1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include <linux/sched/cond_resched.h> 55 56 #include "sched.h" 57 #include "stats.h" 58 #include "autogroup.h" 59 60 /* 61 * The initial- and re-scaling of tunables is configurable 62 * 63 * Options are: 64 * 65 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 66 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 67 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 68 * 69 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 70 */ 71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 72 73 /* 74 * Minimal preemption granularity for CPU-bound tasks: 75 * 76 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 77 */ 78 unsigned int sysctl_sched_base_slice = 750000ULL; 79 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 80 81 /* 82 * After fork, child runs first. If set to 0 (default) then 83 * parent will (try to) run first. 84 */ 85 unsigned int sysctl_sched_child_runs_first __read_mostly; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 int sched_thermal_decay_shift; 90 static int __init setup_sched_thermal_decay_shift(char *str) 91 { 92 int _shift = 0; 93 94 if (kstrtoint(str, 0, &_shift)) 95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 96 97 sched_thermal_decay_shift = clamp(_shift, 0, 10); 98 return 1; 99 } 100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 101 102 #ifdef CONFIG_SMP 103 /* 104 * For asym packing, by default the lower numbered CPU has higher priority. 105 */ 106 int __weak arch_asym_cpu_priority(int cpu) 107 { 108 return -cpu; 109 } 110 111 /* 112 * The margin used when comparing utilization with CPU capacity. 113 * 114 * (default: ~20%) 115 */ 116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 117 118 /* 119 * The margin used when comparing CPU capacities. 120 * is 'cap1' noticeably greater than 'cap2' 121 * 122 * (default: ~5%) 123 */ 124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 125 #endif 126 127 #ifdef CONFIG_CFS_BANDWIDTH 128 /* 129 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 130 * each time a cfs_rq requests quota. 131 * 132 * Note: in the case that the slice exceeds the runtime remaining (either due 133 * to consumption or the quota being specified to be smaller than the slice) 134 * we will always only issue the remaining available time. 135 * 136 * (default: 5 msec, units: microseconds) 137 */ 138 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 139 #endif 140 141 #ifdef CONFIG_NUMA_BALANCING 142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 144 #endif 145 146 #ifdef CONFIG_SYSCTL 147 static struct ctl_table sched_fair_sysctls[] = { 148 { 149 .procname = "sched_child_runs_first", 150 .data = &sysctl_sched_child_runs_first, 151 .maxlen = sizeof(unsigned int), 152 .mode = 0644, 153 .proc_handler = proc_dointvec, 154 }, 155 #ifdef CONFIG_CFS_BANDWIDTH 156 { 157 .procname = "sched_cfs_bandwidth_slice_us", 158 .data = &sysctl_sched_cfs_bandwidth_slice, 159 .maxlen = sizeof(unsigned int), 160 .mode = 0644, 161 .proc_handler = proc_dointvec_minmax, 162 .extra1 = SYSCTL_ONE, 163 }, 164 #endif 165 #ifdef CONFIG_NUMA_BALANCING 166 { 167 .procname = "numa_balancing_promote_rate_limit_MBps", 168 .data = &sysctl_numa_balancing_promote_rate_limit, 169 .maxlen = sizeof(unsigned int), 170 .mode = 0644, 171 .proc_handler = proc_dointvec_minmax, 172 .extra1 = SYSCTL_ZERO, 173 }, 174 #endif /* CONFIG_NUMA_BALANCING */ 175 {} 176 }; 177 178 static int __init sched_fair_sysctl_init(void) 179 { 180 register_sysctl_init("kernel", sched_fair_sysctls); 181 return 0; 182 } 183 late_initcall(sched_fair_sysctl_init); 184 #endif 185 186 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 187 { 188 lw->weight += inc; 189 lw->inv_weight = 0; 190 } 191 192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 193 { 194 lw->weight -= dec; 195 lw->inv_weight = 0; 196 } 197 198 static inline void update_load_set(struct load_weight *lw, unsigned long w) 199 { 200 lw->weight = w; 201 lw->inv_weight = 0; 202 } 203 204 /* 205 * Increase the granularity value when there are more CPUs, 206 * because with more CPUs the 'effective latency' as visible 207 * to users decreases. But the relationship is not linear, 208 * so pick a second-best guess by going with the log2 of the 209 * number of CPUs. 210 * 211 * This idea comes from the SD scheduler of Con Kolivas: 212 */ 213 static unsigned int get_update_sysctl_factor(void) 214 { 215 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 216 unsigned int factor; 217 218 switch (sysctl_sched_tunable_scaling) { 219 case SCHED_TUNABLESCALING_NONE: 220 factor = 1; 221 break; 222 case SCHED_TUNABLESCALING_LINEAR: 223 factor = cpus; 224 break; 225 case SCHED_TUNABLESCALING_LOG: 226 default: 227 factor = 1 + ilog2(cpus); 228 break; 229 } 230 231 return factor; 232 } 233 234 static void update_sysctl(void) 235 { 236 unsigned int factor = get_update_sysctl_factor(); 237 238 #define SET_SYSCTL(name) \ 239 (sysctl_##name = (factor) * normalized_sysctl_##name) 240 SET_SYSCTL(sched_base_slice); 241 #undef SET_SYSCTL 242 } 243 244 void __init sched_init_granularity(void) 245 { 246 update_sysctl(); 247 } 248 249 #define WMULT_CONST (~0U) 250 #define WMULT_SHIFT 32 251 252 static void __update_inv_weight(struct load_weight *lw) 253 { 254 unsigned long w; 255 256 if (likely(lw->inv_weight)) 257 return; 258 259 w = scale_load_down(lw->weight); 260 261 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 262 lw->inv_weight = 1; 263 else if (unlikely(!w)) 264 lw->inv_weight = WMULT_CONST; 265 else 266 lw->inv_weight = WMULT_CONST / w; 267 } 268 269 /* 270 * delta_exec * weight / lw.weight 271 * OR 272 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 273 * 274 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 275 * we're guaranteed shift stays positive because inv_weight is guaranteed to 276 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 277 * 278 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 279 * weight/lw.weight <= 1, and therefore our shift will also be positive. 280 */ 281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 282 { 283 u64 fact = scale_load_down(weight); 284 u32 fact_hi = (u32)(fact >> 32); 285 int shift = WMULT_SHIFT; 286 int fs; 287 288 __update_inv_weight(lw); 289 290 if (unlikely(fact_hi)) { 291 fs = fls(fact_hi); 292 shift -= fs; 293 fact >>= fs; 294 } 295 296 fact = mul_u32_u32(fact, lw->inv_weight); 297 298 fact_hi = (u32)(fact >> 32); 299 if (fact_hi) { 300 fs = fls(fact_hi); 301 shift -= fs; 302 fact >>= fs; 303 } 304 305 return mul_u64_u32_shr(delta_exec, fact, shift); 306 } 307 308 /* 309 * delta /= w 310 */ 311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 312 { 313 if (unlikely(se->load.weight != NICE_0_LOAD)) 314 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 315 316 return delta; 317 } 318 319 const struct sched_class fair_sched_class; 320 321 /************************************************************** 322 * CFS operations on generic schedulable entities: 323 */ 324 325 #ifdef CONFIG_FAIR_GROUP_SCHED 326 327 /* Walk up scheduling entities hierarchy */ 328 #define for_each_sched_entity(se) \ 329 for (; se; se = se->parent) 330 331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 332 { 333 struct rq *rq = rq_of(cfs_rq); 334 int cpu = cpu_of(rq); 335 336 if (cfs_rq->on_list) 337 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 338 339 cfs_rq->on_list = 1; 340 341 /* 342 * Ensure we either appear before our parent (if already 343 * enqueued) or force our parent to appear after us when it is 344 * enqueued. The fact that we always enqueue bottom-up 345 * reduces this to two cases and a special case for the root 346 * cfs_rq. Furthermore, it also means that we will always reset 347 * tmp_alone_branch either when the branch is connected 348 * to a tree or when we reach the top of the tree 349 */ 350 if (cfs_rq->tg->parent && 351 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 352 /* 353 * If parent is already on the list, we add the child 354 * just before. Thanks to circular linked property of 355 * the list, this means to put the child at the tail 356 * of the list that starts by parent. 357 */ 358 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 359 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 360 /* 361 * The branch is now connected to its tree so we can 362 * reset tmp_alone_branch to the beginning of the 363 * list. 364 */ 365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 366 return true; 367 } 368 369 if (!cfs_rq->tg->parent) { 370 /* 371 * cfs rq without parent should be put 372 * at the tail of the list. 373 */ 374 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 375 &rq->leaf_cfs_rq_list); 376 /* 377 * We have reach the top of a tree so we can reset 378 * tmp_alone_branch to the beginning of the list. 379 */ 380 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 381 return true; 382 } 383 384 /* 385 * The parent has not already been added so we want to 386 * make sure that it will be put after us. 387 * tmp_alone_branch points to the begin of the branch 388 * where we will add parent. 389 */ 390 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 391 /* 392 * update tmp_alone_branch to points to the new begin 393 * of the branch 394 */ 395 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 396 return false; 397 } 398 399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 400 { 401 if (cfs_rq->on_list) { 402 struct rq *rq = rq_of(cfs_rq); 403 404 /* 405 * With cfs_rq being unthrottled/throttled during an enqueue, 406 * it can happen the tmp_alone_branch points the a leaf that 407 * we finally want to del. In this case, tmp_alone_branch moves 408 * to the prev element but it will point to rq->leaf_cfs_rq_list 409 * at the end of the enqueue. 410 */ 411 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 412 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 413 414 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 415 cfs_rq->on_list = 0; 416 } 417 } 418 419 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 420 { 421 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 422 } 423 424 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 426 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 427 leaf_cfs_rq_list) 428 429 /* Do the two (enqueued) entities belong to the same group ? */ 430 static inline struct cfs_rq * 431 is_same_group(struct sched_entity *se, struct sched_entity *pse) 432 { 433 if (se->cfs_rq == pse->cfs_rq) 434 return se->cfs_rq; 435 436 return NULL; 437 } 438 439 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 440 { 441 return se->parent; 442 } 443 444 static void 445 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 446 { 447 int se_depth, pse_depth; 448 449 /* 450 * preemption test can be made between sibling entities who are in the 451 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 452 * both tasks until we find their ancestors who are siblings of common 453 * parent. 454 */ 455 456 /* First walk up until both entities are at same depth */ 457 se_depth = (*se)->depth; 458 pse_depth = (*pse)->depth; 459 460 while (se_depth > pse_depth) { 461 se_depth--; 462 *se = parent_entity(*se); 463 } 464 465 while (pse_depth > se_depth) { 466 pse_depth--; 467 *pse = parent_entity(*pse); 468 } 469 470 while (!is_same_group(*se, *pse)) { 471 *se = parent_entity(*se); 472 *pse = parent_entity(*pse); 473 } 474 } 475 476 static int tg_is_idle(struct task_group *tg) 477 { 478 return tg->idle > 0; 479 } 480 481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 482 { 483 return cfs_rq->idle > 0; 484 } 485 486 static int se_is_idle(struct sched_entity *se) 487 { 488 if (entity_is_task(se)) 489 return task_has_idle_policy(task_of(se)); 490 return cfs_rq_is_idle(group_cfs_rq(se)); 491 } 492 493 #else /* !CONFIG_FAIR_GROUP_SCHED */ 494 495 #define for_each_sched_entity(se) \ 496 for (; se; se = NULL) 497 498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 499 { 500 return true; 501 } 502 503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 504 { 505 } 506 507 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 508 { 509 } 510 511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 512 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 513 514 static inline struct sched_entity *parent_entity(struct sched_entity *se) 515 { 516 return NULL; 517 } 518 519 static inline void 520 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 521 { 522 } 523 524 static inline int tg_is_idle(struct task_group *tg) 525 { 526 return 0; 527 } 528 529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 530 { 531 return 0; 532 } 533 534 static int se_is_idle(struct sched_entity *se) 535 { 536 return 0; 537 } 538 539 #endif /* CONFIG_FAIR_GROUP_SCHED */ 540 541 static __always_inline 542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 543 544 /************************************************************** 545 * Scheduling class tree data structure manipulation methods: 546 */ 547 548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 549 { 550 s64 delta = (s64)(vruntime - max_vruntime); 551 if (delta > 0) 552 max_vruntime = vruntime; 553 554 return max_vruntime; 555 } 556 557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 558 { 559 s64 delta = (s64)(vruntime - min_vruntime); 560 if (delta < 0) 561 min_vruntime = vruntime; 562 563 return min_vruntime; 564 } 565 566 static inline bool entity_before(const struct sched_entity *a, 567 const struct sched_entity *b) 568 { 569 return (s64)(a->vruntime - b->vruntime) < 0; 570 } 571 572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 573 { 574 return (s64)(se->vruntime - cfs_rq->min_vruntime); 575 } 576 577 #define __node_2_se(node) \ 578 rb_entry((node), struct sched_entity, run_node) 579 580 /* 581 * Compute virtual time from the per-task service numbers: 582 * 583 * Fair schedulers conserve lag: 584 * 585 * \Sum lag_i = 0 586 * 587 * Where lag_i is given by: 588 * 589 * lag_i = S - s_i = w_i * (V - v_i) 590 * 591 * Where S is the ideal service time and V is it's virtual time counterpart. 592 * Therefore: 593 * 594 * \Sum lag_i = 0 595 * \Sum w_i * (V - v_i) = 0 596 * \Sum w_i * V - w_i * v_i = 0 597 * 598 * From which we can solve an expression for V in v_i (which we have in 599 * se->vruntime): 600 * 601 * \Sum v_i * w_i \Sum v_i * w_i 602 * V = -------------- = -------------- 603 * \Sum w_i W 604 * 605 * Specifically, this is the weighted average of all entity virtual runtimes. 606 * 607 * [[ NOTE: this is only equal to the ideal scheduler under the condition 608 * that join/leave operations happen at lag_i = 0, otherwise the 609 * virtual time has non-continguous motion equivalent to: 610 * 611 * V +-= lag_i / W 612 * 613 * Also see the comment in place_entity() that deals with this. ]] 614 * 615 * However, since v_i is u64, and the multiplcation could easily overflow 616 * transform it into a relative form that uses smaller quantities: 617 * 618 * Substitute: v_i == (v_i - v0) + v0 619 * 620 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 621 * V = ---------------------------- = --------------------- + v0 622 * W W 623 * 624 * Which we track using: 625 * 626 * v0 := cfs_rq->min_vruntime 627 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 628 * \Sum w_i := cfs_rq->avg_load 629 * 630 * Since min_vruntime is a monotonic increasing variable that closely tracks 631 * the per-task service, these deltas: (v_i - v), will be in the order of the 632 * maximal (virtual) lag induced in the system due to quantisation. 633 * 634 * Also, we use scale_load_down() to reduce the size. 635 * 636 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 637 */ 638 static void 639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 640 { 641 unsigned long weight = scale_load_down(se->load.weight); 642 s64 key = entity_key(cfs_rq, se); 643 644 cfs_rq->avg_vruntime += key * weight; 645 cfs_rq->avg_load += weight; 646 } 647 648 static void 649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 650 { 651 unsigned long weight = scale_load_down(se->load.weight); 652 s64 key = entity_key(cfs_rq, se); 653 654 cfs_rq->avg_vruntime -= key * weight; 655 cfs_rq->avg_load -= weight; 656 } 657 658 static inline 659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 660 { 661 /* 662 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 663 */ 664 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 665 } 666 667 /* 668 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 669 * For this to be so, the result of this function must have a left bias. 670 */ 671 u64 avg_vruntime(struct cfs_rq *cfs_rq) 672 { 673 struct sched_entity *curr = cfs_rq->curr; 674 s64 avg = cfs_rq->avg_vruntime; 675 long load = cfs_rq->avg_load; 676 677 if (curr && curr->on_rq) { 678 unsigned long weight = scale_load_down(curr->load.weight); 679 680 avg += entity_key(cfs_rq, curr) * weight; 681 load += weight; 682 } 683 684 if (load) { 685 /* sign flips effective floor / ceil */ 686 if (avg < 0) 687 avg -= (load - 1); 688 avg = div_s64(avg, load); 689 } 690 691 return cfs_rq->min_vruntime + avg; 692 } 693 694 /* 695 * lag_i = S - s_i = w_i * (V - v_i) 696 * 697 * However, since V is approximated by the weighted average of all entities it 698 * is possible -- by addition/removal/reweight to the tree -- to move V around 699 * and end up with a larger lag than we started with. 700 * 701 * Limit this to either double the slice length with a minimum of TICK_NSEC 702 * since that is the timing granularity. 703 * 704 * EEVDF gives the following limit for a steady state system: 705 * 706 * -r_max < lag < max(r_max, q) 707 * 708 * XXX could add max_slice to the augmented data to track this. 709 */ 710 static s64 entity_lag(u64 avruntime, struct sched_entity *se) 711 { 712 s64 vlag, limit; 713 714 vlag = avruntime - se->vruntime; 715 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 716 717 return clamp(vlag, -limit, limit); 718 } 719 720 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 721 { 722 SCHED_WARN_ON(!se->on_rq); 723 724 se->vlag = entity_lag(avg_vruntime(cfs_rq), se); 725 } 726 727 /* 728 * Entity is eligible once it received less service than it ought to have, 729 * eg. lag >= 0. 730 * 731 * lag_i = S - s_i = w_i*(V - v_i) 732 * 733 * lag_i >= 0 -> V >= v_i 734 * 735 * \Sum (v_i - v)*w_i 736 * V = ------------------ + v 737 * \Sum w_i 738 * 739 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 740 * 741 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due 742 * to the loss in precision caused by the division. 743 */ 744 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 745 { 746 struct sched_entity *curr = cfs_rq->curr; 747 s64 avg = cfs_rq->avg_vruntime; 748 long load = cfs_rq->avg_load; 749 750 if (curr && curr->on_rq) { 751 unsigned long weight = scale_load_down(curr->load.weight); 752 753 avg += entity_key(cfs_rq, curr) * weight; 754 load += weight; 755 } 756 757 return avg >= entity_key(cfs_rq, se) * load; 758 } 759 760 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 761 { 762 u64 min_vruntime = cfs_rq->min_vruntime; 763 /* 764 * open coded max_vruntime() to allow updating avg_vruntime 765 */ 766 s64 delta = (s64)(vruntime - min_vruntime); 767 if (delta > 0) { 768 avg_vruntime_update(cfs_rq, delta); 769 min_vruntime = vruntime; 770 } 771 return min_vruntime; 772 } 773 774 static void update_min_vruntime(struct cfs_rq *cfs_rq) 775 { 776 struct sched_entity *se = __pick_first_entity(cfs_rq); 777 struct sched_entity *curr = cfs_rq->curr; 778 779 u64 vruntime = cfs_rq->min_vruntime; 780 781 if (curr) { 782 if (curr->on_rq) 783 vruntime = curr->vruntime; 784 else 785 curr = NULL; 786 } 787 788 if (se) { 789 if (!curr) 790 vruntime = se->vruntime; 791 else 792 vruntime = min_vruntime(vruntime, se->vruntime); 793 } 794 795 /* ensure we never gain time by being placed backwards. */ 796 u64_u32_store(cfs_rq->min_vruntime, 797 __update_min_vruntime(cfs_rq, vruntime)); 798 } 799 800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 801 { 802 return entity_before(__node_2_se(a), __node_2_se(b)); 803 } 804 805 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 806 807 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node) 808 { 809 if (node) { 810 struct sched_entity *rse = __node_2_se(node); 811 if (deadline_gt(min_deadline, se, rse)) 812 se->min_deadline = rse->min_deadline; 813 } 814 } 815 816 /* 817 * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline) 818 */ 819 static inline bool min_deadline_update(struct sched_entity *se, bool exit) 820 { 821 u64 old_min_deadline = se->min_deadline; 822 struct rb_node *node = &se->run_node; 823 824 se->min_deadline = se->deadline; 825 __update_min_deadline(se, node->rb_right); 826 __update_min_deadline(se, node->rb_left); 827 828 return se->min_deadline == old_min_deadline; 829 } 830 831 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity, 832 run_node, min_deadline, min_deadline_update); 833 834 /* 835 * Enqueue an entity into the rb-tree: 836 */ 837 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 838 { 839 avg_vruntime_add(cfs_rq, se); 840 se->min_deadline = se->deadline; 841 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 842 __entity_less, &min_deadline_cb); 843 } 844 845 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 846 { 847 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 848 &min_deadline_cb); 849 avg_vruntime_sub(cfs_rq, se); 850 } 851 852 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 853 { 854 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 855 856 if (!left) 857 return NULL; 858 859 return __node_2_se(left); 860 } 861 862 /* 863 * Earliest Eligible Virtual Deadline First 864 * 865 * In order to provide latency guarantees for different request sizes 866 * EEVDF selects the best runnable task from two criteria: 867 * 868 * 1) the task must be eligible (must be owed service) 869 * 870 * 2) from those tasks that meet 1), we select the one 871 * with the earliest virtual deadline. 872 * 873 * We can do this in O(log n) time due to an augmented RB-tree. The 874 * tree keeps the entries sorted on service, but also functions as a 875 * heap based on the deadline by keeping: 876 * 877 * se->min_deadline = min(se->deadline, se->{left,right}->min_deadline) 878 * 879 * Which allows an EDF like search on (sub)trees. 880 */ 881 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq) 882 { 883 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 884 struct sched_entity *curr = cfs_rq->curr; 885 struct sched_entity *best = NULL; 886 struct sched_entity *best_left = NULL; 887 888 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 889 curr = NULL; 890 best = curr; 891 892 /* 893 * Once selected, run a task until it either becomes non-eligible or 894 * until it gets a new slice. See the HACK in set_next_entity(). 895 */ 896 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 897 return curr; 898 899 while (node) { 900 struct sched_entity *se = __node_2_se(node); 901 902 /* 903 * If this entity is not eligible, try the left subtree. 904 */ 905 if (!entity_eligible(cfs_rq, se)) { 906 node = node->rb_left; 907 continue; 908 } 909 910 /* 911 * Now we heap search eligible trees for the best (min_)deadline 912 */ 913 if (!best || deadline_gt(deadline, best, se)) 914 best = se; 915 916 /* 917 * Every se in a left branch is eligible, keep track of the 918 * branch with the best min_deadline 919 */ 920 if (node->rb_left) { 921 struct sched_entity *left = __node_2_se(node->rb_left); 922 923 if (!best_left || deadline_gt(min_deadline, best_left, left)) 924 best_left = left; 925 926 /* 927 * min_deadline is in the left branch. rb_left and all 928 * descendants are eligible, so immediately switch to the second 929 * loop. 930 */ 931 if (left->min_deadline == se->min_deadline) 932 break; 933 } 934 935 /* min_deadline is at this node, no need to look right */ 936 if (se->deadline == se->min_deadline) 937 break; 938 939 /* else min_deadline is in the right branch. */ 940 node = node->rb_right; 941 } 942 943 /* 944 * We ran into an eligible node which is itself the best. 945 * (Or nr_running == 0 and both are NULL) 946 */ 947 if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0) 948 return best; 949 950 /* 951 * Now best_left and all of its children are eligible, and we are just 952 * looking for deadline == min_deadline 953 */ 954 node = &best_left->run_node; 955 while (node) { 956 struct sched_entity *se = __node_2_se(node); 957 958 /* min_deadline is the current node */ 959 if (se->deadline == se->min_deadline) 960 return se; 961 962 /* min_deadline is in the left branch */ 963 if (node->rb_left && 964 __node_2_se(node->rb_left)->min_deadline == se->min_deadline) { 965 node = node->rb_left; 966 continue; 967 } 968 969 /* else min_deadline is in the right branch */ 970 node = node->rb_right; 971 } 972 return NULL; 973 } 974 975 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 976 { 977 struct sched_entity *se = __pick_eevdf(cfs_rq); 978 979 if (!se) { 980 struct sched_entity *left = __pick_first_entity(cfs_rq); 981 if (left) { 982 pr_err("EEVDF scheduling fail, picking leftmost\n"); 983 return left; 984 } 985 } 986 987 return se; 988 } 989 990 #ifdef CONFIG_SCHED_DEBUG 991 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 992 { 993 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 994 995 if (!last) 996 return NULL; 997 998 return __node_2_se(last); 999 } 1000 1001 /************************************************************** 1002 * Scheduling class statistics methods: 1003 */ 1004 #ifdef CONFIG_SMP 1005 int sched_update_scaling(void) 1006 { 1007 unsigned int factor = get_update_sysctl_factor(); 1008 1009 #define WRT_SYSCTL(name) \ 1010 (normalized_sysctl_##name = sysctl_##name / (factor)) 1011 WRT_SYSCTL(sched_base_slice); 1012 #undef WRT_SYSCTL 1013 1014 return 0; 1015 } 1016 #endif 1017 #endif 1018 1019 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1020 1021 /* 1022 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1023 * this is probably good enough. 1024 */ 1025 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1026 { 1027 if ((s64)(se->vruntime - se->deadline) < 0) 1028 return; 1029 1030 /* 1031 * For EEVDF the virtual time slope is determined by w_i (iow. 1032 * nice) while the request time r_i is determined by 1033 * sysctl_sched_base_slice. 1034 */ 1035 se->slice = sysctl_sched_base_slice; 1036 1037 /* 1038 * EEVDF: vd_i = ve_i + r_i / w_i 1039 */ 1040 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1041 1042 /* 1043 * The task has consumed its request, reschedule. 1044 */ 1045 if (cfs_rq->nr_running > 1) { 1046 resched_curr(rq_of(cfs_rq)); 1047 clear_buddies(cfs_rq, se); 1048 } 1049 } 1050 1051 #include "pelt.h" 1052 #ifdef CONFIG_SMP 1053 1054 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1055 static unsigned long task_h_load(struct task_struct *p); 1056 static unsigned long capacity_of(int cpu); 1057 1058 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1059 void init_entity_runnable_average(struct sched_entity *se) 1060 { 1061 struct sched_avg *sa = &se->avg; 1062 1063 memset(sa, 0, sizeof(*sa)); 1064 1065 /* 1066 * Tasks are initialized with full load to be seen as heavy tasks until 1067 * they get a chance to stabilize to their real load level. 1068 * Group entities are initialized with zero load to reflect the fact that 1069 * nothing has been attached to the task group yet. 1070 */ 1071 if (entity_is_task(se)) 1072 sa->load_avg = scale_load_down(se->load.weight); 1073 1074 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 1075 } 1076 1077 /* 1078 * With new tasks being created, their initial util_avgs are extrapolated 1079 * based on the cfs_rq's current util_avg: 1080 * 1081 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 1082 * 1083 * However, in many cases, the above util_avg does not give a desired 1084 * value. Moreover, the sum of the util_avgs may be divergent, such 1085 * as when the series is a harmonic series. 1086 * 1087 * To solve this problem, we also cap the util_avg of successive tasks to 1088 * only 1/2 of the left utilization budget: 1089 * 1090 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1091 * 1092 * where n denotes the nth task and cpu_scale the CPU capacity. 1093 * 1094 * For example, for a CPU with 1024 of capacity, a simplest series from 1095 * the beginning would be like: 1096 * 1097 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1098 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1099 * 1100 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1101 * if util_avg > util_avg_cap. 1102 */ 1103 void post_init_entity_util_avg(struct task_struct *p) 1104 { 1105 struct sched_entity *se = &p->se; 1106 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1107 struct sched_avg *sa = &se->avg; 1108 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1109 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1110 1111 if (p->sched_class != &fair_sched_class) { 1112 /* 1113 * For !fair tasks do: 1114 * 1115 update_cfs_rq_load_avg(now, cfs_rq); 1116 attach_entity_load_avg(cfs_rq, se); 1117 switched_from_fair(rq, p); 1118 * 1119 * such that the next switched_to_fair() has the 1120 * expected state. 1121 */ 1122 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1123 return; 1124 } 1125 1126 if (cap > 0) { 1127 if (cfs_rq->avg.util_avg != 0) { 1128 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 1129 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1130 1131 if (sa->util_avg > cap) 1132 sa->util_avg = cap; 1133 } else { 1134 sa->util_avg = cap; 1135 } 1136 } 1137 1138 sa->runnable_avg = sa->util_avg; 1139 } 1140 1141 #else /* !CONFIG_SMP */ 1142 void init_entity_runnable_average(struct sched_entity *se) 1143 { 1144 } 1145 void post_init_entity_util_avg(struct task_struct *p) 1146 { 1147 } 1148 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1149 { 1150 } 1151 #endif /* CONFIG_SMP */ 1152 1153 /* 1154 * Update the current task's runtime statistics. 1155 */ 1156 static void update_curr(struct cfs_rq *cfs_rq) 1157 { 1158 struct sched_entity *curr = cfs_rq->curr; 1159 u64 now = rq_clock_task(rq_of(cfs_rq)); 1160 u64 delta_exec; 1161 1162 if (unlikely(!curr)) 1163 return; 1164 1165 delta_exec = now - curr->exec_start; 1166 if (unlikely((s64)delta_exec <= 0)) 1167 return; 1168 1169 curr->exec_start = now; 1170 1171 if (schedstat_enabled()) { 1172 struct sched_statistics *stats; 1173 1174 stats = __schedstats_from_se(curr); 1175 __schedstat_set(stats->exec_max, 1176 max(delta_exec, stats->exec_max)); 1177 } 1178 1179 curr->sum_exec_runtime += delta_exec; 1180 schedstat_add(cfs_rq->exec_clock, delta_exec); 1181 1182 curr->vruntime += calc_delta_fair(delta_exec, curr); 1183 update_deadline(cfs_rq, curr); 1184 update_min_vruntime(cfs_rq); 1185 1186 if (entity_is_task(curr)) { 1187 struct task_struct *curtask = task_of(curr); 1188 1189 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 1190 cgroup_account_cputime(curtask, delta_exec); 1191 account_group_exec_runtime(curtask, delta_exec); 1192 } 1193 1194 account_cfs_rq_runtime(cfs_rq, delta_exec); 1195 } 1196 1197 static void update_curr_fair(struct rq *rq) 1198 { 1199 update_curr(cfs_rq_of(&rq->curr->se)); 1200 } 1201 1202 static inline void 1203 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1204 { 1205 struct sched_statistics *stats; 1206 struct task_struct *p = NULL; 1207 1208 if (!schedstat_enabled()) 1209 return; 1210 1211 stats = __schedstats_from_se(se); 1212 1213 if (entity_is_task(se)) 1214 p = task_of(se); 1215 1216 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1217 } 1218 1219 static inline void 1220 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1221 { 1222 struct sched_statistics *stats; 1223 struct task_struct *p = NULL; 1224 1225 if (!schedstat_enabled()) 1226 return; 1227 1228 stats = __schedstats_from_se(se); 1229 1230 /* 1231 * When the sched_schedstat changes from 0 to 1, some sched se 1232 * maybe already in the runqueue, the se->statistics.wait_start 1233 * will be 0.So it will let the delta wrong. We need to avoid this 1234 * scenario. 1235 */ 1236 if (unlikely(!schedstat_val(stats->wait_start))) 1237 return; 1238 1239 if (entity_is_task(se)) 1240 p = task_of(se); 1241 1242 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1243 } 1244 1245 static inline void 1246 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1247 { 1248 struct sched_statistics *stats; 1249 struct task_struct *tsk = NULL; 1250 1251 if (!schedstat_enabled()) 1252 return; 1253 1254 stats = __schedstats_from_se(se); 1255 1256 if (entity_is_task(se)) 1257 tsk = task_of(se); 1258 1259 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1260 } 1261 1262 /* 1263 * Task is being enqueued - update stats: 1264 */ 1265 static inline void 1266 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1267 { 1268 if (!schedstat_enabled()) 1269 return; 1270 1271 /* 1272 * Are we enqueueing a waiting task? (for current tasks 1273 * a dequeue/enqueue event is a NOP) 1274 */ 1275 if (se != cfs_rq->curr) 1276 update_stats_wait_start_fair(cfs_rq, se); 1277 1278 if (flags & ENQUEUE_WAKEUP) 1279 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1280 } 1281 1282 static inline void 1283 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1284 { 1285 1286 if (!schedstat_enabled()) 1287 return; 1288 1289 /* 1290 * Mark the end of the wait period if dequeueing a 1291 * waiting task: 1292 */ 1293 if (se != cfs_rq->curr) 1294 update_stats_wait_end_fair(cfs_rq, se); 1295 1296 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1297 struct task_struct *tsk = task_of(se); 1298 unsigned int state; 1299 1300 /* XXX racy against TTWU */ 1301 state = READ_ONCE(tsk->__state); 1302 if (state & TASK_INTERRUPTIBLE) 1303 __schedstat_set(tsk->stats.sleep_start, 1304 rq_clock(rq_of(cfs_rq))); 1305 if (state & TASK_UNINTERRUPTIBLE) 1306 __schedstat_set(tsk->stats.block_start, 1307 rq_clock(rq_of(cfs_rq))); 1308 } 1309 } 1310 1311 /* 1312 * We are picking a new current task - update its stats: 1313 */ 1314 static inline void 1315 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1316 { 1317 /* 1318 * We are starting a new run period: 1319 */ 1320 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1321 } 1322 1323 /************************************************** 1324 * Scheduling class queueing methods: 1325 */ 1326 1327 static inline bool is_core_idle(int cpu) 1328 { 1329 #ifdef CONFIG_SCHED_SMT 1330 int sibling; 1331 1332 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1333 if (cpu == sibling) 1334 continue; 1335 1336 if (!idle_cpu(sibling)) 1337 return false; 1338 } 1339 #endif 1340 1341 return true; 1342 } 1343 1344 #ifdef CONFIG_NUMA 1345 #define NUMA_IMBALANCE_MIN 2 1346 1347 static inline long 1348 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1349 { 1350 /* 1351 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1352 * threshold. Above this threshold, individual tasks may be contending 1353 * for both memory bandwidth and any shared HT resources. This is an 1354 * approximation as the number of running tasks may not be related to 1355 * the number of busy CPUs due to sched_setaffinity. 1356 */ 1357 if (dst_running > imb_numa_nr) 1358 return imbalance; 1359 1360 /* 1361 * Allow a small imbalance based on a simple pair of communicating 1362 * tasks that remain local when the destination is lightly loaded. 1363 */ 1364 if (imbalance <= NUMA_IMBALANCE_MIN) 1365 return 0; 1366 1367 return imbalance; 1368 } 1369 #endif /* CONFIG_NUMA */ 1370 1371 #ifdef CONFIG_NUMA_BALANCING 1372 /* 1373 * Approximate time to scan a full NUMA task in ms. The task scan period is 1374 * calculated based on the tasks virtual memory size and 1375 * numa_balancing_scan_size. 1376 */ 1377 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1378 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1379 1380 /* Portion of address space to scan in MB */ 1381 unsigned int sysctl_numa_balancing_scan_size = 256; 1382 1383 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1384 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1385 1386 /* The page with hint page fault latency < threshold in ms is considered hot */ 1387 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1388 1389 struct numa_group { 1390 refcount_t refcount; 1391 1392 spinlock_t lock; /* nr_tasks, tasks */ 1393 int nr_tasks; 1394 pid_t gid; 1395 int active_nodes; 1396 1397 struct rcu_head rcu; 1398 unsigned long total_faults; 1399 unsigned long max_faults_cpu; 1400 /* 1401 * faults[] array is split into two regions: faults_mem and faults_cpu. 1402 * 1403 * Faults_cpu is used to decide whether memory should move 1404 * towards the CPU. As a consequence, these stats are weighted 1405 * more by CPU use than by memory faults. 1406 */ 1407 unsigned long faults[]; 1408 }; 1409 1410 /* 1411 * For functions that can be called in multiple contexts that permit reading 1412 * ->numa_group (see struct task_struct for locking rules). 1413 */ 1414 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1415 { 1416 return rcu_dereference_check(p->numa_group, p == current || 1417 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1418 } 1419 1420 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1421 { 1422 return rcu_dereference_protected(p->numa_group, p == current); 1423 } 1424 1425 static inline unsigned long group_faults_priv(struct numa_group *ng); 1426 static inline unsigned long group_faults_shared(struct numa_group *ng); 1427 1428 static unsigned int task_nr_scan_windows(struct task_struct *p) 1429 { 1430 unsigned long rss = 0; 1431 unsigned long nr_scan_pages; 1432 1433 /* 1434 * Calculations based on RSS as non-present and empty pages are skipped 1435 * by the PTE scanner and NUMA hinting faults should be trapped based 1436 * on resident pages 1437 */ 1438 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1439 rss = get_mm_rss(p->mm); 1440 if (!rss) 1441 rss = nr_scan_pages; 1442 1443 rss = round_up(rss, nr_scan_pages); 1444 return rss / nr_scan_pages; 1445 } 1446 1447 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1448 #define MAX_SCAN_WINDOW 2560 1449 1450 static unsigned int task_scan_min(struct task_struct *p) 1451 { 1452 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1453 unsigned int scan, floor; 1454 unsigned int windows = 1; 1455 1456 if (scan_size < MAX_SCAN_WINDOW) 1457 windows = MAX_SCAN_WINDOW / scan_size; 1458 floor = 1000 / windows; 1459 1460 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1461 return max_t(unsigned int, floor, scan); 1462 } 1463 1464 static unsigned int task_scan_start(struct task_struct *p) 1465 { 1466 unsigned long smin = task_scan_min(p); 1467 unsigned long period = smin; 1468 struct numa_group *ng; 1469 1470 /* Scale the maximum scan period with the amount of shared memory. */ 1471 rcu_read_lock(); 1472 ng = rcu_dereference(p->numa_group); 1473 if (ng) { 1474 unsigned long shared = group_faults_shared(ng); 1475 unsigned long private = group_faults_priv(ng); 1476 1477 period *= refcount_read(&ng->refcount); 1478 period *= shared + 1; 1479 period /= private + shared + 1; 1480 } 1481 rcu_read_unlock(); 1482 1483 return max(smin, period); 1484 } 1485 1486 static unsigned int task_scan_max(struct task_struct *p) 1487 { 1488 unsigned long smin = task_scan_min(p); 1489 unsigned long smax; 1490 struct numa_group *ng; 1491 1492 /* Watch for min being lower than max due to floor calculations */ 1493 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1494 1495 /* Scale the maximum scan period with the amount of shared memory. */ 1496 ng = deref_curr_numa_group(p); 1497 if (ng) { 1498 unsigned long shared = group_faults_shared(ng); 1499 unsigned long private = group_faults_priv(ng); 1500 unsigned long period = smax; 1501 1502 period *= refcount_read(&ng->refcount); 1503 period *= shared + 1; 1504 period /= private + shared + 1; 1505 1506 smax = max(smax, period); 1507 } 1508 1509 return max(smin, smax); 1510 } 1511 1512 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1513 { 1514 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1515 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1516 } 1517 1518 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1519 { 1520 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1521 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1522 } 1523 1524 /* Shared or private faults. */ 1525 #define NR_NUMA_HINT_FAULT_TYPES 2 1526 1527 /* Memory and CPU locality */ 1528 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1529 1530 /* Averaged statistics, and temporary buffers. */ 1531 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1532 1533 pid_t task_numa_group_id(struct task_struct *p) 1534 { 1535 struct numa_group *ng; 1536 pid_t gid = 0; 1537 1538 rcu_read_lock(); 1539 ng = rcu_dereference(p->numa_group); 1540 if (ng) 1541 gid = ng->gid; 1542 rcu_read_unlock(); 1543 1544 return gid; 1545 } 1546 1547 /* 1548 * The averaged statistics, shared & private, memory & CPU, 1549 * occupy the first half of the array. The second half of the 1550 * array is for current counters, which are averaged into the 1551 * first set by task_numa_placement. 1552 */ 1553 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1554 { 1555 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1556 } 1557 1558 static inline unsigned long task_faults(struct task_struct *p, int nid) 1559 { 1560 if (!p->numa_faults) 1561 return 0; 1562 1563 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1564 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1565 } 1566 1567 static inline unsigned long group_faults(struct task_struct *p, int nid) 1568 { 1569 struct numa_group *ng = deref_task_numa_group(p); 1570 1571 if (!ng) 1572 return 0; 1573 1574 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1575 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1576 } 1577 1578 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1579 { 1580 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1581 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1582 } 1583 1584 static inline unsigned long group_faults_priv(struct numa_group *ng) 1585 { 1586 unsigned long faults = 0; 1587 int node; 1588 1589 for_each_online_node(node) { 1590 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1591 } 1592 1593 return faults; 1594 } 1595 1596 static inline unsigned long group_faults_shared(struct numa_group *ng) 1597 { 1598 unsigned long faults = 0; 1599 int node; 1600 1601 for_each_online_node(node) { 1602 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1603 } 1604 1605 return faults; 1606 } 1607 1608 /* 1609 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1610 * considered part of a numa group's pseudo-interleaving set. Migrations 1611 * between these nodes are slowed down, to allow things to settle down. 1612 */ 1613 #define ACTIVE_NODE_FRACTION 3 1614 1615 static bool numa_is_active_node(int nid, struct numa_group *ng) 1616 { 1617 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1618 } 1619 1620 /* Handle placement on systems where not all nodes are directly connected. */ 1621 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1622 int lim_dist, bool task) 1623 { 1624 unsigned long score = 0; 1625 int node, max_dist; 1626 1627 /* 1628 * All nodes are directly connected, and the same distance 1629 * from each other. No need for fancy placement algorithms. 1630 */ 1631 if (sched_numa_topology_type == NUMA_DIRECT) 1632 return 0; 1633 1634 /* sched_max_numa_distance may be changed in parallel. */ 1635 max_dist = READ_ONCE(sched_max_numa_distance); 1636 /* 1637 * This code is called for each node, introducing N^2 complexity, 1638 * which should be ok given the number of nodes rarely exceeds 8. 1639 */ 1640 for_each_online_node(node) { 1641 unsigned long faults; 1642 int dist = node_distance(nid, node); 1643 1644 /* 1645 * The furthest away nodes in the system are not interesting 1646 * for placement; nid was already counted. 1647 */ 1648 if (dist >= max_dist || node == nid) 1649 continue; 1650 1651 /* 1652 * On systems with a backplane NUMA topology, compare groups 1653 * of nodes, and move tasks towards the group with the most 1654 * memory accesses. When comparing two nodes at distance 1655 * "hoplimit", only nodes closer by than "hoplimit" are part 1656 * of each group. Skip other nodes. 1657 */ 1658 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1659 continue; 1660 1661 /* Add up the faults from nearby nodes. */ 1662 if (task) 1663 faults = task_faults(p, node); 1664 else 1665 faults = group_faults(p, node); 1666 1667 /* 1668 * On systems with a glueless mesh NUMA topology, there are 1669 * no fixed "groups of nodes". Instead, nodes that are not 1670 * directly connected bounce traffic through intermediate 1671 * nodes; a numa_group can occupy any set of nodes. 1672 * The further away a node is, the less the faults count. 1673 * This seems to result in good task placement. 1674 */ 1675 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1676 faults *= (max_dist - dist); 1677 faults /= (max_dist - LOCAL_DISTANCE); 1678 } 1679 1680 score += faults; 1681 } 1682 1683 return score; 1684 } 1685 1686 /* 1687 * These return the fraction of accesses done by a particular task, or 1688 * task group, on a particular numa node. The group weight is given a 1689 * larger multiplier, in order to group tasks together that are almost 1690 * evenly spread out between numa nodes. 1691 */ 1692 static inline unsigned long task_weight(struct task_struct *p, int nid, 1693 int dist) 1694 { 1695 unsigned long faults, total_faults; 1696 1697 if (!p->numa_faults) 1698 return 0; 1699 1700 total_faults = p->total_numa_faults; 1701 1702 if (!total_faults) 1703 return 0; 1704 1705 faults = task_faults(p, nid); 1706 faults += score_nearby_nodes(p, nid, dist, true); 1707 1708 return 1000 * faults / total_faults; 1709 } 1710 1711 static inline unsigned long group_weight(struct task_struct *p, int nid, 1712 int dist) 1713 { 1714 struct numa_group *ng = deref_task_numa_group(p); 1715 unsigned long faults, total_faults; 1716 1717 if (!ng) 1718 return 0; 1719 1720 total_faults = ng->total_faults; 1721 1722 if (!total_faults) 1723 return 0; 1724 1725 faults = group_faults(p, nid); 1726 faults += score_nearby_nodes(p, nid, dist, false); 1727 1728 return 1000 * faults / total_faults; 1729 } 1730 1731 /* 1732 * If memory tiering mode is enabled, cpupid of slow memory page is 1733 * used to record scan time instead of CPU and PID. When tiering mode 1734 * is disabled at run time, the scan time (in cpupid) will be 1735 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1736 * access out of array bound. 1737 */ 1738 static inline bool cpupid_valid(int cpupid) 1739 { 1740 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1741 } 1742 1743 /* 1744 * For memory tiering mode, if there are enough free pages (more than 1745 * enough watermark defined here) in fast memory node, to take full 1746 * advantage of fast memory capacity, all recently accessed slow 1747 * memory pages will be migrated to fast memory node without 1748 * considering hot threshold. 1749 */ 1750 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1751 { 1752 int z; 1753 unsigned long enough_wmark; 1754 1755 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1756 pgdat->node_present_pages >> 4); 1757 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1758 struct zone *zone = pgdat->node_zones + z; 1759 1760 if (!populated_zone(zone)) 1761 continue; 1762 1763 if (zone_watermark_ok(zone, 0, 1764 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1765 ZONE_MOVABLE, 0)) 1766 return true; 1767 } 1768 return false; 1769 } 1770 1771 /* 1772 * For memory tiering mode, when page tables are scanned, the scan 1773 * time will be recorded in struct page in addition to make page 1774 * PROT_NONE for slow memory page. So when the page is accessed, in 1775 * hint page fault handler, the hint page fault latency is calculated 1776 * via, 1777 * 1778 * hint page fault latency = hint page fault time - scan time 1779 * 1780 * The smaller the hint page fault latency, the higher the possibility 1781 * for the page to be hot. 1782 */ 1783 static int numa_hint_fault_latency(struct page *page) 1784 { 1785 int last_time, time; 1786 1787 time = jiffies_to_msecs(jiffies); 1788 last_time = xchg_page_access_time(page, time); 1789 1790 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1791 } 1792 1793 /* 1794 * For memory tiering mode, too high promotion/demotion throughput may 1795 * hurt application latency. So we provide a mechanism to rate limit 1796 * the number of pages that are tried to be promoted. 1797 */ 1798 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1799 unsigned long rate_limit, int nr) 1800 { 1801 unsigned long nr_cand; 1802 unsigned int now, start; 1803 1804 now = jiffies_to_msecs(jiffies); 1805 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1806 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1807 start = pgdat->nbp_rl_start; 1808 if (now - start > MSEC_PER_SEC && 1809 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1810 pgdat->nbp_rl_nr_cand = nr_cand; 1811 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1812 return true; 1813 return false; 1814 } 1815 1816 #define NUMA_MIGRATION_ADJUST_STEPS 16 1817 1818 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1819 unsigned long rate_limit, 1820 unsigned int ref_th) 1821 { 1822 unsigned int now, start, th_period, unit_th, th; 1823 unsigned long nr_cand, ref_cand, diff_cand; 1824 1825 now = jiffies_to_msecs(jiffies); 1826 th_period = sysctl_numa_balancing_scan_period_max; 1827 start = pgdat->nbp_th_start; 1828 if (now - start > th_period && 1829 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1830 ref_cand = rate_limit * 1831 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1832 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1833 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1834 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1835 th = pgdat->nbp_threshold ? : ref_th; 1836 if (diff_cand > ref_cand * 11 / 10) 1837 th = max(th - unit_th, unit_th); 1838 else if (diff_cand < ref_cand * 9 / 10) 1839 th = min(th + unit_th, ref_th * 2); 1840 pgdat->nbp_th_nr_cand = nr_cand; 1841 pgdat->nbp_threshold = th; 1842 } 1843 } 1844 1845 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1846 int src_nid, int dst_cpu) 1847 { 1848 struct numa_group *ng = deref_curr_numa_group(p); 1849 int dst_nid = cpu_to_node(dst_cpu); 1850 int last_cpupid, this_cpupid; 1851 1852 /* 1853 * The pages in slow memory node should be migrated according 1854 * to hot/cold instead of private/shared. 1855 */ 1856 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1857 !node_is_toptier(src_nid)) { 1858 struct pglist_data *pgdat; 1859 unsigned long rate_limit; 1860 unsigned int latency, th, def_th; 1861 1862 pgdat = NODE_DATA(dst_nid); 1863 if (pgdat_free_space_enough(pgdat)) { 1864 /* workload changed, reset hot threshold */ 1865 pgdat->nbp_threshold = 0; 1866 return true; 1867 } 1868 1869 def_th = sysctl_numa_balancing_hot_threshold; 1870 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1871 (20 - PAGE_SHIFT); 1872 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1873 1874 th = pgdat->nbp_threshold ? : def_th; 1875 latency = numa_hint_fault_latency(page); 1876 if (latency >= th) 1877 return false; 1878 1879 return !numa_promotion_rate_limit(pgdat, rate_limit, 1880 thp_nr_pages(page)); 1881 } 1882 1883 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1884 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1885 1886 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1887 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1888 return false; 1889 1890 /* 1891 * Allow first faults or private faults to migrate immediately early in 1892 * the lifetime of a task. The magic number 4 is based on waiting for 1893 * two full passes of the "multi-stage node selection" test that is 1894 * executed below. 1895 */ 1896 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1897 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1898 return true; 1899 1900 /* 1901 * Multi-stage node selection is used in conjunction with a periodic 1902 * migration fault to build a temporal task<->page relation. By using 1903 * a two-stage filter we remove short/unlikely relations. 1904 * 1905 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1906 * a task's usage of a particular page (n_p) per total usage of this 1907 * page (n_t) (in a given time-span) to a probability. 1908 * 1909 * Our periodic faults will sample this probability and getting the 1910 * same result twice in a row, given these samples are fully 1911 * independent, is then given by P(n)^2, provided our sample period 1912 * is sufficiently short compared to the usage pattern. 1913 * 1914 * This quadric squishes small probabilities, making it less likely we 1915 * act on an unlikely task<->page relation. 1916 */ 1917 if (!cpupid_pid_unset(last_cpupid) && 1918 cpupid_to_nid(last_cpupid) != dst_nid) 1919 return false; 1920 1921 /* Always allow migrate on private faults */ 1922 if (cpupid_match_pid(p, last_cpupid)) 1923 return true; 1924 1925 /* A shared fault, but p->numa_group has not been set up yet. */ 1926 if (!ng) 1927 return true; 1928 1929 /* 1930 * Destination node is much more heavily used than the source 1931 * node? Allow migration. 1932 */ 1933 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1934 ACTIVE_NODE_FRACTION) 1935 return true; 1936 1937 /* 1938 * Distribute memory according to CPU & memory use on each node, 1939 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1940 * 1941 * faults_cpu(dst) 3 faults_cpu(src) 1942 * --------------- * - > --------------- 1943 * faults_mem(dst) 4 faults_mem(src) 1944 */ 1945 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1946 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1947 } 1948 1949 /* 1950 * 'numa_type' describes the node at the moment of load balancing. 1951 */ 1952 enum numa_type { 1953 /* The node has spare capacity that can be used to run more tasks. */ 1954 node_has_spare = 0, 1955 /* 1956 * The node is fully used and the tasks don't compete for more CPU 1957 * cycles. Nevertheless, some tasks might wait before running. 1958 */ 1959 node_fully_busy, 1960 /* 1961 * The node is overloaded and can't provide expected CPU cycles to all 1962 * tasks. 1963 */ 1964 node_overloaded 1965 }; 1966 1967 /* Cached statistics for all CPUs within a node */ 1968 struct numa_stats { 1969 unsigned long load; 1970 unsigned long runnable; 1971 unsigned long util; 1972 /* Total compute capacity of CPUs on a node */ 1973 unsigned long compute_capacity; 1974 unsigned int nr_running; 1975 unsigned int weight; 1976 enum numa_type node_type; 1977 int idle_cpu; 1978 }; 1979 1980 struct task_numa_env { 1981 struct task_struct *p; 1982 1983 int src_cpu, src_nid; 1984 int dst_cpu, dst_nid; 1985 int imb_numa_nr; 1986 1987 struct numa_stats src_stats, dst_stats; 1988 1989 int imbalance_pct; 1990 int dist; 1991 1992 struct task_struct *best_task; 1993 long best_imp; 1994 int best_cpu; 1995 }; 1996 1997 static unsigned long cpu_load(struct rq *rq); 1998 static unsigned long cpu_runnable(struct rq *rq); 1999 2000 static inline enum 2001 numa_type numa_classify(unsigned int imbalance_pct, 2002 struct numa_stats *ns) 2003 { 2004 if ((ns->nr_running > ns->weight) && 2005 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2006 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2007 return node_overloaded; 2008 2009 if ((ns->nr_running < ns->weight) || 2010 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2011 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2012 return node_has_spare; 2013 2014 return node_fully_busy; 2015 } 2016 2017 #ifdef CONFIG_SCHED_SMT 2018 /* Forward declarations of select_idle_sibling helpers */ 2019 static inline bool test_idle_cores(int cpu); 2020 static inline int numa_idle_core(int idle_core, int cpu) 2021 { 2022 if (!static_branch_likely(&sched_smt_present) || 2023 idle_core >= 0 || !test_idle_cores(cpu)) 2024 return idle_core; 2025 2026 /* 2027 * Prefer cores instead of packing HT siblings 2028 * and triggering future load balancing. 2029 */ 2030 if (is_core_idle(cpu)) 2031 idle_core = cpu; 2032 2033 return idle_core; 2034 } 2035 #else 2036 static inline int numa_idle_core(int idle_core, int cpu) 2037 { 2038 return idle_core; 2039 } 2040 #endif 2041 2042 /* 2043 * Gather all necessary information to make NUMA balancing placement 2044 * decisions that are compatible with standard load balancer. This 2045 * borrows code and logic from update_sg_lb_stats but sharing a 2046 * common implementation is impractical. 2047 */ 2048 static void update_numa_stats(struct task_numa_env *env, 2049 struct numa_stats *ns, int nid, 2050 bool find_idle) 2051 { 2052 int cpu, idle_core = -1; 2053 2054 memset(ns, 0, sizeof(*ns)); 2055 ns->idle_cpu = -1; 2056 2057 rcu_read_lock(); 2058 for_each_cpu(cpu, cpumask_of_node(nid)) { 2059 struct rq *rq = cpu_rq(cpu); 2060 2061 ns->load += cpu_load(rq); 2062 ns->runnable += cpu_runnable(rq); 2063 ns->util += cpu_util_cfs(cpu); 2064 ns->nr_running += rq->cfs.h_nr_running; 2065 ns->compute_capacity += capacity_of(cpu); 2066 2067 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2068 if (READ_ONCE(rq->numa_migrate_on) || 2069 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2070 continue; 2071 2072 if (ns->idle_cpu == -1) 2073 ns->idle_cpu = cpu; 2074 2075 idle_core = numa_idle_core(idle_core, cpu); 2076 } 2077 } 2078 rcu_read_unlock(); 2079 2080 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2081 2082 ns->node_type = numa_classify(env->imbalance_pct, ns); 2083 2084 if (idle_core >= 0) 2085 ns->idle_cpu = idle_core; 2086 } 2087 2088 static void task_numa_assign(struct task_numa_env *env, 2089 struct task_struct *p, long imp) 2090 { 2091 struct rq *rq = cpu_rq(env->dst_cpu); 2092 2093 /* Check if run-queue part of active NUMA balance. */ 2094 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2095 int cpu; 2096 int start = env->dst_cpu; 2097 2098 /* Find alternative idle CPU. */ 2099 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2100 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2101 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2102 continue; 2103 } 2104 2105 env->dst_cpu = cpu; 2106 rq = cpu_rq(env->dst_cpu); 2107 if (!xchg(&rq->numa_migrate_on, 1)) 2108 goto assign; 2109 } 2110 2111 /* Failed to find an alternative idle CPU */ 2112 return; 2113 } 2114 2115 assign: 2116 /* 2117 * Clear previous best_cpu/rq numa-migrate flag, since task now 2118 * found a better CPU to move/swap. 2119 */ 2120 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2121 rq = cpu_rq(env->best_cpu); 2122 WRITE_ONCE(rq->numa_migrate_on, 0); 2123 } 2124 2125 if (env->best_task) 2126 put_task_struct(env->best_task); 2127 if (p) 2128 get_task_struct(p); 2129 2130 env->best_task = p; 2131 env->best_imp = imp; 2132 env->best_cpu = env->dst_cpu; 2133 } 2134 2135 static bool load_too_imbalanced(long src_load, long dst_load, 2136 struct task_numa_env *env) 2137 { 2138 long imb, old_imb; 2139 long orig_src_load, orig_dst_load; 2140 long src_capacity, dst_capacity; 2141 2142 /* 2143 * The load is corrected for the CPU capacity available on each node. 2144 * 2145 * src_load dst_load 2146 * ------------ vs --------- 2147 * src_capacity dst_capacity 2148 */ 2149 src_capacity = env->src_stats.compute_capacity; 2150 dst_capacity = env->dst_stats.compute_capacity; 2151 2152 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2153 2154 orig_src_load = env->src_stats.load; 2155 orig_dst_load = env->dst_stats.load; 2156 2157 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2158 2159 /* Would this change make things worse? */ 2160 return (imb > old_imb); 2161 } 2162 2163 /* 2164 * Maximum NUMA importance can be 1998 (2*999); 2165 * SMALLIMP @ 30 would be close to 1998/64. 2166 * Used to deter task migration. 2167 */ 2168 #define SMALLIMP 30 2169 2170 /* 2171 * This checks if the overall compute and NUMA accesses of the system would 2172 * be improved if the source tasks was migrated to the target dst_cpu taking 2173 * into account that it might be best if task running on the dst_cpu should 2174 * be exchanged with the source task 2175 */ 2176 static bool task_numa_compare(struct task_numa_env *env, 2177 long taskimp, long groupimp, bool maymove) 2178 { 2179 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2180 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2181 long imp = p_ng ? groupimp : taskimp; 2182 struct task_struct *cur; 2183 long src_load, dst_load; 2184 int dist = env->dist; 2185 long moveimp = imp; 2186 long load; 2187 bool stopsearch = false; 2188 2189 if (READ_ONCE(dst_rq->numa_migrate_on)) 2190 return false; 2191 2192 rcu_read_lock(); 2193 cur = rcu_dereference(dst_rq->curr); 2194 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2195 cur = NULL; 2196 2197 /* 2198 * Because we have preemption enabled we can get migrated around and 2199 * end try selecting ourselves (current == env->p) as a swap candidate. 2200 */ 2201 if (cur == env->p) { 2202 stopsearch = true; 2203 goto unlock; 2204 } 2205 2206 if (!cur) { 2207 if (maymove && moveimp >= env->best_imp) 2208 goto assign; 2209 else 2210 goto unlock; 2211 } 2212 2213 /* Skip this swap candidate if cannot move to the source cpu. */ 2214 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2215 goto unlock; 2216 2217 /* 2218 * Skip this swap candidate if it is not moving to its preferred 2219 * node and the best task is. 2220 */ 2221 if (env->best_task && 2222 env->best_task->numa_preferred_nid == env->src_nid && 2223 cur->numa_preferred_nid != env->src_nid) { 2224 goto unlock; 2225 } 2226 2227 /* 2228 * "imp" is the fault differential for the source task between the 2229 * source and destination node. Calculate the total differential for 2230 * the source task and potential destination task. The more negative 2231 * the value is, the more remote accesses that would be expected to 2232 * be incurred if the tasks were swapped. 2233 * 2234 * If dst and source tasks are in the same NUMA group, or not 2235 * in any group then look only at task weights. 2236 */ 2237 cur_ng = rcu_dereference(cur->numa_group); 2238 if (cur_ng == p_ng) { 2239 /* 2240 * Do not swap within a group or between tasks that have 2241 * no group if there is spare capacity. Swapping does 2242 * not address the load imbalance and helps one task at 2243 * the cost of punishing another. 2244 */ 2245 if (env->dst_stats.node_type == node_has_spare) 2246 goto unlock; 2247 2248 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2249 task_weight(cur, env->dst_nid, dist); 2250 /* 2251 * Add some hysteresis to prevent swapping the 2252 * tasks within a group over tiny differences. 2253 */ 2254 if (cur_ng) 2255 imp -= imp / 16; 2256 } else { 2257 /* 2258 * Compare the group weights. If a task is all by itself 2259 * (not part of a group), use the task weight instead. 2260 */ 2261 if (cur_ng && p_ng) 2262 imp += group_weight(cur, env->src_nid, dist) - 2263 group_weight(cur, env->dst_nid, dist); 2264 else 2265 imp += task_weight(cur, env->src_nid, dist) - 2266 task_weight(cur, env->dst_nid, dist); 2267 } 2268 2269 /* Discourage picking a task already on its preferred node */ 2270 if (cur->numa_preferred_nid == env->dst_nid) 2271 imp -= imp / 16; 2272 2273 /* 2274 * Encourage picking a task that moves to its preferred node. 2275 * This potentially makes imp larger than it's maximum of 2276 * 1998 (see SMALLIMP and task_weight for why) but in this 2277 * case, it does not matter. 2278 */ 2279 if (cur->numa_preferred_nid == env->src_nid) 2280 imp += imp / 8; 2281 2282 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2283 imp = moveimp; 2284 cur = NULL; 2285 goto assign; 2286 } 2287 2288 /* 2289 * Prefer swapping with a task moving to its preferred node over a 2290 * task that is not. 2291 */ 2292 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2293 env->best_task->numa_preferred_nid != env->src_nid) { 2294 goto assign; 2295 } 2296 2297 /* 2298 * If the NUMA importance is less than SMALLIMP, 2299 * task migration might only result in ping pong 2300 * of tasks and also hurt performance due to cache 2301 * misses. 2302 */ 2303 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2304 goto unlock; 2305 2306 /* 2307 * In the overloaded case, try and keep the load balanced. 2308 */ 2309 load = task_h_load(env->p) - task_h_load(cur); 2310 if (!load) 2311 goto assign; 2312 2313 dst_load = env->dst_stats.load + load; 2314 src_load = env->src_stats.load - load; 2315 2316 if (load_too_imbalanced(src_load, dst_load, env)) 2317 goto unlock; 2318 2319 assign: 2320 /* Evaluate an idle CPU for a task numa move. */ 2321 if (!cur) { 2322 int cpu = env->dst_stats.idle_cpu; 2323 2324 /* Nothing cached so current CPU went idle since the search. */ 2325 if (cpu < 0) 2326 cpu = env->dst_cpu; 2327 2328 /* 2329 * If the CPU is no longer truly idle and the previous best CPU 2330 * is, keep using it. 2331 */ 2332 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2333 idle_cpu(env->best_cpu)) { 2334 cpu = env->best_cpu; 2335 } 2336 2337 env->dst_cpu = cpu; 2338 } 2339 2340 task_numa_assign(env, cur, imp); 2341 2342 /* 2343 * If a move to idle is allowed because there is capacity or load 2344 * balance improves then stop the search. While a better swap 2345 * candidate may exist, a search is not free. 2346 */ 2347 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2348 stopsearch = true; 2349 2350 /* 2351 * If a swap candidate must be identified and the current best task 2352 * moves its preferred node then stop the search. 2353 */ 2354 if (!maymove && env->best_task && 2355 env->best_task->numa_preferred_nid == env->src_nid) { 2356 stopsearch = true; 2357 } 2358 unlock: 2359 rcu_read_unlock(); 2360 2361 return stopsearch; 2362 } 2363 2364 static void task_numa_find_cpu(struct task_numa_env *env, 2365 long taskimp, long groupimp) 2366 { 2367 bool maymove = false; 2368 int cpu; 2369 2370 /* 2371 * If dst node has spare capacity, then check if there is an 2372 * imbalance that would be overruled by the load balancer. 2373 */ 2374 if (env->dst_stats.node_type == node_has_spare) { 2375 unsigned int imbalance; 2376 int src_running, dst_running; 2377 2378 /* 2379 * Would movement cause an imbalance? Note that if src has 2380 * more running tasks that the imbalance is ignored as the 2381 * move improves the imbalance from the perspective of the 2382 * CPU load balancer. 2383 * */ 2384 src_running = env->src_stats.nr_running - 1; 2385 dst_running = env->dst_stats.nr_running + 1; 2386 imbalance = max(0, dst_running - src_running); 2387 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2388 env->imb_numa_nr); 2389 2390 /* Use idle CPU if there is no imbalance */ 2391 if (!imbalance) { 2392 maymove = true; 2393 if (env->dst_stats.idle_cpu >= 0) { 2394 env->dst_cpu = env->dst_stats.idle_cpu; 2395 task_numa_assign(env, NULL, 0); 2396 return; 2397 } 2398 } 2399 } else { 2400 long src_load, dst_load, load; 2401 /* 2402 * If the improvement from just moving env->p direction is better 2403 * than swapping tasks around, check if a move is possible. 2404 */ 2405 load = task_h_load(env->p); 2406 dst_load = env->dst_stats.load + load; 2407 src_load = env->src_stats.load - load; 2408 maymove = !load_too_imbalanced(src_load, dst_load, env); 2409 } 2410 2411 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2412 /* Skip this CPU if the source task cannot migrate */ 2413 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2414 continue; 2415 2416 env->dst_cpu = cpu; 2417 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2418 break; 2419 } 2420 } 2421 2422 static int task_numa_migrate(struct task_struct *p) 2423 { 2424 struct task_numa_env env = { 2425 .p = p, 2426 2427 .src_cpu = task_cpu(p), 2428 .src_nid = task_node(p), 2429 2430 .imbalance_pct = 112, 2431 2432 .best_task = NULL, 2433 .best_imp = 0, 2434 .best_cpu = -1, 2435 }; 2436 unsigned long taskweight, groupweight; 2437 struct sched_domain *sd; 2438 long taskimp, groupimp; 2439 struct numa_group *ng; 2440 struct rq *best_rq; 2441 int nid, ret, dist; 2442 2443 /* 2444 * Pick the lowest SD_NUMA domain, as that would have the smallest 2445 * imbalance and would be the first to start moving tasks about. 2446 * 2447 * And we want to avoid any moving of tasks about, as that would create 2448 * random movement of tasks -- counter the numa conditions we're trying 2449 * to satisfy here. 2450 */ 2451 rcu_read_lock(); 2452 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2453 if (sd) { 2454 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2455 env.imb_numa_nr = sd->imb_numa_nr; 2456 } 2457 rcu_read_unlock(); 2458 2459 /* 2460 * Cpusets can break the scheduler domain tree into smaller 2461 * balance domains, some of which do not cross NUMA boundaries. 2462 * Tasks that are "trapped" in such domains cannot be migrated 2463 * elsewhere, so there is no point in (re)trying. 2464 */ 2465 if (unlikely(!sd)) { 2466 sched_setnuma(p, task_node(p)); 2467 return -EINVAL; 2468 } 2469 2470 env.dst_nid = p->numa_preferred_nid; 2471 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2472 taskweight = task_weight(p, env.src_nid, dist); 2473 groupweight = group_weight(p, env.src_nid, dist); 2474 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2475 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2476 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2477 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2478 2479 /* Try to find a spot on the preferred nid. */ 2480 task_numa_find_cpu(&env, taskimp, groupimp); 2481 2482 /* 2483 * Look at other nodes in these cases: 2484 * - there is no space available on the preferred_nid 2485 * - the task is part of a numa_group that is interleaved across 2486 * multiple NUMA nodes; in order to better consolidate the group, 2487 * we need to check other locations. 2488 */ 2489 ng = deref_curr_numa_group(p); 2490 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2491 for_each_node_state(nid, N_CPU) { 2492 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2493 continue; 2494 2495 dist = node_distance(env.src_nid, env.dst_nid); 2496 if (sched_numa_topology_type == NUMA_BACKPLANE && 2497 dist != env.dist) { 2498 taskweight = task_weight(p, env.src_nid, dist); 2499 groupweight = group_weight(p, env.src_nid, dist); 2500 } 2501 2502 /* Only consider nodes where both task and groups benefit */ 2503 taskimp = task_weight(p, nid, dist) - taskweight; 2504 groupimp = group_weight(p, nid, dist) - groupweight; 2505 if (taskimp < 0 && groupimp < 0) 2506 continue; 2507 2508 env.dist = dist; 2509 env.dst_nid = nid; 2510 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2511 task_numa_find_cpu(&env, taskimp, groupimp); 2512 } 2513 } 2514 2515 /* 2516 * If the task is part of a workload that spans multiple NUMA nodes, 2517 * and is migrating into one of the workload's active nodes, remember 2518 * this node as the task's preferred numa node, so the workload can 2519 * settle down. 2520 * A task that migrated to a second choice node will be better off 2521 * trying for a better one later. Do not set the preferred node here. 2522 */ 2523 if (ng) { 2524 if (env.best_cpu == -1) 2525 nid = env.src_nid; 2526 else 2527 nid = cpu_to_node(env.best_cpu); 2528 2529 if (nid != p->numa_preferred_nid) 2530 sched_setnuma(p, nid); 2531 } 2532 2533 /* No better CPU than the current one was found. */ 2534 if (env.best_cpu == -1) { 2535 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2536 return -EAGAIN; 2537 } 2538 2539 best_rq = cpu_rq(env.best_cpu); 2540 if (env.best_task == NULL) { 2541 ret = migrate_task_to(p, env.best_cpu); 2542 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2543 if (ret != 0) 2544 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2545 return ret; 2546 } 2547 2548 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2549 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2550 2551 if (ret != 0) 2552 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2553 put_task_struct(env.best_task); 2554 return ret; 2555 } 2556 2557 /* Attempt to migrate a task to a CPU on the preferred node. */ 2558 static void numa_migrate_preferred(struct task_struct *p) 2559 { 2560 unsigned long interval = HZ; 2561 2562 /* This task has no NUMA fault statistics yet */ 2563 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2564 return; 2565 2566 /* Periodically retry migrating the task to the preferred node */ 2567 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2568 p->numa_migrate_retry = jiffies + interval; 2569 2570 /* Success if task is already running on preferred CPU */ 2571 if (task_node(p) == p->numa_preferred_nid) 2572 return; 2573 2574 /* Otherwise, try migrate to a CPU on the preferred node */ 2575 task_numa_migrate(p); 2576 } 2577 2578 /* 2579 * Find out how many nodes the workload is actively running on. Do this by 2580 * tracking the nodes from which NUMA hinting faults are triggered. This can 2581 * be different from the set of nodes where the workload's memory is currently 2582 * located. 2583 */ 2584 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2585 { 2586 unsigned long faults, max_faults = 0; 2587 int nid, active_nodes = 0; 2588 2589 for_each_node_state(nid, N_CPU) { 2590 faults = group_faults_cpu(numa_group, nid); 2591 if (faults > max_faults) 2592 max_faults = faults; 2593 } 2594 2595 for_each_node_state(nid, N_CPU) { 2596 faults = group_faults_cpu(numa_group, nid); 2597 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2598 active_nodes++; 2599 } 2600 2601 numa_group->max_faults_cpu = max_faults; 2602 numa_group->active_nodes = active_nodes; 2603 } 2604 2605 /* 2606 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2607 * increments. The more local the fault statistics are, the higher the scan 2608 * period will be for the next scan window. If local/(local+remote) ratio is 2609 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2610 * the scan period will decrease. Aim for 70% local accesses. 2611 */ 2612 #define NUMA_PERIOD_SLOTS 10 2613 #define NUMA_PERIOD_THRESHOLD 7 2614 2615 /* 2616 * Increase the scan period (slow down scanning) if the majority of 2617 * our memory is already on our local node, or if the majority of 2618 * the page accesses are shared with other processes. 2619 * Otherwise, decrease the scan period. 2620 */ 2621 static void update_task_scan_period(struct task_struct *p, 2622 unsigned long shared, unsigned long private) 2623 { 2624 unsigned int period_slot; 2625 int lr_ratio, ps_ratio; 2626 int diff; 2627 2628 unsigned long remote = p->numa_faults_locality[0]; 2629 unsigned long local = p->numa_faults_locality[1]; 2630 2631 /* 2632 * If there were no record hinting faults then either the task is 2633 * completely idle or all activity is in areas that are not of interest 2634 * to automatic numa balancing. Related to that, if there were failed 2635 * migration then it implies we are migrating too quickly or the local 2636 * node is overloaded. In either case, scan slower 2637 */ 2638 if (local + shared == 0 || p->numa_faults_locality[2]) { 2639 p->numa_scan_period = min(p->numa_scan_period_max, 2640 p->numa_scan_period << 1); 2641 2642 p->mm->numa_next_scan = jiffies + 2643 msecs_to_jiffies(p->numa_scan_period); 2644 2645 return; 2646 } 2647 2648 /* 2649 * Prepare to scale scan period relative to the current period. 2650 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2651 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2652 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2653 */ 2654 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2655 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2656 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2657 2658 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2659 /* 2660 * Most memory accesses are local. There is no need to 2661 * do fast NUMA scanning, since memory is already local. 2662 */ 2663 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2664 if (!slot) 2665 slot = 1; 2666 diff = slot * period_slot; 2667 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2668 /* 2669 * Most memory accesses are shared with other tasks. 2670 * There is no point in continuing fast NUMA scanning, 2671 * since other tasks may just move the memory elsewhere. 2672 */ 2673 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2674 if (!slot) 2675 slot = 1; 2676 diff = slot * period_slot; 2677 } else { 2678 /* 2679 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2680 * yet they are not on the local NUMA node. Speed up 2681 * NUMA scanning to get the memory moved over. 2682 */ 2683 int ratio = max(lr_ratio, ps_ratio); 2684 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2685 } 2686 2687 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2688 task_scan_min(p), task_scan_max(p)); 2689 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2690 } 2691 2692 /* 2693 * Get the fraction of time the task has been running since the last 2694 * NUMA placement cycle. The scheduler keeps similar statistics, but 2695 * decays those on a 32ms period, which is orders of magnitude off 2696 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2697 * stats only if the task is so new there are no NUMA statistics yet. 2698 */ 2699 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2700 { 2701 u64 runtime, delta, now; 2702 /* Use the start of this time slice to avoid calculations. */ 2703 now = p->se.exec_start; 2704 runtime = p->se.sum_exec_runtime; 2705 2706 if (p->last_task_numa_placement) { 2707 delta = runtime - p->last_sum_exec_runtime; 2708 *period = now - p->last_task_numa_placement; 2709 2710 /* Avoid time going backwards, prevent potential divide error: */ 2711 if (unlikely((s64)*period < 0)) 2712 *period = 0; 2713 } else { 2714 delta = p->se.avg.load_sum; 2715 *period = LOAD_AVG_MAX; 2716 } 2717 2718 p->last_sum_exec_runtime = runtime; 2719 p->last_task_numa_placement = now; 2720 2721 return delta; 2722 } 2723 2724 /* 2725 * Determine the preferred nid for a task in a numa_group. This needs to 2726 * be done in a way that produces consistent results with group_weight, 2727 * otherwise workloads might not converge. 2728 */ 2729 static int preferred_group_nid(struct task_struct *p, int nid) 2730 { 2731 nodemask_t nodes; 2732 int dist; 2733 2734 /* Direct connections between all NUMA nodes. */ 2735 if (sched_numa_topology_type == NUMA_DIRECT) 2736 return nid; 2737 2738 /* 2739 * On a system with glueless mesh NUMA topology, group_weight 2740 * scores nodes according to the number of NUMA hinting faults on 2741 * both the node itself, and on nearby nodes. 2742 */ 2743 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2744 unsigned long score, max_score = 0; 2745 int node, max_node = nid; 2746 2747 dist = sched_max_numa_distance; 2748 2749 for_each_node_state(node, N_CPU) { 2750 score = group_weight(p, node, dist); 2751 if (score > max_score) { 2752 max_score = score; 2753 max_node = node; 2754 } 2755 } 2756 return max_node; 2757 } 2758 2759 /* 2760 * Finding the preferred nid in a system with NUMA backplane 2761 * interconnect topology is more involved. The goal is to locate 2762 * tasks from numa_groups near each other in the system, and 2763 * untangle workloads from different sides of the system. This requires 2764 * searching down the hierarchy of node groups, recursively searching 2765 * inside the highest scoring group of nodes. The nodemask tricks 2766 * keep the complexity of the search down. 2767 */ 2768 nodes = node_states[N_CPU]; 2769 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2770 unsigned long max_faults = 0; 2771 nodemask_t max_group = NODE_MASK_NONE; 2772 int a, b; 2773 2774 /* Are there nodes at this distance from each other? */ 2775 if (!find_numa_distance(dist)) 2776 continue; 2777 2778 for_each_node_mask(a, nodes) { 2779 unsigned long faults = 0; 2780 nodemask_t this_group; 2781 nodes_clear(this_group); 2782 2783 /* Sum group's NUMA faults; includes a==b case. */ 2784 for_each_node_mask(b, nodes) { 2785 if (node_distance(a, b) < dist) { 2786 faults += group_faults(p, b); 2787 node_set(b, this_group); 2788 node_clear(b, nodes); 2789 } 2790 } 2791 2792 /* Remember the top group. */ 2793 if (faults > max_faults) { 2794 max_faults = faults; 2795 max_group = this_group; 2796 /* 2797 * subtle: at the smallest distance there is 2798 * just one node left in each "group", the 2799 * winner is the preferred nid. 2800 */ 2801 nid = a; 2802 } 2803 } 2804 /* Next round, evaluate the nodes within max_group. */ 2805 if (!max_faults) 2806 break; 2807 nodes = max_group; 2808 } 2809 return nid; 2810 } 2811 2812 static void task_numa_placement(struct task_struct *p) 2813 { 2814 int seq, nid, max_nid = NUMA_NO_NODE; 2815 unsigned long max_faults = 0; 2816 unsigned long fault_types[2] = { 0, 0 }; 2817 unsigned long total_faults; 2818 u64 runtime, period; 2819 spinlock_t *group_lock = NULL; 2820 struct numa_group *ng; 2821 2822 /* 2823 * The p->mm->numa_scan_seq field gets updated without 2824 * exclusive access. Use READ_ONCE() here to ensure 2825 * that the field is read in a single access: 2826 */ 2827 seq = READ_ONCE(p->mm->numa_scan_seq); 2828 if (p->numa_scan_seq == seq) 2829 return; 2830 p->numa_scan_seq = seq; 2831 p->numa_scan_period_max = task_scan_max(p); 2832 2833 total_faults = p->numa_faults_locality[0] + 2834 p->numa_faults_locality[1]; 2835 runtime = numa_get_avg_runtime(p, &period); 2836 2837 /* If the task is part of a group prevent parallel updates to group stats */ 2838 ng = deref_curr_numa_group(p); 2839 if (ng) { 2840 group_lock = &ng->lock; 2841 spin_lock_irq(group_lock); 2842 } 2843 2844 /* Find the node with the highest number of faults */ 2845 for_each_online_node(nid) { 2846 /* Keep track of the offsets in numa_faults array */ 2847 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2848 unsigned long faults = 0, group_faults = 0; 2849 int priv; 2850 2851 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2852 long diff, f_diff, f_weight; 2853 2854 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2855 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2856 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2857 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2858 2859 /* Decay existing window, copy faults since last scan */ 2860 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2861 fault_types[priv] += p->numa_faults[membuf_idx]; 2862 p->numa_faults[membuf_idx] = 0; 2863 2864 /* 2865 * Normalize the faults_from, so all tasks in a group 2866 * count according to CPU use, instead of by the raw 2867 * number of faults. Tasks with little runtime have 2868 * little over-all impact on throughput, and thus their 2869 * faults are less important. 2870 */ 2871 f_weight = div64_u64(runtime << 16, period + 1); 2872 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2873 (total_faults + 1); 2874 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2875 p->numa_faults[cpubuf_idx] = 0; 2876 2877 p->numa_faults[mem_idx] += diff; 2878 p->numa_faults[cpu_idx] += f_diff; 2879 faults += p->numa_faults[mem_idx]; 2880 p->total_numa_faults += diff; 2881 if (ng) { 2882 /* 2883 * safe because we can only change our own group 2884 * 2885 * mem_idx represents the offset for a given 2886 * nid and priv in a specific region because it 2887 * is at the beginning of the numa_faults array. 2888 */ 2889 ng->faults[mem_idx] += diff; 2890 ng->faults[cpu_idx] += f_diff; 2891 ng->total_faults += diff; 2892 group_faults += ng->faults[mem_idx]; 2893 } 2894 } 2895 2896 if (!ng) { 2897 if (faults > max_faults) { 2898 max_faults = faults; 2899 max_nid = nid; 2900 } 2901 } else if (group_faults > max_faults) { 2902 max_faults = group_faults; 2903 max_nid = nid; 2904 } 2905 } 2906 2907 /* Cannot migrate task to CPU-less node */ 2908 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2909 int near_nid = max_nid; 2910 int distance, near_distance = INT_MAX; 2911 2912 for_each_node_state(nid, N_CPU) { 2913 distance = node_distance(max_nid, nid); 2914 if (distance < near_distance) { 2915 near_nid = nid; 2916 near_distance = distance; 2917 } 2918 } 2919 max_nid = near_nid; 2920 } 2921 2922 if (ng) { 2923 numa_group_count_active_nodes(ng); 2924 spin_unlock_irq(group_lock); 2925 max_nid = preferred_group_nid(p, max_nid); 2926 } 2927 2928 if (max_faults) { 2929 /* Set the new preferred node */ 2930 if (max_nid != p->numa_preferred_nid) 2931 sched_setnuma(p, max_nid); 2932 } 2933 2934 update_task_scan_period(p, fault_types[0], fault_types[1]); 2935 } 2936 2937 static inline int get_numa_group(struct numa_group *grp) 2938 { 2939 return refcount_inc_not_zero(&grp->refcount); 2940 } 2941 2942 static inline void put_numa_group(struct numa_group *grp) 2943 { 2944 if (refcount_dec_and_test(&grp->refcount)) 2945 kfree_rcu(grp, rcu); 2946 } 2947 2948 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2949 int *priv) 2950 { 2951 struct numa_group *grp, *my_grp; 2952 struct task_struct *tsk; 2953 bool join = false; 2954 int cpu = cpupid_to_cpu(cpupid); 2955 int i; 2956 2957 if (unlikely(!deref_curr_numa_group(p))) { 2958 unsigned int size = sizeof(struct numa_group) + 2959 NR_NUMA_HINT_FAULT_STATS * 2960 nr_node_ids * sizeof(unsigned long); 2961 2962 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2963 if (!grp) 2964 return; 2965 2966 refcount_set(&grp->refcount, 1); 2967 grp->active_nodes = 1; 2968 grp->max_faults_cpu = 0; 2969 spin_lock_init(&grp->lock); 2970 grp->gid = p->pid; 2971 2972 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2973 grp->faults[i] = p->numa_faults[i]; 2974 2975 grp->total_faults = p->total_numa_faults; 2976 2977 grp->nr_tasks++; 2978 rcu_assign_pointer(p->numa_group, grp); 2979 } 2980 2981 rcu_read_lock(); 2982 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2983 2984 if (!cpupid_match_pid(tsk, cpupid)) 2985 goto no_join; 2986 2987 grp = rcu_dereference(tsk->numa_group); 2988 if (!grp) 2989 goto no_join; 2990 2991 my_grp = deref_curr_numa_group(p); 2992 if (grp == my_grp) 2993 goto no_join; 2994 2995 /* 2996 * Only join the other group if its bigger; if we're the bigger group, 2997 * the other task will join us. 2998 */ 2999 if (my_grp->nr_tasks > grp->nr_tasks) 3000 goto no_join; 3001 3002 /* 3003 * Tie-break on the grp address. 3004 */ 3005 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3006 goto no_join; 3007 3008 /* Always join threads in the same process. */ 3009 if (tsk->mm == current->mm) 3010 join = true; 3011 3012 /* Simple filter to avoid false positives due to PID collisions */ 3013 if (flags & TNF_SHARED) 3014 join = true; 3015 3016 /* Update priv based on whether false sharing was detected */ 3017 *priv = !join; 3018 3019 if (join && !get_numa_group(grp)) 3020 goto no_join; 3021 3022 rcu_read_unlock(); 3023 3024 if (!join) 3025 return; 3026 3027 WARN_ON_ONCE(irqs_disabled()); 3028 double_lock_irq(&my_grp->lock, &grp->lock); 3029 3030 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3031 my_grp->faults[i] -= p->numa_faults[i]; 3032 grp->faults[i] += p->numa_faults[i]; 3033 } 3034 my_grp->total_faults -= p->total_numa_faults; 3035 grp->total_faults += p->total_numa_faults; 3036 3037 my_grp->nr_tasks--; 3038 grp->nr_tasks++; 3039 3040 spin_unlock(&my_grp->lock); 3041 spin_unlock_irq(&grp->lock); 3042 3043 rcu_assign_pointer(p->numa_group, grp); 3044 3045 put_numa_group(my_grp); 3046 return; 3047 3048 no_join: 3049 rcu_read_unlock(); 3050 return; 3051 } 3052 3053 /* 3054 * Get rid of NUMA statistics associated with a task (either current or dead). 3055 * If @final is set, the task is dead and has reached refcount zero, so we can 3056 * safely free all relevant data structures. Otherwise, there might be 3057 * concurrent reads from places like load balancing and procfs, and we should 3058 * reset the data back to default state without freeing ->numa_faults. 3059 */ 3060 void task_numa_free(struct task_struct *p, bool final) 3061 { 3062 /* safe: p either is current or is being freed by current */ 3063 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3064 unsigned long *numa_faults = p->numa_faults; 3065 unsigned long flags; 3066 int i; 3067 3068 if (!numa_faults) 3069 return; 3070 3071 if (grp) { 3072 spin_lock_irqsave(&grp->lock, flags); 3073 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3074 grp->faults[i] -= p->numa_faults[i]; 3075 grp->total_faults -= p->total_numa_faults; 3076 3077 grp->nr_tasks--; 3078 spin_unlock_irqrestore(&grp->lock, flags); 3079 RCU_INIT_POINTER(p->numa_group, NULL); 3080 put_numa_group(grp); 3081 } 3082 3083 if (final) { 3084 p->numa_faults = NULL; 3085 kfree(numa_faults); 3086 } else { 3087 p->total_numa_faults = 0; 3088 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3089 numa_faults[i] = 0; 3090 } 3091 } 3092 3093 /* 3094 * Got a PROT_NONE fault for a page on @node. 3095 */ 3096 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3097 { 3098 struct task_struct *p = current; 3099 bool migrated = flags & TNF_MIGRATED; 3100 int cpu_node = task_node(current); 3101 int local = !!(flags & TNF_FAULT_LOCAL); 3102 struct numa_group *ng; 3103 int priv; 3104 3105 if (!static_branch_likely(&sched_numa_balancing)) 3106 return; 3107 3108 /* for example, ksmd faulting in a user's mm */ 3109 if (!p->mm) 3110 return; 3111 3112 /* 3113 * NUMA faults statistics are unnecessary for the slow memory 3114 * node for memory tiering mode. 3115 */ 3116 if (!node_is_toptier(mem_node) && 3117 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3118 !cpupid_valid(last_cpupid))) 3119 return; 3120 3121 /* Allocate buffer to track faults on a per-node basis */ 3122 if (unlikely(!p->numa_faults)) { 3123 int size = sizeof(*p->numa_faults) * 3124 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3125 3126 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3127 if (!p->numa_faults) 3128 return; 3129 3130 p->total_numa_faults = 0; 3131 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3132 } 3133 3134 /* 3135 * First accesses are treated as private, otherwise consider accesses 3136 * to be private if the accessing pid has not changed 3137 */ 3138 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3139 priv = 1; 3140 } else { 3141 priv = cpupid_match_pid(p, last_cpupid); 3142 if (!priv && !(flags & TNF_NO_GROUP)) 3143 task_numa_group(p, last_cpupid, flags, &priv); 3144 } 3145 3146 /* 3147 * If a workload spans multiple NUMA nodes, a shared fault that 3148 * occurs wholly within the set of nodes that the workload is 3149 * actively using should be counted as local. This allows the 3150 * scan rate to slow down when a workload has settled down. 3151 */ 3152 ng = deref_curr_numa_group(p); 3153 if (!priv && !local && ng && ng->active_nodes > 1 && 3154 numa_is_active_node(cpu_node, ng) && 3155 numa_is_active_node(mem_node, ng)) 3156 local = 1; 3157 3158 /* 3159 * Retry to migrate task to preferred node periodically, in case it 3160 * previously failed, or the scheduler moved us. 3161 */ 3162 if (time_after(jiffies, p->numa_migrate_retry)) { 3163 task_numa_placement(p); 3164 numa_migrate_preferred(p); 3165 } 3166 3167 if (migrated) 3168 p->numa_pages_migrated += pages; 3169 if (flags & TNF_MIGRATE_FAIL) 3170 p->numa_faults_locality[2] += pages; 3171 3172 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3173 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3174 p->numa_faults_locality[local] += pages; 3175 } 3176 3177 static void reset_ptenuma_scan(struct task_struct *p) 3178 { 3179 /* 3180 * We only did a read acquisition of the mmap sem, so 3181 * p->mm->numa_scan_seq is written to without exclusive access 3182 * and the update is not guaranteed to be atomic. That's not 3183 * much of an issue though, since this is just used for 3184 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3185 * expensive, to avoid any form of compiler optimizations: 3186 */ 3187 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3188 p->mm->numa_scan_offset = 0; 3189 } 3190 3191 static bool vma_is_accessed(struct vm_area_struct *vma) 3192 { 3193 unsigned long pids; 3194 /* 3195 * Allow unconditional access first two times, so that all the (pages) 3196 * of VMAs get prot_none fault introduced irrespective of accesses. 3197 * This is also done to avoid any side effect of task scanning 3198 * amplifying the unfairness of disjoint set of VMAs' access. 3199 */ 3200 if (READ_ONCE(current->mm->numa_scan_seq) < 2) 3201 return true; 3202 3203 pids = vma->numab_state->access_pids[0] | vma->numab_state->access_pids[1]; 3204 return test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids); 3205 } 3206 3207 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3208 3209 /* 3210 * The expensive part of numa migration is done from task_work context. 3211 * Triggered from task_tick_numa(). 3212 */ 3213 static void task_numa_work(struct callback_head *work) 3214 { 3215 unsigned long migrate, next_scan, now = jiffies; 3216 struct task_struct *p = current; 3217 struct mm_struct *mm = p->mm; 3218 u64 runtime = p->se.sum_exec_runtime; 3219 struct vm_area_struct *vma; 3220 unsigned long start, end; 3221 unsigned long nr_pte_updates = 0; 3222 long pages, virtpages; 3223 struct vma_iterator vmi; 3224 3225 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3226 3227 work->next = work; 3228 /* 3229 * Who cares about NUMA placement when they're dying. 3230 * 3231 * NOTE: make sure not to dereference p->mm before this check, 3232 * exit_task_work() happens _after_ exit_mm() so we could be called 3233 * without p->mm even though we still had it when we enqueued this 3234 * work. 3235 */ 3236 if (p->flags & PF_EXITING) 3237 return; 3238 3239 if (!mm->numa_next_scan) { 3240 mm->numa_next_scan = now + 3241 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3242 } 3243 3244 /* 3245 * Enforce maximal scan/migration frequency.. 3246 */ 3247 migrate = mm->numa_next_scan; 3248 if (time_before(now, migrate)) 3249 return; 3250 3251 if (p->numa_scan_period == 0) { 3252 p->numa_scan_period_max = task_scan_max(p); 3253 p->numa_scan_period = task_scan_start(p); 3254 } 3255 3256 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3257 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3258 return; 3259 3260 /* 3261 * Delay this task enough that another task of this mm will likely win 3262 * the next time around. 3263 */ 3264 p->node_stamp += 2 * TICK_NSEC; 3265 3266 start = mm->numa_scan_offset; 3267 pages = sysctl_numa_balancing_scan_size; 3268 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3269 virtpages = pages * 8; /* Scan up to this much virtual space */ 3270 if (!pages) 3271 return; 3272 3273 3274 if (!mmap_read_trylock(mm)) 3275 return; 3276 vma_iter_init(&vmi, mm, start); 3277 vma = vma_next(&vmi); 3278 if (!vma) { 3279 reset_ptenuma_scan(p); 3280 start = 0; 3281 vma_iter_set(&vmi, start); 3282 vma = vma_next(&vmi); 3283 } 3284 3285 do { 3286 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3287 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3288 continue; 3289 } 3290 3291 /* 3292 * Shared library pages mapped by multiple processes are not 3293 * migrated as it is expected they are cache replicated. Avoid 3294 * hinting faults in read-only file-backed mappings or the vdso 3295 * as migrating the pages will be of marginal benefit. 3296 */ 3297 if (!vma->vm_mm || 3298 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 3299 continue; 3300 3301 /* 3302 * Skip inaccessible VMAs to avoid any confusion between 3303 * PROT_NONE and NUMA hinting ptes 3304 */ 3305 if (!vma_is_accessible(vma)) 3306 continue; 3307 3308 /* Initialise new per-VMA NUMAB state. */ 3309 if (!vma->numab_state) { 3310 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3311 GFP_KERNEL); 3312 if (!vma->numab_state) 3313 continue; 3314 3315 vma->numab_state->next_scan = now + 3316 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3317 3318 /* Reset happens after 4 times scan delay of scan start */ 3319 vma->numab_state->next_pid_reset = vma->numab_state->next_scan + 3320 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3321 } 3322 3323 /* 3324 * Scanning the VMA's of short lived tasks add more overhead. So 3325 * delay the scan for new VMAs. 3326 */ 3327 if (mm->numa_scan_seq && time_before(jiffies, 3328 vma->numab_state->next_scan)) 3329 continue; 3330 3331 /* Do not scan the VMA if task has not accessed */ 3332 if (!vma_is_accessed(vma)) 3333 continue; 3334 3335 /* 3336 * RESET access PIDs regularly for old VMAs. Resetting after checking 3337 * vma for recent access to avoid clearing PID info before access.. 3338 */ 3339 if (mm->numa_scan_seq && 3340 time_after(jiffies, vma->numab_state->next_pid_reset)) { 3341 vma->numab_state->next_pid_reset = vma->numab_state->next_pid_reset + 3342 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3343 vma->numab_state->access_pids[0] = READ_ONCE(vma->numab_state->access_pids[1]); 3344 vma->numab_state->access_pids[1] = 0; 3345 } 3346 3347 do { 3348 start = max(start, vma->vm_start); 3349 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3350 end = min(end, vma->vm_end); 3351 nr_pte_updates = change_prot_numa(vma, start, end); 3352 3353 /* 3354 * Try to scan sysctl_numa_balancing_size worth of 3355 * hpages that have at least one present PTE that 3356 * is not already pte-numa. If the VMA contains 3357 * areas that are unused or already full of prot_numa 3358 * PTEs, scan up to virtpages, to skip through those 3359 * areas faster. 3360 */ 3361 if (nr_pte_updates) 3362 pages -= (end - start) >> PAGE_SHIFT; 3363 virtpages -= (end - start) >> PAGE_SHIFT; 3364 3365 start = end; 3366 if (pages <= 0 || virtpages <= 0) 3367 goto out; 3368 3369 cond_resched(); 3370 } while (end != vma->vm_end); 3371 } for_each_vma(vmi, vma); 3372 3373 out: 3374 /* 3375 * It is possible to reach the end of the VMA list but the last few 3376 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3377 * would find the !migratable VMA on the next scan but not reset the 3378 * scanner to the start so check it now. 3379 */ 3380 if (vma) 3381 mm->numa_scan_offset = start; 3382 else 3383 reset_ptenuma_scan(p); 3384 mmap_read_unlock(mm); 3385 3386 /* 3387 * Make sure tasks use at least 32x as much time to run other code 3388 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3389 * Usually update_task_scan_period slows down scanning enough; on an 3390 * overloaded system we need to limit overhead on a per task basis. 3391 */ 3392 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3393 u64 diff = p->se.sum_exec_runtime - runtime; 3394 p->node_stamp += 32 * diff; 3395 } 3396 } 3397 3398 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3399 { 3400 int mm_users = 0; 3401 struct mm_struct *mm = p->mm; 3402 3403 if (mm) { 3404 mm_users = atomic_read(&mm->mm_users); 3405 if (mm_users == 1) { 3406 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3407 mm->numa_scan_seq = 0; 3408 } 3409 } 3410 p->node_stamp = 0; 3411 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3412 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3413 p->numa_migrate_retry = 0; 3414 /* Protect against double add, see task_tick_numa and task_numa_work */ 3415 p->numa_work.next = &p->numa_work; 3416 p->numa_faults = NULL; 3417 p->numa_pages_migrated = 0; 3418 p->total_numa_faults = 0; 3419 RCU_INIT_POINTER(p->numa_group, NULL); 3420 p->last_task_numa_placement = 0; 3421 p->last_sum_exec_runtime = 0; 3422 3423 init_task_work(&p->numa_work, task_numa_work); 3424 3425 /* New address space, reset the preferred nid */ 3426 if (!(clone_flags & CLONE_VM)) { 3427 p->numa_preferred_nid = NUMA_NO_NODE; 3428 return; 3429 } 3430 3431 /* 3432 * New thread, keep existing numa_preferred_nid which should be copied 3433 * already by arch_dup_task_struct but stagger when scans start. 3434 */ 3435 if (mm) { 3436 unsigned int delay; 3437 3438 delay = min_t(unsigned int, task_scan_max(current), 3439 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3440 delay += 2 * TICK_NSEC; 3441 p->node_stamp = delay; 3442 } 3443 } 3444 3445 /* 3446 * Drive the periodic memory faults.. 3447 */ 3448 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3449 { 3450 struct callback_head *work = &curr->numa_work; 3451 u64 period, now; 3452 3453 /* 3454 * We don't care about NUMA placement if we don't have memory. 3455 */ 3456 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3457 return; 3458 3459 /* 3460 * Using runtime rather than walltime has the dual advantage that 3461 * we (mostly) drive the selection from busy threads and that the 3462 * task needs to have done some actual work before we bother with 3463 * NUMA placement. 3464 */ 3465 now = curr->se.sum_exec_runtime; 3466 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3467 3468 if (now > curr->node_stamp + period) { 3469 if (!curr->node_stamp) 3470 curr->numa_scan_period = task_scan_start(curr); 3471 curr->node_stamp += period; 3472 3473 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3474 task_work_add(curr, work, TWA_RESUME); 3475 } 3476 } 3477 3478 static void update_scan_period(struct task_struct *p, int new_cpu) 3479 { 3480 int src_nid = cpu_to_node(task_cpu(p)); 3481 int dst_nid = cpu_to_node(new_cpu); 3482 3483 if (!static_branch_likely(&sched_numa_balancing)) 3484 return; 3485 3486 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3487 return; 3488 3489 if (src_nid == dst_nid) 3490 return; 3491 3492 /* 3493 * Allow resets if faults have been trapped before one scan 3494 * has completed. This is most likely due to a new task that 3495 * is pulled cross-node due to wakeups or load balancing. 3496 */ 3497 if (p->numa_scan_seq) { 3498 /* 3499 * Avoid scan adjustments if moving to the preferred 3500 * node or if the task was not previously running on 3501 * the preferred node. 3502 */ 3503 if (dst_nid == p->numa_preferred_nid || 3504 (p->numa_preferred_nid != NUMA_NO_NODE && 3505 src_nid != p->numa_preferred_nid)) 3506 return; 3507 } 3508 3509 p->numa_scan_period = task_scan_start(p); 3510 } 3511 3512 #else 3513 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3514 { 3515 } 3516 3517 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3518 { 3519 } 3520 3521 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3522 { 3523 } 3524 3525 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3526 { 3527 } 3528 3529 #endif /* CONFIG_NUMA_BALANCING */ 3530 3531 static void 3532 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3533 { 3534 update_load_add(&cfs_rq->load, se->load.weight); 3535 #ifdef CONFIG_SMP 3536 if (entity_is_task(se)) { 3537 struct rq *rq = rq_of(cfs_rq); 3538 3539 account_numa_enqueue(rq, task_of(se)); 3540 list_add(&se->group_node, &rq->cfs_tasks); 3541 } 3542 #endif 3543 cfs_rq->nr_running++; 3544 if (se_is_idle(se)) 3545 cfs_rq->idle_nr_running++; 3546 } 3547 3548 static void 3549 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3550 { 3551 update_load_sub(&cfs_rq->load, se->load.weight); 3552 #ifdef CONFIG_SMP 3553 if (entity_is_task(se)) { 3554 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3555 list_del_init(&se->group_node); 3556 } 3557 #endif 3558 cfs_rq->nr_running--; 3559 if (se_is_idle(se)) 3560 cfs_rq->idle_nr_running--; 3561 } 3562 3563 /* 3564 * Signed add and clamp on underflow. 3565 * 3566 * Explicitly do a load-store to ensure the intermediate value never hits 3567 * memory. This allows lockless observations without ever seeing the negative 3568 * values. 3569 */ 3570 #define add_positive(_ptr, _val) do { \ 3571 typeof(_ptr) ptr = (_ptr); \ 3572 typeof(_val) val = (_val); \ 3573 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3574 \ 3575 res = var + val; \ 3576 \ 3577 if (val < 0 && res > var) \ 3578 res = 0; \ 3579 \ 3580 WRITE_ONCE(*ptr, res); \ 3581 } while (0) 3582 3583 /* 3584 * Unsigned subtract and clamp on underflow. 3585 * 3586 * Explicitly do a load-store to ensure the intermediate value never hits 3587 * memory. This allows lockless observations without ever seeing the negative 3588 * values. 3589 */ 3590 #define sub_positive(_ptr, _val) do { \ 3591 typeof(_ptr) ptr = (_ptr); \ 3592 typeof(*ptr) val = (_val); \ 3593 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3594 res = var - val; \ 3595 if (res > var) \ 3596 res = 0; \ 3597 WRITE_ONCE(*ptr, res); \ 3598 } while (0) 3599 3600 /* 3601 * Remove and clamp on negative, from a local variable. 3602 * 3603 * A variant of sub_positive(), which does not use explicit load-store 3604 * and is thus optimized for local variable updates. 3605 */ 3606 #define lsub_positive(_ptr, _val) do { \ 3607 typeof(_ptr) ptr = (_ptr); \ 3608 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3609 } while (0) 3610 3611 #ifdef CONFIG_SMP 3612 static inline void 3613 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3614 { 3615 cfs_rq->avg.load_avg += se->avg.load_avg; 3616 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3617 } 3618 3619 static inline void 3620 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3621 { 3622 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3623 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3624 /* See update_cfs_rq_load_avg() */ 3625 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3626 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3627 } 3628 #else 3629 static inline void 3630 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3631 static inline void 3632 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3633 #endif 3634 3635 static void reweight_eevdf(struct sched_entity *se, u64 avruntime, 3636 unsigned long weight) 3637 { 3638 unsigned long old_weight = se->load.weight; 3639 s64 vlag, vslice; 3640 3641 /* 3642 * VRUNTIME 3643 * ======== 3644 * 3645 * COROLLARY #1: The virtual runtime of the entity needs to be 3646 * adjusted if re-weight at !0-lag point. 3647 * 3648 * Proof: For contradiction assume this is not true, so we can 3649 * re-weight without changing vruntime at !0-lag point. 3650 * 3651 * Weight VRuntime Avg-VRuntime 3652 * before w v V 3653 * after w' v' V' 3654 * 3655 * Since lag needs to be preserved through re-weight: 3656 * 3657 * lag = (V - v)*w = (V'- v')*w', where v = v' 3658 * ==> V' = (V - v)*w/w' + v (1) 3659 * 3660 * Let W be the total weight of the entities before reweight, 3661 * since V' is the new weighted average of entities: 3662 * 3663 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3664 * 3665 * by using (1) & (2) we obtain: 3666 * 3667 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3668 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3669 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3670 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3671 * 3672 * Since we are doing at !0-lag point which means V != v, we 3673 * can simplify (3): 3674 * 3675 * ==> W / (W + w' - w) = w / w' 3676 * ==> Ww' = Ww + ww' - ww 3677 * ==> W * (w' - w) = w * (w' - w) 3678 * ==> W = w (re-weight indicates w' != w) 3679 * 3680 * So the cfs_rq contains only one entity, hence vruntime of 3681 * the entity @v should always equal to the cfs_rq's weighted 3682 * average vruntime @V, which means we will always re-weight 3683 * at 0-lag point, thus breach assumption. Proof completed. 3684 * 3685 * 3686 * COROLLARY #2: Re-weight does NOT affect weighted average 3687 * vruntime of all the entities. 3688 * 3689 * Proof: According to corollary #1, Eq. (1) should be: 3690 * 3691 * (V - v)*w = (V' - v')*w' 3692 * ==> v' = V' - (V - v)*w/w' (4) 3693 * 3694 * According to the weighted average formula, we have: 3695 * 3696 * V' = (WV - wv + w'v') / (W - w + w') 3697 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3698 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3699 * = (WV + w'V' - Vw) / (W - w + w') 3700 * 3701 * ==> V'*(W - w + w') = WV + w'V' - Vw 3702 * ==> V' * (W - w) = (W - w) * V (5) 3703 * 3704 * If the entity is the only one in the cfs_rq, then reweight 3705 * always occurs at 0-lag point, so V won't change. Or else 3706 * there are other entities, hence W != w, then Eq. (5) turns 3707 * into V' = V. So V won't change in either case, proof done. 3708 * 3709 * 3710 * So according to corollary #1 & #2, the effect of re-weight 3711 * on vruntime should be: 3712 * 3713 * v' = V' - (V - v) * w / w' (4) 3714 * = V - (V - v) * w / w' 3715 * = V - vl * w / w' 3716 * = V - vl' 3717 */ 3718 if (avruntime != se->vruntime) { 3719 vlag = entity_lag(avruntime, se); 3720 vlag = div_s64(vlag * old_weight, weight); 3721 se->vruntime = avruntime - vlag; 3722 } 3723 3724 /* 3725 * DEADLINE 3726 * ======== 3727 * 3728 * When the weight changes, the virtual time slope changes and 3729 * we should adjust the relative virtual deadline accordingly. 3730 * 3731 * d' = v' + (d - v)*w/w' 3732 * = V' - (V - v)*w/w' + (d - v)*w/w' 3733 * = V - (V - v)*w/w' + (d - v)*w/w' 3734 * = V + (d - V)*w/w' 3735 */ 3736 vslice = (s64)(se->deadline - avruntime); 3737 vslice = div_s64(vslice * old_weight, weight); 3738 se->deadline = avruntime + vslice; 3739 } 3740 3741 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3742 unsigned long weight) 3743 { 3744 bool curr = cfs_rq->curr == se; 3745 u64 avruntime; 3746 3747 if (se->on_rq) { 3748 /* commit outstanding execution time */ 3749 update_curr(cfs_rq); 3750 avruntime = avg_vruntime(cfs_rq); 3751 if (!curr) 3752 __dequeue_entity(cfs_rq, se); 3753 update_load_sub(&cfs_rq->load, se->load.weight); 3754 } 3755 dequeue_load_avg(cfs_rq, se); 3756 3757 if (se->on_rq) { 3758 reweight_eevdf(se, avruntime, weight); 3759 } else { 3760 /* 3761 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3762 * we need to scale se->vlag when w_i changes. 3763 */ 3764 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3765 } 3766 3767 update_load_set(&se->load, weight); 3768 3769 #ifdef CONFIG_SMP 3770 do { 3771 u32 divider = get_pelt_divider(&se->avg); 3772 3773 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3774 } while (0); 3775 #endif 3776 3777 enqueue_load_avg(cfs_rq, se); 3778 if (se->on_rq) { 3779 update_load_add(&cfs_rq->load, se->load.weight); 3780 if (!curr) 3781 __enqueue_entity(cfs_rq, se); 3782 3783 /* 3784 * The entity's vruntime has been adjusted, so let's check 3785 * whether the rq-wide min_vruntime needs updated too. Since 3786 * the calculations above require stable min_vruntime rather 3787 * than up-to-date one, we do the update at the end of the 3788 * reweight process. 3789 */ 3790 update_min_vruntime(cfs_rq); 3791 } 3792 } 3793 3794 void reweight_task(struct task_struct *p, int prio) 3795 { 3796 struct sched_entity *se = &p->se; 3797 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3798 struct load_weight *load = &se->load; 3799 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3800 3801 reweight_entity(cfs_rq, se, weight); 3802 load->inv_weight = sched_prio_to_wmult[prio]; 3803 } 3804 3805 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3806 3807 #ifdef CONFIG_FAIR_GROUP_SCHED 3808 #ifdef CONFIG_SMP 3809 /* 3810 * All this does is approximate the hierarchical proportion which includes that 3811 * global sum we all love to hate. 3812 * 3813 * That is, the weight of a group entity, is the proportional share of the 3814 * group weight based on the group runqueue weights. That is: 3815 * 3816 * tg->weight * grq->load.weight 3817 * ge->load.weight = ----------------------------- (1) 3818 * \Sum grq->load.weight 3819 * 3820 * Now, because computing that sum is prohibitively expensive to compute (been 3821 * there, done that) we approximate it with this average stuff. The average 3822 * moves slower and therefore the approximation is cheaper and more stable. 3823 * 3824 * So instead of the above, we substitute: 3825 * 3826 * grq->load.weight -> grq->avg.load_avg (2) 3827 * 3828 * which yields the following: 3829 * 3830 * tg->weight * grq->avg.load_avg 3831 * ge->load.weight = ------------------------------ (3) 3832 * tg->load_avg 3833 * 3834 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3835 * 3836 * That is shares_avg, and it is right (given the approximation (2)). 3837 * 3838 * The problem with it is that because the average is slow -- it was designed 3839 * to be exactly that of course -- this leads to transients in boundary 3840 * conditions. In specific, the case where the group was idle and we start the 3841 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3842 * yielding bad latency etc.. 3843 * 3844 * Now, in that special case (1) reduces to: 3845 * 3846 * tg->weight * grq->load.weight 3847 * ge->load.weight = ----------------------------- = tg->weight (4) 3848 * grp->load.weight 3849 * 3850 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3851 * 3852 * So what we do is modify our approximation (3) to approach (4) in the (near) 3853 * UP case, like: 3854 * 3855 * ge->load.weight = 3856 * 3857 * tg->weight * grq->load.weight 3858 * --------------------------------------------------- (5) 3859 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3860 * 3861 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3862 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3863 * 3864 * 3865 * tg->weight * grq->load.weight 3866 * ge->load.weight = ----------------------------- (6) 3867 * tg_load_avg' 3868 * 3869 * Where: 3870 * 3871 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3872 * max(grq->load.weight, grq->avg.load_avg) 3873 * 3874 * And that is shares_weight and is icky. In the (near) UP case it approaches 3875 * (4) while in the normal case it approaches (3). It consistently 3876 * overestimates the ge->load.weight and therefore: 3877 * 3878 * \Sum ge->load.weight >= tg->weight 3879 * 3880 * hence icky! 3881 */ 3882 static long calc_group_shares(struct cfs_rq *cfs_rq) 3883 { 3884 long tg_weight, tg_shares, load, shares; 3885 struct task_group *tg = cfs_rq->tg; 3886 3887 tg_shares = READ_ONCE(tg->shares); 3888 3889 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3890 3891 tg_weight = atomic_long_read(&tg->load_avg); 3892 3893 /* Ensure tg_weight >= load */ 3894 tg_weight -= cfs_rq->tg_load_avg_contrib; 3895 tg_weight += load; 3896 3897 shares = (tg_shares * load); 3898 if (tg_weight) 3899 shares /= tg_weight; 3900 3901 /* 3902 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3903 * of a group with small tg->shares value. It is a floor value which is 3904 * assigned as a minimum load.weight to the sched_entity representing 3905 * the group on a CPU. 3906 * 3907 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3908 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3909 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3910 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3911 * instead of 0. 3912 */ 3913 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3914 } 3915 #endif /* CONFIG_SMP */ 3916 3917 /* 3918 * Recomputes the group entity based on the current state of its group 3919 * runqueue. 3920 */ 3921 static void update_cfs_group(struct sched_entity *se) 3922 { 3923 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3924 long shares; 3925 3926 if (!gcfs_rq) 3927 return; 3928 3929 if (throttled_hierarchy(gcfs_rq)) 3930 return; 3931 3932 #ifndef CONFIG_SMP 3933 shares = READ_ONCE(gcfs_rq->tg->shares); 3934 #else 3935 shares = calc_group_shares(gcfs_rq); 3936 #endif 3937 if (unlikely(se->load.weight != shares)) 3938 reweight_entity(cfs_rq_of(se), se, shares); 3939 } 3940 3941 #else /* CONFIG_FAIR_GROUP_SCHED */ 3942 static inline void update_cfs_group(struct sched_entity *se) 3943 { 3944 } 3945 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3946 3947 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3948 { 3949 struct rq *rq = rq_of(cfs_rq); 3950 3951 if (&rq->cfs == cfs_rq) { 3952 /* 3953 * There are a few boundary cases this might miss but it should 3954 * get called often enough that that should (hopefully) not be 3955 * a real problem. 3956 * 3957 * It will not get called when we go idle, because the idle 3958 * thread is a different class (!fair), nor will the utilization 3959 * number include things like RT tasks. 3960 * 3961 * As is, the util number is not freq-invariant (we'd have to 3962 * implement arch_scale_freq_capacity() for that). 3963 * 3964 * See cpu_util_cfs(). 3965 */ 3966 cpufreq_update_util(rq, flags); 3967 } 3968 } 3969 3970 #ifdef CONFIG_SMP 3971 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3972 { 3973 if (sa->load_sum) 3974 return false; 3975 3976 if (sa->util_sum) 3977 return false; 3978 3979 if (sa->runnable_sum) 3980 return false; 3981 3982 /* 3983 * _avg must be null when _sum are null because _avg = _sum / divider 3984 * Make sure that rounding and/or propagation of PELT values never 3985 * break this. 3986 */ 3987 SCHED_WARN_ON(sa->load_avg || 3988 sa->util_avg || 3989 sa->runnable_avg); 3990 3991 return true; 3992 } 3993 3994 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3995 { 3996 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3997 cfs_rq->last_update_time_copy); 3998 } 3999 #ifdef CONFIG_FAIR_GROUP_SCHED 4000 /* 4001 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4002 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4003 * bottom-up, we only have to test whether the cfs_rq before us on the list 4004 * is our child. 4005 * If cfs_rq is not on the list, test whether a child needs its to be added to 4006 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4007 */ 4008 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4009 { 4010 struct cfs_rq *prev_cfs_rq; 4011 struct list_head *prev; 4012 4013 if (cfs_rq->on_list) { 4014 prev = cfs_rq->leaf_cfs_rq_list.prev; 4015 } else { 4016 struct rq *rq = rq_of(cfs_rq); 4017 4018 prev = rq->tmp_alone_branch; 4019 } 4020 4021 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4022 4023 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4024 } 4025 4026 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4027 { 4028 if (cfs_rq->load.weight) 4029 return false; 4030 4031 if (!load_avg_is_decayed(&cfs_rq->avg)) 4032 return false; 4033 4034 if (child_cfs_rq_on_list(cfs_rq)) 4035 return false; 4036 4037 return true; 4038 } 4039 4040 /** 4041 * update_tg_load_avg - update the tg's load avg 4042 * @cfs_rq: the cfs_rq whose avg changed 4043 * 4044 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4045 * However, because tg->load_avg is a global value there are performance 4046 * considerations. 4047 * 4048 * In order to avoid having to look at the other cfs_rq's, we use a 4049 * differential update where we store the last value we propagated. This in 4050 * turn allows skipping updates if the differential is 'small'. 4051 * 4052 * Updating tg's load_avg is necessary before update_cfs_share(). 4053 */ 4054 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4055 { 4056 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4057 4058 /* 4059 * No need to update load_avg for root_task_group as it is not used. 4060 */ 4061 if (cfs_rq->tg == &root_task_group) 4062 return; 4063 4064 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4065 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4066 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4067 } 4068 } 4069 4070 /* 4071 * Called within set_task_rq() right before setting a task's CPU. The 4072 * caller only guarantees p->pi_lock is held; no other assumptions, 4073 * including the state of rq->lock, should be made. 4074 */ 4075 void set_task_rq_fair(struct sched_entity *se, 4076 struct cfs_rq *prev, struct cfs_rq *next) 4077 { 4078 u64 p_last_update_time; 4079 u64 n_last_update_time; 4080 4081 if (!sched_feat(ATTACH_AGE_LOAD)) 4082 return; 4083 4084 /* 4085 * We are supposed to update the task to "current" time, then its up to 4086 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4087 * getting what current time is, so simply throw away the out-of-date 4088 * time. This will result in the wakee task is less decayed, but giving 4089 * the wakee more load sounds not bad. 4090 */ 4091 if (!(se->avg.last_update_time && prev)) 4092 return; 4093 4094 p_last_update_time = cfs_rq_last_update_time(prev); 4095 n_last_update_time = cfs_rq_last_update_time(next); 4096 4097 __update_load_avg_blocked_se(p_last_update_time, se); 4098 se->avg.last_update_time = n_last_update_time; 4099 } 4100 4101 /* 4102 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4103 * propagate its contribution. The key to this propagation is the invariant 4104 * that for each group: 4105 * 4106 * ge->avg == grq->avg (1) 4107 * 4108 * _IFF_ we look at the pure running and runnable sums. Because they 4109 * represent the very same entity, just at different points in the hierarchy. 4110 * 4111 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4112 * and simply copies the running/runnable sum over (but still wrong, because 4113 * the group entity and group rq do not have their PELT windows aligned). 4114 * 4115 * However, update_tg_cfs_load() is more complex. So we have: 4116 * 4117 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4118 * 4119 * And since, like util, the runnable part should be directly transferable, 4120 * the following would _appear_ to be the straight forward approach: 4121 * 4122 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4123 * 4124 * And per (1) we have: 4125 * 4126 * ge->avg.runnable_avg == grq->avg.runnable_avg 4127 * 4128 * Which gives: 4129 * 4130 * ge->load.weight * grq->avg.load_avg 4131 * ge->avg.load_avg = ----------------------------------- (4) 4132 * grq->load.weight 4133 * 4134 * Except that is wrong! 4135 * 4136 * Because while for entities historical weight is not important and we 4137 * really only care about our future and therefore can consider a pure 4138 * runnable sum, runqueues can NOT do this. 4139 * 4140 * We specifically want runqueues to have a load_avg that includes 4141 * historical weights. Those represent the blocked load, the load we expect 4142 * to (shortly) return to us. This only works by keeping the weights as 4143 * integral part of the sum. We therefore cannot decompose as per (3). 4144 * 4145 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4146 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4147 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4148 * runnable section of these tasks overlap (or not). If they were to perfectly 4149 * align the rq as a whole would be runnable 2/3 of the time. If however we 4150 * always have at least 1 runnable task, the rq as a whole is always runnable. 4151 * 4152 * So we'll have to approximate.. :/ 4153 * 4154 * Given the constraint: 4155 * 4156 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4157 * 4158 * We can construct a rule that adds runnable to a rq by assuming minimal 4159 * overlap. 4160 * 4161 * On removal, we'll assume each task is equally runnable; which yields: 4162 * 4163 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4164 * 4165 * XXX: only do this for the part of runnable > running ? 4166 * 4167 */ 4168 static inline void 4169 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4170 { 4171 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4172 u32 new_sum, divider; 4173 4174 /* Nothing to update */ 4175 if (!delta_avg) 4176 return; 4177 4178 /* 4179 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4180 * See ___update_load_avg() for details. 4181 */ 4182 divider = get_pelt_divider(&cfs_rq->avg); 4183 4184 4185 /* Set new sched_entity's utilization */ 4186 se->avg.util_avg = gcfs_rq->avg.util_avg; 4187 new_sum = se->avg.util_avg * divider; 4188 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4189 se->avg.util_sum = new_sum; 4190 4191 /* Update parent cfs_rq utilization */ 4192 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4193 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4194 4195 /* See update_cfs_rq_load_avg() */ 4196 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4197 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4198 } 4199 4200 static inline void 4201 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4202 { 4203 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4204 u32 new_sum, divider; 4205 4206 /* Nothing to update */ 4207 if (!delta_avg) 4208 return; 4209 4210 /* 4211 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4212 * See ___update_load_avg() for details. 4213 */ 4214 divider = get_pelt_divider(&cfs_rq->avg); 4215 4216 /* Set new sched_entity's runnable */ 4217 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4218 new_sum = se->avg.runnable_avg * divider; 4219 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4220 se->avg.runnable_sum = new_sum; 4221 4222 /* Update parent cfs_rq runnable */ 4223 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4224 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4225 /* See update_cfs_rq_load_avg() */ 4226 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4227 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4228 } 4229 4230 static inline void 4231 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4232 { 4233 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4234 unsigned long load_avg; 4235 u64 load_sum = 0; 4236 s64 delta_sum; 4237 u32 divider; 4238 4239 if (!runnable_sum) 4240 return; 4241 4242 gcfs_rq->prop_runnable_sum = 0; 4243 4244 /* 4245 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4246 * See ___update_load_avg() for details. 4247 */ 4248 divider = get_pelt_divider(&cfs_rq->avg); 4249 4250 if (runnable_sum >= 0) { 4251 /* 4252 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4253 * the CPU is saturated running == runnable. 4254 */ 4255 runnable_sum += se->avg.load_sum; 4256 runnable_sum = min_t(long, runnable_sum, divider); 4257 } else { 4258 /* 4259 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4260 * assuming all tasks are equally runnable. 4261 */ 4262 if (scale_load_down(gcfs_rq->load.weight)) { 4263 load_sum = div_u64(gcfs_rq->avg.load_sum, 4264 scale_load_down(gcfs_rq->load.weight)); 4265 } 4266 4267 /* But make sure to not inflate se's runnable */ 4268 runnable_sum = min(se->avg.load_sum, load_sum); 4269 } 4270 4271 /* 4272 * runnable_sum can't be lower than running_sum 4273 * Rescale running sum to be in the same range as runnable sum 4274 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4275 * runnable_sum is in [0 : LOAD_AVG_MAX] 4276 */ 4277 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4278 runnable_sum = max(runnable_sum, running_sum); 4279 4280 load_sum = se_weight(se) * runnable_sum; 4281 load_avg = div_u64(load_sum, divider); 4282 4283 delta_avg = load_avg - se->avg.load_avg; 4284 if (!delta_avg) 4285 return; 4286 4287 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4288 4289 se->avg.load_sum = runnable_sum; 4290 se->avg.load_avg = load_avg; 4291 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4292 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4293 /* See update_cfs_rq_load_avg() */ 4294 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4295 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4296 } 4297 4298 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4299 { 4300 cfs_rq->propagate = 1; 4301 cfs_rq->prop_runnable_sum += runnable_sum; 4302 } 4303 4304 /* Update task and its cfs_rq load average */ 4305 static inline int propagate_entity_load_avg(struct sched_entity *se) 4306 { 4307 struct cfs_rq *cfs_rq, *gcfs_rq; 4308 4309 if (entity_is_task(se)) 4310 return 0; 4311 4312 gcfs_rq = group_cfs_rq(se); 4313 if (!gcfs_rq->propagate) 4314 return 0; 4315 4316 gcfs_rq->propagate = 0; 4317 4318 cfs_rq = cfs_rq_of(se); 4319 4320 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4321 4322 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4323 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4324 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4325 4326 trace_pelt_cfs_tp(cfs_rq); 4327 trace_pelt_se_tp(se); 4328 4329 return 1; 4330 } 4331 4332 /* 4333 * Check if we need to update the load and the utilization of a blocked 4334 * group_entity: 4335 */ 4336 static inline bool skip_blocked_update(struct sched_entity *se) 4337 { 4338 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4339 4340 /* 4341 * If sched_entity still have not zero load or utilization, we have to 4342 * decay it: 4343 */ 4344 if (se->avg.load_avg || se->avg.util_avg) 4345 return false; 4346 4347 /* 4348 * If there is a pending propagation, we have to update the load and 4349 * the utilization of the sched_entity: 4350 */ 4351 if (gcfs_rq->propagate) 4352 return false; 4353 4354 /* 4355 * Otherwise, the load and the utilization of the sched_entity is 4356 * already zero and there is no pending propagation, so it will be a 4357 * waste of time to try to decay it: 4358 */ 4359 return true; 4360 } 4361 4362 #else /* CONFIG_FAIR_GROUP_SCHED */ 4363 4364 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4365 4366 static inline int propagate_entity_load_avg(struct sched_entity *se) 4367 { 4368 return 0; 4369 } 4370 4371 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4372 4373 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4374 4375 #ifdef CONFIG_NO_HZ_COMMON 4376 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4377 { 4378 u64 throttled = 0, now, lut; 4379 struct cfs_rq *cfs_rq; 4380 struct rq *rq; 4381 bool is_idle; 4382 4383 if (load_avg_is_decayed(&se->avg)) 4384 return; 4385 4386 cfs_rq = cfs_rq_of(se); 4387 rq = rq_of(cfs_rq); 4388 4389 rcu_read_lock(); 4390 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4391 rcu_read_unlock(); 4392 4393 /* 4394 * The lag estimation comes with a cost we don't want to pay all the 4395 * time. Hence, limiting to the case where the source CPU is idle and 4396 * we know we are at the greatest risk to have an outdated clock. 4397 */ 4398 if (!is_idle) 4399 return; 4400 4401 /* 4402 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4403 * 4404 * last_update_time (the cfs_rq's last_update_time) 4405 * = cfs_rq_clock_pelt()@cfs_rq_idle 4406 * = rq_clock_pelt()@cfs_rq_idle 4407 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4408 * 4409 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4410 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4411 * 4412 * rq_idle_lag (delta between now and rq's update) 4413 * = sched_clock_cpu() - rq_clock()@rq_idle 4414 * 4415 * We can then write: 4416 * 4417 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4418 * sched_clock_cpu() - rq_clock()@rq_idle 4419 * Where: 4420 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4421 * rq_clock()@rq_idle is rq->clock_idle 4422 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4423 * is cfs_rq->throttled_pelt_idle 4424 */ 4425 4426 #ifdef CONFIG_CFS_BANDWIDTH 4427 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4428 /* The clock has been stopped for throttling */ 4429 if (throttled == U64_MAX) 4430 return; 4431 #endif 4432 now = u64_u32_load(rq->clock_pelt_idle); 4433 /* 4434 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4435 * is observed the old clock_pelt_idle value and the new clock_idle, 4436 * which lead to an underestimation. The opposite would lead to an 4437 * overestimation. 4438 */ 4439 smp_rmb(); 4440 lut = cfs_rq_last_update_time(cfs_rq); 4441 4442 now -= throttled; 4443 if (now < lut) 4444 /* 4445 * cfs_rq->avg.last_update_time is more recent than our 4446 * estimation, let's use it. 4447 */ 4448 now = lut; 4449 else 4450 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4451 4452 __update_load_avg_blocked_se(now, se); 4453 } 4454 #else 4455 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4456 #endif 4457 4458 /** 4459 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4460 * @now: current time, as per cfs_rq_clock_pelt() 4461 * @cfs_rq: cfs_rq to update 4462 * 4463 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4464 * avg. The immediate corollary is that all (fair) tasks must be attached. 4465 * 4466 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4467 * 4468 * Return: true if the load decayed or we removed load. 4469 * 4470 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4471 * call update_tg_load_avg() when this function returns true. 4472 */ 4473 static inline int 4474 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4475 { 4476 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4477 struct sched_avg *sa = &cfs_rq->avg; 4478 int decayed = 0; 4479 4480 if (cfs_rq->removed.nr) { 4481 unsigned long r; 4482 u32 divider = get_pelt_divider(&cfs_rq->avg); 4483 4484 raw_spin_lock(&cfs_rq->removed.lock); 4485 swap(cfs_rq->removed.util_avg, removed_util); 4486 swap(cfs_rq->removed.load_avg, removed_load); 4487 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4488 cfs_rq->removed.nr = 0; 4489 raw_spin_unlock(&cfs_rq->removed.lock); 4490 4491 r = removed_load; 4492 sub_positive(&sa->load_avg, r); 4493 sub_positive(&sa->load_sum, r * divider); 4494 /* See sa->util_sum below */ 4495 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4496 4497 r = removed_util; 4498 sub_positive(&sa->util_avg, r); 4499 sub_positive(&sa->util_sum, r * divider); 4500 /* 4501 * Because of rounding, se->util_sum might ends up being +1 more than 4502 * cfs->util_sum. Although this is not a problem by itself, detaching 4503 * a lot of tasks with the rounding problem between 2 updates of 4504 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4505 * cfs_util_avg is not. 4506 * Check that util_sum is still above its lower bound for the new 4507 * util_avg. Given that period_contrib might have moved since the last 4508 * sync, we are only sure that util_sum must be above or equal to 4509 * util_avg * minimum possible divider 4510 */ 4511 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4512 4513 r = removed_runnable; 4514 sub_positive(&sa->runnable_avg, r); 4515 sub_positive(&sa->runnable_sum, r * divider); 4516 /* See sa->util_sum above */ 4517 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4518 sa->runnable_avg * PELT_MIN_DIVIDER); 4519 4520 /* 4521 * removed_runnable is the unweighted version of removed_load so we 4522 * can use it to estimate removed_load_sum. 4523 */ 4524 add_tg_cfs_propagate(cfs_rq, 4525 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4526 4527 decayed = 1; 4528 } 4529 4530 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4531 u64_u32_store_copy(sa->last_update_time, 4532 cfs_rq->last_update_time_copy, 4533 sa->last_update_time); 4534 return decayed; 4535 } 4536 4537 /** 4538 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4539 * @cfs_rq: cfs_rq to attach to 4540 * @se: sched_entity to attach 4541 * 4542 * Must call update_cfs_rq_load_avg() before this, since we rely on 4543 * cfs_rq->avg.last_update_time being current. 4544 */ 4545 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4546 { 4547 /* 4548 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4549 * See ___update_load_avg() for details. 4550 */ 4551 u32 divider = get_pelt_divider(&cfs_rq->avg); 4552 4553 /* 4554 * When we attach the @se to the @cfs_rq, we must align the decay 4555 * window because without that, really weird and wonderful things can 4556 * happen. 4557 * 4558 * XXX illustrate 4559 */ 4560 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4561 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4562 4563 /* 4564 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4565 * period_contrib. This isn't strictly correct, but since we're 4566 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4567 * _sum a little. 4568 */ 4569 se->avg.util_sum = se->avg.util_avg * divider; 4570 4571 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4572 4573 se->avg.load_sum = se->avg.load_avg * divider; 4574 if (se_weight(se) < se->avg.load_sum) 4575 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4576 else 4577 se->avg.load_sum = 1; 4578 4579 enqueue_load_avg(cfs_rq, se); 4580 cfs_rq->avg.util_avg += se->avg.util_avg; 4581 cfs_rq->avg.util_sum += se->avg.util_sum; 4582 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4583 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4584 4585 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4586 4587 cfs_rq_util_change(cfs_rq, 0); 4588 4589 trace_pelt_cfs_tp(cfs_rq); 4590 } 4591 4592 /** 4593 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4594 * @cfs_rq: cfs_rq to detach from 4595 * @se: sched_entity to detach 4596 * 4597 * Must call update_cfs_rq_load_avg() before this, since we rely on 4598 * cfs_rq->avg.last_update_time being current. 4599 */ 4600 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4601 { 4602 dequeue_load_avg(cfs_rq, se); 4603 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4604 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4605 /* See update_cfs_rq_load_avg() */ 4606 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4607 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4608 4609 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4610 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4611 /* See update_cfs_rq_load_avg() */ 4612 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4613 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4614 4615 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4616 4617 cfs_rq_util_change(cfs_rq, 0); 4618 4619 trace_pelt_cfs_tp(cfs_rq); 4620 } 4621 4622 /* 4623 * Optional action to be done while updating the load average 4624 */ 4625 #define UPDATE_TG 0x1 4626 #define SKIP_AGE_LOAD 0x2 4627 #define DO_ATTACH 0x4 4628 #define DO_DETACH 0x8 4629 4630 /* Update task and its cfs_rq load average */ 4631 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4632 { 4633 u64 now = cfs_rq_clock_pelt(cfs_rq); 4634 int decayed; 4635 4636 /* 4637 * Track task load average for carrying it to new CPU after migrated, and 4638 * track group sched_entity load average for task_h_load calc in migration 4639 */ 4640 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4641 __update_load_avg_se(now, cfs_rq, se); 4642 4643 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4644 decayed |= propagate_entity_load_avg(se); 4645 4646 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4647 4648 /* 4649 * DO_ATTACH means we're here from enqueue_entity(). 4650 * !last_update_time means we've passed through 4651 * migrate_task_rq_fair() indicating we migrated. 4652 * 4653 * IOW we're enqueueing a task on a new CPU. 4654 */ 4655 attach_entity_load_avg(cfs_rq, se); 4656 update_tg_load_avg(cfs_rq); 4657 4658 } else if (flags & DO_DETACH) { 4659 /* 4660 * DO_DETACH means we're here from dequeue_entity() 4661 * and we are migrating task out of the CPU. 4662 */ 4663 detach_entity_load_avg(cfs_rq, se); 4664 update_tg_load_avg(cfs_rq); 4665 } else if (decayed) { 4666 cfs_rq_util_change(cfs_rq, 0); 4667 4668 if (flags & UPDATE_TG) 4669 update_tg_load_avg(cfs_rq); 4670 } 4671 } 4672 4673 /* 4674 * Synchronize entity load avg of dequeued entity without locking 4675 * the previous rq. 4676 */ 4677 static void sync_entity_load_avg(struct sched_entity *se) 4678 { 4679 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4680 u64 last_update_time; 4681 4682 last_update_time = cfs_rq_last_update_time(cfs_rq); 4683 __update_load_avg_blocked_se(last_update_time, se); 4684 } 4685 4686 /* 4687 * Task first catches up with cfs_rq, and then subtract 4688 * itself from the cfs_rq (task must be off the queue now). 4689 */ 4690 static void remove_entity_load_avg(struct sched_entity *se) 4691 { 4692 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4693 unsigned long flags; 4694 4695 /* 4696 * tasks cannot exit without having gone through wake_up_new_task() -> 4697 * enqueue_task_fair() which will have added things to the cfs_rq, 4698 * so we can remove unconditionally. 4699 */ 4700 4701 sync_entity_load_avg(se); 4702 4703 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4704 ++cfs_rq->removed.nr; 4705 cfs_rq->removed.util_avg += se->avg.util_avg; 4706 cfs_rq->removed.load_avg += se->avg.load_avg; 4707 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4708 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4709 } 4710 4711 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4712 { 4713 return cfs_rq->avg.runnable_avg; 4714 } 4715 4716 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4717 { 4718 return cfs_rq->avg.load_avg; 4719 } 4720 4721 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4722 4723 static inline unsigned long task_util(struct task_struct *p) 4724 { 4725 return READ_ONCE(p->se.avg.util_avg); 4726 } 4727 4728 static inline unsigned long _task_util_est(struct task_struct *p) 4729 { 4730 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4731 4732 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4733 } 4734 4735 static inline unsigned long task_util_est(struct task_struct *p) 4736 { 4737 return max(task_util(p), _task_util_est(p)); 4738 } 4739 4740 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4741 struct task_struct *p) 4742 { 4743 unsigned int enqueued; 4744 4745 if (!sched_feat(UTIL_EST)) 4746 return; 4747 4748 /* Update root cfs_rq's estimated utilization */ 4749 enqueued = cfs_rq->avg.util_est.enqueued; 4750 enqueued += _task_util_est(p); 4751 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4752 4753 trace_sched_util_est_cfs_tp(cfs_rq); 4754 } 4755 4756 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4757 struct task_struct *p) 4758 { 4759 unsigned int enqueued; 4760 4761 if (!sched_feat(UTIL_EST)) 4762 return; 4763 4764 /* Update root cfs_rq's estimated utilization */ 4765 enqueued = cfs_rq->avg.util_est.enqueued; 4766 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4767 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4768 4769 trace_sched_util_est_cfs_tp(cfs_rq); 4770 } 4771 4772 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4773 4774 /* 4775 * Check if a (signed) value is within a specified (unsigned) margin, 4776 * based on the observation that: 4777 * 4778 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4779 * 4780 * NOTE: this only works when value + margin < INT_MAX. 4781 */ 4782 static inline bool within_margin(int value, int margin) 4783 { 4784 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4785 } 4786 4787 static inline void util_est_update(struct cfs_rq *cfs_rq, 4788 struct task_struct *p, 4789 bool task_sleep) 4790 { 4791 long last_ewma_diff, last_enqueued_diff; 4792 struct util_est ue; 4793 4794 if (!sched_feat(UTIL_EST)) 4795 return; 4796 4797 /* 4798 * Skip update of task's estimated utilization when the task has not 4799 * yet completed an activation, e.g. being migrated. 4800 */ 4801 if (!task_sleep) 4802 return; 4803 4804 /* 4805 * If the PELT values haven't changed since enqueue time, 4806 * skip the util_est update. 4807 */ 4808 ue = p->se.avg.util_est; 4809 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4810 return; 4811 4812 last_enqueued_diff = ue.enqueued; 4813 4814 /* 4815 * Reset EWMA on utilization increases, the moving average is used only 4816 * to smooth utilization decreases. 4817 */ 4818 ue.enqueued = task_util(p); 4819 if (sched_feat(UTIL_EST_FASTUP)) { 4820 if (ue.ewma < ue.enqueued) { 4821 ue.ewma = ue.enqueued; 4822 goto done; 4823 } 4824 } 4825 4826 /* 4827 * Skip update of task's estimated utilization when its members are 4828 * already ~1% close to its last activation value. 4829 */ 4830 last_ewma_diff = ue.enqueued - ue.ewma; 4831 last_enqueued_diff -= ue.enqueued; 4832 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4833 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4834 goto done; 4835 4836 return; 4837 } 4838 4839 /* 4840 * To avoid overestimation of actual task utilization, skip updates if 4841 * we cannot grant there is idle time in this CPU. 4842 */ 4843 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4844 return; 4845 4846 /* 4847 * Update Task's estimated utilization 4848 * 4849 * When *p completes an activation we can consolidate another sample 4850 * of the task size. This is done by storing the current PELT value 4851 * as ue.enqueued and by using this value to update the Exponential 4852 * Weighted Moving Average (EWMA): 4853 * 4854 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4855 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4856 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4857 * = w * ( last_ewma_diff ) + ewma(t-1) 4858 * = w * (last_ewma_diff + ewma(t-1) / w) 4859 * 4860 * Where 'w' is the weight of new samples, which is configured to be 4861 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4862 */ 4863 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4864 ue.ewma += last_ewma_diff; 4865 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4866 done: 4867 ue.enqueued |= UTIL_AVG_UNCHANGED; 4868 WRITE_ONCE(p->se.avg.util_est, ue); 4869 4870 trace_sched_util_est_se_tp(&p->se); 4871 } 4872 4873 static inline int util_fits_cpu(unsigned long util, 4874 unsigned long uclamp_min, 4875 unsigned long uclamp_max, 4876 int cpu) 4877 { 4878 unsigned long capacity_orig, capacity_orig_thermal; 4879 unsigned long capacity = capacity_of(cpu); 4880 bool fits, uclamp_max_fits; 4881 4882 /* 4883 * Check if the real util fits without any uclamp boost/cap applied. 4884 */ 4885 fits = fits_capacity(util, capacity); 4886 4887 if (!uclamp_is_used()) 4888 return fits; 4889 4890 /* 4891 * We must use capacity_orig_of() for comparing against uclamp_min and 4892 * uclamp_max. We only care about capacity pressure (by using 4893 * capacity_of()) for comparing against the real util. 4894 * 4895 * If a task is boosted to 1024 for example, we don't want a tiny 4896 * pressure to skew the check whether it fits a CPU or not. 4897 * 4898 * Similarly if a task is capped to capacity_orig_of(little_cpu), it 4899 * should fit a little cpu even if there's some pressure. 4900 * 4901 * Only exception is for thermal pressure since it has a direct impact 4902 * on available OPP of the system. 4903 * 4904 * We honour it for uclamp_min only as a drop in performance level 4905 * could result in not getting the requested minimum performance level. 4906 * 4907 * For uclamp_max, we can tolerate a drop in performance level as the 4908 * goal is to cap the task. So it's okay if it's getting less. 4909 */ 4910 capacity_orig = capacity_orig_of(cpu); 4911 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 4912 4913 /* 4914 * We want to force a task to fit a cpu as implied by uclamp_max. 4915 * But we do have some corner cases to cater for.. 4916 * 4917 * 4918 * C=z 4919 * | ___ 4920 * | C=y | | 4921 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4922 * | C=x | | | | 4923 * | ___ | | | | 4924 * | | | | | | | (util somewhere in this region) 4925 * | | | | | | | 4926 * | | | | | | | 4927 * +---------------------------------------- 4928 * cpu0 cpu1 cpu2 4929 * 4930 * In the above example if a task is capped to a specific performance 4931 * point, y, then when: 4932 * 4933 * * util = 80% of x then it does not fit on cpu0 and should migrate 4934 * to cpu1 4935 * * util = 80% of y then it is forced to fit on cpu1 to honour 4936 * uclamp_max request. 4937 * 4938 * which is what we're enforcing here. A task always fits if 4939 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 4940 * the normal upmigration rules should withhold still. 4941 * 4942 * Only exception is when we are on max capacity, then we need to be 4943 * careful not to block overutilized state. This is so because: 4944 * 4945 * 1. There's no concept of capping at max_capacity! We can't go 4946 * beyond this performance level anyway. 4947 * 2. The system is being saturated when we're operating near 4948 * max capacity, it doesn't make sense to block overutilized. 4949 */ 4950 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 4951 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 4952 fits = fits || uclamp_max_fits; 4953 4954 /* 4955 * 4956 * C=z 4957 * | ___ (region a, capped, util >= uclamp_max) 4958 * | C=y | | 4959 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4960 * | C=x | | | | 4961 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 4962 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 4963 * | | | | | | | 4964 * | | | | | | | (region c, boosted, util < uclamp_min) 4965 * +---------------------------------------- 4966 * cpu0 cpu1 cpu2 4967 * 4968 * a) If util > uclamp_max, then we're capped, we don't care about 4969 * actual fitness value here. We only care if uclamp_max fits 4970 * capacity without taking margin/pressure into account. 4971 * See comment above. 4972 * 4973 * b) If uclamp_min <= util <= uclamp_max, then the normal 4974 * fits_capacity() rules apply. Except we need to ensure that we 4975 * enforce we remain within uclamp_max, see comment above. 4976 * 4977 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 4978 * need to take into account the boosted value fits the CPU without 4979 * taking margin/pressure into account. 4980 * 4981 * Cases (a) and (b) are handled in the 'fits' variable already. We 4982 * just need to consider an extra check for case (c) after ensuring we 4983 * handle the case uclamp_min > uclamp_max. 4984 */ 4985 uclamp_min = min(uclamp_min, uclamp_max); 4986 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal)) 4987 return -1; 4988 4989 return fits; 4990 } 4991 4992 static inline int task_fits_cpu(struct task_struct *p, int cpu) 4993 { 4994 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 4995 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 4996 unsigned long util = task_util_est(p); 4997 /* 4998 * Return true only if the cpu fully fits the task requirements, which 4999 * include the utilization but also the performance hints. 5000 */ 5001 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5002 } 5003 5004 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5005 { 5006 if (!sched_asym_cpucap_active()) 5007 return; 5008 5009 if (!p || p->nr_cpus_allowed == 1) { 5010 rq->misfit_task_load = 0; 5011 return; 5012 } 5013 5014 if (task_fits_cpu(p, cpu_of(rq))) { 5015 rq->misfit_task_load = 0; 5016 return; 5017 } 5018 5019 /* 5020 * Make sure that misfit_task_load will not be null even if 5021 * task_h_load() returns 0. 5022 */ 5023 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5024 } 5025 5026 #else /* CONFIG_SMP */ 5027 5028 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5029 { 5030 return !cfs_rq->nr_running; 5031 } 5032 5033 #define UPDATE_TG 0x0 5034 #define SKIP_AGE_LOAD 0x0 5035 #define DO_ATTACH 0x0 5036 #define DO_DETACH 0x0 5037 5038 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5039 { 5040 cfs_rq_util_change(cfs_rq, 0); 5041 } 5042 5043 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5044 5045 static inline void 5046 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5047 static inline void 5048 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5049 5050 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 5051 { 5052 return 0; 5053 } 5054 5055 static inline void 5056 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5057 5058 static inline void 5059 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5060 5061 static inline void 5062 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5063 bool task_sleep) {} 5064 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5065 5066 #endif /* CONFIG_SMP */ 5067 5068 static void 5069 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5070 { 5071 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5072 s64 lag = 0; 5073 5074 se->slice = sysctl_sched_base_slice; 5075 vslice = calc_delta_fair(se->slice, se); 5076 5077 /* 5078 * Due to how V is constructed as the weighted average of entities, 5079 * adding tasks with positive lag, or removing tasks with negative lag 5080 * will move 'time' backwards, this can screw around with the lag of 5081 * other tasks. 5082 * 5083 * EEVDF: placement strategy #1 / #2 5084 */ 5085 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 5086 struct sched_entity *curr = cfs_rq->curr; 5087 unsigned long load; 5088 5089 lag = se->vlag; 5090 5091 /* 5092 * If we want to place a task and preserve lag, we have to 5093 * consider the effect of the new entity on the weighted 5094 * average and compensate for this, otherwise lag can quickly 5095 * evaporate. 5096 * 5097 * Lag is defined as: 5098 * 5099 * lag_i = S - s_i = w_i * (V - v_i) 5100 * 5101 * To avoid the 'w_i' term all over the place, we only track 5102 * the virtual lag: 5103 * 5104 * vl_i = V - v_i <=> v_i = V - vl_i 5105 * 5106 * And we take V to be the weighted average of all v: 5107 * 5108 * V = (\Sum w_j*v_j) / W 5109 * 5110 * Where W is: \Sum w_j 5111 * 5112 * Then, the weighted average after adding an entity with lag 5113 * vl_i is given by: 5114 * 5115 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5116 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5117 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5118 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5119 * = V - w_i*vl_i / (W + w_i) 5120 * 5121 * And the actual lag after adding an entity with vl_i is: 5122 * 5123 * vl'_i = V' - v_i 5124 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5125 * = vl_i - w_i*vl_i / (W + w_i) 5126 * 5127 * Which is strictly less than vl_i. So in order to preserve lag 5128 * we should inflate the lag before placement such that the 5129 * effective lag after placement comes out right. 5130 * 5131 * As such, invert the above relation for vl'_i to get the vl_i 5132 * we need to use such that the lag after placement is the lag 5133 * we computed before dequeue. 5134 * 5135 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5136 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5137 * 5138 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5139 * = W*vl_i 5140 * 5141 * vl_i = (W + w_i)*vl'_i / W 5142 */ 5143 load = cfs_rq->avg_load; 5144 if (curr && curr->on_rq) 5145 load += scale_load_down(curr->load.weight); 5146 5147 lag *= load + scale_load_down(se->load.weight); 5148 if (WARN_ON_ONCE(!load)) 5149 load = 1; 5150 lag = div_s64(lag, load); 5151 } 5152 5153 se->vruntime = vruntime - lag; 5154 5155 /* 5156 * When joining the competition; the exisiting tasks will be, 5157 * on average, halfway through their slice, as such start tasks 5158 * off with half a slice to ease into the competition. 5159 */ 5160 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5161 vslice /= 2; 5162 5163 /* 5164 * EEVDF: vd_i = ve_i + r_i/w_i 5165 */ 5166 se->deadline = se->vruntime + vslice; 5167 } 5168 5169 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5170 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5171 5172 static inline bool cfs_bandwidth_used(void); 5173 5174 static void 5175 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5176 { 5177 bool curr = cfs_rq->curr == se; 5178 5179 /* 5180 * If we're the current task, we must renormalise before calling 5181 * update_curr(). 5182 */ 5183 if (curr) 5184 place_entity(cfs_rq, se, flags); 5185 5186 update_curr(cfs_rq); 5187 5188 /* 5189 * When enqueuing a sched_entity, we must: 5190 * - Update loads to have both entity and cfs_rq synced with now. 5191 * - For group_entity, update its runnable_weight to reflect the new 5192 * h_nr_running of its group cfs_rq. 5193 * - For group_entity, update its weight to reflect the new share of 5194 * its group cfs_rq 5195 * - Add its new weight to cfs_rq->load.weight 5196 */ 5197 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5198 se_update_runnable(se); 5199 /* 5200 * XXX update_load_avg() above will have attached us to the pelt sum; 5201 * but update_cfs_group() here will re-adjust the weight and have to 5202 * undo/redo all that. Seems wasteful. 5203 */ 5204 update_cfs_group(se); 5205 5206 /* 5207 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5208 * we can place the entity. 5209 */ 5210 if (!curr) 5211 place_entity(cfs_rq, se, flags); 5212 5213 account_entity_enqueue(cfs_rq, se); 5214 5215 /* Entity has migrated, no longer consider this task hot */ 5216 if (flags & ENQUEUE_MIGRATED) 5217 se->exec_start = 0; 5218 5219 check_schedstat_required(); 5220 update_stats_enqueue_fair(cfs_rq, se, flags); 5221 if (!curr) 5222 __enqueue_entity(cfs_rq, se); 5223 se->on_rq = 1; 5224 5225 if (cfs_rq->nr_running == 1) { 5226 check_enqueue_throttle(cfs_rq); 5227 if (!throttled_hierarchy(cfs_rq)) { 5228 list_add_leaf_cfs_rq(cfs_rq); 5229 } else { 5230 #ifdef CONFIG_CFS_BANDWIDTH 5231 struct rq *rq = rq_of(cfs_rq); 5232 5233 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5234 cfs_rq->throttled_clock = rq_clock(rq); 5235 if (!cfs_rq->throttled_clock_self) 5236 cfs_rq->throttled_clock_self = rq_clock(rq); 5237 #endif 5238 } 5239 } 5240 } 5241 5242 static void __clear_buddies_next(struct sched_entity *se) 5243 { 5244 for_each_sched_entity(se) { 5245 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5246 if (cfs_rq->next != se) 5247 break; 5248 5249 cfs_rq->next = NULL; 5250 } 5251 } 5252 5253 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5254 { 5255 if (cfs_rq->next == se) 5256 __clear_buddies_next(se); 5257 } 5258 5259 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5260 5261 static void 5262 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5263 { 5264 int action = UPDATE_TG; 5265 5266 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5267 action |= DO_DETACH; 5268 5269 /* 5270 * Update run-time statistics of the 'current'. 5271 */ 5272 update_curr(cfs_rq); 5273 5274 /* 5275 * When dequeuing a sched_entity, we must: 5276 * - Update loads to have both entity and cfs_rq synced with now. 5277 * - For group_entity, update its runnable_weight to reflect the new 5278 * h_nr_running of its group cfs_rq. 5279 * - Subtract its previous weight from cfs_rq->load.weight. 5280 * - For group entity, update its weight to reflect the new share 5281 * of its group cfs_rq. 5282 */ 5283 update_load_avg(cfs_rq, se, action); 5284 se_update_runnable(se); 5285 5286 update_stats_dequeue_fair(cfs_rq, se, flags); 5287 5288 clear_buddies(cfs_rq, se); 5289 5290 update_entity_lag(cfs_rq, se); 5291 if (se != cfs_rq->curr) 5292 __dequeue_entity(cfs_rq, se); 5293 se->on_rq = 0; 5294 account_entity_dequeue(cfs_rq, se); 5295 5296 /* return excess runtime on last dequeue */ 5297 return_cfs_rq_runtime(cfs_rq); 5298 5299 update_cfs_group(se); 5300 5301 /* 5302 * Now advance min_vruntime if @se was the entity holding it back, 5303 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5304 * put back on, and if we advance min_vruntime, we'll be placed back 5305 * further than we started -- ie. we'll be penalized. 5306 */ 5307 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5308 update_min_vruntime(cfs_rq); 5309 5310 if (cfs_rq->nr_running == 0) 5311 update_idle_cfs_rq_clock_pelt(cfs_rq); 5312 } 5313 5314 static void 5315 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5316 { 5317 clear_buddies(cfs_rq, se); 5318 5319 /* 'current' is not kept within the tree. */ 5320 if (se->on_rq) { 5321 /* 5322 * Any task has to be enqueued before it get to execute on 5323 * a CPU. So account for the time it spent waiting on the 5324 * runqueue. 5325 */ 5326 update_stats_wait_end_fair(cfs_rq, se); 5327 __dequeue_entity(cfs_rq, se); 5328 update_load_avg(cfs_rq, se, UPDATE_TG); 5329 /* 5330 * HACK, stash a copy of deadline at the point of pick in vlag, 5331 * which isn't used until dequeue. 5332 */ 5333 se->vlag = se->deadline; 5334 } 5335 5336 update_stats_curr_start(cfs_rq, se); 5337 cfs_rq->curr = se; 5338 5339 /* 5340 * Track our maximum slice length, if the CPU's load is at 5341 * least twice that of our own weight (i.e. dont track it 5342 * when there are only lesser-weight tasks around): 5343 */ 5344 if (schedstat_enabled() && 5345 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5346 struct sched_statistics *stats; 5347 5348 stats = __schedstats_from_se(se); 5349 __schedstat_set(stats->slice_max, 5350 max((u64)stats->slice_max, 5351 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5352 } 5353 5354 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5355 } 5356 5357 /* 5358 * Pick the next process, keeping these things in mind, in this order: 5359 * 1) keep things fair between processes/task groups 5360 * 2) pick the "next" process, since someone really wants that to run 5361 * 3) pick the "last" process, for cache locality 5362 * 4) do not run the "skip" process, if something else is available 5363 */ 5364 static struct sched_entity * 5365 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 5366 { 5367 /* 5368 * Enabling NEXT_BUDDY will affect latency but not fairness. 5369 */ 5370 if (sched_feat(NEXT_BUDDY) && 5371 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) 5372 return cfs_rq->next; 5373 5374 return pick_eevdf(cfs_rq); 5375 } 5376 5377 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5378 5379 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5380 { 5381 /* 5382 * If still on the runqueue then deactivate_task() 5383 * was not called and update_curr() has to be done: 5384 */ 5385 if (prev->on_rq) 5386 update_curr(cfs_rq); 5387 5388 /* throttle cfs_rqs exceeding runtime */ 5389 check_cfs_rq_runtime(cfs_rq); 5390 5391 if (prev->on_rq) { 5392 update_stats_wait_start_fair(cfs_rq, prev); 5393 /* Put 'current' back into the tree. */ 5394 __enqueue_entity(cfs_rq, prev); 5395 /* in !on_rq case, update occurred at dequeue */ 5396 update_load_avg(cfs_rq, prev, 0); 5397 } 5398 cfs_rq->curr = NULL; 5399 } 5400 5401 static void 5402 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5403 { 5404 /* 5405 * Update run-time statistics of the 'current'. 5406 */ 5407 update_curr(cfs_rq); 5408 5409 /* 5410 * Ensure that runnable average is periodically updated. 5411 */ 5412 update_load_avg(cfs_rq, curr, UPDATE_TG); 5413 update_cfs_group(curr); 5414 5415 #ifdef CONFIG_SCHED_HRTICK 5416 /* 5417 * queued ticks are scheduled to match the slice, so don't bother 5418 * validating it and just reschedule. 5419 */ 5420 if (queued) { 5421 resched_curr(rq_of(cfs_rq)); 5422 return; 5423 } 5424 /* 5425 * don't let the period tick interfere with the hrtick preemption 5426 */ 5427 if (!sched_feat(DOUBLE_TICK) && 5428 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5429 return; 5430 #endif 5431 } 5432 5433 5434 /************************************************** 5435 * CFS bandwidth control machinery 5436 */ 5437 5438 #ifdef CONFIG_CFS_BANDWIDTH 5439 5440 #ifdef CONFIG_JUMP_LABEL 5441 static struct static_key __cfs_bandwidth_used; 5442 5443 static inline bool cfs_bandwidth_used(void) 5444 { 5445 return static_key_false(&__cfs_bandwidth_used); 5446 } 5447 5448 void cfs_bandwidth_usage_inc(void) 5449 { 5450 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5451 } 5452 5453 void cfs_bandwidth_usage_dec(void) 5454 { 5455 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5456 } 5457 #else /* CONFIG_JUMP_LABEL */ 5458 static bool cfs_bandwidth_used(void) 5459 { 5460 return true; 5461 } 5462 5463 void cfs_bandwidth_usage_inc(void) {} 5464 void cfs_bandwidth_usage_dec(void) {} 5465 #endif /* CONFIG_JUMP_LABEL */ 5466 5467 /* 5468 * default period for cfs group bandwidth. 5469 * default: 0.1s, units: nanoseconds 5470 */ 5471 static inline u64 default_cfs_period(void) 5472 { 5473 return 100000000ULL; 5474 } 5475 5476 static inline u64 sched_cfs_bandwidth_slice(void) 5477 { 5478 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5479 } 5480 5481 /* 5482 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5483 * directly instead of rq->clock to avoid adding additional synchronization 5484 * around rq->lock. 5485 * 5486 * requires cfs_b->lock 5487 */ 5488 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5489 { 5490 s64 runtime; 5491 5492 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5493 return; 5494 5495 cfs_b->runtime += cfs_b->quota; 5496 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5497 if (runtime > 0) { 5498 cfs_b->burst_time += runtime; 5499 cfs_b->nr_burst++; 5500 } 5501 5502 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5503 cfs_b->runtime_snap = cfs_b->runtime; 5504 } 5505 5506 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5507 { 5508 return &tg->cfs_bandwidth; 5509 } 5510 5511 /* returns 0 on failure to allocate runtime */ 5512 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5513 struct cfs_rq *cfs_rq, u64 target_runtime) 5514 { 5515 u64 min_amount, amount = 0; 5516 5517 lockdep_assert_held(&cfs_b->lock); 5518 5519 /* note: this is a positive sum as runtime_remaining <= 0 */ 5520 min_amount = target_runtime - cfs_rq->runtime_remaining; 5521 5522 if (cfs_b->quota == RUNTIME_INF) 5523 amount = min_amount; 5524 else { 5525 start_cfs_bandwidth(cfs_b); 5526 5527 if (cfs_b->runtime > 0) { 5528 amount = min(cfs_b->runtime, min_amount); 5529 cfs_b->runtime -= amount; 5530 cfs_b->idle = 0; 5531 } 5532 } 5533 5534 cfs_rq->runtime_remaining += amount; 5535 5536 return cfs_rq->runtime_remaining > 0; 5537 } 5538 5539 /* returns 0 on failure to allocate runtime */ 5540 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5541 { 5542 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5543 int ret; 5544 5545 raw_spin_lock(&cfs_b->lock); 5546 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5547 raw_spin_unlock(&cfs_b->lock); 5548 5549 return ret; 5550 } 5551 5552 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5553 { 5554 /* dock delta_exec before expiring quota (as it could span periods) */ 5555 cfs_rq->runtime_remaining -= delta_exec; 5556 5557 if (likely(cfs_rq->runtime_remaining > 0)) 5558 return; 5559 5560 if (cfs_rq->throttled) 5561 return; 5562 /* 5563 * if we're unable to extend our runtime we resched so that the active 5564 * hierarchy can be throttled 5565 */ 5566 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5567 resched_curr(rq_of(cfs_rq)); 5568 } 5569 5570 static __always_inline 5571 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5572 { 5573 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5574 return; 5575 5576 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5577 } 5578 5579 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5580 { 5581 return cfs_bandwidth_used() && cfs_rq->throttled; 5582 } 5583 5584 /* check whether cfs_rq, or any parent, is throttled */ 5585 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5586 { 5587 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5588 } 5589 5590 /* 5591 * Ensure that neither of the group entities corresponding to src_cpu or 5592 * dest_cpu are members of a throttled hierarchy when performing group 5593 * load-balance operations. 5594 */ 5595 static inline int throttled_lb_pair(struct task_group *tg, 5596 int src_cpu, int dest_cpu) 5597 { 5598 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5599 5600 src_cfs_rq = tg->cfs_rq[src_cpu]; 5601 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5602 5603 return throttled_hierarchy(src_cfs_rq) || 5604 throttled_hierarchy(dest_cfs_rq); 5605 } 5606 5607 static int tg_unthrottle_up(struct task_group *tg, void *data) 5608 { 5609 struct rq *rq = data; 5610 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5611 5612 cfs_rq->throttle_count--; 5613 if (!cfs_rq->throttle_count) { 5614 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5615 cfs_rq->throttled_clock_pelt; 5616 5617 /* Add cfs_rq with load or one or more already running entities to the list */ 5618 if (!cfs_rq_is_decayed(cfs_rq)) 5619 list_add_leaf_cfs_rq(cfs_rq); 5620 5621 if (cfs_rq->throttled_clock_self) { 5622 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5623 5624 cfs_rq->throttled_clock_self = 0; 5625 5626 if (SCHED_WARN_ON((s64)delta < 0)) 5627 delta = 0; 5628 5629 cfs_rq->throttled_clock_self_time += delta; 5630 } 5631 } 5632 5633 return 0; 5634 } 5635 5636 static int tg_throttle_down(struct task_group *tg, void *data) 5637 { 5638 struct rq *rq = data; 5639 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5640 5641 /* group is entering throttled state, stop time */ 5642 if (!cfs_rq->throttle_count) { 5643 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5644 list_del_leaf_cfs_rq(cfs_rq); 5645 5646 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5647 if (cfs_rq->nr_running) 5648 cfs_rq->throttled_clock_self = rq_clock(rq); 5649 } 5650 cfs_rq->throttle_count++; 5651 5652 return 0; 5653 } 5654 5655 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5656 { 5657 struct rq *rq = rq_of(cfs_rq); 5658 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5659 struct sched_entity *se; 5660 long task_delta, idle_task_delta, dequeue = 1; 5661 5662 raw_spin_lock(&cfs_b->lock); 5663 /* This will start the period timer if necessary */ 5664 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5665 /* 5666 * We have raced with bandwidth becoming available, and if we 5667 * actually throttled the timer might not unthrottle us for an 5668 * entire period. We additionally needed to make sure that any 5669 * subsequent check_cfs_rq_runtime calls agree not to throttle 5670 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5671 * for 1ns of runtime rather than just check cfs_b. 5672 */ 5673 dequeue = 0; 5674 } else { 5675 list_add_tail_rcu(&cfs_rq->throttled_list, 5676 &cfs_b->throttled_cfs_rq); 5677 } 5678 raw_spin_unlock(&cfs_b->lock); 5679 5680 if (!dequeue) 5681 return false; /* Throttle no longer required. */ 5682 5683 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5684 5685 /* freeze hierarchy runnable averages while throttled */ 5686 rcu_read_lock(); 5687 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5688 rcu_read_unlock(); 5689 5690 task_delta = cfs_rq->h_nr_running; 5691 idle_task_delta = cfs_rq->idle_h_nr_running; 5692 for_each_sched_entity(se) { 5693 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5694 /* throttled entity or throttle-on-deactivate */ 5695 if (!se->on_rq) 5696 goto done; 5697 5698 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5699 5700 if (cfs_rq_is_idle(group_cfs_rq(se))) 5701 idle_task_delta = cfs_rq->h_nr_running; 5702 5703 qcfs_rq->h_nr_running -= task_delta; 5704 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5705 5706 if (qcfs_rq->load.weight) { 5707 /* Avoid re-evaluating load for this entity: */ 5708 se = parent_entity(se); 5709 break; 5710 } 5711 } 5712 5713 for_each_sched_entity(se) { 5714 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5715 /* throttled entity or throttle-on-deactivate */ 5716 if (!se->on_rq) 5717 goto done; 5718 5719 update_load_avg(qcfs_rq, se, 0); 5720 se_update_runnable(se); 5721 5722 if (cfs_rq_is_idle(group_cfs_rq(se))) 5723 idle_task_delta = cfs_rq->h_nr_running; 5724 5725 qcfs_rq->h_nr_running -= task_delta; 5726 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5727 } 5728 5729 /* At this point se is NULL and we are at root level*/ 5730 sub_nr_running(rq, task_delta); 5731 5732 done: 5733 /* 5734 * Note: distribution will already see us throttled via the 5735 * throttled-list. rq->lock protects completion. 5736 */ 5737 cfs_rq->throttled = 1; 5738 SCHED_WARN_ON(cfs_rq->throttled_clock); 5739 if (cfs_rq->nr_running) 5740 cfs_rq->throttled_clock = rq_clock(rq); 5741 return true; 5742 } 5743 5744 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5745 { 5746 struct rq *rq = rq_of(cfs_rq); 5747 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5748 struct sched_entity *se; 5749 long task_delta, idle_task_delta; 5750 5751 se = cfs_rq->tg->se[cpu_of(rq)]; 5752 5753 cfs_rq->throttled = 0; 5754 5755 update_rq_clock(rq); 5756 5757 raw_spin_lock(&cfs_b->lock); 5758 if (cfs_rq->throttled_clock) { 5759 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5760 cfs_rq->throttled_clock = 0; 5761 } 5762 list_del_rcu(&cfs_rq->throttled_list); 5763 raw_spin_unlock(&cfs_b->lock); 5764 5765 /* update hierarchical throttle state */ 5766 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5767 5768 if (!cfs_rq->load.weight) { 5769 if (!cfs_rq->on_list) 5770 return; 5771 /* 5772 * Nothing to run but something to decay (on_list)? 5773 * Complete the branch. 5774 */ 5775 for_each_sched_entity(se) { 5776 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5777 break; 5778 } 5779 goto unthrottle_throttle; 5780 } 5781 5782 task_delta = cfs_rq->h_nr_running; 5783 idle_task_delta = cfs_rq->idle_h_nr_running; 5784 for_each_sched_entity(se) { 5785 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5786 5787 if (se->on_rq) 5788 break; 5789 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5790 5791 if (cfs_rq_is_idle(group_cfs_rq(se))) 5792 idle_task_delta = cfs_rq->h_nr_running; 5793 5794 qcfs_rq->h_nr_running += task_delta; 5795 qcfs_rq->idle_h_nr_running += idle_task_delta; 5796 5797 /* end evaluation on encountering a throttled cfs_rq */ 5798 if (cfs_rq_throttled(qcfs_rq)) 5799 goto unthrottle_throttle; 5800 } 5801 5802 for_each_sched_entity(se) { 5803 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5804 5805 update_load_avg(qcfs_rq, se, UPDATE_TG); 5806 se_update_runnable(se); 5807 5808 if (cfs_rq_is_idle(group_cfs_rq(se))) 5809 idle_task_delta = cfs_rq->h_nr_running; 5810 5811 qcfs_rq->h_nr_running += task_delta; 5812 qcfs_rq->idle_h_nr_running += idle_task_delta; 5813 5814 /* end evaluation on encountering a throttled cfs_rq */ 5815 if (cfs_rq_throttled(qcfs_rq)) 5816 goto unthrottle_throttle; 5817 } 5818 5819 /* At this point se is NULL and we are at root level*/ 5820 add_nr_running(rq, task_delta); 5821 5822 unthrottle_throttle: 5823 assert_list_leaf_cfs_rq(rq); 5824 5825 /* Determine whether we need to wake up potentially idle CPU: */ 5826 if (rq->curr == rq->idle && rq->cfs.nr_running) 5827 resched_curr(rq); 5828 } 5829 5830 #ifdef CONFIG_SMP 5831 static void __cfsb_csd_unthrottle(void *arg) 5832 { 5833 struct cfs_rq *cursor, *tmp; 5834 struct rq *rq = arg; 5835 struct rq_flags rf; 5836 5837 rq_lock(rq, &rf); 5838 5839 /* 5840 * Iterating over the list can trigger several call to 5841 * update_rq_clock() in unthrottle_cfs_rq(). 5842 * Do it once and skip the potential next ones. 5843 */ 5844 update_rq_clock(rq); 5845 rq_clock_start_loop_update(rq); 5846 5847 /* 5848 * Since we hold rq lock we're safe from concurrent manipulation of 5849 * the CSD list. However, this RCU critical section annotates the 5850 * fact that we pair with sched_free_group_rcu(), so that we cannot 5851 * race with group being freed in the window between removing it 5852 * from the list and advancing to the next entry in the list. 5853 */ 5854 rcu_read_lock(); 5855 5856 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5857 throttled_csd_list) { 5858 list_del_init(&cursor->throttled_csd_list); 5859 5860 if (cfs_rq_throttled(cursor)) 5861 unthrottle_cfs_rq(cursor); 5862 } 5863 5864 rcu_read_unlock(); 5865 5866 rq_clock_stop_loop_update(rq); 5867 rq_unlock(rq, &rf); 5868 } 5869 5870 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5871 { 5872 struct rq *rq = rq_of(cfs_rq); 5873 bool first; 5874 5875 if (rq == this_rq()) { 5876 unthrottle_cfs_rq(cfs_rq); 5877 return; 5878 } 5879 5880 /* Already enqueued */ 5881 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5882 return; 5883 5884 first = list_empty(&rq->cfsb_csd_list); 5885 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5886 if (first) 5887 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5888 } 5889 #else 5890 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5891 { 5892 unthrottle_cfs_rq(cfs_rq); 5893 } 5894 #endif 5895 5896 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5897 { 5898 lockdep_assert_rq_held(rq_of(cfs_rq)); 5899 5900 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 5901 cfs_rq->runtime_remaining <= 0)) 5902 return; 5903 5904 __unthrottle_cfs_rq_async(cfs_rq); 5905 } 5906 5907 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5908 { 5909 struct cfs_rq *local_unthrottle = NULL; 5910 int this_cpu = smp_processor_id(); 5911 u64 runtime, remaining = 1; 5912 bool throttled = false; 5913 struct cfs_rq *cfs_rq; 5914 struct rq_flags rf; 5915 struct rq *rq; 5916 5917 rcu_read_lock(); 5918 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5919 throttled_list) { 5920 rq = rq_of(cfs_rq); 5921 5922 if (!remaining) { 5923 throttled = true; 5924 break; 5925 } 5926 5927 rq_lock_irqsave(rq, &rf); 5928 if (!cfs_rq_throttled(cfs_rq)) 5929 goto next; 5930 5931 #ifdef CONFIG_SMP 5932 /* Already queued for async unthrottle */ 5933 if (!list_empty(&cfs_rq->throttled_csd_list)) 5934 goto next; 5935 #endif 5936 5937 /* By the above checks, this should never be true */ 5938 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5939 5940 raw_spin_lock(&cfs_b->lock); 5941 runtime = -cfs_rq->runtime_remaining + 1; 5942 if (runtime > cfs_b->runtime) 5943 runtime = cfs_b->runtime; 5944 cfs_b->runtime -= runtime; 5945 remaining = cfs_b->runtime; 5946 raw_spin_unlock(&cfs_b->lock); 5947 5948 cfs_rq->runtime_remaining += runtime; 5949 5950 /* we check whether we're throttled above */ 5951 if (cfs_rq->runtime_remaining > 0) { 5952 if (cpu_of(rq) != this_cpu || 5953 SCHED_WARN_ON(local_unthrottle)) 5954 unthrottle_cfs_rq_async(cfs_rq); 5955 else 5956 local_unthrottle = cfs_rq; 5957 } else { 5958 throttled = true; 5959 } 5960 5961 next: 5962 rq_unlock_irqrestore(rq, &rf); 5963 } 5964 rcu_read_unlock(); 5965 5966 if (local_unthrottle) { 5967 rq = cpu_rq(this_cpu); 5968 rq_lock_irqsave(rq, &rf); 5969 if (cfs_rq_throttled(local_unthrottle)) 5970 unthrottle_cfs_rq(local_unthrottle); 5971 rq_unlock_irqrestore(rq, &rf); 5972 } 5973 5974 return throttled; 5975 } 5976 5977 /* 5978 * Responsible for refilling a task_group's bandwidth and unthrottling its 5979 * cfs_rqs as appropriate. If there has been no activity within the last 5980 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5981 * used to track this state. 5982 */ 5983 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5984 { 5985 int throttled; 5986 5987 /* no need to continue the timer with no bandwidth constraint */ 5988 if (cfs_b->quota == RUNTIME_INF) 5989 goto out_deactivate; 5990 5991 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5992 cfs_b->nr_periods += overrun; 5993 5994 /* Refill extra burst quota even if cfs_b->idle */ 5995 __refill_cfs_bandwidth_runtime(cfs_b); 5996 5997 /* 5998 * idle depends on !throttled (for the case of a large deficit), and if 5999 * we're going inactive then everything else can be deferred 6000 */ 6001 if (cfs_b->idle && !throttled) 6002 goto out_deactivate; 6003 6004 if (!throttled) { 6005 /* mark as potentially idle for the upcoming period */ 6006 cfs_b->idle = 1; 6007 return 0; 6008 } 6009 6010 /* account preceding periods in which throttling occurred */ 6011 cfs_b->nr_throttled += overrun; 6012 6013 /* 6014 * This check is repeated as we release cfs_b->lock while we unthrottle. 6015 */ 6016 while (throttled && cfs_b->runtime > 0) { 6017 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6018 /* we can't nest cfs_b->lock while distributing bandwidth */ 6019 throttled = distribute_cfs_runtime(cfs_b); 6020 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6021 } 6022 6023 /* 6024 * While we are ensured activity in the period following an 6025 * unthrottle, this also covers the case in which the new bandwidth is 6026 * insufficient to cover the existing bandwidth deficit. (Forcing the 6027 * timer to remain active while there are any throttled entities.) 6028 */ 6029 cfs_b->idle = 0; 6030 6031 return 0; 6032 6033 out_deactivate: 6034 return 1; 6035 } 6036 6037 /* a cfs_rq won't donate quota below this amount */ 6038 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6039 /* minimum remaining period time to redistribute slack quota */ 6040 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6041 /* how long we wait to gather additional slack before distributing */ 6042 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6043 6044 /* 6045 * Are we near the end of the current quota period? 6046 * 6047 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6048 * hrtimer base being cleared by hrtimer_start. In the case of 6049 * migrate_hrtimers, base is never cleared, so we are fine. 6050 */ 6051 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6052 { 6053 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6054 s64 remaining; 6055 6056 /* if the call-back is running a quota refresh is already occurring */ 6057 if (hrtimer_callback_running(refresh_timer)) 6058 return 1; 6059 6060 /* is a quota refresh about to occur? */ 6061 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6062 if (remaining < (s64)min_expire) 6063 return 1; 6064 6065 return 0; 6066 } 6067 6068 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6069 { 6070 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6071 6072 /* if there's a quota refresh soon don't bother with slack */ 6073 if (runtime_refresh_within(cfs_b, min_left)) 6074 return; 6075 6076 /* don't push forwards an existing deferred unthrottle */ 6077 if (cfs_b->slack_started) 6078 return; 6079 cfs_b->slack_started = true; 6080 6081 hrtimer_start(&cfs_b->slack_timer, 6082 ns_to_ktime(cfs_bandwidth_slack_period), 6083 HRTIMER_MODE_REL); 6084 } 6085 6086 /* we know any runtime found here is valid as update_curr() precedes return */ 6087 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6088 { 6089 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6090 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6091 6092 if (slack_runtime <= 0) 6093 return; 6094 6095 raw_spin_lock(&cfs_b->lock); 6096 if (cfs_b->quota != RUNTIME_INF) { 6097 cfs_b->runtime += slack_runtime; 6098 6099 /* we are under rq->lock, defer unthrottling using a timer */ 6100 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6101 !list_empty(&cfs_b->throttled_cfs_rq)) 6102 start_cfs_slack_bandwidth(cfs_b); 6103 } 6104 raw_spin_unlock(&cfs_b->lock); 6105 6106 /* even if it's not valid for return we don't want to try again */ 6107 cfs_rq->runtime_remaining -= slack_runtime; 6108 } 6109 6110 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6111 { 6112 if (!cfs_bandwidth_used()) 6113 return; 6114 6115 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6116 return; 6117 6118 __return_cfs_rq_runtime(cfs_rq); 6119 } 6120 6121 /* 6122 * This is done with a timer (instead of inline with bandwidth return) since 6123 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6124 */ 6125 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6126 { 6127 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6128 unsigned long flags; 6129 6130 /* confirm we're still not at a refresh boundary */ 6131 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6132 cfs_b->slack_started = false; 6133 6134 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6135 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6136 return; 6137 } 6138 6139 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6140 runtime = cfs_b->runtime; 6141 6142 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6143 6144 if (!runtime) 6145 return; 6146 6147 distribute_cfs_runtime(cfs_b); 6148 } 6149 6150 /* 6151 * When a group wakes up we want to make sure that its quota is not already 6152 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6153 * runtime as update_curr() throttling can not trigger until it's on-rq. 6154 */ 6155 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6156 { 6157 if (!cfs_bandwidth_used()) 6158 return; 6159 6160 /* an active group must be handled by the update_curr()->put() path */ 6161 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6162 return; 6163 6164 /* ensure the group is not already throttled */ 6165 if (cfs_rq_throttled(cfs_rq)) 6166 return; 6167 6168 /* update runtime allocation */ 6169 account_cfs_rq_runtime(cfs_rq, 0); 6170 if (cfs_rq->runtime_remaining <= 0) 6171 throttle_cfs_rq(cfs_rq); 6172 } 6173 6174 static void sync_throttle(struct task_group *tg, int cpu) 6175 { 6176 struct cfs_rq *pcfs_rq, *cfs_rq; 6177 6178 if (!cfs_bandwidth_used()) 6179 return; 6180 6181 if (!tg->parent) 6182 return; 6183 6184 cfs_rq = tg->cfs_rq[cpu]; 6185 pcfs_rq = tg->parent->cfs_rq[cpu]; 6186 6187 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6188 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6189 } 6190 6191 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6192 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6193 { 6194 if (!cfs_bandwidth_used()) 6195 return false; 6196 6197 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6198 return false; 6199 6200 /* 6201 * it's possible for a throttled entity to be forced into a running 6202 * state (e.g. set_curr_task), in this case we're finished. 6203 */ 6204 if (cfs_rq_throttled(cfs_rq)) 6205 return true; 6206 6207 return throttle_cfs_rq(cfs_rq); 6208 } 6209 6210 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6211 { 6212 struct cfs_bandwidth *cfs_b = 6213 container_of(timer, struct cfs_bandwidth, slack_timer); 6214 6215 do_sched_cfs_slack_timer(cfs_b); 6216 6217 return HRTIMER_NORESTART; 6218 } 6219 6220 extern const u64 max_cfs_quota_period; 6221 6222 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6223 { 6224 struct cfs_bandwidth *cfs_b = 6225 container_of(timer, struct cfs_bandwidth, period_timer); 6226 unsigned long flags; 6227 int overrun; 6228 int idle = 0; 6229 int count = 0; 6230 6231 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6232 for (;;) { 6233 overrun = hrtimer_forward_now(timer, cfs_b->period); 6234 if (!overrun) 6235 break; 6236 6237 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6238 6239 if (++count > 3) { 6240 u64 new, old = ktime_to_ns(cfs_b->period); 6241 6242 /* 6243 * Grow period by a factor of 2 to avoid losing precision. 6244 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6245 * to fail. 6246 */ 6247 new = old * 2; 6248 if (new < max_cfs_quota_period) { 6249 cfs_b->period = ns_to_ktime(new); 6250 cfs_b->quota *= 2; 6251 cfs_b->burst *= 2; 6252 6253 pr_warn_ratelimited( 6254 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6255 smp_processor_id(), 6256 div_u64(new, NSEC_PER_USEC), 6257 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6258 } else { 6259 pr_warn_ratelimited( 6260 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6261 smp_processor_id(), 6262 div_u64(old, NSEC_PER_USEC), 6263 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6264 } 6265 6266 /* reset count so we don't come right back in here */ 6267 count = 0; 6268 } 6269 } 6270 if (idle) 6271 cfs_b->period_active = 0; 6272 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6273 6274 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6275 } 6276 6277 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6278 { 6279 raw_spin_lock_init(&cfs_b->lock); 6280 cfs_b->runtime = 0; 6281 cfs_b->quota = RUNTIME_INF; 6282 cfs_b->period = ns_to_ktime(default_cfs_period()); 6283 cfs_b->burst = 0; 6284 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6285 6286 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6287 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6288 cfs_b->period_timer.function = sched_cfs_period_timer; 6289 6290 /* Add a random offset so that timers interleave */ 6291 hrtimer_set_expires(&cfs_b->period_timer, 6292 get_random_u32_below(cfs_b->period)); 6293 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6294 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6295 cfs_b->slack_started = false; 6296 } 6297 6298 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6299 { 6300 cfs_rq->runtime_enabled = 0; 6301 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6302 #ifdef CONFIG_SMP 6303 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6304 #endif 6305 } 6306 6307 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6308 { 6309 lockdep_assert_held(&cfs_b->lock); 6310 6311 if (cfs_b->period_active) 6312 return; 6313 6314 cfs_b->period_active = 1; 6315 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6316 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6317 } 6318 6319 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6320 { 6321 int __maybe_unused i; 6322 6323 /* init_cfs_bandwidth() was not called */ 6324 if (!cfs_b->throttled_cfs_rq.next) 6325 return; 6326 6327 hrtimer_cancel(&cfs_b->period_timer); 6328 hrtimer_cancel(&cfs_b->slack_timer); 6329 6330 /* 6331 * It is possible that we still have some cfs_rq's pending on a CSD 6332 * list, though this race is very rare. In order for this to occur, we 6333 * must have raced with the last task leaving the group while there 6334 * exist throttled cfs_rq(s), and the period_timer must have queued the 6335 * CSD item but the remote cpu has not yet processed it. To handle this, 6336 * we can simply flush all pending CSD work inline here. We're 6337 * guaranteed at this point that no additional cfs_rq of this group can 6338 * join a CSD list. 6339 */ 6340 #ifdef CONFIG_SMP 6341 for_each_possible_cpu(i) { 6342 struct rq *rq = cpu_rq(i); 6343 unsigned long flags; 6344 6345 if (list_empty(&rq->cfsb_csd_list)) 6346 continue; 6347 6348 local_irq_save(flags); 6349 __cfsb_csd_unthrottle(rq); 6350 local_irq_restore(flags); 6351 } 6352 #endif 6353 } 6354 6355 /* 6356 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6357 * 6358 * The race is harmless, since modifying bandwidth settings of unhooked group 6359 * bits doesn't do much. 6360 */ 6361 6362 /* cpu online callback */ 6363 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6364 { 6365 struct task_group *tg; 6366 6367 lockdep_assert_rq_held(rq); 6368 6369 rcu_read_lock(); 6370 list_for_each_entry_rcu(tg, &task_groups, list) { 6371 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6372 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6373 6374 raw_spin_lock(&cfs_b->lock); 6375 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6376 raw_spin_unlock(&cfs_b->lock); 6377 } 6378 rcu_read_unlock(); 6379 } 6380 6381 /* cpu offline callback */ 6382 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6383 { 6384 struct task_group *tg; 6385 6386 lockdep_assert_rq_held(rq); 6387 6388 /* 6389 * The rq clock has already been updated in the 6390 * set_rq_offline(), so we should skip updating 6391 * the rq clock again in unthrottle_cfs_rq(). 6392 */ 6393 rq_clock_start_loop_update(rq); 6394 6395 rcu_read_lock(); 6396 list_for_each_entry_rcu(tg, &task_groups, list) { 6397 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6398 6399 if (!cfs_rq->runtime_enabled) 6400 continue; 6401 6402 /* 6403 * clock_task is not advancing so we just need to make sure 6404 * there's some valid quota amount 6405 */ 6406 cfs_rq->runtime_remaining = 1; 6407 /* 6408 * Offline rq is schedulable till CPU is completely disabled 6409 * in take_cpu_down(), so we prevent new cfs throttling here. 6410 */ 6411 cfs_rq->runtime_enabled = 0; 6412 6413 if (cfs_rq_throttled(cfs_rq)) 6414 unthrottle_cfs_rq(cfs_rq); 6415 } 6416 rcu_read_unlock(); 6417 6418 rq_clock_stop_loop_update(rq); 6419 } 6420 6421 bool cfs_task_bw_constrained(struct task_struct *p) 6422 { 6423 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6424 6425 if (!cfs_bandwidth_used()) 6426 return false; 6427 6428 if (cfs_rq->runtime_enabled || 6429 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6430 return true; 6431 6432 return false; 6433 } 6434 6435 #ifdef CONFIG_NO_HZ_FULL 6436 /* called from pick_next_task_fair() */ 6437 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6438 { 6439 int cpu = cpu_of(rq); 6440 6441 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used()) 6442 return; 6443 6444 if (!tick_nohz_full_cpu(cpu)) 6445 return; 6446 6447 if (rq->nr_running != 1) 6448 return; 6449 6450 /* 6451 * We know there is only one task runnable and we've just picked it. The 6452 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6453 * be otherwise able to stop the tick. Just need to check if we are using 6454 * bandwidth control. 6455 */ 6456 if (cfs_task_bw_constrained(p)) 6457 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6458 } 6459 #endif 6460 6461 #else /* CONFIG_CFS_BANDWIDTH */ 6462 6463 static inline bool cfs_bandwidth_used(void) 6464 { 6465 return false; 6466 } 6467 6468 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6469 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6470 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6471 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6472 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6473 6474 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6475 { 6476 return 0; 6477 } 6478 6479 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6480 { 6481 return 0; 6482 } 6483 6484 static inline int throttled_lb_pair(struct task_group *tg, 6485 int src_cpu, int dest_cpu) 6486 { 6487 return 0; 6488 } 6489 6490 #ifdef CONFIG_FAIR_GROUP_SCHED 6491 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6492 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6493 #endif 6494 6495 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6496 { 6497 return NULL; 6498 } 6499 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6500 static inline void update_runtime_enabled(struct rq *rq) {} 6501 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6502 #ifdef CONFIG_CGROUP_SCHED 6503 bool cfs_task_bw_constrained(struct task_struct *p) 6504 { 6505 return false; 6506 } 6507 #endif 6508 #endif /* CONFIG_CFS_BANDWIDTH */ 6509 6510 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6511 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6512 #endif 6513 6514 /************************************************** 6515 * CFS operations on tasks: 6516 */ 6517 6518 #ifdef CONFIG_SCHED_HRTICK 6519 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6520 { 6521 struct sched_entity *se = &p->se; 6522 6523 SCHED_WARN_ON(task_rq(p) != rq); 6524 6525 if (rq->cfs.h_nr_running > 1) { 6526 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6527 u64 slice = se->slice; 6528 s64 delta = slice - ran; 6529 6530 if (delta < 0) { 6531 if (task_current(rq, p)) 6532 resched_curr(rq); 6533 return; 6534 } 6535 hrtick_start(rq, delta); 6536 } 6537 } 6538 6539 /* 6540 * called from enqueue/dequeue and updates the hrtick when the 6541 * current task is from our class and nr_running is low enough 6542 * to matter. 6543 */ 6544 static void hrtick_update(struct rq *rq) 6545 { 6546 struct task_struct *curr = rq->curr; 6547 6548 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6549 return; 6550 6551 hrtick_start_fair(rq, curr); 6552 } 6553 #else /* !CONFIG_SCHED_HRTICK */ 6554 static inline void 6555 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6556 { 6557 } 6558 6559 static inline void hrtick_update(struct rq *rq) 6560 { 6561 } 6562 #endif 6563 6564 #ifdef CONFIG_SMP 6565 static inline bool cpu_overutilized(int cpu) 6566 { 6567 unsigned long rq_util_min, rq_util_max; 6568 6569 if (!sched_energy_enabled()) 6570 return false; 6571 6572 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6573 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6574 6575 /* Return true only if the utilization doesn't fit CPU's capacity */ 6576 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6577 } 6578 6579 static inline void set_rd_overutilized_status(struct root_domain *rd, 6580 unsigned int status) 6581 { 6582 if (!sched_energy_enabled()) 6583 return; 6584 6585 WRITE_ONCE(rd->overutilized, status); 6586 trace_sched_overutilized_tp(rd, !!status); 6587 } 6588 6589 static inline void check_update_overutilized_status(struct rq *rq) 6590 { 6591 /* 6592 * overutilized field is used for load balancing decisions only 6593 * if energy aware scheduler is being used 6594 */ 6595 if (!sched_energy_enabled()) 6596 return; 6597 6598 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) 6599 set_rd_overutilized_status(rq->rd, SG_OVERUTILIZED); 6600 } 6601 #else 6602 static inline void check_update_overutilized_status(struct rq *rq) { } 6603 #endif 6604 6605 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6606 static int sched_idle_rq(struct rq *rq) 6607 { 6608 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6609 rq->nr_running); 6610 } 6611 6612 #ifdef CONFIG_SMP 6613 static int sched_idle_cpu(int cpu) 6614 { 6615 return sched_idle_rq(cpu_rq(cpu)); 6616 } 6617 #endif 6618 6619 /* 6620 * The enqueue_task method is called before nr_running is 6621 * increased. Here we update the fair scheduling stats and 6622 * then put the task into the rbtree: 6623 */ 6624 static void 6625 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6626 { 6627 struct cfs_rq *cfs_rq; 6628 struct sched_entity *se = &p->se; 6629 int idle_h_nr_running = task_has_idle_policy(p); 6630 int task_new = !(flags & ENQUEUE_WAKEUP); 6631 6632 /* 6633 * The code below (indirectly) updates schedutil which looks at 6634 * the cfs_rq utilization to select a frequency. 6635 * Let's add the task's estimated utilization to the cfs_rq's 6636 * estimated utilization, before we update schedutil. 6637 */ 6638 util_est_enqueue(&rq->cfs, p); 6639 6640 /* 6641 * If in_iowait is set, the code below may not trigger any cpufreq 6642 * utilization updates, so do it here explicitly with the IOWAIT flag 6643 * passed. 6644 */ 6645 if (p->in_iowait) 6646 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6647 6648 for_each_sched_entity(se) { 6649 if (se->on_rq) 6650 break; 6651 cfs_rq = cfs_rq_of(se); 6652 enqueue_entity(cfs_rq, se, flags); 6653 6654 cfs_rq->h_nr_running++; 6655 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6656 6657 if (cfs_rq_is_idle(cfs_rq)) 6658 idle_h_nr_running = 1; 6659 6660 /* end evaluation on encountering a throttled cfs_rq */ 6661 if (cfs_rq_throttled(cfs_rq)) 6662 goto enqueue_throttle; 6663 6664 flags = ENQUEUE_WAKEUP; 6665 } 6666 6667 for_each_sched_entity(se) { 6668 cfs_rq = cfs_rq_of(se); 6669 6670 update_load_avg(cfs_rq, se, UPDATE_TG); 6671 se_update_runnable(se); 6672 update_cfs_group(se); 6673 6674 cfs_rq->h_nr_running++; 6675 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6676 6677 if (cfs_rq_is_idle(cfs_rq)) 6678 idle_h_nr_running = 1; 6679 6680 /* end evaluation on encountering a throttled cfs_rq */ 6681 if (cfs_rq_throttled(cfs_rq)) 6682 goto enqueue_throttle; 6683 } 6684 6685 /* At this point se is NULL and we are at root level*/ 6686 add_nr_running(rq, 1); 6687 6688 /* 6689 * Since new tasks are assigned an initial util_avg equal to 6690 * half of the spare capacity of their CPU, tiny tasks have the 6691 * ability to cross the overutilized threshold, which will 6692 * result in the load balancer ruining all the task placement 6693 * done by EAS. As a way to mitigate that effect, do not account 6694 * for the first enqueue operation of new tasks during the 6695 * overutilized flag detection. 6696 * 6697 * A better way of solving this problem would be to wait for 6698 * the PELT signals of tasks to converge before taking them 6699 * into account, but that is not straightforward to implement, 6700 * and the following generally works well enough in practice. 6701 */ 6702 if (!task_new) 6703 check_update_overutilized_status(rq); 6704 6705 enqueue_throttle: 6706 assert_list_leaf_cfs_rq(rq); 6707 6708 hrtick_update(rq); 6709 } 6710 6711 static void set_next_buddy(struct sched_entity *se); 6712 6713 /* 6714 * The dequeue_task method is called before nr_running is 6715 * decreased. We remove the task from the rbtree and 6716 * update the fair scheduling stats: 6717 */ 6718 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6719 { 6720 struct cfs_rq *cfs_rq; 6721 struct sched_entity *se = &p->se; 6722 int task_sleep = flags & DEQUEUE_SLEEP; 6723 int idle_h_nr_running = task_has_idle_policy(p); 6724 bool was_sched_idle = sched_idle_rq(rq); 6725 6726 util_est_dequeue(&rq->cfs, p); 6727 6728 for_each_sched_entity(se) { 6729 cfs_rq = cfs_rq_of(se); 6730 dequeue_entity(cfs_rq, se, flags); 6731 6732 cfs_rq->h_nr_running--; 6733 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6734 6735 if (cfs_rq_is_idle(cfs_rq)) 6736 idle_h_nr_running = 1; 6737 6738 /* end evaluation on encountering a throttled cfs_rq */ 6739 if (cfs_rq_throttled(cfs_rq)) 6740 goto dequeue_throttle; 6741 6742 /* Don't dequeue parent if it has other entities besides us */ 6743 if (cfs_rq->load.weight) { 6744 /* Avoid re-evaluating load for this entity: */ 6745 se = parent_entity(se); 6746 /* 6747 * Bias pick_next to pick a task from this cfs_rq, as 6748 * p is sleeping when it is within its sched_slice. 6749 */ 6750 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6751 set_next_buddy(se); 6752 break; 6753 } 6754 flags |= DEQUEUE_SLEEP; 6755 } 6756 6757 for_each_sched_entity(se) { 6758 cfs_rq = cfs_rq_of(se); 6759 6760 update_load_avg(cfs_rq, se, UPDATE_TG); 6761 se_update_runnable(se); 6762 update_cfs_group(se); 6763 6764 cfs_rq->h_nr_running--; 6765 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6766 6767 if (cfs_rq_is_idle(cfs_rq)) 6768 idle_h_nr_running = 1; 6769 6770 /* end evaluation on encountering a throttled cfs_rq */ 6771 if (cfs_rq_throttled(cfs_rq)) 6772 goto dequeue_throttle; 6773 6774 } 6775 6776 /* At this point se is NULL and we are at root level*/ 6777 sub_nr_running(rq, 1); 6778 6779 /* balance early to pull high priority tasks */ 6780 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6781 rq->next_balance = jiffies; 6782 6783 dequeue_throttle: 6784 util_est_update(&rq->cfs, p, task_sleep); 6785 hrtick_update(rq); 6786 } 6787 6788 #ifdef CONFIG_SMP 6789 6790 /* Working cpumask for: load_balance, load_balance_newidle. */ 6791 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6792 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6793 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 6794 6795 #ifdef CONFIG_NO_HZ_COMMON 6796 6797 static struct { 6798 cpumask_var_t idle_cpus_mask; 6799 atomic_t nr_cpus; 6800 int has_blocked; /* Idle CPUS has blocked load */ 6801 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6802 unsigned long next_balance; /* in jiffy units */ 6803 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6804 } nohz ____cacheline_aligned; 6805 6806 #endif /* CONFIG_NO_HZ_COMMON */ 6807 6808 static unsigned long cpu_load(struct rq *rq) 6809 { 6810 return cfs_rq_load_avg(&rq->cfs); 6811 } 6812 6813 /* 6814 * cpu_load_without - compute CPU load without any contributions from *p 6815 * @cpu: the CPU which load is requested 6816 * @p: the task which load should be discounted 6817 * 6818 * The load of a CPU is defined by the load of tasks currently enqueued on that 6819 * CPU as well as tasks which are currently sleeping after an execution on that 6820 * CPU. 6821 * 6822 * This method returns the load of the specified CPU by discounting the load of 6823 * the specified task, whenever the task is currently contributing to the CPU 6824 * load. 6825 */ 6826 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6827 { 6828 struct cfs_rq *cfs_rq; 6829 unsigned int load; 6830 6831 /* Task has no contribution or is new */ 6832 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6833 return cpu_load(rq); 6834 6835 cfs_rq = &rq->cfs; 6836 load = READ_ONCE(cfs_rq->avg.load_avg); 6837 6838 /* Discount task's util from CPU's util */ 6839 lsub_positive(&load, task_h_load(p)); 6840 6841 return load; 6842 } 6843 6844 static unsigned long cpu_runnable(struct rq *rq) 6845 { 6846 return cfs_rq_runnable_avg(&rq->cfs); 6847 } 6848 6849 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6850 { 6851 struct cfs_rq *cfs_rq; 6852 unsigned int runnable; 6853 6854 /* Task has no contribution or is new */ 6855 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6856 return cpu_runnable(rq); 6857 6858 cfs_rq = &rq->cfs; 6859 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6860 6861 /* Discount task's runnable from CPU's runnable */ 6862 lsub_positive(&runnable, p->se.avg.runnable_avg); 6863 6864 return runnable; 6865 } 6866 6867 static unsigned long capacity_of(int cpu) 6868 { 6869 return cpu_rq(cpu)->cpu_capacity; 6870 } 6871 6872 static void record_wakee(struct task_struct *p) 6873 { 6874 /* 6875 * Only decay a single time; tasks that have less then 1 wakeup per 6876 * jiffy will not have built up many flips. 6877 */ 6878 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6879 current->wakee_flips >>= 1; 6880 current->wakee_flip_decay_ts = jiffies; 6881 } 6882 6883 if (current->last_wakee != p) { 6884 current->last_wakee = p; 6885 current->wakee_flips++; 6886 } 6887 } 6888 6889 /* 6890 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6891 * 6892 * A waker of many should wake a different task than the one last awakened 6893 * at a frequency roughly N times higher than one of its wakees. 6894 * 6895 * In order to determine whether we should let the load spread vs consolidating 6896 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6897 * partner, and a factor of lls_size higher frequency in the other. 6898 * 6899 * With both conditions met, we can be relatively sure that the relationship is 6900 * non-monogamous, with partner count exceeding socket size. 6901 * 6902 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6903 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6904 * socket size. 6905 */ 6906 static int wake_wide(struct task_struct *p) 6907 { 6908 unsigned int master = current->wakee_flips; 6909 unsigned int slave = p->wakee_flips; 6910 int factor = __this_cpu_read(sd_llc_size); 6911 6912 if (master < slave) 6913 swap(master, slave); 6914 if (slave < factor || master < slave * factor) 6915 return 0; 6916 return 1; 6917 } 6918 6919 /* 6920 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6921 * soonest. For the purpose of speed we only consider the waking and previous 6922 * CPU. 6923 * 6924 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 6925 * cache-affine and is (or will be) idle. 6926 * 6927 * wake_affine_weight() - considers the weight to reflect the average 6928 * scheduling latency of the CPUs. This seems to work 6929 * for the overloaded case. 6930 */ 6931 static int 6932 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 6933 { 6934 /* 6935 * If this_cpu is idle, it implies the wakeup is from interrupt 6936 * context. Only allow the move if cache is shared. Otherwise an 6937 * interrupt intensive workload could force all tasks onto one 6938 * node depending on the IO topology or IRQ affinity settings. 6939 * 6940 * If the prev_cpu is idle and cache affine then avoid a migration. 6941 * There is no guarantee that the cache hot data from an interrupt 6942 * is more important than cache hot data on the prev_cpu and from 6943 * a cpufreq perspective, it's better to have higher utilisation 6944 * on one CPU. 6945 */ 6946 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6947 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6948 6949 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6950 return this_cpu; 6951 6952 if (available_idle_cpu(prev_cpu)) 6953 return prev_cpu; 6954 6955 return nr_cpumask_bits; 6956 } 6957 6958 static int 6959 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6960 int this_cpu, int prev_cpu, int sync) 6961 { 6962 s64 this_eff_load, prev_eff_load; 6963 unsigned long task_load; 6964 6965 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6966 6967 if (sync) { 6968 unsigned long current_load = task_h_load(current); 6969 6970 if (current_load > this_eff_load) 6971 return this_cpu; 6972 6973 this_eff_load -= current_load; 6974 } 6975 6976 task_load = task_h_load(p); 6977 6978 this_eff_load += task_load; 6979 if (sched_feat(WA_BIAS)) 6980 this_eff_load *= 100; 6981 this_eff_load *= capacity_of(prev_cpu); 6982 6983 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6984 prev_eff_load -= task_load; 6985 if (sched_feat(WA_BIAS)) 6986 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6987 prev_eff_load *= capacity_of(this_cpu); 6988 6989 /* 6990 * If sync, adjust the weight of prev_eff_load such that if 6991 * prev_eff == this_eff that select_idle_sibling() will consider 6992 * stacking the wakee on top of the waker if no other CPU is 6993 * idle. 6994 */ 6995 if (sync) 6996 prev_eff_load += 1; 6997 6998 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6999 } 7000 7001 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7002 int this_cpu, int prev_cpu, int sync) 7003 { 7004 int target = nr_cpumask_bits; 7005 7006 if (sched_feat(WA_IDLE)) 7007 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7008 7009 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7010 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7011 7012 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7013 if (target != this_cpu) 7014 return prev_cpu; 7015 7016 schedstat_inc(sd->ttwu_move_affine); 7017 schedstat_inc(p->stats.nr_wakeups_affine); 7018 return target; 7019 } 7020 7021 static struct sched_group * 7022 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7023 7024 /* 7025 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 7026 */ 7027 static int 7028 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7029 { 7030 unsigned long load, min_load = ULONG_MAX; 7031 unsigned int min_exit_latency = UINT_MAX; 7032 u64 latest_idle_timestamp = 0; 7033 int least_loaded_cpu = this_cpu; 7034 int shallowest_idle_cpu = -1; 7035 int i; 7036 7037 /* Check if we have any choice: */ 7038 if (group->group_weight == 1) 7039 return cpumask_first(sched_group_span(group)); 7040 7041 /* Traverse only the allowed CPUs */ 7042 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7043 struct rq *rq = cpu_rq(i); 7044 7045 if (!sched_core_cookie_match(rq, p)) 7046 continue; 7047 7048 if (sched_idle_cpu(i)) 7049 return i; 7050 7051 if (available_idle_cpu(i)) { 7052 struct cpuidle_state *idle = idle_get_state(rq); 7053 if (idle && idle->exit_latency < min_exit_latency) { 7054 /* 7055 * We give priority to a CPU whose idle state 7056 * has the smallest exit latency irrespective 7057 * of any idle timestamp. 7058 */ 7059 min_exit_latency = idle->exit_latency; 7060 latest_idle_timestamp = rq->idle_stamp; 7061 shallowest_idle_cpu = i; 7062 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7063 rq->idle_stamp > latest_idle_timestamp) { 7064 /* 7065 * If equal or no active idle state, then 7066 * the most recently idled CPU might have 7067 * a warmer cache. 7068 */ 7069 latest_idle_timestamp = rq->idle_stamp; 7070 shallowest_idle_cpu = i; 7071 } 7072 } else if (shallowest_idle_cpu == -1) { 7073 load = cpu_load(cpu_rq(i)); 7074 if (load < min_load) { 7075 min_load = load; 7076 least_loaded_cpu = i; 7077 } 7078 } 7079 } 7080 7081 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7082 } 7083 7084 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 7085 int cpu, int prev_cpu, int sd_flag) 7086 { 7087 int new_cpu = cpu; 7088 7089 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7090 return prev_cpu; 7091 7092 /* 7093 * We need task's util for cpu_util_without, sync it up to 7094 * prev_cpu's last_update_time. 7095 */ 7096 if (!(sd_flag & SD_BALANCE_FORK)) 7097 sync_entity_load_avg(&p->se); 7098 7099 while (sd) { 7100 struct sched_group *group; 7101 struct sched_domain *tmp; 7102 int weight; 7103 7104 if (!(sd->flags & sd_flag)) { 7105 sd = sd->child; 7106 continue; 7107 } 7108 7109 group = find_idlest_group(sd, p, cpu); 7110 if (!group) { 7111 sd = sd->child; 7112 continue; 7113 } 7114 7115 new_cpu = find_idlest_group_cpu(group, p, cpu); 7116 if (new_cpu == cpu) { 7117 /* Now try balancing at a lower domain level of 'cpu': */ 7118 sd = sd->child; 7119 continue; 7120 } 7121 7122 /* Now try balancing at a lower domain level of 'new_cpu': */ 7123 cpu = new_cpu; 7124 weight = sd->span_weight; 7125 sd = NULL; 7126 for_each_domain(cpu, tmp) { 7127 if (weight <= tmp->span_weight) 7128 break; 7129 if (tmp->flags & sd_flag) 7130 sd = tmp; 7131 } 7132 } 7133 7134 return new_cpu; 7135 } 7136 7137 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7138 { 7139 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7140 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7141 return cpu; 7142 7143 return -1; 7144 } 7145 7146 #ifdef CONFIG_SCHED_SMT 7147 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7148 EXPORT_SYMBOL_GPL(sched_smt_present); 7149 7150 static inline void set_idle_cores(int cpu, int val) 7151 { 7152 struct sched_domain_shared *sds; 7153 7154 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7155 if (sds) 7156 WRITE_ONCE(sds->has_idle_cores, val); 7157 } 7158 7159 static inline bool test_idle_cores(int cpu) 7160 { 7161 struct sched_domain_shared *sds; 7162 7163 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7164 if (sds) 7165 return READ_ONCE(sds->has_idle_cores); 7166 7167 return false; 7168 } 7169 7170 /* 7171 * Scans the local SMT mask to see if the entire core is idle, and records this 7172 * information in sd_llc_shared->has_idle_cores. 7173 * 7174 * Since SMT siblings share all cache levels, inspecting this limited remote 7175 * state should be fairly cheap. 7176 */ 7177 void __update_idle_core(struct rq *rq) 7178 { 7179 int core = cpu_of(rq); 7180 int cpu; 7181 7182 rcu_read_lock(); 7183 if (test_idle_cores(core)) 7184 goto unlock; 7185 7186 for_each_cpu(cpu, cpu_smt_mask(core)) { 7187 if (cpu == core) 7188 continue; 7189 7190 if (!available_idle_cpu(cpu)) 7191 goto unlock; 7192 } 7193 7194 set_idle_cores(core, 1); 7195 unlock: 7196 rcu_read_unlock(); 7197 } 7198 7199 /* 7200 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7201 * there are no idle cores left in the system; tracked through 7202 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7203 */ 7204 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7205 { 7206 bool idle = true; 7207 int cpu; 7208 7209 for_each_cpu(cpu, cpu_smt_mask(core)) { 7210 if (!available_idle_cpu(cpu)) { 7211 idle = false; 7212 if (*idle_cpu == -1) { 7213 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7214 *idle_cpu = cpu; 7215 break; 7216 } 7217 continue; 7218 } 7219 break; 7220 } 7221 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7222 *idle_cpu = cpu; 7223 } 7224 7225 if (idle) 7226 return core; 7227 7228 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7229 return -1; 7230 } 7231 7232 /* 7233 * Scan the local SMT mask for idle CPUs. 7234 */ 7235 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7236 { 7237 int cpu; 7238 7239 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7240 if (cpu == target) 7241 continue; 7242 /* 7243 * Check if the CPU is in the LLC scheduling domain of @target. 7244 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7245 */ 7246 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7247 continue; 7248 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7249 return cpu; 7250 } 7251 7252 return -1; 7253 } 7254 7255 #else /* CONFIG_SCHED_SMT */ 7256 7257 static inline void set_idle_cores(int cpu, int val) 7258 { 7259 } 7260 7261 static inline bool test_idle_cores(int cpu) 7262 { 7263 return false; 7264 } 7265 7266 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7267 { 7268 return __select_idle_cpu(core, p); 7269 } 7270 7271 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7272 { 7273 return -1; 7274 } 7275 7276 #endif /* CONFIG_SCHED_SMT */ 7277 7278 /* 7279 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7280 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7281 * average idle time for this rq (as found in rq->avg_idle). 7282 */ 7283 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7284 { 7285 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7286 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7287 struct sched_domain_shared *sd_share; 7288 struct rq *this_rq = this_rq(); 7289 int this = smp_processor_id(); 7290 struct sched_domain *this_sd = NULL; 7291 u64 time = 0; 7292 7293 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7294 7295 if (sched_feat(SIS_PROP) && !has_idle_core) { 7296 u64 avg_cost, avg_idle, span_avg; 7297 unsigned long now = jiffies; 7298 7299 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 7300 if (!this_sd) 7301 return -1; 7302 7303 /* 7304 * If we're busy, the assumption that the last idle period 7305 * predicts the future is flawed; age away the remaining 7306 * predicted idle time. 7307 */ 7308 if (unlikely(this_rq->wake_stamp < now)) { 7309 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 7310 this_rq->wake_stamp++; 7311 this_rq->wake_avg_idle >>= 1; 7312 } 7313 } 7314 7315 avg_idle = this_rq->wake_avg_idle; 7316 avg_cost = this_sd->avg_scan_cost + 1; 7317 7318 span_avg = sd->span_weight * avg_idle; 7319 if (span_avg > 4*avg_cost) 7320 nr = div_u64(span_avg, avg_cost); 7321 else 7322 nr = 4; 7323 7324 time = cpu_clock(this); 7325 } 7326 7327 if (sched_feat(SIS_UTIL)) { 7328 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7329 if (sd_share) { 7330 /* because !--nr is the condition to stop scan */ 7331 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7332 /* overloaded LLC is unlikely to have idle cpu/core */ 7333 if (nr == 1) 7334 return -1; 7335 } 7336 } 7337 7338 for_each_cpu_wrap(cpu, cpus, target + 1) { 7339 if (has_idle_core) { 7340 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7341 if ((unsigned int)i < nr_cpumask_bits) 7342 return i; 7343 7344 } else { 7345 if (!--nr) 7346 return -1; 7347 idle_cpu = __select_idle_cpu(cpu, p); 7348 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7349 break; 7350 } 7351 } 7352 7353 if (has_idle_core) 7354 set_idle_cores(target, false); 7355 7356 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) { 7357 time = cpu_clock(this) - time; 7358 7359 /* 7360 * Account for the scan cost of wakeups against the average 7361 * idle time. 7362 */ 7363 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 7364 7365 update_avg(&this_sd->avg_scan_cost, time); 7366 } 7367 7368 return idle_cpu; 7369 } 7370 7371 /* 7372 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7373 * the task fits. If no CPU is big enough, but there are idle ones, try to 7374 * maximize capacity. 7375 */ 7376 static int 7377 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7378 { 7379 unsigned long task_util, util_min, util_max, best_cap = 0; 7380 int fits, best_fits = 0; 7381 int cpu, best_cpu = -1; 7382 struct cpumask *cpus; 7383 7384 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7385 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7386 7387 task_util = task_util_est(p); 7388 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7389 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7390 7391 for_each_cpu_wrap(cpu, cpus, target) { 7392 unsigned long cpu_cap = capacity_of(cpu); 7393 7394 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7395 continue; 7396 7397 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7398 7399 /* This CPU fits with all requirements */ 7400 if (fits > 0) 7401 return cpu; 7402 /* 7403 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7404 * Look for the CPU with best capacity. 7405 */ 7406 else if (fits < 0) 7407 cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu)); 7408 7409 /* 7410 * First, select CPU which fits better (-1 being better than 0). 7411 * Then, select the one with best capacity at same level. 7412 */ 7413 if ((fits < best_fits) || 7414 ((fits == best_fits) && (cpu_cap > best_cap))) { 7415 best_cap = cpu_cap; 7416 best_cpu = cpu; 7417 best_fits = fits; 7418 } 7419 } 7420 7421 return best_cpu; 7422 } 7423 7424 static inline bool asym_fits_cpu(unsigned long util, 7425 unsigned long util_min, 7426 unsigned long util_max, 7427 int cpu) 7428 { 7429 if (sched_asym_cpucap_active()) 7430 /* 7431 * Return true only if the cpu fully fits the task requirements 7432 * which include the utilization and the performance hints. 7433 */ 7434 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7435 7436 return true; 7437 } 7438 7439 /* 7440 * Try and locate an idle core/thread in the LLC cache domain. 7441 */ 7442 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7443 { 7444 bool has_idle_core = false; 7445 struct sched_domain *sd; 7446 unsigned long task_util, util_min, util_max; 7447 int i, recent_used_cpu; 7448 7449 /* 7450 * On asymmetric system, update task utilization because we will check 7451 * that the task fits with cpu's capacity. 7452 */ 7453 if (sched_asym_cpucap_active()) { 7454 sync_entity_load_avg(&p->se); 7455 task_util = task_util_est(p); 7456 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7457 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7458 } 7459 7460 /* 7461 * per-cpu select_rq_mask usage 7462 */ 7463 lockdep_assert_irqs_disabled(); 7464 7465 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7466 asym_fits_cpu(task_util, util_min, util_max, target)) 7467 return target; 7468 7469 /* 7470 * If the previous CPU is cache affine and idle, don't be stupid: 7471 */ 7472 if (prev != target && cpus_share_cache(prev, target) && 7473 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7474 asym_fits_cpu(task_util, util_min, util_max, prev)) 7475 return prev; 7476 7477 /* 7478 * Allow a per-cpu kthread to stack with the wakee if the 7479 * kworker thread and the tasks previous CPUs are the same. 7480 * The assumption is that the wakee queued work for the 7481 * per-cpu kthread that is now complete and the wakeup is 7482 * essentially a sync wakeup. An obvious example of this 7483 * pattern is IO completions. 7484 */ 7485 if (is_per_cpu_kthread(current) && 7486 in_task() && 7487 prev == smp_processor_id() && 7488 this_rq()->nr_running <= 1 && 7489 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7490 return prev; 7491 } 7492 7493 /* Check a recently used CPU as a potential idle candidate: */ 7494 recent_used_cpu = p->recent_used_cpu; 7495 p->recent_used_cpu = prev; 7496 if (recent_used_cpu != prev && 7497 recent_used_cpu != target && 7498 cpus_share_cache(recent_used_cpu, target) && 7499 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7500 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7501 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7502 return recent_used_cpu; 7503 } 7504 7505 /* 7506 * For asymmetric CPU capacity systems, our domain of interest is 7507 * sd_asym_cpucapacity rather than sd_llc. 7508 */ 7509 if (sched_asym_cpucap_active()) { 7510 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7511 /* 7512 * On an asymmetric CPU capacity system where an exclusive 7513 * cpuset defines a symmetric island (i.e. one unique 7514 * capacity_orig value through the cpuset), the key will be set 7515 * but the CPUs within that cpuset will not have a domain with 7516 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7517 * capacity path. 7518 */ 7519 if (sd) { 7520 i = select_idle_capacity(p, sd, target); 7521 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7522 } 7523 } 7524 7525 sd = rcu_dereference(per_cpu(sd_llc, target)); 7526 if (!sd) 7527 return target; 7528 7529 if (sched_smt_active()) { 7530 has_idle_core = test_idle_cores(target); 7531 7532 if (!has_idle_core && cpus_share_cache(prev, target)) { 7533 i = select_idle_smt(p, sd, prev); 7534 if ((unsigned int)i < nr_cpumask_bits) 7535 return i; 7536 } 7537 } 7538 7539 i = select_idle_cpu(p, sd, has_idle_core, target); 7540 if ((unsigned)i < nr_cpumask_bits) 7541 return i; 7542 7543 return target; 7544 } 7545 7546 /** 7547 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7548 * @cpu: the CPU to get the utilization for 7549 * @p: task for which the CPU utilization should be predicted or NULL 7550 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7551 * @boost: 1 to enable boosting, otherwise 0 7552 * 7553 * The unit of the return value must be the same as the one of CPU capacity 7554 * so that CPU utilization can be compared with CPU capacity. 7555 * 7556 * CPU utilization is the sum of running time of runnable tasks plus the 7557 * recent utilization of currently non-runnable tasks on that CPU. 7558 * It represents the amount of CPU capacity currently used by CFS tasks in 7559 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7560 * capacity at f_max. 7561 * 7562 * The estimated CPU utilization is defined as the maximum between CPU 7563 * utilization and sum of the estimated utilization of the currently 7564 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7565 * previously-executed tasks, which helps better deduce how busy a CPU will 7566 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7567 * of such a task would be significantly decayed at this point of time. 7568 * 7569 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7570 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7571 * utilization. Boosting is implemented in cpu_util() so that internal 7572 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7573 * latter via cpu_util_cfs_boost(). 7574 * 7575 * CPU utilization can be higher than the current CPU capacity 7576 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7577 * of rounding errors as well as task migrations or wakeups of new tasks. 7578 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7579 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7580 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7581 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7582 * though since this is useful for predicting the CPU capacity required 7583 * after task migrations (scheduler-driven DVFS). 7584 * 7585 * Return: (Boosted) (estimated) utilization for the specified CPU. 7586 */ 7587 static unsigned long 7588 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7589 { 7590 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7591 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7592 unsigned long runnable; 7593 7594 if (boost) { 7595 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7596 util = max(util, runnable); 7597 } 7598 7599 /* 7600 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7601 * contribution. If @p migrates from another CPU to @cpu add its 7602 * contribution. In all the other cases @cpu is not impacted by the 7603 * migration so its util_avg is already correct. 7604 */ 7605 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7606 lsub_positive(&util, task_util(p)); 7607 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7608 util += task_util(p); 7609 7610 if (sched_feat(UTIL_EST)) { 7611 unsigned long util_est; 7612 7613 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 7614 7615 /* 7616 * During wake-up @p isn't enqueued yet and doesn't contribute 7617 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 7618 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7619 * has been enqueued. 7620 * 7621 * During exec (@dst_cpu = -1) @p is enqueued and does 7622 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 7623 * Remove it to "simulate" cpu_util without @p's contribution. 7624 * 7625 * Despite the task_on_rq_queued(@p) check there is still a 7626 * small window for a possible race when an exec 7627 * select_task_rq_fair() races with LB's detach_task(). 7628 * 7629 * detach_task() 7630 * deactivate_task() 7631 * p->on_rq = TASK_ON_RQ_MIGRATING; 7632 * -------------------------------- A 7633 * dequeue_task() \ 7634 * dequeue_task_fair() + Race Time 7635 * util_est_dequeue() / 7636 * -------------------------------- B 7637 * 7638 * The additional check "current == p" is required to further 7639 * reduce the race window. 7640 */ 7641 if (dst_cpu == cpu) 7642 util_est += _task_util_est(p); 7643 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7644 lsub_positive(&util_est, _task_util_est(p)); 7645 7646 util = max(util, util_est); 7647 } 7648 7649 return min(util, capacity_orig_of(cpu)); 7650 } 7651 7652 unsigned long cpu_util_cfs(int cpu) 7653 { 7654 return cpu_util(cpu, NULL, -1, 0); 7655 } 7656 7657 unsigned long cpu_util_cfs_boost(int cpu) 7658 { 7659 return cpu_util(cpu, NULL, -1, 1); 7660 } 7661 7662 /* 7663 * cpu_util_without: compute cpu utilization without any contributions from *p 7664 * @cpu: the CPU which utilization is requested 7665 * @p: the task which utilization should be discounted 7666 * 7667 * The utilization of a CPU is defined by the utilization of tasks currently 7668 * enqueued on that CPU as well as tasks which are currently sleeping after an 7669 * execution on that CPU. 7670 * 7671 * This method returns the utilization of the specified CPU by discounting the 7672 * utilization of the specified task, whenever the task is currently 7673 * contributing to the CPU utilization. 7674 */ 7675 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7676 { 7677 /* Task has no contribution or is new */ 7678 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7679 p = NULL; 7680 7681 return cpu_util(cpu, p, -1, 0); 7682 } 7683 7684 /* 7685 * energy_env - Utilization landscape for energy estimation. 7686 * @task_busy_time: Utilization contribution by the task for which we test the 7687 * placement. Given by eenv_task_busy_time(). 7688 * @pd_busy_time: Utilization of the whole perf domain without the task 7689 * contribution. Given by eenv_pd_busy_time(). 7690 * @cpu_cap: Maximum CPU capacity for the perf domain. 7691 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7692 */ 7693 struct energy_env { 7694 unsigned long task_busy_time; 7695 unsigned long pd_busy_time; 7696 unsigned long cpu_cap; 7697 unsigned long pd_cap; 7698 }; 7699 7700 /* 7701 * Compute the task busy time for compute_energy(). This time cannot be 7702 * injected directly into effective_cpu_util() because of the IRQ scaling. 7703 * The latter only makes sense with the most recent CPUs where the task has 7704 * run. 7705 */ 7706 static inline void eenv_task_busy_time(struct energy_env *eenv, 7707 struct task_struct *p, int prev_cpu) 7708 { 7709 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7710 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7711 7712 if (unlikely(irq >= max_cap)) 7713 busy_time = max_cap; 7714 else 7715 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7716 7717 eenv->task_busy_time = busy_time; 7718 } 7719 7720 /* 7721 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7722 * utilization for each @pd_cpus, it however doesn't take into account 7723 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7724 * scale the EM reported power consumption at the (eventually clamped) 7725 * cpu_capacity. 7726 * 7727 * The contribution of the task @p for which we want to estimate the 7728 * energy cost is removed (by cpu_util()) and must be calculated 7729 * separately (see eenv_task_busy_time). This ensures: 7730 * 7731 * - A stable PD utilization, no matter which CPU of that PD we want to place 7732 * the task on. 7733 * 7734 * - A fair comparison between CPUs as the task contribution (task_util()) 7735 * will always be the same no matter which CPU utilization we rely on 7736 * (util_avg or util_est). 7737 * 7738 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7739 * exceed @eenv->pd_cap. 7740 */ 7741 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7742 struct cpumask *pd_cpus, 7743 struct task_struct *p) 7744 { 7745 unsigned long busy_time = 0; 7746 int cpu; 7747 7748 for_each_cpu(cpu, pd_cpus) { 7749 unsigned long util = cpu_util(cpu, p, -1, 0); 7750 7751 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 7752 } 7753 7754 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7755 } 7756 7757 /* 7758 * Compute the maximum utilization for compute_energy() when the task @p 7759 * is placed on the cpu @dst_cpu. 7760 * 7761 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7762 * exceed @eenv->cpu_cap. 7763 */ 7764 static inline unsigned long 7765 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7766 struct task_struct *p, int dst_cpu) 7767 { 7768 unsigned long max_util = 0; 7769 int cpu; 7770 7771 for_each_cpu(cpu, pd_cpus) { 7772 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7773 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 7774 unsigned long eff_util; 7775 7776 /* 7777 * Performance domain frequency: utilization clamping 7778 * must be considered since it affects the selection 7779 * of the performance domain frequency. 7780 * NOTE: in case RT tasks are running, by default the 7781 * FREQUENCY_UTIL's utilization can be max OPP. 7782 */ 7783 eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 7784 max_util = max(max_util, eff_util); 7785 } 7786 7787 return min(max_util, eenv->cpu_cap); 7788 } 7789 7790 /* 7791 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7792 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7793 * contribution is ignored. 7794 */ 7795 static inline unsigned long 7796 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7797 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7798 { 7799 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7800 unsigned long busy_time = eenv->pd_busy_time; 7801 7802 if (dst_cpu >= 0) 7803 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7804 7805 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7806 } 7807 7808 /* 7809 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7810 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7811 * spare capacity in each performance domain and uses it as a potential 7812 * candidate to execute the task. Then, it uses the Energy Model to figure 7813 * out which of the CPU candidates is the most energy-efficient. 7814 * 7815 * The rationale for this heuristic is as follows. In a performance domain, 7816 * all the most energy efficient CPU candidates (according to the Energy 7817 * Model) are those for which we'll request a low frequency. When there are 7818 * several CPUs for which the frequency request will be the same, we don't 7819 * have enough data to break the tie between them, because the Energy Model 7820 * only includes active power costs. With this model, if we assume that 7821 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7822 * the maximum spare capacity in a performance domain is guaranteed to be among 7823 * the best candidates of the performance domain. 7824 * 7825 * In practice, it could be preferable from an energy standpoint to pack 7826 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7827 * but that could also hurt our chances to go cluster idle, and we have no 7828 * ways to tell with the current Energy Model if this is actually a good 7829 * idea or not. So, find_energy_efficient_cpu() basically favors 7830 * cluster-packing, and spreading inside a cluster. That should at least be 7831 * a good thing for latency, and this is consistent with the idea that most 7832 * of the energy savings of EAS come from the asymmetry of the system, and 7833 * not so much from breaking the tie between identical CPUs. That's also the 7834 * reason why EAS is enabled in the topology code only for systems where 7835 * SD_ASYM_CPUCAPACITY is set. 7836 * 7837 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7838 * they don't have any useful utilization data yet and it's not possible to 7839 * forecast their impact on energy consumption. Consequently, they will be 7840 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7841 * to be energy-inefficient in some use-cases. The alternative would be to 7842 * bias new tasks towards specific types of CPUs first, or to try to infer 7843 * their util_avg from the parent task, but those heuristics could hurt 7844 * other use-cases too. So, until someone finds a better way to solve this, 7845 * let's keep things simple by re-using the existing slow path. 7846 */ 7847 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7848 { 7849 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7850 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7851 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7852 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7853 struct root_domain *rd = this_rq()->rd; 7854 int cpu, best_energy_cpu, target = -1; 7855 int prev_fits = -1, best_fits = -1; 7856 unsigned long best_thermal_cap = 0; 7857 unsigned long prev_thermal_cap = 0; 7858 struct sched_domain *sd; 7859 struct perf_domain *pd; 7860 struct energy_env eenv; 7861 7862 rcu_read_lock(); 7863 pd = rcu_dereference(rd->pd); 7864 if (!pd || READ_ONCE(rd->overutilized)) 7865 goto unlock; 7866 7867 /* 7868 * Energy-aware wake-up happens on the lowest sched_domain starting 7869 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7870 */ 7871 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7872 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7873 sd = sd->parent; 7874 if (!sd) 7875 goto unlock; 7876 7877 target = prev_cpu; 7878 7879 sync_entity_load_avg(&p->se); 7880 if (!task_util_est(p) && p_util_min == 0) 7881 goto unlock; 7882 7883 eenv_task_busy_time(&eenv, p, prev_cpu); 7884 7885 for (; pd; pd = pd->next) { 7886 unsigned long util_min = p_util_min, util_max = p_util_max; 7887 unsigned long cpu_cap, cpu_thermal_cap, util; 7888 long prev_spare_cap = -1, max_spare_cap = -1; 7889 unsigned long rq_util_min, rq_util_max; 7890 unsigned long cur_delta, base_energy; 7891 int max_spare_cap_cpu = -1; 7892 int fits, max_fits = -1; 7893 7894 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7895 7896 if (cpumask_empty(cpus)) 7897 continue; 7898 7899 /* Account thermal pressure for the energy estimation */ 7900 cpu = cpumask_first(cpus); 7901 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 7902 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 7903 7904 eenv.cpu_cap = cpu_thermal_cap; 7905 eenv.pd_cap = 0; 7906 7907 for_each_cpu(cpu, cpus) { 7908 struct rq *rq = cpu_rq(cpu); 7909 7910 eenv.pd_cap += cpu_thermal_cap; 7911 7912 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7913 continue; 7914 7915 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 7916 continue; 7917 7918 util = cpu_util(cpu, p, cpu, 0); 7919 cpu_cap = capacity_of(cpu); 7920 7921 /* 7922 * Skip CPUs that cannot satisfy the capacity request. 7923 * IOW, placing the task there would make the CPU 7924 * overutilized. Take uclamp into account to see how 7925 * much capacity we can get out of the CPU; this is 7926 * aligned with sched_cpu_util(). 7927 */ 7928 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 7929 /* 7930 * Open code uclamp_rq_util_with() except for 7931 * the clamp() part. Ie: apply max aggregation 7932 * only. util_fits_cpu() logic requires to 7933 * operate on non clamped util but must use the 7934 * max-aggregated uclamp_{min, max}. 7935 */ 7936 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 7937 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 7938 7939 util_min = max(rq_util_min, p_util_min); 7940 util_max = max(rq_util_max, p_util_max); 7941 } 7942 7943 fits = util_fits_cpu(util, util_min, util_max, cpu); 7944 if (!fits) 7945 continue; 7946 7947 lsub_positive(&cpu_cap, util); 7948 7949 if (cpu == prev_cpu) { 7950 /* Always use prev_cpu as a candidate. */ 7951 prev_spare_cap = cpu_cap; 7952 prev_fits = fits; 7953 } else if ((fits > max_fits) || 7954 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 7955 /* 7956 * Find the CPU with the maximum spare capacity 7957 * among the remaining CPUs in the performance 7958 * domain. 7959 */ 7960 max_spare_cap = cpu_cap; 7961 max_spare_cap_cpu = cpu; 7962 max_fits = fits; 7963 } 7964 } 7965 7966 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 7967 continue; 7968 7969 eenv_pd_busy_time(&eenv, cpus, p); 7970 /* Compute the 'base' energy of the pd, without @p */ 7971 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 7972 7973 /* Evaluate the energy impact of using prev_cpu. */ 7974 if (prev_spare_cap > -1) { 7975 prev_delta = compute_energy(&eenv, pd, cpus, p, 7976 prev_cpu); 7977 /* CPU utilization has changed */ 7978 if (prev_delta < base_energy) 7979 goto unlock; 7980 prev_delta -= base_energy; 7981 prev_thermal_cap = cpu_thermal_cap; 7982 best_delta = min(best_delta, prev_delta); 7983 } 7984 7985 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 7986 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 7987 /* Current best energy cpu fits better */ 7988 if (max_fits < best_fits) 7989 continue; 7990 7991 /* 7992 * Both don't fit performance hint (i.e. uclamp_min) 7993 * but best energy cpu has better capacity. 7994 */ 7995 if ((max_fits < 0) && 7996 (cpu_thermal_cap <= best_thermal_cap)) 7997 continue; 7998 7999 cur_delta = compute_energy(&eenv, pd, cpus, p, 8000 max_spare_cap_cpu); 8001 /* CPU utilization has changed */ 8002 if (cur_delta < base_energy) 8003 goto unlock; 8004 cur_delta -= base_energy; 8005 8006 /* 8007 * Both fit for the task but best energy cpu has lower 8008 * energy impact. 8009 */ 8010 if ((max_fits > 0) && (best_fits > 0) && 8011 (cur_delta >= best_delta)) 8012 continue; 8013 8014 best_delta = cur_delta; 8015 best_energy_cpu = max_spare_cap_cpu; 8016 best_fits = max_fits; 8017 best_thermal_cap = cpu_thermal_cap; 8018 } 8019 } 8020 rcu_read_unlock(); 8021 8022 if ((best_fits > prev_fits) || 8023 ((best_fits > 0) && (best_delta < prev_delta)) || 8024 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap))) 8025 target = best_energy_cpu; 8026 8027 return target; 8028 8029 unlock: 8030 rcu_read_unlock(); 8031 8032 return target; 8033 } 8034 8035 /* 8036 * select_task_rq_fair: Select target runqueue for the waking task in domains 8037 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8038 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8039 * 8040 * Balances load by selecting the idlest CPU in the idlest group, or under 8041 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8042 * 8043 * Returns the target CPU number. 8044 */ 8045 static int 8046 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8047 { 8048 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8049 struct sched_domain *tmp, *sd = NULL; 8050 int cpu = smp_processor_id(); 8051 int new_cpu = prev_cpu; 8052 int want_affine = 0; 8053 /* SD_flags and WF_flags share the first nibble */ 8054 int sd_flag = wake_flags & 0xF; 8055 8056 /* 8057 * required for stable ->cpus_allowed 8058 */ 8059 lockdep_assert_held(&p->pi_lock); 8060 if (wake_flags & WF_TTWU) { 8061 record_wakee(p); 8062 8063 if ((wake_flags & WF_CURRENT_CPU) && 8064 cpumask_test_cpu(cpu, p->cpus_ptr)) 8065 return cpu; 8066 8067 if (sched_energy_enabled()) { 8068 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8069 if (new_cpu >= 0) 8070 return new_cpu; 8071 new_cpu = prev_cpu; 8072 } 8073 8074 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8075 } 8076 8077 rcu_read_lock(); 8078 for_each_domain(cpu, tmp) { 8079 /* 8080 * If both 'cpu' and 'prev_cpu' are part of this domain, 8081 * cpu is a valid SD_WAKE_AFFINE target. 8082 */ 8083 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8084 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8085 if (cpu != prev_cpu) 8086 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8087 8088 sd = NULL; /* Prefer wake_affine over balance flags */ 8089 break; 8090 } 8091 8092 /* 8093 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8094 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8095 * will usually go to the fast path. 8096 */ 8097 if (tmp->flags & sd_flag) 8098 sd = tmp; 8099 else if (!want_affine) 8100 break; 8101 } 8102 8103 if (unlikely(sd)) { 8104 /* Slow path */ 8105 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 8106 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8107 /* Fast path */ 8108 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8109 } 8110 rcu_read_unlock(); 8111 8112 return new_cpu; 8113 } 8114 8115 /* 8116 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8117 * cfs_rq_of(p) references at time of call are still valid and identify the 8118 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8119 */ 8120 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8121 { 8122 struct sched_entity *se = &p->se; 8123 8124 if (!task_on_rq_migrating(p)) { 8125 remove_entity_load_avg(se); 8126 8127 /* 8128 * Here, the task's PELT values have been updated according to 8129 * the current rq's clock. But if that clock hasn't been 8130 * updated in a while, a substantial idle time will be missed, 8131 * leading to an inflation after wake-up on the new rq. 8132 * 8133 * Estimate the missing time from the cfs_rq last_update_time 8134 * and update sched_avg to improve the PELT continuity after 8135 * migration. 8136 */ 8137 migrate_se_pelt_lag(se); 8138 } 8139 8140 /* Tell new CPU we are migrated */ 8141 se->avg.last_update_time = 0; 8142 8143 update_scan_period(p, new_cpu); 8144 } 8145 8146 static void task_dead_fair(struct task_struct *p) 8147 { 8148 remove_entity_load_avg(&p->se); 8149 } 8150 8151 static int 8152 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8153 { 8154 if (rq->nr_running) 8155 return 1; 8156 8157 return newidle_balance(rq, rf) != 0; 8158 } 8159 #endif /* CONFIG_SMP */ 8160 8161 static void set_next_buddy(struct sched_entity *se) 8162 { 8163 for_each_sched_entity(se) { 8164 if (SCHED_WARN_ON(!se->on_rq)) 8165 return; 8166 if (se_is_idle(se)) 8167 return; 8168 cfs_rq_of(se)->next = se; 8169 } 8170 } 8171 8172 /* 8173 * Preempt the current task with a newly woken task if needed: 8174 */ 8175 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 8176 { 8177 struct task_struct *curr = rq->curr; 8178 struct sched_entity *se = &curr->se, *pse = &p->se; 8179 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8180 int next_buddy_marked = 0; 8181 int cse_is_idle, pse_is_idle; 8182 8183 if (unlikely(se == pse)) 8184 return; 8185 8186 /* 8187 * This is possible from callers such as attach_tasks(), in which we 8188 * unconditionally check_preempt_curr() after an enqueue (which may have 8189 * lead to a throttle). This both saves work and prevents false 8190 * next-buddy nomination below. 8191 */ 8192 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8193 return; 8194 8195 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8196 set_next_buddy(pse); 8197 next_buddy_marked = 1; 8198 } 8199 8200 /* 8201 * We can come here with TIF_NEED_RESCHED already set from new task 8202 * wake up path. 8203 * 8204 * Note: this also catches the edge-case of curr being in a throttled 8205 * group (e.g. via set_curr_task), since update_curr() (in the 8206 * enqueue of curr) will have resulted in resched being set. This 8207 * prevents us from potentially nominating it as a false LAST_BUDDY 8208 * below. 8209 */ 8210 if (test_tsk_need_resched(curr)) 8211 return; 8212 8213 /* Idle tasks are by definition preempted by non-idle tasks. */ 8214 if (unlikely(task_has_idle_policy(curr)) && 8215 likely(!task_has_idle_policy(p))) 8216 goto preempt; 8217 8218 /* 8219 * Batch and idle tasks do not preempt non-idle tasks (their preemption 8220 * is driven by the tick): 8221 */ 8222 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 8223 return; 8224 8225 find_matching_se(&se, &pse); 8226 WARN_ON_ONCE(!pse); 8227 8228 cse_is_idle = se_is_idle(se); 8229 pse_is_idle = se_is_idle(pse); 8230 8231 /* 8232 * Preempt an idle group in favor of a non-idle group (and don't preempt 8233 * in the inverse case). 8234 */ 8235 if (cse_is_idle && !pse_is_idle) 8236 goto preempt; 8237 if (cse_is_idle != pse_is_idle) 8238 return; 8239 8240 cfs_rq = cfs_rq_of(se); 8241 update_curr(cfs_rq); 8242 8243 /* 8244 * XXX pick_eevdf(cfs_rq) != se ? 8245 */ 8246 if (pick_eevdf(cfs_rq) == pse) 8247 goto preempt; 8248 8249 return; 8250 8251 preempt: 8252 resched_curr(rq); 8253 } 8254 8255 #ifdef CONFIG_SMP 8256 static struct task_struct *pick_task_fair(struct rq *rq) 8257 { 8258 struct sched_entity *se; 8259 struct cfs_rq *cfs_rq; 8260 8261 again: 8262 cfs_rq = &rq->cfs; 8263 if (!cfs_rq->nr_running) 8264 return NULL; 8265 8266 do { 8267 struct sched_entity *curr = cfs_rq->curr; 8268 8269 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 8270 if (curr) { 8271 if (curr->on_rq) 8272 update_curr(cfs_rq); 8273 else 8274 curr = NULL; 8275 8276 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8277 goto again; 8278 } 8279 8280 se = pick_next_entity(cfs_rq, curr); 8281 cfs_rq = group_cfs_rq(se); 8282 } while (cfs_rq); 8283 8284 return task_of(se); 8285 } 8286 #endif 8287 8288 struct task_struct * 8289 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8290 { 8291 struct cfs_rq *cfs_rq = &rq->cfs; 8292 struct sched_entity *se; 8293 struct task_struct *p; 8294 int new_tasks; 8295 8296 again: 8297 if (!sched_fair_runnable(rq)) 8298 goto idle; 8299 8300 #ifdef CONFIG_FAIR_GROUP_SCHED 8301 if (!prev || prev->sched_class != &fair_sched_class) 8302 goto simple; 8303 8304 /* 8305 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8306 * likely that a next task is from the same cgroup as the current. 8307 * 8308 * Therefore attempt to avoid putting and setting the entire cgroup 8309 * hierarchy, only change the part that actually changes. 8310 */ 8311 8312 do { 8313 struct sched_entity *curr = cfs_rq->curr; 8314 8315 /* 8316 * Since we got here without doing put_prev_entity() we also 8317 * have to consider cfs_rq->curr. If it is still a runnable 8318 * entity, update_curr() will update its vruntime, otherwise 8319 * forget we've ever seen it. 8320 */ 8321 if (curr) { 8322 if (curr->on_rq) 8323 update_curr(cfs_rq); 8324 else 8325 curr = NULL; 8326 8327 /* 8328 * This call to check_cfs_rq_runtime() will do the 8329 * throttle and dequeue its entity in the parent(s). 8330 * Therefore the nr_running test will indeed 8331 * be correct. 8332 */ 8333 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 8334 cfs_rq = &rq->cfs; 8335 8336 if (!cfs_rq->nr_running) 8337 goto idle; 8338 8339 goto simple; 8340 } 8341 } 8342 8343 se = pick_next_entity(cfs_rq, curr); 8344 cfs_rq = group_cfs_rq(se); 8345 } while (cfs_rq); 8346 8347 p = task_of(se); 8348 8349 /* 8350 * Since we haven't yet done put_prev_entity and if the selected task 8351 * is a different task than we started out with, try and touch the 8352 * least amount of cfs_rqs. 8353 */ 8354 if (prev != p) { 8355 struct sched_entity *pse = &prev->se; 8356 8357 while (!(cfs_rq = is_same_group(se, pse))) { 8358 int se_depth = se->depth; 8359 int pse_depth = pse->depth; 8360 8361 if (se_depth <= pse_depth) { 8362 put_prev_entity(cfs_rq_of(pse), pse); 8363 pse = parent_entity(pse); 8364 } 8365 if (se_depth >= pse_depth) { 8366 set_next_entity(cfs_rq_of(se), se); 8367 se = parent_entity(se); 8368 } 8369 } 8370 8371 put_prev_entity(cfs_rq, pse); 8372 set_next_entity(cfs_rq, se); 8373 } 8374 8375 goto done; 8376 simple: 8377 #endif 8378 if (prev) 8379 put_prev_task(rq, prev); 8380 8381 do { 8382 se = pick_next_entity(cfs_rq, NULL); 8383 set_next_entity(cfs_rq, se); 8384 cfs_rq = group_cfs_rq(se); 8385 } while (cfs_rq); 8386 8387 p = task_of(se); 8388 8389 done: __maybe_unused; 8390 #ifdef CONFIG_SMP 8391 /* 8392 * Move the next running task to the front of 8393 * the list, so our cfs_tasks list becomes MRU 8394 * one. 8395 */ 8396 list_move(&p->se.group_node, &rq->cfs_tasks); 8397 #endif 8398 8399 if (hrtick_enabled_fair(rq)) 8400 hrtick_start_fair(rq, p); 8401 8402 update_misfit_status(p, rq); 8403 sched_fair_update_stop_tick(rq, p); 8404 8405 return p; 8406 8407 idle: 8408 if (!rf) 8409 return NULL; 8410 8411 new_tasks = newidle_balance(rq, rf); 8412 8413 /* 8414 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 8415 * possible for any higher priority task to appear. In that case we 8416 * must re-start the pick_next_entity() loop. 8417 */ 8418 if (new_tasks < 0) 8419 return RETRY_TASK; 8420 8421 if (new_tasks > 0) 8422 goto again; 8423 8424 /* 8425 * rq is about to be idle, check if we need to update the 8426 * lost_idle_time of clock_pelt 8427 */ 8428 update_idle_rq_clock_pelt(rq); 8429 8430 return NULL; 8431 } 8432 8433 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8434 { 8435 return pick_next_task_fair(rq, NULL, NULL); 8436 } 8437 8438 /* 8439 * Account for a descheduled task: 8440 */ 8441 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8442 { 8443 struct sched_entity *se = &prev->se; 8444 struct cfs_rq *cfs_rq; 8445 8446 for_each_sched_entity(se) { 8447 cfs_rq = cfs_rq_of(se); 8448 put_prev_entity(cfs_rq, se); 8449 } 8450 } 8451 8452 /* 8453 * sched_yield() is very simple 8454 */ 8455 static void yield_task_fair(struct rq *rq) 8456 { 8457 struct task_struct *curr = rq->curr; 8458 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8459 struct sched_entity *se = &curr->se; 8460 8461 /* 8462 * Are we the only task in the tree? 8463 */ 8464 if (unlikely(rq->nr_running == 1)) 8465 return; 8466 8467 clear_buddies(cfs_rq, se); 8468 8469 update_rq_clock(rq); 8470 /* 8471 * Update run-time statistics of the 'current'. 8472 */ 8473 update_curr(cfs_rq); 8474 /* 8475 * Tell update_rq_clock() that we've just updated, 8476 * so we don't do microscopic update in schedule() 8477 * and double the fastpath cost. 8478 */ 8479 rq_clock_skip_update(rq); 8480 8481 se->deadline += calc_delta_fair(se->slice, se); 8482 } 8483 8484 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8485 { 8486 struct sched_entity *se = &p->se; 8487 8488 /* throttled hierarchies are not runnable */ 8489 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8490 return false; 8491 8492 /* Tell the scheduler that we'd really like pse to run next. */ 8493 set_next_buddy(se); 8494 8495 yield_task_fair(rq); 8496 8497 return true; 8498 } 8499 8500 #ifdef CONFIG_SMP 8501 /************************************************** 8502 * Fair scheduling class load-balancing methods. 8503 * 8504 * BASICS 8505 * 8506 * The purpose of load-balancing is to achieve the same basic fairness the 8507 * per-CPU scheduler provides, namely provide a proportional amount of compute 8508 * time to each task. This is expressed in the following equation: 8509 * 8510 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8511 * 8512 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8513 * W_i,0 is defined as: 8514 * 8515 * W_i,0 = \Sum_j w_i,j (2) 8516 * 8517 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8518 * is derived from the nice value as per sched_prio_to_weight[]. 8519 * 8520 * The weight average is an exponential decay average of the instantaneous 8521 * weight: 8522 * 8523 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8524 * 8525 * C_i is the compute capacity of CPU i, typically it is the 8526 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8527 * can also include other factors [XXX]. 8528 * 8529 * To achieve this balance we define a measure of imbalance which follows 8530 * directly from (1): 8531 * 8532 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8533 * 8534 * We them move tasks around to minimize the imbalance. In the continuous 8535 * function space it is obvious this converges, in the discrete case we get 8536 * a few fun cases generally called infeasible weight scenarios. 8537 * 8538 * [XXX expand on: 8539 * - infeasible weights; 8540 * - local vs global optima in the discrete case. ] 8541 * 8542 * 8543 * SCHED DOMAINS 8544 * 8545 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8546 * for all i,j solution, we create a tree of CPUs that follows the hardware 8547 * topology where each level pairs two lower groups (or better). This results 8548 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8549 * tree to only the first of the previous level and we decrease the frequency 8550 * of load-balance at each level inv. proportional to the number of CPUs in 8551 * the groups. 8552 * 8553 * This yields: 8554 * 8555 * log_2 n 1 n 8556 * \Sum { --- * --- * 2^i } = O(n) (5) 8557 * i = 0 2^i 2^i 8558 * `- size of each group 8559 * | | `- number of CPUs doing load-balance 8560 * | `- freq 8561 * `- sum over all levels 8562 * 8563 * Coupled with a limit on how many tasks we can migrate every balance pass, 8564 * this makes (5) the runtime complexity of the balancer. 8565 * 8566 * An important property here is that each CPU is still (indirectly) connected 8567 * to every other CPU in at most O(log n) steps: 8568 * 8569 * The adjacency matrix of the resulting graph is given by: 8570 * 8571 * log_2 n 8572 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8573 * k = 0 8574 * 8575 * And you'll find that: 8576 * 8577 * A^(log_2 n)_i,j != 0 for all i,j (7) 8578 * 8579 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8580 * The task movement gives a factor of O(m), giving a convergence complexity 8581 * of: 8582 * 8583 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8584 * 8585 * 8586 * WORK CONSERVING 8587 * 8588 * In order to avoid CPUs going idle while there's still work to do, new idle 8589 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8590 * tree itself instead of relying on other CPUs to bring it work. 8591 * 8592 * This adds some complexity to both (5) and (8) but it reduces the total idle 8593 * time. 8594 * 8595 * [XXX more?] 8596 * 8597 * 8598 * CGROUPS 8599 * 8600 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8601 * 8602 * s_k,i 8603 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8604 * S_k 8605 * 8606 * Where 8607 * 8608 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8609 * 8610 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8611 * 8612 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8613 * property. 8614 * 8615 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8616 * rewrite all of this once again.] 8617 */ 8618 8619 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8620 8621 enum fbq_type { regular, remote, all }; 8622 8623 /* 8624 * 'group_type' describes the group of CPUs at the moment of load balancing. 8625 * 8626 * The enum is ordered by pulling priority, with the group with lowest priority 8627 * first so the group_type can simply be compared when selecting the busiest 8628 * group. See update_sd_pick_busiest(). 8629 */ 8630 enum group_type { 8631 /* The group has spare capacity that can be used to run more tasks. */ 8632 group_has_spare = 0, 8633 /* 8634 * The group is fully used and the tasks don't compete for more CPU 8635 * cycles. Nevertheless, some tasks might wait before running. 8636 */ 8637 group_fully_busy, 8638 /* 8639 * One task doesn't fit with CPU's capacity and must be migrated to a 8640 * more powerful CPU. 8641 */ 8642 group_misfit_task, 8643 /* 8644 * Balance SMT group that's fully busy. Can benefit from migration 8645 * a task on SMT with busy sibling to another CPU on idle core. 8646 */ 8647 group_smt_balance, 8648 /* 8649 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8650 * and the task should be migrated to it instead of running on the 8651 * current CPU. 8652 */ 8653 group_asym_packing, 8654 /* 8655 * The tasks' affinity constraints previously prevented the scheduler 8656 * from balancing the load across the system. 8657 */ 8658 group_imbalanced, 8659 /* 8660 * The CPU is overloaded and can't provide expected CPU cycles to all 8661 * tasks. 8662 */ 8663 group_overloaded 8664 }; 8665 8666 enum migration_type { 8667 migrate_load = 0, 8668 migrate_util, 8669 migrate_task, 8670 migrate_misfit 8671 }; 8672 8673 #define LBF_ALL_PINNED 0x01 8674 #define LBF_NEED_BREAK 0x02 8675 #define LBF_DST_PINNED 0x04 8676 #define LBF_SOME_PINNED 0x08 8677 #define LBF_ACTIVE_LB 0x10 8678 8679 struct lb_env { 8680 struct sched_domain *sd; 8681 8682 struct rq *src_rq; 8683 int src_cpu; 8684 8685 int dst_cpu; 8686 struct rq *dst_rq; 8687 8688 struct cpumask *dst_grpmask; 8689 int new_dst_cpu; 8690 enum cpu_idle_type idle; 8691 long imbalance; 8692 /* The set of CPUs under consideration for load-balancing */ 8693 struct cpumask *cpus; 8694 8695 unsigned int flags; 8696 8697 unsigned int loop; 8698 unsigned int loop_break; 8699 unsigned int loop_max; 8700 8701 enum fbq_type fbq_type; 8702 enum migration_type migration_type; 8703 struct list_head tasks; 8704 }; 8705 8706 /* 8707 * Is this task likely cache-hot: 8708 */ 8709 static int task_hot(struct task_struct *p, struct lb_env *env) 8710 { 8711 s64 delta; 8712 8713 lockdep_assert_rq_held(env->src_rq); 8714 8715 if (p->sched_class != &fair_sched_class) 8716 return 0; 8717 8718 if (unlikely(task_has_idle_policy(p))) 8719 return 0; 8720 8721 /* SMT siblings share cache */ 8722 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8723 return 0; 8724 8725 /* 8726 * Buddy candidates are cache hot: 8727 */ 8728 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8729 (&p->se == cfs_rq_of(&p->se)->next)) 8730 return 1; 8731 8732 if (sysctl_sched_migration_cost == -1) 8733 return 1; 8734 8735 /* 8736 * Don't migrate task if the task's cookie does not match 8737 * with the destination CPU's core cookie. 8738 */ 8739 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8740 return 1; 8741 8742 if (sysctl_sched_migration_cost == 0) 8743 return 0; 8744 8745 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8746 8747 return delta < (s64)sysctl_sched_migration_cost; 8748 } 8749 8750 #ifdef CONFIG_NUMA_BALANCING 8751 /* 8752 * Returns 1, if task migration degrades locality 8753 * Returns 0, if task migration improves locality i.e migration preferred. 8754 * Returns -1, if task migration is not affected by locality. 8755 */ 8756 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8757 { 8758 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8759 unsigned long src_weight, dst_weight; 8760 int src_nid, dst_nid, dist; 8761 8762 if (!static_branch_likely(&sched_numa_balancing)) 8763 return -1; 8764 8765 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8766 return -1; 8767 8768 src_nid = cpu_to_node(env->src_cpu); 8769 dst_nid = cpu_to_node(env->dst_cpu); 8770 8771 if (src_nid == dst_nid) 8772 return -1; 8773 8774 /* Migrating away from the preferred node is always bad. */ 8775 if (src_nid == p->numa_preferred_nid) { 8776 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8777 return 1; 8778 else 8779 return -1; 8780 } 8781 8782 /* Encourage migration to the preferred node. */ 8783 if (dst_nid == p->numa_preferred_nid) 8784 return 0; 8785 8786 /* Leaving a core idle is often worse than degrading locality. */ 8787 if (env->idle == CPU_IDLE) 8788 return -1; 8789 8790 dist = node_distance(src_nid, dst_nid); 8791 if (numa_group) { 8792 src_weight = group_weight(p, src_nid, dist); 8793 dst_weight = group_weight(p, dst_nid, dist); 8794 } else { 8795 src_weight = task_weight(p, src_nid, dist); 8796 dst_weight = task_weight(p, dst_nid, dist); 8797 } 8798 8799 return dst_weight < src_weight; 8800 } 8801 8802 #else 8803 static inline int migrate_degrades_locality(struct task_struct *p, 8804 struct lb_env *env) 8805 { 8806 return -1; 8807 } 8808 #endif 8809 8810 /* 8811 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8812 */ 8813 static 8814 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8815 { 8816 int tsk_cache_hot; 8817 8818 lockdep_assert_rq_held(env->src_rq); 8819 8820 /* 8821 * We do not migrate tasks that are: 8822 * 1) throttled_lb_pair, or 8823 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8824 * 3) running (obviously), or 8825 * 4) are cache-hot on their current CPU. 8826 */ 8827 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8828 return 0; 8829 8830 /* Disregard pcpu kthreads; they are where they need to be. */ 8831 if (kthread_is_per_cpu(p)) 8832 return 0; 8833 8834 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8835 int cpu; 8836 8837 schedstat_inc(p->stats.nr_failed_migrations_affine); 8838 8839 env->flags |= LBF_SOME_PINNED; 8840 8841 /* 8842 * Remember if this task can be migrated to any other CPU in 8843 * our sched_group. We may want to revisit it if we couldn't 8844 * meet load balance goals by pulling other tasks on src_cpu. 8845 * 8846 * Avoid computing new_dst_cpu 8847 * - for NEWLY_IDLE 8848 * - if we have already computed one in current iteration 8849 * - if it's an active balance 8850 */ 8851 if (env->idle == CPU_NEWLY_IDLE || 8852 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8853 return 0; 8854 8855 /* Prevent to re-select dst_cpu via env's CPUs: */ 8856 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8857 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8858 env->flags |= LBF_DST_PINNED; 8859 env->new_dst_cpu = cpu; 8860 break; 8861 } 8862 } 8863 8864 return 0; 8865 } 8866 8867 /* Record that we found at least one task that could run on dst_cpu */ 8868 env->flags &= ~LBF_ALL_PINNED; 8869 8870 if (task_on_cpu(env->src_rq, p)) { 8871 schedstat_inc(p->stats.nr_failed_migrations_running); 8872 return 0; 8873 } 8874 8875 /* 8876 * Aggressive migration if: 8877 * 1) active balance 8878 * 2) destination numa is preferred 8879 * 3) task is cache cold, or 8880 * 4) too many balance attempts have failed. 8881 */ 8882 if (env->flags & LBF_ACTIVE_LB) 8883 return 1; 8884 8885 tsk_cache_hot = migrate_degrades_locality(p, env); 8886 if (tsk_cache_hot == -1) 8887 tsk_cache_hot = task_hot(p, env); 8888 8889 if (tsk_cache_hot <= 0 || 8890 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8891 if (tsk_cache_hot == 1) { 8892 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8893 schedstat_inc(p->stats.nr_forced_migrations); 8894 } 8895 return 1; 8896 } 8897 8898 schedstat_inc(p->stats.nr_failed_migrations_hot); 8899 return 0; 8900 } 8901 8902 /* 8903 * detach_task() -- detach the task for the migration specified in env 8904 */ 8905 static void detach_task(struct task_struct *p, struct lb_env *env) 8906 { 8907 lockdep_assert_rq_held(env->src_rq); 8908 8909 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 8910 set_task_cpu(p, env->dst_cpu); 8911 } 8912 8913 /* 8914 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 8915 * part of active balancing operations within "domain". 8916 * 8917 * Returns a task if successful and NULL otherwise. 8918 */ 8919 static struct task_struct *detach_one_task(struct lb_env *env) 8920 { 8921 struct task_struct *p; 8922 8923 lockdep_assert_rq_held(env->src_rq); 8924 8925 list_for_each_entry_reverse(p, 8926 &env->src_rq->cfs_tasks, se.group_node) { 8927 if (!can_migrate_task(p, env)) 8928 continue; 8929 8930 detach_task(p, env); 8931 8932 /* 8933 * Right now, this is only the second place where 8934 * lb_gained[env->idle] is updated (other is detach_tasks) 8935 * so we can safely collect stats here rather than 8936 * inside detach_tasks(). 8937 */ 8938 schedstat_inc(env->sd->lb_gained[env->idle]); 8939 return p; 8940 } 8941 return NULL; 8942 } 8943 8944 /* 8945 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 8946 * busiest_rq, as part of a balancing operation within domain "sd". 8947 * 8948 * Returns number of detached tasks if successful and 0 otherwise. 8949 */ 8950 static int detach_tasks(struct lb_env *env) 8951 { 8952 struct list_head *tasks = &env->src_rq->cfs_tasks; 8953 unsigned long util, load; 8954 struct task_struct *p; 8955 int detached = 0; 8956 8957 lockdep_assert_rq_held(env->src_rq); 8958 8959 /* 8960 * Source run queue has been emptied by another CPU, clear 8961 * LBF_ALL_PINNED flag as we will not test any task. 8962 */ 8963 if (env->src_rq->nr_running <= 1) { 8964 env->flags &= ~LBF_ALL_PINNED; 8965 return 0; 8966 } 8967 8968 if (env->imbalance <= 0) 8969 return 0; 8970 8971 while (!list_empty(tasks)) { 8972 /* 8973 * We don't want to steal all, otherwise we may be treated likewise, 8974 * which could at worst lead to a livelock crash. 8975 */ 8976 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 8977 break; 8978 8979 env->loop++; 8980 /* We've more or less seen every task there is, call it quits */ 8981 if (env->loop > env->loop_max) 8982 break; 8983 8984 /* take a breather every nr_migrate tasks */ 8985 if (env->loop > env->loop_break) { 8986 env->loop_break += SCHED_NR_MIGRATE_BREAK; 8987 env->flags |= LBF_NEED_BREAK; 8988 break; 8989 } 8990 8991 p = list_last_entry(tasks, struct task_struct, se.group_node); 8992 8993 if (!can_migrate_task(p, env)) 8994 goto next; 8995 8996 switch (env->migration_type) { 8997 case migrate_load: 8998 /* 8999 * Depending of the number of CPUs and tasks and the 9000 * cgroup hierarchy, task_h_load() can return a null 9001 * value. Make sure that env->imbalance decreases 9002 * otherwise detach_tasks() will stop only after 9003 * detaching up to loop_max tasks. 9004 */ 9005 load = max_t(unsigned long, task_h_load(p), 1); 9006 9007 if (sched_feat(LB_MIN) && 9008 load < 16 && !env->sd->nr_balance_failed) 9009 goto next; 9010 9011 /* 9012 * Make sure that we don't migrate too much load. 9013 * Nevertheless, let relax the constraint if 9014 * scheduler fails to find a good waiting task to 9015 * migrate. 9016 */ 9017 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9018 goto next; 9019 9020 env->imbalance -= load; 9021 break; 9022 9023 case migrate_util: 9024 util = task_util_est(p); 9025 9026 if (util > env->imbalance) 9027 goto next; 9028 9029 env->imbalance -= util; 9030 break; 9031 9032 case migrate_task: 9033 env->imbalance--; 9034 break; 9035 9036 case migrate_misfit: 9037 /* This is not a misfit task */ 9038 if (task_fits_cpu(p, env->src_cpu)) 9039 goto next; 9040 9041 env->imbalance = 0; 9042 break; 9043 } 9044 9045 detach_task(p, env); 9046 list_add(&p->se.group_node, &env->tasks); 9047 9048 detached++; 9049 9050 #ifdef CONFIG_PREEMPTION 9051 /* 9052 * NEWIDLE balancing is a source of latency, so preemptible 9053 * kernels will stop after the first task is detached to minimize 9054 * the critical section. 9055 */ 9056 if (env->idle == CPU_NEWLY_IDLE) 9057 break; 9058 #endif 9059 9060 /* 9061 * We only want to steal up to the prescribed amount of 9062 * load/util/tasks. 9063 */ 9064 if (env->imbalance <= 0) 9065 break; 9066 9067 continue; 9068 next: 9069 list_move(&p->se.group_node, tasks); 9070 } 9071 9072 /* 9073 * Right now, this is one of only two places we collect this stat 9074 * so we can safely collect detach_one_task() stats here rather 9075 * than inside detach_one_task(). 9076 */ 9077 schedstat_add(env->sd->lb_gained[env->idle], detached); 9078 9079 return detached; 9080 } 9081 9082 /* 9083 * attach_task() -- attach the task detached by detach_task() to its new rq. 9084 */ 9085 static void attach_task(struct rq *rq, struct task_struct *p) 9086 { 9087 lockdep_assert_rq_held(rq); 9088 9089 WARN_ON_ONCE(task_rq(p) != rq); 9090 activate_task(rq, p, ENQUEUE_NOCLOCK); 9091 check_preempt_curr(rq, p, 0); 9092 } 9093 9094 /* 9095 * attach_one_task() -- attaches the task returned from detach_one_task() to 9096 * its new rq. 9097 */ 9098 static void attach_one_task(struct rq *rq, struct task_struct *p) 9099 { 9100 struct rq_flags rf; 9101 9102 rq_lock(rq, &rf); 9103 update_rq_clock(rq); 9104 attach_task(rq, p); 9105 rq_unlock(rq, &rf); 9106 } 9107 9108 /* 9109 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9110 * new rq. 9111 */ 9112 static void attach_tasks(struct lb_env *env) 9113 { 9114 struct list_head *tasks = &env->tasks; 9115 struct task_struct *p; 9116 struct rq_flags rf; 9117 9118 rq_lock(env->dst_rq, &rf); 9119 update_rq_clock(env->dst_rq); 9120 9121 while (!list_empty(tasks)) { 9122 p = list_first_entry(tasks, struct task_struct, se.group_node); 9123 list_del_init(&p->se.group_node); 9124 9125 attach_task(env->dst_rq, p); 9126 } 9127 9128 rq_unlock(env->dst_rq, &rf); 9129 } 9130 9131 #ifdef CONFIG_NO_HZ_COMMON 9132 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9133 { 9134 if (cfs_rq->avg.load_avg) 9135 return true; 9136 9137 if (cfs_rq->avg.util_avg) 9138 return true; 9139 9140 return false; 9141 } 9142 9143 static inline bool others_have_blocked(struct rq *rq) 9144 { 9145 if (READ_ONCE(rq->avg_rt.util_avg)) 9146 return true; 9147 9148 if (READ_ONCE(rq->avg_dl.util_avg)) 9149 return true; 9150 9151 if (thermal_load_avg(rq)) 9152 return true; 9153 9154 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 9155 if (READ_ONCE(rq->avg_irq.util_avg)) 9156 return true; 9157 #endif 9158 9159 return false; 9160 } 9161 9162 static inline void update_blocked_load_tick(struct rq *rq) 9163 { 9164 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9165 } 9166 9167 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9168 { 9169 if (!has_blocked) 9170 rq->has_blocked_load = 0; 9171 } 9172 #else 9173 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9174 static inline bool others_have_blocked(struct rq *rq) { return false; } 9175 static inline void update_blocked_load_tick(struct rq *rq) {} 9176 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9177 #endif 9178 9179 static bool __update_blocked_others(struct rq *rq, bool *done) 9180 { 9181 const struct sched_class *curr_class; 9182 u64 now = rq_clock_pelt(rq); 9183 unsigned long thermal_pressure; 9184 bool decayed; 9185 9186 /* 9187 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9188 * DL and IRQ signals have been updated before updating CFS. 9189 */ 9190 curr_class = rq->curr->sched_class; 9191 9192 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 9193 9194 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 9195 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 9196 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 9197 update_irq_load_avg(rq, 0); 9198 9199 if (others_have_blocked(rq)) 9200 *done = false; 9201 9202 return decayed; 9203 } 9204 9205 #ifdef CONFIG_FAIR_GROUP_SCHED 9206 9207 static bool __update_blocked_fair(struct rq *rq, bool *done) 9208 { 9209 struct cfs_rq *cfs_rq, *pos; 9210 bool decayed = false; 9211 int cpu = cpu_of(rq); 9212 9213 /* 9214 * Iterates the task_group tree in a bottom up fashion, see 9215 * list_add_leaf_cfs_rq() for details. 9216 */ 9217 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9218 struct sched_entity *se; 9219 9220 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9221 update_tg_load_avg(cfs_rq); 9222 9223 if (cfs_rq->nr_running == 0) 9224 update_idle_cfs_rq_clock_pelt(cfs_rq); 9225 9226 if (cfs_rq == &rq->cfs) 9227 decayed = true; 9228 } 9229 9230 /* Propagate pending load changes to the parent, if any: */ 9231 se = cfs_rq->tg->se[cpu]; 9232 if (se && !skip_blocked_update(se)) 9233 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9234 9235 /* 9236 * There can be a lot of idle CPU cgroups. Don't let fully 9237 * decayed cfs_rqs linger on the list. 9238 */ 9239 if (cfs_rq_is_decayed(cfs_rq)) 9240 list_del_leaf_cfs_rq(cfs_rq); 9241 9242 /* Don't need periodic decay once load/util_avg are null */ 9243 if (cfs_rq_has_blocked(cfs_rq)) 9244 *done = false; 9245 } 9246 9247 return decayed; 9248 } 9249 9250 /* 9251 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9252 * This needs to be done in a top-down fashion because the load of a child 9253 * group is a fraction of its parents load. 9254 */ 9255 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9256 { 9257 struct rq *rq = rq_of(cfs_rq); 9258 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9259 unsigned long now = jiffies; 9260 unsigned long load; 9261 9262 if (cfs_rq->last_h_load_update == now) 9263 return; 9264 9265 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9266 for_each_sched_entity(se) { 9267 cfs_rq = cfs_rq_of(se); 9268 WRITE_ONCE(cfs_rq->h_load_next, se); 9269 if (cfs_rq->last_h_load_update == now) 9270 break; 9271 } 9272 9273 if (!se) { 9274 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9275 cfs_rq->last_h_load_update = now; 9276 } 9277 9278 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9279 load = cfs_rq->h_load; 9280 load = div64_ul(load * se->avg.load_avg, 9281 cfs_rq_load_avg(cfs_rq) + 1); 9282 cfs_rq = group_cfs_rq(se); 9283 cfs_rq->h_load = load; 9284 cfs_rq->last_h_load_update = now; 9285 } 9286 } 9287 9288 static unsigned long task_h_load(struct task_struct *p) 9289 { 9290 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9291 9292 update_cfs_rq_h_load(cfs_rq); 9293 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9294 cfs_rq_load_avg(cfs_rq) + 1); 9295 } 9296 #else 9297 static bool __update_blocked_fair(struct rq *rq, bool *done) 9298 { 9299 struct cfs_rq *cfs_rq = &rq->cfs; 9300 bool decayed; 9301 9302 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9303 if (cfs_rq_has_blocked(cfs_rq)) 9304 *done = false; 9305 9306 return decayed; 9307 } 9308 9309 static unsigned long task_h_load(struct task_struct *p) 9310 { 9311 return p->se.avg.load_avg; 9312 } 9313 #endif 9314 9315 static void update_blocked_averages(int cpu) 9316 { 9317 bool decayed = false, done = true; 9318 struct rq *rq = cpu_rq(cpu); 9319 struct rq_flags rf; 9320 9321 rq_lock_irqsave(rq, &rf); 9322 update_blocked_load_tick(rq); 9323 update_rq_clock(rq); 9324 9325 decayed |= __update_blocked_others(rq, &done); 9326 decayed |= __update_blocked_fair(rq, &done); 9327 9328 update_blocked_load_status(rq, !done); 9329 if (decayed) 9330 cpufreq_update_util(rq, 0); 9331 rq_unlock_irqrestore(rq, &rf); 9332 } 9333 9334 /********** Helpers for find_busiest_group ************************/ 9335 9336 /* 9337 * sg_lb_stats - stats of a sched_group required for load_balancing 9338 */ 9339 struct sg_lb_stats { 9340 unsigned long avg_load; /*Avg load across the CPUs of the group */ 9341 unsigned long group_load; /* Total load over the CPUs of the group */ 9342 unsigned long group_capacity; 9343 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9344 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9345 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 9346 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9347 unsigned int idle_cpus; 9348 unsigned int group_weight; 9349 enum group_type group_type; 9350 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9351 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9352 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9353 #ifdef CONFIG_NUMA_BALANCING 9354 unsigned int nr_numa_running; 9355 unsigned int nr_preferred_running; 9356 #endif 9357 }; 9358 9359 /* 9360 * sd_lb_stats - Structure to store the statistics of a sched_domain 9361 * during load balancing. 9362 */ 9363 struct sd_lb_stats { 9364 struct sched_group *busiest; /* Busiest group in this sd */ 9365 struct sched_group *local; /* Local group in this sd */ 9366 unsigned long total_load; /* Total load of all groups in sd */ 9367 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9368 unsigned long avg_load; /* Average load across all groups in sd */ 9369 unsigned int prefer_sibling; /* tasks should go to sibling first */ 9370 9371 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 9372 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9373 }; 9374 9375 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9376 { 9377 /* 9378 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9379 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9380 * We must however set busiest_stat::group_type and 9381 * busiest_stat::idle_cpus to the worst busiest group because 9382 * update_sd_pick_busiest() reads these before assignment. 9383 */ 9384 *sds = (struct sd_lb_stats){ 9385 .busiest = NULL, 9386 .local = NULL, 9387 .total_load = 0UL, 9388 .total_capacity = 0UL, 9389 .busiest_stat = { 9390 .idle_cpus = UINT_MAX, 9391 .group_type = group_has_spare, 9392 }, 9393 }; 9394 } 9395 9396 static unsigned long scale_rt_capacity(int cpu) 9397 { 9398 struct rq *rq = cpu_rq(cpu); 9399 unsigned long max = arch_scale_cpu_capacity(cpu); 9400 unsigned long used, free; 9401 unsigned long irq; 9402 9403 irq = cpu_util_irq(rq); 9404 9405 if (unlikely(irq >= max)) 9406 return 1; 9407 9408 /* 9409 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9410 * (running and not running) with weights 0 and 1024 respectively. 9411 * avg_thermal.load_avg tracks thermal pressure and the weighted 9412 * average uses the actual delta max capacity(load). 9413 */ 9414 used = READ_ONCE(rq->avg_rt.util_avg); 9415 used += READ_ONCE(rq->avg_dl.util_avg); 9416 used += thermal_load_avg(rq); 9417 9418 if (unlikely(used >= max)) 9419 return 1; 9420 9421 free = max - used; 9422 9423 return scale_irq_capacity(free, irq, max); 9424 } 9425 9426 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9427 { 9428 unsigned long capacity = scale_rt_capacity(cpu); 9429 struct sched_group *sdg = sd->groups; 9430 9431 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 9432 9433 if (!capacity) 9434 capacity = 1; 9435 9436 cpu_rq(cpu)->cpu_capacity = capacity; 9437 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9438 9439 sdg->sgc->capacity = capacity; 9440 sdg->sgc->min_capacity = capacity; 9441 sdg->sgc->max_capacity = capacity; 9442 } 9443 9444 void update_group_capacity(struct sched_domain *sd, int cpu) 9445 { 9446 struct sched_domain *child = sd->child; 9447 struct sched_group *group, *sdg = sd->groups; 9448 unsigned long capacity, min_capacity, max_capacity; 9449 unsigned long interval; 9450 9451 interval = msecs_to_jiffies(sd->balance_interval); 9452 interval = clamp(interval, 1UL, max_load_balance_interval); 9453 sdg->sgc->next_update = jiffies + interval; 9454 9455 if (!child) { 9456 update_cpu_capacity(sd, cpu); 9457 return; 9458 } 9459 9460 capacity = 0; 9461 min_capacity = ULONG_MAX; 9462 max_capacity = 0; 9463 9464 if (child->flags & SD_OVERLAP) { 9465 /* 9466 * SD_OVERLAP domains cannot assume that child groups 9467 * span the current group. 9468 */ 9469 9470 for_each_cpu(cpu, sched_group_span(sdg)) { 9471 unsigned long cpu_cap = capacity_of(cpu); 9472 9473 capacity += cpu_cap; 9474 min_capacity = min(cpu_cap, min_capacity); 9475 max_capacity = max(cpu_cap, max_capacity); 9476 } 9477 } else { 9478 /* 9479 * !SD_OVERLAP domains can assume that child groups 9480 * span the current group. 9481 */ 9482 9483 group = child->groups; 9484 do { 9485 struct sched_group_capacity *sgc = group->sgc; 9486 9487 capacity += sgc->capacity; 9488 min_capacity = min(sgc->min_capacity, min_capacity); 9489 max_capacity = max(sgc->max_capacity, max_capacity); 9490 group = group->next; 9491 } while (group != child->groups); 9492 } 9493 9494 sdg->sgc->capacity = capacity; 9495 sdg->sgc->min_capacity = min_capacity; 9496 sdg->sgc->max_capacity = max_capacity; 9497 } 9498 9499 /* 9500 * Check whether the capacity of the rq has been noticeably reduced by side 9501 * activity. The imbalance_pct is used for the threshold. 9502 * Return true is the capacity is reduced 9503 */ 9504 static inline int 9505 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9506 { 9507 return ((rq->cpu_capacity * sd->imbalance_pct) < 9508 (rq->cpu_capacity_orig * 100)); 9509 } 9510 9511 /* 9512 * Check whether a rq has a misfit task and if it looks like we can actually 9513 * help that task: we can migrate the task to a CPU of higher capacity, or 9514 * the task's current CPU is heavily pressured. 9515 */ 9516 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 9517 { 9518 return rq->misfit_task_load && 9519 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 9520 check_cpu_capacity(rq, sd)); 9521 } 9522 9523 /* 9524 * Group imbalance indicates (and tries to solve) the problem where balancing 9525 * groups is inadequate due to ->cpus_ptr constraints. 9526 * 9527 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9528 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9529 * Something like: 9530 * 9531 * { 0 1 2 3 } { 4 5 6 7 } 9532 * * * * * 9533 * 9534 * If we were to balance group-wise we'd place two tasks in the first group and 9535 * two tasks in the second group. Clearly this is undesired as it will overload 9536 * cpu 3 and leave one of the CPUs in the second group unused. 9537 * 9538 * The current solution to this issue is detecting the skew in the first group 9539 * by noticing the lower domain failed to reach balance and had difficulty 9540 * moving tasks due to affinity constraints. 9541 * 9542 * When this is so detected; this group becomes a candidate for busiest; see 9543 * update_sd_pick_busiest(). And calculate_imbalance() and 9544 * find_busiest_group() avoid some of the usual balance conditions to allow it 9545 * to create an effective group imbalance. 9546 * 9547 * This is a somewhat tricky proposition since the next run might not find the 9548 * group imbalance and decide the groups need to be balanced again. A most 9549 * subtle and fragile situation. 9550 */ 9551 9552 static inline int sg_imbalanced(struct sched_group *group) 9553 { 9554 return group->sgc->imbalance; 9555 } 9556 9557 /* 9558 * group_has_capacity returns true if the group has spare capacity that could 9559 * be used by some tasks. 9560 * We consider that a group has spare capacity if the number of task is 9561 * smaller than the number of CPUs or if the utilization is lower than the 9562 * available capacity for CFS tasks. 9563 * For the latter, we use a threshold to stabilize the state, to take into 9564 * account the variance of the tasks' load and to return true if the available 9565 * capacity in meaningful for the load balancer. 9566 * As an example, an available capacity of 1% can appear but it doesn't make 9567 * any benefit for the load balance. 9568 */ 9569 static inline bool 9570 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9571 { 9572 if (sgs->sum_nr_running < sgs->group_weight) 9573 return true; 9574 9575 if ((sgs->group_capacity * imbalance_pct) < 9576 (sgs->group_runnable * 100)) 9577 return false; 9578 9579 if ((sgs->group_capacity * 100) > 9580 (sgs->group_util * imbalance_pct)) 9581 return true; 9582 9583 return false; 9584 } 9585 9586 /* 9587 * group_is_overloaded returns true if the group has more tasks than it can 9588 * handle. 9589 * group_is_overloaded is not equals to !group_has_capacity because a group 9590 * with the exact right number of tasks, has no more spare capacity but is not 9591 * overloaded so both group_has_capacity and group_is_overloaded return 9592 * false. 9593 */ 9594 static inline bool 9595 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9596 { 9597 if (sgs->sum_nr_running <= sgs->group_weight) 9598 return false; 9599 9600 if ((sgs->group_capacity * 100) < 9601 (sgs->group_util * imbalance_pct)) 9602 return true; 9603 9604 if ((sgs->group_capacity * imbalance_pct) < 9605 (sgs->group_runnable * 100)) 9606 return true; 9607 9608 return false; 9609 } 9610 9611 static inline enum 9612 group_type group_classify(unsigned int imbalance_pct, 9613 struct sched_group *group, 9614 struct sg_lb_stats *sgs) 9615 { 9616 if (group_is_overloaded(imbalance_pct, sgs)) 9617 return group_overloaded; 9618 9619 if (sg_imbalanced(group)) 9620 return group_imbalanced; 9621 9622 if (sgs->group_asym_packing) 9623 return group_asym_packing; 9624 9625 if (sgs->group_smt_balance) 9626 return group_smt_balance; 9627 9628 if (sgs->group_misfit_task_load) 9629 return group_misfit_task; 9630 9631 if (!group_has_capacity(imbalance_pct, sgs)) 9632 return group_fully_busy; 9633 9634 return group_has_spare; 9635 } 9636 9637 /** 9638 * sched_use_asym_prio - Check whether asym_packing priority must be used 9639 * @sd: The scheduling domain of the load balancing 9640 * @cpu: A CPU 9641 * 9642 * Always use CPU priority when balancing load between SMT siblings. When 9643 * balancing load between cores, it is not sufficient that @cpu is idle. Only 9644 * use CPU priority if the whole core is idle. 9645 * 9646 * Returns: True if the priority of @cpu must be followed. False otherwise. 9647 */ 9648 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 9649 { 9650 if (!sched_smt_active()) 9651 return true; 9652 9653 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 9654 } 9655 9656 /** 9657 * sched_asym - Check if the destination CPU can do asym_packing load balance 9658 * @env: The load balancing environment 9659 * @sds: Load-balancing data with statistics of the local group 9660 * @sgs: Load-balancing statistics of the candidate busiest group 9661 * @group: The candidate busiest group 9662 * 9663 * @env::dst_cpu can do asym_packing if it has higher priority than the 9664 * preferred CPU of @group. 9665 * 9666 * SMT is a special case. If we are balancing load between cores, @env::dst_cpu 9667 * can do asym_packing balance only if all its SMT siblings are idle. Also, it 9668 * can only do it if @group is an SMT group and has exactly on busy CPU. Larger 9669 * imbalances in the number of CPUS are dealt with in find_busiest_group(). 9670 * 9671 * If we are balancing load within an SMT core, or at DIE domain level, always 9672 * proceed. 9673 * 9674 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 9675 * otherwise. 9676 */ 9677 static inline bool 9678 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 9679 struct sched_group *group) 9680 { 9681 /* Ensure that the whole local core is idle, if applicable. */ 9682 if (!sched_use_asym_prio(env->sd, env->dst_cpu)) 9683 return false; 9684 9685 /* 9686 * CPU priorities does not make sense for SMT cores with more than one 9687 * busy sibling. 9688 */ 9689 if (group->flags & SD_SHARE_CPUCAPACITY) { 9690 if (sgs->group_weight - sgs->idle_cpus != 1) 9691 return false; 9692 } 9693 9694 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 9695 } 9696 9697 /* One group has more than one SMT CPU while the other group does not */ 9698 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 9699 struct sched_group *sg2) 9700 { 9701 if (!sg1 || !sg2) 9702 return false; 9703 9704 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 9705 (sg2->flags & SD_SHARE_CPUCAPACITY); 9706 } 9707 9708 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 9709 struct sched_group *group) 9710 { 9711 if (env->idle == CPU_NOT_IDLE) 9712 return false; 9713 9714 /* 9715 * For SMT source group, it is better to move a task 9716 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 9717 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 9718 * will not be on. 9719 */ 9720 if (group->flags & SD_SHARE_CPUCAPACITY && 9721 sgs->sum_h_nr_running > 1) 9722 return true; 9723 9724 return false; 9725 } 9726 9727 static inline long sibling_imbalance(struct lb_env *env, 9728 struct sd_lb_stats *sds, 9729 struct sg_lb_stats *busiest, 9730 struct sg_lb_stats *local) 9731 { 9732 int ncores_busiest, ncores_local; 9733 long imbalance; 9734 9735 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running) 9736 return 0; 9737 9738 ncores_busiest = sds->busiest->cores; 9739 ncores_local = sds->local->cores; 9740 9741 if (ncores_busiest == ncores_local) { 9742 imbalance = busiest->sum_nr_running; 9743 lsub_positive(&imbalance, local->sum_nr_running); 9744 return imbalance; 9745 } 9746 9747 /* Balance such that nr_running/ncores ratio are same on both groups */ 9748 imbalance = ncores_local * busiest->sum_nr_running; 9749 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 9750 /* Normalize imbalance and do rounding on normalization */ 9751 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 9752 imbalance /= ncores_local + ncores_busiest; 9753 9754 /* Take advantage of resource in an empty sched group */ 9755 if (imbalance <= 1 && local->sum_nr_running == 0 && 9756 busiest->sum_nr_running > 1) 9757 imbalance = 2; 9758 9759 return imbalance; 9760 } 9761 9762 static inline bool 9763 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9764 { 9765 /* 9766 * When there is more than 1 task, the group_overloaded case already 9767 * takes care of cpu with reduced capacity 9768 */ 9769 if (rq->cfs.h_nr_running != 1) 9770 return false; 9771 9772 return check_cpu_capacity(rq, sd); 9773 } 9774 9775 /** 9776 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9777 * @env: The load balancing environment. 9778 * @sds: Load-balancing data with statistics of the local group. 9779 * @group: sched_group whose statistics are to be updated. 9780 * @sgs: variable to hold the statistics for this group. 9781 * @sg_status: Holds flag indicating the status of the sched_group 9782 */ 9783 static inline void update_sg_lb_stats(struct lb_env *env, 9784 struct sd_lb_stats *sds, 9785 struct sched_group *group, 9786 struct sg_lb_stats *sgs, 9787 int *sg_status) 9788 { 9789 int i, nr_running, local_group; 9790 9791 memset(sgs, 0, sizeof(*sgs)); 9792 9793 local_group = group == sds->local; 9794 9795 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9796 struct rq *rq = cpu_rq(i); 9797 unsigned long load = cpu_load(rq); 9798 9799 sgs->group_load += load; 9800 sgs->group_util += cpu_util_cfs(i); 9801 sgs->group_runnable += cpu_runnable(rq); 9802 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9803 9804 nr_running = rq->nr_running; 9805 sgs->sum_nr_running += nr_running; 9806 9807 if (nr_running > 1) 9808 *sg_status |= SG_OVERLOAD; 9809 9810 if (cpu_overutilized(i)) 9811 *sg_status |= SG_OVERUTILIZED; 9812 9813 #ifdef CONFIG_NUMA_BALANCING 9814 sgs->nr_numa_running += rq->nr_numa_running; 9815 sgs->nr_preferred_running += rq->nr_preferred_running; 9816 #endif 9817 /* 9818 * No need to call idle_cpu() if nr_running is not 0 9819 */ 9820 if (!nr_running && idle_cpu(i)) { 9821 sgs->idle_cpus++; 9822 /* Idle cpu can't have misfit task */ 9823 continue; 9824 } 9825 9826 if (local_group) 9827 continue; 9828 9829 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9830 /* Check for a misfit task on the cpu */ 9831 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9832 sgs->group_misfit_task_load = rq->misfit_task_load; 9833 *sg_status |= SG_OVERLOAD; 9834 } 9835 } else if ((env->idle != CPU_NOT_IDLE) && 9836 sched_reduced_capacity(rq, env->sd)) { 9837 /* Check for a task running on a CPU with reduced capacity */ 9838 if (sgs->group_misfit_task_load < load) 9839 sgs->group_misfit_task_load = load; 9840 } 9841 } 9842 9843 sgs->group_capacity = group->sgc->capacity; 9844 9845 sgs->group_weight = group->group_weight; 9846 9847 /* Check if dst CPU is idle and preferred to this group */ 9848 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 9849 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9850 sched_asym(env, sds, sgs, group)) { 9851 sgs->group_asym_packing = 1; 9852 } 9853 9854 /* Check for loaded SMT group to be balanced to dst CPU */ 9855 if (!local_group && smt_balance(env, sgs, group)) 9856 sgs->group_smt_balance = 1; 9857 9858 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9859 9860 /* Computing avg_load makes sense only when group is overloaded */ 9861 if (sgs->group_type == group_overloaded) 9862 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9863 sgs->group_capacity; 9864 } 9865 9866 /** 9867 * update_sd_pick_busiest - return 1 on busiest group 9868 * @env: The load balancing environment. 9869 * @sds: sched_domain statistics 9870 * @sg: sched_group candidate to be checked for being the busiest 9871 * @sgs: sched_group statistics 9872 * 9873 * Determine if @sg is a busier group than the previously selected 9874 * busiest group. 9875 * 9876 * Return: %true if @sg is a busier group than the previously selected 9877 * busiest group. %false otherwise. 9878 */ 9879 static bool update_sd_pick_busiest(struct lb_env *env, 9880 struct sd_lb_stats *sds, 9881 struct sched_group *sg, 9882 struct sg_lb_stats *sgs) 9883 { 9884 struct sg_lb_stats *busiest = &sds->busiest_stat; 9885 9886 /* Make sure that there is at least one task to pull */ 9887 if (!sgs->sum_h_nr_running) 9888 return false; 9889 9890 /* 9891 * Don't try to pull misfit tasks we can't help. 9892 * We can use max_capacity here as reduction in capacity on some 9893 * CPUs in the group should either be possible to resolve 9894 * internally or be covered by avg_load imbalance (eventually). 9895 */ 9896 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9897 (sgs->group_type == group_misfit_task) && 9898 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9899 sds->local_stat.group_type != group_has_spare)) 9900 return false; 9901 9902 if (sgs->group_type > busiest->group_type) 9903 return true; 9904 9905 if (sgs->group_type < busiest->group_type) 9906 return false; 9907 9908 /* 9909 * The candidate and the current busiest group are the same type of 9910 * group. Let check which one is the busiest according to the type. 9911 */ 9912 9913 switch (sgs->group_type) { 9914 case group_overloaded: 9915 /* Select the overloaded group with highest avg_load. */ 9916 if (sgs->avg_load <= busiest->avg_load) 9917 return false; 9918 break; 9919 9920 case group_imbalanced: 9921 /* 9922 * Select the 1st imbalanced group as we don't have any way to 9923 * choose one more than another. 9924 */ 9925 return false; 9926 9927 case group_asym_packing: 9928 /* Prefer to move from lowest priority CPU's work */ 9929 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 9930 return false; 9931 break; 9932 9933 case group_misfit_task: 9934 /* 9935 * If we have more than one misfit sg go with the biggest 9936 * misfit. 9937 */ 9938 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 9939 return false; 9940 break; 9941 9942 case group_smt_balance: 9943 /* 9944 * Check if we have spare CPUs on either SMT group to 9945 * choose has spare or fully busy handling. 9946 */ 9947 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 9948 goto has_spare; 9949 9950 fallthrough; 9951 9952 case group_fully_busy: 9953 /* 9954 * Select the fully busy group with highest avg_load. In 9955 * theory, there is no need to pull task from such kind of 9956 * group because tasks have all compute capacity that they need 9957 * but we can still improve the overall throughput by reducing 9958 * contention when accessing shared HW resources. 9959 * 9960 * XXX for now avg_load is not computed and always 0 so we 9961 * select the 1st one, except if @sg is composed of SMT 9962 * siblings. 9963 */ 9964 9965 if (sgs->avg_load < busiest->avg_load) 9966 return false; 9967 9968 if (sgs->avg_load == busiest->avg_load) { 9969 /* 9970 * SMT sched groups need more help than non-SMT groups. 9971 * If @sg happens to also be SMT, either choice is good. 9972 */ 9973 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 9974 return false; 9975 } 9976 9977 break; 9978 9979 case group_has_spare: 9980 /* 9981 * Do not pick sg with SMT CPUs over sg with pure CPUs, 9982 * as we do not want to pull task off SMT core with one task 9983 * and make the core idle. 9984 */ 9985 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 9986 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 9987 return false; 9988 else 9989 return true; 9990 } 9991 has_spare: 9992 9993 /* 9994 * Select not overloaded group with lowest number of idle cpus 9995 * and highest number of running tasks. We could also compare 9996 * the spare capacity which is more stable but it can end up 9997 * that the group has less spare capacity but finally more idle 9998 * CPUs which means less opportunity to pull tasks. 9999 */ 10000 if (sgs->idle_cpus > busiest->idle_cpus) 10001 return false; 10002 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10003 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10004 return false; 10005 10006 break; 10007 } 10008 10009 /* 10010 * Candidate sg has no more than one task per CPU and has higher 10011 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10012 * throughput. Maximize throughput, power/energy consequences are not 10013 * considered. 10014 */ 10015 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10016 (sgs->group_type <= group_fully_busy) && 10017 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10018 return false; 10019 10020 return true; 10021 } 10022 10023 #ifdef CONFIG_NUMA_BALANCING 10024 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10025 { 10026 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10027 return regular; 10028 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10029 return remote; 10030 return all; 10031 } 10032 10033 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10034 { 10035 if (rq->nr_running > rq->nr_numa_running) 10036 return regular; 10037 if (rq->nr_running > rq->nr_preferred_running) 10038 return remote; 10039 return all; 10040 } 10041 #else 10042 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10043 { 10044 return all; 10045 } 10046 10047 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10048 { 10049 return regular; 10050 } 10051 #endif /* CONFIG_NUMA_BALANCING */ 10052 10053 10054 struct sg_lb_stats; 10055 10056 /* 10057 * task_running_on_cpu - return 1 if @p is running on @cpu. 10058 */ 10059 10060 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10061 { 10062 /* Task has no contribution or is new */ 10063 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10064 return 0; 10065 10066 if (task_on_rq_queued(p)) 10067 return 1; 10068 10069 return 0; 10070 } 10071 10072 /** 10073 * idle_cpu_without - would a given CPU be idle without p ? 10074 * @cpu: the processor on which idleness is tested. 10075 * @p: task which should be ignored. 10076 * 10077 * Return: 1 if the CPU would be idle. 0 otherwise. 10078 */ 10079 static int idle_cpu_without(int cpu, struct task_struct *p) 10080 { 10081 struct rq *rq = cpu_rq(cpu); 10082 10083 if (rq->curr != rq->idle && rq->curr != p) 10084 return 0; 10085 10086 /* 10087 * rq->nr_running can't be used but an updated version without the 10088 * impact of p on cpu must be used instead. The updated nr_running 10089 * be computed and tested before calling idle_cpu_without(). 10090 */ 10091 10092 #ifdef CONFIG_SMP 10093 if (rq->ttwu_pending) 10094 return 0; 10095 #endif 10096 10097 return 1; 10098 } 10099 10100 /* 10101 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10102 * @sd: The sched_domain level to look for idlest group. 10103 * @group: sched_group whose statistics are to be updated. 10104 * @sgs: variable to hold the statistics for this group. 10105 * @p: The task for which we look for the idlest group/CPU. 10106 */ 10107 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10108 struct sched_group *group, 10109 struct sg_lb_stats *sgs, 10110 struct task_struct *p) 10111 { 10112 int i, nr_running; 10113 10114 memset(sgs, 0, sizeof(*sgs)); 10115 10116 /* Assume that task can't fit any CPU of the group */ 10117 if (sd->flags & SD_ASYM_CPUCAPACITY) 10118 sgs->group_misfit_task_load = 1; 10119 10120 for_each_cpu(i, sched_group_span(group)) { 10121 struct rq *rq = cpu_rq(i); 10122 unsigned int local; 10123 10124 sgs->group_load += cpu_load_without(rq, p); 10125 sgs->group_util += cpu_util_without(i, p); 10126 sgs->group_runnable += cpu_runnable_without(rq, p); 10127 local = task_running_on_cpu(i, p); 10128 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10129 10130 nr_running = rq->nr_running - local; 10131 sgs->sum_nr_running += nr_running; 10132 10133 /* 10134 * No need to call idle_cpu_without() if nr_running is not 0 10135 */ 10136 if (!nr_running && idle_cpu_without(i, p)) 10137 sgs->idle_cpus++; 10138 10139 /* Check if task fits in the CPU */ 10140 if (sd->flags & SD_ASYM_CPUCAPACITY && 10141 sgs->group_misfit_task_load && 10142 task_fits_cpu(p, i)) 10143 sgs->group_misfit_task_load = 0; 10144 10145 } 10146 10147 sgs->group_capacity = group->sgc->capacity; 10148 10149 sgs->group_weight = group->group_weight; 10150 10151 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10152 10153 /* 10154 * Computing avg_load makes sense only when group is fully busy or 10155 * overloaded 10156 */ 10157 if (sgs->group_type == group_fully_busy || 10158 sgs->group_type == group_overloaded) 10159 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10160 sgs->group_capacity; 10161 } 10162 10163 static bool update_pick_idlest(struct sched_group *idlest, 10164 struct sg_lb_stats *idlest_sgs, 10165 struct sched_group *group, 10166 struct sg_lb_stats *sgs) 10167 { 10168 if (sgs->group_type < idlest_sgs->group_type) 10169 return true; 10170 10171 if (sgs->group_type > idlest_sgs->group_type) 10172 return false; 10173 10174 /* 10175 * The candidate and the current idlest group are the same type of 10176 * group. Let check which one is the idlest according to the type. 10177 */ 10178 10179 switch (sgs->group_type) { 10180 case group_overloaded: 10181 case group_fully_busy: 10182 /* Select the group with lowest avg_load. */ 10183 if (idlest_sgs->avg_load <= sgs->avg_load) 10184 return false; 10185 break; 10186 10187 case group_imbalanced: 10188 case group_asym_packing: 10189 case group_smt_balance: 10190 /* Those types are not used in the slow wakeup path */ 10191 return false; 10192 10193 case group_misfit_task: 10194 /* Select group with the highest max capacity */ 10195 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10196 return false; 10197 break; 10198 10199 case group_has_spare: 10200 /* Select group with most idle CPUs */ 10201 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10202 return false; 10203 10204 /* Select group with lowest group_util */ 10205 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10206 idlest_sgs->group_util <= sgs->group_util) 10207 return false; 10208 10209 break; 10210 } 10211 10212 return true; 10213 } 10214 10215 /* 10216 * find_idlest_group() finds and returns the least busy CPU group within the 10217 * domain. 10218 * 10219 * Assumes p is allowed on at least one CPU in sd. 10220 */ 10221 static struct sched_group * 10222 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10223 { 10224 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10225 struct sg_lb_stats local_sgs, tmp_sgs; 10226 struct sg_lb_stats *sgs; 10227 unsigned long imbalance; 10228 struct sg_lb_stats idlest_sgs = { 10229 .avg_load = UINT_MAX, 10230 .group_type = group_overloaded, 10231 }; 10232 10233 do { 10234 int local_group; 10235 10236 /* Skip over this group if it has no CPUs allowed */ 10237 if (!cpumask_intersects(sched_group_span(group), 10238 p->cpus_ptr)) 10239 continue; 10240 10241 /* Skip over this group if no cookie matched */ 10242 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10243 continue; 10244 10245 local_group = cpumask_test_cpu(this_cpu, 10246 sched_group_span(group)); 10247 10248 if (local_group) { 10249 sgs = &local_sgs; 10250 local = group; 10251 } else { 10252 sgs = &tmp_sgs; 10253 } 10254 10255 update_sg_wakeup_stats(sd, group, sgs, p); 10256 10257 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10258 idlest = group; 10259 idlest_sgs = *sgs; 10260 } 10261 10262 } while (group = group->next, group != sd->groups); 10263 10264 10265 /* There is no idlest group to push tasks to */ 10266 if (!idlest) 10267 return NULL; 10268 10269 /* The local group has been skipped because of CPU affinity */ 10270 if (!local) 10271 return idlest; 10272 10273 /* 10274 * If the local group is idler than the selected idlest group 10275 * don't try and push the task. 10276 */ 10277 if (local_sgs.group_type < idlest_sgs.group_type) 10278 return NULL; 10279 10280 /* 10281 * If the local group is busier than the selected idlest group 10282 * try and push the task. 10283 */ 10284 if (local_sgs.group_type > idlest_sgs.group_type) 10285 return idlest; 10286 10287 switch (local_sgs.group_type) { 10288 case group_overloaded: 10289 case group_fully_busy: 10290 10291 /* Calculate allowed imbalance based on load */ 10292 imbalance = scale_load_down(NICE_0_LOAD) * 10293 (sd->imbalance_pct-100) / 100; 10294 10295 /* 10296 * When comparing groups across NUMA domains, it's possible for 10297 * the local domain to be very lightly loaded relative to the 10298 * remote domains but "imbalance" skews the comparison making 10299 * remote CPUs look much more favourable. When considering 10300 * cross-domain, add imbalance to the load on the remote node 10301 * and consider staying local. 10302 */ 10303 10304 if ((sd->flags & SD_NUMA) && 10305 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10306 return NULL; 10307 10308 /* 10309 * If the local group is less loaded than the selected 10310 * idlest group don't try and push any tasks. 10311 */ 10312 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10313 return NULL; 10314 10315 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10316 return NULL; 10317 break; 10318 10319 case group_imbalanced: 10320 case group_asym_packing: 10321 case group_smt_balance: 10322 /* Those type are not used in the slow wakeup path */ 10323 return NULL; 10324 10325 case group_misfit_task: 10326 /* Select group with the highest max capacity */ 10327 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10328 return NULL; 10329 break; 10330 10331 case group_has_spare: 10332 #ifdef CONFIG_NUMA 10333 if (sd->flags & SD_NUMA) { 10334 int imb_numa_nr = sd->imb_numa_nr; 10335 #ifdef CONFIG_NUMA_BALANCING 10336 int idlest_cpu; 10337 /* 10338 * If there is spare capacity at NUMA, try to select 10339 * the preferred node 10340 */ 10341 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10342 return NULL; 10343 10344 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10345 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10346 return idlest; 10347 #endif /* CONFIG_NUMA_BALANCING */ 10348 /* 10349 * Otherwise, keep the task close to the wakeup source 10350 * and improve locality if the number of running tasks 10351 * would remain below threshold where an imbalance is 10352 * allowed while accounting for the possibility the 10353 * task is pinned to a subset of CPUs. If there is a 10354 * real need of migration, periodic load balance will 10355 * take care of it. 10356 */ 10357 if (p->nr_cpus_allowed != NR_CPUS) { 10358 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10359 10360 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10361 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10362 } 10363 10364 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10365 if (!adjust_numa_imbalance(imbalance, 10366 local_sgs.sum_nr_running + 1, 10367 imb_numa_nr)) { 10368 return NULL; 10369 } 10370 } 10371 #endif /* CONFIG_NUMA */ 10372 10373 /* 10374 * Select group with highest number of idle CPUs. We could also 10375 * compare the utilization which is more stable but it can end 10376 * up that the group has less spare capacity but finally more 10377 * idle CPUs which means more opportunity to run task. 10378 */ 10379 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10380 return NULL; 10381 break; 10382 } 10383 10384 return idlest; 10385 } 10386 10387 static void update_idle_cpu_scan(struct lb_env *env, 10388 unsigned long sum_util) 10389 { 10390 struct sched_domain_shared *sd_share; 10391 int llc_weight, pct; 10392 u64 x, y, tmp; 10393 /* 10394 * Update the number of CPUs to scan in LLC domain, which could 10395 * be used as a hint in select_idle_cpu(). The update of sd_share 10396 * could be expensive because it is within a shared cache line. 10397 * So the write of this hint only occurs during periodic load 10398 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10399 * can fire way more frequently than the former. 10400 */ 10401 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10402 return; 10403 10404 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10405 if (env->sd->span_weight != llc_weight) 10406 return; 10407 10408 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10409 if (!sd_share) 10410 return; 10411 10412 /* 10413 * The number of CPUs to search drops as sum_util increases, when 10414 * sum_util hits 85% or above, the scan stops. 10415 * The reason to choose 85% as the threshold is because this is the 10416 * imbalance_pct(117) when a LLC sched group is overloaded. 10417 * 10418 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10419 * and y'= y / SCHED_CAPACITY_SCALE 10420 * 10421 * x is the ratio of sum_util compared to the CPU capacity: 10422 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10423 * y' is the ratio of CPUs to be scanned in the LLC domain, 10424 * and the number of CPUs to scan is calculated by: 10425 * 10426 * nr_scan = llc_weight * y' [2] 10427 * 10428 * When x hits the threshold of overloaded, AKA, when 10429 * x = 100 / pct, y drops to 0. According to [1], 10430 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10431 * 10432 * Scale x by SCHED_CAPACITY_SCALE: 10433 * x' = sum_util / llc_weight; [3] 10434 * 10435 * and finally [1] becomes: 10436 * y = SCHED_CAPACITY_SCALE - 10437 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10438 * 10439 */ 10440 /* equation [3] */ 10441 x = sum_util; 10442 do_div(x, llc_weight); 10443 10444 /* equation [4] */ 10445 pct = env->sd->imbalance_pct; 10446 tmp = x * x * pct * pct; 10447 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10448 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10449 y = SCHED_CAPACITY_SCALE - tmp; 10450 10451 /* equation [2] */ 10452 y *= llc_weight; 10453 do_div(y, SCHED_CAPACITY_SCALE); 10454 if ((int)y != sd_share->nr_idle_scan) 10455 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10456 } 10457 10458 /** 10459 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10460 * @env: The load balancing environment. 10461 * @sds: variable to hold the statistics for this sched_domain. 10462 */ 10463 10464 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10465 { 10466 struct sched_group *sg = env->sd->groups; 10467 struct sg_lb_stats *local = &sds->local_stat; 10468 struct sg_lb_stats tmp_sgs; 10469 unsigned long sum_util = 0; 10470 int sg_status = 0; 10471 10472 do { 10473 struct sg_lb_stats *sgs = &tmp_sgs; 10474 int local_group; 10475 10476 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10477 if (local_group) { 10478 sds->local = sg; 10479 sgs = local; 10480 10481 if (env->idle != CPU_NEWLY_IDLE || 10482 time_after_eq(jiffies, sg->sgc->next_update)) 10483 update_group_capacity(env->sd, env->dst_cpu); 10484 } 10485 10486 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 10487 10488 if (local_group) 10489 goto next_group; 10490 10491 10492 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 10493 sds->busiest = sg; 10494 sds->busiest_stat = *sgs; 10495 } 10496 10497 next_group: 10498 /* Now, start updating sd_lb_stats */ 10499 sds->total_load += sgs->group_load; 10500 sds->total_capacity += sgs->group_capacity; 10501 10502 sum_util += sgs->group_util; 10503 sg = sg->next; 10504 } while (sg != env->sd->groups); 10505 10506 /* 10507 * Indicate that the child domain of the busiest group prefers tasks 10508 * go to a child's sibling domains first. NB the flags of a sched group 10509 * are those of the child domain. 10510 */ 10511 if (sds->busiest) 10512 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10513 10514 10515 if (env->sd->flags & SD_NUMA) 10516 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10517 10518 if (!env->sd->parent) { 10519 /* update overload indicator if we are at root domain */ 10520 WRITE_ONCE(env->dst_rq->rd->overload, sg_status & SG_OVERLOAD); 10521 10522 /* Update over-utilization (tipping point, U >= 0) indicator */ 10523 set_rd_overutilized_status(env->dst_rq->rd, 10524 sg_status & SG_OVERUTILIZED); 10525 } else if (sg_status & SG_OVERUTILIZED) { 10526 set_rd_overutilized_status(env->dst_rq->rd, SG_OVERUTILIZED); 10527 } 10528 10529 update_idle_cpu_scan(env, sum_util); 10530 } 10531 10532 /** 10533 * calculate_imbalance - Calculate the amount of imbalance present within the 10534 * groups of a given sched_domain during load balance. 10535 * @env: load balance environment 10536 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10537 */ 10538 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10539 { 10540 struct sg_lb_stats *local, *busiest; 10541 10542 local = &sds->local_stat; 10543 busiest = &sds->busiest_stat; 10544 10545 if (busiest->group_type == group_misfit_task) { 10546 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10547 /* Set imbalance to allow misfit tasks to be balanced. */ 10548 env->migration_type = migrate_misfit; 10549 env->imbalance = 1; 10550 } else { 10551 /* 10552 * Set load imbalance to allow moving task from cpu 10553 * with reduced capacity. 10554 */ 10555 env->migration_type = migrate_load; 10556 env->imbalance = busiest->group_misfit_task_load; 10557 } 10558 return; 10559 } 10560 10561 if (busiest->group_type == group_asym_packing) { 10562 /* 10563 * In case of asym capacity, we will try to migrate all load to 10564 * the preferred CPU. 10565 */ 10566 env->migration_type = migrate_task; 10567 env->imbalance = busiest->sum_h_nr_running; 10568 return; 10569 } 10570 10571 if (busiest->group_type == group_smt_balance) { 10572 /* Reduce number of tasks sharing CPU capacity */ 10573 env->migration_type = migrate_task; 10574 env->imbalance = 1; 10575 return; 10576 } 10577 10578 if (busiest->group_type == group_imbalanced) { 10579 /* 10580 * In the group_imb case we cannot rely on group-wide averages 10581 * to ensure CPU-load equilibrium, try to move any task to fix 10582 * the imbalance. The next load balance will take care of 10583 * balancing back the system. 10584 */ 10585 env->migration_type = migrate_task; 10586 env->imbalance = 1; 10587 return; 10588 } 10589 10590 /* 10591 * Try to use spare capacity of local group without overloading it or 10592 * emptying busiest. 10593 */ 10594 if (local->group_type == group_has_spare) { 10595 if ((busiest->group_type > group_fully_busy) && 10596 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 10597 /* 10598 * If busiest is overloaded, try to fill spare 10599 * capacity. This might end up creating spare capacity 10600 * in busiest or busiest still being overloaded but 10601 * there is no simple way to directly compute the 10602 * amount of load to migrate in order to balance the 10603 * system. 10604 */ 10605 env->migration_type = migrate_util; 10606 env->imbalance = max(local->group_capacity, local->group_util) - 10607 local->group_util; 10608 10609 /* 10610 * In some cases, the group's utilization is max or even 10611 * higher than capacity because of migrations but the 10612 * local CPU is (newly) idle. There is at least one 10613 * waiting task in this overloaded busiest group. Let's 10614 * try to pull it. 10615 */ 10616 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 10617 env->migration_type = migrate_task; 10618 env->imbalance = 1; 10619 } 10620 10621 return; 10622 } 10623 10624 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10625 /* 10626 * When prefer sibling, evenly spread running tasks on 10627 * groups. 10628 */ 10629 env->migration_type = migrate_task; 10630 env->imbalance = sibling_imbalance(env, sds, busiest, local); 10631 } else { 10632 10633 /* 10634 * If there is no overload, we just want to even the number of 10635 * idle cpus. 10636 */ 10637 env->migration_type = migrate_task; 10638 env->imbalance = max_t(long, 0, 10639 (local->idle_cpus - busiest->idle_cpus)); 10640 } 10641 10642 #ifdef CONFIG_NUMA 10643 /* Consider allowing a small imbalance between NUMA groups */ 10644 if (env->sd->flags & SD_NUMA) { 10645 env->imbalance = adjust_numa_imbalance(env->imbalance, 10646 local->sum_nr_running + 1, 10647 env->sd->imb_numa_nr); 10648 } 10649 #endif 10650 10651 /* Number of tasks to move to restore balance */ 10652 env->imbalance >>= 1; 10653 10654 return; 10655 } 10656 10657 /* 10658 * Local is fully busy but has to take more load to relieve the 10659 * busiest group 10660 */ 10661 if (local->group_type < group_overloaded) { 10662 /* 10663 * Local will become overloaded so the avg_load metrics are 10664 * finally needed. 10665 */ 10666 10667 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10668 local->group_capacity; 10669 10670 /* 10671 * If the local group is more loaded than the selected 10672 * busiest group don't try to pull any tasks. 10673 */ 10674 if (local->avg_load >= busiest->avg_load) { 10675 env->imbalance = 0; 10676 return; 10677 } 10678 10679 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10680 sds->total_capacity; 10681 10682 /* 10683 * If the local group is more loaded than the average system 10684 * load, don't try to pull any tasks. 10685 */ 10686 if (local->avg_load >= sds->avg_load) { 10687 env->imbalance = 0; 10688 return; 10689 } 10690 10691 } 10692 10693 /* 10694 * Both group are or will become overloaded and we're trying to get all 10695 * the CPUs to the average_load, so we don't want to push ourselves 10696 * above the average load, nor do we wish to reduce the max loaded CPU 10697 * below the average load. At the same time, we also don't want to 10698 * reduce the group load below the group capacity. Thus we look for 10699 * the minimum possible imbalance. 10700 */ 10701 env->migration_type = migrate_load; 10702 env->imbalance = min( 10703 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10704 (sds->avg_load - local->avg_load) * local->group_capacity 10705 ) / SCHED_CAPACITY_SCALE; 10706 } 10707 10708 /******* find_busiest_group() helpers end here *********************/ 10709 10710 /* 10711 * Decision matrix according to the local and busiest group type: 10712 * 10713 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10714 * has_spare nr_idle balanced N/A N/A balanced balanced 10715 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10716 * misfit_task force N/A N/A N/A N/A N/A 10717 * asym_packing force force N/A N/A force force 10718 * imbalanced force force N/A N/A force force 10719 * overloaded force force N/A N/A force avg_load 10720 * 10721 * N/A : Not Applicable because already filtered while updating 10722 * statistics. 10723 * balanced : The system is balanced for these 2 groups. 10724 * force : Calculate the imbalance as load migration is probably needed. 10725 * avg_load : Only if imbalance is significant enough. 10726 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10727 * different in groups. 10728 */ 10729 10730 /** 10731 * find_busiest_group - Returns the busiest group within the sched_domain 10732 * if there is an imbalance. 10733 * @env: The load balancing environment. 10734 * 10735 * Also calculates the amount of runnable load which should be moved 10736 * to restore balance. 10737 * 10738 * Return: - The busiest group if imbalance exists. 10739 */ 10740 static struct sched_group *find_busiest_group(struct lb_env *env) 10741 { 10742 struct sg_lb_stats *local, *busiest; 10743 struct sd_lb_stats sds; 10744 10745 init_sd_lb_stats(&sds); 10746 10747 /* 10748 * Compute the various statistics relevant for load balancing at 10749 * this level. 10750 */ 10751 update_sd_lb_stats(env, &sds); 10752 10753 /* There is no busy sibling group to pull tasks from */ 10754 if (!sds.busiest) 10755 goto out_balanced; 10756 10757 busiest = &sds.busiest_stat; 10758 10759 /* Misfit tasks should be dealt with regardless of the avg load */ 10760 if (busiest->group_type == group_misfit_task) 10761 goto force_balance; 10762 10763 if (sched_energy_enabled()) { 10764 struct root_domain *rd = env->dst_rq->rd; 10765 10766 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10767 goto out_balanced; 10768 } 10769 10770 /* ASYM feature bypasses nice load balance check */ 10771 if (busiest->group_type == group_asym_packing) 10772 goto force_balance; 10773 10774 /* 10775 * If the busiest group is imbalanced the below checks don't 10776 * work because they assume all things are equal, which typically 10777 * isn't true due to cpus_ptr constraints and the like. 10778 */ 10779 if (busiest->group_type == group_imbalanced) 10780 goto force_balance; 10781 10782 local = &sds.local_stat; 10783 /* 10784 * If the local group is busier than the selected busiest group 10785 * don't try and pull any tasks. 10786 */ 10787 if (local->group_type > busiest->group_type) 10788 goto out_balanced; 10789 10790 /* 10791 * When groups are overloaded, use the avg_load to ensure fairness 10792 * between tasks. 10793 */ 10794 if (local->group_type == group_overloaded) { 10795 /* 10796 * If the local group is more loaded than the selected 10797 * busiest group don't try to pull any tasks. 10798 */ 10799 if (local->avg_load >= busiest->avg_load) 10800 goto out_balanced; 10801 10802 /* XXX broken for overlapping NUMA groups */ 10803 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10804 sds.total_capacity; 10805 10806 /* 10807 * Don't pull any tasks if this group is already above the 10808 * domain average load. 10809 */ 10810 if (local->avg_load >= sds.avg_load) 10811 goto out_balanced; 10812 10813 /* 10814 * If the busiest group is more loaded, use imbalance_pct to be 10815 * conservative. 10816 */ 10817 if (100 * busiest->avg_load <= 10818 env->sd->imbalance_pct * local->avg_load) 10819 goto out_balanced; 10820 } 10821 10822 /* 10823 * Try to move all excess tasks to a sibling domain of the busiest 10824 * group's child domain. 10825 */ 10826 if (sds.prefer_sibling && local->group_type == group_has_spare && 10827 sibling_imbalance(env, &sds, busiest, local) > 1) 10828 goto force_balance; 10829 10830 if (busiest->group_type != group_overloaded) { 10831 if (env->idle == CPU_NOT_IDLE) { 10832 /* 10833 * If the busiest group is not overloaded (and as a 10834 * result the local one too) but this CPU is already 10835 * busy, let another idle CPU try to pull task. 10836 */ 10837 goto out_balanced; 10838 } 10839 10840 if (busiest->group_type == group_smt_balance && 10841 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 10842 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 10843 goto force_balance; 10844 } 10845 10846 if (busiest->group_weight > 1 && 10847 local->idle_cpus <= (busiest->idle_cpus + 1)) { 10848 /* 10849 * If the busiest group is not overloaded 10850 * and there is no imbalance between this and busiest 10851 * group wrt idle CPUs, it is balanced. The imbalance 10852 * becomes significant if the diff is greater than 1 10853 * otherwise we might end up to just move the imbalance 10854 * on another group. Of course this applies only if 10855 * there is more than 1 CPU per group. 10856 */ 10857 goto out_balanced; 10858 } 10859 10860 if (busiest->sum_h_nr_running == 1) { 10861 /* 10862 * busiest doesn't have any tasks waiting to run 10863 */ 10864 goto out_balanced; 10865 } 10866 } 10867 10868 force_balance: 10869 /* Looks like there is an imbalance. Compute it */ 10870 calculate_imbalance(env, &sds); 10871 return env->imbalance ? sds.busiest : NULL; 10872 10873 out_balanced: 10874 env->imbalance = 0; 10875 return NULL; 10876 } 10877 10878 /* 10879 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10880 */ 10881 static struct rq *find_busiest_queue(struct lb_env *env, 10882 struct sched_group *group) 10883 { 10884 struct rq *busiest = NULL, *rq; 10885 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10886 unsigned int busiest_nr = 0; 10887 int i; 10888 10889 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10890 unsigned long capacity, load, util; 10891 unsigned int nr_running; 10892 enum fbq_type rt; 10893 10894 rq = cpu_rq(i); 10895 rt = fbq_classify_rq(rq); 10896 10897 /* 10898 * We classify groups/runqueues into three groups: 10899 * - regular: there are !numa tasks 10900 * - remote: there are numa tasks that run on the 'wrong' node 10901 * - all: there is no distinction 10902 * 10903 * In order to avoid migrating ideally placed numa tasks, 10904 * ignore those when there's better options. 10905 * 10906 * If we ignore the actual busiest queue to migrate another 10907 * task, the next balance pass can still reduce the busiest 10908 * queue by moving tasks around inside the node. 10909 * 10910 * If we cannot move enough load due to this classification 10911 * the next pass will adjust the group classification and 10912 * allow migration of more tasks. 10913 * 10914 * Both cases only affect the total convergence complexity. 10915 */ 10916 if (rt > env->fbq_type) 10917 continue; 10918 10919 nr_running = rq->cfs.h_nr_running; 10920 if (!nr_running) 10921 continue; 10922 10923 capacity = capacity_of(i); 10924 10925 /* 10926 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 10927 * eventually lead to active_balancing high->low capacity. 10928 * Higher per-CPU capacity is considered better than balancing 10929 * average load. 10930 */ 10931 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 10932 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 10933 nr_running == 1) 10934 continue; 10935 10936 /* 10937 * Make sure we only pull tasks from a CPU of lower priority 10938 * when balancing between SMT siblings. 10939 * 10940 * If balancing between cores, let lower priority CPUs help 10941 * SMT cores with more than one busy sibling. 10942 */ 10943 if ((env->sd->flags & SD_ASYM_PACKING) && 10944 sched_use_asym_prio(env->sd, i) && 10945 sched_asym_prefer(i, env->dst_cpu) && 10946 nr_running == 1) 10947 continue; 10948 10949 switch (env->migration_type) { 10950 case migrate_load: 10951 /* 10952 * When comparing with load imbalance, use cpu_load() 10953 * which is not scaled with the CPU capacity. 10954 */ 10955 load = cpu_load(rq); 10956 10957 if (nr_running == 1 && load > env->imbalance && 10958 !check_cpu_capacity(rq, env->sd)) 10959 break; 10960 10961 /* 10962 * For the load comparisons with the other CPUs, 10963 * consider the cpu_load() scaled with the CPU 10964 * capacity, so that the load can be moved away 10965 * from the CPU that is potentially running at a 10966 * lower capacity. 10967 * 10968 * Thus we're looking for max(load_i / capacity_i), 10969 * crosswise multiplication to rid ourselves of the 10970 * division works out to: 10971 * load_i * capacity_j > load_j * capacity_i; 10972 * where j is our previous maximum. 10973 */ 10974 if (load * busiest_capacity > busiest_load * capacity) { 10975 busiest_load = load; 10976 busiest_capacity = capacity; 10977 busiest = rq; 10978 } 10979 break; 10980 10981 case migrate_util: 10982 util = cpu_util_cfs_boost(i); 10983 10984 /* 10985 * Don't try to pull utilization from a CPU with one 10986 * running task. Whatever its utilization, we will fail 10987 * detach the task. 10988 */ 10989 if (nr_running <= 1) 10990 continue; 10991 10992 if (busiest_util < util) { 10993 busiest_util = util; 10994 busiest = rq; 10995 } 10996 break; 10997 10998 case migrate_task: 10999 if (busiest_nr < nr_running) { 11000 busiest_nr = nr_running; 11001 busiest = rq; 11002 } 11003 break; 11004 11005 case migrate_misfit: 11006 /* 11007 * For ASYM_CPUCAPACITY domains with misfit tasks we 11008 * simply seek the "biggest" misfit task. 11009 */ 11010 if (rq->misfit_task_load > busiest_load) { 11011 busiest_load = rq->misfit_task_load; 11012 busiest = rq; 11013 } 11014 11015 break; 11016 11017 } 11018 } 11019 11020 return busiest; 11021 } 11022 11023 /* 11024 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11025 * so long as it is large enough. 11026 */ 11027 #define MAX_PINNED_INTERVAL 512 11028 11029 static inline bool 11030 asym_active_balance(struct lb_env *env) 11031 { 11032 /* 11033 * ASYM_PACKING needs to force migrate tasks from busy but lower 11034 * priority CPUs in order to pack all tasks in the highest priority 11035 * CPUs. When done between cores, do it only if the whole core if the 11036 * whole core is idle. 11037 * 11038 * If @env::src_cpu is an SMT core with busy siblings, let 11039 * the lower priority @env::dst_cpu help it. Do not follow 11040 * CPU priority. 11041 */ 11042 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 11043 sched_use_asym_prio(env->sd, env->dst_cpu) && 11044 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11045 !sched_use_asym_prio(env->sd, env->src_cpu)); 11046 } 11047 11048 static inline bool 11049 imbalanced_active_balance(struct lb_env *env) 11050 { 11051 struct sched_domain *sd = env->sd; 11052 11053 /* 11054 * The imbalanced case includes the case of pinned tasks preventing a fair 11055 * distribution of the load on the system but also the even distribution of the 11056 * threads on a system with spare capacity 11057 */ 11058 if ((env->migration_type == migrate_task) && 11059 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11060 return 1; 11061 11062 return 0; 11063 } 11064 11065 static int need_active_balance(struct lb_env *env) 11066 { 11067 struct sched_domain *sd = env->sd; 11068 11069 if (asym_active_balance(env)) 11070 return 1; 11071 11072 if (imbalanced_active_balance(env)) 11073 return 1; 11074 11075 /* 11076 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11077 * It's worth migrating the task if the src_cpu's capacity is reduced 11078 * because of other sched_class or IRQs if more capacity stays 11079 * available on dst_cpu. 11080 */ 11081 if ((env->idle != CPU_NOT_IDLE) && 11082 (env->src_rq->cfs.h_nr_running == 1)) { 11083 if ((check_cpu_capacity(env->src_rq, sd)) && 11084 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11085 return 1; 11086 } 11087 11088 if (env->migration_type == migrate_misfit) 11089 return 1; 11090 11091 return 0; 11092 } 11093 11094 static int active_load_balance_cpu_stop(void *data); 11095 11096 static int should_we_balance(struct lb_env *env) 11097 { 11098 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11099 struct sched_group *sg = env->sd->groups; 11100 int cpu, idle_smt = -1; 11101 11102 /* 11103 * Ensure the balancing environment is consistent; can happen 11104 * when the softirq triggers 'during' hotplug. 11105 */ 11106 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11107 return 0; 11108 11109 /* 11110 * In the newly idle case, we will allow all the CPUs 11111 * to do the newly idle load balance. 11112 * 11113 * However, we bail out if we already have tasks or a wakeup pending, 11114 * to optimize wakeup latency. 11115 */ 11116 if (env->idle == CPU_NEWLY_IDLE) { 11117 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11118 return 0; 11119 return 1; 11120 } 11121 11122 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11123 /* Try to find first idle CPU */ 11124 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11125 if (!idle_cpu(cpu)) 11126 continue; 11127 11128 /* 11129 * Don't balance to idle SMT in busy core right away when 11130 * balancing cores, but remember the first idle SMT CPU for 11131 * later consideration. Find CPU on an idle core first. 11132 */ 11133 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11134 if (idle_smt == -1) 11135 idle_smt = cpu; 11136 /* 11137 * If the core is not idle, and first SMT sibling which is 11138 * idle has been found, then its not needed to check other 11139 * SMT siblings for idleness: 11140 */ 11141 #ifdef CONFIG_SCHED_SMT 11142 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11143 #endif 11144 continue; 11145 } 11146 11147 /* 11148 * Are we the first idle core in a non-SMT domain or higher, 11149 * or the first idle CPU in a SMT domain? 11150 */ 11151 return cpu == env->dst_cpu; 11152 } 11153 11154 /* Are we the first idle CPU with busy siblings? */ 11155 if (idle_smt != -1) 11156 return idle_smt == env->dst_cpu; 11157 11158 /* Are we the first CPU of this group ? */ 11159 return group_balance_cpu(sg) == env->dst_cpu; 11160 } 11161 11162 /* 11163 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11164 * tasks if there is an imbalance. 11165 */ 11166 static int load_balance(int this_cpu, struct rq *this_rq, 11167 struct sched_domain *sd, enum cpu_idle_type idle, 11168 int *continue_balancing) 11169 { 11170 int ld_moved, cur_ld_moved, active_balance = 0; 11171 struct sched_domain *sd_parent = sd->parent; 11172 struct sched_group *group; 11173 struct rq *busiest; 11174 struct rq_flags rf; 11175 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11176 struct lb_env env = { 11177 .sd = sd, 11178 .dst_cpu = this_cpu, 11179 .dst_rq = this_rq, 11180 .dst_grpmask = group_balance_mask(sd->groups), 11181 .idle = idle, 11182 .loop_break = SCHED_NR_MIGRATE_BREAK, 11183 .cpus = cpus, 11184 .fbq_type = all, 11185 .tasks = LIST_HEAD_INIT(env.tasks), 11186 }; 11187 11188 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11189 11190 schedstat_inc(sd->lb_count[idle]); 11191 11192 redo: 11193 if (!should_we_balance(&env)) { 11194 *continue_balancing = 0; 11195 goto out_balanced; 11196 } 11197 11198 group = find_busiest_group(&env); 11199 if (!group) { 11200 schedstat_inc(sd->lb_nobusyg[idle]); 11201 goto out_balanced; 11202 } 11203 11204 busiest = find_busiest_queue(&env, group); 11205 if (!busiest) { 11206 schedstat_inc(sd->lb_nobusyq[idle]); 11207 goto out_balanced; 11208 } 11209 11210 WARN_ON_ONCE(busiest == env.dst_rq); 11211 11212 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11213 11214 env.src_cpu = busiest->cpu; 11215 env.src_rq = busiest; 11216 11217 ld_moved = 0; 11218 /* Clear this flag as soon as we find a pullable task */ 11219 env.flags |= LBF_ALL_PINNED; 11220 if (busiest->nr_running > 1) { 11221 /* 11222 * Attempt to move tasks. If find_busiest_group has found 11223 * an imbalance but busiest->nr_running <= 1, the group is 11224 * still unbalanced. ld_moved simply stays zero, so it is 11225 * correctly treated as an imbalance. 11226 */ 11227 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11228 11229 more_balance: 11230 rq_lock_irqsave(busiest, &rf); 11231 update_rq_clock(busiest); 11232 11233 /* 11234 * cur_ld_moved - load moved in current iteration 11235 * ld_moved - cumulative load moved across iterations 11236 */ 11237 cur_ld_moved = detach_tasks(&env); 11238 11239 /* 11240 * We've detached some tasks from busiest_rq. Every 11241 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11242 * unlock busiest->lock, and we are able to be sure 11243 * that nobody can manipulate the tasks in parallel. 11244 * See task_rq_lock() family for the details. 11245 */ 11246 11247 rq_unlock(busiest, &rf); 11248 11249 if (cur_ld_moved) { 11250 attach_tasks(&env); 11251 ld_moved += cur_ld_moved; 11252 } 11253 11254 local_irq_restore(rf.flags); 11255 11256 if (env.flags & LBF_NEED_BREAK) { 11257 env.flags &= ~LBF_NEED_BREAK; 11258 goto more_balance; 11259 } 11260 11261 /* 11262 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11263 * us and move them to an alternate dst_cpu in our sched_group 11264 * where they can run. The upper limit on how many times we 11265 * iterate on same src_cpu is dependent on number of CPUs in our 11266 * sched_group. 11267 * 11268 * This changes load balance semantics a bit on who can move 11269 * load to a given_cpu. In addition to the given_cpu itself 11270 * (or a ilb_cpu acting on its behalf where given_cpu is 11271 * nohz-idle), we now have balance_cpu in a position to move 11272 * load to given_cpu. In rare situations, this may cause 11273 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11274 * _independently_ and at _same_ time to move some load to 11275 * given_cpu) causing excess load to be moved to given_cpu. 11276 * This however should not happen so much in practice and 11277 * moreover subsequent load balance cycles should correct the 11278 * excess load moved. 11279 */ 11280 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11281 11282 /* Prevent to re-select dst_cpu via env's CPUs */ 11283 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11284 11285 env.dst_rq = cpu_rq(env.new_dst_cpu); 11286 env.dst_cpu = env.new_dst_cpu; 11287 env.flags &= ~LBF_DST_PINNED; 11288 env.loop = 0; 11289 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11290 11291 /* 11292 * Go back to "more_balance" rather than "redo" since we 11293 * need to continue with same src_cpu. 11294 */ 11295 goto more_balance; 11296 } 11297 11298 /* 11299 * We failed to reach balance because of affinity. 11300 */ 11301 if (sd_parent) { 11302 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11303 11304 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11305 *group_imbalance = 1; 11306 } 11307 11308 /* All tasks on this runqueue were pinned by CPU affinity */ 11309 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11310 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11311 /* 11312 * Attempting to continue load balancing at the current 11313 * sched_domain level only makes sense if there are 11314 * active CPUs remaining as possible busiest CPUs to 11315 * pull load from which are not contained within the 11316 * destination group that is receiving any migrated 11317 * load. 11318 */ 11319 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11320 env.loop = 0; 11321 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11322 goto redo; 11323 } 11324 goto out_all_pinned; 11325 } 11326 } 11327 11328 if (!ld_moved) { 11329 schedstat_inc(sd->lb_failed[idle]); 11330 /* 11331 * Increment the failure counter only on periodic balance. 11332 * We do not want newidle balance, which can be very 11333 * frequent, pollute the failure counter causing 11334 * excessive cache_hot migrations and active balances. 11335 */ 11336 if (idle != CPU_NEWLY_IDLE) 11337 sd->nr_balance_failed++; 11338 11339 if (need_active_balance(&env)) { 11340 unsigned long flags; 11341 11342 raw_spin_rq_lock_irqsave(busiest, flags); 11343 11344 /* 11345 * Don't kick the active_load_balance_cpu_stop, 11346 * if the curr task on busiest CPU can't be 11347 * moved to this_cpu: 11348 */ 11349 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11350 raw_spin_rq_unlock_irqrestore(busiest, flags); 11351 goto out_one_pinned; 11352 } 11353 11354 /* Record that we found at least one task that could run on this_cpu */ 11355 env.flags &= ~LBF_ALL_PINNED; 11356 11357 /* 11358 * ->active_balance synchronizes accesses to 11359 * ->active_balance_work. Once set, it's cleared 11360 * only after active load balance is finished. 11361 */ 11362 if (!busiest->active_balance) { 11363 busiest->active_balance = 1; 11364 busiest->push_cpu = this_cpu; 11365 active_balance = 1; 11366 } 11367 11368 preempt_disable(); 11369 raw_spin_rq_unlock_irqrestore(busiest, flags); 11370 if (active_balance) { 11371 stop_one_cpu_nowait(cpu_of(busiest), 11372 active_load_balance_cpu_stop, busiest, 11373 &busiest->active_balance_work); 11374 } 11375 preempt_enable(); 11376 } 11377 } else { 11378 sd->nr_balance_failed = 0; 11379 } 11380 11381 if (likely(!active_balance) || need_active_balance(&env)) { 11382 /* We were unbalanced, so reset the balancing interval */ 11383 sd->balance_interval = sd->min_interval; 11384 } 11385 11386 goto out; 11387 11388 out_balanced: 11389 /* 11390 * We reach balance although we may have faced some affinity 11391 * constraints. Clear the imbalance flag only if other tasks got 11392 * a chance to move and fix the imbalance. 11393 */ 11394 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11395 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11396 11397 if (*group_imbalance) 11398 *group_imbalance = 0; 11399 } 11400 11401 out_all_pinned: 11402 /* 11403 * We reach balance because all tasks are pinned at this level so 11404 * we can't migrate them. Let the imbalance flag set so parent level 11405 * can try to migrate them. 11406 */ 11407 schedstat_inc(sd->lb_balanced[idle]); 11408 11409 sd->nr_balance_failed = 0; 11410 11411 out_one_pinned: 11412 ld_moved = 0; 11413 11414 /* 11415 * newidle_balance() disregards balance intervals, so we could 11416 * repeatedly reach this code, which would lead to balance_interval 11417 * skyrocketing in a short amount of time. Skip the balance_interval 11418 * increase logic to avoid that. 11419 */ 11420 if (env.idle == CPU_NEWLY_IDLE) 11421 goto out; 11422 11423 /* tune up the balancing interval */ 11424 if ((env.flags & LBF_ALL_PINNED && 11425 sd->balance_interval < MAX_PINNED_INTERVAL) || 11426 sd->balance_interval < sd->max_interval) 11427 sd->balance_interval *= 2; 11428 out: 11429 return ld_moved; 11430 } 11431 11432 static inline unsigned long 11433 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11434 { 11435 unsigned long interval = sd->balance_interval; 11436 11437 if (cpu_busy) 11438 interval *= sd->busy_factor; 11439 11440 /* scale ms to jiffies */ 11441 interval = msecs_to_jiffies(interval); 11442 11443 /* 11444 * Reduce likelihood of busy balancing at higher domains racing with 11445 * balancing at lower domains by preventing their balancing periods 11446 * from being multiples of each other. 11447 */ 11448 if (cpu_busy) 11449 interval -= 1; 11450 11451 interval = clamp(interval, 1UL, max_load_balance_interval); 11452 11453 return interval; 11454 } 11455 11456 static inline void 11457 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11458 { 11459 unsigned long interval, next; 11460 11461 /* used by idle balance, so cpu_busy = 0 */ 11462 interval = get_sd_balance_interval(sd, 0); 11463 next = sd->last_balance + interval; 11464 11465 if (time_after(*next_balance, next)) 11466 *next_balance = next; 11467 } 11468 11469 /* 11470 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11471 * running tasks off the busiest CPU onto idle CPUs. It requires at 11472 * least 1 task to be running on each physical CPU where possible, and 11473 * avoids physical / logical imbalances. 11474 */ 11475 static int active_load_balance_cpu_stop(void *data) 11476 { 11477 struct rq *busiest_rq = data; 11478 int busiest_cpu = cpu_of(busiest_rq); 11479 int target_cpu = busiest_rq->push_cpu; 11480 struct rq *target_rq = cpu_rq(target_cpu); 11481 struct sched_domain *sd; 11482 struct task_struct *p = NULL; 11483 struct rq_flags rf; 11484 11485 rq_lock_irq(busiest_rq, &rf); 11486 /* 11487 * Between queueing the stop-work and running it is a hole in which 11488 * CPUs can become inactive. We should not move tasks from or to 11489 * inactive CPUs. 11490 */ 11491 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11492 goto out_unlock; 11493 11494 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11495 if (unlikely(busiest_cpu != smp_processor_id() || 11496 !busiest_rq->active_balance)) 11497 goto out_unlock; 11498 11499 /* Is there any task to move? */ 11500 if (busiest_rq->nr_running <= 1) 11501 goto out_unlock; 11502 11503 /* 11504 * This condition is "impossible", if it occurs 11505 * we need to fix it. Originally reported by 11506 * Bjorn Helgaas on a 128-CPU setup. 11507 */ 11508 WARN_ON_ONCE(busiest_rq == target_rq); 11509 11510 /* Search for an sd spanning us and the target CPU. */ 11511 rcu_read_lock(); 11512 for_each_domain(target_cpu, sd) { 11513 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11514 break; 11515 } 11516 11517 if (likely(sd)) { 11518 struct lb_env env = { 11519 .sd = sd, 11520 .dst_cpu = target_cpu, 11521 .dst_rq = target_rq, 11522 .src_cpu = busiest_rq->cpu, 11523 .src_rq = busiest_rq, 11524 .idle = CPU_IDLE, 11525 .flags = LBF_ACTIVE_LB, 11526 }; 11527 11528 schedstat_inc(sd->alb_count); 11529 update_rq_clock(busiest_rq); 11530 11531 p = detach_one_task(&env); 11532 if (p) { 11533 schedstat_inc(sd->alb_pushed); 11534 /* Active balancing done, reset the failure counter. */ 11535 sd->nr_balance_failed = 0; 11536 } else { 11537 schedstat_inc(sd->alb_failed); 11538 } 11539 } 11540 rcu_read_unlock(); 11541 out_unlock: 11542 busiest_rq->active_balance = 0; 11543 rq_unlock(busiest_rq, &rf); 11544 11545 if (p) 11546 attach_one_task(target_rq, p); 11547 11548 local_irq_enable(); 11549 11550 return 0; 11551 } 11552 11553 static DEFINE_SPINLOCK(balancing); 11554 11555 /* 11556 * Scale the max load_balance interval with the number of CPUs in the system. 11557 * This trades load-balance latency on larger machines for less cross talk. 11558 */ 11559 void update_max_interval(void) 11560 { 11561 max_load_balance_interval = HZ*num_online_cpus()/10; 11562 } 11563 11564 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11565 { 11566 if (cost > sd->max_newidle_lb_cost) { 11567 /* 11568 * Track max cost of a domain to make sure to not delay the 11569 * next wakeup on the CPU. 11570 */ 11571 sd->max_newidle_lb_cost = cost; 11572 sd->last_decay_max_lb_cost = jiffies; 11573 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11574 /* 11575 * Decay the newidle max times by ~1% per second to ensure that 11576 * it is not outdated and the current max cost is actually 11577 * shorter. 11578 */ 11579 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11580 sd->last_decay_max_lb_cost = jiffies; 11581 11582 return true; 11583 } 11584 11585 return false; 11586 } 11587 11588 /* 11589 * It checks each scheduling domain to see if it is due to be balanced, 11590 * and initiates a balancing operation if so. 11591 * 11592 * Balancing parameters are set up in init_sched_domains. 11593 */ 11594 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 11595 { 11596 int continue_balancing = 1; 11597 int cpu = rq->cpu; 11598 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11599 unsigned long interval; 11600 struct sched_domain *sd; 11601 /* Earliest time when we have to do rebalance again */ 11602 unsigned long next_balance = jiffies + 60*HZ; 11603 int update_next_balance = 0; 11604 int need_serialize, need_decay = 0; 11605 u64 max_cost = 0; 11606 11607 rcu_read_lock(); 11608 for_each_domain(cpu, sd) { 11609 /* 11610 * Decay the newidle max times here because this is a regular 11611 * visit to all the domains. 11612 */ 11613 need_decay = update_newidle_cost(sd, 0); 11614 max_cost += sd->max_newidle_lb_cost; 11615 11616 /* 11617 * Stop the load balance at this level. There is another 11618 * CPU in our sched group which is doing load balancing more 11619 * actively. 11620 */ 11621 if (!continue_balancing) { 11622 if (need_decay) 11623 continue; 11624 break; 11625 } 11626 11627 interval = get_sd_balance_interval(sd, busy); 11628 11629 need_serialize = sd->flags & SD_SERIALIZE; 11630 if (need_serialize) { 11631 if (!spin_trylock(&balancing)) 11632 goto out; 11633 } 11634 11635 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11636 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 11637 /* 11638 * The LBF_DST_PINNED logic could have changed 11639 * env->dst_cpu, so we can't know our idle 11640 * state even if we migrated tasks. Update it. 11641 */ 11642 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 11643 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11644 } 11645 sd->last_balance = jiffies; 11646 interval = get_sd_balance_interval(sd, busy); 11647 } 11648 if (need_serialize) 11649 spin_unlock(&balancing); 11650 out: 11651 if (time_after(next_balance, sd->last_balance + interval)) { 11652 next_balance = sd->last_balance + interval; 11653 update_next_balance = 1; 11654 } 11655 } 11656 if (need_decay) { 11657 /* 11658 * Ensure the rq-wide value also decays but keep it at a 11659 * reasonable floor to avoid funnies with rq->avg_idle. 11660 */ 11661 rq->max_idle_balance_cost = 11662 max((u64)sysctl_sched_migration_cost, max_cost); 11663 } 11664 rcu_read_unlock(); 11665 11666 /* 11667 * next_balance will be updated only when there is a need. 11668 * When the cpu is attached to null domain for ex, it will not be 11669 * updated. 11670 */ 11671 if (likely(update_next_balance)) 11672 rq->next_balance = next_balance; 11673 11674 } 11675 11676 static inline int on_null_domain(struct rq *rq) 11677 { 11678 return unlikely(!rcu_dereference_sched(rq->sd)); 11679 } 11680 11681 #ifdef CONFIG_NO_HZ_COMMON 11682 /* 11683 * idle load balancing details 11684 * - When one of the busy CPUs notice that there may be an idle rebalancing 11685 * needed, they will kick the idle load balancer, which then does idle 11686 * load balancing for all the idle CPUs. 11687 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 11688 * anywhere yet. 11689 */ 11690 11691 static inline int find_new_ilb(void) 11692 { 11693 int ilb; 11694 const struct cpumask *hk_mask; 11695 11696 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11697 11698 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 11699 11700 if (ilb == smp_processor_id()) 11701 continue; 11702 11703 if (idle_cpu(ilb)) 11704 return ilb; 11705 } 11706 11707 return nr_cpu_ids; 11708 } 11709 11710 /* 11711 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 11712 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11713 */ 11714 static void kick_ilb(unsigned int flags) 11715 { 11716 int ilb_cpu; 11717 11718 /* 11719 * Increase nohz.next_balance only when if full ilb is triggered but 11720 * not if we only update stats. 11721 */ 11722 if (flags & NOHZ_BALANCE_KICK) 11723 nohz.next_balance = jiffies+1; 11724 11725 ilb_cpu = find_new_ilb(); 11726 11727 if (ilb_cpu >= nr_cpu_ids) 11728 return; 11729 11730 /* 11731 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11732 * the first flag owns it; cleared by nohz_csd_func(). 11733 */ 11734 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11735 if (flags & NOHZ_KICK_MASK) 11736 return; 11737 11738 /* 11739 * This way we generate an IPI on the target CPU which 11740 * is idle. And the softirq performing nohz idle load balance 11741 * will be run before returning from the IPI. 11742 */ 11743 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11744 } 11745 11746 /* 11747 * Current decision point for kicking the idle load balancer in the presence 11748 * of idle CPUs in the system. 11749 */ 11750 static void nohz_balancer_kick(struct rq *rq) 11751 { 11752 unsigned long now = jiffies; 11753 struct sched_domain_shared *sds; 11754 struct sched_domain *sd; 11755 int nr_busy, i, cpu = rq->cpu; 11756 unsigned int flags = 0; 11757 11758 if (unlikely(rq->idle_balance)) 11759 return; 11760 11761 /* 11762 * We may be recently in ticked or tickless idle mode. At the first 11763 * busy tick after returning from idle, we will update the busy stats. 11764 */ 11765 nohz_balance_exit_idle(rq); 11766 11767 /* 11768 * None are in tickless mode and hence no need for NOHZ idle load 11769 * balancing. 11770 */ 11771 if (likely(!atomic_read(&nohz.nr_cpus))) 11772 return; 11773 11774 if (READ_ONCE(nohz.has_blocked) && 11775 time_after(now, READ_ONCE(nohz.next_blocked))) 11776 flags = NOHZ_STATS_KICK; 11777 11778 if (time_before(now, nohz.next_balance)) 11779 goto out; 11780 11781 if (rq->nr_running >= 2) { 11782 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11783 goto out; 11784 } 11785 11786 rcu_read_lock(); 11787 11788 sd = rcu_dereference(rq->sd); 11789 if (sd) { 11790 /* 11791 * If there's a CFS task and the current CPU has reduced 11792 * capacity; kick the ILB to see if there's a better CPU to run 11793 * on. 11794 */ 11795 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11796 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11797 goto unlock; 11798 } 11799 } 11800 11801 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11802 if (sd) { 11803 /* 11804 * When ASYM_PACKING; see if there's a more preferred CPU 11805 * currently idle; in which case, kick the ILB to move tasks 11806 * around. 11807 * 11808 * When balancing betwen cores, all the SMT siblings of the 11809 * preferred CPU must be idle. 11810 */ 11811 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11812 if (sched_use_asym_prio(sd, i) && 11813 sched_asym_prefer(i, cpu)) { 11814 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11815 goto unlock; 11816 } 11817 } 11818 } 11819 11820 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11821 if (sd) { 11822 /* 11823 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11824 * to run the misfit task on. 11825 */ 11826 if (check_misfit_status(rq, sd)) { 11827 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11828 goto unlock; 11829 } 11830 11831 /* 11832 * For asymmetric systems, we do not want to nicely balance 11833 * cache use, instead we want to embrace asymmetry and only 11834 * ensure tasks have enough CPU capacity. 11835 * 11836 * Skip the LLC logic because it's not relevant in that case. 11837 */ 11838 goto unlock; 11839 } 11840 11841 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11842 if (sds) { 11843 /* 11844 * If there is an imbalance between LLC domains (IOW we could 11845 * increase the overall cache use), we need some less-loaded LLC 11846 * domain to pull some load. Likewise, we may need to spread 11847 * load within the current LLC domain (e.g. packed SMT cores but 11848 * other CPUs are idle). We can't really know from here how busy 11849 * the others are - so just get a nohz balance going if it looks 11850 * like this LLC domain has tasks we could move. 11851 */ 11852 nr_busy = atomic_read(&sds->nr_busy_cpus); 11853 if (nr_busy > 1) { 11854 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11855 goto unlock; 11856 } 11857 } 11858 unlock: 11859 rcu_read_unlock(); 11860 out: 11861 if (READ_ONCE(nohz.needs_update)) 11862 flags |= NOHZ_NEXT_KICK; 11863 11864 if (flags) 11865 kick_ilb(flags); 11866 } 11867 11868 static void set_cpu_sd_state_busy(int cpu) 11869 { 11870 struct sched_domain *sd; 11871 11872 rcu_read_lock(); 11873 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11874 11875 if (!sd || !sd->nohz_idle) 11876 goto unlock; 11877 sd->nohz_idle = 0; 11878 11879 atomic_inc(&sd->shared->nr_busy_cpus); 11880 unlock: 11881 rcu_read_unlock(); 11882 } 11883 11884 void nohz_balance_exit_idle(struct rq *rq) 11885 { 11886 SCHED_WARN_ON(rq != this_rq()); 11887 11888 if (likely(!rq->nohz_tick_stopped)) 11889 return; 11890 11891 rq->nohz_tick_stopped = 0; 11892 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11893 atomic_dec(&nohz.nr_cpus); 11894 11895 set_cpu_sd_state_busy(rq->cpu); 11896 } 11897 11898 static void set_cpu_sd_state_idle(int cpu) 11899 { 11900 struct sched_domain *sd; 11901 11902 rcu_read_lock(); 11903 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11904 11905 if (!sd || sd->nohz_idle) 11906 goto unlock; 11907 sd->nohz_idle = 1; 11908 11909 atomic_dec(&sd->shared->nr_busy_cpus); 11910 unlock: 11911 rcu_read_unlock(); 11912 } 11913 11914 /* 11915 * This routine will record that the CPU is going idle with tick stopped. 11916 * This info will be used in performing idle load balancing in the future. 11917 */ 11918 void nohz_balance_enter_idle(int cpu) 11919 { 11920 struct rq *rq = cpu_rq(cpu); 11921 11922 SCHED_WARN_ON(cpu != smp_processor_id()); 11923 11924 /* If this CPU is going down, then nothing needs to be done: */ 11925 if (!cpu_active(cpu)) 11926 return; 11927 11928 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 11929 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 11930 return; 11931 11932 /* 11933 * Can be set safely without rq->lock held 11934 * If a clear happens, it will have evaluated last additions because 11935 * rq->lock is held during the check and the clear 11936 */ 11937 rq->has_blocked_load = 1; 11938 11939 /* 11940 * The tick is still stopped but load could have been added in the 11941 * meantime. We set the nohz.has_blocked flag to trig a check of the 11942 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 11943 * of nohz.has_blocked can only happen after checking the new load 11944 */ 11945 if (rq->nohz_tick_stopped) 11946 goto out; 11947 11948 /* If we're a completely isolated CPU, we don't play: */ 11949 if (on_null_domain(rq)) 11950 return; 11951 11952 rq->nohz_tick_stopped = 1; 11953 11954 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 11955 atomic_inc(&nohz.nr_cpus); 11956 11957 /* 11958 * Ensures that if nohz_idle_balance() fails to observe our 11959 * @idle_cpus_mask store, it must observe the @has_blocked 11960 * and @needs_update stores. 11961 */ 11962 smp_mb__after_atomic(); 11963 11964 set_cpu_sd_state_idle(cpu); 11965 11966 WRITE_ONCE(nohz.needs_update, 1); 11967 out: 11968 /* 11969 * Each time a cpu enter idle, we assume that it has blocked load and 11970 * enable the periodic update of the load of idle cpus 11971 */ 11972 WRITE_ONCE(nohz.has_blocked, 1); 11973 } 11974 11975 static bool update_nohz_stats(struct rq *rq) 11976 { 11977 unsigned int cpu = rq->cpu; 11978 11979 if (!rq->has_blocked_load) 11980 return false; 11981 11982 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 11983 return false; 11984 11985 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 11986 return true; 11987 11988 update_blocked_averages(cpu); 11989 11990 return rq->has_blocked_load; 11991 } 11992 11993 /* 11994 * Internal function that runs load balance for all idle cpus. The load balance 11995 * can be a simple update of blocked load or a complete load balance with 11996 * tasks movement depending of flags. 11997 */ 11998 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 11999 { 12000 /* Earliest time when we have to do rebalance again */ 12001 unsigned long now = jiffies; 12002 unsigned long next_balance = now + 60*HZ; 12003 bool has_blocked_load = false; 12004 int update_next_balance = 0; 12005 int this_cpu = this_rq->cpu; 12006 int balance_cpu; 12007 struct rq *rq; 12008 12009 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12010 12011 /* 12012 * We assume there will be no idle load after this update and clear 12013 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12014 * set the has_blocked flag and trigger another update of idle load. 12015 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12016 * setting the flag, we are sure to not clear the state and not 12017 * check the load of an idle cpu. 12018 * 12019 * Same applies to idle_cpus_mask vs needs_update. 12020 */ 12021 if (flags & NOHZ_STATS_KICK) 12022 WRITE_ONCE(nohz.has_blocked, 0); 12023 if (flags & NOHZ_NEXT_KICK) 12024 WRITE_ONCE(nohz.needs_update, 0); 12025 12026 /* 12027 * Ensures that if we miss the CPU, we must see the has_blocked 12028 * store from nohz_balance_enter_idle(). 12029 */ 12030 smp_mb(); 12031 12032 /* 12033 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12034 * chance for other idle cpu to pull load. 12035 */ 12036 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12037 if (!idle_cpu(balance_cpu)) 12038 continue; 12039 12040 /* 12041 * If this CPU gets work to do, stop the load balancing 12042 * work being done for other CPUs. Next load 12043 * balancing owner will pick it up. 12044 */ 12045 if (need_resched()) { 12046 if (flags & NOHZ_STATS_KICK) 12047 has_blocked_load = true; 12048 if (flags & NOHZ_NEXT_KICK) 12049 WRITE_ONCE(nohz.needs_update, 1); 12050 goto abort; 12051 } 12052 12053 rq = cpu_rq(balance_cpu); 12054 12055 if (flags & NOHZ_STATS_KICK) 12056 has_blocked_load |= update_nohz_stats(rq); 12057 12058 /* 12059 * If time for next balance is due, 12060 * do the balance. 12061 */ 12062 if (time_after_eq(jiffies, rq->next_balance)) { 12063 struct rq_flags rf; 12064 12065 rq_lock_irqsave(rq, &rf); 12066 update_rq_clock(rq); 12067 rq_unlock_irqrestore(rq, &rf); 12068 12069 if (flags & NOHZ_BALANCE_KICK) 12070 rebalance_domains(rq, CPU_IDLE); 12071 } 12072 12073 if (time_after(next_balance, rq->next_balance)) { 12074 next_balance = rq->next_balance; 12075 update_next_balance = 1; 12076 } 12077 } 12078 12079 /* 12080 * next_balance will be updated only when there is a need. 12081 * When the CPU is attached to null domain for ex, it will not be 12082 * updated. 12083 */ 12084 if (likely(update_next_balance)) 12085 nohz.next_balance = next_balance; 12086 12087 if (flags & NOHZ_STATS_KICK) 12088 WRITE_ONCE(nohz.next_blocked, 12089 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12090 12091 abort: 12092 /* There is still blocked load, enable periodic update */ 12093 if (has_blocked_load) 12094 WRITE_ONCE(nohz.has_blocked, 1); 12095 } 12096 12097 /* 12098 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12099 * rebalancing for all the cpus for whom scheduler ticks are stopped. 12100 */ 12101 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12102 { 12103 unsigned int flags = this_rq->nohz_idle_balance; 12104 12105 if (!flags) 12106 return false; 12107 12108 this_rq->nohz_idle_balance = 0; 12109 12110 if (idle != CPU_IDLE) 12111 return false; 12112 12113 _nohz_idle_balance(this_rq, flags); 12114 12115 return true; 12116 } 12117 12118 /* 12119 * Check if we need to run the ILB for updating blocked load before entering 12120 * idle state. 12121 */ 12122 void nohz_run_idle_balance(int cpu) 12123 { 12124 unsigned int flags; 12125 12126 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12127 12128 /* 12129 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12130 * (ie NOHZ_STATS_KICK set) and will do the same. 12131 */ 12132 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12133 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12134 } 12135 12136 static void nohz_newidle_balance(struct rq *this_rq) 12137 { 12138 int this_cpu = this_rq->cpu; 12139 12140 /* 12141 * This CPU doesn't want to be disturbed by scheduler 12142 * housekeeping 12143 */ 12144 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12145 return; 12146 12147 /* Will wake up very soon. No time for doing anything else*/ 12148 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12149 return; 12150 12151 /* Don't need to update blocked load of idle CPUs*/ 12152 if (!READ_ONCE(nohz.has_blocked) || 12153 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12154 return; 12155 12156 /* 12157 * Set the need to trigger ILB in order to update blocked load 12158 * before entering idle state. 12159 */ 12160 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12161 } 12162 12163 #else /* !CONFIG_NO_HZ_COMMON */ 12164 static inline void nohz_balancer_kick(struct rq *rq) { } 12165 12166 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12167 { 12168 return false; 12169 } 12170 12171 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12172 #endif /* CONFIG_NO_HZ_COMMON */ 12173 12174 /* 12175 * newidle_balance is called by schedule() if this_cpu is about to become 12176 * idle. Attempts to pull tasks from other CPUs. 12177 * 12178 * Returns: 12179 * < 0 - we released the lock and there are !fair tasks present 12180 * 0 - failed, no new tasks 12181 * > 0 - success, new (fair) tasks present 12182 */ 12183 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 12184 { 12185 unsigned long next_balance = jiffies + HZ; 12186 int this_cpu = this_rq->cpu; 12187 u64 t0, t1, curr_cost = 0; 12188 struct sched_domain *sd; 12189 int pulled_task = 0; 12190 12191 update_misfit_status(NULL, this_rq); 12192 12193 /* 12194 * There is a task waiting to run. No need to search for one. 12195 * Return 0; the task will be enqueued when switching to idle. 12196 */ 12197 if (this_rq->ttwu_pending) 12198 return 0; 12199 12200 /* 12201 * We must set idle_stamp _before_ calling idle_balance(), such that we 12202 * measure the duration of idle_balance() as idle time. 12203 */ 12204 this_rq->idle_stamp = rq_clock(this_rq); 12205 12206 /* 12207 * Do not pull tasks towards !active CPUs... 12208 */ 12209 if (!cpu_active(this_cpu)) 12210 return 0; 12211 12212 /* 12213 * This is OK, because current is on_cpu, which avoids it being picked 12214 * for load-balance and preemption/IRQs are still disabled avoiding 12215 * further scheduler activity on it and we're being very careful to 12216 * re-start the picking loop. 12217 */ 12218 rq_unpin_lock(this_rq, rf); 12219 12220 rcu_read_lock(); 12221 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12222 12223 if (!READ_ONCE(this_rq->rd->overload) || 12224 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12225 12226 if (sd) 12227 update_next_balance(sd, &next_balance); 12228 rcu_read_unlock(); 12229 12230 goto out; 12231 } 12232 rcu_read_unlock(); 12233 12234 raw_spin_rq_unlock(this_rq); 12235 12236 t0 = sched_clock_cpu(this_cpu); 12237 update_blocked_averages(this_cpu); 12238 12239 rcu_read_lock(); 12240 for_each_domain(this_cpu, sd) { 12241 int continue_balancing = 1; 12242 u64 domain_cost; 12243 12244 update_next_balance(sd, &next_balance); 12245 12246 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12247 break; 12248 12249 if (sd->flags & SD_BALANCE_NEWIDLE) { 12250 12251 pulled_task = load_balance(this_cpu, this_rq, 12252 sd, CPU_NEWLY_IDLE, 12253 &continue_balancing); 12254 12255 t1 = sched_clock_cpu(this_cpu); 12256 domain_cost = t1 - t0; 12257 update_newidle_cost(sd, domain_cost); 12258 12259 curr_cost += domain_cost; 12260 t0 = t1; 12261 } 12262 12263 /* 12264 * Stop searching for tasks to pull if there are 12265 * now runnable tasks on this rq. 12266 */ 12267 if (pulled_task || this_rq->nr_running > 0 || 12268 this_rq->ttwu_pending) 12269 break; 12270 } 12271 rcu_read_unlock(); 12272 12273 raw_spin_rq_lock(this_rq); 12274 12275 if (curr_cost > this_rq->max_idle_balance_cost) 12276 this_rq->max_idle_balance_cost = curr_cost; 12277 12278 /* 12279 * While browsing the domains, we released the rq lock, a task could 12280 * have been enqueued in the meantime. Since we're not going idle, 12281 * pretend we pulled a task. 12282 */ 12283 if (this_rq->cfs.h_nr_running && !pulled_task) 12284 pulled_task = 1; 12285 12286 /* Is there a task of a high priority class? */ 12287 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12288 pulled_task = -1; 12289 12290 out: 12291 /* Move the next balance forward */ 12292 if (time_after(this_rq->next_balance, next_balance)) 12293 this_rq->next_balance = next_balance; 12294 12295 if (pulled_task) 12296 this_rq->idle_stamp = 0; 12297 else 12298 nohz_newidle_balance(this_rq); 12299 12300 rq_repin_lock(this_rq, rf); 12301 12302 return pulled_task; 12303 } 12304 12305 /* 12306 * run_rebalance_domains is triggered when needed from the scheduler tick. 12307 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 12308 */ 12309 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 12310 { 12311 struct rq *this_rq = this_rq(); 12312 enum cpu_idle_type idle = this_rq->idle_balance ? 12313 CPU_IDLE : CPU_NOT_IDLE; 12314 12315 /* 12316 * If this CPU has a pending nohz_balance_kick, then do the 12317 * balancing on behalf of the other idle CPUs whose ticks are 12318 * stopped. Do nohz_idle_balance *before* rebalance_domains to 12319 * give the idle CPUs a chance to load balance. Else we may 12320 * load balance only within the local sched_domain hierarchy 12321 * and abort nohz_idle_balance altogether if we pull some load. 12322 */ 12323 if (nohz_idle_balance(this_rq, idle)) 12324 return; 12325 12326 /* normal load balance */ 12327 update_blocked_averages(this_rq->cpu); 12328 rebalance_domains(this_rq, idle); 12329 } 12330 12331 /* 12332 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12333 */ 12334 void trigger_load_balance(struct rq *rq) 12335 { 12336 /* 12337 * Don't need to rebalance while attached to NULL domain or 12338 * runqueue CPU is not active 12339 */ 12340 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12341 return; 12342 12343 if (time_after_eq(jiffies, rq->next_balance)) 12344 raise_softirq(SCHED_SOFTIRQ); 12345 12346 nohz_balancer_kick(rq); 12347 } 12348 12349 static void rq_online_fair(struct rq *rq) 12350 { 12351 update_sysctl(); 12352 12353 update_runtime_enabled(rq); 12354 } 12355 12356 static void rq_offline_fair(struct rq *rq) 12357 { 12358 update_sysctl(); 12359 12360 /* Ensure any throttled groups are reachable by pick_next_task */ 12361 unthrottle_offline_cfs_rqs(rq); 12362 } 12363 12364 #endif /* CONFIG_SMP */ 12365 12366 #ifdef CONFIG_SCHED_CORE 12367 static inline bool 12368 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12369 { 12370 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12371 u64 slice = se->slice; 12372 12373 return (rtime * min_nr_tasks > slice); 12374 } 12375 12376 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12377 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12378 { 12379 if (!sched_core_enabled(rq)) 12380 return; 12381 12382 /* 12383 * If runqueue has only one task which used up its slice and 12384 * if the sibling is forced idle, then trigger schedule to 12385 * give forced idle task a chance. 12386 * 12387 * sched_slice() considers only this active rq and it gets the 12388 * whole slice. But during force idle, we have siblings acting 12389 * like a single runqueue and hence we need to consider runnable 12390 * tasks on this CPU and the forced idle CPU. Ideally, we should 12391 * go through the forced idle rq, but that would be a perf hit. 12392 * We can assume that the forced idle CPU has at least 12393 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12394 * if we need to give up the CPU. 12395 */ 12396 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12397 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12398 resched_curr(rq); 12399 } 12400 12401 /* 12402 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12403 */ 12404 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12405 bool forceidle) 12406 { 12407 for_each_sched_entity(se) { 12408 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12409 12410 if (forceidle) { 12411 if (cfs_rq->forceidle_seq == fi_seq) 12412 break; 12413 cfs_rq->forceidle_seq = fi_seq; 12414 } 12415 12416 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12417 } 12418 } 12419 12420 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12421 { 12422 struct sched_entity *se = &p->se; 12423 12424 if (p->sched_class != &fair_sched_class) 12425 return; 12426 12427 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12428 } 12429 12430 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12431 bool in_fi) 12432 { 12433 struct rq *rq = task_rq(a); 12434 const struct sched_entity *sea = &a->se; 12435 const struct sched_entity *seb = &b->se; 12436 struct cfs_rq *cfs_rqa; 12437 struct cfs_rq *cfs_rqb; 12438 s64 delta; 12439 12440 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12441 12442 #ifdef CONFIG_FAIR_GROUP_SCHED 12443 /* 12444 * Find an se in the hierarchy for tasks a and b, such that the se's 12445 * are immediate siblings. 12446 */ 12447 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12448 int sea_depth = sea->depth; 12449 int seb_depth = seb->depth; 12450 12451 if (sea_depth >= seb_depth) 12452 sea = parent_entity(sea); 12453 if (sea_depth <= seb_depth) 12454 seb = parent_entity(seb); 12455 } 12456 12457 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12458 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12459 12460 cfs_rqa = sea->cfs_rq; 12461 cfs_rqb = seb->cfs_rq; 12462 #else 12463 cfs_rqa = &task_rq(a)->cfs; 12464 cfs_rqb = &task_rq(b)->cfs; 12465 #endif 12466 12467 /* 12468 * Find delta after normalizing se's vruntime with its cfs_rq's 12469 * min_vruntime_fi, which would have been updated in prior calls 12470 * to se_fi_update(). 12471 */ 12472 delta = (s64)(sea->vruntime - seb->vruntime) + 12473 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12474 12475 return delta > 0; 12476 } 12477 12478 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12479 { 12480 struct cfs_rq *cfs_rq; 12481 12482 #ifdef CONFIG_FAIR_GROUP_SCHED 12483 cfs_rq = task_group(p)->cfs_rq[cpu]; 12484 #else 12485 cfs_rq = &cpu_rq(cpu)->cfs; 12486 #endif 12487 return throttled_hierarchy(cfs_rq); 12488 } 12489 #else 12490 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12491 #endif 12492 12493 /* 12494 * scheduler tick hitting a task of our scheduling class. 12495 * 12496 * NOTE: This function can be called remotely by the tick offload that 12497 * goes along full dynticks. Therefore no local assumption can be made 12498 * and everything must be accessed through the @rq and @curr passed in 12499 * parameters. 12500 */ 12501 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12502 { 12503 struct cfs_rq *cfs_rq; 12504 struct sched_entity *se = &curr->se; 12505 12506 for_each_sched_entity(se) { 12507 cfs_rq = cfs_rq_of(se); 12508 entity_tick(cfs_rq, se, queued); 12509 } 12510 12511 if (static_branch_unlikely(&sched_numa_balancing)) 12512 task_tick_numa(rq, curr); 12513 12514 update_misfit_status(curr, rq); 12515 check_update_overutilized_status(task_rq(curr)); 12516 12517 task_tick_core(rq, curr); 12518 } 12519 12520 /* 12521 * called on fork with the child task as argument from the parent's context 12522 * - child not yet on the tasklist 12523 * - preemption disabled 12524 */ 12525 static void task_fork_fair(struct task_struct *p) 12526 { 12527 struct sched_entity *se = &p->se, *curr; 12528 struct cfs_rq *cfs_rq; 12529 struct rq *rq = this_rq(); 12530 struct rq_flags rf; 12531 12532 rq_lock(rq, &rf); 12533 update_rq_clock(rq); 12534 12535 cfs_rq = task_cfs_rq(current); 12536 curr = cfs_rq->curr; 12537 if (curr) 12538 update_curr(cfs_rq); 12539 place_entity(cfs_rq, se, ENQUEUE_INITIAL); 12540 rq_unlock(rq, &rf); 12541 } 12542 12543 /* 12544 * Priority of the task has changed. Check to see if we preempt 12545 * the current task. 12546 */ 12547 static void 12548 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12549 { 12550 if (!task_on_rq_queued(p)) 12551 return; 12552 12553 if (rq->cfs.nr_running == 1) 12554 return; 12555 12556 /* 12557 * Reschedule if we are currently running on this runqueue and 12558 * our priority decreased, or if we are not currently running on 12559 * this runqueue and our priority is higher than the current's 12560 */ 12561 if (task_current(rq, p)) { 12562 if (p->prio > oldprio) 12563 resched_curr(rq); 12564 } else 12565 check_preempt_curr(rq, p, 0); 12566 } 12567 12568 #ifdef CONFIG_FAIR_GROUP_SCHED 12569 /* 12570 * Propagate the changes of the sched_entity across the tg tree to make it 12571 * visible to the root 12572 */ 12573 static void propagate_entity_cfs_rq(struct sched_entity *se) 12574 { 12575 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12576 12577 if (cfs_rq_throttled(cfs_rq)) 12578 return; 12579 12580 if (!throttled_hierarchy(cfs_rq)) 12581 list_add_leaf_cfs_rq(cfs_rq); 12582 12583 /* Start to propagate at parent */ 12584 se = se->parent; 12585 12586 for_each_sched_entity(se) { 12587 cfs_rq = cfs_rq_of(se); 12588 12589 update_load_avg(cfs_rq, se, UPDATE_TG); 12590 12591 if (cfs_rq_throttled(cfs_rq)) 12592 break; 12593 12594 if (!throttled_hierarchy(cfs_rq)) 12595 list_add_leaf_cfs_rq(cfs_rq); 12596 } 12597 } 12598 #else 12599 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12600 #endif 12601 12602 static void detach_entity_cfs_rq(struct sched_entity *se) 12603 { 12604 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12605 12606 #ifdef CONFIG_SMP 12607 /* 12608 * In case the task sched_avg hasn't been attached: 12609 * - A forked task which hasn't been woken up by wake_up_new_task(). 12610 * - A task which has been woken up by try_to_wake_up() but is 12611 * waiting for actually being woken up by sched_ttwu_pending(). 12612 */ 12613 if (!se->avg.last_update_time) 12614 return; 12615 #endif 12616 12617 /* Catch up with the cfs_rq and remove our load when we leave */ 12618 update_load_avg(cfs_rq, se, 0); 12619 detach_entity_load_avg(cfs_rq, se); 12620 update_tg_load_avg(cfs_rq); 12621 propagate_entity_cfs_rq(se); 12622 } 12623 12624 static void attach_entity_cfs_rq(struct sched_entity *se) 12625 { 12626 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12627 12628 /* Synchronize entity with its cfs_rq */ 12629 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12630 attach_entity_load_avg(cfs_rq, se); 12631 update_tg_load_avg(cfs_rq); 12632 propagate_entity_cfs_rq(se); 12633 } 12634 12635 static void detach_task_cfs_rq(struct task_struct *p) 12636 { 12637 struct sched_entity *se = &p->se; 12638 12639 detach_entity_cfs_rq(se); 12640 } 12641 12642 static void attach_task_cfs_rq(struct task_struct *p) 12643 { 12644 struct sched_entity *se = &p->se; 12645 12646 attach_entity_cfs_rq(se); 12647 } 12648 12649 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12650 { 12651 detach_task_cfs_rq(p); 12652 } 12653 12654 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12655 { 12656 attach_task_cfs_rq(p); 12657 12658 if (task_on_rq_queued(p)) { 12659 /* 12660 * We were most likely switched from sched_rt, so 12661 * kick off the schedule if running, otherwise just see 12662 * if we can still preempt the current task. 12663 */ 12664 if (task_current(rq, p)) 12665 resched_curr(rq); 12666 else 12667 check_preempt_curr(rq, p, 0); 12668 } 12669 } 12670 12671 /* Account for a task changing its policy or group. 12672 * 12673 * This routine is mostly called to set cfs_rq->curr field when a task 12674 * migrates between groups/classes. 12675 */ 12676 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12677 { 12678 struct sched_entity *se = &p->se; 12679 12680 #ifdef CONFIG_SMP 12681 if (task_on_rq_queued(p)) { 12682 /* 12683 * Move the next running task to the front of the list, so our 12684 * cfs_tasks list becomes MRU one. 12685 */ 12686 list_move(&se->group_node, &rq->cfs_tasks); 12687 } 12688 #endif 12689 12690 for_each_sched_entity(se) { 12691 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12692 12693 set_next_entity(cfs_rq, se); 12694 /* ensure bandwidth has been allocated on our new cfs_rq */ 12695 account_cfs_rq_runtime(cfs_rq, 0); 12696 } 12697 } 12698 12699 void init_cfs_rq(struct cfs_rq *cfs_rq) 12700 { 12701 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12702 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12703 #ifdef CONFIG_SMP 12704 raw_spin_lock_init(&cfs_rq->removed.lock); 12705 #endif 12706 } 12707 12708 #ifdef CONFIG_FAIR_GROUP_SCHED 12709 static void task_change_group_fair(struct task_struct *p) 12710 { 12711 /* 12712 * We couldn't detach or attach a forked task which 12713 * hasn't been woken up by wake_up_new_task(). 12714 */ 12715 if (READ_ONCE(p->__state) == TASK_NEW) 12716 return; 12717 12718 detach_task_cfs_rq(p); 12719 12720 #ifdef CONFIG_SMP 12721 /* Tell se's cfs_rq has been changed -- migrated */ 12722 p->se.avg.last_update_time = 0; 12723 #endif 12724 set_task_rq(p, task_cpu(p)); 12725 attach_task_cfs_rq(p); 12726 } 12727 12728 void free_fair_sched_group(struct task_group *tg) 12729 { 12730 int i; 12731 12732 for_each_possible_cpu(i) { 12733 if (tg->cfs_rq) 12734 kfree(tg->cfs_rq[i]); 12735 if (tg->se) 12736 kfree(tg->se[i]); 12737 } 12738 12739 kfree(tg->cfs_rq); 12740 kfree(tg->se); 12741 } 12742 12743 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12744 { 12745 struct sched_entity *se; 12746 struct cfs_rq *cfs_rq; 12747 int i; 12748 12749 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12750 if (!tg->cfs_rq) 12751 goto err; 12752 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12753 if (!tg->se) 12754 goto err; 12755 12756 tg->shares = NICE_0_LOAD; 12757 12758 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 12759 12760 for_each_possible_cpu(i) { 12761 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12762 GFP_KERNEL, cpu_to_node(i)); 12763 if (!cfs_rq) 12764 goto err; 12765 12766 se = kzalloc_node(sizeof(struct sched_entity_stats), 12767 GFP_KERNEL, cpu_to_node(i)); 12768 if (!se) 12769 goto err_free_rq; 12770 12771 init_cfs_rq(cfs_rq); 12772 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12773 init_entity_runnable_average(se); 12774 } 12775 12776 return 1; 12777 12778 err_free_rq: 12779 kfree(cfs_rq); 12780 err: 12781 return 0; 12782 } 12783 12784 void online_fair_sched_group(struct task_group *tg) 12785 { 12786 struct sched_entity *se; 12787 struct rq_flags rf; 12788 struct rq *rq; 12789 int i; 12790 12791 for_each_possible_cpu(i) { 12792 rq = cpu_rq(i); 12793 se = tg->se[i]; 12794 rq_lock_irq(rq, &rf); 12795 update_rq_clock(rq); 12796 attach_entity_cfs_rq(se); 12797 sync_throttle(tg, i); 12798 rq_unlock_irq(rq, &rf); 12799 } 12800 } 12801 12802 void unregister_fair_sched_group(struct task_group *tg) 12803 { 12804 unsigned long flags; 12805 struct rq *rq; 12806 int cpu; 12807 12808 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12809 12810 for_each_possible_cpu(cpu) { 12811 if (tg->se[cpu]) 12812 remove_entity_load_avg(tg->se[cpu]); 12813 12814 /* 12815 * Only empty task groups can be destroyed; so we can speculatively 12816 * check on_list without danger of it being re-added. 12817 */ 12818 if (!tg->cfs_rq[cpu]->on_list) 12819 continue; 12820 12821 rq = cpu_rq(cpu); 12822 12823 raw_spin_rq_lock_irqsave(rq, flags); 12824 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12825 raw_spin_rq_unlock_irqrestore(rq, flags); 12826 } 12827 } 12828 12829 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12830 struct sched_entity *se, int cpu, 12831 struct sched_entity *parent) 12832 { 12833 struct rq *rq = cpu_rq(cpu); 12834 12835 cfs_rq->tg = tg; 12836 cfs_rq->rq = rq; 12837 init_cfs_rq_runtime(cfs_rq); 12838 12839 tg->cfs_rq[cpu] = cfs_rq; 12840 tg->se[cpu] = se; 12841 12842 /* se could be NULL for root_task_group */ 12843 if (!se) 12844 return; 12845 12846 if (!parent) { 12847 se->cfs_rq = &rq->cfs; 12848 se->depth = 0; 12849 } else { 12850 se->cfs_rq = parent->my_q; 12851 se->depth = parent->depth + 1; 12852 } 12853 12854 se->my_q = cfs_rq; 12855 /* guarantee group entities always have weight */ 12856 update_load_set(&se->load, NICE_0_LOAD); 12857 se->parent = parent; 12858 } 12859 12860 static DEFINE_MUTEX(shares_mutex); 12861 12862 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12863 { 12864 int i; 12865 12866 lockdep_assert_held(&shares_mutex); 12867 12868 /* 12869 * We can't change the weight of the root cgroup. 12870 */ 12871 if (!tg->se[0]) 12872 return -EINVAL; 12873 12874 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12875 12876 if (tg->shares == shares) 12877 return 0; 12878 12879 tg->shares = shares; 12880 for_each_possible_cpu(i) { 12881 struct rq *rq = cpu_rq(i); 12882 struct sched_entity *se = tg->se[i]; 12883 struct rq_flags rf; 12884 12885 /* Propagate contribution to hierarchy */ 12886 rq_lock_irqsave(rq, &rf); 12887 update_rq_clock(rq); 12888 for_each_sched_entity(se) { 12889 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12890 update_cfs_group(se); 12891 } 12892 rq_unlock_irqrestore(rq, &rf); 12893 } 12894 12895 return 0; 12896 } 12897 12898 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 12899 { 12900 int ret; 12901 12902 mutex_lock(&shares_mutex); 12903 if (tg_is_idle(tg)) 12904 ret = -EINVAL; 12905 else 12906 ret = __sched_group_set_shares(tg, shares); 12907 mutex_unlock(&shares_mutex); 12908 12909 return ret; 12910 } 12911 12912 int sched_group_set_idle(struct task_group *tg, long idle) 12913 { 12914 int i; 12915 12916 if (tg == &root_task_group) 12917 return -EINVAL; 12918 12919 if (idle < 0 || idle > 1) 12920 return -EINVAL; 12921 12922 mutex_lock(&shares_mutex); 12923 12924 if (tg->idle == idle) { 12925 mutex_unlock(&shares_mutex); 12926 return 0; 12927 } 12928 12929 tg->idle = idle; 12930 12931 for_each_possible_cpu(i) { 12932 struct rq *rq = cpu_rq(i); 12933 struct sched_entity *se = tg->se[i]; 12934 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 12935 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 12936 long idle_task_delta; 12937 struct rq_flags rf; 12938 12939 rq_lock_irqsave(rq, &rf); 12940 12941 grp_cfs_rq->idle = idle; 12942 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 12943 goto next_cpu; 12944 12945 if (se->on_rq) { 12946 parent_cfs_rq = cfs_rq_of(se); 12947 if (cfs_rq_is_idle(grp_cfs_rq)) 12948 parent_cfs_rq->idle_nr_running++; 12949 else 12950 parent_cfs_rq->idle_nr_running--; 12951 } 12952 12953 idle_task_delta = grp_cfs_rq->h_nr_running - 12954 grp_cfs_rq->idle_h_nr_running; 12955 if (!cfs_rq_is_idle(grp_cfs_rq)) 12956 idle_task_delta *= -1; 12957 12958 for_each_sched_entity(se) { 12959 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12960 12961 if (!se->on_rq) 12962 break; 12963 12964 cfs_rq->idle_h_nr_running += idle_task_delta; 12965 12966 /* Already accounted at parent level and above. */ 12967 if (cfs_rq_is_idle(cfs_rq)) 12968 break; 12969 } 12970 12971 next_cpu: 12972 rq_unlock_irqrestore(rq, &rf); 12973 } 12974 12975 /* Idle groups have minimum weight. */ 12976 if (tg_is_idle(tg)) 12977 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 12978 else 12979 __sched_group_set_shares(tg, NICE_0_LOAD); 12980 12981 mutex_unlock(&shares_mutex); 12982 return 0; 12983 } 12984 12985 #else /* CONFIG_FAIR_GROUP_SCHED */ 12986 12987 void free_fair_sched_group(struct task_group *tg) { } 12988 12989 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12990 { 12991 return 1; 12992 } 12993 12994 void online_fair_sched_group(struct task_group *tg) { } 12995 12996 void unregister_fair_sched_group(struct task_group *tg) { } 12997 12998 #endif /* CONFIG_FAIR_GROUP_SCHED */ 12999 13000 13001 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13002 { 13003 struct sched_entity *se = &task->se; 13004 unsigned int rr_interval = 0; 13005 13006 /* 13007 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13008 * idle runqueue: 13009 */ 13010 if (rq->cfs.load.weight) 13011 rr_interval = NS_TO_JIFFIES(se->slice); 13012 13013 return rr_interval; 13014 } 13015 13016 /* 13017 * All the scheduling class methods: 13018 */ 13019 DEFINE_SCHED_CLASS(fair) = { 13020 13021 .enqueue_task = enqueue_task_fair, 13022 .dequeue_task = dequeue_task_fair, 13023 .yield_task = yield_task_fair, 13024 .yield_to_task = yield_to_task_fair, 13025 13026 .check_preempt_curr = check_preempt_wakeup, 13027 13028 .pick_next_task = __pick_next_task_fair, 13029 .put_prev_task = put_prev_task_fair, 13030 .set_next_task = set_next_task_fair, 13031 13032 #ifdef CONFIG_SMP 13033 .balance = balance_fair, 13034 .pick_task = pick_task_fair, 13035 .select_task_rq = select_task_rq_fair, 13036 .migrate_task_rq = migrate_task_rq_fair, 13037 13038 .rq_online = rq_online_fair, 13039 .rq_offline = rq_offline_fair, 13040 13041 .task_dead = task_dead_fair, 13042 .set_cpus_allowed = set_cpus_allowed_common, 13043 #endif 13044 13045 .task_tick = task_tick_fair, 13046 .task_fork = task_fork_fair, 13047 13048 .prio_changed = prio_changed_fair, 13049 .switched_from = switched_from_fair, 13050 .switched_to = switched_to_fair, 13051 13052 .get_rr_interval = get_rr_interval_fair, 13053 13054 .update_curr = update_curr_fair, 13055 13056 #ifdef CONFIG_FAIR_GROUP_SCHED 13057 .task_change_group = task_change_group_fair, 13058 #endif 13059 13060 #ifdef CONFIG_SCHED_CORE 13061 .task_is_throttled = task_is_throttled_fair, 13062 #endif 13063 13064 #ifdef CONFIG_UCLAMP_TASK 13065 .uclamp_enabled = 1, 13066 #endif 13067 }; 13068 13069 #ifdef CONFIG_SCHED_DEBUG 13070 void print_cfs_stats(struct seq_file *m, int cpu) 13071 { 13072 struct cfs_rq *cfs_rq, *pos; 13073 13074 rcu_read_lock(); 13075 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13076 print_cfs_rq(m, cpu, cfs_rq); 13077 rcu_read_unlock(); 13078 } 13079 13080 #ifdef CONFIG_NUMA_BALANCING 13081 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13082 { 13083 int node; 13084 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13085 struct numa_group *ng; 13086 13087 rcu_read_lock(); 13088 ng = rcu_dereference(p->numa_group); 13089 for_each_online_node(node) { 13090 if (p->numa_faults) { 13091 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13092 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13093 } 13094 if (ng) { 13095 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13096 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13097 } 13098 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13099 } 13100 rcu_read_unlock(); 13101 } 13102 #endif /* CONFIG_NUMA_BALANCING */ 13103 #endif /* CONFIG_SCHED_DEBUG */ 13104 13105 __init void init_sched_fair_class(void) 13106 { 13107 #ifdef CONFIG_SMP 13108 int i; 13109 13110 for_each_possible_cpu(i) { 13111 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13112 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13113 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13114 GFP_KERNEL, cpu_to_node(i)); 13115 13116 #ifdef CONFIG_CFS_BANDWIDTH 13117 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13118 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13119 #endif 13120 } 13121 13122 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 13123 13124 #ifdef CONFIG_NO_HZ_COMMON 13125 nohz.next_balance = jiffies; 13126 nohz.next_blocked = jiffies; 13127 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13128 #endif 13129 #endif /* SMP */ 13130 13131 } 13132