xref: /openbmc/linux/kernel/sched/fair.c (revision 2c0d808f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include <linux/sched/cond_resched.h>
55 
56 #include "sched.h"
57 #include "stats.h"
58 #include "autogroup.h"
59 
60 /*
61  * The initial- and re-scaling of tunables is configurable
62  *
63  * Options are:
64  *
65  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
66  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
67  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
68  *
69  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
70  */
71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
72 
73 /*
74  * Minimal preemption granularity for CPU-bound tasks:
75  *
76  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
77  */
78 unsigned int sysctl_sched_base_slice			= 750000ULL;
79 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
80 
81 /*
82  * After fork, child runs first. If set to 0 (default) then
83  * parent will (try to) run first.
84  */
85 unsigned int sysctl_sched_child_runs_first __read_mostly;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 int sched_thermal_decay_shift;
90 static int __init setup_sched_thermal_decay_shift(char *str)
91 {
92 	int _shift = 0;
93 
94 	if (kstrtoint(str, 0, &_shift))
95 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
96 
97 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 	return 1;
99 }
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
101 
102 #ifdef CONFIG_SMP
103 /*
104  * For asym packing, by default the lower numbered CPU has higher priority.
105  */
106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 	return -cpu;
109 }
110 
111 /*
112  * The margin used when comparing utilization with CPU capacity.
113  *
114  * (default: ~20%)
115  */
116 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
117 
118 /*
119  * The margin used when comparing CPU capacities.
120  * is 'cap1' noticeably greater than 'cap2'
121  *
122  * (default: ~5%)
123  */
124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
125 #endif
126 
127 #ifdef CONFIG_CFS_BANDWIDTH
128 /*
129  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
130  * each time a cfs_rq requests quota.
131  *
132  * Note: in the case that the slice exceeds the runtime remaining (either due
133  * to consumption or the quota being specified to be smaller than the slice)
134  * we will always only issue the remaining available time.
135  *
136  * (default: 5 msec, units: microseconds)
137  */
138 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
139 #endif
140 
141 #ifdef CONFIG_NUMA_BALANCING
142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
144 #endif
145 
146 #ifdef CONFIG_SYSCTL
147 static struct ctl_table sched_fair_sysctls[] = {
148 	{
149 		.procname       = "sched_child_runs_first",
150 		.data           = &sysctl_sched_child_runs_first,
151 		.maxlen         = sizeof(unsigned int),
152 		.mode           = 0644,
153 		.proc_handler   = proc_dointvec,
154 	},
155 #ifdef CONFIG_CFS_BANDWIDTH
156 	{
157 		.procname       = "sched_cfs_bandwidth_slice_us",
158 		.data           = &sysctl_sched_cfs_bandwidth_slice,
159 		.maxlen         = sizeof(unsigned int),
160 		.mode           = 0644,
161 		.proc_handler   = proc_dointvec_minmax,
162 		.extra1         = SYSCTL_ONE,
163 	},
164 #endif
165 #ifdef CONFIG_NUMA_BALANCING
166 	{
167 		.procname	= "numa_balancing_promote_rate_limit_MBps",
168 		.data		= &sysctl_numa_balancing_promote_rate_limit,
169 		.maxlen		= sizeof(unsigned int),
170 		.mode		= 0644,
171 		.proc_handler	= proc_dointvec_minmax,
172 		.extra1		= SYSCTL_ZERO,
173 	},
174 #endif /* CONFIG_NUMA_BALANCING */
175 	{}
176 };
177 
178 static int __init sched_fair_sysctl_init(void)
179 {
180 	register_sysctl_init("kernel", sched_fair_sysctls);
181 	return 0;
182 }
183 late_initcall(sched_fair_sysctl_init);
184 #endif
185 
186 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
187 {
188 	lw->weight += inc;
189 	lw->inv_weight = 0;
190 }
191 
192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
193 {
194 	lw->weight -= dec;
195 	lw->inv_weight = 0;
196 }
197 
198 static inline void update_load_set(struct load_weight *lw, unsigned long w)
199 {
200 	lw->weight = w;
201 	lw->inv_weight = 0;
202 }
203 
204 /*
205  * Increase the granularity value when there are more CPUs,
206  * because with more CPUs the 'effective latency' as visible
207  * to users decreases. But the relationship is not linear,
208  * so pick a second-best guess by going with the log2 of the
209  * number of CPUs.
210  *
211  * This idea comes from the SD scheduler of Con Kolivas:
212  */
213 static unsigned int get_update_sysctl_factor(void)
214 {
215 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
216 	unsigned int factor;
217 
218 	switch (sysctl_sched_tunable_scaling) {
219 	case SCHED_TUNABLESCALING_NONE:
220 		factor = 1;
221 		break;
222 	case SCHED_TUNABLESCALING_LINEAR:
223 		factor = cpus;
224 		break;
225 	case SCHED_TUNABLESCALING_LOG:
226 	default:
227 		factor = 1 + ilog2(cpus);
228 		break;
229 	}
230 
231 	return factor;
232 }
233 
234 static void update_sysctl(void)
235 {
236 	unsigned int factor = get_update_sysctl_factor();
237 
238 #define SET_SYSCTL(name) \
239 	(sysctl_##name = (factor) * normalized_sysctl_##name)
240 	SET_SYSCTL(sched_base_slice);
241 #undef SET_SYSCTL
242 }
243 
244 void __init sched_init_granularity(void)
245 {
246 	update_sysctl();
247 }
248 
249 #define WMULT_CONST	(~0U)
250 #define WMULT_SHIFT	32
251 
252 static void __update_inv_weight(struct load_weight *lw)
253 {
254 	unsigned long w;
255 
256 	if (likely(lw->inv_weight))
257 		return;
258 
259 	w = scale_load_down(lw->weight);
260 
261 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
262 		lw->inv_weight = 1;
263 	else if (unlikely(!w))
264 		lw->inv_weight = WMULT_CONST;
265 	else
266 		lw->inv_weight = WMULT_CONST / w;
267 }
268 
269 /*
270  * delta_exec * weight / lw.weight
271  *   OR
272  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
273  *
274  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
275  * we're guaranteed shift stays positive because inv_weight is guaranteed to
276  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
277  *
278  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
279  * weight/lw.weight <= 1, and therefore our shift will also be positive.
280  */
281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
282 {
283 	u64 fact = scale_load_down(weight);
284 	u32 fact_hi = (u32)(fact >> 32);
285 	int shift = WMULT_SHIFT;
286 	int fs;
287 
288 	__update_inv_weight(lw);
289 
290 	if (unlikely(fact_hi)) {
291 		fs = fls(fact_hi);
292 		shift -= fs;
293 		fact >>= fs;
294 	}
295 
296 	fact = mul_u32_u32(fact, lw->inv_weight);
297 
298 	fact_hi = (u32)(fact >> 32);
299 	if (fact_hi) {
300 		fs = fls(fact_hi);
301 		shift -= fs;
302 		fact >>= fs;
303 	}
304 
305 	return mul_u64_u32_shr(delta_exec, fact, shift);
306 }
307 
308 /*
309  * delta /= w
310  */
311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
312 {
313 	if (unlikely(se->load.weight != NICE_0_LOAD))
314 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
315 
316 	return delta;
317 }
318 
319 const struct sched_class fair_sched_class;
320 
321 /**************************************************************
322  * CFS operations on generic schedulable entities:
323  */
324 
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 
327 /* Walk up scheduling entities hierarchy */
328 #define for_each_sched_entity(se) \
329 		for (; se; se = se->parent)
330 
331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
332 {
333 	struct rq *rq = rq_of(cfs_rq);
334 	int cpu = cpu_of(rq);
335 
336 	if (cfs_rq->on_list)
337 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
338 
339 	cfs_rq->on_list = 1;
340 
341 	/*
342 	 * Ensure we either appear before our parent (if already
343 	 * enqueued) or force our parent to appear after us when it is
344 	 * enqueued. The fact that we always enqueue bottom-up
345 	 * reduces this to two cases and a special case for the root
346 	 * cfs_rq. Furthermore, it also means that we will always reset
347 	 * tmp_alone_branch either when the branch is connected
348 	 * to a tree or when we reach the top of the tree
349 	 */
350 	if (cfs_rq->tg->parent &&
351 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
352 		/*
353 		 * If parent is already on the list, we add the child
354 		 * just before. Thanks to circular linked property of
355 		 * the list, this means to put the child at the tail
356 		 * of the list that starts by parent.
357 		 */
358 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
359 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
360 		/*
361 		 * The branch is now connected to its tree so we can
362 		 * reset tmp_alone_branch to the beginning of the
363 		 * list.
364 		 */
365 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 		return true;
367 	}
368 
369 	if (!cfs_rq->tg->parent) {
370 		/*
371 		 * cfs rq without parent should be put
372 		 * at the tail of the list.
373 		 */
374 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
375 			&rq->leaf_cfs_rq_list);
376 		/*
377 		 * We have reach the top of a tree so we can reset
378 		 * tmp_alone_branch to the beginning of the list.
379 		 */
380 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
381 		return true;
382 	}
383 
384 	/*
385 	 * The parent has not already been added so we want to
386 	 * make sure that it will be put after us.
387 	 * tmp_alone_branch points to the begin of the branch
388 	 * where we will add parent.
389 	 */
390 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
391 	/*
392 	 * update tmp_alone_branch to points to the new begin
393 	 * of the branch
394 	 */
395 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
396 	return false;
397 }
398 
399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
400 {
401 	if (cfs_rq->on_list) {
402 		struct rq *rq = rq_of(cfs_rq);
403 
404 		/*
405 		 * With cfs_rq being unthrottled/throttled during an enqueue,
406 		 * it can happen the tmp_alone_branch points the a leaf that
407 		 * we finally want to del. In this case, tmp_alone_branch moves
408 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
409 		 * at the end of the enqueue.
410 		 */
411 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
412 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
413 
414 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
415 		cfs_rq->on_list = 0;
416 	}
417 }
418 
419 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
420 {
421 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
422 }
423 
424 /* Iterate thr' all leaf cfs_rq's on a runqueue */
425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
426 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
427 				 leaf_cfs_rq_list)
428 
429 /* Do the two (enqueued) entities belong to the same group ? */
430 static inline struct cfs_rq *
431 is_same_group(struct sched_entity *se, struct sched_entity *pse)
432 {
433 	if (se->cfs_rq == pse->cfs_rq)
434 		return se->cfs_rq;
435 
436 	return NULL;
437 }
438 
439 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
440 {
441 	return se->parent;
442 }
443 
444 static void
445 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
446 {
447 	int se_depth, pse_depth;
448 
449 	/*
450 	 * preemption test can be made between sibling entities who are in the
451 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
452 	 * both tasks until we find their ancestors who are siblings of common
453 	 * parent.
454 	 */
455 
456 	/* First walk up until both entities are at same depth */
457 	se_depth = (*se)->depth;
458 	pse_depth = (*pse)->depth;
459 
460 	while (se_depth > pse_depth) {
461 		se_depth--;
462 		*se = parent_entity(*se);
463 	}
464 
465 	while (pse_depth > se_depth) {
466 		pse_depth--;
467 		*pse = parent_entity(*pse);
468 	}
469 
470 	while (!is_same_group(*se, *pse)) {
471 		*se = parent_entity(*se);
472 		*pse = parent_entity(*pse);
473 	}
474 }
475 
476 static int tg_is_idle(struct task_group *tg)
477 {
478 	return tg->idle > 0;
479 }
480 
481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
482 {
483 	return cfs_rq->idle > 0;
484 }
485 
486 static int se_is_idle(struct sched_entity *se)
487 {
488 	if (entity_is_task(se))
489 		return task_has_idle_policy(task_of(se));
490 	return cfs_rq_is_idle(group_cfs_rq(se));
491 }
492 
493 #else	/* !CONFIG_FAIR_GROUP_SCHED */
494 
495 #define for_each_sched_entity(se) \
496 		for (; se; se = NULL)
497 
498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
499 {
500 	return true;
501 }
502 
503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
504 {
505 }
506 
507 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
508 {
509 }
510 
511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
512 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
513 
514 static inline struct sched_entity *parent_entity(struct sched_entity *se)
515 {
516 	return NULL;
517 }
518 
519 static inline void
520 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
521 {
522 }
523 
524 static inline int tg_is_idle(struct task_group *tg)
525 {
526 	return 0;
527 }
528 
529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
530 {
531 	return 0;
532 }
533 
534 static int se_is_idle(struct sched_entity *se)
535 {
536 	return 0;
537 }
538 
539 #endif	/* CONFIG_FAIR_GROUP_SCHED */
540 
541 static __always_inline
542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
543 
544 /**************************************************************
545  * Scheduling class tree data structure manipulation methods:
546  */
547 
548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
549 {
550 	s64 delta = (s64)(vruntime - max_vruntime);
551 	if (delta > 0)
552 		max_vruntime = vruntime;
553 
554 	return max_vruntime;
555 }
556 
557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
558 {
559 	s64 delta = (s64)(vruntime - min_vruntime);
560 	if (delta < 0)
561 		min_vruntime = vruntime;
562 
563 	return min_vruntime;
564 }
565 
566 static inline bool entity_before(const struct sched_entity *a,
567 				 const struct sched_entity *b)
568 {
569 	return (s64)(a->vruntime - b->vruntime) < 0;
570 }
571 
572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
573 {
574 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
575 }
576 
577 #define __node_2_se(node) \
578 	rb_entry((node), struct sched_entity, run_node)
579 
580 /*
581  * Compute virtual time from the per-task service numbers:
582  *
583  * Fair schedulers conserve lag:
584  *
585  *   \Sum lag_i = 0
586  *
587  * Where lag_i is given by:
588  *
589  *   lag_i = S - s_i = w_i * (V - v_i)
590  *
591  * Where S is the ideal service time and V is it's virtual time counterpart.
592  * Therefore:
593  *
594  *   \Sum lag_i = 0
595  *   \Sum w_i * (V - v_i) = 0
596  *   \Sum w_i * V - w_i * v_i = 0
597  *
598  * From which we can solve an expression for V in v_i (which we have in
599  * se->vruntime):
600  *
601  *       \Sum v_i * w_i   \Sum v_i * w_i
602  *   V = -------------- = --------------
603  *          \Sum w_i            W
604  *
605  * Specifically, this is the weighted average of all entity virtual runtimes.
606  *
607  * [[ NOTE: this is only equal to the ideal scheduler under the condition
608  *          that join/leave operations happen at lag_i = 0, otherwise the
609  *          virtual time has non-continguous motion equivalent to:
610  *
611  *	      V +-= lag_i / W
612  *
613  *	    Also see the comment in place_entity() that deals with this. ]]
614  *
615  * However, since v_i is u64, and the multiplcation could easily overflow
616  * transform it into a relative form that uses smaller quantities:
617  *
618  * Substitute: v_i == (v_i - v0) + v0
619  *
620  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
621  * V = ---------------------------- = --------------------- + v0
622  *                  W                            W
623  *
624  * Which we track using:
625  *
626  *                    v0 := cfs_rq->min_vruntime
627  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
628  *              \Sum w_i := cfs_rq->avg_load
629  *
630  * Since min_vruntime is a monotonic increasing variable that closely tracks
631  * the per-task service, these deltas: (v_i - v), will be in the order of the
632  * maximal (virtual) lag induced in the system due to quantisation.
633  *
634  * Also, we use scale_load_down() to reduce the size.
635  *
636  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
637  */
638 static void
639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 {
641 	unsigned long weight = scale_load_down(se->load.weight);
642 	s64 key = entity_key(cfs_rq, se);
643 
644 	cfs_rq->avg_vruntime += key * weight;
645 	cfs_rq->avg_load += weight;
646 }
647 
648 static void
649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
650 {
651 	unsigned long weight = scale_load_down(se->load.weight);
652 	s64 key = entity_key(cfs_rq, se);
653 
654 	cfs_rq->avg_vruntime -= key * weight;
655 	cfs_rq->avg_load -= weight;
656 }
657 
658 static inline
659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
660 {
661 	/*
662 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
663 	 */
664 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
665 }
666 
667 /*
668  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
669  * For this to be so, the result of this function must have a left bias.
670  */
671 u64 avg_vruntime(struct cfs_rq *cfs_rq)
672 {
673 	struct sched_entity *curr = cfs_rq->curr;
674 	s64 avg = cfs_rq->avg_vruntime;
675 	long load = cfs_rq->avg_load;
676 
677 	if (curr && curr->on_rq) {
678 		unsigned long weight = scale_load_down(curr->load.weight);
679 
680 		avg += entity_key(cfs_rq, curr) * weight;
681 		load += weight;
682 	}
683 
684 	if (load) {
685 		/* sign flips effective floor / ceil */
686 		if (avg < 0)
687 			avg -= (load - 1);
688 		avg = div_s64(avg, load);
689 	}
690 
691 	return cfs_rq->min_vruntime + avg;
692 }
693 
694 /*
695  * lag_i = S - s_i = w_i * (V - v_i)
696  *
697  * However, since V is approximated by the weighted average of all entities it
698  * is possible -- by addition/removal/reweight to the tree -- to move V around
699  * and end up with a larger lag than we started with.
700  *
701  * Limit this to either double the slice length with a minimum of TICK_NSEC
702  * since that is the timing granularity.
703  *
704  * EEVDF gives the following limit for a steady state system:
705  *
706  *   -r_max < lag < max(r_max, q)
707  *
708  * XXX could add max_slice to the augmented data to track this.
709  */
710 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
711 {
712 	s64 lag, limit;
713 
714 	SCHED_WARN_ON(!se->on_rq);
715 	lag = avg_vruntime(cfs_rq) - se->vruntime;
716 
717 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
718 	se->vlag = clamp(lag, -limit, limit);
719 }
720 
721 /*
722  * Entity is eligible once it received less service than it ought to have,
723  * eg. lag >= 0.
724  *
725  * lag_i = S - s_i = w_i*(V - v_i)
726  *
727  * lag_i >= 0 -> V >= v_i
728  *
729  *     \Sum (v_i - v)*w_i
730  * V = ------------------ + v
731  *          \Sum w_i
732  *
733  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
734  *
735  * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
736  *       to the loss in precision caused by the division.
737  */
738 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740 	struct sched_entity *curr = cfs_rq->curr;
741 	s64 avg = cfs_rq->avg_vruntime;
742 	long load = cfs_rq->avg_load;
743 
744 	if (curr && curr->on_rq) {
745 		unsigned long weight = scale_load_down(curr->load.weight);
746 
747 		avg += entity_key(cfs_rq, curr) * weight;
748 		load += weight;
749 	}
750 
751 	return avg >= entity_key(cfs_rq, se) * load;
752 }
753 
754 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
755 {
756 	u64 min_vruntime = cfs_rq->min_vruntime;
757 	/*
758 	 * open coded max_vruntime() to allow updating avg_vruntime
759 	 */
760 	s64 delta = (s64)(vruntime - min_vruntime);
761 	if (delta > 0) {
762 		avg_vruntime_update(cfs_rq, delta);
763 		min_vruntime = vruntime;
764 	}
765 	return min_vruntime;
766 }
767 
768 static void update_min_vruntime(struct cfs_rq *cfs_rq)
769 {
770 	struct sched_entity *se = __pick_first_entity(cfs_rq);
771 	struct sched_entity *curr = cfs_rq->curr;
772 
773 	u64 vruntime = cfs_rq->min_vruntime;
774 
775 	if (curr) {
776 		if (curr->on_rq)
777 			vruntime = curr->vruntime;
778 		else
779 			curr = NULL;
780 	}
781 
782 	if (se) {
783 		if (!curr)
784 			vruntime = se->vruntime;
785 		else
786 			vruntime = min_vruntime(vruntime, se->vruntime);
787 	}
788 
789 	/* ensure we never gain time by being placed backwards. */
790 	u64_u32_store(cfs_rq->min_vruntime,
791 		      __update_min_vruntime(cfs_rq, vruntime));
792 }
793 
794 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
795 {
796 	return entity_before(__node_2_se(a), __node_2_se(b));
797 }
798 
799 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
800 
801 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node)
802 {
803 	if (node) {
804 		struct sched_entity *rse = __node_2_se(node);
805 		if (deadline_gt(min_deadline, se, rse))
806 			se->min_deadline = rse->min_deadline;
807 	}
808 }
809 
810 /*
811  * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline)
812  */
813 static inline bool min_deadline_update(struct sched_entity *se, bool exit)
814 {
815 	u64 old_min_deadline = se->min_deadline;
816 	struct rb_node *node = &se->run_node;
817 
818 	se->min_deadline = se->deadline;
819 	__update_min_deadline(se, node->rb_right);
820 	__update_min_deadline(se, node->rb_left);
821 
822 	return se->min_deadline == old_min_deadline;
823 }
824 
825 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity,
826 		     run_node, min_deadline, min_deadline_update);
827 
828 /*
829  * Enqueue an entity into the rb-tree:
830  */
831 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
832 {
833 	avg_vruntime_add(cfs_rq, se);
834 	se->min_deadline = se->deadline;
835 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
836 				__entity_less, &min_deadline_cb);
837 }
838 
839 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
840 {
841 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
842 				  &min_deadline_cb);
843 	avg_vruntime_sub(cfs_rq, se);
844 }
845 
846 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
847 {
848 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
849 
850 	if (!left)
851 		return NULL;
852 
853 	return __node_2_se(left);
854 }
855 
856 /*
857  * Earliest Eligible Virtual Deadline First
858  *
859  * In order to provide latency guarantees for different request sizes
860  * EEVDF selects the best runnable task from two criteria:
861  *
862  *  1) the task must be eligible (must be owed service)
863  *
864  *  2) from those tasks that meet 1), we select the one
865  *     with the earliest virtual deadline.
866  *
867  * We can do this in O(log n) time due to an augmented RB-tree. The
868  * tree keeps the entries sorted on service, but also functions as a
869  * heap based on the deadline by keeping:
870  *
871  *  se->min_deadline = min(se->deadline, se->{left,right}->min_deadline)
872  *
873  * Which allows an EDF like search on (sub)trees.
874  */
875 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
876 {
877 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
878 	struct sched_entity *curr = cfs_rq->curr;
879 	struct sched_entity *best = NULL;
880 
881 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
882 		curr = NULL;
883 
884 	/*
885 	 * Once selected, run a task until it either becomes non-eligible or
886 	 * until it gets a new slice. See the HACK in set_next_entity().
887 	 */
888 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
889 		return curr;
890 
891 	while (node) {
892 		struct sched_entity *se = __node_2_se(node);
893 
894 		/*
895 		 * If this entity is not eligible, try the left subtree.
896 		 */
897 		if (!entity_eligible(cfs_rq, se)) {
898 			node = node->rb_left;
899 			continue;
900 		}
901 
902 		/*
903 		 * If this entity has an earlier deadline than the previous
904 		 * best, take this one. If it also has the earliest deadline
905 		 * of its subtree, we're done.
906 		 */
907 		if (!best || deadline_gt(deadline, best, se)) {
908 			best = se;
909 			if (best->deadline == best->min_deadline)
910 				break;
911 		}
912 
913 		/*
914 		 * If the earlest deadline in this subtree is in the fully
915 		 * eligible left half of our space, go there.
916 		 */
917 		if (node->rb_left &&
918 		    __node_2_se(node->rb_left)->min_deadline == se->min_deadline) {
919 			node = node->rb_left;
920 			continue;
921 		}
922 
923 		node = node->rb_right;
924 	}
925 
926 	if (!best || (curr && deadline_gt(deadline, best, curr)))
927 		best = curr;
928 
929 	if (unlikely(!best)) {
930 		struct sched_entity *left = __pick_first_entity(cfs_rq);
931 		if (left) {
932 			pr_err("EEVDF scheduling fail, picking leftmost\n");
933 			return left;
934 		}
935 	}
936 
937 	return best;
938 }
939 
940 #ifdef CONFIG_SCHED_DEBUG
941 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
942 {
943 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
944 
945 	if (!last)
946 		return NULL;
947 
948 	return __node_2_se(last);
949 }
950 
951 /**************************************************************
952  * Scheduling class statistics methods:
953  */
954 #ifdef CONFIG_SMP
955 int sched_update_scaling(void)
956 {
957 	unsigned int factor = get_update_sysctl_factor();
958 
959 #define WRT_SYSCTL(name) \
960 	(normalized_sysctl_##name = sysctl_##name / (factor))
961 	WRT_SYSCTL(sched_base_slice);
962 #undef WRT_SYSCTL
963 
964 	return 0;
965 }
966 #endif
967 #endif
968 
969 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
970 
971 /*
972  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
973  * this is probably good enough.
974  */
975 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
976 {
977 	if ((s64)(se->vruntime - se->deadline) < 0)
978 		return;
979 
980 	/*
981 	 * For EEVDF the virtual time slope is determined by w_i (iow.
982 	 * nice) while the request time r_i is determined by
983 	 * sysctl_sched_base_slice.
984 	 */
985 	se->slice = sysctl_sched_base_slice;
986 
987 	/*
988 	 * EEVDF: vd_i = ve_i + r_i / w_i
989 	 */
990 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
991 
992 	/*
993 	 * The task has consumed its request, reschedule.
994 	 */
995 	if (cfs_rq->nr_running > 1) {
996 		resched_curr(rq_of(cfs_rq));
997 		clear_buddies(cfs_rq, se);
998 	}
999 }
1000 
1001 #include "pelt.h"
1002 #ifdef CONFIG_SMP
1003 
1004 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1005 static unsigned long task_h_load(struct task_struct *p);
1006 static unsigned long capacity_of(int cpu);
1007 
1008 /* Give new sched_entity start runnable values to heavy its load in infant time */
1009 void init_entity_runnable_average(struct sched_entity *se)
1010 {
1011 	struct sched_avg *sa = &se->avg;
1012 
1013 	memset(sa, 0, sizeof(*sa));
1014 
1015 	/*
1016 	 * Tasks are initialized with full load to be seen as heavy tasks until
1017 	 * they get a chance to stabilize to their real load level.
1018 	 * Group entities are initialized with zero load to reflect the fact that
1019 	 * nothing has been attached to the task group yet.
1020 	 */
1021 	if (entity_is_task(se))
1022 		sa->load_avg = scale_load_down(se->load.weight);
1023 
1024 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1025 }
1026 
1027 /*
1028  * With new tasks being created, their initial util_avgs are extrapolated
1029  * based on the cfs_rq's current util_avg:
1030  *
1031  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1032  *
1033  * However, in many cases, the above util_avg does not give a desired
1034  * value. Moreover, the sum of the util_avgs may be divergent, such
1035  * as when the series is a harmonic series.
1036  *
1037  * To solve this problem, we also cap the util_avg of successive tasks to
1038  * only 1/2 of the left utilization budget:
1039  *
1040  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1041  *
1042  * where n denotes the nth task and cpu_scale the CPU capacity.
1043  *
1044  * For example, for a CPU with 1024 of capacity, a simplest series from
1045  * the beginning would be like:
1046  *
1047  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1048  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1049  *
1050  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1051  * if util_avg > util_avg_cap.
1052  */
1053 void post_init_entity_util_avg(struct task_struct *p)
1054 {
1055 	struct sched_entity *se = &p->se;
1056 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1057 	struct sched_avg *sa = &se->avg;
1058 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1059 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1060 
1061 	if (p->sched_class != &fair_sched_class) {
1062 		/*
1063 		 * For !fair tasks do:
1064 		 *
1065 		update_cfs_rq_load_avg(now, cfs_rq);
1066 		attach_entity_load_avg(cfs_rq, se);
1067 		switched_from_fair(rq, p);
1068 		 *
1069 		 * such that the next switched_to_fair() has the
1070 		 * expected state.
1071 		 */
1072 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1073 		return;
1074 	}
1075 
1076 	if (cap > 0) {
1077 		if (cfs_rq->avg.util_avg != 0) {
1078 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
1079 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1080 
1081 			if (sa->util_avg > cap)
1082 				sa->util_avg = cap;
1083 		} else {
1084 			sa->util_avg = cap;
1085 		}
1086 	}
1087 
1088 	sa->runnable_avg = sa->util_avg;
1089 }
1090 
1091 #else /* !CONFIG_SMP */
1092 void init_entity_runnable_average(struct sched_entity *se)
1093 {
1094 }
1095 void post_init_entity_util_avg(struct task_struct *p)
1096 {
1097 }
1098 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1099 {
1100 }
1101 #endif /* CONFIG_SMP */
1102 
1103 /*
1104  * Update the current task's runtime statistics.
1105  */
1106 static void update_curr(struct cfs_rq *cfs_rq)
1107 {
1108 	struct sched_entity *curr = cfs_rq->curr;
1109 	u64 now = rq_clock_task(rq_of(cfs_rq));
1110 	u64 delta_exec;
1111 
1112 	if (unlikely(!curr))
1113 		return;
1114 
1115 	delta_exec = now - curr->exec_start;
1116 	if (unlikely((s64)delta_exec <= 0))
1117 		return;
1118 
1119 	curr->exec_start = now;
1120 
1121 	if (schedstat_enabled()) {
1122 		struct sched_statistics *stats;
1123 
1124 		stats = __schedstats_from_se(curr);
1125 		__schedstat_set(stats->exec_max,
1126 				max(delta_exec, stats->exec_max));
1127 	}
1128 
1129 	curr->sum_exec_runtime += delta_exec;
1130 	schedstat_add(cfs_rq->exec_clock, delta_exec);
1131 
1132 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1133 	update_deadline(cfs_rq, curr);
1134 	update_min_vruntime(cfs_rq);
1135 
1136 	if (entity_is_task(curr)) {
1137 		struct task_struct *curtask = task_of(curr);
1138 
1139 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
1140 		cgroup_account_cputime(curtask, delta_exec);
1141 		account_group_exec_runtime(curtask, delta_exec);
1142 	}
1143 
1144 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1145 }
1146 
1147 static void update_curr_fair(struct rq *rq)
1148 {
1149 	update_curr(cfs_rq_of(&rq->curr->se));
1150 }
1151 
1152 static inline void
1153 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1154 {
1155 	struct sched_statistics *stats;
1156 	struct task_struct *p = NULL;
1157 
1158 	if (!schedstat_enabled())
1159 		return;
1160 
1161 	stats = __schedstats_from_se(se);
1162 
1163 	if (entity_is_task(se))
1164 		p = task_of(se);
1165 
1166 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1167 }
1168 
1169 static inline void
1170 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1171 {
1172 	struct sched_statistics *stats;
1173 	struct task_struct *p = NULL;
1174 
1175 	if (!schedstat_enabled())
1176 		return;
1177 
1178 	stats = __schedstats_from_se(se);
1179 
1180 	/*
1181 	 * When the sched_schedstat changes from 0 to 1, some sched se
1182 	 * maybe already in the runqueue, the se->statistics.wait_start
1183 	 * will be 0.So it will let the delta wrong. We need to avoid this
1184 	 * scenario.
1185 	 */
1186 	if (unlikely(!schedstat_val(stats->wait_start)))
1187 		return;
1188 
1189 	if (entity_is_task(se))
1190 		p = task_of(se);
1191 
1192 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1193 }
1194 
1195 static inline void
1196 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1197 {
1198 	struct sched_statistics *stats;
1199 	struct task_struct *tsk = NULL;
1200 
1201 	if (!schedstat_enabled())
1202 		return;
1203 
1204 	stats = __schedstats_from_se(se);
1205 
1206 	if (entity_is_task(se))
1207 		tsk = task_of(se);
1208 
1209 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1210 }
1211 
1212 /*
1213  * Task is being enqueued - update stats:
1214  */
1215 static inline void
1216 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1217 {
1218 	if (!schedstat_enabled())
1219 		return;
1220 
1221 	/*
1222 	 * Are we enqueueing a waiting task? (for current tasks
1223 	 * a dequeue/enqueue event is a NOP)
1224 	 */
1225 	if (se != cfs_rq->curr)
1226 		update_stats_wait_start_fair(cfs_rq, se);
1227 
1228 	if (flags & ENQUEUE_WAKEUP)
1229 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1230 }
1231 
1232 static inline void
1233 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1234 {
1235 
1236 	if (!schedstat_enabled())
1237 		return;
1238 
1239 	/*
1240 	 * Mark the end of the wait period if dequeueing a
1241 	 * waiting task:
1242 	 */
1243 	if (se != cfs_rq->curr)
1244 		update_stats_wait_end_fair(cfs_rq, se);
1245 
1246 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1247 		struct task_struct *tsk = task_of(se);
1248 		unsigned int state;
1249 
1250 		/* XXX racy against TTWU */
1251 		state = READ_ONCE(tsk->__state);
1252 		if (state & TASK_INTERRUPTIBLE)
1253 			__schedstat_set(tsk->stats.sleep_start,
1254 				      rq_clock(rq_of(cfs_rq)));
1255 		if (state & TASK_UNINTERRUPTIBLE)
1256 			__schedstat_set(tsk->stats.block_start,
1257 				      rq_clock(rq_of(cfs_rq)));
1258 	}
1259 }
1260 
1261 /*
1262  * We are picking a new current task - update its stats:
1263  */
1264 static inline void
1265 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1266 {
1267 	/*
1268 	 * We are starting a new run period:
1269 	 */
1270 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1271 }
1272 
1273 /**************************************************
1274  * Scheduling class queueing methods:
1275  */
1276 
1277 static inline bool is_core_idle(int cpu)
1278 {
1279 #ifdef CONFIG_SCHED_SMT
1280 	int sibling;
1281 
1282 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1283 		if (cpu == sibling)
1284 			continue;
1285 
1286 		if (!idle_cpu(sibling))
1287 			return false;
1288 	}
1289 #endif
1290 
1291 	return true;
1292 }
1293 
1294 #ifdef CONFIG_NUMA
1295 #define NUMA_IMBALANCE_MIN 2
1296 
1297 static inline long
1298 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1299 {
1300 	/*
1301 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1302 	 * threshold. Above this threshold, individual tasks may be contending
1303 	 * for both memory bandwidth and any shared HT resources.  This is an
1304 	 * approximation as the number of running tasks may not be related to
1305 	 * the number of busy CPUs due to sched_setaffinity.
1306 	 */
1307 	if (dst_running > imb_numa_nr)
1308 		return imbalance;
1309 
1310 	/*
1311 	 * Allow a small imbalance based on a simple pair of communicating
1312 	 * tasks that remain local when the destination is lightly loaded.
1313 	 */
1314 	if (imbalance <= NUMA_IMBALANCE_MIN)
1315 		return 0;
1316 
1317 	return imbalance;
1318 }
1319 #endif /* CONFIG_NUMA */
1320 
1321 #ifdef CONFIG_NUMA_BALANCING
1322 /*
1323  * Approximate time to scan a full NUMA task in ms. The task scan period is
1324  * calculated based on the tasks virtual memory size and
1325  * numa_balancing_scan_size.
1326  */
1327 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1328 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1329 
1330 /* Portion of address space to scan in MB */
1331 unsigned int sysctl_numa_balancing_scan_size = 256;
1332 
1333 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1334 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1335 
1336 /* The page with hint page fault latency < threshold in ms is considered hot */
1337 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1338 
1339 struct numa_group {
1340 	refcount_t refcount;
1341 
1342 	spinlock_t lock; /* nr_tasks, tasks */
1343 	int nr_tasks;
1344 	pid_t gid;
1345 	int active_nodes;
1346 
1347 	struct rcu_head rcu;
1348 	unsigned long total_faults;
1349 	unsigned long max_faults_cpu;
1350 	/*
1351 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1352 	 *
1353 	 * Faults_cpu is used to decide whether memory should move
1354 	 * towards the CPU. As a consequence, these stats are weighted
1355 	 * more by CPU use than by memory faults.
1356 	 */
1357 	unsigned long faults[];
1358 };
1359 
1360 /*
1361  * For functions that can be called in multiple contexts that permit reading
1362  * ->numa_group (see struct task_struct for locking rules).
1363  */
1364 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1365 {
1366 	return rcu_dereference_check(p->numa_group, p == current ||
1367 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1368 }
1369 
1370 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1371 {
1372 	return rcu_dereference_protected(p->numa_group, p == current);
1373 }
1374 
1375 static inline unsigned long group_faults_priv(struct numa_group *ng);
1376 static inline unsigned long group_faults_shared(struct numa_group *ng);
1377 
1378 static unsigned int task_nr_scan_windows(struct task_struct *p)
1379 {
1380 	unsigned long rss = 0;
1381 	unsigned long nr_scan_pages;
1382 
1383 	/*
1384 	 * Calculations based on RSS as non-present and empty pages are skipped
1385 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1386 	 * on resident pages
1387 	 */
1388 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1389 	rss = get_mm_rss(p->mm);
1390 	if (!rss)
1391 		rss = nr_scan_pages;
1392 
1393 	rss = round_up(rss, nr_scan_pages);
1394 	return rss / nr_scan_pages;
1395 }
1396 
1397 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1398 #define MAX_SCAN_WINDOW 2560
1399 
1400 static unsigned int task_scan_min(struct task_struct *p)
1401 {
1402 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1403 	unsigned int scan, floor;
1404 	unsigned int windows = 1;
1405 
1406 	if (scan_size < MAX_SCAN_WINDOW)
1407 		windows = MAX_SCAN_WINDOW / scan_size;
1408 	floor = 1000 / windows;
1409 
1410 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1411 	return max_t(unsigned int, floor, scan);
1412 }
1413 
1414 static unsigned int task_scan_start(struct task_struct *p)
1415 {
1416 	unsigned long smin = task_scan_min(p);
1417 	unsigned long period = smin;
1418 	struct numa_group *ng;
1419 
1420 	/* Scale the maximum scan period with the amount of shared memory. */
1421 	rcu_read_lock();
1422 	ng = rcu_dereference(p->numa_group);
1423 	if (ng) {
1424 		unsigned long shared = group_faults_shared(ng);
1425 		unsigned long private = group_faults_priv(ng);
1426 
1427 		period *= refcount_read(&ng->refcount);
1428 		period *= shared + 1;
1429 		period /= private + shared + 1;
1430 	}
1431 	rcu_read_unlock();
1432 
1433 	return max(smin, period);
1434 }
1435 
1436 static unsigned int task_scan_max(struct task_struct *p)
1437 {
1438 	unsigned long smin = task_scan_min(p);
1439 	unsigned long smax;
1440 	struct numa_group *ng;
1441 
1442 	/* Watch for min being lower than max due to floor calculations */
1443 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1444 
1445 	/* Scale the maximum scan period with the amount of shared memory. */
1446 	ng = deref_curr_numa_group(p);
1447 	if (ng) {
1448 		unsigned long shared = group_faults_shared(ng);
1449 		unsigned long private = group_faults_priv(ng);
1450 		unsigned long period = smax;
1451 
1452 		period *= refcount_read(&ng->refcount);
1453 		period *= shared + 1;
1454 		period /= private + shared + 1;
1455 
1456 		smax = max(smax, period);
1457 	}
1458 
1459 	return max(smin, smax);
1460 }
1461 
1462 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1463 {
1464 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1465 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1466 }
1467 
1468 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1469 {
1470 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1471 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1472 }
1473 
1474 /* Shared or private faults. */
1475 #define NR_NUMA_HINT_FAULT_TYPES 2
1476 
1477 /* Memory and CPU locality */
1478 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1479 
1480 /* Averaged statistics, and temporary buffers. */
1481 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1482 
1483 pid_t task_numa_group_id(struct task_struct *p)
1484 {
1485 	struct numa_group *ng;
1486 	pid_t gid = 0;
1487 
1488 	rcu_read_lock();
1489 	ng = rcu_dereference(p->numa_group);
1490 	if (ng)
1491 		gid = ng->gid;
1492 	rcu_read_unlock();
1493 
1494 	return gid;
1495 }
1496 
1497 /*
1498  * The averaged statistics, shared & private, memory & CPU,
1499  * occupy the first half of the array. The second half of the
1500  * array is for current counters, which are averaged into the
1501  * first set by task_numa_placement.
1502  */
1503 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1504 {
1505 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1506 }
1507 
1508 static inline unsigned long task_faults(struct task_struct *p, int nid)
1509 {
1510 	if (!p->numa_faults)
1511 		return 0;
1512 
1513 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1514 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1515 }
1516 
1517 static inline unsigned long group_faults(struct task_struct *p, int nid)
1518 {
1519 	struct numa_group *ng = deref_task_numa_group(p);
1520 
1521 	if (!ng)
1522 		return 0;
1523 
1524 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1525 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1526 }
1527 
1528 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1529 {
1530 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1531 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1532 }
1533 
1534 static inline unsigned long group_faults_priv(struct numa_group *ng)
1535 {
1536 	unsigned long faults = 0;
1537 	int node;
1538 
1539 	for_each_online_node(node) {
1540 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1541 	}
1542 
1543 	return faults;
1544 }
1545 
1546 static inline unsigned long group_faults_shared(struct numa_group *ng)
1547 {
1548 	unsigned long faults = 0;
1549 	int node;
1550 
1551 	for_each_online_node(node) {
1552 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1553 	}
1554 
1555 	return faults;
1556 }
1557 
1558 /*
1559  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1560  * considered part of a numa group's pseudo-interleaving set. Migrations
1561  * between these nodes are slowed down, to allow things to settle down.
1562  */
1563 #define ACTIVE_NODE_FRACTION 3
1564 
1565 static bool numa_is_active_node(int nid, struct numa_group *ng)
1566 {
1567 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1568 }
1569 
1570 /* Handle placement on systems where not all nodes are directly connected. */
1571 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1572 					int lim_dist, bool task)
1573 {
1574 	unsigned long score = 0;
1575 	int node, max_dist;
1576 
1577 	/*
1578 	 * All nodes are directly connected, and the same distance
1579 	 * from each other. No need for fancy placement algorithms.
1580 	 */
1581 	if (sched_numa_topology_type == NUMA_DIRECT)
1582 		return 0;
1583 
1584 	/* sched_max_numa_distance may be changed in parallel. */
1585 	max_dist = READ_ONCE(sched_max_numa_distance);
1586 	/*
1587 	 * This code is called for each node, introducing N^2 complexity,
1588 	 * which should be ok given the number of nodes rarely exceeds 8.
1589 	 */
1590 	for_each_online_node(node) {
1591 		unsigned long faults;
1592 		int dist = node_distance(nid, node);
1593 
1594 		/*
1595 		 * The furthest away nodes in the system are not interesting
1596 		 * for placement; nid was already counted.
1597 		 */
1598 		if (dist >= max_dist || node == nid)
1599 			continue;
1600 
1601 		/*
1602 		 * On systems with a backplane NUMA topology, compare groups
1603 		 * of nodes, and move tasks towards the group with the most
1604 		 * memory accesses. When comparing two nodes at distance
1605 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1606 		 * of each group. Skip other nodes.
1607 		 */
1608 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1609 			continue;
1610 
1611 		/* Add up the faults from nearby nodes. */
1612 		if (task)
1613 			faults = task_faults(p, node);
1614 		else
1615 			faults = group_faults(p, node);
1616 
1617 		/*
1618 		 * On systems with a glueless mesh NUMA topology, there are
1619 		 * no fixed "groups of nodes". Instead, nodes that are not
1620 		 * directly connected bounce traffic through intermediate
1621 		 * nodes; a numa_group can occupy any set of nodes.
1622 		 * The further away a node is, the less the faults count.
1623 		 * This seems to result in good task placement.
1624 		 */
1625 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1626 			faults *= (max_dist - dist);
1627 			faults /= (max_dist - LOCAL_DISTANCE);
1628 		}
1629 
1630 		score += faults;
1631 	}
1632 
1633 	return score;
1634 }
1635 
1636 /*
1637  * These return the fraction of accesses done by a particular task, or
1638  * task group, on a particular numa node.  The group weight is given a
1639  * larger multiplier, in order to group tasks together that are almost
1640  * evenly spread out between numa nodes.
1641  */
1642 static inline unsigned long task_weight(struct task_struct *p, int nid,
1643 					int dist)
1644 {
1645 	unsigned long faults, total_faults;
1646 
1647 	if (!p->numa_faults)
1648 		return 0;
1649 
1650 	total_faults = p->total_numa_faults;
1651 
1652 	if (!total_faults)
1653 		return 0;
1654 
1655 	faults = task_faults(p, nid);
1656 	faults += score_nearby_nodes(p, nid, dist, true);
1657 
1658 	return 1000 * faults / total_faults;
1659 }
1660 
1661 static inline unsigned long group_weight(struct task_struct *p, int nid,
1662 					 int dist)
1663 {
1664 	struct numa_group *ng = deref_task_numa_group(p);
1665 	unsigned long faults, total_faults;
1666 
1667 	if (!ng)
1668 		return 0;
1669 
1670 	total_faults = ng->total_faults;
1671 
1672 	if (!total_faults)
1673 		return 0;
1674 
1675 	faults = group_faults(p, nid);
1676 	faults += score_nearby_nodes(p, nid, dist, false);
1677 
1678 	return 1000 * faults / total_faults;
1679 }
1680 
1681 /*
1682  * If memory tiering mode is enabled, cpupid of slow memory page is
1683  * used to record scan time instead of CPU and PID.  When tiering mode
1684  * is disabled at run time, the scan time (in cpupid) will be
1685  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1686  * access out of array bound.
1687  */
1688 static inline bool cpupid_valid(int cpupid)
1689 {
1690 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1691 }
1692 
1693 /*
1694  * For memory tiering mode, if there are enough free pages (more than
1695  * enough watermark defined here) in fast memory node, to take full
1696  * advantage of fast memory capacity, all recently accessed slow
1697  * memory pages will be migrated to fast memory node without
1698  * considering hot threshold.
1699  */
1700 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1701 {
1702 	int z;
1703 	unsigned long enough_wmark;
1704 
1705 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1706 			   pgdat->node_present_pages >> 4);
1707 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1708 		struct zone *zone = pgdat->node_zones + z;
1709 
1710 		if (!populated_zone(zone))
1711 			continue;
1712 
1713 		if (zone_watermark_ok(zone, 0,
1714 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1715 				      ZONE_MOVABLE, 0))
1716 			return true;
1717 	}
1718 	return false;
1719 }
1720 
1721 /*
1722  * For memory tiering mode, when page tables are scanned, the scan
1723  * time will be recorded in struct page in addition to make page
1724  * PROT_NONE for slow memory page.  So when the page is accessed, in
1725  * hint page fault handler, the hint page fault latency is calculated
1726  * via,
1727  *
1728  *	hint page fault latency = hint page fault time - scan time
1729  *
1730  * The smaller the hint page fault latency, the higher the possibility
1731  * for the page to be hot.
1732  */
1733 static int numa_hint_fault_latency(struct page *page)
1734 {
1735 	int last_time, time;
1736 
1737 	time = jiffies_to_msecs(jiffies);
1738 	last_time = xchg_page_access_time(page, time);
1739 
1740 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1741 }
1742 
1743 /*
1744  * For memory tiering mode, too high promotion/demotion throughput may
1745  * hurt application latency.  So we provide a mechanism to rate limit
1746  * the number of pages that are tried to be promoted.
1747  */
1748 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1749 				      unsigned long rate_limit, int nr)
1750 {
1751 	unsigned long nr_cand;
1752 	unsigned int now, start;
1753 
1754 	now = jiffies_to_msecs(jiffies);
1755 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1756 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1757 	start = pgdat->nbp_rl_start;
1758 	if (now - start > MSEC_PER_SEC &&
1759 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1760 		pgdat->nbp_rl_nr_cand = nr_cand;
1761 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1762 		return true;
1763 	return false;
1764 }
1765 
1766 #define NUMA_MIGRATION_ADJUST_STEPS	16
1767 
1768 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1769 					    unsigned long rate_limit,
1770 					    unsigned int ref_th)
1771 {
1772 	unsigned int now, start, th_period, unit_th, th;
1773 	unsigned long nr_cand, ref_cand, diff_cand;
1774 
1775 	now = jiffies_to_msecs(jiffies);
1776 	th_period = sysctl_numa_balancing_scan_period_max;
1777 	start = pgdat->nbp_th_start;
1778 	if (now - start > th_period &&
1779 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1780 		ref_cand = rate_limit *
1781 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1782 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1783 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1784 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1785 		th = pgdat->nbp_threshold ? : ref_th;
1786 		if (diff_cand > ref_cand * 11 / 10)
1787 			th = max(th - unit_th, unit_th);
1788 		else if (diff_cand < ref_cand * 9 / 10)
1789 			th = min(th + unit_th, ref_th * 2);
1790 		pgdat->nbp_th_nr_cand = nr_cand;
1791 		pgdat->nbp_threshold = th;
1792 	}
1793 }
1794 
1795 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1796 				int src_nid, int dst_cpu)
1797 {
1798 	struct numa_group *ng = deref_curr_numa_group(p);
1799 	int dst_nid = cpu_to_node(dst_cpu);
1800 	int last_cpupid, this_cpupid;
1801 
1802 	/*
1803 	 * The pages in slow memory node should be migrated according
1804 	 * to hot/cold instead of private/shared.
1805 	 */
1806 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1807 	    !node_is_toptier(src_nid)) {
1808 		struct pglist_data *pgdat;
1809 		unsigned long rate_limit;
1810 		unsigned int latency, th, def_th;
1811 
1812 		pgdat = NODE_DATA(dst_nid);
1813 		if (pgdat_free_space_enough(pgdat)) {
1814 			/* workload changed, reset hot threshold */
1815 			pgdat->nbp_threshold = 0;
1816 			return true;
1817 		}
1818 
1819 		def_th = sysctl_numa_balancing_hot_threshold;
1820 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1821 			(20 - PAGE_SHIFT);
1822 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1823 
1824 		th = pgdat->nbp_threshold ? : def_th;
1825 		latency = numa_hint_fault_latency(page);
1826 		if (latency >= th)
1827 			return false;
1828 
1829 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1830 						  thp_nr_pages(page));
1831 	}
1832 
1833 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1834 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1835 
1836 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1837 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1838 		return false;
1839 
1840 	/*
1841 	 * Allow first faults or private faults to migrate immediately early in
1842 	 * the lifetime of a task. The magic number 4 is based on waiting for
1843 	 * two full passes of the "multi-stage node selection" test that is
1844 	 * executed below.
1845 	 */
1846 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1847 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1848 		return true;
1849 
1850 	/*
1851 	 * Multi-stage node selection is used in conjunction with a periodic
1852 	 * migration fault to build a temporal task<->page relation. By using
1853 	 * a two-stage filter we remove short/unlikely relations.
1854 	 *
1855 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1856 	 * a task's usage of a particular page (n_p) per total usage of this
1857 	 * page (n_t) (in a given time-span) to a probability.
1858 	 *
1859 	 * Our periodic faults will sample this probability and getting the
1860 	 * same result twice in a row, given these samples are fully
1861 	 * independent, is then given by P(n)^2, provided our sample period
1862 	 * is sufficiently short compared to the usage pattern.
1863 	 *
1864 	 * This quadric squishes small probabilities, making it less likely we
1865 	 * act on an unlikely task<->page relation.
1866 	 */
1867 	if (!cpupid_pid_unset(last_cpupid) &&
1868 				cpupid_to_nid(last_cpupid) != dst_nid)
1869 		return false;
1870 
1871 	/* Always allow migrate on private faults */
1872 	if (cpupid_match_pid(p, last_cpupid))
1873 		return true;
1874 
1875 	/* A shared fault, but p->numa_group has not been set up yet. */
1876 	if (!ng)
1877 		return true;
1878 
1879 	/*
1880 	 * Destination node is much more heavily used than the source
1881 	 * node? Allow migration.
1882 	 */
1883 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1884 					ACTIVE_NODE_FRACTION)
1885 		return true;
1886 
1887 	/*
1888 	 * Distribute memory according to CPU & memory use on each node,
1889 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1890 	 *
1891 	 * faults_cpu(dst)   3   faults_cpu(src)
1892 	 * --------------- * - > ---------------
1893 	 * faults_mem(dst)   4   faults_mem(src)
1894 	 */
1895 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1896 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1897 }
1898 
1899 /*
1900  * 'numa_type' describes the node at the moment of load balancing.
1901  */
1902 enum numa_type {
1903 	/* The node has spare capacity that can be used to run more tasks.  */
1904 	node_has_spare = 0,
1905 	/*
1906 	 * The node is fully used and the tasks don't compete for more CPU
1907 	 * cycles. Nevertheless, some tasks might wait before running.
1908 	 */
1909 	node_fully_busy,
1910 	/*
1911 	 * The node is overloaded and can't provide expected CPU cycles to all
1912 	 * tasks.
1913 	 */
1914 	node_overloaded
1915 };
1916 
1917 /* Cached statistics for all CPUs within a node */
1918 struct numa_stats {
1919 	unsigned long load;
1920 	unsigned long runnable;
1921 	unsigned long util;
1922 	/* Total compute capacity of CPUs on a node */
1923 	unsigned long compute_capacity;
1924 	unsigned int nr_running;
1925 	unsigned int weight;
1926 	enum numa_type node_type;
1927 	int idle_cpu;
1928 };
1929 
1930 struct task_numa_env {
1931 	struct task_struct *p;
1932 
1933 	int src_cpu, src_nid;
1934 	int dst_cpu, dst_nid;
1935 	int imb_numa_nr;
1936 
1937 	struct numa_stats src_stats, dst_stats;
1938 
1939 	int imbalance_pct;
1940 	int dist;
1941 
1942 	struct task_struct *best_task;
1943 	long best_imp;
1944 	int best_cpu;
1945 };
1946 
1947 static unsigned long cpu_load(struct rq *rq);
1948 static unsigned long cpu_runnable(struct rq *rq);
1949 
1950 static inline enum
1951 numa_type numa_classify(unsigned int imbalance_pct,
1952 			 struct numa_stats *ns)
1953 {
1954 	if ((ns->nr_running > ns->weight) &&
1955 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1956 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1957 		return node_overloaded;
1958 
1959 	if ((ns->nr_running < ns->weight) ||
1960 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1961 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1962 		return node_has_spare;
1963 
1964 	return node_fully_busy;
1965 }
1966 
1967 #ifdef CONFIG_SCHED_SMT
1968 /* Forward declarations of select_idle_sibling helpers */
1969 static inline bool test_idle_cores(int cpu);
1970 static inline int numa_idle_core(int idle_core, int cpu)
1971 {
1972 	if (!static_branch_likely(&sched_smt_present) ||
1973 	    idle_core >= 0 || !test_idle_cores(cpu))
1974 		return idle_core;
1975 
1976 	/*
1977 	 * Prefer cores instead of packing HT siblings
1978 	 * and triggering future load balancing.
1979 	 */
1980 	if (is_core_idle(cpu))
1981 		idle_core = cpu;
1982 
1983 	return idle_core;
1984 }
1985 #else
1986 static inline int numa_idle_core(int idle_core, int cpu)
1987 {
1988 	return idle_core;
1989 }
1990 #endif
1991 
1992 /*
1993  * Gather all necessary information to make NUMA balancing placement
1994  * decisions that are compatible with standard load balancer. This
1995  * borrows code and logic from update_sg_lb_stats but sharing a
1996  * common implementation is impractical.
1997  */
1998 static void update_numa_stats(struct task_numa_env *env,
1999 			      struct numa_stats *ns, int nid,
2000 			      bool find_idle)
2001 {
2002 	int cpu, idle_core = -1;
2003 
2004 	memset(ns, 0, sizeof(*ns));
2005 	ns->idle_cpu = -1;
2006 
2007 	rcu_read_lock();
2008 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2009 		struct rq *rq = cpu_rq(cpu);
2010 
2011 		ns->load += cpu_load(rq);
2012 		ns->runnable += cpu_runnable(rq);
2013 		ns->util += cpu_util_cfs(cpu);
2014 		ns->nr_running += rq->cfs.h_nr_running;
2015 		ns->compute_capacity += capacity_of(cpu);
2016 
2017 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2018 			if (READ_ONCE(rq->numa_migrate_on) ||
2019 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2020 				continue;
2021 
2022 			if (ns->idle_cpu == -1)
2023 				ns->idle_cpu = cpu;
2024 
2025 			idle_core = numa_idle_core(idle_core, cpu);
2026 		}
2027 	}
2028 	rcu_read_unlock();
2029 
2030 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2031 
2032 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2033 
2034 	if (idle_core >= 0)
2035 		ns->idle_cpu = idle_core;
2036 }
2037 
2038 static void task_numa_assign(struct task_numa_env *env,
2039 			     struct task_struct *p, long imp)
2040 {
2041 	struct rq *rq = cpu_rq(env->dst_cpu);
2042 
2043 	/* Check if run-queue part of active NUMA balance. */
2044 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2045 		int cpu;
2046 		int start = env->dst_cpu;
2047 
2048 		/* Find alternative idle CPU. */
2049 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2050 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2051 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2052 				continue;
2053 			}
2054 
2055 			env->dst_cpu = cpu;
2056 			rq = cpu_rq(env->dst_cpu);
2057 			if (!xchg(&rq->numa_migrate_on, 1))
2058 				goto assign;
2059 		}
2060 
2061 		/* Failed to find an alternative idle CPU */
2062 		return;
2063 	}
2064 
2065 assign:
2066 	/*
2067 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2068 	 * found a better CPU to move/swap.
2069 	 */
2070 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2071 		rq = cpu_rq(env->best_cpu);
2072 		WRITE_ONCE(rq->numa_migrate_on, 0);
2073 	}
2074 
2075 	if (env->best_task)
2076 		put_task_struct(env->best_task);
2077 	if (p)
2078 		get_task_struct(p);
2079 
2080 	env->best_task = p;
2081 	env->best_imp = imp;
2082 	env->best_cpu = env->dst_cpu;
2083 }
2084 
2085 static bool load_too_imbalanced(long src_load, long dst_load,
2086 				struct task_numa_env *env)
2087 {
2088 	long imb, old_imb;
2089 	long orig_src_load, orig_dst_load;
2090 	long src_capacity, dst_capacity;
2091 
2092 	/*
2093 	 * The load is corrected for the CPU capacity available on each node.
2094 	 *
2095 	 * src_load        dst_load
2096 	 * ------------ vs ---------
2097 	 * src_capacity    dst_capacity
2098 	 */
2099 	src_capacity = env->src_stats.compute_capacity;
2100 	dst_capacity = env->dst_stats.compute_capacity;
2101 
2102 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2103 
2104 	orig_src_load = env->src_stats.load;
2105 	orig_dst_load = env->dst_stats.load;
2106 
2107 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2108 
2109 	/* Would this change make things worse? */
2110 	return (imb > old_imb);
2111 }
2112 
2113 /*
2114  * Maximum NUMA importance can be 1998 (2*999);
2115  * SMALLIMP @ 30 would be close to 1998/64.
2116  * Used to deter task migration.
2117  */
2118 #define SMALLIMP	30
2119 
2120 /*
2121  * This checks if the overall compute and NUMA accesses of the system would
2122  * be improved if the source tasks was migrated to the target dst_cpu taking
2123  * into account that it might be best if task running on the dst_cpu should
2124  * be exchanged with the source task
2125  */
2126 static bool task_numa_compare(struct task_numa_env *env,
2127 			      long taskimp, long groupimp, bool maymove)
2128 {
2129 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2130 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2131 	long imp = p_ng ? groupimp : taskimp;
2132 	struct task_struct *cur;
2133 	long src_load, dst_load;
2134 	int dist = env->dist;
2135 	long moveimp = imp;
2136 	long load;
2137 	bool stopsearch = false;
2138 
2139 	if (READ_ONCE(dst_rq->numa_migrate_on))
2140 		return false;
2141 
2142 	rcu_read_lock();
2143 	cur = rcu_dereference(dst_rq->curr);
2144 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2145 		cur = NULL;
2146 
2147 	/*
2148 	 * Because we have preemption enabled we can get migrated around and
2149 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2150 	 */
2151 	if (cur == env->p) {
2152 		stopsearch = true;
2153 		goto unlock;
2154 	}
2155 
2156 	if (!cur) {
2157 		if (maymove && moveimp >= env->best_imp)
2158 			goto assign;
2159 		else
2160 			goto unlock;
2161 	}
2162 
2163 	/* Skip this swap candidate if cannot move to the source cpu. */
2164 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2165 		goto unlock;
2166 
2167 	/*
2168 	 * Skip this swap candidate if it is not moving to its preferred
2169 	 * node and the best task is.
2170 	 */
2171 	if (env->best_task &&
2172 	    env->best_task->numa_preferred_nid == env->src_nid &&
2173 	    cur->numa_preferred_nid != env->src_nid) {
2174 		goto unlock;
2175 	}
2176 
2177 	/*
2178 	 * "imp" is the fault differential for the source task between the
2179 	 * source and destination node. Calculate the total differential for
2180 	 * the source task and potential destination task. The more negative
2181 	 * the value is, the more remote accesses that would be expected to
2182 	 * be incurred if the tasks were swapped.
2183 	 *
2184 	 * If dst and source tasks are in the same NUMA group, or not
2185 	 * in any group then look only at task weights.
2186 	 */
2187 	cur_ng = rcu_dereference(cur->numa_group);
2188 	if (cur_ng == p_ng) {
2189 		/*
2190 		 * Do not swap within a group or between tasks that have
2191 		 * no group if there is spare capacity. Swapping does
2192 		 * not address the load imbalance and helps one task at
2193 		 * the cost of punishing another.
2194 		 */
2195 		if (env->dst_stats.node_type == node_has_spare)
2196 			goto unlock;
2197 
2198 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2199 		      task_weight(cur, env->dst_nid, dist);
2200 		/*
2201 		 * Add some hysteresis to prevent swapping the
2202 		 * tasks within a group over tiny differences.
2203 		 */
2204 		if (cur_ng)
2205 			imp -= imp / 16;
2206 	} else {
2207 		/*
2208 		 * Compare the group weights. If a task is all by itself
2209 		 * (not part of a group), use the task weight instead.
2210 		 */
2211 		if (cur_ng && p_ng)
2212 			imp += group_weight(cur, env->src_nid, dist) -
2213 			       group_weight(cur, env->dst_nid, dist);
2214 		else
2215 			imp += task_weight(cur, env->src_nid, dist) -
2216 			       task_weight(cur, env->dst_nid, dist);
2217 	}
2218 
2219 	/* Discourage picking a task already on its preferred node */
2220 	if (cur->numa_preferred_nid == env->dst_nid)
2221 		imp -= imp / 16;
2222 
2223 	/*
2224 	 * Encourage picking a task that moves to its preferred node.
2225 	 * This potentially makes imp larger than it's maximum of
2226 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2227 	 * case, it does not matter.
2228 	 */
2229 	if (cur->numa_preferred_nid == env->src_nid)
2230 		imp += imp / 8;
2231 
2232 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2233 		imp = moveimp;
2234 		cur = NULL;
2235 		goto assign;
2236 	}
2237 
2238 	/*
2239 	 * Prefer swapping with a task moving to its preferred node over a
2240 	 * task that is not.
2241 	 */
2242 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2243 	    env->best_task->numa_preferred_nid != env->src_nid) {
2244 		goto assign;
2245 	}
2246 
2247 	/*
2248 	 * If the NUMA importance is less than SMALLIMP,
2249 	 * task migration might only result in ping pong
2250 	 * of tasks and also hurt performance due to cache
2251 	 * misses.
2252 	 */
2253 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2254 		goto unlock;
2255 
2256 	/*
2257 	 * In the overloaded case, try and keep the load balanced.
2258 	 */
2259 	load = task_h_load(env->p) - task_h_load(cur);
2260 	if (!load)
2261 		goto assign;
2262 
2263 	dst_load = env->dst_stats.load + load;
2264 	src_load = env->src_stats.load - load;
2265 
2266 	if (load_too_imbalanced(src_load, dst_load, env))
2267 		goto unlock;
2268 
2269 assign:
2270 	/* Evaluate an idle CPU for a task numa move. */
2271 	if (!cur) {
2272 		int cpu = env->dst_stats.idle_cpu;
2273 
2274 		/* Nothing cached so current CPU went idle since the search. */
2275 		if (cpu < 0)
2276 			cpu = env->dst_cpu;
2277 
2278 		/*
2279 		 * If the CPU is no longer truly idle and the previous best CPU
2280 		 * is, keep using it.
2281 		 */
2282 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2283 		    idle_cpu(env->best_cpu)) {
2284 			cpu = env->best_cpu;
2285 		}
2286 
2287 		env->dst_cpu = cpu;
2288 	}
2289 
2290 	task_numa_assign(env, cur, imp);
2291 
2292 	/*
2293 	 * If a move to idle is allowed because there is capacity or load
2294 	 * balance improves then stop the search. While a better swap
2295 	 * candidate may exist, a search is not free.
2296 	 */
2297 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2298 		stopsearch = true;
2299 
2300 	/*
2301 	 * If a swap candidate must be identified and the current best task
2302 	 * moves its preferred node then stop the search.
2303 	 */
2304 	if (!maymove && env->best_task &&
2305 	    env->best_task->numa_preferred_nid == env->src_nid) {
2306 		stopsearch = true;
2307 	}
2308 unlock:
2309 	rcu_read_unlock();
2310 
2311 	return stopsearch;
2312 }
2313 
2314 static void task_numa_find_cpu(struct task_numa_env *env,
2315 				long taskimp, long groupimp)
2316 {
2317 	bool maymove = false;
2318 	int cpu;
2319 
2320 	/*
2321 	 * If dst node has spare capacity, then check if there is an
2322 	 * imbalance that would be overruled by the load balancer.
2323 	 */
2324 	if (env->dst_stats.node_type == node_has_spare) {
2325 		unsigned int imbalance;
2326 		int src_running, dst_running;
2327 
2328 		/*
2329 		 * Would movement cause an imbalance? Note that if src has
2330 		 * more running tasks that the imbalance is ignored as the
2331 		 * move improves the imbalance from the perspective of the
2332 		 * CPU load balancer.
2333 		 * */
2334 		src_running = env->src_stats.nr_running - 1;
2335 		dst_running = env->dst_stats.nr_running + 1;
2336 		imbalance = max(0, dst_running - src_running);
2337 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2338 						  env->imb_numa_nr);
2339 
2340 		/* Use idle CPU if there is no imbalance */
2341 		if (!imbalance) {
2342 			maymove = true;
2343 			if (env->dst_stats.idle_cpu >= 0) {
2344 				env->dst_cpu = env->dst_stats.idle_cpu;
2345 				task_numa_assign(env, NULL, 0);
2346 				return;
2347 			}
2348 		}
2349 	} else {
2350 		long src_load, dst_load, load;
2351 		/*
2352 		 * If the improvement from just moving env->p direction is better
2353 		 * than swapping tasks around, check if a move is possible.
2354 		 */
2355 		load = task_h_load(env->p);
2356 		dst_load = env->dst_stats.load + load;
2357 		src_load = env->src_stats.load - load;
2358 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2359 	}
2360 
2361 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2362 		/* Skip this CPU if the source task cannot migrate */
2363 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2364 			continue;
2365 
2366 		env->dst_cpu = cpu;
2367 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2368 			break;
2369 	}
2370 }
2371 
2372 static int task_numa_migrate(struct task_struct *p)
2373 {
2374 	struct task_numa_env env = {
2375 		.p = p,
2376 
2377 		.src_cpu = task_cpu(p),
2378 		.src_nid = task_node(p),
2379 
2380 		.imbalance_pct = 112,
2381 
2382 		.best_task = NULL,
2383 		.best_imp = 0,
2384 		.best_cpu = -1,
2385 	};
2386 	unsigned long taskweight, groupweight;
2387 	struct sched_domain *sd;
2388 	long taskimp, groupimp;
2389 	struct numa_group *ng;
2390 	struct rq *best_rq;
2391 	int nid, ret, dist;
2392 
2393 	/*
2394 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2395 	 * imbalance and would be the first to start moving tasks about.
2396 	 *
2397 	 * And we want to avoid any moving of tasks about, as that would create
2398 	 * random movement of tasks -- counter the numa conditions we're trying
2399 	 * to satisfy here.
2400 	 */
2401 	rcu_read_lock();
2402 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2403 	if (sd) {
2404 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2405 		env.imb_numa_nr = sd->imb_numa_nr;
2406 	}
2407 	rcu_read_unlock();
2408 
2409 	/*
2410 	 * Cpusets can break the scheduler domain tree into smaller
2411 	 * balance domains, some of which do not cross NUMA boundaries.
2412 	 * Tasks that are "trapped" in such domains cannot be migrated
2413 	 * elsewhere, so there is no point in (re)trying.
2414 	 */
2415 	if (unlikely(!sd)) {
2416 		sched_setnuma(p, task_node(p));
2417 		return -EINVAL;
2418 	}
2419 
2420 	env.dst_nid = p->numa_preferred_nid;
2421 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2422 	taskweight = task_weight(p, env.src_nid, dist);
2423 	groupweight = group_weight(p, env.src_nid, dist);
2424 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2425 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2426 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2427 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2428 
2429 	/* Try to find a spot on the preferred nid. */
2430 	task_numa_find_cpu(&env, taskimp, groupimp);
2431 
2432 	/*
2433 	 * Look at other nodes in these cases:
2434 	 * - there is no space available on the preferred_nid
2435 	 * - the task is part of a numa_group that is interleaved across
2436 	 *   multiple NUMA nodes; in order to better consolidate the group,
2437 	 *   we need to check other locations.
2438 	 */
2439 	ng = deref_curr_numa_group(p);
2440 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2441 		for_each_node_state(nid, N_CPU) {
2442 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2443 				continue;
2444 
2445 			dist = node_distance(env.src_nid, env.dst_nid);
2446 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2447 						dist != env.dist) {
2448 				taskweight = task_weight(p, env.src_nid, dist);
2449 				groupweight = group_weight(p, env.src_nid, dist);
2450 			}
2451 
2452 			/* Only consider nodes where both task and groups benefit */
2453 			taskimp = task_weight(p, nid, dist) - taskweight;
2454 			groupimp = group_weight(p, nid, dist) - groupweight;
2455 			if (taskimp < 0 && groupimp < 0)
2456 				continue;
2457 
2458 			env.dist = dist;
2459 			env.dst_nid = nid;
2460 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2461 			task_numa_find_cpu(&env, taskimp, groupimp);
2462 		}
2463 	}
2464 
2465 	/*
2466 	 * If the task is part of a workload that spans multiple NUMA nodes,
2467 	 * and is migrating into one of the workload's active nodes, remember
2468 	 * this node as the task's preferred numa node, so the workload can
2469 	 * settle down.
2470 	 * A task that migrated to a second choice node will be better off
2471 	 * trying for a better one later. Do not set the preferred node here.
2472 	 */
2473 	if (ng) {
2474 		if (env.best_cpu == -1)
2475 			nid = env.src_nid;
2476 		else
2477 			nid = cpu_to_node(env.best_cpu);
2478 
2479 		if (nid != p->numa_preferred_nid)
2480 			sched_setnuma(p, nid);
2481 	}
2482 
2483 	/* No better CPU than the current one was found. */
2484 	if (env.best_cpu == -1) {
2485 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2486 		return -EAGAIN;
2487 	}
2488 
2489 	best_rq = cpu_rq(env.best_cpu);
2490 	if (env.best_task == NULL) {
2491 		ret = migrate_task_to(p, env.best_cpu);
2492 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2493 		if (ret != 0)
2494 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2495 		return ret;
2496 	}
2497 
2498 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2499 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2500 
2501 	if (ret != 0)
2502 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2503 	put_task_struct(env.best_task);
2504 	return ret;
2505 }
2506 
2507 /* Attempt to migrate a task to a CPU on the preferred node. */
2508 static void numa_migrate_preferred(struct task_struct *p)
2509 {
2510 	unsigned long interval = HZ;
2511 
2512 	/* This task has no NUMA fault statistics yet */
2513 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2514 		return;
2515 
2516 	/* Periodically retry migrating the task to the preferred node */
2517 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2518 	p->numa_migrate_retry = jiffies + interval;
2519 
2520 	/* Success if task is already running on preferred CPU */
2521 	if (task_node(p) == p->numa_preferred_nid)
2522 		return;
2523 
2524 	/* Otherwise, try migrate to a CPU on the preferred node */
2525 	task_numa_migrate(p);
2526 }
2527 
2528 /*
2529  * Find out how many nodes the workload is actively running on. Do this by
2530  * tracking the nodes from which NUMA hinting faults are triggered. This can
2531  * be different from the set of nodes where the workload's memory is currently
2532  * located.
2533  */
2534 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2535 {
2536 	unsigned long faults, max_faults = 0;
2537 	int nid, active_nodes = 0;
2538 
2539 	for_each_node_state(nid, N_CPU) {
2540 		faults = group_faults_cpu(numa_group, nid);
2541 		if (faults > max_faults)
2542 			max_faults = faults;
2543 	}
2544 
2545 	for_each_node_state(nid, N_CPU) {
2546 		faults = group_faults_cpu(numa_group, nid);
2547 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2548 			active_nodes++;
2549 	}
2550 
2551 	numa_group->max_faults_cpu = max_faults;
2552 	numa_group->active_nodes = active_nodes;
2553 }
2554 
2555 /*
2556  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2557  * increments. The more local the fault statistics are, the higher the scan
2558  * period will be for the next scan window. If local/(local+remote) ratio is
2559  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2560  * the scan period will decrease. Aim for 70% local accesses.
2561  */
2562 #define NUMA_PERIOD_SLOTS 10
2563 #define NUMA_PERIOD_THRESHOLD 7
2564 
2565 /*
2566  * Increase the scan period (slow down scanning) if the majority of
2567  * our memory is already on our local node, or if the majority of
2568  * the page accesses are shared with other processes.
2569  * Otherwise, decrease the scan period.
2570  */
2571 static void update_task_scan_period(struct task_struct *p,
2572 			unsigned long shared, unsigned long private)
2573 {
2574 	unsigned int period_slot;
2575 	int lr_ratio, ps_ratio;
2576 	int diff;
2577 
2578 	unsigned long remote = p->numa_faults_locality[0];
2579 	unsigned long local = p->numa_faults_locality[1];
2580 
2581 	/*
2582 	 * If there were no record hinting faults then either the task is
2583 	 * completely idle or all activity is in areas that are not of interest
2584 	 * to automatic numa balancing. Related to that, if there were failed
2585 	 * migration then it implies we are migrating too quickly or the local
2586 	 * node is overloaded. In either case, scan slower
2587 	 */
2588 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2589 		p->numa_scan_period = min(p->numa_scan_period_max,
2590 			p->numa_scan_period << 1);
2591 
2592 		p->mm->numa_next_scan = jiffies +
2593 			msecs_to_jiffies(p->numa_scan_period);
2594 
2595 		return;
2596 	}
2597 
2598 	/*
2599 	 * Prepare to scale scan period relative to the current period.
2600 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2601 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2602 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2603 	 */
2604 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2605 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2606 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2607 
2608 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2609 		/*
2610 		 * Most memory accesses are local. There is no need to
2611 		 * do fast NUMA scanning, since memory is already local.
2612 		 */
2613 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2614 		if (!slot)
2615 			slot = 1;
2616 		diff = slot * period_slot;
2617 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2618 		/*
2619 		 * Most memory accesses are shared with other tasks.
2620 		 * There is no point in continuing fast NUMA scanning,
2621 		 * since other tasks may just move the memory elsewhere.
2622 		 */
2623 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2624 		if (!slot)
2625 			slot = 1;
2626 		diff = slot * period_slot;
2627 	} else {
2628 		/*
2629 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2630 		 * yet they are not on the local NUMA node. Speed up
2631 		 * NUMA scanning to get the memory moved over.
2632 		 */
2633 		int ratio = max(lr_ratio, ps_ratio);
2634 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2635 	}
2636 
2637 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2638 			task_scan_min(p), task_scan_max(p));
2639 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2640 }
2641 
2642 /*
2643  * Get the fraction of time the task has been running since the last
2644  * NUMA placement cycle. The scheduler keeps similar statistics, but
2645  * decays those on a 32ms period, which is orders of magnitude off
2646  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2647  * stats only if the task is so new there are no NUMA statistics yet.
2648  */
2649 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2650 {
2651 	u64 runtime, delta, now;
2652 	/* Use the start of this time slice to avoid calculations. */
2653 	now = p->se.exec_start;
2654 	runtime = p->se.sum_exec_runtime;
2655 
2656 	if (p->last_task_numa_placement) {
2657 		delta = runtime - p->last_sum_exec_runtime;
2658 		*period = now - p->last_task_numa_placement;
2659 
2660 		/* Avoid time going backwards, prevent potential divide error: */
2661 		if (unlikely((s64)*period < 0))
2662 			*period = 0;
2663 	} else {
2664 		delta = p->se.avg.load_sum;
2665 		*period = LOAD_AVG_MAX;
2666 	}
2667 
2668 	p->last_sum_exec_runtime = runtime;
2669 	p->last_task_numa_placement = now;
2670 
2671 	return delta;
2672 }
2673 
2674 /*
2675  * Determine the preferred nid for a task in a numa_group. This needs to
2676  * be done in a way that produces consistent results with group_weight,
2677  * otherwise workloads might not converge.
2678  */
2679 static int preferred_group_nid(struct task_struct *p, int nid)
2680 {
2681 	nodemask_t nodes;
2682 	int dist;
2683 
2684 	/* Direct connections between all NUMA nodes. */
2685 	if (sched_numa_topology_type == NUMA_DIRECT)
2686 		return nid;
2687 
2688 	/*
2689 	 * On a system with glueless mesh NUMA topology, group_weight
2690 	 * scores nodes according to the number of NUMA hinting faults on
2691 	 * both the node itself, and on nearby nodes.
2692 	 */
2693 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2694 		unsigned long score, max_score = 0;
2695 		int node, max_node = nid;
2696 
2697 		dist = sched_max_numa_distance;
2698 
2699 		for_each_node_state(node, N_CPU) {
2700 			score = group_weight(p, node, dist);
2701 			if (score > max_score) {
2702 				max_score = score;
2703 				max_node = node;
2704 			}
2705 		}
2706 		return max_node;
2707 	}
2708 
2709 	/*
2710 	 * Finding the preferred nid in a system with NUMA backplane
2711 	 * interconnect topology is more involved. The goal is to locate
2712 	 * tasks from numa_groups near each other in the system, and
2713 	 * untangle workloads from different sides of the system. This requires
2714 	 * searching down the hierarchy of node groups, recursively searching
2715 	 * inside the highest scoring group of nodes. The nodemask tricks
2716 	 * keep the complexity of the search down.
2717 	 */
2718 	nodes = node_states[N_CPU];
2719 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2720 		unsigned long max_faults = 0;
2721 		nodemask_t max_group = NODE_MASK_NONE;
2722 		int a, b;
2723 
2724 		/* Are there nodes at this distance from each other? */
2725 		if (!find_numa_distance(dist))
2726 			continue;
2727 
2728 		for_each_node_mask(a, nodes) {
2729 			unsigned long faults = 0;
2730 			nodemask_t this_group;
2731 			nodes_clear(this_group);
2732 
2733 			/* Sum group's NUMA faults; includes a==b case. */
2734 			for_each_node_mask(b, nodes) {
2735 				if (node_distance(a, b) < dist) {
2736 					faults += group_faults(p, b);
2737 					node_set(b, this_group);
2738 					node_clear(b, nodes);
2739 				}
2740 			}
2741 
2742 			/* Remember the top group. */
2743 			if (faults > max_faults) {
2744 				max_faults = faults;
2745 				max_group = this_group;
2746 				/*
2747 				 * subtle: at the smallest distance there is
2748 				 * just one node left in each "group", the
2749 				 * winner is the preferred nid.
2750 				 */
2751 				nid = a;
2752 			}
2753 		}
2754 		/* Next round, evaluate the nodes within max_group. */
2755 		if (!max_faults)
2756 			break;
2757 		nodes = max_group;
2758 	}
2759 	return nid;
2760 }
2761 
2762 static void task_numa_placement(struct task_struct *p)
2763 {
2764 	int seq, nid, max_nid = NUMA_NO_NODE;
2765 	unsigned long max_faults = 0;
2766 	unsigned long fault_types[2] = { 0, 0 };
2767 	unsigned long total_faults;
2768 	u64 runtime, period;
2769 	spinlock_t *group_lock = NULL;
2770 	struct numa_group *ng;
2771 
2772 	/*
2773 	 * The p->mm->numa_scan_seq field gets updated without
2774 	 * exclusive access. Use READ_ONCE() here to ensure
2775 	 * that the field is read in a single access:
2776 	 */
2777 	seq = READ_ONCE(p->mm->numa_scan_seq);
2778 	if (p->numa_scan_seq == seq)
2779 		return;
2780 	p->numa_scan_seq = seq;
2781 	p->numa_scan_period_max = task_scan_max(p);
2782 
2783 	total_faults = p->numa_faults_locality[0] +
2784 		       p->numa_faults_locality[1];
2785 	runtime = numa_get_avg_runtime(p, &period);
2786 
2787 	/* If the task is part of a group prevent parallel updates to group stats */
2788 	ng = deref_curr_numa_group(p);
2789 	if (ng) {
2790 		group_lock = &ng->lock;
2791 		spin_lock_irq(group_lock);
2792 	}
2793 
2794 	/* Find the node with the highest number of faults */
2795 	for_each_online_node(nid) {
2796 		/* Keep track of the offsets in numa_faults array */
2797 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2798 		unsigned long faults = 0, group_faults = 0;
2799 		int priv;
2800 
2801 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2802 			long diff, f_diff, f_weight;
2803 
2804 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2805 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2806 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2807 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2808 
2809 			/* Decay existing window, copy faults since last scan */
2810 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2811 			fault_types[priv] += p->numa_faults[membuf_idx];
2812 			p->numa_faults[membuf_idx] = 0;
2813 
2814 			/*
2815 			 * Normalize the faults_from, so all tasks in a group
2816 			 * count according to CPU use, instead of by the raw
2817 			 * number of faults. Tasks with little runtime have
2818 			 * little over-all impact on throughput, and thus their
2819 			 * faults are less important.
2820 			 */
2821 			f_weight = div64_u64(runtime << 16, period + 1);
2822 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2823 				   (total_faults + 1);
2824 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2825 			p->numa_faults[cpubuf_idx] = 0;
2826 
2827 			p->numa_faults[mem_idx] += diff;
2828 			p->numa_faults[cpu_idx] += f_diff;
2829 			faults += p->numa_faults[mem_idx];
2830 			p->total_numa_faults += diff;
2831 			if (ng) {
2832 				/*
2833 				 * safe because we can only change our own group
2834 				 *
2835 				 * mem_idx represents the offset for a given
2836 				 * nid and priv in a specific region because it
2837 				 * is at the beginning of the numa_faults array.
2838 				 */
2839 				ng->faults[mem_idx] += diff;
2840 				ng->faults[cpu_idx] += f_diff;
2841 				ng->total_faults += diff;
2842 				group_faults += ng->faults[mem_idx];
2843 			}
2844 		}
2845 
2846 		if (!ng) {
2847 			if (faults > max_faults) {
2848 				max_faults = faults;
2849 				max_nid = nid;
2850 			}
2851 		} else if (group_faults > max_faults) {
2852 			max_faults = group_faults;
2853 			max_nid = nid;
2854 		}
2855 	}
2856 
2857 	/* Cannot migrate task to CPU-less node */
2858 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2859 		int near_nid = max_nid;
2860 		int distance, near_distance = INT_MAX;
2861 
2862 		for_each_node_state(nid, N_CPU) {
2863 			distance = node_distance(max_nid, nid);
2864 			if (distance < near_distance) {
2865 				near_nid = nid;
2866 				near_distance = distance;
2867 			}
2868 		}
2869 		max_nid = near_nid;
2870 	}
2871 
2872 	if (ng) {
2873 		numa_group_count_active_nodes(ng);
2874 		spin_unlock_irq(group_lock);
2875 		max_nid = preferred_group_nid(p, max_nid);
2876 	}
2877 
2878 	if (max_faults) {
2879 		/* Set the new preferred node */
2880 		if (max_nid != p->numa_preferred_nid)
2881 			sched_setnuma(p, max_nid);
2882 	}
2883 
2884 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2885 }
2886 
2887 static inline int get_numa_group(struct numa_group *grp)
2888 {
2889 	return refcount_inc_not_zero(&grp->refcount);
2890 }
2891 
2892 static inline void put_numa_group(struct numa_group *grp)
2893 {
2894 	if (refcount_dec_and_test(&grp->refcount))
2895 		kfree_rcu(grp, rcu);
2896 }
2897 
2898 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2899 			int *priv)
2900 {
2901 	struct numa_group *grp, *my_grp;
2902 	struct task_struct *tsk;
2903 	bool join = false;
2904 	int cpu = cpupid_to_cpu(cpupid);
2905 	int i;
2906 
2907 	if (unlikely(!deref_curr_numa_group(p))) {
2908 		unsigned int size = sizeof(struct numa_group) +
2909 				    NR_NUMA_HINT_FAULT_STATS *
2910 				    nr_node_ids * sizeof(unsigned long);
2911 
2912 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2913 		if (!grp)
2914 			return;
2915 
2916 		refcount_set(&grp->refcount, 1);
2917 		grp->active_nodes = 1;
2918 		grp->max_faults_cpu = 0;
2919 		spin_lock_init(&grp->lock);
2920 		grp->gid = p->pid;
2921 
2922 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2923 			grp->faults[i] = p->numa_faults[i];
2924 
2925 		grp->total_faults = p->total_numa_faults;
2926 
2927 		grp->nr_tasks++;
2928 		rcu_assign_pointer(p->numa_group, grp);
2929 	}
2930 
2931 	rcu_read_lock();
2932 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2933 
2934 	if (!cpupid_match_pid(tsk, cpupid))
2935 		goto no_join;
2936 
2937 	grp = rcu_dereference(tsk->numa_group);
2938 	if (!grp)
2939 		goto no_join;
2940 
2941 	my_grp = deref_curr_numa_group(p);
2942 	if (grp == my_grp)
2943 		goto no_join;
2944 
2945 	/*
2946 	 * Only join the other group if its bigger; if we're the bigger group,
2947 	 * the other task will join us.
2948 	 */
2949 	if (my_grp->nr_tasks > grp->nr_tasks)
2950 		goto no_join;
2951 
2952 	/*
2953 	 * Tie-break on the grp address.
2954 	 */
2955 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2956 		goto no_join;
2957 
2958 	/* Always join threads in the same process. */
2959 	if (tsk->mm == current->mm)
2960 		join = true;
2961 
2962 	/* Simple filter to avoid false positives due to PID collisions */
2963 	if (flags & TNF_SHARED)
2964 		join = true;
2965 
2966 	/* Update priv based on whether false sharing was detected */
2967 	*priv = !join;
2968 
2969 	if (join && !get_numa_group(grp))
2970 		goto no_join;
2971 
2972 	rcu_read_unlock();
2973 
2974 	if (!join)
2975 		return;
2976 
2977 	WARN_ON_ONCE(irqs_disabled());
2978 	double_lock_irq(&my_grp->lock, &grp->lock);
2979 
2980 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2981 		my_grp->faults[i] -= p->numa_faults[i];
2982 		grp->faults[i] += p->numa_faults[i];
2983 	}
2984 	my_grp->total_faults -= p->total_numa_faults;
2985 	grp->total_faults += p->total_numa_faults;
2986 
2987 	my_grp->nr_tasks--;
2988 	grp->nr_tasks++;
2989 
2990 	spin_unlock(&my_grp->lock);
2991 	spin_unlock_irq(&grp->lock);
2992 
2993 	rcu_assign_pointer(p->numa_group, grp);
2994 
2995 	put_numa_group(my_grp);
2996 	return;
2997 
2998 no_join:
2999 	rcu_read_unlock();
3000 	return;
3001 }
3002 
3003 /*
3004  * Get rid of NUMA statistics associated with a task (either current or dead).
3005  * If @final is set, the task is dead and has reached refcount zero, so we can
3006  * safely free all relevant data structures. Otherwise, there might be
3007  * concurrent reads from places like load balancing and procfs, and we should
3008  * reset the data back to default state without freeing ->numa_faults.
3009  */
3010 void task_numa_free(struct task_struct *p, bool final)
3011 {
3012 	/* safe: p either is current or is being freed by current */
3013 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3014 	unsigned long *numa_faults = p->numa_faults;
3015 	unsigned long flags;
3016 	int i;
3017 
3018 	if (!numa_faults)
3019 		return;
3020 
3021 	if (grp) {
3022 		spin_lock_irqsave(&grp->lock, flags);
3023 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3024 			grp->faults[i] -= p->numa_faults[i];
3025 		grp->total_faults -= p->total_numa_faults;
3026 
3027 		grp->nr_tasks--;
3028 		spin_unlock_irqrestore(&grp->lock, flags);
3029 		RCU_INIT_POINTER(p->numa_group, NULL);
3030 		put_numa_group(grp);
3031 	}
3032 
3033 	if (final) {
3034 		p->numa_faults = NULL;
3035 		kfree(numa_faults);
3036 	} else {
3037 		p->total_numa_faults = 0;
3038 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3039 			numa_faults[i] = 0;
3040 	}
3041 }
3042 
3043 /*
3044  * Got a PROT_NONE fault for a page on @node.
3045  */
3046 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3047 {
3048 	struct task_struct *p = current;
3049 	bool migrated = flags & TNF_MIGRATED;
3050 	int cpu_node = task_node(current);
3051 	int local = !!(flags & TNF_FAULT_LOCAL);
3052 	struct numa_group *ng;
3053 	int priv;
3054 
3055 	if (!static_branch_likely(&sched_numa_balancing))
3056 		return;
3057 
3058 	/* for example, ksmd faulting in a user's mm */
3059 	if (!p->mm)
3060 		return;
3061 
3062 	/*
3063 	 * NUMA faults statistics are unnecessary for the slow memory
3064 	 * node for memory tiering mode.
3065 	 */
3066 	if (!node_is_toptier(mem_node) &&
3067 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3068 	     !cpupid_valid(last_cpupid)))
3069 		return;
3070 
3071 	/* Allocate buffer to track faults on a per-node basis */
3072 	if (unlikely(!p->numa_faults)) {
3073 		int size = sizeof(*p->numa_faults) *
3074 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3075 
3076 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3077 		if (!p->numa_faults)
3078 			return;
3079 
3080 		p->total_numa_faults = 0;
3081 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3082 	}
3083 
3084 	/*
3085 	 * First accesses are treated as private, otherwise consider accesses
3086 	 * to be private if the accessing pid has not changed
3087 	 */
3088 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3089 		priv = 1;
3090 	} else {
3091 		priv = cpupid_match_pid(p, last_cpupid);
3092 		if (!priv && !(flags & TNF_NO_GROUP))
3093 			task_numa_group(p, last_cpupid, flags, &priv);
3094 	}
3095 
3096 	/*
3097 	 * If a workload spans multiple NUMA nodes, a shared fault that
3098 	 * occurs wholly within the set of nodes that the workload is
3099 	 * actively using should be counted as local. This allows the
3100 	 * scan rate to slow down when a workload has settled down.
3101 	 */
3102 	ng = deref_curr_numa_group(p);
3103 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3104 				numa_is_active_node(cpu_node, ng) &&
3105 				numa_is_active_node(mem_node, ng))
3106 		local = 1;
3107 
3108 	/*
3109 	 * Retry to migrate task to preferred node periodically, in case it
3110 	 * previously failed, or the scheduler moved us.
3111 	 */
3112 	if (time_after(jiffies, p->numa_migrate_retry)) {
3113 		task_numa_placement(p);
3114 		numa_migrate_preferred(p);
3115 	}
3116 
3117 	if (migrated)
3118 		p->numa_pages_migrated += pages;
3119 	if (flags & TNF_MIGRATE_FAIL)
3120 		p->numa_faults_locality[2] += pages;
3121 
3122 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3123 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3124 	p->numa_faults_locality[local] += pages;
3125 }
3126 
3127 static void reset_ptenuma_scan(struct task_struct *p)
3128 {
3129 	/*
3130 	 * We only did a read acquisition of the mmap sem, so
3131 	 * p->mm->numa_scan_seq is written to without exclusive access
3132 	 * and the update is not guaranteed to be atomic. That's not
3133 	 * much of an issue though, since this is just used for
3134 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3135 	 * expensive, to avoid any form of compiler optimizations:
3136 	 */
3137 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3138 	p->mm->numa_scan_offset = 0;
3139 }
3140 
3141 static bool vma_is_accessed(struct vm_area_struct *vma)
3142 {
3143 	unsigned long pids;
3144 	/*
3145 	 * Allow unconditional access first two times, so that all the (pages)
3146 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3147 	 * This is also done to avoid any side effect of task scanning
3148 	 * amplifying the unfairness of disjoint set of VMAs' access.
3149 	 */
3150 	if (READ_ONCE(current->mm->numa_scan_seq) < 2)
3151 		return true;
3152 
3153 	pids = vma->numab_state->access_pids[0] | vma->numab_state->access_pids[1];
3154 	return test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids);
3155 }
3156 
3157 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3158 
3159 /*
3160  * The expensive part of numa migration is done from task_work context.
3161  * Triggered from task_tick_numa().
3162  */
3163 static void task_numa_work(struct callback_head *work)
3164 {
3165 	unsigned long migrate, next_scan, now = jiffies;
3166 	struct task_struct *p = current;
3167 	struct mm_struct *mm = p->mm;
3168 	u64 runtime = p->se.sum_exec_runtime;
3169 	struct vm_area_struct *vma;
3170 	unsigned long start, end;
3171 	unsigned long nr_pte_updates = 0;
3172 	long pages, virtpages;
3173 	struct vma_iterator vmi;
3174 
3175 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3176 
3177 	work->next = work;
3178 	/*
3179 	 * Who cares about NUMA placement when they're dying.
3180 	 *
3181 	 * NOTE: make sure not to dereference p->mm before this check,
3182 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3183 	 * without p->mm even though we still had it when we enqueued this
3184 	 * work.
3185 	 */
3186 	if (p->flags & PF_EXITING)
3187 		return;
3188 
3189 	if (!mm->numa_next_scan) {
3190 		mm->numa_next_scan = now +
3191 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3192 	}
3193 
3194 	/*
3195 	 * Enforce maximal scan/migration frequency..
3196 	 */
3197 	migrate = mm->numa_next_scan;
3198 	if (time_before(now, migrate))
3199 		return;
3200 
3201 	if (p->numa_scan_period == 0) {
3202 		p->numa_scan_period_max = task_scan_max(p);
3203 		p->numa_scan_period = task_scan_start(p);
3204 	}
3205 
3206 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3207 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3208 		return;
3209 
3210 	/*
3211 	 * Delay this task enough that another task of this mm will likely win
3212 	 * the next time around.
3213 	 */
3214 	p->node_stamp += 2 * TICK_NSEC;
3215 
3216 	start = mm->numa_scan_offset;
3217 	pages = sysctl_numa_balancing_scan_size;
3218 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3219 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3220 	if (!pages)
3221 		return;
3222 
3223 
3224 	if (!mmap_read_trylock(mm))
3225 		return;
3226 	vma_iter_init(&vmi, mm, start);
3227 	vma = vma_next(&vmi);
3228 	if (!vma) {
3229 		reset_ptenuma_scan(p);
3230 		start = 0;
3231 		vma_iter_set(&vmi, start);
3232 		vma = vma_next(&vmi);
3233 	}
3234 
3235 	do {
3236 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3237 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3238 			continue;
3239 		}
3240 
3241 		/*
3242 		 * Shared library pages mapped by multiple processes are not
3243 		 * migrated as it is expected they are cache replicated. Avoid
3244 		 * hinting faults in read-only file-backed mappings or the vdso
3245 		 * as migrating the pages will be of marginal benefit.
3246 		 */
3247 		if (!vma->vm_mm ||
3248 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
3249 			continue;
3250 
3251 		/*
3252 		 * Skip inaccessible VMAs to avoid any confusion between
3253 		 * PROT_NONE and NUMA hinting ptes
3254 		 */
3255 		if (!vma_is_accessible(vma))
3256 			continue;
3257 
3258 		/* Initialise new per-VMA NUMAB state. */
3259 		if (!vma->numab_state) {
3260 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3261 				GFP_KERNEL);
3262 			if (!vma->numab_state)
3263 				continue;
3264 
3265 			vma->numab_state->next_scan = now +
3266 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3267 
3268 			/* Reset happens after 4 times scan delay of scan start */
3269 			vma->numab_state->next_pid_reset =  vma->numab_state->next_scan +
3270 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3271 		}
3272 
3273 		/*
3274 		 * Scanning the VMA's of short lived tasks add more overhead. So
3275 		 * delay the scan for new VMAs.
3276 		 */
3277 		if (mm->numa_scan_seq && time_before(jiffies,
3278 						vma->numab_state->next_scan))
3279 			continue;
3280 
3281 		/* Do not scan the VMA if task has not accessed */
3282 		if (!vma_is_accessed(vma))
3283 			continue;
3284 
3285 		/*
3286 		 * RESET access PIDs regularly for old VMAs. Resetting after checking
3287 		 * vma for recent access to avoid clearing PID info before access..
3288 		 */
3289 		if (mm->numa_scan_seq &&
3290 				time_after(jiffies, vma->numab_state->next_pid_reset)) {
3291 			vma->numab_state->next_pid_reset = vma->numab_state->next_pid_reset +
3292 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3293 			vma->numab_state->access_pids[0] = READ_ONCE(vma->numab_state->access_pids[1]);
3294 			vma->numab_state->access_pids[1] = 0;
3295 		}
3296 
3297 		do {
3298 			start = max(start, vma->vm_start);
3299 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3300 			end = min(end, vma->vm_end);
3301 			nr_pte_updates = change_prot_numa(vma, start, end);
3302 
3303 			/*
3304 			 * Try to scan sysctl_numa_balancing_size worth of
3305 			 * hpages that have at least one present PTE that
3306 			 * is not already pte-numa. If the VMA contains
3307 			 * areas that are unused or already full of prot_numa
3308 			 * PTEs, scan up to virtpages, to skip through those
3309 			 * areas faster.
3310 			 */
3311 			if (nr_pte_updates)
3312 				pages -= (end - start) >> PAGE_SHIFT;
3313 			virtpages -= (end - start) >> PAGE_SHIFT;
3314 
3315 			start = end;
3316 			if (pages <= 0 || virtpages <= 0)
3317 				goto out;
3318 
3319 			cond_resched();
3320 		} while (end != vma->vm_end);
3321 	} for_each_vma(vmi, vma);
3322 
3323 out:
3324 	/*
3325 	 * It is possible to reach the end of the VMA list but the last few
3326 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3327 	 * would find the !migratable VMA on the next scan but not reset the
3328 	 * scanner to the start so check it now.
3329 	 */
3330 	if (vma)
3331 		mm->numa_scan_offset = start;
3332 	else
3333 		reset_ptenuma_scan(p);
3334 	mmap_read_unlock(mm);
3335 
3336 	/*
3337 	 * Make sure tasks use at least 32x as much time to run other code
3338 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3339 	 * Usually update_task_scan_period slows down scanning enough; on an
3340 	 * overloaded system we need to limit overhead on a per task basis.
3341 	 */
3342 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3343 		u64 diff = p->se.sum_exec_runtime - runtime;
3344 		p->node_stamp += 32 * diff;
3345 	}
3346 }
3347 
3348 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3349 {
3350 	int mm_users = 0;
3351 	struct mm_struct *mm = p->mm;
3352 
3353 	if (mm) {
3354 		mm_users = atomic_read(&mm->mm_users);
3355 		if (mm_users == 1) {
3356 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3357 			mm->numa_scan_seq = 0;
3358 		}
3359 	}
3360 	p->node_stamp			= 0;
3361 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3362 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3363 	p->numa_migrate_retry		= 0;
3364 	/* Protect against double add, see task_tick_numa and task_numa_work */
3365 	p->numa_work.next		= &p->numa_work;
3366 	p->numa_faults			= NULL;
3367 	p->numa_pages_migrated		= 0;
3368 	p->total_numa_faults		= 0;
3369 	RCU_INIT_POINTER(p->numa_group, NULL);
3370 	p->last_task_numa_placement	= 0;
3371 	p->last_sum_exec_runtime	= 0;
3372 
3373 	init_task_work(&p->numa_work, task_numa_work);
3374 
3375 	/* New address space, reset the preferred nid */
3376 	if (!(clone_flags & CLONE_VM)) {
3377 		p->numa_preferred_nid = NUMA_NO_NODE;
3378 		return;
3379 	}
3380 
3381 	/*
3382 	 * New thread, keep existing numa_preferred_nid which should be copied
3383 	 * already by arch_dup_task_struct but stagger when scans start.
3384 	 */
3385 	if (mm) {
3386 		unsigned int delay;
3387 
3388 		delay = min_t(unsigned int, task_scan_max(current),
3389 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3390 		delay += 2 * TICK_NSEC;
3391 		p->node_stamp = delay;
3392 	}
3393 }
3394 
3395 /*
3396  * Drive the periodic memory faults..
3397  */
3398 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3399 {
3400 	struct callback_head *work = &curr->numa_work;
3401 	u64 period, now;
3402 
3403 	/*
3404 	 * We don't care about NUMA placement if we don't have memory.
3405 	 */
3406 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3407 		return;
3408 
3409 	/*
3410 	 * Using runtime rather than walltime has the dual advantage that
3411 	 * we (mostly) drive the selection from busy threads and that the
3412 	 * task needs to have done some actual work before we bother with
3413 	 * NUMA placement.
3414 	 */
3415 	now = curr->se.sum_exec_runtime;
3416 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3417 
3418 	if (now > curr->node_stamp + period) {
3419 		if (!curr->node_stamp)
3420 			curr->numa_scan_period = task_scan_start(curr);
3421 		curr->node_stamp += period;
3422 
3423 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3424 			task_work_add(curr, work, TWA_RESUME);
3425 	}
3426 }
3427 
3428 static void update_scan_period(struct task_struct *p, int new_cpu)
3429 {
3430 	int src_nid = cpu_to_node(task_cpu(p));
3431 	int dst_nid = cpu_to_node(new_cpu);
3432 
3433 	if (!static_branch_likely(&sched_numa_balancing))
3434 		return;
3435 
3436 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3437 		return;
3438 
3439 	if (src_nid == dst_nid)
3440 		return;
3441 
3442 	/*
3443 	 * Allow resets if faults have been trapped before one scan
3444 	 * has completed. This is most likely due to a new task that
3445 	 * is pulled cross-node due to wakeups or load balancing.
3446 	 */
3447 	if (p->numa_scan_seq) {
3448 		/*
3449 		 * Avoid scan adjustments if moving to the preferred
3450 		 * node or if the task was not previously running on
3451 		 * the preferred node.
3452 		 */
3453 		if (dst_nid == p->numa_preferred_nid ||
3454 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3455 			src_nid != p->numa_preferred_nid))
3456 			return;
3457 	}
3458 
3459 	p->numa_scan_period = task_scan_start(p);
3460 }
3461 
3462 #else
3463 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3464 {
3465 }
3466 
3467 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3468 {
3469 }
3470 
3471 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3472 {
3473 }
3474 
3475 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3476 {
3477 }
3478 
3479 #endif /* CONFIG_NUMA_BALANCING */
3480 
3481 static void
3482 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3483 {
3484 	update_load_add(&cfs_rq->load, se->load.weight);
3485 #ifdef CONFIG_SMP
3486 	if (entity_is_task(se)) {
3487 		struct rq *rq = rq_of(cfs_rq);
3488 
3489 		account_numa_enqueue(rq, task_of(se));
3490 		list_add(&se->group_node, &rq->cfs_tasks);
3491 	}
3492 #endif
3493 	cfs_rq->nr_running++;
3494 	if (se_is_idle(se))
3495 		cfs_rq->idle_nr_running++;
3496 }
3497 
3498 static void
3499 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3500 {
3501 	update_load_sub(&cfs_rq->load, se->load.weight);
3502 #ifdef CONFIG_SMP
3503 	if (entity_is_task(se)) {
3504 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3505 		list_del_init(&se->group_node);
3506 	}
3507 #endif
3508 	cfs_rq->nr_running--;
3509 	if (se_is_idle(se))
3510 		cfs_rq->idle_nr_running--;
3511 }
3512 
3513 /*
3514  * Signed add and clamp on underflow.
3515  *
3516  * Explicitly do a load-store to ensure the intermediate value never hits
3517  * memory. This allows lockless observations without ever seeing the negative
3518  * values.
3519  */
3520 #define add_positive(_ptr, _val) do {                           \
3521 	typeof(_ptr) ptr = (_ptr);                              \
3522 	typeof(_val) val = (_val);                              \
3523 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3524 								\
3525 	res = var + val;                                        \
3526 								\
3527 	if (val < 0 && res > var)                               \
3528 		res = 0;                                        \
3529 								\
3530 	WRITE_ONCE(*ptr, res);                                  \
3531 } while (0)
3532 
3533 /*
3534  * Unsigned subtract and clamp on underflow.
3535  *
3536  * Explicitly do a load-store to ensure the intermediate value never hits
3537  * memory. This allows lockless observations without ever seeing the negative
3538  * values.
3539  */
3540 #define sub_positive(_ptr, _val) do {				\
3541 	typeof(_ptr) ptr = (_ptr);				\
3542 	typeof(*ptr) val = (_val);				\
3543 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3544 	res = var - val;					\
3545 	if (res > var)						\
3546 		res = 0;					\
3547 	WRITE_ONCE(*ptr, res);					\
3548 } while (0)
3549 
3550 /*
3551  * Remove and clamp on negative, from a local variable.
3552  *
3553  * A variant of sub_positive(), which does not use explicit load-store
3554  * and is thus optimized for local variable updates.
3555  */
3556 #define lsub_positive(_ptr, _val) do {				\
3557 	typeof(_ptr) ptr = (_ptr);				\
3558 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3559 } while (0)
3560 
3561 #ifdef CONFIG_SMP
3562 static inline void
3563 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3564 {
3565 	cfs_rq->avg.load_avg += se->avg.load_avg;
3566 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3567 }
3568 
3569 static inline void
3570 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3571 {
3572 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3573 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3574 	/* See update_cfs_rq_load_avg() */
3575 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3576 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3577 }
3578 #else
3579 static inline void
3580 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3581 static inline void
3582 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3583 #endif
3584 
3585 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3586 			    unsigned long weight)
3587 {
3588 	unsigned long old_weight = se->load.weight;
3589 
3590 	if (se->on_rq) {
3591 		/* commit outstanding execution time */
3592 		if (cfs_rq->curr == se)
3593 			update_curr(cfs_rq);
3594 		else
3595 			avg_vruntime_sub(cfs_rq, se);
3596 		update_load_sub(&cfs_rq->load, se->load.weight);
3597 	}
3598 	dequeue_load_avg(cfs_rq, se);
3599 
3600 	update_load_set(&se->load, weight);
3601 
3602 	if (!se->on_rq) {
3603 		/*
3604 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3605 		 * we need to scale se->vlag when w_i changes.
3606 		 */
3607 		se->vlag = div_s64(se->vlag * old_weight, weight);
3608 	} else {
3609 		s64 deadline = se->deadline - se->vruntime;
3610 		/*
3611 		 * When the weight changes, the virtual time slope changes and
3612 		 * we should adjust the relative virtual deadline accordingly.
3613 		 */
3614 		deadline = div_s64(deadline * old_weight, weight);
3615 		se->deadline = se->vruntime + deadline;
3616 	}
3617 
3618 #ifdef CONFIG_SMP
3619 	do {
3620 		u32 divider = get_pelt_divider(&se->avg);
3621 
3622 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3623 	} while (0);
3624 #endif
3625 
3626 	enqueue_load_avg(cfs_rq, se);
3627 	if (se->on_rq) {
3628 		update_load_add(&cfs_rq->load, se->load.weight);
3629 		if (cfs_rq->curr != se)
3630 			avg_vruntime_add(cfs_rq, se);
3631 	}
3632 }
3633 
3634 void reweight_task(struct task_struct *p, int prio)
3635 {
3636 	struct sched_entity *se = &p->se;
3637 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3638 	struct load_weight *load = &se->load;
3639 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3640 
3641 	reweight_entity(cfs_rq, se, weight);
3642 	load->inv_weight = sched_prio_to_wmult[prio];
3643 }
3644 
3645 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3646 
3647 #ifdef CONFIG_FAIR_GROUP_SCHED
3648 #ifdef CONFIG_SMP
3649 /*
3650  * All this does is approximate the hierarchical proportion which includes that
3651  * global sum we all love to hate.
3652  *
3653  * That is, the weight of a group entity, is the proportional share of the
3654  * group weight based on the group runqueue weights. That is:
3655  *
3656  *                     tg->weight * grq->load.weight
3657  *   ge->load.weight = -----------------------------               (1)
3658  *                       \Sum grq->load.weight
3659  *
3660  * Now, because computing that sum is prohibitively expensive to compute (been
3661  * there, done that) we approximate it with this average stuff. The average
3662  * moves slower and therefore the approximation is cheaper and more stable.
3663  *
3664  * So instead of the above, we substitute:
3665  *
3666  *   grq->load.weight -> grq->avg.load_avg                         (2)
3667  *
3668  * which yields the following:
3669  *
3670  *                     tg->weight * grq->avg.load_avg
3671  *   ge->load.weight = ------------------------------              (3)
3672  *                             tg->load_avg
3673  *
3674  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3675  *
3676  * That is shares_avg, and it is right (given the approximation (2)).
3677  *
3678  * The problem with it is that because the average is slow -- it was designed
3679  * to be exactly that of course -- this leads to transients in boundary
3680  * conditions. In specific, the case where the group was idle and we start the
3681  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3682  * yielding bad latency etc..
3683  *
3684  * Now, in that special case (1) reduces to:
3685  *
3686  *                     tg->weight * grq->load.weight
3687  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3688  *                         grp->load.weight
3689  *
3690  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3691  *
3692  * So what we do is modify our approximation (3) to approach (4) in the (near)
3693  * UP case, like:
3694  *
3695  *   ge->load.weight =
3696  *
3697  *              tg->weight * grq->load.weight
3698  *     ---------------------------------------------------         (5)
3699  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3700  *
3701  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3702  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3703  *
3704  *
3705  *                     tg->weight * grq->load.weight
3706  *   ge->load.weight = -----------------------------		   (6)
3707  *                             tg_load_avg'
3708  *
3709  * Where:
3710  *
3711  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3712  *                  max(grq->load.weight, grq->avg.load_avg)
3713  *
3714  * And that is shares_weight and is icky. In the (near) UP case it approaches
3715  * (4) while in the normal case it approaches (3). It consistently
3716  * overestimates the ge->load.weight and therefore:
3717  *
3718  *   \Sum ge->load.weight >= tg->weight
3719  *
3720  * hence icky!
3721  */
3722 static long calc_group_shares(struct cfs_rq *cfs_rq)
3723 {
3724 	long tg_weight, tg_shares, load, shares;
3725 	struct task_group *tg = cfs_rq->tg;
3726 
3727 	tg_shares = READ_ONCE(tg->shares);
3728 
3729 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3730 
3731 	tg_weight = atomic_long_read(&tg->load_avg);
3732 
3733 	/* Ensure tg_weight >= load */
3734 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3735 	tg_weight += load;
3736 
3737 	shares = (tg_shares * load);
3738 	if (tg_weight)
3739 		shares /= tg_weight;
3740 
3741 	/*
3742 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3743 	 * of a group with small tg->shares value. It is a floor value which is
3744 	 * assigned as a minimum load.weight to the sched_entity representing
3745 	 * the group on a CPU.
3746 	 *
3747 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3748 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3749 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3750 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3751 	 * instead of 0.
3752 	 */
3753 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3754 }
3755 #endif /* CONFIG_SMP */
3756 
3757 /*
3758  * Recomputes the group entity based on the current state of its group
3759  * runqueue.
3760  */
3761 static void update_cfs_group(struct sched_entity *se)
3762 {
3763 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3764 	long shares;
3765 
3766 	if (!gcfs_rq)
3767 		return;
3768 
3769 	if (throttled_hierarchy(gcfs_rq))
3770 		return;
3771 
3772 #ifndef CONFIG_SMP
3773 	shares = READ_ONCE(gcfs_rq->tg->shares);
3774 
3775 	if (likely(se->load.weight == shares))
3776 		return;
3777 #else
3778 	shares   = calc_group_shares(gcfs_rq);
3779 #endif
3780 
3781 	reweight_entity(cfs_rq_of(se), se, shares);
3782 }
3783 
3784 #else /* CONFIG_FAIR_GROUP_SCHED */
3785 static inline void update_cfs_group(struct sched_entity *se)
3786 {
3787 }
3788 #endif /* CONFIG_FAIR_GROUP_SCHED */
3789 
3790 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3791 {
3792 	struct rq *rq = rq_of(cfs_rq);
3793 
3794 	if (&rq->cfs == cfs_rq) {
3795 		/*
3796 		 * There are a few boundary cases this might miss but it should
3797 		 * get called often enough that that should (hopefully) not be
3798 		 * a real problem.
3799 		 *
3800 		 * It will not get called when we go idle, because the idle
3801 		 * thread is a different class (!fair), nor will the utilization
3802 		 * number include things like RT tasks.
3803 		 *
3804 		 * As is, the util number is not freq-invariant (we'd have to
3805 		 * implement arch_scale_freq_capacity() for that).
3806 		 *
3807 		 * See cpu_util_cfs().
3808 		 */
3809 		cpufreq_update_util(rq, flags);
3810 	}
3811 }
3812 
3813 #ifdef CONFIG_SMP
3814 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3815 {
3816 	if (sa->load_sum)
3817 		return false;
3818 
3819 	if (sa->util_sum)
3820 		return false;
3821 
3822 	if (sa->runnable_sum)
3823 		return false;
3824 
3825 	/*
3826 	 * _avg must be null when _sum are null because _avg = _sum / divider
3827 	 * Make sure that rounding and/or propagation of PELT values never
3828 	 * break this.
3829 	 */
3830 	SCHED_WARN_ON(sa->load_avg ||
3831 		      sa->util_avg ||
3832 		      sa->runnable_avg);
3833 
3834 	return true;
3835 }
3836 
3837 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3838 {
3839 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3840 				 cfs_rq->last_update_time_copy);
3841 }
3842 #ifdef CONFIG_FAIR_GROUP_SCHED
3843 /*
3844  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3845  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3846  * bottom-up, we only have to test whether the cfs_rq before us on the list
3847  * is our child.
3848  * If cfs_rq is not on the list, test whether a child needs its to be added to
3849  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3850  */
3851 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3852 {
3853 	struct cfs_rq *prev_cfs_rq;
3854 	struct list_head *prev;
3855 
3856 	if (cfs_rq->on_list) {
3857 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3858 	} else {
3859 		struct rq *rq = rq_of(cfs_rq);
3860 
3861 		prev = rq->tmp_alone_branch;
3862 	}
3863 
3864 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3865 
3866 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3867 }
3868 
3869 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3870 {
3871 	if (cfs_rq->load.weight)
3872 		return false;
3873 
3874 	if (!load_avg_is_decayed(&cfs_rq->avg))
3875 		return false;
3876 
3877 	if (child_cfs_rq_on_list(cfs_rq))
3878 		return false;
3879 
3880 	return true;
3881 }
3882 
3883 /**
3884  * update_tg_load_avg - update the tg's load avg
3885  * @cfs_rq: the cfs_rq whose avg changed
3886  *
3887  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3888  * However, because tg->load_avg is a global value there are performance
3889  * considerations.
3890  *
3891  * In order to avoid having to look at the other cfs_rq's, we use a
3892  * differential update where we store the last value we propagated. This in
3893  * turn allows skipping updates if the differential is 'small'.
3894  *
3895  * Updating tg's load_avg is necessary before update_cfs_share().
3896  */
3897 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3898 {
3899 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3900 
3901 	/*
3902 	 * No need to update load_avg for root_task_group as it is not used.
3903 	 */
3904 	if (cfs_rq->tg == &root_task_group)
3905 		return;
3906 
3907 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3908 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3909 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3910 	}
3911 }
3912 
3913 /*
3914  * Called within set_task_rq() right before setting a task's CPU. The
3915  * caller only guarantees p->pi_lock is held; no other assumptions,
3916  * including the state of rq->lock, should be made.
3917  */
3918 void set_task_rq_fair(struct sched_entity *se,
3919 		      struct cfs_rq *prev, struct cfs_rq *next)
3920 {
3921 	u64 p_last_update_time;
3922 	u64 n_last_update_time;
3923 
3924 	if (!sched_feat(ATTACH_AGE_LOAD))
3925 		return;
3926 
3927 	/*
3928 	 * We are supposed to update the task to "current" time, then its up to
3929 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3930 	 * getting what current time is, so simply throw away the out-of-date
3931 	 * time. This will result in the wakee task is less decayed, but giving
3932 	 * the wakee more load sounds not bad.
3933 	 */
3934 	if (!(se->avg.last_update_time && prev))
3935 		return;
3936 
3937 	p_last_update_time = cfs_rq_last_update_time(prev);
3938 	n_last_update_time = cfs_rq_last_update_time(next);
3939 
3940 	__update_load_avg_blocked_se(p_last_update_time, se);
3941 	se->avg.last_update_time = n_last_update_time;
3942 }
3943 
3944 /*
3945  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3946  * propagate its contribution. The key to this propagation is the invariant
3947  * that for each group:
3948  *
3949  *   ge->avg == grq->avg						(1)
3950  *
3951  * _IFF_ we look at the pure running and runnable sums. Because they
3952  * represent the very same entity, just at different points in the hierarchy.
3953  *
3954  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3955  * and simply copies the running/runnable sum over (but still wrong, because
3956  * the group entity and group rq do not have their PELT windows aligned).
3957  *
3958  * However, update_tg_cfs_load() is more complex. So we have:
3959  *
3960  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3961  *
3962  * And since, like util, the runnable part should be directly transferable,
3963  * the following would _appear_ to be the straight forward approach:
3964  *
3965  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3966  *
3967  * And per (1) we have:
3968  *
3969  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3970  *
3971  * Which gives:
3972  *
3973  *                      ge->load.weight * grq->avg.load_avg
3974  *   ge->avg.load_avg = -----------------------------------		(4)
3975  *                               grq->load.weight
3976  *
3977  * Except that is wrong!
3978  *
3979  * Because while for entities historical weight is not important and we
3980  * really only care about our future and therefore can consider a pure
3981  * runnable sum, runqueues can NOT do this.
3982  *
3983  * We specifically want runqueues to have a load_avg that includes
3984  * historical weights. Those represent the blocked load, the load we expect
3985  * to (shortly) return to us. This only works by keeping the weights as
3986  * integral part of the sum. We therefore cannot decompose as per (3).
3987  *
3988  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3989  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3990  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3991  * runnable section of these tasks overlap (or not). If they were to perfectly
3992  * align the rq as a whole would be runnable 2/3 of the time. If however we
3993  * always have at least 1 runnable task, the rq as a whole is always runnable.
3994  *
3995  * So we'll have to approximate.. :/
3996  *
3997  * Given the constraint:
3998  *
3999  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4000  *
4001  * We can construct a rule that adds runnable to a rq by assuming minimal
4002  * overlap.
4003  *
4004  * On removal, we'll assume each task is equally runnable; which yields:
4005  *
4006  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4007  *
4008  * XXX: only do this for the part of runnable > running ?
4009  *
4010  */
4011 static inline void
4012 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4013 {
4014 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4015 	u32 new_sum, divider;
4016 
4017 	/* Nothing to update */
4018 	if (!delta_avg)
4019 		return;
4020 
4021 	/*
4022 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4023 	 * See ___update_load_avg() for details.
4024 	 */
4025 	divider = get_pelt_divider(&cfs_rq->avg);
4026 
4027 
4028 	/* Set new sched_entity's utilization */
4029 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4030 	new_sum = se->avg.util_avg * divider;
4031 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4032 	se->avg.util_sum = new_sum;
4033 
4034 	/* Update parent cfs_rq utilization */
4035 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4036 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4037 
4038 	/* See update_cfs_rq_load_avg() */
4039 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4040 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4041 }
4042 
4043 static inline void
4044 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4045 {
4046 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4047 	u32 new_sum, divider;
4048 
4049 	/* Nothing to update */
4050 	if (!delta_avg)
4051 		return;
4052 
4053 	/*
4054 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4055 	 * See ___update_load_avg() for details.
4056 	 */
4057 	divider = get_pelt_divider(&cfs_rq->avg);
4058 
4059 	/* Set new sched_entity's runnable */
4060 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4061 	new_sum = se->avg.runnable_avg * divider;
4062 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4063 	se->avg.runnable_sum = new_sum;
4064 
4065 	/* Update parent cfs_rq runnable */
4066 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4067 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4068 	/* See update_cfs_rq_load_avg() */
4069 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4070 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4071 }
4072 
4073 static inline void
4074 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4075 {
4076 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4077 	unsigned long load_avg;
4078 	u64 load_sum = 0;
4079 	s64 delta_sum;
4080 	u32 divider;
4081 
4082 	if (!runnable_sum)
4083 		return;
4084 
4085 	gcfs_rq->prop_runnable_sum = 0;
4086 
4087 	/*
4088 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4089 	 * See ___update_load_avg() for details.
4090 	 */
4091 	divider = get_pelt_divider(&cfs_rq->avg);
4092 
4093 	if (runnable_sum >= 0) {
4094 		/*
4095 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4096 		 * the CPU is saturated running == runnable.
4097 		 */
4098 		runnable_sum += se->avg.load_sum;
4099 		runnable_sum = min_t(long, runnable_sum, divider);
4100 	} else {
4101 		/*
4102 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4103 		 * assuming all tasks are equally runnable.
4104 		 */
4105 		if (scale_load_down(gcfs_rq->load.weight)) {
4106 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4107 				scale_load_down(gcfs_rq->load.weight));
4108 		}
4109 
4110 		/* But make sure to not inflate se's runnable */
4111 		runnable_sum = min(se->avg.load_sum, load_sum);
4112 	}
4113 
4114 	/*
4115 	 * runnable_sum can't be lower than running_sum
4116 	 * Rescale running sum to be in the same range as runnable sum
4117 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4118 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4119 	 */
4120 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4121 	runnable_sum = max(runnable_sum, running_sum);
4122 
4123 	load_sum = se_weight(se) * runnable_sum;
4124 	load_avg = div_u64(load_sum, divider);
4125 
4126 	delta_avg = load_avg - se->avg.load_avg;
4127 	if (!delta_avg)
4128 		return;
4129 
4130 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4131 
4132 	se->avg.load_sum = runnable_sum;
4133 	se->avg.load_avg = load_avg;
4134 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4135 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4136 	/* See update_cfs_rq_load_avg() */
4137 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4138 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4139 }
4140 
4141 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4142 {
4143 	cfs_rq->propagate = 1;
4144 	cfs_rq->prop_runnable_sum += runnable_sum;
4145 }
4146 
4147 /* Update task and its cfs_rq load average */
4148 static inline int propagate_entity_load_avg(struct sched_entity *se)
4149 {
4150 	struct cfs_rq *cfs_rq, *gcfs_rq;
4151 
4152 	if (entity_is_task(se))
4153 		return 0;
4154 
4155 	gcfs_rq = group_cfs_rq(se);
4156 	if (!gcfs_rq->propagate)
4157 		return 0;
4158 
4159 	gcfs_rq->propagate = 0;
4160 
4161 	cfs_rq = cfs_rq_of(se);
4162 
4163 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4164 
4165 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4166 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4167 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4168 
4169 	trace_pelt_cfs_tp(cfs_rq);
4170 	trace_pelt_se_tp(se);
4171 
4172 	return 1;
4173 }
4174 
4175 /*
4176  * Check if we need to update the load and the utilization of a blocked
4177  * group_entity:
4178  */
4179 static inline bool skip_blocked_update(struct sched_entity *se)
4180 {
4181 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4182 
4183 	/*
4184 	 * If sched_entity still have not zero load or utilization, we have to
4185 	 * decay it:
4186 	 */
4187 	if (se->avg.load_avg || se->avg.util_avg)
4188 		return false;
4189 
4190 	/*
4191 	 * If there is a pending propagation, we have to update the load and
4192 	 * the utilization of the sched_entity:
4193 	 */
4194 	if (gcfs_rq->propagate)
4195 		return false;
4196 
4197 	/*
4198 	 * Otherwise, the load and the utilization of the sched_entity is
4199 	 * already zero and there is no pending propagation, so it will be a
4200 	 * waste of time to try to decay it:
4201 	 */
4202 	return true;
4203 }
4204 
4205 #else /* CONFIG_FAIR_GROUP_SCHED */
4206 
4207 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4208 
4209 static inline int propagate_entity_load_avg(struct sched_entity *se)
4210 {
4211 	return 0;
4212 }
4213 
4214 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4215 
4216 #endif /* CONFIG_FAIR_GROUP_SCHED */
4217 
4218 #ifdef CONFIG_NO_HZ_COMMON
4219 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4220 {
4221 	u64 throttled = 0, now, lut;
4222 	struct cfs_rq *cfs_rq;
4223 	struct rq *rq;
4224 	bool is_idle;
4225 
4226 	if (load_avg_is_decayed(&se->avg))
4227 		return;
4228 
4229 	cfs_rq = cfs_rq_of(se);
4230 	rq = rq_of(cfs_rq);
4231 
4232 	rcu_read_lock();
4233 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4234 	rcu_read_unlock();
4235 
4236 	/*
4237 	 * The lag estimation comes with a cost we don't want to pay all the
4238 	 * time. Hence, limiting to the case where the source CPU is idle and
4239 	 * we know we are at the greatest risk to have an outdated clock.
4240 	 */
4241 	if (!is_idle)
4242 		return;
4243 
4244 	/*
4245 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4246 	 *
4247 	 *   last_update_time (the cfs_rq's last_update_time)
4248 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4249 	 *      = rq_clock_pelt()@cfs_rq_idle
4250 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4251 	 *
4252 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4253 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4254 	 *
4255 	 *   rq_idle_lag (delta between now and rq's update)
4256 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4257 	 *
4258 	 * We can then write:
4259 	 *
4260 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4261 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4262 	 * Where:
4263 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4264 	 *      rq_clock()@rq_idle      is rq->clock_idle
4265 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4266 	 *                              is cfs_rq->throttled_pelt_idle
4267 	 */
4268 
4269 #ifdef CONFIG_CFS_BANDWIDTH
4270 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4271 	/* The clock has been stopped for throttling */
4272 	if (throttled == U64_MAX)
4273 		return;
4274 #endif
4275 	now = u64_u32_load(rq->clock_pelt_idle);
4276 	/*
4277 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4278 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4279 	 * which lead to an underestimation. The opposite would lead to an
4280 	 * overestimation.
4281 	 */
4282 	smp_rmb();
4283 	lut = cfs_rq_last_update_time(cfs_rq);
4284 
4285 	now -= throttled;
4286 	if (now < lut)
4287 		/*
4288 		 * cfs_rq->avg.last_update_time is more recent than our
4289 		 * estimation, let's use it.
4290 		 */
4291 		now = lut;
4292 	else
4293 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4294 
4295 	__update_load_avg_blocked_se(now, se);
4296 }
4297 #else
4298 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4299 #endif
4300 
4301 /**
4302  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4303  * @now: current time, as per cfs_rq_clock_pelt()
4304  * @cfs_rq: cfs_rq to update
4305  *
4306  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4307  * avg. The immediate corollary is that all (fair) tasks must be attached.
4308  *
4309  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4310  *
4311  * Return: true if the load decayed or we removed load.
4312  *
4313  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4314  * call update_tg_load_avg() when this function returns true.
4315  */
4316 static inline int
4317 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4318 {
4319 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4320 	struct sched_avg *sa = &cfs_rq->avg;
4321 	int decayed = 0;
4322 
4323 	if (cfs_rq->removed.nr) {
4324 		unsigned long r;
4325 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4326 
4327 		raw_spin_lock(&cfs_rq->removed.lock);
4328 		swap(cfs_rq->removed.util_avg, removed_util);
4329 		swap(cfs_rq->removed.load_avg, removed_load);
4330 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4331 		cfs_rq->removed.nr = 0;
4332 		raw_spin_unlock(&cfs_rq->removed.lock);
4333 
4334 		r = removed_load;
4335 		sub_positive(&sa->load_avg, r);
4336 		sub_positive(&sa->load_sum, r * divider);
4337 		/* See sa->util_sum below */
4338 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4339 
4340 		r = removed_util;
4341 		sub_positive(&sa->util_avg, r);
4342 		sub_positive(&sa->util_sum, r * divider);
4343 		/*
4344 		 * Because of rounding, se->util_sum might ends up being +1 more than
4345 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4346 		 * a lot of tasks with the rounding problem between 2 updates of
4347 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4348 		 * cfs_util_avg is not.
4349 		 * Check that util_sum is still above its lower bound for the new
4350 		 * util_avg. Given that period_contrib might have moved since the last
4351 		 * sync, we are only sure that util_sum must be above or equal to
4352 		 *    util_avg * minimum possible divider
4353 		 */
4354 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4355 
4356 		r = removed_runnable;
4357 		sub_positive(&sa->runnable_avg, r);
4358 		sub_positive(&sa->runnable_sum, r * divider);
4359 		/* See sa->util_sum above */
4360 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4361 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4362 
4363 		/*
4364 		 * removed_runnable is the unweighted version of removed_load so we
4365 		 * can use it to estimate removed_load_sum.
4366 		 */
4367 		add_tg_cfs_propagate(cfs_rq,
4368 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4369 
4370 		decayed = 1;
4371 	}
4372 
4373 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4374 	u64_u32_store_copy(sa->last_update_time,
4375 			   cfs_rq->last_update_time_copy,
4376 			   sa->last_update_time);
4377 	return decayed;
4378 }
4379 
4380 /**
4381  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4382  * @cfs_rq: cfs_rq to attach to
4383  * @se: sched_entity to attach
4384  *
4385  * Must call update_cfs_rq_load_avg() before this, since we rely on
4386  * cfs_rq->avg.last_update_time being current.
4387  */
4388 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4389 {
4390 	/*
4391 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4392 	 * See ___update_load_avg() for details.
4393 	 */
4394 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4395 
4396 	/*
4397 	 * When we attach the @se to the @cfs_rq, we must align the decay
4398 	 * window because without that, really weird and wonderful things can
4399 	 * happen.
4400 	 *
4401 	 * XXX illustrate
4402 	 */
4403 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4404 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4405 
4406 	/*
4407 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4408 	 * period_contrib. This isn't strictly correct, but since we're
4409 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4410 	 * _sum a little.
4411 	 */
4412 	se->avg.util_sum = se->avg.util_avg * divider;
4413 
4414 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4415 
4416 	se->avg.load_sum = se->avg.load_avg * divider;
4417 	if (se_weight(se) < se->avg.load_sum)
4418 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4419 	else
4420 		se->avg.load_sum = 1;
4421 
4422 	enqueue_load_avg(cfs_rq, se);
4423 	cfs_rq->avg.util_avg += se->avg.util_avg;
4424 	cfs_rq->avg.util_sum += se->avg.util_sum;
4425 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4426 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4427 
4428 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4429 
4430 	cfs_rq_util_change(cfs_rq, 0);
4431 
4432 	trace_pelt_cfs_tp(cfs_rq);
4433 }
4434 
4435 /**
4436  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4437  * @cfs_rq: cfs_rq to detach from
4438  * @se: sched_entity to detach
4439  *
4440  * Must call update_cfs_rq_load_avg() before this, since we rely on
4441  * cfs_rq->avg.last_update_time being current.
4442  */
4443 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4444 {
4445 	dequeue_load_avg(cfs_rq, se);
4446 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4447 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4448 	/* See update_cfs_rq_load_avg() */
4449 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4450 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4451 
4452 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4453 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4454 	/* See update_cfs_rq_load_avg() */
4455 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4456 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4457 
4458 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4459 
4460 	cfs_rq_util_change(cfs_rq, 0);
4461 
4462 	trace_pelt_cfs_tp(cfs_rq);
4463 }
4464 
4465 /*
4466  * Optional action to be done while updating the load average
4467  */
4468 #define UPDATE_TG	0x1
4469 #define SKIP_AGE_LOAD	0x2
4470 #define DO_ATTACH	0x4
4471 #define DO_DETACH	0x8
4472 
4473 /* Update task and its cfs_rq load average */
4474 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4475 {
4476 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4477 	int decayed;
4478 
4479 	/*
4480 	 * Track task load average for carrying it to new CPU after migrated, and
4481 	 * track group sched_entity load average for task_h_load calc in migration
4482 	 */
4483 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4484 		__update_load_avg_se(now, cfs_rq, se);
4485 
4486 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4487 	decayed |= propagate_entity_load_avg(se);
4488 
4489 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4490 
4491 		/*
4492 		 * DO_ATTACH means we're here from enqueue_entity().
4493 		 * !last_update_time means we've passed through
4494 		 * migrate_task_rq_fair() indicating we migrated.
4495 		 *
4496 		 * IOW we're enqueueing a task on a new CPU.
4497 		 */
4498 		attach_entity_load_avg(cfs_rq, se);
4499 		update_tg_load_avg(cfs_rq);
4500 
4501 	} else if (flags & DO_DETACH) {
4502 		/*
4503 		 * DO_DETACH means we're here from dequeue_entity()
4504 		 * and we are migrating task out of the CPU.
4505 		 */
4506 		detach_entity_load_avg(cfs_rq, se);
4507 		update_tg_load_avg(cfs_rq);
4508 	} else if (decayed) {
4509 		cfs_rq_util_change(cfs_rq, 0);
4510 
4511 		if (flags & UPDATE_TG)
4512 			update_tg_load_avg(cfs_rq);
4513 	}
4514 }
4515 
4516 /*
4517  * Synchronize entity load avg of dequeued entity without locking
4518  * the previous rq.
4519  */
4520 static void sync_entity_load_avg(struct sched_entity *se)
4521 {
4522 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4523 	u64 last_update_time;
4524 
4525 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4526 	__update_load_avg_blocked_se(last_update_time, se);
4527 }
4528 
4529 /*
4530  * Task first catches up with cfs_rq, and then subtract
4531  * itself from the cfs_rq (task must be off the queue now).
4532  */
4533 static void remove_entity_load_avg(struct sched_entity *se)
4534 {
4535 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4536 	unsigned long flags;
4537 
4538 	/*
4539 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4540 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4541 	 * so we can remove unconditionally.
4542 	 */
4543 
4544 	sync_entity_load_avg(se);
4545 
4546 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4547 	++cfs_rq->removed.nr;
4548 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4549 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4550 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4551 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4552 }
4553 
4554 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4555 {
4556 	return cfs_rq->avg.runnable_avg;
4557 }
4558 
4559 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4560 {
4561 	return cfs_rq->avg.load_avg;
4562 }
4563 
4564 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4565 
4566 static inline unsigned long task_util(struct task_struct *p)
4567 {
4568 	return READ_ONCE(p->se.avg.util_avg);
4569 }
4570 
4571 static inline unsigned long _task_util_est(struct task_struct *p)
4572 {
4573 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4574 
4575 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4576 }
4577 
4578 static inline unsigned long task_util_est(struct task_struct *p)
4579 {
4580 	return max(task_util(p), _task_util_est(p));
4581 }
4582 
4583 #ifdef CONFIG_UCLAMP_TASK
4584 static inline unsigned long uclamp_task_util(struct task_struct *p,
4585 					     unsigned long uclamp_min,
4586 					     unsigned long uclamp_max)
4587 {
4588 	return clamp(task_util_est(p), uclamp_min, uclamp_max);
4589 }
4590 #else
4591 static inline unsigned long uclamp_task_util(struct task_struct *p,
4592 					     unsigned long uclamp_min,
4593 					     unsigned long uclamp_max)
4594 {
4595 	return task_util_est(p);
4596 }
4597 #endif
4598 
4599 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4600 				    struct task_struct *p)
4601 {
4602 	unsigned int enqueued;
4603 
4604 	if (!sched_feat(UTIL_EST))
4605 		return;
4606 
4607 	/* Update root cfs_rq's estimated utilization */
4608 	enqueued  = cfs_rq->avg.util_est.enqueued;
4609 	enqueued += _task_util_est(p);
4610 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4611 
4612 	trace_sched_util_est_cfs_tp(cfs_rq);
4613 }
4614 
4615 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4616 				    struct task_struct *p)
4617 {
4618 	unsigned int enqueued;
4619 
4620 	if (!sched_feat(UTIL_EST))
4621 		return;
4622 
4623 	/* Update root cfs_rq's estimated utilization */
4624 	enqueued  = cfs_rq->avg.util_est.enqueued;
4625 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4626 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4627 
4628 	trace_sched_util_est_cfs_tp(cfs_rq);
4629 }
4630 
4631 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4632 
4633 /*
4634  * Check if a (signed) value is within a specified (unsigned) margin,
4635  * based on the observation that:
4636  *
4637  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4638  *
4639  * NOTE: this only works when value + margin < INT_MAX.
4640  */
4641 static inline bool within_margin(int value, int margin)
4642 {
4643 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4644 }
4645 
4646 static inline void util_est_update(struct cfs_rq *cfs_rq,
4647 				   struct task_struct *p,
4648 				   bool task_sleep)
4649 {
4650 	long last_ewma_diff, last_enqueued_diff;
4651 	struct util_est ue;
4652 
4653 	if (!sched_feat(UTIL_EST))
4654 		return;
4655 
4656 	/*
4657 	 * Skip update of task's estimated utilization when the task has not
4658 	 * yet completed an activation, e.g. being migrated.
4659 	 */
4660 	if (!task_sleep)
4661 		return;
4662 
4663 	/*
4664 	 * If the PELT values haven't changed since enqueue time,
4665 	 * skip the util_est update.
4666 	 */
4667 	ue = p->se.avg.util_est;
4668 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4669 		return;
4670 
4671 	last_enqueued_diff = ue.enqueued;
4672 
4673 	/*
4674 	 * Reset EWMA on utilization increases, the moving average is used only
4675 	 * to smooth utilization decreases.
4676 	 */
4677 	ue.enqueued = task_util(p);
4678 	if (sched_feat(UTIL_EST_FASTUP)) {
4679 		if (ue.ewma < ue.enqueued) {
4680 			ue.ewma = ue.enqueued;
4681 			goto done;
4682 		}
4683 	}
4684 
4685 	/*
4686 	 * Skip update of task's estimated utilization when its members are
4687 	 * already ~1% close to its last activation value.
4688 	 */
4689 	last_ewma_diff = ue.enqueued - ue.ewma;
4690 	last_enqueued_diff -= ue.enqueued;
4691 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4692 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4693 			goto done;
4694 
4695 		return;
4696 	}
4697 
4698 	/*
4699 	 * To avoid overestimation of actual task utilization, skip updates if
4700 	 * we cannot grant there is idle time in this CPU.
4701 	 */
4702 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4703 		return;
4704 
4705 	/*
4706 	 * Update Task's estimated utilization
4707 	 *
4708 	 * When *p completes an activation we can consolidate another sample
4709 	 * of the task size. This is done by storing the current PELT value
4710 	 * as ue.enqueued and by using this value to update the Exponential
4711 	 * Weighted Moving Average (EWMA):
4712 	 *
4713 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4714 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4715 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4716 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4717 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4718 	 *
4719 	 * Where 'w' is the weight of new samples, which is configured to be
4720 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4721 	 */
4722 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4723 	ue.ewma  += last_ewma_diff;
4724 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4725 done:
4726 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4727 	WRITE_ONCE(p->se.avg.util_est, ue);
4728 
4729 	trace_sched_util_est_se_tp(&p->se);
4730 }
4731 
4732 static inline int util_fits_cpu(unsigned long util,
4733 				unsigned long uclamp_min,
4734 				unsigned long uclamp_max,
4735 				int cpu)
4736 {
4737 	unsigned long capacity_orig, capacity_orig_thermal;
4738 	unsigned long capacity = capacity_of(cpu);
4739 	bool fits, uclamp_max_fits;
4740 
4741 	/*
4742 	 * Check if the real util fits without any uclamp boost/cap applied.
4743 	 */
4744 	fits = fits_capacity(util, capacity);
4745 
4746 	if (!uclamp_is_used())
4747 		return fits;
4748 
4749 	/*
4750 	 * We must use capacity_orig_of() for comparing against uclamp_min and
4751 	 * uclamp_max. We only care about capacity pressure (by using
4752 	 * capacity_of()) for comparing against the real util.
4753 	 *
4754 	 * If a task is boosted to 1024 for example, we don't want a tiny
4755 	 * pressure to skew the check whether it fits a CPU or not.
4756 	 *
4757 	 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4758 	 * should fit a little cpu even if there's some pressure.
4759 	 *
4760 	 * Only exception is for thermal pressure since it has a direct impact
4761 	 * on available OPP of the system.
4762 	 *
4763 	 * We honour it for uclamp_min only as a drop in performance level
4764 	 * could result in not getting the requested minimum performance level.
4765 	 *
4766 	 * For uclamp_max, we can tolerate a drop in performance level as the
4767 	 * goal is to cap the task. So it's okay if it's getting less.
4768 	 */
4769 	capacity_orig = capacity_orig_of(cpu);
4770 	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4771 
4772 	/*
4773 	 * We want to force a task to fit a cpu as implied by uclamp_max.
4774 	 * But we do have some corner cases to cater for..
4775 	 *
4776 	 *
4777 	 *                                 C=z
4778 	 *   |                             ___
4779 	 *   |                  C=y       |   |
4780 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
4781 	 *   |      C=x        |   |      |   |
4782 	 *   |      ___        |   |      |   |
4783 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
4784 	 *   |     |   |       |   |      |   |
4785 	 *   |     |   |       |   |      |   |
4786 	 *   +----------------------------------------
4787 	 *         cpu0        cpu1       cpu2
4788 	 *
4789 	 *   In the above example if a task is capped to a specific performance
4790 	 *   point, y, then when:
4791 	 *
4792 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
4793 	 *     to cpu1
4794 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
4795 	 *     uclamp_max request.
4796 	 *
4797 	 *   which is what we're enforcing here. A task always fits if
4798 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4799 	 *   the normal upmigration rules should withhold still.
4800 	 *
4801 	 *   Only exception is when we are on max capacity, then we need to be
4802 	 *   careful not to block overutilized state. This is so because:
4803 	 *
4804 	 *     1. There's no concept of capping at max_capacity! We can't go
4805 	 *        beyond this performance level anyway.
4806 	 *     2. The system is being saturated when we're operating near
4807 	 *        max capacity, it doesn't make sense to block overutilized.
4808 	 */
4809 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
4810 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
4811 	fits = fits || uclamp_max_fits;
4812 
4813 	/*
4814 	 *
4815 	 *                                 C=z
4816 	 *   |                             ___       (region a, capped, util >= uclamp_max)
4817 	 *   |                  C=y       |   |
4818 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4819 	 *   |      C=x        |   |      |   |
4820 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
4821 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
4822 	 *   |     |   |       |   |      |   |
4823 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
4824 	 *   +----------------------------------------
4825 	 *         cpu0        cpu1       cpu2
4826 	 *
4827 	 * a) If util > uclamp_max, then we're capped, we don't care about
4828 	 *    actual fitness value here. We only care if uclamp_max fits
4829 	 *    capacity without taking margin/pressure into account.
4830 	 *    See comment above.
4831 	 *
4832 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
4833 	 *    fits_capacity() rules apply. Except we need to ensure that we
4834 	 *    enforce we remain within uclamp_max, see comment above.
4835 	 *
4836 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
4837 	 *    need to take into account the boosted value fits the CPU without
4838 	 *    taking margin/pressure into account.
4839 	 *
4840 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
4841 	 * just need to consider an extra check for case (c) after ensuring we
4842 	 * handle the case uclamp_min > uclamp_max.
4843 	 */
4844 	uclamp_min = min(uclamp_min, uclamp_max);
4845 	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
4846 		return -1;
4847 
4848 	return fits;
4849 }
4850 
4851 static inline int task_fits_cpu(struct task_struct *p, int cpu)
4852 {
4853 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
4854 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
4855 	unsigned long util = task_util_est(p);
4856 	/*
4857 	 * Return true only if the cpu fully fits the task requirements, which
4858 	 * include the utilization but also the performance hints.
4859 	 */
4860 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
4861 }
4862 
4863 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4864 {
4865 	if (!sched_asym_cpucap_active())
4866 		return;
4867 
4868 	if (!p || p->nr_cpus_allowed == 1) {
4869 		rq->misfit_task_load = 0;
4870 		return;
4871 	}
4872 
4873 	if (task_fits_cpu(p, cpu_of(rq))) {
4874 		rq->misfit_task_load = 0;
4875 		return;
4876 	}
4877 
4878 	/*
4879 	 * Make sure that misfit_task_load will not be null even if
4880 	 * task_h_load() returns 0.
4881 	 */
4882 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4883 }
4884 
4885 #else /* CONFIG_SMP */
4886 
4887 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4888 {
4889 	return true;
4890 }
4891 
4892 #define UPDATE_TG	0x0
4893 #define SKIP_AGE_LOAD	0x0
4894 #define DO_ATTACH	0x0
4895 #define DO_DETACH	0x0
4896 
4897 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4898 {
4899 	cfs_rq_util_change(cfs_rq, 0);
4900 }
4901 
4902 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4903 
4904 static inline void
4905 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4906 static inline void
4907 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4908 
4909 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4910 {
4911 	return 0;
4912 }
4913 
4914 static inline void
4915 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4916 
4917 static inline void
4918 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4919 
4920 static inline void
4921 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4922 		bool task_sleep) {}
4923 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4924 
4925 #endif /* CONFIG_SMP */
4926 
4927 static void
4928 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4929 {
4930 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
4931 	s64 lag = 0;
4932 
4933 	se->slice = sysctl_sched_base_slice;
4934 	vslice = calc_delta_fair(se->slice, se);
4935 
4936 	/*
4937 	 * Due to how V is constructed as the weighted average of entities,
4938 	 * adding tasks with positive lag, or removing tasks with negative lag
4939 	 * will move 'time' backwards, this can screw around with the lag of
4940 	 * other tasks.
4941 	 *
4942 	 * EEVDF: placement strategy #1 / #2
4943 	 */
4944 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
4945 		struct sched_entity *curr = cfs_rq->curr;
4946 		unsigned long load;
4947 
4948 		lag = se->vlag;
4949 
4950 		/*
4951 		 * If we want to place a task and preserve lag, we have to
4952 		 * consider the effect of the new entity on the weighted
4953 		 * average and compensate for this, otherwise lag can quickly
4954 		 * evaporate.
4955 		 *
4956 		 * Lag is defined as:
4957 		 *
4958 		 *   lag_i = S - s_i = w_i * (V - v_i)
4959 		 *
4960 		 * To avoid the 'w_i' term all over the place, we only track
4961 		 * the virtual lag:
4962 		 *
4963 		 *   vl_i = V - v_i <=> v_i = V - vl_i
4964 		 *
4965 		 * And we take V to be the weighted average of all v:
4966 		 *
4967 		 *   V = (\Sum w_j*v_j) / W
4968 		 *
4969 		 * Where W is: \Sum w_j
4970 		 *
4971 		 * Then, the weighted average after adding an entity with lag
4972 		 * vl_i is given by:
4973 		 *
4974 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
4975 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
4976 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
4977 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
4978 		 *      = V - w_i*vl_i / (W + w_i)
4979 		 *
4980 		 * And the actual lag after adding an entity with vl_i is:
4981 		 *
4982 		 *   vl'_i = V' - v_i
4983 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
4984 		 *         = vl_i - w_i*vl_i / (W + w_i)
4985 		 *
4986 		 * Which is strictly less than vl_i. So in order to preserve lag
4987 		 * we should inflate the lag before placement such that the
4988 		 * effective lag after placement comes out right.
4989 		 *
4990 		 * As such, invert the above relation for vl'_i to get the vl_i
4991 		 * we need to use such that the lag after placement is the lag
4992 		 * we computed before dequeue.
4993 		 *
4994 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
4995 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
4996 		 *
4997 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
4998 		 *                   = W*vl_i
4999 		 *
5000 		 *   vl_i = (W + w_i)*vl'_i / W
5001 		 */
5002 		load = cfs_rq->avg_load;
5003 		if (curr && curr->on_rq)
5004 			load += scale_load_down(curr->load.weight);
5005 
5006 		lag *= load + scale_load_down(se->load.weight);
5007 		if (WARN_ON_ONCE(!load))
5008 			load = 1;
5009 		lag = div_s64(lag, load);
5010 	}
5011 
5012 	se->vruntime = vruntime - lag;
5013 
5014 	/*
5015 	 * When joining the competition; the exisiting tasks will be,
5016 	 * on average, halfway through their slice, as such start tasks
5017 	 * off with half a slice to ease into the competition.
5018 	 */
5019 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5020 		vslice /= 2;
5021 
5022 	/*
5023 	 * EEVDF: vd_i = ve_i + r_i/w_i
5024 	 */
5025 	se->deadline = se->vruntime + vslice;
5026 }
5027 
5028 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5029 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5030 
5031 static inline bool cfs_bandwidth_used(void);
5032 
5033 static void
5034 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5035 {
5036 	bool curr = cfs_rq->curr == se;
5037 
5038 	/*
5039 	 * If we're the current task, we must renormalise before calling
5040 	 * update_curr().
5041 	 */
5042 	if (curr)
5043 		place_entity(cfs_rq, se, flags);
5044 
5045 	update_curr(cfs_rq);
5046 
5047 	/*
5048 	 * When enqueuing a sched_entity, we must:
5049 	 *   - Update loads to have both entity and cfs_rq synced with now.
5050 	 *   - For group_entity, update its runnable_weight to reflect the new
5051 	 *     h_nr_running of its group cfs_rq.
5052 	 *   - For group_entity, update its weight to reflect the new share of
5053 	 *     its group cfs_rq
5054 	 *   - Add its new weight to cfs_rq->load.weight
5055 	 */
5056 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5057 	se_update_runnable(se);
5058 	/*
5059 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5060 	 * but update_cfs_group() here will re-adjust the weight and have to
5061 	 * undo/redo all that. Seems wasteful.
5062 	 */
5063 	update_cfs_group(se);
5064 
5065 	/*
5066 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5067 	 * we can place the entity.
5068 	 */
5069 	if (!curr)
5070 		place_entity(cfs_rq, se, flags);
5071 
5072 	account_entity_enqueue(cfs_rq, se);
5073 
5074 	/* Entity has migrated, no longer consider this task hot */
5075 	if (flags & ENQUEUE_MIGRATED)
5076 		se->exec_start = 0;
5077 
5078 	check_schedstat_required();
5079 	update_stats_enqueue_fair(cfs_rq, se, flags);
5080 	if (!curr)
5081 		__enqueue_entity(cfs_rq, se);
5082 	se->on_rq = 1;
5083 
5084 	if (cfs_rq->nr_running == 1) {
5085 		check_enqueue_throttle(cfs_rq);
5086 		if (!throttled_hierarchy(cfs_rq)) {
5087 			list_add_leaf_cfs_rq(cfs_rq);
5088 		} else {
5089 #ifdef CONFIG_CFS_BANDWIDTH
5090 			struct rq *rq = rq_of(cfs_rq);
5091 
5092 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5093 				cfs_rq->throttled_clock = rq_clock(rq);
5094 			if (!cfs_rq->throttled_clock_self)
5095 				cfs_rq->throttled_clock_self = rq_clock(rq);
5096 #endif
5097 		}
5098 	}
5099 }
5100 
5101 static void __clear_buddies_next(struct sched_entity *se)
5102 {
5103 	for_each_sched_entity(se) {
5104 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5105 		if (cfs_rq->next != se)
5106 			break;
5107 
5108 		cfs_rq->next = NULL;
5109 	}
5110 }
5111 
5112 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5113 {
5114 	if (cfs_rq->next == se)
5115 		__clear_buddies_next(se);
5116 }
5117 
5118 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5119 
5120 static void
5121 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5122 {
5123 	int action = UPDATE_TG;
5124 
5125 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5126 		action |= DO_DETACH;
5127 
5128 	/*
5129 	 * Update run-time statistics of the 'current'.
5130 	 */
5131 	update_curr(cfs_rq);
5132 
5133 	/*
5134 	 * When dequeuing a sched_entity, we must:
5135 	 *   - Update loads to have both entity and cfs_rq synced with now.
5136 	 *   - For group_entity, update its runnable_weight to reflect the new
5137 	 *     h_nr_running of its group cfs_rq.
5138 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5139 	 *   - For group entity, update its weight to reflect the new share
5140 	 *     of its group cfs_rq.
5141 	 */
5142 	update_load_avg(cfs_rq, se, action);
5143 	se_update_runnable(se);
5144 
5145 	update_stats_dequeue_fair(cfs_rq, se, flags);
5146 
5147 	clear_buddies(cfs_rq, se);
5148 
5149 	update_entity_lag(cfs_rq, se);
5150 	if (se != cfs_rq->curr)
5151 		__dequeue_entity(cfs_rq, se);
5152 	se->on_rq = 0;
5153 	account_entity_dequeue(cfs_rq, se);
5154 
5155 	/* return excess runtime on last dequeue */
5156 	return_cfs_rq_runtime(cfs_rq);
5157 
5158 	update_cfs_group(se);
5159 
5160 	/*
5161 	 * Now advance min_vruntime if @se was the entity holding it back,
5162 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5163 	 * put back on, and if we advance min_vruntime, we'll be placed back
5164 	 * further than we started -- ie. we'll be penalized.
5165 	 */
5166 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5167 		update_min_vruntime(cfs_rq);
5168 
5169 	if (cfs_rq->nr_running == 0)
5170 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5171 }
5172 
5173 static void
5174 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5175 {
5176 	clear_buddies(cfs_rq, se);
5177 
5178 	/* 'current' is not kept within the tree. */
5179 	if (se->on_rq) {
5180 		/*
5181 		 * Any task has to be enqueued before it get to execute on
5182 		 * a CPU. So account for the time it spent waiting on the
5183 		 * runqueue.
5184 		 */
5185 		update_stats_wait_end_fair(cfs_rq, se);
5186 		__dequeue_entity(cfs_rq, se);
5187 		update_load_avg(cfs_rq, se, UPDATE_TG);
5188 		/*
5189 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5190 		 * which isn't used until dequeue.
5191 		 */
5192 		se->vlag = se->deadline;
5193 	}
5194 
5195 	update_stats_curr_start(cfs_rq, se);
5196 	cfs_rq->curr = se;
5197 
5198 	/*
5199 	 * Track our maximum slice length, if the CPU's load is at
5200 	 * least twice that of our own weight (i.e. dont track it
5201 	 * when there are only lesser-weight tasks around):
5202 	 */
5203 	if (schedstat_enabled() &&
5204 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5205 		struct sched_statistics *stats;
5206 
5207 		stats = __schedstats_from_se(se);
5208 		__schedstat_set(stats->slice_max,
5209 				max((u64)stats->slice_max,
5210 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5211 	}
5212 
5213 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5214 }
5215 
5216 /*
5217  * Pick the next process, keeping these things in mind, in this order:
5218  * 1) keep things fair between processes/task groups
5219  * 2) pick the "next" process, since someone really wants that to run
5220  * 3) pick the "last" process, for cache locality
5221  * 4) do not run the "skip" process, if something else is available
5222  */
5223 static struct sched_entity *
5224 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
5225 {
5226 	/*
5227 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5228 	 */
5229 	if (sched_feat(NEXT_BUDDY) &&
5230 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5231 		return cfs_rq->next;
5232 
5233 	return pick_eevdf(cfs_rq);
5234 }
5235 
5236 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5237 
5238 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5239 {
5240 	/*
5241 	 * If still on the runqueue then deactivate_task()
5242 	 * was not called and update_curr() has to be done:
5243 	 */
5244 	if (prev->on_rq)
5245 		update_curr(cfs_rq);
5246 
5247 	/* throttle cfs_rqs exceeding runtime */
5248 	check_cfs_rq_runtime(cfs_rq);
5249 
5250 	if (prev->on_rq) {
5251 		update_stats_wait_start_fair(cfs_rq, prev);
5252 		/* Put 'current' back into the tree. */
5253 		__enqueue_entity(cfs_rq, prev);
5254 		/* in !on_rq case, update occurred at dequeue */
5255 		update_load_avg(cfs_rq, prev, 0);
5256 	}
5257 	cfs_rq->curr = NULL;
5258 }
5259 
5260 static void
5261 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5262 {
5263 	/*
5264 	 * Update run-time statistics of the 'current'.
5265 	 */
5266 	update_curr(cfs_rq);
5267 
5268 	/*
5269 	 * Ensure that runnable average is periodically updated.
5270 	 */
5271 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5272 	update_cfs_group(curr);
5273 
5274 #ifdef CONFIG_SCHED_HRTICK
5275 	/*
5276 	 * queued ticks are scheduled to match the slice, so don't bother
5277 	 * validating it and just reschedule.
5278 	 */
5279 	if (queued) {
5280 		resched_curr(rq_of(cfs_rq));
5281 		return;
5282 	}
5283 	/*
5284 	 * don't let the period tick interfere with the hrtick preemption
5285 	 */
5286 	if (!sched_feat(DOUBLE_TICK) &&
5287 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5288 		return;
5289 #endif
5290 }
5291 
5292 
5293 /**************************************************
5294  * CFS bandwidth control machinery
5295  */
5296 
5297 #ifdef CONFIG_CFS_BANDWIDTH
5298 
5299 #ifdef CONFIG_JUMP_LABEL
5300 static struct static_key __cfs_bandwidth_used;
5301 
5302 static inline bool cfs_bandwidth_used(void)
5303 {
5304 	return static_key_false(&__cfs_bandwidth_used);
5305 }
5306 
5307 void cfs_bandwidth_usage_inc(void)
5308 {
5309 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5310 }
5311 
5312 void cfs_bandwidth_usage_dec(void)
5313 {
5314 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5315 }
5316 #else /* CONFIG_JUMP_LABEL */
5317 static bool cfs_bandwidth_used(void)
5318 {
5319 	return true;
5320 }
5321 
5322 void cfs_bandwidth_usage_inc(void) {}
5323 void cfs_bandwidth_usage_dec(void) {}
5324 #endif /* CONFIG_JUMP_LABEL */
5325 
5326 /*
5327  * default period for cfs group bandwidth.
5328  * default: 0.1s, units: nanoseconds
5329  */
5330 static inline u64 default_cfs_period(void)
5331 {
5332 	return 100000000ULL;
5333 }
5334 
5335 static inline u64 sched_cfs_bandwidth_slice(void)
5336 {
5337 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5338 }
5339 
5340 /*
5341  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5342  * directly instead of rq->clock to avoid adding additional synchronization
5343  * around rq->lock.
5344  *
5345  * requires cfs_b->lock
5346  */
5347 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5348 {
5349 	s64 runtime;
5350 
5351 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5352 		return;
5353 
5354 	cfs_b->runtime += cfs_b->quota;
5355 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5356 	if (runtime > 0) {
5357 		cfs_b->burst_time += runtime;
5358 		cfs_b->nr_burst++;
5359 	}
5360 
5361 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5362 	cfs_b->runtime_snap = cfs_b->runtime;
5363 }
5364 
5365 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5366 {
5367 	return &tg->cfs_bandwidth;
5368 }
5369 
5370 /* returns 0 on failure to allocate runtime */
5371 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5372 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5373 {
5374 	u64 min_amount, amount = 0;
5375 
5376 	lockdep_assert_held(&cfs_b->lock);
5377 
5378 	/* note: this is a positive sum as runtime_remaining <= 0 */
5379 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5380 
5381 	if (cfs_b->quota == RUNTIME_INF)
5382 		amount = min_amount;
5383 	else {
5384 		start_cfs_bandwidth(cfs_b);
5385 
5386 		if (cfs_b->runtime > 0) {
5387 			amount = min(cfs_b->runtime, min_amount);
5388 			cfs_b->runtime -= amount;
5389 			cfs_b->idle = 0;
5390 		}
5391 	}
5392 
5393 	cfs_rq->runtime_remaining += amount;
5394 
5395 	return cfs_rq->runtime_remaining > 0;
5396 }
5397 
5398 /* returns 0 on failure to allocate runtime */
5399 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5400 {
5401 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5402 	int ret;
5403 
5404 	raw_spin_lock(&cfs_b->lock);
5405 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5406 	raw_spin_unlock(&cfs_b->lock);
5407 
5408 	return ret;
5409 }
5410 
5411 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5412 {
5413 	/* dock delta_exec before expiring quota (as it could span periods) */
5414 	cfs_rq->runtime_remaining -= delta_exec;
5415 
5416 	if (likely(cfs_rq->runtime_remaining > 0))
5417 		return;
5418 
5419 	if (cfs_rq->throttled)
5420 		return;
5421 	/*
5422 	 * if we're unable to extend our runtime we resched so that the active
5423 	 * hierarchy can be throttled
5424 	 */
5425 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5426 		resched_curr(rq_of(cfs_rq));
5427 }
5428 
5429 static __always_inline
5430 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5431 {
5432 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5433 		return;
5434 
5435 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5436 }
5437 
5438 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5439 {
5440 	return cfs_bandwidth_used() && cfs_rq->throttled;
5441 }
5442 
5443 /* check whether cfs_rq, or any parent, is throttled */
5444 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5445 {
5446 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5447 }
5448 
5449 /*
5450  * Ensure that neither of the group entities corresponding to src_cpu or
5451  * dest_cpu are members of a throttled hierarchy when performing group
5452  * load-balance operations.
5453  */
5454 static inline int throttled_lb_pair(struct task_group *tg,
5455 				    int src_cpu, int dest_cpu)
5456 {
5457 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5458 
5459 	src_cfs_rq = tg->cfs_rq[src_cpu];
5460 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5461 
5462 	return throttled_hierarchy(src_cfs_rq) ||
5463 	       throttled_hierarchy(dest_cfs_rq);
5464 }
5465 
5466 static int tg_unthrottle_up(struct task_group *tg, void *data)
5467 {
5468 	struct rq *rq = data;
5469 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5470 
5471 	cfs_rq->throttle_count--;
5472 	if (!cfs_rq->throttle_count) {
5473 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5474 					     cfs_rq->throttled_clock_pelt;
5475 
5476 		/* Add cfs_rq with load or one or more already running entities to the list */
5477 		if (!cfs_rq_is_decayed(cfs_rq))
5478 			list_add_leaf_cfs_rq(cfs_rq);
5479 
5480 		if (cfs_rq->throttled_clock_self) {
5481 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5482 
5483 			cfs_rq->throttled_clock_self = 0;
5484 
5485 			if (SCHED_WARN_ON((s64)delta < 0))
5486 				delta = 0;
5487 
5488 			cfs_rq->throttled_clock_self_time += delta;
5489 		}
5490 	}
5491 
5492 	return 0;
5493 }
5494 
5495 static int tg_throttle_down(struct task_group *tg, void *data)
5496 {
5497 	struct rq *rq = data;
5498 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5499 
5500 	/* group is entering throttled state, stop time */
5501 	if (!cfs_rq->throttle_count) {
5502 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5503 		list_del_leaf_cfs_rq(cfs_rq);
5504 
5505 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5506 		if (cfs_rq->nr_running)
5507 			cfs_rq->throttled_clock_self = rq_clock(rq);
5508 	}
5509 	cfs_rq->throttle_count++;
5510 
5511 	return 0;
5512 }
5513 
5514 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5515 {
5516 	struct rq *rq = rq_of(cfs_rq);
5517 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5518 	struct sched_entity *se;
5519 	long task_delta, idle_task_delta, dequeue = 1;
5520 
5521 	raw_spin_lock(&cfs_b->lock);
5522 	/* This will start the period timer if necessary */
5523 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5524 		/*
5525 		 * We have raced with bandwidth becoming available, and if we
5526 		 * actually throttled the timer might not unthrottle us for an
5527 		 * entire period. We additionally needed to make sure that any
5528 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5529 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5530 		 * for 1ns of runtime rather than just check cfs_b.
5531 		 */
5532 		dequeue = 0;
5533 	} else {
5534 		list_add_tail_rcu(&cfs_rq->throttled_list,
5535 				  &cfs_b->throttled_cfs_rq);
5536 	}
5537 	raw_spin_unlock(&cfs_b->lock);
5538 
5539 	if (!dequeue)
5540 		return false;  /* Throttle no longer required. */
5541 
5542 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5543 
5544 	/* freeze hierarchy runnable averages while throttled */
5545 	rcu_read_lock();
5546 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5547 	rcu_read_unlock();
5548 
5549 	task_delta = cfs_rq->h_nr_running;
5550 	idle_task_delta = cfs_rq->idle_h_nr_running;
5551 	for_each_sched_entity(se) {
5552 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5553 		/* throttled entity or throttle-on-deactivate */
5554 		if (!se->on_rq)
5555 			goto done;
5556 
5557 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5558 
5559 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5560 			idle_task_delta = cfs_rq->h_nr_running;
5561 
5562 		qcfs_rq->h_nr_running -= task_delta;
5563 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5564 
5565 		if (qcfs_rq->load.weight) {
5566 			/* Avoid re-evaluating load for this entity: */
5567 			se = parent_entity(se);
5568 			break;
5569 		}
5570 	}
5571 
5572 	for_each_sched_entity(se) {
5573 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5574 		/* throttled entity or throttle-on-deactivate */
5575 		if (!se->on_rq)
5576 			goto done;
5577 
5578 		update_load_avg(qcfs_rq, se, 0);
5579 		se_update_runnable(se);
5580 
5581 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5582 			idle_task_delta = cfs_rq->h_nr_running;
5583 
5584 		qcfs_rq->h_nr_running -= task_delta;
5585 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5586 	}
5587 
5588 	/* At this point se is NULL and we are at root level*/
5589 	sub_nr_running(rq, task_delta);
5590 
5591 done:
5592 	/*
5593 	 * Note: distribution will already see us throttled via the
5594 	 * throttled-list.  rq->lock protects completion.
5595 	 */
5596 	cfs_rq->throttled = 1;
5597 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5598 	if (cfs_rq->nr_running)
5599 		cfs_rq->throttled_clock = rq_clock(rq);
5600 	return true;
5601 }
5602 
5603 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5604 {
5605 	struct rq *rq = rq_of(cfs_rq);
5606 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5607 	struct sched_entity *se;
5608 	long task_delta, idle_task_delta;
5609 
5610 	se = cfs_rq->tg->se[cpu_of(rq)];
5611 
5612 	cfs_rq->throttled = 0;
5613 
5614 	update_rq_clock(rq);
5615 
5616 	raw_spin_lock(&cfs_b->lock);
5617 	if (cfs_rq->throttled_clock) {
5618 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5619 		cfs_rq->throttled_clock = 0;
5620 	}
5621 	list_del_rcu(&cfs_rq->throttled_list);
5622 	raw_spin_unlock(&cfs_b->lock);
5623 
5624 	/* update hierarchical throttle state */
5625 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5626 
5627 	if (!cfs_rq->load.weight) {
5628 		if (!cfs_rq->on_list)
5629 			return;
5630 		/*
5631 		 * Nothing to run but something to decay (on_list)?
5632 		 * Complete the branch.
5633 		 */
5634 		for_each_sched_entity(se) {
5635 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5636 				break;
5637 		}
5638 		goto unthrottle_throttle;
5639 	}
5640 
5641 	task_delta = cfs_rq->h_nr_running;
5642 	idle_task_delta = cfs_rq->idle_h_nr_running;
5643 	for_each_sched_entity(se) {
5644 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5645 
5646 		if (se->on_rq)
5647 			break;
5648 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5649 
5650 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5651 			idle_task_delta = cfs_rq->h_nr_running;
5652 
5653 		qcfs_rq->h_nr_running += task_delta;
5654 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5655 
5656 		/* end evaluation on encountering a throttled cfs_rq */
5657 		if (cfs_rq_throttled(qcfs_rq))
5658 			goto unthrottle_throttle;
5659 	}
5660 
5661 	for_each_sched_entity(se) {
5662 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5663 
5664 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5665 		se_update_runnable(se);
5666 
5667 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5668 			idle_task_delta = cfs_rq->h_nr_running;
5669 
5670 		qcfs_rq->h_nr_running += task_delta;
5671 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5672 
5673 		/* end evaluation on encountering a throttled cfs_rq */
5674 		if (cfs_rq_throttled(qcfs_rq))
5675 			goto unthrottle_throttle;
5676 	}
5677 
5678 	/* At this point se is NULL and we are at root level*/
5679 	add_nr_running(rq, task_delta);
5680 
5681 unthrottle_throttle:
5682 	assert_list_leaf_cfs_rq(rq);
5683 
5684 	/* Determine whether we need to wake up potentially idle CPU: */
5685 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5686 		resched_curr(rq);
5687 }
5688 
5689 #ifdef CONFIG_SMP
5690 static void __cfsb_csd_unthrottle(void *arg)
5691 {
5692 	struct cfs_rq *cursor, *tmp;
5693 	struct rq *rq = arg;
5694 	struct rq_flags rf;
5695 
5696 	rq_lock(rq, &rf);
5697 
5698 	/*
5699 	 * Iterating over the list can trigger several call to
5700 	 * update_rq_clock() in unthrottle_cfs_rq().
5701 	 * Do it once and skip the potential next ones.
5702 	 */
5703 	update_rq_clock(rq);
5704 	rq_clock_start_loop_update(rq);
5705 
5706 	/*
5707 	 * Since we hold rq lock we're safe from concurrent manipulation of
5708 	 * the CSD list. However, this RCU critical section annotates the
5709 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5710 	 * race with group being freed in the window between removing it
5711 	 * from the list and advancing to the next entry in the list.
5712 	 */
5713 	rcu_read_lock();
5714 
5715 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5716 				 throttled_csd_list) {
5717 		list_del_init(&cursor->throttled_csd_list);
5718 
5719 		if (cfs_rq_throttled(cursor))
5720 			unthrottle_cfs_rq(cursor);
5721 	}
5722 
5723 	rcu_read_unlock();
5724 
5725 	rq_clock_stop_loop_update(rq);
5726 	rq_unlock(rq, &rf);
5727 }
5728 
5729 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5730 {
5731 	struct rq *rq = rq_of(cfs_rq);
5732 	bool first;
5733 
5734 	if (rq == this_rq()) {
5735 		unthrottle_cfs_rq(cfs_rq);
5736 		return;
5737 	}
5738 
5739 	/* Already enqueued */
5740 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5741 		return;
5742 
5743 	first = list_empty(&rq->cfsb_csd_list);
5744 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5745 	if (first)
5746 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5747 }
5748 #else
5749 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5750 {
5751 	unthrottle_cfs_rq(cfs_rq);
5752 }
5753 #endif
5754 
5755 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5756 {
5757 	lockdep_assert_rq_held(rq_of(cfs_rq));
5758 
5759 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5760 	    cfs_rq->runtime_remaining <= 0))
5761 		return;
5762 
5763 	__unthrottle_cfs_rq_async(cfs_rq);
5764 }
5765 
5766 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5767 {
5768 	struct cfs_rq *local_unthrottle = NULL;
5769 	int this_cpu = smp_processor_id();
5770 	u64 runtime, remaining = 1;
5771 	bool throttled = false;
5772 	struct cfs_rq *cfs_rq;
5773 	struct rq_flags rf;
5774 	struct rq *rq;
5775 
5776 	rcu_read_lock();
5777 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5778 				throttled_list) {
5779 		rq = rq_of(cfs_rq);
5780 
5781 		if (!remaining) {
5782 			throttled = true;
5783 			break;
5784 		}
5785 
5786 		rq_lock_irqsave(rq, &rf);
5787 		if (!cfs_rq_throttled(cfs_rq))
5788 			goto next;
5789 
5790 #ifdef CONFIG_SMP
5791 		/* Already queued for async unthrottle */
5792 		if (!list_empty(&cfs_rq->throttled_csd_list))
5793 			goto next;
5794 #endif
5795 
5796 		/* By the above checks, this should never be true */
5797 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5798 
5799 		raw_spin_lock(&cfs_b->lock);
5800 		runtime = -cfs_rq->runtime_remaining + 1;
5801 		if (runtime > cfs_b->runtime)
5802 			runtime = cfs_b->runtime;
5803 		cfs_b->runtime -= runtime;
5804 		remaining = cfs_b->runtime;
5805 		raw_spin_unlock(&cfs_b->lock);
5806 
5807 		cfs_rq->runtime_remaining += runtime;
5808 
5809 		/* we check whether we're throttled above */
5810 		if (cfs_rq->runtime_remaining > 0) {
5811 			if (cpu_of(rq) != this_cpu ||
5812 			    SCHED_WARN_ON(local_unthrottle))
5813 				unthrottle_cfs_rq_async(cfs_rq);
5814 			else
5815 				local_unthrottle = cfs_rq;
5816 		} else {
5817 			throttled = true;
5818 		}
5819 
5820 next:
5821 		rq_unlock_irqrestore(rq, &rf);
5822 	}
5823 	rcu_read_unlock();
5824 
5825 	if (local_unthrottle) {
5826 		rq = cpu_rq(this_cpu);
5827 		rq_lock_irqsave(rq, &rf);
5828 		if (cfs_rq_throttled(local_unthrottle))
5829 			unthrottle_cfs_rq(local_unthrottle);
5830 		rq_unlock_irqrestore(rq, &rf);
5831 	}
5832 
5833 	return throttled;
5834 }
5835 
5836 /*
5837  * Responsible for refilling a task_group's bandwidth and unthrottling its
5838  * cfs_rqs as appropriate. If there has been no activity within the last
5839  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5840  * used to track this state.
5841  */
5842 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5843 {
5844 	int throttled;
5845 
5846 	/* no need to continue the timer with no bandwidth constraint */
5847 	if (cfs_b->quota == RUNTIME_INF)
5848 		goto out_deactivate;
5849 
5850 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5851 	cfs_b->nr_periods += overrun;
5852 
5853 	/* Refill extra burst quota even if cfs_b->idle */
5854 	__refill_cfs_bandwidth_runtime(cfs_b);
5855 
5856 	/*
5857 	 * idle depends on !throttled (for the case of a large deficit), and if
5858 	 * we're going inactive then everything else can be deferred
5859 	 */
5860 	if (cfs_b->idle && !throttled)
5861 		goto out_deactivate;
5862 
5863 	if (!throttled) {
5864 		/* mark as potentially idle for the upcoming period */
5865 		cfs_b->idle = 1;
5866 		return 0;
5867 	}
5868 
5869 	/* account preceding periods in which throttling occurred */
5870 	cfs_b->nr_throttled += overrun;
5871 
5872 	/*
5873 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5874 	 */
5875 	while (throttled && cfs_b->runtime > 0) {
5876 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5877 		/* we can't nest cfs_b->lock while distributing bandwidth */
5878 		throttled = distribute_cfs_runtime(cfs_b);
5879 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5880 	}
5881 
5882 	/*
5883 	 * While we are ensured activity in the period following an
5884 	 * unthrottle, this also covers the case in which the new bandwidth is
5885 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5886 	 * timer to remain active while there are any throttled entities.)
5887 	 */
5888 	cfs_b->idle = 0;
5889 
5890 	return 0;
5891 
5892 out_deactivate:
5893 	return 1;
5894 }
5895 
5896 /* a cfs_rq won't donate quota below this amount */
5897 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5898 /* minimum remaining period time to redistribute slack quota */
5899 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5900 /* how long we wait to gather additional slack before distributing */
5901 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5902 
5903 /*
5904  * Are we near the end of the current quota period?
5905  *
5906  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5907  * hrtimer base being cleared by hrtimer_start. In the case of
5908  * migrate_hrtimers, base is never cleared, so we are fine.
5909  */
5910 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5911 {
5912 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5913 	s64 remaining;
5914 
5915 	/* if the call-back is running a quota refresh is already occurring */
5916 	if (hrtimer_callback_running(refresh_timer))
5917 		return 1;
5918 
5919 	/* is a quota refresh about to occur? */
5920 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5921 	if (remaining < (s64)min_expire)
5922 		return 1;
5923 
5924 	return 0;
5925 }
5926 
5927 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5928 {
5929 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5930 
5931 	/* if there's a quota refresh soon don't bother with slack */
5932 	if (runtime_refresh_within(cfs_b, min_left))
5933 		return;
5934 
5935 	/* don't push forwards an existing deferred unthrottle */
5936 	if (cfs_b->slack_started)
5937 		return;
5938 	cfs_b->slack_started = true;
5939 
5940 	hrtimer_start(&cfs_b->slack_timer,
5941 			ns_to_ktime(cfs_bandwidth_slack_period),
5942 			HRTIMER_MODE_REL);
5943 }
5944 
5945 /* we know any runtime found here is valid as update_curr() precedes return */
5946 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5947 {
5948 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5949 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5950 
5951 	if (slack_runtime <= 0)
5952 		return;
5953 
5954 	raw_spin_lock(&cfs_b->lock);
5955 	if (cfs_b->quota != RUNTIME_INF) {
5956 		cfs_b->runtime += slack_runtime;
5957 
5958 		/* we are under rq->lock, defer unthrottling using a timer */
5959 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5960 		    !list_empty(&cfs_b->throttled_cfs_rq))
5961 			start_cfs_slack_bandwidth(cfs_b);
5962 	}
5963 	raw_spin_unlock(&cfs_b->lock);
5964 
5965 	/* even if it's not valid for return we don't want to try again */
5966 	cfs_rq->runtime_remaining -= slack_runtime;
5967 }
5968 
5969 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5970 {
5971 	if (!cfs_bandwidth_used())
5972 		return;
5973 
5974 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5975 		return;
5976 
5977 	__return_cfs_rq_runtime(cfs_rq);
5978 }
5979 
5980 /*
5981  * This is done with a timer (instead of inline with bandwidth return) since
5982  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5983  */
5984 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5985 {
5986 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5987 	unsigned long flags;
5988 
5989 	/* confirm we're still not at a refresh boundary */
5990 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5991 	cfs_b->slack_started = false;
5992 
5993 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5994 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5995 		return;
5996 	}
5997 
5998 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5999 		runtime = cfs_b->runtime;
6000 
6001 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6002 
6003 	if (!runtime)
6004 		return;
6005 
6006 	distribute_cfs_runtime(cfs_b);
6007 }
6008 
6009 /*
6010  * When a group wakes up we want to make sure that its quota is not already
6011  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6012  * runtime as update_curr() throttling can not trigger until it's on-rq.
6013  */
6014 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6015 {
6016 	if (!cfs_bandwidth_used())
6017 		return;
6018 
6019 	/* an active group must be handled by the update_curr()->put() path */
6020 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6021 		return;
6022 
6023 	/* ensure the group is not already throttled */
6024 	if (cfs_rq_throttled(cfs_rq))
6025 		return;
6026 
6027 	/* update runtime allocation */
6028 	account_cfs_rq_runtime(cfs_rq, 0);
6029 	if (cfs_rq->runtime_remaining <= 0)
6030 		throttle_cfs_rq(cfs_rq);
6031 }
6032 
6033 static void sync_throttle(struct task_group *tg, int cpu)
6034 {
6035 	struct cfs_rq *pcfs_rq, *cfs_rq;
6036 
6037 	if (!cfs_bandwidth_used())
6038 		return;
6039 
6040 	if (!tg->parent)
6041 		return;
6042 
6043 	cfs_rq = tg->cfs_rq[cpu];
6044 	pcfs_rq = tg->parent->cfs_rq[cpu];
6045 
6046 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6047 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6048 }
6049 
6050 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6051 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6052 {
6053 	if (!cfs_bandwidth_used())
6054 		return false;
6055 
6056 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6057 		return false;
6058 
6059 	/*
6060 	 * it's possible for a throttled entity to be forced into a running
6061 	 * state (e.g. set_curr_task), in this case we're finished.
6062 	 */
6063 	if (cfs_rq_throttled(cfs_rq))
6064 		return true;
6065 
6066 	return throttle_cfs_rq(cfs_rq);
6067 }
6068 
6069 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6070 {
6071 	struct cfs_bandwidth *cfs_b =
6072 		container_of(timer, struct cfs_bandwidth, slack_timer);
6073 
6074 	do_sched_cfs_slack_timer(cfs_b);
6075 
6076 	return HRTIMER_NORESTART;
6077 }
6078 
6079 extern const u64 max_cfs_quota_period;
6080 
6081 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6082 {
6083 	struct cfs_bandwidth *cfs_b =
6084 		container_of(timer, struct cfs_bandwidth, period_timer);
6085 	unsigned long flags;
6086 	int overrun;
6087 	int idle = 0;
6088 	int count = 0;
6089 
6090 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6091 	for (;;) {
6092 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6093 		if (!overrun)
6094 			break;
6095 
6096 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6097 
6098 		if (++count > 3) {
6099 			u64 new, old = ktime_to_ns(cfs_b->period);
6100 
6101 			/*
6102 			 * Grow period by a factor of 2 to avoid losing precision.
6103 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6104 			 * to fail.
6105 			 */
6106 			new = old * 2;
6107 			if (new < max_cfs_quota_period) {
6108 				cfs_b->period = ns_to_ktime(new);
6109 				cfs_b->quota *= 2;
6110 				cfs_b->burst *= 2;
6111 
6112 				pr_warn_ratelimited(
6113 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6114 					smp_processor_id(),
6115 					div_u64(new, NSEC_PER_USEC),
6116 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6117 			} else {
6118 				pr_warn_ratelimited(
6119 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6120 					smp_processor_id(),
6121 					div_u64(old, NSEC_PER_USEC),
6122 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6123 			}
6124 
6125 			/* reset count so we don't come right back in here */
6126 			count = 0;
6127 		}
6128 	}
6129 	if (idle)
6130 		cfs_b->period_active = 0;
6131 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6132 
6133 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6134 }
6135 
6136 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6137 {
6138 	raw_spin_lock_init(&cfs_b->lock);
6139 	cfs_b->runtime = 0;
6140 	cfs_b->quota = RUNTIME_INF;
6141 	cfs_b->period = ns_to_ktime(default_cfs_period());
6142 	cfs_b->burst = 0;
6143 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6144 
6145 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6146 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6147 	cfs_b->period_timer.function = sched_cfs_period_timer;
6148 
6149 	/* Add a random offset so that timers interleave */
6150 	hrtimer_set_expires(&cfs_b->period_timer,
6151 			    get_random_u32_below(cfs_b->period));
6152 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6153 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6154 	cfs_b->slack_started = false;
6155 }
6156 
6157 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6158 {
6159 	cfs_rq->runtime_enabled = 0;
6160 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6161 #ifdef CONFIG_SMP
6162 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6163 #endif
6164 }
6165 
6166 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6167 {
6168 	lockdep_assert_held(&cfs_b->lock);
6169 
6170 	if (cfs_b->period_active)
6171 		return;
6172 
6173 	cfs_b->period_active = 1;
6174 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6175 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6176 }
6177 
6178 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6179 {
6180 	int __maybe_unused i;
6181 
6182 	/* init_cfs_bandwidth() was not called */
6183 	if (!cfs_b->throttled_cfs_rq.next)
6184 		return;
6185 
6186 	hrtimer_cancel(&cfs_b->period_timer);
6187 	hrtimer_cancel(&cfs_b->slack_timer);
6188 
6189 	/*
6190 	 * It is possible that we still have some cfs_rq's pending on a CSD
6191 	 * list, though this race is very rare. In order for this to occur, we
6192 	 * must have raced with the last task leaving the group while there
6193 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6194 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6195 	 * we can simply flush all pending CSD work inline here. We're
6196 	 * guaranteed at this point that no additional cfs_rq of this group can
6197 	 * join a CSD list.
6198 	 */
6199 #ifdef CONFIG_SMP
6200 	for_each_possible_cpu(i) {
6201 		struct rq *rq = cpu_rq(i);
6202 		unsigned long flags;
6203 
6204 		if (list_empty(&rq->cfsb_csd_list))
6205 			continue;
6206 
6207 		local_irq_save(flags);
6208 		__cfsb_csd_unthrottle(rq);
6209 		local_irq_restore(flags);
6210 	}
6211 #endif
6212 }
6213 
6214 /*
6215  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6216  *
6217  * The race is harmless, since modifying bandwidth settings of unhooked group
6218  * bits doesn't do much.
6219  */
6220 
6221 /* cpu online callback */
6222 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6223 {
6224 	struct task_group *tg;
6225 
6226 	lockdep_assert_rq_held(rq);
6227 
6228 	rcu_read_lock();
6229 	list_for_each_entry_rcu(tg, &task_groups, list) {
6230 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6231 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6232 
6233 		raw_spin_lock(&cfs_b->lock);
6234 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6235 		raw_spin_unlock(&cfs_b->lock);
6236 	}
6237 	rcu_read_unlock();
6238 }
6239 
6240 /* cpu offline callback */
6241 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6242 {
6243 	struct task_group *tg;
6244 
6245 	lockdep_assert_rq_held(rq);
6246 
6247 	/*
6248 	 * The rq clock has already been updated in the
6249 	 * set_rq_offline(), so we should skip updating
6250 	 * the rq clock again in unthrottle_cfs_rq().
6251 	 */
6252 	rq_clock_start_loop_update(rq);
6253 
6254 	rcu_read_lock();
6255 	list_for_each_entry_rcu(tg, &task_groups, list) {
6256 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6257 
6258 		if (!cfs_rq->runtime_enabled)
6259 			continue;
6260 
6261 		/*
6262 		 * clock_task is not advancing so we just need to make sure
6263 		 * there's some valid quota amount
6264 		 */
6265 		cfs_rq->runtime_remaining = 1;
6266 		/*
6267 		 * Offline rq is schedulable till CPU is completely disabled
6268 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6269 		 */
6270 		cfs_rq->runtime_enabled = 0;
6271 
6272 		if (cfs_rq_throttled(cfs_rq))
6273 			unthrottle_cfs_rq(cfs_rq);
6274 	}
6275 	rcu_read_unlock();
6276 
6277 	rq_clock_stop_loop_update(rq);
6278 }
6279 
6280 bool cfs_task_bw_constrained(struct task_struct *p)
6281 {
6282 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6283 
6284 	if (!cfs_bandwidth_used())
6285 		return false;
6286 
6287 	if (cfs_rq->runtime_enabled ||
6288 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6289 		return true;
6290 
6291 	return false;
6292 }
6293 
6294 #ifdef CONFIG_NO_HZ_FULL
6295 /* called from pick_next_task_fair() */
6296 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6297 {
6298 	int cpu = cpu_of(rq);
6299 
6300 	if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6301 		return;
6302 
6303 	if (!tick_nohz_full_cpu(cpu))
6304 		return;
6305 
6306 	if (rq->nr_running != 1)
6307 		return;
6308 
6309 	/*
6310 	 *  We know there is only one task runnable and we've just picked it. The
6311 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6312 	 *  be otherwise able to stop the tick. Just need to check if we are using
6313 	 *  bandwidth control.
6314 	 */
6315 	if (cfs_task_bw_constrained(p))
6316 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6317 }
6318 #endif
6319 
6320 #else /* CONFIG_CFS_BANDWIDTH */
6321 
6322 static inline bool cfs_bandwidth_used(void)
6323 {
6324 	return false;
6325 }
6326 
6327 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6328 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6329 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6330 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6331 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6332 
6333 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6334 {
6335 	return 0;
6336 }
6337 
6338 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6339 {
6340 	return 0;
6341 }
6342 
6343 static inline int throttled_lb_pair(struct task_group *tg,
6344 				    int src_cpu, int dest_cpu)
6345 {
6346 	return 0;
6347 }
6348 
6349 #ifdef CONFIG_FAIR_GROUP_SCHED
6350 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6351 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6352 #endif
6353 
6354 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6355 {
6356 	return NULL;
6357 }
6358 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6359 static inline void update_runtime_enabled(struct rq *rq) {}
6360 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6361 #ifdef CONFIG_CGROUP_SCHED
6362 bool cfs_task_bw_constrained(struct task_struct *p)
6363 {
6364 	return false;
6365 }
6366 #endif
6367 #endif /* CONFIG_CFS_BANDWIDTH */
6368 
6369 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6370 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6371 #endif
6372 
6373 /**************************************************
6374  * CFS operations on tasks:
6375  */
6376 
6377 #ifdef CONFIG_SCHED_HRTICK
6378 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6379 {
6380 	struct sched_entity *se = &p->se;
6381 
6382 	SCHED_WARN_ON(task_rq(p) != rq);
6383 
6384 	if (rq->cfs.h_nr_running > 1) {
6385 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6386 		u64 slice = se->slice;
6387 		s64 delta = slice - ran;
6388 
6389 		if (delta < 0) {
6390 			if (task_current(rq, p))
6391 				resched_curr(rq);
6392 			return;
6393 		}
6394 		hrtick_start(rq, delta);
6395 	}
6396 }
6397 
6398 /*
6399  * called from enqueue/dequeue and updates the hrtick when the
6400  * current task is from our class and nr_running is low enough
6401  * to matter.
6402  */
6403 static void hrtick_update(struct rq *rq)
6404 {
6405 	struct task_struct *curr = rq->curr;
6406 
6407 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6408 		return;
6409 
6410 	hrtick_start_fair(rq, curr);
6411 }
6412 #else /* !CONFIG_SCHED_HRTICK */
6413 static inline void
6414 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6415 {
6416 }
6417 
6418 static inline void hrtick_update(struct rq *rq)
6419 {
6420 }
6421 #endif
6422 
6423 #ifdef CONFIG_SMP
6424 static inline bool cpu_overutilized(int cpu)
6425 {
6426 	unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6427 	unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6428 
6429 	/* Return true only if the utilization doesn't fit CPU's capacity */
6430 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6431 }
6432 
6433 static inline void update_overutilized_status(struct rq *rq)
6434 {
6435 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6436 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6437 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6438 	}
6439 }
6440 #else
6441 static inline void update_overutilized_status(struct rq *rq) { }
6442 #endif
6443 
6444 /* Runqueue only has SCHED_IDLE tasks enqueued */
6445 static int sched_idle_rq(struct rq *rq)
6446 {
6447 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6448 			rq->nr_running);
6449 }
6450 
6451 #ifdef CONFIG_SMP
6452 static int sched_idle_cpu(int cpu)
6453 {
6454 	return sched_idle_rq(cpu_rq(cpu));
6455 }
6456 #endif
6457 
6458 /*
6459  * The enqueue_task method is called before nr_running is
6460  * increased. Here we update the fair scheduling stats and
6461  * then put the task into the rbtree:
6462  */
6463 static void
6464 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6465 {
6466 	struct cfs_rq *cfs_rq;
6467 	struct sched_entity *se = &p->se;
6468 	int idle_h_nr_running = task_has_idle_policy(p);
6469 	int task_new = !(flags & ENQUEUE_WAKEUP);
6470 
6471 	/*
6472 	 * The code below (indirectly) updates schedutil which looks at
6473 	 * the cfs_rq utilization to select a frequency.
6474 	 * Let's add the task's estimated utilization to the cfs_rq's
6475 	 * estimated utilization, before we update schedutil.
6476 	 */
6477 	util_est_enqueue(&rq->cfs, p);
6478 
6479 	/*
6480 	 * If in_iowait is set, the code below may not trigger any cpufreq
6481 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6482 	 * passed.
6483 	 */
6484 	if (p->in_iowait)
6485 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6486 
6487 	for_each_sched_entity(se) {
6488 		if (se->on_rq)
6489 			break;
6490 		cfs_rq = cfs_rq_of(se);
6491 		enqueue_entity(cfs_rq, se, flags);
6492 
6493 		cfs_rq->h_nr_running++;
6494 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6495 
6496 		if (cfs_rq_is_idle(cfs_rq))
6497 			idle_h_nr_running = 1;
6498 
6499 		/* end evaluation on encountering a throttled cfs_rq */
6500 		if (cfs_rq_throttled(cfs_rq))
6501 			goto enqueue_throttle;
6502 
6503 		flags = ENQUEUE_WAKEUP;
6504 	}
6505 
6506 	for_each_sched_entity(se) {
6507 		cfs_rq = cfs_rq_of(se);
6508 
6509 		update_load_avg(cfs_rq, se, UPDATE_TG);
6510 		se_update_runnable(se);
6511 		update_cfs_group(se);
6512 
6513 		cfs_rq->h_nr_running++;
6514 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6515 
6516 		if (cfs_rq_is_idle(cfs_rq))
6517 			idle_h_nr_running = 1;
6518 
6519 		/* end evaluation on encountering a throttled cfs_rq */
6520 		if (cfs_rq_throttled(cfs_rq))
6521 			goto enqueue_throttle;
6522 	}
6523 
6524 	/* At this point se is NULL and we are at root level*/
6525 	add_nr_running(rq, 1);
6526 
6527 	/*
6528 	 * Since new tasks are assigned an initial util_avg equal to
6529 	 * half of the spare capacity of their CPU, tiny tasks have the
6530 	 * ability to cross the overutilized threshold, which will
6531 	 * result in the load balancer ruining all the task placement
6532 	 * done by EAS. As a way to mitigate that effect, do not account
6533 	 * for the first enqueue operation of new tasks during the
6534 	 * overutilized flag detection.
6535 	 *
6536 	 * A better way of solving this problem would be to wait for
6537 	 * the PELT signals of tasks to converge before taking them
6538 	 * into account, but that is not straightforward to implement,
6539 	 * and the following generally works well enough in practice.
6540 	 */
6541 	if (!task_new)
6542 		update_overutilized_status(rq);
6543 
6544 enqueue_throttle:
6545 	assert_list_leaf_cfs_rq(rq);
6546 
6547 	hrtick_update(rq);
6548 }
6549 
6550 static void set_next_buddy(struct sched_entity *se);
6551 
6552 /*
6553  * The dequeue_task method is called before nr_running is
6554  * decreased. We remove the task from the rbtree and
6555  * update the fair scheduling stats:
6556  */
6557 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6558 {
6559 	struct cfs_rq *cfs_rq;
6560 	struct sched_entity *se = &p->se;
6561 	int task_sleep = flags & DEQUEUE_SLEEP;
6562 	int idle_h_nr_running = task_has_idle_policy(p);
6563 	bool was_sched_idle = sched_idle_rq(rq);
6564 
6565 	util_est_dequeue(&rq->cfs, p);
6566 
6567 	for_each_sched_entity(se) {
6568 		cfs_rq = cfs_rq_of(se);
6569 		dequeue_entity(cfs_rq, se, flags);
6570 
6571 		cfs_rq->h_nr_running--;
6572 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6573 
6574 		if (cfs_rq_is_idle(cfs_rq))
6575 			idle_h_nr_running = 1;
6576 
6577 		/* end evaluation on encountering a throttled cfs_rq */
6578 		if (cfs_rq_throttled(cfs_rq))
6579 			goto dequeue_throttle;
6580 
6581 		/* Don't dequeue parent if it has other entities besides us */
6582 		if (cfs_rq->load.weight) {
6583 			/* Avoid re-evaluating load for this entity: */
6584 			se = parent_entity(se);
6585 			/*
6586 			 * Bias pick_next to pick a task from this cfs_rq, as
6587 			 * p is sleeping when it is within its sched_slice.
6588 			 */
6589 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6590 				set_next_buddy(se);
6591 			break;
6592 		}
6593 		flags |= DEQUEUE_SLEEP;
6594 	}
6595 
6596 	for_each_sched_entity(se) {
6597 		cfs_rq = cfs_rq_of(se);
6598 
6599 		update_load_avg(cfs_rq, se, UPDATE_TG);
6600 		se_update_runnable(se);
6601 		update_cfs_group(se);
6602 
6603 		cfs_rq->h_nr_running--;
6604 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6605 
6606 		if (cfs_rq_is_idle(cfs_rq))
6607 			idle_h_nr_running = 1;
6608 
6609 		/* end evaluation on encountering a throttled cfs_rq */
6610 		if (cfs_rq_throttled(cfs_rq))
6611 			goto dequeue_throttle;
6612 
6613 	}
6614 
6615 	/* At this point se is NULL and we are at root level*/
6616 	sub_nr_running(rq, 1);
6617 
6618 	/* balance early to pull high priority tasks */
6619 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6620 		rq->next_balance = jiffies;
6621 
6622 dequeue_throttle:
6623 	util_est_update(&rq->cfs, p, task_sleep);
6624 	hrtick_update(rq);
6625 }
6626 
6627 #ifdef CONFIG_SMP
6628 
6629 /* Working cpumask for: load_balance, load_balance_newidle. */
6630 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6631 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6632 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6633 
6634 #ifdef CONFIG_NO_HZ_COMMON
6635 
6636 static struct {
6637 	cpumask_var_t idle_cpus_mask;
6638 	atomic_t nr_cpus;
6639 	int has_blocked;		/* Idle CPUS has blocked load */
6640 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6641 	unsigned long next_balance;     /* in jiffy units */
6642 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6643 } nohz ____cacheline_aligned;
6644 
6645 #endif /* CONFIG_NO_HZ_COMMON */
6646 
6647 static unsigned long cpu_load(struct rq *rq)
6648 {
6649 	return cfs_rq_load_avg(&rq->cfs);
6650 }
6651 
6652 /*
6653  * cpu_load_without - compute CPU load without any contributions from *p
6654  * @cpu: the CPU which load is requested
6655  * @p: the task which load should be discounted
6656  *
6657  * The load of a CPU is defined by the load of tasks currently enqueued on that
6658  * CPU as well as tasks which are currently sleeping after an execution on that
6659  * CPU.
6660  *
6661  * This method returns the load of the specified CPU by discounting the load of
6662  * the specified task, whenever the task is currently contributing to the CPU
6663  * load.
6664  */
6665 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6666 {
6667 	struct cfs_rq *cfs_rq;
6668 	unsigned int load;
6669 
6670 	/* Task has no contribution or is new */
6671 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6672 		return cpu_load(rq);
6673 
6674 	cfs_rq = &rq->cfs;
6675 	load = READ_ONCE(cfs_rq->avg.load_avg);
6676 
6677 	/* Discount task's util from CPU's util */
6678 	lsub_positive(&load, task_h_load(p));
6679 
6680 	return load;
6681 }
6682 
6683 static unsigned long cpu_runnable(struct rq *rq)
6684 {
6685 	return cfs_rq_runnable_avg(&rq->cfs);
6686 }
6687 
6688 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6689 {
6690 	struct cfs_rq *cfs_rq;
6691 	unsigned int runnable;
6692 
6693 	/* Task has no contribution or is new */
6694 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6695 		return cpu_runnable(rq);
6696 
6697 	cfs_rq = &rq->cfs;
6698 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6699 
6700 	/* Discount task's runnable from CPU's runnable */
6701 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6702 
6703 	return runnable;
6704 }
6705 
6706 static unsigned long capacity_of(int cpu)
6707 {
6708 	return cpu_rq(cpu)->cpu_capacity;
6709 }
6710 
6711 static void record_wakee(struct task_struct *p)
6712 {
6713 	/*
6714 	 * Only decay a single time; tasks that have less then 1 wakeup per
6715 	 * jiffy will not have built up many flips.
6716 	 */
6717 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6718 		current->wakee_flips >>= 1;
6719 		current->wakee_flip_decay_ts = jiffies;
6720 	}
6721 
6722 	if (current->last_wakee != p) {
6723 		current->last_wakee = p;
6724 		current->wakee_flips++;
6725 	}
6726 }
6727 
6728 /*
6729  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6730  *
6731  * A waker of many should wake a different task than the one last awakened
6732  * at a frequency roughly N times higher than one of its wakees.
6733  *
6734  * In order to determine whether we should let the load spread vs consolidating
6735  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6736  * partner, and a factor of lls_size higher frequency in the other.
6737  *
6738  * With both conditions met, we can be relatively sure that the relationship is
6739  * non-monogamous, with partner count exceeding socket size.
6740  *
6741  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6742  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6743  * socket size.
6744  */
6745 static int wake_wide(struct task_struct *p)
6746 {
6747 	unsigned int master = current->wakee_flips;
6748 	unsigned int slave = p->wakee_flips;
6749 	int factor = __this_cpu_read(sd_llc_size);
6750 
6751 	if (master < slave)
6752 		swap(master, slave);
6753 	if (slave < factor || master < slave * factor)
6754 		return 0;
6755 	return 1;
6756 }
6757 
6758 /*
6759  * The purpose of wake_affine() is to quickly determine on which CPU we can run
6760  * soonest. For the purpose of speed we only consider the waking and previous
6761  * CPU.
6762  *
6763  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6764  *			cache-affine and is (or	will be) idle.
6765  *
6766  * wake_affine_weight() - considers the weight to reflect the average
6767  *			  scheduling latency of the CPUs. This seems to work
6768  *			  for the overloaded case.
6769  */
6770 static int
6771 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6772 {
6773 	/*
6774 	 * If this_cpu is idle, it implies the wakeup is from interrupt
6775 	 * context. Only allow the move if cache is shared. Otherwise an
6776 	 * interrupt intensive workload could force all tasks onto one
6777 	 * node depending on the IO topology or IRQ affinity settings.
6778 	 *
6779 	 * If the prev_cpu is idle and cache affine then avoid a migration.
6780 	 * There is no guarantee that the cache hot data from an interrupt
6781 	 * is more important than cache hot data on the prev_cpu and from
6782 	 * a cpufreq perspective, it's better to have higher utilisation
6783 	 * on one CPU.
6784 	 */
6785 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6786 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6787 
6788 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
6789 		return this_cpu;
6790 
6791 	if (available_idle_cpu(prev_cpu))
6792 		return prev_cpu;
6793 
6794 	return nr_cpumask_bits;
6795 }
6796 
6797 static int
6798 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6799 		   int this_cpu, int prev_cpu, int sync)
6800 {
6801 	s64 this_eff_load, prev_eff_load;
6802 	unsigned long task_load;
6803 
6804 	this_eff_load = cpu_load(cpu_rq(this_cpu));
6805 
6806 	if (sync) {
6807 		unsigned long current_load = task_h_load(current);
6808 
6809 		if (current_load > this_eff_load)
6810 			return this_cpu;
6811 
6812 		this_eff_load -= current_load;
6813 	}
6814 
6815 	task_load = task_h_load(p);
6816 
6817 	this_eff_load += task_load;
6818 	if (sched_feat(WA_BIAS))
6819 		this_eff_load *= 100;
6820 	this_eff_load *= capacity_of(prev_cpu);
6821 
6822 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6823 	prev_eff_load -= task_load;
6824 	if (sched_feat(WA_BIAS))
6825 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6826 	prev_eff_load *= capacity_of(this_cpu);
6827 
6828 	/*
6829 	 * If sync, adjust the weight of prev_eff_load such that if
6830 	 * prev_eff == this_eff that select_idle_sibling() will consider
6831 	 * stacking the wakee on top of the waker if no other CPU is
6832 	 * idle.
6833 	 */
6834 	if (sync)
6835 		prev_eff_load += 1;
6836 
6837 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6838 }
6839 
6840 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6841 		       int this_cpu, int prev_cpu, int sync)
6842 {
6843 	int target = nr_cpumask_bits;
6844 
6845 	if (sched_feat(WA_IDLE))
6846 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
6847 
6848 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6849 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6850 
6851 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6852 	if (target != this_cpu)
6853 		return prev_cpu;
6854 
6855 	schedstat_inc(sd->ttwu_move_affine);
6856 	schedstat_inc(p->stats.nr_wakeups_affine);
6857 	return target;
6858 }
6859 
6860 static struct sched_group *
6861 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6862 
6863 /*
6864  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6865  */
6866 static int
6867 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6868 {
6869 	unsigned long load, min_load = ULONG_MAX;
6870 	unsigned int min_exit_latency = UINT_MAX;
6871 	u64 latest_idle_timestamp = 0;
6872 	int least_loaded_cpu = this_cpu;
6873 	int shallowest_idle_cpu = -1;
6874 	int i;
6875 
6876 	/* Check if we have any choice: */
6877 	if (group->group_weight == 1)
6878 		return cpumask_first(sched_group_span(group));
6879 
6880 	/* Traverse only the allowed CPUs */
6881 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6882 		struct rq *rq = cpu_rq(i);
6883 
6884 		if (!sched_core_cookie_match(rq, p))
6885 			continue;
6886 
6887 		if (sched_idle_cpu(i))
6888 			return i;
6889 
6890 		if (available_idle_cpu(i)) {
6891 			struct cpuidle_state *idle = idle_get_state(rq);
6892 			if (idle && idle->exit_latency < min_exit_latency) {
6893 				/*
6894 				 * We give priority to a CPU whose idle state
6895 				 * has the smallest exit latency irrespective
6896 				 * of any idle timestamp.
6897 				 */
6898 				min_exit_latency = idle->exit_latency;
6899 				latest_idle_timestamp = rq->idle_stamp;
6900 				shallowest_idle_cpu = i;
6901 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6902 				   rq->idle_stamp > latest_idle_timestamp) {
6903 				/*
6904 				 * If equal or no active idle state, then
6905 				 * the most recently idled CPU might have
6906 				 * a warmer cache.
6907 				 */
6908 				latest_idle_timestamp = rq->idle_stamp;
6909 				shallowest_idle_cpu = i;
6910 			}
6911 		} else if (shallowest_idle_cpu == -1) {
6912 			load = cpu_load(cpu_rq(i));
6913 			if (load < min_load) {
6914 				min_load = load;
6915 				least_loaded_cpu = i;
6916 			}
6917 		}
6918 	}
6919 
6920 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6921 }
6922 
6923 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6924 				  int cpu, int prev_cpu, int sd_flag)
6925 {
6926 	int new_cpu = cpu;
6927 
6928 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6929 		return prev_cpu;
6930 
6931 	/*
6932 	 * We need task's util for cpu_util_without, sync it up to
6933 	 * prev_cpu's last_update_time.
6934 	 */
6935 	if (!(sd_flag & SD_BALANCE_FORK))
6936 		sync_entity_load_avg(&p->se);
6937 
6938 	while (sd) {
6939 		struct sched_group *group;
6940 		struct sched_domain *tmp;
6941 		int weight;
6942 
6943 		if (!(sd->flags & sd_flag)) {
6944 			sd = sd->child;
6945 			continue;
6946 		}
6947 
6948 		group = find_idlest_group(sd, p, cpu);
6949 		if (!group) {
6950 			sd = sd->child;
6951 			continue;
6952 		}
6953 
6954 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6955 		if (new_cpu == cpu) {
6956 			/* Now try balancing at a lower domain level of 'cpu': */
6957 			sd = sd->child;
6958 			continue;
6959 		}
6960 
6961 		/* Now try balancing at a lower domain level of 'new_cpu': */
6962 		cpu = new_cpu;
6963 		weight = sd->span_weight;
6964 		sd = NULL;
6965 		for_each_domain(cpu, tmp) {
6966 			if (weight <= tmp->span_weight)
6967 				break;
6968 			if (tmp->flags & sd_flag)
6969 				sd = tmp;
6970 		}
6971 	}
6972 
6973 	return new_cpu;
6974 }
6975 
6976 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6977 {
6978 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6979 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6980 		return cpu;
6981 
6982 	return -1;
6983 }
6984 
6985 #ifdef CONFIG_SCHED_SMT
6986 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6987 EXPORT_SYMBOL_GPL(sched_smt_present);
6988 
6989 static inline void set_idle_cores(int cpu, int val)
6990 {
6991 	struct sched_domain_shared *sds;
6992 
6993 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6994 	if (sds)
6995 		WRITE_ONCE(sds->has_idle_cores, val);
6996 }
6997 
6998 static inline bool test_idle_cores(int cpu)
6999 {
7000 	struct sched_domain_shared *sds;
7001 
7002 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7003 	if (sds)
7004 		return READ_ONCE(sds->has_idle_cores);
7005 
7006 	return false;
7007 }
7008 
7009 /*
7010  * Scans the local SMT mask to see if the entire core is idle, and records this
7011  * information in sd_llc_shared->has_idle_cores.
7012  *
7013  * Since SMT siblings share all cache levels, inspecting this limited remote
7014  * state should be fairly cheap.
7015  */
7016 void __update_idle_core(struct rq *rq)
7017 {
7018 	int core = cpu_of(rq);
7019 	int cpu;
7020 
7021 	rcu_read_lock();
7022 	if (test_idle_cores(core))
7023 		goto unlock;
7024 
7025 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7026 		if (cpu == core)
7027 			continue;
7028 
7029 		if (!available_idle_cpu(cpu))
7030 			goto unlock;
7031 	}
7032 
7033 	set_idle_cores(core, 1);
7034 unlock:
7035 	rcu_read_unlock();
7036 }
7037 
7038 /*
7039  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7040  * there are no idle cores left in the system; tracked through
7041  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7042  */
7043 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7044 {
7045 	bool idle = true;
7046 	int cpu;
7047 
7048 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7049 		if (!available_idle_cpu(cpu)) {
7050 			idle = false;
7051 			if (*idle_cpu == -1) {
7052 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
7053 					*idle_cpu = cpu;
7054 					break;
7055 				}
7056 				continue;
7057 			}
7058 			break;
7059 		}
7060 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
7061 			*idle_cpu = cpu;
7062 	}
7063 
7064 	if (idle)
7065 		return core;
7066 
7067 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7068 	return -1;
7069 }
7070 
7071 /*
7072  * Scan the local SMT mask for idle CPUs.
7073  */
7074 static int select_idle_smt(struct task_struct *p, int target)
7075 {
7076 	int cpu;
7077 
7078 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7079 		if (cpu == target)
7080 			continue;
7081 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7082 			return cpu;
7083 	}
7084 
7085 	return -1;
7086 }
7087 
7088 #else /* CONFIG_SCHED_SMT */
7089 
7090 static inline void set_idle_cores(int cpu, int val)
7091 {
7092 }
7093 
7094 static inline bool test_idle_cores(int cpu)
7095 {
7096 	return false;
7097 }
7098 
7099 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7100 {
7101 	return __select_idle_cpu(core, p);
7102 }
7103 
7104 static inline int select_idle_smt(struct task_struct *p, int target)
7105 {
7106 	return -1;
7107 }
7108 
7109 #endif /* CONFIG_SCHED_SMT */
7110 
7111 /*
7112  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7113  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7114  * average idle time for this rq (as found in rq->avg_idle).
7115  */
7116 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7117 {
7118 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7119 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7120 	struct sched_domain_shared *sd_share;
7121 	struct rq *this_rq = this_rq();
7122 	int this = smp_processor_id();
7123 	struct sched_domain *this_sd = NULL;
7124 	u64 time = 0;
7125 
7126 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7127 
7128 	if (sched_feat(SIS_PROP) && !has_idle_core) {
7129 		u64 avg_cost, avg_idle, span_avg;
7130 		unsigned long now = jiffies;
7131 
7132 		this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
7133 		if (!this_sd)
7134 			return -1;
7135 
7136 		/*
7137 		 * If we're busy, the assumption that the last idle period
7138 		 * predicts the future is flawed; age away the remaining
7139 		 * predicted idle time.
7140 		 */
7141 		if (unlikely(this_rq->wake_stamp < now)) {
7142 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
7143 				this_rq->wake_stamp++;
7144 				this_rq->wake_avg_idle >>= 1;
7145 			}
7146 		}
7147 
7148 		avg_idle = this_rq->wake_avg_idle;
7149 		avg_cost = this_sd->avg_scan_cost + 1;
7150 
7151 		span_avg = sd->span_weight * avg_idle;
7152 		if (span_avg > 4*avg_cost)
7153 			nr = div_u64(span_avg, avg_cost);
7154 		else
7155 			nr = 4;
7156 
7157 		time = cpu_clock(this);
7158 	}
7159 
7160 	if (sched_feat(SIS_UTIL)) {
7161 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7162 		if (sd_share) {
7163 			/* because !--nr is the condition to stop scan */
7164 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7165 			/* overloaded LLC is unlikely to have idle cpu/core */
7166 			if (nr == 1)
7167 				return -1;
7168 		}
7169 	}
7170 
7171 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7172 		if (has_idle_core) {
7173 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7174 			if ((unsigned int)i < nr_cpumask_bits)
7175 				return i;
7176 
7177 		} else {
7178 			if (!--nr)
7179 				return -1;
7180 			idle_cpu = __select_idle_cpu(cpu, p);
7181 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7182 				break;
7183 		}
7184 	}
7185 
7186 	if (has_idle_core)
7187 		set_idle_cores(target, false);
7188 
7189 	if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
7190 		time = cpu_clock(this) - time;
7191 
7192 		/*
7193 		 * Account for the scan cost of wakeups against the average
7194 		 * idle time.
7195 		 */
7196 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
7197 
7198 		update_avg(&this_sd->avg_scan_cost, time);
7199 	}
7200 
7201 	return idle_cpu;
7202 }
7203 
7204 /*
7205  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7206  * the task fits. If no CPU is big enough, but there are idle ones, try to
7207  * maximize capacity.
7208  */
7209 static int
7210 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7211 {
7212 	unsigned long task_util, util_min, util_max, best_cap = 0;
7213 	int fits, best_fits = 0;
7214 	int cpu, best_cpu = -1;
7215 	struct cpumask *cpus;
7216 
7217 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7218 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7219 
7220 	task_util = task_util_est(p);
7221 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7222 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7223 
7224 	for_each_cpu_wrap(cpu, cpus, target) {
7225 		unsigned long cpu_cap = capacity_of(cpu);
7226 
7227 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7228 			continue;
7229 
7230 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7231 
7232 		/* This CPU fits with all requirements */
7233 		if (fits > 0)
7234 			return cpu;
7235 		/*
7236 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7237 		 * Look for the CPU with best capacity.
7238 		 */
7239 		else if (fits < 0)
7240 			cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
7241 
7242 		/*
7243 		 * First, select CPU which fits better (-1 being better than 0).
7244 		 * Then, select the one with best capacity at same level.
7245 		 */
7246 		if ((fits < best_fits) ||
7247 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7248 			best_cap = cpu_cap;
7249 			best_cpu = cpu;
7250 			best_fits = fits;
7251 		}
7252 	}
7253 
7254 	return best_cpu;
7255 }
7256 
7257 static inline bool asym_fits_cpu(unsigned long util,
7258 				 unsigned long util_min,
7259 				 unsigned long util_max,
7260 				 int cpu)
7261 {
7262 	if (sched_asym_cpucap_active())
7263 		/*
7264 		 * Return true only if the cpu fully fits the task requirements
7265 		 * which include the utilization and the performance hints.
7266 		 */
7267 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7268 
7269 	return true;
7270 }
7271 
7272 /*
7273  * Try and locate an idle core/thread in the LLC cache domain.
7274  */
7275 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7276 {
7277 	bool has_idle_core = false;
7278 	struct sched_domain *sd;
7279 	unsigned long task_util, util_min, util_max;
7280 	int i, recent_used_cpu;
7281 
7282 	/*
7283 	 * On asymmetric system, update task utilization because we will check
7284 	 * that the task fits with cpu's capacity.
7285 	 */
7286 	if (sched_asym_cpucap_active()) {
7287 		sync_entity_load_avg(&p->se);
7288 		task_util = task_util_est(p);
7289 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7290 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7291 	}
7292 
7293 	/*
7294 	 * per-cpu select_rq_mask usage
7295 	 */
7296 	lockdep_assert_irqs_disabled();
7297 
7298 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7299 	    asym_fits_cpu(task_util, util_min, util_max, target))
7300 		return target;
7301 
7302 	/*
7303 	 * If the previous CPU is cache affine and idle, don't be stupid:
7304 	 */
7305 	if (prev != target && cpus_share_cache(prev, target) &&
7306 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7307 	    asym_fits_cpu(task_util, util_min, util_max, prev))
7308 		return prev;
7309 
7310 	/*
7311 	 * Allow a per-cpu kthread to stack with the wakee if the
7312 	 * kworker thread and the tasks previous CPUs are the same.
7313 	 * The assumption is that the wakee queued work for the
7314 	 * per-cpu kthread that is now complete and the wakeup is
7315 	 * essentially a sync wakeup. An obvious example of this
7316 	 * pattern is IO completions.
7317 	 */
7318 	if (is_per_cpu_kthread(current) &&
7319 	    in_task() &&
7320 	    prev == smp_processor_id() &&
7321 	    this_rq()->nr_running <= 1 &&
7322 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7323 		return prev;
7324 	}
7325 
7326 	/* Check a recently used CPU as a potential idle candidate: */
7327 	recent_used_cpu = p->recent_used_cpu;
7328 	p->recent_used_cpu = prev;
7329 	if (recent_used_cpu != prev &&
7330 	    recent_used_cpu != target &&
7331 	    cpus_share_cache(recent_used_cpu, target) &&
7332 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7333 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7334 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7335 		return recent_used_cpu;
7336 	}
7337 
7338 	/*
7339 	 * For asymmetric CPU capacity systems, our domain of interest is
7340 	 * sd_asym_cpucapacity rather than sd_llc.
7341 	 */
7342 	if (sched_asym_cpucap_active()) {
7343 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7344 		/*
7345 		 * On an asymmetric CPU capacity system where an exclusive
7346 		 * cpuset defines a symmetric island (i.e. one unique
7347 		 * capacity_orig value through the cpuset), the key will be set
7348 		 * but the CPUs within that cpuset will not have a domain with
7349 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7350 		 * capacity path.
7351 		 */
7352 		if (sd) {
7353 			i = select_idle_capacity(p, sd, target);
7354 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7355 		}
7356 	}
7357 
7358 	sd = rcu_dereference(per_cpu(sd_llc, target));
7359 	if (!sd)
7360 		return target;
7361 
7362 	if (sched_smt_active()) {
7363 		has_idle_core = test_idle_cores(target);
7364 
7365 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7366 			i = select_idle_smt(p, prev);
7367 			if ((unsigned int)i < nr_cpumask_bits)
7368 				return i;
7369 		}
7370 	}
7371 
7372 	i = select_idle_cpu(p, sd, has_idle_core, target);
7373 	if ((unsigned)i < nr_cpumask_bits)
7374 		return i;
7375 
7376 	return target;
7377 }
7378 
7379 /**
7380  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7381  * @cpu: the CPU to get the utilization for
7382  * @p: task for which the CPU utilization should be predicted or NULL
7383  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7384  * @boost: 1 to enable boosting, otherwise 0
7385  *
7386  * The unit of the return value must be the same as the one of CPU capacity
7387  * so that CPU utilization can be compared with CPU capacity.
7388  *
7389  * CPU utilization is the sum of running time of runnable tasks plus the
7390  * recent utilization of currently non-runnable tasks on that CPU.
7391  * It represents the amount of CPU capacity currently used by CFS tasks in
7392  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7393  * capacity at f_max.
7394  *
7395  * The estimated CPU utilization is defined as the maximum between CPU
7396  * utilization and sum of the estimated utilization of the currently
7397  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7398  * previously-executed tasks, which helps better deduce how busy a CPU will
7399  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7400  * of such a task would be significantly decayed at this point of time.
7401  *
7402  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7403  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7404  * utilization. Boosting is implemented in cpu_util() so that internal
7405  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7406  * latter via cpu_util_cfs_boost().
7407  *
7408  * CPU utilization can be higher than the current CPU capacity
7409  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7410  * of rounding errors as well as task migrations or wakeups of new tasks.
7411  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7412  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7413  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7414  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7415  * though since this is useful for predicting the CPU capacity required
7416  * after task migrations (scheduler-driven DVFS).
7417  *
7418  * Return: (Boosted) (estimated) utilization for the specified CPU.
7419  */
7420 static unsigned long
7421 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7422 {
7423 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7424 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7425 	unsigned long runnable;
7426 
7427 	if (boost) {
7428 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7429 		util = max(util, runnable);
7430 	}
7431 
7432 	/*
7433 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7434 	 * contribution. If @p migrates from another CPU to @cpu add its
7435 	 * contribution. In all the other cases @cpu is not impacted by the
7436 	 * migration so its util_avg is already correct.
7437 	 */
7438 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7439 		lsub_positive(&util, task_util(p));
7440 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7441 		util += task_util(p);
7442 
7443 	if (sched_feat(UTIL_EST)) {
7444 		unsigned long util_est;
7445 
7446 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7447 
7448 		/*
7449 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7450 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7451 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7452 		 * has been enqueued.
7453 		 *
7454 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7455 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7456 		 * Remove it to "simulate" cpu_util without @p's contribution.
7457 		 *
7458 		 * Despite the task_on_rq_queued(@p) check there is still a
7459 		 * small window for a possible race when an exec
7460 		 * select_task_rq_fair() races with LB's detach_task().
7461 		 *
7462 		 *   detach_task()
7463 		 *     deactivate_task()
7464 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7465 		 *       -------------------------------- A
7466 		 *       dequeue_task()                    \
7467 		 *         dequeue_task_fair()              + Race Time
7468 		 *           util_est_dequeue()            /
7469 		 *       -------------------------------- B
7470 		 *
7471 		 * The additional check "current == p" is required to further
7472 		 * reduce the race window.
7473 		 */
7474 		if (dst_cpu == cpu)
7475 			util_est += _task_util_est(p);
7476 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7477 			lsub_positive(&util_est, _task_util_est(p));
7478 
7479 		util = max(util, util_est);
7480 	}
7481 
7482 	return min(util, capacity_orig_of(cpu));
7483 }
7484 
7485 unsigned long cpu_util_cfs(int cpu)
7486 {
7487 	return cpu_util(cpu, NULL, -1, 0);
7488 }
7489 
7490 unsigned long cpu_util_cfs_boost(int cpu)
7491 {
7492 	return cpu_util(cpu, NULL, -1, 1);
7493 }
7494 
7495 /*
7496  * cpu_util_without: compute cpu utilization without any contributions from *p
7497  * @cpu: the CPU which utilization is requested
7498  * @p: the task which utilization should be discounted
7499  *
7500  * The utilization of a CPU is defined by the utilization of tasks currently
7501  * enqueued on that CPU as well as tasks which are currently sleeping after an
7502  * execution on that CPU.
7503  *
7504  * This method returns the utilization of the specified CPU by discounting the
7505  * utilization of the specified task, whenever the task is currently
7506  * contributing to the CPU utilization.
7507  */
7508 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7509 {
7510 	/* Task has no contribution or is new */
7511 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7512 		p = NULL;
7513 
7514 	return cpu_util(cpu, p, -1, 0);
7515 }
7516 
7517 /*
7518  * energy_env - Utilization landscape for energy estimation.
7519  * @task_busy_time: Utilization contribution by the task for which we test the
7520  *                  placement. Given by eenv_task_busy_time().
7521  * @pd_busy_time:   Utilization of the whole perf domain without the task
7522  *                  contribution. Given by eenv_pd_busy_time().
7523  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7524  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7525  */
7526 struct energy_env {
7527 	unsigned long task_busy_time;
7528 	unsigned long pd_busy_time;
7529 	unsigned long cpu_cap;
7530 	unsigned long pd_cap;
7531 };
7532 
7533 /*
7534  * Compute the task busy time for compute_energy(). This time cannot be
7535  * injected directly into effective_cpu_util() because of the IRQ scaling.
7536  * The latter only makes sense with the most recent CPUs where the task has
7537  * run.
7538  */
7539 static inline void eenv_task_busy_time(struct energy_env *eenv,
7540 				       struct task_struct *p, int prev_cpu)
7541 {
7542 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7543 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7544 
7545 	if (unlikely(irq >= max_cap))
7546 		busy_time = max_cap;
7547 	else
7548 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7549 
7550 	eenv->task_busy_time = busy_time;
7551 }
7552 
7553 /*
7554  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7555  * utilization for each @pd_cpus, it however doesn't take into account
7556  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7557  * scale the EM reported power consumption at the (eventually clamped)
7558  * cpu_capacity.
7559  *
7560  * The contribution of the task @p for which we want to estimate the
7561  * energy cost is removed (by cpu_util()) and must be calculated
7562  * separately (see eenv_task_busy_time). This ensures:
7563  *
7564  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7565  *     the task on.
7566  *
7567  *   - A fair comparison between CPUs as the task contribution (task_util())
7568  *     will always be the same no matter which CPU utilization we rely on
7569  *     (util_avg or util_est).
7570  *
7571  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7572  * exceed @eenv->pd_cap.
7573  */
7574 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7575 				     struct cpumask *pd_cpus,
7576 				     struct task_struct *p)
7577 {
7578 	unsigned long busy_time = 0;
7579 	int cpu;
7580 
7581 	for_each_cpu(cpu, pd_cpus) {
7582 		unsigned long util = cpu_util(cpu, p, -1, 0);
7583 
7584 		busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7585 	}
7586 
7587 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7588 }
7589 
7590 /*
7591  * Compute the maximum utilization for compute_energy() when the task @p
7592  * is placed on the cpu @dst_cpu.
7593  *
7594  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7595  * exceed @eenv->cpu_cap.
7596  */
7597 static inline unsigned long
7598 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7599 		 struct task_struct *p, int dst_cpu)
7600 {
7601 	unsigned long max_util = 0;
7602 	int cpu;
7603 
7604 	for_each_cpu(cpu, pd_cpus) {
7605 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7606 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7607 		unsigned long eff_util;
7608 
7609 		/*
7610 		 * Performance domain frequency: utilization clamping
7611 		 * must be considered since it affects the selection
7612 		 * of the performance domain frequency.
7613 		 * NOTE: in case RT tasks are running, by default the
7614 		 * FREQUENCY_UTIL's utilization can be max OPP.
7615 		 */
7616 		eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7617 		max_util = max(max_util, eff_util);
7618 	}
7619 
7620 	return min(max_util, eenv->cpu_cap);
7621 }
7622 
7623 /*
7624  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7625  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7626  * contribution is ignored.
7627  */
7628 static inline unsigned long
7629 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7630 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7631 {
7632 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7633 	unsigned long busy_time = eenv->pd_busy_time;
7634 
7635 	if (dst_cpu >= 0)
7636 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7637 
7638 	return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7639 }
7640 
7641 /*
7642  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7643  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7644  * spare capacity in each performance domain and uses it as a potential
7645  * candidate to execute the task. Then, it uses the Energy Model to figure
7646  * out which of the CPU candidates is the most energy-efficient.
7647  *
7648  * The rationale for this heuristic is as follows. In a performance domain,
7649  * all the most energy efficient CPU candidates (according to the Energy
7650  * Model) are those for which we'll request a low frequency. When there are
7651  * several CPUs for which the frequency request will be the same, we don't
7652  * have enough data to break the tie between them, because the Energy Model
7653  * only includes active power costs. With this model, if we assume that
7654  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7655  * the maximum spare capacity in a performance domain is guaranteed to be among
7656  * the best candidates of the performance domain.
7657  *
7658  * In practice, it could be preferable from an energy standpoint to pack
7659  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7660  * but that could also hurt our chances to go cluster idle, and we have no
7661  * ways to tell with the current Energy Model if this is actually a good
7662  * idea or not. So, find_energy_efficient_cpu() basically favors
7663  * cluster-packing, and spreading inside a cluster. That should at least be
7664  * a good thing for latency, and this is consistent with the idea that most
7665  * of the energy savings of EAS come from the asymmetry of the system, and
7666  * not so much from breaking the tie between identical CPUs. That's also the
7667  * reason why EAS is enabled in the topology code only for systems where
7668  * SD_ASYM_CPUCAPACITY is set.
7669  *
7670  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7671  * they don't have any useful utilization data yet and it's not possible to
7672  * forecast their impact on energy consumption. Consequently, they will be
7673  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7674  * to be energy-inefficient in some use-cases. The alternative would be to
7675  * bias new tasks towards specific types of CPUs first, or to try to infer
7676  * their util_avg from the parent task, but those heuristics could hurt
7677  * other use-cases too. So, until someone finds a better way to solve this,
7678  * let's keep things simple by re-using the existing slow path.
7679  */
7680 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7681 {
7682 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7683 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7684 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7685 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7686 	struct root_domain *rd = this_rq()->rd;
7687 	int cpu, best_energy_cpu, target = -1;
7688 	int prev_fits = -1, best_fits = -1;
7689 	unsigned long best_thermal_cap = 0;
7690 	unsigned long prev_thermal_cap = 0;
7691 	struct sched_domain *sd;
7692 	struct perf_domain *pd;
7693 	struct energy_env eenv;
7694 
7695 	rcu_read_lock();
7696 	pd = rcu_dereference(rd->pd);
7697 	if (!pd || READ_ONCE(rd->overutilized))
7698 		goto unlock;
7699 
7700 	/*
7701 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7702 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7703 	 */
7704 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7705 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7706 		sd = sd->parent;
7707 	if (!sd)
7708 		goto unlock;
7709 
7710 	target = prev_cpu;
7711 
7712 	sync_entity_load_avg(&p->se);
7713 	if (!uclamp_task_util(p, p_util_min, p_util_max))
7714 		goto unlock;
7715 
7716 	eenv_task_busy_time(&eenv, p, prev_cpu);
7717 
7718 	for (; pd; pd = pd->next) {
7719 		unsigned long util_min = p_util_min, util_max = p_util_max;
7720 		unsigned long cpu_cap, cpu_thermal_cap, util;
7721 		unsigned long cur_delta, max_spare_cap = 0;
7722 		unsigned long rq_util_min, rq_util_max;
7723 		unsigned long prev_spare_cap = 0;
7724 		int max_spare_cap_cpu = -1;
7725 		unsigned long base_energy;
7726 		int fits, max_fits = -1;
7727 
7728 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7729 
7730 		if (cpumask_empty(cpus))
7731 			continue;
7732 
7733 		/* Account thermal pressure for the energy estimation */
7734 		cpu = cpumask_first(cpus);
7735 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7736 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7737 
7738 		eenv.cpu_cap = cpu_thermal_cap;
7739 		eenv.pd_cap = 0;
7740 
7741 		for_each_cpu(cpu, cpus) {
7742 			struct rq *rq = cpu_rq(cpu);
7743 
7744 			eenv.pd_cap += cpu_thermal_cap;
7745 
7746 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7747 				continue;
7748 
7749 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7750 				continue;
7751 
7752 			util = cpu_util(cpu, p, cpu, 0);
7753 			cpu_cap = capacity_of(cpu);
7754 
7755 			/*
7756 			 * Skip CPUs that cannot satisfy the capacity request.
7757 			 * IOW, placing the task there would make the CPU
7758 			 * overutilized. Take uclamp into account to see how
7759 			 * much capacity we can get out of the CPU; this is
7760 			 * aligned with sched_cpu_util().
7761 			 */
7762 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
7763 				/*
7764 				 * Open code uclamp_rq_util_with() except for
7765 				 * the clamp() part. Ie: apply max aggregation
7766 				 * only. util_fits_cpu() logic requires to
7767 				 * operate on non clamped util but must use the
7768 				 * max-aggregated uclamp_{min, max}.
7769 				 */
7770 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
7771 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
7772 
7773 				util_min = max(rq_util_min, p_util_min);
7774 				util_max = max(rq_util_max, p_util_max);
7775 			}
7776 
7777 			fits = util_fits_cpu(util, util_min, util_max, cpu);
7778 			if (!fits)
7779 				continue;
7780 
7781 			lsub_positive(&cpu_cap, util);
7782 
7783 			if (cpu == prev_cpu) {
7784 				/* Always use prev_cpu as a candidate. */
7785 				prev_spare_cap = cpu_cap;
7786 				prev_fits = fits;
7787 			} else if ((fits > max_fits) ||
7788 				   ((fits == max_fits) && (cpu_cap > max_spare_cap))) {
7789 				/*
7790 				 * Find the CPU with the maximum spare capacity
7791 				 * among the remaining CPUs in the performance
7792 				 * domain.
7793 				 */
7794 				max_spare_cap = cpu_cap;
7795 				max_spare_cap_cpu = cpu;
7796 				max_fits = fits;
7797 			}
7798 		}
7799 
7800 		if (max_spare_cap_cpu < 0 && prev_spare_cap == 0)
7801 			continue;
7802 
7803 		eenv_pd_busy_time(&eenv, cpus, p);
7804 		/* Compute the 'base' energy of the pd, without @p */
7805 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
7806 
7807 		/* Evaluate the energy impact of using prev_cpu. */
7808 		if (prev_spare_cap > 0) {
7809 			prev_delta = compute_energy(&eenv, pd, cpus, p,
7810 						    prev_cpu);
7811 			/* CPU utilization has changed */
7812 			if (prev_delta < base_energy)
7813 				goto unlock;
7814 			prev_delta -= base_energy;
7815 			prev_thermal_cap = cpu_thermal_cap;
7816 			best_delta = min(best_delta, prev_delta);
7817 		}
7818 
7819 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
7820 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
7821 			/* Current best energy cpu fits better */
7822 			if (max_fits < best_fits)
7823 				continue;
7824 
7825 			/*
7826 			 * Both don't fit performance hint (i.e. uclamp_min)
7827 			 * but best energy cpu has better capacity.
7828 			 */
7829 			if ((max_fits < 0) &&
7830 			    (cpu_thermal_cap <= best_thermal_cap))
7831 				continue;
7832 
7833 			cur_delta = compute_energy(&eenv, pd, cpus, p,
7834 						   max_spare_cap_cpu);
7835 			/* CPU utilization has changed */
7836 			if (cur_delta < base_energy)
7837 				goto unlock;
7838 			cur_delta -= base_energy;
7839 
7840 			/*
7841 			 * Both fit for the task but best energy cpu has lower
7842 			 * energy impact.
7843 			 */
7844 			if ((max_fits > 0) && (best_fits > 0) &&
7845 			    (cur_delta >= best_delta))
7846 				continue;
7847 
7848 			best_delta = cur_delta;
7849 			best_energy_cpu = max_spare_cap_cpu;
7850 			best_fits = max_fits;
7851 			best_thermal_cap = cpu_thermal_cap;
7852 		}
7853 	}
7854 	rcu_read_unlock();
7855 
7856 	if ((best_fits > prev_fits) ||
7857 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
7858 	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
7859 		target = best_energy_cpu;
7860 
7861 	return target;
7862 
7863 unlock:
7864 	rcu_read_unlock();
7865 
7866 	return target;
7867 }
7868 
7869 /*
7870  * select_task_rq_fair: Select target runqueue for the waking task in domains
7871  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
7872  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7873  *
7874  * Balances load by selecting the idlest CPU in the idlest group, or under
7875  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
7876  *
7877  * Returns the target CPU number.
7878  */
7879 static int
7880 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
7881 {
7882 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
7883 	struct sched_domain *tmp, *sd = NULL;
7884 	int cpu = smp_processor_id();
7885 	int new_cpu = prev_cpu;
7886 	int want_affine = 0;
7887 	/* SD_flags and WF_flags share the first nibble */
7888 	int sd_flag = wake_flags & 0xF;
7889 
7890 	/*
7891 	 * required for stable ->cpus_allowed
7892 	 */
7893 	lockdep_assert_held(&p->pi_lock);
7894 	if (wake_flags & WF_TTWU) {
7895 		record_wakee(p);
7896 
7897 		if ((wake_flags & WF_CURRENT_CPU) &&
7898 		    cpumask_test_cpu(cpu, p->cpus_ptr))
7899 			return cpu;
7900 
7901 		if (sched_energy_enabled()) {
7902 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
7903 			if (new_cpu >= 0)
7904 				return new_cpu;
7905 			new_cpu = prev_cpu;
7906 		}
7907 
7908 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
7909 	}
7910 
7911 	rcu_read_lock();
7912 	for_each_domain(cpu, tmp) {
7913 		/*
7914 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
7915 		 * cpu is a valid SD_WAKE_AFFINE target.
7916 		 */
7917 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7918 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7919 			if (cpu != prev_cpu)
7920 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7921 
7922 			sd = NULL; /* Prefer wake_affine over balance flags */
7923 			break;
7924 		}
7925 
7926 		/*
7927 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
7928 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
7929 		 * will usually go to the fast path.
7930 		 */
7931 		if (tmp->flags & sd_flag)
7932 			sd = tmp;
7933 		else if (!want_affine)
7934 			break;
7935 	}
7936 
7937 	if (unlikely(sd)) {
7938 		/* Slow path */
7939 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7940 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
7941 		/* Fast path */
7942 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7943 	}
7944 	rcu_read_unlock();
7945 
7946 	return new_cpu;
7947 }
7948 
7949 /*
7950  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7951  * cfs_rq_of(p) references at time of call are still valid and identify the
7952  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7953  */
7954 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
7955 {
7956 	struct sched_entity *se = &p->se;
7957 
7958 	if (!task_on_rq_migrating(p)) {
7959 		remove_entity_load_avg(se);
7960 
7961 		/*
7962 		 * Here, the task's PELT values have been updated according to
7963 		 * the current rq's clock. But if that clock hasn't been
7964 		 * updated in a while, a substantial idle time will be missed,
7965 		 * leading to an inflation after wake-up on the new rq.
7966 		 *
7967 		 * Estimate the missing time from the cfs_rq last_update_time
7968 		 * and update sched_avg to improve the PELT continuity after
7969 		 * migration.
7970 		 */
7971 		migrate_se_pelt_lag(se);
7972 	}
7973 
7974 	/* Tell new CPU we are migrated */
7975 	se->avg.last_update_time = 0;
7976 
7977 	update_scan_period(p, new_cpu);
7978 }
7979 
7980 static void task_dead_fair(struct task_struct *p)
7981 {
7982 	remove_entity_load_avg(&p->se);
7983 }
7984 
7985 static int
7986 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7987 {
7988 	if (rq->nr_running)
7989 		return 1;
7990 
7991 	return newidle_balance(rq, rf) != 0;
7992 }
7993 #endif /* CONFIG_SMP */
7994 
7995 static void set_next_buddy(struct sched_entity *se)
7996 {
7997 	for_each_sched_entity(se) {
7998 		if (SCHED_WARN_ON(!se->on_rq))
7999 			return;
8000 		if (se_is_idle(se))
8001 			return;
8002 		cfs_rq_of(se)->next = se;
8003 	}
8004 }
8005 
8006 /*
8007  * Preempt the current task with a newly woken task if needed:
8008  */
8009 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
8010 {
8011 	struct task_struct *curr = rq->curr;
8012 	struct sched_entity *se = &curr->se, *pse = &p->se;
8013 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8014 	int next_buddy_marked = 0;
8015 	int cse_is_idle, pse_is_idle;
8016 
8017 	if (unlikely(se == pse))
8018 		return;
8019 
8020 	/*
8021 	 * This is possible from callers such as attach_tasks(), in which we
8022 	 * unconditionally check_preempt_curr() after an enqueue (which may have
8023 	 * lead to a throttle).  This both saves work and prevents false
8024 	 * next-buddy nomination below.
8025 	 */
8026 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8027 		return;
8028 
8029 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8030 		set_next_buddy(pse);
8031 		next_buddy_marked = 1;
8032 	}
8033 
8034 	/*
8035 	 * We can come here with TIF_NEED_RESCHED already set from new task
8036 	 * wake up path.
8037 	 *
8038 	 * Note: this also catches the edge-case of curr being in a throttled
8039 	 * group (e.g. via set_curr_task), since update_curr() (in the
8040 	 * enqueue of curr) will have resulted in resched being set.  This
8041 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8042 	 * below.
8043 	 */
8044 	if (test_tsk_need_resched(curr))
8045 		return;
8046 
8047 	/* Idle tasks are by definition preempted by non-idle tasks. */
8048 	if (unlikely(task_has_idle_policy(curr)) &&
8049 	    likely(!task_has_idle_policy(p)))
8050 		goto preempt;
8051 
8052 	/*
8053 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8054 	 * is driven by the tick):
8055 	 */
8056 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8057 		return;
8058 
8059 	find_matching_se(&se, &pse);
8060 	WARN_ON_ONCE(!pse);
8061 
8062 	cse_is_idle = se_is_idle(se);
8063 	pse_is_idle = se_is_idle(pse);
8064 
8065 	/*
8066 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
8067 	 * in the inverse case).
8068 	 */
8069 	if (cse_is_idle && !pse_is_idle)
8070 		goto preempt;
8071 	if (cse_is_idle != pse_is_idle)
8072 		return;
8073 
8074 	cfs_rq = cfs_rq_of(se);
8075 	update_curr(cfs_rq);
8076 
8077 	/*
8078 	 * XXX pick_eevdf(cfs_rq) != se ?
8079 	 */
8080 	if (pick_eevdf(cfs_rq) == pse)
8081 		goto preempt;
8082 
8083 	return;
8084 
8085 preempt:
8086 	resched_curr(rq);
8087 }
8088 
8089 #ifdef CONFIG_SMP
8090 static struct task_struct *pick_task_fair(struct rq *rq)
8091 {
8092 	struct sched_entity *se;
8093 	struct cfs_rq *cfs_rq;
8094 
8095 again:
8096 	cfs_rq = &rq->cfs;
8097 	if (!cfs_rq->nr_running)
8098 		return NULL;
8099 
8100 	do {
8101 		struct sched_entity *curr = cfs_rq->curr;
8102 
8103 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8104 		if (curr) {
8105 			if (curr->on_rq)
8106 				update_curr(cfs_rq);
8107 			else
8108 				curr = NULL;
8109 
8110 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8111 				goto again;
8112 		}
8113 
8114 		se = pick_next_entity(cfs_rq, curr);
8115 		cfs_rq = group_cfs_rq(se);
8116 	} while (cfs_rq);
8117 
8118 	return task_of(se);
8119 }
8120 #endif
8121 
8122 struct task_struct *
8123 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8124 {
8125 	struct cfs_rq *cfs_rq = &rq->cfs;
8126 	struct sched_entity *se;
8127 	struct task_struct *p;
8128 	int new_tasks;
8129 
8130 again:
8131 	if (!sched_fair_runnable(rq))
8132 		goto idle;
8133 
8134 #ifdef CONFIG_FAIR_GROUP_SCHED
8135 	if (!prev || prev->sched_class != &fair_sched_class)
8136 		goto simple;
8137 
8138 	/*
8139 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8140 	 * likely that a next task is from the same cgroup as the current.
8141 	 *
8142 	 * Therefore attempt to avoid putting and setting the entire cgroup
8143 	 * hierarchy, only change the part that actually changes.
8144 	 */
8145 
8146 	do {
8147 		struct sched_entity *curr = cfs_rq->curr;
8148 
8149 		/*
8150 		 * Since we got here without doing put_prev_entity() we also
8151 		 * have to consider cfs_rq->curr. If it is still a runnable
8152 		 * entity, update_curr() will update its vruntime, otherwise
8153 		 * forget we've ever seen it.
8154 		 */
8155 		if (curr) {
8156 			if (curr->on_rq)
8157 				update_curr(cfs_rq);
8158 			else
8159 				curr = NULL;
8160 
8161 			/*
8162 			 * This call to check_cfs_rq_runtime() will do the
8163 			 * throttle and dequeue its entity in the parent(s).
8164 			 * Therefore the nr_running test will indeed
8165 			 * be correct.
8166 			 */
8167 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8168 				cfs_rq = &rq->cfs;
8169 
8170 				if (!cfs_rq->nr_running)
8171 					goto idle;
8172 
8173 				goto simple;
8174 			}
8175 		}
8176 
8177 		se = pick_next_entity(cfs_rq, curr);
8178 		cfs_rq = group_cfs_rq(se);
8179 	} while (cfs_rq);
8180 
8181 	p = task_of(se);
8182 
8183 	/*
8184 	 * Since we haven't yet done put_prev_entity and if the selected task
8185 	 * is a different task than we started out with, try and touch the
8186 	 * least amount of cfs_rqs.
8187 	 */
8188 	if (prev != p) {
8189 		struct sched_entity *pse = &prev->se;
8190 
8191 		while (!(cfs_rq = is_same_group(se, pse))) {
8192 			int se_depth = se->depth;
8193 			int pse_depth = pse->depth;
8194 
8195 			if (se_depth <= pse_depth) {
8196 				put_prev_entity(cfs_rq_of(pse), pse);
8197 				pse = parent_entity(pse);
8198 			}
8199 			if (se_depth >= pse_depth) {
8200 				set_next_entity(cfs_rq_of(se), se);
8201 				se = parent_entity(se);
8202 			}
8203 		}
8204 
8205 		put_prev_entity(cfs_rq, pse);
8206 		set_next_entity(cfs_rq, se);
8207 	}
8208 
8209 	goto done;
8210 simple:
8211 #endif
8212 	if (prev)
8213 		put_prev_task(rq, prev);
8214 
8215 	do {
8216 		se = pick_next_entity(cfs_rq, NULL);
8217 		set_next_entity(cfs_rq, se);
8218 		cfs_rq = group_cfs_rq(se);
8219 	} while (cfs_rq);
8220 
8221 	p = task_of(se);
8222 
8223 done: __maybe_unused;
8224 #ifdef CONFIG_SMP
8225 	/*
8226 	 * Move the next running task to the front of
8227 	 * the list, so our cfs_tasks list becomes MRU
8228 	 * one.
8229 	 */
8230 	list_move(&p->se.group_node, &rq->cfs_tasks);
8231 #endif
8232 
8233 	if (hrtick_enabled_fair(rq))
8234 		hrtick_start_fair(rq, p);
8235 
8236 	update_misfit_status(p, rq);
8237 	sched_fair_update_stop_tick(rq, p);
8238 
8239 	return p;
8240 
8241 idle:
8242 	if (!rf)
8243 		return NULL;
8244 
8245 	new_tasks = newidle_balance(rq, rf);
8246 
8247 	/*
8248 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8249 	 * possible for any higher priority task to appear. In that case we
8250 	 * must re-start the pick_next_entity() loop.
8251 	 */
8252 	if (new_tasks < 0)
8253 		return RETRY_TASK;
8254 
8255 	if (new_tasks > 0)
8256 		goto again;
8257 
8258 	/*
8259 	 * rq is about to be idle, check if we need to update the
8260 	 * lost_idle_time of clock_pelt
8261 	 */
8262 	update_idle_rq_clock_pelt(rq);
8263 
8264 	return NULL;
8265 }
8266 
8267 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8268 {
8269 	return pick_next_task_fair(rq, NULL, NULL);
8270 }
8271 
8272 /*
8273  * Account for a descheduled task:
8274  */
8275 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8276 {
8277 	struct sched_entity *se = &prev->se;
8278 	struct cfs_rq *cfs_rq;
8279 
8280 	for_each_sched_entity(se) {
8281 		cfs_rq = cfs_rq_of(se);
8282 		put_prev_entity(cfs_rq, se);
8283 	}
8284 }
8285 
8286 /*
8287  * sched_yield() is very simple
8288  */
8289 static void yield_task_fair(struct rq *rq)
8290 {
8291 	struct task_struct *curr = rq->curr;
8292 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8293 	struct sched_entity *se = &curr->se;
8294 
8295 	/*
8296 	 * Are we the only task in the tree?
8297 	 */
8298 	if (unlikely(rq->nr_running == 1))
8299 		return;
8300 
8301 	clear_buddies(cfs_rq, se);
8302 
8303 	update_rq_clock(rq);
8304 	/*
8305 	 * Update run-time statistics of the 'current'.
8306 	 */
8307 	update_curr(cfs_rq);
8308 	/*
8309 	 * Tell update_rq_clock() that we've just updated,
8310 	 * so we don't do microscopic update in schedule()
8311 	 * and double the fastpath cost.
8312 	 */
8313 	rq_clock_skip_update(rq);
8314 
8315 	se->deadline += calc_delta_fair(se->slice, se);
8316 }
8317 
8318 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8319 {
8320 	struct sched_entity *se = &p->se;
8321 
8322 	/* throttled hierarchies are not runnable */
8323 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8324 		return false;
8325 
8326 	/* Tell the scheduler that we'd really like pse to run next. */
8327 	set_next_buddy(se);
8328 
8329 	yield_task_fair(rq);
8330 
8331 	return true;
8332 }
8333 
8334 #ifdef CONFIG_SMP
8335 /**************************************************
8336  * Fair scheduling class load-balancing methods.
8337  *
8338  * BASICS
8339  *
8340  * The purpose of load-balancing is to achieve the same basic fairness the
8341  * per-CPU scheduler provides, namely provide a proportional amount of compute
8342  * time to each task. This is expressed in the following equation:
8343  *
8344  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8345  *
8346  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8347  * W_i,0 is defined as:
8348  *
8349  *   W_i,0 = \Sum_j w_i,j                                             (2)
8350  *
8351  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8352  * is derived from the nice value as per sched_prio_to_weight[].
8353  *
8354  * The weight average is an exponential decay average of the instantaneous
8355  * weight:
8356  *
8357  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8358  *
8359  * C_i is the compute capacity of CPU i, typically it is the
8360  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8361  * can also include other factors [XXX].
8362  *
8363  * To achieve this balance we define a measure of imbalance which follows
8364  * directly from (1):
8365  *
8366  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8367  *
8368  * We them move tasks around to minimize the imbalance. In the continuous
8369  * function space it is obvious this converges, in the discrete case we get
8370  * a few fun cases generally called infeasible weight scenarios.
8371  *
8372  * [XXX expand on:
8373  *     - infeasible weights;
8374  *     - local vs global optima in the discrete case. ]
8375  *
8376  *
8377  * SCHED DOMAINS
8378  *
8379  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8380  * for all i,j solution, we create a tree of CPUs that follows the hardware
8381  * topology where each level pairs two lower groups (or better). This results
8382  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8383  * tree to only the first of the previous level and we decrease the frequency
8384  * of load-balance at each level inv. proportional to the number of CPUs in
8385  * the groups.
8386  *
8387  * This yields:
8388  *
8389  *     log_2 n     1     n
8390  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8391  *     i = 0      2^i   2^i
8392  *                               `- size of each group
8393  *         |         |     `- number of CPUs doing load-balance
8394  *         |         `- freq
8395  *         `- sum over all levels
8396  *
8397  * Coupled with a limit on how many tasks we can migrate every balance pass,
8398  * this makes (5) the runtime complexity of the balancer.
8399  *
8400  * An important property here is that each CPU is still (indirectly) connected
8401  * to every other CPU in at most O(log n) steps:
8402  *
8403  * The adjacency matrix of the resulting graph is given by:
8404  *
8405  *             log_2 n
8406  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8407  *             k = 0
8408  *
8409  * And you'll find that:
8410  *
8411  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8412  *
8413  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8414  * The task movement gives a factor of O(m), giving a convergence complexity
8415  * of:
8416  *
8417  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8418  *
8419  *
8420  * WORK CONSERVING
8421  *
8422  * In order to avoid CPUs going idle while there's still work to do, new idle
8423  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8424  * tree itself instead of relying on other CPUs to bring it work.
8425  *
8426  * This adds some complexity to both (5) and (8) but it reduces the total idle
8427  * time.
8428  *
8429  * [XXX more?]
8430  *
8431  *
8432  * CGROUPS
8433  *
8434  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8435  *
8436  *                                s_k,i
8437  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8438  *                                 S_k
8439  *
8440  * Where
8441  *
8442  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8443  *
8444  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8445  *
8446  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8447  * property.
8448  *
8449  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8450  *      rewrite all of this once again.]
8451  */
8452 
8453 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8454 
8455 enum fbq_type { regular, remote, all };
8456 
8457 /*
8458  * 'group_type' describes the group of CPUs at the moment of load balancing.
8459  *
8460  * The enum is ordered by pulling priority, with the group with lowest priority
8461  * first so the group_type can simply be compared when selecting the busiest
8462  * group. See update_sd_pick_busiest().
8463  */
8464 enum group_type {
8465 	/* The group has spare capacity that can be used to run more tasks.  */
8466 	group_has_spare = 0,
8467 	/*
8468 	 * The group is fully used and the tasks don't compete for more CPU
8469 	 * cycles. Nevertheless, some tasks might wait before running.
8470 	 */
8471 	group_fully_busy,
8472 	/*
8473 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8474 	 * more powerful CPU.
8475 	 */
8476 	group_misfit_task,
8477 	/*
8478 	 * Balance SMT group that's fully busy. Can benefit from migration
8479 	 * a task on SMT with busy sibling to another CPU on idle core.
8480 	 */
8481 	group_smt_balance,
8482 	/*
8483 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8484 	 * and the task should be migrated to it instead of running on the
8485 	 * current CPU.
8486 	 */
8487 	group_asym_packing,
8488 	/*
8489 	 * The tasks' affinity constraints previously prevented the scheduler
8490 	 * from balancing the load across the system.
8491 	 */
8492 	group_imbalanced,
8493 	/*
8494 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8495 	 * tasks.
8496 	 */
8497 	group_overloaded
8498 };
8499 
8500 enum migration_type {
8501 	migrate_load = 0,
8502 	migrate_util,
8503 	migrate_task,
8504 	migrate_misfit
8505 };
8506 
8507 #define LBF_ALL_PINNED	0x01
8508 #define LBF_NEED_BREAK	0x02
8509 #define LBF_DST_PINNED  0x04
8510 #define LBF_SOME_PINNED	0x08
8511 #define LBF_ACTIVE_LB	0x10
8512 
8513 struct lb_env {
8514 	struct sched_domain	*sd;
8515 
8516 	struct rq		*src_rq;
8517 	int			src_cpu;
8518 
8519 	int			dst_cpu;
8520 	struct rq		*dst_rq;
8521 
8522 	struct cpumask		*dst_grpmask;
8523 	int			new_dst_cpu;
8524 	enum cpu_idle_type	idle;
8525 	long			imbalance;
8526 	/* The set of CPUs under consideration for load-balancing */
8527 	struct cpumask		*cpus;
8528 
8529 	unsigned int		flags;
8530 
8531 	unsigned int		loop;
8532 	unsigned int		loop_break;
8533 	unsigned int		loop_max;
8534 
8535 	enum fbq_type		fbq_type;
8536 	enum migration_type	migration_type;
8537 	struct list_head	tasks;
8538 };
8539 
8540 /*
8541  * Is this task likely cache-hot:
8542  */
8543 static int task_hot(struct task_struct *p, struct lb_env *env)
8544 {
8545 	s64 delta;
8546 
8547 	lockdep_assert_rq_held(env->src_rq);
8548 
8549 	if (p->sched_class != &fair_sched_class)
8550 		return 0;
8551 
8552 	if (unlikely(task_has_idle_policy(p)))
8553 		return 0;
8554 
8555 	/* SMT siblings share cache */
8556 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8557 		return 0;
8558 
8559 	/*
8560 	 * Buddy candidates are cache hot:
8561 	 */
8562 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8563 	    (&p->se == cfs_rq_of(&p->se)->next))
8564 		return 1;
8565 
8566 	if (sysctl_sched_migration_cost == -1)
8567 		return 1;
8568 
8569 	/*
8570 	 * Don't migrate task if the task's cookie does not match
8571 	 * with the destination CPU's core cookie.
8572 	 */
8573 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8574 		return 1;
8575 
8576 	if (sysctl_sched_migration_cost == 0)
8577 		return 0;
8578 
8579 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8580 
8581 	return delta < (s64)sysctl_sched_migration_cost;
8582 }
8583 
8584 #ifdef CONFIG_NUMA_BALANCING
8585 /*
8586  * Returns 1, if task migration degrades locality
8587  * Returns 0, if task migration improves locality i.e migration preferred.
8588  * Returns -1, if task migration is not affected by locality.
8589  */
8590 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8591 {
8592 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8593 	unsigned long src_weight, dst_weight;
8594 	int src_nid, dst_nid, dist;
8595 
8596 	if (!static_branch_likely(&sched_numa_balancing))
8597 		return -1;
8598 
8599 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8600 		return -1;
8601 
8602 	src_nid = cpu_to_node(env->src_cpu);
8603 	dst_nid = cpu_to_node(env->dst_cpu);
8604 
8605 	if (src_nid == dst_nid)
8606 		return -1;
8607 
8608 	/* Migrating away from the preferred node is always bad. */
8609 	if (src_nid == p->numa_preferred_nid) {
8610 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8611 			return 1;
8612 		else
8613 			return -1;
8614 	}
8615 
8616 	/* Encourage migration to the preferred node. */
8617 	if (dst_nid == p->numa_preferred_nid)
8618 		return 0;
8619 
8620 	/* Leaving a core idle is often worse than degrading locality. */
8621 	if (env->idle == CPU_IDLE)
8622 		return -1;
8623 
8624 	dist = node_distance(src_nid, dst_nid);
8625 	if (numa_group) {
8626 		src_weight = group_weight(p, src_nid, dist);
8627 		dst_weight = group_weight(p, dst_nid, dist);
8628 	} else {
8629 		src_weight = task_weight(p, src_nid, dist);
8630 		dst_weight = task_weight(p, dst_nid, dist);
8631 	}
8632 
8633 	return dst_weight < src_weight;
8634 }
8635 
8636 #else
8637 static inline int migrate_degrades_locality(struct task_struct *p,
8638 					     struct lb_env *env)
8639 {
8640 	return -1;
8641 }
8642 #endif
8643 
8644 /*
8645  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8646  */
8647 static
8648 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8649 {
8650 	int tsk_cache_hot;
8651 
8652 	lockdep_assert_rq_held(env->src_rq);
8653 
8654 	/*
8655 	 * We do not migrate tasks that are:
8656 	 * 1) throttled_lb_pair, or
8657 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8658 	 * 3) running (obviously), or
8659 	 * 4) are cache-hot on their current CPU.
8660 	 */
8661 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8662 		return 0;
8663 
8664 	/* Disregard pcpu kthreads; they are where they need to be. */
8665 	if (kthread_is_per_cpu(p))
8666 		return 0;
8667 
8668 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8669 		int cpu;
8670 
8671 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8672 
8673 		env->flags |= LBF_SOME_PINNED;
8674 
8675 		/*
8676 		 * Remember if this task can be migrated to any other CPU in
8677 		 * our sched_group. We may want to revisit it if we couldn't
8678 		 * meet load balance goals by pulling other tasks on src_cpu.
8679 		 *
8680 		 * Avoid computing new_dst_cpu
8681 		 * - for NEWLY_IDLE
8682 		 * - if we have already computed one in current iteration
8683 		 * - if it's an active balance
8684 		 */
8685 		if (env->idle == CPU_NEWLY_IDLE ||
8686 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8687 			return 0;
8688 
8689 		/* Prevent to re-select dst_cpu via env's CPUs: */
8690 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8691 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8692 				env->flags |= LBF_DST_PINNED;
8693 				env->new_dst_cpu = cpu;
8694 				break;
8695 			}
8696 		}
8697 
8698 		return 0;
8699 	}
8700 
8701 	/* Record that we found at least one task that could run on dst_cpu */
8702 	env->flags &= ~LBF_ALL_PINNED;
8703 
8704 	if (task_on_cpu(env->src_rq, p)) {
8705 		schedstat_inc(p->stats.nr_failed_migrations_running);
8706 		return 0;
8707 	}
8708 
8709 	/*
8710 	 * Aggressive migration if:
8711 	 * 1) active balance
8712 	 * 2) destination numa is preferred
8713 	 * 3) task is cache cold, or
8714 	 * 4) too many balance attempts have failed.
8715 	 */
8716 	if (env->flags & LBF_ACTIVE_LB)
8717 		return 1;
8718 
8719 	tsk_cache_hot = migrate_degrades_locality(p, env);
8720 	if (tsk_cache_hot == -1)
8721 		tsk_cache_hot = task_hot(p, env);
8722 
8723 	if (tsk_cache_hot <= 0 ||
8724 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8725 		if (tsk_cache_hot == 1) {
8726 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8727 			schedstat_inc(p->stats.nr_forced_migrations);
8728 		}
8729 		return 1;
8730 	}
8731 
8732 	schedstat_inc(p->stats.nr_failed_migrations_hot);
8733 	return 0;
8734 }
8735 
8736 /*
8737  * detach_task() -- detach the task for the migration specified in env
8738  */
8739 static void detach_task(struct task_struct *p, struct lb_env *env)
8740 {
8741 	lockdep_assert_rq_held(env->src_rq);
8742 
8743 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8744 	set_task_cpu(p, env->dst_cpu);
8745 }
8746 
8747 /*
8748  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8749  * part of active balancing operations within "domain".
8750  *
8751  * Returns a task if successful and NULL otherwise.
8752  */
8753 static struct task_struct *detach_one_task(struct lb_env *env)
8754 {
8755 	struct task_struct *p;
8756 
8757 	lockdep_assert_rq_held(env->src_rq);
8758 
8759 	list_for_each_entry_reverse(p,
8760 			&env->src_rq->cfs_tasks, se.group_node) {
8761 		if (!can_migrate_task(p, env))
8762 			continue;
8763 
8764 		detach_task(p, env);
8765 
8766 		/*
8767 		 * Right now, this is only the second place where
8768 		 * lb_gained[env->idle] is updated (other is detach_tasks)
8769 		 * so we can safely collect stats here rather than
8770 		 * inside detach_tasks().
8771 		 */
8772 		schedstat_inc(env->sd->lb_gained[env->idle]);
8773 		return p;
8774 	}
8775 	return NULL;
8776 }
8777 
8778 /*
8779  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8780  * busiest_rq, as part of a balancing operation within domain "sd".
8781  *
8782  * Returns number of detached tasks if successful and 0 otherwise.
8783  */
8784 static int detach_tasks(struct lb_env *env)
8785 {
8786 	struct list_head *tasks = &env->src_rq->cfs_tasks;
8787 	unsigned long util, load;
8788 	struct task_struct *p;
8789 	int detached = 0;
8790 
8791 	lockdep_assert_rq_held(env->src_rq);
8792 
8793 	/*
8794 	 * Source run queue has been emptied by another CPU, clear
8795 	 * LBF_ALL_PINNED flag as we will not test any task.
8796 	 */
8797 	if (env->src_rq->nr_running <= 1) {
8798 		env->flags &= ~LBF_ALL_PINNED;
8799 		return 0;
8800 	}
8801 
8802 	if (env->imbalance <= 0)
8803 		return 0;
8804 
8805 	while (!list_empty(tasks)) {
8806 		/*
8807 		 * We don't want to steal all, otherwise we may be treated likewise,
8808 		 * which could at worst lead to a livelock crash.
8809 		 */
8810 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8811 			break;
8812 
8813 		env->loop++;
8814 		/*
8815 		 * We've more or less seen every task there is, call it quits
8816 		 * unless we haven't found any movable task yet.
8817 		 */
8818 		if (env->loop > env->loop_max &&
8819 		    !(env->flags & LBF_ALL_PINNED))
8820 			break;
8821 
8822 		/* take a breather every nr_migrate tasks */
8823 		if (env->loop > env->loop_break) {
8824 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
8825 			env->flags |= LBF_NEED_BREAK;
8826 			break;
8827 		}
8828 
8829 		p = list_last_entry(tasks, struct task_struct, se.group_node);
8830 
8831 		if (!can_migrate_task(p, env))
8832 			goto next;
8833 
8834 		switch (env->migration_type) {
8835 		case migrate_load:
8836 			/*
8837 			 * Depending of the number of CPUs and tasks and the
8838 			 * cgroup hierarchy, task_h_load() can return a null
8839 			 * value. Make sure that env->imbalance decreases
8840 			 * otherwise detach_tasks() will stop only after
8841 			 * detaching up to loop_max tasks.
8842 			 */
8843 			load = max_t(unsigned long, task_h_load(p), 1);
8844 
8845 			if (sched_feat(LB_MIN) &&
8846 			    load < 16 && !env->sd->nr_balance_failed)
8847 				goto next;
8848 
8849 			/*
8850 			 * Make sure that we don't migrate too much load.
8851 			 * Nevertheless, let relax the constraint if
8852 			 * scheduler fails to find a good waiting task to
8853 			 * migrate.
8854 			 */
8855 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8856 				goto next;
8857 
8858 			env->imbalance -= load;
8859 			break;
8860 
8861 		case migrate_util:
8862 			util = task_util_est(p);
8863 
8864 			if (util > env->imbalance)
8865 				goto next;
8866 
8867 			env->imbalance -= util;
8868 			break;
8869 
8870 		case migrate_task:
8871 			env->imbalance--;
8872 			break;
8873 
8874 		case migrate_misfit:
8875 			/* This is not a misfit task */
8876 			if (task_fits_cpu(p, env->src_cpu))
8877 				goto next;
8878 
8879 			env->imbalance = 0;
8880 			break;
8881 		}
8882 
8883 		detach_task(p, env);
8884 		list_add(&p->se.group_node, &env->tasks);
8885 
8886 		detached++;
8887 
8888 #ifdef CONFIG_PREEMPTION
8889 		/*
8890 		 * NEWIDLE balancing is a source of latency, so preemptible
8891 		 * kernels will stop after the first task is detached to minimize
8892 		 * the critical section.
8893 		 */
8894 		if (env->idle == CPU_NEWLY_IDLE)
8895 			break;
8896 #endif
8897 
8898 		/*
8899 		 * We only want to steal up to the prescribed amount of
8900 		 * load/util/tasks.
8901 		 */
8902 		if (env->imbalance <= 0)
8903 			break;
8904 
8905 		continue;
8906 next:
8907 		list_move(&p->se.group_node, tasks);
8908 	}
8909 
8910 	/*
8911 	 * Right now, this is one of only two places we collect this stat
8912 	 * so we can safely collect detach_one_task() stats here rather
8913 	 * than inside detach_one_task().
8914 	 */
8915 	schedstat_add(env->sd->lb_gained[env->idle], detached);
8916 
8917 	return detached;
8918 }
8919 
8920 /*
8921  * attach_task() -- attach the task detached by detach_task() to its new rq.
8922  */
8923 static void attach_task(struct rq *rq, struct task_struct *p)
8924 {
8925 	lockdep_assert_rq_held(rq);
8926 
8927 	WARN_ON_ONCE(task_rq(p) != rq);
8928 	activate_task(rq, p, ENQUEUE_NOCLOCK);
8929 	check_preempt_curr(rq, p, 0);
8930 }
8931 
8932 /*
8933  * attach_one_task() -- attaches the task returned from detach_one_task() to
8934  * its new rq.
8935  */
8936 static void attach_one_task(struct rq *rq, struct task_struct *p)
8937 {
8938 	struct rq_flags rf;
8939 
8940 	rq_lock(rq, &rf);
8941 	update_rq_clock(rq);
8942 	attach_task(rq, p);
8943 	rq_unlock(rq, &rf);
8944 }
8945 
8946 /*
8947  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8948  * new rq.
8949  */
8950 static void attach_tasks(struct lb_env *env)
8951 {
8952 	struct list_head *tasks = &env->tasks;
8953 	struct task_struct *p;
8954 	struct rq_flags rf;
8955 
8956 	rq_lock(env->dst_rq, &rf);
8957 	update_rq_clock(env->dst_rq);
8958 
8959 	while (!list_empty(tasks)) {
8960 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8961 		list_del_init(&p->se.group_node);
8962 
8963 		attach_task(env->dst_rq, p);
8964 	}
8965 
8966 	rq_unlock(env->dst_rq, &rf);
8967 }
8968 
8969 #ifdef CONFIG_NO_HZ_COMMON
8970 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8971 {
8972 	if (cfs_rq->avg.load_avg)
8973 		return true;
8974 
8975 	if (cfs_rq->avg.util_avg)
8976 		return true;
8977 
8978 	return false;
8979 }
8980 
8981 static inline bool others_have_blocked(struct rq *rq)
8982 {
8983 	if (READ_ONCE(rq->avg_rt.util_avg))
8984 		return true;
8985 
8986 	if (READ_ONCE(rq->avg_dl.util_avg))
8987 		return true;
8988 
8989 	if (thermal_load_avg(rq))
8990 		return true;
8991 
8992 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8993 	if (READ_ONCE(rq->avg_irq.util_avg))
8994 		return true;
8995 #endif
8996 
8997 	return false;
8998 }
8999 
9000 static inline void update_blocked_load_tick(struct rq *rq)
9001 {
9002 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9003 }
9004 
9005 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9006 {
9007 	if (!has_blocked)
9008 		rq->has_blocked_load = 0;
9009 }
9010 #else
9011 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9012 static inline bool others_have_blocked(struct rq *rq) { return false; }
9013 static inline void update_blocked_load_tick(struct rq *rq) {}
9014 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9015 #endif
9016 
9017 static bool __update_blocked_others(struct rq *rq, bool *done)
9018 {
9019 	const struct sched_class *curr_class;
9020 	u64 now = rq_clock_pelt(rq);
9021 	unsigned long thermal_pressure;
9022 	bool decayed;
9023 
9024 	/*
9025 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9026 	 * DL and IRQ signals have been updated before updating CFS.
9027 	 */
9028 	curr_class = rq->curr->sched_class;
9029 
9030 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9031 
9032 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9033 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9034 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9035 		  update_irq_load_avg(rq, 0);
9036 
9037 	if (others_have_blocked(rq))
9038 		*done = false;
9039 
9040 	return decayed;
9041 }
9042 
9043 #ifdef CONFIG_FAIR_GROUP_SCHED
9044 
9045 static bool __update_blocked_fair(struct rq *rq, bool *done)
9046 {
9047 	struct cfs_rq *cfs_rq, *pos;
9048 	bool decayed = false;
9049 	int cpu = cpu_of(rq);
9050 
9051 	/*
9052 	 * Iterates the task_group tree in a bottom up fashion, see
9053 	 * list_add_leaf_cfs_rq() for details.
9054 	 */
9055 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9056 		struct sched_entity *se;
9057 
9058 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9059 			update_tg_load_avg(cfs_rq);
9060 
9061 			if (cfs_rq->nr_running == 0)
9062 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9063 
9064 			if (cfs_rq == &rq->cfs)
9065 				decayed = true;
9066 		}
9067 
9068 		/* Propagate pending load changes to the parent, if any: */
9069 		se = cfs_rq->tg->se[cpu];
9070 		if (se && !skip_blocked_update(se))
9071 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9072 
9073 		/*
9074 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9075 		 * decayed cfs_rqs linger on the list.
9076 		 */
9077 		if (cfs_rq_is_decayed(cfs_rq))
9078 			list_del_leaf_cfs_rq(cfs_rq);
9079 
9080 		/* Don't need periodic decay once load/util_avg are null */
9081 		if (cfs_rq_has_blocked(cfs_rq))
9082 			*done = false;
9083 	}
9084 
9085 	return decayed;
9086 }
9087 
9088 /*
9089  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9090  * This needs to be done in a top-down fashion because the load of a child
9091  * group is a fraction of its parents load.
9092  */
9093 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9094 {
9095 	struct rq *rq = rq_of(cfs_rq);
9096 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9097 	unsigned long now = jiffies;
9098 	unsigned long load;
9099 
9100 	if (cfs_rq->last_h_load_update == now)
9101 		return;
9102 
9103 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9104 	for_each_sched_entity(se) {
9105 		cfs_rq = cfs_rq_of(se);
9106 		WRITE_ONCE(cfs_rq->h_load_next, se);
9107 		if (cfs_rq->last_h_load_update == now)
9108 			break;
9109 	}
9110 
9111 	if (!se) {
9112 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9113 		cfs_rq->last_h_load_update = now;
9114 	}
9115 
9116 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9117 		load = cfs_rq->h_load;
9118 		load = div64_ul(load * se->avg.load_avg,
9119 			cfs_rq_load_avg(cfs_rq) + 1);
9120 		cfs_rq = group_cfs_rq(se);
9121 		cfs_rq->h_load = load;
9122 		cfs_rq->last_h_load_update = now;
9123 	}
9124 }
9125 
9126 static unsigned long task_h_load(struct task_struct *p)
9127 {
9128 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9129 
9130 	update_cfs_rq_h_load(cfs_rq);
9131 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9132 			cfs_rq_load_avg(cfs_rq) + 1);
9133 }
9134 #else
9135 static bool __update_blocked_fair(struct rq *rq, bool *done)
9136 {
9137 	struct cfs_rq *cfs_rq = &rq->cfs;
9138 	bool decayed;
9139 
9140 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9141 	if (cfs_rq_has_blocked(cfs_rq))
9142 		*done = false;
9143 
9144 	return decayed;
9145 }
9146 
9147 static unsigned long task_h_load(struct task_struct *p)
9148 {
9149 	return p->se.avg.load_avg;
9150 }
9151 #endif
9152 
9153 static void update_blocked_averages(int cpu)
9154 {
9155 	bool decayed = false, done = true;
9156 	struct rq *rq = cpu_rq(cpu);
9157 	struct rq_flags rf;
9158 
9159 	rq_lock_irqsave(rq, &rf);
9160 	update_blocked_load_tick(rq);
9161 	update_rq_clock(rq);
9162 
9163 	decayed |= __update_blocked_others(rq, &done);
9164 	decayed |= __update_blocked_fair(rq, &done);
9165 
9166 	update_blocked_load_status(rq, !done);
9167 	if (decayed)
9168 		cpufreq_update_util(rq, 0);
9169 	rq_unlock_irqrestore(rq, &rf);
9170 }
9171 
9172 /********** Helpers for find_busiest_group ************************/
9173 
9174 /*
9175  * sg_lb_stats - stats of a sched_group required for load_balancing
9176  */
9177 struct sg_lb_stats {
9178 	unsigned long avg_load; /*Avg load across the CPUs of the group */
9179 	unsigned long group_load; /* Total load over the CPUs of the group */
9180 	unsigned long group_capacity;
9181 	unsigned long group_util; /* Total utilization over the CPUs of the group */
9182 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9183 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
9184 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9185 	unsigned int idle_cpus;
9186 	unsigned int group_weight;
9187 	enum group_type group_type;
9188 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9189 	unsigned int group_smt_balance;  /* Task on busy SMT be moved */
9190 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9191 #ifdef CONFIG_NUMA_BALANCING
9192 	unsigned int nr_numa_running;
9193 	unsigned int nr_preferred_running;
9194 #endif
9195 };
9196 
9197 /*
9198  * sd_lb_stats - Structure to store the statistics of a sched_domain
9199  *		 during load balancing.
9200  */
9201 struct sd_lb_stats {
9202 	struct sched_group *busiest;	/* Busiest group in this sd */
9203 	struct sched_group *local;	/* Local group in this sd */
9204 	unsigned long total_load;	/* Total load of all groups in sd */
9205 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
9206 	unsigned long avg_load;	/* Average load across all groups in sd */
9207 	unsigned int prefer_sibling; /* tasks should go to sibling first */
9208 
9209 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9210 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
9211 };
9212 
9213 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9214 {
9215 	/*
9216 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9217 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9218 	 * We must however set busiest_stat::group_type and
9219 	 * busiest_stat::idle_cpus to the worst busiest group because
9220 	 * update_sd_pick_busiest() reads these before assignment.
9221 	 */
9222 	*sds = (struct sd_lb_stats){
9223 		.busiest = NULL,
9224 		.local = NULL,
9225 		.total_load = 0UL,
9226 		.total_capacity = 0UL,
9227 		.busiest_stat = {
9228 			.idle_cpus = UINT_MAX,
9229 			.group_type = group_has_spare,
9230 		},
9231 	};
9232 }
9233 
9234 static unsigned long scale_rt_capacity(int cpu)
9235 {
9236 	struct rq *rq = cpu_rq(cpu);
9237 	unsigned long max = arch_scale_cpu_capacity(cpu);
9238 	unsigned long used, free;
9239 	unsigned long irq;
9240 
9241 	irq = cpu_util_irq(rq);
9242 
9243 	if (unlikely(irq >= max))
9244 		return 1;
9245 
9246 	/*
9247 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9248 	 * (running and not running) with weights 0 and 1024 respectively.
9249 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
9250 	 * average uses the actual delta max capacity(load).
9251 	 */
9252 	used = READ_ONCE(rq->avg_rt.util_avg);
9253 	used += READ_ONCE(rq->avg_dl.util_avg);
9254 	used += thermal_load_avg(rq);
9255 
9256 	if (unlikely(used >= max))
9257 		return 1;
9258 
9259 	free = max - used;
9260 
9261 	return scale_irq_capacity(free, irq, max);
9262 }
9263 
9264 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9265 {
9266 	unsigned long capacity = scale_rt_capacity(cpu);
9267 	struct sched_group *sdg = sd->groups;
9268 
9269 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
9270 
9271 	if (!capacity)
9272 		capacity = 1;
9273 
9274 	cpu_rq(cpu)->cpu_capacity = capacity;
9275 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9276 
9277 	sdg->sgc->capacity = capacity;
9278 	sdg->sgc->min_capacity = capacity;
9279 	sdg->sgc->max_capacity = capacity;
9280 }
9281 
9282 void update_group_capacity(struct sched_domain *sd, int cpu)
9283 {
9284 	struct sched_domain *child = sd->child;
9285 	struct sched_group *group, *sdg = sd->groups;
9286 	unsigned long capacity, min_capacity, max_capacity;
9287 	unsigned long interval;
9288 
9289 	interval = msecs_to_jiffies(sd->balance_interval);
9290 	interval = clamp(interval, 1UL, max_load_balance_interval);
9291 	sdg->sgc->next_update = jiffies + interval;
9292 
9293 	if (!child) {
9294 		update_cpu_capacity(sd, cpu);
9295 		return;
9296 	}
9297 
9298 	capacity = 0;
9299 	min_capacity = ULONG_MAX;
9300 	max_capacity = 0;
9301 
9302 	if (child->flags & SD_OVERLAP) {
9303 		/*
9304 		 * SD_OVERLAP domains cannot assume that child groups
9305 		 * span the current group.
9306 		 */
9307 
9308 		for_each_cpu(cpu, sched_group_span(sdg)) {
9309 			unsigned long cpu_cap = capacity_of(cpu);
9310 
9311 			capacity += cpu_cap;
9312 			min_capacity = min(cpu_cap, min_capacity);
9313 			max_capacity = max(cpu_cap, max_capacity);
9314 		}
9315 	} else  {
9316 		/*
9317 		 * !SD_OVERLAP domains can assume that child groups
9318 		 * span the current group.
9319 		 */
9320 
9321 		group = child->groups;
9322 		do {
9323 			struct sched_group_capacity *sgc = group->sgc;
9324 
9325 			capacity += sgc->capacity;
9326 			min_capacity = min(sgc->min_capacity, min_capacity);
9327 			max_capacity = max(sgc->max_capacity, max_capacity);
9328 			group = group->next;
9329 		} while (group != child->groups);
9330 	}
9331 
9332 	sdg->sgc->capacity = capacity;
9333 	sdg->sgc->min_capacity = min_capacity;
9334 	sdg->sgc->max_capacity = max_capacity;
9335 }
9336 
9337 /*
9338  * Check whether the capacity of the rq has been noticeably reduced by side
9339  * activity. The imbalance_pct is used for the threshold.
9340  * Return true is the capacity is reduced
9341  */
9342 static inline int
9343 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9344 {
9345 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9346 				(rq->cpu_capacity_orig * 100));
9347 }
9348 
9349 /*
9350  * Check whether a rq has a misfit task and if it looks like we can actually
9351  * help that task: we can migrate the task to a CPU of higher capacity, or
9352  * the task's current CPU is heavily pressured.
9353  */
9354 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9355 {
9356 	return rq->misfit_task_load &&
9357 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
9358 		 check_cpu_capacity(rq, sd));
9359 }
9360 
9361 /*
9362  * Group imbalance indicates (and tries to solve) the problem where balancing
9363  * groups is inadequate due to ->cpus_ptr constraints.
9364  *
9365  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9366  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9367  * Something like:
9368  *
9369  *	{ 0 1 2 3 } { 4 5 6 7 }
9370  *	        *     * * *
9371  *
9372  * If we were to balance group-wise we'd place two tasks in the first group and
9373  * two tasks in the second group. Clearly this is undesired as it will overload
9374  * cpu 3 and leave one of the CPUs in the second group unused.
9375  *
9376  * The current solution to this issue is detecting the skew in the first group
9377  * by noticing the lower domain failed to reach balance and had difficulty
9378  * moving tasks due to affinity constraints.
9379  *
9380  * When this is so detected; this group becomes a candidate for busiest; see
9381  * update_sd_pick_busiest(). And calculate_imbalance() and
9382  * find_busiest_group() avoid some of the usual balance conditions to allow it
9383  * to create an effective group imbalance.
9384  *
9385  * This is a somewhat tricky proposition since the next run might not find the
9386  * group imbalance and decide the groups need to be balanced again. A most
9387  * subtle and fragile situation.
9388  */
9389 
9390 static inline int sg_imbalanced(struct sched_group *group)
9391 {
9392 	return group->sgc->imbalance;
9393 }
9394 
9395 /*
9396  * group_has_capacity returns true if the group has spare capacity that could
9397  * be used by some tasks.
9398  * We consider that a group has spare capacity if the number of task is
9399  * smaller than the number of CPUs or if the utilization is lower than the
9400  * available capacity for CFS tasks.
9401  * For the latter, we use a threshold to stabilize the state, to take into
9402  * account the variance of the tasks' load and to return true if the available
9403  * capacity in meaningful for the load balancer.
9404  * As an example, an available capacity of 1% can appear but it doesn't make
9405  * any benefit for the load balance.
9406  */
9407 static inline bool
9408 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9409 {
9410 	if (sgs->sum_nr_running < sgs->group_weight)
9411 		return true;
9412 
9413 	if ((sgs->group_capacity * imbalance_pct) <
9414 			(sgs->group_runnable * 100))
9415 		return false;
9416 
9417 	if ((sgs->group_capacity * 100) >
9418 			(sgs->group_util * imbalance_pct))
9419 		return true;
9420 
9421 	return false;
9422 }
9423 
9424 /*
9425  *  group_is_overloaded returns true if the group has more tasks than it can
9426  *  handle.
9427  *  group_is_overloaded is not equals to !group_has_capacity because a group
9428  *  with the exact right number of tasks, has no more spare capacity but is not
9429  *  overloaded so both group_has_capacity and group_is_overloaded return
9430  *  false.
9431  */
9432 static inline bool
9433 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9434 {
9435 	if (sgs->sum_nr_running <= sgs->group_weight)
9436 		return false;
9437 
9438 	if ((sgs->group_capacity * 100) <
9439 			(sgs->group_util * imbalance_pct))
9440 		return true;
9441 
9442 	if ((sgs->group_capacity * imbalance_pct) <
9443 			(sgs->group_runnable * 100))
9444 		return true;
9445 
9446 	return false;
9447 }
9448 
9449 static inline enum
9450 group_type group_classify(unsigned int imbalance_pct,
9451 			  struct sched_group *group,
9452 			  struct sg_lb_stats *sgs)
9453 {
9454 	if (group_is_overloaded(imbalance_pct, sgs))
9455 		return group_overloaded;
9456 
9457 	if (sg_imbalanced(group))
9458 		return group_imbalanced;
9459 
9460 	if (sgs->group_asym_packing)
9461 		return group_asym_packing;
9462 
9463 	if (sgs->group_smt_balance)
9464 		return group_smt_balance;
9465 
9466 	if (sgs->group_misfit_task_load)
9467 		return group_misfit_task;
9468 
9469 	if (!group_has_capacity(imbalance_pct, sgs))
9470 		return group_fully_busy;
9471 
9472 	return group_has_spare;
9473 }
9474 
9475 /**
9476  * sched_use_asym_prio - Check whether asym_packing priority must be used
9477  * @sd:		The scheduling domain of the load balancing
9478  * @cpu:	A CPU
9479  *
9480  * Always use CPU priority when balancing load between SMT siblings. When
9481  * balancing load between cores, it is not sufficient that @cpu is idle. Only
9482  * use CPU priority if the whole core is idle.
9483  *
9484  * Returns: True if the priority of @cpu must be followed. False otherwise.
9485  */
9486 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9487 {
9488 	if (!sched_smt_active())
9489 		return true;
9490 
9491 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9492 }
9493 
9494 /**
9495  * sched_asym - Check if the destination CPU can do asym_packing load balance
9496  * @env:	The load balancing environment
9497  * @sds:	Load-balancing data with statistics of the local group
9498  * @sgs:	Load-balancing statistics of the candidate busiest group
9499  * @group:	The candidate busiest group
9500  *
9501  * @env::dst_cpu can do asym_packing if it has higher priority than the
9502  * preferred CPU of @group.
9503  *
9504  * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
9505  * can do asym_packing balance only if all its SMT siblings are idle. Also, it
9506  * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
9507  * imbalances in the number of CPUS are dealt with in find_busiest_group().
9508  *
9509  * If we are balancing load within an SMT core, or at DIE domain level, always
9510  * proceed.
9511  *
9512  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9513  * otherwise.
9514  */
9515 static inline bool
9516 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
9517 	   struct sched_group *group)
9518 {
9519 	/* Ensure that the whole local core is idle, if applicable. */
9520 	if (!sched_use_asym_prio(env->sd, env->dst_cpu))
9521 		return false;
9522 
9523 	/*
9524 	 * CPU priorities does not make sense for SMT cores with more than one
9525 	 * busy sibling.
9526 	 */
9527 	if (group->flags & SD_SHARE_CPUCAPACITY) {
9528 		if (sgs->group_weight - sgs->idle_cpus != 1)
9529 			return false;
9530 	}
9531 
9532 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9533 }
9534 
9535 /* One group has more than one SMT CPU while the other group does not */
9536 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9537 				    struct sched_group *sg2)
9538 {
9539 	if (!sg1 || !sg2)
9540 		return false;
9541 
9542 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9543 		(sg2->flags & SD_SHARE_CPUCAPACITY);
9544 }
9545 
9546 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9547 			       struct sched_group *group)
9548 {
9549 	if (env->idle == CPU_NOT_IDLE)
9550 		return false;
9551 
9552 	/*
9553 	 * For SMT source group, it is better to move a task
9554 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9555 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9556 	 * will not be on.
9557 	 */
9558 	if (group->flags & SD_SHARE_CPUCAPACITY &&
9559 	    sgs->sum_h_nr_running > 1)
9560 		return true;
9561 
9562 	return false;
9563 }
9564 
9565 static inline long sibling_imbalance(struct lb_env *env,
9566 				    struct sd_lb_stats *sds,
9567 				    struct sg_lb_stats *busiest,
9568 				    struct sg_lb_stats *local)
9569 {
9570 	int ncores_busiest, ncores_local;
9571 	long imbalance;
9572 
9573 	if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9574 		return 0;
9575 
9576 	ncores_busiest = sds->busiest->cores;
9577 	ncores_local = sds->local->cores;
9578 
9579 	if (ncores_busiest == ncores_local) {
9580 		imbalance = busiest->sum_nr_running;
9581 		lsub_positive(&imbalance, local->sum_nr_running);
9582 		return imbalance;
9583 	}
9584 
9585 	/* Balance such that nr_running/ncores ratio are same on both groups */
9586 	imbalance = ncores_local * busiest->sum_nr_running;
9587 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9588 	/* Normalize imbalance and do rounding on normalization */
9589 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9590 	imbalance /= ncores_local + ncores_busiest;
9591 
9592 	/* Take advantage of resource in an empty sched group */
9593 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
9594 	    busiest->sum_nr_running > 1)
9595 		imbalance = 2;
9596 
9597 	return imbalance;
9598 }
9599 
9600 static inline bool
9601 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9602 {
9603 	/*
9604 	 * When there is more than 1 task, the group_overloaded case already
9605 	 * takes care of cpu with reduced capacity
9606 	 */
9607 	if (rq->cfs.h_nr_running != 1)
9608 		return false;
9609 
9610 	return check_cpu_capacity(rq, sd);
9611 }
9612 
9613 /**
9614  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9615  * @env: The load balancing environment.
9616  * @sds: Load-balancing data with statistics of the local group.
9617  * @group: sched_group whose statistics are to be updated.
9618  * @sgs: variable to hold the statistics for this group.
9619  * @sg_status: Holds flag indicating the status of the sched_group
9620  */
9621 static inline void update_sg_lb_stats(struct lb_env *env,
9622 				      struct sd_lb_stats *sds,
9623 				      struct sched_group *group,
9624 				      struct sg_lb_stats *sgs,
9625 				      int *sg_status)
9626 {
9627 	int i, nr_running, local_group;
9628 
9629 	memset(sgs, 0, sizeof(*sgs));
9630 
9631 	local_group = group == sds->local;
9632 
9633 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9634 		struct rq *rq = cpu_rq(i);
9635 		unsigned long load = cpu_load(rq);
9636 
9637 		sgs->group_load += load;
9638 		sgs->group_util += cpu_util_cfs(i);
9639 		sgs->group_runnable += cpu_runnable(rq);
9640 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9641 
9642 		nr_running = rq->nr_running;
9643 		sgs->sum_nr_running += nr_running;
9644 
9645 		if (nr_running > 1)
9646 			*sg_status |= SG_OVERLOAD;
9647 
9648 		if (cpu_overutilized(i))
9649 			*sg_status |= SG_OVERUTILIZED;
9650 
9651 #ifdef CONFIG_NUMA_BALANCING
9652 		sgs->nr_numa_running += rq->nr_numa_running;
9653 		sgs->nr_preferred_running += rq->nr_preferred_running;
9654 #endif
9655 		/*
9656 		 * No need to call idle_cpu() if nr_running is not 0
9657 		 */
9658 		if (!nr_running && idle_cpu(i)) {
9659 			sgs->idle_cpus++;
9660 			/* Idle cpu can't have misfit task */
9661 			continue;
9662 		}
9663 
9664 		if (local_group)
9665 			continue;
9666 
9667 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9668 			/* Check for a misfit task on the cpu */
9669 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9670 				sgs->group_misfit_task_load = rq->misfit_task_load;
9671 				*sg_status |= SG_OVERLOAD;
9672 			}
9673 		} else if ((env->idle != CPU_NOT_IDLE) &&
9674 			   sched_reduced_capacity(rq, env->sd)) {
9675 			/* Check for a task running on a CPU with reduced capacity */
9676 			if (sgs->group_misfit_task_load < load)
9677 				sgs->group_misfit_task_load = load;
9678 		}
9679 	}
9680 
9681 	sgs->group_capacity = group->sgc->capacity;
9682 
9683 	sgs->group_weight = group->group_weight;
9684 
9685 	/* Check if dst CPU is idle and preferred to this group */
9686 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9687 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9688 	    sched_asym(env, sds, sgs, group)) {
9689 		sgs->group_asym_packing = 1;
9690 	}
9691 
9692 	/* Check for loaded SMT group to be balanced to dst CPU */
9693 	if (!local_group && smt_balance(env, sgs, group))
9694 		sgs->group_smt_balance = 1;
9695 
9696 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9697 
9698 	/* Computing avg_load makes sense only when group is overloaded */
9699 	if (sgs->group_type == group_overloaded)
9700 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9701 				sgs->group_capacity;
9702 }
9703 
9704 /**
9705  * update_sd_pick_busiest - return 1 on busiest group
9706  * @env: The load balancing environment.
9707  * @sds: sched_domain statistics
9708  * @sg: sched_group candidate to be checked for being the busiest
9709  * @sgs: sched_group statistics
9710  *
9711  * Determine if @sg is a busier group than the previously selected
9712  * busiest group.
9713  *
9714  * Return: %true if @sg is a busier group than the previously selected
9715  * busiest group. %false otherwise.
9716  */
9717 static bool update_sd_pick_busiest(struct lb_env *env,
9718 				   struct sd_lb_stats *sds,
9719 				   struct sched_group *sg,
9720 				   struct sg_lb_stats *sgs)
9721 {
9722 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9723 
9724 	/* Make sure that there is at least one task to pull */
9725 	if (!sgs->sum_h_nr_running)
9726 		return false;
9727 
9728 	/*
9729 	 * Don't try to pull misfit tasks we can't help.
9730 	 * We can use max_capacity here as reduction in capacity on some
9731 	 * CPUs in the group should either be possible to resolve
9732 	 * internally or be covered by avg_load imbalance (eventually).
9733 	 */
9734 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9735 	    (sgs->group_type == group_misfit_task) &&
9736 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9737 	     sds->local_stat.group_type != group_has_spare))
9738 		return false;
9739 
9740 	if (sgs->group_type > busiest->group_type)
9741 		return true;
9742 
9743 	if (sgs->group_type < busiest->group_type)
9744 		return false;
9745 
9746 	/*
9747 	 * The candidate and the current busiest group are the same type of
9748 	 * group. Let check which one is the busiest according to the type.
9749 	 */
9750 
9751 	switch (sgs->group_type) {
9752 	case group_overloaded:
9753 		/* Select the overloaded group with highest avg_load. */
9754 		if (sgs->avg_load <= busiest->avg_load)
9755 			return false;
9756 		break;
9757 
9758 	case group_imbalanced:
9759 		/*
9760 		 * Select the 1st imbalanced group as we don't have any way to
9761 		 * choose one more than another.
9762 		 */
9763 		return false;
9764 
9765 	case group_asym_packing:
9766 		/* Prefer to move from lowest priority CPU's work */
9767 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9768 			return false;
9769 		break;
9770 
9771 	case group_misfit_task:
9772 		/*
9773 		 * If we have more than one misfit sg go with the biggest
9774 		 * misfit.
9775 		 */
9776 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9777 			return false;
9778 		break;
9779 
9780 	case group_smt_balance:
9781 		/*
9782 		 * Check if we have spare CPUs on either SMT group to
9783 		 * choose has spare or fully busy handling.
9784 		 */
9785 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
9786 			goto has_spare;
9787 
9788 		fallthrough;
9789 
9790 	case group_fully_busy:
9791 		/*
9792 		 * Select the fully busy group with highest avg_load. In
9793 		 * theory, there is no need to pull task from such kind of
9794 		 * group because tasks have all compute capacity that they need
9795 		 * but we can still improve the overall throughput by reducing
9796 		 * contention when accessing shared HW resources.
9797 		 *
9798 		 * XXX for now avg_load is not computed and always 0 so we
9799 		 * select the 1st one, except if @sg is composed of SMT
9800 		 * siblings.
9801 		 */
9802 
9803 		if (sgs->avg_load < busiest->avg_load)
9804 			return false;
9805 
9806 		if (sgs->avg_load == busiest->avg_load) {
9807 			/*
9808 			 * SMT sched groups need more help than non-SMT groups.
9809 			 * If @sg happens to also be SMT, either choice is good.
9810 			 */
9811 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
9812 				return false;
9813 		}
9814 
9815 		break;
9816 
9817 	case group_has_spare:
9818 		/*
9819 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
9820 		 * as we do not want to pull task off SMT core with one task
9821 		 * and make the core idle.
9822 		 */
9823 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
9824 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
9825 				return false;
9826 			else
9827 				return true;
9828 		}
9829 has_spare:
9830 
9831 		/*
9832 		 * Select not overloaded group with lowest number of idle cpus
9833 		 * and highest number of running tasks. We could also compare
9834 		 * the spare capacity which is more stable but it can end up
9835 		 * that the group has less spare capacity but finally more idle
9836 		 * CPUs which means less opportunity to pull tasks.
9837 		 */
9838 		if (sgs->idle_cpus > busiest->idle_cpus)
9839 			return false;
9840 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9841 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
9842 			return false;
9843 
9844 		break;
9845 	}
9846 
9847 	/*
9848 	 * Candidate sg has no more than one task per CPU and has higher
9849 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9850 	 * throughput. Maximize throughput, power/energy consequences are not
9851 	 * considered.
9852 	 */
9853 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9854 	    (sgs->group_type <= group_fully_busy) &&
9855 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
9856 		return false;
9857 
9858 	return true;
9859 }
9860 
9861 #ifdef CONFIG_NUMA_BALANCING
9862 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9863 {
9864 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
9865 		return regular;
9866 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
9867 		return remote;
9868 	return all;
9869 }
9870 
9871 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9872 {
9873 	if (rq->nr_running > rq->nr_numa_running)
9874 		return regular;
9875 	if (rq->nr_running > rq->nr_preferred_running)
9876 		return remote;
9877 	return all;
9878 }
9879 #else
9880 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9881 {
9882 	return all;
9883 }
9884 
9885 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9886 {
9887 	return regular;
9888 }
9889 #endif /* CONFIG_NUMA_BALANCING */
9890 
9891 
9892 struct sg_lb_stats;
9893 
9894 /*
9895  * task_running_on_cpu - return 1 if @p is running on @cpu.
9896  */
9897 
9898 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9899 {
9900 	/* Task has no contribution or is new */
9901 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
9902 		return 0;
9903 
9904 	if (task_on_rq_queued(p))
9905 		return 1;
9906 
9907 	return 0;
9908 }
9909 
9910 /**
9911  * idle_cpu_without - would a given CPU be idle without p ?
9912  * @cpu: the processor on which idleness is tested.
9913  * @p: task which should be ignored.
9914  *
9915  * Return: 1 if the CPU would be idle. 0 otherwise.
9916  */
9917 static int idle_cpu_without(int cpu, struct task_struct *p)
9918 {
9919 	struct rq *rq = cpu_rq(cpu);
9920 
9921 	if (rq->curr != rq->idle && rq->curr != p)
9922 		return 0;
9923 
9924 	/*
9925 	 * rq->nr_running can't be used but an updated version without the
9926 	 * impact of p on cpu must be used instead. The updated nr_running
9927 	 * be computed and tested before calling idle_cpu_without().
9928 	 */
9929 
9930 #ifdef CONFIG_SMP
9931 	if (rq->ttwu_pending)
9932 		return 0;
9933 #endif
9934 
9935 	return 1;
9936 }
9937 
9938 /*
9939  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
9940  * @sd: The sched_domain level to look for idlest group.
9941  * @group: sched_group whose statistics are to be updated.
9942  * @sgs: variable to hold the statistics for this group.
9943  * @p: The task for which we look for the idlest group/CPU.
9944  */
9945 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
9946 					  struct sched_group *group,
9947 					  struct sg_lb_stats *sgs,
9948 					  struct task_struct *p)
9949 {
9950 	int i, nr_running;
9951 
9952 	memset(sgs, 0, sizeof(*sgs));
9953 
9954 	/* Assume that task can't fit any CPU of the group */
9955 	if (sd->flags & SD_ASYM_CPUCAPACITY)
9956 		sgs->group_misfit_task_load = 1;
9957 
9958 	for_each_cpu(i, sched_group_span(group)) {
9959 		struct rq *rq = cpu_rq(i);
9960 		unsigned int local;
9961 
9962 		sgs->group_load += cpu_load_without(rq, p);
9963 		sgs->group_util += cpu_util_without(i, p);
9964 		sgs->group_runnable += cpu_runnable_without(rq, p);
9965 		local = task_running_on_cpu(i, p);
9966 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9967 
9968 		nr_running = rq->nr_running - local;
9969 		sgs->sum_nr_running += nr_running;
9970 
9971 		/*
9972 		 * No need to call idle_cpu_without() if nr_running is not 0
9973 		 */
9974 		if (!nr_running && idle_cpu_without(i, p))
9975 			sgs->idle_cpus++;
9976 
9977 		/* Check if task fits in the CPU */
9978 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
9979 		    sgs->group_misfit_task_load &&
9980 		    task_fits_cpu(p, i))
9981 			sgs->group_misfit_task_load = 0;
9982 
9983 	}
9984 
9985 	sgs->group_capacity = group->sgc->capacity;
9986 
9987 	sgs->group_weight = group->group_weight;
9988 
9989 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9990 
9991 	/*
9992 	 * Computing avg_load makes sense only when group is fully busy or
9993 	 * overloaded
9994 	 */
9995 	if (sgs->group_type == group_fully_busy ||
9996 		sgs->group_type == group_overloaded)
9997 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9998 				sgs->group_capacity;
9999 }
10000 
10001 static bool update_pick_idlest(struct sched_group *idlest,
10002 			       struct sg_lb_stats *idlest_sgs,
10003 			       struct sched_group *group,
10004 			       struct sg_lb_stats *sgs)
10005 {
10006 	if (sgs->group_type < idlest_sgs->group_type)
10007 		return true;
10008 
10009 	if (sgs->group_type > idlest_sgs->group_type)
10010 		return false;
10011 
10012 	/*
10013 	 * The candidate and the current idlest group are the same type of
10014 	 * group. Let check which one is the idlest according to the type.
10015 	 */
10016 
10017 	switch (sgs->group_type) {
10018 	case group_overloaded:
10019 	case group_fully_busy:
10020 		/* Select the group with lowest avg_load. */
10021 		if (idlest_sgs->avg_load <= sgs->avg_load)
10022 			return false;
10023 		break;
10024 
10025 	case group_imbalanced:
10026 	case group_asym_packing:
10027 	case group_smt_balance:
10028 		/* Those types are not used in the slow wakeup path */
10029 		return false;
10030 
10031 	case group_misfit_task:
10032 		/* Select group with the highest max capacity */
10033 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10034 			return false;
10035 		break;
10036 
10037 	case group_has_spare:
10038 		/* Select group with most idle CPUs */
10039 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10040 			return false;
10041 
10042 		/* Select group with lowest group_util */
10043 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10044 			idlest_sgs->group_util <= sgs->group_util)
10045 			return false;
10046 
10047 		break;
10048 	}
10049 
10050 	return true;
10051 }
10052 
10053 /*
10054  * find_idlest_group() finds and returns the least busy CPU group within the
10055  * domain.
10056  *
10057  * Assumes p is allowed on at least one CPU in sd.
10058  */
10059 static struct sched_group *
10060 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10061 {
10062 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10063 	struct sg_lb_stats local_sgs, tmp_sgs;
10064 	struct sg_lb_stats *sgs;
10065 	unsigned long imbalance;
10066 	struct sg_lb_stats idlest_sgs = {
10067 			.avg_load = UINT_MAX,
10068 			.group_type = group_overloaded,
10069 	};
10070 
10071 	do {
10072 		int local_group;
10073 
10074 		/* Skip over this group if it has no CPUs allowed */
10075 		if (!cpumask_intersects(sched_group_span(group),
10076 					p->cpus_ptr))
10077 			continue;
10078 
10079 		/* Skip over this group if no cookie matched */
10080 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10081 			continue;
10082 
10083 		local_group = cpumask_test_cpu(this_cpu,
10084 					       sched_group_span(group));
10085 
10086 		if (local_group) {
10087 			sgs = &local_sgs;
10088 			local = group;
10089 		} else {
10090 			sgs = &tmp_sgs;
10091 		}
10092 
10093 		update_sg_wakeup_stats(sd, group, sgs, p);
10094 
10095 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10096 			idlest = group;
10097 			idlest_sgs = *sgs;
10098 		}
10099 
10100 	} while (group = group->next, group != sd->groups);
10101 
10102 
10103 	/* There is no idlest group to push tasks to */
10104 	if (!idlest)
10105 		return NULL;
10106 
10107 	/* The local group has been skipped because of CPU affinity */
10108 	if (!local)
10109 		return idlest;
10110 
10111 	/*
10112 	 * If the local group is idler than the selected idlest group
10113 	 * don't try and push the task.
10114 	 */
10115 	if (local_sgs.group_type < idlest_sgs.group_type)
10116 		return NULL;
10117 
10118 	/*
10119 	 * If the local group is busier than the selected idlest group
10120 	 * try and push the task.
10121 	 */
10122 	if (local_sgs.group_type > idlest_sgs.group_type)
10123 		return idlest;
10124 
10125 	switch (local_sgs.group_type) {
10126 	case group_overloaded:
10127 	case group_fully_busy:
10128 
10129 		/* Calculate allowed imbalance based on load */
10130 		imbalance = scale_load_down(NICE_0_LOAD) *
10131 				(sd->imbalance_pct-100) / 100;
10132 
10133 		/*
10134 		 * When comparing groups across NUMA domains, it's possible for
10135 		 * the local domain to be very lightly loaded relative to the
10136 		 * remote domains but "imbalance" skews the comparison making
10137 		 * remote CPUs look much more favourable. When considering
10138 		 * cross-domain, add imbalance to the load on the remote node
10139 		 * and consider staying local.
10140 		 */
10141 
10142 		if ((sd->flags & SD_NUMA) &&
10143 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10144 			return NULL;
10145 
10146 		/*
10147 		 * If the local group is less loaded than the selected
10148 		 * idlest group don't try and push any tasks.
10149 		 */
10150 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10151 			return NULL;
10152 
10153 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10154 			return NULL;
10155 		break;
10156 
10157 	case group_imbalanced:
10158 	case group_asym_packing:
10159 	case group_smt_balance:
10160 		/* Those type are not used in the slow wakeup path */
10161 		return NULL;
10162 
10163 	case group_misfit_task:
10164 		/* Select group with the highest max capacity */
10165 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10166 			return NULL;
10167 		break;
10168 
10169 	case group_has_spare:
10170 #ifdef CONFIG_NUMA
10171 		if (sd->flags & SD_NUMA) {
10172 			int imb_numa_nr = sd->imb_numa_nr;
10173 #ifdef CONFIG_NUMA_BALANCING
10174 			int idlest_cpu;
10175 			/*
10176 			 * If there is spare capacity at NUMA, try to select
10177 			 * the preferred node
10178 			 */
10179 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10180 				return NULL;
10181 
10182 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10183 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10184 				return idlest;
10185 #endif /* CONFIG_NUMA_BALANCING */
10186 			/*
10187 			 * Otherwise, keep the task close to the wakeup source
10188 			 * and improve locality if the number of running tasks
10189 			 * would remain below threshold where an imbalance is
10190 			 * allowed while accounting for the possibility the
10191 			 * task is pinned to a subset of CPUs. If there is a
10192 			 * real need of migration, periodic load balance will
10193 			 * take care of it.
10194 			 */
10195 			if (p->nr_cpus_allowed != NR_CPUS) {
10196 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10197 
10198 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10199 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10200 			}
10201 
10202 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10203 			if (!adjust_numa_imbalance(imbalance,
10204 						   local_sgs.sum_nr_running + 1,
10205 						   imb_numa_nr)) {
10206 				return NULL;
10207 			}
10208 		}
10209 #endif /* CONFIG_NUMA */
10210 
10211 		/*
10212 		 * Select group with highest number of idle CPUs. We could also
10213 		 * compare the utilization which is more stable but it can end
10214 		 * up that the group has less spare capacity but finally more
10215 		 * idle CPUs which means more opportunity to run task.
10216 		 */
10217 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10218 			return NULL;
10219 		break;
10220 	}
10221 
10222 	return idlest;
10223 }
10224 
10225 static void update_idle_cpu_scan(struct lb_env *env,
10226 				 unsigned long sum_util)
10227 {
10228 	struct sched_domain_shared *sd_share;
10229 	int llc_weight, pct;
10230 	u64 x, y, tmp;
10231 	/*
10232 	 * Update the number of CPUs to scan in LLC domain, which could
10233 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10234 	 * could be expensive because it is within a shared cache line.
10235 	 * So the write of this hint only occurs during periodic load
10236 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10237 	 * can fire way more frequently than the former.
10238 	 */
10239 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10240 		return;
10241 
10242 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10243 	if (env->sd->span_weight != llc_weight)
10244 		return;
10245 
10246 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10247 	if (!sd_share)
10248 		return;
10249 
10250 	/*
10251 	 * The number of CPUs to search drops as sum_util increases, when
10252 	 * sum_util hits 85% or above, the scan stops.
10253 	 * The reason to choose 85% as the threshold is because this is the
10254 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10255 	 *
10256 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10257 	 * and y'= y / SCHED_CAPACITY_SCALE
10258 	 *
10259 	 * x is the ratio of sum_util compared to the CPU capacity:
10260 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10261 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10262 	 * and the number of CPUs to scan is calculated by:
10263 	 *
10264 	 * nr_scan = llc_weight * y'                                    [2]
10265 	 *
10266 	 * When x hits the threshold of overloaded, AKA, when
10267 	 * x = 100 / pct, y drops to 0. According to [1],
10268 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10269 	 *
10270 	 * Scale x by SCHED_CAPACITY_SCALE:
10271 	 * x' = sum_util / llc_weight;                                  [3]
10272 	 *
10273 	 * and finally [1] becomes:
10274 	 * y = SCHED_CAPACITY_SCALE -
10275 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10276 	 *
10277 	 */
10278 	/* equation [3] */
10279 	x = sum_util;
10280 	do_div(x, llc_weight);
10281 
10282 	/* equation [4] */
10283 	pct = env->sd->imbalance_pct;
10284 	tmp = x * x * pct * pct;
10285 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10286 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10287 	y = SCHED_CAPACITY_SCALE - tmp;
10288 
10289 	/* equation [2] */
10290 	y *= llc_weight;
10291 	do_div(y, SCHED_CAPACITY_SCALE);
10292 	if ((int)y != sd_share->nr_idle_scan)
10293 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10294 }
10295 
10296 /**
10297  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10298  * @env: The load balancing environment.
10299  * @sds: variable to hold the statistics for this sched_domain.
10300  */
10301 
10302 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10303 {
10304 	struct sched_group *sg = env->sd->groups;
10305 	struct sg_lb_stats *local = &sds->local_stat;
10306 	struct sg_lb_stats tmp_sgs;
10307 	unsigned long sum_util = 0;
10308 	int sg_status = 0;
10309 
10310 	do {
10311 		struct sg_lb_stats *sgs = &tmp_sgs;
10312 		int local_group;
10313 
10314 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10315 		if (local_group) {
10316 			sds->local = sg;
10317 			sgs = local;
10318 
10319 			if (env->idle != CPU_NEWLY_IDLE ||
10320 			    time_after_eq(jiffies, sg->sgc->next_update))
10321 				update_group_capacity(env->sd, env->dst_cpu);
10322 		}
10323 
10324 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10325 
10326 		if (local_group)
10327 			goto next_group;
10328 
10329 
10330 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10331 			sds->busiest = sg;
10332 			sds->busiest_stat = *sgs;
10333 		}
10334 
10335 next_group:
10336 		/* Now, start updating sd_lb_stats */
10337 		sds->total_load += sgs->group_load;
10338 		sds->total_capacity += sgs->group_capacity;
10339 
10340 		sum_util += sgs->group_util;
10341 		sg = sg->next;
10342 	} while (sg != env->sd->groups);
10343 
10344 	/*
10345 	 * Indicate that the child domain of the busiest group prefers tasks
10346 	 * go to a child's sibling domains first. NB the flags of a sched group
10347 	 * are those of the child domain.
10348 	 */
10349 	if (sds->busiest)
10350 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10351 
10352 
10353 	if (env->sd->flags & SD_NUMA)
10354 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10355 
10356 	if (!env->sd->parent) {
10357 		struct root_domain *rd = env->dst_rq->rd;
10358 
10359 		/* update overload indicator if we are at root domain */
10360 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10361 
10362 		/* Update over-utilization (tipping point, U >= 0) indicator */
10363 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
10364 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
10365 	} else if (sg_status & SG_OVERUTILIZED) {
10366 		struct root_domain *rd = env->dst_rq->rd;
10367 
10368 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10369 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
10370 	}
10371 
10372 	update_idle_cpu_scan(env, sum_util);
10373 }
10374 
10375 /**
10376  * calculate_imbalance - Calculate the amount of imbalance present within the
10377  *			 groups of a given sched_domain during load balance.
10378  * @env: load balance environment
10379  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10380  */
10381 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10382 {
10383 	struct sg_lb_stats *local, *busiest;
10384 
10385 	local = &sds->local_stat;
10386 	busiest = &sds->busiest_stat;
10387 
10388 	if (busiest->group_type == group_misfit_task) {
10389 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10390 			/* Set imbalance to allow misfit tasks to be balanced. */
10391 			env->migration_type = migrate_misfit;
10392 			env->imbalance = 1;
10393 		} else {
10394 			/*
10395 			 * Set load imbalance to allow moving task from cpu
10396 			 * with reduced capacity.
10397 			 */
10398 			env->migration_type = migrate_load;
10399 			env->imbalance = busiest->group_misfit_task_load;
10400 		}
10401 		return;
10402 	}
10403 
10404 	if (busiest->group_type == group_asym_packing) {
10405 		/*
10406 		 * In case of asym capacity, we will try to migrate all load to
10407 		 * the preferred CPU.
10408 		 */
10409 		env->migration_type = migrate_task;
10410 		env->imbalance = busiest->sum_h_nr_running;
10411 		return;
10412 	}
10413 
10414 	if (busiest->group_type == group_smt_balance) {
10415 		/* Reduce number of tasks sharing CPU capacity */
10416 		env->migration_type = migrate_task;
10417 		env->imbalance = 1;
10418 		return;
10419 	}
10420 
10421 	if (busiest->group_type == group_imbalanced) {
10422 		/*
10423 		 * In the group_imb case we cannot rely on group-wide averages
10424 		 * to ensure CPU-load equilibrium, try to move any task to fix
10425 		 * the imbalance. The next load balance will take care of
10426 		 * balancing back the system.
10427 		 */
10428 		env->migration_type = migrate_task;
10429 		env->imbalance = 1;
10430 		return;
10431 	}
10432 
10433 	/*
10434 	 * Try to use spare capacity of local group without overloading it or
10435 	 * emptying busiest.
10436 	 */
10437 	if (local->group_type == group_has_spare) {
10438 		if ((busiest->group_type > group_fully_busy) &&
10439 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10440 			/*
10441 			 * If busiest is overloaded, try to fill spare
10442 			 * capacity. This might end up creating spare capacity
10443 			 * in busiest or busiest still being overloaded but
10444 			 * there is no simple way to directly compute the
10445 			 * amount of load to migrate in order to balance the
10446 			 * system.
10447 			 */
10448 			env->migration_type = migrate_util;
10449 			env->imbalance = max(local->group_capacity, local->group_util) -
10450 					 local->group_util;
10451 
10452 			/*
10453 			 * In some cases, the group's utilization is max or even
10454 			 * higher than capacity because of migrations but the
10455 			 * local CPU is (newly) idle. There is at least one
10456 			 * waiting task in this overloaded busiest group. Let's
10457 			 * try to pull it.
10458 			 */
10459 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10460 				env->migration_type = migrate_task;
10461 				env->imbalance = 1;
10462 			}
10463 
10464 			return;
10465 		}
10466 
10467 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10468 			/*
10469 			 * When prefer sibling, evenly spread running tasks on
10470 			 * groups.
10471 			 */
10472 			env->migration_type = migrate_task;
10473 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
10474 		} else {
10475 
10476 			/*
10477 			 * If there is no overload, we just want to even the number of
10478 			 * idle cpus.
10479 			 */
10480 			env->migration_type = migrate_task;
10481 			env->imbalance = max_t(long, 0,
10482 					       (local->idle_cpus - busiest->idle_cpus));
10483 		}
10484 
10485 #ifdef CONFIG_NUMA
10486 		/* Consider allowing a small imbalance between NUMA groups */
10487 		if (env->sd->flags & SD_NUMA) {
10488 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10489 							       local->sum_nr_running + 1,
10490 							       env->sd->imb_numa_nr);
10491 		}
10492 #endif
10493 
10494 		/* Number of tasks to move to restore balance */
10495 		env->imbalance >>= 1;
10496 
10497 		return;
10498 	}
10499 
10500 	/*
10501 	 * Local is fully busy but has to take more load to relieve the
10502 	 * busiest group
10503 	 */
10504 	if (local->group_type < group_overloaded) {
10505 		/*
10506 		 * Local will become overloaded so the avg_load metrics are
10507 		 * finally needed.
10508 		 */
10509 
10510 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10511 				  local->group_capacity;
10512 
10513 		/*
10514 		 * If the local group is more loaded than the selected
10515 		 * busiest group don't try to pull any tasks.
10516 		 */
10517 		if (local->avg_load >= busiest->avg_load) {
10518 			env->imbalance = 0;
10519 			return;
10520 		}
10521 
10522 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10523 				sds->total_capacity;
10524 
10525 		/*
10526 		 * If the local group is more loaded than the average system
10527 		 * load, don't try to pull any tasks.
10528 		 */
10529 		if (local->avg_load >= sds->avg_load) {
10530 			env->imbalance = 0;
10531 			return;
10532 		}
10533 
10534 	}
10535 
10536 	/*
10537 	 * Both group are or will become overloaded and we're trying to get all
10538 	 * the CPUs to the average_load, so we don't want to push ourselves
10539 	 * above the average load, nor do we wish to reduce the max loaded CPU
10540 	 * below the average load. At the same time, we also don't want to
10541 	 * reduce the group load below the group capacity. Thus we look for
10542 	 * the minimum possible imbalance.
10543 	 */
10544 	env->migration_type = migrate_load;
10545 	env->imbalance = min(
10546 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10547 		(sds->avg_load - local->avg_load) * local->group_capacity
10548 	) / SCHED_CAPACITY_SCALE;
10549 }
10550 
10551 /******* find_busiest_group() helpers end here *********************/
10552 
10553 /*
10554  * Decision matrix according to the local and busiest group type:
10555  *
10556  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10557  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10558  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10559  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10560  * asym_packing     force     force      N/A    N/A  force      force
10561  * imbalanced       force     force      N/A    N/A  force      force
10562  * overloaded       force     force      N/A    N/A  force      avg_load
10563  *
10564  * N/A :      Not Applicable because already filtered while updating
10565  *            statistics.
10566  * balanced : The system is balanced for these 2 groups.
10567  * force :    Calculate the imbalance as load migration is probably needed.
10568  * avg_load : Only if imbalance is significant enough.
10569  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10570  *            different in groups.
10571  */
10572 
10573 /**
10574  * find_busiest_group - Returns the busiest group within the sched_domain
10575  * if there is an imbalance.
10576  * @env: The load balancing environment.
10577  *
10578  * Also calculates the amount of runnable load which should be moved
10579  * to restore balance.
10580  *
10581  * Return:	- The busiest group if imbalance exists.
10582  */
10583 static struct sched_group *find_busiest_group(struct lb_env *env)
10584 {
10585 	struct sg_lb_stats *local, *busiest;
10586 	struct sd_lb_stats sds;
10587 
10588 	init_sd_lb_stats(&sds);
10589 
10590 	/*
10591 	 * Compute the various statistics relevant for load balancing at
10592 	 * this level.
10593 	 */
10594 	update_sd_lb_stats(env, &sds);
10595 
10596 	/* There is no busy sibling group to pull tasks from */
10597 	if (!sds.busiest)
10598 		goto out_balanced;
10599 
10600 	busiest = &sds.busiest_stat;
10601 
10602 	/* Misfit tasks should be dealt with regardless of the avg load */
10603 	if (busiest->group_type == group_misfit_task)
10604 		goto force_balance;
10605 
10606 	if (sched_energy_enabled()) {
10607 		struct root_domain *rd = env->dst_rq->rd;
10608 
10609 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10610 			goto out_balanced;
10611 	}
10612 
10613 	/* ASYM feature bypasses nice load balance check */
10614 	if (busiest->group_type == group_asym_packing)
10615 		goto force_balance;
10616 
10617 	/*
10618 	 * If the busiest group is imbalanced the below checks don't
10619 	 * work because they assume all things are equal, which typically
10620 	 * isn't true due to cpus_ptr constraints and the like.
10621 	 */
10622 	if (busiest->group_type == group_imbalanced)
10623 		goto force_balance;
10624 
10625 	local = &sds.local_stat;
10626 	/*
10627 	 * If the local group is busier than the selected busiest group
10628 	 * don't try and pull any tasks.
10629 	 */
10630 	if (local->group_type > busiest->group_type)
10631 		goto out_balanced;
10632 
10633 	/*
10634 	 * When groups are overloaded, use the avg_load to ensure fairness
10635 	 * between tasks.
10636 	 */
10637 	if (local->group_type == group_overloaded) {
10638 		/*
10639 		 * If the local group is more loaded than the selected
10640 		 * busiest group don't try to pull any tasks.
10641 		 */
10642 		if (local->avg_load >= busiest->avg_load)
10643 			goto out_balanced;
10644 
10645 		/* XXX broken for overlapping NUMA groups */
10646 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10647 				sds.total_capacity;
10648 
10649 		/*
10650 		 * Don't pull any tasks if this group is already above the
10651 		 * domain average load.
10652 		 */
10653 		if (local->avg_load >= sds.avg_load)
10654 			goto out_balanced;
10655 
10656 		/*
10657 		 * If the busiest group is more loaded, use imbalance_pct to be
10658 		 * conservative.
10659 		 */
10660 		if (100 * busiest->avg_load <=
10661 				env->sd->imbalance_pct * local->avg_load)
10662 			goto out_balanced;
10663 	}
10664 
10665 	/*
10666 	 * Try to move all excess tasks to a sibling domain of the busiest
10667 	 * group's child domain.
10668 	 */
10669 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10670 	    sibling_imbalance(env, &sds, busiest, local) > 1)
10671 		goto force_balance;
10672 
10673 	if (busiest->group_type != group_overloaded) {
10674 		if (env->idle == CPU_NOT_IDLE) {
10675 			/*
10676 			 * If the busiest group is not overloaded (and as a
10677 			 * result the local one too) but this CPU is already
10678 			 * busy, let another idle CPU try to pull task.
10679 			 */
10680 			goto out_balanced;
10681 		}
10682 
10683 		if (busiest->group_type == group_smt_balance &&
10684 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10685 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
10686 			goto force_balance;
10687 		}
10688 
10689 		if (busiest->group_weight > 1 &&
10690 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
10691 			/*
10692 			 * If the busiest group is not overloaded
10693 			 * and there is no imbalance between this and busiest
10694 			 * group wrt idle CPUs, it is balanced. The imbalance
10695 			 * becomes significant if the diff is greater than 1
10696 			 * otherwise we might end up to just move the imbalance
10697 			 * on another group. Of course this applies only if
10698 			 * there is more than 1 CPU per group.
10699 			 */
10700 			goto out_balanced;
10701 		}
10702 
10703 		if (busiest->sum_h_nr_running == 1) {
10704 			/*
10705 			 * busiest doesn't have any tasks waiting to run
10706 			 */
10707 			goto out_balanced;
10708 		}
10709 	}
10710 
10711 force_balance:
10712 	/* Looks like there is an imbalance. Compute it */
10713 	calculate_imbalance(env, &sds);
10714 	return env->imbalance ? sds.busiest : NULL;
10715 
10716 out_balanced:
10717 	env->imbalance = 0;
10718 	return NULL;
10719 }
10720 
10721 /*
10722  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10723  */
10724 static struct rq *find_busiest_queue(struct lb_env *env,
10725 				     struct sched_group *group)
10726 {
10727 	struct rq *busiest = NULL, *rq;
10728 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10729 	unsigned int busiest_nr = 0;
10730 	int i;
10731 
10732 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10733 		unsigned long capacity, load, util;
10734 		unsigned int nr_running;
10735 		enum fbq_type rt;
10736 
10737 		rq = cpu_rq(i);
10738 		rt = fbq_classify_rq(rq);
10739 
10740 		/*
10741 		 * We classify groups/runqueues into three groups:
10742 		 *  - regular: there are !numa tasks
10743 		 *  - remote:  there are numa tasks that run on the 'wrong' node
10744 		 *  - all:     there is no distinction
10745 		 *
10746 		 * In order to avoid migrating ideally placed numa tasks,
10747 		 * ignore those when there's better options.
10748 		 *
10749 		 * If we ignore the actual busiest queue to migrate another
10750 		 * task, the next balance pass can still reduce the busiest
10751 		 * queue by moving tasks around inside the node.
10752 		 *
10753 		 * If we cannot move enough load due to this classification
10754 		 * the next pass will adjust the group classification and
10755 		 * allow migration of more tasks.
10756 		 *
10757 		 * Both cases only affect the total convergence complexity.
10758 		 */
10759 		if (rt > env->fbq_type)
10760 			continue;
10761 
10762 		nr_running = rq->cfs.h_nr_running;
10763 		if (!nr_running)
10764 			continue;
10765 
10766 		capacity = capacity_of(i);
10767 
10768 		/*
10769 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10770 		 * eventually lead to active_balancing high->low capacity.
10771 		 * Higher per-CPU capacity is considered better than balancing
10772 		 * average load.
10773 		 */
10774 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
10775 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
10776 		    nr_running == 1)
10777 			continue;
10778 
10779 		/*
10780 		 * Make sure we only pull tasks from a CPU of lower priority
10781 		 * when balancing between SMT siblings.
10782 		 *
10783 		 * If balancing between cores, let lower priority CPUs help
10784 		 * SMT cores with more than one busy sibling.
10785 		 */
10786 		if ((env->sd->flags & SD_ASYM_PACKING) &&
10787 		    sched_use_asym_prio(env->sd, i) &&
10788 		    sched_asym_prefer(i, env->dst_cpu) &&
10789 		    nr_running == 1)
10790 			continue;
10791 
10792 		switch (env->migration_type) {
10793 		case migrate_load:
10794 			/*
10795 			 * When comparing with load imbalance, use cpu_load()
10796 			 * which is not scaled with the CPU capacity.
10797 			 */
10798 			load = cpu_load(rq);
10799 
10800 			if (nr_running == 1 && load > env->imbalance &&
10801 			    !check_cpu_capacity(rq, env->sd))
10802 				break;
10803 
10804 			/*
10805 			 * For the load comparisons with the other CPUs,
10806 			 * consider the cpu_load() scaled with the CPU
10807 			 * capacity, so that the load can be moved away
10808 			 * from the CPU that is potentially running at a
10809 			 * lower capacity.
10810 			 *
10811 			 * Thus we're looking for max(load_i / capacity_i),
10812 			 * crosswise multiplication to rid ourselves of the
10813 			 * division works out to:
10814 			 * load_i * capacity_j > load_j * capacity_i;
10815 			 * where j is our previous maximum.
10816 			 */
10817 			if (load * busiest_capacity > busiest_load * capacity) {
10818 				busiest_load = load;
10819 				busiest_capacity = capacity;
10820 				busiest = rq;
10821 			}
10822 			break;
10823 
10824 		case migrate_util:
10825 			util = cpu_util_cfs_boost(i);
10826 
10827 			/*
10828 			 * Don't try to pull utilization from a CPU with one
10829 			 * running task. Whatever its utilization, we will fail
10830 			 * detach the task.
10831 			 */
10832 			if (nr_running <= 1)
10833 				continue;
10834 
10835 			if (busiest_util < util) {
10836 				busiest_util = util;
10837 				busiest = rq;
10838 			}
10839 			break;
10840 
10841 		case migrate_task:
10842 			if (busiest_nr < nr_running) {
10843 				busiest_nr = nr_running;
10844 				busiest = rq;
10845 			}
10846 			break;
10847 
10848 		case migrate_misfit:
10849 			/*
10850 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
10851 			 * simply seek the "biggest" misfit task.
10852 			 */
10853 			if (rq->misfit_task_load > busiest_load) {
10854 				busiest_load = rq->misfit_task_load;
10855 				busiest = rq;
10856 			}
10857 
10858 			break;
10859 
10860 		}
10861 	}
10862 
10863 	return busiest;
10864 }
10865 
10866 /*
10867  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
10868  * so long as it is large enough.
10869  */
10870 #define MAX_PINNED_INTERVAL	512
10871 
10872 static inline bool
10873 asym_active_balance(struct lb_env *env)
10874 {
10875 	/*
10876 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
10877 	 * priority CPUs in order to pack all tasks in the highest priority
10878 	 * CPUs. When done between cores, do it only if the whole core if the
10879 	 * whole core is idle.
10880 	 *
10881 	 * If @env::src_cpu is an SMT core with busy siblings, let
10882 	 * the lower priority @env::dst_cpu help it. Do not follow
10883 	 * CPU priority.
10884 	 */
10885 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
10886 	       sched_use_asym_prio(env->sd, env->dst_cpu) &&
10887 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
10888 		!sched_use_asym_prio(env->sd, env->src_cpu));
10889 }
10890 
10891 static inline bool
10892 imbalanced_active_balance(struct lb_env *env)
10893 {
10894 	struct sched_domain *sd = env->sd;
10895 
10896 	/*
10897 	 * The imbalanced case includes the case of pinned tasks preventing a fair
10898 	 * distribution of the load on the system but also the even distribution of the
10899 	 * threads on a system with spare capacity
10900 	 */
10901 	if ((env->migration_type == migrate_task) &&
10902 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
10903 		return 1;
10904 
10905 	return 0;
10906 }
10907 
10908 static int need_active_balance(struct lb_env *env)
10909 {
10910 	struct sched_domain *sd = env->sd;
10911 
10912 	if (asym_active_balance(env))
10913 		return 1;
10914 
10915 	if (imbalanced_active_balance(env))
10916 		return 1;
10917 
10918 	/*
10919 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10920 	 * It's worth migrating the task if the src_cpu's capacity is reduced
10921 	 * because of other sched_class or IRQs if more capacity stays
10922 	 * available on dst_cpu.
10923 	 */
10924 	if ((env->idle != CPU_NOT_IDLE) &&
10925 	    (env->src_rq->cfs.h_nr_running == 1)) {
10926 		if ((check_cpu_capacity(env->src_rq, sd)) &&
10927 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10928 			return 1;
10929 	}
10930 
10931 	if (env->migration_type == migrate_misfit)
10932 		return 1;
10933 
10934 	return 0;
10935 }
10936 
10937 static int active_load_balance_cpu_stop(void *data);
10938 
10939 static int should_we_balance(struct lb_env *env)
10940 {
10941 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
10942 	struct sched_group *sg = env->sd->groups;
10943 	int cpu, idle_smt = -1;
10944 
10945 	/*
10946 	 * Ensure the balancing environment is consistent; can happen
10947 	 * when the softirq triggers 'during' hotplug.
10948 	 */
10949 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10950 		return 0;
10951 
10952 	/*
10953 	 * In the newly idle case, we will allow all the CPUs
10954 	 * to do the newly idle load balance.
10955 	 *
10956 	 * However, we bail out if we already have tasks or a wakeup pending,
10957 	 * to optimize wakeup latency.
10958 	 */
10959 	if (env->idle == CPU_NEWLY_IDLE) {
10960 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
10961 			return 0;
10962 		return 1;
10963 	}
10964 
10965 	cpumask_copy(swb_cpus, group_balance_mask(sg));
10966 	/* Try to find first idle CPU */
10967 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
10968 		if (!idle_cpu(cpu))
10969 			continue;
10970 
10971 		/*
10972 		 * Don't balance to idle SMT in busy core right away when
10973 		 * balancing cores, but remember the first idle SMT CPU for
10974 		 * later consideration.  Find CPU on an idle core first.
10975 		 */
10976 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
10977 			if (idle_smt == -1)
10978 				idle_smt = cpu;
10979 			/*
10980 			 * If the core is not idle, and first SMT sibling which is
10981 			 * idle has been found, then its not needed to check other
10982 			 * SMT siblings for idleness:
10983 			 */
10984 #ifdef CONFIG_SCHED_SMT
10985 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
10986 #endif
10987 			continue;
10988 		}
10989 
10990 		/* Are we the first idle CPU? */
10991 		return cpu == env->dst_cpu;
10992 	}
10993 
10994 	if (idle_smt == env->dst_cpu)
10995 		return true;
10996 
10997 	/* Are we the first CPU of this group ? */
10998 	return group_balance_cpu(sg) == env->dst_cpu;
10999 }
11000 
11001 /*
11002  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11003  * tasks if there is an imbalance.
11004  */
11005 static int load_balance(int this_cpu, struct rq *this_rq,
11006 			struct sched_domain *sd, enum cpu_idle_type idle,
11007 			int *continue_balancing)
11008 {
11009 	int ld_moved, cur_ld_moved, active_balance = 0;
11010 	struct sched_domain *sd_parent = sd->parent;
11011 	struct sched_group *group;
11012 	struct rq *busiest;
11013 	struct rq_flags rf;
11014 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11015 	struct lb_env env = {
11016 		.sd		= sd,
11017 		.dst_cpu	= this_cpu,
11018 		.dst_rq		= this_rq,
11019 		.dst_grpmask    = group_balance_mask(sd->groups),
11020 		.idle		= idle,
11021 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11022 		.cpus		= cpus,
11023 		.fbq_type	= all,
11024 		.tasks		= LIST_HEAD_INIT(env.tasks),
11025 	};
11026 
11027 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11028 
11029 	schedstat_inc(sd->lb_count[idle]);
11030 
11031 redo:
11032 	if (!should_we_balance(&env)) {
11033 		*continue_balancing = 0;
11034 		goto out_balanced;
11035 	}
11036 
11037 	group = find_busiest_group(&env);
11038 	if (!group) {
11039 		schedstat_inc(sd->lb_nobusyg[idle]);
11040 		goto out_balanced;
11041 	}
11042 
11043 	busiest = find_busiest_queue(&env, group);
11044 	if (!busiest) {
11045 		schedstat_inc(sd->lb_nobusyq[idle]);
11046 		goto out_balanced;
11047 	}
11048 
11049 	WARN_ON_ONCE(busiest == env.dst_rq);
11050 
11051 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11052 
11053 	env.src_cpu = busiest->cpu;
11054 	env.src_rq = busiest;
11055 
11056 	ld_moved = 0;
11057 	/* Clear this flag as soon as we find a pullable task */
11058 	env.flags |= LBF_ALL_PINNED;
11059 	if (busiest->nr_running > 1) {
11060 		/*
11061 		 * Attempt to move tasks. If find_busiest_group has found
11062 		 * an imbalance but busiest->nr_running <= 1, the group is
11063 		 * still unbalanced. ld_moved simply stays zero, so it is
11064 		 * correctly treated as an imbalance.
11065 		 */
11066 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11067 
11068 more_balance:
11069 		rq_lock_irqsave(busiest, &rf);
11070 		update_rq_clock(busiest);
11071 
11072 		/*
11073 		 * cur_ld_moved - load moved in current iteration
11074 		 * ld_moved     - cumulative load moved across iterations
11075 		 */
11076 		cur_ld_moved = detach_tasks(&env);
11077 
11078 		/*
11079 		 * We've detached some tasks from busiest_rq. Every
11080 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11081 		 * unlock busiest->lock, and we are able to be sure
11082 		 * that nobody can manipulate the tasks in parallel.
11083 		 * See task_rq_lock() family for the details.
11084 		 */
11085 
11086 		rq_unlock(busiest, &rf);
11087 
11088 		if (cur_ld_moved) {
11089 			attach_tasks(&env);
11090 			ld_moved += cur_ld_moved;
11091 		}
11092 
11093 		local_irq_restore(rf.flags);
11094 
11095 		if (env.flags & LBF_NEED_BREAK) {
11096 			env.flags &= ~LBF_NEED_BREAK;
11097 			/* Stop if we tried all running tasks */
11098 			if (env.loop < busiest->nr_running)
11099 				goto more_balance;
11100 		}
11101 
11102 		/*
11103 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11104 		 * us and move them to an alternate dst_cpu in our sched_group
11105 		 * where they can run. The upper limit on how many times we
11106 		 * iterate on same src_cpu is dependent on number of CPUs in our
11107 		 * sched_group.
11108 		 *
11109 		 * This changes load balance semantics a bit on who can move
11110 		 * load to a given_cpu. In addition to the given_cpu itself
11111 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11112 		 * nohz-idle), we now have balance_cpu in a position to move
11113 		 * load to given_cpu. In rare situations, this may cause
11114 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11115 		 * _independently_ and at _same_ time to move some load to
11116 		 * given_cpu) causing excess load to be moved to given_cpu.
11117 		 * This however should not happen so much in practice and
11118 		 * moreover subsequent load balance cycles should correct the
11119 		 * excess load moved.
11120 		 */
11121 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11122 
11123 			/* Prevent to re-select dst_cpu via env's CPUs */
11124 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11125 
11126 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11127 			env.dst_cpu	 = env.new_dst_cpu;
11128 			env.flags	&= ~LBF_DST_PINNED;
11129 			env.loop	 = 0;
11130 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11131 
11132 			/*
11133 			 * Go back to "more_balance" rather than "redo" since we
11134 			 * need to continue with same src_cpu.
11135 			 */
11136 			goto more_balance;
11137 		}
11138 
11139 		/*
11140 		 * We failed to reach balance because of affinity.
11141 		 */
11142 		if (sd_parent) {
11143 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11144 
11145 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11146 				*group_imbalance = 1;
11147 		}
11148 
11149 		/* All tasks on this runqueue were pinned by CPU affinity */
11150 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11151 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11152 			/*
11153 			 * Attempting to continue load balancing at the current
11154 			 * sched_domain level only makes sense if there are
11155 			 * active CPUs remaining as possible busiest CPUs to
11156 			 * pull load from which are not contained within the
11157 			 * destination group that is receiving any migrated
11158 			 * load.
11159 			 */
11160 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11161 				env.loop = 0;
11162 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11163 				goto redo;
11164 			}
11165 			goto out_all_pinned;
11166 		}
11167 	}
11168 
11169 	if (!ld_moved) {
11170 		schedstat_inc(sd->lb_failed[idle]);
11171 		/*
11172 		 * Increment the failure counter only on periodic balance.
11173 		 * We do not want newidle balance, which can be very
11174 		 * frequent, pollute the failure counter causing
11175 		 * excessive cache_hot migrations and active balances.
11176 		 */
11177 		if (idle != CPU_NEWLY_IDLE)
11178 			sd->nr_balance_failed++;
11179 
11180 		if (need_active_balance(&env)) {
11181 			unsigned long flags;
11182 
11183 			raw_spin_rq_lock_irqsave(busiest, flags);
11184 
11185 			/*
11186 			 * Don't kick the active_load_balance_cpu_stop,
11187 			 * if the curr task on busiest CPU can't be
11188 			 * moved to this_cpu:
11189 			 */
11190 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11191 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11192 				goto out_one_pinned;
11193 			}
11194 
11195 			/* Record that we found at least one task that could run on this_cpu */
11196 			env.flags &= ~LBF_ALL_PINNED;
11197 
11198 			/*
11199 			 * ->active_balance synchronizes accesses to
11200 			 * ->active_balance_work.  Once set, it's cleared
11201 			 * only after active load balance is finished.
11202 			 */
11203 			if (!busiest->active_balance) {
11204 				busiest->active_balance = 1;
11205 				busiest->push_cpu = this_cpu;
11206 				active_balance = 1;
11207 			}
11208 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11209 
11210 			if (active_balance) {
11211 				stop_one_cpu_nowait(cpu_of(busiest),
11212 					active_load_balance_cpu_stop, busiest,
11213 					&busiest->active_balance_work);
11214 			}
11215 		}
11216 	} else {
11217 		sd->nr_balance_failed = 0;
11218 	}
11219 
11220 	if (likely(!active_balance) || need_active_balance(&env)) {
11221 		/* We were unbalanced, so reset the balancing interval */
11222 		sd->balance_interval = sd->min_interval;
11223 	}
11224 
11225 	goto out;
11226 
11227 out_balanced:
11228 	/*
11229 	 * We reach balance although we may have faced some affinity
11230 	 * constraints. Clear the imbalance flag only if other tasks got
11231 	 * a chance to move and fix the imbalance.
11232 	 */
11233 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11234 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11235 
11236 		if (*group_imbalance)
11237 			*group_imbalance = 0;
11238 	}
11239 
11240 out_all_pinned:
11241 	/*
11242 	 * We reach balance because all tasks are pinned at this level so
11243 	 * we can't migrate them. Let the imbalance flag set so parent level
11244 	 * can try to migrate them.
11245 	 */
11246 	schedstat_inc(sd->lb_balanced[idle]);
11247 
11248 	sd->nr_balance_failed = 0;
11249 
11250 out_one_pinned:
11251 	ld_moved = 0;
11252 
11253 	/*
11254 	 * newidle_balance() disregards balance intervals, so we could
11255 	 * repeatedly reach this code, which would lead to balance_interval
11256 	 * skyrocketing in a short amount of time. Skip the balance_interval
11257 	 * increase logic to avoid that.
11258 	 */
11259 	if (env.idle == CPU_NEWLY_IDLE)
11260 		goto out;
11261 
11262 	/* tune up the balancing interval */
11263 	if ((env.flags & LBF_ALL_PINNED &&
11264 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11265 	    sd->balance_interval < sd->max_interval)
11266 		sd->balance_interval *= 2;
11267 out:
11268 	return ld_moved;
11269 }
11270 
11271 static inline unsigned long
11272 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11273 {
11274 	unsigned long interval = sd->balance_interval;
11275 
11276 	if (cpu_busy)
11277 		interval *= sd->busy_factor;
11278 
11279 	/* scale ms to jiffies */
11280 	interval = msecs_to_jiffies(interval);
11281 
11282 	/*
11283 	 * Reduce likelihood of busy balancing at higher domains racing with
11284 	 * balancing at lower domains by preventing their balancing periods
11285 	 * from being multiples of each other.
11286 	 */
11287 	if (cpu_busy)
11288 		interval -= 1;
11289 
11290 	interval = clamp(interval, 1UL, max_load_balance_interval);
11291 
11292 	return interval;
11293 }
11294 
11295 static inline void
11296 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11297 {
11298 	unsigned long interval, next;
11299 
11300 	/* used by idle balance, so cpu_busy = 0 */
11301 	interval = get_sd_balance_interval(sd, 0);
11302 	next = sd->last_balance + interval;
11303 
11304 	if (time_after(*next_balance, next))
11305 		*next_balance = next;
11306 }
11307 
11308 /*
11309  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11310  * running tasks off the busiest CPU onto idle CPUs. It requires at
11311  * least 1 task to be running on each physical CPU where possible, and
11312  * avoids physical / logical imbalances.
11313  */
11314 static int active_load_balance_cpu_stop(void *data)
11315 {
11316 	struct rq *busiest_rq = data;
11317 	int busiest_cpu = cpu_of(busiest_rq);
11318 	int target_cpu = busiest_rq->push_cpu;
11319 	struct rq *target_rq = cpu_rq(target_cpu);
11320 	struct sched_domain *sd;
11321 	struct task_struct *p = NULL;
11322 	struct rq_flags rf;
11323 
11324 	rq_lock_irq(busiest_rq, &rf);
11325 	/*
11326 	 * Between queueing the stop-work and running it is a hole in which
11327 	 * CPUs can become inactive. We should not move tasks from or to
11328 	 * inactive CPUs.
11329 	 */
11330 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11331 		goto out_unlock;
11332 
11333 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11334 	if (unlikely(busiest_cpu != smp_processor_id() ||
11335 		     !busiest_rq->active_balance))
11336 		goto out_unlock;
11337 
11338 	/* Is there any task to move? */
11339 	if (busiest_rq->nr_running <= 1)
11340 		goto out_unlock;
11341 
11342 	/*
11343 	 * This condition is "impossible", if it occurs
11344 	 * we need to fix it. Originally reported by
11345 	 * Bjorn Helgaas on a 128-CPU setup.
11346 	 */
11347 	WARN_ON_ONCE(busiest_rq == target_rq);
11348 
11349 	/* Search for an sd spanning us and the target CPU. */
11350 	rcu_read_lock();
11351 	for_each_domain(target_cpu, sd) {
11352 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11353 			break;
11354 	}
11355 
11356 	if (likely(sd)) {
11357 		struct lb_env env = {
11358 			.sd		= sd,
11359 			.dst_cpu	= target_cpu,
11360 			.dst_rq		= target_rq,
11361 			.src_cpu	= busiest_rq->cpu,
11362 			.src_rq		= busiest_rq,
11363 			.idle		= CPU_IDLE,
11364 			.flags		= LBF_ACTIVE_LB,
11365 		};
11366 
11367 		schedstat_inc(sd->alb_count);
11368 		update_rq_clock(busiest_rq);
11369 
11370 		p = detach_one_task(&env);
11371 		if (p) {
11372 			schedstat_inc(sd->alb_pushed);
11373 			/* Active balancing done, reset the failure counter. */
11374 			sd->nr_balance_failed = 0;
11375 		} else {
11376 			schedstat_inc(sd->alb_failed);
11377 		}
11378 	}
11379 	rcu_read_unlock();
11380 out_unlock:
11381 	busiest_rq->active_balance = 0;
11382 	rq_unlock(busiest_rq, &rf);
11383 
11384 	if (p)
11385 		attach_one_task(target_rq, p);
11386 
11387 	local_irq_enable();
11388 
11389 	return 0;
11390 }
11391 
11392 static DEFINE_SPINLOCK(balancing);
11393 
11394 /*
11395  * Scale the max load_balance interval with the number of CPUs in the system.
11396  * This trades load-balance latency on larger machines for less cross talk.
11397  */
11398 void update_max_interval(void)
11399 {
11400 	max_load_balance_interval = HZ*num_online_cpus()/10;
11401 }
11402 
11403 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11404 {
11405 	if (cost > sd->max_newidle_lb_cost) {
11406 		/*
11407 		 * Track max cost of a domain to make sure to not delay the
11408 		 * next wakeup on the CPU.
11409 		 */
11410 		sd->max_newidle_lb_cost = cost;
11411 		sd->last_decay_max_lb_cost = jiffies;
11412 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11413 		/*
11414 		 * Decay the newidle max times by ~1% per second to ensure that
11415 		 * it is not outdated and the current max cost is actually
11416 		 * shorter.
11417 		 */
11418 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11419 		sd->last_decay_max_lb_cost = jiffies;
11420 
11421 		return true;
11422 	}
11423 
11424 	return false;
11425 }
11426 
11427 /*
11428  * It checks each scheduling domain to see if it is due to be balanced,
11429  * and initiates a balancing operation if so.
11430  *
11431  * Balancing parameters are set up in init_sched_domains.
11432  */
11433 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11434 {
11435 	int continue_balancing = 1;
11436 	int cpu = rq->cpu;
11437 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11438 	unsigned long interval;
11439 	struct sched_domain *sd;
11440 	/* Earliest time when we have to do rebalance again */
11441 	unsigned long next_balance = jiffies + 60*HZ;
11442 	int update_next_balance = 0;
11443 	int need_serialize, need_decay = 0;
11444 	u64 max_cost = 0;
11445 
11446 	rcu_read_lock();
11447 	for_each_domain(cpu, sd) {
11448 		/*
11449 		 * Decay the newidle max times here because this is a regular
11450 		 * visit to all the domains.
11451 		 */
11452 		need_decay = update_newidle_cost(sd, 0);
11453 		max_cost += sd->max_newidle_lb_cost;
11454 
11455 		/*
11456 		 * Stop the load balance at this level. There is another
11457 		 * CPU in our sched group which is doing load balancing more
11458 		 * actively.
11459 		 */
11460 		if (!continue_balancing) {
11461 			if (need_decay)
11462 				continue;
11463 			break;
11464 		}
11465 
11466 		interval = get_sd_balance_interval(sd, busy);
11467 
11468 		need_serialize = sd->flags & SD_SERIALIZE;
11469 		if (need_serialize) {
11470 			if (!spin_trylock(&balancing))
11471 				goto out;
11472 		}
11473 
11474 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11475 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11476 				/*
11477 				 * The LBF_DST_PINNED logic could have changed
11478 				 * env->dst_cpu, so we can't know our idle
11479 				 * state even if we migrated tasks. Update it.
11480 				 */
11481 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11482 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11483 			}
11484 			sd->last_balance = jiffies;
11485 			interval = get_sd_balance_interval(sd, busy);
11486 		}
11487 		if (need_serialize)
11488 			spin_unlock(&balancing);
11489 out:
11490 		if (time_after(next_balance, sd->last_balance + interval)) {
11491 			next_balance = sd->last_balance + interval;
11492 			update_next_balance = 1;
11493 		}
11494 	}
11495 	if (need_decay) {
11496 		/*
11497 		 * Ensure the rq-wide value also decays but keep it at a
11498 		 * reasonable floor to avoid funnies with rq->avg_idle.
11499 		 */
11500 		rq->max_idle_balance_cost =
11501 			max((u64)sysctl_sched_migration_cost, max_cost);
11502 	}
11503 	rcu_read_unlock();
11504 
11505 	/*
11506 	 * next_balance will be updated only when there is a need.
11507 	 * When the cpu is attached to null domain for ex, it will not be
11508 	 * updated.
11509 	 */
11510 	if (likely(update_next_balance))
11511 		rq->next_balance = next_balance;
11512 
11513 }
11514 
11515 static inline int on_null_domain(struct rq *rq)
11516 {
11517 	return unlikely(!rcu_dereference_sched(rq->sd));
11518 }
11519 
11520 #ifdef CONFIG_NO_HZ_COMMON
11521 /*
11522  * idle load balancing details
11523  * - When one of the busy CPUs notice that there may be an idle rebalancing
11524  *   needed, they will kick the idle load balancer, which then does idle
11525  *   load balancing for all the idle CPUs.
11526  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
11527  *   anywhere yet.
11528  */
11529 
11530 static inline int find_new_ilb(void)
11531 {
11532 	int ilb;
11533 	const struct cpumask *hk_mask;
11534 
11535 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11536 
11537 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
11538 
11539 		if (ilb == smp_processor_id())
11540 			continue;
11541 
11542 		if (idle_cpu(ilb))
11543 			return ilb;
11544 	}
11545 
11546 	return nr_cpu_ids;
11547 }
11548 
11549 /*
11550  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
11551  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11552  */
11553 static void kick_ilb(unsigned int flags)
11554 {
11555 	int ilb_cpu;
11556 
11557 	/*
11558 	 * Increase nohz.next_balance only when if full ilb is triggered but
11559 	 * not if we only update stats.
11560 	 */
11561 	if (flags & NOHZ_BALANCE_KICK)
11562 		nohz.next_balance = jiffies+1;
11563 
11564 	ilb_cpu = find_new_ilb();
11565 
11566 	if (ilb_cpu >= nr_cpu_ids)
11567 		return;
11568 
11569 	/*
11570 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11571 	 * the first flag owns it; cleared by nohz_csd_func().
11572 	 */
11573 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11574 	if (flags & NOHZ_KICK_MASK)
11575 		return;
11576 
11577 	/*
11578 	 * This way we generate an IPI on the target CPU which
11579 	 * is idle. And the softirq performing nohz idle load balance
11580 	 * will be run before returning from the IPI.
11581 	 */
11582 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11583 }
11584 
11585 /*
11586  * Current decision point for kicking the idle load balancer in the presence
11587  * of idle CPUs in the system.
11588  */
11589 static void nohz_balancer_kick(struct rq *rq)
11590 {
11591 	unsigned long now = jiffies;
11592 	struct sched_domain_shared *sds;
11593 	struct sched_domain *sd;
11594 	int nr_busy, i, cpu = rq->cpu;
11595 	unsigned int flags = 0;
11596 
11597 	if (unlikely(rq->idle_balance))
11598 		return;
11599 
11600 	/*
11601 	 * We may be recently in ticked or tickless idle mode. At the first
11602 	 * busy tick after returning from idle, we will update the busy stats.
11603 	 */
11604 	nohz_balance_exit_idle(rq);
11605 
11606 	/*
11607 	 * None are in tickless mode and hence no need for NOHZ idle load
11608 	 * balancing.
11609 	 */
11610 	if (likely(!atomic_read(&nohz.nr_cpus)))
11611 		return;
11612 
11613 	if (READ_ONCE(nohz.has_blocked) &&
11614 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11615 		flags = NOHZ_STATS_KICK;
11616 
11617 	if (time_before(now, nohz.next_balance))
11618 		goto out;
11619 
11620 	if (rq->nr_running >= 2) {
11621 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11622 		goto out;
11623 	}
11624 
11625 	rcu_read_lock();
11626 
11627 	sd = rcu_dereference(rq->sd);
11628 	if (sd) {
11629 		/*
11630 		 * If there's a CFS task and the current CPU has reduced
11631 		 * capacity; kick the ILB to see if there's a better CPU to run
11632 		 * on.
11633 		 */
11634 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11635 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11636 			goto unlock;
11637 		}
11638 	}
11639 
11640 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11641 	if (sd) {
11642 		/*
11643 		 * When ASYM_PACKING; see if there's a more preferred CPU
11644 		 * currently idle; in which case, kick the ILB to move tasks
11645 		 * around.
11646 		 *
11647 		 * When balancing betwen cores, all the SMT siblings of the
11648 		 * preferred CPU must be idle.
11649 		 */
11650 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11651 			if (sched_use_asym_prio(sd, i) &&
11652 			    sched_asym_prefer(i, cpu)) {
11653 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11654 				goto unlock;
11655 			}
11656 		}
11657 	}
11658 
11659 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11660 	if (sd) {
11661 		/*
11662 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11663 		 * to run the misfit task on.
11664 		 */
11665 		if (check_misfit_status(rq, sd)) {
11666 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11667 			goto unlock;
11668 		}
11669 
11670 		/*
11671 		 * For asymmetric systems, we do not want to nicely balance
11672 		 * cache use, instead we want to embrace asymmetry and only
11673 		 * ensure tasks have enough CPU capacity.
11674 		 *
11675 		 * Skip the LLC logic because it's not relevant in that case.
11676 		 */
11677 		goto unlock;
11678 	}
11679 
11680 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11681 	if (sds) {
11682 		/*
11683 		 * If there is an imbalance between LLC domains (IOW we could
11684 		 * increase the overall cache use), we need some less-loaded LLC
11685 		 * domain to pull some load. Likewise, we may need to spread
11686 		 * load within the current LLC domain (e.g. packed SMT cores but
11687 		 * other CPUs are idle). We can't really know from here how busy
11688 		 * the others are - so just get a nohz balance going if it looks
11689 		 * like this LLC domain has tasks we could move.
11690 		 */
11691 		nr_busy = atomic_read(&sds->nr_busy_cpus);
11692 		if (nr_busy > 1) {
11693 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11694 			goto unlock;
11695 		}
11696 	}
11697 unlock:
11698 	rcu_read_unlock();
11699 out:
11700 	if (READ_ONCE(nohz.needs_update))
11701 		flags |= NOHZ_NEXT_KICK;
11702 
11703 	if (flags)
11704 		kick_ilb(flags);
11705 }
11706 
11707 static void set_cpu_sd_state_busy(int cpu)
11708 {
11709 	struct sched_domain *sd;
11710 
11711 	rcu_read_lock();
11712 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11713 
11714 	if (!sd || !sd->nohz_idle)
11715 		goto unlock;
11716 	sd->nohz_idle = 0;
11717 
11718 	atomic_inc(&sd->shared->nr_busy_cpus);
11719 unlock:
11720 	rcu_read_unlock();
11721 }
11722 
11723 void nohz_balance_exit_idle(struct rq *rq)
11724 {
11725 	SCHED_WARN_ON(rq != this_rq());
11726 
11727 	if (likely(!rq->nohz_tick_stopped))
11728 		return;
11729 
11730 	rq->nohz_tick_stopped = 0;
11731 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11732 	atomic_dec(&nohz.nr_cpus);
11733 
11734 	set_cpu_sd_state_busy(rq->cpu);
11735 }
11736 
11737 static void set_cpu_sd_state_idle(int cpu)
11738 {
11739 	struct sched_domain *sd;
11740 
11741 	rcu_read_lock();
11742 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11743 
11744 	if (!sd || sd->nohz_idle)
11745 		goto unlock;
11746 	sd->nohz_idle = 1;
11747 
11748 	atomic_dec(&sd->shared->nr_busy_cpus);
11749 unlock:
11750 	rcu_read_unlock();
11751 }
11752 
11753 /*
11754  * This routine will record that the CPU is going idle with tick stopped.
11755  * This info will be used in performing idle load balancing in the future.
11756  */
11757 void nohz_balance_enter_idle(int cpu)
11758 {
11759 	struct rq *rq = cpu_rq(cpu);
11760 
11761 	SCHED_WARN_ON(cpu != smp_processor_id());
11762 
11763 	/* If this CPU is going down, then nothing needs to be done: */
11764 	if (!cpu_active(cpu))
11765 		return;
11766 
11767 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
11768 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
11769 		return;
11770 
11771 	/*
11772 	 * Can be set safely without rq->lock held
11773 	 * If a clear happens, it will have evaluated last additions because
11774 	 * rq->lock is held during the check and the clear
11775 	 */
11776 	rq->has_blocked_load = 1;
11777 
11778 	/*
11779 	 * The tick is still stopped but load could have been added in the
11780 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
11781 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11782 	 * of nohz.has_blocked can only happen after checking the new load
11783 	 */
11784 	if (rq->nohz_tick_stopped)
11785 		goto out;
11786 
11787 	/* If we're a completely isolated CPU, we don't play: */
11788 	if (on_null_domain(rq))
11789 		return;
11790 
11791 	rq->nohz_tick_stopped = 1;
11792 
11793 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11794 	atomic_inc(&nohz.nr_cpus);
11795 
11796 	/*
11797 	 * Ensures that if nohz_idle_balance() fails to observe our
11798 	 * @idle_cpus_mask store, it must observe the @has_blocked
11799 	 * and @needs_update stores.
11800 	 */
11801 	smp_mb__after_atomic();
11802 
11803 	set_cpu_sd_state_idle(cpu);
11804 
11805 	WRITE_ONCE(nohz.needs_update, 1);
11806 out:
11807 	/*
11808 	 * Each time a cpu enter idle, we assume that it has blocked load and
11809 	 * enable the periodic update of the load of idle cpus
11810 	 */
11811 	WRITE_ONCE(nohz.has_blocked, 1);
11812 }
11813 
11814 static bool update_nohz_stats(struct rq *rq)
11815 {
11816 	unsigned int cpu = rq->cpu;
11817 
11818 	if (!rq->has_blocked_load)
11819 		return false;
11820 
11821 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
11822 		return false;
11823 
11824 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
11825 		return true;
11826 
11827 	update_blocked_averages(cpu);
11828 
11829 	return rq->has_blocked_load;
11830 }
11831 
11832 /*
11833  * Internal function that runs load balance for all idle cpus. The load balance
11834  * can be a simple update of blocked load or a complete load balance with
11835  * tasks movement depending of flags.
11836  */
11837 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
11838 {
11839 	/* Earliest time when we have to do rebalance again */
11840 	unsigned long now = jiffies;
11841 	unsigned long next_balance = now + 60*HZ;
11842 	bool has_blocked_load = false;
11843 	int update_next_balance = 0;
11844 	int this_cpu = this_rq->cpu;
11845 	int balance_cpu;
11846 	struct rq *rq;
11847 
11848 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
11849 
11850 	/*
11851 	 * We assume there will be no idle load after this update and clear
11852 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
11853 	 * set the has_blocked flag and trigger another update of idle load.
11854 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
11855 	 * setting the flag, we are sure to not clear the state and not
11856 	 * check the load of an idle cpu.
11857 	 *
11858 	 * Same applies to idle_cpus_mask vs needs_update.
11859 	 */
11860 	if (flags & NOHZ_STATS_KICK)
11861 		WRITE_ONCE(nohz.has_blocked, 0);
11862 	if (flags & NOHZ_NEXT_KICK)
11863 		WRITE_ONCE(nohz.needs_update, 0);
11864 
11865 	/*
11866 	 * Ensures that if we miss the CPU, we must see the has_blocked
11867 	 * store from nohz_balance_enter_idle().
11868 	 */
11869 	smp_mb();
11870 
11871 	/*
11872 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
11873 	 * chance for other idle cpu to pull load.
11874 	 */
11875 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
11876 		if (!idle_cpu(balance_cpu))
11877 			continue;
11878 
11879 		/*
11880 		 * If this CPU gets work to do, stop the load balancing
11881 		 * work being done for other CPUs. Next load
11882 		 * balancing owner will pick it up.
11883 		 */
11884 		if (need_resched()) {
11885 			if (flags & NOHZ_STATS_KICK)
11886 				has_blocked_load = true;
11887 			if (flags & NOHZ_NEXT_KICK)
11888 				WRITE_ONCE(nohz.needs_update, 1);
11889 			goto abort;
11890 		}
11891 
11892 		rq = cpu_rq(balance_cpu);
11893 
11894 		if (flags & NOHZ_STATS_KICK)
11895 			has_blocked_load |= update_nohz_stats(rq);
11896 
11897 		/*
11898 		 * If time for next balance is due,
11899 		 * do the balance.
11900 		 */
11901 		if (time_after_eq(jiffies, rq->next_balance)) {
11902 			struct rq_flags rf;
11903 
11904 			rq_lock_irqsave(rq, &rf);
11905 			update_rq_clock(rq);
11906 			rq_unlock_irqrestore(rq, &rf);
11907 
11908 			if (flags & NOHZ_BALANCE_KICK)
11909 				rebalance_domains(rq, CPU_IDLE);
11910 		}
11911 
11912 		if (time_after(next_balance, rq->next_balance)) {
11913 			next_balance = rq->next_balance;
11914 			update_next_balance = 1;
11915 		}
11916 	}
11917 
11918 	/*
11919 	 * next_balance will be updated only when there is a need.
11920 	 * When the CPU is attached to null domain for ex, it will not be
11921 	 * updated.
11922 	 */
11923 	if (likely(update_next_balance))
11924 		nohz.next_balance = next_balance;
11925 
11926 	if (flags & NOHZ_STATS_KICK)
11927 		WRITE_ONCE(nohz.next_blocked,
11928 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
11929 
11930 abort:
11931 	/* There is still blocked load, enable periodic update */
11932 	if (has_blocked_load)
11933 		WRITE_ONCE(nohz.has_blocked, 1);
11934 }
11935 
11936 /*
11937  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11938  * rebalancing for all the cpus for whom scheduler ticks are stopped.
11939  */
11940 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11941 {
11942 	unsigned int flags = this_rq->nohz_idle_balance;
11943 
11944 	if (!flags)
11945 		return false;
11946 
11947 	this_rq->nohz_idle_balance = 0;
11948 
11949 	if (idle != CPU_IDLE)
11950 		return false;
11951 
11952 	_nohz_idle_balance(this_rq, flags);
11953 
11954 	return true;
11955 }
11956 
11957 /*
11958  * Check if we need to run the ILB for updating blocked load before entering
11959  * idle state.
11960  */
11961 void nohz_run_idle_balance(int cpu)
11962 {
11963 	unsigned int flags;
11964 
11965 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
11966 
11967 	/*
11968 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
11969 	 * (ie NOHZ_STATS_KICK set) and will do the same.
11970 	 */
11971 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
11972 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
11973 }
11974 
11975 static void nohz_newidle_balance(struct rq *this_rq)
11976 {
11977 	int this_cpu = this_rq->cpu;
11978 
11979 	/*
11980 	 * This CPU doesn't want to be disturbed by scheduler
11981 	 * housekeeping
11982 	 */
11983 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
11984 		return;
11985 
11986 	/* Will wake up very soon. No time for doing anything else*/
11987 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
11988 		return;
11989 
11990 	/* Don't need to update blocked load of idle CPUs*/
11991 	if (!READ_ONCE(nohz.has_blocked) ||
11992 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
11993 		return;
11994 
11995 	/*
11996 	 * Set the need to trigger ILB in order to update blocked load
11997 	 * before entering idle state.
11998 	 */
11999 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12000 }
12001 
12002 #else /* !CONFIG_NO_HZ_COMMON */
12003 static inline void nohz_balancer_kick(struct rq *rq) { }
12004 
12005 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12006 {
12007 	return false;
12008 }
12009 
12010 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12011 #endif /* CONFIG_NO_HZ_COMMON */
12012 
12013 /*
12014  * newidle_balance is called by schedule() if this_cpu is about to become
12015  * idle. Attempts to pull tasks from other CPUs.
12016  *
12017  * Returns:
12018  *   < 0 - we released the lock and there are !fair tasks present
12019  *     0 - failed, no new tasks
12020  *   > 0 - success, new (fair) tasks present
12021  */
12022 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12023 {
12024 	unsigned long next_balance = jiffies + HZ;
12025 	int this_cpu = this_rq->cpu;
12026 	u64 t0, t1, curr_cost = 0;
12027 	struct sched_domain *sd;
12028 	int pulled_task = 0;
12029 
12030 	update_misfit_status(NULL, this_rq);
12031 
12032 	/*
12033 	 * There is a task waiting to run. No need to search for one.
12034 	 * Return 0; the task will be enqueued when switching to idle.
12035 	 */
12036 	if (this_rq->ttwu_pending)
12037 		return 0;
12038 
12039 	/*
12040 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
12041 	 * measure the duration of idle_balance() as idle time.
12042 	 */
12043 	this_rq->idle_stamp = rq_clock(this_rq);
12044 
12045 	/*
12046 	 * Do not pull tasks towards !active CPUs...
12047 	 */
12048 	if (!cpu_active(this_cpu))
12049 		return 0;
12050 
12051 	/*
12052 	 * This is OK, because current is on_cpu, which avoids it being picked
12053 	 * for load-balance and preemption/IRQs are still disabled avoiding
12054 	 * further scheduler activity on it and we're being very careful to
12055 	 * re-start the picking loop.
12056 	 */
12057 	rq_unpin_lock(this_rq, rf);
12058 
12059 	rcu_read_lock();
12060 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12061 
12062 	if (!READ_ONCE(this_rq->rd->overload) ||
12063 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12064 
12065 		if (sd)
12066 			update_next_balance(sd, &next_balance);
12067 		rcu_read_unlock();
12068 
12069 		goto out;
12070 	}
12071 	rcu_read_unlock();
12072 
12073 	raw_spin_rq_unlock(this_rq);
12074 
12075 	t0 = sched_clock_cpu(this_cpu);
12076 	update_blocked_averages(this_cpu);
12077 
12078 	rcu_read_lock();
12079 	for_each_domain(this_cpu, sd) {
12080 		int continue_balancing = 1;
12081 		u64 domain_cost;
12082 
12083 		update_next_balance(sd, &next_balance);
12084 
12085 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12086 			break;
12087 
12088 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12089 
12090 			pulled_task = load_balance(this_cpu, this_rq,
12091 						   sd, CPU_NEWLY_IDLE,
12092 						   &continue_balancing);
12093 
12094 			t1 = sched_clock_cpu(this_cpu);
12095 			domain_cost = t1 - t0;
12096 			update_newidle_cost(sd, domain_cost);
12097 
12098 			curr_cost += domain_cost;
12099 			t0 = t1;
12100 		}
12101 
12102 		/*
12103 		 * Stop searching for tasks to pull if there are
12104 		 * now runnable tasks on this rq.
12105 		 */
12106 		if (pulled_task || this_rq->nr_running > 0 ||
12107 		    this_rq->ttwu_pending)
12108 			break;
12109 	}
12110 	rcu_read_unlock();
12111 
12112 	raw_spin_rq_lock(this_rq);
12113 
12114 	if (curr_cost > this_rq->max_idle_balance_cost)
12115 		this_rq->max_idle_balance_cost = curr_cost;
12116 
12117 	/*
12118 	 * While browsing the domains, we released the rq lock, a task could
12119 	 * have been enqueued in the meantime. Since we're not going idle,
12120 	 * pretend we pulled a task.
12121 	 */
12122 	if (this_rq->cfs.h_nr_running && !pulled_task)
12123 		pulled_task = 1;
12124 
12125 	/* Is there a task of a high priority class? */
12126 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12127 		pulled_task = -1;
12128 
12129 out:
12130 	/* Move the next balance forward */
12131 	if (time_after(this_rq->next_balance, next_balance))
12132 		this_rq->next_balance = next_balance;
12133 
12134 	if (pulled_task)
12135 		this_rq->idle_stamp = 0;
12136 	else
12137 		nohz_newidle_balance(this_rq);
12138 
12139 	rq_repin_lock(this_rq, rf);
12140 
12141 	return pulled_task;
12142 }
12143 
12144 /*
12145  * run_rebalance_domains is triggered when needed from the scheduler tick.
12146  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12147  */
12148 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12149 {
12150 	struct rq *this_rq = this_rq();
12151 	enum cpu_idle_type idle = this_rq->idle_balance ?
12152 						CPU_IDLE : CPU_NOT_IDLE;
12153 
12154 	/*
12155 	 * If this CPU has a pending nohz_balance_kick, then do the
12156 	 * balancing on behalf of the other idle CPUs whose ticks are
12157 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12158 	 * give the idle CPUs a chance to load balance. Else we may
12159 	 * load balance only within the local sched_domain hierarchy
12160 	 * and abort nohz_idle_balance altogether if we pull some load.
12161 	 */
12162 	if (nohz_idle_balance(this_rq, idle))
12163 		return;
12164 
12165 	/* normal load balance */
12166 	update_blocked_averages(this_rq->cpu);
12167 	rebalance_domains(this_rq, idle);
12168 }
12169 
12170 /*
12171  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12172  */
12173 void trigger_load_balance(struct rq *rq)
12174 {
12175 	/*
12176 	 * Don't need to rebalance while attached to NULL domain or
12177 	 * runqueue CPU is not active
12178 	 */
12179 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12180 		return;
12181 
12182 	if (time_after_eq(jiffies, rq->next_balance))
12183 		raise_softirq(SCHED_SOFTIRQ);
12184 
12185 	nohz_balancer_kick(rq);
12186 }
12187 
12188 static void rq_online_fair(struct rq *rq)
12189 {
12190 	update_sysctl();
12191 
12192 	update_runtime_enabled(rq);
12193 }
12194 
12195 static void rq_offline_fair(struct rq *rq)
12196 {
12197 	update_sysctl();
12198 
12199 	/* Ensure any throttled groups are reachable by pick_next_task */
12200 	unthrottle_offline_cfs_rqs(rq);
12201 }
12202 
12203 #endif /* CONFIG_SMP */
12204 
12205 #ifdef CONFIG_SCHED_CORE
12206 static inline bool
12207 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12208 {
12209 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12210 	u64 slice = se->slice;
12211 
12212 	return (rtime * min_nr_tasks > slice);
12213 }
12214 
12215 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12216 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12217 {
12218 	if (!sched_core_enabled(rq))
12219 		return;
12220 
12221 	/*
12222 	 * If runqueue has only one task which used up its slice and
12223 	 * if the sibling is forced idle, then trigger schedule to
12224 	 * give forced idle task a chance.
12225 	 *
12226 	 * sched_slice() considers only this active rq and it gets the
12227 	 * whole slice. But during force idle, we have siblings acting
12228 	 * like a single runqueue and hence we need to consider runnable
12229 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12230 	 * go through the forced idle rq, but that would be a perf hit.
12231 	 * We can assume that the forced idle CPU has at least
12232 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12233 	 * if we need to give up the CPU.
12234 	 */
12235 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12236 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12237 		resched_curr(rq);
12238 }
12239 
12240 /*
12241  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12242  */
12243 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12244 			 bool forceidle)
12245 {
12246 	for_each_sched_entity(se) {
12247 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12248 
12249 		if (forceidle) {
12250 			if (cfs_rq->forceidle_seq == fi_seq)
12251 				break;
12252 			cfs_rq->forceidle_seq = fi_seq;
12253 		}
12254 
12255 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12256 	}
12257 }
12258 
12259 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12260 {
12261 	struct sched_entity *se = &p->se;
12262 
12263 	if (p->sched_class != &fair_sched_class)
12264 		return;
12265 
12266 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12267 }
12268 
12269 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12270 			bool in_fi)
12271 {
12272 	struct rq *rq = task_rq(a);
12273 	const struct sched_entity *sea = &a->se;
12274 	const struct sched_entity *seb = &b->se;
12275 	struct cfs_rq *cfs_rqa;
12276 	struct cfs_rq *cfs_rqb;
12277 	s64 delta;
12278 
12279 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12280 
12281 #ifdef CONFIG_FAIR_GROUP_SCHED
12282 	/*
12283 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12284 	 * are immediate siblings.
12285 	 */
12286 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12287 		int sea_depth = sea->depth;
12288 		int seb_depth = seb->depth;
12289 
12290 		if (sea_depth >= seb_depth)
12291 			sea = parent_entity(sea);
12292 		if (sea_depth <= seb_depth)
12293 			seb = parent_entity(seb);
12294 	}
12295 
12296 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12297 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12298 
12299 	cfs_rqa = sea->cfs_rq;
12300 	cfs_rqb = seb->cfs_rq;
12301 #else
12302 	cfs_rqa = &task_rq(a)->cfs;
12303 	cfs_rqb = &task_rq(b)->cfs;
12304 #endif
12305 
12306 	/*
12307 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12308 	 * min_vruntime_fi, which would have been updated in prior calls
12309 	 * to se_fi_update().
12310 	 */
12311 	delta = (s64)(sea->vruntime - seb->vruntime) +
12312 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12313 
12314 	return delta > 0;
12315 }
12316 
12317 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12318 {
12319 	struct cfs_rq *cfs_rq;
12320 
12321 #ifdef CONFIG_FAIR_GROUP_SCHED
12322 	cfs_rq = task_group(p)->cfs_rq[cpu];
12323 #else
12324 	cfs_rq = &cpu_rq(cpu)->cfs;
12325 #endif
12326 	return throttled_hierarchy(cfs_rq);
12327 }
12328 #else
12329 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12330 #endif
12331 
12332 /*
12333  * scheduler tick hitting a task of our scheduling class.
12334  *
12335  * NOTE: This function can be called remotely by the tick offload that
12336  * goes along full dynticks. Therefore no local assumption can be made
12337  * and everything must be accessed through the @rq and @curr passed in
12338  * parameters.
12339  */
12340 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12341 {
12342 	struct cfs_rq *cfs_rq;
12343 	struct sched_entity *se = &curr->se;
12344 
12345 	for_each_sched_entity(se) {
12346 		cfs_rq = cfs_rq_of(se);
12347 		entity_tick(cfs_rq, se, queued);
12348 	}
12349 
12350 	if (static_branch_unlikely(&sched_numa_balancing))
12351 		task_tick_numa(rq, curr);
12352 
12353 	update_misfit_status(curr, rq);
12354 	update_overutilized_status(task_rq(curr));
12355 
12356 	task_tick_core(rq, curr);
12357 }
12358 
12359 /*
12360  * called on fork with the child task as argument from the parent's context
12361  *  - child not yet on the tasklist
12362  *  - preemption disabled
12363  */
12364 static void task_fork_fair(struct task_struct *p)
12365 {
12366 	struct sched_entity *se = &p->se, *curr;
12367 	struct cfs_rq *cfs_rq;
12368 	struct rq *rq = this_rq();
12369 	struct rq_flags rf;
12370 
12371 	rq_lock(rq, &rf);
12372 	update_rq_clock(rq);
12373 
12374 	cfs_rq = task_cfs_rq(current);
12375 	curr = cfs_rq->curr;
12376 	if (curr)
12377 		update_curr(cfs_rq);
12378 	place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12379 	rq_unlock(rq, &rf);
12380 }
12381 
12382 /*
12383  * Priority of the task has changed. Check to see if we preempt
12384  * the current task.
12385  */
12386 static void
12387 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12388 {
12389 	if (!task_on_rq_queued(p))
12390 		return;
12391 
12392 	if (rq->cfs.nr_running == 1)
12393 		return;
12394 
12395 	/*
12396 	 * Reschedule if we are currently running on this runqueue and
12397 	 * our priority decreased, or if we are not currently running on
12398 	 * this runqueue and our priority is higher than the current's
12399 	 */
12400 	if (task_current(rq, p)) {
12401 		if (p->prio > oldprio)
12402 			resched_curr(rq);
12403 	} else
12404 		check_preempt_curr(rq, p, 0);
12405 }
12406 
12407 #ifdef CONFIG_FAIR_GROUP_SCHED
12408 /*
12409  * Propagate the changes of the sched_entity across the tg tree to make it
12410  * visible to the root
12411  */
12412 static void propagate_entity_cfs_rq(struct sched_entity *se)
12413 {
12414 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12415 
12416 	if (cfs_rq_throttled(cfs_rq))
12417 		return;
12418 
12419 	if (!throttled_hierarchy(cfs_rq))
12420 		list_add_leaf_cfs_rq(cfs_rq);
12421 
12422 	/* Start to propagate at parent */
12423 	se = se->parent;
12424 
12425 	for_each_sched_entity(se) {
12426 		cfs_rq = cfs_rq_of(se);
12427 
12428 		update_load_avg(cfs_rq, se, UPDATE_TG);
12429 
12430 		if (cfs_rq_throttled(cfs_rq))
12431 			break;
12432 
12433 		if (!throttled_hierarchy(cfs_rq))
12434 			list_add_leaf_cfs_rq(cfs_rq);
12435 	}
12436 }
12437 #else
12438 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12439 #endif
12440 
12441 static void detach_entity_cfs_rq(struct sched_entity *se)
12442 {
12443 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12444 
12445 #ifdef CONFIG_SMP
12446 	/*
12447 	 * In case the task sched_avg hasn't been attached:
12448 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12449 	 * - A task which has been woken up by try_to_wake_up() but is
12450 	 *   waiting for actually being woken up by sched_ttwu_pending().
12451 	 */
12452 	if (!se->avg.last_update_time)
12453 		return;
12454 #endif
12455 
12456 	/* Catch up with the cfs_rq and remove our load when we leave */
12457 	update_load_avg(cfs_rq, se, 0);
12458 	detach_entity_load_avg(cfs_rq, se);
12459 	update_tg_load_avg(cfs_rq);
12460 	propagate_entity_cfs_rq(se);
12461 }
12462 
12463 static void attach_entity_cfs_rq(struct sched_entity *se)
12464 {
12465 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12466 
12467 	/* Synchronize entity with its cfs_rq */
12468 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12469 	attach_entity_load_avg(cfs_rq, se);
12470 	update_tg_load_avg(cfs_rq);
12471 	propagate_entity_cfs_rq(se);
12472 }
12473 
12474 static void detach_task_cfs_rq(struct task_struct *p)
12475 {
12476 	struct sched_entity *se = &p->se;
12477 
12478 	detach_entity_cfs_rq(se);
12479 }
12480 
12481 static void attach_task_cfs_rq(struct task_struct *p)
12482 {
12483 	struct sched_entity *se = &p->se;
12484 
12485 	attach_entity_cfs_rq(se);
12486 }
12487 
12488 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12489 {
12490 	detach_task_cfs_rq(p);
12491 }
12492 
12493 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12494 {
12495 	attach_task_cfs_rq(p);
12496 
12497 	if (task_on_rq_queued(p)) {
12498 		/*
12499 		 * We were most likely switched from sched_rt, so
12500 		 * kick off the schedule if running, otherwise just see
12501 		 * if we can still preempt the current task.
12502 		 */
12503 		if (task_current(rq, p))
12504 			resched_curr(rq);
12505 		else
12506 			check_preempt_curr(rq, p, 0);
12507 	}
12508 }
12509 
12510 /* Account for a task changing its policy or group.
12511  *
12512  * This routine is mostly called to set cfs_rq->curr field when a task
12513  * migrates between groups/classes.
12514  */
12515 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12516 {
12517 	struct sched_entity *se = &p->se;
12518 
12519 #ifdef CONFIG_SMP
12520 	if (task_on_rq_queued(p)) {
12521 		/*
12522 		 * Move the next running task to the front of the list, so our
12523 		 * cfs_tasks list becomes MRU one.
12524 		 */
12525 		list_move(&se->group_node, &rq->cfs_tasks);
12526 	}
12527 #endif
12528 
12529 	for_each_sched_entity(se) {
12530 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12531 
12532 		set_next_entity(cfs_rq, se);
12533 		/* ensure bandwidth has been allocated on our new cfs_rq */
12534 		account_cfs_rq_runtime(cfs_rq, 0);
12535 	}
12536 }
12537 
12538 void init_cfs_rq(struct cfs_rq *cfs_rq)
12539 {
12540 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12541 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12542 #ifdef CONFIG_SMP
12543 	raw_spin_lock_init(&cfs_rq->removed.lock);
12544 #endif
12545 }
12546 
12547 #ifdef CONFIG_FAIR_GROUP_SCHED
12548 static void task_change_group_fair(struct task_struct *p)
12549 {
12550 	/*
12551 	 * We couldn't detach or attach a forked task which
12552 	 * hasn't been woken up by wake_up_new_task().
12553 	 */
12554 	if (READ_ONCE(p->__state) == TASK_NEW)
12555 		return;
12556 
12557 	detach_task_cfs_rq(p);
12558 
12559 #ifdef CONFIG_SMP
12560 	/* Tell se's cfs_rq has been changed -- migrated */
12561 	p->se.avg.last_update_time = 0;
12562 #endif
12563 	set_task_rq(p, task_cpu(p));
12564 	attach_task_cfs_rq(p);
12565 }
12566 
12567 void free_fair_sched_group(struct task_group *tg)
12568 {
12569 	int i;
12570 
12571 	for_each_possible_cpu(i) {
12572 		if (tg->cfs_rq)
12573 			kfree(tg->cfs_rq[i]);
12574 		if (tg->se)
12575 			kfree(tg->se[i]);
12576 	}
12577 
12578 	kfree(tg->cfs_rq);
12579 	kfree(tg->se);
12580 }
12581 
12582 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12583 {
12584 	struct sched_entity *se;
12585 	struct cfs_rq *cfs_rq;
12586 	int i;
12587 
12588 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12589 	if (!tg->cfs_rq)
12590 		goto err;
12591 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12592 	if (!tg->se)
12593 		goto err;
12594 
12595 	tg->shares = NICE_0_LOAD;
12596 
12597 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12598 
12599 	for_each_possible_cpu(i) {
12600 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12601 				      GFP_KERNEL, cpu_to_node(i));
12602 		if (!cfs_rq)
12603 			goto err;
12604 
12605 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12606 				  GFP_KERNEL, cpu_to_node(i));
12607 		if (!se)
12608 			goto err_free_rq;
12609 
12610 		init_cfs_rq(cfs_rq);
12611 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12612 		init_entity_runnable_average(se);
12613 	}
12614 
12615 	return 1;
12616 
12617 err_free_rq:
12618 	kfree(cfs_rq);
12619 err:
12620 	return 0;
12621 }
12622 
12623 void online_fair_sched_group(struct task_group *tg)
12624 {
12625 	struct sched_entity *se;
12626 	struct rq_flags rf;
12627 	struct rq *rq;
12628 	int i;
12629 
12630 	for_each_possible_cpu(i) {
12631 		rq = cpu_rq(i);
12632 		se = tg->se[i];
12633 		rq_lock_irq(rq, &rf);
12634 		update_rq_clock(rq);
12635 		attach_entity_cfs_rq(se);
12636 		sync_throttle(tg, i);
12637 		rq_unlock_irq(rq, &rf);
12638 	}
12639 }
12640 
12641 void unregister_fair_sched_group(struct task_group *tg)
12642 {
12643 	unsigned long flags;
12644 	struct rq *rq;
12645 	int cpu;
12646 
12647 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12648 
12649 	for_each_possible_cpu(cpu) {
12650 		if (tg->se[cpu])
12651 			remove_entity_load_avg(tg->se[cpu]);
12652 
12653 		/*
12654 		 * Only empty task groups can be destroyed; so we can speculatively
12655 		 * check on_list without danger of it being re-added.
12656 		 */
12657 		if (!tg->cfs_rq[cpu]->on_list)
12658 			continue;
12659 
12660 		rq = cpu_rq(cpu);
12661 
12662 		raw_spin_rq_lock_irqsave(rq, flags);
12663 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12664 		raw_spin_rq_unlock_irqrestore(rq, flags);
12665 	}
12666 }
12667 
12668 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12669 			struct sched_entity *se, int cpu,
12670 			struct sched_entity *parent)
12671 {
12672 	struct rq *rq = cpu_rq(cpu);
12673 
12674 	cfs_rq->tg = tg;
12675 	cfs_rq->rq = rq;
12676 	init_cfs_rq_runtime(cfs_rq);
12677 
12678 	tg->cfs_rq[cpu] = cfs_rq;
12679 	tg->se[cpu] = se;
12680 
12681 	/* se could be NULL for root_task_group */
12682 	if (!se)
12683 		return;
12684 
12685 	if (!parent) {
12686 		se->cfs_rq = &rq->cfs;
12687 		se->depth = 0;
12688 	} else {
12689 		se->cfs_rq = parent->my_q;
12690 		se->depth = parent->depth + 1;
12691 	}
12692 
12693 	se->my_q = cfs_rq;
12694 	/* guarantee group entities always have weight */
12695 	update_load_set(&se->load, NICE_0_LOAD);
12696 	se->parent = parent;
12697 }
12698 
12699 static DEFINE_MUTEX(shares_mutex);
12700 
12701 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12702 {
12703 	int i;
12704 
12705 	lockdep_assert_held(&shares_mutex);
12706 
12707 	/*
12708 	 * We can't change the weight of the root cgroup.
12709 	 */
12710 	if (!tg->se[0])
12711 		return -EINVAL;
12712 
12713 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12714 
12715 	if (tg->shares == shares)
12716 		return 0;
12717 
12718 	tg->shares = shares;
12719 	for_each_possible_cpu(i) {
12720 		struct rq *rq = cpu_rq(i);
12721 		struct sched_entity *se = tg->se[i];
12722 		struct rq_flags rf;
12723 
12724 		/* Propagate contribution to hierarchy */
12725 		rq_lock_irqsave(rq, &rf);
12726 		update_rq_clock(rq);
12727 		for_each_sched_entity(se) {
12728 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12729 			update_cfs_group(se);
12730 		}
12731 		rq_unlock_irqrestore(rq, &rf);
12732 	}
12733 
12734 	return 0;
12735 }
12736 
12737 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12738 {
12739 	int ret;
12740 
12741 	mutex_lock(&shares_mutex);
12742 	if (tg_is_idle(tg))
12743 		ret = -EINVAL;
12744 	else
12745 		ret = __sched_group_set_shares(tg, shares);
12746 	mutex_unlock(&shares_mutex);
12747 
12748 	return ret;
12749 }
12750 
12751 int sched_group_set_idle(struct task_group *tg, long idle)
12752 {
12753 	int i;
12754 
12755 	if (tg == &root_task_group)
12756 		return -EINVAL;
12757 
12758 	if (idle < 0 || idle > 1)
12759 		return -EINVAL;
12760 
12761 	mutex_lock(&shares_mutex);
12762 
12763 	if (tg->idle == idle) {
12764 		mutex_unlock(&shares_mutex);
12765 		return 0;
12766 	}
12767 
12768 	tg->idle = idle;
12769 
12770 	for_each_possible_cpu(i) {
12771 		struct rq *rq = cpu_rq(i);
12772 		struct sched_entity *se = tg->se[i];
12773 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
12774 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
12775 		long idle_task_delta;
12776 		struct rq_flags rf;
12777 
12778 		rq_lock_irqsave(rq, &rf);
12779 
12780 		grp_cfs_rq->idle = idle;
12781 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
12782 			goto next_cpu;
12783 
12784 		if (se->on_rq) {
12785 			parent_cfs_rq = cfs_rq_of(se);
12786 			if (cfs_rq_is_idle(grp_cfs_rq))
12787 				parent_cfs_rq->idle_nr_running++;
12788 			else
12789 				parent_cfs_rq->idle_nr_running--;
12790 		}
12791 
12792 		idle_task_delta = grp_cfs_rq->h_nr_running -
12793 				  grp_cfs_rq->idle_h_nr_running;
12794 		if (!cfs_rq_is_idle(grp_cfs_rq))
12795 			idle_task_delta *= -1;
12796 
12797 		for_each_sched_entity(se) {
12798 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
12799 
12800 			if (!se->on_rq)
12801 				break;
12802 
12803 			cfs_rq->idle_h_nr_running += idle_task_delta;
12804 
12805 			/* Already accounted at parent level and above. */
12806 			if (cfs_rq_is_idle(cfs_rq))
12807 				break;
12808 		}
12809 
12810 next_cpu:
12811 		rq_unlock_irqrestore(rq, &rf);
12812 	}
12813 
12814 	/* Idle groups have minimum weight. */
12815 	if (tg_is_idle(tg))
12816 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
12817 	else
12818 		__sched_group_set_shares(tg, NICE_0_LOAD);
12819 
12820 	mutex_unlock(&shares_mutex);
12821 	return 0;
12822 }
12823 
12824 #else /* CONFIG_FAIR_GROUP_SCHED */
12825 
12826 void free_fair_sched_group(struct task_group *tg) { }
12827 
12828 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12829 {
12830 	return 1;
12831 }
12832 
12833 void online_fair_sched_group(struct task_group *tg) { }
12834 
12835 void unregister_fair_sched_group(struct task_group *tg) { }
12836 
12837 #endif /* CONFIG_FAIR_GROUP_SCHED */
12838 
12839 
12840 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
12841 {
12842 	struct sched_entity *se = &task->se;
12843 	unsigned int rr_interval = 0;
12844 
12845 	/*
12846 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
12847 	 * idle runqueue:
12848 	 */
12849 	if (rq->cfs.load.weight)
12850 		rr_interval = NS_TO_JIFFIES(se->slice);
12851 
12852 	return rr_interval;
12853 }
12854 
12855 /*
12856  * All the scheduling class methods:
12857  */
12858 DEFINE_SCHED_CLASS(fair) = {
12859 
12860 	.enqueue_task		= enqueue_task_fair,
12861 	.dequeue_task		= dequeue_task_fair,
12862 	.yield_task		= yield_task_fair,
12863 	.yield_to_task		= yield_to_task_fair,
12864 
12865 	.check_preempt_curr	= check_preempt_wakeup,
12866 
12867 	.pick_next_task		= __pick_next_task_fair,
12868 	.put_prev_task		= put_prev_task_fair,
12869 	.set_next_task          = set_next_task_fair,
12870 
12871 #ifdef CONFIG_SMP
12872 	.balance		= balance_fair,
12873 	.pick_task		= pick_task_fair,
12874 	.select_task_rq		= select_task_rq_fair,
12875 	.migrate_task_rq	= migrate_task_rq_fair,
12876 
12877 	.rq_online		= rq_online_fair,
12878 	.rq_offline		= rq_offline_fair,
12879 
12880 	.task_dead		= task_dead_fair,
12881 	.set_cpus_allowed	= set_cpus_allowed_common,
12882 #endif
12883 
12884 	.task_tick		= task_tick_fair,
12885 	.task_fork		= task_fork_fair,
12886 
12887 	.prio_changed		= prio_changed_fair,
12888 	.switched_from		= switched_from_fair,
12889 	.switched_to		= switched_to_fair,
12890 
12891 	.get_rr_interval	= get_rr_interval_fair,
12892 
12893 	.update_curr		= update_curr_fair,
12894 
12895 #ifdef CONFIG_FAIR_GROUP_SCHED
12896 	.task_change_group	= task_change_group_fair,
12897 #endif
12898 
12899 #ifdef CONFIG_SCHED_CORE
12900 	.task_is_throttled	= task_is_throttled_fair,
12901 #endif
12902 
12903 #ifdef CONFIG_UCLAMP_TASK
12904 	.uclamp_enabled		= 1,
12905 #endif
12906 };
12907 
12908 #ifdef CONFIG_SCHED_DEBUG
12909 void print_cfs_stats(struct seq_file *m, int cpu)
12910 {
12911 	struct cfs_rq *cfs_rq, *pos;
12912 
12913 	rcu_read_lock();
12914 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
12915 		print_cfs_rq(m, cpu, cfs_rq);
12916 	rcu_read_unlock();
12917 }
12918 
12919 #ifdef CONFIG_NUMA_BALANCING
12920 void show_numa_stats(struct task_struct *p, struct seq_file *m)
12921 {
12922 	int node;
12923 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
12924 	struct numa_group *ng;
12925 
12926 	rcu_read_lock();
12927 	ng = rcu_dereference(p->numa_group);
12928 	for_each_online_node(node) {
12929 		if (p->numa_faults) {
12930 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12931 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12932 		}
12933 		if (ng) {
12934 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
12935 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
12936 		}
12937 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12938 	}
12939 	rcu_read_unlock();
12940 }
12941 #endif /* CONFIG_NUMA_BALANCING */
12942 #endif /* CONFIG_SCHED_DEBUG */
12943 
12944 __init void init_sched_fair_class(void)
12945 {
12946 #ifdef CONFIG_SMP
12947 	int i;
12948 
12949 	for_each_possible_cpu(i) {
12950 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
12951 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
12952 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
12953 					GFP_KERNEL, cpu_to_node(i));
12954 
12955 #ifdef CONFIG_CFS_BANDWIDTH
12956 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
12957 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
12958 #endif
12959 	}
12960 
12961 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
12962 
12963 #ifdef CONFIG_NO_HZ_COMMON
12964 	nohz.next_balance = jiffies;
12965 	nohz.next_blocked = jiffies;
12966 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
12967 #endif
12968 #endif /* SMP */
12969 
12970 }
12971