1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 #endif 98 99 #ifdef CONFIG_CFS_BANDWIDTH 100 /* 101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 102 * each time a cfs_rq requests quota. 103 * 104 * Note: in the case that the slice exceeds the runtime remaining (either due 105 * to consumption or the quota being specified to be smaller than the slice) 106 * we will always only issue the remaining available time. 107 * 108 * (default: 5 msec, units: microseconds) 109 */ 110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 111 #endif 112 113 /* 114 * The margin used when comparing utilization with CPU capacity: 115 * util * margin < capacity * 1024 116 * 117 * (default: ~20%) 118 */ 119 unsigned int capacity_margin = 1280; 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 /* hint to use a 32x32->64 mul */ 233 fact = (u64)(u32)fact * lw->inv_weight; 234 235 while (fact >> 32) { 236 fact >>= 1; 237 shift--; 238 } 239 240 return mul_u64_u32_shr(delta_exec, fact, shift); 241 } 242 243 244 const struct sched_class fair_sched_class; 245 246 /************************************************************** 247 * CFS operations on generic schedulable entities: 248 */ 249 250 #ifdef CONFIG_FAIR_GROUP_SCHED 251 252 /* cpu runqueue to which this cfs_rq is attached */ 253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 254 { 255 return cfs_rq->rq; 256 } 257 258 /* An entity is a task if it doesn't "own" a runqueue */ 259 #define entity_is_task(se) (!se->my_q) 260 261 static inline struct task_struct *task_of(struct sched_entity *se) 262 { 263 SCHED_WARN_ON(!entity_is_task(se)); 264 return container_of(se, struct task_struct, se); 265 } 266 267 /* Walk up scheduling entities hierarchy */ 268 #define for_each_sched_entity(se) \ 269 for (; se; se = se->parent) 270 271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 272 { 273 return p->se.cfs_rq; 274 } 275 276 /* runqueue on which this entity is (to be) queued */ 277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 278 { 279 return se->cfs_rq; 280 } 281 282 /* runqueue "owned" by this group */ 283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 284 { 285 return grp->my_q; 286 } 287 288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 289 { 290 if (!cfs_rq->on_list) { 291 struct rq *rq = rq_of(cfs_rq); 292 int cpu = cpu_of(rq); 293 /* 294 * Ensure we either appear before our parent (if already 295 * enqueued) or force our parent to appear after us when it is 296 * enqueued. The fact that we always enqueue bottom-up 297 * reduces this to two cases and a special case for the root 298 * cfs_rq. Furthermore, it also means that we will always reset 299 * tmp_alone_branch either when the branch is connected 300 * to a tree or when we reach the beg of the tree 301 */ 302 if (cfs_rq->tg->parent && 303 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 304 /* 305 * If parent is already on the list, we add the child 306 * just before. Thanks to circular linked property of 307 * the list, this means to put the child at the tail 308 * of the list that starts by parent. 309 */ 310 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 311 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 312 /* 313 * The branch is now connected to its tree so we can 314 * reset tmp_alone_branch to the beginning of the 315 * list. 316 */ 317 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 318 } else if (!cfs_rq->tg->parent) { 319 /* 320 * cfs rq without parent should be put 321 * at the tail of the list. 322 */ 323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 324 &rq->leaf_cfs_rq_list); 325 /* 326 * We have reach the beg of a tree so we can reset 327 * tmp_alone_branch to the beginning of the list. 328 */ 329 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 330 } else { 331 /* 332 * The parent has not already been added so we want to 333 * make sure that it will be put after us. 334 * tmp_alone_branch points to the beg of the branch 335 * where we will add parent. 336 */ 337 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 338 rq->tmp_alone_branch); 339 /* 340 * update tmp_alone_branch to points to the new beg 341 * of the branch 342 */ 343 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 344 } 345 346 cfs_rq->on_list = 1; 347 } 348 } 349 350 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 351 { 352 if (cfs_rq->on_list) { 353 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 354 cfs_rq->on_list = 0; 355 } 356 } 357 358 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 359 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 360 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 361 leaf_cfs_rq_list) 362 363 /* Do the two (enqueued) entities belong to the same group ? */ 364 static inline struct cfs_rq * 365 is_same_group(struct sched_entity *se, struct sched_entity *pse) 366 { 367 if (se->cfs_rq == pse->cfs_rq) 368 return se->cfs_rq; 369 370 return NULL; 371 } 372 373 static inline struct sched_entity *parent_entity(struct sched_entity *se) 374 { 375 return se->parent; 376 } 377 378 static void 379 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 380 { 381 int se_depth, pse_depth; 382 383 /* 384 * preemption test can be made between sibling entities who are in the 385 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 386 * both tasks until we find their ancestors who are siblings of common 387 * parent. 388 */ 389 390 /* First walk up until both entities are at same depth */ 391 se_depth = (*se)->depth; 392 pse_depth = (*pse)->depth; 393 394 while (se_depth > pse_depth) { 395 se_depth--; 396 *se = parent_entity(*se); 397 } 398 399 while (pse_depth > se_depth) { 400 pse_depth--; 401 *pse = parent_entity(*pse); 402 } 403 404 while (!is_same_group(*se, *pse)) { 405 *se = parent_entity(*se); 406 *pse = parent_entity(*pse); 407 } 408 } 409 410 #else /* !CONFIG_FAIR_GROUP_SCHED */ 411 412 static inline struct task_struct *task_of(struct sched_entity *se) 413 { 414 return container_of(se, struct task_struct, se); 415 } 416 417 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 418 { 419 return container_of(cfs_rq, struct rq, cfs); 420 } 421 422 #define entity_is_task(se) 1 423 424 #define for_each_sched_entity(se) \ 425 for (; se; se = NULL) 426 427 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 428 { 429 return &task_rq(p)->cfs; 430 } 431 432 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 433 { 434 struct task_struct *p = task_of(se); 435 struct rq *rq = task_rq(p); 436 437 return &rq->cfs; 438 } 439 440 /* runqueue "owned" by this group */ 441 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 442 { 443 return NULL; 444 } 445 446 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 447 { 448 } 449 450 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 451 { 452 } 453 454 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 455 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 456 457 static inline struct sched_entity *parent_entity(struct sched_entity *se) 458 { 459 return NULL; 460 } 461 462 static inline void 463 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 464 { 465 } 466 467 #endif /* CONFIG_FAIR_GROUP_SCHED */ 468 469 static __always_inline 470 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 471 472 /************************************************************** 473 * Scheduling class tree data structure manipulation methods: 474 */ 475 476 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 477 { 478 s64 delta = (s64)(vruntime - max_vruntime); 479 if (delta > 0) 480 max_vruntime = vruntime; 481 482 return max_vruntime; 483 } 484 485 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 486 { 487 s64 delta = (s64)(vruntime - min_vruntime); 488 if (delta < 0) 489 min_vruntime = vruntime; 490 491 return min_vruntime; 492 } 493 494 static inline int entity_before(struct sched_entity *a, 495 struct sched_entity *b) 496 { 497 return (s64)(a->vruntime - b->vruntime) < 0; 498 } 499 500 static void update_min_vruntime(struct cfs_rq *cfs_rq) 501 { 502 struct sched_entity *curr = cfs_rq->curr; 503 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 504 505 u64 vruntime = cfs_rq->min_vruntime; 506 507 if (curr) { 508 if (curr->on_rq) 509 vruntime = curr->vruntime; 510 else 511 curr = NULL; 512 } 513 514 if (leftmost) { /* non-empty tree */ 515 struct sched_entity *se; 516 se = rb_entry(leftmost, struct sched_entity, run_node); 517 518 if (!curr) 519 vruntime = se->vruntime; 520 else 521 vruntime = min_vruntime(vruntime, se->vruntime); 522 } 523 524 /* ensure we never gain time by being placed backwards. */ 525 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 526 #ifndef CONFIG_64BIT 527 smp_wmb(); 528 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 529 #endif 530 } 531 532 /* 533 * Enqueue an entity into the rb-tree: 534 */ 535 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 536 { 537 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 538 struct rb_node *parent = NULL; 539 struct sched_entity *entry; 540 bool leftmost = true; 541 542 /* 543 * Find the right place in the rbtree: 544 */ 545 while (*link) { 546 parent = *link; 547 entry = rb_entry(parent, struct sched_entity, run_node); 548 /* 549 * We dont care about collisions. Nodes with 550 * the same key stay together. 551 */ 552 if (entity_before(se, entry)) { 553 link = &parent->rb_left; 554 } else { 555 link = &parent->rb_right; 556 leftmost = false; 557 } 558 } 559 560 rb_link_node(&se->run_node, parent, link); 561 rb_insert_color_cached(&se->run_node, 562 &cfs_rq->tasks_timeline, leftmost); 563 } 564 565 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 566 { 567 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 568 } 569 570 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 571 { 572 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 573 574 if (!left) 575 return NULL; 576 577 return rb_entry(left, struct sched_entity, run_node); 578 } 579 580 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 581 { 582 struct rb_node *next = rb_next(&se->run_node); 583 584 if (!next) 585 return NULL; 586 587 return rb_entry(next, struct sched_entity, run_node); 588 } 589 590 #ifdef CONFIG_SCHED_DEBUG 591 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 592 { 593 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 594 595 if (!last) 596 return NULL; 597 598 return rb_entry(last, struct sched_entity, run_node); 599 } 600 601 /************************************************************** 602 * Scheduling class statistics methods: 603 */ 604 605 int sched_proc_update_handler(struct ctl_table *table, int write, 606 void __user *buffer, size_t *lenp, 607 loff_t *ppos) 608 { 609 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 610 unsigned int factor = get_update_sysctl_factor(); 611 612 if (ret || !write) 613 return ret; 614 615 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 616 sysctl_sched_min_granularity); 617 618 #define WRT_SYSCTL(name) \ 619 (normalized_sysctl_##name = sysctl_##name / (factor)) 620 WRT_SYSCTL(sched_min_granularity); 621 WRT_SYSCTL(sched_latency); 622 WRT_SYSCTL(sched_wakeup_granularity); 623 #undef WRT_SYSCTL 624 625 return 0; 626 } 627 #endif 628 629 /* 630 * delta /= w 631 */ 632 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 633 { 634 if (unlikely(se->load.weight != NICE_0_LOAD)) 635 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 636 637 return delta; 638 } 639 640 /* 641 * The idea is to set a period in which each task runs once. 642 * 643 * When there are too many tasks (sched_nr_latency) we have to stretch 644 * this period because otherwise the slices get too small. 645 * 646 * p = (nr <= nl) ? l : l*nr/nl 647 */ 648 static u64 __sched_period(unsigned long nr_running) 649 { 650 if (unlikely(nr_running > sched_nr_latency)) 651 return nr_running * sysctl_sched_min_granularity; 652 else 653 return sysctl_sched_latency; 654 } 655 656 /* 657 * We calculate the wall-time slice from the period by taking a part 658 * proportional to the weight. 659 * 660 * s = p*P[w/rw] 661 */ 662 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 663 { 664 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 665 666 for_each_sched_entity(se) { 667 struct load_weight *load; 668 struct load_weight lw; 669 670 cfs_rq = cfs_rq_of(se); 671 load = &cfs_rq->load; 672 673 if (unlikely(!se->on_rq)) { 674 lw = cfs_rq->load; 675 676 update_load_add(&lw, se->load.weight); 677 load = &lw; 678 } 679 slice = __calc_delta(slice, se->load.weight, load); 680 } 681 return slice; 682 } 683 684 /* 685 * We calculate the vruntime slice of a to-be-inserted task. 686 * 687 * vs = s/w 688 */ 689 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 690 { 691 return calc_delta_fair(sched_slice(cfs_rq, se), se); 692 } 693 694 #ifdef CONFIG_SMP 695 696 #include "sched-pelt.h" 697 698 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 699 static unsigned long task_h_load(struct task_struct *p); 700 701 /* Give new sched_entity start runnable values to heavy its load in infant time */ 702 void init_entity_runnable_average(struct sched_entity *se) 703 { 704 struct sched_avg *sa = &se->avg; 705 706 memset(sa, 0, sizeof(*sa)); 707 708 /* 709 * Tasks are intialized with full load to be seen as heavy tasks until 710 * they get a chance to stabilize to their real load level. 711 * Group entities are intialized with zero load to reflect the fact that 712 * nothing has been attached to the task group yet. 713 */ 714 if (entity_is_task(se)) 715 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 716 717 se->runnable_weight = se->load.weight; 718 719 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 720 } 721 722 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 723 static void attach_entity_cfs_rq(struct sched_entity *se); 724 725 /* 726 * With new tasks being created, their initial util_avgs are extrapolated 727 * based on the cfs_rq's current util_avg: 728 * 729 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 730 * 731 * However, in many cases, the above util_avg does not give a desired 732 * value. Moreover, the sum of the util_avgs may be divergent, such 733 * as when the series is a harmonic series. 734 * 735 * To solve this problem, we also cap the util_avg of successive tasks to 736 * only 1/2 of the left utilization budget: 737 * 738 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n 739 * 740 * where n denotes the nth task. 741 * 742 * For example, a simplest series from the beginning would be like: 743 * 744 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 745 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 746 * 747 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 748 * if util_avg > util_avg_cap. 749 */ 750 void post_init_entity_util_avg(struct sched_entity *se) 751 { 752 struct cfs_rq *cfs_rq = cfs_rq_of(se); 753 struct sched_avg *sa = &se->avg; 754 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; 755 756 if (cap > 0) { 757 if (cfs_rq->avg.util_avg != 0) { 758 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 759 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 760 761 if (sa->util_avg > cap) 762 sa->util_avg = cap; 763 } else { 764 sa->util_avg = cap; 765 } 766 } 767 768 if (entity_is_task(se)) { 769 struct task_struct *p = task_of(se); 770 if (p->sched_class != &fair_sched_class) { 771 /* 772 * For !fair tasks do: 773 * 774 update_cfs_rq_load_avg(now, cfs_rq); 775 attach_entity_load_avg(cfs_rq, se, 0); 776 switched_from_fair(rq, p); 777 * 778 * such that the next switched_to_fair() has the 779 * expected state. 780 */ 781 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); 782 return; 783 } 784 } 785 786 attach_entity_cfs_rq(se); 787 } 788 789 #else /* !CONFIG_SMP */ 790 void init_entity_runnable_average(struct sched_entity *se) 791 { 792 } 793 void post_init_entity_util_avg(struct sched_entity *se) 794 { 795 } 796 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 797 { 798 } 799 #endif /* CONFIG_SMP */ 800 801 /* 802 * Update the current task's runtime statistics. 803 */ 804 static void update_curr(struct cfs_rq *cfs_rq) 805 { 806 struct sched_entity *curr = cfs_rq->curr; 807 u64 now = rq_clock_task(rq_of(cfs_rq)); 808 u64 delta_exec; 809 810 if (unlikely(!curr)) 811 return; 812 813 delta_exec = now - curr->exec_start; 814 if (unlikely((s64)delta_exec <= 0)) 815 return; 816 817 curr->exec_start = now; 818 819 schedstat_set(curr->statistics.exec_max, 820 max(delta_exec, curr->statistics.exec_max)); 821 822 curr->sum_exec_runtime += delta_exec; 823 schedstat_add(cfs_rq->exec_clock, delta_exec); 824 825 curr->vruntime += calc_delta_fair(delta_exec, curr); 826 update_min_vruntime(cfs_rq); 827 828 if (entity_is_task(curr)) { 829 struct task_struct *curtask = task_of(curr); 830 831 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 832 cgroup_account_cputime(curtask, delta_exec); 833 account_group_exec_runtime(curtask, delta_exec); 834 } 835 836 account_cfs_rq_runtime(cfs_rq, delta_exec); 837 } 838 839 static void update_curr_fair(struct rq *rq) 840 { 841 update_curr(cfs_rq_of(&rq->curr->se)); 842 } 843 844 static inline void 845 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 846 { 847 u64 wait_start, prev_wait_start; 848 849 if (!schedstat_enabled()) 850 return; 851 852 wait_start = rq_clock(rq_of(cfs_rq)); 853 prev_wait_start = schedstat_val(se->statistics.wait_start); 854 855 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 856 likely(wait_start > prev_wait_start)) 857 wait_start -= prev_wait_start; 858 859 __schedstat_set(se->statistics.wait_start, wait_start); 860 } 861 862 static inline void 863 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 864 { 865 struct task_struct *p; 866 u64 delta; 867 868 if (!schedstat_enabled()) 869 return; 870 871 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 872 873 if (entity_is_task(se)) { 874 p = task_of(se); 875 if (task_on_rq_migrating(p)) { 876 /* 877 * Preserve migrating task's wait time so wait_start 878 * time stamp can be adjusted to accumulate wait time 879 * prior to migration. 880 */ 881 __schedstat_set(se->statistics.wait_start, delta); 882 return; 883 } 884 trace_sched_stat_wait(p, delta); 885 } 886 887 __schedstat_set(se->statistics.wait_max, 888 max(schedstat_val(se->statistics.wait_max), delta)); 889 __schedstat_inc(se->statistics.wait_count); 890 __schedstat_add(se->statistics.wait_sum, delta); 891 __schedstat_set(se->statistics.wait_start, 0); 892 } 893 894 static inline void 895 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 896 { 897 struct task_struct *tsk = NULL; 898 u64 sleep_start, block_start; 899 900 if (!schedstat_enabled()) 901 return; 902 903 sleep_start = schedstat_val(se->statistics.sleep_start); 904 block_start = schedstat_val(se->statistics.block_start); 905 906 if (entity_is_task(se)) 907 tsk = task_of(se); 908 909 if (sleep_start) { 910 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 911 912 if ((s64)delta < 0) 913 delta = 0; 914 915 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 916 __schedstat_set(se->statistics.sleep_max, delta); 917 918 __schedstat_set(se->statistics.sleep_start, 0); 919 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 920 921 if (tsk) { 922 account_scheduler_latency(tsk, delta >> 10, 1); 923 trace_sched_stat_sleep(tsk, delta); 924 } 925 } 926 if (block_start) { 927 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 928 929 if ((s64)delta < 0) 930 delta = 0; 931 932 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 933 __schedstat_set(se->statistics.block_max, delta); 934 935 __schedstat_set(se->statistics.block_start, 0); 936 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 937 938 if (tsk) { 939 if (tsk->in_iowait) { 940 __schedstat_add(se->statistics.iowait_sum, delta); 941 __schedstat_inc(se->statistics.iowait_count); 942 trace_sched_stat_iowait(tsk, delta); 943 } 944 945 trace_sched_stat_blocked(tsk, delta); 946 947 /* 948 * Blocking time is in units of nanosecs, so shift by 949 * 20 to get a milliseconds-range estimation of the 950 * amount of time that the task spent sleeping: 951 */ 952 if (unlikely(prof_on == SLEEP_PROFILING)) { 953 profile_hits(SLEEP_PROFILING, 954 (void *)get_wchan(tsk), 955 delta >> 20); 956 } 957 account_scheduler_latency(tsk, delta >> 10, 0); 958 } 959 } 960 } 961 962 /* 963 * Task is being enqueued - update stats: 964 */ 965 static inline void 966 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 967 { 968 if (!schedstat_enabled()) 969 return; 970 971 /* 972 * Are we enqueueing a waiting task? (for current tasks 973 * a dequeue/enqueue event is a NOP) 974 */ 975 if (se != cfs_rq->curr) 976 update_stats_wait_start(cfs_rq, se); 977 978 if (flags & ENQUEUE_WAKEUP) 979 update_stats_enqueue_sleeper(cfs_rq, se); 980 } 981 982 static inline void 983 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 984 { 985 986 if (!schedstat_enabled()) 987 return; 988 989 /* 990 * Mark the end of the wait period if dequeueing a 991 * waiting task: 992 */ 993 if (se != cfs_rq->curr) 994 update_stats_wait_end(cfs_rq, se); 995 996 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 997 struct task_struct *tsk = task_of(se); 998 999 if (tsk->state & TASK_INTERRUPTIBLE) 1000 __schedstat_set(se->statistics.sleep_start, 1001 rq_clock(rq_of(cfs_rq))); 1002 if (tsk->state & TASK_UNINTERRUPTIBLE) 1003 __schedstat_set(se->statistics.block_start, 1004 rq_clock(rq_of(cfs_rq))); 1005 } 1006 } 1007 1008 /* 1009 * We are picking a new current task - update its stats: 1010 */ 1011 static inline void 1012 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1013 { 1014 /* 1015 * We are starting a new run period: 1016 */ 1017 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1018 } 1019 1020 /************************************************** 1021 * Scheduling class queueing methods: 1022 */ 1023 1024 #ifdef CONFIG_NUMA_BALANCING 1025 /* 1026 * Approximate time to scan a full NUMA task in ms. The task scan period is 1027 * calculated based on the tasks virtual memory size and 1028 * numa_balancing_scan_size. 1029 */ 1030 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1031 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1032 1033 /* Portion of address space to scan in MB */ 1034 unsigned int sysctl_numa_balancing_scan_size = 256; 1035 1036 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1037 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1038 1039 struct numa_group { 1040 atomic_t refcount; 1041 1042 spinlock_t lock; /* nr_tasks, tasks */ 1043 int nr_tasks; 1044 pid_t gid; 1045 int active_nodes; 1046 1047 struct rcu_head rcu; 1048 unsigned long total_faults; 1049 unsigned long max_faults_cpu; 1050 /* 1051 * Faults_cpu is used to decide whether memory should move 1052 * towards the CPU. As a consequence, these stats are weighted 1053 * more by CPU use than by memory faults. 1054 */ 1055 unsigned long *faults_cpu; 1056 unsigned long faults[0]; 1057 }; 1058 1059 static inline unsigned long group_faults_priv(struct numa_group *ng); 1060 static inline unsigned long group_faults_shared(struct numa_group *ng); 1061 1062 static unsigned int task_nr_scan_windows(struct task_struct *p) 1063 { 1064 unsigned long rss = 0; 1065 unsigned long nr_scan_pages; 1066 1067 /* 1068 * Calculations based on RSS as non-present and empty pages are skipped 1069 * by the PTE scanner and NUMA hinting faults should be trapped based 1070 * on resident pages 1071 */ 1072 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1073 rss = get_mm_rss(p->mm); 1074 if (!rss) 1075 rss = nr_scan_pages; 1076 1077 rss = round_up(rss, nr_scan_pages); 1078 return rss / nr_scan_pages; 1079 } 1080 1081 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1082 #define MAX_SCAN_WINDOW 2560 1083 1084 static unsigned int task_scan_min(struct task_struct *p) 1085 { 1086 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1087 unsigned int scan, floor; 1088 unsigned int windows = 1; 1089 1090 if (scan_size < MAX_SCAN_WINDOW) 1091 windows = MAX_SCAN_WINDOW / scan_size; 1092 floor = 1000 / windows; 1093 1094 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1095 return max_t(unsigned int, floor, scan); 1096 } 1097 1098 static unsigned int task_scan_start(struct task_struct *p) 1099 { 1100 unsigned long smin = task_scan_min(p); 1101 unsigned long period = smin; 1102 1103 /* Scale the maximum scan period with the amount of shared memory. */ 1104 if (p->numa_group) { 1105 struct numa_group *ng = p->numa_group; 1106 unsigned long shared = group_faults_shared(ng); 1107 unsigned long private = group_faults_priv(ng); 1108 1109 period *= atomic_read(&ng->refcount); 1110 period *= shared + 1; 1111 period /= private + shared + 1; 1112 } 1113 1114 return max(smin, period); 1115 } 1116 1117 static unsigned int task_scan_max(struct task_struct *p) 1118 { 1119 unsigned long smin = task_scan_min(p); 1120 unsigned long smax; 1121 1122 /* Watch for min being lower than max due to floor calculations */ 1123 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1124 1125 /* Scale the maximum scan period with the amount of shared memory. */ 1126 if (p->numa_group) { 1127 struct numa_group *ng = p->numa_group; 1128 unsigned long shared = group_faults_shared(ng); 1129 unsigned long private = group_faults_priv(ng); 1130 unsigned long period = smax; 1131 1132 period *= atomic_read(&ng->refcount); 1133 period *= shared + 1; 1134 period /= private + shared + 1; 1135 1136 smax = max(smax, period); 1137 } 1138 1139 return max(smin, smax); 1140 } 1141 1142 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1143 { 1144 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1145 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1146 } 1147 1148 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1149 { 1150 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1151 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1152 } 1153 1154 /* Shared or private faults. */ 1155 #define NR_NUMA_HINT_FAULT_TYPES 2 1156 1157 /* Memory and CPU locality */ 1158 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1159 1160 /* Averaged statistics, and temporary buffers. */ 1161 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1162 1163 pid_t task_numa_group_id(struct task_struct *p) 1164 { 1165 return p->numa_group ? p->numa_group->gid : 0; 1166 } 1167 1168 /* 1169 * The averaged statistics, shared & private, memory & CPU, 1170 * occupy the first half of the array. The second half of the 1171 * array is for current counters, which are averaged into the 1172 * first set by task_numa_placement. 1173 */ 1174 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1175 { 1176 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1177 } 1178 1179 static inline unsigned long task_faults(struct task_struct *p, int nid) 1180 { 1181 if (!p->numa_faults) 1182 return 0; 1183 1184 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1185 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1186 } 1187 1188 static inline unsigned long group_faults(struct task_struct *p, int nid) 1189 { 1190 if (!p->numa_group) 1191 return 0; 1192 1193 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1194 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1195 } 1196 1197 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1198 { 1199 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1200 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1201 } 1202 1203 static inline unsigned long group_faults_priv(struct numa_group *ng) 1204 { 1205 unsigned long faults = 0; 1206 int node; 1207 1208 for_each_online_node(node) { 1209 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1210 } 1211 1212 return faults; 1213 } 1214 1215 static inline unsigned long group_faults_shared(struct numa_group *ng) 1216 { 1217 unsigned long faults = 0; 1218 int node; 1219 1220 for_each_online_node(node) { 1221 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1222 } 1223 1224 return faults; 1225 } 1226 1227 /* 1228 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1229 * considered part of a numa group's pseudo-interleaving set. Migrations 1230 * between these nodes are slowed down, to allow things to settle down. 1231 */ 1232 #define ACTIVE_NODE_FRACTION 3 1233 1234 static bool numa_is_active_node(int nid, struct numa_group *ng) 1235 { 1236 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1237 } 1238 1239 /* Handle placement on systems where not all nodes are directly connected. */ 1240 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1241 int maxdist, bool task) 1242 { 1243 unsigned long score = 0; 1244 int node; 1245 1246 /* 1247 * All nodes are directly connected, and the same distance 1248 * from each other. No need for fancy placement algorithms. 1249 */ 1250 if (sched_numa_topology_type == NUMA_DIRECT) 1251 return 0; 1252 1253 /* 1254 * This code is called for each node, introducing N^2 complexity, 1255 * which should be ok given the number of nodes rarely exceeds 8. 1256 */ 1257 for_each_online_node(node) { 1258 unsigned long faults; 1259 int dist = node_distance(nid, node); 1260 1261 /* 1262 * The furthest away nodes in the system are not interesting 1263 * for placement; nid was already counted. 1264 */ 1265 if (dist == sched_max_numa_distance || node == nid) 1266 continue; 1267 1268 /* 1269 * On systems with a backplane NUMA topology, compare groups 1270 * of nodes, and move tasks towards the group with the most 1271 * memory accesses. When comparing two nodes at distance 1272 * "hoplimit", only nodes closer by than "hoplimit" are part 1273 * of each group. Skip other nodes. 1274 */ 1275 if (sched_numa_topology_type == NUMA_BACKPLANE && 1276 dist > maxdist) 1277 continue; 1278 1279 /* Add up the faults from nearby nodes. */ 1280 if (task) 1281 faults = task_faults(p, node); 1282 else 1283 faults = group_faults(p, node); 1284 1285 /* 1286 * On systems with a glueless mesh NUMA topology, there are 1287 * no fixed "groups of nodes". Instead, nodes that are not 1288 * directly connected bounce traffic through intermediate 1289 * nodes; a numa_group can occupy any set of nodes. 1290 * The further away a node is, the less the faults count. 1291 * This seems to result in good task placement. 1292 */ 1293 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1294 faults *= (sched_max_numa_distance - dist); 1295 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1296 } 1297 1298 score += faults; 1299 } 1300 1301 return score; 1302 } 1303 1304 /* 1305 * These return the fraction of accesses done by a particular task, or 1306 * task group, on a particular numa node. The group weight is given a 1307 * larger multiplier, in order to group tasks together that are almost 1308 * evenly spread out between numa nodes. 1309 */ 1310 static inline unsigned long task_weight(struct task_struct *p, int nid, 1311 int dist) 1312 { 1313 unsigned long faults, total_faults; 1314 1315 if (!p->numa_faults) 1316 return 0; 1317 1318 total_faults = p->total_numa_faults; 1319 1320 if (!total_faults) 1321 return 0; 1322 1323 faults = task_faults(p, nid); 1324 faults += score_nearby_nodes(p, nid, dist, true); 1325 1326 return 1000 * faults / total_faults; 1327 } 1328 1329 static inline unsigned long group_weight(struct task_struct *p, int nid, 1330 int dist) 1331 { 1332 unsigned long faults, total_faults; 1333 1334 if (!p->numa_group) 1335 return 0; 1336 1337 total_faults = p->numa_group->total_faults; 1338 1339 if (!total_faults) 1340 return 0; 1341 1342 faults = group_faults(p, nid); 1343 faults += score_nearby_nodes(p, nid, dist, false); 1344 1345 return 1000 * faults / total_faults; 1346 } 1347 1348 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1349 int src_nid, int dst_cpu) 1350 { 1351 struct numa_group *ng = p->numa_group; 1352 int dst_nid = cpu_to_node(dst_cpu); 1353 int last_cpupid, this_cpupid; 1354 1355 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1356 1357 /* 1358 * Multi-stage node selection is used in conjunction with a periodic 1359 * migration fault to build a temporal task<->page relation. By using 1360 * a two-stage filter we remove short/unlikely relations. 1361 * 1362 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1363 * a task's usage of a particular page (n_p) per total usage of this 1364 * page (n_t) (in a given time-span) to a probability. 1365 * 1366 * Our periodic faults will sample this probability and getting the 1367 * same result twice in a row, given these samples are fully 1368 * independent, is then given by P(n)^2, provided our sample period 1369 * is sufficiently short compared to the usage pattern. 1370 * 1371 * This quadric squishes small probabilities, making it less likely we 1372 * act on an unlikely task<->page relation. 1373 */ 1374 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1375 if (!cpupid_pid_unset(last_cpupid) && 1376 cpupid_to_nid(last_cpupid) != dst_nid) 1377 return false; 1378 1379 /* Always allow migrate on private faults */ 1380 if (cpupid_match_pid(p, last_cpupid)) 1381 return true; 1382 1383 /* A shared fault, but p->numa_group has not been set up yet. */ 1384 if (!ng) 1385 return true; 1386 1387 /* 1388 * Destination node is much more heavily used than the source 1389 * node? Allow migration. 1390 */ 1391 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1392 ACTIVE_NODE_FRACTION) 1393 return true; 1394 1395 /* 1396 * Distribute memory according to CPU & memory use on each node, 1397 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1398 * 1399 * faults_cpu(dst) 3 faults_cpu(src) 1400 * --------------- * - > --------------- 1401 * faults_mem(dst) 4 faults_mem(src) 1402 */ 1403 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1404 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1405 } 1406 1407 static unsigned long weighted_cpuload(struct rq *rq); 1408 static unsigned long source_load(int cpu, int type); 1409 static unsigned long target_load(int cpu, int type); 1410 static unsigned long capacity_of(int cpu); 1411 1412 /* Cached statistics for all CPUs within a node */ 1413 struct numa_stats { 1414 unsigned long nr_running; 1415 unsigned long load; 1416 1417 /* Total compute capacity of CPUs on a node */ 1418 unsigned long compute_capacity; 1419 1420 /* Approximate capacity in terms of runnable tasks on a node */ 1421 unsigned long task_capacity; 1422 int has_free_capacity; 1423 }; 1424 1425 /* 1426 * XXX borrowed from update_sg_lb_stats 1427 */ 1428 static void update_numa_stats(struct numa_stats *ns, int nid) 1429 { 1430 int smt, cpu, cpus = 0; 1431 unsigned long capacity; 1432 1433 memset(ns, 0, sizeof(*ns)); 1434 for_each_cpu(cpu, cpumask_of_node(nid)) { 1435 struct rq *rq = cpu_rq(cpu); 1436 1437 ns->nr_running += rq->nr_running; 1438 ns->load += weighted_cpuload(rq); 1439 ns->compute_capacity += capacity_of(cpu); 1440 1441 cpus++; 1442 } 1443 1444 /* 1445 * If we raced with hotplug and there are no CPUs left in our mask 1446 * the @ns structure is NULL'ed and task_numa_compare() will 1447 * not find this node attractive. 1448 * 1449 * We'll either bail at !has_free_capacity, or we'll detect a huge 1450 * imbalance and bail there. 1451 */ 1452 if (!cpus) 1453 return; 1454 1455 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1456 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1457 capacity = cpus / smt; /* cores */ 1458 1459 ns->task_capacity = min_t(unsigned, capacity, 1460 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1461 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1462 } 1463 1464 struct task_numa_env { 1465 struct task_struct *p; 1466 1467 int src_cpu, src_nid; 1468 int dst_cpu, dst_nid; 1469 1470 struct numa_stats src_stats, dst_stats; 1471 1472 int imbalance_pct; 1473 int dist; 1474 1475 struct task_struct *best_task; 1476 long best_imp; 1477 int best_cpu; 1478 }; 1479 1480 static void task_numa_assign(struct task_numa_env *env, 1481 struct task_struct *p, long imp) 1482 { 1483 if (env->best_task) 1484 put_task_struct(env->best_task); 1485 if (p) 1486 get_task_struct(p); 1487 1488 env->best_task = p; 1489 env->best_imp = imp; 1490 env->best_cpu = env->dst_cpu; 1491 } 1492 1493 static bool load_too_imbalanced(long src_load, long dst_load, 1494 struct task_numa_env *env) 1495 { 1496 long imb, old_imb; 1497 long orig_src_load, orig_dst_load; 1498 long src_capacity, dst_capacity; 1499 1500 /* 1501 * The load is corrected for the CPU capacity available on each node. 1502 * 1503 * src_load dst_load 1504 * ------------ vs --------- 1505 * src_capacity dst_capacity 1506 */ 1507 src_capacity = env->src_stats.compute_capacity; 1508 dst_capacity = env->dst_stats.compute_capacity; 1509 1510 /* We care about the slope of the imbalance, not the direction. */ 1511 if (dst_load < src_load) 1512 swap(dst_load, src_load); 1513 1514 /* Is the difference below the threshold? */ 1515 imb = dst_load * src_capacity * 100 - 1516 src_load * dst_capacity * env->imbalance_pct; 1517 if (imb <= 0) 1518 return false; 1519 1520 /* 1521 * The imbalance is above the allowed threshold. 1522 * Compare it with the old imbalance. 1523 */ 1524 orig_src_load = env->src_stats.load; 1525 orig_dst_load = env->dst_stats.load; 1526 1527 if (orig_dst_load < orig_src_load) 1528 swap(orig_dst_load, orig_src_load); 1529 1530 old_imb = orig_dst_load * src_capacity * 100 - 1531 orig_src_load * dst_capacity * env->imbalance_pct; 1532 1533 /* Would this change make things worse? */ 1534 return (imb > old_imb); 1535 } 1536 1537 /* 1538 * This checks if the overall compute and NUMA accesses of the system would 1539 * be improved if the source tasks was migrated to the target dst_cpu taking 1540 * into account that it might be best if task running on the dst_cpu should 1541 * be exchanged with the source task 1542 */ 1543 static void task_numa_compare(struct task_numa_env *env, 1544 long taskimp, long groupimp) 1545 { 1546 struct rq *src_rq = cpu_rq(env->src_cpu); 1547 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1548 struct task_struct *cur; 1549 long src_load, dst_load; 1550 long load; 1551 long imp = env->p->numa_group ? groupimp : taskimp; 1552 long moveimp = imp; 1553 int dist = env->dist; 1554 1555 rcu_read_lock(); 1556 cur = task_rcu_dereference(&dst_rq->curr); 1557 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1558 cur = NULL; 1559 1560 /* 1561 * Because we have preemption enabled we can get migrated around and 1562 * end try selecting ourselves (current == env->p) as a swap candidate. 1563 */ 1564 if (cur == env->p) 1565 goto unlock; 1566 1567 /* 1568 * "imp" is the fault differential for the source task between the 1569 * source and destination node. Calculate the total differential for 1570 * the source task and potential destination task. The more negative 1571 * the value is, the more rmeote accesses that would be expected to 1572 * be incurred if the tasks were swapped. 1573 */ 1574 if (cur) { 1575 /* Skip this swap candidate if cannot move to the source CPU: */ 1576 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1577 goto unlock; 1578 1579 /* 1580 * If dst and source tasks are in the same NUMA group, or not 1581 * in any group then look only at task weights. 1582 */ 1583 if (cur->numa_group == env->p->numa_group) { 1584 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1585 task_weight(cur, env->dst_nid, dist); 1586 /* 1587 * Add some hysteresis to prevent swapping the 1588 * tasks within a group over tiny differences. 1589 */ 1590 if (cur->numa_group) 1591 imp -= imp/16; 1592 } else { 1593 /* 1594 * Compare the group weights. If a task is all by 1595 * itself (not part of a group), use the task weight 1596 * instead. 1597 */ 1598 if (cur->numa_group) 1599 imp += group_weight(cur, env->src_nid, dist) - 1600 group_weight(cur, env->dst_nid, dist); 1601 else 1602 imp += task_weight(cur, env->src_nid, dist) - 1603 task_weight(cur, env->dst_nid, dist); 1604 } 1605 } 1606 1607 if (imp <= env->best_imp && moveimp <= env->best_imp) 1608 goto unlock; 1609 1610 if (!cur) { 1611 /* Is there capacity at our destination? */ 1612 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1613 !env->dst_stats.has_free_capacity) 1614 goto unlock; 1615 1616 goto balance; 1617 } 1618 1619 /* Balance doesn't matter much if we're running a task per CPU: */ 1620 if (imp > env->best_imp && src_rq->nr_running == 1 && 1621 dst_rq->nr_running == 1) 1622 goto assign; 1623 1624 /* 1625 * In the overloaded case, try and keep the load balanced. 1626 */ 1627 balance: 1628 load = task_h_load(env->p); 1629 dst_load = env->dst_stats.load + load; 1630 src_load = env->src_stats.load - load; 1631 1632 if (moveimp > imp && moveimp > env->best_imp) { 1633 /* 1634 * If the improvement from just moving env->p direction is 1635 * better than swapping tasks around, check if a move is 1636 * possible. Store a slightly smaller score than moveimp, 1637 * so an actually idle CPU will win. 1638 */ 1639 if (!load_too_imbalanced(src_load, dst_load, env)) { 1640 imp = moveimp - 1; 1641 cur = NULL; 1642 goto assign; 1643 } 1644 } 1645 1646 if (imp <= env->best_imp) 1647 goto unlock; 1648 1649 if (cur) { 1650 load = task_h_load(cur); 1651 dst_load -= load; 1652 src_load += load; 1653 } 1654 1655 if (load_too_imbalanced(src_load, dst_load, env)) 1656 goto unlock; 1657 1658 /* 1659 * One idle CPU per node is evaluated for a task numa move. 1660 * Call select_idle_sibling to maybe find a better one. 1661 */ 1662 if (!cur) { 1663 /* 1664 * select_idle_siblings() uses an per-CPU cpumask that 1665 * can be used from IRQ context. 1666 */ 1667 local_irq_disable(); 1668 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1669 env->dst_cpu); 1670 local_irq_enable(); 1671 } 1672 1673 assign: 1674 task_numa_assign(env, cur, imp); 1675 unlock: 1676 rcu_read_unlock(); 1677 } 1678 1679 static void task_numa_find_cpu(struct task_numa_env *env, 1680 long taskimp, long groupimp) 1681 { 1682 int cpu; 1683 1684 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1685 /* Skip this CPU if the source task cannot migrate */ 1686 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1687 continue; 1688 1689 env->dst_cpu = cpu; 1690 task_numa_compare(env, taskimp, groupimp); 1691 } 1692 } 1693 1694 /* Only move tasks to a NUMA node less busy than the current node. */ 1695 static bool numa_has_capacity(struct task_numa_env *env) 1696 { 1697 struct numa_stats *src = &env->src_stats; 1698 struct numa_stats *dst = &env->dst_stats; 1699 1700 if (src->has_free_capacity && !dst->has_free_capacity) 1701 return false; 1702 1703 /* 1704 * Only consider a task move if the source has a higher load 1705 * than the destination, corrected for CPU capacity on each node. 1706 * 1707 * src->load dst->load 1708 * --------------------- vs --------------------- 1709 * src->compute_capacity dst->compute_capacity 1710 */ 1711 if (src->load * dst->compute_capacity * env->imbalance_pct > 1712 1713 dst->load * src->compute_capacity * 100) 1714 return true; 1715 1716 return false; 1717 } 1718 1719 static int task_numa_migrate(struct task_struct *p) 1720 { 1721 struct task_numa_env env = { 1722 .p = p, 1723 1724 .src_cpu = task_cpu(p), 1725 .src_nid = task_node(p), 1726 1727 .imbalance_pct = 112, 1728 1729 .best_task = NULL, 1730 .best_imp = 0, 1731 .best_cpu = -1, 1732 }; 1733 struct sched_domain *sd; 1734 unsigned long taskweight, groupweight; 1735 int nid, ret, dist; 1736 long taskimp, groupimp; 1737 1738 /* 1739 * Pick the lowest SD_NUMA domain, as that would have the smallest 1740 * imbalance and would be the first to start moving tasks about. 1741 * 1742 * And we want to avoid any moving of tasks about, as that would create 1743 * random movement of tasks -- counter the numa conditions we're trying 1744 * to satisfy here. 1745 */ 1746 rcu_read_lock(); 1747 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1748 if (sd) 1749 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1750 rcu_read_unlock(); 1751 1752 /* 1753 * Cpusets can break the scheduler domain tree into smaller 1754 * balance domains, some of which do not cross NUMA boundaries. 1755 * Tasks that are "trapped" in such domains cannot be migrated 1756 * elsewhere, so there is no point in (re)trying. 1757 */ 1758 if (unlikely(!sd)) { 1759 p->numa_preferred_nid = task_node(p); 1760 return -EINVAL; 1761 } 1762 1763 env.dst_nid = p->numa_preferred_nid; 1764 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1765 taskweight = task_weight(p, env.src_nid, dist); 1766 groupweight = group_weight(p, env.src_nid, dist); 1767 update_numa_stats(&env.src_stats, env.src_nid); 1768 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1769 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1770 update_numa_stats(&env.dst_stats, env.dst_nid); 1771 1772 /* Try to find a spot on the preferred nid. */ 1773 if (numa_has_capacity(&env)) 1774 task_numa_find_cpu(&env, taskimp, groupimp); 1775 1776 /* 1777 * Look at other nodes in these cases: 1778 * - there is no space available on the preferred_nid 1779 * - the task is part of a numa_group that is interleaved across 1780 * multiple NUMA nodes; in order to better consolidate the group, 1781 * we need to check other locations. 1782 */ 1783 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1784 for_each_online_node(nid) { 1785 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1786 continue; 1787 1788 dist = node_distance(env.src_nid, env.dst_nid); 1789 if (sched_numa_topology_type == NUMA_BACKPLANE && 1790 dist != env.dist) { 1791 taskweight = task_weight(p, env.src_nid, dist); 1792 groupweight = group_weight(p, env.src_nid, dist); 1793 } 1794 1795 /* Only consider nodes where both task and groups benefit */ 1796 taskimp = task_weight(p, nid, dist) - taskweight; 1797 groupimp = group_weight(p, nid, dist) - groupweight; 1798 if (taskimp < 0 && groupimp < 0) 1799 continue; 1800 1801 env.dist = dist; 1802 env.dst_nid = nid; 1803 update_numa_stats(&env.dst_stats, env.dst_nid); 1804 if (numa_has_capacity(&env)) 1805 task_numa_find_cpu(&env, taskimp, groupimp); 1806 } 1807 } 1808 1809 /* 1810 * If the task is part of a workload that spans multiple NUMA nodes, 1811 * and is migrating into one of the workload's active nodes, remember 1812 * this node as the task's preferred numa node, so the workload can 1813 * settle down. 1814 * A task that migrated to a second choice node will be better off 1815 * trying for a better one later. Do not set the preferred node here. 1816 */ 1817 if (p->numa_group) { 1818 struct numa_group *ng = p->numa_group; 1819 1820 if (env.best_cpu == -1) 1821 nid = env.src_nid; 1822 else 1823 nid = env.dst_nid; 1824 1825 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) 1826 sched_setnuma(p, env.dst_nid); 1827 } 1828 1829 /* No better CPU than the current one was found. */ 1830 if (env.best_cpu == -1) 1831 return -EAGAIN; 1832 1833 /* 1834 * Reset the scan period if the task is being rescheduled on an 1835 * alternative node to recheck if the tasks is now properly placed. 1836 */ 1837 p->numa_scan_period = task_scan_start(p); 1838 1839 if (env.best_task == NULL) { 1840 ret = migrate_task_to(p, env.best_cpu); 1841 if (ret != 0) 1842 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1843 return ret; 1844 } 1845 1846 ret = migrate_swap(p, env.best_task); 1847 if (ret != 0) 1848 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1849 put_task_struct(env.best_task); 1850 return ret; 1851 } 1852 1853 /* Attempt to migrate a task to a CPU on the preferred node. */ 1854 static void numa_migrate_preferred(struct task_struct *p) 1855 { 1856 unsigned long interval = HZ; 1857 unsigned long numa_migrate_retry; 1858 1859 /* This task has no NUMA fault statistics yet */ 1860 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1861 return; 1862 1863 /* Periodically retry migrating the task to the preferred node */ 1864 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1865 numa_migrate_retry = jiffies + interval; 1866 1867 /* 1868 * Check that the new retry threshold is after the current one. If 1869 * the retry is in the future, it implies that wake_affine has 1870 * temporarily asked NUMA balancing to backoff from placement. 1871 */ 1872 if (numa_migrate_retry > p->numa_migrate_retry) 1873 return; 1874 1875 /* Safe to try placing the task on the preferred node */ 1876 p->numa_migrate_retry = numa_migrate_retry; 1877 1878 /* Success if task is already running on preferred CPU */ 1879 if (task_node(p) == p->numa_preferred_nid) 1880 return; 1881 1882 /* Otherwise, try migrate to a CPU on the preferred node */ 1883 task_numa_migrate(p); 1884 } 1885 1886 /* 1887 * Find out how many nodes on the workload is actively running on. Do this by 1888 * tracking the nodes from which NUMA hinting faults are triggered. This can 1889 * be different from the set of nodes where the workload's memory is currently 1890 * located. 1891 */ 1892 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1893 { 1894 unsigned long faults, max_faults = 0; 1895 int nid, active_nodes = 0; 1896 1897 for_each_online_node(nid) { 1898 faults = group_faults_cpu(numa_group, nid); 1899 if (faults > max_faults) 1900 max_faults = faults; 1901 } 1902 1903 for_each_online_node(nid) { 1904 faults = group_faults_cpu(numa_group, nid); 1905 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1906 active_nodes++; 1907 } 1908 1909 numa_group->max_faults_cpu = max_faults; 1910 numa_group->active_nodes = active_nodes; 1911 } 1912 1913 /* 1914 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1915 * increments. The more local the fault statistics are, the higher the scan 1916 * period will be for the next scan window. If local/(local+remote) ratio is 1917 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1918 * the scan period will decrease. Aim for 70% local accesses. 1919 */ 1920 #define NUMA_PERIOD_SLOTS 10 1921 #define NUMA_PERIOD_THRESHOLD 7 1922 1923 /* 1924 * Increase the scan period (slow down scanning) if the majority of 1925 * our memory is already on our local node, or if the majority of 1926 * the page accesses are shared with other processes. 1927 * Otherwise, decrease the scan period. 1928 */ 1929 static void update_task_scan_period(struct task_struct *p, 1930 unsigned long shared, unsigned long private) 1931 { 1932 unsigned int period_slot; 1933 int lr_ratio, ps_ratio; 1934 int diff; 1935 1936 unsigned long remote = p->numa_faults_locality[0]; 1937 unsigned long local = p->numa_faults_locality[1]; 1938 1939 /* 1940 * If there were no record hinting faults then either the task is 1941 * completely idle or all activity is areas that are not of interest 1942 * to automatic numa balancing. Related to that, if there were failed 1943 * migration then it implies we are migrating too quickly or the local 1944 * node is overloaded. In either case, scan slower 1945 */ 1946 if (local + shared == 0 || p->numa_faults_locality[2]) { 1947 p->numa_scan_period = min(p->numa_scan_period_max, 1948 p->numa_scan_period << 1); 1949 1950 p->mm->numa_next_scan = jiffies + 1951 msecs_to_jiffies(p->numa_scan_period); 1952 1953 return; 1954 } 1955 1956 /* 1957 * Prepare to scale scan period relative to the current period. 1958 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1959 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1960 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1961 */ 1962 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1963 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1964 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1965 1966 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1967 /* 1968 * Most memory accesses are local. There is no need to 1969 * do fast NUMA scanning, since memory is already local. 1970 */ 1971 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1972 if (!slot) 1973 slot = 1; 1974 diff = slot * period_slot; 1975 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1976 /* 1977 * Most memory accesses are shared with other tasks. 1978 * There is no point in continuing fast NUMA scanning, 1979 * since other tasks may just move the memory elsewhere. 1980 */ 1981 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1982 if (!slot) 1983 slot = 1; 1984 diff = slot * period_slot; 1985 } else { 1986 /* 1987 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1988 * yet they are not on the local NUMA node. Speed up 1989 * NUMA scanning to get the memory moved over. 1990 */ 1991 int ratio = max(lr_ratio, ps_ratio); 1992 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1993 } 1994 1995 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1996 task_scan_min(p), task_scan_max(p)); 1997 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1998 } 1999 2000 /* 2001 * Get the fraction of time the task has been running since the last 2002 * NUMA placement cycle. The scheduler keeps similar statistics, but 2003 * decays those on a 32ms period, which is orders of magnitude off 2004 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2005 * stats only if the task is so new there are no NUMA statistics yet. 2006 */ 2007 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2008 { 2009 u64 runtime, delta, now; 2010 /* Use the start of this time slice to avoid calculations. */ 2011 now = p->se.exec_start; 2012 runtime = p->se.sum_exec_runtime; 2013 2014 if (p->last_task_numa_placement) { 2015 delta = runtime - p->last_sum_exec_runtime; 2016 *period = now - p->last_task_numa_placement; 2017 } else { 2018 delta = p->se.avg.load_sum; 2019 *period = LOAD_AVG_MAX; 2020 } 2021 2022 p->last_sum_exec_runtime = runtime; 2023 p->last_task_numa_placement = now; 2024 2025 return delta; 2026 } 2027 2028 /* 2029 * Determine the preferred nid for a task in a numa_group. This needs to 2030 * be done in a way that produces consistent results with group_weight, 2031 * otherwise workloads might not converge. 2032 */ 2033 static int preferred_group_nid(struct task_struct *p, int nid) 2034 { 2035 nodemask_t nodes; 2036 int dist; 2037 2038 /* Direct connections between all NUMA nodes. */ 2039 if (sched_numa_topology_type == NUMA_DIRECT) 2040 return nid; 2041 2042 /* 2043 * On a system with glueless mesh NUMA topology, group_weight 2044 * scores nodes according to the number of NUMA hinting faults on 2045 * both the node itself, and on nearby nodes. 2046 */ 2047 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2048 unsigned long score, max_score = 0; 2049 int node, max_node = nid; 2050 2051 dist = sched_max_numa_distance; 2052 2053 for_each_online_node(node) { 2054 score = group_weight(p, node, dist); 2055 if (score > max_score) { 2056 max_score = score; 2057 max_node = node; 2058 } 2059 } 2060 return max_node; 2061 } 2062 2063 /* 2064 * Finding the preferred nid in a system with NUMA backplane 2065 * interconnect topology is more involved. The goal is to locate 2066 * tasks from numa_groups near each other in the system, and 2067 * untangle workloads from different sides of the system. This requires 2068 * searching down the hierarchy of node groups, recursively searching 2069 * inside the highest scoring group of nodes. The nodemask tricks 2070 * keep the complexity of the search down. 2071 */ 2072 nodes = node_online_map; 2073 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2074 unsigned long max_faults = 0; 2075 nodemask_t max_group = NODE_MASK_NONE; 2076 int a, b; 2077 2078 /* Are there nodes at this distance from each other? */ 2079 if (!find_numa_distance(dist)) 2080 continue; 2081 2082 for_each_node_mask(a, nodes) { 2083 unsigned long faults = 0; 2084 nodemask_t this_group; 2085 nodes_clear(this_group); 2086 2087 /* Sum group's NUMA faults; includes a==b case. */ 2088 for_each_node_mask(b, nodes) { 2089 if (node_distance(a, b) < dist) { 2090 faults += group_faults(p, b); 2091 node_set(b, this_group); 2092 node_clear(b, nodes); 2093 } 2094 } 2095 2096 /* Remember the top group. */ 2097 if (faults > max_faults) { 2098 max_faults = faults; 2099 max_group = this_group; 2100 /* 2101 * subtle: at the smallest distance there is 2102 * just one node left in each "group", the 2103 * winner is the preferred nid. 2104 */ 2105 nid = a; 2106 } 2107 } 2108 /* Next round, evaluate the nodes within max_group. */ 2109 if (!max_faults) 2110 break; 2111 nodes = max_group; 2112 } 2113 return nid; 2114 } 2115 2116 static void task_numa_placement(struct task_struct *p) 2117 { 2118 int seq, nid, max_nid = -1, max_group_nid = -1; 2119 unsigned long max_faults = 0, max_group_faults = 0; 2120 unsigned long fault_types[2] = { 0, 0 }; 2121 unsigned long total_faults; 2122 u64 runtime, period; 2123 spinlock_t *group_lock = NULL; 2124 2125 /* 2126 * The p->mm->numa_scan_seq field gets updated without 2127 * exclusive access. Use READ_ONCE() here to ensure 2128 * that the field is read in a single access: 2129 */ 2130 seq = READ_ONCE(p->mm->numa_scan_seq); 2131 if (p->numa_scan_seq == seq) 2132 return; 2133 p->numa_scan_seq = seq; 2134 p->numa_scan_period_max = task_scan_max(p); 2135 2136 total_faults = p->numa_faults_locality[0] + 2137 p->numa_faults_locality[1]; 2138 runtime = numa_get_avg_runtime(p, &period); 2139 2140 /* If the task is part of a group prevent parallel updates to group stats */ 2141 if (p->numa_group) { 2142 group_lock = &p->numa_group->lock; 2143 spin_lock_irq(group_lock); 2144 } 2145 2146 /* Find the node with the highest number of faults */ 2147 for_each_online_node(nid) { 2148 /* Keep track of the offsets in numa_faults array */ 2149 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2150 unsigned long faults = 0, group_faults = 0; 2151 int priv; 2152 2153 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2154 long diff, f_diff, f_weight; 2155 2156 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2157 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2158 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2159 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2160 2161 /* Decay existing window, copy faults since last scan */ 2162 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2163 fault_types[priv] += p->numa_faults[membuf_idx]; 2164 p->numa_faults[membuf_idx] = 0; 2165 2166 /* 2167 * Normalize the faults_from, so all tasks in a group 2168 * count according to CPU use, instead of by the raw 2169 * number of faults. Tasks with little runtime have 2170 * little over-all impact on throughput, and thus their 2171 * faults are less important. 2172 */ 2173 f_weight = div64_u64(runtime << 16, period + 1); 2174 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2175 (total_faults + 1); 2176 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2177 p->numa_faults[cpubuf_idx] = 0; 2178 2179 p->numa_faults[mem_idx] += diff; 2180 p->numa_faults[cpu_idx] += f_diff; 2181 faults += p->numa_faults[mem_idx]; 2182 p->total_numa_faults += diff; 2183 if (p->numa_group) { 2184 /* 2185 * safe because we can only change our own group 2186 * 2187 * mem_idx represents the offset for a given 2188 * nid and priv in a specific region because it 2189 * is at the beginning of the numa_faults array. 2190 */ 2191 p->numa_group->faults[mem_idx] += diff; 2192 p->numa_group->faults_cpu[mem_idx] += f_diff; 2193 p->numa_group->total_faults += diff; 2194 group_faults += p->numa_group->faults[mem_idx]; 2195 } 2196 } 2197 2198 if (faults > max_faults) { 2199 max_faults = faults; 2200 max_nid = nid; 2201 } 2202 2203 if (group_faults > max_group_faults) { 2204 max_group_faults = group_faults; 2205 max_group_nid = nid; 2206 } 2207 } 2208 2209 update_task_scan_period(p, fault_types[0], fault_types[1]); 2210 2211 if (p->numa_group) { 2212 numa_group_count_active_nodes(p->numa_group); 2213 spin_unlock_irq(group_lock); 2214 max_nid = preferred_group_nid(p, max_group_nid); 2215 } 2216 2217 if (max_faults) { 2218 /* Set the new preferred node */ 2219 if (max_nid != p->numa_preferred_nid) 2220 sched_setnuma(p, max_nid); 2221 2222 if (task_node(p) != p->numa_preferred_nid) 2223 numa_migrate_preferred(p); 2224 } 2225 } 2226 2227 static inline int get_numa_group(struct numa_group *grp) 2228 { 2229 return atomic_inc_not_zero(&grp->refcount); 2230 } 2231 2232 static inline void put_numa_group(struct numa_group *grp) 2233 { 2234 if (atomic_dec_and_test(&grp->refcount)) 2235 kfree_rcu(grp, rcu); 2236 } 2237 2238 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2239 int *priv) 2240 { 2241 struct numa_group *grp, *my_grp; 2242 struct task_struct *tsk; 2243 bool join = false; 2244 int cpu = cpupid_to_cpu(cpupid); 2245 int i; 2246 2247 if (unlikely(!p->numa_group)) { 2248 unsigned int size = sizeof(struct numa_group) + 2249 4*nr_node_ids*sizeof(unsigned long); 2250 2251 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2252 if (!grp) 2253 return; 2254 2255 atomic_set(&grp->refcount, 1); 2256 grp->active_nodes = 1; 2257 grp->max_faults_cpu = 0; 2258 spin_lock_init(&grp->lock); 2259 grp->gid = p->pid; 2260 /* Second half of the array tracks nids where faults happen */ 2261 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2262 nr_node_ids; 2263 2264 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2265 grp->faults[i] = p->numa_faults[i]; 2266 2267 grp->total_faults = p->total_numa_faults; 2268 2269 grp->nr_tasks++; 2270 rcu_assign_pointer(p->numa_group, grp); 2271 } 2272 2273 rcu_read_lock(); 2274 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2275 2276 if (!cpupid_match_pid(tsk, cpupid)) 2277 goto no_join; 2278 2279 grp = rcu_dereference(tsk->numa_group); 2280 if (!grp) 2281 goto no_join; 2282 2283 my_grp = p->numa_group; 2284 if (grp == my_grp) 2285 goto no_join; 2286 2287 /* 2288 * Only join the other group if its bigger; if we're the bigger group, 2289 * the other task will join us. 2290 */ 2291 if (my_grp->nr_tasks > grp->nr_tasks) 2292 goto no_join; 2293 2294 /* 2295 * Tie-break on the grp address. 2296 */ 2297 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2298 goto no_join; 2299 2300 /* Always join threads in the same process. */ 2301 if (tsk->mm == current->mm) 2302 join = true; 2303 2304 /* Simple filter to avoid false positives due to PID collisions */ 2305 if (flags & TNF_SHARED) 2306 join = true; 2307 2308 /* Update priv based on whether false sharing was detected */ 2309 *priv = !join; 2310 2311 if (join && !get_numa_group(grp)) 2312 goto no_join; 2313 2314 rcu_read_unlock(); 2315 2316 if (!join) 2317 return; 2318 2319 BUG_ON(irqs_disabled()); 2320 double_lock_irq(&my_grp->lock, &grp->lock); 2321 2322 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2323 my_grp->faults[i] -= p->numa_faults[i]; 2324 grp->faults[i] += p->numa_faults[i]; 2325 } 2326 my_grp->total_faults -= p->total_numa_faults; 2327 grp->total_faults += p->total_numa_faults; 2328 2329 my_grp->nr_tasks--; 2330 grp->nr_tasks++; 2331 2332 spin_unlock(&my_grp->lock); 2333 spin_unlock_irq(&grp->lock); 2334 2335 rcu_assign_pointer(p->numa_group, grp); 2336 2337 put_numa_group(my_grp); 2338 return; 2339 2340 no_join: 2341 rcu_read_unlock(); 2342 return; 2343 } 2344 2345 void task_numa_free(struct task_struct *p) 2346 { 2347 struct numa_group *grp = p->numa_group; 2348 void *numa_faults = p->numa_faults; 2349 unsigned long flags; 2350 int i; 2351 2352 if (grp) { 2353 spin_lock_irqsave(&grp->lock, flags); 2354 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2355 grp->faults[i] -= p->numa_faults[i]; 2356 grp->total_faults -= p->total_numa_faults; 2357 2358 grp->nr_tasks--; 2359 spin_unlock_irqrestore(&grp->lock, flags); 2360 RCU_INIT_POINTER(p->numa_group, NULL); 2361 put_numa_group(grp); 2362 } 2363 2364 p->numa_faults = NULL; 2365 kfree(numa_faults); 2366 } 2367 2368 /* 2369 * Got a PROT_NONE fault for a page on @node. 2370 */ 2371 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2372 { 2373 struct task_struct *p = current; 2374 bool migrated = flags & TNF_MIGRATED; 2375 int cpu_node = task_node(current); 2376 int local = !!(flags & TNF_FAULT_LOCAL); 2377 struct numa_group *ng; 2378 int priv; 2379 2380 if (!static_branch_likely(&sched_numa_balancing)) 2381 return; 2382 2383 /* for example, ksmd faulting in a user's mm */ 2384 if (!p->mm) 2385 return; 2386 2387 /* Allocate buffer to track faults on a per-node basis */ 2388 if (unlikely(!p->numa_faults)) { 2389 int size = sizeof(*p->numa_faults) * 2390 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2391 2392 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2393 if (!p->numa_faults) 2394 return; 2395 2396 p->total_numa_faults = 0; 2397 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2398 } 2399 2400 /* 2401 * First accesses are treated as private, otherwise consider accesses 2402 * to be private if the accessing pid has not changed 2403 */ 2404 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2405 priv = 1; 2406 } else { 2407 priv = cpupid_match_pid(p, last_cpupid); 2408 if (!priv && !(flags & TNF_NO_GROUP)) 2409 task_numa_group(p, last_cpupid, flags, &priv); 2410 } 2411 2412 /* 2413 * If a workload spans multiple NUMA nodes, a shared fault that 2414 * occurs wholly within the set of nodes that the workload is 2415 * actively using should be counted as local. This allows the 2416 * scan rate to slow down when a workload has settled down. 2417 */ 2418 ng = p->numa_group; 2419 if (!priv && !local && ng && ng->active_nodes > 1 && 2420 numa_is_active_node(cpu_node, ng) && 2421 numa_is_active_node(mem_node, ng)) 2422 local = 1; 2423 2424 task_numa_placement(p); 2425 2426 /* 2427 * Retry task to preferred node migration periodically, in case it 2428 * case it previously failed, or the scheduler moved us. 2429 */ 2430 if (time_after(jiffies, p->numa_migrate_retry)) 2431 numa_migrate_preferred(p); 2432 2433 if (migrated) 2434 p->numa_pages_migrated += pages; 2435 if (flags & TNF_MIGRATE_FAIL) 2436 p->numa_faults_locality[2] += pages; 2437 2438 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2439 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2440 p->numa_faults_locality[local] += pages; 2441 } 2442 2443 static void reset_ptenuma_scan(struct task_struct *p) 2444 { 2445 /* 2446 * We only did a read acquisition of the mmap sem, so 2447 * p->mm->numa_scan_seq is written to without exclusive access 2448 * and the update is not guaranteed to be atomic. That's not 2449 * much of an issue though, since this is just used for 2450 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2451 * expensive, to avoid any form of compiler optimizations: 2452 */ 2453 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2454 p->mm->numa_scan_offset = 0; 2455 } 2456 2457 /* 2458 * The expensive part of numa migration is done from task_work context. 2459 * Triggered from task_tick_numa(). 2460 */ 2461 void task_numa_work(struct callback_head *work) 2462 { 2463 unsigned long migrate, next_scan, now = jiffies; 2464 struct task_struct *p = current; 2465 struct mm_struct *mm = p->mm; 2466 u64 runtime = p->se.sum_exec_runtime; 2467 struct vm_area_struct *vma; 2468 unsigned long start, end; 2469 unsigned long nr_pte_updates = 0; 2470 long pages, virtpages; 2471 2472 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2473 2474 work->next = work; /* protect against double add */ 2475 /* 2476 * Who cares about NUMA placement when they're dying. 2477 * 2478 * NOTE: make sure not to dereference p->mm before this check, 2479 * exit_task_work() happens _after_ exit_mm() so we could be called 2480 * without p->mm even though we still had it when we enqueued this 2481 * work. 2482 */ 2483 if (p->flags & PF_EXITING) 2484 return; 2485 2486 if (!mm->numa_next_scan) { 2487 mm->numa_next_scan = now + 2488 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2489 } 2490 2491 /* 2492 * Enforce maximal scan/migration frequency.. 2493 */ 2494 migrate = mm->numa_next_scan; 2495 if (time_before(now, migrate)) 2496 return; 2497 2498 if (p->numa_scan_period == 0) { 2499 p->numa_scan_period_max = task_scan_max(p); 2500 p->numa_scan_period = task_scan_start(p); 2501 } 2502 2503 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2504 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2505 return; 2506 2507 /* 2508 * Delay this task enough that another task of this mm will likely win 2509 * the next time around. 2510 */ 2511 p->node_stamp += 2 * TICK_NSEC; 2512 2513 start = mm->numa_scan_offset; 2514 pages = sysctl_numa_balancing_scan_size; 2515 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2516 virtpages = pages * 8; /* Scan up to this much virtual space */ 2517 if (!pages) 2518 return; 2519 2520 2521 if (!down_read_trylock(&mm->mmap_sem)) 2522 return; 2523 vma = find_vma(mm, start); 2524 if (!vma) { 2525 reset_ptenuma_scan(p); 2526 start = 0; 2527 vma = mm->mmap; 2528 } 2529 for (; vma; vma = vma->vm_next) { 2530 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2531 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2532 continue; 2533 } 2534 2535 /* 2536 * Shared library pages mapped by multiple processes are not 2537 * migrated as it is expected they are cache replicated. Avoid 2538 * hinting faults in read-only file-backed mappings or the vdso 2539 * as migrating the pages will be of marginal benefit. 2540 */ 2541 if (!vma->vm_mm || 2542 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2543 continue; 2544 2545 /* 2546 * Skip inaccessible VMAs to avoid any confusion between 2547 * PROT_NONE and NUMA hinting ptes 2548 */ 2549 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2550 continue; 2551 2552 do { 2553 start = max(start, vma->vm_start); 2554 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2555 end = min(end, vma->vm_end); 2556 nr_pte_updates = change_prot_numa(vma, start, end); 2557 2558 /* 2559 * Try to scan sysctl_numa_balancing_size worth of 2560 * hpages that have at least one present PTE that 2561 * is not already pte-numa. If the VMA contains 2562 * areas that are unused or already full of prot_numa 2563 * PTEs, scan up to virtpages, to skip through those 2564 * areas faster. 2565 */ 2566 if (nr_pte_updates) 2567 pages -= (end - start) >> PAGE_SHIFT; 2568 virtpages -= (end - start) >> PAGE_SHIFT; 2569 2570 start = end; 2571 if (pages <= 0 || virtpages <= 0) 2572 goto out; 2573 2574 cond_resched(); 2575 } while (end != vma->vm_end); 2576 } 2577 2578 out: 2579 /* 2580 * It is possible to reach the end of the VMA list but the last few 2581 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2582 * would find the !migratable VMA on the next scan but not reset the 2583 * scanner to the start so check it now. 2584 */ 2585 if (vma) 2586 mm->numa_scan_offset = start; 2587 else 2588 reset_ptenuma_scan(p); 2589 up_read(&mm->mmap_sem); 2590 2591 /* 2592 * Make sure tasks use at least 32x as much time to run other code 2593 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2594 * Usually update_task_scan_period slows down scanning enough; on an 2595 * overloaded system we need to limit overhead on a per task basis. 2596 */ 2597 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2598 u64 diff = p->se.sum_exec_runtime - runtime; 2599 p->node_stamp += 32 * diff; 2600 } 2601 } 2602 2603 /* 2604 * Drive the periodic memory faults.. 2605 */ 2606 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2607 { 2608 struct callback_head *work = &curr->numa_work; 2609 u64 period, now; 2610 2611 /* 2612 * We don't care about NUMA placement if we don't have memory. 2613 */ 2614 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2615 return; 2616 2617 /* 2618 * Using runtime rather than walltime has the dual advantage that 2619 * we (mostly) drive the selection from busy threads and that the 2620 * task needs to have done some actual work before we bother with 2621 * NUMA placement. 2622 */ 2623 now = curr->se.sum_exec_runtime; 2624 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2625 2626 if (now > curr->node_stamp + period) { 2627 if (!curr->node_stamp) 2628 curr->numa_scan_period = task_scan_start(curr); 2629 curr->node_stamp += period; 2630 2631 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2632 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2633 task_work_add(curr, work, true); 2634 } 2635 } 2636 } 2637 2638 #else 2639 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2640 { 2641 } 2642 2643 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2644 { 2645 } 2646 2647 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2648 { 2649 } 2650 2651 #endif /* CONFIG_NUMA_BALANCING */ 2652 2653 static void 2654 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2655 { 2656 update_load_add(&cfs_rq->load, se->load.weight); 2657 if (!parent_entity(se)) 2658 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2659 #ifdef CONFIG_SMP 2660 if (entity_is_task(se)) { 2661 struct rq *rq = rq_of(cfs_rq); 2662 2663 account_numa_enqueue(rq, task_of(se)); 2664 list_add(&se->group_node, &rq->cfs_tasks); 2665 } 2666 #endif 2667 cfs_rq->nr_running++; 2668 } 2669 2670 static void 2671 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2672 { 2673 update_load_sub(&cfs_rq->load, se->load.weight); 2674 if (!parent_entity(se)) 2675 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2676 #ifdef CONFIG_SMP 2677 if (entity_is_task(se)) { 2678 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2679 list_del_init(&se->group_node); 2680 } 2681 #endif 2682 cfs_rq->nr_running--; 2683 } 2684 2685 /* 2686 * Signed add and clamp on underflow. 2687 * 2688 * Explicitly do a load-store to ensure the intermediate value never hits 2689 * memory. This allows lockless observations without ever seeing the negative 2690 * values. 2691 */ 2692 #define add_positive(_ptr, _val) do { \ 2693 typeof(_ptr) ptr = (_ptr); \ 2694 typeof(_val) val = (_val); \ 2695 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2696 \ 2697 res = var + val; \ 2698 \ 2699 if (val < 0 && res > var) \ 2700 res = 0; \ 2701 \ 2702 WRITE_ONCE(*ptr, res); \ 2703 } while (0) 2704 2705 /* 2706 * Unsigned subtract and clamp on underflow. 2707 * 2708 * Explicitly do a load-store to ensure the intermediate value never hits 2709 * memory. This allows lockless observations without ever seeing the negative 2710 * values. 2711 */ 2712 #define sub_positive(_ptr, _val) do { \ 2713 typeof(_ptr) ptr = (_ptr); \ 2714 typeof(*ptr) val = (_val); \ 2715 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2716 res = var - val; \ 2717 if (res > var) \ 2718 res = 0; \ 2719 WRITE_ONCE(*ptr, res); \ 2720 } while (0) 2721 2722 #ifdef CONFIG_SMP 2723 /* 2724 * XXX we want to get rid of these helpers and use the full load resolution. 2725 */ 2726 static inline long se_weight(struct sched_entity *se) 2727 { 2728 return scale_load_down(se->load.weight); 2729 } 2730 2731 static inline long se_runnable(struct sched_entity *se) 2732 { 2733 return scale_load_down(se->runnable_weight); 2734 } 2735 2736 static inline void 2737 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2738 { 2739 cfs_rq->runnable_weight += se->runnable_weight; 2740 2741 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2742 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2743 } 2744 2745 static inline void 2746 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2747 { 2748 cfs_rq->runnable_weight -= se->runnable_weight; 2749 2750 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2751 sub_positive(&cfs_rq->avg.runnable_load_sum, 2752 se_runnable(se) * se->avg.runnable_load_sum); 2753 } 2754 2755 static inline void 2756 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2757 { 2758 cfs_rq->avg.load_avg += se->avg.load_avg; 2759 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2760 } 2761 2762 static inline void 2763 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2764 { 2765 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2766 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2767 } 2768 #else 2769 static inline void 2770 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2771 static inline void 2772 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2773 static inline void 2774 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2775 static inline void 2776 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2777 #endif 2778 2779 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2780 unsigned long weight, unsigned long runnable) 2781 { 2782 if (se->on_rq) { 2783 /* commit outstanding execution time */ 2784 if (cfs_rq->curr == se) 2785 update_curr(cfs_rq); 2786 account_entity_dequeue(cfs_rq, se); 2787 dequeue_runnable_load_avg(cfs_rq, se); 2788 } 2789 dequeue_load_avg(cfs_rq, se); 2790 2791 se->runnable_weight = runnable; 2792 update_load_set(&se->load, weight); 2793 2794 #ifdef CONFIG_SMP 2795 do { 2796 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2797 2798 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2799 se->avg.runnable_load_avg = 2800 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2801 } while (0); 2802 #endif 2803 2804 enqueue_load_avg(cfs_rq, se); 2805 if (se->on_rq) { 2806 account_entity_enqueue(cfs_rq, se); 2807 enqueue_runnable_load_avg(cfs_rq, se); 2808 } 2809 } 2810 2811 void reweight_task(struct task_struct *p, int prio) 2812 { 2813 struct sched_entity *se = &p->se; 2814 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2815 struct load_weight *load = &se->load; 2816 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2817 2818 reweight_entity(cfs_rq, se, weight, weight); 2819 load->inv_weight = sched_prio_to_wmult[prio]; 2820 } 2821 2822 #ifdef CONFIG_FAIR_GROUP_SCHED 2823 #ifdef CONFIG_SMP 2824 /* 2825 * All this does is approximate the hierarchical proportion which includes that 2826 * global sum we all love to hate. 2827 * 2828 * That is, the weight of a group entity, is the proportional share of the 2829 * group weight based on the group runqueue weights. That is: 2830 * 2831 * tg->weight * grq->load.weight 2832 * ge->load.weight = ----------------------------- (1) 2833 * \Sum grq->load.weight 2834 * 2835 * Now, because computing that sum is prohibitively expensive to compute (been 2836 * there, done that) we approximate it with this average stuff. The average 2837 * moves slower and therefore the approximation is cheaper and more stable. 2838 * 2839 * So instead of the above, we substitute: 2840 * 2841 * grq->load.weight -> grq->avg.load_avg (2) 2842 * 2843 * which yields the following: 2844 * 2845 * tg->weight * grq->avg.load_avg 2846 * ge->load.weight = ------------------------------ (3) 2847 * tg->load_avg 2848 * 2849 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2850 * 2851 * That is shares_avg, and it is right (given the approximation (2)). 2852 * 2853 * The problem with it is that because the average is slow -- it was designed 2854 * to be exactly that of course -- this leads to transients in boundary 2855 * conditions. In specific, the case where the group was idle and we start the 2856 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2857 * yielding bad latency etc.. 2858 * 2859 * Now, in that special case (1) reduces to: 2860 * 2861 * tg->weight * grq->load.weight 2862 * ge->load.weight = ----------------------------- = tg->weight (4) 2863 * grp->load.weight 2864 * 2865 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2866 * 2867 * So what we do is modify our approximation (3) to approach (4) in the (near) 2868 * UP case, like: 2869 * 2870 * ge->load.weight = 2871 * 2872 * tg->weight * grq->load.weight 2873 * --------------------------------------------------- (5) 2874 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2875 * 2876 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2877 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2878 * 2879 * 2880 * tg->weight * grq->load.weight 2881 * ge->load.weight = ----------------------------- (6) 2882 * tg_load_avg' 2883 * 2884 * Where: 2885 * 2886 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2887 * max(grq->load.weight, grq->avg.load_avg) 2888 * 2889 * And that is shares_weight and is icky. In the (near) UP case it approaches 2890 * (4) while in the normal case it approaches (3). It consistently 2891 * overestimates the ge->load.weight and therefore: 2892 * 2893 * \Sum ge->load.weight >= tg->weight 2894 * 2895 * hence icky! 2896 */ 2897 static long calc_group_shares(struct cfs_rq *cfs_rq) 2898 { 2899 long tg_weight, tg_shares, load, shares; 2900 struct task_group *tg = cfs_rq->tg; 2901 2902 tg_shares = READ_ONCE(tg->shares); 2903 2904 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 2905 2906 tg_weight = atomic_long_read(&tg->load_avg); 2907 2908 /* Ensure tg_weight >= load */ 2909 tg_weight -= cfs_rq->tg_load_avg_contrib; 2910 tg_weight += load; 2911 2912 shares = (tg_shares * load); 2913 if (tg_weight) 2914 shares /= tg_weight; 2915 2916 /* 2917 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2918 * of a group with small tg->shares value. It is a floor value which is 2919 * assigned as a minimum load.weight to the sched_entity representing 2920 * the group on a CPU. 2921 * 2922 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2923 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2924 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2925 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2926 * instead of 0. 2927 */ 2928 return clamp_t(long, shares, MIN_SHARES, tg_shares); 2929 } 2930 2931 /* 2932 * This calculates the effective runnable weight for a group entity based on 2933 * the group entity weight calculated above. 2934 * 2935 * Because of the above approximation (2), our group entity weight is 2936 * an load_avg based ratio (3). This means that it includes blocked load and 2937 * does not represent the runnable weight. 2938 * 2939 * Approximate the group entity's runnable weight per ratio from the group 2940 * runqueue: 2941 * 2942 * grq->avg.runnable_load_avg 2943 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 2944 * grq->avg.load_avg 2945 * 2946 * However, analogous to above, since the avg numbers are slow, this leads to 2947 * transients in the from-idle case. Instead we use: 2948 * 2949 * ge->runnable_weight = ge->load.weight * 2950 * 2951 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 2952 * ----------------------------------------------------- (8) 2953 * max(grq->avg.load_avg, grq->load.weight) 2954 * 2955 * Where these max() serve both to use the 'instant' values to fix the slow 2956 * from-idle and avoid the /0 on to-idle, similar to (6). 2957 */ 2958 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 2959 { 2960 long runnable, load_avg; 2961 2962 load_avg = max(cfs_rq->avg.load_avg, 2963 scale_load_down(cfs_rq->load.weight)); 2964 2965 runnable = max(cfs_rq->avg.runnable_load_avg, 2966 scale_load_down(cfs_rq->runnable_weight)); 2967 2968 runnable *= shares; 2969 if (load_avg) 2970 runnable /= load_avg; 2971 2972 return clamp_t(long, runnable, MIN_SHARES, shares); 2973 } 2974 #endif /* CONFIG_SMP */ 2975 2976 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2977 2978 /* 2979 * Recomputes the group entity based on the current state of its group 2980 * runqueue. 2981 */ 2982 static void update_cfs_group(struct sched_entity *se) 2983 { 2984 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 2985 long shares, runnable; 2986 2987 if (!gcfs_rq) 2988 return; 2989 2990 if (throttled_hierarchy(gcfs_rq)) 2991 return; 2992 2993 #ifndef CONFIG_SMP 2994 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 2995 2996 if (likely(se->load.weight == shares)) 2997 return; 2998 #else 2999 shares = calc_group_shares(gcfs_rq); 3000 runnable = calc_group_runnable(gcfs_rq, shares); 3001 #endif 3002 3003 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3004 } 3005 3006 #else /* CONFIG_FAIR_GROUP_SCHED */ 3007 static inline void update_cfs_group(struct sched_entity *se) 3008 { 3009 } 3010 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3011 3012 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3013 { 3014 struct rq *rq = rq_of(cfs_rq); 3015 3016 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { 3017 /* 3018 * There are a few boundary cases this might miss but it should 3019 * get called often enough that that should (hopefully) not be 3020 * a real problem. 3021 * 3022 * It will not get called when we go idle, because the idle 3023 * thread is a different class (!fair), nor will the utilization 3024 * number include things like RT tasks. 3025 * 3026 * As is, the util number is not freq-invariant (we'd have to 3027 * implement arch_scale_freq_capacity() for that). 3028 * 3029 * See cpu_util(). 3030 */ 3031 cpufreq_update_util(rq, flags); 3032 } 3033 } 3034 3035 #ifdef CONFIG_SMP 3036 /* 3037 * Approximate: 3038 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 3039 */ 3040 static u64 decay_load(u64 val, u64 n) 3041 { 3042 unsigned int local_n; 3043 3044 if (unlikely(n > LOAD_AVG_PERIOD * 63)) 3045 return 0; 3046 3047 /* after bounds checking we can collapse to 32-bit */ 3048 local_n = n; 3049 3050 /* 3051 * As y^PERIOD = 1/2, we can combine 3052 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 3053 * With a look-up table which covers y^n (n<PERIOD) 3054 * 3055 * To achieve constant time decay_load. 3056 */ 3057 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 3058 val >>= local_n / LOAD_AVG_PERIOD; 3059 local_n %= LOAD_AVG_PERIOD; 3060 } 3061 3062 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 3063 return val; 3064 } 3065 3066 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) 3067 { 3068 u32 c1, c2, c3 = d3; /* y^0 == 1 */ 3069 3070 /* 3071 * c1 = d1 y^p 3072 */ 3073 c1 = decay_load((u64)d1, periods); 3074 3075 /* 3076 * p-1 3077 * c2 = 1024 \Sum y^n 3078 * n=1 3079 * 3080 * inf inf 3081 * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) 3082 * n=0 n=p 3083 */ 3084 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; 3085 3086 return c1 + c2 + c3; 3087 } 3088 3089 /* 3090 * Accumulate the three separate parts of the sum; d1 the remainder 3091 * of the last (incomplete) period, d2 the span of full periods and d3 3092 * the remainder of the (incomplete) current period. 3093 * 3094 * d1 d2 d3 3095 * ^ ^ ^ 3096 * | | | 3097 * |<->|<----------------->|<--->| 3098 * ... |---x---|------| ... |------|-----x (now) 3099 * 3100 * p-1 3101 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 3102 * n=1 3103 * 3104 * = u y^p + (Step 1) 3105 * 3106 * p-1 3107 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) 3108 * n=1 3109 */ 3110 static __always_inline u32 3111 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa, 3112 unsigned long load, unsigned long runnable, int running) 3113 { 3114 unsigned long scale_freq, scale_cpu; 3115 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ 3116 u64 periods; 3117 3118 scale_freq = arch_scale_freq_capacity(cpu); 3119 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 3120 3121 delta += sa->period_contrib; 3122 periods = delta / 1024; /* A period is 1024us (~1ms) */ 3123 3124 /* 3125 * Step 1: decay old *_sum if we crossed period boundaries. 3126 */ 3127 if (periods) { 3128 sa->load_sum = decay_load(sa->load_sum, periods); 3129 sa->runnable_load_sum = 3130 decay_load(sa->runnable_load_sum, periods); 3131 sa->util_sum = decay_load((u64)(sa->util_sum), periods); 3132 3133 /* 3134 * Step 2 3135 */ 3136 delta %= 1024; 3137 contrib = __accumulate_pelt_segments(periods, 3138 1024 - sa->period_contrib, delta); 3139 } 3140 sa->period_contrib = delta; 3141 3142 contrib = cap_scale(contrib, scale_freq); 3143 if (load) 3144 sa->load_sum += load * contrib; 3145 if (runnable) 3146 sa->runnable_load_sum += runnable * contrib; 3147 if (running) 3148 sa->util_sum += contrib * scale_cpu; 3149 3150 return periods; 3151 } 3152 3153 /* 3154 * We can represent the historical contribution to runnable average as the 3155 * coefficients of a geometric series. To do this we sub-divide our runnable 3156 * history into segments of approximately 1ms (1024us); label the segment that 3157 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 3158 * 3159 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 3160 * p0 p1 p2 3161 * (now) (~1ms ago) (~2ms ago) 3162 * 3163 * Let u_i denote the fraction of p_i that the entity was runnable. 3164 * 3165 * We then designate the fractions u_i as our co-efficients, yielding the 3166 * following representation of historical load: 3167 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 3168 * 3169 * We choose y based on the with of a reasonably scheduling period, fixing: 3170 * y^32 = 0.5 3171 * 3172 * This means that the contribution to load ~32ms ago (u_32) will be weighted 3173 * approximately half as much as the contribution to load within the last ms 3174 * (u_0). 3175 * 3176 * When a period "rolls over" and we have new u_0`, multiplying the previous 3177 * sum again by y is sufficient to update: 3178 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 3179 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 3180 */ 3181 static __always_inline int 3182 ___update_load_sum(u64 now, int cpu, struct sched_avg *sa, 3183 unsigned long load, unsigned long runnable, int running) 3184 { 3185 u64 delta; 3186 3187 delta = now - sa->last_update_time; 3188 /* 3189 * This should only happen when time goes backwards, which it 3190 * unfortunately does during sched clock init when we swap over to TSC. 3191 */ 3192 if ((s64)delta < 0) { 3193 sa->last_update_time = now; 3194 return 0; 3195 } 3196 3197 /* 3198 * Use 1024ns as the unit of measurement since it's a reasonable 3199 * approximation of 1us and fast to compute. 3200 */ 3201 delta >>= 10; 3202 if (!delta) 3203 return 0; 3204 3205 sa->last_update_time += delta << 10; 3206 3207 /* 3208 * running is a subset of runnable (weight) so running can't be set if 3209 * runnable is clear. But there are some corner cases where the current 3210 * se has been already dequeued but cfs_rq->curr still points to it. 3211 * This means that weight will be 0 but not running for a sched_entity 3212 * but also for a cfs_rq if the latter becomes idle. As an example, 3213 * this happens during idle_balance() which calls 3214 * update_blocked_averages() 3215 */ 3216 if (!load) 3217 runnable = running = 0; 3218 3219 /* 3220 * Now we know we crossed measurement unit boundaries. The *_avg 3221 * accrues by two steps: 3222 * 3223 * Step 1: accumulate *_sum since last_update_time. If we haven't 3224 * crossed period boundaries, finish. 3225 */ 3226 if (!accumulate_sum(delta, cpu, sa, load, runnable, running)) 3227 return 0; 3228 3229 return 1; 3230 } 3231 3232 static __always_inline void 3233 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable) 3234 { 3235 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3236 3237 /* 3238 * Step 2: update *_avg. 3239 */ 3240 sa->load_avg = div_u64(load * sa->load_sum, divider); 3241 sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider); 3242 sa->util_avg = sa->util_sum / divider; 3243 } 3244 3245 /* 3246 * When a task is dequeued, its estimated utilization should not be update if 3247 * its util_avg has not been updated at least once. 3248 * This flag is used to synchronize util_avg updates with util_est updates. 3249 * We map this information into the LSB bit of the utilization saved at 3250 * dequeue time (i.e. util_est.dequeued). 3251 */ 3252 #define UTIL_AVG_UNCHANGED 0x1 3253 3254 static inline void cfs_se_util_change(struct sched_avg *avg) 3255 { 3256 unsigned int enqueued; 3257 3258 if (!sched_feat(UTIL_EST)) 3259 return; 3260 3261 /* Avoid store if the flag has been already set */ 3262 enqueued = avg->util_est.enqueued; 3263 if (!(enqueued & UTIL_AVG_UNCHANGED)) 3264 return; 3265 3266 /* Reset flag to report util_avg has been updated */ 3267 enqueued &= ~UTIL_AVG_UNCHANGED; 3268 WRITE_ONCE(avg->util_est.enqueued, enqueued); 3269 } 3270 3271 /* 3272 * sched_entity: 3273 * 3274 * task: 3275 * se_runnable() == se_weight() 3276 * 3277 * group: [ see update_cfs_group() ] 3278 * se_weight() = tg->weight * grq->load_avg / tg->load_avg 3279 * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg 3280 * 3281 * load_sum := runnable_sum 3282 * load_avg = se_weight(se) * runnable_avg 3283 * 3284 * runnable_load_sum := runnable_sum 3285 * runnable_load_avg = se_runnable(se) * runnable_avg 3286 * 3287 * XXX collapse load_sum and runnable_load_sum 3288 * 3289 * cfq_rs: 3290 * 3291 * load_sum = \Sum se_weight(se) * se->avg.load_sum 3292 * load_avg = \Sum se->avg.load_avg 3293 * 3294 * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum 3295 * runnable_load_avg = \Sum se->avg.runable_load_avg 3296 */ 3297 3298 static int 3299 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se) 3300 { 3301 if (entity_is_task(se)) 3302 se->runnable_weight = se->load.weight; 3303 3304 if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) { 3305 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 3306 return 1; 3307 } 3308 3309 return 0; 3310 } 3311 3312 static int 3313 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se) 3314 { 3315 if (entity_is_task(se)) 3316 se->runnable_weight = se->load.weight; 3317 3318 if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq, 3319 cfs_rq->curr == se)) { 3320 3321 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 3322 cfs_se_util_change(&se->avg); 3323 return 1; 3324 } 3325 3326 return 0; 3327 } 3328 3329 static int 3330 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq) 3331 { 3332 if (___update_load_sum(now, cpu, &cfs_rq->avg, 3333 scale_load_down(cfs_rq->load.weight), 3334 scale_load_down(cfs_rq->runnable_weight), 3335 cfs_rq->curr != NULL)) { 3336 3337 ___update_load_avg(&cfs_rq->avg, 1, 1); 3338 return 1; 3339 } 3340 3341 return 0; 3342 } 3343 3344 #ifdef CONFIG_FAIR_GROUP_SCHED 3345 /** 3346 * update_tg_load_avg - update the tg's load avg 3347 * @cfs_rq: the cfs_rq whose avg changed 3348 * @force: update regardless of how small the difference 3349 * 3350 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3351 * However, because tg->load_avg is a global value there are performance 3352 * considerations. 3353 * 3354 * In order to avoid having to look at the other cfs_rq's, we use a 3355 * differential update where we store the last value we propagated. This in 3356 * turn allows skipping updates if the differential is 'small'. 3357 * 3358 * Updating tg's load_avg is necessary before update_cfs_share(). 3359 */ 3360 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3361 { 3362 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3363 3364 /* 3365 * No need to update load_avg for root_task_group as it is not used. 3366 */ 3367 if (cfs_rq->tg == &root_task_group) 3368 return; 3369 3370 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3371 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3372 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3373 } 3374 } 3375 3376 /* 3377 * Called within set_task_rq() right before setting a task's CPU. The 3378 * caller only guarantees p->pi_lock is held; no other assumptions, 3379 * including the state of rq->lock, should be made. 3380 */ 3381 void set_task_rq_fair(struct sched_entity *se, 3382 struct cfs_rq *prev, struct cfs_rq *next) 3383 { 3384 u64 p_last_update_time; 3385 u64 n_last_update_time; 3386 3387 if (!sched_feat(ATTACH_AGE_LOAD)) 3388 return; 3389 3390 /* 3391 * We are supposed to update the task to "current" time, then its up to 3392 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3393 * getting what current time is, so simply throw away the out-of-date 3394 * time. This will result in the wakee task is less decayed, but giving 3395 * the wakee more load sounds not bad. 3396 */ 3397 if (!(se->avg.last_update_time && prev)) 3398 return; 3399 3400 #ifndef CONFIG_64BIT 3401 { 3402 u64 p_last_update_time_copy; 3403 u64 n_last_update_time_copy; 3404 3405 do { 3406 p_last_update_time_copy = prev->load_last_update_time_copy; 3407 n_last_update_time_copy = next->load_last_update_time_copy; 3408 3409 smp_rmb(); 3410 3411 p_last_update_time = prev->avg.last_update_time; 3412 n_last_update_time = next->avg.last_update_time; 3413 3414 } while (p_last_update_time != p_last_update_time_copy || 3415 n_last_update_time != n_last_update_time_copy); 3416 } 3417 #else 3418 p_last_update_time = prev->avg.last_update_time; 3419 n_last_update_time = next->avg.last_update_time; 3420 #endif 3421 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se); 3422 se->avg.last_update_time = n_last_update_time; 3423 } 3424 3425 3426 /* 3427 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3428 * propagate its contribution. The key to this propagation is the invariant 3429 * that for each group: 3430 * 3431 * ge->avg == grq->avg (1) 3432 * 3433 * _IFF_ we look at the pure running and runnable sums. Because they 3434 * represent the very same entity, just at different points in the hierarchy. 3435 * 3436 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3437 * sum over (but still wrong, because the group entity and group rq do not have 3438 * their PELT windows aligned). 3439 * 3440 * However, update_tg_cfs_runnable() is more complex. So we have: 3441 * 3442 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3443 * 3444 * And since, like util, the runnable part should be directly transferable, 3445 * the following would _appear_ to be the straight forward approach: 3446 * 3447 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3448 * 3449 * And per (1) we have: 3450 * 3451 * ge->avg.runnable_avg == grq->avg.runnable_avg 3452 * 3453 * Which gives: 3454 * 3455 * ge->load.weight * grq->avg.load_avg 3456 * ge->avg.load_avg = ----------------------------------- (4) 3457 * grq->load.weight 3458 * 3459 * Except that is wrong! 3460 * 3461 * Because while for entities historical weight is not important and we 3462 * really only care about our future and therefore can consider a pure 3463 * runnable sum, runqueues can NOT do this. 3464 * 3465 * We specifically want runqueues to have a load_avg that includes 3466 * historical weights. Those represent the blocked load, the load we expect 3467 * to (shortly) return to us. This only works by keeping the weights as 3468 * integral part of the sum. We therefore cannot decompose as per (3). 3469 * 3470 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3471 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3472 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3473 * runnable section of these tasks overlap (or not). If they were to perfectly 3474 * align the rq as a whole would be runnable 2/3 of the time. If however we 3475 * always have at least 1 runnable task, the rq as a whole is always runnable. 3476 * 3477 * So we'll have to approximate.. :/ 3478 * 3479 * Given the constraint: 3480 * 3481 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3482 * 3483 * We can construct a rule that adds runnable to a rq by assuming minimal 3484 * overlap. 3485 * 3486 * On removal, we'll assume each task is equally runnable; which yields: 3487 * 3488 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3489 * 3490 * XXX: only do this for the part of runnable > running ? 3491 * 3492 */ 3493 3494 static inline void 3495 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3496 { 3497 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3498 3499 /* Nothing to update */ 3500 if (!delta) 3501 return; 3502 3503 /* 3504 * The relation between sum and avg is: 3505 * 3506 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3507 * 3508 * however, the PELT windows are not aligned between grq and gse. 3509 */ 3510 3511 /* Set new sched_entity's utilization */ 3512 se->avg.util_avg = gcfs_rq->avg.util_avg; 3513 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3514 3515 /* Update parent cfs_rq utilization */ 3516 add_positive(&cfs_rq->avg.util_avg, delta); 3517 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3518 } 3519 3520 static inline void 3521 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3522 { 3523 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3524 unsigned long runnable_load_avg, load_avg; 3525 u64 runnable_load_sum, load_sum = 0; 3526 s64 delta_sum; 3527 3528 if (!runnable_sum) 3529 return; 3530 3531 gcfs_rq->prop_runnable_sum = 0; 3532 3533 if (runnable_sum >= 0) { 3534 /* 3535 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3536 * the CPU is saturated running == runnable. 3537 */ 3538 runnable_sum += se->avg.load_sum; 3539 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3540 } else { 3541 /* 3542 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3543 * assuming all tasks are equally runnable. 3544 */ 3545 if (scale_load_down(gcfs_rq->load.weight)) { 3546 load_sum = div_s64(gcfs_rq->avg.load_sum, 3547 scale_load_down(gcfs_rq->load.weight)); 3548 } 3549 3550 /* But make sure to not inflate se's runnable */ 3551 runnable_sum = min(se->avg.load_sum, load_sum); 3552 } 3553 3554 /* 3555 * runnable_sum can't be lower than running_sum 3556 * As running sum is scale with CPU capacity wehreas the runnable sum 3557 * is not we rescale running_sum 1st 3558 */ 3559 running_sum = se->avg.util_sum / 3560 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 3561 runnable_sum = max(runnable_sum, running_sum); 3562 3563 load_sum = (s64)se_weight(se) * runnable_sum; 3564 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3565 3566 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3567 delta_avg = load_avg - se->avg.load_avg; 3568 3569 se->avg.load_sum = runnable_sum; 3570 se->avg.load_avg = load_avg; 3571 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3572 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3573 3574 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3575 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3576 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3577 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3578 3579 se->avg.runnable_load_sum = runnable_sum; 3580 se->avg.runnable_load_avg = runnable_load_avg; 3581 3582 if (se->on_rq) { 3583 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3584 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3585 } 3586 } 3587 3588 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3589 { 3590 cfs_rq->propagate = 1; 3591 cfs_rq->prop_runnable_sum += runnable_sum; 3592 } 3593 3594 /* Update task and its cfs_rq load average */ 3595 static inline int propagate_entity_load_avg(struct sched_entity *se) 3596 { 3597 struct cfs_rq *cfs_rq, *gcfs_rq; 3598 3599 if (entity_is_task(se)) 3600 return 0; 3601 3602 gcfs_rq = group_cfs_rq(se); 3603 if (!gcfs_rq->propagate) 3604 return 0; 3605 3606 gcfs_rq->propagate = 0; 3607 3608 cfs_rq = cfs_rq_of(se); 3609 3610 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3611 3612 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3613 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3614 3615 return 1; 3616 } 3617 3618 /* 3619 * Check if we need to update the load and the utilization of a blocked 3620 * group_entity: 3621 */ 3622 static inline bool skip_blocked_update(struct sched_entity *se) 3623 { 3624 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3625 3626 /* 3627 * If sched_entity still have not zero load or utilization, we have to 3628 * decay it: 3629 */ 3630 if (se->avg.load_avg || se->avg.util_avg) 3631 return false; 3632 3633 /* 3634 * If there is a pending propagation, we have to update the load and 3635 * the utilization of the sched_entity: 3636 */ 3637 if (gcfs_rq->propagate) 3638 return false; 3639 3640 /* 3641 * Otherwise, the load and the utilization of the sched_entity is 3642 * already zero and there is no pending propagation, so it will be a 3643 * waste of time to try to decay it: 3644 */ 3645 return true; 3646 } 3647 3648 #else /* CONFIG_FAIR_GROUP_SCHED */ 3649 3650 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3651 3652 static inline int propagate_entity_load_avg(struct sched_entity *se) 3653 { 3654 return 0; 3655 } 3656 3657 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3658 3659 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3660 3661 /** 3662 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3663 * @now: current time, as per cfs_rq_clock_task() 3664 * @cfs_rq: cfs_rq to update 3665 * 3666 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3667 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3668 * post_init_entity_util_avg(). 3669 * 3670 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3671 * 3672 * Returns true if the load decayed or we removed load. 3673 * 3674 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3675 * call update_tg_load_avg() when this function returns true. 3676 */ 3677 static inline int 3678 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3679 { 3680 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3681 struct sched_avg *sa = &cfs_rq->avg; 3682 int decayed = 0; 3683 3684 if (cfs_rq->removed.nr) { 3685 unsigned long r; 3686 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3687 3688 raw_spin_lock(&cfs_rq->removed.lock); 3689 swap(cfs_rq->removed.util_avg, removed_util); 3690 swap(cfs_rq->removed.load_avg, removed_load); 3691 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3692 cfs_rq->removed.nr = 0; 3693 raw_spin_unlock(&cfs_rq->removed.lock); 3694 3695 r = removed_load; 3696 sub_positive(&sa->load_avg, r); 3697 sub_positive(&sa->load_sum, r * divider); 3698 3699 r = removed_util; 3700 sub_positive(&sa->util_avg, r); 3701 sub_positive(&sa->util_sum, r * divider); 3702 3703 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3704 3705 decayed = 1; 3706 } 3707 3708 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq); 3709 3710 #ifndef CONFIG_64BIT 3711 smp_wmb(); 3712 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3713 #endif 3714 3715 if (decayed) 3716 cfs_rq_util_change(cfs_rq, 0); 3717 3718 return decayed; 3719 } 3720 3721 /** 3722 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3723 * @cfs_rq: cfs_rq to attach to 3724 * @se: sched_entity to attach 3725 * 3726 * Must call update_cfs_rq_load_avg() before this, since we rely on 3727 * cfs_rq->avg.last_update_time being current. 3728 */ 3729 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3730 { 3731 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3732 3733 /* 3734 * When we attach the @se to the @cfs_rq, we must align the decay 3735 * window because without that, really weird and wonderful things can 3736 * happen. 3737 * 3738 * XXX illustrate 3739 */ 3740 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3741 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3742 3743 /* 3744 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3745 * period_contrib. This isn't strictly correct, but since we're 3746 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3747 * _sum a little. 3748 */ 3749 se->avg.util_sum = se->avg.util_avg * divider; 3750 3751 se->avg.load_sum = divider; 3752 if (se_weight(se)) { 3753 se->avg.load_sum = 3754 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3755 } 3756 3757 se->avg.runnable_load_sum = se->avg.load_sum; 3758 3759 enqueue_load_avg(cfs_rq, se); 3760 cfs_rq->avg.util_avg += se->avg.util_avg; 3761 cfs_rq->avg.util_sum += se->avg.util_sum; 3762 3763 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3764 3765 cfs_rq_util_change(cfs_rq, flags); 3766 } 3767 3768 /** 3769 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3770 * @cfs_rq: cfs_rq to detach from 3771 * @se: sched_entity to detach 3772 * 3773 * Must call update_cfs_rq_load_avg() before this, since we rely on 3774 * cfs_rq->avg.last_update_time being current. 3775 */ 3776 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3777 { 3778 dequeue_load_avg(cfs_rq, se); 3779 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3780 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3781 3782 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3783 3784 cfs_rq_util_change(cfs_rq, 0); 3785 } 3786 3787 /* 3788 * Optional action to be done while updating the load average 3789 */ 3790 #define UPDATE_TG 0x1 3791 #define SKIP_AGE_LOAD 0x2 3792 #define DO_ATTACH 0x4 3793 3794 /* Update task and its cfs_rq load average */ 3795 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3796 { 3797 u64 now = cfs_rq_clock_task(cfs_rq); 3798 struct rq *rq = rq_of(cfs_rq); 3799 int cpu = cpu_of(rq); 3800 int decayed; 3801 3802 /* 3803 * Track task load average for carrying it to new CPU after migrated, and 3804 * track group sched_entity load average for task_h_load calc in migration 3805 */ 3806 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3807 __update_load_avg_se(now, cpu, cfs_rq, se); 3808 3809 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3810 decayed |= propagate_entity_load_avg(se); 3811 3812 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3813 3814 /* 3815 * DO_ATTACH means we're here from enqueue_entity(). 3816 * !last_update_time means we've passed through 3817 * migrate_task_rq_fair() indicating we migrated. 3818 * 3819 * IOW we're enqueueing a task on a new CPU. 3820 */ 3821 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); 3822 update_tg_load_avg(cfs_rq, 0); 3823 3824 } else if (decayed && (flags & UPDATE_TG)) 3825 update_tg_load_avg(cfs_rq, 0); 3826 } 3827 3828 #ifndef CONFIG_64BIT 3829 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3830 { 3831 u64 last_update_time_copy; 3832 u64 last_update_time; 3833 3834 do { 3835 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3836 smp_rmb(); 3837 last_update_time = cfs_rq->avg.last_update_time; 3838 } while (last_update_time != last_update_time_copy); 3839 3840 return last_update_time; 3841 } 3842 #else 3843 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3844 { 3845 return cfs_rq->avg.last_update_time; 3846 } 3847 #endif 3848 3849 /* 3850 * Synchronize entity load avg of dequeued entity without locking 3851 * the previous rq. 3852 */ 3853 void sync_entity_load_avg(struct sched_entity *se) 3854 { 3855 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3856 u64 last_update_time; 3857 3858 last_update_time = cfs_rq_last_update_time(cfs_rq); 3859 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se); 3860 } 3861 3862 /* 3863 * Task first catches up with cfs_rq, and then subtract 3864 * itself from the cfs_rq (task must be off the queue now). 3865 */ 3866 void remove_entity_load_avg(struct sched_entity *se) 3867 { 3868 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3869 unsigned long flags; 3870 3871 /* 3872 * tasks cannot exit without having gone through wake_up_new_task() -> 3873 * post_init_entity_util_avg() which will have added things to the 3874 * cfs_rq, so we can remove unconditionally. 3875 * 3876 * Similarly for groups, they will have passed through 3877 * post_init_entity_util_avg() before unregister_sched_fair_group() 3878 * calls this. 3879 */ 3880 3881 sync_entity_load_avg(se); 3882 3883 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3884 ++cfs_rq->removed.nr; 3885 cfs_rq->removed.util_avg += se->avg.util_avg; 3886 cfs_rq->removed.load_avg += se->avg.load_avg; 3887 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3888 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3889 } 3890 3891 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3892 { 3893 return cfs_rq->avg.runnable_load_avg; 3894 } 3895 3896 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3897 { 3898 return cfs_rq->avg.load_avg; 3899 } 3900 3901 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3902 3903 static inline unsigned long task_util(struct task_struct *p) 3904 { 3905 return READ_ONCE(p->se.avg.util_avg); 3906 } 3907 3908 static inline unsigned long _task_util_est(struct task_struct *p) 3909 { 3910 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3911 3912 return max(ue.ewma, ue.enqueued); 3913 } 3914 3915 static inline unsigned long task_util_est(struct task_struct *p) 3916 { 3917 return max(task_util(p), _task_util_est(p)); 3918 } 3919 3920 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3921 struct task_struct *p) 3922 { 3923 unsigned int enqueued; 3924 3925 if (!sched_feat(UTIL_EST)) 3926 return; 3927 3928 /* Update root cfs_rq's estimated utilization */ 3929 enqueued = cfs_rq->avg.util_est.enqueued; 3930 enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED); 3931 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3932 } 3933 3934 /* 3935 * Check if a (signed) value is within a specified (unsigned) margin, 3936 * based on the observation that: 3937 * 3938 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3939 * 3940 * NOTE: this only works when value + maring < INT_MAX. 3941 */ 3942 static inline bool within_margin(int value, int margin) 3943 { 3944 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3945 } 3946 3947 static void 3948 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3949 { 3950 long last_ewma_diff; 3951 struct util_est ue; 3952 3953 if (!sched_feat(UTIL_EST)) 3954 return; 3955 3956 /* 3957 * Update root cfs_rq's estimated utilization 3958 * 3959 * If *p is the last task then the root cfs_rq's estimated utilization 3960 * of a CPU is 0 by definition. 3961 */ 3962 ue.enqueued = 0; 3963 if (cfs_rq->nr_running) { 3964 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3965 ue.enqueued -= min_t(unsigned int, ue.enqueued, 3966 (_task_util_est(p) | UTIL_AVG_UNCHANGED)); 3967 } 3968 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3969 3970 /* 3971 * Skip update of task's estimated utilization when the task has not 3972 * yet completed an activation, e.g. being migrated. 3973 */ 3974 if (!task_sleep) 3975 return; 3976 3977 /* 3978 * If the PELT values haven't changed since enqueue time, 3979 * skip the util_est update. 3980 */ 3981 ue = p->se.avg.util_est; 3982 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3983 return; 3984 3985 /* 3986 * Skip update of task's estimated utilization when its EWMA is 3987 * already ~1% close to its last activation value. 3988 */ 3989 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3990 last_ewma_diff = ue.enqueued - ue.ewma; 3991 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3992 return; 3993 3994 /* 3995 * Update Task's estimated utilization 3996 * 3997 * When *p completes an activation we can consolidate another sample 3998 * of the task size. This is done by storing the current PELT value 3999 * as ue.enqueued and by using this value to update the Exponential 4000 * Weighted Moving Average (EWMA): 4001 * 4002 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4003 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4004 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4005 * = w * ( last_ewma_diff ) + ewma(t-1) 4006 * = w * (last_ewma_diff + ewma(t-1) / w) 4007 * 4008 * Where 'w' is the weight of new samples, which is configured to be 4009 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4010 */ 4011 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4012 ue.ewma += last_ewma_diff; 4013 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4014 WRITE_ONCE(p->se.avg.util_est, ue); 4015 } 4016 4017 #else /* CONFIG_SMP */ 4018 4019 static inline int 4020 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4021 { 4022 return 0; 4023 } 4024 4025 #define UPDATE_TG 0x0 4026 #define SKIP_AGE_LOAD 0x0 4027 #define DO_ATTACH 0x0 4028 4029 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4030 { 4031 cfs_rq_util_change(cfs_rq, 0); 4032 } 4033 4034 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4035 4036 static inline void 4037 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} 4038 static inline void 4039 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4040 4041 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 4042 { 4043 return 0; 4044 } 4045 4046 static inline void 4047 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4048 4049 static inline void 4050 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 4051 bool task_sleep) {} 4052 4053 #endif /* CONFIG_SMP */ 4054 4055 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4056 { 4057 #ifdef CONFIG_SCHED_DEBUG 4058 s64 d = se->vruntime - cfs_rq->min_vruntime; 4059 4060 if (d < 0) 4061 d = -d; 4062 4063 if (d > 3*sysctl_sched_latency) 4064 schedstat_inc(cfs_rq->nr_spread_over); 4065 #endif 4066 } 4067 4068 static void 4069 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4070 { 4071 u64 vruntime = cfs_rq->min_vruntime; 4072 4073 /* 4074 * The 'current' period is already promised to the current tasks, 4075 * however the extra weight of the new task will slow them down a 4076 * little, place the new task so that it fits in the slot that 4077 * stays open at the end. 4078 */ 4079 if (initial && sched_feat(START_DEBIT)) 4080 vruntime += sched_vslice(cfs_rq, se); 4081 4082 /* sleeps up to a single latency don't count. */ 4083 if (!initial) { 4084 unsigned long thresh = sysctl_sched_latency; 4085 4086 /* 4087 * Halve their sleep time's effect, to allow 4088 * for a gentler effect of sleepers: 4089 */ 4090 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4091 thresh >>= 1; 4092 4093 vruntime -= thresh; 4094 } 4095 4096 /* ensure we never gain time by being placed backwards. */ 4097 se->vruntime = max_vruntime(se->vruntime, vruntime); 4098 } 4099 4100 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4101 4102 static inline void check_schedstat_required(void) 4103 { 4104 #ifdef CONFIG_SCHEDSTATS 4105 if (schedstat_enabled()) 4106 return; 4107 4108 /* Force schedstat enabled if a dependent tracepoint is active */ 4109 if (trace_sched_stat_wait_enabled() || 4110 trace_sched_stat_sleep_enabled() || 4111 trace_sched_stat_iowait_enabled() || 4112 trace_sched_stat_blocked_enabled() || 4113 trace_sched_stat_runtime_enabled()) { 4114 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 4115 "stat_blocked and stat_runtime require the " 4116 "kernel parameter schedstats=enable or " 4117 "kernel.sched_schedstats=1\n"); 4118 } 4119 #endif 4120 } 4121 4122 4123 /* 4124 * MIGRATION 4125 * 4126 * dequeue 4127 * update_curr() 4128 * update_min_vruntime() 4129 * vruntime -= min_vruntime 4130 * 4131 * enqueue 4132 * update_curr() 4133 * update_min_vruntime() 4134 * vruntime += min_vruntime 4135 * 4136 * this way the vruntime transition between RQs is done when both 4137 * min_vruntime are up-to-date. 4138 * 4139 * WAKEUP (remote) 4140 * 4141 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4142 * vruntime -= min_vruntime 4143 * 4144 * enqueue 4145 * update_curr() 4146 * update_min_vruntime() 4147 * vruntime += min_vruntime 4148 * 4149 * this way we don't have the most up-to-date min_vruntime on the originating 4150 * CPU and an up-to-date min_vruntime on the destination CPU. 4151 */ 4152 4153 static void 4154 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4155 { 4156 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4157 bool curr = cfs_rq->curr == se; 4158 4159 /* 4160 * If we're the current task, we must renormalise before calling 4161 * update_curr(). 4162 */ 4163 if (renorm && curr) 4164 se->vruntime += cfs_rq->min_vruntime; 4165 4166 update_curr(cfs_rq); 4167 4168 /* 4169 * Otherwise, renormalise after, such that we're placed at the current 4170 * moment in time, instead of some random moment in the past. Being 4171 * placed in the past could significantly boost this task to the 4172 * fairness detriment of existing tasks. 4173 */ 4174 if (renorm && !curr) 4175 se->vruntime += cfs_rq->min_vruntime; 4176 4177 /* 4178 * When enqueuing a sched_entity, we must: 4179 * - Update loads to have both entity and cfs_rq synced with now. 4180 * - Add its load to cfs_rq->runnable_avg 4181 * - For group_entity, update its weight to reflect the new share of 4182 * its group cfs_rq 4183 * - Add its new weight to cfs_rq->load.weight 4184 */ 4185 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4186 update_cfs_group(se); 4187 enqueue_runnable_load_avg(cfs_rq, se); 4188 account_entity_enqueue(cfs_rq, se); 4189 4190 if (flags & ENQUEUE_WAKEUP) 4191 place_entity(cfs_rq, se, 0); 4192 4193 check_schedstat_required(); 4194 update_stats_enqueue(cfs_rq, se, flags); 4195 check_spread(cfs_rq, se); 4196 if (!curr) 4197 __enqueue_entity(cfs_rq, se); 4198 se->on_rq = 1; 4199 4200 if (cfs_rq->nr_running == 1) { 4201 list_add_leaf_cfs_rq(cfs_rq); 4202 check_enqueue_throttle(cfs_rq); 4203 } 4204 } 4205 4206 static void __clear_buddies_last(struct sched_entity *se) 4207 { 4208 for_each_sched_entity(se) { 4209 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4210 if (cfs_rq->last != se) 4211 break; 4212 4213 cfs_rq->last = NULL; 4214 } 4215 } 4216 4217 static void __clear_buddies_next(struct sched_entity *se) 4218 { 4219 for_each_sched_entity(se) { 4220 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4221 if (cfs_rq->next != se) 4222 break; 4223 4224 cfs_rq->next = NULL; 4225 } 4226 } 4227 4228 static void __clear_buddies_skip(struct sched_entity *se) 4229 { 4230 for_each_sched_entity(se) { 4231 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4232 if (cfs_rq->skip != se) 4233 break; 4234 4235 cfs_rq->skip = NULL; 4236 } 4237 } 4238 4239 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4240 { 4241 if (cfs_rq->last == se) 4242 __clear_buddies_last(se); 4243 4244 if (cfs_rq->next == se) 4245 __clear_buddies_next(se); 4246 4247 if (cfs_rq->skip == se) 4248 __clear_buddies_skip(se); 4249 } 4250 4251 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4252 4253 static void 4254 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4255 { 4256 /* 4257 * Update run-time statistics of the 'current'. 4258 */ 4259 update_curr(cfs_rq); 4260 4261 /* 4262 * When dequeuing a sched_entity, we must: 4263 * - Update loads to have both entity and cfs_rq synced with now. 4264 * - Substract its load from the cfs_rq->runnable_avg. 4265 * - Substract its previous weight from cfs_rq->load.weight. 4266 * - For group entity, update its weight to reflect the new share 4267 * of its group cfs_rq. 4268 */ 4269 update_load_avg(cfs_rq, se, UPDATE_TG); 4270 dequeue_runnable_load_avg(cfs_rq, se); 4271 4272 update_stats_dequeue(cfs_rq, se, flags); 4273 4274 clear_buddies(cfs_rq, se); 4275 4276 if (se != cfs_rq->curr) 4277 __dequeue_entity(cfs_rq, se); 4278 se->on_rq = 0; 4279 account_entity_dequeue(cfs_rq, se); 4280 4281 /* 4282 * Normalize after update_curr(); which will also have moved 4283 * min_vruntime if @se is the one holding it back. But before doing 4284 * update_min_vruntime() again, which will discount @se's position and 4285 * can move min_vruntime forward still more. 4286 */ 4287 if (!(flags & DEQUEUE_SLEEP)) 4288 se->vruntime -= cfs_rq->min_vruntime; 4289 4290 /* return excess runtime on last dequeue */ 4291 return_cfs_rq_runtime(cfs_rq); 4292 4293 update_cfs_group(se); 4294 4295 /* 4296 * Now advance min_vruntime if @se was the entity holding it back, 4297 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4298 * put back on, and if we advance min_vruntime, we'll be placed back 4299 * further than we started -- ie. we'll be penalized. 4300 */ 4301 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 4302 update_min_vruntime(cfs_rq); 4303 } 4304 4305 /* 4306 * Preempt the current task with a newly woken task if needed: 4307 */ 4308 static void 4309 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4310 { 4311 unsigned long ideal_runtime, delta_exec; 4312 struct sched_entity *se; 4313 s64 delta; 4314 4315 ideal_runtime = sched_slice(cfs_rq, curr); 4316 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4317 if (delta_exec > ideal_runtime) { 4318 resched_curr(rq_of(cfs_rq)); 4319 /* 4320 * The current task ran long enough, ensure it doesn't get 4321 * re-elected due to buddy favours. 4322 */ 4323 clear_buddies(cfs_rq, curr); 4324 return; 4325 } 4326 4327 /* 4328 * Ensure that a task that missed wakeup preemption by a 4329 * narrow margin doesn't have to wait for a full slice. 4330 * This also mitigates buddy induced latencies under load. 4331 */ 4332 if (delta_exec < sysctl_sched_min_granularity) 4333 return; 4334 4335 se = __pick_first_entity(cfs_rq); 4336 delta = curr->vruntime - se->vruntime; 4337 4338 if (delta < 0) 4339 return; 4340 4341 if (delta > ideal_runtime) 4342 resched_curr(rq_of(cfs_rq)); 4343 } 4344 4345 static void 4346 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4347 { 4348 /* 'current' is not kept within the tree. */ 4349 if (se->on_rq) { 4350 /* 4351 * Any task has to be enqueued before it get to execute on 4352 * a CPU. So account for the time it spent waiting on the 4353 * runqueue. 4354 */ 4355 update_stats_wait_end(cfs_rq, se); 4356 __dequeue_entity(cfs_rq, se); 4357 update_load_avg(cfs_rq, se, UPDATE_TG); 4358 } 4359 4360 update_stats_curr_start(cfs_rq, se); 4361 cfs_rq->curr = se; 4362 4363 /* 4364 * Track our maximum slice length, if the CPU's load is at 4365 * least twice that of our own weight (i.e. dont track it 4366 * when there are only lesser-weight tasks around): 4367 */ 4368 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 4369 schedstat_set(se->statistics.slice_max, 4370 max((u64)schedstat_val(se->statistics.slice_max), 4371 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4372 } 4373 4374 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4375 } 4376 4377 static int 4378 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4379 4380 /* 4381 * Pick the next process, keeping these things in mind, in this order: 4382 * 1) keep things fair between processes/task groups 4383 * 2) pick the "next" process, since someone really wants that to run 4384 * 3) pick the "last" process, for cache locality 4385 * 4) do not run the "skip" process, if something else is available 4386 */ 4387 static struct sched_entity * 4388 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4389 { 4390 struct sched_entity *left = __pick_first_entity(cfs_rq); 4391 struct sched_entity *se; 4392 4393 /* 4394 * If curr is set we have to see if its left of the leftmost entity 4395 * still in the tree, provided there was anything in the tree at all. 4396 */ 4397 if (!left || (curr && entity_before(curr, left))) 4398 left = curr; 4399 4400 se = left; /* ideally we run the leftmost entity */ 4401 4402 /* 4403 * Avoid running the skip buddy, if running something else can 4404 * be done without getting too unfair. 4405 */ 4406 if (cfs_rq->skip == se) { 4407 struct sched_entity *second; 4408 4409 if (se == curr) { 4410 second = __pick_first_entity(cfs_rq); 4411 } else { 4412 second = __pick_next_entity(se); 4413 if (!second || (curr && entity_before(curr, second))) 4414 second = curr; 4415 } 4416 4417 if (second && wakeup_preempt_entity(second, left) < 1) 4418 se = second; 4419 } 4420 4421 /* 4422 * Prefer last buddy, try to return the CPU to a preempted task. 4423 */ 4424 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4425 se = cfs_rq->last; 4426 4427 /* 4428 * Someone really wants this to run. If it's not unfair, run it. 4429 */ 4430 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4431 se = cfs_rq->next; 4432 4433 clear_buddies(cfs_rq, se); 4434 4435 return se; 4436 } 4437 4438 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4439 4440 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4441 { 4442 /* 4443 * If still on the runqueue then deactivate_task() 4444 * was not called and update_curr() has to be done: 4445 */ 4446 if (prev->on_rq) 4447 update_curr(cfs_rq); 4448 4449 /* throttle cfs_rqs exceeding runtime */ 4450 check_cfs_rq_runtime(cfs_rq); 4451 4452 check_spread(cfs_rq, prev); 4453 4454 if (prev->on_rq) { 4455 update_stats_wait_start(cfs_rq, prev); 4456 /* Put 'current' back into the tree. */ 4457 __enqueue_entity(cfs_rq, prev); 4458 /* in !on_rq case, update occurred at dequeue */ 4459 update_load_avg(cfs_rq, prev, 0); 4460 } 4461 cfs_rq->curr = NULL; 4462 } 4463 4464 static void 4465 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4466 { 4467 /* 4468 * Update run-time statistics of the 'current'. 4469 */ 4470 update_curr(cfs_rq); 4471 4472 /* 4473 * Ensure that runnable average is periodically updated. 4474 */ 4475 update_load_avg(cfs_rq, curr, UPDATE_TG); 4476 update_cfs_group(curr); 4477 4478 #ifdef CONFIG_SCHED_HRTICK 4479 /* 4480 * queued ticks are scheduled to match the slice, so don't bother 4481 * validating it and just reschedule. 4482 */ 4483 if (queued) { 4484 resched_curr(rq_of(cfs_rq)); 4485 return; 4486 } 4487 /* 4488 * don't let the period tick interfere with the hrtick preemption 4489 */ 4490 if (!sched_feat(DOUBLE_TICK) && 4491 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4492 return; 4493 #endif 4494 4495 if (cfs_rq->nr_running > 1) 4496 check_preempt_tick(cfs_rq, curr); 4497 } 4498 4499 4500 /************************************************** 4501 * CFS bandwidth control machinery 4502 */ 4503 4504 #ifdef CONFIG_CFS_BANDWIDTH 4505 4506 #ifdef HAVE_JUMP_LABEL 4507 static struct static_key __cfs_bandwidth_used; 4508 4509 static inline bool cfs_bandwidth_used(void) 4510 { 4511 return static_key_false(&__cfs_bandwidth_used); 4512 } 4513 4514 void cfs_bandwidth_usage_inc(void) 4515 { 4516 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4517 } 4518 4519 void cfs_bandwidth_usage_dec(void) 4520 { 4521 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4522 } 4523 #else /* HAVE_JUMP_LABEL */ 4524 static bool cfs_bandwidth_used(void) 4525 { 4526 return true; 4527 } 4528 4529 void cfs_bandwidth_usage_inc(void) {} 4530 void cfs_bandwidth_usage_dec(void) {} 4531 #endif /* HAVE_JUMP_LABEL */ 4532 4533 /* 4534 * default period for cfs group bandwidth. 4535 * default: 0.1s, units: nanoseconds 4536 */ 4537 static inline u64 default_cfs_period(void) 4538 { 4539 return 100000000ULL; 4540 } 4541 4542 static inline u64 sched_cfs_bandwidth_slice(void) 4543 { 4544 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4545 } 4546 4547 /* 4548 * Replenish runtime according to assigned quota and update expiration time. 4549 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4550 * additional synchronization around rq->lock. 4551 * 4552 * requires cfs_b->lock 4553 */ 4554 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4555 { 4556 u64 now; 4557 4558 if (cfs_b->quota == RUNTIME_INF) 4559 return; 4560 4561 now = sched_clock_cpu(smp_processor_id()); 4562 cfs_b->runtime = cfs_b->quota; 4563 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4564 } 4565 4566 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4567 { 4568 return &tg->cfs_bandwidth; 4569 } 4570 4571 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4572 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4573 { 4574 if (unlikely(cfs_rq->throttle_count)) 4575 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4576 4577 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4578 } 4579 4580 /* returns 0 on failure to allocate runtime */ 4581 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4582 { 4583 struct task_group *tg = cfs_rq->tg; 4584 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4585 u64 amount = 0, min_amount, expires; 4586 4587 /* note: this is a positive sum as runtime_remaining <= 0 */ 4588 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4589 4590 raw_spin_lock(&cfs_b->lock); 4591 if (cfs_b->quota == RUNTIME_INF) 4592 amount = min_amount; 4593 else { 4594 start_cfs_bandwidth(cfs_b); 4595 4596 if (cfs_b->runtime > 0) { 4597 amount = min(cfs_b->runtime, min_amount); 4598 cfs_b->runtime -= amount; 4599 cfs_b->idle = 0; 4600 } 4601 } 4602 expires = cfs_b->runtime_expires; 4603 raw_spin_unlock(&cfs_b->lock); 4604 4605 cfs_rq->runtime_remaining += amount; 4606 /* 4607 * we may have advanced our local expiration to account for allowed 4608 * spread between our sched_clock and the one on which runtime was 4609 * issued. 4610 */ 4611 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 4612 cfs_rq->runtime_expires = expires; 4613 4614 return cfs_rq->runtime_remaining > 0; 4615 } 4616 4617 /* 4618 * Note: This depends on the synchronization provided by sched_clock and the 4619 * fact that rq->clock snapshots this value. 4620 */ 4621 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4622 { 4623 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4624 4625 /* if the deadline is ahead of our clock, nothing to do */ 4626 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4627 return; 4628 4629 if (cfs_rq->runtime_remaining < 0) 4630 return; 4631 4632 /* 4633 * If the local deadline has passed we have to consider the 4634 * possibility that our sched_clock is 'fast' and the global deadline 4635 * has not truly expired. 4636 * 4637 * Fortunately we can check determine whether this the case by checking 4638 * whether the global deadline has advanced. It is valid to compare 4639 * cfs_b->runtime_expires without any locks since we only care about 4640 * exact equality, so a partial write will still work. 4641 */ 4642 4643 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 4644 /* extend local deadline, drift is bounded above by 2 ticks */ 4645 cfs_rq->runtime_expires += TICK_NSEC; 4646 } else { 4647 /* global deadline is ahead, expiration has passed */ 4648 cfs_rq->runtime_remaining = 0; 4649 } 4650 } 4651 4652 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4653 { 4654 /* dock delta_exec before expiring quota (as it could span periods) */ 4655 cfs_rq->runtime_remaining -= delta_exec; 4656 expire_cfs_rq_runtime(cfs_rq); 4657 4658 if (likely(cfs_rq->runtime_remaining > 0)) 4659 return; 4660 4661 /* 4662 * if we're unable to extend our runtime we resched so that the active 4663 * hierarchy can be throttled 4664 */ 4665 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4666 resched_curr(rq_of(cfs_rq)); 4667 } 4668 4669 static __always_inline 4670 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4671 { 4672 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4673 return; 4674 4675 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4676 } 4677 4678 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4679 { 4680 return cfs_bandwidth_used() && cfs_rq->throttled; 4681 } 4682 4683 /* check whether cfs_rq, or any parent, is throttled */ 4684 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4685 { 4686 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4687 } 4688 4689 /* 4690 * Ensure that neither of the group entities corresponding to src_cpu or 4691 * dest_cpu are members of a throttled hierarchy when performing group 4692 * load-balance operations. 4693 */ 4694 static inline int throttled_lb_pair(struct task_group *tg, 4695 int src_cpu, int dest_cpu) 4696 { 4697 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4698 4699 src_cfs_rq = tg->cfs_rq[src_cpu]; 4700 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4701 4702 return throttled_hierarchy(src_cfs_rq) || 4703 throttled_hierarchy(dest_cfs_rq); 4704 } 4705 4706 /* updated child weight may affect parent so we have to do this bottom up */ 4707 static int tg_unthrottle_up(struct task_group *tg, void *data) 4708 { 4709 struct rq *rq = data; 4710 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4711 4712 cfs_rq->throttle_count--; 4713 if (!cfs_rq->throttle_count) { 4714 /* adjust cfs_rq_clock_task() */ 4715 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4716 cfs_rq->throttled_clock_task; 4717 } 4718 4719 return 0; 4720 } 4721 4722 static int tg_throttle_down(struct task_group *tg, void *data) 4723 { 4724 struct rq *rq = data; 4725 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4726 4727 /* group is entering throttled state, stop time */ 4728 if (!cfs_rq->throttle_count) 4729 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4730 cfs_rq->throttle_count++; 4731 4732 return 0; 4733 } 4734 4735 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4736 { 4737 struct rq *rq = rq_of(cfs_rq); 4738 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4739 struct sched_entity *se; 4740 long task_delta, dequeue = 1; 4741 bool empty; 4742 4743 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4744 4745 /* freeze hierarchy runnable averages while throttled */ 4746 rcu_read_lock(); 4747 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4748 rcu_read_unlock(); 4749 4750 task_delta = cfs_rq->h_nr_running; 4751 for_each_sched_entity(se) { 4752 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4753 /* throttled entity or throttle-on-deactivate */ 4754 if (!se->on_rq) 4755 break; 4756 4757 if (dequeue) 4758 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4759 qcfs_rq->h_nr_running -= task_delta; 4760 4761 if (qcfs_rq->load.weight) 4762 dequeue = 0; 4763 } 4764 4765 if (!se) 4766 sub_nr_running(rq, task_delta); 4767 4768 cfs_rq->throttled = 1; 4769 cfs_rq->throttled_clock = rq_clock(rq); 4770 raw_spin_lock(&cfs_b->lock); 4771 empty = list_empty(&cfs_b->throttled_cfs_rq); 4772 4773 /* 4774 * Add to the _head_ of the list, so that an already-started 4775 * distribute_cfs_runtime will not see us 4776 */ 4777 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4778 4779 /* 4780 * If we're the first throttled task, make sure the bandwidth 4781 * timer is running. 4782 */ 4783 if (empty) 4784 start_cfs_bandwidth(cfs_b); 4785 4786 raw_spin_unlock(&cfs_b->lock); 4787 } 4788 4789 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4790 { 4791 struct rq *rq = rq_of(cfs_rq); 4792 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4793 struct sched_entity *se; 4794 int enqueue = 1; 4795 long task_delta; 4796 4797 se = cfs_rq->tg->se[cpu_of(rq)]; 4798 4799 cfs_rq->throttled = 0; 4800 4801 update_rq_clock(rq); 4802 4803 raw_spin_lock(&cfs_b->lock); 4804 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4805 list_del_rcu(&cfs_rq->throttled_list); 4806 raw_spin_unlock(&cfs_b->lock); 4807 4808 /* update hierarchical throttle state */ 4809 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4810 4811 if (!cfs_rq->load.weight) 4812 return; 4813 4814 task_delta = cfs_rq->h_nr_running; 4815 for_each_sched_entity(se) { 4816 if (se->on_rq) 4817 enqueue = 0; 4818 4819 cfs_rq = cfs_rq_of(se); 4820 if (enqueue) 4821 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4822 cfs_rq->h_nr_running += task_delta; 4823 4824 if (cfs_rq_throttled(cfs_rq)) 4825 break; 4826 } 4827 4828 if (!se) 4829 add_nr_running(rq, task_delta); 4830 4831 /* Determine whether we need to wake up potentially idle CPU: */ 4832 if (rq->curr == rq->idle && rq->cfs.nr_running) 4833 resched_curr(rq); 4834 } 4835 4836 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4837 u64 remaining, u64 expires) 4838 { 4839 struct cfs_rq *cfs_rq; 4840 u64 runtime; 4841 u64 starting_runtime = remaining; 4842 4843 rcu_read_lock(); 4844 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4845 throttled_list) { 4846 struct rq *rq = rq_of(cfs_rq); 4847 struct rq_flags rf; 4848 4849 rq_lock(rq, &rf); 4850 if (!cfs_rq_throttled(cfs_rq)) 4851 goto next; 4852 4853 runtime = -cfs_rq->runtime_remaining + 1; 4854 if (runtime > remaining) 4855 runtime = remaining; 4856 remaining -= runtime; 4857 4858 cfs_rq->runtime_remaining += runtime; 4859 cfs_rq->runtime_expires = expires; 4860 4861 /* we check whether we're throttled above */ 4862 if (cfs_rq->runtime_remaining > 0) 4863 unthrottle_cfs_rq(cfs_rq); 4864 4865 next: 4866 rq_unlock(rq, &rf); 4867 4868 if (!remaining) 4869 break; 4870 } 4871 rcu_read_unlock(); 4872 4873 return starting_runtime - remaining; 4874 } 4875 4876 /* 4877 * Responsible for refilling a task_group's bandwidth and unthrottling its 4878 * cfs_rqs as appropriate. If there has been no activity within the last 4879 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4880 * used to track this state. 4881 */ 4882 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4883 { 4884 u64 runtime, runtime_expires; 4885 int throttled; 4886 4887 /* no need to continue the timer with no bandwidth constraint */ 4888 if (cfs_b->quota == RUNTIME_INF) 4889 goto out_deactivate; 4890 4891 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4892 cfs_b->nr_periods += overrun; 4893 4894 /* 4895 * idle depends on !throttled (for the case of a large deficit), and if 4896 * we're going inactive then everything else can be deferred 4897 */ 4898 if (cfs_b->idle && !throttled) 4899 goto out_deactivate; 4900 4901 __refill_cfs_bandwidth_runtime(cfs_b); 4902 4903 if (!throttled) { 4904 /* mark as potentially idle for the upcoming period */ 4905 cfs_b->idle = 1; 4906 return 0; 4907 } 4908 4909 /* account preceding periods in which throttling occurred */ 4910 cfs_b->nr_throttled += overrun; 4911 4912 runtime_expires = cfs_b->runtime_expires; 4913 4914 /* 4915 * This check is repeated as we are holding onto the new bandwidth while 4916 * we unthrottle. This can potentially race with an unthrottled group 4917 * trying to acquire new bandwidth from the global pool. This can result 4918 * in us over-using our runtime if it is all used during this loop, but 4919 * only by limited amounts in that extreme case. 4920 */ 4921 while (throttled && cfs_b->runtime > 0) { 4922 runtime = cfs_b->runtime; 4923 raw_spin_unlock(&cfs_b->lock); 4924 /* we can't nest cfs_b->lock while distributing bandwidth */ 4925 runtime = distribute_cfs_runtime(cfs_b, runtime, 4926 runtime_expires); 4927 raw_spin_lock(&cfs_b->lock); 4928 4929 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4930 4931 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4932 } 4933 4934 /* 4935 * While we are ensured activity in the period following an 4936 * unthrottle, this also covers the case in which the new bandwidth is 4937 * insufficient to cover the existing bandwidth deficit. (Forcing the 4938 * timer to remain active while there are any throttled entities.) 4939 */ 4940 cfs_b->idle = 0; 4941 4942 return 0; 4943 4944 out_deactivate: 4945 return 1; 4946 } 4947 4948 /* a cfs_rq won't donate quota below this amount */ 4949 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4950 /* minimum remaining period time to redistribute slack quota */ 4951 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4952 /* how long we wait to gather additional slack before distributing */ 4953 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4954 4955 /* 4956 * Are we near the end of the current quota period? 4957 * 4958 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4959 * hrtimer base being cleared by hrtimer_start. In the case of 4960 * migrate_hrtimers, base is never cleared, so we are fine. 4961 */ 4962 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4963 { 4964 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4965 u64 remaining; 4966 4967 /* if the call-back is running a quota refresh is already occurring */ 4968 if (hrtimer_callback_running(refresh_timer)) 4969 return 1; 4970 4971 /* is a quota refresh about to occur? */ 4972 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4973 if (remaining < min_expire) 4974 return 1; 4975 4976 return 0; 4977 } 4978 4979 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4980 { 4981 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4982 4983 /* if there's a quota refresh soon don't bother with slack */ 4984 if (runtime_refresh_within(cfs_b, min_left)) 4985 return; 4986 4987 hrtimer_start(&cfs_b->slack_timer, 4988 ns_to_ktime(cfs_bandwidth_slack_period), 4989 HRTIMER_MODE_REL); 4990 } 4991 4992 /* we know any runtime found here is valid as update_curr() precedes return */ 4993 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4994 { 4995 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4996 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4997 4998 if (slack_runtime <= 0) 4999 return; 5000 5001 raw_spin_lock(&cfs_b->lock); 5002 if (cfs_b->quota != RUNTIME_INF && 5003 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 5004 cfs_b->runtime += slack_runtime; 5005 5006 /* we are under rq->lock, defer unthrottling using a timer */ 5007 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5008 !list_empty(&cfs_b->throttled_cfs_rq)) 5009 start_cfs_slack_bandwidth(cfs_b); 5010 } 5011 raw_spin_unlock(&cfs_b->lock); 5012 5013 /* even if it's not valid for return we don't want to try again */ 5014 cfs_rq->runtime_remaining -= slack_runtime; 5015 } 5016 5017 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5018 { 5019 if (!cfs_bandwidth_used()) 5020 return; 5021 5022 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5023 return; 5024 5025 __return_cfs_rq_runtime(cfs_rq); 5026 } 5027 5028 /* 5029 * This is done with a timer (instead of inline with bandwidth return) since 5030 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5031 */ 5032 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5033 { 5034 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5035 u64 expires; 5036 5037 /* confirm we're still not at a refresh boundary */ 5038 raw_spin_lock(&cfs_b->lock); 5039 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5040 raw_spin_unlock(&cfs_b->lock); 5041 return; 5042 } 5043 5044 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5045 runtime = cfs_b->runtime; 5046 5047 expires = cfs_b->runtime_expires; 5048 raw_spin_unlock(&cfs_b->lock); 5049 5050 if (!runtime) 5051 return; 5052 5053 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 5054 5055 raw_spin_lock(&cfs_b->lock); 5056 if (expires == cfs_b->runtime_expires) 5057 cfs_b->runtime -= min(runtime, cfs_b->runtime); 5058 raw_spin_unlock(&cfs_b->lock); 5059 } 5060 5061 /* 5062 * When a group wakes up we want to make sure that its quota is not already 5063 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5064 * runtime as update_curr() throttling can not not trigger until it's on-rq. 5065 */ 5066 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5067 { 5068 if (!cfs_bandwidth_used()) 5069 return; 5070 5071 /* an active group must be handled by the update_curr()->put() path */ 5072 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5073 return; 5074 5075 /* ensure the group is not already throttled */ 5076 if (cfs_rq_throttled(cfs_rq)) 5077 return; 5078 5079 /* update runtime allocation */ 5080 account_cfs_rq_runtime(cfs_rq, 0); 5081 if (cfs_rq->runtime_remaining <= 0) 5082 throttle_cfs_rq(cfs_rq); 5083 } 5084 5085 static void sync_throttle(struct task_group *tg, int cpu) 5086 { 5087 struct cfs_rq *pcfs_rq, *cfs_rq; 5088 5089 if (!cfs_bandwidth_used()) 5090 return; 5091 5092 if (!tg->parent) 5093 return; 5094 5095 cfs_rq = tg->cfs_rq[cpu]; 5096 pcfs_rq = tg->parent->cfs_rq[cpu]; 5097 5098 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5099 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5100 } 5101 5102 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5103 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5104 { 5105 if (!cfs_bandwidth_used()) 5106 return false; 5107 5108 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5109 return false; 5110 5111 /* 5112 * it's possible for a throttled entity to be forced into a running 5113 * state (e.g. set_curr_task), in this case we're finished. 5114 */ 5115 if (cfs_rq_throttled(cfs_rq)) 5116 return true; 5117 5118 throttle_cfs_rq(cfs_rq); 5119 return true; 5120 } 5121 5122 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5123 { 5124 struct cfs_bandwidth *cfs_b = 5125 container_of(timer, struct cfs_bandwidth, slack_timer); 5126 5127 do_sched_cfs_slack_timer(cfs_b); 5128 5129 return HRTIMER_NORESTART; 5130 } 5131 5132 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5133 { 5134 struct cfs_bandwidth *cfs_b = 5135 container_of(timer, struct cfs_bandwidth, period_timer); 5136 int overrun; 5137 int idle = 0; 5138 5139 raw_spin_lock(&cfs_b->lock); 5140 for (;;) { 5141 overrun = hrtimer_forward_now(timer, cfs_b->period); 5142 if (!overrun) 5143 break; 5144 5145 idle = do_sched_cfs_period_timer(cfs_b, overrun); 5146 } 5147 if (idle) 5148 cfs_b->period_active = 0; 5149 raw_spin_unlock(&cfs_b->lock); 5150 5151 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5152 } 5153 5154 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5155 { 5156 raw_spin_lock_init(&cfs_b->lock); 5157 cfs_b->runtime = 0; 5158 cfs_b->quota = RUNTIME_INF; 5159 cfs_b->period = ns_to_ktime(default_cfs_period()); 5160 5161 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5162 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5163 cfs_b->period_timer.function = sched_cfs_period_timer; 5164 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5165 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5166 } 5167 5168 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5169 { 5170 cfs_rq->runtime_enabled = 0; 5171 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5172 } 5173 5174 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5175 { 5176 lockdep_assert_held(&cfs_b->lock); 5177 5178 if (!cfs_b->period_active) { 5179 cfs_b->period_active = 1; 5180 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5181 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5182 } 5183 } 5184 5185 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5186 { 5187 /* init_cfs_bandwidth() was not called */ 5188 if (!cfs_b->throttled_cfs_rq.next) 5189 return; 5190 5191 hrtimer_cancel(&cfs_b->period_timer); 5192 hrtimer_cancel(&cfs_b->slack_timer); 5193 } 5194 5195 /* 5196 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5197 * 5198 * The race is harmless, since modifying bandwidth settings of unhooked group 5199 * bits doesn't do much. 5200 */ 5201 5202 /* cpu online calback */ 5203 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5204 { 5205 struct task_group *tg; 5206 5207 lockdep_assert_held(&rq->lock); 5208 5209 rcu_read_lock(); 5210 list_for_each_entry_rcu(tg, &task_groups, list) { 5211 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5212 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5213 5214 raw_spin_lock(&cfs_b->lock); 5215 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5216 raw_spin_unlock(&cfs_b->lock); 5217 } 5218 rcu_read_unlock(); 5219 } 5220 5221 /* cpu offline callback */ 5222 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5223 { 5224 struct task_group *tg; 5225 5226 lockdep_assert_held(&rq->lock); 5227 5228 rcu_read_lock(); 5229 list_for_each_entry_rcu(tg, &task_groups, list) { 5230 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5231 5232 if (!cfs_rq->runtime_enabled) 5233 continue; 5234 5235 /* 5236 * clock_task is not advancing so we just need to make sure 5237 * there's some valid quota amount 5238 */ 5239 cfs_rq->runtime_remaining = 1; 5240 /* 5241 * Offline rq is schedulable till CPU is completely disabled 5242 * in take_cpu_down(), so we prevent new cfs throttling here. 5243 */ 5244 cfs_rq->runtime_enabled = 0; 5245 5246 if (cfs_rq_throttled(cfs_rq)) 5247 unthrottle_cfs_rq(cfs_rq); 5248 } 5249 rcu_read_unlock(); 5250 } 5251 5252 #else /* CONFIG_CFS_BANDWIDTH */ 5253 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 5254 { 5255 return rq_clock_task(rq_of(cfs_rq)); 5256 } 5257 5258 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5259 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5260 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5261 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5262 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5263 5264 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5265 { 5266 return 0; 5267 } 5268 5269 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5270 { 5271 return 0; 5272 } 5273 5274 static inline int throttled_lb_pair(struct task_group *tg, 5275 int src_cpu, int dest_cpu) 5276 { 5277 return 0; 5278 } 5279 5280 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5281 5282 #ifdef CONFIG_FAIR_GROUP_SCHED 5283 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5284 #endif 5285 5286 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5287 { 5288 return NULL; 5289 } 5290 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5291 static inline void update_runtime_enabled(struct rq *rq) {} 5292 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5293 5294 #endif /* CONFIG_CFS_BANDWIDTH */ 5295 5296 /************************************************** 5297 * CFS operations on tasks: 5298 */ 5299 5300 #ifdef CONFIG_SCHED_HRTICK 5301 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5302 { 5303 struct sched_entity *se = &p->se; 5304 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5305 5306 SCHED_WARN_ON(task_rq(p) != rq); 5307 5308 if (rq->cfs.h_nr_running > 1) { 5309 u64 slice = sched_slice(cfs_rq, se); 5310 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5311 s64 delta = slice - ran; 5312 5313 if (delta < 0) { 5314 if (rq->curr == p) 5315 resched_curr(rq); 5316 return; 5317 } 5318 hrtick_start(rq, delta); 5319 } 5320 } 5321 5322 /* 5323 * called from enqueue/dequeue and updates the hrtick when the 5324 * current task is from our class and nr_running is low enough 5325 * to matter. 5326 */ 5327 static void hrtick_update(struct rq *rq) 5328 { 5329 struct task_struct *curr = rq->curr; 5330 5331 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5332 return; 5333 5334 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5335 hrtick_start_fair(rq, curr); 5336 } 5337 #else /* !CONFIG_SCHED_HRTICK */ 5338 static inline void 5339 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5340 { 5341 } 5342 5343 static inline void hrtick_update(struct rq *rq) 5344 { 5345 } 5346 #endif 5347 5348 /* 5349 * The enqueue_task method is called before nr_running is 5350 * increased. Here we update the fair scheduling stats and 5351 * then put the task into the rbtree: 5352 */ 5353 static void 5354 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5355 { 5356 struct cfs_rq *cfs_rq; 5357 struct sched_entity *se = &p->se; 5358 5359 /* 5360 * If in_iowait is set, the code below may not trigger any cpufreq 5361 * utilization updates, so do it here explicitly with the IOWAIT flag 5362 * passed. 5363 */ 5364 if (p->in_iowait) 5365 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5366 5367 for_each_sched_entity(se) { 5368 if (se->on_rq) 5369 break; 5370 cfs_rq = cfs_rq_of(se); 5371 enqueue_entity(cfs_rq, se, flags); 5372 5373 /* 5374 * end evaluation on encountering a throttled cfs_rq 5375 * 5376 * note: in the case of encountering a throttled cfs_rq we will 5377 * post the final h_nr_running increment below. 5378 */ 5379 if (cfs_rq_throttled(cfs_rq)) 5380 break; 5381 cfs_rq->h_nr_running++; 5382 5383 flags = ENQUEUE_WAKEUP; 5384 } 5385 5386 for_each_sched_entity(se) { 5387 cfs_rq = cfs_rq_of(se); 5388 cfs_rq->h_nr_running++; 5389 5390 if (cfs_rq_throttled(cfs_rq)) 5391 break; 5392 5393 update_load_avg(cfs_rq, se, UPDATE_TG); 5394 update_cfs_group(se); 5395 } 5396 5397 if (!se) 5398 add_nr_running(rq, 1); 5399 5400 util_est_enqueue(&rq->cfs, p); 5401 hrtick_update(rq); 5402 } 5403 5404 static void set_next_buddy(struct sched_entity *se); 5405 5406 /* 5407 * The dequeue_task method is called before nr_running is 5408 * decreased. We remove the task from the rbtree and 5409 * update the fair scheduling stats: 5410 */ 5411 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5412 { 5413 struct cfs_rq *cfs_rq; 5414 struct sched_entity *se = &p->se; 5415 int task_sleep = flags & DEQUEUE_SLEEP; 5416 5417 for_each_sched_entity(se) { 5418 cfs_rq = cfs_rq_of(se); 5419 dequeue_entity(cfs_rq, se, flags); 5420 5421 /* 5422 * end evaluation on encountering a throttled cfs_rq 5423 * 5424 * note: in the case of encountering a throttled cfs_rq we will 5425 * post the final h_nr_running decrement below. 5426 */ 5427 if (cfs_rq_throttled(cfs_rq)) 5428 break; 5429 cfs_rq->h_nr_running--; 5430 5431 /* Don't dequeue parent if it has other entities besides us */ 5432 if (cfs_rq->load.weight) { 5433 /* Avoid re-evaluating load for this entity: */ 5434 se = parent_entity(se); 5435 /* 5436 * Bias pick_next to pick a task from this cfs_rq, as 5437 * p is sleeping when it is within its sched_slice. 5438 */ 5439 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5440 set_next_buddy(se); 5441 break; 5442 } 5443 flags |= DEQUEUE_SLEEP; 5444 } 5445 5446 for_each_sched_entity(se) { 5447 cfs_rq = cfs_rq_of(se); 5448 cfs_rq->h_nr_running--; 5449 5450 if (cfs_rq_throttled(cfs_rq)) 5451 break; 5452 5453 update_load_avg(cfs_rq, se, UPDATE_TG); 5454 update_cfs_group(se); 5455 } 5456 5457 if (!se) 5458 sub_nr_running(rq, 1); 5459 5460 util_est_dequeue(&rq->cfs, p, task_sleep); 5461 hrtick_update(rq); 5462 } 5463 5464 #ifdef CONFIG_SMP 5465 5466 /* Working cpumask for: load_balance, load_balance_newidle. */ 5467 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5468 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5469 5470 #ifdef CONFIG_NO_HZ_COMMON 5471 /* 5472 * per rq 'load' arrray crap; XXX kill this. 5473 */ 5474 5475 /* 5476 * The exact cpuload calculated at every tick would be: 5477 * 5478 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 5479 * 5480 * If a CPU misses updates for n ticks (as it was idle) and update gets 5481 * called on the n+1-th tick when CPU may be busy, then we have: 5482 * 5483 * load_n = (1 - 1/2^i)^n * load_0 5484 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 5485 * 5486 * decay_load_missed() below does efficient calculation of 5487 * 5488 * load' = (1 - 1/2^i)^n * load 5489 * 5490 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 5491 * This allows us to precompute the above in said factors, thereby allowing the 5492 * reduction of an arbitrary n in O(log_2 n) steps. (See also 5493 * fixed_power_int()) 5494 * 5495 * The calculation is approximated on a 128 point scale. 5496 */ 5497 #define DEGRADE_SHIFT 7 5498 5499 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 5500 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 5501 { 0, 0, 0, 0, 0, 0, 0, 0 }, 5502 { 64, 32, 8, 0, 0, 0, 0, 0 }, 5503 { 96, 72, 40, 12, 1, 0, 0, 0 }, 5504 { 112, 98, 75, 43, 15, 1, 0, 0 }, 5505 { 120, 112, 98, 76, 45, 16, 2, 0 } 5506 }; 5507 5508 /* 5509 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 5510 * would be when CPU is idle and so we just decay the old load without 5511 * adding any new load. 5512 */ 5513 static unsigned long 5514 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 5515 { 5516 int j = 0; 5517 5518 if (!missed_updates) 5519 return load; 5520 5521 if (missed_updates >= degrade_zero_ticks[idx]) 5522 return 0; 5523 5524 if (idx == 1) 5525 return load >> missed_updates; 5526 5527 while (missed_updates) { 5528 if (missed_updates % 2) 5529 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 5530 5531 missed_updates >>= 1; 5532 j++; 5533 } 5534 return load; 5535 } 5536 5537 static struct { 5538 cpumask_var_t idle_cpus_mask; 5539 atomic_t nr_cpus; 5540 int has_blocked; /* Idle CPUS has blocked load */ 5541 unsigned long next_balance; /* in jiffy units */ 5542 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5543 } nohz ____cacheline_aligned; 5544 5545 #endif /* CONFIG_NO_HZ_COMMON */ 5546 5547 /** 5548 * __cpu_load_update - update the rq->cpu_load[] statistics 5549 * @this_rq: The rq to update statistics for 5550 * @this_load: The current load 5551 * @pending_updates: The number of missed updates 5552 * 5553 * Update rq->cpu_load[] statistics. This function is usually called every 5554 * scheduler tick (TICK_NSEC). 5555 * 5556 * This function computes a decaying average: 5557 * 5558 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 5559 * 5560 * Because of NOHZ it might not get called on every tick which gives need for 5561 * the @pending_updates argument. 5562 * 5563 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 5564 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 5565 * = A * (A * load[i]_n-2 + B) + B 5566 * = A * (A * (A * load[i]_n-3 + B) + B) + B 5567 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 5568 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 5569 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 5570 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 5571 * 5572 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 5573 * any change in load would have resulted in the tick being turned back on. 5574 * 5575 * For regular NOHZ, this reduces to: 5576 * 5577 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 5578 * 5579 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 5580 * term. 5581 */ 5582 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 5583 unsigned long pending_updates) 5584 { 5585 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 5586 int i, scale; 5587 5588 this_rq->nr_load_updates++; 5589 5590 /* Update our load: */ 5591 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 5592 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 5593 unsigned long old_load, new_load; 5594 5595 /* scale is effectively 1 << i now, and >> i divides by scale */ 5596 5597 old_load = this_rq->cpu_load[i]; 5598 #ifdef CONFIG_NO_HZ_COMMON 5599 old_load = decay_load_missed(old_load, pending_updates - 1, i); 5600 if (tickless_load) { 5601 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 5602 /* 5603 * old_load can never be a negative value because a 5604 * decayed tickless_load cannot be greater than the 5605 * original tickless_load. 5606 */ 5607 old_load += tickless_load; 5608 } 5609 #endif 5610 new_load = this_load; 5611 /* 5612 * Round up the averaging division if load is increasing. This 5613 * prevents us from getting stuck on 9 if the load is 10, for 5614 * example. 5615 */ 5616 if (new_load > old_load) 5617 new_load += scale - 1; 5618 5619 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5620 } 5621 5622 sched_avg_update(this_rq); 5623 } 5624 5625 /* Used instead of source_load when we know the type == 0 */ 5626 static unsigned long weighted_cpuload(struct rq *rq) 5627 { 5628 return cfs_rq_runnable_load_avg(&rq->cfs); 5629 } 5630 5631 #ifdef CONFIG_NO_HZ_COMMON 5632 /* 5633 * There is no sane way to deal with nohz on smp when using jiffies because the 5634 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading 5635 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5636 * 5637 * Therefore we need to avoid the delta approach from the regular tick when 5638 * possible since that would seriously skew the load calculation. This is why we 5639 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5640 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5641 * loop exit, nohz_idle_balance, nohz full exit...) 5642 * 5643 * This means we might still be one tick off for nohz periods. 5644 */ 5645 5646 static void cpu_load_update_nohz(struct rq *this_rq, 5647 unsigned long curr_jiffies, 5648 unsigned long load) 5649 { 5650 unsigned long pending_updates; 5651 5652 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5653 if (pending_updates) { 5654 this_rq->last_load_update_tick = curr_jiffies; 5655 /* 5656 * In the regular NOHZ case, we were idle, this means load 0. 5657 * In the NOHZ_FULL case, we were non-idle, we should consider 5658 * its weighted load. 5659 */ 5660 cpu_load_update(this_rq, load, pending_updates); 5661 } 5662 } 5663 5664 /* 5665 * Called from nohz_idle_balance() to update the load ratings before doing the 5666 * idle balance. 5667 */ 5668 static void cpu_load_update_idle(struct rq *this_rq) 5669 { 5670 /* 5671 * bail if there's load or we're actually up-to-date. 5672 */ 5673 if (weighted_cpuload(this_rq)) 5674 return; 5675 5676 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5677 } 5678 5679 /* 5680 * Record CPU load on nohz entry so we know the tickless load to account 5681 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5682 * than other cpu_load[idx] but it should be fine as cpu_load readers 5683 * shouldn't rely into synchronized cpu_load[*] updates. 5684 */ 5685 void cpu_load_update_nohz_start(void) 5686 { 5687 struct rq *this_rq = this_rq(); 5688 5689 /* 5690 * This is all lockless but should be fine. If weighted_cpuload changes 5691 * concurrently we'll exit nohz. And cpu_load write can race with 5692 * cpu_load_update_idle() but both updater would be writing the same. 5693 */ 5694 this_rq->cpu_load[0] = weighted_cpuload(this_rq); 5695 } 5696 5697 /* 5698 * Account the tickless load in the end of a nohz frame. 5699 */ 5700 void cpu_load_update_nohz_stop(void) 5701 { 5702 unsigned long curr_jiffies = READ_ONCE(jiffies); 5703 struct rq *this_rq = this_rq(); 5704 unsigned long load; 5705 struct rq_flags rf; 5706 5707 if (curr_jiffies == this_rq->last_load_update_tick) 5708 return; 5709 5710 load = weighted_cpuload(this_rq); 5711 rq_lock(this_rq, &rf); 5712 update_rq_clock(this_rq); 5713 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5714 rq_unlock(this_rq, &rf); 5715 } 5716 #else /* !CONFIG_NO_HZ_COMMON */ 5717 static inline void cpu_load_update_nohz(struct rq *this_rq, 5718 unsigned long curr_jiffies, 5719 unsigned long load) { } 5720 #endif /* CONFIG_NO_HZ_COMMON */ 5721 5722 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5723 { 5724 #ifdef CONFIG_NO_HZ_COMMON 5725 /* See the mess around cpu_load_update_nohz(). */ 5726 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5727 #endif 5728 cpu_load_update(this_rq, load, 1); 5729 } 5730 5731 /* 5732 * Called from scheduler_tick() 5733 */ 5734 void cpu_load_update_active(struct rq *this_rq) 5735 { 5736 unsigned long load = weighted_cpuload(this_rq); 5737 5738 if (tick_nohz_tick_stopped()) 5739 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5740 else 5741 cpu_load_update_periodic(this_rq, load); 5742 } 5743 5744 /* 5745 * Return a low guess at the load of a migration-source CPU weighted 5746 * according to the scheduling class and "nice" value. 5747 * 5748 * We want to under-estimate the load of migration sources, to 5749 * balance conservatively. 5750 */ 5751 static unsigned long source_load(int cpu, int type) 5752 { 5753 struct rq *rq = cpu_rq(cpu); 5754 unsigned long total = weighted_cpuload(rq); 5755 5756 if (type == 0 || !sched_feat(LB_BIAS)) 5757 return total; 5758 5759 return min(rq->cpu_load[type-1], total); 5760 } 5761 5762 /* 5763 * Return a high guess at the load of a migration-target CPU weighted 5764 * according to the scheduling class and "nice" value. 5765 */ 5766 static unsigned long target_load(int cpu, int type) 5767 { 5768 struct rq *rq = cpu_rq(cpu); 5769 unsigned long total = weighted_cpuload(rq); 5770 5771 if (type == 0 || !sched_feat(LB_BIAS)) 5772 return total; 5773 5774 return max(rq->cpu_load[type-1], total); 5775 } 5776 5777 static unsigned long capacity_of(int cpu) 5778 { 5779 return cpu_rq(cpu)->cpu_capacity; 5780 } 5781 5782 static unsigned long capacity_orig_of(int cpu) 5783 { 5784 return cpu_rq(cpu)->cpu_capacity_orig; 5785 } 5786 5787 static unsigned long cpu_avg_load_per_task(int cpu) 5788 { 5789 struct rq *rq = cpu_rq(cpu); 5790 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5791 unsigned long load_avg = weighted_cpuload(rq); 5792 5793 if (nr_running) 5794 return load_avg / nr_running; 5795 5796 return 0; 5797 } 5798 5799 static void record_wakee(struct task_struct *p) 5800 { 5801 /* 5802 * Only decay a single time; tasks that have less then 1 wakeup per 5803 * jiffy will not have built up many flips. 5804 */ 5805 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5806 current->wakee_flips >>= 1; 5807 current->wakee_flip_decay_ts = jiffies; 5808 } 5809 5810 if (current->last_wakee != p) { 5811 current->last_wakee = p; 5812 current->wakee_flips++; 5813 } 5814 } 5815 5816 /* 5817 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5818 * 5819 * A waker of many should wake a different task than the one last awakened 5820 * at a frequency roughly N times higher than one of its wakees. 5821 * 5822 * In order to determine whether we should let the load spread vs consolidating 5823 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5824 * partner, and a factor of lls_size higher frequency in the other. 5825 * 5826 * With both conditions met, we can be relatively sure that the relationship is 5827 * non-monogamous, with partner count exceeding socket size. 5828 * 5829 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5830 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5831 * socket size. 5832 */ 5833 static int wake_wide(struct task_struct *p) 5834 { 5835 unsigned int master = current->wakee_flips; 5836 unsigned int slave = p->wakee_flips; 5837 int factor = this_cpu_read(sd_llc_size); 5838 5839 if (master < slave) 5840 swap(master, slave); 5841 if (slave < factor || master < slave * factor) 5842 return 0; 5843 return 1; 5844 } 5845 5846 /* 5847 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5848 * soonest. For the purpose of speed we only consider the waking and previous 5849 * CPU. 5850 * 5851 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5852 * cache-affine and is (or will be) idle. 5853 * 5854 * wake_affine_weight() - considers the weight to reflect the average 5855 * scheduling latency of the CPUs. This seems to work 5856 * for the overloaded case. 5857 */ 5858 static int 5859 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5860 { 5861 /* 5862 * If this_cpu is idle, it implies the wakeup is from interrupt 5863 * context. Only allow the move if cache is shared. Otherwise an 5864 * interrupt intensive workload could force all tasks onto one 5865 * node depending on the IO topology or IRQ affinity settings. 5866 * 5867 * If the prev_cpu is idle and cache affine then avoid a migration. 5868 * There is no guarantee that the cache hot data from an interrupt 5869 * is more important than cache hot data on the prev_cpu and from 5870 * a cpufreq perspective, it's better to have higher utilisation 5871 * on one CPU. 5872 */ 5873 if (idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5874 return idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5875 5876 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5877 return this_cpu; 5878 5879 return nr_cpumask_bits; 5880 } 5881 5882 static int 5883 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5884 int this_cpu, int prev_cpu, int sync) 5885 { 5886 s64 this_eff_load, prev_eff_load; 5887 unsigned long task_load; 5888 5889 this_eff_load = target_load(this_cpu, sd->wake_idx); 5890 5891 if (sync) { 5892 unsigned long current_load = task_h_load(current); 5893 5894 if (current_load > this_eff_load) 5895 return this_cpu; 5896 5897 this_eff_load -= current_load; 5898 } 5899 5900 task_load = task_h_load(p); 5901 5902 this_eff_load += task_load; 5903 if (sched_feat(WA_BIAS)) 5904 this_eff_load *= 100; 5905 this_eff_load *= capacity_of(prev_cpu); 5906 5907 prev_eff_load = source_load(prev_cpu, sd->wake_idx); 5908 prev_eff_load -= task_load; 5909 if (sched_feat(WA_BIAS)) 5910 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5911 prev_eff_load *= capacity_of(this_cpu); 5912 5913 /* 5914 * If sync, adjust the weight of prev_eff_load such that if 5915 * prev_eff == this_eff that select_idle_sibling() will consider 5916 * stacking the wakee on top of the waker if no other CPU is 5917 * idle. 5918 */ 5919 if (sync) 5920 prev_eff_load += 1; 5921 5922 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5923 } 5924 5925 #ifdef CONFIG_NUMA_BALANCING 5926 static void 5927 update_wa_numa_placement(struct task_struct *p, int prev_cpu, int target) 5928 { 5929 unsigned long interval; 5930 5931 if (!static_branch_likely(&sched_numa_balancing)) 5932 return; 5933 5934 /* If balancing has no preference then continue gathering data */ 5935 if (p->numa_preferred_nid == -1) 5936 return; 5937 5938 /* 5939 * If the wakeup is not affecting locality then it is neutral from 5940 * the perspective of NUMA balacing so continue gathering data. 5941 */ 5942 if (cpu_to_node(prev_cpu) == cpu_to_node(target)) 5943 return; 5944 5945 /* 5946 * Temporarily prevent NUMA balancing trying to place waker/wakee after 5947 * wakee has been moved by wake_affine. This will potentially allow 5948 * related tasks to converge and update their data placement. The 5949 * 4 * numa_scan_period is to allow the two-pass filter to migrate 5950 * hot data to the wakers node. 5951 */ 5952 interval = max(sysctl_numa_balancing_scan_delay, 5953 p->numa_scan_period << 2); 5954 p->numa_migrate_retry = jiffies + msecs_to_jiffies(interval); 5955 5956 interval = max(sysctl_numa_balancing_scan_delay, 5957 current->numa_scan_period << 2); 5958 current->numa_migrate_retry = jiffies + msecs_to_jiffies(interval); 5959 } 5960 #else 5961 static void 5962 update_wa_numa_placement(struct task_struct *p, int prev_cpu, int target) 5963 { 5964 } 5965 #endif 5966 5967 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5968 int this_cpu, int prev_cpu, int sync) 5969 { 5970 int target = nr_cpumask_bits; 5971 5972 if (sched_feat(WA_IDLE)) 5973 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5974 5975 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5976 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5977 5978 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5979 if (target == nr_cpumask_bits) 5980 return prev_cpu; 5981 5982 update_wa_numa_placement(p, prev_cpu, target); 5983 schedstat_inc(sd->ttwu_move_affine); 5984 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5985 return target; 5986 } 5987 5988 static unsigned long cpu_util_wake(int cpu, struct task_struct *p); 5989 5990 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p) 5991 { 5992 return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0); 5993 } 5994 5995 /* 5996 * find_idlest_group finds and returns the least busy CPU group within the 5997 * domain. 5998 * 5999 * Assumes p is allowed on at least one CPU in sd. 6000 */ 6001 static struct sched_group * 6002 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 6003 int this_cpu, int sd_flag) 6004 { 6005 struct sched_group *idlest = NULL, *group = sd->groups; 6006 struct sched_group *most_spare_sg = NULL; 6007 unsigned long min_runnable_load = ULONG_MAX; 6008 unsigned long this_runnable_load = ULONG_MAX; 6009 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 6010 unsigned long most_spare = 0, this_spare = 0; 6011 int load_idx = sd->forkexec_idx; 6012 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 6013 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 6014 (sd->imbalance_pct-100) / 100; 6015 6016 if (sd_flag & SD_BALANCE_WAKE) 6017 load_idx = sd->wake_idx; 6018 6019 do { 6020 unsigned long load, avg_load, runnable_load; 6021 unsigned long spare_cap, max_spare_cap; 6022 int local_group; 6023 int i; 6024 6025 /* Skip over this group if it has no CPUs allowed */ 6026 if (!cpumask_intersects(sched_group_span(group), 6027 &p->cpus_allowed)) 6028 continue; 6029 6030 local_group = cpumask_test_cpu(this_cpu, 6031 sched_group_span(group)); 6032 6033 /* 6034 * Tally up the load of all CPUs in the group and find 6035 * the group containing the CPU with most spare capacity. 6036 */ 6037 avg_load = 0; 6038 runnable_load = 0; 6039 max_spare_cap = 0; 6040 6041 for_each_cpu(i, sched_group_span(group)) { 6042 /* Bias balancing toward CPUs of our domain */ 6043 if (local_group) 6044 load = source_load(i, load_idx); 6045 else 6046 load = target_load(i, load_idx); 6047 6048 runnable_load += load; 6049 6050 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 6051 6052 spare_cap = capacity_spare_wake(i, p); 6053 6054 if (spare_cap > max_spare_cap) 6055 max_spare_cap = spare_cap; 6056 } 6057 6058 /* Adjust by relative CPU capacity of the group */ 6059 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 6060 group->sgc->capacity; 6061 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 6062 group->sgc->capacity; 6063 6064 if (local_group) { 6065 this_runnable_load = runnable_load; 6066 this_avg_load = avg_load; 6067 this_spare = max_spare_cap; 6068 } else { 6069 if (min_runnable_load > (runnable_load + imbalance)) { 6070 /* 6071 * The runnable load is significantly smaller 6072 * so we can pick this new CPU: 6073 */ 6074 min_runnable_load = runnable_load; 6075 min_avg_load = avg_load; 6076 idlest = group; 6077 } else if ((runnable_load < (min_runnable_load + imbalance)) && 6078 (100*min_avg_load > imbalance_scale*avg_load)) { 6079 /* 6080 * The runnable loads are close so take the 6081 * blocked load into account through avg_load: 6082 */ 6083 min_avg_load = avg_load; 6084 idlest = group; 6085 } 6086 6087 if (most_spare < max_spare_cap) { 6088 most_spare = max_spare_cap; 6089 most_spare_sg = group; 6090 } 6091 } 6092 } while (group = group->next, group != sd->groups); 6093 6094 /* 6095 * The cross-over point between using spare capacity or least load 6096 * is too conservative for high utilization tasks on partially 6097 * utilized systems if we require spare_capacity > task_util(p), 6098 * so we allow for some task stuffing by using 6099 * spare_capacity > task_util(p)/2. 6100 * 6101 * Spare capacity can't be used for fork because the utilization has 6102 * not been set yet, we must first select a rq to compute the initial 6103 * utilization. 6104 */ 6105 if (sd_flag & SD_BALANCE_FORK) 6106 goto skip_spare; 6107 6108 if (this_spare > task_util(p) / 2 && 6109 imbalance_scale*this_spare > 100*most_spare) 6110 return NULL; 6111 6112 if (most_spare > task_util(p) / 2) 6113 return most_spare_sg; 6114 6115 skip_spare: 6116 if (!idlest) 6117 return NULL; 6118 6119 /* 6120 * When comparing groups across NUMA domains, it's possible for the 6121 * local domain to be very lightly loaded relative to the remote 6122 * domains but "imbalance" skews the comparison making remote CPUs 6123 * look much more favourable. When considering cross-domain, add 6124 * imbalance to the runnable load on the remote node and consider 6125 * staying local. 6126 */ 6127 if ((sd->flags & SD_NUMA) && 6128 min_runnable_load + imbalance >= this_runnable_load) 6129 return NULL; 6130 6131 if (min_runnable_load > (this_runnable_load + imbalance)) 6132 return NULL; 6133 6134 if ((this_runnable_load < (min_runnable_load + imbalance)) && 6135 (100*this_avg_load < imbalance_scale*min_avg_load)) 6136 return NULL; 6137 6138 return idlest; 6139 } 6140 6141 /* 6142 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6143 */ 6144 static int 6145 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6146 { 6147 unsigned long load, min_load = ULONG_MAX; 6148 unsigned int min_exit_latency = UINT_MAX; 6149 u64 latest_idle_timestamp = 0; 6150 int least_loaded_cpu = this_cpu; 6151 int shallowest_idle_cpu = -1; 6152 int i; 6153 6154 /* Check if we have any choice: */ 6155 if (group->group_weight == 1) 6156 return cpumask_first(sched_group_span(group)); 6157 6158 /* Traverse only the allowed CPUs */ 6159 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { 6160 if (idle_cpu(i)) { 6161 struct rq *rq = cpu_rq(i); 6162 struct cpuidle_state *idle = idle_get_state(rq); 6163 if (idle && idle->exit_latency < min_exit_latency) { 6164 /* 6165 * We give priority to a CPU whose idle state 6166 * has the smallest exit latency irrespective 6167 * of any idle timestamp. 6168 */ 6169 min_exit_latency = idle->exit_latency; 6170 latest_idle_timestamp = rq->idle_stamp; 6171 shallowest_idle_cpu = i; 6172 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6173 rq->idle_stamp > latest_idle_timestamp) { 6174 /* 6175 * If equal or no active idle state, then 6176 * the most recently idled CPU might have 6177 * a warmer cache. 6178 */ 6179 latest_idle_timestamp = rq->idle_stamp; 6180 shallowest_idle_cpu = i; 6181 } 6182 } else if (shallowest_idle_cpu == -1) { 6183 load = weighted_cpuload(cpu_rq(i)); 6184 if (load < min_load) { 6185 min_load = load; 6186 least_loaded_cpu = i; 6187 } 6188 } 6189 } 6190 6191 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6192 } 6193 6194 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6195 int cpu, int prev_cpu, int sd_flag) 6196 { 6197 int new_cpu = cpu; 6198 6199 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed)) 6200 return prev_cpu; 6201 6202 while (sd) { 6203 struct sched_group *group; 6204 struct sched_domain *tmp; 6205 int weight; 6206 6207 if (!(sd->flags & sd_flag)) { 6208 sd = sd->child; 6209 continue; 6210 } 6211 6212 group = find_idlest_group(sd, p, cpu, sd_flag); 6213 if (!group) { 6214 sd = sd->child; 6215 continue; 6216 } 6217 6218 new_cpu = find_idlest_group_cpu(group, p, cpu); 6219 if (new_cpu == cpu) { 6220 /* Now try balancing at a lower domain level of 'cpu': */ 6221 sd = sd->child; 6222 continue; 6223 } 6224 6225 /* Now try balancing at a lower domain level of 'new_cpu': */ 6226 cpu = new_cpu; 6227 weight = sd->span_weight; 6228 sd = NULL; 6229 for_each_domain(cpu, tmp) { 6230 if (weight <= tmp->span_weight) 6231 break; 6232 if (tmp->flags & sd_flag) 6233 sd = tmp; 6234 } 6235 } 6236 6237 return new_cpu; 6238 } 6239 6240 #ifdef CONFIG_SCHED_SMT 6241 6242 static inline void set_idle_cores(int cpu, int val) 6243 { 6244 struct sched_domain_shared *sds; 6245 6246 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6247 if (sds) 6248 WRITE_ONCE(sds->has_idle_cores, val); 6249 } 6250 6251 static inline bool test_idle_cores(int cpu, bool def) 6252 { 6253 struct sched_domain_shared *sds; 6254 6255 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6256 if (sds) 6257 return READ_ONCE(sds->has_idle_cores); 6258 6259 return def; 6260 } 6261 6262 /* 6263 * Scans the local SMT mask to see if the entire core is idle, and records this 6264 * information in sd_llc_shared->has_idle_cores. 6265 * 6266 * Since SMT siblings share all cache levels, inspecting this limited remote 6267 * state should be fairly cheap. 6268 */ 6269 void __update_idle_core(struct rq *rq) 6270 { 6271 int core = cpu_of(rq); 6272 int cpu; 6273 6274 rcu_read_lock(); 6275 if (test_idle_cores(core, true)) 6276 goto unlock; 6277 6278 for_each_cpu(cpu, cpu_smt_mask(core)) { 6279 if (cpu == core) 6280 continue; 6281 6282 if (!idle_cpu(cpu)) 6283 goto unlock; 6284 } 6285 6286 set_idle_cores(core, 1); 6287 unlock: 6288 rcu_read_unlock(); 6289 } 6290 6291 /* 6292 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6293 * there are no idle cores left in the system; tracked through 6294 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6295 */ 6296 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6297 { 6298 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6299 int core, cpu; 6300 6301 if (!static_branch_likely(&sched_smt_present)) 6302 return -1; 6303 6304 if (!test_idle_cores(target, false)) 6305 return -1; 6306 6307 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 6308 6309 for_each_cpu_wrap(core, cpus, target) { 6310 bool idle = true; 6311 6312 for_each_cpu(cpu, cpu_smt_mask(core)) { 6313 cpumask_clear_cpu(cpu, cpus); 6314 if (!idle_cpu(cpu)) 6315 idle = false; 6316 } 6317 6318 if (idle) 6319 return core; 6320 } 6321 6322 /* 6323 * Failed to find an idle core; stop looking for one. 6324 */ 6325 set_idle_cores(target, 0); 6326 6327 return -1; 6328 } 6329 6330 /* 6331 * Scan the local SMT mask for idle CPUs. 6332 */ 6333 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6334 { 6335 int cpu; 6336 6337 if (!static_branch_likely(&sched_smt_present)) 6338 return -1; 6339 6340 for_each_cpu(cpu, cpu_smt_mask(target)) { 6341 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6342 continue; 6343 if (idle_cpu(cpu)) 6344 return cpu; 6345 } 6346 6347 return -1; 6348 } 6349 6350 #else /* CONFIG_SCHED_SMT */ 6351 6352 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6353 { 6354 return -1; 6355 } 6356 6357 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6358 { 6359 return -1; 6360 } 6361 6362 #endif /* CONFIG_SCHED_SMT */ 6363 6364 /* 6365 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6366 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6367 * average idle time for this rq (as found in rq->avg_idle). 6368 */ 6369 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6370 { 6371 struct sched_domain *this_sd; 6372 u64 avg_cost, avg_idle; 6373 u64 time, cost; 6374 s64 delta; 6375 int cpu, nr = INT_MAX; 6376 6377 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6378 if (!this_sd) 6379 return -1; 6380 6381 /* 6382 * Due to large variance we need a large fuzz factor; hackbench in 6383 * particularly is sensitive here. 6384 */ 6385 avg_idle = this_rq()->avg_idle / 512; 6386 avg_cost = this_sd->avg_scan_cost + 1; 6387 6388 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 6389 return -1; 6390 6391 if (sched_feat(SIS_PROP)) { 6392 u64 span_avg = sd->span_weight * avg_idle; 6393 if (span_avg > 4*avg_cost) 6394 nr = div_u64(span_avg, avg_cost); 6395 else 6396 nr = 4; 6397 } 6398 6399 time = local_clock(); 6400 6401 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 6402 if (!--nr) 6403 return -1; 6404 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6405 continue; 6406 if (idle_cpu(cpu)) 6407 break; 6408 } 6409 6410 time = local_clock() - time; 6411 cost = this_sd->avg_scan_cost; 6412 delta = (s64)(time - cost) / 8; 6413 this_sd->avg_scan_cost += delta; 6414 6415 return cpu; 6416 } 6417 6418 /* 6419 * Try and locate an idle core/thread in the LLC cache domain. 6420 */ 6421 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6422 { 6423 struct sched_domain *sd; 6424 int i, recent_used_cpu; 6425 6426 if (idle_cpu(target)) 6427 return target; 6428 6429 /* 6430 * If the previous CPU is cache affine and idle, don't be stupid: 6431 */ 6432 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev)) 6433 return prev; 6434 6435 /* Check a recently used CPU as a potential idle candidate: */ 6436 recent_used_cpu = p->recent_used_cpu; 6437 if (recent_used_cpu != prev && 6438 recent_used_cpu != target && 6439 cpus_share_cache(recent_used_cpu, target) && 6440 idle_cpu(recent_used_cpu) && 6441 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) { 6442 /* 6443 * Replace recent_used_cpu with prev as it is a potential 6444 * candidate for the next wake: 6445 */ 6446 p->recent_used_cpu = prev; 6447 return recent_used_cpu; 6448 } 6449 6450 sd = rcu_dereference(per_cpu(sd_llc, target)); 6451 if (!sd) 6452 return target; 6453 6454 i = select_idle_core(p, sd, target); 6455 if ((unsigned)i < nr_cpumask_bits) 6456 return i; 6457 6458 i = select_idle_cpu(p, sd, target); 6459 if ((unsigned)i < nr_cpumask_bits) 6460 return i; 6461 6462 i = select_idle_smt(p, sd, target); 6463 if ((unsigned)i < nr_cpumask_bits) 6464 return i; 6465 6466 return target; 6467 } 6468 6469 /** 6470 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6471 * @cpu: the CPU to get the utilization of 6472 * 6473 * The unit of the return value must be the one of capacity so we can compare 6474 * the utilization with the capacity of the CPU that is available for CFS task 6475 * (ie cpu_capacity). 6476 * 6477 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6478 * recent utilization of currently non-runnable tasks on a CPU. It represents 6479 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6480 * capacity_orig is the cpu_capacity available at the highest frequency 6481 * (arch_scale_freq_capacity()). 6482 * The utilization of a CPU converges towards a sum equal to or less than the 6483 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6484 * the running time on this CPU scaled by capacity_curr. 6485 * 6486 * The estimated utilization of a CPU is defined to be the maximum between its 6487 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6488 * currently RUNNABLE on that CPU. 6489 * This allows to properly represent the expected utilization of a CPU which 6490 * has just got a big task running since a long sleep period. At the same time 6491 * however it preserves the benefits of the "blocked utilization" in 6492 * describing the potential for other tasks waking up on the same CPU. 6493 * 6494 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6495 * higher than capacity_orig because of unfortunate rounding in 6496 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6497 * the average stabilizes with the new running time. We need to check that the 6498 * utilization stays within the range of [0..capacity_orig] and cap it if 6499 * necessary. Without utilization capping, a group could be seen as overloaded 6500 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6501 * available capacity. We allow utilization to overshoot capacity_curr (but not 6502 * capacity_orig) as it useful for predicting the capacity required after task 6503 * migrations (scheduler-driven DVFS). 6504 * 6505 * Return: the (estimated) utilization for the specified CPU 6506 */ 6507 static inline unsigned long cpu_util(int cpu) 6508 { 6509 struct cfs_rq *cfs_rq; 6510 unsigned int util; 6511 6512 cfs_rq = &cpu_rq(cpu)->cfs; 6513 util = READ_ONCE(cfs_rq->avg.util_avg); 6514 6515 if (sched_feat(UTIL_EST)) 6516 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6517 6518 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6519 } 6520 6521 /* 6522 * cpu_util_wake: Compute CPU utilization with any contributions from 6523 * the waking task p removed. 6524 */ 6525 static unsigned long cpu_util_wake(int cpu, struct task_struct *p) 6526 { 6527 struct cfs_rq *cfs_rq; 6528 unsigned int util; 6529 6530 /* Task has no contribution or is new */ 6531 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6532 return cpu_util(cpu); 6533 6534 cfs_rq = &cpu_rq(cpu)->cfs; 6535 util = READ_ONCE(cfs_rq->avg.util_avg); 6536 6537 /* Discount task's blocked util from CPU's util */ 6538 util -= min_t(unsigned int, util, task_util(p)); 6539 6540 /* 6541 * Covered cases: 6542 * 6543 * a) if *p is the only task sleeping on this CPU, then: 6544 * cpu_util (== task_util) > util_est (== 0) 6545 * and thus we return: 6546 * cpu_util_wake = (cpu_util - task_util) = 0 6547 * 6548 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6549 * IDLE, then: 6550 * cpu_util >= task_util 6551 * cpu_util > util_est (== 0) 6552 * and thus we discount *p's blocked utilization to return: 6553 * cpu_util_wake = (cpu_util - task_util) >= 0 6554 * 6555 * c) if other tasks are RUNNABLE on that CPU and 6556 * util_est > cpu_util 6557 * then we use util_est since it returns a more restrictive 6558 * estimation of the spare capacity on that CPU, by just 6559 * considering the expected utilization of tasks already 6560 * runnable on that CPU. 6561 * 6562 * Cases a) and b) are covered by the above code, while case c) is 6563 * covered by the following code when estimated utilization is 6564 * enabled. 6565 */ 6566 if (sched_feat(UTIL_EST)) 6567 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6568 6569 /* 6570 * Utilization (estimated) can exceed the CPU capacity, thus let's 6571 * clamp to the maximum CPU capacity to ensure consistency with 6572 * the cpu_util call. 6573 */ 6574 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6575 } 6576 6577 /* 6578 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6579 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6580 * 6581 * In that case WAKE_AFFINE doesn't make sense and we'll let 6582 * BALANCE_WAKE sort things out. 6583 */ 6584 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6585 { 6586 long min_cap, max_cap; 6587 6588 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6589 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6590 6591 /* Minimum capacity is close to max, no need to abort wake_affine */ 6592 if (max_cap - min_cap < max_cap >> 3) 6593 return 0; 6594 6595 /* Bring task utilization in sync with prev_cpu */ 6596 sync_entity_load_avg(&p->se); 6597 6598 return min_cap * 1024 < task_util(p) * capacity_margin; 6599 } 6600 6601 /* 6602 * select_task_rq_fair: Select target runqueue for the waking task in domains 6603 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6604 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6605 * 6606 * Balances load by selecting the idlest CPU in the idlest group, or under 6607 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6608 * 6609 * Returns the target CPU number. 6610 * 6611 * preempt must be disabled. 6612 */ 6613 static int 6614 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6615 { 6616 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 6617 int cpu = smp_processor_id(); 6618 int new_cpu = prev_cpu; 6619 int want_affine = 0; 6620 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6621 6622 if (sd_flag & SD_BALANCE_WAKE) { 6623 record_wakee(p); 6624 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) 6625 && cpumask_test_cpu(cpu, &p->cpus_allowed); 6626 } 6627 6628 rcu_read_lock(); 6629 for_each_domain(cpu, tmp) { 6630 if (!(tmp->flags & SD_LOAD_BALANCE)) 6631 break; 6632 6633 /* 6634 * If both 'cpu' and 'prev_cpu' are part of this domain, 6635 * cpu is a valid SD_WAKE_AFFINE target. 6636 */ 6637 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6638 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6639 affine_sd = tmp; 6640 break; 6641 } 6642 6643 if (tmp->flags & sd_flag) 6644 sd = tmp; 6645 else if (!want_affine) 6646 break; 6647 } 6648 6649 if (affine_sd) { 6650 sd = NULL; /* Prefer wake_affine over balance flags */ 6651 if (cpu == prev_cpu) 6652 goto pick_cpu; 6653 6654 new_cpu = wake_affine(affine_sd, p, cpu, prev_cpu, sync); 6655 } 6656 6657 if (sd && !(sd_flag & SD_BALANCE_FORK)) { 6658 /* 6659 * We're going to need the task's util for capacity_spare_wake 6660 * in find_idlest_group. Sync it up to prev_cpu's 6661 * last_update_time. 6662 */ 6663 sync_entity_load_avg(&p->se); 6664 } 6665 6666 if (!sd) { 6667 pick_cpu: 6668 if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6669 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6670 6671 if (want_affine) 6672 current->recent_used_cpu = cpu; 6673 } 6674 } else { 6675 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6676 } 6677 rcu_read_unlock(); 6678 6679 return new_cpu; 6680 } 6681 6682 static void detach_entity_cfs_rq(struct sched_entity *se); 6683 6684 /* 6685 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6686 * cfs_rq_of(p) references at time of call are still valid and identify the 6687 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6688 */ 6689 static void migrate_task_rq_fair(struct task_struct *p) 6690 { 6691 /* 6692 * As blocked tasks retain absolute vruntime the migration needs to 6693 * deal with this by subtracting the old and adding the new 6694 * min_vruntime -- the latter is done by enqueue_entity() when placing 6695 * the task on the new runqueue. 6696 */ 6697 if (p->state == TASK_WAKING) { 6698 struct sched_entity *se = &p->se; 6699 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6700 u64 min_vruntime; 6701 6702 #ifndef CONFIG_64BIT 6703 u64 min_vruntime_copy; 6704 6705 do { 6706 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6707 smp_rmb(); 6708 min_vruntime = cfs_rq->min_vruntime; 6709 } while (min_vruntime != min_vruntime_copy); 6710 #else 6711 min_vruntime = cfs_rq->min_vruntime; 6712 #endif 6713 6714 se->vruntime -= min_vruntime; 6715 } 6716 6717 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6718 /* 6719 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6720 * rq->lock and can modify state directly. 6721 */ 6722 lockdep_assert_held(&task_rq(p)->lock); 6723 detach_entity_cfs_rq(&p->se); 6724 6725 } else { 6726 /* 6727 * We are supposed to update the task to "current" time, then 6728 * its up to date and ready to go to new CPU/cfs_rq. But we 6729 * have difficulty in getting what current time is, so simply 6730 * throw away the out-of-date time. This will result in the 6731 * wakee task is less decayed, but giving the wakee more load 6732 * sounds not bad. 6733 */ 6734 remove_entity_load_avg(&p->se); 6735 } 6736 6737 /* Tell new CPU we are migrated */ 6738 p->se.avg.last_update_time = 0; 6739 6740 /* We have migrated, no longer consider this task hot */ 6741 p->se.exec_start = 0; 6742 } 6743 6744 static void task_dead_fair(struct task_struct *p) 6745 { 6746 remove_entity_load_avg(&p->se); 6747 } 6748 #endif /* CONFIG_SMP */ 6749 6750 static unsigned long wakeup_gran(struct sched_entity *se) 6751 { 6752 unsigned long gran = sysctl_sched_wakeup_granularity; 6753 6754 /* 6755 * Since its curr running now, convert the gran from real-time 6756 * to virtual-time in his units. 6757 * 6758 * By using 'se' instead of 'curr' we penalize light tasks, so 6759 * they get preempted easier. That is, if 'se' < 'curr' then 6760 * the resulting gran will be larger, therefore penalizing the 6761 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6762 * be smaller, again penalizing the lighter task. 6763 * 6764 * This is especially important for buddies when the leftmost 6765 * task is higher priority than the buddy. 6766 */ 6767 return calc_delta_fair(gran, se); 6768 } 6769 6770 /* 6771 * Should 'se' preempt 'curr'. 6772 * 6773 * |s1 6774 * |s2 6775 * |s3 6776 * g 6777 * |<--->|c 6778 * 6779 * w(c, s1) = -1 6780 * w(c, s2) = 0 6781 * w(c, s3) = 1 6782 * 6783 */ 6784 static int 6785 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6786 { 6787 s64 gran, vdiff = curr->vruntime - se->vruntime; 6788 6789 if (vdiff <= 0) 6790 return -1; 6791 6792 gran = wakeup_gran(se); 6793 if (vdiff > gran) 6794 return 1; 6795 6796 return 0; 6797 } 6798 6799 static void set_last_buddy(struct sched_entity *se) 6800 { 6801 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6802 return; 6803 6804 for_each_sched_entity(se) { 6805 if (SCHED_WARN_ON(!se->on_rq)) 6806 return; 6807 cfs_rq_of(se)->last = se; 6808 } 6809 } 6810 6811 static void set_next_buddy(struct sched_entity *se) 6812 { 6813 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6814 return; 6815 6816 for_each_sched_entity(se) { 6817 if (SCHED_WARN_ON(!se->on_rq)) 6818 return; 6819 cfs_rq_of(se)->next = se; 6820 } 6821 } 6822 6823 static void set_skip_buddy(struct sched_entity *se) 6824 { 6825 for_each_sched_entity(se) 6826 cfs_rq_of(se)->skip = se; 6827 } 6828 6829 /* 6830 * Preempt the current task with a newly woken task if needed: 6831 */ 6832 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6833 { 6834 struct task_struct *curr = rq->curr; 6835 struct sched_entity *se = &curr->se, *pse = &p->se; 6836 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6837 int scale = cfs_rq->nr_running >= sched_nr_latency; 6838 int next_buddy_marked = 0; 6839 6840 if (unlikely(se == pse)) 6841 return; 6842 6843 /* 6844 * This is possible from callers such as attach_tasks(), in which we 6845 * unconditionally check_prempt_curr() after an enqueue (which may have 6846 * lead to a throttle). This both saves work and prevents false 6847 * next-buddy nomination below. 6848 */ 6849 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6850 return; 6851 6852 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6853 set_next_buddy(pse); 6854 next_buddy_marked = 1; 6855 } 6856 6857 /* 6858 * We can come here with TIF_NEED_RESCHED already set from new task 6859 * wake up path. 6860 * 6861 * Note: this also catches the edge-case of curr being in a throttled 6862 * group (e.g. via set_curr_task), since update_curr() (in the 6863 * enqueue of curr) will have resulted in resched being set. This 6864 * prevents us from potentially nominating it as a false LAST_BUDDY 6865 * below. 6866 */ 6867 if (test_tsk_need_resched(curr)) 6868 return; 6869 6870 /* Idle tasks are by definition preempted by non-idle tasks. */ 6871 if (unlikely(curr->policy == SCHED_IDLE) && 6872 likely(p->policy != SCHED_IDLE)) 6873 goto preempt; 6874 6875 /* 6876 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6877 * is driven by the tick): 6878 */ 6879 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6880 return; 6881 6882 find_matching_se(&se, &pse); 6883 update_curr(cfs_rq_of(se)); 6884 BUG_ON(!pse); 6885 if (wakeup_preempt_entity(se, pse) == 1) { 6886 /* 6887 * Bias pick_next to pick the sched entity that is 6888 * triggering this preemption. 6889 */ 6890 if (!next_buddy_marked) 6891 set_next_buddy(pse); 6892 goto preempt; 6893 } 6894 6895 return; 6896 6897 preempt: 6898 resched_curr(rq); 6899 /* 6900 * Only set the backward buddy when the current task is still 6901 * on the rq. This can happen when a wakeup gets interleaved 6902 * with schedule on the ->pre_schedule() or idle_balance() 6903 * point, either of which can * drop the rq lock. 6904 * 6905 * Also, during early boot the idle thread is in the fair class, 6906 * for obvious reasons its a bad idea to schedule back to it. 6907 */ 6908 if (unlikely(!se->on_rq || curr == rq->idle)) 6909 return; 6910 6911 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6912 set_last_buddy(se); 6913 } 6914 6915 static struct task_struct * 6916 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6917 { 6918 struct cfs_rq *cfs_rq = &rq->cfs; 6919 struct sched_entity *se; 6920 struct task_struct *p; 6921 int new_tasks; 6922 6923 again: 6924 if (!cfs_rq->nr_running) 6925 goto idle; 6926 6927 #ifdef CONFIG_FAIR_GROUP_SCHED 6928 if (prev->sched_class != &fair_sched_class) 6929 goto simple; 6930 6931 /* 6932 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6933 * likely that a next task is from the same cgroup as the current. 6934 * 6935 * Therefore attempt to avoid putting and setting the entire cgroup 6936 * hierarchy, only change the part that actually changes. 6937 */ 6938 6939 do { 6940 struct sched_entity *curr = cfs_rq->curr; 6941 6942 /* 6943 * Since we got here without doing put_prev_entity() we also 6944 * have to consider cfs_rq->curr. If it is still a runnable 6945 * entity, update_curr() will update its vruntime, otherwise 6946 * forget we've ever seen it. 6947 */ 6948 if (curr) { 6949 if (curr->on_rq) 6950 update_curr(cfs_rq); 6951 else 6952 curr = NULL; 6953 6954 /* 6955 * This call to check_cfs_rq_runtime() will do the 6956 * throttle and dequeue its entity in the parent(s). 6957 * Therefore the nr_running test will indeed 6958 * be correct. 6959 */ 6960 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6961 cfs_rq = &rq->cfs; 6962 6963 if (!cfs_rq->nr_running) 6964 goto idle; 6965 6966 goto simple; 6967 } 6968 } 6969 6970 se = pick_next_entity(cfs_rq, curr); 6971 cfs_rq = group_cfs_rq(se); 6972 } while (cfs_rq); 6973 6974 p = task_of(se); 6975 6976 /* 6977 * Since we haven't yet done put_prev_entity and if the selected task 6978 * is a different task than we started out with, try and touch the 6979 * least amount of cfs_rqs. 6980 */ 6981 if (prev != p) { 6982 struct sched_entity *pse = &prev->se; 6983 6984 while (!(cfs_rq = is_same_group(se, pse))) { 6985 int se_depth = se->depth; 6986 int pse_depth = pse->depth; 6987 6988 if (se_depth <= pse_depth) { 6989 put_prev_entity(cfs_rq_of(pse), pse); 6990 pse = parent_entity(pse); 6991 } 6992 if (se_depth >= pse_depth) { 6993 set_next_entity(cfs_rq_of(se), se); 6994 se = parent_entity(se); 6995 } 6996 } 6997 6998 put_prev_entity(cfs_rq, pse); 6999 set_next_entity(cfs_rq, se); 7000 } 7001 7002 goto done; 7003 simple: 7004 #endif 7005 7006 put_prev_task(rq, prev); 7007 7008 do { 7009 se = pick_next_entity(cfs_rq, NULL); 7010 set_next_entity(cfs_rq, se); 7011 cfs_rq = group_cfs_rq(se); 7012 } while (cfs_rq); 7013 7014 p = task_of(se); 7015 7016 done: __maybe_unused; 7017 #ifdef CONFIG_SMP 7018 /* 7019 * Move the next running task to the front of 7020 * the list, so our cfs_tasks list becomes MRU 7021 * one. 7022 */ 7023 list_move(&p->se.group_node, &rq->cfs_tasks); 7024 #endif 7025 7026 if (hrtick_enabled(rq)) 7027 hrtick_start_fair(rq, p); 7028 7029 return p; 7030 7031 idle: 7032 new_tasks = idle_balance(rq, rf); 7033 7034 /* 7035 * Because idle_balance() releases (and re-acquires) rq->lock, it is 7036 * possible for any higher priority task to appear. In that case we 7037 * must re-start the pick_next_entity() loop. 7038 */ 7039 if (new_tasks < 0) 7040 return RETRY_TASK; 7041 7042 if (new_tasks > 0) 7043 goto again; 7044 7045 return NULL; 7046 } 7047 7048 /* 7049 * Account for a descheduled task: 7050 */ 7051 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7052 { 7053 struct sched_entity *se = &prev->se; 7054 struct cfs_rq *cfs_rq; 7055 7056 for_each_sched_entity(se) { 7057 cfs_rq = cfs_rq_of(se); 7058 put_prev_entity(cfs_rq, se); 7059 } 7060 } 7061 7062 /* 7063 * sched_yield() is very simple 7064 * 7065 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7066 */ 7067 static void yield_task_fair(struct rq *rq) 7068 { 7069 struct task_struct *curr = rq->curr; 7070 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7071 struct sched_entity *se = &curr->se; 7072 7073 /* 7074 * Are we the only task in the tree? 7075 */ 7076 if (unlikely(rq->nr_running == 1)) 7077 return; 7078 7079 clear_buddies(cfs_rq, se); 7080 7081 if (curr->policy != SCHED_BATCH) { 7082 update_rq_clock(rq); 7083 /* 7084 * Update run-time statistics of the 'current'. 7085 */ 7086 update_curr(cfs_rq); 7087 /* 7088 * Tell update_rq_clock() that we've just updated, 7089 * so we don't do microscopic update in schedule() 7090 * and double the fastpath cost. 7091 */ 7092 rq_clock_skip_update(rq); 7093 } 7094 7095 set_skip_buddy(se); 7096 } 7097 7098 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 7099 { 7100 struct sched_entity *se = &p->se; 7101 7102 /* throttled hierarchies are not runnable */ 7103 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7104 return false; 7105 7106 /* Tell the scheduler that we'd really like pse to run next. */ 7107 set_next_buddy(se); 7108 7109 yield_task_fair(rq); 7110 7111 return true; 7112 } 7113 7114 #ifdef CONFIG_SMP 7115 /************************************************** 7116 * Fair scheduling class load-balancing methods. 7117 * 7118 * BASICS 7119 * 7120 * The purpose of load-balancing is to achieve the same basic fairness the 7121 * per-CPU scheduler provides, namely provide a proportional amount of compute 7122 * time to each task. This is expressed in the following equation: 7123 * 7124 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7125 * 7126 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7127 * W_i,0 is defined as: 7128 * 7129 * W_i,0 = \Sum_j w_i,j (2) 7130 * 7131 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7132 * is derived from the nice value as per sched_prio_to_weight[]. 7133 * 7134 * The weight average is an exponential decay average of the instantaneous 7135 * weight: 7136 * 7137 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7138 * 7139 * C_i is the compute capacity of CPU i, typically it is the 7140 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7141 * can also include other factors [XXX]. 7142 * 7143 * To achieve this balance we define a measure of imbalance which follows 7144 * directly from (1): 7145 * 7146 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7147 * 7148 * We them move tasks around to minimize the imbalance. In the continuous 7149 * function space it is obvious this converges, in the discrete case we get 7150 * a few fun cases generally called infeasible weight scenarios. 7151 * 7152 * [XXX expand on: 7153 * - infeasible weights; 7154 * - local vs global optima in the discrete case. ] 7155 * 7156 * 7157 * SCHED DOMAINS 7158 * 7159 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7160 * for all i,j solution, we create a tree of CPUs that follows the hardware 7161 * topology where each level pairs two lower groups (or better). This results 7162 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7163 * tree to only the first of the previous level and we decrease the frequency 7164 * of load-balance at each level inv. proportional to the number of CPUs in 7165 * the groups. 7166 * 7167 * This yields: 7168 * 7169 * log_2 n 1 n 7170 * \Sum { --- * --- * 2^i } = O(n) (5) 7171 * i = 0 2^i 2^i 7172 * `- size of each group 7173 * | | `- number of CPUs doing load-balance 7174 * | `- freq 7175 * `- sum over all levels 7176 * 7177 * Coupled with a limit on how many tasks we can migrate every balance pass, 7178 * this makes (5) the runtime complexity of the balancer. 7179 * 7180 * An important property here is that each CPU is still (indirectly) connected 7181 * to every other CPU in at most O(log n) steps: 7182 * 7183 * The adjacency matrix of the resulting graph is given by: 7184 * 7185 * log_2 n 7186 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7187 * k = 0 7188 * 7189 * And you'll find that: 7190 * 7191 * A^(log_2 n)_i,j != 0 for all i,j (7) 7192 * 7193 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7194 * The task movement gives a factor of O(m), giving a convergence complexity 7195 * of: 7196 * 7197 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7198 * 7199 * 7200 * WORK CONSERVING 7201 * 7202 * In order to avoid CPUs going idle while there's still work to do, new idle 7203 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7204 * tree itself instead of relying on other CPUs to bring it work. 7205 * 7206 * This adds some complexity to both (5) and (8) but it reduces the total idle 7207 * time. 7208 * 7209 * [XXX more?] 7210 * 7211 * 7212 * CGROUPS 7213 * 7214 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7215 * 7216 * s_k,i 7217 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7218 * S_k 7219 * 7220 * Where 7221 * 7222 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7223 * 7224 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7225 * 7226 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7227 * property. 7228 * 7229 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7230 * rewrite all of this once again.] 7231 */ 7232 7233 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7234 7235 enum fbq_type { regular, remote, all }; 7236 7237 #define LBF_ALL_PINNED 0x01 7238 #define LBF_NEED_BREAK 0x02 7239 #define LBF_DST_PINNED 0x04 7240 #define LBF_SOME_PINNED 0x08 7241 #define LBF_NOHZ_STATS 0x10 7242 #define LBF_NOHZ_AGAIN 0x20 7243 7244 struct lb_env { 7245 struct sched_domain *sd; 7246 7247 struct rq *src_rq; 7248 int src_cpu; 7249 7250 int dst_cpu; 7251 struct rq *dst_rq; 7252 7253 struct cpumask *dst_grpmask; 7254 int new_dst_cpu; 7255 enum cpu_idle_type idle; 7256 long imbalance; 7257 /* The set of CPUs under consideration for load-balancing */ 7258 struct cpumask *cpus; 7259 7260 unsigned int flags; 7261 7262 unsigned int loop; 7263 unsigned int loop_break; 7264 unsigned int loop_max; 7265 7266 enum fbq_type fbq_type; 7267 struct list_head tasks; 7268 }; 7269 7270 /* 7271 * Is this task likely cache-hot: 7272 */ 7273 static int task_hot(struct task_struct *p, struct lb_env *env) 7274 { 7275 s64 delta; 7276 7277 lockdep_assert_held(&env->src_rq->lock); 7278 7279 if (p->sched_class != &fair_sched_class) 7280 return 0; 7281 7282 if (unlikely(p->policy == SCHED_IDLE)) 7283 return 0; 7284 7285 /* 7286 * Buddy candidates are cache hot: 7287 */ 7288 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7289 (&p->se == cfs_rq_of(&p->se)->next || 7290 &p->se == cfs_rq_of(&p->se)->last)) 7291 return 1; 7292 7293 if (sysctl_sched_migration_cost == -1) 7294 return 1; 7295 if (sysctl_sched_migration_cost == 0) 7296 return 0; 7297 7298 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7299 7300 return delta < (s64)sysctl_sched_migration_cost; 7301 } 7302 7303 #ifdef CONFIG_NUMA_BALANCING 7304 /* 7305 * Returns 1, if task migration degrades locality 7306 * Returns 0, if task migration improves locality i.e migration preferred. 7307 * Returns -1, if task migration is not affected by locality. 7308 */ 7309 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7310 { 7311 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7312 unsigned long src_faults, dst_faults; 7313 int src_nid, dst_nid; 7314 7315 if (!static_branch_likely(&sched_numa_balancing)) 7316 return -1; 7317 7318 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7319 return -1; 7320 7321 src_nid = cpu_to_node(env->src_cpu); 7322 dst_nid = cpu_to_node(env->dst_cpu); 7323 7324 if (src_nid == dst_nid) 7325 return -1; 7326 7327 /* Migrating away from the preferred node is always bad. */ 7328 if (src_nid == p->numa_preferred_nid) { 7329 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7330 return 1; 7331 else 7332 return -1; 7333 } 7334 7335 /* Encourage migration to the preferred node. */ 7336 if (dst_nid == p->numa_preferred_nid) 7337 return 0; 7338 7339 /* Leaving a core idle is often worse than degrading locality. */ 7340 if (env->idle != CPU_NOT_IDLE) 7341 return -1; 7342 7343 if (numa_group) { 7344 src_faults = group_faults(p, src_nid); 7345 dst_faults = group_faults(p, dst_nid); 7346 } else { 7347 src_faults = task_faults(p, src_nid); 7348 dst_faults = task_faults(p, dst_nid); 7349 } 7350 7351 return dst_faults < src_faults; 7352 } 7353 7354 #else 7355 static inline int migrate_degrades_locality(struct task_struct *p, 7356 struct lb_env *env) 7357 { 7358 return -1; 7359 } 7360 #endif 7361 7362 /* 7363 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7364 */ 7365 static 7366 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7367 { 7368 int tsk_cache_hot; 7369 7370 lockdep_assert_held(&env->src_rq->lock); 7371 7372 /* 7373 * We do not migrate tasks that are: 7374 * 1) throttled_lb_pair, or 7375 * 2) cannot be migrated to this CPU due to cpus_allowed, or 7376 * 3) running (obviously), or 7377 * 4) are cache-hot on their current CPU. 7378 */ 7379 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7380 return 0; 7381 7382 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 7383 int cpu; 7384 7385 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7386 7387 env->flags |= LBF_SOME_PINNED; 7388 7389 /* 7390 * Remember if this task can be migrated to any other CPU in 7391 * our sched_group. We may want to revisit it if we couldn't 7392 * meet load balance goals by pulling other tasks on src_cpu. 7393 * 7394 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7395 * already computed one in current iteration. 7396 */ 7397 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7398 return 0; 7399 7400 /* Prevent to re-select dst_cpu via env's CPUs: */ 7401 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7402 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 7403 env->flags |= LBF_DST_PINNED; 7404 env->new_dst_cpu = cpu; 7405 break; 7406 } 7407 } 7408 7409 return 0; 7410 } 7411 7412 /* Record that we found atleast one task that could run on dst_cpu */ 7413 env->flags &= ~LBF_ALL_PINNED; 7414 7415 if (task_running(env->src_rq, p)) { 7416 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7417 return 0; 7418 } 7419 7420 /* 7421 * Aggressive migration if: 7422 * 1) destination numa is preferred 7423 * 2) task is cache cold, or 7424 * 3) too many balance attempts have failed. 7425 */ 7426 tsk_cache_hot = migrate_degrades_locality(p, env); 7427 if (tsk_cache_hot == -1) 7428 tsk_cache_hot = task_hot(p, env); 7429 7430 if (tsk_cache_hot <= 0 || 7431 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7432 if (tsk_cache_hot == 1) { 7433 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7434 schedstat_inc(p->se.statistics.nr_forced_migrations); 7435 } 7436 return 1; 7437 } 7438 7439 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7440 return 0; 7441 } 7442 7443 /* 7444 * detach_task() -- detach the task for the migration specified in env 7445 */ 7446 static void detach_task(struct task_struct *p, struct lb_env *env) 7447 { 7448 lockdep_assert_held(&env->src_rq->lock); 7449 7450 p->on_rq = TASK_ON_RQ_MIGRATING; 7451 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7452 set_task_cpu(p, env->dst_cpu); 7453 } 7454 7455 /* 7456 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7457 * part of active balancing operations within "domain". 7458 * 7459 * Returns a task if successful and NULL otherwise. 7460 */ 7461 static struct task_struct *detach_one_task(struct lb_env *env) 7462 { 7463 struct task_struct *p; 7464 7465 lockdep_assert_held(&env->src_rq->lock); 7466 7467 list_for_each_entry_reverse(p, 7468 &env->src_rq->cfs_tasks, se.group_node) { 7469 if (!can_migrate_task(p, env)) 7470 continue; 7471 7472 detach_task(p, env); 7473 7474 /* 7475 * Right now, this is only the second place where 7476 * lb_gained[env->idle] is updated (other is detach_tasks) 7477 * so we can safely collect stats here rather than 7478 * inside detach_tasks(). 7479 */ 7480 schedstat_inc(env->sd->lb_gained[env->idle]); 7481 return p; 7482 } 7483 return NULL; 7484 } 7485 7486 static const unsigned int sched_nr_migrate_break = 32; 7487 7488 /* 7489 * detach_tasks() -- tries to detach up to imbalance weighted load from 7490 * busiest_rq, as part of a balancing operation within domain "sd". 7491 * 7492 * Returns number of detached tasks if successful and 0 otherwise. 7493 */ 7494 static int detach_tasks(struct lb_env *env) 7495 { 7496 struct list_head *tasks = &env->src_rq->cfs_tasks; 7497 struct task_struct *p; 7498 unsigned long load; 7499 int detached = 0; 7500 7501 lockdep_assert_held(&env->src_rq->lock); 7502 7503 if (env->imbalance <= 0) 7504 return 0; 7505 7506 while (!list_empty(tasks)) { 7507 /* 7508 * We don't want to steal all, otherwise we may be treated likewise, 7509 * which could at worst lead to a livelock crash. 7510 */ 7511 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7512 break; 7513 7514 p = list_last_entry(tasks, struct task_struct, se.group_node); 7515 7516 env->loop++; 7517 /* We've more or less seen every task there is, call it quits */ 7518 if (env->loop > env->loop_max) 7519 break; 7520 7521 /* take a breather every nr_migrate tasks */ 7522 if (env->loop > env->loop_break) { 7523 env->loop_break += sched_nr_migrate_break; 7524 env->flags |= LBF_NEED_BREAK; 7525 break; 7526 } 7527 7528 if (!can_migrate_task(p, env)) 7529 goto next; 7530 7531 load = task_h_load(p); 7532 7533 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7534 goto next; 7535 7536 if ((load / 2) > env->imbalance) 7537 goto next; 7538 7539 detach_task(p, env); 7540 list_add(&p->se.group_node, &env->tasks); 7541 7542 detached++; 7543 env->imbalance -= load; 7544 7545 #ifdef CONFIG_PREEMPT 7546 /* 7547 * NEWIDLE balancing is a source of latency, so preemptible 7548 * kernels will stop after the first task is detached to minimize 7549 * the critical section. 7550 */ 7551 if (env->idle == CPU_NEWLY_IDLE) 7552 break; 7553 #endif 7554 7555 /* 7556 * We only want to steal up to the prescribed amount of 7557 * weighted load. 7558 */ 7559 if (env->imbalance <= 0) 7560 break; 7561 7562 continue; 7563 next: 7564 list_move(&p->se.group_node, tasks); 7565 } 7566 7567 /* 7568 * Right now, this is one of only two places we collect this stat 7569 * so we can safely collect detach_one_task() stats here rather 7570 * than inside detach_one_task(). 7571 */ 7572 schedstat_add(env->sd->lb_gained[env->idle], detached); 7573 7574 return detached; 7575 } 7576 7577 /* 7578 * attach_task() -- attach the task detached by detach_task() to its new rq. 7579 */ 7580 static void attach_task(struct rq *rq, struct task_struct *p) 7581 { 7582 lockdep_assert_held(&rq->lock); 7583 7584 BUG_ON(task_rq(p) != rq); 7585 activate_task(rq, p, ENQUEUE_NOCLOCK); 7586 p->on_rq = TASK_ON_RQ_QUEUED; 7587 check_preempt_curr(rq, p, 0); 7588 } 7589 7590 /* 7591 * attach_one_task() -- attaches the task returned from detach_one_task() to 7592 * its new rq. 7593 */ 7594 static void attach_one_task(struct rq *rq, struct task_struct *p) 7595 { 7596 struct rq_flags rf; 7597 7598 rq_lock(rq, &rf); 7599 update_rq_clock(rq); 7600 attach_task(rq, p); 7601 rq_unlock(rq, &rf); 7602 } 7603 7604 /* 7605 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7606 * new rq. 7607 */ 7608 static void attach_tasks(struct lb_env *env) 7609 { 7610 struct list_head *tasks = &env->tasks; 7611 struct task_struct *p; 7612 struct rq_flags rf; 7613 7614 rq_lock(env->dst_rq, &rf); 7615 update_rq_clock(env->dst_rq); 7616 7617 while (!list_empty(tasks)) { 7618 p = list_first_entry(tasks, struct task_struct, se.group_node); 7619 list_del_init(&p->se.group_node); 7620 7621 attach_task(env->dst_rq, p); 7622 } 7623 7624 rq_unlock(env->dst_rq, &rf); 7625 } 7626 7627 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7628 { 7629 if (cfs_rq->avg.load_avg) 7630 return true; 7631 7632 if (cfs_rq->avg.util_avg) 7633 return true; 7634 7635 return false; 7636 } 7637 7638 #ifdef CONFIG_FAIR_GROUP_SCHED 7639 7640 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7641 { 7642 if (cfs_rq->load.weight) 7643 return false; 7644 7645 if (cfs_rq->avg.load_sum) 7646 return false; 7647 7648 if (cfs_rq->avg.util_sum) 7649 return false; 7650 7651 if (cfs_rq->avg.runnable_load_sum) 7652 return false; 7653 7654 return true; 7655 } 7656 7657 static void update_blocked_averages(int cpu) 7658 { 7659 struct rq *rq = cpu_rq(cpu); 7660 struct cfs_rq *cfs_rq, *pos; 7661 struct rq_flags rf; 7662 bool done = true; 7663 7664 rq_lock_irqsave(rq, &rf); 7665 update_rq_clock(rq); 7666 7667 /* 7668 * Iterates the task_group tree in a bottom up fashion, see 7669 * list_add_leaf_cfs_rq() for details. 7670 */ 7671 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7672 struct sched_entity *se; 7673 7674 /* throttled entities do not contribute to load */ 7675 if (throttled_hierarchy(cfs_rq)) 7676 continue; 7677 7678 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) 7679 update_tg_load_avg(cfs_rq, 0); 7680 7681 /* Propagate pending load changes to the parent, if any: */ 7682 se = cfs_rq->tg->se[cpu]; 7683 if (se && !skip_blocked_update(se)) 7684 update_load_avg(cfs_rq_of(se), se, 0); 7685 7686 /* 7687 * There can be a lot of idle CPU cgroups. Don't let fully 7688 * decayed cfs_rqs linger on the list. 7689 */ 7690 if (cfs_rq_is_decayed(cfs_rq)) 7691 list_del_leaf_cfs_rq(cfs_rq); 7692 7693 /* Don't need periodic decay once load/util_avg are null */ 7694 if (cfs_rq_has_blocked(cfs_rq)) 7695 done = false; 7696 } 7697 7698 #ifdef CONFIG_NO_HZ_COMMON 7699 rq->last_blocked_load_update_tick = jiffies; 7700 if (done) 7701 rq->has_blocked_load = 0; 7702 #endif 7703 rq_unlock_irqrestore(rq, &rf); 7704 } 7705 7706 /* 7707 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7708 * This needs to be done in a top-down fashion because the load of a child 7709 * group is a fraction of its parents load. 7710 */ 7711 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7712 { 7713 struct rq *rq = rq_of(cfs_rq); 7714 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7715 unsigned long now = jiffies; 7716 unsigned long load; 7717 7718 if (cfs_rq->last_h_load_update == now) 7719 return; 7720 7721 cfs_rq->h_load_next = NULL; 7722 for_each_sched_entity(se) { 7723 cfs_rq = cfs_rq_of(se); 7724 cfs_rq->h_load_next = se; 7725 if (cfs_rq->last_h_load_update == now) 7726 break; 7727 } 7728 7729 if (!se) { 7730 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7731 cfs_rq->last_h_load_update = now; 7732 } 7733 7734 while ((se = cfs_rq->h_load_next) != NULL) { 7735 load = cfs_rq->h_load; 7736 load = div64_ul(load * se->avg.load_avg, 7737 cfs_rq_load_avg(cfs_rq) + 1); 7738 cfs_rq = group_cfs_rq(se); 7739 cfs_rq->h_load = load; 7740 cfs_rq->last_h_load_update = now; 7741 } 7742 } 7743 7744 static unsigned long task_h_load(struct task_struct *p) 7745 { 7746 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7747 7748 update_cfs_rq_h_load(cfs_rq); 7749 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7750 cfs_rq_load_avg(cfs_rq) + 1); 7751 } 7752 #else 7753 static inline void update_blocked_averages(int cpu) 7754 { 7755 struct rq *rq = cpu_rq(cpu); 7756 struct cfs_rq *cfs_rq = &rq->cfs; 7757 struct rq_flags rf; 7758 7759 rq_lock_irqsave(rq, &rf); 7760 update_rq_clock(rq); 7761 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); 7762 #ifdef CONFIG_NO_HZ_COMMON 7763 rq->last_blocked_load_update_tick = jiffies; 7764 if (!cfs_rq_has_blocked(cfs_rq)) 7765 rq->has_blocked_load = 0; 7766 #endif 7767 rq_unlock_irqrestore(rq, &rf); 7768 } 7769 7770 static unsigned long task_h_load(struct task_struct *p) 7771 { 7772 return p->se.avg.load_avg; 7773 } 7774 #endif 7775 7776 /********** Helpers for find_busiest_group ************************/ 7777 7778 enum group_type { 7779 group_other = 0, 7780 group_imbalanced, 7781 group_overloaded, 7782 }; 7783 7784 /* 7785 * sg_lb_stats - stats of a sched_group required for load_balancing 7786 */ 7787 struct sg_lb_stats { 7788 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7789 unsigned long group_load; /* Total load over the CPUs of the group */ 7790 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7791 unsigned long load_per_task; 7792 unsigned long group_capacity; 7793 unsigned long group_util; /* Total utilization of the group */ 7794 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7795 unsigned int idle_cpus; 7796 unsigned int group_weight; 7797 enum group_type group_type; 7798 int group_no_capacity; 7799 #ifdef CONFIG_NUMA_BALANCING 7800 unsigned int nr_numa_running; 7801 unsigned int nr_preferred_running; 7802 #endif 7803 }; 7804 7805 /* 7806 * sd_lb_stats - Structure to store the statistics of a sched_domain 7807 * during load balancing. 7808 */ 7809 struct sd_lb_stats { 7810 struct sched_group *busiest; /* Busiest group in this sd */ 7811 struct sched_group *local; /* Local group in this sd */ 7812 unsigned long total_running; 7813 unsigned long total_load; /* Total load of all groups in sd */ 7814 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7815 unsigned long avg_load; /* Average load across all groups in sd */ 7816 7817 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7818 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7819 }; 7820 7821 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7822 { 7823 /* 7824 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7825 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7826 * We must however clear busiest_stat::avg_load because 7827 * update_sd_pick_busiest() reads this before assignment. 7828 */ 7829 *sds = (struct sd_lb_stats){ 7830 .busiest = NULL, 7831 .local = NULL, 7832 .total_running = 0UL, 7833 .total_load = 0UL, 7834 .total_capacity = 0UL, 7835 .busiest_stat = { 7836 .avg_load = 0UL, 7837 .sum_nr_running = 0, 7838 .group_type = group_other, 7839 }, 7840 }; 7841 } 7842 7843 /** 7844 * get_sd_load_idx - Obtain the load index for a given sched domain. 7845 * @sd: The sched_domain whose load_idx is to be obtained. 7846 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7847 * 7848 * Return: The load index. 7849 */ 7850 static inline int get_sd_load_idx(struct sched_domain *sd, 7851 enum cpu_idle_type idle) 7852 { 7853 int load_idx; 7854 7855 switch (idle) { 7856 case CPU_NOT_IDLE: 7857 load_idx = sd->busy_idx; 7858 break; 7859 7860 case CPU_NEWLY_IDLE: 7861 load_idx = sd->newidle_idx; 7862 break; 7863 default: 7864 load_idx = sd->idle_idx; 7865 break; 7866 } 7867 7868 return load_idx; 7869 } 7870 7871 static unsigned long scale_rt_capacity(int cpu) 7872 { 7873 struct rq *rq = cpu_rq(cpu); 7874 u64 total, used, age_stamp, avg; 7875 s64 delta; 7876 7877 /* 7878 * Since we're reading these variables without serialization make sure 7879 * we read them once before doing sanity checks on them. 7880 */ 7881 age_stamp = READ_ONCE(rq->age_stamp); 7882 avg = READ_ONCE(rq->rt_avg); 7883 delta = __rq_clock_broken(rq) - age_stamp; 7884 7885 if (unlikely(delta < 0)) 7886 delta = 0; 7887 7888 total = sched_avg_period() + delta; 7889 7890 used = div_u64(avg, total); 7891 7892 if (likely(used < SCHED_CAPACITY_SCALE)) 7893 return SCHED_CAPACITY_SCALE - used; 7894 7895 return 1; 7896 } 7897 7898 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7899 { 7900 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); 7901 struct sched_group *sdg = sd->groups; 7902 7903 cpu_rq(cpu)->cpu_capacity_orig = capacity; 7904 7905 capacity *= scale_rt_capacity(cpu); 7906 capacity >>= SCHED_CAPACITY_SHIFT; 7907 7908 if (!capacity) 7909 capacity = 1; 7910 7911 cpu_rq(cpu)->cpu_capacity = capacity; 7912 sdg->sgc->capacity = capacity; 7913 sdg->sgc->min_capacity = capacity; 7914 } 7915 7916 void update_group_capacity(struct sched_domain *sd, int cpu) 7917 { 7918 struct sched_domain *child = sd->child; 7919 struct sched_group *group, *sdg = sd->groups; 7920 unsigned long capacity, min_capacity; 7921 unsigned long interval; 7922 7923 interval = msecs_to_jiffies(sd->balance_interval); 7924 interval = clamp(interval, 1UL, max_load_balance_interval); 7925 sdg->sgc->next_update = jiffies + interval; 7926 7927 if (!child) { 7928 update_cpu_capacity(sd, cpu); 7929 return; 7930 } 7931 7932 capacity = 0; 7933 min_capacity = ULONG_MAX; 7934 7935 if (child->flags & SD_OVERLAP) { 7936 /* 7937 * SD_OVERLAP domains cannot assume that child groups 7938 * span the current group. 7939 */ 7940 7941 for_each_cpu(cpu, sched_group_span(sdg)) { 7942 struct sched_group_capacity *sgc; 7943 struct rq *rq = cpu_rq(cpu); 7944 7945 /* 7946 * build_sched_domains() -> init_sched_groups_capacity() 7947 * gets here before we've attached the domains to the 7948 * runqueues. 7949 * 7950 * Use capacity_of(), which is set irrespective of domains 7951 * in update_cpu_capacity(). 7952 * 7953 * This avoids capacity from being 0 and 7954 * causing divide-by-zero issues on boot. 7955 */ 7956 if (unlikely(!rq->sd)) { 7957 capacity += capacity_of(cpu); 7958 } else { 7959 sgc = rq->sd->groups->sgc; 7960 capacity += sgc->capacity; 7961 } 7962 7963 min_capacity = min(capacity, min_capacity); 7964 } 7965 } else { 7966 /* 7967 * !SD_OVERLAP domains can assume that child groups 7968 * span the current group. 7969 */ 7970 7971 group = child->groups; 7972 do { 7973 struct sched_group_capacity *sgc = group->sgc; 7974 7975 capacity += sgc->capacity; 7976 min_capacity = min(sgc->min_capacity, min_capacity); 7977 group = group->next; 7978 } while (group != child->groups); 7979 } 7980 7981 sdg->sgc->capacity = capacity; 7982 sdg->sgc->min_capacity = min_capacity; 7983 } 7984 7985 /* 7986 * Check whether the capacity of the rq has been noticeably reduced by side 7987 * activity. The imbalance_pct is used for the threshold. 7988 * Return true is the capacity is reduced 7989 */ 7990 static inline int 7991 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7992 { 7993 return ((rq->cpu_capacity * sd->imbalance_pct) < 7994 (rq->cpu_capacity_orig * 100)); 7995 } 7996 7997 /* 7998 * Group imbalance indicates (and tries to solve) the problem where balancing 7999 * groups is inadequate due to ->cpus_allowed constraints. 8000 * 8001 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8002 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8003 * Something like: 8004 * 8005 * { 0 1 2 3 } { 4 5 6 7 } 8006 * * * * * 8007 * 8008 * If we were to balance group-wise we'd place two tasks in the first group and 8009 * two tasks in the second group. Clearly this is undesired as it will overload 8010 * cpu 3 and leave one of the CPUs in the second group unused. 8011 * 8012 * The current solution to this issue is detecting the skew in the first group 8013 * by noticing the lower domain failed to reach balance and had difficulty 8014 * moving tasks due to affinity constraints. 8015 * 8016 * When this is so detected; this group becomes a candidate for busiest; see 8017 * update_sd_pick_busiest(). And calculate_imbalance() and 8018 * find_busiest_group() avoid some of the usual balance conditions to allow it 8019 * to create an effective group imbalance. 8020 * 8021 * This is a somewhat tricky proposition since the next run might not find the 8022 * group imbalance and decide the groups need to be balanced again. A most 8023 * subtle and fragile situation. 8024 */ 8025 8026 static inline int sg_imbalanced(struct sched_group *group) 8027 { 8028 return group->sgc->imbalance; 8029 } 8030 8031 /* 8032 * group_has_capacity returns true if the group has spare capacity that could 8033 * be used by some tasks. 8034 * We consider that a group has spare capacity if the * number of task is 8035 * smaller than the number of CPUs or if the utilization is lower than the 8036 * available capacity for CFS tasks. 8037 * For the latter, we use a threshold to stabilize the state, to take into 8038 * account the variance of the tasks' load and to return true if the available 8039 * capacity in meaningful for the load balancer. 8040 * As an example, an available capacity of 1% can appear but it doesn't make 8041 * any benefit for the load balance. 8042 */ 8043 static inline bool 8044 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 8045 { 8046 if (sgs->sum_nr_running < sgs->group_weight) 8047 return true; 8048 8049 if ((sgs->group_capacity * 100) > 8050 (sgs->group_util * env->sd->imbalance_pct)) 8051 return true; 8052 8053 return false; 8054 } 8055 8056 /* 8057 * group_is_overloaded returns true if the group has more tasks than it can 8058 * handle. 8059 * group_is_overloaded is not equals to !group_has_capacity because a group 8060 * with the exact right number of tasks, has no more spare capacity but is not 8061 * overloaded so both group_has_capacity and group_is_overloaded return 8062 * false. 8063 */ 8064 static inline bool 8065 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 8066 { 8067 if (sgs->sum_nr_running <= sgs->group_weight) 8068 return false; 8069 8070 if ((sgs->group_capacity * 100) < 8071 (sgs->group_util * env->sd->imbalance_pct)) 8072 return true; 8073 8074 return false; 8075 } 8076 8077 /* 8078 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller 8079 * per-CPU capacity than sched_group ref. 8080 */ 8081 static inline bool 8082 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8083 { 8084 return sg->sgc->min_capacity * capacity_margin < 8085 ref->sgc->min_capacity * 1024; 8086 } 8087 8088 static inline enum 8089 group_type group_classify(struct sched_group *group, 8090 struct sg_lb_stats *sgs) 8091 { 8092 if (sgs->group_no_capacity) 8093 return group_overloaded; 8094 8095 if (sg_imbalanced(group)) 8096 return group_imbalanced; 8097 8098 return group_other; 8099 } 8100 8101 static bool update_nohz_stats(struct rq *rq, bool force) 8102 { 8103 #ifdef CONFIG_NO_HZ_COMMON 8104 unsigned int cpu = rq->cpu; 8105 8106 if (!rq->has_blocked_load) 8107 return false; 8108 8109 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 8110 return false; 8111 8112 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 8113 return true; 8114 8115 update_blocked_averages(cpu); 8116 8117 return rq->has_blocked_load; 8118 #else 8119 return false; 8120 #endif 8121 } 8122 8123 /** 8124 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8125 * @env: The load balancing environment. 8126 * @group: sched_group whose statistics are to be updated. 8127 * @load_idx: Load index of sched_domain of this_cpu for load calc. 8128 * @local_group: Does group contain this_cpu. 8129 * @sgs: variable to hold the statistics for this group. 8130 * @overload: Indicate more than one runnable task for any CPU. 8131 */ 8132 static inline void update_sg_lb_stats(struct lb_env *env, 8133 struct sched_group *group, int load_idx, 8134 int local_group, struct sg_lb_stats *sgs, 8135 bool *overload) 8136 { 8137 unsigned long load; 8138 int i, nr_running; 8139 8140 memset(sgs, 0, sizeof(*sgs)); 8141 8142 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8143 struct rq *rq = cpu_rq(i); 8144 8145 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8146 env->flags |= LBF_NOHZ_AGAIN; 8147 8148 /* Bias balancing toward CPUs of our domain: */ 8149 if (local_group) 8150 load = target_load(i, load_idx); 8151 else 8152 load = source_load(i, load_idx); 8153 8154 sgs->group_load += load; 8155 sgs->group_util += cpu_util(i); 8156 sgs->sum_nr_running += rq->cfs.h_nr_running; 8157 8158 nr_running = rq->nr_running; 8159 if (nr_running > 1) 8160 *overload = true; 8161 8162 #ifdef CONFIG_NUMA_BALANCING 8163 sgs->nr_numa_running += rq->nr_numa_running; 8164 sgs->nr_preferred_running += rq->nr_preferred_running; 8165 #endif 8166 sgs->sum_weighted_load += weighted_cpuload(rq); 8167 /* 8168 * No need to call idle_cpu() if nr_running is not 0 8169 */ 8170 if (!nr_running && idle_cpu(i)) 8171 sgs->idle_cpus++; 8172 } 8173 8174 /* Adjust by relative CPU capacity of the group */ 8175 sgs->group_capacity = group->sgc->capacity; 8176 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 8177 8178 if (sgs->sum_nr_running) 8179 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 8180 8181 sgs->group_weight = group->group_weight; 8182 8183 sgs->group_no_capacity = group_is_overloaded(env, sgs); 8184 sgs->group_type = group_classify(group, sgs); 8185 } 8186 8187 /** 8188 * update_sd_pick_busiest - return 1 on busiest group 8189 * @env: The load balancing environment. 8190 * @sds: sched_domain statistics 8191 * @sg: sched_group candidate to be checked for being the busiest 8192 * @sgs: sched_group statistics 8193 * 8194 * Determine if @sg is a busier group than the previously selected 8195 * busiest group. 8196 * 8197 * Return: %true if @sg is a busier group than the previously selected 8198 * busiest group. %false otherwise. 8199 */ 8200 static bool update_sd_pick_busiest(struct lb_env *env, 8201 struct sd_lb_stats *sds, 8202 struct sched_group *sg, 8203 struct sg_lb_stats *sgs) 8204 { 8205 struct sg_lb_stats *busiest = &sds->busiest_stat; 8206 8207 if (sgs->group_type > busiest->group_type) 8208 return true; 8209 8210 if (sgs->group_type < busiest->group_type) 8211 return false; 8212 8213 if (sgs->avg_load <= busiest->avg_load) 8214 return false; 8215 8216 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 8217 goto asym_packing; 8218 8219 /* 8220 * Candidate sg has no more than one task per CPU and 8221 * has higher per-CPU capacity. Migrating tasks to less 8222 * capable CPUs may harm throughput. Maximize throughput, 8223 * power/energy consequences are not considered. 8224 */ 8225 if (sgs->sum_nr_running <= sgs->group_weight && 8226 group_smaller_cpu_capacity(sds->local, sg)) 8227 return false; 8228 8229 asym_packing: 8230 /* This is the busiest node in its class. */ 8231 if (!(env->sd->flags & SD_ASYM_PACKING)) 8232 return true; 8233 8234 /* No ASYM_PACKING if target CPU is already busy */ 8235 if (env->idle == CPU_NOT_IDLE) 8236 return true; 8237 /* 8238 * ASYM_PACKING needs to move all the work to the highest 8239 * prority CPUs in the group, therefore mark all groups 8240 * of lower priority than ourself as busy. 8241 */ 8242 if (sgs->sum_nr_running && 8243 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 8244 if (!sds->busiest) 8245 return true; 8246 8247 /* Prefer to move from lowest priority CPU's work */ 8248 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 8249 sg->asym_prefer_cpu)) 8250 return true; 8251 } 8252 8253 return false; 8254 } 8255 8256 #ifdef CONFIG_NUMA_BALANCING 8257 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8258 { 8259 if (sgs->sum_nr_running > sgs->nr_numa_running) 8260 return regular; 8261 if (sgs->sum_nr_running > sgs->nr_preferred_running) 8262 return remote; 8263 return all; 8264 } 8265 8266 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8267 { 8268 if (rq->nr_running > rq->nr_numa_running) 8269 return regular; 8270 if (rq->nr_running > rq->nr_preferred_running) 8271 return remote; 8272 return all; 8273 } 8274 #else 8275 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8276 { 8277 return all; 8278 } 8279 8280 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8281 { 8282 return regular; 8283 } 8284 #endif /* CONFIG_NUMA_BALANCING */ 8285 8286 /** 8287 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8288 * @env: The load balancing environment. 8289 * @sds: variable to hold the statistics for this sched_domain. 8290 */ 8291 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8292 { 8293 struct sched_domain *child = env->sd->child; 8294 struct sched_group *sg = env->sd->groups; 8295 struct sg_lb_stats *local = &sds->local_stat; 8296 struct sg_lb_stats tmp_sgs; 8297 int load_idx, prefer_sibling = 0; 8298 bool overload = false; 8299 8300 if (child && child->flags & SD_PREFER_SIBLING) 8301 prefer_sibling = 1; 8302 8303 #ifdef CONFIG_NO_HZ_COMMON 8304 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8305 env->flags |= LBF_NOHZ_STATS; 8306 #endif 8307 8308 load_idx = get_sd_load_idx(env->sd, env->idle); 8309 8310 do { 8311 struct sg_lb_stats *sgs = &tmp_sgs; 8312 int local_group; 8313 8314 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8315 if (local_group) { 8316 sds->local = sg; 8317 sgs = local; 8318 8319 if (env->idle != CPU_NEWLY_IDLE || 8320 time_after_eq(jiffies, sg->sgc->next_update)) 8321 update_group_capacity(env->sd, env->dst_cpu); 8322 } 8323 8324 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 8325 &overload); 8326 8327 if (local_group) 8328 goto next_group; 8329 8330 /* 8331 * In case the child domain prefers tasks go to siblings 8332 * first, lower the sg capacity so that we'll try 8333 * and move all the excess tasks away. We lower the capacity 8334 * of a group only if the local group has the capacity to fit 8335 * these excess tasks. The extra check prevents the case where 8336 * you always pull from the heaviest group when it is already 8337 * under-utilized (possible with a large weight task outweighs 8338 * the tasks on the system). 8339 */ 8340 if (prefer_sibling && sds->local && 8341 group_has_capacity(env, local) && 8342 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 8343 sgs->group_no_capacity = 1; 8344 sgs->group_type = group_classify(sg, sgs); 8345 } 8346 8347 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8348 sds->busiest = sg; 8349 sds->busiest_stat = *sgs; 8350 } 8351 8352 next_group: 8353 /* Now, start updating sd_lb_stats */ 8354 sds->total_running += sgs->sum_nr_running; 8355 sds->total_load += sgs->group_load; 8356 sds->total_capacity += sgs->group_capacity; 8357 8358 sg = sg->next; 8359 } while (sg != env->sd->groups); 8360 8361 #ifdef CONFIG_NO_HZ_COMMON 8362 if ((env->flags & LBF_NOHZ_AGAIN) && 8363 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8364 8365 WRITE_ONCE(nohz.next_blocked, 8366 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8367 } 8368 #endif 8369 8370 if (env->sd->flags & SD_NUMA) 8371 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8372 8373 if (!env->sd->parent) { 8374 /* update overload indicator if we are at root domain */ 8375 if (env->dst_rq->rd->overload != overload) 8376 env->dst_rq->rd->overload = overload; 8377 } 8378 } 8379 8380 /** 8381 * check_asym_packing - Check to see if the group is packed into the 8382 * sched domain. 8383 * 8384 * This is primarily intended to used at the sibling level. Some 8385 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8386 * case of POWER7, it can move to lower SMT modes only when higher 8387 * threads are idle. When in lower SMT modes, the threads will 8388 * perform better since they share less core resources. Hence when we 8389 * have idle threads, we want them to be the higher ones. 8390 * 8391 * This packing function is run on idle threads. It checks to see if 8392 * the busiest CPU in this domain (core in the P7 case) has a higher 8393 * CPU number than the packing function is being run on. Here we are 8394 * assuming lower CPU number will be equivalent to lower a SMT thread 8395 * number. 8396 * 8397 * Return: 1 when packing is required and a task should be moved to 8398 * this CPU. The amount of the imbalance is returned in env->imbalance. 8399 * 8400 * @env: The load balancing environment. 8401 * @sds: Statistics of the sched_domain which is to be packed 8402 */ 8403 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8404 { 8405 int busiest_cpu; 8406 8407 if (!(env->sd->flags & SD_ASYM_PACKING)) 8408 return 0; 8409 8410 if (env->idle == CPU_NOT_IDLE) 8411 return 0; 8412 8413 if (!sds->busiest) 8414 return 0; 8415 8416 busiest_cpu = sds->busiest->asym_prefer_cpu; 8417 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8418 return 0; 8419 8420 env->imbalance = DIV_ROUND_CLOSEST( 8421 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 8422 SCHED_CAPACITY_SCALE); 8423 8424 return 1; 8425 } 8426 8427 /** 8428 * fix_small_imbalance - Calculate the minor imbalance that exists 8429 * amongst the groups of a sched_domain, during 8430 * load balancing. 8431 * @env: The load balancing environment. 8432 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8433 */ 8434 static inline 8435 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8436 { 8437 unsigned long tmp, capa_now = 0, capa_move = 0; 8438 unsigned int imbn = 2; 8439 unsigned long scaled_busy_load_per_task; 8440 struct sg_lb_stats *local, *busiest; 8441 8442 local = &sds->local_stat; 8443 busiest = &sds->busiest_stat; 8444 8445 if (!local->sum_nr_running) 8446 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8447 else if (busiest->load_per_task > local->load_per_task) 8448 imbn = 1; 8449 8450 scaled_busy_load_per_task = 8451 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8452 busiest->group_capacity; 8453 8454 if (busiest->avg_load + scaled_busy_load_per_task >= 8455 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8456 env->imbalance = busiest->load_per_task; 8457 return; 8458 } 8459 8460 /* 8461 * OK, we don't have enough imbalance to justify moving tasks, 8462 * however we may be able to increase total CPU capacity used by 8463 * moving them. 8464 */ 8465 8466 capa_now += busiest->group_capacity * 8467 min(busiest->load_per_task, busiest->avg_load); 8468 capa_now += local->group_capacity * 8469 min(local->load_per_task, local->avg_load); 8470 capa_now /= SCHED_CAPACITY_SCALE; 8471 8472 /* Amount of load we'd subtract */ 8473 if (busiest->avg_load > scaled_busy_load_per_task) { 8474 capa_move += busiest->group_capacity * 8475 min(busiest->load_per_task, 8476 busiest->avg_load - scaled_busy_load_per_task); 8477 } 8478 8479 /* Amount of load we'd add */ 8480 if (busiest->avg_load * busiest->group_capacity < 8481 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8482 tmp = (busiest->avg_load * busiest->group_capacity) / 8483 local->group_capacity; 8484 } else { 8485 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8486 local->group_capacity; 8487 } 8488 capa_move += local->group_capacity * 8489 min(local->load_per_task, local->avg_load + tmp); 8490 capa_move /= SCHED_CAPACITY_SCALE; 8491 8492 /* Move if we gain throughput */ 8493 if (capa_move > capa_now) 8494 env->imbalance = busiest->load_per_task; 8495 } 8496 8497 /** 8498 * calculate_imbalance - Calculate the amount of imbalance present within the 8499 * groups of a given sched_domain during load balance. 8500 * @env: load balance environment 8501 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8502 */ 8503 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8504 { 8505 unsigned long max_pull, load_above_capacity = ~0UL; 8506 struct sg_lb_stats *local, *busiest; 8507 8508 local = &sds->local_stat; 8509 busiest = &sds->busiest_stat; 8510 8511 if (busiest->group_type == group_imbalanced) { 8512 /* 8513 * In the group_imb case we cannot rely on group-wide averages 8514 * to ensure CPU-load equilibrium, look at wider averages. XXX 8515 */ 8516 busiest->load_per_task = 8517 min(busiest->load_per_task, sds->avg_load); 8518 } 8519 8520 /* 8521 * Avg load of busiest sg can be less and avg load of local sg can 8522 * be greater than avg load across all sgs of sd because avg load 8523 * factors in sg capacity and sgs with smaller group_type are 8524 * skipped when updating the busiest sg: 8525 */ 8526 if (busiest->avg_load <= sds->avg_load || 8527 local->avg_load >= sds->avg_load) { 8528 env->imbalance = 0; 8529 return fix_small_imbalance(env, sds); 8530 } 8531 8532 /* 8533 * If there aren't any idle CPUs, avoid creating some. 8534 */ 8535 if (busiest->group_type == group_overloaded && 8536 local->group_type == group_overloaded) { 8537 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8538 if (load_above_capacity > busiest->group_capacity) { 8539 load_above_capacity -= busiest->group_capacity; 8540 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8541 load_above_capacity /= busiest->group_capacity; 8542 } else 8543 load_above_capacity = ~0UL; 8544 } 8545 8546 /* 8547 * We're trying to get all the CPUs to the average_load, so we don't 8548 * want to push ourselves above the average load, nor do we wish to 8549 * reduce the max loaded CPU below the average load. At the same time, 8550 * we also don't want to reduce the group load below the group 8551 * capacity. Thus we look for the minimum possible imbalance. 8552 */ 8553 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8554 8555 /* How much load to actually move to equalise the imbalance */ 8556 env->imbalance = min( 8557 max_pull * busiest->group_capacity, 8558 (sds->avg_load - local->avg_load) * local->group_capacity 8559 ) / SCHED_CAPACITY_SCALE; 8560 8561 /* 8562 * if *imbalance is less than the average load per runnable task 8563 * there is no guarantee that any tasks will be moved so we'll have 8564 * a think about bumping its value to force at least one task to be 8565 * moved 8566 */ 8567 if (env->imbalance < busiest->load_per_task) 8568 return fix_small_imbalance(env, sds); 8569 } 8570 8571 /******* find_busiest_group() helpers end here *********************/ 8572 8573 /** 8574 * find_busiest_group - Returns the busiest group within the sched_domain 8575 * if there is an imbalance. 8576 * 8577 * Also calculates the amount of weighted load which should be moved 8578 * to restore balance. 8579 * 8580 * @env: The load balancing environment. 8581 * 8582 * Return: - The busiest group if imbalance exists. 8583 */ 8584 static struct sched_group *find_busiest_group(struct lb_env *env) 8585 { 8586 struct sg_lb_stats *local, *busiest; 8587 struct sd_lb_stats sds; 8588 8589 init_sd_lb_stats(&sds); 8590 8591 /* 8592 * Compute the various statistics relavent for load balancing at 8593 * this level. 8594 */ 8595 update_sd_lb_stats(env, &sds); 8596 local = &sds.local_stat; 8597 busiest = &sds.busiest_stat; 8598 8599 /* ASYM feature bypasses nice load balance check */ 8600 if (check_asym_packing(env, &sds)) 8601 return sds.busiest; 8602 8603 /* There is no busy sibling group to pull tasks from */ 8604 if (!sds.busiest || busiest->sum_nr_running == 0) 8605 goto out_balanced; 8606 8607 /* XXX broken for overlapping NUMA groups */ 8608 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8609 / sds.total_capacity; 8610 8611 /* 8612 * If the busiest group is imbalanced the below checks don't 8613 * work because they assume all things are equal, which typically 8614 * isn't true due to cpus_allowed constraints and the like. 8615 */ 8616 if (busiest->group_type == group_imbalanced) 8617 goto force_balance; 8618 8619 /* 8620 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8621 * capacities from resulting in underutilization due to avg_load. 8622 */ 8623 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8624 busiest->group_no_capacity) 8625 goto force_balance; 8626 8627 /* 8628 * If the local group is busier than the selected busiest group 8629 * don't try and pull any tasks. 8630 */ 8631 if (local->avg_load >= busiest->avg_load) 8632 goto out_balanced; 8633 8634 /* 8635 * Don't pull any tasks if this group is already above the domain 8636 * average load. 8637 */ 8638 if (local->avg_load >= sds.avg_load) 8639 goto out_balanced; 8640 8641 if (env->idle == CPU_IDLE) { 8642 /* 8643 * This CPU is idle. If the busiest group is not overloaded 8644 * and there is no imbalance between this and busiest group 8645 * wrt idle CPUs, it is balanced. The imbalance becomes 8646 * significant if the diff is greater than 1 otherwise we 8647 * might end up to just move the imbalance on another group 8648 */ 8649 if ((busiest->group_type != group_overloaded) && 8650 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8651 goto out_balanced; 8652 } else { 8653 /* 8654 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8655 * imbalance_pct to be conservative. 8656 */ 8657 if (100 * busiest->avg_load <= 8658 env->sd->imbalance_pct * local->avg_load) 8659 goto out_balanced; 8660 } 8661 8662 force_balance: 8663 /* Looks like there is an imbalance. Compute it */ 8664 calculate_imbalance(env, &sds); 8665 return sds.busiest; 8666 8667 out_balanced: 8668 env->imbalance = 0; 8669 return NULL; 8670 } 8671 8672 /* 8673 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8674 */ 8675 static struct rq *find_busiest_queue(struct lb_env *env, 8676 struct sched_group *group) 8677 { 8678 struct rq *busiest = NULL, *rq; 8679 unsigned long busiest_load = 0, busiest_capacity = 1; 8680 int i; 8681 8682 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8683 unsigned long capacity, wl; 8684 enum fbq_type rt; 8685 8686 rq = cpu_rq(i); 8687 rt = fbq_classify_rq(rq); 8688 8689 /* 8690 * We classify groups/runqueues into three groups: 8691 * - regular: there are !numa tasks 8692 * - remote: there are numa tasks that run on the 'wrong' node 8693 * - all: there is no distinction 8694 * 8695 * In order to avoid migrating ideally placed numa tasks, 8696 * ignore those when there's better options. 8697 * 8698 * If we ignore the actual busiest queue to migrate another 8699 * task, the next balance pass can still reduce the busiest 8700 * queue by moving tasks around inside the node. 8701 * 8702 * If we cannot move enough load due to this classification 8703 * the next pass will adjust the group classification and 8704 * allow migration of more tasks. 8705 * 8706 * Both cases only affect the total convergence complexity. 8707 */ 8708 if (rt > env->fbq_type) 8709 continue; 8710 8711 capacity = capacity_of(i); 8712 8713 wl = weighted_cpuload(rq); 8714 8715 /* 8716 * When comparing with imbalance, use weighted_cpuload() 8717 * which is not scaled with the CPU capacity. 8718 */ 8719 8720 if (rq->nr_running == 1 && wl > env->imbalance && 8721 !check_cpu_capacity(rq, env->sd)) 8722 continue; 8723 8724 /* 8725 * For the load comparisons with the other CPU's, consider 8726 * the weighted_cpuload() scaled with the CPU capacity, so 8727 * that the load can be moved away from the CPU that is 8728 * potentially running at a lower capacity. 8729 * 8730 * Thus we're looking for max(wl_i / capacity_i), crosswise 8731 * multiplication to rid ourselves of the division works out 8732 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 8733 * our previous maximum. 8734 */ 8735 if (wl * busiest_capacity > busiest_load * capacity) { 8736 busiest_load = wl; 8737 busiest_capacity = capacity; 8738 busiest = rq; 8739 } 8740 } 8741 8742 return busiest; 8743 } 8744 8745 /* 8746 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8747 * so long as it is large enough. 8748 */ 8749 #define MAX_PINNED_INTERVAL 512 8750 8751 static int need_active_balance(struct lb_env *env) 8752 { 8753 struct sched_domain *sd = env->sd; 8754 8755 if (env->idle == CPU_NEWLY_IDLE) { 8756 8757 /* 8758 * ASYM_PACKING needs to force migrate tasks from busy but 8759 * lower priority CPUs in order to pack all tasks in the 8760 * highest priority CPUs. 8761 */ 8762 if ((sd->flags & SD_ASYM_PACKING) && 8763 sched_asym_prefer(env->dst_cpu, env->src_cpu)) 8764 return 1; 8765 } 8766 8767 /* 8768 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8769 * It's worth migrating the task if the src_cpu's capacity is reduced 8770 * because of other sched_class or IRQs if more capacity stays 8771 * available on dst_cpu. 8772 */ 8773 if ((env->idle != CPU_NOT_IDLE) && 8774 (env->src_rq->cfs.h_nr_running == 1)) { 8775 if ((check_cpu_capacity(env->src_rq, sd)) && 8776 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8777 return 1; 8778 } 8779 8780 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8781 } 8782 8783 static int active_load_balance_cpu_stop(void *data); 8784 8785 static int should_we_balance(struct lb_env *env) 8786 { 8787 struct sched_group *sg = env->sd->groups; 8788 int cpu, balance_cpu = -1; 8789 8790 /* 8791 * Ensure the balancing environment is consistent; can happen 8792 * when the softirq triggers 'during' hotplug. 8793 */ 8794 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8795 return 0; 8796 8797 /* 8798 * In the newly idle case, we will allow all the CPUs 8799 * to do the newly idle load balance. 8800 */ 8801 if (env->idle == CPU_NEWLY_IDLE) 8802 return 1; 8803 8804 /* Try to find first idle CPU */ 8805 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8806 if (!idle_cpu(cpu)) 8807 continue; 8808 8809 balance_cpu = cpu; 8810 break; 8811 } 8812 8813 if (balance_cpu == -1) 8814 balance_cpu = group_balance_cpu(sg); 8815 8816 /* 8817 * First idle CPU or the first CPU(busiest) in this sched group 8818 * is eligible for doing load balancing at this and above domains. 8819 */ 8820 return balance_cpu == env->dst_cpu; 8821 } 8822 8823 /* 8824 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8825 * tasks if there is an imbalance. 8826 */ 8827 static int load_balance(int this_cpu, struct rq *this_rq, 8828 struct sched_domain *sd, enum cpu_idle_type idle, 8829 int *continue_balancing) 8830 { 8831 int ld_moved, cur_ld_moved, active_balance = 0; 8832 struct sched_domain *sd_parent = sd->parent; 8833 struct sched_group *group; 8834 struct rq *busiest; 8835 struct rq_flags rf; 8836 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8837 8838 struct lb_env env = { 8839 .sd = sd, 8840 .dst_cpu = this_cpu, 8841 .dst_rq = this_rq, 8842 .dst_grpmask = sched_group_span(sd->groups), 8843 .idle = idle, 8844 .loop_break = sched_nr_migrate_break, 8845 .cpus = cpus, 8846 .fbq_type = all, 8847 .tasks = LIST_HEAD_INIT(env.tasks), 8848 }; 8849 8850 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8851 8852 schedstat_inc(sd->lb_count[idle]); 8853 8854 redo: 8855 if (!should_we_balance(&env)) { 8856 *continue_balancing = 0; 8857 goto out_balanced; 8858 } 8859 8860 group = find_busiest_group(&env); 8861 if (!group) { 8862 schedstat_inc(sd->lb_nobusyg[idle]); 8863 goto out_balanced; 8864 } 8865 8866 busiest = find_busiest_queue(&env, group); 8867 if (!busiest) { 8868 schedstat_inc(sd->lb_nobusyq[idle]); 8869 goto out_balanced; 8870 } 8871 8872 BUG_ON(busiest == env.dst_rq); 8873 8874 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8875 8876 env.src_cpu = busiest->cpu; 8877 env.src_rq = busiest; 8878 8879 ld_moved = 0; 8880 if (busiest->nr_running > 1) { 8881 /* 8882 * Attempt to move tasks. If find_busiest_group has found 8883 * an imbalance but busiest->nr_running <= 1, the group is 8884 * still unbalanced. ld_moved simply stays zero, so it is 8885 * correctly treated as an imbalance. 8886 */ 8887 env.flags |= LBF_ALL_PINNED; 8888 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8889 8890 more_balance: 8891 rq_lock_irqsave(busiest, &rf); 8892 update_rq_clock(busiest); 8893 8894 /* 8895 * cur_ld_moved - load moved in current iteration 8896 * ld_moved - cumulative load moved across iterations 8897 */ 8898 cur_ld_moved = detach_tasks(&env); 8899 8900 /* 8901 * We've detached some tasks from busiest_rq. Every 8902 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8903 * unlock busiest->lock, and we are able to be sure 8904 * that nobody can manipulate the tasks in parallel. 8905 * See task_rq_lock() family for the details. 8906 */ 8907 8908 rq_unlock(busiest, &rf); 8909 8910 if (cur_ld_moved) { 8911 attach_tasks(&env); 8912 ld_moved += cur_ld_moved; 8913 } 8914 8915 local_irq_restore(rf.flags); 8916 8917 if (env.flags & LBF_NEED_BREAK) { 8918 env.flags &= ~LBF_NEED_BREAK; 8919 goto more_balance; 8920 } 8921 8922 /* 8923 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8924 * us and move them to an alternate dst_cpu in our sched_group 8925 * where they can run. The upper limit on how many times we 8926 * iterate on same src_cpu is dependent on number of CPUs in our 8927 * sched_group. 8928 * 8929 * This changes load balance semantics a bit on who can move 8930 * load to a given_cpu. In addition to the given_cpu itself 8931 * (or a ilb_cpu acting on its behalf where given_cpu is 8932 * nohz-idle), we now have balance_cpu in a position to move 8933 * load to given_cpu. In rare situations, this may cause 8934 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8935 * _independently_ and at _same_ time to move some load to 8936 * given_cpu) causing exceess load to be moved to given_cpu. 8937 * This however should not happen so much in practice and 8938 * moreover subsequent load balance cycles should correct the 8939 * excess load moved. 8940 */ 8941 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8942 8943 /* Prevent to re-select dst_cpu via env's CPUs */ 8944 cpumask_clear_cpu(env.dst_cpu, env.cpus); 8945 8946 env.dst_rq = cpu_rq(env.new_dst_cpu); 8947 env.dst_cpu = env.new_dst_cpu; 8948 env.flags &= ~LBF_DST_PINNED; 8949 env.loop = 0; 8950 env.loop_break = sched_nr_migrate_break; 8951 8952 /* 8953 * Go back to "more_balance" rather than "redo" since we 8954 * need to continue with same src_cpu. 8955 */ 8956 goto more_balance; 8957 } 8958 8959 /* 8960 * We failed to reach balance because of affinity. 8961 */ 8962 if (sd_parent) { 8963 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8964 8965 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8966 *group_imbalance = 1; 8967 } 8968 8969 /* All tasks on this runqueue were pinned by CPU affinity */ 8970 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8971 cpumask_clear_cpu(cpu_of(busiest), cpus); 8972 /* 8973 * Attempting to continue load balancing at the current 8974 * sched_domain level only makes sense if there are 8975 * active CPUs remaining as possible busiest CPUs to 8976 * pull load from which are not contained within the 8977 * destination group that is receiving any migrated 8978 * load. 8979 */ 8980 if (!cpumask_subset(cpus, env.dst_grpmask)) { 8981 env.loop = 0; 8982 env.loop_break = sched_nr_migrate_break; 8983 goto redo; 8984 } 8985 goto out_all_pinned; 8986 } 8987 } 8988 8989 if (!ld_moved) { 8990 schedstat_inc(sd->lb_failed[idle]); 8991 /* 8992 * Increment the failure counter only on periodic balance. 8993 * We do not want newidle balance, which can be very 8994 * frequent, pollute the failure counter causing 8995 * excessive cache_hot migrations and active balances. 8996 */ 8997 if (idle != CPU_NEWLY_IDLE) 8998 sd->nr_balance_failed++; 8999 9000 if (need_active_balance(&env)) { 9001 unsigned long flags; 9002 9003 raw_spin_lock_irqsave(&busiest->lock, flags); 9004 9005 /* 9006 * Don't kick the active_load_balance_cpu_stop, 9007 * if the curr task on busiest CPU can't be 9008 * moved to this_cpu: 9009 */ 9010 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 9011 raw_spin_unlock_irqrestore(&busiest->lock, 9012 flags); 9013 env.flags |= LBF_ALL_PINNED; 9014 goto out_one_pinned; 9015 } 9016 9017 /* 9018 * ->active_balance synchronizes accesses to 9019 * ->active_balance_work. Once set, it's cleared 9020 * only after active load balance is finished. 9021 */ 9022 if (!busiest->active_balance) { 9023 busiest->active_balance = 1; 9024 busiest->push_cpu = this_cpu; 9025 active_balance = 1; 9026 } 9027 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9028 9029 if (active_balance) { 9030 stop_one_cpu_nowait(cpu_of(busiest), 9031 active_load_balance_cpu_stop, busiest, 9032 &busiest->active_balance_work); 9033 } 9034 9035 /* We've kicked active balancing, force task migration. */ 9036 sd->nr_balance_failed = sd->cache_nice_tries+1; 9037 } 9038 } else 9039 sd->nr_balance_failed = 0; 9040 9041 if (likely(!active_balance)) { 9042 /* We were unbalanced, so reset the balancing interval */ 9043 sd->balance_interval = sd->min_interval; 9044 } else { 9045 /* 9046 * If we've begun active balancing, start to back off. This 9047 * case may not be covered by the all_pinned logic if there 9048 * is only 1 task on the busy runqueue (because we don't call 9049 * detach_tasks). 9050 */ 9051 if (sd->balance_interval < sd->max_interval) 9052 sd->balance_interval *= 2; 9053 } 9054 9055 goto out; 9056 9057 out_balanced: 9058 /* 9059 * We reach balance although we may have faced some affinity 9060 * constraints. Clear the imbalance flag if it was set. 9061 */ 9062 if (sd_parent) { 9063 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9064 9065 if (*group_imbalance) 9066 *group_imbalance = 0; 9067 } 9068 9069 out_all_pinned: 9070 /* 9071 * We reach balance because all tasks are pinned at this level so 9072 * we can't migrate them. Let the imbalance flag set so parent level 9073 * can try to migrate them. 9074 */ 9075 schedstat_inc(sd->lb_balanced[idle]); 9076 9077 sd->nr_balance_failed = 0; 9078 9079 out_one_pinned: 9080 /* tune up the balancing interval */ 9081 if (((env.flags & LBF_ALL_PINNED) && 9082 sd->balance_interval < MAX_PINNED_INTERVAL) || 9083 (sd->balance_interval < sd->max_interval)) 9084 sd->balance_interval *= 2; 9085 9086 ld_moved = 0; 9087 out: 9088 return ld_moved; 9089 } 9090 9091 static inline unsigned long 9092 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9093 { 9094 unsigned long interval = sd->balance_interval; 9095 9096 if (cpu_busy) 9097 interval *= sd->busy_factor; 9098 9099 /* scale ms to jiffies */ 9100 interval = msecs_to_jiffies(interval); 9101 interval = clamp(interval, 1UL, max_load_balance_interval); 9102 9103 return interval; 9104 } 9105 9106 static inline void 9107 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9108 { 9109 unsigned long interval, next; 9110 9111 /* used by idle balance, so cpu_busy = 0 */ 9112 interval = get_sd_balance_interval(sd, 0); 9113 next = sd->last_balance + interval; 9114 9115 if (time_after(*next_balance, next)) 9116 *next_balance = next; 9117 } 9118 9119 /* 9120 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9121 * running tasks off the busiest CPU onto idle CPUs. It requires at 9122 * least 1 task to be running on each physical CPU where possible, and 9123 * avoids physical / logical imbalances. 9124 */ 9125 static int active_load_balance_cpu_stop(void *data) 9126 { 9127 struct rq *busiest_rq = data; 9128 int busiest_cpu = cpu_of(busiest_rq); 9129 int target_cpu = busiest_rq->push_cpu; 9130 struct rq *target_rq = cpu_rq(target_cpu); 9131 struct sched_domain *sd; 9132 struct task_struct *p = NULL; 9133 struct rq_flags rf; 9134 9135 rq_lock_irq(busiest_rq, &rf); 9136 /* 9137 * Between queueing the stop-work and running it is a hole in which 9138 * CPUs can become inactive. We should not move tasks from or to 9139 * inactive CPUs. 9140 */ 9141 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9142 goto out_unlock; 9143 9144 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9145 if (unlikely(busiest_cpu != smp_processor_id() || 9146 !busiest_rq->active_balance)) 9147 goto out_unlock; 9148 9149 /* Is there any task to move? */ 9150 if (busiest_rq->nr_running <= 1) 9151 goto out_unlock; 9152 9153 /* 9154 * This condition is "impossible", if it occurs 9155 * we need to fix it. Originally reported by 9156 * Bjorn Helgaas on a 128-CPU setup. 9157 */ 9158 BUG_ON(busiest_rq == target_rq); 9159 9160 /* Search for an sd spanning us and the target CPU. */ 9161 rcu_read_lock(); 9162 for_each_domain(target_cpu, sd) { 9163 if ((sd->flags & SD_LOAD_BALANCE) && 9164 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9165 break; 9166 } 9167 9168 if (likely(sd)) { 9169 struct lb_env env = { 9170 .sd = sd, 9171 .dst_cpu = target_cpu, 9172 .dst_rq = target_rq, 9173 .src_cpu = busiest_rq->cpu, 9174 .src_rq = busiest_rq, 9175 .idle = CPU_IDLE, 9176 /* 9177 * can_migrate_task() doesn't need to compute new_dst_cpu 9178 * for active balancing. Since we have CPU_IDLE, but no 9179 * @dst_grpmask we need to make that test go away with lying 9180 * about DST_PINNED. 9181 */ 9182 .flags = LBF_DST_PINNED, 9183 }; 9184 9185 schedstat_inc(sd->alb_count); 9186 update_rq_clock(busiest_rq); 9187 9188 p = detach_one_task(&env); 9189 if (p) { 9190 schedstat_inc(sd->alb_pushed); 9191 /* Active balancing done, reset the failure counter. */ 9192 sd->nr_balance_failed = 0; 9193 } else { 9194 schedstat_inc(sd->alb_failed); 9195 } 9196 } 9197 rcu_read_unlock(); 9198 out_unlock: 9199 busiest_rq->active_balance = 0; 9200 rq_unlock(busiest_rq, &rf); 9201 9202 if (p) 9203 attach_one_task(target_rq, p); 9204 9205 local_irq_enable(); 9206 9207 return 0; 9208 } 9209 9210 static DEFINE_SPINLOCK(balancing); 9211 9212 /* 9213 * Scale the max load_balance interval with the number of CPUs in the system. 9214 * This trades load-balance latency on larger machines for less cross talk. 9215 */ 9216 void update_max_interval(void) 9217 { 9218 max_load_balance_interval = HZ*num_online_cpus()/10; 9219 } 9220 9221 /* 9222 * It checks each scheduling domain to see if it is due to be balanced, 9223 * and initiates a balancing operation if so. 9224 * 9225 * Balancing parameters are set up in init_sched_domains. 9226 */ 9227 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9228 { 9229 int continue_balancing = 1; 9230 int cpu = rq->cpu; 9231 unsigned long interval; 9232 struct sched_domain *sd; 9233 /* Earliest time when we have to do rebalance again */ 9234 unsigned long next_balance = jiffies + 60*HZ; 9235 int update_next_balance = 0; 9236 int need_serialize, need_decay = 0; 9237 u64 max_cost = 0; 9238 9239 rcu_read_lock(); 9240 for_each_domain(cpu, sd) { 9241 /* 9242 * Decay the newidle max times here because this is a regular 9243 * visit to all the domains. Decay ~1% per second. 9244 */ 9245 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9246 sd->max_newidle_lb_cost = 9247 (sd->max_newidle_lb_cost * 253) / 256; 9248 sd->next_decay_max_lb_cost = jiffies + HZ; 9249 need_decay = 1; 9250 } 9251 max_cost += sd->max_newidle_lb_cost; 9252 9253 if (!(sd->flags & SD_LOAD_BALANCE)) 9254 continue; 9255 9256 /* 9257 * Stop the load balance at this level. There is another 9258 * CPU in our sched group which is doing load balancing more 9259 * actively. 9260 */ 9261 if (!continue_balancing) { 9262 if (need_decay) 9263 continue; 9264 break; 9265 } 9266 9267 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9268 9269 need_serialize = sd->flags & SD_SERIALIZE; 9270 if (need_serialize) { 9271 if (!spin_trylock(&balancing)) 9272 goto out; 9273 } 9274 9275 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9276 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9277 /* 9278 * The LBF_DST_PINNED logic could have changed 9279 * env->dst_cpu, so we can't know our idle 9280 * state even if we migrated tasks. Update it. 9281 */ 9282 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9283 } 9284 sd->last_balance = jiffies; 9285 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9286 } 9287 if (need_serialize) 9288 spin_unlock(&balancing); 9289 out: 9290 if (time_after(next_balance, sd->last_balance + interval)) { 9291 next_balance = sd->last_balance + interval; 9292 update_next_balance = 1; 9293 } 9294 } 9295 if (need_decay) { 9296 /* 9297 * Ensure the rq-wide value also decays but keep it at a 9298 * reasonable floor to avoid funnies with rq->avg_idle. 9299 */ 9300 rq->max_idle_balance_cost = 9301 max((u64)sysctl_sched_migration_cost, max_cost); 9302 } 9303 rcu_read_unlock(); 9304 9305 /* 9306 * next_balance will be updated only when there is a need. 9307 * When the cpu is attached to null domain for ex, it will not be 9308 * updated. 9309 */ 9310 if (likely(update_next_balance)) { 9311 rq->next_balance = next_balance; 9312 9313 #ifdef CONFIG_NO_HZ_COMMON 9314 /* 9315 * If this CPU has been elected to perform the nohz idle 9316 * balance. Other idle CPUs have already rebalanced with 9317 * nohz_idle_balance() and nohz.next_balance has been 9318 * updated accordingly. This CPU is now running the idle load 9319 * balance for itself and we need to update the 9320 * nohz.next_balance accordingly. 9321 */ 9322 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9323 nohz.next_balance = rq->next_balance; 9324 #endif 9325 } 9326 } 9327 9328 static inline int on_null_domain(struct rq *rq) 9329 { 9330 return unlikely(!rcu_dereference_sched(rq->sd)); 9331 } 9332 9333 #ifdef CONFIG_NO_HZ_COMMON 9334 /* 9335 * idle load balancing details 9336 * - When one of the busy CPUs notice that there may be an idle rebalancing 9337 * needed, they will kick the idle load balancer, which then does idle 9338 * load balancing for all the idle CPUs. 9339 */ 9340 9341 static inline int find_new_ilb(void) 9342 { 9343 int ilb = cpumask_first(nohz.idle_cpus_mask); 9344 9345 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 9346 return ilb; 9347 9348 return nr_cpu_ids; 9349 } 9350 9351 /* 9352 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 9353 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 9354 * CPU (if there is one). 9355 */ 9356 static void kick_ilb(unsigned int flags) 9357 { 9358 int ilb_cpu; 9359 9360 nohz.next_balance++; 9361 9362 ilb_cpu = find_new_ilb(); 9363 9364 if (ilb_cpu >= nr_cpu_ids) 9365 return; 9366 9367 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 9368 if (flags & NOHZ_KICK_MASK) 9369 return; 9370 9371 /* 9372 * Use smp_send_reschedule() instead of resched_cpu(). 9373 * This way we generate a sched IPI on the target CPU which 9374 * is idle. And the softirq performing nohz idle load balance 9375 * will be run before returning from the IPI. 9376 */ 9377 smp_send_reschedule(ilb_cpu); 9378 } 9379 9380 /* 9381 * Current heuristic for kicking the idle load balancer in the presence 9382 * of an idle cpu in the system. 9383 * - This rq has more than one task. 9384 * - This rq has at least one CFS task and the capacity of the CPU is 9385 * significantly reduced because of RT tasks or IRQs. 9386 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 9387 * multiple busy cpu. 9388 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 9389 * domain span are idle. 9390 */ 9391 static void nohz_balancer_kick(struct rq *rq) 9392 { 9393 unsigned long now = jiffies; 9394 struct sched_domain_shared *sds; 9395 struct sched_domain *sd; 9396 int nr_busy, i, cpu = rq->cpu; 9397 unsigned int flags = 0; 9398 9399 if (unlikely(rq->idle_balance)) 9400 return; 9401 9402 /* 9403 * We may be recently in ticked or tickless idle mode. At the first 9404 * busy tick after returning from idle, we will update the busy stats. 9405 */ 9406 nohz_balance_exit_idle(rq); 9407 9408 /* 9409 * None are in tickless mode and hence no need for NOHZ idle load 9410 * balancing. 9411 */ 9412 if (likely(!atomic_read(&nohz.nr_cpus))) 9413 return; 9414 9415 if (READ_ONCE(nohz.has_blocked) && 9416 time_after(now, READ_ONCE(nohz.next_blocked))) 9417 flags = NOHZ_STATS_KICK; 9418 9419 if (time_before(now, nohz.next_balance)) 9420 goto out; 9421 9422 if (rq->nr_running >= 2) { 9423 flags = NOHZ_KICK_MASK; 9424 goto out; 9425 } 9426 9427 rcu_read_lock(); 9428 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9429 if (sds) { 9430 /* 9431 * XXX: write a coherent comment on why we do this. 9432 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com 9433 */ 9434 nr_busy = atomic_read(&sds->nr_busy_cpus); 9435 if (nr_busy > 1) { 9436 flags = NOHZ_KICK_MASK; 9437 goto unlock; 9438 } 9439 9440 } 9441 9442 sd = rcu_dereference(rq->sd); 9443 if (sd) { 9444 if ((rq->cfs.h_nr_running >= 1) && 9445 check_cpu_capacity(rq, sd)) { 9446 flags = NOHZ_KICK_MASK; 9447 goto unlock; 9448 } 9449 } 9450 9451 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 9452 if (sd) { 9453 for_each_cpu(i, sched_domain_span(sd)) { 9454 if (i == cpu || 9455 !cpumask_test_cpu(i, nohz.idle_cpus_mask)) 9456 continue; 9457 9458 if (sched_asym_prefer(i, cpu)) { 9459 flags = NOHZ_KICK_MASK; 9460 goto unlock; 9461 } 9462 } 9463 } 9464 unlock: 9465 rcu_read_unlock(); 9466 out: 9467 if (flags) 9468 kick_ilb(flags); 9469 } 9470 9471 static void set_cpu_sd_state_busy(int cpu) 9472 { 9473 struct sched_domain *sd; 9474 9475 rcu_read_lock(); 9476 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9477 9478 if (!sd || !sd->nohz_idle) 9479 goto unlock; 9480 sd->nohz_idle = 0; 9481 9482 atomic_inc(&sd->shared->nr_busy_cpus); 9483 unlock: 9484 rcu_read_unlock(); 9485 } 9486 9487 void nohz_balance_exit_idle(struct rq *rq) 9488 { 9489 SCHED_WARN_ON(rq != this_rq()); 9490 9491 if (likely(!rq->nohz_tick_stopped)) 9492 return; 9493 9494 rq->nohz_tick_stopped = 0; 9495 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9496 atomic_dec(&nohz.nr_cpus); 9497 9498 set_cpu_sd_state_busy(rq->cpu); 9499 } 9500 9501 static void set_cpu_sd_state_idle(int cpu) 9502 { 9503 struct sched_domain *sd; 9504 9505 rcu_read_lock(); 9506 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9507 9508 if (!sd || sd->nohz_idle) 9509 goto unlock; 9510 sd->nohz_idle = 1; 9511 9512 atomic_dec(&sd->shared->nr_busy_cpus); 9513 unlock: 9514 rcu_read_unlock(); 9515 } 9516 9517 /* 9518 * This routine will record that the CPU is going idle with tick stopped. 9519 * This info will be used in performing idle load balancing in the future. 9520 */ 9521 void nohz_balance_enter_idle(int cpu) 9522 { 9523 struct rq *rq = cpu_rq(cpu); 9524 9525 SCHED_WARN_ON(cpu != smp_processor_id()); 9526 9527 /* If this CPU is going down, then nothing needs to be done: */ 9528 if (!cpu_active(cpu)) 9529 return; 9530 9531 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9532 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9533 return; 9534 9535 /* 9536 * Can be set safely without rq->lock held 9537 * If a clear happens, it will have evaluated last additions because 9538 * rq->lock is held during the check and the clear 9539 */ 9540 rq->has_blocked_load = 1; 9541 9542 /* 9543 * The tick is still stopped but load could have been added in the 9544 * meantime. We set the nohz.has_blocked flag to trig a check of the 9545 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9546 * of nohz.has_blocked can only happen after checking the new load 9547 */ 9548 if (rq->nohz_tick_stopped) 9549 goto out; 9550 9551 /* If we're a completely isolated CPU, we don't play: */ 9552 if (on_null_domain(rq)) 9553 return; 9554 9555 rq->nohz_tick_stopped = 1; 9556 9557 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9558 atomic_inc(&nohz.nr_cpus); 9559 9560 /* 9561 * Ensures that if nohz_idle_balance() fails to observe our 9562 * @idle_cpus_mask store, it must observe the @has_blocked 9563 * store. 9564 */ 9565 smp_mb__after_atomic(); 9566 9567 set_cpu_sd_state_idle(cpu); 9568 9569 out: 9570 /* 9571 * Each time a cpu enter idle, we assume that it has blocked load and 9572 * enable the periodic update of the load of idle cpus 9573 */ 9574 WRITE_ONCE(nohz.has_blocked, 1); 9575 } 9576 9577 /* 9578 * Internal function that runs load balance for all idle cpus. The load balance 9579 * can be a simple update of blocked load or a complete load balance with 9580 * tasks movement depending of flags. 9581 * The function returns false if the loop has stopped before running 9582 * through all idle CPUs. 9583 */ 9584 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9585 enum cpu_idle_type idle) 9586 { 9587 /* Earliest time when we have to do rebalance again */ 9588 unsigned long now = jiffies; 9589 unsigned long next_balance = now + 60*HZ; 9590 bool has_blocked_load = false; 9591 int update_next_balance = 0; 9592 int this_cpu = this_rq->cpu; 9593 int balance_cpu; 9594 int ret = false; 9595 struct rq *rq; 9596 9597 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9598 9599 /* 9600 * We assume there will be no idle load after this update and clear 9601 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9602 * set the has_blocked flag and trig another update of idle load. 9603 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9604 * setting the flag, we are sure to not clear the state and not 9605 * check the load of an idle cpu. 9606 */ 9607 WRITE_ONCE(nohz.has_blocked, 0); 9608 9609 /* 9610 * Ensures that if we miss the CPU, we must see the has_blocked 9611 * store from nohz_balance_enter_idle(). 9612 */ 9613 smp_mb(); 9614 9615 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9616 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9617 continue; 9618 9619 /* 9620 * If this CPU gets work to do, stop the load balancing 9621 * work being done for other CPUs. Next load 9622 * balancing owner will pick it up. 9623 */ 9624 if (need_resched()) { 9625 has_blocked_load = true; 9626 goto abort; 9627 } 9628 9629 rq = cpu_rq(balance_cpu); 9630 9631 has_blocked_load |= update_nohz_stats(rq, true); 9632 9633 /* 9634 * If time for next balance is due, 9635 * do the balance. 9636 */ 9637 if (time_after_eq(jiffies, rq->next_balance)) { 9638 struct rq_flags rf; 9639 9640 rq_lock_irqsave(rq, &rf); 9641 update_rq_clock(rq); 9642 cpu_load_update_idle(rq); 9643 rq_unlock_irqrestore(rq, &rf); 9644 9645 if (flags & NOHZ_BALANCE_KICK) 9646 rebalance_domains(rq, CPU_IDLE); 9647 } 9648 9649 if (time_after(next_balance, rq->next_balance)) { 9650 next_balance = rq->next_balance; 9651 update_next_balance = 1; 9652 } 9653 } 9654 9655 /* Newly idle CPU doesn't need an update */ 9656 if (idle != CPU_NEWLY_IDLE) { 9657 update_blocked_averages(this_cpu); 9658 has_blocked_load |= this_rq->has_blocked_load; 9659 } 9660 9661 if (flags & NOHZ_BALANCE_KICK) 9662 rebalance_domains(this_rq, CPU_IDLE); 9663 9664 WRITE_ONCE(nohz.next_blocked, 9665 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9666 9667 /* The full idle balance loop has been done */ 9668 ret = true; 9669 9670 abort: 9671 /* There is still blocked load, enable periodic update */ 9672 if (has_blocked_load) 9673 WRITE_ONCE(nohz.has_blocked, 1); 9674 9675 /* 9676 * next_balance will be updated only when there is a need. 9677 * When the CPU is attached to null domain for ex, it will not be 9678 * updated. 9679 */ 9680 if (likely(update_next_balance)) 9681 nohz.next_balance = next_balance; 9682 9683 return ret; 9684 } 9685 9686 /* 9687 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9688 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9689 */ 9690 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9691 { 9692 int this_cpu = this_rq->cpu; 9693 unsigned int flags; 9694 9695 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 9696 return false; 9697 9698 if (idle != CPU_IDLE) { 9699 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9700 return false; 9701 } 9702 9703 /* 9704 * barrier, pairs with nohz_balance_enter_idle(), ensures ... 9705 */ 9706 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9707 if (!(flags & NOHZ_KICK_MASK)) 9708 return false; 9709 9710 _nohz_idle_balance(this_rq, flags, idle); 9711 9712 return true; 9713 } 9714 9715 static void nohz_newidle_balance(struct rq *this_rq) 9716 { 9717 int this_cpu = this_rq->cpu; 9718 9719 /* 9720 * This CPU doesn't want to be disturbed by scheduler 9721 * housekeeping 9722 */ 9723 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 9724 return; 9725 9726 /* Will wake up very soon. No time for doing anything else*/ 9727 if (this_rq->avg_idle < sysctl_sched_migration_cost) 9728 return; 9729 9730 /* Don't need to update blocked load of idle CPUs*/ 9731 if (!READ_ONCE(nohz.has_blocked) || 9732 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 9733 return; 9734 9735 raw_spin_unlock(&this_rq->lock); 9736 /* 9737 * This CPU is going to be idle and blocked load of idle CPUs 9738 * need to be updated. Run the ilb locally as it is a good 9739 * candidate for ilb instead of waking up another idle CPU. 9740 * Kick an normal ilb if we failed to do the update. 9741 */ 9742 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 9743 kick_ilb(NOHZ_STATS_KICK); 9744 raw_spin_lock(&this_rq->lock); 9745 } 9746 9747 #else /* !CONFIG_NO_HZ_COMMON */ 9748 static inline void nohz_balancer_kick(struct rq *rq) { } 9749 9750 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9751 { 9752 return false; 9753 } 9754 9755 static inline void nohz_newidle_balance(struct rq *this_rq) { } 9756 #endif /* CONFIG_NO_HZ_COMMON */ 9757 9758 /* 9759 * idle_balance is called by schedule() if this_cpu is about to become 9760 * idle. Attempts to pull tasks from other CPUs. 9761 */ 9762 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 9763 { 9764 unsigned long next_balance = jiffies + HZ; 9765 int this_cpu = this_rq->cpu; 9766 struct sched_domain *sd; 9767 int pulled_task = 0; 9768 u64 curr_cost = 0; 9769 9770 /* 9771 * We must set idle_stamp _before_ calling idle_balance(), such that we 9772 * measure the duration of idle_balance() as idle time. 9773 */ 9774 this_rq->idle_stamp = rq_clock(this_rq); 9775 9776 /* 9777 * Do not pull tasks towards !active CPUs... 9778 */ 9779 if (!cpu_active(this_cpu)) 9780 return 0; 9781 9782 /* 9783 * This is OK, because current is on_cpu, which avoids it being picked 9784 * for load-balance and preemption/IRQs are still disabled avoiding 9785 * further scheduler activity on it and we're being very careful to 9786 * re-start the picking loop. 9787 */ 9788 rq_unpin_lock(this_rq, rf); 9789 9790 if (this_rq->avg_idle < sysctl_sched_migration_cost || 9791 !this_rq->rd->overload) { 9792 9793 rcu_read_lock(); 9794 sd = rcu_dereference_check_sched_domain(this_rq->sd); 9795 if (sd) 9796 update_next_balance(sd, &next_balance); 9797 rcu_read_unlock(); 9798 9799 nohz_newidle_balance(this_rq); 9800 9801 goto out; 9802 } 9803 9804 raw_spin_unlock(&this_rq->lock); 9805 9806 update_blocked_averages(this_cpu); 9807 rcu_read_lock(); 9808 for_each_domain(this_cpu, sd) { 9809 int continue_balancing = 1; 9810 u64 t0, domain_cost; 9811 9812 if (!(sd->flags & SD_LOAD_BALANCE)) 9813 continue; 9814 9815 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 9816 update_next_balance(sd, &next_balance); 9817 break; 9818 } 9819 9820 if (sd->flags & SD_BALANCE_NEWIDLE) { 9821 t0 = sched_clock_cpu(this_cpu); 9822 9823 pulled_task = load_balance(this_cpu, this_rq, 9824 sd, CPU_NEWLY_IDLE, 9825 &continue_balancing); 9826 9827 domain_cost = sched_clock_cpu(this_cpu) - t0; 9828 if (domain_cost > sd->max_newidle_lb_cost) 9829 sd->max_newidle_lb_cost = domain_cost; 9830 9831 curr_cost += domain_cost; 9832 } 9833 9834 update_next_balance(sd, &next_balance); 9835 9836 /* 9837 * Stop searching for tasks to pull if there are 9838 * now runnable tasks on this rq. 9839 */ 9840 if (pulled_task || this_rq->nr_running > 0) 9841 break; 9842 } 9843 rcu_read_unlock(); 9844 9845 raw_spin_lock(&this_rq->lock); 9846 9847 if (curr_cost > this_rq->max_idle_balance_cost) 9848 this_rq->max_idle_balance_cost = curr_cost; 9849 9850 /* 9851 * While browsing the domains, we released the rq lock, a task could 9852 * have been enqueued in the meantime. Since we're not going idle, 9853 * pretend we pulled a task. 9854 */ 9855 if (this_rq->cfs.h_nr_running && !pulled_task) 9856 pulled_task = 1; 9857 9858 out: 9859 /* Move the next balance forward */ 9860 if (time_after(this_rq->next_balance, next_balance)) 9861 this_rq->next_balance = next_balance; 9862 9863 /* Is there a task of a high priority class? */ 9864 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 9865 pulled_task = -1; 9866 9867 if (pulled_task) 9868 this_rq->idle_stamp = 0; 9869 9870 rq_repin_lock(this_rq, rf); 9871 9872 return pulled_task; 9873 } 9874 9875 /* 9876 * run_rebalance_domains is triggered when needed from the scheduler tick. 9877 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 9878 */ 9879 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 9880 { 9881 struct rq *this_rq = this_rq(); 9882 enum cpu_idle_type idle = this_rq->idle_balance ? 9883 CPU_IDLE : CPU_NOT_IDLE; 9884 9885 /* 9886 * If this CPU has a pending nohz_balance_kick, then do the 9887 * balancing on behalf of the other idle CPUs whose ticks are 9888 * stopped. Do nohz_idle_balance *before* rebalance_domains to 9889 * give the idle CPUs a chance to load balance. Else we may 9890 * load balance only within the local sched_domain hierarchy 9891 * and abort nohz_idle_balance altogether if we pull some load. 9892 */ 9893 if (nohz_idle_balance(this_rq, idle)) 9894 return; 9895 9896 /* normal load balance */ 9897 update_blocked_averages(this_rq->cpu); 9898 rebalance_domains(this_rq, idle); 9899 } 9900 9901 /* 9902 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 9903 */ 9904 void trigger_load_balance(struct rq *rq) 9905 { 9906 /* Don't need to rebalance while attached to NULL domain */ 9907 if (unlikely(on_null_domain(rq))) 9908 return; 9909 9910 if (time_after_eq(jiffies, rq->next_balance)) 9911 raise_softirq(SCHED_SOFTIRQ); 9912 9913 nohz_balancer_kick(rq); 9914 } 9915 9916 static void rq_online_fair(struct rq *rq) 9917 { 9918 update_sysctl(); 9919 9920 update_runtime_enabled(rq); 9921 } 9922 9923 static void rq_offline_fair(struct rq *rq) 9924 { 9925 update_sysctl(); 9926 9927 /* Ensure any throttled groups are reachable by pick_next_task */ 9928 unthrottle_offline_cfs_rqs(rq); 9929 } 9930 9931 #endif /* CONFIG_SMP */ 9932 9933 /* 9934 * scheduler tick hitting a task of our scheduling class. 9935 * 9936 * NOTE: This function can be called remotely by the tick offload that 9937 * goes along full dynticks. Therefore no local assumption can be made 9938 * and everything must be accessed through the @rq and @curr passed in 9939 * parameters. 9940 */ 9941 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9942 { 9943 struct cfs_rq *cfs_rq; 9944 struct sched_entity *se = &curr->se; 9945 9946 for_each_sched_entity(se) { 9947 cfs_rq = cfs_rq_of(se); 9948 entity_tick(cfs_rq, se, queued); 9949 } 9950 9951 if (static_branch_unlikely(&sched_numa_balancing)) 9952 task_tick_numa(rq, curr); 9953 } 9954 9955 /* 9956 * called on fork with the child task as argument from the parent's context 9957 * - child not yet on the tasklist 9958 * - preemption disabled 9959 */ 9960 static void task_fork_fair(struct task_struct *p) 9961 { 9962 struct cfs_rq *cfs_rq; 9963 struct sched_entity *se = &p->se, *curr; 9964 struct rq *rq = this_rq(); 9965 struct rq_flags rf; 9966 9967 rq_lock(rq, &rf); 9968 update_rq_clock(rq); 9969 9970 cfs_rq = task_cfs_rq(current); 9971 curr = cfs_rq->curr; 9972 if (curr) { 9973 update_curr(cfs_rq); 9974 se->vruntime = curr->vruntime; 9975 } 9976 place_entity(cfs_rq, se, 1); 9977 9978 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9979 /* 9980 * Upon rescheduling, sched_class::put_prev_task() will place 9981 * 'current' within the tree based on its new key value. 9982 */ 9983 swap(curr->vruntime, se->vruntime); 9984 resched_curr(rq); 9985 } 9986 9987 se->vruntime -= cfs_rq->min_vruntime; 9988 rq_unlock(rq, &rf); 9989 } 9990 9991 /* 9992 * Priority of the task has changed. Check to see if we preempt 9993 * the current task. 9994 */ 9995 static void 9996 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9997 { 9998 if (!task_on_rq_queued(p)) 9999 return; 10000 10001 /* 10002 * Reschedule if we are currently running on this runqueue and 10003 * our priority decreased, or if we are not currently running on 10004 * this runqueue and our priority is higher than the current's 10005 */ 10006 if (rq->curr == p) { 10007 if (p->prio > oldprio) 10008 resched_curr(rq); 10009 } else 10010 check_preempt_curr(rq, p, 0); 10011 } 10012 10013 static inline bool vruntime_normalized(struct task_struct *p) 10014 { 10015 struct sched_entity *se = &p->se; 10016 10017 /* 10018 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10019 * the dequeue_entity(.flags=0) will already have normalized the 10020 * vruntime. 10021 */ 10022 if (p->on_rq) 10023 return true; 10024 10025 /* 10026 * When !on_rq, vruntime of the task has usually NOT been normalized. 10027 * But there are some cases where it has already been normalized: 10028 * 10029 * - A forked child which is waiting for being woken up by 10030 * wake_up_new_task(). 10031 * - A task which has been woken up by try_to_wake_up() and 10032 * waiting for actually being woken up by sched_ttwu_pending(). 10033 */ 10034 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 10035 return true; 10036 10037 return false; 10038 } 10039 10040 #ifdef CONFIG_FAIR_GROUP_SCHED 10041 /* 10042 * Propagate the changes of the sched_entity across the tg tree to make it 10043 * visible to the root 10044 */ 10045 static void propagate_entity_cfs_rq(struct sched_entity *se) 10046 { 10047 struct cfs_rq *cfs_rq; 10048 10049 /* Start to propagate at parent */ 10050 se = se->parent; 10051 10052 for_each_sched_entity(se) { 10053 cfs_rq = cfs_rq_of(se); 10054 10055 if (cfs_rq_throttled(cfs_rq)) 10056 break; 10057 10058 update_load_avg(cfs_rq, se, UPDATE_TG); 10059 } 10060 } 10061 #else 10062 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10063 #endif 10064 10065 static void detach_entity_cfs_rq(struct sched_entity *se) 10066 { 10067 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10068 10069 /* Catch up with the cfs_rq and remove our load when we leave */ 10070 update_load_avg(cfs_rq, se, 0); 10071 detach_entity_load_avg(cfs_rq, se); 10072 update_tg_load_avg(cfs_rq, false); 10073 propagate_entity_cfs_rq(se); 10074 } 10075 10076 static void attach_entity_cfs_rq(struct sched_entity *se) 10077 { 10078 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10079 10080 #ifdef CONFIG_FAIR_GROUP_SCHED 10081 /* 10082 * Since the real-depth could have been changed (only FAIR 10083 * class maintain depth value), reset depth properly. 10084 */ 10085 se->depth = se->parent ? se->parent->depth + 1 : 0; 10086 #endif 10087 10088 /* Synchronize entity with its cfs_rq */ 10089 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10090 attach_entity_load_avg(cfs_rq, se, 0); 10091 update_tg_load_avg(cfs_rq, false); 10092 propagate_entity_cfs_rq(se); 10093 } 10094 10095 static void detach_task_cfs_rq(struct task_struct *p) 10096 { 10097 struct sched_entity *se = &p->se; 10098 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10099 10100 if (!vruntime_normalized(p)) { 10101 /* 10102 * Fix up our vruntime so that the current sleep doesn't 10103 * cause 'unlimited' sleep bonus. 10104 */ 10105 place_entity(cfs_rq, se, 0); 10106 se->vruntime -= cfs_rq->min_vruntime; 10107 } 10108 10109 detach_entity_cfs_rq(se); 10110 } 10111 10112 static void attach_task_cfs_rq(struct task_struct *p) 10113 { 10114 struct sched_entity *se = &p->se; 10115 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10116 10117 attach_entity_cfs_rq(se); 10118 10119 if (!vruntime_normalized(p)) 10120 se->vruntime += cfs_rq->min_vruntime; 10121 } 10122 10123 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10124 { 10125 detach_task_cfs_rq(p); 10126 } 10127 10128 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10129 { 10130 attach_task_cfs_rq(p); 10131 10132 if (task_on_rq_queued(p)) { 10133 /* 10134 * We were most likely switched from sched_rt, so 10135 * kick off the schedule if running, otherwise just see 10136 * if we can still preempt the current task. 10137 */ 10138 if (rq->curr == p) 10139 resched_curr(rq); 10140 else 10141 check_preempt_curr(rq, p, 0); 10142 } 10143 } 10144 10145 /* Account for a task changing its policy or group. 10146 * 10147 * This routine is mostly called to set cfs_rq->curr field when a task 10148 * migrates between groups/classes. 10149 */ 10150 static void set_curr_task_fair(struct rq *rq) 10151 { 10152 struct sched_entity *se = &rq->curr->se; 10153 10154 for_each_sched_entity(se) { 10155 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10156 10157 set_next_entity(cfs_rq, se); 10158 /* ensure bandwidth has been allocated on our new cfs_rq */ 10159 account_cfs_rq_runtime(cfs_rq, 0); 10160 } 10161 } 10162 10163 void init_cfs_rq(struct cfs_rq *cfs_rq) 10164 { 10165 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10166 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10167 #ifndef CONFIG_64BIT 10168 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10169 #endif 10170 #ifdef CONFIG_SMP 10171 raw_spin_lock_init(&cfs_rq->removed.lock); 10172 #endif 10173 } 10174 10175 #ifdef CONFIG_FAIR_GROUP_SCHED 10176 static void task_set_group_fair(struct task_struct *p) 10177 { 10178 struct sched_entity *se = &p->se; 10179 10180 set_task_rq(p, task_cpu(p)); 10181 se->depth = se->parent ? se->parent->depth + 1 : 0; 10182 } 10183 10184 static void task_move_group_fair(struct task_struct *p) 10185 { 10186 detach_task_cfs_rq(p); 10187 set_task_rq(p, task_cpu(p)); 10188 10189 #ifdef CONFIG_SMP 10190 /* Tell se's cfs_rq has been changed -- migrated */ 10191 p->se.avg.last_update_time = 0; 10192 #endif 10193 attach_task_cfs_rq(p); 10194 } 10195 10196 static void task_change_group_fair(struct task_struct *p, int type) 10197 { 10198 switch (type) { 10199 case TASK_SET_GROUP: 10200 task_set_group_fair(p); 10201 break; 10202 10203 case TASK_MOVE_GROUP: 10204 task_move_group_fair(p); 10205 break; 10206 } 10207 } 10208 10209 void free_fair_sched_group(struct task_group *tg) 10210 { 10211 int i; 10212 10213 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10214 10215 for_each_possible_cpu(i) { 10216 if (tg->cfs_rq) 10217 kfree(tg->cfs_rq[i]); 10218 if (tg->se) 10219 kfree(tg->se[i]); 10220 } 10221 10222 kfree(tg->cfs_rq); 10223 kfree(tg->se); 10224 } 10225 10226 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10227 { 10228 struct sched_entity *se; 10229 struct cfs_rq *cfs_rq; 10230 int i; 10231 10232 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 10233 if (!tg->cfs_rq) 10234 goto err; 10235 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 10236 if (!tg->se) 10237 goto err; 10238 10239 tg->shares = NICE_0_LOAD; 10240 10241 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10242 10243 for_each_possible_cpu(i) { 10244 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10245 GFP_KERNEL, cpu_to_node(i)); 10246 if (!cfs_rq) 10247 goto err; 10248 10249 se = kzalloc_node(sizeof(struct sched_entity), 10250 GFP_KERNEL, cpu_to_node(i)); 10251 if (!se) 10252 goto err_free_rq; 10253 10254 init_cfs_rq(cfs_rq); 10255 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10256 init_entity_runnable_average(se); 10257 } 10258 10259 return 1; 10260 10261 err_free_rq: 10262 kfree(cfs_rq); 10263 err: 10264 return 0; 10265 } 10266 10267 void online_fair_sched_group(struct task_group *tg) 10268 { 10269 struct sched_entity *se; 10270 struct rq *rq; 10271 int i; 10272 10273 for_each_possible_cpu(i) { 10274 rq = cpu_rq(i); 10275 se = tg->se[i]; 10276 10277 raw_spin_lock_irq(&rq->lock); 10278 update_rq_clock(rq); 10279 attach_entity_cfs_rq(se); 10280 sync_throttle(tg, i); 10281 raw_spin_unlock_irq(&rq->lock); 10282 } 10283 } 10284 10285 void unregister_fair_sched_group(struct task_group *tg) 10286 { 10287 unsigned long flags; 10288 struct rq *rq; 10289 int cpu; 10290 10291 for_each_possible_cpu(cpu) { 10292 if (tg->se[cpu]) 10293 remove_entity_load_avg(tg->se[cpu]); 10294 10295 /* 10296 * Only empty task groups can be destroyed; so we can speculatively 10297 * check on_list without danger of it being re-added. 10298 */ 10299 if (!tg->cfs_rq[cpu]->on_list) 10300 continue; 10301 10302 rq = cpu_rq(cpu); 10303 10304 raw_spin_lock_irqsave(&rq->lock, flags); 10305 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 10306 raw_spin_unlock_irqrestore(&rq->lock, flags); 10307 } 10308 } 10309 10310 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 10311 struct sched_entity *se, int cpu, 10312 struct sched_entity *parent) 10313 { 10314 struct rq *rq = cpu_rq(cpu); 10315 10316 cfs_rq->tg = tg; 10317 cfs_rq->rq = rq; 10318 init_cfs_rq_runtime(cfs_rq); 10319 10320 tg->cfs_rq[cpu] = cfs_rq; 10321 tg->se[cpu] = se; 10322 10323 /* se could be NULL for root_task_group */ 10324 if (!se) 10325 return; 10326 10327 if (!parent) { 10328 se->cfs_rq = &rq->cfs; 10329 se->depth = 0; 10330 } else { 10331 se->cfs_rq = parent->my_q; 10332 se->depth = parent->depth + 1; 10333 } 10334 10335 se->my_q = cfs_rq; 10336 /* guarantee group entities always have weight */ 10337 update_load_set(&se->load, NICE_0_LOAD); 10338 se->parent = parent; 10339 } 10340 10341 static DEFINE_MUTEX(shares_mutex); 10342 10343 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 10344 { 10345 int i; 10346 10347 /* 10348 * We can't change the weight of the root cgroup. 10349 */ 10350 if (!tg->se[0]) 10351 return -EINVAL; 10352 10353 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 10354 10355 mutex_lock(&shares_mutex); 10356 if (tg->shares == shares) 10357 goto done; 10358 10359 tg->shares = shares; 10360 for_each_possible_cpu(i) { 10361 struct rq *rq = cpu_rq(i); 10362 struct sched_entity *se = tg->se[i]; 10363 struct rq_flags rf; 10364 10365 /* Propagate contribution to hierarchy */ 10366 rq_lock_irqsave(rq, &rf); 10367 update_rq_clock(rq); 10368 for_each_sched_entity(se) { 10369 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 10370 update_cfs_group(se); 10371 } 10372 rq_unlock_irqrestore(rq, &rf); 10373 } 10374 10375 done: 10376 mutex_unlock(&shares_mutex); 10377 return 0; 10378 } 10379 #else /* CONFIG_FAIR_GROUP_SCHED */ 10380 10381 void free_fair_sched_group(struct task_group *tg) { } 10382 10383 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10384 { 10385 return 1; 10386 } 10387 10388 void online_fair_sched_group(struct task_group *tg) { } 10389 10390 void unregister_fair_sched_group(struct task_group *tg) { } 10391 10392 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10393 10394 10395 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10396 { 10397 struct sched_entity *se = &task->se; 10398 unsigned int rr_interval = 0; 10399 10400 /* 10401 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10402 * idle runqueue: 10403 */ 10404 if (rq->cfs.load.weight) 10405 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10406 10407 return rr_interval; 10408 } 10409 10410 /* 10411 * All the scheduling class methods: 10412 */ 10413 const struct sched_class fair_sched_class = { 10414 .next = &idle_sched_class, 10415 .enqueue_task = enqueue_task_fair, 10416 .dequeue_task = dequeue_task_fair, 10417 .yield_task = yield_task_fair, 10418 .yield_to_task = yield_to_task_fair, 10419 10420 .check_preempt_curr = check_preempt_wakeup, 10421 10422 .pick_next_task = pick_next_task_fair, 10423 .put_prev_task = put_prev_task_fair, 10424 10425 #ifdef CONFIG_SMP 10426 .select_task_rq = select_task_rq_fair, 10427 .migrate_task_rq = migrate_task_rq_fair, 10428 10429 .rq_online = rq_online_fair, 10430 .rq_offline = rq_offline_fair, 10431 10432 .task_dead = task_dead_fair, 10433 .set_cpus_allowed = set_cpus_allowed_common, 10434 #endif 10435 10436 .set_curr_task = set_curr_task_fair, 10437 .task_tick = task_tick_fair, 10438 .task_fork = task_fork_fair, 10439 10440 .prio_changed = prio_changed_fair, 10441 .switched_from = switched_from_fair, 10442 .switched_to = switched_to_fair, 10443 10444 .get_rr_interval = get_rr_interval_fair, 10445 10446 .update_curr = update_curr_fair, 10447 10448 #ifdef CONFIG_FAIR_GROUP_SCHED 10449 .task_change_group = task_change_group_fair, 10450 #endif 10451 }; 10452 10453 #ifdef CONFIG_SCHED_DEBUG 10454 void print_cfs_stats(struct seq_file *m, int cpu) 10455 { 10456 struct cfs_rq *cfs_rq, *pos; 10457 10458 rcu_read_lock(); 10459 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10460 print_cfs_rq(m, cpu, cfs_rq); 10461 rcu_read_unlock(); 10462 } 10463 10464 #ifdef CONFIG_NUMA_BALANCING 10465 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10466 { 10467 int node; 10468 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10469 10470 for_each_online_node(node) { 10471 if (p->numa_faults) { 10472 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10473 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10474 } 10475 if (p->numa_group) { 10476 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 10477 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10478 } 10479 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10480 } 10481 } 10482 #endif /* CONFIG_NUMA_BALANCING */ 10483 #endif /* CONFIG_SCHED_DEBUG */ 10484 10485 __init void init_sched_fair_class(void) 10486 { 10487 #ifdef CONFIG_SMP 10488 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10489 10490 #ifdef CONFIG_NO_HZ_COMMON 10491 nohz.next_balance = jiffies; 10492 nohz.next_blocked = jiffies; 10493 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10494 #endif 10495 #endif /* SMP */ 10496 10497 } 10498