xref: /openbmc/linux/kernel/sched/fair.c (revision 2f0754f2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 /*
26  * Targeted preemption latency for CPU-bound tasks:
27  *
28  * NOTE: this latency value is not the same as the concept of
29  * 'timeslice length' - timeslices in CFS are of variable length
30  * and have no persistent notion like in traditional, time-slice
31  * based scheduling concepts.
32  *
33  * (to see the precise effective timeslice length of your workload,
34  *  run vmstat and monitor the context-switches (cs) field)
35  *
36  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37  */
38 unsigned int sysctl_sched_latency			= 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
40 
41 /*
42  * The initial- and re-scaling of tunables is configurable
43  *
44  * Options are:
45  *
46  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
47  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49  *
50  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51  */
52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53 
54 /*
55  * Minimal preemption granularity for CPU-bound tasks:
56  *
57  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58  */
59 unsigned int sysctl_sched_min_granularity			= 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
61 
62 /*
63  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
64  * Applies only when SCHED_IDLE tasks compete with normal tasks.
65  *
66  * (default: 0.75 msec)
67  */
68 unsigned int sysctl_sched_idle_min_granularity			= 750000ULL;
69 
70 /*
71  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
72  */
73 static unsigned int sched_nr_latency = 8;
74 
75 /*
76  * After fork, child runs first. If set to 0 (default) then
77  * parent will (try to) run first.
78  */
79 unsigned int sysctl_sched_child_runs_first __read_mostly;
80 
81 /*
82  * SCHED_OTHER wake-up granularity.
83  *
84  * This option delays the preemption effects of decoupled workloads
85  * and reduces their over-scheduling. Synchronous workloads will still
86  * have immediate wakeup/sleep latencies.
87  *
88  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
89  */
90 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
91 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
92 
93 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
94 
95 int sched_thermal_decay_shift;
96 static int __init setup_sched_thermal_decay_shift(char *str)
97 {
98 	int _shift = 0;
99 
100 	if (kstrtoint(str, 0, &_shift))
101 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
102 
103 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
104 	return 1;
105 }
106 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
107 
108 #ifdef CONFIG_SMP
109 /*
110  * For asym packing, by default the lower numbered CPU has higher priority.
111  */
112 int __weak arch_asym_cpu_priority(int cpu)
113 {
114 	return -cpu;
115 }
116 
117 /*
118  * The margin used when comparing utilization with CPU capacity.
119  *
120  * (default: ~20%)
121  */
122 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
123 
124 /*
125  * The margin used when comparing CPU capacities.
126  * is 'cap1' noticeably greater than 'cap2'
127  *
128  * (default: ~5%)
129  */
130 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
131 #endif
132 
133 #ifdef CONFIG_CFS_BANDWIDTH
134 /*
135  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
136  * each time a cfs_rq requests quota.
137  *
138  * Note: in the case that the slice exceeds the runtime remaining (either due
139  * to consumption or the quota being specified to be smaller than the slice)
140  * we will always only issue the remaining available time.
141  *
142  * (default: 5 msec, units: microseconds)
143  */
144 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
145 #endif
146 
147 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
148 {
149 	lw->weight += inc;
150 	lw->inv_weight = 0;
151 }
152 
153 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
154 {
155 	lw->weight -= dec;
156 	lw->inv_weight = 0;
157 }
158 
159 static inline void update_load_set(struct load_weight *lw, unsigned long w)
160 {
161 	lw->weight = w;
162 	lw->inv_weight = 0;
163 }
164 
165 /*
166  * Increase the granularity value when there are more CPUs,
167  * because with more CPUs the 'effective latency' as visible
168  * to users decreases. But the relationship is not linear,
169  * so pick a second-best guess by going with the log2 of the
170  * number of CPUs.
171  *
172  * This idea comes from the SD scheduler of Con Kolivas:
173  */
174 static unsigned int get_update_sysctl_factor(void)
175 {
176 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
177 	unsigned int factor;
178 
179 	switch (sysctl_sched_tunable_scaling) {
180 	case SCHED_TUNABLESCALING_NONE:
181 		factor = 1;
182 		break;
183 	case SCHED_TUNABLESCALING_LINEAR:
184 		factor = cpus;
185 		break;
186 	case SCHED_TUNABLESCALING_LOG:
187 	default:
188 		factor = 1 + ilog2(cpus);
189 		break;
190 	}
191 
192 	return factor;
193 }
194 
195 static void update_sysctl(void)
196 {
197 	unsigned int factor = get_update_sysctl_factor();
198 
199 #define SET_SYSCTL(name) \
200 	(sysctl_##name = (factor) * normalized_sysctl_##name)
201 	SET_SYSCTL(sched_min_granularity);
202 	SET_SYSCTL(sched_latency);
203 	SET_SYSCTL(sched_wakeup_granularity);
204 #undef SET_SYSCTL
205 }
206 
207 void __init sched_init_granularity(void)
208 {
209 	update_sysctl();
210 }
211 
212 #define WMULT_CONST	(~0U)
213 #define WMULT_SHIFT	32
214 
215 static void __update_inv_weight(struct load_weight *lw)
216 {
217 	unsigned long w;
218 
219 	if (likely(lw->inv_weight))
220 		return;
221 
222 	w = scale_load_down(lw->weight);
223 
224 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
225 		lw->inv_weight = 1;
226 	else if (unlikely(!w))
227 		lw->inv_weight = WMULT_CONST;
228 	else
229 		lw->inv_weight = WMULT_CONST / w;
230 }
231 
232 /*
233  * delta_exec * weight / lw.weight
234  *   OR
235  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
236  *
237  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
238  * we're guaranteed shift stays positive because inv_weight is guaranteed to
239  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
240  *
241  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
242  * weight/lw.weight <= 1, and therefore our shift will also be positive.
243  */
244 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
245 {
246 	u64 fact = scale_load_down(weight);
247 	u32 fact_hi = (u32)(fact >> 32);
248 	int shift = WMULT_SHIFT;
249 	int fs;
250 
251 	__update_inv_weight(lw);
252 
253 	if (unlikely(fact_hi)) {
254 		fs = fls(fact_hi);
255 		shift -= fs;
256 		fact >>= fs;
257 	}
258 
259 	fact = mul_u32_u32(fact, lw->inv_weight);
260 
261 	fact_hi = (u32)(fact >> 32);
262 	if (fact_hi) {
263 		fs = fls(fact_hi);
264 		shift -= fs;
265 		fact >>= fs;
266 	}
267 
268 	return mul_u64_u32_shr(delta_exec, fact, shift);
269 }
270 
271 
272 const struct sched_class fair_sched_class;
273 
274 /**************************************************************
275  * CFS operations on generic schedulable entities:
276  */
277 
278 #ifdef CONFIG_FAIR_GROUP_SCHED
279 
280 /* Walk up scheduling entities hierarchy */
281 #define for_each_sched_entity(se) \
282 		for (; se; se = se->parent)
283 
284 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
285 {
286 	if (!path)
287 		return;
288 
289 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
290 		autogroup_path(cfs_rq->tg, path, len);
291 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
292 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
293 	else
294 		strlcpy(path, "(null)", len);
295 }
296 
297 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
298 {
299 	struct rq *rq = rq_of(cfs_rq);
300 	int cpu = cpu_of(rq);
301 
302 	if (cfs_rq->on_list)
303 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
304 
305 	cfs_rq->on_list = 1;
306 
307 	/*
308 	 * Ensure we either appear before our parent (if already
309 	 * enqueued) or force our parent to appear after us when it is
310 	 * enqueued. The fact that we always enqueue bottom-up
311 	 * reduces this to two cases and a special case for the root
312 	 * cfs_rq. Furthermore, it also means that we will always reset
313 	 * tmp_alone_branch either when the branch is connected
314 	 * to a tree or when we reach the top of the tree
315 	 */
316 	if (cfs_rq->tg->parent &&
317 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
318 		/*
319 		 * If parent is already on the list, we add the child
320 		 * just before. Thanks to circular linked property of
321 		 * the list, this means to put the child at the tail
322 		 * of the list that starts by parent.
323 		 */
324 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
325 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
326 		/*
327 		 * The branch is now connected to its tree so we can
328 		 * reset tmp_alone_branch to the beginning of the
329 		 * list.
330 		 */
331 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
332 		return true;
333 	}
334 
335 	if (!cfs_rq->tg->parent) {
336 		/*
337 		 * cfs rq without parent should be put
338 		 * at the tail of the list.
339 		 */
340 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
341 			&rq->leaf_cfs_rq_list);
342 		/*
343 		 * We have reach the top of a tree so we can reset
344 		 * tmp_alone_branch to the beginning of the list.
345 		 */
346 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
347 		return true;
348 	}
349 
350 	/*
351 	 * The parent has not already been added so we want to
352 	 * make sure that it will be put after us.
353 	 * tmp_alone_branch points to the begin of the branch
354 	 * where we will add parent.
355 	 */
356 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
357 	/*
358 	 * update tmp_alone_branch to points to the new begin
359 	 * of the branch
360 	 */
361 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
362 	return false;
363 }
364 
365 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
366 {
367 	if (cfs_rq->on_list) {
368 		struct rq *rq = rq_of(cfs_rq);
369 
370 		/*
371 		 * With cfs_rq being unthrottled/throttled during an enqueue,
372 		 * it can happen the tmp_alone_branch points the a leaf that
373 		 * we finally want to del. In this case, tmp_alone_branch moves
374 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
375 		 * at the end of the enqueue.
376 		 */
377 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
378 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
379 
380 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
381 		cfs_rq->on_list = 0;
382 	}
383 }
384 
385 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
386 {
387 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
388 }
389 
390 /* Iterate thr' all leaf cfs_rq's on a runqueue */
391 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
392 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
393 				 leaf_cfs_rq_list)
394 
395 /* Do the two (enqueued) entities belong to the same group ? */
396 static inline struct cfs_rq *
397 is_same_group(struct sched_entity *se, struct sched_entity *pse)
398 {
399 	if (se->cfs_rq == pse->cfs_rq)
400 		return se->cfs_rq;
401 
402 	return NULL;
403 }
404 
405 static inline struct sched_entity *parent_entity(struct sched_entity *se)
406 {
407 	return se->parent;
408 }
409 
410 static void
411 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
412 {
413 	int se_depth, pse_depth;
414 
415 	/*
416 	 * preemption test can be made between sibling entities who are in the
417 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
418 	 * both tasks until we find their ancestors who are siblings of common
419 	 * parent.
420 	 */
421 
422 	/* First walk up until both entities are at same depth */
423 	se_depth = (*se)->depth;
424 	pse_depth = (*pse)->depth;
425 
426 	while (se_depth > pse_depth) {
427 		se_depth--;
428 		*se = parent_entity(*se);
429 	}
430 
431 	while (pse_depth > se_depth) {
432 		pse_depth--;
433 		*pse = parent_entity(*pse);
434 	}
435 
436 	while (!is_same_group(*se, *pse)) {
437 		*se = parent_entity(*se);
438 		*pse = parent_entity(*pse);
439 	}
440 }
441 
442 static int tg_is_idle(struct task_group *tg)
443 {
444 	return tg->idle > 0;
445 }
446 
447 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
448 {
449 	return cfs_rq->idle > 0;
450 }
451 
452 static int se_is_idle(struct sched_entity *se)
453 {
454 	if (entity_is_task(se))
455 		return task_has_idle_policy(task_of(se));
456 	return cfs_rq_is_idle(group_cfs_rq(se));
457 }
458 
459 #else	/* !CONFIG_FAIR_GROUP_SCHED */
460 
461 #define for_each_sched_entity(se) \
462 		for (; se; se = NULL)
463 
464 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
465 {
466 	if (path)
467 		strlcpy(path, "(null)", len);
468 }
469 
470 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
471 {
472 	return true;
473 }
474 
475 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
476 {
477 }
478 
479 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
480 {
481 }
482 
483 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
484 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
485 
486 static inline struct sched_entity *parent_entity(struct sched_entity *se)
487 {
488 	return NULL;
489 }
490 
491 static inline void
492 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
493 {
494 }
495 
496 static inline int tg_is_idle(struct task_group *tg)
497 {
498 	return 0;
499 }
500 
501 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
502 {
503 	return 0;
504 }
505 
506 static int se_is_idle(struct sched_entity *se)
507 {
508 	return 0;
509 }
510 
511 #endif	/* CONFIG_FAIR_GROUP_SCHED */
512 
513 static __always_inline
514 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
515 
516 /**************************************************************
517  * Scheduling class tree data structure manipulation methods:
518  */
519 
520 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
521 {
522 	s64 delta = (s64)(vruntime - max_vruntime);
523 	if (delta > 0)
524 		max_vruntime = vruntime;
525 
526 	return max_vruntime;
527 }
528 
529 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
530 {
531 	s64 delta = (s64)(vruntime - min_vruntime);
532 	if (delta < 0)
533 		min_vruntime = vruntime;
534 
535 	return min_vruntime;
536 }
537 
538 static inline bool entity_before(struct sched_entity *a,
539 				struct sched_entity *b)
540 {
541 	return (s64)(a->vruntime - b->vruntime) < 0;
542 }
543 
544 #define __node_2_se(node) \
545 	rb_entry((node), struct sched_entity, run_node)
546 
547 static void update_min_vruntime(struct cfs_rq *cfs_rq)
548 {
549 	struct sched_entity *curr = cfs_rq->curr;
550 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
551 
552 	u64 vruntime = cfs_rq->min_vruntime;
553 
554 	if (curr) {
555 		if (curr->on_rq)
556 			vruntime = curr->vruntime;
557 		else
558 			curr = NULL;
559 	}
560 
561 	if (leftmost) { /* non-empty tree */
562 		struct sched_entity *se = __node_2_se(leftmost);
563 
564 		if (!curr)
565 			vruntime = se->vruntime;
566 		else
567 			vruntime = min_vruntime(vruntime, se->vruntime);
568 	}
569 
570 	/* ensure we never gain time by being placed backwards. */
571 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
572 #ifndef CONFIG_64BIT
573 	smp_wmb();
574 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
575 #endif
576 }
577 
578 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
579 {
580 	return entity_before(__node_2_se(a), __node_2_se(b));
581 }
582 
583 /*
584  * Enqueue an entity into the rb-tree:
585  */
586 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
587 {
588 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
589 }
590 
591 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
592 {
593 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
594 }
595 
596 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
597 {
598 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
599 
600 	if (!left)
601 		return NULL;
602 
603 	return __node_2_se(left);
604 }
605 
606 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
607 {
608 	struct rb_node *next = rb_next(&se->run_node);
609 
610 	if (!next)
611 		return NULL;
612 
613 	return __node_2_se(next);
614 }
615 
616 #ifdef CONFIG_SCHED_DEBUG
617 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
618 {
619 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
620 
621 	if (!last)
622 		return NULL;
623 
624 	return __node_2_se(last);
625 }
626 
627 /**************************************************************
628  * Scheduling class statistics methods:
629  */
630 
631 int sched_update_scaling(void)
632 {
633 	unsigned int factor = get_update_sysctl_factor();
634 
635 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
636 					sysctl_sched_min_granularity);
637 
638 #define WRT_SYSCTL(name) \
639 	(normalized_sysctl_##name = sysctl_##name / (factor))
640 	WRT_SYSCTL(sched_min_granularity);
641 	WRT_SYSCTL(sched_latency);
642 	WRT_SYSCTL(sched_wakeup_granularity);
643 #undef WRT_SYSCTL
644 
645 	return 0;
646 }
647 #endif
648 
649 /*
650  * delta /= w
651  */
652 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
653 {
654 	if (unlikely(se->load.weight != NICE_0_LOAD))
655 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
656 
657 	return delta;
658 }
659 
660 /*
661  * The idea is to set a period in which each task runs once.
662  *
663  * When there are too many tasks (sched_nr_latency) we have to stretch
664  * this period because otherwise the slices get too small.
665  *
666  * p = (nr <= nl) ? l : l*nr/nl
667  */
668 static u64 __sched_period(unsigned long nr_running)
669 {
670 	if (unlikely(nr_running > sched_nr_latency))
671 		return nr_running * sysctl_sched_min_granularity;
672 	else
673 		return sysctl_sched_latency;
674 }
675 
676 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
677 
678 /*
679  * We calculate the wall-time slice from the period by taking a part
680  * proportional to the weight.
681  *
682  * s = p*P[w/rw]
683  */
684 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
685 {
686 	unsigned int nr_running = cfs_rq->nr_running;
687 	struct sched_entity *init_se = se;
688 	unsigned int min_gran;
689 	u64 slice;
690 
691 	if (sched_feat(ALT_PERIOD))
692 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
693 
694 	slice = __sched_period(nr_running + !se->on_rq);
695 
696 	for_each_sched_entity(se) {
697 		struct load_weight *load;
698 		struct load_weight lw;
699 		struct cfs_rq *qcfs_rq;
700 
701 		qcfs_rq = cfs_rq_of(se);
702 		load = &qcfs_rq->load;
703 
704 		if (unlikely(!se->on_rq)) {
705 			lw = qcfs_rq->load;
706 
707 			update_load_add(&lw, se->load.weight);
708 			load = &lw;
709 		}
710 		slice = __calc_delta(slice, se->load.weight, load);
711 	}
712 
713 	if (sched_feat(BASE_SLICE)) {
714 		if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
715 			min_gran = sysctl_sched_idle_min_granularity;
716 		else
717 			min_gran = sysctl_sched_min_granularity;
718 
719 		slice = max_t(u64, slice, min_gran);
720 	}
721 
722 	return slice;
723 }
724 
725 /*
726  * We calculate the vruntime slice of a to-be-inserted task.
727  *
728  * vs = s/w
729  */
730 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
731 {
732 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
733 }
734 
735 #include "pelt.h"
736 #ifdef CONFIG_SMP
737 
738 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
739 static unsigned long task_h_load(struct task_struct *p);
740 static unsigned long capacity_of(int cpu);
741 
742 /* Give new sched_entity start runnable values to heavy its load in infant time */
743 void init_entity_runnable_average(struct sched_entity *se)
744 {
745 	struct sched_avg *sa = &se->avg;
746 
747 	memset(sa, 0, sizeof(*sa));
748 
749 	/*
750 	 * Tasks are initialized with full load to be seen as heavy tasks until
751 	 * they get a chance to stabilize to their real load level.
752 	 * Group entities are initialized with zero load to reflect the fact that
753 	 * nothing has been attached to the task group yet.
754 	 */
755 	if (entity_is_task(se))
756 		sa->load_avg = scale_load_down(se->load.weight);
757 
758 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
759 }
760 
761 static void attach_entity_cfs_rq(struct sched_entity *se);
762 
763 /*
764  * With new tasks being created, their initial util_avgs are extrapolated
765  * based on the cfs_rq's current util_avg:
766  *
767  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
768  *
769  * However, in many cases, the above util_avg does not give a desired
770  * value. Moreover, the sum of the util_avgs may be divergent, such
771  * as when the series is a harmonic series.
772  *
773  * To solve this problem, we also cap the util_avg of successive tasks to
774  * only 1/2 of the left utilization budget:
775  *
776  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
777  *
778  * where n denotes the nth task and cpu_scale the CPU capacity.
779  *
780  * For example, for a CPU with 1024 of capacity, a simplest series from
781  * the beginning would be like:
782  *
783  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
784  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
785  *
786  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
787  * if util_avg > util_avg_cap.
788  */
789 void post_init_entity_util_avg(struct task_struct *p)
790 {
791 	struct sched_entity *se = &p->se;
792 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
793 	struct sched_avg *sa = &se->avg;
794 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
795 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
796 
797 	if (cap > 0) {
798 		if (cfs_rq->avg.util_avg != 0) {
799 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
800 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
801 
802 			if (sa->util_avg > cap)
803 				sa->util_avg = cap;
804 		} else {
805 			sa->util_avg = cap;
806 		}
807 	}
808 
809 	sa->runnable_avg = sa->util_avg;
810 
811 	if (p->sched_class != &fair_sched_class) {
812 		/*
813 		 * For !fair tasks do:
814 		 *
815 		update_cfs_rq_load_avg(now, cfs_rq);
816 		attach_entity_load_avg(cfs_rq, se);
817 		switched_from_fair(rq, p);
818 		 *
819 		 * such that the next switched_to_fair() has the
820 		 * expected state.
821 		 */
822 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
823 		return;
824 	}
825 
826 	attach_entity_cfs_rq(se);
827 }
828 
829 #else /* !CONFIG_SMP */
830 void init_entity_runnable_average(struct sched_entity *se)
831 {
832 }
833 void post_init_entity_util_avg(struct task_struct *p)
834 {
835 }
836 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
837 {
838 }
839 #endif /* CONFIG_SMP */
840 
841 /*
842  * Update the current task's runtime statistics.
843  */
844 static void update_curr(struct cfs_rq *cfs_rq)
845 {
846 	struct sched_entity *curr = cfs_rq->curr;
847 	u64 now = rq_clock_task(rq_of(cfs_rq));
848 	u64 delta_exec;
849 
850 	if (unlikely(!curr))
851 		return;
852 
853 	delta_exec = now - curr->exec_start;
854 	if (unlikely((s64)delta_exec <= 0))
855 		return;
856 
857 	curr->exec_start = now;
858 
859 	if (schedstat_enabled()) {
860 		struct sched_statistics *stats;
861 
862 		stats = __schedstats_from_se(curr);
863 		__schedstat_set(stats->exec_max,
864 				max(delta_exec, stats->exec_max));
865 	}
866 
867 	curr->sum_exec_runtime += delta_exec;
868 	schedstat_add(cfs_rq->exec_clock, delta_exec);
869 
870 	curr->vruntime += calc_delta_fair(delta_exec, curr);
871 	update_min_vruntime(cfs_rq);
872 
873 	if (entity_is_task(curr)) {
874 		struct task_struct *curtask = task_of(curr);
875 
876 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
877 		cgroup_account_cputime(curtask, delta_exec);
878 		account_group_exec_runtime(curtask, delta_exec);
879 	}
880 
881 	account_cfs_rq_runtime(cfs_rq, delta_exec);
882 }
883 
884 static void update_curr_fair(struct rq *rq)
885 {
886 	update_curr(cfs_rq_of(&rq->curr->se));
887 }
888 
889 static inline void
890 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
891 {
892 	struct sched_statistics *stats;
893 	struct task_struct *p = NULL;
894 
895 	if (!schedstat_enabled())
896 		return;
897 
898 	stats = __schedstats_from_se(se);
899 
900 	if (entity_is_task(se))
901 		p = task_of(se);
902 
903 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
904 }
905 
906 static inline void
907 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
908 {
909 	struct sched_statistics *stats;
910 	struct task_struct *p = NULL;
911 
912 	if (!schedstat_enabled())
913 		return;
914 
915 	stats = __schedstats_from_se(se);
916 
917 	/*
918 	 * When the sched_schedstat changes from 0 to 1, some sched se
919 	 * maybe already in the runqueue, the se->statistics.wait_start
920 	 * will be 0.So it will let the delta wrong. We need to avoid this
921 	 * scenario.
922 	 */
923 	if (unlikely(!schedstat_val(stats->wait_start)))
924 		return;
925 
926 	if (entity_is_task(se))
927 		p = task_of(se);
928 
929 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
930 }
931 
932 static inline void
933 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
934 {
935 	struct sched_statistics *stats;
936 	struct task_struct *tsk = NULL;
937 
938 	if (!schedstat_enabled())
939 		return;
940 
941 	stats = __schedstats_from_se(se);
942 
943 	if (entity_is_task(se))
944 		tsk = task_of(se);
945 
946 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
947 }
948 
949 /*
950  * Task is being enqueued - update stats:
951  */
952 static inline void
953 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
954 {
955 	if (!schedstat_enabled())
956 		return;
957 
958 	/*
959 	 * Are we enqueueing a waiting task? (for current tasks
960 	 * a dequeue/enqueue event is a NOP)
961 	 */
962 	if (se != cfs_rq->curr)
963 		update_stats_wait_start_fair(cfs_rq, se);
964 
965 	if (flags & ENQUEUE_WAKEUP)
966 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
967 }
968 
969 static inline void
970 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
971 {
972 
973 	if (!schedstat_enabled())
974 		return;
975 
976 	/*
977 	 * Mark the end of the wait period if dequeueing a
978 	 * waiting task:
979 	 */
980 	if (se != cfs_rq->curr)
981 		update_stats_wait_end_fair(cfs_rq, se);
982 
983 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
984 		struct task_struct *tsk = task_of(se);
985 		unsigned int state;
986 
987 		/* XXX racy against TTWU */
988 		state = READ_ONCE(tsk->__state);
989 		if (state & TASK_INTERRUPTIBLE)
990 			__schedstat_set(tsk->stats.sleep_start,
991 				      rq_clock(rq_of(cfs_rq)));
992 		if (state & TASK_UNINTERRUPTIBLE)
993 			__schedstat_set(tsk->stats.block_start,
994 				      rq_clock(rq_of(cfs_rq)));
995 	}
996 }
997 
998 /*
999  * We are picking a new current task - update its stats:
1000  */
1001 static inline void
1002 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1003 {
1004 	/*
1005 	 * We are starting a new run period:
1006 	 */
1007 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1008 }
1009 
1010 /**************************************************
1011  * Scheduling class queueing methods:
1012  */
1013 
1014 #ifdef CONFIG_NUMA_BALANCING
1015 /*
1016  * Approximate time to scan a full NUMA task in ms. The task scan period is
1017  * calculated based on the tasks virtual memory size and
1018  * numa_balancing_scan_size.
1019  */
1020 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1021 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1022 
1023 /* Portion of address space to scan in MB */
1024 unsigned int sysctl_numa_balancing_scan_size = 256;
1025 
1026 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1027 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1028 
1029 struct numa_group {
1030 	refcount_t refcount;
1031 
1032 	spinlock_t lock; /* nr_tasks, tasks */
1033 	int nr_tasks;
1034 	pid_t gid;
1035 	int active_nodes;
1036 
1037 	struct rcu_head rcu;
1038 	unsigned long total_faults;
1039 	unsigned long max_faults_cpu;
1040 	/*
1041 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1042 	 *
1043 	 * Faults_cpu is used to decide whether memory should move
1044 	 * towards the CPU. As a consequence, these stats are weighted
1045 	 * more by CPU use than by memory faults.
1046 	 */
1047 	unsigned long faults[];
1048 };
1049 
1050 /*
1051  * For functions that can be called in multiple contexts that permit reading
1052  * ->numa_group (see struct task_struct for locking rules).
1053  */
1054 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1055 {
1056 	return rcu_dereference_check(p->numa_group, p == current ||
1057 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1058 }
1059 
1060 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1061 {
1062 	return rcu_dereference_protected(p->numa_group, p == current);
1063 }
1064 
1065 static inline unsigned long group_faults_priv(struct numa_group *ng);
1066 static inline unsigned long group_faults_shared(struct numa_group *ng);
1067 
1068 static unsigned int task_nr_scan_windows(struct task_struct *p)
1069 {
1070 	unsigned long rss = 0;
1071 	unsigned long nr_scan_pages;
1072 
1073 	/*
1074 	 * Calculations based on RSS as non-present and empty pages are skipped
1075 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1076 	 * on resident pages
1077 	 */
1078 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1079 	rss = get_mm_rss(p->mm);
1080 	if (!rss)
1081 		rss = nr_scan_pages;
1082 
1083 	rss = round_up(rss, nr_scan_pages);
1084 	return rss / nr_scan_pages;
1085 }
1086 
1087 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1088 #define MAX_SCAN_WINDOW 2560
1089 
1090 static unsigned int task_scan_min(struct task_struct *p)
1091 {
1092 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1093 	unsigned int scan, floor;
1094 	unsigned int windows = 1;
1095 
1096 	if (scan_size < MAX_SCAN_WINDOW)
1097 		windows = MAX_SCAN_WINDOW / scan_size;
1098 	floor = 1000 / windows;
1099 
1100 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1101 	return max_t(unsigned int, floor, scan);
1102 }
1103 
1104 static unsigned int task_scan_start(struct task_struct *p)
1105 {
1106 	unsigned long smin = task_scan_min(p);
1107 	unsigned long period = smin;
1108 	struct numa_group *ng;
1109 
1110 	/* Scale the maximum scan period with the amount of shared memory. */
1111 	rcu_read_lock();
1112 	ng = rcu_dereference(p->numa_group);
1113 	if (ng) {
1114 		unsigned long shared = group_faults_shared(ng);
1115 		unsigned long private = group_faults_priv(ng);
1116 
1117 		period *= refcount_read(&ng->refcount);
1118 		period *= shared + 1;
1119 		period /= private + shared + 1;
1120 	}
1121 	rcu_read_unlock();
1122 
1123 	return max(smin, period);
1124 }
1125 
1126 static unsigned int task_scan_max(struct task_struct *p)
1127 {
1128 	unsigned long smin = task_scan_min(p);
1129 	unsigned long smax;
1130 	struct numa_group *ng;
1131 
1132 	/* Watch for min being lower than max due to floor calculations */
1133 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1134 
1135 	/* Scale the maximum scan period with the amount of shared memory. */
1136 	ng = deref_curr_numa_group(p);
1137 	if (ng) {
1138 		unsigned long shared = group_faults_shared(ng);
1139 		unsigned long private = group_faults_priv(ng);
1140 		unsigned long period = smax;
1141 
1142 		period *= refcount_read(&ng->refcount);
1143 		period *= shared + 1;
1144 		period /= private + shared + 1;
1145 
1146 		smax = max(smax, period);
1147 	}
1148 
1149 	return max(smin, smax);
1150 }
1151 
1152 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1153 {
1154 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1155 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1156 }
1157 
1158 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1159 {
1160 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1161 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1162 }
1163 
1164 /* Shared or private faults. */
1165 #define NR_NUMA_HINT_FAULT_TYPES 2
1166 
1167 /* Memory and CPU locality */
1168 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1169 
1170 /* Averaged statistics, and temporary buffers. */
1171 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1172 
1173 pid_t task_numa_group_id(struct task_struct *p)
1174 {
1175 	struct numa_group *ng;
1176 	pid_t gid = 0;
1177 
1178 	rcu_read_lock();
1179 	ng = rcu_dereference(p->numa_group);
1180 	if (ng)
1181 		gid = ng->gid;
1182 	rcu_read_unlock();
1183 
1184 	return gid;
1185 }
1186 
1187 /*
1188  * The averaged statistics, shared & private, memory & CPU,
1189  * occupy the first half of the array. The second half of the
1190  * array is for current counters, which are averaged into the
1191  * first set by task_numa_placement.
1192  */
1193 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1194 {
1195 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1196 }
1197 
1198 static inline unsigned long task_faults(struct task_struct *p, int nid)
1199 {
1200 	if (!p->numa_faults)
1201 		return 0;
1202 
1203 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1204 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1205 }
1206 
1207 static inline unsigned long group_faults(struct task_struct *p, int nid)
1208 {
1209 	struct numa_group *ng = deref_task_numa_group(p);
1210 
1211 	if (!ng)
1212 		return 0;
1213 
1214 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1215 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1216 }
1217 
1218 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1219 {
1220 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1221 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1222 }
1223 
1224 static inline unsigned long group_faults_priv(struct numa_group *ng)
1225 {
1226 	unsigned long faults = 0;
1227 	int node;
1228 
1229 	for_each_online_node(node) {
1230 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1231 	}
1232 
1233 	return faults;
1234 }
1235 
1236 static inline unsigned long group_faults_shared(struct numa_group *ng)
1237 {
1238 	unsigned long faults = 0;
1239 	int node;
1240 
1241 	for_each_online_node(node) {
1242 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1243 	}
1244 
1245 	return faults;
1246 }
1247 
1248 /*
1249  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1250  * considered part of a numa group's pseudo-interleaving set. Migrations
1251  * between these nodes are slowed down, to allow things to settle down.
1252  */
1253 #define ACTIVE_NODE_FRACTION 3
1254 
1255 static bool numa_is_active_node(int nid, struct numa_group *ng)
1256 {
1257 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1258 }
1259 
1260 /* Handle placement on systems where not all nodes are directly connected. */
1261 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1262 					int maxdist, bool task)
1263 {
1264 	unsigned long score = 0;
1265 	int node;
1266 
1267 	/*
1268 	 * All nodes are directly connected, and the same distance
1269 	 * from each other. No need for fancy placement algorithms.
1270 	 */
1271 	if (sched_numa_topology_type == NUMA_DIRECT)
1272 		return 0;
1273 
1274 	/*
1275 	 * This code is called for each node, introducing N^2 complexity,
1276 	 * which should be ok given the number of nodes rarely exceeds 8.
1277 	 */
1278 	for_each_online_node(node) {
1279 		unsigned long faults;
1280 		int dist = node_distance(nid, node);
1281 
1282 		/*
1283 		 * The furthest away nodes in the system are not interesting
1284 		 * for placement; nid was already counted.
1285 		 */
1286 		if (dist == sched_max_numa_distance || node == nid)
1287 			continue;
1288 
1289 		/*
1290 		 * On systems with a backplane NUMA topology, compare groups
1291 		 * of nodes, and move tasks towards the group with the most
1292 		 * memory accesses. When comparing two nodes at distance
1293 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1294 		 * of each group. Skip other nodes.
1295 		 */
1296 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1297 					dist >= maxdist)
1298 			continue;
1299 
1300 		/* Add up the faults from nearby nodes. */
1301 		if (task)
1302 			faults = task_faults(p, node);
1303 		else
1304 			faults = group_faults(p, node);
1305 
1306 		/*
1307 		 * On systems with a glueless mesh NUMA topology, there are
1308 		 * no fixed "groups of nodes". Instead, nodes that are not
1309 		 * directly connected bounce traffic through intermediate
1310 		 * nodes; a numa_group can occupy any set of nodes.
1311 		 * The further away a node is, the less the faults count.
1312 		 * This seems to result in good task placement.
1313 		 */
1314 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1315 			faults *= (sched_max_numa_distance - dist);
1316 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1317 		}
1318 
1319 		score += faults;
1320 	}
1321 
1322 	return score;
1323 }
1324 
1325 /*
1326  * These return the fraction of accesses done by a particular task, or
1327  * task group, on a particular numa node.  The group weight is given a
1328  * larger multiplier, in order to group tasks together that are almost
1329  * evenly spread out between numa nodes.
1330  */
1331 static inline unsigned long task_weight(struct task_struct *p, int nid,
1332 					int dist)
1333 {
1334 	unsigned long faults, total_faults;
1335 
1336 	if (!p->numa_faults)
1337 		return 0;
1338 
1339 	total_faults = p->total_numa_faults;
1340 
1341 	if (!total_faults)
1342 		return 0;
1343 
1344 	faults = task_faults(p, nid);
1345 	faults += score_nearby_nodes(p, nid, dist, true);
1346 
1347 	return 1000 * faults / total_faults;
1348 }
1349 
1350 static inline unsigned long group_weight(struct task_struct *p, int nid,
1351 					 int dist)
1352 {
1353 	struct numa_group *ng = deref_task_numa_group(p);
1354 	unsigned long faults, total_faults;
1355 
1356 	if (!ng)
1357 		return 0;
1358 
1359 	total_faults = ng->total_faults;
1360 
1361 	if (!total_faults)
1362 		return 0;
1363 
1364 	faults = group_faults(p, nid);
1365 	faults += score_nearby_nodes(p, nid, dist, false);
1366 
1367 	return 1000 * faults / total_faults;
1368 }
1369 
1370 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1371 				int src_nid, int dst_cpu)
1372 {
1373 	struct numa_group *ng = deref_curr_numa_group(p);
1374 	int dst_nid = cpu_to_node(dst_cpu);
1375 	int last_cpupid, this_cpupid;
1376 
1377 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1378 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1379 
1380 	/*
1381 	 * Allow first faults or private faults to migrate immediately early in
1382 	 * the lifetime of a task. The magic number 4 is based on waiting for
1383 	 * two full passes of the "multi-stage node selection" test that is
1384 	 * executed below.
1385 	 */
1386 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1387 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1388 		return true;
1389 
1390 	/*
1391 	 * Multi-stage node selection is used in conjunction with a periodic
1392 	 * migration fault to build a temporal task<->page relation. By using
1393 	 * a two-stage filter we remove short/unlikely relations.
1394 	 *
1395 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1396 	 * a task's usage of a particular page (n_p) per total usage of this
1397 	 * page (n_t) (in a given time-span) to a probability.
1398 	 *
1399 	 * Our periodic faults will sample this probability and getting the
1400 	 * same result twice in a row, given these samples are fully
1401 	 * independent, is then given by P(n)^2, provided our sample period
1402 	 * is sufficiently short compared to the usage pattern.
1403 	 *
1404 	 * This quadric squishes small probabilities, making it less likely we
1405 	 * act on an unlikely task<->page relation.
1406 	 */
1407 	if (!cpupid_pid_unset(last_cpupid) &&
1408 				cpupid_to_nid(last_cpupid) != dst_nid)
1409 		return false;
1410 
1411 	/* Always allow migrate on private faults */
1412 	if (cpupid_match_pid(p, last_cpupid))
1413 		return true;
1414 
1415 	/* A shared fault, but p->numa_group has not been set up yet. */
1416 	if (!ng)
1417 		return true;
1418 
1419 	/*
1420 	 * Destination node is much more heavily used than the source
1421 	 * node? Allow migration.
1422 	 */
1423 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1424 					ACTIVE_NODE_FRACTION)
1425 		return true;
1426 
1427 	/*
1428 	 * Distribute memory according to CPU & memory use on each node,
1429 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1430 	 *
1431 	 * faults_cpu(dst)   3   faults_cpu(src)
1432 	 * --------------- * - > ---------------
1433 	 * faults_mem(dst)   4   faults_mem(src)
1434 	 */
1435 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1436 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1437 }
1438 
1439 /*
1440  * 'numa_type' describes the node at the moment of load balancing.
1441  */
1442 enum numa_type {
1443 	/* The node has spare capacity that can be used to run more tasks.  */
1444 	node_has_spare = 0,
1445 	/*
1446 	 * The node is fully used and the tasks don't compete for more CPU
1447 	 * cycles. Nevertheless, some tasks might wait before running.
1448 	 */
1449 	node_fully_busy,
1450 	/*
1451 	 * The node is overloaded and can't provide expected CPU cycles to all
1452 	 * tasks.
1453 	 */
1454 	node_overloaded
1455 };
1456 
1457 /* Cached statistics for all CPUs within a node */
1458 struct numa_stats {
1459 	unsigned long load;
1460 	unsigned long runnable;
1461 	unsigned long util;
1462 	/* Total compute capacity of CPUs on a node */
1463 	unsigned long compute_capacity;
1464 	unsigned int nr_running;
1465 	unsigned int weight;
1466 	enum numa_type node_type;
1467 	int idle_cpu;
1468 };
1469 
1470 static inline bool is_core_idle(int cpu)
1471 {
1472 #ifdef CONFIG_SCHED_SMT
1473 	int sibling;
1474 
1475 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1476 		if (cpu == sibling)
1477 			continue;
1478 
1479 		if (!idle_cpu(sibling))
1480 			return false;
1481 	}
1482 #endif
1483 
1484 	return true;
1485 }
1486 
1487 struct task_numa_env {
1488 	struct task_struct *p;
1489 
1490 	int src_cpu, src_nid;
1491 	int dst_cpu, dst_nid;
1492 
1493 	struct numa_stats src_stats, dst_stats;
1494 
1495 	int imbalance_pct;
1496 	int dist;
1497 
1498 	struct task_struct *best_task;
1499 	long best_imp;
1500 	int best_cpu;
1501 };
1502 
1503 static unsigned long cpu_load(struct rq *rq);
1504 static unsigned long cpu_runnable(struct rq *rq);
1505 static inline long adjust_numa_imbalance(int imbalance,
1506 					int dst_running, int dst_weight);
1507 
1508 static inline enum
1509 numa_type numa_classify(unsigned int imbalance_pct,
1510 			 struct numa_stats *ns)
1511 {
1512 	if ((ns->nr_running > ns->weight) &&
1513 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1514 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1515 		return node_overloaded;
1516 
1517 	if ((ns->nr_running < ns->weight) ||
1518 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1519 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1520 		return node_has_spare;
1521 
1522 	return node_fully_busy;
1523 }
1524 
1525 #ifdef CONFIG_SCHED_SMT
1526 /* Forward declarations of select_idle_sibling helpers */
1527 static inline bool test_idle_cores(int cpu, bool def);
1528 static inline int numa_idle_core(int idle_core, int cpu)
1529 {
1530 	if (!static_branch_likely(&sched_smt_present) ||
1531 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1532 		return idle_core;
1533 
1534 	/*
1535 	 * Prefer cores instead of packing HT siblings
1536 	 * and triggering future load balancing.
1537 	 */
1538 	if (is_core_idle(cpu))
1539 		idle_core = cpu;
1540 
1541 	return idle_core;
1542 }
1543 #else
1544 static inline int numa_idle_core(int idle_core, int cpu)
1545 {
1546 	return idle_core;
1547 }
1548 #endif
1549 
1550 /*
1551  * Gather all necessary information to make NUMA balancing placement
1552  * decisions that are compatible with standard load balancer. This
1553  * borrows code and logic from update_sg_lb_stats but sharing a
1554  * common implementation is impractical.
1555  */
1556 static void update_numa_stats(struct task_numa_env *env,
1557 			      struct numa_stats *ns, int nid,
1558 			      bool find_idle)
1559 {
1560 	int cpu, idle_core = -1;
1561 
1562 	memset(ns, 0, sizeof(*ns));
1563 	ns->idle_cpu = -1;
1564 
1565 	rcu_read_lock();
1566 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1567 		struct rq *rq = cpu_rq(cpu);
1568 
1569 		ns->load += cpu_load(rq);
1570 		ns->runnable += cpu_runnable(rq);
1571 		ns->util += cpu_util_cfs(cpu);
1572 		ns->nr_running += rq->cfs.h_nr_running;
1573 		ns->compute_capacity += capacity_of(cpu);
1574 
1575 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1576 			if (READ_ONCE(rq->numa_migrate_on) ||
1577 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1578 				continue;
1579 
1580 			if (ns->idle_cpu == -1)
1581 				ns->idle_cpu = cpu;
1582 
1583 			idle_core = numa_idle_core(idle_core, cpu);
1584 		}
1585 	}
1586 	rcu_read_unlock();
1587 
1588 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1589 
1590 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1591 
1592 	if (idle_core >= 0)
1593 		ns->idle_cpu = idle_core;
1594 }
1595 
1596 static void task_numa_assign(struct task_numa_env *env,
1597 			     struct task_struct *p, long imp)
1598 {
1599 	struct rq *rq = cpu_rq(env->dst_cpu);
1600 
1601 	/* Check if run-queue part of active NUMA balance. */
1602 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1603 		int cpu;
1604 		int start = env->dst_cpu;
1605 
1606 		/* Find alternative idle CPU. */
1607 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1608 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1609 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1610 				continue;
1611 			}
1612 
1613 			env->dst_cpu = cpu;
1614 			rq = cpu_rq(env->dst_cpu);
1615 			if (!xchg(&rq->numa_migrate_on, 1))
1616 				goto assign;
1617 		}
1618 
1619 		/* Failed to find an alternative idle CPU */
1620 		return;
1621 	}
1622 
1623 assign:
1624 	/*
1625 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1626 	 * found a better CPU to move/swap.
1627 	 */
1628 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1629 		rq = cpu_rq(env->best_cpu);
1630 		WRITE_ONCE(rq->numa_migrate_on, 0);
1631 	}
1632 
1633 	if (env->best_task)
1634 		put_task_struct(env->best_task);
1635 	if (p)
1636 		get_task_struct(p);
1637 
1638 	env->best_task = p;
1639 	env->best_imp = imp;
1640 	env->best_cpu = env->dst_cpu;
1641 }
1642 
1643 static bool load_too_imbalanced(long src_load, long dst_load,
1644 				struct task_numa_env *env)
1645 {
1646 	long imb, old_imb;
1647 	long orig_src_load, orig_dst_load;
1648 	long src_capacity, dst_capacity;
1649 
1650 	/*
1651 	 * The load is corrected for the CPU capacity available on each node.
1652 	 *
1653 	 * src_load        dst_load
1654 	 * ------------ vs ---------
1655 	 * src_capacity    dst_capacity
1656 	 */
1657 	src_capacity = env->src_stats.compute_capacity;
1658 	dst_capacity = env->dst_stats.compute_capacity;
1659 
1660 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1661 
1662 	orig_src_load = env->src_stats.load;
1663 	orig_dst_load = env->dst_stats.load;
1664 
1665 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1666 
1667 	/* Would this change make things worse? */
1668 	return (imb > old_imb);
1669 }
1670 
1671 /*
1672  * Maximum NUMA importance can be 1998 (2*999);
1673  * SMALLIMP @ 30 would be close to 1998/64.
1674  * Used to deter task migration.
1675  */
1676 #define SMALLIMP	30
1677 
1678 /*
1679  * This checks if the overall compute and NUMA accesses of the system would
1680  * be improved if the source tasks was migrated to the target dst_cpu taking
1681  * into account that it might be best if task running on the dst_cpu should
1682  * be exchanged with the source task
1683  */
1684 static bool task_numa_compare(struct task_numa_env *env,
1685 			      long taskimp, long groupimp, bool maymove)
1686 {
1687 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1688 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1689 	long imp = p_ng ? groupimp : taskimp;
1690 	struct task_struct *cur;
1691 	long src_load, dst_load;
1692 	int dist = env->dist;
1693 	long moveimp = imp;
1694 	long load;
1695 	bool stopsearch = false;
1696 
1697 	if (READ_ONCE(dst_rq->numa_migrate_on))
1698 		return false;
1699 
1700 	rcu_read_lock();
1701 	cur = rcu_dereference(dst_rq->curr);
1702 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1703 		cur = NULL;
1704 
1705 	/*
1706 	 * Because we have preemption enabled we can get migrated around and
1707 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1708 	 */
1709 	if (cur == env->p) {
1710 		stopsearch = true;
1711 		goto unlock;
1712 	}
1713 
1714 	if (!cur) {
1715 		if (maymove && moveimp >= env->best_imp)
1716 			goto assign;
1717 		else
1718 			goto unlock;
1719 	}
1720 
1721 	/* Skip this swap candidate if cannot move to the source cpu. */
1722 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1723 		goto unlock;
1724 
1725 	/*
1726 	 * Skip this swap candidate if it is not moving to its preferred
1727 	 * node and the best task is.
1728 	 */
1729 	if (env->best_task &&
1730 	    env->best_task->numa_preferred_nid == env->src_nid &&
1731 	    cur->numa_preferred_nid != env->src_nid) {
1732 		goto unlock;
1733 	}
1734 
1735 	/*
1736 	 * "imp" is the fault differential for the source task between the
1737 	 * source and destination node. Calculate the total differential for
1738 	 * the source task and potential destination task. The more negative
1739 	 * the value is, the more remote accesses that would be expected to
1740 	 * be incurred if the tasks were swapped.
1741 	 *
1742 	 * If dst and source tasks are in the same NUMA group, or not
1743 	 * in any group then look only at task weights.
1744 	 */
1745 	cur_ng = rcu_dereference(cur->numa_group);
1746 	if (cur_ng == p_ng) {
1747 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1748 		      task_weight(cur, env->dst_nid, dist);
1749 		/*
1750 		 * Add some hysteresis to prevent swapping the
1751 		 * tasks within a group over tiny differences.
1752 		 */
1753 		if (cur_ng)
1754 			imp -= imp / 16;
1755 	} else {
1756 		/*
1757 		 * Compare the group weights. If a task is all by itself
1758 		 * (not part of a group), use the task weight instead.
1759 		 */
1760 		if (cur_ng && p_ng)
1761 			imp += group_weight(cur, env->src_nid, dist) -
1762 			       group_weight(cur, env->dst_nid, dist);
1763 		else
1764 			imp += task_weight(cur, env->src_nid, dist) -
1765 			       task_weight(cur, env->dst_nid, dist);
1766 	}
1767 
1768 	/* Discourage picking a task already on its preferred node */
1769 	if (cur->numa_preferred_nid == env->dst_nid)
1770 		imp -= imp / 16;
1771 
1772 	/*
1773 	 * Encourage picking a task that moves to its preferred node.
1774 	 * This potentially makes imp larger than it's maximum of
1775 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1776 	 * case, it does not matter.
1777 	 */
1778 	if (cur->numa_preferred_nid == env->src_nid)
1779 		imp += imp / 8;
1780 
1781 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1782 		imp = moveimp;
1783 		cur = NULL;
1784 		goto assign;
1785 	}
1786 
1787 	/*
1788 	 * Prefer swapping with a task moving to its preferred node over a
1789 	 * task that is not.
1790 	 */
1791 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1792 	    env->best_task->numa_preferred_nid != env->src_nid) {
1793 		goto assign;
1794 	}
1795 
1796 	/*
1797 	 * If the NUMA importance is less than SMALLIMP,
1798 	 * task migration might only result in ping pong
1799 	 * of tasks and also hurt performance due to cache
1800 	 * misses.
1801 	 */
1802 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1803 		goto unlock;
1804 
1805 	/*
1806 	 * In the overloaded case, try and keep the load balanced.
1807 	 */
1808 	load = task_h_load(env->p) - task_h_load(cur);
1809 	if (!load)
1810 		goto assign;
1811 
1812 	dst_load = env->dst_stats.load + load;
1813 	src_load = env->src_stats.load - load;
1814 
1815 	if (load_too_imbalanced(src_load, dst_load, env))
1816 		goto unlock;
1817 
1818 assign:
1819 	/* Evaluate an idle CPU for a task numa move. */
1820 	if (!cur) {
1821 		int cpu = env->dst_stats.idle_cpu;
1822 
1823 		/* Nothing cached so current CPU went idle since the search. */
1824 		if (cpu < 0)
1825 			cpu = env->dst_cpu;
1826 
1827 		/*
1828 		 * If the CPU is no longer truly idle and the previous best CPU
1829 		 * is, keep using it.
1830 		 */
1831 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1832 		    idle_cpu(env->best_cpu)) {
1833 			cpu = env->best_cpu;
1834 		}
1835 
1836 		env->dst_cpu = cpu;
1837 	}
1838 
1839 	task_numa_assign(env, cur, imp);
1840 
1841 	/*
1842 	 * If a move to idle is allowed because there is capacity or load
1843 	 * balance improves then stop the search. While a better swap
1844 	 * candidate may exist, a search is not free.
1845 	 */
1846 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1847 		stopsearch = true;
1848 
1849 	/*
1850 	 * If a swap candidate must be identified and the current best task
1851 	 * moves its preferred node then stop the search.
1852 	 */
1853 	if (!maymove && env->best_task &&
1854 	    env->best_task->numa_preferred_nid == env->src_nid) {
1855 		stopsearch = true;
1856 	}
1857 unlock:
1858 	rcu_read_unlock();
1859 
1860 	return stopsearch;
1861 }
1862 
1863 static void task_numa_find_cpu(struct task_numa_env *env,
1864 				long taskimp, long groupimp)
1865 {
1866 	bool maymove = false;
1867 	int cpu;
1868 
1869 	/*
1870 	 * If dst node has spare capacity, then check if there is an
1871 	 * imbalance that would be overruled by the load balancer.
1872 	 */
1873 	if (env->dst_stats.node_type == node_has_spare) {
1874 		unsigned int imbalance;
1875 		int src_running, dst_running;
1876 
1877 		/*
1878 		 * Would movement cause an imbalance? Note that if src has
1879 		 * more running tasks that the imbalance is ignored as the
1880 		 * move improves the imbalance from the perspective of the
1881 		 * CPU load balancer.
1882 		 * */
1883 		src_running = env->src_stats.nr_running - 1;
1884 		dst_running = env->dst_stats.nr_running + 1;
1885 		imbalance = max(0, dst_running - src_running);
1886 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
1887 							env->dst_stats.weight);
1888 
1889 		/* Use idle CPU if there is no imbalance */
1890 		if (!imbalance) {
1891 			maymove = true;
1892 			if (env->dst_stats.idle_cpu >= 0) {
1893 				env->dst_cpu = env->dst_stats.idle_cpu;
1894 				task_numa_assign(env, NULL, 0);
1895 				return;
1896 			}
1897 		}
1898 	} else {
1899 		long src_load, dst_load, load;
1900 		/*
1901 		 * If the improvement from just moving env->p direction is better
1902 		 * than swapping tasks around, check if a move is possible.
1903 		 */
1904 		load = task_h_load(env->p);
1905 		dst_load = env->dst_stats.load + load;
1906 		src_load = env->src_stats.load - load;
1907 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1908 	}
1909 
1910 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1911 		/* Skip this CPU if the source task cannot migrate */
1912 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1913 			continue;
1914 
1915 		env->dst_cpu = cpu;
1916 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1917 			break;
1918 	}
1919 }
1920 
1921 static int task_numa_migrate(struct task_struct *p)
1922 {
1923 	struct task_numa_env env = {
1924 		.p = p,
1925 
1926 		.src_cpu = task_cpu(p),
1927 		.src_nid = task_node(p),
1928 
1929 		.imbalance_pct = 112,
1930 
1931 		.best_task = NULL,
1932 		.best_imp = 0,
1933 		.best_cpu = -1,
1934 	};
1935 	unsigned long taskweight, groupweight;
1936 	struct sched_domain *sd;
1937 	long taskimp, groupimp;
1938 	struct numa_group *ng;
1939 	struct rq *best_rq;
1940 	int nid, ret, dist;
1941 
1942 	/*
1943 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1944 	 * imbalance and would be the first to start moving tasks about.
1945 	 *
1946 	 * And we want to avoid any moving of tasks about, as that would create
1947 	 * random movement of tasks -- counter the numa conditions we're trying
1948 	 * to satisfy here.
1949 	 */
1950 	rcu_read_lock();
1951 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1952 	if (sd)
1953 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1954 	rcu_read_unlock();
1955 
1956 	/*
1957 	 * Cpusets can break the scheduler domain tree into smaller
1958 	 * balance domains, some of which do not cross NUMA boundaries.
1959 	 * Tasks that are "trapped" in such domains cannot be migrated
1960 	 * elsewhere, so there is no point in (re)trying.
1961 	 */
1962 	if (unlikely(!sd)) {
1963 		sched_setnuma(p, task_node(p));
1964 		return -EINVAL;
1965 	}
1966 
1967 	env.dst_nid = p->numa_preferred_nid;
1968 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1969 	taskweight = task_weight(p, env.src_nid, dist);
1970 	groupweight = group_weight(p, env.src_nid, dist);
1971 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
1972 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1973 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1974 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
1975 
1976 	/* Try to find a spot on the preferred nid. */
1977 	task_numa_find_cpu(&env, taskimp, groupimp);
1978 
1979 	/*
1980 	 * Look at other nodes in these cases:
1981 	 * - there is no space available on the preferred_nid
1982 	 * - the task is part of a numa_group that is interleaved across
1983 	 *   multiple NUMA nodes; in order to better consolidate the group,
1984 	 *   we need to check other locations.
1985 	 */
1986 	ng = deref_curr_numa_group(p);
1987 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1988 		for_each_online_node(nid) {
1989 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1990 				continue;
1991 
1992 			dist = node_distance(env.src_nid, env.dst_nid);
1993 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1994 						dist != env.dist) {
1995 				taskweight = task_weight(p, env.src_nid, dist);
1996 				groupweight = group_weight(p, env.src_nid, dist);
1997 			}
1998 
1999 			/* Only consider nodes where both task and groups benefit */
2000 			taskimp = task_weight(p, nid, dist) - taskweight;
2001 			groupimp = group_weight(p, nid, dist) - groupweight;
2002 			if (taskimp < 0 && groupimp < 0)
2003 				continue;
2004 
2005 			env.dist = dist;
2006 			env.dst_nid = nid;
2007 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2008 			task_numa_find_cpu(&env, taskimp, groupimp);
2009 		}
2010 	}
2011 
2012 	/*
2013 	 * If the task is part of a workload that spans multiple NUMA nodes,
2014 	 * and is migrating into one of the workload's active nodes, remember
2015 	 * this node as the task's preferred numa node, so the workload can
2016 	 * settle down.
2017 	 * A task that migrated to a second choice node will be better off
2018 	 * trying for a better one later. Do not set the preferred node here.
2019 	 */
2020 	if (ng) {
2021 		if (env.best_cpu == -1)
2022 			nid = env.src_nid;
2023 		else
2024 			nid = cpu_to_node(env.best_cpu);
2025 
2026 		if (nid != p->numa_preferred_nid)
2027 			sched_setnuma(p, nid);
2028 	}
2029 
2030 	/* No better CPU than the current one was found. */
2031 	if (env.best_cpu == -1) {
2032 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2033 		return -EAGAIN;
2034 	}
2035 
2036 	best_rq = cpu_rq(env.best_cpu);
2037 	if (env.best_task == NULL) {
2038 		ret = migrate_task_to(p, env.best_cpu);
2039 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2040 		if (ret != 0)
2041 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2042 		return ret;
2043 	}
2044 
2045 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2046 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2047 
2048 	if (ret != 0)
2049 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2050 	put_task_struct(env.best_task);
2051 	return ret;
2052 }
2053 
2054 /* Attempt to migrate a task to a CPU on the preferred node. */
2055 static void numa_migrate_preferred(struct task_struct *p)
2056 {
2057 	unsigned long interval = HZ;
2058 
2059 	/* This task has no NUMA fault statistics yet */
2060 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2061 		return;
2062 
2063 	/* Periodically retry migrating the task to the preferred node */
2064 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2065 	p->numa_migrate_retry = jiffies + interval;
2066 
2067 	/* Success if task is already running on preferred CPU */
2068 	if (task_node(p) == p->numa_preferred_nid)
2069 		return;
2070 
2071 	/* Otherwise, try migrate to a CPU on the preferred node */
2072 	task_numa_migrate(p);
2073 }
2074 
2075 /*
2076  * Find out how many nodes the workload is actively running on. Do this by
2077  * tracking the nodes from which NUMA hinting faults are triggered. This can
2078  * be different from the set of nodes where the workload's memory is currently
2079  * located.
2080  */
2081 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2082 {
2083 	unsigned long faults, max_faults = 0;
2084 	int nid, active_nodes = 0;
2085 
2086 	for_each_online_node(nid) {
2087 		faults = group_faults_cpu(numa_group, nid);
2088 		if (faults > max_faults)
2089 			max_faults = faults;
2090 	}
2091 
2092 	for_each_online_node(nid) {
2093 		faults = group_faults_cpu(numa_group, nid);
2094 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2095 			active_nodes++;
2096 	}
2097 
2098 	numa_group->max_faults_cpu = max_faults;
2099 	numa_group->active_nodes = active_nodes;
2100 }
2101 
2102 /*
2103  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2104  * increments. The more local the fault statistics are, the higher the scan
2105  * period will be for the next scan window. If local/(local+remote) ratio is
2106  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2107  * the scan period will decrease. Aim for 70% local accesses.
2108  */
2109 #define NUMA_PERIOD_SLOTS 10
2110 #define NUMA_PERIOD_THRESHOLD 7
2111 
2112 /*
2113  * Increase the scan period (slow down scanning) if the majority of
2114  * our memory is already on our local node, or if the majority of
2115  * the page accesses are shared with other processes.
2116  * Otherwise, decrease the scan period.
2117  */
2118 static void update_task_scan_period(struct task_struct *p,
2119 			unsigned long shared, unsigned long private)
2120 {
2121 	unsigned int period_slot;
2122 	int lr_ratio, ps_ratio;
2123 	int diff;
2124 
2125 	unsigned long remote = p->numa_faults_locality[0];
2126 	unsigned long local = p->numa_faults_locality[1];
2127 
2128 	/*
2129 	 * If there were no record hinting faults then either the task is
2130 	 * completely idle or all activity is in areas that are not of interest
2131 	 * to automatic numa balancing. Related to that, if there were failed
2132 	 * migration then it implies we are migrating too quickly or the local
2133 	 * node is overloaded. In either case, scan slower
2134 	 */
2135 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2136 		p->numa_scan_period = min(p->numa_scan_period_max,
2137 			p->numa_scan_period << 1);
2138 
2139 		p->mm->numa_next_scan = jiffies +
2140 			msecs_to_jiffies(p->numa_scan_period);
2141 
2142 		return;
2143 	}
2144 
2145 	/*
2146 	 * Prepare to scale scan period relative to the current period.
2147 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2148 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2149 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2150 	 */
2151 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2152 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2153 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2154 
2155 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2156 		/*
2157 		 * Most memory accesses are local. There is no need to
2158 		 * do fast NUMA scanning, since memory is already local.
2159 		 */
2160 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2161 		if (!slot)
2162 			slot = 1;
2163 		diff = slot * period_slot;
2164 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2165 		/*
2166 		 * Most memory accesses are shared with other tasks.
2167 		 * There is no point in continuing fast NUMA scanning,
2168 		 * since other tasks may just move the memory elsewhere.
2169 		 */
2170 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2171 		if (!slot)
2172 			slot = 1;
2173 		diff = slot * period_slot;
2174 	} else {
2175 		/*
2176 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2177 		 * yet they are not on the local NUMA node. Speed up
2178 		 * NUMA scanning to get the memory moved over.
2179 		 */
2180 		int ratio = max(lr_ratio, ps_ratio);
2181 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2182 	}
2183 
2184 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2185 			task_scan_min(p), task_scan_max(p));
2186 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2187 }
2188 
2189 /*
2190  * Get the fraction of time the task has been running since the last
2191  * NUMA placement cycle. The scheduler keeps similar statistics, but
2192  * decays those on a 32ms period, which is orders of magnitude off
2193  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2194  * stats only if the task is so new there are no NUMA statistics yet.
2195  */
2196 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2197 {
2198 	u64 runtime, delta, now;
2199 	/* Use the start of this time slice to avoid calculations. */
2200 	now = p->se.exec_start;
2201 	runtime = p->se.sum_exec_runtime;
2202 
2203 	if (p->last_task_numa_placement) {
2204 		delta = runtime - p->last_sum_exec_runtime;
2205 		*period = now - p->last_task_numa_placement;
2206 
2207 		/* Avoid time going backwards, prevent potential divide error: */
2208 		if (unlikely((s64)*period < 0))
2209 			*period = 0;
2210 	} else {
2211 		delta = p->se.avg.load_sum;
2212 		*period = LOAD_AVG_MAX;
2213 	}
2214 
2215 	p->last_sum_exec_runtime = runtime;
2216 	p->last_task_numa_placement = now;
2217 
2218 	return delta;
2219 }
2220 
2221 /*
2222  * Determine the preferred nid for a task in a numa_group. This needs to
2223  * be done in a way that produces consistent results with group_weight,
2224  * otherwise workloads might not converge.
2225  */
2226 static int preferred_group_nid(struct task_struct *p, int nid)
2227 {
2228 	nodemask_t nodes;
2229 	int dist;
2230 
2231 	/* Direct connections between all NUMA nodes. */
2232 	if (sched_numa_topology_type == NUMA_DIRECT)
2233 		return nid;
2234 
2235 	/*
2236 	 * On a system with glueless mesh NUMA topology, group_weight
2237 	 * scores nodes according to the number of NUMA hinting faults on
2238 	 * both the node itself, and on nearby nodes.
2239 	 */
2240 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2241 		unsigned long score, max_score = 0;
2242 		int node, max_node = nid;
2243 
2244 		dist = sched_max_numa_distance;
2245 
2246 		for_each_online_node(node) {
2247 			score = group_weight(p, node, dist);
2248 			if (score > max_score) {
2249 				max_score = score;
2250 				max_node = node;
2251 			}
2252 		}
2253 		return max_node;
2254 	}
2255 
2256 	/*
2257 	 * Finding the preferred nid in a system with NUMA backplane
2258 	 * interconnect topology is more involved. The goal is to locate
2259 	 * tasks from numa_groups near each other in the system, and
2260 	 * untangle workloads from different sides of the system. This requires
2261 	 * searching down the hierarchy of node groups, recursively searching
2262 	 * inside the highest scoring group of nodes. The nodemask tricks
2263 	 * keep the complexity of the search down.
2264 	 */
2265 	nodes = node_online_map;
2266 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2267 		unsigned long max_faults = 0;
2268 		nodemask_t max_group = NODE_MASK_NONE;
2269 		int a, b;
2270 
2271 		/* Are there nodes at this distance from each other? */
2272 		if (!find_numa_distance(dist))
2273 			continue;
2274 
2275 		for_each_node_mask(a, nodes) {
2276 			unsigned long faults = 0;
2277 			nodemask_t this_group;
2278 			nodes_clear(this_group);
2279 
2280 			/* Sum group's NUMA faults; includes a==b case. */
2281 			for_each_node_mask(b, nodes) {
2282 				if (node_distance(a, b) < dist) {
2283 					faults += group_faults(p, b);
2284 					node_set(b, this_group);
2285 					node_clear(b, nodes);
2286 				}
2287 			}
2288 
2289 			/* Remember the top group. */
2290 			if (faults > max_faults) {
2291 				max_faults = faults;
2292 				max_group = this_group;
2293 				/*
2294 				 * subtle: at the smallest distance there is
2295 				 * just one node left in each "group", the
2296 				 * winner is the preferred nid.
2297 				 */
2298 				nid = a;
2299 			}
2300 		}
2301 		/* Next round, evaluate the nodes within max_group. */
2302 		if (!max_faults)
2303 			break;
2304 		nodes = max_group;
2305 	}
2306 	return nid;
2307 }
2308 
2309 static void task_numa_placement(struct task_struct *p)
2310 {
2311 	int seq, nid, max_nid = NUMA_NO_NODE;
2312 	unsigned long max_faults = 0;
2313 	unsigned long fault_types[2] = { 0, 0 };
2314 	unsigned long total_faults;
2315 	u64 runtime, period;
2316 	spinlock_t *group_lock = NULL;
2317 	struct numa_group *ng;
2318 
2319 	/*
2320 	 * The p->mm->numa_scan_seq field gets updated without
2321 	 * exclusive access. Use READ_ONCE() here to ensure
2322 	 * that the field is read in a single access:
2323 	 */
2324 	seq = READ_ONCE(p->mm->numa_scan_seq);
2325 	if (p->numa_scan_seq == seq)
2326 		return;
2327 	p->numa_scan_seq = seq;
2328 	p->numa_scan_period_max = task_scan_max(p);
2329 
2330 	total_faults = p->numa_faults_locality[0] +
2331 		       p->numa_faults_locality[1];
2332 	runtime = numa_get_avg_runtime(p, &period);
2333 
2334 	/* If the task is part of a group prevent parallel updates to group stats */
2335 	ng = deref_curr_numa_group(p);
2336 	if (ng) {
2337 		group_lock = &ng->lock;
2338 		spin_lock_irq(group_lock);
2339 	}
2340 
2341 	/* Find the node with the highest number of faults */
2342 	for_each_online_node(nid) {
2343 		/* Keep track of the offsets in numa_faults array */
2344 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2345 		unsigned long faults = 0, group_faults = 0;
2346 		int priv;
2347 
2348 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2349 			long diff, f_diff, f_weight;
2350 
2351 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2352 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2353 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2354 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2355 
2356 			/* Decay existing window, copy faults since last scan */
2357 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2358 			fault_types[priv] += p->numa_faults[membuf_idx];
2359 			p->numa_faults[membuf_idx] = 0;
2360 
2361 			/*
2362 			 * Normalize the faults_from, so all tasks in a group
2363 			 * count according to CPU use, instead of by the raw
2364 			 * number of faults. Tasks with little runtime have
2365 			 * little over-all impact on throughput, and thus their
2366 			 * faults are less important.
2367 			 */
2368 			f_weight = div64_u64(runtime << 16, period + 1);
2369 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2370 				   (total_faults + 1);
2371 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2372 			p->numa_faults[cpubuf_idx] = 0;
2373 
2374 			p->numa_faults[mem_idx] += diff;
2375 			p->numa_faults[cpu_idx] += f_diff;
2376 			faults += p->numa_faults[mem_idx];
2377 			p->total_numa_faults += diff;
2378 			if (ng) {
2379 				/*
2380 				 * safe because we can only change our own group
2381 				 *
2382 				 * mem_idx represents the offset for a given
2383 				 * nid and priv in a specific region because it
2384 				 * is at the beginning of the numa_faults array.
2385 				 */
2386 				ng->faults[mem_idx] += diff;
2387 				ng->faults[cpu_idx] += f_diff;
2388 				ng->total_faults += diff;
2389 				group_faults += ng->faults[mem_idx];
2390 			}
2391 		}
2392 
2393 		if (!ng) {
2394 			if (faults > max_faults) {
2395 				max_faults = faults;
2396 				max_nid = nid;
2397 			}
2398 		} else if (group_faults > max_faults) {
2399 			max_faults = group_faults;
2400 			max_nid = nid;
2401 		}
2402 	}
2403 
2404 	if (ng) {
2405 		numa_group_count_active_nodes(ng);
2406 		spin_unlock_irq(group_lock);
2407 		max_nid = preferred_group_nid(p, max_nid);
2408 	}
2409 
2410 	if (max_faults) {
2411 		/* Set the new preferred node */
2412 		if (max_nid != p->numa_preferred_nid)
2413 			sched_setnuma(p, max_nid);
2414 	}
2415 
2416 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2417 }
2418 
2419 static inline int get_numa_group(struct numa_group *grp)
2420 {
2421 	return refcount_inc_not_zero(&grp->refcount);
2422 }
2423 
2424 static inline void put_numa_group(struct numa_group *grp)
2425 {
2426 	if (refcount_dec_and_test(&grp->refcount))
2427 		kfree_rcu(grp, rcu);
2428 }
2429 
2430 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2431 			int *priv)
2432 {
2433 	struct numa_group *grp, *my_grp;
2434 	struct task_struct *tsk;
2435 	bool join = false;
2436 	int cpu = cpupid_to_cpu(cpupid);
2437 	int i;
2438 
2439 	if (unlikely(!deref_curr_numa_group(p))) {
2440 		unsigned int size = sizeof(struct numa_group) +
2441 				    NR_NUMA_HINT_FAULT_STATS *
2442 				    nr_node_ids * sizeof(unsigned long);
2443 
2444 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2445 		if (!grp)
2446 			return;
2447 
2448 		refcount_set(&grp->refcount, 1);
2449 		grp->active_nodes = 1;
2450 		grp->max_faults_cpu = 0;
2451 		spin_lock_init(&grp->lock);
2452 		grp->gid = p->pid;
2453 
2454 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2455 			grp->faults[i] = p->numa_faults[i];
2456 
2457 		grp->total_faults = p->total_numa_faults;
2458 
2459 		grp->nr_tasks++;
2460 		rcu_assign_pointer(p->numa_group, grp);
2461 	}
2462 
2463 	rcu_read_lock();
2464 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2465 
2466 	if (!cpupid_match_pid(tsk, cpupid))
2467 		goto no_join;
2468 
2469 	grp = rcu_dereference(tsk->numa_group);
2470 	if (!grp)
2471 		goto no_join;
2472 
2473 	my_grp = deref_curr_numa_group(p);
2474 	if (grp == my_grp)
2475 		goto no_join;
2476 
2477 	/*
2478 	 * Only join the other group if its bigger; if we're the bigger group,
2479 	 * the other task will join us.
2480 	 */
2481 	if (my_grp->nr_tasks > grp->nr_tasks)
2482 		goto no_join;
2483 
2484 	/*
2485 	 * Tie-break on the grp address.
2486 	 */
2487 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2488 		goto no_join;
2489 
2490 	/* Always join threads in the same process. */
2491 	if (tsk->mm == current->mm)
2492 		join = true;
2493 
2494 	/* Simple filter to avoid false positives due to PID collisions */
2495 	if (flags & TNF_SHARED)
2496 		join = true;
2497 
2498 	/* Update priv based on whether false sharing was detected */
2499 	*priv = !join;
2500 
2501 	if (join && !get_numa_group(grp))
2502 		goto no_join;
2503 
2504 	rcu_read_unlock();
2505 
2506 	if (!join)
2507 		return;
2508 
2509 	BUG_ON(irqs_disabled());
2510 	double_lock_irq(&my_grp->lock, &grp->lock);
2511 
2512 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2513 		my_grp->faults[i] -= p->numa_faults[i];
2514 		grp->faults[i] += p->numa_faults[i];
2515 	}
2516 	my_grp->total_faults -= p->total_numa_faults;
2517 	grp->total_faults += p->total_numa_faults;
2518 
2519 	my_grp->nr_tasks--;
2520 	grp->nr_tasks++;
2521 
2522 	spin_unlock(&my_grp->lock);
2523 	spin_unlock_irq(&grp->lock);
2524 
2525 	rcu_assign_pointer(p->numa_group, grp);
2526 
2527 	put_numa_group(my_grp);
2528 	return;
2529 
2530 no_join:
2531 	rcu_read_unlock();
2532 	return;
2533 }
2534 
2535 /*
2536  * Get rid of NUMA statistics associated with a task (either current or dead).
2537  * If @final is set, the task is dead and has reached refcount zero, so we can
2538  * safely free all relevant data structures. Otherwise, there might be
2539  * concurrent reads from places like load balancing and procfs, and we should
2540  * reset the data back to default state without freeing ->numa_faults.
2541  */
2542 void task_numa_free(struct task_struct *p, bool final)
2543 {
2544 	/* safe: p either is current or is being freed by current */
2545 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2546 	unsigned long *numa_faults = p->numa_faults;
2547 	unsigned long flags;
2548 	int i;
2549 
2550 	if (!numa_faults)
2551 		return;
2552 
2553 	if (grp) {
2554 		spin_lock_irqsave(&grp->lock, flags);
2555 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2556 			grp->faults[i] -= p->numa_faults[i];
2557 		grp->total_faults -= p->total_numa_faults;
2558 
2559 		grp->nr_tasks--;
2560 		spin_unlock_irqrestore(&grp->lock, flags);
2561 		RCU_INIT_POINTER(p->numa_group, NULL);
2562 		put_numa_group(grp);
2563 	}
2564 
2565 	if (final) {
2566 		p->numa_faults = NULL;
2567 		kfree(numa_faults);
2568 	} else {
2569 		p->total_numa_faults = 0;
2570 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2571 			numa_faults[i] = 0;
2572 	}
2573 }
2574 
2575 /*
2576  * Got a PROT_NONE fault for a page on @node.
2577  */
2578 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2579 {
2580 	struct task_struct *p = current;
2581 	bool migrated = flags & TNF_MIGRATED;
2582 	int cpu_node = task_node(current);
2583 	int local = !!(flags & TNF_FAULT_LOCAL);
2584 	struct numa_group *ng;
2585 	int priv;
2586 
2587 	if (!static_branch_likely(&sched_numa_balancing))
2588 		return;
2589 
2590 	/* for example, ksmd faulting in a user's mm */
2591 	if (!p->mm)
2592 		return;
2593 
2594 	/* Allocate buffer to track faults on a per-node basis */
2595 	if (unlikely(!p->numa_faults)) {
2596 		int size = sizeof(*p->numa_faults) *
2597 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2598 
2599 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2600 		if (!p->numa_faults)
2601 			return;
2602 
2603 		p->total_numa_faults = 0;
2604 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2605 	}
2606 
2607 	/*
2608 	 * First accesses are treated as private, otherwise consider accesses
2609 	 * to be private if the accessing pid has not changed
2610 	 */
2611 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2612 		priv = 1;
2613 	} else {
2614 		priv = cpupid_match_pid(p, last_cpupid);
2615 		if (!priv && !(flags & TNF_NO_GROUP))
2616 			task_numa_group(p, last_cpupid, flags, &priv);
2617 	}
2618 
2619 	/*
2620 	 * If a workload spans multiple NUMA nodes, a shared fault that
2621 	 * occurs wholly within the set of nodes that the workload is
2622 	 * actively using should be counted as local. This allows the
2623 	 * scan rate to slow down when a workload has settled down.
2624 	 */
2625 	ng = deref_curr_numa_group(p);
2626 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2627 				numa_is_active_node(cpu_node, ng) &&
2628 				numa_is_active_node(mem_node, ng))
2629 		local = 1;
2630 
2631 	/*
2632 	 * Retry to migrate task to preferred node periodically, in case it
2633 	 * previously failed, or the scheduler moved us.
2634 	 */
2635 	if (time_after(jiffies, p->numa_migrate_retry)) {
2636 		task_numa_placement(p);
2637 		numa_migrate_preferred(p);
2638 	}
2639 
2640 	if (migrated)
2641 		p->numa_pages_migrated += pages;
2642 	if (flags & TNF_MIGRATE_FAIL)
2643 		p->numa_faults_locality[2] += pages;
2644 
2645 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2646 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2647 	p->numa_faults_locality[local] += pages;
2648 }
2649 
2650 static void reset_ptenuma_scan(struct task_struct *p)
2651 {
2652 	/*
2653 	 * We only did a read acquisition of the mmap sem, so
2654 	 * p->mm->numa_scan_seq is written to without exclusive access
2655 	 * and the update is not guaranteed to be atomic. That's not
2656 	 * much of an issue though, since this is just used for
2657 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2658 	 * expensive, to avoid any form of compiler optimizations:
2659 	 */
2660 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2661 	p->mm->numa_scan_offset = 0;
2662 }
2663 
2664 /*
2665  * The expensive part of numa migration is done from task_work context.
2666  * Triggered from task_tick_numa().
2667  */
2668 static void task_numa_work(struct callback_head *work)
2669 {
2670 	unsigned long migrate, next_scan, now = jiffies;
2671 	struct task_struct *p = current;
2672 	struct mm_struct *mm = p->mm;
2673 	u64 runtime = p->se.sum_exec_runtime;
2674 	struct vm_area_struct *vma;
2675 	unsigned long start, end;
2676 	unsigned long nr_pte_updates = 0;
2677 	long pages, virtpages;
2678 
2679 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2680 
2681 	work->next = work;
2682 	/*
2683 	 * Who cares about NUMA placement when they're dying.
2684 	 *
2685 	 * NOTE: make sure not to dereference p->mm before this check,
2686 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2687 	 * without p->mm even though we still had it when we enqueued this
2688 	 * work.
2689 	 */
2690 	if (p->flags & PF_EXITING)
2691 		return;
2692 
2693 	if (!mm->numa_next_scan) {
2694 		mm->numa_next_scan = now +
2695 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2696 	}
2697 
2698 	/*
2699 	 * Enforce maximal scan/migration frequency..
2700 	 */
2701 	migrate = mm->numa_next_scan;
2702 	if (time_before(now, migrate))
2703 		return;
2704 
2705 	if (p->numa_scan_period == 0) {
2706 		p->numa_scan_period_max = task_scan_max(p);
2707 		p->numa_scan_period = task_scan_start(p);
2708 	}
2709 
2710 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2711 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2712 		return;
2713 
2714 	/*
2715 	 * Delay this task enough that another task of this mm will likely win
2716 	 * the next time around.
2717 	 */
2718 	p->node_stamp += 2 * TICK_NSEC;
2719 
2720 	start = mm->numa_scan_offset;
2721 	pages = sysctl_numa_balancing_scan_size;
2722 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2723 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2724 	if (!pages)
2725 		return;
2726 
2727 
2728 	if (!mmap_read_trylock(mm))
2729 		return;
2730 	vma = find_vma(mm, start);
2731 	if (!vma) {
2732 		reset_ptenuma_scan(p);
2733 		start = 0;
2734 		vma = mm->mmap;
2735 	}
2736 	for (; vma; vma = vma->vm_next) {
2737 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2738 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2739 			continue;
2740 		}
2741 
2742 		/*
2743 		 * Shared library pages mapped by multiple processes are not
2744 		 * migrated as it is expected they are cache replicated. Avoid
2745 		 * hinting faults in read-only file-backed mappings or the vdso
2746 		 * as migrating the pages will be of marginal benefit.
2747 		 */
2748 		if (!vma->vm_mm ||
2749 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2750 			continue;
2751 
2752 		/*
2753 		 * Skip inaccessible VMAs to avoid any confusion between
2754 		 * PROT_NONE and NUMA hinting ptes
2755 		 */
2756 		if (!vma_is_accessible(vma))
2757 			continue;
2758 
2759 		do {
2760 			start = max(start, vma->vm_start);
2761 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2762 			end = min(end, vma->vm_end);
2763 			nr_pte_updates = change_prot_numa(vma, start, end);
2764 
2765 			/*
2766 			 * Try to scan sysctl_numa_balancing_size worth of
2767 			 * hpages that have at least one present PTE that
2768 			 * is not already pte-numa. If the VMA contains
2769 			 * areas that are unused or already full of prot_numa
2770 			 * PTEs, scan up to virtpages, to skip through those
2771 			 * areas faster.
2772 			 */
2773 			if (nr_pte_updates)
2774 				pages -= (end - start) >> PAGE_SHIFT;
2775 			virtpages -= (end - start) >> PAGE_SHIFT;
2776 
2777 			start = end;
2778 			if (pages <= 0 || virtpages <= 0)
2779 				goto out;
2780 
2781 			cond_resched();
2782 		} while (end != vma->vm_end);
2783 	}
2784 
2785 out:
2786 	/*
2787 	 * It is possible to reach the end of the VMA list but the last few
2788 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2789 	 * would find the !migratable VMA on the next scan but not reset the
2790 	 * scanner to the start so check it now.
2791 	 */
2792 	if (vma)
2793 		mm->numa_scan_offset = start;
2794 	else
2795 		reset_ptenuma_scan(p);
2796 	mmap_read_unlock(mm);
2797 
2798 	/*
2799 	 * Make sure tasks use at least 32x as much time to run other code
2800 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2801 	 * Usually update_task_scan_period slows down scanning enough; on an
2802 	 * overloaded system we need to limit overhead on a per task basis.
2803 	 */
2804 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2805 		u64 diff = p->se.sum_exec_runtime - runtime;
2806 		p->node_stamp += 32 * diff;
2807 	}
2808 }
2809 
2810 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2811 {
2812 	int mm_users = 0;
2813 	struct mm_struct *mm = p->mm;
2814 
2815 	if (mm) {
2816 		mm_users = atomic_read(&mm->mm_users);
2817 		if (mm_users == 1) {
2818 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2819 			mm->numa_scan_seq = 0;
2820 		}
2821 	}
2822 	p->node_stamp			= 0;
2823 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2824 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2825 	/* Protect against double add, see task_tick_numa and task_numa_work */
2826 	p->numa_work.next		= &p->numa_work;
2827 	p->numa_faults			= NULL;
2828 	RCU_INIT_POINTER(p->numa_group, NULL);
2829 	p->last_task_numa_placement	= 0;
2830 	p->last_sum_exec_runtime	= 0;
2831 
2832 	init_task_work(&p->numa_work, task_numa_work);
2833 
2834 	/* New address space, reset the preferred nid */
2835 	if (!(clone_flags & CLONE_VM)) {
2836 		p->numa_preferred_nid = NUMA_NO_NODE;
2837 		return;
2838 	}
2839 
2840 	/*
2841 	 * New thread, keep existing numa_preferred_nid which should be copied
2842 	 * already by arch_dup_task_struct but stagger when scans start.
2843 	 */
2844 	if (mm) {
2845 		unsigned int delay;
2846 
2847 		delay = min_t(unsigned int, task_scan_max(current),
2848 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2849 		delay += 2 * TICK_NSEC;
2850 		p->node_stamp = delay;
2851 	}
2852 }
2853 
2854 /*
2855  * Drive the periodic memory faults..
2856  */
2857 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2858 {
2859 	struct callback_head *work = &curr->numa_work;
2860 	u64 period, now;
2861 
2862 	/*
2863 	 * We don't care about NUMA placement if we don't have memory.
2864 	 */
2865 	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2866 		return;
2867 
2868 	/*
2869 	 * Using runtime rather than walltime has the dual advantage that
2870 	 * we (mostly) drive the selection from busy threads and that the
2871 	 * task needs to have done some actual work before we bother with
2872 	 * NUMA placement.
2873 	 */
2874 	now = curr->se.sum_exec_runtime;
2875 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2876 
2877 	if (now > curr->node_stamp + period) {
2878 		if (!curr->node_stamp)
2879 			curr->numa_scan_period = task_scan_start(curr);
2880 		curr->node_stamp += period;
2881 
2882 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2883 			task_work_add(curr, work, TWA_RESUME);
2884 	}
2885 }
2886 
2887 static void update_scan_period(struct task_struct *p, int new_cpu)
2888 {
2889 	int src_nid = cpu_to_node(task_cpu(p));
2890 	int dst_nid = cpu_to_node(new_cpu);
2891 
2892 	if (!static_branch_likely(&sched_numa_balancing))
2893 		return;
2894 
2895 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2896 		return;
2897 
2898 	if (src_nid == dst_nid)
2899 		return;
2900 
2901 	/*
2902 	 * Allow resets if faults have been trapped before one scan
2903 	 * has completed. This is most likely due to a new task that
2904 	 * is pulled cross-node due to wakeups or load balancing.
2905 	 */
2906 	if (p->numa_scan_seq) {
2907 		/*
2908 		 * Avoid scan adjustments if moving to the preferred
2909 		 * node or if the task was not previously running on
2910 		 * the preferred node.
2911 		 */
2912 		if (dst_nid == p->numa_preferred_nid ||
2913 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2914 			src_nid != p->numa_preferred_nid))
2915 			return;
2916 	}
2917 
2918 	p->numa_scan_period = task_scan_start(p);
2919 }
2920 
2921 #else
2922 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2923 {
2924 }
2925 
2926 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2927 {
2928 }
2929 
2930 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2931 {
2932 }
2933 
2934 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2935 {
2936 }
2937 
2938 #endif /* CONFIG_NUMA_BALANCING */
2939 
2940 static void
2941 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2942 {
2943 	update_load_add(&cfs_rq->load, se->load.weight);
2944 #ifdef CONFIG_SMP
2945 	if (entity_is_task(se)) {
2946 		struct rq *rq = rq_of(cfs_rq);
2947 
2948 		account_numa_enqueue(rq, task_of(se));
2949 		list_add(&se->group_node, &rq->cfs_tasks);
2950 	}
2951 #endif
2952 	cfs_rq->nr_running++;
2953 	if (se_is_idle(se))
2954 		cfs_rq->idle_nr_running++;
2955 }
2956 
2957 static void
2958 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2959 {
2960 	update_load_sub(&cfs_rq->load, se->load.weight);
2961 #ifdef CONFIG_SMP
2962 	if (entity_is_task(se)) {
2963 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2964 		list_del_init(&se->group_node);
2965 	}
2966 #endif
2967 	cfs_rq->nr_running--;
2968 	if (se_is_idle(se))
2969 		cfs_rq->idle_nr_running--;
2970 }
2971 
2972 /*
2973  * Signed add and clamp on underflow.
2974  *
2975  * Explicitly do a load-store to ensure the intermediate value never hits
2976  * memory. This allows lockless observations without ever seeing the negative
2977  * values.
2978  */
2979 #define add_positive(_ptr, _val) do {                           \
2980 	typeof(_ptr) ptr = (_ptr);                              \
2981 	typeof(_val) val = (_val);                              \
2982 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2983 								\
2984 	res = var + val;                                        \
2985 								\
2986 	if (val < 0 && res > var)                               \
2987 		res = 0;                                        \
2988 								\
2989 	WRITE_ONCE(*ptr, res);                                  \
2990 } while (0)
2991 
2992 /*
2993  * Unsigned subtract and clamp on underflow.
2994  *
2995  * Explicitly do a load-store to ensure the intermediate value never hits
2996  * memory. This allows lockless observations without ever seeing the negative
2997  * values.
2998  */
2999 #define sub_positive(_ptr, _val) do {				\
3000 	typeof(_ptr) ptr = (_ptr);				\
3001 	typeof(*ptr) val = (_val);				\
3002 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3003 	res = var - val;					\
3004 	if (res > var)						\
3005 		res = 0;					\
3006 	WRITE_ONCE(*ptr, res);					\
3007 } while (0)
3008 
3009 /*
3010  * Remove and clamp on negative, from a local variable.
3011  *
3012  * A variant of sub_positive(), which does not use explicit load-store
3013  * and is thus optimized for local variable updates.
3014  */
3015 #define lsub_positive(_ptr, _val) do {				\
3016 	typeof(_ptr) ptr = (_ptr);				\
3017 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3018 } while (0)
3019 
3020 #ifdef CONFIG_SMP
3021 static inline void
3022 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3023 {
3024 	cfs_rq->avg.load_avg += se->avg.load_avg;
3025 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3026 }
3027 
3028 static inline void
3029 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3030 {
3031 	u32 divider = get_pelt_divider(&se->avg);
3032 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3033 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3034 }
3035 #else
3036 static inline void
3037 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3038 static inline void
3039 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3040 #endif
3041 
3042 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3043 			    unsigned long weight)
3044 {
3045 	if (se->on_rq) {
3046 		/* commit outstanding execution time */
3047 		if (cfs_rq->curr == se)
3048 			update_curr(cfs_rq);
3049 		update_load_sub(&cfs_rq->load, se->load.weight);
3050 	}
3051 	dequeue_load_avg(cfs_rq, se);
3052 
3053 	update_load_set(&se->load, weight);
3054 
3055 #ifdef CONFIG_SMP
3056 	do {
3057 		u32 divider = get_pelt_divider(&se->avg);
3058 
3059 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3060 	} while (0);
3061 #endif
3062 
3063 	enqueue_load_avg(cfs_rq, se);
3064 	if (se->on_rq)
3065 		update_load_add(&cfs_rq->load, se->load.weight);
3066 
3067 }
3068 
3069 void reweight_task(struct task_struct *p, int prio)
3070 {
3071 	struct sched_entity *se = &p->se;
3072 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3073 	struct load_weight *load = &se->load;
3074 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3075 
3076 	reweight_entity(cfs_rq, se, weight);
3077 	load->inv_weight = sched_prio_to_wmult[prio];
3078 }
3079 
3080 #ifdef CONFIG_FAIR_GROUP_SCHED
3081 #ifdef CONFIG_SMP
3082 /*
3083  * All this does is approximate the hierarchical proportion which includes that
3084  * global sum we all love to hate.
3085  *
3086  * That is, the weight of a group entity, is the proportional share of the
3087  * group weight based on the group runqueue weights. That is:
3088  *
3089  *                     tg->weight * grq->load.weight
3090  *   ge->load.weight = -----------------------------               (1)
3091  *                       \Sum grq->load.weight
3092  *
3093  * Now, because computing that sum is prohibitively expensive to compute (been
3094  * there, done that) we approximate it with this average stuff. The average
3095  * moves slower and therefore the approximation is cheaper and more stable.
3096  *
3097  * So instead of the above, we substitute:
3098  *
3099  *   grq->load.weight -> grq->avg.load_avg                         (2)
3100  *
3101  * which yields the following:
3102  *
3103  *                     tg->weight * grq->avg.load_avg
3104  *   ge->load.weight = ------------------------------              (3)
3105  *                             tg->load_avg
3106  *
3107  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3108  *
3109  * That is shares_avg, and it is right (given the approximation (2)).
3110  *
3111  * The problem with it is that because the average is slow -- it was designed
3112  * to be exactly that of course -- this leads to transients in boundary
3113  * conditions. In specific, the case where the group was idle and we start the
3114  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3115  * yielding bad latency etc..
3116  *
3117  * Now, in that special case (1) reduces to:
3118  *
3119  *                     tg->weight * grq->load.weight
3120  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3121  *                         grp->load.weight
3122  *
3123  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3124  *
3125  * So what we do is modify our approximation (3) to approach (4) in the (near)
3126  * UP case, like:
3127  *
3128  *   ge->load.weight =
3129  *
3130  *              tg->weight * grq->load.weight
3131  *     ---------------------------------------------------         (5)
3132  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3133  *
3134  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3135  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3136  *
3137  *
3138  *                     tg->weight * grq->load.weight
3139  *   ge->load.weight = -----------------------------		   (6)
3140  *                             tg_load_avg'
3141  *
3142  * Where:
3143  *
3144  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3145  *                  max(grq->load.weight, grq->avg.load_avg)
3146  *
3147  * And that is shares_weight and is icky. In the (near) UP case it approaches
3148  * (4) while in the normal case it approaches (3). It consistently
3149  * overestimates the ge->load.weight and therefore:
3150  *
3151  *   \Sum ge->load.weight >= tg->weight
3152  *
3153  * hence icky!
3154  */
3155 static long calc_group_shares(struct cfs_rq *cfs_rq)
3156 {
3157 	long tg_weight, tg_shares, load, shares;
3158 	struct task_group *tg = cfs_rq->tg;
3159 
3160 	tg_shares = READ_ONCE(tg->shares);
3161 
3162 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3163 
3164 	tg_weight = atomic_long_read(&tg->load_avg);
3165 
3166 	/* Ensure tg_weight >= load */
3167 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3168 	tg_weight += load;
3169 
3170 	shares = (tg_shares * load);
3171 	if (tg_weight)
3172 		shares /= tg_weight;
3173 
3174 	/*
3175 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3176 	 * of a group with small tg->shares value. It is a floor value which is
3177 	 * assigned as a minimum load.weight to the sched_entity representing
3178 	 * the group on a CPU.
3179 	 *
3180 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3181 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3182 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3183 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3184 	 * instead of 0.
3185 	 */
3186 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3187 }
3188 #endif /* CONFIG_SMP */
3189 
3190 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3191 
3192 /*
3193  * Recomputes the group entity based on the current state of its group
3194  * runqueue.
3195  */
3196 static void update_cfs_group(struct sched_entity *se)
3197 {
3198 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3199 	long shares;
3200 
3201 	if (!gcfs_rq)
3202 		return;
3203 
3204 	if (throttled_hierarchy(gcfs_rq))
3205 		return;
3206 
3207 #ifndef CONFIG_SMP
3208 	shares = READ_ONCE(gcfs_rq->tg->shares);
3209 
3210 	if (likely(se->load.weight == shares))
3211 		return;
3212 #else
3213 	shares   = calc_group_shares(gcfs_rq);
3214 #endif
3215 
3216 	reweight_entity(cfs_rq_of(se), se, shares);
3217 }
3218 
3219 #else /* CONFIG_FAIR_GROUP_SCHED */
3220 static inline void update_cfs_group(struct sched_entity *se)
3221 {
3222 }
3223 #endif /* CONFIG_FAIR_GROUP_SCHED */
3224 
3225 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3226 {
3227 	struct rq *rq = rq_of(cfs_rq);
3228 
3229 	if (&rq->cfs == cfs_rq) {
3230 		/*
3231 		 * There are a few boundary cases this might miss but it should
3232 		 * get called often enough that that should (hopefully) not be
3233 		 * a real problem.
3234 		 *
3235 		 * It will not get called when we go idle, because the idle
3236 		 * thread is a different class (!fair), nor will the utilization
3237 		 * number include things like RT tasks.
3238 		 *
3239 		 * As is, the util number is not freq-invariant (we'd have to
3240 		 * implement arch_scale_freq_capacity() for that).
3241 		 *
3242 		 * See cpu_util_cfs().
3243 		 */
3244 		cpufreq_update_util(rq, flags);
3245 	}
3246 }
3247 
3248 #ifdef CONFIG_SMP
3249 #ifdef CONFIG_FAIR_GROUP_SCHED
3250 /*
3251  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3252  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3253  * bottom-up, we only have to test whether the cfs_rq before us on the list
3254  * is our child.
3255  * If cfs_rq is not on the list, test whether a child needs its to be added to
3256  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3257  */
3258 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3259 {
3260 	struct cfs_rq *prev_cfs_rq;
3261 	struct list_head *prev;
3262 
3263 	if (cfs_rq->on_list) {
3264 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3265 	} else {
3266 		struct rq *rq = rq_of(cfs_rq);
3267 
3268 		prev = rq->tmp_alone_branch;
3269 	}
3270 
3271 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3272 
3273 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3274 }
3275 
3276 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3277 {
3278 	if (cfs_rq->load.weight)
3279 		return false;
3280 
3281 	if (cfs_rq->avg.load_sum)
3282 		return false;
3283 
3284 	if (cfs_rq->avg.util_sum)
3285 		return false;
3286 
3287 	if (cfs_rq->avg.runnable_sum)
3288 		return false;
3289 
3290 	if (child_cfs_rq_on_list(cfs_rq))
3291 		return false;
3292 
3293 	/*
3294 	 * _avg must be null when _sum are null because _avg = _sum / divider
3295 	 * Make sure that rounding and/or propagation of PELT values never
3296 	 * break this.
3297 	 */
3298 	SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3299 		      cfs_rq->avg.util_avg ||
3300 		      cfs_rq->avg.runnable_avg);
3301 
3302 	return true;
3303 }
3304 
3305 /**
3306  * update_tg_load_avg - update the tg's load avg
3307  * @cfs_rq: the cfs_rq whose avg changed
3308  *
3309  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3310  * However, because tg->load_avg is a global value there are performance
3311  * considerations.
3312  *
3313  * In order to avoid having to look at the other cfs_rq's, we use a
3314  * differential update where we store the last value we propagated. This in
3315  * turn allows skipping updates if the differential is 'small'.
3316  *
3317  * Updating tg's load_avg is necessary before update_cfs_share().
3318  */
3319 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3320 {
3321 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3322 
3323 	/*
3324 	 * No need to update load_avg for root_task_group as it is not used.
3325 	 */
3326 	if (cfs_rq->tg == &root_task_group)
3327 		return;
3328 
3329 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3330 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3331 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3332 	}
3333 }
3334 
3335 /*
3336  * Called within set_task_rq() right before setting a task's CPU. The
3337  * caller only guarantees p->pi_lock is held; no other assumptions,
3338  * including the state of rq->lock, should be made.
3339  */
3340 void set_task_rq_fair(struct sched_entity *se,
3341 		      struct cfs_rq *prev, struct cfs_rq *next)
3342 {
3343 	u64 p_last_update_time;
3344 	u64 n_last_update_time;
3345 
3346 	if (!sched_feat(ATTACH_AGE_LOAD))
3347 		return;
3348 
3349 	/*
3350 	 * We are supposed to update the task to "current" time, then its up to
3351 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3352 	 * getting what current time is, so simply throw away the out-of-date
3353 	 * time. This will result in the wakee task is less decayed, but giving
3354 	 * the wakee more load sounds not bad.
3355 	 */
3356 	if (!(se->avg.last_update_time && prev))
3357 		return;
3358 
3359 #ifndef CONFIG_64BIT
3360 	{
3361 		u64 p_last_update_time_copy;
3362 		u64 n_last_update_time_copy;
3363 
3364 		do {
3365 			p_last_update_time_copy = prev->load_last_update_time_copy;
3366 			n_last_update_time_copy = next->load_last_update_time_copy;
3367 
3368 			smp_rmb();
3369 
3370 			p_last_update_time = prev->avg.last_update_time;
3371 			n_last_update_time = next->avg.last_update_time;
3372 
3373 		} while (p_last_update_time != p_last_update_time_copy ||
3374 			 n_last_update_time != n_last_update_time_copy);
3375 	}
3376 #else
3377 	p_last_update_time = prev->avg.last_update_time;
3378 	n_last_update_time = next->avg.last_update_time;
3379 #endif
3380 	__update_load_avg_blocked_se(p_last_update_time, se);
3381 	se->avg.last_update_time = n_last_update_time;
3382 }
3383 
3384 
3385 /*
3386  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3387  * propagate its contribution. The key to this propagation is the invariant
3388  * that for each group:
3389  *
3390  *   ge->avg == grq->avg						(1)
3391  *
3392  * _IFF_ we look at the pure running and runnable sums. Because they
3393  * represent the very same entity, just at different points in the hierarchy.
3394  *
3395  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3396  * and simply copies the running/runnable sum over (but still wrong, because
3397  * the group entity and group rq do not have their PELT windows aligned).
3398  *
3399  * However, update_tg_cfs_load() is more complex. So we have:
3400  *
3401  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3402  *
3403  * And since, like util, the runnable part should be directly transferable,
3404  * the following would _appear_ to be the straight forward approach:
3405  *
3406  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3407  *
3408  * And per (1) we have:
3409  *
3410  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3411  *
3412  * Which gives:
3413  *
3414  *                      ge->load.weight * grq->avg.load_avg
3415  *   ge->avg.load_avg = -----------------------------------		(4)
3416  *                               grq->load.weight
3417  *
3418  * Except that is wrong!
3419  *
3420  * Because while for entities historical weight is not important and we
3421  * really only care about our future and therefore can consider a pure
3422  * runnable sum, runqueues can NOT do this.
3423  *
3424  * We specifically want runqueues to have a load_avg that includes
3425  * historical weights. Those represent the blocked load, the load we expect
3426  * to (shortly) return to us. This only works by keeping the weights as
3427  * integral part of the sum. We therefore cannot decompose as per (3).
3428  *
3429  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3430  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3431  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3432  * runnable section of these tasks overlap (or not). If they were to perfectly
3433  * align the rq as a whole would be runnable 2/3 of the time. If however we
3434  * always have at least 1 runnable task, the rq as a whole is always runnable.
3435  *
3436  * So we'll have to approximate.. :/
3437  *
3438  * Given the constraint:
3439  *
3440  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3441  *
3442  * We can construct a rule that adds runnable to a rq by assuming minimal
3443  * overlap.
3444  *
3445  * On removal, we'll assume each task is equally runnable; which yields:
3446  *
3447  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3448  *
3449  * XXX: only do this for the part of runnable > running ?
3450  *
3451  */
3452 
3453 static inline void
3454 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3455 {
3456 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3457 	u32 divider;
3458 
3459 	/* Nothing to update */
3460 	if (!delta)
3461 		return;
3462 
3463 	/*
3464 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3465 	 * See ___update_load_avg() for details.
3466 	 */
3467 	divider = get_pelt_divider(&cfs_rq->avg);
3468 
3469 	/* Set new sched_entity's utilization */
3470 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3471 	se->avg.util_sum = se->avg.util_avg * divider;
3472 
3473 	/* Update parent cfs_rq utilization */
3474 	add_positive(&cfs_rq->avg.util_avg, delta);
3475 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3476 }
3477 
3478 static inline void
3479 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3480 {
3481 	long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3482 	u32 divider;
3483 
3484 	/* Nothing to update */
3485 	if (!delta)
3486 		return;
3487 
3488 	/*
3489 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3490 	 * See ___update_load_avg() for details.
3491 	 */
3492 	divider = get_pelt_divider(&cfs_rq->avg);
3493 
3494 	/* Set new sched_entity's runnable */
3495 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3496 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3497 
3498 	/* Update parent cfs_rq runnable */
3499 	add_positive(&cfs_rq->avg.runnable_avg, delta);
3500 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3501 }
3502 
3503 static inline void
3504 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3505 {
3506 	long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3507 	unsigned long load_avg;
3508 	u64 load_sum = 0;
3509 	u32 divider;
3510 
3511 	if (!runnable_sum)
3512 		return;
3513 
3514 	gcfs_rq->prop_runnable_sum = 0;
3515 
3516 	/*
3517 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3518 	 * See ___update_load_avg() for details.
3519 	 */
3520 	divider = get_pelt_divider(&cfs_rq->avg);
3521 
3522 	if (runnable_sum >= 0) {
3523 		/*
3524 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3525 		 * the CPU is saturated running == runnable.
3526 		 */
3527 		runnable_sum += se->avg.load_sum;
3528 		runnable_sum = min_t(long, runnable_sum, divider);
3529 	} else {
3530 		/*
3531 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3532 		 * assuming all tasks are equally runnable.
3533 		 */
3534 		if (scale_load_down(gcfs_rq->load.weight)) {
3535 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3536 				scale_load_down(gcfs_rq->load.weight));
3537 		}
3538 
3539 		/* But make sure to not inflate se's runnable */
3540 		runnable_sum = min(se->avg.load_sum, load_sum);
3541 	}
3542 
3543 	/*
3544 	 * runnable_sum can't be lower than running_sum
3545 	 * Rescale running sum to be in the same range as runnable sum
3546 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3547 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3548 	 */
3549 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3550 	runnable_sum = max(runnable_sum, running_sum);
3551 
3552 	load_sum = (s64)se_weight(se) * runnable_sum;
3553 	load_avg = div_s64(load_sum, divider);
3554 
3555 	se->avg.load_sum = runnable_sum;
3556 
3557 	delta = load_avg - se->avg.load_avg;
3558 	if (!delta)
3559 		return;
3560 
3561 	se->avg.load_avg = load_avg;
3562 
3563 	add_positive(&cfs_rq->avg.load_avg, delta);
3564 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3565 }
3566 
3567 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3568 {
3569 	cfs_rq->propagate = 1;
3570 	cfs_rq->prop_runnable_sum += runnable_sum;
3571 }
3572 
3573 /* Update task and its cfs_rq load average */
3574 static inline int propagate_entity_load_avg(struct sched_entity *se)
3575 {
3576 	struct cfs_rq *cfs_rq, *gcfs_rq;
3577 
3578 	if (entity_is_task(se))
3579 		return 0;
3580 
3581 	gcfs_rq = group_cfs_rq(se);
3582 	if (!gcfs_rq->propagate)
3583 		return 0;
3584 
3585 	gcfs_rq->propagate = 0;
3586 
3587 	cfs_rq = cfs_rq_of(se);
3588 
3589 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3590 
3591 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3592 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3593 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3594 
3595 	trace_pelt_cfs_tp(cfs_rq);
3596 	trace_pelt_se_tp(se);
3597 
3598 	return 1;
3599 }
3600 
3601 /*
3602  * Check if we need to update the load and the utilization of a blocked
3603  * group_entity:
3604  */
3605 static inline bool skip_blocked_update(struct sched_entity *se)
3606 {
3607 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3608 
3609 	/*
3610 	 * If sched_entity still have not zero load or utilization, we have to
3611 	 * decay it:
3612 	 */
3613 	if (se->avg.load_avg || se->avg.util_avg)
3614 		return false;
3615 
3616 	/*
3617 	 * If there is a pending propagation, we have to update the load and
3618 	 * the utilization of the sched_entity:
3619 	 */
3620 	if (gcfs_rq->propagate)
3621 		return false;
3622 
3623 	/*
3624 	 * Otherwise, the load and the utilization of the sched_entity is
3625 	 * already zero and there is no pending propagation, so it will be a
3626 	 * waste of time to try to decay it:
3627 	 */
3628 	return true;
3629 }
3630 
3631 #else /* CONFIG_FAIR_GROUP_SCHED */
3632 
3633 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3634 
3635 static inline int propagate_entity_load_avg(struct sched_entity *se)
3636 {
3637 	return 0;
3638 }
3639 
3640 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3641 
3642 #endif /* CONFIG_FAIR_GROUP_SCHED */
3643 
3644 /**
3645  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3646  * @now: current time, as per cfs_rq_clock_pelt()
3647  * @cfs_rq: cfs_rq to update
3648  *
3649  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3650  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3651  * post_init_entity_util_avg().
3652  *
3653  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3654  *
3655  * Returns true if the load decayed or we removed load.
3656  *
3657  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3658  * call update_tg_load_avg() when this function returns true.
3659  */
3660 static inline int
3661 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3662 {
3663 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3664 	struct sched_avg *sa = &cfs_rq->avg;
3665 	int decayed = 0;
3666 
3667 	if (cfs_rq->removed.nr) {
3668 		unsigned long r;
3669 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3670 
3671 		raw_spin_lock(&cfs_rq->removed.lock);
3672 		swap(cfs_rq->removed.util_avg, removed_util);
3673 		swap(cfs_rq->removed.load_avg, removed_load);
3674 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3675 		cfs_rq->removed.nr = 0;
3676 		raw_spin_unlock(&cfs_rq->removed.lock);
3677 
3678 		r = removed_load;
3679 		sub_positive(&sa->load_avg, r);
3680 		sa->load_sum = sa->load_avg * divider;
3681 
3682 		r = removed_util;
3683 		sub_positive(&sa->util_avg, r);
3684 		sa->util_sum = sa->util_avg * divider;
3685 
3686 		r = removed_runnable;
3687 		sub_positive(&sa->runnable_avg, r);
3688 		sa->runnable_sum = sa->runnable_avg * divider;
3689 
3690 		/*
3691 		 * removed_runnable is the unweighted version of removed_load so we
3692 		 * can use it to estimate removed_load_sum.
3693 		 */
3694 		add_tg_cfs_propagate(cfs_rq,
3695 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3696 
3697 		decayed = 1;
3698 	}
3699 
3700 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3701 
3702 #ifndef CONFIG_64BIT
3703 	smp_wmb();
3704 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3705 #endif
3706 
3707 	return decayed;
3708 }
3709 
3710 /**
3711  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3712  * @cfs_rq: cfs_rq to attach to
3713  * @se: sched_entity to attach
3714  *
3715  * Must call update_cfs_rq_load_avg() before this, since we rely on
3716  * cfs_rq->avg.last_update_time being current.
3717  */
3718 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3719 {
3720 	/*
3721 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3722 	 * See ___update_load_avg() for details.
3723 	 */
3724 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3725 
3726 	/*
3727 	 * When we attach the @se to the @cfs_rq, we must align the decay
3728 	 * window because without that, really weird and wonderful things can
3729 	 * happen.
3730 	 *
3731 	 * XXX illustrate
3732 	 */
3733 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3734 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3735 
3736 	/*
3737 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3738 	 * period_contrib. This isn't strictly correct, but since we're
3739 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3740 	 * _sum a little.
3741 	 */
3742 	se->avg.util_sum = se->avg.util_avg * divider;
3743 
3744 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3745 
3746 	se->avg.load_sum = divider;
3747 	if (se_weight(se)) {
3748 		se->avg.load_sum =
3749 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3750 	}
3751 
3752 	enqueue_load_avg(cfs_rq, se);
3753 	cfs_rq->avg.util_avg += se->avg.util_avg;
3754 	cfs_rq->avg.util_sum += se->avg.util_sum;
3755 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3756 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3757 
3758 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3759 
3760 	cfs_rq_util_change(cfs_rq, 0);
3761 
3762 	trace_pelt_cfs_tp(cfs_rq);
3763 }
3764 
3765 /**
3766  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3767  * @cfs_rq: cfs_rq to detach from
3768  * @se: sched_entity to detach
3769  *
3770  * Must call update_cfs_rq_load_avg() before this, since we rely on
3771  * cfs_rq->avg.last_update_time being current.
3772  */
3773 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3774 {
3775 	/*
3776 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3777 	 * See ___update_load_avg() for details.
3778 	 */
3779 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3780 
3781 	dequeue_load_avg(cfs_rq, se);
3782 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3783 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3784 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3785 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3786 
3787 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3788 
3789 	cfs_rq_util_change(cfs_rq, 0);
3790 
3791 	trace_pelt_cfs_tp(cfs_rq);
3792 }
3793 
3794 /*
3795  * Optional action to be done while updating the load average
3796  */
3797 #define UPDATE_TG	0x1
3798 #define SKIP_AGE_LOAD	0x2
3799 #define DO_ATTACH	0x4
3800 
3801 /* Update task and its cfs_rq load average */
3802 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3803 {
3804 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3805 	int decayed;
3806 
3807 	/*
3808 	 * Track task load average for carrying it to new CPU after migrated, and
3809 	 * track group sched_entity load average for task_h_load calc in migration
3810 	 */
3811 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3812 		__update_load_avg_se(now, cfs_rq, se);
3813 
3814 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3815 	decayed |= propagate_entity_load_avg(se);
3816 
3817 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3818 
3819 		/*
3820 		 * DO_ATTACH means we're here from enqueue_entity().
3821 		 * !last_update_time means we've passed through
3822 		 * migrate_task_rq_fair() indicating we migrated.
3823 		 *
3824 		 * IOW we're enqueueing a task on a new CPU.
3825 		 */
3826 		attach_entity_load_avg(cfs_rq, se);
3827 		update_tg_load_avg(cfs_rq);
3828 
3829 	} else if (decayed) {
3830 		cfs_rq_util_change(cfs_rq, 0);
3831 
3832 		if (flags & UPDATE_TG)
3833 			update_tg_load_avg(cfs_rq);
3834 	}
3835 }
3836 
3837 #ifndef CONFIG_64BIT
3838 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3839 {
3840 	u64 last_update_time_copy;
3841 	u64 last_update_time;
3842 
3843 	do {
3844 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3845 		smp_rmb();
3846 		last_update_time = cfs_rq->avg.last_update_time;
3847 	} while (last_update_time != last_update_time_copy);
3848 
3849 	return last_update_time;
3850 }
3851 #else
3852 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3853 {
3854 	return cfs_rq->avg.last_update_time;
3855 }
3856 #endif
3857 
3858 /*
3859  * Synchronize entity load avg of dequeued entity without locking
3860  * the previous rq.
3861  */
3862 static void sync_entity_load_avg(struct sched_entity *se)
3863 {
3864 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3865 	u64 last_update_time;
3866 
3867 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3868 	__update_load_avg_blocked_se(last_update_time, se);
3869 }
3870 
3871 /*
3872  * Task first catches up with cfs_rq, and then subtract
3873  * itself from the cfs_rq (task must be off the queue now).
3874  */
3875 static void remove_entity_load_avg(struct sched_entity *se)
3876 {
3877 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3878 	unsigned long flags;
3879 
3880 	/*
3881 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3882 	 * post_init_entity_util_avg() which will have added things to the
3883 	 * cfs_rq, so we can remove unconditionally.
3884 	 */
3885 
3886 	sync_entity_load_avg(se);
3887 
3888 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3889 	++cfs_rq->removed.nr;
3890 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3891 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3892 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3893 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3894 }
3895 
3896 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3897 {
3898 	return cfs_rq->avg.runnable_avg;
3899 }
3900 
3901 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3902 {
3903 	return cfs_rq->avg.load_avg;
3904 }
3905 
3906 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3907 
3908 static inline unsigned long task_util(struct task_struct *p)
3909 {
3910 	return READ_ONCE(p->se.avg.util_avg);
3911 }
3912 
3913 static inline unsigned long _task_util_est(struct task_struct *p)
3914 {
3915 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3916 
3917 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3918 }
3919 
3920 static inline unsigned long task_util_est(struct task_struct *p)
3921 {
3922 	return max(task_util(p), _task_util_est(p));
3923 }
3924 
3925 #ifdef CONFIG_UCLAMP_TASK
3926 static inline unsigned long uclamp_task_util(struct task_struct *p)
3927 {
3928 	return clamp(task_util_est(p),
3929 		     uclamp_eff_value(p, UCLAMP_MIN),
3930 		     uclamp_eff_value(p, UCLAMP_MAX));
3931 }
3932 #else
3933 static inline unsigned long uclamp_task_util(struct task_struct *p)
3934 {
3935 	return task_util_est(p);
3936 }
3937 #endif
3938 
3939 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3940 				    struct task_struct *p)
3941 {
3942 	unsigned int enqueued;
3943 
3944 	if (!sched_feat(UTIL_EST))
3945 		return;
3946 
3947 	/* Update root cfs_rq's estimated utilization */
3948 	enqueued  = cfs_rq->avg.util_est.enqueued;
3949 	enqueued += _task_util_est(p);
3950 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3951 
3952 	trace_sched_util_est_cfs_tp(cfs_rq);
3953 }
3954 
3955 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3956 				    struct task_struct *p)
3957 {
3958 	unsigned int enqueued;
3959 
3960 	if (!sched_feat(UTIL_EST))
3961 		return;
3962 
3963 	/* Update root cfs_rq's estimated utilization */
3964 	enqueued  = cfs_rq->avg.util_est.enqueued;
3965 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3966 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3967 
3968 	trace_sched_util_est_cfs_tp(cfs_rq);
3969 }
3970 
3971 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
3972 
3973 /*
3974  * Check if a (signed) value is within a specified (unsigned) margin,
3975  * based on the observation that:
3976  *
3977  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3978  *
3979  * NOTE: this only works when value + margin < INT_MAX.
3980  */
3981 static inline bool within_margin(int value, int margin)
3982 {
3983 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3984 }
3985 
3986 static inline void util_est_update(struct cfs_rq *cfs_rq,
3987 				   struct task_struct *p,
3988 				   bool task_sleep)
3989 {
3990 	long last_ewma_diff, last_enqueued_diff;
3991 	struct util_est ue;
3992 
3993 	if (!sched_feat(UTIL_EST))
3994 		return;
3995 
3996 	/*
3997 	 * Skip update of task's estimated utilization when the task has not
3998 	 * yet completed an activation, e.g. being migrated.
3999 	 */
4000 	if (!task_sleep)
4001 		return;
4002 
4003 	/*
4004 	 * If the PELT values haven't changed since enqueue time,
4005 	 * skip the util_est update.
4006 	 */
4007 	ue = p->se.avg.util_est;
4008 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4009 		return;
4010 
4011 	last_enqueued_diff = ue.enqueued;
4012 
4013 	/*
4014 	 * Reset EWMA on utilization increases, the moving average is used only
4015 	 * to smooth utilization decreases.
4016 	 */
4017 	ue.enqueued = task_util(p);
4018 	if (sched_feat(UTIL_EST_FASTUP)) {
4019 		if (ue.ewma < ue.enqueued) {
4020 			ue.ewma = ue.enqueued;
4021 			goto done;
4022 		}
4023 	}
4024 
4025 	/*
4026 	 * Skip update of task's estimated utilization when its members are
4027 	 * already ~1% close to its last activation value.
4028 	 */
4029 	last_ewma_diff = ue.enqueued - ue.ewma;
4030 	last_enqueued_diff -= ue.enqueued;
4031 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4032 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4033 			goto done;
4034 
4035 		return;
4036 	}
4037 
4038 	/*
4039 	 * To avoid overestimation of actual task utilization, skip updates if
4040 	 * we cannot grant there is idle time in this CPU.
4041 	 */
4042 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4043 		return;
4044 
4045 	/*
4046 	 * Update Task's estimated utilization
4047 	 *
4048 	 * When *p completes an activation we can consolidate another sample
4049 	 * of the task size. This is done by storing the current PELT value
4050 	 * as ue.enqueued and by using this value to update the Exponential
4051 	 * Weighted Moving Average (EWMA):
4052 	 *
4053 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4054 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4055 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4056 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4057 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4058 	 *
4059 	 * Where 'w' is the weight of new samples, which is configured to be
4060 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4061 	 */
4062 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4063 	ue.ewma  += last_ewma_diff;
4064 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4065 done:
4066 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4067 	WRITE_ONCE(p->se.avg.util_est, ue);
4068 
4069 	trace_sched_util_est_se_tp(&p->se);
4070 }
4071 
4072 static inline int task_fits_capacity(struct task_struct *p,
4073 				     unsigned long capacity)
4074 {
4075 	return fits_capacity(uclamp_task_util(p), capacity);
4076 }
4077 
4078 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4079 {
4080 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4081 		return;
4082 
4083 	if (!p || p->nr_cpus_allowed == 1) {
4084 		rq->misfit_task_load = 0;
4085 		return;
4086 	}
4087 
4088 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4089 		rq->misfit_task_load = 0;
4090 		return;
4091 	}
4092 
4093 	/*
4094 	 * Make sure that misfit_task_load will not be null even if
4095 	 * task_h_load() returns 0.
4096 	 */
4097 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4098 }
4099 
4100 #else /* CONFIG_SMP */
4101 
4102 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4103 {
4104 	return true;
4105 }
4106 
4107 #define UPDATE_TG	0x0
4108 #define SKIP_AGE_LOAD	0x0
4109 #define DO_ATTACH	0x0
4110 
4111 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4112 {
4113 	cfs_rq_util_change(cfs_rq, 0);
4114 }
4115 
4116 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4117 
4118 static inline void
4119 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4120 static inline void
4121 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4122 
4123 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4124 {
4125 	return 0;
4126 }
4127 
4128 static inline void
4129 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4130 
4131 static inline void
4132 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4133 
4134 static inline void
4135 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4136 		bool task_sleep) {}
4137 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4138 
4139 #endif /* CONFIG_SMP */
4140 
4141 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4142 {
4143 #ifdef CONFIG_SCHED_DEBUG
4144 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4145 
4146 	if (d < 0)
4147 		d = -d;
4148 
4149 	if (d > 3*sysctl_sched_latency)
4150 		schedstat_inc(cfs_rq->nr_spread_over);
4151 #endif
4152 }
4153 
4154 static void
4155 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4156 {
4157 	u64 vruntime = cfs_rq->min_vruntime;
4158 
4159 	/*
4160 	 * The 'current' period is already promised to the current tasks,
4161 	 * however the extra weight of the new task will slow them down a
4162 	 * little, place the new task so that it fits in the slot that
4163 	 * stays open at the end.
4164 	 */
4165 	if (initial && sched_feat(START_DEBIT))
4166 		vruntime += sched_vslice(cfs_rq, se);
4167 
4168 	/* sleeps up to a single latency don't count. */
4169 	if (!initial) {
4170 		unsigned long thresh;
4171 
4172 		if (se_is_idle(se))
4173 			thresh = sysctl_sched_min_granularity;
4174 		else
4175 			thresh = sysctl_sched_latency;
4176 
4177 		/*
4178 		 * Halve their sleep time's effect, to allow
4179 		 * for a gentler effect of sleepers:
4180 		 */
4181 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4182 			thresh >>= 1;
4183 
4184 		vruntime -= thresh;
4185 	}
4186 
4187 	/* ensure we never gain time by being placed backwards. */
4188 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4189 }
4190 
4191 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4192 
4193 static inline bool cfs_bandwidth_used(void);
4194 
4195 /*
4196  * MIGRATION
4197  *
4198  *	dequeue
4199  *	  update_curr()
4200  *	    update_min_vruntime()
4201  *	  vruntime -= min_vruntime
4202  *
4203  *	enqueue
4204  *	  update_curr()
4205  *	    update_min_vruntime()
4206  *	  vruntime += min_vruntime
4207  *
4208  * this way the vruntime transition between RQs is done when both
4209  * min_vruntime are up-to-date.
4210  *
4211  * WAKEUP (remote)
4212  *
4213  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4214  *	  vruntime -= min_vruntime
4215  *
4216  *	enqueue
4217  *	  update_curr()
4218  *	    update_min_vruntime()
4219  *	  vruntime += min_vruntime
4220  *
4221  * this way we don't have the most up-to-date min_vruntime on the originating
4222  * CPU and an up-to-date min_vruntime on the destination CPU.
4223  */
4224 
4225 static void
4226 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4227 {
4228 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4229 	bool curr = cfs_rq->curr == se;
4230 
4231 	/*
4232 	 * If we're the current task, we must renormalise before calling
4233 	 * update_curr().
4234 	 */
4235 	if (renorm && curr)
4236 		se->vruntime += cfs_rq->min_vruntime;
4237 
4238 	update_curr(cfs_rq);
4239 
4240 	/*
4241 	 * Otherwise, renormalise after, such that we're placed at the current
4242 	 * moment in time, instead of some random moment in the past. Being
4243 	 * placed in the past could significantly boost this task to the
4244 	 * fairness detriment of existing tasks.
4245 	 */
4246 	if (renorm && !curr)
4247 		se->vruntime += cfs_rq->min_vruntime;
4248 
4249 	/*
4250 	 * When enqueuing a sched_entity, we must:
4251 	 *   - Update loads to have both entity and cfs_rq synced with now.
4252 	 *   - Add its load to cfs_rq->runnable_avg
4253 	 *   - For group_entity, update its weight to reflect the new share of
4254 	 *     its group cfs_rq
4255 	 *   - Add its new weight to cfs_rq->load.weight
4256 	 */
4257 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4258 	se_update_runnable(se);
4259 	update_cfs_group(se);
4260 	account_entity_enqueue(cfs_rq, se);
4261 
4262 	if (flags & ENQUEUE_WAKEUP)
4263 		place_entity(cfs_rq, se, 0);
4264 
4265 	check_schedstat_required();
4266 	update_stats_enqueue_fair(cfs_rq, se, flags);
4267 	check_spread(cfs_rq, se);
4268 	if (!curr)
4269 		__enqueue_entity(cfs_rq, se);
4270 	se->on_rq = 1;
4271 
4272 	/*
4273 	 * When bandwidth control is enabled, cfs might have been removed
4274 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4275 	 * add it unconditionally.
4276 	 */
4277 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4278 		list_add_leaf_cfs_rq(cfs_rq);
4279 
4280 	if (cfs_rq->nr_running == 1)
4281 		check_enqueue_throttle(cfs_rq);
4282 }
4283 
4284 static void __clear_buddies_last(struct sched_entity *se)
4285 {
4286 	for_each_sched_entity(se) {
4287 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4288 		if (cfs_rq->last != se)
4289 			break;
4290 
4291 		cfs_rq->last = NULL;
4292 	}
4293 }
4294 
4295 static void __clear_buddies_next(struct sched_entity *se)
4296 {
4297 	for_each_sched_entity(se) {
4298 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4299 		if (cfs_rq->next != se)
4300 			break;
4301 
4302 		cfs_rq->next = NULL;
4303 	}
4304 }
4305 
4306 static void __clear_buddies_skip(struct sched_entity *se)
4307 {
4308 	for_each_sched_entity(se) {
4309 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4310 		if (cfs_rq->skip != se)
4311 			break;
4312 
4313 		cfs_rq->skip = NULL;
4314 	}
4315 }
4316 
4317 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4318 {
4319 	if (cfs_rq->last == se)
4320 		__clear_buddies_last(se);
4321 
4322 	if (cfs_rq->next == se)
4323 		__clear_buddies_next(se);
4324 
4325 	if (cfs_rq->skip == se)
4326 		__clear_buddies_skip(se);
4327 }
4328 
4329 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4330 
4331 static void
4332 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4333 {
4334 	/*
4335 	 * Update run-time statistics of the 'current'.
4336 	 */
4337 	update_curr(cfs_rq);
4338 
4339 	/*
4340 	 * When dequeuing a sched_entity, we must:
4341 	 *   - Update loads to have both entity and cfs_rq synced with now.
4342 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4343 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4344 	 *   - For group entity, update its weight to reflect the new share
4345 	 *     of its group cfs_rq.
4346 	 */
4347 	update_load_avg(cfs_rq, se, UPDATE_TG);
4348 	se_update_runnable(se);
4349 
4350 	update_stats_dequeue_fair(cfs_rq, se, flags);
4351 
4352 	clear_buddies(cfs_rq, se);
4353 
4354 	if (se != cfs_rq->curr)
4355 		__dequeue_entity(cfs_rq, se);
4356 	se->on_rq = 0;
4357 	account_entity_dequeue(cfs_rq, se);
4358 
4359 	/*
4360 	 * Normalize after update_curr(); which will also have moved
4361 	 * min_vruntime if @se is the one holding it back. But before doing
4362 	 * update_min_vruntime() again, which will discount @se's position and
4363 	 * can move min_vruntime forward still more.
4364 	 */
4365 	if (!(flags & DEQUEUE_SLEEP))
4366 		se->vruntime -= cfs_rq->min_vruntime;
4367 
4368 	/* return excess runtime on last dequeue */
4369 	return_cfs_rq_runtime(cfs_rq);
4370 
4371 	update_cfs_group(se);
4372 
4373 	/*
4374 	 * Now advance min_vruntime if @se was the entity holding it back,
4375 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4376 	 * put back on, and if we advance min_vruntime, we'll be placed back
4377 	 * further than we started -- ie. we'll be penalized.
4378 	 */
4379 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4380 		update_min_vruntime(cfs_rq);
4381 }
4382 
4383 /*
4384  * Preempt the current task with a newly woken task if needed:
4385  */
4386 static void
4387 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4388 {
4389 	unsigned long ideal_runtime, delta_exec;
4390 	struct sched_entity *se;
4391 	s64 delta;
4392 
4393 	ideal_runtime = sched_slice(cfs_rq, curr);
4394 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4395 	if (delta_exec > ideal_runtime) {
4396 		resched_curr(rq_of(cfs_rq));
4397 		/*
4398 		 * The current task ran long enough, ensure it doesn't get
4399 		 * re-elected due to buddy favours.
4400 		 */
4401 		clear_buddies(cfs_rq, curr);
4402 		return;
4403 	}
4404 
4405 	/*
4406 	 * Ensure that a task that missed wakeup preemption by a
4407 	 * narrow margin doesn't have to wait for a full slice.
4408 	 * This also mitigates buddy induced latencies under load.
4409 	 */
4410 	if (delta_exec < sysctl_sched_min_granularity)
4411 		return;
4412 
4413 	se = __pick_first_entity(cfs_rq);
4414 	delta = curr->vruntime - se->vruntime;
4415 
4416 	if (delta < 0)
4417 		return;
4418 
4419 	if (delta > ideal_runtime)
4420 		resched_curr(rq_of(cfs_rq));
4421 }
4422 
4423 static void
4424 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4425 {
4426 	clear_buddies(cfs_rq, se);
4427 
4428 	/* 'current' is not kept within the tree. */
4429 	if (se->on_rq) {
4430 		/*
4431 		 * Any task has to be enqueued before it get to execute on
4432 		 * a CPU. So account for the time it spent waiting on the
4433 		 * runqueue.
4434 		 */
4435 		update_stats_wait_end_fair(cfs_rq, se);
4436 		__dequeue_entity(cfs_rq, se);
4437 		update_load_avg(cfs_rq, se, UPDATE_TG);
4438 	}
4439 
4440 	update_stats_curr_start(cfs_rq, se);
4441 	cfs_rq->curr = se;
4442 
4443 	/*
4444 	 * Track our maximum slice length, if the CPU's load is at
4445 	 * least twice that of our own weight (i.e. dont track it
4446 	 * when there are only lesser-weight tasks around):
4447 	 */
4448 	if (schedstat_enabled() &&
4449 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4450 		struct sched_statistics *stats;
4451 
4452 		stats = __schedstats_from_se(se);
4453 		__schedstat_set(stats->slice_max,
4454 				max((u64)stats->slice_max,
4455 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4456 	}
4457 
4458 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4459 }
4460 
4461 static int
4462 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4463 
4464 /*
4465  * Pick the next process, keeping these things in mind, in this order:
4466  * 1) keep things fair between processes/task groups
4467  * 2) pick the "next" process, since someone really wants that to run
4468  * 3) pick the "last" process, for cache locality
4469  * 4) do not run the "skip" process, if something else is available
4470  */
4471 static struct sched_entity *
4472 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4473 {
4474 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4475 	struct sched_entity *se;
4476 
4477 	/*
4478 	 * If curr is set we have to see if its left of the leftmost entity
4479 	 * still in the tree, provided there was anything in the tree at all.
4480 	 */
4481 	if (!left || (curr && entity_before(curr, left)))
4482 		left = curr;
4483 
4484 	se = left; /* ideally we run the leftmost entity */
4485 
4486 	/*
4487 	 * Avoid running the skip buddy, if running something else can
4488 	 * be done without getting too unfair.
4489 	 */
4490 	if (cfs_rq->skip && cfs_rq->skip == se) {
4491 		struct sched_entity *second;
4492 
4493 		if (se == curr) {
4494 			second = __pick_first_entity(cfs_rq);
4495 		} else {
4496 			second = __pick_next_entity(se);
4497 			if (!second || (curr && entity_before(curr, second)))
4498 				second = curr;
4499 		}
4500 
4501 		if (second && wakeup_preempt_entity(second, left) < 1)
4502 			se = second;
4503 	}
4504 
4505 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4506 		/*
4507 		 * Someone really wants this to run. If it's not unfair, run it.
4508 		 */
4509 		se = cfs_rq->next;
4510 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4511 		/*
4512 		 * Prefer last buddy, try to return the CPU to a preempted task.
4513 		 */
4514 		se = cfs_rq->last;
4515 	}
4516 
4517 	return se;
4518 }
4519 
4520 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4521 
4522 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4523 {
4524 	/*
4525 	 * If still on the runqueue then deactivate_task()
4526 	 * was not called and update_curr() has to be done:
4527 	 */
4528 	if (prev->on_rq)
4529 		update_curr(cfs_rq);
4530 
4531 	/* throttle cfs_rqs exceeding runtime */
4532 	check_cfs_rq_runtime(cfs_rq);
4533 
4534 	check_spread(cfs_rq, prev);
4535 
4536 	if (prev->on_rq) {
4537 		update_stats_wait_start_fair(cfs_rq, prev);
4538 		/* Put 'current' back into the tree. */
4539 		__enqueue_entity(cfs_rq, prev);
4540 		/* in !on_rq case, update occurred at dequeue */
4541 		update_load_avg(cfs_rq, prev, 0);
4542 	}
4543 	cfs_rq->curr = NULL;
4544 }
4545 
4546 static void
4547 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4548 {
4549 	/*
4550 	 * Update run-time statistics of the 'current'.
4551 	 */
4552 	update_curr(cfs_rq);
4553 
4554 	/*
4555 	 * Ensure that runnable average is periodically updated.
4556 	 */
4557 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4558 	update_cfs_group(curr);
4559 
4560 #ifdef CONFIG_SCHED_HRTICK
4561 	/*
4562 	 * queued ticks are scheduled to match the slice, so don't bother
4563 	 * validating it and just reschedule.
4564 	 */
4565 	if (queued) {
4566 		resched_curr(rq_of(cfs_rq));
4567 		return;
4568 	}
4569 	/*
4570 	 * don't let the period tick interfere with the hrtick preemption
4571 	 */
4572 	if (!sched_feat(DOUBLE_TICK) &&
4573 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4574 		return;
4575 #endif
4576 
4577 	if (cfs_rq->nr_running > 1)
4578 		check_preempt_tick(cfs_rq, curr);
4579 }
4580 
4581 
4582 /**************************************************
4583  * CFS bandwidth control machinery
4584  */
4585 
4586 #ifdef CONFIG_CFS_BANDWIDTH
4587 
4588 #ifdef CONFIG_JUMP_LABEL
4589 static struct static_key __cfs_bandwidth_used;
4590 
4591 static inline bool cfs_bandwidth_used(void)
4592 {
4593 	return static_key_false(&__cfs_bandwidth_used);
4594 }
4595 
4596 void cfs_bandwidth_usage_inc(void)
4597 {
4598 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4599 }
4600 
4601 void cfs_bandwidth_usage_dec(void)
4602 {
4603 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4604 }
4605 #else /* CONFIG_JUMP_LABEL */
4606 static bool cfs_bandwidth_used(void)
4607 {
4608 	return true;
4609 }
4610 
4611 void cfs_bandwidth_usage_inc(void) {}
4612 void cfs_bandwidth_usage_dec(void) {}
4613 #endif /* CONFIG_JUMP_LABEL */
4614 
4615 /*
4616  * default period for cfs group bandwidth.
4617  * default: 0.1s, units: nanoseconds
4618  */
4619 static inline u64 default_cfs_period(void)
4620 {
4621 	return 100000000ULL;
4622 }
4623 
4624 static inline u64 sched_cfs_bandwidth_slice(void)
4625 {
4626 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4627 }
4628 
4629 /*
4630  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4631  * directly instead of rq->clock to avoid adding additional synchronization
4632  * around rq->lock.
4633  *
4634  * requires cfs_b->lock
4635  */
4636 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4637 {
4638 	s64 runtime;
4639 
4640 	if (unlikely(cfs_b->quota == RUNTIME_INF))
4641 		return;
4642 
4643 	cfs_b->runtime += cfs_b->quota;
4644 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
4645 	if (runtime > 0) {
4646 		cfs_b->burst_time += runtime;
4647 		cfs_b->nr_burst++;
4648 	}
4649 
4650 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4651 	cfs_b->runtime_snap = cfs_b->runtime;
4652 }
4653 
4654 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4655 {
4656 	return &tg->cfs_bandwidth;
4657 }
4658 
4659 /* returns 0 on failure to allocate runtime */
4660 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4661 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4662 {
4663 	u64 min_amount, amount = 0;
4664 
4665 	lockdep_assert_held(&cfs_b->lock);
4666 
4667 	/* note: this is a positive sum as runtime_remaining <= 0 */
4668 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4669 
4670 	if (cfs_b->quota == RUNTIME_INF)
4671 		amount = min_amount;
4672 	else {
4673 		start_cfs_bandwidth(cfs_b);
4674 
4675 		if (cfs_b->runtime > 0) {
4676 			amount = min(cfs_b->runtime, min_amount);
4677 			cfs_b->runtime -= amount;
4678 			cfs_b->idle = 0;
4679 		}
4680 	}
4681 
4682 	cfs_rq->runtime_remaining += amount;
4683 
4684 	return cfs_rq->runtime_remaining > 0;
4685 }
4686 
4687 /* returns 0 on failure to allocate runtime */
4688 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4689 {
4690 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4691 	int ret;
4692 
4693 	raw_spin_lock(&cfs_b->lock);
4694 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4695 	raw_spin_unlock(&cfs_b->lock);
4696 
4697 	return ret;
4698 }
4699 
4700 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4701 {
4702 	/* dock delta_exec before expiring quota (as it could span periods) */
4703 	cfs_rq->runtime_remaining -= delta_exec;
4704 
4705 	if (likely(cfs_rq->runtime_remaining > 0))
4706 		return;
4707 
4708 	if (cfs_rq->throttled)
4709 		return;
4710 	/*
4711 	 * if we're unable to extend our runtime we resched so that the active
4712 	 * hierarchy can be throttled
4713 	 */
4714 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4715 		resched_curr(rq_of(cfs_rq));
4716 }
4717 
4718 static __always_inline
4719 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4720 {
4721 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4722 		return;
4723 
4724 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4725 }
4726 
4727 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4728 {
4729 	return cfs_bandwidth_used() && cfs_rq->throttled;
4730 }
4731 
4732 /* check whether cfs_rq, or any parent, is throttled */
4733 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4734 {
4735 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4736 }
4737 
4738 /*
4739  * Ensure that neither of the group entities corresponding to src_cpu or
4740  * dest_cpu are members of a throttled hierarchy when performing group
4741  * load-balance operations.
4742  */
4743 static inline int throttled_lb_pair(struct task_group *tg,
4744 				    int src_cpu, int dest_cpu)
4745 {
4746 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4747 
4748 	src_cfs_rq = tg->cfs_rq[src_cpu];
4749 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4750 
4751 	return throttled_hierarchy(src_cfs_rq) ||
4752 	       throttled_hierarchy(dest_cfs_rq);
4753 }
4754 
4755 static int tg_unthrottle_up(struct task_group *tg, void *data)
4756 {
4757 	struct rq *rq = data;
4758 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4759 
4760 	cfs_rq->throttle_count--;
4761 	if (!cfs_rq->throttle_count) {
4762 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4763 					     cfs_rq->throttled_clock_task;
4764 
4765 		/* Add cfs_rq with load or one or more already running entities to the list */
4766 		if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
4767 			list_add_leaf_cfs_rq(cfs_rq);
4768 	}
4769 
4770 	return 0;
4771 }
4772 
4773 static int tg_throttle_down(struct task_group *tg, void *data)
4774 {
4775 	struct rq *rq = data;
4776 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4777 
4778 	/* group is entering throttled state, stop time */
4779 	if (!cfs_rq->throttle_count) {
4780 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4781 		list_del_leaf_cfs_rq(cfs_rq);
4782 	}
4783 	cfs_rq->throttle_count++;
4784 
4785 	return 0;
4786 }
4787 
4788 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4789 {
4790 	struct rq *rq = rq_of(cfs_rq);
4791 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4792 	struct sched_entity *se;
4793 	long task_delta, idle_task_delta, dequeue = 1;
4794 
4795 	raw_spin_lock(&cfs_b->lock);
4796 	/* This will start the period timer if necessary */
4797 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4798 		/*
4799 		 * We have raced with bandwidth becoming available, and if we
4800 		 * actually throttled the timer might not unthrottle us for an
4801 		 * entire period. We additionally needed to make sure that any
4802 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4803 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4804 		 * for 1ns of runtime rather than just check cfs_b.
4805 		 */
4806 		dequeue = 0;
4807 	} else {
4808 		list_add_tail_rcu(&cfs_rq->throttled_list,
4809 				  &cfs_b->throttled_cfs_rq);
4810 	}
4811 	raw_spin_unlock(&cfs_b->lock);
4812 
4813 	if (!dequeue)
4814 		return false;  /* Throttle no longer required. */
4815 
4816 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4817 
4818 	/* freeze hierarchy runnable averages while throttled */
4819 	rcu_read_lock();
4820 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4821 	rcu_read_unlock();
4822 
4823 	task_delta = cfs_rq->h_nr_running;
4824 	idle_task_delta = cfs_rq->idle_h_nr_running;
4825 	for_each_sched_entity(se) {
4826 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4827 		/* throttled entity or throttle-on-deactivate */
4828 		if (!se->on_rq)
4829 			goto done;
4830 
4831 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4832 
4833 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4834 			idle_task_delta = cfs_rq->h_nr_running;
4835 
4836 		qcfs_rq->h_nr_running -= task_delta;
4837 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4838 
4839 		if (qcfs_rq->load.weight) {
4840 			/* Avoid re-evaluating load for this entity: */
4841 			se = parent_entity(se);
4842 			break;
4843 		}
4844 	}
4845 
4846 	for_each_sched_entity(se) {
4847 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4848 		/* throttled entity or throttle-on-deactivate */
4849 		if (!se->on_rq)
4850 			goto done;
4851 
4852 		update_load_avg(qcfs_rq, se, 0);
4853 		se_update_runnable(se);
4854 
4855 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4856 			idle_task_delta = cfs_rq->h_nr_running;
4857 
4858 		qcfs_rq->h_nr_running -= task_delta;
4859 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4860 	}
4861 
4862 	/* At this point se is NULL and we are at root level*/
4863 	sub_nr_running(rq, task_delta);
4864 
4865 done:
4866 	/*
4867 	 * Note: distribution will already see us throttled via the
4868 	 * throttled-list.  rq->lock protects completion.
4869 	 */
4870 	cfs_rq->throttled = 1;
4871 	cfs_rq->throttled_clock = rq_clock(rq);
4872 	return true;
4873 }
4874 
4875 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4876 {
4877 	struct rq *rq = rq_of(cfs_rq);
4878 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4879 	struct sched_entity *se;
4880 	long task_delta, idle_task_delta;
4881 
4882 	se = cfs_rq->tg->se[cpu_of(rq)];
4883 
4884 	cfs_rq->throttled = 0;
4885 
4886 	update_rq_clock(rq);
4887 
4888 	raw_spin_lock(&cfs_b->lock);
4889 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4890 	list_del_rcu(&cfs_rq->throttled_list);
4891 	raw_spin_unlock(&cfs_b->lock);
4892 
4893 	/* update hierarchical throttle state */
4894 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4895 
4896 	/* Nothing to run but something to decay (on_list)? Complete the branch */
4897 	if (!cfs_rq->load.weight) {
4898 		if (cfs_rq->on_list)
4899 			goto unthrottle_throttle;
4900 		return;
4901 	}
4902 
4903 	task_delta = cfs_rq->h_nr_running;
4904 	idle_task_delta = cfs_rq->idle_h_nr_running;
4905 	for_each_sched_entity(se) {
4906 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4907 
4908 		if (se->on_rq)
4909 			break;
4910 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
4911 
4912 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4913 			idle_task_delta = cfs_rq->h_nr_running;
4914 
4915 		qcfs_rq->h_nr_running += task_delta;
4916 		qcfs_rq->idle_h_nr_running += idle_task_delta;
4917 
4918 		/* end evaluation on encountering a throttled cfs_rq */
4919 		if (cfs_rq_throttled(qcfs_rq))
4920 			goto unthrottle_throttle;
4921 	}
4922 
4923 	for_each_sched_entity(se) {
4924 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4925 
4926 		update_load_avg(qcfs_rq, se, UPDATE_TG);
4927 		se_update_runnable(se);
4928 
4929 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4930 			idle_task_delta = cfs_rq->h_nr_running;
4931 
4932 		qcfs_rq->h_nr_running += task_delta;
4933 		qcfs_rq->idle_h_nr_running += idle_task_delta;
4934 
4935 		/* end evaluation on encountering a throttled cfs_rq */
4936 		if (cfs_rq_throttled(qcfs_rq))
4937 			goto unthrottle_throttle;
4938 
4939 		/*
4940 		 * One parent has been throttled and cfs_rq removed from the
4941 		 * list. Add it back to not break the leaf list.
4942 		 */
4943 		if (throttled_hierarchy(qcfs_rq))
4944 			list_add_leaf_cfs_rq(qcfs_rq);
4945 	}
4946 
4947 	/* At this point se is NULL and we are at root level*/
4948 	add_nr_running(rq, task_delta);
4949 
4950 unthrottle_throttle:
4951 	/*
4952 	 * The cfs_rq_throttled() breaks in the above iteration can result in
4953 	 * incomplete leaf list maintenance, resulting in triggering the
4954 	 * assertion below.
4955 	 */
4956 	for_each_sched_entity(se) {
4957 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4958 
4959 		if (list_add_leaf_cfs_rq(qcfs_rq))
4960 			break;
4961 	}
4962 
4963 	assert_list_leaf_cfs_rq(rq);
4964 
4965 	/* Determine whether we need to wake up potentially idle CPU: */
4966 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4967 		resched_curr(rq);
4968 }
4969 
4970 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4971 {
4972 	struct cfs_rq *cfs_rq;
4973 	u64 runtime, remaining = 1;
4974 
4975 	rcu_read_lock();
4976 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4977 				throttled_list) {
4978 		struct rq *rq = rq_of(cfs_rq);
4979 		struct rq_flags rf;
4980 
4981 		rq_lock_irqsave(rq, &rf);
4982 		if (!cfs_rq_throttled(cfs_rq))
4983 			goto next;
4984 
4985 		/* By the above check, this should never be true */
4986 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4987 
4988 		raw_spin_lock(&cfs_b->lock);
4989 		runtime = -cfs_rq->runtime_remaining + 1;
4990 		if (runtime > cfs_b->runtime)
4991 			runtime = cfs_b->runtime;
4992 		cfs_b->runtime -= runtime;
4993 		remaining = cfs_b->runtime;
4994 		raw_spin_unlock(&cfs_b->lock);
4995 
4996 		cfs_rq->runtime_remaining += runtime;
4997 
4998 		/* we check whether we're throttled above */
4999 		if (cfs_rq->runtime_remaining > 0)
5000 			unthrottle_cfs_rq(cfs_rq);
5001 
5002 next:
5003 		rq_unlock_irqrestore(rq, &rf);
5004 
5005 		if (!remaining)
5006 			break;
5007 	}
5008 	rcu_read_unlock();
5009 }
5010 
5011 /*
5012  * Responsible for refilling a task_group's bandwidth and unthrottling its
5013  * cfs_rqs as appropriate. If there has been no activity within the last
5014  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5015  * used to track this state.
5016  */
5017 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5018 {
5019 	int throttled;
5020 
5021 	/* no need to continue the timer with no bandwidth constraint */
5022 	if (cfs_b->quota == RUNTIME_INF)
5023 		goto out_deactivate;
5024 
5025 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5026 	cfs_b->nr_periods += overrun;
5027 
5028 	/* Refill extra burst quota even if cfs_b->idle */
5029 	__refill_cfs_bandwidth_runtime(cfs_b);
5030 
5031 	/*
5032 	 * idle depends on !throttled (for the case of a large deficit), and if
5033 	 * we're going inactive then everything else can be deferred
5034 	 */
5035 	if (cfs_b->idle && !throttled)
5036 		goto out_deactivate;
5037 
5038 	if (!throttled) {
5039 		/* mark as potentially idle for the upcoming period */
5040 		cfs_b->idle = 1;
5041 		return 0;
5042 	}
5043 
5044 	/* account preceding periods in which throttling occurred */
5045 	cfs_b->nr_throttled += overrun;
5046 
5047 	/*
5048 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5049 	 */
5050 	while (throttled && cfs_b->runtime > 0) {
5051 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5052 		/* we can't nest cfs_b->lock while distributing bandwidth */
5053 		distribute_cfs_runtime(cfs_b);
5054 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5055 
5056 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5057 	}
5058 
5059 	/*
5060 	 * While we are ensured activity in the period following an
5061 	 * unthrottle, this also covers the case in which the new bandwidth is
5062 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5063 	 * timer to remain active while there are any throttled entities.)
5064 	 */
5065 	cfs_b->idle = 0;
5066 
5067 	return 0;
5068 
5069 out_deactivate:
5070 	return 1;
5071 }
5072 
5073 /* a cfs_rq won't donate quota below this amount */
5074 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5075 /* minimum remaining period time to redistribute slack quota */
5076 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5077 /* how long we wait to gather additional slack before distributing */
5078 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5079 
5080 /*
5081  * Are we near the end of the current quota period?
5082  *
5083  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5084  * hrtimer base being cleared by hrtimer_start. In the case of
5085  * migrate_hrtimers, base is never cleared, so we are fine.
5086  */
5087 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5088 {
5089 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5090 	s64 remaining;
5091 
5092 	/* if the call-back is running a quota refresh is already occurring */
5093 	if (hrtimer_callback_running(refresh_timer))
5094 		return 1;
5095 
5096 	/* is a quota refresh about to occur? */
5097 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5098 	if (remaining < (s64)min_expire)
5099 		return 1;
5100 
5101 	return 0;
5102 }
5103 
5104 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5105 {
5106 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5107 
5108 	/* if there's a quota refresh soon don't bother with slack */
5109 	if (runtime_refresh_within(cfs_b, min_left))
5110 		return;
5111 
5112 	/* don't push forwards an existing deferred unthrottle */
5113 	if (cfs_b->slack_started)
5114 		return;
5115 	cfs_b->slack_started = true;
5116 
5117 	hrtimer_start(&cfs_b->slack_timer,
5118 			ns_to_ktime(cfs_bandwidth_slack_period),
5119 			HRTIMER_MODE_REL);
5120 }
5121 
5122 /* we know any runtime found here is valid as update_curr() precedes return */
5123 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5124 {
5125 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5126 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5127 
5128 	if (slack_runtime <= 0)
5129 		return;
5130 
5131 	raw_spin_lock(&cfs_b->lock);
5132 	if (cfs_b->quota != RUNTIME_INF) {
5133 		cfs_b->runtime += slack_runtime;
5134 
5135 		/* we are under rq->lock, defer unthrottling using a timer */
5136 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5137 		    !list_empty(&cfs_b->throttled_cfs_rq))
5138 			start_cfs_slack_bandwidth(cfs_b);
5139 	}
5140 	raw_spin_unlock(&cfs_b->lock);
5141 
5142 	/* even if it's not valid for return we don't want to try again */
5143 	cfs_rq->runtime_remaining -= slack_runtime;
5144 }
5145 
5146 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5147 {
5148 	if (!cfs_bandwidth_used())
5149 		return;
5150 
5151 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5152 		return;
5153 
5154 	__return_cfs_rq_runtime(cfs_rq);
5155 }
5156 
5157 /*
5158  * This is done with a timer (instead of inline with bandwidth return) since
5159  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5160  */
5161 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5162 {
5163 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5164 	unsigned long flags;
5165 
5166 	/* confirm we're still not at a refresh boundary */
5167 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5168 	cfs_b->slack_started = false;
5169 
5170 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5171 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5172 		return;
5173 	}
5174 
5175 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5176 		runtime = cfs_b->runtime;
5177 
5178 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5179 
5180 	if (!runtime)
5181 		return;
5182 
5183 	distribute_cfs_runtime(cfs_b);
5184 }
5185 
5186 /*
5187  * When a group wakes up we want to make sure that its quota is not already
5188  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5189  * runtime as update_curr() throttling can not trigger until it's on-rq.
5190  */
5191 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5192 {
5193 	if (!cfs_bandwidth_used())
5194 		return;
5195 
5196 	/* an active group must be handled by the update_curr()->put() path */
5197 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5198 		return;
5199 
5200 	/* ensure the group is not already throttled */
5201 	if (cfs_rq_throttled(cfs_rq))
5202 		return;
5203 
5204 	/* update runtime allocation */
5205 	account_cfs_rq_runtime(cfs_rq, 0);
5206 	if (cfs_rq->runtime_remaining <= 0)
5207 		throttle_cfs_rq(cfs_rq);
5208 }
5209 
5210 static void sync_throttle(struct task_group *tg, int cpu)
5211 {
5212 	struct cfs_rq *pcfs_rq, *cfs_rq;
5213 
5214 	if (!cfs_bandwidth_used())
5215 		return;
5216 
5217 	if (!tg->parent)
5218 		return;
5219 
5220 	cfs_rq = tg->cfs_rq[cpu];
5221 	pcfs_rq = tg->parent->cfs_rq[cpu];
5222 
5223 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5224 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5225 }
5226 
5227 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5228 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5229 {
5230 	if (!cfs_bandwidth_used())
5231 		return false;
5232 
5233 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5234 		return false;
5235 
5236 	/*
5237 	 * it's possible for a throttled entity to be forced into a running
5238 	 * state (e.g. set_curr_task), in this case we're finished.
5239 	 */
5240 	if (cfs_rq_throttled(cfs_rq))
5241 		return true;
5242 
5243 	return throttle_cfs_rq(cfs_rq);
5244 }
5245 
5246 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5247 {
5248 	struct cfs_bandwidth *cfs_b =
5249 		container_of(timer, struct cfs_bandwidth, slack_timer);
5250 
5251 	do_sched_cfs_slack_timer(cfs_b);
5252 
5253 	return HRTIMER_NORESTART;
5254 }
5255 
5256 extern const u64 max_cfs_quota_period;
5257 
5258 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5259 {
5260 	struct cfs_bandwidth *cfs_b =
5261 		container_of(timer, struct cfs_bandwidth, period_timer);
5262 	unsigned long flags;
5263 	int overrun;
5264 	int idle = 0;
5265 	int count = 0;
5266 
5267 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5268 	for (;;) {
5269 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5270 		if (!overrun)
5271 			break;
5272 
5273 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5274 
5275 		if (++count > 3) {
5276 			u64 new, old = ktime_to_ns(cfs_b->period);
5277 
5278 			/*
5279 			 * Grow period by a factor of 2 to avoid losing precision.
5280 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5281 			 * to fail.
5282 			 */
5283 			new = old * 2;
5284 			if (new < max_cfs_quota_period) {
5285 				cfs_b->period = ns_to_ktime(new);
5286 				cfs_b->quota *= 2;
5287 				cfs_b->burst *= 2;
5288 
5289 				pr_warn_ratelimited(
5290 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5291 					smp_processor_id(),
5292 					div_u64(new, NSEC_PER_USEC),
5293 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5294 			} else {
5295 				pr_warn_ratelimited(
5296 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5297 					smp_processor_id(),
5298 					div_u64(old, NSEC_PER_USEC),
5299 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5300 			}
5301 
5302 			/* reset count so we don't come right back in here */
5303 			count = 0;
5304 		}
5305 	}
5306 	if (idle)
5307 		cfs_b->period_active = 0;
5308 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5309 
5310 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5311 }
5312 
5313 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5314 {
5315 	raw_spin_lock_init(&cfs_b->lock);
5316 	cfs_b->runtime = 0;
5317 	cfs_b->quota = RUNTIME_INF;
5318 	cfs_b->period = ns_to_ktime(default_cfs_period());
5319 	cfs_b->burst = 0;
5320 
5321 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5322 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5323 	cfs_b->period_timer.function = sched_cfs_period_timer;
5324 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5325 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5326 	cfs_b->slack_started = false;
5327 }
5328 
5329 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5330 {
5331 	cfs_rq->runtime_enabled = 0;
5332 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5333 }
5334 
5335 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5336 {
5337 	lockdep_assert_held(&cfs_b->lock);
5338 
5339 	if (cfs_b->period_active)
5340 		return;
5341 
5342 	cfs_b->period_active = 1;
5343 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5344 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5345 }
5346 
5347 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5348 {
5349 	/* init_cfs_bandwidth() was not called */
5350 	if (!cfs_b->throttled_cfs_rq.next)
5351 		return;
5352 
5353 	hrtimer_cancel(&cfs_b->period_timer);
5354 	hrtimer_cancel(&cfs_b->slack_timer);
5355 }
5356 
5357 /*
5358  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5359  *
5360  * The race is harmless, since modifying bandwidth settings of unhooked group
5361  * bits doesn't do much.
5362  */
5363 
5364 /* cpu online callback */
5365 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5366 {
5367 	struct task_group *tg;
5368 
5369 	lockdep_assert_rq_held(rq);
5370 
5371 	rcu_read_lock();
5372 	list_for_each_entry_rcu(tg, &task_groups, list) {
5373 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5374 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5375 
5376 		raw_spin_lock(&cfs_b->lock);
5377 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5378 		raw_spin_unlock(&cfs_b->lock);
5379 	}
5380 	rcu_read_unlock();
5381 }
5382 
5383 /* cpu offline callback */
5384 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5385 {
5386 	struct task_group *tg;
5387 
5388 	lockdep_assert_rq_held(rq);
5389 
5390 	rcu_read_lock();
5391 	list_for_each_entry_rcu(tg, &task_groups, list) {
5392 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5393 
5394 		if (!cfs_rq->runtime_enabled)
5395 			continue;
5396 
5397 		/*
5398 		 * clock_task is not advancing so we just need to make sure
5399 		 * there's some valid quota amount
5400 		 */
5401 		cfs_rq->runtime_remaining = 1;
5402 		/*
5403 		 * Offline rq is schedulable till CPU is completely disabled
5404 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5405 		 */
5406 		cfs_rq->runtime_enabled = 0;
5407 
5408 		if (cfs_rq_throttled(cfs_rq))
5409 			unthrottle_cfs_rq(cfs_rq);
5410 	}
5411 	rcu_read_unlock();
5412 }
5413 
5414 #else /* CONFIG_CFS_BANDWIDTH */
5415 
5416 static inline bool cfs_bandwidth_used(void)
5417 {
5418 	return false;
5419 }
5420 
5421 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5422 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5423 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5424 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5425 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5426 
5427 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5428 {
5429 	return 0;
5430 }
5431 
5432 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5433 {
5434 	return 0;
5435 }
5436 
5437 static inline int throttled_lb_pair(struct task_group *tg,
5438 				    int src_cpu, int dest_cpu)
5439 {
5440 	return 0;
5441 }
5442 
5443 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5444 
5445 #ifdef CONFIG_FAIR_GROUP_SCHED
5446 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5447 #endif
5448 
5449 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5450 {
5451 	return NULL;
5452 }
5453 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5454 static inline void update_runtime_enabled(struct rq *rq) {}
5455 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5456 
5457 #endif /* CONFIG_CFS_BANDWIDTH */
5458 
5459 /**************************************************
5460  * CFS operations on tasks:
5461  */
5462 
5463 #ifdef CONFIG_SCHED_HRTICK
5464 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5465 {
5466 	struct sched_entity *se = &p->se;
5467 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5468 
5469 	SCHED_WARN_ON(task_rq(p) != rq);
5470 
5471 	if (rq->cfs.h_nr_running > 1) {
5472 		u64 slice = sched_slice(cfs_rq, se);
5473 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5474 		s64 delta = slice - ran;
5475 
5476 		if (delta < 0) {
5477 			if (task_current(rq, p))
5478 				resched_curr(rq);
5479 			return;
5480 		}
5481 		hrtick_start(rq, delta);
5482 	}
5483 }
5484 
5485 /*
5486  * called from enqueue/dequeue and updates the hrtick when the
5487  * current task is from our class and nr_running is low enough
5488  * to matter.
5489  */
5490 static void hrtick_update(struct rq *rq)
5491 {
5492 	struct task_struct *curr = rq->curr;
5493 
5494 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5495 		return;
5496 
5497 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5498 		hrtick_start_fair(rq, curr);
5499 }
5500 #else /* !CONFIG_SCHED_HRTICK */
5501 static inline void
5502 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5503 {
5504 }
5505 
5506 static inline void hrtick_update(struct rq *rq)
5507 {
5508 }
5509 #endif
5510 
5511 #ifdef CONFIG_SMP
5512 static inline bool cpu_overutilized(int cpu)
5513 {
5514 	return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu));
5515 }
5516 
5517 static inline void update_overutilized_status(struct rq *rq)
5518 {
5519 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5520 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5521 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5522 	}
5523 }
5524 #else
5525 static inline void update_overutilized_status(struct rq *rq) { }
5526 #endif
5527 
5528 /* Runqueue only has SCHED_IDLE tasks enqueued */
5529 static int sched_idle_rq(struct rq *rq)
5530 {
5531 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5532 			rq->nr_running);
5533 }
5534 
5535 /*
5536  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
5537  * of idle_nr_running, which does not consider idle descendants of normal
5538  * entities.
5539  */
5540 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
5541 {
5542 	return cfs_rq->nr_running &&
5543 		cfs_rq->nr_running == cfs_rq->idle_nr_running;
5544 }
5545 
5546 #ifdef CONFIG_SMP
5547 static int sched_idle_cpu(int cpu)
5548 {
5549 	return sched_idle_rq(cpu_rq(cpu));
5550 }
5551 #endif
5552 
5553 /*
5554  * The enqueue_task method is called before nr_running is
5555  * increased. Here we update the fair scheduling stats and
5556  * then put the task into the rbtree:
5557  */
5558 static void
5559 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5560 {
5561 	struct cfs_rq *cfs_rq;
5562 	struct sched_entity *se = &p->se;
5563 	int idle_h_nr_running = task_has_idle_policy(p);
5564 	int task_new = !(flags & ENQUEUE_WAKEUP);
5565 
5566 	/*
5567 	 * The code below (indirectly) updates schedutil which looks at
5568 	 * the cfs_rq utilization to select a frequency.
5569 	 * Let's add the task's estimated utilization to the cfs_rq's
5570 	 * estimated utilization, before we update schedutil.
5571 	 */
5572 	util_est_enqueue(&rq->cfs, p);
5573 
5574 	/*
5575 	 * If in_iowait is set, the code below may not trigger any cpufreq
5576 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5577 	 * passed.
5578 	 */
5579 	if (p->in_iowait)
5580 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5581 
5582 	for_each_sched_entity(se) {
5583 		if (se->on_rq)
5584 			break;
5585 		cfs_rq = cfs_rq_of(se);
5586 		enqueue_entity(cfs_rq, se, flags);
5587 
5588 		cfs_rq->h_nr_running++;
5589 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5590 
5591 		if (cfs_rq_is_idle(cfs_rq))
5592 			idle_h_nr_running = 1;
5593 
5594 		/* end evaluation on encountering a throttled cfs_rq */
5595 		if (cfs_rq_throttled(cfs_rq))
5596 			goto enqueue_throttle;
5597 
5598 		flags = ENQUEUE_WAKEUP;
5599 	}
5600 
5601 	for_each_sched_entity(se) {
5602 		cfs_rq = cfs_rq_of(se);
5603 
5604 		update_load_avg(cfs_rq, se, UPDATE_TG);
5605 		se_update_runnable(se);
5606 		update_cfs_group(se);
5607 
5608 		cfs_rq->h_nr_running++;
5609 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5610 
5611 		if (cfs_rq_is_idle(cfs_rq))
5612 			idle_h_nr_running = 1;
5613 
5614 		/* end evaluation on encountering a throttled cfs_rq */
5615 		if (cfs_rq_throttled(cfs_rq))
5616 			goto enqueue_throttle;
5617 
5618                /*
5619                 * One parent has been throttled and cfs_rq removed from the
5620                 * list. Add it back to not break the leaf list.
5621                 */
5622                if (throttled_hierarchy(cfs_rq))
5623                        list_add_leaf_cfs_rq(cfs_rq);
5624 	}
5625 
5626 	/* At this point se is NULL and we are at root level*/
5627 	add_nr_running(rq, 1);
5628 
5629 	/*
5630 	 * Since new tasks are assigned an initial util_avg equal to
5631 	 * half of the spare capacity of their CPU, tiny tasks have the
5632 	 * ability to cross the overutilized threshold, which will
5633 	 * result in the load balancer ruining all the task placement
5634 	 * done by EAS. As a way to mitigate that effect, do not account
5635 	 * for the first enqueue operation of new tasks during the
5636 	 * overutilized flag detection.
5637 	 *
5638 	 * A better way of solving this problem would be to wait for
5639 	 * the PELT signals of tasks to converge before taking them
5640 	 * into account, but that is not straightforward to implement,
5641 	 * and the following generally works well enough in practice.
5642 	 */
5643 	if (!task_new)
5644 		update_overutilized_status(rq);
5645 
5646 enqueue_throttle:
5647 	if (cfs_bandwidth_used()) {
5648 		/*
5649 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5650 		 * breaks in the above iteration can result in incomplete
5651 		 * leaf list maintenance, resulting in triggering the assertion
5652 		 * below.
5653 		 */
5654 		for_each_sched_entity(se) {
5655 			cfs_rq = cfs_rq_of(se);
5656 
5657 			if (list_add_leaf_cfs_rq(cfs_rq))
5658 				break;
5659 		}
5660 	}
5661 
5662 	assert_list_leaf_cfs_rq(rq);
5663 
5664 	hrtick_update(rq);
5665 }
5666 
5667 static void set_next_buddy(struct sched_entity *se);
5668 
5669 /*
5670  * The dequeue_task method is called before nr_running is
5671  * decreased. We remove the task from the rbtree and
5672  * update the fair scheduling stats:
5673  */
5674 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5675 {
5676 	struct cfs_rq *cfs_rq;
5677 	struct sched_entity *se = &p->se;
5678 	int task_sleep = flags & DEQUEUE_SLEEP;
5679 	int idle_h_nr_running = task_has_idle_policy(p);
5680 	bool was_sched_idle = sched_idle_rq(rq);
5681 
5682 	util_est_dequeue(&rq->cfs, p);
5683 
5684 	for_each_sched_entity(se) {
5685 		cfs_rq = cfs_rq_of(se);
5686 		dequeue_entity(cfs_rq, se, flags);
5687 
5688 		cfs_rq->h_nr_running--;
5689 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5690 
5691 		if (cfs_rq_is_idle(cfs_rq))
5692 			idle_h_nr_running = 1;
5693 
5694 		/* end evaluation on encountering a throttled cfs_rq */
5695 		if (cfs_rq_throttled(cfs_rq))
5696 			goto dequeue_throttle;
5697 
5698 		/* Don't dequeue parent if it has other entities besides us */
5699 		if (cfs_rq->load.weight) {
5700 			/* Avoid re-evaluating load for this entity: */
5701 			se = parent_entity(se);
5702 			/*
5703 			 * Bias pick_next to pick a task from this cfs_rq, as
5704 			 * p is sleeping when it is within its sched_slice.
5705 			 */
5706 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5707 				set_next_buddy(se);
5708 			break;
5709 		}
5710 		flags |= DEQUEUE_SLEEP;
5711 	}
5712 
5713 	for_each_sched_entity(se) {
5714 		cfs_rq = cfs_rq_of(se);
5715 
5716 		update_load_avg(cfs_rq, se, UPDATE_TG);
5717 		se_update_runnable(se);
5718 		update_cfs_group(se);
5719 
5720 		cfs_rq->h_nr_running--;
5721 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5722 
5723 		if (cfs_rq_is_idle(cfs_rq))
5724 			idle_h_nr_running = 1;
5725 
5726 		/* end evaluation on encountering a throttled cfs_rq */
5727 		if (cfs_rq_throttled(cfs_rq))
5728 			goto dequeue_throttle;
5729 
5730 	}
5731 
5732 	/* At this point se is NULL and we are at root level*/
5733 	sub_nr_running(rq, 1);
5734 
5735 	/* balance early to pull high priority tasks */
5736 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5737 		rq->next_balance = jiffies;
5738 
5739 dequeue_throttle:
5740 	util_est_update(&rq->cfs, p, task_sleep);
5741 	hrtick_update(rq);
5742 }
5743 
5744 #ifdef CONFIG_SMP
5745 
5746 /* Working cpumask for: load_balance, load_balance_newidle. */
5747 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5748 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5749 
5750 #ifdef CONFIG_NO_HZ_COMMON
5751 
5752 static struct {
5753 	cpumask_var_t idle_cpus_mask;
5754 	atomic_t nr_cpus;
5755 	int has_blocked;		/* Idle CPUS has blocked load */
5756 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
5757 	unsigned long next_balance;     /* in jiffy units */
5758 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5759 } nohz ____cacheline_aligned;
5760 
5761 #endif /* CONFIG_NO_HZ_COMMON */
5762 
5763 static unsigned long cpu_load(struct rq *rq)
5764 {
5765 	return cfs_rq_load_avg(&rq->cfs);
5766 }
5767 
5768 /*
5769  * cpu_load_without - compute CPU load without any contributions from *p
5770  * @cpu: the CPU which load is requested
5771  * @p: the task which load should be discounted
5772  *
5773  * The load of a CPU is defined by the load of tasks currently enqueued on that
5774  * CPU as well as tasks which are currently sleeping after an execution on that
5775  * CPU.
5776  *
5777  * This method returns the load of the specified CPU by discounting the load of
5778  * the specified task, whenever the task is currently contributing to the CPU
5779  * load.
5780  */
5781 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5782 {
5783 	struct cfs_rq *cfs_rq;
5784 	unsigned int load;
5785 
5786 	/* Task has no contribution or is new */
5787 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5788 		return cpu_load(rq);
5789 
5790 	cfs_rq = &rq->cfs;
5791 	load = READ_ONCE(cfs_rq->avg.load_avg);
5792 
5793 	/* Discount task's util from CPU's util */
5794 	lsub_positive(&load, task_h_load(p));
5795 
5796 	return load;
5797 }
5798 
5799 static unsigned long cpu_runnable(struct rq *rq)
5800 {
5801 	return cfs_rq_runnable_avg(&rq->cfs);
5802 }
5803 
5804 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5805 {
5806 	struct cfs_rq *cfs_rq;
5807 	unsigned int runnable;
5808 
5809 	/* Task has no contribution or is new */
5810 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5811 		return cpu_runnable(rq);
5812 
5813 	cfs_rq = &rq->cfs;
5814 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5815 
5816 	/* Discount task's runnable from CPU's runnable */
5817 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5818 
5819 	return runnable;
5820 }
5821 
5822 static unsigned long capacity_of(int cpu)
5823 {
5824 	return cpu_rq(cpu)->cpu_capacity;
5825 }
5826 
5827 static void record_wakee(struct task_struct *p)
5828 {
5829 	/*
5830 	 * Only decay a single time; tasks that have less then 1 wakeup per
5831 	 * jiffy will not have built up many flips.
5832 	 */
5833 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5834 		current->wakee_flips >>= 1;
5835 		current->wakee_flip_decay_ts = jiffies;
5836 	}
5837 
5838 	if (current->last_wakee != p) {
5839 		current->last_wakee = p;
5840 		current->wakee_flips++;
5841 	}
5842 }
5843 
5844 /*
5845  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5846  *
5847  * A waker of many should wake a different task than the one last awakened
5848  * at a frequency roughly N times higher than one of its wakees.
5849  *
5850  * In order to determine whether we should let the load spread vs consolidating
5851  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5852  * partner, and a factor of lls_size higher frequency in the other.
5853  *
5854  * With both conditions met, we can be relatively sure that the relationship is
5855  * non-monogamous, with partner count exceeding socket size.
5856  *
5857  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5858  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5859  * socket size.
5860  */
5861 static int wake_wide(struct task_struct *p)
5862 {
5863 	unsigned int master = current->wakee_flips;
5864 	unsigned int slave = p->wakee_flips;
5865 	int factor = __this_cpu_read(sd_llc_size);
5866 
5867 	if (master < slave)
5868 		swap(master, slave);
5869 	if (slave < factor || master < slave * factor)
5870 		return 0;
5871 	return 1;
5872 }
5873 
5874 /*
5875  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5876  * soonest. For the purpose of speed we only consider the waking and previous
5877  * CPU.
5878  *
5879  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5880  *			cache-affine and is (or	will be) idle.
5881  *
5882  * wake_affine_weight() - considers the weight to reflect the average
5883  *			  scheduling latency of the CPUs. This seems to work
5884  *			  for the overloaded case.
5885  */
5886 static int
5887 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5888 {
5889 	/*
5890 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5891 	 * context. Only allow the move if cache is shared. Otherwise an
5892 	 * interrupt intensive workload could force all tasks onto one
5893 	 * node depending on the IO topology or IRQ affinity settings.
5894 	 *
5895 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5896 	 * There is no guarantee that the cache hot data from an interrupt
5897 	 * is more important than cache hot data on the prev_cpu and from
5898 	 * a cpufreq perspective, it's better to have higher utilisation
5899 	 * on one CPU.
5900 	 */
5901 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5902 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5903 
5904 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5905 		return this_cpu;
5906 
5907 	if (available_idle_cpu(prev_cpu))
5908 		return prev_cpu;
5909 
5910 	return nr_cpumask_bits;
5911 }
5912 
5913 static int
5914 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5915 		   int this_cpu, int prev_cpu, int sync)
5916 {
5917 	s64 this_eff_load, prev_eff_load;
5918 	unsigned long task_load;
5919 
5920 	this_eff_load = cpu_load(cpu_rq(this_cpu));
5921 
5922 	if (sync) {
5923 		unsigned long current_load = task_h_load(current);
5924 
5925 		if (current_load > this_eff_load)
5926 			return this_cpu;
5927 
5928 		this_eff_load -= current_load;
5929 	}
5930 
5931 	task_load = task_h_load(p);
5932 
5933 	this_eff_load += task_load;
5934 	if (sched_feat(WA_BIAS))
5935 		this_eff_load *= 100;
5936 	this_eff_load *= capacity_of(prev_cpu);
5937 
5938 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5939 	prev_eff_load -= task_load;
5940 	if (sched_feat(WA_BIAS))
5941 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5942 	prev_eff_load *= capacity_of(this_cpu);
5943 
5944 	/*
5945 	 * If sync, adjust the weight of prev_eff_load such that if
5946 	 * prev_eff == this_eff that select_idle_sibling() will consider
5947 	 * stacking the wakee on top of the waker if no other CPU is
5948 	 * idle.
5949 	 */
5950 	if (sync)
5951 		prev_eff_load += 1;
5952 
5953 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5954 }
5955 
5956 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5957 		       int this_cpu, int prev_cpu, int sync)
5958 {
5959 	int target = nr_cpumask_bits;
5960 
5961 	if (sched_feat(WA_IDLE))
5962 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5963 
5964 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5965 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5966 
5967 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
5968 	if (target == nr_cpumask_bits)
5969 		return prev_cpu;
5970 
5971 	schedstat_inc(sd->ttwu_move_affine);
5972 	schedstat_inc(p->stats.nr_wakeups_affine);
5973 	return target;
5974 }
5975 
5976 static struct sched_group *
5977 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5978 
5979 /*
5980  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5981  */
5982 static int
5983 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5984 {
5985 	unsigned long load, min_load = ULONG_MAX;
5986 	unsigned int min_exit_latency = UINT_MAX;
5987 	u64 latest_idle_timestamp = 0;
5988 	int least_loaded_cpu = this_cpu;
5989 	int shallowest_idle_cpu = -1;
5990 	int i;
5991 
5992 	/* Check if we have any choice: */
5993 	if (group->group_weight == 1)
5994 		return cpumask_first(sched_group_span(group));
5995 
5996 	/* Traverse only the allowed CPUs */
5997 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5998 		struct rq *rq = cpu_rq(i);
5999 
6000 		if (!sched_core_cookie_match(rq, p))
6001 			continue;
6002 
6003 		if (sched_idle_cpu(i))
6004 			return i;
6005 
6006 		if (available_idle_cpu(i)) {
6007 			struct cpuidle_state *idle = idle_get_state(rq);
6008 			if (idle && idle->exit_latency < min_exit_latency) {
6009 				/*
6010 				 * We give priority to a CPU whose idle state
6011 				 * has the smallest exit latency irrespective
6012 				 * of any idle timestamp.
6013 				 */
6014 				min_exit_latency = idle->exit_latency;
6015 				latest_idle_timestamp = rq->idle_stamp;
6016 				shallowest_idle_cpu = i;
6017 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6018 				   rq->idle_stamp > latest_idle_timestamp) {
6019 				/*
6020 				 * If equal or no active idle state, then
6021 				 * the most recently idled CPU might have
6022 				 * a warmer cache.
6023 				 */
6024 				latest_idle_timestamp = rq->idle_stamp;
6025 				shallowest_idle_cpu = i;
6026 			}
6027 		} else if (shallowest_idle_cpu == -1) {
6028 			load = cpu_load(cpu_rq(i));
6029 			if (load < min_load) {
6030 				min_load = load;
6031 				least_loaded_cpu = i;
6032 			}
6033 		}
6034 	}
6035 
6036 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6037 }
6038 
6039 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6040 				  int cpu, int prev_cpu, int sd_flag)
6041 {
6042 	int new_cpu = cpu;
6043 
6044 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6045 		return prev_cpu;
6046 
6047 	/*
6048 	 * We need task's util for cpu_util_without, sync it up to
6049 	 * prev_cpu's last_update_time.
6050 	 */
6051 	if (!(sd_flag & SD_BALANCE_FORK))
6052 		sync_entity_load_avg(&p->se);
6053 
6054 	while (sd) {
6055 		struct sched_group *group;
6056 		struct sched_domain *tmp;
6057 		int weight;
6058 
6059 		if (!(sd->flags & sd_flag)) {
6060 			sd = sd->child;
6061 			continue;
6062 		}
6063 
6064 		group = find_idlest_group(sd, p, cpu);
6065 		if (!group) {
6066 			sd = sd->child;
6067 			continue;
6068 		}
6069 
6070 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6071 		if (new_cpu == cpu) {
6072 			/* Now try balancing at a lower domain level of 'cpu': */
6073 			sd = sd->child;
6074 			continue;
6075 		}
6076 
6077 		/* Now try balancing at a lower domain level of 'new_cpu': */
6078 		cpu = new_cpu;
6079 		weight = sd->span_weight;
6080 		sd = NULL;
6081 		for_each_domain(cpu, tmp) {
6082 			if (weight <= tmp->span_weight)
6083 				break;
6084 			if (tmp->flags & sd_flag)
6085 				sd = tmp;
6086 		}
6087 	}
6088 
6089 	return new_cpu;
6090 }
6091 
6092 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6093 {
6094 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6095 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6096 		return cpu;
6097 
6098 	return -1;
6099 }
6100 
6101 #ifdef CONFIG_SCHED_SMT
6102 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6103 EXPORT_SYMBOL_GPL(sched_smt_present);
6104 
6105 static inline void set_idle_cores(int cpu, int val)
6106 {
6107 	struct sched_domain_shared *sds;
6108 
6109 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6110 	if (sds)
6111 		WRITE_ONCE(sds->has_idle_cores, val);
6112 }
6113 
6114 static inline bool test_idle_cores(int cpu, bool def)
6115 {
6116 	struct sched_domain_shared *sds;
6117 
6118 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6119 	if (sds)
6120 		return READ_ONCE(sds->has_idle_cores);
6121 
6122 	return def;
6123 }
6124 
6125 /*
6126  * Scans the local SMT mask to see if the entire core is idle, and records this
6127  * information in sd_llc_shared->has_idle_cores.
6128  *
6129  * Since SMT siblings share all cache levels, inspecting this limited remote
6130  * state should be fairly cheap.
6131  */
6132 void __update_idle_core(struct rq *rq)
6133 {
6134 	int core = cpu_of(rq);
6135 	int cpu;
6136 
6137 	rcu_read_lock();
6138 	if (test_idle_cores(core, true))
6139 		goto unlock;
6140 
6141 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6142 		if (cpu == core)
6143 			continue;
6144 
6145 		if (!available_idle_cpu(cpu))
6146 			goto unlock;
6147 	}
6148 
6149 	set_idle_cores(core, 1);
6150 unlock:
6151 	rcu_read_unlock();
6152 }
6153 
6154 /*
6155  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6156  * there are no idle cores left in the system; tracked through
6157  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6158  */
6159 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6160 {
6161 	bool idle = true;
6162 	int cpu;
6163 
6164 	if (!static_branch_likely(&sched_smt_present))
6165 		return __select_idle_cpu(core, p);
6166 
6167 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6168 		if (!available_idle_cpu(cpu)) {
6169 			idle = false;
6170 			if (*idle_cpu == -1) {
6171 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6172 					*idle_cpu = cpu;
6173 					break;
6174 				}
6175 				continue;
6176 			}
6177 			break;
6178 		}
6179 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6180 			*idle_cpu = cpu;
6181 	}
6182 
6183 	if (idle)
6184 		return core;
6185 
6186 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6187 	return -1;
6188 }
6189 
6190 /*
6191  * Scan the local SMT mask for idle CPUs.
6192  */
6193 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6194 {
6195 	int cpu;
6196 
6197 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6198 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6199 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6200 			continue;
6201 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6202 			return cpu;
6203 	}
6204 
6205 	return -1;
6206 }
6207 
6208 #else /* CONFIG_SCHED_SMT */
6209 
6210 static inline void set_idle_cores(int cpu, int val)
6211 {
6212 }
6213 
6214 static inline bool test_idle_cores(int cpu, bool def)
6215 {
6216 	return def;
6217 }
6218 
6219 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6220 {
6221 	return __select_idle_cpu(core, p);
6222 }
6223 
6224 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6225 {
6226 	return -1;
6227 }
6228 
6229 #endif /* CONFIG_SCHED_SMT */
6230 
6231 /*
6232  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6233  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6234  * average idle time for this rq (as found in rq->avg_idle).
6235  */
6236 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6237 {
6238 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6239 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6240 	struct rq *this_rq = this_rq();
6241 	int this = smp_processor_id();
6242 	struct sched_domain *this_sd;
6243 	u64 time = 0;
6244 
6245 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6246 	if (!this_sd)
6247 		return -1;
6248 
6249 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6250 
6251 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6252 		u64 avg_cost, avg_idle, span_avg;
6253 		unsigned long now = jiffies;
6254 
6255 		/*
6256 		 * If we're busy, the assumption that the last idle period
6257 		 * predicts the future is flawed; age away the remaining
6258 		 * predicted idle time.
6259 		 */
6260 		if (unlikely(this_rq->wake_stamp < now)) {
6261 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6262 				this_rq->wake_stamp++;
6263 				this_rq->wake_avg_idle >>= 1;
6264 			}
6265 		}
6266 
6267 		avg_idle = this_rq->wake_avg_idle;
6268 		avg_cost = this_sd->avg_scan_cost + 1;
6269 
6270 		span_avg = sd->span_weight * avg_idle;
6271 		if (span_avg > 4*avg_cost)
6272 			nr = div_u64(span_avg, avg_cost);
6273 		else
6274 			nr = 4;
6275 
6276 		time = cpu_clock(this);
6277 	}
6278 
6279 	for_each_cpu_wrap(cpu, cpus, target + 1) {
6280 		if (has_idle_core) {
6281 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6282 			if ((unsigned int)i < nr_cpumask_bits)
6283 				return i;
6284 
6285 		} else {
6286 			if (!--nr)
6287 				return -1;
6288 			idle_cpu = __select_idle_cpu(cpu, p);
6289 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6290 				break;
6291 		}
6292 	}
6293 
6294 	if (has_idle_core)
6295 		set_idle_cores(target, false);
6296 
6297 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6298 		time = cpu_clock(this) - time;
6299 
6300 		/*
6301 		 * Account for the scan cost of wakeups against the average
6302 		 * idle time.
6303 		 */
6304 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6305 
6306 		update_avg(&this_sd->avg_scan_cost, time);
6307 	}
6308 
6309 	return idle_cpu;
6310 }
6311 
6312 /*
6313  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6314  * the task fits. If no CPU is big enough, but there are idle ones, try to
6315  * maximize capacity.
6316  */
6317 static int
6318 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6319 {
6320 	unsigned long task_util, best_cap = 0;
6321 	int cpu, best_cpu = -1;
6322 	struct cpumask *cpus;
6323 
6324 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6325 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6326 
6327 	task_util = uclamp_task_util(p);
6328 
6329 	for_each_cpu_wrap(cpu, cpus, target) {
6330 		unsigned long cpu_cap = capacity_of(cpu);
6331 
6332 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6333 			continue;
6334 		if (fits_capacity(task_util, cpu_cap))
6335 			return cpu;
6336 
6337 		if (cpu_cap > best_cap) {
6338 			best_cap = cpu_cap;
6339 			best_cpu = cpu;
6340 		}
6341 	}
6342 
6343 	return best_cpu;
6344 }
6345 
6346 static inline bool asym_fits_capacity(unsigned long task_util, int cpu)
6347 {
6348 	if (static_branch_unlikely(&sched_asym_cpucapacity))
6349 		return fits_capacity(task_util, capacity_of(cpu));
6350 
6351 	return true;
6352 }
6353 
6354 /*
6355  * Try and locate an idle core/thread in the LLC cache domain.
6356  */
6357 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6358 {
6359 	bool has_idle_core = false;
6360 	struct sched_domain *sd;
6361 	unsigned long task_util;
6362 	int i, recent_used_cpu;
6363 
6364 	/*
6365 	 * On asymmetric system, update task utilization because we will check
6366 	 * that the task fits with cpu's capacity.
6367 	 */
6368 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6369 		sync_entity_load_avg(&p->se);
6370 		task_util = uclamp_task_util(p);
6371 	}
6372 
6373 	/*
6374 	 * per-cpu select_idle_mask usage
6375 	 */
6376 	lockdep_assert_irqs_disabled();
6377 
6378 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6379 	    asym_fits_capacity(task_util, target))
6380 		return target;
6381 
6382 	/*
6383 	 * If the previous CPU is cache affine and idle, don't be stupid:
6384 	 */
6385 	if (prev != target && cpus_share_cache(prev, target) &&
6386 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6387 	    asym_fits_capacity(task_util, prev))
6388 		return prev;
6389 
6390 	/*
6391 	 * Allow a per-cpu kthread to stack with the wakee if the
6392 	 * kworker thread and the tasks previous CPUs are the same.
6393 	 * The assumption is that the wakee queued work for the
6394 	 * per-cpu kthread that is now complete and the wakeup is
6395 	 * essentially a sync wakeup. An obvious example of this
6396 	 * pattern is IO completions.
6397 	 */
6398 	if (is_per_cpu_kthread(current) &&
6399 	    in_task() &&
6400 	    prev == smp_processor_id() &&
6401 	    this_rq()->nr_running <= 1 &&
6402 	    asym_fits_capacity(task_util, prev)) {
6403 		return prev;
6404 	}
6405 
6406 	/* Check a recently used CPU as a potential idle candidate: */
6407 	recent_used_cpu = p->recent_used_cpu;
6408 	p->recent_used_cpu = prev;
6409 	if (recent_used_cpu != prev &&
6410 	    recent_used_cpu != target &&
6411 	    cpus_share_cache(recent_used_cpu, target) &&
6412 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6413 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6414 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6415 		return recent_used_cpu;
6416 	}
6417 
6418 	/*
6419 	 * For asymmetric CPU capacity systems, our domain of interest is
6420 	 * sd_asym_cpucapacity rather than sd_llc.
6421 	 */
6422 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6423 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6424 		/*
6425 		 * On an asymmetric CPU capacity system where an exclusive
6426 		 * cpuset defines a symmetric island (i.e. one unique
6427 		 * capacity_orig value through the cpuset), the key will be set
6428 		 * but the CPUs within that cpuset will not have a domain with
6429 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6430 		 * capacity path.
6431 		 */
6432 		if (sd) {
6433 			i = select_idle_capacity(p, sd, target);
6434 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6435 		}
6436 	}
6437 
6438 	sd = rcu_dereference(per_cpu(sd_llc, target));
6439 	if (!sd)
6440 		return target;
6441 
6442 	if (sched_smt_active()) {
6443 		has_idle_core = test_idle_cores(target, false);
6444 
6445 		if (!has_idle_core && cpus_share_cache(prev, target)) {
6446 			i = select_idle_smt(p, sd, prev);
6447 			if ((unsigned int)i < nr_cpumask_bits)
6448 				return i;
6449 		}
6450 	}
6451 
6452 	i = select_idle_cpu(p, sd, has_idle_core, target);
6453 	if ((unsigned)i < nr_cpumask_bits)
6454 		return i;
6455 
6456 	return target;
6457 }
6458 
6459 /*
6460  * cpu_util_without: compute cpu utilization without any contributions from *p
6461  * @cpu: the CPU which utilization is requested
6462  * @p: the task which utilization should be discounted
6463  *
6464  * The utilization of a CPU is defined by the utilization of tasks currently
6465  * enqueued on that CPU as well as tasks which are currently sleeping after an
6466  * execution on that CPU.
6467  *
6468  * This method returns the utilization of the specified CPU by discounting the
6469  * utilization of the specified task, whenever the task is currently
6470  * contributing to the CPU utilization.
6471  */
6472 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6473 {
6474 	struct cfs_rq *cfs_rq;
6475 	unsigned int util;
6476 
6477 	/* Task has no contribution or is new */
6478 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6479 		return cpu_util_cfs(cpu);
6480 
6481 	cfs_rq = &cpu_rq(cpu)->cfs;
6482 	util = READ_ONCE(cfs_rq->avg.util_avg);
6483 
6484 	/* Discount task's util from CPU's util */
6485 	lsub_positive(&util, task_util(p));
6486 
6487 	/*
6488 	 * Covered cases:
6489 	 *
6490 	 * a) if *p is the only task sleeping on this CPU, then:
6491 	 *      cpu_util (== task_util) > util_est (== 0)
6492 	 *    and thus we return:
6493 	 *      cpu_util_without = (cpu_util - task_util) = 0
6494 	 *
6495 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6496 	 *    IDLE, then:
6497 	 *      cpu_util >= task_util
6498 	 *      cpu_util > util_est (== 0)
6499 	 *    and thus we discount *p's blocked utilization to return:
6500 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6501 	 *
6502 	 * c) if other tasks are RUNNABLE on that CPU and
6503 	 *      util_est > cpu_util
6504 	 *    then we use util_est since it returns a more restrictive
6505 	 *    estimation of the spare capacity on that CPU, by just
6506 	 *    considering the expected utilization of tasks already
6507 	 *    runnable on that CPU.
6508 	 *
6509 	 * Cases a) and b) are covered by the above code, while case c) is
6510 	 * covered by the following code when estimated utilization is
6511 	 * enabled.
6512 	 */
6513 	if (sched_feat(UTIL_EST)) {
6514 		unsigned int estimated =
6515 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6516 
6517 		/*
6518 		 * Despite the following checks we still have a small window
6519 		 * for a possible race, when an execl's select_task_rq_fair()
6520 		 * races with LB's detach_task():
6521 		 *
6522 		 *   detach_task()
6523 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6524 		 *     ---------------------------------- A
6525 		 *     deactivate_task()                   \
6526 		 *       dequeue_task()                     + RaceTime
6527 		 *         util_est_dequeue()              /
6528 		 *     ---------------------------------- B
6529 		 *
6530 		 * The additional check on "current == p" it's required to
6531 		 * properly fix the execl regression and it helps in further
6532 		 * reducing the chances for the above race.
6533 		 */
6534 		if (unlikely(task_on_rq_queued(p) || current == p))
6535 			lsub_positive(&estimated, _task_util_est(p));
6536 
6537 		util = max(util, estimated);
6538 	}
6539 
6540 	/*
6541 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6542 	 * clamp to the maximum CPU capacity to ensure consistency with
6543 	 * cpu_util.
6544 	 */
6545 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6546 }
6547 
6548 /*
6549  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6550  * to @dst_cpu.
6551  */
6552 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6553 {
6554 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6555 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6556 
6557 	/*
6558 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6559 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6560 	 * the other cases, @cpu is not impacted by the migration, so the
6561 	 * util_avg should already be correct.
6562 	 */
6563 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6564 		lsub_positive(&util, task_util(p));
6565 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6566 		util += task_util(p);
6567 
6568 	if (sched_feat(UTIL_EST)) {
6569 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6570 
6571 		/*
6572 		 * During wake-up, the task isn't enqueued yet and doesn't
6573 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6574 		 * so just add it (if needed) to "simulate" what will be
6575 		 * cpu_util after the task has been enqueued.
6576 		 */
6577 		if (dst_cpu == cpu)
6578 			util_est += _task_util_est(p);
6579 
6580 		util = max(util, util_est);
6581 	}
6582 
6583 	return min(util, capacity_orig_of(cpu));
6584 }
6585 
6586 /*
6587  * compute_energy(): Estimates the energy that @pd would consume if @p was
6588  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6589  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6590  * to compute what would be the energy if we decided to actually migrate that
6591  * task.
6592  */
6593 static long
6594 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6595 {
6596 	struct cpumask *pd_mask = perf_domain_span(pd);
6597 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6598 	unsigned long max_util = 0, sum_util = 0;
6599 	unsigned long _cpu_cap = cpu_cap;
6600 	int cpu;
6601 
6602 	_cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6603 
6604 	/*
6605 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6606 	 * of another rd if they belong to the same pd. So, account for the
6607 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6608 	 * instead of the rd span.
6609 	 *
6610 	 * If an entire pd is outside of the current rd, it will not appear in
6611 	 * its pd list and will not be accounted by compute_energy().
6612 	 */
6613 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6614 		unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6615 		unsigned long cpu_util, util_running = util_freq;
6616 		struct task_struct *tsk = NULL;
6617 
6618 		/*
6619 		 * When @p is placed on @cpu:
6620 		 *
6621 		 * util_running = max(cpu_util, cpu_util_est) +
6622 		 *		  max(task_util, _task_util_est)
6623 		 *
6624 		 * while cpu_util_next is: max(cpu_util + task_util,
6625 		 *			       cpu_util_est + _task_util_est)
6626 		 */
6627 		if (cpu == dst_cpu) {
6628 			tsk = p;
6629 			util_running =
6630 				cpu_util_next(cpu, p, -1) + task_util_est(p);
6631 		}
6632 
6633 		/*
6634 		 * Busy time computation: utilization clamping is not
6635 		 * required since the ratio (sum_util / cpu_capacity)
6636 		 * is already enough to scale the EM reported power
6637 		 * consumption at the (eventually clamped) cpu_capacity.
6638 		 */
6639 		cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6640 					      ENERGY_UTIL, NULL);
6641 
6642 		sum_util += min(cpu_util, _cpu_cap);
6643 
6644 		/*
6645 		 * Performance domain frequency: utilization clamping
6646 		 * must be considered since it affects the selection
6647 		 * of the performance domain frequency.
6648 		 * NOTE: in case RT tasks are running, by default the
6649 		 * FREQUENCY_UTIL's utilization can be max OPP.
6650 		 */
6651 		cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6652 					      FREQUENCY_UTIL, tsk);
6653 		max_util = max(max_util, min(cpu_util, _cpu_cap));
6654 	}
6655 
6656 	return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
6657 }
6658 
6659 /*
6660  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6661  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6662  * spare capacity in each performance domain and uses it as a potential
6663  * candidate to execute the task. Then, it uses the Energy Model to figure
6664  * out which of the CPU candidates is the most energy-efficient.
6665  *
6666  * The rationale for this heuristic is as follows. In a performance domain,
6667  * all the most energy efficient CPU candidates (according to the Energy
6668  * Model) are those for which we'll request a low frequency. When there are
6669  * several CPUs for which the frequency request will be the same, we don't
6670  * have enough data to break the tie between them, because the Energy Model
6671  * only includes active power costs. With this model, if we assume that
6672  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6673  * the maximum spare capacity in a performance domain is guaranteed to be among
6674  * the best candidates of the performance domain.
6675  *
6676  * In practice, it could be preferable from an energy standpoint to pack
6677  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6678  * but that could also hurt our chances to go cluster idle, and we have no
6679  * ways to tell with the current Energy Model if this is actually a good
6680  * idea or not. So, find_energy_efficient_cpu() basically favors
6681  * cluster-packing, and spreading inside a cluster. That should at least be
6682  * a good thing for latency, and this is consistent with the idea that most
6683  * of the energy savings of EAS come from the asymmetry of the system, and
6684  * not so much from breaking the tie between identical CPUs. That's also the
6685  * reason why EAS is enabled in the topology code only for systems where
6686  * SD_ASYM_CPUCAPACITY is set.
6687  *
6688  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6689  * they don't have any useful utilization data yet and it's not possible to
6690  * forecast their impact on energy consumption. Consequently, they will be
6691  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6692  * to be energy-inefficient in some use-cases. The alternative would be to
6693  * bias new tasks towards specific types of CPUs first, or to try to infer
6694  * their util_avg from the parent task, but those heuristics could hurt
6695  * other use-cases too. So, until someone finds a better way to solve this,
6696  * let's keep things simple by re-using the existing slow path.
6697  */
6698 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6699 {
6700 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6701 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6702 	int cpu, best_energy_cpu = prev_cpu, target = -1;
6703 	unsigned long cpu_cap, util, base_energy = 0;
6704 	struct sched_domain *sd;
6705 	struct perf_domain *pd;
6706 
6707 	rcu_read_lock();
6708 	pd = rcu_dereference(rd->pd);
6709 	if (!pd || READ_ONCE(rd->overutilized))
6710 		goto unlock;
6711 
6712 	/*
6713 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6714 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6715 	 */
6716 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6717 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6718 		sd = sd->parent;
6719 	if (!sd)
6720 		goto unlock;
6721 
6722 	target = prev_cpu;
6723 
6724 	sync_entity_load_avg(&p->se);
6725 	if (!task_util_est(p))
6726 		goto unlock;
6727 
6728 	for (; pd; pd = pd->next) {
6729 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6730 		bool compute_prev_delta = false;
6731 		unsigned long base_energy_pd;
6732 		int max_spare_cap_cpu = -1;
6733 
6734 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6735 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6736 				continue;
6737 
6738 			util = cpu_util_next(cpu, p, cpu);
6739 			cpu_cap = capacity_of(cpu);
6740 			spare_cap = cpu_cap;
6741 			lsub_positive(&spare_cap, util);
6742 
6743 			/*
6744 			 * Skip CPUs that cannot satisfy the capacity request.
6745 			 * IOW, placing the task there would make the CPU
6746 			 * overutilized. Take uclamp into account to see how
6747 			 * much capacity we can get out of the CPU; this is
6748 			 * aligned with sched_cpu_util().
6749 			 */
6750 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6751 			if (!fits_capacity(util, cpu_cap))
6752 				continue;
6753 
6754 			if (cpu == prev_cpu) {
6755 				/* Always use prev_cpu as a candidate. */
6756 				compute_prev_delta = true;
6757 			} else if (spare_cap > max_spare_cap) {
6758 				/*
6759 				 * Find the CPU with the maximum spare capacity
6760 				 * in the performance domain.
6761 				 */
6762 				max_spare_cap = spare_cap;
6763 				max_spare_cap_cpu = cpu;
6764 			}
6765 		}
6766 
6767 		if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6768 			continue;
6769 
6770 		/* Compute the 'base' energy of the pd, without @p */
6771 		base_energy_pd = compute_energy(p, -1, pd);
6772 		base_energy += base_energy_pd;
6773 
6774 		/* Evaluate the energy impact of using prev_cpu. */
6775 		if (compute_prev_delta) {
6776 			prev_delta = compute_energy(p, prev_cpu, pd);
6777 			if (prev_delta < base_energy_pd)
6778 				goto unlock;
6779 			prev_delta -= base_energy_pd;
6780 			best_delta = min(best_delta, prev_delta);
6781 		}
6782 
6783 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
6784 		if (max_spare_cap_cpu >= 0) {
6785 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6786 			if (cur_delta < base_energy_pd)
6787 				goto unlock;
6788 			cur_delta -= base_energy_pd;
6789 			if (cur_delta < best_delta) {
6790 				best_delta = cur_delta;
6791 				best_energy_cpu = max_spare_cap_cpu;
6792 			}
6793 		}
6794 	}
6795 	rcu_read_unlock();
6796 
6797 	/*
6798 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6799 	 * least 6% of the energy used by prev_cpu.
6800 	 */
6801 	if ((prev_delta == ULONG_MAX) ||
6802 	    (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6803 		target = best_energy_cpu;
6804 
6805 	return target;
6806 
6807 unlock:
6808 	rcu_read_unlock();
6809 
6810 	return target;
6811 }
6812 
6813 /*
6814  * select_task_rq_fair: Select target runqueue for the waking task in domains
6815  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6816  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6817  *
6818  * Balances load by selecting the idlest CPU in the idlest group, or under
6819  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6820  *
6821  * Returns the target CPU number.
6822  */
6823 static int
6824 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6825 {
6826 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6827 	struct sched_domain *tmp, *sd = NULL;
6828 	int cpu = smp_processor_id();
6829 	int new_cpu = prev_cpu;
6830 	int want_affine = 0;
6831 	/* SD_flags and WF_flags share the first nibble */
6832 	int sd_flag = wake_flags & 0xF;
6833 
6834 	/*
6835 	 * required for stable ->cpus_allowed
6836 	 */
6837 	lockdep_assert_held(&p->pi_lock);
6838 	if (wake_flags & WF_TTWU) {
6839 		record_wakee(p);
6840 
6841 		if (sched_energy_enabled()) {
6842 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6843 			if (new_cpu >= 0)
6844 				return new_cpu;
6845 			new_cpu = prev_cpu;
6846 		}
6847 
6848 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6849 	}
6850 
6851 	rcu_read_lock();
6852 	for_each_domain(cpu, tmp) {
6853 		/*
6854 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6855 		 * cpu is a valid SD_WAKE_AFFINE target.
6856 		 */
6857 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6858 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6859 			if (cpu != prev_cpu)
6860 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6861 
6862 			sd = NULL; /* Prefer wake_affine over balance flags */
6863 			break;
6864 		}
6865 
6866 		/*
6867 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
6868 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
6869 		 * will usually go to the fast path.
6870 		 */
6871 		if (tmp->flags & sd_flag)
6872 			sd = tmp;
6873 		else if (!want_affine)
6874 			break;
6875 	}
6876 
6877 	if (unlikely(sd)) {
6878 		/* Slow path */
6879 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6880 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
6881 		/* Fast path */
6882 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6883 	}
6884 	rcu_read_unlock();
6885 
6886 	return new_cpu;
6887 }
6888 
6889 static void detach_entity_cfs_rq(struct sched_entity *se);
6890 
6891 /*
6892  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6893  * cfs_rq_of(p) references at time of call are still valid and identify the
6894  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6895  */
6896 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6897 {
6898 	/*
6899 	 * As blocked tasks retain absolute vruntime the migration needs to
6900 	 * deal with this by subtracting the old and adding the new
6901 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6902 	 * the task on the new runqueue.
6903 	 */
6904 	if (READ_ONCE(p->__state) == TASK_WAKING) {
6905 		struct sched_entity *se = &p->se;
6906 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6907 		u64 min_vruntime;
6908 
6909 #ifndef CONFIG_64BIT
6910 		u64 min_vruntime_copy;
6911 
6912 		do {
6913 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6914 			smp_rmb();
6915 			min_vruntime = cfs_rq->min_vruntime;
6916 		} while (min_vruntime != min_vruntime_copy);
6917 #else
6918 		min_vruntime = cfs_rq->min_vruntime;
6919 #endif
6920 
6921 		se->vruntime -= min_vruntime;
6922 	}
6923 
6924 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6925 		/*
6926 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6927 		 * rq->lock and can modify state directly.
6928 		 */
6929 		lockdep_assert_rq_held(task_rq(p));
6930 		detach_entity_cfs_rq(&p->se);
6931 
6932 	} else {
6933 		/*
6934 		 * We are supposed to update the task to "current" time, then
6935 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6936 		 * have difficulty in getting what current time is, so simply
6937 		 * throw away the out-of-date time. This will result in the
6938 		 * wakee task is less decayed, but giving the wakee more load
6939 		 * sounds not bad.
6940 		 */
6941 		remove_entity_load_avg(&p->se);
6942 	}
6943 
6944 	/* Tell new CPU we are migrated */
6945 	p->se.avg.last_update_time = 0;
6946 
6947 	/* We have migrated, no longer consider this task hot */
6948 	p->se.exec_start = 0;
6949 
6950 	update_scan_period(p, new_cpu);
6951 }
6952 
6953 static void task_dead_fair(struct task_struct *p)
6954 {
6955 	remove_entity_load_avg(&p->se);
6956 }
6957 
6958 static int
6959 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6960 {
6961 	if (rq->nr_running)
6962 		return 1;
6963 
6964 	return newidle_balance(rq, rf) != 0;
6965 }
6966 #endif /* CONFIG_SMP */
6967 
6968 static unsigned long wakeup_gran(struct sched_entity *se)
6969 {
6970 	unsigned long gran = sysctl_sched_wakeup_granularity;
6971 
6972 	/*
6973 	 * Since its curr running now, convert the gran from real-time
6974 	 * to virtual-time in his units.
6975 	 *
6976 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6977 	 * they get preempted easier. That is, if 'se' < 'curr' then
6978 	 * the resulting gran will be larger, therefore penalizing the
6979 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6980 	 * be smaller, again penalizing the lighter task.
6981 	 *
6982 	 * This is especially important for buddies when the leftmost
6983 	 * task is higher priority than the buddy.
6984 	 */
6985 	return calc_delta_fair(gran, se);
6986 }
6987 
6988 /*
6989  * Should 'se' preempt 'curr'.
6990  *
6991  *             |s1
6992  *        |s2
6993  *   |s3
6994  *         g
6995  *      |<--->|c
6996  *
6997  *  w(c, s1) = -1
6998  *  w(c, s2) =  0
6999  *  w(c, s3) =  1
7000  *
7001  */
7002 static int
7003 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7004 {
7005 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7006 
7007 	if (vdiff <= 0)
7008 		return -1;
7009 
7010 	gran = wakeup_gran(se);
7011 	if (vdiff > gran)
7012 		return 1;
7013 
7014 	return 0;
7015 }
7016 
7017 static void set_last_buddy(struct sched_entity *se)
7018 {
7019 	for_each_sched_entity(se) {
7020 		if (SCHED_WARN_ON(!se->on_rq))
7021 			return;
7022 		if (se_is_idle(se))
7023 			return;
7024 		cfs_rq_of(se)->last = se;
7025 	}
7026 }
7027 
7028 static void set_next_buddy(struct sched_entity *se)
7029 {
7030 	for_each_sched_entity(se) {
7031 		if (SCHED_WARN_ON(!se->on_rq))
7032 			return;
7033 		if (se_is_idle(se))
7034 			return;
7035 		cfs_rq_of(se)->next = se;
7036 	}
7037 }
7038 
7039 static void set_skip_buddy(struct sched_entity *se)
7040 {
7041 	for_each_sched_entity(se)
7042 		cfs_rq_of(se)->skip = se;
7043 }
7044 
7045 /*
7046  * Preempt the current task with a newly woken task if needed:
7047  */
7048 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7049 {
7050 	struct task_struct *curr = rq->curr;
7051 	struct sched_entity *se = &curr->se, *pse = &p->se;
7052 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7053 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7054 	int next_buddy_marked = 0;
7055 	int cse_is_idle, pse_is_idle;
7056 
7057 	if (unlikely(se == pse))
7058 		return;
7059 
7060 	/*
7061 	 * This is possible from callers such as attach_tasks(), in which we
7062 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7063 	 * lead to a throttle).  This both saves work and prevents false
7064 	 * next-buddy nomination below.
7065 	 */
7066 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7067 		return;
7068 
7069 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7070 		set_next_buddy(pse);
7071 		next_buddy_marked = 1;
7072 	}
7073 
7074 	/*
7075 	 * We can come here with TIF_NEED_RESCHED already set from new task
7076 	 * wake up path.
7077 	 *
7078 	 * Note: this also catches the edge-case of curr being in a throttled
7079 	 * group (e.g. via set_curr_task), since update_curr() (in the
7080 	 * enqueue of curr) will have resulted in resched being set.  This
7081 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7082 	 * below.
7083 	 */
7084 	if (test_tsk_need_resched(curr))
7085 		return;
7086 
7087 	/* Idle tasks are by definition preempted by non-idle tasks. */
7088 	if (unlikely(task_has_idle_policy(curr)) &&
7089 	    likely(!task_has_idle_policy(p)))
7090 		goto preempt;
7091 
7092 	/*
7093 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7094 	 * is driven by the tick):
7095 	 */
7096 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7097 		return;
7098 
7099 	find_matching_se(&se, &pse);
7100 	BUG_ON(!pse);
7101 
7102 	cse_is_idle = se_is_idle(se);
7103 	pse_is_idle = se_is_idle(pse);
7104 
7105 	/*
7106 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
7107 	 * in the inverse case).
7108 	 */
7109 	if (cse_is_idle && !pse_is_idle)
7110 		goto preempt;
7111 	if (cse_is_idle != pse_is_idle)
7112 		return;
7113 
7114 	update_curr(cfs_rq_of(se));
7115 	if (wakeup_preempt_entity(se, pse) == 1) {
7116 		/*
7117 		 * Bias pick_next to pick the sched entity that is
7118 		 * triggering this preemption.
7119 		 */
7120 		if (!next_buddy_marked)
7121 			set_next_buddy(pse);
7122 		goto preempt;
7123 	}
7124 
7125 	return;
7126 
7127 preempt:
7128 	resched_curr(rq);
7129 	/*
7130 	 * Only set the backward buddy when the current task is still
7131 	 * on the rq. This can happen when a wakeup gets interleaved
7132 	 * with schedule on the ->pre_schedule() or idle_balance()
7133 	 * point, either of which can * drop the rq lock.
7134 	 *
7135 	 * Also, during early boot the idle thread is in the fair class,
7136 	 * for obvious reasons its a bad idea to schedule back to it.
7137 	 */
7138 	if (unlikely(!se->on_rq || curr == rq->idle))
7139 		return;
7140 
7141 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7142 		set_last_buddy(se);
7143 }
7144 
7145 #ifdef CONFIG_SMP
7146 static struct task_struct *pick_task_fair(struct rq *rq)
7147 {
7148 	struct sched_entity *se;
7149 	struct cfs_rq *cfs_rq;
7150 
7151 again:
7152 	cfs_rq = &rq->cfs;
7153 	if (!cfs_rq->nr_running)
7154 		return NULL;
7155 
7156 	do {
7157 		struct sched_entity *curr = cfs_rq->curr;
7158 
7159 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7160 		if (curr) {
7161 			if (curr->on_rq)
7162 				update_curr(cfs_rq);
7163 			else
7164 				curr = NULL;
7165 
7166 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7167 				goto again;
7168 		}
7169 
7170 		se = pick_next_entity(cfs_rq, curr);
7171 		cfs_rq = group_cfs_rq(se);
7172 	} while (cfs_rq);
7173 
7174 	return task_of(se);
7175 }
7176 #endif
7177 
7178 struct task_struct *
7179 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7180 {
7181 	struct cfs_rq *cfs_rq = &rq->cfs;
7182 	struct sched_entity *se;
7183 	struct task_struct *p;
7184 	int new_tasks;
7185 
7186 again:
7187 	if (!sched_fair_runnable(rq))
7188 		goto idle;
7189 
7190 #ifdef CONFIG_FAIR_GROUP_SCHED
7191 	if (!prev || prev->sched_class != &fair_sched_class)
7192 		goto simple;
7193 
7194 	/*
7195 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7196 	 * likely that a next task is from the same cgroup as the current.
7197 	 *
7198 	 * Therefore attempt to avoid putting and setting the entire cgroup
7199 	 * hierarchy, only change the part that actually changes.
7200 	 */
7201 
7202 	do {
7203 		struct sched_entity *curr = cfs_rq->curr;
7204 
7205 		/*
7206 		 * Since we got here without doing put_prev_entity() we also
7207 		 * have to consider cfs_rq->curr. If it is still a runnable
7208 		 * entity, update_curr() will update its vruntime, otherwise
7209 		 * forget we've ever seen it.
7210 		 */
7211 		if (curr) {
7212 			if (curr->on_rq)
7213 				update_curr(cfs_rq);
7214 			else
7215 				curr = NULL;
7216 
7217 			/*
7218 			 * This call to check_cfs_rq_runtime() will do the
7219 			 * throttle and dequeue its entity in the parent(s).
7220 			 * Therefore the nr_running test will indeed
7221 			 * be correct.
7222 			 */
7223 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7224 				cfs_rq = &rq->cfs;
7225 
7226 				if (!cfs_rq->nr_running)
7227 					goto idle;
7228 
7229 				goto simple;
7230 			}
7231 		}
7232 
7233 		se = pick_next_entity(cfs_rq, curr);
7234 		cfs_rq = group_cfs_rq(se);
7235 	} while (cfs_rq);
7236 
7237 	p = task_of(se);
7238 
7239 	/*
7240 	 * Since we haven't yet done put_prev_entity and if the selected task
7241 	 * is a different task than we started out with, try and touch the
7242 	 * least amount of cfs_rqs.
7243 	 */
7244 	if (prev != p) {
7245 		struct sched_entity *pse = &prev->se;
7246 
7247 		while (!(cfs_rq = is_same_group(se, pse))) {
7248 			int se_depth = se->depth;
7249 			int pse_depth = pse->depth;
7250 
7251 			if (se_depth <= pse_depth) {
7252 				put_prev_entity(cfs_rq_of(pse), pse);
7253 				pse = parent_entity(pse);
7254 			}
7255 			if (se_depth >= pse_depth) {
7256 				set_next_entity(cfs_rq_of(se), se);
7257 				se = parent_entity(se);
7258 			}
7259 		}
7260 
7261 		put_prev_entity(cfs_rq, pse);
7262 		set_next_entity(cfs_rq, se);
7263 	}
7264 
7265 	goto done;
7266 simple:
7267 #endif
7268 	if (prev)
7269 		put_prev_task(rq, prev);
7270 
7271 	do {
7272 		se = pick_next_entity(cfs_rq, NULL);
7273 		set_next_entity(cfs_rq, se);
7274 		cfs_rq = group_cfs_rq(se);
7275 	} while (cfs_rq);
7276 
7277 	p = task_of(se);
7278 
7279 done: __maybe_unused;
7280 #ifdef CONFIG_SMP
7281 	/*
7282 	 * Move the next running task to the front of
7283 	 * the list, so our cfs_tasks list becomes MRU
7284 	 * one.
7285 	 */
7286 	list_move(&p->se.group_node, &rq->cfs_tasks);
7287 #endif
7288 
7289 	if (hrtick_enabled_fair(rq))
7290 		hrtick_start_fair(rq, p);
7291 
7292 	update_misfit_status(p, rq);
7293 
7294 	return p;
7295 
7296 idle:
7297 	if (!rf)
7298 		return NULL;
7299 
7300 	new_tasks = newidle_balance(rq, rf);
7301 
7302 	/*
7303 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7304 	 * possible for any higher priority task to appear. In that case we
7305 	 * must re-start the pick_next_entity() loop.
7306 	 */
7307 	if (new_tasks < 0)
7308 		return RETRY_TASK;
7309 
7310 	if (new_tasks > 0)
7311 		goto again;
7312 
7313 	/*
7314 	 * rq is about to be idle, check if we need to update the
7315 	 * lost_idle_time of clock_pelt
7316 	 */
7317 	update_idle_rq_clock_pelt(rq);
7318 
7319 	return NULL;
7320 }
7321 
7322 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7323 {
7324 	return pick_next_task_fair(rq, NULL, NULL);
7325 }
7326 
7327 /*
7328  * Account for a descheduled task:
7329  */
7330 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7331 {
7332 	struct sched_entity *se = &prev->se;
7333 	struct cfs_rq *cfs_rq;
7334 
7335 	for_each_sched_entity(se) {
7336 		cfs_rq = cfs_rq_of(se);
7337 		put_prev_entity(cfs_rq, se);
7338 	}
7339 }
7340 
7341 /*
7342  * sched_yield() is very simple
7343  *
7344  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7345  */
7346 static void yield_task_fair(struct rq *rq)
7347 {
7348 	struct task_struct *curr = rq->curr;
7349 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7350 	struct sched_entity *se = &curr->se;
7351 
7352 	/*
7353 	 * Are we the only task in the tree?
7354 	 */
7355 	if (unlikely(rq->nr_running == 1))
7356 		return;
7357 
7358 	clear_buddies(cfs_rq, se);
7359 
7360 	if (curr->policy != SCHED_BATCH) {
7361 		update_rq_clock(rq);
7362 		/*
7363 		 * Update run-time statistics of the 'current'.
7364 		 */
7365 		update_curr(cfs_rq);
7366 		/*
7367 		 * Tell update_rq_clock() that we've just updated,
7368 		 * so we don't do microscopic update in schedule()
7369 		 * and double the fastpath cost.
7370 		 */
7371 		rq_clock_skip_update(rq);
7372 	}
7373 
7374 	set_skip_buddy(se);
7375 }
7376 
7377 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7378 {
7379 	struct sched_entity *se = &p->se;
7380 
7381 	/* throttled hierarchies are not runnable */
7382 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7383 		return false;
7384 
7385 	/* Tell the scheduler that we'd really like pse to run next. */
7386 	set_next_buddy(se);
7387 
7388 	yield_task_fair(rq);
7389 
7390 	return true;
7391 }
7392 
7393 #ifdef CONFIG_SMP
7394 /**************************************************
7395  * Fair scheduling class load-balancing methods.
7396  *
7397  * BASICS
7398  *
7399  * The purpose of load-balancing is to achieve the same basic fairness the
7400  * per-CPU scheduler provides, namely provide a proportional amount of compute
7401  * time to each task. This is expressed in the following equation:
7402  *
7403  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7404  *
7405  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7406  * W_i,0 is defined as:
7407  *
7408  *   W_i,0 = \Sum_j w_i,j                                             (2)
7409  *
7410  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7411  * is derived from the nice value as per sched_prio_to_weight[].
7412  *
7413  * The weight average is an exponential decay average of the instantaneous
7414  * weight:
7415  *
7416  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7417  *
7418  * C_i is the compute capacity of CPU i, typically it is the
7419  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7420  * can also include other factors [XXX].
7421  *
7422  * To achieve this balance we define a measure of imbalance which follows
7423  * directly from (1):
7424  *
7425  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7426  *
7427  * We them move tasks around to minimize the imbalance. In the continuous
7428  * function space it is obvious this converges, in the discrete case we get
7429  * a few fun cases generally called infeasible weight scenarios.
7430  *
7431  * [XXX expand on:
7432  *     - infeasible weights;
7433  *     - local vs global optima in the discrete case. ]
7434  *
7435  *
7436  * SCHED DOMAINS
7437  *
7438  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7439  * for all i,j solution, we create a tree of CPUs that follows the hardware
7440  * topology where each level pairs two lower groups (or better). This results
7441  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7442  * tree to only the first of the previous level and we decrease the frequency
7443  * of load-balance at each level inv. proportional to the number of CPUs in
7444  * the groups.
7445  *
7446  * This yields:
7447  *
7448  *     log_2 n     1     n
7449  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7450  *     i = 0      2^i   2^i
7451  *                               `- size of each group
7452  *         |         |     `- number of CPUs doing load-balance
7453  *         |         `- freq
7454  *         `- sum over all levels
7455  *
7456  * Coupled with a limit on how many tasks we can migrate every balance pass,
7457  * this makes (5) the runtime complexity of the balancer.
7458  *
7459  * An important property here is that each CPU is still (indirectly) connected
7460  * to every other CPU in at most O(log n) steps:
7461  *
7462  * The adjacency matrix of the resulting graph is given by:
7463  *
7464  *             log_2 n
7465  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7466  *             k = 0
7467  *
7468  * And you'll find that:
7469  *
7470  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7471  *
7472  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7473  * The task movement gives a factor of O(m), giving a convergence complexity
7474  * of:
7475  *
7476  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7477  *
7478  *
7479  * WORK CONSERVING
7480  *
7481  * In order to avoid CPUs going idle while there's still work to do, new idle
7482  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7483  * tree itself instead of relying on other CPUs to bring it work.
7484  *
7485  * This adds some complexity to both (5) and (8) but it reduces the total idle
7486  * time.
7487  *
7488  * [XXX more?]
7489  *
7490  *
7491  * CGROUPS
7492  *
7493  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7494  *
7495  *                                s_k,i
7496  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7497  *                                 S_k
7498  *
7499  * Where
7500  *
7501  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7502  *
7503  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7504  *
7505  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7506  * property.
7507  *
7508  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7509  *      rewrite all of this once again.]
7510  */
7511 
7512 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7513 
7514 enum fbq_type { regular, remote, all };
7515 
7516 /*
7517  * 'group_type' describes the group of CPUs at the moment of load balancing.
7518  *
7519  * The enum is ordered by pulling priority, with the group with lowest priority
7520  * first so the group_type can simply be compared when selecting the busiest
7521  * group. See update_sd_pick_busiest().
7522  */
7523 enum group_type {
7524 	/* The group has spare capacity that can be used to run more tasks.  */
7525 	group_has_spare = 0,
7526 	/*
7527 	 * The group is fully used and the tasks don't compete for more CPU
7528 	 * cycles. Nevertheless, some tasks might wait before running.
7529 	 */
7530 	group_fully_busy,
7531 	/*
7532 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7533 	 * and must be migrated to a more powerful CPU.
7534 	 */
7535 	group_misfit_task,
7536 	/*
7537 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7538 	 * and the task should be migrated to it instead of running on the
7539 	 * current CPU.
7540 	 */
7541 	group_asym_packing,
7542 	/*
7543 	 * The tasks' affinity constraints previously prevented the scheduler
7544 	 * from balancing the load across the system.
7545 	 */
7546 	group_imbalanced,
7547 	/*
7548 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7549 	 * tasks.
7550 	 */
7551 	group_overloaded
7552 };
7553 
7554 enum migration_type {
7555 	migrate_load = 0,
7556 	migrate_util,
7557 	migrate_task,
7558 	migrate_misfit
7559 };
7560 
7561 #define LBF_ALL_PINNED	0x01
7562 #define LBF_NEED_BREAK	0x02
7563 #define LBF_DST_PINNED  0x04
7564 #define LBF_SOME_PINNED	0x08
7565 #define LBF_ACTIVE_LB	0x10
7566 
7567 struct lb_env {
7568 	struct sched_domain	*sd;
7569 
7570 	struct rq		*src_rq;
7571 	int			src_cpu;
7572 
7573 	int			dst_cpu;
7574 	struct rq		*dst_rq;
7575 
7576 	struct cpumask		*dst_grpmask;
7577 	int			new_dst_cpu;
7578 	enum cpu_idle_type	idle;
7579 	long			imbalance;
7580 	/* The set of CPUs under consideration for load-balancing */
7581 	struct cpumask		*cpus;
7582 
7583 	unsigned int		flags;
7584 
7585 	unsigned int		loop;
7586 	unsigned int		loop_break;
7587 	unsigned int		loop_max;
7588 
7589 	enum fbq_type		fbq_type;
7590 	enum migration_type	migration_type;
7591 	struct list_head	tasks;
7592 };
7593 
7594 /*
7595  * Is this task likely cache-hot:
7596  */
7597 static int task_hot(struct task_struct *p, struct lb_env *env)
7598 {
7599 	s64 delta;
7600 
7601 	lockdep_assert_rq_held(env->src_rq);
7602 
7603 	if (p->sched_class != &fair_sched_class)
7604 		return 0;
7605 
7606 	if (unlikely(task_has_idle_policy(p)))
7607 		return 0;
7608 
7609 	/* SMT siblings share cache */
7610 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7611 		return 0;
7612 
7613 	/*
7614 	 * Buddy candidates are cache hot:
7615 	 */
7616 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7617 			(&p->se == cfs_rq_of(&p->se)->next ||
7618 			 &p->se == cfs_rq_of(&p->se)->last))
7619 		return 1;
7620 
7621 	if (sysctl_sched_migration_cost == -1)
7622 		return 1;
7623 
7624 	/*
7625 	 * Don't migrate task if the task's cookie does not match
7626 	 * with the destination CPU's core cookie.
7627 	 */
7628 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7629 		return 1;
7630 
7631 	if (sysctl_sched_migration_cost == 0)
7632 		return 0;
7633 
7634 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7635 
7636 	return delta < (s64)sysctl_sched_migration_cost;
7637 }
7638 
7639 #ifdef CONFIG_NUMA_BALANCING
7640 /*
7641  * Returns 1, if task migration degrades locality
7642  * Returns 0, if task migration improves locality i.e migration preferred.
7643  * Returns -1, if task migration is not affected by locality.
7644  */
7645 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7646 {
7647 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7648 	unsigned long src_weight, dst_weight;
7649 	int src_nid, dst_nid, dist;
7650 
7651 	if (!static_branch_likely(&sched_numa_balancing))
7652 		return -1;
7653 
7654 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7655 		return -1;
7656 
7657 	src_nid = cpu_to_node(env->src_cpu);
7658 	dst_nid = cpu_to_node(env->dst_cpu);
7659 
7660 	if (src_nid == dst_nid)
7661 		return -1;
7662 
7663 	/* Migrating away from the preferred node is always bad. */
7664 	if (src_nid == p->numa_preferred_nid) {
7665 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7666 			return 1;
7667 		else
7668 			return -1;
7669 	}
7670 
7671 	/* Encourage migration to the preferred node. */
7672 	if (dst_nid == p->numa_preferred_nid)
7673 		return 0;
7674 
7675 	/* Leaving a core idle is often worse than degrading locality. */
7676 	if (env->idle == CPU_IDLE)
7677 		return -1;
7678 
7679 	dist = node_distance(src_nid, dst_nid);
7680 	if (numa_group) {
7681 		src_weight = group_weight(p, src_nid, dist);
7682 		dst_weight = group_weight(p, dst_nid, dist);
7683 	} else {
7684 		src_weight = task_weight(p, src_nid, dist);
7685 		dst_weight = task_weight(p, dst_nid, dist);
7686 	}
7687 
7688 	return dst_weight < src_weight;
7689 }
7690 
7691 #else
7692 static inline int migrate_degrades_locality(struct task_struct *p,
7693 					     struct lb_env *env)
7694 {
7695 	return -1;
7696 }
7697 #endif
7698 
7699 /*
7700  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7701  */
7702 static
7703 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7704 {
7705 	int tsk_cache_hot;
7706 
7707 	lockdep_assert_rq_held(env->src_rq);
7708 
7709 	/*
7710 	 * We do not migrate tasks that are:
7711 	 * 1) throttled_lb_pair, or
7712 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7713 	 * 3) running (obviously), or
7714 	 * 4) are cache-hot on their current CPU.
7715 	 */
7716 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7717 		return 0;
7718 
7719 	/* Disregard pcpu kthreads; they are where they need to be. */
7720 	if (kthread_is_per_cpu(p))
7721 		return 0;
7722 
7723 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7724 		int cpu;
7725 
7726 		schedstat_inc(p->stats.nr_failed_migrations_affine);
7727 
7728 		env->flags |= LBF_SOME_PINNED;
7729 
7730 		/*
7731 		 * Remember if this task can be migrated to any other CPU in
7732 		 * our sched_group. We may want to revisit it if we couldn't
7733 		 * meet load balance goals by pulling other tasks on src_cpu.
7734 		 *
7735 		 * Avoid computing new_dst_cpu
7736 		 * - for NEWLY_IDLE
7737 		 * - if we have already computed one in current iteration
7738 		 * - if it's an active balance
7739 		 */
7740 		if (env->idle == CPU_NEWLY_IDLE ||
7741 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7742 			return 0;
7743 
7744 		/* Prevent to re-select dst_cpu via env's CPUs: */
7745 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7746 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7747 				env->flags |= LBF_DST_PINNED;
7748 				env->new_dst_cpu = cpu;
7749 				break;
7750 			}
7751 		}
7752 
7753 		return 0;
7754 	}
7755 
7756 	/* Record that we found at least one task that could run on dst_cpu */
7757 	env->flags &= ~LBF_ALL_PINNED;
7758 
7759 	if (task_running(env->src_rq, p)) {
7760 		schedstat_inc(p->stats.nr_failed_migrations_running);
7761 		return 0;
7762 	}
7763 
7764 	/*
7765 	 * Aggressive migration if:
7766 	 * 1) active balance
7767 	 * 2) destination numa is preferred
7768 	 * 3) task is cache cold, or
7769 	 * 4) too many balance attempts have failed.
7770 	 */
7771 	if (env->flags & LBF_ACTIVE_LB)
7772 		return 1;
7773 
7774 	tsk_cache_hot = migrate_degrades_locality(p, env);
7775 	if (tsk_cache_hot == -1)
7776 		tsk_cache_hot = task_hot(p, env);
7777 
7778 	if (tsk_cache_hot <= 0 ||
7779 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7780 		if (tsk_cache_hot == 1) {
7781 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7782 			schedstat_inc(p->stats.nr_forced_migrations);
7783 		}
7784 		return 1;
7785 	}
7786 
7787 	schedstat_inc(p->stats.nr_failed_migrations_hot);
7788 	return 0;
7789 }
7790 
7791 /*
7792  * detach_task() -- detach the task for the migration specified in env
7793  */
7794 static void detach_task(struct task_struct *p, struct lb_env *env)
7795 {
7796 	lockdep_assert_rq_held(env->src_rq);
7797 
7798 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7799 	set_task_cpu(p, env->dst_cpu);
7800 }
7801 
7802 /*
7803  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7804  * part of active balancing operations within "domain".
7805  *
7806  * Returns a task if successful and NULL otherwise.
7807  */
7808 static struct task_struct *detach_one_task(struct lb_env *env)
7809 {
7810 	struct task_struct *p;
7811 
7812 	lockdep_assert_rq_held(env->src_rq);
7813 
7814 	list_for_each_entry_reverse(p,
7815 			&env->src_rq->cfs_tasks, se.group_node) {
7816 		if (!can_migrate_task(p, env))
7817 			continue;
7818 
7819 		detach_task(p, env);
7820 
7821 		/*
7822 		 * Right now, this is only the second place where
7823 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7824 		 * so we can safely collect stats here rather than
7825 		 * inside detach_tasks().
7826 		 */
7827 		schedstat_inc(env->sd->lb_gained[env->idle]);
7828 		return p;
7829 	}
7830 	return NULL;
7831 }
7832 
7833 static const unsigned int sched_nr_migrate_break = 32;
7834 
7835 /*
7836  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7837  * busiest_rq, as part of a balancing operation within domain "sd".
7838  *
7839  * Returns number of detached tasks if successful and 0 otherwise.
7840  */
7841 static int detach_tasks(struct lb_env *env)
7842 {
7843 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7844 	unsigned long util, load;
7845 	struct task_struct *p;
7846 	int detached = 0;
7847 
7848 	lockdep_assert_rq_held(env->src_rq);
7849 
7850 	/*
7851 	 * Source run queue has been emptied by another CPU, clear
7852 	 * LBF_ALL_PINNED flag as we will not test any task.
7853 	 */
7854 	if (env->src_rq->nr_running <= 1) {
7855 		env->flags &= ~LBF_ALL_PINNED;
7856 		return 0;
7857 	}
7858 
7859 	if (env->imbalance <= 0)
7860 		return 0;
7861 
7862 	while (!list_empty(tasks)) {
7863 		/*
7864 		 * We don't want to steal all, otherwise we may be treated likewise,
7865 		 * which could at worst lead to a livelock crash.
7866 		 */
7867 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7868 			break;
7869 
7870 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7871 
7872 		env->loop++;
7873 		/* We've more or less seen every task there is, call it quits */
7874 		if (env->loop > env->loop_max)
7875 			break;
7876 
7877 		/* take a breather every nr_migrate tasks */
7878 		if (env->loop > env->loop_break) {
7879 			env->loop_break += sched_nr_migrate_break;
7880 			env->flags |= LBF_NEED_BREAK;
7881 			break;
7882 		}
7883 
7884 		if (!can_migrate_task(p, env))
7885 			goto next;
7886 
7887 		switch (env->migration_type) {
7888 		case migrate_load:
7889 			/*
7890 			 * Depending of the number of CPUs and tasks and the
7891 			 * cgroup hierarchy, task_h_load() can return a null
7892 			 * value. Make sure that env->imbalance decreases
7893 			 * otherwise detach_tasks() will stop only after
7894 			 * detaching up to loop_max tasks.
7895 			 */
7896 			load = max_t(unsigned long, task_h_load(p), 1);
7897 
7898 			if (sched_feat(LB_MIN) &&
7899 			    load < 16 && !env->sd->nr_balance_failed)
7900 				goto next;
7901 
7902 			/*
7903 			 * Make sure that we don't migrate too much load.
7904 			 * Nevertheless, let relax the constraint if
7905 			 * scheduler fails to find a good waiting task to
7906 			 * migrate.
7907 			 */
7908 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7909 				goto next;
7910 
7911 			env->imbalance -= load;
7912 			break;
7913 
7914 		case migrate_util:
7915 			util = task_util_est(p);
7916 
7917 			if (util > env->imbalance)
7918 				goto next;
7919 
7920 			env->imbalance -= util;
7921 			break;
7922 
7923 		case migrate_task:
7924 			env->imbalance--;
7925 			break;
7926 
7927 		case migrate_misfit:
7928 			/* This is not a misfit task */
7929 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7930 				goto next;
7931 
7932 			env->imbalance = 0;
7933 			break;
7934 		}
7935 
7936 		detach_task(p, env);
7937 		list_add(&p->se.group_node, &env->tasks);
7938 
7939 		detached++;
7940 
7941 #ifdef CONFIG_PREEMPTION
7942 		/*
7943 		 * NEWIDLE balancing is a source of latency, so preemptible
7944 		 * kernels will stop after the first task is detached to minimize
7945 		 * the critical section.
7946 		 */
7947 		if (env->idle == CPU_NEWLY_IDLE)
7948 			break;
7949 #endif
7950 
7951 		/*
7952 		 * We only want to steal up to the prescribed amount of
7953 		 * load/util/tasks.
7954 		 */
7955 		if (env->imbalance <= 0)
7956 			break;
7957 
7958 		continue;
7959 next:
7960 		list_move(&p->se.group_node, tasks);
7961 	}
7962 
7963 	/*
7964 	 * Right now, this is one of only two places we collect this stat
7965 	 * so we can safely collect detach_one_task() stats here rather
7966 	 * than inside detach_one_task().
7967 	 */
7968 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7969 
7970 	return detached;
7971 }
7972 
7973 /*
7974  * attach_task() -- attach the task detached by detach_task() to its new rq.
7975  */
7976 static void attach_task(struct rq *rq, struct task_struct *p)
7977 {
7978 	lockdep_assert_rq_held(rq);
7979 
7980 	BUG_ON(task_rq(p) != rq);
7981 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7982 	check_preempt_curr(rq, p, 0);
7983 }
7984 
7985 /*
7986  * attach_one_task() -- attaches the task returned from detach_one_task() to
7987  * its new rq.
7988  */
7989 static void attach_one_task(struct rq *rq, struct task_struct *p)
7990 {
7991 	struct rq_flags rf;
7992 
7993 	rq_lock(rq, &rf);
7994 	update_rq_clock(rq);
7995 	attach_task(rq, p);
7996 	rq_unlock(rq, &rf);
7997 }
7998 
7999 /*
8000  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8001  * new rq.
8002  */
8003 static void attach_tasks(struct lb_env *env)
8004 {
8005 	struct list_head *tasks = &env->tasks;
8006 	struct task_struct *p;
8007 	struct rq_flags rf;
8008 
8009 	rq_lock(env->dst_rq, &rf);
8010 	update_rq_clock(env->dst_rq);
8011 
8012 	while (!list_empty(tasks)) {
8013 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8014 		list_del_init(&p->se.group_node);
8015 
8016 		attach_task(env->dst_rq, p);
8017 	}
8018 
8019 	rq_unlock(env->dst_rq, &rf);
8020 }
8021 
8022 #ifdef CONFIG_NO_HZ_COMMON
8023 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8024 {
8025 	if (cfs_rq->avg.load_avg)
8026 		return true;
8027 
8028 	if (cfs_rq->avg.util_avg)
8029 		return true;
8030 
8031 	return false;
8032 }
8033 
8034 static inline bool others_have_blocked(struct rq *rq)
8035 {
8036 	if (READ_ONCE(rq->avg_rt.util_avg))
8037 		return true;
8038 
8039 	if (READ_ONCE(rq->avg_dl.util_avg))
8040 		return true;
8041 
8042 	if (thermal_load_avg(rq))
8043 		return true;
8044 
8045 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8046 	if (READ_ONCE(rq->avg_irq.util_avg))
8047 		return true;
8048 #endif
8049 
8050 	return false;
8051 }
8052 
8053 static inline void update_blocked_load_tick(struct rq *rq)
8054 {
8055 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8056 }
8057 
8058 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8059 {
8060 	if (!has_blocked)
8061 		rq->has_blocked_load = 0;
8062 }
8063 #else
8064 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8065 static inline bool others_have_blocked(struct rq *rq) { return false; }
8066 static inline void update_blocked_load_tick(struct rq *rq) {}
8067 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8068 #endif
8069 
8070 static bool __update_blocked_others(struct rq *rq, bool *done)
8071 {
8072 	const struct sched_class *curr_class;
8073 	u64 now = rq_clock_pelt(rq);
8074 	unsigned long thermal_pressure;
8075 	bool decayed;
8076 
8077 	/*
8078 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8079 	 * DL and IRQ signals have been updated before updating CFS.
8080 	 */
8081 	curr_class = rq->curr->sched_class;
8082 
8083 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8084 
8085 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8086 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8087 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8088 		  update_irq_load_avg(rq, 0);
8089 
8090 	if (others_have_blocked(rq))
8091 		*done = false;
8092 
8093 	return decayed;
8094 }
8095 
8096 #ifdef CONFIG_FAIR_GROUP_SCHED
8097 
8098 static bool __update_blocked_fair(struct rq *rq, bool *done)
8099 {
8100 	struct cfs_rq *cfs_rq, *pos;
8101 	bool decayed = false;
8102 	int cpu = cpu_of(rq);
8103 
8104 	/*
8105 	 * Iterates the task_group tree in a bottom up fashion, see
8106 	 * list_add_leaf_cfs_rq() for details.
8107 	 */
8108 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8109 		struct sched_entity *se;
8110 
8111 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8112 			update_tg_load_avg(cfs_rq);
8113 
8114 			if (cfs_rq == &rq->cfs)
8115 				decayed = true;
8116 		}
8117 
8118 		/* Propagate pending load changes to the parent, if any: */
8119 		se = cfs_rq->tg->se[cpu];
8120 		if (se && !skip_blocked_update(se))
8121 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8122 
8123 		/*
8124 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8125 		 * decayed cfs_rqs linger on the list.
8126 		 */
8127 		if (cfs_rq_is_decayed(cfs_rq))
8128 			list_del_leaf_cfs_rq(cfs_rq);
8129 
8130 		/* Don't need periodic decay once load/util_avg are null */
8131 		if (cfs_rq_has_blocked(cfs_rq))
8132 			*done = false;
8133 	}
8134 
8135 	return decayed;
8136 }
8137 
8138 /*
8139  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8140  * This needs to be done in a top-down fashion because the load of a child
8141  * group is a fraction of its parents load.
8142  */
8143 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8144 {
8145 	struct rq *rq = rq_of(cfs_rq);
8146 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8147 	unsigned long now = jiffies;
8148 	unsigned long load;
8149 
8150 	if (cfs_rq->last_h_load_update == now)
8151 		return;
8152 
8153 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8154 	for_each_sched_entity(se) {
8155 		cfs_rq = cfs_rq_of(se);
8156 		WRITE_ONCE(cfs_rq->h_load_next, se);
8157 		if (cfs_rq->last_h_load_update == now)
8158 			break;
8159 	}
8160 
8161 	if (!se) {
8162 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8163 		cfs_rq->last_h_load_update = now;
8164 	}
8165 
8166 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8167 		load = cfs_rq->h_load;
8168 		load = div64_ul(load * se->avg.load_avg,
8169 			cfs_rq_load_avg(cfs_rq) + 1);
8170 		cfs_rq = group_cfs_rq(se);
8171 		cfs_rq->h_load = load;
8172 		cfs_rq->last_h_load_update = now;
8173 	}
8174 }
8175 
8176 static unsigned long task_h_load(struct task_struct *p)
8177 {
8178 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8179 
8180 	update_cfs_rq_h_load(cfs_rq);
8181 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8182 			cfs_rq_load_avg(cfs_rq) + 1);
8183 }
8184 #else
8185 static bool __update_blocked_fair(struct rq *rq, bool *done)
8186 {
8187 	struct cfs_rq *cfs_rq = &rq->cfs;
8188 	bool decayed;
8189 
8190 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8191 	if (cfs_rq_has_blocked(cfs_rq))
8192 		*done = false;
8193 
8194 	return decayed;
8195 }
8196 
8197 static unsigned long task_h_load(struct task_struct *p)
8198 {
8199 	return p->se.avg.load_avg;
8200 }
8201 #endif
8202 
8203 static void update_blocked_averages(int cpu)
8204 {
8205 	bool decayed = false, done = true;
8206 	struct rq *rq = cpu_rq(cpu);
8207 	struct rq_flags rf;
8208 
8209 	rq_lock_irqsave(rq, &rf);
8210 	update_blocked_load_tick(rq);
8211 	update_rq_clock(rq);
8212 
8213 	decayed |= __update_blocked_others(rq, &done);
8214 	decayed |= __update_blocked_fair(rq, &done);
8215 
8216 	update_blocked_load_status(rq, !done);
8217 	if (decayed)
8218 		cpufreq_update_util(rq, 0);
8219 	rq_unlock_irqrestore(rq, &rf);
8220 }
8221 
8222 /********** Helpers for find_busiest_group ************************/
8223 
8224 /*
8225  * sg_lb_stats - stats of a sched_group required for load_balancing
8226  */
8227 struct sg_lb_stats {
8228 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8229 	unsigned long group_load; /* Total load over the CPUs of the group */
8230 	unsigned long group_capacity;
8231 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8232 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8233 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8234 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8235 	unsigned int idle_cpus;
8236 	unsigned int group_weight;
8237 	enum group_type group_type;
8238 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8239 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8240 #ifdef CONFIG_NUMA_BALANCING
8241 	unsigned int nr_numa_running;
8242 	unsigned int nr_preferred_running;
8243 #endif
8244 };
8245 
8246 /*
8247  * sd_lb_stats - Structure to store the statistics of a sched_domain
8248  *		 during load balancing.
8249  */
8250 struct sd_lb_stats {
8251 	struct sched_group *busiest;	/* Busiest group in this sd */
8252 	struct sched_group *local;	/* Local group in this sd */
8253 	unsigned long total_load;	/* Total load of all groups in sd */
8254 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8255 	unsigned long avg_load;	/* Average load across all groups in sd */
8256 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8257 
8258 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8259 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8260 };
8261 
8262 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8263 {
8264 	/*
8265 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8266 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8267 	 * We must however set busiest_stat::group_type and
8268 	 * busiest_stat::idle_cpus to the worst busiest group because
8269 	 * update_sd_pick_busiest() reads these before assignment.
8270 	 */
8271 	*sds = (struct sd_lb_stats){
8272 		.busiest = NULL,
8273 		.local = NULL,
8274 		.total_load = 0UL,
8275 		.total_capacity = 0UL,
8276 		.busiest_stat = {
8277 			.idle_cpus = UINT_MAX,
8278 			.group_type = group_has_spare,
8279 		},
8280 	};
8281 }
8282 
8283 static unsigned long scale_rt_capacity(int cpu)
8284 {
8285 	struct rq *rq = cpu_rq(cpu);
8286 	unsigned long max = arch_scale_cpu_capacity(cpu);
8287 	unsigned long used, free;
8288 	unsigned long irq;
8289 
8290 	irq = cpu_util_irq(rq);
8291 
8292 	if (unlikely(irq >= max))
8293 		return 1;
8294 
8295 	/*
8296 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8297 	 * (running and not running) with weights 0 and 1024 respectively.
8298 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8299 	 * average uses the actual delta max capacity(load).
8300 	 */
8301 	used = READ_ONCE(rq->avg_rt.util_avg);
8302 	used += READ_ONCE(rq->avg_dl.util_avg);
8303 	used += thermal_load_avg(rq);
8304 
8305 	if (unlikely(used >= max))
8306 		return 1;
8307 
8308 	free = max - used;
8309 
8310 	return scale_irq_capacity(free, irq, max);
8311 }
8312 
8313 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8314 {
8315 	unsigned long capacity = scale_rt_capacity(cpu);
8316 	struct sched_group *sdg = sd->groups;
8317 
8318 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8319 
8320 	if (!capacity)
8321 		capacity = 1;
8322 
8323 	cpu_rq(cpu)->cpu_capacity = capacity;
8324 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8325 
8326 	sdg->sgc->capacity = capacity;
8327 	sdg->sgc->min_capacity = capacity;
8328 	sdg->sgc->max_capacity = capacity;
8329 }
8330 
8331 void update_group_capacity(struct sched_domain *sd, int cpu)
8332 {
8333 	struct sched_domain *child = sd->child;
8334 	struct sched_group *group, *sdg = sd->groups;
8335 	unsigned long capacity, min_capacity, max_capacity;
8336 	unsigned long interval;
8337 
8338 	interval = msecs_to_jiffies(sd->balance_interval);
8339 	interval = clamp(interval, 1UL, max_load_balance_interval);
8340 	sdg->sgc->next_update = jiffies + interval;
8341 
8342 	if (!child) {
8343 		update_cpu_capacity(sd, cpu);
8344 		return;
8345 	}
8346 
8347 	capacity = 0;
8348 	min_capacity = ULONG_MAX;
8349 	max_capacity = 0;
8350 
8351 	if (child->flags & SD_OVERLAP) {
8352 		/*
8353 		 * SD_OVERLAP domains cannot assume that child groups
8354 		 * span the current group.
8355 		 */
8356 
8357 		for_each_cpu(cpu, sched_group_span(sdg)) {
8358 			unsigned long cpu_cap = capacity_of(cpu);
8359 
8360 			capacity += cpu_cap;
8361 			min_capacity = min(cpu_cap, min_capacity);
8362 			max_capacity = max(cpu_cap, max_capacity);
8363 		}
8364 	} else  {
8365 		/*
8366 		 * !SD_OVERLAP domains can assume that child groups
8367 		 * span the current group.
8368 		 */
8369 
8370 		group = child->groups;
8371 		do {
8372 			struct sched_group_capacity *sgc = group->sgc;
8373 
8374 			capacity += sgc->capacity;
8375 			min_capacity = min(sgc->min_capacity, min_capacity);
8376 			max_capacity = max(sgc->max_capacity, max_capacity);
8377 			group = group->next;
8378 		} while (group != child->groups);
8379 	}
8380 
8381 	sdg->sgc->capacity = capacity;
8382 	sdg->sgc->min_capacity = min_capacity;
8383 	sdg->sgc->max_capacity = max_capacity;
8384 }
8385 
8386 /*
8387  * Check whether the capacity of the rq has been noticeably reduced by side
8388  * activity. The imbalance_pct is used for the threshold.
8389  * Return true is the capacity is reduced
8390  */
8391 static inline int
8392 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8393 {
8394 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8395 				(rq->cpu_capacity_orig * 100));
8396 }
8397 
8398 /*
8399  * Check whether a rq has a misfit task and if it looks like we can actually
8400  * help that task: we can migrate the task to a CPU of higher capacity, or
8401  * the task's current CPU is heavily pressured.
8402  */
8403 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8404 {
8405 	return rq->misfit_task_load &&
8406 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8407 		 check_cpu_capacity(rq, sd));
8408 }
8409 
8410 /*
8411  * Group imbalance indicates (and tries to solve) the problem where balancing
8412  * groups is inadequate due to ->cpus_ptr constraints.
8413  *
8414  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8415  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8416  * Something like:
8417  *
8418  *	{ 0 1 2 3 } { 4 5 6 7 }
8419  *	        *     * * *
8420  *
8421  * If we were to balance group-wise we'd place two tasks in the first group and
8422  * two tasks in the second group. Clearly this is undesired as it will overload
8423  * cpu 3 and leave one of the CPUs in the second group unused.
8424  *
8425  * The current solution to this issue is detecting the skew in the first group
8426  * by noticing the lower domain failed to reach balance and had difficulty
8427  * moving tasks due to affinity constraints.
8428  *
8429  * When this is so detected; this group becomes a candidate for busiest; see
8430  * update_sd_pick_busiest(). And calculate_imbalance() and
8431  * find_busiest_group() avoid some of the usual balance conditions to allow it
8432  * to create an effective group imbalance.
8433  *
8434  * This is a somewhat tricky proposition since the next run might not find the
8435  * group imbalance and decide the groups need to be balanced again. A most
8436  * subtle and fragile situation.
8437  */
8438 
8439 static inline int sg_imbalanced(struct sched_group *group)
8440 {
8441 	return group->sgc->imbalance;
8442 }
8443 
8444 /*
8445  * group_has_capacity returns true if the group has spare capacity that could
8446  * be used by some tasks.
8447  * We consider that a group has spare capacity if the  * number of task is
8448  * smaller than the number of CPUs or if the utilization is lower than the
8449  * available capacity for CFS tasks.
8450  * For the latter, we use a threshold to stabilize the state, to take into
8451  * account the variance of the tasks' load and to return true if the available
8452  * capacity in meaningful for the load balancer.
8453  * As an example, an available capacity of 1% can appear but it doesn't make
8454  * any benefit for the load balance.
8455  */
8456 static inline bool
8457 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8458 {
8459 	if (sgs->sum_nr_running < sgs->group_weight)
8460 		return true;
8461 
8462 	if ((sgs->group_capacity * imbalance_pct) <
8463 			(sgs->group_runnable * 100))
8464 		return false;
8465 
8466 	if ((sgs->group_capacity * 100) >
8467 			(sgs->group_util * imbalance_pct))
8468 		return true;
8469 
8470 	return false;
8471 }
8472 
8473 /*
8474  *  group_is_overloaded returns true if the group has more tasks than it can
8475  *  handle.
8476  *  group_is_overloaded is not equals to !group_has_capacity because a group
8477  *  with the exact right number of tasks, has no more spare capacity but is not
8478  *  overloaded so both group_has_capacity and group_is_overloaded return
8479  *  false.
8480  */
8481 static inline bool
8482 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8483 {
8484 	if (sgs->sum_nr_running <= sgs->group_weight)
8485 		return false;
8486 
8487 	if ((sgs->group_capacity * 100) <
8488 			(sgs->group_util * imbalance_pct))
8489 		return true;
8490 
8491 	if ((sgs->group_capacity * imbalance_pct) <
8492 			(sgs->group_runnable * 100))
8493 		return true;
8494 
8495 	return false;
8496 }
8497 
8498 static inline enum
8499 group_type group_classify(unsigned int imbalance_pct,
8500 			  struct sched_group *group,
8501 			  struct sg_lb_stats *sgs)
8502 {
8503 	if (group_is_overloaded(imbalance_pct, sgs))
8504 		return group_overloaded;
8505 
8506 	if (sg_imbalanced(group))
8507 		return group_imbalanced;
8508 
8509 	if (sgs->group_asym_packing)
8510 		return group_asym_packing;
8511 
8512 	if (sgs->group_misfit_task_load)
8513 		return group_misfit_task;
8514 
8515 	if (!group_has_capacity(imbalance_pct, sgs))
8516 		return group_fully_busy;
8517 
8518 	return group_has_spare;
8519 }
8520 
8521 /**
8522  * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
8523  * @dst_cpu:	Destination CPU of the load balancing
8524  * @sds:	Load-balancing data with statistics of the local group
8525  * @sgs:	Load-balancing statistics of the candidate busiest group
8526  * @sg:		The candidate busiest group
8527  *
8528  * Check the state of the SMT siblings of both @sds::local and @sg and decide
8529  * if @dst_cpu can pull tasks.
8530  *
8531  * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
8532  * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
8533  * only if @dst_cpu has higher priority.
8534  *
8535  * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
8536  * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
8537  * Bigger imbalances in the number of busy CPUs will be dealt with in
8538  * update_sd_pick_busiest().
8539  *
8540  * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
8541  * of @dst_cpu are idle and @sg has lower priority.
8542  */
8543 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
8544 				    struct sg_lb_stats *sgs,
8545 				    struct sched_group *sg)
8546 {
8547 #ifdef CONFIG_SCHED_SMT
8548 	bool local_is_smt, sg_is_smt;
8549 	int sg_busy_cpus;
8550 
8551 	local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
8552 	sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
8553 
8554 	sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
8555 
8556 	if (!local_is_smt) {
8557 		/*
8558 		 * If we are here, @dst_cpu is idle and does not have SMT
8559 		 * siblings. Pull tasks if candidate group has two or more
8560 		 * busy CPUs.
8561 		 */
8562 		if (sg_busy_cpus >= 2) /* implies sg_is_smt */
8563 			return true;
8564 
8565 		/*
8566 		 * @dst_cpu does not have SMT siblings. @sg may have SMT
8567 		 * siblings and only one is busy. In such case, @dst_cpu
8568 		 * can help if it has higher priority and is idle (i.e.,
8569 		 * it has no running tasks).
8570 		 */
8571 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8572 	}
8573 
8574 	/* @dst_cpu has SMT siblings. */
8575 
8576 	if (sg_is_smt) {
8577 		int local_busy_cpus = sds->local->group_weight -
8578 				      sds->local_stat.idle_cpus;
8579 		int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
8580 
8581 		if (busy_cpus_delta == 1)
8582 			return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8583 
8584 		return false;
8585 	}
8586 
8587 	/*
8588 	 * @sg does not have SMT siblings. Ensure that @sds::local does not end
8589 	 * up with more than one busy SMT sibling and only pull tasks if there
8590 	 * are not busy CPUs (i.e., no CPU has running tasks).
8591 	 */
8592 	if (!sds->local_stat.sum_nr_running)
8593 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8594 
8595 	return false;
8596 #else
8597 	/* Always return false so that callers deal with non-SMT cases. */
8598 	return false;
8599 #endif
8600 }
8601 
8602 static inline bool
8603 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
8604 	   struct sched_group *group)
8605 {
8606 	/* Only do SMT checks if either local or candidate have SMT siblings */
8607 	if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
8608 	    (group->flags & SD_SHARE_CPUCAPACITY))
8609 		return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
8610 
8611 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
8612 }
8613 
8614 /**
8615  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8616  * @env: The load balancing environment.
8617  * @group: sched_group whose statistics are to be updated.
8618  * @sgs: variable to hold the statistics for this group.
8619  * @sg_status: Holds flag indicating the status of the sched_group
8620  */
8621 static inline void update_sg_lb_stats(struct lb_env *env,
8622 				      struct sd_lb_stats *sds,
8623 				      struct sched_group *group,
8624 				      struct sg_lb_stats *sgs,
8625 				      int *sg_status)
8626 {
8627 	int i, nr_running, local_group;
8628 
8629 	memset(sgs, 0, sizeof(*sgs));
8630 
8631 	local_group = group == sds->local;
8632 
8633 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8634 		struct rq *rq = cpu_rq(i);
8635 
8636 		sgs->group_load += cpu_load(rq);
8637 		sgs->group_util += cpu_util_cfs(i);
8638 		sgs->group_runnable += cpu_runnable(rq);
8639 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8640 
8641 		nr_running = rq->nr_running;
8642 		sgs->sum_nr_running += nr_running;
8643 
8644 		if (nr_running > 1)
8645 			*sg_status |= SG_OVERLOAD;
8646 
8647 		if (cpu_overutilized(i))
8648 			*sg_status |= SG_OVERUTILIZED;
8649 
8650 #ifdef CONFIG_NUMA_BALANCING
8651 		sgs->nr_numa_running += rq->nr_numa_running;
8652 		sgs->nr_preferred_running += rq->nr_preferred_running;
8653 #endif
8654 		/*
8655 		 * No need to call idle_cpu() if nr_running is not 0
8656 		 */
8657 		if (!nr_running && idle_cpu(i)) {
8658 			sgs->idle_cpus++;
8659 			/* Idle cpu can't have misfit task */
8660 			continue;
8661 		}
8662 
8663 		if (local_group)
8664 			continue;
8665 
8666 		/* Check for a misfit task on the cpu */
8667 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8668 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8669 			sgs->group_misfit_task_load = rq->misfit_task_load;
8670 			*sg_status |= SG_OVERLOAD;
8671 		}
8672 	}
8673 
8674 	sgs->group_capacity = group->sgc->capacity;
8675 
8676 	sgs->group_weight = group->group_weight;
8677 
8678 	/* Check if dst CPU is idle and preferred to this group */
8679 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
8680 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
8681 	    sched_asym(env, sds, sgs, group)) {
8682 		sgs->group_asym_packing = 1;
8683 	}
8684 
8685 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8686 
8687 	/* Computing avg_load makes sense only when group is overloaded */
8688 	if (sgs->group_type == group_overloaded)
8689 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8690 				sgs->group_capacity;
8691 }
8692 
8693 /**
8694  * update_sd_pick_busiest - return 1 on busiest group
8695  * @env: The load balancing environment.
8696  * @sds: sched_domain statistics
8697  * @sg: sched_group candidate to be checked for being the busiest
8698  * @sgs: sched_group statistics
8699  *
8700  * Determine if @sg is a busier group than the previously selected
8701  * busiest group.
8702  *
8703  * Return: %true if @sg is a busier group than the previously selected
8704  * busiest group. %false otherwise.
8705  */
8706 static bool update_sd_pick_busiest(struct lb_env *env,
8707 				   struct sd_lb_stats *sds,
8708 				   struct sched_group *sg,
8709 				   struct sg_lb_stats *sgs)
8710 {
8711 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8712 
8713 	/* Make sure that there is at least one task to pull */
8714 	if (!sgs->sum_h_nr_running)
8715 		return false;
8716 
8717 	/*
8718 	 * Don't try to pull misfit tasks we can't help.
8719 	 * We can use max_capacity here as reduction in capacity on some
8720 	 * CPUs in the group should either be possible to resolve
8721 	 * internally or be covered by avg_load imbalance (eventually).
8722 	 */
8723 	if (sgs->group_type == group_misfit_task &&
8724 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8725 	     sds->local_stat.group_type != group_has_spare))
8726 		return false;
8727 
8728 	if (sgs->group_type > busiest->group_type)
8729 		return true;
8730 
8731 	if (sgs->group_type < busiest->group_type)
8732 		return false;
8733 
8734 	/*
8735 	 * The candidate and the current busiest group are the same type of
8736 	 * group. Let check which one is the busiest according to the type.
8737 	 */
8738 
8739 	switch (sgs->group_type) {
8740 	case group_overloaded:
8741 		/* Select the overloaded group with highest avg_load. */
8742 		if (sgs->avg_load <= busiest->avg_load)
8743 			return false;
8744 		break;
8745 
8746 	case group_imbalanced:
8747 		/*
8748 		 * Select the 1st imbalanced group as we don't have any way to
8749 		 * choose one more than another.
8750 		 */
8751 		return false;
8752 
8753 	case group_asym_packing:
8754 		/* Prefer to move from lowest priority CPU's work */
8755 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8756 			return false;
8757 		break;
8758 
8759 	case group_misfit_task:
8760 		/*
8761 		 * If we have more than one misfit sg go with the biggest
8762 		 * misfit.
8763 		 */
8764 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8765 			return false;
8766 		break;
8767 
8768 	case group_fully_busy:
8769 		/*
8770 		 * Select the fully busy group with highest avg_load. In
8771 		 * theory, there is no need to pull task from such kind of
8772 		 * group because tasks have all compute capacity that they need
8773 		 * but we can still improve the overall throughput by reducing
8774 		 * contention when accessing shared HW resources.
8775 		 *
8776 		 * XXX for now avg_load is not computed and always 0 so we
8777 		 * select the 1st one.
8778 		 */
8779 		if (sgs->avg_load <= busiest->avg_load)
8780 			return false;
8781 		break;
8782 
8783 	case group_has_spare:
8784 		/*
8785 		 * Select not overloaded group with lowest number of idle cpus
8786 		 * and highest number of running tasks. We could also compare
8787 		 * the spare capacity which is more stable but it can end up
8788 		 * that the group has less spare capacity but finally more idle
8789 		 * CPUs which means less opportunity to pull tasks.
8790 		 */
8791 		if (sgs->idle_cpus > busiest->idle_cpus)
8792 			return false;
8793 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8794 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
8795 			return false;
8796 
8797 		break;
8798 	}
8799 
8800 	/*
8801 	 * Candidate sg has no more than one task per CPU and has higher
8802 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8803 	 * throughput. Maximize throughput, power/energy consequences are not
8804 	 * considered.
8805 	 */
8806 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8807 	    (sgs->group_type <= group_fully_busy) &&
8808 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8809 		return false;
8810 
8811 	return true;
8812 }
8813 
8814 #ifdef CONFIG_NUMA_BALANCING
8815 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8816 {
8817 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8818 		return regular;
8819 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8820 		return remote;
8821 	return all;
8822 }
8823 
8824 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8825 {
8826 	if (rq->nr_running > rq->nr_numa_running)
8827 		return regular;
8828 	if (rq->nr_running > rq->nr_preferred_running)
8829 		return remote;
8830 	return all;
8831 }
8832 #else
8833 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8834 {
8835 	return all;
8836 }
8837 
8838 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8839 {
8840 	return regular;
8841 }
8842 #endif /* CONFIG_NUMA_BALANCING */
8843 
8844 
8845 struct sg_lb_stats;
8846 
8847 /*
8848  * task_running_on_cpu - return 1 if @p is running on @cpu.
8849  */
8850 
8851 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8852 {
8853 	/* Task has no contribution or is new */
8854 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8855 		return 0;
8856 
8857 	if (task_on_rq_queued(p))
8858 		return 1;
8859 
8860 	return 0;
8861 }
8862 
8863 /**
8864  * idle_cpu_without - would a given CPU be idle without p ?
8865  * @cpu: the processor on which idleness is tested.
8866  * @p: task which should be ignored.
8867  *
8868  * Return: 1 if the CPU would be idle. 0 otherwise.
8869  */
8870 static int idle_cpu_without(int cpu, struct task_struct *p)
8871 {
8872 	struct rq *rq = cpu_rq(cpu);
8873 
8874 	if (rq->curr != rq->idle && rq->curr != p)
8875 		return 0;
8876 
8877 	/*
8878 	 * rq->nr_running can't be used but an updated version without the
8879 	 * impact of p on cpu must be used instead. The updated nr_running
8880 	 * be computed and tested before calling idle_cpu_without().
8881 	 */
8882 
8883 #ifdef CONFIG_SMP
8884 	if (rq->ttwu_pending)
8885 		return 0;
8886 #endif
8887 
8888 	return 1;
8889 }
8890 
8891 /*
8892  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8893  * @sd: The sched_domain level to look for idlest group.
8894  * @group: sched_group whose statistics are to be updated.
8895  * @sgs: variable to hold the statistics for this group.
8896  * @p: The task for which we look for the idlest group/CPU.
8897  */
8898 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8899 					  struct sched_group *group,
8900 					  struct sg_lb_stats *sgs,
8901 					  struct task_struct *p)
8902 {
8903 	int i, nr_running;
8904 
8905 	memset(sgs, 0, sizeof(*sgs));
8906 
8907 	for_each_cpu(i, sched_group_span(group)) {
8908 		struct rq *rq = cpu_rq(i);
8909 		unsigned int local;
8910 
8911 		sgs->group_load += cpu_load_without(rq, p);
8912 		sgs->group_util += cpu_util_without(i, p);
8913 		sgs->group_runnable += cpu_runnable_without(rq, p);
8914 		local = task_running_on_cpu(i, p);
8915 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8916 
8917 		nr_running = rq->nr_running - local;
8918 		sgs->sum_nr_running += nr_running;
8919 
8920 		/*
8921 		 * No need to call idle_cpu_without() if nr_running is not 0
8922 		 */
8923 		if (!nr_running && idle_cpu_without(i, p))
8924 			sgs->idle_cpus++;
8925 
8926 	}
8927 
8928 	/* Check if task fits in the group */
8929 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
8930 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
8931 		sgs->group_misfit_task_load = 1;
8932 	}
8933 
8934 	sgs->group_capacity = group->sgc->capacity;
8935 
8936 	sgs->group_weight = group->group_weight;
8937 
8938 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8939 
8940 	/*
8941 	 * Computing avg_load makes sense only when group is fully busy or
8942 	 * overloaded
8943 	 */
8944 	if (sgs->group_type == group_fully_busy ||
8945 		sgs->group_type == group_overloaded)
8946 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8947 				sgs->group_capacity;
8948 }
8949 
8950 static bool update_pick_idlest(struct sched_group *idlest,
8951 			       struct sg_lb_stats *idlest_sgs,
8952 			       struct sched_group *group,
8953 			       struct sg_lb_stats *sgs)
8954 {
8955 	if (sgs->group_type < idlest_sgs->group_type)
8956 		return true;
8957 
8958 	if (sgs->group_type > idlest_sgs->group_type)
8959 		return false;
8960 
8961 	/*
8962 	 * The candidate and the current idlest group are the same type of
8963 	 * group. Let check which one is the idlest according to the type.
8964 	 */
8965 
8966 	switch (sgs->group_type) {
8967 	case group_overloaded:
8968 	case group_fully_busy:
8969 		/* Select the group with lowest avg_load. */
8970 		if (idlest_sgs->avg_load <= sgs->avg_load)
8971 			return false;
8972 		break;
8973 
8974 	case group_imbalanced:
8975 	case group_asym_packing:
8976 		/* Those types are not used in the slow wakeup path */
8977 		return false;
8978 
8979 	case group_misfit_task:
8980 		/* Select group with the highest max capacity */
8981 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8982 			return false;
8983 		break;
8984 
8985 	case group_has_spare:
8986 		/* Select group with most idle CPUs */
8987 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8988 			return false;
8989 
8990 		/* Select group with lowest group_util */
8991 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8992 			idlest_sgs->group_util <= sgs->group_util)
8993 			return false;
8994 
8995 		break;
8996 	}
8997 
8998 	return true;
8999 }
9000 
9001 /*
9002  * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
9003  * This is an approximation as the number of running tasks may not be
9004  * related to the number of busy CPUs due to sched_setaffinity.
9005  */
9006 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
9007 {
9008 	return (dst_running < (dst_weight >> 2));
9009 }
9010 
9011 /*
9012  * find_idlest_group() finds and returns the least busy CPU group within the
9013  * domain.
9014  *
9015  * Assumes p is allowed on at least one CPU in sd.
9016  */
9017 static struct sched_group *
9018 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9019 {
9020 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9021 	struct sg_lb_stats local_sgs, tmp_sgs;
9022 	struct sg_lb_stats *sgs;
9023 	unsigned long imbalance;
9024 	struct sg_lb_stats idlest_sgs = {
9025 			.avg_load = UINT_MAX,
9026 			.group_type = group_overloaded,
9027 	};
9028 
9029 	do {
9030 		int local_group;
9031 
9032 		/* Skip over this group if it has no CPUs allowed */
9033 		if (!cpumask_intersects(sched_group_span(group),
9034 					p->cpus_ptr))
9035 			continue;
9036 
9037 		/* Skip over this group if no cookie matched */
9038 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9039 			continue;
9040 
9041 		local_group = cpumask_test_cpu(this_cpu,
9042 					       sched_group_span(group));
9043 
9044 		if (local_group) {
9045 			sgs = &local_sgs;
9046 			local = group;
9047 		} else {
9048 			sgs = &tmp_sgs;
9049 		}
9050 
9051 		update_sg_wakeup_stats(sd, group, sgs, p);
9052 
9053 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9054 			idlest = group;
9055 			idlest_sgs = *sgs;
9056 		}
9057 
9058 	} while (group = group->next, group != sd->groups);
9059 
9060 
9061 	/* There is no idlest group to push tasks to */
9062 	if (!idlest)
9063 		return NULL;
9064 
9065 	/* The local group has been skipped because of CPU affinity */
9066 	if (!local)
9067 		return idlest;
9068 
9069 	/*
9070 	 * If the local group is idler than the selected idlest group
9071 	 * don't try and push the task.
9072 	 */
9073 	if (local_sgs.group_type < idlest_sgs.group_type)
9074 		return NULL;
9075 
9076 	/*
9077 	 * If the local group is busier than the selected idlest group
9078 	 * try and push the task.
9079 	 */
9080 	if (local_sgs.group_type > idlest_sgs.group_type)
9081 		return idlest;
9082 
9083 	switch (local_sgs.group_type) {
9084 	case group_overloaded:
9085 	case group_fully_busy:
9086 
9087 		/* Calculate allowed imbalance based on load */
9088 		imbalance = scale_load_down(NICE_0_LOAD) *
9089 				(sd->imbalance_pct-100) / 100;
9090 
9091 		/*
9092 		 * When comparing groups across NUMA domains, it's possible for
9093 		 * the local domain to be very lightly loaded relative to the
9094 		 * remote domains but "imbalance" skews the comparison making
9095 		 * remote CPUs look much more favourable. When considering
9096 		 * cross-domain, add imbalance to the load on the remote node
9097 		 * and consider staying local.
9098 		 */
9099 
9100 		if ((sd->flags & SD_NUMA) &&
9101 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9102 			return NULL;
9103 
9104 		/*
9105 		 * If the local group is less loaded than the selected
9106 		 * idlest group don't try and push any tasks.
9107 		 */
9108 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9109 			return NULL;
9110 
9111 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9112 			return NULL;
9113 		break;
9114 
9115 	case group_imbalanced:
9116 	case group_asym_packing:
9117 		/* Those type are not used in the slow wakeup path */
9118 		return NULL;
9119 
9120 	case group_misfit_task:
9121 		/* Select group with the highest max capacity */
9122 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9123 			return NULL;
9124 		break;
9125 
9126 	case group_has_spare:
9127 		if (sd->flags & SD_NUMA) {
9128 #ifdef CONFIG_NUMA_BALANCING
9129 			int idlest_cpu;
9130 			/*
9131 			 * If there is spare capacity at NUMA, try to select
9132 			 * the preferred node
9133 			 */
9134 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9135 				return NULL;
9136 
9137 			idlest_cpu = cpumask_first(sched_group_span(idlest));
9138 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9139 				return idlest;
9140 #endif
9141 			/*
9142 			 * Otherwise, keep the task on this node to stay close
9143 			 * its wakeup source and improve locality. If there is
9144 			 * a real need of migration, periodic load balance will
9145 			 * take care of it.
9146 			 */
9147 			if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
9148 				return NULL;
9149 		}
9150 
9151 		/*
9152 		 * Select group with highest number of idle CPUs. We could also
9153 		 * compare the utilization which is more stable but it can end
9154 		 * up that the group has less spare capacity but finally more
9155 		 * idle CPUs which means more opportunity to run task.
9156 		 */
9157 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9158 			return NULL;
9159 		break;
9160 	}
9161 
9162 	return idlest;
9163 }
9164 
9165 /**
9166  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9167  * @env: The load balancing environment.
9168  * @sds: variable to hold the statistics for this sched_domain.
9169  */
9170 
9171 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9172 {
9173 	struct sched_domain *child = env->sd->child;
9174 	struct sched_group *sg = env->sd->groups;
9175 	struct sg_lb_stats *local = &sds->local_stat;
9176 	struct sg_lb_stats tmp_sgs;
9177 	int sg_status = 0;
9178 
9179 	do {
9180 		struct sg_lb_stats *sgs = &tmp_sgs;
9181 		int local_group;
9182 
9183 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9184 		if (local_group) {
9185 			sds->local = sg;
9186 			sgs = local;
9187 
9188 			if (env->idle != CPU_NEWLY_IDLE ||
9189 			    time_after_eq(jiffies, sg->sgc->next_update))
9190 				update_group_capacity(env->sd, env->dst_cpu);
9191 		}
9192 
9193 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
9194 
9195 		if (local_group)
9196 			goto next_group;
9197 
9198 
9199 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9200 			sds->busiest = sg;
9201 			sds->busiest_stat = *sgs;
9202 		}
9203 
9204 next_group:
9205 		/* Now, start updating sd_lb_stats */
9206 		sds->total_load += sgs->group_load;
9207 		sds->total_capacity += sgs->group_capacity;
9208 
9209 		sg = sg->next;
9210 	} while (sg != env->sd->groups);
9211 
9212 	/* Tag domain that child domain prefers tasks go to siblings first */
9213 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9214 
9215 
9216 	if (env->sd->flags & SD_NUMA)
9217 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9218 
9219 	if (!env->sd->parent) {
9220 		struct root_domain *rd = env->dst_rq->rd;
9221 
9222 		/* update overload indicator if we are at root domain */
9223 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9224 
9225 		/* Update over-utilization (tipping point, U >= 0) indicator */
9226 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9227 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9228 	} else if (sg_status & SG_OVERUTILIZED) {
9229 		struct root_domain *rd = env->dst_rq->rd;
9230 
9231 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9232 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9233 	}
9234 }
9235 
9236 #define NUMA_IMBALANCE_MIN 2
9237 
9238 static inline long adjust_numa_imbalance(int imbalance,
9239 				int dst_running, int dst_weight)
9240 {
9241 	if (!allow_numa_imbalance(dst_running, dst_weight))
9242 		return imbalance;
9243 
9244 	/*
9245 	 * Allow a small imbalance based on a simple pair of communicating
9246 	 * tasks that remain local when the destination is lightly loaded.
9247 	 */
9248 	if (imbalance <= NUMA_IMBALANCE_MIN)
9249 		return 0;
9250 
9251 	return imbalance;
9252 }
9253 
9254 /**
9255  * calculate_imbalance - Calculate the amount of imbalance present within the
9256  *			 groups of a given sched_domain during load balance.
9257  * @env: load balance environment
9258  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9259  */
9260 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9261 {
9262 	struct sg_lb_stats *local, *busiest;
9263 
9264 	local = &sds->local_stat;
9265 	busiest = &sds->busiest_stat;
9266 
9267 	if (busiest->group_type == group_misfit_task) {
9268 		/* Set imbalance to allow misfit tasks to be balanced. */
9269 		env->migration_type = migrate_misfit;
9270 		env->imbalance = 1;
9271 		return;
9272 	}
9273 
9274 	if (busiest->group_type == group_asym_packing) {
9275 		/*
9276 		 * In case of asym capacity, we will try to migrate all load to
9277 		 * the preferred CPU.
9278 		 */
9279 		env->migration_type = migrate_task;
9280 		env->imbalance = busiest->sum_h_nr_running;
9281 		return;
9282 	}
9283 
9284 	if (busiest->group_type == group_imbalanced) {
9285 		/*
9286 		 * In the group_imb case we cannot rely on group-wide averages
9287 		 * to ensure CPU-load equilibrium, try to move any task to fix
9288 		 * the imbalance. The next load balance will take care of
9289 		 * balancing back the system.
9290 		 */
9291 		env->migration_type = migrate_task;
9292 		env->imbalance = 1;
9293 		return;
9294 	}
9295 
9296 	/*
9297 	 * Try to use spare capacity of local group without overloading it or
9298 	 * emptying busiest.
9299 	 */
9300 	if (local->group_type == group_has_spare) {
9301 		if ((busiest->group_type > group_fully_busy) &&
9302 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9303 			/*
9304 			 * If busiest is overloaded, try to fill spare
9305 			 * capacity. This might end up creating spare capacity
9306 			 * in busiest or busiest still being overloaded but
9307 			 * there is no simple way to directly compute the
9308 			 * amount of load to migrate in order to balance the
9309 			 * system.
9310 			 */
9311 			env->migration_type = migrate_util;
9312 			env->imbalance = max(local->group_capacity, local->group_util) -
9313 					 local->group_util;
9314 
9315 			/*
9316 			 * In some cases, the group's utilization is max or even
9317 			 * higher than capacity because of migrations but the
9318 			 * local CPU is (newly) idle. There is at least one
9319 			 * waiting task in this overloaded busiest group. Let's
9320 			 * try to pull it.
9321 			 */
9322 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9323 				env->migration_type = migrate_task;
9324 				env->imbalance = 1;
9325 			}
9326 
9327 			return;
9328 		}
9329 
9330 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9331 			unsigned int nr_diff = busiest->sum_nr_running;
9332 			/*
9333 			 * When prefer sibling, evenly spread running tasks on
9334 			 * groups.
9335 			 */
9336 			env->migration_type = migrate_task;
9337 			lsub_positive(&nr_diff, local->sum_nr_running);
9338 			env->imbalance = nr_diff >> 1;
9339 		} else {
9340 
9341 			/*
9342 			 * If there is no overload, we just want to even the number of
9343 			 * idle cpus.
9344 			 */
9345 			env->migration_type = migrate_task;
9346 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9347 						 busiest->idle_cpus) >> 1);
9348 		}
9349 
9350 		/* Consider allowing a small imbalance between NUMA groups */
9351 		if (env->sd->flags & SD_NUMA) {
9352 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9353 				busiest->sum_nr_running, busiest->group_weight);
9354 		}
9355 
9356 		return;
9357 	}
9358 
9359 	/*
9360 	 * Local is fully busy but has to take more load to relieve the
9361 	 * busiest group
9362 	 */
9363 	if (local->group_type < group_overloaded) {
9364 		/*
9365 		 * Local will become overloaded so the avg_load metrics are
9366 		 * finally needed.
9367 		 */
9368 
9369 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9370 				  local->group_capacity;
9371 
9372 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9373 				sds->total_capacity;
9374 		/*
9375 		 * If the local group is more loaded than the selected
9376 		 * busiest group don't try to pull any tasks.
9377 		 */
9378 		if (local->avg_load >= busiest->avg_load) {
9379 			env->imbalance = 0;
9380 			return;
9381 		}
9382 	}
9383 
9384 	/*
9385 	 * Both group are or will become overloaded and we're trying to get all
9386 	 * the CPUs to the average_load, so we don't want to push ourselves
9387 	 * above the average load, nor do we wish to reduce the max loaded CPU
9388 	 * below the average load. At the same time, we also don't want to
9389 	 * reduce the group load below the group capacity. Thus we look for
9390 	 * the minimum possible imbalance.
9391 	 */
9392 	env->migration_type = migrate_load;
9393 	env->imbalance = min(
9394 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9395 		(sds->avg_load - local->avg_load) * local->group_capacity
9396 	) / SCHED_CAPACITY_SCALE;
9397 }
9398 
9399 /******* find_busiest_group() helpers end here *********************/
9400 
9401 /*
9402  * Decision matrix according to the local and busiest group type:
9403  *
9404  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9405  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9406  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9407  * misfit_task      force     N/A        N/A    N/A  force      force
9408  * asym_packing     force     force      N/A    N/A  force      force
9409  * imbalanced       force     force      N/A    N/A  force      force
9410  * overloaded       force     force      N/A    N/A  force      avg_load
9411  *
9412  * N/A :      Not Applicable because already filtered while updating
9413  *            statistics.
9414  * balanced : The system is balanced for these 2 groups.
9415  * force :    Calculate the imbalance as load migration is probably needed.
9416  * avg_load : Only if imbalance is significant enough.
9417  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9418  *            different in groups.
9419  */
9420 
9421 /**
9422  * find_busiest_group - Returns the busiest group within the sched_domain
9423  * if there is an imbalance.
9424  *
9425  * Also calculates the amount of runnable load which should be moved
9426  * to restore balance.
9427  *
9428  * @env: The load balancing environment.
9429  *
9430  * Return:	- The busiest group if imbalance exists.
9431  */
9432 static struct sched_group *find_busiest_group(struct lb_env *env)
9433 {
9434 	struct sg_lb_stats *local, *busiest;
9435 	struct sd_lb_stats sds;
9436 
9437 	init_sd_lb_stats(&sds);
9438 
9439 	/*
9440 	 * Compute the various statistics relevant for load balancing at
9441 	 * this level.
9442 	 */
9443 	update_sd_lb_stats(env, &sds);
9444 
9445 	if (sched_energy_enabled()) {
9446 		struct root_domain *rd = env->dst_rq->rd;
9447 
9448 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9449 			goto out_balanced;
9450 	}
9451 
9452 	local = &sds.local_stat;
9453 	busiest = &sds.busiest_stat;
9454 
9455 	/* There is no busy sibling group to pull tasks from */
9456 	if (!sds.busiest)
9457 		goto out_balanced;
9458 
9459 	/* Misfit tasks should be dealt with regardless of the avg load */
9460 	if (busiest->group_type == group_misfit_task)
9461 		goto force_balance;
9462 
9463 	/* ASYM feature bypasses nice load balance check */
9464 	if (busiest->group_type == group_asym_packing)
9465 		goto force_balance;
9466 
9467 	/*
9468 	 * If the busiest group is imbalanced the below checks don't
9469 	 * work because they assume all things are equal, which typically
9470 	 * isn't true due to cpus_ptr constraints and the like.
9471 	 */
9472 	if (busiest->group_type == group_imbalanced)
9473 		goto force_balance;
9474 
9475 	/*
9476 	 * If the local group is busier than the selected busiest group
9477 	 * don't try and pull any tasks.
9478 	 */
9479 	if (local->group_type > busiest->group_type)
9480 		goto out_balanced;
9481 
9482 	/*
9483 	 * When groups are overloaded, use the avg_load to ensure fairness
9484 	 * between tasks.
9485 	 */
9486 	if (local->group_type == group_overloaded) {
9487 		/*
9488 		 * If the local group is more loaded than the selected
9489 		 * busiest group don't try to pull any tasks.
9490 		 */
9491 		if (local->avg_load >= busiest->avg_load)
9492 			goto out_balanced;
9493 
9494 		/* XXX broken for overlapping NUMA groups */
9495 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9496 				sds.total_capacity;
9497 
9498 		/*
9499 		 * Don't pull any tasks if this group is already above the
9500 		 * domain average load.
9501 		 */
9502 		if (local->avg_load >= sds.avg_load)
9503 			goto out_balanced;
9504 
9505 		/*
9506 		 * If the busiest group is more loaded, use imbalance_pct to be
9507 		 * conservative.
9508 		 */
9509 		if (100 * busiest->avg_load <=
9510 				env->sd->imbalance_pct * local->avg_load)
9511 			goto out_balanced;
9512 	}
9513 
9514 	/* Try to move all excess tasks to child's sibling domain */
9515 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9516 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9517 		goto force_balance;
9518 
9519 	if (busiest->group_type != group_overloaded) {
9520 		if (env->idle == CPU_NOT_IDLE)
9521 			/*
9522 			 * If the busiest group is not overloaded (and as a
9523 			 * result the local one too) but this CPU is already
9524 			 * busy, let another idle CPU try to pull task.
9525 			 */
9526 			goto out_balanced;
9527 
9528 		if (busiest->group_weight > 1 &&
9529 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9530 			/*
9531 			 * If the busiest group is not overloaded
9532 			 * and there is no imbalance between this and busiest
9533 			 * group wrt idle CPUs, it is balanced. The imbalance
9534 			 * becomes significant if the diff is greater than 1
9535 			 * otherwise we might end up to just move the imbalance
9536 			 * on another group. Of course this applies only if
9537 			 * there is more than 1 CPU per group.
9538 			 */
9539 			goto out_balanced;
9540 
9541 		if (busiest->sum_h_nr_running == 1)
9542 			/*
9543 			 * busiest doesn't have any tasks waiting to run
9544 			 */
9545 			goto out_balanced;
9546 	}
9547 
9548 force_balance:
9549 	/* Looks like there is an imbalance. Compute it */
9550 	calculate_imbalance(env, &sds);
9551 	return env->imbalance ? sds.busiest : NULL;
9552 
9553 out_balanced:
9554 	env->imbalance = 0;
9555 	return NULL;
9556 }
9557 
9558 /*
9559  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9560  */
9561 static struct rq *find_busiest_queue(struct lb_env *env,
9562 				     struct sched_group *group)
9563 {
9564 	struct rq *busiest = NULL, *rq;
9565 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9566 	unsigned int busiest_nr = 0;
9567 	int i;
9568 
9569 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9570 		unsigned long capacity, load, util;
9571 		unsigned int nr_running;
9572 		enum fbq_type rt;
9573 
9574 		rq = cpu_rq(i);
9575 		rt = fbq_classify_rq(rq);
9576 
9577 		/*
9578 		 * We classify groups/runqueues into three groups:
9579 		 *  - regular: there are !numa tasks
9580 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9581 		 *  - all:     there is no distinction
9582 		 *
9583 		 * In order to avoid migrating ideally placed numa tasks,
9584 		 * ignore those when there's better options.
9585 		 *
9586 		 * If we ignore the actual busiest queue to migrate another
9587 		 * task, the next balance pass can still reduce the busiest
9588 		 * queue by moving tasks around inside the node.
9589 		 *
9590 		 * If we cannot move enough load due to this classification
9591 		 * the next pass will adjust the group classification and
9592 		 * allow migration of more tasks.
9593 		 *
9594 		 * Both cases only affect the total convergence complexity.
9595 		 */
9596 		if (rt > env->fbq_type)
9597 			continue;
9598 
9599 		nr_running = rq->cfs.h_nr_running;
9600 		if (!nr_running)
9601 			continue;
9602 
9603 		capacity = capacity_of(i);
9604 
9605 		/*
9606 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9607 		 * eventually lead to active_balancing high->low capacity.
9608 		 * Higher per-CPU capacity is considered better than balancing
9609 		 * average load.
9610 		 */
9611 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9612 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9613 		    nr_running == 1)
9614 			continue;
9615 
9616 		/* Make sure we only pull tasks from a CPU of lower priority */
9617 		if ((env->sd->flags & SD_ASYM_PACKING) &&
9618 		    sched_asym_prefer(i, env->dst_cpu) &&
9619 		    nr_running == 1)
9620 			continue;
9621 
9622 		switch (env->migration_type) {
9623 		case migrate_load:
9624 			/*
9625 			 * When comparing with load imbalance, use cpu_load()
9626 			 * which is not scaled with the CPU capacity.
9627 			 */
9628 			load = cpu_load(rq);
9629 
9630 			if (nr_running == 1 && load > env->imbalance &&
9631 			    !check_cpu_capacity(rq, env->sd))
9632 				break;
9633 
9634 			/*
9635 			 * For the load comparisons with the other CPUs,
9636 			 * consider the cpu_load() scaled with the CPU
9637 			 * capacity, so that the load can be moved away
9638 			 * from the CPU that is potentially running at a
9639 			 * lower capacity.
9640 			 *
9641 			 * Thus we're looking for max(load_i / capacity_i),
9642 			 * crosswise multiplication to rid ourselves of the
9643 			 * division works out to:
9644 			 * load_i * capacity_j > load_j * capacity_i;
9645 			 * where j is our previous maximum.
9646 			 */
9647 			if (load * busiest_capacity > busiest_load * capacity) {
9648 				busiest_load = load;
9649 				busiest_capacity = capacity;
9650 				busiest = rq;
9651 			}
9652 			break;
9653 
9654 		case migrate_util:
9655 			util = cpu_util_cfs(i);
9656 
9657 			/*
9658 			 * Don't try to pull utilization from a CPU with one
9659 			 * running task. Whatever its utilization, we will fail
9660 			 * detach the task.
9661 			 */
9662 			if (nr_running <= 1)
9663 				continue;
9664 
9665 			if (busiest_util < util) {
9666 				busiest_util = util;
9667 				busiest = rq;
9668 			}
9669 			break;
9670 
9671 		case migrate_task:
9672 			if (busiest_nr < nr_running) {
9673 				busiest_nr = nr_running;
9674 				busiest = rq;
9675 			}
9676 			break;
9677 
9678 		case migrate_misfit:
9679 			/*
9680 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9681 			 * simply seek the "biggest" misfit task.
9682 			 */
9683 			if (rq->misfit_task_load > busiest_load) {
9684 				busiest_load = rq->misfit_task_load;
9685 				busiest = rq;
9686 			}
9687 
9688 			break;
9689 
9690 		}
9691 	}
9692 
9693 	return busiest;
9694 }
9695 
9696 /*
9697  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9698  * so long as it is large enough.
9699  */
9700 #define MAX_PINNED_INTERVAL	512
9701 
9702 static inline bool
9703 asym_active_balance(struct lb_env *env)
9704 {
9705 	/*
9706 	 * ASYM_PACKING needs to force migrate tasks from busy but
9707 	 * lower priority CPUs in order to pack all tasks in the
9708 	 * highest priority CPUs.
9709 	 */
9710 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9711 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9712 }
9713 
9714 static inline bool
9715 imbalanced_active_balance(struct lb_env *env)
9716 {
9717 	struct sched_domain *sd = env->sd;
9718 
9719 	/*
9720 	 * The imbalanced case includes the case of pinned tasks preventing a fair
9721 	 * distribution of the load on the system but also the even distribution of the
9722 	 * threads on a system with spare capacity
9723 	 */
9724 	if ((env->migration_type == migrate_task) &&
9725 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
9726 		return 1;
9727 
9728 	return 0;
9729 }
9730 
9731 static int need_active_balance(struct lb_env *env)
9732 {
9733 	struct sched_domain *sd = env->sd;
9734 
9735 	if (asym_active_balance(env))
9736 		return 1;
9737 
9738 	if (imbalanced_active_balance(env))
9739 		return 1;
9740 
9741 	/*
9742 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9743 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9744 	 * because of other sched_class or IRQs if more capacity stays
9745 	 * available on dst_cpu.
9746 	 */
9747 	if ((env->idle != CPU_NOT_IDLE) &&
9748 	    (env->src_rq->cfs.h_nr_running == 1)) {
9749 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9750 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9751 			return 1;
9752 	}
9753 
9754 	if (env->migration_type == migrate_misfit)
9755 		return 1;
9756 
9757 	return 0;
9758 }
9759 
9760 static int active_load_balance_cpu_stop(void *data);
9761 
9762 static int should_we_balance(struct lb_env *env)
9763 {
9764 	struct sched_group *sg = env->sd->groups;
9765 	int cpu;
9766 
9767 	/*
9768 	 * Ensure the balancing environment is consistent; can happen
9769 	 * when the softirq triggers 'during' hotplug.
9770 	 */
9771 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9772 		return 0;
9773 
9774 	/*
9775 	 * In the newly idle case, we will allow all the CPUs
9776 	 * to do the newly idle load balance.
9777 	 */
9778 	if (env->idle == CPU_NEWLY_IDLE)
9779 		return 1;
9780 
9781 	/* Try to find first idle CPU */
9782 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9783 		if (!idle_cpu(cpu))
9784 			continue;
9785 
9786 		/* Are we the first idle CPU? */
9787 		return cpu == env->dst_cpu;
9788 	}
9789 
9790 	/* Are we the first CPU of this group ? */
9791 	return group_balance_cpu(sg) == env->dst_cpu;
9792 }
9793 
9794 /*
9795  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9796  * tasks if there is an imbalance.
9797  */
9798 static int load_balance(int this_cpu, struct rq *this_rq,
9799 			struct sched_domain *sd, enum cpu_idle_type idle,
9800 			int *continue_balancing)
9801 {
9802 	int ld_moved, cur_ld_moved, active_balance = 0;
9803 	struct sched_domain *sd_parent = sd->parent;
9804 	struct sched_group *group;
9805 	struct rq *busiest;
9806 	struct rq_flags rf;
9807 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9808 
9809 	struct lb_env env = {
9810 		.sd		= sd,
9811 		.dst_cpu	= this_cpu,
9812 		.dst_rq		= this_rq,
9813 		.dst_grpmask    = sched_group_span(sd->groups),
9814 		.idle		= idle,
9815 		.loop_break	= sched_nr_migrate_break,
9816 		.cpus		= cpus,
9817 		.fbq_type	= all,
9818 		.tasks		= LIST_HEAD_INIT(env.tasks),
9819 	};
9820 
9821 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9822 
9823 	schedstat_inc(sd->lb_count[idle]);
9824 
9825 redo:
9826 	if (!should_we_balance(&env)) {
9827 		*continue_balancing = 0;
9828 		goto out_balanced;
9829 	}
9830 
9831 	group = find_busiest_group(&env);
9832 	if (!group) {
9833 		schedstat_inc(sd->lb_nobusyg[idle]);
9834 		goto out_balanced;
9835 	}
9836 
9837 	busiest = find_busiest_queue(&env, group);
9838 	if (!busiest) {
9839 		schedstat_inc(sd->lb_nobusyq[idle]);
9840 		goto out_balanced;
9841 	}
9842 
9843 	BUG_ON(busiest == env.dst_rq);
9844 
9845 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9846 
9847 	env.src_cpu = busiest->cpu;
9848 	env.src_rq = busiest;
9849 
9850 	ld_moved = 0;
9851 	/* Clear this flag as soon as we find a pullable task */
9852 	env.flags |= LBF_ALL_PINNED;
9853 	if (busiest->nr_running > 1) {
9854 		/*
9855 		 * Attempt to move tasks. If find_busiest_group has found
9856 		 * an imbalance but busiest->nr_running <= 1, the group is
9857 		 * still unbalanced. ld_moved simply stays zero, so it is
9858 		 * correctly treated as an imbalance.
9859 		 */
9860 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9861 
9862 more_balance:
9863 		rq_lock_irqsave(busiest, &rf);
9864 		update_rq_clock(busiest);
9865 
9866 		/*
9867 		 * cur_ld_moved - load moved in current iteration
9868 		 * ld_moved     - cumulative load moved across iterations
9869 		 */
9870 		cur_ld_moved = detach_tasks(&env);
9871 
9872 		/*
9873 		 * We've detached some tasks from busiest_rq. Every
9874 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9875 		 * unlock busiest->lock, and we are able to be sure
9876 		 * that nobody can manipulate the tasks in parallel.
9877 		 * See task_rq_lock() family for the details.
9878 		 */
9879 
9880 		rq_unlock(busiest, &rf);
9881 
9882 		if (cur_ld_moved) {
9883 			attach_tasks(&env);
9884 			ld_moved += cur_ld_moved;
9885 		}
9886 
9887 		local_irq_restore(rf.flags);
9888 
9889 		if (env.flags & LBF_NEED_BREAK) {
9890 			env.flags &= ~LBF_NEED_BREAK;
9891 			goto more_balance;
9892 		}
9893 
9894 		/*
9895 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9896 		 * us and move them to an alternate dst_cpu in our sched_group
9897 		 * where they can run. The upper limit on how many times we
9898 		 * iterate on same src_cpu is dependent on number of CPUs in our
9899 		 * sched_group.
9900 		 *
9901 		 * This changes load balance semantics a bit on who can move
9902 		 * load to a given_cpu. In addition to the given_cpu itself
9903 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9904 		 * nohz-idle), we now have balance_cpu in a position to move
9905 		 * load to given_cpu. In rare situations, this may cause
9906 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9907 		 * _independently_ and at _same_ time to move some load to
9908 		 * given_cpu) causing excess load to be moved to given_cpu.
9909 		 * This however should not happen so much in practice and
9910 		 * moreover subsequent load balance cycles should correct the
9911 		 * excess load moved.
9912 		 */
9913 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9914 
9915 			/* Prevent to re-select dst_cpu via env's CPUs */
9916 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9917 
9918 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9919 			env.dst_cpu	 = env.new_dst_cpu;
9920 			env.flags	&= ~LBF_DST_PINNED;
9921 			env.loop	 = 0;
9922 			env.loop_break	 = sched_nr_migrate_break;
9923 
9924 			/*
9925 			 * Go back to "more_balance" rather than "redo" since we
9926 			 * need to continue with same src_cpu.
9927 			 */
9928 			goto more_balance;
9929 		}
9930 
9931 		/*
9932 		 * We failed to reach balance because of affinity.
9933 		 */
9934 		if (sd_parent) {
9935 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9936 
9937 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9938 				*group_imbalance = 1;
9939 		}
9940 
9941 		/* All tasks on this runqueue were pinned by CPU affinity */
9942 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9943 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9944 			/*
9945 			 * Attempting to continue load balancing at the current
9946 			 * sched_domain level only makes sense if there are
9947 			 * active CPUs remaining as possible busiest CPUs to
9948 			 * pull load from which are not contained within the
9949 			 * destination group that is receiving any migrated
9950 			 * load.
9951 			 */
9952 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9953 				env.loop = 0;
9954 				env.loop_break = sched_nr_migrate_break;
9955 				goto redo;
9956 			}
9957 			goto out_all_pinned;
9958 		}
9959 	}
9960 
9961 	if (!ld_moved) {
9962 		schedstat_inc(sd->lb_failed[idle]);
9963 		/*
9964 		 * Increment the failure counter only on periodic balance.
9965 		 * We do not want newidle balance, which can be very
9966 		 * frequent, pollute the failure counter causing
9967 		 * excessive cache_hot migrations and active balances.
9968 		 */
9969 		if (idle != CPU_NEWLY_IDLE)
9970 			sd->nr_balance_failed++;
9971 
9972 		if (need_active_balance(&env)) {
9973 			unsigned long flags;
9974 
9975 			raw_spin_rq_lock_irqsave(busiest, flags);
9976 
9977 			/*
9978 			 * Don't kick the active_load_balance_cpu_stop,
9979 			 * if the curr task on busiest CPU can't be
9980 			 * moved to this_cpu:
9981 			 */
9982 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9983 				raw_spin_rq_unlock_irqrestore(busiest, flags);
9984 				goto out_one_pinned;
9985 			}
9986 
9987 			/* Record that we found at least one task that could run on this_cpu */
9988 			env.flags &= ~LBF_ALL_PINNED;
9989 
9990 			/*
9991 			 * ->active_balance synchronizes accesses to
9992 			 * ->active_balance_work.  Once set, it's cleared
9993 			 * only after active load balance is finished.
9994 			 */
9995 			if (!busiest->active_balance) {
9996 				busiest->active_balance = 1;
9997 				busiest->push_cpu = this_cpu;
9998 				active_balance = 1;
9999 			}
10000 			raw_spin_rq_unlock_irqrestore(busiest, flags);
10001 
10002 			if (active_balance) {
10003 				stop_one_cpu_nowait(cpu_of(busiest),
10004 					active_load_balance_cpu_stop, busiest,
10005 					&busiest->active_balance_work);
10006 			}
10007 		}
10008 	} else {
10009 		sd->nr_balance_failed = 0;
10010 	}
10011 
10012 	if (likely(!active_balance) || need_active_balance(&env)) {
10013 		/* We were unbalanced, so reset the balancing interval */
10014 		sd->balance_interval = sd->min_interval;
10015 	}
10016 
10017 	goto out;
10018 
10019 out_balanced:
10020 	/*
10021 	 * We reach balance although we may have faced some affinity
10022 	 * constraints. Clear the imbalance flag only if other tasks got
10023 	 * a chance to move and fix the imbalance.
10024 	 */
10025 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10026 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10027 
10028 		if (*group_imbalance)
10029 			*group_imbalance = 0;
10030 	}
10031 
10032 out_all_pinned:
10033 	/*
10034 	 * We reach balance because all tasks are pinned at this level so
10035 	 * we can't migrate them. Let the imbalance flag set so parent level
10036 	 * can try to migrate them.
10037 	 */
10038 	schedstat_inc(sd->lb_balanced[idle]);
10039 
10040 	sd->nr_balance_failed = 0;
10041 
10042 out_one_pinned:
10043 	ld_moved = 0;
10044 
10045 	/*
10046 	 * newidle_balance() disregards balance intervals, so we could
10047 	 * repeatedly reach this code, which would lead to balance_interval
10048 	 * skyrocketing in a short amount of time. Skip the balance_interval
10049 	 * increase logic to avoid that.
10050 	 */
10051 	if (env.idle == CPU_NEWLY_IDLE)
10052 		goto out;
10053 
10054 	/* tune up the balancing interval */
10055 	if ((env.flags & LBF_ALL_PINNED &&
10056 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
10057 	    sd->balance_interval < sd->max_interval)
10058 		sd->balance_interval *= 2;
10059 out:
10060 	return ld_moved;
10061 }
10062 
10063 static inline unsigned long
10064 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10065 {
10066 	unsigned long interval = sd->balance_interval;
10067 
10068 	if (cpu_busy)
10069 		interval *= sd->busy_factor;
10070 
10071 	/* scale ms to jiffies */
10072 	interval = msecs_to_jiffies(interval);
10073 
10074 	/*
10075 	 * Reduce likelihood of busy balancing at higher domains racing with
10076 	 * balancing at lower domains by preventing their balancing periods
10077 	 * from being multiples of each other.
10078 	 */
10079 	if (cpu_busy)
10080 		interval -= 1;
10081 
10082 	interval = clamp(interval, 1UL, max_load_balance_interval);
10083 
10084 	return interval;
10085 }
10086 
10087 static inline void
10088 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10089 {
10090 	unsigned long interval, next;
10091 
10092 	/* used by idle balance, so cpu_busy = 0 */
10093 	interval = get_sd_balance_interval(sd, 0);
10094 	next = sd->last_balance + interval;
10095 
10096 	if (time_after(*next_balance, next))
10097 		*next_balance = next;
10098 }
10099 
10100 /*
10101  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10102  * running tasks off the busiest CPU onto idle CPUs. It requires at
10103  * least 1 task to be running on each physical CPU where possible, and
10104  * avoids physical / logical imbalances.
10105  */
10106 static int active_load_balance_cpu_stop(void *data)
10107 {
10108 	struct rq *busiest_rq = data;
10109 	int busiest_cpu = cpu_of(busiest_rq);
10110 	int target_cpu = busiest_rq->push_cpu;
10111 	struct rq *target_rq = cpu_rq(target_cpu);
10112 	struct sched_domain *sd;
10113 	struct task_struct *p = NULL;
10114 	struct rq_flags rf;
10115 
10116 	rq_lock_irq(busiest_rq, &rf);
10117 	/*
10118 	 * Between queueing the stop-work and running it is a hole in which
10119 	 * CPUs can become inactive. We should not move tasks from or to
10120 	 * inactive CPUs.
10121 	 */
10122 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10123 		goto out_unlock;
10124 
10125 	/* Make sure the requested CPU hasn't gone down in the meantime: */
10126 	if (unlikely(busiest_cpu != smp_processor_id() ||
10127 		     !busiest_rq->active_balance))
10128 		goto out_unlock;
10129 
10130 	/* Is there any task to move? */
10131 	if (busiest_rq->nr_running <= 1)
10132 		goto out_unlock;
10133 
10134 	/*
10135 	 * This condition is "impossible", if it occurs
10136 	 * we need to fix it. Originally reported by
10137 	 * Bjorn Helgaas on a 128-CPU setup.
10138 	 */
10139 	BUG_ON(busiest_rq == target_rq);
10140 
10141 	/* Search for an sd spanning us and the target CPU. */
10142 	rcu_read_lock();
10143 	for_each_domain(target_cpu, sd) {
10144 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10145 			break;
10146 	}
10147 
10148 	if (likely(sd)) {
10149 		struct lb_env env = {
10150 			.sd		= sd,
10151 			.dst_cpu	= target_cpu,
10152 			.dst_rq		= target_rq,
10153 			.src_cpu	= busiest_rq->cpu,
10154 			.src_rq		= busiest_rq,
10155 			.idle		= CPU_IDLE,
10156 			.flags		= LBF_ACTIVE_LB,
10157 		};
10158 
10159 		schedstat_inc(sd->alb_count);
10160 		update_rq_clock(busiest_rq);
10161 
10162 		p = detach_one_task(&env);
10163 		if (p) {
10164 			schedstat_inc(sd->alb_pushed);
10165 			/* Active balancing done, reset the failure counter. */
10166 			sd->nr_balance_failed = 0;
10167 		} else {
10168 			schedstat_inc(sd->alb_failed);
10169 		}
10170 	}
10171 	rcu_read_unlock();
10172 out_unlock:
10173 	busiest_rq->active_balance = 0;
10174 	rq_unlock(busiest_rq, &rf);
10175 
10176 	if (p)
10177 		attach_one_task(target_rq, p);
10178 
10179 	local_irq_enable();
10180 
10181 	return 0;
10182 }
10183 
10184 static DEFINE_SPINLOCK(balancing);
10185 
10186 /*
10187  * Scale the max load_balance interval with the number of CPUs in the system.
10188  * This trades load-balance latency on larger machines for less cross talk.
10189  */
10190 void update_max_interval(void)
10191 {
10192 	max_load_balance_interval = HZ*num_online_cpus()/10;
10193 }
10194 
10195 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
10196 {
10197 	if (cost > sd->max_newidle_lb_cost) {
10198 		/*
10199 		 * Track max cost of a domain to make sure to not delay the
10200 		 * next wakeup on the CPU.
10201 		 */
10202 		sd->max_newidle_lb_cost = cost;
10203 		sd->last_decay_max_lb_cost = jiffies;
10204 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
10205 		/*
10206 		 * Decay the newidle max times by ~1% per second to ensure that
10207 		 * it is not outdated and the current max cost is actually
10208 		 * shorter.
10209 		 */
10210 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
10211 		sd->last_decay_max_lb_cost = jiffies;
10212 
10213 		return true;
10214 	}
10215 
10216 	return false;
10217 }
10218 
10219 /*
10220  * It checks each scheduling domain to see if it is due to be balanced,
10221  * and initiates a balancing operation if so.
10222  *
10223  * Balancing parameters are set up in init_sched_domains.
10224  */
10225 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10226 {
10227 	int continue_balancing = 1;
10228 	int cpu = rq->cpu;
10229 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10230 	unsigned long interval;
10231 	struct sched_domain *sd;
10232 	/* Earliest time when we have to do rebalance again */
10233 	unsigned long next_balance = jiffies + 60*HZ;
10234 	int update_next_balance = 0;
10235 	int need_serialize, need_decay = 0;
10236 	u64 max_cost = 0;
10237 
10238 	rcu_read_lock();
10239 	for_each_domain(cpu, sd) {
10240 		/*
10241 		 * Decay the newidle max times here because this is a regular
10242 		 * visit to all the domains.
10243 		 */
10244 		need_decay = update_newidle_cost(sd, 0);
10245 		max_cost += sd->max_newidle_lb_cost;
10246 
10247 		/*
10248 		 * Stop the load balance at this level. There is another
10249 		 * CPU in our sched group which is doing load balancing more
10250 		 * actively.
10251 		 */
10252 		if (!continue_balancing) {
10253 			if (need_decay)
10254 				continue;
10255 			break;
10256 		}
10257 
10258 		interval = get_sd_balance_interval(sd, busy);
10259 
10260 		need_serialize = sd->flags & SD_SERIALIZE;
10261 		if (need_serialize) {
10262 			if (!spin_trylock(&balancing))
10263 				goto out;
10264 		}
10265 
10266 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10267 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10268 				/*
10269 				 * The LBF_DST_PINNED logic could have changed
10270 				 * env->dst_cpu, so we can't know our idle
10271 				 * state even if we migrated tasks. Update it.
10272 				 */
10273 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10274 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10275 			}
10276 			sd->last_balance = jiffies;
10277 			interval = get_sd_balance_interval(sd, busy);
10278 		}
10279 		if (need_serialize)
10280 			spin_unlock(&balancing);
10281 out:
10282 		if (time_after(next_balance, sd->last_balance + interval)) {
10283 			next_balance = sd->last_balance + interval;
10284 			update_next_balance = 1;
10285 		}
10286 	}
10287 	if (need_decay) {
10288 		/*
10289 		 * Ensure the rq-wide value also decays but keep it at a
10290 		 * reasonable floor to avoid funnies with rq->avg_idle.
10291 		 */
10292 		rq->max_idle_balance_cost =
10293 			max((u64)sysctl_sched_migration_cost, max_cost);
10294 	}
10295 	rcu_read_unlock();
10296 
10297 	/*
10298 	 * next_balance will be updated only when there is a need.
10299 	 * When the cpu is attached to null domain for ex, it will not be
10300 	 * updated.
10301 	 */
10302 	if (likely(update_next_balance))
10303 		rq->next_balance = next_balance;
10304 
10305 }
10306 
10307 static inline int on_null_domain(struct rq *rq)
10308 {
10309 	return unlikely(!rcu_dereference_sched(rq->sd));
10310 }
10311 
10312 #ifdef CONFIG_NO_HZ_COMMON
10313 /*
10314  * idle load balancing details
10315  * - When one of the busy CPUs notice that there may be an idle rebalancing
10316  *   needed, they will kick the idle load balancer, which then does idle
10317  *   load balancing for all the idle CPUs.
10318  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10319  *   anywhere yet.
10320  */
10321 
10322 static inline int find_new_ilb(void)
10323 {
10324 	int ilb;
10325 	const struct cpumask *hk_mask;
10326 
10327 	hk_mask = housekeeping_cpumask(HK_FLAG_MISC);
10328 
10329 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10330 
10331 		if (ilb == smp_processor_id())
10332 			continue;
10333 
10334 		if (idle_cpu(ilb))
10335 			return ilb;
10336 	}
10337 
10338 	return nr_cpu_ids;
10339 }
10340 
10341 /*
10342  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10343  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10344  */
10345 static void kick_ilb(unsigned int flags)
10346 {
10347 	int ilb_cpu;
10348 
10349 	/*
10350 	 * Increase nohz.next_balance only when if full ilb is triggered but
10351 	 * not if we only update stats.
10352 	 */
10353 	if (flags & NOHZ_BALANCE_KICK)
10354 		nohz.next_balance = jiffies+1;
10355 
10356 	ilb_cpu = find_new_ilb();
10357 
10358 	if (ilb_cpu >= nr_cpu_ids)
10359 		return;
10360 
10361 	/*
10362 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10363 	 * the first flag owns it; cleared by nohz_csd_func().
10364 	 */
10365 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10366 	if (flags & NOHZ_KICK_MASK)
10367 		return;
10368 
10369 	/*
10370 	 * This way we generate an IPI on the target CPU which
10371 	 * is idle. And the softirq performing nohz idle load balance
10372 	 * will be run before returning from the IPI.
10373 	 */
10374 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10375 }
10376 
10377 /*
10378  * Current decision point for kicking the idle load balancer in the presence
10379  * of idle CPUs in the system.
10380  */
10381 static void nohz_balancer_kick(struct rq *rq)
10382 {
10383 	unsigned long now = jiffies;
10384 	struct sched_domain_shared *sds;
10385 	struct sched_domain *sd;
10386 	int nr_busy, i, cpu = rq->cpu;
10387 	unsigned int flags = 0;
10388 
10389 	if (unlikely(rq->idle_balance))
10390 		return;
10391 
10392 	/*
10393 	 * We may be recently in ticked or tickless idle mode. At the first
10394 	 * busy tick after returning from idle, we will update the busy stats.
10395 	 */
10396 	nohz_balance_exit_idle(rq);
10397 
10398 	/*
10399 	 * None are in tickless mode and hence no need for NOHZ idle load
10400 	 * balancing.
10401 	 */
10402 	if (likely(!atomic_read(&nohz.nr_cpus)))
10403 		return;
10404 
10405 	if (READ_ONCE(nohz.has_blocked) &&
10406 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10407 		flags = NOHZ_STATS_KICK;
10408 
10409 	if (time_before(now, nohz.next_balance))
10410 		goto out;
10411 
10412 	if (rq->nr_running >= 2) {
10413 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10414 		goto out;
10415 	}
10416 
10417 	rcu_read_lock();
10418 
10419 	sd = rcu_dereference(rq->sd);
10420 	if (sd) {
10421 		/*
10422 		 * If there's a CFS task and the current CPU has reduced
10423 		 * capacity; kick the ILB to see if there's a better CPU to run
10424 		 * on.
10425 		 */
10426 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10427 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10428 			goto unlock;
10429 		}
10430 	}
10431 
10432 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10433 	if (sd) {
10434 		/*
10435 		 * When ASYM_PACKING; see if there's a more preferred CPU
10436 		 * currently idle; in which case, kick the ILB to move tasks
10437 		 * around.
10438 		 */
10439 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10440 			if (sched_asym_prefer(i, cpu)) {
10441 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10442 				goto unlock;
10443 			}
10444 		}
10445 	}
10446 
10447 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10448 	if (sd) {
10449 		/*
10450 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10451 		 * to run the misfit task on.
10452 		 */
10453 		if (check_misfit_status(rq, sd)) {
10454 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10455 			goto unlock;
10456 		}
10457 
10458 		/*
10459 		 * For asymmetric systems, we do not want to nicely balance
10460 		 * cache use, instead we want to embrace asymmetry and only
10461 		 * ensure tasks have enough CPU capacity.
10462 		 *
10463 		 * Skip the LLC logic because it's not relevant in that case.
10464 		 */
10465 		goto unlock;
10466 	}
10467 
10468 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10469 	if (sds) {
10470 		/*
10471 		 * If there is an imbalance between LLC domains (IOW we could
10472 		 * increase the overall cache use), we need some less-loaded LLC
10473 		 * domain to pull some load. Likewise, we may need to spread
10474 		 * load within the current LLC domain (e.g. packed SMT cores but
10475 		 * other CPUs are idle). We can't really know from here how busy
10476 		 * the others are - so just get a nohz balance going if it looks
10477 		 * like this LLC domain has tasks we could move.
10478 		 */
10479 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10480 		if (nr_busy > 1) {
10481 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10482 			goto unlock;
10483 		}
10484 	}
10485 unlock:
10486 	rcu_read_unlock();
10487 out:
10488 	if (READ_ONCE(nohz.needs_update))
10489 		flags |= NOHZ_NEXT_KICK;
10490 
10491 	if (flags)
10492 		kick_ilb(flags);
10493 }
10494 
10495 static void set_cpu_sd_state_busy(int cpu)
10496 {
10497 	struct sched_domain *sd;
10498 
10499 	rcu_read_lock();
10500 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10501 
10502 	if (!sd || !sd->nohz_idle)
10503 		goto unlock;
10504 	sd->nohz_idle = 0;
10505 
10506 	atomic_inc(&sd->shared->nr_busy_cpus);
10507 unlock:
10508 	rcu_read_unlock();
10509 }
10510 
10511 void nohz_balance_exit_idle(struct rq *rq)
10512 {
10513 	SCHED_WARN_ON(rq != this_rq());
10514 
10515 	if (likely(!rq->nohz_tick_stopped))
10516 		return;
10517 
10518 	rq->nohz_tick_stopped = 0;
10519 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10520 	atomic_dec(&nohz.nr_cpus);
10521 
10522 	set_cpu_sd_state_busy(rq->cpu);
10523 }
10524 
10525 static void set_cpu_sd_state_idle(int cpu)
10526 {
10527 	struct sched_domain *sd;
10528 
10529 	rcu_read_lock();
10530 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10531 
10532 	if (!sd || sd->nohz_idle)
10533 		goto unlock;
10534 	sd->nohz_idle = 1;
10535 
10536 	atomic_dec(&sd->shared->nr_busy_cpus);
10537 unlock:
10538 	rcu_read_unlock();
10539 }
10540 
10541 /*
10542  * This routine will record that the CPU is going idle with tick stopped.
10543  * This info will be used in performing idle load balancing in the future.
10544  */
10545 void nohz_balance_enter_idle(int cpu)
10546 {
10547 	struct rq *rq = cpu_rq(cpu);
10548 
10549 	SCHED_WARN_ON(cpu != smp_processor_id());
10550 
10551 	/* If this CPU is going down, then nothing needs to be done: */
10552 	if (!cpu_active(cpu))
10553 		return;
10554 
10555 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10556 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10557 		return;
10558 
10559 	/*
10560 	 * Can be set safely without rq->lock held
10561 	 * If a clear happens, it will have evaluated last additions because
10562 	 * rq->lock is held during the check and the clear
10563 	 */
10564 	rq->has_blocked_load = 1;
10565 
10566 	/*
10567 	 * The tick is still stopped but load could have been added in the
10568 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10569 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10570 	 * of nohz.has_blocked can only happen after checking the new load
10571 	 */
10572 	if (rq->nohz_tick_stopped)
10573 		goto out;
10574 
10575 	/* If we're a completely isolated CPU, we don't play: */
10576 	if (on_null_domain(rq))
10577 		return;
10578 
10579 	rq->nohz_tick_stopped = 1;
10580 
10581 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10582 	atomic_inc(&nohz.nr_cpus);
10583 
10584 	/*
10585 	 * Ensures that if nohz_idle_balance() fails to observe our
10586 	 * @idle_cpus_mask store, it must observe the @has_blocked
10587 	 * and @needs_update stores.
10588 	 */
10589 	smp_mb__after_atomic();
10590 
10591 	set_cpu_sd_state_idle(cpu);
10592 
10593 	WRITE_ONCE(nohz.needs_update, 1);
10594 out:
10595 	/*
10596 	 * Each time a cpu enter idle, we assume that it has blocked load and
10597 	 * enable the periodic update of the load of idle cpus
10598 	 */
10599 	WRITE_ONCE(nohz.has_blocked, 1);
10600 }
10601 
10602 static bool update_nohz_stats(struct rq *rq)
10603 {
10604 	unsigned int cpu = rq->cpu;
10605 
10606 	if (!rq->has_blocked_load)
10607 		return false;
10608 
10609 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10610 		return false;
10611 
10612 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10613 		return true;
10614 
10615 	update_blocked_averages(cpu);
10616 
10617 	return rq->has_blocked_load;
10618 }
10619 
10620 /*
10621  * Internal function that runs load balance for all idle cpus. The load balance
10622  * can be a simple update of blocked load or a complete load balance with
10623  * tasks movement depending of flags.
10624  */
10625 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10626 			       enum cpu_idle_type idle)
10627 {
10628 	/* Earliest time when we have to do rebalance again */
10629 	unsigned long now = jiffies;
10630 	unsigned long next_balance = now + 60*HZ;
10631 	bool has_blocked_load = false;
10632 	int update_next_balance = 0;
10633 	int this_cpu = this_rq->cpu;
10634 	int balance_cpu;
10635 	struct rq *rq;
10636 
10637 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10638 
10639 	/*
10640 	 * We assume there will be no idle load after this update and clear
10641 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10642 	 * set the has_blocked flag and trigger another update of idle load.
10643 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10644 	 * setting the flag, we are sure to not clear the state and not
10645 	 * check the load of an idle cpu.
10646 	 *
10647 	 * Same applies to idle_cpus_mask vs needs_update.
10648 	 */
10649 	if (flags & NOHZ_STATS_KICK)
10650 		WRITE_ONCE(nohz.has_blocked, 0);
10651 	if (flags & NOHZ_NEXT_KICK)
10652 		WRITE_ONCE(nohz.needs_update, 0);
10653 
10654 	/*
10655 	 * Ensures that if we miss the CPU, we must see the has_blocked
10656 	 * store from nohz_balance_enter_idle().
10657 	 */
10658 	smp_mb();
10659 
10660 	/*
10661 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10662 	 * chance for other idle cpu to pull load.
10663 	 */
10664 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
10665 		if (!idle_cpu(balance_cpu))
10666 			continue;
10667 
10668 		/*
10669 		 * If this CPU gets work to do, stop the load balancing
10670 		 * work being done for other CPUs. Next load
10671 		 * balancing owner will pick it up.
10672 		 */
10673 		if (need_resched()) {
10674 			if (flags & NOHZ_STATS_KICK)
10675 				has_blocked_load = true;
10676 			if (flags & NOHZ_NEXT_KICK)
10677 				WRITE_ONCE(nohz.needs_update, 1);
10678 			goto abort;
10679 		}
10680 
10681 		rq = cpu_rq(balance_cpu);
10682 
10683 		if (flags & NOHZ_STATS_KICK)
10684 			has_blocked_load |= update_nohz_stats(rq);
10685 
10686 		/*
10687 		 * If time for next balance is due,
10688 		 * do the balance.
10689 		 */
10690 		if (time_after_eq(jiffies, rq->next_balance)) {
10691 			struct rq_flags rf;
10692 
10693 			rq_lock_irqsave(rq, &rf);
10694 			update_rq_clock(rq);
10695 			rq_unlock_irqrestore(rq, &rf);
10696 
10697 			if (flags & NOHZ_BALANCE_KICK)
10698 				rebalance_domains(rq, CPU_IDLE);
10699 		}
10700 
10701 		if (time_after(next_balance, rq->next_balance)) {
10702 			next_balance = rq->next_balance;
10703 			update_next_balance = 1;
10704 		}
10705 	}
10706 
10707 	/*
10708 	 * next_balance will be updated only when there is a need.
10709 	 * When the CPU is attached to null domain for ex, it will not be
10710 	 * updated.
10711 	 */
10712 	if (likely(update_next_balance))
10713 		nohz.next_balance = next_balance;
10714 
10715 	if (flags & NOHZ_STATS_KICK)
10716 		WRITE_ONCE(nohz.next_blocked,
10717 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10718 
10719 abort:
10720 	/* There is still blocked load, enable periodic update */
10721 	if (has_blocked_load)
10722 		WRITE_ONCE(nohz.has_blocked, 1);
10723 }
10724 
10725 /*
10726  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10727  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10728  */
10729 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10730 {
10731 	unsigned int flags = this_rq->nohz_idle_balance;
10732 
10733 	if (!flags)
10734 		return false;
10735 
10736 	this_rq->nohz_idle_balance = 0;
10737 
10738 	if (idle != CPU_IDLE)
10739 		return false;
10740 
10741 	_nohz_idle_balance(this_rq, flags, idle);
10742 
10743 	return true;
10744 }
10745 
10746 /*
10747  * Check if we need to run the ILB for updating blocked load before entering
10748  * idle state.
10749  */
10750 void nohz_run_idle_balance(int cpu)
10751 {
10752 	unsigned int flags;
10753 
10754 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10755 
10756 	/*
10757 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10758 	 * (ie NOHZ_STATS_KICK set) and will do the same.
10759 	 */
10760 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10761 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10762 }
10763 
10764 static void nohz_newidle_balance(struct rq *this_rq)
10765 {
10766 	int this_cpu = this_rq->cpu;
10767 
10768 	/*
10769 	 * This CPU doesn't want to be disturbed by scheduler
10770 	 * housekeeping
10771 	 */
10772 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10773 		return;
10774 
10775 	/* Will wake up very soon. No time for doing anything else*/
10776 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10777 		return;
10778 
10779 	/* Don't need to update blocked load of idle CPUs*/
10780 	if (!READ_ONCE(nohz.has_blocked) ||
10781 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10782 		return;
10783 
10784 	/*
10785 	 * Set the need to trigger ILB in order to update blocked load
10786 	 * before entering idle state.
10787 	 */
10788 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10789 }
10790 
10791 #else /* !CONFIG_NO_HZ_COMMON */
10792 static inline void nohz_balancer_kick(struct rq *rq) { }
10793 
10794 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10795 {
10796 	return false;
10797 }
10798 
10799 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10800 #endif /* CONFIG_NO_HZ_COMMON */
10801 
10802 /*
10803  * newidle_balance is called by schedule() if this_cpu is about to become
10804  * idle. Attempts to pull tasks from other CPUs.
10805  *
10806  * Returns:
10807  *   < 0 - we released the lock and there are !fair tasks present
10808  *     0 - failed, no new tasks
10809  *   > 0 - success, new (fair) tasks present
10810  */
10811 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10812 {
10813 	unsigned long next_balance = jiffies + HZ;
10814 	int this_cpu = this_rq->cpu;
10815 	u64 t0, t1, curr_cost = 0;
10816 	struct sched_domain *sd;
10817 	int pulled_task = 0;
10818 
10819 	update_misfit_status(NULL, this_rq);
10820 
10821 	/*
10822 	 * There is a task waiting to run. No need to search for one.
10823 	 * Return 0; the task will be enqueued when switching to idle.
10824 	 */
10825 	if (this_rq->ttwu_pending)
10826 		return 0;
10827 
10828 	/*
10829 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10830 	 * measure the duration of idle_balance() as idle time.
10831 	 */
10832 	this_rq->idle_stamp = rq_clock(this_rq);
10833 
10834 	/*
10835 	 * Do not pull tasks towards !active CPUs...
10836 	 */
10837 	if (!cpu_active(this_cpu))
10838 		return 0;
10839 
10840 	/*
10841 	 * This is OK, because current is on_cpu, which avoids it being picked
10842 	 * for load-balance and preemption/IRQs are still disabled avoiding
10843 	 * further scheduler activity on it and we're being very careful to
10844 	 * re-start the picking loop.
10845 	 */
10846 	rq_unpin_lock(this_rq, rf);
10847 
10848 	rcu_read_lock();
10849 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
10850 
10851 	if (!READ_ONCE(this_rq->rd->overload) ||
10852 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
10853 
10854 		if (sd)
10855 			update_next_balance(sd, &next_balance);
10856 		rcu_read_unlock();
10857 
10858 		goto out;
10859 	}
10860 	rcu_read_unlock();
10861 
10862 	raw_spin_rq_unlock(this_rq);
10863 
10864 	t0 = sched_clock_cpu(this_cpu);
10865 	update_blocked_averages(this_cpu);
10866 
10867 	rcu_read_lock();
10868 	for_each_domain(this_cpu, sd) {
10869 		int continue_balancing = 1;
10870 		u64 domain_cost;
10871 
10872 		update_next_balance(sd, &next_balance);
10873 
10874 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
10875 			break;
10876 
10877 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10878 
10879 			pulled_task = load_balance(this_cpu, this_rq,
10880 						   sd, CPU_NEWLY_IDLE,
10881 						   &continue_balancing);
10882 
10883 			t1 = sched_clock_cpu(this_cpu);
10884 			domain_cost = t1 - t0;
10885 			update_newidle_cost(sd, domain_cost);
10886 
10887 			curr_cost += domain_cost;
10888 			t0 = t1;
10889 		}
10890 
10891 		/*
10892 		 * Stop searching for tasks to pull if there are
10893 		 * now runnable tasks on this rq.
10894 		 */
10895 		if (pulled_task || this_rq->nr_running > 0 ||
10896 		    this_rq->ttwu_pending)
10897 			break;
10898 	}
10899 	rcu_read_unlock();
10900 
10901 	raw_spin_rq_lock(this_rq);
10902 
10903 	if (curr_cost > this_rq->max_idle_balance_cost)
10904 		this_rq->max_idle_balance_cost = curr_cost;
10905 
10906 	/*
10907 	 * While browsing the domains, we released the rq lock, a task could
10908 	 * have been enqueued in the meantime. Since we're not going idle,
10909 	 * pretend we pulled a task.
10910 	 */
10911 	if (this_rq->cfs.h_nr_running && !pulled_task)
10912 		pulled_task = 1;
10913 
10914 	/* Is there a task of a high priority class? */
10915 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10916 		pulled_task = -1;
10917 
10918 out:
10919 	/* Move the next balance forward */
10920 	if (time_after(this_rq->next_balance, next_balance))
10921 		this_rq->next_balance = next_balance;
10922 
10923 	if (pulled_task)
10924 		this_rq->idle_stamp = 0;
10925 	else
10926 		nohz_newidle_balance(this_rq);
10927 
10928 	rq_repin_lock(this_rq, rf);
10929 
10930 	return pulled_task;
10931 }
10932 
10933 /*
10934  * run_rebalance_domains is triggered when needed from the scheduler tick.
10935  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10936  */
10937 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10938 {
10939 	struct rq *this_rq = this_rq();
10940 	enum cpu_idle_type idle = this_rq->idle_balance ?
10941 						CPU_IDLE : CPU_NOT_IDLE;
10942 
10943 	/*
10944 	 * If this CPU has a pending nohz_balance_kick, then do the
10945 	 * balancing on behalf of the other idle CPUs whose ticks are
10946 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10947 	 * give the idle CPUs a chance to load balance. Else we may
10948 	 * load balance only within the local sched_domain hierarchy
10949 	 * and abort nohz_idle_balance altogether if we pull some load.
10950 	 */
10951 	if (nohz_idle_balance(this_rq, idle))
10952 		return;
10953 
10954 	/* normal load balance */
10955 	update_blocked_averages(this_rq->cpu);
10956 	rebalance_domains(this_rq, idle);
10957 }
10958 
10959 /*
10960  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10961  */
10962 void trigger_load_balance(struct rq *rq)
10963 {
10964 	/*
10965 	 * Don't need to rebalance while attached to NULL domain or
10966 	 * runqueue CPU is not active
10967 	 */
10968 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
10969 		return;
10970 
10971 	if (time_after_eq(jiffies, rq->next_balance))
10972 		raise_softirq(SCHED_SOFTIRQ);
10973 
10974 	nohz_balancer_kick(rq);
10975 }
10976 
10977 static void rq_online_fair(struct rq *rq)
10978 {
10979 	update_sysctl();
10980 
10981 	update_runtime_enabled(rq);
10982 }
10983 
10984 static void rq_offline_fair(struct rq *rq)
10985 {
10986 	update_sysctl();
10987 
10988 	/* Ensure any throttled groups are reachable by pick_next_task */
10989 	unthrottle_offline_cfs_rqs(rq);
10990 }
10991 
10992 #endif /* CONFIG_SMP */
10993 
10994 #ifdef CONFIG_SCHED_CORE
10995 static inline bool
10996 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
10997 {
10998 	u64 slice = sched_slice(cfs_rq_of(se), se);
10999 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11000 
11001 	return (rtime * min_nr_tasks > slice);
11002 }
11003 
11004 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
11005 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11006 {
11007 	if (!sched_core_enabled(rq))
11008 		return;
11009 
11010 	/*
11011 	 * If runqueue has only one task which used up its slice and
11012 	 * if the sibling is forced idle, then trigger schedule to
11013 	 * give forced idle task a chance.
11014 	 *
11015 	 * sched_slice() considers only this active rq and it gets the
11016 	 * whole slice. But during force idle, we have siblings acting
11017 	 * like a single runqueue and hence we need to consider runnable
11018 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
11019 	 * go through the forced idle rq, but that would be a perf hit.
11020 	 * We can assume that the forced idle CPU has at least
11021 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11022 	 * if we need to give up the CPU.
11023 	 */
11024 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
11025 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11026 		resched_curr(rq);
11027 }
11028 
11029 /*
11030  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11031  */
11032 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11033 {
11034 	for_each_sched_entity(se) {
11035 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11036 
11037 		if (forceidle) {
11038 			if (cfs_rq->forceidle_seq == fi_seq)
11039 				break;
11040 			cfs_rq->forceidle_seq = fi_seq;
11041 		}
11042 
11043 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11044 	}
11045 }
11046 
11047 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11048 {
11049 	struct sched_entity *se = &p->se;
11050 
11051 	if (p->sched_class != &fair_sched_class)
11052 		return;
11053 
11054 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11055 }
11056 
11057 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11058 {
11059 	struct rq *rq = task_rq(a);
11060 	struct sched_entity *sea = &a->se;
11061 	struct sched_entity *seb = &b->se;
11062 	struct cfs_rq *cfs_rqa;
11063 	struct cfs_rq *cfs_rqb;
11064 	s64 delta;
11065 
11066 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
11067 
11068 #ifdef CONFIG_FAIR_GROUP_SCHED
11069 	/*
11070 	 * Find an se in the hierarchy for tasks a and b, such that the se's
11071 	 * are immediate siblings.
11072 	 */
11073 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11074 		int sea_depth = sea->depth;
11075 		int seb_depth = seb->depth;
11076 
11077 		if (sea_depth >= seb_depth)
11078 			sea = parent_entity(sea);
11079 		if (sea_depth <= seb_depth)
11080 			seb = parent_entity(seb);
11081 	}
11082 
11083 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11084 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11085 
11086 	cfs_rqa = sea->cfs_rq;
11087 	cfs_rqb = seb->cfs_rq;
11088 #else
11089 	cfs_rqa = &task_rq(a)->cfs;
11090 	cfs_rqb = &task_rq(b)->cfs;
11091 #endif
11092 
11093 	/*
11094 	 * Find delta after normalizing se's vruntime with its cfs_rq's
11095 	 * min_vruntime_fi, which would have been updated in prior calls
11096 	 * to se_fi_update().
11097 	 */
11098 	delta = (s64)(sea->vruntime - seb->vruntime) +
11099 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11100 
11101 	return delta > 0;
11102 }
11103 #else
11104 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11105 #endif
11106 
11107 /*
11108  * scheduler tick hitting a task of our scheduling class.
11109  *
11110  * NOTE: This function can be called remotely by the tick offload that
11111  * goes along full dynticks. Therefore no local assumption can be made
11112  * and everything must be accessed through the @rq and @curr passed in
11113  * parameters.
11114  */
11115 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11116 {
11117 	struct cfs_rq *cfs_rq;
11118 	struct sched_entity *se = &curr->se;
11119 
11120 	for_each_sched_entity(se) {
11121 		cfs_rq = cfs_rq_of(se);
11122 		entity_tick(cfs_rq, se, queued);
11123 	}
11124 
11125 	if (static_branch_unlikely(&sched_numa_balancing))
11126 		task_tick_numa(rq, curr);
11127 
11128 	update_misfit_status(curr, rq);
11129 	update_overutilized_status(task_rq(curr));
11130 
11131 	task_tick_core(rq, curr);
11132 }
11133 
11134 /*
11135  * called on fork with the child task as argument from the parent's context
11136  *  - child not yet on the tasklist
11137  *  - preemption disabled
11138  */
11139 static void task_fork_fair(struct task_struct *p)
11140 {
11141 	struct cfs_rq *cfs_rq;
11142 	struct sched_entity *se = &p->se, *curr;
11143 	struct rq *rq = this_rq();
11144 	struct rq_flags rf;
11145 
11146 	rq_lock(rq, &rf);
11147 	update_rq_clock(rq);
11148 
11149 	cfs_rq = task_cfs_rq(current);
11150 	curr = cfs_rq->curr;
11151 	if (curr) {
11152 		update_curr(cfs_rq);
11153 		se->vruntime = curr->vruntime;
11154 	}
11155 	place_entity(cfs_rq, se, 1);
11156 
11157 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11158 		/*
11159 		 * Upon rescheduling, sched_class::put_prev_task() will place
11160 		 * 'current' within the tree based on its new key value.
11161 		 */
11162 		swap(curr->vruntime, se->vruntime);
11163 		resched_curr(rq);
11164 	}
11165 
11166 	se->vruntime -= cfs_rq->min_vruntime;
11167 	rq_unlock(rq, &rf);
11168 }
11169 
11170 /*
11171  * Priority of the task has changed. Check to see if we preempt
11172  * the current task.
11173  */
11174 static void
11175 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11176 {
11177 	if (!task_on_rq_queued(p))
11178 		return;
11179 
11180 	if (rq->cfs.nr_running == 1)
11181 		return;
11182 
11183 	/*
11184 	 * Reschedule if we are currently running on this runqueue and
11185 	 * our priority decreased, or if we are not currently running on
11186 	 * this runqueue and our priority is higher than the current's
11187 	 */
11188 	if (task_current(rq, p)) {
11189 		if (p->prio > oldprio)
11190 			resched_curr(rq);
11191 	} else
11192 		check_preempt_curr(rq, p, 0);
11193 }
11194 
11195 static inline bool vruntime_normalized(struct task_struct *p)
11196 {
11197 	struct sched_entity *se = &p->se;
11198 
11199 	/*
11200 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11201 	 * the dequeue_entity(.flags=0) will already have normalized the
11202 	 * vruntime.
11203 	 */
11204 	if (p->on_rq)
11205 		return true;
11206 
11207 	/*
11208 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
11209 	 * But there are some cases where it has already been normalized:
11210 	 *
11211 	 * - A forked child which is waiting for being woken up by
11212 	 *   wake_up_new_task().
11213 	 * - A task which has been woken up by try_to_wake_up() and
11214 	 *   waiting for actually being woken up by sched_ttwu_pending().
11215 	 */
11216 	if (!se->sum_exec_runtime ||
11217 	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11218 		return true;
11219 
11220 	return false;
11221 }
11222 
11223 #ifdef CONFIG_FAIR_GROUP_SCHED
11224 /*
11225  * Propagate the changes of the sched_entity across the tg tree to make it
11226  * visible to the root
11227  */
11228 static void propagate_entity_cfs_rq(struct sched_entity *se)
11229 {
11230 	struct cfs_rq *cfs_rq;
11231 
11232 	list_add_leaf_cfs_rq(cfs_rq_of(se));
11233 
11234 	/* Start to propagate at parent */
11235 	se = se->parent;
11236 
11237 	for_each_sched_entity(se) {
11238 		cfs_rq = cfs_rq_of(se);
11239 
11240 		if (!cfs_rq_throttled(cfs_rq)){
11241 			update_load_avg(cfs_rq, se, UPDATE_TG);
11242 			list_add_leaf_cfs_rq(cfs_rq);
11243 			continue;
11244 		}
11245 
11246 		if (list_add_leaf_cfs_rq(cfs_rq))
11247 			break;
11248 	}
11249 }
11250 #else
11251 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11252 #endif
11253 
11254 static void detach_entity_cfs_rq(struct sched_entity *se)
11255 {
11256 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11257 
11258 	/* Catch up with the cfs_rq and remove our load when we leave */
11259 	update_load_avg(cfs_rq, se, 0);
11260 	detach_entity_load_avg(cfs_rq, se);
11261 	update_tg_load_avg(cfs_rq);
11262 	propagate_entity_cfs_rq(se);
11263 }
11264 
11265 static void attach_entity_cfs_rq(struct sched_entity *se)
11266 {
11267 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11268 
11269 #ifdef CONFIG_FAIR_GROUP_SCHED
11270 	/*
11271 	 * Since the real-depth could have been changed (only FAIR
11272 	 * class maintain depth value), reset depth properly.
11273 	 */
11274 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11275 #endif
11276 
11277 	/* Synchronize entity with its cfs_rq */
11278 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11279 	attach_entity_load_avg(cfs_rq, se);
11280 	update_tg_load_avg(cfs_rq);
11281 	propagate_entity_cfs_rq(se);
11282 }
11283 
11284 static void detach_task_cfs_rq(struct task_struct *p)
11285 {
11286 	struct sched_entity *se = &p->se;
11287 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11288 
11289 	if (!vruntime_normalized(p)) {
11290 		/*
11291 		 * Fix up our vruntime so that the current sleep doesn't
11292 		 * cause 'unlimited' sleep bonus.
11293 		 */
11294 		place_entity(cfs_rq, se, 0);
11295 		se->vruntime -= cfs_rq->min_vruntime;
11296 	}
11297 
11298 	detach_entity_cfs_rq(se);
11299 }
11300 
11301 static void attach_task_cfs_rq(struct task_struct *p)
11302 {
11303 	struct sched_entity *se = &p->se;
11304 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11305 
11306 	attach_entity_cfs_rq(se);
11307 
11308 	if (!vruntime_normalized(p))
11309 		se->vruntime += cfs_rq->min_vruntime;
11310 }
11311 
11312 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11313 {
11314 	detach_task_cfs_rq(p);
11315 }
11316 
11317 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11318 {
11319 	attach_task_cfs_rq(p);
11320 
11321 	if (task_on_rq_queued(p)) {
11322 		/*
11323 		 * We were most likely switched from sched_rt, so
11324 		 * kick off the schedule if running, otherwise just see
11325 		 * if we can still preempt the current task.
11326 		 */
11327 		if (task_current(rq, p))
11328 			resched_curr(rq);
11329 		else
11330 			check_preempt_curr(rq, p, 0);
11331 	}
11332 }
11333 
11334 /* Account for a task changing its policy or group.
11335  *
11336  * This routine is mostly called to set cfs_rq->curr field when a task
11337  * migrates between groups/classes.
11338  */
11339 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11340 {
11341 	struct sched_entity *se = &p->se;
11342 
11343 #ifdef CONFIG_SMP
11344 	if (task_on_rq_queued(p)) {
11345 		/*
11346 		 * Move the next running task to the front of the list, so our
11347 		 * cfs_tasks list becomes MRU one.
11348 		 */
11349 		list_move(&se->group_node, &rq->cfs_tasks);
11350 	}
11351 #endif
11352 
11353 	for_each_sched_entity(se) {
11354 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11355 
11356 		set_next_entity(cfs_rq, se);
11357 		/* ensure bandwidth has been allocated on our new cfs_rq */
11358 		account_cfs_rq_runtime(cfs_rq, 0);
11359 	}
11360 }
11361 
11362 void init_cfs_rq(struct cfs_rq *cfs_rq)
11363 {
11364 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11365 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11366 #ifndef CONFIG_64BIT
11367 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11368 #endif
11369 #ifdef CONFIG_SMP
11370 	raw_spin_lock_init(&cfs_rq->removed.lock);
11371 #endif
11372 }
11373 
11374 #ifdef CONFIG_FAIR_GROUP_SCHED
11375 static void task_set_group_fair(struct task_struct *p)
11376 {
11377 	struct sched_entity *se = &p->se;
11378 
11379 	set_task_rq(p, task_cpu(p));
11380 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11381 }
11382 
11383 static void task_move_group_fair(struct task_struct *p)
11384 {
11385 	detach_task_cfs_rq(p);
11386 	set_task_rq(p, task_cpu(p));
11387 
11388 #ifdef CONFIG_SMP
11389 	/* Tell se's cfs_rq has been changed -- migrated */
11390 	p->se.avg.last_update_time = 0;
11391 #endif
11392 	attach_task_cfs_rq(p);
11393 }
11394 
11395 static void task_change_group_fair(struct task_struct *p, int type)
11396 {
11397 	switch (type) {
11398 	case TASK_SET_GROUP:
11399 		task_set_group_fair(p);
11400 		break;
11401 
11402 	case TASK_MOVE_GROUP:
11403 		task_move_group_fair(p);
11404 		break;
11405 	}
11406 }
11407 
11408 void free_fair_sched_group(struct task_group *tg)
11409 {
11410 	int i;
11411 
11412 	for_each_possible_cpu(i) {
11413 		if (tg->cfs_rq)
11414 			kfree(tg->cfs_rq[i]);
11415 		if (tg->se)
11416 			kfree(tg->se[i]);
11417 	}
11418 
11419 	kfree(tg->cfs_rq);
11420 	kfree(tg->se);
11421 }
11422 
11423 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11424 {
11425 	struct sched_entity *se;
11426 	struct cfs_rq *cfs_rq;
11427 	int i;
11428 
11429 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11430 	if (!tg->cfs_rq)
11431 		goto err;
11432 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11433 	if (!tg->se)
11434 		goto err;
11435 
11436 	tg->shares = NICE_0_LOAD;
11437 
11438 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11439 
11440 	for_each_possible_cpu(i) {
11441 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11442 				      GFP_KERNEL, cpu_to_node(i));
11443 		if (!cfs_rq)
11444 			goto err;
11445 
11446 		se = kzalloc_node(sizeof(struct sched_entity_stats),
11447 				  GFP_KERNEL, cpu_to_node(i));
11448 		if (!se)
11449 			goto err_free_rq;
11450 
11451 		init_cfs_rq(cfs_rq);
11452 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11453 		init_entity_runnable_average(se);
11454 	}
11455 
11456 	return 1;
11457 
11458 err_free_rq:
11459 	kfree(cfs_rq);
11460 err:
11461 	return 0;
11462 }
11463 
11464 void online_fair_sched_group(struct task_group *tg)
11465 {
11466 	struct sched_entity *se;
11467 	struct rq_flags rf;
11468 	struct rq *rq;
11469 	int i;
11470 
11471 	for_each_possible_cpu(i) {
11472 		rq = cpu_rq(i);
11473 		se = tg->se[i];
11474 		rq_lock_irq(rq, &rf);
11475 		update_rq_clock(rq);
11476 		attach_entity_cfs_rq(se);
11477 		sync_throttle(tg, i);
11478 		rq_unlock_irq(rq, &rf);
11479 	}
11480 }
11481 
11482 void unregister_fair_sched_group(struct task_group *tg)
11483 {
11484 	unsigned long flags;
11485 	struct rq *rq;
11486 	int cpu;
11487 
11488 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11489 
11490 	for_each_possible_cpu(cpu) {
11491 		if (tg->se[cpu])
11492 			remove_entity_load_avg(tg->se[cpu]);
11493 
11494 		/*
11495 		 * Only empty task groups can be destroyed; so we can speculatively
11496 		 * check on_list without danger of it being re-added.
11497 		 */
11498 		if (!tg->cfs_rq[cpu]->on_list)
11499 			continue;
11500 
11501 		rq = cpu_rq(cpu);
11502 
11503 		raw_spin_rq_lock_irqsave(rq, flags);
11504 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11505 		raw_spin_rq_unlock_irqrestore(rq, flags);
11506 	}
11507 }
11508 
11509 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11510 			struct sched_entity *se, int cpu,
11511 			struct sched_entity *parent)
11512 {
11513 	struct rq *rq = cpu_rq(cpu);
11514 
11515 	cfs_rq->tg = tg;
11516 	cfs_rq->rq = rq;
11517 	init_cfs_rq_runtime(cfs_rq);
11518 
11519 	tg->cfs_rq[cpu] = cfs_rq;
11520 	tg->se[cpu] = se;
11521 
11522 	/* se could be NULL for root_task_group */
11523 	if (!se)
11524 		return;
11525 
11526 	if (!parent) {
11527 		se->cfs_rq = &rq->cfs;
11528 		se->depth = 0;
11529 	} else {
11530 		se->cfs_rq = parent->my_q;
11531 		se->depth = parent->depth + 1;
11532 	}
11533 
11534 	se->my_q = cfs_rq;
11535 	/* guarantee group entities always have weight */
11536 	update_load_set(&se->load, NICE_0_LOAD);
11537 	se->parent = parent;
11538 }
11539 
11540 static DEFINE_MUTEX(shares_mutex);
11541 
11542 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
11543 {
11544 	int i;
11545 
11546 	lockdep_assert_held(&shares_mutex);
11547 
11548 	/*
11549 	 * We can't change the weight of the root cgroup.
11550 	 */
11551 	if (!tg->se[0])
11552 		return -EINVAL;
11553 
11554 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11555 
11556 	if (tg->shares == shares)
11557 		return 0;
11558 
11559 	tg->shares = shares;
11560 	for_each_possible_cpu(i) {
11561 		struct rq *rq = cpu_rq(i);
11562 		struct sched_entity *se = tg->se[i];
11563 		struct rq_flags rf;
11564 
11565 		/* Propagate contribution to hierarchy */
11566 		rq_lock_irqsave(rq, &rf);
11567 		update_rq_clock(rq);
11568 		for_each_sched_entity(se) {
11569 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11570 			update_cfs_group(se);
11571 		}
11572 		rq_unlock_irqrestore(rq, &rf);
11573 	}
11574 
11575 	return 0;
11576 }
11577 
11578 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11579 {
11580 	int ret;
11581 
11582 	mutex_lock(&shares_mutex);
11583 	if (tg_is_idle(tg))
11584 		ret = -EINVAL;
11585 	else
11586 		ret = __sched_group_set_shares(tg, shares);
11587 	mutex_unlock(&shares_mutex);
11588 
11589 	return ret;
11590 }
11591 
11592 int sched_group_set_idle(struct task_group *tg, long idle)
11593 {
11594 	int i;
11595 
11596 	if (tg == &root_task_group)
11597 		return -EINVAL;
11598 
11599 	if (idle < 0 || idle > 1)
11600 		return -EINVAL;
11601 
11602 	mutex_lock(&shares_mutex);
11603 
11604 	if (tg->idle == idle) {
11605 		mutex_unlock(&shares_mutex);
11606 		return 0;
11607 	}
11608 
11609 	tg->idle = idle;
11610 
11611 	for_each_possible_cpu(i) {
11612 		struct rq *rq = cpu_rq(i);
11613 		struct sched_entity *se = tg->se[i];
11614 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
11615 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11616 		long idle_task_delta;
11617 		struct rq_flags rf;
11618 
11619 		rq_lock_irqsave(rq, &rf);
11620 
11621 		grp_cfs_rq->idle = idle;
11622 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11623 			goto next_cpu;
11624 
11625 		if (se->on_rq) {
11626 			parent_cfs_rq = cfs_rq_of(se);
11627 			if (cfs_rq_is_idle(grp_cfs_rq))
11628 				parent_cfs_rq->idle_nr_running++;
11629 			else
11630 				parent_cfs_rq->idle_nr_running--;
11631 		}
11632 
11633 		idle_task_delta = grp_cfs_rq->h_nr_running -
11634 				  grp_cfs_rq->idle_h_nr_running;
11635 		if (!cfs_rq_is_idle(grp_cfs_rq))
11636 			idle_task_delta *= -1;
11637 
11638 		for_each_sched_entity(se) {
11639 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
11640 
11641 			if (!se->on_rq)
11642 				break;
11643 
11644 			cfs_rq->idle_h_nr_running += idle_task_delta;
11645 
11646 			/* Already accounted at parent level and above. */
11647 			if (cfs_rq_is_idle(cfs_rq))
11648 				break;
11649 		}
11650 
11651 next_cpu:
11652 		rq_unlock_irqrestore(rq, &rf);
11653 	}
11654 
11655 	/* Idle groups have minimum weight. */
11656 	if (tg_is_idle(tg))
11657 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11658 	else
11659 		__sched_group_set_shares(tg, NICE_0_LOAD);
11660 
11661 	mutex_unlock(&shares_mutex);
11662 	return 0;
11663 }
11664 
11665 #else /* CONFIG_FAIR_GROUP_SCHED */
11666 
11667 void free_fair_sched_group(struct task_group *tg) { }
11668 
11669 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11670 {
11671 	return 1;
11672 }
11673 
11674 void online_fair_sched_group(struct task_group *tg) { }
11675 
11676 void unregister_fair_sched_group(struct task_group *tg) { }
11677 
11678 #endif /* CONFIG_FAIR_GROUP_SCHED */
11679 
11680 
11681 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11682 {
11683 	struct sched_entity *se = &task->se;
11684 	unsigned int rr_interval = 0;
11685 
11686 	/*
11687 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11688 	 * idle runqueue:
11689 	 */
11690 	if (rq->cfs.load.weight)
11691 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11692 
11693 	return rr_interval;
11694 }
11695 
11696 /*
11697  * All the scheduling class methods:
11698  */
11699 DEFINE_SCHED_CLASS(fair) = {
11700 
11701 	.enqueue_task		= enqueue_task_fair,
11702 	.dequeue_task		= dequeue_task_fair,
11703 	.yield_task		= yield_task_fair,
11704 	.yield_to_task		= yield_to_task_fair,
11705 
11706 	.check_preempt_curr	= check_preempt_wakeup,
11707 
11708 	.pick_next_task		= __pick_next_task_fair,
11709 	.put_prev_task		= put_prev_task_fair,
11710 	.set_next_task          = set_next_task_fair,
11711 
11712 #ifdef CONFIG_SMP
11713 	.balance		= balance_fair,
11714 	.pick_task		= pick_task_fair,
11715 	.select_task_rq		= select_task_rq_fair,
11716 	.migrate_task_rq	= migrate_task_rq_fair,
11717 
11718 	.rq_online		= rq_online_fair,
11719 	.rq_offline		= rq_offline_fair,
11720 
11721 	.task_dead		= task_dead_fair,
11722 	.set_cpus_allowed	= set_cpus_allowed_common,
11723 #endif
11724 
11725 	.task_tick		= task_tick_fair,
11726 	.task_fork		= task_fork_fair,
11727 
11728 	.prio_changed		= prio_changed_fair,
11729 	.switched_from		= switched_from_fair,
11730 	.switched_to		= switched_to_fair,
11731 
11732 	.get_rr_interval	= get_rr_interval_fair,
11733 
11734 	.update_curr		= update_curr_fair,
11735 
11736 #ifdef CONFIG_FAIR_GROUP_SCHED
11737 	.task_change_group	= task_change_group_fair,
11738 #endif
11739 
11740 #ifdef CONFIG_UCLAMP_TASK
11741 	.uclamp_enabled		= 1,
11742 #endif
11743 };
11744 
11745 #ifdef CONFIG_SCHED_DEBUG
11746 void print_cfs_stats(struct seq_file *m, int cpu)
11747 {
11748 	struct cfs_rq *cfs_rq, *pos;
11749 
11750 	rcu_read_lock();
11751 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11752 		print_cfs_rq(m, cpu, cfs_rq);
11753 	rcu_read_unlock();
11754 }
11755 
11756 #ifdef CONFIG_NUMA_BALANCING
11757 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11758 {
11759 	int node;
11760 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11761 	struct numa_group *ng;
11762 
11763 	rcu_read_lock();
11764 	ng = rcu_dereference(p->numa_group);
11765 	for_each_online_node(node) {
11766 		if (p->numa_faults) {
11767 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11768 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11769 		}
11770 		if (ng) {
11771 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11772 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11773 		}
11774 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11775 	}
11776 	rcu_read_unlock();
11777 }
11778 #endif /* CONFIG_NUMA_BALANCING */
11779 #endif /* CONFIG_SCHED_DEBUG */
11780 
11781 __init void init_sched_fair_class(void)
11782 {
11783 #ifdef CONFIG_SMP
11784 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11785 
11786 #ifdef CONFIG_NO_HZ_COMMON
11787 	nohz.next_balance = jiffies;
11788 	nohz.next_blocked = jiffies;
11789 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11790 #endif
11791 #endif /* SMP */
11792 
11793 }
11794 
11795 /*
11796  * Helper functions to facilitate extracting info from tracepoints.
11797  */
11798 
11799 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11800 {
11801 #ifdef CONFIG_SMP
11802 	return cfs_rq ? &cfs_rq->avg : NULL;
11803 #else
11804 	return NULL;
11805 #endif
11806 }
11807 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11808 
11809 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11810 {
11811 	if (!cfs_rq) {
11812 		if (str)
11813 			strlcpy(str, "(null)", len);
11814 		else
11815 			return NULL;
11816 	}
11817 
11818 	cfs_rq_tg_path(cfs_rq, str, len);
11819 	return str;
11820 }
11821 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11822 
11823 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11824 {
11825 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11826 }
11827 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11828 
11829 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11830 {
11831 #ifdef CONFIG_SMP
11832 	return rq ? &rq->avg_rt : NULL;
11833 #else
11834 	return NULL;
11835 #endif
11836 }
11837 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11838 
11839 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11840 {
11841 #ifdef CONFIG_SMP
11842 	return rq ? &rq->avg_dl : NULL;
11843 #else
11844 	return NULL;
11845 #endif
11846 }
11847 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11848 
11849 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11850 {
11851 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11852 	return rq ? &rq->avg_irq : NULL;
11853 #else
11854 	return NULL;
11855 #endif
11856 }
11857 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11858 
11859 int sched_trace_rq_cpu(struct rq *rq)
11860 {
11861 	return rq ? cpu_of(rq) : -1;
11862 }
11863 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11864 
11865 int sched_trace_rq_cpu_capacity(struct rq *rq)
11866 {
11867 	return rq ?
11868 #ifdef CONFIG_SMP
11869 		rq->cpu_capacity
11870 #else
11871 		SCHED_CAPACITY_SCALE
11872 #endif
11873 		: -1;
11874 }
11875 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11876 
11877 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11878 {
11879 #ifdef CONFIG_SMP
11880 	return rd ? rd->span : NULL;
11881 #else
11882 	return NULL;
11883 #endif
11884 }
11885 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11886 
11887 int sched_trace_rq_nr_running(struct rq *rq)
11888 {
11889         return rq ? rq->nr_running : -1;
11890 }
11891 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11892