1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include <linux/sched/cond_resched.h> 55 56 #include "sched.h" 57 #include "stats.h" 58 #include "autogroup.h" 59 60 /* 61 * The initial- and re-scaling of tunables is configurable 62 * 63 * Options are: 64 * 65 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 66 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 67 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 68 * 69 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 70 */ 71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 72 73 /* 74 * Minimal preemption granularity for CPU-bound tasks: 75 * 76 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 77 */ 78 unsigned int sysctl_sched_base_slice = 750000ULL; 79 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 80 81 /* 82 * After fork, child runs first. If set to 0 (default) then 83 * parent will (try to) run first. 84 */ 85 unsigned int sysctl_sched_child_runs_first __read_mostly; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 int sched_thermal_decay_shift; 90 static int __init setup_sched_thermal_decay_shift(char *str) 91 { 92 int _shift = 0; 93 94 if (kstrtoint(str, 0, &_shift)) 95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 96 97 sched_thermal_decay_shift = clamp(_shift, 0, 10); 98 return 1; 99 } 100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 101 102 #ifdef CONFIG_SMP 103 /* 104 * For asym packing, by default the lower numbered CPU has higher priority. 105 */ 106 int __weak arch_asym_cpu_priority(int cpu) 107 { 108 return -cpu; 109 } 110 111 /* 112 * The margin used when comparing utilization with CPU capacity. 113 * 114 * (default: ~20%) 115 */ 116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 117 118 /* 119 * The margin used when comparing CPU capacities. 120 * is 'cap1' noticeably greater than 'cap2' 121 * 122 * (default: ~5%) 123 */ 124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 125 #endif 126 127 #ifdef CONFIG_CFS_BANDWIDTH 128 /* 129 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 130 * each time a cfs_rq requests quota. 131 * 132 * Note: in the case that the slice exceeds the runtime remaining (either due 133 * to consumption or the quota being specified to be smaller than the slice) 134 * we will always only issue the remaining available time. 135 * 136 * (default: 5 msec, units: microseconds) 137 */ 138 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 139 #endif 140 141 #ifdef CONFIG_NUMA_BALANCING 142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 144 #endif 145 146 #ifdef CONFIG_SYSCTL 147 static struct ctl_table sched_fair_sysctls[] = { 148 { 149 .procname = "sched_child_runs_first", 150 .data = &sysctl_sched_child_runs_first, 151 .maxlen = sizeof(unsigned int), 152 .mode = 0644, 153 .proc_handler = proc_dointvec, 154 }, 155 #ifdef CONFIG_CFS_BANDWIDTH 156 { 157 .procname = "sched_cfs_bandwidth_slice_us", 158 .data = &sysctl_sched_cfs_bandwidth_slice, 159 .maxlen = sizeof(unsigned int), 160 .mode = 0644, 161 .proc_handler = proc_dointvec_minmax, 162 .extra1 = SYSCTL_ONE, 163 }, 164 #endif 165 #ifdef CONFIG_NUMA_BALANCING 166 { 167 .procname = "numa_balancing_promote_rate_limit_MBps", 168 .data = &sysctl_numa_balancing_promote_rate_limit, 169 .maxlen = sizeof(unsigned int), 170 .mode = 0644, 171 .proc_handler = proc_dointvec_minmax, 172 .extra1 = SYSCTL_ZERO, 173 }, 174 #endif /* CONFIG_NUMA_BALANCING */ 175 {} 176 }; 177 178 static int __init sched_fair_sysctl_init(void) 179 { 180 register_sysctl_init("kernel", sched_fair_sysctls); 181 return 0; 182 } 183 late_initcall(sched_fair_sysctl_init); 184 #endif 185 186 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 187 { 188 lw->weight += inc; 189 lw->inv_weight = 0; 190 } 191 192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 193 { 194 lw->weight -= dec; 195 lw->inv_weight = 0; 196 } 197 198 static inline void update_load_set(struct load_weight *lw, unsigned long w) 199 { 200 lw->weight = w; 201 lw->inv_weight = 0; 202 } 203 204 /* 205 * Increase the granularity value when there are more CPUs, 206 * because with more CPUs the 'effective latency' as visible 207 * to users decreases. But the relationship is not linear, 208 * so pick a second-best guess by going with the log2 of the 209 * number of CPUs. 210 * 211 * This idea comes from the SD scheduler of Con Kolivas: 212 */ 213 static unsigned int get_update_sysctl_factor(void) 214 { 215 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 216 unsigned int factor; 217 218 switch (sysctl_sched_tunable_scaling) { 219 case SCHED_TUNABLESCALING_NONE: 220 factor = 1; 221 break; 222 case SCHED_TUNABLESCALING_LINEAR: 223 factor = cpus; 224 break; 225 case SCHED_TUNABLESCALING_LOG: 226 default: 227 factor = 1 + ilog2(cpus); 228 break; 229 } 230 231 return factor; 232 } 233 234 static void update_sysctl(void) 235 { 236 unsigned int factor = get_update_sysctl_factor(); 237 238 #define SET_SYSCTL(name) \ 239 (sysctl_##name = (factor) * normalized_sysctl_##name) 240 SET_SYSCTL(sched_base_slice); 241 #undef SET_SYSCTL 242 } 243 244 void __init sched_init_granularity(void) 245 { 246 update_sysctl(); 247 } 248 249 #define WMULT_CONST (~0U) 250 #define WMULT_SHIFT 32 251 252 static void __update_inv_weight(struct load_weight *lw) 253 { 254 unsigned long w; 255 256 if (likely(lw->inv_weight)) 257 return; 258 259 w = scale_load_down(lw->weight); 260 261 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 262 lw->inv_weight = 1; 263 else if (unlikely(!w)) 264 lw->inv_weight = WMULT_CONST; 265 else 266 lw->inv_weight = WMULT_CONST / w; 267 } 268 269 /* 270 * delta_exec * weight / lw.weight 271 * OR 272 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 273 * 274 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 275 * we're guaranteed shift stays positive because inv_weight is guaranteed to 276 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 277 * 278 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 279 * weight/lw.weight <= 1, and therefore our shift will also be positive. 280 */ 281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 282 { 283 u64 fact = scale_load_down(weight); 284 u32 fact_hi = (u32)(fact >> 32); 285 int shift = WMULT_SHIFT; 286 int fs; 287 288 __update_inv_weight(lw); 289 290 if (unlikely(fact_hi)) { 291 fs = fls(fact_hi); 292 shift -= fs; 293 fact >>= fs; 294 } 295 296 fact = mul_u32_u32(fact, lw->inv_weight); 297 298 fact_hi = (u32)(fact >> 32); 299 if (fact_hi) { 300 fs = fls(fact_hi); 301 shift -= fs; 302 fact >>= fs; 303 } 304 305 return mul_u64_u32_shr(delta_exec, fact, shift); 306 } 307 308 /* 309 * delta /= w 310 */ 311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 312 { 313 if (unlikely(se->load.weight != NICE_0_LOAD)) 314 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 315 316 return delta; 317 } 318 319 const struct sched_class fair_sched_class; 320 321 /************************************************************** 322 * CFS operations on generic schedulable entities: 323 */ 324 325 #ifdef CONFIG_FAIR_GROUP_SCHED 326 327 /* Walk up scheduling entities hierarchy */ 328 #define for_each_sched_entity(se) \ 329 for (; se; se = se->parent) 330 331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 332 { 333 struct rq *rq = rq_of(cfs_rq); 334 int cpu = cpu_of(rq); 335 336 if (cfs_rq->on_list) 337 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 338 339 cfs_rq->on_list = 1; 340 341 /* 342 * Ensure we either appear before our parent (if already 343 * enqueued) or force our parent to appear after us when it is 344 * enqueued. The fact that we always enqueue bottom-up 345 * reduces this to two cases and a special case for the root 346 * cfs_rq. Furthermore, it also means that we will always reset 347 * tmp_alone_branch either when the branch is connected 348 * to a tree or when we reach the top of the tree 349 */ 350 if (cfs_rq->tg->parent && 351 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 352 /* 353 * If parent is already on the list, we add the child 354 * just before. Thanks to circular linked property of 355 * the list, this means to put the child at the tail 356 * of the list that starts by parent. 357 */ 358 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 359 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 360 /* 361 * The branch is now connected to its tree so we can 362 * reset tmp_alone_branch to the beginning of the 363 * list. 364 */ 365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 366 return true; 367 } 368 369 if (!cfs_rq->tg->parent) { 370 /* 371 * cfs rq without parent should be put 372 * at the tail of the list. 373 */ 374 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 375 &rq->leaf_cfs_rq_list); 376 /* 377 * We have reach the top of a tree so we can reset 378 * tmp_alone_branch to the beginning of the list. 379 */ 380 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 381 return true; 382 } 383 384 /* 385 * The parent has not already been added so we want to 386 * make sure that it will be put after us. 387 * tmp_alone_branch points to the begin of the branch 388 * where we will add parent. 389 */ 390 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 391 /* 392 * update tmp_alone_branch to points to the new begin 393 * of the branch 394 */ 395 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 396 return false; 397 } 398 399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 400 { 401 if (cfs_rq->on_list) { 402 struct rq *rq = rq_of(cfs_rq); 403 404 /* 405 * With cfs_rq being unthrottled/throttled during an enqueue, 406 * it can happen the tmp_alone_branch points the a leaf that 407 * we finally want to del. In this case, tmp_alone_branch moves 408 * to the prev element but it will point to rq->leaf_cfs_rq_list 409 * at the end of the enqueue. 410 */ 411 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 412 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 413 414 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 415 cfs_rq->on_list = 0; 416 } 417 } 418 419 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 420 { 421 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 422 } 423 424 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 426 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 427 leaf_cfs_rq_list) 428 429 /* Do the two (enqueued) entities belong to the same group ? */ 430 static inline struct cfs_rq * 431 is_same_group(struct sched_entity *se, struct sched_entity *pse) 432 { 433 if (se->cfs_rq == pse->cfs_rq) 434 return se->cfs_rq; 435 436 return NULL; 437 } 438 439 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 440 { 441 return se->parent; 442 } 443 444 static void 445 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 446 { 447 int se_depth, pse_depth; 448 449 /* 450 * preemption test can be made between sibling entities who are in the 451 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 452 * both tasks until we find their ancestors who are siblings of common 453 * parent. 454 */ 455 456 /* First walk up until both entities are at same depth */ 457 se_depth = (*se)->depth; 458 pse_depth = (*pse)->depth; 459 460 while (se_depth > pse_depth) { 461 se_depth--; 462 *se = parent_entity(*se); 463 } 464 465 while (pse_depth > se_depth) { 466 pse_depth--; 467 *pse = parent_entity(*pse); 468 } 469 470 while (!is_same_group(*se, *pse)) { 471 *se = parent_entity(*se); 472 *pse = parent_entity(*pse); 473 } 474 } 475 476 static int tg_is_idle(struct task_group *tg) 477 { 478 return tg->idle > 0; 479 } 480 481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 482 { 483 return cfs_rq->idle > 0; 484 } 485 486 static int se_is_idle(struct sched_entity *se) 487 { 488 if (entity_is_task(se)) 489 return task_has_idle_policy(task_of(se)); 490 return cfs_rq_is_idle(group_cfs_rq(se)); 491 } 492 493 #else /* !CONFIG_FAIR_GROUP_SCHED */ 494 495 #define for_each_sched_entity(se) \ 496 for (; se; se = NULL) 497 498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 499 { 500 return true; 501 } 502 503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 504 { 505 } 506 507 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 508 { 509 } 510 511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 512 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 513 514 static inline struct sched_entity *parent_entity(struct sched_entity *se) 515 { 516 return NULL; 517 } 518 519 static inline void 520 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 521 { 522 } 523 524 static inline int tg_is_idle(struct task_group *tg) 525 { 526 return 0; 527 } 528 529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 530 { 531 return 0; 532 } 533 534 static int se_is_idle(struct sched_entity *se) 535 { 536 return 0; 537 } 538 539 #endif /* CONFIG_FAIR_GROUP_SCHED */ 540 541 static __always_inline 542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 543 544 /************************************************************** 545 * Scheduling class tree data structure manipulation methods: 546 */ 547 548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 549 { 550 s64 delta = (s64)(vruntime - max_vruntime); 551 if (delta > 0) 552 max_vruntime = vruntime; 553 554 return max_vruntime; 555 } 556 557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 558 { 559 s64 delta = (s64)(vruntime - min_vruntime); 560 if (delta < 0) 561 min_vruntime = vruntime; 562 563 return min_vruntime; 564 } 565 566 static inline bool entity_before(const struct sched_entity *a, 567 const struct sched_entity *b) 568 { 569 return (s64)(a->vruntime - b->vruntime) < 0; 570 } 571 572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 573 { 574 return (s64)(se->vruntime - cfs_rq->min_vruntime); 575 } 576 577 #define __node_2_se(node) \ 578 rb_entry((node), struct sched_entity, run_node) 579 580 /* 581 * Compute virtual time from the per-task service numbers: 582 * 583 * Fair schedulers conserve lag: 584 * 585 * \Sum lag_i = 0 586 * 587 * Where lag_i is given by: 588 * 589 * lag_i = S - s_i = w_i * (V - v_i) 590 * 591 * Where S is the ideal service time and V is it's virtual time counterpart. 592 * Therefore: 593 * 594 * \Sum lag_i = 0 595 * \Sum w_i * (V - v_i) = 0 596 * \Sum w_i * V - w_i * v_i = 0 597 * 598 * From which we can solve an expression for V in v_i (which we have in 599 * se->vruntime): 600 * 601 * \Sum v_i * w_i \Sum v_i * w_i 602 * V = -------------- = -------------- 603 * \Sum w_i W 604 * 605 * Specifically, this is the weighted average of all entity virtual runtimes. 606 * 607 * [[ NOTE: this is only equal to the ideal scheduler under the condition 608 * that join/leave operations happen at lag_i = 0, otherwise the 609 * virtual time has non-continguous motion equivalent to: 610 * 611 * V +-= lag_i / W 612 * 613 * Also see the comment in place_entity() that deals with this. ]] 614 * 615 * However, since v_i is u64, and the multiplcation could easily overflow 616 * transform it into a relative form that uses smaller quantities: 617 * 618 * Substitute: v_i == (v_i - v0) + v0 619 * 620 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 621 * V = ---------------------------- = --------------------- + v0 622 * W W 623 * 624 * Which we track using: 625 * 626 * v0 := cfs_rq->min_vruntime 627 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 628 * \Sum w_i := cfs_rq->avg_load 629 * 630 * Since min_vruntime is a monotonic increasing variable that closely tracks 631 * the per-task service, these deltas: (v_i - v), will be in the order of the 632 * maximal (virtual) lag induced in the system due to quantisation. 633 * 634 * Also, we use scale_load_down() to reduce the size. 635 * 636 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 637 */ 638 static void 639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 640 { 641 unsigned long weight = scale_load_down(se->load.weight); 642 s64 key = entity_key(cfs_rq, se); 643 644 cfs_rq->avg_vruntime += key * weight; 645 cfs_rq->avg_load += weight; 646 } 647 648 static void 649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 650 { 651 unsigned long weight = scale_load_down(se->load.weight); 652 s64 key = entity_key(cfs_rq, se); 653 654 cfs_rq->avg_vruntime -= key * weight; 655 cfs_rq->avg_load -= weight; 656 } 657 658 static inline 659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 660 { 661 /* 662 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 663 */ 664 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 665 } 666 667 /* 668 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 669 * For this to be so, the result of this function must have a left bias. 670 */ 671 u64 avg_vruntime(struct cfs_rq *cfs_rq) 672 { 673 struct sched_entity *curr = cfs_rq->curr; 674 s64 avg = cfs_rq->avg_vruntime; 675 long load = cfs_rq->avg_load; 676 677 if (curr && curr->on_rq) { 678 unsigned long weight = scale_load_down(curr->load.weight); 679 680 avg += entity_key(cfs_rq, curr) * weight; 681 load += weight; 682 } 683 684 if (load) { 685 /* sign flips effective floor / ceil */ 686 if (avg < 0) 687 avg -= (load - 1); 688 avg = div_s64(avg, load); 689 } 690 691 return cfs_rq->min_vruntime + avg; 692 } 693 694 /* 695 * lag_i = S - s_i = w_i * (V - v_i) 696 * 697 * However, since V is approximated by the weighted average of all entities it 698 * is possible -- by addition/removal/reweight to the tree -- to move V around 699 * and end up with a larger lag than we started with. 700 * 701 * Limit this to either double the slice length with a minimum of TICK_NSEC 702 * since that is the timing granularity. 703 * 704 * EEVDF gives the following limit for a steady state system: 705 * 706 * -r_max < lag < max(r_max, q) 707 * 708 * XXX could add max_slice to the augmented data to track this. 709 */ 710 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 711 { 712 s64 lag, limit; 713 714 SCHED_WARN_ON(!se->on_rq); 715 lag = avg_vruntime(cfs_rq) - se->vruntime; 716 717 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 718 se->vlag = clamp(lag, -limit, limit); 719 } 720 721 /* 722 * Entity is eligible once it received less service than it ought to have, 723 * eg. lag >= 0. 724 * 725 * lag_i = S - s_i = w_i*(V - v_i) 726 * 727 * lag_i >= 0 -> V >= v_i 728 * 729 * \Sum (v_i - v)*w_i 730 * V = ------------------ + v 731 * \Sum w_i 732 * 733 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 734 * 735 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due 736 * to the loss in precision caused by the division. 737 */ 738 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 739 { 740 struct sched_entity *curr = cfs_rq->curr; 741 s64 avg = cfs_rq->avg_vruntime; 742 long load = cfs_rq->avg_load; 743 744 if (curr && curr->on_rq) { 745 unsigned long weight = scale_load_down(curr->load.weight); 746 747 avg += entity_key(cfs_rq, curr) * weight; 748 load += weight; 749 } 750 751 return avg >= entity_key(cfs_rq, se) * load; 752 } 753 754 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 755 { 756 u64 min_vruntime = cfs_rq->min_vruntime; 757 /* 758 * open coded max_vruntime() to allow updating avg_vruntime 759 */ 760 s64 delta = (s64)(vruntime - min_vruntime); 761 if (delta > 0) { 762 avg_vruntime_update(cfs_rq, delta); 763 min_vruntime = vruntime; 764 } 765 return min_vruntime; 766 } 767 768 static void update_min_vruntime(struct cfs_rq *cfs_rq) 769 { 770 struct sched_entity *se = __pick_first_entity(cfs_rq); 771 struct sched_entity *curr = cfs_rq->curr; 772 773 u64 vruntime = cfs_rq->min_vruntime; 774 775 if (curr) { 776 if (curr->on_rq) 777 vruntime = curr->vruntime; 778 else 779 curr = NULL; 780 } 781 782 if (se) { 783 if (!curr) 784 vruntime = se->vruntime; 785 else 786 vruntime = min_vruntime(vruntime, se->vruntime); 787 } 788 789 /* ensure we never gain time by being placed backwards. */ 790 u64_u32_store(cfs_rq->min_vruntime, 791 __update_min_vruntime(cfs_rq, vruntime)); 792 } 793 794 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 795 { 796 return entity_before(__node_2_se(a), __node_2_se(b)); 797 } 798 799 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 800 801 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node) 802 { 803 if (node) { 804 struct sched_entity *rse = __node_2_se(node); 805 if (deadline_gt(min_deadline, se, rse)) 806 se->min_deadline = rse->min_deadline; 807 } 808 } 809 810 /* 811 * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline) 812 */ 813 static inline bool min_deadline_update(struct sched_entity *se, bool exit) 814 { 815 u64 old_min_deadline = se->min_deadline; 816 struct rb_node *node = &se->run_node; 817 818 se->min_deadline = se->deadline; 819 __update_min_deadline(se, node->rb_right); 820 __update_min_deadline(se, node->rb_left); 821 822 return se->min_deadline == old_min_deadline; 823 } 824 825 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity, 826 run_node, min_deadline, min_deadline_update); 827 828 /* 829 * Enqueue an entity into the rb-tree: 830 */ 831 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 832 { 833 avg_vruntime_add(cfs_rq, se); 834 se->min_deadline = se->deadline; 835 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 836 __entity_less, &min_deadline_cb); 837 } 838 839 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 840 { 841 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 842 &min_deadline_cb); 843 avg_vruntime_sub(cfs_rq, se); 844 } 845 846 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 847 { 848 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 849 850 if (!left) 851 return NULL; 852 853 return __node_2_se(left); 854 } 855 856 /* 857 * Earliest Eligible Virtual Deadline First 858 * 859 * In order to provide latency guarantees for different request sizes 860 * EEVDF selects the best runnable task from two criteria: 861 * 862 * 1) the task must be eligible (must be owed service) 863 * 864 * 2) from those tasks that meet 1), we select the one 865 * with the earliest virtual deadline. 866 * 867 * We can do this in O(log n) time due to an augmented RB-tree. The 868 * tree keeps the entries sorted on service, but also functions as a 869 * heap based on the deadline by keeping: 870 * 871 * se->min_deadline = min(se->deadline, se->{left,right}->min_deadline) 872 * 873 * Which allows an EDF like search on (sub)trees. 874 */ 875 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 876 { 877 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 878 struct sched_entity *curr = cfs_rq->curr; 879 struct sched_entity *best = NULL; 880 881 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 882 curr = NULL; 883 884 /* 885 * Once selected, run a task until it either becomes non-eligible or 886 * until it gets a new slice. See the HACK in set_next_entity(). 887 */ 888 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 889 return curr; 890 891 while (node) { 892 struct sched_entity *se = __node_2_se(node); 893 894 /* 895 * If this entity is not eligible, try the left subtree. 896 */ 897 if (!entity_eligible(cfs_rq, se)) { 898 node = node->rb_left; 899 continue; 900 } 901 902 /* 903 * If this entity has an earlier deadline than the previous 904 * best, take this one. If it also has the earliest deadline 905 * of its subtree, we're done. 906 */ 907 if (!best || deadline_gt(deadline, best, se)) { 908 best = se; 909 if (best->deadline == best->min_deadline) 910 break; 911 } 912 913 /* 914 * If the earlest deadline in this subtree is in the fully 915 * eligible left half of our space, go there. 916 */ 917 if (node->rb_left && 918 __node_2_se(node->rb_left)->min_deadline == se->min_deadline) { 919 node = node->rb_left; 920 continue; 921 } 922 923 node = node->rb_right; 924 } 925 926 if (!best || (curr && deadline_gt(deadline, best, curr))) 927 best = curr; 928 929 if (unlikely(!best)) { 930 struct sched_entity *left = __pick_first_entity(cfs_rq); 931 if (left) { 932 pr_err("EEVDF scheduling fail, picking leftmost\n"); 933 return left; 934 } 935 } 936 937 return best; 938 } 939 940 #ifdef CONFIG_SCHED_DEBUG 941 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 942 { 943 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 944 945 if (!last) 946 return NULL; 947 948 return __node_2_se(last); 949 } 950 951 /************************************************************** 952 * Scheduling class statistics methods: 953 */ 954 #ifdef CONFIG_SMP 955 int sched_update_scaling(void) 956 { 957 unsigned int factor = get_update_sysctl_factor(); 958 959 #define WRT_SYSCTL(name) \ 960 (normalized_sysctl_##name = sysctl_##name / (factor)) 961 WRT_SYSCTL(sched_base_slice); 962 #undef WRT_SYSCTL 963 964 return 0; 965 } 966 #endif 967 #endif 968 969 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 970 971 /* 972 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 973 * this is probably good enough. 974 */ 975 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 976 { 977 if ((s64)(se->vruntime - se->deadline) < 0) 978 return; 979 980 /* 981 * For EEVDF the virtual time slope is determined by w_i (iow. 982 * nice) while the request time r_i is determined by 983 * sysctl_sched_base_slice. 984 */ 985 se->slice = sysctl_sched_base_slice; 986 987 /* 988 * EEVDF: vd_i = ve_i + r_i / w_i 989 */ 990 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 991 992 /* 993 * The task has consumed its request, reschedule. 994 */ 995 if (cfs_rq->nr_running > 1) { 996 resched_curr(rq_of(cfs_rq)); 997 clear_buddies(cfs_rq, se); 998 } 999 } 1000 1001 #include "pelt.h" 1002 #ifdef CONFIG_SMP 1003 1004 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1005 static unsigned long task_h_load(struct task_struct *p); 1006 static unsigned long capacity_of(int cpu); 1007 1008 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1009 void init_entity_runnable_average(struct sched_entity *se) 1010 { 1011 struct sched_avg *sa = &se->avg; 1012 1013 memset(sa, 0, sizeof(*sa)); 1014 1015 /* 1016 * Tasks are initialized with full load to be seen as heavy tasks until 1017 * they get a chance to stabilize to their real load level. 1018 * Group entities are initialized with zero load to reflect the fact that 1019 * nothing has been attached to the task group yet. 1020 */ 1021 if (entity_is_task(se)) 1022 sa->load_avg = scale_load_down(se->load.weight); 1023 1024 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 1025 } 1026 1027 /* 1028 * With new tasks being created, their initial util_avgs are extrapolated 1029 * based on the cfs_rq's current util_avg: 1030 * 1031 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 1032 * 1033 * However, in many cases, the above util_avg does not give a desired 1034 * value. Moreover, the sum of the util_avgs may be divergent, such 1035 * as when the series is a harmonic series. 1036 * 1037 * To solve this problem, we also cap the util_avg of successive tasks to 1038 * only 1/2 of the left utilization budget: 1039 * 1040 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1041 * 1042 * where n denotes the nth task and cpu_scale the CPU capacity. 1043 * 1044 * For example, for a CPU with 1024 of capacity, a simplest series from 1045 * the beginning would be like: 1046 * 1047 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1048 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1049 * 1050 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1051 * if util_avg > util_avg_cap. 1052 */ 1053 void post_init_entity_util_avg(struct task_struct *p) 1054 { 1055 struct sched_entity *se = &p->se; 1056 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1057 struct sched_avg *sa = &se->avg; 1058 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1059 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1060 1061 if (p->sched_class != &fair_sched_class) { 1062 /* 1063 * For !fair tasks do: 1064 * 1065 update_cfs_rq_load_avg(now, cfs_rq); 1066 attach_entity_load_avg(cfs_rq, se); 1067 switched_from_fair(rq, p); 1068 * 1069 * such that the next switched_to_fair() has the 1070 * expected state. 1071 */ 1072 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1073 return; 1074 } 1075 1076 if (cap > 0) { 1077 if (cfs_rq->avg.util_avg != 0) { 1078 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 1079 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1080 1081 if (sa->util_avg > cap) 1082 sa->util_avg = cap; 1083 } else { 1084 sa->util_avg = cap; 1085 } 1086 } 1087 1088 sa->runnable_avg = sa->util_avg; 1089 } 1090 1091 #else /* !CONFIG_SMP */ 1092 void init_entity_runnable_average(struct sched_entity *se) 1093 { 1094 } 1095 void post_init_entity_util_avg(struct task_struct *p) 1096 { 1097 } 1098 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1099 { 1100 } 1101 #endif /* CONFIG_SMP */ 1102 1103 /* 1104 * Update the current task's runtime statistics. 1105 */ 1106 static void update_curr(struct cfs_rq *cfs_rq) 1107 { 1108 struct sched_entity *curr = cfs_rq->curr; 1109 u64 now = rq_clock_task(rq_of(cfs_rq)); 1110 u64 delta_exec; 1111 1112 if (unlikely(!curr)) 1113 return; 1114 1115 delta_exec = now - curr->exec_start; 1116 if (unlikely((s64)delta_exec <= 0)) 1117 return; 1118 1119 curr->exec_start = now; 1120 1121 if (schedstat_enabled()) { 1122 struct sched_statistics *stats; 1123 1124 stats = __schedstats_from_se(curr); 1125 __schedstat_set(stats->exec_max, 1126 max(delta_exec, stats->exec_max)); 1127 } 1128 1129 curr->sum_exec_runtime += delta_exec; 1130 schedstat_add(cfs_rq->exec_clock, delta_exec); 1131 1132 curr->vruntime += calc_delta_fair(delta_exec, curr); 1133 update_deadline(cfs_rq, curr); 1134 update_min_vruntime(cfs_rq); 1135 1136 if (entity_is_task(curr)) { 1137 struct task_struct *curtask = task_of(curr); 1138 1139 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 1140 cgroup_account_cputime(curtask, delta_exec); 1141 account_group_exec_runtime(curtask, delta_exec); 1142 } 1143 1144 account_cfs_rq_runtime(cfs_rq, delta_exec); 1145 } 1146 1147 static void update_curr_fair(struct rq *rq) 1148 { 1149 update_curr(cfs_rq_of(&rq->curr->se)); 1150 } 1151 1152 static inline void 1153 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1154 { 1155 struct sched_statistics *stats; 1156 struct task_struct *p = NULL; 1157 1158 if (!schedstat_enabled()) 1159 return; 1160 1161 stats = __schedstats_from_se(se); 1162 1163 if (entity_is_task(se)) 1164 p = task_of(se); 1165 1166 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1167 } 1168 1169 static inline void 1170 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1171 { 1172 struct sched_statistics *stats; 1173 struct task_struct *p = NULL; 1174 1175 if (!schedstat_enabled()) 1176 return; 1177 1178 stats = __schedstats_from_se(se); 1179 1180 /* 1181 * When the sched_schedstat changes from 0 to 1, some sched se 1182 * maybe already in the runqueue, the se->statistics.wait_start 1183 * will be 0.So it will let the delta wrong. We need to avoid this 1184 * scenario. 1185 */ 1186 if (unlikely(!schedstat_val(stats->wait_start))) 1187 return; 1188 1189 if (entity_is_task(se)) 1190 p = task_of(se); 1191 1192 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1193 } 1194 1195 static inline void 1196 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1197 { 1198 struct sched_statistics *stats; 1199 struct task_struct *tsk = NULL; 1200 1201 if (!schedstat_enabled()) 1202 return; 1203 1204 stats = __schedstats_from_se(se); 1205 1206 if (entity_is_task(se)) 1207 tsk = task_of(se); 1208 1209 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1210 } 1211 1212 /* 1213 * Task is being enqueued - update stats: 1214 */ 1215 static inline void 1216 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1217 { 1218 if (!schedstat_enabled()) 1219 return; 1220 1221 /* 1222 * Are we enqueueing a waiting task? (for current tasks 1223 * a dequeue/enqueue event is a NOP) 1224 */ 1225 if (se != cfs_rq->curr) 1226 update_stats_wait_start_fair(cfs_rq, se); 1227 1228 if (flags & ENQUEUE_WAKEUP) 1229 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1230 } 1231 1232 static inline void 1233 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1234 { 1235 1236 if (!schedstat_enabled()) 1237 return; 1238 1239 /* 1240 * Mark the end of the wait period if dequeueing a 1241 * waiting task: 1242 */ 1243 if (se != cfs_rq->curr) 1244 update_stats_wait_end_fair(cfs_rq, se); 1245 1246 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1247 struct task_struct *tsk = task_of(se); 1248 unsigned int state; 1249 1250 /* XXX racy against TTWU */ 1251 state = READ_ONCE(tsk->__state); 1252 if (state & TASK_INTERRUPTIBLE) 1253 __schedstat_set(tsk->stats.sleep_start, 1254 rq_clock(rq_of(cfs_rq))); 1255 if (state & TASK_UNINTERRUPTIBLE) 1256 __schedstat_set(tsk->stats.block_start, 1257 rq_clock(rq_of(cfs_rq))); 1258 } 1259 } 1260 1261 /* 1262 * We are picking a new current task - update its stats: 1263 */ 1264 static inline void 1265 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1266 { 1267 /* 1268 * We are starting a new run period: 1269 */ 1270 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1271 } 1272 1273 /************************************************** 1274 * Scheduling class queueing methods: 1275 */ 1276 1277 static inline bool is_core_idle(int cpu) 1278 { 1279 #ifdef CONFIG_SCHED_SMT 1280 int sibling; 1281 1282 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1283 if (cpu == sibling) 1284 continue; 1285 1286 if (!idle_cpu(sibling)) 1287 return false; 1288 } 1289 #endif 1290 1291 return true; 1292 } 1293 1294 #ifdef CONFIG_NUMA 1295 #define NUMA_IMBALANCE_MIN 2 1296 1297 static inline long 1298 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1299 { 1300 /* 1301 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1302 * threshold. Above this threshold, individual tasks may be contending 1303 * for both memory bandwidth and any shared HT resources. This is an 1304 * approximation as the number of running tasks may not be related to 1305 * the number of busy CPUs due to sched_setaffinity. 1306 */ 1307 if (dst_running > imb_numa_nr) 1308 return imbalance; 1309 1310 /* 1311 * Allow a small imbalance based on a simple pair of communicating 1312 * tasks that remain local when the destination is lightly loaded. 1313 */ 1314 if (imbalance <= NUMA_IMBALANCE_MIN) 1315 return 0; 1316 1317 return imbalance; 1318 } 1319 #endif /* CONFIG_NUMA */ 1320 1321 #ifdef CONFIG_NUMA_BALANCING 1322 /* 1323 * Approximate time to scan a full NUMA task in ms. The task scan period is 1324 * calculated based on the tasks virtual memory size and 1325 * numa_balancing_scan_size. 1326 */ 1327 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1328 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1329 1330 /* Portion of address space to scan in MB */ 1331 unsigned int sysctl_numa_balancing_scan_size = 256; 1332 1333 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1334 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1335 1336 /* The page with hint page fault latency < threshold in ms is considered hot */ 1337 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1338 1339 struct numa_group { 1340 refcount_t refcount; 1341 1342 spinlock_t lock; /* nr_tasks, tasks */ 1343 int nr_tasks; 1344 pid_t gid; 1345 int active_nodes; 1346 1347 struct rcu_head rcu; 1348 unsigned long total_faults; 1349 unsigned long max_faults_cpu; 1350 /* 1351 * faults[] array is split into two regions: faults_mem and faults_cpu. 1352 * 1353 * Faults_cpu is used to decide whether memory should move 1354 * towards the CPU. As a consequence, these stats are weighted 1355 * more by CPU use than by memory faults. 1356 */ 1357 unsigned long faults[]; 1358 }; 1359 1360 /* 1361 * For functions that can be called in multiple contexts that permit reading 1362 * ->numa_group (see struct task_struct for locking rules). 1363 */ 1364 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1365 { 1366 return rcu_dereference_check(p->numa_group, p == current || 1367 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1368 } 1369 1370 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1371 { 1372 return rcu_dereference_protected(p->numa_group, p == current); 1373 } 1374 1375 static inline unsigned long group_faults_priv(struct numa_group *ng); 1376 static inline unsigned long group_faults_shared(struct numa_group *ng); 1377 1378 static unsigned int task_nr_scan_windows(struct task_struct *p) 1379 { 1380 unsigned long rss = 0; 1381 unsigned long nr_scan_pages; 1382 1383 /* 1384 * Calculations based on RSS as non-present and empty pages are skipped 1385 * by the PTE scanner and NUMA hinting faults should be trapped based 1386 * on resident pages 1387 */ 1388 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1389 rss = get_mm_rss(p->mm); 1390 if (!rss) 1391 rss = nr_scan_pages; 1392 1393 rss = round_up(rss, nr_scan_pages); 1394 return rss / nr_scan_pages; 1395 } 1396 1397 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1398 #define MAX_SCAN_WINDOW 2560 1399 1400 static unsigned int task_scan_min(struct task_struct *p) 1401 { 1402 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1403 unsigned int scan, floor; 1404 unsigned int windows = 1; 1405 1406 if (scan_size < MAX_SCAN_WINDOW) 1407 windows = MAX_SCAN_WINDOW / scan_size; 1408 floor = 1000 / windows; 1409 1410 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1411 return max_t(unsigned int, floor, scan); 1412 } 1413 1414 static unsigned int task_scan_start(struct task_struct *p) 1415 { 1416 unsigned long smin = task_scan_min(p); 1417 unsigned long period = smin; 1418 struct numa_group *ng; 1419 1420 /* Scale the maximum scan period with the amount of shared memory. */ 1421 rcu_read_lock(); 1422 ng = rcu_dereference(p->numa_group); 1423 if (ng) { 1424 unsigned long shared = group_faults_shared(ng); 1425 unsigned long private = group_faults_priv(ng); 1426 1427 period *= refcount_read(&ng->refcount); 1428 period *= shared + 1; 1429 period /= private + shared + 1; 1430 } 1431 rcu_read_unlock(); 1432 1433 return max(smin, period); 1434 } 1435 1436 static unsigned int task_scan_max(struct task_struct *p) 1437 { 1438 unsigned long smin = task_scan_min(p); 1439 unsigned long smax; 1440 struct numa_group *ng; 1441 1442 /* Watch for min being lower than max due to floor calculations */ 1443 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1444 1445 /* Scale the maximum scan period with the amount of shared memory. */ 1446 ng = deref_curr_numa_group(p); 1447 if (ng) { 1448 unsigned long shared = group_faults_shared(ng); 1449 unsigned long private = group_faults_priv(ng); 1450 unsigned long period = smax; 1451 1452 period *= refcount_read(&ng->refcount); 1453 period *= shared + 1; 1454 period /= private + shared + 1; 1455 1456 smax = max(smax, period); 1457 } 1458 1459 return max(smin, smax); 1460 } 1461 1462 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1463 { 1464 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1465 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1466 } 1467 1468 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1469 { 1470 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1471 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1472 } 1473 1474 /* Shared or private faults. */ 1475 #define NR_NUMA_HINT_FAULT_TYPES 2 1476 1477 /* Memory and CPU locality */ 1478 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1479 1480 /* Averaged statistics, and temporary buffers. */ 1481 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1482 1483 pid_t task_numa_group_id(struct task_struct *p) 1484 { 1485 struct numa_group *ng; 1486 pid_t gid = 0; 1487 1488 rcu_read_lock(); 1489 ng = rcu_dereference(p->numa_group); 1490 if (ng) 1491 gid = ng->gid; 1492 rcu_read_unlock(); 1493 1494 return gid; 1495 } 1496 1497 /* 1498 * The averaged statistics, shared & private, memory & CPU, 1499 * occupy the first half of the array. The second half of the 1500 * array is for current counters, which are averaged into the 1501 * first set by task_numa_placement. 1502 */ 1503 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1504 { 1505 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1506 } 1507 1508 static inline unsigned long task_faults(struct task_struct *p, int nid) 1509 { 1510 if (!p->numa_faults) 1511 return 0; 1512 1513 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1514 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1515 } 1516 1517 static inline unsigned long group_faults(struct task_struct *p, int nid) 1518 { 1519 struct numa_group *ng = deref_task_numa_group(p); 1520 1521 if (!ng) 1522 return 0; 1523 1524 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1525 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1526 } 1527 1528 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1529 { 1530 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1531 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1532 } 1533 1534 static inline unsigned long group_faults_priv(struct numa_group *ng) 1535 { 1536 unsigned long faults = 0; 1537 int node; 1538 1539 for_each_online_node(node) { 1540 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1541 } 1542 1543 return faults; 1544 } 1545 1546 static inline unsigned long group_faults_shared(struct numa_group *ng) 1547 { 1548 unsigned long faults = 0; 1549 int node; 1550 1551 for_each_online_node(node) { 1552 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1553 } 1554 1555 return faults; 1556 } 1557 1558 /* 1559 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1560 * considered part of a numa group's pseudo-interleaving set. Migrations 1561 * between these nodes are slowed down, to allow things to settle down. 1562 */ 1563 #define ACTIVE_NODE_FRACTION 3 1564 1565 static bool numa_is_active_node(int nid, struct numa_group *ng) 1566 { 1567 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1568 } 1569 1570 /* Handle placement on systems where not all nodes are directly connected. */ 1571 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1572 int lim_dist, bool task) 1573 { 1574 unsigned long score = 0; 1575 int node, max_dist; 1576 1577 /* 1578 * All nodes are directly connected, and the same distance 1579 * from each other. No need for fancy placement algorithms. 1580 */ 1581 if (sched_numa_topology_type == NUMA_DIRECT) 1582 return 0; 1583 1584 /* sched_max_numa_distance may be changed in parallel. */ 1585 max_dist = READ_ONCE(sched_max_numa_distance); 1586 /* 1587 * This code is called for each node, introducing N^2 complexity, 1588 * which should be ok given the number of nodes rarely exceeds 8. 1589 */ 1590 for_each_online_node(node) { 1591 unsigned long faults; 1592 int dist = node_distance(nid, node); 1593 1594 /* 1595 * The furthest away nodes in the system are not interesting 1596 * for placement; nid was already counted. 1597 */ 1598 if (dist >= max_dist || node == nid) 1599 continue; 1600 1601 /* 1602 * On systems with a backplane NUMA topology, compare groups 1603 * of nodes, and move tasks towards the group with the most 1604 * memory accesses. When comparing two nodes at distance 1605 * "hoplimit", only nodes closer by than "hoplimit" are part 1606 * of each group. Skip other nodes. 1607 */ 1608 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1609 continue; 1610 1611 /* Add up the faults from nearby nodes. */ 1612 if (task) 1613 faults = task_faults(p, node); 1614 else 1615 faults = group_faults(p, node); 1616 1617 /* 1618 * On systems with a glueless mesh NUMA topology, there are 1619 * no fixed "groups of nodes". Instead, nodes that are not 1620 * directly connected bounce traffic through intermediate 1621 * nodes; a numa_group can occupy any set of nodes. 1622 * The further away a node is, the less the faults count. 1623 * This seems to result in good task placement. 1624 */ 1625 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1626 faults *= (max_dist - dist); 1627 faults /= (max_dist - LOCAL_DISTANCE); 1628 } 1629 1630 score += faults; 1631 } 1632 1633 return score; 1634 } 1635 1636 /* 1637 * These return the fraction of accesses done by a particular task, or 1638 * task group, on a particular numa node. The group weight is given a 1639 * larger multiplier, in order to group tasks together that are almost 1640 * evenly spread out between numa nodes. 1641 */ 1642 static inline unsigned long task_weight(struct task_struct *p, int nid, 1643 int dist) 1644 { 1645 unsigned long faults, total_faults; 1646 1647 if (!p->numa_faults) 1648 return 0; 1649 1650 total_faults = p->total_numa_faults; 1651 1652 if (!total_faults) 1653 return 0; 1654 1655 faults = task_faults(p, nid); 1656 faults += score_nearby_nodes(p, nid, dist, true); 1657 1658 return 1000 * faults / total_faults; 1659 } 1660 1661 static inline unsigned long group_weight(struct task_struct *p, int nid, 1662 int dist) 1663 { 1664 struct numa_group *ng = deref_task_numa_group(p); 1665 unsigned long faults, total_faults; 1666 1667 if (!ng) 1668 return 0; 1669 1670 total_faults = ng->total_faults; 1671 1672 if (!total_faults) 1673 return 0; 1674 1675 faults = group_faults(p, nid); 1676 faults += score_nearby_nodes(p, nid, dist, false); 1677 1678 return 1000 * faults / total_faults; 1679 } 1680 1681 /* 1682 * If memory tiering mode is enabled, cpupid of slow memory page is 1683 * used to record scan time instead of CPU and PID. When tiering mode 1684 * is disabled at run time, the scan time (in cpupid) will be 1685 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1686 * access out of array bound. 1687 */ 1688 static inline bool cpupid_valid(int cpupid) 1689 { 1690 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1691 } 1692 1693 /* 1694 * For memory tiering mode, if there are enough free pages (more than 1695 * enough watermark defined here) in fast memory node, to take full 1696 * advantage of fast memory capacity, all recently accessed slow 1697 * memory pages will be migrated to fast memory node without 1698 * considering hot threshold. 1699 */ 1700 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1701 { 1702 int z; 1703 unsigned long enough_wmark; 1704 1705 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1706 pgdat->node_present_pages >> 4); 1707 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1708 struct zone *zone = pgdat->node_zones + z; 1709 1710 if (!populated_zone(zone)) 1711 continue; 1712 1713 if (zone_watermark_ok(zone, 0, 1714 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1715 ZONE_MOVABLE, 0)) 1716 return true; 1717 } 1718 return false; 1719 } 1720 1721 /* 1722 * For memory tiering mode, when page tables are scanned, the scan 1723 * time will be recorded in struct page in addition to make page 1724 * PROT_NONE for slow memory page. So when the page is accessed, in 1725 * hint page fault handler, the hint page fault latency is calculated 1726 * via, 1727 * 1728 * hint page fault latency = hint page fault time - scan time 1729 * 1730 * The smaller the hint page fault latency, the higher the possibility 1731 * for the page to be hot. 1732 */ 1733 static int numa_hint_fault_latency(struct page *page) 1734 { 1735 int last_time, time; 1736 1737 time = jiffies_to_msecs(jiffies); 1738 last_time = xchg_page_access_time(page, time); 1739 1740 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1741 } 1742 1743 /* 1744 * For memory tiering mode, too high promotion/demotion throughput may 1745 * hurt application latency. So we provide a mechanism to rate limit 1746 * the number of pages that are tried to be promoted. 1747 */ 1748 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1749 unsigned long rate_limit, int nr) 1750 { 1751 unsigned long nr_cand; 1752 unsigned int now, start; 1753 1754 now = jiffies_to_msecs(jiffies); 1755 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1756 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1757 start = pgdat->nbp_rl_start; 1758 if (now - start > MSEC_PER_SEC && 1759 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1760 pgdat->nbp_rl_nr_cand = nr_cand; 1761 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1762 return true; 1763 return false; 1764 } 1765 1766 #define NUMA_MIGRATION_ADJUST_STEPS 16 1767 1768 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1769 unsigned long rate_limit, 1770 unsigned int ref_th) 1771 { 1772 unsigned int now, start, th_period, unit_th, th; 1773 unsigned long nr_cand, ref_cand, diff_cand; 1774 1775 now = jiffies_to_msecs(jiffies); 1776 th_period = sysctl_numa_balancing_scan_period_max; 1777 start = pgdat->nbp_th_start; 1778 if (now - start > th_period && 1779 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1780 ref_cand = rate_limit * 1781 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1782 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1783 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1784 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1785 th = pgdat->nbp_threshold ? : ref_th; 1786 if (diff_cand > ref_cand * 11 / 10) 1787 th = max(th - unit_th, unit_th); 1788 else if (diff_cand < ref_cand * 9 / 10) 1789 th = min(th + unit_th, ref_th * 2); 1790 pgdat->nbp_th_nr_cand = nr_cand; 1791 pgdat->nbp_threshold = th; 1792 } 1793 } 1794 1795 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1796 int src_nid, int dst_cpu) 1797 { 1798 struct numa_group *ng = deref_curr_numa_group(p); 1799 int dst_nid = cpu_to_node(dst_cpu); 1800 int last_cpupid, this_cpupid; 1801 1802 /* 1803 * The pages in slow memory node should be migrated according 1804 * to hot/cold instead of private/shared. 1805 */ 1806 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1807 !node_is_toptier(src_nid)) { 1808 struct pglist_data *pgdat; 1809 unsigned long rate_limit; 1810 unsigned int latency, th, def_th; 1811 1812 pgdat = NODE_DATA(dst_nid); 1813 if (pgdat_free_space_enough(pgdat)) { 1814 /* workload changed, reset hot threshold */ 1815 pgdat->nbp_threshold = 0; 1816 return true; 1817 } 1818 1819 def_th = sysctl_numa_balancing_hot_threshold; 1820 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1821 (20 - PAGE_SHIFT); 1822 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1823 1824 th = pgdat->nbp_threshold ? : def_th; 1825 latency = numa_hint_fault_latency(page); 1826 if (latency >= th) 1827 return false; 1828 1829 return !numa_promotion_rate_limit(pgdat, rate_limit, 1830 thp_nr_pages(page)); 1831 } 1832 1833 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1834 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1835 1836 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1837 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1838 return false; 1839 1840 /* 1841 * Allow first faults or private faults to migrate immediately early in 1842 * the lifetime of a task. The magic number 4 is based on waiting for 1843 * two full passes of the "multi-stage node selection" test that is 1844 * executed below. 1845 */ 1846 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1847 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1848 return true; 1849 1850 /* 1851 * Multi-stage node selection is used in conjunction with a periodic 1852 * migration fault to build a temporal task<->page relation. By using 1853 * a two-stage filter we remove short/unlikely relations. 1854 * 1855 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1856 * a task's usage of a particular page (n_p) per total usage of this 1857 * page (n_t) (in a given time-span) to a probability. 1858 * 1859 * Our periodic faults will sample this probability and getting the 1860 * same result twice in a row, given these samples are fully 1861 * independent, is then given by P(n)^2, provided our sample period 1862 * is sufficiently short compared to the usage pattern. 1863 * 1864 * This quadric squishes small probabilities, making it less likely we 1865 * act on an unlikely task<->page relation. 1866 */ 1867 if (!cpupid_pid_unset(last_cpupid) && 1868 cpupid_to_nid(last_cpupid) != dst_nid) 1869 return false; 1870 1871 /* Always allow migrate on private faults */ 1872 if (cpupid_match_pid(p, last_cpupid)) 1873 return true; 1874 1875 /* A shared fault, but p->numa_group has not been set up yet. */ 1876 if (!ng) 1877 return true; 1878 1879 /* 1880 * Destination node is much more heavily used than the source 1881 * node? Allow migration. 1882 */ 1883 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1884 ACTIVE_NODE_FRACTION) 1885 return true; 1886 1887 /* 1888 * Distribute memory according to CPU & memory use on each node, 1889 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1890 * 1891 * faults_cpu(dst) 3 faults_cpu(src) 1892 * --------------- * - > --------------- 1893 * faults_mem(dst) 4 faults_mem(src) 1894 */ 1895 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1896 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1897 } 1898 1899 /* 1900 * 'numa_type' describes the node at the moment of load balancing. 1901 */ 1902 enum numa_type { 1903 /* The node has spare capacity that can be used to run more tasks. */ 1904 node_has_spare = 0, 1905 /* 1906 * The node is fully used and the tasks don't compete for more CPU 1907 * cycles. Nevertheless, some tasks might wait before running. 1908 */ 1909 node_fully_busy, 1910 /* 1911 * The node is overloaded and can't provide expected CPU cycles to all 1912 * tasks. 1913 */ 1914 node_overloaded 1915 }; 1916 1917 /* Cached statistics for all CPUs within a node */ 1918 struct numa_stats { 1919 unsigned long load; 1920 unsigned long runnable; 1921 unsigned long util; 1922 /* Total compute capacity of CPUs on a node */ 1923 unsigned long compute_capacity; 1924 unsigned int nr_running; 1925 unsigned int weight; 1926 enum numa_type node_type; 1927 int idle_cpu; 1928 }; 1929 1930 struct task_numa_env { 1931 struct task_struct *p; 1932 1933 int src_cpu, src_nid; 1934 int dst_cpu, dst_nid; 1935 int imb_numa_nr; 1936 1937 struct numa_stats src_stats, dst_stats; 1938 1939 int imbalance_pct; 1940 int dist; 1941 1942 struct task_struct *best_task; 1943 long best_imp; 1944 int best_cpu; 1945 }; 1946 1947 static unsigned long cpu_load(struct rq *rq); 1948 static unsigned long cpu_runnable(struct rq *rq); 1949 1950 static inline enum 1951 numa_type numa_classify(unsigned int imbalance_pct, 1952 struct numa_stats *ns) 1953 { 1954 if ((ns->nr_running > ns->weight) && 1955 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1956 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1957 return node_overloaded; 1958 1959 if ((ns->nr_running < ns->weight) || 1960 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1961 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1962 return node_has_spare; 1963 1964 return node_fully_busy; 1965 } 1966 1967 #ifdef CONFIG_SCHED_SMT 1968 /* Forward declarations of select_idle_sibling helpers */ 1969 static inline bool test_idle_cores(int cpu); 1970 static inline int numa_idle_core(int idle_core, int cpu) 1971 { 1972 if (!static_branch_likely(&sched_smt_present) || 1973 idle_core >= 0 || !test_idle_cores(cpu)) 1974 return idle_core; 1975 1976 /* 1977 * Prefer cores instead of packing HT siblings 1978 * and triggering future load balancing. 1979 */ 1980 if (is_core_idle(cpu)) 1981 idle_core = cpu; 1982 1983 return idle_core; 1984 } 1985 #else 1986 static inline int numa_idle_core(int idle_core, int cpu) 1987 { 1988 return idle_core; 1989 } 1990 #endif 1991 1992 /* 1993 * Gather all necessary information to make NUMA balancing placement 1994 * decisions that are compatible with standard load balancer. This 1995 * borrows code and logic from update_sg_lb_stats but sharing a 1996 * common implementation is impractical. 1997 */ 1998 static void update_numa_stats(struct task_numa_env *env, 1999 struct numa_stats *ns, int nid, 2000 bool find_idle) 2001 { 2002 int cpu, idle_core = -1; 2003 2004 memset(ns, 0, sizeof(*ns)); 2005 ns->idle_cpu = -1; 2006 2007 rcu_read_lock(); 2008 for_each_cpu(cpu, cpumask_of_node(nid)) { 2009 struct rq *rq = cpu_rq(cpu); 2010 2011 ns->load += cpu_load(rq); 2012 ns->runnable += cpu_runnable(rq); 2013 ns->util += cpu_util_cfs(cpu); 2014 ns->nr_running += rq->cfs.h_nr_running; 2015 ns->compute_capacity += capacity_of(cpu); 2016 2017 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2018 if (READ_ONCE(rq->numa_migrate_on) || 2019 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2020 continue; 2021 2022 if (ns->idle_cpu == -1) 2023 ns->idle_cpu = cpu; 2024 2025 idle_core = numa_idle_core(idle_core, cpu); 2026 } 2027 } 2028 rcu_read_unlock(); 2029 2030 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2031 2032 ns->node_type = numa_classify(env->imbalance_pct, ns); 2033 2034 if (idle_core >= 0) 2035 ns->idle_cpu = idle_core; 2036 } 2037 2038 static void task_numa_assign(struct task_numa_env *env, 2039 struct task_struct *p, long imp) 2040 { 2041 struct rq *rq = cpu_rq(env->dst_cpu); 2042 2043 /* Check if run-queue part of active NUMA balance. */ 2044 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2045 int cpu; 2046 int start = env->dst_cpu; 2047 2048 /* Find alternative idle CPU. */ 2049 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2050 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2051 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2052 continue; 2053 } 2054 2055 env->dst_cpu = cpu; 2056 rq = cpu_rq(env->dst_cpu); 2057 if (!xchg(&rq->numa_migrate_on, 1)) 2058 goto assign; 2059 } 2060 2061 /* Failed to find an alternative idle CPU */ 2062 return; 2063 } 2064 2065 assign: 2066 /* 2067 * Clear previous best_cpu/rq numa-migrate flag, since task now 2068 * found a better CPU to move/swap. 2069 */ 2070 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2071 rq = cpu_rq(env->best_cpu); 2072 WRITE_ONCE(rq->numa_migrate_on, 0); 2073 } 2074 2075 if (env->best_task) 2076 put_task_struct(env->best_task); 2077 if (p) 2078 get_task_struct(p); 2079 2080 env->best_task = p; 2081 env->best_imp = imp; 2082 env->best_cpu = env->dst_cpu; 2083 } 2084 2085 static bool load_too_imbalanced(long src_load, long dst_load, 2086 struct task_numa_env *env) 2087 { 2088 long imb, old_imb; 2089 long orig_src_load, orig_dst_load; 2090 long src_capacity, dst_capacity; 2091 2092 /* 2093 * The load is corrected for the CPU capacity available on each node. 2094 * 2095 * src_load dst_load 2096 * ------------ vs --------- 2097 * src_capacity dst_capacity 2098 */ 2099 src_capacity = env->src_stats.compute_capacity; 2100 dst_capacity = env->dst_stats.compute_capacity; 2101 2102 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2103 2104 orig_src_load = env->src_stats.load; 2105 orig_dst_load = env->dst_stats.load; 2106 2107 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2108 2109 /* Would this change make things worse? */ 2110 return (imb > old_imb); 2111 } 2112 2113 /* 2114 * Maximum NUMA importance can be 1998 (2*999); 2115 * SMALLIMP @ 30 would be close to 1998/64. 2116 * Used to deter task migration. 2117 */ 2118 #define SMALLIMP 30 2119 2120 /* 2121 * This checks if the overall compute and NUMA accesses of the system would 2122 * be improved if the source tasks was migrated to the target dst_cpu taking 2123 * into account that it might be best if task running on the dst_cpu should 2124 * be exchanged with the source task 2125 */ 2126 static bool task_numa_compare(struct task_numa_env *env, 2127 long taskimp, long groupimp, bool maymove) 2128 { 2129 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2130 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2131 long imp = p_ng ? groupimp : taskimp; 2132 struct task_struct *cur; 2133 long src_load, dst_load; 2134 int dist = env->dist; 2135 long moveimp = imp; 2136 long load; 2137 bool stopsearch = false; 2138 2139 if (READ_ONCE(dst_rq->numa_migrate_on)) 2140 return false; 2141 2142 rcu_read_lock(); 2143 cur = rcu_dereference(dst_rq->curr); 2144 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2145 cur = NULL; 2146 2147 /* 2148 * Because we have preemption enabled we can get migrated around and 2149 * end try selecting ourselves (current == env->p) as a swap candidate. 2150 */ 2151 if (cur == env->p) { 2152 stopsearch = true; 2153 goto unlock; 2154 } 2155 2156 if (!cur) { 2157 if (maymove && moveimp >= env->best_imp) 2158 goto assign; 2159 else 2160 goto unlock; 2161 } 2162 2163 /* Skip this swap candidate if cannot move to the source cpu. */ 2164 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2165 goto unlock; 2166 2167 /* 2168 * Skip this swap candidate if it is not moving to its preferred 2169 * node and the best task is. 2170 */ 2171 if (env->best_task && 2172 env->best_task->numa_preferred_nid == env->src_nid && 2173 cur->numa_preferred_nid != env->src_nid) { 2174 goto unlock; 2175 } 2176 2177 /* 2178 * "imp" is the fault differential for the source task between the 2179 * source and destination node. Calculate the total differential for 2180 * the source task and potential destination task. The more negative 2181 * the value is, the more remote accesses that would be expected to 2182 * be incurred if the tasks were swapped. 2183 * 2184 * If dst and source tasks are in the same NUMA group, or not 2185 * in any group then look only at task weights. 2186 */ 2187 cur_ng = rcu_dereference(cur->numa_group); 2188 if (cur_ng == p_ng) { 2189 /* 2190 * Do not swap within a group or between tasks that have 2191 * no group if there is spare capacity. Swapping does 2192 * not address the load imbalance and helps one task at 2193 * the cost of punishing another. 2194 */ 2195 if (env->dst_stats.node_type == node_has_spare) 2196 goto unlock; 2197 2198 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2199 task_weight(cur, env->dst_nid, dist); 2200 /* 2201 * Add some hysteresis to prevent swapping the 2202 * tasks within a group over tiny differences. 2203 */ 2204 if (cur_ng) 2205 imp -= imp / 16; 2206 } else { 2207 /* 2208 * Compare the group weights. If a task is all by itself 2209 * (not part of a group), use the task weight instead. 2210 */ 2211 if (cur_ng && p_ng) 2212 imp += group_weight(cur, env->src_nid, dist) - 2213 group_weight(cur, env->dst_nid, dist); 2214 else 2215 imp += task_weight(cur, env->src_nid, dist) - 2216 task_weight(cur, env->dst_nid, dist); 2217 } 2218 2219 /* Discourage picking a task already on its preferred node */ 2220 if (cur->numa_preferred_nid == env->dst_nid) 2221 imp -= imp / 16; 2222 2223 /* 2224 * Encourage picking a task that moves to its preferred node. 2225 * This potentially makes imp larger than it's maximum of 2226 * 1998 (see SMALLIMP and task_weight for why) but in this 2227 * case, it does not matter. 2228 */ 2229 if (cur->numa_preferred_nid == env->src_nid) 2230 imp += imp / 8; 2231 2232 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2233 imp = moveimp; 2234 cur = NULL; 2235 goto assign; 2236 } 2237 2238 /* 2239 * Prefer swapping with a task moving to its preferred node over a 2240 * task that is not. 2241 */ 2242 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2243 env->best_task->numa_preferred_nid != env->src_nid) { 2244 goto assign; 2245 } 2246 2247 /* 2248 * If the NUMA importance is less than SMALLIMP, 2249 * task migration might only result in ping pong 2250 * of tasks and also hurt performance due to cache 2251 * misses. 2252 */ 2253 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2254 goto unlock; 2255 2256 /* 2257 * In the overloaded case, try and keep the load balanced. 2258 */ 2259 load = task_h_load(env->p) - task_h_load(cur); 2260 if (!load) 2261 goto assign; 2262 2263 dst_load = env->dst_stats.load + load; 2264 src_load = env->src_stats.load - load; 2265 2266 if (load_too_imbalanced(src_load, dst_load, env)) 2267 goto unlock; 2268 2269 assign: 2270 /* Evaluate an idle CPU for a task numa move. */ 2271 if (!cur) { 2272 int cpu = env->dst_stats.idle_cpu; 2273 2274 /* Nothing cached so current CPU went idle since the search. */ 2275 if (cpu < 0) 2276 cpu = env->dst_cpu; 2277 2278 /* 2279 * If the CPU is no longer truly idle and the previous best CPU 2280 * is, keep using it. 2281 */ 2282 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2283 idle_cpu(env->best_cpu)) { 2284 cpu = env->best_cpu; 2285 } 2286 2287 env->dst_cpu = cpu; 2288 } 2289 2290 task_numa_assign(env, cur, imp); 2291 2292 /* 2293 * If a move to idle is allowed because there is capacity or load 2294 * balance improves then stop the search. While a better swap 2295 * candidate may exist, a search is not free. 2296 */ 2297 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2298 stopsearch = true; 2299 2300 /* 2301 * If a swap candidate must be identified and the current best task 2302 * moves its preferred node then stop the search. 2303 */ 2304 if (!maymove && env->best_task && 2305 env->best_task->numa_preferred_nid == env->src_nid) { 2306 stopsearch = true; 2307 } 2308 unlock: 2309 rcu_read_unlock(); 2310 2311 return stopsearch; 2312 } 2313 2314 static void task_numa_find_cpu(struct task_numa_env *env, 2315 long taskimp, long groupimp) 2316 { 2317 bool maymove = false; 2318 int cpu; 2319 2320 /* 2321 * If dst node has spare capacity, then check if there is an 2322 * imbalance that would be overruled by the load balancer. 2323 */ 2324 if (env->dst_stats.node_type == node_has_spare) { 2325 unsigned int imbalance; 2326 int src_running, dst_running; 2327 2328 /* 2329 * Would movement cause an imbalance? Note that if src has 2330 * more running tasks that the imbalance is ignored as the 2331 * move improves the imbalance from the perspective of the 2332 * CPU load balancer. 2333 * */ 2334 src_running = env->src_stats.nr_running - 1; 2335 dst_running = env->dst_stats.nr_running + 1; 2336 imbalance = max(0, dst_running - src_running); 2337 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2338 env->imb_numa_nr); 2339 2340 /* Use idle CPU if there is no imbalance */ 2341 if (!imbalance) { 2342 maymove = true; 2343 if (env->dst_stats.idle_cpu >= 0) { 2344 env->dst_cpu = env->dst_stats.idle_cpu; 2345 task_numa_assign(env, NULL, 0); 2346 return; 2347 } 2348 } 2349 } else { 2350 long src_load, dst_load, load; 2351 /* 2352 * If the improvement from just moving env->p direction is better 2353 * than swapping tasks around, check if a move is possible. 2354 */ 2355 load = task_h_load(env->p); 2356 dst_load = env->dst_stats.load + load; 2357 src_load = env->src_stats.load - load; 2358 maymove = !load_too_imbalanced(src_load, dst_load, env); 2359 } 2360 2361 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2362 /* Skip this CPU if the source task cannot migrate */ 2363 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2364 continue; 2365 2366 env->dst_cpu = cpu; 2367 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2368 break; 2369 } 2370 } 2371 2372 static int task_numa_migrate(struct task_struct *p) 2373 { 2374 struct task_numa_env env = { 2375 .p = p, 2376 2377 .src_cpu = task_cpu(p), 2378 .src_nid = task_node(p), 2379 2380 .imbalance_pct = 112, 2381 2382 .best_task = NULL, 2383 .best_imp = 0, 2384 .best_cpu = -1, 2385 }; 2386 unsigned long taskweight, groupweight; 2387 struct sched_domain *sd; 2388 long taskimp, groupimp; 2389 struct numa_group *ng; 2390 struct rq *best_rq; 2391 int nid, ret, dist; 2392 2393 /* 2394 * Pick the lowest SD_NUMA domain, as that would have the smallest 2395 * imbalance and would be the first to start moving tasks about. 2396 * 2397 * And we want to avoid any moving of tasks about, as that would create 2398 * random movement of tasks -- counter the numa conditions we're trying 2399 * to satisfy here. 2400 */ 2401 rcu_read_lock(); 2402 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2403 if (sd) { 2404 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2405 env.imb_numa_nr = sd->imb_numa_nr; 2406 } 2407 rcu_read_unlock(); 2408 2409 /* 2410 * Cpusets can break the scheduler domain tree into smaller 2411 * balance domains, some of which do not cross NUMA boundaries. 2412 * Tasks that are "trapped" in such domains cannot be migrated 2413 * elsewhere, so there is no point in (re)trying. 2414 */ 2415 if (unlikely(!sd)) { 2416 sched_setnuma(p, task_node(p)); 2417 return -EINVAL; 2418 } 2419 2420 env.dst_nid = p->numa_preferred_nid; 2421 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2422 taskweight = task_weight(p, env.src_nid, dist); 2423 groupweight = group_weight(p, env.src_nid, dist); 2424 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2425 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2426 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2427 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2428 2429 /* Try to find a spot on the preferred nid. */ 2430 task_numa_find_cpu(&env, taskimp, groupimp); 2431 2432 /* 2433 * Look at other nodes in these cases: 2434 * - there is no space available on the preferred_nid 2435 * - the task is part of a numa_group that is interleaved across 2436 * multiple NUMA nodes; in order to better consolidate the group, 2437 * we need to check other locations. 2438 */ 2439 ng = deref_curr_numa_group(p); 2440 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2441 for_each_node_state(nid, N_CPU) { 2442 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2443 continue; 2444 2445 dist = node_distance(env.src_nid, env.dst_nid); 2446 if (sched_numa_topology_type == NUMA_BACKPLANE && 2447 dist != env.dist) { 2448 taskweight = task_weight(p, env.src_nid, dist); 2449 groupweight = group_weight(p, env.src_nid, dist); 2450 } 2451 2452 /* Only consider nodes where both task and groups benefit */ 2453 taskimp = task_weight(p, nid, dist) - taskweight; 2454 groupimp = group_weight(p, nid, dist) - groupweight; 2455 if (taskimp < 0 && groupimp < 0) 2456 continue; 2457 2458 env.dist = dist; 2459 env.dst_nid = nid; 2460 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2461 task_numa_find_cpu(&env, taskimp, groupimp); 2462 } 2463 } 2464 2465 /* 2466 * If the task is part of a workload that spans multiple NUMA nodes, 2467 * and is migrating into one of the workload's active nodes, remember 2468 * this node as the task's preferred numa node, so the workload can 2469 * settle down. 2470 * A task that migrated to a second choice node will be better off 2471 * trying for a better one later. Do not set the preferred node here. 2472 */ 2473 if (ng) { 2474 if (env.best_cpu == -1) 2475 nid = env.src_nid; 2476 else 2477 nid = cpu_to_node(env.best_cpu); 2478 2479 if (nid != p->numa_preferred_nid) 2480 sched_setnuma(p, nid); 2481 } 2482 2483 /* No better CPU than the current one was found. */ 2484 if (env.best_cpu == -1) { 2485 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2486 return -EAGAIN; 2487 } 2488 2489 best_rq = cpu_rq(env.best_cpu); 2490 if (env.best_task == NULL) { 2491 ret = migrate_task_to(p, env.best_cpu); 2492 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2493 if (ret != 0) 2494 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2495 return ret; 2496 } 2497 2498 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2499 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2500 2501 if (ret != 0) 2502 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2503 put_task_struct(env.best_task); 2504 return ret; 2505 } 2506 2507 /* Attempt to migrate a task to a CPU on the preferred node. */ 2508 static void numa_migrate_preferred(struct task_struct *p) 2509 { 2510 unsigned long interval = HZ; 2511 2512 /* This task has no NUMA fault statistics yet */ 2513 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2514 return; 2515 2516 /* Periodically retry migrating the task to the preferred node */ 2517 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2518 p->numa_migrate_retry = jiffies + interval; 2519 2520 /* Success if task is already running on preferred CPU */ 2521 if (task_node(p) == p->numa_preferred_nid) 2522 return; 2523 2524 /* Otherwise, try migrate to a CPU on the preferred node */ 2525 task_numa_migrate(p); 2526 } 2527 2528 /* 2529 * Find out how many nodes the workload is actively running on. Do this by 2530 * tracking the nodes from which NUMA hinting faults are triggered. This can 2531 * be different from the set of nodes where the workload's memory is currently 2532 * located. 2533 */ 2534 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2535 { 2536 unsigned long faults, max_faults = 0; 2537 int nid, active_nodes = 0; 2538 2539 for_each_node_state(nid, N_CPU) { 2540 faults = group_faults_cpu(numa_group, nid); 2541 if (faults > max_faults) 2542 max_faults = faults; 2543 } 2544 2545 for_each_node_state(nid, N_CPU) { 2546 faults = group_faults_cpu(numa_group, nid); 2547 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2548 active_nodes++; 2549 } 2550 2551 numa_group->max_faults_cpu = max_faults; 2552 numa_group->active_nodes = active_nodes; 2553 } 2554 2555 /* 2556 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2557 * increments. The more local the fault statistics are, the higher the scan 2558 * period will be for the next scan window. If local/(local+remote) ratio is 2559 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2560 * the scan period will decrease. Aim for 70% local accesses. 2561 */ 2562 #define NUMA_PERIOD_SLOTS 10 2563 #define NUMA_PERIOD_THRESHOLD 7 2564 2565 /* 2566 * Increase the scan period (slow down scanning) if the majority of 2567 * our memory is already on our local node, or if the majority of 2568 * the page accesses are shared with other processes. 2569 * Otherwise, decrease the scan period. 2570 */ 2571 static void update_task_scan_period(struct task_struct *p, 2572 unsigned long shared, unsigned long private) 2573 { 2574 unsigned int period_slot; 2575 int lr_ratio, ps_ratio; 2576 int diff; 2577 2578 unsigned long remote = p->numa_faults_locality[0]; 2579 unsigned long local = p->numa_faults_locality[1]; 2580 2581 /* 2582 * If there were no record hinting faults then either the task is 2583 * completely idle or all activity is in areas that are not of interest 2584 * to automatic numa balancing. Related to that, if there were failed 2585 * migration then it implies we are migrating too quickly or the local 2586 * node is overloaded. In either case, scan slower 2587 */ 2588 if (local + shared == 0 || p->numa_faults_locality[2]) { 2589 p->numa_scan_period = min(p->numa_scan_period_max, 2590 p->numa_scan_period << 1); 2591 2592 p->mm->numa_next_scan = jiffies + 2593 msecs_to_jiffies(p->numa_scan_period); 2594 2595 return; 2596 } 2597 2598 /* 2599 * Prepare to scale scan period relative to the current period. 2600 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2601 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2602 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2603 */ 2604 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2605 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2606 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2607 2608 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2609 /* 2610 * Most memory accesses are local. There is no need to 2611 * do fast NUMA scanning, since memory is already local. 2612 */ 2613 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2614 if (!slot) 2615 slot = 1; 2616 diff = slot * period_slot; 2617 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2618 /* 2619 * Most memory accesses are shared with other tasks. 2620 * There is no point in continuing fast NUMA scanning, 2621 * since other tasks may just move the memory elsewhere. 2622 */ 2623 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2624 if (!slot) 2625 slot = 1; 2626 diff = slot * period_slot; 2627 } else { 2628 /* 2629 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2630 * yet they are not on the local NUMA node. Speed up 2631 * NUMA scanning to get the memory moved over. 2632 */ 2633 int ratio = max(lr_ratio, ps_ratio); 2634 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2635 } 2636 2637 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2638 task_scan_min(p), task_scan_max(p)); 2639 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2640 } 2641 2642 /* 2643 * Get the fraction of time the task has been running since the last 2644 * NUMA placement cycle. The scheduler keeps similar statistics, but 2645 * decays those on a 32ms period, which is orders of magnitude off 2646 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2647 * stats only if the task is so new there are no NUMA statistics yet. 2648 */ 2649 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2650 { 2651 u64 runtime, delta, now; 2652 /* Use the start of this time slice to avoid calculations. */ 2653 now = p->se.exec_start; 2654 runtime = p->se.sum_exec_runtime; 2655 2656 if (p->last_task_numa_placement) { 2657 delta = runtime - p->last_sum_exec_runtime; 2658 *period = now - p->last_task_numa_placement; 2659 2660 /* Avoid time going backwards, prevent potential divide error: */ 2661 if (unlikely((s64)*period < 0)) 2662 *period = 0; 2663 } else { 2664 delta = p->se.avg.load_sum; 2665 *period = LOAD_AVG_MAX; 2666 } 2667 2668 p->last_sum_exec_runtime = runtime; 2669 p->last_task_numa_placement = now; 2670 2671 return delta; 2672 } 2673 2674 /* 2675 * Determine the preferred nid for a task in a numa_group. This needs to 2676 * be done in a way that produces consistent results with group_weight, 2677 * otherwise workloads might not converge. 2678 */ 2679 static int preferred_group_nid(struct task_struct *p, int nid) 2680 { 2681 nodemask_t nodes; 2682 int dist; 2683 2684 /* Direct connections between all NUMA nodes. */ 2685 if (sched_numa_topology_type == NUMA_DIRECT) 2686 return nid; 2687 2688 /* 2689 * On a system with glueless mesh NUMA topology, group_weight 2690 * scores nodes according to the number of NUMA hinting faults on 2691 * both the node itself, and on nearby nodes. 2692 */ 2693 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2694 unsigned long score, max_score = 0; 2695 int node, max_node = nid; 2696 2697 dist = sched_max_numa_distance; 2698 2699 for_each_node_state(node, N_CPU) { 2700 score = group_weight(p, node, dist); 2701 if (score > max_score) { 2702 max_score = score; 2703 max_node = node; 2704 } 2705 } 2706 return max_node; 2707 } 2708 2709 /* 2710 * Finding the preferred nid in a system with NUMA backplane 2711 * interconnect topology is more involved. The goal is to locate 2712 * tasks from numa_groups near each other in the system, and 2713 * untangle workloads from different sides of the system. This requires 2714 * searching down the hierarchy of node groups, recursively searching 2715 * inside the highest scoring group of nodes. The nodemask tricks 2716 * keep the complexity of the search down. 2717 */ 2718 nodes = node_states[N_CPU]; 2719 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2720 unsigned long max_faults = 0; 2721 nodemask_t max_group = NODE_MASK_NONE; 2722 int a, b; 2723 2724 /* Are there nodes at this distance from each other? */ 2725 if (!find_numa_distance(dist)) 2726 continue; 2727 2728 for_each_node_mask(a, nodes) { 2729 unsigned long faults = 0; 2730 nodemask_t this_group; 2731 nodes_clear(this_group); 2732 2733 /* Sum group's NUMA faults; includes a==b case. */ 2734 for_each_node_mask(b, nodes) { 2735 if (node_distance(a, b) < dist) { 2736 faults += group_faults(p, b); 2737 node_set(b, this_group); 2738 node_clear(b, nodes); 2739 } 2740 } 2741 2742 /* Remember the top group. */ 2743 if (faults > max_faults) { 2744 max_faults = faults; 2745 max_group = this_group; 2746 /* 2747 * subtle: at the smallest distance there is 2748 * just one node left in each "group", the 2749 * winner is the preferred nid. 2750 */ 2751 nid = a; 2752 } 2753 } 2754 /* Next round, evaluate the nodes within max_group. */ 2755 if (!max_faults) 2756 break; 2757 nodes = max_group; 2758 } 2759 return nid; 2760 } 2761 2762 static void task_numa_placement(struct task_struct *p) 2763 { 2764 int seq, nid, max_nid = NUMA_NO_NODE; 2765 unsigned long max_faults = 0; 2766 unsigned long fault_types[2] = { 0, 0 }; 2767 unsigned long total_faults; 2768 u64 runtime, period; 2769 spinlock_t *group_lock = NULL; 2770 struct numa_group *ng; 2771 2772 /* 2773 * The p->mm->numa_scan_seq field gets updated without 2774 * exclusive access. Use READ_ONCE() here to ensure 2775 * that the field is read in a single access: 2776 */ 2777 seq = READ_ONCE(p->mm->numa_scan_seq); 2778 if (p->numa_scan_seq == seq) 2779 return; 2780 p->numa_scan_seq = seq; 2781 p->numa_scan_period_max = task_scan_max(p); 2782 2783 total_faults = p->numa_faults_locality[0] + 2784 p->numa_faults_locality[1]; 2785 runtime = numa_get_avg_runtime(p, &period); 2786 2787 /* If the task is part of a group prevent parallel updates to group stats */ 2788 ng = deref_curr_numa_group(p); 2789 if (ng) { 2790 group_lock = &ng->lock; 2791 spin_lock_irq(group_lock); 2792 } 2793 2794 /* Find the node with the highest number of faults */ 2795 for_each_online_node(nid) { 2796 /* Keep track of the offsets in numa_faults array */ 2797 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2798 unsigned long faults = 0, group_faults = 0; 2799 int priv; 2800 2801 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2802 long diff, f_diff, f_weight; 2803 2804 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2805 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2806 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2807 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2808 2809 /* Decay existing window, copy faults since last scan */ 2810 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2811 fault_types[priv] += p->numa_faults[membuf_idx]; 2812 p->numa_faults[membuf_idx] = 0; 2813 2814 /* 2815 * Normalize the faults_from, so all tasks in a group 2816 * count according to CPU use, instead of by the raw 2817 * number of faults. Tasks with little runtime have 2818 * little over-all impact on throughput, and thus their 2819 * faults are less important. 2820 */ 2821 f_weight = div64_u64(runtime << 16, period + 1); 2822 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2823 (total_faults + 1); 2824 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2825 p->numa_faults[cpubuf_idx] = 0; 2826 2827 p->numa_faults[mem_idx] += diff; 2828 p->numa_faults[cpu_idx] += f_diff; 2829 faults += p->numa_faults[mem_idx]; 2830 p->total_numa_faults += diff; 2831 if (ng) { 2832 /* 2833 * safe because we can only change our own group 2834 * 2835 * mem_idx represents the offset for a given 2836 * nid and priv in a specific region because it 2837 * is at the beginning of the numa_faults array. 2838 */ 2839 ng->faults[mem_idx] += diff; 2840 ng->faults[cpu_idx] += f_diff; 2841 ng->total_faults += diff; 2842 group_faults += ng->faults[mem_idx]; 2843 } 2844 } 2845 2846 if (!ng) { 2847 if (faults > max_faults) { 2848 max_faults = faults; 2849 max_nid = nid; 2850 } 2851 } else if (group_faults > max_faults) { 2852 max_faults = group_faults; 2853 max_nid = nid; 2854 } 2855 } 2856 2857 /* Cannot migrate task to CPU-less node */ 2858 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2859 int near_nid = max_nid; 2860 int distance, near_distance = INT_MAX; 2861 2862 for_each_node_state(nid, N_CPU) { 2863 distance = node_distance(max_nid, nid); 2864 if (distance < near_distance) { 2865 near_nid = nid; 2866 near_distance = distance; 2867 } 2868 } 2869 max_nid = near_nid; 2870 } 2871 2872 if (ng) { 2873 numa_group_count_active_nodes(ng); 2874 spin_unlock_irq(group_lock); 2875 max_nid = preferred_group_nid(p, max_nid); 2876 } 2877 2878 if (max_faults) { 2879 /* Set the new preferred node */ 2880 if (max_nid != p->numa_preferred_nid) 2881 sched_setnuma(p, max_nid); 2882 } 2883 2884 update_task_scan_period(p, fault_types[0], fault_types[1]); 2885 } 2886 2887 static inline int get_numa_group(struct numa_group *grp) 2888 { 2889 return refcount_inc_not_zero(&grp->refcount); 2890 } 2891 2892 static inline void put_numa_group(struct numa_group *grp) 2893 { 2894 if (refcount_dec_and_test(&grp->refcount)) 2895 kfree_rcu(grp, rcu); 2896 } 2897 2898 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2899 int *priv) 2900 { 2901 struct numa_group *grp, *my_grp; 2902 struct task_struct *tsk; 2903 bool join = false; 2904 int cpu = cpupid_to_cpu(cpupid); 2905 int i; 2906 2907 if (unlikely(!deref_curr_numa_group(p))) { 2908 unsigned int size = sizeof(struct numa_group) + 2909 NR_NUMA_HINT_FAULT_STATS * 2910 nr_node_ids * sizeof(unsigned long); 2911 2912 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2913 if (!grp) 2914 return; 2915 2916 refcount_set(&grp->refcount, 1); 2917 grp->active_nodes = 1; 2918 grp->max_faults_cpu = 0; 2919 spin_lock_init(&grp->lock); 2920 grp->gid = p->pid; 2921 2922 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2923 grp->faults[i] = p->numa_faults[i]; 2924 2925 grp->total_faults = p->total_numa_faults; 2926 2927 grp->nr_tasks++; 2928 rcu_assign_pointer(p->numa_group, grp); 2929 } 2930 2931 rcu_read_lock(); 2932 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2933 2934 if (!cpupid_match_pid(tsk, cpupid)) 2935 goto no_join; 2936 2937 grp = rcu_dereference(tsk->numa_group); 2938 if (!grp) 2939 goto no_join; 2940 2941 my_grp = deref_curr_numa_group(p); 2942 if (grp == my_grp) 2943 goto no_join; 2944 2945 /* 2946 * Only join the other group if its bigger; if we're the bigger group, 2947 * the other task will join us. 2948 */ 2949 if (my_grp->nr_tasks > grp->nr_tasks) 2950 goto no_join; 2951 2952 /* 2953 * Tie-break on the grp address. 2954 */ 2955 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2956 goto no_join; 2957 2958 /* Always join threads in the same process. */ 2959 if (tsk->mm == current->mm) 2960 join = true; 2961 2962 /* Simple filter to avoid false positives due to PID collisions */ 2963 if (flags & TNF_SHARED) 2964 join = true; 2965 2966 /* Update priv based on whether false sharing was detected */ 2967 *priv = !join; 2968 2969 if (join && !get_numa_group(grp)) 2970 goto no_join; 2971 2972 rcu_read_unlock(); 2973 2974 if (!join) 2975 return; 2976 2977 WARN_ON_ONCE(irqs_disabled()); 2978 double_lock_irq(&my_grp->lock, &grp->lock); 2979 2980 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2981 my_grp->faults[i] -= p->numa_faults[i]; 2982 grp->faults[i] += p->numa_faults[i]; 2983 } 2984 my_grp->total_faults -= p->total_numa_faults; 2985 grp->total_faults += p->total_numa_faults; 2986 2987 my_grp->nr_tasks--; 2988 grp->nr_tasks++; 2989 2990 spin_unlock(&my_grp->lock); 2991 spin_unlock_irq(&grp->lock); 2992 2993 rcu_assign_pointer(p->numa_group, grp); 2994 2995 put_numa_group(my_grp); 2996 return; 2997 2998 no_join: 2999 rcu_read_unlock(); 3000 return; 3001 } 3002 3003 /* 3004 * Get rid of NUMA statistics associated with a task (either current or dead). 3005 * If @final is set, the task is dead and has reached refcount zero, so we can 3006 * safely free all relevant data structures. Otherwise, there might be 3007 * concurrent reads from places like load balancing and procfs, and we should 3008 * reset the data back to default state without freeing ->numa_faults. 3009 */ 3010 void task_numa_free(struct task_struct *p, bool final) 3011 { 3012 /* safe: p either is current or is being freed by current */ 3013 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3014 unsigned long *numa_faults = p->numa_faults; 3015 unsigned long flags; 3016 int i; 3017 3018 if (!numa_faults) 3019 return; 3020 3021 if (grp) { 3022 spin_lock_irqsave(&grp->lock, flags); 3023 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3024 grp->faults[i] -= p->numa_faults[i]; 3025 grp->total_faults -= p->total_numa_faults; 3026 3027 grp->nr_tasks--; 3028 spin_unlock_irqrestore(&grp->lock, flags); 3029 RCU_INIT_POINTER(p->numa_group, NULL); 3030 put_numa_group(grp); 3031 } 3032 3033 if (final) { 3034 p->numa_faults = NULL; 3035 kfree(numa_faults); 3036 } else { 3037 p->total_numa_faults = 0; 3038 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3039 numa_faults[i] = 0; 3040 } 3041 } 3042 3043 /* 3044 * Got a PROT_NONE fault for a page on @node. 3045 */ 3046 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3047 { 3048 struct task_struct *p = current; 3049 bool migrated = flags & TNF_MIGRATED; 3050 int cpu_node = task_node(current); 3051 int local = !!(flags & TNF_FAULT_LOCAL); 3052 struct numa_group *ng; 3053 int priv; 3054 3055 if (!static_branch_likely(&sched_numa_balancing)) 3056 return; 3057 3058 /* for example, ksmd faulting in a user's mm */ 3059 if (!p->mm) 3060 return; 3061 3062 /* 3063 * NUMA faults statistics are unnecessary for the slow memory 3064 * node for memory tiering mode. 3065 */ 3066 if (!node_is_toptier(mem_node) && 3067 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3068 !cpupid_valid(last_cpupid))) 3069 return; 3070 3071 /* Allocate buffer to track faults on a per-node basis */ 3072 if (unlikely(!p->numa_faults)) { 3073 int size = sizeof(*p->numa_faults) * 3074 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3075 3076 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3077 if (!p->numa_faults) 3078 return; 3079 3080 p->total_numa_faults = 0; 3081 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3082 } 3083 3084 /* 3085 * First accesses are treated as private, otherwise consider accesses 3086 * to be private if the accessing pid has not changed 3087 */ 3088 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3089 priv = 1; 3090 } else { 3091 priv = cpupid_match_pid(p, last_cpupid); 3092 if (!priv && !(flags & TNF_NO_GROUP)) 3093 task_numa_group(p, last_cpupid, flags, &priv); 3094 } 3095 3096 /* 3097 * If a workload spans multiple NUMA nodes, a shared fault that 3098 * occurs wholly within the set of nodes that the workload is 3099 * actively using should be counted as local. This allows the 3100 * scan rate to slow down when a workload has settled down. 3101 */ 3102 ng = deref_curr_numa_group(p); 3103 if (!priv && !local && ng && ng->active_nodes > 1 && 3104 numa_is_active_node(cpu_node, ng) && 3105 numa_is_active_node(mem_node, ng)) 3106 local = 1; 3107 3108 /* 3109 * Retry to migrate task to preferred node periodically, in case it 3110 * previously failed, or the scheduler moved us. 3111 */ 3112 if (time_after(jiffies, p->numa_migrate_retry)) { 3113 task_numa_placement(p); 3114 numa_migrate_preferred(p); 3115 } 3116 3117 if (migrated) 3118 p->numa_pages_migrated += pages; 3119 if (flags & TNF_MIGRATE_FAIL) 3120 p->numa_faults_locality[2] += pages; 3121 3122 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3123 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3124 p->numa_faults_locality[local] += pages; 3125 } 3126 3127 static void reset_ptenuma_scan(struct task_struct *p) 3128 { 3129 /* 3130 * We only did a read acquisition of the mmap sem, so 3131 * p->mm->numa_scan_seq is written to without exclusive access 3132 * and the update is not guaranteed to be atomic. That's not 3133 * much of an issue though, since this is just used for 3134 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3135 * expensive, to avoid any form of compiler optimizations: 3136 */ 3137 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3138 p->mm->numa_scan_offset = 0; 3139 } 3140 3141 static bool vma_is_accessed(struct vm_area_struct *vma) 3142 { 3143 unsigned long pids; 3144 /* 3145 * Allow unconditional access first two times, so that all the (pages) 3146 * of VMAs get prot_none fault introduced irrespective of accesses. 3147 * This is also done to avoid any side effect of task scanning 3148 * amplifying the unfairness of disjoint set of VMAs' access. 3149 */ 3150 if (READ_ONCE(current->mm->numa_scan_seq) < 2) 3151 return true; 3152 3153 pids = vma->numab_state->access_pids[0] | vma->numab_state->access_pids[1]; 3154 return test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids); 3155 } 3156 3157 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3158 3159 /* 3160 * The expensive part of numa migration is done from task_work context. 3161 * Triggered from task_tick_numa(). 3162 */ 3163 static void task_numa_work(struct callback_head *work) 3164 { 3165 unsigned long migrate, next_scan, now = jiffies; 3166 struct task_struct *p = current; 3167 struct mm_struct *mm = p->mm; 3168 u64 runtime = p->se.sum_exec_runtime; 3169 struct vm_area_struct *vma; 3170 unsigned long start, end; 3171 unsigned long nr_pte_updates = 0; 3172 long pages, virtpages; 3173 struct vma_iterator vmi; 3174 3175 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3176 3177 work->next = work; 3178 /* 3179 * Who cares about NUMA placement when they're dying. 3180 * 3181 * NOTE: make sure not to dereference p->mm before this check, 3182 * exit_task_work() happens _after_ exit_mm() so we could be called 3183 * without p->mm even though we still had it when we enqueued this 3184 * work. 3185 */ 3186 if (p->flags & PF_EXITING) 3187 return; 3188 3189 if (!mm->numa_next_scan) { 3190 mm->numa_next_scan = now + 3191 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3192 } 3193 3194 /* 3195 * Enforce maximal scan/migration frequency.. 3196 */ 3197 migrate = mm->numa_next_scan; 3198 if (time_before(now, migrate)) 3199 return; 3200 3201 if (p->numa_scan_period == 0) { 3202 p->numa_scan_period_max = task_scan_max(p); 3203 p->numa_scan_period = task_scan_start(p); 3204 } 3205 3206 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3207 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3208 return; 3209 3210 /* 3211 * Delay this task enough that another task of this mm will likely win 3212 * the next time around. 3213 */ 3214 p->node_stamp += 2 * TICK_NSEC; 3215 3216 start = mm->numa_scan_offset; 3217 pages = sysctl_numa_balancing_scan_size; 3218 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3219 virtpages = pages * 8; /* Scan up to this much virtual space */ 3220 if (!pages) 3221 return; 3222 3223 3224 if (!mmap_read_trylock(mm)) 3225 return; 3226 vma_iter_init(&vmi, mm, start); 3227 vma = vma_next(&vmi); 3228 if (!vma) { 3229 reset_ptenuma_scan(p); 3230 start = 0; 3231 vma_iter_set(&vmi, start); 3232 vma = vma_next(&vmi); 3233 } 3234 3235 do { 3236 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3237 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3238 continue; 3239 } 3240 3241 /* 3242 * Shared library pages mapped by multiple processes are not 3243 * migrated as it is expected they are cache replicated. Avoid 3244 * hinting faults in read-only file-backed mappings or the vdso 3245 * as migrating the pages will be of marginal benefit. 3246 */ 3247 if (!vma->vm_mm || 3248 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 3249 continue; 3250 3251 /* 3252 * Skip inaccessible VMAs to avoid any confusion between 3253 * PROT_NONE and NUMA hinting ptes 3254 */ 3255 if (!vma_is_accessible(vma)) 3256 continue; 3257 3258 /* Initialise new per-VMA NUMAB state. */ 3259 if (!vma->numab_state) { 3260 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3261 GFP_KERNEL); 3262 if (!vma->numab_state) 3263 continue; 3264 3265 vma->numab_state->next_scan = now + 3266 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3267 3268 /* Reset happens after 4 times scan delay of scan start */ 3269 vma->numab_state->next_pid_reset = vma->numab_state->next_scan + 3270 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3271 } 3272 3273 /* 3274 * Scanning the VMA's of short lived tasks add more overhead. So 3275 * delay the scan for new VMAs. 3276 */ 3277 if (mm->numa_scan_seq && time_before(jiffies, 3278 vma->numab_state->next_scan)) 3279 continue; 3280 3281 /* Do not scan the VMA if task has not accessed */ 3282 if (!vma_is_accessed(vma)) 3283 continue; 3284 3285 /* 3286 * RESET access PIDs regularly for old VMAs. Resetting after checking 3287 * vma for recent access to avoid clearing PID info before access.. 3288 */ 3289 if (mm->numa_scan_seq && 3290 time_after(jiffies, vma->numab_state->next_pid_reset)) { 3291 vma->numab_state->next_pid_reset = vma->numab_state->next_pid_reset + 3292 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3293 vma->numab_state->access_pids[0] = READ_ONCE(vma->numab_state->access_pids[1]); 3294 vma->numab_state->access_pids[1] = 0; 3295 } 3296 3297 do { 3298 start = max(start, vma->vm_start); 3299 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3300 end = min(end, vma->vm_end); 3301 nr_pte_updates = change_prot_numa(vma, start, end); 3302 3303 /* 3304 * Try to scan sysctl_numa_balancing_size worth of 3305 * hpages that have at least one present PTE that 3306 * is not already pte-numa. If the VMA contains 3307 * areas that are unused or already full of prot_numa 3308 * PTEs, scan up to virtpages, to skip through those 3309 * areas faster. 3310 */ 3311 if (nr_pte_updates) 3312 pages -= (end - start) >> PAGE_SHIFT; 3313 virtpages -= (end - start) >> PAGE_SHIFT; 3314 3315 start = end; 3316 if (pages <= 0 || virtpages <= 0) 3317 goto out; 3318 3319 cond_resched(); 3320 } while (end != vma->vm_end); 3321 } for_each_vma(vmi, vma); 3322 3323 out: 3324 /* 3325 * It is possible to reach the end of the VMA list but the last few 3326 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3327 * would find the !migratable VMA on the next scan but not reset the 3328 * scanner to the start so check it now. 3329 */ 3330 if (vma) 3331 mm->numa_scan_offset = start; 3332 else 3333 reset_ptenuma_scan(p); 3334 mmap_read_unlock(mm); 3335 3336 /* 3337 * Make sure tasks use at least 32x as much time to run other code 3338 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3339 * Usually update_task_scan_period slows down scanning enough; on an 3340 * overloaded system we need to limit overhead on a per task basis. 3341 */ 3342 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3343 u64 diff = p->se.sum_exec_runtime - runtime; 3344 p->node_stamp += 32 * diff; 3345 } 3346 } 3347 3348 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3349 { 3350 int mm_users = 0; 3351 struct mm_struct *mm = p->mm; 3352 3353 if (mm) { 3354 mm_users = atomic_read(&mm->mm_users); 3355 if (mm_users == 1) { 3356 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3357 mm->numa_scan_seq = 0; 3358 } 3359 } 3360 p->node_stamp = 0; 3361 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3362 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3363 p->numa_migrate_retry = 0; 3364 /* Protect against double add, see task_tick_numa and task_numa_work */ 3365 p->numa_work.next = &p->numa_work; 3366 p->numa_faults = NULL; 3367 p->numa_pages_migrated = 0; 3368 p->total_numa_faults = 0; 3369 RCU_INIT_POINTER(p->numa_group, NULL); 3370 p->last_task_numa_placement = 0; 3371 p->last_sum_exec_runtime = 0; 3372 3373 init_task_work(&p->numa_work, task_numa_work); 3374 3375 /* New address space, reset the preferred nid */ 3376 if (!(clone_flags & CLONE_VM)) { 3377 p->numa_preferred_nid = NUMA_NO_NODE; 3378 return; 3379 } 3380 3381 /* 3382 * New thread, keep existing numa_preferred_nid which should be copied 3383 * already by arch_dup_task_struct but stagger when scans start. 3384 */ 3385 if (mm) { 3386 unsigned int delay; 3387 3388 delay = min_t(unsigned int, task_scan_max(current), 3389 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3390 delay += 2 * TICK_NSEC; 3391 p->node_stamp = delay; 3392 } 3393 } 3394 3395 /* 3396 * Drive the periodic memory faults.. 3397 */ 3398 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3399 { 3400 struct callback_head *work = &curr->numa_work; 3401 u64 period, now; 3402 3403 /* 3404 * We don't care about NUMA placement if we don't have memory. 3405 */ 3406 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3407 return; 3408 3409 /* 3410 * Using runtime rather than walltime has the dual advantage that 3411 * we (mostly) drive the selection from busy threads and that the 3412 * task needs to have done some actual work before we bother with 3413 * NUMA placement. 3414 */ 3415 now = curr->se.sum_exec_runtime; 3416 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3417 3418 if (now > curr->node_stamp + period) { 3419 if (!curr->node_stamp) 3420 curr->numa_scan_period = task_scan_start(curr); 3421 curr->node_stamp += period; 3422 3423 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3424 task_work_add(curr, work, TWA_RESUME); 3425 } 3426 } 3427 3428 static void update_scan_period(struct task_struct *p, int new_cpu) 3429 { 3430 int src_nid = cpu_to_node(task_cpu(p)); 3431 int dst_nid = cpu_to_node(new_cpu); 3432 3433 if (!static_branch_likely(&sched_numa_balancing)) 3434 return; 3435 3436 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3437 return; 3438 3439 if (src_nid == dst_nid) 3440 return; 3441 3442 /* 3443 * Allow resets if faults have been trapped before one scan 3444 * has completed. This is most likely due to a new task that 3445 * is pulled cross-node due to wakeups or load balancing. 3446 */ 3447 if (p->numa_scan_seq) { 3448 /* 3449 * Avoid scan adjustments if moving to the preferred 3450 * node or if the task was not previously running on 3451 * the preferred node. 3452 */ 3453 if (dst_nid == p->numa_preferred_nid || 3454 (p->numa_preferred_nid != NUMA_NO_NODE && 3455 src_nid != p->numa_preferred_nid)) 3456 return; 3457 } 3458 3459 p->numa_scan_period = task_scan_start(p); 3460 } 3461 3462 #else 3463 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3464 { 3465 } 3466 3467 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3468 { 3469 } 3470 3471 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3472 { 3473 } 3474 3475 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3476 { 3477 } 3478 3479 #endif /* CONFIG_NUMA_BALANCING */ 3480 3481 static void 3482 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3483 { 3484 update_load_add(&cfs_rq->load, se->load.weight); 3485 #ifdef CONFIG_SMP 3486 if (entity_is_task(se)) { 3487 struct rq *rq = rq_of(cfs_rq); 3488 3489 account_numa_enqueue(rq, task_of(se)); 3490 list_add(&se->group_node, &rq->cfs_tasks); 3491 } 3492 #endif 3493 cfs_rq->nr_running++; 3494 if (se_is_idle(se)) 3495 cfs_rq->idle_nr_running++; 3496 } 3497 3498 static void 3499 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3500 { 3501 update_load_sub(&cfs_rq->load, se->load.weight); 3502 #ifdef CONFIG_SMP 3503 if (entity_is_task(se)) { 3504 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3505 list_del_init(&se->group_node); 3506 } 3507 #endif 3508 cfs_rq->nr_running--; 3509 if (se_is_idle(se)) 3510 cfs_rq->idle_nr_running--; 3511 } 3512 3513 /* 3514 * Signed add and clamp on underflow. 3515 * 3516 * Explicitly do a load-store to ensure the intermediate value never hits 3517 * memory. This allows lockless observations without ever seeing the negative 3518 * values. 3519 */ 3520 #define add_positive(_ptr, _val) do { \ 3521 typeof(_ptr) ptr = (_ptr); \ 3522 typeof(_val) val = (_val); \ 3523 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3524 \ 3525 res = var + val; \ 3526 \ 3527 if (val < 0 && res > var) \ 3528 res = 0; \ 3529 \ 3530 WRITE_ONCE(*ptr, res); \ 3531 } while (0) 3532 3533 /* 3534 * Unsigned subtract and clamp on underflow. 3535 * 3536 * Explicitly do a load-store to ensure the intermediate value never hits 3537 * memory. This allows lockless observations without ever seeing the negative 3538 * values. 3539 */ 3540 #define sub_positive(_ptr, _val) do { \ 3541 typeof(_ptr) ptr = (_ptr); \ 3542 typeof(*ptr) val = (_val); \ 3543 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3544 res = var - val; \ 3545 if (res > var) \ 3546 res = 0; \ 3547 WRITE_ONCE(*ptr, res); \ 3548 } while (0) 3549 3550 /* 3551 * Remove and clamp on negative, from a local variable. 3552 * 3553 * A variant of sub_positive(), which does not use explicit load-store 3554 * and is thus optimized for local variable updates. 3555 */ 3556 #define lsub_positive(_ptr, _val) do { \ 3557 typeof(_ptr) ptr = (_ptr); \ 3558 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3559 } while (0) 3560 3561 #ifdef CONFIG_SMP 3562 static inline void 3563 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3564 { 3565 cfs_rq->avg.load_avg += se->avg.load_avg; 3566 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3567 } 3568 3569 static inline void 3570 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3571 { 3572 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3573 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3574 /* See update_cfs_rq_load_avg() */ 3575 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3576 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3577 } 3578 #else 3579 static inline void 3580 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3581 static inline void 3582 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3583 #endif 3584 3585 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3586 unsigned long weight) 3587 { 3588 unsigned long old_weight = se->load.weight; 3589 3590 if (se->on_rq) { 3591 /* commit outstanding execution time */ 3592 if (cfs_rq->curr == se) 3593 update_curr(cfs_rq); 3594 else 3595 avg_vruntime_sub(cfs_rq, se); 3596 update_load_sub(&cfs_rq->load, se->load.weight); 3597 } 3598 dequeue_load_avg(cfs_rq, se); 3599 3600 update_load_set(&se->load, weight); 3601 3602 if (!se->on_rq) { 3603 /* 3604 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3605 * we need to scale se->vlag when w_i changes. 3606 */ 3607 se->vlag = div_s64(se->vlag * old_weight, weight); 3608 } else { 3609 s64 deadline = se->deadline - se->vruntime; 3610 /* 3611 * When the weight changes, the virtual time slope changes and 3612 * we should adjust the relative virtual deadline accordingly. 3613 */ 3614 deadline = div_s64(deadline * old_weight, weight); 3615 se->deadline = se->vruntime + deadline; 3616 } 3617 3618 #ifdef CONFIG_SMP 3619 do { 3620 u32 divider = get_pelt_divider(&se->avg); 3621 3622 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3623 } while (0); 3624 #endif 3625 3626 enqueue_load_avg(cfs_rq, se); 3627 if (se->on_rq) { 3628 update_load_add(&cfs_rq->load, se->load.weight); 3629 if (cfs_rq->curr != se) 3630 avg_vruntime_add(cfs_rq, se); 3631 } 3632 } 3633 3634 void reweight_task(struct task_struct *p, int prio) 3635 { 3636 struct sched_entity *se = &p->se; 3637 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3638 struct load_weight *load = &se->load; 3639 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3640 3641 reweight_entity(cfs_rq, se, weight); 3642 load->inv_weight = sched_prio_to_wmult[prio]; 3643 } 3644 3645 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3646 3647 #ifdef CONFIG_FAIR_GROUP_SCHED 3648 #ifdef CONFIG_SMP 3649 /* 3650 * All this does is approximate the hierarchical proportion which includes that 3651 * global sum we all love to hate. 3652 * 3653 * That is, the weight of a group entity, is the proportional share of the 3654 * group weight based on the group runqueue weights. That is: 3655 * 3656 * tg->weight * grq->load.weight 3657 * ge->load.weight = ----------------------------- (1) 3658 * \Sum grq->load.weight 3659 * 3660 * Now, because computing that sum is prohibitively expensive to compute (been 3661 * there, done that) we approximate it with this average stuff. The average 3662 * moves slower and therefore the approximation is cheaper and more stable. 3663 * 3664 * So instead of the above, we substitute: 3665 * 3666 * grq->load.weight -> grq->avg.load_avg (2) 3667 * 3668 * which yields the following: 3669 * 3670 * tg->weight * grq->avg.load_avg 3671 * ge->load.weight = ------------------------------ (3) 3672 * tg->load_avg 3673 * 3674 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3675 * 3676 * That is shares_avg, and it is right (given the approximation (2)). 3677 * 3678 * The problem with it is that because the average is slow -- it was designed 3679 * to be exactly that of course -- this leads to transients in boundary 3680 * conditions. In specific, the case where the group was idle and we start the 3681 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3682 * yielding bad latency etc.. 3683 * 3684 * Now, in that special case (1) reduces to: 3685 * 3686 * tg->weight * grq->load.weight 3687 * ge->load.weight = ----------------------------- = tg->weight (4) 3688 * grp->load.weight 3689 * 3690 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3691 * 3692 * So what we do is modify our approximation (3) to approach (4) in the (near) 3693 * UP case, like: 3694 * 3695 * ge->load.weight = 3696 * 3697 * tg->weight * grq->load.weight 3698 * --------------------------------------------------- (5) 3699 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3700 * 3701 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3702 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3703 * 3704 * 3705 * tg->weight * grq->load.weight 3706 * ge->load.weight = ----------------------------- (6) 3707 * tg_load_avg' 3708 * 3709 * Where: 3710 * 3711 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3712 * max(grq->load.weight, grq->avg.load_avg) 3713 * 3714 * And that is shares_weight and is icky. In the (near) UP case it approaches 3715 * (4) while in the normal case it approaches (3). It consistently 3716 * overestimates the ge->load.weight and therefore: 3717 * 3718 * \Sum ge->load.weight >= tg->weight 3719 * 3720 * hence icky! 3721 */ 3722 static long calc_group_shares(struct cfs_rq *cfs_rq) 3723 { 3724 long tg_weight, tg_shares, load, shares; 3725 struct task_group *tg = cfs_rq->tg; 3726 3727 tg_shares = READ_ONCE(tg->shares); 3728 3729 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3730 3731 tg_weight = atomic_long_read(&tg->load_avg); 3732 3733 /* Ensure tg_weight >= load */ 3734 tg_weight -= cfs_rq->tg_load_avg_contrib; 3735 tg_weight += load; 3736 3737 shares = (tg_shares * load); 3738 if (tg_weight) 3739 shares /= tg_weight; 3740 3741 /* 3742 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3743 * of a group with small tg->shares value. It is a floor value which is 3744 * assigned as a minimum load.weight to the sched_entity representing 3745 * the group on a CPU. 3746 * 3747 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3748 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3749 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3750 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3751 * instead of 0. 3752 */ 3753 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3754 } 3755 #endif /* CONFIG_SMP */ 3756 3757 /* 3758 * Recomputes the group entity based on the current state of its group 3759 * runqueue. 3760 */ 3761 static void update_cfs_group(struct sched_entity *se) 3762 { 3763 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3764 long shares; 3765 3766 if (!gcfs_rq) 3767 return; 3768 3769 if (throttled_hierarchy(gcfs_rq)) 3770 return; 3771 3772 #ifndef CONFIG_SMP 3773 shares = READ_ONCE(gcfs_rq->tg->shares); 3774 3775 if (likely(se->load.weight == shares)) 3776 return; 3777 #else 3778 shares = calc_group_shares(gcfs_rq); 3779 #endif 3780 3781 reweight_entity(cfs_rq_of(se), se, shares); 3782 } 3783 3784 #else /* CONFIG_FAIR_GROUP_SCHED */ 3785 static inline void update_cfs_group(struct sched_entity *se) 3786 { 3787 } 3788 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3789 3790 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3791 { 3792 struct rq *rq = rq_of(cfs_rq); 3793 3794 if (&rq->cfs == cfs_rq) { 3795 /* 3796 * There are a few boundary cases this might miss but it should 3797 * get called often enough that that should (hopefully) not be 3798 * a real problem. 3799 * 3800 * It will not get called when we go idle, because the idle 3801 * thread is a different class (!fair), nor will the utilization 3802 * number include things like RT tasks. 3803 * 3804 * As is, the util number is not freq-invariant (we'd have to 3805 * implement arch_scale_freq_capacity() for that). 3806 * 3807 * See cpu_util_cfs(). 3808 */ 3809 cpufreq_update_util(rq, flags); 3810 } 3811 } 3812 3813 #ifdef CONFIG_SMP 3814 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3815 { 3816 if (sa->load_sum) 3817 return false; 3818 3819 if (sa->util_sum) 3820 return false; 3821 3822 if (sa->runnable_sum) 3823 return false; 3824 3825 /* 3826 * _avg must be null when _sum are null because _avg = _sum / divider 3827 * Make sure that rounding and/or propagation of PELT values never 3828 * break this. 3829 */ 3830 SCHED_WARN_ON(sa->load_avg || 3831 sa->util_avg || 3832 sa->runnable_avg); 3833 3834 return true; 3835 } 3836 3837 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3838 { 3839 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3840 cfs_rq->last_update_time_copy); 3841 } 3842 #ifdef CONFIG_FAIR_GROUP_SCHED 3843 /* 3844 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3845 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3846 * bottom-up, we only have to test whether the cfs_rq before us on the list 3847 * is our child. 3848 * If cfs_rq is not on the list, test whether a child needs its to be added to 3849 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3850 */ 3851 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3852 { 3853 struct cfs_rq *prev_cfs_rq; 3854 struct list_head *prev; 3855 3856 if (cfs_rq->on_list) { 3857 prev = cfs_rq->leaf_cfs_rq_list.prev; 3858 } else { 3859 struct rq *rq = rq_of(cfs_rq); 3860 3861 prev = rq->tmp_alone_branch; 3862 } 3863 3864 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3865 3866 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3867 } 3868 3869 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3870 { 3871 if (cfs_rq->load.weight) 3872 return false; 3873 3874 if (!load_avg_is_decayed(&cfs_rq->avg)) 3875 return false; 3876 3877 if (child_cfs_rq_on_list(cfs_rq)) 3878 return false; 3879 3880 return true; 3881 } 3882 3883 /** 3884 * update_tg_load_avg - update the tg's load avg 3885 * @cfs_rq: the cfs_rq whose avg changed 3886 * 3887 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3888 * However, because tg->load_avg is a global value there are performance 3889 * considerations. 3890 * 3891 * In order to avoid having to look at the other cfs_rq's, we use a 3892 * differential update where we store the last value we propagated. This in 3893 * turn allows skipping updates if the differential is 'small'. 3894 * 3895 * Updating tg's load_avg is necessary before update_cfs_share(). 3896 */ 3897 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3898 { 3899 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3900 3901 /* 3902 * No need to update load_avg for root_task_group as it is not used. 3903 */ 3904 if (cfs_rq->tg == &root_task_group) 3905 return; 3906 3907 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3908 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3909 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3910 } 3911 } 3912 3913 /* 3914 * Called within set_task_rq() right before setting a task's CPU. The 3915 * caller only guarantees p->pi_lock is held; no other assumptions, 3916 * including the state of rq->lock, should be made. 3917 */ 3918 void set_task_rq_fair(struct sched_entity *se, 3919 struct cfs_rq *prev, struct cfs_rq *next) 3920 { 3921 u64 p_last_update_time; 3922 u64 n_last_update_time; 3923 3924 if (!sched_feat(ATTACH_AGE_LOAD)) 3925 return; 3926 3927 /* 3928 * We are supposed to update the task to "current" time, then its up to 3929 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3930 * getting what current time is, so simply throw away the out-of-date 3931 * time. This will result in the wakee task is less decayed, but giving 3932 * the wakee more load sounds not bad. 3933 */ 3934 if (!(se->avg.last_update_time && prev)) 3935 return; 3936 3937 p_last_update_time = cfs_rq_last_update_time(prev); 3938 n_last_update_time = cfs_rq_last_update_time(next); 3939 3940 __update_load_avg_blocked_se(p_last_update_time, se); 3941 se->avg.last_update_time = n_last_update_time; 3942 } 3943 3944 /* 3945 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3946 * propagate its contribution. The key to this propagation is the invariant 3947 * that for each group: 3948 * 3949 * ge->avg == grq->avg (1) 3950 * 3951 * _IFF_ we look at the pure running and runnable sums. Because they 3952 * represent the very same entity, just at different points in the hierarchy. 3953 * 3954 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3955 * and simply copies the running/runnable sum over (but still wrong, because 3956 * the group entity and group rq do not have their PELT windows aligned). 3957 * 3958 * However, update_tg_cfs_load() is more complex. So we have: 3959 * 3960 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3961 * 3962 * And since, like util, the runnable part should be directly transferable, 3963 * the following would _appear_ to be the straight forward approach: 3964 * 3965 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3966 * 3967 * And per (1) we have: 3968 * 3969 * ge->avg.runnable_avg == grq->avg.runnable_avg 3970 * 3971 * Which gives: 3972 * 3973 * ge->load.weight * grq->avg.load_avg 3974 * ge->avg.load_avg = ----------------------------------- (4) 3975 * grq->load.weight 3976 * 3977 * Except that is wrong! 3978 * 3979 * Because while for entities historical weight is not important and we 3980 * really only care about our future and therefore can consider a pure 3981 * runnable sum, runqueues can NOT do this. 3982 * 3983 * We specifically want runqueues to have a load_avg that includes 3984 * historical weights. Those represent the blocked load, the load we expect 3985 * to (shortly) return to us. This only works by keeping the weights as 3986 * integral part of the sum. We therefore cannot decompose as per (3). 3987 * 3988 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3989 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3990 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3991 * runnable section of these tasks overlap (or not). If they were to perfectly 3992 * align the rq as a whole would be runnable 2/3 of the time. If however we 3993 * always have at least 1 runnable task, the rq as a whole is always runnable. 3994 * 3995 * So we'll have to approximate.. :/ 3996 * 3997 * Given the constraint: 3998 * 3999 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4000 * 4001 * We can construct a rule that adds runnable to a rq by assuming minimal 4002 * overlap. 4003 * 4004 * On removal, we'll assume each task is equally runnable; which yields: 4005 * 4006 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4007 * 4008 * XXX: only do this for the part of runnable > running ? 4009 * 4010 */ 4011 static inline void 4012 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4013 { 4014 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4015 u32 new_sum, divider; 4016 4017 /* Nothing to update */ 4018 if (!delta_avg) 4019 return; 4020 4021 /* 4022 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4023 * See ___update_load_avg() for details. 4024 */ 4025 divider = get_pelt_divider(&cfs_rq->avg); 4026 4027 4028 /* Set new sched_entity's utilization */ 4029 se->avg.util_avg = gcfs_rq->avg.util_avg; 4030 new_sum = se->avg.util_avg * divider; 4031 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4032 se->avg.util_sum = new_sum; 4033 4034 /* Update parent cfs_rq utilization */ 4035 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4036 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4037 4038 /* See update_cfs_rq_load_avg() */ 4039 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4040 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4041 } 4042 4043 static inline void 4044 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4045 { 4046 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4047 u32 new_sum, divider; 4048 4049 /* Nothing to update */ 4050 if (!delta_avg) 4051 return; 4052 4053 /* 4054 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4055 * See ___update_load_avg() for details. 4056 */ 4057 divider = get_pelt_divider(&cfs_rq->avg); 4058 4059 /* Set new sched_entity's runnable */ 4060 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4061 new_sum = se->avg.runnable_avg * divider; 4062 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4063 se->avg.runnable_sum = new_sum; 4064 4065 /* Update parent cfs_rq runnable */ 4066 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4067 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4068 /* See update_cfs_rq_load_avg() */ 4069 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4070 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4071 } 4072 4073 static inline void 4074 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4075 { 4076 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4077 unsigned long load_avg; 4078 u64 load_sum = 0; 4079 s64 delta_sum; 4080 u32 divider; 4081 4082 if (!runnable_sum) 4083 return; 4084 4085 gcfs_rq->prop_runnable_sum = 0; 4086 4087 /* 4088 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4089 * See ___update_load_avg() for details. 4090 */ 4091 divider = get_pelt_divider(&cfs_rq->avg); 4092 4093 if (runnable_sum >= 0) { 4094 /* 4095 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4096 * the CPU is saturated running == runnable. 4097 */ 4098 runnable_sum += se->avg.load_sum; 4099 runnable_sum = min_t(long, runnable_sum, divider); 4100 } else { 4101 /* 4102 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4103 * assuming all tasks are equally runnable. 4104 */ 4105 if (scale_load_down(gcfs_rq->load.weight)) { 4106 load_sum = div_u64(gcfs_rq->avg.load_sum, 4107 scale_load_down(gcfs_rq->load.weight)); 4108 } 4109 4110 /* But make sure to not inflate se's runnable */ 4111 runnable_sum = min(se->avg.load_sum, load_sum); 4112 } 4113 4114 /* 4115 * runnable_sum can't be lower than running_sum 4116 * Rescale running sum to be in the same range as runnable sum 4117 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4118 * runnable_sum is in [0 : LOAD_AVG_MAX] 4119 */ 4120 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4121 runnable_sum = max(runnable_sum, running_sum); 4122 4123 load_sum = se_weight(se) * runnable_sum; 4124 load_avg = div_u64(load_sum, divider); 4125 4126 delta_avg = load_avg - se->avg.load_avg; 4127 if (!delta_avg) 4128 return; 4129 4130 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4131 4132 se->avg.load_sum = runnable_sum; 4133 se->avg.load_avg = load_avg; 4134 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4135 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4136 /* See update_cfs_rq_load_avg() */ 4137 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4138 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4139 } 4140 4141 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4142 { 4143 cfs_rq->propagate = 1; 4144 cfs_rq->prop_runnable_sum += runnable_sum; 4145 } 4146 4147 /* Update task and its cfs_rq load average */ 4148 static inline int propagate_entity_load_avg(struct sched_entity *se) 4149 { 4150 struct cfs_rq *cfs_rq, *gcfs_rq; 4151 4152 if (entity_is_task(se)) 4153 return 0; 4154 4155 gcfs_rq = group_cfs_rq(se); 4156 if (!gcfs_rq->propagate) 4157 return 0; 4158 4159 gcfs_rq->propagate = 0; 4160 4161 cfs_rq = cfs_rq_of(se); 4162 4163 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4164 4165 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4166 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4167 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4168 4169 trace_pelt_cfs_tp(cfs_rq); 4170 trace_pelt_se_tp(se); 4171 4172 return 1; 4173 } 4174 4175 /* 4176 * Check if we need to update the load and the utilization of a blocked 4177 * group_entity: 4178 */ 4179 static inline bool skip_blocked_update(struct sched_entity *se) 4180 { 4181 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4182 4183 /* 4184 * If sched_entity still have not zero load or utilization, we have to 4185 * decay it: 4186 */ 4187 if (se->avg.load_avg || se->avg.util_avg) 4188 return false; 4189 4190 /* 4191 * If there is a pending propagation, we have to update the load and 4192 * the utilization of the sched_entity: 4193 */ 4194 if (gcfs_rq->propagate) 4195 return false; 4196 4197 /* 4198 * Otherwise, the load and the utilization of the sched_entity is 4199 * already zero and there is no pending propagation, so it will be a 4200 * waste of time to try to decay it: 4201 */ 4202 return true; 4203 } 4204 4205 #else /* CONFIG_FAIR_GROUP_SCHED */ 4206 4207 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4208 4209 static inline int propagate_entity_load_avg(struct sched_entity *se) 4210 { 4211 return 0; 4212 } 4213 4214 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4215 4216 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4217 4218 #ifdef CONFIG_NO_HZ_COMMON 4219 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4220 { 4221 u64 throttled = 0, now, lut; 4222 struct cfs_rq *cfs_rq; 4223 struct rq *rq; 4224 bool is_idle; 4225 4226 if (load_avg_is_decayed(&se->avg)) 4227 return; 4228 4229 cfs_rq = cfs_rq_of(se); 4230 rq = rq_of(cfs_rq); 4231 4232 rcu_read_lock(); 4233 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4234 rcu_read_unlock(); 4235 4236 /* 4237 * The lag estimation comes with a cost we don't want to pay all the 4238 * time. Hence, limiting to the case where the source CPU is idle and 4239 * we know we are at the greatest risk to have an outdated clock. 4240 */ 4241 if (!is_idle) 4242 return; 4243 4244 /* 4245 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4246 * 4247 * last_update_time (the cfs_rq's last_update_time) 4248 * = cfs_rq_clock_pelt()@cfs_rq_idle 4249 * = rq_clock_pelt()@cfs_rq_idle 4250 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4251 * 4252 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4253 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4254 * 4255 * rq_idle_lag (delta between now and rq's update) 4256 * = sched_clock_cpu() - rq_clock()@rq_idle 4257 * 4258 * We can then write: 4259 * 4260 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4261 * sched_clock_cpu() - rq_clock()@rq_idle 4262 * Where: 4263 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4264 * rq_clock()@rq_idle is rq->clock_idle 4265 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4266 * is cfs_rq->throttled_pelt_idle 4267 */ 4268 4269 #ifdef CONFIG_CFS_BANDWIDTH 4270 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4271 /* The clock has been stopped for throttling */ 4272 if (throttled == U64_MAX) 4273 return; 4274 #endif 4275 now = u64_u32_load(rq->clock_pelt_idle); 4276 /* 4277 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4278 * is observed the old clock_pelt_idle value and the new clock_idle, 4279 * which lead to an underestimation. The opposite would lead to an 4280 * overestimation. 4281 */ 4282 smp_rmb(); 4283 lut = cfs_rq_last_update_time(cfs_rq); 4284 4285 now -= throttled; 4286 if (now < lut) 4287 /* 4288 * cfs_rq->avg.last_update_time is more recent than our 4289 * estimation, let's use it. 4290 */ 4291 now = lut; 4292 else 4293 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4294 4295 __update_load_avg_blocked_se(now, se); 4296 } 4297 #else 4298 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4299 #endif 4300 4301 /** 4302 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4303 * @now: current time, as per cfs_rq_clock_pelt() 4304 * @cfs_rq: cfs_rq to update 4305 * 4306 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4307 * avg. The immediate corollary is that all (fair) tasks must be attached. 4308 * 4309 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4310 * 4311 * Return: true if the load decayed or we removed load. 4312 * 4313 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4314 * call update_tg_load_avg() when this function returns true. 4315 */ 4316 static inline int 4317 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4318 { 4319 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4320 struct sched_avg *sa = &cfs_rq->avg; 4321 int decayed = 0; 4322 4323 if (cfs_rq->removed.nr) { 4324 unsigned long r; 4325 u32 divider = get_pelt_divider(&cfs_rq->avg); 4326 4327 raw_spin_lock(&cfs_rq->removed.lock); 4328 swap(cfs_rq->removed.util_avg, removed_util); 4329 swap(cfs_rq->removed.load_avg, removed_load); 4330 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4331 cfs_rq->removed.nr = 0; 4332 raw_spin_unlock(&cfs_rq->removed.lock); 4333 4334 r = removed_load; 4335 sub_positive(&sa->load_avg, r); 4336 sub_positive(&sa->load_sum, r * divider); 4337 /* See sa->util_sum below */ 4338 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4339 4340 r = removed_util; 4341 sub_positive(&sa->util_avg, r); 4342 sub_positive(&sa->util_sum, r * divider); 4343 /* 4344 * Because of rounding, se->util_sum might ends up being +1 more than 4345 * cfs->util_sum. Although this is not a problem by itself, detaching 4346 * a lot of tasks with the rounding problem between 2 updates of 4347 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4348 * cfs_util_avg is not. 4349 * Check that util_sum is still above its lower bound for the new 4350 * util_avg. Given that period_contrib might have moved since the last 4351 * sync, we are only sure that util_sum must be above or equal to 4352 * util_avg * minimum possible divider 4353 */ 4354 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4355 4356 r = removed_runnable; 4357 sub_positive(&sa->runnable_avg, r); 4358 sub_positive(&sa->runnable_sum, r * divider); 4359 /* See sa->util_sum above */ 4360 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4361 sa->runnable_avg * PELT_MIN_DIVIDER); 4362 4363 /* 4364 * removed_runnable is the unweighted version of removed_load so we 4365 * can use it to estimate removed_load_sum. 4366 */ 4367 add_tg_cfs_propagate(cfs_rq, 4368 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4369 4370 decayed = 1; 4371 } 4372 4373 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4374 u64_u32_store_copy(sa->last_update_time, 4375 cfs_rq->last_update_time_copy, 4376 sa->last_update_time); 4377 return decayed; 4378 } 4379 4380 /** 4381 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4382 * @cfs_rq: cfs_rq to attach to 4383 * @se: sched_entity to attach 4384 * 4385 * Must call update_cfs_rq_load_avg() before this, since we rely on 4386 * cfs_rq->avg.last_update_time being current. 4387 */ 4388 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4389 { 4390 /* 4391 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4392 * See ___update_load_avg() for details. 4393 */ 4394 u32 divider = get_pelt_divider(&cfs_rq->avg); 4395 4396 /* 4397 * When we attach the @se to the @cfs_rq, we must align the decay 4398 * window because without that, really weird and wonderful things can 4399 * happen. 4400 * 4401 * XXX illustrate 4402 */ 4403 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4404 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4405 4406 /* 4407 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4408 * period_contrib. This isn't strictly correct, but since we're 4409 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4410 * _sum a little. 4411 */ 4412 se->avg.util_sum = se->avg.util_avg * divider; 4413 4414 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4415 4416 se->avg.load_sum = se->avg.load_avg * divider; 4417 if (se_weight(se) < se->avg.load_sum) 4418 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4419 else 4420 se->avg.load_sum = 1; 4421 4422 enqueue_load_avg(cfs_rq, se); 4423 cfs_rq->avg.util_avg += se->avg.util_avg; 4424 cfs_rq->avg.util_sum += se->avg.util_sum; 4425 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4426 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4427 4428 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4429 4430 cfs_rq_util_change(cfs_rq, 0); 4431 4432 trace_pelt_cfs_tp(cfs_rq); 4433 } 4434 4435 /** 4436 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4437 * @cfs_rq: cfs_rq to detach from 4438 * @se: sched_entity to detach 4439 * 4440 * Must call update_cfs_rq_load_avg() before this, since we rely on 4441 * cfs_rq->avg.last_update_time being current. 4442 */ 4443 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4444 { 4445 dequeue_load_avg(cfs_rq, se); 4446 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4447 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4448 /* See update_cfs_rq_load_avg() */ 4449 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4450 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4451 4452 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4453 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4454 /* See update_cfs_rq_load_avg() */ 4455 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4456 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4457 4458 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4459 4460 cfs_rq_util_change(cfs_rq, 0); 4461 4462 trace_pelt_cfs_tp(cfs_rq); 4463 } 4464 4465 /* 4466 * Optional action to be done while updating the load average 4467 */ 4468 #define UPDATE_TG 0x1 4469 #define SKIP_AGE_LOAD 0x2 4470 #define DO_ATTACH 0x4 4471 #define DO_DETACH 0x8 4472 4473 /* Update task and its cfs_rq load average */ 4474 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4475 { 4476 u64 now = cfs_rq_clock_pelt(cfs_rq); 4477 int decayed; 4478 4479 /* 4480 * Track task load average for carrying it to new CPU after migrated, and 4481 * track group sched_entity load average for task_h_load calc in migration 4482 */ 4483 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4484 __update_load_avg_se(now, cfs_rq, se); 4485 4486 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4487 decayed |= propagate_entity_load_avg(se); 4488 4489 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4490 4491 /* 4492 * DO_ATTACH means we're here from enqueue_entity(). 4493 * !last_update_time means we've passed through 4494 * migrate_task_rq_fair() indicating we migrated. 4495 * 4496 * IOW we're enqueueing a task on a new CPU. 4497 */ 4498 attach_entity_load_avg(cfs_rq, se); 4499 update_tg_load_avg(cfs_rq); 4500 4501 } else if (flags & DO_DETACH) { 4502 /* 4503 * DO_DETACH means we're here from dequeue_entity() 4504 * and we are migrating task out of the CPU. 4505 */ 4506 detach_entity_load_avg(cfs_rq, se); 4507 update_tg_load_avg(cfs_rq); 4508 } else if (decayed) { 4509 cfs_rq_util_change(cfs_rq, 0); 4510 4511 if (flags & UPDATE_TG) 4512 update_tg_load_avg(cfs_rq); 4513 } 4514 } 4515 4516 /* 4517 * Synchronize entity load avg of dequeued entity without locking 4518 * the previous rq. 4519 */ 4520 static void sync_entity_load_avg(struct sched_entity *se) 4521 { 4522 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4523 u64 last_update_time; 4524 4525 last_update_time = cfs_rq_last_update_time(cfs_rq); 4526 __update_load_avg_blocked_se(last_update_time, se); 4527 } 4528 4529 /* 4530 * Task first catches up with cfs_rq, and then subtract 4531 * itself from the cfs_rq (task must be off the queue now). 4532 */ 4533 static void remove_entity_load_avg(struct sched_entity *se) 4534 { 4535 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4536 unsigned long flags; 4537 4538 /* 4539 * tasks cannot exit without having gone through wake_up_new_task() -> 4540 * enqueue_task_fair() which will have added things to the cfs_rq, 4541 * so we can remove unconditionally. 4542 */ 4543 4544 sync_entity_load_avg(se); 4545 4546 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4547 ++cfs_rq->removed.nr; 4548 cfs_rq->removed.util_avg += se->avg.util_avg; 4549 cfs_rq->removed.load_avg += se->avg.load_avg; 4550 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4551 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4552 } 4553 4554 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4555 { 4556 return cfs_rq->avg.runnable_avg; 4557 } 4558 4559 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4560 { 4561 return cfs_rq->avg.load_avg; 4562 } 4563 4564 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4565 4566 static inline unsigned long task_util(struct task_struct *p) 4567 { 4568 return READ_ONCE(p->se.avg.util_avg); 4569 } 4570 4571 static inline unsigned long _task_util_est(struct task_struct *p) 4572 { 4573 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4574 4575 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4576 } 4577 4578 static inline unsigned long task_util_est(struct task_struct *p) 4579 { 4580 return max(task_util(p), _task_util_est(p)); 4581 } 4582 4583 #ifdef CONFIG_UCLAMP_TASK 4584 static inline unsigned long uclamp_task_util(struct task_struct *p, 4585 unsigned long uclamp_min, 4586 unsigned long uclamp_max) 4587 { 4588 return clamp(task_util_est(p), uclamp_min, uclamp_max); 4589 } 4590 #else 4591 static inline unsigned long uclamp_task_util(struct task_struct *p, 4592 unsigned long uclamp_min, 4593 unsigned long uclamp_max) 4594 { 4595 return task_util_est(p); 4596 } 4597 #endif 4598 4599 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4600 struct task_struct *p) 4601 { 4602 unsigned int enqueued; 4603 4604 if (!sched_feat(UTIL_EST)) 4605 return; 4606 4607 /* Update root cfs_rq's estimated utilization */ 4608 enqueued = cfs_rq->avg.util_est.enqueued; 4609 enqueued += _task_util_est(p); 4610 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4611 4612 trace_sched_util_est_cfs_tp(cfs_rq); 4613 } 4614 4615 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4616 struct task_struct *p) 4617 { 4618 unsigned int enqueued; 4619 4620 if (!sched_feat(UTIL_EST)) 4621 return; 4622 4623 /* Update root cfs_rq's estimated utilization */ 4624 enqueued = cfs_rq->avg.util_est.enqueued; 4625 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4626 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4627 4628 trace_sched_util_est_cfs_tp(cfs_rq); 4629 } 4630 4631 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4632 4633 /* 4634 * Check if a (signed) value is within a specified (unsigned) margin, 4635 * based on the observation that: 4636 * 4637 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4638 * 4639 * NOTE: this only works when value + margin < INT_MAX. 4640 */ 4641 static inline bool within_margin(int value, int margin) 4642 { 4643 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4644 } 4645 4646 static inline void util_est_update(struct cfs_rq *cfs_rq, 4647 struct task_struct *p, 4648 bool task_sleep) 4649 { 4650 long last_ewma_diff, last_enqueued_diff; 4651 struct util_est ue; 4652 4653 if (!sched_feat(UTIL_EST)) 4654 return; 4655 4656 /* 4657 * Skip update of task's estimated utilization when the task has not 4658 * yet completed an activation, e.g. being migrated. 4659 */ 4660 if (!task_sleep) 4661 return; 4662 4663 /* 4664 * If the PELT values haven't changed since enqueue time, 4665 * skip the util_est update. 4666 */ 4667 ue = p->se.avg.util_est; 4668 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4669 return; 4670 4671 last_enqueued_diff = ue.enqueued; 4672 4673 /* 4674 * Reset EWMA on utilization increases, the moving average is used only 4675 * to smooth utilization decreases. 4676 */ 4677 ue.enqueued = task_util(p); 4678 if (sched_feat(UTIL_EST_FASTUP)) { 4679 if (ue.ewma < ue.enqueued) { 4680 ue.ewma = ue.enqueued; 4681 goto done; 4682 } 4683 } 4684 4685 /* 4686 * Skip update of task's estimated utilization when its members are 4687 * already ~1% close to its last activation value. 4688 */ 4689 last_ewma_diff = ue.enqueued - ue.ewma; 4690 last_enqueued_diff -= ue.enqueued; 4691 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4692 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4693 goto done; 4694 4695 return; 4696 } 4697 4698 /* 4699 * To avoid overestimation of actual task utilization, skip updates if 4700 * we cannot grant there is idle time in this CPU. 4701 */ 4702 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4703 return; 4704 4705 /* 4706 * Update Task's estimated utilization 4707 * 4708 * When *p completes an activation we can consolidate another sample 4709 * of the task size. This is done by storing the current PELT value 4710 * as ue.enqueued and by using this value to update the Exponential 4711 * Weighted Moving Average (EWMA): 4712 * 4713 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4714 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4715 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4716 * = w * ( last_ewma_diff ) + ewma(t-1) 4717 * = w * (last_ewma_diff + ewma(t-1) / w) 4718 * 4719 * Where 'w' is the weight of new samples, which is configured to be 4720 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4721 */ 4722 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4723 ue.ewma += last_ewma_diff; 4724 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4725 done: 4726 ue.enqueued |= UTIL_AVG_UNCHANGED; 4727 WRITE_ONCE(p->se.avg.util_est, ue); 4728 4729 trace_sched_util_est_se_tp(&p->se); 4730 } 4731 4732 static inline int util_fits_cpu(unsigned long util, 4733 unsigned long uclamp_min, 4734 unsigned long uclamp_max, 4735 int cpu) 4736 { 4737 unsigned long capacity_orig, capacity_orig_thermal; 4738 unsigned long capacity = capacity_of(cpu); 4739 bool fits, uclamp_max_fits; 4740 4741 /* 4742 * Check if the real util fits without any uclamp boost/cap applied. 4743 */ 4744 fits = fits_capacity(util, capacity); 4745 4746 if (!uclamp_is_used()) 4747 return fits; 4748 4749 /* 4750 * We must use capacity_orig_of() for comparing against uclamp_min and 4751 * uclamp_max. We only care about capacity pressure (by using 4752 * capacity_of()) for comparing against the real util. 4753 * 4754 * If a task is boosted to 1024 for example, we don't want a tiny 4755 * pressure to skew the check whether it fits a CPU or not. 4756 * 4757 * Similarly if a task is capped to capacity_orig_of(little_cpu), it 4758 * should fit a little cpu even if there's some pressure. 4759 * 4760 * Only exception is for thermal pressure since it has a direct impact 4761 * on available OPP of the system. 4762 * 4763 * We honour it for uclamp_min only as a drop in performance level 4764 * could result in not getting the requested minimum performance level. 4765 * 4766 * For uclamp_max, we can tolerate a drop in performance level as the 4767 * goal is to cap the task. So it's okay if it's getting less. 4768 */ 4769 capacity_orig = capacity_orig_of(cpu); 4770 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 4771 4772 /* 4773 * We want to force a task to fit a cpu as implied by uclamp_max. 4774 * But we do have some corner cases to cater for.. 4775 * 4776 * 4777 * C=z 4778 * | ___ 4779 * | C=y | | 4780 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4781 * | C=x | | | | 4782 * | ___ | | | | 4783 * | | | | | | | (util somewhere in this region) 4784 * | | | | | | | 4785 * | | | | | | | 4786 * +---------------------------------------- 4787 * cpu0 cpu1 cpu2 4788 * 4789 * In the above example if a task is capped to a specific performance 4790 * point, y, then when: 4791 * 4792 * * util = 80% of x then it does not fit on cpu0 and should migrate 4793 * to cpu1 4794 * * util = 80% of y then it is forced to fit on cpu1 to honour 4795 * uclamp_max request. 4796 * 4797 * which is what we're enforcing here. A task always fits if 4798 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 4799 * the normal upmigration rules should withhold still. 4800 * 4801 * Only exception is when we are on max capacity, then we need to be 4802 * careful not to block overutilized state. This is so because: 4803 * 4804 * 1. There's no concept of capping at max_capacity! We can't go 4805 * beyond this performance level anyway. 4806 * 2. The system is being saturated when we're operating near 4807 * max capacity, it doesn't make sense to block overutilized. 4808 */ 4809 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 4810 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 4811 fits = fits || uclamp_max_fits; 4812 4813 /* 4814 * 4815 * C=z 4816 * | ___ (region a, capped, util >= uclamp_max) 4817 * | C=y | | 4818 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4819 * | C=x | | | | 4820 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 4821 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 4822 * | | | | | | | 4823 * | | | | | | | (region c, boosted, util < uclamp_min) 4824 * +---------------------------------------- 4825 * cpu0 cpu1 cpu2 4826 * 4827 * a) If util > uclamp_max, then we're capped, we don't care about 4828 * actual fitness value here. We only care if uclamp_max fits 4829 * capacity without taking margin/pressure into account. 4830 * See comment above. 4831 * 4832 * b) If uclamp_min <= util <= uclamp_max, then the normal 4833 * fits_capacity() rules apply. Except we need to ensure that we 4834 * enforce we remain within uclamp_max, see comment above. 4835 * 4836 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 4837 * need to take into account the boosted value fits the CPU without 4838 * taking margin/pressure into account. 4839 * 4840 * Cases (a) and (b) are handled in the 'fits' variable already. We 4841 * just need to consider an extra check for case (c) after ensuring we 4842 * handle the case uclamp_min > uclamp_max. 4843 */ 4844 uclamp_min = min(uclamp_min, uclamp_max); 4845 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal)) 4846 return -1; 4847 4848 return fits; 4849 } 4850 4851 static inline int task_fits_cpu(struct task_struct *p, int cpu) 4852 { 4853 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 4854 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 4855 unsigned long util = task_util_est(p); 4856 /* 4857 * Return true only if the cpu fully fits the task requirements, which 4858 * include the utilization but also the performance hints. 4859 */ 4860 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 4861 } 4862 4863 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4864 { 4865 if (!sched_asym_cpucap_active()) 4866 return; 4867 4868 if (!p || p->nr_cpus_allowed == 1) { 4869 rq->misfit_task_load = 0; 4870 return; 4871 } 4872 4873 if (task_fits_cpu(p, cpu_of(rq))) { 4874 rq->misfit_task_load = 0; 4875 return; 4876 } 4877 4878 /* 4879 * Make sure that misfit_task_load will not be null even if 4880 * task_h_load() returns 0. 4881 */ 4882 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4883 } 4884 4885 #else /* CONFIG_SMP */ 4886 4887 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4888 { 4889 return true; 4890 } 4891 4892 #define UPDATE_TG 0x0 4893 #define SKIP_AGE_LOAD 0x0 4894 #define DO_ATTACH 0x0 4895 #define DO_DETACH 0x0 4896 4897 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4898 { 4899 cfs_rq_util_change(cfs_rq, 0); 4900 } 4901 4902 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4903 4904 static inline void 4905 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4906 static inline void 4907 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4908 4909 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4910 { 4911 return 0; 4912 } 4913 4914 static inline void 4915 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4916 4917 static inline void 4918 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4919 4920 static inline void 4921 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4922 bool task_sleep) {} 4923 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4924 4925 #endif /* CONFIG_SMP */ 4926 4927 static void 4928 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4929 { 4930 u64 vslice, vruntime = avg_vruntime(cfs_rq); 4931 s64 lag = 0; 4932 4933 se->slice = sysctl_sched_base_slice; 4934 vslice = calc_delta_fair(se->slice, se); 4935 4936 /* 4937 * Due to how V is constructed as the weighted average of entities, 4938 * adding tasks with positive lag, or removing tasks with negative lag 4939 * will move 'time' backwards, this can screw around with the lag of 4940 * other tasks. 4941 * 4942 * EEVDF: placement strategy #1 / #2 4943 */ 4944 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 4945 struct sched_entity *curr = cfs_rq->curr; 4946 unsigned long load; 4947 4948 lag = se->vlag; 4949 4950 /* 4951 * If we want to place a task and preserve lag, we have to 4952 * consider the effect of the new entity on the weighted 4953 * average and compensate for this, otherwise lag can quickly 4954 * evaporate. 4955 * 4956 * Lag is defined as: 4957 * 4958 * lag_i = S - s_i = w_i * (V - v_i) 4959 * 4960 * To avoid the 'w_i' term all over the place, we only track 4961 * the virtual lag: 4962 * 4963 * vl_i = V - v_i <=> v_i = V - vl_i 4964 * 4965 * And we take V to be the weighted average of all v: 4966 * 4967 * V = (\Sum w_j*v_j) / W 4968 * 4969 * Where W is: \Sum w_j 4970 * 4971 * Then, the weighted average after adding an entity with lag 4972 * vl_i is given by: 4973 * 4974 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 4975 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 4976 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 4977 * = (V*(W + w_i) - w_i*l) / (W + w_i) 4978 * = V - w_i*vl_i / (W + w_i) 4979 * 4980 * And the actual lag after adding an entity with vl_i is: 4981 * 4982 * vl'_i = V' - v_i 4983 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 4984 * = vl_i - w_i*vl_i / (W + w_i) 4985 * 4986 * Which is strictly less than vl_i. So in order to preserve lag 4987 * we should inflate the lag before placement such that the 4988 * effective lag after placement comes out right. 4989 * 4990 * As such, invert the above relation for vl'_i to get the vl_i 4991 * we need to use such that the lag after placement is the lag 4992 * we computed before dequeue. 4993 * 4994 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 4995 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 4996 * 4997 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 4998 * = W*vl_i 4999 * 5000 * vl_i = (W + w_i)*vl'_i / W 5001 */ 5002 load = cfs_rq->avg_load; 5003 if (curr && curr->on_rq) 5004 load += scale_load_down(curr->load.weight); 5005 5006 lag *= load + scale_load_down(se->load.weight); 5007 if (WARN_ON_ONCE(!load)) 5008 load = 1; 5009 lag = div_s64(lag, load); 5010 } 5011 5012 se->vruntime = vruntime - lag; 5013 5014 /* 5015 * When joining the competition; the exisiting tasks will be, 5016 * on average, halfway through their slice, as such start tasks 5017 * off with half a slice to ease into the competition. 5018 */ 5019 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5020 vslice /= 2; 5021 5022 /* 5023 * EEVDF: vd_i = ve_i + r_i/w_i 5024 */ 5025 se->deadline = se->vruntime + vslice; 5026 } 5027 5028 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5029 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5030 5031 static inline bool cfs_bandwidth_used(void); 5032 5033 static void 5034 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5035 { 5036 bool curr = cfs_rq->curr == se; 5037 5038 /* 5039 * If we're the current task, we must renormalise before calling 5040 * update_curr(). 5041 */ 5042 if (curr) 5043 place_entity(cfs_rq, se, flags); 5044 5045 update_curr(cfs_rq); 5046 5047 /* 5048 * When enqueuing a sched_entity, we must: 5049 * - Update loads to have both entity and cfs_rq synced with now. 5050 * - For group_entity, update its runnable_weight to reflect the new 5051 * h_nr_running of its group cfs_rq. 5052 * - For group_entity, update its weight to reflect the new share of 5053 * its group cfs_rq 5054 * - Add its new weight to cfs_rq->load.weight 5055 */ 5056 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5057 se_update_runnable(se); 5058 /* 5059 * XXX update_load_avg() above will have attached us to the pelt sum; 5060 * but update_cfs_group() here will re-adjust the weight and have to 5061 * undo/redo all that. Seems wasteful. 5062 */ 5063 update_cfs_group(se); 5064 5065 /* 5066 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5067 * we can place the entity. 5068 */ 5069 if (!curr) 5070 place_entity(cfs_rq, se, flags); 5071 5072 account_entity_enqueue(cfs_rq, se); 5073 5074 /* Entity has migrated, no longer consider this task hot */ 5075 if (flags & ENQUEUE_MIGRATED) 5076 se->exec_start = 0; 5077 5078 check_schedstat_required(); 5079 update_stats_enqueue_fair(cfs_rq, se, flags); 5080 if (!curr) 5081 __enqueue_entity(cfs_rq, se); 5082 se->on_rq = 1; 5083 5084 if (cfs_rq->nr_running == 1) { 5085 check_enqueue_throttle(cfs_rq); 5086 if (!throttled_hierarchy(cfs_rq)) { 5087 list_add_leaf_cfs_rq(cfs_rq); 5088 } else { 5089 #ifdef CONFIG_CFS_BANDWIDTH 5090 struct rq *rq = rq_of(cfs_rq); 5091 5092 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5093 cfs_rq->throttled_clock = rq_clock(rq); 5094 if (!cfs_rq->throttled_clock_self) 5095 cfs_rq->throttled_clock_self = rq_clock(rq); 5096 #endif 5097 } 5098 } 5099 } 5100 5101 static void __clear_buddies_next(struct sched_entity *se) 5102 { 5103 for_each_sched_entity(se) { 5104 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5105 if (cfs_rq->next != se) 5106 break; 5107 5108 cfs_rq->next = NULL; 5109 } 5110 } 5111 5112 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5113 { 5114 if (cfs_rq->next == se) 5115 __clear_buddies_next(se); 5116 } 5117 5118 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5119 5120 static void 5121 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5122 { 5123 int action = UPDATE_TG; 5124 5125 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5126 action |= DO_DETACH; 5127 5128 /* 5129 * Update run-time statistics of the 'current'. 5130 */ 5131 update_curr(cfs_rq); 5132 5133 /* 5134 * When dequeuing a sched_entity, we must: 5135 * - Update loads to have both entity and cfs_rq synced with now. 5136 * - For group_entity, update its runnable_weight to reflect the new 5137 * h_nr_running of its group cfs_rq. 5138 * - Subtract its previous weight from cfs_rq->load.weight. 5139 * - For group entity, update its weight to reflect the new share 5140 * of its group cfs_rq. 5141 */ 5142 update_load_avg(cfs_rq, se, action); 5143 se_update_runnable(se); 5144 5145 update_stats_dequeue_fair(cfs_rq, se, flags); 5146 5147 clear_buddies(cfs_rq, se); 5148 5149 update_entity_lag(cfs_rq, se); 5150 if (se != cfs_rq->curr) 5151 __dequeue_entity(cfs_rq, se); 5152 se->on_rq = 0; 5153 account_entity_dequeue(cfs_rq, se); 5154 5155 /* return excess runtime on last dequeue */ 5156 return_cfs_rq_runtime(cfs_rq); 5157 5158 update_cfs_group(se); 5159 5160 /* 5161 * Now advance min_vruntime if @se was the entity holding it back, 5162 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5163 * put back on, and if we advance min_vruntime, we'll be placed back 5164 * further than we started -- ie. we'll be penalized. 5165 */ 5166 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5167 update_min_vruntime(cfs_rq); 5168 5169 if (cfs_rq->nr_running == 0) 5170 update_idle_cfs_rq_clock_pelt(cfs_rq); 5171 } 5172 5173 static void 5174 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5175 { 5176 clear_buddies(cfs_rq, se); 5177 5178 /* 'current' is not kept within the tree. */ 5179 if (se->on_rq) { 5180 /* 5181 * Any task has to be enqueued before it get to execute on 5182 * a CPU. So account for the time it spent waiting on the 5183 * runqueue. 5184 */ 5185 update_stats_wait_end_fair(cfs_rq, se); 5186 __dequeue_entity(cfs_rq, se); 5187 update_load_avg(cfs_rq, se, UPDATE_TG); 5188 /* 5189 * HACK, stash a copy of deadline at the point of pick in vlag, 5190 * which isn't used until dequeue. 5191 */ 5192 se->vlag = se->deadline; 5193 } 5194 5195 update_stats_curr_start(cfs_rq, se); 5196 cfs_rq->curr = se; 5197 5198 /* 5199 * Track our maximum slice length, if the CPU's load is at 5200 * least twice that of our own weight (i.e. dont track it 5201 * when there are only lesser-weight tasks around): 5202 */ 5203 if (schedstat_enabled() && 5204 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5205 struct sched_statistics *stats; 5206 5207 stats = __schedstats_from_se(se); 5208 __schedstat_set(stats->slice_max, 5209 max((u64)stats->slice_max, 5210 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5211 } 5212 5213 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5214 } 5215 5216 /* 5217 * Pick the next process, keeping these things in mind, in this order: 5218 * 1) keep things fair between processes/task groups 5219 * 2) pick the "next" process, since someone really wants that to run 5220 * 3) pick the "last" process, for cache locality 5221 * 4) do not run the "skip" process, if something else is available 5222 */ 5223 static struct sched_entity * 5224 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 5225 { 5226 /* 5227 * Enabling NEXT_BUDDY will affect latency but not fairness. 5228 */ 5229 if (sched_feat(NEXT_BUDDY) && 5230 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) 5231 return cfs_rq->next; 5232 5233 return pick_eevdf(cfs_rq); 5234 } 5235 5236 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5237 5238 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5239 { 5240 /* 5241 * If still on the runqueue then deactivate_task() 5242 * was not called and update_curr() has to be done: 5243 */ 5244 if (prev->on_rq) 5245 update_curr(cfs_rq); 5246 5247 /* throttle cfs_rqs exceeding runtime */ 5248 check_cfs_rq_runtime(cfs_rq); 5249 5250 if (prev->on_rq) { 5251 update_stats_wait_start_fair(cfs_rq, prev); 5252 /* Put 'current' back into the tree. */ 5253 __enqueue_entity(cfs_rq, prev); 5254 /* in !on_rq case, update occurred at dequeue */ 5255 update_load_avg(cfs_rq, prev, 0); 5256 } 5257 cfs_rq->curr = NULL; 5258 } 5259 5260 static void 5261 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5262 { 5263 /* 5264 * Update run-time statistics of the 'current'. 5265 */ 5266 update_curr(cfs_rq); 5267 5268 /* 5269 * Ensure that runnable average is periodically updated. 5270 */ 5271 update_load_avg(cfs_rq, curr, UPDATE_TG); 5272 update_cfs_group(curr); 5273 5274 #ifdef CONFIG_SCHED_HRTICK 5275 /* 5276 * queued ticks are scheduled to match the slice, so don't bother 5277 * validating it and just reschedule. 5278 */ 5279 if (queued) { 5280 resched_curr(rq_of(cfs_rq)); 5281 return; 5282 } 5283 /* 5284 * don't let the period tick interfere with the hrtick preemption 5285 */ 5286 if (!sched_feat(DOUBLE_TICK) && 5287 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5288 return; 5289 #endif 5290 } 5291 5292 5293 /************************************************** 5294 * CFS bandwidth control machinery 5295 */ 5296 5297 #ifdef CONFIG_CFS_BANDWIDTH 5298 5299 #ifdef CONFIG_JUMP_LABEL 5300 static struct static_key __cfs_bandwidth_used; 5301 5302 static inline bool cfs_bandwidth_used(void) 5303 { 5304 return static_key_false(&__cfs_bandwidth_used); 5305 } 5306 5307 void cfs_bandwidth_usage_inc(void) 5308 { 5309 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5310 } 5311 5312 void cfs_bandwidth_usage_dec(void) 5313 { 5314 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5315 } 5316 #else /* CONFIG_JUMP_LABEL */ 5317 static bool cfs_bandwidth_used(void) 5318 { 5319 return true; 5320 } 5321 5322 void cfs_bandwidth_usage_inc(void) {} 5323 void cfs_bandwidth_usage_dec(void) {} 5324 #endif /* CONFIG_JUMP_LABEL */ 5325 5326 /* 5327 * default period for cfs group bandwidth. 5328 * default: 0.1s, units: nanoseconds 5329 */ 5330 static inline u64 default_cfs_period(void) 5331 { 5332 return 100000000ULL; 5333 } 5334 5335 static inline u64 sched_cfs_bandwidth_slice(void) 5336 { 5337 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5338 } 5339 5340 /* 5341 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5342 * directly instead of rq->clock to avoid adding additional synchronization 5343 * around rq->lock. 5344 * 5345 * requires cfs_b->lock 5346 */ 5347 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5348 { 5349 s64 runtime; 5350 5351 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5352 return; 5353 5354 cfs_b->runtime += cfs_b->quota; 5355 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5356 if (runtime > 0) { 5357 cfs_b->burst_time += runtime; 5358 cfs_b->nr_burst++; 5359 } 5360 5361 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5362 cfs_b->runtime_snap = cfs_b->runtime; 5363 } 5364 5365 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5366 { 5367 return &tg->cfs_bandwidth; 5368 } 5369 5370 /* returns 0 on failure to allocate runtime */ 5371 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5372 struct cfs_rq *cfs_rq, u64 target_runtime) 5373 { 5374 u64 min_amount, amount = 0; 5375 5376 lockdep_assert_held(&cfs_b->lock); 5377 5378 /* note: this is a positive sum as runtime_remaining <= 0 */ 5379 min_amount = target_runtime - cfs_rq->runtime_remaining; 5380 5381 if (cfs_b->quota == RUNTIME_INF) 5382 amount = min_amount; 5383 else { 5384 start_cfs_bandwidth(cfs_b); 5385 5386 if (cfs_b->runtime > 0) { 5387 amount = min(cfs_b->runtime, min_amount); 5388 cfs_b->runtime -= amount; 5389 cfs_b->idle = 0; 5390 } 5391 } 5392 5393 cfs_rq->runtime_remaining += amount; 5394 5395 return cfs_rq->runtime_remaining > 0; 5396 } 5397 5398 /* returns 0 on failure to allocate runtime */ 5399 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5400 { 5401 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5402 int ret; 5403 5404 raw_spin_lock(&cfs_b->lock); 5405 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5406 raw_spin_unlock(&cfs_b->lock); 5407 5408 return ret; 5409 } 5410 5411 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5412 { 5413 /* dock delta_exec before expiring quota (as it could span periods) */ 5414 cfs_rq->runtime_remaining -= delta_exec; 5415 5416 if (likely(cfs_rq->runtime_remaining > 0)) 5417 return; 5418 5419 if (cfs_rq->throttled) 5420 return; 5421 /* 5422 * if we're unable to extend our runtime we resched so that the active 5423 * hierarchy can be throttled 5424 */ 5425 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5426 resched_curr(rq_of(cfs_rq)); 5427 } 5428 5429 static __always_inline 5430 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5431 { 5432 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5433 return; 5434 5435 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5436 } 5437 5438 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5439 { 5440 return cfs_bandwidth_used() && cfs_rq->throttled; 5441 } 5442 5443 /* check whether cfs_rq, or any parent, is throttled */ 5444 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5445 { 5446 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5447 } 5448 5449 /* 5450 * Ensure that neither of the group entities corresponding to src_cpu or 5451 * dest_cpu are members of a throttled hierarchy when performing group 5452 * load-balance operations. 5453 */ 5454 static inline int throttled_lb_pair(struct task_group *tg, 5455 int src_cpu, int dest_cpu) 5456 { 5457 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5458 5459 src_cfs_rq = tg->cfs_rq[src_cpu]; 5460 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5461 5462 return throttled_hierarchy(src_cfs_rq) || 5463 throttled_hierarchy(dest_cfs_rq); 5464 } 5465 5466 static int tg_unthrottle_up(struct task_group *tg, void *data) 5467 { 5468 struct rq *rq = data; 5469 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5470 5471 cfs_rq->throttle_count--; 5472 if (!cfs_rq->throttle_count) { 5473 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5474 cfs_rq->throttled_clock_pelt; 5475 5476 /* Add cfs_rq with load or one or more already running entities to the list */ 5477 if (!cfs_rq_is_decayed(cfs_rq)) 5478 list_add_leaf_cfs_rq(cfs_rq); 5479 5480 if (cfs_rq->throttled_clock_self) { 5481 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5482 5483 cfs_rq->throttled_clock_self = 0; 5484 5485 if (SCHED_WARN_ON((s64)delta < 0)) 5486 delta = 0; 5487 5488 cfs_rq->throttled_clock_self_time += delta; 5489 } 5490 } 5491 5492 return 0; 5493 } 5494 5495 static int tg_throttle_down(struct task_group *tg, void *data) 5496 { 5497 struct rq *rq = data; 5498 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5499 5500 /* group is entering throttled state, stop time */ 5501 if (!cfs_rq->throttle_count) { 5502 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5503 list_del_leaf_cfs_rq(cfs_rq); 5504 5505 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5506 if (cfs_rq->nr_running) 5507 cfs_rq->throttled_clock_self = rq_clock(rq); 5508 } 5509 cfs_rq->throttle_count++; 5510 5511 return 0; 5512 } 5513 5514 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5515 { 5516 struct rq *rq = rq_of(cfs_rq); 5517 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5518 struct sched_entity *se; 5519 long task_delta, idle_task_delta, dequeue = 1; 5520 5521 raw_spin_lock(&cfs_b->lock); 5522 /* This will start the period timer if necessary */ 5523 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5524 /* 5525 * We have raced with bandwidth becoming available, and if we 5526 * actually throttled the timer might not unthrottle us for an 5527 * entire period. We additionally needed to make sure that any 5528 * subsequent check_cfs_rq_runtime calls agree not to throttle 5529 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5530 * for 1ns of runtime rather than just check cfs_b. 5531 */ 5532 dequeue = 0; 5533 } else { 5534 list_add_tail_rcu(&cfs_rq->throttled_list, 5535 &cfs_b->throttled_cfs_rq); 5536 } 5537 raw_spin_unlock(&cfs_b->lock); 5538 5539 if (!dequeue) 5540 return false; /* Throttle no longer required. */ 5541 5542 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5543 5544 /* freeze hierarchy runnable averages while throttled */ 5545 rcu_read_lock(); 5546 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5547 rcu_read_unlock(); 5548 5549 task_delta = cfs_rq->h_nr_running; 5550 idle_task_delta = cfs_rq->idle_h_nr_running; 5551 for_each_sched_entity(se) { 5552 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5553 /* throttled entity or throttle-on-deactivate */ 5554 if (!se->on_rq) 5555 goto done; 5556 5557 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5558 5559 if (cfs_rq_is_idle(group_cfs_rq(se))) 5560 idle_task_delta = cfs_rq->h_nr_running; 5561 5562 qcfs_rq->h_nr_running -= task_delta; 5563 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5564 5565 if (qcfs_rq->load.weight) { 5566 /* Avoid re-evaluating load for this entity: */ 5567 se = parent_entity(se); 5568 break; 5569 } 5570 } 5571 5572 for_each_sched_entity(se) { 5573 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5574 /* throttled entity or throttle-on-deactivate */ 5575 if (!se->on_rq) 5576 goto done; 5577 5578 update_load_avg(qcfs_rq, se, 0); 5579 se_update_runnable(se); 5580 5581 if (cfs_rq_is_idle(group_cfs_rq(se))) 5582 idle_task_delta = cfs_rq->h_nr_running; 5583 5584 qcfs_rq->h_nr_running -= task_delta; 5585 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5586 } 5587 5588 /* At this point se is NULL and we are at root level*/ 5589 sub_nr_running(rq, task_delta); 5590 5591 done: 5592 /* 5593 * Note: distribution will already see us throttled via the 5594 * throttled-list. rq->lock protects completion. 5595 */ 5596 cfs_rq->throttled = 1; 5597 SCHED_WARN_ON(cfs_rq->throttled_clock); 5598 if (cfs_rq->nr_running) 5599 cfs_rq->throttled_clock = rq_clock(rq); 5600 return true; 5601 } 5602 5603 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5604 { 5605 struct rq *rq = rq_of(cfs_rq); 5606 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5607 struct sched_entity *se; 5608 long task_delta, idle_task_delta; 5609 5610 se = cfs_rq->tg->se[cpu_of(rq)]; 5611 5612 cfs_rq->throttled = 0; 5613 5614 update_rq_clock(rq); 5615 5616 raw_spin_lock(&cfs_b->lock); 5617 if (cfs_rq->throttled_clock) { 5618 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5619 cfs_rq->throttled_clock = 0; 5620 } 5621 list_del_rcu(&cfs_rq->throttled_list); 5622 raw_spin_unlock(&cfs_b->lock); 5623 5624 /* update hierarchical throttle state */ 5625 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5626 5627 if (!cfs_rq->load.weight) { 5628 if (!cfs_rq->on_list) 5629 return; 5630 /* 5631 * Nothing to run but something to decay (on_list)? 5632 * Complete the branch. 5633 */ 5634 for_each_sched_entity(se) { 5635 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5636 break; 5637 } 5638 goto unthrottle_throttle; 5639 } 5640 5641 task_delta = cfs_rq->h_nr_running; 5642 idle_task_delta = cfs_rq->idle_h_nr_running; 5643 for_each_sched_entity(se) { 5644 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5645 5646 if (se->on_rq) 5647 break; 5648 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5649 5650 if (cfs_rq_is_idle(group_cfs_rq(se))) 5651 idle_task_delta = cfs_rq->h_nr_running; 5652 5653 qcfs_rq->h_nr_running += task_delta; 5654 qcfs_rq->idle_h_nr_running += idle_task_delta; 5655 5656 /* end evaluation on encountering a throttled cfs_rq */ 5657 if (cfs_rq_throttled(qcfs_rq)) 5658 goto unthrottle_throttle; 5659 } 5660 5661 for_each_sched_entity(se) { 5662 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5663 5664 update_load_avg(qcfs_rq, se, UPDATE_TG); 5665 se_update_runnable(se); 5666 5667 if (cfs_rq_is_idle(group_cfs_rq(se))) 5668 idle_task_delta = cfs_rq->h_nr_running; 5669 5670 qcfs_rq->h_nr_running += task_delta; 5671 qcfs_rq->idle_h_nr_running += idle_task_delta; 5672 5673 /* end evaluation on encountering a throttled cfs_rq */ 5674 if (cfs_rq_throttled(qcfs_rq)) 5675 goto unthrottle_throttle; 5676 } 5677 5678 /* At this point se is NULL and we are at root level*/ 5679 add_nr_running(rq, task_delta); 5680 5681 unthrottle_throttle: 5682 assert_list_leaf_cfs_rq(rq); 5683 5684 /* Determine whether we need to wake up potentially idle CPU: */ 5685 if (rq->curr == rq->idle && rq->cfs.nr_running) 5686 resched_curr(rq); 5687 } 5688 5689 #ifdef CONFIG_SMP 5690 static void __cfsb_csd_unthrottle(void *arg) 5691 { 5692 struct cfs_rq *cursor, *tmp; 5693 struct rq *rq = arg; 5694 struct rq_flags rf; 5695 5696 rq_lock(rq, &rf); 5697 5698 /* 5699 * Iterating over the list can trigger several call to 5700 * update_rq_clock() in unthrottle_cfs_rq(). 5701 * Do it once and skip the potential next ones. 5702 */ 5703 update_rq_clock(rq); 5704 rq_clock_start_loop_update(rq); 5705 5706 /* 5707 * Since we hold rq lock we're safe from concurrent manipulation of 5708 * the CSD list. However, this RCU critical section annotates the 5709 * fact that we pair with sched_free_group_rcu(), so that we cannot 5710 * race with group being freed in the window between removing it 5711 * from the list and advancing to the next entry in the list. 5712 */ 5713 rcu_read_lock(); 5714 5715 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5716 throttled_csd_list) { 5717 list_del_init(&cursor->throttled_csd_list); 5718 5719 if (cfs_rq_throttled(cursor)) 5720 unthrottle_cfs_rq(cursor); 5721 } 5722 5723 rcu_read_unlock(); 5724 5725 rq_clock_stop_loop_update(rq); 5726 rq_unlock(rq, &rf); 5727 } 5728 5729 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5730 { 5731 struct rq *rq = rq_of(cfs_rq); 5732 bool first; 5733 5734 if (rq == this_rq()) { 5735 unthrottle_cfs_rq(cfs_rq); 5736 return; 5737 } 5738 5739 /* Already enqueued */ 5740 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5741 return; 5742 5743 first = list_empty(&rq->cfsb_csd_list); 5744 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5745 if (first) 5746 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5747 } 5748 #else 5749 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5750 { 5751 unthrottle_cfs_rq(cfs_rq); 5752 } 5753 #endif 5754 5755 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5756 { 5757 lockdep_assert_rq_held(rq_of(cfs_rq)); 5758 5759 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 5760 cfs_rq->runtime_remaining <= 0)) 5761 return; 5762 5763 __unthrottle_cfs_rq_async(cfs_rq); 5764 } 5765 5766 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5767 { 5768 struct cfs_rq *local_unthrottle = NULL; 5769 int this_cpu = smp_processor_id(); 5770 u64 runtime, remaining = 1; 5771 bool throttled = false; 5772 struct cfs_rq *cfs_rq; 5773 struct rq_flags rf; 5774 struct rq *rq; 5775 5776 rcu_read_lock(); 5777 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5778 throttled_list) { 5779 rq = rq_of(cfs_rq); 5780 5781 if (!remaining) { 5782 throttled = true; 5783 break; 5784 } 5785 5786 rq_lock_irqsave(rq, &rf); 5787 if (!cfs_rq_throttled(cfs_rq)) 5788 goto next; 5789 5790 #ifdef CONFIG_SMP 5791 /* Already queued for async unthrottle */ 5792 if (!list_empty(&cfs_rq->throttled_csd_list)) 5793 goto next; 5794 #endif 5795 5796 /* By the above checks, this should never be true */ 5797 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5798 5799 raw_spin_lock(&cfs_b->lock); 5800 runtime = -cfs_rq->runtime_remaining + 1; 5801 if (runtime > cfs_b->runtime) 5802 runtime = cfs_b->runtime; 5803 cfs_b->runtime -= runtime; 5804 remaining = cfs_b->runtime; 5805 raw_spin_unlock(&cfs_b->lock); 5806 5807 cfs_rq->runtime_remaining += runtime; 5808 5809 /* we check whether we're throttled above */ 5810 if (cfs_rq->runtime_remaining > 0) { 5811 if (cpu_of(rq) != this_cpu || 5812 SCHED_WARN_ON(local_unthrottle)) 5813 unthrottle_cfs_rq_async(cfs_rq); 5814 else 5815 local_unthrottle = cfs_rq; 5816 } else { 5817 throttled = true; 5818 } 5819 5820 next: 5821 rq_unlock_irqrestore(rq, &rf); 5822 } 5823 rcu_read_unlock(); 5824 5825 if (local_unthrottle) { 5826 rq = cpu_rq(this_cpu); 5827 rq_lock_irqsave(rq, &rf); 5828 if (cfs_rq_throttled(local_unthrottle)) 5829 unthrottle_cfs_rq(local_unthrottle); 5830 rq_unlock_irqrestore(rq, &rf); 5831 } 5832 5833 return throttled; 5834 } 5835 5836 /* 5837 * Responsible for refilling a task_group's bandwidth and unthrottling its 5838 * cfs_rqs as appropriate. If there has been no activity within the last 5839 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5840 * used to track this state. 5841 */ 5842 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5843 { 5844 int throttled; 5845 5846 /* no need to continue the timer with no bandwidth constraint */ 5847 if (cfs_b->quota == RUNTIME_INF) 5848 goto out_deactivate; 5849 5850 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5851 cfs_b->nr_periods += overrun; 5852 5853 /* Refill extra burst quota even if cfs_b->idle */ 5854 __refill_cfs_bandwidth_runtime(cfs_b); 5855 5856 /* 5857 * idle depends on !throttled (for the case of a large deficit), and if 5858 * we're going inactive then everything else can be deferred 5859 */ 5860 if (cfs_b->idle && !throttled) 5861 goto out_deactivate; 5862 5863 if (!throttled) { 5864 /* mark as potentially idle for the upcoming period */ 5865 cfs_b->idle = 1; 5866 return 0; 5867 } 5868 5869 /* account preceding periods in which throttling occurred */ 5870 cfs_b->nr_throttled += overrun; 5871 5872 /* 5873 * This check is repeated as we release cfs_b->lock while we unthrottle. 5874 */ 5875 while (throttled && cfs_b->runtime > 0) { 5876 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5877 /* we can't nest cfs_b->lock while distributing bandwidth */ 5878 throttled = distribute_cfs_runtime(cfs_b); 5879 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5880 } 5881 5882 /* 5883 * While we are ensured activity in the period following an 5884 * unthrottle, this also covers the case in which the new bandwidth is 5885 * insufficient to cover the existing bandwidth deficit. (Forcing the 5886 * timer to remain active while there are any throttled entities.) 5887 */ 5888 cfs_b->idle = 0; 5889 5890 return 0; 5891 5892 out_deactivate: 5893 return 1; 5894 } 5895 5896 /* a cfs_rq won't donate quota below this amount */ 5897 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5898 /* minimum remaining period time to redistribute slack quota */ 5899 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5900 /* how long we wait to gather additional slack before distributing */ 5901 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5902 5903 /* 5904 * Are we near the end of the current quota period? 5905 * 5906 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5907 * hrtimer base being cleared by hrtimer_start. In the case of 5908 * migrate_hrtimers, base is never cleared, so we are fine. 5909 */ 5910 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5911 { 5912 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5913 s64 remaining; 5914 5915 /* if the call-back is running a quota refresh is already occurring */ 5916 if (hrtimer_callback_running(refresh_timer)) 5917 return 1; 5918 5919 /* is a quota refresh about to occur? */ 5920 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5921 if (remaining < (s64)min_expire) 5922 return 1; 5923 5924 return 0; 5925 } 5926 5927 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5928 { 5929 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5930 5931 /* if there's a quota refresh soon don't bother with slack */ 5932 if (runtime_refresh_within(cfs_b, min_left)) 5933 return; 5934 5935 /* don't push forwards an existing deferred unthrottle */ 5936 if (cfs_b->slack_started) 5937 return; 5938 cfs_b->slack_started = true; 5939 5940 hrtimer_start(&cfs_b->slack_timer, 5941 ns_to_ktime(cfs_bandwidth_slack_period), 5942 HRTIMER_MODE_REL); 5943 } 5944 5945 /* we know any runtime found here is valid as update_curr() precedes return */ 5946 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5947 { 5948 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5949 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5950 5951 if (slack_runtime <= 0) 5952 return; 5953 5954 raw_spin_lock(&cfs_b->lock); 5955 if (cfs_b->quota != RUNTIME_INF) { 5956 cfs_b->runtime += slack_runtime; 5957 5958 /* we are under rq->lock, defer unthrottling using a timer */ 5959 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5960 !list_empty(&cfs_b->throttled_cfs_rq)) 5961 start_cfs_slack_bandwidth(cfs_b); 5962 } 5963 raw_spin_unlock(&cfs_b->lock); 5964 5965 /* even if it's not valid for return we don't want to try again */ 5966 cfs_rq->runtime_remaining -= slack_runtime; 5967 } 5968 5969 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5970 { 5971 if (!cfs_bandwidth_used()) 5972 return; 5973 5974 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5975 return; 5976 5977 __return_cfs_rq_runtime(cfs_rq); 5978 } 5979 5980 /* 5981 * This is done with a timer (instead of inline with bandwidth return) since 5982 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5983 */ 5984 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5985 { 5986 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5987 unsigned long flags; 5988 5989 /* confirm we're still not at a refresh boundary */ 5990 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5991 cfs_b->slack_started = false; 5992 5993 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5994 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5995 return; 5996 } 5997 5998 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5999 runtime = cfs_b->runtime; 6000 6001 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6002 6003 if (!runtime) 6004 return; 6005 6006 distribute_cfs_runtime(cfs_b); 6007 } 6008 6009 /* 6010 * When a group wakes up we want to make sure that its quota is not already 6011 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6012 * runtime as update_curr() throttling can not trigger until it's on-rq. 6013 */ 6014 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6015 { 6016 if (!cfs_bandwidth_used()) 6017 return; 6018 6019 /* an active group must be handled by the update_curr()->put() path */ 6020 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6021 return; 6022 6023 /* ensure the group is not already throttled */ 6024 if (cfs_rq_throttled(cfs_rq)) 6025 return; 6026 6027 /* update runtime allocation */ 6028 account_cfs_rq_runtime(cfs_rq, 0); 6029 if (cfs_rq->runtime_remaining <= 0) 6030 throttle_cfs_rq(cfs_rq); 6031 } 6032 6033 static void sync_throttle(struct task_group *tg, int cpu) 6034 { 6035 struct cfs_rq *pcfs_rq, *cfs_rq; 6036 6037 if (!cfs_bandwidth_used()) 6038 return; 6039 6040 if (!tg->parent) 6041 return; 6042 6043 cfs_rq = tg->cfs_rq[cpu]; 6044 pcfs_rq = tg->parent->cfs_rq[cpu]; 6045 6046 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6047 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6048 } 6049 6050 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6051 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6052 { 6053 if (!cfs_bandwidth_used()) 6054 return false; 6055 6056 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6057 return false; 6058 6059 /* 6060 * it's possible for a throttled entity to be forced into a running 6061 * state (e.g. set_curr_task), in this case we're finished. 6062 */ 6063 if (cfs_rq_throttled(cfs_rq)) 6064 return true; 6065 6066 return throttle_cfs_rq(cfs_rq); 6067 } 6068 6069 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6070 { 6071 struct cfs_bandwidth *cfs_b = 6072 container_of(timer, struct cfs_bandwidth, slack_timer); 6073 6074 do_sched_cfs_slack_timer(cfs_b); 6075 6076 return HRTIMER_NORESTART; 6077 } 6078 6079 extern const u64 max_cfs_quota_period; 6080 6081 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6082 { 6083 struct cfs_bandwidth *cfs_b = 6084 container_of(timer, struct cfs_bandwidth, period_timer); 6085 unsigned long flags; 6086 int overrun; 6087 int idle = 0; 6088 int count = 0; 6089 6090 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6091 for (;;) { 6092 overrun = hrtimer_forward_now(timer, cfs_b->period); 6093 if (!overrun) 6094 break; 6095 6096 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6097 6098 if (++count > 3) { 6099 u64 new, old = ktime_to_ns(cfs_b->period); 6100 6101 /* 6102 * Grow period by a factor of 2 to avoid losing precision. 6103 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6104 * to fail. 6105 */ 6106 new = old * 2; 6107 if (new < max_cfs_quota_period) { 6108 cfs_b->period = ns_to_ktime(new); 6109 cfs_b->quota *= 2; 6110 cfs_b->burst *= 2; 6111 6112 pr_warn_ratelimited( 6113 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6114 smp_processor_id(), 6115 div_u64(new, NSEC_PER_USEC), 6116 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6117 } else { 6118 pr_warn_ratelimited( 6119 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6120 smp_processor_id(), 6121 div_u64(old, NSEC_PER_USEC), 6122 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6123 } 6124 6125 /* reset count so we don't come right back in here */ 6126 count = 0; 6127 } 6128 } 6129 if (idle) 6130 cfs_b->period_active = 0; 6131 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6132 6133 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6134 } 6135 6136 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6137 { 6138 raw_spin_lock_init(&cfs_b->lock); 6139 cfs_b->runtime = 0; 6140 cfs_b->quota = RUNTIME_INF; 6141 cfs_b->period = ns_to_ktime(default_cfs_period()); 6142 cfs_b->burst = 0; 6143 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6144 6145 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6146 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6147 cfs_b->period_timer.function = sched_cfs_period_timer; 6148 6149 /* Add a random offset so that timers interleave */ 6150 hrtimer_set_expires(&cfs_b->period_timer, 6151 get_random_u32_below(cfs_b->period)); 6152 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6153 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6154 cfs_b->slack_started = false; 6155 } 6156 6157 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6158 { 6159 cfs_rq->runtime_enabled = 0; 6160 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6161 #ifdef CONFIG_SMP 6162 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6163 #endif 6164 } 6165 6166 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6167 { 6168 lockdep_assert_held(&cfs_b->lock); 6169 6170 if (cfs_b->period_active) 6171 return; 6172 6173 cfs_b->period_active = 1; 6174 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6175 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6176 } 6177 6178 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6179 { 6180 int __maybe_unused i; 6181 6182 /* init_cfs_bandwidth() was not called */ 6183 if (!cfs_b->throttled_cfs_rq.next) 6184 return; 6185 6186 hrtimer_cancel(&cfs_b->period_timer); 6187 hrtimer_cancel(&cfs_b->slack_timer); 6188 6189 /* 6190 * It is possible that we still have some cfs_rq's pending on a CSD 6191 * list, though this race is very rare. In order for this to occur, we 6192 * must have raced with the last task leaving the group while there 6193 * exist throttled cfs_rq(s), and the period_timer must have queued the 6194 * CSD item but the remote cpu has not yet processed it. To handle this, 6195 * we can simply flush all pending CSD work inline here. We're 6196 * guaranteed at this point that no additional cfs_rq of this group can 6197 * join a CSD list. 6198 */ 6199 #ifdef CONFIG_SMP 6200 for_each_possible_cpu(i) { 6201 struct rq *rq = cpu_rq(i); 6202 unsigned long flags; 6203 6204 if (list_empty(&rq->cfsb_csd_list)) 6205 continue; 6206 6207 local_irq_save(flags); 6208 __cfsb_csd_unthrottle(rq); 6209 local_irq_restore(flags); 6210 } 6211 #endif 6212 } 6213 6214 /* 6215 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6216 * 6217 * The race is harmless, since modifying bandwidth settings of unhooked group 6218 * bits doesn't do much. 6219 */ 6220 6221 /* cpu online callback */ 6222 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6223 { 6224 struct task_group *tg; 6225 6226 lockdep_assert_rq_held(rq); 6227 6228 rcu_read_lock(); 6229 list_for_each_entry_rcu(tg, &task_groups, list) { 6230 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6231 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6232 6233 raw_spin_lock(&cfs_b->lock); 6234 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6235 raw_spin_unlock(&cfs_b->lock); 6236 } 6237 rcu_read_unlock(); 6238 } 6239 6240 /* cpu offline callback */ 6241 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6242 { 6243 struct task_group *tg; 6244 6245 lockdep_assert_rq_held(rq); 6246 6247 /* 6248 * The rq clock has already been updated in the 6249 * set_rq_offline(), so we should skip updating 6250 * the rq clock again in unthrottle_cfs_rq(). 6251 */ 6252 rq_clock_start_loop_update(rq); 6253 6254 rcu_read_lock(); 6255 list_for_each_entry_rcu(tg, &task_groups, list) { 6256 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6257 6258 if (!cfs_rq->runtime_enabled) 6259 continue; 6260 6261 /* 6262 * clock_task is not advancing so we just need to make sure 6263 * there's some valid quota amount 6264 */ 6265 cfs_rq->runtime_remaining = 1; 6266 /* 6267 * Offline rq is schedulable till CPU is completely disabled 6268 * in take_cpu_down(), so we prevent new cfs throttling here. 6269 */ 6270 cfs_rq->runtime_enabled = 0; 6271 6272 if (cfs_rq_throttled(cfs_rq)) 6273 unthrottle_cfs_rq(cfs_rq); 6274 } 6275 rcu_read_unlock(); 6276 6277 rq_clock_stop_loop_update(rq); 6278 } 6279 6280 bool cfs_task_bw_constrained(struct task_struct *p) 6281 { 6282 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6283 6284 if (!cfs_bandwidth_used()) 6285 return false; 6286 6287 if (cfs_rq->runtime_enabled || 6288 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6289 return true; 6290 6291 return false; 6292 } 6293 6294 #ifdef CONFIG_NO_HZ_FULL 6295 /* called from pick_next_task_fair() */ 6296 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6297 { 6298 int cpu = cpu_of(rq); 6299 6300 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used()) 6301 return; 6302 6303 if (!tick_nohz_full_cpu(cpu)) 6304 return; 6305 6306 if (rq->nr_running != 1) 6307 return; 6308 6309 /* 6310 * We know there is only one task runnable and we've just picked it. The 6311 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6312 * be otherwise able to stop the tick. Just need to check if we are using 6313 * bandwidth control. 6314 */ 6315 if (cfs_task_bw_constrained(p)) 6316 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6317 } 6318 #endif 6319 6320 #else /* CONFIG_CFS_BANDWIDTH */ 6321 6322 static inline bool cfs_bandwidth_used(void) 6323 { 6324 return false; 6325 } 6326 6327 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6328 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6329 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6330 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6331 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6332 6333 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6334 { 6335 return 0; 6336 } 6337 6338 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6339 { 6340 return 0; 6341 } 6342 6343 static inline int throttled_lb_pair(struct task_group *tg, 6344 int src_cpu, int dest_cpu) 6345 { 6346 return 0; 6347 } 6348 6349 #ifdef CONFIG_FAIR_GROUP_SCHED 6350 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6351 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6352 #endif 6353 6354 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6355 { 6356 return NULL; 6357 } 6358 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6359 static inline void update_runtime_enabled(struct rq *rq) {} 6360 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6361 #ifdef CONFIG_CGROUP_SCHED 6362 bool cfs_task_bw_constrained(struct task_struct *p) 6363 { 6364 return false; 6365 } 6366 #endif 6367 #endif /* CONFIG_CFS_BANDWIDTH */ 6368 6369 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6370 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6371 #endif 6372 6373 /************************************************** 6374 * CFS operations on tasks: 6375 */ 6376 6377 #ifdef CONFIG_SCHED_HRTICK 6378 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6379 { 6380 struct sched_entity *se = &p->se; 6381 6382 SCHED_WARN_ON(task_rq(p) != rq); 6383 6384 if (rq->cfs.h_nr_running > 1) { 6385 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6386 u64 slice = se->slice; 6387 s64 delta = slice - ran; 6388 6389 if (delta < 0) { 6390 if (task_current(rq, p)) 6391 resched_curr(rq); 6392 return; 6393 } 6394 hrtick_start(rq, delta); 6395 } 6396 } 6397 6398 /* 6399 * called from enqueue/dequeue and updates the hrtick when the 6400 * current task is from our class and nr_running is low enough 6401 * to matter. 6402 */ 6403 static void hrtick_update(struct rq *rq) 6404 { 6405 struct task_struct *curr = rq->curr; 6406 6407 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6408 return; 6409 6410 hrtick_start_fair(rq, curr); 6411 } 6412 #else /* !CONFIG_SCHED_HRTICK */ 6413 static inline void 6414 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6415 { 6416 } 6417 6418 static inline void hrtick_update(struct rq *rq) 6419 { 6420 } 6421 #endif 6422 6423 #ifdef CONFIG_SMP 6424 static inline bool cpu_overutilized(int cpu) 6425 { 6426 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6427 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6428 6429 /* Return true only if the utilization doesn't fit CPU's capacity */ 6430 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6431 } 6432 6433 static inline void update_overutilized_status(struct rq *rq) 6434 { 6435 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 6436 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 6437 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 6438 } 6439 } 6440 #else 6441 static inline void update_overutilized_status(struct rq *rq) { } 6442 #endif 6443 6444 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6445 static int sched_idle_rq(struct rq *rq) 6446 { 6447 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6448 rq->nr_running); 6449 } 6450 6451 #ifdef CONFIG_SMP 6452 static int sched_idle_cpu(int cpu) 6453 { 6454 return sched_idle_rq(cpu_rq(cpu)); 6455 } 6456 #endif 6457 6458 /* 6459 * The enqueue_task method is called before nr_running is 6460 * increased. Here we update the fair scheduling stats and 6461 * then put the task into the rbtree: 6462 */ 6463 static void 6464 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6465 { 6466 struct cfs_rq *cfs_rq; 6467 struct sched_entity *se = &p->se; 6468 int idle_h_nr_running = task_has_idle_policy(p); 6469 int task_new = !(flags & ENQUEUE_WAKEUP); 6470 6471 /* 6472 * The code below (indirectly) updates schedutil which looks at 6473 * the cfs_rq utilization to select a frequency. 6474 * Let's add the task's estimated utilization to the cfs_rq's 6475 * estimated utilization, before we update schedutil. 6476 */ 6477 util_est_enqueue(&rq->cfs, p); 6478 6479 /* 6480 * If in_iowait is set, the code below may not trigger any cpufreq 6481 * utilization updates, so do it here explicitly with the IOWAIT flag 6482 * passed. 6483 */ 6484 if (p->in_iowait) 6485 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6486 6487 for_each_sched_entity(se) { 6488 if (se->on_rq) 6489 break; 6490 cfs_rq = cfs_rq_of(se); 6491 enqueue_entity(cfs_rq, se, flags); 6492 6493 cfs_rq->h_nr_running++; 6494 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6495 6496 if (cfs_rq_is_idle(cfs_rq)) 6497 idle_h_nr_running = 1; 6498 6499 /* end evaluation on encountering a throttled cfs_rq */ 6500 if (cfs_rq_throttled(cfs_rq)) 6501 goto enqueue_throttle; 6502 6503 flags = ENQUEUE_WAKEUP; 6504 } 6505 6506 for_each_sched_entity(se) { 6507 cfs_rq = cfs_rq_of(se); 6508 6509 update_load_avg(cfs_rq, se, UPDATE_TG); 6510 se_update_runnable(se); 6511 update_cfs_group(se); 6512 6513 cfs_rq->h_nr_running++; 6514 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6515 6516 if (cfs_rq_is_idle(cfs_rq)) 6517 idle_h_nr_running = 1; 6518 6519 /* end evaluation on encountering a throttled cfs_rq */ 6520 if (cfs_rq_throttled(cfs_rq)) 6521 goto enqueue_throttle; 6522 } 6523 6524 /* At this point se is NULL and we are at root level*/ 6525 add_nr_running(rq, 1); 6526 6527 /* 6528 * Since new tasks are assigned an initial util_avg equal to 6529 * half of the spare capacity of their CPU, tiny tasks have the 6530 * ability to cross the overutilized threshold, which will 6531 * result in the load balancer ruining all the task placement 6532 * done by EAS. As a way to mitigate that effect, do not account 6533 * for the first enqueue operation of new tasks during the 6534 * overutilized flag detection. 6535 * 6536 * A better way of solving this problem would be to wait for 6537 * the PELT signals of tasks to converge before taking them 6538 * into account, but that is not straightforward to implement, 6539 * and the following generally works well enough in practice. 6540 */ 6541 if (!task_new) 6542 update_overutilized_status(rq); 6543 6544 enqueue_throttle: 6545 assert_list_leaf_cfs_rq(rq); 6546 6547 hrtick_update(rq); 6548 } 6549 6550 static void set_next_buddy(struct sched_entity *se); 6551 6552 /* 6553 * The dequeue_task method is called before nr_running is 6554 * decreased. We remove the task from the rbtree and 6555 * update the fair scheduling stats: 6556 */ 6557 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6558 { 6559 struct cfs_rq *cfs_rq; 6560 struct sched_entity *se = &p->se; 6561 int task_sleep = flags & DEQUEUE_SLEEP; 6562 int idle_h_nr_running = task_has_idle_policy(p); 6563 bool was_sched_idle = sched_idle_rq(rq); 6564 6565 util_est_dequeue(&rq->cfs, p); 6566 6567 for_each_sched_entity(se) { 6568 cfs_rq = cfs_rq_of(se); 6569 dequeue_entity(cfs_rq, se, flags); 6570 6571 cfs_rq->h_nr_running--; 6572 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6573 6574 if (cfs_rq_is_idle(cfs_rq)) 6575 idle_h_nr_running = 1; 6576 6577 /* end evaluation on encountering a throttled cfs_rq */ 6578 if (cfs_rq_throttled(cfs_rq)) 6579 goto dequeue_throttle; 6580 6581 /* Don't dequeue parent if it has other entities besides us */ 6582 if (cfs_rq->load.weight) { 6583 /* Avoid re-evaluating load for this entity: */ 6584 se = parent_entity(se); 6585 /* 6586 * Bias pick_next to pick a task from this cfs_rq, as 6587 * p is sleeping when it is within its sched_slice. 6588 */ 6589 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6590 set_next_buddy(se); 6591 break; 6592 } 6593 flags |= DEQUEUE_SLEEP; 6594 } 6595 6596 for_each_sched_entity(se) { 6597 cfs_rq = cfs_rq_of(se); 6598 6599 update_load_avg(cfs_rq, se, UPDATE_TG); 6600 se_update_runnable(se); 6601 update_cfs_group(se); 6602 6603 cfs_rq->h_nr_running--; 6604 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6605 6606 if (cfs_rq_is_idle(cfs_rq)) 6607 idle_h_nr_running = 1; 6608 6609 /* end evaluation on encountering a throttled cfs_rq */ 6610 if (cfs_rq_throttled(cfs_rq)) 6611 goto dequeue_throttle; 6612 6613 } 6614 6615 /* At this point se is NULL and we are at root level*/ 6616 sub_nr_running(rq, 1); 6617 6618 /* balance early to pull high priority tasks */ 6619 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6620 rq->next_balance = jiffies; 6621 6622 dequeue_throttle: 6623 util_est_update(&rq->cfs, p, task_sleep); 6624 hrtick_update(rq); 6625 } 6626 6627 #ifdef CONFIG_SMP 6628 6629 /* Working cpumask for: load_balance, load_balance_newidle. */ 6630 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6631 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6632 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 6633 6634 #ifdef CONFIG_NO_HZ_COMMON 6635 6636 static struct { 6637 cpumask_var_t idle_cpus_mask; 6638 atomic_t nr_cpus; 6639 int has_blocked; /* Idle CPUS has blocked load */ 6640 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6641 unsigned long next_balance; /* in jiffy units */ 6642 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6643 } nohz ____cacheline_aligned; 6644 6645 #endif /* CONFIG_NO_HZ_COMMON */ 6646 6647 static unsigned long cpu_load(struct rq *rq) 6648 { 6649 return cfs_rq_load_avg(&rq->cfs); 6650 } 6651 6652 /* 6653 * cpu_load_without - compute CPU load without any contributions from *p 6654 * @cpu: the CPU which load is requested 6655 * @p: the task which load should be discounted 6656 * 6657 * The load of a CPU is defined by the load of tasks currently enqueued on that 6658 * CPU as well as tasks which are currently sleeping after an execution on that 6659 * CPU. 6660 * 6661 * This method returns the load of the specified CPU by discounting the load of 6662 * the specified task, whenever the task is currently contributing to the CPU 6663 * load. 6664 */ 6665 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6666 { 6667 struct cfs_rq *cfs_rq; 6668 unsigned int load; 6669 6670 /* Task has no contribution or is new */ 6671 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6672 return cpu_load(rq); 6673 6674 cfs_rq = &rq->cfs; 6675 load = READ_ONCE(cfs_rq->avg.load_avg); 6676 6677 /* Discount task's util from CPU's util */ 6678 lsub_positive(&load, task_h_load(p)); 6679 6680 return load; 6681 } 6682 6683 static unsigned long cpu_runnable(struct rq *rq) 6684 { 6685 return cfs_rq_runnable_avg(&rq->cfs); 6686 } 6687 6688 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6689 { 6690 struct cfs_rq *cfs_rq; 6691 unsigned int runnable; 6692 6693 /* Task has no contribution or is new */ 6694 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6695 return cpu_runnable(rq); 6696 6697 cfs_rq = &rq->cfs; 6698 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6699 6700 /* Discount task's runnable from CPU's runnable */ 6701 lsub_positive(&runnable, p->se.avg.runnable_avg); 6702 6703 return runnable; 6704 } 6705 6706 static unsigned long capacity_of(int cpu) 6707 { 6708 return cpu_rq(cpu)->cpu_capacity; 6709 } 6710 6711 static void record_wakee(struct task_struct *p) 6712 { 6713 /* 6714 * Only decay a single time; tasks that have less then 1 wakeup per 6715 * jiffy will not have built up many flips. 6716 */ 6717 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6718 current->wakee_flips >>= 1; 6719 current->wakee_flip_decay_ts = jiffies; 6720 } 6721 6722 if (current->last_wakee != p) { 6723 current->last_wakee = p; 6724 current->wakee_flips++; 6725 } 6726 } 6727 6728 /* 6729 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6730 * 6731 * A waker of many should wake a different task than the one last awakened 6732 * at a frequency roughly N times higher than one of its wakees. 6733 * 6734 * In order to determine whether we should let the load spread vs consolidating 6735 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6736 * partner, and a factor of lls_size higher frequency in the other. 6737 * 6738 * With both conditions met, we can be relatively sure that the relationship is 6739 * non-monogamous, with partner count exceeding socket size. 6740 * 6741 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6742 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6743 * socket size. 6744 */ 6745 static int wake_wide(struct task_struct *p) 6746 { 6747 unsigned int master = current->wakee_flips; 6748 unsigned int slave = p->wakee_flips; 6749 int factor = __this_cpu_read(sd_llc_size); 6750 6751 if (master < slave) 6752 swap(master, slave); 6753 if (slave < factor || master < slave * factor) 6754 return 0; 6755 return 1; 6756 } 6757 6758 /* 6759 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6760 * soonest. For the purpose of speed we only consider the waking and previous 6761 * CPU. 6762 * 6763 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 6764 * cache-affine and is (or will be) idle. 6765 * 6766 * wake_affine_weight() - considers the weight to reflect the average 6767 * scheduling latency of the CPUs. This seems to work 6768 * for the overloaded case. 6769 */ 6770 static int 6771 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 6772 { 6773 /* 6774 * If this_cpu is idle, it implies the wakeup is from interrupt 6775 * context. Only allow the move if cache is shared. Otherwise an 6776 * interrupt intensive workload could force all tasks onto one 6777 * node depending on the IO topology or IRQ affinity settings. 6778 * 6779 * If the prev_cpu is idle and cache affine then avoid a migration. 6780 * There is no guarantee that the cache hot data from an interrupt 6781 * is more important than cache hot data on the prev_cpu and from 6782 * a cpufreq perspective, it's better to have higher utilisation 6783 * on one CPU. 6784 */ 6785 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6786 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6787 6788 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6789 return this_cpu; 6790 6791 if (available_idle_cpu(prev_cpu)) 6792 return prev_cpu; 6793 6794 return nr_cpumask_bits; 6795 } 6796 6797 static int 6798 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6799 int this_cpu, int prev_cpu, int sync) 6800 { 6801 s64 this_eff_load, prev_eff_load; 6802 unsigned long task_load; 6803 6804 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6805 6806 if (sync) { 6807 unsigned long current_load = task_h_load(current); 6808 6809 if (current_load > this_eff_load) 6810 return this_cpu; 6811 6812 this_eff_load -= current_load; 6813 } 6814 6815 task_load = task_h_load(p); 6816 6817 this_eff_load += task_load; 6818 if (sched_feat(WA_BIAS)) 6819 this_eff_load *= 100; 6820 this_eff_load *= capacity_of(prev_cpu); 6821 6822 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6823 prev_eff_load -= task_load; 6824 if (sched_feat(WA_BIAS)) 6825 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6826 prev_eff_load *= capacity_of(this_cpu); 6827 6828 /* 6829 * If sync, adjust the weight of prev_eff_load such that if 6830 * prev_eff == this_eff that select_idle_sibling() will consider 6831 * stacking the wakee on top of the waker if no other CPU is 6832 * idle. 6833 */ 6834 if (sync) 6835 prev_eff_load += 1; 6836 6837 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6838 } 6839 6840 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 6841 int this_cpu, int prev_cpu, int sync) 6842 { 6843 int target = nr_cpumask_bits; 6844 6845 if (sched_feat(WA_IDLE)) 6846 target = wake_affine_idle(this_cpu, prev_cpu, sync); 6847 6848 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 6849 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6850 6851 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6852 if (target != this_cpu) 6853 return prev_cpu; 6854 6855 schedstat_inc(sd->ttwu_move_affine); 6856 schedstat_inc(p->stats.nr_wakeups_affine); 6857 return target; 6858 } 6859 6860 static struct sched_group * 6861 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6862 6863 /* 6864 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6865 */ 6866 static int 6867 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6868 { 6869 unsigned long load, min_load = ULONG_MAX; 6870 unsigned int min_exit_latency = UINT_MAX; 6871 u64 latest_idle_timestamp = 0; 6872 int least_loaded_cpu = this_cpu; 6873 int shallowest_idle_cpu = -1; 6874 int i; 6875 6876 /* Check if we have any choice: */ 6877 if (group->group_weight == 1) 6878 return cpumask_first(sched_group_span(group)); 6879 6880 /* Traverse only the allowed CPUs */ 6881 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6882 struct rq *rq = cpu_rq(i); 6883 6884 if (!sched_core_cookie_match(rq, p)) 6885 continue; 6886 6887 if (sched_idle_cpu(i)) 6888 return i; 6889 6890 if (available_idle_cpu(i)) { 6891 struct cpuidle_state *idle = idle_get_state(rq); 6892 if (idle && idle->exit_latency < min_exit_latency) { 6893 /* 6894 * We give priority to a CPU whose idle state 6895 * has the smallest exit latency irrespective 6896 * of any idle timestamp. 6897 */ 6898 min_exit_latency = idle->exit_latency; 6899 latest_idle_timestamp = rq->idle_stamp; 6900 shallowest_idle_cpu = i; 6901 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6902 rq->idle_stamp > latest_idle_timestamp) { 6903 /* 6904 * If equal or no active idle state, then 6905 * the most recently idled CPU might have 6906 * a warmer cache. 6907 */ 6908 latest_idle_timestamp = rq->idle_stamp; 6909 shallowest_idle_cpu = i; 6910 } 6911 } else if (shallowest_idle_cpu == -1) { 6912 load = cpu_load(cpu_rq(i)); 6913 if (load < min_load) { 6914 min_load = load; 6915 least_loaded_cpu = i; 6916 } 6917 } 6918 } 6919 6920 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6921 } 6922 6923 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6924 int cpu, int prev_cpu, int sd_flag) 6925 { 6926 int new_cpu = cpu; 6927 6928 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6929 return prev_cpu; 6930 6931 /* 6932 * We need task's util for cpu_util_without, sync it up to 6933 * prev_cpu's last_update_time. 6934 */ 6935 if (!(sd_flag & SD_BALANCE_FORK)) 6936 sync_entity_load_avg(&p->se); 6937 6938 while (sd) { 6939 struct sched_group *group; 6940 struct sched_domain *tmp; 6941 int weight; 6942 6943 if (!(sd->flags & sd_flag)) { 6944 sd = sd->child; 6945 continue; 6946 } 6947 6948 group = find_idlest_group(sd, p, cpu); 6949 if (!group) { 6950 sd = sd->child; 6951 continue; 6952 } 6953 6954 new_cpu = find_idlest_group_cpu(group, p, cpu); 6955 if (new_cpu == cpu) { 6956 /* Now try balancing at a lower domain level of 'cpu': */ 6957 sd = sd->child; 6958 continue; 6959 } 6960 6961 /* Now try balancing at a lower domain level of 'new_cpu': */ 6962 cpu = new_cpu; 6963 weight = sd->span_weight; 6964 sd = NULL; 6965 for_each_domain(cpu, tmp) { 6966 if (weight <= tmp->span_weight) 6967 break; 6968 if (tmp->flags & sd_flag) 6969 sd = tmp; 6970 } 6971 } 6972 6973 return new_cpu; 6974 } 6975 6976 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6977 { 6978 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6979 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6980 return cpu; 6981 6982 return -1; 6983 } 6984 6985 #ifdef CONFIG_SCHED_SMT 6986 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6987 EXPORT_SYMBOL_GPL(sched_smt_present); 6988 6989 static inline void set_idle_cores(int cpu, int val) 6990 { 6991 struct sched_domain_shared *sds; 6992 6993 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6994 if (sds) 6995 WRITE_ONCE(sds->has_idle_cores, val); 6996 } 6997 6998 static inline bool test_idle_cores(int cpu) 6999 { 7000 struct sched_domain_shared *sds; 7001 7002 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7003 if (sds) 7004 return READ_ONCE(sds->has_idle_cores); 7005 7006 return false; 7007 } 7008 7009 /* 7010 * Scans the local SMT mask to see if the entire core is idle, and records this 7011 * information in sd_llc_shared->has_idle_cores. 7012 * 7013 * Since SMT siblings share all cache levels, inspecting this limited remote 7014 * state should be fairly cheap. 7015 */ 7016 void __update_idle_core(struct rq *rq) 7017 { 7018 int core = cpu_of(rq); 7019 int cpu; 7020 7021 rcu_read_lock(); 7022 if (test_idle_cores(core)) 7023 goto unlock; 7024 7025 for_each_cpu(cpu, cpu_smt_mask(core)) { 7026 if (cpu == core) 7027 continue; 7028 7029 if (!available_idle_cpu(cpu)) 7030 goto unlock; 7031 } 7032 7033 set_idle_cores(core, 1); 7034 unlock: 7035 rcu_read_unlock(); 7036 } 7037 7038 /* 7039 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7040 * there are no idle cores left in the system; tracked through 7041 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7042 */ 7043 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7044 { 7045 bool idle = true; 7046 int cpu; 7047 7048 for_each_cpu(cpu, cpu_smt_mask(core)) { 7049 if (!available_idle_cpu(cpu)) { 7050 idle = false; 7051 if (*idle_cpu == -1) { 7052 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 7053 *idle_cpu = cpu; 7054 break; 7055 } 7056 continue; 7057 } 7058 break; 7059 } 7060 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 7061 *idle_cpu = cpu; 7062 } 7063 7064 if (idle) 7065 return core; 7066 7067 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7068 return -1; 7069 } 7070 7071 /* 7072 * Scan the local SMT mask for idle CPUs. 7073 */ 7074 static int select_idle_smt(struct task_struct *p, int target) 7075 { 7076 int cpu; 7077 7078 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7079 if (cpu == target) 7080 continue; 7081 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7082 return cpu; 7083 } 7084 7085 return -1; 7086 } 7087 7088 #else /* CONFIG_SCHED_SMT */ 7089 7090 static inline void set_idle_cores(int cpu, int val) 7091 { 7092 } 7093 7094 static inline bool test_idle_cores(int cpu) 7095 { 7096 return false; 7097 } 7098 7099 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7100 { 7101 return __select_idle_cpu(core, p); 7102 } 7103 7104 static inline int select_idle_smt(struct task_struct *p, int target) 7105 { 7106 return -1; 7107 } 7108 7109 #endif /* CONFIG_SCHED_SMT */ 7110 7111 /* 7112 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7113 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7114 * average idle time for this rq (as found in rq->avg_idle). 7115 */ 7116 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7117 { 7118 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7119 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7120 struct sched_domain_shared *sd_share; 7121 struct rq *this_rq = this_rq(); 7122 int this = smp_processor_id(); 7123 struct sched_domain *this_sd = NULL; 7124 u64 time = 0; 7125 7126 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7127 7128 if (sched_feat(SIS_PROP) && !has_idle_core) { 7129 u64 avg_cost, avg_idle, span_avg; 7130 unsigned long now = jiffies; 7131 7132 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 7133 if (!this_sd) 7134 return -1; 7135 7136 /* 7137 * If we're busy, the assumption that the last idle period 7138 * predicts the future is flawed; age away the remaining 7139 * predicted idle time. 7140 */ 7141 if (unlikely(this_rq->wake_stamp < now)) { 7142 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 7143 this_rq->wake_stamp++; 7144 this_rq->wake_avg_idle >>= 1; 7145 } 7146 } 7147 7148 avg_idle = this_rq->wake_avg_idle; 7149 avg_cost = this_sd->avg_scan_cost + 1; 7150 7151 span_avg = sd->span_weight * avg_idle; 7152 if (span_avg > 4*avg_cost) 7153 nr = div_u64(span_avg, avg_cost); 7154 else 7155 nr = 4; 7156 7157 time = cpu_clock(this); 7158 } 7159 7160 if (sched_feat(SIS_UTIL)) { 7161 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7162 if (sd_share) { 7163 /* because !--nr is the condition to stop scan */ 7164 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7165 /* overloaded LLC is unlikely to have idle cpu/core */ 7166 if (nr == 1) 7167 return -1; 7168 } 7169 } 7170 7171 for_each_cpu_wrap(cpu, cpus, target + 1) { 7172 if (has_idle_core) { 7173 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7174 if ((unsigned int)i < nr_cpumask_bits) 7175 return i; 7176 7177 } else { 7178 if (!--nr) 7179 return -1; 7180 idle_cpu = __select_idle_cpu(cpu, p); 7181 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7182 break; 7183 } 7184 } 7185 7186 if (has_idle_core) 7187 set_idle_cores(target, false); 7188 7189 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) { 7190 time = cpu_clock(this) - time; 7191 7192 /* 7193 * Account for the scan cost of wakeups against the average 7194 * idle time. 7195 */ 7196 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 7197 7198 update_avg(&this_sd->avg_scan_cost, time); 7199 } 7200 7201 return idle_cpu; 7202 } 7203 7204 /* 7205 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7206 * the task fits. If no CPU is big enough, but there are idle ones, try to 7207 * maximize capacity. 7208 */ 7209 static int 7210 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7211 { 7212 unsigned long task_util, util_min, util_max, best_cap = 0; 7213 int fits, best_fits = 0; 7214 int cpu, best_cpu = -1; 7215 struct cpumask *cpus; 7216 7217 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7218 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7219 7220 task_util = task_util_est(p); 7221 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7222 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7223 7224 for_each_cpu_wrap(cpu, cpus, target) { 7225 unsigned long cpu_cap = capacity_of(cpu); 7226 7227 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7228 continue; 7229 7230 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7231 7232 /* This CPU fits with all requirements */ 7233 if (fits > 0) 7234 return cpu; 7235 /* 7236 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7237 * Look for the CPU with best capacity. 7238 */ 7239 else if (fits < 0) 7240 cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu)); 7241 7242 /* 7243 * First, select CPU which fits better (-1 being better than 0). 7244 * Then, select the one with best capacity at same level. 7245 */ 7246 if ((fits < best_fits) || 7247 ((fits == best_fits) && (cpu_cap > best_cap))) { 7248 best_cap = cpu_cap; 7249 best_cpu = cpu; 7250 best_fits = fits; 7251 } 7252 } 7253 7254 return best_cpu; 7255 } 7256 7257 static inline bool asym_fits_cpu(unsigned long util, 7258 unsigned long util_min, 7259 unsigned long util_max, 7260 int cpu) 7261 { 7262 if (sched_asym_cpucap_active()) 7263 /* 7264 * Return true only if the cpu fully fits the task requirements 7265 * which include the utilization and the performance hints. 7266 */ 7267 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7268 7269 return true; 7270 } 7271 7272 /* 7273 * Try and locate an idle core/thread in the LLC cache domain. 7274 */ 7275 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7276 { 7277 bool has_idle_core = false; 7278 struct sched_domain *sd; 7279 unsigned long task_util, util_min, util_max; 7280 int i, recent_used_cpu; 7281 7282 /* 7283 * On asymmetric system, update task utilization because we will check 7284 * that the task fits with cpu's capacity. 7285 */ 7286 if (sched_asym_cpucap_active()) { 7287 sync_entity_load_avg(&p->se); 7288 task_util = task_util_est(p); 7289 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7290 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7291 } 7292 7293 /* 7294 * per-cpu select_rq_mask usage 7295 */ 7296 lockdep_assert_irqs_disabled(); 7297 7298 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7299 asym_fits_cpu(task_util, util_min, util_max, target)) 7300 return target; 7301 7302 /* 7303 * If the previous CPU is cache affine and idle, don't be stupid: 7304 */ 7305 if (prev != target && cpus_share_cache(prev, target) && 7306 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7307 asym_fits_cpu(task_util, util_min, util_max, prev)) 7308 return prev; 7309 7310 /* 7311 * Allow a per-cpu kthread to stack with the wakee if the 7312 * kworker thread and the tasks previous CPUs are the same. 7313 * The assumption is that the wakee queued work for the 7314 * per-cpu kthread that is now complete and the wakeup is 7315 * essentially a sync wakeup. An obvious example of this 7316 * pattern is IO completions. 7317 */ 7318 if (is_per_cpu_kthread(current) && 7319 in_task() && 7320 prev == smp_processor_id() && 7321 this_rq()->nr_running <= 1 && 7322 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7323 return prev; 7324 } 7325 7326 /* Check a recently used CPU as a potential idle candidate: */ 7327 recent_used_cpu = p->recent_used_cpu; 7328 p->recent_used_cpu = prev; 7329 if (recent_used_cpu != prev && 7330 recent_used_cpu != target && 7331 cpus_share_cache(recent_used_cpu, target) && 7332 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7333 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7334 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7335 return recent_used_cpu; 7336 } 7337 7338 /* 7339 * For asymmetric CPU capacity systems, our domain of interest is 7340 * sd_asym_cpucapacity rather than sd_llc. 7341 */ 7342 if (sched_asym_cpucap_active()) { 7343 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7344 /* 7345 * On an asymmetric CPU capacity system where an exclusive 7346 * cpuset defines a symmetric island (i.e. one unique 7347 * capacity_orig value through the cpuset), the key will be set 7348 * but the CPUs within that cpuset will not have a domain with 7349 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7350 * capacity path. 7351 */ 7352 if (sd) { 7353 i = select_idle_capacity(p, sd, target); 7354 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7355 } 7356 } 7357 7358 sd = rcu_dereference(per_cpu(sd_llc, target)); 7359 if (!sd) 7360 return target; 7361 7362 if (sched_smt_active()) { 7363 has_idle_core = test_idle_cores(target); 7364 7365 if (!has_idle_core && cpus_share_cache(prev, target)) { 7366 i = select_idle_smt(p, prev); 7367 if ((unsigned int)i < nr_cpumask_bits) 7368 return i; 7369 } 7370 } 7371 7372 i = select_idle_cpu(p, sd, has_idle_core, target); 7373 if ((unsigned)i < nr_cpumask_bits) 7374 return i; 7375 7376 return target; 7377 } 7378 7379 /** 7380 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7381 * @cpu: the CPU to get the utilization for 7382 * @p: task for which the CPU utilization should be predicted or NULL 7383 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7384 * @boost: 1 to enable boosting, otherwise 0 7385 * 7386 * The unit of the return value must be the same as the one of CPU capacity 7387 * so that CPU utilization can be compared with CPU capacity. 7388 * 7389 * CPU utilization is the sum of running time of runnable tasks plus the 7390 * recent utilization of currently non-runnable tasks on that CPU. 7391 * It represents the amount of CPU capacity currently used by CFS tasks in 7392 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7393 * capacity at f_max. 7394 * 7395 * The estimated CPU utilization is defined as the maximum between CPU 7396 * utilization and sum of the estimated utilization of the currently 7397 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7398 * previously-executed tasks, which helps better deduce how busy a CPU will 7399 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7400 * of such a task would be significantly decayed at this point of time. 7401 * 7402 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7403 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7404 * utilization. Boosting is implemented in cpu_util() so that internal 7405 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7406 * latter via cpu_util_cfs_boost(). 7407 * 7408 * CPU utilization can be higher than the current CPU capacity 7409 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7410 * of rounding errors as well as task migrations or wakeups of new tasks. 7411 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7412 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7413 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7414 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7415 * though since this is useful for predicting the CPU capacity required 7416 * after task migrations (scheduler-driven DVFS). 7417 * 7418 * Return: (Boosted) (estimated) utilization for the specified CPU. 7419 */ 7420 static unsigned long 7421 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7422 { 7423 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7424 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7425 unsigned long runnable; 7426 7427 if (boost) { 7428 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7429 util = max(util, runnable); 7430 } 7431 7432 /* 7433 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7434 * contribution. If @p migrates from another CPU to @cpu add its 7435 * contribution. In all the other cases @cpu is not impacted by the 7436 * migration so its util_avg is already correct. 7437 */ 7438 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7439 lsub_positive(&util, task_util(p)); 7440 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7441 util += task_util(p); 7442 7443 if (sched_feat(UTIL_EST)) { 7444 unsigned long util_est; 7445 7446 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 7447 7448 /* 7449 * During wake-up @p isn't enqueued yet and doesn't contribute 7450 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 7451 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7452 * has been enqueued. 7453 * 7454 * During exec (@dst_cpu = -1) @p is enqueued and does 7455 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 7456 * Remove it to "simulate" cpu_util without @p's contribution. 7457 * 7458 * Despite the task_on_rq_queued(@p) check there is still a 7459 * small window for a possible race when an exec 7460 * select_task_rq_fair() races with LB's detach_task(). 7461 * 7462 * detach_task() 7463 * deactivate_task() 7464 * p->on_rq = TASK_ON_RQ_MIGRATING; 7465 * -------------------------------- A 7466 * dequeue_task() \ 7467 * dequeue_task_fair() + Race Time 7468 * util_est_dequeue() / 7469 * -------------------------------- B 7470 * 7471 * The additional check "current == p" is required to further 7472 * reduce the race window. 7473 */ 7474 if (dst_cpu == cpu) 7475 util_est += _task_util_est(p); 7476 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7477 lsub_positive(&util_est, _task_util_est(p)); 7478 7479 util = max(util, util_est); 7480 } 7481 7482 return min(util, capacity_orig_of(cpu)); 7483 } 7484 7485 unsigned long cpu_util_cfs(int cpu) 7486 { 7487 return cpu_util(cpu, NULL, -1, 0); 7488 } 7489 7490 unsigned long cpu_util_cfs_boost(int cpu) 7491 { 7492 return cpu_util(cpu, NULL, -1, 1); 7493 } 7494 7495 /* 7496 * cpu_util_without: compute cpu utilization without any contributions from *p 7497 * @cpu: the CPU which utilization is requested 7498 * @p: the task which utilization should be discounted 7499 * 7500 * The utilization of a CPU is defined by the utilization of tasks currently 7501 * enqueued on that CPU as well as tasks which are currently sleeping after an 7502 * execution on that CPU. 7503 * 7504 * This method returns the utilization of the specified CPU by discounting the 7505 * utilization of the specified task, whenever the task is currently 7506 * contributing to the CPU utilization. 7507 */ 7508 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7509 { 7510 /* Task has no contribution or is new */ 7511 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7512 p = NULL; 7513 7514 return cpu_util(cpu, p, -1, 0); 7515 } 7516 7517 /* 7518 * energy_env - Utilization landscape for energy estimation. 7519 * @task_busy_time: Utilization contribution by the task for which we test the 7520 * placement. Given by eenv_task_busy_time(). 7521 * @pd_busy_time: Utilization of the whole perf domain without the task 7522 * contribution. Given by eenv_pd_busy_time(). 7523 * @cpu_cap: Maximum CPU capacity for the perf domain. 7524 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7525 */ 7526 struct energy_env { 7527 unsigned long task_busy_time; 7528 unsigned long pd_busy_time; 7529 unsigned long cpu_cap; 7530 unsigned long pd_cap; 7531 }; 7532 7533 /* 7534 * Compute the task busy time for compute_energy(). This time cannot be 7535 * injected directly into effective_cpu_util() because of the IRQ scaling. 7536 * The latter only makes sense with the most recent CPUs where the task has 7537 * run. 7538 */ 7539 static inline void eenv_task_busy_time(struct energy_env *eenv, 7540 struct task_struct *p, int prev_cpu) 7541 { 7542 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7543 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7544 7545 if (unlikely(irq >= max_cap)) 7546 busy_time = max_cap; 7547 else 7548 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7549 7550 eenv->task_busy_time = busy_time; 7551 } 7552 7553 /* 7554 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7555 * utilization for each @pd_cpus, it however doesn't take into account 7556 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7557 * scale the EM reported power consumption at the (eventually clamped) 7558 * cpu_capacity. 7559 * 7560 * The contribution of the task @p for which we want to estimate the 7561 * energy cost is removed (by cpu_util()) and must be calculated 7562 * separately (see eenv_task_busy_time). This ensures: 7563 * 7564 * - A stable PD utilization, no matter which CPU of that PD we want to place 7565 * the task on. 7566 * 7567 * - A fair comparison between CPUs as the task contribution (task_util()) 7568 * will always be the same no matter which CPU utilization we rely on 7569 * (util_avg or util_est). 7570 * 7571 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7572 * exceed @eenv->pd_cap. 7573 */ 7574 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7575 struct cpumask *pd_cpus, 7576 struct task_struct *p) 7577 { 7578 unsigned long busy_time = 0; 7579 int cpu; 7580 7581 for_each_cpu(cpu, pd_cpus) { 7582 unsigned long util = cpu_util(cpu, p, -1, 0); 7583 7584 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 7585 } 7586 7587 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7588 } 7589 7590 /* 7591 * Compute the maximum utilization for compute_energy() when the task @p 7592 * is placed on the cpu @dst_cpu. 7593 * 7594 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7595 * exceed @eenv->cpu_cap. 7596 */ 7597 static inline unsigned long 7598 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7599 struct task_struct *p, int dst_cpu) 7600 { 7601 unsigned long max_util = 0; 7602 int cpu; 7603 7604 for_each_cpu(cpu, pd_cpus) { 7605 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7606 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 7607 unsigned long eff_util; 7608 7609 /* 7610 * Performance domain frequency: utilization clamping 7611 * must be considered since it affects the selection 7612 * of the performance domain frequency. 7613 * NOTE: in case RT tasks are running, by default the 7614 * FREQUENCY_UTIL's utilization can be max OPP. 7615 */ 7616 eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 7617 max_util = max(max_util, eff_util); 7618 } 7619 7620 return min(max_util, eenv->cpu_cap); 7621 } 7622 7623 /* 7624 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7625 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7626 * contribution is ignored. 7627 */ 7628 static inline unsigned long 7629 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7630 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7631 { 7632 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7633 unsigned long busy_time = eenv->pd_busy_time; 7634 7635 if (dst_cpu >= 0) 7636 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7637 7638 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7639 } 7640 7641 /* 7642 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7643 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7644 * spare capacity in each performance domain and uses it as a potential 7645 * candidate to execute the task. Then, it uses the Energy Model to figure 7646 * out which of the CPU candidates is the most energy-efficient. 7647 * 7648 * The rationale for this heuristic is as follows. In a performance domain, 7649 * all the most energy efficient CPU candidates (according to the Energy 7650 * Model) are those for which we'll request a low frequency. When there are 7651 * several CPUs for which the frequency request will be the same, we don't 7652 * have enough data to break the tie between them, because the Energy Model 7653 * only includes active power costs. With this model, if we assume that 7654 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7655 * the maximum spare capacity in a performance domain is guaranteed to be among 7656 * the best candidates of the performance domain. 7657 * 7658 * In practice, it could be preferable from an energy standpoint to pack 7659 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7660 * but that could also hurt our chances to go cluster idle, and we have no 7661 * ways to tell with the current Energy Model if this is actually a good 7662 * idea or not. So, find_energy_efficient_cpu() basically favors 7663 * cluster-packing, and spreading inside a cluster. That should at least be 7664 * a good thing for latency, and this is consistent with the idea that most 7665 * of the energy savings of EAS come from the asymmetry of the system, and 7666 * not so much from breaking the tie between identical CPUs. That's also the 7667 * reason why EAS is enabled in the topology code only for systems where 7668 * SD_ASYM_CPUCAPACITY is set. 7669 * 7670 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7671 * they don't have any useful utilization data yet and it's not possible to 7672 * forecast their impact on energy consumption. Consequently, they will be 7673 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7674 * to be energy-inefficient in some use-cases. The alternative would be to 7675 * bias new tasks towards specific types of CPUs first, or to try to infer 7676 * their util_avg from the parent task, but those heuristics could hurt 7677 * other use-cases too. So, until someone finds a better way to solve this, 7678 * let's keep things simple by re-using the existing slow path. 7679 */ 7680 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7681 { 7682 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7683 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7684 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7685 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7686 struct root_domain *rd = this_rq()->rd; 7687 int cpu, best_energy_cpu, target = -1; 7688 int prev_fits = -1, best_fits = -1; 7689 unsigned long best_thermal_cap = 0; 7690 unsigned long prev_thermal_cap = 0; 7691 struct sched_domain *sd; 7692 struct perf_domain *pd; 7693 struct energy_env eenv; 7694 7695 rcu_read_lock(); 7696 pd = rcu_dereference(rd->pd); 7697 if (!pd || READ_ONCE(rd->overutilized)) 7698 goto unlock; 7699 7700 /* 7701 * Energy-aware wake-up happens on the lowest sched_domain starting 7702 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7703 */ 7704 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7705 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7706 sd = sd->parent; 7707 if (!sd) 7708 goto unlock; 7709 7710 target = prev_cpu; 7711 7712 sync_entity_load_avg(&p->se); 7713 if (!uclamp_task_util(p, p_util_min, p_util_max)) 7714 goto unlock; 7715 7716 eenv_task_busy_time(&eenv, p, prev_cpu); 7717 7718 for (; pd; pd = pd->next) { 7719 unsigned long util_min = p_util_min, util_max = p_util_max; 7720 unsigned long cpu_cap, cpu_thermal_cap, util; 7721 unsigned long cur_delta, max_spare_cap = 0; 7722 unsigned long rq_util_min, rq_util_max; 7723 unsigned long prev_spare_cap = 0; 7724 int max_spare_cap_cpu = -1; 7725 unsigned long base_energy; 7726 int fits, max_fits = -1; 7727 7728 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7729 7730 if (cpumask_empty(cpus)) 7731 continue; 7732 7733 /* Account thermal pressure for the energy estimation */ 7734 cpu = cpumask_first(cpus); 7735 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 7736 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 7737 7738 eenv.cpu_cap = cpu_thermal_cap; 7739 eenv.pd_cap = 0; 7740 7741 for_each_cpu(cpu, cpus) { 7742 struct rq *rq = cpu_rq(cpu); 7743 7744 eenv.pd_cap += cpu_thermal_cap; 7745 7746 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7747 continue; 7748 7749 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 7750 continue; 7751 7752 util = cpu_util(cpu, p, cpu, 0); 7753 cpu_cap = capacity_of(cpu); 7754 7755 /* 7756 * Skip CPUs that cannot satisfy the capacity request. 7757 * IOW, placing the task there would make the CPU 7758 * overutilized. Take uclamp into account to see how 7759 * much capacity we can get out of the CPU; this is 7760 * aligned with sched_cpu_util(). 7761 */ 7762 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 7763 /* 7764 * Open code uclamp_rq_util_with() except for 7765 * the clamp() part. Ie: apply max aggregation 7766 * only. util_fits_cpu() logic requires to 7767 * operate on non clamped util but must use the 7768 * max-aggregated uclamp_{min, max}. 7769 */ 7770 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 7771 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 7772 7773 util_min = max(rq_util_min, p_util_min); 7774 util_max = max(rq_util_max, p_util_max); 7775 } 7776 7777 fits = util_fits_cpu(util, util_min, util_max, cpu); 7778 if (!fits) 7779 continue; 7780 7781 lsub_positive(&cpu_cap, util); 7782 7783 if (cpu == prev_cpu) { 7784 /* Always use prev_cpu as a candidate. */ 7785 prev_spare_cap = cpu_cap; 7786 prev_fits = fits; 7787 } else if ((fits > max_fits) || 7788 ((fits == max_fits) && (cpu_cap > max_spare_cap))) { 7789 /* 7790 * Find the CPU with the maximum spare capacity 7791 * among the remaining CPUs in the performance 7792 * domain. 7793 */ 7794 max_spare_cap = cpu_cap; 7795 max_spare_cap_cpu = cpu; 7796 max_fits = fits; 7797 } 7798 } 7799 7800 if (max_spare_cap_cpu < 0 && prev_spare_cap == 0) 7801 continue; 7802 7803 eenv_pd_busy_time(&eenv, cpus, p); 7804 /* Compute the 'base' energy of the pd, without @p */ 7805 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 7806 7807 /* Evaluate the energy impact of using prev_cpu. */ 7808 if (prev_spare_cap > 0) { 7809 prev_delta = compute_energy(&eenv, pd, cpus, p, 7810 prev_cpu); 7811 /* CPU utilization has changed */ 7812 if (prev_delta < base_energy) 7813 goto unlock; 7814 prev_delta -= base_energy; 7815 prev_thermal_cap = cpu_thermal_cap; 7816 best_delta = min(best_delta, prev_delta); 7817 } 7818 7819 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 7820 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 7821 /* Current best energy cpu fits better */ 7822 if (max_fits < best_fits) 7823 continue; 7824 7825 /* 7826 * Both don't fit performance hint (i.e. uclamp_min) 7827 * but best energy cpu has better capacity. 7828 */ 7829 if ((max_fits < 0) && 7830 (cpu_thermal_cap <= best_thermal_cap)) 7831 continue; 7832 7833 cur_delta = compute_energy(&eenv, pd, cpus, p, 7834 max_spare_cap_cpu); 7835 /* CPU utilization has changed */ 7836 if (cur_delta < base_energy) 7837 goto unlock; 7838 cur_delta -= base_energy; 7839 7840 /* 7841 * Both fit for the task but best energy cpu has lower 7842 * energy impact. 7843 */ 7844 if ((max_fits > 0) && (best_fits > 0) && 7845 (cur_delta >= best_delta)) 7846 continue; 7847 7848 best_delta = cur_delta; 7849 best_energy_cpu = max_spare_cap_cpu; 7850 best_fits = max_fits; 7851 best_thermal_cap = cpu_thermal_cap; 7852 } 7853 } 7854 rcu_read_unlock(); 7855 7856 if ((best_fits > prev_fits) || 7857 ((best_fits > 0) && (best_delta < prev_delta)) || 7858 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap))) 7859 target = best_energy_cpu; 7860 7861 return target; 7862 7863 unlock: 7864 rcu_read_unlock(); 7865 7866 return target; 7867 } 7868 7869 /* 7870 * select_task_rq_fair: Select target runqueue for the waking task in domains 7871 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 7872 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 7873 * 7874 * Balances load by selecting the idlest CPU in the idlest group, or under 7875 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 7876 * 7877 * Returns the target CPU number. 7878 */ 7879 static int 7880 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 7881 { 7882 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 7883 struct sched_domain *tmp, *sd = NULL; 7884 int cpu = smp_processor_id(); 7885 int new_cpu = prev_cpu; 7886 int want_affine = 0; 7887 /* SD_flags and WF_flags share the first nibble */ 7888 int sd_flag = wake_flags & 0xF; 7889 7890 /* 7891 * required for stable ->cpus_allowed 7892 */ 7893 lockdep_assert_held(&p->pi_lock); 7894 if (wake_flags & WF_TTWU) { 7895 record_wakee(p); 7896 7897 if ((wake_flags & WF_CURRENT_CPU) && 7898 cpumask_test_cpu(cpu, p->cpus_ptr)) 7899 return cpu; 7900 7901 if (sched_energy_enabled()) { 7902 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 7903 if (new_cpu >= 0) 7904 return new_cpu; 7905 new_cpu = prev_cpu; 7906 } 7907 7908 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 7909 } 7910 7911 rcu_read_lock(); 7912 for_each_domain(cpu, tmp) { 7913 /* 7914 * If both 'cpu' and 'prev_cpu' are part of this domain, 7915 * cpu is a valid SD_WAKE_AFFINE target. 7916 */ 7917 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 7918 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 7919 if (cpu != prev_cpu) 7920 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 7921 7922 sd = NULL; /* Prefer wake_affine over balance flags */ 7923 break; 7924 } 7925 7926 /* 7927 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 7928 * usually do not have SD_BALANCE_WAKE set. That means wakeup 7929 * will usually go to the fast path. 7930 */ 7931 if (tmp->flags & sd_flag) 7932 sd = tmp; 7933 else if (!want_affine) 7934 break; 7935 } 7936 7937 if (unlikely(sd)) { 7938 /* Slow path */ 7939 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 7940 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 7941 /* Fast path */ 7942 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 7943 } 7944 rcu_read_unlock(); 7945 7946 return new_cpu; 7947 } 7948 7949 /* 7950 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 7951 * cfs_rq_of(p) references at time of call are still valid and identify the 7952 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 7953 */ 7954 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 7955 { 7956 struct sched_entity *se = &p->se; 7957 7958 if (!task_on_rq_migrating(p)) { 7959 remove_entity_load_avg(se); 7960 7961 /* 7962 * Here, the task's PELT values have been updated according to 7963 * the current rq's clock. But if that clock hasn't been 7964 * updated in a while, a substantial idle time will be missed, 7965 * leading to an inflation after wake-up on the new rq. 7966 * 7967 * Estimate the missing time from the cfs_rq last_update_time 7968 * and update sched_avg to improve the PELT continuity after 7969 * migration. 7970 */ 7971 migrate_se_pelt_lag(se); 7972 } 7973 7974 /* Tell new CPU we are migrated */ 7975 se->avg.last_update_time = 0; 7976 7977 update_scan_period(p, new_cpu); 7978 } 7979 7980 static void task_dead_fair(struct task_struct *p) 7981 { 7982 remove_entity_load_avg(&p->se); 7983 } 7984 7985 static int 7986 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7987 { 7988 if (rq->nr_running) 7989 return 1; 7990 7991 return newidle_balance(rq, rf) != 0; 7992 } 7993 #endif /* CONFIG_SMP */ 7994 7995 static void set_next_buddy(struct sched_entity *se) 7996 { 7997 for_each_sched_entity(se) { 7998 if (SCHED_WARN_ON(!se->on_rq)) 7999 return; 8000 if (se_is_idle(se)) 8001 return; 8002 cfs_rq_of(se)->next = se; 8003 } 8004 } 8005 8006 /* 8007 * Preempt the current task with a newly woken task if needed: 8008 */ 8009 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 8010 { 8011 struct task_struct *curr = rq->curr; 8012 struct sched_entity *se = &curr->se, *pse = &p->se; 8013 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8014 int next_buddy_marked = 0; 8015 int cse_is_idle, pse_is_idle; 8016 8017 if (unlikely(se == pse)) 8018 return; 8019 8020 /* 8021 * This is possible from callers such as attach_tasks(), in which we 8022 * unconditionally check_preempt_curr() after an enqueue (which may have 8023 * lead to a throttle). This both saves work and prevents false 8024 * next-buddy nomination below. 8025 */ 8026 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8027 return; 8028 8029 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8030 set_next_buddy(pse); 8031 next_buddy_marked = 1; 8032 } 8033 8034 /* 8035 * We can come here with TIF_NEED_RESCHED already set from new task 8036 * wake up path. 8037 * 8038 * Note: this also catches the edge-case of curr being in a throttled 8039 * group (e.g. via set_curr_task), since update_curr() (in the 8040 * enqueue of curr) will have resulted in resched being set. This 8041 * prevents us from potentially nominating it as a false LAST_BUDDY 8042 * below. 8043 */ 8044 if (test_tsk_need_resched(curr)) 8045 return; 8046 8047 /* Idle tasks are by definition preempted by non-idle tasks. */ 8048 if (unlikely(task_has_idle_policy(curr)) && 8049 likely(!task_has_idle_policy(p))) 8050 goto preempt; 8051 8052 /* 8053 * Batch and idle tasks do not preempt non-idle tasks (their preemption 8054 * is driven by the tick): 8055 */ 8056 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 8057 return; 8058 8059 find_matching_se(&se, &pse); 8060 WARN_ON_ONCE(!pse); 8061 8062 cse_is_idle = se_is_idle(se); 8063 pse_is_idle = se_is_idle(pse); 8064 8065 /* 8066 * Preempt an idle group in favor of a non-idle group (and don't preempt 8067 * in the inverse case). 8068 */ 8069 if (cse_is_idle && !pse_is_idle) 8070 goto preempt; 8071 if (cse_is_idle != pse_is_idle) 8072 return; 8073 8074 cfs_rq = cfs_rq_of(se); 8075 update_curr(cfs_rq); 8076 8077 /* 8078 * XXX pick_eevdf(cfs_rq) != se ? 8079 */ 8080 if (pick_eevdf(cfs_rq) == pse) 8081 goto preempt; 8082 8083 return; 8084 8085 preempt: 8086 resched_curr(rq); 8087 } 8088 8089 #ifdef CONFIG_SMP 8090 static struct task_struct *pick_task_fair(struct rq *rq) 8091 { 8092 struct sched_entity *se; 8093 struct cfs_rq *cfs_rq; 8094 8095 again: 8096 cfs_rq = &rq->cfs; 8097 if (!cfs_rq->nr_running) 8098 return NULL; 8099 8100 do { 8101 struct sched_entity *curr = cfs_rq->curr; 8102 8103 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 8104 if (curr) { 8105 if (curr->on_rq) 8106 update_curr(cfs_rq); 8107 else 8108 curr = NULL; 8109 8110 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8111 goto again; 8112 } 8113 8114 se = pick_next_entity(cfs_rq, curr); 8115 cfs_rq = group_cfs_rq(se); 8116 } while (cfs_rq); 8117 8118 return task_of(se); 8119 } 8120 #endif 8121 8122 struct task_struct * 8123 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8124 { 8125 struct cfs_rq *cfs_rq = &rq->cfs; 8126 struct sched_entity *se; 8127 struct task_struct *p; 8128 int new_tasks; 8129 8130 again: 8131 if (!sched_fair_runnable(rq)) 8132 goto idle; 8133 8134 #ifdef CONFIG_FAIR_GROUP_SCHED 8135 if (!prev || prev->sched_class != &fair_sched_class) 8136 goto simple; 8137 8138 /* 8139 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8140 * likely that a next task is from the same cgroup as the current. 8141 * 8142 * Therefore attempt to avoid putting and setting the entire cgroup 8143 * hierarchy, only change the part that actually changes. 8144 */ 8145 8146 do { 8147 struct sched_entity *curr = cfs_rq->curr; 8148 8149 /* 8150 * Since we got here without doing put_prev_entity() we also 8151 * have to consider cfs_rq->curr. If it is still a runnable 8152 * entity, update_curr() will update its vruntime, otherwise 8153 * forget we've ever seen it. 8154 */ 8155 if (curr) { 8156 if (curr->on_rq) 8157 update_curr(cfs_rq); 8158 else 8159 curr = NULL; 8160 8161 /* 8162 * This call to check_cfs_rq_runtime() will do the 8163 * throttle and dequeue its entity in the parent(s). 8164 * Therefore the nr_running test will indeed 8165 * be correct. 8166 */ 8167 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 8168 cfs_rq = &rq->cfs; 8169 8170 if (!cfs_rq->nr_running) 8171 goto idle; 8172 8173 goto simple; 8174 } 8175 } 8176 8177 se = pick_next_entity(cfs_rq, curr); 8178 cfs_rq = group_cfs_rq(se); 8179 } while (cfs_rq); 8180 8181 p = task_of(se); 8182 8183 /* 8184 * Since we haven't yet done put_prev_entity and if the selected task 8185 * is a different task than we started out with, try and touch the 8186 * least amount of cfs_rqs. 8187 */ 8188 if (prev != p) { 8189 struct sched_entity *pse = &prev->se; 8190 8191 while (!(cfs_rq = is_same_group(se, pse))) { 8192 int se_depth = se->depth; 8193 int pse_depth = pse->depth; 8194 8195 if (se_depth <= pse_depth) { 8196 put_prev_entity(cfs_rq_of(pse), pse); 8197 pse = parent_entity(pse); 8198 } 8199 if (se_depth >= pse_depth) { 8200 set_next_entity(cfs_rq_of(se), se); 8201 se = parent_entity(se); 8202 } 8203 } 8204 8205 put_prev_entity(cfs_rq, pse); 8206 set_next_entity(cfs_rq, se); 8207 } 8208 8209 goto done; 8210 simple: 8211 #endif 8212 if (prev) 8213 put_prev_task(rq, prev); 8214 8215 do { 8216 se = pick_next_entity(cfs_rq, NULL); 8217 set_next_entity(cfs_rq, se); 8218 cfs_rq = group_cfs_rq(se); 8219 } while (cfs_rq); 8220 8221 p = task_of(se); 8222 8223 done: __maybe_unused; 8224 #ifdef CONFIG_SMP 8225 /* 8226 * Move the next running task to the front of 8227 * the list, so our cfs_tasks list becomes MRU 8228 * one. 8229 */ 8230 list_move(&p->se.group_node, &rq->cfs_tasks); 8231 #endif 8232 8233 if (hrtick_enabled_fair(rq)) 8234 hrtick_start_fair(rq, p); 8235 8236 update_misfit_status(p, rq); 8237 sched_fair_update_stop_tick(rq, p); 8238 8239 return p; 8240 8241 idle: 8242 if (!rf) 8243 return NULL; 8244 8245 new_tasks = newidle_balance(rq, rf); 8246 8247 /* 8248 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 8249 * possible for any higher priority task to appear. In that case we 8250 * must re-start the pick_next_entity() loop. 8251 */ 8252 if (new_tasks < 0) 8253 return RETRY_TASK; 8254 8255 if (new_tasks > 0) 8256 goto again; 8257 8258 /* 8259 * rq is about to be idle, check if we need to update the 8260 * lost_idle_time of clock_pelt 8261 */ 8262 update_idle_rq_clock_pelt(rq); 8263 8264 return NULL; 8265 } 8266 8267 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8268 { 8269 return pick_next_task_fair(rq, NULL, NULL); 8270 } 8271 8272 /* 8273 * Account for a descheduled task: 8274 */ 8275 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8276 { 8277 struct sched_entity *se = &prev->se; 8278 struct cfs_rq *cfs_rq; 8279 8280 for_each_sched_entity(se) { 8281 cfs_rq = cfs_rq_of(se); 8282 put_prev_entity(cfs_rq, se); 8283 } 8284 } 8285 8286 /* 8287 * sched_yield() is very simple 8288 */ 8289 static void yield_task_fair(struct rq *rq) 8290 { 8291 struct task_struct *curr = rq->curr; 8292 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8293 struct sched_entity *se = &curr->se; 8294 8295 /* 8296 * Are we the only task in the tree? 8297 */ 8298 if (unlikely(rq->nr_running == 1)) 8299 return; 8300 8301 clear_buddies(cfs_rq, se); 8302 8303 update_rq_clock(rq); 8304 /* 8305 * Update run-time statistics of the 'current'. 8306 */ 8307 update_curr(cfs_rq); 8308 /* 8309 * Tell update_rq_clock() that we've just updated, 8310 * so we don't do microscopic update in schedule() 8311 * and double the fastpath cost. 8312 */ 8313 rq_clock_skip_update(rq); 8314 8315 se->deadline += calc_delta_fair(se->slice, se); 8316 } 8317 8318 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8319 { 8320 struct sched_entity *se = &p->se; 8321 8322 /* throttled hierarchies are not runnable */ 8323 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8324 return false; 8325 8326 /* Tell the scheduler that we'd really like pse to run next. */ 8327 set_next_buddy(se); 8328 8329 yield_task_fair(rq); 8330 8331 return true; 8332 } 8333 8334 #ifdef CONFIG_SMP 8335 /************************************************** 8336 * Fair scheduling class load-balancing methods. 8337 * 8338 * BASICS 8339 * 8340 * The purpose of load-balancing is to achieve the same basic fairness the 8341 * per-CPU scheduler provides, namely provide a proportional amount of compute 8342 * time to each task. This is expressed in the following equation: 8343 * 8344 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8345 * 8346 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8347 * W_i,0 is defined as: 8348 * 8349 * W_i,0 = \Sum_j w_i,j (2) 8350 * 8351 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8352 * is derived from the nice value as per sched_prio_to_weight[]. 8353 * 8354 * The weight average is an exponential decay average of the instantaneous 8355 * weight: 8356 * 8357 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8358 * 8359 * C_i is the compute capacity of CPU i, typically it is the 8360 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8361 * can also include other factors [XXX]. 8362 * 8363 * To achieve this balance we define a measure of imbalance which follows 8364 * directly from (1): 8365 * 8366 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8367 * 8368 * We them move tasks around to minimize the imbalance. In the continuous 8369 * function space it is obvious this converges, in the discrete case we get 8370 * a few fun cases generally called infeasible weight scenarios. 8371 * 8372 * [XXX expand on: 8373 * - infeasible weights; 8374 * - local vs global optima in the discrete case. ] 8375 * 8376 * 8377 * SCHED DOMAINS 8378 * 8379 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8380 * for all i,j solution, we create a tree of CPUs that follows the hardware 8381 * topology where each level pairs two lower groups (or better). This results 8382 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8383 * tree to only the first of the previous level and we decrease the frequency 8384 * of load-balance at each level inv. proportional to the number of CPUs in 8385 * the groups. 8386 * 8387 * This yields: 8388 * 8389 * log_2 n 1 n 8390 * \Sum { --- * --- * 2^i } = O(n) (5) 8391 * i = 0 2^i 2^i 8392 * `- size of each group 8393 * | | `- number of CPUs doing load-balance 8394 * | `- freq 8395 * `- sum over all levels 8396 * 8397 * Coupled with a limit on how many tasks we can migrate every balance pass, 8398 * this makes (5) the runtime complexity of the balancer. 8399 * 8400 * An important property here is that each CPU is still (indirectly) connected 8401 * to every other CPU in at most O(log n) steps: 8402 * 8403 * The adjacency matrix of the resulting graph is given by: 8404 * 8405 * log_2 n 8406 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8407 * k = 0 8408 * 8409 * And you'll find that: 8410 * 8411 * A^(log_2 n)_i,j != 0 for all i,j (7) 8412 * 8413 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8414 * The task movement gives a factor of O(m), giving a convergence complexity 8415 * of: 8416 * 8417 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8418 * 8419 * 8420 * WORK CONSERVING 8421 * 8422 * In order to avoid CPUs going idle while there's still work to do, new idle 8423 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8424 * tree itself instead of relying on other CPUs to bring it work. 8425 * 8426 * This adds some complexity to both (5) and (8) but it reduces the total idle 8427 * time. 8428 * 8429 * [XXX more?] 8430 * 8431 * 8432 * CGROUPS 8433 * 8434 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8435 * 8436 * s_k,i 8437 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8438 * S_k 8439 * 8440 * Where 8441 * 8442 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8443 * 8444 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8445 * 8446 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8447 * property. 8448 * 8449 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8450 * rewrite all of this once again.] 8451 */ 8452 8453 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8454 8455 enum fbq_type { regular, remote, all }; 8456 8457 /* 8458 * 'group_type' describes the group of CPUs at the moment of load balancing. 8459 * 8460 * The enum is ordered by pulling priority, with the group with lowest priority 8461 * first so the group_type can simply be compared when selecting the busiest 8462 * group. See update_sd_pick_busiest(). 8463 */ 8464 enum group_type { 8465 /* The group has spare capacity that can be used to run more tasks. */ 8466 group_has_spare = 0, 8467 /* 8468 * The group is fully used and the tasks don't compete for more CPU 8469 * cycles. Nevertheless, some tasks might wait before running. 8470 */ 8471 group_fully_busy, 8472 /* 8473 * One task doesn't fit with CPU's capacity and must be migrated to a 8474 * more powerful CPU. 8475 */ 8476 group_misfit_task, 8477 /* 8478 * Balance SMT group that's fully busy. Can benefit from migration 8479 * a task on SMT with busy sibling to another CPU on idle core. 8480 */ 8481 group_smt_balance, 8482 /* 8483 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8484 * and the task should be migrated to it instead of running on the 8485 * current CPU. 8486 */ 8487 group_asym_packing, 8488 /* 8489 * The tasks' affinity constraints previously prevented the scheduler 8490 * from balancing the load across the system. 8491 */ 8492 group_imbalanced, 8493 /* 8494 * The CPU is overloaded and can't provide expected CPU cycles to all 8495 * tasks. 8496 */ 8497 group_overloaded 8498 }; 8499 8500 enum migration_type { 8501 migrate_load = 0, 8502 migrate_util, 8503 migrate_task, 8504 migrate_misfit 8505 }; 8506 8507 #define LBF_ALL_PINNED 0x01 8508 #define LBF_NEED_BREAK 0x02 8509 #define LBF_DST_PINNED 0x04 8510 #define LBF_SOME_PINNED 0x08 8511 #define LBF_ACTIVE_LB 0x10 8512 8513 struct lb_env { 8514 struct sched_domain *sd; 8515 8516 struct rq *src_rq; 8517 int src_cpu; 8518 8519 int dst_cpu; 8520 struct rq *dst_rq; 8521 8522 struct cpumask *dst_grpmask; 8523 int new_dst_cpu; 8524 enum cpu_idle_type idle; 8525 long imbalance; 8526 /* The set of CPUs under consideration for load-balancing */ 8527 struct cpumask *cpus; 8528 8529 unsigned int flags; 8530 8531 unsigned int loop; 8532 unsigned int loop_break; 8533 unsigned int loop_max; 8534 8535 enum fbq_type fbq_type; 8536 enum migration_type migration_type; 8537 struct list_head tasks; 8538 }; 8539 8540 /* 8541 * Is this task likely cache-hot: 8542 */ 8543 static int task_hot(struct task_struct *p, struct lb_env *env) 8544 { 8545 s64 delta; 8546 8547 lockdep_assert_rq_held(env->src_rq); 8548 8549 if (p->sched_class != &fair_sched_class) 8550 return 0; 8551 8552 if (unlikely(task_has_idle_policy(p))) 8553 return 0; 8554 8555 /* SMT siblings share cache */ 8556 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8557 return 0; 8558 8559 /* 8560 * Buddy candidates are cache hot: 8561 */ 8562 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8563 (&p->se == cfs_rq_of(&p->se)->next)) 8564 return 1; 8565 8566 if (sysctl_sched_migration_cost == -1) 8567 return 1; 8568 8569 /* 8570 * Don't migrate task if the task's cookie does not match 8571 * with the destination CPU's core cookie. 8572 */ 8573 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8574 return 1; 8575 8576 if (sysctl_sched_migration_cost == 0) 8577 return 0; 8578 8579 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8580 8581 return delta < (s64)sysctl_sched_migration_cost; 8582 } 8583 8584 #ifdef CONFIG_NUMA_BALANCING 8585 /* 8586 * Returns 1, if task migration degrades locality 8587 * Returns 0, if task migration improves locality i.e migration preferred. 8588 * Returns -1, if task migration is not affected by locality. 8589 */ 8590 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8591 { 8592 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8593 unsigned long src_weight, dst_weight; 8594 int src_nid, dst_nid, dist; 8595 8596 if (!static_branch_likely(&sched_numa_balancing)) 8597 return -1; 8598 8599 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8600 return -1; 8601 8602 src_nid = cpu_to_node(env->src_cpu); 8603 dst_nid = cpu_to_node(env->dst_cpu); 8604 8605 if (src_nid == dst_nid) 8606 return -1; 8607 8608 /* Migrating away from the preferred node is always bad. */ 8609 if (src_nid == p->numa_preferred_nid) { 8610 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8611 return 1; 8612 else 8613 return -1; 8614 } 8615 8616 /* Encourage migration to the preferred node. */ 8617 if (dst_nid == p->numa_preferred_nid) 8618 return 0; 8619 8620 /* Leaving a core idle is often worse than degrading locality. */ 8621 if (env->idle == CPU_IDLE) 8622 return -1; 8623 8624 dist = node_distance(src_nid, dst_nid); 8625 if (numa_group) { 8626 src_weight = group_weight(p, src_nid, dist); 8627 dst_weight = group_weight(p, dst_nid, dist); 8628 } else { 8629 src_weight = task_weight(p, src_nid, dist); 8630 dst_weight = task_weight(p, dst_nid, dist); 8631 } 8632 8633 return dst_weight < src_weight; 8634 } 8635 8636 #else 8637 static inline int migrate_degrades_locality(struct task_struct *p, 8638 struct lb_env *env) 8639 { 8640 return -1; 8641 } 8642 #endif 8643 8644 /* 8645 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8646 */ 8647 static 8648 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8649 { 8650 int tsk_cache_hot; 8651 8652 lockdep_assert_rq_held(env->src_rq); 8653 8654 /* 8655 * We do not migrate tasks that are: 8656 * 1) throttled_lb_pair, or 8657 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8658 * 3) running (obviously), or 8659 * 4) are cache-hot on their current CPU. 8660 */ 8661 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8662 return 0; 8663 8664 /* Disregard pcpu kthreads; they are where they need to be. */ 8665 if (kthread_is_per_cpu(p)) 8666 return 0; 8667 8668 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8669 int cpu; 8670 8671 schedstat_inc(p->stats.nr_failed_migrations_affine); 8672 8673 env->flags |= LBF_SOME_PINNED; 8674 8675 /* 8676 * Remember if this task can be migrated to any other CPU in 8677 * our sched_group. We may want to revisit it if we couldn't 8678 * meet load balance goals by pulling other tasks on src_cpu. 8679 * 8680 * Avoid computing new_dst_cpu 8681 * - for NEWLY_IDLE 8682 * - if we have already computed one in current iteration 8683 * - if it's an active balance 8684 */ 8685 if (env->idle == CPU_NEWLY_IDLE || 8686 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8687 return 0; 8688 8689 /* Prevent to re-select dst_cpu via env's CPUs: */ 8690 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8691 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8692 env->flags |= LBF_DST_PINNED; 8693 env->new_dst_cpu = cpu; 8694 break; 8695 } 8696 } 8697 8698 return 0; 8699 } 8700 8701 /* Record that we found at least one task that could run on dst_cpu */ 8702 env->flags &= ~LBF_ALL_PINNED; 8703 8704 if (task_on_cpu(env->src_rq, p)) { 8705 schedstat_inc(p->stats.nr_failed_migrations_running); 8706 return 0; 8707 } 8708 8709 /* 8710 * Aggressive migration if: 8711 * 1) active balance 8712 * 2) destination numa is preferred 8713 * 3) task is cache cold, or 8714 * 4) too many balance attempts have failed. 8715 */ 8716 if (env->flags & LBF_ACTIVE_LB) 8717 return 1; 8718 8719 tsk_cache_hot = migrate_degrades_locality(p, env); 8720 if (tsk_cache_hot == -1) 8721 tsk_cache_hot = task_hot(p, env); 8722 8723 if (tsk_cache_hot <= 0 || 8724 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8725 if (tsk_cache_hot == 1) { 8726 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8727 schedstat_inc(p->stats.nr_forced_migrations); 8728 } 8729 return 1; 8730 } 8731 8732 schedstat_inc(p->stats.nr_failed_migrations_hot); 8733 return 0; 8734 } 8735 8736 /* 8737 * detach_task() -- detach the task for the migration specified in env 8738 */ 8739 static void detach_task(struct task_struct *p, struct lb_env *env) 8740 { 8741 lockdep_assert_rq_held(env->src_rq); 8742 8743 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 8744 set_task_cpu(p, env->dst_cpu); 8745 } 8746 8747 /* 8748 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 8749 * part of active balancing operations within "domain". 8750 * 8751 * Returns a task if successful and NULL otherwise. 8752 */ 8753 static struct task_struct *detach_one_task(struct lb_env *env) 8754 { 8755 struct task_struct *p; 8756 8757 lockdep_assert_rq_held(env->src_rq); 8758 8759 list_for_each_entry_reverse(p, 8760 &env->src_rq->cfs_tasks, se.group_node) { 8761 if (!can_migrate_task(p, env)) 8762 continue; 8763 8764 detach_task(p, env); 8765 8766 /* 8767 * Right now, this is only the second place where 8768 * lb_gained[env->idle] is updated (other is detach_tasks) 8769 * so we can safely collect stats here rather than 8770 * inside detach_tasks(). 8771 */ 8772 schedstat_inc(env->sd->lb_gained[env->idle]); 8773 return p; 8774 } 8775 return NULL; 8776 } 8777 8778 /* 8779 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 8780 * busiest_rq, as part of a balancing operation within domain "sd". 8781 * 8782 * Returns number of detached tasks if successful and 0 otherwise. 8783 */ 8784 static int detach_tasks(struct lb_env *env) 8785 { 8786 struct list_head *tasks = &env->src_rq->cfs_tasks; 8787 unsigned long util, load; 8788 struct task_struct *p; 8789 int detached = 0; 8790 8791 lockdep_assert_rq_held(env->src_rq); 8792 8793 /* 8794 * Source run queue has been emptied by another CPU, clear 8795 * LBF_ALL_PINNED flag as we will not test any task. 8796 */ 8797 if (env->src_rq->nr_running <= 1) { 8798 env->flags &= ~LBF_ALL_PINNED; 8799 return 0; 8800 } 8801 8802 if (env->imbalance <= 0) 8803 return 0; 8804 8805 while (!list_empty(tasks)) { 8806 /* 8807 * We don't want to steal all, otherwise we may be treated likewise, 8808 * which could at worst lead to a livelock crash. 8809 */ 8810 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 8811 break; 8812 8813 env->loop++; 8814 /* 8815 * We've more or less seen every task there is, call it quits 8816 * unless we haven't found any movable task yet. 8817 */ 8818 if (env->loop > env->loop_max && 8819 !(env->flags & LBF_ALL_PINNED)) 8820 break; 8821 8822 /* take a breather every nr_migrate tasks */ 8823 if (env->loop > env->loop_break) { 8824 env->loop_break += SCHED_NR_MIGRATE_BREAK; 8825 env->flags |= LBF_NEED_BREAK; 8826 break; 8827 } 8828 8829 p = list_last_entry(tasks, struct task_struct, se.group_node); 8830 8831 if (!can_migrate_task(p, env)) 8832 goto next; 8833 8834 switch (env->migration_type) { 8835 case migrate_load: 8836 /* 8837 * Depending of the number of CPUs and tasks and the 8838 * cgroup hierarchy, task_h_load() can return a null 8839 * value. Make sure that env->imbalance decreases 8840 * otherwise detach_tasks() will stop only after 8841 * detaching up to loop_max tasks. 8842 */ 8843 load = max_t(unsigned long, task_h_load(p), 1); 8844 8845 if (sched_feat(LB_MIN) && 8846 load < 16 && !env->sd->nr_balance_failed) 8847 goto next; 8848 8849 /* 8850 * Make sure that we don't migrate too much load. 8851 * Nevertheless, let relax the constraint if 8852 * scheduler fails to find a good waiting task to 8853 * migrate. 8854 */ 8855 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 8856 goto next; 8857 8858 env->imbalance -= load; 8859 break; 8860 8861 case migrate_util: 8862 util = task_util_est(p); 8863 8864 if (util > env->imbalance) 8865 goto next; 8866 8867 env->imbalance -= util; 8868 break; 8869 8870 case migrate_task: 8871 env->imbalance--; 8872 break; 8873 8874 case migrate_misfit: 8875 /* This is not a misfit task */ 8876 if (task_fits_cpu(p, env->src_cpu)) 8877 goto next; 8878 8879 env->imbalance = 0; 8880 break; 8881 } 8882 8883 detach_task(p, env); 8884 list_add(&p->se.group_node, &env->tasks); 8885 8886 detached++; 8887 8888 #ifdef CONFIG_PREEMPTION 8889 /* 8890 * NEWIDLE balancing is a source of latency, so preemptible 8891 * kernels will stop after the first task is detached to minimize 8892 * the critical section. 8893 */ 8894 if (env->idle == CPU_NEWLY_IDLE) 8895 break; 8896 #endif 8897 8898 /* 8899 * We only want to steal up to the prescribed amount of 8900 * load/util/tasks. 8901 */ 8902 if (env->imbalance <= 0) 8903 break; 8904 8905 continue; 8906 next: 8907 list_move(&p->se.group_node, tasks); 8908 } 8909 8910 /* 8911 * Right now, this is one of only two places we collect this stat 8912 * so we can safely collect detach_one_task() stats here rather 8913 * than inside detach_one_task(). 8914 */ 8915 schedstat_add(env->sd->lb_gained[env->idle], detached); 8916 8917 return detached; 8918 } 8919 8920 /* 8921 * attach_task() -- attach the task detached by detach_task() to its new rq. 8922 */ 8923 static void attach_task(struct rq *rq, struct task_struct *p) 8924 { 8925 lockdep_assert_rq_held(rq); 8926 8927 WARN_ON_ONCE(task_rq(p) != rq); 8928 activate_task(rq, p, ENQUEUE_NOCLOCK); 8929 check_preempt_curr(rq, p, 0); 8930 } 8931 8932 /* 8933 * attach_one_task() -- attaches the task returned from detach_one_task() to 8934 * its new rq. 8935 */ 8936 static void attach_one_task(struct rq *rq, struct task_struct *p) 8937 { 8938 struct rq_flags rf; 8939 8940 rq_lock(rq, &rf); 8941 update_rq_clock(rq); 8942 attach_task(rq, p); 8943 rq_unlock(rq, &rf); 8944 } 8945 8946 /* 8947 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8948 * new rq. 8949 */ 8950 static void attach_tasks(struct lb_env *env) 8951 { 8952 struct list_head *tasks = &env->tasks; 8953 struct task_struct *p; 8954 struct rq_flags rf; 8955 8956 rq_lock(env->dst_rq, &rf); 8957 update_rq_clock(env->dst_rq); 8958 8959 while (!list_empty(tasks)) { 8960 p = list_first_entry(tasks, struct task_struct, se.group_node); 8961 list_del_init(&p->se.group_node); 8962 8963 attach_task(env->dst_rq, p); 8964 } 8965 8966 rq_unlock(env->dst_rq, &rf); 8967 } 8968 8969 #ifdef CONFIG_NO_HZ_COMMON 8970 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8971 { 8972 if (cfs_rq->avg.load_avg) 8973 return true; 8974 8975 if (cfs_rq->avg.util_avg) 8976 return true; 8977 8978 return false; 8979 } 8980 8981 static inline bool others_have_blocked(struct rq *rq) 8982 { 8983 if (READ_ONCE(rq->avg_rt.util_avg)) 8984 return true; 8985 8986 if (READ_ONCE(rq->avg_dl.util_avg)) 8987 return true; 8988 8989 if (thermal_load_avg(rq)) 8990 return true; 8991 8992 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8993 if (READ_ONCE(rq->avg_irq.util_avg)) 8994 return true; 8995 #endif 8996 8997 return false; 8998 } 8999 9000 static inline void update_blocked_load_tick(struct rq *rq) 9001 { 9002 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9003 } 9004 9005 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9006 { 9007 if (!has_blocked) 9008 rq->has_blocked_load = 0; 9009 } 9010 #else 9011 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9012 static inline bool others_have_blocked(struct rq *rq) { return false; } 9013 static inline void update_blocked_load_tick(struct rq *rq) {} 9014 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9015 #endif 9016 9017 static bool __update_blocked_others(struct rq *rq, bool *done) 9018 { 9019 const struct sched_class *curr_class; 9020 u64 now = rq_clock_pelt(rq); 9021 unsigned long thermal_pressure; 9022 bool decayed; 9023 9024 /* 9025 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9026 * DL and IRQ signals have been updated before updating CFS. 9027 */ 9028 curr_class = rq->curr->sched_class; 9029 9030 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 9031 9032 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 9033 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 9034 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 9035 update_irq_load_avg(rq, 0); 9036 9037 if (others_have_blocked(rq)) 9038 *done = false; 9039 9040 return decayed; 9041 } 9042 9043 #ifdef CONFIG_FAIR_GROUP_SCHED 9044 9045 static bool __update_blocked_fair(struct rq *rq, bool *done) 9046 { 9047 struct cfs_rq *cfs_rq, *pos; 9048 bool decayed = false; 9049 int cpu = cpu_of(rq); 9050 9051 /* 9052 * Iterates the task_group tree in a bottom up fashion, see 9053 * list_add_leaf_cfs_rq() for details. 9054 */ 9055 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9056 struct sched_entity *se; 9057 9058 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9059 update_tg_load_avg(cfs_rq); 9060 9061 if (cfs_rq->nr_running == 0) 9062 update_idle_cfs_rq_clock_pelt(cfs_rq); 9063 9064 if (cfs_rq == &rq->cfs) 9065 decayed = true; 9066 } 9067 9068 /* Propagate pending load changes to the parent, if any: */ 9069 se = cfs_rq->tg->se[cpu]; 9070 if (se && !skip_blocked_update(se)) 9071 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9072 9073 /* 9074 * There can be a lot of idle CPU cgroups. Don't let fully 9075 * decayed cfs_rqs linger on the list. 9076 */ 9077 if (cfs_rq_is_decayed(cfs_rq)) 9078 list_del_leaf_cfs_rq(cfs_rq); 9079 9080 /* Don't need periodic decay once load/util_avg are null */ 9081 if (cfs_rq_has_blocked(cfs_rq)) 9082 *done = false; 9083 } 9084 9085 return decayed; 9086 } 9087 9088 /* 9089 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9090 * This needs to be done in a top-down fashion because the load of a child 9091 * group is a fraction of its parents load. 9092 */ 9093 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9094 { 9095 struct rq *rq = rq_of(cfs_rq); 9096 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9097 unsigned long now = jiffies; 9098 unsigned long load; 9099 9100 if (cfs_rq->last_h_load_update == now) 9101 return; 9102 9103 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9104 for_each_sched_entity(se) { 9105 cfs_rq = cfs_rq_of(se); 9106 WRITE_ONCE(cfs_rq->h_load_next, se); 9107 if (cfs_rq->last_h_load_update == now) 9108 break; 9109 } 9110 9111 if (!se) { 9112 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9113 cfs_rq->last_h_load_update = now; 9114 } 9115 9116 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9117 load = cfs_rq->h_load; 9118 load = div64_ul(load * se->avg.load_avg, 9119 cfs_rq_load_avg(cfs_rq) + 1); 9120 cfs_rq = group_cfs_rq(se); 9121 cfs_rq->h_load = load; 9122 cfs_rq->last_h_load_update = now; 9123 } 9124 } 9125 9126 static unsigned long task_h_load(struct task_struct *p) 9127 { 9128 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9129 9130 update_cfs_rq_h_load(cfs_rq); 9131 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9132 cfs_rq_load_avg(cfs_rq) + 1); 9133 } 9134 #else 9135 static bool __update_blocked_fair(struct rq *rq, bool *done) 9136 { 9137 struct cfs_rq *cfs_rq = &rq->cfs; 9138 bool decayed; 9139 9140 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9141 if (cfs_rq_has_blocked(cfs_rq)) 9142 *done = false; 9143 9144 return decayed; 9145 } 9146 9147 static unsigned long task_h_load(struct task_struct *p) 9148 { 9149 return p->se.avg.load_avg; 9150 } 9151 #endif 9152 9153 static void update_blocked_averages(int cpu) 9154 { 9155 bool decayed = false, done = true; 9156 struct rq *rq = cpu_rq(cpu); 9157 struct rq_flags rf; 9158 9159 rq_lock_irqsave(rq, &rf); 9160 update_blocked_load_tick(rq); 9161 update_rq_clock(rq); 9162 9163 decayed |= __update_blocked_others(rq, &done); 9164 decayed |= __update_blocked_fair(rq, &done); 9165 9166 update_blocked_load_status(rq, !done); 9167 if (decayed) 9168 cpufreq_update_util(rq, 0); 9169 rq_unlock_irqrestore(rq, &rf); 9170 } 9171 9172 /********** Helpers for find_busiest_group ************************/ 9173 9174 /* 9175 * sg_lb_stats - stats of a sched_group required for load_balancing 9176 */ 9177 struct sg_lb_stats { 9178 unsigned long avg_load; /*Avg load across the CPUs of the group */ 9179 unsigned long group_load; /* Total load over the CPUs of the group */ 9180 unsigned long group_capacity; 9181 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9182 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9183 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 9184 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9185 unsigned int idle_cpus; 9186 unsigned int group_weight; 9187 enum group_type group_type; 9188 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9189 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9190 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9191 #ifdef CONFIG_NUMA_BALANCING 9192 unsigned int nr_numa_running; 9193 unsigned int nr_preferred_running; 9194 #endif 9195 }; 9196 9197 /* 9198 * sd_lb_stats - Structure to store the statistics of a sched_domain 9199 * during load balancing. 9200 */ 9201 struct sd_lb_stats { 9202 struct sched_group *busiest; /* Busiest group in this sd */ 9203 struct sched_group *local; /* Local group in this sd */ 9204 unsigned long total_load; /* Total load of all groups in sd */ 9205 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9206 unsigned long avg_load; /* Average load across all groups in sd */ 9207 unsigned int prefer_sibling; /* tasks should go to sibling first */ 9208 9209 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 9210 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9211 }; 9212 9213 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9214 { 9215 /* 9216 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9217 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9218 * We must however set busiest_stat::group_type and 9219 * busiest_stat::idle_cpus to the worst busiest group because 9220 * update_sd_pick_busiest() reads these before assignment. 9221 */ 9222 *sds = (struct sd_lb_stats){ 9223 .busiest = NULL, 9224 .local = NULL, 9225 .total_load = 0UL, 9226 .total_capacity = 0UL, 9227 .busiest_stat = { 9228 .idle_cpus = UINT_MAX, 9229 .group_type = group_has_spare, 9230 }, 9231 }; 9232 } 9233 9234 static unsigned long scale_rt_capacity(int cpu) 9235 { 9236 struct rq *rq = cpu_rq(cpu); 9237 unsigned long max = arch_scale_cpu_capacity(cpu); 9238 unsigned long used, free; 9239 unsigned long irq; 9240 9241 irq = cpu_util_irq(rq); 9242 9243 if (unlikely(irq >= max)) 9244 return 1; 9245 9246 /* 9247 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9248 * (running and not running) with weights 0 and 1024 respectively. 9249 * avg_thermal.load_avg tracks thermal pressure and the weighted 9250 * average uses the actual delta max capacity(load). 9251 */ 9252 used = READ_ONCE(rq->avg_rt.util_avg); 9253 used += READ_ONCE(rq->avg_dl.util_avg); 9254 used += thermal_load_avg(rq); 9255 9256 if (unlikely(used >= max)) 9257 return 1; 9258 9259 free = max - used; 9260 9261 return scale_irq_capacity(free, irq, max); 9262 } 9263 9264 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9265 { 9266 unsigned long capacity = scale_rt_capacity(cpu); 9267 struct sched_group *sdg = sd->groups; 9268 9269 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 9270 9271 if (!capacity) 9272 capacity = 1; 9273 9274 cpu_rq(cpu)->cpu_capacity = capacity; 9275 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9276 9277 sdg->sgc->capacity = capacity; 9278 sdg->sgc->min_capacity = capacity; 9279 sdg->sgc->max_capacity = capacity; 9280 } 9281 9282 void update_group_capacity(struct sched_domain *sd, int cpu) 9283 { 9284 struct sched_domain *child = sd->child; 9285 struct sched_group *group, *sdg = sd->groups; 9286 unsigned long capacity, min_capacity, max_capacity; 9287 unsigned long interval; 9288 9289 interval = msecs_to_jiffies(sd->balance_interval); 9290 interval = clamp(interval, 1UL, max_load_balance_interval); 9291 sdg->sgc->next_update = jiffies + interval; 9292 9293 if (!child) { 9294 update_cpu_capacity(sd, cpu); 9295 return; 9296 } 9297 9298 capacity = 0; 9299 min_capacity = ULONG_MAX; 9300 max_capacity = 0; 9301 9302 if (child->flags & SD_OVERLAP) { 9303 /* 9304 * SD_OVERLAP domains cannot assume that child groups 9305 * span the current group. 9306 */ 9307 9308 for_each_cpu(cpu, sched_group_span(sdg)) { 9309 unsigned long cpu_cap = capacity_of(cpu); 9310 9311 capacity += cpu_cap; 9312 min_capacity = min(cpu_cap, min_capacity); 9313 max_capacity = max(cpu_cap, max_capacity); 9314 } 9315 } else { 9316 /* 9317 * !SD_OVERLAP domains can assume that child groups 9318 * span the current group. 9319 */ 9320 9321 group = child->groups; 9322 do { 9323 struct sched_group_capacity *sgc = group->sgc; 9324 9325 capacity += sgc->capacity; 9326 min_capacity = min(sgc->min_capacity, min_capacity); 9327 max_capacity = max(sgc->max_capacity, max_capacity); 9328 group = group->next; 9329 } while (group != child->groups); 9330 } 9331 9332 sdg->sgc->capacity = capacity; 9333 sdg->sgc->min_capacity = min_capacity; 9334 sdg->sgc->max_capacity = max_capacity; 9335 } 9336 9337 /* 9338 * Check whether the capacity of the rq has been noticeably reduced by side 9339 * activity. The imbalance_pct is used for the threshold. 9340 * Return true is the capacity is reduced 9341 */ 9342 static inline int 9343 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9344 { 9345 return ((rq->cpu_capacity * sd->imbalance_pct) < 9346 (rq->cpu_capacity_orig * 100)); 9347 } 9348 9349 /* 9350 * Check whether a rq has a misfit task and if it looks like we can actually 9351 * help that task: we can migrate the task to a CPU of higher capacity, or 9352 * the task's current CPU is heavily pressured. 9353 */ 9354 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 9355 { 9356 return rq->misfit_task_load && 9357 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 9358 check_cpu_capacity(rq, sd)); 9359 } 9360 9361 /* 9362 * Group imbalance indicates (and tries to solve) the problem where balancing 9363 * groups is inadequate due to ->cpus_ptr constraints. 9364 * 9365 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9366 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9367 * Something like: 9368 * 9369 * { 0 1 2 3 } { 4 5 6 7 } 9370 * * * * * 9371 * 9372 * If we were to balance group-wise we'd place two tasks in the first group and 9373 * two tasks in the second group. Clearly this is undesired as it will overload 9374 * cpu 3 and leave one of the CPUs in the second group unused. 9375 * 9376 * The current solution to this issue is detecting the skew in the first group 9377 * by noticing the lower domain failed to reach balance and had difficulty 9378 * moving tasks due to affinity constraints. 9379 * 9380 * When this is so detected; this group becomes a candidate for busiest; see 9381 * update_sd_pick_busiest(). And calculate_imbalance() and 9382 * find_busiest_group() avoid some of the usual balance conditions to allow it 9383 * to create an effective group imbalance. 9384 * 9385 * This is a somewhat tricky proposition since the next run might not find the 9386 * group imbalance and decide the groups need to be balanced again. A most 9387 * subtle and fragile situation. 9388 */ 9389 9390 static inline int sg_imbalanced(struct sched_group *group) 9391 { 9392 return group->sgc->imbalance; 9393 } 9394 9395 /* 9396 * group_has_capacity returns true if the group has spare capacity that could 9397 * be used by some tasks. 9398 * We consider that a group has spare capacity if the number of task is 9399 * smaller than the number of CPUs or if the utilization is lower than the 9400 * available capacity for CFS tasks. 9401 * For the latter, we use a threshold to stabilize the state, to take into 9402 * account the variance of the tasks' load and to return true if the available 9403 * capacity in meaningful for the load balancer. 9404 * As an example, an available capacity of 1% can appear but it doesn't make 9405 * any benefit for the load balance. 9406 */ 9407 static inline bool 9408 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9409 { 9410 if (sgs->sum_nr_running < sgs->group_weight) 9411 return true; 9412 9413 if ((sgs->group_capacity * imbalance_pct) < 9414 (sgs->group_runnable * 100)) 9415 return false; 9416 9417 if ((sgs->group_capacity * 100) > 9418 (sgs->group_util * imbalance_pct)) 9419 return true; 9420 9421 return false; 9422 } 9423 9424 /* 9425 * group_is_overloaded returns true if the group has more tasks than it can 9426 * handle. 9427 * group_is_overloaded is not equals to !group_has_capacity because a group 9428 * with the exact right number of tasks, has no more spare capacity but is not 9429 * overloaded so both group_has_capacity and group_is_overloaded return 9430 * false. 9431 */ 9432 static inline bool 9433 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9434 { 9435 if (sgs->sum_nr_running <= sgs->group_weight) 9436 return false; 9437 9438 if ((sgs->group_capacity * 100) < 9439 (sgs->group_util * imbalance_pct)) 9440 return true; 9441 9442 if ((sgs->group_capacity * imbalance_pct) < 9443 (sgs->group_runnable * 100)) 9444 return true; 9445 9446 return false; 9447 } 9448 9449 static inline enum 9450 group_type group_classify(unsigned int imbalance_pct, 9451 struct sched_group *group, 9452 struct sg_lb_stats *sgs) 9453 { 9454 if (group_is_overloaded(imbalance_pct, sgs)) 9455 return group_overloaded; 9456 9457 if (sg_imbalanced(group)) 9458 return group_imbalanced; 9459 9460 if (sgs->group_asym_packing) 9461 return group_asym_packing; 9462 9463 if (sgs->group_smt_balance) 9464 return group_smt_balance; 9465 9466 if (sgs->group_misfit_task_load) 9467 return group_misfit_task; 9468 9469 if (!group_has_capacity(imbalance_pct, sgs)) 9470 return group_fully_busy; 9471 9472 return group_has_spare; 9473 } 9474 9475 /** 9476 * sched_use_asym_prio - Check whether asym_packing priority must be used 9477 * @sd: The scheduling domain of the load balancing 9478 * @cpu: A CPU 9479 * 9480 * Always use CPU priority when balancing load between SMT siblings. When 9481 * balancing load between cores, it is not sufficient that @cpu is idle. Only 9482 * use CPU priority if the whole core is idle. 9483 * 9484 * Returns: True if the priority of @cpu must be followed. False otherwise. 9485 */ 9486 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 9487 { 9488 if (!sched_smt_active()) 9489 return true; 9490 9491 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 9492 } 9493 9494 /** 9495 * sched_asym - Check if the destination CPU can do asym_packing load balance 9496 * @env: The load balancing environment 9497 * @sds: Load-balancing data with statistics of the local group 9498 * @sgs: Load-balancing statistics of the candidate busiest group 9499 * @group: The candidate busiest group 9500 * 9501 * @env::dst_cpu can do asym_packing if it has higher priority than the 9502 * preferred CPU of @group. 9503 * 9504 * SMT is a special case. If we are balancing load between cores, @env::dst_cpu 9505 * can do asym_packing balance only if all its SMT siblings are idle. Also, it 9506 * can only do it if @group is an SMT group and has exactly on busy CPU. Larger 9507 * imbalances in the number of CPUS are dealt with in find_busiest_group(). 9508 * 9509 * If we are balancing load within an SMT core, or at DIE domain level, always 9510 * proceed. 9511 * 9512 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 9513 * otherwise. 9514 */ 9515 static inline bool 9516 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 9517 struct sched_group *group) 9518 { 9519 /* Ensure that the whole local core is idle, if applicable. */ 9520 if (!sched_use_asym_prio(env->sd, env->dst_cpu)) 9521 return false; 9522 9523 /* 9524 * CPU priorities does not make sense for SMT cores with more than one 9525 * busy sibling. 9526 */ 9527 if (group->flags & SD_SHARE_CPUCAPACITY) { 9528 if (sgs->group_weight - sgs->idle_cpus != 1) 9529 return false; 9530 } 9531 9532 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 9533 } 9534 9535 /* One group has more than one SMT CPU while the other group does not */ 9536 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 9537 struct sched_group *sg2) 9538 { 9539 if (!sg1 || !sg2) 9540 return false; 9541 9542 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 9543 (sg2->flags & SD_SHARE_CPUCAPACITY); 9544 } 9545 9546 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 9547 struct sched_group *group) 9548 { 9549 if (env->idle == CPU_NOT_IDLE) 9550 return false; 9551 9552 /* 9553 * For SMT source group, it is better to move a task 9554 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 9555 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 9556 * will not be on. 9557 */ 9558 if (group->flags & SD_SHARE_CPUCAPACITY && 9559 sgs->sum_h_nr_running > 1) 9560 return true; 9561 9562 return false; 9563 } 9564 9565 static inline long sibling_imbalance(struct lb_env *env, 9566 struct sd_lb_stats *sds, 9567 struct sg_lb_stats *busiest, 9568 struct sg_lb_stats *local) 9569 { 9570 int ncores_busiest, ncores_local; 9571 long imbalance; 9572 9573 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running) 9574 return 0; 9575 9576 ncores_busiest = sds->busiest->cores; 9577 ncores_local = sds->local->cores; 9578 9579 if (ncores_busiest == ncores_local) { 9580 imbalance = busiest->sum_nr_running; 9581 lsub_positive(&imbalance, local->sum_nr_running); 9582 return imbalance; 9583 } 9584 9585 /* Balance such that nr_running/ncores ratio are same on both groups */ 9586 imbalance = ncores_local * busiest->sum_nr_running; 9587 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 9588 /* Normalize imbalance and do rounding on normalization */ 9589 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 9590 imbalance /= ncores_local + ncores_busiest; 9591 9592 /* Take advantage of resource in an empty sched group */ 9593 if (imbalance <= 1 && local->sum_nr_running == 0 && 9594 busiest->sum_nr_running > 1) 9595 imbalance = 2; 9596 9597 return imbalance; 9598 } 9599 9600 static inline bool 9601 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9602 { 9603 /* 9604 * When there is more than 1 task, the group_overloaded case already 9605 * takes care of cpu with reduced capacity 9606 */ 9607 if (rq->cfs.h_nr_running != 1) 9608 return false; 9609 9610 return check_cpu_capacity(rq, sd); 9611 } 9612 9613 /** 9614 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9615 * @env: The load balancing environment. 9616 * @sds: Load-balancing data with statistics of the local group. 9617 * @group: sched_group whose statistics are to be updated. 9618 * @sgs: variable to hold the statistics for this group. 9619 * @sg_status: Holds flag indicating the status of the sched_group 9620 */ 9621 static inline void update_sg_lb_stats(struct lb_env *env, 9622 struct sd_lb_stats *sds, 9623 struct sched_group *group, 9624 struct sg_lb_stats *sgs, 9625 int *sg_status) 9626 { 9627 int i, nr_running, local_group; 9628 9629 memset(sgs, 0, sizeof(*sgs)); 9630 9631 local_group = group == sds->local; 9632 9633 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9634 struct rq *rq = cpu_rq(i); 9635 unsigned long load = cpu_load(rq); 9636 9637 sgs->group_load += load; 9638 sgs->group_util += cpu_util_cfs(i); 9639 sgs->group_runnable += cpu_runnable(rq); 9640 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9641 9642 nr_running = rq->nr_running; 9643 sgs->sum_nr_running += nr_running; 9644 9645 if (nr_running > 1) 9646 *sg_status |= SG_OVERLOAD; 9647 9648 if (cpu_overutilized(i)) 9649 *sg_status |= SG_OVERUTILIZED; 9650 9651 #ifdef CONFIG_NUMA_BALANCING 9652 sgs->nr_numa_running += rq->nr_numa_running; 9653 sgs->nr_preferred_running += rq->nr_preferred_running; 9654 #endif 9655 /* 9656 * No need to call idle_cpu() if nr_running is not 0 9657 */ 9658 if (!nr_running && idle_cpu(i)) { 9659 sgs->idle_cpus++; 9660 /* Idle cpu can't have misfit task */ 9661 continue; 9662 } 9663 9664 if (local_group) 9665 continue; 9666 9667 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9668 /* Check for a misfit task on the cpu */ 9669 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9670 sgs->group_misfit_task_load = rq->misfit_task_load; 9671 *sg_status |= SG_OVERLOAD; 9672 } 9673 } else if ((env->idle != CPU_NOT_IDLE) && 9674 sched_reduced_capacity(rq, env->sd)) { 9675 /* Check for a task running on a CPU with reduced capacity */ 9676 if (sgs->group_misfit_task_load < load) 9677 sgs->group_misfit_task_load = load; 9678 } 9679 } 9680 9681 sgs->group_capacity = group->sgc->capacity; 9682 9683 sgs->group_weight = group->group_weight; 9684 9685 /* Check if dst CPU is idle and preferred to this group */ 9686 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 9687 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9688 sched_asym(env, sds, sgs, group)) { 9689 sgs->group_asym_packing = 1; 9690 } 9691 9692 /* Check for loaded SMT group to be balanced to dst CPU */ 9693 if (!local_group && smt_balance(env, sgs, group)) 9694 sgs->group_smt_balance = 1; 9695 9696 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9697 9698 /* Computing avg_load makes sense only when group is overloaded */ 9699 if (sgs->group_type == group_overloaded) 9700 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9701 sgs->group_capacity; 9702 } 9703 9704 /** 9705 * update_sd_pick_busiest - return 1 on busiest group 9706 * @env: The load balancing environment. 9707 * @sds: sched_domain statistics 9708 * @sg: sched_group candidate to be checked for being the busiest 9709 * @sgs: sched_group statistics 9710 * 9711 * Determine if @sg is a busier group than the previously selected 9712 * busiest group. 9713 * 9714 * Return: %true if @sg is a busier group than the previously selected 9715 * busiest group. %false otherwise. 9716 */ 9717 static bool update_sd_pick_busiest(struct lb_env *env, 9718 struct sd_lb_stats *sds, 9719 struct sched_group *sg, 9720 struct sg_lb_stats *sgs) 9721 { 9722 struct sg_lb_stats *busiest = &sds->busiest_stat; 9723 9724 /* Make sure that there is at least one task to pull */ 9725 if (!sgs->sum_h_nr_running) 9726 return false; 9727 9728 /* 9729 * Don't try to pull misfit tasks we can't help. 9730 * We can use max_capacity here as reduction in capacity on some 9731 * CPUs in the group should either be possible to resolve 9732 * internally or be covered by avg_load imbalance (eventually). 9733 */ 9734 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9735 (sgs->group_type == group_misfit_task) && 9736 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9737 sds->local_stat.group_type != group_has_spare)) 9738 return false; 9739 9740 if (sgs->group_type > busiest->group_type) 9741 return true; 9742 9743 if (sgs->group_type < busiest->group_type) 9744 return false; 9745 9746 /* 9747 * The candidate and the current busiest group are the same type of 9748 * group. Let check which one is the busiest according to the type. 9749 */ 9750 9751 switch (sgs->group_type) { 9752 case group_overloaded: 9753 /* Select the overloaded group with highest avg_load. */ 9754 if (sgs->avg_load <= busiest->avg_load) 9755 return false; 9756 break; 9757 9758 case group_imbalanced: 9759 /* 9760 * Select the 1st imbalanced group as we don't have any way to 9761 * choose one more than another. 9762 */ 9763 return false; 9764 9765 case group_asym_packing: 9766 /* Prefer to move from lowest priority CPU's work */ 9767 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 9768 return false; 9769 break; 9770 9771 case group_misfit_task: 9772 /* 9773 * If we have more than one misfit sg go with the biggest 9774 * misfit. 9775 */ 9776 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 9777 return false; 9778 break; 9779 9780 case group_smt_balance: 9781 /* 9782 * Check if we have spare CPUs on either SMT group to 9783 * choose has spare or fully busy handling. 9784 */ 9785 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 9786 goto has_spare; 9787 9788 fallthrough; 9789 9790 case group_fully_busy: 9791 /* 9792 * Select the fully busy group with highest avg_load. In 9793 * theory, there is no need to pull task from such kind of 9794 * group because tasks have all compute capacity that they need 9795 * but we can still improve the overall throughput by reducing 9796 * contention when accessing shared HW resources. 9797 * 9798 * XXX for now avg_load is not computed and always 0 so we 9799 * select the 1st one, except if @sg is composed of SMT 9800 * siblings. 9801 */ 9802 9803 if (sgs->avg_load < busiest->avg_load) 9804 return false; 9805 9806 if (sgs->avg_load == busiest->avg_load) { 9807 /* 9808 * SMT sched groups need more help than non-SMT groups. 9809 * If @sg happens to also be SMT, either choice is good. 9810 */ 9811 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 9812 return false; 9813 } 9814 9815 break; 9816 9817 case group_has_spare: 9818 /* 9819 * Do not pick sg with SMT CPUs over sg with pure CPUs, 9820 * as we do not want to pull task off SMT core with one task 9821 * and make the core idle. 9822 */ 9823 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 9824 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 9825 return false; 9826 else 9827 return true; 9828 } 9829 has_spare: 9830 9831 /* 9832 * Select not overloaded group with lowest number of idle cpus 9833 * and highest number of running tasks. We could also compare 9834 * the spare capacity which is more stable but it can end up 9835 * that the group has less spare capacity but finally more idle 9836 * CPUs which means less opportunity to pull tasks. 9837 */ 9838 if (sgs->idle_cpus > busiest->idle_cpus) 9839 return false; 9840 else if ((sgs->idle_cpus == busiest->idle_cpus) && 9841 (sgs->sum_nr_running <= busiest->sum_nr_running)) 9842 return false; 9843 9844 break; 9845 } 9846 9847 /* 9848 * Candidate sg has no more than one task per CPU and has higher 9849 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 9850 * throughput. Maximize throughput, power/energy consequences are not 9851 * considered. 9852 */ 9853 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9854 (sgs->group_type <= group_fully_busy) && 9855 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 9856 return false; 9857 9858 return true; 9859 } 9860 9861 #ifdef CONFIG_NUMA_BALANCING 9862 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9863 { 9864 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 9865 return regular; 9866 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 9867 return remote; 9868 return all; 9869 } 9870 9871 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9872 { 9873 if (rq->nr_running > rq->nr_numa_running) 9874 return regular; 9875 if (rq->nr_running > rq->nr_preferred_running) 9876 return remote; 9877 return all; 9878 } 9879 #else 9880 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9881 { 9882 return all; 9883 } 9884 9885 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9886 { 9887 return regular; 9888 } 9889 #endif /* CONFIG_NUMA_BALANCING */ 9890 9891 9892 struct sg_lb_stats; 9893 9894 /* 9895 * task_running_on_cpu - return 1 if @p is running on @cpu. 9896 */ 9897 9898 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 9899 { 9900 /* Task has no contribution or is new */ 9901 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 9902 return 0; 9903 9904 if (task_on_rq_queued(p)) 9905 return 1; 9906 9907 return 0; 9908 } 9909 9910 /** 9911 * idle_cpu_without - would a given CPU be idle without p ? 9912 * @cpu: the processor on which idleness is tested. 9913 * @p: task which should be ignored. 9914 * 9915 * Return: 1 if the CPU would be idle. 0 otherwise. 9916 */ 9917 static int idle_cpu_without(int cpu, struct task_struct *p) 9918 { 9919 struct rq *rq = cpu_rq(cpu); 9920 9921 if (rq->curr != rq->idle && rq->curr != p) 9922 return 0; 9923 9924 /* 9925 * rq->nr_running can't be used but an updated version without the 9926 * impact of p on cpu must be used instead. The updated nr_running 9927 * be computed and tested before calling idle_cpu_without(). 9928 */ 9929 9930 #ifdef CONFIG_SMP 9931 if (rq->ttwu_pending) 9932 return 0; 9933 #endif 9934 9935 return 1; 9936 } 9937 9938 /* 9939 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 9940 * @sd: The sched_domain level to look for idlest group. 9941 * @group: sched_group whose statistics are to be updated. 9942 * @sgs: variable to hold the statistics for this group. 9943 * @p: The task for which we look for the idlest group/CPU. 9944 */ 9945 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 9946 struct sched_group *group, 9947 struct sg_lb_stats *sgs, 9948 struct task_struct *p) 9949 { 9950 int i, nr_running; 9951 9952 memset(sgs, 0, sizeof(*sgs)); 9953 9954 /* Assume that task can't fit any CPU of the group */ 9955 if (sd->flags & SD_ASYM_CPUCAPACITY) 9956 sgs->group_misfit_task_load = 1; 9957 9958 for_each_cpu(i, sched_group_span(group)) { 9959 struct rq *rq = cpu_rq(i); 9960 unsigned int local; 9961 9962 sgs->group_load += cpu_load_without(rq, p); 9963 sgs->group_util += cpu_util_without(i, p); 9964 sgs->group_runnable += cpu_runnable_without(rq, p); 9965 local = task_running_on_cpu(i, p); 9966 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 9967 9968 nr_running = rq->nr_running - local; 9969 sgs->sum_nr_running += nr_running; 9970 9971 /* 9972 * No need to call idle_cpu_without() if nr_running is not 0 9973 */ 9974 if (!nr_running && idle_cpu_without(i, p)) 9975 sgs->idle_cpus++; 9976 9977 /* Check if task fits in the CPU */ 9978 if (sd->flags & SD_ASYM_CPUCAPACITY && 9979 sgs->group_misfit_task_load && 9980 task_fits_cpu(p, i)) 9981 sgs->group_misfit_task_load = 0; 9982 9983 } 9984 9985 sgs->group_capacity = group->sgc->capacity; 9986 9987 sgs->group_weight = group->group_weight; 9988 9989 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 9990 9991 /* 9992 * Computing avg_load makes sense only when group is fully busy or 9993 * overloaded 9994 */ 9995 if (sgs->group_type == group_fully_busy || 9996 sgs->group_type == group_overloaded) 9997 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9998 sgs->group_capacity; 9999 } 10000 10001 static bool update_pick_idlest(struct sched_group *idlest, 10002 struct sg_lb_stats *idlest_sgs, 10003 struct sched_group *group, 10004 struct sg_lb_stats *sgs) 10005 { 10006 if (sgs->group_type < idlest_sgs->group_type) 10007 return true; 10008 10009 if (sgs->group_type > idlest_sgs->group_type) 10010 return false; 10011 10012 /* 10013 * The candidate and the current idlest group are the same type of 10014 * group. Let check which one is the idlest according to the type. 10015 */ 10016 10017 switch (sgs->group_type) { 10018 case group_overloaded: 10019 case group_fully_busy: 10020 /* Select the group with lowest avg_load. */ 10021 if (idlest_sgs->avg_load <= sgs->avg_load) 10022 return false; 10023 break; 10024 10025 case group_imbalanced: 10026 case group_asym_packing: 10027 case group_smt_balance: 10028 /* Those types are not used in the slow wakeup path */ 10029 return false; 10030 10031 case group_misfit_task: 10032 /* Select group with the highest max capacity */ 10033 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10034 return false; 10035 break; 10036 10037 case group_has_spare: 10038 /* Select group with most idle CPUs */ 10039 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10040 return false; 10041 10042 /* Select group with lowest group_util */ 10043 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10044 idlest_sgs->group_util <= sgs->group_util) 10045 return false; 10046 10047 break; 10048 } 10049 10050 return true; 10051 } 10052 10053 /* 10054 * find_idlest_group() finds and returns the least busy CPU group within the 10055 * domain. 10056 * 10057 * Assumes p is allowed on at least one CPU in sd. 10058 */ 10059 static struct sched_group * 10060 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10061 { 10062 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10063 struct sg_lb_stats local_sgs, tmp_sgs; 10064 struct sg_lb_stats *sgs; 10065 unsigned long imbalance; 10066 struct sg_lb_stats idlest_sgs = { 10067 .avg_load = UINT_MAX, 10068 .group_type = group_overloaded, 10069 }; 10070 10071 do { 10072 int local_group; 10073 10074 /* Skip over this group if it has no CPUs allowed */ 10075 if (!cpumask_intersects(sched_group_span(group), 10076 p->cpus_ptr)) 10077 continue; 10078 10079 /* Skip over this group if no cookie matched */ 10080 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10081 continue; 10082 10083 local_group = cpumask_test_cpu(this_cpu, 10084 sched_group_span(group)); 10085 10086 if (local_group) { 10087 sgs = &local_sgs; 10088 local = group; 10089 } else { 10090 sgs = &tmp_sgs; 10091 } 10092 10093 update_sg_wakeup_stats(sd, group, sgs, p); 10094 10095 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10096 idlest = group; 10097 idlest_sgs = *sgs; 10098 } 10099 10100 } while (group = group->next, group != sd->groups); 10101 10102 10103 /* There is no idlest group to push tasks to */ 10104 if (!idlest) 10105 return NULL; 10106 10107 /* The local group has been skipped because of CPU affinity */ 10108 if (!local) 10109 return idlest; 10110 10111 /* 10112 * If the local group is idler than the selected idlest group 10113 * don't try and push the task. 10114 */ 10115 if (local_sgs.group_type < idlest_sgs.group_type) 10116 return NULL; 10117 10118 /* 10119 * If the local group is busier than the selected idlest group 10120 * try and push the task. 10121 */ 10122 if (local_sgs.group_type > idlest_sgs.group_type) 10123 return idlest; 10124 10125 switch (local_sgs.group_type) { 10126 case group_overloaded: 10127 case group_fully_busy: 10128 10129 /* Calculate allowed imbalance based on load */ 10130 imbalance = scale_load_down(NICE_0_LOAD) * 10131 (sd->imbalance_pct-100) / 100; 10132 10133 /* 10134 * When comparing groups across NUMA domains, it's possible for 10135 * the local domain to be very lightly loaded relative to the 10136 * remote domains but "imbalance" skews the comparison making 10137 * remote CPUs look much more favourable. When considering 10138 * cross-domain, add imbalance to the load on the remote node 10139 * and consider staying local. 10140 */ 10141 10142 if ((sd->flags & SD_NUMA) && 10143 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10144 return NULL; 10145 10146 /* 10147 * If the local group is less loaded than the selected 10148 * idlest group don't try and push any tasks. 10149 */ 10150 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10151 return NULL; 10152 10153 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10154 return NULL; 10155 break; 10156 10157 case group_imbalanced: 10158 case group_asym_packing: 10159 case group_smt_balance: 10160 /* Those type are not used in the slow wakeup path */ 10161 return NULL; 10162 10163 case group_misfit_task: 10164 /* Select group with the highest max capacity */ 10165 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10166 return NULL; 10167 break; 10168 10169 case group_has_spare: 10170 #ifdef CONFIG_NUMA 10171 if (sd->flags & SD_NUMA) { 10172 int imb_numa_nr = sd->imb_numa_nr; 10173 #ifdef CONFIG_NUMA_BALANCING 10174 int idlest_cpu; 10175 /* 10176 * If there is spare capacity at NUMA, try to select 10177 * the preferred node 10178 */ 10179 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10180 return NULL; 10181 10182 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10183 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10184 return idlest; 10185 #endif /* CONFIG_NUMA_BALANCING */ 10186 /* 10187 * Otherwise, keep the task close to the wakeup source 10188 * and improve locality if the number of running tasks 10189 * would remain below threshold where an imbalance is 10190 * allowed while accounting for the possibility the 10191 * task is pinned to a subset of CPUs. If there is a 10192 * real need of migration, periodic load balance will 10193 * take care of it. 10194 */ 10195 if (p->nr_cpus_allowed != NR_CPUS) { 10196 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10197 10198 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10199 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10200 } 10201 10202 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10203 if (!adjust_numa_imbalance(imbalance, 10204 local_sgs.sum_nr_running + 1, 10205 imb_numa_nr)) { 10206 return NULL; 10207 } 10208 } 10209 #endif /* CONFIG_NUMA */ 10210 10211 /* 10212 * Select group with highest number of idle CPUs. We could also 10213 * compare the utilization which is more stable but it can end 10214 * up that the group has less spare capacity but finally more 10215 * idle CPUs which means more opportunity to run task. 10216 */ 10217 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10218 return NULL; 10219 break; 10220 } 10221 10222 return idlest; 10223 } 10224 10225 static void update_idle_cpu_scan(struct lb_env *env, 10226 unsigned long sum_util) 10227 { 10228 struct sched_domain_shared *sd_share; 10229 int llc_weight, pct; 10230 u64 x, y, tmp; 10231 /* 10232 * Update the number of CPUs to scan in LLC domain, which could 10233 * be used as a hint in select_idle_cpu(). The update of sd_share 10234 * could be expensive because it is within a shared cache line. 10235 * So the write of this hint only occurs during periodic load 10236 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10237 * can fire way more frequently than the former. 10238 */ 10239 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10240 return; 10241 10242 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10243 if (env->sd->span_weight != llc_weight) 10244 return; 10245 10246 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10247 if (!sd_share) 10248 return; 10249 10250 /* 10251 * The number of CPUs to search drops as sum_util increases, when 10252 * sum_util hits 85% or above, the scan stops. 10253 * The reason to choose 85% as the threshold is because this is the 10254 * imbalance_pct(117) when a LLC sched group is overloaded. 10255 * 10256 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10257 * and y'= y / SCHED_CAPACITY_SCALE 10258 * 10259 * x is the ratio of sum_util compared to the CPU capacity: 10260 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10261 * y' is the ratio of CPUs to be scanned in the LLC domain, 10262 * and the number of CPUs to scan is calculated by: 10263 * 10264 * nr_scan = llc_weight * y' [2] 10265 * 10266 * When x hits the threshold of overloaded, AKA, when 10267 * x = 100 / pct, y drops to 0. According to [1], 10268 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10269 * 10270 * Scale x by SCHED_CAPACITY_SCALE: 10271 * x' = sum_util / llc_weight; [3] 10272 * 10273 * and finally [1] becomes: 10274 * y = SCHED_CAPACITY_SCALE - 10275 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10276 * 10277 */ 10278 /* equation [3] */ 10279 x = sum_util; 10280 do_div(x, llc_weight); 10281 10282 /* equation [4] */ 10283 pct = env->sd->imbalance_pct; 10284 tmp = x * x * pct * pct; 10285 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10286 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10287 y = SCHED_CAPACITY_SCALE - tmp; 10288 10289 /* equation [2] */ 10290 y *= llc_weight; 10291 do_div(y, SCHED_CAPACITY_SCALE); 10292 if ((int)y != sd_share->nr_idle_scan) 10293 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10294 } 10295 10296 /** 10297 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10298 * @env: The load balancing environment. 10299 * @sds: variable to hold the statistics for this sched_domain. 10300 */ 10301 10302 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10303 { 10304 struct sched_group *sg = env->sd->groups; 10305 struct sg_lb_stats *local = &sds->local_stat; 10306 struct sg_lb_stats tmp_sgs; 10307 unsigned long sum_util = 0; 10308 int sg_status = 0; 10309 10310 do { 10311 struct sg_lb_stats *sgs = &tmp_sgs; 10312 int local_group; 10313 10314 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10315 if (local_group) { 10316 sds->local = sg; 10317 sgs = local; 10318 10319 if (env->idle != CPU_NEWLY_IDLE || 10320 time_after_eq(jiffies, sg->sgc->next_update)) 10321 update_group_capacity(env->sd, env->dst_cpu); 10322 } 10323 10324 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 10325 10326 if (local_group) 10327 goto next_group; 10328 10329 10330 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 10331 sds->busiest = sg; 10332 sds->busiest_stat = *sgs; 10333 } 10334 10335 next_group: 10336 /* Now, start updating sd_lb_stats */ 10337 sds->total_load += sgs->group_load; 10338 sds->total_capacity += sgs->group_capacity; 10339 10340 sum_util += sgs->group_util; 10341 sg = sg->next; 10342 } while (sg != env->sd->groups); 10343 10344 /* 10345 * Indicate that the child domain of the busiest group prefers tasks 10346 * go to a child's sibling domains first. NB the flags of a sched group 10347 * are those of the child domain. 10348 */ 10349 if (sds->busiest) 10350 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10351 10352 10353 if (env->sd->flags & SD_NUMA) 10354 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10355 10356 if (!env->sd->parent) { 10357 struct root_domain *rd = env->dst_rq->rd; 10358 10359 /* update overload indicator if we are at root domain */ 10360 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 10361 10362 /* Update over-utilization (tipping point, U >= 0) indicator */ 10363 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 10364 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 10365 } else if (sg_status & SG_OVERUTILIZED) { 10366 struct root_domain *rd = env->dst_rq->rd; 10367 10368 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 10369 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 10370 } 10371 10372 update_idle_cpu_scan(env, sum_util); 10373 } 10374 10375 /** 10376 * calculate_imbalance - Calculate the amount of imbalance present within the 10377 * groups of a given sched_domain during load balance. 10378 * @env: load balance environment 10379 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10380 */ 10381 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10382 { 10383 struct sg_lb_stats *local, *busiest; 10384 10385 local = &sds->local_stat; 10386 busiest = &sds->busiest_stat; 10387 10388 if (busiest->group_type == group_misfit_task) { 10389 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10390 /* Set imbalance to allow misfit tasks to be balanced. */ 10391 env->migration_type = migrate_misfit; 10392 env->imbalance = 1; 10393 } else { 10394 /* 10395 * Set load imbalance to allow moving task from cpu 10396 * with reduced capacity. 10397 */ 10398 env->migration_type = migrate_load; 10399 env->imbalance = busiest->group_misfit_task_load; 10400 } 10401 return; 10402 } 10403 10404 if (busiest->group_type == group_asym_packing) { 10405 /* 10406 * In case of asym capacity, we will try to migrate all load to 10407 * the preferred CPU. 10408 */ 10409 env->migration_type = migrate_task; 10410 env->imbalance = busiest->sum_h_nr_running; 10411 return; 10412 } 10413 10414 if (busiest->group_type == group_smt_balance) { 10415 /* Reduce number of tasks sharing CPU capacity */ 10416 env->migration_type = migrate_task; 10417 env->imbalance = 1; 10418 return; 10419 } 10420 10421 if (busiest->group_type == group_imbalanced) { 10422 /* 10423 * In the group_imb case we cannot rely on group-wide averages 10424 * to ensure CPU-load equilibrium, try to move any task to fix 10425 * the imbalance. The next load balance will take care of 10426 * balancing back the system. 10427 */ 10428 env->migration_type = migrate_task; 10429 env->imbalance = 1; 10430 return; 10431 } 10432 10433 /* 10434 * Try to use spare capacity of local group without overloading it or 10435 * emptying busiest. 10436 */ 10437 if (local->group_type == group_has_spare) { 10438 if ((busiest->group_type > group_fully_busy) && 10439 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 10440 /* 10441 * If busiest is overloaded, try to fill spare 10442 * capacity. This might end up creating spare capacity 10443 * in busiest or busiest still being overloaded but 10444 * there is no simple way to directly compute the 10445 * amount of load to migrate in order to balance the 10446 * system. 10447 */ 10448 env->migration_type = migrate_util; 10449 env->imbalance = max(local->group_capacity, local->group_util) - 10450 local->group_util; 10451 10452 /* 10453 * In some cases, the group's utilization is max or even 10454 * higher than capacity because of migrations but the 10455 * local CPU is (newly) idle. There is at least one 10456 * waiting task in this overloaded busiest group. Let's 10457 * try to pull it. 10458 */ 10459 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 10460 env->migration_type = migrate_task; 10461 env->imbalance = 1; 10462 } 10463 10464 return; 10465 } 10466 10467 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10468 /* 10469 * When prefer sibling, evenly spread running tasks on 10470 * groups. 10471 */ 10472 env->migration_type = migrate_task; 10473 env->imbalance = sibling_imbalance(env, sds, busiest, local); 10474 } else { 10475 10476 /* 10477 * If there is no overload, we just want to even the number of 10478 * idle cpus. 10479 */ 10480 env->migration_type = migrate_task; 10481 env->imbalance = max_t(long, 0, 10482 (local->idle_cpus - busiest->idle_cpus)); 10483 } 10484 10485 #ifdef CONFIG_NUMA 10486 /* Consider allowing a small imbalance between NUMA groups */ 10487 if (env->sd->flags & SD_NUMA) { 10488 env->imbalance = adjust_numa_imbalance(env->imbalance, 10489 local->sum_nr_running + 1, 10490 env->sd->imb_numa_nr); 10491 } 10492 #endif 10493 10494 /* Number of tasks to move to restore balance */ 10495 env->imbalance >>= 1; 10496 10497 return; 10498 } 10499 10500 /* 10501 * Local is fully busy but has to take more load to relieve the 10502 * busiest group 10503 */ 10504 if (local->group_type < group_overloaded) { 10505 /* 10506 * Local will become overloaded so the avg_load metrics are 10507 * finally needed. 10508 */ 10509 10510 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10511 local->group_capacity; 10512 10513 /* 10514 * If the local group is more loaded than the selected 10515 * busiest group don't try to pull any tasks. 10516 */ 10517 if (local->avg_load >= busiest->avg_load) { 10518 env->imbalance = 0; 10519 return; 10520 } 10521 10522 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10523 sds->total_capacity; 10524 10525 /* 10526 * If the local group is more loaded than the average system 10527 * load, don't try to pull any tasks. 10528 */ 10529 if (local->avg_load >= sds->avg_load) { 10530 env->imbalance = 0; 10531 return; 10532 } 10533 10534 } 10535 10536 /* 10537 * Both group are or will become overloaded and we're trying to get all 10538 * the CPUs to the average_load, so we don't want to push ourselves 10539 * above the average load, nor do we wish to reduce the max loaded CPU 10540 * below the average load. At the same time, we also don't want to 10541 * reduce the group load below the group capacity. Thus we look for 10542 * the minimum possible imbalance. 10543 */ 10544 env->migration_type = migrate_load; 10545 env->imbalance = min( 10546 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10547 (sds->avg_load - local->avg_load) * local->group_capacity 10548 ) / SCHED_CAPACITY_SCALE; 10549 } 10550 10551 /******* find_busiest_group() helpers end here *********************/ 10552 10553 /* 10554 * Decision matrix according to the local and busiest group type: 10555 * 10556 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10557 * has_spare nr_idle balanced N/A N/A balanced balanced 10558 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10559 * misfit_task force N/A N/A N/A N/A N/A 10560 * asym_packing force force N/A N/A force force 10561 * imbalanced force force N/A N/A force force 10562 * overloaded force force N/A N/A force avg_load 10563 * 10564 * N/A : Not Applicable because already filtered while updating 10565 * statistics. 10566 * balanced : The system is balanced for these 2 groups. 10567 * force : Calculate the imbalance as load migration is probably needed. 10568 * avg_load : Only if imbalance is significant enough. 10569 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10570 * different in groups. 10571 */ 10572 10573 /** 10574 * find_busiest_group - Returns the busiest group within the sched_domain 10575 * if there is an imbalance. 10576 * @env: The load balancing environment. 10577 * 10578 * Also calculates the amount of runnable load which should be moved 10579 * to restore balance. 10580 * 10581 * Return: - The busiest group if imbalance exists. 10582 */ 10583 static struct sched_group *find_busiest_group(struct lb_env *env) 10584 { 10585 struct sg_lb_stats *local, *busiest; 10586 struct sd_lb_stats sds; 10587 10588 init_sd_lb_stats(&sds); 10589 10590 /* 10591 * Compute the various statistics relevant for load balancing at 10592 * this level. 10593 */ 10594 update_sd_lb_stats(env, &sds); 10595 10596 /* There is no busy sibling group to pull tasks from */ 10597 if (!sds.busiest) 10598 goto out_balanced; 10599 10600 busiest = &sds.busiest_stat; 10601 10602 /* Misfit tasks should be dealt with regardless of the avg load */ 10603 if (busiest->group_type == group_misfit_task) 10604 goto force_balance; 10605 10606 if (sched_energy_enabled()) { 10607 struct root_domain *rd = env->dst_rq->rd; 10608 10609 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10610 goto out_balanced; 10611 } 10612 10613 /* ASYM feature bypasses nice load balance check */ 10614 if (busiest->group_type == group_asym_packing) 10615 goto force_balance; 10616 10617 /* 10618 * If the busiest group is imbalanced the below checks don't 10619 * work because they assume all things are equal, which typically 10620 * isn't true due to cpus_ptr constraints and the like. 10621 */ 10622 if (busiest->group_type == group_imbalanced) 10623 goto force_balance; 10624 10625 local = &sds.local_stat; 10626 /* 10627 * If the local group is busier than the selected busiest group 10628 * don't try and pull any tasks. 10629 */ 10630 if (local->group_type > busiest->group_type) 10631 goto out_balanced; 10632 10633 /* 10634 * When groups are overloaded, use the avg_load to ensure fairness 10635 * between tasks. 10636 */ 10637 if (local->group_type == group_overloaded) { 10638 /* 10639 * If the local group is more loaded than the selected 10640 * busiest group don't try to pull any tasks. 10641 */ 10642 if (local->avg_load >= busiest->avg_load) 10643 goto out_balanced; 10644 10645 /* XXX broken for overlapping NUMA groups */ 10646 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10647 sds.total_capacity; 10648 10649 /* 10650 * Don't pull any tasks if this group is already above the 10651 * domain average load. 10652 */ 10653 if (local->avg_load >= sds.avg_load) 10654 goto out_balanced; 10655 10656 /* 10657 * If the busiest group is more loaded, use imbalance_pct to be 10658 * conservative. 10659 */ 10660 if (100 * busiest->avg_load <= 10661 env->sd->imbalance_pct * local->avg_load) 10662 goto out_balanced; 10663 } 10664 10665 /* 10666 * Try to move all excess tasks to a sibling domain of the busiest 10667 * group's child domain. 10668 */ 10669 if (sds.prefer_sibling && local->group_type == group_has_spare && 10670 sibling_imbalance(env, &sds, busiest, local) > 1) 10671 goto force_balance; 10672 10673 if (busiest->group_type != group_overloaded) { 10674 if (env->idle == CPU_NOT_IDLE) { 10675 /* 10676 * If the busiest group is not overloaded (and as a 10677 * result the local one too) but this CPU is already 10678 * busy, let another idle CPU try to pull task. 10679 */ 10680 goto out_balanced; 10681 } 10682 10683 if (busiest->group_type == group_smt_balance && 10684 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 10685 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 10686 goto force_balance; 10687 } 10688 10689 if (busiest->group_weight > 1 && 10690 local->idle_cpus <= (busiest->idle_cpus + 1)) { 10691 /* 10692 * If the busiest group is not overloaded 10693 * and there is no imbalance between this and busiest 10694 * group wrt idle CPUs, it is balanced. The imbalance 10695 * becomes significant if the diff is greater than 1 10696 * otherwise we might end up to just move the imbalance 10697 * on another group. Of course this applies only if 10698 * there is more than 1 CPU per group. 10699 */ 10700 goto out_balanced; 10701 } 10702 10703 if (busiest->sum_h_nr_running == 1) { 10704 /* 10705 * busiest doesn't have any tasks waiting to run 10706 */ 10707 goto out_balanced; 10708 } 10709 } 10710 10711 force_balance: 10712 /* Looks like there is an imbalance. Compute it */ 10713 calculate_imbalance(env, &sds); 10714 return env->imbalance ? sds.busiest : NULL; 10715 10716 out_balanced: 10717 env->imbalance = 0; 10718 return NULL; 10719 } 10720 10721 /* 10722 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10723 */ 10724 static struct rq *find_busiest_queue(struct lb_env *env, 10725 struct sched_group *group) 10726 { 10727 struct rq *busiest = NULL, *rq; 10728 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10729 unsigned int busiest_nr = 0; 10730 int i; 10731 10732 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10733 unsigned long capacity, load, util; 10734 unsigned int nr_running; 10735 enum fbq_type rt; 10736 10737 rq = cpu_rq(i); 10738 rt = fbq_classify_rq(rq); 10739 10740 /* 10741 * We classify groups/runqueues into three groups: 10742 * - regular: there are !numa tasks 10743 * - remote: there are numa tasks that run on the 'wrong' node 10744 * - all: there is no distinction 10745 * 10746 * In order to avoid migrating ideally placed numa tasks, 10747 * ignore those when there's better options. 10748 * 10749 * If we ignore the actual busiest queue to migrate another 10750 * task, the next balance pass can still reduce the busiest 10751 * queue by moving tasks around inside the node. 10752 * 10753 * If we cannot move enough load due to this classification 10754 * the next pass will adjust the group classification and 10755 * allow migration of more tasks. 10756 * 10757 * Both cases only affect the total convergence complexity. 10758 */ 10759 if (rt > env->fbq_type) 10760 continue; 10761 10762 nr_running = rq->cfs.h_nr_running; 10763 if (!nr_running) 10764 continue; 10765 10766 capacity = capacity_of(i); 10767 10768 /* 10769 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 10770 * eventually lead to active_balancing high->low capacity. 10771 * Higher per-CPU capacity is considered better than balancing 10772 * average load. 10773 */ 10774 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 10775 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 10776 nr_running == 1) 10777 continue; 10778 10779 /* 10780 * Make sure we only pull tasks from a CPU of lower priority 10781 * when balancing between SMT siblings. 10782 * 10783 * If balancing between cores, let lower priority CPUs help 10784 * SMT cores with more than one busy sibling. 10785 */ 10786 if ((env->sd->flags & SD_ASYM_PACKING) && 10787 sched_use_asym_prio(env->sd, i) && 10788 sched_asym_prefer(i, env->dst_cpu) && 10789 nr_running == 1) 10790 continue; 10791 10792 switch (env->migration_type) { 10793 case migrate_load: 10794 /* 10795 * When comparing with load imbalance, use cpu_load() 10796 * which is not scaled with the CPU capacity. 10797 */ 10798 load = cpu_load(rq); 10799 10800 if (nr_running == 1 && load > env->imbalance && 10801 !check_cpu_capacity(rq, env->sd)) 10802 break; 10803 10804 /* 10805 * For the load comparisons with the other CPUs, 10806 * consider the cpu_load() scaled with the CPU 10807 * capacity, so that the load can be moved away 10808 * from the CPU that is potentially running at a 10809 * lower capacity. 10810 * 10811 * Thus we're looking for max(load_i / capacity_i), 10812 * crosswise multiplication to rid ourselves of the 10813 * division works out to: 10814 * load_i * capacity_j > load_j * capacity_i; 10815 * where j is our previous maximum. 10816 */ 10817 if (load * busiest_capacity > busiest_load * capacity) { 10818 busiest_load = load; 10819 busiest_capacity = capacity; 10820 busiest = rq; 10821 } 10822 break; 10823 10824 case migrate_util: 10825 util = cpu_util_cfs_boost(i); 10826 10827 /* 10828 * Don't try to pull utilization from a CPU with one 10829 * running task. Whatever its utilization, we will fail 10830 * detach the task. 10831 */ 10832 if (nr_running <= 1) 10833 continue; 10834 10835 if (busiest_util < util) { 10836 busiest_util = util; 10837 busiest = rq; 10838 } 10839 break; 10840 10841 case migrate_task: 10842 if (busiest_nr < nr_running) { 10843 busiest_nr = nr_running; 10844 busiest = rq; 10845 } 10846 break; 10847 10848 case migrate_misfit: 10849 /* 10850 * For ASYM_CPUCAPACITY domains with misfit tasks we 10851 * simply seek the "biggest" misfit task. 10852 */ 10853 if (rq->misfit_task_load > busiest_load) { 10854 busiest_load = rq->misfit_task_load; 10855 busiest = rq; 10856 } 10857 10858 break; 10859 10860 } 10861 } 10862 10863 return busiest; 10864 } 10865 10866 /* 10867 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 10868 * so long as it is large enough. 10869 */ 10870 #define MAX_PINNED_INTERVAL 512 10871 10872 static inline bool 10873 asym_active_balance(struct lb_env *env) 10874 { 10875 /* 10876 * ASYM_PACKING needs to force migrate tasks from busy but lower 10877 * priority CPUs in order to pack all tasks in the highest priority 10878 * CPUs. When done between cores, do it only if the whole core if the 10879 * whole core is idle. 10880 * 10881 * If @env::src_cpu is an SMT core with busy siblings, let 10882 * the lower priority @env::dst_cpu help it. Do not follow 10883 * CPU priority. 10884 */ 10885 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 10886 sched_use_asym_prio(env->sd, env->dst_cpu) && 10887 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 10888 !sched_use_asym_prio(env->sd, env->src_cpu)); 10889 } 10890 10891 static inline bool 10892 imbalanced_active_balance(struct lb_env *env) 10893 { 10894 struct sched_domain *sd = env->sd; 10895 10896 /* 10897 * The imbalanced case includes the case of pinned tasks preventing a fair 10898 * distribution of the load on the system but also the even distribution of the 10899 * threads on a system with spare capacity 10900 */ 10901 if ((env->migration_type == migrate_task) && 10902 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 10903 return 1; 10904 10905 return 0; 10906 } 10907 10908 static int need_active_balance(struct lb_env *env) 10909 { 10910 struct sched_domain *sd = env->sd; 10911 10912 if (asym_active_balance(env)) 10913 return 1; 10914 10915 if (imbalanced_active_balance(env)) 10916 return 1; 10917 10918 /* 10919 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 10920 * It's worth migrating the task if the src_cpu's capacity is reduced 10921 * because of other sched_class or IRQs if more capacity stays 10922 * available on dst_cpu. 10923 */ 10924 if ((env->idle != CPU_NOT_IDLE) && 10925 (env->src_rq->cfs.h_nr_running == 1)) { 10926 if ((check_cpu_capacity(env->src_rq, sd)) && 10927 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 10928 return 1; 10929 } 10930 10931 if (env->migration_type == migrate_misfit) 10932 return 1; 10933 10934 return 0; 10935 } 10936 10937 static int active_load_balance_cpu_stop(void *data); 10938 10939 static int should_we_balance(struct lb_env *env) 10940 { 10941 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 10942 struct sched_group *sg = env->sd->groups; 10943 int cpu, idle_smt = -1; 10944 10945 /* 10946 * Ensure the balancing environment is consistent; can happen 10947 * when the softirq triggers 'during' hotplug. 10948 */ 10949 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 10950 return 0; 10951 10952 /* 10953 * In the newly idle case, we will allow all the CPUs 10954 * to do the newly idle load balance. 10955 * 10956 * However, we bail out if we already have tasks or a wakeup pending, 10957 * to optimize wakeup latency. 10958 */ 10959 if (env->idle == CPU_NEWLY_IDLE) { 10960 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 10961 return 0; 10962 return 1; 10963 } 10964 10965 cpumask_copy(swb_cpus, group_balance_mask(sg)); 10966 /* Try to find first idle CPU */ 10967 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 10968 if (!idle_cpu(cpu)) 10969 continue; 10970 10971 /* 10972 * Don't balance to idle SMT in busy core right away when 10973 * balancing cores, but remember the first idle SMT CPU for 10974 * later consideration. Find CPU on an idle core first. 10975 */ 10976 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 10977 if (idle_smt == -1) 10978 idle_smt = cpu; 10979 /* 10980 * If the core is not idle, and first SMT sibling which is 10981 * idle has been found, then its not needed to check other 10982 * SMT siblings for idleness: 10983 */ 10984 #ifdef CONFIG_SCHED_SMT 10985 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 10986 #endif 10987 continue; 10988 } 10989 10990 /* Are we the first idle CPU? */ 10991 return cpu == env->dst_cpu; 10992 } 10993 10994 if (idle_smt == env->dst_cpu) 10995 return true; 10996 10997 /* Are we the first CPU of this group ? */ 10998 return group_balance_cpu(sg) == env->dst_cpu; 10999 } 11000 11001 /* 11002 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11003 * tasks if there is an imbalance. 11004 */ 11005 static int load_balance(int this_cpu, struct rq *this_rq, 11006 struct sched_domain *sd, enum cpu_idle_type idle, 11007 int *continue_balancing) 11008 { 11009 int ld_moved, cur_ld_moved, active_balance = 0; 11010 struct sched_domain *sd_parent = sd->parent; 11011 struct sched_group *group; 11012 struct rq *busiest; 11013 struct rq_flags rf; 11014 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11015 struct lb_env env = { 11016 .sd = sd, 11017 .dst_cpu = this_cpu, 11018 .dst_rq = this_rq, 11019 .dst_grpmask = group_balance_mask(sd->groups), 11020 .idle = idle, 11021 .loop_break = SCHED_NR_MIGRATE_BREAK, 11022 .cpus = cpus, 11023 .fbq_type = all, 11024 .tasks = LIST_HEAD_INIT(env.tasks), 11025 }; 11026 11027 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11028 11029 schedstat_inc(sd->lb_count[idle]); 11030 11031 redo: 11032 if (!should_we_balance(&env)) { 11033 *continue_balancing = 0; 11034 goto out_balanced; 11035 } 11036 11037 group = find_busiest_group(&env); 11038 if (!group) { 11039 schedstat_inc(sd->lb_nobusyg[idle]); 11040 goto out_balanced; 11041 } 11042 11043 busiest = find_busiest_queue(&env, group); 11044 if (!busiest) { 11045 schedstat_inc(sd->lb_nobusyq[idle]); 11046 goto out_balanced; 11047 } 11048 11049 WARN_ON_ONCE(busiest == env.dst_rq); 11050 11051 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11052 11053 env.src_cpu = busiest->cpu; 11054 env.src_rq = busiest; 11055 11056 ld_moved = 0; 11057 /* Clear this flag as soon as we find a pullable task */ 11058 env.flags |= LBF_ALL_PINNED; 11059 if (busiest->nr_running > 1) { 11060 /* 11061 * Attempt to move tasks. If find_busiest_group has found 11062 * an imbalance but busiest->nr_running <= 1, the group is 11063 * still unbalanced. ld_moved simply stays zero, so it is 11064 * correctly treated as an imbalance. 11065 */ 11066 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11067 11068 more_balance: 11069 rq_lock_irqsave(busiest, &rf); 11070 update_rq_clock(busiest); 11071 11072 /* 11073 * cur_ld_moved - load moved in current iteration 11074 * ld_moved - cumulative load moved across iterations 11075 */ 11076 cur_ld_moved = detach_tasks(&env); 11077 11078 /* 11079 * We've detached some tasks from busiest_rq. Every 11080 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11081 * unlock busiest->lock, and we are able to be sure 11082 * that nobody can manipulate the tasks in parallel. 11083 * See task_rq_lock() family for the details. 11084 */ 11085 11086 rq_unlock(busiest, &rf); 11087 11088 if (cur_ld_moved) { 11089 attach_tasks(&env); 11090 ld_moved += cur_ld_moved; 11091 } 11092 11093 local_irq_restore(rf.flags); 11094 11095 if (env.flags & LBF_NEED_BREAK) { 11096 env.flags &= ~LBF_NEED_BREAK; 11097 /* Stop if we tried all running tasks */ 11098 if (env.loop < busiest->nr_running) 11099 goto more_balance; 11100 } 11101 11102 /* 11103 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11104 * us and move them to an alternate dst_cpu in our sched_group 11105 * where they can run. The upper limit on how many times we 11106 * iterate on same src_cpu is dependent on number of CPUs in our 11107 * sched_group. 11108 * 11109 * This changes load balance semantics a bit on who can move 11110 * load to a given_cpu. In addition to the given_cpu itself 11111 * (or a ilb_cpu acting on its behalf where given_cpu is 11112 * nohz-idle), we now have balance_cpu in a position to move 11113 * load to given_cpu. In rare situations, this may cause 11114 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11115 * _independently_ and at _same_ time to move some load to 11116 * given_cpu) causing excess load to be moved to given_cpu. 11117 * This however should not happen so much in practice and 11118 * moreover subsequent load balance cycles should correct the 11119 * excess load moved. 11120 */ 11121 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11122 11123 /* Prevent to re-select dst_cpu via env's CPUs */ 11124 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11125 11126 env.dst_rq = cpu_rq(env.new_dst_cpu); 11127 env.dst_cpu = env.new_dst_cpu; 11128 env.flags &= ~LBF_DST_PINNED; 11129 env.loop = 0; 11130 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11131 11132 /* 11133 * Go back to "more_balance" rather than "redo" since we 11134 * need to continue with same src_cpu. 11135 */ 11136 goto more_balance; 11137 } 11138 11139 /* 11140 * We failed to reach balance because of affinity. 11141 */ 11142 if (sd_parent) { 11143 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11144 11145 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11146 *group_imbalance = 1; 11147 } 11148 11149 /* All tasks on this runqueue were pinned by CPU affinity */ 11150 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11151 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11152 /* 11153 * Attempting to continue load balancing at the current 11154 * sched_domain level only makes sense if there are 11155 * active CPUs remaining as possible busiest CPUs to 11156 * pull load from which are not contained within the 11157 * destination group that is receiving any migrated 11158 * load. 11159 */ 11160 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11161 env.loop = 0; 11162 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11163 goto redo; 11164 } 11165 goto out_all_pinned; 11166 } 11167 } 11168 11169 if (!ld_moved) { 11170 schedstat_inc(sd->lb_failed[idle]); 11171 /* 11172 * Increment the failure counter only on periodic balance. 11173 * We do not want newidle balance, which can be very 11174 * frequent, pollute the failure counter causing 11175 * excessive cache_hot migrations and active balances. 11176 */ 11177 if (idle != CPU_NEWLY_IDLE) 11178 sd->nr_balance_failed++; 11179 11180 if (need_active_balance(&env)) { 11181 unsigned long flags; 11182 11183 raw_spin_rq_lock_irqsave(busiest, flags); 11184 11185 /* 11186 * Don't kick the active_load_balance_cpu_stop, 11187 * if the curr task on busiest CPU can't be 11188 * moved to this_cpu: 11189 */ 11190 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11191 raw_spin_rq_unlock_irqrestore(busiest, flags); 11192 goto out_one_pinned; 11193 } 11194 11195 /* Record that we found at least one task that could run on this_cpu */ 11196 env.flags &= ~LBF_ALL_PINNED; 11197 11198 /* 11199 * ->active_balance synchronizes accesses to 11200 * ->active_balance_work. Once set, it's cleared 11201 * only after active load balance is finished. 11202 */ 11203 if (!busiest->active_balance) { 11204 busiest->active_balance = 1; 11205 busiest->push_cpu = this_cpu; 11206 active_balance = 1; 11207 } 11208 raw_spin_rq_unlock_irqrestore(busiest, flags); 11209 11210 if (active_balance) { 11211 stop_one_cpu_nowait(cpu_of(busiest), 11212 active_load_balance_cpu_stop, busiest, 11213 &busiest->active_balance_work); 11214 } 11215 } 11216 } else { 11217 sd->nr_balance_failed = 0; 11218 } 11219 11220 if (likely(!active_balance) || need_active_balance(&env)) { 11221 /* We were unbalanced, so reset the balancing interval */ 11222 sd->balance_interval = sd->min_interval; 11223 } 11224 11225 goto out; 11226 11227 out_balanced: 11228 /* 11229 * We reach balance although we may have faced some affinity 11230 * constraints. Clear the imbalance flag only if other tasks got 11231 * a chance to move and fix the imbalance. 11232 */ 11233 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11234 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11235 11236 if (*group_imbalance) 11237 *group_imbalance = 0; 11238 } 11239 11240 out_all_pinned: 11241 /* 11242 * We reach balance because all tasks are pinned at this level so 11243 * we can't migrate them. Let the imbalance flag set so parent level 11244 * can try to migrate them. 11245 */ 11246 schedstat_inc(sd->lb_balanced[idle]); 11247 11248 sd->nr_balance_failed = 0; 11249 11250 out_one_pinned: 11251 ld_moved = 0; 11252 11253 /* 11254 * newidle_balance() disregards balance intervals, so we could 11255 * repeatedly reach this code, which would lead to balance_interval 11256 * skyrocketing in a short amount of time. Skip the balance_interval 11257 * increase logic to avoid that. 11258 */ 11259 if (env.idle == CPU_NEWLY_IDLE) 11260 goto out; 11261 11262 /* tune up the balancing interval */ 11263 if ((env.flags & LBF_ALL_PINNED && 11264 sd->balance_interval < MAX_PINNED_INTERVAL) || 11265 sd->balance_interval < sd->max_interval) 11266 sd->balance_interval *= 2; 11267 out: 11268 return ld_moved; 11269 } 11270 11271 static inline unsigned long 11272 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11273 { 11274 unsigned long interval = sd->balance_interval; 11275 11276 if (cpu_busy) 11277 interval *= sd->busy_factor; 11278 11279 /* scale ms to jiffies */ 11280 interval = msecs_to_jiffies(interval); 11281 11282 /* 11283 * Reduce likelihood of busy balancing at higher domains racing with 11284 * balancing at lower domains by preventing their balancing periods 11285 * from being multiples of each other. 11286 */ 11287 if (cpu_busy) 11288 interval -= 1; 11289 11290 interval = clamp(interval, 1UL, max_load_balance_interval); 11291 11292 return interval; 11293 } 11294 11295 static inline void 11296 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11297 { 11298 unsigned long interval, next; 11299 11300 /* used by idle balance, so cpu_busy = 0 */ 11301 interval = get_sd_balance_interval(sd, 0); 11302 next = sd->last_balance + interval; 11303 11304 if (time_after(*next_balance, next)) 11305 *next_balance = next; 11306 } 11307 11308 /* 11309 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11310 * running tasks off the busiest CPU onto idle CPUs. It requires at 11311 * least 1 task to be running on each physical CPU where possible, and 11312 * avoids physical / logical imbalances. 11313 */ 11314 static int active_load_balance_cpu_stop(void *data) 11315 { 11316 struct rq *busiest_rq = data; 11317 int busiest_cpu = cpu_of(busiest_rq); 11318 int target_cpu = busiest_rq->push_cpu; 11319 struct rq *target_rq = cpu_rq(target_cpu); 11320 struct sched_domain *sd; 11321 struct task_struct *p = NULL; 11322 struct rq_flags rf; 11323 11324 rq_lock_irq(busiest_rq, &rf); 11325 /* 11326 * Between queueing the stop-work and running it is a hole in which 11327 * CPUs can become inactive. We should not move tasks from or to 11328 * inactive CPUs. 11329 */ 11330 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11331 goto out_unlock; 11332 11333 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11334 if (unlikely(busiest_cpu != smp_processor_id() || 11335 !busiest_rq->active_balance)) 11336 goto out_unlock; 11337 11338 /* Is there any task to move? */ 11339 if (busiest_rq->nr_running <= 1) 11340 goto out_unlock; 11341 11342 /* 11343 * This condition is "impossible", if it occurs 11344 * we need to fix it. Originally reported by 11345 * Bjorn Helgaas on a 128-CPU setup. 11346 */ 11347 WARN_ON_ONCE(busiest_rq == target_rq); 11348 11349 /* Search for an sd spanning us and the target CPU. */ 11350 rcu_read_lock(); 11351 for_each_domain(target_cpu, sd) { 11352 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11353 break; 11354 } 11355 11356 if (likely(sd)) { 11357 struct lb_env env = { 11358 .sd = sd, 11359 .dst_cpu = target_cpu, 11360 .dst_rq = target_rq, 11361 .src_cpu = busiest_rq->cpu, 11362 .src_rq = busiest_rq, 11363 .idle = CPU_IDLE, 11364 .flags = LBF_ACTIVE_LB, 11365 }; 11366 11367 schedstat_inc(sd->alb_count); 11368 update_rq_clock(busiest_rq); 11369 11370 p = detach_one_task(&env); 11371 if (p) { 11372 schedstat_inc(sd->alb_pushed); 11373 /* Active balancing done, reset the failure counter. */ 11374 sd->nr_balance_failed = 0; 11375 } else { 11376 schedstat_inc(sd->alb_failed); 11377 } 11378 } 11379 rcu_read_unlock(); 11380 out_unlock: 11381 busiest_rq->active_balance = 0; 11382 rq_unlock(busiest_rq, &rf); 11383 11384 if (p) 11385 attach_one_task(target_rq, p); 11386 11387 local_irq_enable(); 11388 11389 return 0; 11390 } 11391 11392 static DEFINE_SPINLOCK(balancing); 11393 11394 /* 11395 * Scale the max load_balance interval with the number of CPUs in the system. 11396 * This trades load-balance latency on larger machines for less cross talk. 11397 */ 11398 void update_max_interval(void) 11399 { 11400 max_load_balance_interval = HZ*num_online_cpus()/10; 11401 } 11402 11403 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11404 { 11405 if (cost > sd->max_newidle_lb_cost) { 11406 /* 11407 * Track max cost of a domain to make sure to not delay the 11408 * next wakeup on the CPU. 11409 */ 11410 sd->max_newidle_lb_cost = cost; 11411 sd->last_decay_max_lb_cost = jiffies; 11412 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11413 /* 11414 * Decay the newidle max times by ~1% per second to ensure that 11415 * it is not outdated and the current max cost is actually 11416 * shorter. 11417 */ 11418 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11419 sd->last_decay_max_lb_cost = jiffies; 11420 11421 return true; 11422 } 11423 11424 return false; 11425 } 11426 11427 /* 11428 * It checks each scheduling domain to see if it is due to be balanced, 11429 * and initiates a balancing operation if so. 11430 * 11431 * Balancing parameters are set up in init_sched_domains. 11432 */ 11433 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 11434 { 11435 int continue_balancing = 1; 11436 int cpu = rq->cpu; 11437 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11438 unsigned long interval; 11439 struct sched_domain *sd; 11440 /* Earliest time when we have to do rebalance again */ 11441 unsigned long next_balance = jiffies + 60*HZ; 11442 int update_next_balance = 0; 11443 int need_serialize, need_decay = 0; 11444 u64 max_cost = 0; 11445 11446 rcu_read_lock(); 11447 for_each_domain(cpu, sd) { 11448 /* 11449 * Decay the newidle max times here because this is a regular 11450 * visit to all the domains. 11451 */ 11452 need_decay = update_newidle_cost(sd, 0); 11453 max_cost += sd->max_newidle_lb_cost; 11454 11455 /* 11456 * Stop the load balance at this level. There is another 11457 * CPU in our sched group which is doing load balancing more 11458 * actively. 11459 */ 11460 if (!continue_balancing) { 11461 if (need_decay) 11462 continue; 11463 break; 11464 } 11465 11466 interval = get_sd_balance_interval(sd, busy); 11467 11468 need_serialize = sd->flags & SD_SERIALIZE; 11469 if (need_serialize) { 11470 if (!spin_trylock(&balancing)) 11471 goto out; 11472 } 11473 11474 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11475 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 11476 /* 11477 * The LBF_DST_PINNED logic could have changed 11478 * env->dst_cpu, so we can't know our idle 11479 * state even if we migrated tasks. Update it. 11480 */ 11481 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 11482 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11483 } 11484 sd->last_balance = jiffies; 11485 interval = get_sd_balance_interval(sd, busy); 11486 } 11487 if (need_serialize) 11488 spin_unlock(&balancing); 11489 out: 11490 if (time_after(next_balance, sd->last_balance + interval)) { 11491 next_balance = sd->last_balance + interval; 11492 update_next_balance = 1; 11493 } 11494 } 11495 if (need_decay) { 11496 /* 11497 * Ensure the rq-wide value also decays but keep it at a 11498 * reasonable floor to avoid funnies with rq->avg_idle. 11499 */ 11500 rq->max_idle_balance_cost = 11501 max((u64)sysctl_sched_migration_cost, max_cost); 11502 } 11503 rcu_read_unlock(); 11504 11505 /* 11506 * next_balance will be updated only when there is a need. 11507 * When the cpu is attached to null domain for ex, it will not be 11508 * updated. 11509 */ 11510 if (likely(update_next_balance)) 11511 rq->next_balance = next_balance; 11512 11513 } 11514 11515 static inline int on_null_domain(struct rq *rq) 11516 { 11517 return unlikely(!rcu_dereference_sched(rq->sd)); 11518 } 11519 11520 #ifdef CONFIG_NO_HZ_COMMON 11521 /* 11522 * idle load balancing details 11523 * - When one of the busy CPUs notice that there may be an idle rebalancing 11524 * needed, they will kick the idle load balancer, which then does idle 11525 * load balancing for all the idle CPUs. 11526 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 11527 * anywhere yet. 11528 */ 11529 11530 static inline int find_new_ilb(void) 11531 { 11532 int ilb; 11533 const struct cpumask *hk_mask; 11534 11535 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11536 11537 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 11538 11539 if (ilb == smp_processor_id()) 11540 continue; 11541 11542 if (idle_cpu(ilb)) 11543 return ilb; 11544 } 11545 11546 return nr_cpu_ids; 11547 } 11548 11549 /* 11550 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 11551 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11552 */ 11553 static void kick_ilb(unsigned int flags) 11554 { 11555 int ilb_cpu; 11556 11557 /* 11558 * Increase nohz.next_balance only when if full ilb is triggered but 11559 * not if we only update stats. 11560 */ 11561 if (flags & NOHZ_BALANCE_KICK) 11562 nohz.next_balance = jiffies+1; 11563 11564 ilb_cpu = find_new_ilb(); 11565 11566 if (ilb_cpu >= nr_cpu_ids) 11567 return; 11568 11569 /* 11570 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11571 * the first flag owns it; cleared by nohz_csd_func(). 11572 */ 11573 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11574 if (flags & NOHZ_KICK_MASK) 11575 return; 11576 11577 /* 11578 * This way we generate an IPI on the target CPU which 11579 * is idle. And the softirq performing nohz idle load balance 11580 * will be run before returning from the IPI. 11581 */ 11582 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11583 } 11584 11585 /* 11586 * Current decision point for kicking the idle load balancer in the presence 11587 * of idle CPUs in the system. 11588 */ 11589 static void nohz_balancer_kick(struct rq *rq) 11590 { 11591 unsigned long now = jiffies; 11592 struct sched_domain_shared *sds; 11593 struct sched_domain *sd; 11594 int nr_busy, i, cpu = rq->cpu; 11595 unsigned int flags = 0; 11596 11597 if (unlikely(rq->idle_balance)) 11598 return; 11599 11600 /* 11601 * We may be recently in ticked or tickless idle mode. At the first 11602 * busy tick after returning from idle, we will update the busy stats. 11603 */ 11604 nohz_balance_exit_idle(rq); 11605 11606 /* 11607 * None are in tickless mode and hence no need for NOHZ idle load 11608 * balancing. 11609 */ 11610 if (likely(!atomic_read(&nohz.nr_cpus))) 11611 return; 11612 11613 if (READ_ONCE(nohz.has_blocked) && 11614 time_after(now, READ_ONCE(nohz.next_blocked))) 11615 flags = NOHZ_STATS_KICK; 11616 11617 if (time_before(now, nohz.next_balance)) 11618 goto out; 11619 11620 if (rq->nr_running >= 2) { 11621 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11622 goto out; 11623 } 11624 11625 rcu_read_lock(); 11626 11627 sd = rcu_dereference(rq->sd); 11628 if (sd) { 11629 /* 11630 * If there's a CFS task and the current CPU has reduced 11631 * capacity; kick the ILB to see if there's a better CPU to run 11632 * on. 11633 */ 11634 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11635 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11636 goto unlock; 11637 } 11638 } 11639 11640 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11641 if (sd) { 11642 /* 11643 * When ASYM_PACKING; see if there's a more preferred CPU 11644 * currently idle; in which case, kick the ILB to move tasks 11645 * around. 11646 * 11647 * When balancing betwen cores, all the SMT siblings of the 11648 * preferred CPU must be idle. 11649 */ 11650 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11651 if (sched_use_asym_prio(sd, i) && 11652 sched_asym_prefer(i, cpu)) { 11653 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11654 goto unlock; 11655 } 11656 } 11657 } 11658 11659 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11660 if (sd) { 11661 /* 11662 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11663 * to run the misfit task on. 11664 */ 11665 if (check_misfit_status(rq, sd)) { 11666 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11667 goto unlock; 11668 } 11669 11670 /* 11671 * For asymmetric systems, we do not want to nicely balance 11672 * cache use, instead we want to embrace asymmetry and only 11673 * ensure tasks have enough CPU capacity. 11674 * 11675 * Skip the LLC logic because it's not relevant in that case. 11676 */ 11677 goto unlock; 11678 } 11679 11680 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11681 if (sds) { 11682 /* 11683 * If there is an imbalance between LLC domains (IOW we could 11684 * increase the overall cache use), we need some less-loaded LLC 11685 * domain to pull some load. Likewise, we may need to spread 11686 * load within the current LLC domain (e.g. packed SMT cores but 11687 * other CPUs are idle). We can't really know from here how busy 11688 * the others are - so just get a nohz balance going if it looks 11689 * like this LLC domain has tasks we could move. 11690 */ 11691 nr_busy = atomic_read(&sds->nr_busy_cpus); 11692 if (nr_busy > 1) { 11693 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11694 goto unlock; 11695 } 11696 } 11697 unlock: 11698 rcu_read_unlock(); 11699 out: 11700 if (READ_ONCE(nohz.needs_update)) 11701 flags |= NOHZ_NEXT_KICK; 11702 11703 if (flags) 11704 kick_ilb(flags); 11705 } 11706 11707 static void set_cpu_sd_state_busy(int cpu) 11708 { 11709 struct sched_domain *sd; 11710 11711 rcu_read_lock(); 11712 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11713 11714 if (!sd || !sd->nohz_idle) 11715 goto unlock; 11716 sd->nohz_idle = 0; 11717 11718 atomic_inc(&sd->shared->nr_busy_cpus); 11719 unlock: 11720 rcu_read_unlock(); 11721 } 11722 11723 void nohz_balance_exit_idle(struct rq *rq) 11724 { 11725 SCHED_WARN_ON(rq != this_rq()); 11726 11727 if (likely(!rq->nohz_tick_stopped)) 11728 return; 11729 11730 rq->nohz_tick_stopped = 0; 11731 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11732 atomic_dec(&nohz.nr_cpus); 11733 11734 set_cpu_sd_state_busy(rq->cpu); 11735 } 11736 11737 static void set_cpu_sd_state_idle(int cpu) 11738 { 11739 struct sched_domain *sd; 11740 11741 rcu_read_lock(); 11742 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11743 11744 if (!sd || sd->nohz_idle) 11745 goto unlock; 11746 sd->nohz_idle = 1; 11747 11748 atomic_dec(&sd->shared->nr_busy_cpus); 11749 unlock: 11750 rcu_read_unlock(); 11751 } 11752 11753 /* 11754 * This routine will record that the CPU is going idle with tick stopped. 11755 * This info will be used in performing idle load balancing in the future. 11756 */ 11757 void nohz_balance_enter_idle(int cpu) 11758 { 11759 struct rq *rq = cpu_rq(cpu); 11760 11761 SCHED_WARN_ON(cpu != smp_processor_id()); 11762 11763 /* If this CPU is going down, then nothing needs to be done: */ 11764 if (!cpu_active(cpu)) 11765 return; 11766 11767 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 11768 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 11769 return; 11770 11771 /* 11772 * Can be set safely without rq->lock held 11773 * If a clear happens, it will have evaluated last additions because 11774 * rq->lock is held during the check and the clear 11775 */ 11776 rq->has_blocked_load = 1; 11777 11778 /* 11779 * The tick is still stopped but load could have been added in the 11780 * meantime. We set the nohz.has_blocked flag to trig a check of the 11781 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 11782 * of nohz.has_blocked can only happen after checking the new load 11783 */ 11784 if (rq->nohz_tick_stopped) 11785 goto out; 11786 11787 /* If we're a completely isolated CPU, we don't play: */ 11788 if (on_null_domain(rq)) 11789 return; 11790 11791 rq->nohz_tick_stopped = 1; 11792 11793 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 11794 atomic_inc(&nohz.nr_cpus); 11795 11796 /* 11797 * Ensures that if nohz_idle_balance() fails to observe our 11798 * @idle_cpus_mask store, it must observe the @has_blocked 11799 * and @needs_update stores. 11800 */ 11801 smp_mb__after_atomic(); 11802 11803 set_cpu_sd_state_idle(cpu); 11804 11805 WRITE_ONCE(nohz.needs_update, 1); 11806 out: 11807 /* 11808 * Each time a cpu enter idle, we assume that it has blocked load and 11809 * enable the periodic update of the load of idle cpus 11810 */ 11811 WRITE_ONCE(nohz.has_blocked, 1); 11812 } 11813 11814 static bool update_nohz_stats(struct rq *rq) 11815 { 11816 unsigned int cpu = rq->cpu; 11817 11818 if (!rq->has_blocked_load) 11819 return false; 11820 11821 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 11822 return false; 11823 11824 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 11825 return true; 11826 11827 update_blocked_averages(cpu); 11828 11829 return rq->has_blocked_load; 11830 } 11831 11832 /* 11833 * Internal function that runs load balance for all idle cpus. The load balance 11834 * can be a simple update of blocked load or a complete load balance with 11835 * tasks movement depending of flags. 11836 */ 11837 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 11838 { 11839 /* Earliest time when we have to do rebalance again */ 11840 unsigned long now = jiffies; 11841 unsigned long next_balance = now + 60*HZ; 11842 bool has_blocked_load = false; 11843 int update_next_balance = 0; 11844 int this_cpu = this_rq->cpu; 11845 int balance_cpu; 11846 struct rq *rq; 11847 11848 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 11849 11850 /* 11851 * We assume there will be no idle load after this update and clear 11852 * the has_blocked flag. If a cpu enters idle in the mean time, it will 11853 * set the has_blocked flag and trigger another update of idle load. 11854 * Because a cpu that becomes idle, is added to idle_cpus_mask before 11855 * setting the flag, we are sure to not clear the state and not 11856 * check the load of an idle cpu. 11857 * 11858 * Same applies to idle_cpus_mask vs needs_update. 11859 */ 11860 if (flags & NOHZ_STATS_KICK) 11861 WRITE_ONCE(nohz.has_blocked, 0); 11862 if (flags & NOHZ_NEXT_KICK) 11863 WRITE_ONCE(nohz.needs_update, 0); 11864 11865 /* 11866 * Ensures that if we miss the CPU, we must see the has_blocked 11867 * store from nohz_balance_enter_idle(). 11868 */ 11869 smp_mb(); 11870 11871 /* 11872 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 11873 * chance for other idle cpu to pull load. 11874 */ 11875 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 11876 if (!idle_cpu(balance_cpu)) 11877 continue; 11878 11879 /* 11880 * If this CPU gets work to do, stop the load balancing 11881 * work being done for other CPUs. Next load 11882 * balancing owner will pick it up. 11883 */ 11884 if (need_resched()) { 11885 if (flags & NOHZ_STATS_KICK) 11886 has_blocked_load = true; 11887 if (flags & NOHZ_NEXT_KICK) 11888 WRITE_ONCE(nohz.needs_update, 1); 11889 goto abort; 11890 } 11891 11892 rq = cpu_rq(balance_cpu); 11893 11894 if (flags & NOHZ_STATS_KICK) 11895 has_blocked_load |= update_nohz_stats(rq); 11896 11897 /* 11898 * If time for next balance is due, 11899 * do the balance. 11900 */ 11901 if (time_after_eq(jiffies, rq->next_balance)) { 11902 struct rq_flags rf; 11903 11904 rq_lock_irqsave(rq, &rf); 11905 update_rq_clock(rq); 11906 rq_unlock_irqrestore(rq, &rf); 11907 11908 if (flags & NOHZ_BALANCE_KICK) 11909 rebalance_domains(rq, CPU_IDLE); 11910 } 11911 11912 if (time_after(next_balance, rq->next_balance)) { 11913 next_balance = rq->next_balance; 11914 update_next_balance = 1; 11915 } 11916 } 11917 11918 /* 11919 * next_balance will be updated only when there is a need. 11920 * When the CPU is attached to null domain for ex, it will not be 11921 * updated. 11922 */ 11923 if (likely(update_next_balance)) 11924 nohz.next_balance = next_balance; 11925 11926 if (flags & NOHZ_STATS_KICK) 11927 WRITE_ONCE(nohz.next_blocked, 11928 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 11929 11930 abort: 11931 /* There is still blocked load, enable periodic update */ 11932 if (has_blocked_load) 11933 WRITE_ONCE(nohz.has_blocked, 1); 11934 } 11935 11936 /* 11937 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 11938 * rebalancing for all the cpus for whom scheduler ticks are stopped. 11939 */ 11940 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11941 { 11942 unsigned int flags = this_rq->nohz_idle_balance; 11943 11944 if (!flags) 11945 return false; 11946 11947 this_rq->nohz_idle_balance = 0; 11948 11949 if (idle != CPU_IDLE) 11950 return false; 11951 11952 _nohz_idle_balance(this_rq, flags); 11953 11954 return true; 11955 } 11956 11957 /* 11958 * Check if we need to run the ILB for updating blocked load before entering 11959 * idle state. 11960 */ 11961 void nohz_run_idle_balance(int cpu) 11962 { 11963 unsigned int flags; 11964 11965 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 11966 11967 /* 11968 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 11969 * (ie NOHZ_STATS_KICK set) and will do the same. 11970 */ 11971 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 11972 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 11973 } 11974 11975 static void nohz_newidle_balance(struct rq *this_rq) 11976 { 11977 int this_cpu = this_rq->cpu; 11978 11979 /* 11980 * This CPU doesn't want to be disturbed by scheduler 11981 * housekeeping 11982 */ 11983 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 11984 return; 11985 11986 /* Will wake up very soon. No time for doing anything else*/ 11987 if (this_rq->avg_idle < sysctl_sched_migration_cost) 11988 return; 11989 11990 /* Don't need to update blocked load of idle CPUs*/ 11991 if (!READ_ONCE(nohz.has_blocked) || 11992 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 11993 return; 11994 11995 /* 11996 * Set the need to trigger ILB in order to update blocked load 11997 * before entering idle state. 11998 */ 11999 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12000 } 12001 12002 #else /* !CONFIG_NO_HZ_COMMON */ 12003 static inline void nohz_balancer_kick(struct rq *rq) { } 12004 12005 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12006 { 12007 return false; 12008 } 12009 12010 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12011 #endif /* CONFIG_NO_HZ_COMMON */ 12012 12013 /* 12014 * newidle_balance is called by schedule() if this_cpu is about to become 12015 * idle. Attempts to pull tasks from other CPUs. 12016 * 12017 * Returns: 12018 * < 0 - we released the lock and there are !fair tasks present 12019 * 0 - failed, no new tasks 12020 * > 0 - success, new (fair) tasks present 12021 */ 12022 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 12023 { 12024 unsigned long next_balance = jiffies + HZ; 12025 int this_cpu = this_rq->cpu; 12026 u64 t0, t1, curr_cost = 0; 12027 struct sched_domain *sd; 12028 int pulled_task = 0; 12029 12030 update_misfit_status(NULL, this_rq); 12031 12032 /* 12033 * There is a task waiting to run. No need to search for one. 12034 * Return 0; the task will be enqueued when switching to idle. 12035 */ 12036 if (this_rq->ttwu_pending) 12037 return 0; 12038 12039 /* 12040 * We must set idle_stamp _before_ calling idle_balance(), such that we 12041 * measure the duration of idle_balance() as idle time. 12042 */ 12043 this_rq->idle_stamp = rq_clock(this_rq); 12044 12045 /* 12046 * Do not pull tasks towards !active CPUs... 12047 */ 12048 if (!cpu_active(this_cpu)) 12049 return 0; 12050 12051 /* 12052 * This is OK, because current is on_cpu, which avoids it being picked 12053 * for load-balance and preemption/IRQs are still disabled avoiding 12054 * further scheduler activity on it and we're being very careful to 12055 * re-start the picking loop. 12056 */ 12057 rq_unpin_lock(this_rq, rf); 12058 12059 rcu_read_lock(); 12060 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12061 12062 if (!READ_ONCE(this_rq->rd->overload) || 12063 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12064 12065 if (sd) 12066 update_next_balance(sd, &next_balance); 12067 rcu_read_unlock(); 12068 12069 goto out; 12070 } 12071 rcu_read_unlock(); 12072 12073 raw_spin_rq_unlock(this_rq); 12074 12075 t0 = sched_clock_cpu(this_cpu); 12076 update_blocked_averages(this_cpu); 12077 12078 rcu_read_lock(); 12079 for_each_domain(this_cpu, sd) { 12080 int continue_balancing = 1; 12081 u64 domain_cost; 12082 12083 update_next_balance(sd, &next_balance); 12084 12085 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12086 break; 12087 12088 if (sd->flags & SD_BALANCE_NEWIDLE) { 12089 12090 pulled_task = load_balance(this_cpu, this_rq, 12091 sd, CPU_NEWLY_IDLE, 12092 &continue_balancing); 12093 12094 t1 = sched_clock_cpu(this_cpu); 12095 domain_cost = t1 - t0; 12096 update_newidle_cost(sd, domain_cost); 12097 12098 curr_cost += domain_cost; 12099 t0 = t1; 12100 } 12101 12102 /* 12103 * Stop searching for tasks to pull if there are 12104 * now runnable tasks on this rq. 12105 */ 12106 if (pulled_task || this_rq->nr_running > 0 || 12107 this_rq->ttwu_pending) 12108 break; 12109 } 12110 rcu_read_unlock(); 12111 12112 raw_spin_rq_lock(this_rq); 12113 12114 if (curr_cost > this_rq->max_idle_balance_cost) 12115 this_rq->max_idle_balance_cost = curr_cost; 12116 12117 /* 12118 * While browsing the domains, we released the rq lock, a task could 12119 * have been enqueued in the meantime. Since we're not going idle, 12120 * pretend we pulled a task. 12121 */ 12122 if (this_rq->cfs.h_nr_running && !pulled_task) 12123 pulled_task = 1; 12124 12125 /* Is there a task of a high priority class? */ 12126 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12127 pulled_task = -1; 12128 12129 out: 12130 /* Move the next balance forward */ 12131 if (time_after(this_rq->next_balance, next_balance)) 12132 this_rq->next_balance = next_balance; 12133 12134 if (pulled_task) 12135 this_rq->idle_stamp = 0; 12136 else 12137 nohz_newidle_balance(this_rq); 12138 12139 rq_repin_lock(this_rq, rf); 12140 12141 return pulled_task; 12142 } 12143 12144 /* 12145 * run_rebalance_domains is triggered when needed from the scheduler tick. 12146 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 12147 */ 12148 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 12149 { 12150 struct rq *this_rq = this_rq(); 12151 enum cpu_idle_type idle = this_rq->idle_balance ? 12152 CPU_IDLE : CPU_NOT_IDLE; 12153 12154 /* 12155 * If this CPU has a pending nohz_balance_kick, then do the 12156 * balancing on behalf of the other idle CPUs whose ticks are 12157 * stopped. Do nohz_idle_balance *before* rebalance_domains to 12158 * give the idle CPUs a chance to load balance. Else we may 12159 * load balance only within the local sched_domain hierarchy 12160 * and abort nohz_idle_balance altogether if we pull some load. 12161 */ 12162 if (nohz_idle_balance(this_rq, idle)) 12163 return; 12164 12165 /* normal load balance */ 12166 update_blocked_averages(this_rq->cpu); 12167 rebalance_domains(this_rq, idle); 12168 } 12169 12170 /* 12171 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12172 */ 12173 void trigger_load_balance(struct rq *rq) 12174 { 12175 /* 12176 * Don't need to rebalance while attached to NULL domain or 12177 * runqueue CPU is not active 12178 */ 12179 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12180 return; 12181 12182 if (time_after_eq(jiffies, rq->next_balance)) 12183 raise_softirq(SCHED_SOFTIRQ); 12184 12185 nohz_balancer_kick(rq); 12186 } 12187 12188 static void rq_online_fair(struct rq *rq) 12189 { 12190 update_sysctl(); 12191 12192 update_runtime_enabled(rq); 12193 } 12194 12195 static void rq_offline_fair(struct rq *rq) 12196 { 12197 update_sysctl(); 12198 12199 /* Ensure any throttled groups are reachable by pick_next_task */ 12200 unthrottle_offline_cfs_rqs(rq); 12201 } 12202 12203 #endif /* CONFIG_SMP */ 12204 12205 #ifdef CONFIG_SCHED_CORE 12206 static inline bool 12207 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12208 { 12209 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12210 u64 slice = se->slice; 12211 12212 return (rtime * min_nr_tasks > slice); 12213 } 12214 12215 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12216 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12217 { 12218 if (!sched_core_enabled(rq)) 12219 return; 12220 12221 /* 12222 * If runqueue has only one task which used up its slice and 12223 * if the sibling is forced idle, then trigger schedule to 12224 * give forced idle task a chance. 12225 * 12226 * sched_slice() considers only this active rq and it gets the 12227 * whole slice. But during force idle, we have siblings acting 12228 * like a single runqueue and hence we need to consider runnable 12229 * tasks on this CPU and the forced idle CPU. Ideally, we should 12230 * go through the forced idle rq, but that would be a perf hit. 12231 * We can assume that the forced idle CPU has at least 12232 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12233 * if we need to give up the CPU. 12234 */ 12235 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12236 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12237 resched_curr(rq); 12238 } 12239 12240 /* 12241 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12242 */ 12243 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12244 bool forceidle) 12245 { 12246 for_each_sched_entity(se) { 12247 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12248 12249 if (forceidle) { 12250 if (cfs_rq->forceidle_seq == fi_seq) 12251 break; 12252 cfs_rq->forceidle_seq = fi_seq; 12253 } 12254 12255 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12256 } 12257 } 12258 12259 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12260 { 12261 struct sched_entity *se = &p->se; 12262 12263 if (p->sched_class != &fair_sched_class) 12264 return; 12265 12266 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12267 } 12268 12269 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12270 bool in_fi) 12271 { 12272 struct rq *rq = task_rq(a); 12273 const struct sched_entity *sea = &a->se; 12274 const struct sched_entity *seb = &b->se; 12275 struct cfs_rq *cfs_rqa; 12276 struct cfs_rq *cfs_rqb; 12277 s64 delta; 12278 12279 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12280 12281 #ifdef CONFIG_FAIR_GROUP_SCHED 12282 /* 12283 * Find an se in the hierarchy for tasks a and b, such that the se's 12284 * are immediate siblings. 12285 */ 12286 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12287 int sea_depth = sea->depth; 12288 int seb_depth = seb->depth; 12289 12290 if (sea_depth >= seb_depth) 12291 sea = parent_entity(sea); 12292 if (sea_depth <= seb_depth) 12293 seb = parent_entity(seb); 12294 } 12295 12296 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12297 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12298 12299 cfs_rqa = sea->cfs_rq; 12300 cfs_rqb = seb->cfs_rq; 12301 #else 12302 cfs_rqa = &task_rq(a)->cfs; 12303 cfs_rqb = &task_rq(b)->cfs; 12304 #endif 12305 12306 /* 12307 * Find delta after normalizing se's vruntime with its cfs_rq's 12308 * min_vruntime_fi, which would have been updated in prior calls 12309 * to se_fi_update(). 12310 */ 12311 delta = (s64)(sea->vruntime - seb->vruntime) + 12312 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12313 12314 return delta > 0; 12315 } 12316 12317 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12318 { 12319 struct cfs_rq *cfs_rq; 12320 12321 #ifdef CONFIG_FAIR_GROUP_SCHED 12322 cfs_rq = task_group(p)->cfs_rq[cpu]; 12323 #else 12324 cfs_rq = &cpu_rq(cpu)->cfs; 12325 #endif 12326 return throttled_hierarchy(cfs_rq); 12327 } 12328 #else 12329 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12330 #endif 12331 12332 /* 12333 * scheduler tick hitting a task of our scheduling class. 12334 * 12335 * NOTE: This function can be called remotely by the tick offload that 12336 * goes along full dynticks. Therefore no local assumption can be made 12337 * and everything must be accessed through the @rq and @curr passed in 12338 * parameters. 12339 */ 12340 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12341 { 12342 struct cfs_rq *cfs_rq; 12343 struct sched_entity *se = &curr->se; 12344 12345 for_each_sched_entity(se) { 12346 cfs_rq = cfs_rq_of(se); 12347 entity_tick(cfs_rq, se, queued); 12348 } 12349 12350 if (static_branch_unlikely(&sched_numa_balancing)) 12351 task_tick_numa(rq, curr); 12352 12353 update_misfit_status(curr, rq); 12354 update_overutilized_status(task_rq(curr)); 12355 12356 task_tick_core(rq, curr); 12357 } 12358 12359 /* 12360 * called on fork with the child task as argument from the parent's context 12361 * - child not yet on the tasklist 12362 * - preemption disabled 12363 */ 12364 static void task_fork_fair(struct task_struct *p) 12365 { 12366 struct sched_entity *se = &p->se, *curr; 12367 struct cfs_rq *cfs_rq; 12368 struct rq *rq = this_rq(); 12369 struct rq_flags rf; 12370 12371 rq_lock(rq, &rf); 12372 update_rq_clock(rq); 12373 12374 cfs_rq = task_cfs_rq(current); 12375 curr = cfs_rq->curr; 12376 if (curr) 12377 update_curr(cfs_rq); 12378 place_entity(cfs_rq, se, ENQUEUE_INITIAL); 12379 rq_unlock(rq, &rf); 12380 } 12381 12382 /* 12383 * Priority of the task has changed. Check to see if we preempt 12384 * the current task. 12385 */ 12386 static void 12387 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12388 { 12389 if (!task_on_rq_queued(p)) 12390 return; 12391 12392 if (rq->cfs.nr_running == 1) 12393 return; 12394 12395 /* 12396 * Reschedule if we are currently running on this runqueue and 12397 * our priority decreased, or if we are not currently running on 12398 * this runqueue and our priority is higher than the current's 12399 */ 12400 if (task_current(rq, p)) { 12401 if (p->prio > oldprio) 12402 resched_curr(rq); 12403 } else 12404 check_preempt_curr(rq, p, 0); 12405 } 12406 12407 #ifdef CONFIG_FAIR_GROUP_SCHED 12408 /* 12409 * Propagate the changes of the sched_entity across the tg tree to make it 12410 * visible to the root 12411 */ 12412 static void propagate_entity_cfs_rq(struct sched_entity *se) 12413 { 12414 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12415 12416 if (cfs_rq_throttled(cfs_rq)) 12417 return; 12418 12419 if (!throttled_hierarchy(cfs_rq)) 12420 list_add_leaf_cfs_rq(cfs_rq); 12421 12422 /* Start to propagate at parent */ 12423 se = se->parent; 12424 12425 for_each_sched_entity(se) { 12426 cfs_rq = cfs_rq_of(se); 12427 12428 update_load_avg(cfs_rq, se, UPDATE_TG); 12429 12430 if (cfs_rq_throttled(cfs_rq)) 12431 break; 12432 12433 if (!throttled_hierarchy(cfs_rq)) 12434 list_add_leaf_cfs_rq(cfs_rq); 12435 } 12436 } 12437 #else 12438 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12439 #endif 12440 12441 static void detach_entity_cfs_rq(struct sched_entity *se) 12442 { 12443 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12444 12445 #ifdef CONFIG_SMP 12446 /* 12447 * In case the task sched_avg hasn't been attached: 12448 * - A forked task which hasn't been woken up by wake_up_new_task(). 12449 * - A task which has been woken up by try_to_wake_up() but is 12450 * waiting for actually being woken up by sched_ttwu_pending(). 12451 */ 12452 if (!se->avg.last_update_time) 12453 return; 12454 #endif 12455 12456 /* Catch up with the cfs_rq and remove our load when we leave */ 12457 update_load_avg(cfs_rq, se, 0); 12458 detach_entity_load_avg(cfs_rq, se); 12459 update_tg_load_avg(cfs_rq); 12460 propagate_entity_cfs_rq(se); 12461 } 12462 12463 static void attach_entity_cfs_rq(struct sched_entity *se) 12464 { 12465 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12466 12467 /* Synchronize entity with its cfs_rq */ 12468 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12469 attach_entity_load_avg(cfs_rq, se); 12470 update_tg_load_avg(cfs_rq); 12471 propagate_entity_cfs_rq(se); 12472 } 12473 12474 static void detach_task_cfs_rq(struct task_struct *p) 12475 { 12476 struct sched_entity *se = &p->se; 12477 12478 detach_entity_cfs_rq(se); 12479 } 12480 12481 static void attach_task_cfs_rq(struct task_struct *p) 12482 { 12483 struct sched_entity *se = &p->se; 12484 12485 attach_entity_cfs_rq(se); 12486 } 12487 12488 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12489 { 12490 detach_task_cfs_rq(p); 12491 } 12492 12493 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12494 { 12495 attach_task_cfs_rq(p); 12496 12497 if (task_on_rq_queued(p)) { 12498 /* 12499 * We were most likely switched from sched_rt, so 12500 * kick off the schedule if running, otherwise just see 12501 * if we can still preempt the current task. 12502 */ 12503 if (task_current(rq, p)) 12504 resched_curr(rq); 12505 else 12506 check_preempt_curr(rq, p, 0); 12507 } 12508 } 12509 12510 /* Account for a task changing its policy or group. 12511 * 12512 * This routine is mostly called to set cfs_rq->curr field when a task 12513 * migrates between groups/classes. 12514 */ 12515 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12516 { 12517 struct sched_entity *se = &p->se; 12518 12519 #ifdef CONFIG_SMP 12520 if (task_on_rq_queued(p)) { 12521 /* 12522 * Move the next running task to the front of the list, so our 12523 * cfs_tasks list becomes MRU one. 12524 */ 12525 list_move(&se->group_node, &rq->cfs_tasks); 12526 } 12527 #endif 12528 12529 for_each_sched_entity(se) { 12530 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12531 12532 set_next_entity(cfs_rq, se); 12533 /* ensure bandwidth has been allocated on our new cfs_rq */ 12534 account_cfs_rq_runtime(cfs_rq, 0); 12535 } 12536 } 12537 12538 void init_cfs_rq(struct cfs_rq *cfs_rq) 12539 { 12540 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12541 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12542 #ifdef CONFIG_SMP 12543 raw_spin_lock_init(&cfs_rq->removed.lock); 12544 #endif 12545 } 12546 12547 #ifdef CONFIG_FAIR_GROUP_SCHED 12548 static void task_change_group_fair(struct task_struct *p) 12549 { 12550 /* 12551 * We couldn't detach or attach a forked task which 12552 * hasn't been woken up by wake_up_new_task(). 12553 */ 12554 if (READ_ONCE(p->__state) == TASK_NEW) 12555 return; 12556 12557 detach_task_cfs_rq(p); 12558 12559 #ifdef CONFIG_SMP 12560 /* Tell se's cfs_rq has been changed -- migrated */ 12561 p->se.avg.last_update_time = 0; 12562 #endif 12563 set_task_rq(p, task_cpu(p)); 12564 attach_task_cfs_rq(p); 12565 } 12566 12567 void free_fair_sched_group(struct task_group *tg) 12568 { 12569 int i; 12570 12571 for_each_possible_cpu(i) { 12572 if (tg->cfs_rq) 12573 kfree(tg->cfs_rq[i]); 12574 if (tg->se) 12575 kfree(tg->se[i]); 12576 } 12577 12578 kfree(tg->cfs_rq); 12579 kfree(tg->se); 12580 } 12581 12582 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12583 { 12584 struct sched_entity *se; 12585 struct cfs_rq *cfs_rq; 12586 int i; 12587 12588 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12589 if (!tg->cfs_rq) 12590 goto err; 12591 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12592 if (!tg->se) 12593 goto err; 12594 12595 tg->shares = NICE_0_LOAD; 12596 12597 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 12598 12599 for_each_possible_cpu(i) { 12600 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12601 GFP_KERNEL, cpu_to_node(i)); 12602 if (!cfs_rq) 12603 goto err; 12604 12605 se = kzalloc_node(sizeof(struct sched_entity_stats), 12606 GFP_KERNEL, cpu_to_node(i)); 12607 if (!se) 12608 goto err_free_rq; 12609 12610 init_cfs_rq(cfs_rq); 12611 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12612 init_entity_runnable_average(se); 12613 } 12614 12615 return 1; 12616 12617 err_free_rq: 12618 kfree(cfs_rq); 12619 err: 12620 return 0; 12621 } 12622 12623 void online_fair_sched_group(struct task_group *tg) 12624 { 12625 struct sched_entity *se; 12626 struct rq_flags rf; 12627 struct rq *rq; 12628 int i; 12629 12630 for_each_possible_cpu(i) { 12631 rq = cpu_rq(i); 12632 se = tg->se[i]; 12633 rq_lock_irq(rq, &rf); 12634 update_rq_clock(rq); 12635 attach_entity_cfs_rq(se); 12636 sync_throttle(tg, i); 12637 rq_unlock_irq(rq, &rf); 12638 } 12639 } 12640 12641 void unregister_fair_sched_group(struct task_group *tg) 12642 { 12643 unsigned long flags; 12644 struct rq *rq; 12645 int cpu; 12646 12647 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12648 12649 for_each_possible_cpu(cpu) { 12650 if (tg->se[cpu]) 12651 remove_entity_load_avg(tg->se[cpu]); 12652 12653 /* 12654 * Only empty task groups can be destroyed; so we can speculatively 12655 * check on_list without danger of it being re-added. 12656 */ 12657 if (!tg->cfs_rq[cpu]->on_list) 12658 continue; 12659 12660 rq = cpu_rq(cpu); 12661 12662 raw_spin_rq_lock_irqsave(rq, flags); 12663 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12664 raw_spin_rq_unlock_irqrestore(rq, flags); 12665 } 12666 } 12667 12668 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12669 struct sched_entity *se, int cpu, 12670 struct sched_entity *parent) 12671 { 12672 struct rq *rq = cpu_rq(cpu); 12673 12674 cfs_rq->tg = tg; 12675 cfs_rq->rq = rq; 12676 init_cfs_rq_runtime(cfs_rq); 12677 12678 tg->cfs_rq[cpu] = cfs_rq; 12679 tg->se[cpu] = se; 12680 12681 /* se could be NULL for root_task_group */ 12682 if (!se) 12683 return; 12684 12685 if (!parent) { 12686 se->cfs_rq = &rq->cfs; 12687 se->depth = 0; 12688 } else { 12689 se->cfs_rq = parent->my_q; 12690 se->depth = parent->depth + 1; 12691 } 12692 12693 se->my_q = cfs_rq; 12694 /* guarantee group entities always have weight */ 12695 update_load_set(&se->load, NICE_0_LOAD); 12696 se->parent = parent; 12697 } 12698 12699 static DEFINE_MUTEX(shares_mutex); 12700 12701 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12702 { 12703 int i; 12704 12705 lockdep_assert_held(&shares_mutex); 12706 12707 /* 12708 * We can't change the weight of the root cgroup. 12709 */ 12710 if (!tg->se[0]) 12711 return -EINVAL; 12712 12713 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12714 12715 if (tg->shares == shares) 12716 return 0; 12717 12718 tg->shares = shares; 12719 for_each_possible_cpu(i) { 12720 struct rq *rq = cpu_rq(i); 12721 struct sched_entity *se = tg->se[i]; 12722 struct rq_flags rf; 12723 12724 /* Propagate contribution to hierarchy */ 12725 rq_lock_irqsave(rq, &rf); 12726 update_rq_clock(rq); 12727 for_each_sched_entity(se) { 12728 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12729 update_cfs_group(se); 12730 } 12731 rq_unlock_irqrestore(rq, &rf); 12732 } 12733 12734 return 0; 12735 } 12736 12737 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 12738 { 12739 int ret; 12740 12741 mutex_lock(&shares_mutex); 12742 if (tg_is_idle(tg)) 12743 ret = -EINVAL; 12744 else 12745 ret = __sched_group_set_shares(tg, shares); 12746 mutex_unlock(&shares_mutex); 12747 12748 return ret; 12749 } 12750 12751 int sched_group_set_idle(struct task_group *tg, long idle) 12752 { 12753 int i; 12754 12755 if (tg == &root_task_group) 12756 return -EINVAL; 12757 12758 if (idle < 0 || idle > 1) 12759 return -EINVAL; 12760 12761 mutex_lock(&shares_mutex); 12762 12763 if (tg->idle == idle) { 12764 mutex_unlock(&shares_mutex); 12765 return 0; 12766 } 12767 12768 tg->idle = idle; 12769 12770 for_each_possible_cpu(i) { 12771 struct rq *rq = cpu_rq(i); 12772 struct sched_entity *se = tg->se[i]; 12773 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 12774 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 12775 long idle_task_delta; 12776 struct rq_flags rf; 12777 12778 rq_lock_irqsave(rq, &rf); 12779 12780 grp_cfs_rq->idle = idle; 12781 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 12782 goto next_cpu; 12783 12784 if (se->on_rq) { 12785 parent_cfs_rq = cfs_rq_of(se); 12786 if (cfs_rq_is_idle(grp_cfs_rq)) 12787 parent_cfs_rq->idle_nr_running++; 12788 else 12789 parent_cfs_rq->idle_nr_running--; 12790 } 12791 12792 idle_task_delta = grp_cfs_rq->h_nr_running - 12793 grp_cfs_rq->idle_h_nr_running; 12794 if (!cfs_rq_is_idle(grp_cfs_rq)) 12795 idle_task_delta *= -1; 12796 12797 for_each_sched_entity(se) { 12798 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12799 12800 if (!se->on_rq) 12801 break; 12802 12803 cfs_rq->idle_h_nr_running += idle_task_delta; 12804 12805 /* Already accounted at parent level and above. */ 12806 if (cfs_rq_is_idle(cfs_rq)) 12807 break; 12808 } 12809 12810 next_cpu: 12811 rq_unlock_irqrestore(rq, &rf); 12812 } 12813 12814 /* Idle groups have minimum weight. */ 12815 if (tg_is_idle(tg)) 12816 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 12817 else 12818 __sched_group_set_shares(tg, NICE_0_LOAD); 12819 12820 mutex_unlock(&shares_mutex); 12821 return 0; 12822 } 12823 12824 #else /* CONFIG_FAIR_GROUP_SCHED */ 12825 12826 void free_fair_sched_group(struct task_group *tg) { } 12827 12828 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12829 { 12830 return 1; 12831 } 12832 12833 void online_fair_sched_group(struct task_group *tg) { } 12834 12835 void unregister_fair_sched_group(struct task_group *tg) { } 12836 12837 #endif /* CONFIG_FAIR_GROUP_SCHED */ 12838 12839 12840 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 12841 { 12842 struct sched_entity *se = &task->se; 12843 unsigned int rr_interval = 0; 12844 12845 /* 12846 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 12847 * idle runqueue: 12848 */ 12849 if (rq->cfs.load.weight) 12850 rr_interval = NS_TO_JIFFIES(se->slice); 12851 12852 return rr_interval; 12853 } 12854 12855 /* 12856 * All the scheduling class methods: 12857 */ 12858 DEFINE_SCHED_CLASS(fair) = { 12859 12860 .enqueue_task = enqueue_task_fair, 12861 .dequeue_task = dequeue_task_fair, 12862 .yield_task = yield_task_fair, 12863 .yield_to_task = yield_to_task_fair, 12864 12865 .check_preempt_curr = check_preempt_wakeup, 12866 12867 .pick_next_task = __pick_next_task_fair, 12868 .put_prev_task = put_prev_task_fair, 12869 .set_next_task = set_next_task_fair, 12870 12871 #ifdef CONFIG_SMP 12872 .balance = balance_fair, 12873 .pick_task = pick_task_fair, 12874 .select_task_rq = select_task_rq_fair, 12875 .migrate_task_rq = migrate_task_rq_fair, 12876 12877 .rq_online = rq_online_fair, 12878 .rq_offline = rq_offline_fair, 12879 12880 .task_dead = task_dead_fair, 12881 .set_cpus_allowed = set_cpus_allowed_common, 12882 #endif 12883 12884 .task_tick = task_tick_fair, 12885 .task_fork = task_fork_fair, 12886 12887 .prio_changed = prio_changed_fair, 12888 .switched_from = switched_from_fair, 12889 .switched_to = switched_to_fair, 12890 12891 .get_rr_interval = get_rr_interval_fair, 12892 12893 .update_curr = update_curr_fair, 12894 12895 #ifdef CONFIG_FAIR_GROUP_SCHED 12896 .task_change_group = task_change_group_fair, 12897 #endif 12898 12899 #ifdef CONFIG_SCHED_CORE 12900 .task_is_throttled = task_is_throttled_fair, 12901 #endif 12902 12903 #ifdef CONFIG_UCLAMP_TASK 12904 .uclamp_enabled = 1, 12905 #endif 12906 }; 12907 12908 #ifdef CONFIG_SCHED_DEBUG 12909 void print_cfs_stats(struct seq_file *m, int cpu) 12910 { 12911 struct cfs_rq *cfs_rq, *pos; 12912 12913 rcu_read_lock(); 12914 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 12915 print_cfs_rq(m, cpu, cfs_rq); 12916 rcu_read_unlock(); 12917 } 12918 12919 #ifdef CONFIG_NUMA_BALANCING 12920 void show_numa_stats(struct task_struct *p, struct seq_file *m) 12921 { 12922 int node; 12923 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 12924 struct numa_group *ng; 12925 12926 rcu_read_lock(); 12927 ng = rcu_dereference(p->numa_group); 12928 for_each_online_node(node) { 12929 if (p->numa_faults) { 12930 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 12931 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 12932 } 12933 if (ng) { 12934 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 12935 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 12936 } 12937 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 12938 } 12939 rcu_read_unlock(); 12940 } 12941 #endif /* CONFIG_NUMA_BALANCING */ 12942 #endif /* CONFIG_SCHED_DEBUG */ 12943 12944 __init void init_sched_fair_class(void) 12945 { 12946 #ifdef CONFIG_SMP 12947 int i; 12948 12949 for_each_possible_cpu(i) { 12950 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 12951 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 12952 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 12953 GFP_KERNEL, cpu_to_node(i)); 12954 12955 #ifdef CONFIG_CFS_BANDWIDTH 12956 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 12957 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 12958 #endif 12959 } 12960 12961 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 12962 12963 #ifdef CONFIG_NO_HZ_COMMON 12964 nohz.next_balance = jiffies; 12965 nohz.next_blocked = jiffies; 12966 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 12967 #endif 12968 #endif /* SMP */ 12969 12970 } 12971