xref: /openbmc/linux/kernel/sched/fair.c (revision 2ae1beb3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include <linux/sched/cond_resched.h>
55 
56 #include "sched.h"
57 #include "stats.h"
58 #include "autogroup.h"
59 
60 /*
61  * The initial- and re-scaling of tunables is configurable
62  *
63  * Options are:
64  *
65  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
66  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
67  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
68  *
69  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
70  */
71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
72 
73 /*
74  * Minimal preemption granularity for CPU-bound tasks:
75  *
76  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
77  */
78 unsigned int sysctl_sched_base_slice			= 750000ULL;
79 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
80 
81 /*
82  * After fork, child runs first. If set to 0 (default) then
83  * parent will (try to) run first.
84  */
85 unsigned int sysctl_sched_child_runs_first __read_mostly;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 int sched_thermal_decay_shift;
90 static int __init setup_sched_thermal_decay_shift(char *str)
91 {
92 	int _shift = 0;
93 
94 	if (kstrtoint(str, 0, &_shift))
95 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
96 
97 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 	return 1;
99 }
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
101 
102 #ifdef CONFIG_SMP
103 /*
104  * For asym packing, by default the lower numbered CPU has higher priority.
105  */
106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 	return -cpu;
109 }
110 
111 /*
112  * The margin used when comparing utilization with CPU capacity.
113  *
114  * (default: ~20%)
115  */
116 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
117 
118 /*
119  * The margin used when comparing CPU capacities.
120  * is 'cap1' noticeably greater than 'cap2'
121  *
122  * (default: ~5%)
123  */
124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
125 #endif
126 
127 #ifdef CONFIG_CFS_BANDWIDTH
128 /*
129  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
130  * each time a cfs_rq requests quota.
131  *
132  * Note: in the case that the slice exceeds the runtime remaining (either due
133  * to consumption or the quota being specified to be smaller than the slice)
134  * we will always only issue the remaining available time.
135  *
136  * (default: 5 msec, units: microseconds)
137  */
138 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
139 #endif
140 
141 #ifdef CONFIG_NUMA_BALANCING
142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
144 #endif
145 
146 #ifdef CONFIG_SYSCTL
147 static struct ctl_table sched_fair_sysctls[] = {
148 	{
149 		.procname       = "sched_child_runs_first",
150 		.data           = &sysctl_sched_child_runs_first,
151 		.maxlen         = sizeof(unsigned int),
152 		.mode           = 0644,
153 		.proc_handler   = proc_dointvec,
154 	},
155 #ifdef CONFIG_CFS_BANDWIDTH
156 	{
157 		.procname       = "sched_cfs_bandwidth_slice_us",
158 		.data           = &sysctl_sched_cfs_bandwidth_slice,
159 		.maxlen         = sizeof(unsigned int),
160 		.mode           = 0644,
161 		.proc_handler   = proc_dointvec_minmax,
162 		.extra1         = SYSCTL_ONE,
163 	},
164 #endif
165 #ifdef CONFIG_NUMA_BALANCING
166 	{
167 		.procname	= "numa_balancing_promote_rate_limit_MBps",
168 		.data		= &sysctl_numa_balancing_promote_rate_limit,
169 		.maxlen		= sizeof(unsigned int),
170 		.mode		= 0644,
171 		.proc_handler	= proc_dointvec_minmax,
172 		.extra1		= SYSCTL_ZERO,
173 	},
174 #endif /* CONFIG_NUMA_BALANCING */
175 	{}
176 };
177 
178 static int __init sched_fair_sysctl_init(void)
179 {
180 	register_sysctl_init("kernel", sched_fair_sysctls);
181 	return 0;
182 }
183 late_initcall(sched_fair_sysctl_init);
184 #endif
185 
186 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
187 {
188 	lw->weight += inc;
189 	lw->inv_weight = 0;
190 }
191 
192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
193 {
194 	lw->weight -= dec;
195 	lw->inv_weight = 0;
196 }
197 
198 static inline void update_load_set(struct load_weight *lw, unsigned long w)
199 {
200 	lw->weight = w;
201 	lw->inv_weight = 0;
202 }
203 
204 /*
205  * Increase the granularity value when there are more CPUs,
206  * because with more CPUs the 'effective latency' as visible
207  * to users decreases. But the relationship is not linear,
208  * so pick a second-best guess by going with the log2 of the
209  * number of CPUs.
210  *
211  * This idea comes from the SD scheduler of Con Kolivas:
212  */
213 static unsigned int get_update_sysctl_factor(void)
214 {
215 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
216 	unsigned int factor;
217 
218 	switch (sysctl_sched_tunable_scaling) {
219 	case SCHED_TUNABLESCALING_NONE:
220 		factor = 1;
221 		break;
222 	case SCHED_TUNABLESCALING_LINEAR:
223 		factor = cpus;
224 		break;
225 	case SCHED_TUNABLESCALING_LOG:
226 	default:
227 		factor = 1 + ilog2(cpus);
228 		break;
229 	}
230 
231 	return factor;
232 }
233 
234 static void update_sysctl(void)
235 {
236 	unsigned int factor = get_update_sysctl_factor();
237 
238 #define SET_SYSCTL(name) \
239 	(sysctl_##name = (factor) * normalized_sysctl_##name)
240 	SET_SYSCTL(sched_base_slice);
241 #undef SET_SYSCTL
242 }
243 
244 void __init sched_init_granularity(void)
245 {
246 	update_sysctl();
247 }
248 
249 #define WMULT_CONST	(~0U)
250 #define WMULT_SHIFT	32
251 
252 static void __update_inv_weight(struct load_weight *lw)
253 {
254 	unsigned long w;
255 
256 	if (likely(lw->inv_weight))
257 		return;
258 
259 	w = scale_load_down(lw->weight);
260 
261 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
262 		lw->inv_weight = 1;
263 	else if (unlikely(!w))
264 		lw->inv_weight = WMULT_CONST;
265 	else
266 		lw->inv_weight = WMULT_CONST / w;
267 }
268 
269 /*
270  * delta_exec * weight / lw.weight
271  *   OR
272  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
273  *
274  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
275  * we're guaranteed shift stays positive because inv_weight is guaranteed to
276  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
277  *
278  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
279  * weight/lw.weight <= 1, and therefore our shift will also be positive.
280  */
281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
282 {
283 	u64 fact = scale_load_down(weight);
284 	u32 fact_hi = (u32)(fact >> 32);
285 	int shift = WMULT_SHIFT;
286 	int fs;
287 
288 	__update_inv_weight(lw);
289 
290 	if (unlikely(fact_hi)) {
291 		fs = fls(fact_hi);
292 		shift -= fs;
293 		fact >>= fs;
294 	}
295 
296 	fact = mul_u32_u32(fact, lw->inv_weight);
297 
298 	fact_hi = (u32)(fact >> 32);
299 	if (fact_hi) {
300 		fs = fls(fact_hi);
301 		shift -= fs;
302 		fact >>= fs;
303 	}
304 
305 	return mul_u64_u32_shr(delta_exec, fact, shift);
306 }
307 
308 /*
309  * delta /= w
310  */
311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
312 {
313 	if (unlikely(se->load.weight != NICE_0_LOAD))
314 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
315 
316 	return delta;
317 }
318 
319 const struct sched_class fair_sched_class;
320 
321 /**************************************************************
322  * CFS operations on generic schedulable entities:
323  */
324 
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 
327 /* Walk up scheduling entities hierarchy */
328 #define for_each_sched_entity(se) \
329 		for (; se; se = se->parent)
330 
331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
332 {
333 	struct rq *rq = rq_of(cfs_rq);
334 	int cpu = cpu_of(rq);
335 
336 	if (cfs_rq->on_list)
337 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
338 
339 	cfs_rq->on_list = 1;
340 
341 	/*
342 	 * Ensure we either appear before our parent (if already
343 	 * enqueued) or force our parent to appear after us when it is
344 	 * enqueued. The fact that we always enqueue bottom-up
345 	 * reduces this to two cases and a special case for the root
346 	 * cfs_rq. Furthermore, it also means that we will always reset
347 	 * tmp_alone_branch either when the branch is connected
348 	 * to a tree or when we reach the top of the tree
349 	 */
350 	if (cfs_rq->tg->parent &&
351 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
352 		/*
353 		 * If parent is already on the list, we add the child
354 		 * just before. Thanks to circular linked property of
355 		 * the list, this means to put the child at the tail
356 		 * of the list that starts by parent.
357 		 */
358 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
359 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
360 		/*
361 		 * The branch is now connected to its tree so we can
362 		 * reset tmp_alone_branch to the beginning of the
363 		 * list.
364 		 */
365 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 		return true;
367 	}
368 
369 	if (!cfs_rq->tg->parent) {
370 		/*
371 		 * cfs rq without parent should be put
372 		 * at the tail of the list.
373 		 */
374 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
375 			&rq->leaf_cfs_rq_list);
376 		/*
377 		 * We have reach the top of a tree so we can reset
378 		 * tmp_alone_branch to the beginning of the list.
379 		 */
380 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
381 		return true;
382 	}
383 
384 	/*
385 	 * The parent has not already been added so we want to
386 	 * make sure that it will be put after us.
387 	 * tmp_alone_branch points to the begin of the branch
388 	 * where we will add parent.
389 	 */
390 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
391 	/*
392 	 * update tmp_alone_branch to points to the new begin
393 	 * of the branch
394 	 */
395 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
396 	return false;
397 }
398 
399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
400 {
401 	if (cfs_rq->on_list) {
402 		struct rq *rq = rq_of(cfs_rq);
403 
404 		/*
405 		 * With cfs_rq being unthrottled/throttled during an enqueue,
406 		 * it can happen the tmp_alone_branch points the a leaf that
407 		 * we finally want to del. In this case, tmp_alone_branch moves
408 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
409 		 * at the end of the enqueue.
410 		 */
411 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
412 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
413 
414 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
415 		cfs_rq->on_list = 0;
416 	}
417 }
418 
419 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
420 {
421 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
422 }
423 
424 /* Iterate thr' all leaf cfs_rq's on a runqueue */
425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
426 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
427 				 leaf_cfs_rq_list)
428 
429 /* Do the two (enqueued) entities belong to the same group ? */
430 static inline struct cfs_rq *
431 is_same_group(struct sched_entity *se, struct sched_entity *pse)
432 {
433 	if (se->cfs_rq == pse->cfs_rq)
434 		return se->cfs_rq;
435 
436 	return NULL;
437 }
438 
439 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
440 {
441 	return se->parent;
442 }
443 
444 static void
445 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
446 {
447 	int se_depth, pse_depth;
448 
449 	/*
450 	 * preemption test can be made between sibling entities who are in the
451 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
452 	 * both tasks until we find their ancestors who are siblings of common
453 	 * parent.
454 	 */
455 
456 	/* First walk up until both entities are at same depth */
457 	se_depth = (*se)->depth;
458 	pse_depth = (*pse)->depth;
459 
460 	while (se_depth > pse_depth) {
461 		se_depth--;
462 		*se = parent_entity(*se);
463 	}
464 
465 	while (pse_depth > se_depth) {
466 		pse_depth--;
467 		*pse = parent_entity(*pse);
468 	}
469 
470 	while (!is_same_group(*se, *pse)) {
471 		*se = parent_entity(*se);
472 		*pse = parent_entity(*pse);
473 	}
474 }
475 
476 static int tg_is_idle(struct task_group *tg)
477 {
478 	return tg->idle > 0;
479 }
480 
481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
482 {
483 	return cfs_rq->idle > 0;
484 }
485 
486 static int se_is_idle(struct sched_entity *se)
487 {
488 	if (entity_is_task(se))
489 		return task_has_idle_policy(task_of(se));
490 	return cfs_rq_is_idle(group_cfs_rq(se));
491 }
492 
493 #else	/* !CONFIG_FAIR_GROUP_SCHED */
494 
495 #define for_each_sched_entity(se) \
496 		for (; se; se = NULL)
497 
498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
499 {
500 	return true;
501 }
502 
503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
504 {
505 }
506 
507 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
508 {
509 }
510 
511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
512 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
513 
514 static inline struct sched_entity *parent_entity(struct sched_entity *se)
515 {
516 	return NULL;
517 }
518 
519 static inline void
520 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
521 {
522 }
523 
524 static inline int tg_is_idle(struct task_group *tg)
525 {
526 	return 0;
527 }
528 
529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
530 {
531 	return 0;
532 }
533 
534 static int se_is_idle(struct sched_entity *se)
535 {
536 	return 0;
537 }
538 
539 #endif	/* CONFIG_FAIR_GROUP_SCHED */
540 
541 static __always_inline
542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
543 
544 /**************************************************************
545  * Scheduling class tree data structure manipulation methods:
546  */
547 
548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
549 {
550 	s64 delta = (s64)(vruntime - max_vruntime);
551 	if (delta > 0)
552 		max_vruntime = vruntime;
553 
554 	return max_vruntime;
555 }
556 
557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
558 {
559 	s64 delta = (s64)(vruntime - min_vruntime);
560 	if (delta < 0)
561 		min_vruntime = vruntime;
562 
563 	return min_vruntime;
564 }
565 
566 static inline bool entity_before(const struct sched_entity *a,
567 				 const struct sched_entity *b)
568 {
569 	return (s64)(a->vruntime - b->vruntime) < 0;
570 }
571 
572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
573 {
574 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
575 }
576 
577 #define __node_2_se(node) \
578 	rb_entry((node), struct sched_entity, run_node)
579 
580 /*
581  * Compute virtual time from the per-task service numbers:
582  *
583  * Fair schedulers conserve lag:
584  *
585  *   \Sum lag_i = 0
586  *
587  * Where lag_i is given by:
588  *
589  *   lag_i = S - s_i = w_i * (V - v_i)
590  *
591  * Where S is the ideal service time and V is it's virtual time counterpart.
592  * Therefore:
593  *
594  *   \Sum lag_i = 0
595  *   \Sum w_i * (V - v_i) = 0
596  *   \Sum w_i * V - w_i * v_i = 0
597  *
598  * From which we can solve an expression for V in v_i (which we have in
599  * se->vruntime):
600  *
601  *       \Sum v_i * w_i   \Sum v_i * w_i
602  *   V = -------------- = --------------
603  *          \Sum w_i            W
604  *
605  * Specifically, this is the weighted average of all entity virtual runtimes.
606  *
607  * [[ NOTE: this is only equal to the ideal scheduler under the condition
608  *          that join/leave operations happen at lag_i = 0, otherwise the
609  *          virtual time has non-continguous motion equivalent to:
610  *
611  *	      V +-= lag_i / W
612  *
613  *	    Also see the comment in place_entity() that deals with this. ]]
614  *
615  * However, since v_i is u64, and the multiplcation could easily overflow
616  * transform it into a relative form that uses smaller quantities:
617  *
618  * Substitute: v_i == (v_i - v0) + v0
619  *
620  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
621  * V = ---------------------------- = --------------------- + v0
622  *                  W                            W
623  *
624  * Which we track using:
625  *
626  *                    v0 := cfs_rq->min_vruntime
627  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
628  *              \Sum w_i := cfs_rq->avg_load
629  *
630  * Since min_vruntime is a monotonic increasing variable that closely tracks
631  * the per-task service, these deltas: (v_i - v), will be in the order of the
632  * maximal (virtual) lag induced in the system due to quantisation.
633  *
634  * Also, we use scale_load_down() to reduce the size.
635  *
636  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
637  */
638 static void
639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 {
641 	unsigned long weight = scale_load_down(se->load.weight);
642 	s64 key = entity_key(cfs_rq, se);
643 
644 	cfs_rq->avg_vruntime += key * weight;
645 	cfs_rq->avg_load += weight;
646 }
647 
648 static void
649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
650 {
651 	unsigned long weight = scale_load_down(se->load.weight);
652 	s64 key = entity_key(cfs_rq, se);
653 
654 	cfs_rq->avg_vruntime -= key * weight;
655 	cfs_rq->avg_load -= weight;
656 }
657 
658 static inline
659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
660 {
661 	/*
662 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
663 	 */
664 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
665 }
666 
667 /*
668  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
669  * For this to be so, the result of this function must have a left bias.
670  */
671 u64 avg_vruntime(struct cfs_rq *cfs_rq)
672 {
673 	struct sched_entity *curr = cfs_rq->curr;
674 	s64 avg = cfs_rq->avg_vruntime;
675 	long load = cfs_rq->avg_load;
676 
677 	if (curr && curr->on_rq) {
678 		unsigned long weight = scale_load_down(curr->load.weight);
679 
680 		avg += entity_key(cfs_rq, curr) * weight;
681 		load += weight;
682 	}
683 
684 	if (load) {
685 		/* sign flips effective floor / ceil */
686 		if (avg < 0)
687 			avg -= (load - 1);
688 		avg = div_s64(avg, load);
689 	}
690 
691 	return cfs_rq->min_vruntime + avg;
692 }
693 
694 /*
695  * lag_i = S - s_i = w_i * (V - v_i)
696  *
697  * However, since V is approximated by the weighted average of all entities it
698  * is possible -- by addition/removal/reweight to the tree -- to move V around
699  * and end up with a larger lag than we started with.
700  *
701  * Limit this to either double the slice length with a minimum of TICK_NSEC
702  * since that is the timing granularity.
703  *
704  * EEVDF gives the following limit for a steady state system:
705  *
706  *   -r_max < lag < max(r_max, q)
707  *
708  * XXX could add max_slice to the augmented data to track this.
709  */
710 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
711 {
712 	s64 vlag, limit;
713 
714 	vlag = avruntime - se->vruntime;
715 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
716 
717 	return clamp(vlag, -limit, limit);
718 }
719 
720 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
721 {
722 	SCHED_WARN_ON(!se->on_rq);
723 
724 	se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
725 }
726 
727 /*
728  * Entity is eligible once it received less service than it ought to have,
729  * eg. lag >= 0.
730  *
731  * lag_i = S - s_i = w_i*(V - v_i)
732  *
733  * lag_i >= 0 -> V >= v_i
734  *
735  *     \Sum (v_i - v)*w_i
736  * V = ------------------ + v
737  *          \Sum w_i
738  *
739  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
740  *
741  * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
742  *       to the loss in precision caused by the division.
743  */
744 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
745 {
746 	struct sched_entity *curr = cfs_rq->curr;
747 	s64 avg = cfs_rq->avg_vruntime;
748 	long load = cfs_rq->avg_load;
749 
750 	if (curr && curr->on_rq) {
751 		unsigned long weight = scale_load_down(curr->load.weight);
752 
753 		avg += entity_key(cfs_rq, curr) * weight;
754 		load += weight;
755 	}
756 
757 	return avg >= entity_key(cfs_rq, se) * load;
758 }
759 
760 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
761 {
762 	u64 min_vruntime = cfs_rq->min_vruntime;
763 	/*
764 	 * open coded max_vruntime() to allow updating avg_vruntime
765 	 */
766 	s64 delta = (s64)(vruntime - min_vruntime);
767 	if (delta > 0) {
768 		avg_vruntime_update(cfs_rq, delta);
769 		min_vruntime = vruntime;
770 	}
771 	return min_vruntime;
772 }
773 
774 static void update_min_vruntime(struct cfs_rq *cfs_rq)
775 {
776 	struct sched_entity *se = __pick_first_entity(cfs_rq);
777 	struct sched_entity *curr = cfs_rq->curr;
778 
779 	u64 vruntime = cfs_rq->min_vruntime;
780 
781 	if (curr) {
782 		if (curr->on_rq)
783 			vruntime = curr->vruntime;
784 		else
785 			curr = NULL;
786 	}
787 
788 	if (se) {
789 		if (!curr)
790 			vruntime = se->vruntime;
791 		else
792 			vruntime = min_vruntime(vruntime, se->vruntime);
793 	}
794 
795 	/* ensure we never gain time by being placed backwards. */
796 	u64_u32_store(cfs_rq->min_vruntime,
797 		      __update_min_vruntime(cfs_rq, vruntime));
798 }
799 
800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
801 {
802 	return entity_before(__node_2_se(a), __node_2_se(b));
803 }
804 
805 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
806 
807 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node)
808 {
809 	if (node) {
810 		struct sched_entity *rse = __node_2_se(node);
811 		if (deadline_gt(min_deadline, se, rse))
812 			se->min_deadline = rse->min_deadline;
813 	}
814 }
815 
816 /*
817  * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline)
818  */
819 static inline bool min_deadline_update(struct sched_entity *se, bool exit)
820 {
821 	u64 old_min_deadline = se->min_deadline;
822 	struct rb_node *node = &se->run_node;
823 
824 	se->min_deadline = se->deadline;
825 	__update_min_deadline(se, node->rb_right);
826 	__update_min_deadline(se, node->rb_left);
827 
828 	return se->min_deadline == old_min_deadline;
829 }
830 
831 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity,
832 		     run_node, min_deadline, min_deadline_update);
833 
834 /*
835  * Enqueue an entity into the rb-tree:
836  */
837 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
838 {
839 	avg_vruntime_add(cfs_rq, se);
840 	se->min_deadline = se->deadline;
841 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
842 				__entity_less, &min_deadline_cb);
843 }
844 
845 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
846 {
847 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
848 				  &min_deadline_cb);
849 	avg_vruntime_sub(cfs_rq, se);
850 }
851 
852 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
853 {
854 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
855 
856 	if (!left)
857 		return NULL;
858 
859 	return __node_2_se(left);
860 }
861 
862 /*
863  * Earliest Eligible Virtual Deadline First
864  *
865  * In order to provide latency guarantees for different request sizes
866  * EEVDF selects the best runnable task from two criteria:
867  *
868  *  1) the task must be eligible (must be owed service)
869  *
870  *  2) from those tasks that meet 1), we select the one
871  *     with the earliest virtual deadline.
872  *
873  * We can do this in O(log n) time due to an augmented RB-tree. The
874  * tree keeps the entries sorted on service, but also functions as a
875  * heap based on the deadline by keeping:
876  *
877  *  se->min_deadline = min(se->deadline, se->{left,right}->min_deadline)
878  *
879  * Which allows an EDF like search on (sub)trees.
880  */
881 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq)
882 {
883 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
884 	struct sched_entity *curr = cfs_rq->curr;
885 	struct sched_entity *best = NULL;
886 	struct sched_entity *best_left = NULL;
887 
888 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
889 		curr = NULL;
890 	best = curr;
891 
892 	/*
893 	 * Once selected, run a task until it either becomes non-eligible or
894 	 * until it gets a new slice. See the HACK in set_next_entity().
895 	 */
896 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
897 		return curr;
898 
899 	while (node) {
900 		struct sched_entity *se = __node_2_se(node);
901 
902 		/*
903 		 * If this entity is not eligible, try the left subtree.
904 		 */
905 		if (!entity_eligible(cfs_rq, se)) {
906 			node = node->rb_left;
907 			continue;
908 		}
909 
910 		/*
911 		 * Now we heap search eligible trees for the best (min_)deadline
912 		 */
913 		if (!best || deadline_gt(deadline, best, se))
914 			best = se;
915 
916 		/*
917 		 * Every se in a left branch is eligible, keep track of the
918 		 * branch with the best min_deadline
919 		 */
920 		if (node->rb_left) {
921 			struct sched_entity *left = __node_2_se(node->rb_left);
922 
923 			if (!best_left || deadline_gt(min_deadline, best_left, left))
924 				best_left = left;
925 
926 			/*
927 			 * min_deadline is in the left branch. rb_left and all
928 			 * descendants are eligible, so immediately switch to the second
929 			 * loop.
930 			 */
931 			if (left->min_deadline == se->min_deadline)
932 				break;
933 		}
934 
935 		/* min_deadline is at this node, no need to look right */
936 		if (se->deadline == se->min_deadline)
937 			break;
938 
939 		/* else min_deadline is in the right branch. */
940 		node = node->rb_right;
941 	}
942 
943 	/*
944 	 * We ran into an eligible node which is itself the best.
945 	 * (Or nr_running == 0 and both are NULL)
946 	 */
947 	if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0)
948 		return best;
949 
950 	/*
951 	 * Now best_left and all of its children are eligible, and we are just
952 	 * looking for deadline == min_deadline
953 	 */
954 	node = &best_left->run_node;
955 	while (node) {
956 		struct sched_entity *se = __node_2_se(node);
957 
958 		/* min_deadline is the current node */
959 		if (se->deadline == se->min_deadline)
960 			return se;
961 
962 		/* min_deadline is in the left branch */
963 		if (node->rb_left &&
964 		    __node_2_se(node->rb_left)->min_deadline == se->min_deadline) {
965 			node = node->rb_left;
966 			continue;
967 		}
968 
969 		/* else min_deadline is in the right branch */
970 		node = node->rb_right;
971 	}
972 	return NULL;
973 }
974 
975 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
976 {
977 	struct sched_entity *se = __pick_eevdf(cfs_rq);
978 
979 	if (!se) {
980 		struct sched_entity *left = __pick_first_entity(cfs_rq);
981 		if (left) {
982 			pr_err("EEVDF scheduling fail, picking leftmost\n");
983 			return left;
984 		}
985 	}
986 
987 	return se;
988 }
989 
990 #ifdef CONFIG_SCHED_DEBUG
991 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
992 {
993 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
994 
995 	if (!last)
996 		return NULL;
997 
998 	return __node_2_se(last);
999 }
1000 
1001 /**************************************************************
1002  * Scheduling class statistics methods:
1003  */
1004 #ifdef CONFIG_SMP
1005 int sched_update_scaling(void)
1006 {
1007 	unsigned int factor = get_update_sysctl_factor();
1008 
1009 #define WRT_SYSCTL(name) \
1010 	(normalized_sysctl_##name = sysctl_##name / (factor))
1011 	WRT_SYSCTL(sched_base_slice);
1012 #undef WRT_SYSCTL
1013 
1014 	return 0;
1015 }
1016 #endif
1017 #endif
1018 
1019 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1020 
1021 /*
1022  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1023  * this is probably good enough.
1024  */
1025 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1026 {
1027 	if ((s64)(se->vruntime - se->deadline) < 0)
1028 		return;
1029 
1030 	/*
1031 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1032 	 * nice) while the request time r_i is determined by
1033 	 * sysctl_sched_base_slice.
1034 	 */
1035 	se->slice = sysctl_sched_base_slice;
1036 
1037 	/*
1038 	 * EEVDF: vd_i = ve_i + r_i / w_i
1039 	 */
1040 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1041 
1042 	/*
1043 	 * The task has consumed its request, reschedule.
1044 	 */
1045 	if (cfs_rq->nr_running > 1) {
1046 		resched_curr(rq_of(cfs_rq));
1047 		clear_buddies(cfs_rq, se);
1048 	}
1049 }
1050 
1051 #include "pelt.h"
1052 #ifdef CONFIG_SMP
1053 
1054 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1055 static unsigned long task_h_load(struct task_struct *p);
1056 static unsigned long capacity_of(int cpu);
1057 
1058 /* Give new sched_entity start runnable values to heavy its load in infant time */
1059 void init_entity_runnable_average(struct sched_entity *se)
1060 {
1061 	struct sched_avg *sa = &se->avg;
1062 
1063 	memset(sa, 0, sizeof(*sa));
1064 
1065 	/*
1066 	 * Tasks are initialized with full load to be seen as heavy tasks until
1067 	 * they get a chance to stabilize to their real load level.
1068 	 * Group entities are initialized with zero load to reflect the fact that
1069 	 * nothing has been attached to the task group yet.
1070 	 */
1071 	if (entity_is_task(se))
1072 		sa->load_avg = scale_load_down(se->load.weight);
1073 
1074 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1075 }
1076 
1077 /*
1078  * With new tasks being created, their initial util_avgs are extrapolated
1079  * based on the cfs_rq's current util_avg:
1080  *
1081  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1082  *
1083  * However, in many cases, the above util_avg does not give a desired
1084  * value. Moreover, the sum of the util_avgs may be divergent, such
1085  * as when the series is a harmonic series.
1086  *
1087  * To solve this problem, we also cap the util_avg of successive tasks to
1088  * only 1/2 of the left utilization budget:
1089  *
1090  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1091  *
1092  * where n denotes the nth task and cpu_scale the CPU capacity.
1093  *
1094  * For example, for a CPU with 1024 of capacity, a simplest series from
1095  * the beginning would be like:
1096  *
1097  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1098  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1099  *
1100  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1101  * if util_avg > util_avg_cap.
1102  */
1103 void post_init_entity_util_avg(struct task_struct *p)
1104 {
1105 	struct sched_entity *se = &p->se;
1106 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1107 	struct sched_avg *sa = &se->avg;
1108 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1109 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1110 
1111 	if (p->sched_class != &fair_sched_class) {
1112 		/*
1113 		 * For !fair tasks do:
1114 		 *
1115 		update_cfs_rq_load_avg(now, cfs_rq);
1116 		attach_entity_load_avg(cfs_rq, se);
1117 		switched_from_fair(rq, p);
1118 		 *
1119 		 * such that the next switched_to_fair() has the
1120 		 * expected state.
1121 		 */
1122 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1123 		return;
1124 	}
1125 
1126 	if (cap > 0) {
1127 		if (cfs_rq->avg.util_avg != 0) {
1128 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
1129 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1130 
1131 			if (sa->util_avg > cap)
1132 				sa->util_avg = cap;
1133 		} else {
1134 			sa->util_avg = cap;
1135 		}
1136 	}
1137 
1138 	sa->runnable_avg = sa->util_avg;
1139 }
1140 
1141 #else /* !CONFIG_SMP */
1142 void init_entity_runnable_average(struct sched_entity *se)
1143 {
1144 }
1145 void post_init_entity_util_avg(struct task_struct *p)
1146 {
1147 }
1148 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1149 {
1150 }
1151 #endif /* CONFIG_SMP */
1152 
1153 /*
1154  * Update the current task's runtime statistics.
1155  */
1156 static void update_curr(struct cfs_rq *cfs_rq)
1157 {
1158 	struct sched_entity *curr = cfs_rq->curr;
1159 	u64 now = rq_clock_task(rq_of(cfs_rq));
1160 	u64 delta_exec;
1161 
1162 	if (unlikely(!curr))
1163 		return;
1164 
1165 	delta_exec = now - curr->exec_start;
1166 	if (unlikely((s64)delta_exec <= 0))
1167 		return;
1168 
1169 	curr->exec_start = now;
1170 
1171 	if (schedstat_enabled()) {
1172 		struct sched_statistics *stats;
1173 
1174 		stats = __schedstats_from_se(curr);
1175 		__schedstat_set(stats->exec_max,
1176 				max(delta_exec, stats->exec_max));
1177 	}
1178 
1179 	curr->sum_exec_runtime += delta_exec;
1180 	schedstat_add(cfs_rq->exec_clock, delta_exec);
1181 
1182 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1183 	update_deadline(cfs_rq, curr);
1184 	update_min_vruntime(cfs_rq);
1185 
1186 	if (entity_is_task(curr)) {
1187 		struct task_struct *curtask = task_of(curr);
1188 
1189 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
1190 		cgroup_account_cputime(curtask, delta_exec);
1191 		account_group_exec_runtime(curtask, delta_exec);
1192 	}
1193 
1194 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1195 }
1196 
1197 static void update_curr_fair(struct rq *rq)
1198 {
1199 	update_curr(cfs_rq_of(&rq->curr->se));
1200 }
1201 
1202 static inline void
1203 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1204 {
1205 	struct sched_statistics *stats;
1206 	struct task_struct *p = NULL;
1207 
1208 	if (!schedstat_enabled())
1209 		return;
1210 
1211 	stats = __schedstats_from_se(se);
1212 
1213 	if (entity_is_task(se))
1214 		p = task_of(se);
1215 
1216 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1217 }
1218 
1219 static inline void
1220 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1221 {
1222 	struct sched_statistics *stats;
1223 	struct task_struct *p = NULL;
1224 
1225 	if (!schedstat_enabled())
1226 		return;
1227 
1228 	stats = __schedstats_from_se(se);
1229 
1230 	/*
1231 	 * When the sched_schedstat changes from 0 to 1, some sched se
1232 	 * maybe already in the runqueue, the se->statistics.wait_start
1233 	 * will be 0.So it will let the delta wrong. We need to avoid this
1234 	 * scenario.
1235 	 */
1236 	if (unlikely(!schedstat_val(stats->wait_start)))
1237 		return;
1238 
1239 	if (entity_is_task(se))
1240 		p = task_of(se);
1241 
1242 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1243 }
1244 
1245 static inline void
1246 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1247 {
1248 	struct sched_statistics *stats;
1249 	struct task_struct *tsk = NULL;
1250 
1251 	if (!schedstat_enabled())
1252 		return;
1253 
1254 	stats = __schedstats_from_se(se);
1255 
1256 	if (entity_is_task(se))
1257 		tsk = task_of(se);
1258 
1259 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1260 }
1261 
1262 /*
1263  * Task is being enqueued - update stats:
1264  */
1265 static inline void
1266 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1267 {
1268 	if (!schedstat_enabled())
1269 		return;
1270 
1271 	/*
1272 	 * Are we enqueueing a waiting task? (for current tasks
1273 	 * a dequeue/enqueue event is a NOP)
1274 	 */
1275 	if (se != cfs_rq->curr)
1276 		update_stats_wait_start_fair(cfs_rq, se);
1277 
1278 	if (flags & ENQUEUE_WAKEUP)
1279 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1280 }
1281 
1282 static inline void
1283 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1284 {
1285 
1286 	if (!schedstat_enabled())
1287 		return;
1288 
1289 	/*
1290 	 * Mark the end of the wait period if dequeueing a
1291 	 * waiting task:
1292 	 */
1293 	if (se != cfs_rq->curr)
1294 		update_stats_wait_end_fair(cfs_rq, se);
1295 
1296 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1297 		struct task_struct *tsk = task_of(se);
1298 		unsigned int state;
1299 
1300 		/* XXX racy against TTWU */
1301 		state = READ_ONCE(tsk->__state);
1302 		if (state & TASK_INTERRUPTIBLE)
1303 			__schedstat_set(tsk->stats.sleep_start,
1304 				      rq_clock(rq_of(cfs_rq)));
1305 		if (state & TASK_UNINTERRUPTIBLE)
1306 			__schedstat_set(tsk->stats.block_start,
1307 				      rq_clock(rq_of(cfs_rq)));
1308 	}
1309 }
1310 
1311 /*
1312  * We are picking a new current task - update its stats:
1313  */
1314 static inline void
1315 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1316 {
1317 	/*
1318 	 * We are starting a new run period:
1319 	 */
1320 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1321 }
1322 
1323 /**************************************************
1324  * Scheduling class queueing methods:
1325  */
1326 
1327 static inline bool is_core_idle(int cpu)
1328 {
1329 #ifdef CONFIG_SCHED_SMT
1330 	int sibling;
1331 
1332 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1333 		if (cpu == sibling)
1334 			continue;
1335 
1336 		if (!idle_cpu(sibling))
1337 			return false;
1338 	}
1339 #endif
1340 
1341 	return true;
1342 }
1343 
1344 #ifdef CONFIG_NUMA
1345 #define NUMA_IMBALANCE_MIN 2
1346 
1347 static inline long
1348 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1349 {
1350 	/*
1351 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1352 	 * threshold. Above this threshold, individual tasks may be contending
1353 	 * for both memory bandwidth and any shared HT resources.  This is an
1354 	 * approximation as the number of running tasks may not be related to
1355 	 * the number of busy CPUs due to sched_setaffinity.
1356 	 */
1357 	if (dst_running > imb_numa_nr)
1358 		return imbalance;
1359 
1360 	/*
1361 	 * Allow a small imbalance based on a simple pair of communicating
1362 	 * tasks that remain local when the destination is lightly loaded.
1363 	 */
1364 	if (imbalance <= NUMA_IMBALANCE_MIN)
1365 		return 0;
1366 
1367 	return imbalance;
1368 }
1369 #endif /* CONFIG_NUMA */
1370 
1371 #ifdef CONFIG_NUMA_BALANCING
1372 /*
1373  * Approximate time to scan a full NUMA task in ms. The task scan period is
1374  * calculated based on the tasks virtual memory size and
1375  * numa_balancing_scan_size.
1376  */
1377 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1378 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1379 
1380 /* Portion of address space to scan in MB */
1381 unsigned int sysctl_numa_balancing_scan_size = 256;
1382 
1383 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1384 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1385 
1386 /* The page with hint page fault latency < threshold in ms is considered hot */
1387 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1388 
1389 struct numa_group {
1390 	refcount_t refcount;
1391 
1392 	spinlock_t lock; /* nr_tasks, tasks */
1393 	int nr_tasks;
1394 	pid_t gid;
1395 	int active_nodes;
1396 
1397 	struct rcu_head rcu;
1398 	unsigned long total_faults;
1399 	unsigned long max_faults_cpu;
1400 	/*
1401 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1402 	 *
1403 	 * Faults_cpu is used to decide whether memory should move
1404 	 * towards the CPU. As a consequence, these stats are weighted
1405 	 * more by CPU use than by memory faults.
1406 	 */
1407 	unsigned long faults[];
1408 };
1409 
1410 /*
1411  * For functions that can be called in multiple contexts that permit reading
1412  * ->numa_group (see struct task_struct for locking rules).
1413  */
1414 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1415 {
1416 	return rcu_dereference_check(p->numa_group, p == current ||
1417 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1418 }
1419 
1420 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1421 {
1422 	return rcu_dereference_protected(p->numa_group, p == current);
1423 }
1424 
1425 static inline unsigned long group_faults_priv(struct numa_group *ng);
1426 static inline unsigned long group_faults_shared(struct numa_group *ng);
1427 
1428 static unsigned int task_nr_scan_windows(struct task_struct *p)
1429 {
1430 	unsigned long rss = 0;
1431 	unsigned long nr_scan_pages;
1432 
1433 	/*
1434 	 * Calculations based on RSS as non-present and empty pages are skipped
1435 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1436 	 * on resident pages
1437 	 */
1438 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1439 	rss = get_mm_rss(p->mm);
1440 	if (!rss)
1441 		rss = nr_scan_pages;
1442 
1443 	rss = round_up(rss, nr_scan_pages);
1444 	return rss / nr_scan_pages;
1445 }
1446 
1447 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1448 #define MAX_SCAN_WINDOW 2560
1449 
1450 static unsigned int task_scan_min(struct task_struct *p)
1451 {
1452 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1453 	unsigned int scan, floor;
1454 	unsigned int windows = 1;
1455 
1456 	if (scan_size < MAX_SCAN_WINDOW)
1457 		windows = MAX_SCAN_WINDOW / scan_size;
1458 	floor = 1000 / windows;
1459 
1460 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1461 	return max_t(unsigned int, floor, scan);
1462 }
1463 
1464 static unsigned int task_scan_start(struct task_struct *p)
1465 {
1466 	unsigned long smin = task_scan_min(p);
1467 	unsigned long period = smin;
1468 	struct numa_group *ng;
1469 
1470 	/* Scale the maximum scan period with the amount of shared memory. */
1471 	rcu_read_lock();
1472 	ng = rcu_dereference(p->numa_group);
1473 	if (ng) {
1474 		unsigned long shared = group_faults_shared(ng);
1475 		unsigned long private = group_faults_priv(ng);
1476 
1477 		period *= refcount_read(&ng->refcount);
1478 		period *= shared + 1;
1479 		period /= private + shared + 1;
1480 	}
1481 	rcu_read_unlock();
1482 
1483 	return max(smin, period);
1484 }
1485 
1486 static unsigned int task_scan_max(struct task_struct *p)
1487 {
1488 	unsigned long smin = task_scan_min(p);
1489 	unsigned long smax;
1490 	struct numa_group *ng;
1491 
1492 	/* Watch for min being lower than max due to floor calculations */
1493 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1494 
1495 	/* Scale the maximum scan period with the amount of shared memory. */
1496 	ng = deref_curr_numa_group(p);
1497 	if (ng) {
1498 		unsigned long shared = group_faults_shared(ng);
1499 		unsigned long private = group_faults_priv(ng);
1500 		unsigned long period = smax;
1501 
1502 		period *= refcount_read(&ng->refcount);
1503 		period *= shared + 1;
1504 		period /= private + shared + 1;
1505 
1506 		smax = max(smax, period);
1507 	}
1508 
1509 	return max(smin, smax);
1510 }
1511 
1512 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1513 {
1514 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1515 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1516 }
1517 
1518 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1519 {
1520 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1521 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1522 }
1523 
1524 /* Shared or private faults. */
1525 #define NR_NUMA_HINT_FAULT_TYPES 2
1526 
1527 /* Memory and CPU locality */
1528 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1529 
1530 /* Averaged statistics, and temporary buffers. */
1531 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1532 
1533 pid_t task_numa_group_id(struct task_struct *p)
1534 {
1535 	struct numa_group *ng;
1536 	pid_t gid = 0;
1537 
1538 	rcu_read_lock();
1539 	ng = rcu_dereference(p->numa_group);
1540 	if (ng)
1541 		gid = ng->gid;
1542 	rcu_read_unlock();
1543 
1544 	return gid;
1545 }
1546 
1547 /*
1548  * The averaged statistics, shared & private, memory & CPU,
1549  * occupy the first half of the array. The second half of the
1550  * array is for current counters, which are averaged into the
1551  * first set by task_numa_placement.
1552  */
1553 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1554 {
1555 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1556 }
1557 
1558 static inline unsigned long task_faults(struct task_struct *p, int nid)
1559 {
1560 	if (!p->numa_faults)
1561 		return 0;
1562 
1563 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1564 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1565 }
1566 
1567 static inline unsigned long group_faults(struct task_struct *p, int nid)
1568 {
1569 	struct numa_group *ng = deref_task_numa_group(p);
1570 
1571 	if (!ng)
1572 		return 0;
1573 
1574 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1575 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1576 }
1577 
1578 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1579 {
1580 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1581 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1582 }
1583 
1584 static inline unsigned long group_faults_priv(struct numa_group *ng)
1585 {
1586 	unsigned long faults = 0;
1587 	int node;
1588 
1589 	for_each_online_node(node) {
1590 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1591 	}
1592 
1593 	return faults;
1594 }
1595 
1596 static inline unsigned long group_faults_shared(struct numa_group *ng)
1597 {
1598 	unsigned long faults = 0;
1599 	int node;
1600 
1601 	for_each_online_node(node) {
1602 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1603 	}
1604 
1605 	return faults;
1606 }
1607 
1608 /*
1609  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1610  * considered part of a numa group's pseudo-interleaving set. Migrations
1611  * between these nodes are slowed down, to allow things to settle down.
1612  */
1613 #define ACTIVE_NODE_FRACTION 3
1614 
1615 static bool numa_is_active_node(int nid, struct numa_group *ng)
1616 {
1617 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1618 }
1619 
1620 /* Handle placement on systems where not all nodes are directly connected. */
1621 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1622 					int lim_dist, bool task)
1623 {
1624 	unsigned long score = 0;
1625 	int node, max_dist;
1626 
1627 	/*
1628 	 * All nodes are directly connected, and the same distance
1629 	 * from each other. No need for fancy placement algorithms.
1630 	 */
1631 	if (sched_numa_topology_type == NUMA_DIRECT)
1632 		return 0;
1633 
1634 	/* sched_max_numa_distance may be changed in parallel. */
1635 	max_dist = READ_ONCE(sched_max_numa_distance);
1636 	/*
1637 	 * This code is called for each node, introducing N^2 complexity,
1638 	 * which should be ok given the number of nodes rarely exceeds 8.
1639 	 */
1640 	for_each_online_node(node) {
1641 		unsigned long faults;
1642 		int dist = node_distance(nid, node);
1643 
1644 		/*
1645 		 * The furthest away nodes in the system are not interesting
1646 		 * for placement; nid was already counted.
1647 		 */
1648 		if (dist >= max_dist || node == nid)
1649 			continue;
1650 
1651 		/*
1652 		 * On systems with a backplane NUMA topology, compare groups
1653 		 * of nodes, and move tasks towards the group with the most
1654 		 * memory accesses. When comparing two nodes at distance
1655 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1656 		 * of each group. Skip other nodes.
1657 		 */
1658 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1659 			continue;
1660 
1661 		/* Add up the faults from nearby nodes. */
1662 		if (task)
1663 			faults = task_faults(p, node);
1664 		else
1665 			faults = group_faults(p, node);
1666 
1667 		/*
1668 		 * On systems with a glueless mesh NUMA topology, there are
1669 		 * no fixed "groups of nodes". Instead, nodes that are not
1670 		 * directly connected bounce traffic through intermediate
1671 		 * nodes; a numa_group can occupy any set of nodes.
1672 		 * The further away a node is, the less the faults count.
1673 		 * This seems to result in good task placement.
1674 		 */
1675 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1676 			faults *= (max_dist - dist);
1677 			faults /= (max_dist - LOCAL_DISTANCE);
1678 		}
1679 
1680 		score += faults;
1681 	}
1682 
1683 	return score;
1684 }
1685 
1686 /*
1687  * These return the fraction of accesses done by a particular task, or
1688  * task group, on a particular numa node.  The group weight is given a
1689  * larger multiplier, in order to group tasks together that are almost
1690  * evenly spread out between numa nodes.
1691  */
1692 static inline unsigned long task_weight(struct task_struct *p, int nid,
1693 					int dist)
1694 {
1695 	unsigned long faults, total_faults;
1696 
1697 	if (!p->numa_faults)
1698 		return 0;
1699 
1700 	total_faults = p->total_numa_faults;
1701 
1702 	if (!total_faults)
1703 		return 0;
1704 
1705 	faults = task_faults(p, nid);
1706 	faults += score_nearby_nodes(p, nid, dist, true);
1707 
1708 	return 1000 * faults / total_faults;
1709 }
1710 
1711 static inline unsigned long group_weight(struct task_struct *p, int nid,
1712 					 int dist)
1713 {
1714 	struct numa_group *ng = deref_task_numa_group(p);
1715 	unsigned long faults, total_faults;
1716 
1717 	if (!ng)
1718 		return 0;
1719 
1720 	total_faults = ng->total_faults;
1721 
1722 	if (!total_faults)
1723 		return 0;
1724 
1725 	faults = group_faults(p, nid);
1726 	faults += score_nearby_nodes(p, nid, dist, false);
1727 
1728 	return 1000 * faults / total_faults;
1729 }
1730 
1731 /*
1732  * If memory tiering mode is enabled, cpupid of slow memory page is
1733  * used to record scan time instead of CPU and PID.  When tiering mode
1734  * is disabled at run time, the scan time (in cpupid) will be
1735  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1736  * access out of array bound.
1737  */
1738 static inline bool cpupid_valid(int cpupid)
1739 {
1740 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1741 }
1742 
1743 /*
1744  * For memory tiering mode, if there are enough free pages (more than
1745  * enough watermark defined here) in fast memory node, to take full
1746  * advantage of fast memory capacity, all recently accessed slow
1747  * memory pages will be migrated to fast memory node without
1748  * considering hot threshold.
1749  */
1750 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1751 {
1752 	int z;
1753 	unsigned long enough_wmark;
1754 
1755 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1756 			   pgdat->node_present_pages >> 4);
1757 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1758 		struct zone *zone = pgdat->node_zones + z;
1759 
1760 		if (!populated_zone(zone))
1761 			continue;
1762 
1763 		if (zone_watermark_ok(zone, 0,
1764 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1765 				      ZONE_MOVABLE, 0))
1766 			return true;
1767 	}
1768 	return false;
1769 }
1770 
1771 /*
1772  * For memory tiering mode, when page tables are scanned, the scan
1773  * time will be recorded in struct page in addition to make page
1774  * PROT_NONE for slow memory page.  So when the page is accessed, in
1775  * hint page fault handler, the hint page fault latency is calculated
1776  * via,
1777  *
1778  *	hint page fault latency = hint page fault time - scan time
1779  *
1780  * The smaller the hint page fault latency, the higher the possibility
1781  * for the page to be hot.
1782  */
1783 static int numa_hint_fault_latency(struct page *page)
1784 {
1785 	int last_time, time;
1786 
1787 	time = jiffies_to_msecs(jiffies);
1788 	last_time = xchg_page_access_time(page, time);
1789 
1790 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1791 }
1792 
1793 /*
1794  * For memory tiering mode, too high promotion/demotion throughput may
1795  * hurt application latency.  So we provide a mechanism to rate limit
1796  * the number of pages that are tried to be promoted.
1797  */
1798 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1799 				      unsigned long rate_limit, int nr)
1800 {
1801 	unsigned long nr_cand;
1802 	unsigned int now, start;
1803 
1804 	now = jiffies_to_msecs(jiffies);
1805 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1806 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1807 	start = pgdat->nbp_rl_start;
1808 	if (now - start > MSEC_PER_SEC &&
1809 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1810 		pgdat->nbp_rl_nr_cand = nr_cand;
1811 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1812 		return true;
1813 	return false;
1814 }
1815 
1816 #define NUMA_MIGRATION_ADJUST_STEPS	16
1817 
1818 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1819 					    unsigned long rate_limit,
1820 					    unsigned int ref_th)
1821 {
1822 	unsigned int now, start, th_period, unit_th, th;
1823 	unsigned long nr_cand, ref_cand, diff_cand;
1824 
1825 	now = jiffies_to_msecs(jiffies);
1826 	th_period = sysctl_numa_balancing_scan_period_max;
1827 	start = pgdat->nbp_th_start;
1828 	if (now - start > th_period &&
1829 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1830 		ref_cand = rate_limit *
1831 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1832 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1833 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1834 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1835 		th = pgdat->nbp_threshold ? : ref_th;
1836 		if (diff_cand > ref_cand * 11 / 10)
1837 			th = max(th - unit_th, unit_th);
1838 		else if (diff_cand < ref_cand * 9 / 10)
1839 			th = min(th + unit_th, ref_th * 2);
1840 		pgdat->nbp_th_nr_cand = nr_cand;
1841 		pgdat->nbp_threshold = th;
1842 	}
1843 }
1844 
1845 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1846 				int src_nid, int dst_cpu)
1847 {
1848 	struct numa_group *ng = deref_curr_numa_group(p);
1849 	int dst_nid = cpu_to_node(dst_cpu);
1850 	int last_cpupid, this_cpupid;
1851 
1852 	/*
1853 	 * The pages in slow memory node should be migrated according
1854 	 * to hot/cold instead of private/shared.
1855 	 */
1856 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1857 	    !node_is_toptier(src_nid)) {
1858 		struct pglist_data *pgdat;
1859 		unsigned long rate_limit;
1860 		unsigned int latency, th, def_th;
1861 
1862 		pgdat = NODE_DATA(dst_nid);
1863 		if (pgdat_free_space_enough(pgdat)) {
1864 			/* workload changed, reset hot threshold */
1865 			pgdat->nbp_threshold = 0;
1866 			return true;
1867 		}
1868 
1869 		def_th = sysctl_numa_balancing_hot_threshold;
1870 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1871 			(20 - PAGE_SHIFT);
1872 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1873 
1874 		th = pgdat->nbp_threshold ? : def_th;
1875 		latency = numa_hint_fault_latency(page);
1876 		if (latency >= th)
1877 			return false;
1878 
1879 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1880 						  thp_nr_pages(page));
1881 	}
1882 
1883 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1884 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1885 
1886 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1887 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1888 		return false;
1889 
1890 	/*
1891 	 * Allow first faults or private faults to migrate immediately early in
1892 	 * the lifetime of a task. The magic number 4 is based on waiting for
1893 	 * two full passes of the "multi-stage node selection" test that is
1894 	 * executed below.
1895 	 */
1896 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1897 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1898 		return true;
1899 
1900 	/*
1901 	 * Multi-stage node selection is used in conjunction with a periodic
1902 	 * migration fault to build a temporal task<->page relation. By using
1903 	 * a two-stage filter we remove short/unlikely relations.
1904 	 *
1905 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1906 	 * a task's usage of a particular page (n_p) per total usage of this
1907 	 * page (n_t) (in a given time-span) to a probability.
1908 	 *
1909 	 * Our periodic faults will sample this probability and getting the
1910 	 * same result twice in a row, given these samples are fully
1911 	 * independent, is then given by P(n)^2, provided our sample period
1912 	 * is sufficiently short compared to the usage pattern.
1913 	 *
1914 	 * This quadric squishes small probabilities, making it less likely we
1915 	 * act on an unlikely task<->page relation.
1916 	 */
1917 	if (!cpupid_pid_unset(last_cpupid) &&
1918 				cpupid_to_nid(last_cpupid) != dst_nid)
1919 		return false;
1920 
1921 	/* Always allow migrate on private faults */
1922 	if (cpupid_match_pid(p, last_cpupid))
1923 		return true;
1924 
1925 	/* A shared fault, but p->numa_group has not been set up yet. */
1926 	if (!ng)
1927 		return true;
1928 
1929 	/*
1930 	 * Destination node is much more heavily used than the source
1931 	 * node? Allow migration.
1932 	 */
1933 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1934 					ACTIVE_NODE_FRACTION)
1935 		return true;
1936 
1937 	/*
1938 	 * Distribute memory according to CPU & memory use on each node,
1939 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1940 	 *
1941 	 * faults_cpu(dst)   3   faults_cpu(src)
1942 	 * --------------- * - > ---------------
1943 	 * faults_mem(dst)   4   faults_mem(src)
1944 	 */
1945 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1946 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1947 }
1948 
1949 /*
1950  * 'numa_type' describes the node at the moment of load balancing.
1951  */
1952 enum numa_type {
1953 	/* The node has spare capacity that can be used to run more tasks.  */
1954 	node_has_spare = 0,
1955 	/*
1956 	 * The node is fully used and the tasks don't compete for more CPU
1957 	 * cycles. Nevertheless, some tasks might wait before running.
1958 	 */
1959 	node_fully_busy,
1960 	/*
1961 	 * The node is overloaded and can't provide expected CPU cycles to all
1962 	 * tasks.
1963 	 */
1964 	node_overloaded
1965 };
1966 
1967 /* Cached statistics for all CPUs within a node */
1968 struct numa_stats {
1969 	unsigned long load;
1970 	unsigned long runnable;
1971 	unsigned long util;
1972 	/* Total compute capacity of CPUs on a node */
1973 	unsigned long compute_capacity;
1974 	unsigned int nr_running;
1975 	unsigned int weight;
1976 	enum numa_type node_type;
1977 	int idle_cpu;
1978 };
1979 
1980 struct task_numa_env {
1981 	struct task_struct *p;
1982 
1983 	int src_cpu, src_nid;
1984 	int dst_cpu, dst_nid;
1985 	int imb_numa_nr;
1986 
1987 	struct numa_stats src_stats, dst_stats;
1988 
1989 	int imbalance_pct;
1990 	int dist;
1991 
1992 	struct task_struct *best_task;
1993 	long best_imp;
1994 	int best_cpu;
1995 };
1996 
1997 static unsigned long cpu_load(struct rq *rq);
1998 static unsigned long cpu_runnable(struct rq *rq);
1999 
2000 static inline enum
2001 numa_type numa_classify(unsigned int imbalance_pct,
2002 			 struct numa_stats *ns)
2003 {
2004 	if ((ns->nr_running > ns->weight) &&
2005 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2006 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2007 		return node_overloaded;
2008 
2009 	if ((ns->nr_running < ns->weight) ||
2010 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2011 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2012 		return node_has_spare;
2013 
2014 	return node_fully_busy;
2015 }
2016 
2017 #ifdef CONFIG_SCHED_SMT
2018 /* Forward declarations of select_idle_sibling helpers */
2019 static inline bool test_idle_cores(int cpu);
2020 static inline int numa_idle_core(int idle_core, int cpu)
2021 {
2022 	if (!static_branch_likely(&sched_smt_present) ||
2023 	    idle_core >= 0 || !test_idle_cores(cpu))
2024 		return idle_core;
2025 
2026 	/*
2027 	 * Prefer cores instead of packing HT siblings
2028 	 * and triggering future load balancing.
2029 	 */
2030 	if (is_core_idle(cpu))
2031 		idle_core = cpu;
2032 
2033 	return idle_core;
2034 }
2035 #else
2036 static inline int numa_idle_core(int idle_core, int cpu)
2037 {
2038 	return idle_core;
2039 }
2040 #endif
2041 
2042 /*
2043  * Gather all necessary information to make NUMA balancing placement
2044  * decisions that are compatible with standard load balancer. This
2045  * borrows code and logic from update_sg_lb_stats but sharing a
2046  * common implementation is impractical.
2047  */
2048 static void update_numa_stats(struct task_numa_env *env,
2049 			      struct numa_stats *ns, int nid,
2050 			      bool find_idle)
2051 {
2052 	int cpu, idle_core = -1;
2053 
2054 	memset(ns, 0, sizeof(*ns));
2055 	ns->idle_cpu = -1;
2056 
2057 	rcu_read_lock();
2058 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2059 		struct rq *rq = cpu_rq(cpu);
2060 
2061 		ns->load += cpu_load(rq);
2062 		ns->runnable += cpu_runnable(rq);
2063 		ns->util += cpu_util_cfs(cpu);
2064 		ns->nr_running += rq->cfs.h_nr_running;
2065 		ns->compute_capacity += capacity_of(cpu);
2066 
2067 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2068 			if (READ_ONCE(rq->numa_migrate_on) ||
2069 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2070 				continue;
2071 
2072 			if (ns->idle_cpu == -1)
2073 				ns->idle_cpu = cpu;
2074 
2075 			idle_core = numa_idle_core(idle_core, cpu);
2076 		}
2077 	}
2078 	rcu_read_unlock();
2079 
2080 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2081 
2082 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2083 
2084 	if (idle_core >= 0)
2085 		ns->idle_cpu = idle_core;
2086 }
2087 
2088 static void task_numa_assign(struct task_numa_env *env,
2089 			     struct task_struct *p, long imp)
2090 {
2091 	struct rq *rq = cpu_rq(env->dst_cpu);
2092 
2093 	/* Check if run-queue part of active NUMA balance. */
2094 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2095 		int cpu;
2096 		int start = env->dst_cpu;
2097 
2098 		/* Find alternative idle CPU. */
2099 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2100 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2101 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2102 				continue;
2103 			}
2104 
2105 			env->dst_cpu = cpu;
2106 			rq = cpu_rq(env->dst_cpu);
2107 			if (!xchg(&rq->numa_migrate_on, 1))
2108 				goto assign;
2109 		}
2110 
2111 		/* Failed to find an alternative idle CPU */
2112 		return;
2113 	}
2114 
2115 assign:
2116 	/*
2117 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2118 	 * found a better CPU to move/swap.
2119 	 */
2120 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2121 		rq = cpu_rq(env->best_cpu);
2122 		WRITE_ONCE(rq->numa_migrate_on, 0);
2123 	}
2124 
2125 	if (env->best_task)
2126 		put_task_struct(env->best_task);
2127 	if (p)
2128 		get_task_struct(p);
2129 
2130 	env->best_task = p;
2131 	env->best_imp = imp;
2132 	env->best_cpu = env->dst_cpu;
2133 }
2134 
2135 static bool load_too_imbalanced(long src_load, long dst_load,
2136 				struct task_numa_env *env)
2137 {
2138 	long imb, old_imb;
2139 	long orig_src_load, orig_dst_load;
2140 	long src_capacity, dst_capacity;
2141 
2142 	/*
2143 	 * The load is corrected for the CPU capacity available on each node.
2144 	 *
2145 	 * src_load        dst_load
2146 	 * ------------ vs ---------
2147 	 * src_capacity    dst_capacity
2148 	 */
2149 	src_capacity = env->src_stats.compute_capacity;
2150 	dst_capacity = env->dst_stats.compute_capacity;
2151 
2152 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2153 
2154 	orig_src_load = env->src_stats.load;
2155 	orig_dst_load = env->dst_stats.load;
2156 
2157 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2158 
2159 	/* Would this change make things worse? */
2160 	return (imb > old_imb);
2161 }
2162 
2163 /*
2164  * Maximum NUMA importance can be 1998 (2*999);
2165  * SMALLIMP @ 30 would be close to 1998/64.
2166  * Used to deter task migration.
2167  */
2168 #define SMALLIMP	30
2169 
2170 /*
2171  * This checks if the overall compute and NUMA accesses of the system would
2172  * be improved if the source tasks was migrated to the target dst_cpu taking
2173  * into account that it might be best if task running on the dst_cpu should
2174  * be exchanged with the source task
2175  */
2176 static bool task_numa_compare(struct task_numa_env *env,
2177 			      long taskimp, long groupimp, bool maymove)
2178 {
2179 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2180 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2181 	long imp = p_ng ? groupimp : taskimp;
2182 	struct task_struct *cur;
2183 	long src_load, dst_load;
2184 	int dist = env->dist;
2185 	long moveimp = imp;
2186 	long load;
2187 	bool stopsearch = false;
2188 
2189 	if (READ_ONCE(dst_rq->numa_migrate_on))
2190 		return false;
2191 
2192 	rcu_read_lock();
2193 	cur = rcu_dereference(dst_rq->curr);
2194 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2195 		cur = NULL;
2196 
2197 	/*
2198 	 * Because we have preemption enabled we can get migrated around and
2199 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2200 	 */
2201 	if (cur == env->p) {
2202 		stopsearch = true;
2203 		goto unlock;
2204 	}
2205 
2206 	if (!cur) {
2207 		if (maymove && moveimp >= env->best_imp)
2208 			goto assign;
2209 		else
2210 			goto unlock;
2211 	}
2212 
2213 	/* Skip this swap candidate if cannot move to the source cpu. */
2214 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2215 		goto unlock;
2216 
2217 	/*
2218 	 * Skip this swap candidate if it is not moving to its preferred
2219 	 * node and the best task is.
2220 	 */
2221 	if (env->best_task &&
2222 	    env->best_task->numa_preferred_nid == env->src_nid &&
2223 	    cur->numa_preferred_nid != env->src_nid) {
2224 		goto unlock;
2225 	}
2226 
2227 	/*
2228 	 * "imp" is the fault differential for the source task between the
2229 	 * source and destination node. Calculate the total differential for
2230 	 * the source task and potential destination task. The more negative
2231 	 * the value is, the more remote accesses that would be expected to
2232 	 * be incurred if the tasks were swapped.
2233 	 *
2234 	 * If dst and source tasks are in the same NUMA group, or not
2235 	 * in any group then look only at task weights.
2236 	 */
2237 	cur_ng = rcu_dereference(cur->numa_group);
2238 	if (cur_ng == p_ng) {
2239 		/*
2240 		 * Do not swap within a group or between tasks that have
2241 		 * no group if there is spare capacity. Swapping does
2242 		 * not address the load imbalance and helps one task at
2243 		 * the cost of punishing another.
2244 		 */
2245 		if (env->dst_stats.node_type == node_has_spare)
2246 			goto unlock;
2247 
2248 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2249 		      task_weight(cur, env->dst_nid, dist);
2250 		/*
2251 		 * Add some hysteresis to prevent swapping the
2252 		 * tasks within a group over tiny differences.
2253 		 */
2254 		if (cur_ng)
2255 			imp -= imp / 16;
2256 	} else {
2257 		/*
2258 		 * Compare the group weights. If a task is all by itself
2259 		 * (not part of a group), use the task weight instead.
2260 		 */
2261 		if (cur_ng && p_ng)
2262 			imp += group_weight(cur, env->src_nid, dist) -
2263 			       group_weight(cur, env->dst_nid, dist);
2264 		else
2265 			imp += task_weight(cur, env->src_nid, dist) -
2266 			       task_weight(cur, env->dst_nid, dist);
2267 	}
2268 
2269 	/* Discourage picking a task already on its preferred node */
2270 	if (cur->numa_preferred_nid == env->dst_nid)
2271 		imp -= imp / 16;
2272 
2273 	/*
2274 	 * Encourage picking a task that moves to its preferred node.
2275 	 * This potentially makes imp larger than it's maximum of
2276 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2277 	 * case, it does not matter.
2278 	 */
2279 	if (cur->numa_preferred_nid == env->src_nid)
2280 		imp += imp / 8;
2281 
2282 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2283 		imp = moveimp;
2284 		cur = NULL;
2285 		goto assign;
2286 	}
2287 
2288 	/*
2289 	 * Prefer swapping with a task moving to its preferred node over a
2290 	 * task that is not.
2291 	 */
2292 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2293 	    env->best_task->numa_preferred_nid != env->src_nid) {
2294 		goto assign;
2295 	}
2296 
2297 	/*
2298 	 * If the NUMA importance is less than SMALLIMP,
2299 	 * task migration might only result in ping pong
2300 	 * of tasks and also hurt performance due to cache
2301 	 * misses.
2302 	 */
2303 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2304 		goto unlock;
2305 
2306 	/*
2307 	 * In the overloaded case, try and keep the load balanced.
2308 	 */
2309 	load = task_h_load(env->p) - task_h_load(cur);
2310 	if (!load)
2311 		goto assign;
2312 
2313 	dst_load = env->dst_stats.load + load;
2314 	src_load = env->src_stats.load - load;
2315 
2316 	if (load_too_imbalanced(src_load, dst_load, env))
2317 		goto unlock;
2318 
2319 assign:
2320 	/* Evaluate an idle CPU for a task numa move. */
2321 	if (!cur) {
2322 		int cpu = env->dst_stats.idle_cpu;
2323 
2324 		/* Nothing cached so current CPU went idle since the search. */
2325 		if (cpu < 0)
2326 			cpu = env->dst_cpu;
2327 
2328 		/*
2329 		 * If the CPU is no longer truly idle and the previous best CPU
2330 		 * is, keep using it.
2331 		 */
2332 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2333 		    idle_cpu(env->best_cpu)) {
2334 			cpu = env->best_cpu;
2335 		}
2336 
2337 		env->dst_cpu = cpu;
2338 	}
2339 
2340 	task_numa_assign(env, cur, imp);
2341 
2342 	/*
2343 	 * If a move to idle is allowed because there is capacity or load
2344 	 * balance improves then stop the search. While a better swap
2345 	 * candidate may exist, a search is not free.
2346 	 */
2347 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2348 		stopsearch = true;
2349 
2350 	/*
2351 	 * If a swap candidate must be identified and the current best task
2352 	 * moves its preferred node then stop the search.
2353 	 */
2354 	if (!maymove && env->best_task &&
2355 	    env->best_task->numa_preferred_nid == env->src_nid) {
2356 		stopsearch = true;
2357 	}
2358 unlock:
2359 	rcu_read_unlock();
2360 
2361 	return stopsearch;
2362 }
2363 
2364 static void task_numa_find_cpu(struct task_numa_env *env,
2365 				long taskimp, long groupimp)
2366 {
2367 	bool maymove = false;
2368 	int cpu;
2369 
2370 	/*
2371 	 * If dst node has spare capacity, then check if there is an
2372 	 * imbalance that would be overruled by the load balancer.
2373 	 */
2374 	if (env->dst_stats.node_type == node_has_spare) {
2375 		unsigned int imbalance;
2376 		int src_running, dst_running;
2377 
2378 		/*
2379 		 * Would movement cause an imbalance? Note that if src has
2380 		 * more running tasks that the imbalance is ignored as the
2381 		 * move improves the imbalance from the perspective of the
2382 		 * CPU load balancer.
2383 		 * */
2384 		src_running = env->src_stats.nr_running - 1;
2385 		dst_running = env->dst_stats.nr_running + 1;
2386 		imbalance = max(0, dst_running - src_running);
2387 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2388 						  env->imb_numa_nr);
2389 
2390 		/* Use idle CPU if there is no imbalance */
2391 		if (!imbalance) {
2392 			maymove = true;
2393 			if (env->dst_stats.idle_cpu >= 0) {
2394 				env->dst_cpu = env->dst_stats.idle_cpu;
2395 				task_numa_assign(env, NULL, 0);
2396 				return;
2397 			}
2398 		}
2399 	} else {
2400 		long src_load, dst_load, load;
2401 		/*
2402 		 * If the improvement from just moving env->p direction is better
2403 		 * than swapping tasks around, check if a move is possible.
2404 		 */
2405 		load = task_h_load(env->p);
2406 		dst_load = env->dst_stats.load + load;
2407 		src_load = env->src_stats.load - load;
2408 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2409 	}
2410 
2411 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2412 		/* Skip this CPU if the source task cannot migrate */
2413 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2414 			continue;
2415 
2416 		env->dst_cpu = cpu;
2417 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2418 			break;
2419 	}
2420 }
2421 
2422 static int task_numa_migrate(struct task_struct *p)
2423 {
2424 	struct task_numa_env env = {
2425 		.p = p,
2426 
2427 		.src_cpu = task_cpu(p),
2428 		.src_nid = task_node(p),
2429 
2430 		.imbalance_pct = 112,
2431 
2432 		.best_task = NULL,
2433 		.best_imp = 0,
2434 		.best_cpu = -1,
2435 	};
2436 	unsigned long taskweight, groupweight;
2437 	struct sched_domain *sd;
2438 	long taskimp, groupimp;
2439 	struct numa_group *ng;
2440 	struct rq *best_rq;
2441 	int nid, ret, dist;
2442 
2443 	/*
2444 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2445 	 * imbalance and would be the first to start moving tasks about.
2446 	 *
2447 	 * And we want to avoid any moving of tasks about, as that would create
2448 	 * random movement of tasks -- counter the numa conditions we're trying
2449 	 * to satisfy here.
2450 	 */
2451 	rcu_read_lock();
2452 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2453 	if (sd) {
2454 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2455 		env.imb_numa_nr = sd->imb_numa_nr;
2456 	}
2457 	rcu_read_unlock();
2458 
2459 	/*
2460 	 * Cpusets can break the scheduler domain tree into smaller
2461 	 * balance domains, some of which do not cross NUMA boundaries.
2462 	 * Tasks that are "trapped" in such domains cannot be migrated
2463 	 * elsewhere, so there is no point in (re)trying.
2464 	 */
2465 	if (unlikely(!sd)) {
2466 		sched_setnuma(p, task_node(p));
2467 		return -EINVAL;
2468 	}
2469 
2470 	env.dst_nid = p->numa_preferred_nid;
2471 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2472 	taskweight = task_weight(p, env.src_nid, dist);
2473 	groupweight = group_weight(p, env.src_nid, dist);
2474 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2475 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2476 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2477 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2478 
2479 	/* Try to find a spot on the preferred nid. */
2480 	task_numa_find_cpu(&env, taskimp, groupimp);
2481 
2482 	/*
2483 	 * Look at other nodes in these cases:
2484 	 * - there is no space available on the preferred_nid
2485 	 * - the task is part of a numa_group that is interleaved across
2486 	 *   multiple NUMA nodes; in order to better consolidate the group,
2487 	 *   we need to check other locations.
2488 	 */
2489 	ng = deref_curr_numa_group(p);
2490 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2491 		for_each_node_state(nid, N_CPU) {
2492 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2493 				continue;
2494 
2495 			dist = node_distance(env.src_nid, env.dst_nid);
2496 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2497 						dist != env.dist) {
2498 				taskweight = task_weight(p, env.src_nid, dist);
2499 				groupweight = group_weight(p, env.src_nid, dist);
2500 			}
2501 
2502 			/* Only consider nodes where both task and groups benefit */
2503 			taskimp = task_weight(p, nid, dist) - taskweight;
2504 			groupimp = group_weight(p, nid, dist) - groupweight;
2505 			if (taskimp < 0 && groupimp < 0)
2506 				continue;
2507 
2508 			env.dist = dist;
2509 			env.dst_nid = nid;
2510 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2511 			task_numa_find_cpu(&env, taskimp, groupimp);
2512 		}
2513 	}
2514 
2515 	/*
2516 	 * If the task is part of a workload that spans multiple NUMA nodes,
2517 	 * and is migrating into one of the workload's active nodes, remember
2518 	 * this node as the task's preferred numa node, so the workload can
2519 	 * settle down.
2520 	 * A task that migrated to a second choice node will be better off
2521 	 * trying for a better one later. Do not set the preferred node here.
2522 	 */
2523 	if (ng) {
2524 		if (env.best_cpu == -1)
2525 			nid = env.src_nid;
2526 		else
2527 			nid = cpu_to_node(env.best_cpu);
2528 
2529 		if (nid != p->numa_preferred_nid)
2530 			sched_setnuma(p, nid);
2531 	}
2532 
2533 	/* No better CPU than the current one was found. */
2534 	if (env.best_cpu == -1) {
2535 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2536 		return -EAGAIN;
2537 	}
2538 
2539 	best_rq = cpu_rq(env.best_cpu);
2540 	if (env.best_task == NULL) {
2541 		ret = migrate_task_to(p, env.best_cpu);
2542 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2543 		if (ret != 0)
2544 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2545 		return ret;
2546 	}
2547 
2548 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2549 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2550 
2551 	if (ret != 0)
2552 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2553 	put_task_struct(env.best_task);
2554 	return ret;
2555 }
2556 
2557 /* Attempt to migrate a task to a CPU on the preferred node. */
2558 static void numa_migrate_preferred(struct task_struct *p)
2559 {
2560 	unsigned long interval = HZ;
2561 
2562 	/* This task has no NUMA fault statistics yet */
2563 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2564 		return;
2565 
2566 	/* Periodically retry migrating the task to the preferred node */
2567 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2568 	p->numa_migrate_retry = jiffies + interval;
2569 
2570 	/* Success if task is already running on preferred CPU */
2571 	if (task_node(p) == p->numa_preferred_nid)
2572 		return;
2573 
2574 	/* Otherwise, try migrate to a CPU on the preferred node */
2575 	task_numa_migrate(p);
2576 }
2577 
2578 /*
2579  * Find out how many nodes the workload is actively running on. Do this by
2580  * tracking the nodes from which NUMA hinting faults are triggered. This can
2581  * be different from the set of nodes where the workload's memory is currently
2582  * located.
2583  */
2584 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2585 {
2586 	unsigned long faults, max_faults = 0;
2587 	int nid, active_nodes = 0;
2588 
2589 	for_each_node_state(nid, N_CPU) {
2590 		faults = group_faults_cpu(numa_group, nid);
2591 		if (faults > max_faults)
2592 			max_faults = faults;
2593 	}
2594 
2595 	for_each_node_state(nid, N_CPU) {
2596 		faults = group_faults_cpu(numa_group, nid);
2597 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2598 			active_nodes++;
2599 	}
2600 
2601 	numa_group->max_faults_cpu = max_faults;
2602 	numa_group->active_nodes = active_nodes;
2603 }
2604 
2605 /*
2606  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2607  * increments. The more local the fault statistics are, the higher the scan
2608  * period will be for the next scan window. If local/(local+remote) ratio is
2609  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2610  * the scan period will decrease. Aim for 70% local accesses.
2611  */
2612 #define NUMA_PERIOD_SLOTS 10
2613 #define NUMA_PERIOD_THRESHOLD 7
2614 
2615 /*
2616  * Increase the scan period (slow down scanning) if the majority of
2617  * our memory is already on our local node, or if the majority of
2618  * the page accesses are shared with other processes.
2619  * Otherwise, decrease the scan period.
2620  */
2621 static void update_task_scan_period(struct task_struct *p,
2622 			unsigned long shared, unsigned long private)
2623 {
2624 	unsigned int period_slot;
2625 	int lr_ratio, ps_ratio;
2626 	int diff;
2627 
2628 	unsigned long remote = p->numa_faults_locality[0];
2629 	unsigned long local = p->numa_faults_locality[1];
2630 
2631 	/*
2632 	 * If there were no record hinting faults then either the task is
2633 	 * completely idle or all activity is in areas that are not of interest
2634 	 * to automatic numa balancing. Related to that, if there were failed
2635 	 * migration then it implies we are migrating too quickly or the local
2636 	 * node is overloaded. In either case, scan slower
2637 	 */
2638 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2639 		p->numa_scan_period = min(p->numa_scan_period_max,
2640 			p->numa_scan_period << 1);
2641 
2642 		p->mm->numa_next_scan = jiffies +
2643 			msecs_to_jiffies(p->numa_scan_period);
2644 
2645 		return;
2646 	}
2647 
2648 	/*
2649 	 * Prepare to scale scan period relative to the current period.
2650 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2651 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2652 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2653 	 */
2654 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2655 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2656 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2657 
2658 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2659 		/*
2660 		 * Most memory accesses are local. There is no need to
2661 		 * do fast NUMA scanning, since memory is already local.
2662 		 */
2663 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2664 		if (!slot)
2665 			slot = 1;
2666 		diff = slot * period_slot;
2667 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2668 		/*
2669 		 * Most memory accesses are shared with other tasks.
2670 		 * There is no point in continuing fast NUMA scanning,
2671 		 * since other tasks may just move the memory elsewhere.
2672 		 */
2673 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2674 		if (!slot)
2675 			slot = 1;
2676 		diff = slot * period_slot;
2677 	} else {
2678 		/*
2679 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2680 		 * yet they are not on the local NUMA node. Speed up
2681 		 * NUMA scanning to get the memory moved over.
2682 		 */
2683 		int ratio = max(lr_ratio, ps_ratio);
2684 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2685 	}
2686 
2687 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2688 			task_scan_min(p), task_scan_max(p));
2689 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2690 }
2691 
2692 /*
2693  * Get the fraction of time the task has been running since the last
2694  * NUMA placement cycle. The scheduler keeps similar statistics, but
2695  * decays those on a 32ms period, which is orders of magnitude off
2696  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2697  * stats only if the task is so new there are no NUMA statistics yet.
2698  */
2699 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2700 {
2701 	u64 runtime, delta, now;
2702 	/* Use the start of this time slice to avoid calculations. */
2703 	now = p->se.exec_start;
2704 	runtime = p->se.sum_exec_runtime;
2705 
2706 	if (p->last_task_numa_placement) {
2707 		delta = runtime - p->last_sum_exec_runtime;
2708 		*period = now - p->last_task_numa_placement;
2709 
2710 		/* Avoid time going backwards, prevent potential divide error: */
2711 		if (unlikely((s64)*period < 0))
2712 			*period = 0;
2713 	} else {
2714 		delta = p->se.avg.load_sum;
2715 		*period = LOAD_AVG_MAX;
2716 	}
2717 
2718 	p->last_sum_exec_runtime = runtime;
2719 	p->last_task_numa_placement = now;
2720 
2721 	return delta;
2722 }
2723 
2724 /*
2725  * Determine the preferred nid for a task in a numa_group. This needs to
2726  * be done in a way that produces consistent results with group_weight,
2727  * otherwise workloads might not converge.
2728  */
2729 static int preferred_group_nid(struct task_struct *p, int nid)
2730 {
2731 	nodemask_t nodes;
2732 	int dist;
2733 
2734 	/* Direct connections between all NUMA nodes. */
2735 	if (sched_numa_topology_type == NUMA_DIRECT)
2736 		return nid;
2737 
2738 	/*
2739 	 * On a system with glueless mesh NUMA topology, group_weight
2740 	 * scores nodes according to the number of NUMA hinting faults on
2741 	 * both the node itself, and on nearby nodes.
2742 	 */
2743 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2744 		unsigned long score, max_score = 0;
2745 		int node, max_node = nid;
2746 
2747 		dist = sched_max_numa_distance;
2748 
2749 		for_each_node_state(node, N_CPU) {
2750 			score = group_weight(p, node, dist);
2751 			if (score > max_score) {
2752 				max_score = score;
2753 				max_node = node;
2754 			}
2755 		}
2756 		return max_node;
2757 	}
2758 
2759 	/*
2760 	 * Finding the preferred nid in a system with NUMA backplane
2761 	 * interconnect topology is more involved. The goal is to locate
2762 	 * tasks from numa_groups near each other in the system, and
2763 	 * untangle workloads from different sides of the system. This requires
2764 	 * searching down the hierarchy of node groups, recursively searching
2765 	 * inside the highest scoring group of nodes. The nodemask tricks
2766 	 * keep the complexity of the search down.
2767 	 */
2768 	nodes = node_states[N_CPU];
2769 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2770 		unsigned long max_faults = 0;
2771 		nodemask_t max_group = NODE_MASK_NONE;
2772 		int a, b;
2773 
2774 		/* Are there nodes at this distance from each other? */
2775 		if (!find_numa_distance(dist))
2776 			continue;
2777 
2778 		for_each_node_mask(a, nodes) {
2779 			unsigned long faults = 0;
2780 			nodemask_t this_group;
2781 			nodes_clear(this_group);
2782 
2783 			/* Sum group's NUMA faults; includes a==b case. */
2784 			for_each_node_mask(b, nodes) {
2785 				if (node_distance(a, b) < dist) {
2786 					faults += group_faults(p, b);
2787 					node_set(b, this_group);
2788 					node_clear(b, nodes);
2789 				}
2790 			}
2791 
2792 			/* Remember the top group. */
2793 			if (faults > max_faults) {
2794 				max_faults = faults;
2795 				max_group = this_group;
2796 				/*
2797 				 * subtle: at the smallest distance there is
2798 				 * just one node left in each "group", the
2799 				 * winner is the preferred nid.
2800 				 */
2801 				nid = a;
2802 			}
2803 		}
2804 		/* Next round, evaluate the nodes within max_group. */
2805 		if (!max_faults)
2806 			break;
2807 		nodes = max_group;
2808 	}
2809 	return nid;
2810 }
2811 
2812 static void task_numa_placement(struct task_struct *p)
2813 {
2814 	int seq, nid, max_nid = NUMA_NO_NODE;
2815 	unsigned long max_faults = 0;
2816 	unsigned long fault_types[2] = { 0, 0 };
2817 	unsigned long total_faults;
2818 	u64 runtime, period;
2819 	spinlock_t *group_lock = NULL;
2820 	struct numa_group *ng;
2821 
2822 	/*
2823 	 * The p->mm->numa_scan_seq field gets updated without
2824 	 * exclusive access. Use READ_ONCE() here to ensure
2825 	 * that the field is read in a single access:
2826 	 */
2827 	seq = READ_ONCE(p->mm->numa_scan_seq);
2828 	if (p->numa_scan_seq == seq)
2829 		return;
2830 	p->numa_scan_seq = seq;
2831 	p->numa_scan_period_max = task_scan_max(p);
2832 
2833 	total_faults = p->numa_faults_locality[0] +
2834 		       p->numa_faults_locality[1];
2835 	runtime = numa_get_avg_runtime(p, &period);
2836 
2837 	/* If the task is part of a group prevent parallel updates to group stats */
2838 	ng = deref_curr_numa_group(p);
2839 	if (ng) {
2840 		group_lock = &ng->lock;
2841 		spin_lock_irq(group_lock);
2842 	}
2843 
2844 	/* Find the node with the highest number of faults */
2845 	for_each_online_node(nid) {
2846 		/* Keep track of the offsets in numa_faults array */
2847 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2848 		unsigned long faults = 0, group_faults = 0;
2849 		int priv;
2850 
2851 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2852 			long diff, f_diff, f_weight;
2853 
2854 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2855 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2856 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2857 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2858 
2859 			/* Decay existing window, copy faults since last scan */
2860 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2861 			fault_types[priv] += p->numa_faults[membuf_idx];
2862 			p->numa_faults[membuf_idx] = 0;
2863 
2864 			/*
2865 			 * Normalize the faults_from, so all tasks in a group
2866 			 * count according to CPU use, instead of by the raw
2867 			 * number of faults. Tasks with little runtime have
2868 			 * little over-all impact on throughput, and thus their
2869 			 * faults are less important.
2870 			 */
2871 			f_weight = div64_u64(runtime << 16, period + 1);
2872 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2873 				   (total_faults + 1);
2874 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2875 			p->numa_faults[cpubuf_idx] = 0;
2876 
2877 			p->numa_faults[mem_idx] += diff;
2878 			p->numa_faults[cpu_idx] += f_diff;
2879 			faults += p->numa_faults[mem_idx];
2880 			p->total_numa_faults += diff;
2881 			if (ng) {
2882 				/*
2883 				 * safe because we can only change our own group
2884 				 *
2885 				 * mem_idx represents the offset for a given
2886 				 * nid and priv in a specific region because it
2887 				 * is at the beginning of the numa_faults array.
2888 				 */
2889 				ng->faults[mem_idx] += diff;
2890 				ng->faults[cpu_idx] += f_diff;
2891 				ng->total_faults += diff;
2892 				group_faults += ng->faults[mem_idx];
2893 			}
2894 		}
2895 
2896 		if (!ng) {
2897 			if (faults > max_faults) {
2898 				max_faults = faults;
2899 				max_nid = nid;
2900 			}
2901 		} else if (group_faults > max_faults) {
2902 			max_faults = group_faults;
2903 			max_nid = nid;
2904 		}
2905 	}
2906 
2907 	/* Cannot migrate task to CPU-less node */
2908 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2909 		int near_nid = max_nid;
2910 		int distance, near_distance = INT_MAX;
2911 
2912 		for_each_node_state(nid, N_CPU) {
2913 			distance = node_distance(max_nid, nid);
2914 			if (distance < near_distance) {
2915 				near_nid = nid;
2916 				near_distance = distance;
2917 			}
2918 		}
2919 		max_nid = near_nid;
2920 	}
2921 
2922 	if (ng) {
2923 		numa_group_count_active_nodes(ng);
2924 		spin_unlock_irq(group_lock);
2925 		max_nid = preferred_group_nid(p, max_nid);
2926 	}
2927 
2928 	if (max_faults) {
2929 		/* Set the new preferred node */
2930 		if (max_nid != p->numa_preferred_nid)
2931 			sched_setnuma(p, max_nid);
2932 	}
2933 
2934 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2935 }
2936 
2937 static inline int get_numa_group(struct numa_group *grp)
2938 {
2939 	return refcount_inc_not_zero(&grp->refcount);
2940 }
2941 
2942 static inline void put_numa_group(struct numa_group *grp)
2943 {
2944 	if (refcount_dec_and_test(&grp->refcount))
2945 		kfree_rcu(grp, rcu);
2946 }
2947 
2948 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2949 			int *priv)
2950 {
2951 	struct numa_group *grp, *my_grp;
2952 	struct task_struct *tsk;
2953 	bool join = false;
2954 	int cpu = cpupid_to_cpu(cpupid);
2955 	int i;
2956 
2957 	if (unlikely(!deref_curr_numa_group(p))) {
2958 		unsigned int size = sizeof(struct numa_group) +
2959 				    NR_NUMA_HINT_FAULT_STATS *
2960 				    nr_node_ids * sizeof(unsigned long);
2961 
2962 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2963 		if (!grp)
2964 			return;
2965 
2966 		refcount_set(&grp->refcount, 1);
2967 		grp->active_nodes = 1;
2968 		grp->max_faults_cpu = 0;
2969 		spin_lock_init(&grp->lock);
2970 		grp->gid = p->pid;
2971 
2972 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2973 			grp->faults[i] = p->numa_faults[i];
2974 
2975 		grp->total_faults = p->total_numa_faults;
2976 
2977 		grp->nr_tasks++;
2978 		rcu_assign_pointer(p->numa_group, grp);
2979 	}
2980 
2981 	rcu_read_lock();
2982 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2983 
2984 	if (!cpupid_match_pid(tsk, cpupid))
2985 		goto no_join;
2986 
2987 	grp = rcu_dereference(tsk->numa_group);
2988 	if (!grp)
2989 		goto no_join;
2990 
2991 	my_grp = deref_curr_numa_group(p);
2992 	if (grp == my_grp)
2993 		goto no_join;
2994 
2995 	/*
2996 	 * Only join the other group if its bigger; if we're the bigger group,
2997 	 * the other task will join us.
2998 	 */
2999 	if (my_grp->nr_tasks > grp->nr_tasks)
3000 		goto no_join;
3001 
3002 	/*
3003 	 * Tie-break on the grp address.
3004 	 */
3005 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3006 		goto no_join;
3007 
3008 	/* Always join threads in the same process. */
3009 	if (tsk->mm == current->mm)
3010 		join = true;
3011 
3012 	/* Simple filter to avoid false positives due to PID collisions */
3013 	if (flags & TNF_SHARED)
3014 		join = true;
3015 
3016 	/* Update priv based on whether false sharing was detected */
3017 	*priv = !join;
3018 
3019 	if (join && !get_numa_group(grp))
3020 		goto no_join;
3021 
3022 	rcu_read_unlock();
3023 
3024 	if (!join)
3025 		return;
3026 
3027 	WARN_ON_ONCE(irqs_disabled());
3028 	double_lock_irq(&my_grp->lock, &grp->lock);
3029 
3030 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3031 		my_grp->faults[i] -= p->numa_faults[i];
3032 		grp->faults[i] += p->numa_faults[i];
3033 	}
3034 	my_grp->total_faults -= p->total_numa_faults;
3035 	grp->total_faults += p->total_numa_faults;
3036 
3037 	my_grp->nr_tasks--;
3038 	grp->nr_tasks++;
3039 
3040 	spin_unlock(&my_grp->lock);
3041 	spin_unlock_irq(&grp->lock);
3042 
3043 	rcu_assign_pointer(p->numa_group, grp);
3044 
3045 	put_numa_group(my_grp);
3046 	return;
3047 
3048 no_join:
3049 	rcu_read_unlock();
3050 	return;
3051 }
3052 
3053 /*
3054  * Get rid of NUMA statistics associated with a task (either current or dead).
3055  * If @final is set, the task is dead and has reached refcount zero, so we can
3056  * safely free all relevant data structures. Otherwise, there might be
3057  * concurrent reads from places like load balancing and procfs, and we should
3058  * reset the data back to default state without freeing ->numa_faults.
3059  */
3060 void task_numa_free(struct task_struct *p, bool final)
3061 {
3062 	/* safe: p either is current or is being freed by current */
3063 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3064 	unsigned long *numa_faults = p->numa_faults;
3065 	unsigned long flags;
3066 	int i;
3067 
3068 	if (!numa_faults)
3069 		return;
3070 
3071 	if (grp) {
3072 		spin_lock_irqsave(&grp->lock, flags);
3073 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3074 			grp->faults[i] -= p->numa_faults[i];
3075 		grp->total_faults -= p->total_numa_faults;
3076 
3077 		grp->nr_tasks--;
3078 		spin_unlock_irqrestore(&grp->lock, flags);
3079 		RCU_INIT_POINTER(p->numa_group, NULL);
3080 		put_numa_group(grp);
3081 	}
3082 
3083 	if (final) {
3084 		p->numa_faults = NULL;
3085 		kfree(numa_faults);
3086 	} else {
3087 		p->total_numa_faults = 0;
3088 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3089 			numa_faults[i] = 0;
3090 	}
3091 }
3092 
3093 /*
3094  * Got a PROT_NONE fault for a page on @node.
3095  */
3096 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3097 {
3098 	struct task_struct *p = current;
3099 	bool migrated = flags & TNF_MIGRATED;
3100 	int cpu_node = task_node(current);
3101 	int local = !!(flags & TNF_FAULT_LOCAL);
3102 	struct numa_group *ng;
3103 	int priv;
3104 
3105 	if (!static_branch_likely(&sched_numa_balancing))
3106 		return;
3107 
3108 	/* for example, ksmd faulting in a user's mm */
3109 	if (!p->mm)
3110 		return;
3111 
3112 	/*
3113 	 * NUMA faults statistics are unnecessary for the slow memory
3114 	 * node for memory tiering mode.
3115 	 */
3116 	if (!node_is_toptier(mem_node) &&
3117 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3118 	     !cpupid_valid(last_cpupid)))
3119 		return;
3120 
3121 	/* Allocate buffer to track faults on a per-node basis */
3122 	if (unlikely(!p->numa_faults)) {
3123 		int size = sizeof(*p->numa_faults) *
3124 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3125 
3126 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3127 		if (!p->numa_faults)
3128 			return;
3129 
3130 		p->total_numa_faults = 0;
3131 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3132 	}
3133 
3134 	/*
3135 	 * First accesses are treated as private, otherwise consider accesses
3136 	 * to be private if the accessing pid has not changed
3137 	 */
3138 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3139 		priv = 1;
3140 	} else {
3141 		priv = cpupid_match_pid(p, last_cpupid);
3142 		if (!priv && !(flags & TNF_NO_GROUP))
3143 			task_numa_group(p, last_cpupid, flags, &priv);
3144 	}
3145 
3146 	/*
3147 	 * If a workload spans multiple NUMA nodes, a shared fault that
3148 	 * occurs wholly within the set of nodes that the workload is
3149 	 * actively using should be counted as local. This allows the
3150 	 * scan rate to slow down when a workload has settled down.
3151 	 */
3152 	ng = deref_curr_numa_group(p);
3153 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3154 				numa_is_active_node(cpu_node, ng) &&
3155 				numa_is_active_node(mem_node, ng))
3156 		local = 1;
3157 
3158 	/*
3159 	 * Retry to migrate task to preferred node periodically, in case it
3160 	 * previously failed, or the scheduler moved us.
3161 	 */
3162 	if (time_after(jiffies, p->numa_migrate_retry)) {
3163 		task_numa_placement(p);
3164 		numa_migrate_preferred(p);
3165 	}
3166 
3167 	if (migrated)
3168 		p->numa_pages_migrated += pages;
3169 	if (flags & TNF_MIGRATE_FAIL)
3170 		p->numa_faults_locality[2] += pages;
3171 
3172 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3173 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3174 	p->numa_faults_locality[local] += pages;
3175 }
3176 
3177 static void reset_ptenuma_scan(struct task_struct *p)
3178 {
3179 	/*
3180 	 * We only did a read acquisition of the mmap sem, so
3181 	 * p->mm->numa_scan_seq is written to without exclusive access
3182 	 * and the update is not guaranteed to be atomic. That's not
3183 	 * much of an issue though, since this is just used for
3184 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3185 	 * expensive, to avoid any form of compiler optimizations:
3186 	 */
3187 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3188 	p->mm->numa_scan_offset = 0;
3189 }
3190 
3191 static bool vma_is_accessed(struct vm_area_struct *vma)
3192 {
3193 	unsigned long pids;
3194 	/*
3195 	 * Allow unconditional access first two times, so that all the (pages)
3196 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3197 	 * This is also done to avoid any side effect of task scanning
3198 	 * amplifying the unfairness of disjoint set of VMAs' access.
3199 	 */
3200 	if (READ_ONCE(current->mm->numa_scan_seq) < 2)
3201 		return true;
3202 
3203 	pids = vma->numab_state->access_pids[0] | vma->numab_state->access_pids[1];
3204 	return test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids);
3205 }
3206 
3207 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3208 
3209 /*
3210  * The expensive part of numa migration is done from task_work context.
3211  * Triggered from task_tick_numa().
3212  */
3213 static void task_numa_work(struct callback_head *work)
3214 {
3215 	unsigned long migrate, next_scan, now = jiffies;
3216 	struct task_struct *p = current;
3217 	struct mm_struct *mm = p->mm;
3218 	u64 runtime = p->se.sum_exec_runtime;
3219 	struct vm_area_struct *vma;
3220 	unsigned long start, end;
3221 	unsigned long nr_pte_updates = 0;
3222 	long pages, virtpages;
3223 	struct vma_iterator vmi;
3224 
3225 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3226 
3227 	work->next = work;
3228 	/*
3229 	 * Who cares about NUMA placement when they're dying.
3230 	 *
3231 	 * NOTE: make sure not to dereference p->mm before this check,
3232 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3233 	 * without p->mm even though we still had it when we enqueued this
3234 	 * work.
3235 	 */
3236 	if (p->flags & PF_EXITING)
3237 		return;
3238 
3239 	if (!mm->numa_next_scan) {
3240 		mm->numa_next_scan = now +
3241 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3242 	}
3243 
3244 	/*
3245 	 * Enforce maximal scan/migration frequency..
3246 	 */
3247 	migrate = mm->numa_next_scan;
3248 	if (time_before(now, migrate))
3249 		return;
3250 
3251 	if (p->numa_scan_period == 0) {
3252 		p->numa_scan_period_max = task_scan_max(p);
3253 		p->numa_scan_period = task_scan_start(p);
3254 	}
3255 
3256 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3257 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3258 		return;
3259 
3260 	/*
3261 	 * Delay this task enough that another task of this mm will likely win
3262 	 * the next time around.
3263 	 */
3264 	p->node_stamp += 2 * TICK_NSEC;
3265 
3266 	start = mm->numa_scan_offset;
3267 	pages = sysctl_numa_balancing_scan_size;
3268 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3269 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3270 	if (!pages)
3271 		return;
3272 
3273 
3274 	if (!mmap_read_trylock(mm))
3275 		return;
3276 	vma_iter_init(&vmi, mm, start);
3277 	vma = vma_next(&vmi);
3278 	if (!vma) {
3279 		reset_ptenuma_scan(p);
3280 		start = 0;
3281 		vma_iter_set(&vmi, start);
3282 		vma = vma_next(&vmi);
3283 	}
3284 
3285 	do {
3286 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3287 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3288 			continue;
3289 		}
3290 
3291 		/*
3292 		 * Shared library pages mapped by multiple processes are not
3293 		 * migrated as it is expected they are cache replicated. Avoid
3294 		 * hinting faults in read-only file-backed mappings or the vdso
3295 		 * as migrating the pages will be of marginal benefit.
3296 		 */
3297 		if (!vma->vm_mm ||
3298 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
3299 			continue;
3300 
3301 		/*
3302 		 * Skip inaccessible VMAs to avoid any confusion between
3303 		 * PROT_NONE and NUMA hinting ptes
3304 		 */
3305 		if (!vma_is_accessible(vma))
3306 			continue;
3307 
3308 		/* Initialise new per-VMA NUMAB state. */
3309 		if (!vma->numab_state) {
3310 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3311 				GFP_KERNEL);
3312 			if (!vma->numab_state)
3313 				continue;
3314 
3315 			vma->numab_state->next_scan = now +
3316 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3317 
3318 			/* Reset happens after 4 times scan delay of scan start */
3319 			vma->numab_state->next_pid_reset =  vma->numab_state->next_scan +
3320 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3321 		}
3322 
3323 		/*
3324 		 * Scanning the VMA's of short lived tasks add more overhead. So
3325 		 * delay the scan for new VMAs.
3326 		 */
3327 		if (mm->numa_scan_seq && time_before(jiffies,
3328 						vma->numab_state->next_scan))
3329 			continue;
3330 
3331 		/* Do not scan the VMA if task has not accessed */
3332 		if (!vma_is_accessed(vma))
3333 			continue;
3334 
3335 		/*
3336 		 * RESET access PIDs regularly for old VMAs. Resetting after checking
3337 		 * vma for recent access to avoid clearing PID info before access..
3338 		 */
3339 		if (mm->numa_scan_seq &&
3340 				time_after(jiffies, vma->numab_state->next_pid_reset)) {
3341 			vma->numab_state->next_pid_reset = vma->numab_state->next_pid_reset +
3342 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3343 			vma->numab_state->access_pids[0] = READ_ONCE(vma->numab_state->access_pids[1]);
3344 			vma->numab_state->access_pids[1] = 0;
3345 		}
3346 
3347 		do {
3348 			start = max(start, vma->vm_start);
3349 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3350 			end = min(end, vma->vm_end);
3351 			nr_pte_updates = change_prot_numa(vma, start, end);
3352 
3353 			/*
3354 			 * Try to scan sysctl_numa_balancing_size worth of
3355 			 * hpages that have at least one present PTE that
3356 			 * is not already pte-numa. If the VMA contains
3357 			 * areas that are unused or already full of prot_numa
3358 			 * PTEs, scan up to virtpages, to skip through those
3359 			 * areas faster.
3360 			 */
3361 			if (nr_pte_updates)
3362 				pages -= (end - start) >> PAGE_SHIFT;
3363 			virtpages -= (end - start) >> PAGE_SHIFT;
3364 
3365 			start = end;
3366 			if (pages <= 0 || virtpages <= 0)
3367 				goto out;
3368 
3369 			cond_resched();
3370 		} while (end != vma->vm_end);
3371 	} for_each_vma(vmi, vma);
3372 
3373 out:
3374 	/*
3375 	 * It is possible to reach the end of the VMA list but the last few
3376 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3377 	 * would find the !migratable VMA on the next scan but not reset the
3378 	 * scanner to the start so check it now.
3379 	 */
3380 	if (vma)
3381 		mm->numa_scan_offset = start;
3382 	else
3383 		reset_ptenuma_scan(p);
3384 	mmap_read_unlock(mm);
3385 
3386 	/*
3387 	 * Make sure tasks use at least 32x as much time to run other code
3388 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3389 	 * Usually update_task_scan_period slows down scanning enough; on an
3390 	 * overloaded system we need to limit overhead on a per task basis.
3391 	 */
3392 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3393 		u64 diff = p->se.sum_exec_runtime - runtime;
3394 		p->node_stamp += 32 * diff;
3395 	}
3396 }
3397 
3398 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3399 {
3400 	int mm_users = 0;
3401 	struct mm_struct *mm = p->mm;
3402 
3403 	if (mm) {
3404 		mm_users = atomic_read(&mm->mm_users);
3405 		if (mm_users == 1) {
3406 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3407 			mm->numa_scan_seq = 0;
3408 		}
3409 	}
3410 	p->node_stamp			= 0;
3411 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3412 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3413 	p->numa_migrate_retry		= 0;
3414 	/* Protect against double add, see task_tick_numa and task_numa_work */
3415 	p->numa_work.next		= &p->numa_work;
3416 	p->numa_faults			= NULL;
3417 	p->numa_pages_migrated		= 0;
3418 	p->total_numa_faults		= 0;
3419 	RCU_INIT_POINTER(p->numa_group, NULL);
3420 	p->last_task_numa_placement	= 0;
3421 	p->last_sum_exec_runtime	= 0;
3422 
3423 	init_task_work(&p->numa_work, task_numa_work);
3424 
3425 	/* New address space, reset the preferred nid */
3426 	if (!(clone_flags & CLONE_VM)) {
3427 		p->numa_preferred_nid = NUMA_NO_NODE;
3428 		return;
3429 	}
3430 
3431 	/*
3432 	 * New thread, keep existing numa_preferred_nid which should be copied
3433 	 * already by arch_dup_task_struct but stagger when scans start.
3434 	 */
3435 	if (mm) {
3436 		unsigned int delay;
3437 
3438 		delay = min_t(unsigned int, task_scan_max(current),
3439 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3440 		delay += 2 * TICK_NSEC;
3441 		p->node_stamp = delay;
3442 	}
3443 }
3444 
3445 /*
3446  * Drive the periodic memory faults..
3447  */
3448 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3449 {
3450 	struct callback_head *work = &curr->numa_work;
3451 	u64 period, now;
3452 
3453 	/*
3454 	 * We don't care about NUMA placement if we don't have memory.
3455 	 */
3456 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3457 		return;
3458 
3459 	/*
3460 	 * Using runtime rather than walltime has the dual advantage that
3461 	 * we (mostly) drive the selection from busy threads and that the
3462 	 * task needs to have done some actual work before we bother with
3463 	 * NUMA placement.
3464 	 */
3465 	now = curr->se.sum_exec_runtime;
3466 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3467 
3468 	if (now > curr->node_stamp + period) {
3469 		if (!curr->node_stamp)
3470 			curr->numa_scan_period = task_scan_start(curr);
3471 		curr->node_stamp += period;
3472 
3473 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3474 			task_work_add(curr, work, TWA_RESUME);
3475 	}
3476 }
3477 
3478 static void update_scan_period(struct task_struct *p, int new_cpu)
3479 {
3480 	int src_nid = cpu_to_node(task_cpu(p));
3481 	int dst_nid = cpu_to_node(new_cpu);
3482 
3483 	if (!static_branch_likely(&sched_numa_balancing))
3484 		return;
3485 
3486 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3487 		return;
3488 
3489 	if (src_nid == dst_nid)
3490 		return;
3491 
3492 	/*
3493 	 * Allow resets if faults have been trapped before one scan
3494 	 * has completed. This is most likely due to a new task that
3495 	 * is pulled cross-node due to wakeups or load balancing.
3496 	 */
3497 	if (p->numa_scan_seq) {
3498 		/*
3499 		 * Avoid scan adjustments if moving to the preferred
3500 		 * node or if the task was not previously running on
3501 		 * the preferred node.
3502 		 */
3503 		if (dst_nid == p->numa_preferred_nid ||
3504 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3505 			src_nid != p->numa_preferred_nid))
3506 			return;
3507 	}
3508 
3509 	p->numa_scan_period = task_scan_start(p);
3510 }
3511 
3512 #else
3513 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3514 {
3515 }
3516 
3517 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3518 {
3519 }
3520 
3521 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3522 {
3523 }
3524 
3525 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3526 {
3527 }
3528 
3529 #endif /* CONFIG_NUMA_BALANCING */
3530 
3531 static void
3532 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3533 {
3534 	update_load_add(&cfs_rq->load, se->load.weight);
3535 #ifdef CONFIG_SMP
3536 	if (entity_is_task(se)) {
3537 		struct rq *rq = rq_of(cfs_rq);
3538 
3539 		account_numa_enqueue(rq, task_of(se));
3540 		list_add(&se->group_node, &rq->cfs_tasks);
3541 	}
3542 #endif
3543 	cfs_rq->nr_running++;
3544 	if (se_is_idle(se))
3545 		cfs_rq->idle_nr_running++;
3546 }
3547 
3548 static void
3549 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3550 {
3551 	update_load_sub(&cfs_rq->load, se->load.weight);
3552 #ifdef CONFIG_SMP
3553 	if (entity_is_task(se)) {
3554 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3555 		list_del_init(&se->group_node);
3556 	}
3557 #endif
3558 	cfs_rq->nr_running--;
3559 	if (se_is_idle(se))
3560 		cfs_rq->idle_nr_running--;
3561 }
3562 
3563 /*
3564  * Signed add and clamp on underflow.
3565  *
3566  * Explicitly do a load-store to ensure the intermediate value never hits
3567  * memory. This allows lockless observations without ever seeing the negative
3568  * values.
3569  */
3570 #define add_positive(_ptr, _val) do {                           \
3571 	typeof(_ptr) ptr = (_ptr);                              \
3572 	typeof(_val) val = (_val);                              \
3573 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3574 								\
3575 	res = var + val;                                        \
3576 								\
3577 	if (val < 0 && res > var)                               \
3578 		res = 0;                                        \
3579 								\
3580 	WRITE_ONCE(*ptr, res);                                  \
3581 } while (0)
3582 
3583 /*
3584  * Unsigned subtract and clamp on underflow.
3585  *
3586  * Explicitly do a load-store to ensure the intermediate value never hits
3587  * memory. This allows lockless observations without ever seeing the negative
3588  * values.
3589  */
3590 #define sub_positive(_ptr, _val) do {				\
3591 	typeof(_ptr) ptr = (_ptr);				\
3592 	typeof(*ptr) val = (_val);				\
3593 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3594 	res = var - val;					\
3595 	if (res > var)						\
3596 		res = 0;					\
3597 	WRITE_ONCE(*ptr, res);					\
3598 } while (0)
3599 
3600 /*
3601  * Remove and clamp on negative, from a local variable.
3602  *
3603  * A variant of sub_positive(), which does not use explicit load-store
3604  * and is thus optimized for local variable updates.
3605  */
3606 #define lsub_positive(_ptr, _val) do {				\
3607 	typeof(_ptr) ptr = (_ptr);				\
3608 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3609 } while (0)
3610 
3611 #ifdef CONFIG_SMP
3612 static inline void
3613 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3614 {
3615 	cfs_rq->avg.load_avg += se->avg.load_avg;
3616 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3617 }
3618 
3619 static inline void
3620 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3621 {
3622 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3623 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3624 	/* See update_cfs_rq_load_avg() */
3625 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3626 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3627 }
3628 #else
3629 static inline void
3630 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3631 static inline void
3632 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3633 #endif
3634 
3635 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3636 			   unsigned long weight)
3637 {
3638 	unsigned long old_weight = se->load.weight;
3639 	s64 vlag, vslice;
3640 
3641 	/*
3642 	 * VRUNTIME
3643 	 * ========
3644 	 *
3645 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3646 	 * adjusted if re-weight at !0-lag point.
3647 	 *
3648 	 * Proof: For contradiction assume this is not true, so we can
3649 	 * re-weight without changing vruntime at !0-lag point.
3650 	 *
3651 	 *             Weight	VRuntime   Avg-VRuntime
3652 	 *     before    w          v            V
3653 	 *      after    w'         v'           V'
3654 	 *
3655 	 * Since lag needs to be preserved through re-weight:
3656 	 *
3657 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3658 	 *	==>	V' = (V - v)*w/w' + v		(1)
3659 	 *
3660 	 * Let W be the total weight of the entities before reweight,
3661 	 * since V' is the new weighted average of entities:
3662 	 *
3663 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3664 	 *
3665 	 * by using (1) & (2) we obtain:
3666 	 *
3667 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3668 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3669 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3670 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3671 	 *
3672 	 * Since we are doing at !0-lag point which means V != v, we
3673 	 * can simplify (3):
3674 	 *
3675 	 *	==>	W / (W + w' - w) = w / w'
3676 	 *	==>	Ww' = Ww + ww' - ww
3677 	 *	==>	W * (w' - w) = w * (w' - w)
3678 	 *	==>	W = w	(re-weight indicates w' != w)
3679 	 *
3680 	 * So the cfs_rq contains only one entity, hence vruntime of
3681 	 * the entity @v should always equal to the cfs_rq's weighted
3682 	 * average vruntime @V, which means we will always re-weight
3683 	 * at 0-lag point, thus breach assumption. Proof completed.
3684 	 *
3685 	 *
3686 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3687 	 * vruntime of all the entities.
3688 	 *
3689 	 * Proof: According to corollary #1, Eq. (1) should be:
3690 	 *
3691 	 *	(V - v)*w = (V' - v')*w'
3692 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3693 	 *
3694 	 * According to the weighted average formula, we have:
3695 	 *
3696 	 *	V' = (WV - wv + w'v') / (W - w + w')
3697 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3698 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3699 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3700 	 *
3701 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3702 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3703 	 *
3704 	 * If the entity is the only one in the cfs_rq, then reweight
3705 	 * always occurs at 0-lag point, so V won't change. Or else
3706 	 * there are other entities, hence W != w, then Eq. (5) turns
3707 	 * into V' = V. So V won't change in either case, proof done.
3708 	 *
3709 	 *
3710 	 * So according to corollary #1 & #2, the effect of re-weight
3711 	 * on vruntime should be:
3712 	 *
3713 	 *	v' = V' - (V - v) * w / w'		(4)
3714 	 *	   = V  - (V - v) * w / w'
3715 	 *	   = V  - vl * w / w'
3716 	 *	   = V  - vl'
3717 	 */
3718 	if (avruntime != se->vruntime) {
3719 		vlag = entity_lag(avruntime, se);
3720 		vlag = div_s64(vlag * old_weight, weight);
3721 		se->vruntime = avruntime - vlag;
3722 	}
3723 
3724 	/*
3725 	 * DEADLINE
3726 	 * ========
3727 	 *
3728 	 * When the weight changes, the virtual time slope changes and
3729 	 * we should adjust the relative virtual deadline accordingly.
3730 	 *
3731 	 *	d' = v' + (d - v)*w/w'
3732 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3733 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3734 	 *	   = V  + (d - V)*w/w'
3735 	 */
3736 	vslice = (s64)(se->deadline - avruntime);
3737 	vslice = div_s64(vslice * old_weight, weight);
3738 	se->deadline = avruntime + vslice;
3739 }
3740 
3741 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3742 			    unsigned long weight)
3743 {
3744 	bool curr = cfs_rq->curr == se;
3745 	u64 avruntime;
3746 
3747 	if (se->on_rq) {
3748 		/* commit outstanding execution time */
3749 		update_curr(cfs_rq);
3750 		avruntime = avg_vruntime(cfs_rq);
3751 		if (!curr)
3752 			__dequeue_entity(cfs_rq, se);
3753 		update_load_sub(&cfs_rq->load, se->load.weight);
3754 	}
3755 	dequeue_load_avg(cfs_rq, se);
3756 
3757 	if (se->on_rq) {
3758 		reweight_eevdf(se, avruntime, weight);
3759 	} else {
3760 		/*
3761 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3762 		 * we need to scale se->vlag when w_i changes.
3763 		 */
3764 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3765 	}
3766 
3767 	update_load_set(&se->load, weight);
3768 
3769 #ifdef CONFIG_SMP
3770 	do {
3771 		u32 divider = get_pelt_divider(&se->avg);
3772 
3773 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3774 	} while (0);
3775 #endif
3776 
3777 	enqueue_load_avg(cfs_rq, se);
3778 	if (se->on_rq) {
3779 		update_load_add(&cfs_rq->load, se->load.weight);
3780 		if (!curr)
3781 			__enqueue_entity(cfs_rq, se);
3782 
3783 		/*
3784 		 * The entity's vruntime has been adjusted, so let's check
3785 		 * whether the rq-wide min_vruntime needs updated too. Since
3786 		 * the calculations above require stable min_vruntime rather
3787 		 * than up-to-date one, we do the update at the end of the
3788 		 * reweight process.
3789 		 */
3790 		update_min_vruntime(cfs_rq);
3791 	}
3792 }
3793 
3794 void reweight_task(struct task_struct *p, const struct load_weight *lw)
3795 {
3796 	struct sched_entity *se = &p->se;
3797 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3798 	struct load_weight *load = &se->load;
3799 
3800 	reweight_entity(cfs_rq, se, lw->weight);
3801 	load->inv_weight = lw->inv_weight;
3802 }
3803 
3804 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3805 
3806 #ifdef CONFIG_FAIR_GROUP_SCHED
3807 #ifdef CONFIG_SMP
3808 /*
3809  * All this does is approximate the hierarchical proportion which includes that
3810  * global sum we all love to hate.
3811  *
3812  * That is, the weight of a group entity, is the proportional share of the
3813  * group weight based on the group runqueue weights. That is:
3814  *
3815  *                     tg->weight * grq->load.weight
3816  *   ge->load.weight = -----------------------------               (1)
3817  *                       \Sum grq->load.weight
3818  *
3819  * Now, because computing that sum is prohibitively expensive to compute (been
3820  * there, done that) we approximate it with this average stuff. The average
3821  * moves slower and therefore the approximation is cheaper and more stable.
3822  *
3823  * So instead of the above, we substitute:
3824  *
3825  *   grq->load.weight -> grq->avg.load_avg                         (2)
3826  *
3827  * which yields the following:
3828  *
3829  *                     tg->weight * grq->avg.load_avg
3830  *   ge->load.weight = ------------------------------              (3)
3831  *                             tg->load_avg
3832  *
3833  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3834  *
3835  * That is shares_avg, and it is right (given the approximation (2)).
3836  *
3837  * The problem with it is that because the average is slow -- it was designed
3838  * to be exactly that of course -- this leads to transients in boundary
3839  * conditions. In specific, the case where the group was idle and we start the
3840  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3841  * yielding bad latency etc..
3842  *
3843  * Now, in that special case (1) reduces to:
3844  *
3845  *                     tg->weight * grq->load.weight
3846  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3847  *                         grp->load.weight
3848  *
3849  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3850  *
3851  * So what we do is modify our approximation (3) to approach (4) in the (near)
3852  * UP case, like:
3853  *
3854  *   ge->load.weight =
3855  *
3856  *              tg->weight * grq->load.weight
3857  *     ---------------------------------------------------         (5)
3858  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3859  *
3860  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3861  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3862  *
3863  *
3864  *                     tg->weight * grq->load.weight
3865  *   ge->load.weight = -----------------------------		   (6)
3866  *                             tg_load_avg'
3867  *
3868  * Where:
3869  *
3870  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3871  *                  max(grq->load.weight, grq->avg.load_avg)
3872  *
3873  * And that is shares_weight and is icky. In the (near) UP case it approaches
3874  * (4) while in the normal case it approaches (3). It consistently
3875  * overestimates the ge->load.weight and therefore:
3876  *
3877  *   \Sum ge->load.weight >= tg->weight
3878  *
3879  * hence icky!
3880  */
3881 static long calc_group_shares(struct cfs_rq *cfs_rq)
3882 {
3883 	long tg_weight, tg_shares, load, shares;
3884 	struct task_group *tg = cfs_rq->tg;
3885 
3886 	tg_shares = READ_ONCE(tg->shares);
3887 
3888 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3889 
3890 	tg_weight = atomic_long_read(&tg->load_avg);
3891 
3892 	/* Ensure tg_weight >= load */
3893 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3894 	tg_weight += load;
3895 
3896 	shares = (tg_shares * load);
3897 	if (tg_weight)
3898 		shares /= tg_weight;
3899 
3900 	/*
3901 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3902 	 * of a group with small tg->shares value. It is a floor value which is
3903 	 * assigned as a minimum load.weight to the sched_entity representing
3904 	 * the group on a CPU.
3905 	 *
3906 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3907 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3908 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3909 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3910 	 * instead of 0.
3911 	 */
3912 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3913 }
3914 #endif /* CONFIG_SMP */
3915 
3916 /*
3917  * Recomputes the group entity based on the current state of its group
3918  * runqueue.
3919  */
3920 static void update_cfs_group(struct sched_entity *se)
3921 {
3922 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3923 	long shares;
3924 
3925 	if (!gcfs_rq)
3926 		return;
3927 
3928 	if (throttled_hierarchy(gcfs_rq))
3929 		return;
3930 
3931 #ifndef CONFIG_SMP
3932 	shares = READ_ONCE(gcfs_rq->tg->shares);
3933 #else
3934 	shares = calc_group_shares(gcfs_rq);
3935 #endif
3936 	if (unlikely(se->load.weight != shares))
3937 		reweight_entity(cfs_rq_of(se), se, shares);
3938 }
3939 
3940 #else /* CONFIG_FAIR_GROUP_SCHED */
3941 static inline void update_cfs_group(struct sched_entity *se)
3942 {
3943 }
3944 #endif /* CONFIG_FAIR_GROUP_SCHED */
3945 
3946 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3947 {
3948 	struct rq *rq = rq_of(cfs_rq);
3949 
3950 	if (&rq->cfs == cfs_rq) {
3951 		/*
3952 		 * There are a few boundary cases this might miss but it should
3953 		 * get called often enough that that should (hopefully) not be
3954 		 * a real problem.
3955 		 *
3956 		 * It will not get called when we go idle, because the idle
3957 		 * thread is a different class (!fair), nor will the utilization
3958 		 * number include things like RT tasks.
3959 		 *
3960 		 * As is, the util number is not freq-invariant (we'd have to
3961 		 * implement arch_scale_freq_capacity() for that).
3962 		 *
3963 		 * See cpu_util_cfs().
3964 		 */
3965 		cpufreq_update_util(rq, flags);
3966 	}
3967 }
3968 
3969 #ifdef CONFIG_SMP
3970 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3971 {
3972 	if (sa->load_sum)
3973 		return false;
3974 
3975 	if (sa->util_sum)
3976 		return false;
3977 
3978 	if (sa->runnable_sum)
3979 		return false;
3980 
3981 	/*
3982 	 * _avg must be null when _sum are null because _avg = _sum / divider
3983 	 * Make sure that rounding and/or propagation of PELT values never
3984 	 * break this.
3985 	 */
3986 	SCHED_WARN_ON(sa->load_avg ||
3987 		      sa->util_avg ||
3988 		      sa->runnable_avg);
3989 
3990 	return true;
3991 }
3992 
3993 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3994 {
3995 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3996 				 cfs_rq->last_update_time_copy);
3997 }
3998 #ifdef CONFIG_FAIR_GROUP_SCHED
3999 /*
4000  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4001  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4002  * bottom-up, we only have to test whether the cfs_rq before us on the list
4003  * is our child.
4004  * If cfs_rq is not on the list, test whether a child needs its to be added to
4005  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4006  */
4007 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4008 {
4009 	struct cfs_rq *prev_cfs_rq;
4010 	struct list_head *prev;
4011 
4012 	if (cfs_rq->on_list) {
4013 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4014 	} else {
4015 		struct rq *rq = rq_of(cfs_rq);
4016 
4017 		prev = rq->tmp_alone_branch;
4018 	}
4019 
4020 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4021 
4022 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4023 }
4024 
4025 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4026 {
4027 	if (cfs_rq->load.weight)
4028 		return false;
4029 
4030 	if (!load_avg_is_decayed(&cfs_rq->avg))
4031 		return false;
4032 
4033 	if (child_cfs_rq_on_list(cfs_rq))
4034 		return false;
4035 
4036 	return true;
4037 }
4038 
4039 /**
4040  * update_tg_load_avg - update the tg's load avg
4041  * @cfs_rq: the cfs_rq whose avg changed
4042  *
4043  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4044  * However, because tg->load_avg is a global value there are performance
4045  * considerations.
4046  *
4047  * In order to avoid having to look at the other cfs_rq's, we use a
4048  * differential update where we store the last value we propagated. This in
4049  * turn allows skipping updates if the differential is 'small'.
4050  *
4051  * Updating tg's load_avg is necessary before update_cfs_share().
4052  */
4053 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4054 {
4055 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4056 
4057 	/*
4058 	 * No need to update load_avg for root_task_group as it is not used.
4059 	 */
4060 	if (cfs_rq->tg == &root_task_group)
4061 		return;
4062 
4063 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4064 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4065 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4066 	}
4067 }
4068 
4069 /*
4070  * Called within set_task_rq() right before setting a task's CPU. The
4071  * caller only guarantees p->pi_lock is held; no other assumptions,
4072  * including the state of rq->lock, should be made.
4073  */
4074 void set_task_rq_fair(struct sched_entity *se,
4075 		      struct cfs_rq *prev, struct cfs_rq *next)
4076 {
4077 	u64 p_last_update_time;
4078 	u64 n_last_update_time;
4079 
4080 	if (!sched_feat(ATTACH_AGE_LOAD))
4081 		return;
4082 
4083 	/*
4084 	 * We are supposed to update the task to "current" time, then its up to
4085 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4086 	 * getting what current time is, so simply throw away the out-of-date
4087 	 * time. This will result in the wakee task is less decayed, but giving
4088 	 * the wakee more load sounds not bad.
4089 	 */
4090 	if (!(se->avg.last_update_time && prev))
4091 		return;
4092 
4093 	p_last_update_time = cfs_rq_last_update_time(prev);
4094 	n_last_update_time = cfs_rq_last_update_time(next);
4095 
4096 	__update_load_avg_blocked_se(p_last_update_time, se);
4097 	se->avg.last_update_time = n_last_update_time;
4098 }
4099 
4100 /*
4101  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4102  * propagate its contribution. The key to this propagation is the invariant
4103  * that for each group:
4104  *
4105  *   ge->avg == grq->avg						(1)
4106  *
4107  * _IFF_ we look at the pure running and runnable sums. Because they
4108  * represent the very same entity, just at different points in the hierarchy.
4109  *
4110  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4111  * and simply copies the running/runnable sum over (but still wrong, because
4112  * the group entity and group rq do not have their PELT windows aligned).
4113  *
4114  * However, update_tg_cfs_load() is more complex. So we have:
4115  *
4116  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4117  *
4118  * And since, like util, the runnable part should be directly transferable,
4119  * the following would _appear_ to be the straight forward approach:
4120  *
4121  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4122  *
4123  * And per (1) we have:
4124  *
4125  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4126  *
4127  * Which gives:
4128  *
4129  *                      ge->load.weight * grq->avg.load_avg
4130  *   ge->avg.load_avg = -----------------------------------		(4)
4131  *                               grq->load.weight
4132  *
4133  * Except that is wrong!
4134  *
4135  * Because while for entities historical weight is not important and we
4136  * really only care about our future and therefore can consider a pure
4137  * runnable sum, runqueues can NOT do this.
4138  *
4139  * We specifically want runqueues to have a load_avg that includes
4140  * historical weights. Those represent the blocked load, the load we expect
4141  * to (shortly) return to us. This only works by keeping the weights as
4142  * integral part of the sum. We therefore cannot decompose as per (3).
4143  *
4144  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4145  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4146  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4147  * runnable section of these tasks overlap (or not). If they were to perfectly
4148  * align the rq as a whole would be runnable 2/3 of the time. If however we
4149  * always have at least 1 runnable task, the rq as a whole is always runnable.
4150  *
4151  * So we'll have to approximate.. :/
4152  *
4153  * Given the constraint:
4154  *
4155  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4156  *
4157  * We can construct a rule that adds runnable to a rq by assuming minimal
4158  * overlap.
4159  *
4160  * On removal, we'll assume each task is equally runnable; which yields:
4161  *
4162  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4163  *
4164  * XXX: only do this for the part of runnable > running ?
4165  *
4166  */
4167 static inline void
4168 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4169 {
4170 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4171 	u32 new_sum, divider;
4172 
4173 	/* Nothing to update */
4174 	if (!delta_avg)
4175 		return;
4176 
4177 	/*
4178 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4179 	 * See ___update_load_avg() for details.
4180 	 */
4181 	divider = get_pelt_divider(&cfs_rq->avg);
4182 
4183 
4184 	/* Set new sched_entity's utilization */
4185 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4186 	new_sum = se->avg.util_avg * divider;
4187 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4188 	se->avg.util_sum = new_sum;
4189 
4190 	/* Update parent cfs_rq utilization */
4191 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4192 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4193 
4194 	/* See update_cfs_rq_load_avg() */
4195 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4196 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4197 }
4198 
4199 static inline void
4200 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4201 {
4202 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4203 	u32 new_sum, divider;
4204 
4205 	/* Nothing to update */
4206 	if (!delta_avg)
4207 		return;
4208 
4209 	/*
4210 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4211 	 * See ___update_load_avg() for details.
4212 	 */
4213 	divider = get_pelt_divider(&cfs_rq->avg);
4214 
4215 	/* Set new sched_entity's runnable */
4216 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4217 	new_sum = se->avg.runnable_avg * divider;
4218 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4219 	se->avg.runnable_sum = new_sum;
4220 
4221 	/* Update parent cfs_rq runnable */
4222 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4223 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4224 	/* See update_cfs_rq_load_avg() */
4225 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4226 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4227 }
4228 
4229 static inline void
4230 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4231 {
4232 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4233 	unsigned long load_avg;
4234 	u64 load_sum = 0;
4235 	s64 delta_sum;
4236 	u32 divider;
4237 
4238 	if (!runnable_sum)
4239 		return;
4240 
4241 	gcfs_rq->prop_runnable_sum = 0;
4242 
4243 	/*
4244 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4245 	 * See ___update_load_avg() for details.
4246 	 */
4247 	divider = get_pelt_divider(&cfs_rq->avg);
4248 
4249 	if (runnable_sum >= 0) {
4250 		/*
4251 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4252 		 * the CPU is saturated running == runnable.
4253 		 */
4254 		runnable_sum += se->avg.load_sum;
4255 		runnable_sum = min_t(long, runnable_sum, divider);
4256 	} else {
4257 		/*
4258 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4259 		 * assuming all tasks are equally runnable.
4260 		 */
4261 		if (scale_load_down(gcfs_rq->load.weight)) {
4262 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4263 				scale_load_down(gcfs_rq->load.weight));
4264 		}
4265 
4266 		/* But make sure to not inflate se's runnable */
4267 		runnable_sum = min(se->avg.load_sum, load_sum);
4268 	}
4269 
4270 	/*
4271 	 * runnable_sum can't be lower than running_sum
4272 	 * Rescale running sum to be in the same range as runnable sum
4273 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4274 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4275 	 */
4276 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4277 	runnable_sum = max(runnable_sum, running_sum);
4278 
4279 	load_sum = se_weight(se) * runnable_sum;
4280 	load_avg = div_u64(load_sum, divider);
4281 
4282 	delta_avg = load_avg - se->avg.load_avg;
4283 	if (!delta_avg)
4284 		return;
4285 
4286 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4287 
4288 	se->avg.load_sum = runnable_sum;
4289 	se->avg.load_avg = load_avg;
4290 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4291 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4292 	/* See update_cfs_rq_load_avg() */
4293 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4294 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4295 }
4296 
4297 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4298 {
4299 	cfs_rq->propagate = 1;
4300 	cfs_rq->prop_runnable_sum += runnable_sum;
4301 }
4302 
4303 /* Update task and its cfs_rq load average */
4304 static inline int propagate_entity_load_avg(struct sched_entity *se)
4305 {
4306 	struct cfs_rq *cfs_rq, *gcfs_rq;
4307 
4308 	if (entity_is_task(se))
4309 		return 0;
4310 
4311 	gcfs_rq = group_cfs_rq(se);
4312 	if (!gcfs_rq->propagate)
4313 		return 0;
4314 
4315 	gcfs_rq->propagate = 0;
4316 
4317 	cfs_rq = cfs_rq_of(se);
4318 
4319 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4320 
4321 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4322 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4323 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4324 
4325 	trace_pelt_cfs_tp(cfs_rq);
4326 	trace_pelt_se_tp(se);
4327 
4328 	return 1;
4329 }
4330 
4331 /*
4332  * Check if we need to update the load and the utilization of a blocked
4333  * group_entity:
4334  */
4335 static inline bool skip_blocked_update(struct sched_entity *se)
4336 {
4337 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4338 
4339 	/*
4340 	 * If sched_entity still have not zero load or utilization, we have to
4341 	 * decay it:
4342 	 */
4343 	if (se->avg.load_avg || se->avg.util_avg)
4344 		return false;
4345 
4346 	/*
4347 	 * If there is a pending propagation, we have to update the load and
4348 	 * the utilization of the sched_entity:
4349 	 */
4350 	if (gcfs_rq->propagate)
4351 		return false;
4352 
4353 	/*
4354 	 * Otherwise, the load and the utilization of the sched_entity is
4355 	 * already zero and there is no pending propagation, so it will be a
4356 	 * waste of time to try to decay it:
4357 	 */
4358 	return true;
4359 }
4360 
4361 #else /* CONFIG_FAIR_GROUP_SCHED */
4362 
4363 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4364 
4365 static inline int propagate_entity_load_avg(struct sched_entity *se)
4366 {
4367 	return 0;
4368 }
4369 
4370 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4371 
4372 #endif /* CONFIG_FAIR_GROUP_SCHED */
4373 
4374 #ifdef CONFIG_NO_HZ_COMMON
4375 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4376 {
4377 	u64 throttled = 0, now, lut;
4378 	struct cfs_rq *cfs_rq;
4379 	struct rq *rq;
4380 	bool is_idle;
4381 
4382 	if (load_avg_is_decayed(&se->avg))
4383 		return;
4384 
4385 	cfs_rq = cfs_rq_of(se);
4386 	rq = rq_of(cfs_rq);
4387 
4388 	rcu_read_lock();
4389 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4390 	rcu_read_unlock();
4391 
4392 	/*
4393 	 * The lag estimation comes with a cost we don't want to pay all the
4394 	 * time. Hence, limiting to the case where the source CPU is idle and
4395 	 * we know we are at the greatest risk to have an outdated clock.
4396 	 */
4397 	if (!is_idle)
4398 		return;
4399 
4400 	/*
4401 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4402 	 *
4403 	 *   last_update_time (the cfs_rq's last_update_time)
4404 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4405 	 *      = rq_clock_pelt()@cfs_rq_idle
4406 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4407 	 *
4408 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4409 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4410 	 *
4411 	 *   rq_idle_lag (delta between now and rq's update)
4412 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4413 	 *
4414 	 * We can then write:
4415 	 *
4416 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4417 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4418 	 * Where:
4419 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4420 	 *      rq_clock()@rq_idle      is rq->clock_idle
4421 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4422 	 *                              is cfs_rq->throttled_pelt_idle
4423 	 */
4424 
4425 #ifdef CONFIG_CFS_BANDWIDTH
4426 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4427 	/* The clock has been stopped for throttling */
4428 	if (throttled == U64_MAX)
4429 		return;
4430 #endif
4431 	now = u64_u32_load(rq->clock_pelt_idle);
4432 	/*
4433 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4434 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4435 	 * which lead to an underestimation. The opposite would lead to an
4436 	 * overestimation.
4437 	 */
4438 	smp_rmb();
4439 	lut = cfs_rq_last_update_time(cfs_rq);
4440 
4441 	now -= throttled;
4442 	if (now < lut)
4443 		/*
4444 		 * cfs_rq->avg.last_update_time is more recent than our
4445 		 * estimation, let's use it.
4446 		 */
4447 		now = lut;
4448 	else
4449 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4450 
4451 	__update_load_avg_blocked_se(now, se);
4452 }
4453 #else
4454 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4455 #endif
4456 
4457 /**
4458  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4459  * @now: current time, as per cfs_rq_clock_pelt()
4460  * @cfs_rq: cfs_rq to update
4461  *
4462  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4463  * avg. The immediate corollary is that all (fair) tasks must be attached.
4464  *
4465  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4466  *
4467  * Return: true if the load decayed or we removed load.
4468  *
4469  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4470  * call update_tg_load_avg() when this function returns true.
4471  */
4472 static inline int
4473 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4474 {
4475 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4476 	struct sched_avg *sa = &cfs_rq->avg;
4477 	int decayed = 0;
4478 
4479 	if (cfs_rq->removed.nr) {
4480 		unsigned long r;
4481 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4482 
4483 		raw_spin_lock(&cfs_rq->removed.lock);
4484 		swap(cfs_rq->removed.util_avg, removed_util);
4485 		swap(cfs_rq->removed.load_avg, removed_load);
4486 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4487 		cfs_rq->removed.nr = 0;
4488 		raw_spin_unlock(&cfs_rq->removed.lock);
4489 
4490 		r = removed_load;
4491 		sub_positive(&sa->load_avg, r);
4492 		sub_positive(&sa->load_sum, r * divider);
4493 		/* See sa->util_sum below */
4494 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4495 
4496 		r = removed_util;
4497 		sub_positive(&sa->util_avg, r);
4498 		sub_positive(&sa->util_sum, r * divider);
4499 		/*
4500 		 * Because of rounding, se->util_sum might ends up being +1 more than
4501 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4502 		 * a lot of tasks with the rounding problem between 2 updates of
4503 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4504 		 * cfs_util_avg is not.
4505 		 * Check that util_sum is still above its lower bound for the new
4506 		 * util_avg. Given that period_contrib might have moved since the last
4507 		 * sync, we are only sure that util_sum must be above or equal to
4508 		 *    util_avg * minimum possible divider
4509 		 */
4510 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4511 
4512 		r = removed_runnable;
4513 		sub_positive(&sa->runnable_avg, r);
4514 		sub_positive(&sa->runnable_sum, r * divider);
4515 		/* See sa->util_sum above */
4516 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4517 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4518 
4519 		/*
4520 		 * removed_runnable is the unweighted version of removed_load so we
4521 		 * can use it to estimate removed_load_sum.
4522 		 */
4523 		add_tg_cfs_propagate(cfs_rq,
4524 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4525 
4526 		decayed = 1;
4527 	}
4528 
4529 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4530 	u64_u32_store_copy(sa->last_update_time,
4531 			   cfs_rq->last_update_time_copy,
4532 			   sa->last_update_time);
4533 	return decayed;
4534 }
4535 
4536 /**
4537  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4538  * @cfs_rq: cfs_rq to attach to
4539  * @se: sched_entity to attach
4540  *
4541  * Must call update_cfs_rq_load_avg() before this, since we rely on
4542  * cfs_rq->avg.last_update_time being current.
4543  */
4544 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4545 {
4546 	/*
4547 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4548 	 * See ___update_load_avg() for details.
4549 	 */
4550 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4551 
4552 	/*
4553 	 * When we attach the @se to the @cfs_rq, we must align the decay
4554 	 * window because without that, really weird and wonderful things can
4555 	 * happen.
4556 	 *
4557 	 * XXX illustrate
4558 	 */
4559 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4560 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4561 
4562 	/*
4563 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4564 	 * period_contrib. This isn't strictly correct, but since we're
4565 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4566 	 * _sum a little.
4567 	 */
4568 	se->avg.util_sum = se->avg.util_avg * divider;
4569 
4570 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4571 
4572 	se->avg.load_sum = se->avg.load_avg * divider;
4573 	if (se_weight(se) < se->avg.load_sum)
4574 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4575 	else
4576 		se->avg.load_sum = 1;
4577 
4578 	enqueue_load_avg(cfs_rq, se);
4579 	cfs_rq->avg.util_avg += se->avg.util_avg;
4580 	cfs_rq->avg.util_sum += se->avg.util_sum;
4581 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4582 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4583 
4584 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4585 
4586 	cfs_rq_util_change(cfs_rq, 0);
4587 
4588 	trace_pelt_cfs_tp(cfs_rq);
4589 }
4590 
4591 /**
4592  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4593  * @cfs_rq: cfs_rq to detach from
4594  * @se: sched_entity to detach
4595  *
4596  * Must call update_cfs_rq_load_avg() before this, since we rely on
4597  * cfs_rq->avg.last_update_time being current.
4598  */
4599 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4600 {
4601 	dequeue_load_avg(cfs_rq, se);
4602 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4603 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4604 	/* See update_cfs_rq_load_avg() */
4605 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4606 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4607 
4608 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4609 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4610 	/* See update_cfs_rq_load_avg() */
4611 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4612 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4613 
4614 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4615 
4616 	cfs_rq_util_change(cfs_rq, 0);
4617 
4618 	trace_pelt_cfs_tp(cfs_rq);
4619 }
4620 
4621 /*
4622  * Optional action to be done while updating the load average
4623  */
4624 #define UPDATE_TG	0x1
4625 #define SKIP_AGE_LOAD	0x2
4626 #define DO_ATTACH	0x4
4627 #define DO_DETACH	0x8
4628 
4629 /* Update task and its cfs_rq load average */
4630 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4631 {
4632 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4633 	int decayed;
4634 
4635 	/*
4636 	 * Track task load average for carrying it to new CPU after migrated, and
4637 	 * track group sched_entity load average for task_h_load calc in migration
4638 	 */
4639 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4640 		__update_load_avg_se(now, cfs_rq, se);
4641 
4642 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4643 	decayed |= propagate_entity_load_avg(se);
4644 
4645 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4646 
4647 		/*
4648 		 * DO_ATTACH means we're here from enqueue_entity().
4649 		 * !last_update_time means we've passed through
4650 		 * migrate_task_rq_fair() indicating we migrated.
4651 		 *
4652 		 * IOW we're enqueueing a task on a new CPU.
4653 		 */
4654 		attach_entity_load_avg(cfs_rq, se);
4655 		update_tg_load_avg(cfs_rq);
4656 
4657 	} else if (flags & DO_DETACH) {
4658 		/*
4659 		 * DO_DETACH means we're here from dequeue_entity()
4660 		 * and we are migrating task out of the CPU.
4661 		 */
4662 		detach_entity_load_avg(cfs_rq, se);
4663 		update_tg_load_avg(cfs_rq);
4664 	} else if (decayed) {
4665 		cfs_rq_util_change(cfs_rq, 0);
4666 
4667 		if (flags & UPDATE_TG)
4668 			update_tg_load_avg(cfs_rq);
4669 	}
4670 }
4671 
4672 /*
4673  * Synchronize entity load avg of dequeued entity without locking
4674  * the previous rq.
4675  */
4676 static void sync_entity_load_avg(struct sched_entity *se)
4677 {
4678 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4679 	u64 last_update_time;
4680 
4681 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4682 	__update_load_avg_blocked_se(last_update_time, se);
4683 }
4684 
4685 /*
4686  * Task first catches up with cfs_rq, and then subtract
4687  * itself from the cfs_rq (task must be off the queue now).
4688  */
4689 static void remove_entity_load_avg(struct sched_entity *se)
4690 {
4691 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4692 	unsigned long flags;
4693 
4694 	/*
4695 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4696 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4697 	 * so we can remove unconditionally.
4698 	 */
4699 
4700 	sync_entity_load_avg(se);
4701 
4702 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4703 	++cfs_rq->removed.nr;
4704 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4705 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4706 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4707 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4708 }
4709 
4710 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4711 {
4712 	return cfs_rq->avg.runnable_avg;
4713 }
4714 
4715 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4716 {
4717 	return cfs_rq->avg.load_avg;
4718 }
4719 
4720 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4721 
4722 static inline unsigned long task_util(struct task_struct *p)
4723 {
4724 	return READ_ONCE(p->se.avg.util_avg);
4725 }
4726 
4727 static inline unsigned long _task_util_est(struct task_struct *p)
4728 {
4729 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4730 
4731 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4732 }
4733 
4734 static inline unsigned long task_util_est(struct task_struct *p)
4735 {
4736 	return max(task_util(p), _task_util_est(p));
4737 }
4738 
4739 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4740 				    struct task_struct *p)
4741 {
4742 	unsigned int enqueued;
4743 
4744 	if (!sched_feat(UTIL_EST))
4745 		return;
4746 
4747 	/* Update root cfs_rq's estimated utilization */
4748 	enqueued  = cfs_rq->avg.util_est.enqueued;
4749 	enqueued += _task_util_est(p);
4750 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4751 
4752 	trace_sched_util_est_cfs_tp(cfs_rq);
4753 }
4754 
4755 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4756 				    struct task_struct *p)
4757 {
4758 	unsigned int enqueued;
4759 
4760 	if (!sched_feat(UTIL_EST))
4761 		return;
4762 
4763 	/* Update root cfs_rq's estimated utilization */
4764 	enqueued  = cfs_rq->avg.util_est.enqueued;
4765 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4766 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4767 
4768 	trace_sched_util_est_cfs_tp(cfs_rq);
4769 }
4770 
4771 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4772 
4773 /*
4774  * Check if a (signed) value is within a specified (unsigned) margin,
4775  * based on the observation that:
4776  *
4777  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4778  *
4779  * NOTE: this only works when value + margin < INT_MAX.
4780  */
4781 static inline bool within_margin(int value, int margin)
4782 {
4783 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4784 }
4785 
4786 static inline void util_est_update(struct cfs_rq *cfs_rq,
4787 				   struct task_struct *p,
4788 				   bool task_sleep)
4789 {
4790 	long last_ewma_diff, last_enqueued_diff;
4791 	struct util_est ue;
4792 
4793 	if (!sched_feat(UTIL_EST))
4794 		return;
4795 
4796 	/*
4797 	 * Skip update of task's estimated utilization when the task has not
4798 	 * yet completed an activation, e.g. being migrated.
4799 	 */
4800 	if (!task_sleep)
4801 		return;
4802 
4803 	/*
4804 	 * If the PELT values haven't changed since enqueue time,
4805 	 * skip the util_est update.
4806 	 */
4807 	ue = p->se.avg.util_est;
4808 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4809 		return;
4810 
4811 	last_enqueued_diff = ue.enqueued;
4812 
4813 	/*
4814 	 * Reset EWMA on utilization increases, the moving average is used only
4815 	 * to smooth utilization decreases.
4816 	 */
4817 	ue.enqueued = task_util(p);
4818 	if (sched_feat(UTIL_EST_FASTUP)) {
4819 		if (ue.ewma < ue.enqueued) {
4820 			ue.ewma = ue.enqueued;
4821 			goto done;
4822 		}
4823 	}
4824 
4825 	/*
4826 	 * Skip update of task's estimated utilization when its members are
4827 	 * already ~1% close to its last activation value.
4828 	 */
4829 	last_ewma_diff = ue.enqueued - ue.ewma;
4830 	last_enqueued_diff -= ue.enqueued;
4831 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4832 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4833 			goto done;
4834 
4835 		return;
4836 	}
4837 
4838 	/*
4839 	 * To avoid overestimation of actual task utilization, skip updates if
4840 	 * we cannot grant there is idle time in this CPU.
4841 	 */
4842 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4843 		return;
4844 
4845 	/*
4846 	 * Update Task's estimated utilization
4847 	 *
4848 	 * When *p completes an activation we can consolidate another sample
4849 	 * of the task size. This is done by storing the current PELT value
4850 	 * as ue.enqueued and by using this value to update the Exponential
4851 	 * Weighted Moving Average (EWMA):
4852 	 *
4853 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4854 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4855 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4856 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4857 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4858 	 *
4859 	 * Where 'w' is the weight of new samples, which is configured to be
4860 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4861 	 */
4862 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4863 	ue.ewma  += last_ewma_diff;
4864 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4865 done:
4866 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4867 	WRITE_ONCE(p->se.avg.util_est, ue);
4868 
4869 	trace_sched_util_est_se_tp(&p->se);
4870 }
4871 
4872 static inline int util_fits_cpu(unsigned long util,
4873 				unsigned long uclamp_min,
4874 				unsigned long uclamp_max,
4875 				int cpu)
4876 {
4877 	unsigned long capacity_orig, capacity_orig_thermal;
4878 	unsigned long capacity = capacity_of(cpu);
4879 	bool fits, uclamp_max_fits;
4880 
4881 	/*
4882 	 * Check if the real util fits without any uclamp boost/cap applied.
4883 	 */
4884 	fits = fits_capacity(util, capacity);
4885 
4886 	if (!uclamp_is_used())
4887 		return fits;
4888 
4889 	/*
4890 	 * We must use capacity_orig_of() for comparing against uclamp_min and
4891 	 * uclamp_max. We only care about capacity pressure (by using
4892 	 * capacity_of()) for comparing against the real util.
4893 	 *
4894 	 * If a task is boosted to 1024 for example, we don't want a tiny
4895 	 * pressure to skew the check whether it fits a CPU or not.
4896 	 *
4897 	 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4898 	 * should fit a little cpu even if there's some pressure.
4899 	 *
4900 	 * Only exception is for thermal pressure since it has a direct impact
4901 	 * on available OPP of the system.
4902 	 *
4903 	 * We honour it for uclamp_min only as a drop in performance level
4904 	 * could result in not getting the requested minimum performance level.
4905 	 *
4906 	 * For uclamp_max, we can tolerate a drop in performance level as the
4907 	 * goal is to cap the task. So it's okay if it's getting less.
4908 	 */
4909 	capacity_orig = capacity_orig_of(cpu);
4910 	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4911 
4912 	/*
4913 	 * We want to force a task to fit a cpu as implied by uclamp_max.
4914 	 * But we do have some corner cases to cater for..
4915 	 *
4916 	 *
4917 	 *                                 C=z
4918 	 *   |                             ___
4919 	 *   |                  C=y       |   |
4920 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
4921 	 *   |      C=x        |   |      |   |
4922 	 *   |      ___        |   |      |   |
4923 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
4924 	 *   |     |   |       |   |      |   |
4925 	 *   |     |   |       |   |      |   |
4926 	 *   +----------------------------------------
4927 	 *         cpu0        cpu1       cpu2
4928 	 *
4929 	 *   In the above example if a task is capped to a specific performance
4930 	 *   point, y, then when:
4931 	 *
4932 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
4933 	 *     to cpu1
4934 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
4935 	 *     uclamp_max request.
4936 	 *
4937 	 *   which is what we're enforcing here. A task always fits if
4938 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4939 	 *   the normal upmigration rules should withhold still.
4940 	 *
4941 	 *   Only exception is when we are on max capacity, then we need to be
4942 	 *   careful not to block overutilized state. This is so because:
4943 	 *
4944 	 *     1. There's no concept of capping at max_capacity! We can't go
4945 	 *        beyond this performance level anyway.
4946 	 *     2. The system is being saturated when we're operating near
4947 	 *        max capacity, it doesn't make sense to block overutilized.
4948 	 */
4949 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
4950 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
4951 	fits = fits || uclamp_max_fits;
4952 
4953 	/*
4954 	 *
4955 	 *                                 C=z
4956 	 *   |                             ___       (region a, capped, util >= uclamp_max)
4957 	 *   |                  C=y       |   |
4958 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4959 	 *   |      C=x        |   |      |   |
4960 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
4961 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
4962 	 *   |     |   |       |   |      |   |
4963 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
4964 	 *   +----------------------------------------
4965 	 *         cpu0        cpu1       cpu2
4966 	 *
4967 	 * a) If util > uclamp_max, then we're capped, we don't care about
4968 	 *    actual fitness value here. We only care if uclamp_max fits
4969 	 *    capacity without taking margin/pressure into account.
4970 	 *    See comment above.
4971 	 *
4972 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
4973 	 *    fits_capacity() rules apply. Except we need to ensure that we
4974 	 *    enforce we remain within uclamp_max, see comment above.
4975 	 *
4976 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
4977 	 *    need to take into account the boosted value fits the CPU without
4978 	 *    taking margin/pressure into account.
4979 	 *
4980 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
4981 	 * just need to consider an extra check for case (c) after ensuring we
4982 	 * handle the case uclamp_min > uclamp_max.
4983 	 */
4984 	uclamp_min = min(uclamp_min, uclamp_max);
4985 	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
4986 		return -1;
4987 
4988 	return fits;
4989 }
4990 
4991 static inline int task_fits_cpu(struct task_struct *p, int cpu)
4992 {
4993 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
4994 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
4995 	unsigned long util = task_util_est(p);
4996 	/*
4997 	 * Return true only if the cpu fully fits the task requirements, which
4998 	 * include the utilization but also the performance hints.
4999 	 */
5000 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5001 }
5002 
5003 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5004 {
5005 	if (!sched_asym_cpucap_active())
5006 		return;
5007 
5008 	if (!p || p->nr_cpus_allowed == 1) {
5009 		rq->misfit_task_load = 0;
5010 		return;
5011 	}
5012 
5013 	if (task_fits_cpu(p, cpu_of(rq))) {
5014 		rq->misfit_task_load = 0;
5015 		return;
5016 	}
5017 
5018 	/*
5019 	 * Make sure that misfit_task_load will not be null even if
5020 	 * task_h_load() returns 0.
5021 	 */
5022 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5023 }
5024 
5025 #else /* CONFIG_SMP */
5026 
5027 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5028 {
5029 	return !cfs_rq->nr_running;
5030 }
5031 
5032 #define UPDATE_TG	0x0
5033 #define SKIP_AGE_LOAD	0x0
5034 #define DO_ATTACH	0x0
5035 #define DO_DETACH	0x0
5036 
5037 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5038 {
5039 	cfs_rq_util_change(cfs_rq, 0);
5040 }
5041 
5042 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5043 
5044 static inline void
5045 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5046 static inline void
5047 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5048 
5049 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
5050 {
5051 	return 0;
5052 }
5053 
5054 static inline void
5055 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5056 
5057 static inline void
5058 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5059 
5060 static inline void
5061 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5062 		bool task_sleep) {}
5063 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5064 
5065 #endif /* CONFIG_SMP */
5066 
5067 static void
5068 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5069 {
5070 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5071 	s64 lag = 0;
5072 
5073 	se->slice = sysctl_sched_base_slice;
5074 	vslice = calc_delta_fair(se->slice, se);
5075 
5076 	/*
5077 	 * Due to how V is constructed as the weighted average of entities,
5078 	 * adding tasks with positive lag, or removing tasks with negative lag
5079 	 * will move 'time' backwards, this can screw around with the lag of
5080 	 * other tasks.
5081 	 *
5082 	 * EEVDF: placement strategy #1 / #2
5083 	 */
5084 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5085 		struct sched_entity *curr = cfs_rq->curr;
5086 		unsigned long load;
5087 
5088 		lag = se->vlag;
5089 
5090 		/*
5091 		 * If we want to place a task and preserve lag, we have to
5092 		 * consider the effect of the new entity on the weighted
5093 		 * average and compensate for this, otherwise lag can quickly
5094 		 * evaporate.
5095 		 *
5096 		 * Lag is defined as:
5097 		 *
5098 		 *   lag_i = S - s_i = w_i * (V - v_i)
5099 		 *
5100 		 * To avoid the 'w_i' term all over the place, we only track
5101 		 * the virtual lag:
5102 		 *
5103 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5104 		 *
5105 		 * And we take V to be the weighted average of all v:
5106 		 *
5107 		 *   V = (\Sum w_j*v_j) / W
5108 		 *
5109 		 * Where W is: \Sum w_j
5110 		 *
5111 		 * Then, the weighted average after adding an entity with lag
5112 		 * vl_i is given by:
5113 		 *
5114 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5115 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5116 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5117 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5118 		 *      = V - w_i*vl_i / (W + w_i)
5119 		 *
5120 		 * And the actual lag after adding an entity with vl_i is:
5121 		 *
5122 		 *   vl'_i = V' - v_i
5123 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5124 		 *         = vl_i - w_i*vl_i / (W + w_i)
5125 		 *
5126 		 * Which is strictly less than vl_i. So in order to preserve lag
5127 		 * we should inflate the lag before placement such that the
5128 		 * effective lag after placement comes out right.
5129 		 *
5130 		 * As such, invert the above relation for vl'_i to get the vl_i
5131 		 * we need to use such that the lag after placement is the lag
5132 		 * we computed before dequeue.
5133 		 *
5134 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5135 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5136 		 *
5137 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5138 		 *                   = W*vl_i
5139 		 *
5140 		 *   vl_i = (W + w_i)*vl'_i / W
5141 		 */
5142 		load = cfs_rq->avg_load;
5143 		if (curr && curr->on_rq)
5144 			load += scale_load_down(curr->load.weight);
5145 
5146 		lag *= load + scale_load_down(se->load.weight);
5147 		if (WARN_ON_ONCE(!load))
5148 			load = 1;
5149 		lag = div_s64(lag, load);
5150 	}
5151 
5152 	se->vruntime = vruntime - lag;
5153 
5154 	/*
5155 	 * When joining the competition; the exisiting tasks will be,
5156 	 * on average, halfway through their slice, as such start tasks
5157 	 * off with half a slice to ease into the competition.
5158 	 */
5159 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5160 		vslice /= 2;
5161 
5162 	/*
5163 	 * EEVDF: vd_i = ve_i + r_i/w_i
5164 	 */
5165 	se->deadline = se->vruntime + vslice;
5166 }
5167 
5168 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5169 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5170 
5171 static inline bool cfs_bandwidth_used(void);
5172 
5173 static void
5174 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5175 {
5176 	bool curr = cfs_rq->curr == se;
5177 
5178 	/*
5179 	 * If we're the current task, we must renormalise before calling
5180 	 * update_curr().
5181 	 */
5182 	if (curr)
5183 		place_entity(cfs_rq, se, flags);
5184 
5185 	update_curr(cfs_rq);
5186 
5187 	/*
5188 	 * When enqueuing a sched_entity, we must:
5189 	 *   - Update loads to have both entity and cfs_rq synced with now.
5190 	 *   - For group_entity, update its runnable_weight to reflect the new
5191 	 *     h_nr_running of its group cfs_rq.
5192 	 *   - For group_entity, update its weight to reflect the new share of
5193 	 *     its group cfs_rq
5194 	 *   - Add its new weight to cfs_rq->load.weight
5195 	 */
5196 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5197 	se_update_runnable(se);
5198 	/*
5199 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5200 	 * but update_cfs_group() here will re-adjust the weight and have to
5201 	 * undo/redo all that. Seems wasteful.
5202 	 */
5203 	update_cfs_group(se);
5204 
5205 	/*
5206 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5207 	 * we can place the entity.
5208 	 */
5209 	if (!curr)
5210 		place_entity(cfs_rq, se, flags);
5211 
5212 	account_entity_enqueue(cfs_rq, se);
5213 
5214 	/* Entity has migrated, no longer consider this task hot */
5215 	if (flags & ENQUEUE_MIGRATED)
5216 		se->exec_start = 0;
5217 
5218 	check_schedstat_required();
5219 	update_stats_enqueue_fair(cfs_rq, se, flags);
5220 	if (!curr)
5221 		__enqueue_entity(cfs_rq, se);
5222 	se->on_rq = 1;
5223 
5224 	if (cfs_rq->nr_running == 1) {
5225 		check_enqueue_throttle(cfs_rq);
5226 		if (!throttled_hierarchy(cfs_rq)) {
5227 			list_add_leaf_cfs_rq(cfs_rq);
5228 		} else {
5229 #ifdef CONFIG_CFS_BANDWIDTH
5230 			struct rq *rq = rq_of(cfs_rq);
5231 
5232 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5233 				cfs_rq->throttled_clock = rq_clock(rq);
5234 			if (!cfs_rq->throttled_clock_self)
5235 				cfs_rq->throttled_clock_self = rq_clock(rq);
5236 #endif
5237 		}
5238 	}
5239 }
5240 
5241 static void __clear_buddies_next(struct sched_entity *se)
5242 {
5243 	for_each_sched_entity(se) {
5244 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5245 		if (cfs_rq->next != se)
5246 			break;
5247 
5248 		cfs_rq->next = NULL;
5249 	}
5250 }
5251 
5252 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5253 {
5254 	if (cfs_rq->next == se)
5255 		__clear_buddies_next(se);
5256 }
5257 
5258 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5259 
5260 static void
5261 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5262 {
5263 	int action = UPDATE_TG;
5264 
5265 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5266 		action |= DO_DETACH;
5267 
5268 	/*
5269 	 * Update run-time statistics of the 'current'.
5270 	 */
5271 	update_curr(cfs_rq);
5272 
5273 	/*
5274 	 * When dequeuing a sched_entity, we must:
5275 	 *   - Update loads to have both entity and cfs_rq synced with now.
5276 	 *   - For group_entity, update its runnable_weight to reflect the new
5277 	 *     h_nr_running of its group cfs_rq.
5278 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5279 	 *   - For group entity, update its weight to reflect the new share
5280 	 *     of its group cfs_rq.
5281 	 */
5282 	update_load_avg(cfs_rq, se, action);
5283 	se_update_runnable(se);
5284 
5285 	update_stats_dequeue_fair(cfs_rq, se, flags);
5286 
5287 	clear_buddies(cfs_rq, se);
5288 
5289 	update_entity_lag(cfs_rq, se);
5290 	if (se != cfs_rq->curr)
5291 		__dequeue_entity(cfs_rq, se);
5292 	se->on_rq = 0;
5293 	account_entity_dequeue(cfs_rq, se);
5294 
5295 	/* return excess runtime on last dequeue */
5296 	return_cfs_rq_runtime(cfs_rq);
5297 
5298 	update_cfs_group(se);
5299 
5300 	/*
5301 	 * Now advance min_vruntime if @se was the entity holding it back,
5302 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5303 	 * put back on, and if we advance min_vruntime, we'll be placed back
5304 	 * further than we started -- ie. we'll be penalized.
5305 	 */
5306 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5307 		update_min_vruntime(cfs_rq);
5308 
5309 	if (cfs_rq->nr_running == 0)
5310 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5311 }
5312 
5313 static void
5314 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5315 {
5316 	clear_buddies(cfs_rq, se);
5317 
5318 	/* 'current' is not kept within the tree. */
5319 	if (se->on_rq) {
5320 		/*
5321 		 * Any task has to be enqueued before it get to execute on
5322 		 * a CPU. So account for the time it spent waiting on the
5323 		 * runqueue.
5324 		 */
5325 		update_stats_wait_end_fair(cfs_rq, se);
5326 		__dequeue_entity(cfs_rq, se);
5327 		update_load_avg(cfs_rq, se, UPDATE_TG);
5328 		/*
5329 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5330 		 * which isn't used until dequeue.
5331 		 */
5332 		se->vlag = se->deadline;
5333 	}
5334 
5335 	update_stats_curr_start(cfs_rq, se);
5336 	cfs_rq->curr = se;
5337 
5338 	/*
5339 	 * Track our maximum slice length, if the CPU's load is at
5340 	 * least twice that of our own weight (i.e. dont track it
5341 	 * when there are only lesser-weight tasks around):
5342 	 */
5343 	if (schedstat_enabled() &&
5344 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5345 		struct sched_statistics *stats;
5346 
5347 		stats = __schedstats_from_se(se);
5348 		__schedstat_set(stats->slice_max,
5349 				max((u64)stats->slice_max,
5350 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5351 	}
5352 
5353 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5354 }
5355 
5356 /*
5357  * Pick the next process, keeping these things in mind, in this order:
5358  * 1) keep things fair between processes/task groups
5359  * 2) pick the "next" process, since someone really wants that to run
5360  * 3) pick the "last" process, for cache locality
5361  * 4) do not run the "skip" process, if something else is available
5362  */
5363 static struct sched_entity *
5364 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
5365 {
5366 	/*
5367 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5368 	 */
5369 	if (sched_feat(NEXT_BUDDY) &&
5370 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5371 		return cfs_rq->next;
5372 
5373 	return pick_eevdf(cfs_rq);
5374 }
5375 
5376 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5377 
5378 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5379 {
5380 	/*
5381 	 * If still on the runqueue then deactivate_task()
5382 	 * was not called and update_curr() has to be done:
5383 	 */
5384 	if (prev->on_rq)
5385 		update_curr(cfs_rq);
5386 
5387 	/* throttle cfs_rqs exceeding runtime */
5388 	check_cfs_rq_runtime(cfs_rq);
5389 
5390 	if (prev->on_rq) {
5391 		update_stats_wait_start_fair(cfs_rq, prev);
5392 		/* Put 'current' back into the tree. */
5393 		__enqueue_entity(cfs_rq, prev);
5394 		/* in !on_rq case, update occurred at dequeue */
5395 		update_load_avg(cfs_rq, prev, 0);
5396 	}
5397 	cfs_rq->curr = NULL;
5398 }
5399 
5400 static void
5401 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5402 {
5403 	/*
5404 	 * Update run-time statistics of the 'current'.
5405 	 */
5406 	update_curr(cfs_rq);
5407 
5408 	/*
5409 	 * Ensure that runnable average is periodically updated.
5410 	 */
5411 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5412 	update_cfs_group(curr);
5413 
5414 #ifdef CONFIG_SCHED_HRTICK
5415 	/*
5416 	 * queued ticks are scheduled to match the slice, so don't bother
5417 	 * validating it and just reschedule.
5418 	 */
5419 	if (queued) {
5420 		resched_curr(rq_of(cfs_rq));
5421 		return;
5422 	}
5423 	/*
5424 	 * don't let the period tick interfere with the hrtick preemption
5425 	 */
5426 	if (!sched_feat(DOUBLE_TICK) &&
5427 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5428 		return;
5429 #endif
5430 }
5431 
5432 
5433 /**************************************************
5434  * CFS bandwidth control machinery
5435  */
5436 
5437 #ifdef CONFIG_CFS_BANDWIDTH
5438 
5439 #ifdef CONFIG_JUMP_LABEL
5440 static struct static_key __cfs_bandwidth_used;
5441 
5442 static inline bool cfs_bandwidth_used(void)
5443 {
5444 	return static_key_false(&__cfs_bandwidth_used);
5445 }
5446 
5447 void cfs_bandwidth_usage_inc(void)
5448 {
5449 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5450 }
5451 
5452 void cfs_bandwidth_usage_dec(void)
5453 {
5454 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5455 }
5456 #else /* CONFIG_JUMP_LABEL */
5457 static bool cfs_bandwidth_used(void)
5458 {
5459 	return true;
5460 }
5461 
5462 void cfs_bandwidth_usage_inc(void) {}
5463 void cfs_bandwidth_usage_dec(void) {}
5464 #endif /* CONFIG_JUMP_LABEL */
5465 
5466 /*
5467  * default period for cfs group bandwidth.
5468  * default: 0.1s, units: nanoseconds
5469  */
5470 static inline u64 default_cfs_period(void)
5471 {
5472 	return 100000000ULL;
5473 }
5474 
5475 static inline u64 sched_cfs_bandwidth_slice(void)
5476 {
5477 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5478 }
5479 
5480 /*
5481  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5482  * directly instead of rq->clock to avoid adding additional synchronization
5483  * around rq->lock.
5484  *
5485  * requires cfs_b->lock
5486  */
5487 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5488 {
5489 	s64 runtime;
5490 
5491 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5492 		return;
5493 
5494 	cfs_b->runtime += cfs_b->quota;
5495 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5496 	if (runtime > 0) {
5497 		cfs_b->burst_time += runtime;
5498 		cfs_b->nr_burst++;
5499 	}
5500 
5501 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5502 	cfs_b->runtime_snap = cfs_b->runtime;
5503 }
5504 
5505 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5506 {
5507 	return &tg->cfs_bandwidth;
5508 }
5509 
5510 /* returns 0 on failure to allocate runtime */
5511 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5512 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5513 {
5514 	u64 min_amount, amount = 0;
5515 
5516 	lockdep_assert_held(&cfs_b->lock);
5517 
5518 	/* note: this is a positive sum as runtime_remaining <= 0 */
5519 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5520 
5521 	if (cfs_b->quota == RUNTIME_INF)
5522 		amount = min_amount;
5523 	else {
5524 		start_cfs_bandwidth(cfs_b);
5525 
5526 		if (cfs_b->runtime > 0) {
5527 			amount = min(cfs_b->runtime, min_amount);
5528 			cfs_b->runtime -= amount;
5529 			cfs_b->idle = 0;
5530 		}
5531 	}
5532 
5533 	cfs_rq->runtime_remaining += amount;
5534 
5535 	return cfs_rq->runtime_remaining > 0;
5536 }
5537 
5538 /* returns 0 on failure to allocate runtime */
5539 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5540 {
5541 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5542 	int ret;
5543 
5544 	raw_spin_lock(&cfs_b->lock);
5545 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5546 	raw_spin_unlock(&cfs_b->lock);
5547 
5548 	return ret;
5549 }
5550 
5551 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5552 {
5553 	/* dock delta_exec before expiring quota (as it could span periods) */
5554 	cfs_rq->runtime_remaining -= delta_exec;
5555 
5556 	if (likely(cfs_rq->runtime_remaining > 0))
5557 		return;
5558 
5559 	if (cfs_rq->throttled)
5560 		return;
5561 	/*
5562 	 * if we're unable to extend our runtime we resched so that the active
5563 	 * hierarchy can be throttled
5564 	 */
5565 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5566 		resched_curr(rq_of(cfs_rq));
5567 }
5568 
5569 static __always_inline
5570 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5571 {
5572 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5573 		return;
5574 
5575 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5576 }
5577 
5578 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5579 {
5580 	return cfs_bandwidth_used() && cfs_rq->throttled;
5581 }
5582 
5583 /* check whether cfs_rq, or any parent, is throttled */
5584 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5585 {
5586 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5587 }
5588 
5589 /*
5590  * Ensure that neither of the group entities corresponding to src_cpu or
5591  * dest_cpu are members of a throttled hierarchy when performing group
5592  * load-balance operations.
5593  */
5594 static inline int throttled_lb_pair(struct task_group *tg,
5595 				    int src_cpu, int dest_cpu)
5596 {
5597 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5598 
5599 	src_cfs_rq = tg->cfs_rq[src_cpu];
5600 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5601 
5602 	return throttled_hierarchy(src_cfs_rq) ||
5603 	       throttled_hierarchy(dest_cfs_rq);
5604 }
5605 
5606 static int tg_unthrottle_up(struct task_group *tg, void *data)
5607 {
5608 	struct rq *rq = data;
5609 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5610 
5611 	cfs_rq->throttle_count--;
5612 	if (!cfs_rq->throttle_count) {
5613 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5614 					     cfs_rq->throttled_clock_pelt;
5615 
5616 		/* Add cfs_rq with load or one or more already running entities to the list */
5617 		if (!cfs_rq_is_decayed(cfs_rq))
5618 			list_add_leaf_cfs_rq(cfs_rq);
5619 
5620 		if (cfs_rq->throttled_clock_self) {
5621 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5622 
5623 			cfs_rq->throttled_clock_self = 0;
5624 
5625 			if (SCHED_WARN_ON((s64)delta < 0))
5626 				delta = 0;
5627 
5628 			cfs_rq->throttled_clock_self_time += delta;
5629 		}
5630 	}
5631 
5632 	return 0;
5633 }
5634 
5635 static int tg_throttle_down(struct task_group *tg, void *data)
5636 {
5637 	struct rq *rq = data;
5638 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5639 
5640 	/* group is entering throttled state, stop time */
5641 	if (!cfs_rq->throttle_count) {
5642 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5643 		list_del_leaf_cfs_rq(cfs_rq);
5644 
5645 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5646 		if (cfs_rq->nr_running)
5647 			cfs_rq->throttled_clock_self = rq_clock(rq);
5648 	}
5649 	cfs_rq->throttle_count++;
5650 
5651 	return 0;
5652 }
5653 
5654 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5655 {
5656 	struct rq *rq = rq_of(cfs_rq);
5657 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5658 	struct sched_entity *se;
5659 	long task_delta, idle_task_delta, dequeue = 1;
5660 
5661 	raw_spin_lock(&cfs_b->lock);
5662 	/* This will start the period timer if necessary */
5663 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5664 		/*
5665 		 * We have raced with bandwidth becoming available, and if we
5666 		 * actually throttled the timer might not unthrottle us for an
5667 		 * entire period. We additionally needed to make sure that any
5668 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5669 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5670 		 * for 1ns of runtime rather than just check cfs_b.
5671 		 */
5672 		dequeue = 0;
5673 	} else {
5674 		list_add_tail_rcu(&cfs_rq->throttled_list,
5675 				  &cfs_b->throttled_cfs_rq);
5676 	}
5677 	raw_spin_unlock(&cfs_b->lock);
5678 
5679 	if (!dequeue)
5680 		return false;  /* Throttle no longer required. */
5681 
5682 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5683 
5684 	/* freeze hierarchy runnable averages while throttled */
5685 	rcu_read_lock();
5686 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5687 	rcu_read_unlock();
5688 
5689 	task_delta = cfs_rq->h_nr_running;
5690 	idle_task_delta = cfs_rq->idle_h_nr_running;
5691 	for_each_sched_entity(se) {
5692 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5693 		/* throttled entity or throttle-on-deactivate */
5694 		if (!se->on_rq)
5695 			goto done;
5696 
5697 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5698 
5699 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5700 			idle_task_delta = cfs_rq->h_nr_running;
5701 
5702 		qcfs_rq->h_nr_running -= task_delta;
5703 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5704 
5705 		if (qcfs_rq->load.weight) {
5706 			/* Avoid re-evaluating load for this entity: */
5707 			se = parent_entity(se);
5708 			break;
5709 		}
5710 	}
5711 
5712 	for_each_sched_entity(se) {
5713 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5714 		/* throttled entity or throttle-on-deactivate */
5715 		if (!se->on_rq)
5716 			goto done;
5717 
5718 		update_load_avg(qcfs_rq, se, 0);
5719 		se_update_runnable(se);
5720 
5721 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5722 			idle_task_delta = cfs_rq->h_nr_running;
5723 
5724 		qcfs_rq->h_nr_running -= task_delta;
5725 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5726 	}
5727 
5728 	/* At this point se is NULL and we are at root level*/
5729 	sub_nr_running(rq, task_delta);
5730 
5731 done:
5732 	/*
5733 	 * Note: distribution will already see us throttled via the
5734 	 * throttled-list.  rq->lock protects completion.
5735 	 */
5736 	cfs_rq->throttled = 1;
5737 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5738 	if (cfs_rq->nr_running)
5739 		cfs_rq->throttled_clock = rq_clock(rq);
5740 	return true;
5741 }
5742 
5743 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5744 {
5745 	struct rq *rq = rq_of(cfs_rq);
5746 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5747 	struct sched_entity *se;
5748 	long task_delta, idle_task_delta;
5749 
5750 	se = cfs_rq->tg->se[cpu_of(rq)];
5751 
5752 	cfs_rq->throttled = 0;
5753 
5754 	update_rq_clock(rq);
5755 
5756 	raw_spin_lock(&cfs_b->lock);
5757 	if (cfs_rq->throttled_clock) {
5758 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5759 		cfs_rq->throttled_clock = 0;
5760 	}
5761 	list_del_rcu(&cfs_rq->throttled_list);
5762 	raw_spin_unlock(&cfs_b->lock);
5763 
5764 	/* update hierarchical throttle state */
5765 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5766 
5767 	if (!cfs_rq->load.weight) {
5768 		if (!cfs_rq->on_list)
5769 			return;
5770 		/*
5771 		 * Nothing to run but something to decay (on_list)?
5772 		 * Complete the branch.
5773 		 */
5774 		for_each_sched_entity(se) {
5775 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5776 				break;
5777 		}
5778 		goto unthrottle_throttle;
5779 	}
5780 
5781 	task_delta = cfs_rq->h_nr_running;
5782 	idle_task_delta = cfs_rq->idle_h_nr_running;
5783 	for_each_sched_entity(se) {
5784 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5785 
5786 		if (se->on_rq)
5787 			break;
5788 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5789 
5790 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5791 			idle_task_delta = cfs_rq->h_nr_running;
5792 
5793 		qcfs_rq->h_nr_running += task_delta;
5794 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5795 
5796 		/* end evaluation on encountering a throttled cfs_rq */
5797 		if (cfs_rq_throttled(qcfs_rq))
5798 			goto unthrottle_throttle;
5799 	}
5800 
5801 	for_each_sched_entity(se) {
5802 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5803 
5804 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5805 		se_update_runnable(se);
5806 
5807 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5808 			idle_task_delta = cfs_rq->h_nr_running;
5809 
5810 		qcfs_rq->h_nr_running += task_delta;
5811 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5812 
5813 		/* end evaluation on encountering a throttled cfs_rq */
5814 		if (cfs_rq_throttled(qcfs_rq))
5815 			goto unthrottle_throttle;
5816 	}
5817 
5818 	/* At this point se is NULL and we are at root level*/
5819 	add_nr_running(rq, task_delta);
5820 
5821 unthrottle_throttle:
5822 	assert_list_leaf_cfs_rq(rq);
5823 
5824 	/* Determine whether we need to wake up potentially idle CPU: */
5825 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5826 		resched_curr(rq);
5827 }
5828 
5829 #ifdef CONFIG_SMP
5830 static void __cfsb_csd_unthrottle(void *arg)
5831 {
5832 	struct cfs_rq *cursor, *tmp;
5833 	struct rq *rq = arg;
5834 	struct rq_flags rf;
5835 
5836 	rq_lock(rq, &rf);
5837 
5838 	/*
5839 	 * Iterating over the list can trigger several call to
5840 	 * update_rq_clock() in unthrottle_cfs_rq().
5841 	 * Do it once and skip the potential next ones.
5842 	 */
5843 	update_rq_clock(rq);
5844 	rq_clock_start_loop_update(rq);
5845 
5846 	/*
5847 	 * Since we hold rq lock we're safe from concurrent manipulation of
5848 	 * the CSD list. However, this RCU critical section annotates the
5849 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5850 	 * race with group being freed in the window between removing it
5851 	 * from the list and advancing to the next entry in the list.
5852 	 */
5853 	rcu_read_lock();
5854 
5855 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5856 				 throttled_csd_list) {
5857 		list_del_init(&cursor->throttled_csd_list);
5858 
5859 		if (cfs_rq_throttled(cursor))
5860 			unthrottle_cfs_rq(cursor);
5861 	}
5862 
5863 	rcu_read_unlock();
5864 
5865 	rq_clock_stop_loop_update(rq);
5866 	rq_unlock(rq, &rf);
5867 }
5868 
5869 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5870 {
5871 	struct rq *rq = rq_of(cfs_rq);
5872 	bool first;
5873 
5874 	if (rq == this_rq()) {
5875 		unthrottle_cfs_rq(cfs_rq);
5876 		return;
5877 	}
5878 
5879 	/* Already enqueued */
5880 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5881 		return;
5882 
5883 	first = list_empty(&rq->cfsb_csd_list);
5884 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5885 	if (first)
5886 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5887 }
5888 #else
5889 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5890 {
5891 	unthrottle_cfs_rq(cfs_rq);
5892 }
5893 #endif
5894 
5895 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5896 {
5897 	lockdep_assert_rq_held(rq_of(cfs_rq));
5898 
5899 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5900 	    cfs_rq->runtime_remaining <= 0))
5901 		return;
5902 
5903 	__unthrottle_cfs_rq_async(cfs_rq);
5904 }
5905 
5906 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5907 {
5908 	struct cfs_rq *local_unthrottle = NULL;
5909 	int this_cpu = smp_processor_id();
5910 	u64 runtime, remaining = 1;
5911 	bool throttled = false;
5912 	struct cfs_rq *cfs_rq;
5913 	struct rq_flags rf;
5914 	struct rq *rq;
5915 
5916 	rcu_read_lock();
5917 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5918 				throttled_list) {
5919 		rq = rq_of(cfs_rq);
5920 
5921 		if (!remaining) {
5922 			throttled = true;
5923 			break;
5924 		}
5925 
5926 		rq_lock_irqsave(rq, &rf);
5927 		if (!cfs_rq_throttled(cfs_rq))
5928 			goto next;
5929 
5930 #ifdef CONFIG_SMP
5931 		/* Already queued for async unthrottle */
5932 		if (!list_empty(&cfs_rq->throttled_csd_list))
5933 			goto next;
5934 #endif
5935 
5936 		/* By the above checks, this should never be true */
5937 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5938 
5939 		raw_spin_lock(&cfs_b->lock);
5940 		runtime = -cfs_rq->runtime_remaining + 1;
5941 		if (runtime > cfs_b->runtime)
5942 			runtime = cfs_b->runtime;
5943 		cfs_b->runtime -= runtime;
5944 		remaining = cfs_b->runtime;
5945 		raw_spin_unlock(&cfs_b->lock);
5946 
5947 		cfs_rq->runtime_remaining += runtime;
5948 
5949 		/* we check whether we're throttled above */
5950 		if (cfs_rq->runtime_remaining > 0) {
5951 			if (cpu_of(rq) != this_cpu ||
5952 			    SCHED_WARN_ON(local_unthrottle))
5953 				unthrottle_cfs_rq_async(cfs_rq);
5954 			else
5955 				local_unthrottle = cfs_rq;
5956 		} else {
5957 			throttled = true;
5958 		}
5959 
5960 next:
5961 		rq_unlock_irqrestore(rq, &rf);
5962 	}
5963 	rcu_read_unlock();
5964 
5965 	if (local_unthrottle) {
5966 		rq = cpu_rq(this_cpu);
5967 		rq_lock_irqsave(rq, &rf);
5968 		if (cfs_rq_throttled(local_unthrottle))
5969 			unthrottle_cfs_rq(local_unthrottle);
5970 		rq_unlock_irqrestore(rq, &rf);
5971 	}
5972 
5973 	return throttled;
5974 }
5975 
5976 /*
5977  * Responsible for refilling a task_group's bandwidth and unthrottling its
5978  * cfs_rqs as appropriate. If there has been no activity within the last
5979  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5980  * used to track this state.
5981  */
5982 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5983 {
5984 	int throttled;
5985 
5986 	/* no need to continue the timer with no bandwidth constraint */
5987 	if (cfs_b->quota == RUNTIME_INF)
5988 		goto out_deactivate;
5989 
5990 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5991 	cfs_b->nr_periods += overrun;
5992 
5993 	/* Refill extra burst quota even if cfs_b->idle */
5994 	__refill_cfs_bandwidth_runtime(cfs_b);
5995 
5996 	/*
5997 	 * idle depends on !throttled (for the case of a large deficit), and if
5998 	 * we're going inactive then everything else can be deferred
5999 	 */
6000 	if (cfs_b->idle && !throttled)
6001 		goto out_deactivate;
6002 
6003 	if (!throttled) {
6004 		/* mark as potentially idle for the upcoming period */
6005 		cfs_b->idle = 1;
6006 		return 0;
6007 	}
6008 
6009 	/* account preceding periods in which throttling occurred */
6010 	cfs_b->nr_throttled += overrun;
6011 
6012 	/*
6013 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6014 	 */
6015 	while (throttled && cfs_b->runtime > 0) {
6016 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6017 		/* we can't nest cfs_b->lock while distributing bandwidth */
6018 		throttled = distribute_cfs_runtime(cfs_b);
6019 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6020 	}
6021 
6022 	/*
6023 	 * While we are ensured activity in the period following an
6024 	 * unthrottle, this also covers the case in which the new bandwidth is
6025 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6026 	 * timer to remain active while there are any throttled entities.)
6027 	 */
6028 	cfs_b->idle = 0;
6029 
6030 	return 0;
6031 
6032 out_deactivate:
6033 	return 1;
6034 }
6035 
6036 /* a cfs_rq won't donate quota below this amount */
6037 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6038 /* minimum remaining period time to redistribute slack quota */
6039 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6040 /* how long we wait to gather additional slack before distributing */
6041 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6042 
6043 /*
6044  * Are we near the end of the current quota period?
6045  *
6046  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6047  * hrtimer base being cleared by hrtimer_start. In the case of
6048  * migrate_hrtimers, base is never cleared, so we are fine.
6049  */
6050 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6051 {
6052 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6053 	s64 remaining;
6054 
6055 	/* if the call-back is running a quota refresh is already occurring */
6056 	if (hrtimer_callback_running(refresh_timer))
6057 		return 1;
6058 
6059 	/* is a quota refresh about to occur? */
6060 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6061 	if (remaining < (s64)min_expire)
6062 		return 1;
6063 
6064 	return 0;
6065 }
6066 
6067 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6068 {
6069 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6070 
6071 	/* if there's a quota refresh soon don't bother with slack */
6072 	if (runtime_refresh_within(cfs_b, min_left))
6073 		return;
6074 
6075 	/* don't push forwards an existing deferred unthrottle */
6076 	if (cfs_b->slack_started)
6077 		return;
6078 	cfs_b->slack_started = true;
6079 
6080 	hrtimer_start(&cfs_b->slack_timer,
6081 			ns_to_ktime(cfs_bandwidth_slack_period),
6082 			HRTIMER_MODE_REL);
6083 }
6084 
6085 /* we know any runtime found here is valid as update_curr() precedes return */
6086 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6087 {
6088 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6089 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6090 
6091 	if (slack_runtime <= 0)
6092 		return;
6093 
6094 	raw_spin_lock(&cfs_b->lock);
6095 	if (cfs_b->quota != RUNTIME_INF) {
6096 		cfs_b->runtime += slack_runtime;
6097 
6098 		/* we are under rq->lock, defer unthrottling using a timer */
6099 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6100 		    !list_empty(&cfs_b->throttled_cfs_rq))
6101 			start_cfs_slack_bandwidth(cfs_b);
6102 	}
6103 	raw_spin_unlock(&cfs_b->lock);
6104 
6105 	/* even if it's not valid for return we don't want to try again */
6106 	cfs_rq->runtime_remaining -= slack_runtime;
6107 }
6108 
6109 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6110 {
6111 	if (!cfs_bandwidth_used())
6112 		return;
6113 
6114 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6115 		return;
6116 
6117 	__return_cfs_rq_runtime(cfs_rq);
6118 }
6119 
6120 /*
6121  * This is done with a timer (instead of inline with bandwidth return) since
6122  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6123  */
6124 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6125 {
6126 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6127 	unsigned long flags;
6128 
6129 	/* confirm we're still not at a refresh boundary */
6130 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6131 	cfs_b->slack_started = false;
6132 
6133 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6134 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6135 		return;
6136 	}
6137 
6138 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6139 		runtime = cfs_b->runtime;
6140 
6141 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6142 
6143 	if (!runtime)
6144 		return;
6145 
6146 	distribute_cfs_runtime(cfs_b);
6147 }
6148 
6149 /*
6150  * When a group wakes up we want to make sure that its quota is not already
6151  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6152  * runtime as update_curr() throttling can not trigger until it's on-rq.
6153  */
6154 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6155 {
6156 	if (!cfs_bandwidth_used())
6157 		return;
6158 
6159 	/* an active group must be handled by the update_curr()->put() path */
6160 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6161 		return;
6162 
6163 	/* ensure the group is not already throttled */
6164 	if (cfs_rq_throttled(cfs_rq))
6165 		return;
6166 
6167 	/* update runtime allocation */
6168 	account_cfs_rq_runtime(cfs_rq, 0);
6169 	if (cfs_rq->runtime_remaining <= 0)
6170 		throttle_cfs_rq(cfs_rq);
6171 }
6172 
6173 static void sync_throttle(struct task_group *tg, int cpu)
6174 {
6175 	struct cfs_rq *pcfs_rq, *cfs_rq;
6176 
6177 	if (!cfs_bandwidth_used())
6178 		return;
6179 
6180 	if (!tg->parent)
6181 		return;
6182 
6183 	cfs_rq = tg->cfs_rq[cpu];
6184 	pcfs_rq = tg->parent->cfs_rq[cpu];
6185 
6186 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6187 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6188 }
6189 
6190 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6191 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6192 {
6193 	if (!cfs_bandwidth_used())
6194 		return false;
6195 
6196 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6197 		return false;
6198 
6199 	/*
6200 	 * it's possible for a throttled entity to be forced into a running
6201 	 * state (e.g. set_curr_task), in this case we're finished.
6202 	 */
6203 	if (cfs_rq_throttled(cfs_rq))
6204 		return true;
6205 
6206 	return throttle_cfs_rq(cfs_rq);
6207 }
6208 
6209 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6210 {
6211 	struct cfs_bandwidth *cfs_b =
6212 		container_of(timer, struct cfs_bandwidth, slack_timer);
6213 
6214 	do_sched_cfs_slack_timer(cfs_b);
6215 
6216 	return HRTIMER_NORESTART;
6217 }
6218 
6219 extern const u64 max_cfs_quota_period;
6220 
6221 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6222 {
6223 	struct cfs_bandwidth *cfs_b =
6224 		container_of(timer, struct cfs_bandwidth, period_timer);
6225 	unsigned long flags;
6226 	int overrun;
6227 	int idle = 0;
6228 	int count = 0;
6229 
6230 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6231 	for (;;) {
6232 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6233 		if (!overrun)
6234 			break;
6235 
6236 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6237 
6238 		if (++count > 3) {
6239 			u64 new, old = ktime_to_ns(cfs_b->period);
6240 
6241 			/*
6242 			 * Grow period by a factor of 2 to avoid losing precision.
6243 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6244 			 * to fail.
6245 			 */
6246 			new = old * 2;
6247 			if (new < max_cfs_quota_period) {
6248 				cfs_b->period = ns_to_ktime(new);
6249 				cfs_b->quota *= 2;
6250 				cfs_b->burst *= 2;
6251 
6252 				pr_warn_ratelimited(
6253 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6254 					smp_processor_id(),
6255 					div_u64(new, NSEC_PER_USEC),
6256 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6257 			} else {
6258 				pr_warn_ratelimited(
6259 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6260 					smp_processor_id(),
6261 					div_u64(old, NSEC_PER_USEC),
6262 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6263 			}
6264 
6265 			/* reset count so we don't come right back in here */
6266 			count = 0;
6267 		}
6268 	}
6269 	if (idle)
6270 		cfs_b->period_active = 0;
6271 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6272 
6273 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6274 }
6275 
6276 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6277 {
6278 	raw_spin_lock_init(&cfs_b->lock);
6279 	cfs_b->runtime = 0;
6280 	cfs_b->quota = RUNTIME_INF;
6281 	cfs_b->period = ns_to_ktime(default_cfs_period());
6282 	cfs_b->burst = 0;
6283 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6284 
6285 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6286 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6287 	cfs_b->period_timer.function = sched_cfs_period_timer;
6288 
6289 	/* Add a random offset so that timers interleave */
6290 	hrtimer_set_expires(&cfs_b->period_timer,
6291 			    get_random_u32_below(cfs_b->period));
6292 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6293 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6294 	cfs_b->slack_started = false;
6295 }
6296 
6297 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6298 {
6299 	cfs_rq->runtime_enabled = 0;
6300 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6301 #ifdef CONFIG_SMP
6302 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6303 #endif
6304 }
6305 
6306 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6307 {
6308 	lockdep_assert_held(&cfs_b->lock);
6309 
6310 	if (cfs_b->period_active)
6311 		return;
6312 
6313 	cfs_b->period_active = 1;
6314 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6315 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6316 }
6317 
6318 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6319 {
6320 	int __maybe_unused i;
6321 
6322 	/* init_cfs_bandwidth() was not called */
6323 	if (!cfs_b->throttled_cfs_rq.next)
6324 		return;
6325 
6326 	hrtimer_cancel(&cfs_b->period_timer);
6327 	hrtimer_cancel(&cfs_b->slack_timer);
6328 
6329 	/*
6330 	 * It is possible that we still have some cfs_rq's pending on a CSD
6331 	 * list, though this race is very rare. In order for this to occur, we
6332 	 * must have raced with the last task leaving the group while there
6333 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6334 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6335 	 * we can simply flush all pending CSD work inline here. We're
6336 	 * guaranteed at this point that no additional cfs_rq of this group can
6337 	 * join a CSD list.
6338 	 */
6339 #ifdef CONFIG_SMP
6340 	for_each_possible_cpu(i) {
6341 		struct rq *rq = cpu_rq(i);
6342 		unsigned long flags;
6343 
6344 		if (list_empty(&rq->cfsb_csd_list))
6345 			continue;
6346 
6347 		local_irq_save(flags);
6348 		__cfsb_csd_unthrottle(rq);
6349 		local_irq_restore(flags);
6350 	}
6351 #endif
6352 }
6353 
6354 /*
6355  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6356  *
6357  * The race is harmless, since modifying bandwidth settings of unhooked group
6358  * bits doesn't do much.
6359  */
6360 
6361 /* cpu online callback */
6362 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6363 {
6364 	struct task_group *tg;
6365 
6366 	lockdep_assert_rq_held(rq);
6367 
6368 	rcu_read_lock();
6369 	list_for_each_entry_rcu(tg, &task_groups, list) {
6370 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6371 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6372 
6373 		raw_spin_lock(&cfs_b->lock);
6374 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6375 		raw_spin_unlock(&cfs_b->lock);
6376 	}
6377 	rcu_read_unlock();
6378 }
6379 
6380 /* cpu offline callback */
6381 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6382 {
6383 	struct task_group *tg;
6384 
6385 	lockdep_assert_rq_held(rq);
6386 
6387 	/*
6388 	 * The rq clock has already been updated in the
6389 	 * set_rq_offline(), so we should skip updating
6390 	 * the rq clock again in unthrottle_cfs_rq().
6391 	 */
6392 	rq_clock_start_loop_update(rq);
6393 
6394 	rcu_read_lock();
6395 	list_for_each_entry_rcu(tg, &task_groups, list) {
6396 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6397 
6398 		if (!cfs_rq->runtime_enabled)
6399 			continue;
6400 
6401 		/*
6402 		 * clock_task is not advancing so we just need to make sure
6403 		 * there's some valid quota amount
6404 		 */
6405 		cfs_rq->runtime_remaining = 1;
6406 		/*
6407 		 * Offline rq is schedulable till CPU is completely disabled
6408 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6409 		 */
6410 		cfs_rq->runtime_enabled = 0;
6411 
6412 		if (cfs_rq_throttled(cfs_rq))
6413 			unthrottle_cfs_rq(cfs_rq);
6414 	}
6415 	rcu_read_unlock();
6416 
6417 	rq_clock_stop_loop_update(rq);
6418 }
6419 
6420 bool cfs_task_bw_constrained(struct task_struct *p)
6421 {
6422 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6423 
6424 	if (!cfs_bandwidth_used())
6425 		return false;
6426 
6427 	if (cfs_rq->runtime_enabled ||
6428 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6429 		return true;
6430 
6431 	return false;
6432 }
6433 
6434 #ifdef CONFIG_NO_HZ_FULL
6435 /* called from pick_next_task_fair() */
6436 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6437 {
6438 	int cpu = cpu_of(rq);
6439 
6440 	if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6441 		return;
6442 
6443 	if (!tick_nohz_full_cpu(cpu))
6444 		return;
6445 
6446 	if (rq->nr_running != 1)
6447 		return;
6448 
6449 	/*
6450 	 *  We know there is only one task runnable and we've just picked it. The
6451 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6452 	 *  be otherwise able to stop the tick. Just need to check if we are using
6453 	 *  bandwidth control.
6454 	 */
6455 	if (cfs_task_bw_constrained(p))
6456 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6457 }
6458 #endif
6459 
6460 #else /* CONFIG_CFS_BANDWIDTH */
6461 
6462 static inline bool cfs_bandwidth_used(void)
6463 {
6464 	return false;
6465 }
6466 
6467 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6468 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6469 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6470 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6471 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6472 
6473 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6474 {
6475 	return 0;
6476 }
6477 
6478 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6479 {
6480 	return 0;
6481 }
6482 
6483 static inline int throttled_lb_pair(struct task_group *tg,
6484 				    int src_cpu, int dest_cpu)
6485 {
6486 	return 0;
6487 }
6488 
6489 #ifdef CONFIG_FAIR_GROUP_SCHED
6490 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6491 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6492 #endif
6493 
6494 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6495 {
6496 	return NULL;
6497 }
6498 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6499 static inline void update_runtime_enabled(struct rq *rq) {}
6500 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6501 #ifdef CONFIG_CGROUP_SCHED
6502 bool cfs_task_bw_constrained(struct task_struct *p)
6503 {
6504 	return false;
6505 }
6506 #endif
6507 #endif /* CONFIG_CFS_BANDWIDTH */
6508 
6509 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6510 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6511 #endif
6512 
6513 /**************************************************
6514  * CFS operations on tasks:
6515  */
6516 
6517 #ifdef CONFIG_SCHED_HRTICK
6518 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6519 {
6520 	struct sched_entity *se = &p->se;
6521 
6522 	SCHED_WARN_ON(task_rq(p) != rq);
6523 
6524 	if (rq->cfs.h_nr_running > 1) {
6525 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6526 		u64 slice = se->slice;
6527 		s64 delta = slice - ran;
6528 
6529 		if (delta < 0) {
6530 			if (task_current(rq, p))
6531 				resched_curr(rq);
6532 			return;
6533 		}
6534 		hrtick_start(rq, delta);
6535 	}
6536 }
6537 
6538 /*
6539  * called from enqueue/dequeue and updates the hrtick when the
6540  * current task is from our class and nr_running is low enough
6541  * to matter.
6542  */
6543 static void hrtick_update(struct rq *rq)
6544 {
6545 	struct task_struct *curr = rq->curr;
6546 
6547 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6548 		return;
6549 
6550 	hrtick_start_fair(rq, curr);
6551 }
6552 #else /* !CONFIG_SCHED_HRTICK */
6553 static inline void
6554 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6555 {
6556 }
6557 
6558 static inline void hrtick_update(struct rq *rq)
6559 {
6560 }
6561 #endif
6562 
6563 #ifdef CONFIG_SMP
6564 static inline bool cpu_overutilized(int cpu)
6565 {
6566 	unsigned long  rq_util_min, rq_util_max;
6567 
6568 	if (!sched_energy_enabled())
6569 		return false;
6570 
6571 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6572 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6573 
6574 	/* Return true only if the utilization doesn't fit CPU's capacity */
6575 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6576 }
6577 
6578 static inline void set_rd_overutilized_status(struct root_domain *rd,
6579 					      unsigned int status)
6580 {
6581 	if (!sched_energy_enabled())
6582 		return;
6583 
6584 	WRITE_ONCE(rd->overutilized, status);
6585 	trace_sched_overutilized_tp(rd, !!status);
6586 }
6587 
6588 static inline void check_update_overutilized_status(struct rq *rq)
6589 {
6590 	/*
6591 	 * overutilized field is used for load balancing decisions only
6592 	 * if energy aware scheduler is being used
6593 	 */
6594 	if (!sched_energy_enabled())
6595 		return;
6596 
6597 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
6598 		set_rd_overutilized_status(rq->rd, SG_OVERUTILIZED);
6599 }
6600 #else
6601 static inline void check_update_overutilized_status(struct rq *rq) { }
6602 #endif
6603 
6604 /* Runqueue only has SCHED_IDLE tasks enqueued */
6605 static int sched_idle_rq(struct rq *rq)
6606 {
6607 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6608 			rq->nr_running);
6609 }
6610 
6611 #ifdef CONFIG_SMP
6612 static int sched_idle_cpu(int cpu)
6613 {
6614 	return sched_idle_rq(cpu_rq(cpu));
6615 }
6616 #endif
6617 
6618 /*
6619  * The enqueue_task method is called before nr_running is
6620  * increased. Here we update the fair scheduling stats and
6621  * then put the task into the rbtree:
6622  */
6623 static void
6624 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6625 {
6626 	struct cfs_rq *cfs_rq;
6627 	struct sched_entity *se = &p->se;
6628 	int idle_h_nr_running = task_has_idle_policy(p);
6629 	int task_new = !(flags & ENQUEUE_WAKEUP);
6630 
6631 	/*
6632 	 * The code below (indirectly) updates schedutil which looks at
6633 	 * the cfs_rq utilization to select a frequency.
6634 	 * Let's add the task's estimated utilization to the cfs_rq's
6635 	 * estimated utilization, before we update schedutil.
6636 	 */
6637 	util_est_enqueue(&rq->cfs, p);
6638 
6639 	/*
6640 	 * If in_iowait is set, the code below may not trigger any cpufreq
6641 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6642 	 * passed.
6643 	 */
6644 	if (p->in_iowait)
6645 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6646 
6647 	for_each_sched_entity(se) {
6648 		if (se->on_rq)
6649 			break;
6650 		cfs_rq = cfs_rq_of(se);
6651 		enqueue_entity(cfs_rq, se, flags);
6652 
6653 		cfs_rq->h_nr_running++;
6654 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6655 
6656 		if (cfs_rq_is_idle(cfs_rq))
6657 			idle_h_nr_running = 1;
6658 
6659 		/* end evaluation on encountering a throttled cfs_rq */
6660 		if (cfs_rq_throttled(cfs_rq))
6661 			goto enqueue_throttle;
6662 
6663 		flags = ENQUEUE_WAKEUP;
6664 	}
6665 
6666 	for_each_sched_entity(se) {
6667 		cfs_rq = cfs_rq_of(se);
6668 
6669 		update_load_avg(cfs_rq, se, UPDATE_TG);
6670 		se_update_runnable(se);
6671 		update_cfs_group(se);
6672 
6673 		cfs_rq->h_nr_running++;
6674 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6675 
6676 		if (cfs_rq_is_idle(cfs_rq))
6677 			idle_h_nr_running = 1;
6678 
6679 		/* end evaluation on encountering a throttled cfs_rq */
6680 		if (cfs_rq_throttled(cfs_rq))
6681 			goto enqueue_throttle;
6682 	}
6683 
6684 	/* At this point se is NULL and we are at root level*/
6685 	add_nr_running(rq, 1);
6686 
6687 	/*
6688 	 * Since new tasks are assigned an initial util_avg equal to
6689 	 * half of the spare capacity of their CPU, tiny tasks have the
6690 	 * ability to cross the overutilized threshold, which will
6691 	 * result in the load balancer ruining all the task placement
6692 	 * done by EAS. As a way to mitigate that effect, do not account
6693 	 * for the first enqueue operation of new tasks during the
6694 	 * overutilized flag detection.
6695 	 *
6696 	 * A better way of solving this problem would be to wait for
6697 	 * the PELT signals of tasks to converge before taking them
6698 	 * into account, but that is not straightforward to implement,
6699 	 * and the following generally works well enough in practice.
6700 	 */
6701 	if (!task_new)
6702 		check_update_overutilized_status(rq);
6703 
6704 enqueue_throttle:
6705 	assert_list_leaf_cfs_rq(rq);
6706 
6707 	hrtick_update(rq);
6708 }
6709 
6710 static void set_next_buddy(struct sched_entity *se);
6711 
6712 /*
6713  * The dequeue_task method is called before nr_running is
6714  * decreased. We remove the task from the rbtree and
6715  * update the fair scheduling stats:
6716  */
6717 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6718 {
6719 	struct cfs_rq *cfs_rq;
6720 	struct sched_entity *se = &p->se;
6721 	int task_sleep = flags & DEQUEUE_SLEEP;
6722 	int idle_h_nr_running = task_has_idle_policy(p);
6723 	bool was_sched_idle = sched_idle_rq(rq);
6724 
6725 	util_est_dequeue(&rq->cfs, p);
6726 
6727 	for_each_sched_entity(se) {
6728 		cfs_rq = cfs_rq_of(se);
6729 		dequeue_entity(cfs_rq, se, flags);
6730 
6731 		cfs_rq->h_nr_running--;
6732 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6733 
6734 		if (cfs_rq_is_idle(cfs_rq))
6735 			idle_h_nr_running = 1;
6736 
6737 		/* end evaluation on encountering a throttled cfs_rq */
6738 		if (cfs_rq_throttled(cfs_rq))
6739 			goto dequeue_throttle;
6740 
6741 		/* Don't dequeue parent if it has other entities besides us */
6742 		if (cfs_rq->load.weight) {
6743 			/* Avoid re-evaluating load for this entity: */
6744 			se = parent_entity(se);
6745 			/*
6746 			 * Bias pick_next to pick a task from this cfs_rq, as
6747 			 * p is sleeping when it is within its sched_slice.
6748 			 */
6749 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6750 				set_next_buddy(se);
6751 			break;
6752 		}
6753 		flags |= DEQUEUE_SLEEP;
6754 	}
6755 
6756 	for_each_sched_entity(se) {
6757 		cfs_rq = cfs_rq_of(se);
6758 
6759 		update_load_avg(cfs_rq, se, UPDATE_TG);
6760 		se_update_runnable(se);
6761 		update_cfs_group(se);
6762 
6763 		cfs_rq->h_nr_running--;
6764 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6765 
6766 		if (cfs_rq_is_idle(cfs_rq))
6767 			idle_h_nr_running = 1;
6768 
6769 		/* end evaluation on encountering a throttled cfs_rq */
6770 		if (cfs_rq_throttled(cfs_rq))
6771 			goto dequeue_throttle;
6772 
6773 	}
6774 
6775 	/* At this point se is NULL and we are at root level*/
6776 	sub_nr_running(rq, 1);
6777 
6778 	/* balance early to pull high priority tasks */
6779 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6780 		rq->next_balance = jiffies;
6781 
6782 dequeue_throttle:
6783 	util_est_update(&rq->cfs, p, task_sleep);
6784 	hrtick_update(rq);
6785 }
6786 
6787 #ifdef CONFIG_SMP
6788 
6789 /* Working cpumask for: load_balance, load_balance_newidle. */
6790 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6791 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6792 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6793 
6794 #ifdef CONFIG_NO_HZ_COMMON
6795 
6796 static struct {
6797 	cpumask_var_t idle_cpus_mask;
6798 	atomic_t nr_cpus;
6799 	int has_blocked;		/* Idle CPUS has blocked load */
6800 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6801 	unsigned long next_balance;     /* in jiffy units */
6802 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6803 } nohz ____cacheline_aligned;
6804 
6805 #endif /* CONFIG_NO_HZ_COMMON */
6806 
6807 static unsigned long cpu_load(struct rq *rq)
6808 {
6809 	return cfs_rq_load_avg(&rq->cfs);
6810 }
6811 
6812 /*
6813  * cpu_load_without - compute CPU load without any contributions from *p
6814  * @cpu: the CPU which load is requested
6815  * @p: the task which load should be discounted
6816  *
6817  * The load of a CPU is defined by the load of tasks currently enqueued on that
6818  * CPU as well as tasks which are currently sleeping after an execution on that
6819  * CPU.
6820  *
6821  * This method returns the load of the specified CPU by discounting the load of
6822  * the specified task, whenever the task is currently contributing to the CPU
6823  * load.
6824  */
6825 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6826 {
6827 	struct cfs_rq *cfs_rq;
6828 	unsigned int load;
6829 
6830 	/* Task has no contribution or is new */
6831 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6832 		return cpu_load(rq);
6833 
6834 	cfs_rq = &rq->cfs;
6835 	load = READ_ONCE(cfs_rq->avg.load_avg);
6836 
6837 	/* Discount task's util from CPU's util */
6838 	lsub_positive(&load, task_h_load(p));
6839 
6840 	return load;
6841 }
6842 
6843 static unsigned long cpu_runnable(struct rq *rq)
6844 {
6845 	return cfs_rq_runnable_avg(&rq->cfs);
6846 }
6847 
6848 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6849 {
6850 	struct cfs_rq *cfs_rq;
6851 	unsigned int runnable;
6852 
6853 	/* Task has no contribution or is new */
6854 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6855 		return cpu_runnable(rq);
6856 
6857 	cfs_rq = &rq->cfs;
6858 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6859 
6860 	/* Discount task's runnable from CPU's runnable */
6861 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6862 
6863 	return runnable;
6864 }
6865 
6866 static unsigned long capacity_of(int cpu)
6867 {
6868 	return cpu_rq(cpu)->cpu_capacity;
6869 }
6870 
6871 static void record_wakee(struct task_struct *p)
6872 {
6873 	/*
6874 	 * Only decay a single time; tasks that have less then 1 wakeup per
6875 	 * jiffy will not have built up many flips.
6876 	 */
6877 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6878 		current->wakee_flips >>= 1;
6879 		current->wakee_flip_decay_ts = jiffies;
6880 	}
6881 
6882 	if (current->last_wakee != p) {
6883 		current->last_wakee = p;
6884 		current->wakee_flips++;
6885 	}
6886 }
6887 
6888 /*
6889  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6890  *
6891  * A waker of many should wake a different task than the one last awakened
6892  * at a frequency roughly N times higher than one of its wakees.
6893  *
6894  * In order to determine whether we should let the load spread vs consolidating
6895  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6896  * partner, and a factor of lls_size higher frequency in the other.
6897  *
6898  * With both conditions met, we can be relatively sure that the relationship is
6899  * non-monogamous, with partner count exceeding socket size.
6900  *
6901  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6902  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6903  * socket size.
6904  */
6905 static int wake_wide(struct task_struct *p)
6906 {
6907 	unsigned int master = current->wakee_flips;
6908 	unsigned int slave = p->wakee_flips;
6909 	int factor = __this_cpu_read(sd_llc_size);
6910 
6911 	if (master < slave)
6912 		swap(master, slave);
6913 	if (slave < factor || master < slave * factor)
6914 		return 0;
6915 	return 1;
6916 }
6917 
6918 /*
6919  * The purpose of wake_affine() is to quickly determine on which CPU we can run
6920  * soonest. For the purpose of speed we only consider the waking and previous
6921  * CPU.
6922  *
6923  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6924  *			cache-affine and is (or	will be) idle.
6925  *
6926  * wake_affine_weight() - considers the weight to reflect the average
6927  *			  scheduling latency of the CPUs. This seems to work
6928  *			  for the overloaded case.
6929  */
6930 static int
6931 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6932 {
6933 	/*
6934 	 * If this_cpu is idle, it implies the wakeup is from interrupt
6935 	 * context. Only allow the move if cache is shared. Otherwise an
6936 	 * interrupt intensive workload could force all tasks onto one
6937 	 * node depending on the IO topology or IRQ affinity settings.
6938 	 *
6939 	 * If the prev_cpu is idle and cache affine then avoid a migration.
6940 	 * There is no guarantee that the cache hot data from an interrupt
6941 	 * is more important than cache hot data on the prev_cpu and from
6942 	 * a cpufreq perspective, it's better to have higher utilisation
6943 	 * on one CPU.
6944 	 */
6945 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6946 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6947 
6948 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
6949 		return this_cpu;
6950 
6951 	if (available_idle_cpu(prev_cpu))
6952 		return prev_cpu;
6953 
6954 	return nr_cpumask_bits;
6955 }
6956 
6957 static int
6958 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6959 		   int this_cpu, int prev_cpu, int sync)
6960 {
6961 	s64 this_eff_load, prev_eff_load;
6962 	unsigned long task_load;
6963 
6964 	this_eff_load = cpu_load(cpu_rq(this_cpu));
6965 
6966 	if (sync) {
6967 		unsigned long current_load = task_h_load(current);
6968 
6969 		if (current_load > this_eff_load)
6970 			return this_cpu;
6971 
6972 		this_eff_load -= current_load;
6973 	}
6974 
6975 	task_load = task_h_load(p);
6976 
6977 	this_eff_load += task_load;
6978 	if (sched_feat(WA_BIAS))
6979 		this_eff_load *= 100;
6980 	this_eff_load *= capacity_of(prev_cpu);
6981 
6982 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6983 	prev_eff_load -= task_load;
6984 	if (sched_feat(WA_BIAS))
6985 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6986 	prev_eff_load *= capacity_of(this_cpu);
6987 
6988 	/*
6989 	 * If sync, adjust the weight of prev_eff_load such that if
6990 	 * prev_eff == this_eff that select_idle_sibling() will consider
6991 	 * stacking the wakee on top of the waker if no other CPU is
6992 	 * idle.
6993 	 */
6994 	if (sync)
6995 		prev_eff_load += 1;
6996 
6997 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6998 }
6999 
7000 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7001 		       int this_cpu, int prev_cpu, int sync)
7002 {
7003 	int target = nr_cpumask_bits;
7004 
7005 	if (sched_feat(WA_IDLE))
7006 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7007 
7008 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7009 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7010 
7011 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7012 	if (target != this_cpu)
7013 		return prev_cpu;
7014 
7015 	schedstat_inc(sd->ttwu_move_affine);
7016 	schedstat_inc(p->stats.nr_wakeups_affine);
7017 	return target;
7018 }
7019 
7020 static struct sched_group *
7021 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7022 
7023 /*
7024  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
7025  */
7026 static int
7027 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7028 {
7029 	unsigned long load, min_load = ULONG_MAX;
7030 	unsigned int min_exit_latency = UINT_MAX;
7031 	u64 latest_idle_timestamp = 0;
7032 	int least_loaded_cpu = this_cpu;
7033 	int shallowest_idle_cpu = -1;
7034 	int i;
7035 
7036 	/* Check if we have any choice: */
7037 	if (group->group_weight == 1)
7038 		return cpumask_first(sched_group_span(group));
7039 
7040 	/* Traverse only the allowed CPUs */
7041 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7042 		struct rq *rq = cpu_rq(i);
7043 
7044 		if (!sched_core_cookie_match(rq, p))
7045 			continue;
7046 
7047 		if (sched_idle_cpu(i))
7048 			return i;
7049 
7050 		if (available_idle_cpu(i)) {
7051 			struct cpuidle_state *idle = idle_get_state(rq);
7052 			if (idle && idle->exit_latency < min_exit_latency) {
7053 				/*
7054 				 * We give priority to a CPU whose idle state
7055 				 * has the smallest exit latency irrespective
7056 				 * of any idle timestamp.
7057 				 */
7058 				min_exit_latency = idle->exit_latency;
7059 				latest_idle_timestamp = rq->idle_stamp;
7060 				shallowest_idle_cpu = i;
7061 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7062 				   rq->idle_stamp > latest_idle_timestamp) {
7063 				/*
7064 				 * If equal or no active idle state, then
7065 				 * the most recently idled CPU might have
7066 				 * a warmer cache.
7067 				 */
7068 				latest_idle_timestamp = rq->idle_stamp;
7069 				shallowest_idle_cpu = i;
7070 			}
7071 		} else if (shallowest_idle_cpu == -1) {
7072 			load = cpu_load(cpu_rq(i));
7073 			if (load < min_load) {
7074 				min_load = load;
7075 				least_loaded_cpu = i;
7076 			}
7077 		}
7078 	}
7079 
7080 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7081 }
7082 
7083 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7084 				  int cpu, int prev_cpu, int sd_flag)
7085 {
7086 	int new_cpu = cpu;
7087 
7088 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7089 		return prev_cpu;
7090 
7091 	/*
7092 	 * We need task's util for cpu_util_without, sync it up to
7093 	 * prev_cpu's last_update_time.
7094 	 */
7095 	if (!(sd_flag & SD_BALANCE_FORK))
7096 		sync_entity_load_avg(&p->se);
7097 
7098 	while (sd) {
7099 		struct sched_group *group;
7100 		struct sched_domain *tmp;
7101 		int weight;
7102 
7103 		if (!(sd->flags & sd_flag)) {
7104 			sd = sd->child;
7105 			continue;
7106 		}
7107 
7108 		group = find_idlest_group(sd, p, cpu);
7109 		if (!group) {
7110 			sd = sd->child;
7111 			continue;
7112 		}
7113 
7114 		new_cpu = find_idlest_group_cpu(group, p, cpu);
7115 		if (new_cpu == cpu) {
7116 			/* Now try balancing at a lower domain level of 'cpu': */
7117 			sd = sd->child;
7118 			continue;
7119 		}
7120 
7121 		/* Now try balancing at a lower domain level of 'new_cpu': */
7122 		cpu = new_cpu;
7123 		weight = sd->span_weight;
7124 		sd = NULL;
7125 		for_each_domain(cpu, tmp) {
7126 			if (weight <= tmp->span_weight)
7127 				break;
7128 			if (tmp->flags & sd_flag)
7129 				sd = tmp;
7130 		}
7131 	}
7132 
7133 	return new_cpu;
7134 }
7135 
7136 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7137 {
7138 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7139 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7140 		return cpu;
7141 
7142 	return -1;
7143 }
7144 
7145 #ifdef CONFIG_SCHED_SMT
7146 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7147 EXPORT_SYMBOL_GPL(sched_smt_present);
7148 
7149 static inline void set_idle_cores(int cpu, int val)
7150 {
7151 	struct sched_domain_shared *sds;
7152 
7153 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7154 	if (sds)
7155 		WRITE_ONCE(sds->has_idle_cores, val);
7156 }
7157 
7158 static inline bool test_idle_cores(int cpu)
7159 {
7160 	struct sched_domain_shared *sds;
7161 
7162 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7163 	if (sds)
7164 		return READ_ONCE(sds->has_idle_cores);
7165 
7166 	return false;
7167 }
7168 
7169 /*
7170  * Scans the local SMT mask to see if the entire core is idle, and records this
7171  * information in sd_llc_shared->has_idle_cores.
7172  *
7173  * Since SMT siblings share all cache levels, inspecting this limited remote
7174  * state should be fairly cheap.
7175  */
7176 void __update_idle_core(struct rq *rq)
7177 {
7178 	int core = cpu_of(rq);
7179 	int cpu;
7180 
7181 	rcu_read_lock();
7182 	if (test_idle_cores(core))
7183 		goto unlock;
7184 
7185 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7186 		if (cpu == core)
7187 			continue;
7188 
7189 		if (!available_idle_cpu(cpu))
7190 			goto unlock;
7191 	}
7192 
7193 	set_idle_cores(core, 1);
7194 unlock:
7195 	rcu_read_unlock();
7196 }
7197 
7198 /*
7199  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7200  * there are no idle cores left in the system; tracked through
7201  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7202  */
7203 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7204 {
7205 	bool idle = true;
7206 	int cpu;
7207 
7208 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7209 		if (!available_idle_cpu(cpu)) {
7210 			idle = false;
7211 			if (*idle_cpu == -1) {
7212 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7213 					*idle_cpu = cpu;
7214 					break;
7215 				}
7216 				continue;
7217 			}
7218 			break;
7219 		}
7220 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7221 			*idle_cpu = cpu;
7222 	}
7223 
7224 	if (idle)
7225 		return core;
7226 
7227 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7228 	return -1;
7229 }
7230 
7231 /*
7232  * Scan the local SMT mask for idle CPUs.
7233  */
7234 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7235 {
7236 	int cpu;
7237 
7238 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7239 		if (cpu == target)
7240 			continue;
7241 		/*
7242 		 * Check if the CPU is in the LLC scheduling domain of @target.
7243 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7244 		 */
7245 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7246 			continue;
7247 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7248 			return cpu;
7249 	}
7250 
7251 	return -1;
7252 }
7253 
7254 #else /* CONFIG_SCHED_SMT */
7255 
7256 static inline void set_idle_cores(int cpu, int val)
7257 {
7258 }
7259 
7260 static inline bool test_idle_cores(int cpu)
7261 {
7262 	return false;
7263 }
7264 
7265 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7266 {
7267 	return __select_idle_cpu(core, p);
7268 }
7269 
7270 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7271 {
7272 	return -1;
7273 }
7274 
7275 #endif /* CONFIG_SCHED_SMT */
7276 
7277 /*
7278  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7279  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7280  * average idle time for this rq (as found in rq->avg_idle).
7281  */
7282 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7283 {
7284 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7285 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7286 	struct sched_domain_shared *sd_share;
7287 	struct rq *this_rq = this_rq();
7288 	int this = smp_processor_id();
7289 	struct sched_domain *this_sd = NULL;
7290 	u64 time = 0;
7291 
7292 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7293 
7294 	if (sched_feat(SIS_PROP) && !has_idle_core) {
7295 		u64 avg_cost, avg_idle, span_avg;
7296 		unsigned long now = jiffies;
7297 
7298 		this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
7299 		if (!this_sd)
7300 			return -1;
7301 
7302 		/*
7303 		 * If we're busy, the assumption that the last idle period
7304 		 * predicts the future is flawed; age away the remaining
7305 		 * predicted idle time.
7306 		 */
7307 		if (unlikely(this_rq->wake_stamp < now)) {
7308 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
7309 				this_rq->wake_stamp++;
7310 				this_rq->wake_avg_idle >>= 1;
7311 			}
7312 		}
7313 
7314 		avg_idle = this_rq->wake_avg_idle;
7315 		avg_cost = this_sd->avg_scan_cost + 1;
7316 
7317 		span_avg = sd->span_weight * avg_idle;
7318 		if (span_avg > 4*avg_cost)
7319 			nr = div_u64(span_avg, avg_cost);
7320 		else
7321 			nr = 4;
7322 
7323 		time = cpu_clock(this);
7324 	}
7325 
7326 	if (sched_feat(SIS_UTIL)) {
7327 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7328 		if (sd_share) {
7329 			/* because !--nr is the condition to stop scan */
7330 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7331 			/* overloaded LLC is unlikely to have idle cpu/core */
7332 			if (nr == 1)
7333 				return -1;
7334 		}
7335 	}
7336 
7337 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7338 		if (has_idle_core) {
7339 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7340 			if ((unsigned int)i < nr_cpumask_bits)
7341 				return i;
7342 
7343 		} else {
7344 			if (!--nr)
7345 				return -1;
7346 			idle_cpu = __select_idle_cpu(cpu, p);
7347 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7348 				break;
7349 		}
7350 	}
7351 
7352 	if (has_idle_core)
7353 		set_idle_cores(target, false);
7354 
7355 	if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
7356 		time = cpu_clock(this) - time;
7357 
7358 		/*
7359 		 * Account for the scan cost of wakeups against the average
7360 		 * idle time.
7361 		 */
7362 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
7363 
7364 		update_avg(&this_sd->avg_scan_cost, time);
7365 	}
7366 
7367 	return idle_cpu;
7368 }
7369 
7370 /*
7371  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7372  * the task fits. If no CPU is big enough, but there are idle ones, try to
7373  * maximize capacity.
7374  */
7375 static int
7376 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7377 {
7378 	unsigned long task_util, util_min, util_max, best_cap = 0;
7379 	int fits, best_fits = 0;
7380 	int cpu, best_cpu = -1;
7381 	struct cpumask *cpus;
7382 
7383 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7384 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7385 
7386 	task_util = task_util_est(p);
7387 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7388 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7389 
7390 	for_each_cpu_wrap(cpu, cpus, target) {
7391 		unsigned long cpu_cap = capacity_of(cpu);
7392 
7393 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7394 			continue;
7395 
7396 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7397 
7398 		/* This CPU fits with all requirements */
7399 		if (fits > 0)
7400 			return cpu;
7401 		/*
7402 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7403 		 * Look for the CPU with best capacity.
7404 		 */
7405 		else if (fits < 0)
7406 			cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
7407 
7408 		/*
7409 		 * First, select CPU which fits better (-1 being better than 0).
7410 		 * Then, select the one with best capacity at same level.
7411 		 */
7412 		if ((fits < best_fits) ||
7413 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7414 			best_cap = cpu_cap;
7415 			best_cpu = cpu;
7416 			best_fits = fits;
7417 		}
7418 	}
7419 
7420 	return best_cpu;
7421 }
7422 
7423 static inline bool asym_fits_cpu(unsigned long util,
7424 				 unsigned long util_min,
7425 				 unsigned long util_max,
7426 				 int cpu)
7427 {
7428 	if (sched_asym_cpucap_active())
7429 		/*
7430 		 * Return true only if the cpu fully fits the task requirements
7431 		 * which include the utilization and the performance hints.
7432 		 */
7433 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7434 
7435 	return true;
7436 }
7437 
7438 /*
7439  * Try and locate an idle core/thread in the LLC cache domain.
7440  */
7441 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7442 {
7443 	bool has_idle_core = false;
7444 	struct sched_domain *sd;
7445 	unsigned long task_util, util_min, util_max;
7446 	int i, recent_used_cpu;
7447 
7448 	/*
7449 	 * On asymmetric system, update task utilization because we will check
7450 	 * that the task fits with cpu's capacity.
7451 	 */
7452 	if (sched_asym_cpucap_active()) {
7453 		sync_entity_load_avg(&p->se);
7454 		task_util = task_util_est(p);
7455 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7456 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7457 	}
7458 
7459 	/*
7460 	 * per-cpu select_rq_mask usage
7461 	 */
7462 	lockdep_assert_irqs_disabled();
7463 
7464 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7465 	    asym_fits_cpu(task_util, util_min, util_max, target))
7466 		return target;
7467 
7468 	/*
7469 	 * If the previous CPU is cache affine and idle, don't be stupid:
7470 	 */
7471 	if (prev != target && cpus_share_cache(prev, target) &&
7472 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7473 	    asym_fits_cpu(task_util, util_min, util_max, prev))
7474 		return prev;
7475 
7476 	/*
7477 	 * Allow a per-cpu kthread to stack with the wakee if the
7478 	 * kworker thread and the tasks previous CPUs are the same.
7479 	 * The assumption is that the wakee queued work for the
7480 	 * per-cpu kthread that is now complete and the wakeup is
7481 	 * essentially a sync wakeup. An obvious example of this
7482 	 * pattern is IO completions.
7483 	 */
7484 	if (is_per_cpu_kthread(current) &&
7485 	    in_task() &&
7486 	    prev == smp_processor_id() &&
7487 	    this_rq()->nr_running <= 1 &&
7488 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7489 		return prev;
7490 	}
7491 
7492 	/* Check a recently used CPU as a potential idle candidate: */
7493 	recent_used_cpu = p->recent_used_cpu;
7494 	p->recent_used_cpu = prev;
7495 	if (recent_used_cpu != prev &&
7496 	    recent_used_cpu != target &&
7497 	    cpus_share_cache(recent_used_cpu, target) &&
7498 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7499 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7500 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7501 		return recent_used_cpu;
7502 	}
7503 
7504 	/*
7505 	 * For asymmetric CPU capacity systems, our domain of interest is
7506 	 * sd_asym_cpucapacity rather than sd_llc.
7507 	 */
7508 	if (sched_asym_cpucap_active()) {
7509 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7510 		/*
7511 		 * On an asymmetric CPU capacity system where an exclusive
7512 		 * cpuset defines a symmetric island (i.e. one unique
7513 		 * capacity_orig value through the cpuset), the key will be set
7514 		 * but the CPUs within that cpuset will not have a domain with
7515 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7516 		 * capacity path.
7517 		 */
7518 		if (sd) {
7519 			i = select_idle_capacity(p, sd, target);
7520 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7521 		}
7522 	}
7523 
7524 	sd = rcu_dereference(per_cpu(sd_llc, target));
7525 	if (!sd)
7526 		return target;
7527 
7528 	if (sched_smt_active()) {
7529 		has_idle_core = test_idle_cores(target);
7530 
7531 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7532 			i = select_idle_smt(p, sd, prev);
7533 			if ((unsigned int)i < nr_cpumask_bits)
7534 				return i;
7535 		}
7536 	}
7537 
7538 	i = select_idle_cpu(p, sd, has_idle_core, target);
7539 	if ((unsigned)i < nr_cpumask_bits)
7540 		return i;
7541 
7542 	return target;
7543 }
7544 
7545 /**
7546  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7547  * @cpu: the CPU to get the utilization for
7548  * @p: task for which the CPU utilization should be predicted or NULL
7549  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7550  * @boost: 1 to enable boosting, otherwise 0
7551  *
7552  * The unit of the return value must be the same as the one of CPU capacity
7553  * so that CPU utilization can be compared with CPU capacity.
7554  *
7555  * CPU utilization is the sum of running time of runnable tasks plus the
7556  * recent utilization of currently non-runnable tasks on that CPU.
7557  * It represents the amount of CPU capacity currently used by CFS tasks in
7558  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7559  * capacity at f_max.
7560  *
7561  * The estimated CPU utilization is defined as the maximum between CPU
7562  * utilization and sum of the estimated utilization of the currently
7563  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7564  * previously-executed tasks, which helps better deduce how busy a CPU will
7565  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7566  * of such a task would be significantly decayed at this point of time.
7567  *
7568  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7569  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7570  * utilization. Boosting is implemented in cpu_util() so that internal
7571  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7572  * latter via cpu_util_cfs_boost().
7573  *
7574  * CPU utilization can be higher than the current CPU capacity
7575  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7576  * of rounding errors as well as task migrations or wakeups of new tasks.
7577  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7578  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7579  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7580  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7581  * though since this is useful for predicting the CPU capacity required
7582  * after task migrations (scheduler-driven DVFS).
7583  *
7584  * Return: (Boosted) (estimated) utilization for the specified CPU.
7585  */
7586 static unsigned long
7587 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7588 {
7589 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7590 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7591 	unsigned long runnable;
7592 
7593 	if (boost) {
7594 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7595 		util = max(util, runnable);
7596 	}
7597 
7598 	/*
7599 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7600 	 * contribution. If @p migrates from another CPU to @cpu add its
7601 	 * contribution. In all the other cases @cpu is not impacted by the
7602 	 * migration so its util_avg is already correct.
7603 	 */
7604 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7605 		lsub_positive(&util, task_util(p));
7606 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7607 		util += task_util(p);
7608 
7609 	if (sched_feat(UTIL_EST)) {
7610 		unsigned long util_est;
7611 
7612 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7613 
7614 		/*
7615 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7616 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7617 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7618 		 * has been enqueued.
7619 		 *
7620 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7621 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7622 		 * Remove it to "simulate" cpu_util without @p's contribution.
7623 		 *
7624 		 * Despite the task_on_rq_queued(@p) check there is still a
7625 		 * small window for a possible race when an exec
7626 		 * select_task_rq_fair() races with LB's detach_task().
7627 		 *
7628 		 *   detach_task()
7629 		 *     deactivate_task()
7630 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7631 		 *       -------------------------------- A
7632 		 *       dequeue_task()                    \
7633 		 *         dequeue_task_fair()              + Race Time
7634 		 *           util_est_dequeue()            /
7635 		 *       -------------------------------- B
7636 		 *
7637 		 * The additional check "current == p" is required to further
7638 		 * reduce the race window.
7639 		 */
7640 		if (dst_cpu == cpu)
7641 			util_est += _task_util_est(p);
7642 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7643 			lsub_positive(&util_est, _task_util_est(p));
7644 
7645 		util = max(util, util_est);
7646 	}
7647 
7648 	return min(util, capacity_orig_of(cpu));
7649 }
7650 
7651 unsigned long cpu_util_cfs(int cpu)
7652 {
7653 	return cpu_util(cpu, NULL, -1, 0);
7654 }
7655 
7656 unsigned long cpu_util_cfs_boost(int cpu)
7657 {
7658 	return cpu_util(cpu, NULL, -1, 1);
7659 }
7660 
7661 /*
7662  * cpu_util_without: compute cpu utilization without any contributions from *p
7663  * @cpu: the CPU which utilization is requested
7664  * @p: the task which utilization should be discounted
7665  *
7666  * The utilization of a CPU is defined by the utilization of tasks currently
7667  * enqueued on that CPU as well as tasks which are currently sleeping after an
7668  * execution on that CPU.
7669  *
7670  * This method returns the utilization of the specified CPU by discounting the
7671  * utilization of the specified task, whenever the task is currently
7672  * contributing to the CPU utilization.
7673  */
7674 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7675 {
7676 	/* Task has no contribution or is new */
7677 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7678 		p = NULL;
7679 
7680 	return cpu_util(cpu, p, -1, 0);
7681 }
7682 
7683 /*
7684  * energy_env - Utilization landscape for energy estimation.
7685  * @task_busy_time: Utilization contribution by the task for which we test the
7686  *                  placement. Given by eenv_task_busy_time().
7687  * @pd_busy_time:   Utilization of the whole perf domain without the task
7688  *                  contribution. Given by eenv_pd_busy_time().
7689  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7690  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7691  */
7692 struct energy_env {
7693 	unsigned long task_busy_time;
7694 	unsigned long pd_busy_time;
7695 	unsigned long cpu_cap;
7696 	unsigned long pd_cap;
7697 };
7698 
7699 /*
7700  * Compute the task busy time for compute_energy(). This time cannot be
7701  * injected directly into effective_cpu_util() because of the IRQ scaling.
7702  * The latter only makes sense with the most recent CPUs where the task has
7703  * run.
7704  */
7705 static inline void eenv_task_busy_time(struct energy_env *eenv,
7706 				       struct task_struct *p, int prev_cpu)
7707 {
7708 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7709 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7710 
7711 	if (unlikely(irq >= max_cap))
7712 		busy_time = max_cap;
7713 	else
7714 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7715 
7716 	eenv->task_busy_time = busy_time;
7717 }
7718 
7719 /*
7720  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7721  * utilization for each @pd_cpus, it however doesn't take into account
7722  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7723  * scale the EM reported power consumption at the (eventually clamped)
7724  * cpu_capacity.
7725  *
7726  * The contribution of the task @p for which we want to estimate the
7727  * energy cost is removed (by cpu_util()) and must be calculated
7728  * separately (see eenv_task_busy_time). This ensures:
7729  *
7730  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7731  *     the task on.
7732  *
7733  *   - A fair comparison between CPUs as the task contribution (task_util())
7734  *     will always be the same no matter which CPU utilization we rely on
7735  *     (util_avg or util_est).
7736  *
7737  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7738  * exceed @eenv->pd_cap.
7739  */
7740 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7741 				     struct cpumask *pd_cpus,
7742 				     struct task_struct *p)
7743 {
7744 	unsigned long busy_time = 0;
7745 	int cpu;
7746 
7747 	for_each_cpu(cpu, pd_cpus) {
7748 		unsigned long util = cpu_util(cpu, p, -1, 0);
7749 
7750 		busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7751 	}
7752 
7753 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7754 }
7755 
7756 /*
7757  * Compute the maximum utilization for compute_energy() when the task @p
7758  * is placed on the cpu @dst_cpu.
7759  *
7760  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7761  * exceed @eenv->cpu_cap.
7762  */
7763 static inline unsigned long
7764 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7765 		 struct task_struct *p, int dst_cpu)
7766 {
7767 	unsigned long max_util = 0;
7768 	int cpu;
7769 
7770 	for_each_cpu(cpu, pd_cpus) {
7771 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7772 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7773 		unsigned long eff_util;
7774 
7775 		/*
7776 		 * Performance domain frequency: utilization clamping
7777 		 * must be considered since it affects the selection
7778 		 * of the performance domain frequency.
7779 		 * NOTE: in case RT tasks are running, by default the
7780 		 * FREQUENCY_UTIL's utilization can be max OPP.
7781 		 */
7782 		eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7783 		max_util = max(max_util, eff_util);
7784 	}
7785 
7786 	return min(max_util, eenv->cpu_cap);
7787 }
7788 
7789 /*
7790  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7791  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7792  * contribution is ignored.
7793  */
7794 static inline unsigned long
7795 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7796 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7797 {
7798 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7799 	unsigned long busy_time = eenv->pd_busy_time;
7800 
7801 	if (dst_cpu >= 0)
7802 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7803 
7804 	return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7805 }
7806 
7807 /*
7808  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7809  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7810  * spare capacity in each performance domain and uses it as a potential
7811  * candidate to execute the task. Then, it uses the Energy Model to figure
7812  * out which of the CPU candidates is the most energy-efficient.
7813  *
7814  * The rationale for this heuristic is as follows. In a performance domain,
7815  * all the most energy efficient CPU candidates (according to the Energy
7816  * Model) are those for which we'll request a low frequency. When there are
7817  * several CPUs for which the frequency request will be the same, we don't
7818  * have enough data to break the tie between them, because the Energy Model
7819  * only includes active power costs. With this model, if we assume that
7820  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7821  * the maximum spare capacity in a performance domain is guaranteed to be among
7822  * the best candidates of the performance domain.
7823  *
7824  * In practice, it could be preferable from an energy standpoint to pack
7825  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7826  * but that could also hurt our chances to go cluster idle, and we have no
7827  * ways to tell with the current Energy Model if this is actually a good
7828  * idea or not. So, find_energy_efficient_cpu() basically favors
7829  * cluster-packing, and spreading inside a cluster. That should at least be
7830  * a good thing for latency, and this is consistent with the idea that most
7831  * of the energy savings of EAS come from the asymmetry of the system, and
7832  * not so much from breaking the tie between identical CPUs. That's also the
7833  * reason why EAS is enabled in the topology code only for systems where
7834  * SD_ASYM_CPUCAPACITY is set.
7835  *
7836  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7837  * they don't have any useful utilization data yet and it's not possible to
7838  * forecast their impact on energy consumption. Consequently, they will be
7839  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7840  * to be energy-inefficient in some use-cases. The alternative would be to
7841  * bias new tasks towards specific types of CPUs first, or to try to infer
7842  * their util_avg from the parent task, but those heuristics could hurt
7843  * other use-cases too. So, until someone finds a better way to solve this,
7844  * let's keep things simple by re-using the existing slow path.
7845  */
7846 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7847 {
7848 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7849 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7850 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7851 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7852 	struct root_domain *rd = this_rq()->rd;
7853 	int cpu, best_energy_cpu, target = -1;
7854 	int prev_fits = -1, best_fits = -1;
7855 	unsigned long best_thermal_cap = 0;
7856 	unsigned long prev_thermal_cap = 0;
7857 	struct sched_domain *sd;
7858 	struct perf_domain *pd;
7859 	struct energy_env eenv;
7860 
7861 	rcu_read_lock();
7862 	pd = rcu_dereference(rd->pd);
7863 	if (!pd || READ_ONCE(rd->overutilized))
7864 		goto unlock;
7865 
7866 	/*
7867 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7868 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7869 	 */
7870 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7871 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7872 		sd = sd->parent;
7873 	if (!sd)
7874 		goto unlock;
7875 
7876 	target = prev_cpu;
7877 
7878 	sync_entity_load_avg(&p->se);
7879 	if (!task_util_est(p) && p_util_min == 0)
7880 		goto unlock;
7881 
7882 	eenv_task_busy_time(&eenv, p, prev_cpu);
7883 
7884 	for (; pd; pd = pd->next) {
7885 		unsigned long util_min = p_util_min, util_max = p_util_max;
7886 		unsigned long cpu_cap, cpu_thermal_cap, util;
7887 		long prev_spare_cap = -1, max_spare_cap = -1;
7888 		unsigned long rq_util_min, rq_util_max;
7889 		unsigned long cur_delta, base_energy;
7890 		int max_spare_cap_cpu = -1;
7891 		int fits, max_fits = -1;
7892 
7893 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7894 
7895 		if (cpumask_empty(cpus))
7896 			continue;
7897 
7898 		/* Account thermal pressure for the energy estimation */
7899 		cpu = cpumask_first(cpus);
7900 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7901 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7902 
7903 		eenv.cpu_cap = cpu_thermal_cap;
7904 		eenv.pd_cap = 0;
7905 
7906 		for_each_cpu(cpu, cpus) {
7907 			struct rq *rq = cpu_rq(cpu);
7908 
7909 			eenv.pd_cap += cpu_thermal_cap;
7910 
7911 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7912 				continue;
7913 
7914 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7915 				continue;
7916 
7917 			util = cpu_util(cpu, p, cpu, 0);
7918 			cpu_cap = capacity_of(cpu);
7919 
7920 			/*
7921 			 * Skip CPUs that cannot satisfy the capacity request.
7922 			 * IOW, placing the task there would make the CPU
7923 			 * overutilized. Take uclamp into account to see how
7924 			 * much capacity we can get out of the CPU; this is
7925 			 * aligned with sched_cpu_util().
7926 			 */
7927 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
7928 				/*
7929 				 * Open code uclamp_rq_util_with() except for
7930 				 * the clamp() part. Ie: apply max aggregation
7931 				 * only. util_fits_cpu() logic requires to
7932 				 * operate on non clamped util but must use the
7933 				 * max-aggregated uclamp_{min, max}.
7934 				 */
7935 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
7936 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
7937 
7938 				util_min = max(rq_util_min, p_util_min);
7939 				util_max = max(rq_util_max, p_util_max);
7940 			}
7941 
7942 			fits = util_fits_cpu(util, util_min, util_max, cpu);
7943 			if (!fits)
7944 				continue;
7945 
7946 			lsub_positive(&cpu_cap, util);
7947 
7948 			if (cpu == prev_cpu) {
7949 				/* Always use prev_cpu as a candidate. */
7950 				prev_spare_cap = cpu_cap;
7951 				prev_fits = fits;
7952 			} else if ((fits > max_fits) ||
7953 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
7954 				/*
7955 				 * Find the CPU with the maximum spare capacity
7956 				 * among the remaining CPUs in the performance
7957 				 * domain.
7958 				 */
7959 				max_spare_cap = cpu_cap;
7960 				max_spare_cap_cpu = cpu;
7961 				max_fits = fits;
7962 			}
7963 		}
7964 
7965 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
7966 			continue;
7967 
7968 		eenv_pd_busy_time(&eenv, cpus, p);
7969 		/* Compute the 'base' energy of the pd, without @p */
7970 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
7971 
7972 		/* Evaluate the energy impact of using prev_cpu. */
7973 		if (prev_spare_cap > -1) {
7974 			prev_delta = compute_energy(&eenv, pd, cpus, p,
7975 						    prev_cpu);
7976 			/* CPU utilization has changed */
7977 			if (prev_delta < base_energy)
7978 				goto unlock;
7979 			prev_delta -= base_energy;
7980 			prev_thermal_cap = cpu_thermal_cap;
7981 			best_delta = min(best_delta, prev_delta);
7982 		}
7983 
7984 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
7985 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
7986 			/* Current best energy cpu fits better */
7987 			if (max_fits < best_fits)
7988 				continue;
7989 
7990 			/*
7991 			 * Both don't fit performance hint (i.e. uclamp_min)
7992 			 * but best energy cpu has better capacity.
7993 			 */
7994 			if ((max_fits < 0) &&
7995 			    (cpu_thermal_cap <= best_thermal_cap))
7996 				continue;
7997 
7998 			cur_delta = compute_energy(&eenv, pd, cpus, p,
7999 						   max_spare_cap_cpu);
8000 			/* CPU utilization has changed */
8001 			if (cur_delta < base_energy)
8002 				goto unlock;
8003 			cur_delta -= base_energy;
8004 
8005 			/*
8006 			 * Both fit for the task but best energy cpu has lower
8007 			 * energy impact.
8008 			 */
8009 			if ((max_fits > 0) && (best_fits > 0) &&
8010 			    (cur_delta >= best_delta))
8011 				continue;
8012 
8013 			best_delta = cur_delta;
8014 			best_energy_cpu = max_spare_cap_cpu;
8015 			best_fits = max_fits;
8016 			best_thermal_cap = cpu_thermal_cap;
8017 		}
8018 	}
8019 	rcu_read_unlock();
8020 
8021 	if ((best_fits > prev_fits) ||
8022 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8023 	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
8024 		target = best_energy_cpu;
8025 
8026 	return target;
8027 
8028 unlock:
8029 	rcu_read_unlock();
8030 
8031 	return target;
8032 }
8033 
8034 /*
8035  * select_task_rq_fair: Select target runqueue for the waking task in domains
8036  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8037  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8038  *
8039  * Balances load by selecting the idlest CPU in the idlest group, or under
8040  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8041  *
8042  * Returns the target CPU number.
8043  */
8044 static int
8045 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8046 {
8047 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8048 	struct sched_domain *tmp, *sd = NULL;
8049 	int cpu = smp_processor_id();
8050 	int new_cpu = prev_cpu;
8051 	int want_affine = 0;
8052 	/* SD_flags and WF_flags share the first nibble */
8053 	int sd_flag = wake_flags & 0xF;
8054 
8055 	/*
8056 	 * required for stable ->cpus_allowed
8057 	 */
8058 	lockdep_assert_held(&p->pi_lock);
8059 	if (wake_flags & WF_TTWU) {
8060 		record_wakee(p);
8061 
8062 		if ((wake_flags & WF_CURRENT_CPU) &&
8063 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8064 			return cpu;
8065 
8066 		if (sched_energy_enabled()) {
8067 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8068 			if (new_cpu >= 0)
8069 				return new_cpu;
8070 			new_cpu = prev_cpu;
8071 		}
8072 
8073 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8074 	}
8075 
8076 	rcu_read_lock();
8077 	for_each_domain(cpu, tmp) {
8078 		/*
8079 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8080 		 * cpu is a valid SD_WAKE_AFFINE target.
8081 		 */
8082 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8083 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8084 			if (cpu != prev_cpu)
8085 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8086 
8087 			sd = NULL; /* Prefer wake_affine over balance flags */
8088 			break;
8089 		}
8090 
8091 		/*
8092 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8093 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8094 		 * will usually go to the fast path.
8095 		 */
8096 		if (tmp->flags & sd_flag)
8097 			sd = tmp;
8098 		else if (!want_affine)
8099 			break;
8100 	}
8101 
8102 	if (unlikely(sd)) {
8103 		/* Slow path */
8104 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8105 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8106 		/* Fast path */
8107 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8108 	}
8109 	rcu_read_unlock();
8110 
8111 	return new_cpu;
8112 }
8113 
8114 /*
8115  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8116  * cfs_rq_of(p) references at time of call are still valid and identify the
8117  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8118  */
8119 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8120 {
8121 	struct sched_entity *se = &p->se;
8122 
8123 	if (!task_on_rq_migrating(p)) {
8124 		remove_entity_load_avg(se);
8125 
8126 		/*
8127 		 * Here, the task's PELT values have been updated according to
8128 		 * the current rq's clock. But if that clock hasn't been
8129 		 * updated in a while, a substantial idle time will be missed,
8130 		 * leading to an inflation after wake-up on the new rq.
8131 		 *
8132 		 * Estimate the missing time from the cfs_rq last_update_time
8133 		 * and update sched_avg to improve the PELT continuity after
8134 		 * migration.
8135 		 */
8136 		migrate_se_pelt_lag(se);
8137 	}
8138 
8139 	/* Tell new CPU we are migrated */
8140 	se->avg.last_update_time = 0;
8141 
8142 	update_scan_period(p, new_cpu);
8143 }
8144 
8145 static void task_dead_fair(struct task_struct *p)
8146 {
8147 	remove_entity_load_avg(&p->se);
8148 }
8149 
8150 static int
8151 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8152 {
8153 	if (rq->nr_running)
8154 		return 1;
8155 
8156 	return newidle_balance(rq, rf) != 0;
8157 }
8158 #endif /* CONFIG_SMP */
8159 
8160 static void set_next_buddy(struct sched_entity *se)
8161 {
8162 	for_each_sched_entity(se) {
8163 		if (SCHED_WARN_ON(!se->on_rq))
8164 			return;
8165 		if (se_is_idle(se))
8166 			return;
8167 		cfs_rq_of(se)->next = se;
8168 	}
8169 }
8170 
8171 /*
8172  * Preempt the current task with a newly woken task if needed:
8173  */
8174 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
8175 {
8176 	struct task_struct *curr = rq->curr;
8177 	struct sched_entity *se = &curr->se, *pse = &p->se;
8178 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8179 	int next_buddy_marked = 0;
8180 	int cse_is_idle, pse_is_idle;
8181 
8182 	if (unlikely(se == pse))
8183 		return;
8184 
8185 	/*
8186 	 * This is possible from callers such as attach_tasks(), in which we
8187 	 * unconditionally check_preempt_curr() after an enqueue (which may have
8188 	 * lead to a throttle).  This both saves work and prevents false
8189 	 * next-buddy nomination below.
8190 	 */
8191 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8192 		return;
8193 
8194 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8195 		set_next_buddy(pse);
8196 		next_buddy_marked = 1;
8197 	}
8198 
8199 	/*
8200 	 * We can come here with TIF_NEED_RESCHED already set from new task
8201 	 * wake up path.
8202 	 *
8203 	 * Note: this also catches the edge-case of curr being in a throttled
8204 	 * group (e.g. via set_curr_task), since update_curr() (in the
8205 	 * enqueue of curr) will have resulted in resched being set.  This
8206 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8207 	 * below.
8208 	 */
8209 	if (test_tsk_need_resched(curr))
8210 		return;
8211 
8212 	/* Idle tasks are by definition preempted by non-idle tasks. */
8213 	if (unlikely(task_has_idle_policy(curr)) &&
8214 	    likely(!task_has_idle_policy(p)))
8215 		goto preempt;
8216 
8217 	/*
8218 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8219 	 * is driven by the tick):
8220 	 */
8221 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8222 		return;
8223 
8224 	find_matching_se(&se, &pse);
8225 	WARN_ON_ONCE(!pse);
8226 
8227 	cse_is_idle = se_is_idle(se);
8228 	pse_is_idle = se_is_idle(pse);
8229 
8230 	/*
8231 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
8232 	 * in the inverse case).
8233 	 */
8234 	if (cse_is_idle && !pse_is_idle)
8235 		goto preempt;
8236 	if (cse_is_idle != pse_is_idle)
8237 		return;
8238 
8239 	cfs_rq = cfs_rq_of(se);
8240 	update_curr(cfs_rq);
8241 
8242 	/*
8243 	 * XXX pick_eevdf(cfs_rq) != se ?
8244 	 */
8245 	if (pick_eevdf(cfs_rq) == pse)
8246 		goto preempt;
8247 
8248 	return;
8249 
8250 preempt:
8251 	resched_curr(rq);
8252 }
8253 
8254 #ifdef CONFIG_SMP
8255 static struct task_struct *pick_task_fair(struct rq *rq)
8256 {
8257 	struct sched_entity *se;
8258 	struct cfs_rq *cfs_rq;
8259 
8260 again:
8261 	cfs_rq = &rq->cfs;
8262 	if (!cfs_rq->nr_running)
8263 		return NULL;
8264 
8265 	do {
8266 		struct sched_entity *curr = cfs_rq->curr;
8267 
8268 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8269 		if (curr) {
8270 			if (curr->on_rq)
8271 				update_curr(cfs_rq);
8272 			else
8273 				curr = NULL;
8274 
8275 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8276 				goto again;
8277 		}
8278 
8279 		se = pick_next_entity(cfs_rq, curr);
8280 		cfs_rq = group_cfs_rq(se);
8281 	} while (cfs_rq);
8282 
8283 	return task_of(se);
8284 }
8285 #endif
8286 
8287 struct task_struct *
8288 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8289 {
8290 	struct cfs_rq *cfs_rq = &rq->cfs;
8291 	struct sched_entity *se;
8292 	struct task_struct *p;
8293 	int new_tasks;
8294 
8295 again:
8296 	if (!sched_fair_runnable(rq))
8297 		goto idle;
8298 
8299 #ifdef CONFIG_FAIR_GROUP_SCHED
8300 	if (!prev || prev->sched_class != &fair_sched_class)
8301 		goto simple;
8302 
8303 	/*
8304 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8305 	 * likely that a next task is from the same cgroup as the current.
8306 	 *
8307 	 * Therefore attempt to avoid putting and setting the entire cgroup
8308 	 * hierarchy, only change the part that actually changes.
8309 	 */
8310 
8311 	do {
8312 		struct sched_entity *curr = cfs_rq->curr;
8313 
8314 		/*
8315 		 * Since we got here without doing put_prev_entity() we also
8316 		 * have to consider cfs_rq->curr. If it is still a runnable
8317 		 * entity, update_curr() will update its vruntime, otherwise
8318 		 * forget we've ever seen it.
8319 		 */
8320 		if (curr) {
8321 			if (curr->on_rq)
8322 				update_curr(cfs_rq);
8323 			else
8324 				curr = NULL;
8325 
8326 			/*
8327 			 * This call to check_cfs_rq_runtime() will do the
8328 			 * throttle and dequeue its entity in the parent(s).
8329 			 * Therefore the nr_running test will indeed
8330 			 * be correct.
8331 			 */
8332 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8333 				cfs_rq = &rq->cfs;
8334 
8335 				if (!cfs_rq->nr_running)
8336 					goto idle;
8337 
8338 				goto simple;
8339 			}
8340 		}
8341 
8342 		se = pick_next_entity(cfs_rq, curr);
8343 		cfs_rq = group_cfs_rq(se);
8344 	} while (cfs_rq);
8345 
8346 	p = task_of(se);
8347 
8348 	/*
8349 	 * Since we haven't yet done put_prev_entity and if the selected task
8350 	 * is a different task than we started out with, try and touch the
8351 	 * least amount of cfs_rqs.
8352 	 */
8353 	if (prev != p) {
8354 		struct sched_entity *pse = &prev->se;
8355 
8356 		while (!(cfs_rq = is_same_group(se, pse))) {
8357 			int se_depth = se->depth;
8358 			int pse_depth = pse->depth;
8359 
8360 			if (se_depth <= pse_depth) {
8361 				put_prev_entity(cfs_rq_of(pse), pse);
8362 				pse = parent_entity(pse);
8363 			}
8364 			if (se_depth >= pse_depth) {
8365 				set_next_entity(cfs_rq_of(se), se);
8366 				se = parent_entity(se);
8367 			}
8368 		}
8369 
8370 		put_prev_entity(cfs_rq, pse);
8371 		set_next_entity(cfs_rq, se);
8372 	}
8373 
8374 	goto done;
8375 simple:
8376 #endif
8377 	if (prev)
8378 		put_prev_task(rq, prev);
8379 
8380 	do {
8381 		se = pick_next_entity(cfs_rq, NULL);
8382 		set_next_entity(cfs_rq, se);
8383 		cfs_rq = group_cfs_rq(se);
8384 	} while (cfs_rq);
8385 
8386 	p = task_of(se);
8387 
8388 done: __maybe_unused;
8389 #ifdef CONFIG_SMP
8390 	/*
8391 	 * Move the next running task to the front of
8392 	 * the list, so our cfs_tasks list becomes MRU
8393 	 * one.
8394 	 */
8395 	list_move(&p->se.group_node, &rq->cfs_tasks);
8396 #endif
8397 
8398 	if (hrtick_enabled_fair(rq))
8399 		hrtick_start_fair(rq, p);
8400 
8401 	update_misfit_status(p, rq);
8402 	sched_fair_update_stop_tick(rq, p);
8403 
8404 	return p;
8405 
8406 idle:
8407 	if (!rf)
8408 		return NULL;
8409 
8410 	new_tasks = newidle_balance(rq, rf);
8411 
8412 	/*
8413 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8414 	 * possible for any higher priority task to appear. In that case we
8415 	 * must re-start the pick_next_entity() loop.
8416 	 */
8417 	if (new_tasks < 0)
8418 		return RETRY_TASK;
8419 
8420 	if (new_tasks > 0)
8421 		goto again;
8422 
8423 	/*
8424 	 * rq is about to be idle, check if we need to update the
8425 	 * lost_idle_time of clock_pelt
8426 	 */
8427 	update_idle_rq_clock_pelt(rq);
8428 
8429 	return NULL;
8430 }
8431 
8432 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8433 {
8434 	return pick_next_task_fair(rq, NULL, NULL);
8435 }
8436 
8437 /*
8438  * Account for a descheduled task:
8439  */
8440 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8441 {
8442 	struct sched_entity *se = &prev->se;
8443 	struct cfs_rq *cfs_rq;
8444 
8445 	for_each_sched_entity(se) {
8446 		cfs_rq = cfs_rq_of(se);
8447 		put_prev_entity(cfs_rq, se);
8448 	}
8449 }
8450 
8451 /*
8452  * sched_yield() is very simple
8453  */
8454 static void yield_task_fair(struct rq *rq)
8455 {
8456 	struct task_struct *curr = rq->curr;
8457 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8458 	struct sched_entity *se = &curr->se;
8459 
8460 	/*
8461 	 * Are we the only task in the tree?
8462 	 */
8463 	if (unlikely(rq->nr_running == 1))
8464 		return;
8465 
8466 	clear_buddies(cfs_rq, se);
8467 
8468 	update_rq_clock(rq);
8469 	/*
8470 	 * Update run-time statistics of the 'current'.
8471 	 */
8472 	update_curr(cfs_rq);
8473 	/*
8474 	 * Tell update_rq_clock() that we've just updated,
8475 	 * so we don't do microscopic update in schedule()
8476 	 * and double the fastpath cost.
8477 	 */
8478 	rq_clock_skip_update(rq);
8479 
8480 	se->deadline += calc_delta_fair(se->slice, se);
8481 }
8482 
8483 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8484 {
8485 	struct sched_entity *se = &p->se;
8486 
8487 	/* throttled hierarchies are not runnable */
8488 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8489 		return false;
8490 
8491 	/* Tell the scheduler that we'd really like pse to run next. */
8492 	set_next_buddy(se);
8493 
8494 	yield_task_fair(rq);
8495 
8496 	return true;
8497 }
8498 
8499 #ifdef CONFIG_SMP
8500 /**************************************************
8501  * Fair scheduling class load-balancing methods.
8502  *
8503  * BASICS
8504  *
8505  * The purpose of load-balancing is to achieve the same basic fairness the
8506  * per-CPU scheduler provides, namely provide a proportional amount of compute
8507  * time to each task. This is expressed in the following equation:
8508  *
8509  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8510  *
8511  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8512  * W_i,0 is defined as:
8513  *
8514  *   W_i,0 = \Sum_j w_i,j                                             (2)
8515  *
8516  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8517  * is derived from the nice value as per sched_prio_to_weight[].
8518  *
8519  * The weight average is an exponential decay average of the instantaneous
8520  * weight:
8521  *
8522  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8523  *
8524  * C_i is the compute capacity of CPU i, typically it is the
8525  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8526  * can also include other factors [XXX].
8527  *
8528  * To achieve this balance we define a measure of imbalance which follows
8529  * directly from (1):
8530  *
8531  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8532  *
8533  * We them move tasks around to minimize the imbalance. In the continuous
8534  * function space it is obvious this converges, in the discrete case we get
8535  * a few fun cases generally called infeasible weight scenarios.
8536  *
8537  * [XXX expand on:
8538  *     - infeasible weights;
8539  *     - local vs global optima in the discrete case. ]
8540  *
8541  *
8542  * SCHED DOMAINS
8543  *
8544  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8545  * for all i,j solution, we create a tree of CPUs that follows the hardware
8546  * topology where each level pairs two lower groups (or better). This results
8547  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8548  * tree to only the first of the previous level and we decrease the frequency
8549  * of load-balance at each level inv. proportional to the number of CPUs in
8550  * the groups.
8551  *
8552  * This yields:
8553  *
8554  *     log_2 n     1     n
8555  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8556  *     i = 0      2^i   2^i
8557  *                               `- size of each group
8558  *         |         |     `- number of CPUs doing load-balance
8559  *         |         `- freq
8560  *         `- sum over all levels
8561  *
8562  * Coupled with a limit on how many tasks we can migrate every balance pass,
8563  * this makes (5) the runtime complexity of the balancer.
8564  *
8565  * An important property here is that each CPU is still (indirectly) connected
8566  * to every other CPU in at most O(log n) steps:
8567  *
8568  * The adjacency matrix of the resulting graph is given by:
8569  *
8570  *             log_2 n
8571  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8572  *             k = 0
8573  *
8574  * And you'll find that:
8575  *
8576  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8577  *
8578  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8579  * The task movement gives a factor of O(m), giving a convergence complexity
8580  * of:
8581  *
8582  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8583  *
8584  *
8585  * WORK CONSERVING
8586  *
8587  * In order to avoid CPUs going idle while there's still work to do, new idle
8588  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8589  * tree itself instead of relying on other CPUs to bring it work.
8590  *
8591  * This adds some complexity to both (5) and (8) but it reduces the total idle
8592  * time.
8593  *
8594  * [XXX more?]
8595  *
8596  *
8597  * CGROUPS
8598  *
8599  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8600  *
8601  *                                s_k,i
8602  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8603  *                                 S_k
8604  *
8605  * Where
8606  *
8607  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8608  *
8609  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8610  *
8611  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8612  * property.
8613  *
8614  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8615  *      rewrite all of this once again.]
8616  */
8617 
8618 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8619 
8620 enum fbq_type { regular, remote, all };
8621 
8622 /*
8623  * 'group_type' describes the group of CPUs at the moment of load balancing.
8624  *
8625  * The enum is ordered by pulling priority, with the group with lowest priority
8626  * first so the group_type can simply be compared when selecting the busiest
8627  * group. See update_sd_pick_busiest().
8628  */
8629 enum group_type {
8630 	/* The group has spare capacity that can be used to run more tasks.  */
8631 	group_has_spare = 0,
8632 	/*
8633 	 * The group is fully used and the tasks don't compete for more CPU
8634 	 * cycles. Nevertheless, some tasks might wait before running.
8635 	 */
8636 	group_fully_busy,
8637 	/*
8638 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8639 	 * more powerful CPU.
8640 	 */
8641 	group_misfit_task,
8642 	/*
8643 	 * Balance SMT group that's fully busy. Can benefit from migration
8644 	 * a task on SMT with busy sibling to another CPU on idle core.
8645 	 */
8646 	group_smt_balance,
8647 	/*
8648 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8649 	 * and the task should be migrated to it instead of running on the
8650 	 * current CPU.
8651 	 */
8652 	group_asym_packing,
8653 	/*
8654 	 * The tasks' affinity constraints previously prevented the scheduler
8655 	 * from balancing the load across the system.
8656 	 */
8657 	group_imbalanced,
8658 	/*
8659 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8660 	 * tasks.
8661 	 */
8662 	group_overloaded
8663 };
8664 
8665 enum migration_type {
8666 	migrate_load = 0,
8667 	migrate_util,
8668 	migrate_task,
8669 	migrate_misfit
8670 };
8671 
8672 #define LBF_ALL_PINNED	0x01
8673 #define LBF_NEED_BREAK	0x02
8674 #define LBF_DST_PINNED  0x04
8675 #define LBF_SOME_PINNED	0x08
8676 #define LBF_ACTIVE_LB	0x10
8677 
8678 struct lb_env {
8679 	struct sched_domain	*sd;
8680 
8681 	struct rq		*src_rq;
8682 	int			src_cpu;
8683 
8684 	int			dst_cpu;
8685 	struct rq		*dst_rq;
8686 
8687 	struct cpumask		*dst_grpmask;
8688 	int			new_dst_cpu;
8689 	enum cpu_idle_type	idle;
8690 	long			imbalance;
8691 	/* The set of CPUs under consideration for load-balancing */
8692 	struct cpumask		*cpus;
8693 
8694 	unsigned int		flags;
8695 
8696 	unsigned int		loop;
8697 	unsigned int		loop_break;
8698 	unsigned int		loop_max;
8699 
8700 	enum fbq_type		fbq_type;
8701 	enum migration_type	migration_type;
8702 	struct list_head	tasks;
8703 };
8704 
8705 /*
8706  * Is this task likely cache-hot:
8707  */
8708 static int task_hot(struct task_struct *p, struct lb_env *env)
8709 {
8710 	s64 delta;
8711 
8712 	lockdep_assert_rq_held(env->src_rq);
8713 
8714 	if (p->sched_class != &fair_sched_class)
8715 		return 0;
8716 
8717 	if (unlikely(task_has_idle_policy(p)))
8718 		return 0;
8719 
8720 	/* SMT siblings share cache */
8721 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8722 		return 0;
8723 
8724 	/*
8725 	 * Buddy candidates are cache hot:
8726 	 */
8727 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8728 	    (&p->se == cfs_rq_of(&p->se)->next))
8729 		return 1;
8730 
8731 	if (sysctl_sched_migration_cost == -1)
8732 		return 1;
8733 
8734 	/*
8735 	 * Don't migrate task if the task's cookie does not match
8736 	 * with the destination CPU's core cookie.
8737 	 */
8738 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8739 		return 1;
8740 
8741 	if (sysctl_sched_migration_cost == 0)
8742 		return 0;
8743 
8744 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8745 
8746 	return delta < (s64)sysctl_sched_migration_cost;
8747 }
8748 
8749 #ifdef CONFIG_NUMA_BALANCING
8750 /*
8751  * Returns 1, if task migration degrades locality
8752  * Returns 0, if task migration improves locality i.e migration preferred.
8753  * Returns -1, if task migration is not affected by locality.
8754  */
8755 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8756 {
8757 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8758 	unsigned long src_weight, dst_weight;
8759 	int src_nid, dst_nid, dist;
8760 
8761 	if (!static_branch_likely(&sched_numa_balancing))
8762 		return -1;
8763 
8764 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8765 		return -1;
8766 
8767 	src_nid = cpu_to_node(env->src_cpu);
8768 	dst_nid = cpu_to_node(env->dst_cpu);
8769 
8770 	if (src_nid == dst_nid)
8771 		return -1;
8772 
8773 	/* Migrating away from the preferred node is always bad. */
8774 	if (src_nid == p->numa_preferred_nid) {
8775 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8776 			return 1;
8777 		else
8778 			return -1;
8779 	}
8780 
8781 	/* Encourage migration to the preferred node. */
8782 	if (dst_nid == p->numa_preferred_nid)
8783 		return 0;
8784 
8785 	/* Leaving a core idle is often worse than degrading locality. */
8786 	if (env->idle == CPU_IDLE)
8787 		return -1;
8788 
8789 	dist = node_distance(src_nid, dst_nid);
8790 	if (numa_group) {
8791 		src_weight = group_weight(p, src_nid, dist);
8792 		dst_weight = group_weight(p, dst_nid, dist);
8793 	} else {
8794 		src_weight = task_weight(p, src_nid, dist);
8795 		dst_weight = task_weight(p, dst_nid, dist);
8796 	}
8797 
8798 	return dst_weight < src_weight;
8799 }
8800 
8801 #else
8802 static inline int migrate_degrades_locality(struct task_struct *p,
8803 					     struct lb_env *env)
8804 {
8805 	return -1;
8806 }
8807 #endif
8808 
8809 /*
8810  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8811  */
8812 static
8813 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8814 {
8815 	int tsk_cache_hot;
8816 
8817 	lockdep_assert_rq_held(env->src_rq);
8818 
8819 	/*
8820 	 * We do not migrate tasks that are:
8821 	 * 1) throttled_lb_pair, or
8822 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8823 	 * 3) running (obviously), or
8824 	 * 4) are cache-hot on their current CPU.
8825 	 */
8826 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8827 		return 0;
8828 
8829 	/* Disregard pcpu kthreads; they are where they need to be. */
8830 	if (kthread_is_per_cpu(p))
8831 		return 0;
8832 
8833 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8834 		int cpu;
8835 
8836 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8837 
8838 		env->flags |= LBF_SOME_PINNED;
8839 
8840 		/*
8841 		 * Remember if this task can be migrated to any other CPU in
8842 		 * our sched_group. We may want to revisit it if we couldn't
8843 		 * meet load balance goals by pulling other tasks on src_cpu.
8844 		 *
8845 		 * Avoid computing new_dst_cpu
8846 		 * - for NEWLY_IDLE
8847 		 * - if we have already computed one in current iteration
8848 		 * - if it's an active balance
8849 		 */
8850 		if (env->idle == CPU_NEWLY_IDLE ||
8851 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8852 			return 0;
8853 
8854 		/* Prevent to re-select dst_cpu via env's CPUs: */
8855 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8856 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8857 				env->flags |= LBF_DST_PINNED;
8858 				env->new_dst_cpu = cpu;
8859 				break;
8860 			}
8861 		}
8862 
8863 		return 0;
8864 	}
8865 
8866 	/* Record that we found at least one task that could run on dst_cpu */
8867 	env->flags &= ~LBF_ALL_PINNED;
8868 
8869 	if (task_on_cpu(env->src_rq, p)) {
8870 		schedstat_inc(p->stats.nr_failed_migrations_running);
8871 		return 0;
8872 	}
8873 
8874 	/*
8875 	 * Aggressive migration if:
8876 	 * 1) active balance
8877 	 * 2) destination numa is preferred
8878 	 * 3) task is cache cold, or
8879 	 * 4) too many balance attempts have failed.
8880 	 */
8881 	if (env->flags & LBF_ACTIVE_LB)
8882 		return 1;
8883 
8884 	tsk_cache_hot = migrate_degrades_locality(p, env);
8885 	if (tsk_cache_hot == -1)
8886 		tsk_cache_hot = task_hot(p, env);
8887 
8888 	if (tsk_cache_hot <= 0 ||
8889 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8890 		if (tsk_cache_hot == 1) {
8891 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8892 			schedstat_inc(p->stats.nr_forced_migrations);
8893 		}
8894 		return 1;
8895 	}
8896 
8897 	schedstat_inc(p->stats.nr_failed_migrations_hot);
8898 	return 0;
8899 }
8900 
8901 /*
8902  * detach_task() -- detach the task for the migration specified in env
8903  */
8904 static void detach_task(struct task_struct *p, struct lb_env *env)
8905 {
8906 	lockdep_assert_rq_held(env->src_rq);
8907 
8908 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8909 	set_task_cpu(p, env->dst_cpu);
8910 }
8911 
8912 /*
8913  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8914  * part of active balancing operations within "domain".
8915  *
8916  * Returns a task if successful and NULL otherwise.
8917  */
8918 static struct task_struct *detach_one_task(struct lb_env *env)
8919 {
8920 	struct task_struct *p;
8921 
8922 	lockdep_assert_rq_held(env->src_rq);
8923 
8924 	list_for_each_entry_reverse(p,
8925 			&env->src_rq->cfs_tasks, se.group_node) {
8926 		if (!can_migrate_task(p, env))
8927 			continue;
8928 
8929 		detach_task(p, env);
8930 
8931 		/*
8932 		 * Right now, this is only the second place where
8933 		 * lb_gained[env->idle] is updated (other is detach_tasks)
8934 		 * so we can safely collect stats here rather than
8935 		 * inside detach_tasks().
8936 		 */
8937 		schedstat_inc(env->sd->lb_gained[env->idle]);
8938 		return p;
8939 	}
8940 	return NULL;
8941 }
8942 
8943 /*
8944  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8945  * busiest_rq, as part of a balancing operation within domain "sd".
8946  *
8947  * Returns number of detached tasks if successful and 0 otherwise.
8948  */
8949 static int detach_tasks(struct lb_env *env)
8950 {
8951 	struct list_head *tasks = &env->src_rq->cfs_tasks;
8952 	unsigned long util, load;
8953 	struct task_struct *p;
8954 	int detached = 0;
8955 
8956 	lockdep_assert_rq_held(env->src_rq);
8957 
8958 	/*
8959 	 * Source run queue has been emptied by another CPU, clear
8960 	 * LBF_ALL_PINNED flag as we will not test any task.
8961 	 */
8962 	if (env->src_rq->nr_running <= 1) {
8963 		env->flags &= ~LBF_ALL_PINNED;
8964 		return 0;
8965 	}
8966 
8967 	if (env->imbalance <= 0)
8968 		return 0;
8969 
8970 	while (!list_empty(tasks)) {
8971 		/*
8972 		 * We don't want to steal all, otherwise we may be treated likewise,
8973 		 * which could at worst lead to a livelock crash.
8974 		 */
8975 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8976 			break;
8977 
8978 		env->loop++;
8979 		/* We've more or less seen every task there is, call it quits */
8980 		if (env->loop > env->loop_max)
8981 			break;
8982 
8983 		/* take a breather every nr_migrate tasks */
8984 		if (env->loop > env->loop_break) {
8985 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
8986 			env->flags |= LBF_NEED_BREAK;
8987 			break;
8988 		}
8989 
8990 		p = list_last_entry(tasks, struct task_struct, se.group_node);
8991 
8992 		if (!can_migrate_task(p, env))
8993 			goto next;
8994 
8995 		switch (env->migration_type) {
8996 		case migrate_load:
8997 			/*
8998 			 * Depending of the number of CPUs and tasks and the
8999 			 * cgroup hierarchy, task_h_load() can return a null
9000 			 * value. Make sure that env->imbalance decreases
9001 			 * otherwise detach_tasks() will stop only after
9002 			 * detaching up to loop_max tasks.
9003 			 */
9004 			load = max_t(unsigned long, task_h_load(p), 1);
9005 
9006 			if (sched_feat(LB_MIN) &&
9007 			    load < 16 && !env->sd->nr_balance_failed)
9008 				goto next;
9009 
9010 			/*
9011 			 * Make sure that we don't migrate too much load.
9012 			 * Nevertheless, let relax the constraint if
9013 			 * scheduler fails to find a good waiting task to
9014 			 * migrate.
9015 			 */
9016 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9017 				goto next;
9018 
9019 			env->imbalance -= load;
9020 			break;
9021 
9022 		case migrate_util:
9023 			util = task_util_est(p);
9024 
9025 			if (util > env->imbalance)
9026 				goto next;
9027 
9028 			env->imbalance -= util;
9029 			break;
9030 
9031 		case migrate_task:
9032 			env->imbalance--;
9033 			break;
9034 
9035 		case migrate_misfit:
9036 			/* This is not a misfit task */
9037 			if (task_fits_cpu(p, env->src_cpu))
9038 				goto next;
9039 
9040 			env->imbalance = 0;
9041 			break;
9042 		}
9043 
9044 		detach_task(p, env);
9045 		list_add(&p->se.group_node, &env->tasks);
9046 
9047 		detached++;
9048 
9049 #ifdef CONFIG_PREEMPTION
9050 		/*
9051 		 * NEWIDLE balancing is a source of latency, so preemptible
9052 		 * kernels will stop after the first task is detached to minimize
9053 		 * the critical section.
9054 		 */
9055 		if (env->idle == CPU_NEWLY_IDLE)
9056 			break;
9057 #endif
9058 
9059 		/*
9060 		 * We only want to steal up to the prescribed amount of
9061 		 * load/util/tasks.
9062 		 */
9063 		if (env->imbalance <= 0)
9064 			break;
9065 
9066 		continue;
9067 next:
9068 		list_move(&p->se.group_node, tasks);
9069 	}
9070 
9071 	/*
9072 	 * Right now, this is one of only two places we collect this stat
9073 	 * so we can safely collect detach_one_task() stats here rather
9074 	 * than inside detach_one_task().
9075 	 */
9076 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9077 
9078 	return detached;
9079 }
9080 
9081 /*
9082  * attach_task() -- attach the task detached by detach_task() to its new rq.
9083  */
9084 static void attach_task(struct rq *rq, struct task_struct *p)
9085 {
9086 	lockdep_assert_rq_held(rq);
9087 
9088 	WARN_ON_ONCE(task_rq(p) != rq);
9089 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9090 	check_preempt_curr(rq, p, 0);
9091 }
9092 
9093 /*
9094  * attach_one_task() -- attaches the task returned from detach_one_task() to
9095  * its new rq.
9096  */
9097 static void attach_one_task(struct rq *rq, struct task_struct *p)
9098 {
9099 	struct rq_flags rf;
9100 
9101 	rq_lock(rq, &rf);
9102 	update_rq_clock(rq);
9103 	attach_task(rq, p);
9104 	rq_unlock(rq, &rf);
9105 }
9106 
9107 /*
9108  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9109  * new rq.
9110  */
9111 static void attach_tasks(struct lb_env *env)
9112 {
9113 	struct list_head *tasks = &env->tasks;
9114 	struct task_struct *p;
9115 	struct rq_flags rf;
9116 
9117 	rq_lock(env->dst_rq, &rf);
9118 	update_rq_clock(env->dst_rq);
9119 
9120 	while (!list_empty(tasks)) {
9121 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9122 		list_del_init(&p->se.group_node);
9123 
9124 		attach_task(env->dst_rq, p);
9125 	}
9126 
9127 	rq_unlock(env->dst_rq, &rf);
9128 }
9129 
9130 #ifdef CONFIG_NO_HZ_COMMON
9131 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9132 {
9133 	if (cfs_rq->avg.load_avg)
9134 		return true;
9135 
9136 	if (cfs_rq->avg.util_avg)
9137 		return true;
9138 
9139 	return false;
9140 }
9141 
9142 static inline bool others_have_blocked(struct rq *rq)
9143 {
9144 	if (READ_ONCE(rq->avg_rt.util_avg))
9145 		return true;
9146 
9147 	if (READ_ONCE(rq->avg_dl.util_avg))
9148 		return true;
9149 
9150 	if (thermal_load_avg(rq))
9151 		return true;
9152 
9153 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9154 	if (READ_ONCE(rq->avg_irq.util_avg))
9155 		return true;
9156 #endif
9157 
9158 	return false;
9159 }
9160 
9161 static inline void update_blocked_load_tick(struct rq *rq)
9162 {
9163 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9164 }
9165 
9166 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9167 {
9168 	if (!has_blocked)
9169 		rq->has_blocked_load = 0;
9170 }
9171 #else
9172 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9173 static inline bool others_have_blocked(struct rq *rq) { return false; }
9174 static inline void update_blocked_load_tick(struct rq *rq) {}
9175 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9176 #endif
9177 
9178 static bool __update_blocked_others(struct rq *rq, bool *done)
9179 {
9180 	const struct sched_class *curr_class;
9181 	u64 now = rq_clock_pelt(rq);
9182 	unsigned long thermal_pressure;
9183 	bool decayed;
9184 
9185 	/*
9186 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9187 	 * DL and IRQ signals have been updated before updating CFS.
9188 	 */
9189 	curr_class = rq->curr->sched_class;
9190 
9191 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9192 
9193 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9194 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9195 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9196 		  update_irq_load_avg(rq, 0);
9197 
9198 	if (others_have_blocked(rq))
9199 		*done = false;
9200 
9201 	return decayed;
9202 }
9203 
9204 #ifdef CONFIG_FAIR_GROUP_SCHED
9205 
9206 static bool __update_blocked_fair(struct rq *rq, bool *done)
9207 {
9208 	struct cfs_rq *cfs_rq, *pos;
9209 	bool decayed = false;
9210 	int cpu = cpu_of(rq);
9211 
9212 	/*
9213 	 * Iterates the task_group tree in a bottom up fashion, see
9214 	 * list_add_leaf_cfs_rq() for details.
9215 	 */
9216 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9217 		struct sched_entity *se;
9218 
9219 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9220 			update_tg_load_avg(cfs_rq);
9221 
9222 			if (cfs_rq->nr_running == 0)
9223 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9224 
9225 			if (cfs_rq == &rq->cfs)
9226 				decayed = true;
9227 		}
9228 
9229 		/* Propagate pending load changes to the parent, if any: */
9230 		se = cfs_rq->tg->se[cpu];
9231 		if (se && !skip_blocked_update(se))
9232 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9233 
9234 		/*
9235 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9236 		 * decayed cfs_rqs linger on the list.
9237 		 */
9238 		if (cfs_rq_is_decayed(cfs_rq))
9239 			list_del_leaf_cfs_rq(cfs_rq);
9240 
9241 		/* Don't need periodic decay once load/util_avg are null */
9242 		if (cfs_rq_has_blocked(cfs_rq))
9243 			*done = false;
9244 	}
9245 
9246 	return decayed;
9247 }
9248 
9249 /*
9250  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9251  * This needs to be done in a top-down fashion because the load of a child
9252  * group is a fraction of its parents load.
9253  */
9254 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9255 {
9256 	struct rq *rq = rq_of(cfs_rq);
9257 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9258 	unsigned long now = jiffies;
9259 	unsigned long load;
9260 
9261 	if (cfs_rq->last_h_load_update == now)
9262 		return;
9263 
9264 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9265 	for_each_sched_entity(se) {
9266 		cfs_rq = cfs_rq_of(se);
9267 		WRITE_ONCE(cfs_rq->h_load_next, se);
9268 		if (cfs_rq->last_h_load_update == now)
9269 			break;
9270 	}
9271 
9272 	if (!se) {
9273 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9274 		cfs_rq->last_h_load_update = now;
9275 	}
9276 
9277 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9278 		load = cfs_rq->h_load;
9279 		load = div64_ul(load * se->avg.load_avg,
9280 			cfs_rq_load_avg(cfs_rq) + 1);
9281 		cfs_rq = group_cfs_rq(se);
9282 		cfs_rq->h_load = load;
9283 		cfs_rq->last_h_load_update = now;
9284 	}
9285 }
9286 
9287 static unsigned long task_h_load(struct task_struct *p)
9288 {
9289 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9290 
9291 	update_cfs_rq_h_load(cfs_rq);
9292 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9293 			cfs_rq_load_avg(cfs_rq) + 1);
9294 }
9295 #else
9296 static bool __update_blocked_fair(struct rq *rq, bool *done)
9297 {
9298 	struct cfs_rq *cfs_rq = &rq->cfs;
9299 	bool decayed;
9300 
9301 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9302 	if (cfs_rq_has_blocked(cfs_rq))
9303 		*done = false;
9304 
9305 	return decayed;
9306 }
9307 
9308 static unsigned long task_h_load(struct task_struct *p)
9309 {
9310 	return p->se.avg.load_avg;
9311 }
9312 #endif
9313 
9314 static void update_blocked_averages(int cpu)
9315 {
9316 	bool decayed = false, done = true;
9317 	struct rq *rq = cpu_rq(cpu);
9318 	struct rq_flags rf;
9319 
9320 	rq_lock_irqsave(rq, &rf);
9321 	update_blocked_load_tick(rq);
9322 	update_rq_clock(rq);
9323 
9324 	decayed |= __update_blocked_others(rq, &done);
9325 	decayed |= __update_blocked_fair(rq, &done);
9326 
9327 	update_blocked_load_status(rq, !done);
9328 	if (decayed)
9329 		cpufreq_update_util(rq, 0);
9330 	rq_unlock_irqrestore(rq, &rf);
9331 }
9332 
9333 /********** Helpers for find_busiest_group ************************/
9334 
9335 /*
9336  * sg_lb_stats - stats of a sched_group required for load_balancing
9337  */
9338 struct sg_lb_stats {
9339 	unsigned long avg_load; /*Avg load across the CPUs of the group */
9340 	unsigned long group_load; /* Total load over the CPUs of the group */
9341 	unsigned long group_capacity;
9342 	unsigned long group_util; /* Total utilization over the CPUs of the group */
9343 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9344 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
9345 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9346 	unsigned int idle_cpus;
9347 	unsigned int group_weight;
9348 	enum group_type group_type;
9349 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9350 	unsigned int group_smt_balance;  /* Task on busy SMT be moved */
9351 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9352 #ifdef CONFIG_NUMA_BALANCING
9353 	unsigned int nr_numa_running;
9354 	unsigned int nr_preferred_running;
9355 #endif
9356 };
9357 
9358 /*
9359  * sd_lb_stats - Structure to store the statistics of a sched_domain
9360  *		 during load balancing.
9361  */
9362 struct sd_lb_stats {
9363 	struct sched_group *busiest;	/* Busiest group in this sd */
9364 	struct sched_group *local;	/* Local group in this sd */
9365 	unsigned long total_load;	/* Total load of all groups in sd */
9366 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
9367 	unsigned long avg_load;	/* Average load across all groups in sd */
9368 	unsigned int prefer_sibling; /* tasks should go to sibling first */
9369 
9370 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9371 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
9372 };
9373 
9374 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9375 {
9376 	/*
9377 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9378 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9379 	 * We must however set busiest_stat::group_type and
9380 	 * busiest_stat::idle_cpus to the worst busiest group because
9381 	 * update_sd_pick_busiest() reads these before assignment.
9382 	 */
9383 	*sds = (struct sd_lb_stats){
9384 		.busiest = NULL,
9385 		.local = NULL,
9386 		.total_load = 0UL,
9387 		.total_capacity = 0UL,
9388 		.busiest_stat = {
9389 			.idle_cpus = UINT_MAX,
9390 			.group_type = group_has_spare,
9391 		},
9392 	};
9393 }
9394 
9395 static unsigned long scale_rt_capacity(int cpu)
9396 {
9397 	struct rq *rq = cpu_rq(cpu);
9398 	unsigned long max = arch_scale_cpu_capacity(cpu);
9399 	unsigned long used, free;
9400 	unsigned long irq;
9401 
9402 	irq = cpu_util_irq(rq);
9403 
9404 	if (unlikely(irq >= max))
9405 		return 1;
9406 
9407 	/*
9408 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9409 	 * (running and not running) with weights 0 and 1024 respectively.
9410 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
9411 	 * average uses the actual delta max capacity(load).
9412 	 */
9413 	used = READ_ONCE(rq->avg_rt.util_avg);
9414 	used += READ_ONCE(rq->avg_dl.util_avg);
9415 	used += thermal_load_avg(rq);
9416 
9417 	if (unlikely(used >= max))
9418 		return 1;
9419 
9420 	free = max - used;
9421 
9422 	return scale_irq_capacity(free, irq, max);
9423 }
9424 
9425 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9426 {
9427 	unsigned long capacity = scale_rt_capacity(cpu);
9428 	struct sched_group *sdg = sd->groups;
9429 
9430 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
9431 
9432 	if (!capacity)
9433 		capacity = 1;
9434 
9435 	cpu_rq(cpu)->cpu_capacity = capacity;
9436 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9437 
9438 	sdg->sgc->capacity = capacity;
9439 	sdg->sgc->min_capacity = capacity;
9440 	sdg->sgc->max_capacity = capacity;
9441 }
9442 
9443 void update_group_capacity(struct sched_domain *sd, int cpu)
9444 {
9445 	struct sched_domain *child = sd->child;
9446 	struct sched_group *group, *sdg = sd->groups;
9447 	unsigned long capacity, min_capacity, max_capacity;
9448 	unsigned long interval;
9449 
9450 	interval = msecs_to_jiffies(sd->balance_interval);
9451 	interval = clamp(interval, 1UL, max_load_balance_interval);
9452 	sdg->sgc->next_update = jiffies + interval;
9453 
9454 	if (!child) {
9455 		update_cpu_capacity(sd, cpu);
9456 		return;
9457 	}
9458 
9459 	capacity = 0;
9460 	min_capacity = ULONG_MAX;
9461 	max_capacity = 0;
9462 
9463 	if (child->flags & SD_OVERLAP) {
9464 		/*
9465 		 * SD_OVERLAP domains cannot assume that child groups
9466 		 * span the current group.
9467 		 */
9468 
9469 		for_each_cpu(cpu, sched_group_span(sdg)) {
9470 			unsigned long cpu_cap = capacity_of(cpu);
9471 
9472 			capacity += cpu_cap;
9473 			min_capacity = min(cpu_cap, min_capacity);
9474 			max_capacity = max(cpu_cap, max_capacity);
9475 		}
9476 	} else  {
9477 		/*
9478 		 * !SD_OVERLAP domains can assume that child groups
9479 		 * span the current group.
9480 		 */
9481 
9482 		group = child->groups;
9483 		do {
9484 			struct sched_group_capacity *sgc = group->sgc;
9485 
9486 			capacity += sgc->capacity;
9487 			min_capacity = min(sgc->min_capacity, min_capacity);
9488 			max_capacity = max(sgc->max_capacity, max_capacity);
9489 			group = group->next;
9490 		} while (group != child->groups);
9491 	}
9492 
9493 	sdg->sgc->capacity = capacity;
9494 	sdg->sgc->min_capacity = min_capacity;
9495 	sdg->sgc->max_capacity = max_capacity;
9496 }
9497 
9498 /*
9499  * Check whether the capacity of the rq has been noticeably reduced by side
9500  * activity. The imbalance_pct is used for the threshold.
9501  * Return true is the capacity is reduced
9502  */
9503 static inline int
9504 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9505 {
9506 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9507 				(rq->cpu_capacity_orig * 100));
9508 }
9509 
9510 /*
9511  * Check whether a rq has a misfit task and if it looks like we can actually
9512  * help that task: we can migrate the task to a CPU of higher capacity, or
9513  * the task's current CPU is heavily pressured.
9514  */
9515 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9516 {
9517 	return rq->misfit_task_load &&
9518 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
9519 		 check_cpu_capacity(rq, sd));
9520 }
9521 
9522 /*
9523  * Group imbalance indicates (and tries to solve) the problem where balancing
9524  * groups is inadequate due to ->cpus_ptr constraints.
9525  *
9526  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9527  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9528  * Something like:
9529  *
9530  *	{ 0 1 2 3 } { 4 5 6 7 }
9531  *	        *     * * *
9532  *
9533  * If we were to balance group-wise we'd place two tasks in the first group and
9534  * two tasks in the second group. Clearly this is undesired as it will overload
9535  * cpu 3 and leave one of the CPUs in the second group unused.
9536  *
9537  * The current solution to this issue is detecting the skew in the first group
9538  * by noticing the lower domain failed to reach balance and had difficulty
9539  * moving tasks due to affinity constraints.
9540  *
9541  * When this is so detected; this group becomes a candidate for busiest; see
9542  * update_sd_pick_busiest(). And calculate_imbalance() and
9543  * find_busiest_group() avoid some of the usual balance conditions to allow it
9544  * to create an effective group imbalance.
9545  *
9546  * This is a somewhat tricky proposition since the next run might not find the
9547  * group imbalance and decide the groups need to be balanced again. A most
9548  * subtle and fragile situation.
9549  */
9550 
9551 static inline int sg_imbalanced(struct sched_group *group)
9552 {
9553 	return group->sgc->imbalance;
9554 }
9555 
9556 /*
9557  * group_has_capacity returns true if the group has spare capacity that could
9558  * be used by some tasks.
9559  * We consider that a group has spare capacity if the number of task is
9560  * smaller than the number of CPUs or if the utilization is lower than the
9561  * available capacity for CFS tasks.
9562  * For the latter, we use a threshold to stabilize the state, to take into
9563  * account the variance of the tasks' load and to return true if the available
9564  * capacity in meaningful for the load balancer.
9565  * As an example, an available capacity of 1% can appear but it doesn't make
9566  * any benefit for the load balance.
9567  */
9568 static inline bool
9569 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9570 {
9571 	if (sgs->sum_nr_running < sgs->group_weight)
9572 		return true;
9573 
9574 	if ((sgs->group_capacity * imbalance_pct) <
9575 			(sgs->group_runnable * 100))
9576 		return false;
9577 
9578 	if ((sgs->group_capacity * 100) >
9579 			(sgs->group_util * imbalance_pct))
9580 		return true;
9581 
9582 	return false;
9583 }
9584 
9585 /*
9586  *  group_is_overloaded returns true if the group has more tasks than it can
9587  *  handle.
9588  *  group_is_overloaded is not equals to !group_has_capacity because a group
9589  *  with the exact right number of tasks, has no more spare capacity but is not
9590  *  overloaded so both group_has_capacity and group_is_overloaded return
9591  *  false.
9592  */
9593 static inline bool
9594 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9595 {
9596 	if (sgs->sum_nr_running <= sgs->group_weight)
9597 		return false;
9598 
9599 	if ((sgs->group_capacity * 100) <
9600 			(sgs->group_util * imbalance_pct))
9601 		return true;
9602 
9603 	if ((sgs->group_capacity * imbalance_pct) <
9604 			(sgs->group_runnable * 100))
9605 		return true;
9606 
9607 	return false;
9608 }
9609 
9610 static inline enum
9611 group_type group_classify(unsigned int imbalance_pct,
9612 			  struct sched_group *group,
9613 			  struct sg_lb_stats *sgs)
9614 {
9615 	if (group_is_overloaded(imbalance_pct, sgs))
9616 		return group_overloaded;
9617 
9618 	if (sg_imbalanced(group))
9619 		return group_imbalanced;
9620 
9621 	if (sgs->group_asym_packing)
9622 		return group_asym_packing;
9623 
9624 	if (sgs->group_smt_balance)
9625 		return group_smt_balance;
9626 
9627 	if (sgs->group_misfit_task_load)
9628 		return group_misfit_task;
9629 
9630 	if (!group_has_capacity(imbalance_pct, sgs))
9631 		return group_fully_busy;
9632 
9633 	return group_has_spare;
9634 }
9635 
9636 /**
9637  * sched_use_asym_prio - Check whether asym_packing priority must be used
9638  * @sd:		The scheduling domain of the load balancing
9639  * @cpu:	A CPU
9640  *
9641  * Always use CPU priority when balancing load between SMT siblings. When
9642  * balancing load between cores, it is not sufficient that @cpu is idle. Only
9643  * use CPU priority if the whole core is idle.
9644  *
9645  * Returns: True if the priority of @cpu must be followed. False otherwise.
9646  */
9647 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9648 {
9649 	if (!sched_smt_active())
9650 		return true;
9651 
9652 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9653 }
9654 
9655 /**
9656  * sched_asym - Check if the destination CPU can do asym_packing load balance
9657  * @env:	The load balancing environment
9658  * @sds:	Load-balancing data with statistics of the local group
9659  * @sgs:	Load-balancing statistics of the candidate busiest group
9660  * @group:	The candidate busiest group
9661  *
9662  * @env::dst_cpu can do asym_packing if it has higher priority than the
9663  * preferred CPU of @group.
9664  *
9665  * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
9666  * can do asym_packing balance only if all its SMT siblings are idle. Also, it
9667  * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
9668  * imbalances in the number of CPUS are dealt with in find_busiest_group().
9669  *
9670  * If we are balancing load within an SMT core, or at DIE domain level, always
9671  * proceed.
9672  *
9673  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9674  * otherwise.
9675  */
9676 static inline bool
9677 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
9678 	   struct sched_group *group)
9679 {
9680 	/* Ensure that the whole local core is idle, if applicable. */
9681 	if (!sched_use_asym_prio(env->sd, env->dst_cpu))
9682 		return false;
9683 
9684 	/*
9685 	 * CPU priorities does not make sense for SMT cores with more than one
9686 	 * busy sibling.
9687 	 */
9688 	if (group->flags & SD_SHARE_CPUCAPACITY) {
9689 		if (sgs->group_weight - sgs->idle_cpus != 1)
9690 			return false;
9691 	}
9692 
9693 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9694 }
9695 
9696 /* One group has more than one SMT CPU while the other group does not */
9697 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9698 				    struct sched_group *sg2)
9699 {
9700 	if (!sg1 || !sg2)
9701 		return false;
9702 
9703 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9704 		(sg2->flags & SD_SHARE_CPUCAPACITY);
9705 }
9706 
9707 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9708 			       struct sched_group *group)
9709 {
9710 	if (env->idle == CPU_NOT_IDLE)
9711 		return false;
9712 
9713 	/*
9714 	 * For SMT source group, it is better to move a task
9715 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9716 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9717 	 * will not be on.
9718 	 */
9719 	if (group->flags & SD_SHARE_CPUCAPACITY &&
9720 	    sgs->sum_h_nr_running > 1)
9721 		return true;
9722 
9723 	return false;
9724 }
9725 
9726 static inline long sibling_imbalance(struct lb_env *env,
9727 				    struct sd_lb_stats *sds,
9728 				    struct sg_lb_stats *busiest,
9729 				    struct sg_lb_stats *local)
9730 {
9731 	int ncores_busiest, ncores_local;
9732 	long imbalance;
9733 
9734 	if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9735 		return 0;
9736 
9737 	ncores_busiest = sds->busiest->cores;
9738 	ncores_local = sds->local->cores;
9739 
9740 	if (ncores_busiest == ncores_local) {
9741 		imbalance = busiest->sum_nr_running;
9742 		lsub_positive(&imbalance, local->sum_nr_running);
9743 		return imbalance;
9744 	}
9745 
9746 	/* Balance such that nr_running/ncores ratio are same on both groups */
9747 	imbalance = ncores_local * busiest->sum_nr_running;
9748 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9749 	/* Normalize imbalance and do rounding on normalization */
9750 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9751 	imbalance /= ncores_local + ncores_busiest;
9752 
9753 	/* Take advantage of resource in an empty sched group */
9754 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
9755 	    busiest->sum_nr_running > 1)
9756 		imbalance = 2;
9757 
9758 	return imbalance;
9759 }
9760 
9761 static inline bool
9762 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9763 {
9764 	/*
9765 	 * When there is more than 1 task, the group_overloaded case already
9766 	 * takes care of cpu with reduced capacity
9767 	 */
9768 	if (rq->cfs.h_nr_running != 1)
9769 		return false;
9770 
9771 	return check_cpu_capacity(rq, sd);
9772 }
9773 
9774 /**
9775  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9776  * @env: The load balancing environment.
9777  * @sds: Load-balancing data with statistics of the local group.
9778  * @group: sched_group whose statistics are to be updated.
9779  * @sgs: variable to hold the statistics for this group.
9780  * @sg_status: Holds flag indicating the status of the sched_group
9781  */
9782 static inline void update_sg_lb_stats(struct lb_env *env,
9783 				      struct sd_lb_stats *sds,
9784 				      struct sched_group *group,
9785 				      struct sg_lb_stats *sgs,
9786 				      int *sg_status)
9787 {
9788 	int i, nr_running, local_group;
9789 
9790 	memset(sgs, 0, sizeof(*sgs));
9791 
9792 	local_group = group == sds->local;
9793 
9794 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9795 		struct rq *rq = cpu_rq(i);
9796 		unsigned long load = cpu_load(rq);
9797 
9798 		sgs->group_load += load;
9799 		sgs->group_util += cpu_util_cfs(i);
9800 		sgs->group_runnable += cpu_runnable(rq);
9801 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9802 
9803 		nr_running = rq->nr_running;
9804 		sgs->sum_nr_running += nr_running;
9805 
9806 		if (nr_running > 1)
9807 			*sg_status |= SG_OVERLOAD;
9808 
9809 		if (cpu_overutilized(i))
9810 			*sg_status |= SG_OVERUTILIZED;
9811 
9812 #ifdef CONFIG_NUMA_BALANCING
9813 		sgs->nr_numa_running += rq->nr_numa_running;
9814 		sgs->nr_preferred_running += rq->nr_preferred_running;
9815 #endif
9816 		/*
9817 		 * No need to call idle_cpu() if nr_running is not 0
9818 		 */
9819 		if (!nr_running && idle_cpu(i)) {
9820 			sgs->idle_cpus++;
9821 			/* Idle cpu can't have misfit task */
9822 			continue;
9823 		}
9824 
9825 		if (local_group)
9826 			continue;
9827 
9828 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9829 			/* Check for a misfit task on the cpu */
9830 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9831 				sgs->group_misfit_task_load = rq->misfit_task_load;
9832 				*sg_status |= SG_OVERLOAD;
9833 			}
9834 		} else if ((env->idle != CPU_NOT_IDLE) &&
9835 			   sched_reduced_capacity(rq, env->sd)) {
9836 			/* Check for a task running on a CPU with reduced capacity */
9837 			if (sgs->group_misfit_task_load < load)
9838 				sgs->group_misfit_task_load = load;
9839 		}
9840 	}
9841 
9842 	sgs->group_capacity = group->sgc->capacity;
9843 
9844 	sgs->group_weight = group->group_weight;
9845 
9846 	/* Check if dst CPU is idle and preferred to this group */
9847 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9848 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9849 	    sched_asym(env, sds, sgs, group)) {
9850 		sgs->group_asym_packing = 1;
9851 	}
9852 
9853 	/* Check for loaded SMT group to be balanced to dst CPU */
9854 	if (!local_group && smt_balance(env, sgs, group))
9855 		sgs->group_smt_balance = 1;
9856 
9857 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9858 
9859 	/* Computing avg_load makes sense only when group is overloaded */
9860 	if (sgs->group_type == group_overloaded)
9861 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9862 				sgs->group_capacity;
9863 }
9864 
9865 /**
9866  * update_sd_pick_busiest - return 1 on busiest group
9867  * @env: The load balancing environment.
9868  * @sds: sched_domain statistics
9869  * @sg: sched_group candidate to be checked for being the busiest
9870  * @sgs: sched_group statistics
9871  *
9872  * Determine if @sg is a busier group than the previously selected
9873  * busiest group.
9874  *
9875  * Return: %true if @sg is a busier group than the previously selected
9876  * busiest group. %false otherwise.
9877  */
9878 static bool update_sd_pick_busiest(struct lb_env *env,
9879 				   struct sd_lb_stats *sds,
9880 				   struct sched_group *sg,
9881 				   struct sg_lb_stats *sgs)
9882 {
9883 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9884 
9885 	/* Make sure that there is at least one task to pull */
9886 	if (!sgs->sum_h_nr_running)
9887 		return false;
9888 
9889 	/*
9890 	 * Don't try to pull misfit tasks we can't help.
9891 	 * We can use max_capacity here as reduction in capacity on some
9892 	 * CPUs in the group should either be possible to resolve
9893 	 * internally or be covered by avg_load imbalance (eventually).
9894 	 */
9895 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9896 	    (sgs->group_type == group_misfit_task) &&
9897 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9898 	     sds->local_stat.group_type != group_has_spare))
9899 		return false;
9900 
9901 	if (sgs->group_type > busiest->group_type)
9902 		return true;
9903 
9904 	if (sgs->group_type < busiest->group_type)
9905 		return false;
9906 
9907 	/*
9908 	 * The candidate and the current busiest group are the same type of
9909 	 * group. Let check which one is the busiest according to the type.
9910 	 */
9911 
9912 	switch (sgs->group_type) {
9913 	case group_overloaded:
9914 		/* Select the overloaded group with highest avg_load. */
9915 		if (sgs->avg_load <= busiest->avg_load)
9916 			return false;
9917 		break;
9918 
9919 	case group_imbalanced:
9920 		/*
9921 		 * Select the 1st imbalanced group as we don't have any way to
9922 		 * choose one more than another.
9923 		 */
9924 		return false;
9925 
9926 	case group_asym_packing:
9927 		/* Prefer to move from lowest priority CPU's work */
9928 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9929 			return false;
9930 		break;
9931 
9932 	case group_misfit_task:
9933 		/*
9934 		 * If we have more than one misfit sg go with the biggest
9935 		 * misfit.
9936 		 */
9937 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9938 			return false;
9939 		break;
9940 
9941 	case group_smt_balance:
9942 		/*
9943 		 * Check if we have spare CPUs on either SMT group to
9944 		 * choose has spare or fully busy handling.
9945 		 */
9946 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
9947 			goto has_spare;
9948 
9949 		fallthrough;
9950 
9951 	case group_fully_busy:
9952 		/*
9953 		 * Select the fully busy group with highest avg_load. In
9954 		 * theory, there is no need to pull task from such kind of
9955 		 * group because tasks have all compute capacity that they need
9956 		 * but we can still improve the overall throughput by reducing
9957 		 * contention when accessing shared HW resources.
9958 		 *
9959 		 * XXX for now avg_load is not computed and always 0 so we
9960 		 * select the 1st one, except if @sg is composed of SMT
9961 		 * siblings.
9962 		 */
9963 
9964 		if (sgs->avg_load < busiest->avg_load)
9965 			return false;
9966 
9967 		if (sgs->avg_load == busiest->avg_load) {
9968 			/*
9969 			 * SMT sched groups need more help than non-SMT groups.
9970 			 * If @sg happens to also be SMT, either choice is good.
9971 			 */
9972 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
9973 				return false;
9974 		}
9975 
9976 		break;
9977 
9978 	case group_has_spare:
9979 		/*
9980 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
9981 		 * as we do not want to pull task off SMT core with one task
9982 		 * and make the core idle.
9983 		 */
9984 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
9985 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
9986 				return false;
9987 			else
9988 				return true;
9989 		}
9990 has_spare:
9991 
9992 		/*
9993 		 * Select not overloaded group with lowest number of idle cpus
9994 		 * and highest number of running tasks. We could also compare
9995 		 * the spare capacity which is more stable but it can end up
9996 		 * that the group has less spare capacity but finally more idle
9997 		 * CPUs which means less opportunity to pull tasks.
9998 		 */
9999 		if (sgs->idle_cpus > busiest->idle_cpus)
10000 			return false;
10001 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10002 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10003 			return false;
10004 
10005 		break;
10006 	}
10007 
10008 	/*
10009 	 * Candidate sg has no more than one task per CPU and has higher
10010 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10011 	 * throughput. Maximize throughput, power/energy consequences are not
10012 	 * considered.
10013 	 */
10014 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10015 	    (sgs->group_type <= group_fully_busy) &&
10016 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10017 		return false;
10018 
10019 	return true;
10020 }
10021 
10022 #ifdef CONFIG_NUMA_BALANCING
10023 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10024 {
10025 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10026 		return regular;
10027 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10028 		return remote;
10029 	return all;
10030 }
10031 
10032 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10033 {
10034 	if (rq->nr_running > rq->nr_numa_running)
10035 		return regular;
10036 	if (rq->nr_running > rq->nr_preferred_running)
10037 		return remote;
10038 	return all;
10039 }
10040 #else
10041 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10042 {
10043 	return all;
10044 }
10045 
10046 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10047 {
10048 	return regular;
10049 }
10050 #endif /* CONFIG_NUMA_BALANCING */
10051 
10052 
10053 struct sg_lb_stats;
10054 
10055 /*
10056  * task_running_on_cpu - return 1 if @p is running on @cpu.
10057  */
10058 
10059 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10060 {
10061 	/* Task has no contribution or is new */
10062 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10063 		return 0;
10064 
10065 	if (task_on_rq_queued(p))
10066 		return 1;
10067 
10068 	return 0;
10069 }
10070 
10071 /**
10072  * idle_cpu_without - would a given CPU be idle without p ?
10073  * @cpu: the processor on which idleness is tested.
10074  * @p: task which should be ignored.
10075  *
10076  * Return: 1 if the CPU would be idle. 0 otherwise.
10077  */
10078 static int idle_cpu_without(int cpu, struct task_struct *p)
10079 {
10080 	struct rq *rq = cpu_rq(cpu);
10081 
10082 	if (rq->curr != rq->idle && rq->curr != p)
10083 		return 0;
10084 
10085 	/*
10086 	 * rq->nr_running can't be used but an updated version without the
10087 	 * impact of p on cpu must be used instead. The updated nr_running
10088 	 * be computed and tested before calling idle_cpu_without().
10089 	 */
10090 
10091 #ifdef CONFIG_SMP
10092 	if (rq->ttwu_pending)
10093 		return 0;
10094 #endif
10095 
10096 	return 1;
10097 }
10098 
10099 /*
10100  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10101  * @sd: The sched_domain level to look for idlest group.
10102  * @group: sched_group whose statistics are to be updated.
10103  * @sgs: variable to hold the statistics for this group.
10104  * @p: The task for which we look for the idlest group/CPU.
10105  */
10106 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10107 					  struct sched_group *group,
10108 					  struct sg_lb_stats *sgs,
10109 					  struct task_struct *p)
10110 {
10111 	int i, nr_running;
10112 
10113 	memset(sgs, 0, sizeof(*sgs));
10114 
10115 	/* Assume that task can't fit any CPU of the group */
10116 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10117 		sgs->group_misfit_task_load = 1;
10118 
10119 	for_each_cpu(i, sched_group_span(group)) {
10120 		struct rq *rq = cpu_rq(i);
10121 		unsigned int local;
10122 
10123 		sgs->group_load += cpu_load_without(rq, p);
10124 		sgs->group_util += cpu_util_without(i, p);
10125 		sgs->group_runnable += cpu_runnable_without(rq, p);
10126 		local = task_running_on_cpu(i, p);
10127 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10128 
10129 		nr_running = rq->nr_running - local;
10130 		sgs->sum_nr_running += nr_running;
10131 
10132 		/*
10133 		 * No need to call idle_cpu_without() if nr_running is not 0
10134 		 */
10135 		if (!nr_running && idle_cpu_without(i, p))
10136 			sgs->idle_cpus++;
10137 
10138 		/* Check if task fits in the CPU */
10139 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10140 		    sgs->group_misfit_task_load &&
10141 		    task_fits_cpu(p, i))
10142 			sgs->group_misfit_task_load = 0;
10143 
10144 	}
10145 
10146 	sgs->group_capacity = group->sgc->capacity;
10147 
10148 	sgs->group_weight = group->group_weight;
10149 
10150 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10151 
10152 	/*
10153 	 * Computing avg_load makes sense only when group is fully busy or
10154 	 * overloaded
10155 	 */
10156 	if (sgs->group_type == group_fully_busy ||
10157 		sgs->group_type == group_overloaded)
10158 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10159 				sgs->group_capacity;
10160 }
10161 
10162 static bool update_pick_idlest(struct sched_group *idlest,
10163 			       struct sg_lb_stats *idlest_sgs,
10164 			       struct sched_group *group,
10165 			       struct sg_lb_stats *sgs)
10166 {
10167 	if (sgs->group_type < idlest_sgs->group_type)
10168 		return true;
10169 
10170 	if (sgs->group_type > idlest_sgs->group_type)
10171 		return false;
10172 
10173 	/*
10174 	 * The candidate and the current idlest group are the same type of
10175 	 * group. Let check which one is the idlest according to the type.
10176 	 */
10177 
10178 	switch (sgs->group_type) {
10179 	case group_overloaded:
10180 	case group_fully_busy:
10181 		/* Select the group with lowest avg_load. */
10182 		if (idlest_sgs->avg_load <= sgs->avg_load)
10183 			return false;
10184 		break;
10185 
10186 	case group_imbalanced:
10187 	case group_asym_packing:
10188 	case group_smt_balance:
10189 		/* Those types are not used in the slow wakeup path */
10190 		return false;
10191 
10192 	case group_misfit_task:
10193 		/* Select group with the highest max capacity */
10194 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10195 			return false;
10196 		break;
10197 
10198 	case group_has_spare:
10199 		/* Select group with most idle CPUs */
10200 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10201 			return false;
10202 
10203 		/* Select group with lowest group_util */
10204 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10205 			idlest_sgs->group_util <= sgs->group_util)
10206 			return false;
10207 
10208 		break;
10209 	}
10210 
10211 	return true;
10212 }
10213 
10214 /*
10215  * find_idlest_group() finds and returns the least busy CPU group within the
10216  * domain.
10217  *
10218  * Assumes p is allowed on at least one CPU in sd.
10219  */
10220 static struct sched_group *
10221 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10222 {
10223 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10224 	struct sg_lb_stats local_sgs, tmp_sgs;
10225 	struct sg_lb_stats *sgs;
10226 	unsigned long imbalance;
10227 	struct sg_lb_stats idlest_sgs = {
10228 			.avg_load = UINT_MAX,
10229 			.group_type = group_overloaded,
10230 	};
10231 
10232 	do {
10233 		int local_group;
10234 
10235 		/* Skip over this group if it has no CPUs allowed */
10236 		if (!cpumask_intersects(sched_group_span(group),
10237 					p->cpus_ptr))
10238 			continue;
10239 
10240 		/* Skip over this group if no cookie matched */
10241 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10242 			continue;
10243 
10244 		local_group = cpumask_test_cpu(this_cpu,
10245 					       sched_group_span(group));
10246 
10247 		if (local_group) {
10248 			sgs = &local_sgs;
10249 			local = group;
10250 		} else {
10251 			sgs = &tmp_sgs;
10252 		}
10253 
10254 		update_sg_wakeup_stats(sd, group, sgs, p);
10255 
10256 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10257 			idlest = group;
10258 			idlest_sgs = *sgs;
10259 		}
10260 
10261 	} while (group = group->next, group != sd->groups);
10262 
10263 
10264 	/* There is no idlest group to push tasks to */
10265 	if (!idlest)
10266 		return NULL;
10267 
10268 	/* The local group has been skipped because of CPU affinity */
10269 	if (!local)
10270 		return idlest;
10271 
10272 	/*
10273 	 * If the local group is idler than the selected idlest group
10274 	 * don't try and push the task.
10275 	 */
10276 	if (local_sgs.group_type < idlest_sgs.group_type)
10277 		return NULL;
10278 
10279 	/*
10280 	 * If the local group is busier than the selected idlest group
10281 	 * try and push the task.
10282 	 */
10283 	if (local_sgs.group_type > idlest_sgs.group_type)
10284 		return idlest;
10285 
10286 	switch (local_sgs.group_type) {
10287 	case group_overloaded:
10288 	case group_fully_busy:
10289 
10290 		/* Calculate allowed imbalance based on load */
10291 		imbalance = scale_load_down(NICE_0_LOAD) *
10292 				(sd->imbalance_pct-100) / 100;
10293 
10294 		/*
10295 		 * When comparing groups across NUMA domains, it's possible for
10296 		 * the local domain to be very lightly loaded relative to the
10297 		 * remote domains but "imbalance" skews the comparison making
10298 		 * remote CPUs look much more favourable. When considering
10299 		 * cross-domain, add imbalance to the load on the remote node
10300 		 * and consider staying local.
10301 		 */
10302 
10303 		if ((sd->flags & SD_NUMA) &&
10304 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10305 			return NULL;
10306 
10307 		/*
10308 		 * If the local group is less loaded than the selected
10309 		 * idlest group don't try and push any tasks.
10310 		 */
10311 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10312 			return NULL;
10313 
10314 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10315 			return NULL;
10316 		break;
10317 
10318 	case group_imbalanced:
10319 	case group_asym_packing:
10320 	case group_smt_balance:
10321 		/* Those type are not used in the slow wakeup path */
10322 		return NULL;
10323 
10324 	case group_misfit_task:
10325 		/* Select group with the highest max capacity */
10326 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10327 			return NULL;
10328 		break;
10329 
10330 	case group_has_spare:
10331 #ifdef CONFIG_NUMA
10332 		if (sd->flags & SD_NUMA) {
10333 			int imb_numa_nr = sd->imb_numa_nr;
10334 #ifdef CONFIG_NUMA_BALANCING
10335 			int idlest_cpu;
10336 			/*
10337 			 * If there is spare capacity at NUMA, try to select
10338 			 * the preferred node
10339 			 */
10340 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10341 				return NULL;
10342 
10343 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10344 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10345 				return idlest;
10346 #endif /* CONFIG_NUMA_BALANCING */
10347 			/*
10348 			 * Otherwise, keep the task close to the wakeup source
10349 			 * and improve locality if the number of running tasks
10350 			 * would remain below threshold where an imbalance is
10351 			 * allowed while accounting for the possibility the
10352 			 * task is pinned to a subset of CPUs. If there is a
10353 			 * real need of migration, periodic load balance will
10354 			 * take care of it.
10355 			 */
10356 			if (p->nr_cpus_allowed != NR_CPUS) {
10357 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10358 
10359 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10360 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10361 			}
10362 
10363 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10364 			if (!adjust_numa_imbalance(imbalance,
10365 						   local_sgs.sum_nr_running + 1,
10366 						   imb_numa_nr)) {
10367 				return NULL;
10368 			}
10369 		}
10370 #endif /* CONFIG_NUMA */
10371 
10372 		/*
10373 		 * Select group with highest number of idle CPUs. We could also
10374 		 * compare the utilization which is more stable but it can end
10375 		 * up that the group has less spare capacity but finally more
10376 		 * idle CPUs which means more opportunity to run task.
10377 		 */
10378 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10379 			return NULL;
10380 		break;
10381 	}
10382 
10383 	return idlest;
10384 }
10385 
10386 static void update_idle_cpu_scan(struct lb_env *env,
10387 				 unsigned long sum_util)
10388 {
10389 	struct sched_domain_shared *sd_share;
10390 	int llc_weight, pct;
10391 	u64 x, y, tmp;
10392 	/*
10393 	 * Update the number of CPUs to scan in LLC domain, which could
10394 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10395 	 * could be expensive because it is within a shared cache line.
10396 	 * So the write of this hint only occurs during periodic load
10397 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10398 	 * can fire way more frequently than the former.
10399 	 */
10400 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10401 		return;
10402 
10403 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10404 	if (env->sd->span_weight != llc_weight)
10405 		return;
10406 
10407 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10408 	if (!sd_share)
10409 		return;
10410 
10411 	/*
10412 	 * The number of CPUs to search drops as sum_util increases, when
10413 	 * sum_util hits 85% or above, the scan stops.
10414 	 * The reason to choose 85% as the threshold is because this is the
10415 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10416 	 *
10417 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10418 	 * and y'= y / SCHED_CAPACITY_SCALE
10419 	 *
10420 	 * x is the ratio of sum_util compared to the CPU capacity:
10421 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10422 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10423 	 * and the number of CPUs to scan is calculated by:
10424 	 *
10425 	 * nr_scan = llc_weight * y'                                    [2]
10426 	 *
10427 	 * When x hits the threshold of overloaded, AKA, when
10428 	 * x = 100 / pct, y drops to 0. According to [1],
10429 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10430 	 *
10431 	 * Scale x by SCHED_CAPACITY_SCALE:
10432 	 * x' = sum_util / llc_weight;                                  [3]
10433 	 *
10434 	 * and finally [1] becomes:
10435 	 * y = SCHED_CAPACITY_SCALE -
10436 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10437 	 *
10438 	 */
10439 	/* equation [3] */
10440 	x = sum_util;
10441 	do_div(x, llc_weight);
10442 
10443 	/* equation [4] */
10444 	pct = env->sd->imbalance_pct;
10445 	tmp = x * x * pct * pct;
10446 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10447 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10448 	y = SCHED_CAPACITY_SCALE - tmp;
10449 
10450 	/* equation [2] */
10451 	y *= llc_weight;
10452 	do_div(y, SCHED_CAPACITY_SCALE);
10453 	if ((int)y != sd_share->nr_idle_scan)
10454 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10455 }
10456 
10457 /**
10458  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10459  * @env: The load balancing environment.
10460  * @sds: variable to hold the statistics for this sched_domain.
10461  */
10462 
10463 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10464 {
10465 	struct sched_group *sg = env->sd->groups;
10466 	struct sg_lb_stats *local = &sds->local_stat;
10467 	struct sg_lb_stats tmp_sgs;
10468 	unsigned long sum_util = 0;
10469 	int sg_status = 0;
10470 
10471 	do {
10472 		struct sg_lb_stats *sgs = &tmp_sgs;
10473 		int local_group;
10474 
10475 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10476 		if (local_group) {
10477 			sds->local = sg;
10478 			sgs = local;
10479 
10480 			if (env->idle != CPU_NEWLY_IDLE ||
10481 			    time_after_eq(jiffies, sg->sgc->next_update))
10482 				update_group_capacity(env->sd, env->dst_cpu);
10483 		}
10484 
10485 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10486 
10487 		if (local_group)
10488 			goto next_group;
10489 
10490 
10491 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10492 			sds->busiest = sg;
10493 			sds->busiest_stat = *sgs;
10494 		}
10495 
10496 next_group:
10497 		/* Now, start updating sd_lb_stats */
10498 		sds->total_load += sgs->group_load;
10499 		sds->total_capacity += sgs->group_capacity;
10500 
10501 		sum_util += sgs->group_util;
10502 		sg = sg->next;
10503 	} while (sg != env->sd->groups);
10504 
10505 	/*
10506 	 * Indicate that the child domain of the busiest group prefers tasks
10507 	 * go to a child's sibling domains first. NB the flags of a sched group
10508 	 * are those of the child domain.
10509 	 */
10510 	if (sds->busiest)
10511 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10512 
10513 
10514 	if (env->sd->flags & SD_NUMA)
10515 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10516 
10517 	if (!env->sd->parent) {
10518 		/* update overload indicator if we are at root domain */
10519 		WRITE_ONCE(env->dst_rq->rd->overload, sg_status & SG_OVERLOAD);
10520 
10521 		/* Update over-utilization (tipping point, U >= 0) indicator */
10522 		set_rd_overutilized_status(env->dst_rq->rd,
10523 					   sg_status & SG_OVERUTILIZED);
10524 	} else if (sg_status & SG_OVERUTILIZED) {
10525 		set_rd_overutilized_status(env->dst_rq->rd, SG_OVERUTILIZED);
10526 	}
10527 
10528 	update_idle_cpu_scan(env, sum_util);
10529 }
10530 
10531 /**
10532  * calculate_imbalance - Calculate the amount of imbalance present within the
10533  *			 groups of a given sched_domain during load balance.
10534  * @env: load balance environment
10535  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10536  */
10537 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10538 {
10539 	struct sg_lb_stats *local, *busiest;
10540 
10541 	local = &sds->local_stat;
10542 	busiest = &sds->busiest_stat;
10543 
10544 	if (busiest->group_type == group_misfit_task) {
10545 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10546 			/* Set imbalance to allow misfit tasks to be balanced. */
10547 			env->migration_type = migrate_misfit;
10548 			env->imbalance = 1;
10549 		} else {
10550 			/*
10551 			 * Set load imbalance to allow moving task from cpu
10552 			 * with reduced capacity.
10553 			 */
10554 			env->migration_type = migrate_load;
10555 			env->imbalance = busiest->group_misfit_task_load;
10556 		}
10557 		return;
10558 	}
10559 
10560 	if (busiest->group_type == group_asym_packing) {
10561 		/*
10562 		 * In case of asym capacity, we will try to migrate all load to
10563 		 * the preferred CPU.
10564 		 */
10565 		env->migration_type = migrate_task;
10566 		env->imbalance = busiest->sum_h_nr_running;
10567 		return;
10568 	}
10569 
10570 	if (busiest->group_type == group_smt_balance) {
10571 		/* Reduce number of tasks sharing CPU capacity */
10572 		env->migration_type = migrate_task;
10573 		env->imbalance = 1;
10574 		return;
10575 	}
10576 
10577 	if (busiest->group_type == group_imbalanced) {
10578 		/*
10579 		 * In the group_imb case we cannot rely on group-wide averages
10580 		 * to ensure CPU-load equilibrium, try to move any task to fix
10581 		 * the imbalance. The next load balance will take care of
10582 		 * balancing back the system.
10583 		 */
10584 		env->migration_type = migrate_task;
10585 		env->imbalance = 1;
10586 		return;
10587 	}
10588 
10589 	/*
10590 	 * Try to use spare capacity of local group without overloading it or
10591 	 * emptying busiest.
10592 	 */
10593 	if (local->group_type == group_has_spare) {
10594 		if ((busiest->group_type > group_fully_busy) &&
10595 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10596 			/*
10597 			 * If busiest is overloaded, try to fill spare
10598 			 * capacity. This might end up creating spare capacity
10599 			 * in busiest or busiest still being overloaded but
10600 			 * there is no simple way to directly compute the
10601 			 * amount of load to migrate in order to balance the
10602 			 * system.
10603 			 */
10604 			env->migration_type = migrate_util;
10605 			env->imbalance = max(local->group_capacity, local->group_util) -
10606 					 local->group_util;
10607 
10608 			/*
10609 			 * In some cases, the group's utilization is max or even
10610 			 * higher than capacity because of migrations but the
10611 			 * local CPU is (newly) idle. There is at least one
10612 			 * waiting task in this overloaded busiest group. Let's
10613 			 * try to pull it.
10614 			 */
10615 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10616 				env->migration_type = migrate_task;
10617 				env->imbalance = 1;
10618 			}
10619 
10620 			return;
10621 		}
10622 
10623 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10624 			/*
10625 			 * When prefer sibling, evenly spread running tasks on
10626 			 * groups.
10627 			 */
10628 			env->migration_type = migrate_task;
10629 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
10630 		} else {
10631 
10632 			/*
10633 			 * If there is no overload, we just want to even the number of
10634 			 * idle cpus.
10635 			 */
10636 			env->migration_type = migrate_task;
10637 			env->imbalance = max_t(long, 0,
10638 					       (local->idle_cpus - busiest->idle_cpus));
10639 		}
10640 
10641 #ifdef CONFIG_NUMA
10642 		/* Consider allowing a small imbalance between NUMA groups */
10643 		if (env->sd->flags & SD_NUMA) {
10644 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10645 							       local->sum_nr_running + 1,
10646 							       env->sd->imb_numa_nr);
10647 		}
10648 #endif
10649 
10650 		/* Number of tasks to move to restore balance */
10651 		env->imbalance >>= 1;
10652 
10653 		return;
10654 	}
10655 
10656 	/*
10657 	 * Local is fully busy but has to take more load to relieve the
10658 	 * busiest group
10659 	 */
10660 	if (local->group_type < group_overloaded) {
10661 		/*
10662 		 * Local will become overloaded so the avg_load metrics are
10663 		 * finally needed.
10664 		 */
10665 
10666 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10667 				  local->group_capacity;
10668 
10669 		/*
10670 		 * If the local group is more loaded than the selected
10671 		 * busiest group don't try to pull any tasks.
10672 		 */
10673 		if (local->avg_load >= busiest->avg_load) {
10674 			env->imbalance = 0;
10675 			return;
10676 		}
10677 
10678 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10679 				sds->total_capacity;
10680 
10681 		/*
10682 		 * If the local group is more loaded than the average system
10683 		 * load, don't try to pull any tasks.
10684 		 */
10685 		if (local->avg_load >= sds->avg_load) {
10686 			env->imbalance = 0;
10687 			return;
10688 		}
10689 
10690 	}
10691 
10692 	/*
10693 	 * Both group are or will become overloaded and we're trying to get all
10694 	 * the CPUs to the average_load, so we don't want to push ourselves
10695 	 * above the average load, nor do we wish to reduce the max loaded CPU
10696 	 * below the average load. At the same time, we also don't want to
10697 	 * reduce the group load below the group capacity. Thus we look for
10698 	 * the minimum possible imbalance.
10699 	 */
10700 	env->migration_type = migrate_load;
10701 	env->imbalance = min(
10702 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10703 		(sds->avg_load - local->avg_load) * local->group_capacity
10704 	) / SCHED_CAPACITY_SCALE;
10705 }
10706 
10707 /******* find_busiest_group() helpers end here *********************/
10708 
10709 /*
10710  * Decision matrix according to the local and busiest group type:
10711  *
10712  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10713  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10714  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10715  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10716  * asym_packing     force     force      N/A    N/A  force      force
10717  * imbalanced       force     force      N/A    N/A  force      force
10718  * overloaded       force     force      N/A    N/A  force      avg_load
10719  *
10720  * N/A :      Not Applicable because already filtered while updating
10721  *            statistics.
10722  * balanced : The system is balanced for these 2 groups.
10723  * force :    Calculate the imbalance as load migration is probably needed.
10724  * avg_load : Only if imbalance is significant enough.
10725  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10726  *            different in groups.
10727  */
10728 
10729 /**
10730  * find_busiest_group - Returns the busiest group within the sched_domain
10731  * if there is an imbalance.
10732  * @env: The load balancing environment.
10733  *
10734  * Also calculates the amount of runnable load which should be moved
10735  * to restore balance.
10736  *
10737  * Return:	- The busiest group if imbalance exists.
10738  */
10739 static struct sched_group *find_busiest_group(struct lb_env *env)
10740 {
10741 	struct sg_lb_stats *local, *busiest;
10742 	struct sd_lb_stats sds;
10743 
10744 	init_sd_lb_stats(&sds);
10745 
10746 	/*
10747 	 * Compute the various statistics relevant for load balancing at
10748 	 * this level.
10749 	 */
10750 	update_sd_lb_stats(env, &sds);
10751 
10752 	/* There is no busy sibling group to pull tasks from */
10753 	if (!sds.busiest)
10754 		goto out_balanced;
10755 
10756 	busiest = &sds.busiest_stat;
10757 
10758 	/* Misfit tasks should be dealt with regardless of the avg load */
10759 	if (busiest->group_type == group_misfit_task)
10760 		goto force_balance;
10761 
10762 	if (sched_energy_enabled()) {
10763 		struct root_domain *rd = env->dst_rq->rd;
10764 
10765 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10766 			goto out_balanced;
10767 	}
10768 
10769 	/* ASYM feature bypasses nice load balance check */
10770 	if (busiest->group_type == group_asym_packing)
10771 		goto force_balance;
10772 
10773 	/*
10774 	 * If the busiest group is imbalanced the below checks don't
10775 	 * work because they assume all things are equal, which typically
10776 	 * isn't true due to cpus_ptr constraints and the like.
10777 	 */
10778 	if (busiest->group_type == group_imbalanced)
10779 		goto force_balance;
10780 
10781 	local = &sds.local_stat;
10782 	/*
10783 	 * If the local group is busier than the selected busiest group
10784 	 * don't try and pull any tasks.
10785 	 */
10786 	if (local->group_type > busiest->group_type)
10787 		goto out_balanced;
10788 
10789 	/*
10790 	 * When groups are overloaded, use the avg_load to ensure fairness
10791 	 * between tasks.
10792 	 */
10793 	if (local->group_type == group_overloaded) {
10794 		/*
10795 		 * If the local group is more loaded than the selected
10796 		 * busiest group don't try to pull any tasks.
10797 		 */
10798 		if (local->avg_load >= busiest->avg_load)
10799 			goto out_balanced;
10800 
10801 		/* XXX broken for overlapping NUMA groups */
10802 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10803 				sds.total_capacity;
10804 
10805 		/*
10806 		 * Don't pull any tasks if this group is already above the
10807 		 * domain average load.
10808 		 */
10809 		if (local->avg_load >= sds.avg_load)
10810 			goto out_balanced;
10811 
10812 		/*
10813 		 * If the busiest group is more loaded, use imbalance_pct to be
10814 		 * conservative.
10815 		 */
10816 		if (100 * busiest->avg_load <=
10817 				env->sd->imbalance_pct * local->avg_load)
10818 			goto out_balanced;
10819 	}
10820 
10821 	/*
10822 	 * Try to move all excess tasks to a sibling domain of the busiest
10823 	 * group's child domain.
10824 	 */
10825 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10826 	    sibling_imbalance(env, &sds, busiest, local) > 1)
10827 		goto force_balance;
10828 
10829 	if (busiest->group_type != group_overloaded) {
10830 		if (env->idle == CPU_NOT_IDLE) {
10831 			/*
10832 			 * If the busiest group is not overloaded (and as a
10833 			 * result the local one too) but this CPU is already
10834 			 * busy, let another idle CPU try to pull task.
10835 			 */
10836 			goto out_balanced;
10837 		}
10838 
10839 		if (busiest->group_type == group_smt_balance &&
10840 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10841 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
10842 			goto force_balance;
10843 		}
10844 
10845 		if (busiest->group_weight > 1 &&
10846 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
10847 			/*
10848 			 * If the busiest group is not overloaded
10849 			 * and there is no imbalance between this and busiest
10850 			 * group wrt idle CPUs, it is balanced. The imbalance
10851 			 * becomes significant if the diff is greater than 1
10852 			 * otherwise we might end up to just move the imbalance
10853 			 * on another group. Of course this applies only if
10854 			 * there is more than 1 CPU per group.
10855 			 */
10856 			goto out_balanced;
10857 		}
10858 
10859 		if (busiest->sum_h_nr_running == 1) {
10860 			/*
10861 			 * busiest doesn't have any tasks waiting to run
10862 			 */
10863 			goto out_balanced;
10864 		}
10865 	}
10866 
10867 force_balance:
10868 	/* Looks like there is an imbalance. Compute it */
10869 	calculate_imbalance(env, &sds);
10870 	return env->imbalance ? sds.busiest : NULL;
10871 
10872 out_balanced:
10873 	env->imbalance = 0;
10874 	return NULL;
10875 }
10876 
10877 /*
10878  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10879  */
10880 static struct rq *find_busiest_queue(struct lb_env *env,
10881 				     struct sched_group *group)
10882 {
10883 	struct rq *busiest = NULL, *rq;
10884 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10885 	unsigned int busiest_nr = 0;
10886 	int i;
10887 
10888 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10889 		unsigned long capacity, load, util;
10890 		unsigned int nr_running;
10891 		enum fbq_type rt;
10892 
10893 		rq = cpu_rq(i);
10894 		rt = fbq_classify_rq(rq);
10895 
10896 		/*
10897 		 * We classify groups/runqueues into three groups:
10898 		 *  - regular: there are !numa tasks
10899 		 *  - remote:  there are numa tasks that run on the 'wrong' node
10900 		 *  - all:     there is no distinction
10901 		 *
10902 		 * In order to avoid migrating ideally placed numa tasks,
10903 		 * ignore those when there's better options.
10904 		 *
10905 		 * If we ignore the actual busiest queue to migrate another
10906 		 * task, the next balance pass can still reduce the busiest
10907 		 * queue by moving tasks around inside the node.
10908 		 *
10909 		 * If we cannot move enough load due to this classification
10910 		 * the next pass will adjust the group classification and
10911 		 * allow migration of more tasks.
10912 		 *
10913 		 * Both cases only affect the total convergence complexity.
10914 		 */
10915 		if (rt > env->fbq_type)
10916 			continue;
10917 
10918 		nr_running = rq->cfs.h_nr_running;
10919 		if (!nr_running)
10920 			continue;
10921 
10922 		capacity = capacity_of(i);
10923 
10924 		/*
10925 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10926 		 * eventually lead to active_balancing high->low capacity.
10927 		 * Higher per-CPU capacity is considered better than balancing
10928 		 * average load.
10929 		 */
10930 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
10931 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
10932 		    nr_running == 1)
10933 			continue;
10934 
10935 		/*
10936 		 * Make sure we only pull tasks from a CPU of lower priority
10937 		 * when balancing between SMT siblings.
10938 		 *
10939 		 * If balancing between cores, let lower priority CPUs help
10940 		 * SMT cores with more than one busy sibling.
10941 		 */
10942 		if ((env->sd->flags & SD_ASYM_PACKING) &&
10943 		    sched_use_asym_prio(env->sd, i) &&
10944 		    sched_asym_prefer(i, env->dst_cpu) &&
10945 		    nr_running == 1)
10946 			continue;
10947 
10948 		switch (env->migration_type) {
10949 		case migrate_load:
10950 			/*
10951 			 * When comparing with load imbalance, use cpu_load()
10952 			 * which is not scaled with the CPU capacity.
10953 			 */
10954 			load = cpu_load(rq);
10955 
10956 			if (nr_running == 1 && load > env->imbalance &&
10957 			    !check_cpu_capacity(rq, env->sd))
10958 				break;
10959 
10960 			/*
10961 			 * For the load comparisons with the other CPUs,
10962 			 * consider the cpu_load() scaled with the CPU
10963 			 * capacity, so that the load can be moved away
10964 			 * from the CPU that is potentially running at a
10965 			 * lower capacity.
10966 			 *
10967 			 * Thus we're looking for max(load_i / capacity_i),
10968 			 * crosswise multiplication to rid ourselves of the
10969 			 * division works out to:
10970 			 * load_i * capacity_j > load_j * capacity_i;
10971 			 * where j is our previous maximum.
10972 			 */
10973 			if (load * busiest_capacity > busiest_load * capacity) {
10974 				busiest_load = load;
10975 				busiest_capacity = capacity;
10976 				busiest = rq;
10977 			}
10978 			break;
10979 
10980 		case migrate_util:
10981 			util = cpu_util_cfs_boost(i);
10982 
10983 			/*
10984 			 * Don't try to pull utilization from a CPU with one
10985 			 * running task. Whatever its utilization, we will fail
10986 			 * detach the task.
10987 			 */
10988 			if (nr_running <= 1)
10989 				continue;
10990 
10991 			if (busiest_util < util) {
10992 				busiest_util = util;
10993 				busiest = rq;
10994 			}
10995 			break;
10996 
10997 		case migrate_task:
10998 			if (busiest_nr < nr_running) {
10999 				busiest_nr = nr_running;
11000 				busiest = rq;
11001 			}
11002 			break;
11003 
11004 		case migrate_misfit:
11005 			/*
11006 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11007 			 * simply seek the "biggest" misfit task.
11008 			 */
11009 			if (rq->misfit_task_load > busiest_load) {
11010 				busiest_load = rq->misfit_task_load;
11011 				busiest = rq;
11012 			}
11013 
11014 			break;
11015 
11016 		}
11017 	}
11018 
11019 	return busiest;
11020 }
11021 
11022 /*
11023  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11024  * so long as it is large enough.
11025  */
11026 #define MAX_PINNED_INTERVAL	512
11027 
11028 static inline bool
11029 asym_active_balance(struct lb_env *env)
11030 {
11031 	/*
11032 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11033 	 * priority CPUs in order to pack all tasks in the highest priority
11034 	 * CPUs. When done between cores, do it only if the whole core if the
11035 	 * whole core is idle.
11036 	 *
11037 	 * If @env::src_cpu is an SMT core with busy siblings, let
11038 	 * the lower priority @env::dst_cpu help it. Do not follow
11039 	 * CPU priority.
11040 	 */
11041 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
11042 	       sched_use_asym_prio(env->sd, env->dst_cpu) &&
11043 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11044 		!sched_use_asym_prio(env->sd, env->src_cpu));
11045 }
11046 
11047 static inline bool
11048 imbalanced_active_balance(struct lb_env *env)
11049 {
11050 	struct sched_domain *sd = env->sd;
11051 
11052 	/*
11053 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11054 	 * distribution of the load on the system but also the even distribution of the
11055 	 * threads on a system with spare capacity
11056 	 */
11057 	if ((env->migration_type == migrate_task) &&
11058 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11059 		return 1;
11060 
11061 	return 0;
11062 }
11063 
11064 static int need_active_balance(struct lb_env *env)
11065 {
11066 	struct sched_domain *sd = env->sd;
11067 
11068 	if (asym_active_balance(env))
11069 		return 1;
11070 
11071 	if (imbalanced_active_balance(env))
11072 		return 1;
11073 
11074 	/*
11075 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11076 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11077 	 * because of other sched_class or IRQs if more capacity stays
11078 	 * available on dst_cpu.
11079 	 */
11080 	if ((env->idle != CPU_NOT_IDLE) &&
11081 	    (env->src_rq->cfs.h_nr_running == 1)) {
11082 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11083 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11084 			return 1;
11085 	}
11086 
11087 	if (env->migration_type == migrate_misfit)
11088 		return 1;
11089 
11090 	return 0;
11091 }
11092 
11093 static int active_load_balance_cpu_stop(void *data);
11094 
11095 static int should_we_balance(struct lb_env *env)
11096 {
11097 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11098 	struct sched_group *sg = env->sd->groups;
11099 	int cpu, idle_smt = -1;
11100 
11101 	/*
11102 	 * Ensure the balancing environment is consistent; can happen
11103 	 * when the softirq triggers 'during' hotplug.
11104 	 */
11105 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11106 		return 0;
11107 
11108 	/*
11109 	 * In the newly idle case, we will allow all the CPUs
11110 	 * to do the newly idle load balance.
11111 	 *
11112 	 * However, we bail out if we already have tasks or a wakeup pending,
11113 	 * to optimize wakeup latency.
11114 	 */
11115 	if (env->idle == CPU_NEWLY_IDLE) {
11116 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11117 			return 0;
11118 		return 1;
11119 	}
11120 
11121 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11122 	/* Try to find first idle CPU */
11123 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11124 		if (!idle_cpu(cpu))
11125 			continue;
11126 
11127 		/*
11128 		 * Don't balance to idle SMT in busy core right away when
11129 		 * balancing cores, but remember the first idle SMT CPU for
11130 		 * later consideration.  Find CPU on an idle core first.
11131 		 */
11132 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11133 			if (idle_smt == -1)
11134 				idle_smt = cpu;
11135 			/*
11136 			 * If the core is not idle, and first SMT sibling which is
11137 			 * idle has been found, then its not needed to check other
11138 			 * SMT siblings for idleness:
11139 			 */
11140 #ifdef CONFIG_SCHED_SMT
11141 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11142 #endif
11143 			continue;
11144 		}
11145 
11146 		/*
11147 		 * Are we the first idle core in a non-SMT domain or higher,
11148 		 * or the first idle CPU in a SMT domain?
11149 		 */
11150 		return cpu == env->dst_cpu;
11151 	}
11152 
11153 	/* Are we the first idle CPU with busy siblings? */
11154 	if (idle_smt != -1)
11155 		return idle_smt == env->dst_cpu;
11156 
11157 	/* Are we the first CPU of this group ? */
11158 	return group_balance_cpu(sg) == env->dst_cpu;
11159 }
11160 
11161 /*
11162  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11163  * tasks if there is an imbalance.
11164  */
11165 static int load_balance(int this_cpu, struct rq *this_rq,
11166 			struct sched_domain *sd, enum cpu_idle_type idle,
11167 			int *continue_balancing)
11168 {
11169 	int ld_moved, cur_ld_moved, active_balance = 0;
11170 	struct sched_domain *sd_parent = sd->parent;
11171 	struct sched_group *group;
11172 	struct rq *busiest;
11173 	struct rq_flags rf;
11174 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11175 	struct lb_env env = {
11176 		.sd		= sd,
11177 		.dst_cpu	= this_cpu,
11178 		.dst_rq		= this_rq,
11179 		.dst_grpmask    = group_balance_mask(sd->groups),
11180 		.idle		= idle,
11181 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11182 		.cpus		= cpus,
11183 		.fbq_type	= all,
11184 		.tasks		= LIST_HEAD_INIT(env.tasks),
11185 	};
11186 
11187 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11188 
11189 	schedstat_inc(sd->lb_count[idle]);
11190 
11191 redo:
11192 	if (!should_we_balance(&env)) {
11193 		*continue_balancing = 0;
11194 		goto out_balanced;
11195 	}
11196 
11197 	group = find_busiest_group(&env);
11198 	if (!group) {
11199 		schedstat_inc(sd->lb_nobusyg[idle]);
11200 		goto out_balanced;
11201 	}
11202 
11203 	busiest = find_busiest_queue(&env, group);
11204 	if (!busiest) {
11205 		schedstat_inc(sd->lb_nobusyq[idle]);
11206 		goto out_balanced;
11207 	}
11208 
11209 	WARN_ON_ONCE(busiest == env.dst_rq);
11210 
11211 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11212 
11213 	env.src_cpu = busiest->cpu;
11214 	env.src_rq = busiest;
11215 
11216 	ld_moved = 0;
11217 	/* Clear this flag as soon as we find a pullable task */
11218 	env.flags |= LBF_ALL_PINNED;
11219 	if (busiest->nr_running > 1) {
11220 		/*
11221 		 * Attempt to move tasks. If find_busiest_group has found
11222 		 * an imbalance but busiest->nr_running <= 1, the group is
11223 		 * still unbalanced. ld_moved simply stays zero, so it is
11224 		 * correctly treated as an imbalance.
11225 		 */
11226 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11227 
11228 more_balance:
11229 		rq_lock_irqsave(busiest, &rf);
11230 		update_rq_clock(busiest);
11231 
11232 		/*
11233 		 * cur_ld_moved - load moved in current iteration
11234 		 * ld_moved     - cumulative load moved across iterations
11235 		 */
11236 		cur_ld_moved = detach_tasks(&env);
11237 
11238 		/*
11239 		 * We've detached some tasks from busiest_rq. Every
11240 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11241 		 * unlock busiest->lock, and we are able to be sure
11242 		 * that nobody can manipulate the tasks in parallel.
11243 		 * See task_rq_lock() family for the details.
11244 		 */
11245 
11246 		rq_unlock(busiest, &rf);
11247 
11248 		if (cur_ld_moved) {
11249 			attach_tasks(&env);
11250 			ld_moved += cur_ld_moved;
11251 		}
11252 
11253 		local_irq_restore(rf.flags);
11254 
11255 		if (env.flags & LBF_NEED_BREAK) {
11256 			env.flags &= ~LBF_NEED_BREAK;
11257 			goto more_balance;
11258 		}
11259 
11260 		/*
11261 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11262 		 * us and move them to an alternate dst_cpu in our sched_group
11263 		 * where they can run. The upper limit on how many times we
11264 		 * iterate on same src_cpu is dependent on number of CPUs in our
11265 		 * sched_group.
11266 		 *
11267 		 * This changes load balance semantics a bit on who can move
11268 		 * load to a given_cpu. In addition to the given_cpu itself
11269 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11270 		 * nohz-idle), we now have balance_cpu in a position to move
11271 		 * load to given_cpu. In rare situations, this may cause
11272 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11273 		 * _independently_ and at _same_ time to move some load to
11274 		 * given_cpu) causing excess load to be moved to given_cpu.
11275 		 * This however should not happen so much in practice and
11276 		 * moreover subsequent load balance cycles should correct the
11277 		 * excess load moved.
11278 		 */
11279 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11280 
11281 			/* Prevent to re-select dst_cpu via env's CPUs */
11282 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11283 
11284 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11285 			env.dst_cpu	 = env.new_dst_cpu;
11286 			env.flags	&= ~LBF_DST_PINNED;
11287 			env.loop	 = 0;
11288 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11289 
11290 			/*
11291 			 * Go back to "more_balance" rather than "redo" since we
11292 			 * need to continue with same src_cpu.
11293 			 */
11294 			goto more_balance;
11295 		}
11296 
11297 		/*
11298 		 * We failed to reach balance because of affinity.
11299 		 */
11300 		if (sd_parent) {
11301 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11302 
11303 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11304 				*group_imbalance = 1;
11305 		}
11306 
11307 		/* All tasks on this runqueue were pinned by CPU affinity */
11308 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11309 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11310 			/*
11311 			 * Attempting to continue load balancing at the current
11312 			 * sched_domain level only makes sense if there are
11313 			 * active CPUs remaining as possible busiest CPUs to
11314 			 * pull load from which are not contained within the
11315 			 * destination group that is receiving any migrated
11316 			 * load.
11317 			 */
11318 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11319 				env.loop = 0;
11320 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11321 				goto redo;
11322 			}
11323 			goto out_all_pinned;
11324 		}
11325 	}
11326 
11327 	if (!ld_moved) {
11328 		schedstat_inc(sd->lb_failed[idle]);
11329 		/*
11330 		 * Increment the failure counter only on periodic balance.
11331 		 * We do not want newidle balance, which can be very
11332 		 * frequent, pollute the failure counter causing
11333 		 * excessive cache_hot migrations and active balances.
11334 		 */
11335 		if (idle != CPU_NEWLY_IDLE)
11336 			sd->nr_balance_failed++;
11337 
11338 		if (need_active_balance(&env)) {
11339 			unsigned long flags;
11340 
11341 			raw_spin_rq_lock_irqsave(busiest, flags);
11342 
11343 			/*
11344 			 * Don't kick the active_load_balance_cpu_stop,
11345 			 * if the curr task on busiest CPU can't be
11346 			 * moved to this_cpu:
11347 			 */
11348 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11349 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11350 				goto out_one_pinned;
11351 			}
11352 
11353 			/* Record that we found at least one task that could run on this_cpu */
11354 			env.flags &= ~LBF_ALL_PINNED;
11355 
11356 			/*
11357 			 * ->active_balance synchronizes accesses to
11358 			 * ->active_balance_work.  Once set, it's cleared
11359 			 * only after active load balance is finished.
11360 			 */
11361 			if (!busiest->active_balance) {
11362 				busiest->active_balance = 1;
11363 				busiest->push_cpu = this_cpu;
11364 				active_balance = 1;
11365 			}
11366 
11367 			preempt_disable();
11368 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11369 			if (active_balance) {
11370 				stop_one_cpu_nowait(cpu_of(busiest),
11371 					active_load_balance_cpu_stop, busiest,
11372 					&busiest->active_balance_work);
11373 			}
11374 			preempt_enable();
11375 		}
11376 	} else {
11377 		sd->nr_balance_failed = 0;
11378 	}
11379 
11380 	if (likely(!active_balance) || need_active_balance(&env)) {
11381 		/* We were unbalanced, so reset the balancing interval */
11382 		sd->balance_interval = sd->min_interval;
11383 	}
11384 
11385 	goto out;
11386 
11387 out_balanced:
11388 	/*
11389 	 * We reach balance although we may have faced some affinity
11390 	 * constraints. Clear the imbalance flag only if other tasks got
11391 	 * a chance to move and fix the imbalance.
11392 	 */
11393 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11394 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11395 
11396 		if (*group_imbalance)
11397 			*group_imbalance = 0;
11398 	}
11399 
11400 out_all_pinned:
11401 	/*
11402 	 * We reach balance because all tasks are pinned at this level so
11403 	 * we can't migrate them. Let the imbalance flag set so parent level
11404 	 * can try to migrate them.
11405 	 */
11406 	schedstat_inc(sd->lb_balanced[idle]);
11407 
11408 	sd->nr_balance_failed = 0;
11409 
11410 out_one_pinned:
11411 	ld_moved = 0;
11412 
11413 	/*
11414 	 * newidle_balance() disregards balance intervals, so we could
11415 	 * repeatedly reach this code, which would lead to balance_interval
11416 	 * skyrocketing in a short amount of time. Skip the balance_interval
11417 	 * increase logic to avoid that.
11418 	 */
11419 	if (env.idle == CPU_NEWLY_IDLE)
11420 		goto out;
11421 
11422 	/* tune up the balancing interval */
11423 	if ((env.flags & LBF_ALL_PINNED &&
11424 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11425 	    sd->balance_interval < sd->max_interval)
11426 		sd->balance_interval *= 2;
11427 out:
11428 	return ld_moved;
11429 }
11430 
11431 static inline unsigned long
11432 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11433 {
11434 	unsigned long interval = sd->balance_interval;
11435 
11436 	if (cpu_busy)
11437 		interval *= sd->busy_factor;
11438 
11439 	/* scale ms to jiffies */
11440 	interval = msecs_to_jiffies(interval);
11441 
11442 	/*
11443 	 * Reduce likelihood of busy balancing at higher domains racing with
11444 	 * balancing at lower domains by preventing their balancing periods
11445 	 * from being multiples of each other.
11446 	 */
11447 	if (cpu_busy)
11448 		interval -= 1;
11449 
11450 	interval = clamp(interval, 1UL, max_load_balance_interval);
11451 
11452 	return interval;
11453 }
11454 
11455 static inline void
11456 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11457 {
11458 	unsigned long interval, next;
11459 
11460 	/* used by idle balance, so cpu_busy = 0 */
11461 	interval = get_sd_balance_interval(sd, 0);
11462 	next = sd->last_balance + interval;
11463 
11464 	if (time_after(*next_balance, next))
11465 		*next_balance = next;
11466 }
11467 
11468 /*
11469  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11470  * running tasks off the busiest CPU onto idle CPUs. It requires at
11471  * least 1 task to be running on each physical CPU where possible, and
11472  * avoids physical / logical imbalances.
11473  */
11474 static int active_load_balance_cpu_stop(void *data)
11475 {
11476 	struct rq *busiest_rq = data;
11477 	int busiest_cpu = cpu_of(busiest_rq);
11478 	int target_cpu = busiest_rq->push_cpu;
11479 	struct rq *target_rq = cpu_rq(target_cpu);
11480 	struct sched_domain *sd;
11481 	struct task_struct *p = NULL;
11482 	struct rq_flags rf;
11483 
11484 	rq_lock_irq(busiest_rq, &rf);
11485 	/*
11486 	 * Between queueing the stop-work and running it is a hole in which
11487 	 * CPUs can become inactive. We should not move tasks from or to
11488 	 * inactive CPUs.
11489 	 */
11490 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11491 		goto out_unlock;
11492 
11493 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11494 	if (unlikely(busiest_cpu != smp_processor_id() ||
11495 		     !busiest_rq->active_balance))
11496 		goto out_unlock;
11497 
11498 	/* Is there any task to move? */
11499 	if (busiest_rq->nr_running <= 1)
11500 		goto out_unlock;
11501 
11502 	/*
11503 	 * This condition is "impossible", if it occurs
11504 	 * we need to fix it. Originally reported by
11505 	 * Bjorn Helgaas on a 128-CPU setup.
11506 	 */
11507 	WARN_ON_ONCE(busiest_rq == target_rq);
11508 
11509 	/* Search for an sd spanning us and the target CPU. */
11510 	rcu_read_lock();
11511 	for_each_domain(target_cpu, sd) {
11512 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11513 			break;
11514 	}
11515 
11516 	if (likely(sd)) {
11517 		struct lb_env env = {
11518 			.sd		= sd,
11519 			.dst_cpu	= target_cpu,
11520 			.dst_rq		= target_rq,
11521 			.src_cpu	= busiest_rq->cpu,
11522 			.src_rq		= busiest_rq,
11523 			.idle		= CPU_IDLE,
11524 			.flags		= LBF_ACTIVE_LB,
11525 		};
11526 
11527 		schedstat_inc(sd->alb_count);
11528 		update_rq_clock(busiest_rq);
11529 
11530 		p = detach_one_task(&env);
11531 		if (p) {
11532 			schedstat_inc(sd->alb_pushed);
11533 			/* Active balancing done, reset the failure counter. */
11534 			sd->nr_balance_failed = 0;
11535 		} else {
11536 			schedstat_inc(sd->alb_failed);
11537 		}
11538 	}
11539 	rcu_read_unlock();
11540 out_unlock:
11541 	busiest_rq->active_balance = 0;
11542 	rq_unlock(busiest_rq, &rf);
11543 
11544 	if (p)
11545 		attach_one_task(target_rq, p);
11546 
11547 	local_irq_enable();
11548 
11549 	return 0;
11550 }
11551 
11552 static DEFINE_SPINLOCK(balancing);
11553 
11554 /*
11555  * Scale the max load_balance interval with the number of CPUs in the system.
11556  * This trades load-balance latency on larger machines for less cross talk.
11557  */
11558 void update_max_interval(void)
11559 {
11560 	max_load_balance_interval = HZ*num_online_cpus()/10;
11561 }
11562 
11563 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11564 {
11565 	if (cost > sd->max_newidle_lb_cost) {
11566 		/*
11567 		 * Track max cost of a domain to make sure to not delay the
11568 		 * next wakeup on the CPU.
11569 		 */
11570 		sd->max_newidle_lb_cost = cost;
11571 		sd->last_decay_max_lb_cost = jiffies;
11572 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11573 		/*
11574 		 * Decay the newidle max times by ~1% per second to ensure that
11575 		 * it is not outdated and the current max cost is actually
11576 		 * shorter.
11577 		 */
11578 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11579 		sd->last_decay_max_lb_cost = jiffies;
11580 
11581 		return true;
11582 	}
11583 
11584 	return false;
11585 }
11586 
11587 /*
11588  * It checks each scheduling domain to see if it is due to be balanced,
11589  * and initiates a balancing operation if so.
11590  *
11591  * Balancing parameters are set up in init_sched_domains.
11592  */
11593 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11594 {
11595 	int continue_balancing = 1;
11596 	int cpu = rq->cpu;
11597 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11598 	unsigned long interval;
11599 	struct sched_domain *sd;
11600 	/* Earliest time when we have to do rebalance again */
11601 	unsigned long next_balance = jiffies + 60*HZ;
11602 	int update_next_balance = 0;
11603 	int need_serialize, need_decay = 0;
11604 	u64 max_cost = 0;
11605 
11606 	rcu_read_lock();
11607 	for_each_domain(cpu, sd) {
11608 		/*
11609 		 * Decay the newidle max times here because this is a regular
11610 		 * visit to all the domains.
11611 		 */
11612 		need_decay = update_newidle_cost(sd, 0);
11613 		max_cost += sd->max_newidle_lb_cost;
11614 
11615 		/*
11616 		 * Stop the load balance at this level. There is another
11617 		 * CPU in our sched group which is doing load balancing more
11618 		 * actively.
11619 		 */
11620 		if (!continue_balancing) {
11621 			if (need_decay)
11622 				continue;
11623 			break;
11624 		}
11625 
11626 		interval = get_sd_balance_interval(sd, busy);
11627 
11628 		need_serialize = sd->flags & SD_SERIALIZE;
11629 		if (need_serialize) {
11630 			if (!spin_trylock(&balancing))
11631 				goto out;
11632 		}
11633 
11634 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11635 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11636 				/*
11637 				 * The LBF_DST_PINNED logic could have changed
11638 				 * env->dst_cpu, so we can't know our idle
11639 				 * state even if we migrated tasks. Update it.
11640 				 */
11641 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11642 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11643 			}
11644 			sd->last_balance = jiffies;
11645 			interval = get_sd_balance_interval(sd, busy);
11646 		}
11647 		if (need_serialize)
11648 			spin_unlock(&balancing);
11649 out:
11650 		if (time_after(next_balance, sd->last_balance + interval)) {
11651 			next_balance = sd->last_balance + interval;
11652 			update_next_balance = 1;
11653 		}
11654 	}
11655 	if (need_decay) {
11656 		/*
11657 		 * Ensure the rq-wide value also decays but keep it at a
11658 		 * reasonable floor to avoid funnies with rq->avg_idle.
11659 		 */
11660 		rq->max_idle_balance_cost =
11661 			max((u64)sysctl_sched_migration_cost, max_cost);
11662 	}
11663 	rcu_read_unlock();
11664 
11665 	/*
11666 	 * next_balance will be updated only when there is a need.
11667 	 * When the cpu is attached to null domain for ex, it will not be
11668 	 * updated.
11669 	 */
11670 	if (likely(update_next_balance))
11671 		rq->next_balance = next_balance;
11672 
11673 }
11674 
11675 static inline int on_null_domain(struct rq *rq)
11676 {
11677 	return unlikely(!rcu_dereference_sched(rq->sd));
11678 }
11679 
11680 #ifdef CONFIG_NO_HZ_COMMON
11681 /*
11682  * idle load balancing details
11683  * - When one of the busy CPUs notice that there may be an idle rebalancing
11684  *   needed, they will kick the idle load balancer, which then does idle
11685  *   load balancing for all the idle CPUs.
11686  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
11687  *   anywhere yet.
11688  */
11689 
11690 static inline int find_new_ilb(void)
11691 {
11692 	int ilb;
11693 	const struct cpumask *hk_mask;
11694 
11695 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11696 
11697 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
11698 
11699 		if (ilb == smp_processor_id())
11700 			continue;
11701 
11702 		if (idle_cpu(ilb))
11703 			return ilb;
11704 	}
11705 
11706 	return nr_cpu_ids;
11707 }
11708 
11709 /*
11710  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
11711  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11712  */
11713 static void kick_ilb(unsigned int flags)
11714 {
11715 	int ilb_cpu;
11716 
11717 	/*
11718 	 * Increase nohz.next_balance only when if full ilb is triggered but
11719 	 * not if we only update stats.
11720 	 */
11721 	if (flags & NOHZ_BALANCE_KICK)
11722 		nohz.next_balance = jiffies+1;
11723 
11724 	ilb_cpu = find_new_ilb();
11725 
11726 	if (ilb_cpu >= nr_cpu_ids)
11727 		return;
11728 
11729 	/*
11730 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11731 	 * the first flag owns it; cleared by nohz_csd_func().
11732 	 */
11733 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11734 	if (flags & NOHZ_KICK_MASK)
11735 		return;
11736 
11737 	/*
11738 	 * This way we generate an IPI on the target CPU which
11739 	 * is idle. And the softirq performing nohz idle load balance
11740 	 * will be run before returning from the IPI.
11741 	 */
11742 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11743 }
11744 
11745 /*
11746  * Current decision point for kicking the idle load balancer in the presence
11747  * of idle CPUs in the system.
11748  */
11749 static void nohz_balancer_kick(struct rq *rq)
11750 {
11751 	unsigned long now = jiffies;
11752 	struct sched_domain_shared *sds;
11753 	struct sched_domain *sd;
11754 	int nr_busy, i, cpu = rq->cpu;
11755 	unsigned int flags = 0;
11756 
11757 	if (unlikely(rq->idle_balance))
11758 		return;
11759 
11760 	/*
11761 	 * We may be recently in ticked or tickless idle mode. At the first
11762 	 * busy tick after returning from idle, we will update the busy stats.
11763 	 */
11764 	nohz_balance_exit_idle(rq);
11765 
11766 	/*
11767 	 * None are in tickless mode and hence no need for NOHZ idle load
11768 	 * balancing.
11769 	 */
11770 	if (likely(!atomic_read(&nohz.nr_cpus)))
11771 		return;
11772 
11773 	if (READ_ONCE(nohz.has_blocked) &&
11774 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11775 		flags = NOHZ_STATS_KICK;
11776 
11777 	if (time_before(now, nohz.next_balance))
11778 		goto out;
11779 
11780 	if (rq->nr_running >= 2) {
11781 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11782 		goto out;
11783 	}
11784 
11785 	rcu_read_lock();
11786 
11787 	sd = rcu_dereference(rq->sd);
11788 	if (sd) {
11789 		/*
11790 		 * If there's a CFS task and the current CPU has reduced
11791 		 * capacity; kick the ILB to see if there's a better CPU to run
11792 		 * on.
11793 		 */
11794 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11795 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11796 			goto unlock;
11797 		}
11798 	}
11799 
11800 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11801 	if (sd) {
11802 		/*
11803 		 * When ASYM_PACKING; see if there's a more preferred CPU
11804 		 * currently idle; in which case, kick the ILB to move tasks
11805 		 * around.
11806 		 *
11807 		 * When balancing betwen cores, all the SMT siblings of the
11808 		 * preferred CPU must be idle.
11809 		 */
11810 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11811 			if (sched_use_asym_prio(sd, i) &&
11812 			    sched_asym_prefer(i, cpu)) {
11813 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11814 				goto unlock;
11815 			}
11816 		}
11817 	}
11818 
11819 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11820 	if (sd) {
11821 		/*
11822 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11823 		 * to run the misfit task on.
11824 		 */
11825 		if (check_misfit_status(rq, sd)) {
11826 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11827 			goto unlock;
11828 		}
11829 
11830 		/*
11831 		 * For asymmetric systems, we do not want to nicely balance
11832 		 * cache use, instead we want to embrace asymmetry and only
11833 		 * ensure tasks have enough CPU capacity.
11834 		 *
11835 		 * Skip the LLC logic because it's not relevant in that case.
11836 		 */
11837 		goto unlock;
11838 	}
11839 
11840 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11841 	if (sds) {
11842 		/*
11843 		 * If there is an imbalance between LLC domains (IOW we could
11844 		 * increase the overall cache use), we need some less-loaded LLC
11845 		 * domain to pull some load. Likewise, we may need to spread
11846 		 * load within the current LLC domain (e.g. packed SMT cores but
11847 		 * other CPUs are idle). We can't really know from here how busy
11848 		 * the others are - so just get a nohz balance going if it looks
11849 		 * like this LLC domain has tasks we could move.
11850 		 */
11851 		nr_busy = atomic_read(&sds->nr_busy_cpus);
11852 		if (nr_busy > 1) {
11853 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11854 			goto unlock;
11855 		}
11856 	}
11857 unlock:
11858 	rcu_read_unlock();
11859 out:
11860 	if (READ_ONCE(nohz.needs_update))
11861 		flags |= NOHZ_NEXT_KICK;
11862 
11863 	if (flags)
11864 		kick_ilb(flags);
11865 }
11866 
11867 static void set_cpu_sd_state_busy(int cpu)
11868 {
11869 	struct sched_domain *sd;
11870 
11871 	rcu_read_lock();
11872 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11873 
11874 	if (!sd || !sd->nohz_idle)
11875 		goto unlock;
11876 	sd->nohz_idle = 0;
11877 
11878 	atomic_inc(&sd->shared->nr_busy_cpus);
11879 unlock:
11880 	rcu_read_unlock();
11881 }
11882 
11883 void nohz_balance_exit_idle(struct rq *rq)
11884 {
11885 	SCHED_WARN_ON(rq != this_rq());
11886 
11887 	if (likely(!rq->nohz_tick_stopped))
11888 		return;
11889 
11890 	rq->nohz_tick_stopped = 0;
11891 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11892 	atomic_dec(&nohz.nr_cpus);
11893 
11894 	set_cpu_sd_state_busy(rq->cpu);
11895 }
11896 
11897 static void set_cpu_sd_state_idle(int cpu)
11898 {
11899 	struct sched_domain *sd;
11900 
11901 	rcu_read_lock();
11902 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11903 
11904 	if (!sd || sd->nohz_idle)
11905 		goto unlock;
11906 	sd->nohz_idle = 1;
11907 
11908 	atomic_dec(&sd->shared->nr_busy_cpus);
11909 unlock:
11910 	rcu_read_unlock();
11911 }
11912 
11913 /*
11914  * This routine will record that the CPU is going idle with tick stopped.
11915  * This info will be used in performing idle load balancing in the future.
11916  */
11917 void nohz_balance_enter_idle(int cpu)
11918 {
11919 	struct rq *rq = cpu_rq(cpu);
11920 
11921 	SCHED_WARN_ON(cpu != smp_processor_id());
11922 
11923 	/* If this CPU is going down, then nothing needs to be done: */
11924 	if (!cpu_active(cpu))
11925 		return;
11926 
11927 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
11928 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
11929 		return;
11930 
11931 	/*
11932 	 * Can be set safely without rq->lock held
11933 	 * If a clear happens, it will have evaluated last additions because
11934 	 * rq->lock is held during the check and the clear
11935 	 */
11936 	rq->has_blocked_load = 1;
11937 
11938 	/*
11939 	 * The tick is still stopped but load could have been added in the
11940 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
11941 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11942 	 * of nohz.has_blocked can only happen after checking the new load
11943 	 */
11944 	if (rq->nohz_tick_stopped)
11945 		goto out;
11946 
11947 	/* If we're a completely isolated CPU, we don't play: */
11948 	if (on_null_domain(rq))
11949 		return;
11950 
11951 	rq->nohz_tick_stopped = 1;
11952 
11953 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11954 	atomic_inc(&nohz.nr_cpus);
11955 
11956 	/*
11957 	 * Ensures that if nohz_idle_balance() fails to observe our
11958 	 * @idle_cpus_mask store, it must observe the @has_blocked
11959 	 * and @needs_update stores.
11960 	 */
11961 	smp_mb__after_atomic();
11962 
11963 	set_cpu_sd_state_idle(cpu);
11964 
11965 	WRITE_ONCE(nohz.needs_update, 1);
11966 out:
11967 	/*
11968 	 * Each time a cpu enter idle, we assume that it has blocked load and
11969 	 * enable the periodic update of the load of idle cpus
11970 	 */
11971 	WRITE_ONCE(nohz.has_blocked, 1);
11972 }
11973 
11974 static bool update_nohz_stats(struct rq *rq)
11975 {
11976 	unsigned int cpu = rq->cpu;
11977 
11978 	if (!rq->has_blocked_load)
11979 		return false;
11980 
11981 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
11982 		return false;
11983 
11984 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
11985 		return true;
11986 
11987 	update_blocked_averages(cpu);
11988 
11989 	return rq->has_blocked_load;
11990 }
11991 
11992 /*
11993  * Internal function that runs load balance for all idle cpus. The load balance
11994  * can be a simple update of blocked load or a complete load balance with
11995  * tasks movement depending of flags.
11996  */
11997 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
11998 {
11999 	/* Earliest time when we have to do rebalance again */
12000 	unsigned long now = jiffies;
12001 	unsigned long next_balance = now + 60*HZ;
12002 	bool has_blocked_load = false;
12003 	int update_next_balance = 0;
12004 	int this_cpu = this_rq->cpu;
12005 	int balance_cpu;
12006 	struct rq *rq;
12007 
12008 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12009 
12010 	/*
12011 	 * We assume there will be no idle load after this update and clear
12012 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12013 	 * set the has_blocked flag and trigger another update of idle load.
12014 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12015 	 * setting the flag, we are sure to not clear the state and not
12016 	 * check the load of an idle cpu.
12017 	 *
12018 	 * Same applies to idle_cpus_mask vs needs_update.
12019 	 */
12020 	if (flags & NOHZ_STATS_KICK)
12021 		WRITE_ONCE(nohz.has_blocked, 0);
12022 	if (flags & NOHZ_NEXT_KICK)
12023 		WRITE_ONCE(nohz.needs_update, 0);
12024 
12025 	/*
12026 	 * Ensures that if we miss the CPU, we must see the has_blocked
12027 	 * store from nohz_balance_enter_idle().
12028 	 */
12029 	smp_mb();
12030 
12031 	/*
12032 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12033 	 * chance for other idle cpu to pull load.
12034 	 */
12035 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12036 		if (!idle_cpu(balance_cpu))
12037 			continue;
12038 
12039 		/*
12040 		 * If this CPU gets work to do, stop the load balancing
12041 		 * work being done for other CPUs. Next load
12042 		 * balancing owner will pick it up.
12043 		 */
12044 		if (need_resched()) {
12045 			if (flags & NOHZ_STATS_KICK)
12046 				has_blocked_load = true;
12047 			if (flags & NOHZ_NEXT_KICK)
12048 				WRITE_ONCE(nohz.needs_update, 1);
12049 			goto abort;
12050 		}
12051 
12052 		rq = cpu_rq(balance_cpu);
12053 
12054 		if (flags & NOHZ_STATS_KICK)
12055 			has_blocked_load |= update_nohz_stats(rq);
12056 
12057 		/*
12058 		 * If time for next balance is due,
12059 		 * do the balance.
12060 		 */
12061 		if (time_after_eq(jiffies, rq->next_balance)) {
12062 			struct rq_flags rf;
12063 
12064 			rq_lock_irqsave(rq, &rf);
12065 			update_rq_clock(rq);
12066 			rq_unlock_irqrestore(rq, &rf);
12067 
12068 			if (flags & NOHZ_BALANCE_KICK)
12069 				rebalance_domains(rq, CPU_IDLE);
12070 		}
12071 
12072 		if (time_after(next_balance, rq->next_balance)) {
12073 			next_balance = rq->next_balance;
12074 			update_next_balance = 1;
12075 		}
12076 	}
12077 
12078 	/*
12079 	 * next_balance will be updated only when there is a need.
12080 	 * When the CPU is attached to null domain for ex, it will not be
12081 	 * updated.
12082 	 */
12083 	if (likely(update_next_balance))
12084 		nohz.next_balance = next_balance;
12085 
12086 	if (flags & NOHZ_STATS_KICK)
12087 		WRITE_ONCE(nohz.next_blocked,
12088 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12089 
12090 abort:
12091 	/* There is still blocked load, enable periodic update */
12092 	if (has_blocked_load)
12093 		WRITE_ONCE(nohz.has_blocked, 1);
12094 }
12095 
12096 /*
12097  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12098  * rebalancing for all the cpus for whom scheduler ticks are stopped.
12099  */
12100 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12101 {
12102 	unsigned int flags = this_rq->nohz_idle_balance;
12103 
12104 	if (!flags)
12105 		return false;
12106 
12107 	this_rq->nohz_idle_balance = 0;
12108 
12109 	if (idle != CPU_IDLE)
12110 		return false;
12111 
12112 	_nohz_idle_balance(this_rq, flags);
12113 
12114 	return true;
12115 }
12116 
12117 /*
12118  * Check if we need to run the ILB for updating blocked load before entering
12119  * idle state.
12120  */
12121 void nohz_run_idle_balance(int cpu)
12122 {
12123 	unsigned int flags;
12124 
12125 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12126 
12127 	/*
12128 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12129 	 * (ie NOHZ_STATS_KICK set) and will do the same.
12130 	 */
12131 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12132 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12133 }
12134 
12135 static void nohz_newidle_balance(struct rq *this_rq)
12136 {
12137 	int this_cpu = this_rq->cpu;
12138 
12139 	/*
12140 	 * This CPU doesn't want to be disturbed by scheduler
12141 	 * housekeeping
12142 	 */
12143 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12144 		return;
12145 
12146 	/* Will wake up very soon. No time for doing anything else*/
12147 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12148 		return;
12149 
12150 	/* Don't need to update blocked load of idle CPUs*/
12151 	if (!READ_ONCE(nohz.has_blocked) ||
12152 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12153 		return;
12154 
12155 	/*
12156 	 * Set the need to trigger ILB in order to update blocked load
12157 	 * before entering idle state.
12158 	 */
12159 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12160 }
12161 
12162 #else /* !CONFIG_NO_HZ_COMMON */
12163 static inline void nohz_balancer_kick(struct rq *rq) { }
12164 
12165 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12166 {
12167 	return false;
12168 }
12169 
12170 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12171 #endif /* CONFIG_NO_HZ_COMMON */
12172 
12173 /*
12174  * newidle_balance is called by schedule() if this_cpu is about to become
12175  * idle. Attempts to pull tasks from other CPUs.
12176  *
12177  * Returns:
12178  *   < 0 - we released the lock and there are !fair tasks present
12179  *     0 - failed, no new tasks
12180  *   > 0 - success, new (fair) tasks present
12181  */
12182 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12183 {
12184 	unsigned long next_balance = jiffies + HZ;
12185 	int this_cpu = this_rq->cpu;
12186 	u64 t0, t1, curr_cost = 0;
12187 	struct sched_domain *sd;
12188 	int pulled_task = 0;
12189 
12190 	update_misfit_status(NULL, this_rq);
12191 
12192 	/*
12193 	 * There is a task waiting to run. No need to search for one.
12194 	 * Return 0; the task will be enqueued when switching to idle.
12195 	 */
12196 	if (this_rq->ttwu_pending)
12197 		return 0;
12198 
12199 	/*
12200 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
12201 	 * measure the duration of idle_balance() as idle time.
12202 	 */
12203 	this_rq->idle_stamp = rq_clock(this_rq);
12204 
12205 	/*
12206 	 * Do not pull tasks towards !active CPUs...
12207 	 */
12208 	if (!cpu_active(this_cpu))
12209 		return 0;
12210 
12211 	/*
12212 	 * This is OK, because current is on_cpu, which avoids it being picked
12213 	 * for load-balance and preemption/IRQs are still disabled avoiding
12214 	 * further scheduler activity on it and we're being very careful to
12215 	 * re-start the picking loop.
12216 	 */
12217 	rq_unpin_lock(this_rq, rf);
12218 
12219 	rcu_read_lock();
12220 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12221 
12222 	if (!READ_ONCE(this_rq->rd->overload) ||
12223 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12224 
12225 		if (sd)
12226 			update_next_balance(sd, &next_balance);
12227 		rcu_read_unlock();
12228 
12229 		goto out;
12230 	}
12231 	rcu_read_unlock();
12232 
12233 	raw_spin_rq_unlock(this_rq);
12234 
12235 	t0 = sched_clock_cpu(this_cpu);
12236 	update_blocked_averages(this_cpu);
12237 
12238 	rcu_read_lock();
12239 	for_each_domain(this_cpu, sd) {
12240 		int continue_balancing = 1;
12241 		u64 domain_cost;
12242 
12243 		update_next_balance(sd, &next_balance);
12244 
12245 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12246 			break;
12247 
12248 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12249 
12250 			pulled_task = load_balance(this_cpu, this_rq,
12251 						   sd, CPU_NEWLY_IDLE,
12252 						   &continue_balancing);
12253 
12254 			t1 = sched_clock_cpu(this_cpu);
12255 			domain_cost = t1 - t0;
12256 			update_newidle_cost(sd, domain_cost);
12257 
12258 			curr_cost += domain_cost;
12259 			t0 = t1;
12260 		}
12261 
12262 		/*
12263 		 * Stop searching for tasks to pull if there are
12264 		 * now runnable tasks on this rq.
12265 		 */
12266 		if (pulled_task || this_rq->nr_running > 0 ||
12267 		    this_rq->ttwu_pending)
12268 			break;
12269 	}
12270 	rcu_read_unlock();
12271 
12272 	raw_spin_rq_lock(this_rq);
12273 
12274 	if (curr_cost > this_rq->max_idle_balance_cost)
12275 		this_rq->max_idle_balance_cost = curr_cost;
12276 
12277 	/*
12278 	 * While browsing the domains, we released the rq lock, a task could
12279 	 * have been enqueued in the meantime. Since we're not going idle,
12280 	 * pretend we pulled a task.
12281 	 */
12282 	if (this_rq->cfs.h_nr_running && !pulled_task)
12283 		pulled_task = 1;
12284 
12285 	/* Is there a task of a high priority class? */
12286 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12287 		pulled_task = -1;
12288 
12289 out:
12290 	/* Move the next balance forward */
12291 	if (time_after(this_rq->next_balance, next_balance))
12292 		this_rq->next_balance = next_balance;
12293 
12294 	if (pulled_task)
12295 		this_rq->idle_stamp = 0;
12296 	else
12297 		nohz_newidle_balance(this_rq);
12298 
12299 	rq_repin_lock(this_rq, rf);
12300 
12301 	return pulled_task;
12302 }
12303 
12304 /*
12305  * run_rebalance_domains is triggered when needed from the scheduler tick.
12306  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12307  */
12308 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12309 {
12310 	struct rq *this_rq = this_rq();
12311 	enum cpu_idle_type idle = this_rq->idle_balance ?
12312 						CPU_IDLE : CPU_NOT_IDLE;
12313 
12314 	/*
12315 	 * If this CPU has a pending nohz_balance_kick, then do the
12316 	 * balancing on behalf of the other idle CPUs whose ticks are
12317 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12318 	 * give the idle CPUs a chance to load balance. Else we may
12319 	 * load balance only within the local sched_domain hierarchy
12320 	 * and abort nohz_idle_balance altogether if we pull some load.
12321 	 */
12322 	if (nohz_idle_balance(this_rq, idle))
12323 		return;
12324 
12325 	/* normal load balance */
12326 	update_blocked_averages(this_rq->cpu);
12327 	rebalance_domains(this_rq, idle);
12328 }
12329 
12330 /*
12331  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12332  */
12333 void trigger_load_balance(struct rq *rq)
12334 {
12335 	/*
12336 	 * Don't need to rebalance while attached to NULL domain or
12337 	 * runqueue CPU is not active
12338 	 */
12339 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12340 		return;
12341 
12342 	if (time_after_eq(jiffies, rq->next_balance))
12343 		raise_softirq(SCHED_SOFTIRQ);
12344 
12345 	nohz_balancer_kick(rq);
12346 }
12347 
12348 static void rq_online_fair(struct rq *rq)
12349 {
12350 	update_sysctl();
12351 
12352 	update_runtime_enabled(rq);
12353 }
12354 
12355 static void rq_offline_fair(struct rq *rq)
12356 {
12357 	update_sysctl();
12358 
12359 	/* Ensure any throttled groups are reachable by pick_next_task */
12360 	unthrottle_offline_cfs_rqs(rq);
12361 }
12362 
12363 #endif /* CONFIG_SMP */
12364 
12365 #ifdef CONFIG_SCHED_CORE
12366 static inline bool
12367 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12368 {
12369 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12370 	u64 slice = se->slice;
12371 
12372 	return (rtime * min_nr_tasks > slice);
12373 }
12374 
12375 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12376 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12377 {
12378 	if (!sched_core_enabled(rq))
12379 		return;
12380 
12381 	/*
12382 	 * If runqueue has only one task which used up its slice and
12383 	 * if the sibling is forced idle, then trigger schedule to
12384 	 * give forced idle task a chance.
12385 	 *
12386 	 * sched_slice() considers only this active rq and it gets the
12387 	 * whole slice. But during force idle, we have siblings acting
12388 	 * like a single runqueue and hence we need to consider runnable
12389 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12390 	 * go through the forced idle rq, but that would be a perf hit.
12391 	 * We can assume that the forced idle CPU has at least
12392 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12393 	 * if we need to give up the CPU.
12394 	 */
12395 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12396 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12397 		resched_curr(rq);
12398 }
12399 
12400 /*
12401  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12402  */
12403 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12404 			 bool forceidle)
12405 {
12406 	for_each_sched_entity(se) {
12407 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12408 
12409 		if (forceidle) {
12410 			if (cfs_rq->forceidle_seq == fi_seq)
12411 				break;
12412 			cfs_rq->forceidle_seq = fi_seq;
12413 		}
12414 
12415 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12416 	}
12417 }
12418 
12419 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12420 {
12421 	struct sched_entity *se = &p->se;
12422 
12423 	if (p->sched_class != &fair_sched_class)
12424 		return;
12425 
12426 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12427 }
12428 
12429 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12430 			bool in_fi)
12431 {
12432 	struct rq *rq = task_rq(a);
12433 	const struct sched_entity *sea = &a->se;
12434 	const struct sched_entity *seb = &b->se;
12435 	struct cfs_rq *cfs_rqa;
12436 	struct cfs_rq *cfs_rqb;
12437 	s64 delta;
12438 
12439 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12440 
12441 #ifdef CONFIG_FAIR_GROUP_SCHED
12442 	/*
12443 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12444 	 * are immediate siblings.
12445 	 */
12446 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12447 		int sea_depth = sea->depth;
12448 		int seb_depth = seb->depth;
12449 
12450 		if (sea_depth >= seb_depth)
12451 			sea = parent_entity(sea);
12452 		if (sea_depth <= seb_depth)
12453 			seb = parent_entity(seb);
12454 	}
12455 
12456 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12457 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12458 
12459 	cfs_rqa = sea->cfs_rq;
12460 	cfs_rqb = seb->cfs_rq;
12461 #else
12462 	cfs_rqa = &task_rq(a)->cfs;
12463 	cfs_rqb = &task_rq(b)->cfs;
12464 #endif
12465 
12466 	/*
12467 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12468 	 * min_vruntime_fi, which would have been updated in prior calls
12469 	 * to se_fi_update().
12470 	 */
12471 	delta = (s64)(sea->vruntime - seb->vruntime) +
12472 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12473 
12474 	return delta > 0;
12475 }
12476 
12477 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12478 {
12479 	struct cfs_rq *cfs_rq;
12480 
12481 #ifdef CONFIG_FAIR_GROUP_SCHED
12482 	cfs_rq = task_group(p)->cfs_rq[cpu];
12483 #else
12484 	cfs_rq = &cpu_rq(cpu)->cfs;
12485 #endif
12486 	return throttled_hierarchy(cfs_rq);
12487 }
12488 #else
12489 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12490 #endif
12491 
12492 /*
12493  * scheduler tick hitting a task of our scheduling class.
12494  *
12495  * NOTE: This function can be called remotely by the tick offload that
12496  * goes along full dynticks. Therefore no local assumption can be made
12497  * and everything must be accessed through the @rq and @curr passed in
12498  * parameters.
12499  */
12500 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12501 {
12502 	struct cfs_rq *cfs_rq;
12503 	struct sched_entity *se = &curr->se;
12504 
12505 	for_each_sched_entity(se) {
12506 		cfs_rq = cfs_rq_of(se);
12507 		entity_tick(cfs_rq, se, queued);
12508 	}
12509 
12510 	if (static_branch_unlikely(&sched_numa_balancing))
12511 		task_tick_numa(rq, curr);
12512 
12513 	update_misfit_status(curr, rq);
12514 	check_update_overutilized_status(task_rq(curr));
12515 
12516 	task_tick_core(rq, curr);
12517 }
12518 
12519 /*
12520  * called on fork with the child task as argument from the parent's context
12521  *  - child not yet on the tasklist
12522  *  - preemption disabled
12523  */
12524 static void task_fork_fair(struct task_struct *p)
12525 {
12526 	struct sched_entity *se = &p->se, *curr;
12527 	struct cfs_rq *cfs_rq;
12528 	struct rq *rq = this_rq();
12529 	struct rq_flags rf;
12530 
12531 	rq_lock(rq, &rf);
12532 	update_rq_clock(rq);
12533 
12534 	cfs_rq = task_cfs_rq(current);
12535 	curr = cfs_rq->curr;
12536 	if (curr)
12537 		update_curr(cfs_rq);
12538 	place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12539 	rq_unlock(rq, &rf);
12540 }
12541 
12542 /*
12543  * Priority of the task has changed. Check to see if we preempt
12544  * the current task.
12545  */
12546 static void
12547 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12548 {
12549 	if (!task_on_rq_queued(p))
12550 		return;
12551 
12552 	if (rq->cfs.nr_running == 1)
12553 		return;
12554 
12555 	/*
12556 	 * Reschedule if we are currently running on this runqueue and
12557 	 * our priority decreased, or if we are not currently running on
12558 	 * this runqueue and our priority is higher than the current's
12559 	 */
12560 	if (task_current(rq, p)) {
12561 		if (p->prio > oldprio)
12562 			resched_curr(rq);
12563 	} else
12564 		check_preempt_curr(rq, p, 0);
12565 }
12566 
12567 #ifdef CONFIG_FAIR_GROUP_SCHED
12568 /*
12569  * Propagate the changes of the sched_entity across the tg tree to make it
12570  * visible to the root
12571  */
12572 static void propagate_entity_cfs_rq(struct sched_entity *se)
12573 {
12574 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12575 
12576 	if (cfs_rq_throttled(cfs_rq))
12577 		return;
12578 
12579 	if (!throttled_hierarchy(cfs_rq))
12580 		list_add_leaf_cfs_rq(cfs_rq);
12581 
12582 	/* Start to propagate at parent */
12583 	se = se->parent;
12584 
12585 	for_each_sched_entity(se) {
12586 		cfs_rq = cfs_rq_of(se);
12587 
12588 		update_load_avg(cfs_rq, se, UPDATE_TG);
12589 
12590 		if (cfs_rq_throttled(cfs_rq))
12591 			break;
12592 
12593 		if (!throttled_hierarchy(cfs_rq))
12594 			list_add_leaf_cfs_rq(cfs_rq);
12595 	}
12596 }
12597 #else
12598 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12599 #endif
12600 
12601 static void detach_entity_cfs_rq(struct sched_entity *se)
12602 {
12603 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12604 
12605 #ifdef CONFIG_SMP
12606 	/*
12607 	 * In case the task sched_avg hasn't been attached:
12608 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12609 	 * - A task which has been woken up by try_to_wake_up() but is
12610 	 *   waiting for actually being woken up by sched_ttwu_pending().
12611 	 */
12612 	if (!se->avg.last_update_time)
12613 		return;
12614 #endif
12615 
12616 	/* Catch up with the cfs_rq and remove our load when we leave */
12617 	update_load_avg(cfs_rq, se, 0);
12618 	detach_entity_load_avg(cfs_rq, se);
12619 	update_tg_load_avg(cfs_rq);
12620 	propagate_entity_cfs_rq(se);
12621 }
12622 
12623 static void attach_entity_cfs_rq(struct sched_entity *se)
12624 {
12625 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12626 
12627 	/* Synchronize entity with its cfs_rq */
12628 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12629 	attach_entity_load_avg(cfs_rq, se);
12630 	update_tg_load_avg(cfs_rq);
12631 	propagate_entity_cfs_rq(se);
12632 }
12633 
12634 static void detach_task_cfs_rq(struct task_struct *p)
12635 {
12636 	struct sched_entity *se = &p->se;
12637 
12638 	detach_entity_cfs_rq(se);
12639 }
12640 
12641 static void attach_task_cfs_rq(struct task_struct *p)
12642 {
12643 	struct sched_entity *se = &p->se;
12644 
12645 	attach_entity_cfs_rq(se);
12646 }
12647 
12648 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12649 {
12650 	detach_task_cfs_rq(p);
12651 }
12652 
12653 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12654 {
12655 	attach_task_cfs_rq(p);
12656 
12657 	if (task_on_rq_queued(p)) {
12658 		/*
12659 		 * We were most likely switched from sched_rt, so
12660 		 * kick off the schedule if running, otherwise just see
12661 		 * if we can still preempt the current task.
12662 		 */
12663 		if (task_current(rq, p))
12664 			resched_curr(rq);
12665 		else
12666 			check_preempt_curr(rq, p, 0);
12667 	}
12668 }
12669 
12670 /* Account for a task changing its policy or group.
12671  *
12672  * This routine is mostly called to set cfs_rq->curr field when a task
12673  * migrates between groups/classes.
12674  */
12675 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12676 {
12677 	struct sched_entity *se = &p->se;
12678 
12679 #ifdef CONFIG_SMP
12680 	if (task_on_rq_queued(p)) {
12681 		/*
12682 		 * Move the next running task to the front of the list, so our
12683 		 * cfs_tasks list becomes MRU one.
12684 		 */
12685 		list_move(&se->group_node, &rq->cfs_tasks);
12686 	}
12687 #endif
12688 
12689 	for_each_sched_entity(se) {
12690 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12691 
12692 		set_next_entity(cfs_rq, se);
12693 		/* ensure bandwidth has been allocated on our new cfs_rq */
12694 		account_cfs_rq_runtime(cfs_rq, 0);
12695 	}
12696 }
12697 
12698 void init_cfs_rq(struct cfs_rq *cfs_rq)
12699 {
12700 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12701 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12702 #ifdef CONFIG_SMP
12703 	raw_spin_lock_init(&cfs_rq->removed.lock);
12704 #endif
12705 }
12706 
12707 #ifdef CONFIG_FAIR_GROUP_SCHED
12708 static void task_change_group_fair(struct task_struct *p)
12709 {
12710 	/*
12711 	 * We couldn't detach or attach a forked task which
12712 	 * hasn't been woken up by wake_up_new_task().
12713 	 */
12714 	if (READ_ONCE(p->__state) == TASK_NEW)
12715 		return;
12716 
12717 	detach_task_cfs_rq(p);
12718 
12719 #ifdef CONFIG_SMP
12720 	/* Tell se's cfs_rq has been changed -- migrated */
12721 	p->se.avg.last_update_time = 0;
12722 #endif
12723 	set_task_rq(p, task_cpu(p));
12724 	attach_task_cfs_rq(p);
12725 }
12726 
12727 void free_fair_sched_group(struct task_group *tg)
12728 {
12729 	int i;
12730 
12731 	for_each_possible_cpu(i) {
12732 		if (tg->cfs_rq)
12733 			kfree(tg->cfs_rq[i]);
12734 		if (tg->se)
12735 			kfree(tg->se[i]);
12736 	}
12737 
12738 	kfree(tg->cfs_rq);
12739 	kfree(tg->se);
12740 }
12741 
12742 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12743 {
12744 	struct sched_entity *se;
12745 	struct cfs_rq *cfs_rq;
12746 	int i;
12747 
12748 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12749 	if (!tg->cfs_rq)
12750 		goto err;
12751 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12752 	if (!tg->se)
12753 		goto err;
12754 
12755 	tg->shares = NICE_0_LOAD;
12756 
12757 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12758 
12759 	for_each_possible_cpu(i) {
12760 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12761 				      GFP_KERNEL, cpu_to_node(i));
12762 		if (!cfs_rq)
12763 			goto err;
12764 
12765 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12766 				  GFP_KERNEL, cpu_to_node(i));
12767 		if (!se)
12768 			goto err_free_rq;
12769 
12770 		init_cfs_rq(cfs_rq);
12771 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12772 		init_entity_runnable_average(se);
12773 	}
12774 
12775 	return 1;
12776 
12777 err_free_rq:
12778 	kfree(cfs_rq);
12779 err:
12780 	return 0;
12781 }
12782 
12783 void online_fair_sched_group(struct task_group *tg)
12784 {
12785 	struct sched_entity *se;
12786 	struct rq_flags rf;
12787 	struct rq *rq;
12788 	int i;
12789 
12790 	for_each_possible_cpu(i) {
12791 		rq = cpu_rq(i);
12792 		se = tg->se[i];
12793 		rq_lock_irq(rq, &rf);
12794 		update_rq_clock(rq);
12795 		attach_entity_cfs_rq(se);
12796 		sync_throttle(tg, i);
12797 		rq_unlock_irq(rq, &rf);
12798 	}
12799 }
12800 
12801 void unregister_fair_sched_group(struct task_group *tg)
12802 {
12803 	unsigned long flags;
12804 	struct rq *rq;
12805 	int cpu;
12806 
12807 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12808 
12809 	for_each_possible_cpu(cpu) {
12810 		if (tg->se[cpu])
12811 			remove_entity_load_avg(tg->se[cpu]);
12812 
12813 		/*
12814 		 * Only empty task groups can be destroyed; so we can speculatively
12815 		 * check on_list without danger of it being re-added.
12816 		 */
12817 		if (!tg->cfs_rq[cpu]->on_list)
12818 			continue;
12819 
12820 		rq = cpu_rq(cpu);
12821 
12822 		raw_spin_rq_lock_irqsave(rq, flags);
12823 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12824 		raw_spin_rq_unlock_irqrestore(rq, flags);
12825 	}
12826 }
12827 
12828 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12829 			struct sched_entity *se, int cpu,
12830 			struct sched_entity *parent)
12831 {
12832 	struct rq *rq = cpu_rq(cpu);
12833 
12834 	cfs_rq->tg = tg;
12835 	cfs_rq->rq = rq;
12836 	init_cfs_rq_runtime(cfs_rq);
12837 
12838 	tg->cfs_rq[cpu] = cfs_rq;
12839 	tg->se[cpu] = se;
12840 
12841 	/* se could be NULL for root_task_group */
12842 	if (!se)
12843 		return;
12844 
12845 	if (!parent) {
12846 		se->cfs_rq = &rq->cfs;
12847 		se->depth = 0;
12848 	} else {
12849 		se->cfs_rq = parent->my_q;
12850 		se->depth = parent->depth + 1;
12851 	}
12852 
12853 	se->my_q = cfs_rq;
12854 	/* guarantee group entities always have weight */
12855 	update_load_set(&se->load, NICE_0_LOAD);
12856 	se->parent = parent;
12857 }
12858 
12859 static DEFINE_MUTEX(shares_mutex);
12860 
12861 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12862 {
12863 	int i;
12864 
12865 	lockdep_assert_held(&shares_mutex);
12866 
12867 	/*
12868 	 * We can't change the weight of the root cgroup.
12869 	 */
12870 	if (!tg->se[0])
12871 		return -EINVAL;
12872 
12873 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12874 
12875 	if (tg->shares == shares)
12876 		return 0;
12877 
12878 	tg->shares = shares;
12879 	for_each_possible_cpu(i) {
12880 		struct rq *rq = cpu_rq(i);
12881 		struct sched_entity *se = tg->se[i];
12882 		struct rq_flags rf;
12883 
12884 		/* Propagate contribution to hierarchy */
12885 		rq_lock_irqsave(rq, &rf);
12886 		update_rq_clock(rq);
12887 		for_each_sched_entity(se) {
12888 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12889 			update_cfs_group(se);
12890 		}
12891 		rq_unlock_irqrestore(rq, &rf);
12892 	}
12893 
12894 	return 0;
12895 }
12896 
12897 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12898 {
12899 	int ret;
12900 
12901 	mutex_lock(&shares_mutex);
12902 	if (tg_is_idle(tg))
12903 		ret = -EINVAL;
12904 	else
12905 		ret = __sched_group_set_shares(tg, shares);
12906 	mutex_unlock(&shares_mutex);
12907 
12908 	return ret;
12909 }
12910 
12911 int sched_group_set_idle(struct task_group *tg, long idle)
12912 {
12913 	int i;
12914 
12915 	if (tg == &root_task_group)
12916 		return -EINVAL;
12917 
12918 	if (idle < 0 || idle > 1)
12919 		return -EINVAL;
12920 
12921 	mutex_lock(&shares_mutex);
12922 
12923 	if (tg->idle == idle) {
12924 		mutex_unlock(&shares_mutex);
12925 		return 0;
12926 	}
12927 
12928 	tg->idle = idle;
12929 
12930 	for_each_possible_cpu(i) {
12931 		struct rq *rq = cpu_rq(i);
12932 		struct sched_entity *se = tg->se[i];
12933 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
12934 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
12935 		long idle_task_delta;
12936 		struct rq_flags rf;
12937 
12938 		rq_lock_irqsave(rq, &rf);
12939 
12940 		grp_cfs_rq->idle = idle;
12941 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
12942 			goto next_cpu;
12943 
12944 		if (se->on_rq) {
12945 			parent_cfs_rq = cfs_rq_of(se);
12946 			if (cfs_rq_is_idle(grp_cfs_rq))
12947 				parent_cfs_rq->idle_nr_running++;
12948 			else
12949 				parent_cfs_rq->idle_nr_running--;
12950 		}
12951 
12952 		idle_task_delta = grp_cfs_rq->h_nr_running -
12953 				  grp_cfs_rq->idle_h_nr_running;
12954 		if (!cfs_rq_is_idle(grp_cfs_rq))
12955 			idle_task_delta *= -1;
12956 
12957 		for_each_sched_entity(se) {
12958 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
12959 
12960 			if (!se->on_rq)
12961 				break;
12962 
12963 			cfs_rq->idle_h_nr_running += idle_task_delta;
12964 
12965 			/* Already accounted at parent level and above. */
12966 			if (cfs_rq_is_idle(cfs_rq))
12967 				break;
12968 		}
12969 
12970 next_cpu:
12971 		rq_unlock_irqrestore(rq, &rf);
12972 	}
12973 
12974 	/* Idle groups have minimum weight. */
12975 	if (tg_is_idle(tg))
12976 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
12977 	else
12978 		__sched_group_set_shares(tg, NICE_0_LOAD);
12979 
12980 	mutex_unlock(&shares_mutex);
12981 	return 0;
12982 }
12983 
12984 #else /* CONFIG_FAIR_GROUP_SCHED */
12985 
12986 void free_fair_sched_group(struct task_group *tg) { }
12987 
12988 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12989 {
12990 	return 1;
12991 }
12992 
12993 void online_fair_sched_group(struct task_group *tg) { }
12994 
12995 void unregister_fair_sched_group(struct task_group *tg) { }
12996 
12997 #endif /* CONFIG_FAIR_GROUP_SCHED */
12998 
12999 
13000 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13001 {
13002 	struct sched_entity *se = &task->se;
13003 	unsigned int rr_interval = 0;
13004 
13005 	/*
13006 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13007 	 * idle runqueue:
13008 	 */
13009 	if (rq->cfs.load.weight)
13010 		rr_interval = NS_TO_JIFFIES(se->slice);
13011 
13012 	return rr_interval;
13013 }
13014 
13015 /*
13016  * All the scheduling class methods:
13017  */
13018 DEFINE_SCHED_CLASS(fair) = {
13019 
13020 	.enqueue_task		= enqueue_task_fair,
13021 	.dequeue_task		= dequeue_task_fair,
13022 	.yield_task		= yield_task_fair,
13023 	.yield_to_task		= yield_to_task_fair,
13024 
13025 	.check_preempt_curr	= check_preempt_wakeup,
13026 
13027 	.pick_next_task		= __pick_next_task_fair,
13028 	.put_prev_task		= put_prev_task_fair,
13029 	.set_next_task          = set_next_task_fair,
13030 
13031 #ifdef CONFIG_SMP
13032 	.balance		= balance_fair,
13033 	.pick_task		= pick_task_fair,
13034 	.select_task_rq		= select_task_rq_fair,
13035 	.migrate_task_rq	= migrate_task_rq_fair,
13036 
13037 	.rq_online		= rq_online_fair,
13038 	.rq_offline		= rq_offline_fair,
13039 
13040 	.task_dead		= task_dead_fair,
13041 	.set_cpus_allowed	= set_cpus_allowed_common,
13042 #endif
13043 
13044 	.task_tick		= task_tick_fair,
13045 	.task_fork		= task_fork_fair,
13046 
13047 	.prio_changed		= prio_changed_fair,
13048 	.switched_from		= switched_from_fair,
13049 	.switched_to		= switched_to_fair,
13050 
13051 	.get_rr_interval	= get_rr_interval_fair,
13052 
13053 	.update_curr		= update_curr_fair,
13054 
13055 #ifdef CONFIG_FAIR_GROUP_SCHED
13056 	.task_change_group	= task_change_group_fair,
13057 #endif
13058 
13059 #ifdef CONFIG_SCHED_CORE
13060 	.task_is_throttled	= task_is_throttled_fair,
13061 #endif
13062 
13063 #ifdef CONFIG_UCLAMP_TASK
13064 	.uclamp_enabled		= 1,
13065 #endif
13066 };
13067 
13068 #ifdef CONFIG_SCHED_DEBUG
13069 void print_cfs_stats(struct seq_file *m, int cpu)
13070 {
13071 	struct cfs_rq *cfs_rq, *pos;
13072 
13073 	rcu_read_lock();
13074 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13075 		print_cfs_rq(m, cpu, cfs_rq);
13076 	rcu_read_unlock();
13077 }
13078 
13079 #ifdef CONFIG_NUMA_BALANCING
13080 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13081 {
13082 	int node;
13083 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13084 	struct numa_group *ng;
13085 
13086 	rcu_read_lock();
13087 	ng = rcu_dereference(p->numa_group);
13088 	for_each_online_node(node) {
13089 		if (p->numa_faults) {
13090 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13091 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13092 		}
13093 		if (ng) {
13094 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13095 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13096 		}
13097 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13098 	}
13099 	rcu_read_unlock();
13100 }
13101 #endif /* CONFIG_NUMA_BALANCING */
13102 #endif /* CONFIG_SCHED_DEBUG */
13103 
13104 __init void init_sched_fair_class(void)
13105 {
13106 #ifdef CONFIG_SMP
13107 	int i;
13108 
13109 	for_each_possible_cpu(i) {
13110 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13111 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13112 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13113 					GFP_KERNEL, cpu_to_node(i));
13114 
13115 #ifdef CONFIG_CFS_BANDWIDTH
13116 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13117 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13118 #endif
13119 	}
13120 
13121 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13122 
13123 #ifdef CONFIG_NO_HZ_COMMON
13124 	nohz.next_balance = jiffies;
13125 	nohz.next_blocked = jiffies;
13126 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13127 #endif
13128 #endif /* SMP */
13129 
13130 }
13131