xref: /openbmc/linux/kernel/sched/fair.c (revision 278d3ba6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/mempolicy.h>
44 #include <linux/mutex_api.h>
45 #include <linux/profile.h>
46 #include <linux/psi.h>
47 #include <linux/ratelimit.h>
48 #include <linux/task_work.h>
49 
50 #include <asm/switch_to.h>
51 
52 #include <linux/sched/cond_resched.h>
53 
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57 
58 /*
59  * Targeted preemption latency for CPU-bound tasks:
60  *
61  * NOTE: this latency value is not the same as the concept of
62  * 'timeslice length' - timeslices in CFS are of variable length
63  * and have no persistent notion like in traditional, time-slice
64  * based scheduling concepts.
65  *
66  * (to see the precise effective timeslice length of your workload,
67  *  run vmstat and monitor the context-switches (cs) field)
68  *
69  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
70  */
71 unsigned int sysctl_sched_latency			= 6000000ULL;
72 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
73 
74 /*
75  * The initial- and re-scaling of tunables is configurable
76  *
77  * Options are:
78  *
79  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
80  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
81  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
82  *
83  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
84  */
85 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
86 
87 /*
88  * Minimal preemption granularity for CPU-bound tasks:
89  *
90  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
91  */
92 unsigned int sysctl_sched_min_granularity			= 750000ULL;
93 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
94 
95 /*
96  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
97  * Applies only when SCHED_IDLE tasks compete with normal tasks.
98  *
99  * (default: 0.75 msec)
100  */
101 unsigned int sysctl_sched_idle_min_granularity			= 750000ULL;
102 
103 /*
104  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
105  */
106 static unsigned int sched_nr_latency = 8;
107 
108 /*
109  * After fork, child runs first. If set to 0 (default) then
110  * parent will (try to) run first.
111  */
112 unsigned int sysctl_sched_child_runs_first __read_mostly;
113 
114 /*
115  * SCHED_OTHER wake-up granularity.
116  *
117  * This option delays the preemption effects of decoupled workloads
118  * and reduces their over-scheduling. Synchronous workloads will still
119  * have immediate wakeup/sleep latencies.
120  *
121  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
122  */
123 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
124 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
125 
126 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
127 
128 int sched_thermal_decay_shift;
129 static int __init setup_sched_thermal_decay_shift(char *str)
130 {
131 	int _shift = 0;
132 
133 	if (kstrtoint(str, 0, &_shift))
134 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
135 
136 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
137 	return 1;
138 }
139 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
140 
141 #ifdef CONFIG_SMP
142 /*
143  * For asym packing, by default the lower numbered CPU has higher priority.
144  */
145 int __weak arch_asym_cpu_priority(int cpu)
146 {
147 	return -cpu;
148 }
149 
150 /*
151  * The margin used when comparing utilization with CPU capacity.
152  *
153  * (default: ~20%)
154  */
155 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
156 
157 /*
158  * The margin used when comparing CPU capacities.
159  * is 'cap1' noticeably greater than 'cap2'
160  *
161  * (default: ~5%)
162  */
163 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
164 #endif
165 
166 #ifdef CONFIG_CFS_BANDWIDTH
167 /*
168  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
169  * each time a cfs_rq requests quota.
170  *
171  * Note: in the case that the slice exceeds the runtime remaining (either due
172  * to consumption or the quota being specified to be smaller than the slice)
173  * we will always only issue the remaining available time.
174  *
175  * (default: 5 msec, units: microseconds)
176  */
177 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
178 #endif
179 
180 #ifdef CONFIG_SYSCTL
181 static struct ctl_table sched_fair_sysctls[] = {
182 	{
183 		.procname       = "sched_child_runs_first",
184 		.data           = &sysctl_sched_child_runs_first,
185 		.maxlen         = sizeof(unsigned int),
186 		.mode           = 0644,
187 		.proc_handler   = proc_dointvec,
188 	},
189 #ifdef CONFIG_CFS_BANDWIDTH
190 	{
191 		.procname       = "sched_cfs_bandwidth_slice_us",
192 		.data           = &sysctl_sched_cfs_bandwidth_slice,
193 		.maxlen         = sizeof(unsigned int),
194 		.mode           = 0644,
195 		.proc_handler   = proc_dointvec_minmax,
196 		.extra1         = SYSCTL_ONE,
197 	},
198 #endif
199 	{}
200 };
201 
202 static int __init sched_fair_sysctl_init(void)
203 {
204 	register_sysctl_init("kernel", sched_fair_sysctls);
205 	return 0;
206 }
207 late_initcall(sched_fair_sysctl_init);
208 #endif
209 
210 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
211 {
212 	lw->weight += inc;
213 	lw->inv_weight = 0;
214 }
215 
216 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
217 {
218 	lw->weight -= dec;
219 	lw->inv_weight = 0;
220 }
221 
222 static inline void update_load_set(struct load_weight *lw, unsigned long w)
223 {
224 	lw->weight = w;
225 	lw->inv_weight = 0;
226 }
227 
228 /*
229  * Increase the granularity value when there are more CPUs,
230  * because with more CPUs the 'effective latency' as visible
231  * to users decreases. But the relationship is not linear,
232  * so pick a second-best guess by going with the log2 of the
233  * number of CPUs.
234  *
235  * This idea comes from the SD scheduler of Con Kolivas:
236  */
237 static unsigned int get_update_sysctl_factor(void)
238 {
239 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
240 	unsigned int factor;
241 
242 	switch (sysctl_sched_tunable_scaling) {
243 	case SCHED_TUNABLESCALING_NONE:
244 		factor = 1;
245 		break;
246 	case SCHED_TUNABLESCALING_LINEAR:
247 		factor = cpus;
248 		break;
249 	case SCHED_TUNABLESCALING_LOG:
250 	default:
251 		factor = 1 + ilog2(cpus);
252 		break;
253 	}
254 
255 	return factor;
256 }
257 
258 static void update_sysctl(void)
259 {
260 	unsigned int factor = get_update_sysctl_factor();
261 
262 #define SET_SYSCTL(name) \
263 	(sysctl_##name = (factor) * normalized_sysctl_##name)
264 	SET_SYSCTL(sched_min_granularity);
265 	SET_SYSCTL(sched_latency);
266 	SET_SYSCTL(sched_wakeup_granularity);
267 #undef SET_SYSCTL
268 }
269 
270 void __init sched_init_granularity(void)
271 {
272 	update_sysctl();
273 }
274 
275 #define WMULT_CONST	(~0U)
276 #define WMULT_SHIFT	32
277 
278 static void __update_inv_weight(struct load_weight *lw)
279 {
280 	unsigned long w;
281 
282 	if (likely(lw->inv_weight))
283 		return;
284 
285 	w = scale_load_down(lw->weight);
286 
287 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
288 		lw->inv_weight = 1;
289 	else if (unlikely(!w))
290 		lw->inv_weight = WMULT_CONST;
291 	else
292 		lw->inv_weight = WMULT_CONST / w;
293 }
294 
295 /*
296  * delta_exec * weight / lw.weight
297  *   OR
298  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
299  *
300  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
301  * we're guaranteed shift stays positive because inv_weight is guaranteed to
302  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
303  *
304  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
305  * weight/lw.weight <= 1, and therefore our shift will also be positive.
306  */
307 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
308 {
309 	u64 fact = scale_load_down(weight);
310 	u32 fact_hi = (u32)(fact >> 32);
311 	int shift = WMULT_SHIFT;
312 	int fs;
313 
314 	__update_inv_weight(lw);
315 
316 	if (unlikely(fact_hi)) {
317 		fs = fls(fact_hi);
318 		shift -= fs;
319 		fact >>= fs;
320 	}
321 
322 	fact = mul_u32_u32(fact, lw->inv_weight);
323 
324 	fact_hi = (u32)(fact >> 32);
325 	if (fact_hi) {
326 		fs = fls(fact_hi);
327 		shift -= fs;
328 		fact >>= fs;
329 	}
330 
331 	return mul_u64_u32_shr(delta_exec, fact, shift);
332 }
333 
334 
335 const struct sched_class fair_sched_class;
336 
337 /**************************************************************
338  * CFS operations on generic schedulable entities:
339  */
340 
341 #ifdef CONFIG_FAIR_GROUP_SCHED
342 
343 /* Walk up scheduling entities hierarchy */
344 #define for_each_sched_entity(se) \
345 		for (; se; se = se->parent)
346 
347 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
348 {
349 	struct rq *rq = rq_of(cfs_rq);
350 	int cpu = cpu_of(rq);
351 
352 	if (cfs_rq->on_list)
353 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
354 
355 	cfs_rq->on_list = 1;
356 
357 	/*
358 	 * Ensure we either appear before our parent (if already
359 	 * enqueued) or force our parent to appear after us when it is
360 	 * enqueued. The fact that we always enqueue bottom-up
361 	 * reduces this to two cases and a special case for the root
362 	 * cfs_rq. Furthermore, it also means that we will always reset
363 	 * tmp_alone_branch either when the branch is connected
364 	 * to a tree or when we reach the top of the tree
365 	 */
366 	if (cfs_rq->tg->parent &&
367 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
368 		/*
369 		 * If parent is already on the list, we add the child
370 		 * just before. Thanks to circular linked property of
371 		 * the list, this means to put the child at the tail
372 		 * of the list that starts by parent.
373 		 */
374 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
375 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
376 		/*
377 		 * The branch is now connected to its tree so we can
378 		 * reset tmp_alone_branch to the beginning of the
379 		 * list.
380 		 */
381 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
382 		return true;
383 	}
384 
385 	if (!cfs_rq->tg->parent) {
386 		/*
387 		 * cfs rq without parent should be put
388 		 * at the tail of the list.
389 		 */
390 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
391 			&rq->leaf_cfs_rq_list);
392 		/*
393 		 * We have reach the top of a tree so we can reset
394 		 * tmp_alone_branch to the beginning of the list.
395 		 */
396 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
397 		return true;
398 	}
399 
400 	/*
401 	 * The parent has not already been added so we want to
402 	 * make sure that it will be put after us.
403 	 * tmp_alone_branch points to the begin of the branch
404 	 * where we will add parent.
405 	 */
406 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
407 	/*
408 	 * update tmp_alone_branch to points to the new begin
409 	 * of the branch
410 	 */
411 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
412 	return false;
413 }
414 
415 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
416 {
417 	if (cfs_rq->on_list) {
418 		struct rq *rq = rq_of(cfs_rq);
419 
420 		/*
421 		 * With cfs_rq being unthrottled/throttled during an enqueue,
422 		 * it can happen the tmp_alone_branch points the a leaf that
423 		 * we finally want to del. In this case, tmp_alone_branch moves
424 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
425 		 * at the end of the enqueue.
426 		 */
427 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
428 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
429 
430 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
431 		cfs_rq->on_list = 0;
432 	}
433 }
434 
435 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
436 {
437 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
438 }
439 
440 /* Iterate thr' all leaf cfs_rq's on a runqueue */
441 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
442 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
443 				 leaf_cfs_rq_list)
444 
445 /* Do the two (enqueued) entities belong to the same group ? */
446 static inline struct cfs_rq *
447 is_same_group(struct sched_entity *se, struct sched_entity *pse)
448 {
449 	if (se->cfs_rq == pse->cfs_rq)
450 		return se->cfs_rq;
451 
452 	return NULL;
453 }
454 
455 static inline struct sched_entity *parent_entity(struct sched_entity *se)
456 {
457 	return se->parent;
458 }
459 
460 static void
461 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
462 {
463 	int se_depth, pse_depth;
464 
465 	/*
466 	 * preemption test can be made between sibling entities who are in the
467 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
468 	 * both tasks until we find their ancestors who are siblings of common
469 	 * parent.
470 	 */
471 
472 	/* First walk up until both entities are at same depth */
473 	se_depth = (*se)->depth;
474 	pse_depth = (*pse)->depth;
475 
476 	while (se_depth > pse_depth) {
477 		se_depth--;
478 		*se = parent_entity(*se);
479 	}
480 
481 	while (pse_depth > se_depth) {
482 		pse_depth--;
483 		*pse = parent_entity(*pse);
484 	}
485 
486 	while (!is_same_group(*se, *pse)) {
487 		*se = parent_entity(*se);
488 		*pse = parent_entity(*pse);
489 	}
490 }
491 
492 static int tg_is_idle(struct task_group *tg)
493 {
494 	return tg->idle > 0;
495 }
496 
497 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
498 {
499 	return cfs_rq->idle > 0;
500 }
501 
502 static int se_is_idle(struct sched_entity *se)
503 {
504 	if (entity_is_task(se))
505 		return task_has_idle_policy(task_of(se));
506 	return cfs_rq_is_idle(group_cfs_rq(se));
507 }
508 
509 #else	/* !CONFIG_FAIR_GROUP_SCHED */
510 
511 #define for_each_sched_entity(se) \
512 		for (; se; se = NULL)
513 
514 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
515 {
516 	return true;
517 }
518 
519 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
520 {
521 }
522 
523 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
524 {
525 }
526 
527 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
528 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
529 
530 static inline struct sched_entity *parent_entity(struct sched_entity *se)
531 {
532 	return NULL;
533 }
534 
535 static inline void
536 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
537 {
538 }
539 
540 static inline int tg_is_idle(struct task_group *tg)
541 {
542 	return 0;
543 }
544 
545 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
546 {
547 	return 0;
548 }
549 
550 static int se_is_idle(struct sched_entity *se)
551 {
552 	return 0;
553 }
554 
555 #endif	/* CONFIG_FAIR_GROUP_SCHED */
556 
557 static __always_inline
558 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
559 
560 /**************************************************************
561  * Scheduling class tree data structure manipulation methods:
562  */
563 
564 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
565 {
566 	s64 delta = (s64)(vruntime - max_vruntime);
567 	if (delta > 0)
568 		max_vruntime = vruntime;
569 
570 	return max_vruntime;
571 }
572 
573 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
574 {
575 	s64 delta = (s64)(vruntime - min_vruntime);
576 	if (delta < 0)
577 		min_vruntime = vruntime;
578 
579 	return min_vruntime;
580 }
581 
582 static inline bool entity_before(struct sched_entity *a,
583 				struct sched_entity *b)
584 {
585 	return (s64)(a->vruntime - b->vruntime) < 0;
586 }
587 
588 #define __node_2_se(node) \
589 	rb_entry((node), struct sched_entity, run_node)
590 
591 static void update_min_vruntime(struct cfs_rq *cfs_rq)
592 {
593 	struct sched_entity *curr = cfs_rq->curr;
594 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
595 
596 	u64 vruntime = cfs_rq->min_vruntime;
597 
598 	if (curr) {
599 		if (curr->on_rq)
600 			vruntime = curr->vruntime;
601 		else
602 			curr = NULL;
603 	}
604 
605 	if (leftmost) { /* non-empty tree */
606 		struct sched_entity *se = __node_2_se(leftmost);
607 
608 		if (!curr)
609 			vruntime = se->vruntime;
610 		else
611 			vruntime = min_vruntime(vruntime, se->vruntime);
612 	}
613 
614 	/* ensure we never gain time by being placed backwards. */
615 	u64_u32_store(cfs_rq->min_vruntime,
616 		      max_vruntime(cfs_rq->min_vruntime, vruntime));
617 }
618 
619 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
620 {
621 	return entity_before(__node_2_se(a), __node_2_se(b));
622 }
623 
624 /*
625  * Enqueue an entity into the rb-tree:
626  */
627 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
628 {
629 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
630 }
631 
632 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 {
634 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
635 }
636 
637 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
638 {
639 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
640 
641 	if (!left)
642 		return NULL;
643 
644 	return __node_2_se(left);
645 }
646 
647 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
648 {
649 	struct rb_node *next = rb_next(&se->run_node);
650 
651 	if (!next)
652 		return NULL;
653 
654 	return __node_2_se(next);
655 }
656 
657 #ifdef CONFIG_SCHED_DEBUG
658 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
659 {
660 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
661 
662 	if (!last)
663 		return NULL;
664 
665 	return __node_2_se(last);
666 }
667 
668 /**************************************************************
669  * Scheduling class statistics methods:
670  */
671 
672 int sched_update_scaling(void)
673 {
674 	unsigned int factor = get_update_sysctl_factor();
675 
676 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
677 					sysctl_sched_min_granularity);
678 
679 #define WRT_SYSCTL(name) \
680 	(normalized_sysctl_##name = sysctl_##name / (factor))
681 	WRT_SYSCTL(sched_min_granularity);
682 	WRT_SYSCTL(sched_latency);
683 	WRT_SYSCTL(sched_wakeup_granularity);
684 #undef WRT_SYSCTL
685 
686 	return 0;
687 }
688 #endif
689 
690 /*
691  * delta /= w
692  */
693 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
694 {
695 	if (unlikely(se->load.weight != NICE_0_LOAD))
696 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
697 
698 	return delta;
699 }
700 
701 /*
702  * The idea is to set a period in which each task runs once.
703  *
704  * When there are too many tasks (sched_nr_latency) we have to stretch
705  * this period because otherwise the slices get too small.
706  *
707  * p = (nr <= nl) ? l : l*nr/nl
708  */
709 static u64 __sched_period(unsigned long nr_running)
710 {
711 	if (unlikely(nr_running > sched_nr_latency))
712 		return nr_running * sysctl_sched_min_granularity;
713 	else
714 		return sysctl_sched_latency;
715 }
716 
717 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
718 
719 /*
720  * We calculate the wall-time slice from the period by taking a part
721  * proportional to the weight.
722  *
723  * s = p*P[w/rw]
724  */
725 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
726 {
727 	unsigned int nr_running = cfs_rq->nr_running;
728 	struct sched_entity *init_se = se;
729 	unsigned int min_gran;
730 	u64 slice;
731 
732 	if (sched_feat(ALT_PERIOD))
733 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
734 
735 	slice = __sched_period(nr_running + !se->on_rq);
736 
737 	for_each_sched_entity(se) {
738 		struct load_weight *load;
739 		struct load_weight lw;
740 		struct cfs_rq *qcfs_rq;
741 
742 		qcfs_rq = cfs_rq_of(se);
743 		load = &qcfs_rq->load;
744 
745 		if (unlikely(!se->on_rq)) {
746 			lw = qcfs_rq->load;
747 
748 			update_load_add(&lw, se->load.weight);
749 			load = &lw;
750 		}
751 		slice = __calc_delta(slice, se->load.weight, load);
752 	}
753 
754 	if (sched_feat(BASE_SLICE)) {
755 		if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
756 			min_gran = sysctl_sched_idle_min_granularity;
757 		else
758 			min_gran = sysctl_sched_min_granularity;
759 
760 		slice = max_t(u64, slice, min_gran);
761 	}
762 
763 	return slice;
764 }
765 
766 /*
767  * We calculate the vruntime slice of a to-be-inserted task.
768  *
769  * vs = s/w
770  */
771 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
772 {
773 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
774 }
775 
776 #include "pelt.h"
777 #ifdef CONFIG_SMP
778 
779 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
780 static unsigned long task_h_load(struct task_struct *p);
781 static unsigned long capacity_of(int cpu);
782 
783 /* Give new sched_entity start runnable values to heavy its load in infant time */
784 void init_entity_runnable_average(struct sched_entity *se)
785 {
786 	struct sched_avg *sa = &se->avg;
787 
788 	memset(sa, 0, sizeof(*sa));
789 
790 	/*
791 	 * Tasks are initialized with full load to be seen as heavy tasks until
792 	 * they get a chance to stabilize to their real load level.
793 	 * Group entities are initialized with zero load to reflect the fact that
794 	 * nothing has been attached to the task group yet.
795 	 */
796 	if (entity_is_task(se))
797 		sa->load_avg = scale_load_down(se->load.weight);
798 
799 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
800 }
801 
802 static void attach_entity_cfs_rq(struct sched_entity *se);
803 
804 /*
805  * With new tasks being created, their initial util_avgs are extrapolated
806  * based on the cfs_rq's current util_avg:
807  *
808  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
809  *
810  * However, in many cases, the above util_avg does not give a desired
811  * value. Moreover, the sum of the util_avgs may be divergent, such
812  * as when the series is a harmonic series.
813  *
814  * To solve this problem, we also cap the util_avg of successive tasks to
815  * only 1/2 of the left utilization budget:
816  *
817  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
818  *
819  * where n denotes the nth task and cpu_scale the CPU capacity.
820  *
821  * For example, for a CPU with 1024 of capacity, a simplest series from
822  * the beginning would be like:
823  *
824  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
825  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
826  *
827  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
828  * if util_avg > util_avg_cap.
829  */
830 void post_init_entity_util_avg(struct task_struct *p)
831 {
832 	struct sched_entity *se = &p->se;
833 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
834 	struct sched_avg *sa = &se->avg;
835 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
836 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
837 
838 	if (cap > 0) {
839 		if (cfs_rq->avg.util_avg != 0) {
840 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
841 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
842 
843 			if (sa->util_avg > cap)
844 				sa->util_avg = cap;
845 		} else {
846 			sa->util_avg = cap;
847 		}
848 	}
849 
850 	sa->runnable_avg = sa->util_avg;
851 
852 	if (p->sched_class != &fair_sched_class) {
853 		/*
854 		 * For !fair tasks do:
855 		 *
856 		update_cfs_rq_load_avg(now, cfs_rq);
857 		attach_entity_load_avg(cfs_rq, se);
858 		switched_from_fair(rq, p);
859 		 *
860 		 * such that the next switched_to_fair() has the
861 		 * expected state.
862 		 */
863 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
864 		return;
865 	}
866 
867 	attach_entity_cfs_rq(se);
868 }
869 
870 #else /* !CONFIG_SMP */
871 void init_entity_runnable_average(struct sched_entity *se)
872 {
873 }
874 void post_init_entity_util_avg(struct task_struct *p)
875 {
876 }
877 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
878 {
879 }
880 #endif /* CONFIG_SMP */
881 
882 /*
883  * Update the current task's runtime statistics.
884  */
885 static void update_curr(struct cfs_rq *cfs_rq)
886 {
887 	struct sched_entity *curr = cfs_rq->curr;
888 	u64 now = rq_clock_task(rq_of(cfs_rq));
889 	u64 delta_exec;
890 
891 	if (unlikely(!curr))
892 		return;
893 
894 	delta_exec = now - curr->exec_start;
895 	if (unlikely((s64)delta_exec <= 0))
896 		return;
897 
898 	curr->exec_start = now;
899 
900 	if (schedstat_enabled()) {
901 		struct sched_statistics *stats;
902 
903 		stats = __schedstats_from_se(curr);
904 		__schedstat_set(stats->exec_max,
905 				max(delta_exec, stats->exec_max));
906 	}
907 
908 	curr->sum_exec_runtime += delta_exec;
909 	schedstat_add(cfs_rq->exec_clock, delta_exec);
910 
911 	curr->vruntime += calc_delta_fair(delta_exec, curr);
912 	update_min_vruntime(cfs_rq);
913 
914 	if (entity_is_task(curr)) {
915 		struct task_struct *curtask = task_of(curr);
916 
917 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
918 		cgroup_account_cputime(curtask, delta_exec);
919 		account_group_exec_runtime(curtask, delta_exec);
920 	}
921 
922 	account_cfs_rq_runtime(cfs_rq, delta_exec);
923 }
924 
925 static void update_curr_fair(struct rq *rq)
926 {
927 	update_curr(cfs_rq_of(&rq->curr->se));
928 }
929 
930 static inline void
931 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
932 {
933 	struct sched_statistics *stats;
934 	struct task_struct *p = NULL;
935 
936 	if (!schedstat_enabled())
937 		return;
938 
939 	stats = __schedstats_from_se(se);
940 
941 	if (entity_is_task(se))
942 		p = task_of(se);
943 
944 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
945 }
946 
947 static inline void
948 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
949 {
950 	struct sched_statistics *stats;
951 	struct task_struct *p = NULL;
952 
953 	if (!schedstat_enabled())
954 		return;
955 
956 	stats = __schedstats_from_se(se);
957 
958 	/*
959 	 * When the sched_schedstat changes from 0 to 1, some sched se
960 	 * maybe already in the runqueue, the se->statistics.wait_start
961 	 * will be 0.So it will let the delta wrong. We need to avoid this
962 	 * scenario.
963 	 */
964 	if (unlikely(!schedstat_val(stats->wait_start)))
965 		return;
966 
967 	if (entity_is_task(se))
968 		p = task_of(se);
969 
970 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
971 }
972 
973 static inline void
974 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
975 {
976 	struct sched_statistics *stats;
977 	struct task_struct *tsk = NULL;
978 
979 	if (!schedstat_enabled())
980 		return;
981 
982 	stats = __schedstats_from_se(se);
983 
984 	if (entity_is_task(se))
985 		tsk = task_of(se);
986 
987 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
988 }
989 
990 /*
991  * Task is being enqueued - update stats:
992  */
993 static inline void
994 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
995 {
996 	if (!schedstat_enabled())
997 		return;
998 
999 	/*
1000 	 * Are we enqueueing a waiting task? (for current tasks
1001 	 * a dequeue/enqueue event is a NOP)
1002 	 */
1003 	if (se != cfs_rq->curr)
1004 		update_stats_wait_start_fair(cfs_rq, se);
1005 
1006 	if (flags & ENQUEUE_WAKEUP)
1007 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1008 }
1009 
1010 static inline void
1011 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1012 {
1013 
1014 	if (!schedstat_enabled())
1015 		return;
1016 
1017 	/*
1018 	 * Mark the end of the wait period if dequeueing a
1019 	 * waiting task:
1020 	 */
1021 	if (se != cfs_rq->curr)
1022 		update_stats_wait_end_fair(cfs_rq, se);
1023 
1024 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1025 		struct task_struct *tsk = task_of(se);
1026 		unsigned int state;
1027 
1028 		/* XXX racy against TTWU */
1029 		state = READ_ONCE(tsk->__state);
1030 		if (state & TASK_INTERRUPTIBLE)
1031 			__schedstat_set(tsk->stats.sleep_start,
1032 				      rq_clock(rq_of(cfs_rq)));
1033 		if (state & TASK_UNINTERRUPTIBLE)
1034 			__schedstat_set(tsk->stats.block_start,
1035 				      rq_clock(rq_of(cfs_rq)));
1036 	}
1037 }
1038 
1039 /*
1040  * We are picking a new current task - update its stats:
1041  */
1042 static inline void
1043 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1044 {
1045 	/*
1046 	 * We are starting a new run period:
1047 	 */
1048 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1049 }
1050 
1051 /**************************************************
1052  * Scheduling class queueing methods:
1053  */
1054 
1055 #ifdef CONFIG_NUMA
1056 #define NUMA_IMBALANCE_MIN 2
1057 
1058 static inline long
1059 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1060 {
1061 	/*
1062 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1063 	 * threshold. Above this threshold, individual tasks may be contending
1064 	 * for both memory bandwidth and any shared HT resources.  This is an
1065 	 * approximation as the number of running tasks may not be related to
1066 	 * the number of busy CPUs due to sched_setaffinity.
1067 	 */
1068 	if (dst_running > imb_numa_nr)
1069 		return imbalance;
1070 
1071 	/*
1072 	 * Allow a small imbalance based on a simple pair of communicating
1073 	 * tasks that remain local when the destination is lightly loaded.
1074 	 */
1075 	if (imbalance <= NUMA_IMBALANCE_MIN)
1076 		return 0;
1077 
1078 	return imbalance;
1079 }
1080 #endif /* CONFIG_NUMA */
1081 
1082 #ifdef CONFIG_NUMA_BALANCING
1083 /*
1084  * Approximate time to scan a full NUMA task in ms. The task scan period is
1085  * calculated based on the tasks virtual memory size and
1086  * numa_balancing_scan_size.
1087  */
1088 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1089 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1090 
1091 /* Portion of address space to scan in MB */
1092 unsigned int sysctl_numa_balancing_scan_size = 256;
1093 
1094 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1095 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1096 
1097 struct numa_group {
1098 	refcount_t refcount;
1099 
1100 	spinlock_t lock; /* nr_tasks, tasks */
1101 	int nr_tasks;
1102 	pid_t gid;
1103 	int active_nodes;
1104 
1105 	struct rcu_head rcu;
1106 	unsigned long total_faults;
1107 	unsigned long max_faults_cpu;
1108 	/*
1109 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1110 	 *
1111 	 * Faults_cpu is used to decide whether memory should move
1112 	 * towards the CPU. As a consequence, these stats are weighted
1113 	 * more by CPU use than by memory faults.
1114 	 */
1115 	unsigned long faults[];
1116 };
1117 
1118 /*
1119  * For functions that can be called in multiple contexts that permit reading
1120  * ->numa_group (see struct task_struct for locking rules).
1121  */
1122 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1123 {
1124 	return rcu_dereference_check(p->numa_group, p == current ||
1125 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1126 }
1127 
1128 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1129 {
1130 	return rcu_dereference_protected(p->numa_group, p == current);
1131 }
1132 
1133 static inline unsigned long group_faults_priv(struct numa_group *ng);
1134 static inline unsigned long group_faults_shared(struct numa_group *ng);
1135 
1136 static unsigned int task_nr_scan_windows(struct task_struct *p)
1137 {
1138 	unsigned long rss = 0;
1139 	unsigned long nr_scan_pages;
1140 
1141 	/*
1142 	 * Calculations based on RSS as non-present and empty pages are skipped
1143 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1144 	 * on resident pages
1145 	 */
1146 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1147 	rss = get_mm_rss(p->mm);
1148 	if (!rss)
1149 		rss = nr_scan_pages;
1150 
1151 	rss = round_up(rss, nr_scan_pages);
1152 	return rss / nr_scan_pages;
1153 }
1154 
1155 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1156 #define MAX_SCAN_WINDOW 2560
1157 
1158 static unsigned int task_scan_min(struct task_struct *p)
1159 {
1160 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1161 	unsigned int scan, floor;
1162 	unsigned int windows = 1;
1163 
1164 	if (scan_size < MAX_SCAN_WINDOW)
1165 		windows = MAX_SCAN_WINDOW / scan_size;
1166 	floor = 1000 / windows;
1167 
1168 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1169 	return max_t(unsigned int, floor, scan);
1170 }
1171 
1172 static unsigned int task_scan_start(struct task_struct *p)
1173 {
1174 	unsigned long smin = task_scan_min(p);
1175 	unsigned long period = smin;
1176 	struct numa_group *ng;
1177 
1178 	/* Scale the maximum scan period with the amount of shared memory. */
1179 	rcu_read_lock();
1180 	ng = rcu_dereference(p->numa_group);
1181 	if (ng) {
1182 		unsigned long shared = group_faults_shared(ng);
1183 		unsigned long private = group_faults_priv(ng);
1184 
1185 		period *= refcount_read(&ng->refcount);
1186 		period *= shared + 1;
1187 		period /= private + shared + 1;
1188 	}
1189 	rcu_read_unlock();
1190 
1191 	return max(smin, period);
1192 }
1193 
1194 static unsigned int task_scan_max(struct task_struct *p)
1195 {
1196 	unsigned long smin = task_scan_min(p);
1197 	unsigned long smax;
1198 	struct numa_group *ng;
1199 
1200 	/* Watch for min being lower than max due to floor calculations */
1201 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1202 
1203 	/* Scale the maximum scan period with the amount of shared memory. */
1204 	ng = deref_curr_numa_group(p);
1205 	if (ng) {
1206 		unsigned long shared = group_faults_shared(ng);
1207 		unsigned long private = group_faults_priv(ng);
1208 		unsigned long period = smax;
1209 
1210 		period *= refcount_read(&ng->refcount);
1211 		period *= shared + 1;
1212 		period /= private + shared + 1;
1213 
1214 		smax = max(smax, period);
1215 	}
1216 
1217 	return max(smin, smax);
1218 }
1219 
1220 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1221 {
1222 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1223 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1224 }
1225 
1226 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1227 {
1228 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1229 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1230 }
1231 
1232 /* Shared or private faults. */
1233 #define NR_NUMA_HINT_FAULT_TYPES 2
1234 
1235 /* Memory and CPU locality */
1236 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1237 
1238 /* Averaged statistics, and temporary buffers. */
1239 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1240 
1241 pid_t task_numa_group_id(struct task_struct *p)
1242 {
1243 	struct numa_group *ng;
1244 	pid_t gid = 0;
1245 
1246 	rcu_read_lock();
1247 	ng = rcu_dereference(p->numa_group);
1248 	if (ng)
1249 		gid = ng->gid;
1250 	rcu_read_unlock();
1251 
1252 	return gid;
1253 }
1254 
1255 /*
1256  * The averaged statistics, shared & private, memory & CPU,
1257  * occupy the first half of the array. The second half of the
1258  * array is for current counters, which are averaged into the
1259  * first set by task_numa_placement.
1260  */
1261 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1262 {
1263 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1264 }
1265 
1266 static inline unsigned long task_faults(struct task_struct *p, int nid)
1267 {
1268 	if (!p->numa_faults)
1269 		return 0;
1270 
1271 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1272 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1273 }
1274 
1275 static inline unsigned long group_faults(struct task_struct *p, int nid)
1276 {
1277 	struct numa_group *ng = deref_task_numa_group(p);
1278 
1279 	if (!ng)
1280 		return 0;
1281 
1282 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1283 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1284 }
1285 
1286 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1287 {
1288 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1289 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1290 }
1291 
1292 static inline unsigned long group_faults_priv(struct numa_group *ng)
1293 {
1294 	unsigned long faults = 0;
1295 	int node;
1296 
1297 	for_each_online_node(node) {
1298 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1299 	}
1300 
1301 	return faults;
1302 }
1303 
1304 static inline unsigned long group_faults_shared(struct numa_group *ng)
1305 {
1306 	unsigned long faults = 0;
1307 	int node;
1308 
1309 	for_each_online_node(node) {
1310 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1311 	}
1312 
1313 	return faults;
1314 }
1315 
1316 /*
1317  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1318  * considered part of a numa group's pseudo-interleaving set. Migrations
1319  * between these nodes are slowed down, to allow things to settle down.
1320  */
1321 #define ACTIVE_NODE_FRACTION 3
1322 
1323 static bool numa_is_active_node(int nid, struct numa_group *ng)
1324 {
1325 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1326 }
1327 
1328 /* Handle placement on systems where not all nodes are directly connected. */
1329 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1330 					int lim_dist, bool task)
1331 {
1332 	unsigned long score = 0;
1333 	int node, max_dist;
1334 
1335 	/*
1336 	 * All nodes are directly connected, and the same distance
1337 	 * from each other. No need for fancy placement algorithms.
1338 	 */
1339 	if (sched_numa_topology_type == NUMA_DIRECT)
1340 		return 0;
1341 
1342 	/* sched_max_numa_distance may be changed in parallel. */
1343 	max_dist = READ_ONCE(sched_max_numa_distance);
1344 	/*
1345 	 * This code is called for each node, introducing N^2 complexity,
1346 	 * which should be ok given the number of nodes rarely exceeds 8.
1347 	 */
1348 	for_each_online_node(node) {
1349 		unsigned long faults;
1350 		int dist = node_distance(nid, node);
1351 
1352 		/*
1353 		 * The furthest away nodes in the system are not interesting
1354 		 * for placement; nid was already counted.
1355 		 */
1356 		if (dist >= max_dist || node == nid)
1357 			continue;
1358 
1359 		/*
1360 		 * On systems with a backplane NUMA topology, compare groups
1361 		 * of nodes, and move tasks towards the group with the most
1362 		 * memory accesses. When comparing two nodes at distance
1363 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1364 		 * of each group. Skip other nodes.
1365 		 */
1366 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1367 			continue;
1368 
1369 		/* Add up the faults from nearby nodes. */
1370 		if (task)
1371 			faults = task_faults(p, node);
1372 		else
1373 			faults = group_faults(p, node);
1374 
1375 		/*
1376 		 * On systems with a glueless mesh NUMA topology, there are
1377 		 * no fixed "groups of nodes". Instead, nodes that are not
1378 		 * directly connected bounce traffic through intermediate
1379 		 * nodes; a numa_group can occupy any set of nodes.
1380 		 * The further away a node is, the less the faults count.
1381 		 * This seems to result in good task placement.
1382 		 */
1383 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1384 			faults *= (max_dist - dist);
1385 			faults /= (max_dist - LOCAL_DISTANCE);
1386 		}
1387 
1388 		score += faults;
1389 	}
1390 
1391 	return score;
1392 }
1393 
1394 /*
1395  * These return the fraction of accesses done by a particular task, or
1396  * task group, on a particular numa node.  The group weight is given a
1397  * larger multiplier, in order to group tasks together that are almost
1398  * evenly spread out between numa nodes.
1399  */
1400 static inline unsigned long task_weight(struct task_struct *p, int nid,
1401 					int dist)
1402 {
1403 	unsigned long faults, total_faults;
1404 
1405 	if (!p->numa_faults)
1406 		return 0;
1407 
1408 	total_faults = p->total_numa_faults;
1409 
1410 	if (!total_faults)
1411 		return 0;
1412 
1413 	faults = task_faults(p, nid);
1414 	faults += score_nearby_nodes(p, nid, dist, true);
1415 
1416 	return 1000 * faults / total_faults;
1417 }
1418 
1419 static inline unsigned long group_weight(struct task_struct *p, int nid,
1420 					 int dist)
1421 {
1422 	struct numa_group *ng = deref_task_numa_group(p);
1423 	unsigned long faults, total_faults;
1424 
1425 	if (!ng)
1426 		return 0;
1427 
1428 	total_faults = ng->total_faults;
1429 
1430 	if (!total_faults)
1431 		return 0;
1432 
1433 	faults = group_faults(p, nid);
1434 	faults += score_nearby_nodes(p, nid, dist, false);
1435 
1436 	return 1000 * faults / total_faults;
1437 }
1438 
1439 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1440 				int src_nid, int dst_cpu)
1441 {
1442 	struct numa_group *ng = deref_curr_numa_group(p);
1443 	int dst_nid = cpu_to_node(dst_cpu);
1444 	int last_cpupid, this_cpupid;
1445 
1446 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1447 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1448 
1449 	/*
1450 	 * Allow first faults or private faults to migrate immediately early in
1451 	 * the lifetime of a task. The magic number 4 is based on waiting for
1452 	 * two full passes of the "multi-stage node selection" test that is
1453 	 * executed below.
1454 	 */
1455 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1456 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1457 		return true;
1458 
1459 	/*
1460 	 * Multi-stage node selection is used in conjunction with a periodic
1461 	 * migration fault to build a temporal task<->page relation. By using
1462 	 * a two-stage filter we remove short/unlikely relations.
1463 	 *
1464 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1465 	 * a task's usage of a particular page (n_p) per total usage of this
1466 	 * page (n_t) (in a given time-span) to a probability.
1467 	 *
1468 	 * Our periodic faults will sample this probability and getting the
1469 	 * same result twice in a row, given these samples are fully
1470 	 * independent, is then given by P(n)^2, provided our sample period
1471 	 * is sufficiently short compared to the usage pattern.
1472 	 *
1473 	 * This quadric squishes small probabilities, making it less likely we
1474 	 * act on an unlikely task<->page relation.
1475 	 */
1476 	if (!cpupid_pid_unset(last_cpupid) &&
1477 				cpupid_to_nid(last_cpupid) != dst_nid)
1478 		return false;
1479 
1480 	/* Always allow migrate on private faults */
1481 	if (cpupid_match_pid(p, last_cpupid))
1482 		return true;
1483 
1484 	/* A shared fault, but p->numa_group has not been set up yet. */
1485 	if (!ng)
1486 		return true;
1487 
1488 	/*
1489 	 * Destination node is much more heavily used than the source
1490 	 * node? Allow migration.
1491 	 */
1492 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1493 					ACTIVE_NODE_FRACTION)
1494 		return true;
1495 
1496 	/*
1497 	 * Distribute memory according to CPU & memory use on each node,
1498 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1499 	 *
1500 	 * faults_cpu(dst)   3   faults_cpu(src)
1501 	 * --------------- * - > ---------------
1502 	 * faults_mem(dst)   4   faults_mem(src)
1503 	 */
1504 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1505 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1506 }
1507 
1508 /*
1509  * 'numa_type' describes the node at the moment of load balancing.
1510  */
1511 enum numa_type {
1512 	/* The node has spare capacity that can be used to run more tasks.  */
1513 	node_has_spare = 0,
1514 	/*
1515 	 * The node is fully used and the tasks don't compete for more CPU
1516 	 * cycles. Nevertheless, some tasks might wait before running.
1517 	 */
1518 	node_fully_busy,
1519 	/*
1520 	 * The node is overloaded and can't provide expected CPU cycles to all
1521 	 * tasks.
1522 	 */
1523 	node_overloaded
1524 };
1525 
1526 /* Cached statistics for all CPUs within a node */
1527 struct numa_stats {
1528 	unsigned long load;
1529 	unsigned long runnable;
1530 	unsigned long util;
1531 	/* Total compute capacity of CPUs on a node */
1532 	unsigned long compute_capacity;
1533 	unsigned int nr_running;
1534 	unsigned int weight;
1535 	enum numa_type node_type;
1536 	int idle_cpu;
1537 };
1538 
1539 static inline bool is_core_idle(int cpu)
1540 {
1541 #ifdef CONFIG_SCHED_SMT
1542 	int sibling;
1543 
1544 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1545 		if (cpu == sibling)
1546 			continue;
1547 
1548 		if (!idle_cpu(sibling))
1549 			return false;
1550 	}
1551 #endif
1552 
1553 	return true;
1554 }
1555 
1556 struct task_numa_env {
1557 	struct task_struct *p;
1558 
1559 	int src_cpu, src_nid;
1560 	int dst_cpu, dst_nid;
1561 	int imb_numa_nr;
1562 
1563 	struct numa_stats src_stats, dst_stats;
1564 
1565 	int imbalance_pct;
1566 	int dist;
1567 
1568 	struct task_struct *best_task;
1569 	long best_imp;
1570 	int best_cpu;
1571 };
1572 
1573 static unsigned long cpu_load(struct rq *rq);
1574 static unsigned long cpu_runnable(struct rq *rq);
1575 
1576 static inline enum
1577 numa_type numa_classify(unsigned int imbalance_pct,
1578 			 struct numa_stats *ns)
1579 {
1580 	if ((ns->nr_running > ns->weight) &&
1581 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1582 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1583 		return node_overloaded;
1584 
1585 	if ((ns->nr_running < ns->weight) ||
1586 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1587 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1588 		return node_has_spare;
1589 
1590 	return node_fully_busy;
1591 }
1592 
1593 #ifdef CONFIG_SCHED_SMT
1594 /* Forward declarations of select_idle_sibling helpers */
1595 static inline bool test_idle_cores(int cpu, bool def);
1596 static inline int numa_idle_core(int idle_core, int cpu)
1597 {
1598 	if (!static_branch_likely(&sched_smt_present) ||
1599 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1600 		return idle_core;
1601 
1602 	/*
1603 	 * Prefer cores instead of packing HT siblings
1604 	 * and triggering future load balancing.
1605 	 */
1606 	if (is_core_idle(cpu))
1607 		idle_core = cpu;
1608 
1609 	return idle_core;
1610 }
1611 #else
1612 static inline int numa_idle_core(int idle_core, int cpu)
1613 {
1614 	return idle_core;
1615 }
1616 #endif
1617 
1618 /*
1619  * Gather all necessary information to make NUMA balancing placement
1620  * decisions that are compatible with standard load balancer. This
1621  * borrows code and logic from update_sg_lb_stats but sharing a
1622  * common implementation is impractical.
1623  */
1624 static void update_numa_stats(struct task_numa_env *env,
1625 			      struct numa_stats *ns, int nid,
1626 			      bool find_idle)
1627 {
1628 	int cpu, idle_core = -1;
1629 
1630 	memset(ns, 0, sizeof(*ns));
1631 	ns->idle_cpu = -1;
1632 
1633 	rcu_read_lock();
1634 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1635 		struct rq *rq = cpu_rq(cpu);
1636 
1637 		ns->load += cpu_load(rq);
1638 		ns->runnable += cpu_runnable(rq);
1639 		ns->util += cpu_util_cfs(cpu);
1640 		ns->nr_running += rq->cfs.h_nr_running;
1641 		ns->compute_capacity += capacity_of(cpu);
1642 
1643 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1644 			if (READ_ONCE(rq->numa_migrate_on) ||
1645 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1646 				continue;
1647 
1648 			if (ns->idle_cpu == -1)
1649 				ns->idle_cpu = cpu;
1650 
1651 			idle_core = numa_idle_core(idle_core, cpu);
1652 		}
1653 	}
1654 	rcu_read_unlock();
1655 
1656 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1657 
1658 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1659 
1660 	if (idle_core >= 0)
1661 		ns->idle_cpu = idle_core;
1662 }
1663 
1664 static void task_numa_assign(struct task_numa_env *env,
1665 			     struct task_struct *p, long imp)
1666 {
1667 	struct rq *rq = cpu_rq(env->dst_cpu);
1668 
1669 	/* Check if run-queue part of active NUMA balance. */
1670 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1671 		int cpu;
1672 		int start = env->dst_cpu;
1673 
1674 		/* Find alternative idle CPU. */
1675 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1676 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1677 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1678 				continue;
1679 			}
1680 
1681 			env->dst_cpu = cpu;
1682 			rq = cpu_rq(env->dst_cpu);
1683 			if (!xchg(&rq->numa_migrate_on, 1))
1684 				goto assign;
1685 		}
1686 
1687 		/* Failed to find an alternative idle CPU */
1688 		return;
1689 	}
1690 
1691 assign:
1692 	/*
1693 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1694 	 * found a better CPU to move/swap.
1695 	 */
1696 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1697 		rq = cpu_rq(env->best_cpu);
1698 		WRITE_ONCE(rq->numa_migrate_on, 0);
1699 	}
1700 
1701 	if (env->best_task)
1702 		put_task_struct(env->best_task);
1703 	if (p)
1704 		get_task_struct(p);
1705 
1706 	env->best_task = p;
1707 	env->best_imp = imp;
1708 	env->best_cpu = env->dst_cpu;
1709 }
1710 
1711 static bool load_too_imbalanced(long src_load, long dst_load,
1712 				struct task_numa_env *env)
1713 {
1714 	long imb, old_imb;
1715 	long orig_src_load, orig_dst_load;
1716 	long src_capacity, dst_capacity;
1717 
1718 	/*
1719 	 * The load is corrected for the CPU capacity available on each node.
1720 	 *
1721 	 * src_load        dst_load
1722 	 * ------------ vs ---------
1723 	 * src_capacity    dst_capacity
1724 	 */
1725 	src_capacity = env->src_stats.compute_capacity;
1726 	dst_capacity = env->dst_stats.compute_capacity;
1727 
1728 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1729 
1730 	orig_src_load = env->src_stats.load;
1731 	orig_dst_load = env->dst_stats.load;
1732 
1733 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1734 
1735 	/* Would this change make things worse? */
1736 	return (imb > old_imb);
1737 }
1738 
1739 /*
1740  * Maximum NUMA importance can be 1998 (2*999);
1741  * SMALLIMP @ 30 would be close to 1998/64.
1742  * Used to deter task migration.
1743  */
1744 #define SMALLIMP	30
1745 
1746 /*
1747  * This checks if the overall compute and NUMA accesses of the system would
1748  * be improved if the source tasks was migrated to the target dst_cpu taking
1749  * into account that it might be best if task running on the dst_cpu should
1750  * be exchanged with the source task
1751  */
1752 static bool task_numa_compare(struct task_numa_env *env,
1753 			      long taskimp, long groupimp, bool maymove)
1754 {
1755 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1756 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1757 	long imp = p_ng ? groupimp : taskimp;
1758 	struct task_struct *cur;
1759 	long src_load, dst_load;
1760 	int dist = env->dist;
1761 	long moveimp = imp;
1762 	long load;
1763 	bool stopsearch = false;
1764 
1765 	if (READ_ONCE(dst_rq->numa_migrate_on))
1766 		return false;
1767 
1768 	rcu_read_lock();
1769 	cur = rcu_dereference(dst_rq->curr);
1770 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1771 		cur = NULL;
1772 
1773 	/*
1774 	 * Because we have preemption enabled we can get migrated around and
1775 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1776 	 */
1777 	if (cur == env->p) {
1778 		stopsearch = true;
1779 		goto unlock;
1780 	}
1781 
1782 	if (!cur) {
1783 		if (maymove && moveimp >= env->best_imp)
1784 			goto assign;
1785 		else
1786 			goto unlock;
1787 	}
1788 
1789 	/* Skip this swap candidate if cannot move to the source cpu. */
1790 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1791 		goto unlock;
1792 
1793 	/*
1794 	 * Skip this swap candidate if it is not moving to its preferred
1795 	 * node and the best task is.
1796 	 */
1797 	if (env->best_task &&
1798 	    env->best_task->numa_preferred_nid == env->src_nid &&
1799 	    cur->numa_preferred_nid != env->src_nid) {
1800 		goto unlock;
1801 	}
1802 
1803 	/*
1804 	 * "imp" is the fault differential for the source task between the
1805 	 * source and destination node. Calculate the total differential for
1806 	 * the source task and potential destination task. The more negative
1807 	 * the value is, the more remote accesses that would be expected to
1808 	 * be incurred if the tasks were swapped.
1809 	 *
1810 	 * If dst and source tasks are in the same NUMA group, or not
1811 	 * in any group then look only at task weights.
1812 	 */
1813 	cur_ng = rcu_dereference(cur->numa_group);
1814 	if (cur_ng == p_ng) {
1815 		/*
1816 		 * Do not swap within a group or between tasks that have
1817 		 * no group if there is spare capacity. Swapping does
1818 		 * not address the load imbalance and helps one task at
1819 		 * the cost of punishing another.
1820 		 */
1821 		if (env->dst_stats.node_type == node_has_spare)
1822 			goto unlock;
1823 
1824 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1825 		      task_weight(cur, env->dst_nid, dist);
1826 		/*
1827 		 * Add some hysteresis to prevent swapping the
1828 		 * tasks within a group over tiny differences.
1829 		 */
1830 		if (cur_ng)
1831 			imp -= imp / 16;
1832 	} else {
1833 		/*
1834 		 * Compare the group weights. If a task is all by itself
1835 		 * (not part of a group), use the task weight instead.
1836 		 */
1837 		if (cur_ng && p_ng)
1838 			imp += group_weight(cur, env->src_nid, dist) -
1839 			       group_weight(cur, env->dst_nid, dist);
1840 		else
1841 			imp += task_weight(cur, env->src_nid, dist) -
1842 			       task_weight(cur, env->dst_nid, dist);
1843 	}
1844 
1845 	/* Discourage picking a task already on its preferred node */
1846 	if (cur->numa_preferred_nid == env->dst_nid)
1847 		imp -= imp / 16;
1848 
1849 	/*
1850 	 * Encourage picking a task that moves to its preferred node.
1851 	 * This potentially makes imp larger than it's maximum of
1852 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1853 	 * case, it does not matter.
1854 	 */
1855 	if (cur->numa_preferred_nid == env->src_nid)
1856 		imp += imp / 8;
1857 
1858 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1859 		imp = moveimp;
1860 		cur = NULL;
1861 		goto assign;
1862 	}
1863 
1864 	/*
1865 	 * Prefer swapping with a task moving to its preferred node over a
1866 	 * task that is not.
1867 	 */
1868 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1869 	    env->best_task->numa_preferred_nid != env->src_nid) {
1870 		goto assign;
1871 	}
1872 
1873 	/*
1874 	 * If the NUMA importance is less than SMALLIMP,
1875 	 * task migration might only result in ping pong
1876 	 * of tasks and also hurt performance due to cache
1877 	 * misses.
1878 	 */
1879 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1880 		goto unlock;
1881 
1882 	/*
1883 	 * In the overloaded case, try and keep the load balanced.
1884 	 */
1885 	load = task_h_load(env->p) - task_h_load(cur);
1886 	if (!load)
1887 		goto assign;
1888 
1889 	dst_load = env->dst_stats.load + load;
1890 	src_load = env->src_stats.load - load;
1891 
1892 	if (load_too_imbalanced(src_load, dst_load, env))
1893 		goto unlock;
1894 
1895 assign:
1896 	/* Evaluate an idle CPU for a task numa move. */
1897 	if (!cur) {
1898 		int cpu = env->dst_stats.idle_cpu;
1899 
1900 		/* Nothing cached so current CPU went idle since the search. */
1901 		if (cpu < 0)
1902 			cpu = env->dst_cpu;
1903 
1904 		/*
1905 		 * If the CPU is no longer truly idle and the previous best CPU
1906 		 * is, keep using it.
1907 		 */
1908 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1909 		    idle_cpu(env->best_cpu)) {
1910 			cpu = env->best_cpu;
1911 		}
1912 
1913 		env->dst_cpu = cpu;
1914 	}
1915 
1916 	task_numa_assign(env, cur, imp);
1917 
1918 	/*
1919 	 * If a move to idle is allowed because there is capacity or load
1920 	 * balance improves then stop the search. While a better swap
1921 	 * candidate may exist, a search is not free.
1922 	 */
1923 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1924 		stopsearch = true;
1925 
1926 	/*
1927 	 * If a swap candidate must be identified and the current best task
1928 	 * moves its preferred node then stop the search.
1929 	 */
1930 	if (!maymove && env->best_task &&
1931 	    env->best_task->numa_preferred_nid == env->src_nid) {
1932 		stopsearch = true;
1933 	}
1934 unlock:
1935 	rcu_read_unlock();
1936 
1937 	return stopsearch;
1938 }
1939 
1940 static void task_numa_find_cpu(struct task_numa_env *env,
1941 				long taskimp, long groupimp)
1942 {
1943 	bool maymove = false;
1944 	int cpu;
1945 
1946 	/*
1947 	 * If dst node has spare capacity, then check if there is an
1948 	 * imbalance that would be overruled by the load balancer.
1949 	 */
1950 	if (env->dst_stats.node_type == node_has_spare) {
1951 		unsigned int imbalance;
1952 		int src_running, dst_running;
1953 
1954 		/*
1955 		 * Would movement cause an imbalance? Note that if src has
1956 		 * more running tasks that the imbalance is ignored as the
1957 		 * move improves the imbalance from the perspective of the
1958 		 * CPU load balancer.
1959 		 * */
1960 		src_running = env->src_stats.nr_running - 1;
1961 		dst_running = env->dst_stats.nr_running + 1;
1962 		imbalance = max(0, dst_running - src_running);
1963 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
1964 						  env->imb_numa_nr);
1965 
1966 		/* Use idle CPU if there is no imbalance */
1967 		if (!imbalance) {
1968 			maymove = true;
1969 			if (env->dst_stats.idle_cpu >= 0) {
1970 				env->dst_cpu = env->dst_stats.idle_cpu;
1971 				task_numa_assign(env, NULL, 0);
1972 				return;
1973 			}
1974 		}
1975 	} else {
1976 		long src_load, dst_load, load;
1977 		/*
1978 		 * If the improvement from just moving env->p direction is better
1979 		 * than swapping tasks around, check if a move is possible.
1980 		 */
1981 		load = task_h_load(env->p);
1982 		dst_load = env->dst_stats.load + load;
1983 		src_load = env->src_stats.load - load;
1984 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1985 	}
1986 
1987 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1988 		/* Skip this CPU if the source task cannot migrate */
1989 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1990 			continue;
1991 
1992 		env->dst_cpu = cpu;
1993 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1994 			break;
1995 	}
1996 }
1997 
1998 static int task_numa_migrate(struct task_struct *p)
1999 {
2000 	struct task_numa_env env = {
2001 		.p = p,
2002 
2003 		.src_cpu = task_cpu(p),
2004 		.src_nid = task_node(p),
2005 
2006 		.imbalance_pct = 112,
2007 
2008 		.best_task = NULL,
2009 		.best_imp = 0,
2010 		.best_cpu = -1,
2011 	};
2012 	unsigned long taskweight, groupweight;
2013 	struct sched_domain *sd;
2014 	long taskimp, groupimp;
2015 	struct numa_group *ng;
2016 	struct rq *best_rq;
2017 	int nid, ret, dist;
2018 
2019 	/*
2020 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2021 	 * imbalance and would be the first to start moving tasks about.
2022 	 *
2023 	 * And we want to avoid any moving of tasks about, as that would create
2024 	 * random movement of tasks -- counter the numa conditions we're trying
2025 	 * to satisfy here.
2026 	 */
2027 	rcu_read_lock();
2028 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2029 	if (sd) {
2030 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2031 		env.imb_numa_nr = sd->imb_numa_nr;
2032 	}
2033 	rcu_read_unlock();
2034 
2035 	/*
2036 	 * Cpusets can break the scheduler domain tree into smaller
2037 	 * balance domains, some of which do not cross NUMA boundaries.
2038 	 * Tasks that are "trapped" in such domains cannot be migrated
2039 	 * elsewhere, so there is no point in (re)trying.
2040 	 */
2041 	if (unlikely(!sd)) {
2042 		sched_setnuma(p, task_node(p));
2043 		return -EINVAL;
2044 	}
2045 
2046 	env.dst_nid = p->numa_preferred_nid;
2047 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2048 	taskweight = task_weight(p, env.src_nid, dist);
2049 	groupweight = group_weight(p, env.src_nid, dist);
2050 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2051 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2052 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2053 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2054 
2055 	/* Try to find a spot on the preferred nid. */
2056 	task_numa_find_cpu(&env, taskimp, groupimp);
2057 
2058 	/*
2059 	 * Look at other nodes in these cases:
2060 	 * - there is no space available on the preferred_nid
2061 	 * - the task is part of a numa_group that is interleaved across
2062 	 *   multiple NUMA nodes; in order to better consolidate the group,
2063 	 *   we need to check other locations.
2064 	 */
2065 	ng = deref_curr_numa_group(p);
2066 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2067 		for_each_node_state(nid, N_CPU) {
2068 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2069 				continue;
2070 
2071 			dist = node_distance(env.src_nid, env.dst_nid);
2072 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2073 						dist != env.dist) {
2074 				taskweight = task_weight(p, env.src_nid, dist);
2075 				groupweight = group_weight(p, env.src_nid, dist);
2076 			}
2077 
2078 			/* Only consider nodes where both task and groups benefit */
2079 			taskimp = task_weight(p, nid, dist) - taskweight;
2080 			groupimp = group_weight(p, nid, dist) - groupweight;
2081 			if (taskimp < 0 && groupimp < 0)
2082 				continue;
2083 
2084 			env.dist = dist;
2085 			env.dst_nid = nid;
2086 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2087 			task_numa_find_cpu(&env, taskimp, groupimp);
2088 		}
2089 	}
2090 
2091 	/*
2092 	 * If the task is part of a workload that spans multiple NUMA nodes,
2093 	 * and is migrating into one of the workload's active nodes, remember
2094 	 * this node as the task's preferred numa node, so the workload can
2095 	 * settle down.
2096 	 * A task that migrated to a second choice node will be better off
2097 	 * trying for a better one later. Do not set the preferred node here.
2098 	 */
2099 	if (ng) {
2100 		if (env.best_cpu == -1)
2101 			nid = env.src_nid;
2102 		else
2103 			nid = cpu_to_node(env.best_cpu);
2104 
2105 		if (nid != p->numa_preferred_nid)
2106 			sched_setnuma(p, nid);
2107 	}
2108 
2109 	/* No better CPU than the current one was found. */
2110 	if (env.best_cpu == -1) {
2111 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2112 		return -EAGAIN;
2113 	}
2114 
2115 	best_rq = cpu_rq(env.best_cpu);
2116 	if (env.best_task == NULL) {
2117 		ret = migrate_task_to(p, env.best_cpu);
2118 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2119 		if (ret != 0)
2120 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2121 		return ret;
2122 	}
2123 
2124 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2125 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2126 
2127 	if (ret != 0)
2128 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2129 	put_task_struct(env.best_task);
2130 	return ret;
2131 }
2132 
2133 /* Attempt to migrate a task to a CPU on the preferred node. */
2134 static void numa_migrate_preferred(struct task_struct *p)
2135 {
2136 	unsigned long interval = HZ;
2137 
2138 	/* This task has no NUMA fault statistics yet */
2139 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2140 		return;
2141 
2142 	/* Periodically retry migrating the task to the preferred node */
2143 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2144 	p->numa_migrate_retry = jiffies + interval;
2145 
2146 	/* Success if task is already running on preferred CPU */
2147 	if (task_node(p) == p->numa_preferred_nid)
2148 		return;
2149 
2150 	/* Otherwise, try migrate to a CPU on the preferred node */
2151 	task_numa_migrate(p);
2152 }
2153 
2154 /*
2155  * Find out how many nodes the workload is actively running on. Do this by
2156  * tracking the nodes from which NUMA hinting faults are triggered. This can
2157  * be different from the set of nodes where the workload's memory is currently
2158  * located.
2159  */
2160 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2161 {
2162 	unsigned long faults, max_faults = 0;
2163 	int nid, active_nodes = 0;
2164 
2165 	for_each_node_state(nid, N_CPU) {
2166 		faults = group_faults_cpu(numa_group, nid);
2167 		if (faults > max_faults)
2168 			max_faults = faults;
2169 	}
2170 
2171 	for_each_node_state(nid, N_CPU) {
2172 		faults = group_faults_cpu(numa_group, nid);
2173 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2174 			active_nodes++;
2175 	}
2176 
2177 	numa_group->max_faults_cpu = max_faults;
2178 	numa_group->active_nodes = active_nodes;
2179 }
2180 
2181 /*
2182  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2183  * increments. The more local the fault statistics are, the higher the scan
2184  * period will be for the next scan window. If local/(local+remote) ratio is
2185  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2186  * the scan period will decrease. Aim for 70% local accesses.
2187  */
2188 #define NUMA_PERIOD_SLOTS 10
2189 #define NUMA_PERIOD_THRESHOLD 7
2190 
2191 /*
2192  * Increase the scan period (slow down scanning) if the majority of
2193  * our memory is already on our local node, or if the majority of
2194  * the page accesses are shared with other processes.
2195  * Otherwise, decrease the scan period.
2196  */
2197 static void update_task_scan_period(struct task_struct *p,
2198 			unsigned long shared, unsigned long private)
2199 {
2200 	unsigned int period_slot;
2201 	int lr_ratio, ps_ratio;
2202 	int diff;
2203 
2204 	unsigned long remote = p->numa_faults_locality[0];
2205 	unsigned long local = p->numa_faults_locality[1];
2206 
2207 	/*
2208 	 * If there were no record hinting faults then either the task is
2209 	 * completely idle or all activity is in areas that are not of interest
2210 	 * to automatic numa balancing. Related to that, if there were failed
2211 	 * migration then it implies we are migrating too quickly or the local
2212 	 * node is overloaded. In either case, scan slower
2213 	 */
2214 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2215 		p->numa_scan_period = min(p->numa_scan_period_max,
2216 			p->numa_scan_period << 1);
2217 
2218 		p->mm->numa_next_scan = jiffies +
2219 			msecs_to_jiffies(p->numa_scan_period);
2220 
2221 		return;
2222 	}
2223 
2224 	/*
2225 	 * Prepare to scale scan period relative to the current period.
2226 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2227 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2228 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2229 	 */
2230 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2231 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2232 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2233 
2234 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2235 		/*
2236 		 * Most memory accesses are local. There is no need to
2237 		 * do fast NUMA scanning, since memory is already local.
2238 		 */
2239 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2240 		if (!slot)
2241 			slot = 1;
2242 		diff = slot * period_slot;
2243 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2244 		/*
2245 		 * Most memory accesses are shared with other tasks.
2246 		 * There is no point in continuing fast NUMA scanning,
2247 		 * since other tasks may just move the memory elsewhere.
2248 		 */
2249 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2250 		if (!slot)
2251 			slot = 1;
2252 		diff = slot * period_slot;
2253 	} else {
2254 		/*
2255 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2256 		 * yet they are not on the local NUMA node. Speed up
2257 		 * NUMA scanning to get the memory moved over.
2258 		 */
2259 		int ratio = max(lr_ratio, ps_ratio);
2260 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2261 	}
2262 
2263 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2264 			task_scan_min(p), task_scan_max(p));
2265 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2266 }
2267 
2268 /*
2269  * Get the fraction of time the task has been running since the last
2270  * NUMA placement cycle. The scheduler keeps similar statistics, but
2271  * decays those on a 32ms period, which is orders of magnitude off
2272  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2273  * stats only if the task is so new there are no NUMA statistics yet.
2274  */
2275 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2276 {
2277 	u64 runtime, delta, now;
2278 	/* Use the start of this time slice to avoid calculations. */
2279 	now = p->se.exec_start;
2280 	runtime = p->se.sum_exec_runtime;
2281 
2282 	if (p->last_task_numa_placement) {
2283 		delta = runtime - p->last_sum_exec_runtime;
2284 		*period = now - p->last_task_numa_placement;
2285 
2286 		/* Avoid time going backwards, prevent potential divide error: */
2287 		if (unlikely((s64)*period < 0))
2288 			*period = 0;
2289 	} else {
2290 		delta = p->se.avg.load_sum;
2291 		*period = LOAD_AVG_MAX;
2292 	}
2293 
2294 	p->last_sum_exec_runtime = runtime;
2295 	p->last_task_numa_placement = now;
2296 
2297 	return delta;
2298 }
2299 
2300 /*
2301  * Determine the preferred nid for a task in a numa_group. This needs to
2302  * be done in a way that produces consistent results with group_weight,
2303  * otherwise workloads might not converge.
2304  */
2305 static int preferred_group_nid(struct task_struct *p, int nid)
2306 {
2307 	nodemask_t nodes;
2308 	int dist;
2309 
2310 	/* Direct connections between all NUMA nodes. */
2311 	if (sched_numa_topology_type == NUMA_DIRECT)
2312 		return nid;
2313 
2314 	/*
2315 	 * On a system with glueless mesh NUMA topology, group_weight
2316 	 * scores nodes according to the number of NUMA hinting faults on
2317 	 * both the node itself, and on nearby nodes.
2318 	 */
2319 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2320 		unsigned long score, max_score = 0;
2321 		int node, max_node = nid;
2322 
2323 		dist = sched_max_numa_distance;
2324 
2325 		for_each_node_state(node, N_CPU) {
2326 			score = group_weight(p, node, dist);
2327 			if (score > max_score) {
2328 				max_score = score;
2329 				max_node = node;
2330 			}
2331 		}
2332 		return max_node;
2333 	}
2334 
2335 	/*
2336 	 * Finding the preferred nid in a system with NUMA backplane
2337 	 * interconnect topology is more involved. The goal is to locate
2338 	 * tasks from numa_groups near each other in the system, and
2339 	 * untangle workloads from different sides of the system. This requires
2340 	 * searching down the hierarchy of node groups, recursively searching
2341 	 * inside the highest scoring group of nodes. The nodemask tricks
2342 	 * keep the complexity of the search down.
2343 	 */
2344 	nodes = node_states[N_CPU];
2345 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2346 		unsigned long max_faults = 0;
2347 		nodemask_t max_group = NODE_MASK_NONE;
2348 		int a, b;
2349 
2350 		/* Are there nodes at this distance from each other? */
2351 		if (!find_numa_distance(dist))
2352 			continue;
2353 
2354 		for_each_node_mask(a, nodes) {
2355 			unsigned long faults = 0;
2356 			nodemask_t this_group;
2357 			nodes_clear(this_group);
2358 
2359 			/* Sum group's NUMA faults; includes a==b case. */
2360 			for_each_node_mask(b, nodes) {
2361 				if (node_distance(a, b) < dist) {
2362 					faults += group_faults(p, b);
2363 					node_set(b, this_group);
2364 					node_clear(b, nodes);
2365 				}
2366 			}
2367 
2368 			/* Remember the top group. */
2369 			if (faults > max_faults) {
2370 				max_faults = faults;
2371 				max_group = this_group;
2372 				/*
2373 				 * subtle: at the smallest distance there is
2374 				 * just one node left in each "group", the
2375 				 * winner is the preferred nid.
2376 				 */
2377 				nid = a;
2378 			}
2379 		}
2380 		/* Next round, evaluate the nodes within max_group. */
2381 		if (!max_faults)
2382 			break;
2383 		nodes = max_group;
2384 	}
2385 	return nid;
2386 }
2387 
2388 static void task_numa_placement(struct task_struct *p)
2389 {
2390 	int seq, nid, max_nid = NUMA_NO_NODE;
2391 	unsigned long max_faults = 0;
2392 	unsigned long fault_types[2] = { 0, 0 };
2393 	unsigned long total_faults;
2394 	u64 runtime, period;
2395 	spinlock_t *group_lock = NULL;
2396 	struct numa_group *ng;
2397 
2398 	/*
2399 	 * The p->mm->numa_scan_seq field gets updated without
2400 	 * exclusive access. Use READ_ONCE() here to ensure
2401 	 * that the field is read in a single access:
2402 	 */
2403 	seq = READ_ONCE(p->mm->numa_scan_seq);
2404 	if (p->numa_scan_seq == seq)
2405 		return;
2406 	p->numa_scan_seq = seq;
2407 	p->numa_scan_period_max = task_scan_max(p);
2408 
2409 	total_faults = p->numa_faults_locality[0] +
2410 		       p->numa_faults_locality[1];
2411 	runtime = numa_get_avg_runtime(p, &period);
2412 
2413 	/* If the task is part of a group prevent parallel updates to group stats */
2414 	ng = deref_curr_numa_group(p);
2415 	if (ng) {
2416 		group_lock = &ng->lock;
2417 		spin_lock_irq(group_lock);
2418 	}
2419 
2420 	/* Find the node with the highest number of faults */
2421 	for_each_online_node(nid) {
2422 		/* Keep track of the offsets in numa_faults array */
2423 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2424 		unsigned long faults = 0, group_faults = 0;
2425 		int priv;
2426 
2427 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2428 			long diff, f_diff, f_weight;
2429 
2430 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2431 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2432 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2433 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2434 
2435 			/* Decay existing window, copy faults since last scan */
2436 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2437 			fault_types[priv] += p->numa_faults[membuf_idx];
2438 			p->numa_faults[membuf_idx] = 0;
2439 
2440 			/*
2441 			 * Normalize the faults_from, so all tasks in a group
2442 			 * count according to CPU use, instead of by the raw
2443 			 * number of faults. Tasks with little runtime have
2444 			 * little over-all impact on throughput, and thus their
2445 			 * faults are less important.
2446 			 */
2447 			f_weight = div64_u64(runtime << 16, period + 1);
2448 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2449 				   (total_faults + 1);
2450 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2451 			p->numa_faults[cpubuf_idx] = 0;
2452 
2453 			p->numa_faults[mem_idx] += diff;
2454 			p->numa_faults[cpu_idx] += f_diff;
2455 			faults += p->numa_faults[mem_idx];
2456 			p->total_numa_faults += diff;
2457 			if (ng) {
2458 				/*
2459 				 * safe because we can only change our own group
2460 				 *
2461 				 * mem_idx represents the offset for a given
2462 				 * nid and priv in a specific region because it
2463 				 * is at the beginning of the numa_faults array.
2464 				 */
2465 				ng->faults[mem_idx] += diff;
2466 				ng->faults[cpu_idx] += f_diff;
2467 				ng->total_faults += diff;
2468 				group_faults += ng->faults[mem_idx];
2469 			}
2470 		}
2471 
2472 		if (!ng) {
2473 			if (faults > max_faults) {
2474 				max_faults = faults;
2475 				max_nid = nid;
2476 			}
2477 		} else if (group_faults > max_faults) {
2478 			max_faults = group_faults;
2479 			max_nid = nid;
2480 		}
2481 	}
2482 
2483 	/* Cannot migrate task to CPU-less node */
2484 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2485 		int near_nid = max_nid;
2486 		int distance, near_distance = INT_MAX;
2487 
2488 		for_each_node_state(nid, N_CPU) {
2489 			distance = node_distance(max_nid, nid);
2490 			if (distance < near_distance) {
2491 				near_nid = nid;
2492 				near_distance = distance;
2493 			}
2494 		}
2495 		max_nid = near_nid;
2496 	}
2497 
2498 	if (ng) {
2499 		numa_group_count_active_nodes(ng);
2500 		spin_unlock_irq(group_lock);
2501 		max_nid = preferred_group_nid(p, max_nid);
2502 	}
2503 
2504 	if (max_faults) {
2505 		/* Set the new preferred node */
2506 		if (max_nid != p->numa_preferred_nid)
2507 			sched_setnuma(p, max_nid);
2508 	}
2509 
2510 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2511 }
2512 
2513 static inline int get_numa_group(struct numa_group *grp)
2514 {
2515 	return refcount_inc_not_zero(&grp->refcount);
2516 }
2517 
2518 static inline void put_numa_group(struct numa_group *grp)
2519 {
2520 	if (refcount_dec_and_test(&grp->refcount))
2521 		kfree_rcu(grp, rcu);
2522 }
2523 
2524 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2525 			int *priv)
2526 {
2527 	struct numa_group *grp, *my_grp;
2528 	struct task_struct *tsk;
2529 	bool join = false;
2530 	int cpu = cpupid_to_cpu(cpupid);
2531 	int i;
2532 
2533 	if (unlikely(!deref_curr_numa_group(p))) {
2534 		unsigned int size = sizeof(struct numa_group) +
2535 				    NR_NUMA_HINT_FAULT_STATS *
2536 				    nr_node_ids * sizeof(unsigned long);
2537 
2538 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2539 		if (!grp)
2540 			return;
2541 
2542 		refcount_set(&grp->refcount, 1);
2543 		grp->active_nodes = 1;
2544 		grp->max_faults_cpu = 0;
2545 		spin_lock_init(&grp->lock);
2546 		grp->gid = p->pid;
2547 
2548 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2549 			grp->faults[i] = p->numa_faults[i];
2550 
2551 		grp->total_faults = p->total_numa_faults;
2552 
2553 		grp->nr_tasks++;
2554 		rcu_assign_pointer(p->numa_group, grp);
2555 	}
2556 
2557 	rcu_read_lock();
2558 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2559 
2560 	if (!cpupid_match_pid(tsk, cpupid))
2561 		goto no_join;
2562 
2563 	grp = rcu_dereference(tsk->numa_group);
2564 	if (!grp)
2565 		goto no_join;
2566 
2567 	my_grp = deref_curr_numa_group(p);
2568 	if (grp == my_grp)
2569 		goto no_join;
2570 
2571 	/*
2572 	 * Only join the other group if its bigger; if we're the bigger group,
2573 	 * the other task will join us.
2574 	 */
2575 	if (my_grp->nr_tasks > grp->nr_tasks)
2576 		goto no_join;
2577 
2578 	/*
2579 	 * Tie-break on the grp address.
2580 	 */
2581 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2582 		goto no_join;
2583 
2584 	/* Always join threads in the same process. */
2585 	if (tsk->mm == current->mm)
2586 		join = true;
2587 
2588 	/* Simple filter to avoid false positives due to PID collisions */
2589 	if (flags & TNF_SHARED)
2590 		join = true;
2591 
2592 	/* Update priv based on whether false sharing was detected */
2593 	*priv = !join;
2594 
2595 	if (join && !get_numa_group(grp))
2596 		goto no_join;
2597 
2598 	rcu_read_unlock();
2599 
2600 	if (!join)
2601 		return;
2602 
2603 	BUG_ON(irqs_disabled());
2604 	double_lock_irq(&my_grp->lock, &grp->lock);
2605 
2606 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2607 		my_grp->faults[i] -= p->numa_faults[i];
2608 		grp->faults[i] += p->numa_faults[i];
2609 	}
2610 	my_grp->total_faults -= p->total_numa_faults;
2611 	grp->total_faults += p->total_numa_faults;
2612 
2613 	my_grp->nr_tasks--;
2614 	grp->nr_tasks++;
2615 
2616 	spin_unlock(&my_grp->lock);
2617 	spin_unlock_irq(&grp->lock);
2618 
2619 	rcu_assign_pointer(p->numa_group, grp);
2620 
2621 	put_numa_group(my_grp);
2622 	return;
2623 
2624 no_join:
2625 	rcu_read_unlock();
2626 	return;
2627 }
2628 
2629 /*
2630  * Get rid of NUMA statistics associated with a task (either current or dead).
2631  * If @final is set, the task is dead and has reached refcount zero, so we can
2632  * safely free all relevant data structures. Otherwise, there might be
2633  * concurrent reads from places like load balancing and procfs, and we should
2634  * reset the data back to default state without freeing ->numa_faults.
2635  */
2636 void task_numa_free(struct task_struct *p, bool final)
2637 {
2638 	/* safe: p either is current or is being freed by current */
2639 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2640 	unsigned long *numa_faults = p->numa_faults;
2641 	unsigned long flags;
2642 	int i;
2643 
2644 	if (!numa_faults)
2645 		return;
2646 
2647 	if (grp) {
2648 		spin_lock_irqsave(&grp->lock, flags);
2649 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2650 			grp->faults[i] -= p->numa_faults[i];
2651 		grp->total_faults -= p->total_numa_faults;
2652 
2653 		grp->nr_tasks--;
2654 		spin_unlock_irqrestore(&grp->lock, flags);
2655 		RCU_INIT_POINTER(p->numa_group, NULL);
2656 		put_numa_group(grp);
2657 	}
2658 
2659 	if (final) {
2660 		p->numa_faults = NULL;
2661 		kfree(numa_faults);
2662 	} else {
2663 		p->total_numa_faults = 0;
2664 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2665 			numa_faults[i] = 0;
2666 	}
2667 }
2668 
2669 /*
2670  * Got a PROT_NONE fault for a page on @node.
2671  */
2672 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2673 {
2674 	struct task_struct *p = current;
2675 	bool migrated = flags & TNF_MIGRATED;
2676 	int cpu_node = task_node(current);
2677 	int local = !!(flags & TNF_FAULT_LOCAL);
2678 	struct numa_group *ng;
2679 	int priv;
2680 
2681 	if (!static_branch_likely(&sched_numa_balancing))
2682 		return;
2683 
2684 	/* for example, ksmd faulting in a user's mm */
2685 	if (!p->mm)
2686 		return;
2687 
2688 	/* Allocate buffer to track faults on a per-node basis */
2689 	if (unlikely(!p->numa_faults)) {
2690 		int size = sizeof(*p->numa_faults) *
2691 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2692 
2693 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2694 		if (!p->numa_faults)
2695 			return;
2696 
2697 		p->total_numa_faults = 0;
2698 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2699 	}
2700 
2701 	/*
2702 	 * First accesses are treated as private, otherwise consider accesses
2703 	 * to be private if the accessing pid has not changed
2704 	 */
2705 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2706 		priv = 1;
2707 	} else {
2708 		priv = cpupid_match_pid(p, last_cpupid);
2709 		if (!priv && !(flags & TNF_NO_GROUP))
2710 			task_numa_group(p, last_cpupid, flags, &priv);
2711 	}
2712 
2713 	/*
2714 	 * If a workload spans multiple NUMA nodes, a shared fault that
2715 	 * occurs wholly within the set of nodes that the workload is
2716 	 * actively using should be counted as local. This allows the
2717 	 * scan rate to slow down when a workload has settled down.
2718 	 */
2719 	ng = deref_curr_numa_group(p);
2720 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2721 				numa_is_active_node(cpu_node, ng) &&
2722 				numa_is_active_node(mem_node, ng))
2723 		local = 1;
2724 
2725 	/*
2726 	 * Retry to migrate task to preferred node periodically, in case it
2727 	 * previously failed, or the scheduler moved us.
2728 	 */
2729 	if (time_after(jiffies, p->numa_migrate_retry)) {
2730 		task_numa_placement(p);
2731 		numa_migrate_preferred(p);
2732 	}
2733 
2734 	if (migrated)
2735 		p->numa_pages_migrated += pages;
2736 	if (flags & TNF_MIGRATE_FAIL)
2737 		p->numa_faults_locality[2] += pages;
2738 
2739 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2740 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2741 	p->numa_faults_locality[local] += pages;
2742 }
2743 
2744 static void reset_ptenuma_scan(struct task_struct *p)
2745 {
2746 	/*
2747 	 * We only did a read acquisition of the mmap sem, so
2748 	 * p->mm->numa_scan_seq is written to without exclusive access
2749 	 * and the update is not guaranteed to be atomic. That's not
2750 	 * much of an issue though, since this is just used for
2751 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2752 	 * expensive, to avoid any form of compiler optimizations:
2753 	 */
2754 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2755 	p->mm->numa_scan_offset = 0;
2756 }
2757 
2758 /*
2759  * The expensive part of numa migration is done from task_work context.
2760  * Triggered from task_tick_numa().
2761  */
2762 static void task_numa_work(struct callback_head *work)
2763 {
2764 	unsigned long migrate, next_scan, now = jiffies;
2765 	struct task_struct *p = current;
2766 	struct mm_struct *mm = p->mm;
2767 	u64 runtime = p->se.sum_exec_runtime;
2768 	struct vm_area_struct *vma;
2769 	unsigned long start, end;
2770 	unsigned long nr_pte_updates = 0;
2771 	long pages, virtpages;
2772 
2773 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2774 
2775 	work->next = work;
2776 	/*
2777 	 * Who cares about NUMA placement when they're dying.
2778 	 *
2779 	 * NOTE: make sure not to dereference p->mm before this check,
2780 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2781 	 * without p->mm even though we still had it when we enqueued this
2782 	 * work.
2783 	 */
2784 	if (p->flags & PF_EXITING)
2785 		return;
2786 
2787 	if (!mm->numa_next_scan) {
2788 		mm->numa_next_scan = now +
2789 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2790 	}
2791 
2792 	/*
2793 	 * Enforce maximal scan/migration frequency..
2794 	 */
2795 	migrate = mm->numa_next_scan;
2796 	if (time_before(now, migrate))
2797 		return;
2798 
2799 	if (p->numa_scan_period == 0) {
2800 		p->numa_scan_period_max = task_scan_max(p);
2801 		p->numa_scan_period = task_scan_start(p);
2802 	}
2803 
2804 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2805 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2806 		return;
2807 
2808 	/*
2809 	 * Delay this task enough that another task of this mm will likely win
2810 	 * the next time around.
2811 	 */
2812 	p->node_stamp += 2 * TICK_NSEC;
2813 
2814 	start = mm->numa_scan_offset;
2815 	pages = sysctl_numa_balancing_scan_size;
2816 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2817 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2818 	if (!pages)
2819 		return;
2820 
2821 
2822 	if (!mmap_read_trylock(mm))
2823 		return;
2824 	vma = find_vma(mm, start);
2825 	if (!vma) {
2826 		reset_ptenuma_scan(p);
2827 		start = 0;
2828 		vma = mm->mmap;
2829 	}
2830 	for (; vma; vma = vma->vm_next) {
2831 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2832 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2833 			continue;
2834 		}
2835 
2836 		/*
2837 		 * Shared library pages mapped by multiple processes are not
2838 		 * migrated as it is expected they are cache replicated. Avoid
2839 		 * hinting faults in read-only file-backed mappings or the vdso
2840 		 * as migrating the pages will be of marginal benefit.
2841 		 */
2842 		if (!vma->vm_mm ||
2843 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2844 			continue;
2845 
2846 		/*
2847 		 * Skip inaccessible VMAs to avoid any confusion between
2848 		 * PROT_NONE and NUMA hinting ptes
2849 		 */
2850 		if (!vma_is_accessible(vma))
2851 			continue;
2852 
2853 		do {
2854 			start = max(start, vma->vm_start);
2855 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2856 			end = min(end, vma->vm_end);
2857 			nr_pte_updates = change_prot_numa(vma, start, end);
2858 
2859 			/*
2860 			 * Try to scan sysctl_numa_balancing_size worth of
2861 			 * hpages that have at least one present PTE that
2862 			 * is not already pte-numa. If the VMA contains
2863 			 * areas that are unused or already full of prot_numa
2864 			 * PTEs, scan up to virtpages, to skip through those
2865 			 * areas faster.
2866 			 */
2867 			if (nr_pte_updates)
2868 				pages -= (end - start) >> PAGE_SHIFT;
2869 			virtpages -= (end - start) >> PAGE_SHIFT;
2870 
2871 			start = end;
2872 			if (pages <= 0 || virtpages <= 0)
2873 				goto out;
2874 
2875 			cond_resched();
2876 		} while (end != vma->vm_end);
2877 	}
2878 
2879 out:
2880 	/*
2881 	 * It is possible to reach the end of the VMA list but the last few
2882 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2883 	 * would find the !migratable VMA on the next scan but not reset the
2884 	 * scanner to the start so check it now.
2885 	 */
2886 	if (vma)
2887 		mm->numa_scan_offset = start;
2888 	else
2889 		reset_ptenuma_scan(p);
2890 	mmap_read_unlock(mm);
2891 
2892 	/*
2893 	 * Make sure tasks use at least 32x as much time to run other code
2894 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2895 	 * Usually update_task_scan_period slows down scanning enough; on an
2896 	 * overloaded system we need to limit overhead on a per task basis.
2897 	 */
2898 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2899 		u64 diff = p->se.sum_exec_runtime - runtime;
2900 		p->node_stamp += 32 * diff;
2901 	}
2902 }
2903 
2904 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2905 {
2906 	int mm_users = 0;
2907 	struct mm_struct *mm = p->mm;
2908 
2909 	if (mm) {
2910 		mm_users = atomic_read(&mm->mm_users);
2911 		if (mm_users == 1) {
2912 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2913 			mm->numa_scan_seq = 0;
2914 		}
2915 	}
2916 	p->node_stamp			= 0;
2917 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2918 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2919 	p->numa_migrate_retry		= 0;
2920 	/* Protect against double add, see task_tick_numa and task_numa_work */
2921 	p->numa_work.next		= &p->numa_work;
2922 	p->numa_faults			= NULL;
2923 	p->numa_pages_migrated		= 0;
2924 	p->total_numa_faults		= 0;
2925 	RCU_INIT_POINTER(p->numa_group, NULL);
2926 	p->last_task_numa_placement	= 0;
2927 	p->last_sum_exec_runtime	= 0;
2928 
2929 	init_task_work(&p->numa_work, task_numa_work);
2930 
2931 	/* New address space, reset the preferred nid */
2932 	if (!(clone_flags & CLONE_VM)) {
2933 		p->numa_preferred_nid = NUMA_NO_NODE;
2934 		return;
2935 	}
2936 
2937 	/*
2938 	 * New thread, keep existing numa_preferred_nid which should be copied
2939 	 * already by arch_dup_task_struct but stagger when scans start.
2940 	 */
2941 	if (mm) {
2942 		unsigned int delay;
2943 
2944 		delay = min_t(unsigned int, task_scan_max(current),
2945 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2946 		delay += 2 * TICK_NSEC;
2947 		p->node_stamp = delay;
2948 	}
2949 }
2950 
2951 /*
2952  * Drive the periodic memory faults..
2953  */
2954 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2955 {
2956 	struct callback_head *work = &curr->numa_work;
2957 	u64 period, now;
2958 
2959 	/*
2960 	 * We don't care about NUMA placement if we don't have memory.
2961 	 */
2962 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2963 		return;
2964 
2965 	/*
2966 	 * Using runtime rather than walltime has the dual advantage that
2967 	 * we (mostly) drive the selection from busy threads and that the
2968 	 * task needs to have done some actual work before we bother with
2969 	 * NUMA placement.
2970 	 */
2971 	now = curr->se.sum_exec_runtime;
2972 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2973 
2974 	if (now > curr->node_stamp + period) {
2975 		if (!curr->node_stamp)
2976 			curr->numa_scan_period = task_scan_start(curr);
2977 		curr->node_stamp += period;
2978 
2979 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2980 			task_work_add(curr, work, TWA_RESUME);
2981 	}
2982 }
2983 
2984 static void update_scan_period(struct task_struct *p, int new_cpu)
2985 {
2986 	int src_nid = cpu_to_node(task_cpu(p));
2987 	int dst_nid = cpu_to_node(new_cpu);
2988 
2989 	if (!static_branch_likely(&sched_numa_balancing))
2990 		return;
2991 
2992 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2993 		return;
2994 
2995 	if (src_nid == dst_nid)
2996 		return;
2997 
2998 	/*
2999 	 * Allow resets if faults have been trapped before one scan
3000 	 * has completed. This is most likely due to a new task that
3001 	 * is pulled cross-node due to wakeups or load balancing.
3002 	 */
3003 	if (p->numa_scan_seq) {
3004 		/*
3005 		 * Avoid scan adjustments if moving to the preferred
3006 		 * node or if the task was not previously running on
3007 		 * the preferred node.
3008 		 */
3009 		if (dst_nid == p->numa_preferred_nid ||
3010 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3011 			src_nid != p->numa_preferred_nid))
3012 			return;
3013 	}
3014 
3015 	p->numa_scan_period = task_scan_start(p);
3016 }
3017 
3018 #else
3019 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3020 {
3021 }
3022 
3023 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3024 {
3025 }
3026 
3027 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3028 {
3029 }
3030 
3031 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3032 {
3033 }
3034 
3035 #endif /* CONFIG_NUMA_BALANCING */
3036 
3037 static void
3038 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3039 {
3040 	update_load_add(&cfs_rq->load, se->load.weight);
3041 #ifdef CONFIG_SMP
3042 	if (entity_is_task(se)) {
3043 		struct rq *rq = rq_of(cfs_rq);
3044 
3045 		account_numa_enqueue(rq, task_of(se));
3046 		list_add(&se->group_node, &rq->cfs_tasks);
3047 	}
3048 #endif
3049 	cfs_rq->nr_running++;
3050 	if (se_is_idle(se))
3051 		cfs_rq->idle_nr_running++;
3052 }
3053 
3054 static void
3055 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3056 {
3057 	update_load_sub(&cfs_rq->load, se->load.weight);
3058 #ifdef CONFIG_SMP
3059 	if (entity_is_task(se)) {
3060 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3061 		list_del_init(&se->group_node);
3062 	}
3063 #endif
3064 	cfs_rq->nr_running--;
3065 	if (se_is_idle(se))
3066 		cfs_rq->idle_nr_running--;
3067 }
3068 
3069 /*
3070  * Signed add and clamp on underflow.
3071  *
3072  * Explicitly do a load-store to ensure the intermediate value never hits
3073  * memory. This allows lockless observations without ever seeing the negative
3074  * values.
3075  */
3076 #define add_positive(_ptr, _val) do {                           \
3077 	typeof(_ptr) ptr = (_ptr);                              \
3078 	typeof(_val) val = (_val);                              \
3079 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3080 								\
3081 	res = var + val;                                        \
3082 								\
3083 	if (val < 0 && res > var)                               \
3084 		res = 0;                                        \
3085 								\
3086 	WRITE_ONCE(*ptr, res);                                  \
3087 } while (0)
3088 
3089 /*
3090  * Unsigned subtract and clamp on underflow.
3091  *
3092  * Explicitly do a load-store to ensure the intermediate value never hits
3093  * memory. This allows lockless observations without ever seeing the negative
3094  * values.
3095  */
3096 #define sub_positive(_ptr, _val) do {				\
3097 	typeof(_ptr) ptr = (_ptr);				\
3098 	typeof(*ptr) val = (_val);				\
3099 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3100 	res = var - val;					\
3101 	if (res > var)						\
3102 		res = 0;					\
3103 	WRITE_ONCE(*ptr, res);					\
3104 } while (0)
3105 
3106 /*
3107  * Remove and clamp on negative, from a local variable.
3108  *
3109  * A variant of sub_positive(), which does not use explicit load-store
3110  * and is thus optimized for local variable updates.
3111  */
3112 #define lsub_positive(_ptr, _val) do {				\
3113 	typeof(_ptr) ptr = (_ptr);				\
3114 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3115 } while (0)
3116 
3117 #ifdef CONFIG_SMP
3118 static inline void
3119 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3120 {
3121 	cfs_rq->avg.load_avg += se->avg.load_avg;
3122 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3123 }
3124 
3125 static inline void
3126 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3127 {
3128 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3129 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3130 	/* See update_cfs_rq_load_avg() */
3131 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3132 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3133 }
3134 #else
3135 static inline void
3136 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3137 static inline void
3138 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3139 #endif
3140 
3141 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3142 			    unsigned long weight)
3143 {
3144 	if (se->on_rq) {
3145 		/* commit outstanding execution time */
3146 		if (cfs_rq->curr == se)
3147 			update_curr(cfs_rq);
3148 		update_load_sub(&cfs_rq->load, se->load.weight);
3149 	}
3150 	dequeue_load_avg(cfs_rq, se);
3151 
3152 	update_load_set(&se->load, weight);
3153 
3154 #ifdef CONFIG_SMP
3155 	do {
3156 		u32 divider = get_pelt_divider(&se->avg);
3157 
3158 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3159 	} while (0);
3160 #endif
3161 
3162 	enqueue_load_avg(cfs_rq, se);
3163 	if (se->on_rq)
3164 		update_load_add(&cfs_rq->load, se->load.weight);
3165 
3166 }
3167 
3168 void reweight_task(struct task_struct *p, int prio)
3169 {
3170 	struct sched_entity *se = &p->se;
3171 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3172 	struct load_weight *load = &se->load;
3173 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3174 
3175 	reweight_entity(cfs_rq, se, weight);
3176 	load->inv_weight = sched_prio_to_wmult[prio];
3177 }
3178 
3179 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3180 
3181 #ifdef CONFIG_FAIR_GROUP_SCHED
3182 #ifdef CONFIG_SMP
3183 /*
3184  * All this does is approximate the hierarchical proportion which includes that
3185  * global sum we all love to hate.
3186  *
3187  * That is, the weight of a group entity, is the proportional share of the
3188  * group weight based on the group runqueue weights. That is:
3189  *
3190  *                     tg->weight * grq->load.weight
3191  *   ge->load.weight = -----------------------------               (1)
3192  *                       \Sum grq->load.weight
3193  *
3194  * Now, because computing that sum is prohibitively expensive to compute (been
3195  * there, done that) we approximate it with this average stuff. The average
3196  * moves slower and therefore the approximation is cheaper and more stable.
3197  *
3198  * So instead of the above, we substitute:
3199  *
3200  *   grq->load.weight -> grq->avg.load_avg                         (2)
3201  *
3202  * which yields the following:
3203  *
3204  *                     tg->weight * grq->avg.load_avg
3205  *   ge->load.weight = ------------------------------              (3)
3206  *                             tg->load_avg
3207  *
3208  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3209  *
3210  * That is shares_avg, and it is right (given the approximation (2)).
3211  *
3212  * The problem with it is that because the average is slow -- it was designed
3213  * to be exactly that of course -- this leads to transients in boundary
3214  * conditions. In specific, the case where the group was idle and we start the
3215  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3216  * yielding bad latency etc..
3217  *
3218  * Now, in that special case (1) reduces to:
3219  *
3220  *                     tg->weight * grq->load.weight
3221  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3222  *                         grp->load.weight
3223  *
3224  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3225  *
3226  * So what we do is modify our approximation (3) to approach (4) in the (near)
3227  * UP case, like:
3228  *
3229  *   ge->load.weight =
3230  *
3231  *              tg->weight * grq->load.weight
3232  *     ---------------------------------------------------         (5)
3233  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3234  *
3235  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3236  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3237  *
3238  *
3239  *                     tg->weight * grq->load.weight
3240  *   ge->load.weight = -----------------------------		   (6)
3241  *                             tg_load_avg'
3242  *
3243  * Where:
3244  *
3245  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3246  *                  max(grq->load.weight, grq->avg.load_avg)
3247  *
3248  * And that is shares_weight and is icky. In the (near) UP case it approaches
3249  * (4) while in the normal case it approaches (3). It consistently
3250  * overestimates the ge->load.weight and therefore:
3251  *
3252  *   \Sum ge->load.weight >= tg->weight
3253  *
3254  * hence icky!
3255  */
3256 static long calc_group_shares(struct cfs_rq *cfs_rq)
3257 {
3258 	long tg_weight, tg_shares, load, shares;
3259 	struct task_group *tg = cfs_rq->tg;
3260 
3261 	tg_shares = READ_ONCE(tg->shares);
3262 
3263 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3264 
3265 	tg_weight = atomic_long_read(&tg->load_avg);
3266 
3267 	/* Ensure tg_weight >= load */
3268 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3269 	tg_weight += load;
3270 
3271 	shares = (tg_shares * load);
3272 	if (tg_weight)
3273 		shares /= tg_weight;
3274 
3275 	/*
3276 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3277 	 * of a group with small tg->shares value. It is a floor value which is
3278 	 * assigned as a minimum load.weight to the sched_entity representing
3279 	 * the group on a CPU.
3280 	 *
3281 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3282 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3283 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3284 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3285 	 * instead of 0.
3286 	 */
3287 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3288 }
3289 #endif /* CONFIG_SMP */
3290 
3291 /*
3292  * Recomputes the group entity based on the current state of its group
3293  * runqueue.
3294  */
3295 static void update_cfs_group(struct sched_entity *se)
3296 {
3297 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3298 	long shares;
3299 
3300 	if (!gcfs_rq)
3301 		return;
3302 
3303 	if (throttled_hierarchy(gcfs_rq))
3304 		return;
3305 
3306 #ifndef CONFIG_SMP
3307 	shares = READ_ONCE(gcfs_rq->tg->shares);
3308 
3309 	if (likely(se->load.weight == shares))
3310 		return;
3311 #else
3312 	shares   = calc_group_shares(gcfs_rq);
3313 #endif
3314 
3315 	reweight_entity(cfs_rq_of(se), se, shares);
3316 }
3317 
3318 #else /* CONFIG_FAIR_GROUP_SCHED */
3319 static inline void update_cfs_group(struct sched_entity *se)
3320 {
3321 }
3322 #endif /* CONFIG_FAIR_GROUP_SCHED */
3323 
3324 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3325 {
3326 	struct rq *rq = rq_of(cfs_rq);
3327 
3328 	if (&rq->cfs == cfs_rq) {
3329 		/*
3330 		 * There are a few boundary cases this might miss but it should
3331 		 * get called often enough that that should (hopefully) not be
3332 		 * a real problem.
3333 		 *
3334 		 * It will not get called when we go idle, because the idle
3335 		 * thread is a different class (!fair), nor will the utilization
3336 		 * number include things like RT tasks.
3337 		 *
3338 		 * As is, the util number is not freq-invariant (we'd have to
3339 		 * implement arch_scale_freq_capacity() for that).
3340 		 *
3341 		 * See cpu_util_cfs().
3342 		 */
3343 		cpufreq_update_util(rq, flags);
3344 	}
3345 }
3346 
3347 #ifdef CONFIG_SMP
3348 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3349 {
3350 	if (sa->load_sum)
3351 		return false;
3352 
3353 	if (sa->util_sum)
3354 		return false;
3355 
3356 	if (sa->runnable_sum)
3357 		return false;
3358 
3359 	/*
3360 	 * _avg must be null when _sum are null because _avg = _sum / divider
3361 	 * Make sure that rounding and/or propagation of PELT values never
3362 	 * break this.
3363 	 */
3364 	SCHED_WARN_ON(sa->load_avg ||
3365 		      sa->util_avg ||
3366 		      sa->runnable_avg);
3367 
3368 	return true;
3369 }
3370 
3371 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3372 {
3373 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3374 				 cfs_rq->last_update_time_copy);
3375 }
3376 #ifdef CONFIG_FAIR_GROUP_SCHED
3377 /*
3378  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3379  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3380  * bottom-up, we only have to test whether the cfs_rq before us on the list
3381  * is our child.
3382  * If cfs_rq is not on the list, test whether a child needs its to be added to
3383  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3384  */
3385 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3386 {
3387 	struct cfs_rq *prev_cfs_rq;
3388 	struct list_head *prev;
3389 
3390 	if (cfs_rq->on_list) {
3391 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3392 	} else {
3393 		struct rq *rq = rq_of(cfs_rq);
3394 
3395 		prev = rq->tmp_alone_branch;
3396 	}
3397 
3398 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3399 
3400 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3401 }
3402 
3403 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3404 {
3405 	if (cfs_rq->load.weight)
3406 		return false;
3407 
3408 	if (!load_avg_is_decayed(&cfs_rq->avg))
3409 		return false;
3410 
3411 	if (child_cfs_rq_on_list(cfs_rq))
3412 		return false;
3413 
3414 	return true;
3415 }
3416 
3417 /**
3418  * update_tg_load_avg - update the tg's load avg
3419  * @cfs_rq: the cfs_rq whose avg changed
3420  *
3421  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3422  * However, because tg->load_avg is a global value there are performance
3423  * considerations.
3424  *
3425  * In order to avoid having to look at the other cfs_rq's, we use a
3426  * differential update where we store the last value we propagated. This in
3427  * turn allows skipping updates if the differential is 'small'.
3428  *
3429  * Updating tg's load_avg is necessary before update_cfs_share().
3430  */
3431 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3432 {
3433 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3434 
3435 	/*
3436 	 * No need to update load_avg for root_task_group as it is not used.
3437 	 */
3438 	if (cfs_rq->tg == &root_task_group)
3439 		return;
3440 
3441 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3442 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3443 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3444 	}
3445 }
3446 
3447 /*
3448  * Called within set_task_rq() right before setting a task's CPU. The
3449  * caller only guarantees p->pi_lock is held; no other assumptions,
3450  * including the state of rq->lock, should be made.
3451  */
3452 void set_task_rq_fair(struct sched_entity *se,
3453 		      struct cfs_rq *prev, struct cfs_rq *next)
3454 {
3455 	u64 p_last_update_time;
3456 	u64 n_last_update_time;
3457 
3458 	if (!sched_feat(ATTACH_AGE_LOAD))
3459 		return;
3460 
3461 	/*
3462 	 * We are supposed to update the task to "current" time, then its up to
3463 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3464 	 * getting what current time is, so simply throw away the out-of-date
3465 	 * time. This will result in the wakee task is less decayed, but giving
3466 	 * the wakee more load sounds not bad.
3467 	 */
3468 	if (!(se->avg.last_update_time && prev))
3469 		return;
3470 
3471 	p_last_update_time = cfs_rq_last_update_time(prev);
3472 	n_last_update_time = cfs_rq_last_update_time(next);
3473 
3474 	__update_load_avg_blocked_se(p_last_update_time, se);
3475 	se->avg.last_update_time = n_last_update_time;
3476 }
3477 
3478 /*
3479  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3480  * propagate its contribution. The key to this propagation is the invariant
3481  * that for each group:
3482  *
3483  *   ge->avg == grq->avg						(1)
3484  *
3485  * _IFF_ we look at the pure running and runnable sums. Because they
3486  * represent the very same entity, just at different points in the hierarchy.
3487  *
3488  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3489  * and simply copies the running/runnable sum over (but still wrong, because
3490  * the group entity and group rq do not have their PELT windows aligned).
3491  *
3492  * However, update_tg_cfs_load() is more complex. So we have:
3493  *
3494  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3495  *
3496  * And since, like util, the runnable part should be directly transferable,
3497  * the following would _appear_ to be the straight forward approach:
3498  *
3499  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3500  *
3501  * And per (1) we have:
3502  *
3503  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3504  *
3505  * Which gives:
3506  *
3507  *                      ge->load.weight * grq->avg.load_avg
3508  *   ge->avg.load_avg = -----------------------------------		(4)
3509  *                               grq->load.weight
3510  *
3511  * Except that is wrong!
3512  *
3513  * Because while for entities historical weight is not important and we
3514  * really only care about our future and therefore can consider a pure
3515  * runnable sum, runqueues can NOT do this.
3516  *
3517  * We specifically want runqueues to have a load_avg that includes
3518  * historical weights. Those represent the blocked load, the load we expect
3519  * to (shortly) return to us. This only works by keeping the weights as
3520  * integral part of the sum. We therefore cannot decompose as per (3).
3521  *
3522  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3523  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3524  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3525  * runnable section of these tasks overlap (or not). If they were to perfectly
3526  * align the rq as a whole would be runnable 2/3 of the time. If however we
3527  * always have at least 1 runnable task, the rq as a whole is always runnable.
3528  *
3529  * So we'll have to approximate.. :/
3530  *
3531  * Given the constraint:
3532  *
3533  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3534  *
3535  * We can construct a rule that adds runnable to a rq by assuming minimal
3536  * overlap.
3537  *
3538  * On removal, we'll assume each task is equally runnable; which yields:
3539  *
3540  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3541  *
3542  * XXX: only do this for the part of runnable > running ?
3543  *
3544  */
3545 static inline void
3546 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3547 {
3548 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
3549 	u32 new_sum, divider;
3550 
3551 	/* Nothing to update */
3552 	if (!delta_avg)
3553 		return;
3554 
3555 	/*
3556 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3557 	 * See ___update_load_avg() for details.
3558 	 */
3559 	divider = get_pelt_divider(&cfs_rq->avg);
3560 
3561 
3562 	/* Set new sched_entity's utilization */
3563 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3564 	new_sum = se->avg.util_avg * divider;
3565 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
3566 	se->avg.util_sum = new_sum;
3567 
3568 	/* Update parent cfs_rq utilization */
3569 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
3570 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
3571 
3572 	/* See update_cfs_rq_load_avg() */
3573 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3574 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3575 }
3576 
3577 static inline void
3578 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3579 {
3580 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3581 	u32 new_sum, divider;
3582 
3583 	/* Nothing to update */
3584 	if (!delta_avg)
3585 		return;
3586 
3587 	/*
3588 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3589 	 * See ___update_load_avg() for details.
3590 	 */
3591 	divider = get_pelt_divider(&cfs_rq->avg);
3592 
3593 	/* Set new sched_entity's runnable */
3594 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3595 	new_sum = se->avg.runnable_avg * divider;
3596 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
3597 	se->avg.runnable_sum = new_sum;
3598 
3599 	/* Update parent cfs_rq runnable */
3600 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
3601 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
3602 	/* See update_cfs_rq_load_avg() */
3603 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3604 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3605 }
3606 
3607 static inline void
3608 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3609 {
3610 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3611 	unsigned long load_avg;
3612 	u64 load_sum = 0;
3613 	s64 delta_sum;
3614 	u32 divider;
3615 
3616 	if (!runnable_sum)
3617 		return;
3618 
3619 	gcfs_rq->prop_runnable_sum = 0;
3620 
3621 	/*
3622 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3623 	 * See ___update_load_avg() for details.
3624 	 */
3625 	divider = get_pelt_divider(&cfs_rq->avg);
3626 
3627 	if (runnable_sum >= 0) {
3628 		/*
3629 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3630 		 * the CPU is saturated running == runnable.
3631 		 */
3632 		runnable_sum += se->avg.load_sum;
3633 		runnable_sum = min_t(long, runnable_sum, divider);
3634 	} else {
3635 		/*
3636 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3637 		 * assuming all tasks are equally runnable.
3638 		 */
3639 		if (scale_load_down(gcfs_rq->load.weight)) {
3640 			load_sum = div_u64(gcfs_rq->avg.load_sum,
3641 				scale_load_down(gcfs_rq->load.weight));
3642 		}
3643 
3644 		/* But make sure to not inflate se's runnable */
3645 		runnable_sum = min(se->avg.load_sum, load_sum);
3646 	}
3647 
3648 	/*
3649 	 * runnable_sum can't be lower than running_sum
3650 	 * Rescale running sum to be in the same range as runnable sum
3651 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3652 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3653 	 */
3654 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3655 	runnable_sum = max(runnable_sum, running_sum);
3656 
3657 	load_sum = se_weight(se) * runnable_sum;
3658 	load_avg = div_u64(load_sum, divider);
3659 
3660 	delta_avg = load_avg - se->avg.load_avg;
3661 	if (!delta_avg)
3662 		return;
3663 
3664 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3665 
3666 	se->avg.load_sum = runnable_sum;
3667 	se->avg.load_avg = load_avg;
3668 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3669 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3670 	/* See update_cfs_rq_load_avg() */
3671 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3672 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3673 }
3674 
3675 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3676 {
3677 	cfs_rq->propagate = 1;
3678 	cfs_rq->prop_runnable_sum += runnable_sum;
3679 }
3680 
3681 /* Update task and its cfs_rq load average */
3682 static inline int propagate_entity_load_avg(struct sched_entity *se)
3683 {
3684 	struct cfs_rq *cfs_rq, *gcfs_rq;
3685 
3686 	if (entity_is_task(se))
3687 		return 0;
3688 
3689 	gcfs_rq = group_cfs_rq(se);
3690 	if (!gcfs_rq->propagate)
3691 		return 0;
3692 
3693 	gcfs_rq->propagate = 0;
3694 
3695 	cfs_rq = cfs_rq_of(se);
3696 
3697 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3698 
3699 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3700 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3701 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3702 
3703 	trace_pelt_cfs_tp(cfs_rq);
3704 	trace_pelt_se_tp(se);
3705 
3706 	return 1;
3707 }
3708 
3709 /*
3710  * Check if we need to update the load and the utilization of a blocked
3711  * group_entity:
3712  */
3713 static inline bool skip_blocked_update(struct sched_entity *se)
3714 {
3715 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3716 
3717 	/*
3718 	 * If sched_entity still have not zero load or utilization, we have to
3719 	 * decay it:
3720 	 */
3721 	if (se->avg.load_avg || se->avg.util_avg)
3722 		return false;
3723 
3724 	/*
3725 	 * If there is a pending propagation, we have to update the load and
3726 	 * the utilization of the sched_entity:
3727 	 */
3728 	if (gcfs_rq->propagate)
3729 		return false;
3730 
3731 	/*
3732 	 * Otherwise, the load and the utilization of the sched_entity is
3733 	 * already zero and there is no pending propagation, so it will be a
3734 	 * waste of time to try to decay it:
3735 	 */
3736 	return true;
3737 }
3738 
3739 #else /* CONFIG_FAIR_GROUP_SCHED */
3740 
3741 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3742 
3743 static inline int propagate_entity_load_avg(struct sched_entity *se)
3744 {
3745 	return 0;
3746 }
3747 
3748 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3749 
3750 #endif /* CONFIG_FAIR_GROUP_SCHED */
3751 
3752 #ifdef CONFIG_NO_HZ_COMMON
3753 static inline void migrate_se_pelt_lag(struct sched_entity *se)
3754 {
3755 	u64 throttled = 0, now, lut;
3756 	struct cfs_rq *cfs_rq;
3757 	struct rq *rq;
3758 	bool is_idle;
3759 
3760 	if (load_avg_is_decayed(&se->avg))
3761 		return;
3762 
3763 	cfs_rq = cfs_rq_of(se);
3764 	rq = rq_of(cfs_rq);
3765 
3766 	rcu_read_lock();
3767 	is_idle = is_idle_task(rcu_dereference(rq->curr));
3768 	rcu_read_unlock();
3769 
3770 	/*
3771 	 * The lag estimation comes with a cost we don't want to pay all the
3772 	 * time. Hence, limiting to the case where the source CPU is idle and
3773 	 * we know we are at the greatest risk to have an outdated clock.
3774 	 */
3775 	if (!is_idle)
3776 		return;
3777 
3778 	/*
3779 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
3780 	 *
3781 	 *   last_update_time (the cfs_rq's last_update_time)
3782 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
3783 	 *      = rq_clock_pelt()@cfs_rq_idle
3784 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
3785 	 *
3786 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
3787 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
3788 	 *
3789 	 *   rq_idle_lag (delta between now and rq's update)
3790 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
3791 	 *
3792 	 * We can then write:
3793 	 *
3794 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
3795 	 *          sched_clock_cpu() - rq_clock()@rq_idle
3796 	 * Where:
3797 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
3798 	 *      rq_clock()@rq_idle      is rq->clock_idle
3799 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
3800 	 *                              is cfs_rq->throttled_pelt_idle
3801 	 */
3802 
3803 #ifdef CONFIG_CFS_BANDWIDTH
3804 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
3805 	/* The clock has been stopped for throttling */
3806 	if (throttled == U64_MAX)
3807 		return;
3808 #endif
3809 	now = u64_u32_load(rq->clock_pelt_idle);
3810 	/*
3811 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
3812 	 * is observed the old clock_pelt_idle value and the new clock_idle,
3813 	 * which lead to an underestimation. The opposite would lead to an
3814 	 * overestimation.
3815 	 */
3816 	smp_rmb();
3817 	lut = cfs_rq_last_update_time(cfs_rq);
3818 
3819 	now -= throttled;
3820 	if (now < lut)
3821 		/*
3822 		 * cfs_rq->avg.last_update_time is more recent than our
3823 		 * estimation, let's use it.
3824 		 */
3825 		now = lut;
3826 	else
3827 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
3828 
3829 	__update_load_avg_blocked_se(now, se);
3830 }
3831 #else
3832 static void migrate_se_pelt_lag(struct sched_entity *se) {}
3833 #endif
3834 
3835 /**
3836  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3837  * @now: current time, as per cfs_rq_clock_pelt()
3838  * @cfs_rq: cfs_rq to update
3839  *
3840  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3841  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3842  * post_init_entity_util_avg().
3843  *
3844  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3845  *
3846  * Return: true if the load decayed or we removed load.
3847  *
3848  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3849  * call update_tg_load_avg() when this function returns true.
3850  */
3851 static inline int
3852 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3853 {
3854 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3855 	struct sched_avg *sa = &cfs_rq->avg;
3856 	int decayed = 0;
3857 
3858 	if (cfs_rq->removed.nr) {
3859 		unsigned long r;
3860 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3861 
3862 		raw_spin_lock(&cfs_rq->removed.lock);
3863 		swap(cfs_rq->removed.util_avg, removed_util);
3864 		swap(cfs_rq->removed.load_avg, removed_load);
3865 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3866 		cfs_rq->removed.nr = 0;
3867 		raw_spin_unlock(&cfs_rq->removed.lock);
3868 
3869 		r = removed_load;
3870 		sub_positive(&sa->load_avg, r);
3871 		sub_positive(&sa->load_sum, r * divider);
3872 		/* See sa->util_sum below */
3873 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
3874 
3875 		r = removed_util;
3876 		sub_positive(&sa->util_avg, r);
3877 		sub_positive(&sa->util_sum, r * divider);
3878 		/*
3879 		 * Because of rounding, se->util_sum might ends up being +1 more than
3880 		 * cfs->util_sum. Although this is not a problem by itself, detaching
3881 		 * a lot of tasks with the rounding problem between 2 updates of
3882 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
3883 		 * cfs_util_avg is not.
3884 		 * Check that util_sum is still above its lower bound for the new
3885 		 * util_avg. Given that period_contrib might have moved since the last
3886 		 * sync, we are only sure that util_sum must be above or equal to
3887 		 *    util_avg * minimum possible divider
3888 		 */
3889 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
3890 
3891 		r = removed_runnable;
3892 		sub_positive(&sa->runnable_avg, r);
3893 		sub_positive(&sa->runnable_sum, r * divider);
3894 		/* See sa->util_sum above */
3895 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
3896 					      sa->runnable_avg * PELT_MIN_DIVIDER);
3897 
3898 		/*
3899 		 * removed_runnable is the unweighted version of removed_load so we
3900 		 * can use it to estimate removed_load_sum.
3901 		 */
3902 		add_tg_cfs_propagate(cfs_rq,
3903 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3904 
3905 		decayed = 1;
3906 	}
3907 
3908 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3909 	u64_u32_store_copy(sa->last_update_time,
3910 			   cfs_rq->last_update_time_copy,
3911 			   sa->last_update_time);
3912 	return decayed;
3913 }
3914 
3915 /**
3916  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3917  * @cfs_rq: cfs_rq to attach to
3918  * @se: sched_entity to attach
3919  *
3920  * Must call update_cfs_rq_load_avg() before this, since we rely on
3921  * cfs_rq->avg.last_update_time being current.
3922  */
3923 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3924 {
3925 	/*
3926 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3927 	 * See ___update_load_avg() for details.
3928 	 */
3929 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3930 
3931 	/*
3932 	 * When we attach the @se to the @cfs_rq, we must align the decay
3933 	 * window because without that, really weird and wonderful things can
3934 	 * happen.
3935 	 *
3936 	 * XXX illustrate
3937 	 */
3938 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3939 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3940 
3941 	/*
3942 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3943 	 * period_contrib. This isn't strictly correct, but since we're
3944 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3945 	 * _sum a little.
3946 	 */
3947 	se->avg.util_sum = se->avg.util_avg * divider;
3948 
3949 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3950 
3951 	se->avg.load_sum = se->avg.load_avg * divider;
3952 	if (se_weight(se) < se->avg.load_sum)
3953 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
3954 	else
3955 		se->avg.load_sum = 1;
3956 
3957 	enqueue_load_avg(cfs_rq, se);
3958 	cfs_rq->avg.util_avg += se->avg.util_avg;
3959 	cfs_rq->avg.util_sum += se->avg.util_sum;
3960 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3961 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3962 
3963 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3964 
3965 	cfs_rq_util_change(cfs_rq, 0);
3966 
3967 	trace_pelt_cfs_tp(cfs_rq);
3968 }
3969 
3970 /**
3971  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3972  * @cfs_rq: cfs_rq to detach from
3973  * @se: sched_entity to detach
3974  *
3975  * Must call update_cfs_rq_load_avg() before this, since we rely on
3976  * cfs_rq->avg.last_update_time being current.
3977  */
3978 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3979 {
3980 	dequeue_load_avg(cfs_rq, se);
3981 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3982 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3983 	/* See update_cfs_rq_load_avg() */
3984 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3985 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3986 
3987 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3988 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3989 	/* See update_cfs_rq_load_avg() */
3990 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3991 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3992 
3993 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3994 
3995 	cfs_rq_util_change(cfs_rq, 0);
3996 
3997 	trace_pelt_cfs_tp(cfs_rq);
3998 }
3999 
4000 /*
4001  * Optional action to be done while updating the load average
4002  */
4003 #define UPDATE_TG	0x1
4004 #define SKIP_AGE_LOAD	0x2
4005 #define DO_ATTACH	0x4
4006 
4007 /* Update task and its cfs_rq load average */
4008 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4009 {
4010 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4011 	int decayed;
4012 
4013 	/*
4014 	 * Track task load average for carrying it to new CPU after migrated, and
4015 	 * track group sched_entity load average for task_h_load calc in migration
4016 	 */
4017 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4018 		__update_load_avg_se(now, cfs_rq, se);
4019 
4020 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4021 	decayed |= propagate_entity_load_avg(se);
4022 
4023 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4024 
4025 		/*
4026 		 * DO_ATTACH means we're here from enqueue_entity().
4027 		 * !last_update_time means we've passed through
4028 		 * migrate_task_rq_fair() indicating we migrated.
4029 		 *
4030 		 * IOW we're enqueueing a task on a new CPU.
4031 		 */
4032 		attach_entity_load_avg(cfs_rq, se);
4033 		update_tg_load_avg(cfs_rq);
4034 
4035 	} else if (decayed) {
4036 		cfs_rq_util_change(cfs_rq, 0);
4037 
4038 		if (flags & UPDATE_TG)
4039 			update_tg_load_avg(cfs_rq);
4040 	}
4041 }
4042 
4043 /*
4044  * Synchronize entity load avg of dequeued entity without locking
4045  * the previous rq.
4046  */
4047 static void sync_entity_load_avg(struct sched_entity *se)
4048 {
4049 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4050 	u64 last_update_time;
4051 
4052 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4053 	__update_load_avg_blocked_se(last_update_time, se);
4054 }
4055 
4056 /*
4057  * Task first catches up with cfs_rq, and then subtract
4058  * itself from the cfs_rq (task must be off the queue now).
4059  */
4060 static void remove_entity_load_avg(struct sched_entity *se)
4061 {
4062 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4063 	unsigned long flags;
4064 
4065 	/*
4066 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4067 	 * post_init_entity_util_avg() which will have added things to the
4068 	 * cfs_rq, so we can remove unconditionally.
4069 	 */
4070 
4071 	sync_entity_load_avg(se);
4072 
4073 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4074 	++cfs_rq->removed.nr;
4075 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4076 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4077 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4078 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4079 }
4080 
4081 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4082 {
4083 	return cfs_rq->avg.runnable_avg;
4084 }
4085 
4086 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4087 {
4088 	return cfs_rq->avg.load_avg;
4089 }
4090 
4091 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4092 
4093 static inline unsigned long task_util(struct task_struct *p)
4094 {
4095 	return READ_ONCE(p->se.avg.util_avg);
4096 }
4097 
4098 static inline unsigned long _task_util_est(struct task_struct *p)
4099 {
4100 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4101 
4102 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4103 }
4104 
4105 static inline unsigned long task_util_est(struct task_struct *p)
4106 {
4107 	return max(task_util(p), _task_util_est(p));
4108 }
4109 
4110 #ifdef CONFIG_UCLAMP_TASK
4111 static inline unsigned long uclamp_task_util(struct task_struct *p)
4112 {
4113 	return clamp(task_util_est(p),
4114 		     uclamp_eff_value(p, UCLAMP_MIN),
4115 		     uclamp_eff_value(p, UCLAMP_MAX));
4116 }
4117 #else
4118 static inline unsigned long uclamp_task_util(struct task_struct *p)
4119 {
4120 	return task_util_est(p);
4121 }
4122 #endif
4123 
4124 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4125 				    struct task_struct *p)
4126 {
4127 	unsigned int enqueued;
4128 
4129 	if (!sched_feat(UTIL_EST))
4130 		return;
4131 
4132 	/* Update root cfs_rq's estimated utilization */
4133 	enqueued  = cfs_rq->avg.util_est.enqueued;
4134 	enqueued += _task_util_est(p);
4135 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4136 
4137 	trace_sched_util_est_cfs_tp(cfs_rq);
4138 }
4139 
4140 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4141 				    struct task_struct *p)
4142 {
4143 	unsigned int enqueued;
4144 
4145 	if (!sched_feat(UTIL_EST))
4146 		return;
4147 
4148 	/* Update root cfs_rq's estimated utilization */
4149 	enqueued  = cfs_rq->avg.util_est.enqueued;
4150 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4151 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4152 
4153 	trace_sched_util_est_cfs_tp(cfs_rq);
4154 }
4155 
4156 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4157 
4158 /*
4159  * Check if a (signed) value is within a specified (unsigned) margin,
4160  * based on the observation that:
4161  *
4162  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4163  *
4164  * NOTE: this only works when value + margin < INT_MAX.
4165  */
4166 static inline bool within_margin(int value, int margin)
4167 {
4168 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4169 }
4170 
4171 static inline void util_est_update(struct cfs_rq *cfs_rq,
4172 				   struct task_struct *p,
4173 				   bool task_sleep)
4174 {
4175 	long last_ewma_diff, last_enqueued_diff;
4176 	struct util_est ue;
4177 
4178 	if (!sched_feat(UTIL_EST))
4179 		return;
4180 
4181 	/*
4182 	 * Skip update of task's estimated utilization when the task has not
4183 	 * yet completed an activation, e.g. being migrated.
4184 	 */
4185 	if (!task_sleep)
4186 		return;
4187 
4188 	/*
4189 	 * If the PELT values haven't changed since enqueue time,
4190 	 * skip the util_est update.
4191 	 */
4192 	ue = p->se.avg.util_est;
4193 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4194 		return;
4195 
4196 	last_enqueued_diff = ue.enqueued;
4197 
4198 	/*
4199 	 * Reset EWMA on utilization increases, the moving average is used only
4200 	 * to smooth utilization decreases.
4201 	 */
4202 	ue.enqueued = task_util(p);
4203 	if (sched_feat(UTIL_EST_FASTUP)) {
4204 		if (ue.ewma < ue.enqueued) {
4205 			ue.ewma = ue.enqueued;
4206 			goto done;
4207 		}
4208 	}
4209 
4210 	/*
4211 	 * Skip update of task's estimated utilization when its members are
4212 	 * already ~1% close to its last activation value.
4213 	 */
4214 	last_ewma_diff = ue.enqueued - ue.ewma;
4215 	last_enqueued_diff -= ue.enqueued;
4216 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4217 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4218 			goto done;
4219 
4220 		return;
4221 	}
4222 
4223 	/*
4224 	 * To avoid overestimation of actual task utilization, skip updates if
4225 	 * we cannot grant there is idle time in this CPU.
4226 	 */
4227 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4228 		return;
4229 
4230 	/*
4231 	 * Update Task's estimated utilization
4232 	 *
4233 	 * When *p completes an activation we can consolidate another sample
4234 	 * of the task size. This is done by storing the current PELT value
4235 	 * as ue.enqueued and by using this value to update the Exponential
4236 	 * Weighted Moving Average (EWMA):
4237 	 *
4238 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4239 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4240 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4241 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4242 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4243 	 *
4244 	 * Where 'w' is the weight of new samples, which is configured to be
4245 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4246 	 */
4247 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4248 	ue.ewma  += last_ewma_diff;
4249 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4250 done:
4251 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4252 	WRITE_ONCE(p->se.avg.util_est, ue);
4253 
4254 	trace_sched_util_est_se_tp(&p->se);
4255 }
4256 
4257 static inline int task_fits_capacity(struct task_struct *p,
4258 				     unsigned long capacity)
4259 {
4260 	return fits_capacity(uclamp_task_util(p), capacity);
4261 }
4262 
4263 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4264 {
4265 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4266 		return;
4267 
4268 	if (!p || p->nr_cpus_allowed == 1) {
4269 		rq->misfit_task_load = 0;
4270 		return;
4271 	}
4272 
4273 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4274 		rq->misfit_task_load = 0;
4275 		return;
4276 	}
4277 
4278 	/*
4279 	 * Make sure that misfit_task_load will not be null even if
4280 	 * task_h_load() returns 0.
4281 	 */
4282 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4283 }
4284 
4285 #else /* CONFIG_SMP */
4286 
4287 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4288 {
4289 	return true;
4290 }
4291 
4292 #define UPDATE_TG	0x0
4293 #define SKIP_AGE_LOAD	0x0
4294 #define DO_ATTACH	0x0
4295 
4296 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4297 {
4298 	cfs_rq_util_change(cfs_rq, 0);
4299 }
4300 
4301 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4302 
4303 static inline void
4304 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4305 static inline void
4306 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4307 
4308 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4309 {
4310 	return 0;
4311 }
4312 
4313 static inline void
4314 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4315 
4316 static inline void
4317 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4318 
4319 static inline void
4320 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4321 		bool task_sleep) {}
4322 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4323 
4324 #endif /* CONFIG_SMP */
4325 
4326 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4327 {
4328 #ifdef CONFIG_SCHED_DEBUG
4329 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4330 
4331 	if (d < 0)
4332 		d = -d;
4333 
4334 	if (d > 3*sysctl_sched_latency)
4335 		schedstat_inc(cfs_rq->nr_spread_over);
4336 #endif
4337 }
4338 
4339 static void
4340 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4341 {
4342 	u64 vruntime = cfs_rq->min_vruntime;
4343 
4344 	/*
4345 	 * The 'current' period is already promised to the current tasks,
4346 	 * however the extra weight of the new task will slow them down a
4347 	 * little, place the new task so that it fits in the slot that
4348 	 * stays open at the end.
4349 	 */
4350 	if (initial && sched_feat(START_DEBIT))
4351 		vruntime += sched_vslice(cfs_rq, se);
4352 
4353 	/* sleeps up to a single latency don't count. */
4354 	if (!initial) {
4355 		unsigned long thresh;
4356 
4357 		if (se_is_idle(se))
4358 			thresh = sysctl_sched_min_granularity;
4359 		else
4360 			thresh = sysctl_sched_latency;
4361 
4362 		/*
4363 		 * Halve their sleep time's effect, to allow
4364 		 * for a gentler effect of sleepers:
4365 		 */
4366 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4367 			thresh >>= 1;
4368 
4369 		vruntime -= thresh;
4370 	}
4371 
4372 	/* ensure we never gain time by being placed backwards. */
4373 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4374 }
4375 
4376 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4377 
4378 static inline bool cfs_bandwidth_used(void);
4379 
4380 /*
4381  * MIGRATION
4382  *
4383  *	dequeue
4384  *	  update_curr()
4385  *	    update_min_vruntime()
4386  *	  vruntime -= min_vruntime
4387  *
4388  *	enqueue
4389  *	  update_curr()
4390  *	    update_min_vruntime()
4391  *	  vruntime += min_vruntime
4392  *
4393  * this way the vruntime transition between RQs is done when both
4394  * min_vruntime are up-to-date.
4395  *
4396  * WAKEUP (remote)
4397  *
4398  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4399  *	  vruntime -= min_vruntime
4400  *
4401  *	enqueue
4402  *	  update_curr()
4403  *	    update_min_vruntime()
4404  *	  vruntime += min_vruntime
4405  *
4406  * this way we don't have the most up-to-date min_vruntime on the originating
4407  * CPU and an up-to-date min_vruntime on the destination CPU.
4408  */
4409 
4410 static void
4411 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4412 {
4413 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4414 	bool curr = cfs_rq->curr == se;
4415 
4416 	/*
4417 	 * If we're the current task, we must renormalise before calling
4418 	 * update_curr().
4419 	 */
4420 	if (renorm && curr)
4421 		se->vruntime += cfs_rq->min_vruntime;
4422 
4423 	update_curr(cfs_rq);
4424 
4425 	/*
4426 	 * Otherwise, renormalise after, such that we're placed at the current
4427 	 * moment in time, instead of some random moment in the past. Being
4428 	 * placed in the past could significantly boost this task to the
4429 	 * fairness detriment of existing tasks.
4430 	 */
4431 	if (renorm && !curr)
4432 		se->vruntime += cfs_rq->min_vruntime;
4433 
4434 	/*
4435 	 * When enqueuing a sched_entity, we must:
4436 	 *   - Update loads to have both entity and cfs_rq synced with now.
4437 	 *   - Add its load to cfs_rq->runnable_avg
4438 	 *   - For group_entity, update its weight to reflect the new share of
4439 	 *     its group cfs_rq
4440 	 *   - Add its new weight to cfs_rq->load.weight
4441 	 */
4442 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4443 	se_update_runnable(se);
4444 	update_cfs_group(se);
4445 	account_entity_enqueue(cfs_rq, se);
4446 
4447 	if (flags & ENQUEUE_WAKEUP)
4448 		place_entity(cfs_rq, se, 0);
4449 
4450 	check_schedstat_required();
4451 	update_stats_enqueue_fair(cfs_rq, se, flags);
4452 	check_spread(cfs_rq, se);
4453 	if (!curr)
4454 		__enqueue_entity(cfs_rq, se);
4455 	se->on_rq = 1;
4456 
4457 	if (cfs_rq->nr_running == 1) {
4458 		check_enqueue_throttle(cfs_rq);
4459 		if (!throttled_hierarchy(cfs_rq))
4460 			list_add_leaf_cfs_rq(cfs_rq);
4461 	}
4462 }
4463 
4464 static void __clear_buddies_last(struct sched_entity *se)
4465 {
4466 	for_each_sched_entity(se) {
4467 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4468 		if (cfs_rq->last != se)
4469 			break;
4470 
4471 		cfs_rq->last = NULL;
4472 	}
4473 }
4474 
4475 static void __clear_buddies_next(struct sched_entity *se)
4476 {
4477 	for_each_sched_entity(se) {
4478 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4479 		if (cfs_rq->next != se)
4480 			break;
4481 
4482 		cfs_rq->next = NULL;
4483 	}
4484 }
4485 
4486 static void __clear_buddies_skip(struct sched_entity *se)
4487 {
4488 	for_each_sched_entity(se) {
4489 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4490 		if (cfs_rq->skip != se)
4491 			break;
4492 
4493 		cfs_rq->skip = NULL;
4494 	}
4495 }
4496 
4497 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4498 {
4499 	if (cfs_rq->last == se)
4500 		__clear_buddies_last(se);
4501 
4502 	if (cfs_rq->next == se)
4503 		__clear_buddies_next(se);
4504 
4505 	if (cfs_rq->skip == se)
4506 		__clear_buddies_skip(se);
4507 }
4508 
4509 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4510 
4511 static void
4512 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4513 {
4514 	/*
4515 	 * Update run-time statistics of the 'current'.
4516 	 */
4517 	update_curr(cfs_rq);
4518 
4519 	/*
4520 	 * When dequeuing a sched_entity, we must:
4521 	 *   - Update loads to have both entity and cfs_rq synced with now.
4522 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4523 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4524 	 *   - For group entity, update its weight to reflect the new share
4525 	 *     of its group cfs_rq.
4526 	 */
4527 	update_load_avg(cfs_rq, se, UPDATE_TG);
4528 	se_update_runnable(se);
4529 
4530 	update_stats_dequeue_fair(cfs_rq, se, flags);
4531 
4532 	clear_buddies(cfs_rq, se);
4533 
4534 	if (se != cfs_rq->curr)
4535 		__dequeue_entity(cfs_rq, se);
4536 	se->on_rq = 0;
4537 	account_entity_dequeue(cfs_rq, se);
4538 
4539 	/*
4540 	 * Normalize after update_curr(); which will also have moved
4541 	 * min_vruntime if @se is the one holding it back. But before doing
4542 	 * update_min_vruntime() again, which will discount @se's position and
4543 	 * can move min_vruntime forward still more.
4544 	 */
4545 	if (!(flags & DEQUEUE_SLEEP))
4546 		se->vruntime -= cfs_rq->min_vruntime;
4547 
4548 	/* return excess runtime on last dequeue */
4549 	return_cfs_rq_runtime(cfs_rq);
4550 
4551 	update_cfs_group(se);
4552 
4553 	/*
4554 	 * Now advance min_vruntime if @se was the entity holding it back,
4555 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4556 	 * put back on, and if we advance min_vruntime, we'll be placed back
4557 	 * further than we started -- ie. we'll be penalized.
4558 	 */
4559 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4560 		update_min_vruntime(cfs_rq);
4561 
4562 	if (cfs_rq->nr_running == 0)
4563 		update_idle_cfs_rq_clock_pelt(cfs_rq);
4564 }
4565 
4566 /*
4567  * Preempt the current task with a newly woken task if needed:
4568  */
4569 static void
4570 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4571 {
4572 	unsigned long ideal_runtime, delta_exec;
4573 	struct sched_entity *se;
4574 	s64 delta;
4575 
4576 	ideal_runtime = sched_slice(cfs_rq, curr);
4577 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4578 	if (delta_exec > ideal_runtime) {
4579 		resched_curr(rq_of(cfs_rq));
4580 		/*
4581 		 * The current task ran long enough, ensure it doesn't get
4582 		 * re-elected due to buddy favours.
4583 		 */
4584 		clear_buddies(cfs_rq, curr);
4585 		return;
4586 	}
4587 
4588 	/*
4589 	 * Ensure that a task that missed wakeup preemption by a
4590 	 * narrow margin doesn't have to wait for a full slice.
4591 	 * This also mitigates buddy induced latencies under load.
4592 	 */
4593 	if (delta_exec < sysctl_sched_min_granularity)
4594 		return;
4595 
4596 	se = __pick_first_entity(cfs_rq);
4597 	delta = curr->vruntime - se->vruntime;
4598 
4599 	if (delta < 0)
4600 		return;
4601 
4602 	if (delta > ideal_runtime)
4603 		resched_curr(rq_of(cfs_rq));
4604 }
4605 
4606 static void
4607 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4608 {
4609 	clear_buddies(cfs_rq, se);
4610 
4611 	/* 'current' is not kept within the tree. */
4612 	if (se->on_rq) {
4613 		/*
4614 		 * Any task has to be enqueued before it get to execute on
4615 		 * a CPU. So account for the time it spent waiting on the
4616 		 * runqueue.
4617 		 */
4618 		update_stats_wait_end_fair(cfs_rq, se);
4619 		__dequeue_entity(cfs_rq, se);
4620 		update_load_avg(cfs_rq, se, UPDATE_TG);
4621 	}
4622 
4623 	update_stats_curr_start(cfs_rq, se);
4624 	cfs_rq->curr = se;
4625 
4626 	/*
4627 	 * Track our maximum slice length, if the CPU's load is at
4628 	 * least twice that of our own weight (i.e. dont track it
4629 	 * when there are only lesser-weight tasks around):
4630 	 */
4631 	if (schedstat_enabled() &&
4632 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4633 		struct sched_statistics *stats;
4634 
4635 		stats = __schedstats_from_se(se);
4636 		__schedstat_set(stats->slice_max,
4637 				max((u64)stats->slice_max,
4638 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4639 	}
4640 
4641 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4642 }
4643 
4644 static int
4645 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4646 
4647 /*
4648  * Pick the next process, keeping these things in mind, in this order:
4649  * 1) keep things fair between processes/task groups
4650  * 2) pick the "next" process, since someone really wants that to run
4651  * 3) pick the "last" process, for cache locality
4652  * 4) do not run the "skip" process, if something else is available
4653  */
4654 static struct sched_entity *
4655 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4656 {
4657 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4658 	struct sched_entity *se;
4659 
4660 	/*
4661 	 * If curr is set we have to see if its left of the leftmost entity
4662 	 * still in the tree, provided there was anything in the tree at all.
4663 	 */
4664 	if (!left || (curr && entity_before(curr, left)))
4665 		left = curr;
4666 
4667 	se = left; /* ideally we run the leftmost entity */
4668 
4669 	/*
4670 	 * Avoid running the skip buddy, if running something else can
4671 	 * be done without getting too unfair.
4672 	 */
4673 	if (cfs_rq->skip && cfs_rq->skip == se) {
4674 		struct sched_entity *second;
4675 
4676 		if (se == curr) {
4677 			second = __pick_first_entity(cfs_rq);
4678 		} else {
4679 			second = __pick_next_entity(se);
4680 			if (!second || (curr && entity_before(curr, second)))
4681 				second = curr;
4682 		}
4683 
4684 		if (second && wakeup_preempt_entity(second, left) < 1)
4685 			se = second;
4686 	}
4687 
4688 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4689 		/*
4690 		 * Someone really wants this to run. If it's not unfair, run it.
4691 		 */
4692 		se = cfs_rq->next;
4693 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4694 		/*
4695 		 * Prefer last buddy, try to return the CPU to a preempted task.
4696 		 */
4697 		se = cfs_rq->last;
4698 	}
4699 
4700 	return se;
4701 }
4702 
4703 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4704 
4705 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4706 {
4707 	/*
4708 	 * If still on the runqueue then deactivate_task()
4709 	 * was not called and update_curr() has to be done:
4710 	 */
4711 	if (prev->on_rq)
4712 		update_curr(cfs_rq);
4713 
4714 	/* throttle cfs_rqs exceeding runtime */
4715 	check_cfs_rq_runtime(cfs_rq);
4716 
4717 	check_spread(cfs_rq, prev);
4718 
4719 	if (prev->on_rq) {
4720 		update_stats_wait_start_fair(cfs_rq, prev);
4721 		/* Put 'current' back into the tree. */
4722 		__enqueue_entity(cfs_rq, prev);
4723 		/* in !on_rq case, update occurred at dequeue */
4724 		update_load_avg(cfs_rq, prev, 0);
4725 	}
4726 	cfs_rq->curr = NULL;
4727 }
4728 
4729 static void
4730 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4731 {
4732 	/*
4733 	 * Update run-time statistics of the 'current'.
4734 	 */
4735 	update_curr(cfs_rq);
4736 
4737 	/*
4738 	 * Ensure that runnable average is periodically updated.
4739 	 */
4740 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4741 	update_cfs_group(curr);
4742 
4743 #ifdef CONFIG_SCHED_HRTICK
4744 	/*
4745 	 * queued ticks are scheduled to match the slice, so don't bother
4746 	 * validating it and just reschedule.
4747 	 */
4748 	if (queued) {
4749 		resched_curr(rq_of(cfs_rq));
4750 		return;
4751 	}
4752 	/*
4753 	 * don't let the period tick interfere with the hrtick preemption
4754 	 */
4755 	if (!sched_feat(DOUBLE_TICK) &&
4756 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4757 		return;
4758 #endif
4759 
4760 	if (cfs_rq->nr_running > 1)
4761 		check_preempt_tick(cfs_rq, curr);
4762 }
4763 
4764 
4765 /**************************************************
4766  * CFS bandwidth control machinery
4767  */
4768 
4769 #ifdef CONFIG_CFS_BANDWIDTH
4770 
4771 #ifdef CONFIG_JUMP_LABEL
4772 static struct static_key __cfs_bandwidth_used;
4773 
4774 static inline bool cfs_bandwidth_used(void)
4775 {
4776 	return static_key_false(&__cfs_bandwidth_used);
4777 }
4778 
4779 void cfs_bandwidth_usage_inc(void)
4780 {
4781 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4782 }
4783 
4784 void cfs_bandwidth_usage_dec(void)
4785 {
4786 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4787 }
4788 #else /* CONFIG_JUMP_LABEL */
4789 static bool cfs_bandwidth_used(void)
4790 {
4791 	return true;
4792 }
4793 
4794 void cfs_bandwidth_usage_inc(void) {}
4795 void cfs_bandwidth_usage_dec(void) {}
4796 #endif /* CONFIG_JUMP_LABEL */
4797 
4798 /*
4799  * default period for cfs group bandwidth.
4800  * default: 0.1s, units: nanoseconds
4801  */
4802 static inline u64 default_cfs_period(void)
4803 {
4804 	return 100000000ULL;
4805 }
4806 
4807 static inline u64 sched_cfs_bandwidth_slice(void)
4808 {
4809 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4810 }
4811 
4812 /*
4813  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4814  * directly instead of rq->clock to avoid adding additional synchronization
4815  * around rq->lock.
4816  *
4817  * requires cfs_b->lock
4818  */
4819 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4820 {
4821 	s64 runtime;
4822 
4823 	if (unlikely(cfs_b->quota == RUNTIME_INF))
4824 		return;
4825 
4826 	cfs_b->runtime += cfs_b->quota;
4827 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
4828 	if (runtime > 0) {
4829 		cfs_b->burst_time += runtime;
4830 		cfs_b->nr_burst++;
4831 	}
4832 
4833 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4834 	cfs_b->runtime_snap = cfs_b->runtime;
4835 }
4836 
4837 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4838 {
4839 	return &tg->cfs_bandwidth;
4840 }
4841 
4842 /* returns 0 on failure to allocate runtime */
4843 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4844 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4845 {
4846 	u64 min_amount, amount = 0;
4847 
4848 	lockdep_assert_held(&cfs_b->lock);
4849 
4850 	/* note: this is a positive sum as runtime_remaining <= 0 */
4851 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4852 
4853 	if (cfs_b->quota == RUNTIME_INF)
4854 		amount = min_amount;
4855 	else {
4856 		start_cfs_bandwidth(cfs_b);
4857 
4858 		if (cfs_b->runtime > 0) {
4859 			amount = min(cfs_b->runtime, min_amount);
4860 			cfs_b->runtime -= amount;
4861 			cfs_b->idle = 0;
4862 		}
4863 	}
4864 
4865 	cfs_rq->runtime_remaining += amount;
4866 
4867 	return cfs_rq->runtime_remaining > 0;
4868 }
4869 
4870 /* returns 0 on failure to allocate runtime */
4871 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4872 {
4873 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4874 	int ret;
4875 
4876 	raw_spin_lock(&cfs_b->lock);
4877 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4878 	raw_spin_unlock(&cfs_b->lock);
4879 
4880 	return ret;
4881 }
4882 
4883 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4884 {
4885 	/* dock delta_exec before expiring quota (as it could span periods) */
4886 	cfs_rq->runtime_remaining -= delta_exec;
4887 
4888 	if (likely(cfs_rq->runtime_remaining > 0))
4889 		return;
4890 
4891 	if (cfs_rq->throttled)
4892 		return;
4893 	/*
4894 	 * if we're unable to extend our runtime we resched so that the active
4895 	 * hierarchy can be throttled
4896 	 */
4897 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4898 		resched_curr(rq_of(cfs_rq));
4899 }
4900 
4901 static __always_inline
4902 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4903 {
4904 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4905 		return;
4906 
4907 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4908 }
4909 
4910 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4911 {
4912 	return cfs_bandwidth_used() && cfs_rq->throttled;
4913 }
4914 
4915 /* check whether cfs_rq, or any parent, is throttled */
4916 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4917 {
4918 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4919 }
4920 
4921 /*
4922  * Ensure that neither of the group entities corresponding to src_cpu or
4923  * dest_cpu are members of a throttled hierarchy when performing group
4924  * load-balance operations.
4925  */
4926 static inline int throttled_lb_pair(struct task_group *tg,
4927 				    int src_cpu, int dest_cpu)
4928 {
4929 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4930 
4931 	src_cfs_rq = tg->cfs_rq[src_cpu];
4932 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4933 
4934 	return throttled_hierarchy(src_cfs_rq) ||
4935 	       throttled_hierarchy(dest_cfs_rq);
4936 }
4937 
4938 static int tg_unthrottle_up(struct task_group *tg, void *data)
4939 {
4940 	struct rq *rq = data;
4941 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4942 
4943 	cfs_rq->throttle_count--;
4944 	if (!cfs_rq->throttle_count) {
4945 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
4946 					     cfs_rq->throttled_clock_pelt;
4947 
4948 		/* Add cfs_rq with load or one or more already running entities to the list */
4949 		if (!cfs_rq_is_decayed(cfs_rq))
4950 			list_add_leaf_cfs_rq(cfs_rq);
4951 	}
4952 
4953 	return 0;
4954 }
4955 
4956 static int tg_throttle_down(struct task_group *tg, void *data)
4957 {
4958 	struct rq *rq = data;
4959 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4960 
4961 	/* group is entering throttled state, stop time */
4962 	if (!cfs_rq->throttle_count) {
4963 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
4964 		list_del_leaf_cfs_rq(cfs_rq);
4965 	}
4966 	cfs_rq->throttle_count++;
4967 
4968 	return 0;
4969 }
4970 
4971 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4972 {
4973 	struct rq *rq = rq_of(cfs_rq);
4974 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4975 	struct sched_entity *se;
4976 	long task_delta, idle_task_delta, dequeue = 1;
4977 
4978 	raw_spin_lock(&cfs_b->lock);
4979 	/* This will start the period timer if necessary */
4980 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4981 		/*
4982 		 * We have raced with bandwidth becoming available, and if we
4983 		 * actually throttled the timer might not unthrottle us for an
4984 		 * entire period. We additionally needed to make sure that any
4985 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4986 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4987 		 * for 1ns of runtime rather than just check cfs_b.
4988 		 */
4989 		dequeue = 0;
4990 	} else {
4991 		list_add_tail_rcu(&cfs_rq->throttled_list,
4992 				  &cfs_b->throttled_cfs_rq);
4993 	}
4994 	raw_spin_unlock(&cfs_b->lock);
4995 
4996 	if (!dequeue)
4997 		return false;  /* Throttle no longer required. */
4998 
4999 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5000 
5001 	/* freeze hierarchy runnable averages while throttled */
5002 	rcu_read_lock();
5003 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5004 	rcu_read_unlock();
5005 
5006 	task_delta = cfs_rq->h_nr_running;
5007 	idle_task_delta = cfs_rq->idle_h_nr_running;
5008 	for_each_sched_entity(se) {
5009 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5010 		/* throttled entity or throttle-on-deactivate */
5011 		if (!se->on_rq)
5012 			goto done;
5013 
5014 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5015 
5016 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5017 			idle_task_delta = cfs_rq->h_nr_running;
5018 
5019 		qcfs_rq->h_nr_running -= task_delta;
5020 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5021 
5022 		if (qcfs_rq->load.weight) {
5023 			/* Avoid re-evaluating load for this entity: */
5024 			se = parent_entity(se);
5025 			break;
5026 		}
5027 	}
5028 
5029 	for_each_sched_entity(se) {
5030 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5031 		/* throttled entity or throttle-on-deactivate */
5032 		if (!se->on_rq)
5033 			goto done;
5034 
5035 		update_load_avg(qcfs_rq, se, 0);
5036 		se_update_runnable(se);
5037 
5038 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5039 			idle_task_delta = cfs_rq->h_nr_running;
5040 
5041 		qcfs_rq->h_nr_running -= task_delta;
5042 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5043 	}
5044 
5045 	/* At this point se is NULL and we are at root level*/
5046 	sub_nr_running(rq, task_delta);
5047 
5048 done:
5049 	/*
5050 	 * Note: distribution will already see us throttled via the
5051 	 * throttled-list.  rq->lock protects completion.
5052 	 */
5053 	cfs_rq->throttled = 1;
5054 	cfs_rq->throttled_clock = rq_clock(rq);
5055 	return true;
5056 }
5057 
5058 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5059 {
5060 	struct rq *rq = rq_of(cfs_rq);
5061 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5062 	struct sched_entity *se;
5063 	long task_delta, idle_task_delta;
5064 
5065 	se = cfs_rq->tg->se[cpu_of(rq)];
5066 
5067 	cfs_rq->throttled = 0;
5068 
5069 	update_rq_clock(rq);
5070 
5071 	raw_spin_lock(&cfs_b->lock);
5072 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5073 	list_del_rcu(&cfs_rq->throttled_list);
5074 	raw_spin_unlock(&cfs_b->lock);
5075 
5076 	/* update hierarchical throttle state */
5077 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5078 
5079 	if (!cfs_rq->load.weight) {
5080 		if (!cfs_rq->on_list)
5081 			return;
5082 		/*
5083 		 * Nothing to run but something to decay (on_list)?
5084 		 * Complete the branch.
5085 		 */
5086 		for_each_sched_entity(se) {
5087 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5088 				break;
5089 		}
5090 		goto unthrottle_throttle;
5091 	}
5092 
5093 	task_delta = cfs_rq->h_nr_running;
5094 	idle_task_delta = cfs_rq->idle_h_nr_running;
5095 	for_each_sched_entity(se) {
5096 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5097 
5098 		if (se->on_rq)
5099 			break;
5100 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5101 
5102 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5103 			idle_task_delta = cfs_rq->h_nr_running;
5104 
5105 		qcfs_rq->h_nr_running += task_delta;
5106 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5107 
5108 		/* end evaluation on encountering a throttled cfs_rq */
5109 		if (cfs_rq_throttled(qcfs_rq))
5110 			goto unthrottle_throttle;
5111 	}
5112 
5113 	for_each_sched_entity(se) {
5114 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5115 
5116 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5117 		se_update_runnable(se);
5118 
5119 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5120 			idle_task_delta = cfs_rq->h_nr_running;
5121 
5122 		qcfs_rq->h_nr_running += task_delta;
5123 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5124 
5125 		/* end evaluation on encountering a throttled cfs_rq */
5126 		if (cfs_rq_throttled(qcfs_rq))
5127 			goto unthrottle_throttle;
5128 	}
5129 
5130 	/* At this point se is NULL and we are at root level*/
5131 	add_nr_running(rq, task_delta);
5132 
5133 unthrottle_throttle:
5134 	assert_list_leaf_cfs_rq(rq);
5135 
5136 	/* Determine whether we need to wake up potentially idle CPU: */
5137 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5138 		resched_curr(rq);
5139 }
5140 
5141 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5142 {
5143 	struct cfs_rq *cfs_rq;
5144 	u64 runtime, remaining = 1;
5145 
5146 	rcu_read_lock();
5147 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5148 				throttled_list) {
5149 		struct rq *rq = rq_of(cfs_rq);
5150 		struct rq_flags rf;
5151 
5152 		rq_lock_irqsave(rq, &rf);
5153 		if (!cfs_rq_throttled(cfs_rq))
5154 			goto next;
5155 
5156 		/* By the above check, this should never be true */
5157 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5158 
5159 		raw_spin_lock(&cfs_b->lock);
5160 		runtime = -cfs_rq->runtime_remaining + 1;
5161 		if (runtime > cfs_b->runtime)
5162 			runtime = cfs_b->runtime;
5163 		cfs_b->runtime -= runtime;
5164 		remaining = cfs_b->runtime;
5165 		raw_spin_unlock(&cfs_b->lock);
5166 
5167 		cfs_rq->runtime_remaining += runtime;
5168 
5169 		/* we check whether we're throttled above */
5170 		if (cfs_rq->runtime_remaining > 0)
5171 			unthrottle_cfs_rq(cfs_rq);
5172 
5173 next:
5174 		rq_unlock_irqrestore(rq, &rf);
5175 
5176 		if (!remaining)
5177 			break;
5178 	}
5179 	rcu_read_unlock();
5180 }
5181 
5182 /*
5183  * Responsible for refilling a task_group's bandwidth and unthrottling its
5184  * cfs_rqs as appropriate. If there has been no activity within the last
5185  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5186  * used to track this state.
5187  */
5188 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5189 {
5190 	int throttled;
5191 
5192 	/* no need to continue the timer with no bandwidth constraint */
5193 	if (cfs_b->quota == RUNTIME_INF)
5194 		goto out_deactivate;
5195 
5196 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5197 	cfs_b->nr_periods += overrun;
5198 
5199 	/* Refill extra burst quota even if cfs_b->idle */
5200 	__refill_cfs_bandwidth_runtime(cfs_b);
5201 
5202 	/*
5203 	 * idle depends on !throttled (for the case of a large deficit), and if
5204 	 * we're going inactive then everything else can be deferred
5205 	 */
5206 	if (cfs_b->idle && !throttled)
5207 		goto out_deactivate;
5208 
5209 	if (!throttled) {
5210 		/* mark as potentially idle for the upcoming period */
5211 		cfs_b->idle = 1;
5212 		return 0;
5213 	}
5214 
5215 	/* account preceding periods in which throttling occurred */
5216 	cfs_b->nr_throttled += overrun;
5217 
5218 	/*
5219 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5220 	 */
5221 	while (throttled && cfs_b->runtime > 0) {
5222 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5223 		/* we can't nest cfs_b->lock while distributing bandwidth */
5224 		distribute_cfs_runtime(cfs_b);
5225 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5226 
5227 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5228 	}
5229 
5230 	/*
5231 	 * While we are ensured activity in the period following an
5232 	 * unthrottle, this also covers the case in which the new bandwidth is
5233 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5234 	 * timer to remain active while there are any throttled entities.)
5235 	 */
5236 	cfs_b->idle = 0;
5237 
5238 	return 0;
5239 
5240 out_deactivate:
5241 	return 1;
5242 }
5243 
5244 /* a cfs_rq won't donate quota below this amount */
5245 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5246 /* minimum remaining period time to redistribute slack quota */
5247 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5248 /* how long we wait to gather additional slack before distributing */
5249 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5250 
5251 /*
5252  * Are we near the end of the current quota period?
5253  *
5254  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5255  * hrtimer base being cleared by hrtimer_start. In the case of
5256  * migrate_hrtimers, base is never cleared, so we are fine.
5257  */
5258 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5259 {
5260 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5261 	s64 remaining;
5262 
5263 	/* if the call-back is running a quota refresh is already occurring */
5264 	if (hrtimer_callback_running(refresh_timer))
5265 		return 1;
5266 
5267 	/* is a quota refresh about to occur? */
5268 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5269 	if (remaining < (s64)min_expire)
5270 		return 1;
5271 
5272 	return 0;
5273 }
5274 
5275 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5276 {
5277 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5278 
5279 	/* if there's a quota refresh soon don't bother with slack */
5280 	if (runtime_refresh_within(cfs_b, min_left))
5281 		return;
5282 
5283 	/* don't push forwards an existing deferred unthrottle */
5284 	if (cfs_b->slack_started)
5285 		return;
5286 	cfs_b->slack_started = true;
5287 
5288 	hrtimer_start(&cfs_b->slack_timer,
5289 			ns_to_ktime(cfs_bandwidth_slack_period),
5290 			HRTIMER_MODE_REL);
5291 }
5292 
5293 /* we know any runtime found here is valid as update_curr() precedes return */
5294 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5295 {
5296 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5297 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5298 
5299 	if (slack_runtime <= 0)
5300 		return;
5301 
5302 	raw_spin_lock(&cfs_b->lock);
5303 	if (cfs_b->quota != RUNTIME_INF) {
5304 		cfs_b->runtime += slack_runtime;
5305 
5306 		/* we are under rq->lock, defer unthrottling using a timer */
5307 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5308 		    !list_empty(&cfs_b->throttled_cfs_rq))
5309 			start_cfs_slack_bandwidth(cfs_b);
5310 	}
5311 	raw_spin_unlock(&cfs_b->lock);
5312 
5313 	/* even if it's not valid for return we don't want to try again */
5314 	cfs_rq->runtime_remaining -= slack_runtime;
5315 }
5316 
5317 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5318 {
5319 	if (!cfs_bandwidth_used())
5320 		return;
5321 
5322 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5323 		return;
5324 
5325 	__return_cfs_rq_runtime(cfs_rq);
5326 }
5327 
5328 /*
5329  * This is done with a timer (instead of inline with bandwidth return) since
5330  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5331  */
5332 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5333 {
5334 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5335 	unsigned long flags;
5336 
5337 	/* confirm we're still not at a refresh boundary */
5338 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5339 	cfs_b->slack_started = false;
5340 
5341 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5342 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5343 		return;
5344 	}
5345 
5346 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5347 		runtime = cfs_b->runtime;
5348 
5349 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5350 
5351 	if (!runtime)
5352 		return;
5353 
5354 	distribute_cfs_runtime(cfs_b);
5355 }
5356 
5357 /*
5358  * When a group wakes up we want to make sure that its quota is not already
5359  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5360  * runtime as update_curr() throttling can not trigger until it's on-rq.
5361  */
5362 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5363 {
5364 	if (!cfs_bandwidth_used())
5365 		return;
5366 
5367 	/* an active group must be handled by the update_curr()->put() path */
5368 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5369 		return;
5370 
5371 	/* ensure the group is not already throttled */
5372 	if (cfs_rq_throttled(cfs_rq))
5373 		return;
5374 
5375 	/* update runtime allocation */
5376 	account_cfs_rq_runtime(cfs_rq, 0);
5377 	if (cfs_rq->runtime_remaining <= 0)
5378 		throttle_cfs_rq(cfs_rq);
5379 }
5380 
5381 static void sync_throttle(struct task_group *tg, int cpu)
5382 {
5383 	struct cfs_rq *pcfs_rq, *cfs_rq;
5384 
5385 	if (!cfs_bandwidth_used())
5386 		return;
5387 
5388 	if (!tg->parent)
5389 		return;
5390 
5391 	cfs_rq = tg->cfs_rq[cpu];
5392 	pcfs_rq = tg->parent->cfs_rq[cpu];
5393 
5394 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5395 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
5396 }
5397 
5398 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5399 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5400 {
5401 	if (!cfs_bandwidth_used())
5402 		return false;
5403 
5404 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5405 		return false;
5406 
5407 	/*
5408 	 * it's possible for a throttled entity to be forced into a running
5409 	 * state (e.g. set_curr_task), in this case we're finished.
5410 	 */
5411 	if (cfs_rq_throttled(cfs_rq))
5412 		return true;
5413 
5414 	return throttle_cfs_rq(cfs_rq);
5415 }
5416 
5417 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5418 {
5419 	struct cfs_bandwidth *cfs_b =
5420 		container_of(timer, struct cfs_bandwidth, slack_timer);
5421 
5422 	do_sched_cfs_slack_timer(cfs_b);
5423 
5424 	return HRTIMER_NORESTART;
5425 }
5426 
5427 extern const u64 max_cfs_quota_period;
5428 
5429 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5430 {
5431 	struct cfs_bandwidth *cfs_b =
5432 		container_of(timer, struct cfs_bandwidth, period_timer);
5433 	unsigned long flags;
5434 	int overrun;
5435 	int idle = 0;
5436 	int count = 0;
5437 
5438 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5439 	for (;;) {
5440 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5441 		if (!overrun)
5442 			break;
5443 
5444 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5445 
5446 		if (++count > 3) {
5447 			u64 new, old = ktime_to_ns(cfs_b->period);
5448 
5449 			/*
5450 			 * Grow period by a factor of 2 to avoid losing precision.
5451 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5452 			 * to fail.
5453 			 */
5454 			new = old * 2;
5455 			if (new < max_cfs_quota_period) {
5456 				cfs_b->period = ns_to_ktime(new);
5457 				cfs_b->quota *= 2;
5458 				cfs_b->burst *= 2;
5459 
5460 				pr_warn_ratelimited(
5461 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5462 					smp_processor_id(),
5463 					div_u64(new, NSEC_PER_USEC),
5464 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5465 			} else {
5466 				pr_warn_ratelimited(
5467 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5468 					smp_processor_id(),
5469 					div_u64(old, NSEC_PER_USEC),
5470 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5471 			}
5472 
5473 			/* reset count so we don't come right back in here */
5474 			count = 0;
5475 		}
5476 	}
5477 	if (idle)
5478 		cfs_b->period_active = 0;
5479 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5480 
5481 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5482 }
5483 
5484 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5485 {
5486 	raw_spin_lock_init(&cfs_b->lock);
5487 	cfs_b->runtime = 0;
5488 	cfs_b->quota = RUNTIME_INF;
5489 	cfs_b->period = ns_to_ktime(default_cfs_period());
5490 	cfs_b->burst = 0;
5491 
5492 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5493 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5494 	cfs_b->period_timer.function = sched_cfs_period_timer;
5495 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5496 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5497 	cfs_b->slack_started = false;
5498 }
5499 
5500 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5501 {
5502 	cfs_rq->runtime_enabled = 0;
5503 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5504 }
5505 
5506 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5507 {
5508 	lockdep_assert_held(&cfs_b->lock);
5509 
5510 	if (cfs_b->period_active)
5511 		return;
5512 
5513 	cfs_b->period_active = 1;
5514 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5515 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5516 }
5517 
5518 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5519 {
5520 	/* init_cfs_bandwidth() was not called */
5521 	if (!cfs_b->throttled_cfs_rq.next)
5522 		return;
5523 
5524 	hrtimer_cancel(&cfs_b->period_timer);
5525 	hrtimer_cancel(&cfs_b->slack_timer);
5526 }
5527 
5528 /*
5529  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5530  *
5531  * The race is harmless, since modifying bandwidth settings of unhooked group
5532  * bits doesn't do much.
5533  */
5534 
5535 /* cpu online callback */
5536 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5537 {
5538 	struct task_group *tg;
5539 
5540 	lockdep_assert_rq_held(rq);
5541 
5542 	rcu_read_lock();
5543 	list_for_each_entry_rcu(tg, &task_groups, list) {
5544 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5545 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5546 
5547 		raw_spin_lock(&cfs_b->lock);
5548 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5549 		raw_spin_unlock(&cfs_b->lock);
5550 	}
5551 	rcu_read_unlock();
5552 }
5553 
5554 /* cpu offline callback */
5555 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5556 {
5557 	struct task_group *tg;
5558 
5559 	lockdep_assert_rq_held(rq);
5560 
5561 	rcu_read_lock();
5562 	list_for_each_entry_rcu(tg, &task_groups, list) {
5563 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5564 
5565 		if (!cfs_rq->runtime_enabled)
5566 			continue;
5567 
5568 		/*
5569 		 * clock_task is not advancing so we just need to make sure
5570 		 * there's some valid quota amount
5571 		 */
5572 		cfs_rq->runtime_remaining = 1;
5573 		/*
5574 		 * Offline rq is schedulable till CPU is completely disabled
5575 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5576 		 */
5577 		cfs_rq->runtime_enabled = 0;
5578 
5579 		if (cfs_rq_throttled(cfs_rq))
5580 			unthrottle_cfs_rq(cfs_rq);
5581 	}
5582 	rcu_read_unlock();
5583 }
5584 
5585 #else /* CONFIG_CFS_BANDWIDTH */
5586 
5587 static inline bool cfs_bandwidth_used(void)
5588 {
5589 	return false;
5590 }
5591 
5592 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5593 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5594 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5595 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5596 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5597 
5598 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5599 {
5600 	return 0;
5601 }
5602 
5603 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5604 {
5605 	return 0;
5606 }
5607 
5608 static inline int throttled_lb_pair(struct task_group *tg,
5609 				    int src_cpu, int dest_cpu)
5610 {
5611 	return 0;
5612 }
5613 
5614 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5615 
5616 #ifdef CONFIG_FAIR_GROUP_SCHED
5617 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5618 #endif
5619 
5620 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5621 {
5622 	return NULL;
5623 }
5624 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5625 static inline void update_runtime_enabled(struct rq *rq) {}
5626 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5627 
5628 #endif /* CONFIG_CFS_BANDWIDTH */
5629 
5630 /**************************************************
5631  * CFS operations on tasks:
5632  */
5633 
5634 #ifdef CONFIG_SCHED_HRTICK
5635 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5636 {
5637 	struct sched_entity *se = &p->se;
5638 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5639 
5640 	SCHED_WARN_ON(task_rq(p) != rq);
5641 
5642 	if (rq->cfs.h_nr_running > 1) {
5643 		u64 slice = sched_slice(cfs_rq, se);
5644 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5645 		s64 delta = slice - ran;
5646 
5647 		if (delta < 0) {
5648 			if (task_current(rq, p))
5649 				resched_curr(rq);
5650 			return;
5651 		}
5652 		hrtick_start(rq, delta);
5653 	}
5654 }
5655 
5656 /*
5657  * called from enqueue/dequeue and updates the hrtick when the
5658  * current task is from our class and nr_running is low enough
5659  * to matter.
5660  */
5661 static void hrtick_update(struct rq *rq)
5662 {
5663 	struct task_struct *curr = rq->curr;
5664 
5665 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5666 		return;
5667 
5668 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5669 		hrtick_start_fair(rq, curr);
5670 }
5671 #else /* !CONFIG_SCHED_HRTICK */
5672 static inline void
5673 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5674 {
5675 }
5676 
5677 static inline void hrtick_update(struct rq *rq)
5678 {
5679 }
5680 #endif
5681 
5682 #ifdef CONFIG_SMP
5683 static inline bool cpu_overutilized(int cpu)
5684 {
5685 	return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu));
5686 }
5687 
5688 static inline void update_overutilized_status(struct rq *rq)
5689 {
5690 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5691 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5692 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5693 	}
5694 }
5695 #else
5696 static inline void update_overutilized_status(struct rq *rq) { }
5697 #endif
5698 
5699 /* Runqueue only has SCHED_IDLE tasks enqueued */
5700 static int sched_idle_rq(struct rq *rq)
5701 {
5702 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5703 			rq->nr_running);
5704 }
5705 
5706 /*
5707  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
5708  * of idle_nr_running, which does not consider idle descendants of normal
5709  * entities.
5710  */
5711 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
5712 {
5713 	return cfs_rq->nr_running &&
5714 		cfs_rq->nr_running == cfs_rq->idle_nr_running;
5715 }
5716 
5717 #ifdef CONFIG_SMP
5718 static int sched_idle_cpu(int cpu)
5719 {
5720 	return sched_idle_rq(cpu_rq(cpu));
5721 }
5722 #endif
5723 
5724 /*
5725  * The enqueue_task method is called before nr_running is
5726  * increased. Here we update the fair scheduling stats and
5727  * then put the task into the rbtree:
5728  */
5729 static void
5730 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5731 {
5732 	struct cfs_rq *cfs_rq;
5733 	struct sched_entity *se = &p->se;
5734 	int idle_h_nr_running = task_has_idle_policy(p);
5735 	int task_new = !(flags & ENQUEUE_WAKEUP);
5736 
5737 	/*
5738 	 * The code below (indirectly) updates schedutil which looks at
5739 	 * the cfs_rq utilization to select a frequency.
5740 	 * Let's add the task's estimated utilization to the cfs_rq's
5741 	 * estimated utilization, before we update schedutil.
5742 	 */
5743 	util_est_enqueue(&rq->cfs, p);
5744 
5745 	/*
5746 	 * If in_iowait is set, the code below may not trigger any cpufreq
5747 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5748 	 * passed.
5749 	 */
5750 	if (p->in_iowait)
5751 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5752 
5753 	for_each_sched_entity(se) {
5754 		if (se->on_rq)
5755 			break;
5756 		cfs_rq = cfs_rq_of(se);
5757 		enqueue_entity(cfs_rq, se, flags);
5758 
5759 		cfs_rq->h_nr_running++;
5760 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5761 
5762 		if (cfs_rq_is_idle(cfs_rq))
5763 			idle_h_nr_running = 1;
5764 
5765 		/* end evaluation on encountering a throttled cfs_rq */
5766 		if (cfs_rq_throttled(cfs_rq))
5767 			goto enqueue_throttle;
5768 
5769 		flags = ENQUEUE_WAKEUP;
5770 	}
5771 
5772 	for_each_sched_entity(se) {
5773 		cfs_rq = cfs_rq_of(se);
5774 
5775 		update_load_avg(cfs_rq, se, UPDATE_TG);
5776 		se_update_runnable(se);
5777 		update_cfs_group(se);
5778 
5779 		cfs_rq->h_nr_running++;
5780 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5781 
5782 		if (cfs_rq_is_idle(cfs_rq))
5783 			idle_h_nr_running = 1;
5784 
5785 		/* end evaluation on encountering a throttled cfs_rq */
5786 		if (cfs_rq_throttled(cfs_rq))
5787 			goto enqueue_throttle;
5788 	}
5789 
5790 	/* At this point se is NULL and we are at root level*/
5791 	add_nr_running(rq, 1);
5792 
5793 	/*
5794 	 * Since new tasks are assigned an initial util_avg equal to
5795 	 * half of the spare capacity of their CPU, tiny tasks have the
5796 	 * ability to cross the overutilized threshold, which will
5797 	 * result in the load balancer ruining all the task placement
5798 	 * done by EAS. As a way to mitigate that effect, do not account
5799 	 * for the first enqueue operation of new tasks during the
5800 	 * overutilized flag detection.
5801 	 *
5802 	 * A better way of solving this problem would be to wait for
5803 	 * the PELT signals of tasks to converge before taking them
5804 	 * into account, but that is not straightforward to implement,
5805 	 * and the following generally works well enough in practice.
5806 	 */
5807 	if (!task_new)
5808 		update_overutilized_status(rq);
5809 
5810 enqueue_throttle:
5811 	assert_list_leaf_cfs_rq(rq);
5812 
5813 	hrtick_update(rq);
5814 }
5815 
5816 static void set_next_buddy(struct sched_entity *se);
5817 
5818 /*
5819  * The dequeue_task method is called before nr_running is
5820  * decreased. We remove the task from the rbtree and
5821  * update the fair scheduling stats:
5822  */
5823 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5824 {
5825 	struct cfs_rq *cfs_rq;
5826 	struct sched_entity *se = &p->se;
5827 	int task_sleep = flags & DEQUEUE_SLEEP;
5828 	int idle_h_nr_running = task_has_idle_policy(p);
5829 	bool was_sched_idle = sched_idle_rq(rq);
5830 
5831 	util_est_dequeue(&rq->cfs, p);
5832 
5833 	for_each_sched_entity(se) {
5834 		cfs_rq = cfs_rq_of(se);
5835 		dequeue_entity(cfs_rq, se, flags);
5836 
5837 		cfs_rq->h_nr_running--;
5838 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5839 
5840 		if (cfs_rq_is_idle(cfs_rq))
5841 			idle_h_nr_running = 1;
5842 
5843 		/* end evaluation on encountering a throttled cfs_rq */
5844 		if (cfs_rq_throttled(cfs_rq))
5845 			goto dequeue_throttle;
5846 
5847 		/* Don't dequeue parent if it has other entities besides us */
5848 		if (cfs_rq->load.weight) {
5849 			/* Avoid re-evaluating load for this entity: */
5850 			se = parent_entity(se);
5851 			/*
5852 			 * Bias pick_next to pick a task from this cfs_rq, as
5853 			 * p is sleeping when it is within its sched_slice.
5854 			 */
5855 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5856 				set_next_buddy(se);
5857 			break;
5858 		}
5859 		flags |= DEQUEUE_SLEEP;
5860 	}
5861 
5862 	for_each_sched_entity(se) {
5863 		cfs_rq = cfs_rq_of(se);
5864 
5865 		update_load_avg(cfs_rq, se, UPDATE_TG);
5866 		se_update_runnable(se);
5867 		update_cfs_group(se);
5868 
5869 		cfs_rq->h_nr_running--;
5870 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5871 
5872 		if (cfs_rq_is_idle(cfs_rq))
5873 			idle_h_nr_running = 1;
5874 
5875 		/* end evaluation on encountering a throttled cfs_rq */
5876 		if (cfs_rq_throttled(cfs_rq))
5877 			goto dequeue_throttle;
5878 
5879 	}
5880 
5881 	/* At this point se is NULL and we are at root level*/
5882 	sub_nr_running(rq, 1);
5883 
5884 	/* balance early to pull high priority tasks */
5885 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5886 		rq->next_balance = jiffies;
5887 
5888 dequeue_throttle:
5889 	util_est_update(&rq->cfs, p, task_sleep);
5890 	hrtick_update(rq);
5891 }
5892 
5893 #ifdef CONFIG_SMP
5894 
5895 /* Working cpumask for: load_balance, load_balance_newidle. */
5896 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5897 DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
5898 
5899 #ifdef CONFIG_NO_HZ_COMMON
5900 
5901 static struct {
5902 	cpumask_var_t idle_cpus_mask;
5903 	atomic_t nr_cpus;
5904 	int has_blocked;		/* Idle CPUS has blocked load */
5905 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
5906 	unsigned long next_balance;     /* in jiffy units */
5907 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5908 } nohz ____cacheline_aligned;
5909 
5910 #endif /* CONFIG_NO_HZ_COMMON */
5911 
5912 static unsigned long cpu_load(struct rq *rq)
5913 {
5914 	return cfs_rq_load_avg(&rq->cfs);
5915 }
5916 
5917 /*
5918  * cpu_load_without - compute CPU load without any contributions from *p
5919  * @cpu: the CPU which load is requested
5920  * @p: the task which load should be discounted
5921  *
5922  * The load of a CPU is defined by the load of tasks currently enqueued on that
5923  * CPU as well as tasks which are currently sleeping after an execution on that
5924  * CPU.
5925  *
5926  * This method returns the load of the specified CPU by discounting the load of
5927  * the specified task, whenever the task is currently contributing to the CPU
5928  * load.
5929  */
5930 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5931 {
5932 	struct cfs_rq *cfs_rq;
5933 	unsigned int load;
5934 
5935 	/* Task has no contribution or is new */
5936 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5937 		return cpu_load(rq);
5938 
5939 	cfs_rq = &rq->cfs;
5940 	load = READ_ONCE(cfs_rq->avg.load_avg);
5941 
5942 	/* Discount task's util from CPU's util */
5943 	lsub_positive(&load, task_h_load(p));
5944 
5945 	return load;
5946 }
5947 
5948 static unsigned long cpu_runnable(struct rq *rq)
5949 {
5950 	return cfs_rq_runnable_avg(&rq->cfs);
5951 }
5952 
5953 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5954 {
5955 	struct cfs_rq *cfs_rq;
5956 	unsigned int runnable;
5957 
5958 	/* Task has no contribution or is new */
5959 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5960 		return cpu_runnable(rq);
5961 
5962 	cfs_rq = &rq->cfs;
5963 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5964 
5965 	/* Discount task's runnable from CPU's runnable */
5966 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5967 
5968 	return runnable;
5969 }
5970 
5971 static unsigned long capacity_of(int cpu)
5972 {
5973 	return cpu_rq(cpu)->cpu_capacity;
5974 }
5975 
5976 static void record_wakee(struct task_struct *p)
5977 {
5978 	/*
5979 	 * Only decay a single time; tasks that have less then 1 wakeup per
5980 	 * jiffy will not have built up many flips.
5981 	 */
5982 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5983 		current->wakee_flips >>= 1;
5984 		current->wakee_flip_decay_ts = jiffies;
5985 	}
5986 
5987 	if (current->last_wakee != p) {
5988 		current->last_wakee = p;
5989 		current->wakee_flips++;
5990 	}
5991 }
5992 
5993 /*
5994  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5995  *
5996  * A waker of many should wake a different task than the one last awakened
5997  * at a frequency roughly N times higher than one of its wakees.
5998  *
5999  * In order to determine whether we should let the load spread vs consolidating
6000  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6001  * partner, and a factor of lls_size higher frequency in the other.
6002  *
6003  * With both conditions met, we can be relatively sure that the relationship is
6004  * non-monogamous, with partner count exceeding socket size.
6005  *
6006  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6007  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6008  * socket size.
6009  */
6010 static int wake_wide(struct task_struct *p)
6011 {
6012 	unsigned int master = current->wakee_flips;
6013 	unsigned int slave = p->wakee_flips;
6014 	int factor = __this_cpu_read(sd_llc_size);
6015 
6016 	if (master < slave)
6017 		swap(master, slave);
6018 	if (slave < factor || master < slave * factor)
6019 		return 0;
6020 	return 1;
6021 }
6022 
6023 /*
6024  * The purpose of wake_affine() is to quickly determine on which CPU we can run
6025  * soonest. For the purpose of speed we only consider the waking and previous
6026  * CPU.
6027  *
6028  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6029  *			cache-affine and is (or	will be) idle.
6030  *
6031  * wake_affine_weight() - considers the weight to reflect the average
6032  *			  scheduling latency of the CPUs. This seems to work
6033  *			  for the overloaded case.
6034  */
6035 static int
6036 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6037 {
6038 	/*
6039 	 * If this_cpu is idle, it implies the wakeup is from interrupt
6040 	 * context. Only allow the move if cache is shared. Otherwise an
6041 	 * interrupt intensive workload could force all tasks onto one
6042 	 * node depending on the IO topology or IRQ affinity settings.
6043 	 *
6044 	 * If the prev_cpu is idle and cache affine then avoid a migration.
6045 	 * There is no guarantee that the cache hot data from an interrupt
6046 	 * is more important than cache hot data on the prev_cpu and from
6047 	 * a cpufreq perspective, it's better to have higher utilisation
6048 	 * on one CPU.
6049 	 */
6050 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6051 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6052 
6053 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
6054 		return this_cpu;
6055 
6056 	if (available_idle_cpu(prev_cpu))
6057 		return prev_cpu;
6058 
6059 	return nr_cpumask_bits;
6060 }
6061 
6062 static int
6063 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6064 		   int this_cpu, int prev_cpu, int sync)
6065 {
6066 	s64 this_eff_load, prev_eff_load;
6067 	unsigned long task_load;
6068 
6069 	this_eff_load = cpu_load(cpu_rq(this_cpu));
6070 
6071 	if (sync) {
6072 		unsigned long current_load = task_h_load(current);
6073 
6074 		if (current_load > this_eff_load)
6075 			return this_cpu;
6076 
6077 		this_eff_load -= current_load;
6078 	}
6079 
6080 	task_load = task_h_load(p);
6081 
6082 	this_eff_load += task_load;
6083 	if (sched_feat(WA_BIAS))
6084 		this_eff_load *= 100;
6085 	this_eff_load *= capacity_of(prev_cpu);
6086 
6087 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6088 	prev_eff_load -= task_load;
6089 	if (sched_feat(WA_BIAS))
6090 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6091 	prev_eff_load *= capacity_of(this_cpu);
6092 
6093 	/*
6094 	 * If sync, adjust the weight of prev_eff_load such that if
6095 	 * prev_eff == this_eff that select_idle_sibling() will consider
6096 	 * stacking the wakee on top of the waker if no other CPU is
6097 	 * idle.
6098 	 */
6099 	if (sync)
6100 		prev_eff_load += 1;
6101 
6102 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6103 }
6104 
6105 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6106 		       int this_cpu, int prev_cpu, int sync)
6107 {
6108 	int target = nr_cpumask_bits;
6109 
6110 	if (sched_feat(WA_IDLE))
6111 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
6112 
6113 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6114 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6115 
6116 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6117 	if (target == nr_cpumask_bits)
6118 		return prev_cpu;
6119 
6120 	schedstat_inc(sd->ttwu_move_affine);
6121 	schedstat_inc(p->stats.nr_wakeups_affine);
6122 	return target;
6123 }
6124 
6125 static struct sched_group *
6126 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6127 
6128 /*
6129  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6130  */
6131 static int
6132 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6133 {
6134 	unsigned long load, min_load = ULONG_MAX;
6135 	unsigned int min_exit_latency = UINT_MAX;
6136 	u64 latest_idle_timestamp = 0;
6137 	int least_loaded_cpu = this_cpu;
6138 	int shallowest_idle_cpu = -1;
6139 	int i;
6140 
6141 	/* Check if we have any choice: */
6142 	if (group->group_weight == 1)
6143 		return cpumask_first(sched_group_span(group));
6144 
6145 	/* Traverse only the allowed CPUs */
6146 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6147 		struct rq *rq = cpu_rq(i);
6148 
6149 		if (!sched_core_cookie_match(rq, p))
6150 			continue;
6151 
6152 		if (sched_idle_cpu(i))
6153 			return i;
6154 
6155 		if (available_idle_cpu(i)) {
6156 			struct cpuidle_state *idle = idle_get_state(rq);
6157 			if (idle && idle->exit_latency < min_exit_latency) {
6158 				/*
6159 				 * We give priority to a CPU whose idle state
6160 				 * has the smallest exit latency irrespective
6161 				 * of any idle timestamp.
6162 				 */
6163 				min_exit_latency = idle->exit_latency;
6164 				latest_idle_timestamp = rq->idle_stamp;
6165 				shallowest_idle_cpu = i;
6166 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6167 				   rq->idle_stamp > latest_idle_timestamp) {
6168 				/*
6169 				 * If equal or no active idle state, then
6170 				 * the most recently idled CPU might have
6171 				 * a warmer cache.
6172 				 */
6173 				latest_idle_timestamp = rq->idle_stamp;
6174 				shallowest_idle_cpu = i;
6175 			}
6176 		} else if (shallowest_idle_cpu == -1) {
6177 			load = cpu_load(cpu_rq(i));
6178 			if (load < min_load) {
6179 				min_load = load;
6180 				least_loaded_cpu = i;
6181 			}
6182 		}
6183 	}
6184 
6185 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6186 }
6187 
6188 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6189 				  int cpu, int prev_cpu, int sd_flag)
6190 {
6191 	int new_cpu = cpu;
6192 
6193 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6194 		return prev_cpu;
6195 
6196 	/*
6197 	 * We need task's util for cpu_util_without, sync it up to
6198 	 * prev_cpu's last_update_time.
6199 	 */
6200 	if (!(sd_flag & SD_BALANCE_FORK))
6201 		sync_entity_load_avg(&p->se);
6202 
6203 	while (sd) {
6204 		struct sched_group *group;
6205 		struct sched_domain *tmp;
6206 		int weight;
6207 
6208 		if (!(sd->flags & sd_flag)) {
6209 			sd = sd->child;
6210 			continue;
6211 		}
6212 
6213 		group = find_idlest_group(sd, p, cpu);
6214 		if (!group) {
6215 			sd = sd->child;
6216 			continue;
6217 		}
6218 
6219 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6220 		if (new_cpu == cpu) {
6221 			/* Now try balancing at a lower domain level of 'cpu': */
6222 			sd = sd->child;
6223 			continue;
6224 		}
6225 
6226 		/* Now try balancing at a lower domain level of 'new_cpu': */
6227 		cpu = new_cpu;
6228 		weight = sd->span_weight;
6229 		sd = NULL;
6230 		for_each_domain(cpu, tmp) {
6231 			if (weight <= tmp->span_weight)
6232 				break;
6233 			if (tmp->flags & sd_flag)
6234 				sd = tmp;
6235 		}
6236 	}
6237 
6238 	return new_cpu;
6239 }
6240 
6241 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6242 {
6243 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6244 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6245 		return cpu;
6246 
6247 	return -1;
6248 }
6249 
6250 #ifdef CONFIG_SCHED_SMT
6251 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6252 EXPORT_SYMBOL_GPL(sched_smt_present);
6253 
6254 static inline void set_idle_cores(int cpu, int val)
6255 {
6256 	struct sched_domain_shared *sds;
6257 
6258 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6259 	if (sds)
6260 		WRITE_ONCE(sds->has_idle_cores, val);
6261 }
6262 
6263 static inline bool test_idle_cores(int cpu, bool def)
6264 {
6265 	struct sched_domain_shared *sds;
6266 
6267 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6268 	if (sds)
6269 		return READ_ONCE(sds->has_idle_cores);
6270 
6271 	return def;
6272 }
6273 
6274 /*
6275  * Scans the local SMT mask to see if the entire core is idle, and records this
6276  * information in sd_llc_shared->has_idle_cores.
6277  *
6278  * Since SMT siblings share all cache levels, inspecting this limited remote
6279  * state should be fairly cheap.
6280  */
6281 void __update_idle_core(struct rq *rq)
6282 {
6283 	int core = cpu_of(rq);
6284 	int cpu;
6285 
6286 	rcu_read_lock();
6287 	if (test_idle_cores(core, true))
6288 		goto unlock;
6289 
6290 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6291 		if (cpu == core)
6292 			continue;
6293 
6294 		if (!available_idle_cpu(cpu))
6295 			goto unlock;
6296 	}
6297 
6298 	set_idle_cores(core, 1);
6299 unlock:
6300 	rcu_read_unlock();
6301 }
6302 
6303 /*
6304  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6305  * there are no idle cores left in the system; tracked through
6306  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6307  */
6308 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6309 {
6310 	bool idle = true;
6311 	int cpu;
6312 
6313 	if (!static_branch_likely(&sched_smt_present))
6314 		return __select_idle_cpu(core, p);
6315 
6316 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6317 		if (!available_idle_cpu(cpu)) {
6318 			idle = false;
6319 			if (*idle_cpu == -1) {
6320 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6321 					*idle_cpu = cpu;
6322 					break;
6323 				}
6324 				continue;
6325 			}
6326 			break;
6327 		}
6328 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6329 			*idle_cpu = cpu;
6330 	}
6331 
6332 	if (idle)
6333 		return core;
6334 
6335 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6336 	return -1;
6337 }
6338 
6339 /*
6340  * Scan the local SMT mask for idle CPUs.
6341  */
6342 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6343 {
6344 	int cpu;
6345 
6346 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6347 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6348 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6349 			continue;
6350 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6351 			return cpu;
6352 	}
6353 
6354 	return -1;
6355 }
6356 
6357 #else /* CONFIG_SCHED_SMT */
6358 
6359 static inline void set_idle_cores(int cpu, int val)
6360 {
6361 }
6362 
6363 static inline bool test_idle_cores(int cpu, bool def)
6364 {
6365 	return def;
6366 }
6367 
6368 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6369 {
6370 	return __select_idle_cpu(core, p);
6371 }
6372 
6373 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6374 {
6375 	return -1;
6376 }
6377 
6378 #endif /* CONFIG_SCHED_SMT */
6379 
6380 /*
6381  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6382  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6383  * average idle time for this rq (as found in rq->avg_idle).
6384  */
6385 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6386 {
6387 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6388 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6389 	struct sched_domain_shared *sd_share;
6390 	struct rq *this_rq = this_rq();
6391 	int this = smp_processor_id();
6392 	struct sched_domain *this_sd;
6393 	u64 time = 0;
6394 
6395 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6396 	if (!this_sd)
6397 		return -1;
6398 
6399 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6400 
6401 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6402 		u64 avg_cost, avg_idle, span_avg;
6403 		unsigned long now = jiffies;
6404 
6405 		/*
6406 		 * If we're busy, the assumption that the last idle period
6407 		 * predicts the future is flawed; age away the remaining
6408 		 * predicted idle time.
6409 		 */
6410 		if (unlikely(this_rq->wake_stamp < now)) {
6411 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6412 				this_rq->wake_stamp++;
6413 				this_rq->wake_avg_idle >>= 1;
6414 			}
6415 		}
6416 
6417 		avg_idle = this_rq->wake_avg_idle;
6418 		avg_cost = this_sd->avg_scan_cost + 1;
6419 
6420 		span_avg = sd->span_weight * avg_idle;
6421 		if (span_avg > 4*avg_cost)
6422 			nr = div_u64(span_avg, avg_cost);
6423 		else
6424 			nr = 4;
6425 
6426 		time = cpu_clock(this);
6427 	}
6428 
6429 	if (sched_feat(SIS_UTIL)) {
6430 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
6431 		if (sd_share) {
6432 			/* because !--nr is the condition to stop scan */
6433 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
6434 			/* overloaded LLC is unlikely to have idle cpu/core */
6435 			if (nr == 1)
6436 				return -1;
6437 		}
6438 	}
6439 
6440 	for_each_cpu_wrap(cpu, cpus, target + 1) {
6441 		if (has_idle_core) {
6442 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6443 			if ((unsigned int)i < nr_cpumask_bits)
6444 				return i;
6445 
6446 		} else {
6447 			if (!--nr)
6448 				return -1;
6449 			idle_cpu = __select_idle_cpu(cpu, p);
6450 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6451 				break;
6452 		}
6453 	}
6454 
6455 	if (has_idle_core)
6456 		set_idle_cores(target, false);
6457 
6458 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6459 		time = cpu_clock(this) - time;
6460 
6461 		/*
6462 		 * Account for the scan cost of wakeups against the average
6463 		 * idle time.
6464 		 */
6465 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6466 
6467 		update_avg(&this_sd->avg_scan_cost, time);
6468 	}
6469 
6470 	return idle_cpu;
6471 }
6472 
6473 /*
6474  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6475  * the task fits. If no CPU is big enough, but there are idle ones, try to
6476  * maximize capacity.
6477  */
6478 static int
6479 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6480 {
6481 	unsigned long task_util, best_cap = 0;
6482 	int cpu, best_cpu = -1;
6483 	struct cpumask *cpus;
6484 
6485 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6486 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6487 
6488 	task_util = uclamp_task_util(p);
6489 
6490 	for_each_cpu_wrap(cpu, cpus, target) {
6491 		unsigned long cpu_cap = capacity_of(cpu);
6492 
6493 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6494 			continue;
6495 		if (fits_capacity(task_util, cpu_cap))
6496 			return cpu;
6497 
6498 		if (cpu_cap > best_cap) {
6499 			best_cap = cpu_cap;
6500 			best_cpu = cpu;
6501 		}
6502 	}
6503 
6504 	return best_cpu;
6505 }
6506 
6507 static inline bool asym_fits_capacity(unsigned long task_util, int cpu)
6508 {
6509 	if (static_branch_unlikely(&sched_asym_cpucapacity))
6510 		return fits_capacity(task_util, capacity_of(cpu));
6511 
6512 	return true;
6513 }
6514 
6515 /*
6516  * Try and locate an idle core/thread in the LLC cache domain.
6517  */
6518 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6519 {
6520 	bool has_idle_core = false;
6521 	struct sched_domain *sd;
6522 	unsigned long task_util;
6523 	int i, recent_used_cpu;
6524 
6525 	/*
6526 	 * On asymmetric system, update task utilization because we will check
6527 	 * that the task fits with cpu's capacity.
6528 	 */
6529 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6530 		sync_entity_load_avg(&p->se);
6531 		task_util = uclamp_task_util(p);
6532 	}
6533 
6534 	/*
6535 	 * per-cpu select_rq_mask usage
6536 	 */
6537 	lockdep_assert_irqs_disabled();
6538 
6539 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6540 	    asym_fits_capacity(task_util, target))
6541 		return target;
6542 
6543 	/*
6544 	 * If the previous CPU is cache affine and idle, don't be stupid:
6545 	 */
6546 	if (prev != target && cpus_share_cache(prev, target) &&
6547 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6548 	    asym_fits_capacity(task_util, prev))
6549 		return prev;
6550 
6551 	/*
6552 	 * Allow a per-cpu kthread to stack with the wakee if the
6553 	 * kworker thread and the tasks previous CPUs are the same.
6554 	 * The assumption is that the wakee queued work for the
6555 	 * per-cpu kthread that is now complete and the wakeup is
6556 	 * essentially a sync wakeup. An obvious example of this
6557 	 * pattern is IO completions.
6558 	 */
6559 	if (is_per_cpu_kthread(current) &&
6560 	    in_task() &&
6561 	    prev == smp_processor_id() &&
6562 	    this_rq()->nr_running <= 1 &&
6563 	    asym_fits_capacity(task_util, prev)) {
6564 		return prev;
6565 	}
6566 
6567 	/* Check a recently used CPU as a potential idle candidate: */
6568 	recent_used_cpu = p->recent_used_cpu;
6569 	p->recent_used_cpu = prev;
6570 	if (recent_used_cpu != prev &&
6571 	    recent_used_cpu != target &&
6572 	    cpus_share_cache(recent_used_cpu, target) &&
6573 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6574 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6575 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6576 		return recent_used_cpu;
6577 	}
6578 
6579 	/*
6580 	 * For asymmetric CPU capacity systems, our domain of interest is
6581 	 * sd_asym_cpucapacity rather than sd_llc.
6582 	 */
6583 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6584 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6585 		/*
6586 		 * On an asymmetric CPU capacity system where an exclusive
6587 		 * cpuset defines a symmetric island (i.e. one unique
6588 		 * capacity_orig value through the cpuset), the key will be set
6589 		 * but the CPUs within that cpuset will not have a domain with
6590 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6591 		 * capacity path.
6592 		 */
6593 		if (sd) {
6594 			i = select_idle_capacity(p, sd, target);
6595 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6596 		}
6597 	}
6598 
6599 	sd = rcu_dereference(per_cpu(sd_llc, target));
6600 	if (!sd)
6601 		return target;
6602 
6603 	if (sched_smt_active()) {
6604 		has_idle_core = test_idle_cores(target, false);
6605 
6606 		if (!has_idle_core && cpus_share_cache(prev, target)) {
6607 			i = select_idle_smt(p, sd, prev);
6608 			if ((unsigned int)i < nr_cpumask_bits)
6609 				return i;
6610 		}
6611 	}
6612 
6613 	i = select_idle_cpu(p, sd, has_idle_core, target);
6614 	if ((unsigned)i < nr_cpumask_bits)
6615 		return i;
6616 
6617 	return target;
6618 }
6619 
6620 /*
6621  * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu
6622  * (@dst_cpu = -1) or migrated to @dst_cpu.
6623  */
6624 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6625 {
6626 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6627 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
6628 
6629 	/*
6630 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
6631 	 * contribution. If @p migrates from another CPU to @cpu add its
6632 	 * contribution. In all the other cases @cpu is not impacted by the
6633 	 * migration so its util_avg is already correct.
6634 	 */
6635 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6636 		lsub_positive(&util, task_util(p));
6637 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6638 		util += task_util(p);
6639 
6640 	if (sched_feat(UTIL_EST)) {
6641 		unsigned long util_est;
6642 
6643 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6644 
6645 		/*
6646 		 * During wake-up @p isn't enqueued yet and doesn't contribute
6647 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
6648 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
6649 		 * has been enqueued.
6650 		 *
6651 		 * During exec (@dst_cpu = -1) @p is enqueued and does
6652 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
6653 		 * Remove it to "simulate" cpu_util without @p's contribution.
6654 		 *
6655 		 * Despite the task_on_rq_queued(@p) check there is still a
6656 		 * small window for a possible race when an exec
6657 		 * select_task_rq_fair() races with LB's detach_task().
6658 		 *
6659 		 *   detach_task()
6660 		 *     deactivate_task()
6661 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
6662 		 *       -------------------------------- A
6663 		 *       dequeue_task()                    \
6664 		 *         dequeue_task_fair()              + Race Time
6665 		 *           util_est_dequeue()            /
6666 		 *       -------------------------------- B
6667 		 *
6668 		 * The additional check "current == p" is required to further
6669 		 * reduce the race window.
6670 		 */
6671 		if (dst_cpu == cpu)
6672 			util_est += _task_util_est(p);
6673 		else if (unlikely(task_on_rq_queued(p) || current == p))
6674 			lsub_positive(&util_est, _task_util_est(p));
6675 
6676 		util = max(util, util_est);
6677 	}
6678 
6679 	return min(util, capacity_orig_of(cpu));
6680 }
6681 
6682 /*
6683  * cpu_util_without: compute cpu utilization without any contributions from *p
6684  * @cpu: the CPU which utilization is requested
6685  * @p: the task which utilization should be discounted
6686  *
6687  * The utilization of a CPU is defined by the utilization of tasks currently
6688  * enqueued on that CPU as well as tasks which are currently sleeping after an
6689  * execution on that CPU.
6690  *
6691  * This method returns the utilization of the specified CPU by discounting the
6692  * utilization of the specified task, whenever the task is currently
6693  * contributing to the CPU utilization.
6694  */
6695 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6696 {
6697 	/* Task has no contribution or is new */
6698 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6699 		return cpu_util_cfs(cpu);
6700 
6701 	return cpu_util_next(cpu, p, -1);
6702 }
6703 
6704 /*
6705  * energy_env - Utilization landscape for energy estimation.
6706  * @task_busy_time: Utilization contribution by the task for which we test the
6707  *                  placement. Given by eenv_task_busy_time().
6708  * @pd_busy_time:   Utilization of the whole perf domain without the task
6709  *                  contribution. Given by eenv_pd_busy_time().
6710  * @cpu_cap:        Maximum CPU capacity for the perf domain.
6711  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
6712  */
6713 struct energy_env {
6714 	unsigned long task_busy_time;
6715 	unsigned long pd_busy_time;
6716 	unsigned long cpu_cap;
6717 	unsigned long pd_cap;
6718 };
6719 
6720 /*
6721  * Compute the task busy time for compute_energy(). This time cannot be
6722  * injected directly into effective_cpu_util() because of the IRQ scaling.
6723  * The latter only makes sense with the most recent CPUs where the task has
6724  * run.
6725  */
6726 static inline void eenv_task_busy_time(struct energy_env *eenv,
6727 				       struct task_struct *p, int prev_cpu)
6728 {
6729 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
6730 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
6731 
6732 	if (unlikely(irq >= max_cap))
6733 		busy_time = max_cap;
6734 	else
6735 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
6736 
6737 	eenv->task_busy_time = busy_time;
6738 }
6739 
6740 /*
6741  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
6742  * utilization for each @pd_cpus, it however doesn't take into account
6743  * clamping since the ratio (utilization / cpu_capacity) is already enough to
6744  * scale the EM reported power consumption at the (eventually clamped)
6745  * cpu_capacity.
6746  *
6747  * The contribution of the task @p for which we want to estimate the
6748  * energy cost is removed (by cpu_util_next()) and must be calculated
6749  * separately (see eenv_task_busy_time). This ensures:
6750  *
6751  *   - A stable PD utilization, no matter which CPU of that PD we want to place
6752  *     the task on.
6753  *
6754  *   - A fair comparison between CPUs as the task contribution (task_util())
6755  *     will always be the same no matter which CPU utilization we rely on
6756  *     (util_avg or util_est).
6757  *
6758  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
6759  * exceed @eenv->pd_cap.
6760  */
6761 static inline void eenv_pd_busy_time(struct energy_env *eenv,
6762 				     struct cpumask *pd_cpus,
6763 				     struct task_struct *p)
6764 {
6765 	unsigned long busy_time = 0;
6766 	int cpu;
6767 
6768 	for_each_cpu(cpu, pd_cpus) {
6769 		unsigned long util = cpu_util_next(cpu, p, -1);
6770 
6771 		busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
6772 	}
6773 
6774 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
6775 }
6776 
6777 /*
6778  * Compute the maximum utilization for compute_energy() when the task @p
6779  * is placed on the cpu @dst_cpu.
6780  *
6781  * Returns the maximum utilization among @eenv->cpus. This utilization can't
6782  * exceed @eenv->cpu_cap.
6783  */
6784 static inline unsigned long
6785 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
6786 		 struct task_struct *p, int dst_cpu)
6787 {
6788 	unsigned long max_util = 0;
6789 	int cpu;
6790 
6791 	for_each_cpu(cpu, pd_cpus) {
6792 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
6793 		unsigned long util = cpu_util_next(cpu, p, dst_cpu);
6794 		unsigned long cpu_util;
6795 
6796 		/*
6797 		 * Performance domain frequency: utilization clamping
6798 		 * must be considered since it affects the selection
6799 		 * of the performance domain frequency.
6800 		 * NOTE: in case RT tasks are running, by default the
6801 		 * FREQUENCY_UTIL's utilization can be max OPP.
6802 		 */
6803 		cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
6804 		max_util = max(max_util, cpu_util);
6805 	}
6806 
6807 	return min(max_util, eenv->cpu_cap);
6808 }
6809 
6810 /*
6811  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
6812  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
6813  * contribution is ignored.
6814  */
6815 static inline unsigned long
6816 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
6817 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
6818 {
6819 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
6820 	unsigned long busy_time = eenv->pd_busy_time;
6821 
6822 	if (dst_cpu >= 0)
6823 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
6824 
6825 	return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
6826 }
6827 
6828 /*
6829  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6830  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6831  * spare capacity in each performance domain and uses it as a potential
6832  * candidate to execute the task. Then, it uses the Energy Model to figure
6833  * out which of the CPU candidates is the most energy-efficient.
6834  *
6835  * The rationale for this heuristic is as follows. In a performance domain,
6836  * all the most energy efficient CPU candidates (according to the Energy
6837  * Model) are those for which we'll request a low frequency. When there are
6838  * several CPUs for which the frequency request will be the same, we don't
6839  * have enough data to break the tie between them, because the Energy Model
6840  * only includes active power costs. With this model, if we assume that
6841  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6842  * the maximum spare capacity in a performance domain is guaranteed to be among
6843  * the best candidates of the performance domain.
6844  *
6845  * In practice, it could be preferable from an energy standpoint to pack
6846  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6847  * but that could also hurt our chances to go cluster idle, and we have no
6848  * ways to tell with the current Energy Model if this is actually a good
6849  * idea or not. So, find_energy_efficient_cpu() basically favors
6850  * cluster-packing, and spreading inside a cluster. That should at least be
6851  * a good thing for latency, and this is consistent with the idea that most
6852  * of the energy savings of EAS come from the asymmetry of the system, and
6853  * not so much from breaking the tie between identical CPUs. That's also the
6854  * reason why EAS is enabled in the topology code only for systems where
6855  * SD_ASYM_CPUCAPACITY is set.
6856  *
6857  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6858  * they don't have any useful utilization data yet and it's not possible to
6859  * forecast their impact on energy consumption. Consequently, they will be
6860  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6861  * to be energy-inefficient in some use-cases. The alternative would be to
6862  * bias new tasks towards specific types of CPUs first, or to try to infer
6863  * their util_avg from the parent task, but those heuristics could hurt
6864  * other use-cases too. So, until someone finds a better way to solve this,
6865  * let's keep things simple by re-using the existing slow path.
6866  */
6867 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6868 {
6869 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6870 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6871 	struct root_domain *rd = this_rq()->rd;
6872 	int cpu, best_energy_cpu, target = -1;
6873 	struct sched_domain *sd;
6874 	struct perf_domain *pd;
6875 	struct energy_env eenv;
6876 
6877 	rcu_read_lock();
6878 	pd = rcu_dereference(rd->pd);
6879 	if (!pd || READ_ONCE(rd->overutilized))
6880 		goto unlock;
6881 
6882 	/*
6883 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6884 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6885 	 */
6886 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6887 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6888 		sd = sd->parent;
6889 	if (!sd)
6890 		goto unlock;
6891 
6892 	target = prev_cpu;
6893 
6894 	sync_entity_load_avg(&p->se);
6895 	if (!task_util_est(p))
6896 		goto unlock;
6897 
6898 	eenv_task_busy_time(&eenv, p, prev_cpu);
6899 
6900 	for (; pd; pd = pd->next) {
6901 		unsigned long cpu_cap, cpu_thermal_cap, util;
6902 		unsigned long cur_delta, max_spare_cap = 0;
6903 		bool compute_prev_delta = false;
6904 		int max_spare_cap_cpu = -1;
6905 		unsigned long base_energy;
6906 
6907 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
6908 
6909 		if (cpumask_empty(cpus))
6910 			continue;
6911 
6912 		/* Account thermal pressure for the energy estimation */
6913 		cpu = cpumask_first(cpus);
6914 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
6915 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
6916 
6917 		eenv.cpu_cap = cpu_thermal_cap;
6918 		eenv.pd_cap = 0;
6919 
6920 		for_each_cpu(cpu, cpus) {
6921 			eenv.pd_cap += cpu_thermal_cap;
6922 
6923 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
6924 				continue;
6925 
6926 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6927 				continue;
6928 
6929 			util = cpu_util_next(cpu, p, cpu);
6930 			cpu_cap = capacity_of(cpu);
6931 
6932 			/*
6933 			 * Skip CPUs that cannot satisfy the capacity request.
6934 			 * IOW, placing the task there would make the CPU
6935 			 * overutilized. Take uclamp into account to see how
6936 			 * much capacity we can get out of the CPU; this is
6937 			 * aligned with sched_cpu_util().
6938 			 */
6939 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6940 			if (!fits_capacity(util, cpu_cap))
6941 				continue;
6942 
6943 			lsub_positive(&cpu_cap, util);
6944 
6945 			if (cpu == prev_cpu) {
6946 				/* Always use prev_cpu as a candidate. */
6947 				compute_prev_delta = true;
6948 			} else if (cpu_cap > max_spare_cap) {
6949 				/*
6950 				 * Find the CPU with the maximum spare capacity
6951 				 * in the performance domain.
6952 				 */
6953 				max_spare_cap = cpu_cap;
6954 				max_spare_cap_cpu = cpu;
6955 			}
6956 		}
6957 
6958 		if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6959 			continue;
6960 
6961 		eenv_pd_busy_time(&eenv, cpus, p);
6962 		/* Compute the 'base' energy of the pd, without @p */
6963 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
6964 
6965 		/* Evaluate the energy impact of using prev_cpu. */
6966 		if (compute_prev_delta) {
6967 			prev_delta = compute_energy(&eenv, pd, cpus, p,
6968 						    prev_cpu);
6969 			/* CPU utilization has changed */
6970 			if (prev_delta < base_energy)
6971 				goto unlock;
6972 			prev_delta -= base_energy;
6973 			best_delta = min(best_delta, prev_delta);
6974 		}
6975 
6976 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
6977 		if (max_spare_cap_cpu >= 0) {
6978 			cur_delta = compute_energy(&eenv, pd, cpus, p,
6979 						   max_spare_cap_cpu);
6980 			/* CPU utilization has changed */
6981 			if (cur_delta < base_energy)
6982 				goto unlock;
6983 			cur_delta -= base_energy;
6984 			if (cur_delta < best_delta) {
6985 				best_delta = cur_delta;
6986 				best_energy_cpu = max_spare_cap_cpu;
6987 			}
6988 		}
6989 	}
6990 	rcu_read_unlock();
6991 
6992 	if (best_delta < prev_delta)
6993 		target = best_energy_cpu;
6994 
6995 	return target;
6996 
6997 unlock:
6998 	rcu_read_unlock();
6999 
7000 	return target;
7001 }
7002 
7003 /*
7004  * select_task_rq_fair: Select target runqueue for the waking task in domains
7005  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
7006  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7007  *
7008  * Balances load by selecting the idlest CPU in the idlest group, or under
7009  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
7010  *
7011  * Returns the target CPU number.
7012  */
7013 static int
7014 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
7015 {
7016 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
7017 	struct sched_domain *tmp, *sd = NULL;
7018 	int cpu = smp_processor_id();
7019 	int new_cpu = prev_cpu;
7020 	int want_affine = 0;
7021 	/* SD_flags and WF_flags share the first nibble */
7022 	int sd_flag = wake_flags & 0xF;
7023 
7024 	/*
7025 	 * required for stable ->cpus_allowed
7026 	 */
7027 	lockdep_assert_held(&p->pi_lock);
7028 	if (wake_flags & WF_TTWU) {
7029 		record_wakee(p);
7030 
7031 		if (sched_energy_enabled()) {
7032 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
7033 			if (new_cpu >= 0)
7034 				return new_cpu;
7035 			new_cpu = prev_cpu;
7036 		}
7037 
7038 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
7039 	}
7040 
7041 	rcu_read_lock();
7042 	for_each_domain(cpu, tmp) {
7043 		/*
7044 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
7045 		 * cpu is a valid SD_WAKE_AFFINE target.
7046 		 */
7047 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7048 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7049 			if (cpu != prev_cpu)
7050 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7051 
7052 			sd = NULL; /* Prefer wake_affine over balance flags */
7053 			break;
7054 		}
7055 
7056 		/*
7057 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
7058 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
7059 		 * will usually go to the fast path.
7060 		 */
7061 		if (tmp->flags & sd_flag)
7062 			sd = tmp;
7063 		else if (!want_affine)
7064 			break;
7065 	}
7066 
7067 	if (unlikely(sd)) {
7068 		/* Slow path */
7069 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7070 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
7071 		/* Fast path */
7072 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7073 	}
7074 	rcu_read_unlock();
7075 
7076 	return new_cpu;
7077 }
7078 
7079 static void detach_entity_cfs_rq(struct sched_entity *se);
7080 
7081 /*
7082  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7083  * cfs_rq_of(p) references at time of call are still valid and identify the
7084  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7085  */
7086 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
7087 {
7088 	struct sched_entity *se = &p->se;
7089 
7090 	/*
7091 	 * As blocked tasks retain absolute vruntime the migration needs to
7092 	 * deal with this by subtracting the old and adding the new
7093 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
7094 	 * the task on the new runqueue.
7095 	 */
7096 	if (READ_ONCE(p->__state) == TASK_WAKING) {
7097 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7098 
7099 		se->vruntime -= u64_u32_load(cfs_rq->min_vruntime);
7100 	}
7101 
7102 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
7103 		/*
7104 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
7105 		 * rq->lock and can modify state directly.
7106 		 */
7107 		lockdep_assert_rq_held(task_rq(p));
7108 		detach_entity_cfs_rq(se);
7109 
7110 	} else {
7111 		remove_entity_load_avg(se);
7112 
7113 		/*
7114 		 * Here, the task's PELT values have been updated according to
7115 		 * the current rq's clock. But if that clock hasn't been
7116 		 * updated in a while, a substantial idle time will be missed,
7117 		 * leading to an inflation after wake-up on the new rq.
7118 		 *
7119 		 * Estimate the missing time from the cfs_rq last_update_time
7120 		 * and update sched_avg to improve the PELT continuity after
7121 		 * migration.
7122 		 */
7123 		migrate_se_pelt_lag(se);
7124 	}
7125 
7126 	/* Tell new CPU we are migrated */
7127 	se->avg.last_update_time = 0;
7128 
7129 	/* We have migrated, no longer consider this task hot */
7130 	se->exec_start = 0;
7131 
7132 	update_scan_period(p, new_cpu);
7133 }
7134 
7135 static void task_dead_fair(struct task_struct *p)
7136 {
7137 	remove_entity_load_avg(&p->se);
7138 }
7139 
7140 static int
7141 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7142 {
7143 	if (rq->nr_running)
7144 		return 1;
7145 
7146 	return newidle_balance(rq, rf) != 0;
7147 }
7148 #endif /* CONFIG_SMP */
7149 
7150 static unsigned long wakeup_gran(struct sched_entity *se)
7151 {
7152 	unsigned long gran = sysctl_sched_wakeup_granularity;
7153 
7154 	/*
7155 	 * Since its curr running now, convert the gran from real-time
7156 	 * to virtual-time in his units.
7157 	 *
7158 	 * By using 'se' instead of 'curr' we penalize light tasks, so
7159 	 * they get preempted easier. That is, if 'se' < 'curr' then
7160 	 * the resulting gran will be larger, therefore penalizing the
7161 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7162 	 * be smaller, again penalizing the lighter task.
7163 	 *
7164 	 * This is especially important for buddies when the leftmost
7165 	 * task is higher priority than the buddy.
7166 	 */
7167 	return calc_delta_fair(gran, se);
7168 }
7169 
7170 /*
7171  * Should 'se' preempt 'curr'.
7172  *
7173  *             |s1
7174  *        |s2
7175  *   |s3
7176  *         g
7177  *      |<--->|c
7178  *
7179  *  w(c, s1) = -1
7180  *  w(c, s2) =  0
7181  *  w(c, s3) =  1
7182  *
7183  */
7184 static int
7185 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7186 {
7187 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7188 
7189 	if (vdiff <= 0)
7190 		return -1;
7191 
7192 	gran = wakeup_gran(se);
7193 	if (vdiff > gran)
7194 		return 1;
7195 
7196 	return 0;
7197 }
7198 
7199 static void set_last_buddy(struct sched_entity *se)
7200 {
7201 	for_each_sched_entity(se) {
7202 		if (SCHED_WARN_ON(!se->on_rq))
7203 			return;
7204 		if (se_is_idle(se))
7205 			return;
7206 		cfs_rq_of(se)->last = se;
7207 	}
7208 }
7209 
7210 static void set_next_buddy(struct sched_entity *se)
7211 {
7212 	for_each_sched_entity(se) {
7213 		if (SCHED_WARN_ON(!se->on_rq))
7214 			return;
7215 		if (se_is_idle(se))
7216 			return;
7217 		cfs_rq_of(se)->next = se;
7218 	}
7219 }
7220 
7221 static void set_skip_buddy(struct sched_entity *se)
7222 {
7223 	for_each_sched_entity(se)
7224 		cfs_rq_of(se)->skip = se;
7225 }
7226 
7227 /*
7228  * Preempt the current task with a newly woken task if needed:
7229  */
7230 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7231 {
7232 	struct task_struct *curr = rq->curr;
7233 	struct sched_entity *se = &curr->se, *pse = &p->se;
7234 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7235 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7236 	int next_buddy_marked = 0;
7237 	int cse_is_idle, pse_is_idle;
7238 
7239 	if (unlikely(se == pse))
7240 		return;
7241 
7242 	/*
7243 	 * This is possible from callers such as attach_tasks(), in which we
7244 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7245 	 * lead to a throttle).  This both saves work and prevents false
7246 	 * next-buddy nomination below.
7247 	 */
7248 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7249 		return;
7250 
7251 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7252 		set_next_buddy(pse);
7253 		next_buddy_marked = 1;
7254 	}
7255 
7256 	/*
7257 	 * We can come here with TIF_NEED_RESCHED already set from new task
7258 	 * wake up path.
7259 	 *
7260 	 * Note: this also catches the edge-case of curr being in a throttled
7261 	 * group (e.g. via set_curr_task), since update_curr() (in the
7262 	 * enqueue of curr) will have resulted in resched being set.  This
7263 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7264 	 * below.
7265 	 */
7266 	if (test_tsk_need_resched(curr))
7267 		return;
7268 
7269 	/* Idle tasks are by definition preempted by non-idle tasks. */
7270 	if (unlikely(task_has_idle_policy(curr)) &&
7271 	    likely(!task_has_idle_policy(p)))
7272 		goto preempt;
7273 
7274 	/*
7275 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7276 	 * is driven by the tick):
7277 	 */
7278 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7279 		return;
7280 
7281 	find_matching_se(&se, &pse);
7282 	BUG_ON(!pse);
7283 
7284 	cse_is_idle = se_is_idle(se);
7285 	pse_is_idle = se_is_idle(pse);
7286 
7287 	/*
7288 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
7289 	 * in the inverse case).
7290 	 */
7291 	if (cse_is_idle && !pse_is_idle)
7292 		goto preempt;
7293 	if (cse_is_idle != pse_is_idle)
7294 		return;
7295 
7296 	update_curr(cfs_rq_of(se));
7297 	if (wakeup_preempt_entity(se, pse) == 1) {
7298 		/*
7299 		 * Bias pick_next to pick the sched entity that is
7300 		 * triggering this preemption.
7301 		 */
7302 		if (!next_buddy_marked)
7303 			set_next_buddy(pse);
7304 		goto preempt;
7305 	}
7306 
7307 	return;
7308 
7309 preempt:
7310 	resched_curr(rq);
7311 	/*
7312 	 * Only set the backward buddy when the current task is still
7313 	 * on the rq. This can happen when a wakeup gets interleaved
7314 	 * with schedule on the ->pre_schedule() or idle_balance()
7315 	 * point, either of which can * drop the rq lock.
7316 	 *
7317 	 * Also, during early boot the idle thread is in the fair class,
7318 	 * for obvious reasons its a bad idea to schedule back to it.
7319 	 */
7320 	if (unlikely(!se->on_rq || curr == rq->idle))
7321 		return;
7322 
7323 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7324 		set_last_buddy(se);
7325 }
7326 
7327 #ifdef CONFIG_SMP
7328 static struct task_struct *pick_task_fair(struct rq *rq)
7329 {
7330 	struct sched_entity *se;
7331 	struct cfs_rq *cfs_rq;
7332 
7333 again:
7334 	cfs_rq = &rq->cfs;
7335 	if (!cfs_rq->nr_running)
7336 		return NULL;
7337 
7338 	do {
7339 		struct sched_entity *curr = cfs_rq->curr;
7340 
7341 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7342 		if (curr) {
7343 			if (curr->on_rq)
7344 				update_curr(cfs_rq);
7345 			else
7346 				curr = NULL;
7347 
7348 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7349 				goto again;
7350 		}
7351 
7352 		se = pick_next_entity(cfs_rq, curr);
7353 		cfs_rq = group_cfs_rq(se);
7354 	} while (cfs_rq);
7355 
7356 	return task_of(se);
7357 }
7358 #endif
7359 
7360 struct task_struct *
7361 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7362 {
7363 	struct cfs_rq *cfs_rq = &rq->cfs;
7364 	struct sched_entity *se;
7365 	struct task_struct *p;
7366 	int new_tasks;
7367 
7368 again:
7369 	if (!sched_fair_runnable(rq))
7370 		goto idle;
7371 
7372 #ifdef CONFIG_FAIR_GROUP_SCHED
7373 	if (!prev || prev->sched_class != &fair_sched_class)
7374 		goto simple;
7375 
7376 	/*
7377 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7378 	 * likely that a next task is from the same cgroup as the current.
7379 	 *
7380 	 * Therefore attempt to avoid putting and setting the entire cgroup
7381 	 * hierarchy, only change the part that actually changes.
7382 	 */
7383 
7384 	do {
7385 		struct sched_entity *curr = cfs_rq->curr;
7386 
7387 		/*
7388 		 * Since we got here without doing put_prev_entity() we also
7389 		 * have to consider cfs_rq->curr. If it is still a runnable
7390 		 * entity, update_curr() will update its vruntime, otherwise
7391 		 * forget we've ever seen it.
7392 		 */
7393 		if (curr) {
7394 			if (curr->on_rq)
7395 				update_curr(cfs_rq);
7396 			else
7397 				curr = NULL;
7398 
7399 			/*
7400 			 * This call to check_cfs_rq_runtime() will do the
7401 			 * throttle and dequeue its entity in the parent(s).
7402 			 * Therefore the nr_running test will indeed
7403 			 * be correct.
7404 			 */
7405 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7406 				cfs_rq = &rq->cfs;
7407 
7408 				if (!cfs_rq->nr_running)
7409 					goto idle;
7410 
7411 				goto simple;
7412 			}
7413 		}
7414 
7415 		se = pick_next_entity(cfs_rq, curr);
7416 		cfs_rq = group_cfs_rq(se);
7417 	} while (cfs_rq);
7418 
7419 	p = task_of(se);
7420 
7421 	/*
7422 	 * Since we haven't yet done put_prev_entity and if the selected task
7423 	 * is a different task than we started out with, try and touch the
7424 	 * least amount of cfs_rqs.
7425 	 */
7426 	if (prev != p) {
7427 		struct sched_entity *pse = &prev->se;
7428 
7429 		while (!(cfs_rq = is_same_group(se, pse))) {
7430 			int se_depth = se->depth;
7431 			int pse_depth = pse->depth;
7432 
7433 			if (se_depth <= pse_depth) {
7434 				put_prev_entity(cfs_rq_of(pse), pse);
7435 				pse = parent_entity(pse);
7436 			}
7437 			if (se_depth >= pse_depth) {
7438 				set_next_entity(cfs_rq_of(se), se);
7439 				se = parent_entity(se);
7440 			}
7441 		}
7442 
7443 		put_prev_entity(cfs_rq, pse);
7444 		set_next_entity(cfs_rq, se);
7445 	}
7446 
7447 	goto done;
7448 simple:
7449 #endif
7450 	if (prev)
7451 		put_prev_task(rq, prev);
7452 
7453 	do {
7454 		se = pick_next_entity(cfs_rq, NULL);
7455 		set_next_entity(cfs_rq, se);
7456 		cfs_rq = group_cfs_rq(se);
7457 	} while (cfs_rq);
7458 
7459 	p = task_of(se);
7460 
7461 done: __maybe_unused;
7462 #ifdef CONFIG_SMP
7463 	/*
7464 	 * Move the next running task to the front of
7465 	 * the list, so our cfs_tasks list becomes MRU
7466 	 * one.
7467 	 */
7468 	list_move(&p->se.group_node, &rq->cfs_tasks);
7469 #endif
7470 
7471 	if (hrtick_enabled_fair(rq))
7472 		hrtick_start_fair(rq, p);
7473 
7474 	update_misfit_status(p, rq);
7475 
7476 	return p;
7477 
7478 idle:
7479 	if (!rf)
7480 		return NULL;
7481 
7482 	new_tasks = newidle_balance(rq, rf);
7483 
7484 	/*
7485 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7486 	 * possible for any higher priority task to appear. In that case we
7487 	 * must re-start the pick_next_entity() loop.
7488 	 */
7489 	if (new_tasks < 0)
7490 		return RETRY_TASK;
7491 
7492 	if (new_tasks > 0)
7493 		goto again;
7494 
7495 	/*
7496 	 * rq is about to be idle, check if we need to update the
7497 	 * lost_idle_time of clock_pelt
7498 	 */
7499 	update_idle_rq_clock_pelt(rq);
7500 
7501 	return NULL;
7502 }
7503 
7504 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7505 {
7506 	return pick_next_task_fair(rq, NULL, NULL);
7507 }
7508 
7509 /*
7510  * Account for a descheduled task:
7511  */
7512 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7513 {
7514 	struct sched_entity *se = &prev->se;
7515 	struct cfs_rq *cfs_rq;
7516 
7517 	for_each_sched_entity(se) {
7518 		cfs_rq = cfs_rq_of(se);
7519 		put_prev_entity(cfs_rq, se);
7520 	}
7521 }
7522 
7523 /*
7524  * sched_yield() is very simple
7525  *
7526  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7527  */
7528 static void yield_task_fair(struct rq *rq)
7529 {
7530 	struct task_struct *curr = rq->curr;
7531 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7532 	struct sched_entity *se = &curr->se;
7533 
7534 	/*
7535 	 * Are we the only task in the tree?
7536 	 */
7537 	if (unlikely(rq->nr_running == 1))
7538 		return;
7539 
7540 	clear_buddies(cfs_rq, se);
7541 
7542 	if (curr->policy != SCHED_BATCH) {
7543 		update_rq_clock(rq);
7544 		/*
7545 		 * Update run-time statistics of the 'current'.
7546 		 */
7547 		update_curr(cfs_rq);
7548 		/*
7549 		 * Tell update_rq_clock() that we've just updated,
7550 		 * so we don't do microscopic update in schedule()
7551 		 * and double the fastpath cost.
7552 		 */
7553 		rq_clock_skip_update(rq);
7554 	}
7555 
7556 	set_skip_buddy(se);
7557 }
7558 
7559 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7560 {
7561 	struct sched_entity *se = &p->se;
7562 
7563 	/* throttled hierarchies are not runnable */
7564 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7565 		return false;
7566 
7567 	/* Tell the scheduler that we'd really like pse to run next. */
7568 	set_next_buddy(se);
7569 
7570 	yield_task_fair(rq);
7571 
7572 	return true;
7573 }
7574 
7575 #ifdef CONFIG_SMP
7576 /**************************************************
7577  * Fair scheduling class load-balancing methods.
7578  *
7579  * BASICS
7580  *
7581  * The purpose of load-balancing is to achieve the same basic fairness the
7582  * per-CPU scheduler provides, namely provide a proportional amount of compute
7583  * time to each task. This is expressed in the following equation:
7584  *
7585  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7586  *
7587  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7588  * W_i,0 is defined as:
7589  *
7590  *   W_i,0 = \Sum_j w_i,j                                             (2)
7591  *
7592  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7593  * is derived from the nice value as per sched_prio_to_weight[].
7594  *
7595  * The weight average is an exponential decay average of the instantaneous
7596  * weight:
7597  *
7598  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7599  *
7600  * C_i is the compute capacity of CPU i, typically it is the
7601  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7602  * can also include other factors [XXX].
7603  *
7604  * To achieve this balance we define a measure of imbalance which follows
7605  * directly from (1):
7606  *
7607  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7608  *
7609  * We them move tasks around to minimize the imbalance. In the continuous
7610  * function space it is obvious this converges, in the discrete case we get
7611  * a few fun cases generally called infeasible weight scenarios.
7612  *
7613  * [XXX expand on:
7614  *     - infeasible weights;
7615  *     - local vs global optima in the discrete case. ]
7616  *
7617  *
7618  * SCHED DOMAINS
7619  *
7620  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7621  * for all i,j solution, we create a tree of CPUs that follows the hardware
7622  * topology where each level pairs two lower groups (or better). This results
7623  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7624  * tree to only the first of the previous level and we decrease the frequency
7625  * of load-balance at each level inv. proportional to the number of CPUs in
7626  * the groups.
7627  *
7628  * This yields:
7629  *
7630  *     log_2 n     1     n
7631  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7632  *     i = 0      2^i   2^i
7633  *                               `- size of each group
7634  *         |         |     `- number of CPUs doing load-balance
7635  *         |         `- freq
7636  *         `- sum over all levels
7637  *
7638  * Coupled with a limit on how many tasks we can migrate every balance pass,
7639  * this makes (5) the runtime complexity of the balancer.
7640  *
7641  * An important property here is that each CPU is still (indirectly) connected
7642  * to every other CPU in at most O(log n) steps:
7643  *
7644  * The adjacency matrix of the resulting graph is given by:
7645  *
7646  *             log_2 n
7647  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7648  *             k = 0
7649  *
7650  * And you'll find that:
7651  *
7652  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7653  *
7654  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7655  * The task movement gives a factor of O(m), giving a convergence complexity
7656  * of:
7657  *
7658  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7659  *
7660  *
7661  * WORK CONSERVING
7662  *
7663  * In order to avoid CPUs going idle while there's still work to do, new idle
7664  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7665  * tree itself instead of relying on other CPUs to bring it work.
7666  *
7667  * This adds some complexity to both (5) and (8) but it reduces the total idle
7668  * time.
7669  *
7670  * [XXX more?]
7671  *
7672  *
7673  * CGROUPS
7674  *
7675  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7676  *
7677  *                                s_k,i
7678  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7679  *                                 S_k
7680  *
7681  * Where
7682  *
7683  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7684  *
7685  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7686  *
7687  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7688  * property.
7689  *
7690  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7691  *      rewrite all of this once again.]
7692  */
7693 
7694 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7695 
7696 enum fbq_type { regular, remote, all };
7697 
7698 /*
7699  * 'group_type' describes the group of CPUs at the moment of load balancing.
7700  *
7701  * The enum is ordered by pulling priority, with the group with lowest priority
7702  * first so the group_type can simply be compared when selecting the busiest
7703  * group. See update_sd_pick_busiest().
7704  */
7705 enum group_type {
7706 	/* The group has spare capacity that can be used to run more tasks.  */
7707 	group_has_spare = 0,
7708 	/*
7709 	 * The group is fully used and the tasks don't compete for more CPU
7710 	 * cycles. Nevertheless, some tasks might wait before running.
7711 	 */
7712 	group_fully_busy,
7713 	/*
7714 	 * One task doesn't fit with CPU's capacity and must be migrated to a
7715 	 * more powerful CPU.
7716 	 */
7717 	group_misfit_task,
7718 	/*
7719 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7720 	 * and the task should be migrated to it instead of running on the
7721 	 * current CPU.
7722 	 */
7723 	group_asym_packing,
7724 	/*
7725 	 * The tasks' affinity constraints previously prevented the scheduler
7726 	 * from balancing the load across the system.
7727 	 */
7728 	group_imbalanced,
7729 	/*
7730 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7731 	 * tasks.
7732 	 */
7733 	group_overloaded
7734 };
7735 
7736 enum migration_type {
7737 	migrate_load = 0,
7738 	migrate_util,
7739 	migrate_task,
7740 	migrate_misfit
7741 };
7742 
7743 #define LBF_ALL_PINNED	0x01
7744 #define LBF_NEED_BREAK	0x02
7745 #define LBF_DST_PINNED  0x04
7746 #define LBF_SOME_PINNED	0x08
7747 #define LBF_ACTIVE_LB	0x10
7748 
7749 struct lb_env {
7750 	struct sched_domain	*sd;
7751 
7752 	struct rq		*src_rq;
7753 	int			src_cpu;
7754 
7755 	int			dst_cpu;
7756 	struct rq		*dst_rq;
7757 
7758 	struct cpumask		*dst_grpmask;
7759 	int			new_dst_cpu;
7760 	enum cpu_idle_type	idle;
7761 	long			imbalance;
7762 	/* The set of CPUs under consideration for load-balancing */
7763 	struct cpumask		*cpus;
7764 
7765 	unsigned int		flags;
7766 
7767 	unsigned int		loop;
7768 	unsigned int		loop_break;
7769 	unsigned int		loop_max;
7770 
7771 	enum fbq_type		fbq_type;
7772 	enum migration_type	migration_type;
7773 	struct list_head	tasks;
7774 };
7775 
7776 /*
7777  * Is this task likely cache-hot:
7778  */
7779 static int task_hot(struct task_struct *p, struct lb_env *env)
7780 {
7781 	s64 delta;
7782 
7783 	lockdep_assert_rq_held(env->src_rq);
7784 
7785 	if (p->sched_class != &fair_sched_class)
7786 		return 0;
7787 
7788 	if (unlikely(task_has_idle_policy(p)))
7789 		return 0;
7790 
7791 	/* SMT siblings share cache */
7792 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7793 		return 0;
7794 
7795 	/*
7796 	 * Buddy candidates are cache hot:
7797 	 */
7798 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7799 			(&p->se == cfs_rq_of(&p->se)->next ||
7800 			 &p->se == cfs_rq_of(&p->se)->last))
7801 		return 1;
7802 
7803 	if (sysctl_sched_migration_cost == -1)
7804 		return 1;
7805 
7806 	/*
7807 	 * Don't migrate task if the task's cookie does not match
7808 	 * with the destination CPU's core cookie.
7809 	 */
7810 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7811 		return 1;
7812 
7813 	if (sysctl_sched_migration_cost == 0)
7814 		return 0;
7815 
7816 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7817 
7818 	return delta < (s64)sysctl_sched_migration_cost;
7819 }
7820 
7821 #ifdef CONFIG_NUMA_BALANCING
7822 /*
7823  * Returns 1, if task migration degrades locality
7824  * Returns 0, if task migration improves locality i.e migration preferred.
7825  * Returns -1, if task migration is not affected by locality.
7826  */
7827 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7828 {
7829 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7830 	unsigned long src_weight, dst_weight;
7831 	int src_nid, dst_nid, dist;
7832 
7833 	if (!static_branch_likely(&sched_numa_balancing))
7834 		return -1;
7835 
7836 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7837 		return -1;
7838 
7839 	src_nid = cpu_to_node(env->src_cpu);
7840 	dst_nid = cpu_to_node(env->dst_cpu);
7841 
7842 	if (src_nid == dst_nid)
7843 		return -1;
7844 
7845 	/* Migrating away from the preferred node is always bad. */
7846 	if (src_nid == p->numa_preferred_nid) {
7847 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7848 			return 1;
7849 		else
7850 			return -1;
7851 	}
7852 
7853 	/* Encourage migration to the preferred node. */
7854 	if (dst_nid == p->numa_preferred_nid)
7855 		return 0;
7856 
7857 	/* Leaving a core idle is often worse than degrading locality. */
7858 	if (env->idle == CPU_IDLE)
7859 		return -1;
7860 
7861 	dist = node_distance(src_nid, dst_nid);
7862 	if (numa_group) {
7863 		src_weight = group_weight(p, src_nid, dist);
7864 		dst_weight = group_weight(p, dst_nid, dist);
7865 	} else {
7866 		src_weight = task_weight(p, src_nid, dist);
7867 		dst_weight = task_weight(p, dst_nid, dist);
7868 	}
7869 
7870 	return dst_weight < src_weight;
7871 }
7872 
7873 #else
7874 static inline int migrate_degrades_locality(struct task_struct *p,
7875 					     struct lb_env *env)
7876 {
7877 	return -1;
7878 }
7879 #endif
7880 
7881 /*
7882  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7883  */
7884 static
7885 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7886 {
7887 	int tsk_cache_hot;
7888 
7889 	lockdep_assert_rq_held(env->src_rq);
7890 
7891 	/*
7892 	 * We do not migrate tasks that are:
7893 	 * 1) throttled_lb_pair, or
7894 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7895 	 * 3) running (obviously), or
7896 	 * 4) are cache-hot on their current CPU.
7897 	 */
7898 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7899 		return 0;
7900 
7901 	/* Disregard pcpu kthreads; they are where they need to be. */
7902 	if (kthread_is_per_cpu(p))
7903 		return 0;
7904 
7905 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7906 		int cpu;
7907 
7908 		schedstat_inc(p->stats.nr_failed_migrations_affine);
7909 
7910 		env->flags |= LBF_SOME_PINNED;
7911 
7912 		/*
7913 		 * Remember if this task can be migrated to any other CPU in
7914 		 * our sched_group. We may want to revisit it if we couldn't
7915 		 * meet load balance goals by pulling other tasks on src_cpu.
7916 		 *
7917 		 * Avoid computing new_dst_cpu
7918 		 * - for NEWLY_IDLE
7919 		 * - if we have already computed one in current iteration
7920 		 * - if it's an active balance
7921 		 */
7922 		if (env->idle == CPU_NEWLY_IDLE ||
7923 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7924 			return 0;
7925 
7926 		/* Prevent to re-select dst_cpu via env's CPUs: */
7927 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7928 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7929 				env->flags |= LBF_DST_PINNED;
7930 				env->new_dst_cpu = cpu;
7931 				break;
7932 			}
7933 		}
7934 
7935 		return 0;
7936 	}
7937 
7938 	/* Record that we found at least one task that could run on dst_cpu */
7939 	env->flags &= ~LBF_ALL_PINNED;
7940 
7941 	if (task_running(env->src_rq, p)) {
7942 		schedstat_inc(p->stats.nr_failed_migrations_running);
7943 		return 0;
7944 	}
7945 
7946 	/*
7947 	 * Aggressive migration if:
7948 	 * 1) active balance
7949 	 * 2) destination numa is preferred
7950 	 * 3) task is cache cold, or
7951 	 * 4) too many balance attempts have failed.
7952 	 */
7953 	if (env->flags & LBF_ACTIVE_LB)
7954 		return 1;
7955 
7956 	tsk_cache_hot = migrate_degrades_locality(p, env);
7957 	if (tsk_cache_hot == -1)
7958 		tsk_cache_hot = task_hot(p, env);
7959 
7960 	if (tsk_cache_hot <= 0 ||
7961 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7962 		if (tsk_cache_hot == 1) {
7963 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7964 			schedstat_inc(p->stats.nr_forced_migrations);
7965 		}
7966 		return 1;
7967 	}
7968 
7969 	schedstat_inc(p->stats.nr_failed_migrations_hot);
7970 	return 0;
7971 }
7972 
7973 /*
7974  * detach_task() -- detach the task for the migration specified in env
7975  */
7976 static void detach_task(struct task_struct *p, struct lb_env *env)
7977 {
7978 	lockdep_assert_rq_held(env->src_rq);
7979 
7980 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7981 	set_task_cpu(p, env->dst_cpu);
7982 }
7983 
7984 /*
7985  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7986  * part of active balancing operations within "domain".
7987  *
7988  * Returns a task if successful and NULL otherwise.
7989  */
7990 static struct task_struct *detach_one_task(struct lb_env *env)
7991 {
7992 	struct task_struct *p;
7993 
7994 	lockdep_assert_rq_held(env->src_rq);
7995 
7996 	list_for_each_entry_reverse(p,
7997 			&env->src_rq->cfs_tasks, se.group_node) {
7998 		if (!can_migrate_task(p, env))
7999 			continue;
8000 
8001 		detach_task(p, env);
8002 
8003 		/*
8004 		 * Right now, this is only the second place where
8005 		 * lb_gained[env->idle] is updated (other is detach_tasks)
8006 		 * so we can safely collect stats here rather than
8007 		 * inside detach_tasks().
8008 		 */
8009 		schedstat_inc(env->sd->lb_gained[env->idle]);
8010 		return p;
8011 	}
8012 	return NULL;
8013 }
8014 
8015 static const unsigned int sched_nr_migrate_break = 32;
8016 
8017 /*
8018  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8019  * busiest_rq, as part of a balancing operation within domain "sd".
8020  *
8021  * Returns number of detached tasks if successful and 0 otherwise.
8022  */
8023 static int detach_tasks(struct lb_env *env)
8024 {
8025 	struct list_head *tasks = &env->src_rq->cfs_tasks;
8026 	unsigned long util, load;
8027 	struct task_struct *p;
8028 	int detached = 0;
8029 
8030 	lockdep_assert_rq_held(env->src_rq);
8031 
8032 	/*
8033 	 * Source run queue has been emptied by another CPU, clear
8034 	 * LBF_ALL_PINNED flag as we will not test any task.
8035 	 */
8036 	if (env->src_rq->nr_running <= 1) {
8037 		env->flags &= ~LBF_ALL_PINNED;
8038 		return 0;
8039 	}
8040 
8041 	if (env->imbalance <= 0)
8042 		return 0;
8043 
8044 	while (!list_empty(tasks)) {
8045 		/*
8046 		 * We don't want to steal all, otherwise we may be treated likewise,
8047 		 * which could at worst lead to a livelock crash.
8048 		 */
8049 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8050 			break;
8051 
8052 		p = list_last_entry(tasks, struct task_struct, se.group_node);
8053 
8054 		env->loop++;
8055 		/* We've more or less seen every task there is, call it quits */
8056 		if (env->loop > env->loop_max)
8057 			break;
8058 
8059 		/* take a breather every nr_migrate tasks */
8060 		if (env->loop > env->loop_break) {
8061 			env->loop_break += sched_nr_migrate_break;
8062 			env->flags |= LBF_NEED_BREAK;
8063 			break;
8064 		}
8065 
8066 		if (!can_migrate_task(p, env))
8067 			goto next;
8068 
8069 		switch (env->migration_type) {
8070 		case migrate_load:
8071 			/*
8072 			 * Depending of the number of CPUs and tasks and the
8073 			 * cgroup hierarchy, task_h_load() can return a null
8074 			 * value. Make sure that env->imbalance decreases
8075 			 * otherwise detach_tasks() will stop only after
8076 			 * detaching up to loop_max tasks.
8077 			 */
8078 			load = max_t(unsigned long, task_h_load(p), 1);
8079 
8080 			if (sched_feat(LB_MIN) &&
8081 			    load < 16 && !env->sd->nr_balance_failed)
8082 				goto next;
8083 
8084 			/*
8085 			 * Make sure that we don't migrate too much load.
8086 			 * Nevertheless, let relax the constraint if
8087 			 * scheduler fails to find a good waiting task to
8088 			 * migrate.
8089 			 */
8090 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8091 				goto next;
8092 
8093 			env->imbalance -= load;
8094 			break;
8095 
8096 		case migrate_util:
8097 			util = task_util_est(p);
8098 
8099 			if (util > env->imbalance)
8100 				goto next;
8101 
8102 			env->imbalance -= util;
8103 			break;
8104 
8105 		case migrate_task:
8106 			env->imbalance--;
8107 			break;
8108 
8109 		case migrate_misfit:
8110 			/* This is not a misfit task */
8111 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
8112 				goto next;
8113 
8114 			env->imbalance = 0;
8115 			break;
8116 		}
8117 
8118 		detach_task(p, env);
8119 		list_add(&p->se.group_node, &env->tasks);
8120 
8121 		detached++;
8122 
8123 #ifdef CONFIG_PREEMPTION
8124 		/*
8125 		 * NEWIDLE balancing is a source of latency, so preemptible
8126 		 * kernels will stop after the first task is detached to minimize
8127 		 * the critical section.
8128 		 */
8129 		if (env->idle == CPU_NEWLY_IDLE)
8130 			break;
8131 #endif
8132 
8133 		/*
8134 		 * We only want to steal up to the prescribed amount of
8135 		 * load/util/tasks.
8136 		 */
8137 		if (env->imbalance <= 0)
8138 			break;
8139 
8140 		continue;
8141 next:
8142 		list_move(&p->se.group_node, tasks);
8143 	}
8144 
8145 	/*
8146 	 * Right now, this is one of only two places we collect this stat
8147 	 * so we can safely collect detach_one_task() stats here rather
8148 	 * than inside detach_one_task().
8149 	 */
8150 	schedstat_add(env->sd->lb_gained[env->idle], detached);
8151 
8152 	return detached;
8153 }
8154 
8155 /*
8156  * attach_task() -- attach the task detached by detach_task() to its new rq.
8157  */
8158 static void attach_task(struct rq *rq, struct task_struct *p)
8159 {
8160 	lockdep_assert_rq_held(rq);
8161 
8162 	BUG_ON(task_rq(p) != rq);
8163 	activate_task(rq, p, ENQUEUE_NOCLOCK);
8164 	check_preempt_curr(rq, p, 0);
8165 }
8166 
8167 /*
8168  * attach_one_task() -- attaches the task returned from detach_one_task() to
8169  * its new rq.
8170  */
8171 static void attach_one_task(struct rq *rq, struct task_struct *p)
8172 {
8173 	struct rq_flags rf;
8174 
8175 	rq_lock(rq, &rf);
8176 	update_rq_clock(rq);
8177 	attach_task(rq, p);
8178 	rq_unlock(rq, &rf);
8179 }
8180 
8181 /*
8182  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8183  * new rq.
8184  */
8185 static void attach_tasks(struct lb_env *env)
8186 {
8187 	struct list_head *tasks = &env->tasks;
8188 	struct task_struct *p;
8189 	struct rq_flags rf;
8190 
8191 	rq_lock(env->dst_rq, &rf);
8192 	update_rq_clock(env->dst_rq);
8193 
8194 	while (!list_empty(tasks)) {
8195 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8196 		list_del_init(&p->se.group_node);
8197 
8198 		attach_task(env->dst_rq, p);
8199 	}
8200 
8201 	rq_unlock(env->dst_rq, &rf);
8202 }
8203 
8204 #ifdef CONFIG_NO_HZ_COMMON
8205 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8206 {
8207 	if (cfs_rq->avg.load_avg)
8208 		return true;
8209 
8210 	if (cfs_rq->avg.util_avg)
8211 		return true;
8212 
8213 	return false;
8214 }
8215 
8216 static inline bool others_have_blocked(struct rq *rq)
8217 {
8218 	if (READ_ONCE(rq->avg_rt.util_avg))
8219 		return true;
8220 
8221 	if (READ_ONCE(rq->avg_dl.util_avg))
8222 		return true;
8223 
8224 	if (thermal_load_avg(rq))
8225 		return true;
8226 
8227 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8228 	if (READ_ONCE(rq->avg_irq.util_avg))
8229 		return true;
8230 #endif
8231 
8232 	return false;
8233 }
8234 
8235 static inline void update_blocked_load_tick(struct rq *rq)
8236 {
8237 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8238 }
8239 
8240 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8241 {
8242 	if (!has_blocked)
8243 		rq->has_blocked_load = 0;
8244 }
8245 #else
8246 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8247 static inline bool others_have_blocked(struct rq *rq) { return false; }
8248 static inline void update_blocked_load_tick(struct rq *rq) {}
8249 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8250 #endif
8251 
8252 static bool __update_blocked_others(struct rq *rq, bool *done)
8253 {
8254 	const struct sched_class *curr_class;
8255 	u64 now = rq_clock_pelt(rq);
8256 	unsigned long thermal_pressure;
8257 	bool decayed;
8258 
8259 	/*
8260 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8261 	 * DL and IRQ signals have been updated before updating CFS.
8262 	 */
8263 	curr_class = rq->curr->sched_class;
8264 
8265 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8266 
8267 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8268 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8269 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8270 		  update_irq_load_avg(rq, 0);
8271 
8272 	if (others_have_blocked(rq))
8273 		*done = false;
8274 
8275 	return decayed;
8276 }
8277 
8278 #ifdef CONFIG_FAIR_GROUP_SCHED
8279 
8280 static bool __update_blocked_fair(struct rq *rq, bool *done)
8281 {
8282 	struct cfs_rq *cfs_rq, *pos;
8283 	bool decayed = false;
8284 	int cpu = cpu_of(rq);
8285 
8286 	/*
8287 	 * Iterates the task_group tree in a bottom up fashion, see
8288 	 * list_add_leaf_cfs_rq() for details.
8289 	 */
8290 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8291 		struct sched_entity *se;
8292 
8293 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8294 			update_tg_load_avg(cfs_rq);
8295 
8296 			if (cfs_rq->nr_running == 0)
8297 				update_idle_cfs_rq_clock_pelt(cfs_rq);
8298 
8299 			if (cfs_rq == &rq->cfs)
8300 				decayed = true;
8301 		}
8302 
8303 		/* Propagate pending load changes to the parent, if any: */
8304 		se = cfs_rq->tg->se[cpu];
8305 		if (se && !skip_blocked_update(se))
8306 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8307 
8308 		/*
8309 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8310 		 * decayed cfs_rqs linger on the list.
8311 		 */
8312 		if (cfs_rq_is_decayed(cfs_rq))
8313 			list_del_leaf_cfs_rq(cfs_rq);
8314 
8315 		/* Don't need periodic decay once load/util_avg are null */
8316 		if (cfs_rq_has_blocked(cfs_rq))
8317 			*done = false;
8318 	}
8319 
8320 	return decayed;
8321 }
8322 
8323 /*
8324  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8325  * This needs to be done in a top-down fashion because the load of a child
8326  * group is a fraction of its parents load.
8327  */
8328 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8329 {
8330 	struct rq *rq = rq_of(cfs_rq);
8331 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8332 	unsigned long now = jiffies;
8333 	unsigned long load;
8334 
8335 	if (cfs_rq->last_h_load_update == now)
8336 		return;
8337 
8338 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8339 	for_each_sched_entity(se) {
8340 		cfs_rq = cfs_rq_of(se);
8341 		WRITE_ONCE(cfs_rq->h_load_next, se);
8342 		if (cfs_rq->last_h_load_update == now)
8343 			break;
8344 	}
8345 
8346 	if (!se) {
8347 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8348 		cfs_rq->last_h_load_update = now;
8349 	}
8350 
8351 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8352 		load = cfs_rq->h_load;
8353 		load = div64_ul(load * se->avg.load_avg,
8354 			cfs_rq_load_avg(cfs_rq) + 1);
8355 		cfs_rq = group_cfs_rq(se);
8356 		cfs_rq->h_load = load;
8357 		cfs_rq->last_h_load_update = now;
8358 	}
8359 }
8360 
8361 static unsigned long task_h_load(struct task_struct *p)
8362 {
8363 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8364 
8365 	update_cfs_rq_h_load(cfs_rq);
8366 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8367 			cfs_rq_load_avg(cfs_rq) + 1);
8368 }
8369 #else
8370 static bool __update_blocked_fair(struct rq *rq, bool *done)
8371 {
8372 	struct cfs_rq *cfs_rq = &rq->cfs;
8373 	bool decayed;
8374 
8375 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8376 	if (cfs_rq_has_blocked(cfs_rq))
8377 		*done = false;
8378 
8379 	return decayed;
8380 }
8381 
8382 static unsigned long task_h_load(struct task_struct *p)
8383 {
8384 	return p->se.avg.load_avg;
8385 }
8386 #endif
8387 
8388 static void update_blocked_averages(int cpu)
8389 {
8390 	bool decayed = false, done = true;
8391 	struct rq *rq = cpu_rq(cpu);
8392 	struct rq_flags rf;
8393 
8394 	rq_lock_irqsave(rq, &rf);
8395 	update_blocked_load_tick(rq);
8396 	update_rq_clock(rq);
8397 
8398 	decayed |= __update_blocked_others(rq, &done);
8399 	decayed |= __update_blocked_fair(rq, &done);
8400 
8401 	update_blocked_load_status(rq, !done);
8402 	if (decayed)
8403 		cpufreq_update_util(rq, 0);
8404 	rq_unlock_irqrestore(rq, &rf);
8405 }
8406 
8407 /********** Helpers for find_busiest_group ************************/
8408 
8409 /*
8410  * sg_lb_stats - stats of a sched_group required for load_balancing
8411  */
8412 struct sg_lb_stats {
8413 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8414 	unsigned long group_load; /* Total load over the CPUs of the group */
8415 	unsigned long group_capacity;
8416 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8417 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8418 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8419 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8420 	unsigned int idle_cpus;
8421 	unsigned int group_weight;
8422 	enum group_type group_type;
8423 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8424 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8425 #ifdef CONFIG_NUMA_BALANCING
8426 	unsigned int nr_numa_running;
8427 	unsigned int nr_preferred_running;
8428 #endif
8429 };
8430 
8431 /*
8432  * sd_lb_stats - Structure to store the statistics of a sched_domain
8433  *		 during load balancing.
8434  */
8435 struct sd_lb_stats {
8436 	struct sched_group *busiest;	/* Busiest group in this sd */
8437 	struct sched_group *local;	/* Local group in this sd */
8438 	unsigned long total_load;	/* Total load of all groups in sd */
8439 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8440 	unsigned long avg_load;	/* Average load across all groups in sd */
8441 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8442 
8443 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8444 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8445 };
8446 
8447 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8448 {
8449 	/*
8450 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8451 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8452 	 * We must however set busiest_stat::group_type and
8453 	 * busiest_stat::idle_cpus to the worst busiest group because
8454 	 * update_sd_pick_busiest() reads these before assignment.
8455 	 */
8456 	*sds = (struct sd_lb_stats){
8457 		.busiest = NULL,
8458 		.local = NULL,
8459 		.total_load = 0UL,
8460 		.total_capacity = 0UL,
8461 		.busiest_stat = {
8462 			.idle_cpus = UINT_MAX,
8463 			.group_type = group_has_spare,
8464 		},
8465 	};
8466 }
8467 
8468 static unsigned long scale_rt_capacity(int cpu)
8469 {
8470 	struct rq *rq = cpu_rq(cpu);
8471 	unsigned long max = arch_scale_cpu_capacity(cpu);
8472 	unsigned long used, free;
8473 	unsigned long irq;
8474 
8475 	irq = cpu_util_irq(rq);
8476 
8477 	if (unlikely(irq >= max))
8478 		return 1;
8479 
8480 	/*
8481 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8482 	 * (running and not running) with weights 0 and 1024 respectively.
8483 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8484 	 * average uses the actual delta max capacity(load).
8485 	 */
8486 	used = READ_ONCE(rq->avg_rt.util_avg);
8487 	used += READ_ONCE(rq->avg_dl.util_avg);
8488 	used += thermal_load_avg(rq);
8489 
8490 	if (unlikely(used >= max))
8491 		return 1;
8492 
8493 	free = max - used;
8494 
8495 	return scale_irq_capacity(free, irq, max);
8496 }
8497 
8498 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8499 {
8500 	unsigned long capacity = scale_rt_capacity(cpu);
8501 	struct sched_group *sdg = sd->groups;
8502 
8503 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8504 
8505 	if (!capacity)
8506 		capacity = 1;
8507 
8508 	cpu_rq(cpu)->cpu_capacity = capacity;
8509 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8510 
8511 	sdg->sgc->capacity = capacity;
8512 	sdg->sgc->min_capacity = capacity;
8513 	sdg->sgc->max_capacity = capacity;
8514 }
8515 
8516 void update_group_capacity(struct sched_domain *sd, int cpu)
8517 {
8518 	struct sched_domain *child = sd->child;
8519 	struct sched_group *group, *sdg = sd->groups;
8520 	unsigned long capacity, min_capacity, max_capacity;
8521 	unsigned long interval;
8522 
8523 	interval = msecs_to_jiffies(sd->balance_interval);
8524 	interval = clamp(interval, 1UL, max_load_balance_interval);
8525 	sdg->sgc->next_update = jiffies + interval;
8526 
8527 	if (!child) {
8528 		update_cpu_capacity(sd, cpu);
8529 		return;
8530 	}
8531 
8532 	capacity = 0;
8533 	min_capacity = ULONG_MAX;
8534 	max_capacity = 0;
8535 
8536 	if (child->flags & SD_OVERLAP) {
8537 		/*
8538 		 * SD_OVERLAP domains cannot assume that child groups
8539 		 * span the current group.
8540 		 */
8541 
8542 		for_each_cpu(cpu, sched_group_span(sdg)) {
8543 			unsigned long cpu_cap = capacity_of(cpu);
8544 
8545 			capacity += cpu_cap;
8546 			min_capacity = min(cpu_cap, min_capacity);
8547 			max_capacity = max(cpu_cap, max_capacity);
8548 		}
8549 	} else  {
8550 		/*
8551 		 * !SD_OVERLAP domains can assume that child groups
8552 		 * span the current group.
8553 		 */
8554 
8555 		group = child->groups;
8556 		do {
8557 			struct sched_group_capacity *sgc = group->sgc;
8558 
8559 			capacity += sgc->capacity;
8560 			min_capacity = min(sgc->min_capacity, min_capacity);
8561 			max_capacity = max(sgc->max_capacity, max_capacity);
8562 			group = group->next;
8563 		} while (group != child->groups);
8564 	}
8565 
8566 	sdg->sgc->capacity = capacity;
8567 	sdg->sgc->min_capacity = min_capacity;
8568 	sdg->sgc->max_capacity = max_capacity;
8569 }
8570 
8571 /*
8572  * Check whether the capacity of the rq has been noticeably reduced by side
8573  * activity. The imbalance_pct is used for the threshold.
8574  * Return true is the capacity is reduced
8575  */
8576 static inline int
8577 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8578 {
8579 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8580 				(rq->cpu_capacity_orig * 100));
8581 }
8582 
8583 /*
8584  * Check whether a rq has a misfit task and if it looks like we can actually
8585  * help that task: we can migrate the task to a CPU of higher capacity, or
8586  * the task's current CPU is heavily pressured.
8587  */
8588 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8589 {
8590 	return rq->misfit_task_load &&
8591 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8592 		 check_cpu_capacity(rq, sd));
8593 }
8594 
8595 /*
8596  * Group imbalance indicates (and tries to solve) the problem where balancing
8597  * groups is inadequate due to ->cpus_ptr constraints.
8598  *
8599  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8600  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8601  * Something like:
8602  *
8603  *	{ 0 1 2 3 } { 4 5 6 7 }
8604  *	        *     * * *
8605  *
8606  * If we were to balance group-wise we'd place two tasks in the first group and
8607  * two tasks in the second group. Clearly this is undesired as it will overload
8608  * cpu 3 and leave one of the CPUs in the second group unused.
8609  *
8610  * The current solution to this issue is detecting the skew in the first group
8611  * by noticing the lower domain failed to reach balance and had difficulty
8612  * moving tasks due to affinity constraints.
8613  *
8614  * When this is so detected; this group becomes a candidate for busiest; see
8615  * update_sd_pick_busiest(). And calculate_imbalance() and
8616  * find_busiest_group() avoid some of the usual balance conditions to allow it
8617  * to create an effective group imbalance.
8618  *
8619  * This is a somewhat tricky proposition since the next run might not find the
8620  * group imbalance and decide the groups need to be balanced again. A most
8621  * subtle and fragile situation.
8622  */
8623 
8624 static inline int sg_imbalanced(struct sched_group *group)
8625 {
8626 	return group->sgc->imbalance;
8627 }
8628 
8629 /*
8630  * group_has_capacity returns true if the group has spare capacity that could
8631  * be used by some tasks.
8632  * We consider that a group has spare capacity if the number of task is
8633  * smaller than the number of CPUs or if the utilization is lower than the
8634  * available capacity for CFS tasks.
8635  * For the latter, we use a threshold to stabilize the state, to take into
8636  * account the variance of the tasks' load and to return true if the available
8637  * capacity in meaningful for the load balancer.
8638  * As an example, an available capacity of 1% can appear but it doesn't make
8639  * any benefit for the load balance.
8640  */
8641 static inline bool
8642 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8643 {
8644 	if (sgs->sum_nr_running < sgs->group_weight)
8645 		return true;
8646 
8647 	if ((sgs->group_capacity * imbalance_pct) <
8648 			(sgs->group_runnable * 100))
8649 		return false;
8650 
8651 	if ((sgs->group_capacity * 100) >
8652 			(sgs->group_util * imbalance_pct))
8653 		return true;
8654 
8655 	return false;
8656 }
8657 
8658 /*
8659  *  group_is_overloaded returns true if the group has more tasks than it can
8660  *  handle.
8661  *  group_is_overloaded is not equals to !group_has_capacity because a group
8662  *  with the exact right number of tasks, has no more spare capacity but is not
8663  *  overloaded so both group_has_capacity and group_is_overloaded return
8664  *  false.
8665  */
8666 static inline bool
8667 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8668 {
8669 	if (sgs->sum_nr_running <= sgs->group_weight)
8670 		return false;
8671 
8672 	if ((sgs->group_capacity * 100) <
8673 			(sgs->group_util * imbalance_pct))
8674 		return true;
8675 
8676 	if ((sgs->group_capacity * imbalance_pct) <
8677 			(sgs->group_runnable * 100))
8678 		return true;
8679 
8680 	return false;
8681 }
8682 
8683 static inline enum
8684 group_type group_classify(unsigned int imbalance_pct,
8685 			  struct sched_group *group,
8686 			  struct sg_lb_stats *sgs)
8687 {
8688 	if (group_is_overloaded(imbalance_pct, sgs))
8689 		return group_overloaded;
8690 
8691 	if (sg_imbalanced(group))
8692 		return group_imbalanced;
8693 
8694 	if (sgs->group_asym_packing)
8695 		return group_asym_packing;
8696 
8697 	if (sgs->group_misfit_task_load)
8698 		return group_misfit_task;
8699 
8700 	if (!group_has_capacity(imbalance_pct, sgs))
8701 		return group_fully_busy;
8702 
8703 	return group_has_spare;
8704 }
8705 
8706 /**
8707  * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
8708  * @dst_cpu:	Destination CPU of the load balancing
8709  * @sds:	Load-balancing data with statistics of the local group
8710  * @sgs:	Load-balancing statistics of the candidate busiest group
8711  * @sg:		The candidate busiest group
8712  *
8713  * Check the state of the SMT siblings of both @sds::local and @sg and decide
8714  * if @dst_cpu can pull tasks.
8715  *
8716  * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
8717  * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
8718  * only if @dst_cpu has higher priority.
8719  *
8720  * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
8721  * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
8722  * Bigger imbalances in the number of busy CPUs will be dealt with in
8723  * update_sd_pick_busiest().
8724  *
8725  * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
8726  * of @dst_cpu are idle and @sg has lower priority.
8727  *
8728  * Return: true if @dst_cpu can pull tasks, false otherwise.
8729  */
8730 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
8731 				    struct sg_lb_stats *sgs,
8732 				    struct sched_group *sg)
8733 {
8734 #ifdef CONFIG_SCHED_SMT
8735 	bool local_is_smt, sg_is_smt;
8736 	int sg_busy_cpus;
8737 
8738 	local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
8739 	sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
8740 
8741 	sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
8742 
8743 	if (!local_is_smt) {
8744 		/*
8745 		 * If we are here, @dst_cpu is idle and does not have SMT
8746 		 * siblings. Pull tasks if candidate group has two or more
8747 		 * busy CPUs.
8748 		 */
8749 		if (sg_busy_cpus >= 2) /* implies sg_is_smt */
8750 			return true;
8751 
8752 		/*
8753 		 * @dst_cpu does not have SMT siblings. @sg may have SMT
8754 		 * siblings and only one is busy. In such case, @dst_cpu
8755 		 * can help if it has higher priority and is idle (i.e.,
8756 		 * it has no running tasks).
8757 		 */
8758 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8759 	}
8760 
8761 	/* @dst_cpu has SMT siblings. */
8762 
8763 	if (sg_is_smt) {
8764 		int local_busy_cpus = sds->local->group_weight -
8765 				      sds->local_stat.idle_cpus;
8766 		int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
8767 
8768 		if (busy_cpus_delta == 1)
8769 			return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8770 
8771 		return false;
8772 	}
8773 
8774 	/*
8775 	 * @sg does not have SMT siblings. Ensure that @sds::local does not end
8776 	 * up with more than one busy SMT sibling and only pull tasks if there
8777 	 * are not busy CPUs (i.e., no CPU has running tasks).
8778 	 */
8779 	if (!sds->local_stat.sum_nr_running)
8780 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8781 
8782 	return false;
8783 #else
8784 	/* Always return false so that callers deal with non-SMT cases. */
8785 	return false;
8786 #endif
8787 }
8788 
8789 static inline bool
8790 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
8791 	   struct sched_group *group)
8792 {
8793 	/* Only do SMT checks if either local or candidate have SMT siblings */
8794 	if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
8795 	    (group->flags & SD_SHARE_CPUCAPACITY))
8796 		return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
8797 
8798 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
8799 }
8800 
8801 static inline bool
8802 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
8803 {
8804 	/*
8805 	 * When there is more than 1 task, the group_overloaded case already
8806 	 * takes care of cpu with reduced capacity
8807 	 */
8808 	if (rq->cfs.h_nr_running != 1)
8809 		return false;
8810 
8811 	return check_cpu_capacity(rq, sd);
8812 }
8813 
8814 /**
8815  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8816  * @env: The load balancing environment.
8817  * @sds: Load-balancing data with statistics of the local group.
8818  * @group: sched_group whose statistics are to be updated.
8819  * @sgs: variable to hold the statistics for this group.
8820  * @sg_status: Holds flag indicating the status of the sched_group
8821  */
8822 static inline void update_sg_lb_stats(struct lb_env *env,
8823 				      struct sd_lb_stats *sds,
8824 				      struct sched_group *group,
8825 				      struct sg_lb_stats *sgs,
8826 				      int *sg_status)
8827 {
8828 	int i, nr_running, local_group;
8829 
8830 	memset(sgs, 0, sizeof(*sgs));
8831 
8832 	local_group = group == sds->local;
8833 
8834 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8835 		struct rq *rq = cpu_rq(i);
8836 		unsigned long load = cpu_load(rq);
8837 
8838 		sgs->group_load += load;
8839 		sgs->group_util += cpu_util_cfs(i);
8840 		sgs->group_runnable += cpu_runnable(rq);
8841 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8842 
8843 		nr_running = rq->nr_running;
8844 		sgs->sum_nr_running += nr_running;
8845 
8846 		if (nr_running > 1)
8847 			*sg_status |= SG_OVERLOAD;
8848 
8849 		if (cpu_overutilized(i))
8850 			*sg_status |= SG_OVERUTILIZED;
8851 
8852 #ifdef CONFIG_NUMA_BALANCING
8853 		sgs->nr_numa_running += rq->nr_numa_running;
8854 		sgs->nr_preferred_running += rq->nr_preferred_running;
8855 #endif
8856 		/*
8857 		 * No need to call idle_cpu() if nr_running is not 0
8858 		 */
8859 		if (!nr_running && idle_cpu(i)) {
8860 			sgs->idle_cpus++;
8861 			/* Idle cpu can't have misfit task */
8862 			continue;
8863 		}
8864 
8865 		if (local_group)
8866 			continue;
8867 
8868 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
8869 			/* Check for a misfit task on the cpu */
8870 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
8871 				sgs->group_misfit_task_load = rq->misfit_task_load;
8872 				*sg_status |= SG_OVERLOAD;
8873 			}
8874 		} else if ((env->idle != CPU_NOT_IDLE) &&
8875 			   sched_reduced_capacity(rq, env->sd)) {
8876 			/* Check for a task running on a CPU with reduced capacity */
8877 			if (sgs->group_misfit_task_load < load)
8878 				sgs->group_misfit_task_load = load;
8879 		}
8880 	}
8881 
8882 	sgs->group_capacity = group->sgc->capacity;
8883 
8884 	sgs->group_weight = group->group_weight;
8885 
8886 	/* Check if dst CPU is idle and preferred to this group */
8887 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
8888 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
8889 	    sched_asym(env, sds, sgs, group)) {
8890 		sgs->group_asym_packing = 1;
8891 	}
8892 
8893 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8894 
8895 	/* Computing avg_load makes sense only when group is overloaded */
8896 	if (sgs->group_type == group_overloaded)
8897 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8898 				sgs->group_capacity;
8899 }
8900 
8901 /**
8902  * update_sd_pick_busiest - return 1 on busiest group
8903  * @env: The load balancing environment.
8904  * @sds: sched_domain statistics
8905  * @sg: sched_group candidate to be checked for being the busiest
8906  * @sgs: sched_group statistics
8907  *
8908  * Determine if @sg is a busier group than the previously selected
8909  * busiest group.
8910  *
8911  * Return: %true if @sg is a busier group than the previously selected
8912  * busiest group. %false otherwise.
8913  */
8914 static bool update_sd_pick_busiest(struct lb_env *env,
8915 				   struct sd_lb_stats *sds,
8916 				   struct sched_group *sg,
8917 				   struct sg_lb_stats *sgs)
8918 {
8919 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8920 
8921 	/* Make sure that there is at least one task to pull */
8922 	if (!sgs->sum_h_nr_running)
8923 		return false;
8924 
8925 	/*
8926 	 * Don't try to pull misfit tasks we can't help.
8927 	 * We can use max_capacity here as reduction in capacity on some
8928 	 * CPUs in the group should either be possible to resolve
8929 	 * internally or be covered by avg_load imbalance (eventually).
8930 	 */
8931 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8932 	    (sgs->group_type == group_misfit_task) &&
8933 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8934 	     sds->local_stat.group_type != group_has_spare))
8935 		return false;
8936 
8937 	if (sgs->group_type > busiest->group_type)
8938 		return true;
8939 
8940 	if (sgs->group_type < busiest->group_type)
8941 		return false;
8942 
8943 	/*
8944 	 * The candidate and the current busiest group are the same type of
8945 	 * group. Let check which one is the busiest according to the type.
8946 	 */
8947 
8948 	switch (sgs->group_type) {
8949 	case group_overloaded:
8950 		/* Select the overloaded group with highest avg_load. */
8951 		if (sgs->avg_load <= busiest->avg_load)
8952 			return false;
8953 		break;
8954 
8955 	case group_imbalanced:
8956 		/*
8957 		 * Select the 1st imbalanced group as we don't have any way to
8958 		 * choose one more than another.
8959 		 */
8960 		return false;
8961 
8962 	case group_asym_packing:
8963 		/* Prefer to move from lowest priority CPU's work */
8964 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8965 			return false;
8966 		break;
8967 
8968 	case group_misfit_task:
8969 		/*
8970 		 * If we have more than one misfit sg go with the biggest
8971 		 * misfit.
8972 		 */
8973 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8974 			return false;
8975 		break;
8976 
8977 	case group_fully_busy:
8978 		/*
8979 		 * Select the fully busy group with highest avg_load. In
8980 		 * theory, there is no need to pull task from such kind of
8981 		 * group because tasks have all compute capacity that they need
8982 		 * but we can still improve the overall throughput by reducing
8983 		 * contention when accessing shared HW resources.
8984 		 *
8985 		 * XXX for now avg_load is not computed and always 0 so we
8986 		 * select the 1st one.
8987 		 */
8988 		if (sgs->avg_load <= busiest->avg_load)
8989 			return false;
8990 		break;
8991 
8992 	case group_has_spare:
8993 		/*
8994 		 * Select not overloaded group with lowest number of idle cpus
8995 		 * and highest number of running tasks. We could also compare
8996 		 * the spare capacity which is more stable but it can end up
8997 		 * that the group has less spare capacity but finally more idle
8998 		 * CPUs which means less opportunity to pull tasks.
8999 		 */
9000 		if (sgs->idle_cpus > busiest->idle_cpus)
9001 			return false;
9002 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9003 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
9004 			return false;
9005 
9006 		break;
9007 	}
9008 
9009 	/*
9010 	 * Candidate sg has no more than one task per CPU and has higher
9011 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9012 	 * throughput. Maximize throughput, power/energy consequences are not
9013 	 * considered.
9014 	 */
9015 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9016 	    (sgs->group_type <= group_fully_busy) &&
9017 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
9018 		return false;
9019 
9020 	return true;
9021 }
9022 
9023 #ifdef CONFIG_NUMA_BALANCING
9024 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9025 {
9026 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
9027 		return regular;
9028 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
9029 		return remote;
9030 	return all;
9031 }
9032 
9033 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9034 {
9035 	if (rq->nr_running > rq->nr_numa_running)
9036 		return regular;
9037 	if (rq->nr_running > rq->nr_preferred_running)
9038 		return remote;
9039 	return all;
9040 }
9041 #else
9042 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9043 {
9044 	return all;
9045 }
9046 
9047 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9048 {
9049 	return regular;
9050 }
9051 #endif /* CONFIG_NUMA_BALANCING */
9052 
9053 
9054 struct sg_lb_stats;
9055 
9056 /*
9057  * task_running_on_cpu - return 1 if @p is running on @cpu.
9058  */
9059 
9060 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9061 {
9062 	/* Task has no contribution or is new */
9063 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
9064 		return 0;
9065 
9066 	if (task_on_rq_queued(p))
9067 		return 1;
9068 
9069 	return 0;
9070 }
9071 
9072 /**
9073  * idle_cpu_without - would a given CPU be idle without p ?
9074  * @cpu: the processor on which idleness is tested.
9075  * @p: task which should be ignored.
9076  *
9077  * Return: 1 if the CPU would be idle. 0 otherwise.
9078  */
9079 static int idle_cpu_without(int cpu, struct task_struct *p)
9080 {
9081 	struct rq *rq = cpu_rq(cpu);
9082 
9083 	if (rq->curr != rq->idle && rq->curr != p)
9084 		return 0;
9085 
9086 	/*
9087 	 * rq->nr_running can't be used but an updated version without the
9088 	 * impact of p on cpu must be used instead. The updated nr_running
9089 	 * be computed and tested before calling idle_cpu_without().
9090 	 */
9091 
9092 #ifdef CONFIG_SMP
9093 	if (rq->ttwu_pending)
9094 		return 0;
9095 #endif
9096 
9097 	return 1;
9098 }
9099 
9100 /*
9101  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
9102  * @sd: The sched_domain level to look for idlest group.
9103  * @group: sched_group whose statistics are to be updated.
9104  * @sgs: variable to hold the statistics for this group.
9105  * @p: The task for which we look for the idlest group/CPU.
9106  */
9107 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
9108 					  struct sched_group *group,
9109 					  struct sg_lb_stats *sgs,
9110 					  struct task_struct *p)
9111 {
9112 	int i, nr_running;
9113 
9114 	memset(sgs, 0, sizeof(*sgs));
9115 
9116 	for_each_cpu(i, sched_group_span(group)) {
9117 		struct rq *rq = cpu_rq(i);
9118 		unsigned int local;
9119 
9120 		sgs->group_load += cpu_load_without(rq, p);
9121 		sgs->group_util += cpu_util_without(i, p);
9122 		sgs->group_runnable += cpu_runnable_without(rq, p);
9123 		local = task_running_on_cpu(i, p);
9124 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9125 
9126 		nr_running = rq->nr_running - local;
9127 		sgs->sum_nr_running += nr_running;
9128 
9129 		/*
9130 		 * No need to call idle_cpu_without() if nr_running is not 0
9131 		 */
9132 		if (!nr_running && idle_cpu_without(i, p))
9133 			sgs->idle_cpus++;
9134 
9135 	}
9136 
9137 	/* Check if task fits in the group */
9138 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
9139 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
9140 		sgs->group_misfit_task_load = 1;
9141 	}
9142 
9143 	sgs->group_capacity = group->sgc->capacity;
9144 
9145 	sgs->group_weight = group->group_weight;
9146 
9147 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9148 
9149 	/*
9150 	 * Computing avg_load makes sense only when group is fully busy or
9151 	 * overloaded
9152 	 */
9153 	if (sgs->group_type == group_fully_busy ||
9154 		sgs->group_type == group_overloaded)
9155 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9156 				sgs->group_capacity;
9157 }
9158 
9159 static bool update_pick_idlest(struct sched_group *idlest,
9160 			       struct sg_lb_stats *idlest_sgs,
9161 			       struct sched_group *group,
9162 			       struct sg_lb_stats *sgs)
9163 {
9164 	if (sgs->group_type < idlest_sgs->group_type)
9165 		return true;
9166 
9167 	if (sgs->group_type > idlest_sgs->group_type)
9168 		return false;
9169 
9170 	/*
9171 	 * The candidate and the current idlest group are the same type of
9172 	 * group. Let check which one is the idlest according to the type.
9173 	 */
9174 
9175 	switch (sgs->group_type) {
9176 	case group_overloaded:
9177 	case group_fully_busy:
9178 		/* Select the group with lowest avg_load. */
9179 		if (idlest_sgs->avg_load <= sgs->avg_load)
9180 			return false;
9181 		break;
9182 
9183 	case group_imbalanced:
9184 	case group_asym_packing:
9185 		/* Those types are not used in the slow wakeup path */
9186 		return false;
9187 
9188 	case group_misfit_task:
9189 		/* Select group with the highest max capacity */
9190 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9191 			return false;
9192 		break;
9193 
9194 	case group_has_spare:
9195 		/* Select group with most idle CPUs */
9196 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9197 			return false;
9198 
9199 		/* Select group with lowest group_util */
9200 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9201 			idlest_sgs->group_util <= sgs->group_util)
9202 			return false;
9203 
9204 		break;
9205 	}
9206 
9207 	return true;
9208 }
9209 
9210 /*
9211  * find_idlest_group() finds and returns the least busy CPU group within the
9212  * domain.
9213  *
9214  * Assumes p is allowed on at least one CPU in sd.
9215  */
9216 static struct sched_group *
9217 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9218 {
9219 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9220 	struct sg_lb_stats local_sgs, tmp_sgs;
9221 	struct sg_lb_stats *sgs;
9222 	unsigned long imbalance;
9223 	struct sg_lb_stats idlest_sgs = {
9224 			.avg_load = UINT_MAX,
9225 			.group_type = group_overloaded,
9226 	};
9227 
9228 	do {
9229 		int local_group;
9230 
9231 		/* Skip over this group if it has no CPUs allowed */
9232 		if (!cpumask_intersects(sched_group_span(group),
9233 					p->cpus_ptr))
9234 			continue;
9235 
9236 		/* Skip over this group if no cookie matched */
9237 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9238 			continue;
9239 
9240 		local_group = cpumask_test_cpu(this_cpu,
9241 					       sched_group_span(group));
9242 
9243 		if (local_group) {
9244 			sgs = &local_sgs;
9245 			local = group;
9246 		} else {
9247 			sgs = &tmp_sgs;
9248 		}
9249 
9250 		update_sg_wakeup_stats(sd, group, sgs, p);
9251 
9252 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9253 			idlest = group;
9254 			idlest_sgs = *sgs;
9255 		}
9256 
9257 	} while (group = group->next, group != sd->groups);
9258 
9259 
9260 	/* There is no idlest group to push tasks to */
9261 	if (!idlest)
9262 		return NULL;
9263 
9264 	/* The local group has been skipped because of CPU affinity */
9265 	if (!local)
9266 		return idlest;
9267 
9268 	/*
9269 	 * If the local group is idler than the selected idlest group
9270 	 * don't try and push the task.
9271 	 */
9272 	if (local_sgs.group_type < idlest_sgs.group_type)
9273 		return NULL;
9274 
9275 	/*
9276 	 * If the local group is busier than the selected idlest group
9277 	 * try and push the task.
9278 	 */
9279 	if (local_sgs.group_type > idlest_sgs.group_type)
9280 		return idlest;
9281 
9282 	switch (local_sgs.group_type) {
9283 	case group_overloaded:
9284 	case group_fully_busy:
9285 
9286 		/* Calculate allowed imbalance based on load */
9287 		imbalance = scale_load_down(NICE_0_LOAD) *
9288 				(sd->imbalance_pct-100) / 100;
9289 
9290 		/*
9291 		 * When comparing groups across NUMA domains, it's possible for
9292 		 * the local domain to be very lightly loaded relative to the
9293 		 * remote domains but "imbalance" skews the comparison making
9294 		 * remote CPUs look much more favourable. When considering
9295 		 * cross-domain, add imbalance to the load on the remote node
9296 		 * and consider staying local.
9297 		 */
9298 
9299 		if ((sd->flags & SD_NUMA) &&
9300 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9301 			return NULL;
9302 
9303 		/*
9304 		 * If the local group is less loaded than the selected
9305 		 * idlest group don't try and push any tasks.
9306 		 */
9307 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9308 			return NULL;
9309 
9310 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9311 			return NULL;
9312 		break;
9313 
9314 	case group_imbalanced:
9315 	case group_asym_packing:
9316 		/* Those type are not used in the slow wakeup path */
9317 		return NULL;
9318 
9319 	case group_misfit_task:
9320 		/* Select group with the highest max capacity */
9321 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9322 			return NULL;
9323 		break;
9324 
9325 	case group_has_spare:
9326 #ifdef CONFIG_NUMA
9327 		if (sd->flags & SD_NUMA) {
9328 			int imb_numa_nr = sd->imb_numa_nr;
9329 #ifdef CONFIG_NUMA_BALANCING
9330 			int idlest_cpu;
9331 			/*
9332 			 * If there is spare capacity at NUMA, try to select
9333 			 * the preferred node
9334 			 */
9335 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9336 				return NULL;
9337 
9338 			idlest_cpu = cpumask_first(sched_group_span(idlest));
9339 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9340 				return idlest;
9341 #endif /* CONFIG_NUMA_BALANCING */
9342 			/*
9343 			 * Otherwise, keep the task close to the wakeup source
9344 			 * and improve locality if the number of running tasks
9345 			 * would remain below threshold where an imbalance is
9346 			 * allowed while accounting for the possibility the
9347 			 * task is pinned to a subset of CPUs. If there is a
9348 			 * real need of migration, periodic load balance will
9349 			 * take care of it.
9350 			 */
9351 			if (p->nr_cpus_allowed != NR_CPUS) {
9352 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
9353 
9354 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
9355 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
9356 			}
9357 
9358 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
9359 			if (!adjust_numa_imbalance(imbalance,
9360 						   local_sgs.sum_nr_running + 1,
9361 						   imb_numa_nr)) {
9362 				return NULL;
9363 			}
9364 		}
9365 #endif /* CONFIG_NUMA */
9366 
9367 		/*
9368 		 * Select group with highest number of idle CPUs. We could also
9369 		 * compare the utilization which is more stable but it can end
9370 		 * up that the group has less spare capacity but finally more
9371 		 * idle CPUs which means more opportunity to run task.
9372 		 */
9373 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9374 			return NULL;
9375 		break;
9376 	}
9377 
9378 	return idlest;
9379 }
9380 
9381 static void update_idle_cpu_scan(struct lb_env *env,
9382 				 unsigned long sum_util)
9383 {
9384 	struct sched_domain_shared *sd_share;
9385 	int llc_weight, pct;
9386 	u64 x, y, tmp;
9387 	/*
9388 	 * Update the number of CPUs to scan in LLC domain, which could
9389 	 * be used as a hint in select_idle_cpu(). The update of sd_share
9390 	 * could be expensive because it is within a shared cache line.
9391 	 * So the write of this hint only occurs during periodic load
9392 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
9393 	 * can fire way more frequently than the former.
9394 	 */
9395 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
9396 		return;
9397 
9398 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
9399 	if (env->sd->span_weight != llc_weight)
9400 		return;
9401 
9402 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
9403 	if (!sd_share)
9404 		return;
9405 
9406 	/*
9407 	 * The number of CPUs to search drops as sum_util increases, when
9408 	 * sum_util hits 85% or above, the scan stops.
9409 	 * The reason to choose 85% as the threshold is because this is the
9410 	 * imbalance_pct(117) when a LLC sched group is overloaded.
9411 	 *
9412 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
9413 	 * and y'= y / SCHED_CAPACITY_SCALE
9414 	 *
9415 	 * x is the ratio of sum_util compared to the CPU capacity:
9416 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
9417 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
9418 	 * and the number of CPUs to scan is calculated by:
9419 	 *
9420 	 * nr_scan = llc_weight * y'                                    [2]
9421 	 *
9422 	 * When x hits the threshold of overloaded, AKA, when
9423 	 * x = 100 / pct, y drops to 0. According to [1],
9424 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
9425 	 *
9426 	 * Scale x by SCHED_CAPACITY_SCALE:
9427 	 * x' = sum_util / llc_weight;                                  [3]
9428 	 *
9429 	 * and finally [1] becomes:
9430 	 * y = SCHED_CAPACITY_SCALE -
9431 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
9432 	 *
9433 	 */
9434 	/* equation [3] */
9435 	x = sum_util;
9436 	do_div(x, llc_weight);
9437 
9438 	/* equation [4] */
9439 	pct = env->sd->imbalance_pct;
9440 	tmp = x * x * pct * pct;
9441 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
9442 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
9443 	y = SCHED_CAPACITY_SCALE - tmp;
9444 
9445 	/* equation [2] */
9446 	y *= llc_weight;
9447 	do_div(y, SCHED_CAPACITY_SCALE);
9448 	if ((int)y != sd_share->nr_idle_scan)
9449 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
9450 }
9451 
9452 /**
9453  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9454  * @env: The load balancing environment.
9455  * @sds: variable to hold the statistics for this sched_domain.
9456  */
9457 
9458 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9459 {
9460 	struct sched_domain *child = env->sd->child;
9461 	struct sched_group *sg = env->sd->groups;
9462 	struct sg_lb_stats *local = &sds->local_stat;
9463 	struct sg_lb_stats tmp_sgs;
9464 	unsigned long sum_util = 0;
9465 	int sg_status = 0;
9466 
9467 	do {
9468 		struct sg_lb_stats *sgs = &tmp_sgs;
9469 		int local_group;
9470 
9471 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9472 		if (local_group) {
9473 			sds->local = sg;
9474 			sgs = local;
9475 
9476 			if (env->idle != CPU_NEWLY_IDLE ||
9477 			    time_after_eq(jiffies, sg->sgc->next_update))
9478 				update_group_capacity(env->sd, env->dst_cpu);
9479 		}
9480 
9481 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
9482 
9483 		if (local_group)
9484 			goto next_group;
9485 
9486 
9487 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9488 			sds->busiest = sg;
9489 			sds->busiest_stat = *sgs;
9490 		}
9491 
9492 next_group:
9493 		/* Now, start updating sd_lb_stats */
9494 		sds->total_load += sgs->group_load;
9495 		sds->total_capacity += sgs->group_capacity;
9496 
9497 		sum_util += sgs->group_util;
9498 		sg = sg->next;
9499 	} while (sg != env->sd->groups);
9500 
9501 	/* Tag domain that child domain prefers tasks go to siblings first */
9502 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9503 
9504 
9505 	if (env->sd->flags & SD_NUMA)
9506 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9507 
9508 	if (!env->sd->parent) {
9509 		struct root_domain *rd = env->dst_rq->rd;
9510 
9511 		/* update overload indicator if we are at root domain */
9512 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9513 
9514 		/* Update over-utilization (tipping point, U >= 0) indicator */
9515 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9516 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9517 	} else if (sg_status & SG_OVERUTILIZED) {
9518 		struct root_domain *rd = env->dst_rq->rd;
9519 
9520 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9521 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9522 	}
9523 
9524 	update_idle_cpu_scan(env, sum_util);
9525 }
9526 
9527 /**
9528  * calculate_imbalance - Calculate the amount of imbalance present within the
9529  *			 groups of a given sched_domain during load balance.
9530  * @env: load balance environment
9531  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9532  */
9533 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9534 {
9535 	struct sg_lb_stats *local, *busiest;
9536 
9537 	local = &sds->local_stat;
9538 	busiest = &sds->busiest_stat;
9539 
9540 	if (busiest->group_type == group_misfit_task) {
9541 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9542 			/* Set imbalance to allow misfit tasks to be balanced. */
9543 			env->migration_type = migrate_misfit;
9544 			env->imbalance = 1;
9545 		} else {
9546 			/*
9547 			 * Set load imbalance to allow moving task from cpu
9548 			 * with reduced capacity.
9549 			 */
9550 			env->migration_type = migrate_load;
9551 			env->imbalance = busiest->group_misfit_task_load;
9552 		}
9553 		return;
9554 	}
9555 
9556 	if (busiest->group_type == group_asym_packing) {
9557 		/*
9558 		 * In case of asym capacity, we will try to migrate all load to
9559 		 * the preferred CPU.
9560 		 */
9561 		env->migration_type = migrate_task;
9562 		env->imbalance = busiest->sum_h_nr_running;
9563 		return;
9564 	}
9565 
9566 	if (busiest->group_type == group_imbalanced) {
9567 		/*
9568 		 * In the group_imb case we cannot rely on group-wide averages
9569 		 * to ensure CPU-load equilibrium, try to move any task to fix
9570 		 * the imbalance. The next load balance will take care of
9571 		 * balancing back the system.
9572 		 */
9573 		env->migration_type = migrate_task;
9574 		env->imbalance = 1;
9575 		return;
9576 	}
9577 
9578 	/*
9579 	 * Try to use spare capacity of local group without overloading it or
9580 	 * emptying busiest.
9581 	 */
9582 	if (local->group_type == group_has_spare) {
9583 		if ((busiest->group_type > group_fully_busy) &&
9584 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9585 			/*
9586 			 * If busiest is overloaded, try to fill spare
9587 			 * capacity. This might end up creating spare capacity
9588 			 * in busiest or busiest still being overloaded but
9589 			 * there is no simple way to directly compute the
9590 			 * amount of load to migrate in order to balance the
9591 			 * system.
9592 			 */
9593 			env->migration_type = migrate_util;
9594 			env->imbalance = max(local->group_capacity, local->group_util) -
9595 					 local->group_util;
9596 
9597 			/*
9598 			 * In some cases, the group's utilization is max or even
9599 			 * higher than capacity because of migrations but the
9600 			 * local CPU is (newly) idle. There is at least one
9601 			 * waiting task in this overloaded busiest group. Let's
9602 			 * try to pull it.
9603 			 */
9604 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9605 				env->migration_type = migrate_task;
9606 				env->imbalance = 1;
9607 			}
9608 
9609 			return;
9610 		}
9611 
9612 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9613 			unsigned int nr_diff = busiest->sum_nr_running;
9614 			/*
9615 			 * When prefer sibling, evenly spread running tasks on
9616 			 * groups.
9617 			 */
9618 			env->migration_type = migrate_task;
9619 			lsub_positive(&nr_diff, local->sum_nr_running);
9620 			env->imbalance = nr_diff;
9621 		} else {
9622 
9623 			/*
9624 			 * If there is no overload, we just want to even the number of
9625 			 * idle cpus.
9626 			 */
9627 			env->migration_type = migrate_task;
9628 			env->imbalance = max_t(long, 0,
9629 					       (local->idle_cpus - busiest->idle_cpus));
9630 		}
9631 
9632 #ifdef CONFIG_NUMA
9633 		/* Consider allowing a small imbalance between NUMA groups */
9634 		if (env->sd->flags & SD_NUMA) {
9635 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9636 							       local->sum_nr_running + 1,
9637 							       env->sd->imb_numa_nr);
9638 		}
9639 #endif
9640 
9641 		/* Number of tasks to move to restore balance */
9642 		env->imbalance >>= 1;
9643 
9644 		return;
9645 	}
9646 
9647 	/*
9648 	 * Local is fully busy but has to take more load to relieve the
9649 	 * busiest group
9650 	 */
9651 	if (local->group_type < group_overloaded) {
9652 		/*
9653 		 * Local will become overloaded so the avg_load metrics are
9654 		 * finally needed.
9655 		 */
9656 
9657 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9658 				  local->group_capacity;
9659 
9660 		/*
9661 		 * If the local group is more loaded than the selected
9662 		 * busiest group don't try to pull any tasks.
9663 		 */
9664 		if (local->avg_load >= busiest->avg_load) {
9665 			env->imbalance = 0;
9666 			return;
9667 		}
9668 
9669 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9670 				sds->total_capacity;
9671 	}
9672 
9673 	/*
9674 	 * Both group are or will become overloaded and we're trying to get all
9675 	 * the CPUs to the average_load, so we don't want to push ourselves
9676 	 * above the average load, nor do we wish to reduce the max loaded CPU
9677 	 * below the average load. At the same time, we also don't want to
9678 	 * reduce the group load below the group capacity. Thus we look for
9679 	 * the minimum possible imbalance.
9680 	 */
9681 	env->migration_type = migrate_load;
9682 	env->imbalance = min(
9683 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9684 		(sds->avg_load - local->avg_load) * local->group_capacity
9685 	) / SCHED_CAPACITY_SCALE;
9686 }
9687 
9688 /******* find_busiest_group() helpers end here *********************/
9689 
9690 /*
9691  * Decision matrix according to the local and busiest group type:
9692  *
9693  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9694  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9695  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9696  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
9697  * asym_packing     force     force      N/A    N/A  force      force
9698  * imbalanced       force     force      N/A    N/A  force      force
9699  * overloaded       force     force      N/A    N/A  force      avg_load
9700  *
9701  * N/A :      Not Applicable because already filtered while updating
9702  *            statistics.
9703  * balanced : The system is balanced for these 2 groups.
9704  * force :    Calculate the imbalance as load migration is probably needed.
9705  * avg_load : Only if imbalance is significant enough.
9706  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9707  *            different in groups.
9708  */
9709 
9710 /**
9711  * find_busiest_group - Returns the busiest group within the sched_domain
9712  * if there is an imbalance.
9713  * @env: The load balancing environment.
9714  *
9715  * Also calculates the amount of runnable load which should be moved
9716  * to restore balance.
9717  *
9718  * Return:	- The busiest group if imbalance exists.
9719  */
9720 static struct sched_group *find_busiest_group(struct lb_env *env)
9721 {
9722 	struct sg_lb_stats *local, *busiest;
9723 	struct sd_lb_stats sds;
9724 
9725 	init_sd_lb_stats(&sds);
9726 
9727 	/*
9728 	 * Compute the various statistics relevant for load balancing at
9729 	 * this level.
9730 	 */
9731 	update_sd_lb_stats(env, &sds);
9732 
9733 	if (sched_energy_enabled()) {
9734 		struct root_domain *rd = env->dst_rq->rd;
9735 
9736 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9737 			goto out_balanced;
9738 	}
9739 
9740 	local = &sds.local_stat;
9741 	busiest = &sds.busiest_stat;
9742 
9743 	/* There is no busy sibling group to pull tasks from */
9744 	if (!sds.busiest)
9745 		goto out_balanced;
9746 
9747 	/* Misfit tasks should be dealt with regardless of the avg load */
9748 	if (busiest->group_type == group_misfit_task)
9749 		goto force_balance;
9750 
9751 	/* ASYM feature bypasses nice load balance check */
9752 	if (busiest->group_type == group_asym_packing)
9753 		goto force_balance;
9754 
9755 	/*
9756 	 * If the busiest group is imbalanced the below checks don't
9757 	 * work because they assume all things are equal, which typically
9758 	 * isn't true due to cpus_ptr constraints and the like.
9759 	 */
9760 	if (busiest->group_type == group_imbalanced)
9761 		goto force_balance;
9762 
9763 	/*
9764 	 * If the local group is busier than the selected busiest group
9765 	 * don't try and pull any tasks.
9766 	 */
9767 	if (local->group_type > busiest->group_type)
9768 		goto out_balanced;
9769 
9770 	/*
9771 	 * When groups are overloaded, use the avg_load to ensure fairness
9772 	 * between tasks.
9773 	 */
9774 	if (local->group_type == group_overloaded) {
9775 		/*
9776 		 * If the local group is more loaded than the selected
9777 		 * busiest group don't try to pull any tasks.
9778 		 */
9779 		if (local->avg_load >= busiest->avg_load)
9780 			goto out_balanced;
9781 
9782 		/* XXX broken for overlapping NUMA groups */
9783 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9784 				sds.total_capacity;
9785 
9786 		/*
9787 		 * Don't pull any tasks if this group is already above the
9788 		 * domain average load.
9789 		 */
9790 		if (local->avg_load >= sds.avg_load)
9791 			goto out_balanced;
9792 
9793 		/*
9794 		 * If the busiest group is more loaded, use imbalance_pct to be
9795 		 * conservative.
9796 		 */
9797 		if (100 * busiest->avg_load <=
9798 				env->sd->imbalance_pct * local->avg_load)
9799 			goto out_balanced;
9800 	}
9801 
9802 	/* Try to move all excess tasks to child's sibling domain */
9803 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9804 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9805 		goto force_balance;
9806 
9807 	if (busiest->group_type != group_overloaded) {
9808 		if (env->idle == CPU_NOT_IDLE)
9809 			/*
9810 			 * If the busiest group is not overloaded (and as a
9811 			 * result the local one too) but this CPU is already
9812 			 * busy, let another idle CPU try to pull task.
9813 			 */
9814 			goto out_balanced;
9815 
9816 		if (busiest->group_weight > 1 &&
9817 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9818 			/*
9819 			 * If the busiest group is not overloaded
9820 			 * and there is no imbalance between this and busiest
9821 			 * group wrt idle CPUs, it is balanced. The imbalance
9822 			 * becomes significant if the diff is greater than 1
9823 			 * otherwise we might end up to just move the imbalance
9824 			 * on another group. Of course this applies only if
9825 			 * there is more than 1 CPU per group.
9826 			 */
9827 			goto out_balanced;
9828 
9829 		if (busiest->sum_h_nr_running == 1)
9830 			/*
9831 			 * busiest doesn't have any tasks waiting to run
9832 			 */
9833 			goto out_balanced;
9834 	}
9835 
9836 force_balance:
9837 	/* Looks like there is an imbalance. Compute it */
9838 	calculate_imbalance(env, &sds);
9839 	return env->imbalance ? sds.busiest : NULL;
9840 
9841 out_balanced:
9842 	env->imbalance = 0;
9843 	return NULL;
9844 }
9845 
9846 /*
9847  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9848  */
9849 static struct rq *find_busiest_queue(struct lb_env *env,
9850 				     struct sched_group *group)
9851 {
9852 	struct rq *busiest = NULL, *rq;
9853 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9854 	unsigned int busiest_nr = 0;
9855 	int i;
9856 
9857 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9858 		unsigned long capacity, load, util;
9859 		unsigned int nr_running;
9860 		enum fbq_type rt;
9861 
9862 		rq = cpu_rq(i);
9863 		rt = fbq_classify_rq(rq);
9864 
9865 		/*
9866 		 * We classify groups/runqueues into three groups:
9867 		 *  - regular: there are !numa tasks
9868 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9869 		 *  - all:     there is no distinction
9870 		 *
9871 		 * In order to avoid migrating ideally placed numa tasks,
9872 		 * ignore those when there's better options.
9873 		 *
9874 		 * If we ignore the actual busiest queue to migrate another
9875 		 * task, the next balance pass can still reduce the busiest
9876 		 * queue by moving tasks around inside the node.
9877 		 *
9878 		 * If we cannot move enough load due to this classification
9879 		 * the next pass will adjust the group classification and
9880 		 * allow migration of more tasks.
9881 		 *
9882 		 * Both cases only affect the total convergence complexity.
9883 		 */
9884 		if (rt > env->fbq_type)
9885 			continue;
9886 
9887 		nr_running = rq->cfs.h_nr_running;
9888 		if (!nr_running)
9889 			continue;
9890 
9891 		capacity = capacity_of(i);
9892 
9893 		/*
9894 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9895 		 * eventually lead to active_balancing high->low capacity.
9896 		 * Higher per-CPU capacity is considered better than balancing
9897 		 * average load.
9898 		 */
9899 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9900 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9901 		    nr_running == 1)
9902 			continue;
9903 
9904 		/* Make sure we only pull tasks from a CPU of lower priority */
9905 		if ((env->sd->flags & SD_ASYM_PACKING) &&
9906 		    sched_asym_prefer(i, env->dst_cpu) &&
9907 		    nr_running == 1)
9908 			continue;
9909 
9910 		switch (env->migration_type) {
9911 		case migrate_load:
9912 			/*
9913 			 * When comparing with load imbalance, use cpu_load()
9914 			 * which is not scaled with the CPU capacity.
9915 			 */
9916 			load = cpu_load(rq);
9917 
9918 			if (nr_running == 1 && load > env->imbalance &&
9919 			    !check_cpu_capacity(rq, env->sd))
9920 				break;
9921 
9922 			/*
9923 			 * For the load comparisons with the other CPUs,
9924 			 * consider the cpu_load() scaled with the CPU
9925 			 * capacity, so that the load can be moved away
9926 			 * from the CPU that is potentially running at a
9927 			 * lower capacity.
9928 			 *
9929 			 * Thus we're looking for max(load_i / capacity_i),
9930 			 * crosswise multiplication to rid ourselves of the
9931 			 * division works out to:
9932 			 * load_i * capacity_j > load_j * capacity_i;
9933 			 * where j is our previous maximum.
9934 			 */
9935 			if (load * busiest_capacity > busiest_load * capacity) {
9936 				busiest_load = load;
9937 				busiest_capacity = capacity;
9938 				busiest = rq;
9939 			}
9940 			break;
9941 
9942 		case migrate_util:
9943 			util = cpu_util_cfs(i);
9944 
9945 			/*
9946 			 * Don't try to pull utilization from a CPU with one
9947 			 * running task. Whatever its utilization, we will fail
9948 			 * detach the task.
9949 			 */
9950 			if (nr_running <= 1)
9951 				continue;
9952 
9953 			if (busiest_util < util) {
9954 				busiest_util = util;
9955 				busiest = rq;
9956 			}
9957 			break;
9958 
9959 		case migrate_task:
9960 			if (busiest_nr < nr_running) {
9961 				busiest_nr = nr_running;
9962 				busiest = rq;
9963 			}
9964 			break;
9965 
9966 		case migrate_misfit:
9967 			/*
9968 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9969 			 * simply seek the "biggest" misfit task.
9970 			 */
9971 			if (rq->misfit_task_load > busiest_load) {
9972 				busiest_load = rq->misfit_task_load;
9973 				busiest = rq;
9974 			}
9975 
9976 			break;
9977 
9978 		}
9979 	}
9980 
9981 	return busiest;
9982 }
9983 
9984 /*
9985  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9986  * so long as it is large enough.
9987  */
9988 #define MAX_PINNED_INTERVAL	512
9989 
9990 static inline bool
9991 asym_active_balance(struct lb_env *env)
9992 {
9993 	/*
9994 	 * ASYM_PACKING needs to force migrate tasks from busy but
9995 	 * lower priority CPUs in order to pack all tasks in the
9996 	 * highest priority CPUs.
9997 	 */
9998 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9999 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
10000 }
10001 
10002 static inline bool
10003 imbalanced_active_balance(struct lb_env *env)
10004 {
10005 	struct sched_domain *sd = env->sd;
10006 
10007 	/*
10008 	 * The imbalanced case includes the case of pinned tasks preventing a fair
10009 	 * distribution of the load on the system but also the even distribution of the
10010 	 * threads on a system with spare capacity
10011 	 */
10012 	if ((env->migration_type == migrate_task) &&
10013 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
10014 		return 1;
10015 
10016 	return 0;
10017 }
10018 
10019 static int need_active_balance(struct lb_env *env)
10020 {
10021 	struct sched_domain *sd = env->sd;
10022 
10023 	if (asym_active_balance(env))
10024 		return 1;
10025 
10026 	if (imbalanced_active_balance(env))
10027 		return 1;
10028 
10029 	/*
10030 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10031 	 * It's worth migrating the task if the src_cpu's capacity is reduced
10032 	 * because of other sched_class or IRQs if more capacity stays
10033 	 * available on dst_cpu.
10034 	 */
10035 	if ((env->idle != CPU_NOT_IDLE) &&
10036 	    (env->src_rq->cfs.h_nr_running == 1)) {
10037 		if ((check_cpu_capacity(env->src_rq, sd)) &&
10038 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10039 			return 1;
10040 	}
10041 
10042 	if (env->migration_type == migrate_misfit)
10043 		return 1;
10044 
10045 	return 0;
10046 }
10047 
10048 static int active_load_balance_cpu_stop(void *data);
10049 
10050 static int should_we_balance(struct lb_env *env)
10051 {
10052 	struct sched_group *sg = env->sd->groups;
10053 	int cpu;
10054 
10055 	/*
10056 	 * Ensure the balancing environment is consistent; can happen
10057 	 * when the softirq triggers 'during' hotplug.
10058 	 */
10059 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10060 		return 0;
10061 
10062 	/*
10063 	 * In the newly idle case, we will allow all the CPUs
10064 	 * to do the newly idle load balance.
10065 	 *
10066 	 * However, we bail out if we already have tasks or a wakeup pending,
10067 	 * to optimize wakeup latency.
10068 	 */
10069 	if (env->idle == CPU_NEWLY_IDLE) {
10070 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
10071 			return 0;
10072 		return 1;
10073 	}
10074 
10075 	/* Try to find first idle CPU */
10076 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
10077 		if (!idle_cpu(cpu))
10078 			continue;
10079 
10080 		/* Are we the first idle CPU? */
10081 		return cpu == env->dst_cpu;
10082 	}
10083 
10084 	/* Are we the first CPU of this group ? */
10085 	return group_balance_cpu(sg) == env->dst_cpu;
10086 }
10087 
10088 /*
10089  * Check this_cpu to ensure it is balanced within domain. Attempt to move
10090  * tasks if there is an imbalance.
10091  */
10092 static int load_balance(int this_cpu, struct rq *this_rq,
10093 			struct sched_domain *sd, enum cpu_idle_type idle,
10094 			int *continue_balancing)
10095 {
10096 	int ld_moved, cur_ld_moved, active_balance = 0;
10097 	struct sched_domain *sd_parent = sd->parent;
10098 	struct sched_group *group;
10099 	struct rq *busiest;
10100 	struct rq_flags rf;
10101 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
10102 
10103 	struct lb_env env = {
10104 		.sd		= sd,
10105 		.dst_cpu	= this_cpu,
10106 		.dst_rq		= this_rq,
10107 		.dst_grpmask    = sched_group_span(sd->groups),
10108 		.idle		= idle,
10109 		.loop_break	= sched_nr_migrate_break,
10110 		.cpus		= cpus,
10111 		.fbq_type	= all,
10112 		.tasks		= LIST_HEAD_INIT(env.tasks),
10113 	};
10114 
10115 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
10116 
10117 	schedstat_inc(sd->lb_count[idle]);
10118 
10119 redo:
10120 	if (!should_we_balance(&env)) {
10121 		*continue_balancing = 0;
10122 		goto out_balanced;
10123 	}
10124 
10125 	group = find_busiest_group(&env);
10126 	if (!group) {
10127 		schedstat_inc(sd->lb_nobusyg[idle]);
10128 		goto out_balanced;
10129 	}
10130 
10131 	busiest = find_busiest_queue(&env, group);
10132 	if (!busiest) {
10133 		schedstat_inc(sd->lb_nobusyq[idle]);
10134 		goto out_balanced;
10135 	}
10136 
10137 	BUG_ON(busiest == env.dst_rq);
10138 
10139 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
10140 
10141 	env.src_cpu = busiest->cpu;
10142 	env.src_rq = busiest;
10143 
10144 	ld_moved = 0;
10145 	/* Clear this flag as soon as we find a pullable task */
10146 	env.flags |= LBF_ALL_PINNED;
10147 	if (busiest->nr_running > 1) {
10148 		/*
10149 		 * Attempt to move tasks. If find_busiest_group has found
10150 		 * an imbalance but busiest->nr_running <= 1, the group is
10151 		 * still unbalanced. ld_moved simply stays zero, so it is
10152 		 * correctly treated as an imbalance.
10153 		 */
10154 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
10155 
10156 more_balance:
10157 		rq_lock_irqsave(busiest, &rf);
10158 		update_rq_clock(busiest);
10159 
10160 		/*
10161 		 * cur_ld_moved - load moved in current iteration
10162 		 * ld_moved     - cumulative load moved across iterations
10163 		 */
10164 		cur_ld_moved = detach_tasks(&env);
10165 
10166 		/*
10167 		 * We've detached some tasks from busiest_rq. Every
10168 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
10169 		 * unlock busiest->lock, and we are able to be sure
10170 		 * that nobody can manipulate the tasks in parallel.
10171 		 * See task_rq_lock() family for the details.
10172 		 */
10173 
10174 		rq_unlock(busiest, &rf);
10175 
10176 		if (cur_ld_moved) {
10177 			attach_tasks(&env);
10178 			ld_moved += cur_ld_moved;
10179 		}
10180 
10181 		local_irq_restore(rf.flags);
10182 
10183 		if (env.flags & LBF_NEED_BREAK) {
10184 			env.flags &= ~LBF_NEED_BREAK;
10185 			goto more_balance;
10186 		}
10187 
10188 		/*
10189 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
10190 		 * us and move them to an alternate dst_cpu in our sched_group
10191 		 * where they can run. The upper limit on how many times we
10192 		 * iterate on same src_cpu is dependent on number of CPUs in our
10193 		 * sched_group.
10194 		 *
10195 		 * This changes load balance semantics a bit on who can move
10196 		 * load to a given_cpu. In addition to the given_cpu itself
10197 		 * (or a ilb_cpu acting on its behalf where given_cpu is
10198 		 * nohz-idle), we now have balance_cpu in a position to move
10199 		 * load to given_cpu. In rare situations, this may cause
10200 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
10201 		 * _independently_ and at _same_ time to move some load to
10202 		 * given_cpu) causing excess load to be moved to given_cpu.
10203 		 * This however should not happen so much in practice and
10204 		 * moreover subsequent load balance cycles should correct the
10205 		 * excess load moved.
10206 		 */
10207 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10208 
10209 			/* Prevent to re-select dst_cpu via env's CPUs */
10210 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
10211 
10212 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
10213 			env.dst_cpu	 = env.new_dst_cpu;
10214 			env.flags	&= ~LBF_DST_PINNED;
10215 			env.loop	 = 0;
10216 			env.loop_break	 = sched_nr_migrate_break;
10217 
10218 			/*
10219 			 * Go back to "more_balance" rather than "redo" since we
10220 			 * need to continue with same src_cpu.
10221 			 */
10222 			goto more_balance;
10223 		}
10224 
10225 		/*
10226 		 * We failed to reach balance because of affinity.
10227 		 */
10228 		if (sd_parent) {
10229 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10230 
10231 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10232 				*group_imbalance = 1;
10233 		}
10234 
10235 		/* All tasks on this runqueue were pinned by CPU affinity */
10236 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
10237 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
10238 			/*
10239 			 * Attempting to continue load balancing at the current
10240 			 * sched_domain level only makes sense if there are
10241 			 * active CPUs remaining as possible busiest CPUs to
10242 			 * pull load from which are not contained within the
10243 			 * destination group that is receiving any migrated
10244 			 * load.
10245 			 */
10246 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
10247 				env.loop = 0;
10248 				env.loop_break = sched_nr_migrate_break;
10249 				goto redo;
10250 			}
10251 			goto out_all_pinned;
10252 		}
10253 	}
10254 
10255 	if (!ld_moved) {
10256 		schedstat_inc(sd->lb_failed[idle]);
10257 		/*
10258 		 * Increment the failure counter only on periodic balance.
10259 		 * We do not want newidle balance, which can be very
10260 		 * frequent, pollute the failure counter causing
10261 		 * excessive cache_hot migrations and active balances.
10262 		 */
10263 		if (idle != CPU_NEWLY_IDLE)
10264 			sd->nr_balance_failed++;
10265 
10266 		if (need_active_balance(&env)) {
10267 			unsigned long flags;
10268 
10269 			raw_spin_rq_lock_irqsave(busiest, flags);
10270 
10271 			/*
10272 			 * Don't kick the active_load_balance_cpu_stop,
10273 			 * if the curr task on busiest CPU can't be
10274 			 * moved to this_cpu:
10275 			 */
10276 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10277 				raw_spin_rq_unlock_irqrestore(busiest, flags);
10278 				goto out_one_pinned;
10279 			}
10280 
10281 			/* Record that we found at least one task that could run on this_cpu */
10282 			env.flags &= ~LBF_ALL_PINNED;
10283 
10284 			/*
10285 			 * ->active_balance synchronizes accesses to
10286 			 * ->active_balance_work.  Once set, it's cleared
10287 			 * only after active load balance is finished.
10288 			 */
10289 			if (!busiest->active_balance) {
10290 				busiest->active_balance = 1;
10291 				busiest->push_cpu = this_cpu;
10292 				active_balance = 1;
10293 			}
10294 			raw_spin_rq_unlock_irqrestore(busiest, flags);
10295 
10296 			if (active_balance) {
10297 				stop_one_cpu_nowait(cpu_of(busiest),
10298 					active_load_balance_cpu_stop, busiest,
10299 					&busiest->active_balance_work);
10300 			}
10301 		}
10302 	} else {
10303 		sd->nr_balance_failed = 0;
10304 	}
10305 
10306 	if (likely(!active_balance) || need_active_balance(&env)) {
10307 		/* We were unbalanced, so reset the balancing interval */
10308 		sd->balance_interval = sd->min_interval;
10309 	}
10310 
10311 	goto out;
10312 
10313 out_balanced:
10314 	/*
10315 	 * We reach balance although we may have faced some affinity
10316 	 * constraints. Clear the imbalance flag only if other tasks got
10317 	 * a chance to move and fix the imbalance.
10318 	 */
10319 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10320 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10321 
10322 		if (*group_imbalance)
10323 			*group_imbalance = 0;
10324 	}
10325 
10326 out_all_pinned:
10327 	/*
10328 	 * We reach balance because all tasks are pinned at this level so
10329 	 * we can't migrate them. Let the imbalance flag set so parent level
10330 	 * can try to migrate them.
10331 	 */
10332 	schedstat_inc(sd->lb_balanced[idle]);
10333 
10334 	sd->nr_balance_failed = 0;
10335 
10336 out_one_pinned:
10337 	ld_moved = 0;
10338 
10339 	/*
10340 	 * newidle_balance() disregards balance intervals, so we could
10341 	 * repeatedly reach this code, which would lead to balance_interval
10342 	 * skyrocketing in a short amount of time. Skip the balance_interval
10343 	 * increase logic to avoid that.
10344 	 */
10345 	if (env.idle == CPU_NEWLY_IDLE)
10346 		goto out;
10347 
10348 	/* tune up the balancing interval */
10349 	if ((env.flags & LBF_ALL_PINNED &&
10350 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
10351 	    sd->balance_interval < sd->max_interval)
10352 		sd->balance_interval *= 2;
10353 out:
10354 	return ld_moved;
10355 }
10356 
10357 static inline unsigned long
10358 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10359 {
10360 	unsigned long interval = sd->balance_interval;
10361 
10362 	if (cpu_busy)
10363 		interval *= sd->busy_factor;
10364 
10365 	/* scale ms to jiffies */
10366 	interval = msecs_to_jiffies(interval);
10367 
10368 	/*
10369 	 * Reduce likelihood of busy balancing at higher domains racing with
10370 	 * balancing at lower domains by preventing their balancing periods
10371 	 * from being multiples of each other.
10372 	 */
10373 	if (cpu_busy)
10374 		interval -= 1;
10375 
10376 	interval = clamp(interval, 1UL, max_load_balance_interval);
10377 
10378 	return interval;
10379 }
10380 
10381 static inline void
10382 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10383 {
10384 	unsigned long interval, next;
10385 
10386 	/* used by idle balance, so cpu_busy = 0 */
10387 	interval = get_sd_balance_interval(sd, 0);
10388 	next = sd->last_balance + interval;
10389 
10390 	if (time_after(*next_balance, next))
10391 		*next_balance = next;
10392 }
10393 
10394 /*
10395  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10396  * running tasks off the busiest CPU onto idle CPUs. It requires at
10397  * least 1 task to be running on each physical CPU where possible, and
10398  * avoids physical / logical imbalances.
10399  */
10400 static int active_load_balance_cpu_stop(void *data)
10401 {
10402 	struct rq *busiest_rq = data;
10403 	int busiest_cpu = cpu_of(busiest_rq);
10404 	int target_cpu = busiest_rq->push_cpu;
10405 	struct rq *target_rq = cpu_rq(target_cpu);
10406 	struct sched_domain *sd;
10407 	struct task_struct *p = NULL;
10408 	struct rq_flags rf;
10409 
10410 	rq_lock_irq(busiest_rq, &rf);
10411 	/*
10412 	 * Between queueing the stop-work and running it is a hole in which
10413 	 * CPUs can become inactive. We should not move tasks from or to
10414 	 * inactive CPUs.
10415 	 */
10416 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10417 		goto out_unlock;
10418 
10419 	/* Make sure the requested CPU hasn't gone down in the meantime: */
10420 	if (unlikely(busiest_cpu != smp_processor_id() ||
10421 		     !busiest_rq->active_balance))
10422 		goto out_unlock;
10423 
10424 	/* Is there any task to move? */
10425 	if (busiest_rq->nr_running <= 1)
10426 		goto out_unlock;
10427 
10428 	/*
10429 	 * This condition is "impossible", if it occurs
10430 	 * we need to fix it. Originally reported by
10431 	 * Bjorn Helgaas on a 128-CPU setup.
10432 	 */
10433 	BUG_ON(busiest_rq == target_rq);
10434 
10435 	/* Search for an sd spanning us and the target CPU. */
10436 	rcu_read_lock();
10437 	for_each_domain(target_cpu, sd) {
10438 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10439 			break;
10440 	}
10441 
10442 	if (likely(sd)) {
10443 		struct lb_env env = {
10444 			.sd		= sd,
10445 			.dst_cpu	= target_cpu,
10446 			.dst_rq		= target_rq,
10447 			.src_cpu	= busiest_rq->cpu,
10448 			.src_rq		= busiest_rq,
10449 			.idle		= CPU_IDLE,
10450 			.flags		= LBF_ACTIVE_LB,
10451 		};
10452 
10453 		schedstat_inc(sd->alb_count);
10454 		update_rq_clock(busiest_rq);
10455 
10456 		p = detach_one_task(&env);
10457 		if (p) {
10458 			schedstat_inc(sd->alb_pushed);
10459 			/* Active balancing done, reset the failure counter. */
10460 			sd->nr_balance_failed = 0;
10461 		} else {
10462 			schedstat_inc(sd->alb_failed);
10463 		}
10464 	}
10465 	rcu_read_unlock();
10466 out_unlock:
10467 	busiest_rq->active_balance = 0;
10468 	rq_unlock(busiest_rq, &rf);
10469 
10470 	if (p)
10471 		attach_one_task(target_rq, p);
10472 
10473 	local_irq_enable();
10474 
10475 	return 0;
10476 }
10477 
10478 static DEFINE_SPINLOCK(balancing);
10479 
10480 /*
10481  * Scale the max load_balance interval with the number of CPUs in the system.
10482  * This trades load-balance latency on larger machines for less cross talk.
10483  */
10484 void update_max_interval(void)
10485 {
10486 	max_load_balance_interval = HZ*num_online_cpus()/10;
10487 }
10488 
10489 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
10490 {
10491 	if (cost > sd->max_newidle_lb_cost) {
10492 		/*
10493 		 * Track max cost of a domain to make sure to not delay the
10494 		 * next wakeup on the CPU.
10495 		 */
10496 		sd->max_newidle_lb_cost = cost;
10497 		sd->last_decay_max_lb_cost = jiffies;
10498 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
10499 		/*
10500 		 * Decay the newidle max times by ~1% per second to ensure that
10501 		 * it is not outdated and the current max cost is actually
10502 		 * shorter.
10503 		 */
10504 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
10505 		sd->last_decay_max_lb_cost = jiffies;
10506 
10507 		return true;
10508 	}
10509 
10510 	return false;
10511 }
10512 
10513 /*
10514  * It checks each scheduling domain to see if it is due to be balanced,
10515  * and initiates a balancing operation if so.
10516  *
10517  * Balancing parameters are set up in init_sched_domains.
10518  */
10519 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10520 {
10521 	int continue_balancing = 1;
10522 	int cpu = rq->cpu;
10523 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10524 	unsigned long interval;
10525 	struct sched_domain *sd;
10526 	/* Earliest time when we have to do rebalance again */
10527 	unsigned long next_balance = jiffies + 60*HZ;
10528 	int update_next_balance = 0;
10529 	int need_serialize, need_decay = 0;
10530 	u64 max_cost = 0;
10531 
10532 	rcu_read_lock();
10533 	for_each_domain(cpu, sd) {
10534 		/*
10535 		 * Decay the newidle max times here because this is a regular
10536 		 * visit to all the domains.
10537 		 */
10538 		need_decay = update_newidle_cost(sd, 0);
10539 		max_cost += sd->max_newidle_lb_cost;
10540 
10541 		/*
10542 		 * Stop the load balance at this level. There is another
10543 		 * CPU in our sched group which is doing load balancing more
10544 		 * actively.
10545 		 */
10546 		if (!continue_balancing) {
10547 			if (need_decay)
10548 				continue;
10549 			break;
10550 		}
10551 
10552 		interval = get_sd_balance_interval(sd, busy);
10553 
10554 		need_serialize = sd->flags & SD_SERIALIZE;
10555 		if (need_serialize) {
10556 			if (!spin_trylock(&balancing))
10557 				goto out;
10558 		}
10559 
10560 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10561 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10562 				/*
10563 				 * The LBF_DST_PINNED logic could have changed
10564 				 * env->dst_cpu, so we can't know our idle
10565 				 * state even if we migrated tasks. Update it.
10566 				 */
10567 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10568 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10569 			}
10570 			sd->last_balance = jiffies;
10571 			interval = get_sd_balance_interval(sd, busy);
10572 		}
10573 		if (need_serialize)
10574 			spin_unlock(&balancing);
10575 out:
10576 		if (time_after(next_balance, sd->last_balance + interval)) {
10577 			next_balance = sd->last_balance + interval;
10578 			update_next_balance = 1;
10579 		}
10580 	}
10581 	if (need_decay) {
10582 		/*
10583 		 * Ensure the rq-wide value also decays but keep it at a
10584 		 * reasonable floor to avoid funnies with rq->avg_idle.
10585 		 */
10586 		rq->max_idle_balance_cost =
10587 			max((u64)sysctl_sched_migration_cost, max_cost);
10588 	}
10589 	rcu_read_unlock();
10590 
10591 	/*
10592 	 * next_balance will be updated only when there is a need.
10593 	 * When the cpu is attached to null domain for ex, it will not be
10594 	 * updated.
10595 	 */
10596 	if (likely(update_next_balance))
10597 		rq->next_balance = next_balance;
10598 
10599 }
10600 
10601 static inline int on_null_domain(struct rq *rq)
10602 {
10603 	return unlikely(!rcu_dereference_sched(rq->sd));
10604 }
10605 
10606 #ifdef CONFIG_NO_HZ_COMMON
10607 /*
10608  * idle load balancing details
10609  * - When one of the busy CPUs notice that there may be an idle rebalancing
10610  *   needed, they will kick the idle load balancer, which then does idle
10611  *   load balancing for all the idle CPUs.
10612  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
10613  *   anywhere yet.
10614  */
10615 
10616 static inline int find_new_ilb(void)
10617 {
10618 	int ilb;
10619 	const struct cpumask *hk_mask;
10620 
10621 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
10622 
10623 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10624 
10625 		if (ilb == smp_processor_id())
10626 			continue;
10627 
10628 		if (idle_cpu(ilb))
10629 			return ilb;
10630 	}
10631 
10632 	return nr_cpu_ids;
10633 }
10634 
10635 /*
10636  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10637  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
10638  */
10639 static void kick_ilb(unsigned int flags)
10640 {
10641 	int ilb_cpu;
10642 
10643 	/*
10644 	 * Increase nohz.next_balance only when if full ilb is triggered but
10645 	 * not if we only update stats.
10646 	 */
10647 	if (flags & NOHZ_BALANCE_KICK)
10648 		nohz.next_balance = jiffies+1;
10649 
10650 	ilb_cpu = find_new_ilb();
10651 
10652 	if (ilb_cpu >= nr_cpu_ids)
10653 		return;
10654 
10655 	/*
10656 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10657 	 * the first flag owns it; cleared by nohz_csd_func().
10658 	 */
10659 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10660 	if (flags & NOHZ_KICK_MASK)
10661 		return;
10662 
10663 	/*
10664 	 * This way we generate an IPI on the target CPU which
10665 	 * is idle. And the softirq performing nohz idle load balance
10666 	 * will be run before returning from the IPI.
10667 	 */
10668 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10669 }
10670 
10671 /*
10672  * Current decision point for kicking the idle load balancer in the presence
10673  * of idle CPUs in the system.
10674  */
10675 static void nohz_balancer_kick(struct rq *rq)
10676 {
10677 	unsigned long now = jiffies;
10678 	struct sched_domain_shared *sds;
10679 	struct sched_domain *sd;
10680 	int nr_busy, i, cpu = rq->cpu;
10681 	unsigned int flags = 0;
10682 
10683 	if (unlikely(rq->idle_balance))
10684 		return;
10685 
10686 	/*
10687 	 * We may be recently in ticked or tickless idle mode. At the first
10688 	 * busy tick after returning from idle, we will update the busy stats.
10689 	 */
10690 	nohz_balance_exit_idle(rq);
10691 
10692 	/*
10693 	 * None are in tickless mode and hence no need for NOHZ idle load
10694 	 * balancing.
10695 	 */
10696 	if (likely(!atomic_read(&nohz.nr_cpus)))
10697 		return;
10698 
10699 	if (READ_ONCE(nohz.has_blocked) &&
10700 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10701 		flags = NOHZ_STATS_KICK;
10702 
10703 	if (time_before(now, nohz.next_balance))
10704 		goto out;
10705 
10706 	if (rq->nr_running >= 2) {
10707 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10708 		goto out;
10709 	}
10710 
10711 	rcu_read_lock();
10712 
10713 	sd = rcu_dereference(rq->sd);
10714 	if (sd) {
10715 		/*
10716 		 * If there's a CFS task and the current CPU has reduced
10717 		 * capacity; kick the ILB to see if there's a better CPU to run
10718 		 * on.
10719 		 */
10720 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10721 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10722 			goto unlock;
10723 		}
10724 	}
10725 
10726 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10727 	if (sd) {
10728 		/*
10729 		 * When ASYM_PACKING; see if there's a more preferred CPU
10730 		 * currently idle; in which case, kick the ILB to move tasks
10731 		 * around.
10732 		 */
10733 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10734 			if (sched_asym_prefer(i, cpu)) {
10735 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10736 				goto unlock;
10737 			}
10738 		}
10739 	}
10740 
10741 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10742 	if (sd) {
10743 		/*
10744 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10745 		 * to run the misfit task on.
10746 		 */
10747 		if (check_misfit_status(rq, sd)) {
10748 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10749 			goto unlock;
10750 		}
10751 
10752 		/*
10753 		 * For asymmetric systems, we do not want to nicely balance
10754 		 * cache use, instead we want to embrace asymmetry and only
10755 		 * ensure tasks have enough CPU capacity.
10756 		 *
10757 		 * Skip the LLC logic because it's not relevant in that case.
10758 		 */
10759 		goto unlock;
10760 	}
10761 
10762 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10763 	if (sds) {
10764 		/*
10765 		 * If there is an imbalance between LLC domains (IOW we could
10766 		 * increase the overall cache use), we need some less-loaded LLC
10767 		 * domain to pull some load. Likewise, we may need to spread
10768 		 * load within the current LLC domain (e.g. packed SMT cores but
10769 		 * other CPUs are idle). We can't really know from here how busy
10770 		 * the others are - so just get a nohz balance going if it looks
10771 		 * like this LLC domain has tasks we could move.
10772 		 */
10773 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10774 		if (nr_busy > 1) {
10775 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10776 			goto unlock;
10777 		}
10778 	}
10779 unlock:
10780 	rcu_read_unlock();
10781 out:
10782 	if (READ_ONCE(nohz.needs_update))
10783 		flags |= NOHZ_NEXT_KICK;
10784 
10785 	if (flags)
10786 		kick_ilb(flags);
10787 }
10788 
10789 static void set_cpu_sd_state_busy(int cpu)
10790 {
10791 	struct sched_domain *sd;
10792 
10793 	rcu_read_lock();
10794 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10795 
10796 	if (!sd || !sd->nohz_idle)
10797 		goto unlock;
10798 	sd->nohz_idle = 0;
10799 
10800 	atomic_inc(&sd->shared->nr_busy_cpus);
10801 unlock:
10802 	rcu_read_unlock();
10803 }
10804 
10805 void nohz_balance_exit_idle(struct rq *rq)
10806 {
10807 	SCHED_WARN_ON(rq != this_rq());
10808 
10809 	if (likely(!rq->nohz_tick_stopped))
10810 		return;
10811 
10812 	rq->nohz_tick_stopped = 0;
10813 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10814 	atomic_dec(&nohz.nr_cpus);
10815 
10816 	set_cpu_sd_state_busy(rq->cpu);
10817 }
10818 
10819 static void set_cpu_sd_state_idle(int cpu)
10820 {
10821 	struct sched_domain *sd;
10822 
10823 	rcu_read_lock();
10824 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10825 
10826 	if (!sd || sd->nohz_idle)
10827 		goto unlock;
10828 	sd->nohz_idle = 1;
10829 
10830 	atomic_dec(&sd->shared->nr_busy_cpus);
10831 unlock:
10832 	rcu_read_unlock();
10833 }
10834 
10835 /*
10836  * This routine will record that the CPU is going idle with tick stopped.
10837  * This info will be used in performing idle load balancing in the future.
10838  */
10839 void nohz_balance_enter_idle(int cpu)
10840 {
10841 	struct rq *rq = cpu_rq(cpu);
10842 
10843 	SCHED_WARN_ON(cpu != smp_processor_id());
10844 
10845 	/* If this CPU is going down, then nothing needs to be done: */
10846 	if (!cpu_active(cpu))
10847 		return;
10848 
10849 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10850 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
10851 		return;
10852 
10853 	/*
10854 	 * Can be set safely without rq->lock held
10855 	 * If a clear happens, it will have evaluated last additions because
10856 	 * rq->lock is held during the check and the clear
10857 	 */
10858 	rq->has_blocked_load = 1;
10859 
10860 	/*
10861 	 * The tick is still stopped but load could have been added in the
10862 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10863 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10864 	 * of nohz.has_blocked can only happen after checking the new load
10865 	 */
10866 	if (rq->nohz_tick_stopped)
10867 		goto out;
10868 
10869 	/* If we're a completely isolated CPU, we don't play: */
10870 	if (on_null_domain(rq))
10871 		return;
10872 
10873 	rq->nohz_tick_stopped = 1;
10874 
10875 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10876 	atomic_inc(&nohz.nr_cpus);
10877 
10878 	/*
10879 	 * Ensures that if nohz_idle_balance() fails to observe our
10880 	 * @idle_cpus_mask store, it must observe the @has_blocked
10881 	 * and @needs_update stores.
10882 	 */
10883 	smp_mb__after_atomic();
10884 
10885 	set_cpu_sd_state_idle(cpu);
10886 
10887 	WRITE_ONCE(nohz.needs_update, 1);
10888 out:
10889 	/*
10890 	 * Each time a cpu enter idle, we assume that it has blocked load and
10891 	 * enable the periodic update of the load of idle cpus
10892 	 */
10893 	WRITE_ONCE(nohz.has_blocked, 1);
10894 }
10895 
10896 static bool update_nohz_stats(struct rq *rq)
10897 {
10898 	unsigned int cpu = rq->cpu;
10899 
10900 	if (!rq->has_blocked_load)
10901 		return false;
10902 
10903 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10904 		return false;
10905 
10906 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10907 		return true;
10908 
10909 	update_blocked_averages(cpu);
10910 
10911 	return rq->has_blocked_load;
10912 }
10913 
10914 /*
10915  * Internal function that runs load balance for all idle cpus. The load balance
10916  * can be a simple update of blocked load or a complete load balance with
10917  * tasks movement depending of flags.
10918  */
10919 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10920 			       enum cpu_idle_type idle)
10921 {
10922 	/* Earliest time when we have to do rebalance again */
10923 	unsigned long now = jiffies;
10924 	unsigned long next_balance = now + 60*HZ;
10925 	bool has_blocked_load = false;
10926 	int update_next_balance = 0;
10927 	int this_cpu = this_rq->cpu;
10928 	int balance_cpu;
10929 	struct rq *rq;
10930 
10931 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10932 
10933 	/*
10934 	 * We assume there will be no idle load after this update and clear
10935 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10936 	 * set the has_blocked flag and trigger another update of idle load.
10937 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10938 	 * setting the flag, we are sure to not clear the state and not
10939 	 * check the load of an idle cpu.
10940 	 *
10941 	 * Same applies to idle_cpus_mask vs needs_update.
10942 	 */
10943 	if (flags & NOHZ_STATS_KICK)
10944 		WRITE_ONCE(nohz.has_blocked, 0);
10945 	if (flags & NOHZ_NEXT_KICK)
10946 		WRITE_ONCE(nohz.needs_update, 0);
10947 
10948 	/*
10949 	 * Ensures that if we miss the CPU, we must see the has_blocked
10950 	 * store from nohz_balance_enter_idle().
10951 	 */
10952 	smp_mb();
10953 
10954 	/*
10955 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10956 	 * chance for other idle cpu to pull load.
10957 	 */
10958 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
10959 		if (!idle_cpu(balance_cpu))
10960 			continue;
10961 
10962 		/*
10963 		 * If this CPU gets work to do, stop the load balancing
10964 		 * work being done for other CPUs. Next load
10965 		 * balancing owner will pick it up.
10966 		 */
10967 		if (need_resched()) {
10968 			if (flags & NOHZ_STATS_KICK)
10969 				has_blocked_load = true;
10970 			if (flags & NOHZ_NEXT_KICK)
10971 				WRITE_ONCE(nohz.needs_update, 1);
10972 			goto abort;
10973 		}
10974 
10975 		rq = cpu_rq(balance_cpu);
10976 
10977 		if (flags & NOHZ_STATS_KICK)
10978 			has_blocked_load |= update_nohz_stats(rq);
10979 
10980 		/*
10981 		 * If time for next balance is due,
10982 		 * do the balance.
10983 		 */
10984 		if (time_after_eq(jiffies, rq->next_balance)) {
10985 			struct rq_flags rf;
10986 
10987 			rq_lock_irqsave(rq, &rf);
10988 			update_rq_clock(rq);
10989 			rq_unlock_irqrestore(rq, &rf);
10990 
10991 			if (flags & NOHZ_BALANCE_KICK)
10992 				rebalance_domains(rq, CPU_IDLE);
10993 		}
10994 
10995 		if (time_after(next_balance, rq->next_balance)) {
10996 			next_balance = rq->next_balance;
10997 			update_next_balance = 1;
10998 		}
10999 	}
11000 
11001 	/*
11002 	 * next_balance will be updated only when there is a need.
11003 	 * When the CPU is attached to null domain for ex, it will not be
11004 	 * updated.
11005 	 */
11006 	if (likely(update_next_balance))
11007 		nohz.next_balance = next_balance;
11008 
11009 	if (flags & NOHZ_STATS_KICK)
11010 		WRITE_ONCE(nohz.next_blocked,
11011 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
11012 
11013 abort:
11014 	/* There is still blocked load, enable periodic update */
11015 	if (has_blocked_load)
11016 		WRITE_ONCE(nohz.has_blocked, 1);
11017 }
11018 
11019 /*
11020  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11021  * rebalancing for all the cpus for whom scheduler ticks are stopped.
11022  */
11023 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11024 {
11025 	unsigned int flags = this_rq->nohz_idle_balance;
11026 
11027 	if (!flags)
11028 		return false;
11029 
11030 	this_rq->nohz_idle_balance = 0;
11031 
11032 	if (idle != CPU_IDLE)
11033 		return false;
11034 
11035 	_nohz_idle_balance(this_rq, flags, idle);
11036 
11037 	return true;
11038 }
11039 
11040 /*
11041  * Check if we need to run the ILB for updating blocked load before entering
11042  * idle state.
11043  */
11044 void nohz_run_idle_balance(int cpu)
11045 {
11046 	unsigned int flags;
11047 
11048 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
11049 
11050 	/*
11051 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
11052 	 * (ie NOHZ_STATS_KICK set) and will do the same.
11053 	 */
11054 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
11055 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
11056 }
11057 
11058 static void nohz_newidle_balance(struct rq *this_rq)
11059 {
11060 	int this_cpu = this_rq->cpu;
11061 
11062 	/*
11063 	 * This CPU doesn't want to be disturbed by scheduler
11064 	 * housekeeping
11065 	 */
11066 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
11067 		return;
11068 
11069 	/* Will wake up very soon. No time for doing anything else*/
11070 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
11071 		return;
11072 
11073 	/* Don't need to update blocked load of idle CPUs*/
11074 	if (!READ_ONCE(nohz.has_blocked) ||
11075 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
11076 		return;
11077 
11078 	/*
11079 	 * Set the need to trigger ILB in order to update blocked load
11080 	 * before entering idle state.
11081 	 */
11082 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
11083 }
11084 
11085 #else /* !CONFIG_NO_HZ_COMMON */
11086 static inline void nohz_balancer_kick(struct rq *rq) { }
11087 
11088 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11089 {
11090 	return false;
11091 }
11092 
11093 static inline void nohz_newidle_balance(struct rq *this_rq) { }
11094 #endif /* CONFIG_NO_HZ_COMMON */
11095 
11096 /*
11097  * newidle_balance is called by schedule() if this_cpu is about to become
11098  * idle. Attempts to pull tasks from other CPUs.
11099  *
11100  * Returns:
11101  *   < 0 - we released the lock and there are !fair tasks present
11102  *     0 - failed, no new tasks
11103  *   > 0 - success, new (fair) tasks present
11104  */
11105 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
11106 {
11107 	unsigned long next_balance = jiffies + HZ;
11108 	int this_cpu = this_rq->cpu;
11109 	u64 t0, t1, curr_cost = 0;
11110 	struct sched_domain *sd;
11111 	int pulled_task = 0;
11112 
11113 	update_misfit_status(NULL, this_rq);
11114 
11115 	/*
11116 	 * There is a task waiting to run. No need to search for one.
11117 	 * Return 0; the task will be enqueued when switching to idle.
11118 	 */
11119 	if (this_rq->ttwu_pending)
11120 		return 0;
11121 
11122 	/*
11123 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
11124 	 * measure the duration of idle_balance() as idle time.
11125 	 */
11126 	this_rq->idle_stamp = rq_clock(this_rq);
11127 
11128 	/*
11129 	 * Do not pull tasks towards !active CPUs...
11130 	 */
11131 	if (!cpu_active(this_cpu))
11132 		return 0;
11133 
11134 	/*
11135 	 * This is OK, because current is on_cpu, which avoids it being picked
11136 	 * for load-balance and preemption/IRQs are still disabled avoiding
11137 	 * further scheduler activity on it and we're being very careful to
11138 	 * re-start the picking loop.
11139 	 */
11140 	rq_unpin_lock(this_rq, rf);
11141 
11142 	rcu_read_lock();
11143 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
11144 
11145 	if (!READ_ONCE(this_rq->rd->overload) ||
11146 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
11147 
11148 		if (sd)
11149 			update_next_balance(sd, &next_balance);
11150 		rcu_read_unlock();
11151 
11152 		goto out;
11153 	}
11154 	rcu_read_unlock();
11155 
11156 	raw_spin_rq_unlock(this_rq);
11157 
11158 	t0 = sched_clock_cpu(this_cpu);
11159 	update_blocked_averages(this_cpu);
11160 
11161 	rcu_read_lock();
11162 	for_each_domain(this_cpu, sd) {
11163 		int continue_balancing = 1;
11164 		u64 domain_cost;
11165 
11166 		update_next_balance(sd, &next_balance);
11167 
11168 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
11169 			break;
11170 
11171 		if (sd->flags & SD_BALANCE_NEWIDLE) {
11172 
11173 			pulled_task = load_balance(this_cpu, this_rq,
11174 						   sd, CPU_NEWLY_IDLE,
11175 						   &continue_balancing);
11176 
11177 			t1 = sched_clock_cpu(this_cpu);
11178 			domain_cost = t1 - t0;
11179 			update_newidle_cost(sd, domain_cost);
11180 
11181 			curr_cost += domain_cost;
11182 			t0 = t1;
11183 		}
11184 
11185 		/*
11186 		 * Stop searching for tasks to pull if there are
11187 		 * now runnable tasks on this rq.
11188 		 */
11189 		if (pulled_task || this_rq->nr_running > 0 ||
11190 		    this_rq->ttwu_pending)
11191 			break;
11192 	}
11193 	rcu_read_unlock();
11194 
11195 	raw_spin_rq_lock(this_rq);
11196 
11197 	if (curr_cost > this_rq->max_idle_balance_cost)
11198 		this_rq->max_idle_balance_cost = curr_cost;
11199 
11200 	/*
11201 	 * While browsing the domains, we released the rq lock, a task could
11202 	 * have been enqueued in the meantime. Since we're not going idle,
11203 	 * pretend we pulled a task.
11204 	 */
11205 	if (this_rq->cfs.h_nr_running && !pulled_task)
11206 		pulled_task = 1;
11207 
11208 	/* Is there a task of a high priority class? */
11209 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11210 		pulled_task = -1;
11211 
11212 out:
11213 	/* Move the next balance forward */
11214 	if (time_after(this_rq->next_balance, next_balance))
11215 		this_rq->next_balance = next_balance;
11216 
11217 	if (pulled_task)
11218 		this_rq->idle_stamp = 0;
11219 	else
11220 		nohz_newidle_balance(this_rq);
11221 
11222 	rq_repin_lock(this_rq, rf);
11223 
11224 	return pulled_task;
11225 }
11226 
11227 /*
11228  * run_rebalance_domains is triggered when needed from the scheduler tick.
11229  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11230  */
11231 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11232 {
11233 	struct rq *this_rq = this_rq();
11234 	enum cpu_idle_type idle = this_rq->idle_balance ?
11235 						CPU_IDLE : CPU_NOT_IDLE;
11236 
11237 	/*
11238 	 * If this CPU has a pending nohz_balance_kick, then do the
11239 	 * balancing on behalf of the other idle CPUs whose ticks are
11240 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11241 	 * give the idle CPUs a chance to load balance. Else we may
11242 	 * load balance only within the local sched_domain hierarchy
11243 	 * and abort nohz_idle_balance altogether if we pull some load.
11244 	 */
11245 	if (nohz_idle_balance(this_rq, idle))
11246 		return;
11247 
11248 	/* normal load balance */
11249 	update_blocked_averages(this_rq->cpu);
11250 	rebalance_domains(this_rq, idle);
11251 }
11252 
11253 /*
11254  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11255  */
11256 void trigger_load_balance(struct rq *rq)
11257 {
11258 	/*
11259 	 * Don't need to rebalance while attached to NULL domain or
11260 	 * runqueue CPU is not active
11261 	 */
11262 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11263 		return;
11264 
11265 	if (time_after_eq(jiffies, rq->next_balance))
11266 		raise_softirq(SCHED_SOFTIRQ);
11267 
11268 	nohz_balancer_kick(rq);
11269 }
11270 
11271 static void rq_online_fair(struct rq *rq)
11272 {
11273 	update_sysctl();
11274 
11275 	update_runtime_enabled(rq);
11276 }
11277 
11278 static void rq_offline_fair(struct rq *rq)
11279 {
11280 	update_sysctl();
11281 
11282 	/* Ensure any throttled groups are reachable by pick_next_task */
11283 	unthrottle_offline_cfs_rqs(rq);
11284 }
11285 
11286 #endif /* CONFIG_SMP */
11287 
11288 #ifdef CONFIG_SCHED_CORE
11289 static inline bool
11290 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11291 {
11292 	u64 slice = sched_slice(cfs_rq_of(se), se);
11293 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11294 
11295 	return (rtime * min_nr_tasks > slice);
11296 }
11297 
11298 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
11299 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11300 {
11301 	if (!sched_core_enabled(rq))
11302 		return;
11303 
11304 	/*
11305 	 * If runqueue has only one task which used up its slice and
11306 	 * if the sibling is forced idle, then trigger schedule to
11307 	 * give forced idle task a chance.
11308 	 *
11309 	 * sched_slice() considers only this active rq and it gets the
11310 	 * whole slice. But during force idle, we have siblings acting
11311 	 * like a single runqueue and hence we need to consider runnable
11312 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
11313 	 * go through the forced idle rq, but that would be a perf hit.
11314 	 * We can assume that the forced idle CPU has at least
11315 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11316 	 * if we need to give up the CPU.
11317 	 */
11318 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
11319 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11320 		resched_curr(rq);
11321 }
11322 
11323 /*
11324  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11325  */
11326 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11327 {
11328 	for_each_sched_entity(se) {
11329 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11330 
11331 		if (forceidle) {
11332 			if (cfs_rq->forceidle_seq == fi_seq)
11333 				break;
11334 			cfs_rq->forceidle_seq = fi_seq;
11335 		}
11336 
11337 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11338 	}
11339 }
11340 
11341 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11342 {
11343 	struct sched_entity *se = &p->se;
11344 
11345 	if (p->sched_class != &fair_sched_class)
11346 		return;
11347 
11348 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11349 }
11350 
11351 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11352 {
11353 	struct rq *rq = task_rq(a);
11354 	struct sched_entity *sea = &a->se;
11355 	struct sched_entity *seb = &b->se;
11356 	struct cfs_rq *cfs_rqa;
11357 	struct cfs_rq *cfs_rqb;
11358 	s64 delta;
11359 
11360 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
11361 
11362 #ifdef CONFIG_FAIR_GROUP_SCHED
11363 	/*
11364 	 * Find an se in the hierarchy for tasks a and b, such that the se's
11365 	 * are immediate siblings.
11366 	 */
11367 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11368 		int sea_depth = sea->depth;
11369 		int seb_depth = seb->depth;
11370 
11371 		if (sea_depth >= seb_depth)
11372 			sea = parent_entity(sea);
11373 		if (sea_depth <= seb_depth)
11374 			seb = parent_entity(seb);
11375 	}
11376 
11377 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11378 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11379 
11380 	cfs_rqa = sea->cfs_rq;
11381 	cfs_rqb = seb->cfs_rq;
11382 #else
11383 	cfs_rqa = &task_rq(a)->cfs;
11384 	cfs_rqb = &task_rq(b)->cfs;
11385 #endif
11386 
11387 	/*
11388 	 * Find delta after normalizing se's vruntime with its cfs_rq's
11389 	 * min_vruntime_fi, which would have been updated in prior calls
11390 	 * to se_fi_update().
11391 	 */
11392 	delta = (s64)(sea->vruntime - seb->vruntime) +
11393 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11394 
11395 	return delta > 0;
11396 }
11397 #else
11398 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11399 #endif
11400 
11401 /*
11402  * scheduler tick hitting a task of our scheduling class.
11403  *
11404  * NOTE: This function can be called remotely by the tick offload that
11405  * goes along full dynticks. Therefore no local assumption can be made
11406  * and everything must be accessed through the @rq and @curr passed in
11407  * parameters.
11408  */
11409 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11410 {
11411 	struct cfs_rq *cfs_rq;
11412 	struct sched_entity *se = &curr->se;
11413 
11414 	for_each_sched_entity(se) {
11415 		cfs_rq = cfs_rq_of(se);
11416 		entity_tick(cfs_rq, se, queued);
11417 	}
11418 
11419 	if (static_branch_unlikely(&sched_numa_balancing))
11420 		task_tick_numa(rq, curr);
11421 
11422 	update_misfit_status(curr, rq);
11423 	update_overutilized_status(task_rq(curr));
11424 
11425 	task_tick_core(rq, curr);
11426 }
11427 
11428 /*
11429  * called on fork with the child task as argument from the parent's context
11430  *  - child not yet on the tasklist
11431  *  - preemption disabled
11432  */
11433 static void task_fork_fair(struct task_struct *p)
11434 {
11435 	struct cfs_rq *cfs_rq;
11436 	struct sched_entity *se = &p->se, *curr;
11437 	struct rq *rq = this_rq();
11438 	struct rq_flags rf;
11439 
11440 	rq_lock(rq, &rf);
11441 	update_rq_clock(rq);
11442 
11443 	cfs_rq = task_cfs_rq(current);
11444 	curr = cfs_rq->curr;
11445 	if (curr) {
11446 		update_curr(cfs_rq);
11447 		se->vruntime = curr->vruntime;
11448 	}
11449 	place_entity(cfs_rq, se, 1);
11450 
11451 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11452 		/*
11453 		 * Upon rescheduling, sched_class::put_prev_task() will place
11454 		 * 'current' within the tree based on its new key value.
11455 		 */
11456 		swap(curr->vruntime, se->vruntime);
11457 		resched_curr(rq);
11458 	}
11459 
11460 	se->vruntime -= cfs_rq->min_vruntime;
11461 	rq_unlock(rq, &rf);
11462 }
11463 
11464 /*
11465  * Priority of the task has changed. Check to see if we preempt
11466  * the current task.
11467  */
11468 static void
11469 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11470 {
11471 	if (!task_on_rq_queued(p))
11472 		return;
11473 
11474 	if (rq->cfs.nr_running == 1)
11475 		return;
11476 
11477 	/*
11478 	 * Reschedule if we are currently running on this runqueue and
11479 	 * our priority decreased, or if we are not currently running on
11480 	 * this runqueue and our priority is higher than the current's
11481 	 */
11482 	if (task_current(rq, p)) {
11483 		if (p->prio > oldprio)
11484 			resched_curr(rq);
11485 	} else
11486 		check_preempt_curr(rq, p, 0);
11487 }
11488 
11489 static inline bool vruntime_normalized(struct task_struct *p)
11490 {
11491 	struct sched_entity *se = &p->se;
11492 
11493 	/*
11494 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11495 	 * the dequeue_entity(.flags=0) will already have normalized the
11496 	 * vruntime.
11497 	 */
11498 	if (p->on_rq)
11499 		return true;
11500 
11501 	/*
11502 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
11503 	 * But there are some cases where it has already been normalized:
11504 	 *
11505 	 * - A forked child which is waiting for being woken up by
11506 	 *   wake_up_new_task().
11507 	 * - A task which has been woken up by try_to_wake_up() and
11508 	 *   waiting for actually being woken up by sched_ttwu_pending().
11509 	 */
11510 	if (!se->sum_exec_runtime ||
11511 	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11512 		return true;
11513 
11514 	return false;
11515 }
11516 
11517 #ifdef CONFIG_FAIR_GROUP_SCHED
11518 /*
11519  * Propagate the changes of the sched_entity across the tg tree to make it
11520  * visible to the root
11521  */
11522 static void propagate_entity_cfs_rq(struct sched_entity *se)
11523 {
11524 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11525 
11526 	if (cfs_rq_throttled(cfs_rq))
11527 		return;
11528 
11529 	if (!throttled_hierarchy(cfs_rq))
11530 		list_add_leaf_cfs_rq(cfs_rq);
11531 
11532 	/* Start to propagate at parent */
11533 	se = se->parent;
11534 
11535 	for_each_sched_entity(se) {
11536 		cfs_rq = cfs_rq_of(se);
11537 
11538 		update_load_avg(cfs_rq, se, UPDATE_TG);
11539 
11540 		if (cfs_rq_throttled(cfs_rq))
11541 			break;
11542 
11543 		if (!throttled_hierarchy(cfs_rq))
11544 			list_add_leaf_cfs_rq(cfs_rq);
11545 	}
11546 }
11547 #else
11548 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11549 #endif
11550 
11551 static void detach_entity_cfs_rq(struct sched_entity *se)
11552 {
11553 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11554 
11555 	/* Catch up with the cfs_rq and remove our load when we leave */
11556 	update_load_avg(cfs_rq, se, 0);
11557 	detach_entity_load_avg(cfs_rq, se);
11558 	update_tg_load_avg(cfs_rq);
11559 	propagate_entity_cfs_rq(se);
11560 }
11561 
11562 static void attach_entity_cfs_rq(struct sched_entity *se)
11563 {
11564 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11565 
11566 #ifdef CONFIG_FAIR_GROUP_SCHED
11567 	/*
11568 	 * Since the real-depth could have been changed (only FAIR
11569 	 * class maintain depth value), reset depth properly.
11570 	 */
11571 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11572 #endif
11573 
11574 	/* Synchronize entity with its cfs_rq */
11575 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11576 	attach_entity_load_avg(cfs_rq, se);
11577 	update_tg_load_avg(cfs_rq);
11578 	propagate_entity_cfs_rq(se);
11579 }
11580 
11581 static void detach_task_cfs_rq(struct task_struct *p)
11582 {
11583 	struct sched_entity *se = &p->se;
11584 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11585 
11586 	if (!vruntime_normalized(p)) {
11587 		/*
11588 		 * Fix up our vruntime so that the current sleep doesn't
11589 		 * cause 'unlimited' sleep bonus.
11590 		 */
11591 		place_entity(cfs_rq, se, 0);
11592 		se->vruntime -= cfs_rq->min_vruntime;
11593 	}
11594 
11595 	detach_entity_cfs_rq(se);
11596 }
11597 
11598 static void attach_task_cfs_rq(struct task_struct *p)
11599 {
11600 	struct sched_entity *se = &p->se;
11601 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11602 
11603 	attach_entity_cfs_rq(se);
11604 
11605 	if (!vruntime_normalized(p))
11606 		se->vruntime += cfs_rq->min_vruntime;
11607 }
11608 
11609 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11610 {
11611 	detach_task_cfs_rq(p);
11612 }
11613 
11614 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11615 {
11616 	attach_task_cfs_rq(p);
11617 
11618 	if (task_on_rq_queued(p)) {
11619 		/*
11620 		 * We were most likely switched from sched_rt, so
11621 		 * kick off the schedule if running, otherwise just see
11622 		 * if we can still preempt the current task.
11623 		 */
11624 		if (task_current(rq, p))
11625 			resched_curr(rq);
11626 		else
11627 			check_preempt_curr(rq, p, 0);
11628 	}
11629 }
11630 
11631 /* Account for a task changing its policy or group.
11632  *
11633  * This routine is mostly called to set cfs_rq->curr field when a task
11634  * migrates between groups/classes.
11635  */
11636 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11637 {
11638 	struct sched_entity *se = &p->se;
11639 
11640 #ifdef CONFIG_SMP
11641 	if (task_on_rq_queued(p)) {
11642 		/*
11643 		 * Move the next running task to the front of the list, so our
11644 		 * cfs_tasks list becomes MRU one.
11645 		 */
11646 		list_move(&se->group_node, &rq->cfs_tasks);
11647 	}
11648 #endif
11649 
11650 	for_each_sched_entity(se) {
11651 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11652 
11653 		set_next_entity(cfs_rq, se);
11654 		/* ensure bandwidth has been allocated on our new cfs_rq */
11655 		account_cfs_rq_runtime(cfs_rq, 0);
11656 	}
11657 }
11658 
11659 void init_cfs_rq(struct cfs_rq *cfs_rq)
11660 {
11661 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11662 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
11663 #ifdef CONFIG_SMP
11664 	raw_spin_lock_init(&cfs_rq->removed.lock);
11665 #endif
11666 }
11667 
11668 #ifdef CONFIG_FAIR_GROUP_SCHED
11669 static void task_set_group_fair(struct task_struct *p)
11670 {
11671 	struct sched_entity *se = &p->se;
11672 
11673 	set_task_rq(p, task_cpu(p));
11674 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11675 }
11676 
11677 static void task_move_group_fair(struct task_struct *p)
11678 {
11679 	detach_task_cfs_rq(p);
11680 	set_task_rq(p, task_cpu(p));
11681 
11682 #ifdef CONFIG_SMP
11683 	/* Tell se's cfs_rq has been changed -- migrated */
11684 	p->se.avg.last_update_time = 0;
11685 #endif
11686 	attach_task_cfs_rq(p);
11687 }
11688 
11689 static void task_change_group_fair(struct task_struct *p, int type)
11690 {
11691 	switch (type) {
11692 	case TASK_SET_GROUP:
11693 		task_set_group_fair(p);
11694 		break;
11695 
11696 	case TASK_MOVE_GROUP:
11697 		task_move_group_fair(p);
11698 		break;
11699 	}
11700 }
11701 
11702 void free_fair_sched_group(struct task_group *tg)
11703 {
11704 	int i;
11705 
11706 	for_each_possible_cpu(i) {
11707 		if (tg->cfs_rq)
11708 			kfree(tg->cfs_rq[i]);
11709 		if (tg->se)
11710 			kfree(tg->se[i]);
11711 	}
11712 
11713 	kfree(tg->cfs_rq);
11714 	kfree(tg->se);
11715 }
11716 
11717 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11718 {
11719 	struct sched_entity *se;
11720 	struct cfs_rq *cfs_rq;
11721 	int i;
11722 
11723 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11724 	if (!tg->cfs_rq)
11725 		goto err;
11726 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11727 	if (!tg->se)
11728 		goto err;
11729 
11730 	tg->shares = NICE_0_LOAD;
11731 
11732 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11733 
11734 	for_each_possible_cpu(i) {
11735 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11736 				      GFP_KERNEL, cpu_to_node(i));
11737 		if (!cfs_rq)
11738 			goto err;
11739 
11740 		se = kzalloc_node(sizeof(struct sched_entity_stats),
11741 				  GFP_KERNEL, cpu_to_node(i));
11742 		if (!se)
11743 			goto err_free_rq;
11744 
11745 		init_cfs_rq(cfs_rq);
11746 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11747 		init_entity_runnable_average(se);
11748 	}
11749 
11750 	return 1;
11751 
11752 err_free_rq:
11753 	kfree(cfs_rq);
11754 err:
11755 	return 0;
11756 }
11757 
11758 void online_fair_sched_group(struct task_group *tg)
11759 {
11760 	struct sched_entity *se;
11761 	struct rq_flags rf;
11762 	struct rq *rq;
11763 	int i;
11764 
11765 	for_each_possible_cpu(i) {
11766 		rq = cpu_rq(i);
11767 		se = tg->se[i];
11768 		rq_lock_irq(rq, &rf);
11769 		update_rq_clock(rq);
11770 		attach_entity_cfs_rq(se);
11771 		sync_throttle(tg, i);
11772 		rq_unlock_irq(rq, &rf);
11773 	}
11774 }
11775 
11776 void unregister_fair_sched_group(struct task_group *tg)
11777 {
11778 	unsigned long flags;
11779 	struct rq *rq;
11780 	int cpu;
11781 
11782 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11783 
11784 	for_each_possible_cpu(cpu) {
11785 		if (tg->se[cpu])
11786 			remove_entity_load_avg(tg->se[cpu]);
11787 
11788 		/*
11789 		 * Only empty task groups can be destroyed; so we can speculatively
11790 		 * check on_list without danger of it being re-added.
11791 		 */
11792 		if (!tg->cfs_rq[cpu]->on_list)
11793 			continue;
11794 
11795 		rq = cpu_rq(cpu);
11796 
11797 		raw_spin_rq_lock_irqsave(rq, flags);
11798 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11799 		raw_spin_rq_unlock_irqrestore(rq, flags);
11800 	}
11801 }
11802 
11803 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11804 			struct sched_entity *se, int cpu,
11805 			struct sched_entity *parent)
11806 {
11807 	struct rq *rq = cpu_rq(cpu);
11808 
11809 	cfs_rq->tg = tg;
11810 	cfs_rq->rq = rq;
11811 	init_cfs_rq_runtime(cfs_rq);
11812 
11813 	tg->cfs_rq[cpu] = cfs_rq;
11814 	tg->se[cpu] = se;
11815 
11816 	/* se could be NULL for root_task_group */
11817 	if (!se)
11818 		return;
11819 
11820 	if (!parent) {
11821 		se->cfs_rq = &rq->cfs;
11822 		se->depth = 0;
11823 	} else {
11824 		se->cfs_rq = parent->my_q;
11825 		se->depth = parent->depth + 1;
11826 	}
11827 
11828 	se->my_q = cfs_rq;
11829 	/* guarantee group entities always have weight */
11830 	update_load_set(&se->load, NICE_0_LOAD);
11831 	se->parent = parent;
11832 }
11833 
11834 static DEFINE_MUTEX(shares_mutex);
11835 
11836 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
11837 {
11838 	int i;
11839 
11840 	lockdep_assert_held(&shares_mutex);
11841 
11842 	/*
11843 	 * We can't change the weight of the root cgroup.
11844 	 */
11845 	if (!tg->se[0])
11846 		return -EINVAL;
11847 
11848 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11849 
11850 	if (tg->shares == shares)
11851 		return 0;
11852 
11853 	tg->shares = shares;
11854 	for_each_possible_cpu(i) {
11855 		struct rq *rq = cpu_rq(i);
11856 		struct sched_entity *se = tg->se[i];
11857 		struct rq_flags rf;
11858 
11859 		/* Propagate contribution to hierarchy */
11860 		rq_lock_irqsave(rq, &rf);
11861 		update_rq_clock(rq);
11862 		for_each_sched_entity(se) {
11863 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11864 			update_cfs_group(se);
11865 		}
11866 		rq_unlock_irqrestore(rq, &rf);
11867 	}
11868 
11869 	return 0;
11870 }
11871 
11872 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11873 {
11874 	int ret;
11875 
11876 	mutex_lock(&shares_mutex);
11877 	if (tg_is_idle(tg))
11878 		ret = -EINVAL;
11879 	else
11880 		ret = __sched_group_set_shares(tg, shares);
11881 	mutex_unlock(&shares_mutex);
11882 
11883 	return ret;
11884 }
11885 
11886 int sched_group_set_idle(struct task_group *tg, long idle)
11887 {
11888 	int i;
11889 
11890 	if (tg == &root_task_group)
11891 		return -EINVAL;
11892 
11893 	if (idle < 0 || idle > 1)
11894 		return -EINVAL;
11895 
11896 	mutex_lock(&shares_mutex);
11897 
11898 	if (tg->idle == idle) {
11899 		mutex_unlock(&shares_mutex);
11900 		return 0;
11901 	}
11902 
11903 	tg->idle = idle;
11904 
11905 	for_each_possible_cpu(i) {
11906 		struct rq *rq = cpu_rq(i);
11907 		struct sched_entity *se = tg->se[i];
11908 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
11909 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11910 		long idle_task_delta;
11911 		struct rq_flags rf;
11912 
11913 		rq_lock_irqsave(rq, &rf);
11914 
11915 		grp_cfs_rq->idle = idle;
11916 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11917 			goto next_cpu;
11918 
11919 		if (se->on_rq) {
11920 			parent_cfs_rq = cfs_rq_of(se);
11921 			if (cfs_rq_is_idle(grp_cfs_rq))
11922 				parent_cfs_rq->idle_nr_running++;
11923 			else
11924 				parent_cfs_rq->idle_nr_running--;
11925 		}
11926 
11927 		idle_task_delta = grp_cfs_rq->h_nr_running -
11928 				  grp_cfs_rq->idle_h_nr_running;
11929 		if (!cfs_rq_is_idle(grp_cfs_rq))
11930 			idle_task_delta *= -1;
11931 
11932 		for_each_sched_entity(se) {
11933 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
11934 
11935 			if (!se->on_rq)
11936 				break;
11937 
11938 			cfs_rq->idle_h_nr_running += idle_task_delta;
11939 
11940 			/* Already accounted at parent level and above. */
11941 			if (cfs_rq_is_idle(cfs_rq))
11942 				break;
11943 		}
11944 
11945 next_cpu:
11946 		rq_unlock_irqrestore(rq, &rf);
11947 	}
11948 
11949 	/* Idle groups have minimum weight. */
11950 	if (tg_is_idle(tg))
11951 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11952 	else
11953 		__sched_group_set_shares(tg, NICE_0_LOAD);
11954 
11955 	mutex_unlock(&shares_mutex);
11956 	return 0;
11957 }
11958 
11959 #else /* CONFIG_FAIR_GROUP_SCHED */
11960 
11961 void free_fair_sched_group(struct task_group *tg) { }
11962 
11963 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11964 {
11965 	return 1;
11966 }
11967 
11968 void online_fair_sched_group(struct task_group *tg) { }
11969 
11970 void unregister_fair_sched_group(struct task_group *tg) { }
11971 
11972 #endif /* CONFIG_FAIR_GROUP_SCHED */
11973 
11974 
11975 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11976 {
11977 	struct sched_entity *se = &task->se;
11978 	unsigned int rr_interval = 0;
11979 
11980 	/*
11981 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11982 	 * idle runqueue:
11983 	 */
11984 	if (rq->cfs.load.weight)
11985 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11986 
11987 	return rr_interval;
11988 }
11989 
11990 /*
11991  * All the scheduling class methods:
11992  */
11993 DEFINE_SCHED_CLASS(fair) = {
11994 
11995 	.enqueue_task		= enqueue_task_fair,
11996 	.dequeue_task		= dequeue_task_fair,
11997 	.yield_task		= yield_task_fair,
11998 	.yield_to_task		= yield_to_task_fair,
11999 
12000 	.check_preempt_curr	= check_preempt_wakeup,
12001 
12002 	.pick_next_task		= __pick_next_task_fair,
12003 	.put_prev_task		= put_prev_task_fair,
12004 	.set_next_task          = set_next_task_fair,
12005 
12006 #ifdef CONFIG_SMP
12007 	.balance		= balance_fair,
12008 	.pick_task		= pick_task_fair,
12009 	.select_task_rq		= select_task_rq_fair,
12010 	.migrate_task_rq	= migrate_task_rq_fair,
12011 
12012 	.rq_online		= rq_online_fair,
12013 	.rq_offline		= rq_offline_fair,
12014 
12015 	.task_dead		= task_dead_fair,
12016 	.set_cpus_allowed	= set_cpus_allowed_common,
12017 #endif
12018 
12019 	.task_tick		= task_tick_fair,
12020 	.task_fork		= task_fork_fair,
12021 
12022 	.prio_changed		= prio_changed_fair,
12023 	.switched_from		= switched_from_fair,
12024 	.switched_to		= switched_to_fair,
12025 
12026 	.get_rr_interval	= get_rr_interval_fair,
12027 
12028 	.update_curr		= update_curr_fair,
12029 
12030 #ifdef CONFIG_FAIR_GROUP_SCHED
12031 	.task_change_group	= task_change_group_fair,
12032 #endif
12033 
12034 #ifdef CONFIG_UCLAMP_TASK
12035 	.uclamp_enabled		= 1,
12036 #endif
12037 };
12038 
12039 #ifdef CONFIG_SCHED_DEBUG
12040 void print_cfs_stats(struct seq_file *m, int cpu)
12041 {
12042 	struct cfs_rq *cfs_rq, *pos;
12043 
12044 	rcu_read_lock();
12045 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
12046 		print_cfs_rq(m, cpu, cfs_rq);
12047 	rcu_read_unlock();
12048 }
12049 
12050 #ifdef CONFIG_NUMA_BALANCING
12051 void show_numa_stats(struct task_struct *p, struct seq_file *m)
12052 {
12053 	int node;
12054 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
12055 	struct numa_group *ng;
12056 
12057 	rcu_read_lock();
12058 	ng = rcu_dereference(p->numa_group);
12059 	for_each_online_node(node) {
12060 		if (p->numa_faults) {
12061 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12062 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12063 		}
12064 		if (ng) {
12065 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
12066 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
12067 		}
12068 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12069 	}
12070 	rcu_read_unlock();
12071 }
12072 #endif /* CONFIG_NUMA_BALANCING */
12073 #endif /* CONFIG_SCHED_DEBUG */
12074 
12075 __init void init_sched_fair_class(void)
12076 {
12077 #ifdef CONFIG_SMP
12078 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
12079 
12080 #ifdef CONFIG_NO_HZ_COMMON
12081 	nohz.next_balance = jiffies;
12082 	nohz.next_blocked = jiffies;
12083 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
12084 #endif
12085 #endif /* SMP */
12086 
12087 }
12088