xref: /openbmc/linux/kernel/sched/fair.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity			= 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 
98 /*
99  * The margin used when comparing utilization with CPU capacity:
100  * util * margin < capacity * 1024
101  *
102  * (default: ~20%)
103  */
104 static unsigned int capacity_margin			= 1280;
105 #endif
106 
107 #ifdef CONFIG_CFS_BANDWIDTH
108 /*
109  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110  * each time a cfs_rq requests quota.
111  *
112  * Note: in the case that the slice exceeds the runtime remaining (either due
113  * to consumption or the quota being specified to be smaller than the slice)
114  * we will always only issue the remaining available time.
115  *
116  * (default: 5 msec, units: microseconds)
117  */
118 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
119 #endif
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	/* hint to use a 32x32->64 mul */
233 	fact = (u64)(u32)fact * lw->inv_weight;
234 
235 	while (fact >> 32) {
236 		fact >>= 1;
237 		shift--;
238 	}
239 
240 	return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242 
243 
244 const struct sched_class fair_sched_class;
245 
246 /**************************************************************
247  * CFS operations on generic schedulable entities:
248  */
249 
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 static inline struct task_struct *task_of(struct sched_entity *se)
252 {
253 	SCHED_WARN_ON(!entity_is_task(se));
254 	return container_of(se, struct task_struct, se);
255 }
256 
257 /* Walk up scheduling entities hierarchy */
258 #define for_each_sched_entity(se) \
259 		for (; se; se = se->parent)
260 
261 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
262 {
263 	return p->se.cfs_rq;
264 }
265 
266 /* runqueue on which this entity is (to be) queued */
267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268 {
269 	return se->cfs_rq;
270 }
271 
272 /* runqueue "owned" by this group */
273 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274 {
275 	return grp->my_q;
276 }
277 
278 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
279 {
280 	struct rq *rq = rq_of(cfs_rq);
281 	int cpu = cpu_of(rq);
282 
283 	if (cfs_rq->on_list)
284 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
285 
286 	cfs_rq->on_list = 1;
287 
288 	/*
289 	 * Ensure we either appear before our parent (if already
290 	 * enqueued) or force our parent to appear after us when it is
291 	 * enqueued. The fact that we always enqueue bottom-up
292 	 * reduces this to two cases and a special case for the root
293 	 * cfs_rq. Furthermore, it also means that we will always reset
294 	 * tmp_alone_branch either when the branch is connected
295 	 * to a tree or when we reach the top of the tree
296 	 */
297 	if (cfs_rq->tg->parent &&
298 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
299 		/*
300 		 * If parent is already on the list, we add the child
301 		 * just before. Thanks to circular linked property of
302 		 * the list, this means to put the child at the tail
303 		 * of the list that starts by parent.
304 		 */
305 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
306 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
307 		/*
308 		 * The branch is now connected to its tree so we can
309 		 * reset tmp_alone_branch to the beginning of the
310 		 * list.
311 		 */
312 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
313 		return true;
314 	}
315 
316 	if (!cfs_rq->tg->parent) {
317 		/*
318 		 * cfs rq without parent should be put
319 		 * at the tail of the list.
320 		 */
321 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
322 			&rq->leaf_cfs_rq_list);
323 		/*
324 		 * We have reach the top of a tree so we can reset
325 		 * tmp_alone_branch to the beginning of the list.
326 		 */
327 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
328 		return true;
329 	}
330 
331 	/*
332 	 * The parent has not already been added so we want to
333 	 * make sure that it will be put after us.
334 	 * tmp_alone_branch points to the begin of the branch
335 	 * where we will add parent.
336 	 */
337 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
338 	/*
339 	 * update tmp_alone_branch to points to the new begin
340 	 * of the branch
341 	 */
342 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
343 	return false;
344 }
345 
346 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
347 {
348 	if (cfs_rq->on_list) {
349 		struct rq *rq = rq_of(cfs_rq);
350 
351 		/*
352 		 * With cfs_rq being unthrottled/throttled during an enqueue,
353 		 * it can happen the tmp_alone_branch points the a leaf that
354 		 * we finally want to del. In this case, tmp_alone_branch moves
355 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
356 		 * at the end of the enqueue.
357 		 */
358 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
359 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
360 
361 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
362 		cfs_rq->on_list = 0;
363 	}
364 }
365 
366 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
367 {
368 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
369 }
370 
371 /* Iterate thr' all leaf cfs_rq's on a runqueue */
372 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
373 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
374 				 leaf_cfs_rq_list)
375 
376 /* Do the two (enqueued) entities belong to the same group ? */
377 static inline struct cfs_rq *
378 is_same_group(struct sched_entity *se, struct sched_entity *pse)
379 {
380 	if (se->cfs_rq == pse->cfs_rq)
381 		return se->cfs_rq;
382 
383 	return NULL;
384 }
385 
386 static inline struct sched_entity *parent_entity(struct sched_entity *se)
387 {
388 	return se->parent;
389 }
390 
391 static void
392 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393 {
394 	int se_depth, pse_depth;
395 
396 	/*
397 	 * preemption test can be made between sibling entities who are in the
398 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 	 * both tasks until we find their ancestors who are siblings of common
400 	 * parent.
401 	 */
402 
403 	/* First walk up until both entities are at same depth */
404 	se_depth = (*se)->depth;
405 	pse_depth = (*pse)->depth;
406 
407 	while (se_depth > pse_depth) {
408 		se_depth--;
409 		*se = parent_entity(*se);
410 	}
411 
412 	while (pse_depth > se_depth) {
413 		pse_depth--;
414 		*pse = parent_entity(*pse);
415 	}
416 
417 	while (!is_same_group(*se, *pse)) {
418 		*se = parent_entity(*se);
419 		*pse = parent_entity(*pse);
420 	}
421 }
422 
423 #else	/* !CONFIG_FAIR_GROUP_SCHED */
424 
425 static inline struct task_struct *task_of(struct sched_entity *se)
426 {
427 	return container_of(se, struct task_struct, se);
428 }
429 
430 #define for_each_sched_entity(se) \
431 		for (; se; se = NULL)
432 
433 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
434 {
435 	return &task_rq(p)->cfs;
436 }
437 
438 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
439 {
440 	struct task_struct *p = task_of(se);
441 	struct rq *rq = task_rq(p);
442 
443 	return &rq->cfs;
444 }
445 
446 /* runqueue "owned" by this group */
447 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
448 {
449 	return NULL;
450 }
451 
452 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
453 {
454 	return true;
455 }
456 
457 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
458 {
459 }
460 
461 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
462 {
463 }
464 
465 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
466 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
467 
468 static inline struct sched_entity *parent_entity(struct sched_entity *se)
469 {
470 	return NULL;
471 }
472 
473 static inline void
474 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
475 {
476 }
477 
478 #endif	/* CONFIG_FAIR_GROUP_SCHED */
479 
480 static __always_inline
481 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
482 
483 /**************************************************************
484  * Scheduling class tree data structure manipulation methods:
485  */
486 
487 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
488 {
489 	s64 delta = (s64)(vruntime - max_vruntime);
490 	if (delta > 0)
491 		max_vruntime = vruntime;
492 
493 	return max_vruntime;
494 }
495 
496 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
497 {
498 	s64 delta = (s64)(vruntime - min_vruntime);
499 	if (delta < 0)
500 		min_vruntime = vruntime;
501 
502 	return min_vruntime;
503 }
504 
505 static inline int entity_before(struct sched_entity *a,
506 				struct sched_entity *b)
507 {
508 	return (s64)(a->vruntime - b->vruntime) < 0;
509 }
510 
511 static void update_min_vruntime(struct cfs_rq *cfs_rq)
512 {
513 	struct sched_entity *curr = cfs_rq->curr;
514 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
515 
516 	u64 vruntime = cfs_rq->min_vruntime;
517 
518 	if (curr) {
519 		if (curr->on_rq)
520 			vruntime = curr->vruntime;
521 		else
522 			curr = NULL;
523 	}
524 
525 	if (leftmost) { /* non-empty tree */
526 		struct sched_entity *se;
527 		se = rb_entry(leftmost, struct sched_entity, run_node);
528 
529 		if (!curr)
530 			vruntime = se->vruntime;
531 		else
532 			vruntime = min_vruntime(vruntime, se->vruntime);
533 	}
534 
535 	/* ensure we never gain time by being placed backwards. */
536 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
537 #ifndef CONFIG_64BIT
538 	smp_wmb();
539 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
540 #endif
541 }
542 
543 /*
544  * Enqueue an entity into the rb-tree:
545  */
546 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
547 {
548 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
549 	struct rb_node *parent = NULL;
550 	struct sched_entity *entry;
551 	bool leftmost = true;
552 
553 	/*
554 	 * Find the right place in the rbtree:
555 	 */
556 	while (*link) {
557 		parent = *link;
558 		entry = rb_entry(parent, struct sched_entity, run_node);
559 		/*
560 		 * We dont care about collisions. Nodes with
561 		 * the same key stay together.
562 		 */
563 		if (entity_before(se, entry)) {
564 			link = &parent->rb_left;
565 		} else {
566 			link = &parent->rb_right;
567 			leftmost = false;
568 		}
569 	}
570 
571 	rb_link_node(&se->run_node, parent, link);
572 	rb_insert_color_cached(&se->run_node,
573 			       &cfs_rq->tasks_timeline, leftmost);
574 }
575 
576 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
577 {
578 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
579 }
580 
581 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
582 {
583 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
584 
585 	if (!left)
586 		return NULL;
587 
588 	return rb_entry(left, struct sched_entity, run_node);
589 }
590 
591 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
592 {
593 	struct rb_node *next = rb_next(&se->run_node);
594 
595 	if (!next)
596 		return NULL;
597 
598 	return rb_entry(next, struct sched_entity, run_node);
599 }
600 
601 #ifdef CONFIG_SCHED_DEBUG
602 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
603 {
604 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
605 
606 	if (!last)
607 		return NULL;
608 
609 	return rb_entry(last, struct sched_entity, run_node);
610 }
611 
612 /**************************************************************
613  * Scheduling class statistics methods:
614  */
615 
616 int sched_proc_update_handler(struct ctl_table *table, int write,
617 		void __user *buffer, size_t *lenp,
618 		loff_t *ppos)
619 {
620 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
621 	unsigned int factor = get_update_sysctl_factor();
622 
623 	if (ret || !write)
624 		return ret;
625 
626 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
627 					sysctl_sched_min_granularity);
628 
629 #define WRT_SYSCTL(name) \
630 	(normalized_sysctl_##name = sysctl_##name / (factor))
631 	WRT_SYSCTL(sched_min_granularity);
632 	WRT_SYSCTL(sched_latency);
633 	WRT_SYSCTL(sched_wakeup_granularity);
634 #undef WRT_SYSCTL
635 
636 	return 0;
637 }
638 #endif
639 
640 /*
641  * delta /= w
642  */
643 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
644 {
645 	if (unlikely(se->load.weight != NICE_0_LOAD))
646 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
647 
648 	return delta;
649 }
650 
651 /*
652  * The idea is to set a period in which each task runs once.
653  *
654  * When there are too many tasks (sched_nr_latency) we have to stretch
655  * this period because otherwise the slices get too small.
656  *
657  * p = (nr <= nl) ? l : l*nr/nl
658  */
659 static u64 __sched_period(unsigned long nr_running)
660 {
661 	if (unlikely(nr_running > sched_nr_latency))
662 		return nr_running * sysctl_sched_min_granularity;
663 	else
664 		return sysctl_sched_latency;
665 }
666 
667 /*
668  * We calculate the wall-time slice from the period by taking a part
669  * proportional to the weight.
670  *
671  * s = p*P[w/rw]
672  */
673 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
674 {
675 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
676 
677 	for_each_sched_entity(se) {
678 		struct load_weight *load;
679 		struct load_weight lw;
680 
681 		cfs_rq = cfs_rq_of(se);
682 		load = &cfs_rq->load;
683 
684 		if (unlikely(!se->on_rq)) {
685 			lw = cfs_rq->load;
686 
687 			update_load_add(&lw, se->load.weight);
688 			load = &lw;
689 		}
690 		slice = __calc_delta(slice, se->load.weight, load);
691 	}
692 	return slice;
693 }
694 
695 /*
696  * We calculate the vruntime slice of a to-be-inserted task.
697  *
698  * vs = s/w
699  */
700 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
701 {
702 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
703 }
704 
705 #include "pelt.h"
706 #ifdef CONFIG_SMP
707 
708 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
709 static unsigned long task_h_load(struct task_struct *p);
710 static unsigned long capacity_of(int cpu);
711 
712 /* Give new sched_entity start runnable values to heavy its load in infant time */
713 void init_entity_runnable_average(struct sched_entity *se)
714 {
715 	struct sched_avg *sa = &se->avg;
716 
717 	memset(sa, 0, sizeof(*sa));
718 
719 	/*
720 	 * Tasks are initialized with full load to be seen as heavy tasks until
721 	 * they get a chance to stabilize to their real load level.
722 	 * Group entities are initialized with zero load to reflect the fact that
723 	 * nothing has been attached to the task group yet.
724 	 */
725 	if (entity_is_task(se))
726 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
727 
728 	se->runnable_weight = se->load.weight;
729 
730 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
731 }
732 
733 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
734 static void attach_entity_cfs_rq(struct sched_entity *se);
735 
736 /*
737  * With new tasks being created, their initial util_avgs are extrapolated
738  * based on the cfs_rq's current util_avg:
739  *
740  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
741  *
742  * However, in many cases, the above util_avg does not give a desired
743  * value. Moreover, the sum of the util_avgs may be divergent, such
744  * as when the series is a harmonic series.
745  *
746  * To solve this problem, we also cap the util_avg of successive tasks to
747  * only 1/2 of the left utilization budget:
748  *
749  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
750  *
751  * where n denotes the nth task and cpu_scale the CPU capacity.
752  *
753  * For example, for a CPU with 1024 of capacity, a simplest series from
754  * the beginning would be like:
755  *
756  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
757  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
758  *
759  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
760  * if util_avg > util_avg_cap.
761  */
762 void post_init_entity_util_avg(struct task_struct *p)
763 {
764 	struct sched_entity *se = &p->se;
765 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
766 	struct sched_avg *sa = &se->avg;
767 	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
768 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
769 
770 	if (cap > 0) {
771 		if (cfs_rq->avg.util_avg != 0) {
772 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
773 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
774 
775 			if (sa->util_avg > cap)
776 				sa->util_avg = cap;
777 		} else {
778 			sa->util_avg = cap;
779 		}
780 	}
781 
782 	if (p->sched_class != &fair_sched_class) {
783 		/*
784 		 * For !fair tasks do:
785 		 *
786 		update_cfs_rq_load_avg(now, cfs_rq);
787 		attach_entity_load_avg(cfs_rq, se, 0);
788 		switched_from_fair(rq, p);
789 		 *
790 		 * such that the next switched_to_fair() has the
791 		 * expected state.
792 		 */
793 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
794 		return;
795 	}
796 
797 	attach_entity_cfs_rq(se);
798 }
799 
800 #else /* !CONFIG_SMP */
801 void init_entity_runnable_average(struct sched_entity *se)
802 {
803 }
804 void post_init_entity_util_avg(struct task_struct *p)
805 {
806 }
807 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
808 {
809 }
810 #endif /* CONFIG_SMP */
811 
812 /*
813  * Update the current task's runtime statistics.
814  */
815 static void update_curr(struct cfs_rq *cfs_rq)
816 {
817 	struct sched_entity *curr = cfs_rq->curr;
818 	u64 now = rq_clock_task(rq_of(cfs_rq));
819 	u64 delta_exec;
820 
821 	if (unlikely(!curr))
822 		return;
823 
824 	delta_exec = now - curr->exec_start;
825 	if (unlikely((s64)delta_exec <= 0))
826 		return;
827 
828 	curr->exec_start = now;
829 
830 	schedstat_set(curr->statistics.exec_max,
831 		      max(delta_exec, curr->statistics.exec_max));
832 
833 	curr->sum_exec_runtime += delta_exec;
834 	schedstat_add(cfs_rq->exec_clock, delta_exec);
835 
836 	curr->vruntime += calc_delta_fair(delta_exec, curr);
837 	update_min_vruntime(cfs_rq);
838 
839 	if (entity_is_task(curr)) {
840 		struct task_struct *curtask = task_of(curr);
841 
842 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
843 		cgroup_account_cputime(curtask, delta_exec);
844 		account_group_exec_runtime(curtask, delta_exec);
845 	}
846 
847 	account_cfs_rq_runtime(cfs_rq, delta_exec);
848 }
849 
850 static void update_curr_fair(struct rq *rq)
851 {
852 	update_curr(cfs_rq_of(&rq->curr->se));
853 }
854 
855 static inline void
856 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
857 {
858 	u64 wait_start, prev_wait_start;
859 
860 	if (!schedstat_enabled())
861 		return;
862 
863 	wait_start = rq_clock(rq_of(cfs_rq));
864 	prev_wait_start = schedstat_val(se->statistics.wait_start);
865 
866 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
867 	    likely(wait_start > prev_wait_start))
868 		wait_start -= prev_wait_start;
869 
870 	__schedstat_set(se->statistics.wait_start, wait_start);
871 }
872 
873 static inline void
874 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
875 {
876 	struct task_struct *p;
877 	u64 delta;
878 
879 	if (!schedstat_enabled())
880 		return;
881 
882 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
883 
884 	if (entity_is_task(se)) {
885 		p = task_of(se);
886 		if (task_on_rq_migrating(p)) {
887 			/*
888 			 * Preserve migrating task's wait time so wait_start
889 			 * time stamp can be adjusted to accumulate wait time
890 			 * prior to migration.
891 			 */
892 			__schedstat_set(se->statistics.wait_start, delta);
893 			return;
894 		}
895 		trace_sched_stat_wait(p, delta);
896 	}
897 
898 	__schedstat_set(se->statistics.wait_max,
899 		      max(schedstat_val(se->statistics.wait_max), delta));
900 	__schedstat_inc(se->statistics.wait_count);
901 	__schedstat_add(se->statistics.wait_sum, delta);
902 	__schedstat_set(se->statistics.wait_start, 0);
903 }
904 
905 static inline void
906 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
907 {
908 	struct task_struct *tsk = NULL;
909 	u64 sleep_start, block_start;
910 
911 	if (!schedstat_enabled())
912 		return;
913 
914 	sleep_start = schedstat_val(se->statistics.sleep_start);
915 	block_start = schedstat_val(se->statistics.block_start);
916 
917 	if (entity_is_task(se))
918 		tsk = task_of(se);
919 
920 	if (sleep_start) {
921 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
922 
923 		if ((s64)delta < 0)
924 			delta = 0;
925 
926 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
927 			__schedstat_set(se->statistics.sleep_max, delta);
928 
929 		__schedstat_set(se->statistics.sleep_start, 0);
930 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
931 
932 		if (tsk) {
933 			account_scheduler_latency(tsk, delta >> 10, 1);
934 			trace_sched_stat_sleep(tsk, delta);
935 		}
936 	}
937 	if (block_start) {
938 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
939 
940 		if ((s64)delta < 0)
941 			delta = 0;
942 
943 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
944 			__schedstat_set(se->statistics.block_max, delta);
945 
946 		__schedstat_set(se->statistics.block_start, 0);
947 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
948 
949 		if (tsk) {
950 			if (tsk->in_iowait) {
951 				__schedstat_add(se->statistics.iowait_sum, delta);
952 				__schedstat_inc(se->statistics.iowait_count);
953 				trace_sched_stat_iowait(tsk, delta);
954 			}
955 
956 			trace_sched_stat_blocked(tsk, delta);
957 
958 			/*
959 			 * Blocking time is in units of nanosecs, so shift by
960 			 * 20 to get a milliseconds-range estimation of the
961 			 * amount of time that the task spent sleeping:
962 			 */
963 			if (unlikely(prof_on == SLEEP_PROFILING)) {
964 				profile_hits(SLEEP_PROFILING,
965 						(void *)get_wchan(tsk),
966 						delta >> 20);
967 			}
968 			account_scheduler_latency(tsk, delta >> 10, 0);
969 		}
970 	}
971 }
972 
973 /*
974  * Task is being enqueued - update stats:
975  */
976 static inline void
977 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
978 {
979 	if (!schedstat_enabled())
980 		return;
981 
982 	/*
983 	 * Are we enqueueing a waiting task? (for current tasks
984 	 * a dequeue/enqueue event is a NOP)
985 	 */
986 	if (se != cfs_rq->curr)
987 		update_stats_wait_start(cfs_rq, se);
988 
989 	if (flags & ENQUEUE_WAKEUP)
990 		update_stats_enqueue_sleeper(cfs_rq, se);
991 }
992 
993 static inline void
994 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
995 {
996 
997 	if (!schedstat_enabled())
998 		return;
999 
1000 	/*
1001 	 * Mark the end of the wait period if dequeueing a
1002 	 * waiting task:
1003 	 */
1004 	if (se != cfs_rq->curr)
1005 		update_stats_wait_end(cfs_rq, se);
1006 
1007 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1008 		struct task_struct *tsk = task_of(se);
1009 
1010 		if (tsk->state & TASK_INTERRUPTIBLE)
1011 			__schedstat_set(se->statistics.sleep_start,
1012 				      rq_clock(rq_of(cfs_rq)));
1013 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1014 			__schedstat_set(se->statistics.block_start,
1015 				      rq_clock(rq_of(cfs_rq)));
1016 	}
1017 }
1018 
1019 /*
1020  * We are picking a new current task - update its stats:
1021  */
1022 static inline void
1023 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1024 {
1025 	/*
1026 	 * We are starting a new run period:
1027 	 */
1028 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1029 }
1030 
1031 /**************************************************
1032  * Scheduling class queueing methods:
1033  */
1034 
1035 #ifdef CONFIG_NUMA_BALANCING
1036 /*
1037  * Approximate time to scan a full NUMA task in ms. The task scan period is
1038  * calculated based on the tasks virtual memory size and
1039  * numa_balancing_scan_size.
1040  */
1041 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1042 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1043 
1044 /* Portion of address space to scan in MB */
1045 unsigned int sysctl_numa_balancing_scan_size = 256;
1046 
1047 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1048 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1049 
1050 struct numa_group {
1051 	refcount_t refcount;
1052 
1053 	spinlock_t lock; /* nr_tasks, tasks */
1054 	int nr_tasks;
1055 	pid_t gid;
1056 	int active_nodes;
1057 
1058 	struct rcu_head rcu;
1059 	unsigned long total_faults;
1060 	unsigned long max_faults_cpu;
1061 	/*
1062 	 * Faults_cpu is used to decide whether memory should move
1063 	 * towards the CPU. As a consequence, these stats are weighted
1064 	 * more by CPU use than by memory faults.
1065 	 */
1066 	unsigned long *faults_cpu;
1067 	unsigned long faults[0];
1068 };
1069 
1070 static inline unsigned long group_faults_priv(struct numa_group *ng);
1071 static inline unsigned long group_faults_shared(struct numa_group *ng);
1072 
1073 static unsigned int task_nr_scan_windows(struct task_struct *p)
1074 {
1075 	unsigned long rss = 0;
1076 	unsigned long nr_scan_pages;
1077 
1078 	/*
1079 	 * Calculations based on RSS as non-present and empty pages are skipped
1080 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1081 	 * on resident pages
1082 	 */
1083 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1084 	rss = get_mm_rss(p->mm);
1085 	if (!rss)
1086 		rss = nr_scan_pages;
1087 
1088 	rss = round_up(rss, nr_scan_pages);
1089 	return rss / nr_scan_pages;
1090 }
1091 
1092 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1093 #define MAX_SCAN_WINDOW 2560
1094 
1095 static unsigned int task_scan_min(struct task_struct *p)
1096 {
1097 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1098 	unsigned int scan, floor;
1099 	unsigned int windows = 1;
1100 
1101 	if (scan_size < MAX_SCAN_WINDOW)
1102 		windows = MAX_SCAN_WINDOW / scan_size;
1103 	floor = 1000 / windows;
1104 
1105 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1106 	return max_t(unsigned int, floor, scan);
1107 }
1108 
1109 static unsigned int task_scan_start(struct task_struct *p)
1110 {
1111 	unsigned long smin = task_scan_min(p);
1112 	unsigned long period = smin;
1113 
1114 	/* Scale the maximum scan period with the amount of shared memory. */
1115 	if (p->numa_group) {
1116 		struct numa_group *ng = p->numa_group;
1117 		unsigned long shared = group_faults_shared(ng);
1118 		unsigned long private = group_faults_priv(ng);
1119 
1120 		period *= refcount_read(&ng->refcount);
1121 		period *= shared + 1;
1122 		period /= private + shared + 1;
1123 	}
1124 
1125 	return max(smin, period);
1126 }
1127 
1128 static unsigned int task_scan_max(struct task_struct *p)
1129 {
1130 	unsigned long smin = task_scan_min(p);
1131 	unsigned long smax;
1132 
1133 	/* Watch for min being lower than max due to floor calculations */
1134 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1135 
1136 	/* Scale the maximum scan period with the amount of shared memory. */
1137 	if (p->numa_group) {
1138 		struct numa_group *ng = p->numa_group;
1139 		unsigned long shared = group_faults_shared(ng);
1140 		unsigned long private = group_faults_priv(ng);
1141 		unsigned long period = smax;
1142 
1143 		period *= refcount_read(&ng->refcount);
1144 		period *= shared + 1;
1145 		period /= private + shared + 1;
1146 
1147 		smax = max(smax, period);
1148 	}
1149 
1150 	return max(smin, smax);
1151 }
1152 
1153 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1154 {
1155 	int mm_users = 0;
1156 	struct mm_struct *mm = p->mm;
1157 
1158 	if (mm) {
1159 		mm_users = atomic_read(&mm->mm_users);
1160 		if (mm_users == 1) {
1161 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1162 			mm->numa_scan_seq = 0;
1163 		}
1164 	}
1165 	p->node_stamp			= 0;
1166 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
1167 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
1168 	p->numa_work.next		= &p->numa_work;
1169 	p->numa_faults			= NULL;
1170 	p->numa_group			= NULL;
1171 	p->last_task_numa_placement	= 0;
1172 	p->last_sum_exec_runtime	= 0;
1173 
1174 	/* New address space, reset the preferred nid */
1175 	if (!(clone_flags & CLONE_VM)) {
1176 		p->numa_preferred_nid = NUMA_NO_NODE;
1177 		return;
1178 	}
1179 
1180 	/*
1181 	 * New thread, keep existing numa_preferred_nid which should be copied
1182 	 * already by arch_dup_task_struct but stagger when scans start.
1183 	 */
1184 	if (mm) {
1185 		unsigned int delay;
1186 
1187 		delay = min_t(unsigned int, task_scan_max(current),
1188 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1189 		delay += 2 * TICK_NSEC;
1190 		p->node_stamp = delay;
1191 	}
1192 }
1193 
1194 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1195 {
1196 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1197 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1198 }
1199 
1200 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1201 {
1202 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1203 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1204 }
1205 
1206 /* Shared or private faults. */
1207 #define NR_NUMA_HINT_FAULT_TYPES 2
1208 
1209 /* Memory and CPU locality */
1210 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1211 
1212 /* Averaged statistics, and temporary buffers. */
1213 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1214 
1215 pid_t task_numa_group_id(struct task_struct *p)
1216 {
1217 	return p->numa_group ? p->numa_group->gid : 0;
1218 }
1219 
1220 /*
1221  * The averaged statistics, shared & private, memory & CPU,
1222  * occupy the first half of the array. The second half of the
1223  * array is for current counters, which are averaged into the
1224  * first set by task_numa_placement.
1225  */
1226 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1227 {
1228 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1229 }
1230 
1231 static inline unsigned long task_faults(struct task_struct *p, int nid)
1232 {
1233 	if (!p->numa_faults)
1234 		return 0;
1235 
1236 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1237 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1238 }
1239 
1240 static inline unsigned long group_faults(struct task_struct *p, int nid)
1241 {
1242 	if (!p->numa_group)
1243 		return 0;
1244 
1245 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1246 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1247 }
1248 
1249 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1250 {
1251 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1252 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1253 }
1254 
1255 static inline unsigned long group_faults_priv(struct numa_group *ng)
1256 {
1257 	unsigned long faults = 0;
1258 	int node;
1259 
1260 	for_each_online_node(node) {
1261 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1262 	}
1263 
1264 	return faults;
1265 }
1266 
1267 static inline unsigned long group_faults_shared(struct numa_group *ng)
1268 {
1269 	unsigned long faults = 0;
1270 	int node;
1271 
1272 	for_each_online_node(node) {
1273 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1274 	}
1275 
1276 	return faults;
1277 }
1278 
1279 /*
1280  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1281  * considered part of a numa group's pseudo-interleaving set. Migrations
1282  * between these nodes are slowed down, to allow things to settle down.
1283  */
1284 #define ACTIVE_NODE_FRACTION 3
1285 
1286 static bool numa_is_active_node(int nid, struct numa_group *ng)
1287 {
1288 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1289 }
1290 
1291 /* Handle placement on systems where not all nodes are directly connected. */
1292 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1293 					int maxdist, bool task)
1294 {
1295 	unsigned long score = 0;
1296 	int node;
1297 
1298 	/*
1299 	 * All nodes are directly connected, and the same distance
1300 	 * from each other. No need for fancy placement algorithms.
1301 	 */
1302 	if (sched_numa_topology_type == NUMA_DIRECT)
1303 		return 0;
1304 
1305 	/*
1306 	 * This code is called for each node, introducing N^2 complexity,
1307 	 * which should be ok given the number of nodes rarely exceeds 8.
1308 	 */
1309 	for_each_online_node(node) {
1310 		unsigned long faults;
1311 		int dist = node_distance(nid, node);
1312 
1313 		/*
1314 		 * The furthest away nodes in the system are not interesting
1315 		 * for placement; nid was already counted.
1316 		 */
1317 		if (dist == sched_max_numa_distance || node == nid)
1318 			continue;
1319 
1320 		/*
1321 		 * On systems with a backplane NUMA topology, compare groups
1322 		 * of nodes, and move tasks towards the group with the most
1323 		 * memory accesses. When comparing two nodes at distance
1324 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1325 		 * of each group. Skip other nodes.
1326 		 */
1327 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1328 					dist >= maxdist)
1329 			continue;
1330 
1331 		/* Add up the faults from nearby nodes. */
1332 		if (task)
1333 			faults = task_faults(p, node);
1334 		else
1335 			faults = group_faults(p, node);
1336 
1337 		/*
1338 		 * On systems with a glueless mesh NUMA topology, there are
1339 		 * no fixed "groups of nodes". Instead, nodes that are not
1340 		 * directly connected bounce traffic through intermediate
1341 		 * nodes; a numa_group can occupy any set of nodes.
1342 		 * The further away a node is, the less the faults count.
1343 		 * This seems to result in good task placement.
1344 		 */
1345 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1346 			faults *= (sched_max_numa_distance - dist);
1347 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1348 		}
1349 
1350 		score += faults;
1351 	}
1352 
1353 	return score;
1354 }
1355 
1356 /*
1357  * These return the fraction of accesses done by a particular task, or
1358  * task group, on a particular numa node.  The group weight is given a
1359  * larger multiplier, in order to group tasks together that are almost
1360  * evenly spread out between numa nodes.
1361  */
1362 static inline unsigned long task_weight(struct task_struct *p, int nid,
1363 					int dist)
1364 {
1365 	unsigned long faults, total_faults;
1366 
1367 	if (!p->numa_faults)
1368 		return 0;
1369 
1370 	total_faults = p->total_numa_faults;
1371 
1372 	if (!total_faults)
1373 		return 0;
1374 
1375 	faults = task_faults(p, nid);
1376 	faults += score_nearby_nodes(p, nid, dist, true);
1377 
1378 	return 1000 * faults / total_faults;
1379 }
1380 
1381 static inline unsigned long group_weight(struct task_struct *p, int nid,
1382 					 int dist)
1383 {
1384 	unsigned long faults, total_faults;
1385 
1386 	if (!p->numa_group)
1387 		return 0;
1388 
1389 	total_faults = p->numa_group->total_faults;
1390 
1391 	if (!total_faults)
1392 		return 0;
1393 
1394 	faults = group_faults(p, nid);
1395 	faults += score_nearby_nodes(p, nid, dist, false);
1396 
1397 	return 1000 * faults / total_faults;
1398 }
1399 
1400 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1401 				int src_nid, int dst_cpu)
1402 {
1403 	struct numa_group *ng = p->numa_group;
1404 	int dst_nid = cpu_to_node(dst_cpu);
1405 	int last_cpupid, this_cpupid;
1406 
1407 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1408 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1409 
1410 	/*
1411 	 * Allow first faults or private faults to migrate immediately early in
1412 	 * the lifetime of a task. The magic number 4 is based on waiting for
1413 	 * two full passes of the "multi-stage node selection" test that is
1414 	 * executed below.
1415 	 */
1416 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1417 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1418 		return true;
1419 
1420 	/*
1421 	 * Multi-stage node selection is used in conjunction with a periodic
1422 	 * migration fault to build a temporal task<->page relation. By using
1423 	 * a two-stage filter we remove short/unlikely relations.
1424 	 *
1425 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1426 	 * a task's usage of a particular page (n_p) per total usage of this
1427 	 * page (n_t) (in a given time-span) to a probability.
1428 	 *
1429 	 * Our periodic faults will sample this probability and getting the
1430 	 * same result twice in a row, given these samples are fully
1431 	 * independent, is then given by P(n)^2, provided our sample period
1432 	 * is sufficiently short compared to the usage pattern.
1433 	 *
1434 	 * This quadric squishes small probabilities, making it less likely we
1435 	 * act on an unlikely task<->page relation.
1436 	 */
1437 	if (!cpupid_pid_unset(last_cpupid) &&
1438 				cpupid_to_nid(last_cpupid) != dst_nid)
1439 		return false;
1440 
1441 	/* Always allow migrate on private faults */
1442 	if (cpupid_match_pid(p, last_cpupid))
1443 		return true;
1444 
1445 	/* A shared fault, but p->numa_group has not been set up yet. */
1446 	if (!ng)
1447 		return true;
1448 
1449 	/*
1450 	 * Destination node is much more heavily used than the source
1451 	 * node? Allow migration.
1452 	 */
1453 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1454 					ACTIVE_NODE_FRACTION)
1455 		return true;
1456 
1457 	/*
1458 	 * Distribute memory according to CPU & memory use on each node,
1459 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1460 	 *
1461 	 * faults_cpu(dst)   3   faults_cpu(src)
1462 	 * --------------- * - > ---------------
1463 	 * faults_mem(dst)   4   faults_mem(src)
1464 	 */
1465 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1466 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1467 }
1468 
1469 static unsigned long weighted_cpuload(struct rq *rq);
1470 static unsigned long source_load(int cpu, int type);
1471 static unsigned long target_load(int cpu, int type);
1472 
1473 /* Cached statistics for all CPUs within a node */
1474 struct numa_stats {
1475 	unsigned long load;
1476 
1477 	/* Total compute capacity of CPUs on a node */
1478 	unsigned long compute_capacity;
1479 };
1480 
1481 /*
1482  * XXX borrowed from update_sg_lb_stats
1483  */
1484 static void update_numa_stats(struct numa_stats *ns, int nid)
1485 {
1486 	int cpu;
1487 
1488 	memset(ns, 0, sizeof(*ns));
1489 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1490 		struct rq *rq = cpu_rq(cpu);
1491 
1492 		ns->load += weighted_cpuload(rq);
1493 		ns->compute_capacity += capacity_of(cpu);
1494 	}
1495 
1496 }
1497 
1498 struct task_numa_env {
1499 	struct task_struct *p;
1500 
1501 	int src_cpu, src_nid;
1502 	int dst_cpu, dst_nid;
1503 
1504 	struct numa_stats src_stats, dst_stats;
1505 
1506 	int imbalance_pct;
1507 	int dist;
1508 
1509 	struct task_struct *best_task;
1510 	long best_imp;
1511 	int best_cpu;
1512 };
1513 
1514 static void task_numa_assign(struct task_numa_env *env,
1515 			     struct task_struct *p, long imp)
1516 {
1517 	struct rq *rq = cpu_rq(env->dst_cpu);
1518 
1519 	/* Bail out if run-queue part of active NUMA balance. */
1520 	if (xchg(&rq->numa_migrate_on, 1))
1521 		return;
1522 
1523 	/*
1524 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1525 	 * found a better CPU to move/swap.
1526 	 */
1527 	if (env->best_cpu != -1) {
1528 		rq = cpu_rq(env->best_cpu);
1529 		WRITE_ONCE(rq->numa_migrate_on, 0);
1530 	}
1531 
1532 	if (env->best_task)
1533 		put_task_struct(env->best_task);
1534 	if (p)
1535 		get_task_struct(p);
1536 
1537 	env->best_task = p;
1538 	env->best_imp = imp;
1539 	env->best_cpu = env->dst_cpu;
1540 }
1541 
1542 static bool load_too_imbalanced(long src_load, long dst_load,
1543 				struct task_numa_env *env)
1544 {
1545 	long imb, old_imb;
1546 	long orig_src_load, orig_dst_load;
1547 	long src_capacity, dst_capacity;
1548 
1549 	/*
1550 	 * The load is corrected for the CPU capacity available on each node.
1551 	 *
1552 	 * src_load        dst_load
1553 	 * ------------ vs ---------
1554 	 * src_capacity    dst_capacity
1555 	 */
1556 	src_capacity = env->src_stats.compute_capacity;
1557 	dst_capacity = env->dst_stats.compute_capacity;
1558 
1559 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1560 
1561 	orig_src_load = env->src_stats.load;
1562 	orig_dst_load = env->dst_stats.load;
1563 
1564 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1565 
1566 	/* Would this change make things worse? */
1567 	return (imb > old_imb);
1568 }
1569 
1570 /*
1571  * Maximum NUMA importance can be 1998 (2*999);
1572  * SMALLIMP @ 30 would be close to 1998/64.
1573  * Used to deter task migration.
1574  */
1575 #define SMALLIMP	30
1576 
1577 /*
1578  * This checks if the overall compute and NUMA accesses of the system would
1579  * be improved if the source tasks was migrated to the target dst_cpu taking
1580  * into account that it might be best if task running on the dst_cpu should
1581  * be exchanged with the source task
1582  */
1583 static void task_numa_compare(struct task_numa_env *env,
1584 			      long taskimp, long groupimp, bool maymove)
1585 {
1586 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1587 	struct task_struct *cur;
1588 	long src_load, dst_load;
1589 	long load;
1590 	long imp = env->p->numa_group ? groupimp : taskimp;
1591 	long moveimp = imp;
1592 	int dist = env->dist;
1593 
1594 	if (READ_ONCE(dst_rq->numa_migrate_on))
1595 		return;
1596 
1597 	rcu_read_lock();
1598 	cur = task_rcu_dereference(&dst_rq->curr);
1599 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1600 		cur = NULL;
1601 
1602 	/*
1603 	 * Because we have preemption enabled we can get migrated around and
1604 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1605 	 */
1606 	if (cur == env->p)
1607 		goto unlock;
1608 
1609 	if (!cur) {
1610 		if (maymove && moveimp >= env->best_imp)
1611 			goto assign;
1612 		else
1613 			goto unlock;
1614 	}
1615 
1616 	/*
1617 	 * "imp" is the fault differential for the source task between the
1618 	 * source and destination node. Calculate the total differential for
1619 	 * the source task and potential destination task. The more negative
1620 	 * the value is, the more remote accesses that would be expected to
1621 	 * be incurred if the tasks were swapped.
1622 	 */
1623 	/* Skip this swap candidate if cannot move to the source cpu */
1624 	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1625 		goto unlock;
1626 
1627 	/*
1628 	 * If dst and source tasks are in the same NUMA group, or not
1629 	 * in any group then look only at task weights.
1630 	 */
1631 	if (cur->numa_group == env->p->numa_group) {
1632 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1633 		      task_weight(cur, env->dst_nid, dist);
1634 		/*
1635 		 * Add some hysteresis to prevent swapping the
1636 		 * tasks within a group over tiny differences.
1637 		 */
1638 		if (cur->numa_group)
1639 			imp -= imp / 16;
1640 	} else {
1641 		/*
1642 		 * Compare the group weights. If a task is all by itself
1643 		 * (not part of a group), use the task weight instead.
1644 		 */
1645 		if (cur->numa_group && env->p->numa_group)
1646 			imp += group_weight(cur, env->src_nid, dist) -
1647 			       group_weight(cur, env->dst_nid, dist);
1648 		else
1649 			imp += task_weight(cur, env->src_nid, dist) -
1650 			       task_weight(cur, env->dst_nid, dist);
1651 	}
1652 
1653 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1654 		imp = moveimp;
1655 		cur = NULL;
1656 		goto assign;
1657 	}
1658 
1659 	/*
1660 	 * If the NUMA importance is less than SMALLIMP,
1661 	 * task migration might only result in ping pong
1662 	 * of tasks and also hurt performance due to cache
1663 	 * misses.
1664 	 */
1665 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1666 		goto unlock;
1667 
1668 	/*
1669 	 * In the overloaded case, try and keep the load balanced.
1670 	 */
1671 	load = task_h_load(env->p) - task_h_load(cur);
1672 	if (!load)
1673 		goto assign;
1674 
1675 	dst_load = env->dst_stats.load + load;
1676 	src_load = env->src_stats.load - load;
1677 
1678 	if (load_too_imbalanced(src_load, dst_load, env))
1679 		goto unlock;
1680 
1681 assign:
1682 	/*
1683 	 * One idle CPU per node is evaluated for a task numa move.
1684 	 * Call select_idle_sibling to maybe find a better one.
1685 	 */
1686 	if (!cur) {
1687 		/*
1688 		 * select_idle_siblings() uses an per-CPU cpumask that
1689 		 * can be used from IRQ context.
1690 		 */
1691 		local_irq_disable();
1692 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1693 						   env->dst_cpu);
1694 		local_irq_enable();
1695 	}
1696 
1697 	task_numa_assign(env, cur, imp);
1698 unlock:
1699 	rcu_read_unlock();
1700 }
1701 
1702 static void task_numa_find_cpu(struct task_numa_env *env,
1703 				long taskimp, long groupimp)
1704 {
1705 	long src_load, dst_load, load;
1706 	bool maymove = false;
1707 	int cpu;
1708 
1709 	load = task_h_load(env->p);
1710 	dst_load = env->dst_stats.load + load;
1711 	src_load = env->src_stats.load - load;
1712 
1713 	/*
1714 	 * If the improvement from just moving env->p direction is better
1715 	 * than swapping tasks around, check if a move is possible.
1716 	 */
1717 	maymove = !load_too_imbalanced(src_load, dst_load, env);
1718 
1719 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1720 		/* Skip this CPU if the source task cannot migrate */
1721 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1722 			continue;
1723 
1724 		env->dst_cpu = cpu;
1725 		task_numa_compare(env, taskimp, groupimp, maymove);
1726 	}
1727 }
1728 
1729 static int task_numa_migrate(struct task_struct *p)
1730 {
1731 	struct task_numa_env env = {
1732 		.p = p,
1733 
1734 		.src_cpu = task_cpu(p),
1735 		.src_nid = task_node(p),
1736 
1737 		.imbalance_pct = 112,
1738 
1739 		.best_task = NULL,
1740 		.best_imp = 0,
1741 		.best_cpu = -1,
1742 	};
1743 	struct sched_domain *sd;
1744 	struct rq *best_rq;
1745 	unsigned long taskweight, groupweight;
1746 	int nid, ret, dist;
1747 	long taskimp, groupimp;
1748 
1749 	/*
1750 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1751 	 * imbalance and would be the first to start moving tasks about.
1752 	 *
1753 	 * And we want to avoid any moving of tasks about, as that would create
1754 	 * random movement of tasks -- counter the numa conditions we're trying
1755 	 * to satisfy here.
1756 	 */
1757 	rcu_read_lock();
1758 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1759 	if (sd)
1760 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1761 	rcu_read_unlock();
1762 
1763 	/*
1764 	 * Cpusets can break the scheduler domain tree into smaller
1765 	 * balance domains, some of which do not cross NUMA boundaries.
1766 	 * Tasks that are "trapped" in such domains cannot be migrated
1767 	 * elsewhere, so there is no point in (re)trying.
1768 	 */
1769 	if (unlikely(!sd)) {
1770 		sched_setnuma(p, task_node(p));
1771 		return -EINVAL;
1772 	}
1773 
1774 	env.dst_nid = p->numa_preferred_nid;
1775 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1776 	taskweight = task_weight(p, env.src_nid, dist);
1777 	groupweight = group_weight(p, env.src_nid, dist);
1778 	update_numa_stats(&env.src_stats, env.src_nid);
1779 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1780 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1781 	update_numa_stats(&env.dst_stats, env.dst_nid);
1782 
1783 	/* Try to find a spot on the preferred nid. */
1784 	task_numa_find_cpu(&env, taskimp, groupimp);
1785 
1786 	/*
1787 	 * Look at other nodes in these cases:
1788 	 * - there is no space available on the preferred_nid
1789 	 * - the task is part of a numa_group that is interleaved across
1790 	 *   multiple NUMA nodes; in order to better consolidate the group,
1791 	 *   we need to check other locations.
1792 	 */
1793 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1794 		for_each_online_node(nid) {
1795 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1796 				continue;
1797 
1798 			dist = node_distance(env.src_nid, env.dst_nid);
1799 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1800 						dist != env.dist) {
1801 				taskweight = task_weight(p, env.src_nid, dist);
1802 				groupweight = group_weight(p, env.src_nid, dist);
1803 			}
1804 
1805 			/* Only consider nodes where both task and groups benefit */
1806 			taskimp = task_weight(p, nid, dist) - taskweight;
1807 			groupimp = group_weight(p, nid, dist) - groupweight;
1808 			if (taskimp < 0 && groupimp < 0)
1809 				continue;
1810 
1811 			env.dist = dist;
1812 			env.dst_nid = nid;
1813 			update_numa_stats(&env.dst_stats, env.dst_nid);
1814 			task_numa_find_cpu(&env, taskimp, groupimp);
1815 		}
1816 	}
1817 
1818 	/*
1819 	 * If the task is part of a workload that spans multiple NUMA nodes,
1820 	 * and is migrating into one of the workload's active nodes, remember
1821 	 * this node as the task's preferred numa node, so the workload can
1822 	 * settle down.
1823 	 * A task that migrated to a second choice node will be better off
1824 	 * trying for a better one later. Do not set the preferred node here.
1825 	 */
1826 	if (p->numa_group) {
1827 		if (env.best_cpu == -1)
1828 			nid = env.src_nid;
1829 		else
1830 			nid = cpu_to_node(env.best_cpu);
1831 
1832 		if (nid != p->numa_preferred_nid)
1833 			sched_setnuma(p, nid);
1834 	}
1835 
1836 	/* No better CPU than the current one was found. */
1837 	if (env.best_cpu == -1)
1838 		return -EAGAIN;
1839 
1840 	best_rq = cpu_rq(env.best_cpu);
1841 	if (env.best_task == NULL) {
1842 		ret = migrate_task_to(p, env.best_cpu);
1843 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1844 		if (ret != 0)
1845 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1846 		return ret;
1847 	}
1848 
1849 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1850 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1851 
1852 	if (ret != 0)
1853 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1854 	put_task_struct(env.best_task);
1855 	return ret;
1856 }
1857 
1858 /* Attempt to migrate a task to a CPU on the preferred node. */
1859 static void numa_migrate_preferred(struct task_struct *p)
1860 {
1861 	unsigned long interval = HZ;
1862 
1863 	/* This task has no NUMA fault statistics yet */
1864 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
1865 		return;
1866 
1867 	/* Periodically retry migrating the task to the preferred node */
1868 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1869 	p->numa_migrate_retry = jiffies + interval;
1870 
1871 	/* Success if task is already running on preferred CPU */
1872 	if (task_node(p) == p->numa_preferred_nid)
1873 		return;
1874 
1875 	/* Otherwise, try migrate to a CPU on the preferred node */
1876 	task_numa_migrate(p);
1877 }
1878 
1879 /*
1880  * Find out how many nodes on the workload is actively running on. Do this by
1881  * tracking the nodes from which NUMA hinting faults are triggered. This can
1882  * be different from the set of nodes where the workload's memory is currently
1883  * located.
1884  */
1885 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1886 {
1887 	unsigned long faults, max_faults = 0;
1888 	int nid, active_nodes = 0;
1889 
1890 	for_each_online_node(nid) {
1891 		faults = group_faults_cpu(numa_group, nid);
1892 		if (faults > max_faults)
1893 			max_faults = faults;
1894 	}
1895 
1896 	for_each_online_node(nid) {
1897 		faults = group_faults_cpu(numa_group, nid);
1898 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1899 			active_nodes++;
1900 	}
1901 
1902 	numa_group->max_faults_cpu = max_faults;
1903 	numa_group->active_nodes = active_nodes;
1904 }
1905 
1906 /*
1907  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1908  * increments. The more local the fault statistics are, the higher the scan
1909  * period will be for the next scan window. If local/(local+remote) ratio is
1910  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1911  * the scan period will decrease. Aim for 70% local accesses.
1912  */
1913 #define NUMA_PERIOD_SLOTS 10
1914 #define NUMA_PERIOD_THRESHOLD 7
1915 
1916 /*
1917  * Increase the scan period (slow down scanning) if the majority of
1918  * our memory is already on our local node, or if the majority of
1919  * the page accesses are shared with other processes.
1920  * Otherwise, decrease the scan period.
1921  */
1922 static void update_task_scan_period(struct task_struct *p,
1923 			unsigned long shared, unsigned long private)
1924 {
1925 	unsigned int period_slot;
1926 	int lr_ratio, ps_ratio;
1927 	int diff;
1928 
1929 	unsigned long remote = p->numa_faults_locality[0];
1930 	unsigned long local = p->numa_faults_locality[1];
1931 
1932 	/*
1933 	 * If there were no record hinting faults then either the task is
1934 	 * completely idle or all activity is areas that are not of interest
1935 	 * to automatic numa balancing. Related to that, if there were failed
1936 	 * migration then it implies we are migrating too quickly or the local
1937 	 * node is overloaded. In either case, scan slower
1938 	 */
1939 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1940 		p->numa_scan_period = min(p->numa_scan_period_max,
1941 			p->numa_scan_period << 1);
1942 
1943 		p->mm->numa_next_scan = jiffies +
1944 			msecs_to_jiffies(p->numa_scan_period);
1945 
1946 		return;
1947 	}
1948 
1949 	/*
1950 	 * Prepare to scale scan period relative to the current period.
1951 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1952 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1953 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1954 	 */
1955 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1956 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1957 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1958 
1959 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1960 		/*
1961 		 * Most memory accesses are local. There is no need to
1962 		 * do fast NUMA scanning, since memory is already local.
1963 		 */
1964 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1965 		if (!slot)
1966 			slot = 1;
1967 		diff = slot * period_slot;
1968 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1969 		/*
1970 		 * Most memory accesses are shared with other tasks.
1971 		 * There is no point in continuing fast NUMA scanning,
1972 		 * since other tasks may just move the memory elsewhere.
1973 		 */
1974 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1975 		if (!slot)
1976 			slot = 1;
1977 		diff = slot * period_slot;
1978 	} else {
1979 		/*
1980 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1981 		 * yet they are not on the local NUMA node. Speed up
1982 		 * NUMA scanning to get the memory moved over.
1983 		 */
1984 		int ratio = max(lr_ratio, ps_ratio);
1985 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1986 	}
1987 
1988 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1989 			task_scan_min(p), task_scan_max(p));
1990 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1991 }
1992 
1993 /*
1994  * Get the fraction of time the task has been running since the last
1995  * NUMA placement cycle. The scheduler keeps similar statistics, but
1996  * decays those on a 32ms period, which is orders of magnitude off
1997  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1998  * stats only if the task is so new there are no NUMA statistics yet.
1999  */
2000 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2001 {
2002 	u64 runtime, delta, now;
2003 	/* Use the start of this time slice to avoid calculations. */
2004 	now = p->se.exec_start;
2005 	runtime = p->se.sum_exec_runtime;
2006 
2007 	if (p->last_task_numa_placement) {
2008 		delta = runtime - p->last_sum_exec_runtime;
2009 		*period = now - p->last_task_numa_placement;
2010 
2011 		/* Avoid time going backwards, prevent potential divide error: */
2012 		if (unlikely((s64)*period < 0))
2013 			*period = 0;
2014 	} else {
2015 		delta = p->se.avg.load_sum;
2016 		*period = LOAD_AVG_MAX;
2017 	}
2018 
2019 	p->last_sum_exec_runtime = runtime;
2020 	p->last_task_numa_placement = now;
2021 
2022 	return delta;
2023 }
2024 
2025 /*
2026  * Determine the preferred nid for a task in a numa_group. This needs to
2027  * be done in a way that produces consistent results with group_weight,
2028  * otherwise workloads might not converge.
2029  */
2030 static int preferred_group_nid(struct task_struct *p, int nid)
2031 {
2032 	nodemask_t nodes;
2033 	int dist;
2034 
2035 	/* Direct connections between all NUMA nodes. */
2036 	if (sched_numa_topology_type == NUMA_DIRECT)
2037 		return nid;
2038 
2039 	/*
2040 	 * On a system with glueless mesh NUMA topology, group_weight
2041 	 * scores nodes according to the number of NUMA hinting faults on
2042 	 * both the node itself, and on nearby nodes.
2043 	 */
2044 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2045 		unsigned long score, max_score = 0;
2046 		int node, max_node = nid;
2047 
2048 		dist = sched_max_numa_distance;
2049 
2050 		for_each_online_node(node) {
2051 			score = group_weight(p, node, dist);
2052 			if (score > max_score) {
2053 				max_score = score;
2054 				max_node = node;
2055 			}
2056 		}
2057 		return max_node;
2058 	}
2059 
2060 	/*
2061 	 * Finding the preferred nid in a system with NUMA backplane
2062 	 * interconnect topology is more involved. The goal is to locate
2063 	 * tasks from numa_groups near each other in the system, and
2064 	 * untangle workloads from different sides of the system. This requires
2065 	 * searching down the hierarchy of node groups, recursively searching
2066 	 * inside the highest scoring group of nodes. The nodemask tricks
2067 	 * keep the complexity of the search down.
2068 	 */
2069 	nodes = node_online_map;
2070 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2071 		unsigned long max_faults = 0;
2072 		nodemask_t max_group = NODE_MASK_NONE;
2073 		int a, b;
2074 
2075 		/* Are there nodes at this distance from each other? */
2076 		if (!find_numa_distance(dist))
2077 			continue;
2078 
2079 		for_each_node_mask(a, nodes) {
2080 			unsigned long faults = 0;
2081 			nodemask_t this_group;
2082 			nodes_clear(this_group);
2083 
2084 			/* Sum group's NUMA faults; includes a==b case. */
2085 			for_each_node_mask(b, nodes) {
2086 				if (node_distance(a, b) < dist) {
2087 					faults += group_faults(p, b);
2088 					node_set(b, this_group);
2089 					node_clear(b, nodes);
2090 				}
2091 			}
2092 
2093 			/* Remember the top group. */
2094 			if (faults > max_faults) {
2095 				max_faults = faults;
2096 				max_group = this_group;
2097 				/*
2098 				 * subtle: at the smallest distance there is
2099 				 * just one node left in each "group", the
2100 				 * winner is the preferred nid.
2101 				 */
2102 				nid = a;
2103 			}
2104 		}
2105 		/* Next round, evaluate the nodes within max_group. */
2106 		if (!max_faults)
2107 			break;
2108 		nodes = max_group;
2109 	}
2110 	return nid;
2111 }
2112 
2113 static void task_numa_placement(struct task_struct *p)
2114 {
2115 	int seq, nid, max_nid = NUMA_NO_NODE;
2116 	unsigned long max_faults = 0;
2117 	unsigned long fault_types[2] = { 0, 0 };
2118 	unsigned long total_faults;
2119 	u64 runtime, period;
2120 	spinlock_t *group_lock = NULL;
2121 
2122 	/*
2123 	 * The p->mm->numa_scan_seq field gets updated without
2124 	 * exclusive access. Use READ_ONCE() here to ensure
2125 	 * that the field is read in a single access:
2126 	 */
2127 	seq = READ_ONCE(p->mm->numa_scan_seq);
2128 	if (p->numa_scan_seq == seq)
2129 		return;
2130 	p->numa_scan_seq = seq;
2131 	p->numa_scan_period_max = task_scan_max(p);
2132 
2133 	total_faults = p->numa_faults_locality[0] +
2134 		       p->numa_faults_locality[1];
2135 	runtime = numa_get_avg_runtime(p, &period);
2136 
2137 	/* If the task is part of a group prevent parallel updates to group stats */
2138 	if (p->numa_group) {
2139 		group_lock = &p->numa_group->lock;
2140 		spin_lock_irq(group_lock);
2141 	}
2142 
2143 	/* Find the node with the highest number of faults */
2144 	for_each_online_node(nid) {
2145 		/* Keep track of the offsets in numa_faults array */
2146 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2147 		unsigned long faults = 0, group_faults = 0;
2148 		int priv;
2149 
2150 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2151 			long diff, f_diff, f_weight;
2152 
2153 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2154 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2155 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2156 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2157 
2158 			/* Decay existing window, copy faults since last scan */
2159 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2160 			fault_types[priv] += p->numa_faults[membuf_idx];
2161 			p->numa_faults[membuf_idx] = 0;
2162 
2163 			/*
2164 			 * Normalize the faults_from, so all tasks in a group
2165 			 * count according to CPU use, instead of by the raw
2166 			 * number of faults. Tasks with little runtime have
2167 			 * little over-all impact on throughput, and thus their
2168 			 * faults are less important.
2169 			 */
2170 			f_weight = div64_u64(runtime << 16, period + 1);
2171 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2172 				   (total_faults + 1);
2173 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2174 			p->numa_faults[cpubuf_idx] = 0;
2175 
2176 			p->numa_faults[mem_idx] += diff;
2177 			p->numa_faults[cpu_idx] += f_diff;
2178 			faults += p->numa_faults[mem_idx];
2179 			p->total_numa_faults += diff;
2180 			if (p->numa_group) {
2181 				/*
2182 				 * safe because we can only change our own group
2183 				 *
2184 				 * mem_idx represents the offset for a given
2185 				 * nid and priv in a specific region because it
2186 				 * is at the beginning of the numa_faults array.
2187 				 */
2188 				p->numa_group->faults[mem_idx] += diff;
2189 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2190 				p->numa_group->total_faults += diff;
2191 				group_faults += p->numa_group->faults[mem_idx];
2192 			}
2193 		}
2194 
2195 		if (!p->numa_group) {
2196 			if (faults > max_faults) {
2197 				max_faults = faults;
2198 				max_nid = nid;
2199 			}
2200 		} else if (group_faults > max_faults) {
2201 			max_faults = group_faults;
2202 			max_nid = nid;
2203 		}
2204 	}
2205 
2206 	if (p->numa_group) {
2207 		numa_group_count_active_nodes(p->numa_group);
2208 		spin_unlock_irq(group_lock);
2209 		max_nid = preferred_group_nid(p, max_nid);
2210 	}
2211 
2212 	if (max_faults) {
2213 		/* Set the new preferred node */
2214 		if (max_nid != p->numa_preferred_nid)
2215 			sched_setnuma(p, max_nid);
2216 	}
2217 
2218 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2219 }
2220 
2221 static inline int get_numa_group(struct numa_group *grp)
2222 {
2223 	return refcount_inc_not_zero(&grp->refcount);
2224 }
2225 
2226 static inline void put_numa_group(struct numa_group *grp)
2227 {
2228 	if (refcount_dec_and_test(&grp->refcount))
2229 		kfree_rcu(grp, rcu);
2230 }
2231 
2232 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2233 			int *priv)
2234 {
2235 	struct numa_group *grp, *my_grp;
2236 	struct task_struct *tsk;
2237 	bool join = false;
2238 	int cpu = cpupid_to_cpu(cpupid);
2239 	int i;
2240 
2241 	if (unlikely(!p->numa_group)) {
2242 		unsigned int size = sizeof(struct numa_group) +
2243 				    4*nr_node_ids*sizeof(unsigned long);
2244 
2245 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2246 		if (!grp)
2247 			return;
2248 
2249 		refcount_set(&grp->refcount, 1);
2250 		grp->active_nodes = 1;
2251 		grp->max_faults_cpu = 0;
2252 		spin_lock_init(&grp->lock);
2253 		grp->gid = p->pid;
2254 		/* Second half of the array tracks nids where faults happen */
2255 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2256 						nr_node_ids;
2257 
2258 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2259 			grp->faults[i] = p->numa_faults[i];
2260 
2261 		grp->total_faults = p->total_numa_faults;
2262 
2263 		grp->nr_tasks++;
2264 		rcu_assign_pointer(p->numa_group, grp);
2265 	}
2266 
2267 	rcu_read_lock();
2268 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2269 
2270 	if (!cpupid_match_pid(tsk, cpupid))
2271 		goto no_join;
2272 
2273 	grp = rcu_dereference(tsk->numa_group);
2274 	if (!grp)
2275 		goto no_join;
2276 
2277 	my_grp = p->numa_group;
2278 	if (grp == my_grp)
2279 		goto no_join;
2280 
2281 	/*
2282 	 * Only join the other group if its bigger; if we're the bigger group,
2283 	 * the other task will join us.
2284 	 */
2285 	if (my_grp->nr_tasks > grp->nr_tasks)
2286 		goto no_join;
2287 
2288 	/*
2289 	 * Tie-break on the grp address.
2290 	 */
2291 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2292 		goto no_join;
2293 
2294 	/* Always join threads in the same process. */
2295 	if (tsk->mm == current->mm)
2296 		join = true;
2297 
2298 	/* Simple filter to avoid false positives due to PID collisions */
2299 	if (flags & TNF_SHARED)
2300 		join = true;
2301 
2302 	/* Update priv based on whether false sharing was detected */
2303 	*priv = !join;
2304 
2305 	if (join && !get_numa_group(grp))
2306 		goto no_join;
2307 
2308 	rcu_read_unlock();
2309 
2310 	if (!join)
2311 		return;
2312 
2313 	BUG_ON(irqs_disabled());
2314 	double_lock_irq(&my_grp->lock, &grp->lock);
2315 
2316 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2317 		my_grp->faults[i] -= p->numa_faults[i];
2318 		grp->faults[i] += p->numa_faults[i];
2319 	}
2320 	my_grp->total_faults -= p->total_numa_faults;
2321 	grp->total_faults += p->total_numa_faults;
2322 
2323 	my_grp->nr_tasks--;
2324 	grp->nr_tasks++;
2325 
2326 	spin_unlock(&my_grp->lock);
2327 	spin_unlock_irq(&grp->lock);
2328 
2329 	rcu_assign_pointer(p->numa_group, grp);
2330 
2331 	put_numa_group(my_grp);
2332 	return;
2333 
2334 no_join:
2335 	rcu_read_unlock();
2336 	return;
2337 }
2338 
2339 void task_numa_free(struct task_struct *p)
2340 {
2341 	struct numa_group *grp = p->numa_group;
2342 	void *numa_faults = p->numa_faults;
2343 	unsigned long flags;
2344 	int i;
2345 
2346 	if (grp) {
2347 		spin_lock_irqsave(&grp->lock, flags);
2348 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2349 			grp->faults[i] -= p->numa_faults[i];
2350 		grp->total_faults -= p->total_numa_faults;
2351 
2352 		grp->nr_tasks--;
2353 		spin_unlock_irqrestore(&grp->lock, flags);
2354 		RCU_INIT_POINTER(p->numa_group, NULL);
2355 		put_numa_group(grp);
2356 	}
2357 
2358 	p->numa_faults = NULL;
2359 	kfree(numa_faults);
2360 }
2361 
2362 /*
2363  * Got a PROT_NONE fault for a page on @node.
2364  */
2365 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2366 {
2367 	struct task_struct *p = current;
2368 	bool migrated = flags & TNF_MIGRATED;
2369 	int cpu_node = task_node(current);
2370 	int local = !!(flags & TNF_FAULT_LOCAL);
2371 	struct numa_group *ng;
2372 	int priv;
2373 
2374 	if (!static_branch_likely(&sched_numa_balancing))
2375 		return;
2376 
2377 	/* for example, ksmd faulting in a user's mm */
2378 	if (!p->mm)
2379 		return;
2380 
2381 	/* Allocate buffer to track faults on a per-node basis */
2382 	if (unlikely(!p->numa_faults)) {
2383 		int size = sizeof(*p->numa_faults) *
2384 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2385 
2386 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2387 		if (!p->numa_faults)
2388 			return;
2389 
2390 		p->total_numa_faults = 0;
2391 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2392 	}
2393 
2394 	/*
2395 	 * First accesses are treated as private, otherwise consider accesses
2396 	 * to be private if the accessing pid has not changed
2397 	 */
2398 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2399 		priv = 1;
2400 	} else {
2401 		priv = cpupid_match_pid(p, last_cpupid);
2402 		if (!priv && !(flags & TNF_NO_GROUP))
2403 			task_numa_group(p, last_cpupid, flags, &priv);
2404 	}
2405 
2406 	/*
2407 	 * If a workload spans multiple NUMA nodes, a shared fault that
2408 	 * occurs wholly within the set of nodes that the workload is
2409 	 * actively using should be counted as local. This allows the
2410 	 * scan rate to slow down when a workload has settled down.
2411 	 */
2412 	ng = p->numa_group;
2413 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2414 				numa_is_active_node(cpu_node, ng) &&
2415 				numa_is_active_node(mem_node, ng))
2416 		local = 1;
2417 
2418 	/*
2419 	 * Retry to migrate task to preferred node periodically, in case it
2420 	 * previously failed, or the scheduler moved us.
2421 	 */
2422 	if (time_after(jiffies, p->numa_migrate_retry)) {
2423 		task_numa_placement(p);
2424 		numa_migrate_preferred(p);
2425 	}
2426 
2427 	if (migrated)
2428 		p->numa_pages_migrated += pages;
2429 	if (flags & TNF_MIGRATE_FAIL)
2430 		p->numa_faults_locality[2] += pages;
2431 
2432 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2433 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2434 	p->numa_faults_locality[local] += pages;
2435 }
2436 
2437 static void reset_ptenuma_scan(struct task_struct *p)
2438 {
2439 	/*
2440 	 * We only did a read acquisition of the mmap sem, so
2441 	 * p->mm->numa_scan_seq is written to without exclusive access
2442 	 * and the update is not guaranteed to be atomic. That's not
2443 	 * much of an issue though, since this is just used for
2444 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2445 	 * expensive, to avoid any form of compiler optimizations:
2446 	 */
2447 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2448 	p->mm->numa_scan_offset = 0;
2449 }
2450 
2451 /*
2452  * The expensive part of numa migration is done from task_work context.
2453  * Triggered from task_tick_numa().
2454  */
2455 void task_numa_work(struct callback_head *work)
2456 {
2457 	unsigned long migrate, next_scan, now = jiffies;
2458 	struct task_struct *p = current;
2459 	struct mm_struct *mm = p->mm;
2460 	u64 runtime = p->se.sum_exec_runtime;
2461 	struct vm_area_struct *vma;
2462 	unsigned long start, end;
2463 	unsigned long nr_pte_updates = 0;
2464 	long pages, virtpages;
2465 
2466 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2467 
2468 	work->next = work; /* protect against double add */
2469 	/*
2470 	 * Who cares about NUMA placement when they're dying.
2471 	 *
2472 	 * NOTE: make sure not to dereference p->mm before this check,
2473 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2474 	 * without p->mm even though we still had it when we enqueued this
2475 	 * work.
2476 	 */
2477 	if (p->flags & PF_EXITING)
2478 		return;
2479 
2480 	if (!mm->numa_next_scan) {
2481 		mm->numa_next_scan = now +
2482 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2483 	}
2484 
2485 	/*
2486 	 * Enforce maximal scan/migration frequency..
2487 	 */
2488 	migrate = mm->numa_next_scan;
2489 	if (time_before(now, migrate))
2490 		return;
2491 
2492 	if (p->numa_scan_period == 0) {
2493 		p->numa_scan_period_max = task_scan_max(p);
2494 		p->numa_scan_period = task_scan_start(p);
2495 	}
2496 
2497 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2498 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2499 		return;
2500 
2501 	/*
2502 	 * Delay this task enough that another task of this mm will likely win
2503 	 * the next time around.
2504 	 */
2505 	p->node_stamp += 2 * TICK_NSEC;
2506 
2507 	start = mm->numa_scan_offset;
2508 	pages = sysctl_numa_balancing_scan_size;
2509 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2510 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2511 	if (!pages)
2512 		return;
2513 
2514 
2515 	if (!down_read_trylock(&mm->mmap_sem))
2516 		return;
2517 	vma = find_vma(mm, start);
2518 	if (!vma) {
2519 		reset_ptenuma_scan(p);
2520 		start = 0;
2521 		vma = mm->mmap;
2522 	}
2523 	for (; vma; vma = vma->vm_next) {
2524 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2525 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2526 			continue;
2527 		}
2528 
2529 		/*
2530 		 * Shared library pages mapped by multiple processes are not
2531 		 * migrated as it is expected they are cache replicated. Avoid
2532 		 * hinting faults in read-only file-backed mappings or the vdso
2533 		 * as migrating the pages will be of marginal benefit.
2534 		 */
2535 		if (!vma->vm_mm ||
2536 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2537 			continue;
2538 
2539 		/*
2540 		 * Skip inaccessible VMAs to avoid any confusion between
2541 		 * PROT_NONE and NUMA hinting ptes
2542 		 */
2543 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2544 			continue;
2545 
2546 		do {
2547 			start = max(start, vma->vm_start);
2548 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2549 			end = min(end, vma->vm_end);
2550 			nr_pte_updates = change_prot_numa(vma, start, end);
2551 
2552 			/*
2553 			 * Try to scan sysctl_numa_balancing_size worth of
2554 			 * hpages that have at least one present PTE that
2555 			 * is not already pte-numa. If the VMA contains
2556 			 * areas that are unused or already full of prot_numa
2557 			 * PTEs, scan up to virtpages, to skip through those
2558 			 * areas faster.
2559 			 */
2560 			if (nr_pte_updates)
2561 				pages -= (end - start) >> PAGE_SHIFT;
2562 			virtpages -= (end - start) >> PAGE_SHIFT;
2563 
2564 			start = end;
2565 			if (pages <= 0 || virtpages <= 0)
2566 				goto out;
2567 
2568 			cond_resched();
2569 		} while (end != vma->vm_end);
2570 	}
2571 
2572 out:
2573 	/*
2574 	 * It is possible to reach the end of the VMA list but the last few
2575 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2576 	 * would find the !migratable VMA on the next scan but not reset the
2577 	 * scanner to the start so check it now.
2578 	 */
2579 	if (vma)
2580 		mm->numa_scan_offset = start;
2581 	else
2582 		reset_ptenuma_scan(p);
2583 	up_read(&mm->mmap_sem);
2584 
2585 	/*
2586 	 * Make sure tasks use at least 32x as much time to run other code
2587 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2588 	 * Usually update_task_scan_period slows down scanning enough; on an
2589 	 * overloaded system we need to limit overhead on a per task basis.
2590 	 */
2591 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2592 		u64 diff = p->se.sum_exec_runtime - runtime;
2593 		p->node_stamp += 32 * diff;
2594 	}
2595 }
2596 
2597 /*
2598  * Drive the periodic memory faults..
2599  */
2600 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2601 {
2602 	struct callback_head *work = &curr->numa_work;
2603 	u64 period, now;
2604 
2605 	/*
2606 	 * We don't care about NUMA placement if we don't have memory.
2607 	 */
2608 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2609 		return;
2610 
2611 	/*
2612 	 * Using runtime rather than walltime has the dual advantage that
2613 	 * we (mostly) drive the selection from busy threads and that the
2614 	 * task needs to have done some actual work before we bother with
2615 	 * NUMA placement.
2616 	 */
2617 	now = curr->se.sum_exec_runtime;
2618 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2619 
2620 	if (now > curr->node_stamp + period) {
2621 		if (!curr->node_stamp)
2622 			curr->numa_scan_period = task_scan_start(curr);
2623 		curr->node_stamp += period;
2624 
2625 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2626 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2627 			task_work_add(curr, work, true);
2628 		}
2629 	}
2630 }
2631 
2632 static void update_scan_period(struct task_struct *p, int new_cpu)
2633 {
2634 	int src_nid = cpu_to_node(task_cpu(p));
2635 	int dst_nid = cpu_to_node(new_cpu);
2636 
2637 	if (!static_branch_likely(&sched_numa_balancing))
2638 		return;
2639 
2640 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2641 		return;
2642 
2643 	if (src_nid == dst_nid)
2644 		return;
2645 
2646 	/*
2647 	 * Allow resets if faults have been trapped before one scan
2648 	 * has completed. This is most likely due to a new task that
2649 	 * is pulled cross-node due to wakeups or load balancing.
2650 	 */
2651 	if (p->numa_scan_seq) {
2652 		/*
2653 		 * Avoid scan adjustments if moving to the preferred
2654 		 * node or if the task was not previously running on
2655 		 * the preferred node.
2656 		 */
2657 		if (dst_nid == p->numa_preferred_nid ||
2658 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2659 			src_nid != p->numa_preferred_nid))
2660 			return;
2661 	}
2662 
2663 	p->numa_scan_period = task_scan_start(p);
2664 }
2665 
2666 #else
2667 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2668 {
2669 }
2670 
2671 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2672 {
2673 }
2674 
2675 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2676 {
2677 }
2678 
2679 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2680 {
2681 }
2682 
2683 #endif /* CONFIG_NUMA_BALANCING */
2684 
2685 static void
2686 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2687 {
2688 	update_load_add(&cfs_rq->load, se->load.weight);
2689 	if (!parent_entity(se))
2690 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2691 #ifdef CONFIG_SMP
2692 	if (entity_is_task(se)) {
2693 		struct rq *rq = rq_of(cfs_rq);
2694 
2695 		account_numa_enqueue(rq, task_of(se));
2696 		list_add(&se->group_node, &rq->cfs_tasks);
2697 	}
2698 #endif
2699 	cfs_rq->nr_running++;
2700 }
2701 
2702 static void
2703 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2704 {
2705 	update_load_sub(&cfs_rq->load, se->load.weight);
2706 	if (!parent_entity(se))
2707 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2708 #ifdef CONFIG_SMP
2709 	if (entity_is_task(se)) {
2710 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2711 		list_del_init(&se->group_node);
2712 	}
2713 #endif
2714 	cfs_rq->nr_running--;
2715 }
2716 
2717 /*
2718  * Signed add and clamp on underflow.
2719  *
2720  * Explicitly do a load-store to ensure the intermediate value never hits
2721  * memory. This allows lockless observations without ever seeing the negative
2722  * values.
2723  */
2724 #define add_positive(_ptr, _val) do {                           \
2725 	typeof(_ptr) ptr = (_ptr);                              \
2726 	typeof(_val) val = (_val);                              \
2727 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2728 								\
2729 	res = var + val;                                        \
2730 								\
2731 	if (val < 0 && res > var)                               \
2732 		res = 0;                                        \
2733 								\
2734 	WRITE_ONCE(*ptr, res);                                  \
2735 } while (0)
2736 
2737 /*
2738  * Unsigned subtract and clamp on underflow.
2739  *
2740  * Explicitly do a load-store to ensure the intermediate value never hits
2741  * memory. This allows lockless observations without ever seeing the negative
2742  * values.
2743  */
2744 #define sub_positive(_ptr, _val) do {				\
2745 	typeof(_ptr) ptr = (_ptr);				\
2746 	typeof(*ptr) val = (_val);				\
2747 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2748 	res = var - val;					\
2749 	if (res > var)						\
2750 		res = 0;					\
2751 	WRITE_ONCE(*ptr, res);					\
2752 } while (0)
2753 
2754 /*
2755  * Remove and clamp on negative, from a local variable.
2756  *
2757  * A variant of sub_positive(), which does not use explicit load-store
2758  * and is thus optimized for local variable updates.
2759  */
2760 #define lsub_positive(_ptr, _val) do {				\
2761 	typeof(_ptr) ptr = (_ptr);				\
2762 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
2763 } while (0)
2764 
2765 #ifdef CONFIG_SMP
2766 static inline void
2767 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2768 {
2769 	cfs_rq->runnable_weight += se->runnable_weight;
2770 
2771 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2772 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2773 }
2774 
2775 static inline void
2776 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2777 {
2778 	cfs_rq->runnable_weight -= se->runnable_weight;
2779 
2780 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2781 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2782 		     se_runnable(se) * se->avg.runnable_load_sum);
2783 }
2784 
2785 static inline void
2786 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2787 {
2788 	cfs_rq->avg.load_avg += se->avg.load_avg;
2789 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2790 }
2791 
2792 static inline void
2793 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2794 {
2795 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2796 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2797 }
2798 #else
2799 static inline void
2800 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2801 static inline void
2802 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2803 static inline void
2804 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2805 static inline void
2806 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2807 #endif
2808 
2809 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2810 			    unsigned long weight, unsigned long runnable)
2811 {
2812 	if (se->on_rq) {
2813 		/* commit outstanding execution time */
2814 		if (cfs_rq->curr == se)
2815 			update_curr(cfs_rq);
2816 		account_entity_dequeue(cfs_rq, se);
2817 		dequeue_runnable_load_avg(cfs_rq, se);
2818 	}
2819 	dequeue_load_avg(cfs_rq, se);
2820 
2821 	se->runnable_weight = runnable;
2822 	update_load_set(&se->load, weight);
2823 
2824 #ifdef CONFIG_SMP
2825 	do {
2826 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2827 
2828 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2829 		se->avg.runnable_load_avg =
2830 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2831 	} while (0);
2832 #endif
2833 
2834 	enqueue_load_avg(cfs_rq, se);
2835 	if (se->on_rq) {
2836 		account_entity_enqueue(cfs_rq, se);
2837 		enqueue_runnable_load_avg(cfs_rq, se);
2838 	}
2839 }
2840 
2841 void reweight_task(struct task_struct *p, int prio)
2842 {
2843 	struct sched_entity *se = &p->se;
2844 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2845 	struct load_weight *load = &se->load;
2846 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2847 
2848 	reweight_entity(cfs_rq, se, weight, weight);
2849 	load->inv_weight = sched_prio_to_wmult[prio];
2850 }
2851 
2852 #ifdef CONFIG_FAIR_GROUP_SCHED
2853 #ifdef CONFIG_SMP
2854 /*
2855  * All this does is approximate the hierarchical proportion which includes that
2856  * global sum we all love to hate.
2857  *
2858  * That is, the weight of a group entity, is the proportional share of the
2859  * group weight based on the group runqueue weights. That is:
2860  *
2861  *                     tg->weight * grq->load.weight
2862  *   ge->load.weight = -----------------------------               (1)
2863  *			  \Sum grq->load.weight
2864  *
2865  * Now, because computing that sum is prohibitively expensive to compute (been
2866  * there, done that) we approximate it with this average stuff. The average
2867  * moves slower and therefore the approximation is cheaper and more stable.
2868  *
2869  * So instead of the above, we substitute:
2870  *
2871  *   grq->load.weight -> grq->avg.load_avg                         (2)
2872  *
2873  * which yields the following:
2874  *
2875  *                     tg->weight * grq->avg.load_avg
2876  *   ge->load.weight = ------------------------------              (3)
2877  *				tg->load_avg
2878  *
2879  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2880  *
2881  * That is shares_avg, and it is right (given the approximation (2)).
2882  *
2883  * The problem with it is that because the average is slow -- it was designed
2884  * to be exactly that of course -- this leads to transients in boundary
2885  * conditions. In specific, the case where the group was idle and we start the
2886  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2887  * yielding bad latency etc..
2888  *
2889  * Now, in that special case (1) reduces to:
2890  *
2891  *                     tg->weight * grq->load.weight
2892  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2893  *			    grp->load.weight
2894  *
2895  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2896  *
2897  * So what we do is modify our approximation (3) to approach (4) in the (near)
2898  * UP case, like:
2899  *
2900  *   ge->load.weight =
2901  *
2902  *              tg->weight * grq->load.weight
2903  *     ---------------------------------------------------         (5)
2904  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2905  *
2906  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2907  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2908  *
2909  *
2910  *                     tg->weight * grq->load.weight
2911  *   ge->load.weight = -----------------------------		   (6)
2912  *				tg_load_avg'
2913  *
2914  * Where:
2915  *
2916  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2917  *                  max(grq->load.weight, grq->avg.load_avg)
2918  *
2919  * And that is shares_weight and is icky. In the (near) UP case it approaches
2920  * (4) while in the normal case it approaches (3). It consistently
2921  * overestimates the ge->load.weight and therefore:
2922  *
2923  *   \Sum ge->load.weight >= tg->weight
2924  *
2925  * hence icky!
2926  */
2927 static long calc_group_shares(struct cfs_rq *cfs_rq)
2928 {
2929 	long tg_weight, tg_shares, load, shares;
2930 	struct task_group *tg = cfs_rq->tg;
2931 
2932 	tg_shares = READ_ONCE(tg->shares);
2933 
2934 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2935 
2936 	tg_weight = atomic_long_read(&tg->load_avg);
2937 
2938 	/* Ensure tg_weight >= load */
2939 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2940 	tg_weight += load;
2941 
2942 	shares = (tg_shares * load);
2943 	if (tg_weight)
2944 		shares /= tg_weight;
2945 
2946 	/*
2947 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2948 	 * of a group with small tg->shares value. It is a floor value which is
2949 	 * assigned as a minimum load.weight to the sched_entity representing
2950 	 * the group on a CPU.
2951 	 *
2952 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2953 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2954 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2955 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2956 	 * instead of 0.
2957 	 */
2958 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2959 }
2960 
2961 /*
2962  * This calculates the effective runnable weight for a group entity based on
2963  * the group entity weight calculated above.
2964  *
2965  * Because of the above approximation (2), our group entity weight is
2966  * an load_avg based ratio (3). This means that it includes blocked load and
2967  * does not represent the runnable weight.
2968  *
2969  * Approximate the group entity's runnable weight per ratio from the group
2970  * runqueue:
2971  *
2972  *					     grq->avg.runnable_load_avg
2973  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
2974  *						 grq->avg.load_avg
2975  *
2976  * However, analogous to above, since the avg numbers are slow, this leads to
2977  * transients in the from-idle case. Instead we use:
2978  *
2979  *   ge->runnable_weight = ge->load.weight *
2980  *
2981  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
2982  *		-----------------------------------------------------	(8)
2983  *		      max(grq->avg.load_avg, grq->load.weight)
2984  *
2985  * Where these max() serve both to use the 'instant' values to fix the slow
2986  * from-idle and avoid the /0 on to-idle, similar to (6).
2987  */
2988 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2989 {
2990 	long runnable, load_avg;
2991 
2992 	load_avg = max(cfs_rq->avg.load_avg,
2993 		       scale_load_down(cfs_rq->load.weight));
2994 
2995 	runnable = max(cfs_rq->avg.runnable_load_avg,
2996 		       scale_load_down(cfs_rq->runnable_weight));
2997 
2998 	runnable *= shares;
2999 	if (load_avg)
3000 		runnable /= load_avg;
3001 
3002 	return clamp_t(long, runnable, MIN_SHARES, shares);
3003 }
3004 #endif /* CONFIG_SMP */
3005 
3006 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3007 
3008 /*
3009  * Recomputes the group entity based on the current state of its group
3010  * runqueue.
3011  */
3012 static void update_cfs_group(struct sched_entity *se)
3013 {
3014 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3015 	long shares, runnable;
3016 
3017 	if (!gcfs_rq)
3018 		return;
3019 
3020 	if (throttled_hierarchy(gcfs_rq))
3021 		return;
3022 
3023 #ifndef CONFIG_SMP
3024 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3025 
3026 	if (likely(se->load.weight == shares))
3027 		return;
3028 #else
3029 	shares   = calc_group_shares(gcfs_rq);
3030 	runnable = calc_group_runnable(gcfs_rq, shares);
3031 #endif
3032 
3033 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
3034 }
3035 
3036 #else /* CONFIG_FAIR_GROUP_SCHED */
3037 static inline void update_cfs_group(struct sched_entity *se)
3038 {
3039 }
3040 #endif /* CONFIG_FAIR_GROUP_SCHED */
3041 
3042 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3043 {
3044 	struct rq *rq = rq_of(cfs_rq);
3045 
3046 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3047 		/*
3048 		 * There are a few boundary cases this might miss but it should
3049 		 * get called often enough that that should (hopefully) not be
3050 		 * a real problem.
3051 		 *
3052 		 * It will not get called when we go idle, because the idle
3053 		 * thread is a different class (!fair), nor will the utilization
3054 		 * number include things like RT tasks.
3055 		 *
3056 		 * As is, the util number is not freq-invariant (we'd have to
3057 		 * implement arch_scale_freq_capacity() for that).
3058 		 *
3059 		 * See cpu_util().
3060 		 */
3061 		cpufreq_update_util(rq, flags);
3062 	}
3063 }
3064 
3065 #ifdef CONFIG_SMP
3066 #ifdef CONFIG_FAIR_GROUP_SCHED
3067 /**
3068  * update_tg_load_avg - update the tg's load avg
3069  * @cfs_rq: the cfs_rq whose avg changed
3070  * @force: update regardless of how small the difference
3071  *
3072  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3073  * However, because tg->load_avg is a global value there are performance
3074  * considerations.
3075  *
3076  * In order to avoid having to look at the other cfs_rq's, we use a
3077  * differential update where we store the last value we propagated. This in
3078  * turn allows skipping updates if the differential is 'small'.
3079  *
3080  * Updating tg's load_avg is necessary before update_cfs_share().
3081  */
3082 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3083 {
3084 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3085 
3086 	/*
3087 	 * No need to update load_avg for root_task_group as it is not used.
3088 	 */
3089 	if (cfs_rq->tg == &root_task_group)
3090 		return;
3091 
3092 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3093 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3094 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3095 	}
3096 }
3097 
3098 /*
3099  * Called within set_task_rq() right before setting a task's CPU. The
3100  * caller only guarantees p->pi_lock is held; no other assumptions,
3101  * including the state of rq->lock, should be made.
3102  */
3103 void set_task_rq_fair(struct sched_entity *se,
3104 		      struct cfs_rq *prev, struct cfs_rq *next)
3105 {
3106 	u64 p_last_update_time;
3107 	u64 n_last_update_time;
3108 
3109 	if (!sched_feat(ATTACH_AGE_LOAD))
3110 		return;
3111 
3112 	/*
3113 	 * We are supposed to update the task to "current" time, then its up to
3114 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3115 	 * getting what current time is, so simply throw away the out-of-date
3116 	 * time. This will result in the wakee task is less decayed, but giving
3117 	 * the wakee more load sounds not bad.
3118 	 */
3119 	if (!(se->avg.last_update_time && prev))
3120 		return;
3121 
3122 #ifndef CONFIG_64BIT
3123 	{
3124 		u64 p_last_update_time_copy;
3125 		u64 n_last_update_time_copy;
3126 
3127 		do {
3128 			p_last_update_time_copy = prev->load_last_update_time_copy;
3129 			n_last_update_time_copy = next->load_last_update_time_copy;
3130 
3131 			smp_rmb();
3132 
3133 			p_last_update_time = prev->avg.last_update_time;
3134 			n_last_update_time = next->avg.last_update_time;
3135 
3136 		} while (p_last_update_time != p_last_update_time_copy ||
3137 			 n_last_update_time != n_last_update_time_copy);
3138 	}
3139 #else
3140 	p_last_update_time = prev->avg.last_update_time;
3141 	n_last_update_time = next->avg.last_update_time;
3142 #endif
3143 	__update_load_avg_blocked_se(p_last_update_time, se);
3144 	se->avg.last_update_time = n_last_update_time;
3145 }
3146 
3147 
3148 /*
3149  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3150  * propagate its contribution. The key to this propagation is the invariant
3151  * that for each group:
3152  *
3153  *   ge->avg == grq->avg						(1)
3154  *
3155  * _IFF_ we look at the pure running and runnable sums. Because they
3156  * represent the very same entity, just at different points in the hierarchy.
3157  *
3158  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3159  * sum over (but still wrong, because the group entity and group rq do not have
3160  * their PELT windows aligned).
3161  *
3162  * However, update_tg_cfs_runnable() is more complex. So we have:
3163  *
3164  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3165  *
3166  * And since, like util, the runnable part should be directly transferable,
3167  * the following would _appear_ to be the straight forward approach:
3168  *
3169  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3170  *
3171  * And per (1) we have:
3172  *
3173  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3174  *
3175  * Which gives:
3176  *
3177  *                      ge->load.weight * grq->avg.load_avg
3178  *   ge->avg.load_avg = -----------------------------------		(4)
3179  *                               grq->load.weight
3180  *
3181  * Except that is wrong!
3182  *
3183  * Because while for entities historical weight is not important and we
3184  * really only care about our future and therefore can consider a pure
3185  * runnable sum, runqueues can NOT do this.
3186  *
3187  * We specifically want runqueues to have a load_avg that includes
3188  * historical weights. Those represent the blocked load, the load we expect
3189  * to (shortly) return to us. This only works by keeping the weights as
3190  * integral part of the sum. We therefore cannot decompose as per (3).
3191  *
3192  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3193  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3194  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3195  * runnable section of these tasks overlap (or not). If they were to perfectly
3196  * align the rq as a whole would be runnable 2/3 of the time. If however we
3197  * always have at least 1 runnable task, the rq as a whole is always runnable.
3198  *
3199  * So we'll have to approximate.. :/
3200  *
3201  * Given the constraint:
3202  *
3203  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3204  *
3205  * We can construct a rule that adds runnable to a rq by assuming minimal
3206  * overlap.
3207  *
3208  * On removal, we'll assume each task is equally runnable; which yields:
3209  *
3210  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3211  *
3212  * XXX: only do this for the part of runnable > running ?
3213  *
3214  */
3215 
3216 static inline void
3217 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3218 {
3219 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3220 
3221 	/* Nothing to update */
3222 	if (!delta)
3223 		return;
3224 
3225 	/*
3226 	 * The relation between sum and avg is:
3227 	 *
3228 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3229 	 *
3230 	 * however, the PELT windows are not aligned between grq and gse.
3231 	 */
3232 
3233 	/* Set new sched_entity's utilization */
3234 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3235 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3236 
3237 	/* Update parent cfs_rq utilization */
3238 	add_positive(&cfs_rq->avg.util_avg, delta);
3239 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3240 }
3241 
3242 static inline void
3243 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3244 {
3245 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3246 	unsigned long runnable_load_avg, load_avg;
3247 	u64 runnable_load_sum, load_sum = 0;
3248 	s64 delta_sum;
3249 
3250 	if (!runnable_sum)
3251 		return;
3252 
3253 	gcfs_rq->prop_runnable_sum = 0;
3254 
3255 	if (runnable_sum >= 0) {
3256 		/*
3257 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3258 		 * the CPU is saturated running == runnable.
3259 		 */
3260 		runnable_sum += se->avg.load_sum;
3261 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3262 	} else {
3263 		/*
3264 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3265 		 * assuming all tasks are equally runnable.
3266 		 */
3267 		if (scale_load_down(gcfs_rq->load.weight)) {
3268 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3269 				scale_load_down(gcfs_rq->load.weight));
3270 		}
3271 
3272 		/* But make sure to not inflate se's runnable */
3273 		runnable_sum = min(se->avg.load_sum, load_sum);
3274 	}
3275 
3276 	/*
3277 	 * runnable_sum can't be lower than running_sum
3278 	 * Rescale running sum to be in the same range as runnable sum
3279 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3280 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3281 	 */
3282 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3283 	runnable_sum = max(runnable_sum, running_sum);
3284 
3285 	load_sum = (s64)se_weight(se) * runnable_sum;
3286 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3287 
3288 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3289 	delta_avg = load_avg - se->avg.load_avg;
3290 
3291 	se->avg.load_sum = runnable_sum;
3292 	se->avg.load_avg = load_avg;
3293 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3294 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3295 
3296 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3297 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3298 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3299 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3300 
3301 	se->avg.runnable_load_sum = runnable_sum;
3302 	se->avg.runnable_load_avg = runnable_load_avg;
3303 
3304 	if (se->on_rq) {
3305 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3306 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3307 	}
3308 }
3309 
3310 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3311 {
3312 	cfs_rq->propagate = 1;
3313 	cfs_rq->prop_runnable_sum += runnable_sum;
3314 }
3315 
3316 /* Update task and its cfs_rq load average */
3317 static inline int propagate_entity_load_avg(struct sched_entity *se)
3318 {
3319 	struct cfs_rq *cfs_rq, *gcfs_rq;
3320 
3321 	if (entity_is_task(se))
3322 		return 0;
3323 
3324 	gcfs_rq = group_cfs_rq(se);
3325 	if (!gcfs_rq->propagate)
3326 		return 0;
3327 
3328 	gcfs_rq->propagate = 0;
3329 
3330 	cfs_rq = cfs_rq_of(se);
3331 
3332 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3333 
3334 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3335 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3336 
3337 	return 1;
3338 }
3339 
3340 /*
3341  * Check if we need to update the load and the utilization of a blocked
3342  * group_entity:
3343  */
3344 static inline bool skip_blocked_update(struct sched_entity *se)
3345 {
3346 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3347 
3348 	/*
3349 	 * If sched_entity still have not zero load or utilization, we have to
3350 	 * decay it:
3351 	 */
3352 	if (se->avg.load_avg || se->avg.util_avg)
3353 		return false;
3354 
3355 	/*
3356 	 * If there is a pending propagation, we have to update the load and
3357 	 * the utilization of the sched_entity:
3358 	 */
3359 	if (gcfs_rq->propagate)
3360 		return false;
3361 
3362 	/*
3363 	 * Otherwise, the load and the utilization of the sched_entity is
3364 	 * already zero and there is no pending propagation, so it will be a
3365 	 * waste of time to try to decay it:
3366 	 */
3367 	return true;
3368 }
3369 
3370 #else /* CONFIG_FAIR_GROUP_SCHED */
3371 
3372 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3373 
3374 static inline int propagate_entity_load_avg(struct sched_entity *se)
3375 {
3376 	return 0;
3377 }
3378 
3379 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3380 
3381 #endif /* CONFIG_FAIR_GROUP_SCHED */
3382 
3383 /**
3384  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3385  * @now: current time, as per cfs_rq_clock_pelt()
3386  * @cfs_rq: cfs_rq to update
3387  *
3388  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3389  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3390  * post_init_entity_util_avg().
3391  *
3392  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3393  *
3394  * Returns true if the load decayed or we removed load.
3395  *
3396  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3397  * call update_tg_load_avg() when this function returns true.
3398  */
3399 static inline int
3400 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3401 {
3402 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3403 	struct sched_avg *sa = &cfs_rq->avg;
3404 	int decayed = 0;
3405 
3406 	if (cfs_rq->removed.nr) {
3407 		unsigned long r;
3408 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3409 
3410 		raw_spin_lock(&cfs_rq->removed.lock);
3411 		swap(cfs_rq->removed.util_avg, removed_util);
3412 		swap(cfs_rq->removed.load_avg, removed_load);
3413 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3414 		cfs_rq->removed.nr = 0;
3415 		raw_spin_unlock(&cfs_rq->removed.lock);
3416 
3417 		r = removed_load;
3418 		sub_positive(&sa->load_avg, r);
3419 		sub_positive(&sa->load_sum, r * divider);
3420 
3421 		r = removed_util;
3422 		sub_positive(&sa->util_avg, r);
3423 		sub_positive(&sa->util_sum, r * divider);
3424 
3425 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3426 
3427 		decayed = 1;
3428 	}
3429 
3430 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3431 
3432 #ifndef CONFIG_64BIT
3433 	smp_wmb();
3434 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3435 #endif
3436 
3437 	if (decayed)
3438 		cfs_rq_util_change(cfs_rq, 0);
3439 
3440 	return decayed;
3441 }
3442 
3443 /**
3444  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3445  * @cfs_rq: cfs_rq to attach to
3446  * @se: sched_entity to attach
3447  * @flags: migration hints
3448  *
3449  * Must call update_cfs_rq_load_avg() before this, since we rely on
3450  * cfs_rq->avg.last_update_time being current.
3451  */
3452 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3453 {
3454 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3455 
3456 	/*
3457 	 * When we attach the @se to the @cfs_rq, we must align the decay
3458 	 * window because without that, really weird and wonderful things can
3459 	 * happen.
3460 	 *
3461 	 * XXX illustrate
3462 	 */
3463 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3464 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3465 
3466 	/*
3467 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3468 	 * period_contrib. This isn't strictly correct, but since we're
3469 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3470 	 * _sum a little.
3471 	 */
3472 	se->avg.util_sum = se->avg.util_avg * divider;
3473 
3474 	se->avg.load_sum = divider;
3475 	if (se_weight(se)) {
3476 		se->avg.load_sum =
3477 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3478 	}
3479 
3480 	se->avg.runnable_load_sum = se->avg.load_sum;
3481 
3482 	enqueue_load_avg(cfs_rq, se);
3483 	cfs_rq->avg.util_avg += se->avg.util_avg;
3484 	cfs_rq->avg.util_sum += se->avg.util_sum;
3485 
3486 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3487 
3488 	cfs_rq_util_change(cfs_rq, flags);
3489 }
3490 
3491 /**
3492  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3493  * @cfs_rq: cfs_rq to detach from
3494  * @se: sched_entity to detach
3495  *
3496  * Must call update_cfs_rq_load_avg() before this, since we rely on
3497  * cfs_rq->avg.last_update_time being current.
3498  */
3499 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3500 {
3501 	dequeue_load_avg(cfs_rq, se);
3502 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3503 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3504 
3505 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3506 
3507 	cfs_rq_util_change(cfs_rq, 0);
3508 }
3509 
3510 /*
3511  * Optional action to be done while updating the load average
3512  */
3513 #define UPDATE_TG	0x1
3514 #define SKIP_AGE_LOAD	0x2
3515 #define DO_ATTACH	0x4
3516 
3517 /* Update task and its cfs_rq load average */
3518 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3519 {
3520 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3521 	int decayed;
3522 
3523 	/*
3524 	 * Track task load average for carrying it to new CPU after migrated, and
3525 	 * track group sched_entity load average for task_h_load calc in migration
3526 	 */
3527 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3528 		__update_load_avg_se(now, cfs_rq, se);
3529 
3530 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3531 	decayed |= propagate_entity_load_avg(se);
3532 
3533 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3534 
3535 		/*
3536 		 * DO_ATTACH means we're here from enqueue_entity().
3537 		 * !last_update_time means we've passed through
3538 		 * migrate_task_rq_fair() indicating we migrated.
3539 		 *
3540 		 * IOW we're enqueueing a task on a new CPU.
3541 		 */
3542 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3543 		update_tg_load_avg(cfs_rq, 0);
3544 
3545 	} else if (decayed && (flags & UPDATE_TG))
3546 		update_tg_load_avg(cfs_rq, 0);
3547 }
3548 
3549 #ifndef CONFIG_64BIT
3550 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3551 {
3552 	u64 last_update_time_copy;
3553 	u64 last_update_time;
3554 
3555 	do {
3556 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3557 		smp_rmb();
3558 		last_update_time = cfs_rq->avg.last_update_time;
3559 	} while (last_update_time != last_update_time_copy);
3560 
3561 	return last_update_time;
3562 }
3563 #else
3564 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3565 {
3566 	return cfs_rq->avg.last_update_time;
3567 }
3568 #endif
3569 
3570 /*
3571  * Synchronize entity load avg of dequeued entity without locking
3572  * the previous rq.
3573  */
3574 static void sync_entity_load_avg(struct sched_entity *se)
3575 {
3576 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3577 	u64 last_update_time;
3578 
3579 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3580 	__update_load_avg_blocked_se(last_update_time, se);
3581 }
3582 
3583 /*
3584  * Task first catches up with cfs_rq, and then subtract
3585  * itself from the cfs_rq (task must be off the queue now).
3586  */
3587 static void remove_entity_load_avg(struct sched_entity *se)
3588 {
3589 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3590 	unsigned long flags;
3591 
3592 	/*
3593 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3594 	 * post_init_entity_util_avg() which will have added things to the
3595 	 * cfs_rq, so we can remove unconditionally.
3596 	 */
3597 
3598 	sync_entity_load_avg(se);
3599 
3600 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3601 	++cfs_rq->removed.nr;
3602 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3603 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3604 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3605 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3606 }
3607 
3608 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3609 {
3610 	return cfs_rq->avg.runnable_load_avg;
3611 }
3612 
3613 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3614 {
3615 	return cfs_rq->avg.load_avg;
3616 }
3617 
3618 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3619 
3620 static inline unsigned long task_util(struct task_struct *p)
3621 {
3622 	return READ_ONCE(p->se.avg.util_avg);
3623 }
3624 
3625 static inline unsigned long _task_util_est(struct task_struct *p)
3626 {
3627 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3628 
3629 	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3630 }
3631 
3632 static inline unsigned long task_util_est(struct task_struct *p)
3633 {
3634 	return max(task_util(p), _task_util_est(p));
3635 }
3636 
3637 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3638 				    struct task_struct *p)
3639 {
3640 	unsigned int enqueued;
3641 
3642 	if (!sched_feat(UTIL_EST))
3643 		return;
3644 
3645 	/* Update root cfs_rq's estimated utilization */
3646 	enqueued  = cfs_rq->avg.util_est.enqueued;
3647 	enqueued += _task_util_est(p);
3648 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3649 }
3650 
3651 /*
3652  * Check if a (signed) value is within a specified (unsigned) margin,
3653  * based on the observation that:
3654  *
3655  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3656  *
3657  * NOTE: this only works when value + maring < INT_MAX.
3658  */
3659 static inline bool within_margin(int value, int margin)
3660 {
3661 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3662 }
3663 
3664 static void
3665 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3666 {
3667 	long last_ewma_diff;
3668 	struct util_est ue;
3669 	int cpu;
3670 
3671 	if (!sched_feat(UTIL_EST))
3672 		return;
3673 
3674 	/* Update root cfs_rq's estimated utilization */
3675 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3676 	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3677 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3678 
3679 	/*
3680 	 * Skip update of task's estimated utilization when the task has not
3681 	 * yet completed an activation, e.g. being migrated.
3682 	 */
3683 	if (!task_sleep)
3684 		return;
3685 
3686 	/*
3687 	 * If the PELT values haven't changed since enqueue time,
3688 	 * skip the util_est update.
3689 	 */
3690 	ue = p->se.avg.util_est;
3691 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3692 		return;
3693 
3694 	/*
3695 	 * Skip update of task's estimated utilization when its EWMA is
3696 	 * already ~1% close to its last activation value.
3697 	 */
3698 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3699 	last_ewma_diff = ue.enqueued - ue.ewma;
3700 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3701 		return;
3702 
3703 	/*
3704 	 * To avoid overestimation of actual task utilization, skip updates if
3705 	 * we cannot grant there is idle time in this CPU.
3706 	 */
3707 	cpu = cpu_of(rq_of(cfs_rq));
3708 	if (task_util(p) > capacity_orig_of(cpu))
3709 		return;
3710 
3711 	/*
3712 	 * Update Task's estimated utilization
3713 	 *
3714 	 * When *p completes an activation we can consolidate another sample
3715 	 * of the task size. This is done by storing the current PELT value
3716 	 * as ue.enqueued and by using this value to update the Exponential
3717 	 * Weighted Moving Average (EWMA):
3718 	 *
3719 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3720 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3721 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3722 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3723 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3724 	 *
3725 	 * Where 'w' is the weight of new samples, which is configured to be
3726 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3727 	 */
3728 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3729 	ue.ewma  += last_ewma_diff;
3730 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3731 	WRITE_ONCE(p->se.avg.util_est, ue);
3732 }
3733 
3734 static inline int task_fits_capacity(struct task_struct *p, long capacity)
3735 {
3736 	return capacity * 1024 > task_util_est(p) * capacity_margin;
3737 }
3738 
3739 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3740 {
3741 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
3742 		return;
3743 
3744 	if (!p) {
3745 		rq->misfit_task_load = 0;
3746 		return;
3747 	}
3748 
3749 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3750 		rq->misfit_task_load = 0;
3751 		return;
3752 	}
3753 
3754 	rq->misfit_task_load = task_h_load(p);
3755 }
3756 
3757 #else /* CONFIG_SMP */
3758 
3759 #define UPDATE_TG	0x0
3760 #define SKIP_AGE_LOAD	0x0
3761 #define DO_ATTACH	0x0
3762 
3763 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3764 {
3765 	cfs_rq_util_change(cfs_rq, 0);
3766 }
3767 
3768 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3769 
3770 static inline void
3771 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3772 static inline void
3773 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3774 
3775 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3776 {
3777 	return 0;
3778 }
3779 
3780 static inline void
3781 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3782 
3783 static inline void
3784 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3785 		 bool task_sleep) {}
3786 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3787 
3788 #endif /* CONFIG_SMP */
3789 
3790 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3791 {
3792 #ifdef CONFIG_SCHED_DEBUG
3793 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3794 
3795 	if (d < 0)
3796 		d = -d;
3797 
3798 	if (d > 3*sysctl_sched_latency)
3799 		schedstat_inc(cfs_rq->nr_spread_over);
3800 #endif
3801 }
3802 
3803 static void
3804 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3805 {
3806 	u64 vruntime = cfs_rq->min_vruntime;
3807 
3808 	/*
3809 	 * The 'current' period is already promised to the current tasks,
3810 	 * however the extra weight of the new task will slow them down a
3811 	 * little, place the new task so that it fits in the slot that
3812 	 * stays open at the end.
3813 	 */
3814 	if (initial && sched_feat(START_DEBIT))
3815 		vruntime += sched_vslice(cfs_rq, se);
3816 
3817 	/* sleeps up to a single latency don't count. */
3818 	if (!initial) {
3819 		unsigned long thresh = sysctl_sched_latency;
3820 
3821 		/*
3822 		 * Halve their sleep time's effect, to allow
3823 		 * for a gentler effect of sleepers:
3824 		 */
3825 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3826 			thresh >>= 1;
3827 
3828 		vruntime -= thresh;
3829 	}
3830 
3831 	/* ensure we never gain time by being placed backwards. */
3832 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3833 }
3834 
3835 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3836 
3837 static inline void check_schedstat_required(void)
3838 {
3839 #ifdef CONFIG_SCHEDSTATS
3840 	if (schedstat_enabled())
3841 		return;
3842 
3843 	/* Force schedstat enabled if a dependent tracepoint is active */
3844 	if (trace_sched_stat_wait_enabled()    ||
3845 			trace_sched_stat_sleep_enabled()   ||
3846 			trace_sched_stat_iowait_enabled()  ||
3847 			trace_sched_stat_blocked_enabled() ||
3848 			trace_sched_stat_runtime_enabled())  {
3849 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3850 			     "stat_blocked and stat_runtime require the "
3851 			     "kernel parameter schedstats=enable or "
3852 			     "kernel.sched_schedstats=1\n");
3853 	}
3854 #endif
3855 }
3856 
3857 
3858 /*
3859  * MIGRATION
3860  *
3861  *	dequeue
3862  *	  update_curr()
3863  *	    update_min_vruntime()
3864  *	  vruntime -= min_vruntime
3865  *
3866  *	enqueue
3867  *	  update_curr()
3868  *	    update_min_vruntime()
3869  *	  vruntime += min_vruntime
3870  *
3871  * this way the vruntime transition between RQs is done when both
3872  * min_vruntime are up-to-date.
3873  *
3874  * WAKEUP (remote)
3875  *
3876  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3877  *	  vruntime -= min_vruntime
3878  *
3879  *	enqueue
3880  *	  update_curr()
3881  *	    update_min_vruntime()
3882  *	  vruntime += min_vruntime
3883  *
3884  * this way we don't have the most up-to-date min_vruntime on the originating
3885  * CPU and an up-to-date min_vruntime on the destination CPU.
3886  */
3887 
3888 static void
3889 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3890 {
3891 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3892 	bool curr = cfs_rq->curr == se;
3893 
3894 	/*
3895 	 * If we're the current task, we must renormalise before calling
3896 	 * update_curr().
3897 	 */
3898 	if (renorm && curr)
3899 		se->vruntime += cfs_rq->min_vruntime;
3900 
3901 	update_curr(cfs_rq);
3902 
3903 	/*
3904 	 * Otherwise, renormalise after, such that we're placed at the current
3905 	 * moment in time, instead of some random moment in the past. Being
3906 	 * placed in the past could significantly boost this task to the
3907 	 * fairness detriment of existing tasks.
3908 	 */
3909 	if (renorm && !curr)
3910 		se->vruntime += cfs_rq->min_vruntime;
3911 
3912 	/*
3913 	 * When enqueuing a sched_entity, we must:
3914 	 *   - Update loads to have both entity and cfs_rq synced with now.
3915 	 *   - Add its load to cfs_rq->runnable_avg
3916 	 *   - For group_entity, update its weight to reflect the new share of
3917 	 *     its group cfs_rq
3918 	 *   - Add its new weight to cfs_rq->load.weight
3919 	 */
3920 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3921 	update_cfs_group(se);
3922 	enqueue_runnable_load_avg(cfs_rq, se);
3923 	account_entity_enqueue(cfs_rq, se);
3924 
3925 	if (flags & ENQUEUE_WAKEUP)
3926 		place_entity(cfs_rq, se, 0);
3927 
3928 	check_schedstat_required();
3929 	update_stats_enqueue(cfs_rq, se, flags);
3930 	check_spread(cfs_rq, se);
3931 	if (!curr)
3932 		__enqueue_entity(cfs_rq, se);
3933 	se->on_rq = 1;
3934 
3935 	if (cfs_rq->nr_running == 1) {
3936 		list_add_leaf_cfs_rq(cfs_rq);
3937 		check_enqueue_throttle(cfs_rq);
3938 	}
3939 }
3940 
3941 static void __clear_buddies_last(struct sched_entity *se)
3942 {
3943 	for_each_sched_entity(se) {
3944 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3945 		if (cfs_rq->last != se)
3946 			break;
3947 
3948 		cfs_rq->last = NULL;
3949 	}
3950 }
3951 
3952 static void __clear_buddies_next(struct sched_entity *se)
3953 {
3954 	for_each_sched_entity(se) {
3955 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3956 		if (cfs_rq->next != se)
3957 			break;
3958 
3959 		cfs_rq->next = NULL;
3960 	}
3961 }
3962 
3963 static void __clear_buddies_skip(struct sched_entity *se)
3964 {
3965 	for_each_sched_entity(se) {
3966 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3967 		if (cfs_rq->skip != se)
3968 			break;
3969 
3970 		cfs_rq->skip = NULL;
3971 	}
3972 }
3973 
3974 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3975 {
3976 	if (cfs_rq->last == se)
3977 		__clear_buddies_last(se);
3978 
3979 	if (cfs_rq->next == se)
3980 		__clear_buddies_next(se);
3981 
3982 	if (cfs_rq->skip == se)
3983 		__clear_buddies_skip(se);
3984 }
3985 
3986 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3987 
3988 static void
3989 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3990 {
3991 	/*
3992 	 * Update run-time statistics of the 'current'.
3993 	 */
3994 	update_curr(cfs_rq);
3995 
3996 	/*
3997 	 * When dequeuing a sched_entity, we must:
3998 	 *   - Update loads to have both entity and cfs_rq synced with now.
3999 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4000 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4001 	 *   - For group entity, update its weight to reflect the new share
4002 	 *     of its group cfs_rq.
4003 	 */
4004 	update_load_avg(cfs_rq, se, UPDATE_TG);
4005 	dequeue_runnable_load_avg(cfs_rq, se);
4006 
4007 	update_stats_dequeue(cfs_rq, se, flags);
4008 
4009 	clear_buddies(cfs_rq, se);
4010 
4011 	if (se != cfs_rq->curr)
4012 		__dequeue_entity(cfs_rq, se);
4013 	se->on_rq = 0;
4014 	account_entity_dequeue(cfs_rq, se);
4015 
4016 	/*
4017 	 * Normalize after update_curr(); which will also have moved
4018 	 * min_vruntime if @se is the one holding it back. But before doing
4019 	 * update_min_vruntime() again, which will discount @se's position and
4020 	 * can move min_vruntime forward still more.
4021 	 */
4022 	if (!(flags & DEQUEUE_SLEEP))
4023 		se->vruntime -= cfs_rq->min_vruntime;
4024 
4025 	/* return excess runtime on last dequeue */
4026 	return_cfs_rq_runtime(cfs_rq);
4027 
4028 	update_cfs_group(se);
4029 
4030 	/*
4031 	 * Now advance min_vruntime if @se was the entity holding it back,
4032 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4033 	 * put back on, and if we advance min_vruntime, we'll be placed back
4034 	 * further than we started -- ie. we'll be penalized.
4035 	 */
4036 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4037 		update_min_vruntime(cfs_rq);
4038 }
4039 
4040 /*
4041  * Preempt the current task with a newly woken task if needed:
4042  */
4043 static void
4044 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4045 {
4046 	unsigned long ideal_runtime, delta_exec;
4047 	struct sched_entity *se;
4048 	s64 delta;
4049 
4050 	ideal_runtime = sched_slice(cfs_rq, curr);
4051 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4052 	if (delta_exec > ideal_runtime) {
4053 		resched_curr(rq_of(cfs_rq));
4054 		/*
4055 		 * The current task ran long enough, ensure it doesn't get
4056 		 * re-elected due to buddy favours.
4057 		 */
4058 		clear_buddies(cfs_rq, curr);
4059 		return;
4060 	}
4061 
4062 	/*
4063 	 * Ensure that a task that missed wakeup preemption by a
4064 	 * narrow margin doesn't have to wait for a full slice.
4065 	 * This also mitigates buddy induced latencies under load.
4066 	 */
4067 	if (delta_exec < sysctl_sched_min_granularity)
4068 		return;
4069 
4070 	se = __pick_first_entity(cfs_rq);
4071 	delta = curr->vruntime - se->vruntime;
4072 
4073 	if (delta < 0)
4074 		return;
4075 
4076 	if (delta > ideal_runtime)
4077 		resched_curr(rq_of(cfs_rq));
4078 }
4079 
4080 static void
4081 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4082 {
4083 	/* 'current' is not kept within the tree. */
4084 	if (se->on_rq) {
4085 		/*
4086 		 * Any task has to be enqueued before it get to execute on
4087 		 * a CPU. So account for the time it spent waiting on the
4088 		 * runqueue.
4089 		 */
4090 		update_stats_wait_end(cfs_rq, se);
4091 		__dequeue_entity(cfs_rq, se);
4092 		update_load_avg(cfs_rq, se, UPDATE_TG);
4093 	}
4094 
4095 	update_stats_curr_start(cfs_rq, se);
4096 	cfs_rq->curr = se;
4097 
4098 	/*
4099 	 * Track our maximum slice length, if the CPU's load is at
4100 	 * least twice that of our own weight (i.e. dont track it
4101 	 * when there are only lesser-weight tasks around):
4102 	 */
4103 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4104 		schedstat_set(se->statistics.slice_max,
4105 			max((u64)schedstat_val(se->statistics.slice_max),
4106 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4107 	}
4108 
4109 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4110 }
4111 
4112 static int
4113 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4114 
4115 /*
4116  * Pick the next process, keeping these things in mind, in this order:
4117  * 1) keep things fair between processes/task groups
4118  * 2) pick the "next" process, since someone really wants that to run
4119  * 3) pick the "last" process, for cache locality
4120  * 4) do not run the "skip" process, if something else is available
4121  */
4122 static struct sched_entity *
4123 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4124 {
4125 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4126 	struct sched_entity *se;
4127 
4128 	/*
4129 	 * If curr is set we have to see if its left of the leftmost entity
4130 	 * still in the tree, provided there was anything in the tree at all.
4131 	 */
4132 	if (!left || (curr && entity_before(curr, left)))
4133 		left = curr;
4134 
4135 	se = left; /* ideally we run the leftmost entity */
4136 
4137 	/*
4138 	 * Avoid running the skip buddy, if running something else can
4139 	 * be done without getting too unfair.
4140 	 */
4141 	if (cfs_rq->skip == se) {
4142 		struct sched_entity *second;
4143 
4144 		if (se == curr) {
4145 			second = __pick_first_entity(cfs_rq);
4146 		} else {
4147 			second = __pick_next_entity(se);
4148 			if (!second || (curr && entity_before(curr, second)))
4149 				second = curr;
4150 		}
4151 
4152 		if (second && wakeup_preempt_entity(second, left) < 1)
4153 			se = second;
4154 	}
4155 
4156 	/*
4157 	 * Prefer last buddy, try to return the CPU to a preempted task.
4158 	 */
4159 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4160 		se = cfs_rq->last;
4161 
4162 	/*
4163 	 * Someone really wants this to run. If it's not unfair, run it.
4164 	 */
4165 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4166 		se = cfs_rq->next;
4167 
4168 	clear_buddies(cfs_rq, se);
4169 
4170 	return se;
4171 }
4172 
4173 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4174 
4175 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4176 {
4177 	/*
4178 	 * If still on the runqueue then deactivate_task()
4179 	 * was not called and update_curr() has to be done:
4180 	 */
4181 	if (prev->on_rq)
4182 		update_curr(cfs_rq);
4183 
4184 	/* throttle cfs_rqs exceeding runtime */
4185 	check_cfs_rq_runtime(cfs_rq);
4186 
4187 	check_spread(cfs_rq, prev);
4188 
4189 	if (prev->on_rq) {
4190 		update_stats_wait_start(cfs_rq, prev);
4191 		/* Put 'current' back into the tree. */
4192 		__enqueue_entity(cfs_rq, prev);
4193 		/* in !on_rq case, update occurred at dequeue */
4194 		update_load_avg(cfs_rq, prev, 0);
4195 	}
4196 	cfs_rq->curr = NULL;
4197 }
4198 
4199 static void
4200 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4201 {
4202 	/*
4203 	 * Update run-time statistics of the 'current'.
4204 	 */
4205 	update_curr(cfs_rq);
4206 
4207 	/*
4208 	 * Ensure that runnable average is periodically updated.
4209 	 */
4210 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4211 	update_cfs_group(curr);
4212 
4213 #ifdef CONFIG_SCHED_HRTICK
4214 	/*
4215 	 * queued ticks are scheduled to match the slice, so don't bother
4216 	 * validating it and just reschedule.
4217 	 */
4218 	if (queued) {
4219 		resched_curr(rq_of(cfs_rq));
4220 		return;
4221 	}
4222 	/*
4223 	 * don't let the period tick interfere with the hrtick preemption
4224 	 */
4225 	if (!sched_feat(DOUBLE_TICK) &&
4226 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4227 		return;
4228 #endif
4229 
4230 	if (cfs_rq->nr_running > 1)
4231 		check_preempt_tick(cfs_rq, curr);
4232 }
4233 
4234 
4235 /**************************************************
4236  * CFS bandwidth control machinery
4237  */
4238 
4239 #ifdef CONFIG_CFS_BANDWIDTH
4240 
4241 #ifdef CONFIG_JUMP_LABEL
4242 static struct static_key __cfs_bandwidth_used;
4243 
4244 static inline bool cfs_bandwidth_used(void)
4245 {
4246 	return static_key_false(&__cfs_bandwidth_used);
4247 }
4248 
4249 void cfs_bandwidth_usage_inc(void)
4250 {
4251 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4252 }
4253 
4254 void cfs_bandwidth_usage_dec(void)
4255 {
4256 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4257 }
4258 #else /* CONFIG_JUMP_LABEL */
4259 static bool cfs_bandwidth_used(void)
4260 {
4261 	return true;
4262 }
4263 
4264 void cfs_bandwidth_usage_inc(void) {}
4265 void cfs_bandwidth_usage_dec(void) {}
4266 #endif /* CONFIG_JUMP_LABEL */
4267 
4268 /*
4269  * default period for cfs group bandwidth.
4270  * default: 0.1s, units: nanoseconds
4271  */
4272 static inline u64 default_cfs_period(void)
4273 {
4274 	return 100000000ULL;
4275 }
4276 
4277 static inline u64 sched_cfs_bandwidth_slice(void)
4278 {
4279 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4280 }
4281 
4282 /*
4283  * Replenish runtime according to assigned quota and update expiration time.
4284  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4285  * additional synchronization around rq->lock.
4286  *
4287  * requires cfs_b->lock
4288  */
4289 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4290 {
4291 	u64 now;
4292 
4293 	if (cfs_b->quota == RUNTIME_INF)
4294 		return;
4295 
4296 	now = sched_clock_cpu(smp_processor_id());
4297 	cfs_b->runtime = cfs_b->quota;
4298 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4299 	cfs_b->expires_seq++;
4300 }
4301 
4302 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4303 {
4304 	return &tg->cfs_bandwidth;
4305 }
4306 
4307 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4308 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4309 {
4310 	if (unlikely(cfs_rq->throttle_count))
4311 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4312 
4313 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4314 }
4315 
4316 /* returns 0 on failure to allocate runtime */
4317 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4318 {
4319 	struct task_group *tg = cfs_rq->tg;
4320 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4321 	u64 amount = 0, min_amount, expires;
4322 	int expires_seq;
4323 
4324 	/* note: this is a positive sum as runtime_remaining <= 0 */
4325 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4326 
4327 	raw_spin_lock(&cfs_b->lock);
4328 	if (cfs_b->quota == RUNTIME_INF)
4329 		amount = min_amount;
4330 	else {
4331 		start_cfs_bandwidth(cfs_b);
4332 
4333 		if (cfs_b->runtime > 0) {
4334 			amount = min(cfs_b->runtime, min_amount);
4335 			cfs_b->runtime -= amount;
4336 			cfs_b->idle = 0;
4337 		}
4338 	}
4339 	expires_seq = cfs_b->expires_seq;
4340 	expires = cfs_b->runtime_expires;
4341 	raw_spin_unlock(&cfs_b->lock);
4342 
4343 	cfs_rq->runtime_remaining += amount;
4344 	/*
4345 	 * we may have advanced our local expiration to account for allowed
4346 	 * spread between our sched_clock and the one on which runtime was
4347 	 * issued.
4348 	 */
4349 	if (cfs_rq->expires_seq != expires_seq) {
4350 		cfs_rq->expires_seq = expires_seq;
4351 		cfs_rq->runtime_expires = expires;
4352 	}
4353 
4354 	return cfs_rq->runtime_remaining > 0;
4355 }
4356 
4357 /*
4358  * Note: This depends on the synchronization provided by sched_clock and the
4359  * fact that rq->clock snapshots this value.
4360  */
4361 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4362 {
4363 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4364 
4365 	/* if the deadline is ahead of our clock, nothing to do */
4366 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4367 		return;
4368 
4369 	if (cfs_rq->runtime_remaining < 0)
4370 		return;
4371 
4372 	/*
4373 	 * If the local deadline has passed we have to consider the
4374 	 * possibility that our sched_clock is 'fast' and the global deadline
4375 	 * has not truly expired.
4376 	 *
4377 	 * Fortunately we can check determine whether this the case by checking
4378 	 * whether the global deadline(cfs_b->expires_seq) has advanced.
4379 	 */
4380 	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
4381 		/* extend local deadline, drift is bounded above by 2 ticks */
4382 		cfs_rq->runtime_expires += TICK_NSEC;
4383 	} else {
4384 		/* global deadline is ahead, expiration has passed */
4385 		cfs_rq->runtime_remaining = 0;
4386 	}
4387 }
4388 
4389 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4390 {
4391 	/* dock delta_exec before expiring quota (as it could span periods) */
4392 	cfs_rq->runtime_remaining -= delta_exec;
4393 	expire_cfs_rq_runtime(cfs_rq);
4394 
4395 	if (likely(cfs_rq->runtime_remaining > 0))
4396 		return;
4397 
4398 	/*
4399 	 * if we're unable to extend our runtime we resched so that the active
4400 	 * hierarchy can be throttled
4401 	 */
4402 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4403 		resched_curr(rq_of(cfs_rq));
4404 }
4405 
4406 static __always_inline
4407 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4408 {
4409 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4410 		return;
4411 
4412 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4413 }
4414 
4415 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4416 {
4417 	return cfs_bandwidth_used() && cfs_rq->throttled;
4418 }
4419 
4420 /* check whether cfs_rq, or any parent, is throttled */
4421 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4422 {
4423 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4424 }
4425 
4426 /*
4427  * Ensure that neither of the group entities corresponding to src_cpu or
4428  * dest_cpu are members of a throttled hierarchy when performing group
4429  * load-balance operations.
4430  */
4431 static inline int throttled_lb_pair(struct task_group *tg,
4432 				    int src_cpu, int dest_cpu)
4433 {
4434 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4435 
4436 	src_cfs_rq = tg->cfs_rq[src_cpu];
4437 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4438 
4439 	return throttled_hierarchy(src_cfs_rq) ||
4440 	       throttled_hierarchy(dest_cfs_rq);
4441 }
4442 
4443 static int tg_unthrottle_up(struct task_group *tg, void *data)
4444 {
4445 	struct rq *rq = data;
4446 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4447 
4448 	cfs_rq->throttle_count--;
4449 	if (!cfs_rq->throttle_count) {
4450 		/* adjust cfs_rq_clock_task() */
4451 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4452 					     cfs_rq->throttled_clock_task;
4453 
4454 		/* Add cfs_rq with already running entity in the list */
4455 		if (cfs_rq->nr_running >= 1)
4456 			list_add_leaf_cfs_rq(cfs_rq);
4457 	}
4458 
4459 	return 0;
4460 }
4461 
4462 static int tg_throttle_down(struct task_group *tg, void *data)
4463 {
4464 	struct rq *rq = data;
4465 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4466 
4467 	/* group is entering throttled state, stop time */
4468 	if (!cfs_rq->throttle_count) {
4469 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4470 		list_del_leaf_cfs_rq(cfs_rq);
4471 	}
4472 	cfs_rq->throttle_count++;
4473 
4474 	return 0;
4475 }
4476 
4477 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4478 {
4479 	struct rq *rq = rq_of(cfs_rq);
4480 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4481 	struct sched_entity *se;
4482 	long task_delta, dequeue = 1;
4483 	bool empty;
4484 
4485 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4486 
4487 	/* freeze hierarchy runnable averages while throttled */
4488 	rcu_read_lock();
4489 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4490 	rcu_read_unlock();
4491 
4492 	task_delta = cfs_rq->h_nr_running;
4493 	for_each_sched_entity(se) {
4494 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4495 		/* throttled entity or throttle-on-deactivate */
4496 		if (!se->on_rq)
4497 			break;
4498 
4499 		if (dequeue)
4500 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4501 		qcfs_rq->h_nr_running -= task_delta;
4502 
4503 		if (qcfs_rq->load.weight)
4504 			dequeue = 0;
4505 	}
4506 
4507 	if (!se)
4508 		sub_nr_running(rq, task_delta);
4509 
4510 	cfs_rq->throttled = 1;
4511 	cfs_rq->throttled_clock = rq_clock(rq);
4512 	raw_spin_lock(&cfs_b->lock);
4513 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4514 
4515 	/*
4516 	 * Add to the _head_ of the list, so that an already-started
4517 	 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4518 	 * not running add to the tail so that later runqueues don't get starved.
4519 	 */
4520 	if (cfs_b->distribute_running)
4521 		list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4522 	else
4523 		list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4524 
4525 	/*
4526 	 * If we're the first throttled task, make sure the bandwidth
4527 	 * timer is running.
4528 	 */
4529 	if (empty)
4530 		start_cfs_bandwidth(cfs_b);
4531 
4532 	raw_spin_unlock(&cfs_b->lock);
4533 }
4534 
4535 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4536 {
4537 	struct rq *rq = rq_of(cfs_rq);
4538 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4539 	struct sched_entity *se;
4540 	int enqueue = 1;
4541 	long task_delta;
4542 
4543 	se = cfs_rq->tg->se[cpu_of(rq)];
4544 
4545 	cfs_rq->throttled = 0;
4546 
4547 	update_rq_clock(rq);
4548 
4549 	raw_spin_lock(&cfs_b->lock);
4550 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4551 	list_del_rcu(&cfs_rq->throttled_list);
4552 	raw_spin_unlock(&cfs_b->lock);
4553 
4554 	/* update hierarchical throttle state */
4555 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4556 
4557 	if (!cfs_rq->load.weight)
4558 		return;
4559 
4560 	task_delta = cfs_rq->h_nr_running;
4561 	for_each_sched_entity(se) {
4562 		if (se->on_rq)
4563 			enqueue = 0;
4564 
4565 		cfs_rq = cfs_rq_of(se);
4566 		if (enqueue)
4567 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4568 		cfs_rq->h_nr_running += task_delta;
4569 
4570 		if (cfs_rq_throttled(cfs_rq))
4571 			break;
4572 	}
4573 
4574 	assert_list_leaf_cfs_rq(rq);
4575 
4576 	if (!se)
4577 		add_nr_running(rq, task_delta);
4578 
4579 	/* Determine whether we need to wake up potentially idle CPU: */
4580 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4581 		resched_curr(rq);
4582 }
4583 
4584 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4585 		u64 remaining, u64 expires)
4586 {
4587 	struct cfs_rq *cfs_rq;
4588 	u64 runtime;
4589 	u64 starting_runtime = remaining;
4590 
4591 	rcu_read_lock();
4592 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4593 				throttled_list) {
4594 		struct rq *rq = rq_of(cfs_rq);
4595 		struct rq_flags rf;
4596 
4597 		rq_lock_irqsave(rq, &rf);
4598 		if (!cfs_rq_throttled(cfs_rq))
4599 			goto next;
4600 
4601 		runtime = -cfs_rq->runtime_remaining + 1;
4602 		if (runtime > remaining)
4603 			runtime = remaining;
4604 		remaining -= runtime;
4605 
4606 		cfs_rq->runtime_remaining += runtime;
4607 		cfs_rq->runtime_expires = expires;
4608 
4609 		/* we check whether we're throttled above */
4610 		if (cfs_rq->runtime_remaining > 0)
4611 			unthrottle_cfs_rq(cfs_rq);
4612 
4613 next:
4614 		rq_unlock_irqrestore(rq, &rf);
4615 
4616 		if (!remaining)
4617 			break;
4618 	}
4619 	rcu_read_unlock();
4620 
4621 	return starting_runtime - remaining;
4622 }
4623 
4624 /*
4625  * Responsible for refilling a task_group's bandwidth and unthrottling its
4626  * cfs_rqs as appropriate. If there has been no activity within the last
4627  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4628  * used to track this state.
4629  */
4630 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4631 {
4632 	u64 runtime, runtime_expires;
4633 	int throttled;
4634 
4635 	/* no need to continue the timer with no bandwidth constraint */
4636 	if (cfs_b->quota == RUNTIME_INF)
4637 		goto out_deactivate;
4638 
4639 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4640 	cfs_b->nr_periods += overrun;
4641 
4642 	/*
4643 	 * idle depends on !throttled (for the case of a large deficit), and if
4644 	 * we're going inactive then everything else can be deferred
4645 	 */
4646 	if (cfs_b->idle && !throttled)
4647 		goto out_deactivate;
4648 
4649 	__refill_cfs_bandwidth_runtime(cfs_b);
4650 
4651 	if (!throttled) {
4652 		/* mark as potentially idle for the upcoming period */
4653 		cfs_b->idle = 1;
4654 		return 0;
4655 	}
4656 
4657 	/* account preceding periods in which throttling occurred */
4658 	cfs_b->nr_throttled += overrun;
4659 
4660 	runtime_expires = cfs_b->runtime_expires;
4661 
4662 	/*
4663 	 * This check is repeated as we are holding onto the new bandwidth while
4664 	 * we unthrottle. This can potentially race with an unthrottled group
4665 	 * trying to acquire new bandwidth from the global pool. This can result
4666 	 * in us over-using our runtime if it is all used during this loop, but
4667 	 * only by limited amounts in that extreme case.
4668 	 */
4669 	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4670 		runtime = cfs_b->runtime;
4671 		cfs_b->distribute_running = 1;
4672 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4673 		/* we can't nest cfs_b->lock while distributing bandwidth */
4674 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4675 						 runtime_expires);
4676 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
4677 
4678 		cfs_b->distribute_running = 0;
4679 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4680 
4681 		lsub_positive(&cfs_b->runtime, runtime);
4682 	}
4683 
4684 	/*
4685 	 * While we are ensured activity in the period following an
4686 	 * unthrottle, this also covers the case in which the new bandwidth is
4687 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4688 	 * timer to remain active while there are any throttled entities.)
4689 	 */
4690 	cfs_b->idle = 0;
4691 
4692 	return 0;
4693 
4694 out_deactivate:
4695 	return 1;
4696 }
4697 
4698 /* a cfs_rq won't donate quota below this amount */
4699 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4700 /* minimum remaining period time to redistribute slack quota */
4701 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4702 /* how long we wait to gather additional slack before distributing */
4703 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4704 
4705 /*
4706  * Are we near the end of the current quota period?
4707  *
4708  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4709  * hrtimer base being cleared by hrtimer_start. In the case of
4710  * migrate_hrtimers, base is never cleared, so we are fine.
4711  */
4712 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4713 {
4714 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4715 	u64 remaining;
4716 
4717 	/* if the call-back is running a quota refresh is already occurring */
4718 	if (hrtimer_callback_running(refresh_timer))
4719 		return 1;
4720 
4721 	/* is a quota refresh about to occur? */
4722 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4723 	if (remaining < min_expire)
4724 		return 1;
4725 
4726 	return 0;
4727 }
4728 
4729 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4730 {
4731 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4732 
4733 	/* if there's a quota refresh soon don't bother with slack */
4734 	if (runtime_refresh_within(cfs_b, min_left))
4735 		return;
4736 
4737 	hrtimer_start(&cfs_b->slack_timer,
4738 			ns_to_ktime(cfs_bandwidth_slack_period),
4739 			HRTIMER_MODE_REL);
4740 }
4741 
4742 /* we know any runtime found here is valid as update_curr() precedes return */
4743 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4744 {
4745 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4746 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4747 
4748 	if (slack_runtime <= 0)
4749 		return;
4750 
4751 	raw_spin_lock(&cfs_b->lock);
4752 	if (cfs_b->quota != RUNTIME_INF &&
4753 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4754 		cfs_b->runtime += slack_runtime;
4755 
4756 		/* we are under rq->lock, defer unthrottling using a timer */
4757 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4758 		    !list_empty(&cfs_b->throttled_cfs_rq))
4759 			start_cfs_slack_bandwidth(cfs_b);
4760 	}
4761 	raw_spin_unlock(&cfs_b->lock);
4762 
4763 	/* even if it's not valid for return we don't want to try again */
4764 	cfs_rq->runtime_remaining -= slack_runtime;
4765 }
4766 
4767 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4768 {
4769 	if (!cfs_bandwidth_used())
4770 		return;
4771 
4772 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4773 		return;
4774 
4775 	__return_cfs_rq_runtime(cfs_rq);
4776 }
4777 
4778 /*
4779  * This is done with a timer (instead of inline with bandwidth return) since
4780  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4781  */
4782 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4783 {
4784 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4785 	unsigned long flags;
4786 	u64 expires;
4787 
4788 	/* confirm we're still not at a refresh boundary */
4789 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4790 	if (cfs_b->distribute_running) {
4791 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4792 		return;
4793 	}
4794 
4795 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4796 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4797 		return;
4798 	}
4799 
4800 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4801 		runtime = cfs_b->runtime;
4802 
4803 	expires = cfs_b->runtime_expires;
4804 	if (runtime)
4805 		cfs_b->distribute_running = 1;
4806 
4807 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4808 
4809 	if (!runtime)
4810 		return;
4811 
4812 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4813 
4814 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4815 	if (expires == cfs_b->runtime_expires)
4816 		lsub_positive(&cfs_b->runtime, runtime);
4817 	cfs_b->distribute_running = 0;
4818 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4819 }
4820 
4821 /*
4822  * When a group wakes up we want to make sure that its quota is not already
4823  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4824  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4825  */
4826 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4827 {
4828 	if (!cfs_bandwidth_used())
4829 		return;
4830 
4831 	/* an active group must be handled by the update_curr()->put() path */
4832 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4833 		return;
4834 
4835 	/* ensure the group is not already throttled */
4836 	if (cfs_rq_throttled(cfs_rq))
4837 		return;
4838 
4839 	/* update runtime allocation */
4840 	account_cfs_rq_runtime(cfs_rq, 0);
4841 	if (cfs_rq->runtime_remaining <= 0)
4842 		throttle_cfs_rq(cfs_rq);
4843 }
4844 
4845 static void sync_throttle(struct task_group *tg, int cpu)
4846 {
4847 	struct cfs_rq *pcfs_rq, *cfs_rq;
4848 
4849 	if (!cfs_bandwidth_used())
4850 		return;
4851 
4852 	if (!tg->parent)
4853 		return;
4854 
4855 	cfs_rq = tg->cfs_rq[cpu];
4856 	pcfs_rq = tg->parent->cfs_rq[cpu];
4857 
4858 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4859 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4860 }
4861 
4862 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4863 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4864 {
4865 	if (!cfs_bandwidth_used())
4866 		return false;
4867 
4868 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4869 		return false;
4870 
4871 	/*
4872 	 * it's possible for a throttled entity to be forced into a running
4873 	 * state (e.g. set_curr_task), in this case we're finished.
4874 	 */
4875 	if (cfs_rq_throttled(cfs_rq))
4876 		return true;
4877 
4878 	throttle_cfs_rq(cfs_rq);
4879 	return true;
4880 }
4881 
4882 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4883 {
4884 	struct cfs_bandwidth *cfs_b =
4885 		container_of(timer, struct cfs_bandwidth, slack_timer);
4886 
4887 	do_sched_cfs_slack_timer(cfs_b);
4888 
4889 	return HRTIMER_NORESTART;
4890 }
4891 
4892 extern const u64 max_cfs_quota_period;
4893 
4894 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4895 {
4896 	struct cfs_bandwidth *cfs_b =
4897 		container_of(timer, struct cfs_bandwidth, period_timer);
4898 	unsigned long flags;
4899 	int overrun;
4900 	int idle = 0;
4901 	int count = 0;
4902 
4903 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4904 	for (;;) {
4905 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4906 		if (!overrun)
4907 			break;
4908 
4909 		if (++count > 3) {
4910 			u64 new, old = ktime_to_ns(cfs_b->period);
4911 
4912 			new = (old * 147) / 128; /* ~115% */
4913 			new = min(new, max_cfs_quota_period);
4914 
4915 			cfs_b->period = ns_to_ktime(new);
4916 
4917 			/* since max is 1s, this is limited to 1e9^2, which fits in u64 */
4918 			cfs_b->quota *= new;
4919 			cfs_b->quota = div64_u64(cfs_b->quota, old);
4920 
4921 			pr_warn_ratelimited(
4922 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n",
4923 				smp_processor_id(),
4924 				div_u64(new, NSEC_PER_USEC),
4925 				div_u64(cfs_b->quota, NSEC_PER_USEC));
4926 
4927 			/* reset count so we don't come right back in here */
4928 			count = 0;
4929 		}
4930 
4931 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
4932 	}
4933 	if (idle)
4934 		cfs_b->period_active = 0;
4935 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4936 
4937 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4938 }
4939 
4940 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4941 {
4942 	raw_spin_lock_init(&cfs_b->lock);
4943 	cfs_b->runtime = 0;
4944 	cfs_b->quota = RUNTIME_INF;
4945 	cfs_b->period = ns_to_ktime(default_cfs_period());
4946 
4947 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4948 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4949 	cfs_b->period_timer.function = sched_cfs_period_timer;
4950 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4951 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4952 	cfs_b->distribute_running = 0;
4953 }
4954 
4955 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4956 {
4957 	cfs_rq->runtime_enabled = 0;
4958 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4959 }
4960 
4961 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4962 {
4963 	u64 overrun;
4964 
4965 	lockdep_assert_held(&cfs_b->lock);
4966 
4967 	if (cfs_b->period_active)
4968 		return;
4969 
4970 	cfs_b->period_active = 1;
4971 	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4972 	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4973 	cfs_b->expires_seq++;
4974 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4975 }
4976 
4977 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4978 {
4979 	/* init_cfs_bandwidth() was not called */
4980 	if (!cfs_b->throttled_cfs_rq.next)
4981 		return;
4982 
4983 	hrtimer_cancel(&cfs_b->period_timer);
4984 	hrtimer_cancel(&cfs_b->slack_timer);
4985 }
4986 
4987 /*
4988  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4989  *
4990  * The race is harmless, since modifying bandwidth settings of unhooked group
4991  * bits doesn't do much.
4992  */
4993 
4994 /* cpu online calback */
4995 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4996 {
4997 	struct task_group *tg;
4998 
4999 	lockdep_assert_held(&rq->lock);
5000 
5001 	rcu_read_lock();
5002 	list_for_each_entry_rcu(tg, &task_groups, list) {
5003 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5004 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5005 
5006 		raw_spin_lock(&cfs_b->lock);
5007 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5008 		raw_spin_unlock(&cfs_b->lock);
5009 	}
5010 	rcu_read_unlock();
5011 }
5012 
5013 /* cpu offline callback */
5014 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5015 {
5016 	struct task_group *tg;
5017 
5018 	lockdep_assert_held(&rq->lock);
5019 
5020 	rcu_read_lock();
5021 	list_for_each_entry_rcu(tg, &task_groups, list) {
5022 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5023 
5024 		if (!cfs_rq->runtime_enabled)
5025 			continue;
5026 
5027 		/*
5028 		 * clock_task is not advancing so we just need to make sure
5029 		 * there's some valid quota amount
5030 		 */
5031 		cfs_rq->runtime_remaining = 1;
5032 		/*
5033 		 * Offline rq is schedulable till CPU is completely disabled
5034 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5035 		 */
5036 		cfs_rq->runtime_enabled = 0;
5037 
5038 		if (cfs_rq_throttled(cfs_rq))
5039 			unthrottle_cfs_rq(cfs_rq);
5040 	}
5041 	rcu_read_unlock();
5042 }
5043 
5044 #else /* CONFIG_CFS_BANDWIDTH */
5045 
5046 static inline bool cfs_bandwidth_used(void)
5047 {
5048 	return false;
5049 }
5050 
5051 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5052 {
5053 	return rq_clock_task(rq_of(cfs_rq));
5054 }
5055 
5056 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5057 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5058 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5059 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5060 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5061 
5062 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5063 {
5064 	return 0;
5065 }
5066 
5067 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5068 {
5069 	return 0;
5070 }
5071 
5072 static inline int throttled_lb_pair(struct task_group *tg,
5073 				    int src_cpu, int dest_cpu)
5074 {
5075 	return 0;
5076 }
5077 
5078 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5079 
5080 #ifdef CONFIG_FAIR_GROUP_SCHED
5081 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5082 #endif
5083 
5084 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5085 {
5086 	return NULL;
5087 }
5088 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5089 static inline void update_runtime_enabled(struct rq *rq) {}
5090 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5091 
5092 #endif /* CONFIG_CFS_BANDWIDTH */
5093 
5094 /**************************************************
5095  * CFS operations on tasks:
5096  */
5097 
5098 #ifdef CONFIG_SCHED_HRTICK
5099 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5100 {
5101 	struct sched_entity *se = &p->se;
5102 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5103 
5104 	SCHED_WARN_ON(task_rq(p) != rq);
5105 
5106 	if (rq->cfs.h_nr_running > 1) {
5107 		u64 slice = sched_slice(cfs_rq, se);
5108 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5109 		s64 delta = slice - ran;
5110 
5111 		if (delta < 0) {
5112 			if (rq->curr == p)
5113 				resched_curr(rq);
5114 			return;
5115 		}
5116 		hrtick_start(rq, delta);
5117 	}
5118 }
5119 
5120 /*
5121  * called from enqueue/dequeue and updates the hrtick when the
5122  * current task is from our class and nr_running is low enough
5123  * to matter.
5124  */
5125 static void hrtick_update(struct rq *rq)
5126 {
5127 	struct task_struct *curr = rq->curr;
5128 
5129 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5130 		return;
5131 
5132 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5133 		hrtick_start_fair(rq, curr);
5134 }
5135 #else /* !CONFIG_SCHED_HRTICK */
5136 static inline void
5137 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5138 {
5139 }
5140 
5141 static inline void hrtick_update(struct rq *rq)
5142 {
5143 }
5144 #endif
5145 
5146 #ifdef CONFIG_SMP
5147 static inline unsigned long cpu_util(int cpu);
5148 
5149 static inline bool cpu_overutilized(int cpu)
5150 {
5151 	return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
5152 }
5153 
5154 static inline void update_overutilized_status(struct rq *rq)
5155 {
5156 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
5157 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5158 }
5159 #else
5160 static inline void update_overutilized_status(struct rq *rq) { }
5161 #endif
5162 
5163 /*
5164  * The enqueue_task method is called before nr_running is
5165  * increased. Here we update the fair scheduling stats and
5166  * then put the task into the rbtree:
5167  */
5168 static void
5169 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5170 {
5171 	struct cfs_rq *cfs_rq;
5172 	struct sched_entity *se = &p->se;
5173 
5174 	/*
5175 	 * The code below (indirectly) updates schedutil which looks at
5176 	 * the cfs_rq utilization to select a frequency.
5177 	 * Let's add the task's estimated utilization to the cfs_rq's
5178 	 * estimated utilization, before we update schedutil.
5179 	 */
5180 	util_est_enqueue(&rq->cfs, p);
5181 
5182 	/*
5183 	 * If in_iowait is set, the code below may not trigger any cpufreq
5184 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5185 	 * passed.
5186 	 */
5187 	if (p->in_iowait)
5188 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5189 
5190 	for_each_sched_entity(se) {
5191 		if (se->on_rq)
5192 			break;
5193 		cfs_rq = cfs_rq_of(se);
5194 		enqueue_entity(cfs_rq, se, flags);
5195 
5196 		/*
5197 		 * end evaluation on encountering a throttled cfs_rq
5198 		 *
5199 		 * note: in the case of encountering a throttled cfs_rq we will
5200 		 * post the final h_nr_running increment below.
5201 		 */
5202 		if (cfs_rq_throttled(cfs_rq))
5203 			break;
5204 		cfs_rq->h_nr_running++;
5205 
5206 		flags = ENQUEUE_WAKEUP;
5207 	}
5208 
5209 	for_each_sched_entity(se) {
5210 		cfs_rq = cfs_rq_of(se);
5211 		cfs_rq->h_nr_running++;
5212 
5213 		if (cfs_rq_throttled(cfs_rq))
5214 			break;
5215 
5216 		update_load_avg(cfs_rq, se, UPDATE_TG);
5217 		update_cfs_group(se);
5218 	}
5219 
5220 	if (!se) {
5221 		add_nr_running(rq, 1);
5222 		/*
5223 		 * Since new tasks are assigned an initial util_avg equal to
5224 		 * half of the spare capacity of their CPU, tiny tasks have the
5225 		 * ability to cross the overutilized threshold, which will
5226 		 * result in the load balancer ruining all the task placement
5227 		 * done by EAS. As a way to mitigate that effect, do not account
5228 		 * for the first enqueue operation of new tasks during the
5229 		 * overutilized flag detection.
5230 		 *
5231 		 * A better way of solving this problem would be to wait for
5232 		 * the PELT signals of tasks to converge before taking them
5233 		 * into account, but that is not straightforward to implement,
5234 		 * and the following generally works well enough in practice.
5235 		 */
5236 		if (flags & ENQUEUE_WAKEUP)
5237 			update_overutilized_status(rq);
5238 
5239 	}
5240 
5241 	if (cfs_bandwidth_used()) {
5242 		/*
5243 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5244 		 * breaks in the above iteration can result in incomplete
5245 		 * leaf list maintenance, resulting in triggering the assertion
5246 		 * below.
5247 		 */
5248 		for_each_sched_entity(se) {
5249 			cfs_rq = cfs_rq_of(se);
5250 
5251 			if (list_add_leaf_cfs_rq(cfs_rq))
5252 				break;
5253 		}
5254 	}
5255 
5256 	assert_list_leaf_cfs_rq(rq);
5257 
5258 	hrtick_update(rq);
5259 }
5260 
5261 static void set_next_buddy(struct sched_entity *se);
5262 
5263 /*
5264  * The dequeue_task method is called before nr_running is
5265  * decreased. We remove the task from the rbtree and
5266  * update the fair scheduling stats:
5267  */
5268 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5269 {
5270 	struct cfs_rq *cfs_rq;
5271 	struct sched_entity *se = &p->se;
5272 	int task_sleep = flags & DEQUEUE_SLEEP;
5273 
5274 	for_each_sched_entity(se) {
5275 		cfs_rq = cfs_rq_of(se);
5276 		dequeue_entity(cfs_rq, se, flags);
5277 
5278 		/*
5279 		 * end evaluation on encountering a throttled cfs_rq
5280 		 *
5281 		 * note: in the case of encountering a throttled cfs_rq we will
5282 		 * post the final h_nr_running decrement below.
5283 		*/
5284 		if (cfs_rq_throttled(cfs_rq))
5285 			break;
5286 		cfs_rq->h_nr_running--;
5287 
5288 		/* Don't dequeue parent if it has other entities besides us */
5289 		if (cfs_rq->load.weight) {
5290 			/* Avoid re-evaluating load for this entity: */
5291 			se = parent_entity(se);
5292 			/*
5293 			 * Bias pick_next to pick a task from this cfs_rq, as
5294 			 * p is sleeping when it is within its sched_slice.
5295 			 */
5296 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5297 				set_next_buddy(se);
5298 			break;
5299 		}
5300 		flags |= DEQUEUE_SLEEP;
5301 	}
5302 
5303 	for_each_sched_entity(se) {
5304 		cfs_rq = cfs_rq_of(se);
5305 		cfs_rq->h_nr_running--;
5306 
5307 		if (cfs_rq_throttled(cfs_rq))
5308 			break;
5309 
5310 		update_load_avg(cfs_rq, se, UPDATE_TG);
5311 		update_cfs_group(se);
5312 	}
5313 
5314 	if (!se)
5315 		sub_nr_running(rq, 1);
5316 
5317 	util_est_dequeue(&rq->cfs, p, task_sleep);
5318 	hrtick_update(rq);
5319 }
5320 
5321 #ifdef CONFIG_SMP
5322 
5323 /* Working cpumask for: load_balance, load_balance_newidle. */
5324 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5325 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5326 
5327 #ifdef CONFIG_NO_HZ_COMMON
5328 /*
5329  * per rq 'load' arrray crap; XXX kill this.
5330  */
5331 
5332 /*
5333  * The exact cpuload calculated at every tick would be:
5334  *
5335  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5336  *
5337  * If a CPU misses updates for n ticks (as it was idle) and update gets
5338  * called on the n+1-th tick when CPU may be busy, then we have:
5339  *
5340  *   load_n   = (1 - 1/2^i)^n * load_0
5341  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5342  *
5343  * decay_load_missed() below does efficient calculation of
5344  *
5345  *   load' = (1 - 1/2^i)^n * load
5346  *
5347  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5348  * This allows us to precompute the above in said factors, thereby allowing the
5349  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5350  * fixed_power_int())
5351  *
5352  * The calculation is approximated on a 128 point scale.
5353  */
5354 #define DEGRADE_SHIFT		7
5355 
5356 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5357 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5358 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5359 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5360 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5361 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5362 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5363 };
5364 
5365 /*
5366  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5367  * would be when CPU is idle and so we just decay the old load without
5368  * adding any new load.
5369  */
5370 static unsigned long
5371 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5372 {
5373 	int j = 0;
5374 
5375 	if (!missed_updates)
5376 		return load;
5377 
5378 	if (missed_updates >= degrade_zero_ticks[idx])
5379 		return 0;
5380 
5381 	if (idx == 1)
5382 		return load >> missed_updates;
5383 
5384 	while (missed_updates) {
5385 		if (missed_updates % 2)
5386 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5387 
5388 		missed_updates >>= 1;
5389 		j++;
5390 	}
5391 	return load;
5392 }
5393 
5394 static struct {
5395 	cpumask_var_t idle_cpus_mask;
5396 	atomic_t nr_cpus;
5397 	int has_blocked;		/* Idle CPUS has blocked load */
5398 	unsigned long next_balance;     /* in jiffy units */
5399 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5400 } nohz ____cacheline_aligned;
5401 
5402 #endif /* CONFIG_NO_HZ_COMMON */
5403 
5404 /**
5405  * __cpu_load_update - update the rq->cpu_load[] statistics
5406  * @this_rq: The rq to update statistics for
5407  * @this_load: The current load
5408  * @pending_updates: The number of missed updates
5409  *
5410  * Update rq->cpu_load[] statistics. This function is usually called every
5411  * scheduler tick (TICK_NSEC).
5412  *
5413  * This function computes a decaying average:
5414  *
5415  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5416  *
5417  * Because of NOHZ it might not get called on every tick which gives need for
5418  * the @pending_updates argument.
5419  *
5420  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5421  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5422  *             = A * (A * load[i]_n-2 + B) + B
5423  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5424  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5425  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5426  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5427  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5428  *
5429  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5430  * any change in load would have resulted in the tick being turned back on.
5431  *
5432  * For regular NOHZ, this reduces to:
5433  *
5434  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5435  *
5436  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5437  * term.
5438  */
5439 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5440 			    unsigned long pending_updates)
5441 {
5442 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5443 	int i, scale;
5444 
5445 	this_rq->nr_load_updates++;
5446 
5447 	/* Update our load: */
5448 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5449 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5450 		unsigned long old_load, new_load;
5451 
5452 		/* scale is effectively 1 << i now, and >> i divides by scale */
5453 
5454 		old_load = this_rq->cpu_load[i];
5455 #ifdef CONFIG_NO_HZ_COMMON
5456 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5457 		if (tickless_load) {
5458 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5459 			/*
5460 			 * old_load can never be a negative value because a
5461 			 * decayed tickless_load cannot be greater than the
5462 			 * original tickless_load.
5463 			 */
5464 			old_load += tickless_load;
5465 		}
5466 #endif
5467 		new_load = this_load;
5468 		/*
5469 		 * Round up the averaging division if load is increasing. This
5470 		 * prevents us from getting stuck on 9 if the load is 10, for
5471 		 * example.
5472 		 */
5473 		if (new_load > old_load)
5474 			new_load += scale - 1;
5475 
5476 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5477 	}
5478 }
5479 
5480 /* Used instead of source_load when we know the type == 0 */
5481 static unsigned long weighted_cpuload(struct rq *rq)
5482 {
5483 	return cfs_rq_runnable_load_avg(&rq->cfs);
5484 }
5485 
5486 #ifdef CONFIG_NO_HZ_COMMON
5487 /*
5488  * There is no sane way to deal with nohz on smp when using jiffies because the
5489  * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5490  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5491  *
5492  * Therefore we need to avoid the delta approach from the regular tick when
5493  * possible since that would seriously skew the load calculation. This is why we
5494  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5495  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5496  * loop exit, nohz_idle_balance, nohz full exit...)
5497  *
5498  * This means we might still be one tick off for nohz periods.
5499  */
5500 
5501 static void cpu_load_update_nohz(struct rq *this_rq,
5502 				 unsigned long curr_jiffies,
5503 				 unsigned long load)
5504 {
5505 	unsigned long pending_updates;
5506 
5507 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5508 	if (pending_updates) {
5509 		this_rq->last_load_update_tick = curr_jiffies;
5510 		/*
5511 		 * In the regular NOHZ case, we were idle, this means load 0.
5512 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5513 		 * its weighted load.
5514 		 */
5515 		cpu_load_update(this_rq, load, pending_updates);
5516 	}
5517 }
5518 
5519 /*
5520  * Called from nohz_idle_balance() to update the load ratings before doing the
5521  * idle balance.
5522  */
5523 static void cpu_load_update_idle(struct rq *this_rq)
5524 {
5525 	/*
5526 	 * bail if there's load or we're actually up-to-date.
5527 	 */
5528 	if (weighted_cpuload(this_rq))
5529 		return;
5530 
5531 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5532 }
5533 
5534 /*
5535  * Record CPU load on nohz entry so we know the tickless load to account
5536  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5537  * than other cpu_load[idx] but it should be fine as cpu_load readers
5538  * shouldn't rely into synchronized cpu_load[*] updates.
5539  */
5540 void cpu_load_update_nohz_start(void)
5541 {
5542 	struct rq *this_rq = this_rq();
5543 
5544 	/*
5545 	 * This is all lockless but should be fine. If weighted_cpuload changes
5546 	 * concurrently we'll exit nohz. And cpu_load write can race with
5547 	 * cpu_load_update_idle() but both updater would be writing the same.
5548 	 */
5549 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5550 }
5551 
5552 /*
5553  * Account the tickless load in the end of a nohz frame.
5554  */
5555 void cpu_load_update_nohz_stop(void)
5556 {
5557 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5558 	struct rq *this_rq = this_rq();
5559 	unsigned long load;
5560 	struct rq_flags rf;
5561 
5562 	if (curr_jiffies == this_rq->last_load_update_tick)
5563 		return;
5564 
5565 	load = weighted_cpuload(this_rq);
5566 	rq_lock(this_rq, &rf);
5567 	update_rq_clock(this_rq);
5568 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5569 	rq_unlock(this_rq, &rf);
5570 }
5571 #else /* !CONFIG_NO_HZ_COMMON */
5572 static inline void cpu_load_update_nohz(struct rq *this_rq,
5573 					unsigned long curr_jiffies,
5574 					unsigned long load) { }
5575 #endif /* CONFIG_NO_HZ_COMMON */
5576 
5577 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5578 {
5579 #ifdef CONFIG_NO_HZ_COMMON
5580 	/* See the mess around cpu_load_update_nohz(). */
5581 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5582 #endif
5583 	cpu_load_update(this_rq, load, 1);
5584 }
5585 
5586 /*
5587  * Called from scheduler_tick()
5588  */
5589 void cpu_load_update_active(struct rq *this_rq)
5590 {
5591 	unsigned long load = weighted_cpuload(this_rq);
5592 
5593 	if (tick_nohz_tick_stopped())
5594 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5595 	else
5596 		cpu_load_update_periodic(this_rq, load);
5597 }
5598 
5599 /*
5600  * Return a low guess at the load of a migration-source CPU weighted
5601  * according to the scheduling class and "nice" value.
5602  *
5603  * We want to under-estimate the load of migration sources, to
5604  * balance conservatively.
5605  */
5606 static unsigned long source_load(int cpu, int type)
5607 {
5608 	struct rq *rq = cpu_rq(cpu);
5609 	unsigned long total = weighted_cpuload(rq);
5610 
5611 	if (type == 0 || !sched_feat(LB_BIAS))
5612 		return total;
5613 
5614 	return min(rq->cpu_load[type-1], total);
5615 }
5616 
5617 /*
5618  * Return a high guess at the load of a migration-target CPU weighted
5619  * according to the scheduling class and "nice" value.
5620  */
5621 static unsigned long target_load(int cpu, int type)
5622 {
5623 	struct rq *rq = cpu_rq(cpu);
5624 	unsigned long total = weighted_cpuload(rq);
5625 
5626 	if (type == 0 || !sched_feat(LB_BIAS))
5627 		return total;
5628 
5629 	return max(rq->cpu_load[type-1], total);
5630 }
5631 
5632 static unsigned long capacity_of(int cpu)
5633 {
5634 	return cpu_rq(cpu)->cpu_capacity;
5635 }
5636 
5637 static unsigned long cpu_avg_load_per_task(int cpu)
5638 {
5639 	struct rq *rq = cpu_rq(cpu);
5640 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5641 	unsigned long load_avg = weighted_cpuload(rq);
5642 
5643 	if (nr_running)
5644 		return load_avg / nr_running;
5645 
5646 	return 0;
5647 }
5648 
5649 static void record_wakee(struct task_struct *p)
5650 {
5651 	/*
5652 	 * Only decay a single time; tasks that have less then 1 wakeup per
5653 	 * jiffy will not have built up many flips.
5654 	 */
5655 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5656 		current->wakee_flips >>= 1;
5657 		current->wakee_flip_decay_ts = jiffies;
5658 	}
5659 
5660 	if (current->last_wakee != p) {
5661 		current->last_wakee = p;
5662 		current->wakee_flips++;
5663 	}
5664 }
5665 
5666 /*
5667  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5668  *
5669  * A waker of many should wake a different task than the one last awakened
5670  * at a frequency roughly N times higher than one of its wakees.
5671  *
5672  * In order to determine whether we should let the load spread vs consolidating
5673  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5674  * partner, and a factor of lls_size higher frequency in the other.
5675  *
5676  * With both conditions met, we can be relatively sure that the relationship is
5677  * non-monogamous, with partner count exceeding socket size.
5678  *
5679  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5680  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5681  * socket size.
5682  */
5683 static int wake_wide(struct task_struct *p)
5684 {
5685 	unsigned int master = current->wakee_flips;
5686 	unsigned int slave = p->wakee_flips;
5687 	int factor = this_cpu_read(sd_llc_size);
5688 
5689 	if (master < slave)
5690 		swap(master, slave);
5691 	if (slave < factor || master < slave * factor)
5692 		return 0;
5693 	return 1;
5694 }
5695 
5696 /*
5697  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5698  * soonest. For the purpose of speed we only consider the waking and previous
5699  * CPU.
5700  *
5701  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5702  *			cache-affine and is (or	will be) idle.
5703  *
5704  * wake_affine_weight() - considers the weight to reflect the average
5705  *			  scheduling latency of the CPUs. This seems to work
5706  *			  for the overloaded case.
5707  */
5708 static int
5709 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5710 {
5711 	/*
5712 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5713 	 * context. Only allow the move if cache is shared. Otherwise an
5714 	 * interrupt intensive workload could force all tasks onto one
5715 	 * node depending on the IO topology or IRQ affinity settings.
5716 	 *
5717 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5718 	 * There is no guarantee that the cache hot data from an interrupt
5719 	 * is more important than cache hot data on the prev_cpu and from
5720 	 * a cpufreq perspective, it's better to have higher utilisation
5721 	 * on one CPU.
5722 	 */
5723 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5724 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5725 
5726 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5727 		return this_cpu;
5728 
5729 	return nr_cpumask_bits;
5730 }
5731 
5732 static int
5733 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5734 		   int this_cpu, int prev_cpu, int sync)
5735 {
5736 	s64 this_eff_load, prev_eff_load;
5737 	unsigned long task_load;
5738 
5739 	this_eff_load = target_load(this_cpu, sd->wake_idx);
5740 
5741 	if (sync) {
5742 		unsigned long current_load = task_h_load(current);
5743 
5744 		if (current_load > this_eff_load)
5745 			return this_cpu;
5746 
5747 		this_eff_load -= current_load;
5748 	}
5749 
5750 	task_load = task_h_load(p);
5751 
5752 	this_eff_load += task_load;
5753 	if (sched_feat(WA_BIAS))
5754 		this_eff_load *= 100;
5755 	this_eff_load *= capacity_of(prev_cpu);
5756 
5757 	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5758 	prev_eff_load -= task_load;
5759 	if (sched_feat(WA_BIAS))
5760 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5761 	prev_eff_load *= capacity_of(this_cpu);
5762 
5763 	/*
5764 	 * If sync, adjust the weight of prev_eff_load such that if
5765 	 * prev_eff == this_eff that select_idle_sibling() will consider
5766 	 * stacking the wakee on top of the waker if no other CPU is
5767 	 * idle.
5768 	 */
5769 	if (sync)
5770 		prev_eff_load += 1;
5771 
5772 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5773 }
5774 
5775 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5776 		       int this_cpu, int prev_cpu, int sync)
5777 {
5778 	int target = nr_cpumask_bits;
5779 
5780 	if (sched_feat(WA_IDLE))
5781 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5782 
5783 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5784 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5785 
5786 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5787 	if (target == nr_cpumask_bits)
5788 		return prev_cpu;
5789 
5790 	schedstat_inc(sd->ttwu_move_affine);
5791 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5792 	return target;
5793 }
5794 
5795 static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5796 
5797 static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5798 {
5799 	return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5800 }
5801 
5802 /*
5803  * find_idlest_group finds and returns the least busy CPU group within the
5804  * domain.
5805  *
5806  * Assumes p is allowed on at least one CPU in sd.
5807  */
5808 static struct sched_group *
5809 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5810 		  int this_cpu, int sd_flag)
5811 {
5812 	struct sched_group *idlest = NULL, *group = sd->groups;
5813 	struct sched_group *most_spare_sg = NULL;
5814 	unsigned long min_runnable_load = ULONG_MAX;
5815 	unsigned long this_runnable_load = ULONG_MAX;
5816 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5817 	unsigned long most_spare = 0, this_spare = 0;
5818 	int load_idx = sd->forkexec_idx;
5819 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5820 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5821 				(sd->imbalance_pct-100) / 100;
5822 
5823 	if (sd_flag & SD_BALANCE_WAKE)
5824 		load_idx = sd->wake_idx;
5825 
5826 	do {
5827 		unsigned long load, avg_load, runnable_load;
5828 		unsigned long spare_cap, max_spare_cap;
5829 		int local_group;
5830 		int i;
5831 
5832 		/* Skip over this group if it has no CPUs allowed */
5833 		if (!cpumask_intersects(sched_group_span(group),
5834 					&p->cpus_allowed))
5835 			continue;
5836 
5837 		local_group = cpumask_test_cpu(this_cpu,
5838 					       sched_group_span(group));
5839 
5840 		/*
5841 		 * Tally up the load of all CPUs in the group and find
5842 		 * the group containing the CPU with most spare capacity.
5843 		 */
5844 		avg_load = 0;
5845 		runnable_load = 0;
5846 		max_spare_cap = 0;
5847 
5848 		for_each_cpu(i, sched_group_span(group)) {
5849 			/* Bias balancing toward CPUs of our domain */
5850 			if (local_group)
5851 				load = source_load(i, load_idx);
5852 			else
5853 				load = target_load(i, load_idx);
5854 
5855 			runnable_load += load;
5856 
5857 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5858 
5859 			spare_cap = capacity_spare_without(i, p);
5860 
5861 			if (spare_cap > max_spare_cap)
5862 				max_spare_cap = spare_cap;
5863 		}
5864 
5865 		/* Adjust by relative CPU capacity of the group */
5866 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5867 					group->sgc->capacity;
5868 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5869 					group->sgc->capacity;
5870 
5871 		if (local_group) {
5872 			this_runnable_load = runnable_load;
5873 			this_avg_load = avg_load;
5874 			this_spare = max_spare_cap;
5875 		} else {
5876 			if (min_runnable_load > (runnable_load + imbalance)) {
5877 				/*
5878 				 * The runnable load is significantly smaller
5879 				 * so we can pick this new CPU:
5880 				 */
5881 				min_runnable_load = runnable_load;
5882 				min_avg_load = avg_load;
5883 				idlest = group;
5884 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5885 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5886 				/*
5887 				 * The runnable loads are close so take the
5888 				 * blocked load into account through avg_load:
5889 				 */
5890 				min_avg_load = avg_load;
5891 				idlest = group;
5892 			}
5893 
5894 			if (most_spare < max_spare_cap) {
5895 				most_spare = max_spare_cap;
5896 				most_spare_sg = group;
5897 			}
5898 		}
5899 	} while (group = group->next, group != sd->groups);
5900 
5901 	/*
5902 	 * The cross-over point between using spare capacity or least load
5903 	 * is too conservative for high utilization tasks on partially
5904 	 * utilized systems if we require spare_capacity > task_util(p),
5905 	 * so we allow for some task stuffing by using
5906 	 * spare_capacity > task_util(p)/2.
5907 	 *
5908 	 * Spare capacity can't be used for fork because the utilization has
5909 	 * not been set yet, we must first select a rq to compute the initial
5910 	 * utilization.
5911 	 */
5912 	if (sd_flag & SD_BALANCE_FORK)
5913 		goto skip_spare;
5914 
5915 	if (this_spare > task_util(p) / 2 &&
5916 	    imbalance_scale*this_spare > 100*most_spare)
5917 		return NULL;
5918 
5919 	if (most_spare > task_util(p) / 2)
5920 		return most_spare_sg;
5921 
5922 skip_spare:
5923 	if (!idlest)
5924 		return NULL;
5925 
5926 	/*
5927 	 * When comparing groups across NUMA domains, it's possible for the
5928 	 * local domain to be very lightly loaded relative to the remote
5929 	 * domains but "imbalance" skews the comparison making remote CPUs
5930 	 * look much more favourable. When considering cross-domain, add
5931 	 * imbalance to the runnable load on the remote node and consider
5932 	 * staying local.
5933 	 */
5934 	if ((sd->flags & SD_NUMA) &&
5935 	    min_runnable_load + imbalance >= this_runnable_load)
5936 		return NULL;
5937 
5938 	if (min_runnable_load > (this_runnable_load + imbalance))
5939 		return NULL;
5940 
5941 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5942 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5943 		return NULL;
5944 
5945 	return idlest;
5946 }
5947 
5948 /*
5949  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5950  */
5951 static int
5952 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5953 {
5954 	unsigned long load, min_load = ULONG_MAX;
5955 	unsigned int min_exit_latency = UINT_MAX;
5956 	u64 latest_idle_timestamp = 0;
5957 	int least_loaded_cpu = this_cpu;
5958 	int shallowest_idle_cpu = -1;
5959 	int i;
5960 
5961 	/* Check if we have any choice: */
5962 	if (group->group_weight == 1)
5963 		return cpumask_first(sched_group_span(group));
5964 
5965 	/* Traverse only the allowed CPUs */
5966 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5967 		if (available_idle_cpu(i)) {
5968 			struct rq *rq = cpu_rq(i);
5969 			struct cpuidle_state *idle = idle_get_state(rq);
5970 			if (idle && idle->exit_latency < min_exit_latency) {
5971 				/*
5972 				 * We give priority to a CPU whose idle state
5973 				 * has the smallest exit latency irrespective
5974 				 * of any idle timestamp.
5975 				 */
5976 				min_exit_latency = idle->exit_latency;
5977 				latest_idle_timestamp = rq->idle_stamp;
5978 				shallowest_idle_cpu = i;
5979 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5980 				   rq->idle_stamp > latest_idle_timestamp) {
5981 				/*
5982 				 * If equal or no active idle state, then
5983 				 * the most recently idled CPU might have
5984 				 * a warmer cache.
5985 				 */
5986 				latest_idle_timestamp = rq->idle_stamp;
5987 				shallowest_idle_cpu = i;
5988 			}
5989 		} else if (shallowest_idle_cpu == -1) {
5990 			load = weighted_cpuload(cpu_rq(i));
5991 			if (load < min_load) {
5992 				min_load = load;
5993 				least_loaded_cpu = i;
5994 			}
5995 		}
5996 	}
5997 
5998 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5999 }
6000 
6001 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6002 				  int cpu, int prev_cpu, int sd_flag)
6003 {
6004 	int new_cpu = cpu;
6005 
6006 	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
6007 		return prev_cpu;
6008 
6009 	/*
6010 	 * We need task's util for capacity_spare_without, sync it up to
6011 	 * prev_cpu's last_update_time.
6012 	 */
6013 	if (!(sd_flag & SD_BALANCE_FORK))
6014 		sync_entity_load_avg(&p->se);
6015 
6016 	while (sd) {
6017 		struct sched_group *group;
6018 		struct sched_domain *tmp;
6019 		int weight;
6020 
6021 		if (!(sd->flags & sd_flag)) {
6022 			sd = sd->child;
6023 			continue;
6024 		}
6025 
6026 		group = find_idlest_group(sd, p, cpu, sd_flag);
6027 		if (!group) {
6028 			sd = sd->child;
6029 			continue;
6030 		}
6031 
6032 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6033 		if (new_cpu == cpu) {
6034 			/* Now try balancing at a lower domain level of 'cpu': */
6035 			sd = sd->child;
6036 			continue;
6037 		}
6038 
6039 		/* Now try balancing at a lower domain level of 'new_cpu': */
6040 		cpu = new_cpu;
6041 		weight = sd->span_weight;
6042 		sd = NULL;
6043 		for_each_domain(cpu, tmp) {
6044 			if (weight <= tmp->span_weight)
6045 				break;
6046 			if (tmp->flags & sd_flag)
6047 				sd = tmp;
6048 		}
6049 	}
6050 
6051 	return new_cpu;
6052 }
6053 
6054 #ifdef CONFIG_SCHED_SMT
6055 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6056 EXPORT_SYMBOL_GPL(sched_smt_present);
6057 
6058 static inline void set_idle_cores(int cpu, int val)
6059 {
6060 	struct sched_domain_shared *sds;
6061 
6062 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6063 	if (sds)
6064 		WRITE_ONCE(sds->has_idle_cores, val);
6065 }
6066 
6067 static inline bool test_idle_cores(int cpu, bool def)
6068 {
6069 	struct sched_domain_shared *sds;
6070 
6071 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6072 	if (sds)
6073 		return READ_ONCE(sds->has_idle_cores);
6074 
6075 	return def;
6076 }
6077 
6078 /*
6079  * Scans the local SMT mask to see if the entire core is idle, and records this
6080  * information in sd_llc_shared->has_idle_cores.
6081  *
6082  * Since SMT siblings share all cache levels, inspecting this limited remote
6083  * state should be fairly cheap.
6084  */
6085 void __update_idle_core(struct rq *rq)
6086 {
6087 	int core = cpu_of(rq);
6088 	int cpu;
6089 
6090 	rcu_read_lock();
6091 	if (test_idle_cores(core, true))
6092 		goto unlock;
6093 
6094 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6095 		if (cpu == core)
6096 			continue;
6097 
6098 		if (!available_idle_cpu(cpu))
6099 			goto unlock;
6100 	}
6101 
6102 	set_idle_cores(core, 1);
6103 unlock:
6104 	rcu_read_unlock();
6105 }
6106 
6107 /*
6108  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6109  * there are no idle cores left in the system; tracked through
6110  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6111  */
6112 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6113 {
6114 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6115 	int core, cpu;
6116 
6117 	if (!static_branch_likely(&sched_smt_present))
6118 		return -1;
6119 
6120 	if (!test_idle_cores(target, false))
6121 		return -1;
6122 
6123 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6124 
6125 	for_each_cpu_wrap(core, cpus, target) {
6126 		bool idle = true;
6127 
6128 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6129 			__cpumask_clear_cpu(cpu, cpus);
6130 			if (!available_idle_cpu(cpu))
6131 				idle = false;
6132 		}
6133 
6134 		if (idle)
6135 			return core;
6136 	}
6137 
6138 	/*
6139 	 * Failed to find an idle core; stop looking for one.
6140 	 */
6141 	set_idle_cores(target, 0);
6142 
6143 	return -1;
6144 }
6145 
6146 /*
6147  * Scan the local SMT mask for idle CPUs.
6148  */
6149 static int select_idle_smt(struct task_struct *p, int target)
6150 {
6151 	int cpu;
6152 
6153 	if (!static_branch_likely(&sched_smt_present))
6154 		return -1;
6155 
6156 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6157 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6158 			continue;
6159 		if (available_idle_cpu(cpu))
6160 			return cpu;
6161 	}
6162 
6163 	return -1;
6164 }
6165 
6166 #else /* CONFIG_SCHED_SMT */
6167 
6168 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6169 {
6170 	return -1;
6171 }
6172 
6173 static inline int select_idle_smt(struct task_struct *p, int target)
6174 {
6175 	return -1;
6176 }
6177 
6178 #endif /* CONFIG_SCHED_SMT */
6179 
6180 /*
6181  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6182  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6183  * average idle time for this rq (as found in rq->avg_idle).
6184  */
6185 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6186 {
6187 	struct sched_domain *this_sd;
6188 	u64 avg_cost, avg_idle;
6189 	u64 time, cost;
6190 	s64 delta;
6191 	int cpu, nr = INT_MAX;
6192 
6193 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6194 	if (!this_sd)
6195 		return -1;
6196 
6197 	/*
6198 	 * Due to large variance we need a large fuzz factor; hackbench in
6199 	 * particularly is sensitive here.
6200 	 */
6201 	avg_idle = this_rq()->avg_idle / 512;
6202 	avg_cost = this_sd->avg_scan_cost + 1;
6203 
6204 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6205 		return -1;
6206 
6207 	if (sched_feat(SIS_PROP)) {
6208 		u64 span_avg = sd->span_weight * avg_idle;
6209 		if (span_avg > 4*avg_cost)
6210 			nr = div_u64(span_avg, avg_cost);
6211 		else
6212 			nr = 4;
6213 	}
6214 
6215 	time = local_clock();
6216 
6217 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6218 		if (!--nr)
6219 			return -1;
6220 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6221 			continue;
6222 		if (available_idle_cpu(cpu))
6223 			break;
6224 	}
6225 
6226 	time = local_clock() - time;
6227 	cost = this_sd->avg_scan_cost;
6228 	delta = (s64)(time - cost) / 8;
6229 	this_sd->avg_scan_cost += delta;
6230 
6231 	return cpu;
6232 }
6233 
6234 /*
6235  * Try and locate an idle core/thread in the LLC cache domain.
6236  */
6237 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6238 {
6239 	struct sched_domain *sd;
6240 	int i, recent_used_cpu;
6241 
6242 	if (available_idle_cpu(target))
6243 		return target;
6244 
6245 	/*
6246 	 * If the previous CPU is cache affine and idle, don't be stupid:
6247 	 */
6248 	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6249 		return prev;
6250 
6251 	/* Check a recently used CPU as a potential idle candidate: */
6252 	recent_used_cpu = p->recent_used_cpu;
6253 	if (recent_used_cpu != prev &&
6254 	    recent_used_cpu != target &&
6255 	    cpus_share_cache(recent_used_cpu, target) &&
6256 	    available_idle_cpu(recent_used_cpu) &&
6257 	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6258 		/*
6259 		 * Replace recent_used_cpu with prev as it is a potential
6260 		 * candidate for the next wake:
6261 		 */
6262 		p->recent_used_cpu = prev;
6263 		return recent_used_cpu;
6264 	}
6265 
6266 	sd = rcu_dereference(per_cpu(sd_llc, target));
6267 	if (!sd)
6268 		return target;
6269 
6270 	i = select_idle_core(p, sd, target);
6271 	if ((unsigned)i < nr_cpumask_bits)
6272 		return i;
6273 
6274 	i = select_idle_cpu(p, sd, target);
6275 	if ((unsigned)i < nr_cpumask_bits)
6276 		return i;
6277 
6278 	i = select_idle_smt(p, target);
6279 	if ((unsigned)i < nr_cpumask_bits)
6280 		return i;
6281 
6282 	return target;
6283 }
6284 
6285 /**
6286  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6287  * @cpu: the CPU to get the utilization of
6288  *
6289  * The unit of the return value must be the one of capacity so we can compare
6290  * the utilization with the capacity of the CPU that is available for CFS task
6291  * (ie cpu_capacity).
6292  *
6293  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6294  * recent utilization of currently non-runnable tasks on a CPU. It represents
6295  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6296  * capacity_orig is the cpu_capacity available at the highest frequency
6297  * (arch_scale_freq_capacity()).
6298  * The utilization of a CPU converges towards a sum equal to or less than the
6299  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6300  * the running time on this CPU scaled by capacity_curr.
6301  *
6302  * The estimated utilization of a CPU is defined to be the maximum between its
6303  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6304  * currently RUNNABLE on that CPU.
6305  * This allows to properly represent the expected utilization of a CPU which
6306  * has just got a big task running since a long sleep period. At the same time
6307  * however it preserves the benefits of the "blocked utilization" in
6308  * describing the potential for other tasks waking up on the same CPU.
6309  *
6310  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6311  * higher than capacity_orig because of unfortunate rounding in
6312  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6313  * the average stabilizes with the new running time. We need to check that the
6314  * utilization stays within the range of [0..capacity_orig] and cap it if
6315  * necessary. Without utilization capping, a group could be seen as overloaded
6316  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6317  * available capacity. We allow utilization to overshoot capacity_curr (but not
6318  * capacity_orig) as it useful for predicting the capacity required after task
6319  * migrations (scheduler-driven DVFS).
6320  *
6321  * Return: the (estimated) utilization for the specified CPU
6322  */
6323 static inline unsigned long cpu_util(int cpu)
6324 {
6325 	struct cfs_rq *cfs_rq;
6326 	unsigned int util;
6327 
6328 	cfs_rq = &cpu_rq(cpu)->cfs;
6329 	util = READ_ONCE(cfs_rq->avg.util_avg);
6330 
6331 	if (sched_feat(UTIL_EST))
6332 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6333 
6334 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6335 }
6336 
6337 /*
6338  * cpu_util_without: compute cpu utilization without any contributions from *p
6339  * @cpu: the CPU which utilization is requested
6340  * @p: the task which utilization should be discounted
6341  *
6342  * The utilization of a CPU is defined by the utilization of tasks currently
6343  * enqueued on that CPU as well as tasks which are currently sleeping after an
6344  * execution on that CPU.
6345  *
6346  * This method returns the utilization of the specified CPU by discounting the
6347  * utilization of the specified task, whenever the task is currently
6348  * contributing to the CPU utilization.
6349  */
6350 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6351 {
6352 	struct cfs_rq *cfs_rq;
6353 	unsigned int util;
6354 
6355 	/* Task has no contribution or is new */
6356 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6357 		return cpu_util(cpu);
6358 
6359 	cfs_rq = &cpu_rq(cpu)->cfs;
6360 	util = READ_ONCE(cfs_rq->avg.util_avg);
6361 
6362 	/* Discount task's util from CPU's util */
6363 	lsub_positive(&util, task_util(p));
6364 
6365 	/*
6366 	 * Covered cases:
6367 	 *
6368 	 * a) if *p is the only task sleeping on this CPU, then:
6369 	 *      cpu_util (== task_util) > util_est (== 0)
6370 	 *    and thus we return:
6371 	 *      cpu_util_without = (cpu_util - task_util) = 0
6372 	 *
6373 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6374 	 *    IDLE, then:
6375 	 *      cpu_util >= task_util
6376 	 *      cpu_util > util_est (== 0)
6377 	 *    and thus we discount *p's blocked utilization to return:
6378 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6379 	 *
6380 	 * c) if other tasks are RUNNABLE on that CPU and
6381 	 *      util_est > cpu_util
6382 	 *    then we use util_est since it returns a more restrictive
6383 	 *    estimation of the spare capacity on that CPU, by just
6384 	 *    considering the expected utilization of tasks already
6385 	 *    runnable on that CPU.
6386 	 *
6387 	 * Cases a) and b) are covered by the above code, while case c) is
6388 	 * covered by the following code when estimated utilization is
6389 	 * enabled.
6390 	 */
6391 	if (sched_feat(UTIL_EST)) {
6392 		unsigned int estimated =
6393 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6394 
6395 		/*
6396 		 * Despite the following checks we still have a small window
6397 		 * for a possible race, when an execl's select_task_rq_fair()
6398 		 * races with LB's detach_task():
6399 		 *
6400 		 *   detach_task()
6401 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6402 		 *     ---------------------------------- A
6403 		 *     deactivate_task()                   \
6404 		 *       dequeue_task()                     + RaceTime
6405 		 *         util_est_dequeue()              /
6406 		 *     ---------------------------------- B
6407 		 *
6408 		 * The additional check on "current == p" it's required to
6409 		 * properly fix the execl regression and it helps in further
6410 		 * reducing the chances for the above race.
6411 		 */
6412 		if (unlikely(task_on_rq_queued(p) || current == p))
6413 			lsub_positive(&estimated, _task_util_est(p));
6414 
6415 		util = max(util, estimated);
6416 	}
6417 
6418 	/*
6419 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6420 	 * clamp to the maximum CPU capacity to ensure consistency with
6421 	 * the cpu_util call.
6422 	 */
6423 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6424 }
6425 
6426 /*
6427  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6428  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6429  *
6430  * In that case WAKE_AFFINE doesn't make sense and we'll let
6431  * BALANCE_WAKE sort things out.
6432  */
6433 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6434 {
6435 	long min_cap, max_cap;
6436 
6437 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
6438 		return 0;
6439 
6440 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6441 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6442 
6443 	/* Minimum capacity is close to max, no need to abort wake_affine */
6444 	if (max_cap - min_cap < max_cap >> 3)
6445 		return 0;
6446 
6447 	/* Bring task utilization in sync with prev_cpu */
6448 	sync_entity_load_avg(&p->se);
6449 
6450 	return !task_fits_capacity(p, min_cap);
6451 }
6452 
6453 /*
6454  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6455  * to @dst_cpu.
6456  */
6457 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6458 {
6459 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6460 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6461 
6462 	/*
6463 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6464 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6465 	 * the other cases, @cpu is not impacted by the migration, so the
6466 	 * util_avg should already be correct.
6467 	 */
6468 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6469 		sub_positive(&util, task_util(p));
6470 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6471 		util += task_util(p);
6472 
6473 	if (sched_feat(UTIL_EST)) {
6474 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6475 
6476 		/*
6477 		 * During wake-up, the task isn't enqueued yet and doesn't
6478 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6479 		 * so just add it (if needed) to "simulate" what will be
6480 		 * cpu_util() after the task has been enqueued.
6481 		 */
6482 		if (dst_cpu == cpu)
6483 			util_est += _task_util_est(p);
6484 
6485 		util = max(util, util_est);
6486 	}
6487 
6488 	return min(util, capacity_orig_of(cpu));
6489 }
6490 
6491 /*
6492  * compute_energy(): Estimates the energy that would be consumed if @p was
6493  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6494  * landscape of the * CPUs after the task migration, and uses the Energy Model
6495  * to compute what would be the energy if we decided to actually migrate that
6496  * task.
6497  */
6498 static long
6499 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6500 {
6501 	long util, max_util, sum_util, energy = 0;
6502 	int cpu;
6503 
6504 	for (; pd; pd = pd->next) {
6505 		max_util = sum_util = 0;
6506 		/*
6507 		 * The capacity state of CPUs of the current rd can be driven by
6508 		 * CPUs of another rd if they belong to the same performance
6509 		 * domain. So, account for the utilization of these CPUs too
6510 		 * by masking pd with cpu_online_mask instead of the rd span.
6511 		 *
6512 		 * If an entire performance domain is outside of the current rd,
6513 		 * it will not appear in its pd list and will not be accounted
6514 		 * by compute_energy().
6515 		 */
6516 		for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) {
6517 			util = cpu_util_next(cpu, p, dst_cpu);
6518 			util = schedutil_energy_util(cpu, util);
6519 			max_util = max(util, max_util);
6520 			sum_util += util;
6521 		}
6522 
6523 		energy += em_pd_energy(pd->em_pd, max_util, sum_util);
6524 	}
6525 
6526 	return energy;
6527 }
6528 
6529 /*
6530  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6531  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6532  * spare capacity in each performance domain and uses it as a potential
6533  * candidate to execute the task. Then, it uses the Energy Model to figure
6534  * out which of the CPU candidates is the most energy-efficient.
6535  *
6536  * The rationale for this heuristic is as follows. In a performance domain,
6537  * all the most energy efficient CPU candidates (according to the Energy
6538  * Model) are those for which we'll request a low frequency. When there are
6539  * several CPUs for which the frequency request will be the same, we don't
6540  * have enough data to break the tie between them, because the Energy Model
6541  * only includes active power costs. With this model, if we assume that
6542  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6543  * the maximum spare capacity in a performance domain is guaranteed to be among
6544  * the best candidates of the performance domain.
6545  *
6546  * In practice, it could be preferable from an energy standpoint to pack
6547  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6548  * but that could also hurt our chances to go cluster idle, and we have no
6549  * ways to tell with the current Energy Model if this is actually a good
6550  * idea or not. So, find_energy_efficient_cpu() basically favors
6551  * cluster-packing, and spreading inside a cluster. That should at least be
6552  * a good thing for latency, and this is consistent with the idea that most
6553  * of the energy savings of EAS come from the asymmetry of the system, and
6554  * not so much from breaking the tie between identical CPUs. That's also the
6555  * reason why EAS is enabled in the topology code only for systems where
6556  * SD_ASYM_CPUCAPACITY is set.
6557  *
6558  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6559  * they don't have any useful utilization data yet and it's not possible to
6560  * forecast their impact on energy consumption. Consequently, they will be
6561  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6562  * to be energy-inefficient in some use-cases. The alternative would be to
6563  * bias new tasks towards specific types of CPUs first, or to try to infer
6564  * their util_avg from the parent task, but those heuristics could hurt
6565  * other use-cases too. So, until someone finds a better way to solve this,
6566  * let's keep things simple by re-using the existing slow path.
6567  */
6568 
6569 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6570 {
6571 	unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
6572 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6573 	int cpu, best_energy_cpu = prev_cpu;
6574 	struct perf_domain *head, *pd;
6575 	unsigned long cpu_cap, util;
6576 	struct sched_domain *sd;
6577 
6578 	rcu_read_lock();
6579 	pd = rcu_dereference(rd->pd);
6580 	if (!pd || READ_ONCE(rd->overutilized))
6581 		goto fail;
6582 	head = pd;
6583 
6584 	/*
6585 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6586 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6587 	 */
6588 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6589 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6590 		sd = sd->parent;
6591 	if (!sd)
6592 		goto fail;
6593 
6594 	sync_entity_load_avg(&p->se);
6595 	if (!task_util_est(p))
6596 		goto unlock;
6597 
6598 	for (; pd; pd = pd->next) {
6599 		unsigned long cur_energy, spare_cap, max_spare_cap = 0;
6600 		int max_spare_cap_cpu = -1;
6601 
6602 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6603 			if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6604 				continue;
6605 
6606 			/* Skip CPUs that will be overutilized. */
6607 			util = cpu_util_next(cpu, p, cpu);
6608 			cpu_cap = capacity_of(cpu);
6609 			if (cpu_cap * 1024 < util * capacity_margin)
6610 				continue;
6611 
6612 			/* Always use prev_cpu as a candidate. */
6613 			if (cpu == prev_cpu) {
6614 				prev_energy = compute_energy(p, prev_cpu, head);
6615 				best_energy = min(best_energy, prev_energy);
6616 				continue;
6617 			}
6618 
6619 			/*
6620 			 * Find the CPU with the maximum spare capacity in
6621 			 * the performance domain
6622 			 */
6623 			spare_cap = cpu_cap - util;
6624 			if (spare_cap > max_spare_cap) {
6625 				max_spare_cap = spare_cap;
6626 				max_spare_cap_cpu = cpu;
6627 			}
6628 		}
6629 
6630 		/* Evaluate the energy impact of using this CPU. */
6631 		if (max_spare_cap_cpu >= 0) {
6632 			cur_energy = compute_energy(p, max_spare_cap_cpu, head);
6633 			if (cur_energy < best_energy) {
6634 				best_energy = cur_energy;
6635 				best_energy_cpu = max_spare_cap_cpu;
6636 			}
6637 		}
6638 	}
6639 unlock:
6640 	rcu_read_unlock();
6641 
6642 	/*
6643 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6644 	 * least 6% of the energy used by prev_cpu.
6645 	 */
6646 	if (prev_energy == ULONG_MAX)
6647 		return best_energy_cpu;
6648 
6649 	if ((prev_energy - best_energy) > (prev_energy >> 4))
6650 		return best_energy_cpu;
6651 
6652 	return prev_cpu;
6653 
6654 fail:
6655 	rcu_read_unlock();
6656 
6657 	return -1;
6658 }
6659 
6660 /*
6661  * select_task_rq_fair: Select target runqueue for the waking task in domains
6662  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6663  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6664  *
6665  * Balances load by selecting the idlest CPU in the idlest group, or under
6666  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6667  *
6668  * Returns the target CPU number.
6669  *
6670  * preempt must be disabled.
6671  */
6672 static int
6673 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6674 {
6675 	struct sched_domain *tmp, *sd = NULL;
6676 	int cpu = smp_processor_id();
6677 	int new_cpu = prev_cpu;
6678 	int want_affine = 0;
6679 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6680 
6681 	if (sd_flag & SD_BALANCE_WAKE) {
6682 		record_wakee(p);
6683 
6684 		if (sched_energy_enabled()) {
6685 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6686 			if (new_cpu >= 0)
6687 				return new_cpu;
6688 			new_cpu = prev_cpu;
6689 		}
6690 
6691 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6692 			      cpumask_test_cpu(cpu, &p->cpus_allowed);
6693 	}
6694 
6695 	rcu_read_lock();
6696 	for_each_domain(cpu, tmp) {
6697 		if (!(tmp->flags & SD_LOAD_BALANCE))
6698 			break;
6699 
6700 		/*
6701 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6702 		 * cpu is a valid SD_WAKE_AFFINE target.
6703 		 */
6704 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6705 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6706 			if (cpu != prev_cpu)
6707 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6708 
6709 			sd = NULL; /* Prefer wake_affine over balance flags */
6710 			break;
6711 		}
6712 
6713 		if (tmp->flags & sd_flag)
6714 			sd = tmp;
6715 		else if (!want_affine)
6716 			break;
6717 	}
6718 
6719 	if (unlikely(sd)) {
6720 		/* Slow path */
6721 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6722 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6723 		/* Fast path */
6724 
6725 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6726 
6727 		if (want_affine)
6728 			current->recent_used_cpu = cpu;
6729 	}
6730 	rcu_read_unlock();
6731 
6732 	return new_cpu;
6733 }
6734 
6735 static void detach_entity_cfs_rq(struct sched_entity *se);
6736 
6737 /*
6738  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6739  * cfs_rq_of(p) references at time of call are still valid and identify the
6740  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6741  */
6742 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6743 {
6744 	/*
6745 	 * As blocked tasks retain absolute vruntime the migration needs to
6746 	 * deal with this by subtracting the old and adding the new
6747 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6748 	 * the task on the new runqueue.
6749 	 */
6750 	if (p->state == TASK_WAKING) {
6751 		struct sched_entity *se = &p->se;
6752 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6753 		u64 min_vruntime;
6754 
6755 #ifndef CONFIG_64BIT
6756 		u64 min_vruntime_copy;
6757 
6758 		do {
6759 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6760 			smp_rmb();
6761 			min_vruntime = cfs_rq->min_vruntime;
6762 		} while (min_vruntime != min_vruntime_copy);
6763 #else
6764 		min_vruntime = cfs_rq->min_vruntime;
6765 #endif
6766 
6767 		se->vruntime -= min_vruntime;
6768 	}
6769 
6770 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6771 		/*
6772 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6773 		 * rq->lock and can modify state directly.
6774 		 */
6775 		lockdep_assert_held(&task_rq(p)->lock);
6776 		detach_entity_cfs_rq(&p->se);
6777 
6778 	} else {
6779 		/*
6780 		 * We are supposed to update the task to "current" time, then
6781 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6782 		 * have difficulty in getting what current time is, so simply
6783 		 * throw away the out-of-date time. This will result in the
6784 		 * wakee task is less decayed, but giving the wakee more load
6785 		 * sounds not bad.
6786 		 */
6787 		remove_entity_load_avg(&p->se);
6788 	}
6789 
6790 	/* Tell new CPU we are migrated */
6791 	p->se.avg.last_update_time = 0;
6792 
6793 	/* We have migrated, no longer consider this task hot */
6794 	p->se.exec_start = 0;
6795 
6796 	update_scan_period(p, new_cpu);
6797 }
6798 
6799 static void task_dead_fair(struct task_struct *p)
6800 {
6801 	remove_entity_load_avg(&p->se);
6802 }
6803 #endif /* CONFIG_SMP */
6804 
6805 static unsigned long wakeup_gran(struct sched_entity *se)
6806 {
6807 	unsigned long gran = sysctl_sched_wakeup_granularity;
6808 
6809 	/*
6810 	 * Since its curr running now, convert the gran from real-time
6811 	 * to virtual-time in his units.
6812 	 *
6813 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6814 	 * they get preempted easier. That is, if 'se' < 'curr' then
6815 	 * the resulting gran will be larger, therefore penalizing the
6816 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6817 	 * be smaller, again penalizing the lighter task.
6818 	 *
6819 	 * This is especially important for buddies when the leftmost
6820 	 * task is higher priority than the buddy.
6821 	 */
6822 	return calc_delta_fair(gran, se);
6823 }
6824 
6825 /*
6826  * Should 'se' preempt 'curr'.
6827  *
6828  *             |s1
6829  *        |s2
6830  *   |s3
6831  *         g
6832  *      |<--->|c
6833  *
6834  *  w(c, s1) = -1
6835  *  w(c, s2) =  0
6836  *  w(c, s3) =  1
6837  *
6838  */
6839 static int
6840 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6841 {
6842 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6843 
6844 	if (vdiff <= 0)
6845 		return -1;
6846 
6847 	gran = wakeup_gran(se);
6848 	if (vdiff > gran)
6849 		return 1;
6850 
6851 	return 0;
6852 }
6853 
6854 static void set_last_buddy(struct sched_entity *se)
6855 {
6856 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6857 		return;
6858 
6859 	for_each_sched_entity(se) {
6860 		if (SCHED_WARN_ON(!se->on_rq))
6861 			return;
6862 		cfs_rq_of(se)->last = se;
6863 	}
6864 }
6865 
6866 static void set_next_buddy(struct sched_entity *se)
6867 {
6868 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6869 		return;
6870 
6871 	for_each_sched_entity(se) {
6872 		if (SCHED_WARN_ON(!se->on_rq))
6873 			return;
6874 		cfs_rq_of(se)->next = se;
6875 	}
6876 }
6877 
6878 static void set_skip_buddy(struct sched_entity *se)
6879 {
6880 	for_each_sched_entity(se)
6881 		cfs_rq_of(se)->skip = se;
6882 }
6883 
6884 /*
6885  * Preempt the current task with a newly woken task if needed:
6886  */
6887 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6888 {
6889 	struct task_struct *curr = rq->curr;
6890 	struct sched_entity *se = &curr->se, *pse = &p->se;
6891 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6892 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6893 	int next_buddy_marked = 0;
6894 
6895 	if (unlikely(se == pse))
6896 		return;
6897 
6898 	/*
6899 	 * This is possible from callers such as attach_tasks(), in which we
6900 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6901 	 * lead to a throttle).  This both saves work and prevents false
6902 	 * next-buddy nomination below.
6903 	 */
6904 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6905 		return;
6906 
6907 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6908 		set_next_buddy(pse);
6909 		next_buddy_marked = 1;
6910 	}
6911 
6912 	/*
6913 	 * We can come here with TIF_NEED_RESCHED already set from new task
6914 	 * wake up path.
6915 	 *
6916 	 * Note: this also catches the edge-case of curr being in a throttled
6917 	 * group (e.g. via set_curr_task), since update_curr() (in the
6918 	 * enqueue of curr) will have resulted in resched being set.  This
6919 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6920 	 * below.
6921 	 */
6922 	if (test_tsk_need_resched(curr))
6923 		return;
6924 
6925 	/* Idle tasks are by definition preempted by non-idle tasks. */
6926 	if (unlikely(task_has_idle_policy(curr)) &&
6927 	    likely(!task_has_idle_policy(p)))
6928 		goto preempt;
6929 
6930 	/*
6931 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6932 	 * is driven by the tick):
6933 	 */
6934 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6935 		return;
6936 
6937 	find_matching_se(&se, &pse);
6938 	update_curr(cfs_rq_of(se));
6939 	BUG_ON(!pse);
6940 	if (wakeup_preempt_entity(se, pse) == 1) {
6941 		/*
6942 		 * Bias pick_next to pick the sched entity that is
6943 		 * triggering this preemption.
6944 		 */
6945 		if (!next_buddy_marked)
6946 			set_next_buddy(pse);
6947 		goto preempt;
6948 	}
6949 
6950 	return;
6951 
6952 preempt:
6953 	resched_curr(rq);
6954 	/*
6955 	 * Only set the backward buddy when the current task is still
6956 	 * on the rq. This can happen when a wakeup gets interleaved
6957 	 * with schedule on the ->pre_schedule() or idle_balance()
6958 	 * point, either of which can * drop the rq lock.
6959 	 *
6960 	 * Also, during early boot the idle thread is in the fair class,
6961 	 * for obvious reasons its a bad idea to schedule back to it.
6962 	 */
6963 	if (unlikely(!se->on_rq || curr == rq->idle))
6964 		return;
6965 
6966 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6967 		set_last_buddy(se);
6968 }
6969 
6970 static struct task_struct *
6971 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6972 {
6973 	struct cfs_rq *cfs_rq = &rq->cfs;
6974 	struct sched_entity *se;
6975 	struct task_struct *p;
6976 	int new_tasks;
6977 
6978 again:
6979 	if (!cfs_rq->nr_running)
6980 		goto idle;
6981 
6982 #ifdef CONFIG_FAIR_GROUP_SCHED
6983 	if (prev->sched_class != &fair_sched_class)
6984 		goto simple;
6985 
6986 	/*
6987 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6988 	 * likely that a next task is from the same cgroup as the current.
6989 	 *
6990 	 * Therefore attempt to avoid putting and setting the entire cgroup
6991 	 * hierarchy, only change the part that actually changes.
6992 	 */
6993 
6994 	do {
6995 		struct sched_entity *curr = cfs_rq->curr;
6996 
6997 		/*
6998 		 * Since we got here without doing put_prev_entity() we also
6999 		 * have to consider cfs_rq->curr. If it is still a runnable
7000 		 * entity, update_curr() will update its vruntime, otherwise
7001 		 * forget we've ever seen it.
7002 		 */
7003 		if (curr) {
7004 			if (curr->on_rq)
7005 				update_curr(cfs_rq);
7006 			else
7007 				curr = NULL;
7008 
7009 			/*
7010 			 * This call to check_cfs_rq_runtime() will do the
7011 			 * throttle and dequeue its entity in the parent(s).
7012 			 * Therefore the nr_running test will indeed
7013 			 * be correct.
7014 			 */
7015 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7016 				cfs_rq = &rq->cfs;
7017 
7018 				if (!cfs_rq->nr_running)
7019 					goto idle;
7020 
7021 				goto simple;
7022 			}
7023 		}
7024 
7025 		se = pick_next_entity(cfs_rq, curr);
7026 		cfs_rq = group_cfs_rq(se);
7027 	} while (cfs_rq);
7028 
7029 	p = task_of(se);
7030 
7031 	/*
7032 	 * Since we haven't yet done put_prev_entity and if the selected task
7033 	 * is a different task than we started out with, try and touch the
7034 	 * least amount of cfs_rqs.
7035 	 */
7036 	if (prev != p) {
7037 		struct sched_entity *pse = &prev->se;
7038 
7039 		while (!(cfs_rq = is_same_group(se, pse))) {
7040 			int se_depth = se->depth;
7041 			int pse_depth = pse->depth;
7042 
7043 			if (se_depth <= pse_depth) {
7044 				put_prev_entity(cfs_rq_of(pse), pse);
7045 				pse = parent_entity(pse);
7046 			}
7047 			if (se_depth >= pse_depth) {
7048 				set_next_entity(cfs_rq_of(se), se);
7049 				se = parent_entity(se);
7050 			}
7051 		}
7052 
7053 		put_prev_entity(cfs_rq, pse);
7054 		set_next_entity(cfs_rq, se);
7055 	}
7056 
7057 	goto done;
7058 simple:
7059 #endif
7060 
7061 	put_prev_task(rq, prev);
7062 
7063 	do {
7064 		se = pick_next_entity(cfs_rq, NULL);
7065 		set_next_entity(cfs_rq, se);
7066 		cfs_rq = group_cfs_rq(se);
7067 	} while (cfs_rq);
7068 
7069 	p = task_of(se);
7070 
7071 done: __maybe_unused;
7072 #ifdef CONFIG_SMP
7073 	/*
7074 	 * Move the next running task to the front of
7075 	 * the list, so our cfs_tasks list becomes MRU
7076 	 * one.
7077 	 */
7078 	list_move(&p->se.group_node, &rq->cfs_tasks);
7079 #endif
7080 
7081 	if (hrtick_enabled(rq))
7082 		hrtick_start_fair(rq, p);
7083 
7084 	update_misfit_status(p, rq);
7085 
7086 	return p;
7087 
7088 idle:
7089 	update_misfit_status(NULL, rq);
7090 	new_tasks = idle_balance(rq, rf);
7091 
7092 	/*
7093 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
7094 	 * possible for any higher priority task to appear. In that case we
7095 	 * must re-start the pick_next_entity() loop.
7096 	 */
7097 	if (new_tasks < 0)
7098 		return RETRY_TASK;
7099 
7100 	if (new_tasks > 0)
7101 		goto again;
7102 
7103 	/*
7104 	 * rq is about to be idle, check if we need to update the
7105 	 * lost_idle_time of clock_pelt
7106 	 */
7107 	update_idle_rq_clock_pelt(rq);
7108 
7109 	return NULL;
7110 }
7111 
7112 /*
7113  * Account for a descheduled task:
7114  */
7115 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7116 {
7117 	struct sched_entity *se = &prev->se;
7118 	struct cfs_rq *cfs_rq;
7119 
7120 	for_each_sched_entity(se) {
7121 		cfs_rq = cfs_rq_of(se);
7122 		put_prev_entity(cfs_rq, se);
7123 	}
7124 }
7125 
7126 /*
7127  * sched_yield() is very simple
7128  *
7129  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7130  */
7131 static void yield_task_fair(struct rq *rq)
7132 {
7133 	struct task_struct *curr = rq->curr;
7134 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7135 	struct sched_entity *se = &curr->se;
7136 
7137 	/*
7138 	 * Are we the only task in the tree?
7139 	 */
7140 	if (unlikely(rq->nr_running == 1))
7141 		return;
7142 
7143 	clear_buddies(cfs_rq, se);
7144 
7145 	if (curr->policy != SCHED_BATCH) {
7146 		update_rq_clock(rq);
7147 		/*
7148 		 * Update run-time statistics of the 'current'.
7149 		 */
7150 		update_curr(cfs_rq);
7151 		/*
7152 		 * Tell update_rq_clock() that we've just updated,
7153 		 * so we don't do microscopic update in schedule()
7154 		 * and double the fastpath cost.
7155 		 */
7156 		rq_clock_skip_update(rq);
7157 	}
7158 
7159 	set_skip_buddy(se);
7160 }
7161 
7162 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7163 {
7164 	struct sched_entity *se = &p->se;
7165 
7166 	/* throttled hierarchies are not runnable */
7167 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7168 		return false;
7169 
7170 	/* Tell the scheduler that we'd really like pse to run next. */
7171 	set_next_buddy(se);
7172 
7173 	yield_task_fair(rq);
7174 
7175 	return true;
7176 }
7177 
7178 #ifdef CONFIG_SMP
7179 /**************************************************
7180  * Fair scheduling class load-balancing methods.
7181  *
7182  * BASICS
7183  *
7184  * The purpose of load-balancing is to achieve the same basic fairness the
7185  * per-CPU scheduler provides, namely provide a proportional amount of compute
7186  * time to each task. This is expressed in the following equation:
7187  *
7188  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7189  *
7190  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7191  * W_i,0 is defined as:
7192  *
7193  *   W_i,0 = \Sum_j w_i,j                                             (2)
7194  *
7195  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7196  * is derived from the nice value as per sched_prio_to_weight[].
7197  *
7198  * The weight average is an exponential decay average of the instantaneous
7199  * weight:
7200  *
7201  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7202  *
7203  * C_i is the compute capacity of CPU i, typically it is the
7204  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7205  * can also include other factors [XXX].
7206  *
7207  * To achieve this balance we define a measure of imbalance which follows
7208  * directly from (1):
7209  *
7210  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7211  *
7212  * We them move tasks around to minimize the imbalance. In the continuous
7213  * function space it is obvious this converges, in the discrete case we get
7214  * a few fun cases generally called infeasible weight scenarios.
7215  *
7216  * [XXX expand on:
7217  *     - infeasible weights;
7218  *     - local vs global optima in the discrete case. ]
7219  *
7220  *
7221  * SCHED DOMAINS
7222  *
7223  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7224  * for all i,j solution, we create a tree of CPUs that follows the hardware
7225  * topology where each level pairs two lower groups (or better). This results
7226  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7227  * tree to only the first of the previous level and we decrease the frequency
7228  * of load-balance at each level inv. proportional to the number of CPUs in
7229  * the groups.
7230  *
7231  * This yields:
7232  *
7233  *     log_2 n     1     n
7234  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7235  *     i = 0      2^i   2^i
7236  *                               `- size of each group
7237  *         |         |     `- number of CPUs doing load-balance
7238  *         |         `- freq
7239  *         `- sum over all levels
7240  *
7241  * Coupled with a limit on how many tasks we can migrate every balance pass,
7242  * this makes (5) the runtime complexity of the balancer.
7243  *
7244  * An important property here is that each CPU is still (indirectly) connected
7245  * to every other CPU in at most O(log n) steps:
7246  *
7247  * The adjacency matrix of the resulting graph is given by:
7248  *
7249  *             log_2 n
7250  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7251  *             k = 0
7252  *
7253  * And you'll find that:
7254  *
7255  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7256  *
7257  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7258  * The task movement gives a factor of O(m), giving a convergence complexity
7259  * of:
7260  *
7261  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7262  *
7263  *
7264  * WORK CONSERVING
7265  *
7266  * In order to avoid CPUs going idle while there's still work to do, new idle
7267  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7268  * tree itself instead of relying on other CPUs to bring it work.
7269  *
7270  * This adds some complexity to both (5) and (8) but it reduces the total idle
7271  * time.
7272  *
7273  * [XXX more?]
7274  *
7275  *
7276  * CGROUPS
7277  *
7278  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7279  *
7280  *                                s_k,i
7281  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7282  *                                 S_k
7283  *
7284  * Where
7285  *
7286  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7287  *
7288  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7289  *
7290  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7291  * property.
7292  *
7293  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7294  *      rewrite all of this once again.]
7295  */
7296 
7297 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7298 
7299 enum fbq_type { regular, remote, all };
7300 
7301 enum group_type {
7302 	group_other = 0,
7303 	group_misfit_task,
7304 	group_imbalanced,
7305 	group_overloaded,
7306 };
7307 
7308 #define LBF_ALL_PINNED	0x01
7309 #define LBF_NEED_BREAK	0x02
7310 #define LBF_DST_PINNED  0x04
7311 #define LBF_SOME_PINNED	0x08
7312 #define LBF_NOHZ_STATS	0x10
7313 #define LBF_NOHZ_AGAIN	0x20
7314 
7315 struct lb_env {
7316 	struct sched_domain	*sd;
7317 
7318 	struct rq		*src_rq;
7319 	int			src_cpu;
7320 
7321 	int			dst_cpu;
7322 	struct rq		*dst_rq;
7323 
7324 	struct cpumask		*dst_grpmask;
7325 	int			new_dst_cpu;
7326 	enum cpu_idle_type	idle;
7327 	long			imbalance;
7328 	/* The set of CPUs under consideration for load-balancing */
7329 	struct cpumask		*cpus;
7330 
7331 	unsigned int		flags;
7332 
7333 	unsigned int		loop;
7334 	unsigned int		loop_break;
7335 	unsigned int		loop_max;
7336 
7337 	enum fbq_type		fbq_type;
7338 	enum group_type		src_grp_type;
7339 	struct list_head	tasks;
7340 };
7341 
7342 /*
7343  * Is this task likely cache-hot:
7344  */
7345 static int task_hot(struct task_struct *p, struct lb_env *env)
7346 {
7347 	s64 delta;
7348 
7349 	lockdep_assert_held(&env->src_rq->lock);
7350 
7351 	if (p->sched_class != &fair_sched_class)
7352 		return 0;
7353 
7354 	if (unlikely(task_has_idle_policy(p)))
7355 		return 0;
7356 
7357 	/*
7358 	 * Buddy candidates are cache hot:
7359 	 */
7360 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7361 			(&p->se == cfs_rq_of(&p->se)->next ||
7362 			 &p->se == cfs_rq_of(&p->se)->last))
7363 		return 1;
7364 
7365 	if (sysctl_sched_migration_cost == -1)
7366 		return 1;
7367 	if (sysctl_sched_migration_cost == 0)
7368 		return 0;
7369 
7370 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7371 
7372 	return delta < (s64)sysctl_sched_migration_cost;
7373 }
7374 
7375 #ifdef CONFIG_NUMA_BALANCING
7376 /*
7377  * Returns 1, if task migration degrades locality
7378  * Returns 0, if task migration improves locality i.e migration preferred.
7379  * Returns -1, if task migration is not affected by locality.
7380  */
7381 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7382 {
7383 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7384 	unsigned long src_weight, dst_weight;
7385 	int src_nid, dst_nid, dist;
7386 
7387 	if (!static_branch_likely(&sched_numa_balancing))
7388 		return -1;
7389 
7390 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7391 		return -1;
7392 
7393 	src_nid = cpu_to_node(env->src_cpu);
7394 	dst_nid = cpu_to_node(env->dst_cpu);
7395 
7396 	if (src_nid == dst_nid)
7397 		return -1;
7398 
7399 	/* Migrating away from the preferred node is always bad. */
7400 	if (src_nid == p->numa_preferred_nid) {
7401 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7402 			return 1;
7403 		else
7404 			return -1;
7405 	}
7406 
7407 	/* Encourage migration to the preferred node. */
7408 	if (dst_nid == p->numa_preferred_nid)
7409 		return 0;
7410 
7411 	/* Leaving a core idle is often worse than degrading locality. */
7412 	if (env->idle == CPU_IDLE)
7413 		return -1;
7414 
7415 	dist = node_distance(src_nid, dst_nid);
7416 	if (numa_group) {
7417 		src_weight = group_weight(p, src_nid, dist);
7418 		dst_weight = group_weight(p, dst_nid, dist);
7419 	} else {
7420 		src_weight = task_weight(p, src_nid, dist);
7421 		dst_weight = task_weight(p, dst_nid, dist);
7422 	}
7423 
7424 	return dst_weight < src_weight;
7425 }
7426 
7427 #else
7428 static inline int migrate_degrades_locality(struct task_struct *p,
7429 					     struct lb_env *env)
7430 {
7431 	return -1;
7432 }
7433 #endif
7434 
7435 /*
7436  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7437  */
7438 static
7439 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7440 {
7441 	int tsk_cache_hot;
7442 
7443 	lockdep_assert_held(&env->src_rq->lock);
7444 
7445 	/*
7446 	 * We do not migrate tasks that are:
7447 	 * 1) throttled_lb_pair, or
7448 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7449 	 * 3) running (obviously), or
7450 	 * 4) are cache-hot on their current CPU.
7451 	 */
7452 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7453 		return 0;
7454 
7455 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7456 		int cpu;
7457 
7458 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7459 
7460 		env->flags |= LBF_SOME_PINNED;
7461 
7462 		/*
7463 		 * Remember if this task can be migrated to any other CPU in
7464 		 * our sched_group. We may want to revisit it if we couldn't
7465 		 * meet load balance goals by pulling other tasks on src_cpu.
7466 		 *
7467 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7468 		 * already computed one in current iteration.
7469 		 */
7470 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7471 			return 0;
7472 
7473 		/* Prevent to re-select dst_cpu via env's CPUs: */
7474 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7475 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7476 				env->flags |= LBF_DST_PINNED;
7477 				env->new_dst_cpu = cpu;
7478 				break;
7479 			}
7480 		}
7481 
7482 		return 0;
7483 	}
7484 
7485 	/* Record that we found atleast one task that could run on dst_cpu */
7486 	env->flags &= ~LBF_ALL_PINNED;
7487 
7488 	if (task_running(env->src_rq, p)) {
7489 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7490 		return 0;
7491 	}
7492 
7493 	/*
7494 	 * Aggressive migration if:
7495 	 * 1) destination numa is preferred
7496 	 * 2) task is cache cold, or
7497 	 * 3) too many balance attempts have failed.
7498 	 */
7499 	tsk_cache_hot = migrate_degrades_locality(p, env);
7500 	if (tsk_cache_hot == -1)
7501 		tsk_cache_hot = task_hot(p, env);
7502 
7503 	if (tsk_cache_hot <= 0 ||
7504 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7505 		if (tsk_cache_hot == 1) {
7506 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7507 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7508 		}
7509 		return 1;
7510 	}
7511 
7512 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7513 	return 0;
7514 }
7515 
7516 /*
7517  * detach_task() -- detach the task for the migration specified in env
7518  */
7519 static void detach_task(struct task_struct *p, struct lb_env *env)
7520 {
7521 	lockdep_assert_held(&env->src_rq->lock);
7522 
7523 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7524 	set_task_cpu(p, env->dst_cpu);
7525 }
7526 
7527 /*
7528  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7529  * part of active balancing operations within "domain".
7530  *
7531  * Returns a task if successful and NULL otherwise.
7532  */
7533 static struct task_struct *detach_one_task(struct lb_env *env)
7534 {
7535 	struct task_struct *p;
7536 
7537 	lockdep_assert_held(&env->src_rq->lock);
7538 
7539 	list_for_each_entry_reverse(p,
7540 			&env->src_rq->cfs_tasks, se.group_node) {
7541 		if (!can_migrate_task(p, env))
7542 			continue;
7543 
7544 		detach_task(p, env);
7545 
7546 		/*
7547 		 * Right now, this is only the second place where
7548 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7549 		 * so we can safely collect stats here rather than
7550 		 * inside detach_tasks().
7551 		 */
7552 		schedstat_inc(env->sd->lb_gained[env->idle]);
7553 		return p;
7554 	}
7555 	return NULL;
7556 }
7557 
7558 static const unsigned int sched_nr_migrate_break = 32;
7559 
7560 /*
7561  * detach_tasks() -- tries to detach up to imbalance weighted load from
7562  * busiest_rq, as part of a balancing operation within domain "sd".
7563  *
7564  * Returns number of detached tasks if successful and 0 otherwise.
7565  */
7566 static int detach_tasks(struct lb_env *env)
7567 {
7568 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7569 	struct task_struct *p;
7570 	unsigned long load;
7571 	int detached = 0;
7572 
7573 	lockdep_assert_held(&env->src_rq->lock);
7574 
7575 	if (env->imbalance <= 0)
7576 		return 0;
7577 
7578 	while (!list_empty(tasks)) {
7579 		/*
7580 		 * We don't want to steal all, otherwise we may be treated likewise,
7581 		 * which could at worst lead to a livelock crash.
7582 		 */
7583 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7584 			break;
7585 
7586 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7587 
7588 		env->loop++;
7589 		/* We've more or less seen every task there is, call it quits */
7590 		if (env->loop > env->loop_max)
7591 			break;
7592 
7593 		/* take a breather every nr_migrate tasks */
7594 		if (env->loop > env->loop_break) {
7595 			env->loop_break += sched_nr_migrate_break;
7596 			env->flags |= LBF_NEED_BREAK;
7597 			break;
7598 		}
7599 
7600 		if (!can_migrate_task(p, env))
7601 			goto next;
7602 
7603 		load = task_h_load(p);
7604 
7605 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7606 			goto next;
7607 
7608 		if ((load / 2) > env->imbalance)
7609 			goto next;
7610 
7611 		detach_task(p, env);
7612 		list_add(&p->se.group_node, &env->tasks);
7613 
7614 		detached++;
7615 		env->imbalance -= load;
7616 
7617 #ifdef CONFIG_PREEMPT
7618 		/*
7619 		 * NEWIDLE balancing is a source of latency, so preemptible
7620 		 * kernels will stop after the first task is detached to minimize
7621 		 * the critical section.
7622 		 */
7623 		if (env->idle == CPU_NEWLY_IDLE)
7624 			break;
7625 #endif
7626 
7627 		/*
7628 		 * We only want to steal up to the prescribed amount of
7629 		 * weighted load.
7630 		 */
7631 		if (env->imbalance <= 0)
7632 			break;
7633 
7634 		continue;
7635 next:
7636 		list_move(&p->se.group_node, tasks);
7637 	}
7638 
7639 	/*
7640 	 * Right now, this is one of only two places we collect this stat
7641 	 * so we can safely collect detach_one_task() stats here rather
7642 	 * than inside detach_one_task().
7643 	 */
7644 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7645 
7646 	return detached;
7647 }
7648 
7649 /*
7650  * attach_task() -- attach the task detached by detach_task() to its new rq.
7651  */
7652 static void attach_task(struct rq *rq, struct task_struct *p)
7653 {
7654 	lockdep_assert_held(&rq->lock);
7655 
7656 	BUG_ON(task_rq(p) != rq);
7657 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7658 	check_preempt_curr(rq, p, 0);
7659 }
7660 
7661 /*
7662  * attach_one_task() -- attaches the task returned from detach_one_task() to
7663  * its new rq.
7664  */
7665 static void attach_one_task(struct rq *rq, struct task_struct *p)
7666 {
7667 	struct rq_flags rf;
7668 
7669 	rq_lock(rq, &rf);
7670 	update_rq_clock(rq);
7671 	attach_task(rq, p);
7672 	rq_unlock(rq, &rf);
7673 }
7674 
7675 /*
7676  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7677  * new rq.
7678  */
7679 static void attach_tasks(struct lb_env *env)
7680 {
7681 	struct list_head *tasks = &env->tasks;
7682 	struct task_struct *p;
7683 	struct rq_flags rf;
7684 
7685 	rq_lock(env->dst_rq, &rf);
7686 	update_rq_clock(env->dst_rq);
7687 
7688 	while (!list_empty(tasks)) {
7689 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7690 		list_del_init(&p->se.group_node);
7691 
7692 		attach_task(env->dst_rq, p);
7693 	}
7694 
7695 	rq_unlock(env->dst_rq, &rf);
7696 }
7697 
7698 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7699 {
7700 	if (cfs_rq->avg.load_avg)
7701 		return true;
7702 
7703 	if (cfs_rq->avg.util_avg)
7704 		return true;
7705 
7706 	return false;
7707 }
7708 
7709 static inline bool others_have_blocked(struct rq *rq)
7710 {
7711 	if (READ_ONCE(rq->avg_rt.util_avg))
7712 		return true;
7713 
7714 	if (READ_ONCE(rq->avg_dl.util_avg))
7715 		return true;
7716 
7717 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7718 	if (READ_ONCE(rq->avg_irq.util_avg))
7719 		return true;
7720 #endif
7721 
7722 	return false;
7723 }
7724 
7725 #ifdef CONFIG_FAIR_GROUP_SCHED
7726 
7727 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7728 {
7729 	if (cfs_rq->load.weight)
7730 		return false;
7731 
7732 	if (cfs_rq->avg.load_sum)
7733 		return false;
7734 
7735 	if (cfs_rq->avg.util_sum)
7736 		return false;
7737 
7738 	if (cfs_rq->avg.runnable_load_sum)
7739 		return false;
7740 
7741 	return true;
7742 }
7743 
7744 static void update_blocked_averages(int cpu)
7745 {
7746 	struct rq *rq = cpu_rq(cpu);
7747 	struct cfs_rq *cfs_rq, *pos;
7748 	const struct sched_class *curr_class;
7749 	struct rq_flags rf;
7750 	bool done = true;
7751 
7752 	rq_lock_irqsave(rq, &rf);
7753 	update_rq_clock(rq);
7754 
7755 	/*
7756 	 * Iterates the task_group tree in a bottom up fashion, see
7757 	 * list_add_leaf_cfs_rq() for details.
7758 	 */
7759 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7760 		struct sched_entity *se;
7761 
7762 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq))
7763 			update_tg_load_avg(cfs_rq, 0);
7764 
7765 		/* Propagate pending load changes to the parent, if any: */
7766 		se = cfs_rq->tg->se[cpu];
7767 		if (se && !skip_blocked_update(se))
7768 			update_load_avg(cfs_rq_of(se), se, 0);
7769 
7770 		/*
7771 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7772 		 * decayed cfs_rqs linger on the list.
7773 		 */
7774 		if (cfs_rq_is_decayed(cfs_rq))
7775 			list_del_leaf_cfs_rq(cfs_rq);
7776 
7777 		/* Don't need periodic decay once load/util_avg are null */
7778 		if (cfs_rq_has_blocked(cfs_rq))
7779 			done = false;
7780 	}
7781 
7782 	curr_class = rq->curr->sched_class;
7783 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7784 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7785 	update_irq_load_avg(rq, 0);
7786 	/* Don't need periodic decay once load/util_avg are null */
7787 	if (others_have_blocked(rq))
7788 		done = false;
7789 
7790 #ifdef CONFIG_NO_HZ_COMMON
7791 	rq->last_blocked_load_update_tick = jiffies;
7792 	if (done)
7793 		rq->has_blocked_load = 0;
7794 #endif
7795 	rq_unlock_irqrestore(rq, &rf);
7796 }
7797 
7798 /*
7799  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7800  * This needs to be done in a top-down fashion because the load of a child
7801  * group is a fraction of its parents load.
7802  */
7803 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7804 {
7805 	struct rq *rq = rq_of(cfs_rq);
7806 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7807 	unsigned long now = jiffies;
7808 	unsigned long load;
7809 
7810 	if (cfs_rq->last_h_load_update == now)
7811 		return;
7812 
7813 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
7814 	for_each_sched_entity(se) {
7815 		cfs_rq = cfs_rq_of(se);
7816 		WRITE_ONCE(cfs_rq->h_load_next, se);
7817 		if (cfs_rq->last_h_load_update == now)
7818 			break;
7819 	}
7820 
7821 	if (!se) {
7822 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7823 		cfs_rq->last_h_load_update = now;
7824 	}
7825 
7826 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7827 		load = cfs_rq->h_load;
7828 		load = div64_ul(load * se->avg.load_avg,
7829 			cfs_rq_load_avg(cfs_rq) + 1);
7830 		cfs_rq = group_cfs_rq(se);
7831 		cfs_rq->h_load = load;
7832 		cfs_rq->last_h_load_update = now;
7833 	}
7834 }
7835 
7836 static unsigned long task_h_load(struct task_struct *p)
7837 {
7838 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7839 
7840 	update_cfs_rq_h_load(cfs_rq);
7841 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7842 			cfs_rq_load_avg(cfs_rq) + 1);
7843 }
7844 #else
7845 static inline void update_blocked_averages(int cpu)
7846 {
7847 	struct rq *rq = cpu_rq(cpu);
7848 	struct cfs_rq *cfs_rq = &rq->cfs;
7849 	const struct sched_class *curr_class;
7850 	struct rq_flags rf;
7851 
7852 	rq_lock_irqsave(rq, &rf);
7853 	update_rq_clock(rq);
7854 	update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7855 
7856 	curr_class = rq->curr->sched_class;
7857 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &rt_sched_class);
7858 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, curr_class == &dl_sched_class);
7859 	update_irq_load_avg(rq, 0);
7860 #ifdef CONFIG_NO_HZ_COMMON
7861 	rq->last_blocked_load_update_tick = jiffies;
7862 	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7863 		rq->has_blocked_load = 0;
7864 #endif
7865 	rq_unlock_irqrestore(rq, &rf);
7866 }
7867 
7868 static unsigned long task_h_load(struct task_struct *p)
7869 {
7870 	return p->se.avg.load_avg;
7871 }
7872 #endif
7873 
7874 /********** Helpers for find_busiest_group ************************/
7875 
7876 /*
7877  * sg_lb_stats - stats of a sched_group required for load_balancing
7878  */
7879 struct sg_lb_stats {
7880 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7881 	unsigned long group_load; /* Total load over the CPUs of the group */
7882 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7883 	unsigned long load_per_task;
7884 	unsigned long group_capacity;
7885 	unsigned long group_util; /* Total utilization of the group */
7886 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7887 	unsigned int idle_cpus;
7888 	unsigned int group_weight;
7889 	enum group_type group_type;
7890 	int group_no_capacity;
7891 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7892 #ifdef CONFIG_NUMA_BALANCING
7893 	unsigned int nr_numa_running;
7894 	unsigned int nr_preferred_running;
7895 #endif
7896 };
7897 
7898 /*
7899  * sd_lb_stats - Structure to store the statistics of a sched_domain
7900  *		 during load balancing.
7901  */
7902 struct sd_lb_stats {
7903 	struct sched_group *busiest;	/* Busiest group in this sd */
7904 	struct sched_group *local;	/* Local group in this sd */
7905 	unsigned long total_running;
7906 	unsigned long total_load;	/* Total load of all groups in sd */
7907 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7908 	unsigned long avg_load;	/* Average load across all groups in sd */
7909 
7910 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7911 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7912 };
7913 
7914 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7915 {
7916 	/*
7917 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7918 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7919 	 * We must however clear busiest_stat::avg_load because
7920 	 * update_sd_pick_busiest() reads this before assignment.
7921 	 */
7922 	*sds = (struct sd_lb_stats){
7923 		.busiest = NULL,
7924 		.local = NULL,
7925 		.total_running = 0UL,
7926 		.total_load = 0UL,
7927 		.total_capacity = 0UL,
7928 		.busiest_stat = {
7929 			.avg_load = 0UL,
7930 			.sum_nr_running = 0,
7931 			.group_type = group_other,
7932 		},
7933 	};
7934 }
7935 
7936 /**
7937  * get_sd_load_idx - Obtain the load index for a given sched domain.
7938  * @sd: The sched_domain whose load_idx is to be obtained.
7939  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7940  *
7941  * Return: The load index.
7942  */
7943 static inline int get_sd_load_idx(struct sched_domain *sd,
7944 					enum cpu_idle_type idle)
7945 {
7946 	int load_idx;
7947 
7948 	switch (idle) {
7949 	case CPU_NOT_IDLE:
7950 		load_idx = sd->busy_idx;
7951 		break;
7952 
7953 	case CPU_NEWLY_IDLE:
7954 		load_idx = sd->newidle_idx;
7955 		break;
7956 	default:
7957 		load_idx = sd->idle_idx;
7958 		break;
7959 	}
7960 
7961 	return load_idx;
7962 }
7963 
7964 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7965 {
7966 	struct rq *rq = cpu_rq(cpu);
7967 	unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7968 	unsigned long used, free;
7969 	unsigned long irq;
7970 
7971 	irq = cpu_util_irq(rq);
7972 
7973 	if (unlikely(irq >= max))
7974 		return 1;
7975 
7976 	used = READ_ONCE(rq->avg_rt.util_avg);
7977 	used += READ_ONCE(rq->avg_dl.util_avg);
7978 
7979 	if (unlikely(used >= max))
7980 		return 1;
7981 
7982 	free = max - used;
7983 
7984 	return scale_irq_capacity(free, irq, max);
7985 }
7986 
7987 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7988 {
7989 	unsigned long capacity = scale_rt_capacity(sd, cpu);
7990 	struct sched_group *sdg = sd->groups;
7991 
7992 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7993 
7994 	if (!capacity)
7995 		capacity = 1;
7996 
7997 	cpu_rq(cpu)->cpu_capacity = capacity;
7998 	sdg->sgc->capacity = capacity;
7999 	sdg->sgc->min_capacity = capacity;
8000 	sdg->sgc->max_capacity = capacity;
8001 }
8002 
8003 void update_group_capacity(struct sched_domain *sd, int cpu)
8004 {
8005 	struct sched_domain *child = sd->child;
8006 	struct sched_group *group, *sdg = sd->groups;
8007 	unsigned long capacity, min_capacity, max_capacity;
8008 	unsigned long interval;
8009 
8010 	interval = msecs_to_jiffies(sd->balance_interval);
8011 	interval = clamp(interval, 1UL, max_load_balance_interval);
8012 	sdg->sgc->next_update = jiffies + interval;
8013 
8014 	if (!child) {
8015 		update_cpu_capacity(sd, cpu);
8016 		return;
8017 	}
8018 
8019 	capacity = 0;
8020 	min_capacity = ULONG_MAX;
8021 	max_capacity = 0;
8022 
8023 	if (child->flags & SD_OVERLAP) {
8024 		/*
8025 		 * SD_OVERLAP domains cannot assume that child groups
8026 		 * span the current group.
8027 		 */
8028 
8029 		for_each_cpu(cpu, sched_group_span(sdg)) {
8030 			struct sched_group_capacity *sgc;
8031 			struct rq *rq = cpu_rq(cpu);
8032 
8033 			/*
8034 			 * build_sched_domains() -> init_sched_groups_capacity()
8035 			 * gets here before we've attached the domains to the
8036 			 * runqueues.
8037 			 *
8038 			 * Use capacity_of(), which is set irrespective of domains
8039 			 * in update_cpu_capacity().
8040 			 *
8041 			 * This avoids capacity from being 0 and
8042 			 * causing divide-by-zero issues on boot.
8043 			 */
8044 			if (unlikely(!rq->sd)) {
8045 				capacity += capacity_of(cpu);
8046 			} else {
8047 				sgc = rq->sd->groups->sgc;
8048 				capacity += sgc->capacity;
8049 			}
8050 
8051 			min_capacity = min(capacity, min_capacity);
8052 			max_capacity = max(capacity, max_capacity);
8053 		}
8054 	} else  {
8055 		/*
8056 		 * !SD_OVERLAP domains can assume that child groups
8057 		 * span the current group.
8058 		 */
8059 
8060 		group = child->groups;
8061 		do {
8062 			struct sched_group_capacity *sgc = group->sgc;
8063 
8064 			capacity += sgc->capacity;
8065 			min_capacity = min(sgc->min_capacity, min_capacity);
8066 			max_capacity = max(sgc->max_capacity, max_capacity);
8067 			group = group->next;
8068 		} while (group != child->groups);
8069 	}
8070 
8071 	sdg->sgc->capacity = capacity;
8072 	sdg->sgc->min_capacity = min_capacity;
8073 	sdg->sgc->max_capacity = max_capacity;
8074 }
8075 
8076 /*
8077  * Check whether the capacity of the rq has been noticeably reduced by side
8078  * activity. The imbalance_pct is used for the threshold.
8079  * Return true is the capacity is reduced
8080  */
8081 static inline int
8082 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8083 {
8084 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8085 				(rq->cpu_capacity_orig * 100));
8086 }
8087 
8088 /*
8089  * Check whether a rq has a misfit task and if it looks like we can actually
8090  * help that task: we can migrate the task to a CPU of higher capacity, or
8091  * the task's current CPU is heavily pressured.
8092  */
8093 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8094 {
8095 	return rq->misfit_task_load &&
8096 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8097 		 check_cpu_capacity(rq, sd));
8098 }
8099 
8100 /*
8101  * Group imbalance indicates (and tries to solve) the problem where balancing
8102  * groups is inadequate due to ->cpus_allowed constraints.
8103  *
8104  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8105  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8106  * Something like:
8107  *
8108  *	{ 0 1 2 3 } { 4 5 6 7 }
8109  *	        *     * * *
8110  *
8111  * If we were to balance group-wise we'd place two tasks in the first group and
8112  * two tasks in the second group. Clearly this is undesired as it will overload
8113  * cpu 3 and leave one of the CPUs in the second group unused.
8114  *
8115  * The current solution to this issue is detecting the skew in the first group
8116  * by noticing the lower domain failed to reach balance and had difficulty
8117  * moving tasks due to affinity constraints.
8118  *
8119  * When this is so detected; this group becomes a candidate for busiest; see
8120  * update_sd_pick_busiest(). And calculate_imbalance() and
8121  * find_busiest_group() avoid some of the usual balance conditions to allow it
8122  * to create an effective group imbalance.
8123  *
8124  * This is a somewhat tricky proposition since the next run might not find the
8125  * group imbalance and decide the groups need to be balanced again. A most
8126  * subtle and fragile situation.
8127  */
8128 
8129 static inline int sg_imbalanced(struct sched_group *group)
8130 {
8131 	return group->sgc->imbalance;
8132 }
8133 
8134 /*
8135  * group_has_capacity returns true if the group has spare capacity that could
8136  * be used by some tasks.
8137  * We consider that a group has spare capacity if the  * number of task is
8138  * smaller than the number of CPUs or if the utilization is lower than the
8139  * available capacity for CFS tasks.
8140  * For the latter, we use a threshold to stabilize the state, to take into
8141  * account the variance of the tasks' load and to return true if the available
8142  * capacity in meaningful for the load balancer.
8143  * As an example, an available capacity of 1% can appear but it doesn't make
8144  * any benefit for the load balance.
8145  */
8146 static inline bool
8147 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
8148 {
8149 	if (sgs->sum_nr_running < sgs->group_weight)
8150 		return true;
8151 
8152 	if ((sgs->group_capacity * 100) >
8153 			(sgs->group_util * env->sd->imbalance_pct))
8154 		return true;
8155 
8156 	return false;
8157 }
8158 
8159 /*
8160  *  group_is_overloaded returns true if the group has more tasks than it can
8161  *  handle.
8162  *  group_is_overloaded is not equals to !group_has_capacity because a group
8163  *  with the exact right number of tasks, has no more spare capacity but is not
8164  *  overloaded so both group_has_capacity and group_is_overloaded return
8165  *  false.
8166  */
8167 static inline bool
8168 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8169 {
8170 	if (sgs->sum_nr_running <= sgs->group_weight)
8171 		return false;
8172 
8173 	if ((sgs->group_capacity * 100) <
8174 			(sgs->group_util * env->sd->imbalance_pct))
8175 		return true;
8176 
8177 	return false;
8178 }
8179 
8180 /*
8181  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8182  * per-CPU capacity than sched_group ref.
8183  */
8184 static inline bool
8185 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8186 {
8187 	return sg->sgc->min_capacity * capacity_margin <
8188 						ref->sgc->min_capacity * 1024;
8189 }
8190 
8191 /*
8192  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8193  * per-CPU capacity_orig than sched_group ref.
8194  */
8195 static inline bool
8196 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8197 {
8198 	return sg->sgc->max_capacity * capacity_margin <
8199 						ref->sgc->max_capacity * 1024;
8200 }
8201 
8202 static inline enum
8203 group_type group_classify(struct sched_group *group,
8204 			  struct sg_lb_stats *sgs)
8205 {
8206 	if (sgs->group_no_capacity)
8207 		return group_overloaded;
8208 
8209 	if (sg_imbalanced(group))
8210 		return group_imbalanced;
8211 
8212 	if (sgs->group_misfit_task_load)
8213 		return group_misfit_task;
8214 
8215 	return group_other;
8216 }
8217 
8218 static bool update_nohz_stats(struct rq *rq, bool force)
8219 {
8220 #ifdef CONFIG_NO_HZ_COMMON
8221 	unsigned int cpu = rq->cpu;
8222 
8223 	if (!rq->has_blocked_load)
8224 		return false;
8225 
8226 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8227 		return false;
8228 
8229 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8230 		return true;
8231 
8232 	update_blocked_averages(cpu);
8233 
8234 	return rq->has_blocked_load;
8235 #else
8236 	return false;
8237 #endif
8238 }
8239 
8240 /**
8241  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8242  * @env: The load balancing environment.
8243  * @group: sched_group whose statistics are to be updated.
8244  * @sgs: variable to hold the statistics for this group.
8245  * @sg_status: Holds flag indicating the status of the sched_group
8246  */
8247 static inline void update_sg_lb_stats(struct lb_env *env,
8248 				      struct sched_group *group,
8249 				      struct sg_lb_stats *sgs,
8250 				      int *sg_status)
8251 {
8252 	int local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8253 	int load_idx = get_sd_load_idx(env->sd, env->idle);
8254 	unsigned long load;
8255 	int i, nr_running;
8256 
8257 	memset(sgs, 0, sizeof(*sgs));
8258 
8259 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8260 		struct rq *rq = cpu_rq(i);
8261 
8262 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8263 			env->flags |= LBF_NOHZ_AGAIN;
8264 
8265 		/* Bias balancing toward CPUs of our domain: */
8266 		if (local_group)
8267 			load = target_load(i, load_idx);
8268 		else
8269 			load = source_load(i, load_idx);
8270 
8271 		sgs->group_load += load;
8272 		sgs->group_util += cpu_util(i);
8273 		sgs->sum_nr_running += rq->cfs.h_nr_running;
8274 
8275 		nr_running = rq->nr_running;
8276 		if (nr_running > 1)
8277 			*sg_status |= SG_OVERLOAD;
8278 
8279 		if (cpu_overutilized(i))
8280 			*sg_status |= SG_OVERUTILIZED;
8281 
8282 #ifdef CONFIG_NUMA_BALANCING
8283 		sgs->nr_numa_running += rq->nr_numa_running;
8284 		sgs->nr_preferred_running += rq->nr_preferred_running;
8285 #endif
8286 		sgs->sum_weighted_load += weighted_cpuload(rq);
8287 		/*
8288 		 * No need to call idle_cpu() if nr_running is not 0
8289 		 */
8290 		if (!nr_running && idle_cpu(i))
8291 			sgs->idle_cpus++;
8292 
8293 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8294 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8295 			sgs->group_misfit_task_load = rq->misfit_task_load;
8296 			*sg_status |= SG_OVERLOAD;
8297 		}
8298 	}
8299 
8300 	/* Adjust by relative CPU capacity of the group */
8301 	sgs->group_capacity = group->sgc->capacity;
8302 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8303 
8304 	if (sgs->sum_nr_running)
8305 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
8306 
8307 	sgs->group_weight = group->group_weight;
8308 
8309 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
8310 	sgs->group_type = group_classify(group, sgs);
8311 }
8312 
8313 /**
8314  * update_sd_pick_busiest - return 1 on busiest group
8315  * @env: The load balancing environment.
8316  * @sds: sched_domain statistics
8317  * @sg: sched_group candidate to be checked for being the busiest
8318  * @sgs: sched_group statistics
8319  *
8320  * Determine if @sg is a busier group than the previously selected
8321  * busiest group.
8322  *
8323  * Return: %true if @sg is a busier group than the previously selected
8324  * busiest group. %false otherwise.
8325  */
8326 static bool update_sd_pick_busiest(struct lb_env *env,
8327 				   struct sd_lb_stats *sds,
8328 				   struct sched_group *sg,
8329 				   struct sg_lb_stats *sgs)
8330 {
8331 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8332 
8333 	/*
8334 	 * Don't try to pull misfit tasks we can't help.
8335 	 * We can use max_capacity here as reduction in capacity on some
8336 	 * CPUs in the group should either be possible to resolve
8337 	 * internally or be covered by avg_load imbalance (eventually).
8338 	 */
8339 	if (sgs->group_type == group_misfit_task &&
8340 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8341 	     !group_has_capacity(env, &sds->local_stat)))
8342 		return false;
8343 
8344 	if (sgs->group_type > busiest->group_type)
8345 		return true;
8346 
8347 	if (sgs->group_type < busiest->group_type)
8348 		return false;
8349 
8350 	if (sgs->avg_load <= busiest->avg_load)
8351 		return false;
8352 
8353 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8354 		goto asym_packing;
8355 
8356 	/*
8357 	 * Candidate sg has no more than one task per CPU and
8358 	 * has higher per-CPU capacity. Migrating tasks to less
8359 	 * capable CPUs may harm throughput. Maximize throughput,
8360 	 * power/energy consequences are not considered.
8361 	 */
8362 	if (sgs->sum_nr_running <= sgs->group_weight &&
8363 	    group_smaller_min_cpu_capacity(sds->local, sg))
8364 		return false;
8365 
8366 	/*
8367 	 * If we have more than one misfit sg go with the biggest misfit.
8368 	 */
8369 	if (sgs->group_type == group_misfit_task &&
8370 	    sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8371 		return false;
8372 
8373 asym_packing:
8374 	/* This is the busiest node in its class. */
8375 	if (!(env->sd->flags & SD_ASYM_PACKING))
8376 		return true;
8377 
8378 	/* No ASYM_PACKING if target CPU is already busy */
8379 	if (env->idle == CPU_NOT_IDLE)
8380 		return true;
8381 	/*
8382 	 * ASYM_PACKING needs to move all the work to the highest
8383 	 * prority CPUs in the group, therefore mark all groups
8384 	 * of lower priority than ourself as busy.
8385 	 */
8386 	if (sgs->sum_nr_running &&
8387 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8388 		if (!sds->busiest)
8389 			return true;
8390 
8391 		/* Prefer to move from lowest priority CPU's work */
8392 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8393 				      sg->asym_prefer_cpu))
8394 			return true;
8395 	}
8396 
8397 	return false;
8398 }
8399 
8400 #ifdef CONFIG_NUMA_BALANCING
8401 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8402 {
8403 	if (sgs->sum_nr_running > sgs->nr_numa_running)
8404 		return regular;
8405 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
8406 		return remote;
8407 	return all;
8408 }
8409 
8410 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8411 {
8412 	if (rq->nr_running > rq->nr_numa_running)
8413 		return regular;
8414 	if (rq->nr_running > rq->nr_preferred_running)
8415 		return remote;
8416 	return all;
8417 }
8418 #else
8419 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8420 {
8421 	return all;
8422 }
8423 
8424 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8425 {
8426 	return regular;
8427 }
8428 #endif /* CONFIG_NUMA_BALANCING */
8429 
8430 /**
8431  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8432  * @env: The load balancing environment.
8433  * @sds: variable to hold the statistics for this sched_domain.
8434  */
8435 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8436 {
8437 	struct sched_domain *child = env->sd->child;
8438 	struct sched_group *sg = env->sd->groups;
8439 	struct sg_lb_stats *local = &sds->local_stat;
8440 	struct sg_lb_stats tmp_sgs;
8441 	bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8442 	int sg_status = 0;
8443 
8444 #ifdef CONFIG_NO_HZ_COMMON
8445 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8446 		env->flags |= LBF_NOHZ_STATS;
8447 #endif
8448 
8449 	do {
8450 		struct sg_lb_stats *sgs = &tmp_sgs;
8451 		int local_group;
8452 
8453 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8454 		if (local_group) {
8455 			sds->local = sg;
8456 			sgs = local;
8457 
8458 			if (env->idle != CPU_NEWLY_IDLE ||
8459 			    time_after_eq(jiffies, sg->sgc->next_update))
8460 				update_group_capacity(env->sd, env->dst_cpu);
8461 		}
8462 
8463 		update_sg_lb_stats(env, sg, sgs, &sg_status);
8464 
8465 		if (local_group)
8466 			goto next_group;
8467 
8468 		/*
8469 		 * In case the child domain prefers tasks go to siblings
8470 		 * first, lower the sg capacity so that we'll try
8471 		 * and move all the excess tasks away. We lower the capacity
8472 		 * of a group only if the local group has the capacity to fit
8473 		 * these excess tasks. The extra check prevents the case where
8474 		 * you always pull from the heaviest group when it is already
8475 		 * under-utilized (possible with a large weight task outweighs
8476 		 * the tasks on the system).
8477 		 */
8478 		if (prefer_sibling && sds->local &&
8479 		    group_has_capacity(env, local) &&
8480 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8481 			sgs->group_no_capacity = 1;
8482 			sgs->group_type = group_classify(sg, sgs);
8483 		}
8484 
8485 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8486 			sds->busiest = sg;
8487 			sds->busiest_stat = *sgs;
8488 		}
8489 
8490 next_group:
8491 		/* Now, start updating sd_lb_stats */
8492 		sds->total_running += sgs->sum_nr_running;
8493 		sds->total_load += sgs->group_load;
8494 		sds->total_capacity += sgs->group_capacity;
8495 
8496 		sg = sg->next;
8497 	} while (sg != env->sd->groups);
8498 
8499 #ifdef CONFIG_NO_HZ_COMMON
8500 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8501 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8502 
8503 		WRITE_ONCE(nohz.next_blocked,
8504 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8505 	}
8506 #endif
8507 
8508 	if (env->sd->flags & SD_NUMA)
8509 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8510 
8511 	if (!env->sd->parent) {
8512 		struct root_domain *rd = env->dst_rq->rd;
8513 
8514 		/* update overload indicator if we are at root domain */
8515 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8516 
8517 		/* Update over-utilization (tipping point, U >= 0) indicator */
8518 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8519 	} else if (sg_status & SG_OVERUTILIZED) {
8520 		WRITE_ONCE(env->dst_rq->rd->overutilized, SG_OVERUTILIZED);
8521 	}
8522 }
8523 
8524 /**
8525  * check_asym_packing - Check to see if the group is packed into the
8526  *			sched domain.
8527  *
8528  * This is primarily intended to used at the sibling level.  Some
8529  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8530  * case of POWER7, it can move to lower SMT modes only when higher
8531  * threads are idle.  When in lower SMT modes, the threads will
8532  * perform better since they share less core resources.  Hence when we
8533  * have idle threads, we want them to be the higher ones.
8534  *
8535  * This packing function is run on idle threads.  It checks to see if
8536  * the busiest CPU in this domain (core in the P7 case) has a higher
8537  * CPU number than the packing function is being run on.  Here we are
8538  * assuming lower CPU number will be equivalent to lower a SMT thread
8539  * number.
8540  *
8541  * Return: 1 when packing is required and a task should be moved to
8542  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8543  *
8544  * @env: The load balancing environment.
8545  * @sds: Statistics of the sched_domain which is to be packed
8546  */
8547 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8548 {
8549 	int busiest_cpu;
8550 
8551 	if (!(env->sd->flags & SD_ASYM_PACKING))
8552 		return 0;
8553 
8554 	if (env->idle == CPU_NOT_IDLE)
8555 		return 0;
8556 
8557 	if (!sds->busiest)
8558 		return 0;
8559 
8560 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8561 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8562 		return 0;
8563 
8564 	env->imbalance = sds->busiest_stat.group_load;
8565 
8566 	return 1;
8567 }
8568 
8569 /**
8570  * fix_small_imbalance - Calculate the minor imbalance that exists
8571  *			amongst the groups of a sched_domain, during
8572  *			load balancing.
8573  * @env: The load balancing environment.
8574  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8575  */
8576 static inline
8577 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8578 {
8579 	unsigned long tmp, capa_now = 0, capa_move = 0;
8580 	unsigned int imbn = 2;
8581 	unsigned long scaled_busy_load_per_task;
8582 	struct sg_lb_stats *local, *busiest;
8583 
8584 	local = &sds->local_stat;
8585 	busiest = &sds->busiest_stat;
8586 
8587 	if (!local->sum_nr_running)
8588 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8589 	else if (busiest->load_per_task > local->load_per_task)
8590 		imbn = 1;
8591 
8592 	scaled_busy_load_per_task =
8593 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8594 		busiest->group_capacity;
8595 
8596 	if (busiest->avg_load + scaled_busy_load_per_task >=
8597 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8598 		env->imbalance = busiest->load_per_task;
8599 		return;
8600 	}
8601 
8602 	/*
8603 	 * OK, we don't have enough imbalance to justify moving tasks,
8604 	 * however we may be able to increase total CPU capacity used by
8605 	 * moving them.
8606 	 */
8607 
8608 	capa_now += busiest->group_capacity *
8609 			min(busiest->load_per_task, busiest->avg_load);
8610 	capa_now += local->group_capacity *
8611 			min(local->load_per_task, local->avg_load);
8612 	capa_now /= SCHED_CAPACITY_SCALE;
8613 
8614 	/* Amount of load we'd subtract */
8615 	if (busiest->avg_load > scaled_busy_load_per_task) {
8616 		capa_move += busiest->group_capacity *
8617 			    min(busiest->load_per_task,
8618 				busiest->avg_load - scaled_busy_load_per_task);
8619 	}
8620 
8621 	/* Amount of load we'd add */
8622 	if (busiest->avg_load * busiest->group_capacity <
8623 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8624 		tmp = (busiest->avg_load * busiest->group_capacity) /
8625 		      local->group_capacity;
8626 	} else {
8627 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8628 		      local->group_capacity;
8629 	}
8630 	capa_move += local->group_capacity *
8631 		    min(local->load_per_task, local->avg_load + tmp);
8632 	capa_move /= SCHED_CAPACITY_SCALE;
8633 
8634 	/* Move if we gain throughput */
8635 	if (capa_move > capa_now)
8636 		env->imbalance = busiest->load_per_task;
8637 }
8638 
8639 /**
8640  * calculate_imbalance - Calculate the amount of imbalance present within the
8641  *			 groups of a given sched_domain during load balance.
8642  * @env: load balance environment
8643  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8644  */
8645 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8646 {
8647 	unsigned long max_pull, load_above_capacity = ~0UL;
8648 	struct sg_lb_stats *local, *busiest;
8649 
8650 	local = &sds->local_stat;
8651 	busiest = &sds->busiest_stat;
8652 
8653 	if (busiest->group_type == group_imbalanced) {
8654 		/*
8655 		 * In the group_imb case we cannot rely on group-wide averages
8656 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8657 		 */
8658 		busiest->load_per_task =
8659 			min(busiest->load_per_task, sds->avg_load);
8660 	}
8661 
8662 	/*
8663 	 * Avg load of busiest sg can be less and avg load of local sg can
8664 	 * be greater than avg load across all sgs of sd because avg load
8665 	 * factors in sg capacity and sgs with smaller group_type are
8666 	 * skipped when updating the busiest sg:
8667 	 */
8668 	if (busiest->group_type != group_misfit_task &&
8669 	    (busiest->avg_load <= sds->avg_load ||
8670 	     local->avg_load >= sds->avg_load)) {
8671 		env->imbalance = 0;
8672 		return fix_small_imbalance(env, sds);
8673 	}
8674 
8675 	/*
8676 	 * If there aren't any idle CPUs, avoid creating some.
8677 	 */
8678 	if (busiest->group_type == group_overloaded &&
8679 	    local->group_type   == group_overloaded) {
8680 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8681 		if (load_above_capacity > busiest->group_capacity) {
8682 			load_above_capacity -= busiest->group_capacity;
8683 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8684 			load_above_capacity /= busiest->group_capacity;
8685 		} else
8686 			load_above_capacity = ~0UL;
8687 	}
8688 
8689 	/*
8690 	 * We're trying to get all the CPUs to the average_load, so we don't
8691 	 * want to push ourselves above the average load, nor do we wish to
8692 	 * reduce the max loaded CPU below the average load. At the same time,
8693 	 * we also don't want to reduce the group load below the group
8694 	 * capacity. Thus we look for the minimum possible imbalance.
8695 	 */
8696 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8697 
8698 	/* How much load to actually move to equalise the imbalance */
8699 	env->imbalance = min(
8700 		max_pull * busiest->group_capacity,
8701 		(sds->avg_load - local->avg_load) * local->group_capacity
8702 	) / SCHED_CAPACITY_SCALE;
8703 
8704 	/* Boost imbalance to allow misfit task to be balanced. */
8705 	if (busiest->group_type == group_misfit_task) {
8706 		env->imbalance = max_t(long, env->imbalance,
8707 				       busiest->group_misfit_task_load);
8708 	}
8709 
8710 	/*
8711 	 * if *imbalance is less than the average load per runnable task
8712 	 * there is no guarantee that any tasks will be moved so we'll have
8713 	 * a think about bumping its value to force at least one task to be
8714 	 * moved
8715 	 */
8716 	if (env->imbalance < busiest->load_per_task)
8717 		return fix_small_imbalance(env, sds);
8718 }
8719 
8720 /******* find_busiest_group() helpers end here *********************/
8721 
8722 /**
8723  * find_busiest_group - Returns the busiest group within the sched_domain
8724  * if there is an imbalance.
8725  *
8726  * Also calculates the amount of weighted load which should be moved
8727  * to restore balance.
8728  *
8729  * @env: The load balancing environment.
8730  *
8731  * Return:	- The busiest group if imbalance exists.
8732  */
8733 static struct sched_group *find_busiest_group(struct lb_env *env)
8734 {
8735 	struct sg_lb_stats *local, *busiest;
8736 	struct sd_lb_stats sds;
8737 
8738 	init_sd_lb_stats(&sds);
8739 
8740 	/*
8741 	 * Compute the various statistics relavent for load balancing at
8742 	 * this level.
8743 	 */
8744 	update_sd_lb_stats(env, &sds);
8745 
8746 	if (sched_energy_enabled()) {
8747 		struct root_domain *rd = env->dst_rq->rd;
8748 
8749 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8750 			goto out_balanced;
8751 	}
8752 
8753 	local = &sds.local_stat;
8754 	busiest = &sds.busiest_stat;
8755 
8756 	/* ASYM feature bypasses nice load balance check */
8757 	if (check_asym_packing(env, &sds))
8758 		return sds.busiest;
8759 
8760 	/* There is no busy sibling group to pull tasks from */
8761 	if (!sds.busiest || busiest->sum_nr_running == 0)
8762 		goto out_balanced;
8763 
8764 	/* XXX broken for overlapping NUMA groups */
8765 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8766 						/ sds.total_capacity;
8767 
8768 	/*
8769 	 * If the busiest group is imbalanced the below checks don't
8770 	 * work because they assume all things are equal, which typically
8771 	 * isn't true due to cpus_allowed constraints and the like.
8772 	 */
8773 	if (busiest->group_type == group_imbalanced)
8774 		goto force_balance;
8775 
8776 	/*
8777 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8778 	 * capacities from resulting in underutilization due to avg_load.
8779 	 */
8780 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8781 	    busiest->group_no_capacity)
8782 		goto force_balance;
8783 
8784 	/* Misfit tasks should be dealt with regardless of the avg load */
8785 	if (busiest->group_type == group_misfit_task)
8786 		goto force_balance;
8787 
8788 	/*
8789 	 * If the local group is busier than the selected busiest group
8790 	 * don't try and pull any tasks.
8791 	 */
8792 	if (local->avg_load >= busiest->avg_load)
8793 		goto out_balanced;
8794 
8795 	/*
8796 	 * Don't pull any tasks if this group is already above the domain
8797 	 * average load.
8798 	 */
8799 	if (local->avg_load >= sds.avg_load)
8800 		goto out_balanced;
8801 
8802 	if (env->idle == CPU_IDLE) {
8803 		/*
8804 		 * This CPU is idle. If the busiest group is not overloaded
8805 		 * and there is no imbalance between this and busiest group
8806 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8807 		 * significant if the diff is greater than 1 otherwise we
8808 		 * might end up to just move the imbalance on another group
8809 		 */
8810 		if ((busiest->group_type != group_overloaded) &&
8811 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8812 			goto out_balanced;
8813 	} else {
8814 		/*
8815 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8816 		 * imbalance_pct to be conservative.
8817 		 */
8818 		if (100 * busiest->avg_load <=
8819 				env->sd->imbalance_pct * local->avg_load)
8820 			goto out_balanced;
8821 	}
8822 
8823 force_balance:
8824 	/* Looks like there is an imbalance. Compute it */
8825 	env->src_grp_type = busiest->group_type;
8826 	calculate_imbalance(env, &sds);
8827 	return env->imbalance ? sds.busiest : NULL;
8828 
8829 out_balanced:
8830 	env->imbalance = 0;
8831 	return NULL;
8832 }
8833 
8834 /*
8835  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8836  */
8837 static struct rq *find_busiest_queue(struct lb_env *env,
8838 				     struct sched_group *group)
8839 {
8840 	struct rq *busiest = NULL, *rq;
8841 	unsigned long busiest_load = 0, busiest_capacity = 1;
8842 	int i;
8843 
8844 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8845 		unsigned long capacity, wl;
8846 		enum fbq_type rt;
8847 
8848 		rq = cpu_rq(i);
8849 		rt = fbq_classify_rq(rq);
8850 
8851 		/*
8852 		 * We classify groups/runqueues into three groups:
8853 		 *  - regular: there are !numa tasks
8854 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8855 		 *  - all:     there is no distinction
8856 		 *
8857 		 * In order to avoid migrating ideally placed numa tasks,
8858 		 * ignore those when there's better options.
8859 		 *
8860 		 * If we ignore the actual busiest queue to migrate another
8861 		 * task, the next balance pass can still reduce the busiest
8862 		 * queue by moving tasks around inside the node.
8863 		 *
8864 		 * If we cannot move enough load due to this classification
8865 		 * the next pass will adjust the group classification and
8866 		 * allow migration of more tasks.
8867 		 *
8868 		 * Both cases only affect the total convergence complexity.
8869 		 */
8870 		if (rt > env->fbq_type)
8871 			continue;
8872 
8873 		/*
8874 		 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8875 		 * seek the "biggest" misfit task.
8876 		 */
8877 		if (env->src_grp_type == group_misfit_task) {
8878 			if (rq->misfit_task_load > busiest_load) {
8879 				busiest_load = rq->misfit_task_load;
8880 				busiest = rq;
8881 			}
8882 
8883 			continue;
8884 		}
8885 
8886 		capacity = capacity_of(i);
8887 
8888 		/*
8889 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8890 		 * eventually lead to active_balancing high->low capacity.
8891 		 * Higher per-CPU capacity is considered better than balancing
8892 		 * average load.
8893 		 */
8894 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8895 		    capacity_of(env->dst_cpu) < capacity &&
8896 		    rq->nr_running == 1)
8897 			continue;
8898 
8899 		wl = weighted_cpuload(rq);
8900 
8901 		/*
8902 		 * When comparing with imbalance, use weighted_cpuload()
8903 		 * which is not scaled with the CPU capacity.
8904 		 */
8905 
8906 		if (rq->nr_running == 1 && wl > env->imbalance &&
8907 		    !check_cpu_capacity(rq, env->sd))
8908 			continue;
8909 
8910 		/*
8911 		 * For the load comparisons with the other CPU's, consider
8912 		 * the weighted_cpuload() scaled with the CPU capacity, so
8913 		 * that the load can be moved away from the CPU that is
8914 		 * potentially running at a lower capacity.
8915 		 *
8916 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8917 		 * multiplication to rid ourselves of the division works out
8918 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8919 		 * our previous maximum.
8920 		 */
8921 		if (wl * busiest_capacity > busiest_load * capacity) {
8922 			busiest_load = wl;
8923 			busiest_capacity = capacity;
8924 			busiest = rq;
8925 		}
8926 	}
8927 
8928 	return busiest;
8929 }
8930 
8931 /*
8932  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8933  * so long as it is large enough.
8934  */
8935 #define MAX_PINNED_INTERVAL	512
8936 
8937 static inline bool
8938 asym_active_balance(struct lb_env *env)
8939 {
8940 	/*
8941 	 * ASYM_PACKING needs to force migrate tasks from busy but
8942 	 * lower priority CPUs in order to pack all tasks in the
8943 	 * highest priority CPUs.
8944 	 */
8945 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
8946 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
8947 }
8948 
8949 static inline bool
8950 voluntary_active_balance(struct lb_env *env)
8951 {
8952 	struct sched_domain *sd = env->sd;
8953 
8954 	if (asym_active_balance(env))
8955 		return 1;
8956 
8957 	/*
8958 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8959 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8960 	 * because of other sched_class or IRQs if more capacity stays
8961 	 * available on dst_cpu.
8962 	 */
8963 	if ((env->idle != CPU_NOT_IDLE) &&
8964 	    (env->src_rq->cfs.h_nr_running == 1)) {
8965 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8966 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8967 			return 1;
8968 	}
8969 
8970 	if (env->src_grp_type == group_misfit_task)
8971 		return 1;
8972 
8973 	return 0;
8974 }
8975 
8976 static int need_active_balance(struct lb_env *env)
8977 {
8978 	struct sched_domain *sd = env->sd;
8979 
8980 	if (voluntary_active_balance(env))
8981 		return 1;
8982 
8983 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8984 }
8985 
8986 static int active_load_balance_cpu_stop(void *data);
8987 
8988 static int should_we_balance(struct lb_env *env)
8989 {
8990 	struct sched_group *sg = env->sd->groups;
8991 	int cpu, balance_cpu = -1;
8992 
8993 	/*
8994 	 * Ensure the balancing environment is consistent; can happen
8995 	 * when the softirq triggers 'during' hotplug.
8996 	 */
8997 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8998 		return 0;
8999 
9000 	/*
9001 	 * In the newly idle case, we will allow all the CPUs
9002 	 * to do the newly idle load balance.
9003 	 */
9004 	if (env->idle == CPU_NEWLY_IDLE)
9005 		return 1;
9006 
9007 	/* Try to find first idle CPU */
9008 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9009 		if (!idle_cpu(cpu))
9010 			continue;
9011 
9012 		balance_cpu = cpu;
9013 		break;
9014 	}
9015 
9016 	if (balance_cpu == -1)
9017 		balance_cpu = group_balance_cpu(sg);
9018 
9019 	/*
9020 	 * First idle CPU or the first CPU(busiest) in this sched group
9021 	 * is eligible for doing load balancing at this and above domains.
9022 	 */
9023 	return balance_cpu == env->dst_cpu;
9024 }
9025 
9026 /*
9027  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9028  * tasks if there is an imbalance.
9029  */
9030 static int load_balance(int this_cpu, struct rq *this_rq,
9031 			struct sched_domain *sd, enum cpu_idle_type idle,
9032 			int *continue_balancing)
9033 {
9034 	int ld_moved, cur_ld_moved, active_balance = 0;
9035 	struct sched_domain *sd_parent = sd->parent;
9036 	struct sched_group *group;
9037 	struct rq *busiest;
9038 	struct rq_flags rf;
9039 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9040 
9041 	struct lb_env env = {
9042 		.sd		= sd,
9043 		.dst_cpu	= this_cpu,
9044 		.dst_rq		= this_rq,
9045 		.dst_grpmask    = sched_group_span(sd->groups),
9046 		.idle		= idle,
9047 		.loop_break	= sched_nr_migrate_break,
9048 		.cpus		= cpus,
9049 		.fbq_type	= all,
9050 		.tasks		= LIST_HEAD_INIT(env.tasks),
9051 	};
9052 
9053 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9054 
9055 	schedstat_inc(sd->lb_count[idle]);
9056 
9057 redo:
9058 	if (!should_we_balance(&env)) {
9059 		*continue_balancing = 0;
9060 		goto out_balanced;
9061 	}
9062 
9063 	group = find_busiest_group(&env);
9064 	if (!group) {
9065 		schedstat_inc(sd->lb_nobusyg[idle]);
9066 		goto out_balanced;
9067 	}
9068 
9069 	busiest = find_busiest_queue(&env, group);
9070 	if (!busiest) {
9071 		schedstat_inc(sd->lb_nobusyq[idle]);
9072 		goto out_balanced;
9073 	}
9074 
9075 	BUG_ON(busiest == env.dst_rq);
9076 
9077 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9078 
9079 	env.src_cpu = busiest->cpu;
9080 	env.src_rq = busiest;
9081 
9082 	ld_moved = 0;
9083 	if (busiest->nr_running > 1) {
9084 		/*
9085 		 * Attempt to move tasks. If find_busiest_group has found
9086 		 * an imbalance but busiest->nr_running <= 1, the group is
9087 		 * still unbalanced. ld_moved simply stays zero, so it is
9088 		 * correctly treated as an imbalance.
9089 		 */
9090 		env.flags |= LBF_ALL_PINNED;
9091 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9092 
9093 more_balance:
9094 		rq_lock_irqsave(busiest, &rf);
9095 		update_rq_clock(busiest);
9096 
9097 		/*
9098 		 * cur_ld_moved - load moved in current iteration
9099 		 * ld_moved     - cumulative load moved across iterations
9100 		 */
9101 		cur_ld_moved = detach_tasks(&env);
9102 
9103 		/*
9104 		 * We've detached some tasks from busiest_rq. Every
9105 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9106 		 * unlock busiest->lock, and we are able to be sure
9107 		 * that nobody can manipulate the tasks in parallel.
9108 		 * See task_rq_lock() family for the details.
9109 		 */
9110 
9111 		rq_unlock(busiest, &rf);
9112 
9113 		if (cur_ld_moved) {
9114 			attach_tasks(&env);
9115 			ld_moved += cur_ld_moved;
9116 		}
9117 
9118 		local_irq_restore(rf.flags);
9119 
9120 		if (env.flags & LBF_NEED_BREAK) {
9121 			env.flags &= ~LBF_NEED_BREAK;
9122 			goto more_balance;
9123 		}
9124 
9125 		/*
9126 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9127 		 * us and move them to an alternate dst_cpu in our sched_group
9128 		 * where they can run. The upper limit on how many times we
9129 		 * iterate on same src_cpu is dependent on number of CPUs in our
9130 		 * sched_group.
9131 		 *
9132 		 * This changes load balance semantics a bit on who can move
9133 		 * load to a given_cpu. In addition to the given_cpu itself
9134 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9135 		 * nohz-idle), we now have balance_cpu in a position to move
9136 		 * load to given_cpu. In rare situations, this may cause
9137 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9138 		 * _independently_ and at _same_ time to move some load to
9139 		 * given_cpu) causing exceess load to be moved to given_cpu.
9140 		 * This however should not happen so much in practice and
9141 		 * moreover subsequent load balance cycles should correct the
9142 		 * excess load moved.
9143 		 */
9144 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9145 
9146 			/* Prevent to re-select dst_cpu via env's CPUs */
9147 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9148 
9149 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9150 			env.dst_cpu	 = env.new_dst_cpu;
9151 			env.flags	&= ~LBF_DST_PINNED;
9152 			env.loop	 = 0;
9153 			env.loop_break	 = sched_nr_migrate_break;
9154 
9155 			/*
9156 			 * Go back to "more_balance" rather than "redo" since we
9157 			 * need to continue with same src_cpu.
9158 			 */
9159 			goto more_balance;
9160 		}
9161 
9162 		/*
9163 		 * We failed to reach balance because of affinity.
9164 		 */
9165 		if (sd_parent) {
9166 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9167 
9168 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9169 				*group_imbalance = 1;
9170 		}
9171 
9172 		/* All tasks on this runqueue were pinned by CPU affinity */
9173 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9174 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9175 			/*
9176 			 * Attempting to continue load balancing at the current
9177 			 * sched_domain level only makes sense if there are
9178 			 * active CPUs remaining as possible busiest CPUs to
9179 			 * pull load from which are not contained within the
9180 			 * destination group that is receiving any migrated
9181 			 * load.
9182 			 */
9183 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9184 				env.loop = 0;
9185 				env.loop_break = sched_nr_migrate_break;
9186 				goto redo;
9187 			}
9188 			goto out_all_pinned;
9189 		}
9190 	}
9191 
9192 	if (!ld_moved) {
9193 		schedstat_inc(sd->lb_failed[idle]);
9194 		/*
9195 		 * Increment the failure counter only on periodic balance.
9196 		 * We do not want newidle balance, which can be very
9197 		 * frequent, pollute the failure counter causing
9198 		 * excessive cache_hot migrations and active balances.
9199 		 */
9200 		if (idle != CPU_NEWLY_IDLE)
9201 			sd->nr_balance_failed++;
9202 
9203 		if (need_active_balance(&env)) {
9204 			unsigned long flags;
9205 
9206 			raw_spin_lock_irqsave(&busiest->lock, flags);
9207 
9208 			/*
9209 			 * Don't kick the active_load_balance_cpu_stop,
9210 			 * if the curr task on busiest CPU can't be
9211 			 * moved to this_cpu:
9212 			 */
9213 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
9214 				raw_spin_unlock_irqrestore(&busiest->lock,
9215 							    flags);
9216 				env.flags |= LBF_ALL_PINNED;
9217 				goto out_one_pinned;
9218 			}
9219 
9220 			/*
9221 			 * ->active_balance synchronizes accesses to
9222 			 * ->active_balance_work.  Once set, it's cleared
9223 			 * only after active load balance is finished.
9224 			 */
9225 			if (!busiest->active_balance) {
9226 				busiest->active_balance = 1;
9227 				busiest->push_cpu = this_cpu;
9228 				active_balance = 1;
9229 			}
9230 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9231 
9232 			if (active_balance) {
9233 				stop_one_cpu_nowait(cpu_of(busiest),
9234 					active_load_balance_cpu_stop, busiest,
9235 					&busiest->active_balance_work);
9236 			}
9237 
9238 			/* We've kicked active balancing, force task migration. */
9239 			sd->nr_balance_failed = sd->cache_nice_tries+1;
9240 		}
9241 	} else
9242 		sd->nr_balance_failed = 0;
9243 
9244 	if (likely(!active_balance) || voluntary_active_balance(&env)) {
9245 		/* We were unbalanced, so reset the balancing interval */
9246 		sd->balance_interval = sd->min_interval;
9247 	} else {
9248 		/*
9249 		 * If we've begun active balancing, start to back off. This
9250 		 * case may not be covered by the all_pinned logic if there
9251 		 * is only 1 task on the busy runqueue (because we don't call
9252 		 * detach_tasks).
9253 		 */
9254 		if (sd->balance_interval < sd->max_interval)
9255 			sd->balance_interval *= 2;
9256 	}
9257 
9258 	goto out;
9259 
9260 out_balanced:
9261 	/*
9262 	 * We reach balance although we may have faced some affinity
9263 	 * constraints. Clear the imbalance flag if it was set.
9264 	 */
9265 	if (sd_parent) {
9266 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9267 
9268 		if (*group_imbalance)
9269 			*group_imbalance = 0;
9270 	}
9271 
9272 out_all_pinned:
9273 	/*
9274 	 * We reach balance because all tasks are pinned at this level so
9275 	 * we can't migrate them. Let the imbalance flag set so parent level
9276 	 * can try to migrate them.
9277 	 */
9278 	schedstat_inc(sd->lb_balanced[idle]);
9279 
9280 	sd->nr_balance_failed = 0;
9281 
9282 out_one_pinned:
9283 	ld_moved = 0;
9284 
9285 	/*
9286 	 * idle_balance() disregards balance intervals, so we could repeatedly
9287 	 * reach this code, which would lead to balance_interval skyrocketting
9288 	 * in a short amount of time. Skip the balance_interval increase logic
9289 	 * to avoid that.
9290 	 */
9291 	if (env.idle == CPU_NEWLY_IDLE)
9292 		goto out;
9293 
9294 	/* tune up the balancing interval */
9295 	if ((env.flags & LBF_ALL_PINNED &&
9296 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9297 	    sd->balance_interval < sd->max_interval)
9298 		sd->balance_interval *= 2;
9299 out:
9300 	return ld_moved;
9301 }
9302 
9303 static inline unsigned long
9304 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9305 {
9306 	unsigned long interval = sd->balance_interval;
9307 
9308 	if (cpu_busy)
9309 		interval *= sd->busy_factor;
9310 
9311 	/* scale ms to jiffies */
9312 	interval = msecs_to_jiffies(interval);
9313 	interval = clamp(interval, 1UL, max_load_balance_interval);
9314 
9315 	return interval;
9316 }
9317 
9318 static inline void
9319 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9320 {
9321 	unsigned long interval, next;
9322 
9323 	/* used by idle balance, so cpu_busy = 0 */
9324 	interval = get_sd_balance_interval(sd, 0);
9325 	next = sd->last_balance + interval;
9326 
9327 	if (time_after(*next_balance, next))
9328 		*next_balance = next;
9329 }
9330 
9331 /*
9332  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9333  * running tasks off the busiest CPU onto idle CPUs. It requires at
9334  * least 1 task to be running on each physical CPU where possible, and
9335  * avoids physical / logical imbalances.
9336  */
9337 static int active_load_balance_cpu_stop(void *data)
9338 {
9339 	struct rq *busiest_rq = data;
9340 	int busiest_cpu = cpu_of(busiest_rq);
9341 	int target_cpu = busiest_rq->push_cpu;
9342 	struct rq *target_rq = cpu_rq(target_cpu);
9343 	struct sched_domain *sd;
9344 	struct task_struct *p = NULL;
9345 	struct rq_flags rf;
9346 
9347 	rq_lock_irq(busiest_rq, &rf);
9348 	/*
9349 	 * Between queueing the stop-work and running it is a hole in which
9350 	 * CPUs can become inactive. We should not move tasks from or to
9351 	 * inactive CPUs.
9352 	 */
9353 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9354 		goto out_unlock;
9355 
9356 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9357 	if (unlikely(busiest_cpu != smp_processor_id() ||
9358 		     !busiest_rq->active_balance))
9359 		goto out_unlock;
9360 
9361 	/* Is there any task to move? */
9362 	if (busiest_rq->nr_running <= 1)
9363 		goto out_unlock;
9364 
9365 	/*
9366 	 * This condition is "impossible", if it occurs
9367 	 * we need to fix it. Originally reported by
9368 	 * Bjorn Helgaas on a 128-CPU setup.
9369 	 */
9370 	BUG_ON(busiest_rq == target_rq);
9371 
9372 	/* Search for an sd spanning us and the target CPU. */
9373 	rcu_read_lock();
9374 	for_each_domain(target_cpu, sd) {
9375 		if ((sd->flags & SD_LOAD_BALANCE) &&
9376 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9377 				break;
9378 	}
9379 
9380 	if (likely(sd)) {
9381 		struct lb_env env = {
9382 			.sd		= sd,
9383 			.dst_cpu	= target_cpu,
9384 			.dst_rq		= target_rq,
9385 			.src_cpu	= busiest_rq->cpu,
9386 			.src_rq		= busiest_rq,
9387 			.idle		= CPU_IDLE,
9388 			/*
9389 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9390 			 * for active balancing. Since we have CPU_IDLE, but no
9391 			 * @dst_grpmask we need to make that test go away with lying
9392 			 * about DST_PINNED.
9393 			 */
9394 			.flags		= LBF_DST_PINNED,
9395 		};
9396 
9397 		schedstat_inc(sd->alb_count);
9398 		update_rq_clock(busiest_rq);
9399 
9400 		p = detach_one_task(&env);
9401 		if (p) {
9402 			schedstat_inc(sd->alb_pushed);
9403 			/* Active balancing done, reset the failure counter. */
9404 			sd->nr_balance_failed = 0;
9405 		} else {
9406 			schedstat_inc(sd->alb_failed);
9407 		}
9408 	}
9409 	rcu_read_unlock();
9410 out_unlock:
9411 	busiest_rq->active_balance = 0;
9412 	rq_unlock(busiest_rq, &rf);
9413 
9414 	if (p)
9415 		attach_one_task(target_rq, p);
9416 
9417 	local_irq_enable();
9418 
9419 	return 0;
9420 }
9421 
9422 static DEFINE_SPINLOCK(balancing);
9423 
9424 /*
9425  * Scale the max load_balance interval with the number of CPUs in the system.
9426  * This trades load-balance latency on larger machines for less cross talk.
9427  */
9428 void update_max_interval(void)
9429 {
9430 	max_load_balance_interval = HZ*num_online_cpus()/10;
9431 }
9432 
9433 /*
9434  * It checks each scheduling domain to see if it is due to be balanced,
9435  * and initiates a balancing operation if so.
9436  *
9437  * Balancing parameters are set up in init_sched_domains.
9438  */
9439 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9440 {
9441 	int continue_balancing = 1;
9442 	int cpu = rq->cpu;
9443 	unsigned long interval;
9444 	struct sched_domain *sd;
9445 	/* Earliest time when we have to do rebalance again */
9446 	unsigned long next_balance = jiffies + 60*HZ;
9447 	int update_next_balance = 0;
9448 	int need_serialize, need_decay = 0;
9449 	u64 max_cost = 0;
9450 
9451 	rcu_read_lock();
9452 	for_each_domain(cpu, sd) {
9453 		/*
9454 		 * Decay the newidle max times here because this is a regular
9455 		 * visit to all the domains. Decay ~1% per second.
9456 		 */
9457 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9458 			sd->max_newidle_lb_cost =
9459 				(sd->max_newidle_lb_cost * 253) / 256;
9460 			sd->next_decay_max_lb_cost = jiffies + HZ;
9461 			need_decay = 1;
9462 		}
9463 		max_cost += sd->max_newidle_lb_cost;
9464 
9465 		if (!(sd->flags & SD_LOAD_BALANCE))
9466 			continue;
9467 
9468 		/*
9469 		 * Stop the load balance at this level. There is another
9470 		 * CPU in our sched group which is doing load balancing more
9471 		 * actively.
9472 		 */
9473 		if (!continue_balancing) {
9474 			if (need_decay)
9475 				continue;
9476 			break;
9477 		}
9478 
9479 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9480 
9481 		need_serialize = sd->flags & SD_SERIALIZE;
9482 		if (need_serialize) {
9483 			if (!spin_trylock(&balancing))
9484 				goto out;
9485 		}
9486 
9487 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9488 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9489 				/*
9490 				 * The LBF_DST_PINNED logic could have changed
9491 				 * env->dst_cpu, so we can't know our idle
9492 				 * state even if we migrated tasks. Update it.
9493 				 */
9494 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9495 			}
9496 			sd->last_balance = jiffies;
9497 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9498 		}
9499 		if (need_serialize)
9500 			spin_unlock(&balancing);
9501 out:
9502 		if (time_after(next_balance, sd->last_balance + interval)) {
9503 			next_balance = sd->last_balance + interval;
9504 			update_next_balance = 1;
9505 		}
9506 	}
9507 	if (need_decay) {
9508 		/*
9509 		 * Ensure the rq-wide value also decays but keep it at a
9510 		 * reasonable floor to avoid funnies with rq->avg_idle.
9511 		 */
9512 		rq->max_idle_balance_cost =
9513 			max((u64)sysctl_sched_migration_cost, max_cost);
9514 	}
9515 	rcu_read_unlock();
9516 
9517 	/*
9518 	 * next_balance will be updated only when there is a need.
9519 	 * When the cpu is attached to null domain for ex, it will not be
9520 	 * updated.
9521 	 */
9522 	if (likely(update_next_balance)) {
9523 		rq->next_balance = next_balance;
9524 
9525 #ifdef CONFIG_NO_HZ_COMMON
9526 		/*
9527 		 * If this CPU has been elected to perform the nohz idle
9528 		 * balance. Other idle CPUs have already rebalanced with
9529 		 * nohz_idle_balance() and nohz.next_balance has been
9530 		 * updated accordingly. This CPU is now running the idle load
9531 		 * balance for itself and we need to update the
9532 		 * nohz.next_balance accordingly.
9533 		 */
9534 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9535 			nohz.next_balance = rq->next_balance;
9536 #endif
9537 	}
9538 }
9539 
9540 static inline int on_null_domain(struct rq *rq)
9541 {
9542 	return unlikely(!rcu_dereference_sched(rq->sd));
9543 }
9544 
9545 #ifdef CONFIG_NO_HZ_COMMON
9546 /*
9547  * idle load balancing details
9548  * - When one of the busy CPUs notice that there may be an idle rebalancing
9549  *   needed, they will kick the idle load balancer, which then does idle
9550  *   load balancing for all the idle CPUs.
9551  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9552  *   anywhere yet.
9553  */
9554 
9555 static inline int find_new_ilb(void)
9556 {
9557 	int ilb;
9558 
9559 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9560 			      housekeeping_cpumask(HK_FLAG_MISC)) {
9561 		if (idle_cpu(ilb))
9562 			return ilb;
9563 	}
9564 
9565 	return nr_cpu_ids;
9566 }
9567 
9568 /*
9569  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9570  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
9571  */
9572 static void kick_ilb(unsigned int flags)
9573 {
9574 	int ilb_cpu;
9575 
9576 	nohz.next_balance++;
9577 
9578 	ilb_cpu = find_new_ilb();
9579 
9580 	if (ilb_cpu >= nr_cpu_ids)
9581 		return;
9582 
9583 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9584 	if (flags & NOHZ_KICK_MASK)
9585 		return;
9586 
9587 	/*
9588 	 * Use smp_send_reschedule() instead of resched_cpu().
9589 	 * This way we generate a sched IPI on the target CPU which
9590 	 * is idle. And the softirq performing nohz idle load balance
9591 	 * will be run before returning from the IPI.
9592 	 */
9593 	smp_send_reschedule(ilb_cpu);
9594 }
9595 
9596 /*
9597  * Current decision point for kicking the idle load balancer in the presence
9598  * of idle CPUs in the system.
9599  */
9600 static void nohz_balancer_kick(struct rq *rq)
9601 {
9602 	unsigned long now = jiffies;
9603 	struct sched_domain_shared *sds;
9604 	struct sched_domain *sd;
9605 	int nr_busy, i, cpu = rq->cpu;
9606 	unsigned int flags = 0;
9607 
9608 	if (unlikely(rq->idle_balance))
9609 		return;
9610 
9611 	/*
9612 	 * We may be recently in ticked or tickless idle mode. At the first
9613 	 * busy tick after returning from idle, we will update the busy stats.
9614 	 */
9615 	nohz_balance_exit_idle(rq);
9616 
9617 	/*
9618 	 * None are in tickless mode and hence no need for NOHZ idle load
9619 	 * balancing.
9620 	 */
9621 	if (likely(!atomic_read(&nohz.nr_cpus)))
9622 		return;
9623 
9624 	if (READ_ONCE(nohz.has_blocked) &&
9625 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9626 		flags = NOHZ_STATS_KICK;
9627 
9628 	if (time_before(now, nohz.next_balance))
9629 		goto out;
9630 
9631 	if (rq->nr_running >= 2) {
9632 		flags = NOHZ_KICK_MASK;
9633 		goto out;
9634 	}
9635 
9636 	rcu_read_lock();
9637 
9638 	sd = rcu_dereference(rq->sd);
9639 	if (sd) {
9640 		/*
9641 		 * If there's a CFS task and the current CPU has reduced
9642 		 * capacity; kick the ILB to see if there's a better CPU to run
9643 		 * on.
9644 		 */
9645 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
9646 			flags = NOHZ_KICK_MASK;
9647 			goto unlock;
9648 		}
9649 	}
9650 
9651 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
9652 	if (sd) {
9653 		/*
9654 		 * When ASYM_PACKING; see if there's a more preferred CPU
9655 		 * currently idle; in which case, kick the ILB to move tasks
9656 		 * around.
9657 		 */
9658 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
9659 			if (sched_asym_prefer(i, cpu)) {
9660 				flags = NOHZ_KICK_MASK;
9661 				goto unlock;
9662 			}
9663 		}
9664 	}
9665 
9666 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9667 	if (sd) {
9668 		/*
9669 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9670 		 * to run the misfit task on.
9671 		 */
9672 		if (check_misfit_status(rq, sd)) {
9673 			flags = NOHZ_KICK_MASK;
9674 			goto unlock;
9675 		}
9676 
9677 		/*
9678 		 * For asymmetric systems, we do not want to nicely balance
9679 		 * cache use, instead we want to embrace asymmetry and only
9680 		 * ensure tasks have enough CPU capacity.
9681 		 *
9682 		 * Skip the LLC logic because it's not relevant in that case.
9683 		 */
9684 		goto unlock;
9685 	}
9686 
9687 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9688 	if (sds) {
9689 		/*
9690 		 * If there is an imbalance between LLC domains (IOW we could
9691 		 * increase the overall cache use), we need some less-loaded LLC
9692 		 * domain to pull some load. Likewise, we may need to spread
9693 		 * load within the current LLC domain (e.g. packed SMT cores but
9694 		 * other CPUs are idle). We can't really know from here how busy
9695 		 * the others are - so just get a nohz balance going if it looks
9696 		 * like this LLC domain has tasks we could move.
9697 		 */
9698 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9699 		if (nr_busy > 1) {
9700 			flags = NOHZ_KICK_MASK;
9701 			goto unlock;
9702 		}
9703 	}
9704 unlock:
9705 	rcu_read_unlock();
9706 out:
9707 	if (flags)
9708 		kick_ilb(flags);
9709 }
9710 
9711 static void set_cpu_sd_state_busy(int cpu)
9712 {
9713 	struct sched_domain *sd;
9714 
9715 	rcu_read_lock();
9716 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9717 
9718 	if (!sd || !sd->nohz_idle)
9719 		goto unlock;
9720 	sd->nohz_idle = 0;
9721 
9722 	atomic_inc(&sd->shared->nr_busy_cpus);
9723 unlock:
9724 	rcu_read_unlock();
9725 }
9726 
9727 void nohz_balance_exit_idle(struct rq *rq)
9728 {
9729 	SCHED_WARN_ON(rq != this_rq());
9730 
9731 	if (likely(!rq->nohz_tick_stopped))
9732 		return;
9733 
9734 	rq->nohz_tick_stopped = 0;
9735 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9736 	atomic_dec(&nohz.nr_cpus);
9737 
9738 	set_cpu_sd_state_busy(rq->cpu);
9739 }
9740 
9741 static void set_cpu_sd_state_idle(int cpu)
9742 {
9743 	struct sched_domain *sd;
9744 
9745 	rcu_read_lock();
9746 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9747 
9748 	if (!sd || sd->nohz_idle)
9749 		goto unlock;
9750 	sd->nohz_idle = 1;
9751 
9752 	atomic_dec(&sd->shared->nr_busy_cpus);
9753 unlock:
9754 	rcu_read_unlock();
9755 }
9756 
9757 /*
9758  * This routine will record that the CPU is going idle with tick stopped.
9759  * This info will be used in performing idle load balancing in the future.
9760  */
9761 void nohz_balance_enter_idle(int cpu)
9762 {
9763 	struct rq *rq = cpu_rq(cpu);
9764 
9765 	SCHED_WARN_ON(cpu != smp_processor_id());
9766 
9767 	/* If this CPU is going down, then nothing needs to be done: */
9768 	if (!cpu_active(cpu))
9769 		return;
9770 
9771 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9772 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9773 		return;
9774 
9775 	/*
9776 	 * Can be set safely without rq->lock held
9777 	 * If a clear happens, it will have evaluated last additions because
9778 	 * rq->lock is held during the check and the clear
9779 	 */
9780 	rq->has_blocked_load = 1;
9781 
9782 	/*
9783 	 * The tick is still stopped but load could have been added in the
9784 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9785 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9786 	 * of nohz.has_blocked can only happen after checking the new load
9787 	 */
9788 	if (rq->nohz_tick_stopped)
9789 		goto out;
9790 
9791 	/* If we're a completely isolated CPU, we don't play: */
9792 	if (on_null_domain(rq))
9793 		return;
9794 
9795 	rq->nohz_tick_stopped = 1;
9796 
9797 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9798 	atomic_inc(&nohz.nr_cpus);
9799 
9800 	/*
9801 	 * Ensures that if nohz_idle_balance() fails to observe our
9802 	 * @idle_cpus_mask store, it must observe the @has_blocked
9803 	 * store.
9804 	 */
9805 	smp_mb__after_atomic();
9806 
9807 	set_cpu_sd_state_idle(cpu);
9808 
9809 out:
9810 	/*
9811 	 * Each time a cpu enter idle, we assume that it has blocked load and
9812 	 * enable the periodic update of the load of idle cpus
9813 	 */
9814 	WRITE_ONCE(nohz.has_blocked, 1);
9815 }
9816 
9817 /*
9818  * Internal function that runs load balance for all idle cpus. The load balance
9819  * can be a simple update of blocked load or a complete load balance with
9820  * tasks movement depending of flags.
9821  * The function returns false if the loop has stopped before running
9822  * through all idle CPUs.
9823  */
9824 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9825 			       enum cpu_idle_type idle)
9826 {
9827 	/* Earliest time when we have to do rebalance again */
9828 	unsigned long now = jiffies;
9829 	unsigned long next_balance = now + 60*HZ;
9830 	bool has_blocked_load = false;
9831 	int update_next_balance = 0;
9832 	int this_cpu = this_rq->cpu;
9833 	int balance_cpu;
9834 	int ret = false;
9835 	struct rq *rq;
9836 
9837 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9838 
9839 	/*
9840 	 * We assume there will be no idle load after this update and clear
9841 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9842 	 * set the has_blocked flag and trig another update of idle load.
9843 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9844 	 * setting the flag, we are sure to not clear the state and not
9845 	 * check the load of an idle cpu.
9846 	 */
9847 	WRITE_ONCE(nohz.has_blocked, 0);
9848 
9849 	/*
9850 	 * Ensures that if we miss the CPU, we must see the has_blocked
9851 	 * store from nohz_balance_enter_idle().
9852 	 */
9853 	smp_mb();
9854 
9855 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9856 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9857 			continue;
9858 
9859 		/*
9860 		 * If this CPU gets work to do, stop the load balancing
9861 		 * work being done for other CPUs. Next load
9862 		 * balancing owner will pick it up.
9863 		 */
9864 		if (need_resched()) {
9865 			has_blocked_load = true;
9866 			goto abort;
9867 		}
9868 
9869 		rq = cpu_rq(balance_cpu);
9870 
9871 		has_blocked_load |= update_nohz_stats(rq, true);
9872 
9873 		/*
9874 		 * If time for next balance is due,
9875 		 * do the balance.
9876 		 */
9877 		if (time_after_eq(jiffies, rq->next_balance)) {
9878 			struct rq_flags rf;
9879 
9880 			rq_lock_irqsave(rq, &rf);
9881 			update_rq_clock(rq);
9882 			cpu_load_update_idle(rq);
9883 			rq_unlock_irqrestore(rq, &rf);
9884 
9885 			if (flags & NOHZ_BALANCE_KICK)
9886 				rebalance_domains(rq, CPU_IDLE);
9887 		}
9888 
9889 		if (time_after(next_balance, rq->next_balance)) {
9890 			next_balance = rq->next_balance;
9891 			update_next_balance = 1;
9892 		}
9893 	}
9894 
9895 	/* Newly idle CPU doesn't need an update */
9896 	if (idle != CPU_NEWLY_IDLE) {
9897 		update_blocked_averages(this_cpu);
9898 		has_blocked_load |= this_rq->has_blocked_load;
9899 	}
9900 
9901 	if (flags & NOHZ_BALANCE_KICK)
9902 		rebalance_domains(this_rq, CPU_IDLE);
9903 
9904 	WRITE_ONCE(nohz.next_blocked,
9905 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9906 
9907 	/* The full idle balance loop has been done */
9908 	ret = true;
9909 
9910 abort:
9911 	/* There is still blocked load, enable periodic update */
9912 	if (has_blocked_load)
9913 		WRITE_ONCE(nohz.has_blocked, 1);
9914 
9915 	/*
9916 	 * next_balance will be updated only when there is a need.
9917 	 * When the CPU is attached to null domain for ex, it will not be
9918 	 * updated.
9919 	 */
9920 	if (likely(update_next_balance))
9921 		nohz.next_balance = next_balance;
9922 
9923 	return ret;
9924 }
9925 
9926 /*
9927  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9928  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9929  */
9930 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9931 {
9932 	int this_cpu = this_rq->cpu;
9933 	unsigned int flags;
9934 
9935 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9936 		return false;
9937 
9938 	if (idle != CPU_IDLE) {
9939 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9940 		return false;
9941 	}
9942 
9943 	/* could be _relaxed() */
9944 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9945 	if (!(flags & NOHZ_KICK_MASK))
9946 		return false;
9947 
9948 	_nohz_idle_balance(this_rq, flags, idle);
9949 
9950 	return true;
9951 }
9952 
9953 static void nohz_newidle_balance(struct rq *this_rq)
9954 {
9955 	int this_cpu = this_rq->cpu;
9956 
9957 	/*
9958 	 * This CPU doesn't want to be disturbed by scheduler
9959 	 * housekeeping
9960 	 */
9961 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9962 		return;
9963 
9964 	/* Will wake up very soon. No time for doing anything else*/
9965 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
9966 		return;
9967 
9968 	/* Don't need to update blocked load of idle CPUs*/
9969 	if (!READ_ONCE(nohz.has_blocked) ||
9970 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9971 		return;
9972 
9973 	raw_spin_unlock(&this_rq->lock);
9974 	/*
9975 	 * This CPU is going to be idle and blocked load of idle CPUs
9976 	 * need to be updated. Run the ilb locally as it is a good
9977 	 * candidate for ilb instead of waking up another idle CPU.
9978 	 * Kick an normal ilb if we failed to do the update.
9979 	 */
9980 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9981 		kick_ilb(NOHZ_STATS_KICK);
9982 	raw_spin_lock(&this_rq->lock);
9983 }
9984 
9985 #else /* !CONFIG_NO_HZ_COMMON */
9986 static inline void nohz_balancer_kick(struct rq *rq) { }
9987 
9988 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9989 {
9990 	return false;
9991 }
9992 
9993 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9994 #endif /* CONFIG_NO_HZ_COMMON */
9995 
9996 /*
9997  * idle_balance is called by schedule() if this_cpu is about to become
9998  * idle. Attempts to pull tasks from other CPUs.
9999  */
10000 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
10001 {
10002 	unsigned long next_balance = jiffies + HZ;
10003 	int this_cpu = this_rq->cpu;
10004 	struct sched_domain *sd;
10005 	int pulled_task = 0;
10006 	u64 curr_cost = 0;
10007 
10008 	/*
10009 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10010 	 * measure the duration of idle_balance() as idle time.
10011 	 */
10012 	this_rq->idle_stamp = rq_clock(this_rq);
10013 
10014 	/*
10015 	 * Do not pull tasks towards !active CPUs...
10016 	 */
10017 	if (!cpu_active(this_cpu))
10018 		return 0;
10019 
10020 	/*
10021 	 * This is OK, because current is on_cpu, which avoids it being picked
10022 	 * for load-balance and preemption/IRQs are still disabled avoiding
10023 	 * further scheduler activity on it and we're being very careful to
10024 	 * re-start the picking loop.
10025 	 */
10026 	rq_unpin_lock(this_rq, rf);
10027 
10028 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10029 	    !READ_ONCE(this_rq->rd->overload)) {
10030 
10031 		rcu_read_lock();
10032 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10033 		if (sd)
10034 			update_next_balance(sd, &next_balance);
10035 		rcu_read_unlock();
10036 
10037 		nohz_newidle_balance(this_rq);
10038 
10039 		goto out;
10040 	}
10041 
10042 	raw_spin_unlock(&this_rq->lock);
10043 
10044 	update_blocked_averages(this_cpu);
10045 	rcu_read_lock();
10046 	for_each_domain(this_cpu, sd) {
10047 		int continue_balancing = 1;
10048 		u64 t0, domain_cost;
10049 
10050 		if (!(sd->flags & SD_LOAD_BALANCE))
10051 			continue;
10052 
10053 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10054 			update_next_balance(sd, &next_balance);
10055 			break;
10056 		}
10057 
10058 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10059 			t0 = sched_clock_cpu(this_cpu);
10060 
10061 			pulled_task = load_balance(this_cpu, this_rq,
10062 						   sd, CPU_NEWLY_IDLE,
10063 						   &continue_balancing);
10064 
10065 			domain_cost = sched_clock_cpu(this_cpu) - t0;
10066 			if (domain_cost > sd->max_newidle_lb_cost)
10067 				sd->max_newidle_lb_cost = domain_cost;
10068 
10069 			curr_cost += domain_cost;
10070 		}
10071 
10072 		update_next_balance(sd, &next_balance);
10073 
10074 		/*
10075 		 * Stop searching for tasks to pull if there are
10076 		 * now runnable tasks on this rq.
10077 		 */
10078 		if (pulled_task || this_rq->nr_running > 0)
10079 			break;
10080 	}
10081 	rcu_read_unlock();
10082 
10083 	raw_spin_lock(&this_rq->lock);
10084 
10085 	if (curr_cost > this_rq->max_idle_balance_cost)
10086 		this_rq->max_idle_balance_cost = curr_cost;
10087 
10088 out:
10089 	/*
10090 	 * While browsing the domains, we released the rq lock, a task could
10091 	 * have been enqueued in the meantime. Since we're not going idle,
10092 	 * pretend we pulled a task.
10093 	 */
10094 	if (this_rq->cfs.h_nr_running && !pulled_task)
10095 		pulled_task = 1;
10096 
10097 	/* Move the next balance forward */
10098 	if (time_after(this_rq->next_balance, next_balance))
10099 		this_rq->next_balance = next_balance;
10100 
10101 	/* Is there a task of a high priority class? */
10102 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10103 		pulled_task = -1;
10104 
10105 	if (pulled_task)
10106 		this_rq->idle_stamp = 0;
10107 
10108 	rq_repin_lock(this_rq, rf);
10109 
10110 	return pulled_task;
10111 }
10112 
10113 /*
10114  * run_rebalance_domains is triggered when needed from the scheduler tick.
10115  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10116  */
10117 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10118 {
10119 	struct rq *this_rq = this_rq();
10120 	enum cpu_idle_type idle = this_rq->idle_balance ?
10121 						CPU_IDLE : CPU_NOT_IDLE;
10122 
10123 	/*
10124 	 * If this CPU has a pending nohz_balance_kick, then do the
10125 	 * balancing on behalf of the other idle CPUs whose ticks are
10126 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10127 	 * give the idle CPUs a chance to load balance. Else we may
10128 	 * load balance only within the local sched_domain hierarchy
10129 	 * and abort nohz_idle_balance altogether if we pull some load.
10130 	 */
10131 	if (nohz_idle_balance(this_rq, idle))
10132 		return;
10133 
10134 	/* normal load balance */
10135 	update_blocked_averages(this_rq->cpu);
10136 	rebalance_domains(this_rq, idle);
10137 }
10138 
10139 /*
10140  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10141  */
10142 void trigger_load_balance(struct rq *rq)
10143 {
10144 	/* Don't need to rebalance while attached to NULL domain */
10145 	if (unlikely(on_null_domain(rq)))
10146 		return;
10147 
10148 	if (time_after_eq(jiffies, rq->next_balance))
10149 		raise_softirq(SCHED_SOFTIRQ);
10150 
10151 	nohz_balancer_kick(rq);
10152 }
10153 
10154 static void rq_online_fair(struct rq *rq)
10155 {
10156 	update_sysctl();
10157 
10158 	update_runtime_enabled(rq);
10159 }
10160 
10161 static void rq_offline_fair(struct rq *rq)
10162 {
10163 	update_sysctl();
10164 
10165 	/* Ensure any throttled groups are reachable by pick_next_task */
10166 	unthrottle_offline_cfs_rqs(rq);
10167 }
10168 
10169 #endif /* CONFIG_SMP */
10170 
10171 /*
10172  * scheduler tick hitting a task of our scheduling class.
10173  *
10174  * NOTE: This function can be called remotely by the tick offload that
10175  * goes along full dynticks. Therefore no local assumption can be made
10176  * and everything must be accessed through the @rq and @curr passed in
10177  * parameters.
10178  */
10179 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10180 {
10181 	struct cfs_rq *cfs_rq;
10182 	struct sched_entity *se = &curr->se;
10183 
10184 	for_each_sched_entity(se) {
10185 		cfs_rq = cfs_rq_of(se);
10186 		entity_tick(cfs_rq, se, queued);
10187 	}
10188 
10189 	if (static_branch_unlikely(&sched_numa_balancing))
10190 		task_tick_numa(rq, curr);
10191 
10192 	update_misfit_status(curr, rq);
10193 	update_overutilized_status(task_rq(curr));
10194 }
10195 
10196 /*
10197  * called on fork with the child task as argument from the parent's context
10198  *  - child not yet on the tasklist
10199  *  - preemption disabled
10200  */
10201 static void task_fork_fair(struct task_struct *p)
10202 {
10203 	struct cfs_rq *cfs_rq;
10204 	struct sched_entity *se = &p->se, *curr;
10205 	struct rq *rq = this_rq();
10206 	struct rq_flags rf;
10207 
10208 	rq_lock(rq, &rf);
10209 	update_rq_clock(rq);
10210 
10211 	cfs_rq = task_cfs_rq(current);
10212 	curr = cfs_rq->curr;
10213 	if (curr) {
10214 		update_curr(cfs_rq);
10215 		se->vruntime = curr->vruntime;
10216 	}
10217 	place_entity(cfs_rq, se, 1);
10218 
10219 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10220 		/*
10221 		 * Upon rescheduling, sched_class::put_prev_task() will place
10222 		 * 'current' within the tree based on its new key value.
10223 		 */
10224 		swap(curr->vruntime, se->vruntime);
10225 		resched_curr(rq);
10226 	}
10227 
10228 	se->vruntime -= cfs_rq->min_vruntime;
10229 	rq_unlock(rq, &rf);
10230 }
10231 
10232 /*
10233  * Priority of the task has changed. Check to see if we preempt
10234  * the current task.
10235  */
10236 static void
10237 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10238 {
10239 	if (!task_on_rq_queued(p))
10240 		return;
10241 
10242 	/*
10243 	 * Reschedule if we are currently running on this runqueue and
10244 	 * our priority decreased, or if we are not currently running on
10245 	 * this runqueue and our priority is higher than the current's
10246 	 */
10247 	if (rq->curr == p) {
10248 		if (p->prio > oldprio)
10249 			resched_curr(rq);
10250 	} else
10251 		check_preempt_curr(rq, p, 0);
10252 }
10253 
10254 static inline bool vruntime_normalized(struct task_struct *p)
10255 {
10256 	struct sched_entity *se = &p->se;
10257 
10258 	/*
10259 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10260 	 * the dequeue_entity(.flags=0) will already have normalized the
10261 	 * vruntime.
10262 	 */
10263 	if (p->on_rq)
10264 		return true;
10265 
10266 	/*
10267 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10268 	 * But there are some cases where it has already been normalized:
10269 	 *
10270 	 * - A forked child which is waiting for being woken up by
10271 	 *   wake_up_new_task().
10272 	 * - A task which has been woken up by try_to_wake_up() and
10273 	 *   waiting for actually being woken up by sched_ttwu_pending().
10274 	 */
10275 	if (!se->sum_exec_runtime ||
10276 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10277 		return true;
10278 
10279 	return false;
10280 }
10281 
10282 #ifdef CONFIG_FAIR_GROUP_SCHED
10283 /*
10284  * Propagate the changes of the sched_entity across the tg tree to make it
10285  * visible to the root
10286  */
10287 static void propagate_entity_cfs_rq(struct sched_entity *se)
10288 {
10289 	struct cfs_rq *cfs_rq;
10290 
10291 	/* Start to propagate at parent */
10292 	se = se->parent;
10293 
10294 	for_each_sched_entity(se) {
10295 		cfs_rq = cfs_rq_of(se);
10296 
10297 		if (cfs_rq_throttled(cfs_rq))
10298 			break;
10299 
10300 		update_load_avg(cfs_rq, se, UPDATE_TG);
10301 	}
10302 }
10303 #else
10304 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10305 #endif
10306 
10307 static void detach_entity_cfs_rq(struct sched_entity *se)
10308 {
10309 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10310 
10311 	/* Catch up with the cfs_rq and remove our load when we leave */
10312 	update_load_avg(cfs_rq, se, 0);
10313 	detach_entity_load_avg(cfs_rq, se);
10314 	update_tg_load_avg(cfs_rq, false);
10315 	propagate_entity_cfs_rq(se);
10316 }
10317 
10318 static void attach_entity_cfs_rq(struct sched_entity *se)
10319 {
10320 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10321 
10322 #ifdef CONFIG_FAIR_GROUP_SCHED
10323 	/*
10324 	 * Since the real-depth could have been changed (only FAIR
10325 	 * class maintain depth value), reset depth properly.
10326 	 */
10327 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10328 #endif
10329 
10330 	/* Synchronize entity with its cfs_rq */
10331 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10332 	attach_entity_load_avg(cfs_rq, se, 0);
10333 	update_tg_load_avg(cfs_rq, false);
10334 	propagate_entity_cfs_rq(se);
10335 }
10336 
10337 static void detach_task_cfs_rq(struct task_struct *p)
10338 {
10339 	struct sched_entity *se = &p->se;
10340 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10341 
10342 	if (!vruntime_normalized(p)) {
10343 		/*
10344 		 * Fix up our vruntime so that the current sleep doesn't
10345 		 * cause 'unlimited' sleep bonus.
10346 		 */
10347 		place_entity(cfs_rq, se, 0);
10348 		se->vruntime -= cfs_rq->min_vruntime;
10349 	}
10350 
10351 	detach_entity_cfs_rq(se);
10352 }
10353 
10354 static void attach_task_cfs_rq(struct task_struct *p)
10355 {
10356 	struct sched_entity *se = &p->se;
10357 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10358 
10359 	attach_entity_cfs_rq(se);
10360 
10361 	if (!vruntime_normalized(p))
10362 		se->vruntime += cfs_rq->min_vruntime;
10363 }
10364 
10365 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10366 {
10367 	detach_task_cfs_rq(p);
10368 }
10369 
10370 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10371 {
10372 	attach_task_cfs_rq(p);
10373 
10374 	if (task_on_rq_queued(p)) {
10375 		/*
10376 		 * We were most likely switched from sched_rt, so
10377 		 * kick off the schedule if running, otherwise just see
10378 		 * if we can still preempt the current task.
10379 		 */
10380 		if (rq->curr == p)
10381 			resched_curr(rq);
10382 		else
10383 			check_preempt_curr(rq, p, 0);
10384 	}
10385 }
10386 
10387 /* Account for a task changing its policy or group.
10388  *
10389  * This routine is mostly called to set cfs_rq->curr field when a task
10390  * migrates between groups/classes.
10391  */
10392 static void set_curr_task_fair(struct rq *rq)
10393 {
10394 	struct sched_entity *se = &rq->curr->se;
10395 
10396 	for_each_sched_entity(se) {
10397 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10398 
10399 		set_next_entity(cfs_rq, se);
10400 		/* ensure bandwidth has been allocated on our new cfs_rq */
10401 		account_cfs_rq_runtime(cfs_rq, 0);
10402 	}
10403 }
10404 
10405 void init_cfs_rq(struct cfs_rq *cfs_rq)
10406 {
10407 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10408 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10409 #ifndef CONFIG_64BIT
10410 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10411 #endif
10412 #ifdef CONFIG_SMP
10413 	raw_spin_lock_init(&cfs_rq->removed.lock);
10414 #endif
10415 }
10416 
10417 #ifdef CONFIG_FAIR_GROUP_SCHED
10418 static void task_set_group_fair(struct task_struct *p)
10419 {
10420 	struct sched_entity *se = &p->se;
10421 
10422 	set_task_rq(p, task_cpu(p));
10423 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10424 }
10425 
10426 static void task_move_group_fair(struct task_struct *p)
10427 {
10428 	detach_task_cfs_rq(p);
10429 	set_task_rq(p, task_cpu(p));
10430 
10431 #ifdef CONFIG_SMP
10432 	/* Tell se's cfs_rq has been changed -- migrated */
10433 	p->se.avg.last_update_time = 0;
10434 #endif
10435 	attach_task_cfs_rq(p);
10436 }
10437 
10438 static void task_change_group_fair(struct task_struct *p, int type)
10439 {
10440 	switch (type) {
10441 	case TASK_SET_GROUP:
10442 		task_set_group_fair(p);
10443 		break;
10444 
10445 	case TASK_MOVE_GROUP:
10446 		task_move_group_fair(p);
10447 		break;
10448 	}
10449 }
10450 
10451 void free_fair_sched_group(struct task_group *tg)
10452 {
10453 	int i;
10454 
10455 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10456 
10457 	for_each_possible_cpu(i) {
10458 		if (tg->cfs_rq)
10459 			kfree(tg->cfs_rq[i]);
10460 		if (tg->se)
10461 			kfree(tg->se[i]);
10462 	}
10463 
10464 	kfree(tg->cfs_rq);
10465 	kfree(tg->se);
10466 }
10467 
10468 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10469 {
10470 	struct sched_entity *se;
10471 	struct cfs_rq *cfs_rq;
10472 	int i;
10473 
10474 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10475 	if (!tg->cfs_rq)
10476 		goto err;
10477 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10478 	if (!tg->se)
10479 		goto err;
10480 
10481 	tg->shares = NICE_0_LOAD;
10482 
10483 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10484 
10485 	for_each_possible_cpu(i) {
10486 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10487 				      GFP_KERNEL, cpu_to_node(i));
10488 		if (!cfs_rq)
10489 			goto err;
10490 
10491 		se = kzalloc_node(sizeof(struct sched_entity),
10492 				  GFP_KERNEL, cpu_to_node(i));
10493 		if (!se)
10494 			goto err_free_rq;
10495 
10496 		init_cfs_rq(cfs_rq);
10497 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10498 		init_entity_runnable_average(se);
10499 	}
10500 
10501 	return 1;
10502 
10503 err_free_rq:
10504 	kfree(cfs_rq);
10505 err:
10506 	return 0;
10507 }
10508 
10509 void online_fair_sched_group(struct task_group *tg)
10510 {
10511 	struct sched_entity *se;
10512 	struct rq *rq;
10513 	int i;
10514 
10515 	for_each_possible_cpu(i) {
10516 		rq = cpu_rq(i);
10517 		se = tg->se[i];
10518 
10519 		raw_spin_lock_irq(&rq->lock);
10520 		update_rq_clock(rq);
10521 		attach_entity_cfs_rq(se);
10522 		sync_throttle(tg, i);
10523 		raw_spin_unlock_irq(&rq->lock);
10524 	}
10525 }
10526 
10527 void unregister_fair_sched_group(struct task_group *tg)
10528 {
10529 	unsigned long flags;
10530 	struct rq *rq;
10531 	int cpu;
10532 
10533 	for_each_possible_cpu(cpu) {
10534 		if (tg->se[cpu])
10535 			remove_entity_load_avg(tg->se[cpu]);
10536 
10537 		/*
10538 		 * Only empty task groups can be destroyed; so we can speculatively
10539 		 * check on_list without danger of it being re-added.
10540 		 */
10541 		if (!tg->cfs_rq[cpu]->on_list)
10542 			continue;
10543 
10544 		rq = cpu_rq(cpu);
10545 
10546 		raw_spin_lock_irqsave(&rq->lock, flags);
10547 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10548 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10549 	}
10550 }
10551 
10552 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10553 			struct sched_entity *se, int cpu,
10554 			struct sched_entity *parent)
10555 {
10556 	struct rq *rq = cpu_rq(cpu);
10557 
10558 	cfs_rq->tg = tg;
10559 	cfs_rq->rq = rq;
10560 	init_cfs_rq_runtime(cfs_rq);
10561 
10562 	tg->cfs_rq[cpu] = cfs_rq;
10563 	tg->se[cpu] = se;
10564 
10565 	/* se could be NULL for root_task_group */
10566 	if (!se)
10567 		return;
10568 
10569 	if (!parent) {
10570 		se->cfs_rq = &rq->cfs;
10571 		se->depth = 0;
10572 	} else {
10573 		se->cfs_rq = parent->my_q;
10574 		se->depth = parent->depth + 1;
10575 	}
10576 
10577 	se->my_q = cfs_rq;
10578 	/* guarantee group entities always have weight */
10579 	update_load_set(&se->load, NICE_0_LOAD);
10580 	se->parent = parent;
10581 }
10582 
10583 static DEFINE_MUTEX(shares_mutex);
10584 
10585 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10586 {
10587 	int i;
10588 
10589 	/*
10590 	 * We can't change the weight of the root cgroup.
10591 	 */
10592 	if (!tg->se[0])
10593 		return -EINVAL;
10594 
10595 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10596 
10597 	mutex_lock(&shares_mutex);
10598 	if (tg->shares == shares)
10599 		goto done;
10600 
10601 	tg->shares = shares;
10602 	for_each_possible_cpu(i) {
10603 		struct rq *rq = cpu_rq(i);
10604 		struct sched_entity *se = tg->se[i];
10605 		struct rq_flags rf;
10606 
10607 		/* Propagate contribution to hierarchy */
10608 		rq_lock_irqsave(rq, &rf);
10609 		update_rq_clock(rq);
10610 		for_each_sched_entity(se) {
10611 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10612 			update_cfs_group(se);
10613 		}
10614 		rq_unlock_irqrestore(rq, &rf);
10615 	}
10616 
10617 done:
10618 	mutex_unlock(&shares_mutex);
10619 	return 0;
10620 }
10621 #else /* CONFIG_FAIR_GROUP_SCHED */
10622 
10623 void free_fair_sched_group(struct task_group *tg) { }
10624 
10625 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10626 {
10627 	return 1;
10628 }
10629 
10630 void online_fair_sched_group(struct task_group *tg) { }
10631 
10632 void unregister_fair_sched_group(struct task_group *tg) { }
10633 
10634 #endif /* CONFIG_FAIR_GROUP_SCHED */
10635 
10636 
10637 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10638 {
10639 	struct sched_entity *se = &task->se;
10640 	unsigned int rr_interval = 0;
10641 
10642 	/*
10643 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10644 	 * idle runqueue:
10645 	 */
10646 	if (rq->cfs.load.weight)
10647 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10648 
10649 	return rr_interval;
10650 }
10651 
10652 /*
10653  * All the scheduling class methods:
10654  */
10655 const struct sched_class fair_sched_class = {
10656 	.next			= &idle_sched_class,
10657 	.enqueue_task		= enqueue_task_fair,
10658 	.dequeue_task		= dequeue_task_fair,
10659 	.yield_task		= yield_task_fair,
10660 	.yield_to_task		= yield_to_task_fair,
10661 
10662 	.check_preempt_curr	= check_preempt_wakeup,
10663 
10664 	.pick_next_task		= pick_next_task_fair,
10665 	.put_prev_task		= put_prev_task_fair,
10666 
10667 #ifdef CONFIG_SMP
10668 	.select_task_rq		= select_task_rq_fair,
10669 	.migrate_task_rq	= migrate_task_rq_fair,
10670 
10671 	.rq_online		= rq_online_fair,
10672 	.rq_offline		= rq_offline_fair,
10673 
10674 	.task_dead		= task_dead_fair,
10675 	.set_cpus_allowed	= set_cpus_allowed_common,
10676 #endif
10677 
10678 	.set_curr_task          = set_curr_task_fair,
10679 	.task_tick		= task_tick_fair,
10680 	.task_fork		= task_fork_fair,
10681 
10682 	.prio_changed		= prio_changed_fair,
10683 	.switched_from		= switched_from_fair,
10684 	.switched_to		= switched_to_fair,
10685 
10686 	.get_rr_interval	= get_rr_interval_fair,
10687 
10688 	.update_curr		= update_curr_fair,
10689 
10690 #ifdef CONFIG_FAIR_GROUP_SCHED
10691 	.task_change_group	= task_change_group_fair,
10692 #endif
10693 };
10694 
10695 #ifdef CONFIG_SCHED_DEBUG
10696 void print_cfs_stats(struct seq_file *m, int cpu)
10697 {
10698 	struct cfs_rq *cfs_rq, *pos;
10699 
10700 	rcu_read_lock();
10701 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10702 		print_cfs_rq(m, cpu, cfs_rq);
10703 	rcu_read_unlock();
10704 }
10705 
10706 #ifdef CONFIG_NUMA_BALANCING
10707 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10708 {
10709 	int node;
10710 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10711 
10712 	for_each_online_node(node) {
10713 		if (p->numa_faults) {
10714 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10715 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10716 		}
10717 		if (p->numa_group) {
10718 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10719 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10720 		}
10721 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10722 	}
10723 }
10724 #endif /* CONFIG_NUMA_BALANCING */
10725 #endif /* CONFIG_SCHED_DEBUG */
10726 
10727 __init void init_sched_fair_class(void)
10728 {
10729 #ifdef CONFIG_SMP
10730 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10731 
10732 #ifdef CONFIG_NO_HZ_COMMON
10733 	nohz.next_balance = jiffies;
10734 	nohz.next_blocked = jiffies;
10735 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10736 #endif
10737 #endif /* SMP */
10738 
10739 }
10740