1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/slab.h> 27 #include <linux/profile.h> 28 #include <linux/interrupt.h> 29 #include <linux/mempolicy.h> 30 #include <linux/migrate.h> 31 #include <linux/task_work.h> 32 33 #include <trace/events/sched.h> 34 35 #include "sched.h" 36 37 /* 38 * Targeted preemption latency for CPU-bound tasks: 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 40 * 41 * NOTE: this latency value is not the same as the concept of 42 * 'timeslice length' - timeslices in CFS are of variable length 43 * and have no persistent notion like in traditional, time-slice 44 * based scheduling concepts. 45 * 46 * (to see the precise effective timeslice length of your workload, 47 * run vmstat and monitor the context-switches (cs) field) 48 */ 49 unsigned int sysctl_sched_latency = 6000000ULL; 50 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 51 52 /* 53 * The initial- and re-scaling of tunables is configurable 54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 55 * 56 * Options are: 57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 60 */ 61 enum sched_tunable_scaling sysctl_sched_tunable_scaling 62 = SCHED_TUNABLESCALING_LOG; 63 64 /* 65 * Minimal preemption granularity for CPU-bound tasks: 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 67 */ 68 unsigned int sysctl_sched_min_granularity = 750000ULL; 69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 70 71 /* 72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 73 */ 74 static unsigned int sched_nr_latency = 8; 75 76 /* 77 * After fork, child runs first. If set to 0 (default) then 78 * parent will (try to) run first. 79 */ 80 unsigned int sysctl_sched_child_runs_first __read_mostly; 81 82 /* 83 * SCHED_OTHER wake-up granularity. 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 85 * 86 * This option delays the preemption effects of decoupled workloads 87 * and reduces their over-scheduling. Synchronous workloads will still 88 * have immediate wakeup/sleep latencies. 89 */ 90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 92 93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 94 95 /* 96 * The exponential sliding window over which load is averaged for shares 97 * distribution. 98 * (default: 10msec) 99 */ 100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 101 102 #ifdef CONFIG_CFS_BANDWIDTH 103 /* 104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 105 * each time a cfs_rq requests quota. 106 * 107 * Note: in the case that the slice exceeds the runtime remaining (either due 108 * to consumption or the quota being specified to be smaller than the slice) 109 * we will always only issue the remaining available time. 110 * 111 * default: 5 msec, units: microseconds 112 */ 113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 114 #endif 115 116 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 117 { 118 lw->weight += inc; 119 lw->inv_weight = 0; 120 } 121 122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 123 { 124 lw->weight -= dec; 125 lw->inv_weight = 0; 126 } 127 128 static inline void update_load_set(struct load_weight *lw, unsigned long w) 129 { 130 lw->weight = w; 131 lw->inv_weight = 0; 132 } 133 134 /* 135 * Increase the granularity value when there are more CPUs, 136 * because with more CPUs the 'effective latency' as visible 137 * to users decreases. But the relationship is not linear, 138 * so pick a second-best guess by going with the log2 of the 139 * number of CPUs. 140 * 141 * This idea comes from the SD scheduler of Con Kolivas: 142 */ 143 static int get_update_sysctl_factor(void) 144 { 145 unsigned int cpus = min_t(int, num_online_cpus(), 8); 146 unsigned int factor; 147 148 switch (sysctl_sched_tunable_scaling) { 149 case SCHED_TUNABLESCALING_NONE: 150 factor = 1; 151 break; 152 case SCHED_TUNABLESCALING_LINEAR: 153 factor = cpus; 154 break; 155 case SCHED_TUNABLESCALING_LOG: 156 default: 157 factor = 1 + ilog2(cpus); 158 break; 159 } 160 161 return factor; 162 } 163 164 static void update_sysctl(void) 165 { 166 unsigned int factor = get_update_sysctl_factor(); 167 168 #define SET_SYSCTL(name) \ 169 (sysctl_##name = (factor) * normalized_sysctl_##name) 170 SET_SYSCTL(sched_min_granularity); 171 SET_SYSCTL(sched_latency); 172 SET_SYSCTL(sched_wakeup_granularity); 173 #undef SET_SYSCTL 174 } 175 176 void sched_init_granularity(void) 177 { 178 update_sysctl(); 179 } 180 181 #define WMULT_CONST (~0U) 182 #define WMULT_SHIFT 32 183 184 static void __update_inv_weight(struct load_weight *lw) 185 { 186 unsigned long w; 187 188 if (likely(lw->inv_weight)) 189 return; 190 191 w = scale_load_down(lw->weight); 192 193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 194 lw->inv_weight = 1; 195 else if (unlikely(!w)) 196 lw->inv_weight = WMULT_CONST; 197 else 198 lw->inv_weight = WMULT_CONST / w; 199 } 200 201 /* 202 * delta_exec * weight / lw.weight 203 * OR 204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 205 * 206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case 207 * we're guaranteed shift stays positive because inv_weight is guaranteed to 208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 209 * 210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 211 * weight/lw.weight <= 1, and therefore our shift will also be positive. 212 */ 213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 214 { 215 u64 fact = scale_load_down(weight); 216 int shift = WMULT_SHIFT; 217 218 __update_inv_weight(lw); 219 220 if (unlikely(fact >> 32)) { 221 while (fact >> 32) { 222 fact >>= 1; 223 shift--; 224 } 225 } 226 227 /* hint to use a 32x32->64 mul */ 228 fact = (u64)(u32)fact * lw->inv_weight; 229 230 while (fact >> 32) { 231 fact >>= 1; 232 shift--; 233 } 234 235 return mul_u64_u32_shr(delta_exec, fact, shift); 236 } 237 238 239 const struct sched_class fair_sched_class; 240 241 /************************************************************** 242 * CFS operations on generic schedulable entities: 243 */ 244 245 #ifdef CONFIG_FAIR_GROUP_SCHED 246 247 /* cpu runqueue to which this cfs_rq is attached */ 248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 249 { 250 return cfs_rq->rq; 251 } 252 253 /* An entity is a task if it doesn't "own" a runqueue */ 254 #define entity_is_task(se) (!se->my_q) 255 256 static inline struct task_struct *task_of(struct sched_entity *se) 257 { 258 #ifdef CONFIG_SCHED_DEBUG 259 WARN_ON_ONCE(!entity_is_task(se)); 260 #endif 261 return container_of(se, struct task_struct, se); 262 } 263 264 /* Walk up scheduling entities hierarchy */ 265 #define for_each_sched_entity(se) \ 266 for (; se; se = se->parent) 267 268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 269 { 270 return p->se.cfs_rq; 271 } 272 273 /* runqueue on which this entity is (to be) queued */ 274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 275 { 276 return se->cfs_rq; 277 } 278 279 /* runqueue "owned" by this group */ 280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 281 { 282 return grp->my_q; 283 } 284 285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 286 int force_update); 287 288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 289 { 290 if (!cfs_rq->on_list) { 291 /* 292 * Ensure we either appear before our parent (if already 293 * enqueued) or force our parent to appear after us when it is 294 * enqueued. The fact that we always enqueue bottom-up 295 * reduces this to two cases. 296 */ 297 if (cfs_rq->tg->parent && 298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 300 &rq_of(cfs_rq)->leaf_cfs_rq_list); 301 } else { 302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 303 &rq_of(cfs_rq)->leaf_cfs_rq_list); 304 } 305 306 cfs_rq->on_list = 1; 307 /* We should have no load, but we need to update last_decay. */ 308 update_cfs_rq_blocked_load(cfs_rq, 0); 309 } 310 } 311 312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 313 { 314 if (cfs_rq->on_list) { 315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 316 cfs_rq->on_list = 0; 317 } 318 } 319 320 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 323 324 /* Do the two (enqueued) entities belong to the same group ? */ 325 static inline int 326 is_same_group(struct sched_entity *se, struct sched_entity *pse) 327 { 328 if (se->cfs_rq == pse->cfs_rq) 329 return 1; 330 331 return 0; 332 } 333 334 static inline struct sched_entity *parent_entity(struct sched_entity *se) 335 { 336 return se->parent; 337 } 338 339 /* return depth at which a sched entity is present in the hierarchy */ 340 static inline int depth_se(struct sched_entity *se) 341 { 342 int depth = 0; 343 344 for_each_sched_entity(se) 345 depth++; 346 347 return depth; 348 } 349 350 static void 351 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 352 { 353 int se_depth, pse_depth; 354 355 /* 356 * preemption test can be made between sibling entities who are in the 357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 358 * both tasks until we find their ancestors who are siblings of common 359 * parent. 360 */ 361 362 /* First walk up until both entities are at same depth */ 363 se_depth = depth_se(*se); 364 pse_depth = depth_se(*pse); 365 366 while (se_depth > pse_depth) { 367 se_depth--; 368 *se = parent_entity(*se); 369 } 370 371 while (pse_depth > se_depth) { 372 pse_depth--; 373 *pse = parent_entity(*pse); 374 } 375 376 while (!is_same_group(*se, *pse)) { 377 *se = parent_entity(*se); 378 *pse = parent_entity(*pse); 379 } 380 } 381 382 #else /* !CONFIG_FAIR_GROUP_SCHED */ 383 384 static inline struct task_struct *task_of(struct sched_entity *se) 385 { 386 return container_of(se, struct task_struct, se); 387 } 388 389 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 390 { 391 return container_of(cfs_rq, struct rq, cfs); 392 } 393 394 #define entity_is_task(se) 1 395 396 #define for_each_sched_entity(se) \ 397 for (; se; se = NULL) 398 399 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 400 { 401 return &task_rq(p)->cfs; 402 } 403 404 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 405 { 406 struct task_struct *p = task_of(se); 407 struct rq *rq = task_rq(p); 408 409 return &rq->cfs; 410 } 411 412 /* runqueue "owned" by this group */ 413 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 414 { 415 return NULL; 416 } 417 418 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 419 { 420 } 421 422 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 423 { 424 } 425 426 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 428 429 static inline int 430 is_same_group(struct sched_entity *se, struct sched_entity *pse) 431 { 432 return 1; 433 } 434 435 static inline struct sched_entity *parent_entity(struct sched_entity *se) 436 { 437 return NULL; 438 } 439 440 static inline void 441 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 442 { 443 } 444 445 #endif /* CONFIG_FAIR_GROUP_SCHED */ 446 447 static __always_inline 448 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 449 450 /************************************************************** 451 * Scheduling class tree data structure manipulation methods: 452 */ 453 454 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 455 { 456 s64 delta = (s64)(vruntime - max_vruntime); 457 if (delta > 0) 458 max_vruntime = vruntime; 459 460 return max_vruntime; 461 } 462 463 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 464 { 465 s64 delta = (s64)(vruntime - min_vruntime); 466 if (delta < 0) 467 min_vruntime = vruntime; 468 469 return min_vruntime; 470 } 471 472 static inline int entity_before(struct sched_entity *a, 473 struct sched_entity *b) 474 { 475 return (s64)(a->vruntime - b->vruntime) < 0; 476 } 477 478 static void update_min_vruntime(struct cfs_rq *cfs_rq) 479 { 480 u64 vruntime = cfs_rq->min_vruntime; 481 482 if (cfs_rq->curr) 483 vruntime = cfs_rq->curr->vruntime; 484 485 if (cfs_rq->rb_leftmost) { 486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 487 struct sched_entity, 488 run_node); 489 490 if (!cfs_rq->curr) 491 vruntime = se->vruntime; 492 else 493 vruntime = min_vruntime(vruntime, se->vruntime); 494 } 495 496 /* ensure we never gain time by being placed backwards. */ 497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 498 #ifndef CONFIG_64BIT 499 smp_wmb(); 500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 501 #endif 502 } 503 504 /* 505 * Enqueue an entity into the rb-tree: 506 */ 507 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 508 { 509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 510 struct rb_node *parent = NULL; 511 struct sched_entity *entry; 512 int leftmost = 1; 513 514 /* 515 * Find the right place in the rbtree: 516 */ 517 while (*link) { 518 parent = *link; 519 entry = rb_entry(parent, struct sched_entity, run_node); 520 /* 521 * We dont care about collisions. Nodes with 522 * the same key stay together. 523 */ 524 if (entity_before(se, entry)) { 525 link = &parent->rb_left; 526 } else { 527 link = &parent->rb_right; 528 leftmost = 0; 529 } 530 } 531 532 /* 533 * Maintain a cache of leftmost tree entries (it is frequently 534 * used): 535 */ 536 if (leftmost) 537 cfs_rq->rb_leftmost = &se->run_node; 538 539 rb_link_node(&se->run_node, parent, link); 540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 541 } 542 543 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 544 { 545 if (cfs_rq->rb_leftmost == &se->run_node) { 546 struct rb_node *next_node; 547 548 next_node = rb_next(&se->run_node); 549 cfs_rq->rb_leftmost = next_node; 550 } 551 552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 553 } 554 555 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 556 { 557 struct rb_node *left = cfs_rq->rb_leftmost; 558 559 if (!left) 560 return NULL; 561 562 return rb_entry(left, struct sched_entity, run_node); 563 } 564 565 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 566 { 567 struct rb_node *next = rb_next(&se->run_node); 568 569 if (!next) 570 return NULL; 571 572 return rb_entry(next, struct sched_entity, run_node); 573 } 574 575 #ifdef CONFIG_SCHED_DEBUG 576 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 577 { 578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 579 580 if (!last) 581 return NULL; 582 583 return rb_entry(last, struct sched_entity, run_node); 584 } 585 586 /************************************************************** 587 * Scheduling class statistics methods: 588 */ 589 590 int sched_proc_update_handler(struct ctl_table *table, int write, 591 void __user *buffer, size_t *lenp, 592 loff_t *ppos) 593 { 594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 595 int factor = get_update_sysctl_factor(); 596 597 if (ret || !write) 598 return ret; 599 600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 601 sysctl_sched_min_granularity); 602 603 #define WRT_SYSCTL(name) \ 604 (normalized_sysctl_##name = sysctl_##name / (factor)) 605 WRT_SYSCTL(sched_min_granularity); 606 WRT_SYSCTL(sched_latency); 607 WRT_SYSCTL(sched_wakeup_granularity); 608 #undef WRT_SYSCTL 609 610 return 0; 611 } 612 #endif 613 614 /* 615 * delta /= w 616 */ 617 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 618 { 619 if (unlikely(se->load.weight != NICE_0_LOAD)) 620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 621 622 return delta; 623 } 624 625 /* 626 * The idea is to set a period in which each task runs once. 627 * 628 * When there are too many tasks (sched_nr_latency) we have to stretch 629 * this period because otherwise the slices get too small. 630 * 631 * p = (nr <= nl) ? l : l*nr/nl 632 */ 633 static u64 __sched_period(unsigned long nr_running) 634 { 635 u64 period = sysctl_sched_latency; 636 unsigned long nr_latency = sched_nr_latency; 637 638 if (unlikely(nr_running > nr_latency)) { 639 period = sysctl_sched_min_granularity; 640 period *= nr_running; 641 } 642 643 return period; 644 } 645 646 /* 647 * We calculate the wall-time slice from the period by taking a part 648 * proportional to the weight. 649 * 650 * s = p*P[w/rw] 651 */ 652 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 653 { 654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 655 656 for_each_sched_entity(se) { 657 struct load_weight *load; 658 struct load_weight lw; 659 660 cfs_rq = cfs_rq_of(se); 661 load = &cfs_rq->load; 662 663 if (unlikely(!se->on_rq)) { 664 lw = cfs_rq->load; 665 666 update_load_add(&lw, se->load.weight); 667 load = &lw; 668 } 669 slice = __calc_delta(slice, se->load.weight, load); 670 } 671 return slice; 672 } 673 674 /* 675 * We calculate the vruntime slice of a to-be-inserted task. 676 * 677 * vs = s/w 678 */ 679 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 680 { 681 return calc_delta_fair(sched_slice(cfs_rq, se), se); 682 } 683 684 #ifdef CONFIG_SMP 685 static unsigned long task_h_load(struct task_struct *p); 686 687 static inline void __update_task_entity_contrib(struct sched_entity *se); 688 689 /* Give new task start runnable values to heavy its load in infant time */ 690 void init_task_runnable_average(struct task_struct *p) 691 { 692 u32 slice; 693 694 p->se.avg.decay_count = 0; 695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; 696 p->se.avg.runnable_avg_sum = slice; 697 p->se.avg.runnable_avg_period = slice; 698 __update_task_entity_contrib(&p->se); 699 } 700 #else 701 void init_task_runnable_average(struct task_struct *p) 702 { 703 } 704 #endif 705 706 /* 707 * Update the current task's runtime statistics. 708 */ 709 static void update_curr(struct cfs_rq *cfs_rq) 710 { 711 struct sched_entity *curr = cfs_rq->curr; 712 u64 now = rq_clock_task(rq_of(cfs_rq)); 713 u64 delta_exec; 714 715 if (unlikely(!curr)) 716 return; 717 718 delta_exec = now - curr->exec_start; 719 if (unlikely((s64)delta_exec <= 0)) 720 return; 721 722 curr->exec_start = now; 723 724 schedstat_set(curr->statistics.exec_max, 725 max(delta_exec, curr->statistics.exec_max)); 726 727 curr->sum_exec_runtime += delta_exec; 728 schedstat_add(cfs_rq, exec_clock, delta_exec); 729 730 curr->vruntime += calc_delta_fair(delta_exec, curr); 731 update_min_vruntime(cfs_rq); 732 733 if (entity_is_task(curr)) { 734 struct task_struct *curtask = task_of(curr); 735 736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 737 cpuacct_charge(curtask, delta_exec); 738 account_group_exec_runtime(curtask, delta_exec); 739 } 740 741 account_cfs_rq_runtime(cfs_rq, delta_exec); 742 } 743 744 static inline void 745 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 746 { 747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); 748 } 749 750 /* 751 * Task is being enqueued - update stats: 752 */ 753 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 754 { 755 /* 756 * Are we enqueueing a waiting task? (for current tasks 757 * a dequeue/enqueue event is a NOP) 758 */ 759 if (se != cfs_rq->curr) 760 update_stats_wait_start(cfs_rq, se); 761 } 762 763 static void 764 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 765 { 766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); 768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 771 #ifdef CONFIG_SCHEDSTATS 772 if (entity_is_task(se)) { 773 trace_sched_stat_wait(task_of(se), 774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 775 } 776 #endif 777 schedstat_set(se->statistics.wait_start, 0); 778 } 779 780 static inline void 781 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 782 { 783 /* 784 * Mark the end of the wait period if dequeueing a 785 * waiting task: 786 */ 787 if (se != cfs_rq->curr) 788 update_stats_wait_end(cfs_rq, se); 789 } 790 791 /* 792 * We are picking a new current task - update its stats: 793 */ 794 static inline void 795 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 796 { 797 /* 798 * We are starting a new run period: 799 */ 800 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 801 } 802 803 /************************************************** 804 * Scheduling class queueing methods: 805 */ 806 807 #ifdef CONFIG_NUMA_BALANCING 808 /* 809 * Approximate time to scan a full NUMA task in ms. The task scan period is 810 * calculated based on the tasks virtual memory size and 811 * numa_balancing_scan_size. 812 */ 813 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 814 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 815 816 /* Portion of address space to scan in MB */ 817 unsigned int sysctl_numa_balancing_scan_size = 256; 818 819 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 820 unsigned int sysctl_numa_balancing_scan_delay = 1000; 821 822 /* 823 * After skipping a page migration on a shared page, skip N more numa page 824 * migrations unconditionally. This reduces the number of NUMA migrations 825 * in shared memory workloads, and has the effect of pulling tasks towards 826 * where their memory lives, over pulling the memory towards the task. 827 */ 828 unsigned int sysctl_numa_balancing_migrate_deferred = 16; 829 830 static unsigned int task_nr_scan_windows(struct task_struct *p) 831 { 832 unsigned long rss = 0; 833 unsigned long nr_scan_pages; 834 835 /* 836 * Calculations based on RSS as non-present and empty pages are skipped 837 * by the PTE scanner and NUMA hinting faults should be trapped based 838 * on resident pages 839 */ 840 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 841 rss = get_mm_rss(p->mm); 842 if (!rss) 843 rss = nr_scan_pages; 844 845 rss = round_up(rss, nr_scan_pages); 846 return rss / nr_scan_pages; 847 } 848 849 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 850 #define MAX_SCAN_WINDOW 2560 851 852 static unsigned int task_scan_min(struct task_struct *p) 853 { 854 unsigned int scan, floor; 855 unsigned int windows = 1; 856 857 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW) 858 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size; 859 floor = 1000 / windows; 860 861 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 862 return max_t(unsigned int, floor, scan); 863 } 864 865 static unsigned int task_scan_max(struct task_struct *p) 866 { 867 unsigned int smin = task_scan_min(p); 868 unsigned int smax; 869 870 /* Watch for min being lower than max due to floor calculations */ 871 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 872 return max(smin, smax); 873 } 874 875 /* 876 * Once a preferred node is selected the scheduler balancer will prefer moving 877 * a task to that node for sysctl_numa_balancing_settle_count number of PTE 878 * scans. This will give the process the chance to accumulate more faults on 879 * the preferred node but still allow the scheduler to move the task again if 880 * the nodes CPUs are overloaded. 881 */ 882 unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4; 883 884 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 885 { 886 rq->nr_numa_running += (p->numa_preferred_nid != -1); 887 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 888 } 889 890 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 891 { 892 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 893 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 894 } 895 896 struct numa_group { 897 atomic_t refcount; 898 899 spinlock_t lock; /* nr_tasks, tasks */ 900 int nr_tasks; 901 pid_t gid; 902 struct list_head task_list; 903 904 struct rcu_head rcu; 905 unsigned long total_faults; 906 unsigned long faults[0]; 907 }; 908 909 pid_t task_numa_group_id(struct task_struct *p) 910 { 911 return p->numa_group ? p->numa_group->gid : 0; 912 } 913 914 static inline int task_faults_idx(int nid, int priv) 915 { 916 return 2 * nid + priv; 917 } 918 919 static inline unsigned long task_faults(struct task_struct *p, int nid) 920 { 921 if (!p->numa_faults) 922 return 0; 923 924 return p->numa_faults[task_faults_idx(nid, 0)] + 925 p->numa_faults[task_faults_idx(nid, 1)]; 926 } 927 928 static inline unsigned long group_faults(struct task_struct *p, int nid) 929 { 930 if (!p->numa_group) 931 return 0; 932 933 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1]; 934 } 935 936 /* 937 * These return the fraction of accesses done by a particular task, or 938 * task group, on a particular numa node. The group weight is given a 939 * larger multiplier, in order to group tasks together that are almost 940 * evenly spread out between numa nodes. 941 */ 942 static inline unsigned long task_weight(struct task_struct *p, int nid) 943 { 944 unsigned long total_faults; 945 946 if (!p->numa_faults) 947 return 0; 948 949 total_faults = p->total_numa_faults; 950 951 if (!total_faults) 952 return 0; 953 954 return 1000 * task_faults(p, nid) / total_faults; 955 } 956 957 static inline unsigned long group_weight(struct task_struct *p, int nid) 958 { 959 if (!p->numa_group || !p->numa_group->total_faults) 960 return 0; 961 962 return 1000 * group_faults(p, nid) / p->numa_group->total_faults; 963 } 964 965 static unsigned long weighted_cpuload(const int cpu); 966 static unsigned long source_load(int cpu, int type); 967 static unsigned long target_load(int cpu, int type); 968 static unsigned long power_of(int cpu); 969 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 970 971 /* Cached statistics for all CPUs within a node */ 972 struct numa_stats { 973 unsigned long nr_running; 974 unsigned long load; 975 976 /* Total compute capacity of CPUs on a node */ 977 unsigned long power; 978 979 /* Approximate capacity in terms of runnable tasks on a node */ 980 unsigned long capacity; 981 int has_capacity; 982 }; 983 984 /* 985 * XXX borrowed from update_sg_lb_stats 986 */ 987 static void update_numa_stats(struct numa_stats *ns, int nid) 988 { 989 int cpu, cpus = 0; 990 991 memset(ns, 0, sizeof(*ns)); 992 for_each_cpu(cpu, cpumask_of_node(nid)) { 993 struct rq *rq = cpu_rq(cpu); 994 995 ns->nr_running += rq->nr_running; 996 ns->load += weighted_cpuload(cpu); 997 ns->power += power_of(cpu); 998 999 cpus++; 1000 } 1001 1002 /* 1003 * If we raced with hotplug and there are no CPUs left in our mask 1004 * the @ns structure is NULL'ed and task_numa_compare() will 1005 * not find this node attractive. 1006 * 1007 * We'll either bail at !has_capacity, or we'll detect a huge imbalance 1008 * and bail there. 1009 */ 1010 if (!cpus) 1011 return; 1012 1013 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power; 1014 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE); 1015 ns->has_capacity = (ns->nr_running < ns->capacity); 1016 } 1017 1018 struct task_numa_env { 1019 struct task_struct *p; 1020 1021 int src_cpu, src_nid; 1022 int dst_cpu, dst_nid; 1023 1024 struct numa_stats src_stats, dst_stats; 1025 1026 int imbalance_pct, idx; 1027 1028 struct task_struct *best_task; 1029 long best_imp; 1030 int best_cpu; 1031 }; 1032 1033 static void task_numa_assign(struct task_numa_env *env, 1034 struct task_struct *p, long imp) 1035 { 1036 if (env->best_task) 1037 put_task_struct(env->best_task); 1038 if (p) 1039 get_task_struct(p); 1040 1041 env->best_task = p; 1042 env->best_imp = imp; 1043 env->best_cpu = env->dst_cpu; 1044 } 1045 1046 /* 1047 * This checks if the overall compute and NUMA accesses of the system would 1048 * be improved if the source tasks was migrated to the target dst_cpu taking 1049 * into account that it might be best if task running on the dst_cpu should 1050 * be exchanged with the source task 1051 */ 1052 static void task_numa_compare(struct task_numa_env *env, 1053 long taskimp, long groupimp) 1054 { 1055 struct rq *src_rq = cpu_rq(env->src_cpu); 1056 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1057 struct task_struct *cur; 1058 long dst_load, src_load; 1059 long load; 1060 long imp = (groupimp > 0) ? groupimp : taskimp; 1061 1062 rcu_read_lock(); 1063 cur = ACCESS_ONCE(dst_rq->curr); 1064 if (cur->pid == 0) /* idle */ 1065 cur = NULL; 1066 1067 /* 1068 * "imp" is the fault differential for the source task between the 1069 * source and destination node. Calculate the total differential for 1070 * the source task and potential destination task. The more negative 1071 * the value is, the more rmeote accesses that would be expected to 1072 * be incurred if the tasks were swapped. 1073 */ 1074 if (cur) { 1075 /* Skip this swap candidate if cannot move to the source cpu */ 1076 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1077 goto unlock; 1078 1079 /* 1080 * If dst and source tasks are in the same NUMA group, or not 1081 * in any group then look only at task weights. 1082 */ 1083 if (cur->numa_group == env->p->numa_group) { 1084 imp = taskimp + task_weight(cur, env->src_nid) - 1085 task_weight(cur, env->dst_nid); 1086 /* 1087 * Add some hysteresis to prevent swapping the 1088 * tasks within a group over tiny differences. 1089 */ 1090 if (cur->numa_group) 1091 imp -= imp/16; 1092 } else { 1093 /* 1094 * Compare the group weights. If a task is all by 1095 * itself (not part of a group), use the task weight 1096 * instead. 1097 */ 1098 if (env->p->numa_group) 1099 imp = groupimp; 1100 else 1101 imp = taskimp; 1102 1103 if (cur->numa_group) 1104 imp += group_weight(cur, env->src_nid) - 1105 group_weight(cur, env->dst_nid); 1106 else 1107 imp += task_weight(cur, env->src_nid) - 1108 task_weight(cur, env->dst_nid); 1109 } 1110 } 1111 1112 if (imp < env->best_imp) 1113 goto unlock; 1114 1115 if (!cur) { 1116 /* Is there capacity at our destination? */ 1117 if (env->src_stats.has_capacity && 1118 !env->dst_stats.has_capacity) 1119 goto unlock; 1120 1121 goto balance; 1122 } 1123 1124 /* Balance doesn't matter much if we're running a task per cpu */ 1125 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1) 1126 goto assign; 1127 1128 /* 1129 * In the overloaded case, try and keep the load balanced. 1130 */ 1131 balance: 1132 dst_load = env->dst_stats.load; 1133 src_load = env->src_stats.load; 1134 1135 /* XXX missing power terms */ 1136 load = task_h_load(env->p); 1137 dst_load += load; 1138 src_load -= load; 1139 1140 if (cur) { 1141 load = task_h_load(cur); 1142 dst_load -= load; 1143 src_load += load; 1144 } 1145 1146 /* make src_load the smaller */ 1147 if (dst_load < src_load) 1148 swap(dst_load, src_load); 1149 1150 if (src_load * env->imbalance_pct < dst_load * 100) 1151 goto unlock; 1152 1153 assign: 1154 task_numa_assign(env, cur, imp); 1155 unlock: 1156 rcu_read_unlock(); 1157 } 1158 1159 static void task_numa_find_cpu(struct task_numa_env *env, 1160 long taskimp, long groupimp) 1161 { 1162 int cpu; 1163 1164 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1165 /* Skip this CPU if the source task cannot migrate */ 1166 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1167 continue; 1168 1169 env->dst_cpu = cpu; 1170 task_numa_compare(env, taskimp, groupimp); 1171 } 1172 } 1173 1174 static int task_numa_migrate(struct task_struct *p) 1175 { 1176 struct task_numa_env env = { 1177 .p = p, 1178 1179 .src_cpu = task_cpu(p), 1180 .src_nid = task_node(p), 1181 1182 .imbalance_pct = 112, 1183 1184 .best_task = NULL, 1185 .best_imp = 0, 1186 .best_cpu = -1 1187 }; 1188 struct sched_domain *sd; 1189 unsigned long taskweight, groupweight; 1190 int nid, ret; 1191 long taskimp, groupimp; 1192 1193 /* 1194 * Pick the lowest SD_NUMA domain, as that would have the smallest 1195 * imbalance and would be the first to start moving tasks about. 1196 * 1197 * And we want to avoid any moving of tasks about, as that would create 1198 * random movement of tasks -- counter the numa conditions we're trying 1199 * to satisfy here. 1200 */ 1201 rcu_read_lock(); 1202 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1203 if (sd) 1204 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1205 rcu_read_unlock(); 1206 1207 /* 1208 * Cpusets can break the scheduler domain tree into smaller 1209 * balance domains, some of which do not cross NUMA boundaries. 1210 * Tasks that are "trapped" in such domains cannot be migrated 1211 * elsewhere, so there is no point in (re)trying. 1212 */ 1213 if (unlikely(!sd)) { 1214 p->numa_preferred_nid = cpu_to_node(task_cpu(p)); 1215 return -EINVAL; 1216 } 1217 1218 taskweight = task_weight(p, env.src_nid); 1219 groupweight = group_weight(p, env.src_nid); 1220 update_numa_stats(&env.src_stats, env.src_nid); 1221 env.dst_nid = p->numa_preferred_nid; 1222 taskimp = task_weight(p, env.dst_nid) - taskweight; 1223 groupimp = group_weight(p, env.dst_nid) - groupweight; 1224 update_numa_stats(&env.dst_stats, env.dst_nid); 1225 1226 /* If the preferred nid has capacity, try to use it. */ 1227 if (env.dst_stats.has_capacity) 1228 task_numa_find_cpu(&env, taskimp, groupimp); 1229 1230 /* No space available on the preferred nid. Look elsewhere. */ 1231 if (env.best_cpu == -1) { 1232 for_each_online_node(nid) { 1233 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1234 continue; 1235 1236 /* Only consider nodes where both task and groups benefit */ 1237 taskimp = task_weight(p, nid) - taskweight; 1238 groupimp = group_weight(p, nid) - groupweight; 1239 if (taskimp < 0 && groupimp < 0) 1240 continue; 1241 1242 env.dst_nid = nid; 1243 update_numa_stats(&env.dst_stats, env.dst_nid); 1244 task_numa_find_cpu(&env, taskimp, groupimp); 1245 } 1246 } 1247 1248 /* No better CPU than the current one was found. */ 1249 if (env.best_cpu == -1) 1250 return -EAGAIN; 1251 1252 sched_setnuma(p, env.dst_nid); 1253 1254 /* 1255 * Reset the scan period if the task is being rescheduled on an 1256 * alternative node to recheck if the tasks is now properly placed. 1257 */ 1258 p->numa_scan_period = task_scan_min(p); 1259 1260 if (env.best_task == NULL) { 1261 int ret = migrate_task_to(p, env.best_cpu); 1262 return ret; 1263 } 1264 1265 ret = migrate_swap(p, env.best_task); 1266 put_task_struct(env.best_task); 1267 return ret; 1268 } 1269 1270 /* Attempt to migrate a task to a CPU on the preferred node. */ 1271 static void numa_migrate_preferred(struct task_struct *p) 1272 { 1273 /* This task has no NUMA fault statistics yet */ 1274 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1275 return; 1276 1277 /* Periodically retry migrating the task to the preferred node */ 1278 p->numa_migrate_retry = jiffies + HZ; 1279 1280 /* Success if task is already running on preferred CPU */ 1281 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) 1282 return; 1283 1284 /* Otherwise, try migrate to a CPU on the preferred node */ 1285 task_numa_migrate(p); 1286 } 1287 1288 /* 1289 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1290 * increments. The more local the fault statistics are, the higher the scan 1291 * period will be for the next scan window. If local/remote ratio is below 1292 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the 1293 * scan period will decrease 1294 */ 1295 #define NUMA_PERIOD_SLOTS 10 1296 #define NUMA_PERIOD_THRESHOLD 3 1297 1298 /* 1299 * Increase the scan period (slow down scanning) if the majority of 1300 * our memory is already on our local node, or if the majority of 1301 * the page accesses are shared with other processes. 1302 * Otherwise, decrease the scan period. 1303 */ 1304 static void update_task_scan_period(struct task_struct *p, 1305 unsigned long shared, unsigned long private) 1306 { 1307 unsigned int period_slot; 1308 int ratio; 1309 int diff; 1310 1311 unsigned long remote = p->numa_faults_locality[0]; 1312 unsigned long local = p->numa_faults_locality[1]; 1313 1314 /* 1315 * If there were no record hinting faults then either the task is 1316 * completely idle or all activity is areas that are not of interest 1317 * to automatic numa balancing. Scan slower 1318 */ 1319 if (local + shared == 0) { 1320 p->numa_scan_period = min(p->numa_scan_period_max, 1321 p->numa_scan_period << 1); 1322 1323 p->mm->numa_next_scan = jiffies + 1324 msecs_to_jiffies(p->numa_scan_period); 1325 1326 return; 1327 } 1328 1329 /* 1330 * Prepare to scale scan period relative to the current period. 1331 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1332 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1333 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1334 */ 1335 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1336 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1337 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1338 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1339 if (!slot) 1340 slot = 1; 1341 diff = slot * period_slot; 1342 } else { 1343 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1344 1345 /* 1346 * Scale scan rate increases based on sharing. There is an 1347 * inverse relationship between the degree of sharing and 1348 * the adjustment made to the scanning period. Broadly 1349 * speaking the intent is that there is little point 1350 * scanning faster if shared accesses dominate as it may 1351 * simply bounce migrations uselessly 1352 */ 1353 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS); 1354 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared)); 1355 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1356 } 1357 1358 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1359 task_scan_min(p), task_scan_max(p)); 1360 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1361 } 1362 1363 static void task_numa_placement(struct task_struct *p) 1364 { 1365 int seq, nid, max_nid = -1, max_group_nid = -1; 1366 unsigned long max_faults = 0, max_group_faults = 0; 1367 unsigned long fault_types[2] = { 0, 0 }; 1368 spinlock_t *group_lock = NULL; 1369 1370 seq = ACCESS_ONCE(p->mm->numa_scan_seq); 1371 if (p->numa_scan_seq == seq) 1372 return; 1373 p->numa_scan_seq = seq; 1374 p->numa_scan_period_max = task_scan_max(p); 1375 1376 /* If the task is part of a group prevent parallel updates to group stats */ 1377 if (p->numa_group) { 1378 group_lock = &p->numa_group->lock; 1379 spin_lock(group_lock); 1380 } 1381 1382 /* Find the node with the highest number of faults */ 1383 for_each_online_node(nid) { 1384 unsigned long faults = 0, group_faults = 0; 1385 int priv, i; 1386 1387 for (priv = 0; priv < 2; priv++) { 1388 long diff; 1389 1390 i = task_faults_idx(nid, priv); 1391 diff = -p->numa_faults[i]; 1392 1393 /* Decay existing window, copy faults since last scan */ 1394 p->numa_faults[i] >>= 1; 1395 p->numa_faults[i] += p->numa_faults_buffer[i]; 1396 fault_types[priv] += p->numa_faults_buffer[i]; 1397 p->numa_faults_buffer[i] = 0; 1398 1399 faults += p->numa_faults[i]; 1400 diff += p->numa_faults[i]; 1401 p->total_numa_faults += diff; 1402 if (p->numa_group) { 1403 /* safe because we can only change our own group */ 1404 p->numa_group->faults[i] += diff; 1405 p->numa_group->total_faults += diff; 1406 group_faults += p->numa_group->faults[i]; 1407 } 1408 } 1409 1410 if (faults > max_faults) { 1411 max_faults = faults; 1412 max_nid = nid; 1413 } 1414 1415 if (group_faults > max_group_faults) { 1416 max_group_faults = group_faults; 1417 max_group_nid = nid; 1418 } 1419 } 1420 1421 update_task_scan_period(p, fault_types[0], fault_types[1]); 1422 1423 if (p->numa_group) { 1424 /* 1425 * If the preferred task and group nids are different, 1426 * iterate over the nodes again to find the best place. 1427 */ 1428 if (max_nid != max_group_nid) { 1429 unsigned long weight, max_weight = 0; 1430 1431 for_each_online_node(nid) { 1432 weight = task_weight(p, nid) + group_weight(p, nid); 1433 if (weight > max_weight) { 1434 max_weight = weight; 1435 max_nid = nid; 1436 } 1437 } 1438 } 1439 1440 spin_unlock(group_lock); 1441 } 1442 1443 /* Preferred node as the node with the most faults */ 1444 if (max_faults && max_nid != p->numa_preferred_nid) { 1445 /* Update the preferred nid and migrate task if possible */ 1446 sched_setnuma(p, max_nid); 1447 numa_migrate_preferred(p); 1448 } 1449 } 1450 1451 static inline int get_numa_group(struct numa_group *grp) 1452 { 1453 return atomic_inc_not_zero(&grp->refcount); 1454 } 1455 1456 static inline void put_numa_group(struct numa_group *grp) 1457 { 1458 if (atomic_dec_and_test(&grp->refcount)) 1459 kfree_rcu(grp, rcu); 1460 } 1461 1462 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 1463 int *priv) 1464 { 1465 struct numa_group *grp, *my_grp; 1466 struct task_struct *tsk; 1467 bool join = false; 1468 int cpu = cpupid_to_cpu(cpupid); 1469 int i; 1470 1471 if (unlikely(!p->numa_group)) { 1472 unsigned int size = sizeof(struct numa_group) + 1473 2*nr_node_ids*sizeof(unsigned long); 1474 1475 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1476 if (!grp) 1477 return; 1478 1479 atomic_set(&grp->refcount, 1); 1480 spin_lock_init(&grp->lock); 1481 INIT_LIST_HEAD(&grp->task_list); 1482 grp->gid = p->pid; 1483 1484 for (i = 0; i < 2*nr_node_ids; i++) 1485 grp->faults[i] = p->numa_faults[i]; 1486 1487 grp->total_faults = p->total_numa_faults; 1488 1489 list_add(&p->numa_entry, &grp->task_list); 1490 grp->nr_tasks++; 1491 rcu_assign_pointer(p->numa_group, grp); 1492 } 1493 1494 rcu_read_lock(); 1495 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr); 1496 1497 if (!cpupid_match_pid(tsk, cpupid)) 1498 goto no_join; 1499 1500 grp = rcu_dereference(tsk->numa_group); 1501 if (!grp) 1502 goto no_join; 1503 1504 my_grp = p->numa_group; 1505 if (grp == my_grp) 1506 goto no_join; 1507 1508 /* 1509 * Only join the other group if its bigger; if we're the bigger group, 1510 * the other task will join us. 1511 */ 1512 if (my_grp->nr_tasks > grp->nr_tasks) 1513 goto no_join; 1514 1515 /* 1516 * Tie-break on the grp address. 1517 */ 1518 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 1519 goto no_join; 1520 1521 /* Always join threads in the same process. */ 1522 if (tsk->mm == current->mm) 1523 join = true; 1524 1525 /* Simple filter to avoid false positives due to PID collisions */ 1526 if (flags & TNF_SHARED) 1527 join = true; 1528 1529 /* Update priv based on whether false sharing was detected */ 1530 *priv = !join; 1531 1532 if (join && !get_numa_group(grp)) 1533 goto no_join; 1534 1535 rcu_read_unlock(); 1536 1537 if (!join) 1538 return; 1539 1540 double_lock(&my_grp->lock, &grp->lock); 1541 1542 for (i = 0; i < 2*nr_node_ids; i++) { 1543 my_grp->faults[i] -= p->numa_faults[i]; 1544 grp->faults[i] += p->numa_faults[i]; 1545 } 1546 my_grp->total_faults -= p->total_numa_faults; 1547 grp->total_faults += p->total_numa_faults; 1548 1549 list_move(&p->numa_entry, &grp->task_list); 1550 my_grp->nr_tasks--; 1551 grp->nr_tasks++; 1552 1553 spin_unlock(&my_grp->lock); 1554 spin_unlock(&grp->lock); 1555 1556 rcu_assign_pointer(p->numa_group, grp); 1557 1558 put_numa_group(my_grp); 1559 return; 1560 1561 no_join: 1562 rcu_read_unlock(); 1563 return; 1564 } 1565 1566 void task_numa_free(struct task_struct *p) 1567 { 1568 struct numa_group *grp = p->numa_group; 1569 int i; 1570 void *numa_faults = p->numa_faults; 1571 1572 if (grp) { 1573 spin_lock(&grp->lock); 1574 for (i = 0; i < 2*nr_node_ids; i++) 1575 grp->faults[i] -= p->numa_faults[i]; 1576 grp->total_faults -= p->total_numa_faults; 1577 1578 list_del(&p->numa_entry); 1579 grp->nr_tasks--; 1580 spin_unlock(&grp->lock); 1581 rcu_assign_pointer(p->numa_group, NULL); 1582 put_numa_group(grp); 1583 } 1584 1585 p->numa_faults = NULL; 1586 p->numa_faults_buffer = NULL; 1587 kfree(numa_faults); 1588 } 1589 1590 /* 1591 * Got a PROT_NONE fault for a page on @node. 1592 */ 1593 void task_numa_fault(int last_cpupid, int node, int pages, int flags) 1594 { 1595 struct task_struct *p = current; 1596 bool migrated = flags & TNF_MIGRATED; 1597 int priv; 1598 1599 if (!numabalancing_enabled) 1600 return; 1601 1602 /* for example, ksmd faulting in a user's mm */ 1603 if (!p->mm) 1604 return; 1605 1606 /* Do not worry about placement if exiting */ 1607 if (p->state == TASK_DEAD) 1608 return; 1609 1610 /* Allocate buffer to track faults on a per-node basis */ 1611 if (unlikely(!p->numa_faults)) { 1612 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids; 1613 1614 /* numa_faults and numa_faults_buffer share the allocation */ 1615 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN); 1616 if (!p->numa_faults) 1617 return; 1618 1619 BUG_ON(p->numa_faults_buffer); 1620 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids); 1621 p->total_numa_faults = 0; 1622 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1623 } 1624 1625 /* 1626 * First accesses are treated as private, otherwise consider accesses 1627 * to be private if the accessing pid has not changed 1628 */ 1629 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 1630 priv = 1; 1631 } else { 1632 priv = cpupid_match_pid(p, last_cpupid); 1633 if (!priv && !(flags & TNF_NO_GROUP)) 1634 task_numa_group(p, last_cpupid, flags, &priv); 1635 } 1636 1637 task_numa_placement(p); 1638 1639 /* 1640 * Retry task to preferred node migration periodically, in case it 1641 * case it previously failed, or the scheduler moved us. 1642 */ 1643 if (time_after(jiffies, p->numa_migrate_retry)) 1644 numa_migrate_preferred(p); 1645 1646 if (migrated) 1647 p->numa_pages_migrated += pages; 1648 1649 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages; 1650 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages; 1651 } 1652 1653 static void reset_ptenuma_scan(struct task_struct *p) 1654 { 1655 ACCESS_ONCE(p->mm->numa_scan_seq)++; 1656 p->mm->numa_scan_offset = 0; 1657 } 1658 1659 /* 1660 * The expensive part of numa migration is done from task_work context. 1661 * Triggered from task_tick_numa(). 1662 */ 1663 void task_numa_work(struct callback_head *work) 1664 { 1665 unsigned long migrate, next_scan, now = jiffies; 1666 struct task_struct *p = current; 1667 struct mm_struct *mm = p->mm; 1668 struct vm_area_struct *vma; 1669 unsigned long start, end; 1670 unsigned long nr_pte_updates = 0; 1671 long pages; 1672 1673 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 1674 1675 work->next = work; /* protect against double add */ 1676 /* 1677 * Who cares about NUMA placement when they're dying. 1678 * 1679 * NOTE: make sure not to dereference p->mm before this check, 1680 * exit_task_work() happens _after_ exit_mm() so we could be called 1681 * without p->mm even though we still had it when we enqueued this 1682 * work. 1683 */ 1684 if (p->flags & PF_EXITING) 1685 return; 1686 1687 if (!mm->numa_next_scan) { 1688 mm->numa_next_scan = now + 1689 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1690 } 1691 1692 /* 1693 * Enforce maximal scan/migration frequency.. 1694 */ 1695 migrate = mm->numa_next_scan; 1696 if (time_before(now, migrate)) 1697 return; 1698 1699 if (p->numa_scan_period == 0) { 1700 p->numa_scan_period_max = task_scan_max(p); 1701 p->numa_scan_period = task_scan_min(p); 1702 } 1703 1704 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 1705 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 1706 return; 1707 1708 /* 1709 * Delay this task enough that another task of this mm will likely win 1710 * the next time around. 1711 */ 1712 p->node_stamp += 2 * TICK_NSEC; 1713 1714 start = mm->numa_scan_offset; 1715 pages = sysctl_numa_balancing_scan_size; 1716 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 1717 if (!pages) 1718 return; 1719 1720 down_read(&mm->mmap_sem); 1721 vma = find_vma(mm, start); 1722 if (!vma) { 1723 reset_ptenuma_scan(p); 1724 start = 0; 1725 vma = mm->mmap; 1726 } 1727 for (; vma; vma = vma->vm_next) { 1728 if (!vma_migratable(vma) || !vma_policy_mof(p, vma)) 1729 continue; 1730 1731 /* 1732 * Shared library pages mapped by multiple processes are not 1733 * migrated as it is expected they are cache replicated. Avoid 1734 * hinting faults in read-only file-backed mappings or the vdso 1735 * as migrating the pages will be of marginal benefit. 1736 */ 1737 if (!vma->vm_mm || 1738 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 1739 continue; 1740 1741 /* 1742 * Skip inaccessible VMAs to avoid any confusion between 1743 * PROT_NONE and NUMA hinting ptes 1744 */ 1745 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 1746 continue; 1747 1748 do { 1749 start = max(start, vma->vm_start); 1750 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 1751 end = min(end, vma->vm_end); 1752 nr_pte_updates += change_prot_numa(vma, start, end); 1753 1754 /* 1755 * Scan sysctl_numa_balancing_scan_size but ensure that 1756 * at least one PTE is updated so that unused virtual 1757 * address space is quickly skipped. 1758 */ 1759 if (nr_pte_updates) 1760 pages -= (end - start) >> PAGE_SHIFT; 1761 1762 start = end; 1763 if (pages <= 0) 1764 goto out; 1765 } while (end != vma->vm_end); 1766 } 1767 1768 out: 1769 /* 1770 * It is possible to reach the end of the VMA list but the last few 1771 * VMAs are not guaranteed to the vma_migratable. If they are not, we 1772 * would find the !migratable VMA on the next scan but not reset the 1773 * scanner to the start so check it now. 1774 */ 1775 if (vma) 1776 mm->numa_scan_offset = start; 1777 else 1778 reset_ptenuma_scan(p); 1779 up_read(&mm->mmap_sem); 1780 } 1781 1782 /* 1783 * Drive the periodic memory faults.. 1784 */ 1785 void task_tick_numa(struct rq *rq, struct task_struct *curr) 1786 { 1787 struct callback_head *work = &curr->numa_work; 1788 u64 period, now; 1789 1790 /* 1791 * We don't care about NUMA placement if we don't have memory. 1792 */ 1793 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 1794 return; 1795 1796 /* 1797 * Using runtime rather than walltime has the dual advantage that 1798 * we (mostly) drive the selection from busy threads and that the 1799 * task needs to have done some actual work before we bother with 1800 * NUMA placement. 1801 */ 1802 now = curr->se.sum_exec_runtime; 1803 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 1804 1805 if (now - curr->node_stamp > period) { 1806 if (!curr->node_stamp) 1807 curr->numa_scan_period = task_scan_min(curr); 1808 curr->node_stamp += period; 1809 1810 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 1811 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 1812 task_work_add(curr, work, true); 1813 } 1814 } 1815 } 1816 #else 1817 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 1818 { 1819 } 1820 1821 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1822 { 1823 } 1824 1825 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1826 { 1827 } 1828 #endif /* CONFIG_NUMA_BALANCING */ 1829 1830 static void 1831 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 1832 { 1833 update_load_add(&cfs_rq->load, se->load.weight); 1834 if (!parent_entity(se)) 1835 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 1836 #ifdef CONFIG_SMP 1837 if (entity_is_task(se)) { 1838 struct rq *rq = rq_of(cfs_rq); 1839 1840 account_numa_enqueue(rq, task_of(se)); 1841 list_add(&se->group_node, &rq->cfs_tasks); 1842 } 1843 #endif 1844 cfs_rq->nr_running++; 1845 } 1846 1847 static void 1848 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 1849 { 1850 update_load_sub(&cfs_rq->load, se->load.weight); 1851 if (!parent_entity(se)) 1852 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 1853 if (entity_is_task(se)) { 1854 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 1855 list_del_init(&se->group_node); 1856 } 1857 cfs_rq->nr_running--; 1858 } 1859 1860 #ifdef CONFIG_FAIR_GROUP_SCHED 1861 # ifdef CONFIG_SMP 1862 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 1863 { 1864 long tg_weight; 1865 1866 /* 1867 * Use this CPU's actual weight instead of the last load_contribution 1868 * to gain a more accurate current total weight. See 1869 * update_cfs_rq_load_contribution(). 1870 */ 1871 tg_weight = atomic_long_read(&tg->load_avg); 1872 tg_weight -= cfs_rq->tg_load_contrib; 1873 tg_weight += cfs_rq->load.weight; 1874 1875 return tg_weight; 1876 } 1877 1878 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 1879 { 1880 long tg_weight, load, shares; 1881 1882 tg_weight = calc_tg_weight(tg, cfs_rq); 1883 load = cfs_rq->load.weight; 1884 1885 shares = (tg->shares * load); 1886 if (tg_weight) 1887 shares /= tg_weight; 1888 1889 if (shares < MIN_SHARES) 1890 shares = MIN_SHARES; 1891 if (shares > tg->shares) 1892 shares = tg->shares; 1893 1894 return shares; 1895 } 1896 # else /* CONFIG_SMP */ 1897 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 1898 { 1899 return tg->shares; 1900 } 1901 # endif /* CONFIG_SMP */ 1902 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 1903 unsigned long weight) 1904 { 1905 if (se->on_rq) { 1906 /* commit outstanding execution time */ 1907 if (cfs_rq->curr == se) 1908 update_curr(cfs_rq); 1909 account_entity_dequeue(cfs_rq, se); 1910 } 1911 1912 update_load_set(&se->load, weight); 1913 1914 if (se->on_rq) 1915 account_entity_enqueue(cfs_rq, se); 1916 } 1917 1918 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 1919 1920 static void update_cfs_shares(struct cfs_rq *cfs_rq) 1921 { 1922 struct task_group *tg; 1923 struct sched_entity *se; 1924 long shares; 1925 1926 tg = cfs_rq->tg; 1927 se = tg->se[cpu_of(rq_of(cfs_rq))]; 1928 if (!se || throttled_hierarchy(cfs_rq)) 1929 return; 1930 #ifndef CONFIG_SMP 1931 if (likely(se->load.weight == tg->shares)) 1932 return; 1933 #endif 1934 shares = calc_cfs_shares(cfs_rq, tg); 1935 1936 reweight_entity(cfs_rq_of(se), se, shares); 1937 } 1938 #else /* CONFIG_FAIR_GROUP_SCHED */ 1939 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 1940 { 1941 } 1942 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1943 1944 #ifdef CONFIG_SMP 1945 /* 1946 * We choose a half-life close to 1 scheduling period. 1947 * Note: The tables below are dependent on this value. 1948 */ 1949 #define LOAD_AVG_PERIOD 32 1950 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 1951 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ 1952 1953 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 1954 static const u32 runnable_avg_yN_inv[] = { 1955 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 1956 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 1957 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 1958 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 1959 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 1960 0x85aac367, 0x82cd8698, 1961 }; 1962 1963 /* 1964 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 1965 * over-estimates when re-combining. 1966 */ 1967 static const u32 runnable_avg_yN_sum[] = { 1968 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 1969 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 1970 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 1971 }; 1972 1973 /* 1974 * Approximate: 1975 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 1976 */ 1977 static __always_inline u64 decay_load(u64 val, u64 n) 1978 { 1979 unsigned int local_n; 1980 1981 if (!n) 1982 return val; 1983 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 1984 return 0; 1985 1986 /* after bounds checking we can collapse to 32-bit */ 1987 local_n = n; 1988 1989 /* 1990 * As y^PERIOD = 1/2, we can combine 1991 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD) 1992 * With a look-up table which covers k^n (n<PERIOD) 1993 * 1994 * To achieve constant time decay_load. 1995 */ 1996 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 1997 val >>= local_n / LOAD_AVG_PERIOD; 1998 local_n %= LOAD_AVG_PERIOD; 1999 } 2000 2001 val *= runnable_avg_yN_inv[local_n]; 2002 /* We don't use SRR here since we always want to round down. */ 2003 return val >> 32; 2004 } 2005 2006 /* 2007 * For updates fully spanning n periods, the contribution to runnable 2008 * average will be: \Sum 1024*y^n 2009 * 2010 * We can compute this reasonably efficiently by combining: 2011 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2012 */ 2013 static u32 __compute_runnable_contrib(u64 n) 2014 { 2015 u32 contrib = 0; 2016 2017 if (likely(n <= LOAD_AVG_PERIOD)) 2018 return runnable_avg_yN_sum[n]; 2019 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2020 return LOAD_AVG_MAX; 2021 2022 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ 2023 do { 2024 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ 2025 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; 2026 2027 n -= LOAD_AVG_PERIOD; 2028 } while (n > LOAD_AVG_PERIOD); 2029 2030 contrib = decay_load(contrib, n); 2031 return contrib + runnable_avg_yN_sum[n]; 2032 } 2033 2034 /* 2035 * We can represent the historical contribution to runnable average as the 2036 * coefficients of a geometric series. To do this we sub-divide our runnable 2037 * history into segments of approximately 1ms (1024us); label the segment that 2038 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2039 * 2040 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2041 * p0 p1 p2 2042 * (now) (~1ms ago) (~2ms ago) 2043 * 2044 * Let u_i denote the fraction of p_i that the entity was runnable. 2045 * 2046 * We then designate the fractions u_i as our co-efficients, yielding the 2047 * following representation of historical load: 2048 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2049 * 2050 * We choose y based on the with of a reasonably scheduling period, fixing: 2051 * y^32 = 0.5 2052 * 2053 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2054 * approximately half as much as the contribution to load within the last ms 2055 * (u_0). 2056 * 2057 * When a period "rolls over" and we have new u_0`, multiplying the previous 2058 * sum again by y is sufficient to update: 2059 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2060 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2061 */ 2062 static __always_inline int __update_entity_runnable_avg(u64 now, 2063 struct sched_avg *sa, 2064 int runnable) 2065 { 2066 u64 delta, periods; 2067 u32 runnable_contrib; 2068 int delta_w, decayed = 0; 2069 2070 delta = now - sa->last_runnable_update; 2071 /* 2072 * This should only happen when time goes backwards, which it 2073 * unfortunately does during sched clock init when we swap over to TSC. 2074 */ 2075 if ((s64)delta < 0) { 2076 sa->last_runnable_update = now; 2077 return 0; 2078 } 2079 2080 /* 2081 * Use 1024ns as the unit of measurement since it's a reasonable 2082 * approximation of 1us and fast to compute. 2083 */ 2084 delta >>= 10; 2085 if (!delta) 2086 return 0; 2087 sa->last_runnable_update = now; 2088 2089 /* delta_w is the amount already accumulated against our next period */ 2090 delta_w = sa->runnable_avg_period % 1024; 2091 if (delta + delta_w >= 1024) { 2092 /* period roll-over */ 2093 decayed = 1; 2094 2095 /* 2096 * Now that we know we're crossing a period boundary, figure 2097 * out how much from delta we need to complete the current 2098 * period and accrue it. 2099 */ 2100 delta_w = 1024 - delta_w; 2101 if (runnable) 2102 sa->runnable_avg_sum += delta_w; 2103 sa->runnable_avg_period += delta_w; 2104 2105 delta -= delta_w; 2106 2107 /* Figure out how many additional periods this update spans */ 2108 periods = delta / 1024; 2109 delta %= 1024; 2110 2111 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, 2112 periods + 1); 2113 sa->runnable_avg_period = decay_load(sa->runnable_avg_period, 2114 periods + 1); 2115 2116 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2117 runnable_contrib = __compute_runnable_contrib(periods); 2118 if (runnable) 2119 sa->runnable_avg_sum += runnable_contrib; 2120 sa->runnable_avg_period += runnable_contrib; 2121 } 2122 2123 /* Remainder of delta accrued against u_0` */ 2124 if (runnable) 2125 sa->runnable_avg_sum += delta; 2126 sa->runnable_avg_period += delta; 2127 2128 return decayed; 2129 } 2130 2131 /* Synchronize an entity's decay with its parenting cfs_rq.*/ 2132 static inline u64 __synchronize_entity_decay(struct sched_entity *se) 2133 { 2134 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2135 u64 decays = atomic64_read(&cfs_rq->decay_counter); 2136 2137 decays -= se->avg.decay_count; 2138 if (!decays) 2139 return 0; 2140 2141 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); 2142 se->avg.decay_count = 0; 2143 2144 return decays; 2145 } 2146 2147 #ifdef CONFIG_FAIR_GROUP_SCHED 2148 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2149 int force_update) 2150 { 2151 struct task_group *tg = cfs_rq->tg; 2152 long tg_contrib; 2153 2154 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; 2155 tg_contrib -= cfs_rq->tg_load_contrib; 2156 2157 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) { 2158 atomic_long_add(tg_contrib, &tg->load_avg); 2159 cfs_rq->tg_load_contrib += tg_contrib; 2160 } 2161 } 2162 2163 /* 2164 * Aggregate cfs_rq runnable averages into an equivalent task_group 2165 * representation for computing load contributions. 2166 */ 2167 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2168 struct cfs_rq *cfs_rq) 2169 { 2170 struct task_group *tg = cfs_rq->tg; 2171 long contrib; 2172 2173 /* The fraction of a cpu used by this cfs_rq */ 2174 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT, 2175 sa->runnable_avg_period + 1); 2176 contrib -= cfs_rq->tg_runnable_contrib; 2177 2178 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { 2179 atomic_add(contrib, &tg->runnable_avg); 2180 cfs_rq->tg_runnable_contrib += contrib; 2181 } 2182 } 2183 2184 static inline void __update_group_entity_contrib(struct sched_entity *se) 2185 { 2186 struct cfs_rq *cfs_rq = group_cfs_rq(se); 2187 struct task_group *tg = cfs_rq->tg; 2188 int runnable_avg; 2189 2190 u64 contrib; 2191 2192 contrib = cfs_rq->tg_load_contrib * tg->shares; 2193 se->avg.load_avg_contrib = div_u64(contrib, 2194 atomic_long_read(&tg->load_avg) + 1); 2195 2196 /* 2197 * For group entities we need to compute a correction term in the case 2198 * that they are consuming <1 cpu so that we would contribute the same 2199 * load as a task of equal weight. 2200 * 2201 * Explicitly co-ordinating this measurement would be expensive, but 2202 * fortunately the sum of each cpus contribution forms a usable 2203 * lower-bound on the true value. 2204 * 2205 * Consider the aggregate of 2 contributions. Either they are disjoint 2206 * (and the sum represents true value) or they are disjoint and we are 2207 * understating by the aggregate of their overlap. 2208 * 2209 * Extending this to N cpus, for a given overlap, the maximum amount we 2210 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of 2211 * cpus that overlap for this interval and w_i is the interval width. 2212 * 2213 * On a small machine; the first term is well-bounded which bounds the 2214 * total error since w_i is a subset of the period. Whereas on a 2215 * larger machine, while this first term can be larger, if w_i is the 2216 * of consequential size guaranteed to see n_i*w_i quickly converge to 2217 * our upper bound of 1-cpu. 2218 */ 2219 runnable_avg = atomic_read(&tg->runnable_avg); 2220 if (runnable_avg < NICE_0_LOAD) { 2221 se->avg.load_avg_contrib *= runnable_avg; 2222 se->avg.load_avg_contrib >>= NICE_0_SHIFT; 2223 } 2224 } 2225 #else 2226 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2227 int force_update) {} 2228 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2229 struct cfs_rq *cfs_rq) {} 2230 static inline void __update_group_entity_contrib(struct sched_entity *se) {} 2231 #endif 2232 2233 static inline void __update_task_entity_contrib(struct sched_entity *se) 2234 { 2235 u32 contrib; 2236 2237 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ 2238 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); 2239 contrib /= (se->avg.runnable_avg_period + 1); 2240 se->avg.load_avg_contrib = scale_load(contrib); 2241 } 2242 2243 /* Compute the current contribution to load_avg by se, return any delta */ 2244 static long __update_entity_load_avg_contrib(struct sched_entity *se) 2245 { 2246 long old_contrib = se->avg.load_avg_contrib; 2247 2248 if (entity_is_task(se)) { 2249 __update_task_entity_contrib(se); 2250 } else { 2251 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); 2252 __update_group_entity_contrib(se); 2253 } 2254 2255 return se->avg.load_avg_contrib - old_contrib; 2256 } 2257 2258 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, 2259 long load_contrib) 2260 { 2261 if (likely(load_contrib < cfs_rq->blocked_load_avg)) 2262 cfs_rq->blocked_load_avg -= load_contrib; 2263 else 2264 cfs_rq->blocked_load_avg = 0; 2265 } 2266 2267 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 2268 2269 /* Update a sched_entity's runnable average */ 2270 static inline void update_entity_load_avg(struct sched_entity *se, 2271 int update_cfs_rq) 2272 { 2273 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2274 long contrib_delta; 2275 u64 now; 2276 2277 /* 2278 * For a group entity we need to use their owned cfs_rq_clock_task() in 2279 * case they are the parent of a throttled hierarchy. 2280 */ 2281 if (entity_is_task(se)) 2282 now = cfs_rq_clock_task(cfs_rq); 2283 else 2284 now = cfs_rq_clock_task(group_cfs_rq(se)); 2285 2286 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq)) 2287 return; 2288 2289 contrib_delta = __update_entity_load_avg_contrib(se); 2290 2291 if (!update_cfs_rq) 2292 return; 2293 2294 if (se->on_rq) 2295 cfs_rq->runnable_load_avg += contrib_delta; 2296 else 2297 subtract_blocked_load_contrib(cfs_rq, -contrib_delta); 2298 } 2299 2300 /* 2301 * Decay the load contributed by all blocked children and account this so that 2302 * their contribution may appropriately discounted when they wake up. 2303 */ 2304 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) 2305 { 2306 u64 now = cfs_rq_clock_task(cfs_rq) >> 20; 2307 u64 decays; 2308 2309 decays = now - cfs_rq->last_decay; 2310 if (!decays && !force_update) 2311 return; 2312 2313 if (atomic_long_read(&cfs_rq->removed_load)) { 2314 unsigned long removed_load; 2315 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0); 2316 subtract_blocked_load_contrib(cfs_rq, removed_load); 2317 } 2318 2319 if (decays) { 2320 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, 2321 decays); 2322 atomic64_add(decays, &cfs_rq->decay_counter); 2323 cfs_rq->last_decay = now; 2324 } 2325 2326 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); 2327 } 2328 2329 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) 2330 { 2331 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable); 2332 __update_tg_runnable_avg(&rq->avg, &rq->cfs); 2333 } 2334 2335 /* Add the load generated by se into cfs_rq's child load-average */ 2336 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2337 struct sched_entity *se, 2338 int wakeup) 2339 { 2340 /* 2341 * We track migrations using entity decay_count <= 0, on a wake-up 2342 * migration we use a negative decay count to track the remote decays 2343 * accumulated while sleeping. 2344 * 2345 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they 2346 * are seen by enqueue_entity_load_avg() as a migration with an already 2347 * constructed load_avg_contrib. 2348 */ 2349 if (unlikely(se->avg.decay_count <= 0)) { 2350 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq)); 2351 if (se->avg.decay_count) { 2352 /* 2353 * In a wake-up migration we have to approximate the 2354 * time sleeping. This is because we can't synchronize 2355 * clock_task between the two cpus, and it is not 2356 * guaranteed to be read-safe. Instead, we can 2357 * approximate this using our carried decays, which are 2358 * explicitly atomically readable. 2359 */ 2360 se->avg.last_runnable_update -= (-se->avg.decay_count) 2361 << 20; 2362 update_entity_load_avg(se, 0); 2363 /* Indicate that we're now synchronized and on-rq */ 2364 se->avg.decay_count = 0; 2365 } 2366 wakeup = 0; 2367 } else { 2368 /* 2369 * Task re-woke on same cpu (or else migrate_task_rq_fair() 2370 * would have made count negative); we must be careful to avoid 2371 * double-accounting blocked time after synchronizing decays. 2372 */ 2373 se->avg.last_runnable_update += __synchronize_entity_decay(se) 2374 << 20; 2375 } 2376 2377 /* migrated tasks did not contribute to our blocked load */ 2378 if (wakeup) { 2379 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 2380 update_entity_load_avg(se, 0); 2381 } 2382 2383 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; 2384 /* we force update consideration on load-balancer moves */ 2385 update_cfs_rq_blocked_load(cfs_rq, !wakeup); 2386 } 2387 2388 /* 2389 * Remove se's load from this cfs_rq child load-average, if the entity is 2390 * transitioning to a blocked state we track its projected decay using 2391 * blocked_load_avg. 2392 */ 2393 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2394 struct sched_entity *se, 2395 int sleep) 2396 { 2397 update_entity_load_avg(se, 1); 2398 /* we force update consideration on load-balancer moves */ 2399 update_cfs_rq_blocked_load(cfs_rq, !sleep); 2400 2401 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; 2402 if (sleep) { 2403 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 2404 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 2405 } /* migrations, e.g. sleep=0 leave decay_count == 0 */ 2406 } 2407 2408 /* 2409 * Update the rq's load with the elapsed running time before entering 2410 * idle. if the last scheduled task is not a CFS task, idle_enter will 2411 * be the only way to update the runnable statistic. 2412 */ 2413 void idle_enter_fair(struct rq *this_rq) 2414 { 2415 update_rq_runnable_avg(this_rq, 1); 2416 } 2417 2418 /* 2419 * Update the rq's load with the elapsed idle time before a task is 2420 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will 2421 * be the only way to update the runnable statistic. 2422 */ 2423 void idle_exit_fair(struct rq *this_rq) 2424 { 2425 update_rq_runnable_avg(this_rq, 0); 2426 } 2427 2428 #else 2429 static inline void update_entity_load_avg(struct sched_entity *se, 2430 int update_cfs_rq) {} 2431 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 2432 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2433 struct sched_entity *se, 2434 int wakeup) {} 2435 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2436 struct sched_entity *se, 2437 int sleep) {} 2438 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 2439 int force_update) {} 2440 #endif 2441 2442 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 2443 { 2444 #ifdef CONFIG_SCHEDSTATS 2445 struct task_struct *tsk = NULL; 2446 2447 if (entity_is_task(se)) 2448 tsk = task_of(se); 2449 2450 if (se->statistics.sleep_start) { 2451 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 2452 2453 if ((s64)delta < 0) 2454 delta = 0; 2455 2456 if (unlikely(delta > se->statistics.sleep_max)) 2457 se->statistics.sleep_max = delta; 2458 2459 se->statistics.sleep_start = 0; 2460 se->statistics.sum_sleep_runtime += delta; 2461 2462 if (tsk) { 2463 account_scheduler_latency(tsk, delta >> 10, 1); 2464 trace_sched_stat_sleep(tsk, delta); 2465 } 2466 } 2467 if (se->statistics.block_start) { 2468 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 2469 2470 if ((s64)delta < 0) 2471 delta = 0; 2472 2473 if (unlikely(delta > se->statistics.block_max)) 2474 se->statistics.block_max = delta; 2475 2476 se->statistics.block_start = 0; 2477 se->statistics.sum_sleep_runtime += delta; 2478 2479 if (tsk) { 2480 if (tsk->in_iowait) { 2481 se->statistics.iowait_sum += delta; 2482 se->statistics.iowait_count++; 2483 trace_sched_stat_iowait(tsk, delta); 2484 } 2485 2486 trace_sched_stat_blocked(tsk, delta); 2487 2488 /* 2489 * Blocking time is in units of nanosecs, so shift by 2490 * 20 to get a milliseconds-range estimation of the 2491 * amount of time that the task spent sleeping: 2492 */ 2493 if (unlikely(prof_on == SLEEP_PROFILING)) { 2494 profile_hits(SLEEP_PROFILING, 2495 (void *)get_wchan(tsk), 2496 delta >> 20); 2497 } 2498 account_scheduler_latency(tsk, delta >> 10, 0); 2499 } 2500 } 2501 #endif 2502 } 2503 2504 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 2505 { 2506 #ifdef CONFIG_SCHED_DEBUG 2507 s64 d = se->vruntime - cfs_rq->min_vruntime; 2508 2509 if (d < 0) 2510 d = -d; 2511 2512 if (d > 3*sysctl_sched_latency) 2513 schedstat_inc(cfs_rq, nr_spread_over); 2514 #endif 2515 } 2516 2517 static void 2518 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 2519 { 2520 u64 vruntime = cfs_rq->min_vruntime; 2521 2522 /* 2523 * The 'current' period is already promised to the current tasks, 2524 * however the extra weight of the new task will slow them down a 2525 * little, place the new task so that it fits in the slot that 2526 * stays open at the end. 2527 */ 2528 if (initial && sched_feat(START_DEBIT)) 2529 vruntime += sched_vslice(cfs_rq, se); 2530 2531 /* sleeps up to a single latency don't count. */ 2532 if (!initial) { 2533 unsigned long thresh = sysctl_sched_latency; 2534 2535 /* 2536 * Halve their sleep time's effect, to allow 2537 * for a gentler effect of sleepers: 2538 */ 2539 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 2540 thresh >>= 1; 2541 2542 vruntime -= thresh; 2543 } 2544 2545 /* ensure we never gain time by being placed backwards. */ 2546 se->vruntime = max_vruntime(se->vruntime, vruntime); 2547 } 2548 2549 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 2550 2551 static void 2552 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 2553 { 2554 /* 2555 * Update the normalized vruntime before updating min_vruntime 2556 * through calling update_curr(). 2557 */ 2558 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 2559 se->vruntime += cfs_rq->min_vruntime; 2560 2561 /* 2562 * Update run-time statistics of the 'current'. 2563 */ 2564 update_curr(cfs_rq); 2565 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); 2566 account_entity_enqueue(cfs_rq, se); 2567 update_cfs_shares(cfs_rq); 2568 2569 if (flags & ENQUEUE_WAKEUP) { 2570 place_entity(cfs_rq, se, 0); 2571 enqueue_sleeper(cfs_rq, se); 2572 } 2573 2574 update_stats_enqueue(cfs_rq, se); 2575 check_spread(cfs_rq, se); 2576 if (se != cfs_rq->curr) 2577 __enqueue_entity(cfs_rq, se); 2578 se->on_rq = 1; 2579 2580 if (cfs_rq->nr_running == 1) { 2581 list_add_leaf_cfs_rq(cfs_rq); 2582 check_enqueue_throttle(cfs_rq); 2583 } 2584 } 2585 2586 static void __clear_buddies_last(struct sched_entity *se) 2587 { 2588 for_each_sched_entity(se) { 2589 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2590 if (cfs_rq->last == se) 2591 cfs_rq->last = NULL; 2592 else 2593 break; 2594 } 2595 } 2596 2597 static void __clear_buddies_next(struct sched_entity *se) 2598 { 2599 for_each_sched_entity(se) { 2600 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2601 if (cfs_rq->next == se) 2602 cfs_rq->next = NULL; 2603 else 2604 break; 2605 } 2606 } 2607 2608 static void __clear_buddies_skip(struct sched_entity *se) 2609 { 2610 for_each_sched_entity(se) { 2611 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2612 if (cfs_rq->skip == se) 2613 cfs_rq->skip = NULL; 2614 else 2615 break; 2616 } 2617 } 2618 2619 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 2620 { 2621 if (cfs_rq->last == se) 2622 __clear_buddies_last(se); 2623 2624 if (cfs_rq->next == se) 2625 __clear_buddies_next(se); 2626 2627 if (cfs_rq->skip == se) 2628 __clear_buddies_skip(se); 2629 } 2630 2631 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 2632 2633 static void 2634 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 2635 { 2636 /* 2637 * Update run-time statistics of the 'current'. 2638 */ 2639 update_curr(cfs_rq); 2640 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); 2641 2642 update_stats_dequeue(cfs_rq, se); 2643 if (flags & DEQUEUE_SLEEP) { 2644 #ifdef CONFIG_SCHEDSTATS 2645 if (entity_is_task(se)) { 2646 struct task_struct *tsk = task_of(se); 2647 2648 if (tsk->state & TASK_INTERRUPTIBLE) 2649 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 2650 if (tsk->state & TASK_UNINTERRUPTIBLE) 2651 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 2652 } 2653 #endif 2654 } 2655 2656 clear_buddies(cfs_rq, se); 2657 2658 if (se != cfs_rq->curr) 2659 __dequeue_entity(cfs_rq, se); 2660 se->on_rq = 0; 2661 account_entity_dequeue(cfs_rq, se); 2662 2663 /* 2664 * Normalize the entity after updating the min_vruntime because the 2665 * update can refer to the ->curr item and we need to reflect this 2666 * movement in our normalized position. 2667 */ 2668 if (!(flags & DEQUEUE_SLEEP)) 2669 se->vruntime -= cfs_rq->min_vruntime; 2670 2671 /* return excess runtime on last dequeue */ 2672 return_cfs_rq_runtime(cfs_rq); 2673 2674 update_min_vruntime(cfs_rq); 2675 update_cfs_shares(cfs_rq); 2676 } 2677 2678 /* 2679 * Preempt the current task with a newly woken task if needed: 2680 */ 2681 static void 2682 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 2683 { 2684 unsigned long ideal_runtime, delta_exec; 2685 struct sched_entity *se; 2686 s64 delta; 2687 2688 ideal_runtime = sched_slice(cfs_rq, curr); 2689 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 2690 if (delta_exec > ideal_runtime) { 2691 resched_task(rq_of(cfs_rq)->curr); 2692 /* 2693 * The current task ran long enough, ensure it doesn't get 2694 * re-elected due to buddy favours. 2695 */ 2696 clear_buddies(cfs_rq, curr); 2697 return; 2698 } 2699 2700 /* 2701 * Ensure that a task that missed wakeup preemption by a 2702 * narrow margin doesn't have to wait for a full slice. 2703 * This also mitigates buddy induced latencies under load. 2704 */ 2705 if (delta_exec < sysctl_sched_min_granularity) 2706 return; 2707 2708 se = __pick_first_entity(cfs_rq); 2709 delta = curr->vruntime - se->vruntime; 2710 2711 if (delta < 0) 2712 return; 2713 2714 if (delta > ideal_runtime) 2715 resched_task(rq_of(cfs_rq)->curr); 2716 } 2717 2718 static void 2719 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 2720 { 2721 /* 'current' is not kept within the tree. */ 2722 if (se->on_rq) { 2723 /* 2724 * Any task has to be enqueued before it get to execute on 2725 * a CPU. So account for the time it spent waiting on the 2726 * runqueue. 2727 */ 2728 update_stats_wait_end(cfs_rq, se); 2729 __dequeue_entity(cfs_rq, se); 2730 } 2731 2732 update_stats_curr_start(cfs_rq, se); 2733 cfs_rq->curr = se; 2734 #ifdef CONFIG_SCHEDSTATS 2735 /* 2736 * Track our maximum slice length, if the CPU's load is at 2737 * least twice that of our own weight (i.e. dont track it 2738 * when there are only lesser-weight tasks around): 2739 */ 2740 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 2741 se->statistics.slice_max = max(se->statistics.slice_max, 2742 se->sum_exec_runtime - se->prev_sum_exec_runtime); 2743 } 2744 #endif 2745 se->prev_sum_exec_runtime = se->sum_exec_runtime; 2746 } 2747 2748 static int 2749 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 2750 2751 /* 2752 * Pick the next process, keeping these things in mind, in this order: 2753 * 1) keep things fair between processes/task groups 2754 * 2) pick the "next" process, since someone really wants that to run 2755 * 3) pick the "last" process, for cache locality 2756 * 4) do not run the "skip" process, if something else is available 2757 */ 2758 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) 2759 { 2760 struct sched_entity *se = __pick_first_entity(cfs_rq); 2761 struct sched_entity *left = se; 2762 2763 /* 2764 * Avoid running the skip buddy, if running something else can 2765 * be done without getting too unfair. 2766 */ 2767 if (cfs_rq->skip == se) { 2768 struct sched_entity *second = __pick_next_entity(se); 2769 if (second && wakeup_preempt_entity(second, left) < 1) 2770 se = second; 2771 } 2772 2773 /* 2774 * Prefer last buddy, try to return the CPU to a preempted task. 2775 */ 2776 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 2777 se = cfs_rq->last; 2778 2779 /* 2780 * Someone really wants this to run. If it's not unfair, run it. 2781 */ 2782 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 2783 se = cfs_rq->next; 2784 2785 clear_buddies(cfs_rq, se); 2786 2787 return se; 2788 } 2789 2790 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 2791 2792 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 2793 { 2794 /* 2795 * If still on the runqueue then deactivate_task() 2796 * was not called and update_curr() has to be done: 2797 */ 2798 if (prev->on_rq) 2799 update_curr(cfs_rq); 2800 2801 /* throttle cfs_rqs exceeding runtime */ 2802 check_cfs_rq_runtime(cfs_rq); 2803 2804 check_spread(cfs_rq, prev); 2805 if (prev->on_rq) { 2806 update_stats_wait_start(cfs_rq, prev); 2807 /* Put 'current' back into the tree. */ 2808 __enqueue_entity(cfs_rq, prev); 2809 /* in !on_rq case, update occurred at dequeue */ 2810 update_entity_load_avg(prev, 1); 2811 } 2812 cfs_rq->curr = NULL; 2813 } 2814 2815 static void 2816 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 2817 { 2818 /* 2819 * Update run-time statistics of the 'current'. 2820 */ 2821 update_curr(cfs_rq); 2822 2823 /* 2824 * Ensure that runnable average is periodically updated. 2825 */ 2826 update_entity_load_avg(curr, 1); 2827 update_cfs_rq_blocked_load(cfs_rq, 1); 2828 update_cfs_shares(cfs_rq); 2829 2830 #ifdef CONFIG_SCHED_HRTICK 2831 /* 2832 * queued ticks are scheduled to match the slice, so don't bother 2833 * validating it and just reschedule. 2834 */ 2835 if (queued) { 2836 resched_task(rq_of(cfs_rq)->curr); 2837 return; 2838 } 2839 /* 2840 * don't let the period tick interfere with the hrtick preemption 2841 */ 2842 if (!sched_feat(DOUBLE_TICK) && 2843 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 2844 return; 2845 #endif 2846 2847 if (cfs_rq->nr_running > 1) 2848 check_preempt_tick(cfs_rq, curr); 2849 } 2850 2851 2852 /************************************************** 2853 * CFS bandwidth control machinery 2854 */ 2855 2856 #ifdef CONFIG_CFS_BANDWIDTH 2857 2858 #ifdef HAVE_JUMP_LABEL 2859 static struct static_key __cfs_bandwidth_used; 2860 2861 static inline bool cfs_bandwidth_used(void) 2862 { 2863 return static_key_false(&__cfs_bandwidth_used); 2864 } 2865 2866 void cfs_bandwidth_usage_inc(void) 2867 { 2868 static_key_slow_inc(&__cfs_bandwidth_used); 2869 } 2870 2871 void cfs_bandwidth_usage_dec(void) 2872 { 2873 static_key_slow_dec(&__cfs_bandwidth_used); 2874 } 2875 #else /* HAVE_JUMP_LABEL */ 2876 static bool cfs_bandwidth_used(void) 2877 { 2878 return true; 2879 } 2880 2881 void cfs_bandwidth_usage_inc(void) {} 2882 void cfs_bandwidth_usage_dec(void) {} 2883 #endif /* HAVE_JUMP_LABEL */ 2884 2885 /* 2886 * default period for cfs group bandwidth. 2887 * default: 0.1s, units: nanoseconds 2888 */ 2889 static inline u64 default_cfs_period(void) 2890 { 2891 return 100000000ULL; 2892 } 2893 2894 static inline u64 sched_cfs_bandwidth_slice(void) 2895 { 2896 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 2897 } 2898 2899 /* 2900 * Replenish runtime according to assigned quota and update expiration time. 2901 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 2902 * additional synchronization around rq->lock. 2903 * 2904 * requires cfs_b->lock 2905 */ 2906 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 2907 { 2908 u64 now; 2909 2910 if (cfs_b->quota == RUNTIME_INF) 2911 return; 2912 2913 now = sched_clock_cpu(smp_processor_id()); 2914 cfs_b->runtime = cfs_b->quota; 2915 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 2916 } 2917 2918 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 2919 { 2920 return &tg->cfs_bandwidth; 2921 } 2922 2923 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 2924 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 2925 { 2926 if (unlikely(cfs_rq->throttle_count)) 2927 return cfs_rq->throttled_clock_task; 2928 2929 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 2930 } 2931 2932 /* returns 0 on failure to allocate runtime */ 2933 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2934 { 2935 struct task_group *tg = cfs_rq->tg; 2936 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 2937 u64 amount = 0, min_amount, expires; 2938 2939 /* note: this is a positive sum as runtime_remaining <= 0 */ 2940 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 2941 2942 raw_spin_lock(&cfs_b->lock); 2943 if (cfs_b->quota == RUNTIME_INF) 2944 amount = min_amount; 2945 else { 2946 /* 2947 * If the bandwidth pool has become inactive, then at least one 2948 * period must have elapsed since the last consumption. 2949 * Refresh the global state and ensure bandwidth timer becomes 2950 * active. 2951 */ 2952 if (!cfs_b->timer_active) { 2953 __refill_cfs_bandwidth_runtime(cfs_b); 2954 __start_cfs_bandwidth(cfs_b); 2955 } 2956 2957 if (cfs_b->runtime > 0) { 2958 amount = min(cfs_b->runtime, min_amount); 2959 cfs_b->runtime -= amount; 2960 cfs_b->idle = 0; 2961 } 2962 } 2963 expires = cfs_b->runtime_expires; 2964 raw_spin_unlock(&cfs_b->lock); 2965 2966 cfs_rq->runtime_remaining += amount; 2967 /* 2968 * we may have advanced our local expiration to account for allowed 2969 * spread between our sched_clock and the one on which runtime was 2970 * issued. 2971 */ 2972 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 2973 cfs_rq->runtime_expires = expires; 2974 2975 return cfs_rq->runtime_remaining > 0; 2976 } 2977 2978 /* 2979 * Note: This depends on the synchronization provided by sched_clock and the 2980 * fact that rq->clock snapshots this value. 2981 */ 2982 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2983 { 2984 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2985 2986 /* if the deadline is ahead of our clock, nothing to do */ 2987 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 2988 return; 2989 2990 if (cfs_rq->runtime_remaining < 0) 2991 return; 2992 2993 /* 2994 * If the local deadline has passed we have to consider the 2995 * possibility that our sched_clock is 'fast' and the global deadline 2996 * has not truly expired. 2997 * 2998 * Fortunately we can check determine whether this the case by checking 2999 * whether the global deadline has advanced. 3000 */ 3001 3002 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { 3003 /* extend local deadline, drift is bounded above by 2 ticks */ 3004 cfs_rq->runtime_expires += TICK_NSEC; 3005 } else { 3006 /* global deadline is ahead, expiration has passed */ 3007 cfs_rq->runtime_remaining = 0; 3008 } 3009 } 3010 3011 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3012 { 3013 /* dock delta_exec before expiring quota (as it could span periods) */ 3014 cfs_rq->runtime_remaining -= delta_exec; 3015 expire_cfs_rq_runtime(cfs_rq); 3016 3017 if (likely(cfs_rq->runtime_remaining > 0)) 3018 return; 3019 3020 /* 3021 * if we're unable to extend our runtime we resched so that the active 3022 * hierarchy can be throttled 3023 */ 3024 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3025 resched_task(rq_of(cfs_rq)->curr); 3026 } 3027 3028 static __always_inline 3029 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3030 { 3031 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3032 return; 3033 3034 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3035 } 3036 3037 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3038 { 3039 return cfs_bandwidth_used() && cfs_rq->throttled; 3040 } 3041 3042 /* check whether cfs_rq, or any parent, is throttled */ 3043 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3044 { 3045 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3046 } 3047 3048 /* 3049 * Ensure that neither of the group entities corresponding to src_cpu or 3050 * dest_cpu are members of a throttled hierarchy when performing group 3051 * load-balance operations. 3052 */ 3053 static inline int throttled_lb_pair(struct task_group *tg, 3054 int src_cpu, int dest_cpu) 3055 { 3056 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3057 3058 src_cfs_rq = tg->cfs_rq[src_cpu]; 3059 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3060 3061 return throttled_hierarchy(src_cfs_rq) || 3062 throttled_hierarchy(dest_cfs_rq); 3063 } 3064 3065 /* updated child weight may affect parent so we have to do this bottom up */ 3066 static int tg_unthrottle_up(struct task_group *tg, void *data) 3067 { 3068 struct rq *rq = data; 3069 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3070 3071 cfs_rq->throttle_count--; 3072 #ifdef CONFIG_SMP 3073 if (!cfs_rq->throttle_count) { 3074 /* adjust cfs_rq_clock_task() */ 3075 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3076 cfs_rq->throttled_clock_task; 3077 } 3078 #endif 3079 3080 return 0; 3081 } 3082 3083 static int tg_throttle_down(struct task_group *tg, void *data) 3084 { 3085 struct rq *rq = data; 3086 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3087 3088 /* group is entering throttled state, stop time */ 3089 if (!cfs_rq->throttle_count) 3090 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3091 cfs_rq->throttle_count++; 3092 3093 return 0; 3094 } 3095 3096 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3097 { 3098 struct rq *rq = rq_of(cfs_rq); 3099 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3100 struct sched_entity *se; 3101 long task_delta, dequeue = 1; 3102 3103 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3104 3105 /* freeze hierarchy runnable averages while throttled */ 3106 rcu_read_lock(); 3107 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3108 rcu_read_unlock(); 3109 3110 task_delta = cfs_rq->h_nr_running; 3111 for_each_sched_entity(se) { 3112 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3113 /* throttled entity or throttle-on-deactivate */ 3114 if (!se->on_rq) 3115 break; 3116 3117 if (dequeue) 3118 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3119 qcfs_rq->h_nr_running -= task_delta; 3120 3121 if (qcfs_rq->load.weight) 3122 dequeue = 0; 3123 } 3124 3125 if (!se) 3126 rq->nr_running -= task_delta; 3127 3128 cfs_rq->throttled = 1; 3129 cfs_rq->throttled_clock = rq_clock(rq); 3130 raw_spin_lock(&cfs_b->lock); 3131 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3132 if (!cfs_b->timer_active) 3133 __start_cfs_bandwidth(cfs_b); 3134 raw_spin_unlock(&cfs_b->lock); 3135 } 3136 3137 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3138 { 3139 struct rq *rq = rq_of(cfs_rq); 3140 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3141 struct sched_entity *se; 3142 int enqueue = 1; 3143 long task_delta; 3144 3145 se = cfs_rq->tg->se[cpu_of(rq)]; 3146 3147 cfs_rq->throttled = 0; 3148 3149 update_rq_clock(rq); 3150 3151 raw_spin_lock(&cfs_b->lock); 3152 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 3153 list_del_rcu(&cfs_rq->throttled_list); 3154 raw_spin_unlock(&cfs_b->lock); 3155 3156 /* update hierarchical throttle state */ 3157 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 3158 3159 if (!cfs_rq->load.weight) 3160 return; 3161 3162 task_delta = cfs_rq->h_nr_running; 3163 for_each_sched_entity(se) { 3164 if (se->on_rq) 3165 enqueue = 0; 3166 3167 cfs_rq = cfs_rq_of(se); 3168 if (enqueue) 3169 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 3170 cfs_rq->h_nr_running += task_delta; 3171 3172 if (cfs_rq_throttled(cfs_rq)) 3173 break; 3174 } 3175 3176 if (!se) 3177 rq->nr_running += task_delta; 3178 3179 /* determine whether we need to wake up potentially idle cpu */ 3180 if (rq->curr == rq->idle && rq->cfs.nr_running) 3181 resched_task(rq->curr); 3182 } 3183 3184 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 3185 u64 remaining, u64 expires) 3186 { 3187 struct cfs_rq *cfs_rq; 3188 u64 runtime = remaining; 3189 3190 rcu_read_lock(); 3191 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 3192 throttled_list) { 3193 struct rq *rq = rq_of(cfs_rq); 3194 3195 raw_spin_lock(&rq->lock); 3196 if (!cfs_rq_throttled(cfs_rq)) 3197 goto next; 3198 3199 runtime = -cfs_rq->runtime_remaining + 1; 3200 if (runtime > remaining) 3201 runtime = remaining; 3202 remaining -= runtime; 3203 3204 cfs_rq->runtime_remaining += runtime; 3205 cfs_rq->runtime_expires = expires; 3206 3207 /* we check whether we're throttled above */ 3208 if (cfs_rq->runtime_remaining > 0) 3209 unthrottle_cfs_rq(cfs_rq); 3210 3211 next: 3212 raw_spin_unlock(&rq->lock); 3213 3214 if (!remaining) 3215 break; 3216 } 3217 rcu_read_unlock(); 3218 3219 return remaining; 3220 } 3221 3222 /* 3223 * Responsible for refilling a task_group's bandwidth and unthrottling its 3224 * cfs_rqs as appropriate. If there has been no activity within the last 3225 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 3226 * used to track this state. 3227 */ 3228 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 3229 { 3230 u64 runtime, runtime_expires; 3231 int idle = 1, throttled; 3232 3233 raw_spin_lock(&cfs_b->lock); 3234 /* no need to continue the timer with no bandwidth constraint */ 3235 if (cfs_b->quota == RUNTIME_INF) 3236 goto out_unlock; 3237 3238 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3239 /* idle depends on !throttled (for the case of a large deficit) */ 3240 idle = cfs_b->idle && !throttled; 3241 cfs_b->nr_periods += overrun; 3242 3243 /* if we're going inactive then everything else can be deferred */ 3244 if (idle) 3245 goto out_unlock; 3246 3247 /* 3248 * if we have relooped after returning idle once, we need to update our 3249 * status as actually running, so that other cpus doing 3250 * __start_cfs_bandwidth will stop trying to cancel us. 3251 */ 3252 cfs_b->timer_active = 1; 3253 3254 __refill_cfs_bandwidth_runtime(cfs_b); 3255 3256 if (!throttled) { 3257 /* mark as potentially idle for the upcoming period */ 3258 cfs_b->idle = 1; 3259 goto out_unlock; 3260 } 3261 3262 /* account preceding periods in which throttling occurred */ 3263 cfs_b->nr_throttled += overrun; 3264 3265 /* 3266 * There are throttled entities so we must first use the new bandwidth 3267 * to unthrottle them before making it generally available. This 3268 * ensures that all existing debts will be paid before a new cfs_rq is 3269 * allowed to run. 3270 */ 3271 runtime = cfs_b->runtime; 3272 runtime_expires = cfs_b->runtime_expires; 3273 cfs_b->runtime = 0; 3274 3275 /* 3276 * This check is repeated as we are holding onto the new bandwidth 3277 * while we unthrottle. This can potentially race with an unthrottled 3278 * group trying to acquire new bandwidth from the global pool. 3279 */ 3280 while (throttled && runtime > 0) { 3281 raw_spin_unlock(&cfs_b->lock); 3282 /* we can't nest cfs_b->lock while distributing bandwidth */ 3283 runtime = distribute_cfs_runtime(cfs_b, runtime, 3284 runtime_expires); 3285 raw_spin_lock(&cfs_b->lock); 3286 3287 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3288 } 3289 3290 /* return (any) remaining runtime */ 3291 cfs_b->runtime = runtime; 3292 /* 3293 * While we are ensured activity in the period following an 3294 * unthrottle, this also covers the case in which the new bandwidth is 3295 * insufficient to cover the existing bandwidth deficit. (Forcing the 3296 * timer to remain active while there are any throttled entities.) 3297 */ 3298 cfs_b->idle = 0; 3299 out_unlock: 3300 if (idle) 3301 cfs_b->timer_active = 0; 3302 raw_spin_unlock(&cfs_b->lock); 3303 3304 return idle; 3305 } 3306 3307 /* a cfs_rq won't donate quota below this amount */ 3308 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 3309 /* minimum remaining period time to redistribute slack quota */ 3310 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 3311 /* how long we wait to gather additional slack before distributing */ 3312 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 3313 3314 /* 3315 * Are we near the end of the current quota period? 3316 * 3317 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 3318 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of 3319 * migrate_hrtimers, base is never cleared, so we are fine. 3320 */ 3321 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 3322 { 3323 struct hrtimer *refresh_timer = &cfs_b->period_timer; 3324 u64 remaining; 3325 3326 /* if the call-back is running a quota refresh is already occurring */ 3327 if (hrtimer_callback_running(refresh_timer)) 3328 return 1; 3329 3330 /* is a quota refresh about to occur? */ 3331 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 3332 if (remaining < min_expire) 3333 return 1; 3334 3335 return 0; 3336 } 3337 3338 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 3339 { 3340 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 3341 3342 /* if there's a quota refresh soon don't bother with slack */ 3343 if (runtime_refresh_within(cfs_b, min_left)) 3344 return; 3345 3346 start_bandwidth_timer(&cfs_b->slack_timer, 3347 ns_to_ktime(cfs_bandwidth_slack_period)); 3348 } 3349 3350 /* we know any runtime found here is valid as update_curr() precedes return */ 3351 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3352 { 3353 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3354 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 3355 3356 if (slack_runtime <= 0) 3357 return; 3358 3359 raw_spin_lock(&cfs_b->lock); 3360 if (cfs_b->quota != RUNTIME_INF && 3361 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 3362 cfs_b->runtime += slack_runtime; 3363 3364 /* we are under rq->lock, defer unthrottling using a timer */ 3365 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 3366 !list_empty(&cfs_b->throttled_cfs_rq)) 3367 start_cfs_slack_bandwidth(cfs_b); 3368 } 3369 raw_spin_unlock(&cfs_b->lock); 3370 3371 /* even if it's not valid for return we don't want to try again */ 3372 cfs_rq->runtime_remaining -= slack_runtime; 3373 } 3374 3375 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3376 { 3377 if (!cfs_bandwidth_used()) 3378 return; 3379 3380 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 3381 return; 3382 3383 __return_cfs_rq_runtime(cfs_rq); 3384 } 3385 3386 /* 3387 * This is done with a timer (instead of inline with bandwidth return) since 3388 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 3389 */ 3390 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 3391 { 3392 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 3393 u64 expires; 3394 3395 /* confirm we're still not at a refresh boundary */ 3396 raw_spin_lock(&cfs_b->lock); 3397 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 3398 raw_spin_unlock(&cfs_b->lock); 3399 return; 3400 } 3401 3402 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { 3403 runtime = cfs_b->runtime; 3404 cfs_b->runtime = 0; 3405 } 3406 expires = cfs_b->runtime_expires; 3407 raw_spin_unlock(&cfs_b->lock); 3408 3409 if (!runtime) 3410 return; 3411 3412 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 3413 3414 raw_spin_lock(&cfs_b->lock); 3415 if (expires == cfs_b->runtime_expires) 3416 cfs_b->runtime = runtime; 3417 raw_spin_unlock(&cfs_b->lock); 3418 } 3419 3420 /* 3421 * When a group wakes up we want to make sure that its quota is not already 3422 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 3423 * runtime as update_curr() throttling can not not trigger until it's on-rq. 3424 */ 3425 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 3426 { 3427 if (!cfs_bandwidth_used()) 3428 return; 3429 3430 /* an active group must be handled by the update_curr()->put() path */ 3431 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 3432 return; 3433 3434 /* ensure the group is not already throttled */ 3435 if (cfs_rq_throttled(cfs_rq)) 3436 return; 3437 3438 /* update runtime allocation */ 3439 account_cfs_rq_runtime(cfs_rq, 0); 3440 if (cfs_rq->runtime_remaining <= 0) 3441 throttle_cfs_rq(cfs_rq); 3442 } 3443 3444 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 3445 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3446 { 3447 if (!cfs_bandwidth_used()) 3448 return; 3449 3450 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 3451 return; 3452 3453 /* 3454 * it's possible for a throttled entity to be forced into a running 3455 * state (e.g. set_curr_task), in this case we're finished. 3456 */ 3457 if (cfs_rq_throttled(cfs_rq)) 3458 return; 3459 3460 throttle_cfs_rq(cfs_rq); 3461 } 3462 3463 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 3464 { 3465 struct cfs_bandwidth *cfs_b = 3466 container_of(timer, struct cfs_bandwidth, slack_timer); 3467 do_sched_cfs_slack_timer(cfs_b); 3468 3469 return HRTIMER_NORESTART; 3470 } 3471 3472 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 3473 { 3474 struct cfs_bandwidth *cfs_b = 3475 container_of(timer, struct cfs_bandwidth, period_timer); 3476 ktime_t now; 3477 int overrun; 3478 int idle = 0; 3479 3480 for (;;) { 3481 now = hrtimer_cb_get_time(timer); 3482 overrun = hrtimer_forward(timer, now, cfs_b->period); 3483 3484 if (!overrun) 3485 break; 3486 3487 idle = do_sched_cfs_period_timer(cfs_b, overrun); 3488 } 3489 3490 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 3491 } 3492 3493 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3494 { 3495 raw_spin_lock_init(&cfs_b->lock); 3496 cfs_b->runtime = 0; 3497 cfs_b->quota = RUNTIME_INF; 3498 cfs_b->period = ns_to_ktime(default_cfs_period()); 3499 3500 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 3501 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3502 cfs_b->period_timer.function = sched_cfs_period_timer; 3503 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3504 cfs_b->slack_timer.function = sched_cfs_slack_timer; 3505 } 3506 3507 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3508 { 3509 cfs_rq->runtime_enabled = 0; 3510 INIT_LIST_HEAD(&cfs_rq->throttled_list); 3511 } 3512 3513 /* requires cfs_b->lock, may release to reprogram timer */ 3514 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3515 { 3516 /* 3517 * The timer may be active because we're trying to set a new bandwidth 3518 * period or because we're racing with the tear-down path 3519 * (timer_active==0 becomes visible before the hrtimer call-back 3520 * terminates). In either case we ensure that it's re-programmed 3521 */ 3522 while (unlikely(hrtimer_active(&cfs_b->period_timer)) && 3523 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) { 3524 /* bounce the lock to allow do_sched_cfs_period_timer to run */ 3525 raw_spin_unlock(&cfs_b->lock); 3526 cpu_relax(); 3527 raw_spin_lock(&cfs_b->lock); 3528 /* if someone else restarted the timer then we're done */ 3529 if (cfs_b->timer_active) 3530 return; 3531 } 3532 3533 cfs_b->timer_active = 1; 3534 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 3535 } 3536 3537 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3538 { 3539 hrtimer_cancel(&cfs_b->period_timer); 3540 hrtimer_cancel(&cfs_b->slack_timer); 3541 } 3542 3543 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 3544 { 3545 struct cfs_rq *cfs_rq; 3546 3547 for_each_leaf_cfs_rq(rq, cfs_rq) { 3548 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3549 3550 if (!cfs_rq->runtime_enabled) 3551 continue; 3552 3553 /* 3554 * clock_task is not advancing so we just need to make sure 3555 * there's some valid quota amount 3556 */ 3557 cfs_rq->runtime_remaining = cfs_b->quota; 3558 if (cfs_rq_throttled(cfs_rq)) 3559 unthrottle_cfs_rq(cfs_rq); 3560 } 3561 } 3562 3563 #else /* CONFIG_CFS_BANDWIDTH */ 3564 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3565 { 3566 return rq_clock_task(rq_of(cfs_rq)); 3567 } 3568 3569 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 3570 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3571 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 3572 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3573 3574 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3575 { 3576 return 0; 3577 } 3578 3579 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3580 { 3581 return 0; 3582 } 3583 3584 static inline int throttled_lb_pair(struct task_group *tg, 3585 int src_cpu, int dest_cpu) 3586 { 3587 return 0; 3588 } 3589 3590 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 3591 3592 #ifdef CONFIG_FAIR_GROUP_SCHED 3593 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 3594 #endif 3595 3596 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3597 { 3598 return NULL; 3599 } 3600 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 3601 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 3602 3603 #endif /* CONFIG_CFS_BANDWIDTH */ 3604 3605 /************************************************** 3606 * CFS operations on tasks: 3607 */ 3608 3609 #ifdef CONFIG_SCHED_HRTICK 3610 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 3611 { 3612 struct sched_entity *se = &p->se; 3613 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3614 3615 WARN_ON(task_rq(p) != rq); 3616 3617 if (cfs_rq->nr_running > 1) { 3618 u64 slice = sched_slice(cfs_rq, se); 3619 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 3620 s64 delta = slice - ran; 3621 3622 if (delta < 0) { 3623 if (rq->curr == p) 3624 resched_task(p); 3625 return; 3626 } 3627 3628 /* 3629 * Don't schedule slices shorter than 10000ns, that just 3630 * doesn't make sense. Rely on vruntime for fairness. 3631 */ 3632 if (rq->curr != p) 3633 delta = max_t(s64, 10000LL, delta); 3634 3635 hrtick_start(rq, delta); 3636 } 3637 } 3638 3639 /* 3640 * called from enqueue/dequeue and updates the hrtick when the 3641 * current task is from our class and nr_running is low enough 3642 * to matter. 3643 */ 3644 static void hrtick_update(struct rq *rq) 3645 { 3646 struct task_struct *curr = rq->curr; 3647 3648 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 3649 return; 3650 3651 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 3652 hrtick_start_fair(rq, curr); 3653 } 3654 #else /* !CONFIG_SCHED_HRTICK */ 3655 static inline void 3656 hrtick_start_fair(struct rq *rq, struct task_struct *p) 3657 { 3658 } 3659 3660 static inline void hrtick_update(struct rq *rq) 3661 { 3662 } 3663 #endif 3664 3665 /* 3666 * The enqueue_task method is called before nr_running is 3667 * increased. Here we update the fair scheduling stats and 3668 * then put the task into the rbtree: 3669 */ 3670 static void 3671 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 3672 { 3673 struct cfs_rq *cfs_rq; 3674 struct sched_entity *se = &p->se; 3675 3676 for_each_sched_entity(se) { 3677 if (se->on_rq) 3678 break; 3679 cfs_rq = cfs_rq_of(se); 3680 enqueue_entity(cfs_rq, se, flags); 3681 3682 /* 3683 * end evaluation on encountering a throttled cfs_rq 3684 * 3685 * note: in the case of encountering a throttled cfs_rq we will 3686 * post the final h_nr_running increment below. 3687 */ 3688 if (cfs_rq_throttled(cfs_rq)) 3689 break; 3690 cfs_rq->h_nr_running++; 3691 3692 flags = ENQUEUE_WAKEUP; 3693 } 3694 3695 for_each_sched_entity(se) { 3696 cfs_rq = cfs_rq_of(se); 3697 cfs_rq->h_nr_running++; 3698 3699 if (cfs_rq_throttled(cfs_rq)) 3700 break; 3701 3702 update_cfs_shares(cfs_rq); 3703 update_entity_load_avg(se, 1); 3704 } 3705 3706 if (!se) { 3707 update_rq_runnable_avg(rq, rq->nr_running); 3708 inc_nr_running(rq); 3709 } 3710 hrtick_update(rq); 3711 } 3712 3713 static void set_next_buddy(struct sched_entity *se); 3714 3715 /* 3716 * The dequeue_task method is called before nr_running is 3717 * decreased. We remove the task from the rbtree and 3718 * update the fair scheduling stats: 3719 */ 3720 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 3721 { 3722 struct cfs_rq *cfs_rq; 3723 struct sched_entity *se = &p->se; 3724 int task_sleep = flags & DEQUEUE_SLEEP; 3725 3726 for_each_sched_entity(se) { 3727 cfs_rq = cfs_rq_of(se); 3728 dequeue_entity(cfs_rq, se, flags); 3729 3730 /* 3731 * end evaluation on encountering a throttled cfs_rq 3732 * 3733 * note: in the case of encountering a throttled cfs_rq we will 3734 * post the final h_nr_running decrement below. 3735 */ 3736 if (cfs_rq_throttled(cfs_rq)) 3737 break; 3738 cfs_rq->h_nr_running--; 3739 3740 /* Don't dequeue parent if it has other entities besides us */ 3741 if (cfs_rq->load.weight) { 3742 /* 3743 * Bias pick_next to pick a task from this cfs_rq, as 3744 * p is sleeping when it is within its sched_slice. 3745 */ 3746 if (task_sleep && parent_entity(se)) 3747 set_next_buddy(parent_entity(se)); 3748 3749 /* avoid re-evaluating load for this entity */ 3750 se = parent_entity(se); 3751 break; 3752 } 3753 flags |= DEQUEUE_SLEEP; 3754 } 3755 3756 for_each_sched_entity(se) { 3757 cfs_rq = cfs_rq_of(se); 3758 cfs_rq->h_nr_running--; 3759 3760 if (cfs_rq_throttled(cfs_rq)) 3761 break; 3762 3763 update_cfs_shares(cfs_rq); 3764 update_entity_load_avg(se, 1); 3765 } 3766 3767 if (!se) { 3768 dec_nr_running(rq); 3769 update_rq_runnable_avg(rq, 1); 3770 } 3771 hrtick_update(rq); 3772 } 3773 3774 #ifdef CONFIG_SMP 3775 /* Used instead of source_load when we know the type == 0 */ 3776 static unsigned long weighted_cpuload(const int cpu) 3777 { 3778 return cpu_rq(cpu)->cfs.runnable_load_avg; 3779 } 3780 3781 /* 3782 * Return a low guess at the load of a migration-source cpu weighted 3783 * according to the scheduling class and "nice" value. 3784 * 3785 * We want to under-estimate the load of migration sources, to 3786 * balance conservatively. 3787 */ 3788 static unsigned long source_load(int cpu, int type) 3789 { 3790 struct rq *rq = cpu_rq(cpu); 3791 unsigned long total = weighted_cpuload(cpu); 3792 3793 if (type == 0 || !sched_feat(LB_BIAS)) 3794 return total; 3795 3796 return min(rq->cpu_load[type-1], total); 3797 } 3798 3799 /* 3800 * Return a high guess at the load of a migration-target cpu weighted 3801 * according to the scheduling class and "nice" value. 3802 */ 3803 static unsigned long target_load(int cpu, int type) 3804 { 3805 struct rq *rq = cpu_rq(cpu); 3806 unsigned long total = weighted_cpuload(cpu); 3807 3808 if (type == 0 || !sched_feat(LB_BIAS)) 3809 return total; 3810 3811 return max(rq->cpu_load[type-1], total); 3812 } 3813 3814 static unsigned long power_of(int cpu) 3815 { 3816 return cpu_rq(cpu)->cpu_power; 3817 } 3818 3819 static unsigned long cpu_avg_load_per_task(int cpu) 3820 { 3821 struct rq *rq = cpu_rq(cpu); 3822 unsigned long nr_running = ACCESS_ONCE(rq->nr_running); 3823 unsigned long load_avg = rq->cfs.runnable_load_avg; 3824 3825 if (nr_running) 3826 return load_avg / nr_running; 3827 3828 return 0; 3829 } 3830 3831 static void record_wakee(struct task_struct *p) 3832 { 3833 /* 3834 * Rough decay (wiping) for cost saving, don't worry 3835 * about the boundary, really active task won't care 3836 * about the loss. 3837 */ 3838 if (jiffies > current->wakee_flip_decay_ts + HZ) { 3839 current->wakee_flips = 0; 3840 current->wakee_flip_decay_ts = jiffies; 3841 } 3842 3843 if (current->last_wakee != p) { 3844 current->last_wakee = p; 3845 current->wakee_flips++; 3846 } 3847 } 3848 3849 static void task_waking_fair(struct task_struct *p) 3850 { 3851 struct sched_entity *se = &p->se; 3852 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3853 u64 min_vruntime; 3854 3855 #ifndef CONFIG_64BIT 3856 u64 min_vruntime_copy; 3857 3858 do { 3859 min_vruntime_copy = cfs_rq->min_vruntime_copy; 3860 smp_rmb(); 3861 min_vruntime = cfs_rq->min_vruntime; 3862 } while (min_vruntime != min_vruntime_copy); 3863 #else 3864 min_vruntime = cfs_rq->min_vruntime; 3865 #endif 3866 3867 se->vruntime -= min_vruntime; 3868 record_wakee(p); 3869 } 3870 3871 #ifdef CONFIG_FAIR_GROUP_SCHED 3872 /* 3873 * effective_load() calculates the load change as seen from the root_task_group 3874 * 3875 * Adding load to a group doesn't make a group heavier, but can cause movement 3876 * of group shares between cpus. Assuming the shares were perfectly aligned one 3877 * can calculate the shift in shares. 3878 * 3879 * Calculate the effective load difference if @wl is added (subtracted) to @tg 3880 * on this @cpu and results in a total addition (subtraction) of @wg to the 3881 * total group weight. 3882 * 3883 * Given a runqueue weight distribution (rw_i) we can compute a shares 3884 * distribution (s_i) using: 3885 * 3886 * s_i = rw_i / \Sum rw_j (1) 3887 * 3888 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 3889 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 3890 * shares distribution (s_i): 3891 * 3892 * rw_i = { 2, 4, 1, 0 } 3893 * s_i = { 2/7, 4/7, 1/7, 0 } 3894 * 3895 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 3896 * task used to run on and the CPU the waker is running on), we need to 3897 * compute the effect of waking a task on either CPU and, in case of a sync 3898 * wakeup, compute the effect of the current task going to sleep. 3899 * 3900 * So for a change of @wl to the local @cpu with an overall group weight change 3901 * of @wl we can compute the new shares distribution (s'_i) using: 3902 * 3903 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 3904 * 3905 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 3906 * differences in waking a task to CPU 0. The additional task changes the 3907 * weight and shares distributions like: 3908 * 3909 * rw'_i = { 3, 4, 1, 0 } 3910 * s'_i = { 3/8, 4/8, 1/8, 0 } 3911 * 3912 * We can then compute the difference in effective weight by using: 3913 * 3914 * dw_i = S * (s'_i - s_i) (3) 3915 * 3916 * Where 'S' is the group weight as seen by its parent. 3917 * 3918 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 3919 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 3920 * 4/7) times the weight of the group. 3921 */ 3922 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 3923 { 3924 struct sched_entity *se = tg->se[cpu]; 3925 3926 if (!tg->parent || !wl) /* the trivial, non-cgroup case */ 3927 return wl; 3928 3929 for_each_sched_entity(se) { 3930 long w, W; 3931 3932 tg = se->my_q->tg; 3933 3934 /* 3935 * W = @wg + \Sum rw_j 3936 */ 3937 W = wg + calc_tg_weight(tg, se->my_q); 3938 3939 /* 3940 * w = rw_i + @wl 3941 */ 3942 w = se->my_q->load.weight + wl; 3943 3944 /* 3945 * wl = S * s'_i; see (2) 3946 */ 3947 if (W > 0 && w < W) 3948 wl = (w * tg->shares) / W; 3949 else 3950 wl = tg->shares; 3951 3952 /* 3953 * Per the above, wl is the new se->load.weight value; since 3954 * those are clipped to [MIN_SHARES, ...) do so now. See 3955 * calc_cfs_shares(). 3956 */ 3957 if (wl < MIN_SHARES) 3958 wl = MIN_SHARES; 3959 3960 /* 3961 * wl = dw_i = S * (s'_i - s_i); see (3) 3962 */ 3963 wl -= se->load.weight; 3964 3965 /* 3966 * Recursively apply this logic to all parent groups to compute 3967 * the final effective load change on the root group. Since 3968 * only the @tg group gets extra weight, all parent groups can 3969 * only redistribute existing shares. @wl is the shift in shares 3970 * resulting from this level per the above. 3971 */ 3972 wg = 0; 3973 } 3974 3975 return wl; 3976 } 3977 #else 3978 3979 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 3980 { 3981 return wl; 3982 } 3983 3984 #endif 3985 3986 static int wake_wide(struct task_struct *p) 3987 { 3988 int factor = this_cpu_read(sd_llc_size); 3989 3990 /* 3991 * Yeah, it's the switching-frequency, could means many wakee or 3992 * rapidly switch, use factor here will just help to automatically 3993 * adjust the loose-degree, so bigger node will lead to more pull. 3994 */ 3995 if (p->wakee_flips > factor) { 3996 /* 3997 * wakee is somewhat hot, it needs certain amount of cpu 3998 * resource, so if waker is far more hot, prefer to leave 3999 * it alone. 4000 */ 4001 if (current->wakee_flips > (factor * p->wakee_flips)) 4002 return 1; 4003 } 4004 4005 return 0; 4006 } 4007 4008 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 4009 { 4010 s64 this_load, load; 4011 int idx, this_cpu, prev_cpu; 4012 unsigned long tl_per_task; 4013 struct task_group *tg; 4014 unsigned long weight; 4015 int balanced; 4016 4017 /* 4018 * If we wake multiple tasks be careful to not bounce 4019 * ourselves around too much. 4020 */ 4021 if (wake_wide(p)) 4022 return 0; 4023 4024 idx = sd->wake_idx; 4025 this_cpu = smp_processor_id(); 4026 prev_cpu = task_cpu(p); 4027 load = source_load(prev_cpu, idx); 4028 this_load = target_load(this_cpu, idx); 4029 4030 /* 4031 * If sync wakeup then subtract the (maximum possible) 4032 * effect of the currently running task from the load 4033 * of the current CPU: 4034 */ 4035 if (sync) { 4036 tg = task_group(current); 4037 weight = current->se.load.weight; 4038 4039 this_load += effective_load(tg, this_cpu, -weight, -weight); 4040 load += effective_load(tg, prev_cpu, 0, -weight); 4041 } 4042 4043 tg = task_group(p); 4044 weight = p->se.load.weight; 4045 4046 /* 4047 * In low-load situations, where prev_cpu is idle and this_cpu is idle 4048 * due to the sync cause above having dropped this_load to 0, we'll 4049 * always have an imbalance, but there's really nothing you can do 4050 * about that, so that's good too. 4051 * 4052 * Otherwise check if either cpus are near enough in load to allow this 4053 * task to be woken on this_cpu. 4054 */ 4055 if (this_load > 0) { 4056 s64 this_eff_load, prev_eff_load; 4057 4058 this_eff_load = 100; 4059 this_eff_load *= power_of(prev_cpu); 4060 this_eff_load *= this_load + 4061 effective_load(tg, this_cpu, weight, weight); 4062 4063 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 4064 prev_eff_load *= power_of(this_cpu); 4065 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 4066 4067 balanced = this_eff_load <= prev_eff_load; 4068 } else 4069 balanced = true; 4070 4071 /* 4072 * If the currently running task will sleep within 4073 * a reasonable amount of time then attract this newly 4074 * woken task: 4075 */ 4076 if (sync && balanced) 4077 return 1; 4078 4079 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 4080 tl_per_task = cpu_avg_load_per_task(this_cpu); 4081 4082 if (balanced || 4083 (this_load <= load && 4084 this_load + target_load(prev_cpu, idx) <= tl_per_task)) { 4085 /* 4086 * This domain has SD_WAKE_AFFINE and 4087 * p is cache cold in this domain, and 4088 * there is no bad imbalance. 4089 */ 4090 schedstat_inc(sd, ttwu_move_affine); 4091 schedstat_inc(p, se.statistics.nr_wakeups_affine); 4092 4093 return 1; 4094 } 4095 return 0; 4096 } 4097 4098 /* 4099 * find_idlest_group finds and returns the least busy CPU group within the 4100 * domain. 4101 */ 4102 static struct sched_group * 4103 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 4104 int this_cpu, int load_idx) 4105 { 4106 struct sched_group *idlest = NULL, *group = sd->groups; 4107 unsigned long min_load = ULONG_MAX, this_load = 0; 4108 int imbalance = 100 + (sd->imbalance_pct-100)/2; 4109 4110 do { 4111 unsigned long load, avg_load; 4112 int local_group; 4113 int i; 4114 4115 /* Skip over this group if it has no CPUs allowed */ 4116 if (!cpumask_intersects(sched_group_cpus(group), 4117 tsk_cpus_allowed(p))) 4118 continue; 4119 4120 local_group = cpumask_test_cpu(this_cpu, 4121 sched_group_cpus(group)); 4122 4123 /* Tally up the load of all CPUs in the group */ 4124 avg_load = 0; 4125 4126 for_each_cpu(i, sched_group_cpus(group)) { 4127 /* Bias balancing toward cpus of our domain */ 4128 if (local_group) 4129 load = source_load(i, load_idx); 4130 else 4131 load = target_load(i, load_idx); 4132 4133 avg_load += load; 4134 } 4135 4136 /* Adjust by relative CPU power of the group */ 4137 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; 4138 4139 if (local_group) { 4140 this_load = avg_load; 4141 } else if (avg_load < min_load) { 4142 min_load = avg_load; 4143 idlest = group; 4144 } 4145 } while (group = group->next, group != sd->groups); 4146 4147 if (!idlest || 100*this_load < imbalance*min_load) 4148 return NULL; 4149 return idlest; 4150 } 4151 4152 /* 4153 * find_idlest_cpu - find the idlest cpu among the cpus in group. 4154 */ 4155 static int 4156 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 4157 { 4158 unsigned long load, min_load = ULONG_MAX; 4159 int idlest = -1; 4160 int i; 4161 4162 /* Traverse only the allowed CPUs */ 4163 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 4164 load = weighted_cpuload(i); 4165 4166 if (load < min_load || (load == min_load && i == this_cpu)) { 4167 min_load = load; 4168 idlest = i; 4169 } 4170 } 4171 4172 return idlest; 4173 } 4174 4175 /* 4176 * Try and locate an idle CPU in the sched_domain. 4177 */ 4178 static int select_idle_sibling(struct task_struct *p, int target) 4179 { 4180 struct sched_domain *sd; 4181 struct sched_group *sg; 4182 int i = task_cpu(p); 4183 4184 if (idle_cpu(target)) 4185 return target; 4186 4187 /* 4188 * If the prevous cpu is cache affine and idle, don't be stupid. 4189 */ 4190 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 4191 return i; 4192 4193 /* 4194 * Otherwise, iterate the domains and find an elegible idle cpu. 4195 */ 4196 sd = rcu_dereference(per_cpu(sd_llc, target)); 4197 for_each_lower_domain(sd) { 4198 sg = sd->groups; 4199 do { 4200 if (!cpumask_intersects(sched_group_cpus(sg), 4201 tsk_cpus_allowed(p))) 4202 goto next; 4203 4204 for_each_cpu(i, sched_group_cpus(sg)) { 4205 if (i == target || !idle_cpu(i)) 4206 goto next; 4207 } 4208 4209 target = cpumask_first_and(sched_group_cpus(sg), 4210 tsk_cpus_allowed(p)); 4211 goto done; 4212 next: 4213 sg = sg->next; 4214 } while (sg != sd->groups); 4215 } 4216 done: 4217 return target; 4218 } 4219 4220 /* 4221 * sched_balance_self: balance the current task (running on cpu) in domains 4222 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and 4223 * SD_BALANCE_EXEC. 4224 * 4225 * Balance, ie. select the least loaded group. 4226 * 4227 * Returns the target CPU number, or the same CPU if no balancing is needed. 4228 * 4229 * preempt must be disabled. 4230 */ 4231 static int 4232 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 4233 { 4234 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 4235 int cpu = smp_processor_id(); 4236 int new_cpu = cpu; 4237 int want_affine = 0; 4238 int sync = wake_flags & WF_SYNC; 4239 4240 if (p->nr_cpus_allowed == 1) 4241 return prev_cpu; 4242 4243 if (sd_flag & SD_BALANCE_WAKE) { 4244 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 4245 want_affine = 1; 4246 new_cpu = prev_cpu; 4247 } 4248 4249 rcu_read_lock(); 4250 for_each_domain(cpu, tmp) { 4251 if (!(tmp->flags & SD_LOAD_BALANCE)) 4252 continue; 4253 4254 /* 4255 * If both cpu and prev_cpu are part of this domain, 4256 * cpu is a valid SD_WAKE_AFFINE target. 4257 */ 4258 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 4259 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 4260 affine_sd = tmp; 4261 break; 4262 } 4263 4264 if (tmp->flags & sd_flag) 4265 sd = tmp; 4266 } 4267 4268 if (affine_sd) { 4269 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 4270 prev_cpu = cpu; 4271 4272 new_cpu = select_idle_sibling(p, prev_cpu); 4273 goto unlock; 4274 } 4275 4276 while (sd) { 4277 int load_idx = sd->forkexec_idx; 4278 struct sched_group *group; 4279 int weight; 4280 4281 if (!(sd->flags & sd_flag)) { 4282 sd = sd->child; 4283 continue; 4284 } 4285 4286 if (sd_flag & SD_BALANCE_WAKE) 4287 load_idx = sd->wake_idx; 4288 4289 group = find_idlest_group(sd, p, cpu, load_idx); 4290 if (!group) { 4291 sd = sd->child; 4292 continue; 4293 } 4294 4295 new_cpu = find_idlest_cpu(group, p, cpu); 4296 if (new_cpu == -1 || new_cpu == cpu) { 4297 /* Now try balancing at a lower domain level of cpu */ 4298 sd = sd->child; 4299 continue; 4300 } 4301 4302 /* Now try balancing at a lower domain level of new_cpu */ 4303 cpu = new_cpu; 4304 weight = sd->span_weight; 4305 sd = NULL; 4306 for_each_domain(cpu, tmp) { 4307 if (weight <= tmp->span_weight) 4308 break; 4309 if (tmp->flags & sd_flag) 4310 sd = tmp; 4311 } 4312 /* while loop will break here if sd == NULL */ 4313 } 4314 unlock: 4315 rcu_read_unlock(); 4316 4317 return new_cpu; 4318 } 4319 4320 /* 4321 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 4322 * cfs_rq_of(p) references at time of call are still valid and identify the 4323 * previous cpu. However, the caller only guarantees p->pi_lock is held; no 4324 * other assumptions, including the state of rq->lock, should be made. 4325 */ 4326 static void 4327 migrate_task_rq_fair(struct task_struct *p, int next_cpu) 4328 { 4329 struct sched_entity *se = &p->se; 4330 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4331 4332 /* 4333 * Load tracking: accumulate removed load so that it can be processed 4334 * when we next update owning cfs_rq under rq->lock. Tasks contribute 4335 * to blocked load iff they have a positive decay-count. It can never 4336 * be negative here since on-rq tasks have decay-count == 0. 4337 */ 4338 if (se->avg.decay_count) { 4339 se->avg.decay_count = -__synchronize_entity_decay(se); 4340 atomic_long_add(se->avg.load_avg_contrib, 4341 &cfs_rq->removed_load); 4342 } 4343 } 4344 #endif /* CONFIG_SMP */ 4345 4346 static unsigned long 4347 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 4348 { 4349 unsigned long gran = sysctl_sched_wakeup_granularity; 4350 4351 /* 4352 * Since its curr running now, convert the gran from real-time 4353 * to virtual-time in his units. 4354 * 4355 * By using 'se' instead of 'curr' we penalize light tasks, so 4356 * they get preempted easier. That is, if 'se' < 'curr' then 4357 * the resulting gran will be larger, therefore penalizing the 4358 * lighter, if otoh 'se' > 'curr' then the resulting gran will 4359 * be smaller, again penalizing the lighter task. 4360 * 4361 * This is especially important for buddies when the leftmost 4362 * task is higher priority than the buddy. 4363 */ 4364 return calc_delta_fair(gran, se); 4365 } 4366 4367 /* 4368 * Should 'se' preempt 'curr'. 4369 * 4370 * |s1 4371 * |s2 4372 * |s3 4373 * g 4374 * |<--->|c 4375 * 4376 * w(c, s1) = -1 4377 * w(c, s2) = 0 4378 * w(c, s3) = 1 4379 * 4380 */ 4381 static int 4382 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 4383 { 4384 s64 gran, vdiff = curr->vruntime - se->vruntime; 4385 4386 if (vdiff <= 0) 4387 return -1; 4388 4389 gran = wakeup_gran(curr, se); 4390 if (vdiff > gran) 4391 return 1; 4392 4393 return 0; 4394 } 4395 4396 static void set_last_buddy(struct sched_entity *se) 4397 { 4398 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4399 return; 4400 4401 for_each_sched_entity(se) 4402 cfs_rq_of(se)->last = se; 4403 } 4404 4405 static void set_next_buddy(struct sched_entity *se) 4406 { 4407 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4408 return; 4409 4410 for_each_sched_entity(se) 4411 cfs_rq_of(se)->next = se; 4412 } 4413 4414 static void set_skip_buddy(struct sched_entity *se) 4415 { 4416 for_each_sched_entity(se) 4417 cfs_rq_of(se)->skip = se; 4418 } 4419 4420 /* 4421 * Preempt the current task with a newly woken task if needed: 4422 */ 4423 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 4424 { 4425 struct task_struct *curr = rq->curr; 4426 struct sched_entity *se = &curr->se, *pse = &p->se; 4427 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 4428 int scale = cfs_rq->nr_running >= sched_nr_latency; 4429 int next_buddy_marked = 0; 4430 4431 if (unlikely(se == pse)) 4432 return; 4433 4434 /* 4435 * This is possible from callers such as move_task(), in which we 4436 * unconditionally check_prempt_curr() after an enqueue (which may have 4437 * lead to a throttle). This both saves work and prevents false 4438 * next-buddy nomination below. 4439 */ 4440 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 4441 return; 4442 4443 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 4444 set_next_buddy(pse); 4445 next_buddy_marked = 1; 4446 } 4447 4448 /* 4449 * We can come here with TIF_NEED_RESCHED already set from new task 4450 * wake up path. 4451 * 4452 * Note: this also catches the edge-case of curr being in a throttled 4453 * group (e.g. via set_curr_task), since update_curr() (in the 4454 * enqueue of curr) will have resulted in resched being set. This 4455 * prevents us from potentially nominating it as a false LAST_BUDDY 4456 * below. 4457 */ 4458 if (test_tsk_need_resched(curr)) 4459 return; 4460 4461 /* Idle tasks are by definition preempted by non-idle tasks. */ 4462 if (unlikely(curr->policy == SCHED_IDLE) && 4463 likely(p->policy != SCHED_IDLE)) 4464 goto preempt; 4465 4466 /* 4467 * Batch and idle tasks do not preempt non-idle tasks (their preemption 4468 * is driven by the tick): 4469 */ 4470 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 4471 return; 4472 4473 find_matching_se(&se, &pse); 4474 update_curr(cfs_rq_of(se)); 4475 BUG_ON(!pse); 4476 if (wakeup_preempt_entity(se, pse) == 1) { 4477 /* 4478 * Bias pick_next to pick the sched entity that is 4479 * triggering this preemption. 4480 */ 4481 if (!next_buddy_marked) 4482 set_next_buddy(pse); 4483 goto preempt; 4484 } 4485 4486 return; 4487 4488 preempt: 4489 resched_task(curr); 4490 /* 4491 * Only set the backward buddy when the current task is still 4492 * on the rq. This can happen when a wakeup gets interleaved 4493 * with schedule on the ->pre_schedule() or idle_balance() 4494 * point, either of which can * drop the rq lock. 4495 * 4496 * Also, during early boot the idle thread is in the fair class, 4497 * for obvious reasons its a bad idea to schedule back to it. 4498 */ 4499 if (unlikely(!se->on_rq || curr == rq->idle)) 4500 return; 4501 4502 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 4503 set_last_buddy(se); 4504 } 4505 4506 static struct task_struct *pick_next_task_fair(struct rq *rq) 4507 { 4508 struct task_struct *p; 4509 struct cfs_rq *cfs_rq = &rq->cfs; 4510 struct sched_entity *se; 4511 4512 if (!cfs_rq->nr_running) 4513 return NULL; 4514 4515 do { 4516 se = pick_next_entity(cfs_rq); 4517 set_next_entity(cfs_rq, se); 4518 cfs_rq = group_cfs_rq(se); 4519 } while (cfs_rq); 4520 4521 p = task_of(se); 4522 if (hrtick_enabled(rq)) 4523 hrtick_start_fair(rq, p); 4524 4525 return p; 4526 } 4527 4528 /* 4529 * Account for a descheduled task: 4530 */ 4531 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 4532 { 4533 struct sched_entity *se = &prev->se; 4534 struct cfs_rq *cfs_rq; 4535 4536 for_each_sched_entity(se) { 4537 cfs_rq = cfs_rq_of(se); 4538 put_prev_entity(cfs_rq, se); 4539 } 4540 } 4541 4542 /* 4543 * sched_yield() is very simple 4544 * 4545 * The magic of dealing with the ->skip buddy is in pick_next_entity. 4546 */ 4547 static void yield_task_fair(struct rq *rq) 4548 { 4549 struct task_struct *curr = rq->curr; 4550 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 4551 struct sched_entity *se = &curr->se; 4552 4553 /* 4554 * Are we the only task in the tree? 4555 */ 4556 if (unlikely(rq->nr_running == 1)) 4557 return; 4558 4559 clear_buddies(cfs_rq, se); 4560 4561 if (curr->policy != SCHED_BATCH) { 4562 update_rq_clock(rq); 4563 /* 4564 * Update run-time statistics of the 'current'. 4565 */ 4566 update_curr(cfs_rq); 4567 /* 4568 * Tell update_rq_clock() that we've just updated, 4569 * so we don't do microscopic update in schedule() 4570 * and double the fastpath cost. 4571 */ 4572 rq->skip_clock_update = 1; 4573 } 4574 4575 set_skip_buddy(se); 4576 } 4577 4578 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 4579 { 4580 struct sched_entity *se = &p->se; 4581 4582 /* throttled hierarchies are not runnable */ 4583 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 4584 return false; 4585 4586 /* Tell the scheduler that we'd really like pse to run next. */ 4587 set_next_buddy(se); 4588 4589 yield_task_fair(rq); 4590 4591 return true; 4592 } 4593 4594 #ifdef CONFIG_SMP 4595 /************************************************** 4596 * Fair scheduling class load-balancing methods. 4597 * 4598 * BASICS 4599 * 4600 * The purpose of load-balancing is to achieve the same basic fairness the 4601 * per-cpu scheduler provides, namely provide a proportional amount of compute 4602 * time to each task. This is expressed in the following equation: 4603 * 4604 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 4605 * 4606 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 4607 * W_i,0 is defined as: 4608 * 4609 * W_i,0 = \Sum_j w_i,j (2) 4610 * 4611 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 4612 * is derived from the nice value as per prio_to_weight[]. 4613 * 4614 * The weight average is an exponential decay average of the instantaneous 4615 * weight: 4616 * 4617 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 4618 * 4619 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the 4620 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 4621 * can also include other factors [XXX]. 4622 * 4623 * To achieve this balance we define a measure of imbalance which follows 4624 * directly from (1): 4625 * 4626 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4) 4627 * 4628 * We them move tasks around to minimize the imbalance. In the continuous 4629 * function space it is obvious this converges, in the discrete case we get 4630 * a few fun cases generally called infeasible weight scenarios. 4631 * 4632 * [XXX expand on: 4633 * - infeasible weights; 4634 * - local vs global optima in the discrete case. ] 4635 * 4636 * 4637 * SCHED DOMAINS 4638 * 4639 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 4640 * for all i,j solution, we create a tree of cpus that follows the hardware 4641 * topology where each level pairs two lower groups (or better). This results 4642 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 4643 * tree to only the first of the previous level and we decrease the frequency 4644 * of load-balance at each level inv. proportional to the number of cpus in 4645 * the groups. 4646 * 4647 * This yields: 4648 * 4649 * log_2 n 1 n 4650 * \Sum { --- * --- * 2^i } = O(n) (5) 4651 * i = 0 2^i 2^i 4652 * `- size of each group 4653 * | | `- number of cpus doing load-balance 4654 * | `- freq 4655 * `- sum over all levels 4656 * 4657 * Coupled with a limit on how many tasks we can migrate every balance pass, 4658 * this makes (5) the runtime complexity of the balancer. 4659 * 4660 * An important property here is that each CPU is still (indirectly) connected 4661 * to every other cpu in at most O(log n) steps: 4662 * 4663 * The adjacency matrix of the resulting graph is given by: 4664 * 4665 * log_2 n 4666 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 4667 * k = 0 4668 * 4669 * And you'll find that: 4670 * 4671 * A^(log_2 n)_i,j != 0 for all i,j (7) 4672 * 4673 * Showing there's indeed a path between every cpu in at most O(log n) steps. 4674 * The task movement gives a factor of O(m), giving a convergence complexity 4675 * of: 4676 * 4677 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 4678 * 4679 * 4680 * WORK CONSERVING 4681 * 4682 * In order to avoid CPUs going idle while there's still work to do, new idle 4683 * balancing is more aggressive and has the newly idle cpu iterate up the domain 4684 * tree itself instead of relying on other CPUs to bring it work. 4685 * 4686 * This adds some complexity to both (5) and (8) but it reduces the total idle 4687 * time. 4688 * 4689 * [XXX more?] 4690 * 4691 * 4692 * CGROUPS 4693 * 4694 * Cgroups make a horror show out of (2), instead of a simple sum we get: 4695 * 4696 * s_k,i 4697 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 4698 * S_k 4699 * 4700 * Where 4701 * 4702 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 4703 * 4704 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 4705 * 4706 * The big problem is S_k, its a global sum needed to compute a local (W_i) 4707 * property. 4708 * 4709 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 4710 * rewrite all of this once again.] 4711 */ 4712 4713 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 4714 4715 enum fbq_type { regular, remote, all }; 4716 4717 #define LBF_ALL_PINNED 0x01 4718 #define LBF_NEED_BREAK 0x02 4719 #define LBF_DST_PINNED 0x04 4720 #define LBF_SOME_PINNED 0x08 4721 4722 struct lb_env { 4723 struct sched_domain *sd; 4724 4725 struct rq *src_rq; 4726 int src_cpu; 4727 4728 int dst_cpu; 4729 struct rq *dst_rq; 4730 4731 struct cpumask *dst_grpmask; 4732 int new_dst_cpu; 4733 enum cpu_idle_type idle; 4734 long imbalance; 4735 /* The set of CPUs under consideration for load-balancing */ 4736 struct cpumask *cpus; 4737 4738 unsigned int flags; 4739 4740 unsigned int loop; 4741 unsigned int loop_break; 4742 unsigned int loop_max; 4743 4744 enum fbq_type fbq_type; 4745 }; 4746 4747 /* 4748 * move_task - move a task from one runqueue to another runqueue. 4749 * Both runqueues must be locked. 4750 */ 4751 static void move_task(struct task_struct *p, struct lb_env *env) 4752 { 4753 deactivate_task(env->src_rq, p, 0); 4754 set_task_cpu(p, env->dst_cpu); 4755 activate_task(env->dst_rq, p, 0); 4756 check_preempt_curr(env->dst_rq, p, 0); 4757 } 4758 4759 /* 4760 * Is this task likely cache-hot: 4761 */ 4762 static int 4763 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) 4764 { 4765 s64 delta; 4766 4767 if (p->sched_class != &fair_sched_class) 4768 return 0; 4769 4770 if (unlikely(p->policy == SCHED_IDLE)) 4771 return 0; 4772 4773 /* 4774 * Buddy candidates are cache hot: 4775 */ 4776 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && 4777 (&p->se == cfs_rq_of(&p->se)->next || 4778 &p->se == cfs_rq_of(&p->se)->last)) 4779 return 1; 4780 4781 if (sysctl_sched_migration_cost == -1) 4782 return 1; 4783 if (sysctl_sched_migration_cost == 0) 4784 return 0; 4785 4786 delta = now - p->se.exec_start; 4787 4788 return delta < (s64)sysctl_sched_migration_cost; 4789 } 4790 4791 #ifdef CONFIG_NUMA_BALANCING 4792 /* Returns true if the destination node has incurred more faults */ 4793 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env) 4794 { 4795 int src_nid, dst_nid; 4796 4797 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults || 4798 !(env->sd->flags & SD_NUMA)) { 4799 return false; 4800 } 4801 4802 src_nid = cpu_to_node(env->src_cpu); 4803 dst_nid = cpu_to_node(env->dst_cpu); 4804 4805 if (src_nid == dst_nid) 4806 return false; 4807 4808 /* Always encourage migration to the preferred node. */ 4809 if (dst_nid == p->numa_preferred_nid) 4810 return true; 4811 4812 /* If both task and group weight improve, this move is a winner. */ 4813 if (task_weight(p, dst_nid) > task_weight(p, src_nid) && 4814 group_weight(p, dst_nid) > group_weight(p, src_nid)) 4815 return true; 4816 4817 return false; 4818 } 4819 4820 4821 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 4822 { 4823 int src_nid, dst_nid; 4824 4825 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER)) 4826 return false; 4827 4828 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 4829 return false; 4830 4831 src_nid = cpu_to_node(env->src_cpu); 4832 dst_nid = cpu_to_node(env->dst_cpu); 4833 4834 if (src_nid == dst_nid) 4835 return false; 4836 4837 /* Migrating away from the preferred node is always bad. */ 4838 if (src_nid == p->numa_preferred_nid) 4839 return true; 4840 4841 /* If either task or group weight get worse, don't do it. */ 4842 if (task_weight(p, dst_nid) < task_weight(p, src_nid) || 4843 group_weight(p, dst_nid) < group_weight(p, src_nid)) 4844 return true; 4845 4846 return false; 4847 } 4848 4849 #else 4850 static inline bool migrate_improves_locality(struct task_struct *p, 4851 struct lb_env *env) 4852 { 4853 return false; 4854 } 4855 4856 static inline bool migrate_degrades_locality(struct task_struct *p, 4857 struct lb_env *env) 4858 { 4859 return false; 4860 } 4861 #endif 4862 4863 /* 4864 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 4865 */ 4866 static 4867 int can_migrate_task(struct task_struct *p, struct lb_env *env) 4868 { 4869 int tsk_cache_hot = 0; 4870 /* 4871 * We do not migrate tasks that are: 4872 * 1) throttled_lb_pair, or 4873 * 2) cannot be migrated to this CPU due to cpus_allowed, or 4874 * 3) running (obviously), or 4875 * 4) are cache-hot on their current CPU. 4876 */ 4877 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 4878 return 0; 4879 4880 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 4881 int cpu; 4882 4883 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 4884 4885 env->flags |= LBF_SOME_PINNED; 4886 4887 /* 4888 * Remember if this task can be migrated to any other cpu in 4889 * our sched_group. We may want to revisit it if we couldn't 4890 * meet load balance goals by pulling other tasks on src_cpu. 4891 * 4892 * Also avoid computing new_dst_cpu if we have already computed 4893 * one in current iteration. 4894 */ 4895 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 4896 return 0; 4897 4898 /* Prevent to re-select dst_cpu via env's cpus */ 4899 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 4900 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 4901 env->flags |= LBF_DST_PINNED; 4902 env->new_dst_cpu = cpu; 4903 break; 4904 } 4905 } 4906 4907 return 0; 4908 } 4909 4910 /* Record that we found atleast one task that could run on dst_cpu */ 4911 env->flags &= ~LBF_ALL_PINNED; 4912 4913 if (task_running(env->src_rq, p)) { 4914 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 4915 return 0; 4916 } 4917 4918 /* 4919 * Aggressive migration if: 4920 * 1) destination numa is preferred 4921 * 2) task is cache cold, or 4922 * 3) too many balance attempts have failed. 4923 */ 4924 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd); 4925 if (!tsk_cache_hot) 4926 tsk_cache_hot = migrate_degrades_locality(p, env); 4927 4928 if (migrate_improves_locality(p, env)) { 4929 #ifdef CONFIG_SCHEDSTATS 4930 if (tsk_cache_hot) { 4931 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 4932 schedstat_inc(p, se.statistics.nr_forced_migrations); 4933 } 4934 #endif 4935 return 1; 4936 } 4937 4938 if (!tsk_cache_hot || 4939 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 4940 4941 if (tsk_cache_hot) { 4942 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 4943 schedstat_inc(p, se.statistics.nr_forced_migrations); 4944 } 4945 4946 return 1; 4947 } 4948 4949 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 4950 return 0; 4951 } 4952 4953 /* 4954 * move_one_task tries to move exactly one task from busiest to this_rq, as 4955 * part of active balancing operations within "domain". 4956 * Returns 1 if successful and 0 otherwise. 4957 * 4958 * Called with both runqueues locked. 4959 */ 4960 static int move_one_task(struct lb_env *env) 4961 { 4962 struct task_struct *p, *n; 4963 4964 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 4965 if (!can_migrate_task(p, env)) 4966 continue; 4967 4968 move_task(p, env); 4969 /* 4970 * Right now, this is only the second place move_task() 4971 * is called, so we can safely collect move_task() 4972 * stats here rather than inside move_task(). 4973 */ 4974 schedstat_inc(env->sd, lb_gained[env->idle]); 4975 return 1; 4976 } 4977 return 0; 4978 } 4979 4980 static const unsigned int sched_nr_migrate_break = 32; 4981 4982 /* 4983 * move_tasks tries to move up to imbalance weighted load from busiest to 4984 * this_rq, as part of a balancing operation within domain "sd". 4985 * Returns 1 if successful and 0 otherwise. 4986 * 4987 * Called with both runqueues locked. 4988 */ 4989 static int move_tasks(struct lb_env *env) 4990 { 4991 struct list_head *tasks = &env->src_rq->cfs_tasks; 4992 struct task_struct *p; 4993 unsigned long load; 4994 int pulled = 0; 4995 4996 if (env->imbalance <= 0) 4997 return 0; 4998 4999 while (!list_empty(tasks)) { 5000 p = list_first_entry(tasks, struct task_struct, se.group_node); 5001 5002 env->loop++; 5003 /* We've more or less seen every task there is, call it quits */ 5004 if (env->loop > env->loop_max) 5005 break; 5006 5007 /* take a breather every nr_migrate tasks */ 5008 if (env->loop > env->loop_break) { 5009 env->loop_break += sched_nr_migrate_break; 5010 env->flags |= LBF_NEED_BREAK; 5011 break; 5012 } 5013 5014 if (!can_migrate_task(p, env)) 5015 goto next; 5016 5017 load = task_h_load(p); 5018 5019 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 5020 goto next; 5021 5022 if ((load / 2) > env->imbalance) 5023 goto next; 5024 5025 move_task(p, env); 5026 pulled++; 5027 env->imbalance -= load; 5028 5029 #ifdef CONFIG_PREEMPT 5030 /* 5031 * NEWIDLE balancing is a source of latency, so preemptible 5032 * kernels will stop after the first task is pulled to minimize 5033 * the critical section. 5034 */ 5035 if (env->idle == CPU_NEWLY_IDLE) 5036 break; 5037 #endif 5038 5039 /* 5040 * We only want to steal up to the prescribed amount of 5041 * weighted load. 5042 */ 5043 if (env->imbalance <= 0) 5044 break; 5045 5046 continue; 5047 next: 5048 list_move_tail(&p->se.group_node, tasks); 5049 } 5050 5051 /* 5052 * Right now, this is one of only two places move_task() is called, 5053 * so we can safely collect move_task() stats here rather than 5054 * inside move_task(). 5055 */ 5056 schedstat_add(env->sd, lb_gained[env->idle], pulled); 5057 5058 return pulled; 5059 } 5060 5061 #ifdef CONFIG_FAIR_GROUP_SCHED 5062 /* 5063 * update tg->load_weight by folding this cpu's load_avg 5064 */ 5065 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) 5066 { 5067 struct sched_entity *se = tg->se[cpu]; 5068 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 5069 5070 /* throttled entities do not contribute to load */ 5071 if (throttled_hierarchy(cfs_rq)) 5072 return; 5073 5074 update_cfs_rq_blocked_load(cfs_rq, 1); 5075 5076 if (se) { 5077 update_entity_load_avg(se, 1); 5078 /* 5079 * We pivot on our runnable average having decayed to zero for 5080 * list removal. This generally implies that all our children 5081 * have also been removed (modulo rounding error or bandwidth 5082 * control); however, such cases are rare and we can fix these 5083 * at enqueue. 5084 * 5085 * TODO: fix up out-of-order children on enqueue. 5086 */ 5087 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) 5088 list_del_leaf_cfs_rq(cfs_rq); 5089 } else { 5090 struct rq *rq = rq_of(cfs_rq); 5091 update_rq_runnable_avg(rq, rq->nr_running); 5092 } 5093 } 5094 5095 static void update_blocked_averages(int cpu) 5096 { 5097 struct rq *rq = cpu_rq(cpu); 5098 struct cfs_rq *cfs_rq; 5099 unsigned long flags; 5100 5101 raw_spin_lock_irqsave(&rq->lock, flags); 5102 update_rq_clock(rq); 5103 /* 5104 * Iterates the task_group tree in a bottom up fashion, see 5105 * list_add_leaf_cfs_rq() for details. 5106 */ 5107 for_each_leaf_cfs_rq(rq, cfs_rq) { 5108 /* 5109 * Note: We may want to consider periodically releasing 5110 * rq->lock about these updates so that creating many task 5111 * groups does not result in continually extending hold time. 5112 */ 5113 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); 5114 } 5115 5116 raw_spin_unlock_irqrestore(&rq->lock, flags); 5117 } 5118 5119 /* 5120 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 5121 * This needs to be done in a top-down fashion because the load of a child 5122 * group is a fraction of its parents load. 5123 */ 5124 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 5125 { 5126 struct rq *rq = rq_of(cfs_rq); 5127 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 5128 unsigned long now = jiffies; 5129 unsigned long load; 5130 5131 if (cfs_rq->last_h_load_update == now) 5132 return; 5133 5134 cfs_rq->h_load_next = NULL; 5135 for_each_sched_entity(se) { 5136 cfs_rq = cfs_rq_of(se); 5137 cfs_rq->h_load_next = se; 5138 if (cfs_rq->last_h_load_update == now) 5139 break; 5140 } 5141 5142 if (!se) { 5143 cfs_rq->h_load = cfs_rq->runnable_load_avg; 5144 cfs_rq->last_h_load_update = now; 5145 } 5146 5147 while ((se = cfs_rq->h_load_next) != NULL) { 5148 load = cfs_rq->h_load; 5149 load = div64_ul(load * se->avg.load_avg_contrib, 5150 cfs_rq->runnable_load_avg + 1); 5151 cfs_rq = group_cfs_rq(se); 5152 cfs_rq->h_load = load; 5153 cfs_rq->last_h_load_update = now; 5154 } 5155 } 5156 5157 static unsigned long task_h_load(struct task_struct *p) 5158 { 5159 struct cfs_rq *cfs_rq = task_cfs_rq(p); 5160 5161 update_cfs_rq_h_load(cfs_rq); 5162 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load, 5163 cfs_rq->runnable_load_avg + 1); 5164 } 5165 #else 5166 static inline void update_blocked_averages(int cpu) 5167 { 5168 } 5169 5170 static unsigned long task_h_load(struct task_struct *p) 5171 { 5172 return p->se.avg.load_avg_contrib; 5173 } 5174 #endif 5175 5176 /********** Helpers for find_busiest_group ************************/ 5177 /* 5178 * sg_lb_stats - stats of a sched_group required for load_balancing 5179 */ 5180 struct sg_lb_stats { 5181 unsigned long avg_load; /*Avg load across the CPUs of the group */ 5182 unsigned long group_load; /* Total load over the CPUs of the group */ 5183 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 5184 unsigned long load_per_task; 5185 unsigned long group_power; 5186 unsigned int sum_nr_running; /* Nr tasks running in the group */ 5187 unsigned int group_capacity; 5188 unsigned int idle_cpus; 5189 unsigned int group_weight; 5190 int group_imb; /* Is there an imbalance in the group ? */ 5191 int group_has_capacity; /* Is there extra capacity in the group? */ 5192 #ifdef CONFIG_NUMA_BALANCING 5193 unsigned int nr_numa_running; 5194 unsigned int nr_preferred_running; 5195 #endif 5196 }; 5197 5198 /* 5199 * sd_lb_stats - Structure to store the statistics of a sched_domain 5200 * during load balancing. 5201 */ 5202 struct sd_lb_stats { 5203 struct sched_group *busiest; /* Busiest group in this sd */ 5204 struct sched_group *local; /* Local group in this sd */ 5205 unsigned long total_load; /* Total load of all groups in sd */ 5206 unsigned long total_pwr; /* Total power of all groups in sd */ 5207 unsigned long avg_load; /* Average load across all groups in sd */ 5208 5209 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 5210 struct sg_lb_stats local_stat; /* Statistics of the local group */ 5211 }; 5212 5213 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 5214 { 5215 /* 5216 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 5217 * local_stat because update_sg_lb_stats() does a full clear/assignment. 5218 * We must however clear busiest_stat::avg_load because 5219 * update_sd_pick_busiest() reads this before assignment. 5220 */ 5221 *sds = (struct sd_lb_stats){ 5222 .busiest = NULL, 5223 .local = NULL, 5224 .total_load = 0UL, 5225 .total_pwr = 0UL, 5226 .busiest_stat = { 5227 .avg_load = 0UL, 5228 }, 5229 }; 5230 } 5231 5232 /** 5233 * get_sd_load_idx - Obtain the load index for a given sched domain. 5234 * @sd: The sched_domain whose load_idx is to be obtained. 5235 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 5236 * 5237 * Return: The load index. 5238 */ 5239 static inline int get_sd_load_idx(struct sched_domain *sd, 5240 enum cpu_idle_type idle) 5241 { 5242 int load_idx; 5243 5244 switch (idle) { 5245 case CPU_NOT_IDLE: 5246 load_idx = sd->busy_idx; 5247 break; 5248 5249 case CPU_NEWLY_IDLE: 5250 load_idx = sd->newidle_idx; 5251 break; 5252 default: 5253 load_idx = sd->idle_idx; 5254 break; 5255 } 5256 5257 return load_idx; 5258 } 5259 5260 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) 5261 { 5262 return SCHED_POWER_SCALE; 5263 } 5264 5265 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) 5266 { 5267 return default_scale_freq_power(sd, cpu); 5268 } 5269 5270 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) 5271 { 5272 unsigned long weight = sd->span_weight; 5273 unsigned long smt_gain = sd->smt_gain; 5274 5275 smt_gain /= weight; 5276 5277 return smt_gain; 5278 } 5279 5280 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) 5281 { 5282 return default_scale_smt_power(sd, cpu); 5283 } 5284 5285 static unsigned long scale_rt_power(int cpu) 5286 { 5287 struct rq *rq = cpu_rq(cpu); 5288 u64 total, available, age_stamp, avg; 5289 5290 /* 5291 * Since we're reading these variables without serialization make sure 5292 * we read them once before doing sanity checks on them. 5293 */ 5294 age_stamp = ACCESS_ONCE(rq->age_stamp); 5295 avg = ACCESS_ONCE(rq->rt_avg); 5296 5297 total = sched_avg_period() + (rq_clock(rq) - age_stamp); 5298 5299 if (unlikely(total < avg)) { 5300 /* Ensures that power won't end up being negative */ 5301 available = 0; 5302 } else { 5303 available = total - avg; 5304 } 5305 5306 if (unlikely((s64)total < SCHED_POWER_SCALE)) 5307 total = SCHED_POWER_SCALE; 5308 5309 total >>= SCHED_POWER_SHIFT; 5310 5311 return div_u64(available, total); 5312 } 5313 5314 static void update_cpu_power(struct sched_domain *sd, int cpu) 5315 { 5316 unsigned long weight = sd->span_weight; 5317 unsigned long power = SCHED_POWER_SCALE; 5318 struct sched_group *sdg = sd->groups; 5319 5320 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { 5321 if (sched_feat(ARCH_POWER)) 5322 power *= arch_scale_smt_power(sd, cpu); 5323 else 5324 power *= default_scale_smt_power(sd, cpu); 5325 5326 power >>= SCHED_POWER_SHIFT; 5327 } 5328 5329 sdg->sgp->power_orig = power; 5330 5331 if (sched_feat(ARCH_POWER)) 5332 power *= arch_scale_freq_power(sd, cpu); 5333 else 5334 power *= default_scale_freq_power(sd, cpu); 5335 5336 power >>= SCHED_POWER_SHIFT; 5337 5338 power *= scale_rt_power(cpu); 5339 power >>= SCHED_POWER_SHIFT; 5340 5341 if (!power) 5342 power = 1; 5343 5344 cpu_rq(cpu)->cpu_power = power; 5345 sdg->sgp->power = power; 5346 } 5347 5348 void update_group_power(struct sched_domain *sd, int cpu) 5349 { 5350 struct sched_domain *child = sd->child; 5351 struct sched_group *group, *sdg = sd->groups; 5352 unsigned long power, power_orig; 5353 unsigned long interval; 5354 5355 interval = msecs_to_jiffies(sd->balance_interval); 5356 interval = clamp(interval, 1UL, max_load_balance_interval); 5357 sdg->sgp->next_update = jiffies + interval; 5358 5359 if (!child) { 5360 update_cpu_power(sd, cpu); 5361 return; 5362 } 5363 5364 power_orig = power = 0; 5365 5366 if (child->flags & SD_OVERLAP) { 5367 /* 5368 * SD_OVERLAP domains cannot assume that child groups 5369 * span the current group. 5370 */ 5371 5372 for_each_cpu(cpu, sched_group_cpus(sdg)) { 5373 struct sched_group_power *sgp; 5374 struct rq *rq = cpu_rq(cpu); 5375 5376 /* 5377 * build_sched_domains() -> init_sched_groups_power() 5378 * gets here before we've attached the domains to the 5379 * runqueues. 5380 * 5381 * Use power_of(), which is set irrespective of domains 5382 * in update_cpu_power(). 5383 * 5384 * This avoids power/power_orig from being 0 and 5385 * causing divide-by-zero issues on boot. 5386 * 5387 * Runtime updates will correct power_orig. 5388 */ 5389 if (unlikely(!rq->sd)) { 5390 power_orig += power_of(cpu); 5391 power += power_of(cpu); 5392 continue; 5393 } 5394 5395 sgp = rq->sd->groups->sgp; 5396 power_orig += sgp->power_orig; 5397 power += sgp->power; 5398 } 5399 } else { 5400 /* 5401 * !SD_OVERLAP domains can assume that child groups 5402 * span the current group. 5403 */ 5404 5405 group = child->groups; 5406 do { 5407 power_orig += group->sgp->power_orig; 5408 power += group->sgp->power; 5409 group = group->next; 5410 } while (group != child->groups); 5411 } 5412 5413 sdg->sgp->power_orig = power_orig; 5414 sdg->sgp->power = power; 5415 } 5416 5417 /* 5418 * Try and fix up capacity for tiny siblings, this is needed when 5419 * things like SD_ASYM_PACKING need f_b_g to select another sibling 5420 * which on its own isn't powerful enough. 5421 * 5422 * See update_sd_pick_busiest() and check_asym_packing(). 5423 */ 5424 static inline int 5425 fix_small_capacity(struct sched_domain *sd, struct sched_group *group) 5426 { 5427 /* 5428 * Only siblings can have significantly less than SCHED_POWER_SCALE 5429 */ 5430 if (!(sd->flags & SD_SHARE_CPUPOWER)) 5431 return 0; 5432 5433 /* 5434 * If ~90% of the cpu_power is still there, we're good. 5435 */ 5436 if (group->sgp->power * 32 > group->sgp->power_orig * 29) 5437 return 1; 5438 5439 return 0; 5440 } 5441 5442 /* 5443 * Group imbalance indicates (and tries to solve) the problem where balancing 5444 * groups is inadequate due to tsk_cpus_allowed() constraints. 5445 * 5446 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 5447 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 5448 * Something like: 5449 * 5450 * { 0 1 2 3 } { 4 5 6 7 } 5451 * * * * * 5452 * 5453 * If we were to balance group-wise we'd place two tasks in the first group and 5454 * two tasks in the second group. Clearly this is undesired as it will overload 5455 * cpu 3 and leave one of the cpus in the second group unused. 5456 * 5457 * The current solution to this issue is detecting the skew in the first group 5458 * by noticing the lower domain failed to reach balance and had difficulty 5459 * moving tasks due to affinity constraints. 5460 * 5461 * When this is so detected; this group becomes a candidate for busiest; see 5462 * update_sd_pick_busiest(). And calculate_imbalance() and 5463 * find_busiest_group() avoid some of the usual balance conditions to allow it 5464 * to create an effective group imbalance. 5465 * 5466 * This is a somewhat tricky proposition since the next run might not find the 5467 * group imbalance and decide the groups need to be balanced again. A most 5468 * subtle and fragile situation. 5469 */ 5470 5471 static inline int sg_imbalanced(struct sched_group *group) 5472 { 5473 return group->sgp->imbalance; 5474 } 5475 5476 /* 5477 * Compute the group capacity. 5478 * 5479 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by 5480 * first dividing out the smt factor and computing the actual number of cores 5481 * and limit power unit capacity with that. 5482 */ 5483 static inline int sg_capacity(struct lb_env *env, struct sched_group *group) 5484 { 5485 unsigned int capacity, smt, cpus; 5486 unsigned int power, power_orig; 5487 5488 power = group->sgp->power; 5489 power_orig = group->sgp->power_orig; 5490 cpus = group->group_weight; 5491 5492 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */ 5493 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig); 5494 capacity = cpus / smt; /* cores */ 5495 5496 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE)); 5497 if (!capacity) 5498 capacity = fix_small_capacity(env->sd, group); 5499 5500 return capacity; 5501 } 5502 5503 /** 5504 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 5505 * @env: The load balancing environment. 5506 * @group: sched_group whose statistics are to be updated. 5507 * @load_idx: Load index of sched_domain of this_cpu for load calc. 5508 * @local_group: Does group contain this_cpu. 5509 * @sgs: variable to hold the statistics for this group. 5510 */ 5511 static inline void update_sg_lb_stats(struct lb_env *env, 5512 struct sched_group *group, int load_idx, 5513 int local_group, struct sg_lb_stats *sgs) 5514 { 5515 unsigned long nr_running; 5516 unsigned long load; 5517 int i; 5518 5519 memset(sgs, 0, sizeof(*sgs)); 5520 5521 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 5522 struct rq *rq = cpu_rq(i); 5523 5524 nr_running = rq->nr_running; 5525 5526 /* Bias balancing toward cpus of our domain */ 5527 if (local_group) 5528 load = target_load(i, load_idx); 5529 else 5530 load = source_load(i, load_idx); 5531 5532 sgs->group_load += load; 5533 sgs->sum_nr_running += nr_running; 5534 #ifdef CONFIG_NUMA_BALANCING 5535 sgs->nr_numa_running += rq->nr_numa_running; 5536 sgs->nr_preferred_running += rq->nr_preferred_running; 5537 #endif 5538 sgs->sum_weighted_load += weighted_cpuload(i); 5539 if (idle_cpu(i)) 5540 sgs->idle_cpus++; 5541 } 5542 5543 /* Adjust by relative CPU power of the group */ 5544 sgs->group_power = group->sgp->power; 5545 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power; 5546 5547 if (sgs->sum_nr_running) 5548 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 5549 5550 sgs->group_weight = group->group_weight; 5551 5552 sgs->group_imb = sg_imbalanced(group); 5553 sgs->group_capacity = sg_capacity(env, group); 5554 5555 if (sgs->group_capacity > sgs->sum_nr_running) 5556 sgs->group_has_capacity = 1; 5557 } 5558 5559 /** 5560 * update_sd_pick_busiest - return 1 on busiest group 5561 * @env: The load balancing environment. 5562 * @sds: sched_domain statistics 5563 * @sg: sched_group candidate to be checked for being the busiest 5564 * @sgs: sched_group statistics 5565 * 5566 * Determine if @sg is a busier group than the previously selected 5567 * busiest group. 5568 * 5569 * Return: %true if @sg is a busier group than the previously selected 5570 * busiest group. %false otherwise. 5571 */ 5572 static bool update_sd_pick_busiest(struct lb_env *env, 5573 struct sd_lb_stats *sds, 5574 struct sched_group *sg, 5575 struct sg_lb_stats *sgs) 5576 { 5577 if (sgs->avg_load <= sds->busiest_stat.avg_load) 5578 return false; 5579 5580 if (sgs->sum_nr_running > sgs->group_capacity) 5581 return true; 5582 5583 if (sgs->group_imb) 5584 return true; 5585 5586 /* 5587 * ASYM_PACKING needs to move all the work to the lowest 5588 * numbered CPUs in the group, therefore mark all groups 5589 * higher than ourself as busy. 5590 */ 5591 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && 5592 env->dst_cpu < group_first_cpu(sg)) { 5593 if (!sds->busiest) 5594 return true; 5595 5596 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 5597 return true; 5598 } 5599 5600 return false; 5601 } 5602 5603 #ifdef CONFIG_NUMA_BALANCING 5604 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 5605 { 5606 if (sgs->sum_nr_running > sgs->nr_numa_running) 5607 return regular; 5608 if (sgs->sum_nr_running > sgs->nr_preferred_running) 5609 return remote; 5610 return all; 5611 } 5612 5613 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 5614 { 5615 if (rq->nr_running > rq->nr_numa_running) 5616 return regular; 5617 if (rq->nr_running > rq->nr_preferred_running) 5618 return remote; 5619 return all; 5620 } 5621 #else 5622 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 5623 { 5624 return all; 5625 } 5626 5627 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 5628 { 5629 return regular; 5630 } 5631 #endif /* CONFIG_NUMA_BALANCING */ 5632 5633 /** 5634 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 5635 * @env: The load balancing environment. 5636 * @sds: variable to hold the statistics for this sched_domain. 5637 */ 5638 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 5639 { 5640 struct sched_domain *child = env->sd->child; 5641 struct sched_group *sg = env->sd->groups; 5642 struct sg_lb_stats tmp_sgs; 5643 int load_idx, prefer_sibling = 0; 5644 5645 if (child && child->flags & SD_PREFER_SIBLING) 5646 prefer_sibling = 1; 5647 5648 load_idx = get_sd_load_idx(env->sd, env->idle); 5649 5650 do { 5651 struct sg_lb_stats *sgs = &tmp_sgs; 5652 int local_group; 5653 5654 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 5655 if (local_group) { 5656 sds->local = sg; 5657 sgs = &sds->local_stat; 5658 5659 if (env->idle != CPU_NEWLY_IDLE || 5660 time_after_eq(jiffies, sg->sgp->next_update)) 5661 update_group_power(env->sd, env->dst_cpu); 5662 } 5663 5664 update_sg_lb_stats(env, sg, load_idx, local_group, sgs); 5665 5666 if (local_group) 5667 goto next_group; 5668 5669 /* 5670 * In case the child domain prefers tasks go to siblings 5671 * first, lower the sg capacity to one so that we'll try 5672 * and move all the excess tasks away. We lower the capacity 5673 * of a group only if the local group has the capacity to fit 5674 * these excess tasks, i.e. nr_running < group_capacity. The 5675 * extra check prevents the case where you always pull from the 5676 * heaviest group when it is already under-utilized (possible 5677 * with a large weight task outweighs the tasks on the system). 5678 */ 5679 if (prefer_sibling && sds->local && 5680 sds->local_stat.group_has_capacity) 5681 sgs->group_capacity = min(sgs->group_capacity, 1U); 5682 5683 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 5684 sds->busiest = sg; 5685 sds->busiest_stat = *sgs; 5686 } 5687 5688 next_group: 5689 /* Now, start updating sd_lb_stats */ 5690 sds->total_load += sgs->group_load; 5691 sds->total_pwr += sgs->group_power; 5692 5693 sg = sg->next; 5694 } while (sg != env->sd->groups); 5695 5696 if (env->sd->flags & SD_NUMA) 5697 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 5698 } 5699 5700 /** 5701 * check_asym_packing - Check to see if the group is packed into the 5702 * sched doman. 5703 * 5704 * This is primarily intended to used at the sibling level. Some 5705 * cores like POWER7 prefer to use lower numbered SMT threads. In the 5706 * case of POWER7, it can move to lower SMT modes only when higher 5707 * threads are idle. When in lower SMT modes, the threads will 5708 * perform better since they share less core resources. Hence when we 5709 * have idle threads, we want them to be the higher ones. 5710 * 5711 * This packing function is run on idle threads. It checks to see if 5712 * the busiest CPU in this domain (core in the P7 case) has a higher 5713 * CPU number than the packing function is being run on. Here we are 5714 * assuming lower CPU number will be equivalent to lower a SMT thread 5715 * number. 5716 * 5717 * Return: 1 when packing is required and a task should be moved to 5718 * this CPU. The amount of the imbalance is returned in *imbalance. 5719 * 5720 * @env: The load balancing environment. 5721 * @sds: Statistics of the sched_domain which is to be packed 5722 */ 5723 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 5724 { 5725 int busiest_cpu; 5726 5727 if (!(env->sd->flags & SD_ASYM_PACKING)) 5728 return 0; 5729 5730 if (!sds->busiest) 5731 return 0; 5732 5733 busiest_cpu = group_first_cpu(sds->busiest); 5734 if (env->dst_cpu > busiest_cpu) 5735 return 0; 5736 5737 env->imbalance = DIV_ROUND_CLOSEST( 5738 sds->busiest_stat.avg_load * sds->busiest_stat.group_power, 5739 SCHED_POWER_SCALE); 5740 5741 return 1; 5742 } 5743 5744 /** 5745 * fix_small_imbalance - Calculate the minor imbalance that exists 5746 * amongst the groups of a sched_domain, during 5747 * load balancing. 5748 * @env: The load balancing environment. 5749 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 5750 */ 5751 static inline 5752 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 5753 { 5754 unsigned long tmp, pwr_now = 0, pwr_move = 0; 5755 unsigned int imbn = 2; 5756 unsigned long scaled_busy_load_per_task; 5757 struct sg_lb_stats *local, *busiest; 5758 5759 local = &sds->local_stat; 5760 busiest = &sds->busiest_stat; 5761 5762 if (!local->sum_nr_running) 5763 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 5764 else if (busiest->load_per_task > local->load_per_task) 5765 imbn = 1; 5766 5767 scaled_busy_load_per_task = 5768 (busiest->load_per_task * SCHED_POWER_SCALE) / 5769 busiest->group_power; 5770 5771 if (busiest->avg_load + scaled_busy_load_per_task >= 5772 local->avg_load + (scaled_busy_load_per_task * imbn)) { 5773 env->imbalance = busiest->load_per_task; 5774 return; 5775 } 5776 5777 /* 5778 * OK, we don't have enough imbalance to justify moving tasks, 5779 * however we may be able to increase total CPU power used by 5780 * moving them. 5781 */ 5782 5783 pwr_now += busiest->group_power * 5784 min(busiest->load_per_task, busiest->avg_load); 5785 pwr_now += local->group_power * 5786 min(local->load_per_task, local->avg_load); 5787 pwr_now /= SCHED_POWER_SCALE; 5788 5789 /* Amount of load we'd subtract */ 5790 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) / 5791 busiest->group_power; 5792 if (busiest->avg_load > tmp) { 5793 pwr_move += busiest->group_power * 5794 min(busiest->load_per_task, 5795 busiest->avg_load - tmp); 5796 } 5797 5798 /* Amount of load we'd add */ 5799 if (busiest->avg_load * busiest->group_power < 5800 busiest->load_per_task * SCHED_POWER_SCALE) { 5801 tmp = (busiest->avg_load * busiest->group_power) / 5802 local->group_power; 5803 } else { 5804 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) / 5805 local->group_power; 5806 } 5807 pwr_move += local->group_power * 5808 min(local->load_per_task, local->avg_load + tmp); 5809 pwr_move /= SCHED_POWER_SCALE; 5810 5811 /* Move if we gain throughput */ 5812 if (pwr_move > pwr_now) 5813 env->imbalance = busiest->load_per_task; 5814 } 5815 5816 /** 5817 * calculate_imbalance - Calculate the amount of imbalance present within the 5818 * groups of a given sched_domain during load balance. 5819 * @env: load balance environment 5820 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 5821 */ 5822 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 5823 { 5824 unsigned long max_pull, load_above_capacity = ~0UL; 5825 struct sg_lb_stats *local, *busiest; 5826 5827 local = &sds->local_stat; 5828 busiest = &sds->busiest_stat; 5829 5830 if (busiest->group_imb) { 5831 /* 5832 * In the group_imb case we cannot rely on group-wide averages 5833 * to ensure cpu-load equilibrium, look at wider averages. XXX 5834 */ 5835 busiest->load_per_task = 5836 min(busiest->load_per_task, sds->avg_load); 5837 } 5838 5839 /* 5840 * In the presence of smp nice balancing, certain scenarios can have 5841 * max load less than avg load(as we skip the groups at or below 5842 * its cpu_power, while calculating max_load..) 5843 */ 5844 if (busiest->avg_load <= sds->avg_load || 5845 local->avg_load >= sds->avg_load) { 5846 env->imbalance = 0; 5847 return fix_small_imbalance(env, sds); 5848 } 5849 5850 if (!busiest->group_imb) { 5851 /* 5852 * Don't want to pull so many tasks that a group would go idle. 5853 * Except of course for the group_imb case, since then we might 5854 * have to drop below capacity to reach cpu-load equilibrium. 5855 */ 5856 load_above_capacity = 5857 (busiest->sum_nr_running - busiest->group_capacity); 5858 5859 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); 5860 load_above_capacity /= busiest->group_power; 5861 } 5862 5863 /* 5864 * We're trying to get all the cpus to the average_load, so we don't 5865 * want to push ourselves above the average load, nor do we wish to 5866 * reduce the max loaded cpu below the average load. At the same time, 5867 * we also don't want to reduce the group load below the group capacity 5868 * (so that we can implement power-savings policies etc). Thus we look 5869 * for the minimum possible imbalance. 5870 */ 5871 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 5872 5873 /* How much load to actually move to equalise the imbalance */ 5874 env->imbalance = min( 5875 max_pull * busiest->group_power, 5876 (sds->avg_load - local->avg_load) * local->group_power 5877 ) / SCHED_POWER_SCALE; 5878 5879 /* 5880 * if *imbalance is less than the average load per runnable task 5881 * there is no guarantee that any tasks will be moved so we'll have 5882 * a think about bumping its value to force at least one task to be 5883 * moved 5884 */ 5885 if (env->imbalance < busiest->load_per_task) 5886 return fix_small_imbalance(env, sds); 5887 } 5888 5889 /******* find_busiest_group() helpers end here *********************/ 5890 5891 /** 5892 * find_busiest_group - Returns the busiest group within the sched_domain 5893 * if there is an imbalance. If there isn't an imbalance, and 5894 * the user has opted for power-savings, it returns a group whose 5895 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 5896 * such a group exists. 5897 * 5898 * Also calculates the amount of weighted load which should be moved 5899 * to restore balance. 5900 * 5901 * @env: The load balancing environment. 5902 * 5903 * Return: - The busiest group if imbalance exists. 5904 * - If no imbalance and user has opted for power-savings balance, 5905 * return the least loaded group whose CPUs can be 5906 * put to idle by rebalancing its tasks onto our group. 5907 */ 5908 static struct sched_group *find_busiest_group(struct lb_env *env) 5909 { 5910 struct sg_lb_stats *local, *busiest; 5911 struct sd_lb_stats sds; 5912 5913 init_sd_lb_stats(&sds); 5914 5915 /* 5916 * Compute the various statistics relavent for load balancing at 5917 * this level. 5918 */ 5919 update_sd_lb_stats(env, &sds); 5920 local = &sds.local_stat; 5921 busiest = &sds.busiest_stat; 5922 5923 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 5924 check_asym_packing(env, &sds)) 5925 return sds.busiest; 5926 5927 /* There is no busy sibling group to pull tasks from */ 5928 if (!sds.busiest || busiest->sum_nr_running == 0) 5929 goto out_balanced; 5930 5931 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; 5932 5933 /* 5934 * If the busiest group is imbalanced the below checks don't 5935 * work because they assume all things are equal, which typically 5936 * isn't true due to cpus_allowed constraints and the like. 5937 */ 5938 if (busiest->group_imb) 5939 goto force_balance; 5940 5941 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 5942 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity && 5943 !busiest->group_has_capacity) 5944 goto force_balance; 5945 5946 /* 5947 * If the local group is more busy than the selected busiest group 5948 * don't try and pull any tasks. 5949 */ 5950 if (local->avg_load >= busiest->avg_load) 5951 goto out_balanced; 5952 5953 /* 5954 * Don't pull any tasks if this group is already above the domain 5955 * average load. 5956 */ 5957 if (local->avg_load >= sds.avg_load) 5958 goto out_balanced; 5959 5960 if (env->idle == CPU_IDLE) { 5961 /* 5962 * This cpu is idle. If the busiest group load doesn't 5963 * have more tasks than the number of available cpu's and 5964 * there is no imbalance between this and busiest group 5965 * wrt to idle cpu's, it is balanced. 5966 */ 5967 if ((local->idle_cpus < busiest->idle_cpus) && 5968 busiest->sum_nr_running <= busiest->group_weight) 5969 goto out_balanced; 5970 } else { 5971 /* 5972 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 5973 * imbalance_pct to be conservative. 5974 */ 5975 if (100 * busiest->avg_load <= 5976 env->sd->imbalance_pct * local->avg_load) 5977 goto out_balanced; 5978 } 5979 5980 force_balance: 5981 /* Looks like there is an imbalance. Compute it */ 5982 calculate_imbalance(env, &sds); 5983 return sds.busiest; 5984 5985 out_balanced: 5986 env->imbalance = 0; 5987 return NULL; 5988 } 5989 5990 /* 5991 * find_busiest_queue - find the busiest runqueue among the cpus in group. 5992 */ 5993 static struct rq *find_busiest_queue(struct lb_env *env, 5994 struct sched_group *group) 5995 { 5996 struct rq *busiest = NULL, *rq; 5997 unsigned long busiest_load = 0, busiest_power = 1; 5998 int i; 5999 6000 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6001 unsigned long power, capacity, wl; 6002 enum fbq_type rt; 6003 6004 rq = cpu_rq(i); 6005 rt = fbq_classify_rq(rq); 6006 6007 /* 6008 * We classify groups/runqueues into three groups: 6009 * - regular: there are !numa tasks 6010 * - remote: there are numa tasks that run on the 'wrong' node 6011 * - all: there is no distinction 6012 * 6013 * In order to avoid migrating ideally placed numa tasks, 6014 * ignore those when there's better options. 6015 * 6016 * If we ignore the actual busiest queue to migrate another 6017 * task, the next balance pass can still reduce the busiest 6018 * queue by moving tasks around inside the node. 6019 * 6020 * If we cannot move enough load due to this classification 6021 * the next pass will adjust the group classification and 6022 * allow migration of more tasks. 6023 * 6024 * Both cases only affect the total convergence complexity. 6025 */ 6026 if (rt > env->fbq_type) 6027 continue; 6028 6029 power = power_of(i); 6030 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); 6031 if (!capacity) 6032 capacity = fix_small_capacity(env->sd, group); 6033 6034 wl = weighted_cpuload(i); 6035 6036 /* 6037 * When comparing with imbalance, use weighted_cpuload() 6038 * which is not scaled with the cpu power. 6039 */ 6040 if (capacity && rq->nr_running == 1 && wl > env->imbalance) 6041 continue; 6042 6043 /* 6044 * For the load comparisons with the other cpu's, consider 6045 * the weighted_cpuload() scaled with the cpu power, so that 6046 * the load can be moved away from the cpu that is potentially 6047 * running at a lower capacity. 6048 * 6049 * Thus we're looking for max(wl_i / power_i), crosswise 6050 * multiplication to rid ourselves of the division works out 6051 * to: wl_i * power_j > wl_j * power_i; where j is our 6052 * previous maximum. 6053 */ 6054 if (wl * busiest_power > busiest_load * power) { 6055 busiest_load = wl; 6056 busiest_power = power; 6057 busiest = rq; 6058 } 6059 } 6060 6061 return busiest; 6062 } 6063 6064 /* 6065 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 6066 * so long as it is large enough. 6067 */ 6068 #define MAX_PINNED_INTERVAL 512 6069 6070 /* Working cpumask for load_balance and load_balance_newidle. */ 6071 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6072 6073 static int need_active_balance(struct lb_env *env) 6074 { 6075 struct sched_domain *sd = env->sd; 6076 6077 if (env->idle == CPU_NEWLY_IDLE) { 6078 6079 /* 6080 * ASYM_PACKING needs to force migrate tasks from busy but 6081 * higher numbered CPUs in order to pack all tasks in the 6082 * lowest numbered CPUs. 6083 */ 6084 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 6085 return 1; 6086 } 6087 6088 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 6089 } 6090 6091 static int active_load_balance_cpu_stop(void *data); 6092 6093 static int should_we_balance(struct lb_env *env) 6094 { 6095 struct sched_group *sg = env->sd->groups; 6096 struct cpumask *sg_cpus, *sg_mask; 6097 int cpu, balance_cpu = -1; 6098 6099 /* 6100 * In the newly idle case, we will allow all the cpu's 6101 * to do the newly idle load balance. 6102 */ 6103 if (env->idle == CPU_NEWLY_IDLE) 6104 return 1; 6105 6106 sg_cpus = sched_group_cpus(sg); 6107 sg_mask = sched_group_mask(sg); 6108 /* Try to find first idle cpu */ 6109 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 6110 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 6111 continue; 6112 6113 balance_cpu = cpu; 6114 break; 6115 } 6116 6117 if (balance_cpu == -1) 6118 balance_cpu = group_balance_cpu(sg); 6119 6120 /* 6121 * First idle cpu or the first cpu(busiest) in this sched group 6122 * is eligible for doing load balancing at this and above domains. 6123 */ 6124 return balance_cpu == env->dst_cpu; 6125 } 6126 6127 /* 6128 * Check this_cpu to ensure it is balanced within domain. Attempt to move 6129 * tasks if there is an imbalance. 6130 */ 6131 static int load_balance(int this_cpu, struct rq *this_rq, 6132 struct sched_domain *sd, enum cpu_idle_type idle, 6133 int *continue_balancing) 6134 { 6135 int ld_moved, cur_ld_moved, active_balance = 0; 6136 struct sched_domain *sd_parent = sd->parent; 6137 struct sched_group *group; 6138 struct rq *busiest; 6139 unsigned long flags; 6140 struct cpumask *cpus = __get_cpu_var(load_balance_mask); 6141 6142 struct lb_env env = { 6143 .sd = sd, 6144 .dst_cpu = this_cpu, 6145 .dst_rq = this_rq, 6146 .dst_grpmask = sched_group_cpus(sd->groups), 6147 .idle = idle, 6148 .loop_break = sched_nr_migrate_break, 6149 .cpus = cpus, 6150 .fbq_type = all, 6151 }; 6152 6153 /* 6154 * For NEWLY_IDLE load_balancing, we don't need to consider 6155 * other cpus in our group 6156 */ 6157 if (idle == CPU_NEWLY_IDLE) 6158 env.dst_grpmask = NULL; 6159 6160 cpumask_copy(cpus, cpu_active_mask); 6161 6162 schedstat_inc(sd, lb_count[idle]); 6163 6164 redo: 6165 if (!should_we_balance(&env)) { 6166 *continue_balancing = 0; 6167 goto out_balanced; 6168 } 6169 6170 group = find_busiest_group(&env); 6171 if (!group) { 6172 schedstat_inc(sd, lb_nobusyg[idle]); 6173 goto out_balanced; 6174 } 6175 6176 busiest = find_busiest_queue(&env, group); 6177 if (!busiest) { 6178 schedstat_inc(sd, lb_nobusyq[idle]); 6179 goto out_balanced; 6180 } 6181 6182 BUG_ON(busiest == env.dst_rq); 6183 6184 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 6185 6186 ld_moved = 0; 6187 if (busiest->nr_running > 1) { 6188 /* 6189 * Attempt to move tasks. If find_busiest_group has found 6190 * an imbalance but busiest->nr_running <= 1, the group is 6191 * still unbalanced. ld_moved simply stays zero, so it is 6192 * correctly treated as an imbalance. 6193 */ 6194 env.flags |= LBF_ALL_PINNED; 6195 env.src_cpu = busiest->cpu; 6196 env.src_rq = busiest; 6197 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 6198 6199 more_balance: 6200 local_irq_save(flags); 6201 double_rq_lock(env.dst_rq, busiest); 6202 6203 /* 6204 * cur_ld_moved - load moved in current iteration 6205 * ld_moved - cumulative load moved across iterations 6206 */ 6207 cur_ld_moved = move_tasks(&env); 6208 ld_moved += cur_ld_moved; 6209 double_rq_unlock(env.dst_rq, busiest); 6210 local_irq_restore(flags); 6211 6212 /* 6213 * some other cpu did the load balance for us. 6214 */ 6215 if (cur_ld_moved && env.dst_cpu != smp_processor_id()) 6216 resched_cpu(env.dst_cpu); 6217 6218 if (env.flags & LBF_NEED_BREAK) { 6219 env.flags &= ~LBF_NEED_BREAK; 6220 goto more_balance; 6221 } 6222 6223 /* 6224 * Revisit (affine) tasks on src_cpu that couldn't be moved to 6225 * us and move them to an alternate dst_cpu in our sched_group 6226 * where they can run. The upper limit on how many times we 6227 * iterate on same src_cpu is dependent on number of cpus in our 6228 * sched_group. 6229 * 6230 * This changes load balance semantics a bit on who can move 6231 * load to a given_cpu. In addition to the given_cpu itself 6232 * (or a ilb_cpu acting on its behalf where given_cpu is 6233 * nohz-idle), we now have balance_cpu in a position to move 6234 * load to given_cpu. In rare situations, this may cause 6235 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 6236 * _independently_ and at _same_ time to move some load to 6237 * given_cpu) causing exceess load to be moved to given_cpu. 6238 * This however should not happen so much in practice and 6239 * moreover subsequent load balance cycles should correct the 6240 * excess load moved. 6241 */ 6242 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 6243 6244 /* Prevent to re-select dst_cpu via env's cpus */ 6245 cpumask_clear_cpu(env.dst_cpu, env.cpus); 6246 6247 env.dst_rq = cpu_rq(env.new_dst_cpu); 6248 env.dst_cpu = env.new_dst_cpu; 6249 env.flags &= ~LBF_DST_PINNED; 6250 env.loop = 0; 6251 env.loop_break = sched_nr_migrate_break; 6252 6253 /* 6254 * Go back to "more_balance" rather than "redo" since we 6255 * need to continue with same src_cpu. 6256 */ 6257 goto more_balance; 6258 } 6259 6260 /* 6261 * We failed to reach balance because of affinity. 6262 */ 6263 if (sd_parent) { 6264 int *group_imbalance = &sd_parent->groups->sgp->imbalance; 6265 6266 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) { 6267 *group_imbalance = 1; 6268 } else if (*group_imbalance) 6269 *group_imbalance = 0; 6270 } 6271 6272 /* All tasks on this runqueue were pinned by CPU affinity */ 6273 if (unlikely(env.flags & LBF_ALL_PINNED)) { 6274 cpumask_clear_cpu(cpu_of(busiest), cpus); 6275 if (!cpumask_empty(cpus)) { 6276 env.loop = 0; 6277 env.loop_break = sched_nr_migrate_break; 6278 goto redo; 6279 } 6280 goto out_balanced; 6281 } 6282 } 6283 6284 if (!ld_moved) { 6285 schedstat_inc(sd, lb_failed[idle]); 6286 /* 6287 * Increment the failure counter only on periodic balance. 6288 * We do not want newidle balance, which can be very 6289 * frequent, pollute the failure counter causing 6290 * excessive cache_hot migrations and active balances. 6291 */ 6292 if (idle != CPU_NEWLY_IDLE) 6293 sd->nr_balance_failed++; 6294 6295 if (need_active_balance(&env)) { 6296 raw_spin_lock_irqsave(&busiest->lock, flags); 6297 6298 /* don't kick the active_load_balance_cpu_stop, 6299 * if the curr task on busiest cpu can't be 6300 * moved to this_cpu 6301 */ 6302 if (!cpumask_test_cpu(this_cpu, 6303 tsk_cpus_allowed(busiest->curr))) { 6304 raw_spin_unlock_irqrestore(&busiest->lock, 6305 flags); 6306 env.flags |= LBF_ALL_PINNED; 6307 goto out_one_pinned; 6308 } 6309 6310 /* 6311 * ->active_balance synchronizes accesses to 6312 * ->active_balance_work. Once set, it's cleared 6313 * only after active load balance is finished. 6314 */ 6315 if (!busiest->active_balance) { 6316 busiest->active_balance = 1; 6317 busiest->push_cpu = this_cpu; 6318 active_balance = 1; 6319 } 6320 raw_spin_unlock_irqrestore(&busiest->lock, flags); 6321 6322 if (active_balance) { 6323 stop_one_cpu_nowait(cpu_of(busiest), 6324 active_load_balance_cpu_stop, busiest, 6325 &busiest->active_balance_work); 6326 } 6327 6328 /* 6329 * We've kicked active balancing, reset the failure 6330 * counter. 6331 */ 6332 sd->nr_balance_failed = sd->cache_nice_tries+1; 6333 } 6334 } else 6335 sd->nr_balance_failed = 0; 6336 6337 if (likely(!active_balance)) { 6338 /* We were unbalanced, so reset the balancing interval */ 6339 sd->balance_interval = sd->min_interval; 6340 } else { 6341 /* 6342 * If we've begun active balancing, start to back off. This 6343 * case may not be covered by the all_pinned logic if there 6344 * is only 1 task on the busy runqueue (because we don't call 6345 * move_tasks). 6346 */ 6347 if (sd->balance_interval < sd->max_interval) 6348 sd->balance_interval *= 2; 6349 } 6350 6351 goto out; 6352 6353 out_balanced: 6354 schedstat_inc(sd, lb_balanced[idle]); 6355 6356 sd->nr_balance_failed = 0; 6357 6358 out_one_pinned: 6359 /* tune up the balancing interval */ 6360 if (((env.flags & LBF_ALL_PINNED) && 6361 sd->balance_interval < MAX_PINNED_INTERVAL) || 6362 (sd->balance_interval < sd->max_interval)) 6363 sd->balance_interval *= 2; 6364 6365 ld_moved = 0; 6366 out: 6367 return ld_moved; 6368 } 6369 6370 /* 6371 * idle_balance is called by schedule() if this_cpu is about to become 6372 * idle. Attempts to pull tasks from other CPUs. 6373 */ 6374 void idle_balance(int this_cpu, struct rq *this_rq) 6375 { 6376 struct sched_domain *sd; 6377 int pulled_task = 0; 6378 unsigned long next_balance = jiffies + HZ; 6379 u64 curr_cost = 0; 6380 6381 this_rq->idle_stamp = rq_clock(this_rq); 6382 6383 if (this_rq->avg_idle < sysctl_sched_migration_cost) 6384 return; 6385 6386 /* 6387 * Drop the rq->lock, but keep IRQ/preempt disabled. 6388 */ 6389 raw_spin_unlock(&this_rq->lock); 6390 6391 update_blocked_averages(this_cpu); 6392 rcu_read_lock(); 6393 for_each_domain(this_cpu, sd) { 6394 unsigned long interval; 6395 int continue_balancing = 1; 6396 u64 t0, domain_cost; 6397 6398 if (!(sd->flags & SD_LOAD_BALANCE)) 6399 continue; 6400 6401 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 6402 break; 6403 6404 if (sd->flags & SD_BALANCE_NEWIDLE) { 6405 t0 = sched_clock_cpu(this_cpu); 6406 6407 /* If we've pulled tasks over stop searching: */ 6408 pulled_task = load_balance(this_cpu, this_rq, 6409 sd, CPU_NEWLY_IDLE, 6410 &continue_balancing); 6411 6412 domain_cost = sched_clock_cpu(this_cpu) - t0; 6413 if (domain_cost > sd->max_newidle_lb_cost) 6414 sd->max_newidle_lb_cost = domain_cost; 6415 6416 curr_cost += domain_cost; 6417 } 6418 6419 interval = msecs_to_jiffies(sd->balance_interval); 6420 if (time_after(next_balance, sd->last_balance + interval)) 6421 next_balance = sd->last_balance + interval; 6422 if (pulled_task) { 6423 this_rq->idle_stamp = 0; 6424 break; 6425 } 6426 } 6427 rcu_read_unlock(); 6428 6429 raw_spin_lock(&this_rq->lock); 6430 6431 if (pulled_task || time_after(jiffies, this_rq->next_balance)) { 6432 /* 6433 * We are going idle. next_balance may be set based on 6434 * a busy processor. So reset next_balance. 6435 */ 6436 this_rq->next_balance = next_balance; 6437 } 6438 6439 if (curr_cost > this_rq->max_idle_balance_cost) 6440 this_rq->max_idle_balance_cost = curr_cost; 6441 } 6442 6443 /* 6444 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 6445 * running tasks off the busiest CPU onto idle CPUs. It requires at 6446 * least 1 task to be running on each physical CPU where possible, and 6447 * avoids physical / logical imbalances. 6448 */ 6449 static int active_load_balance_cpu_stop(void *data) 6450 { 6451 struct rq *busiest_rq = data; 6452 int busiest_cpu = cpu_of(busiest_rq); 6453 int target_cpu = busiest_rq->push_cpu; 6454 struct rq *target_rq = cpu_rq(target_cpu); 6455 struct sched_domain *sd; 6456 6457 raw_spin_lock_irq(&busiest_rq->lock); 6458 6459 /* make sure the requested cpu hasn't gone down in the meantime */ 6460 if (unlikely(busiest_cpu != smp_processor_id() || 6461 !busiest_rq->active_balance)) 6462 goto out_unlock; 6463 6464 /* Is there any task to move? */ 6465 if (busiest_rq->nr_running <= 1) 6466 goto out_unlock; 6467 6468 /* 6469 * This condition is "impossible", if it occurs 6470 * we need to fix it. Originally reported by 6471 * Bjorn Helgaas on a 128-cpu setup. 6472 */ 6473 BUG_ON(busiest_rq == target_rq); 6474 6475 /* move a task from busiest_rq to target_rq */ 6476 double_lock_balance(busiest_rq, target_rq); 6477 6478 /* Search for an sd spanning us and the target CPU. */ 6479 rcu_read_lock(); 6480 for_each_domain(target_cpu, sd) { 6481 if ((sd->flags & SD_LOAD_BALANCE) && 6482 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 6483 break; 6484 } 6485 6486 if (likely(sd)) { 6487 struct lb_env env = { 6488 .sd = sd, 6489 .dst_cpu = target_cpu, 6490 .dst_rq = target_rq, 6491 .src_cpu = busiest_rq->cpu, 6492 .src_rq = busiest_rq, 6493 .idle = CPU_IDLE, 6494 }; 6495 6496 schedstat_inc(sd, alb_count); 6497 6498 if (move_one_task(&env)) 6499 schedstat_inc(sd, alb_pushed); 6500 else 6501 schedstat_inc(sd, alb_failed); 6502 } 6503 rcu_read_unlock(); 6504 double_unlock_balance(busiest_rq, target_rq); 6505 out_unlock: 6506 busiest_rq->active_balance = 0; 6507 raw_spin_unlock_irq(&busiest_rq->lock); 6508 return 0; 6509 } 6510 6511 #ifdef CONFIG_NO_HZ_COMMON 6512 /* 6513 * idle load balancing details 6514 * - When one of the busy CPUs notice that there may be an idle rebalancing 6515 * needed, they will kick the idle load balancer, which then does idle 6516 * load balancing for all the idle CPUs. 6517 */ 6518 static struct { 6519 cpumask_var_t idle_cpus_mask; 6520 atomic_t nr_cpus; 6521 unsigned long next_balance; /* in jiffy units */ 6522 } nohz ____cacheline_aligned; 6523 6524 static inline int find_new_ilb(int call_cpu) 6525 { 6526 int ilb = cpumask_first(nohz.idle_cpus_mask); 6527 6528 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 6529 return ilb; 6530 6531 return nr_cpu_ids; 6532 } 6533 6534 /* 6535 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 6536 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 6537 * CPU (if there is one). 6538 */ 6539 static void nohz_balancer_kick(int cpu) 6540 { 6541 int ilb_cpu; 6542 6543 nohz.next_balance++; 6544 6545 ilb_cpu = find_new_ilb(cpu); 6546 6547 if (ilb_cpu >= nr_cpu_ids) 6548 return; 6549 6550 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 6551 return; 6552 /* 6553 * Use smp_send_reschedule() instead of resched_cpu(). 6554 * This way we generate a sched IPI on the target cpu which 6555 * is idle. And the softirq performing nohz idle load balance 6556 * will be run before returning from the IPI. 6557 */ 6558 smp_send_reschedule(ilb_cpu); 6559 return; 6560 } 6561 6562 static inline void nohz_balance_exit_idle(int cpu) 6563 { 6564 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 6565 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 6566 atomic_dec(&nohz.nr_cpus); 6567 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 6568 } 6569 } 6570 6571 static inline void set_cpu_sd_state_busy(void) 6572 { 6573 struct sched_domain *sd; 6574 int cpu = smp_processor_id(); 6575 6576 rcu_read_lock(); 6577 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 6578 6579 if (!sd || !sd->nohz_idle) 6580 goto unlock; 6581 sd->nohz_idle = 0; 6582 6583 atomic_inc(&sd->groups->sgp->nr_busy_cpus); 6584 unlock: 6585 rcu_read_unlock(); 6586 } 6587 6588 void set_cpu_sd_state_idle(void) 6589 { 6590 struct sched_domain *sd; 6591 int cpu = smp_processor_id(); 6592 6593 rcu_read_lock(); 6594 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 6595 6596 if (!sd || sd->nohz_idle) 6597 goto unlock; 6598 sd->nohz_idle = 1; 6599 6600 atomic_dec(&sd->groups->sgp->nr_busy_cpus); 6601 unlock: 6602 rcu_read_unlock(); 6603 } 6604 6605 /* 6606 * This routine will record that the cpu is going idle with tick stopped. 6607 * This info will be used in performing idle load balancing in the future. 6608 */ 6609 void nohz_balance_enter_idle(int cpu) 6610 { 6611 /* 6612 * If this cpu is going down, then nothing needs to be done. 6613 */ 6614 if (!cpu_active(cpu)) 6615 return; 6616 6617 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 6618 return; 6619 6620 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 6621 atomic_inc(&nohz.nr_cpus); 6622 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 6623 } 6624 6625 static int sched_ilb_notifier(struct notifier_block *nfb, 6626 unsigned long action, void *hcpu) 6627 { 6628 switch (action & ~CPU_TASKS_FROZEN) { 6629 case CPU_DYING: 6630 nohz_balance_exit_idle(smp_processor_id()); 6631 return NOTIFY_OK; 6632 default: 6633 return NOTIFY_DONE; 6634 } 6635 } 6636 #endif 6637 6638 static DEFINE_SPINLOCK(balancing); 6639 6640 /* 6641 * Scale the max load_balance interval with the number of CPUs in the system. 6642 * This trades load-balance latency on larger machines for less cross talk. 6643 */ 6644 void update_max_interval(void) 6645 { 6646 max_load_balance_interval = HZ*num_online_cpus()/10; 6647 } 6648 6649 /* 6650 * It checks each scheduling domain to see if it is due to be balanced, 6651 * and initiates a balancing operation if so. 6652 * 6653 * Balancing parameters are set up in init_sched_domains. 6654 */ 6655 static void rebalance_domains(int cpu, enum cpu_idle_type idle) 6656 { 6657 int continue_balancing = 1; 6658 struct rq *rq = cpu_rq(cpu); 6659 unsigned long interval; 6660 struct sched_domain *sd; 6661 /* Earliest time when we have to do rebalance again */ 6662 unsigned long next_balance = jiffies + 60*HZ; 6663 int update_next_balance = 0; 6664 int need_serialize, need_decay = 0; 6665 u64 max_cost = 0; 6666 6667 update_blocked_averages(cpu); 6668 6669 rcu_read_lock(); 6670 for_each_domain(cpu, sd) { 6671 /* 6672 * Decay the newidle max times here because this is a regular 6673 * visit to all the domains. Decay ~1% per second. 6674 */ 6675 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 6676 sd->max_newidle_lb_cost = 6677 (sd->max_newidle_lb_cost * 253) / 256; 6678 sd->next_decay_max_lb_cost = jiffies + HZ; 6679 need_decay = 1; 6680 } 6681 max_cost += sd->max_newidle_lb_cost; 6682 6683 if (!(sd->flags & SD_LOAD_BALANCE)) 6684 continue; 6685 6686 /* 6687 * Stop the load balance at this level. There is another 6688 * CPU in our sched group which is doing load balancing more 6689 * actively. 6690 */ 6691 if (!continue_balancing) { 6692 if (need_decay) 6693 continue; 6694 break; 6695 } 6696 6697 interval = sd->balance_interval; 6698 if (idle != CPU_IDLE) 6699 interval *= sd->busy_factor; 6700 6701 /* scale ms to jiffies */ 6702 interval = msecs_to_jiffies(interval); 6703 interval = clamp(interval, 1UL, max_load_balance_interval); 6704 6705 need_serialize = sd->flags & SD_SERIALIZE; 6706 6707 if (need_serialize) { 6708 if (!spin_trylock(&balancing)) 6709 goto out; 6710 } 6711 6712 if (time_after_eq(jiffies, sd->last_balance + interval)) { 6713 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 6714 /* 6715 * The LBF_DST_PINNED logic could have changed 6716 * env->dst_cpu, so we can't know our idle 6717 * state even if we migrated tasks. Update it. 6718 */ 6719 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 6720 } 6721 sd->last_balance = jiffies; 6722 } 6723 if (need_serialize) 6724 spin_unlock(&balancing); 6725 out: 6726 if (time_after(next_balance, sd->last_balance + interval)) { 6727 next_balance = sd->last_balance + interval; 6728 update_next_balance = 1; 6729 } 6730 } 6731 if (need_decay) { 6732 /* 6733 * Ensure the rq-wide value also decays but keep it at a 6734 * reasonable floor to avoid funnies with rq->avg_idle. 6735 */ 6736 rq->max_idle_balance_cost = 6737 max((u64)sysctl_sched_migration_cost, max_cost); 6738 } 6739 rcu_read_unlock(); 6740 6741 /* 6742 * next_balance will be updated only when there is a need. 6743 * When the cpu is attached to null domain for ex, it will not be 6744 * updated. 6745 */ 6746 if (likely(update_next_balance)) 6747 rq->next_balance = next_balance; 6748 } 6749 6750 #ifdef CONFIG_NO_HZ_COMMON 6751 /* 6752 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 6753 * rebalancing for all the cpus for whom scheduler ticks are stopped. 6754 */ 6755 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) 6756 { 6757 struct rq *this_rq = cpu_rq(this_cpu); 6758 struct rq *rq; 6759 int balance_cpu; 6760 6761 if (idle != CPU_IDLE || 6762 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 6763 goto end; 6764 6765 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 6766 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 6767 continue; 6768 6769 /* 6770 * If this cpu gets work to do, stop the load balancing 6771 * work being done for other cpus. Next load 6772 * balancing owner will pick it up. 6773 */ 6774 if (need_resched()) 6775 break; 6776 6777 rq = cpu_rq(balance_cpu); 6778 6779 raw_spin_lock_irq(&rq->lock); 6780 update_rq_clock(rq); 6781 update_idle_cpu_load(rq); 6782 raw_spin_unlock_irq(&rq->lock); 6783 6784 rebalance_domains(balance_cpu, CPU_IDLE); 6785 6786 if (time_after(this_rq->next_balance, rq->next_balance)) 6787 this_rq->next_balance = rq->next_balance; 6788 } 6789 nohz.next_balance = this_rq->next_balance; 6790 end: 6791 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 6792 } 6793 6794 /* 6795 * Current heuristic for kicking the idle load balancer in the presence 6796 * of an idle cpu is the system. 6797 * - This rq has more than one task. 6798 * - At any scheduler domain level, this cpu's scheduler group has multiple 6799 * busy cpu's exceeding the group's power. 6800 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 6801 * domain span are idle. 6802 */ 6803 static inline int nohz_kick_needed(struct rq *rq, int cpu) 6804 { 6805 unsigned long now = jiffies; 6806 struct sched_domain *sd; 6807 struct sched_group_power *sgp; 6808 int nr_busy; 6809 6810 if (unlikely(idle_cpu(cpu))) 6811 return 0; 6812 6813 /* 6814 * We may be recently in ticked or tickless idle mode. At the first 6815 * busy tick after returning from idle, we will update the busy stats. 6816 */ 6817 set_cpu_sd_state_busy(); 6818 nohz_balance_exit_idle(cpu); 6819 6820 /* 6821 * None are in tickless mode and hence no need for NOHZ idle load 6822 * balancing. 6823 */ 6824 if (likely(!atomic_read(&nohz.nr_cpus))) 6825 return 0; 6826 6827 if (time_before(now, nohz.next_balance)) 6828 return 0; 6829 6830 if (rq->nr_running >= 2) 6831 goto need_kick; 6832 6833 rcu_read_lock(); 6834 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 6835 6836 if (sd) { 6837 sgp = sd->groups->sgp; 6838 nr_busy = atomic_read(&sgp->nr_busy_cpus); 6839 6840 if (nr_busy > 1) 6841 goto need_kick_unlock; 6842 } 6843 6844 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 6845 6846 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 6847 sched_domain_span(sd)) < cpu)) 6848 goto need_kick_unlock; 6849 6850 rcu_read_unlock(); 6851 return 0; 6852 6853 need_kick_unlock: 6854 rcu_read_unlock(); 6855 need_kick: 6856 return 1; 6857 } 6858 #else 6859 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } 6860 #endif 6861 6862 /* 6863 * run_rebalance_domains is triggered when needed from the scheduler tick. 6864 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 6865 */ 6866 static void run_rebalance_domains(struct softirq_action *h) 6867 { 6868 int this_cpu = smp_processor_id(); 6869 struct rq *this_rq = cpu_rq(this_cpu); 6870 enum cpu_idle_type idle = this_rq->idle_balance ? 6871 CPU_IDLE : CPU_NOT_IDLE; 6872 6873 rebalance_domains(this_cpu, idle); 6874 6875 /* 6876 * If this cpu has a pending nohz_balance_kick, then do the 6877 * balancing on behalf of the other idle cpus whose ticks are 6878 * stopped. 6879 */ 6880 nohz_idle_balance(this_cpu, idle); 6881 } 6882 6883 static inline int on_null_domain(int cpu) 6884 { 6885 return !rcu_dereference_sched(cpu_rq(cpu)->sd); 6886 } 6887 6888 /* 6889 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 6890 */ 6891 void trigger_load_balance(struct rq *rq, int cpu) 6892 { 6893 /* Don't need to rebalance while attached to NULL domain */ 6894 if (time_after_eq(jiffies, rq->next_balance) && 6895 likely(!on_null_domain(cpu))) 6896 raise_softirq(SCHED_SOFTIRQ); 6897 #ifdef CONFIG_NO_HZ_COMMON 6898 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) 6899 nohz_balancer_kick(cpu); 6900 #endif 6901 } 6902 6903 static void rq_online_fair(struct rq *rq) 6904 { 6905 update_sysctl(); 6906 } 6907 6908 static void rq_offline_fair(struct rq *rq) 6909 { 6910 update_sysctl(); 6911 6912 /* Ensure any throttled groups are reachable by pick_next_task */ 6913 unthrottle_offline_cfs_rqs(rq); 6914 } 6915 6916 #endif /* CONFIG_SMP */ 6917 6918 /* 6919 * scheduler tick hitting a task of our scheduling class: 6920 */ 6921 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 6922 { 6923 struct cfs_rq *cfs_rq; 6924 struct sched_entity *se = &curr->se; 6925 6926 for_each_sched_entity(se) { 6927 cfs_rq = cfs_rq_of(se); 6928 entity_tick(cfs_rq, se, queued); 6929 } 6930 6931 if (numabalancing_enabled) 6932 task_tick_numa(rq, curr); 6933 6934 update_rq_runnable_avg(rq, 1); 6935 } 6936 6937 /* 6938 * called on fork with the child task as argument from the parent's context 6939 * - child not yet on the tasklist 6940 * - preemption disabled 6941 */ 6942 static void task_fork_fair(struct task_struct *p) 6943 { 6944 struct cfs_rq *cfs_rq; 6945 struct sched_entity *se = &p->se, *curr; 6946 int this_cpu = smp_processor_id(); 6947 struct rq *rq = this_rq(); 6948 unsigned long flags; 6949 6950 raw_spin_lock_irqsave(&rq->lock, flags); 6951 6952 update_rq_clock(rq); 6953 6954 cfs_rq = task_cfs_rq(current); 6955 curr = cfs_rq->curr; 6956 6957 /* 6958 * Not only the cpu but also the task_group of the parent might have 6959 * been changed after parent->se.parent,cfs_rq were copied to 6960 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those 6961 * of child point to valid ones. 6962 */ 6963 rcu_read_lock(); 6964 __set_task_cpu(p, this_cpu); 6965 rcu_read_unlock(); 6966 6967 update_curr(cfs_rq); 6968 6969 if (curr) 6970 se->vruntime = curr->vruntime; 6971 place_entity(cfs_rq, se, 1); 6972 6973 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 6974 /* 6975 * Upon rescheduling, sched_class::put_prev_task() will place 6976 * 'current' within the tree based on its new key value. 6977 */ 6978 swap(curr->vruntime, se->vruntime); 6979 resched_task(rq->curr); 6980 } 6981 6982 se->vruntime -= cfs_rq->min_vruntime; 6983 6984 raw_spin_unlock_irqrestore(&rq->lock, flags); 6985 } 6986 6987 /* 6988 * Priority of the task has changed. Check to see if we preempt 6989 * the current task. 6990 */ 6991 static void 6992 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 6993 { 6994 if (!p->se.on_rq) 6995 return; 6996 6997 /* 6998 * Reschedule if we are currently running on this runqueue and 6999 * our priority decreased, or if we are not currently running on 7000 * this runqueue and our priority is higher than the current's 7001 */ 7002 if (rq->curr == p) { 7003 if (p->prio > oldprio) 7004 resched_task(rq->curr); 7005 } else 7006 check_preempt_curr(rq, p, 0); 7007 } 7008 7009 static void switched_from_fair(struct rq *rq, struct task_struct *p) 7010 { 7011 struct sched_entity *se = &p->se; 7012 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7013 7014 /* 7015 * Ensure the task's vruntime is normalized, so that when its 7016 * switched back to the fair class the enqueue_entity(.flags=0) will 7017 * do the right thing. 7018 * 7019 * If it was on_rq, then the dequeue_entity(.flags=0) will already 7020 * have normalized the vruntime, if it was !on_rq, then only when 7021 * the task is sleeping will it still have non-normalized vruntime. 7022 */ 7023 if (!se->on_rq && p->state != TASK_RUNNING) { 7024 /* 7025 * Fix up our vruntime so that the current sleep doesn't 7026 * cause 'unlimited' sleep bonus. 7027 */ 7028 place_entity(cfs_rq, se, 0); 7029 se->vruntime -= cfs_rq->min_vruntime; 7030 } 7031 7032 #ifdef CONFIG_SMP 7033 /* 7034 * Remove our load from contribution when we leave sched_fair 7035 * and ensure we don't carry in an old decay_count if we 7036 * switch back. 7037 */ 7038 if (se->avg.decay_count) { 7039 __synchronize_entity_decay(se); 7040 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 7041 } 7042 #endif 7043 } 7044 7045 /* 7046 * We switched to the sched_fair class. 7047 */ 7048 static void switched_to_fair(struct rq *rq, struct task_struct *p) 7049 { 7050 if (!p->se.on_rq) 7051 return; 7052 7053 /* 7054 * We were most likely switched from sched_rt, so 7055 * kick off the schedule if running, otherwise just see 7056 * if we can still preempt the current task. 7057 */ 7058 if (rq->curr == p) 7059 resched_task(rq->curr); 7060 else 7061 check_preempt_curr(rq, p, 0); 7062 } 7063 7064 /* Account for a task changing its policy or group. 7065 * 7066 * This routine is mostly called to set cfs_rq->curr field when a task 7067 * migrates between groups/classes. 7068 */ 7069 static void set_curr_task_fair(struct rq *rq) 7070 { 7071 struct sched_entity *se = &rq->curr->se; 7072 7073 for_each_sched_entity(se) { 7074 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7075 7076 set_next_entity(cfs_rq, se); 7077 /* ensure bandwidth has been allocated on our new cfs_rq */ 7078 account_cfs_rq_runtime(cfs_rq, 0); 7079 } 7080 } 7081 7082 void init_cfs_rq(struct cfs_rq *cfs_rq) 7083 { 7084 cfs_rq->tasks_timeline = RB_ROOT; 7085 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 7086 #ifndef CONFIG_64BIT 7087 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 7088 #endif 7089 #ifdef CONFIG_SMP 7090 atomic64_set(&cfs_rq->decay_counter, 1); 7091 atomic_long_set(&cfs_rq->removed_load, 0); 7092 #endif 7093 } 7094 7095 #ifdef CONFIG_FAIR_GROUP_SCHED 7096 static void task_move_group_fair(struct task_struct *p, int on_rq) 7097 { 7098 struct cfs_rq *cfs_rq; 7099 /* 7100 * If the task was not on the rq at the time of this cgroup movement 7101 * it must have been asleep, sleeping tasks keep their ->vruntime 7102 * absolute on their old rq until wakeup (needed for the fair sleeper 7103 * bonus in place_entity()). 7104 * 7105 * If it was on the rq, we've just 'preempted' it, which does convert 7106 * ->vruntime to a relative base. 7107 * 7108 * Make sure both cases convert their relative position when migrating 7109 * to another cgroup's rq. This does somewhat interfere with the 7110 * fair sleeper stuff for the first placement, but who cares. 7111 */ 7112 /* 7113 * When !on_rq, vruntime of the task has usually NOT been normalized. 7114 * But there are some cases where it has already been normalized: 7115 * 7116 * - Moving a forked child which is waiting for being woken up by 7117 * wake_up_new_task(). 7118 * - Moving a task which has been woken up by try_to_wake_up() and 7119 * waiting for actually being woken up by sched_ttwu_pending(). 7120 * 7121 * To prevent boost or penalty in the new cfs_rq caused by delta 7122 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 7123 */ 7124 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING)) 7125 on_rq = 1; 7126 7127 if (!on_rq) 7128 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; 7129 set_task_rq(p, task_cpu(p)); 7130 if (!on_rq) { 7131 cfs_rq = cfs_rq_of(&p->se); 7132 p->se.vruntime += cfs_rq->min_vruntime; 7133 #ifdef CONFIG_SMP 7134 /* 7135 * migrate_task_rq_fair() will have removed our previous 7136 * contribution, but we must synchronize for ongoing future 7137 * decay. 7138 */ 7139 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 7140 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib; 7141 #endif 7142 } 7143 } 7144 7145 void free_fair_sched_group(struct task_group *tg) 7146 { 7147 int i; 7148 7149 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7150 7151 for_each_possible_cpu(i) { 7152 if (tg->cfs_rq) 7153 kfree(tg->cfs_rq[i]); 7154 if (tg->se) 7155 kfree(tg->se[i]); 7156 } 7157 7158 kfree(tg->cfs_rq); 7159 kfree(tg->se); 7160 } 7161 7162 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 7163 { 7164 struct cfs_rq *cfs_rq; 7165 struct sched_entity *se; 7166 int i; 7167 7168 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 7169 if (!tg->cfs_rq) 7170 goto err; 7171 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 7172 if (!tg->se) 7173 goto err; 7174 7175 tg->shares = NICE_0_LOAD; 7176 7177 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7178 7179 for_each_possible_cpu(i) { 7180 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 7181 GFP_KERNEL, cpu_to_node(i)); 7182 if (!cfs_rq) 7183 goto err; 7184 7185 se = kzalloc_node(sizeof(struct sched_entity), 7186 GFP_KERNEL, cpu_to_node(i)); 7187 if (!se) 7188 goto err_free_rq; 7189 7190 init_cfs_rq(cfs_rq); 7191 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 7192 } 7193 7194 return 1; 7195 7196 err_free_rq: 7197 kfree(cfs_rq); 7198 err: 7199 return 0; 7200 } 7201 7202 void unregister_fair_sched_group(struct task_group *tg, int cpu) 7203 { 7204 struct rq *rq = cpu_rq(cpu); 7205 unsigned long flags; 7206 7207 /* 7208 * Only empty task groups can be destroyed; so we can speculatively 7209 * check on_list without danger of it being re-added. 7210 */ 7211 if (!tg->cfs_rq[cpu]->on_list) 7212 return; 7213 7214 raw_spin_lock_irqsave(&rq->lock, flags); 7215 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 7216 raw_spin_unlock_irqrestore(&rq->lock, flags); 7217 } 7218 7219 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 7220 struct sched_entity *se, int cpu, 7221 struct sched_entity *parent) 7222 { 7223 struct rq *rq = cpu_rq(cpu); 7224 7225 cfs_rq->tg = tg; 7226 cfs_rq->rq = rq; 7227 init_cfs_rq_runtime(cfs_rq); 7228 7229 tg->cfs_rq[cpu] = cfs_rq; 7230 tg->se[cpu] = se; 7231 7232 /* se could be NULL for root_task_group */ 7233 if (!se) 7234 return; 7235 7236 if (!parent) 7237 se->cfs_rq = &rq->cfs; 7238 else 7239 se->cfs_rq = parent->my_q; 7240 7241 se->my_q = cfs_rq; 7242 /* guarantee group entities always have weight */ 7243 update_load_set(&se->load, NICE_0_LOAD); 7244 se->parent = parent; 7245 } 7246 7247 static DEFINE_MUTEX(shares_mutex); 7248 7249 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 7250 { 7251 int i; 7252 unsigned long flags; 7253 7254 /* 7255 * We can't change the weight of the root cgroup. 7256 */ 7257 if (!tg->se[0]) 7258 return -EINVAL; 7259 7260 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 7261 7262 mutex_lock(&shares_mutex); 7263 if (tg->shares == shares) 7264 goto done; 7265 7266 tg->shares = shares; 7267 for_each_possible_cpu(i) { 7268 struct rq *rq = cpu_rq(i); 7269 struct sched_entity *se; 7270 7271 se = tg->se[i]; 7272 /* Propagate contribution to hierarchy */ 7273 raw_spin_lock_irqsave(&rq->lock, flags); 7274 7275 /* Possible calls to update_curr() need rq clock */ 7276 update_rq_clock(rq); 7277 for_each_sched_entity(se) 7278 update_cfs_shares(group_cfs_rq(se)); 7279 raw_spin_unlock_irqrestore(&rq->lock, flags); 7280 } 7281 7282 done: 7283 mutex_unlock(&shares_mutex); 7284 return 0; 7285 } 7286 #else /* CONFIG_FAIR_GROUP_SCHED */ 7287 7288 void free_fair_sched_group(struct task_group *tg) { } 7289 7290 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 7291 { 7292 return 1; 7293 } 7294 7295 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 7296 7297 #endif /* CONFIG_FAIR_GROUP_SCHED */ 7298 7299 7300 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 7301 { 7302 struct sched_entity *se = &task->se; 7303 unsigned int rr_interval = 0; 7304 7305 /* 7306 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 7307 * idle runqueue: 7308 */ 7309 if (rq->cfs.load.weight) 7310 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 7311 7312 return rr_interval; 7313 } 7314 7315 /* 7316 * All the scheduling class methods: 7317 */ 7318 const struct sched_class fair_sched_class = { 7319 .next = &idle_sched_class, 7320 .enqueue_task = enqueue_task_fair, 7321 .dequeue_task = dequeue_task_fair, 7322 .yield_task = yield_task_fair, 7323 .yield_to_task = yield_to_task_fair, 7324 7325 .check_preempt_curr = check_preempt_wakeup, 7326 7327 .pick_next_task = pick_next_task_fair, 7328 .put_prev_task = put_prev_task_fair, 7329 7330 #ifdef CONFIG_SMP 7331 .select_task_rq = select_task_rq_fair, 7332 .migrate_task_rq = migrate_task_rq_fair, 7333 7334 .rq_online = rq_online_fair, 7335 .rq_offline = rq_offline_fair, 7336 7337 .task_waking = task_waking_fair, 7338 #endif 7339 7340 .set_curr_task = set_curr_task_fair, 7341 .task_tick = task_tick_fair, 7342 .task_fork = task_fork_fair, 7343 7344 .prio_changed = prio_changed_fair, 7345 .switched_from = switched_from_fair, 7346 .switched_to = switched_to_fair, 7347 7348 .get_rr_interval = get_rr_interval_fair, 7349 7350 #ifdef CONFIG_FAIR_GROUP_SCHED 7351 .task_move_group = task_move_group_fair, 7352 #endif 7353 }; 7354 7355 #ifdef CONFIG_SCHED_DEBUG 7356 void print_cfs_stats(struct seq_file *m, int cpu) 7357 { 7358 struct cfs_rq *cfs_rq; 7359 7360 rcu_read_lock(); 7361 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 7362 print_cfs_rq(m, cpu, cfs_rq); 7363 rcu_read_unlock(); 7364 } 7365 #endif 7366 7367 __init void init_sched_fair_class(void) 7368 { 7369 #ifdef CONFIG_SMP 7370 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 7371 7372 #ifdef CONFIG_NO_HZ_COMMON 7373 nohz.next_balance = jiffies; 7374 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 7375 cpu_notifier(sched_ilb_notifier, 0); 7376 #endif 7377 #endif /* SMP */ 7378 7379 } 7380