_clock_task() in
2279 	 * case they are the parent of a throttled hierarchy.
2280 	 */
2281 	if (entity_is_task(se))
2282 		now = cfs_rq_clock_task(cfs_rq);
2283 	else
2284 		now = cfs_rq_clock_task(group_cfs_rq(se));
2285 
2286 	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2287 		return;
2288 
2289 	contrib_delta = __update_entity_load_avg_contrib(se);
2290 
2291 	if (!update_cfs_rq)
2292 		return;
2293 
2294 	if (se->on_rq)
2295 		cfs_rq->runnable_load_avg += contrib_delta;
2296 	else
2297 		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2298 }
2299 
2300 /*
2301  * Decay the load contributed by all blocked children and account this so that
2302  * their contribution may appropriately discounted when they wake up.
2303  */
2304 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2305 {
2306 	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2307 	u64 decays;
2308 
2309 	decays = now - cfs_rq->last_decay;
2310 	if (!decays && !force_update)
2311 		return;
2312 
2313 	if (atomic_long_read(&cfs_rq->removed_load)) {
2314 		unsigned long removed_load;
2315 		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2316 		subtract_blocked_load_contrib(cfs_rq, removed_load);
2317 	}
2318 
2319 	if (decays) {
2320 		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2321 						      decays);
2322 		atomic64_add(decays, &cfs_rq->decay_counter);
2323 		cfs_rq->last_decay = now;
2324 	}
2325 
2326 	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2327 }
2328 
2329 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2330 {
2331 	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2332 	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2333 }
2334 
2335 /* Add the load generated by se into cfs_rq's child load-average */
2336 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2337 						  struct sched_entity *se,
2338 						  int wakeup)
2339 {
2340 	/*
2341 	 * We track migrations using entity decay_count <= 0, on a wake-up
2342 	 * migration we use a negative decay count to track the remote decays
2343 	 * accumulated while sleeping.
2344 	 *
2345 	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2346 	 * are seen by enqueue_entity_load_avg() as a migration with an already
2347 	 * constructed load_avg_contrib.
2348 	 */
2349 	if (unlikely(se->avg.decay_count <= 0)) {
2350 		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2351 		if (se->avg.decay_count) {
2352 			/*
2353 			 * In a wake-up migration we have to approximate the
2354 			 * time sleeping.  This is because we can't synchronize
2355 			 * clock_task between the two cpus, and it is not
2356 			 * guaranteed to be read-safe.  Instead, we can
2357 			 * approximate this using our carried decays, which are
2358 			 * explicitly atomically readable.
2359 			 */
2360 			se->avg.last_runnable_update -= (-se->avg.decay_count)
2361 							<< 20;
2362 			update_entity_load_avg(se, 0);
2363 			/* Indicate that we're now synchronized and on-rq */
2364 			se->avg.decay_count = 0;
2365 		}
2366 		wakeup = 0;
2367 	} else {
2368 		/*
2369 		 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2370 		 * would have made count negative); we must be careful to avoid
2371 		 * double-accounting blocked time after synchronizing decays.
2372 		 */
2373 		se->avg.last_runnable_update += __synchronize_entity_decay(se)
2374 							<< 20;
2375 	}
2376 
2377 	/* migrated tasks did not contribute to our blocked load */
2378 	if (wakeup) {
2379 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2380 		update_entity_load_avg(se, 0);
2381 	}
2382 
2383 	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2384 	/* we force update consideration on load-balancer moves */
2385 	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2386 }
2387 
2388 /*
2389  * Remove se's load from this cfs_rq child load-average, if the entity is
2390  * transitioning to a blocked state we track its projected decay using
2391  * blocked_load_avg.
2392  */
2393 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2394 						  struct sched_entity *se,
2395 						  int sleep)
2396 {
2397 	update_entity_load_avg(se, 1);
2398 	/* we force update consideration on load-balancer moves */
2399 	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2400 
2401 	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2402 	if (sleep) {
2403 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2404 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2405 	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2406 }
2407 
2408 /*
2409  * Update the rq's load with the elapsed running time before entering
2410  * idle. if the last scheduled task is not a CFS task, idle_enter will
2411  * be the only way to update the runnable statistic.
2412  */
2413 void idle_enter_fair(struct rq *this_rq)
2414 {
2415 	update_rq_runnable_avg(this_rq, 1);
2416 }
2417 
2418 /*
2419  * Update the rq's load with the elapsed idle time before a task is
2420  * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2421  * be the only way to update the runnable statistic.
2422  */
2423 void idle_exit_fair(struct rq *this_rq)
2424 {
2425 	update_rq_runnable_avg(this_rq, 0);
2426 }
2427 
2428 #else
2429 static inline void update_entity_load_avg(struct sched_entity *se,
2430 					  int update_cfs_rq) {}
2431 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2432 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2433 					   struct sched_entity *se,
2434 					   int wakeup) {}
2435 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2436 					   struct sched_entity *se,
2437 					   int sleep) {}
2438 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2439 					      int force_update) {}
2440 #endif
2441 
2442 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2443 {
2444 #ifdef CONFIG_SCHEDSTATS
2445 	struct task_struct *tsk = NULL;
2446 
2447 	if (entity_is_task(se))
2448 		tsk = task_of(se);
2449 
2450 	if (se->statistics.sleep_start) {
2451 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2452 
2453 		if ((s64)delta < 0)
2454 			delta = 0;
2455 
2456 		if (unlikely(delta > se->statistics.sleep_max))
2457 			se->statistics.sleep_max = delta;
2458 
2459 		se->statistics.sleep_start = 0;
2460 		se->statistics.sum_sleep_runtime += delta;
2461 
2462 		if (tsk) {
2463 			account_scheduler_latency(tsk, delta >> 10, 1);
2464 			trace_sched_stat_sleep(tsk, delta);
2465 		}
2466 	}
2467 	if (se->statistics.block_start) {
2468 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2469 
2470 		if ((s64)delta < 0)
2471 			delta = 0;
2472 
2473 		if (unlikely(delta > se->statistics.block_max))
2474 			se->statistics.block_max = delta;
2475 
2476 		se->statistics.block_start = 0;
2477 		se->statistics.sum_sleep_runtime += delta;
2478 
2479 		if (tsk) {
2480 			if (tsk->in_iowait) {
2481 				se->statistics.iowait_sum += delta;
2482 				se->statistics.iowait_count++;
2483 				trace_sched_stat_iowait(tsk, delta);
2484 			}
2485 
2486 			trace_sched_stat_blocked(tsk, delta);
2487 
2488 			/*
2489 			 * Blocking time is in units of nanosecs, so shift by
2490 			 * 20 to get a milliseconds-range estimation of the
2491 			 * amount of time that the task spent sleeping:
2492 			 */
2493 			if (unlikely(prof_on == SLEEP_PROFILING)) {
2494 				profile_hits(SLEEP_PROFILING,
2495 						(void *)get_wchan(tsk),
2496 						delta >> 20);
2497 			}
2498 			account_scheduler_latency(tsk, delta >> 10, 0);
2499 		}
2500 	}
2501 #endif
2502 }
2503 
2504 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2505 {
2506 #ifdef CONFIG_SCHED_DEBUG
2507 	s64 d = se->vruntime - cfs_rq->min_vruntime;
2508 
2509 	if (d < 0)
2510 		d = -d;
2511 
2512 	if (d > 3*sysctl_sched_latency)
2513 		schedstat_inc(cfs_rq, nr_spread_over);
2514 #endif
2515 }
2516 
2517 static void
2518 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2519 {
2520 	u64 vruntime = cfs_rq->min_vruntime;
2521 
2522 	/*
2523 	 * The 'current' period is already promised to the current tasks,
2524 	 * however the extra weight of the new task will slow them down a
2525 	 * little, place the new task so that it fits in the slot that
2526 	 * stays open at the end.
2527 	 */
2528 	if (initial && sched_feat(START_DEBIT))
2529 		vruntime += sched_vslice(cfs_rq, se);
2530 
2531 	/* sleeps up to a single latency don't count. */
2532 	if (!initial) {
2533 		unsigned long thresh = sysctl_sched_latency;
2534 
2535 		/*
2536 		 * Halve their sleep time's effect, to allow
2537 		 * for a gentler effect of sleepers:
2538 		 */
2539 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
2540 			thresh >>= 1;
2541 
2542 		vruntime -= thresh;
2543 	}
2544 
2545 	/* ensure we never gain time by being placed backwards. */
2546 	se->vruntime = max_vruntime(se->vruntime, vruntime);
2547 }
2548 
2549 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2550 
2551 static void
2552 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2553 {
2554 	/*
2555 	 * Update the normalized vruntime before updating min_vruntime
2556 	 * through calling update_curr().
2557 	 */
2558 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2559 		se->vruntime += cfs_rq->min_vruntime;
2560 
2561 	/*
2562 	 * Update run-time statistics of the 'current'.
2563 	 */
2564 	update_curr(cfs_rq);
2565 	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2566 	account_entity_enqueue(cfs_rq, se);
2567 	update_cfs_shares(cfs_rq);
2568 
2569 	if (flags & ENQUEUE_WAKEUP) {
2570 		place_entity(cfs_rq, se, 0);
2571 		enqueue_sleeper(cfs_rq, se);
2572 	}
2573 
2574 	update_stats_enqueue(cfs_rq, se);
2575 	check_spread(cfs_rq, se);
2576 	if (se != cfs_rq->curr)
2577 		__enqueue_entity(cfs_rq, se);
2578 	se->on_rq = 1;
2579 
2580 	if (cfs_rq->nr_running == 1) {
2581 		list_add_leaf_cfs_rq(cfs_rq);
2582 		check_enqueue_throttle(cfs_rq);
2583 	}
2584 }
2585 
2586 static void __clear_buddies_last(struct sched_entity *se)
2587 {
2588 	for_each_sched_entity(se) {
2589 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2590 		if (cfs_rq->last == se)
2591 			cfs_rq->last = NULL;
2592 		else
2593 			break;
2594 	}
2595 }
2596 
2597 static void __clear_buddies_next(struct sched_entity *se)
2598 {
2599 	for_each_sched_entity(se) {
2600 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2601 		if (cfs_rq->next == se)
2602 			cfs_rq->next = NULL;
2603 		else
2604 			break;
2605 	}
2606 }
2607 
2608 static void __clear_buddies_skip(struct sched_entity *se)
2609 {
2610 	for_each_sched_entity(se) {
2611 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2612 		if (cfs_rq->skip == se)
2613 			cfs_rq->skip = NULL;
2614 		else
2615 			break;
2616 	}
2617 }
2618 
2619 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2620 {
2621 	if (cfs_rq->last == se)
2622 		__clear_buddies_last(se);
2623 
2624 	if (cfs_rq->next == se)
2625 		__clear_buddies_next(se);
2626 
2627 	if (cfs_rq->skip == se)
2628 		__clear_buddies_skip(se);
2629 }
2630 
2631 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2632 
2633 static void
2634 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2635 {
2636 	/*
2637 	 * Update run-time statistics of the 'current'.
2638 	 */
2639 	update_curr(cfs_rq);
2640 	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2641 
2642 	update_stats_dequeue(cfs_rq, se);
2643 	if (flags & DEQUEUE_SLEEP) {
2644 #ifdef CONFIG_SCHEDSTATS
2645 		if (entity_is_task(se)) {
2646 			struct task_struct *tsk = task_of(se);
2647 
2648 			if (tsk->state & TASK_INTERRUPTIBLE)
2649 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2650 			if (tsk->state & TASK_UNINTERRUPTIBLE)
2651 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2652 		}
2653 #endif
2654 	}
2655 
2656 	clear_buddies(cfs_rq, se);
2657 
2658 	if (se != cfs_rq->curr)
2659 		__dequeue_entity(cfs_rq, se);
2660 	se->on_rq = 0;
2661 	account_entity_dequeue(cfs_rq, se);
2662 
2663 	/*
2664 	 * Normalize the entity after updating the min_vruntime because the
2665 	 * update can refer to the ->curr item and we need to reflect this
2666 	 * movement in our normalized position.
2667 	 */
2668 	if (!(flags & DEQUEUE_SLEEP))
2669 		se->vruntime -= cfs_rq->min_vruntime;
2670 
2671 	/* return excess runtime on last dequeue */
2672 	return_cfs_rq_runtime(cfs_rq);
2673 
2674 	update_min_vruntime(cfs_rq);
2675 	update_cfs_shares(cfs_rq);
2676 }
2677 
2678 /*
2679  * Preempt the current task with a newly woken task if needed:
2680  */
2681 static void
2682 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2683 {
2684 	unsigned long ideal_runtime, delta_exec;
2685 	struct sched_entity *se;
2686 	s64 delta;
2687 
2688 	ideal_runtime = sched_slice(cfs_rq, curr);
2689 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2690 	if (delta_exec > ideal_runtime) {
2691 		resched_task(rq_of(cfs_rq)->curr);
2692 		/*
2693 		 * The current task ran long enough, ensure it doesn't get
2694 		 * re-elected due to buddy favours.
2695 		 */
2696 		clear_buddies(cfs_rq, curr);
2697 		return;
2698 	}
2699 
2700 	/*
2701 	 * Ensure that a task that missed wakeup preemption by a
2702 	 * narrow margin doesn't have to wait for a full slice.
2703 	 * This also mitigates buddy induced latencies under load.
2704 	 */
2705 	if (delta_exec < sysctl_sched_min_granularity)
2706 		return;
2707 
2708 	se = __pick_first_entity(cfs_rq);
2709 	delta = curr->vruntime - se->vruntime;
2710 
2711 	if (delta < 0)
2712 		return;
2713 
2714 	if (delta > ideal_runtime)
2715 		resched_task(rq_of(cfs_rq)->curr);
2716 }
2717 
2718 static void
2719 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2720 {
2721 	/* 'current' is not kept within the tree. */
2722 	if (se->on_rq) {
2723 		/*
2724 		 * Any task has to be enqueued before it get to execute on
2725 		 * a CPU. So account for the time it spent waiting on the
2726 		 * runqueue.
2727 		 */
2728 		update_stats_wait_end(cfs_rq, se);
2729 		__dequeue_entity(cfs_rq, se);
2730 	}
2731 
2732 	update_stats_curr_start(cfs_rq, se);
2733 	cfs_rq->curr = se;
2734 #ifdef CONFIG_SCHEDSTATS
2735 	/*
2736 	 * Track our maximum slice length, if the CPU's load is at
2737 	 * least twice that of our own weight (i.e. dont track it
2738 	 * when there are only lesser-weight tasks around):
2739 	 */
2740 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2741 		se->statistics.slice_max = max(se->statistics.slice_max,
2742 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
2743 	}
2744 #endif
2745 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2746 }
2747 
2748 static int
2749 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2750 
2751 /*
2752  * Pick the next process, keeping these things in mind, in this order:
2753  * 1) keep things fair between processes/task groups
2754  * 2) pick the "next" process, since someone really wants that to run
2755  * 3) pick the "last" process, for cache locality
2756  * 4) do not run the "skip" process, if something else is available
2757  */
2758 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2759 {
2760 	struct sched_entity *se = __pick_first_entity(cfs_rq);
2761 	struct sched_entity *left = se;
2762 
2763 	/*
2764 	 * Avoid running the skip buddy, if running something else can
2765 	 * be done without getting too unfair.
2766 	 */
2767 	if (cfs_rq->skip == se) {
2768 		struct sched_entity *second = __pick_next_entity(se);
2769 		if (second && wakeup_preempt_entity(second, left) < 1)
2770 			se = second;
2771 	}
2772 
2773 	/*
2774 	 * Prefer last buddy, try to return the CPU to a preempted task.
2775 	 */
2776 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2777 		se = cfs_rq->last;
2778 
2779 	/*
2780 	 * Someone really wants this to run. If it's not unfair, run it.
2781 	 */
2782 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2783 		se = cfs_rq->next;
2784 
2785 	clear_buddies(cfs_rq, se);
2786 
2787 	return se;
2788 }
2789 
2790 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2791 
2792 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2793 {
2794 	/*
2795 	 * If still on the runqueue then deactivate_task()
2796 	 * was not called and update_curr() has to be done:
2797 	 */
2798 	if (prev->on_rq)
2799 		update_curr(cfs_rq);
2800 
2801 	/* throttle cfs_rqs exceeding runtime */
2802 	check_cfs_rq_runtime(cfs_rq);
2803 
2804 	check_spread(cfs_rq, prev);
2805 	if (prev->on_rq) {
2806 		update_stats_wait_start(cfs_rq, prev);
2807 		/* Put 'current' back into the tree. */
2808 		__enqueue_entity(cfs_rq, prev);
2809 		/* in !on_rq case, update occurred at dequeue */
2810 		update_entity_load_avg(prev, 1);
2811 	}
2812 	cfs_rq->curr = NULL;
2813 }
2814 
2815 static void
2816 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2817 {
2818 	/*
2819 	 * Update run-time statistics of the 'current'.
2820 	 */
2821 	update_curr(cfs_rq);
2822 
2823 	/*
2824 	 * Ensure that runnable average is periodically updated.
2825 	 */
2826 	update_entity_load_avg(curr, 1);
2827 	update_cfs_rq_blocked_load(cfs_rq, 1);
2828 	update_cfs_shares(cfs_rq);
2829 
2830 #ifdef CONFIG_SCHED_HRTICK
2831 	/*
2832 	 * queued ticks are scheduled to match the slice, so don't bother
2833 	 * validating it and just reschedule.
2834 	 */
2835 	if (queued) {
2836 		resched_task(rq_of(cfs_rq)->curr);
2837 		return;
2838 	}
2839 	/*
2840 	 * don't let the period tick interfere with the hrtick preemption
2841 	 */
2842 	if (!sched_feat(DOUBLE_TICK) &&
2843 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2844 		return;
2845 #endif
2846 
2847 	if (cfs_rq->nr_running > 1)
2848 		check_preempt_tick(cfs_rq, curr);
2849 }
2850 
2851 
2852 /**************************************************
2853  * CFS bandwidth control machinery
2854  */
2855 
2856 #ifdef CONFIG_CFS_BANDWIDTH
2857 
2858 #ifdef HAVE_JUMP_LABEL
2859 static struct static_key __cfs_bandwidth_used;
2860 
2861 static inline bool cfs_bandwidth_used(void)
2862 {
2863 	return static_key_false(&__cfs_bandwidth_used);
2864 }
2865 
2866 void cfs_bandwidth_usage_inc(void)
2867 {
2868 	static_key_slow_inc(&__cfs_bandwidth_used);
2869 }
2870 
2871 void cfs_bandwidth_usage_dec(void)
2872 {
2873 	static_key_slow_dec(&__cfs_bandwidth_used);
2874 }
2875 #else /* HAVE_JUMP_LABEL */
2876 static bool cfs_bandwidth_used(void)
2877 {
2878 	return true;
2879 }
2880 
2881 void cfs_bandwidth_usage_inc(void) {}
2882 void cfs_bandwidth_usage_dec(void) {}
2883 #endif /* HAVE_JUMP_LABEL */
2884 
2885 /*
2886  * default period for cfs group bandwidth.
2887  * default: 0.1s, units: nanoseconds
2888  */
2889 static inline u64 default_cfs_period(void)
2890 {
2891 	return 100000000ULL;
2892 }
2893 
2894 static inline u64 sched_cfs_bandwidth_slice(void)
2895 {
2896 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2897 }
2898 
2899 /*
2900  * Replenish runtime according to assigned quota and update expiration time.
2901  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2902  * additional synchronization around rq->lock.
2903  *
2904  * requires cfs_b->lock
2905  */
2906 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2907 {
2908 	u64 now;
2909 
2910 	if (cfs_b->quota == RUNTIME_INF)
2911 		return;
2912 
2913 	now = sched_clock_cpu(smp_processor_id());
2914 	cfs_b->runtime = cfs_b->quota;
2915 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2916 }
2917 
2918 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2919 {
2920 	return &tg->cfs_bandwidth;
2921 }
2922 
2923 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2924 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2925 {
2926 	if (unlikely(cfs_rq->throttle_count))
2927 		return cfs_rq->throttled_clock_task;
2928 
2929 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2930 }
2931 
2932 /* returns 0 on failure to allocate runtime */
2933 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2934 {
2935 	struct task_group *tg = cfs_rq->tg;
2936 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2937 	u64 amount = 0, min_amount, expires;
2938 
2939 	/* note: this is a positive sum as runtime_remaining <= 0 */
2940 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2941 
2942 	raw_spin_lock(&cfs_b->lock);
2943 	if (cfs_b->quota == RUNTIME_INF)
2944 		amount = min_amount;
2945 	else {
2946 		/*
2947 		 * If the bandwidth pool has become inactive, then at least one
2948 		 * period must have elapsed since the last consumption.
2949 		 * Refresh the global state and ensure bandwidth timer becomes
2950 		 * active.
2951 		 */
2952 		if (!cfs_b->timer_active) {
2953 			__refill_cfs_bandwidth_runtime(cfs_b);
2954 			__start_cfs_bandwidth(cfs_b);
2955 		}
2956 
2957 		if (cfs_b->runtime > 0) {
2958 			amount = min(cfs_b->runtime, min_amount);
2959 			cfs_b->runtime -= amount;
2960 			cfs_b->idle = 0;
2961 		}
2962 	}
2963 	expires = cfs_b->runtime_expires;
2964 	raw_spin_unlock(&cfs_b->lock);
2965 
2966 	cfs_rq->runtime_remaining += amount;
2967 	/*
2968 	 * we may have advanced our local expiration to account for allowed
2969 	 * spread between our sched_clock and the one on which runtime was
2970 	 * issued.
2971 	 */
2972 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2973 		cfs_rq->runtime_expires = expires;
2974 
2975 	return cfs_rq->runtime_remaining > 0;
2976 }
2977 
2978 /*
2979  * Note: This depends on the synchronization provided by sched_clock and the
2980  * fact that rq->clock snapshots this value.
2981  */
2982 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2983 {
2984 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2985 
2986 	/* if the deadline is ahead of our clock, nothing to do */
2987 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2988 		return;
2989 
2990 	if (cfs_rq->runtime_remaining < 0)
2991 		return;
2992 
2993 	/*
2994 	 * If the local deadline has passed we have to consider the
2995 	 * possibility that our sched_clock is 'fast' and the global deadline
2996 	 * has not truly expired.
2997 	 *
2998 	 * Fortunately we can check determine whether this the case by checking
2999 	 * whether the global deadline has advanced.
3000 	 */
3001 
3002 	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3003 		/* extend local deadline, drift is bounded above by 2 ticks */
3004 		cfs_rq->runtime_expires += TICK_NSEC;
3005 	} else {
3006 		/* global deadline is ahead, expiration has passed */
3007 		cfs_rq->runtime_remaining = 0;
3008 	}
3009 }
3010 
3011 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3012 {
3013 	/* dock delta_exec before expiring quota (as it could span periods) */
3014 	cfs_rq->runtime_remaining -= delta_exec;
3015 	expire_cfs_rq_runtime(cfs_rq);
3016 
3017 	if (likely(cfs_rq->runtime_remaining > 0))
3018 		return;
3019 
3020 	/*
3021 	 * if we're unable to extend our runtime we resched so that the active
3022 	 * hierarchy can be throttled
3023 	 */
3024 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3025 		resched_task(rq_of(cfs_rq)->curr);
3026 }
3027 
3028 static __always_inline
3029 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3030 {
3031 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3032 		return;
3033 
3034 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3035 }
3036 
3037 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3038 {
3039 	return cfs_bandwidth_used() && cfs_rq->throttled;
3040 }
3041 
3042 /* check whether cfs_rq, or any parent, is throttled */
3043 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3044 {
3045 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3046 }
3047 
3048 /*
3049  * Ensure that neither of the group entities corresponding to src_cpu or
3050  * dest_cpu are members of a throttled hierarchy when performing group
3051  * load-balance operations.
3052  */
3053 static inline int throttled_lb_pair(struct task_group *tg,
3054 				    int src_cpu, int dest_cpu)
3055 {
3056 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3057 
3058 	src_cfs_rq = tg->cfs_rq[src_cpu];
3059 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3060 
3061 	return throttled_hierarchy(src_cfs_rq) ||
3062 	       throttled_hierarchy(dest_cfs_rq);
3063 }
3064 
3065 /* updated child weight may affect parent so we have to do this bottom up */
3066 static int tg_unthrottle_up(struct task_group *tg, void *data)
3067 {
3068 	struct rq *rq = data;
3069 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3070 
3071 	cfs_rq->throttle_count--;
3072 #ifdef CONFIG_SMP
3073 	if (!cfs_rq->throttle_count) {
3074 		/* adjust cfs_rq_clock_task() */
3075 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3076 					     cfs_rq->throttled_clock_task;
3077 	}
3078 #endif
3079 
3080 	return 0;
3081 }
3082 
3083 static int tg_throttle_down(struct task_group *tg, void *data)
3084 {
3085 	struct rq *rq = data;
3086 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3087 
3088 	/* group is entering throttled state, stop time */
3089 	if (!cfs_rq->throttle_count)
3090 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3091 	cfs_rq->throttle_count++;
3092 
3093 	return 0;
3094 }
3095 
3096 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3097 {
3098 	struct rq *rq = rq_of(cfs_rq);
3099 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3100 	struct sched_entity *se;
3101 	long task_delta, dequeue = 1;
3102 
3103 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3104 
3105 	/* freeze hierarchy runnable averages while throttled */
3106 	rcu_read_lock();
3107 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3108 	rcu_read_unlock();
3109 
3110 	task_delta = cfs_rq->h_nr_running;
3111 	for_each_sched_entity(se) {
3112 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3113 		/* throttled entity or throttle-on-deactivate */
3114 		if (!se->on_rq)
3115 			break;
3116 
3117 		if (dequeue)
3118 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3119 		qcfs_rq->h_nr_running -= task_delta;
3120 
3121 		if (qcfs_rq->load.weight)
3122 			dequeue = 0;
3123 	}
3124 
3125 	if (!se)
3126 		rq->nr_running -= task_delta;
3127 
3128 	cfs_rq->throttled = 1;
3129 	cfs_rq->throttled_clock = rq_clock(rq);
3130 	raw_spin_lock(&cfs_b->lock);
3131 	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3132 	if (!cfs_b->timer_active)
3133 		__start_cfs_bandwidth(cfs_b);
3134 	raw_spin_unlock(&cfs_b->lock);
3135 }
3136 
3137 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3138 {
3139 	struct rq *rq = rq_of(cfs_rq);
3140 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3141 	struct sched_entity *se;
3142 	int enqueue = 1;
3143 	long task_delta;
3144 
3145 	se = cfs_rq->tg->se[cpu_of(rq)];
3146 
3147 	cfs_rq->throttled = 0;
3148 
3149 	update_rq_clock(rq);
3150 
3151 	raw_spin_lock(&cfs_b->lock);
3152 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3153 	list_del_rcu(&cfs_rq->throttled_list);
3154 	raw_spin_unlock(&cfs_b->lock);
3155 
3156 	/* update hierarchical throttle state */
3157 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3158 
3159 	if (!cfs_rq->load.weight)
3160 		return;
3161 
3162 	task_delta = cfs_rq->h_nr_running;
3163 	for_each_sched_entity(se) {
3164 		if (se->on_rq)
3165 			enqueue = 0;
3166 
3167 		cfs_rq = cfs_rq_of(se);
3168 		if (enqueue)
3169 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3170 		cfs_rq->h_nr_running += task_delta;
3171 
3172 		if (cfs_rq_throttled(cfs_rq))
3173 			break;
3174 	}
3175 
3176 	if (!se)
3177 		rq->nr_running += task_delta;
3178 
3179 	/* determine whether we need to wake up potentially idle cpu */
3180 	if (rq->curr == rq->idle && rq->cfs.nr_running)
3181 		resched_task(rq->curr);
3182 }
3183 
3184 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3185 		u64 remaining, u64 expires)
3186 {
3187 	struct cfs_rq *cfs_rq;
3188 	u64 runtime = remaining;
3189 
3190 	rcu_read_lock();
3191 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3192 				throttled_list) {
3193 		struct rq *rq = rq_of(cfs_rq);
3194 
3195 		raw_spin_lock(&rq->lock);
3196 		if (!cfs_rq_throttled(cfs_rq))
3197 			goto next;
3198 
3199 		runtime = -cfs_rq->runtime_remaining + 1;
3200 		if (runtime > remaining)
3201 			runtime = remaining;
3202 		remaining -= runtime;
3203 
3204 		cfs_rq->runtime_remaining += runtime;
3205 		cfs_rq->runtime_expires = expires;
3206 
3207 		/* we check whether we're throttled above */
3208 		if (cfs_rq->runtime_remaining > 0)
3209 			unthrottle_cfs_rq(cfs_rq);
3210 
3211 next:
3212 		raw_spin_unlock(&rq->lock);
3213 
3214 		if (!remaining)
3215 			break;
3216 	}
3217 	rcu_read_unlock();
3218 
3219 	return remaining;
3220 }
3221 
3222 /*
3223  * Responsible for refilling a task_group's bandwidth and unthrottling its
3224  * cfs_rqs as appropriate. If there has been no activity within the last
3225  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3226  * used to track this state.
3227  */
3228 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3229 {
3230 	u64 runtime, runtime_expires;
3231 	int idle = 1, throttled;
3232 
3233 	raw_spin_lock(&cfs_b->lock);
3234 	/* no need to continue the timer with no bandwidth constraint */
3235 	if (cfs_b->quota == RUNTIME_INF)
3236 		goto out_unlock;
3237 
3238 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3239 	/* idle depends on !throttled (for the case of a large deficit) */
3240 	idle = cfs_b->idle && !throttled;
3241 	cfs_b->nr_periods += overrun;
3242 
3243 	/* if we're going inactive then everything else can be deferred */
3244 	if (idle)
3245 		goto out_unlock;
3246 
3247 	/*
3248 	 * if we have relooped after returning idle once, we need to update our
3249 	 * status as actually running, so that other cpus doing
3250 	 * __start_cfs_bandwidth will stop trying to cancel us.
3251 	 */
3252 	cfs_b->timer_active = 1;
3253 
3254 	__refill_cfs_bandwidth_runtime(cfs_b);
3255 
3256 	if (!throttled) {
3257 		/* mark as potentially idle for the upcoming period */
3258 		cfs_b->idle = 1;
3259 		goto out_unlock;
3260 	}
3261 
3262 	/* account preceding periods in which throttling occurred */
3263 	cfs_b->nr_throttled += overrun;
3264 
3265 	/*
3266 	 * There are throttled entities so we must first use the new bandwidth
3267 	 * to unthrottle them before making it generally available.  This
3268 	 * ensures that all existing debts will be paid before a new cfs_rq is
3269 	 * allowed to run.
3270 	 */
3271 	runtime = cfs_b->runtime;
3272 	runtime_expires = cfs_b->runtime_expires;
3273 	cfs_b->runtime = 0;
3274 
3275 	/*
3276 	 * This check is repeated as we are holding onto the new bandwidth
3277 	 * while we unthrottle.  This can potentially race with an unthrottled
3278 	 * group trying to acquire new bandwidth from the global pool.
3279 	 */
3280 	while (throttled && runtime > 0) {
3281 		raw_spin_unlock(&cfs_b->lock);
3282 		/* we can't nest cfs_b->lock while distributing bandwidth */
3283 		runtime = distribute_cfs_runtime(cfs_b, runtime,
3284 						 runtime_expires);
3285 		raw_spin_lock(&cfs_b->lock);
3286 
3287 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3288 	}
3289 
3290 	/* return (any) remaining runtime */
3291 	cfs_b->runtime = runtime;
3292 	/*
3293 	 * While we are ensured activity in the period following an
3294 	 * unthrottle, this also covers the case in which the new bandwidth is
3295 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3296 	 * timer to remain active while there are any throttled entities.)
3297 	 */
3298 	cfs_b->idle = 0;
3299 out_unlock:
3300 	if (idle)
3301 		cfs_b->timer_active = 0;
3302 	raw_spin_unlock(&cfs_b->lock);
3303 
3304 	return idle;
3305 }
3306 
3307 /* a cfs_rq won't donate quota below this amount */
3308 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3309 /* minimum remaining period time to redistribute slack quota */
3310 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3311 /* how long we wait to gather additional slack before distributing */
3312 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3313 
3314 /*
3315  * Are we near the end of the current quota period?
3316  *
3317  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3318  * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3319  * migrate_hrtimers, base is never cleared, so we are fine.
3320  */
3321 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3322 {
3323 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3324 	u64 remaining;
3325 
3326 	/* if the call-back is running a quota refresh is already occurring */
3327 	if (hrtimer_callback_running(refresh_timer))
3328 		return 1;
3329 
3330 	/* is a quota refresh about to occur? */
3331 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3332 	if (remaining < min_expire)
3333 		return 1;
3334 
3335 	return 0;
3336 }
3337 
3338 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3339 {
3340 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3341 
3342 	/* if there's a quota refresh soon don't bother with slack */
3343 	if (runtime_refresh_within(cfs_b, min_left))
3344 		return;
3345 
3346 	start_bandwidth_timer(&cfs_b->slack_timer,
3347 				ns_to_ktime(cfs_bandwidth_slack_period));
3348 }
3349 
3350 /* we know any runtime found here is valid as update_curr() precedes return */
3351 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3352 {
3353 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3354 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3355 
3356 	if (slack_runtime <= 0)
3357 		return;
3358 
3359 	raw_spin_lock(&cfs_b->lock);
3360 	if (cfs_b->quota != RUNTIME_INF &&
3361 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3362 		cfs_b->runtime += slack_runtime;
3363 
3364 		/* we are under rq->lock, defer unthrottling using a timer */
3365 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3366 		    !list_empty(&cfs_b->throttled_cfs_rq))
3367 			start_cfs_slack_bandwidth(cfs_b);
3368 	}
3369 	raw_spin_unlock(&cfs_b->lock);
3370 
3371 	/* even if it's not valid for return we don't want to try again */
3372 	cfs_rq->runtime_remaining -= slack_runtime;
3373 }
3374 
3375 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3376 {
3377 	if (!cfs_bandwidth_used())
3378 		return;
3379 
3380 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3381 		return;
3382 
3383 	__return_cfs_rq_runtime(cfs_rq);
3384 }
3385 
3386 /*
3387  * This is done with a timer (instead of inline with bandwidth return) since
3388  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3389  */
3390 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3391 {
3392 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3393 	u64 expires;
3394 
3395 	/* confirm we're still not at a refresh boundary */
3396 	raw_spin_lock(&cfs_b->lock);
3397 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3398 		raw_spin_unlock(&cfs_b->lock);
3399 		return;
3400 	}
3401 
3402 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3403 		runtime = cfs_b->runtime;
3404 		cfs_b->runtime = 0;
3405 	}
3406 	expires = cfs_b->runtime_expires;
3407 	raw_spin_unlock(&cfs_b->lock);
3408 
3409 	if (!runtime)
3410 		return;
3411 
3412 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3413 
3414 	raw_spin_lock(&cfs_b->lock);
3415 	if (expires == cfs_b->runtime_expires)
3416 		cfs_b->runtime = runtime;
3417 	raw_spin_unlock(&cfs_b->lock);
3418 }
3419 
3420 /*
3421  * When a group wakes up we want to make sure that its quota is not already
3422  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3423  * runtime as update_curr() throttling can not not trigger until it's on-rq.
3424  */
3425 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3426 {
3427 	if (!cfs_bandwidth_used())
3428 		return;
3429 
3430 	/* an active group must be handled by the update_curr()->put() path */
3431 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3432 		return;
3433 
3434 	/* ensure the group is not already throttled */
3435 	if (cfs_rq_throttled(cfs_rq))
3436 		return;
3437 
3438 	/* update runtime allocation */
3439 	account_cfs_rq_runtime(cfs_rq, 0);
3440 	if (cfs_rq->runtime_remaining <= 0)
3441 		throttle_cfs_rq(cfs_rq);
3442 }
3443 
3444 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3445 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3446 {
3447 	if (!cfs_bandwidth_used())
3448 		return;
3449 
3450 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3451 		return;
3452 
3453 	/*
3454 	 * it's possible for a throttled entity to be forced into a running
3455 	 * state (e.g. set_curr_task), in this case we're finished.
3456 	 */
3457 	if (cfs_rq_throttled(cfs_rq))
3458 		return;
3459 
3460 	throttle_cfs_rq(cfs_rq);
3461 }
3462 
3463 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3464 {
3465 	struct cfs_bandwidth *cfs_b =
3466 		container_of(timer, struct cfs_bandwidth, slack_timer);
3467 	do_sched_cfs_slack_timer(cfs_b);
3468 
3469 	return HRTIMER_NORESTART;
3470 }
3471 
3472 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3473 {
3474 	struct cfs_bandwidth *cfs_b =
3475 		container_of(timer, struct cfs_bandwidth, period_timer);
3476 	ktime_t now;
3477 	int overrun;
3478 	int idle = 0;
3479 
3480 	for (;;) {
3481 		now = hrtimer_cb_get_time(timer);
3482 		overrun = hrtimer_forward(timer, now, cfs_b->period);
3483 
3484 		if (!overrun)
3485 			break;
3486 
3487 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
3488 	}
3489 
3490 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3491 }
3492 
3493 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3494 {
3495 	raw_spin_lock_init(&cfs_b->lock);
3496 	cfs_b->runtime = 0;
3497 	cfs_b->quota = RUNTIME_INF;
3498 	cfs_b->period = ns_to_ktime(default_cfs_period());
3499 
3500 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3501 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3502 	cfs_b->period_timer.function = sched_cfs_period_timer;
3503 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3504 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
3505 }
3506 
3507 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3508 {
3509 	cfs_rq->runtime_enabled = 0;
3510 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
3511 }
3512 
3513 /* requires cfs_b->lock, may release to reprogram timer */
3514 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3515 {
3516 	/*
3517 	 * The timer may be active because we're trying to set a new bandwidth
3518 	 * period or because we're racing with the tear-down path
3519 	 * (timer_active==0 becomes visible before the hrtimer call-back
3520 	 * terminates).  In either case we ensure that it's re-programmed
3521 	 */
3522 	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3523 	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3524 		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3525 		raw_spin_unlock(&cfs_b->lock);
3526 		cpu_relax();
3527 		raw_spin_lock(&cfs_b->lock);
3528 		/* if someone else restarted the timer then we're done */
3529 		if (cfs_b->timer_active)
3530 			return;
3531 	}
3532 
3533 	cfs_b->timer_active = 1;
3534 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3535 }
3536 
3537 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3538 {
3539 	hrtimer_cancel(&cfs_b->period_timer);
3540 	hrtimer_cancel(&cfs_b->slack_timer);
3541 }
3542 
3543 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3544 {
3545 	struct cfs_rq *cfs_rq;
3546 
3547 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3548 		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3549 
3550 		if (!cfs_rq->runtime_enabled)
3551 			continue;
3552 
3553 		/*
3554 		 * clock_task is not advancing so we just need to make sure
3555 		 * there's some valid quota amount
3556 		 */
3557 		cfs_rq->runtime_remaining = cfs_b->quota;
3558 		if (cfs_rq_throttled(cfs_rq))
3559 			unthrottle_cfs_rq(cfs_rq);
3560 	}
3561 }
3562 
3563 #else /* CONFIG_CFS_BANDWIDTH */
3564 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3565 {
3566 	return rq_clock_task(rq_of(cfs_rq));
3567 }
3568 
3569 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3570 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3571 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3572 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3573 
3574 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3575 {
3576 	return 0;
3577 }
3578 
3579 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3580 {
3581 	return 0;
3582 }
3583 
3584 static inline int throttled_lb_pair(struct task_group *tg,
3585 				    int src_cpu, int dest_cpu)
3586 {
3587 	return 0;
3588 }
3589 
3590 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3591 
3592 #ifdef CONFIG_FAIR_GROUP_SCHED
3593 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3594 #endif
3595 
3596 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3597 {
3598 	return NULL;
3599 }
3600 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3601 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3602 
3603 #endif /* CONFIG_CFS_BANDWIDTH */
3604 
3605 /**************************************************
3606  * CFS operations on tasks:
3607  */
3608 
3609 #ifdef CONFIG_SCHED_HRTICK
3610 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3611 {
3612 	struct sched_entity *se = &p->se;
3613 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3614 
3615 	WARN_ON(task_rq(p) != rq);
3616 
3617 	if (cfs_rq->nr_running > 1) {
3618 		u64 slice = sched_slice(cfs_rq, se);
3619 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3620 		s64 delta = slice - ran;
3621 
3622 		if (delta < 0) {
3623 			if (rq->curr == p)
3624 				resched_task(p);
3625 			return;
3626 		}
3627 
3628 		/*
3629 		 * Don't schedule slices shorter than 10000ns, that just
3630 		 * doesn't make sense. Rely on vruntime for fairness.
3631 		 */
3632 		if (rq->curr != p)
3633 			delta = max_t(s64, 10000LL, delta);
3634 
3635 		hrtick_start(rq, delta);
3636 	}
3637 }
3638 
3639 /*
3640  * called from enqueue/dequeue and updates the hrtick when the
3641  * current task is from our class and nr_running is low enough
3642  * to matter.
3643  */
3644 static void hrtick_update(struct rq *rq)
3645 {
3646 	struct task_struct *curr = rq->curr;
3647 
3648 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3649 		return;
3650 
3651 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3652 		hrtick_start_fair(rq, curr);
3653 }
3654 #else /* !CONFIG_SCHED_HRTICK */
3655 static inline void
3656 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3657 {
3658 }
3659 
3660 static inline void hrtick_update(struct rq *rq)
3661 {
3662 }
3663 #endif
3664 
3665 /*
3666  * The enqueue_task method is called before nr_running is
3667  * increased. Here we update the fair scheduling stats and
3668  * then put the task into the rbtree:
3669  */
3670 static void
3671 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3672 {
3673 	struct cfs_rq *cfs_rq;
3674 	struct sched_entity *se = &p->se;
3675 
3676 	for_each_sched_entity(se) {
3677 		if (se->on_rq)
3678 			break;
3679 		cfs_rq = cfs_rq_of(se);
3680 		enqueue_entity(cfs_rq, se, flags);
3681 
3682 		/*
3683 		 * end evaluation on encountering a throttled cfs_rq
3684 		 *
3685 		 * note: in the case of encountering a throttled cfs_rq we will
3686 		 * post the final h_nr_running increment below.
3687 		*/
3688 		if (cfs_rq_throttled(cfs_rq))
3689 			break;
3690 		cfs_rq->h_nr_running++;
3691 
3692 		flags = ENQUEUE_WAKEUP;
3693 	}
3694 
3695 	for_each_sched_entity(se) {
3696 		cfs_rq = cfs_rq_of(se);
3697 		cfs_rq->h_nr_running++;
3698 
3699 		if (cfs_rq_throttled(cfs_rq))
3700 			break;
3701 
3702 		update_cfs_shares(cfs_rq);
3703 		update_entity_load_avg(se, 1);
3704 	}
3705 
3706 	if (!se) {
3707 		update_rq_runnable_avg(rq, rq->nr_running);
3708 		inc_nr_running(rq);
3709 	}
3710 	hrtick_update(rq);
3711 }
3712 
3713 static void set_next_buddy(struct sched_entity *se);
3714 
3715 /*
3716  * The dequeue_task method is called before nr_running is
3717  * decreased. We remove the task from the rbtree and
3718  * update the fair scheduling stats:
3719  */
3720 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3721 {
3722 	struct cfs_rq *cfs_rq;
3723 	struct sched_entity *se = &p->se;
3724 	int task_sleep = flags & DEQUEUE_SLEEP;
3725 
3726 	for_each_sched_entity(se) {
3727 		cfs_rq = cfs_rq_of(se);
3728 		dequeue_entity(cfs_rq, se, flags);
3729 
3730 		/*
3731 		 * end evaluation on encountering a throttled cfs_rq
3732 		 *
3733 		 * note: in the case of encountering a throttled cfs_rq we will
3734 		 * post the final h_nr_running decrement below.
3735 		*/
3736 		if (cfs_rq_throttled(cfs_rq))
3737 			break;
3738 		cfs_rq->h_nr_running--;
3739 
3740 		/* Don't dequeue parent if it has other entities besides us */
3741 		if (cfs_rq->load.weight) {
3742 			/*
3743 			 * Bias pick_next to pick a task from this cfs_rq, as
3744 			 * p is sleeping when it is within its sched_slice.
3745 			 */
3746 			if (task_sleep && parent_entity(se))
3747 				set_next_buddy(parent_entity(se));
3748 
3749 			/* avoid re-evaluating load for this entity */
3750 			se = parent_entity(se);
3751 			break;
3752 		}
3753 		flags |= DEQUEUE_SLEEP;
3754 	}
3755 
3756 	for_each_sched_entity(se) {
3757 		cfs_rq = cfs_rq_of(se);
3758 		cfs_rq->h_nr_running--;
3759 
3760 		if (cfs_rq_throttled(cfs_rq))
3761 			break;
3762 
3763 		update_cfs_shares(cfs_rq);
3764 		update_entity_load_avg(se, 1);
3765 	}
3766 
3767 	if (!se) {
3768 		dec_nr_running(rq);
3769 		update_rq_runnable_avg(rq, 1);
3770 	}
3771 	hrtick_update(rq);
3772 }
3773 
3774 #ifdef CONFIG_SMP
3775 /* Used instead of source_load when we know the type == 0 */
3776 static unsigned long weighted_cpuload(const int cpu)
3777 {
3778 	return cpu_rq(cpu)->cfs.runnable_load_avg;
3779 }
3780 
3781 /*
3782  * Return a low guess at the load of a migration-source cpu weighted
3783  * according to the scheduling class and "nice" value.
3784  *
3785  * We want to under-estimate the load of migration sources, to
3786  * balance conservatively.
3787  */
3788 static unsigned long source_load(int cpu, int type)
3789 {
3790 	struct rq *rq = cpu_rq(cpu);
3791 	unsigned long total = weighted_cpuload(cpu);
3792 
3793 	if (type == 0 || !sched_feat(LB_BIAS))
3794 		return total;
3795 
3796 	return min(rq->cpu_load[type-1], total);
3797 }
3798 
3799 /*
3800  * Return a high guess at the load of a migration-target cpu weighted
3801  * according to the scheduling class and "nice" value.
3802  */
3803 static unsigned long target_load(int cpu, int type)
3804 {
3805 	struct rq *rq = cpu_rq(cpu);
3806 	unsigned long total = weighted_cpuload(cpu);
3807 
3808 	if (type == 0 || !sched_feat(LB_BIAS))
3809 		return total;
3810 
3811 	return max(rq->cpu_load[type-1], total);
3812 }
3813 
3814 static unsigned long power_of(int cpu)
3815 {
3816 	return cpu_rq(cpu)->cpu_power;
3817 }
3818 
3819 static unsigned long cpu_avg_load_per_task(int cpu)
3820 {
3821 	struct rq *rq = cpu_rq(cpu);
3822 	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3823 	unsigned long load_avg = rq->cfs.runnable_load_avg;
3824 
3825 	if (nr_running)
3826 		return load_avg / nr_running;
3827 
3828 	return 0;
3829 }
3830 
3831 static void record_wakee(struct task_struct *p)
3832 {
3833 	/*
3834 	 * Rough decay (wiping) for cost saving, don't worry
3835 	 * about the boundary, really active task won't care
3836 	 * about the loss.
3837 	 */
3838 	if (jiffies > current->wakee_flip_decay_ts + HZ) {
3839 		current->wakee_flips = 0;
3840 		current->wakee_flip_decay_ts = jiffies;
3841 	}
3842 
3843 	if (current->last_wakee != p) {
3844 		current->last_wakee = p;
3845 		current->wakee_flips++;
3846 	}
3847 }
3848 
3849 static void task_waking_fair(struct task_struct *p)
3850 {
3851 	struct sched_entity *se = &p->se;
3852 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3853 	u64 min_vruntime;
3854 
3855 #ifndef CONFIG_64BIT
3856 	u64 min_vruntime_copy;
3857 
3858 	do {
3859 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
3860 		smp_rmb();
3861 		min_vruntime = cfs_rq->min_vruntime;
3862 	} while (min_vruntime != min_vruntime_copy);
3863 #else
3864 	min_vruntime = cfs_rq->min_vruntime;
3865 #endif
3866 
3867 	se->vruntime -= min_vruntime;
3868 	record_wakee(p);
3869 }
3870 
3871 #ifdef CONFIG_FAIR_GROUP_SCHED
3872 /*
3873  * effective_load() calculates the load change as seen from the root_task_group
3874  *
3875  * Adding load to a group doesn't make a group heavier, but can cause movement
3876  * of group shares between cpus. Assuming the shares were perfectly aligned one
3877  * can calculate the shift in shares.
3878  *
3879  * Calculate the effective load difference if @wl is added (subtracted) to @tg
3880  * on this @cpu and results in a total addition (subtraction) of @wg to the
3881  * total group weight.
3882  *
3883  * Given a runqueue weight distribution (rw_i) we can compute a shares
3884  * distribution (s_i) using:
3885  *
3886  *   s_i = rw_i / \Sum rw_j						(1)
3887  *
3888  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3889  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3890  * shares distribution (s_i):
3891  *
3892  *   rw_i = {   2,   4,   1,   0 }
3893  *   s_i  = { 2/7, 4/7, 1/7,   0 }
3894  *
3895  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3896  * task used to run on and the CPU the waker is running on), we need to
3897  * compute the effect of waking a task on either CPU and, in case of a sync
3898  * wakeup, compute the effect of the current task going to sleep.
3899  *
3900  * So for a change of @wl to the local @cpu with an overall group weight change
3901  * of @wl we can compute the new shares distribution (s'_i) using:
3902  *
3903  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
3904  *
3905  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3906  * differences in waking a task to CPU 0. The additional task changes the
3907  * weight and shares distributions like:
3908  *
3909  *   rw'_i = {   3,   4,   1,   0 }
3910  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
3911  *
3912  * We can then compute the difference in effective weight by using:
3913  *
3914  *   dw_i = S * (s'_i - s_i)						(3)
3915  *
3916  * Where 'S' is the group weight as seen by its parent.
3917  *
3918  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3919  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3920  * 4/7) times the weight of the group.
3921  */
3922 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3923 {
3924 	struct sched_entity *se = tg->se[cpu];
3925 
3926 	if (!tg->parent || !wl)	/* the trivial, non-cgroup case */
3927 		return wl;
3928 
3929 	for_each_sched_entity(se) {
3930 		long w, W;
3931 
3932 		tg = se->my_q->tg;
3933 
3934 		/*
3935 		 * W = @wg + \Sum rw_j
3936 		 */
3937 		W = wg + calc_tg_weight(tg, se->my_q);
3938 
3939 		/*
3940 		 * w = rw_i + @wl
3941 		 */
3942 		w = se->my_q->load.weight + wl;
3943 
3944 		/*
3945 		 * wl = S * s'_i; see (2)
3946 		 */
3947 		if (W > 0 && w < W)
3948 			wl = (w * tg->shares) / W;
3949 		else
3950 			wl = tg->shares;
3951 
3952 		/*
3953 		 * Per the above, wl is the new se->load.weight value; since
3954 		 * those are clipped to [MIN_SHARES, ...) do so now. See
3955 		 * calc_cfs_shares().
3956 		 */
3957 		if (wl < MIN_SHARES)
3958 			wl = MIN_SHARES;
3959 
3960 		/*
3961 		 * wl = dw_i = S * (s'_i - s_i); see (3)
3962 		 */
3963 		wl -= se->load.weight;
3964 
3965 		/*
3966 		 * Recursively apply this logic to all parent groups to compute
3967 		 * the final effective load change on the root group. Since
3968 		 * only the @tg group gets extra weight, all parent groups can
3969 		 * only redistribute existing shares. @wl is the shift in shares
3970 		 * resulting from this level per the above.
3971 		 */
3972 		wg = 0;
3973 	}
3974 
3975 	return wl;
3976 }
3977 #else
3978 
3979 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3980 {
3981 	return wl;
3982 }
3983 
3984 #endif
3985 
3986 static int wake_wide(struct task_struct *p)
3987 {
3988 	int factor = this_cpu_read(sd_llc_size);
3989 
3990 	/*
3991 	 * Yeah, it's the switching-frequency, could means many wakee or
3992 	 * rapidly switch, use factor here will just help to automatically
3993 	 * adjust the loose-degree, so bigger node will lead to more pull.
3994 	 */
3995 	if (p->wakee_flips > factor) {
3996 		/*
3997 		 * wakee is somewhat hot, it needs certain amount of cpu
3998 		 * resource, so if waker is far more hot, prefer to leave
3999 		 * it alone.
4000 		 */
4001 		if (current->wakee_flips > (factor * p->wakee_flips))
4002 			return 1;
4003 	}
4004 
4005 	return 0;
4006 }
4007 
4008 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4009 {
4010 	s64 this_load, load;
4011 	int idx, this_cpu, prev_cpu;
4012 	unsigned long tl_per_task;
4013 	struct task_group *tg;
4014 	unsigned long weight;
4015 	int balanced;
4016 
4017 	/*
4018 	 * If we wake multiple tasks be careful to not bounce
4019 	 * ourselves around too much.
4020 	 */
4021 	if (wake_wide(p))
4022 		return 0;
4023 
4024 	idx	  = sd->wake_idx;
4025 	this_cpu  = smp_processor_id();
4026 	prev_cpu  = task_cpu(p);
4027 	load	  = source_load(prev_cpu, idx);
4028 	this_load = target_load(this_cpu, idx);
4029 
4030 	/*
4031 	 * If sync wakeup then subtract the (maximum possible)
4032 	 * effect of the currently running task from the load
4033 	 * of the current CPU:
4034 	 */
4035 	if (sync) {
4036 		tg = task_group(current);
4037 		weight = current->se.load.weight;
4038 
4039 		this_load += effective_load(tg, this_cpu, -weight, -weight);
4040 		load += effective_load(tg, prev_cpu, 0, -weight);
4041 	}
4042 
4043 	tg = task_group(p);
4044 	weight = p->se.load.weight;
4045 
4046 	/*
4047 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4048 	 * due to the sync cause above having dropped this_load to 0, we'll
4049 	 * always have an imbalance, but there's really nothing you can do
4050 	 * about that, so that's good too.
4051 	 *
4052 	 * Otherwise check if either cpus are near enough in load to allow this
4053 	 * task to be woken on this_cpu.
4054 	 */
4055 	if (this_load > 0) {
4056 		s64 this_eff_load, prev_eff_load;
4057 
4058 		this_eff_load = 100;
4059 		this_eff_load *= power_of(prev_cpu);
4060 		this_eff_load *= this_load +
4061 			effective_load(tg, this_cpu, weight, weight);
4062 
4063 		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4064 		prev_eff_load *= power_of(this_cpu);
4065 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4066 
4067 		balanced = this_eff_load <= prev_eff_load;
4068 	} else
4069 		balanced = true;
4070 
4071 	/*
4072 	 * If the currently running task will sleep within
4073 	 * a reasonable amount of time then attract this newly
4074 	 * woken task:
4075 	 */
4076 	if (sync && balanced)
4077 		return 1;
4078 
4079 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4080 	tl_per_task = cpu_avg_load_per_task(this_cpu);
4081 
4082 	if (balanced ||
4083 	    (this_load <= load &&
4084 	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4085 		/*
4086 		 * This domain has SD_WAKE_AFFINE and
4087 		 * p is cache cold in this domain, and
4088 		 * there is no bad imbalance.
4089 		 */
4090 		schedstat_inc(sd, ttwu_move_affine);
4091 		schedstat_inc(p, se.statistics.nr_wakeups_affine);
4092 
4093 		return 1;
4094 	}
4095 	return 0;
4096 }
4097 
4098 /*
4099  * find_idlest_group finds and returns the least busy CPU group within the
4100  * domain.
4101  */
4102 static struct sched_group *
4103 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4104 		  int this_cpu, int load_idx)
4105 {
4106 	struct sched_group *idlest = NULL, *group = sd->groups;
4107 	unsigned long min_load = ULONG_MAX, this_load = 0;
4108 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4109 
4110 	do {
4111 		unsigned long load, avg_load;
4112 		int local_group;
4113 		int i;
4114 
4115 		/* Skip over this group if it has no CPUs allowed */
4116 		if (!cpumask_intersects(sched_group_cpus(group),
4117 					tsk_cpus_allowed(p)))
4118 			continue;
4119 
4120 		local_group = cpumask_test_cpu(this_cpu,
4121 					       sched_group_cpus(group));
4122 
4123 		/* Tally up the load of all CPUs in the group */
4124 		avg_load = 0;
4125 
4126 		for_each_cpu(i, sched_group_cpus(group)) {
4127 			/* Bias balancing toward cpus of our domain */
4128 			if (local_group)
4129 				load = source_load(i, load_idx);
4130 			else
4131 				load = target_load(i, load_idx);
4132 
4133 			avg_load += load;
4134 		}
4135 
4136 		/* Adjust by relative CPU power of the group */
4137 		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4138 
4139 		if (local_group) {
4140 			this_load = avg_load;
4141 		} else if (avg_load < min_load) {
4142 			min_load = avg_load;
4143 			idlest = group;
4144 		}
4145 	} while (group = group->next, group != sd->groups);
4146 
4147 	if (!idlest || 100*this_load < imbalance*min_load)
4148 		return NULL;
4149 	return idlest;
4150 }
4151 
4152 /*
4153  * find_idlest_cpu - find the idlest cpu among the cpus in group.
4154  */
4155 static int
4156 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4157 {
4158 	unsigned long load, min_load = ULONG_MAX;
4159 	int idlest = -1;
4160 	int i;
4161 
4162 	/* Traverse only the allowed CPUs */
4163 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4164 		load = weighted_cpuload(i);
4165 
4166 		if (load < min_load || (load == min_load && i == this_cpu)) {
4167 			min_load = load;
4168 			idlest = i;
4169 		}
4170 	}
4171 
4172 	return idlest;
4173 }
4174 
4175 /*
4176  * Try and locate an idle CPU in the sched_domain.
4177  */
4178 static int select_idle_sibling(struct task_struct *p, int target)
4179 {
4180 	struct sched_domain *sd;
4181 	struct sched_group *sg;
4182 	int i = task_cpu(p);
4183 
4184 	if (idle_cpu(target))
4185 		return target;
4186 
4187 	/*
4188 	 * If the prevous cpu is cache affine and idle, don't be stupid.
4189 	 */
4190 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4191 		return i;
4192 
4193 	/*
4194 	 * Otherwise, iterate the domains and find an elegible idle cpu.
4195 	 */
4196 	sd = rcu_dereference(per_cpu(sd_llc, target));
4197 	for_each_lower_domain(sd) {
4198 		sg = sd->groups;
4199 		do {
4200 			if (!cpumask_intersects(sched_group_cpus(sg),
4201 						tsk_cpus_allowed(p)))
4202 				goto next;
4203 
4204 			for_each_cpu(i, sched_group_cpus(sg)) {
4205 				if (i == target || !idle_cpu(i))
4206 					goto next;
4207 			}
4208 
4209 			target = cpumask_first_and(sched_group_cpus(sg),
4210 					tsk_cpus_allowed(p));
4211 			goto done;
4212 next:
4213 			sg = sg->next;
4214 		} while (sg != sd->groups);
4215 	}
4216 done:
4217 	return target;
4218 }
4219 
4220 /*
4221  * sched_balance_self: balance the current task (running on cpu) in domains
4222  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4223  * SD_BALANCE_EXEC.
4224  *
4225  * Balance, ie. select the least loaded group.
4226  *
4227  * Returns the target CPU number, or the same CPU if no balancing is needed.
4228  *
4229  * preempt must be disabled.
4230  */
4231 static int
4232 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4233 {
4234 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4235 	int cpu = smp_processor_id();
4236 	int new_cpu = cpu;
4237 	int want_affine = 0;
4238 	int sync = wake_flags & WF_SYNC;
4239 
4240 	if (p->nr_cpus_allowed == 1)
4241 		return prev_cpu;
4242 
4243 	if (sd_flag & SD_BALANCE_WAKE) {
4244 		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4245 			want_affine = 1;
4246 		new_cpu = prev_cpu;
4247 	}
4248 
4249 	rcu_read_lock();
4250 	for_each_domain(cpu, tmp) {
4251 		if (!(tmp->flags & SD_LOAD_BALANCE))
4252 			continue;
4253 
4254 		/*
4255 		 * If both cpu and prev_cpu are part of this domain,
4256 		 * cpu is a valid SD_WAKE_AFFINE target.
4257 		 */
4258 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4259 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4260 			affine_sd = tmp;
4261 			break;
4262 		}
4263 
4264 		if (tmp->flags & sd_flag)
4265 			sd = tmp;
4266 	}
4267 
4268 	if (affine_sd) {
4269 		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4270 			prev_cpu = cpu;
4271 
4272 		new_cpu = select_idle_sibling(p, prev_cpu);
4273 		goto unlock;
4274 	}
4275 
4276 	while (sd) {
4277 		int load_idx = sd->forkexec_idx;
4278 		struct sched_group *group;
4279 		int weight;
4280 
4281 		if (!(sd->flags & sd_flag)) {
4282 			sd = sd->child;
4283 			continue;
4284 		}
4285 
4286 		if (sd_flag & SD_BALANCE_WAKE)
4287 			load_idx = sd->wake_idx;
4288 
4289 		group = find_idlest_group(sd, p, cpu, load_idx);
4290 		if (!group) {
4291 			sd = sd->child;
4292 			continue;
4293 		}
4294 
4295 		new_cpu = find_idlest_cpu(group, p, cpu);
4296 		if (new_cpu == -1 || new_cpu == cpu) {
4297 			/* Now try balancing at a lower domain level of cpu */
4298 			sd = sd->child;
4299 			continue;
4300 		}
4301 
4302 		/* Now try balancing at a lower domain level of new_cpu */
4303 		cpu = new_cpu;
4304 		weight = sd->span_weight;
4305 		sd = NULL;
4306 		for_each_domain(cpu, tmp) {
4307 			if (weight <= tmp->span_weight)
4308 				break;
4309 			if (tmp->flags & sd_flag)
4310 				sd = tmp;
4311 		}
4312 		/* while loop will break here if sd == NULL */
4313 	}
4314 unlock:
4315 	rcu_read_unlock();
4316 
4317 	return new_cpu;
4318 }
4319 
4320 /*
4321  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4322  * cfs_rq_of(p) references at time of call are still valid and identify the
4323  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4324  * other assumptions, including the state of rq->lock, should be made.
4325  */
4326 static void
4327 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4328 {
4329 	struct sched_entity *se = &p->se;
4330 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4331 
4332 	/*
4333 	 * Load tracking: accumulate removed load so that it can be processed
4334 	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
4335 	 * to blocked load iff they have a positive decay-count.  It can never
4336 	 * be negative here since on-rq tasks have decay-count == 0.
4337 	 */
4338 	if (se->avg.decay_count) {
4339 		se->avg.decay_count = -__synchronize_entity_decay(se);
4340 		atomic_long_add(se->avg.load_avg_contrib,
4341 						&cfs_rq->removed_load);
4342 	}
4343 }
4344 #endif /* CONFIG_SMP */
4345 
4346 static unsigned long
4347 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4348 {
4349 	unsigned long gran = sysctl_sched_wakeup_granularity;
4350 
4351 	/*
4352 	 * Since its curr running now, convert the gran from real-time
4353 	 * to virtual-time in his units.
4354 	 *
4355 	 * By using 'se' instead of 'curr' we penalize light tasks, so
4356 	 * they get preempted easier. That is, if 'se' < 'curr' then
4357 	 * the resulting gran will be larger, therefore penalizing the
4358 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4359 	 * be smaller, again penalizing the lighter task.
4360 	 *
4361 	 * This is especially important for buddies when the leftmost
4362 	 * task is higher priority than the buddy.
4363 	 */
4364 	return calc_delta_fair(gran, se);
4365 }
4366 
4367 /*
4368  * Should 'se' preempt 'curr'.
4369  *
4370  *             |s1
4371  *        |s2
4372  *   |s3
4373  *         g
4374  *      |<--->|c
4375  *
4376  *  w(c, s1) = -1
4377  *  w(c, s2) =  0
4378  *  w(c, s3) =  1
4379  *
4380  */
4381 static int
4382 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4383 {
4384 	s64 gran, vdiff = curr->vruntime - se->vruntime;
4385 
4386 	if (vdiff <= 0)
4387 		return -1;
4388 
4389 	gran = wakeup_gran(curr, se);
4390 	if (vdiff > gran)
4391 		return 1;
4392 
4393 	return 0;
4394 }
4395 
4396 static void set_last_buddy(struct sched_entity *se)
4397 {
4398 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4399 		return;
4400 
4401 	for_each_sched_entity(se)
4402 		cfs_rq_of(se)->last = se;
4403 }
4404 
4405 static void set_next_buddy(struct sched_entity *se)
4406 {
4407 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4408 		return;
4409 
4410 	for_each_sched_entity(se)
4411 		cfs_rq_of(se)->next = se;
4412 }
4413 
4414 static void set_skip_buddy(struct sched_entity *se)
4415 {
4416 	for_each_sched_entity(se)
4417 		cfs_rq_of(se)->skip = se;
4418 }
4419 
4420 /*
4421  * Preempt the current task with a newly woken task if needed:
4422  */
4423 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4424 {
4425 	struct task_struct *curr = rq->curr;
4426 	struct sched_entity *se = &curr->se, *pse = &p->se;
4427 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4428 	int scale = cfs_rq->nr_running >= sched_nr_latency;
4429 	int next_buddy_marked = 0;
4430 
4431 	if (unlikely(se == pse))
4432 		return;
4433 
4434 	/*
4435 	 * This is possible from callers such as move_task(), in which we
4436 	 * unconditionally check_prempt_curr() after an enqueue (which may have
4437 	 * lead to a throttle).  This both saves work and prevents false
4438 	 * next-buddy nomination below.
4439 	 */
4440 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4441 		return;
4442 
4443 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4444 		set_next_buddy(pse);
4445 		next_buddy_marked = 1;
4446 	}
4447 
4448 	/*
4449 	 * We can come here with TIF_NEED_RESCHED already set from new task
4450 	 * wake up path.
4451 	 *
4452 	 * Note: this also catches the edge-case of curr being in a throttled
4453 	 * group (e.g. via set_curr_task), since update_curr() (in the
4454 	 * enqueue of curr) will have resulted in resched being set.  This
4455 	 * prevents us from potentially nominating it as a false LAST_BUDDY
4456 	 * below.
4457 	 */
4458 	if (test_tsk_need_resched(curr))
4459 		return;
4460 
4461 	/* Idle tasks are by definition preempted by non-idle tasks. */
4462 	if (unlikely(curr->policy == SCHED_IDLE) &&
4463 	    likely(p->policy != SCHED_IDLE))
4464 		goto preempt;
4465 
4466 	/*
4467 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4468 	 * is driven by the tick):
4469 	 */
4470 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4471 		return;
4472 
4473 	find_matching_se(&se, &pse);
4474 	update_curr(cfs_rq_of(se));
4475 	BUG_ON(!pse);
4476 	if (wakeup_preempt_entity(se, pse) == 1) {
4477 		/*
4478 		 * Bias pick_next to pick the sched entity that is
4479 		 * triggering this preemption.
4480 		 */
4481 		if (!next_buddy_marked)
4482 			set_next_buddy(pse);
4483 		goto preempt;
4484 	}
4485 
4486 	return;
4487 
4488 preempt:
4489 	resched_task(curr);
4490 	/*
4491 	 * Only set the backward buddy when the current task is still
4492 	 * on the rq. This can happen when a wakeup gets interleaved
4493 	 * with schedule on the ->pre_schedule() or idle_balance()
4494 	 * point, either of which can * drop the rq lock.
4495 	 *
4496 	 * Also, during early boot the idle thread is in the fair class,
4497 	 * for obvious reasons its a bad idea to schedule back to it.
4498 	 */
4499 	if (unlikely(!se->on_rq || curr == rq->idle))
4500 		return;
4501 
4502 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4503 		set_last_buddy(se);
4504 }
4505 
4506 static struct task_struct *pick_next_task_fair(struct rq *rq)
4507 {
4508 	struct task_struct *p;
4509 	struct cfs_rq *cfs_rq = &rq->cfs;
4510 	struct sched_entity *se;
4511 
4512 	if (!cfs_rq->nr_running)
4513 		return NULL;
4514 
4515 	do {
4516 		se = pick_next_entity(cfs_rq);
4517 		set_next_entity(cfs_rq, se);
4518 		cfs_rq = group_cfs_rq(se);
4519 	} while (cfs_rq);
4520 
4521 	p = task_of(se);
4522 	if (hrtick_enabled(rq))
4523 		hrtick_start_fair(rq, p);
4524 
4525 	return p;
4526 }
4527 
4528 /*
4529  * Account for a descheduled task:
4530  */
4531 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4532 {
4533 	struct sched_entity *se = &prev->se;
4534 	struct cfs_rq *cfs_rq;
4535 
4536 	for_each_sched_entity(se) {
4537 		cfs_rq = cfs_rq_of(se);
4538 		put_prev_entity(cfs_rq, se);
4539 	}
4540 }
4541 
4542 /*
4543  * sched_yield() is very simple
4544  *
4545  * The magic of dealing with the ->skip buddy is in pick_next_entity.
4546  */
4547 static void yield_task_fair(struct rq *rq)
4548 {
4549 	struct task_struct *curr = rq->curr;
4550 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4551 	struct sched_entity *se = &curr->se;
4552 
4553 	/*
4554 	 * Are we the only task in the tree?
4555 	 */
4556 	if (unlikely(rq->nr_running == 1))
4557 		return;
4558 
4559 	clear_buddies(cfs_rq, se);
4560 
4561 	if (curr->policy != SCHED_BATCH) {
4562 		update_rq_clock(rq);
4563 		/*
4564 		 * Update run-time statistics of the 'current'.
4565 		 */
4566 		update_curr(cfs_rq);
4567 		/*
4568 		 * Tell update_rq_clock() that we've just updated,
4569 		 * so we don't do microscopic update in schedule()
4570 		 * and double the fastpath cost.
4571 		 */
4572 		 rq->skip_clock_update = 1;
4573 	}
4574 
4575 	set_skip_buddy(se);
4576 }
4577 
4578 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4579 {
4580 	struct sched_entity *se = &p->se;
4581 
4582 	/* throttled hierarchies are not runnable */
4583 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4584 		return false;
4585 
4586 	/* Tell the scheduler that we'd really like pse to run next. */
4587 	set_next_buddy(se);
4588 
4589 	yield_task_fair(rq);
4590 
4591 	return true;
4592 }
4593 
4594 #ifdef CONFIG_SMP
4595 /**************************************************
4596  * Fair scheduling class load-balancing methods.
4597  *
4598  * BASICS
4599  *
4600  * The purpose of load-balancing is to achieve the same basic fairness the
4601  * per-cpu scheduler provides, namely provide a proportional amount of compute
4602  * time to each task. This is expressed in the following equation:
4603  *
4604  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
4605  *
4606  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4607  * W_i,0 is defined as:
4608  *
4609  *   W_i,0 = \Sum_j w_i,j                                             (2)
4610  *
4611  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4612  * is derived from the nice value as per prio_to_weight[].
4613  *
4614  * The weight average is an exponential decay average of the instantaneous
4615  * weight:
4616  *
4617  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
4618  *
4619  * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4620  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4621  * can also include other factors [XXX].
4622  *
4623  * To achieve this balance we define a measure of imbalance which follows
4624  * directly from (1):
4625  *
4626  *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
4627  *
4628  * We them move tasks around to minimize the imbalance. In the continuous
4629  * function space it is obvious this converges, in the discrete case we get
4630  * a few fun cases generally called infeasible weight scenarios.
4631  *
4632  * [XXX expand on:
4633  *     - infeasible weights;
4634  *     - local vs global optima in the discrete case. ]
4635  *
4636  *
4637  * SCHED DOMAINS
4638  *
4639  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4640  * for all i,j solution, we create a tree of cpus that follows the hardware
4641  * topology where each level pairs two lower groups (or better). This results
4642  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4643  * tree to only the first of the previous level and we decrease the frequency
4644  * of load-balance at each level inv. proportional to the number of cpus in
4645  * the groups.
4646  *
4647  * This yields:
4648  *
4649  *     log_2 n     1     n
4650  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
4651  *     i = 0      2^i   2^i
4652  *                               `- size of each group
4653  *         |         |     `- number of cpus doing load-balance
4654  *         |         `- freq
4655  *         `- sum over all levels
4656  *
4657  * Coupled with a limit on how many tasks we can migrate every balance pass,
4658  * this makes (5) the runtime complexity of the balancer.
4659  *
4660  * An important property here is that each CPU is still (indirectly) connected
4661  * to every other cpu in at most O(log n) steps:
4662  *
4663  * The adjacency matrix of the resulting graph is given by:
4664  *
4665  *             log_2 n
4666  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
4667  *             k = 0
4668  *
4669  * And you'll find that:
4670  *
4671  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
4672  *
4673  * Showing there's indeed a path between every cpu in at most O(log n) steps.
4674  * The task movement gives a factor of O(m), giving a convergence complexity
4675  * of:
4676  *
4677  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
4678  *
4679  *
4680  * WORK CONSERVING
4681  *
4682  * In order to avoid CPUs going idle while there's still work to do, new idle
4683  * balancing is more aggressive and has the newly idle cpu iterate up the domain
4684  * tree itself instead of relying on other CPUs to bring it work.
4685  *
4686  * This adds some complexity to both (5) and (8) but it reduces the total idle
4687  * time.
4688  *
4689  * [XXX more?]
4690  *
4691  *
4692  * CGROUPS
4693  *
4694  * Cgroups make a horror show out of (2), instead of a simple sum we get:
4695  *
4696  *                                s_k,i
4697  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
4698  *                                 S_k
4699  *
4700  * Where
4701  *
4702  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
4703  *
4704  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4705  *
4706  * The big problem is S_k, its a global sum needed to compute a local (W_i)
4707  * property.
4708  *
4709  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4710  *      rewrite all of this once again.]
4711  */
4712 
4713 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4714 
4715 enum fbq_type { regular, remote, all };
4716 
4717 #define LBF_ALL_PINNED	0x01
4718 #define LBF_NEED_BREAK	0x02
4719 #define LBF_DST_PINNED  0x04
4720 #define LBF_SOME_PINNED	0x08
4721 
4722 struct lb_env {
4723 	struct sched_domain	*sd;
4724 
4725 	struct rq		*src_rq;
4726 	int			src_cpu;
4727 
4728 	int			dst_cpu;
4729 	struct rq		*dst_rq;
4730 
4731 	struct cpumask		*dst_grpmask;
4732 	int			new_dst_cpu;
4733 	enum cpu_idle_type	idle;
4734 	long			imbalance;
4735 	/* The set of CPUs under consideration for load-balancing */
4736 	struct cpumask		*cpus;
4737 
4738 	unsigned int		flags;
4739 
4740 	unsigned int		loop;
4741 	unsigned int		loop_break;
4742 	unsigned int		loop_max;
4743 
4744 	enum fbq_type		fbq_type;
4745 };
4746 
4747 /*
4748  * move_task - move a task from one runqueue to another runqueue.
4749  * Both runqueues must be locked.
4750  */
4751 static void move_task(struct task_struct *p, struct lb_env *env)
4752 {
4753 	deactivate_task(env->src_rq, p, 0);
4754 	set_task_cpu(p, env->dst_cpu);
4755 	activate_task(env->dst_rq, p, 0);
4756 	check_preempt_curr(env->dst_rq, p, 0);
4757 }
4758 
4759 /*
4760  * Is this task likely cache-hot:
4761  */
4762 static int
4763 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4764 {
4765 	s64 delta;
4766 
4767 	if (p->sched_class != &fair_sched_class)
4768 		return 0;
4769 
4770 	if (unlikely(p->policy == SCHED_IDLE))
4771 		return 0;
4772 
4773 	/*
4774 	 * Buddy candidates are cache hot:
4775 	 */
4776 	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4777 			(&p->se == cfs_rq_of(&p->se)->next ||
4778 			 &p->se == cfs_rq_of(&p->se)->last))
4779 		return 1;
4780 
4781 	if (sysctl_sched_migration_cost == -1)
4782 		return 1;
4783 	if (sysctl_sched_migration_cost == 0)
4784 		return 0;
4785 
4786 	delta = now - p->se.exec_start;
4787 
4788 	return delta < (s64)sysctl_sched_migration_cost;
4789 }
4790 
4791 #ifdef CONFIG_NUMA_BALANCING
4792 /* Returns true if the destination node has incurred more faults */
4793 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4794 {
4795 	int src_nid, dst_nid;
4796 
4797 	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4798 	    !(env->sd->flags & SD_NUMA)) {
4799 		return false;
4800 	}
4801 
4802 	src_nid = cpu_to_node(env->src_cpu);
4803 	dst_nid = cpu_to_node(env->dst_cpu);
4804 
4805 	if (src_nid == dst_nid)
4806 		return false;
4807 
4808 	/* Always encourage migration to the preferred node. */
4809 	if (dst_nid == p->numa_preferred_nid)
4810 		return true;
4811 
4812 	/* If both task and group weight improve, this move is a winner. */
4813 	if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4814 	    group_weight(p, dst_nid) > group_weight(p, src_nid))
4815 		return true;
4816 
4817 	return false;
4818 }
4819 
4820 
4821 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4822 {
4823 	int src_nid, dst_nid;
4824 
4825 	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4826 		return false;
4827 
4828 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4829 		return false;
4830 
4831 	src_nid = cpu_to_node(env->src_cpu);
4832 	dst_nid = cpu_to_node(env->dst_cpu);
4833 
4834 	if (src_nid == dst_nid)
4835 		return false;
4836 
4837 	/* Migrating away from the preferred node is always bad. */
4838 	if (src_nid == p->numa_preferred_nid)
4839 		return true;
4840 
4841 	/* If either task or group weight get worse, don't do it. */
4842 	if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4843 	    group_weight(p, dst_nid) < group_weight(p, src_nid))
4844 		return true;
4845 
4846 	return false;
4847 }
4848 
4849 #else
4850 static inline bool migrate_improves_locality(struct task_struct *p,
4851 					     struct lb_env *env)
4852 {
4853 	return false;
4854 }
4855 
4856 static inline bool migrate_degrades_locality(struct task_struct *p,
4857 					     struct lb_env *env)
4858 {
4859 	return false;
4860 }
4861 #endif
4862 
4863 /*
4864  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4865  */
4866 static
4867 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4868 {
4869 	int tsk_cache_hot = 0;
4870 	/*
4871 	 * We do not migrate tasks that are:
4872 	 * 1) throttled_lb_pair, or
4873 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4874 	 * 3) running (obviously), or
4875 	 * 4) are cache-hot on their current CPU.
4876 	 */
4877 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4878 		return 0;
4879 
4880 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4881 		int cpu;
4882 
4883 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4884 
4885 		env->flags |= LBF_SOME_PINNED;
4886 
4887 		/*
4888 		 * Remember if this task can be migrated to any other cpu in
4889 		 * our sched_group. We may want to revisit it if we couldn't
4890 		 * meet load balance goals by pulling other tasks on src_cpu.
4891 		 *
4892 		 * Also avoid computing new_dst_cpu if we have already computed
4893 		 * one in current iteration.
4894 		 */
4895 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4896 			return 0;
4897 
4898 		/* Prevent to re-select dst_cpu via env's cpus */
4899 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4900 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4901 				env->flags |= LBF_DST_PINNED;
4902 				env->new_dst_cpu = cpu;
4903 				break;
4904 			}
4905 		}
4906 
4907 		return 0;
4908 	}
4909 
4910 	/* Record that we found atleast one task that could run on dst_cpu */
4911 	env->flags &= ~LBF_ALL_PINNED;
4912 
4913 	if (task_running(env->src_rq, p)) {
4914 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4915 		return 0;
4916 	}
4917 
4918 	/*
4919 	 * Aggressive migration if:
4920 	 * 1) destination numa is preferred
4921 	 * 2) task is cache cold, or
4922 	 * 3) too many balance attempts have failed.
4923 	 */
4924 	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4925 	if (!tsk_cache_hot)
4926 		tsk_cache_hot = migrate_degrades_locality(p, env);
4927 
4928 	if (migrate_improves_locality(p, env)) {
4929 #ifdef CONFIG_SCHEDSTATS
4930 		if (tsk_cache_hot) {
4931 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4932 			schedstat_inc(p, se.statistics.nr_forced_migrations);
4933 		}
4934 #endif
4935 		return 1;
4936 	}
4937 
4938 	if (!tsk_cache_hot ||
4939 		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4940 
4941 		if (tsk_cache_hot) {
4942 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4943 			schedstat_inc(p, se.statistics.nr_forced_migrations);
4944 		}
4945 
4946 		return 1;
4947 	}
4948 
4949 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4950 	return 0;
4951 }
4952 
4953 /*
4954  * move_one_task tries to move exactly one task from busiest to this_rq, as
4955  * part of active balancing operations within "domain".
4956  * Returns 1 if successful and 0 otherwise.
4957  *
4958  * Called with both runqueues locked.
4959  */
4960 static int move_one_task(struct lb_env *env)
4961 {
4962 	struct task_struct *p, *n;
4963 
4964 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4965 		if (!can_migrate_task(p, env))
4966 			continue;
4967 
4968 		move_task(p, env);
4969 		/*
4970 		 * Right now, this is only the second place move_task()
4971 		 * is called, so we can safely collect move_task()
4972 		 * stats here rather than inside move_task().
4973 		 */
4974 		schedstat_inc(env->sd, lb_gained[env->idle]);
4975 		return 1;
4976 	}
4977 	return 0;
4978 }
4979 
4980 static const unsigned int sched_nr_migrate_break = 32;
4981 
4982 /*
4983  * move_tasks tries to move up to imbalance weighted load from busiest to
4984  * this_rq, as part of a balancing operation within domain "sd".
4985  * Returns 1 if successful and 0 otherwise.
4986  *
4987  * Called with both runqueues locked.
4988  */
4989 static int move_tasks(struct lb_env *env)
4990 {
4991 	struct list_head *tasks = &env->src_rq->cfs_tasks;
4992 	struct task_struct *p;
4993 	unsigned long load;
4994 	int pulled = 0;
4995 
4996 	if (env->imbalance <= 0)
4997 		return 0;
4998 
4999 	while (!list_empty(tasks)) {
5000 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5001 
5002 		env->loop++;
5003 		/* We've more or less seen every task there is, call it quits */
5004 		if (env->loop > env->loop_max)
5005 			break;
5006 
5007 		/* take a breather every nr_migrate tasks */
5008 		if (env->loop > env->loop_break) {
5009 			env->loop_break += sched_nr_migrate_break;
5010 			env->flags |= LBF_NEED_BREAK;
5011 			break;
5012 		}
5013 
5014 		if (!can_migrate_task(p, env))
5015 			goto next;
5016 
5017 		load = task_h_load(p);
5018 
5019 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5020 			goto next;
5021 
5022 		if ((load / 2) > env->imbalance)
5023 			goto next;
5024 
5025 		move_task(p, env);
5026 		pulled++;
5027 		env->imbalance -= load;
5028 
5029 #ifdef CONFIG_PREEMPT
5030 		/*
5031 		 * NEWIDLE balancing is a source of latency, so preemptible
5032 		 * kernels will stop after the first task is pulled to minimize
5033 		 * the critical section.
5034 		 */
5035 		if (env->idle == CPU_NEWLY_IDLE)
5036 			break;
5037 #endif
5038 
5039 		/*
5040 		 * We only want to steal up to the prescribed amount of
5041 		 * weighted load.
5042 		 */
5043 		if (env->imbalance <= 0)
5044 			break;
5045 
5046 		continue;
5047 next:
5048 		list_move_tail(&p->se.group_node, tasks);
5049 	}
5050 
5051 	/*
5052 	 * Right now, this is one of only two places move_task() is called,
5053 	 * so we can safely collect move_task() stats here rather than
5054 	 * inside move_task().
5055 	 */
5056 	schedstat_add(env->sd, lb_gained[env->idle], pulled);
5057 
5058 	return pulled;
5059 }
5060 
5061 #ifdef CONFIG_FAIR_GROUP_SCHED
5062 /*
5063  * update tg->load_weight by folding this cpu's load_avg
5064  */
5065 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5066 {
5067 	struct sched_entity *se = tg->se[cpu];
5068 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5069 
5070 	/* throttled entities do not contribute to load */
5071 	if (throttled_hierarchy(cfs_rq))
5072 		return;
5073 
5074 	update_cfs_rq_blocked_load(cfs_rq, 1);
5075 
5076 	if (se) {
5077 		update_entity_load_avg(se, 1);
5078 		/*
5079 		 * We pivot on our runnable average having decayed to zero for
5080 		 * list removal.  This generally implies that all our children
5081 		 * have also been removed (modulo rounding error or bandwidth
5082 		 * control); however, such cases are rare and we can fix these
5083 		 * at enqueue.
5084 		 *
5085 		 * TODO: fix up out-of-order children on enqueue.
5086 		 */
5087 		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5088 			list_del_leaf_cfs_rq(cfs_rq);
5089 	} else {
5090 		struct rq *rq = rq_of(cfs_rq);
5091 		update_rq_runnable_avg(rq, rq->nr_running);
5092 	}
5093 }
5094 
5095 static void update_blocked_averages(int cpu)
5096 {
5097 	struct rq *rq = cpu_rq(cpu);
5098 	struct cfs_rq *cfs_rq;
5099 	unsigned long flags;
5100 
5101 	raw_spin_lock_irqsave(&rq->lock, flags);
5102 	update_rq_clock(rq);
5103 	/*
5104 	 * Iterates the task_group tree in a bottom up fashion, see
5105 	 * list_add_leaf_cfs_rq() for details.
5106 	 */
5107 	for_each_leaf_cfs_rq(rq, cfs_rq) {
5108 		/*
5109 		 * Note: We may want to consider periodically releasing
5110 		 * rq->lock about these updates so that creating many task
5111 		 * groups does not result in continually extending hold time.
5112 		 */
5113 		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5114 	}
5115 
5116 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5117 }
5118 
5119 /*
5120  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5121  * This needs to be done in a top-down fashion because the load of a child
5122  * group is a fraction of its parents load.
5123  */
5124 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5125 {
5126 	struct rq *rq = rq_of(cfs_rq);
5127 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5128 	unsigned long now = jiffies;
5129 	unsigned long load;
5130 
5131 	if (cfs_rq->last_h_load_update == now)
5132 		return;
5133 
5134 	cfs_rq->h_load_next = NULL;
5135 	for_each_sched_entity(se) {
5136 		cfs_rq = cfs_rq_of(se);
5137 		cfs_rq->h_load_next = se;
5138 		if (cfs_rq->last_h_load_update == now)
5139 			break;
5140 	}
5141 
5142 	if (!se) {
5143 		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5144 		cfs_rq->last_h_load_update = now;
5145 	}
5146 
5147 	while ((se = cfs_rq->h_load_next) != NULL) {
5148 		load = cfs_rq->h_load;
5149 		load = div64_ul(load * se->avg.load_avg_contrib,
5150 				cfs_rq->runnable_load_avg + 1);
5151 		cfs_rq = group_cfs_rq(se);
5152 		cfs_rq->h_load = load;
5153 		cfs_rq->last_h_load_update = now;
5154 	}
5155 }
5156 
5157 static unsigned long task_h_load(struct task_struct *p)
5158 {
5159 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5160 
5161 	update_cfs_rq_h_load(cfs_rq);
5162 	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5163 			cfs_rq->runnable_load_avg + 1);
5164 }
5165 #else
5166 static inline void update_blocked_averages(int cpu)
5167 {
5168 }
5169 
5170 static unsigned long task_h_load(struct task_struct *p)
5171 {
5172 	return p->se.avg.load_avg_contrib;
5173 }
5174 #endif
5175 
5176 /********** Helpers for find_busiest_group ************************/
5177 /*
5178  * sg_lb_stats - stats of a sched_group required for load_balancing
5179  */
5180 struct sg_lb_stats {
5181 	unsigned long avg_load; /*Avg load across the CPUs of the group */
5182 	unsigned long group_load; /* Total load over the CPUs of the group */
5183 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5184 	unsigned long load_per_task;
5185 	unsigned long group_power;
5186 	unsigned int sum_nr_running; /* Nr tasks running in the group */
5187 	unsigned int group_capacity;
5188 	unsigned int idle_cpus;
5189 	unsigned int group_weight;
5190 	int group_imb; /* Is there an imbalance in the group ? */
5191 	int group_has_capacity; /* Is there extra capacity in the group? */
5192 #ifdef CONFIG_NUMA_BALANCING
5193 	unsigned int nr_numa_running;
5194 	unsigned int nr_preferred_running;
5195 #endif
5196 };
5197 
5198 /*
5199  * sd_lb_stats - Structure to store the statistics of a sched_domain
5200  *		 during load balancing.
5201  */
5202 struct sd_lb_stats {
5203 	struct sched_group *busiest;	/* Busiest group in this sd */
5204 	struct sched_group *local;	/* Local group in this sd */
5205 	unsigned long total_load;	/* Total load of all groups in sd */
5206 	unsigned long total_pwr;	/* Total power of all groups in sd */
5207 	unsigned long avg_load;	/* Average load across all groups in sd */
5208 
5209 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5210 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5211 };
5212 
5213 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5214 {
5215 	/*
5216 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5217 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5218 	 * We must however clear busiest_stat::avg_load because
5219 	 * update_sd_pick_busiest() reads this before assignment.
5220 	 */
5221 	*sds = (struct sd_lb_stats){
5222 		.busiest = NULL,
5223 		.local = NULL,
5224 		.total_load = 0UL,
5225 		.total_pwr = 0UL,
5226 		.busiest_stat = {
5227 			.avg_load = 0UL,
5228 		},
5229 	};
5230 }
5231 
5232 /**
5233  * get_sd_load_idx - Obtain the load index for a given sched domain.
5234  * @sd: The sched_domain whose load_idx is to be obtained.
5235  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5236  *
5237  * Return: The load index.
5238  */
5239 static inline int get_sd_load_idx(struct sched_domain *sd,
5240 					enum cpu_idle_type idle)
5241 {
5242 	int load_idx;
5243 
5244 	switch (idle) {
5245 	case CPU_NOT_IDLE:
5246 		load_idx = sd->busy_idx;
5247 		break;
5248 
5249 	case CPU_NEWLY_IDLE:
5250 		load_idx = sd->newidle_idx;
5251 		break;
5252 	default:
5253 		load_idx = sd->idle_idx;
5254 		break;
5255 	}
5256 
5257 	return load_idx;
5258 }
5259 
5260 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5261 {
5262 	return SCHED_POWER_SCALE;
5263 }
5264 
5265 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5266 {
5267 	return default_scale_freq_power(sd, cpu);
5268 }
5269 
5270 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5271 {
5272 	unsigned long weight = sd->span_weight;
5273 	unsigned long smt_gain = sd->smt_gain;
5274 
5275 	smt_gain /= weight;
5276 
5277 	return smt_gain;
5278 }
5279 
5280 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5281 {
5282 	return default_scale_smt_power(sd, cpu);
5283 }
5284 
5285 static unsigned long scale_rt_power(int cpu)
5286 {
5287 	struct rq *rq = cpu_rq(cpu);
5288 	u64 total, available, age_stamp, avg;
5289 
5290 	/*
5291 	 * Since we're reading these variables without serialization make sure
5292 	 * we read them once before doing sanity checks on them.
5293 	 */
5294 	age_stamp = ACCESS_ONCE(rq->age_stamp);
5295 	avg = ACCESS_ONCE(rq->rt_avg);
5296 
5297 	total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5298 
5299 	if (unlikely(total < avg)) {
5300 		/* Ensures that power won't end up being negative */
5301 		available = 0;
5302 	} else {
5303 		available = total - avg;
5304 	}
5305 
5306 	if (unlikely((s64)total < SCHED_POWER_SCALE))
5307 		total = SCHED_POWER_SCALE;
5308 
5309 	total >>= SCHED_POWER_SHIFT;
5310 
5311 	return div_u64(available, total);
5312 }
5313 
5314 static void update_cpu_power(struct sched_domain *sd, int cpu)
5315 {
5316 	unsigned long weight = sd->span_weight;
5317 	unsigned long power = SCHED_POWER_SCALE;
5318 	struct sched_group *sdg = sd->groups;
5319 
5320 	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5321 		if (sched_feat(ARCH_POWER))
5322 			power *= arch_scale_smt_power(sd, cpu);
5323 		else
5324 			power *= default_scale_smt_power(sd, cpu);
5325 
5326 		power >>= SCHED_POWER_SHIFT;
5327 	}
5328 
5329 	sdg->sgp->power_orig = power;
5330 
5331 	if (sched_feat(ARCH_POWER))
5332 		power *= arch_scale_freq_power(sd, cpu);
5333 	else
5334 		power *= default_scale_freq_power(sd, cpu);
5335 
5336 	power >>= SCHED_POWER_SHIFT;
5337 
5338 	power *= scale_rt_power(cpu);
5339 	power >>= SCHED_POWER_SHIFT;
5340 
5341 	if (!power)
5342 		power = 1;
5343 
5344 	cpu_rq(cpu)->cpu_power = power;
5345 	sdg->sgp->power = power;
5346 }
5347 
5348 void update_group_power(struct sched_domain *sd, int cpu)
5349 {
5350 	struct sched_domain *child = sd->child;
5351 	struct sched_group *group, *sdg = sd->groups;
5352 	unsigned long power, power_orig;
5353 	unsigned long interval;
5354 
5355 	interval = msecs_to_jiffies(sd->balance_interval);
5356 	interval = clamp(interval, 1UL, max_load_balance_interval);
5357 	sdg->sgp->next_update = jiffies + interval;
5358 
5359 	if (!child) {
5360 		update_cpu_power(sd, cpu);
5361 		return;
5362 	}
5363 
5364 	power_orig = power = 0;
5365 
5366 	if (child->flags & SD_OVERLAP) {
5367 		/*
5368 		 * SD_OVERLAP domains cannot assume that child groups
5369 		 * span the current group.
5370 		 */
5371 
5372 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5373 			struct sched_group_power *sgp;
5374 			struct rq *rq = cpu_rq(cpu);
5375 
5376 			/*
5377 			 * build_sched_domains() -> init_sched_groups_power()
5378 			 * gets here before we've attached the domains to the
5379 			 * runqueues.
5380 			 *
5381 			 * Use power_of(), which is set irrespective of domains
5382 			 * in update_cpu_power().
5383 			 *
5384 			 * This avoids power/power_orig from being 0 and
5385 			 * causing divide-by-zero issues on boot.
5386 			 *
5387 			 * Runtime updates will correct power_orig.
5388 			 */
5389 			if (unlikely(!rq->sd)) {
5390 				power_orig += power_of(cpu);
5391 				power += power_of(cpu);
5392 				continue;
5393 			}
5394 
5395 			sgp = rq->sd->groups->sgp;
5396 			power_orig += sgp->power_orig;
5397 			power += sgp->power;
5398 		}
5399 	} else  {
5400 		/*
5401 		 * !SD_OVERLAP domains can assume that child groups
5402 		 * span the current group.
5403 		 */
5404 
5405 		group = child->groups;
5406 		do {
5407 			power_orig += group->sgp->power_orig;
5408 			power += group->sgp->power;
5409 			group = group->next;
5410 		} while (group != child->groups);
5411 	}
5412 
5413 	sdg->sgp->power_orig = power_orig;
5414 	sdg->sgp->power = power;
5415 }
5416 
5417 /*
5418  * Try and fix up capacity for tiny siblings, this is needed when
5419  * things like SD_ASYM_PACKING need f_b_g to select another sibling
5420  * which on its own isn't powerful enough.
5421  *
5422  * See update_sd_pick_busiest() and check_asym_packing().
5423  */
5424 static inline int
5425 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5426 {
5427 	/*
5428 	 * Only siblings can have significantly less than SCHED_POWER_SCALE
5429 	 */
5430 	if (!(sd->flags & SD_SHARE_CPUPOWER))
5431 		return 0;
5432 
5433 	/*
5434 	 * If ~90% of the cpu_power is still there, we're good.
5435 	 */
5436 	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5437 		return 1;
5438 
5439 	return 0;
5440 }
5441 
5442 /*
5443  * Group imbalance indicates (and tries to solve) the problem where balancing
5444  * groups is inadequate due to tsk_cpus_allowed() constraints.
5445  *
5446  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5447  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5448  * Something like:
5449  *
5450  * 	{ 0 1 2 3 } { 4 5 6 7 }
5451  * 	        *     * * *
5452  *
5453  * If we were to balance group-wise we'd place two tasks in the first group and
5454  * two tasks in the second group. Clearly this is undesired as it will overload
5455  * cpu 3 and leave one of the cpus in the second group unused.
5456  *
5457  * The current solution to this issue is detecting the skew in the first group
5458  * by noticing the lower domain failed to reach balance and had difficulty
5459  * moving tasks due to affinity constraints.
5460  *
5461  * When this is so detected; this group becomes a candidate for busiest; see
5462  * update_sd_pick_busiest(). And calculate_imbalance() and
5463  * find_busiest_group() avoid some of the usual balance conditions to allow it
5464  * to create an effective group imbalance.
5465  *
5466  * This is a somewhat tricky proposition since the next run might not find the
5467  * group imbalance and decide the groups need to be balanced again. A most
5468  * subtle and fragile situation.
5469  */
5470 
5471 static inline int sg_imbalanced(struct sched_group *group)
5472 {
5473 	return group->sgp->imbalance;
5474 }
5475 
5476 /*
5477  * Compute the group capacity.
5478  *
5479  * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5480  * first dividing out the smt factor and computing the actual number of cores
5481  * and limit power unit capacity with that.
5482  */
5483 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5484 {
5485 	unsigned int capacity, smt, cpus;
5486 	unsigned int power, power_orig;
5487 
5488 	power = group->sgp->power;
5489 	power_orig = group->sgp->power_orig;
5490 	cpus = group->group_weight;
5491 
5492 	/* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5493 	smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5494 	capacity = cpus / smt; /* cores */
5495 
5496 	capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5497 	if (!capacity)
5498 		capacity = fix_small_capacity(env->sd, group);
5499 
5500 	return capacity;
5501 }
5502 
5503 /**
5504  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5505  * @env: The load balancing environment.
5506  * @group: sched_group whose statistics are to be updated.
5507  * @load_idx: Load index of sched_domain of this_cpu for load calc.
5508  * @local_group: Does group contain this_cpu.
5509  * @sgs: variable to hold the statistics for this group.
5510  */
5511 static inline void update_sg_lb_stats(struct lb_env *env,
5512 			struct sched_group *group, int load_idx,
5513 			int local_group, struct sg_lb_stats *sgs)
5514 {
5515 	unsigned long nr_running;
5516 	unsigned long load;
5517 	int i;
5518 
5519 	memset(sgs, 0, sizeof(*sgs));
5520 
5521 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5522 		struct rq *rq = cpu_rq(i);
5523 
5524 		nr_running = rq->nr_running;
5525 
5526 		/* Bias balancing toward cpus of our domain */
5527 		if (local_group)
5528 			load = target_load(i, load_idx);
5529 		else
5530 			load = source_load(i, load_idx);
5531 
5532 		sgs->group_load += load;
5533 		sgs->sum_nr_running += nr_running;
5534 #ifdef CONFIG_NUMA_BALANCING
5535 		sgs->nr_numa_running += rq->nr_numa_running;
5536 		sgs->nr_preferred_running += rq->nr_preferred_running;
5537 #endif
5538 		sgs->sum_weighted_load += weighted_cpuload(i);
5539 		if (idle_cpu(i))
5540 			sgs->idle_cpus++;
5541 	}
5542 
5543 	/* Adjust by relative CPU power of the group */
5544 	sgs->group_power = group->sgp->power;
5545 	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5546 
5547 	if (sgs->sum_nr_running)
5548 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5549 
5550 	sgs->group_weight = group->group_weight;
5551 
5552 	sgs->group_imb = sg_imbalanced(group);
5553 	sgs->group_capacity = sg_capacity(env, group);
5554 
5555 	if (sgs->group_capacity > sgs->sum_nr_running)
5556 		sgs->group_has_capacity = 1;
5557 }
5558 
5559 /**
5560  * update_sd_pick_busiest - return 1 on busiest group
5561  * @env: The load balancing environment.
5562  * @sds: sched_domain statistics
5563  * @sg: sched_group candidate to be checked for being the busiest
5564  * @sgs: sched_group statistics
5565  *
5566  * Determine if @sg is a busier group than the previously selected
5567  * busiest group.
5568  *
5569  * Return: %true if @sg is a busier group than the previously selected
5570  * busiest group. %false otherwise.
5571  */
5572 static bool update_sd_pick_busiest(struct lb_env *env,
5573 				   struct sd_lb_stats *sds,
5574 				   struct sched_group *sg,
5575 				   struct sg_lb_stats *sgs)
5576 {
5577 	if (sgs->avg_load <= sds->busiest_stat.avg_load)
5578 		return false;
5579 
5580 	if (sgs->sum_nr_running > sgs->group_capacity)
5581 		return true;
5582 
5583 	if (sgs->group_imb)
5584 		return true;
5585 
5586 	/*
5587 	 * ASYM_PACKING needs to move all the work to the lowest
5588 	 * numbered CPUs in the group, therefore mark all groups
5589 	 * higher than ourself as busy.
5590 	 */
5591 	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5592 	    env->dst_cpu < group_first_cpu(sg)) {
5593 		if (!sds->busiest)
5594 			return true;
5595 
5596 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5597 			return true;
5598 	}
5599 
5600 	return false;
5601 }
5602 
5603 #ifdef CONFIG_NUMA_BALANCING
5604 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5605 {
5606 	if (sgs->sum_nr_running > sgs->nr_numa_running)
5607 		return regular;
5608 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
5609 		return remote;
5610 	return all;
5611 }
5612 
5613 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5614 {
5615 	if (rq->nr_running > rq->nr_numa_running)
5616 		return regular;
5617 	if (rq->nr_running > rq->nr_preferred_running)
5618 		return remote;
5619 	return all;
5620 }
5621 #else
5622 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5623 {
5624 	return all;
5625 }
5626 
5627 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5628 {
5629 	return regular;
5630 }
5631 #endif /* CONFIG_NUMA_BALANCING */
5632 
5633 /**
5634  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5635  * @env: The load balancing environment.
5636  * @sds: variable to hold the statistics for this sched_domain.
5637  */
5638 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5639 {
5640 	struct sched_domain *child = env->sd->child;
5641 	struct sched_group *sg = env->sd->groups;
5642 	struct sg_lb_stats tmp_sgs;
5643 	int load_idx, prefer_sibling = 0;
5644 
5645 	if (child && child->flags & SD_PREFER_SIBLING)
5646 		prefer_sibling = 1;
5647 
5648 	load_idx = get_sd_load_idx(env->sd, env->idle);
5649 
5650 	do {
5651 		struct sg_lb_stats *sgs = &tmp_sgs;
5652 		int local_group;
5653 
5654 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5655 		if (local_group) {
5656 			sds->local = sg;
5657 			sgs = &sds->local_stat;
5658 
5659 			if (env->idle != CPU_NEWLY_IDLE ||
5660 			    time_after_eq(jiffies, sg->sgp->next_update))
5661 				update_group_power(env->sd, env->dst_cpu);
5662 		}
5663 
5664 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5665 
5666 		if (local_group)
5667 			goto next_group;
5668 
5669 		/*
5670 		 * In case the child domain prefers tasks go to siblings
5671 		 * first, lower the sg capacity to one so that we'll try
5672 		 * and move all the excess tasks away. We lower the capacity
5673 		 * of a group only if the local group has the capacity to fit
5674 		 * these excess tasks, i.e. nr_running < group_capacity. The
5675 		 * extra check prevents the case where you always pull from the
5676 		 * heaviest group when it is already under-utilized (possible
5677 		 * with a large weight task outweighs the tasks on the system).
5678 		 */
5679 		if (prefer_sibling && sds->local &&
5680 		    sds->local_stat.group_has_capacity)
5681 			sgs->group_capacity = min(sgs->group_capacity, 1U);
5682 
5683 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5684 			sds->busiest = sg;
5685 			sds->busiest_stat = *sgs;
5686 		}
5687 
5688 next_group:
5689 		/* Now, start updating sd_lb_stats */
5690 		sds->total_load += sgs->group_load;
5691 		sds->total_pwr += sgs->group_power;
5692 
5693 		sg = sg->next;
5694 	} while (sg != env->sd->groups);
5695 
5696 	if (env->sd->flags & SD_NUMA)
5697 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5698 }
5699 
5700 /**
5701  * check_asym_packing - Check to see if the group is packed into the
5702  *			sched doman.
5703  *
5704  * This is primarily intended to used at the sibling level.  Some
5705  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
5706  * case of POWER7, it can move to lower SMT modes only when higher
5707  * threads are idle.  When in lower SMT modes, the threads will
5708  * perform better since they share less core resources.  Hence when we
5709  * have idle threads, we want them to be the higher ones.
5710  *
5711  * This packing function is run on idle threads.  It checks to see if
5712  * the busiest CPU in this domain (core in the P7 case) has a higher
5713  * CPU number than the packing function is being run on.  Here we are
5714  * assuming lower CPU number will be equivalent to lower a SMT thread
5715  * number.
5716  *
5717  * Return: 1 when packing is required and a task should be moved to
5718  * this CPU.  The amount of the imbalance is returned in *imbalance.
5719  *
5720  * @env: The load balancing environment.
5721  * @sds: Statistics of the sched_domain which is to be packed
5722  */
5723 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5724 {
5725 	int busiest_cpu;
5726 
5727 	if (!(env->sd->flags & SD_ASYM_PACKING))
5728 		return 0;
5729 
5730 	if (!sds->busiest)
5731 		return 0;
5732 
5733 	busiest_cpu = group_first_cpu(sds->busiest);
5734 	if (env->dst_cpu > busiest_cpu)
5735 		return 0;
5736 
5737 	env->imbalance = DIV_ROUND_CLOSEST(
5738 		sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5739 		SCHED_POWER_SCALE);
5740 
5741 	return 1;
5742 }
5743 
5744 /**
5745  * fix_small_imbalance - Calculate the minor imbalance that exists
5746  *			amongst the groups of a sched_domain, during
5747  *			load balancing.
5748  * @env: The load balancing environment.
5749  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5750  */
5751 static inline
5752 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5753 {
5754 	unsigned long tmp, pwr_now = 0, pwr_move = 0;
5755 	unsigned int imbn = 2;
5756 	unsigned long scaled_busy_load_per_task;
5757 	struct sg_lb_stats *local, *busiest;
5758 
5759 	local = &sds->local_stat;
5760 	busiest = &sds->busiest_stat;
5761 
5762 	if (!local->sum_nr_running)
5763 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5764 	else if (busiest->load_per_task > local->load_per_task)
5765 		imbn = 1;
5766 
5767 	scaled_busy_load_per_task =
5768 		(busiest->load_per_task * SCHED_POWER_SCALE) /
5769 		busiest->group_power;
5770 
5771 	if (busiest->avg_load + scaled_busy_load_per_task >=
5772 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
5773 		env->imbalance = busiest->load_per_task;
5774 		return;
5775 	}
5776 
5777 	/*
5778 	 * OK, we don't have enough imbalance to justify moving tasks,
5779 	 * however we may be able to increase total CPU power used by
5780 	 * moving them.
5781 	 */
5782 
5783 	pwr_now += busiest->group_power *
5784 			min(busiest->load_per_task, busiest->avg_load);
5785 	pwr_now += local->group_power *
5786 			min(local->load_per_task, local->avg_load);
5787 	pwr_now /= SCHED_POWER_SCALE;
5788 
5789 	/* Amount of load we'd subtract */
5790 	tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5791 		busiest->group_power;
5792 	if (busiest->avg_load > tmp) {
5793 		pwr_move += busiest->group_power *
5794 			    min(busiest->load_per_task,
5795 				busiest->avg_load - tmp);
5796 	}
5797 
5798 	/* Amount of load we'd add */
5799 	if (busiest->avg_load * busiest->group_power <
5800 	    busiest->load_per_task * SCHED_POWER_SCALE) {
5801 		tmp = (busiest->avg_load * busiest->group_power) /
5802 		      local->group_power;
5803 	} else {
5804 		tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5805 		      local->group_power;
5806 	}
5807 	pwr_move += local->group_power *
5808 		    min(local->load_per_task, local->avg_load + tmp);
5809 	pwr_move /= SCHED_POWER_SCALE;
5810 
5811 	/* Move if we gain throughput */
5812 	if (pwr_move > pwr_now)
5813 		env->imbalance = busiest->load_per_task;
5814 }
5815 
5816 /**
5817  * calculate_imbalance - Calculate the amount of imbalance present within the
5818  *			 groups of a given sched_domain during load balance.
5819  * @env: load balance environment
5820  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5821  */
5822 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5823 {
5824 	unsigned long max_pull, load_above_capacity = ~0UL;
5825 	struct sg_lb_stats *local, *busiest;
5826 
5827 	local = &sds->local_stat;
5828 	busiest = &sds->busiest_stat;
5829 
5830 	if (busiest->group_imb) {
5831 		/*
5832 		 * In the group_imb case we cannot rely on group-wide averages
5833 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
5834 		 */
5835 		busiest->load_per_task =
5836 			min(busiest->load_per_task, sds->avg_load);
5837 	}
5838 
5839 	/*
5840 	 * In the presence of smp nice balancing, certain scenarios can have
5841 	 * max load less than avg load(as we skip the groups at or below
5842 	 * its cpu_power, while calculating max_load..)
5843 	 */
5844 	if (busiest->avg_load <= sds->avg_load ||
5845 	    local->avg_load >= sds->avg_load) {
5846 		env->imbalance = 0;
5847 		return fix_small_imbalance(env, sds);
5848 	}
5849 
5850 	if (!busiest->group_imb) {
5851 		/*
5852 		 * Don't want to pull so many tasks that a group would go idle.
5853 		 * Except of course for the group_imb case, since then we might
5854 		 * have to drop below capacity to reach cpu-load equilibrium.
5855 		 */
5856 		load_above_capacity =
5857 			(busiest->sum_nr_running - busiest->group_capacity);
5858 
5859 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5860 		load_above_capacity /= busiest->group_power;
5861 	}
5862 
5863 	/*
5864 	 * We're trying to get all the cpus to the average_load, so we don't
5865 	 * want to push ourselves above the average load, nor do we wish to
5866 	 * reduce the max loaded cpu below the average load. At the same time,
5867 	 * we also don't want to reduce the group load below the group capacity
5868 	 * (so that we can implement power-savings policies etc). Thus we look
5869 	 * for the minimum possible imbalance.
5870 	 */
5871 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5872 
5873 	/* How much load to actually move to equalise the imbalance */
5874 	env->imbalance = min(
5875 		max_pull * busiest->group_power,
5876 		(sds->avg_load - local->avg_load) * local->group_power
5877 	) / SCHED_POWER_SCALE;
5878 
5879 	/*
5880 	 * if *imbalance is less than the average load per runnable task
5881 	 * there is no guarantee that any tasks will be moved so we'll have
5882 	 * a think about bumping its value to force at least one task to be
5883 	 * moved
5884 	 */
5885 	if (env->imbalance < busiest->load_per_task)
5886 		return fix_small_imbalance(env, sds);
5887 }
5888 
5889 /******* find_busiest_group() helpers end here *********************/
5890 
5891 /**
5892  * find_busiest_group - Returns the busiest group within the sched_domain
5893  * if there is an imbalance. If there isn't an imbalance, and
5894  * the user has opted for power-savings, it returns a group whose
5895  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5896  * such a group exists.
5897  *
5898  * Also calculates the amount of weighted load which should be moved
5899  * to restore balance.
5900  *
5901  * @env: The load balancing environment.
5902  *
5903  * Return:	- The busiest group if imbalance exists.
5904  *		- If no imbalance and user has opted for power-savings balance,
5905  *		   return the least loaded group whose CPUs can be
5906  *		   put to idle by rebalancing its tasks onto our group.
5907  */
5908 static struct sched_group *find_busiest_group(struct lb_env *env)
5909 {
5910 	struct sg_lb_stats *local, *busiest;
5911 	struct sd_lb_stats sds;
5912 
5913 	init_sd_lb_stats(&sds);
5914 
5915 	/*
5916 	 * Compute the various statistics relavent for load balancing at
5917 	 * this level.
5918 	 */
5919 	update_sd_lb_stats(env, &sds);
5920 	local = &sds.local_stat;
5921 	busiest = &sds.busiest_stat;
5922 
5923 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5924 	    check_asym_packing(env, &sds))
5925 		return sds.busiest;
5926 
5927 	/* There is no busy sibling group to pull tasks from */
5928 	if (!sds.busiest || busiest->sum_nr_running == 0)
5929 		goto out_balanced;
5930 
5931 	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5932 
5933 	/*
5934 	 * If the busiest group is imbalanced the below checks don't
5935 	 * work because they assume all things are equal, which typically
5936 	 * isn't true due to cpus_allowed constraints and the like.
5937 	 */
5938 	if (busiest->group_imb)
5939 		goto force_balance;
5940 
5941 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5942 	if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5943 	    !busiest->group_has_capacity)
5944 		goto force_balance;
5945 
5946 	/*
5947 	 * If the local group is more busy than the selected busiest group
5948 	 * don't try and pull any tasks.
5949 	 */
5950 	if (local->avg_load >= busiest->avg_load)
5951 		goto out_balanced;
5952 
5953 	/*
5954 	 * Don't pull any tasks if this group is already above the domain
5955 	 * average load.
5956 	 */
5957 	if (local->avg_load >= sds.avg_load)
5958 		goto out_balanced;
5959 
5960 	if (env->idle == CPU_IDLE) {
5961 		/*
5962 		 * This cpu is idle. If the busiest group load doesn't
5963 		 * have more tasks than the number of available cpu's and
5964 		 * there is no imbalance between this and busiest group
5965 		 * wrt to idle cpu's, it is balanced.
5966 		 */
5967 		if ((local->idle_cpus < busiest->idle_cpus) &&
5968 		    busiest->sum_nr_running <= busiest->group_weight)
5969 			goto out_balanced;
5970 	} else {
5971 		/*
5972 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5973 		 * imbalance_pct to be conservative.
5974 		 */
5975 		if (100 * busiest->avg_load <=
5976 				env->sd->imbalance_pct * local->avg_load)
5977 			goto out_balanced;
5978 	}
5979 
5980 force_balance:
5981 	/* Looks like there is an imbalance. Compute it */
5982 	calculate_imbalance(env, &sds);
5983 	return sds.busiest;
5984 
5985 out_balanced:
5986 	env->imbalance = 0;
5987 	return NULL;
5988 }
5989 
5990 /*
5991  * find_busiest_queue - find the busiest runqueue among the cpus in group.
5992  */
5993 static struct rq *find_busiest_queue(struct lb_env *env,
5994 				     struct sched_group *group)
5995 {
5996 	struct rq *busiest = NULL, *rq;
5997 	unsigned long busiest_load = 0, busiest_power = 1;
5998 	int i;
5999 
6000 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6001 		unsigned long power, capacity, wl;
6002 		enum fbq_type rt;
6003 
6004 		rq = cpu_rq(i);
6005 		rt = fbq_classify_rq(rq);
6006 
6007 		/*
6008 		 * We classify groups/runqueues into three groups:
6009 		 *  - regular: there are !numa tasks
6010 		 *  - remote:  there are numa tasks that run on the 'wrong' node
6011 		 *  - all:     there is no distinction
6012 		 *
6013 		 * In order to avoid migrating ideally placed numa tasks,
6014 		 * ignore those when there's better options.
6015 		 *
6016 		 * If we ignore the actual busiest queue to migrate another
6017 		 * task, the next balance pass can still reduce the busiest
6018 		 * queue by moving tasks around inside the node.
6019 		 *
6020 		 * If we cannot move enough load due to this classification
6021 		 * the next pass will adjust the group classification and
6022 		 * allow migration of more tasks.
6023 		 *
6024 		 * Both cases only affect the total convergence complexity.
6025 		 */
6026 		if (rt > env->fbq_type)
6027 			continue;
6028 
6029 		power = power_of(i);
6030 		capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6031 		if (!capacity)
6032 			capacity = fix_small_capacity(env->sd, group);
6033 
6034 		wl = weighted_cpuload(i);
6035 
6036 		/*
6037 		 * When comparing with imbalance, use weighted_cpuload()
6038 		 * which is not scaled with the cpu power.
6039 		 */
6040 		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6041 			continue;
6042 
6043 		/*
6044 		 * For the load comparisons with the other cpu's, consider
6045 		 * the weighted_cpuload() scaled with the cpu power, so that
6046 		 * the load can be moved away from the cpu that is potentially
6047 		 * running at a lower capacity.
6048 		 *
6049 		 * Thus we're looking for max(wl_i / power_i), crosswise
6050 		 * multiplication to rid ourselves of the division works out
6051 		 * to: wl_i * power_j > wl_j * power_i;  where j is our
6052 		 * previous maximum.
6053 		 */
6054 		if (wl * busiest_power > busiest_load * power) {
6055 			busiest_load = wl;
6056 			busiest_power = power;
6057 			busiest = rq;
6058 		}
6059 	}
6060 
6061 	return busiest;
6062 }
6063 
6064 /*
6065  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6066  * so long as it is large enough.
6067  */
6068 #define MAX_PINNED_INTERVAL	512
6069 
6070 /* Working cpumask for load_balance and load_balance_newidle. */
6071 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6072 
6073 static int need_active_balance(struct lb_env *env)
6074 {
6075 	struct sched_domain *sd = env->sd;
6076 
6077 	if (env->idle == CPU_NEWLY_IDLE) {
6078 
6079 		/*
6080 		 * ASYM_PACKING needs to force migrate tasks from busy but
6081 		 * higher numbered CPUs in order to pack all tasks in the
6082 		 * lowest numbered CPUs.
6083 		 */
6084 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6085 			return 1;
6086 	}
6087 
6088 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6089 }
6090 
6091 static int active_load_balance_cpu_stop(void *data);
6092 
6093 static int should_we_balance(struct lb_env *env)
6094 {
6095 	struct sched_group *sg = env->sd->groups;
6096 	struct cpumask *sg_cpus, *sg_mask;
6097 	int cpu, balance_cpu = -1;
6098 
6099 	/*
6100 	 * In the newly idle case, we will allow all the cpu's
6101 	 * to do the newly idle load balance.
6102 	 */
6103 	if (env->idle == CPU_NEWLY_IDLE)
6104 		return 1;
6105 
6106 	sg_cpus = sched_group_cpus(sg);
6107 	sg_mask = sched_group_mask(sg);
6108 	/* Try to find first idle cpu */
6109 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6110 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6111 			continue;
6112 
6113 		balance_cpu = cpu;
6114 		break;
6115 	}
6116 
6117 	if (balance_cpu == -1)
6118 		balance_cpu = group_balance_cpu(sg);
6119 
6120 	/*
6121 	 * First idle cpu or the first cpu(busiest) in this sched group
6122 	 * is eligible for doing load balancing at this and above domains.
6123 	 */
6124 	return balance_cpu == env->dst_cpu;
6125 }
6126 
6127 /*
6128  * Check this_cpu to ensure it is balanced within domain. Attempt to move
6129  * tasks if there is an imbalance.
6130  */
6131 static int load_balance(int this_cpu, struct rq *this_rq,
6132 			struct sched_domain *sd, enum cpu_idle_type idle,
6133 			int *continue_balancing)
6134 {
6135 	int ld_moved, cur_ld_moved, active_balance = 0;
6136 	struct sched_domain *sd_parent = sd->parent;
6137 	struct sched_group *group;
6138 	struct rq *busiest;
6139 	unsigned long flags;
6140 	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6141 
6142 	struct lb_env env = {
6143 		.sd		= sd,
6144 		.dst_cpu	= this_cpu,
6145 		.dst_rq		= this_rq,
6146 		.dst_grpmask    = sched_group_cpus(sd->groups),
6147 		.idle		= idle,
6148 		.loop_break	= sched_nr_migrate_break,
6149 		.cpus		= cpus,
6150 		.fbq_type	= all,
6151 	};
6152 
6153 	/*
6154 	 * For NEWLY_IDLE load_balancing, we don't need to consider
6155 	 * other cpus in our group
6156 	 */
6157 	if (idle == CPU_NEWLY_IDLE)
6158 		env.dst_grpmask = NULL;
6159 
6160 	cpumask_copy(cpus, cpu_active_mask);
6161 
6162 	schedstat_inc(sd, lb_count[idle]);
6163 
6164 redo:
6165 	if (!should_we_balance(&env)) {
6166 		*continue_balancing = 0;
6167 		goto out_balanced;
6168 	}
6169 
6170 	group = find_busiest_group(&env);
6171 	if (!group) {
6172 		schedstat_inc(sd, lb_nobusyg[idle]);
6173 		goto out_balanced;
6174 	}
6175 
6176 	busiest = find_busiest_queue(&env, group);
6177 	if (!busiest) {
6178 		schedstat_inc(sd, lb_nobusyq[idle]);
6179 		goto out_balanced;
6180 	}
6181 
6182 	BUG_ON(busiest == env.dst_rq);
6183 
6184 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6185 
6186 	ld_moved = 0;
6187 	if (busiest->nr_running > 1) {
6188 		/*
6189 		 * Attempt to move tasks. If find_busiest_group has found
6190 		 * an imbalance but busiest->nr_running <= 1, the group is
6191 		 * still unbalanced. ld_moved simply stays zero, so it is
6192 		 * correctly treated as an imbalance.
6193 		 */
6194 		env.flags |= LBF_ALL_PINNED;
6195 		env.src_cpu   = busiest->cpu;
6196 		env.src_rq    = busiest;
6197 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6198 
6199 more_balance:
6200 		local_irq_save(flags);
6201 		double_rq_lock(env.dst_rq, busiest);
6202 
6203 		/*
6204 		 * cur_ld_moved - load moved in current iteration
6205 		 * ld_moved     - cumulative load moved across iterations
6206 		 */
6207 		cur_ld_moved = move_tasks(&env);
6208 		ld_moved += cur_ld_moved;
6209 		double_rq_unlock(env.dst_rq, busiest);
6210 		local_irq_restore(flags);
6211 
6212 		/*
6213 		 * some other cpu did the load balance for us.
6214 		 */
6215 		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6216 			resched_cpu(env.dst_cpu);
6217 
6218 		if (env.flags & LBF_NEED_BREAK) {
6219 			env.flags &= ~LBF_NEED_BREAK;
6220 			goto more_balance;
6221 		}
6222 
6223 		/*
6224 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6225 		 * us and move them to an alternate dst_cpu in our sched_group
6226 		 * where they can run. The upper limit on how many times we
6227 		 * iterate on same src_cpu is dependent on number of cpus in our
6228 		 * sched_group.
6229 		 *
6230 		 * This changes load balance semantics a bit on who can move
6231 		 * load to a given_cpu. In addition to the given_cpu itself
6232 		 * (or a ilb_cpu acting on its behalf where given_cpu is
6233 		 * nohz-idle), we now have balance_cpu in a position to move
6234 		 * load to given_cpu. In rare situations, this may cause
6235 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6236 		 * _independently_ and at _same_ time to move some load to
6237 		 * given_cpu) causing exceess load to be moved to given_cpu.
6238 		 * This however should not happen so much in practice and
6239 		 * moreover subsequent load balance cycles should correct the
6240 		 * excess load moved.
6241 		 */
6242 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6243 
6244 			/* Prevent to re-select dst_cpu via env's cpus */
6245 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
6246 
6247 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6248 			env.dst_cpu	 = env.new_dst_cpu;
6249 			env.flags	&= ~LBF_DST_PINNED;
6250 			env.loop	 = 0;
6251 			env.loop_break	 = sched_nr_migrate_break;
6252 
6253 			/*
6254 			 * Go back to "more_balance" rather than "redo" since we
6255 			 * need to continue with same src_cpu.
6256 			 */
6257 			goto more_balance;
6258 		}
6259 
6260 		/*
6261 		 * We failed to reach balance because of affinity.
6262 		 */
6263 		if (sd_parent) {
6264 			int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6265 
6266 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6267 				*group_imbalance = 1;
6268 			} else if (*group_imbalance)
6269 				*group_imbalance = 0;
6270 		}
6271 
6272 		/* All tasks on this runqueue were pinned by CPU affinity */
6273 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6274 			cpumask_clear_cpu(cpu_of(busiest), cpus);
6275 			if (!cpumask_empty(cpus)) {
6276 				env.loop = 0;
6277 				env.loop_break = sched_nr_migrate_break;
6278 				goto redo;
6279 			}
6280 			goto out_balanced;
6281 		}
6282 	}
6283 
6284 	if (!ld_moved) {
6285 		schedstat_inc(sd, lb_failed[idle]);
6286 		/*
6287 		 * Increment the failure counter only on periodic balance.
6288 		 * We do not want newidle balance, which can be very
6289 		 * frequent, pollute the failure counter causing
6290 		 * excessive cache_hot migrations and active balances.
6291 		 */
6292 		if (idle != CPU_NEWLY_IDLE)
6293 			sd->nr_balance_failed++;
6294 
6295 		if (need_active_balance(&env)) {
6296 			raw_spin_lock_irqsave(&busiest->lock, flags);
6297 
6298 			/* don't kick the active_load_balance_cpu_stop,
6299 			 * if the curr task on busiest cpu can't be
6300 			 * moved to this_cpu
6301 			 */
6302 			if (!cpumask_test_cpu(this_cpu,
6303 					tsk_cpus_allowed(busiest->curr))) {
6304 				raw_spin_unlock_irqrestore(&busiest->lock,
6305 							    flags);
6306 				env.flags |= LBF_ALL_PINNED;
6307 				goto out_one_pinned;
6308 			}
6309 
6310 			/*
6311 			 * ->active_balance synchronizes accesses to
6312 			 * ->active_balance_work.  Once set, it's cleared
6313 			 * only after active load balance is finished.
6314 			 */
6315 			if (!busiest->active_balance) {
6316 				busiest->active_balance = 1;
6317 				busiest->push_cpu = this_cpu;
6318 				active_balance = 1;
6319 			}
6320 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6321 
6322 			if (active_balance) {
6323 				stop_one_cpu_nowait(cpu_of(busiest),
6324 					active_load_balance_cpu_stop, busiest,
6325 					&busiest->active_balance_work);
6326 			}
6327 
6328 			/*
6329 			 * We've kicked active balancing, reset the failure
6330 			 * counter.
6331 			 */
6332 			sd->nr_balance_failed = sd->cache_nice_tries+1;
6333 		}
6334 	} else
6335 		sd->nr_balance_failed = 0;
6336 
6337 	if (likely(!active_balance)) {
6338 		/* We were unbalanced, so reset the balancing interval */
6339 		sd->balance_interval = sd->min_interval;
6340 	} else {
6341 		/*
6342 		 * If we've begun active balancing, start to back off. This
6343 		 * case may not be covered by the all_pinned logic if there
6344 		 * is only 1 task on the busy runqueue (because we don't call
6345 		 * move_tasks).
6346 		 */
6347 		if (sd->balance_interval < sd->max_interval)
6348 			sd->balance_interval *= 2;
6349 	}
6350 
6351 	goto out;
6352 
6353 out_balanced:
6354 	schedstat_inc(sd, lb_balanced[idle]);
6355 
6356 	sd->nr_balance_failed = 0;
6357 
6358 out_one_pinned:
6359 	/* tune up the balancing interval */
6360 	if (((env.flags & LBF_ALL_PINNED) &&
6361 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6362 			(sd->balance_interval < sd->max_interval))
6363 		sd->balance_interval *= 2;
6364 
6365 	ld_moved = 0;
6366 out:
6367 	return ld_moved;
6368 }
6369 
6370 /*
6371  * idle_balance is called by schedule() if this_cpu is about to become
6372  * idle. Attempts to pull tasks from other CPUs.
6373  */
6374 void idle_balance(int this_cpu, struct rq *this_rq)
6375 {
6376 	struct sched_domain *sd;
6377 	int pulled_task = 0;
6378 	unsigned long next_balance = jiffies + HZ;
6379 	u64 curr_cost = 0;
6380 
6381 	this_rq->idle_stamp = rq_clock(this_rq);
6382 
6383 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
6384 		return;
6385 
6386 	/*
6387 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
6388 	 */
6389 	raw_spin_unlock(&this_rq->lock);
6390 
6391 	update_blocked_averages(this_cpu);
6392 	rcu_read_lock();
6393 	for_each_domain(this_cpu, sd) {
6394 		unsigned long interval;
6395 		int continue_balancing = 1;
6396 		u64 t0, domain_cost;
6397 
6398 		if (!(sd->flags & SD_LOAD_BALANCE))
6399 			continue;
6400 
6401 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6402 			break;
6403 
6404 		if (sd->flags & SD_BALANCE_NEWIDLE) {
6405 			t0 = sched_clock_cpu(this_cpu);
6406 
6407 			/* If we've pulled tasks over stop searching: */
6408 			pulled_task = load_balance(this_cpu, this_rq,
6409 						   sd, CPU_NEWLY_IDLE,
6410 						   &continue_balancing);
6411 
6412 			domain_cost = sched_clock_cpu(this_cpu) - t0;
6413 			if (domain_cost > sd->max_newidle_lb_cost)
6414 				sd->max_newidle_lb_cost = domain_cost;
6415 
6416 			curr_cost += domain_cost;
6417 		}
6418 
6419 		interval = msecs_to_jiffies(sd->balance_interval);
6420 		if (time_after(next_balance, sd->last_balance + interval))
6421 			next_balance = sd->last_balance + interval;
6422 		if (pulled_task) {
6423 			this_rq->idle_stamp = 0;
6424 			break;
6425 		}
6426 	}
6427 	rcu_read_unlock();
6428 
6429 	raw_spin_lock(&this_rq->lock);
6430 
6431 	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6432 		/*
6433 		 * We are going idle. next_balance may be set based on
6434 		 * a busy processor. So reset next_balance.
6435 		 */
6436 		this_rq->next_balance = next_balance;
6437 	}
6438 
6439 	if (curr_cost > this_rq->max_idle_balance_cost)
6440 		this_rq->max_idle_balance_cost = curr_cost;
6441 }
6442 
6443 /*
6444  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6445  * running tasks off the busiest CPU onto idle CPUs. It requires at
6446  * least 1 task to be running on each physical CPU where possible, and
6447  * avoids physical / logical imbalances.
6448  */
6449 static int active_load_balance_cpu_stop(void *data)
6450 {
6451 	struct rq *busiest_rq = data;
6452 	int busiest_cpu = cpu_of(busiest_rq);
6453 	int target_cpu = busiest_rq->push_cpu;
6454 	struct rq *target_rq = cpu_rq(target_cpu);
6455 	struct sched_domain *sd;
6456 
6457 	raw_spin_lock_irq(&busiest_rq->lock);
6458 
6459 	/* make sure the requested cpu hasn't gone down in the meantime */
6460 	if (unlikely(busiest_cpu != smp_processor_id() ||
6461 		     !busiest_rq->active_balance))
6462 		goto out_unlock;
6463 
6464 	/* Is there any task to move? */
6465 	if (busiest_rq->nr_running <= 1)
6466 		goto out_unlock;
6467 
6468 	/*
6469 	 * This condition is "impossible", if it occurs
6470 	 * we need to fix it. Originally reported by
6471 	 * Bjorn Helgaas on a 128-cpu setup.
6472 	 */
6473 	BUG_ON(busiest_rq == target_rq);
6474 
6475 	/* move a task from busiest_rq to target_rq */
6476 	double_lock_balance(busiest_rq, target_rq);
6477 
6478 	/* Search for an sd spanning us and the target CPU. */
6479 	rcu_read_lock();
6480 	for_each_domain(target_cpu, sd) {
6481 		if ((sd->flags & SD_LOAD_BALANCE) &&
6482 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6483 				break;
6484 	}
6485 
6486 	if (likely(sd)) {
6487 		struct lb_env env = {
6488 			.sd		= sd,
6489 			.dst_cpu	= target_cpu,
6490 			.dst_rq		= target_rq,
6491 			.src_cpu	= busiest_rq->cpu,
6492 			.src_rq		= busiest_rq,
6493 			.idle		= CPU_IDLE,
6494 		};
6495 
6496 		schedstat_inc(sd, alb_count);
6497 
6498 		if (move_one_task(&env))
6499 			schedstat_inc(sd, alb_pushed);
6500 		else
6501 			schedstat_inc(sd, alb_failed);
6502 	}
6503 	rcu_read_unlock();
6504 	double_unlock_balance(busiest_rq, target_rq);
6505 out_unlock:
6506 	busiest_rq->active_balance = 0;
6507 	raw_spin_unlock_irq(&busiest_rq->lock);
6508 	return 0;
6509 }
6510 
6511 #ifdef CONFIG_NO_HZ_COMMON
6512 /*
6513  * idle load balancing details
6514  * - When one of the busy CPUs notice that there may be an idle rebalancing
6515  *   needed, they will kick the idle load balancer, which then does idle
6516  *   load balancing for all the idle CPUs.
6517  */
6518 static struct {
6519 	cpumask_var_t idle_cpus_mask;
6520 	atomic_t nr_cpus;
6521 	unsigned long next_balance;     /* in jiffy units */
6522 } nohz ____cacheline_aligned;
6523 
6524 static inline int find_new_ilb(int call_cpu)
6525 {
6526 	int ilb = cpumask_first(nohz.idle_cpus_mask);
6527 
6528 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
6529 		return ilb;
6530 
6531 	return nr_cpu_ids;
6532 }
6533 
6534 /*
6535  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6536  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6537  * CPU (if there is one).
6538  */
6539 static void nohz_balancer_kick(int cpu)
6540 {
6541 	int ilb_cpu;
6542 
6543 	nohz.next_balance++;
6544 
6545 	ilb_cpu = find_new_ilb(cpu);
6546 
6547 	if (ilb_cpu >= nr_cpu_ids)
6548 		return;
6549 
6550 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6551 		return;
6552 	/*
6553 	 * Use smp_send_reschedule() instead of resched_cpu().
6554 	 * This way we generate a sched IPI on the target cpu which
6555 	 * is idle. And the softirq performing nohz idle load balance
6556 	 * will be run before returning from the IPI.
6557 	 */
6558 	smp_send_reschedule(ilb_cpu);
6559 	return;
6560 }
6561 
6562 static inline void nohz_balance_exit_idle(int cpu)
6563 {
6564 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6565 		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6566 		atomic_dec(&nohz.nr_cpus);
6567 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6568 	}
6569 }
6570 
6571 static inline void set_cpu_sd_state_busy(void)
6572 {
6573 	struct sched_domain *sd;
6574 	int cpu = smp_processor_id();
6575 
6576 	rcu_read_lock();
6577 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
6578 
6579 	if (!sd || !sd->nohz_idle)
6580 		goto unlock;
6581 	sd->nohz_idle = 0;
6582 
6583 	atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6584 unlock:
6585 	rcu_read_unlock();
6586 }
6587 
6588 void set_cpu_sd_state_idle(void)
6589 {
6590 	struct sched_domain *sd;
6591 	int cpu = smp_processor_id();
6592 
6593 	rcu_read_lock();
6594 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
6595 
6596 	if (!sd || sd->nohz_idle)
6597 		goto unlock;
6598 	sd->nohz_idle = 1;
6599 
6600 	atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6601 unlock:
6602 	rcu_read_unlock();
6603 }
6604 
6605 /*
6606  * This routine will record that the cpu is going idle with tick stopped.
6607  * This info will be used in performing idle load balancing in the future.
6608  */
6609 void nohz_balance_enter_idle(int cpu)
6610 {
6611 	/*
6612 	 * If this cpu is going down, then nothing needs to be done.
6613 	 */
6614 	if (!cpu_active(cpu))
6615 		return;
6616 
6617 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6618 		return;
6619 
6620 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6621 	atomic_inc(&nohz.nr_cpus);
6622 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6623 }
6624 
6625 static int sched_ilb_notifier(struct notifier_block *nfb,
6626 					unsigned long action, void *hcpu)
6627 {
6628 	switch (action & ~CPU_TASKS_FROZEN) {
6629 	case CPU_DYING:
6630 		nohz_balance_exit_idle(smp_processor_id());
6631 		return NOTIFY_OK;
6632 	default:
6633 		return NOTIFY_DONE;
6634 	}
6635 }
6636 #endif
6637 
6638 static DEFINE_SPINLOCK(balancing);
6639 
6640 /*
6641  * Scale the max load_balance interval with the number of CPUs in the system.
6642  * This trades load-balance latency on larger machines for less cross talk.
6643  */
6644 void update_max_interval(void)
6645 {
6646 	max_load_balance_interval = HZ*num_online_cpus()/10;
6647 }
6648 
6649 /*
6650  * It checks each scheduling domain to see if it is due to be balanced,
6651  * and initiates a balancing operation if so.
6652  *
6653  * Balancing parameters are set up in init_sched_domains.
6654  */
6655 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6656 {
6657 	int continue_balancing = 1;
6658 	struct rq *rq = cpu_rq(cpu);
6659 	unsigned long interval;
6660 	struct sched_domain *sd;
6661 	/* Earliest time when we have to do rebalance again */
6662 	unsigned long next_balance = jiffies + 60*HZ;
6663 	int update_next_balance = 0;
6664 	int need_serialize, need_decay = 0;
6665 	u64 max_cost = 0;
6666 
6667 	update_blocked_averages(cpu);
6668 
6669 	rcu_read_lock();
6670 	for_each_domain(cpu, sd) {
6671 		/*
6672 		 * Decay the newidle max times here because this is a regular
6673 		 * visit to all the domains. Decay ~1% per second.
6674 		 */
6675 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6676 			sd->max_newidle_lb_cost =
6677 				(sd->max_newidle_lb_cost * 253) / 256;
6678 			sd->next_decay_max_lb_cost = jiffies + HZ;
6679 			need_decay = 1;
6680 		}
6681 		max_cost += sd->max_newidle_lb_cost;
6682 
6683 		if (!(sd->flags & SD_LOAD_BALANCE))
6684 			continue;
6685 
6686 		/*
6687 		 * Stop the load balance at this level. There is another
6688 		 * CPU in our sched group which is doing load balancing more
6689 		 * actively.
6690 		 */
6691 		if (!continue_balancing) {
6692 			if (need_decay)
6693 				continue;
6694 			break;
6695 		}
6696 
6697 		interval = sd->balance_interval;
6698 		if (idle != CPU_IDLE)
6699 			interval *= sd->busy_factor;
6700 
6701 		/* scale ms to jiffies */
6702 		interval = msecs_to_jiffies(interval);
6703 		interval = clamp(interval, 1UL, max_load_balance_interval);
6704 
6705 		need_serialize = sd->flags & SD_SERIALIZE;
6706 
6707 		if (need_serialize) {
6708 			if (!spin_trylock(&balancing))
6709 				goto out;
6710 		}
6711 
6712 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
6713 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6714 				/*
6715 				 * The LBF_DST_PINNED logic could have changed
6716 				 * env->dst_cpu, so we can't know our idle
6717 				 * state even if we migrated tasks. Update it.
6718 				 */
6719 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6720 			}
6721 			sd->last_balance = jiffies;
6722 		}
6723 		if (need_serialize)
6724 			spin_unlock(&balancing);
6725 out:
6726 		if (time_after(next_balance, sd->last_balance + interval)) {
6727 			next_balance = sd->last_balance + interval;
6728 			update_next_balance = 1;
6729 		}
6730 	}
6731 	if (need_decay) {
6732 		/*
6733 		 * Ensure the rq-wide value also decays but keep it at a
6734 		 * reasonable floor to avoid funnies with rq->avg_idle.
6735 		 */
6736 		rq->max_idle_balance_cost =
6737 			max((u64)sysctl_sched_migration_cost, max_cost);
6738 	}
6739 	rcu_read_unlock();
6740 
6741 	/*
6742 	 * next_balance will be updated only when there is a need.
6743 	 * When the cpu is attached to null domain for ex, it will not be
6744 	 * updated.
6745 	 */
6746 	if (likely(update_next_balance))
6747 		rq->next_balance = next_balance;
6748 }
6749 
6750 #ifdef CONFIG_NO_HZ_COMMON
6751 /*
6752  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6753  * rebalancing for all the cpus for whom scheduler ticks are stopped.
6754  */
6755 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6756 {
6757 	struct rq *this_rq = cpu_rq(this_cpu);
6758 	struct rq *rq;
6759 	int balance_cpu;
6760 
6761 	if (idle != CPU_IDLE ||
6762 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6763 		goto end;
6764 
6765 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6766 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6767 			continue;
6768 
6769 		/*
6770 		 * If this cpu gets work to do, stop the load balancing
6771 		 * work being done for other cpus. Next load
6772 		 * balancing owner will pick it up.
6773 		 */
6774 		if (need_resched())
6775 			break;
6776 
6777 		rq = cpu_rq(balance_cpu);
6778 
6779 		raw_spin_lock_irq(&rq->lock);
6780 		update_rq_clock(rq);
6781 		update_idle_cpu_load(rq);
6782 		raw_spin_unlock_irq(&rq->lock);
6783 
6784 		rebalance_domains(balance_cpu, CPU_IDLE);
6785 
6786 		if (time_after(this_rq->next_balance, rq->next_balance))
6787 			this_rq->next_balance = rq->next_balance;
6788 	}
6789 	nohz.next_balance = this_rq->next_balance;
6790 end:
6791 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6792 }
6793 
6794 /*
6795  * Current heuristic for kicking the idle load balancer in the presence
6796  * of an idle cpu is the system.
6797  *   - This rq has more than one task.
6798  *   - At any scheduler domain level, this cpu's scheduler group has multiple
6799  *     busy cpu's exceeding the group's power.
6800  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6801  *     domain span are idle.
6802  */
6803 static inline int nohz_kick_needed(struct rq *rq, int cpu)
6804 {
6805 	unsigned long now = jiffies;
6806 	struct sched_domain *sd;
6807 	struct sched_group_power *sgp;
6808 	int nr_busy;
6809 
6810 	if (unlikely(idle_cpu(cpu)))
6811 		return 0;
6812 
6813        /*
6814 	* We may be recently in ticked or tickless idle mode. At the first
6815 	* busy tick after returning from idle, we will update the busy stats.
6816 	*/
6817 	set_cpu_sd_state_busy();
6818 	nohz_balance_exit_idle(cpu);
6819 
6820 	/*
6821 	 * None are in tickless mode and hence no need for NOHZ idle load
6822 	 * balancing.
6823 	 */
6824 	if (likely(!atomic_read(&nohz.nr_cpus)))
6825 		return 0;
6826 
6827 	if (time_before(now, nohz.next_balance))
6828 		return 0;
6829 
6830 	if (rq->nr_running >= 2)
6831 		goto need_kick;
6832 
6833 	rcu_read_lock();
6834 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
6835 
6836 	if (sd) {
6837 		sgp = sd->groups->sgp;
6838 		nr_busy = atomic_read(&sgp->nr_busy_cpus);
6839 
6840 		if (nr_busy > 1)
6841 			goto need_kick_unlock;
6842 	}
6843 
6844 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
6845 
6846 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6847 				  sched_domain_span(sd)) < cpu))
6848 		goto need_kick_unlock;
6849 
6850 	rcu_read_unlock();
6851 	return 0;
6852 
6853 need_kick_unlock:
6854 	rcu_read_unlock();
6855 need_kick:
6856 	return 1;
6857 }
6858 #else
6859 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6860 #endif
6861 
6862 /*
6863  * run_rebalance_domains is triggered when needed from the scheduler tick.
6864  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6865  */
6866 static void run_rebalance_domains(struct softirq_action *h)
6867 {
6868 	int this_cpu = smp_processor_id();
6869 	struct rq *this_rq = cpu_rq(this_cpu);
6870 	enum cpu_idle_type idle = this_rq->idle_balance ?
6871 						CPU_IDLE : CPU_NOT_IDLE;
6872 
6873 	rebalance_domains(this_cpu, idle);
6874 
6875 	/*
6876 	 * If this cpu has a pending nohz_balance_kick, then do the
6877 	 * balancing on behalf of the other idle cpus whose ticks are
6878 	 * stopped.
6879 	 */
6880 	nohz_idle_balance(this_cpu, idle);
6881 }
6882 
6883 static inline int on_null_domain(int cpu)
6884 {
6885 	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6886 }
6887 
6888 /*
6889  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6890  */
6891 void trigger_load_balance(struct rq *rq, int cpu)
6892 {
6893 	/* Don't need to rebalance while attached to NULL domain */
6894 	if (time_after_eq(jiffies, rq->next_balance) &&
6895 	    likely(!on_null_domain(cpu)))
6896 		raise_softirq(SCHED_SOFTIRQ);
6897 #ifdef CONFIG_NO_HZ_COMMON
6898 	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6899 		nohz_balancer_kick(cpu);
6900 #endif
6901 }
6902 
6903 static void rq_online_fair(struct rq *rq)
6904 {
6905 	update_sysctl();
6906 }
6907 
6908 static void rq_offline_fair(struct rq *rq)
6909 {
6910 	update_sysctl();
6911 
6912 	/* Ensure any throttled groups are reachable by pick_next_task */
6913 	unthrottle_offline_cfs_rqs(rq);
6914 }
6915 
6916 #endif /* CONFIG_SMP */
6917 
6918 /*
6919  * scheduler tick hitting a task of our scheduling class:
6920  */
6921 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6922 {
6923 	struct cfs_rq *cfs_rq;
6924 	struct sched_entity *se = &curr->se;
6925 
6926 	for_each_sched_entity(se) {
6927 		cfs_rq = cfs_rq_of(se);
6928 		entity_tick(cfs_rq, se, queued);
6929 	}
6930 
6931 	if (numabalancing_enabled)
6932 		task_tick_numa(rq, curr);
6933 
6934 	update_rq_runnable_avg(rq, 1);
6935 }
6936 
6937 /*
6938  * called on fork with the child task as argument from the parent's context
6939  *  - child not yet on the tasklist
6940  *  - preemption disabled
6941  */
6942 static void task_fork_fair(struct task_struct *p)
6943 {
6944 	struct cfs_rq *cfs_rq;
6945 	struct sched_entity *se = &p->se, *curr;
6946 	int this_cpu = smp_processor_id();
6947 	struct rq *rq = this_rq();
6948 	unsigned long flags;
6949 
6950 	raw_spin_lock_irqsave(&rq->lock, flags);
6951 
6952 	update_rq_clock(rq);
6953 
6954 	cfs_rq = task_cfs_rq(current);
6955 	curr = cfs_rq->curr;
6956 
6957 	/*
6958 	 * Not only the cpu but also the task_group of the parent might have
6959 	 * been changed after parent->se.parent,cfs_rq were copied to
6960 	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6961 	 * of child point to valid ones.
6962 	 */
6963 	rcu_read_lock();
6964 	__set_task_cpu(p, this_cpu);
6965 	rcu_read_unlock();
6966 
6967 	update_curr(cfs_rq);
6968 
6969 	if (curr)
6970 		se->vruntime = curr->vruntime;
6971 	place_entity(cfs_rq, se, 1);
6972 
6973 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6974 		/*
6975 		 * Upon rescheduling, sched_class::put_prev_task() will place
6976 		 * 'current' within the tree based on its new key value.
6977 		 */
6978 		swap(curr->vruntime, se->vruntime);
6979 		resched_task(rq->curr);
6980 	}
6981 
6982 	se->vruntime -= cfs_rq->min_vruntime;
6983 
6984 	raw_spin_unlock_irqrestore(&rq->lock, flags);
6985 }
6986 
6987 /*
6988  * Priority of the task has changed. Check to see if we preempt
6989  * the current task.
6990  */
6991 static void
6992 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6993 {
6994 	if (!p->se.on_rq)
6995 		return;
6996 
6997 	/*
6998 	 * Reschedule if we are currently running on this runqueue and
6999 	 * our priority decreased, or if we are not currently running on
7000 	 * this runqueue and our priority is higher than the current's
7001 	 */
7002 	if (rq->curr == p) {
7003 		if (p->prio > oldprio)
7004 			resched_task(rq->curr);
7005 	} else
7006 		check_preempt_curr(rq, p, 0);
7007 }
7008 
7009 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7010 {
7011 	struct sched_entity *se = &p->se;
7012 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7013 
7014 	/*
7015 	 * Ensure the task's vruntime is normalized, so that when its
7016 	 * switched back to the fair class the enqueue_entity(.flags=0) will
7017 	 * do the right thing.
7018 	 *
7019 	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7020 	 * have normalized the vruntime, if it was !on_rq, then only when
7021 	 * the task is sleeping will it still have non-normalized vruntime.
7022 	 */
7023 	if (!se->on_rq && p->state != TASK_RUNNING) {
7024 		/*
7025 		 * Fix up our vruntime so that the current sleep doesn't
7026 		 * cause 'unlimited' sleep bonus.
7027 		 */
7028 		place_entity(cfs_rq, se, 0);
7029 		se->vruntime -= cfs_rq->min_vruntime;
7030 	}
7031 
7032 #ifdef CONFIG_SMP
7033 	/*
7034 	* Remove our load from contribution when we leave sched_fair
7035 	* and ensure we don't carry in an old decay_count if we
7036 	* switch back.
7037 	*/
7038 	if (se->avg.decay_count) {
7039 		__synchronize_entity_decay(se);
7040 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7041 	}
7042 #endif
7043 }
7044 
7045 /*
7046  * We switched to the sched_fair class.
7047  */
7048 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7049 {
7050 	if (!p->se.on_rq)
7051 		return;
7052 
7053 	/*
7054 	 * We were most likely switched from sched_rt, so
7055 	 * kick off the schedule if running, otherwise just see
7056 	 * if we can still preempt the current task.
7057 	 */
7058 	if (rq->curr == p)
7059 		resched_task(rq->curr);
7060 	else
7061 		check_preempt_curr(rq, p, 0);
7062 }
7063 
7064 /* Account for a task changing its policy or group.
7065  *
7066  * This routine is mostly called to set cfs_rq->curr field when a task
7067  * migrates between groups/classes.
7068  */
7069 static void set_curr_task_fair(struct rq *rq)
7070 {
7071 	struct sched_entity *se = &rq->curr->se;
7072 
7073 	for_each_sched_entity(se) {
7074 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7075 
7076 		set_next_entity(cfs_rq, se);
7077 		/* ensure bandwidth has been allocated on our new cfs_rq */
7078 		account_cfs_rq_runtime(cfs_rq, 0);
7079 	}
7080 }
7081 
7082 void init_cfs_rq(struct cfs_rq *cfs_rq)
7083 {
7084 	cfs_rq->tasks_timeline = RB_ROOT;
7085 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7086 #ifndef CONFIG_64BIT
7087 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7088 #endif
7089 #ifdef CONFIG_SMP
7090 	atomic64_set(&cfs_rq->decay_counter, 1);
7091 	atomic_long_set(&cfs_rq->removed_load, 0);
7092 #endif
7093 }
7094 
7095 #ifdef CONFIG_FAIR_GROUP_SCHED
7096 static void task_move_group_fair(struct task_struct *p, int on_rq)
7097 {
7098 	struct cfs_rq *cfs_rq;
7099 	/*
7100 	 * If the task was not on the rq at the time of this cgroup movement
7101 	 * it must have been asleep, sleeping tasks keep their ->vruntime
7102 	 * absolute on their old rq until wakeup (needed for the fair sleeper
7103 	 * bonus in place_entity()).
7104 	 *
7105 	 * If it was on the rq, we've just 'preempted' it, which does convert
7106 	 * ->vruntime to a relative base.
7107 	 *
7108 	 * Make sure both cases convert their relative position when migrating
7109 	 * to another cgroup's rq. This does somewhat interfere with the
7110 	 * fair sleeper stuff for the first placement, but who cares.
7111 	 */
7112 	/*
7113 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
7114 	 * But there are some cases where it has already been normalized:
7115 	 *
7116 	 * - Moving a forked child which is waiting for being woken up by
7117 	 *   wake_up_new_task().
7118 	 * - Moving a task which has been woken up by try_to_wake_up() and
7119 	 *   waiting for actually being woken up by sched_ttwu_pending().
7120 	 *
7121 	 * To prevent boost or penalty in the new cfs_rq caused by delta
7122 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7123 	 */
7124 	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7125 		on_rq = 1;
7126 
7127 	if (!on_rq)
7128 		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7129 	set_task_rq(p, task_cpu(p));
7130 	if (!on_rq) {
7131 		cfs_rq = cfs_rq_of(&p->se);
7132 		p->se.vruntime += cfs_rq->min_vruntime;
7133 #ifdef CONFIG_SMP
7134 		/*
7135 		 * migrate_task_rq_fair() will have removed our previous
7136 		 * contribution, but we must synchronize for ongoing future
7137 		 * decay.
7138 		 */
7139 		p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7140 		cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7141 #endif
7142 	}
7143 }
7144 
7145 void free_fair_sched_group(struct task_group *tg)
7146 {
7147 	int i;
7148 
7149 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7150 
7151 	for_each_possible_cpu(i) {
7152 		if (tg->cfs_rq)
7153 			kfree(tg->cfs_rq[i]);
7154 		if (tg->se)
7155 			kfree(tg->se[i]);
7156 	}
7157 
7158 	kfree(tg->cfs_rq);
7159 	kfree(tg->se);
7160 }
7161 
7162 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7163 {
7164 	struct cfs_rq *cfs_rq;
7165 	struct sched_entity *se;
7166 	int i;
7167 
7168 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7169 	if (!tg->cfs_rq)
7170 		goto err;
7171 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7172 	if (!tg->se)
7173 		goto err;
7174 
7175 	tg->shares = NICE_0_LOAD;
7176 
7177 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7178 
7179 	for_each_possible_cpu(i) {
7180 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7181 				      GFP_KERNEL, cpu_to_node(i));
7182 		if (!cfs_rq)
7183 			goto err;
7184 
7185 		se = kzalloc_node(sizeof(struct sched_entity),
7186 				  GFP_KERNEL, cpu_to_node(i));
7187 		if (!se)
7188 			goto err_free_rq;
7189 
7190 		init_cfs_rq(cfs_rq);
7191 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7192 	}
7193 
7194 	return 1;
7195 
7196 err_free_rq:
7197 	kfree(cfs_rq);
7198 err:
7199 	return 0;
7200 }
7201 
7202 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7203 {
7204 	struct rq *rq = cpu_rq(cpu);
7205 	unsigned long flags;
7206 
7207 	/*
7208 	* Only empty task groups can be destroyed; so we can speculatively
7209 	* check on_list without danger of it being re-added.
7210 	*/
7211 	if (!tg->cfs_rq[cpu]->on_list)
7212 		return;
7213 
7214 	raw_spin_lock_irqsave(&rq->lock, flags);
7215 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7216 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7217 }
7218 
7219 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7220 			struct sched_entity *se, int cpu,
7221 			struct sched_entity *parent)
7222 {
7223 	struct rq *rq = cpu_rq(cpu);
7224 
7225 	cfs_rq->tg = tg;
7226 	cfs_rq->rq = rq;
7227 	init_cfs_rq_runtime(cfs_rq);
7228 
7229 	tg->cfs_rq[cpu] = cfs_rq;
7230 	tg->se[cpu] = se;
7231 
7232 	/* se could be NULL for root_task_group */
7233 	if (!se)
7234 		return;
7235 
7236 	if (!parent)
7237 		se->cfs_rq = &rq->cfs;
7238 	else
7239 		se->cfs_rq = parent->my_q;
7240 
7241 	se->my_q = cfs_rq;
7242 	/* guarantee group entities always have weight */
7243 	update_load_set(&se->load, NICE_0_LOAD);
7244 	se->parent = parent;
7245 }
7246 
7247 static DEFINE_MUTEX(shares_mutex);
7248 
7249 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7250 {
7251 	int i;
7252 	unsigned long flags;
7253 
7254 	/*
7255 	 * We can't change the weight of the root cgroup.
7256 	 */
7257 	if (!tg->se[0])
7258 		return -EINVAL;
7259 
7260 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7261 
7262 	mutex_lock(&shares_mutex);
7263 	if (tg->shares == shares)
7264 		goto done;
7265 
7266 	tg->shares = shares;
7267 	for_each_possible_cpu(i) {
7268 		struct rq *rq = cpu_rq(i);
7269 		struct sched_entity *se;
7270 
7271 		se = tg->se[i];
7272 		/* Propagate contribution to hierarchy */
7273 		raw_spin_lock_irqsave(&rq->lock, flags);
7274 
7275 		/* Possible calls to update_curr() need rq clock */
7276 		update_rq_clock(rq);
7277 		for_each_sched_entity(se)
7278 			update_cfs_shares(group_cfs_rq(se));
7279 		raw_spin_unlock_irqrestore(&rq->lock, flags);
7280 	}
7281 
7282 done:
7283 	mutex_unlock(&shares_mutex);
7284 	return 0;
7285 }
7286 #else /* CONFIG_FAIR_GROUP_SCHED */
7287 
7288 void free_fair_sched_group(struct task_group *tg) { }
7289 
7290 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7291 {
7292 	return 1;
7293 }
7294 
7295 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7296 
7297 #endif /* CONFIG_FAIR_GROUP_SCHED */
7298 
7299 
7300 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7301 {
7302 	struct sched_entity *se = &task->se;
7303 	unsigned int rr_interval = 0;
7304 
7305 	/*
7306 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7307 	 * idle runqueue:
7308 	 */
7309 	if (rq->cfs.load.weight)
7310 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7311 
7312 	return rr_interval;
7313 }
7314 
7315 /*
7316  * All the scheduling class methods:
7317  */
7318 const struct sched_class fair_sched_class = {
7319 	.next			= &idle_sched_class,
7320 	.enqueue_task		= enqueue_task_fair,
7321 	.dequeue_task		= dequeue_task_fair,
7322 	.yield_task		= yield_task_fair,
7323 	.yield_to_task		= yield_to_task_fair,
7324 
7325 	.check_preempt_curr	= check_preempt_wakeup,
7326 
7327 	.pick_next_task		= pick_next_task_fair,
7328 	.put_prev_task		= put_prev_task_fair,
7329 
7330 #ifdef CONFIG_SMP
7331 	.select_task_rq		= select_task_rq_fair,
7332 	.migrate_task_rq	= migrate_task_rq_fair,
7333 
7334 	.rq_online		= rq_online_fair,
7335 	.rq_offline		= rq_offline_fair,
7336 
7337 	.task_waking		= task_waking_fair,
7338 #endif
7339 
7340 	.set_curr_task          = set_curr_task_fair,
7341 	.task_tick		= task_tick_fair,
7342 	.task_fork		= task_fork_fair,
7343 
7344 	.prio_changed		= prio_changed_fair,
7345 	.switched_from		= switched_from_fair,
7346 	.switched_to		= switched_to_fair,
7347 
7348 	.get_rr_interval	= get_rr_interval_fair,
7349 
7350 #ifdef CONFIG_FAIR_GROUP_SCHED
7351 	.task_move_group	= task_move_group_fair,
7352 #endif
7353 };
7354 
7355 #ifdef CONFIG_SCHED_DEBUG
7356 void print_cfs_stats(struct seq_file *m, int cpu)
7357 {
7358 	struct cfs_rq *cfs_rq;
7359 
7360 	rcu_read_lock();
7361 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7362 		print_cfs_rq(m, cpu, cfs_rq);
7363 	rcu_read_unlock();
7364 }
7365 #endif
7366 
7367 __init void init_sched_fair_class(void)
7368 {
7369 #ifdef CONFIG_SMP
7370 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7371 
7372 #ifdef CONFIG_NO_HZ_COMMON
7373 	nohz.next_balance = jiffies;
7374 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7375 	cpu_notifier(sched_ilb_notifier, 0);
7376 #endif
7377 #endif /* SMP */
7378 
7379 }
7380