1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 21 */ 22 23 #include <linux/sched/mm.h> 24 #include <linux/sched/topology.h> 25 26 #include <linux/latencytop.h> 27 #include <linux/cpumask.h> 28 #include <linux/cpuidle.h> 29 #include <linux/slab.h> 30 #include <linux/profile.h> 31 #include <linux/interrupt.h> 32 #include <linux/mempolicy.h> 33 #include <linux/migrate.h> 34 #include <linux/task_work.h> 35 36 #include <trace/events/sched.h> 37 38 #include "sched.h" 39 40 /* 41 * Targeted preemption latency for CPU-bound tasks: 42 * 43 * NOTE: this latency value is not the same as the concept of 44 * 'timeslice length' - timeslices in CFS are of variable length 45 * and have no persistent notion like in traditional, time-slice 46 * based scheduling concepts. 47 * 48 * (to see the precise effective timeslice length of your workload, 49 * run vmstat and monitor the context-switches (cs) field) 50 * 51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 52 */ 53 unsigned int sysctl_sched_latency = 6000000ULL; 54 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 55 56 /* 57 * The initial- and re-scaling of tunables is configurable 58 * 59 * Options are: 60 * 61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 64 * 65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 66 */ 67 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 68 69 /* 70 * Minimal preemption granularity for CPU-bound tasks: 71 * 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 73 */ 74 unsigned int sysctl_sched_min_granularity = 750000ULL; 75 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 76 77 /* 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 79 */ 80 static unsigned int sched_nr_latency = 8; 81 82 /* 83 * After fork, child runs first. If set to 0 (default) then 84 * parent will (try to) run first. 85 */ 86 unsigned int sysctl_sched_child_runs_first __read_mostly; 87 88 /* 89 * SCHED_OTHER wake-up granularity. 90 * 91 * This option delays the preemption effects of decoupled workloads 92 * and reduces their over-scheduling. Synchronous workloads will still 93 * have immediate wakeup/sleep latencies. 94 * 95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 96 */ 97 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 98 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 99 100 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 101 102 #ifdef CONFIG_SMP 103 /* 104 * For asym packing, by default the lower numbered cpu has higher priority. 105 */ 106 int __weak arch_asym_cpu_priority(int cpu) 107 { 108 return -cpu; 109 } 110 #endif 111 112 #ifdef CONFIG_CFS_BANDWIDTH 113 /* 114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 115 * each time a cfs_rq requests quota. 116 * 117 * Note: in the case that the slice exceeds the runtime remaining (either due 118 * to consumption or the quota being specified to be smaller than the slice) 119 * we will always only issue the remaining available time. 120 * 121 * (default: 5 msec, units: microseconds) 122 */ 123 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 124 #endif 125 126 /* 127 * The margin used when comparing utilization with CPU capacity: 128 * util * margin < capacity * 1024 129 * 130 * (default: ~20%) 131 */ 132 unsigned int capacity_margin = 1280; 133 134 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 135 { 136 lw->weight += inc; 137 lw->inv_weight = 0; 138 } 139 140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 141 { 142 lw->weight -= dec; 143 lw->inv_weight = 0; 144 } 145 146 static inline void update_load_set(struct load_weight *lw, unsigned long w) 147 { 148 lw->weight = w; 149 lw->inv_weight = 0; 150 } 151 152 /* 153 * Increase the granularity value when there are more CPUs, 154 * because with more CPUs the 'effective latency' as visible 155 * to users decreases. But the relationship is not linear, 156 * so pick a second-best guess by going with the log2 of the 157 * number of CPUs. 158 * 159 * This idea comes from the SD scheduler of Con Kolivas: 160 */ 161 static unsigned int get_update_sysctl_factor(void) 162 { 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 164 unsigned int factor; 165 166 switch (sysctl_sched_tunable_scaling) { 167 case SCHED_TUNABLESCALING_NONE: 168 factor = 1; 169 break; 170 case SCHED_TUNABLESCALING_LINEAR: 171 factor = cpus; 172 break; 173 case SCHED_TUNABLESCALING_LOG: 174 default: 175 factor = 1 + ilog2(cpus); 176 break; 177 } 178 179 return factor; 180 } 181 182 static void update_sysctl(void) 183 { 184 unsigned int factor = get_update_sysctl_factor(); 185 186 #define SET_SYSCTL(name) \ 187 (sysctl_##name = (factor) * normalized_sysctl_##name) 188 SET_SYSCTL(sched_min_granularity); 189 SET_SYSCTL(sched_latency); 190 SET_SYSCTL(sched_wakeup_granularity); 191 #undef SET_SYSCTL 192 } 193 194 void sched_init_granularity(void) 195 { 196 update_sysctl(); 197 } 198 199 #define WMULT_CONST (~0U) 200 #define WMULT_SHIFT 32 201 202 static void __update_inv_weight(struct load_weight *lw) 203 { 204 unsigned long w; 205 206 if (likely(lw->inv_weight)) 207 return; 208 209 w = scale_load_down(lw->weight); 210 211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 212 lw->inv_weight = 1; 213 else if (unlikely(!w)) 214 lw->inv_weight = WMULT_CONST; 215 else 216 lw->inv_weight = WMULT_CONST / w; 217 } 218 219 /* 220 * delta_exec * weight / lw.weight 221 * OR 222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 223 * 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 225 * we're guaranteed shift stays positive because inv_weight is guaranteed to 226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 227 * 228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 229 * weight/lw.weight <= 1, and therefore our shift will also be positive. 230 */ 231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 232 { 233 u64 fact = scale_load_down(weight); 234 int shift = WMULT_SHIFT; 235 236 __update_inv_weight(lw); 237 238 if (unlikely(fact >> 32)) { 239 while (fact >> 32) { 240 fact >>= 1; 241 shift--; 242 } 243 } 244 245 /* hint to use a 32x32->64 mul */ 246 fact = (u64)(u32)fact * lw->inv_weight; 247 248 while (fact >> 32) { 249 fact >>= 1; 250 shift--; 251 } 252 253 return mul_u64_u32_shr(delta_exec, fact, shift); 254 } 255 256 257 const struct sched_class fair_sched_class; 258 259 /************************************************************** 260 * CFS operations on generic schedulable entities: 261 */ 262 263 #ifdef CONFIG_FAIR_GROUP_SCHED 264 265 /* cpu runqueue to which this cfs_rq is attached */ 266 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 267 { 268 return cfs_rq->rq; 269 } 270 271 /* An entity is a task if it doesn't "own" a runqueue */ 272 #define entity_is_task(se) (!se->my_q) 273 274 static inline struct task_struct *task_of(struct sched_entity *se) 275 { 276 SCHED_WARN_ON(!entity_is_task(se)); 277 return container_of(se, struct task_struct, se); 278 } 279 280 /* Walk up scheduling entities hierarchy */ 281 #define for_each_sched_entity(se) \ 282 for (; se; se = se->parent) 283 284 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 285 { 286 return p->se.cfs_rq; 287 } 288 289 /* runqueue on which this entity is (to be) queued */ 290 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 291 { 292 return se->cfs_rq; 293 } 294 295 /* runqueue "owned" by this group */ 296 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 297 { 298 return grp->my_q; 299 } 300 301 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 302 { 303 if (!cfs_rq->on_list) { 304 struct rq *rq = rq_of(cfs_rq); 305 int cpu = cpu_of(rq); 306 /* 307 * Ensure we either appear before our parent (if already 308 * enqueued) or force our parent to appear after us when it is 309 * enqueued. The fact that we always enqueue bottom-up 310 * reduces this to two cases and a special case for the root 311 * cfs_rq. Furthermore, it also means that we will always reset 312 * tmp_alone_branch either when the branch is connected 313 * to a tree or when we reach the beg of the tree 314 */ 315 if (cfs_rq->tg->parent && 316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 317 /* 318 * If parent is already on the list, we add the child 319 * just before. Thanks to circular linked property of 320 * the list, this means to put the child at the tail 321 * of the list that starts by parent. 322 */ 323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 325 /* 326 * The branch is now connected to its tree so we can 327 * reset tmp_alone_branch to the beginning of the 328 * list. 329 */ 330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 331 } else if (!cfs_rq->tg->parent) { 332 /* 333 * cfs rq without parent should be put 334 * at the tail of the list. 335 */ 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 337 &rq->leaf_cfs_rq_list); 338 /* 339 * We have reach the beg of a tree so we can reset 340 * tmp_alone_branch to the beginning of the list. 341 */ 342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 343 } else { 344 /* 345 * The parent has not already been added so we want to 346 * make sure that it will be put after us. 347 * tmp_alone_branch points to the beg of the branch 348 * where we will add parent. 349 */ 350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 351 rq->tmp_alone_branch); 352 /* 353 * update tmp_alone_branch to points to the new beg 354 * of the branch 355 */ 356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 357 } 358 359 cfs_rq->on_list = 1; 360 } 361 } 362 363 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 364 { 365 if (cfs_rq->on_list) { 366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 367 cfs_rq->on_list = 0; 368 } 369 } 370 371 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 372 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 373 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 374 375 /* Do the two (enqueued) entities belong to the same group ? */ 376 static inline struct cfs_rq * 377 is_same_group(struct sched_entity *se, struct sched_entity *pse) 378 { 379 if (se->cfs_rq == pse->cfs_rq) 380 return se->cfs_rq; 381 382 return NULL; 383 } 384 385 static inline struct sched_entity *parent_entity(struct sched_entity *se) 386 { 387 return se->parent; 388 } 389 390 static void 391 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 392 { 393 int se_depth, pse_depth; 394 395 /* 396 * preemption test can be made between sibling entities who are in the 397 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 398 * both tasks until we find their ancestors who are siblings of common 399 * parent. 400 */ 401 402 /* First walk up until both entities are at same depth */ 403 se_depth = (*se)->depth; 404 pse_depth = (*pse)->depth; 405 406 while (se_depth > pse_depth) { 407 se_depth--; 408 *se = parent_entity(*se); 409 } 410 411 while (pse_depth > se_depth) { 412 pse_depth--; 413 *pse = parent_entity(*pse); 414 } 415 416 while (!is_same_group(*se, *pse)) { 417 *se = parent_entity(*se); 418 *pse = parent_entity(*pse); 419 } 420 } 421 422 #else /* !CONFIG_FAIR_GROUP_SCHED */ 423 424 static inline struct task_struct *task_of(struct sched_entity *se) 425 { 426 return container_of(se, struct task_struct, se); 427 } 428 429 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 430 { 431 return container_of(cfs_rq, struct rq, cfs); 432 } 433 434 #define entity_is_task(se) 1 435 436 #define for_each_sched_entity(se) \ 437 for (; se; se = NULL) 438 439 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 440 { 441 return &task_rq(p)->cfs; 442 } 443 444 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 445 { 446 struct task_struct *p = task_of(se); 447 struct rq *rq = task_rq(p); 448 449 return &rq->cfs; 450 } 451 452 /* runqueue "owned" by this group */ 453 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 454 { 455 return NULL; 456 } 457 458 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 459 { 460 } 461 462 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 463 { 464 } 465 466 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 467 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 468 469 static inline struct sched_entity *parent_entity(struct sched_entity *se) 470 { 471 return NULL; 472 } 473 474 static inline void 475 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 476 { 477 } 478 479 #endif /* CONFIG_FAIR_GROUP_SCHED */ 480 481 static __always_inline 482 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 483 484 /************************************************************** 485 * Scheduling class tree data structure manipulation methods: 486 */ 487 488 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 489 { 490 s64 delta = (s64)(vruntime - max_vruntime); 491 if (delta > 0) 492 max_vruntime = vruntime; 493 494 return max_vruntime; 495 } 496 497 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 498 { 499 s64 delta = (s64)(vruntime - min_vruntime); 500 if (delta < 0) 501 min_vruntime = vruntime; 502 503 return min_vruntime; 504 } 505 506 static inline int entity_before(struct sched_entity *a, 507 struct sched_entity *b) 508 { 509 return (s64)(a->vruntime - b->vruntime) < 0; 510 } 511 512 static void update_min_vruntime(struct cfs_rq *cfs_rq) 513 { 514 struct sched_entity *curr = cfs_rq->curr; 515 516 u64 vruntime = cfs_rq->min_vruntime; 517 518 if (curr) { 519 if (curr->on_rq) 520 vruntime = curr->vruntime; 521 else 522 curr = NULL; 523 } 524 525 if (cfs_rq->rb_leftmost) { 526 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 527 struct sched_entity, 528 run_node); 529 530 if (!curr) 531 vruntime = se->vruntime; 532 else 533 vruntime = min_vruntime(vruntime, se->vruntime); 534 } 535 536 /* ensure we never gain time by being placed backwards. */ 537 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 538 #ifndef CONFIG_64BIT 539 smp_wmb(); 540 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 541 #endif 542 } 543 544 /* 545 * Enqueue an entity into the rb-tree: 546 */ 547 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 548 { 549 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 550 struct rb_node *parent = NULL; 551 struct sched_entity *entry; 552 int leftmost = 1; 553 554 /* 555 * Find the right place in the rbtree: 556 */ 557 while (*link) { 558 parent = *link; 559 entry = rb_entry(parent, struct sched_entity, run_node); 560 /* 561 * We dont care about collisions. Nodes with 562 * the same key stay together. 563 */ 564 if (entity_before(se, entry)) { 565 link = &parent->rb_left; 566 } else { 567 link = &parent->rb_right; 568 leftmost = 0; 569 } 570 } 571 572 /* 573 * Maintain a cache of leftmost tree entries (it is frequently 574 * used): 575 */ 576 if (leftmost) 577 cfs_rq->rb_leftmost = &se->run_node; 578 579 rb_link_node(&se->run_node, parent, link); 580 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 581 } 582 583 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 584 { 585 if (cfs_rq->rb_leftmost == &se->run_node) { 586 struct rb_node *next_node; 587 588 next_node = rb_next(&se->run_node); 589 cfs_rq->rb_leftmost = next_node; 590 } 591 592 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 593 } 594 595 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 596 { 597 struct rb_node *left = cfs_rq->rb_leftmost; 598 599 if (!left) 600 return NULL; 601 602 return rb_entry(left, struct sched_entity, run_node); 603 } 604 605 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 606 { 607 struct rb_node *next = rb_next(&se->run_node); 608 609 if (!next) 610 return NULL; 611 612 return rb_entry(next, struct sched_entity, run_node); 613 } 614 615 #ifdef CONFIG_SCHED_DEBUG 616 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 617 { 618 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 619 620 if (!last) 621 return NULL; 622 623 return rb_entry(last, struct sched_entity, run_node); 624 } 625 626 /************************************************************** 627 * Scheduling class statistics methods: 628 */ 629 630 int sched_proc_update_handler(struct ctl_table *table, int write, 631 void __user *buffer, size_t *lenp, 632 loff_t *ppos) 633 { 634 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 635 unsigned int factor = get_update_sysctl_factor(); 636 637 if (ret || !write) 638 return ret; 639 640 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 641 sysctl_sched_min_granularity); 642 643 #define WRT_SYSCTL(name) \ 644 (normalized_sysctl_##name = sysctl_##name / (factor)) 645 WRT_SYSCTL(sched_min_granularity); 646 WRT_SYSCTL(sched_latency); 647 WRT_SYSCTL(sched_wakeup_granularity); 648 #undef WRT_SYSCTL 649 650 return 0; 651 } 652 #endif 653 654 /* 655 * delta /= w 656 */ 657 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 658 { 659 if (unlikely(se->load.weight != NICE_0_LOAD)) 660 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 661 662 return delta; 663 } 664 665 /* 666 * The idea is to set a period in which each task runs once. 667 * 668 * When there are too many tasks (sched_nr_latency) we have to stretch 669 * this period because otherwise the slices get too small. 670 * 671 * p = (nr <= nl) ? l : l*nr/nl 672 */ 673 static u64 __sched_period(unsigned long nr_running) 674 { 675 if (unlikely(nr_running > sched_nr_latency)) 676 return nr_running * sysctl_sched_min_granularity; 677 else 678 return sysctl_sched_latency; 679 } 680 681 /* 682 * We calculate the wall-time slice from the period by taking a part 683 * proportional to the weight. 684 * 685 * s = p*P[w/rw] 686 */ 687 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 688 { 689 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 690 691 for_each_sched_entity(se) { 692 struct load_weight *load; 693 struct load_weight lw; 694 695 cfs_rq = cfs_rq_of(se); 696 load = &cfs_rq->load; 697 698 if (unlikely(!se->on_rq)) { 699 lw = cfs_rq->load; 700 701 update_load_add(&lw, se->load.weight); 702 load = &lw; 703 } 704 slice = __calc_delta(slice, se->load.weight, load); 705 } 706 return slice; 707 } 708 709 /* 710 * We calculate the vruntime slice of a to-be-inserted task. 711 * 712 * vs = s/w 713 */ 714 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 715 { 716 return calc_delta_fair(sched_slice(cfs_rq, se), se); 717 } 718 719 #ifdef CONFIG_SMP 720 721 #include "sched-pelt.h" 722 723 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 724 static unsigned long task_h_load(struct task_struct *p); 725 726 /* Give new sched_entity start runnable values to heavy its load in infant time */ 727 void init_entity_runnable_average(struct sched_entity *se) 728 { 729 struct sched_avg *sa = &se->avg; 730 731 sa->last_update_time = 0; 732 /* 733 * sched_avg's period_contrib should be strictly less then 1024, so 734 * we give it 1023 to make sure it is almost a period (1024us), and 735 * will definitely be update (after enqueue). 736 */ 737 sa->period_contrib = 1023; 738 /* 739 * Tasks are intialized with full load to be seen as heavy tasks until 740 * they get a chance to stabilize to their real load level. 741 * Group entities are intialized with zero load to reflect the fact that 742 * nothing has been attached to the task group yet. 743 */ 744 if (entity_is_task(se)) 745 sa->load_avg = scale_load_down(se->load.weight); 746 sa->load_sum = sa->load_avg * LOAD_AVG_MAX; 747 /* 748 * At this point, util_avg won't be used in select_task_rq_fair anyway 749 */ 750 sa->util_avg = 0; 751 sa->util_sum = 0; 752 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 753 } 754 755 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 756 static void attach_entity_cfs_rq(struct sched_entity *se); 757 758 /* 759 * With new tasks being created, their initial util_avgs are extrapolated 760 * based on the cfs_rq's current util_avg: 761 * 762 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 763 * 764 * However, in many cases, the above util_avg does not give a desired 765 * value. Moreover, the sum of the util_avgs may be divergent, such 766 * as when the series is a harmonic series. 767 * 768 * To solve this problem, we also cap the util_avg of successive tasks to 769 * only 1/2 of the left utilization budget: 770 * 771 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n 772 * 773 * where n denotes the nth task. 774 * 775 * For example, a simplest series from the beginning would be like: 776 * 777 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 778 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 779 * 780 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 781 * if util_avg > util_avg_cap. 782 */ 783 void post_init_entity_util_avg(struct sched_entity *se) 784 { 785 struct cfs_rq *cfs_rq = cfs_rq_of(se); 786 struct sched_avg *sa = &se->avg; 787 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; 788 789 if (cap > 0) { 790 if (cfs_rq->avg.util_avg != 0) { 791 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 792 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 793 794 if (sa->util_avg > cap) 795 sa->util_avg = cap; 796 } else { 797 sa->util_avg = cap; 798 } 799 sa->util_sum = sa->util_avg * LOAD_AVG_MAX; 800 } 801 802 if (entity_is_task(se)) { 803 struct task_struct *p = task_of(se); 804 if (p->sched_class != &fair_sched_class) { 805 /* 806 * For !fair tasks do: 807 * 808 update_cfs_rq_load_avg(now, cfs_rq, false); 809 attach_entity_load_avg(cfs_rq, se); 810 switched_from_fair(rq, p); 811 * 812 * such that the next switched_to_fair() has the 813 * expected state. 814 */ 815 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); 816 return; 817 } 818 } 819 820 attach_entity_cfs_rq(se); 821 } 822 823 #else /* !CONFIG_SMP */ 824 void init_entity_runnable_average(struct sched_entity *se) 825 { 826 } 827 void post_init_entity_util_avg(struct sched_entity *se) 828 { 829 } 830 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 831 { 832 } 833 #endif /* CONFIG_SMP */ 834 835 /* 836 * Update the current task's runtime statistics. 837 */ 838 static void update_curr(struct cfs_rq *cfs_rq) 839 { 840 struct sched_entity *curr = cfs_rq->curr; 841 u64 now = rq_clock_task(rq_of(cfs_rq)); 842 u64 delta_exec; 843 844 if (unlikely(!curr)) 845 return; 846 847 delta_exec = now - curr->exec_start; 848 if (unlikely((s64)delta_exec <= 0)) 849 return; 850 851 curr->exec_start = now; 852 853 schedstat_set(curr->statistics.exec_max, 854 max(delta_exec, curr->statistics.exec_max)); 855 856 curr->sum_exec_runtime += delta_exec; 857 schedstat_add(cfs_rq->exec_clock, delta_exec); 858 859 curr->vruntime += calc_delta_fair(delta_exec, curr); 860 update_min_vruntime(cfs_rq); 861 862 if (entity_is_task(curr)) { 863 struct task_struct *curtask = task_of(curr); 864 865 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 866 cpuacct_charge(curtask, delta_exec); 867 account_group_exec_runtime(curtask, delta_exec); 868 } 869 870 account_cfs_rq_runtime(cfs_rq, delta_exec); 871 } 872 873 static void update_curr_fair(struct rq *rq) 874 { 875 update_curr(cfs_rq_of(&rq->curr->se)); 876 } 877 878 static inline void 879 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 880 { 881 u64 wait_start, prev_wait_start; 882 883 if (!schedstat_enabled()) 884 return; 885 886 wait_start = rq_clock(rq_of(cfs_rq)); 887 prev_wait_start = schedstat_val(se->statistics.wait_start); 888 889 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 890 likely(wait_start > prev_wait_start)) 891 wait_start -= prev_wait_start; 892 893 schedstat_set(se->statistics.wait_start, wait_start); 894 } 895 896 static inline void 897 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 898 { 899 struct task_struct *p; 900 u64 delta; 901 902 if (!schedstat_enabled()) 903 return; 904 905 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 906 907 if (entity_is_task(se)) { 908 p = task_of(se); 909 if (task_on_rq_migrating(p)) { 910 /* 911 * Preserve migrating task's wait time so wait_start 912 * time stamp can be adjusted to accumulate wait time 913 * prior to migration. 914 */ 915 schedstat_set(se->statistics.wait_start, delta); 916 return; 917 } 918 trace_sched_stat_wait(p, delta); 919 } 920 921 schedstat_set(se->statistics.wait_max, 922 max(schedstat_val(se->statistics.wait_max), delta)); 923 schedstat_inc(se->statistics.wait_count); 924 schedstat_add(se->statistics.wait_sum, delta); 925 schedstat_set(se->statistics.wait_start, 0); 926 } 927 928 static inline void 929 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 930 { 931 struct task_struct *tsk = NULL; 932 u64 sleep_start, block_start; 933 934 if (!schedstat_enabled()) 935 return; 936 937 sleep_start = schedstat_val(se->statistics.sleep_start); 938 block_start = schedstat_val(se->statistics.block_start); 939 940 if (entity_is_task(se)) 941 tsk = task_of(se); 942 943 if (sleep_start) { 944 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 945 946 if ((s64)delta < 0) 947 delta = 0; 948 949 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 950 schedstat_set(se->statistics.sleep_max, delta); 951 952 schedstat_set(se->statistics.sleep_start, 0); 953 schedstat_add(se->statistics.sum_sleep_runtime, delta); 954 955 if (tsk) { 956 account_scheduler_latency(tsk, delta >> 10, 1); 957 trace_sched_stat_sleep(tsk, delta); 958 } 959 } 960 if (block_start) { 961 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 962 963 if ((s64)delta < 0) 964 delta = 0; 965 966 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 967 schedstat_set(se->statistics.block_max, delta); 968 969 schedstat_set(se->statistics.block_start, 0); 970 schedstat_add(se->statistics.sum_sleep_runtime, delta); 971 972 if (tsk) { 973 if (tsk->in_iowait) { 974 schedstat_add(se->statistics.iowait_sum, delta); 975 schedstat_inc(se->statistics.iowait_count); 976 trace_sched_stat_iowait(tsk, delta); 977 } 978 979 trace_sched_stat_blocked(tsk, delta); 980 981 /* 982 * Blocking time is in units of nanosecs, so shift by 983 * 20 to get a milliseconds-range estimation of the 984 * amount of time that the task spent sleeping: 985 */ 986 if (unlikely(prof_on == SLEEP_PROFILING)) { 987 profile_hits(SLEEP_PROFILING, 988 (void *)get_wchan(tsk), 989 delta >> 20); 990 } 991 account_scheduler_latency(tsk, delta >> 10, 0); 992 } 993 } 994 } 995 996 /* 997 * Task is being enqueued - update stats: 998 */ 999 static inline void 1000 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1001 { 1002 if (!schedstat_enabled()) 1003 return; 1004 1005 /* 1006 * Are we enqueueing a waiting task? (for current tasks 1007 * a dequeue/enqueue event is a NOP) 1008 */ 1009 if (se != cfs_rq->curr) 1010 update_stats_wait_start(cfs_rq, se); 1011 1012 if (flags & ENQUEUE_WAKEUP) 1013 update_stats_enqueue_sleeper(cfs_rq, se); 1014 } 1015 1016 static inline void 1017 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1018 { 1019 1020 if (!schedstat_enabled()) 1021 return; 1022 1023 /* 1024 * Mark the end of the wait period if dequeueing a 1025 * waiting task: 1026 */ 1027 if (se != cfs_rq->curr) 1028 update_stats_wait_end(cfs_rq, se); 1029 1030 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1031 struct task_struct *tsk = task_of(se); 1032 1033 if (tsk->state & TASK_INTERRUPTIBLE) 1034 schedstat_set(se->statistics.sleep_start, 1035 rq_clock(rq_of(cfs_rq))); 1036 if (tsk->state & TASK_UNINTERRUPTIBLE) 1037 schedstat_set(se->statistics.block_start, 1038 rq_clock(rq_of(cfs_rq))); 1039 } 1040 } 1041 1042 /* 1043 * We are picking a new current task - update its stats: 1044 */ 1045 static inline void 1046 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1047 { 1048 /* 1049 * We are starting a new run period: 1050 */ 1051 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1052 } 1053 1054 /************************************************** 1055 * Scheduling class queueing methods: 1056 */ 1057 1058 #ifdef CONFIG_NUMA_BALANCING 1059 /* 1060 * Approximate time to scan a full NUMA task in ms. The task scan period is 1061 * calculated based on the tasks virtual memory size and 1062 * numa_balancing_scan_size. 1063 */ 1064 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1065 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1066 1067 /* Portion of address space to scan in MB */ 1068 unsigned int sysctl_numa_balancing_scan_size = 256; 1069 1070 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1071 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1072 1073 static unsigned int task_nr_scan_windows(struct task_struct *p) 1074 { 1075 unsigned long rss = 0; 1076 unsigned long nr_scan_pages; 1077 1078 /* 1079 * Calculations based on RSS as non-present and empty pages are skipped 1080 * by the PTE scanner and NUMA hinting faults should be trapped based 1081 * on resident pages 1082 */ 1083 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1084 rss = get_mm_rss(p->mm); 1085 if (!rss) 1086 rss = nr_scan_pages; 1087 1088 rss = round_up(rss, nr_scan_pages); 1089 return rss / nr_scan_pages; 1090 } 1091 1092 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1093 #define MAX_SCAN_WINDOW 2560 1094 1095 static unsigned int task_scan_min(struct task_struct *p) 1096 { 1097 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1098 unsigned int scan, floor; 1099 unsigned int windows = 1; 1100 1101 if (scan_size < MAX_SCAN_WINDOW) 1102 windows = MAX_SCAN_WINDOW / scan_size; 1103 floor = 1000 / windows; 1104 1105 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1106 return max_t(unsigned int, floor, scan); 1107 } 1108 1109 static unsigned int task_scan_max(struct task_struct *p) 1110 { 1111 unsigned int smin = task_scan_min(p); 1112 unsigned int smax; 1113 1114 /* Watch for min being lower than max due to floor calculations */ 1115 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1116 return max(smin, smax); 1117 } 1118 1119 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1120 { 1121 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1122 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1123 } 1124 1125 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1126 { 1127 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1128 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1129 } 1130 1131 struct numa_group { 1132 atomic_t refcount; 1133 1134 spinlock_t lock; /* nr_tasks, tasks */ 1135 int nr_tasks; 1136 pid_t gid; 1137 int active_nodes; 1138 1139 struct rcu_head rcu; 1140 unsigned long total_faults; 1141 unsigned long max_faults_cpu; 1142 /* 1143 * Faults_cpu is used to decide whether memory should move 1144 * towards the CPU. As a consequence, these stats are weighted 1145 * more by CPU use than by memory faults. 1146 */ 1147 unsigned long *faults_cpu; 1148 unsigned long faults[0]; 1149 }; 1150 1151 /* Shared or private faults. */ 1152 #define NR_NUMA_HINT_FAULT_TYPES 2 1153 1154 /* Memory and CPU locality */ 1155 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1156 1157 /* Averaged statistics, and temporary buffers. */ 1158 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1159 1160 pid_t task_numa_group_id(struct task_struct *p) 1161 { 1162 return p->numa_group ? p->numa_group->gid : 0; 1163 } 1164 1165 /* 1166 * The averaged statistics, shared & private, memory & cpu, 1167 * occupy the first half of the array. The second half of the 1168 * array is for current counters, which are averaged into the 1169 * first set by task_numa_placement. 1170 */ 1171 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1172 { 1173 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1174 } 1175 1176 static inline unsigned long task_faults(struct task_struct *p, int nid) 1177 { 1178 if (!p->numa_faults) 1179 return 0; 1180 1181 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1182 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1183 } 1184 1185 static inline unsigned long group_faults(struct task_struct *p, int nid) 1186 { 1187 if (!p->numa_group) 1188 return 0; 1189 1190 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1191 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1192 } 1193 1194 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1195 { 1196 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1197 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1198 } 1199 1200 /* 1201 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1202 * considered part of a numa group's pseudo-interleaving set. Migrations 1203 * between these nodes are slowed down, to allow things to settle down. 1204 */ 1205 #define ACTIVE_NODE_FRACTION 3 1206 1207 static bool numa_is_active_node(int nid, struct numa_group *ng) 1208 { 1209 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1210 } 1211 1212 /* Handle placement on systems where not all nodes are directly connected. */ 1213 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1214 int maxdist, bool task) 1215 { 1216 unsigned long score = 0; 1217 int node; 1218 1219 /* 1220 * All nodes are directly connected, and the same distance 1221 * from each other. No need for fancy placement algorithms. 1222 */ 1223 if (sched_numa_topology_type == NUMA_DIRECT) 1224 return 0; 1225 1226 /* 1227 * This code is called for each node, introducing N^2 complexity, 1228 * which should be ok given the number of nodes rarely exceeds 8. 1229 */ 1230 for_each_online_node(node) { 1231 unsigned long faults; 1232 int dist = node_distance(nid, node); 1233 1234 /* 1235 * The furthest away nodes in the system are not interesting 1236 * for placement; nid was already counted. 1237 */ 1238 if (dist == sched_max_numa_distance || node == nid) 1239 continue; 1240 1241 /* 1242 * On systems with a backplane NUMA topology, compare groups 1243 * of nodes, and move tasks towards the group with the most 1244 * memory accesses. When comparing two nodes at distance 1245 * "hoplimit", only nodes closer by than "hoplimit" are part 1246 * of each group. Skip other nodes. 1247 */ 1248 if (sched_numa_topology_type == NUMA_BACKPLANE && 1249 dist > maxdist) 1250 continue; 1251 1252 /* Add up the faults from nearby nodes. */ 1253 if (task) 1254 faults = task_faults(p, node); 1255 else 1256 faults = group_faults(p, node); 1257 1258 /* 1259 * On systems with a glueless mesh NUMA topology, there are 1260 * no fixed "groups of nodes". Instead, nodes that are not 1261 * directly connected bounce traffic through intermediate 1262 * nodes; a numa_group can occupy any set of nodes. 1263 * The further away a node is, the less the faults count. 1264 * This seems to result in good task placement. 1265 */ 1266 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1267 faults *= (sched_max_numa_distance - dist); 1268 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1269 } 1270 1271 score += faults; 1272 } 1273 1274 return score; 1275 } 1276 1277 /* 1278 * These return the fraction of accesses done by a particular task, or 1279 * task group, on a particular numa node. The group weight is given a 1280 * larger multiplier, in order to group tasks together that are almost 1281 * evenly spread out between numa nodes. 1282 */ 1283 static inline unsigned long task_weight(struct task_struct *p, int nid, 1284 int dist) 1285 { 1286 unsigned long faults, total_faults; 1287 1288 if (!p->numa_faults) 1289 return 0; 1290 1291 total_faults = p->total_numa_faults; 1292 1293 if (!total_faults) 1294 return 0; 1295 1296 faults = task_faults(p, nid); 1297 faults += score_nearby_nodes(p, nid, dist, true); 1298 1299 return 1000 * faults / total_faults; 1300 } 1301 1302 static inline unsigned long group_weight(struct task_struct *p, int nid, 1303 int dist) 1304 { 1305 unsigned long faults, total_faults; 1306 1307 if (!p->numa_group) 1308 return 0; 1309 1310 total_faults = p->numa_group->total_faults; 1311 1312 if (!total_faults) 1313 return 0; 1314 1315 faults = group_faults(p, nid); 1316 faults += score_nearby_nodes(p, nid, dist, false); 1317 1318 return 1000 * faults / total_faults; 1319 } 1320 1321 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1322 int src_nid, int dst_cpu) 1323 { 1324 struct numa_group *ng = p->numa_group; 1325 int dst_nid = cpu_to_node(dst_cpu); 1326 int last_cpupid, this_cpupid; 1327 1328 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1329 1330 /* 1331 * Multi-stage node selection is used in conjunction with a periodic 1332 * migration fault to build a temporal task<->page relation. By using 1333 * a two-stage filter we remove short/unlikely relations. 1334 * 1335 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1336 * a task's usage of a particular page (n_p) per total usage of this 1337 * page (n_t) (in a given time-span) to a probability. 1338 * 1339 * Our periodic faults will sample this probability and getting the 1340 * same result twice in a row, given these samples are fully 1341 * independent, is then given by P(n)^2, provided our sample period 1342 * is sufficiently short compared to the usage pattern. 1343 * 1344 * This quadric squishes small probabilities, making it less likely we 1345 * act on an unlikely task<->page relation. 1346 */ 1347 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1348 if (!cpupid_pid_unset(last_cpupid) && 1349 cpupid_to_nid(last_cpupid) != dst_nid) 1350 return false; 1351 1352 /* Always allow migrate on private faults */ 1353 if (cpupid_match_pid(p, last_cpupid)) 1354 return true; 1355 1356 /* A shared fault, but p->numa_group has not been set up yet. */ 1357 if (!ng) 1358 return true; 1359 1360 /* 1361 * Destination node is much more heavily used than the source 1362 * node? Allow migration. 1363 */ 1364 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1365 ACTIVE_NODE_FRACTION) 1366 return true; 1367 1368 /* 1369 * Distribute memory according to CPU & memory use on each node, 1370 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1371 * 1372 * faults_cpu(dst) 3 faults_cpu(src) 1373 * --------------- * - > --------------- 1374 * faults_mem(dst) 4 faults_mem(src) 1375 */ 1376 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1377 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1378 } 1379 1380 static unsigned long weighted_cpuload(const int cpu); 1381 static unsigned long source_load(int cpu, int type); 1382 static unsigned long target_load(int cpu, int type); 1383 static unsigned long capacity_of(int cpu); 1384 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1385 1386 /* Cached statistics for all CPUs within a node */ 1387 struct numa_stats { 1388 unsigned long nr_running; 1389 unsigned long load; 1390 1391 /* Total compute capacity of CPUs on a node */ 1392 unsigned long compute_capacity; 1393 1394 /* Approximate capacity in terms of runnable tasks on a node */ 1395 unsigned long task_capacity; 1396 int has_free_capacity; 1397 }; 1398 1399 /* 1400 * XXX borrowed from update_sg_lb_stats 1401 */ 1402 static void update_numa_stats(struct numa_stats *ns, int nid) 1403 { 1404 int smt, cpu, cpus = 0; 1405 unsigned long capacity; 1406 1407 memset(ns, 0, sizeof(*ns)); 1408 for_each_cpu(cpu, cpumask_of_node(nid)) { 1409 struct rq *rq = cpu_rq(cpu); 1410 1411 ns->nr_running += rq->nr_running; 1412 ns->load += weighted_cpuload(cpu); 1413 ns->compute_capacity += capacity_of(cpu); 1414 1415 cpus++; 1416 } 1417 1418 /* 1419 * If we raced with hotplug and there are no CPUs left in our mask 1420 * the @ns structure is NULL'ed and task_numa_compare() will 1421 * not find this node attractive. 1422 * 1423 * We'll either bail at !has_free_capacity, or we'll detect a huge 1424 * imbalance and bail there. 1425 */ 1426 if (!cpus) 1427 return; 1428 1429 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1430 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1431 capacity = cpus / smt; /* cores */ 1432 1433 ns->task_capacity = min_t(unsigned, capacity, 1434 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1435 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1436 } 1437 1438 struct task_numa_env { 1439 struct task_struct *p; 1440 1441 int src_cpu, src_nid; 1442 int dst_cpu, dst_nid; 1443 1444 struct numa_stats src_stats, dst_stats; 1445 1446 int imbalance_pct; 1447 int dist; 1448 1449 struct task_struct *best_task; 1450 long best_imp; 1451 int best_cpu; 1452 }; 1453 1454 static void task_numa_assign(struct task_numa_env *env, 1455 struct task_struct *p, long imp) 1456 { 1457 if (env->best_task) 1458 put_task_struct(env->best_task); 1459 if (p) 1460 get_task_struct(p); 1461 1462 env->best_task = p; 1463 env->best_imp = imp; 1464 env->best_cpu = env->dst_cpu; 1465 } 1466 1467 static bool load_too_imbalanced(long src_load, long dst_load, 1468 struct task_numa_env *env) 1469 { 1470 long imb, old_imb; 1471 long orig_src_load, orig_dst_load; 1472 long src_capacity, dst_capacity; 1473 1474 /* 1475 * The load is corrected for the CPU capacity available on each node. 1476 * 1477 * src_load dst_load 1478 * ------------ vs --------- 1479 * src_capacity dst_capacity 1480 */ 1481 src_capacity = env->src_stats.compute_capacity; 1482 dst_capacity = env->dst_stats.compute_capacity; 1483 1484 /* We care about the slope of the imbalance, not the direction. */ 1485 if (dst_load < src_load) 1486 swap(dst_load, src_load); 1487 1488 /* Is the difference below the threshold? */ 1489 imb = dst_load * src_capacity * 100 - 1490 src_load * dst_capacity * env->imbalance_pct; 1491 if (imb <= 0) 1492 return false; 1493 1494 /* 1495 * The imbalance is above the allowed threshold. 1496 * Compare it with the old imbalance. 1497 */ 1498 orig_src_load = env->src_stats.load; 1499 orig_dst_load = env->dst_stats.load; 1500 1501 if (orig_dst_load < orig_src_load) 1502 swap(orig_dst_load, orig_src_load); 1503 1504 old_imb = orig_dst_load * src_capacity * 100 - 1505 orig_src_load * dst_capacity * env->imbalance_pct; 1506 1507 /* Would this change make things worse? */ 1508 return (imb > old_imb); 1509 } 1510 1511 /* 1512 * This checks if the overall compute and NUMA accesses of the system would 1513 * be improved if the source tasks was migrated to the target dst_cpu taking 1514 * into account that it might be best if task running on the dst_cpu should 1515 * be exchanged with the source task 1516 */ 1517 static void task_numa_compare(struct task_numa_env *env, 1518 long taskimp, long groupimp) 1519 { 1520 struct rq *src_rq = cpu_rq(env->src_cpu); 1521 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1522 struct task_struct *cur; 1523 long src_load, dst_load; 1524 long load; 1525 long imp = env->p->numa_group ? groupimp : taskimp; 1526 long moveimp = imp; 1527 int dist = env->dist; 1528 1529 rcu_read_lock(); 1530 cur = task_rcu_dereference(&dst_rq->curr); 1531 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1532 cur = NULL; 1533 1534 /* 1535 * Because we have preemption enabled we can get migrated around and 1536 * end try selecting ourselves (current == env->p) as a swap candidate. 1537 */ 1538 if (cur == env->p) 1539 goto unlock; 1540 1541 /* 1542 * "imp" is the fault differential for the source task between the 1543 * source and destination node. Calculate the total differential for 1544 * the source task and potential destination task. The more negative 1545 * the value is, the more rmeote accesses that would be expected to 1546 * be incurred if the tasks were swapped. 1547 */ 1548 if (cur) { 1549 /* Skip this swap candidate if cannot move to the source cpu */ 1550 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1551 goto unlock; 1552 1553 /* 1554 * If dst and source tasks are in the same NUMA group, or not 1555 * in any group then look only at task weights. 1556 */ 1557 if (cur->numa_group == env->p->numa_group) { 1558 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1559 task_weight(cur, env->dst_nid, dist); 1560 /* 1561 * Add some hysteresis to prevent swapping the 1562 * tasks within a group over tiny differences. 1563 */ 1564 if (cur->numa_group) 1565 imp -= imp/16; 1566 } else { 1567 /* 1568 * Compare the group weights. If a task is all by 1569 * itself (not part of a group), use the task weight 1570 * instead. 1571 */ 1572 if (cur->numa_group) 1573 imp += group_weight(cur, env->src_nid, dist) - 1574 group_weight(cur, env->dst_nid, dist); 1575 else 1576 imp += task_weight(cur, env->src_nid, dist) - 1577 task_weight(cur, env->dst_nid, dist); 1578 } 1579 } 1580 1581 if (imp <= env->best_imp && moveimp <= env->best_imp) 1582 goto unlock; 1583 1584 if (!cur) { 1585 /* Is there capacity at our destination? */ 1586 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1587 !env->dst_stats.has_free_capacity) 1588 goto unlock; 1589 1590 goto balance; 1591 } 1592 1593 /* Balance doesn't matter much if we're running a task per cpu */ 1594 if (imp > env->best_imp && src_rq->nr_running == 1 && 1595 dst_rq->nr_running == 1) 1596 goto assign; 1597 1598 /* 1599 * In the overloaded case, try and keep the load balanced. 1600 */ 1601 balance: 1602 load = task_h_load(env->p); 1603 dst_load = env->dst_stats.load + load; 1604 src_load = env->src_stats.load - load; 1605 1606 if (moveimp > imp && moveimp > env->best_imp) { 1607 /* 1608 * If the improvement from just moving env->p direction is 1609 * better than swapping tasks around, check if a move is 1610 * possible. Store a slightly smaller score than moveimp, 1611 * so an actually idle CPU will win. 1612 */ 1613 if (!load_too_imbalanced(src_load, dst_load, env)) { 1614 imp = moveimp - 1; 1615 cur = NULL; 1616 goto assign; 1617 } 1618 } 1619 1620 if (imp <= env->best_imp) 1621 goto unlock; 1622 1623 if (cur) { 1624 load = task_h_load(cur); 1625 dst_load -= load; 1626 src_load += load; 1627 } 1628 1629 if (load_too_imbalanced(src_load, dst_load, env)) 1630 goto unlock; 1631 1632 /* 1633 * One idle CPU per node is evaluated for a task numa move. 1634 * Call select_idle_sibling to maybe find a better one. 1635 */ 1636 if (!cur) { 1637 /* 1638 * select_idle_siblings() uses an per-cpu cpumask that 1639 * can be used from IRQ context. 1640 */ 1641 local_irq_disable(); 1642 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1643 env->dst_cpu); 1644 local_irq_enable(); 1645 } 1646 1647 assign: 1648 task_numa_assign(env, cur, imp); 1649 unlock: 1650 rcu_read_unlock(); 1651 } 1652 1653 static void task_numa_find_cpu(struct task_numa_env *env, 1654 long taskimp, long groupimp) 1655 { 1656 int cpu; 1657 1658 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1659 /* Skip this CPU if the source task cannot migrate */ 1660 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1661 continue; 1662 1663 env->dst_cpu = cpu; 1664 task_numa_compare(env, taskimp, groupimp); 1665 } 1666 } 1667 1668 /* Only move tasks to a NUMA node less busy than the current node. */ 1669 static bool numa_has_capacity(struct task_numa_env *env) 1670 { 1671 struct numa_stats *src = &env->src_stats; 1672 struct numa_stats *dst = &env->dst_stats; 1673 1674 if (src->has_free_capacity && !dst->has_free_capacity) 1675 return false; 1676 1677 /* 1678 * Only consider a task move if the source has a higher load 1679 * than the destination, corrected for CPU capacity on each node. 1680 * 1681 * src->load dst->load 1682 * --------------------- vs --------------------- 1683 * src->compute_capacity dst->compute_capacity 1684 */ 1685 if (src->load * dst->compute_capacity * env->imbalance_pct > 1686 1687 dst->load * src->compute_capacity * 100) 1688 return true; 1689 1690 return false; 1691 } 1692 1693 static int task_numa_migrate(struct task_struct *p) 1694 { 1695 struct task_numa_env env = { 1696 .p = p, 1697 1698 .src_cpu = task_cpu(p), 1699 .src_nid = task_node(p), 1700 1701 .imbalance_pct = 112, 1702 1703 .best_task = NULL, 1704 .best_imp = 0, 1705 .best_cpu = -1, 1706 }; 1707 struct sched_domain *sd; 1708 unsigned long taskweight, groupweight; 1709 int nid, ret, dist; 1710 long taskimp, groupimp; 1711 1712 /* 1713 * Pick the lowest SD_NUMA domain, as that would have the smallest 1714 * imbalance and would be the first to start moving tasks about. 1715 * 1716 * And we want to avoid any moving of tasks about, as that would create 1717 * random movement of tasks -- counter the numa conditions we're trying 1718 * to satisfy here. 1719 */ 1720 rcu_read_lock(); 1721 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1722 if (sd) 1723 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1724 rcu_read_unlock(); 1725 1726 /* 1727 * Cpusets can break the scheduler domain tree into smaller 1728 * balance domains, some of which do not cross NUMA boundaries. 1729 * Tasks that are "trapped" in such domains cannot be migrated 1730 * elsewhere, so there is no point in (re)trying. 1731 */ 1732 if (unlikely(!sd)) { 1733 p->numa_preferred_nid = task_node(p); 1734 return -EINVAL; 1735 } 1736 1737 env.dst_nid = p->numa_preferred_nid; 1738 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1739 taskweight = task_weight(p, env.src_nid, dist); 1740 groupweight = group_weight(p, env.src_nid, dist); 1741 update_numa_stats(&env.src_stats, env.src_nid); 1742 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1743 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1744 update_numa_stats(&env.dst_stats, env.dst_nid); 1745 1746 /* Try to find a spot on the preferred nid. */ 1747 if (numa_has_capacity(&env)) 1748 task_numa_find_cpu(&env, taskimp, groupimp); 1749 1750 /* 1751 * Look at other nodes in these cases: 1752 * - there is no space available on the preferred_nid 1753 * - the task is part of a numa_group that is interleaved across 1754 * multiple NUMA nodes; in order to better consolidate the group, 1755 * we need to check other locations. 1756 */ 1757 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1758 for_each_online_node(nid) { 1759 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1760 continue; 1761 1762 dist = node_distance(env.src_nid, env.dst_nid); 1763 if (sched_numa_topology_type == NUMA_BACKPLANE && 1764 dist != env.dist) { 1765 taskweight = task_weight(p, env.src_nid, dist); 1766 groupweight = group_weight(p, env.src_nid, dist); 1767 } 1768 1769 /* Only consider nodes where both task and groups benefit */ 1770 taskimp = task_weight(p, nid, dist) - taskweight; 1771 groupimp = group_weight(p, nid, dist) - groupweight; 1772 if (taskimp < 0 && groupimp < 0) 1773 continue; 1774 1775 env.dist = dist; 1776 env.dst_nid = nid; 1777 update_numa_stats(&env.dst_stats, env.dst_nid); 1778 if (numa_has_capacity(&env)) 1779 task_numa_find_cpu(&env, taskimp, groupimp); 1780 } 1781 } 1782 1783 /* 1784 * If the task is part of a workload that spans multiple NUMA nodes, 1785 * and is migrating into one of the workload's active nodes, remember 1786 * this node as the task's preferred numa node, so the workload can 1787 * settle down. 1788 * A task that migrated to a second choice node will be better off 1789 * trying for a better one later. Do not set the preferred node here. 1790 */ 1791 if (p->numa_group) { 1792 struct numa_group *ng = p->numa_group; 1793 1794 if (env.best_cpu == -1) 1795 nid = env.src_nid; 1796 else 1797 nid = env.dst_nid; 1798 1799 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) 1800 sched_setnuma(p, env.dst_nid); 1801 } 1802 1803 /* No better CPU than the current one was found. */ 1804 if (env.best_cpu == -1) 1805 return -EAGAIN; 1806 1807 /* 1808 * Reset the scan period if the task is being rescheduled on an 1809 * alternative node to recheck if the tasks is now properly placed. 1810 */ 1811 p->numa_scan_period = task_scan_min(p); 1812 1813 if (env.best_task == NULL) { 1814 ret = migrate_task_to(p, env.best_cpu); 1815 if (ret != 0) 1816 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1817 return ret; 1818 } 1819 1820 ret = migrate_swap(p, env.best_task); 1821 if (ret != 0) 1822 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1823 put_task_struct(env.best_task); 1824 return ret; 1825 } 1826 1827 /* Attempt to migrate a task to a CPU on the preferred node. */ 1828 static void numa_migrate_preferred(struct task_struct *p) 1829 { 1830 unsigned long interval = HZ; 1831 1832 /* This task has no NUMA fault statistics yet */ 1833 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1834 return; 1835 1836 /* Periodically retry migrating the task to the preferred node */ 1837 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1838 p->numa_migrate_retry = jiffies + interval; 1839 1840 /* Success if task is already running on preferred CPU */ 1841 if (task_node(p) == p->numa_preferred_nid) 1842 return; 1843 1844 /* Otherwise, try migrate to a CPU on the preferred node */ 1845 task_numa_migrate(p); 1846 } 1847 1848 /* 1849 * Find out how many nodes on the workload is actively running on. Do this by 1850 * tracking the nodes from which NUMA hinting faults are triggered. This can 1851 * be different from the set of nodes where the workload's memory is currently 1852 * located. 1853 */ 1854 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1855 { 1856 unsigned long faults, max_faults = 0; 1857 int nid, active_nodes = 0; 1858 1859 for_each_online_node(nid) { 1860 faults = group_faults_cpu(numa_group, nid); 1861 if (faults > max_faults) 1862 max_faults = faults; 1863 } 1864 1865 for_each_online_node(nid) { 1866 faults = group_faults_cpu(numa_group, nid); 1867 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1868 active_nodes++; 1869 } 1870 1871 numa_group->max_faults_cpu = max_faults; 1872 numa_group->active_nodes = active_nodes; 1873 } 1874 1875 /* 1876 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1877 * increments. The more local the fault statistics are, the higher the scan 1878 * period will be for the next scan window. If local/(local+remote) ratio is 1879 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1880 * the scan period will decrease. Aim for 70% local accesses. 1881 */ 1882 #define NUMA_PERIOD_SLOTS 10 1883 #define NUMA_PERIOD_THRESHOLD 7 1884 1885 /* 1886 * Increase the scan period (slow down scanning) if the majority of 1887 * our memory is already on our local node, or if the majority of 1888 * the page accesses are shared with other processes. 1889 * Otherwise, decrease the scan period. 1890 */ 1891 static void update_task_scan_period(struct task_struct *p, 1892 unsigned long shared, unsigned long private) 1893 { 1894 unsigned int period_slot; 1895 int ratio; 1896 int diff; 1897 1898 unsigned long remote = p->numa_faults_locality[0]; 1899 unsigned long local = p->numa_faults_locality[1]; 1900 1901 /* 1902 * If there were no record hinting faults then either the task is 1903 * completely idle or all activity is areas that are not of interest 1904 * to automatic numa balancing. Related to that, if there were failed 1905 * migration then it implies we are migrating too quickly or the local 1906 * node is overloaded. In either case, scan slower 1907 */ 1908 if (local + shared == 0 || p->numa_faults_locality[2]) { 1909 p->numa_scan_period = min(p->numa_scan_period_max, 1910 p->numa_scan_period << 1); 1911 1912 p->mm->numa_next_scan = jiffies + 1913 msecs_to_jiffies(p->numa_scan_period); 1914 1915 return; 1916 } 1917 1918 /* 1919 * Prepare to scale scan period relative to the current period. 1920 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1921 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1922 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1923 */ 1924 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1925 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1926 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1927 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1928 if (!slot) 1929 slot = 1; 1930 diff = slot * period_slot; 1931 } else { 1932 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1933 1934 /* 1935 * Scale scan rate increases based on sharing. There is an 1936 * inverse relationship between the degree of sharing and 1937 * the adjustment made to the scanning period. Broadly 1938 * speaking the intent is that there is little point 1939 * scanning faster if shared accesses dominate as it may 1940 * simply bounce migrations uselessly 1941 */ 1942 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); 1943 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1944 } 1945 1946 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1947 task_scan_min(p), task_scan_max(p)); 1948 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1949 } 1950 1951 /* 1952 * Get the fraction of time the task has been running since the last 1953 * NUMA placement cycle. The scheduler keeps similar statistics, but 1954 * decays those on a 32ms period, which is orders of magnitude off 1955 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1956 * stats only if the task is so new there are no NUMA statistics yet. 1957 */ 1958 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1959 { 1960 u64 runtime, delta, now; 1961 /* Use the start of this time slice to avoid calculations. */ 1962 now = p->se.exec_start; 1963 runtime = p->se.sum_exec_runtime; 1964 1965 if (p->last_task_numa_placement) { 1966 delta = runtime - p->last_sum_exec_runtime; 1967 *period = now - p->last_task_numa_placement; 1968 } else { 1969 delta = p->se.avg.load_sum / p->se.load.weight; 1970 *period = LOAD_AVG_MAX; 1971 } 1972 1973 p->last_sum_exec_runtime = runtime; 1974 p->last_task_numa_placement = now; 1975 1976 return delta; 1977 } 1978 1979 /* 1980 * Determine the preferred nid for a task in a numa_group. This needs to 1981 * be done in a way that produces consistent results with group_weight, 1982 * otherwise workloads might not converge. 1983 */ 1984 static int preferred_group_nid(struct task_struct *p, int nid) 1985 { 1986 nodemask_t nodes; 1987 int dist; 1988 1989 /* Direct connections between all NUMA nodes. */ 1990 if (sched_numa_topology_type == NUMA_DIRECT) 1991 return nid; 1992 1993 /* 1994 * On a system with glueless mesh NUMA topology, group_weight 1995 * scores nodes according to the number of NUMA hinting faults on 1996 * both the node itself, and on nearby nodes. 1997 */ 1998 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1999 unsigned long score, max_score = 0; 2000 int node, max_node = nid; 2001 2002 dist = sched_max_numa_distance; 2003 2004 for_each_online_node(node) { 2005 score = group_weight(p, node, dist); 2006 if (score > max_score) { 2007 max_score = score; 2008 max_node = node; 2009 } 2010 } 2011 return max_node; 2012 } 2013 2014 /* 2015 * Finding the preferred nid in a system with NUMA backplane 2016 * interconnect topology is more involved. The goal is to locate 2017 * tasks from numa_groups near each other in the system, and 2018 * untangle workloads from different sides of the system. This requires 2019 * searching down the hierarchy of node groups, recursively searching 2020 * inside the highest scoring group of nodes. The nodemask tricks 2021 * keep the complexity of the search down. 2022 */ 2023 nodes = node_online_map; 2024 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2025 unsigned long max_faults = 0; 2026 nodemask_t max_group = NODE_MASK_NONE; 2027 int a, b; 2028 2029 /* Are there nodes at this distance from each other? */ 2030 if (!find_numa_distance(dist)) 2031 continue; 2032 2033 for_each_node_mask(a, nodes) { 2034 unsigned long faults = 0; 2035 nodemask_t this_group; 2036 nodes_clear(this_group); 2037 2038 /* Sum group's NUMA faults; includes a==b case. */ 2039 for_each_node_mask(b, nodes) { 2040 if (node_distance(a, b) < dist) { 2041 faults += group_faults(p, b); 2042 node_set(b, this_group); 2043 node_clear(b, nodes); 2044 } 2045 } 2046 2047 /* Remember the top group. */ 2048 if (faults > max_faults) { 2049 max_faults = faults; 2050 max_group = this_group; 2051 /* 2052 * subtle: at the smallest distance there is 2053 * just one node left in each "group", the 2054 * winner is the preferred nid. 2055 */ 2056 nid = a; 2057 } 2058 } 2059 /* Next round, evaluate the nodes within max_group. */ 2060 if (!max_faults) 2061 break; 2062 nodes = max_group; 2063 } 2064 return nid; 2065 } 2066 2067 static void task_numa_placement(struct task_struct *p) 2068 { 2069 int seq, nid, max_nid = -1, max_group_nid = -1; 2070 unsigned long max_faults = 0, max_group_faults = 0; 2071 unsigned long fault_types[2] = { 0, 0 }; 2072 unsigned long total_faults; 2073 u64 runtime, period; 2074 spinlock_t *group_lock = NULL; 2075 2076 /* 2077 * The p->mm->numa_scan_seq field gets updated without 2078 * exclusive access. Use READ_ONCE() here to ensure 2079 * that the field is read in a single access: 2080 */ 2081 seq = READ_ONCE(p->mm->numa_scan_seq); 2082 if (p->numa_scan_seq == seq) 2083 return; 2084 p->numa_scan_seq = seq; 2085 p->numa_scan_period_max = task_scan_max(p); 2086 2087 total_faults = p->numa_faults_locality[0] + 2088 p->numa_faults_locality[1]; 2089 runtime = numa_get_avg_runtime(p, &period); 2090 2091 /* If the task is part of a group prevent parallel updates to group stats */ 2092 if (p->numa_group) { 2093 group_lock = &p->numa_group->lock; 2094 spin_lock_irq(group_lock); 2095 } 2096 2097 /* Find the node with the highest number of faults */ 2098 for_each_online_node(nid) { 2099 /* Keep track of the offsets in numa_faults array */ 2100 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2101 unsigned long faults = 0, group_faults = 0; 2102 int priv; 2103 2104 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2105 long diff, f_diff, f_weight; 2106 2107 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2108 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2109 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2110 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2111 2112 /* Decay existing window, copy faults since last scan */ 2113 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2114 fault_types[priv] += p->numa_faults[membuf_idx]; 2115 p->numa_faults[membuf_idx] = 0; 2116 2117 /* 2118 * Normalize the faults_from, so all tasks in a group 2119 * count according to CPU use, instead of by the raw 2120 * number of faults. Tasks with little runtime have 2121 * little over-all impact on throughput, and thus their 2122 * faults are less important. 2123 */ 2124 f_weight = div64_u64(runtime << 16, period + 1); 2125 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2126 (total_faults + 1); 2127 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2128 p->numa_faults[cpubuf_idx] = 0; 2129 2130 p->numa_faults[mem_idx] += diff; 2131 p->numa_faults[cpu_idx] += f_diff; 2132 faults += p->numa_faults[mem_idx]; 2133 p->total_numa_faults += diff; 2134 if (p->numa_group) { 2135 /* 2136 * safe because we can only change our own group 2137 * 2138 * mem_idx represents the offset for a given 2139 * nid and priv in a specific region because it 2140 * is at the beginning of the numa_faults array. 2141 */ 2142 p->numa_group->faults[mem_idx] += diff; 2143 p->numa_group->faults_cpu[mem_idx] += f_diff; 2144 p->numa_group->total_faults += diff; 2145 group_faults += p->numa_group->faults[mem_idx]; 2146 } 2147 } 2148 2149 if (faults > max_faults) { 2150 max_faults = faults; 2151 max_nid = nid; 2152 } 2153 2154 if (group_faults > max_group_faults) { 2155 max_group_faults = group_faults; 2156 max_group_nid = nid; 2157 } 2158 } 2159 2160 update_task_scan_period(p, fault_types[0], fault_types[1]); 2161 2162 if (p->numa_group) { 2163 numa_group_count_active_nodes(p->numa_group); 2164 spin_unlock_irq(group_lock); 2165 max_nid = preferred_group_nid(p, max_group_nid); 2166 } 2167 2168 if (max_faults) { 2169 /* Set the new preferred node */ 2170 if (max_nid != p->numa_preferred_nid) 2171 sched_setnuma(p, max_nid); 2172 2173 if (task_node(p) != p->numa_preferred_nid) 2174 numa_migrate_preferred(p); 2175 } 2176 } 2177 2178 static inline int get_numa_group(struct numa_group *grp) 2179 { 2180 return atomic_inc_not_zero(&grp->refcount); 2181 } 2182 2183 static inline void put_numa_group(struct numa_group *grp) 2184 { 2185 if (atomic_dec_and_test(&grp->refcount)) 2186 kfree_rcu(grp, rcu); 2187 } 2188 2189 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2190 int *priv) 2191 { 2192 struct numa_group *grp, *my_grp; 2193 struct task_struct *tsk; 2194 bool join = false; 2195 int cpu = cpupid_to_cpu(cpupid); 2196 int i; 2197 2198 if (unlikely(!p->numa_group)) { 2199 unsigned int size = sizeof(struct numa_group) + 2200 4*nr_node_ids*sizeof(unsigned long); 2201 2202 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2203 if (!grp) 2204 return; 2205 2206 atomic_set(&grp->refcount, 1); 2207 grp->active_nodes = 1; 2208 grp->max_faults_cpu = 0; 2209 spin_lock_init(&grp->lock); 2210 grp->gid = p->pid; 2211 /* Second half of the array tracks nids where faults happen */ 2212 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2213 nr_node_ids; 2214 2215 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2216 grp->faults[i] = p->numa_faults[i]; 2217 2218 grp->total_faults = p->total_numa_faults; 2219 2220 grp->nr_tasks++; 2221 rcu_assign_pointer(p->numa_group, grp); 2222 } 2223 2224 rcu_read_lock(); 2225 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2226 2227 if (!cpupid_match_pid(tsk, cpupid)) 2228 goto no_join; 2229 2230 grp = rcu_dereference(tsk->numa_group); 2231 if (!grp) 2232 goto no_join; 2233 2234 my_grp = p->numa_group; 2235 if (grp == my_grp) 2236 goto no_join; 2237 2238 /* 2239 * Only join the other group if its bigger; if we're the bigger group, 2240 * the other task will join us. 2241 */ 2242 if (my_grp->nr_tasks > grp->nr_tasks) 2243 goto no_join; 2244 2245 /* 2246 * Tie-break on the grp address. 2247 */ 2248 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2249 goto no_join; 2250 2251 /* Always join threads in the same process. */ 2252 if (tsk->mm == current->mm) 2253 join = true; 2254 2255 /* Simple filter to avoid false positives due to PID collisions */ 2256 if (flags & TNF_SHARED) 2257 join = true; 2258 2259 /* Update priv based on whether false sharing was detected */ 2260 *priv = !join; 2261 2262 if (join && !get_numa_group(grp)) 2263 goto no_join; 2264 2265 rcu_read_unlock(); 2266 2267 if (!join) 2268 return; 2269 2270 BUG_ON(irqs_disabled()); 2271 double_lock_irq(&my_grp->lock, &grp->lock); 2272 2273 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2274 my_grp->faults[i] -= p->numa_faults[i]; 2275 grp->faults[i] += p->numa_faults[i]; 2276 } 2277 my_grp->total_faults -= p->total_numa_faults; 2278 grp->total_faults += p->total_numa_faults; 2279 2280 my_grp->nr_tasks--; 2281 grp->nr_tasks++; 2282 2283 spin_unlock(&my_grp->lock); 2284 spin_unlock_irq(&grp->lock); 2285 2286 rcu_assign_pointer(p->numa_group, grp); 2287 2288 put_numa_group(my_grp); 2289 return; 2290 2291 no_join: 2292 rcu_read_unlock(); 2293 return; 2294 } 2295 2296 void task_numa_free(struct task_struct *p) 2297 { 2298 struct numa_group *grp = p->numa_group; 2299 void *numa_faults = p->numa_faults; 2300 unsigned long flags; 2301 int i; 2302 2303 if (grp) { 2304 spin_lock_irqsave(&grp->lock, flags); 2305 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2306 grp->faults[i] -= p->numa_faults[i]; 2307 grp->total_faults -= p->total_numa_faults; 2308 2309 grp->nr_tasks--; 2310 spin_unlock_irqrestore(&grp->lock, flags); 2311 RCU_INIT_POINTER(p->numa_group, NULL); 2312 put_numa_group(grp); 2313 } 2314 2315 p->numa_faults = NULL; 2316 kfree(numa_faults); 2317 } 2318 2319 /* 2320 * Got a PROT_NONE fault for a page on @node. 2321 */ 2322 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2323 { 2324 struct task_struct *p = current; 2325 bool migrated = flags & TNF_MIGRATED; 2326 int cpu_node = task_node(current); 2327 int local = !!(flags & TNF_FAULT_LOCAL); 2328 struct numa_group *ng; 2329 int priv; 2330 2331 if (!static_branch_likely(&sched_numa_balancing)) 2332 return; 2333 2334 /* for example, ksmd faulting in a user's mm */ 2335 if (!p->mm) 2336 return; 2337 2338 /* Allocate buffer to track faults on a per-node basis */ 2339 if (unlikely(!p->numa_faults)) { 2340 int size = sizeof(*p->numa_faults) * 2341 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2342 2343 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2344 if (!p->numa_faults) 2345 return; 2346 2347 p->total_numa_faults = 0; 2348 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2349 } 2350 2351 /* 2352 * First accesses are treated as private, otherwise consider accesses 2353 * to be private if the accessing pid has not changed 2354 */ 2355 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2356 priv = 1; 2357 } else { 2358 priv = cpupid_match_pid(p, last_cpupid); 2359 if (!priv && !(flags & TNF_NO_GROUP)) 2360 task_numa_group(p, last_cpupid, flags, &priv); 2361 } 2362 2363 /* 2364 * If a workload spans multiple NUMA nodes, a shared fault that 2365 * occurs wholly within the set of nodes that the workload is 2366 * actively using should be counted as local. This allows the 2367 * scan rate to slow down when a workload has settled down. 2368 */ 2369 ng = p->numa_group; 2370 if (!priv && !local && ng && ng->active_nodes > 1 && 2371 numa_is_active_node(cpu_node, ng) && 2372 numa_is_active_node(mem_node, ng)) 2373 local = 1; 2374 2375 task_numa_placement(p); 2376 2377 /* 2378 * Retry task to preferred node migration periodically, in case it 2379 * case it previously failed, or the scheduler moved us. 2380 */ 2381 if (time_after(jiffies, p->numa_migrate_retry)) 2382 numa_migrate_preferred(p); 2383 2384 if (migrated) 2385 p->numa_pages_migrated += pages; 2386 if (flags & TNF_MIGRATE_FAIL) 2387 p->numa_faults_locality[2] += pages; 2388 2389 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2390 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2391 p->numa_faults_locality[local] += pages; 2392 } 2393 2394 static void reset_ptenuma_scan(struct task_struct *p) 2395 { 2396 /* 2397 * We only did a read acquisition of the mmap sem, so 2398 * p->mm->numa_scan_seq is written to without exclusive access 2399 * and the update is not guaranteed to be atomic. That's not 2400 * much of an issue though, since this is just used for 2401 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2402 * expensive, to avoid any form of compiler optimizations: 2403 */ 2404 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2405 p->mm->numa_scan_offset = 0; 2406 } 2407 2408 /* 2409 * The expensive part of numa migration is done from task_work context. 2410 * Triggered from task_tick_numa(). 2411 */ 2412 void task_numa_work(struct callback_head *work) 2413 { 2414 unsigned long migrate, next_scan, now = jiffies; 2415 struct task_struct *p = current; 2416 struct mm_struct *mm = p->mm; 2417 u64 runtime = p->se.sum_exec_runtime; 2418 struct vm_area_struct *vma; 2419 unsigned long start, end; 2420 unsigned long nr_pte_updates = 0; 2421 long pages, virtpages; 2422 2423 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2424 2425 work->next = work; /* protect against double add */ 2426 /* 2427 * Who cares about NUMA placement when they're dying. 2428 * 2429 * NOTE: make sure not to dereference p->mm before this check, 2430 * exit_task_work() happens _after_ exit_mm() so we could be called 2431 * without p->mm even though we still had it when we enqueued this 2432 * work. 2433 */ 2434 if (p->flags & PF_EXITING) 2435 return; 2436 2437 if (!mm->numa_next_scan) { 2438 mm->numa_next_scan = now + 2439 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2440 } 2441 2442 /* 2443 * Enforce maximal scan/migration frequency.. 2444 */ 2445 migrate = mm->numa_next_scan; 2446 if (time_before(now, migrate)) 2447 return; 2448 2449 if (p->numa_scan_period == 0) { 2450 p->numa_scan_period_max = task_scan_max(p); 2451 p->numa_scan_period = task_scan_min(p); 2452 } 2453 2454 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2455 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2456 return; 2457 2458 /* 2459 * Delay this task enough that another task of this mm will likely win 2460 * the next time around. 2461 */ 2462 p->node_stamp += 2 * TICK_NSEC; 2463 2464 start = mm->numa_scan_offset; 2465 pages = sysctl_numa_balancing_scan_size; 2466 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2467 virtpages = pages * 8; /* Scan up to this much virtual space */ 2468 if (!pages) 2469 return; 2470 2471 2472 down_read(&mm->mmap_sem); 2473 vma = find_vma(mm, start); 2474 if (!vma) { 2475 reset_ptenuma_scan(p); 2476 start = 0; 2477 vma = mm->mmap; 2478 } 2479 for (; vma; vma = vma->vm_next) { 2480 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2481 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2482 continue; 2483 } 2484 2485 /* 2486 * Shared library pages mapped by multiple processes are not 2487 * migrated as it is expected they are cache replicated. Avoid 2488 * hinting faults in read-only file-backed mappings or the vdso 2489 * as migrating the pages will be of marginal benefit. 2490 */ 2491 if (!vma->vm_mm || 2492 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2493 continue; 2494 2495 /* 2496 * Skip inaccessible VMAs to avoid any confusion between 2497 * PROT_NONE and NUMA hinting ptes 2498 */ 2499 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2500 continue; 2501 2502 do { 2503 start = max(start, vma->vm_start); 2504 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2505 end = min(end, vma->vm_end); 2506 nr_pte_updates = change_prot_numa(vma, start, end); 2507 2508 /* 2509 * Try to scan sysctl_numa_balancing_size worth of 2510 * hpages that have at least one present PTE that 2511 * is not already pte-numa. If the VMA contains 2512 * areas that are unused or already full of prot_numa 2513 * PTEs, scan up to virtpages, to skip through those 2514 * areas faster. 2515 */ 2516 if (nr_pte_updates) 2517 pages -= (end - start) >> PAGE_SHIFT; 2518 virtpages -= (end - start) >> PAGE_SHIFT; 2519 2520 start = end; 2521 if (pages <= 0 || virtpages <= 0) 2522 goto out; 2523 2524 cond_resched(); 2525 } while (end != vma->vm_end); 2526 } 2527 2528 out: 2529 /* 2530 * It is possible to reach the end of the VMA list but the last few 2531 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2532 * would find the !migratable VMA on the next scan but not reset the 2533 * scanner to the start so check it now. 2534 */ 2535 if (vma) 2536 mm->numa_scan_offset = start; 2537 else 2538 reset_ptenuma_scan(p); 2539 up_read(&mm->mmap_sem); 2540 2541 /* 2542 * Make sure tasks use at least 32x as much time to run other code 2543 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2544 * Usually update_task_scan_period slows down scanning enough; on an 2545 * overloaded system we need to limit overhead on a per task basis. 2546 */ 2547 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2548 u64 diff = p->se.sum_exec_runtime - runtime; 2549 p->node_stamp += 32 * diff; 2550 } 2551 } 2552 2553 /* 2554 * Drive the periodic memory faults.. 2555 */ 2556 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2557 { 2558 struct callback_head *work = &curr->numa_work; 2559 u64 period, now; 2560 2561 /* 2562 * We don't care about NUMA placement if we don't have memory. 2563 */ 2564 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2565 return; 2566 2567 /* 2568 * Using runtime rather than walltime has the dual advantage that 2569 * we (mostly) drive the selection from busy threads and that the 2570 * task needs to have done some actual work before we bother with 2571 * NUMA placement. 2572 */ 2573 now = curr->se.sum_exec_runtime; 2574 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2575 2576 if (now > curr->node_stamp + period) { 2577 if (!curr->node_stamp) 2578 curr->numa_scan_period = task_scan_min(curr); 2579 curr->node_stamp += period; 2580 2581 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2582 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2583 task_work_add(curr, work, true); 2584 } 2585 } 2586 } 2587 #else 2588 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2589 { 2590 } 2591 2592 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2593 { 2594 } 2595 2596 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2597 { 2598 } 2599 #endif /* CONFIG_NUMA_BALANCING */ 2600 2601 static void 2602 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2603 { 2604 update_load_add(&cfs_rq->load, se->load.weight); 2605 if (!parent_entity(se)) 2606 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2607 #ifdef CONFIG_SMP 2608 if (entity_is_task(se)) { 2609 struct rq *rq = rq_of(cfs_rq); 2610 2611 account_numa_enqueue(rq, task_of(se)); 2612 list_add(&se->group_node, &rq->cfs_tasks); 2613 } 2614 #endif 2615 cfs_rq->nr_running++; 2616 } 2617 2618 static void 2619 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2620 { 2621 update_load_sub(&cfs_rq->load, se->load.weight); 2622 if (!parent_entity(se)) 2623 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2624 #ifdef CONFIG_SMP 2625 if (entity_is_task(se)) { 2626 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2627 list_del_init(&se->group_node); 2628 } 2629 #endif 2630 cfs_rq->nr_running--; 2631 } 2632 2633 #ifdef CONFIG_FAIR_GROUP_SCHED 2634 # ifdef CONFIG_SMP 2635 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2636 { 2637 long tg_weight, load, shares; 2638 2639 /* 2640 * This really should be: cfs_rq->avg.load_avg, but instead we use 2641 * cfs_rq->load.weight, which is its upper bound. This helps ramp up 2642 * the shares for small weight interactive tasks. 2643 */ 2644 load = scale_load_down(cfs_rq->load.weight); 2645 2646 tg_weight = atomic_long_read(&tg->load_avg); 2647 2648 /* Ensure tg_weight >= load */ 2649 tg_weight -= cfs_rq->tg_load_avg_contrib; 2650 tg_weight += load; 2651 2652 shares = (tg->shares * load); 2653 if (tg_weight) 2654 shares /= tg_weight; 2655 2656 /* 2657 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2658 * of a group with small tg->shares value. It is a floor value which is 2659 * assigned as a minimum load.weight to the sched_entity representing 2660 * the group on a CPU. 2661 * 2662 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2663 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2664 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2665 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2666 * instead of 0. 2667 */ 2668 if (shares < MIN_SHARES) 2669 shares = MIN_SHARES; 2670 if (shares > tg->shares) 2671 shares = tg->shares; 2672 2673 return shares; 2674 } 2675 # else /* CONFIG_SMP */ 2676 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2677 { 2678 return tg->shares; 2679 } 2680 # endif /* CONFIG_SMP */ 2681 2682 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2683 unsigned long weight) 2684 { 2685 if (se->on_rq) { 2686 /* commit outstanding execution time */ 2687 if (cfs_rq->curr == se) 2688 update_curr(cfs_rq); 2689 account_entity_dequeue(cfs_rq, se); 2690 } 2691 2692 update_load_set(&se->load, weight); 2693 2694 if (se->on_rq) 2695 account_entity_enqueue(cfs_rq, se); 2696 } 2697 2698 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2699 2700 static void update_cfs_shares(struct sched_entity *se) 2701 { 2702 struct cfs_rq *cfs_rq = group_cfs_rq(se); 2703 struct task_group *tg; 2704 long shares; 2705 2706 if (!cfs_rq) 2707 return; 2708 2709 if (throttled_hierarchy(cfs_rq)) 2710 return; 2711 2712 tg = cfs_rq->tg; 2713 2714 #ifndef CONFIG_SMP 2715 if (likely(se->load.weight == tg->shares)) 2716 return; 2717 #endif 2718 shares = calc_cfs_shares(cfs_rq, tg); 2719 2720 reweight_entity(cfs_rq_of(se), se, shares); 2721 } 2722 2723 #else /* CONFIG_FAIR_GROUP_SCHED */ 2724 static inline void update_cfs_shares(struct sched_entity *se) 2725 { 2726 } 2727 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2728 2729 #ifdef CONFIG_SMP 2730 /* 2731 * Approximate: 2732 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2733 */ 2734 static u64 decay_load(u64 val, u64 n) 2735 { 2736 unsigned int local_n; 2737 2738 if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2739 return 0; 2740 2741 /* after bounds checking we can collapse to 32-bit */ 2742 local_n = n; 2743 2744 /* 2745 * As y^PERIOD = 1/2, we can combine 2746 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 2747 * With a look-up table which covers y^n (n<PERIOD) 2748 * 2749 * To achieve constant time decay_load. 2750 */ 2751 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2752 val >>= local_n / LOAD_AVG_PERIOD; 2753 local_n %= LOAD_AVG_PERIOD; 2754 } 2755 2756 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 2757 return val; 2758 } 2759 2760 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) 2761 { 2762 u32 c1, c2, c3 = d3; /* y^0 == 1 */ 2763 2764 /* 2765 * c1 = d1 y^p 2766 */ 2767 c1 = decay_load((u64)d1, periods); 2768 2769 /* 2770 * p-1 2771 * c2 = 1024 \Sum y^n 2772 * n=1 2773 * 2774 * inf inf 2775 * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) 2776 * n=0 n=p 2777 */ 2778 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; 2779 2780 return c1 + c2 + c3; 2781 } 2782 2783 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 2784 2785 /* 2786 * Accumulate the three separate parts of the sum; d1 the remainder 2787 * of the last (incomplete) period, d2 the span of full periods and d3 2788 * the remainder of the (incomplete) current period. 2789 * 2790 * d1 d2 d3 2791 * ^ ^ ^ 2792 * | | | 2793 * |<->|<----------------->|<--->| 2794 * ... |---x---|------| ... |------|-----x (now) 2795 * 2796 * p-1 2797 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 2798 * n=1 2799 * 2800 * = u y^p + (Step 1) 2801 * 2802 * p-1 2803 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) 2804 * n=1 2805 */ 2806 static __always_inline u32 2807 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa, 2808 unsigned long weight, int running, struct cfs_rq *cfs_rq) 2809 { 2810 unsigned long scale_freq, scale_cpu; 2811 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ 2812 u64 periods; 2813 2814 scale_freq = arch_scale_freq_capacity(NULL, cpu); 2815 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 2816 2817 delta += sa->period_contrib; 2818 periods = delta / 1024; /* A period is 1024us (~1ms) */ 2819 2820 /* 2821 * Step 1: decay old *_sum if we crossed period boundaries. 2822 */ 2823 if (periods) { 2824 sa->load_sum = decay_load(sa->load_sum, periods); 2825 if (cfs_rq) { 2826 cfs_rq->runnable_load_sum = 2827 decay_load(cfs_rq->runnable_load_sum, periods); 2828 } 2829 sa->util_sum = decay_load((u64)(sa->util_sum), periods); 2830 2831 /* 2832 * Step 2 2833 */ 2834 delta %= 1024; 2835 contrib = __accumulate_pelt_segments(periods, 2836 1024 - sa->period_contrib, delta); 2837 } 2838 sa->period_contrib = delta; 2839 2840 contrib = cap_scale(contrib, scale_freq); 2841 if (weight) { 2842 sa->load_sum += weight * contrib; 2843 if (cfs_rq) 2844 cfs_rq->runnable_load_sum += weight * contrib; 2845 } 2846 if (running) 2847 sa->util_sum += contrib * scale_cpu; 2848 2849 return periods; 2850 } 2851 2852 /* 2853 * We can represent the historical contribution to runnable average as the 2854 * coefficients of a geometric series. To do this we sub-divide our runnable 2855 * history into segments of approximately 1ms (1024us); label the segment that 2856 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2857 * 2858 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2859 * p0 p1 p2 2860 * (now) (~1ms ago) (~2ms ago) 2861 * 2862 * Let u_i denote the fraction of p_i that the entity was runnable. 2863 * 2864 * We then designate the fractions u_i as our co-efficients, yielding the 2865 * following representation of historical load: 2866 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2867 * 2868 * We choose y based on the with of a reasonably scheduling period, fixing: 2869 * y^32 = 0.5 2870 * 2871 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2872 * approximately half as much as the contribution to load within the last ms 2873 * (u_0). 2874 * 2875 * When a period "rolls over" and we have new u_0`, multiplying the previous 2876 * sum again by y is sufficient to update: 2877 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2878 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2879 */ 2880 static __always_inline int 2881 ___update_load_avg(u64 now, int cpu, struct sched_avg *sa, 2882 unsigned long weight, int running, struct cfs_rq *cfs_rq) 2883 { 2884 u64 delta; 2885 2886 delta = now - sa->last_update_time; 2887 /* 2888 * This should only happen when time goes backwards, which it 2889 * unfortunately does during sched clock init when we swap over to TSC. 2890 */ 2891 if ((s64)delta < 0) { 2892 sa->last_update_time = now; 2893 return 0; 2894 } 2895 2896 /* 2897 * Use 1024ns as the unit of measurement since it's a reasonable 2898 * approximation of 1us and fast to compute. 2899 */ 2900 delta >>= 10; 2901 if (!delta) 2902 return 0; 2903 2904 sa->last_update_time += delta << 10; 2905 2906 /* 2907 * Now we know we crossed measurement unit boundaries. The *_avg 2908 * accrues by two steps: 2909 * 2910 * Step 1: accumulate *_sum since last_update_time. If we haven't 2911 * crossed period boundaries, finish. 2912 */ 2913 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq)) 2914 return 0; 2915 2916 /* 2917 * Step 2: update *_avg. 2918 */ 2919 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX); 2920 if (cfs_rq) { 2921 cfs_rq->runnable_load_avg = 2922 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX); 2923 } 2924 sa->util_avg = sa->util_sum / LOAD_AVG_MAX; 2925 2926 return 1; 2927 } 2928 2929 static int 2930 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se) 2931 { 2932 return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL); 2933 } 2934 2935 static int 2936 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se) 2937 { 2938 return ___update_load_avg(now, cpu, &se->avg, 2939 se->on_rq * scale_load_down(se->load.weight), 2940 cfs_rq->curr == se, NULL); 2941 } 2942 2943 static int 2944 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq) 2945 { 2946 return ___update_load_avg(now, cpu, &cfs_rq->avg, 2947 scale_load_down(cfs_rq->load.weight), 2948 cfs_rq->curr != NULL, cfs_rq); 2949 } 2950 2951 /* 2952 * Signed add and clamp on underflow. 2953 * 2954 * Explicitly do a load-store to ensure the intermediate value never hits 2955 * memory. This allows lockless observations without ever seeing the negative 2956 * values. 2957 */ 2958 #define add_positive(_ptr, _val) do { \ 2959 typeof(_ptr) ptr = (_ptr); \ 2960 typeof(_val) val = (_val); \ 2961 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2962 \ 2963 res = var + val; \ 2964 \ 2965 if (val < 0 && res > var) \ 2966 res = 0; \ 2967 \ 2968 WRITE_ONCE(*ptr, res); \ 2969 } while (0) 2970 2971 #ifdef CONFIG_FAIR_GROUP_SCHED 2972 /** 2973 * update_tg_load_avg - update the tg's load avg 2974 * @cfs_rq: the cfs_rq whose avg changed 2975 * @force: update regardless of how small the difference 2976 * 2977 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 2978 * However, because tg->load_avg is a global value there are performance 2979 * considerations. 2980 * 2981 * In order to avoid having to look at the other cfs_rq's, we use a 2982 * differential update where we store the last value we propagated. This in 2983 * turn allows skipping updates if the differential is 'small'. 2984 * 2985 * Updating tg's load_avg is necessary before update_cfs_share() (which is 2986 * done) and effective_load() (which is not done because it is too costly). 2987 */ 2988 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 2989 { 2990 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 2991 2992 /* 2993 * No need to update load_avg for root_task_group as it is not used. 2994 */ 2995 if (cfs_rq->tg == &root_task_group) 2996 return; 2997 2998 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 2999 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3000 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3001 } 3002 } 3003 3004 /* 3005 * Called within set_task_rq() right before setting a task's cpu. The 3006 * caller only guarantees p->pi_lock is held; no other assumptions, 3007 * including the state of rq->lock, should be made. 3008 */ 3009 void set_task_rq_fair(struct sched_entity *se, 3010 struct cfs_rq *prev, struct cfs_rq *next) 3011 { 3012 u64 p_last_update_time; 3013 u64 n_last_update_time; 3014 3015 if (!sched_feat(ATTACH_AGE_LOAD)) 3016 return; 3017 3018 /* 3019 * We are supposed to update the task to "current" time, then its up to 3020 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3021 * getting what current time is, so simply throw away the out-of-date 3022 * time. This will result in the wakee task is less decayed, but giving 3023 * the wakee more load sounds not bad. 3024 */ 3025 if (!(se->avg.last_update_time && prev)) 3026 return; 3027 3028 #ifndef CONFIG_64BIT 3029 { 3030 u64 p_last_update_time_copy; 3031 u64 n_last_update_time_copy; 3032 3033 do { 3034 p_last_update_time_copy = prev->load_last_update_time_copy; 3035 n_last_update_time_copy = next->load_last_update_time_copy; 3036 3037 smp_rmb(); 3038 3039 p_last_update_time = prev->avg.last_update_time; 3040 n_last_update_time = next->avg.last_update_time; 3041 3042 } while (p_last_update_time != p_last_update_time_copy || 3043 n_last_update_time != n_last_update_time_copy); 3044 } 3045 #else 3046 p_last_update_time = prev->avg.last_update_time; 3047 n_last_update_time = next->avg.last_update_time; 3048 #endif 3049 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se); 3050 se->avg.last_update_time = n_last_update_time; 3051 } 3052 3053 /* Take into account change of utilization of a child task group */ 3054 static inline void 3055 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se) 3056 { 3057 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3058 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3059 3060 /* Nothing to update */ 3061 if (!delta) 3062 return; 3063 3064 /* Set new sched_entity's utilization */ 3065 se->avg.util_avg = gcfs_rq->avg.util_avg; 3066 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3067 3068 /* Update parent cfs_rq utilization */ 3069 add_positive(&cfs_rq->avg.util_avg, delta); 3070 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3071 } 3072 3073 /* Take into account change of load of a child task group */ 3074 static inline void 3075 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se) 3076 { 3077 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3078 long delta, load = gcfs_rq->avg.load_avg; 3079 3080 /* 3081 * If the load of group cfs_rq is null, the load of the 3082 * sched_entity will also be null so we can skip the formula 3083 */ 3084 if (load) { 3085 long tg_load; 3086 3087 /* Get tg's load and ensure tg_load > 0 */ 3088 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1; 3089 3090 /* Ensure tg_load >= load and updated with current load*/ 3091 tg_load -= gcfs_rq->tg_load_avg_contrib; 3092 tg_load += load; 3093 3094 /* 3095 * We need to compute a correction term in the case that the 3096 * task group is consuming more CPU than a task of equal 3097 * weight. A task with a weight equals to tg->shares will have 3098 * a load less or equal to scale_load_down(tg->shares). 3099 * Similarly, the sched_entities that represent the task group 3100 * at parent level, can't have a load higher than 3101 * scale_load_down(tg->shares). And the Sum of sched_entities' 3102 * load must be <= scale_load_down(tg->shares). 3103 */ 3104 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) { 3105 /* scale gcfs_rq's load into tg's shares*/ 3106 load *= scale_load_down(gcfs_rq->tg->shares); 3107 load /= tg_load; 3108 } 3109 } 3110 3111 delta = load - se->avg.load_avg; 3112 3113 /* Nothing to update */ 3114 if (!delta) 3115 return; 3116 3117 /* Set new sched_entity's load */ 3118 se->avg.load_avg = load; 3119 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX; 3120 3121 /* Update parent cfs_rq load */ 3122 add_positive(&cfs_rq->avg.load_avg, delta); 3123 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX; 3124 3125 /* 3126 * If the sched_entity is already enqueued, we also have to update the 3127 * runnable load avg. 3128 */ 3129 if (se->on_rq) { 3130 /* Update parent cfs_rq runnable_load_avg */ 3131 add_positive(&cfs_rq->runnable_load_avg, delta); 3132 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX; 3133 } 3134 } 3135 3136 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) 3137 { 3138 cfs_rq->propagate_avg = 1; 3139 } 3140 3141 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se) 3142 { 3143 struct cfs_rq *cfs_rq = group_cfs_rq(se); 3144 3145 if (!cfs_rq->propagate_avg) 3146 return 0; 3147 3148 cfs_rq->propagate_avg = 0; 3149 return 1; 3150 } 3151 3152 /* Update task and its cfs_rq load average */ 3153 static inline int propagate_entity_load_avg(struct sched_entity *se) 3154 { 3155 struct cfs_rq *cfs_rq; 3156 3157 if (entity_is_task(se)) 3158 return 0; 3159 3160 if (!test_and_clear_tg_cfs_propagate(se)) 3161 return 0; 3162 3163 cfs_rq = cfs_rq_of(se); 3164 3165 set_tg_cfs_propagate(cfs_rq); 3166 3167 update_tg_cfs_util(cfs_rq, se); 3168 update_tg_cfs_load(cfs_rq, se); 3169 3170 return 1; 3171 } 3172 3173 /* 3174 * Check if we need to update the load and the utilization of a blocked 3175 * group_entity: 3176 */ 3177 static inline bool skip_blocked_update(struct sched_entity *se) 3178 { 3179 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3180 3181 /* 3182 * If sched_entity still have not zero load or utilization, we have to 3183 * decay it: 3184 */ 3185 if (se->avg.load_avg || se->avg.util_avg) 3186 return false; 3187 3188 /* 3189 * If there is a pending propagation, we have to update the load and 3190 * the utilization of the sched_entity: 3191 */ 3192 if (gcfs_rq->propagate_avg) 3193 return false; 3194 3195 /* 3196 * Otherwise, the load and the utilization of the sched_entity is 3197 * already zero and there is no pending propagation, so it will be a 3198 * waste of time to try to decay it: 3199 */ 3200 return true; 3201 } 3202 3203 #else /* CONFIG_FAIR_GROUP_SCHED */ 3204 3205 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3206 3207 static inline int propagate_entity_load_avg(struct sched_entity *se) 3208 { 3209 return 0; 3210 } 3211 3212 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {} 3213 3214 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3215 3216 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq) 3217 { 3218 if (&this_rq()->cfs == cfs_rq) { 3219 /* 3220 * There are a few boundary cases this might miss but it should 3221 * get called often enough that that should (hopefully) not be 3222 * a real problem -- added to that it only calls on the local 3223 * CPU, so if we enqueue remotely we'll miss an update, but 3224 * the next tick/schedule should update. 3225 * 3226 * It will not get called when we go idle, because the idle 3227 * thread is a different class (!fair), nor will the utilization 3228 * number include things like RT tasks. 3229 * 3230 * As is, the util number is not freq-invariant (we'd have to 3231 * implement arch_scale_freq_capacity() for that). 3232 * 3233 * See cpu_util(). 3234 */ 3235 cpufreq_update_util(rq_of(cfs_rq), 0); 3236 } 3237 } 3238 3239 /* 3240 * Unsigned subtract and clamp on underflow. 3241 * 3242 * Explicitly do a load-store to ensure the intermediate value never hits 3243 * memory. This allows lockless observations without ever seeing the negative 3244 * values. 3245 */ 3246 #define sub_positive(_ptr, _val) do { \ 3247 typeof(_ptr) ptr = (_ptr); \ 3248 typeof(*ptr) val = (_val); \ 3249 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3250 res = var - val; \ 3251 if (res > var) \ 3252 res = 0; \ 3253 WRITE_ONCE(*ptr, res); \ 3254 } while (0) 3255 3256 /** 3257 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3258 * @now: current time, as per cfs_rq_clock_task() 3259 * @cfs_rq: cfs_rq to update 3260 * @update_freq: should we call cfs_rq_util_change() or will the call do so 3261 * 3262 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3263 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3264 * post_init_entity_util_avg(). 3265 * 3266 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3267 * 3268 * Returns true if the load decayed or we removed load. 3269 * 3270 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3271 * call update_tg_load_avg() when this function returns true. 3272 */ 3273 static inline int 3274 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq) 3275 { 3276 struct sched_avg *sa = &cfs_rq->avg; 3277 int decayed, removed_load = 0, removed_util = 0; 3278 3279 if (atomic_long_read(&cfs_rq->removed_load_avg)) { 3280 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); 3281 sub_positive(&sa->load_avg, r); 3282 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX); 3283 removed_load = 1; 3284 set_tg_cfs_propagate(cfs_rq); 3285 } 3286 3287 if (atomic_long_read(&cfs_rq->removed_util_avg)) { 3288 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); 3289 sub_positive(&sa->util_avg, r); 3290 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX); 3291 removed_util = 1; 3292 set_tg_cfs_propagate(cfs_rq); 3293 } 3294 3295 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq); 3296 3297 #ifndef CONFIG_64BIT 3298 smp_wmb(); 3299 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3300 #endif 3301 3302 if (update_freq && (decayed || removed_util)) 3303 cfs_rq_util_change(cfs_rq); 3304 3305 return decayed || removed_load; 3306 } 3307 3308 /* 3309 * Optional action to be done while updating the load average 3310 */ 3311 #define UPDATE_TG 0x1 3312 #define SKIP_AGE_LOAD 0x2 3313 3314 /* Update task and its cfs_rq load average */ 3315 static inline void update_load_avg(struct sched_entity *se, int flags) 3316 { 3317 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3318 u64 now = cfs_rq_clock_task(cfs_rq); 3319 struct rq *rq = rq_of(cfs_rq); 3320 int cpu = cpu_of(rq); 3321 int decayed; 3322 3323 /* 3324 * Track task load average for carrying it to new CPU after migrated, and 3325 * track group sched_entity load average for task_h_load calc in migration 3326 */ 3327 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3328 __update_load_avg_se(now, cpu, cfs_rq, se); 3329 3330 decayed = update_cfs_rq_load_avg(now, cfs_rq, true); 3331 decayed |= propagate_entity_load_avg(se); 3332 3333 if (decayed && (flags & UPDATE_TG)) 3334 update_tg_load_avg(cfs_rq, 0); 3335 } 3336 3337 /** 3338 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3339 * @cfs_rq: cfs_rq to attach to 3340 * @se: sched_entity to attach 3341 * 3342 * Must call update_cfs_rq_load_avg() before this, since we rely on 3343 * cfs_rq->avg.last_update_time being current. 3344 */ 3345 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3346 { 3347 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3348 cfs_rq->avg.load_avg += se->avg.load_avg; 3349 cfs_rq->avg.load_sum += se->avg.load_sum; 3350 cfs_rq->avg.util_avg += se->avg.util_avg; 3351 cfs_rq->avg.util_sum += se->avg.util_sum; 3352 set_tg_cfs_propagate(cfs_rq); 3353 3354 cfs_rq_util_change(cfs_rq); 3355 } 3356 3357 /** 3358 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3359 * @cfs_rq: cfs_rq to detach from 3360 * @se: sched_entity to detach 3361 * 3362 * Must call update_cfs_rq_load_avg() before this, since we rely on 3363 * cfs_rq->avg.last_update_time being current. 3364 */ 3365 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3366 { 3367 3368 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3369 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum); 3370 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3371 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3372 set_tg_cfs_propagate(cfs_rq); 3373 3374 cfs_rq_util_change(cfs_rq); 3375 } 3376 3377 /* Add the load generated by se into cfs_rq's load average */ 3378 static inline void 3379 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3380 { 3381 struct sched_avg *sa = &se->avg; 3382 3383 cfs_rq->runnable_load_avg += sa->load_avg; 3384 cfs_rq->runnable_load_sum += sa->load_sum; 3385 3386 if (!sa->last_update_time) { 3387 attach_entity_load_avg(cfs_rq, se); 3388 update_tg_load_avg(cfs_rq, 0); 3389 } 3390 } 3391 3392 /* Remove the runnable load generated by se from cfs_rq's runnable load average */ 3393 static inline void 3394 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3395 { 3396 cfs_rq->runnable_load_avg = 3397 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0); 3398 cfs_rq->runnable_load_sum = 3399 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0); 3400 } 3401 3402 #ifndef CONFIG_64BIT 3403 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3404 { 3405 u64 last_update_time_copy; 3406 u64 last_update_time; 3407 3408 do { 3409 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3410 smp_rmb(); 3411 last_update_time = cfs_rq->avg.last_update_time; 3412 } while (last_update_time != last_update_time_copy); 3413 3414 return last_update_time; 3415 } 3416 #else 3417 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3418 { 3419 return cfs_rq->avg.last_update_time; 3420 } 3421 #endif 3422 3423 /* 3424 * Synchronize entity load avg of dequeued entity without locking 3425 * the previous rq. 3426 */ 3427 void sync_entity_load_avg(struct sched_entity *se) 3428 { 3429 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3430 u64 last_update_time; 3431 3432 last_update_time = cfs_rq_last_update_time(cfs_rq); 3433 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se); 3434 } 3435 3436 /* 3437 * Task first catches up with cfs_rq, and then subtract 3438 * itself from the cfs_rq (task must be off the queue now). 3439 */ 3440 void remove_entity_load_avg(struct sched_entity *se) 3441 { 3442 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3443 3444 /* 3445 * tasks cannot exit without having gone through wake_up_new_task() -> 3446 * post_init_entity_util_avg() which will have added things to the 3447 * cfs_rq, so we can remove unconditionally. 3448 * 3449 * Similarly for groups, they will have passed through 3450 * post_init_entity_util_avg() before unregister_sched_fair_group() 3451 * calls this. 3452 */ 3453 3454 sync_entity_load_avg(se); 3455 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg); 3456 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg); 3457 } 3458 3459 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3460 { 3461 return cfs_rq->runnable_load_avg; 3462 } 3463 3464 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3465 { 3466 return cfs_rq->avg.load_avg; 3467 } 3468 3469 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3470 3471 #else /* CONFIG_SMP */ 3472 3473 static inline int 3474 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq) 3475 { 3476 return 0; 3477 } 3478 3479 #define UPDATE_TG 0x0 3480 #define SKIP_AGE_LOAD 0x0 3481 3482 static inline void update_load_avg(struct sched_entity *se, int not_used1) 3483 { 3484 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0); 3485 } 3486 3487 static inline void 3488 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3489 static inline void 3490 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3491 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3492 3493 static inline void 3494 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3495 static inline void 3496 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3497 3498 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3499 { 3500 return 0; 3501 } 3502 3503 #endif /* CONFIG_SMP */ 3504 3505 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3506 { 3507 #ifdef CONFIG_SCHED_DEBUG 3508 s64 d = se->vruntime - cfs_rq->min_vruntime; 3509 3510 if (d < 0) 3511 d = -d; 3512 3513 if (d > 3*sysctl_sched_latency) 3514 schedstat_inc(cfs_rq->nr_spread_over); 3515 #endif 3516 } 3517 3518 static void 3519 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3520 { 3521 u64 vruntime = cfs_rq->min_vruntime; 3522 3523 /* 3524 * The 'current' period is already promised to the current tasks, 3525 * however the extra weight of the new task will slow them down a 3526 * little, place the new task so that it fits in the slot that 3527 * stays open at the end. 3528 */ 3529 if (initial && sched_feat(START_DEBIT)) 3530 vruntime += sched_vslice(cfs_rq, se); 3531 3532 /* sleeps up to a single latency don't count. */ 3533 if (!initial) { 3534 unsigned long thresh = sysctl_sched_latency; 3535 3536 /* 3537 * Halve their sleep time's effect, to allow 3538 * for a gentler effect of sleepers: 3539 */ 3540 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3541 thresh >>= 1; 3542 3543 vruntime -= thresh; 3544 } 3545 3546 /* ensure we never gain time by being placed backwards. */ 3547 se->vruntime = max_vruntime(se->vruntime, vruntime); 3548 } 3549 3550 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3551 3552 static inline void check_schedstat_required(void) 3553 { 3554 #ifdef CONFIG_SCHEDSTATS 3555 if (schedstat_enabled()) 3556 return; 3557 3558 /* Force schedstat enabled if a dependent tracepoint is active */ 3559 if (trace_sched_stat_wait_enabled() || 3560 trace_sched_stat_sleep_enabled() || 3561 trace_sched_stat_iowait_enabled() || 3562 trace_sched_stat_blocked_enabled() || 3563 trace_sched_stat_runtime_enabled()) { 3564 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3565 "stat_blocked and stat_runtime require the " 3566 "kernel parameter schedstats=enabled or " 3567 "kernel.sched_schedstats=1\n"); 3568 } 3569 #endif 3570 } 3571 3572 3573 /* 3574 * MIGRATION 3575 * 3576 * dequeue 3577 * update_curr() 3578 * update_min_vruntime() 3579 * vruntime -= min_vruntime 3580 * 3581 * enqueue 3582 * update_curr() 3583 * update_min_vruntime() 3584 * vruntime += min_vruntime 3585 * 3586 * this way the vruntime transition between RQs is done when both 3587 * min_vruntime are up-to-date. 3588 * 3589 * WAKEUP (remote) 3590 * 3591 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3592 * vruntime -= min_vruntime 3593 * 3594 * enqueue 3595 * update_curr() 3596 * update_min_vruntime() 3597 * vruntime += min_vruntime 3598 * 3599 * this way we don't have the most up-to-date min_vruntime on the originating 3600 * CPU and an up-to-date min_vruntime on the destination CPU. 3601 */ 3602 3603 static void 3604 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3605 { 3606 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3607 bool curr = cfs_rq->curr == se; 3608 3609 /* 3610 * If we're the current task, we must renormalise before calling 3611 * update_curr(). 3612 */ 3613 if (renorm && curr) 3614 se->vruntime += cfs_rq->min_vruntime; 3615 3616 update_curr(cfs_rq); 3617 3618 /* 3619 * Otherwise, renormalise after, such that we're placed at the current 3620 * moment in time, instead of some random moment in the past. Being 3621 * placed in the past could significantly boost this task to the 3622 * fairness detriment of existing tasks. 3623 */ 3624 if (renorm && !curr) 3625 se->vruntime += cfs_rq->min_vruntime; 3626 3627 /* 3628 * When enqueuing a sched_entity, we must: 3629 * - Update loads to have both entity and cfs_rq synced with now. 3630 * - Add its load to cfs_rq->runnable_avg 3631 * - For group_entity, update its weight to reflect the new share of 3632 * its group cfs_rq 3633 * - Add its new weight to cfs_rq->load.weight 3634 */ 3635 update_load_avg(se, UPDATE_TG); 3636 enqueue_entity_load_avg(cfs_rq, se); 3637 update_cfs_shares(se); 3638 account_entity_enqueue(cfs_rq, se); 3639 3640 if (flags & ENQUEUE_WAKEUP) 3641 place_entity(cfs_rq, se, 0); 3642 3643 check_schedstat_required(); 3644 update_stats_enqueue(cfs_rq, se, flags); 3645 check_spread(cfs_rq, se); 3646 if (!curr) 3647 __enqueue_entity(cfs_rq, se); 3648 se->on_rq = 1; 3649 3650 if (cfs_rq->nr_running == 1) { 3651 list_add_leaf_cfs_rq(cfs_rq); 3652 check_enqueue_throttle(cfs_rq); 3653 } 3654 } 3655 3656 static void __clear_buddies_last(struct sched_entity *se) 3657 { 3658 for_each_sched_entity(se) { 3659 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3660 if (cfs_rq->last != se) 3661 break; 3662 3663 cfs_rq->last = NULL; 3664 } 3665 } 3666 3667 static void __clear_buddies_next(struct sched_entity *se) 3668 { 3669 for_each_sched_entity(se) { 3670 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3671 if (cfs_rq->next != se) 3672 break; 3673 3674 cfs_rq->next = NULL; 3675 } 3676 } 3677 3678 static void __clear_buddies_skip(struct sched_entity *se) 3679 { 3680 for_each_sched_entity(se) { 3681 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3682 if (cfs_rq->skip != se) 3683 break; 3684 3685 cfs_rq->skip = NULL; 3686 } 3687 } 3688 3689 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3690 { 3691 if (cfs_rq->last == se) 3692 __clear_buddies_last(se); 3693 3694 if (cfs_rq->next == se) 3695 __clear_buddies_next(se); 3696 3697 if (cfs_rq->skip == se) 3698 __clear_buddies_skip(se); 3699 } 3700 3701 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3702 3703 static void 3704 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3705 { 3706 /* 3707 * Update run-time statistics of the 'current'. 3708 */ 3709 update_curr(cfs_rq); 3710 3711 /* 3712 * When dequeuing a sched_entity, we must: 3713 * - Update loads to have both entity and cfs_rq synced with now. 3714 * - Substract its load from the cfs_rq->runnable_avg. 3715 * - Substract its previous weight from cfs_rq->load.weight. 3716 * - For group entity, update its weight to reflect the new share 3717 * of its group cfs_rq. 3718 */ 3719 update_load_avg(se, UPDATE_TG); 3720 dequeue_entity_load_avg(cfs_rq, se); 3721 3722 update_stats_dequeue(cfs_rq, se, flags); 3723 3724 clear_buddies(cfs_rq, se); 3725 3726 if (se != cfs_rq->curr) 3727 __dequeue_entity(cfs_rq, se); 3728 se->on_rq = 0; 3729 account_entity_dequeue(cfs_rq, se); 3730 3731 /* 3732 * Normalize after update_curr(); which will also have moved 3733 * min_vruntime if @se is the one holding it back. But before doing 3734 * update_min_vruntime() again, which will discount @se's position and 3735 * can move min_vruntime forward still more. 3736 */ 3737 if (!(flags & DEQUEUE_SLEEP)) 3738 se->vruntime -= cfs_rq->min_vruntime; 3739 3740 /* return excess runtime on last dequeue */ 3741 return_cfs_rq_runtime(cfs_rq); 3742 3743 update_cfs_shares(se); 3744 3745 /* 3746 * Now advance min_vruntime if @se was the entity holding it back, 3747 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 3748 * put back on, and if we advance min_vruntime, we'll be placed back 3749 * further than we started -- ie. we'll be penalized. 3750 */ 3751 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 3752 update_min_vruntime(cfs_rq); 3753 } 3754 3755 /* 3756 * Preempt the current task with a newly woken task if needed: 3757 */ 3758 static void 3759 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3760 { 3761 unsigned long ideal_runtime, delta_exec; 3762 struct sched_entity *se; 3763 s64 delta; 3764 3765 ideal_runtime = sched_slice(cfs_rq, curr); 3766 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3767 if (delta_exec > ideal_runtime) { 3768 resched_curr(rq_of(cfs_rq)); 3769 /* 3770 * The current task ran long enough, ensure it doesn't get 3771 * re-elected due to buddy favours. 3772 */ 3773 clear_buddies(cfs_rq, curr); 3774 return; 3775 } 3776 3777 /* 3778 * Ensure that a task that missed wakeup preemption by a 3779 * narrow margin doesn't have to wait for a full slice. 3780 * This also mitigates buddy induced latencies under load. 3781 */ 3782 if (delta_exec < sysctl_sched_min_granularity) 3783 return; 3784 3785 se = __pick_first_entity(cfs_rq); 3786 delta = curr->vruntime - se->vruntime; 3787 3788 if (delta < 0) 3789 return; 3790 3791 if (delta > ideal_runtime) 3792 resched_curr(rq_of(cfs_rq)); 3793 } 3794 3795 static void 3796 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3797 { 3798 /* 'current' is not kept within the tree. */ 3799 if (se->on_rq) { 3800 /* 3801 * Any task has to be enqueued before it get to execute on 3802 * a CPU. So account for the time it spent waiting on the 3803 * runqueue. 3804 */ 3805 update_stats_wait_end(cfs_rq, se); 3806 __dequeue_entity(cfs_rq, se); 3807 update_load_avg(se, UPDATE_TG); 3808 } 3809 3810 update_stats_curr_start(cfs_rq, se); 3811 cfs_rq->curr = se; 3812 3813 /* 3814 * Track our maximum slice length, if the CPU's load is at 3815 * least twice that of our own weight (i.e. dont track it 3816 * when there are only lesser-weight tasks around): 3817 */ 3818 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3819 schedstat_set(se->statistics.slice_max, 3820 max((u64)schedstat_val(se->statistics.slice_max), 3821 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 3822 } 3823 3824 se->prev_sum_exec_runtime = se->sum_exec_runtime; 3825 } 3826 3827 static int 3828 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 3829 3830 /* 3831 * Pick the next process, keeping these things in mind, in this order: 3832 * 1) keep things fair between processes/task groups 3833 * 2) pick the "next" process, since someone really wants that to run 3834 * 3) pick the "last" process, for cache locality 3835 * 4) do not run the "skip" process, if something else is available 3836 */ 3837 static struct sched_entity * 3838 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3839 { 3840 struct sched_entity *left = __pick_first_entity(cfs_rq); 3841 struct sched_entity *se; 3842 3843 /* 3844 * If curr is set we have to see if its left of the leftmost entity 3845 * still in the tree, provided there was anything in the tree at all. 3846 */ 3847 if (!left || (curr && entity_before(curr, left))) 3848 left = curr; 3849 3850 se = left; /* ideally we run the leftmost entity */ 3851 3852 /* 3853 * Avoid running the skip buddy, if running something else can 3854 * be done without getting too unfair. 3855 */ 3856 if (cfs_rq->skip == se) { 3857 struct sched_entity *second; 3858 3859 if (se == curr) { 3860 second = __pick_first_entity(cfs_rq); 3861 } else { 3862 second = __pick_next_entity(se); 3863 if (!second || (curr && entity_before(curr, second))) 3864 second = curr; 3865 } 3866 3867 if (second && wakeup_preempt_entity(second, left) < 1) 3868 se = second; 3869 } 3870 3871 /* 3872 * Prefer last buddy, try to return the CPU to a preempted task. 3873 */ 3874 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3875 se = cfs_rq->last; 3876 3877 /* 3878 * Someone really wants this to run. If it's not unfair, run it. 3879 */ 3880 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3881 se = cfs_rq->next; 3882 3883 clear_buddies(cfs_rq, se); 3884 3885 return se; 3886 } 3887 3888 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3889 3890 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3891 { 3892 /* 3893 * If still on the runqueue then deactivate_task() 3894 * was not called and update_curr() has to be done: 3895 */ 3896 if (prev->on_rq) 3897 update_curr(cfs_rq); 3898 3899 /* throttle cfs_rqs exceeding runtime */ 3900 check_cfs_rq_runtime(cfs_rq); 3901 3902 check_spread(cfs_rq, prev); 3903 3904 if (prev->on_rq) { 3905 update_stats_wait_start(cfs_rq, prev); 3906 /* Put 'current' back into the tree. */ 3907 __enqueue_entity(cfs_rq, prev); 3908 /* in !on_rq case, update occurred at dequeue */ 3909 update_load_avg(prev, 0); 3910 } 3911 cfs_rq->curr = NULL; 3912 } 3913 3914 static void 3915 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3916 { 3917 /* 3918 * Update run-time statistics of the 'current'. 3919 */ 3920 update_curr(cfs_rq); 3921 3922 /* 3923 * Ensure that runnable average is periodically updated. 3924 */ 3925 update_load_avg(curr, UPDATE_TG); 3926 update_cfs_shares(curr); 3927 3928 #ifdef CONFIG_SCHED_HRTICK 3929 /* 3930 * queued ticks are scheduled to match the slice, so don't bother 3931 * validating it and just reschedule. 3932 */ 3933 if (queued) { 3934 resched_curr(rq_of(cfs_rq)); 3935 return; 3936 } 3937 /* 3938 * don't let the period tick interfere with the hrtick preemption 3939 */ 3940 if (!sched_feat(DOUBLE_TICK) && 3941 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3942 return; 3943 #endif 3944 3945 if (cfs_rq->nr_running > 1) 3946 check_preempt_tick(cfs_rq, curr); 3947 } 3948 3949 3950 /************************************************** 3951 * CFS bandwidth control machinery 3952 */ 3953 3954 #ifdef CONFIG_CFS_BANDWIDTH 3955 3956 #ifdef HAVE_JUMP_LABEL 3957 static struct static_key __cfs_bandwidth_used; 3958 3959 static inline bool cfs_bandwidth_used(void) 3960 { 3961 return static_key_false(&__cfs_bandwidth_used); 3962 } 3963 3964 void cfs_bandwidth_usage_inc(void) 3965 { 3966 static_key_slow_inc(&__cfs_bandwidth_used); 3967 } 3968 3969 void cfs_bandwidth_usage_dec(void) 3970 { 3971 static_key_slow_dec(&__cfs_bandwidth_used); 3972 } 3973 #else /* HAVE_JUMP_LABEL */ 3974 static bool cfs_bandwidth_used(void) 3975 { 3976 return true; 3977 } 3978 3979 void cfs_bandwidth_usage_inc(void) {} 3980 void cfs_bandwidth_usage_dec(void) {} 3981 #endif /* HAVE_JUMP_LABEL */ 3982 3983 /* 3984 * default period for cfs group bandwidth. 3985 * default: 0.1s, units: nanoseconds 3986 */ 3987 static inline u64 default_cfs_period(void) 3988 { 3989 return 100000000ULL; 3990 } 3991 3992 static inline u64 sched_cfs_bandwidth_slice(void) 3993 { 3994 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3995 } 3996 3997 /* 3998 * Replenish runtime according to assigned quota and update expiration time. 3999 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4000 * additional synchronization around rq->lock. 4001 * 4002 * requires cfs_b->lock 4003 */ 4004 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4005 { 4006 u64 now; 4007 4008 if (cfs_b->quota == RUNTIME_INF) 4009 return; 4010 4011 now = sched_clock_cpu(smp_processor_id()); 4012 cfs_b->runtime = cfs_b->quota; 4013 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4014 } 4015 4016 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4017 { 4018 return &tg->cfs_bandwidth; 4019 } 4020 4021 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4022 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4023 { 4024 if (unlikely(cfs_rq->throttle_count)) 4025 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4026 4027 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4028 } 4029 4030 /* returns 0 on failure to allocate runtime */ 4031 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4032 { 4033 struct task_group *tg = cfs_rq->tg; 4034 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4035 u64 amount = 0, min_amount, expires; 4036 4037 /* note: this is a positive sum as runtime_remaining <= 0 */ 4038 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4039 4040 raw_spin_lock(&cfs_b->lock); 4041 if (cfs_b->quota == RUNTIME_INF) 4042 amount = min_amount; 4043 else { 4044 start_cfs_bandwidth(cfs_b); 4045 4046 if (cfs_b->runtime > 0) { 4047 amount = min(cfs_b->runtime, min_amount); 4048 cfs_b->runtime -= amount; 4049 cfs_b->idle = 0; 4050 } 4051 } 4052 expires = cfs_b->runtime_expires; 4053 raw_spin_unlock(&cfs_b->lock); 4054 4055 cfs_rq->runtime_remaining += amount; 4056 /* 4057 * we may have advanced our local expiration to account for allowed 4058 * spread between our sched_clock and the one on which runtime was 4059 * issued. 4060 */ 4061 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 4062 cfs_rq->runtime_expires = expires; 4063 4064 return cfs_rq->runtime_remaining > 0; 4065 } 4066 4067 /* 4068 * Note: This depends on the synchronization provided by sched_clock and the 4069 * fact that rq->clock snapshots this value. 4070 */ 4071 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4072 { 4073 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4074 4075 /* if the deadline is ahead of our clock, nothing to do */ 4076 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4077 return; 4078 4079 if (cfs_rq->runtime_remaining < 0) 4080 return; 4081 4082 /* 4083 * If the local deadline has passed we have to consider the 4084 * possibility that our sched_clock is 'fast' and the global deadline 4085 * has not truly expired. 4086 * 4087 * Fortunately we can check determine whether this the case by checking 4088 * whether the global deadline has advanced. It is valid to compare 4089 * cfs_b->runtime_expires without any locks since we only care about 4090 * exact equality, so a partial write will still work. 4091 */ 4092 4093 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 4094 /* extend local deadline, drift is bounded above by 2 ticks */ 4095 cfs_rq->runtime_expires += TICK_NSEC; 4096 } else { 4097 /* global deadline is ahead, expiration has passed */ 4098 cfs_rq->runtime_remaining = 0; 4099 } 4100 } 4101 4102 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4103 { 4104 /* dock delta_exec before expiring quota (as it could span periods) */ 4105 cfs_rq->runtime_remaining -= delta_exec; 4106 expire_cfs_rq_runtime(cfs_rq); 4107 4108 if (likely(cfs_rq->runtime_remaining > 0)) 4109 return; 4110 4111 /* 4112 * if we're unable to extend our runtime we resched so that the active 4113 * hierarchy can be throttled 4114 */ 4115 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4116 resched_curr(rq_of(cfs_rq)); 4117 } 4118 4119 static __always_inline 4120 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4121 { 4122 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4123 return; 4124 4125 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4126 } 4127 4128 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4129 { 4130 return cfs_bandwidth_used() && cfs_rq->throttled; 4131 } 4132 4133 /* check whether cfs_rq, or any parent, is throttled */ 4134 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4135 { 4136 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4137 } 4138 4139 /* 4140 * Ensure that neither of the group entities corresponding to src_cpu or 4141 * dest_cpu are members of a throttled hierarchy when performing group 4142 * load-balance operations. 4143 */ 4144 static inline int throttled_lb_pair(struct task_group *tg, 4145 int src_cpu, int dest_cpu) 4146 { 4147 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4148 4149 src_cfs_rq = tg->cfs_rq[src_cpu]; 4150 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4151 4152 return throttled_hierarchy(src_cfs_rq) || 4153 throttled_hierarchy(dest_cfs_rq); 4154 } 4155 4156 /* updated child weight may affect parent so we have to do this bottom up */ 4157 static int tg_unthrottle_up(struct task_group *tg, void *data) 4158 { 4159 struct rq *rq = data; 4160 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4161 4162 cfs_rq->throttle_count--; 4163 if (!cfs_rq->throttle_count) { 4164 /* adjust cfs_rq_clock_task() */ 4165 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4166 cfs_rq->throttled_clock_task; 4167 } 4168 4169 return 0; 4170 } 4171 4172 static int tg_throttle_down(struct task_group *tg, void *data) 4173 { 4174 struct rq *rq = data; 4175 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4176 4177 /* group is entering throttled state, stop time */ 4178 if (!cfs_rq->throttle_count) 4179 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4180 cfs_rq->throttle_count++; 4181 4182 return 0; 4183 } 4184 4185 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4186 { 4187 struct rq *rq = rq_of(cfs_rq); 4188 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4189 struct sched_entity *se; 4190 long task_delta, dequeue = 1; 4191 bool empty; 4192 4193 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4194 4195 /* freeze hierarchy runnable averages while throttled */ 4196 rcu_read_lock(); 4197 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4198 rcu_read_unlock(); 4199 4200 task_delta = cfs_rq->h_nr_running; 4201 for_each_sched_entity(se) { 4202 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4203 /* throttled entity or throttle-on-deactivate */ 4204 if (!se->on_rq) 4205 break; 4206 4207 if (dequeue) 4208 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4209 qcfs_rq->h_nr_running -= task_delta; 4210 4211 if (qcfs_rq->load.weight) 4212 dequeue = 0; 4213 } 4214 4215 if (!se) 4216 sub_nr_running(rq, task_delta); 4217 4218 cfs_rq->throttled = 1; 4219 cfs_rq->throttled_clock = rq_clock(rq); 4220 raw_spin_lock(&cfs_b->lock); 4221 empty = list_empty(&cfs_b->throttled_cfs_rq); 4222 4223 /* 4224 * Add to the _head_ of the list, so that an already-started 4225 * distribute_cfs_runtime will not see us 4226 */ 4227 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4228 4229 /* 4230 * If we're the first throttled task, make sure the bandwidth 4231 * timer is running. 4232 */ 4233 if (empty) 4234 start_cfs_bandwidth(cfs_b); 4235 4236 raw_spin_unlock(&cfs_b->lock); 4237 } 4238 4239 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4240 { 4241 struct rq *rq = rq_of(cfs_rq); 4242 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4243 struct sched_entity *se; 4244 int enqueue = 1; 4245 long task_delta; 4246 4247 se = cfs_rq->tg->se[cpu_of(rq)]; 4248 4249 cfs_rq->throttled = 0; 4250 4251 update_rq_clock(rq); 4252 4253 raw_spin_lock(&cfs_b->lock); 4254 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4255 list_del_rcu(&cfs_rq->throttled_list); 4256 raw_spin_unlock(&cfs_b->lock); 4257 4258 /* update hierarchical throttle state */ 4259 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4260 4261 if (!cfs_rq->load.weight) 4262 return; 4263 4264 task_delta = cfs_rq->h_nr_running; 4265 for_each_sched_entity(se) { 4266 if (se->on_rq) 4267 enqueue = 0; 4268 4269 cfs_rq = cfs_rq_of(se); 4270 if (enqueue) 4271 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4272 cfs_rq->h_nr_running += task_delta; 4273 4274 if (cfs_rq_throttled(cfs_rq)) 4275 break; 4276 } 4277 4278 if (!se) 4279 add_nr_running(rq, task_delta); 4280 4281 /* determine whether we need to wake up potentially idle cpu */ 4282 if (rq->curr == rq->idle && rq->cfs.nr_running) 4283 resched_curr(rq); 4284 } 4285 4286 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4287 u64 remaining, u64 expires) 4288 { 4289 struct cfs_rq *cfs_rq; 4290 u64 runtime; 4291 u64 starting_runtime = remaining; 4292 4293 rcu_read_lock(); 4294 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4295 throttled_list) { 4296 struct rq *rq = rq_of(cfs_rq); 4297 struct rq_flags rf; 4298 4299 rq_lock(rq, &rf); 4300 if (!cfs_rq_throttled(cfs_rq)) 4301 goto next; 4302 4303 runtime = -cfs_rq->runtime_remaining + 1; 4304 if (runtime > remaining) 4305 runtime = remaining; 4306 remaining -= runtime; 4307 4308 cfs_rq->runtime_remaining += runtime; 4309 cfs_rq->runtime_expires = expires; 4310 4311 /* we check whether we're throttled above */ 4312 if (cfs_rq->runtime_remaining > 0) 4313 unthrottle_cfs_rq(cfs_rq); 4314 4315 next: 4316 rq_unlock(rq, &rf); 4317 4318 if (!remaining) 4319 break; 4320 } 4321 rcu_read_unlock(); 4322 4323 return starting_runtime - remaining; 4324 } 4325 4326 /* 4327 * Responsible for refilling a task_group's bandwidth and unthrottling its 4328 * cfs_rqs as appropriate. If there has been no activity within the last 4329 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4330 * used to track this state. 4331 */ 4332 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4333 { 4334 u64 runtime, runtime_expires; 4335 int throttled; 4336 4337 /* no need to continue the timer with no bandwidth constraint */ 4338 if (cfs_b->quota == RUNTIME_INF) 4339 goto out_deactivate; 4340 4341 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4342 cfs_b->nr_periods += overrun; 4343 4344 /* 4345 * idle depends on !throttled (for the case of a large deficit), and if 4346 * we're going inactive then everything else can be deferred 4347 */ 4348 if (cfs_b->idle && !throttled) 4349 goto out_deactivate; 4350 4351 __refill_cfs_bandwidth_runtime(cfs_b); 4352 4353 if (!throttled) { 4354 /* mark as potentially idle for the upcoming period */ 4355 cfs_b->idle = 1; 4356 return 0; 4357 } 4358 4359 /* account preceding periods in which throttling occurred */ 4360 cfs_b->nr_throttled += overrun; 4361 4362 runtime_expires = cfs_b->runtime_expires; 4363 4364 /* 4365 * This check is repeated as we are holding onto the new bandwidth while 4366 * we unthrottle. This can potentially race with an unthrottled group 4367 * trying to acquire new bandwidth from the global pool. This can result 4368 * in us over-using our runtime if it is all used during this loop, but 4369 * only by limited amounts in that extreme case. 4370 */ 4371 while (throttled && cfs_b->runtime > 0) { 4372 runtime = cfs_b->runtime; 4373 raw_spin_unlock(&cfs_b->lock); 4374 /* we can't nest cfs_b->lock while distributing bandwidth */ 4375 runtime = distribute_cfs_runtime(cfs_b, runtime, 4376 runtime_expires); 4377 raw_spin_lock(&cfs_b->lock); 4378 4379 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4380 4381 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4382 } 4383 4384 /* 4385 * While we are ensured activity in the period following an 4386 * unthrottle, this also covers the case in which the new bandwidth is 4387 * insufficient to cover the existing bandwidth deficit. (Forcing the 4388 * timer to remain active while there are any throttled entities.) 4389 */ 4390 cfs_b->idle = 0; 4391 4392 return 0; 4393 4394 out_deactivate: 4395 return 1; 4396 } 4397 4398 /* a cfs_rq won't donate quota below this amount */ 4399 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4400 /* minimum remaining period time to redistribute slack quota */ 4401 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4402 /* how long we wait to gather additional slack before distributing */ 4403 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4404 4405 /* 4406 * Are we near the end of the current quota period? 4407 * 4408 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4409 * hrtimer base being cleared by hrtimer_start. In the case of 4410 * migrate_hrtimers, base is never cleared, so we are fine. 4411 */ 4412 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4413 { 4414 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4415 u64 remaining; 4416 4417 /* if the call-back is running a quota refresh is already occurring */ 4418 if (hrtimer_callback_running(refresh_timer)) 4419 return 1; 4420 4421 /* is a quota refresh about to occur? */ 4422 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4423 if (remaining < min_expire) 4424 return 1; 4425 4426 return 0; 4427 } 4428 4429 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4430 { 4431 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4432 4433 /* if there's a quota refresh soon don't bother with slack */ 4434 if (runtime_refresh_within(cfs_b, min_left)) 4435 return; 4436 4437 hrtimer_start(&cfs_b->slack_timer, 4438 ns_to_ktime(cfs_bandwidth_slack_period), 4439 HRTIMER_MODE_REL); 4440 } 4441 4442 /* we know any runtime found here is valid as update_curr() precedes return */ 4443 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4444 { 4445 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4446 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4447 4448 if (slack_runtime <= 0) 4449 return; 4450 4451 raw_spin_lock(&cfs_b->lock); 4452 if (cfs_b->quota != RUNTIME_INF && 4453 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4454 cfs_b->runtime += slack_runtime; 4455 4456 /* we are under rq->lock, defer unthrottling using a timer */ 4457 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4458 !list_empty(&cfs_b->throttled_cfs_rq)) 4459 start_cfs_slack_bandwidth(cfs_b); 4460 } 4461 raw_spin_unlock(&cfs_b->lock); 4462 4463 /* even if it's not valid for return we don't want to try again */ 4464 cfs_rq->runtime_remaining -= slack_runtime; 4465 } 4466 4467 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4468 { 4469 if (!cfs_bandwidth_used()) 4470 return; 4471 4472 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4473 return; 4474 4475 __return_cfs_rq_runtime(cfs_rq); 4476 } 4477 4478 /* 4479 * This is done with a timer (instead of inline with bandwidth return) since 4480 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4481 */ 4482 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4483 { 4484 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4485 u64 expires; 4486 4487 /* confirm we're still not at a refresh boundary */ 4488 raw_spin_lock(&cfs_b->lock); 4489 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4490 raw_spin_unlock(&cfs_b->lock); 4491 return; 4492 } 4493 4494 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4495 runtime = cfs_b->runtime; 4496 4497 expires = cfs_b->runtime_expires; 4498 raw_spin_unlock(&cfs_b->lock); 4499 4500 if (!runtime) 4501 return; 4502 4503 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4504 4505 raw_spin_lock(&cfs_b->lock); 4506 if (expires == cfs_b->runtime_expires) 4507 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4508 raw_spin_unlock(&cfs_b->lock); 4509 } 4510 4511 /* 4512 * When a group wakes up we want to make sure that its quota is not already 4513 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4514 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4515 */ 4516 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4517 { 4518 if (!cfs_bandwidth_used()) 4519 return; 4520 4521 /* an active group must be handled by the update_curr()->put() path */ 4522 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4523 return; 4524 4525 /* ensure the group is not already throttled */ 4526 if (cfs_rq_throttled(cfs_rq)) 4527 return; 4528 4529 /* update runtime allocation */ 4530 account_cfs_rq_runtime(cfs_rq, 0); 4531 if (cfs_rq->runtime_remaining <= 0) 4532 throttle_cfs_rq(cfs_rq); 4533 } 4534 4535 static void sync_throttle(struct task_group *tg, int cpu) 4536 { 4537 struct cfs_rq *pcfs_rq, *cfs_rq; 4538 4539 if (!cfs_bandwidth_used()) 4540 return; 4541 4542 if (!tg->parent) 4543 return; 4544 4545 cfs_rq = tg->cfs_rq[cpu]; 4546 pcfs_rq = tg->parent->cfs_rq[cpu]; 4547 4548 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4549 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4550 } 4551 4552 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4553 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4554 { 4555 if (!cfs_bandwidth_used()) 4556 return false; 4557 4558 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4559 return false; 4560 4561 /* 4562 * it's possible for a throttled entity to be forced into a running 4563 * state (e.g. set_curr_task), in this case we're finished. 4564 */ 4565 if (cfs_rq_throttled(cfs_rq)) 4566 return true; 4567 4568 throttle_cfs_rq(cfs_rq); 4569 return true; 4570 } 4571 4572 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4573 { 4574 struct cfs_bandwidth *cfs_b = 4575 container_of(timer, struct cfs_bandwidth, slack_timer); 4576 4577 do_sched_cfs_slack_timer(cfs_b); 4578 4579 return HRTIMER_NORESTART; 4580 } 4581 4582 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4583 { 4584 struct cfs_bandwidth *cfs_b = 4585 container_of(timer, struct cfs_bandwidth, period_timer); 4586 int overrun; 4587 int idle = 0; 4588 4589 raw_spin_lock(&cfs_b->lock); 4590 for (;;) { 4591 overrun = hrtimer_forward_now(timer, cfs_b->period); 4592 if (!overrun) 4593 break; 4594 4595 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4596 } 4597 if (idle) 4598 cfs_b->period_active = 0; 4599 raw_spin_unlock(&cfs_b->lock); 4600 4601 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4602 } 4603 4604 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4605 { 4606 raw_spin_lock_init(&cfs_b->lock); 4607 cfs_b->runtime = 0; 4608 cfs_b->quota = RUNTIME_INF; 4609 cfs_b->period = ns_to_ktime(default_cfs_period()); 4610 4611 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4612 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4613 cfs_b->period_timer.function = sched_cfs_period_timer; 4614 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4615 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4616 } 4617 4618 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4619 { 4620 cfs_rq->runtime_enabled = 0; 4621 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4622 } 4623 4624 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4625 { 4626 lockdep_assert_held(&cfs_b->lock); 4627 4628 if (!cfs_b->period_active) { 4629 cfs_b->period_active = 1; 4630 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4631 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4632 } 4633 } 4634 4635 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4636 { 4637 /* init_cfs_bandwidth() was not called */ 4638 if (!cfs_b->throttled_cfs_rq.next) 4639 return; 4640 4641 hrtimer_cancel(&cfs_b->period_timer); 4642 hrtimer_cancel(&cfs_b->slack_timer); 4643 } 4644 4645 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4646 { 4647 struct cfs_rq *cfs_rq; 4648 4649 for_each_leaf_cfs_rq(rq, cfs_rq) { 4650 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; 4651 4652 raw_spin_lock(&cfs_b->lock); 4653 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4654 raw_spin_unlock(&cfs_b->lock); 4655 } 4656 } 4657 4658 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4659 { 4660 struct cfs_rq *cfs_rq; 4661 4662 for_each_leaf_cfs_rq(rq, cfs_rq) { 4663 if (!cfs_rq->runtime_enabled) 4664 continue; 4665 4666 /* 4667 * clock_task is not advancing so we just need to make sure 4668 * there's some valid quota amount 4669 */ 4670 cfs_rq->runtime_remaining = 1; 4671 /* 4672 * Offline rq is schedulable till cpu is completely disabled 4673 * in take_cpu_down(), so we prevent new cfs throttling here. 4674 */ 4675 cfs_rq->runtime_enabled = 0; 4676 4677 if (cfs_rq_throttled(cfs_rq)) 4678 unthrottle_cfs_rq(cfs_rq); 4679 } 4680 } 4681 4682 #else /* CONFIG_CFS_BANDWIDTH */ 4683 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4684 { 4685 return rq_clock_task(rq_of(cfs_rq)); 4686 } 4687 4688 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4689 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4690 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4691 static inline void sync_throttle(struct task_group *tg, int cpu) {} 4692 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4693 4694 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4695 { 4696 return 0; 4697 } 4698 4699 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4700 { 4701 return 0; 4702 } 4703 4704 static inline int throttled_lb_pair(struct task_group *tg, 4705 int src_cpu, int dest_cpu) 4706 { 4707 return 0; 4708 } 4709 4710 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4711 4712 #ifdef CONFIG_FAIR_GROUP_SCHED 4713 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4714 #endif 4715 4716 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4717 { 4718 return NULL; 4719 } 4720 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4721 static inline void update_runtime_enabled(struct rq *rq) {} 4722 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4723 4724 #endif /* CONFIG_CFS_BANDWIDTH */ 4725 4726 /************************************************** 4727 * CFS operations on tasks: 4728 */ 4729 4730 #ifdef CONFIG_SCHED_HRTICK 4731 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4732 { 4733 struct sched_entity *se = &p->se; 4734 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4735 4736 SCHED_WARN_ON(task_rq(p) != rq); 4737 4738 if (rq->cfs.h_nr_running > 1) { 4739 u64 slice = sched_slice(cfs_rq, se); 4740 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4741 s64 delta = slice - ran; 4742 4743 if (delta < 0) { 4744 if (rq->curr == p) 4745 resched_curr(rq); 4746 return; 4747 } 4748 hrtick_start(rq, delta); 4749 } 4750 } 4751 4752 /* 4753 * called from enqueue/dequeue and updates the hrtick when the 4754 * current task is from our class and nr_running is low enough 4755 * to matter. 4756 */ 4757 static void hrtick_update(struct rq *rq) 4758 { 4759 struct task_struct *curr = rq->curr; 4760 4761 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4762 return; 4763 4764 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4765 hrtick_start_fair(rq, curr); 4766 } 4767 #else /* !CONFIG_SCHED_HRTICK */ 4768 static inline void 4769 hrtick_start_fair(struct rq *rq, struct task_struct *p) 4770 { 4771 } 4772 4773 static inline void hrtick_update(struct rq *rq) 4774 { 4775 } 4776 #endif 4777 4778 /* 4779 * The enqueue_task method is called before nr_running is 4780 * increased. Here we update the fair scheduling stats and 4781 * then put the task into the rbtree: 4782 */ 4783 static void 4784 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4785 { 4786 struct cfs_rq *cfs_rq; 4787 struct sched_entity *se = &p->se; 4788 4789 /* 4790 * If in_iowait is set, the code below may not trigger any cpufreq 4791 * utilization updates, so do it here explicitly with the IOWAIT flag 4792 * passed. 4793 */ 4794 if (p->in_iowait) 4795 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT); 4796 4797 for_each_sched_entity(se) { 4798 if (se->on_rq) 4799 break; 4800 cfs_rq = cfs_rq_of(se); 4801 enqueue_entity(cfs_rq, se, flags); 4802 4803 /* 4804 * end evaluation on encountering a throttled cfs_rq 4805 * 4806 * note: in the case of encountering a throttled cfs_rq we will 4807 * post the final h_nr_running increment below. 4808 */ 4809 if (cfs_rq_throttled(cfs_rq)) 4810 break; 4811 cfs_rq->h_nr_running++; 4812 4813 flags = ENQUEUE_WAKEUP; 4814 } 4815 4816 for_each_sched_entity(se) { 4817 cfs_rq = cfs_rq_of(se); 4818 cfs_rq->h_nr_running++; 4819 4820 if (cfs_rq_throttled(cfs_rq)) 4821 break; 4822 4823 update_load_avg(se, UPDATE_TG); 4824 update_cfs_shares(se); 4825 } 4826 4827 if (!se) 4828 add_nr_running(rq, 1); 4829 4830 hrtick_update(rq); 4831 } 4832 4833 static void set_next_buddy(struct sched_entity *se); 4834 4835 /* 4836 * The dequeue_task method is called before nr_running is 4837 * decreased. We remove the task from the rbtree and 4838 * update the fair scheduling stats: 4839 */ 4840 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4841 { 4842 struct cfs_rq *cfs_rq; 4843 struct sched_entity *se = &p->se; 4844 int task_sleep = flags & DEQUEUE_SLEEP; 4845 4846 for_each_sched_entity(se) { 4847 cfs_rq = cfs_rq_of(se); 4848 dequeue_entity(cfs_rq, se, flags); 4849 4850 /* 4851 * end evaluation on encountering a throttled cfs_rq 4852 * 4853 * note: in the case of encountering a throttled cfs_rq we will 4854 * post the final h_nr_running decrement below. 4855 */ 4856 if (cfs_rq_throttled(cfs_rq)) 4857 break; 4858 cfs_rq->h_nr_running--; 4859 4860 /* Don't dequeue parent if it has other entities besides us */ 4861 if (cfs_rq->load.weight) { 4862 /* Avoid re-evaluating load for this entity: */ 4863 se = parent_entity(se); 4864 /* 4865 * Bias pick_next to pick a task from this cfs_rq, as 4866 * p is sleeping when it is within its sched_slice. 4867 */ 4868 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 4869 set_next_buddy(se); 4870 break; 4871 } 4872 flags |= DEQUEUE_SLEEP; 4873 } 4874 4875 for_each_sched_entity(se) { 4876 cfs_rq = cfs_rq_of(se); 4877 cfs_rq->h_nr_running--; 4878 4879 if (cfs_rq_throttled(cfs_rq)) 4880 break; 4881 4882 update_load_avg(se, UPDATE_TG); 4883 update_cfs_shares(se); 4884 } 4885 4886 if (!se) 4887 sub_nr_running(rq, 1); 4888 4889 hrtick_update(rq); 4890 } 4891 4892 #ifdef CONFIG_SMP 4893 4894 /* Working cpumask for: load_balance, load_balance_newidle. */ 4895 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 4896 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 4897 4898 #ifdef CONFIG_NO_HZ_COMMON 4899 /* 4900 * per rq 'load' arrray crap; XXX kill this. 4901 */ 4902 4903 /* 4904 * The exact cpuload calculated at every tick would be: 4905 * 4906 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 4907 * 4908 * If a cpu misses updates for n ticks (as it was idle) and update gets 4909 * called on the n+1-th tick when cpu may be busy, then we have: 4910 * 4911 * load_n = (1 - 1/2^i)^n * load_0 4912 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 4913 * 4914 * decay_load_missed() below does efficient calculation of 4915 * 4916 * load' = (1 - 1/2^i)^n * load 4917 * 4918 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 4919 * This allows us to precompute the above in said factors, thereby allowing the 4920 * reduction of an arbitrary n in O(log_2 n) steps. (See also 4921 * fixed_power_int()) 4922 * 4923 * The calculation is approximated on a 128 point scale. 4924 */ 4925 #define DEGRADE_SHIFT 7 4926 4927 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 4928 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 4929 { 0, 0, 0, 0, 0, 0, 0, 0 }, 4930 { 64, 32, 8, 0, 0, 0, 0, 0 }, 4931 { 96, 72, 40, 12, 1, 0, 0, 0 }, 4932 { 112, 98, 75, 43, 15, 1, 0, 0 }, 4933 { 120, 112, 98, 76, 45, 16, 2, 0 } 4934 }; 4935 4936 /* 4937 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 4938 * would be when CPU is idle and so we just decay the old load without 4939 * adding any new load. 4940 */ 4941 static unsigned long 4942 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 4943 { 4944 int j = 0; 4945 4946 if (!missed_updates) 4947 return load; 4948 4949 if (missed_updates >= degrade_zero_ticks[idx]) 4950 return 0; 4951 4952 if (idx == 1) 4953 return load >> missed_updates; 4954 4955 while (missed_updates) { 4956 if (missed_updates % 2) 4957 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 4958 4959 missed_updates >>= 1; 4960 j++; 4961 } 4962 return load; 4963 } 4964 #endif /* CONFIG_NO_HZ_COMMON */ 4965 4966 /** 4967 * __cpu_load_update - update the rq->cpu_load[] statistics 4968 * @this_rq: The rq to update statistics for 4969 * @this_load: The current load 4970 * @pending_updates: The number of missed updates 4971 * 4972 * Update rq->cpu_load[] statistics. This function is usually called every 4973 * scheduler tick (TICK_NSEC). 4974 * 4975 * This function computes a decaying average: 4976 * 4977 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 4978 * 4979 * Because of NOHZ it might not get called on every tick which gives need for 4980 * the @pending_updates argument. 4981 * 4982 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 4983 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 4984 * = A * (A * load[i]_n-2 + B) + B 4985 * = A * (A * (A * load[i]_n-3 + B) + B) + B 4986 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 4987 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 4988 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 4989 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 4990 * 4991 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 4992 * any change in load would have resulted in the tick being turned back on. 4993 * 4994 * For regular NOHZ, this reduces to: 4995 * 4996 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 4997 * 4998 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 4999 * term. 5000 */ 5001 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 5002 unsigned long pending_updates) 5003 { 5004 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 5005 int i, scale; 5006 5007 this_rq->nr_load_updates++; 5008 5009 /* Update our load: */ 5010 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 5011 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 5012 unsigned long old_load, new_load; 5013 5014 /* scale is effectively 1 << i now, and >> i divides by scale */ 5015 5016 old_load = this_rq->cpu_load[i]; 5017 #ifdef CONFIG_NO_HZ_COMMON 5018 old_load = decay_load_missed(old_load, pending_updates - 1, i); 5019 if (tickless_load) { 5020 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 5021 /* 5022 * old_load can never be a negative value because a 5023 * decayed tickless_load cannot be greater than the 5024 * original tickless_load. 5025 */ 5026 old_load += tickless_load; 5027 } 5028 #endif 5029 new_load = this_load; 5030 /* 5031 * Round up the averaging division if load is increasing. This 5032 * prevents us from getting stuck on 9 if the load is 10, for 5033 * example. 5034 */ 5035 if (new_load > old_load) 5036 new_load += scale - 1; 5037 5038 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5039 } 5040 5041 sched_avg_update(this_rq); 5042 } 5043 5044 /* Used instead of source_load when we know the type == 0 */ 5045 static unsigned long weighted_cpuload(const int cpu) 5046 { 5047 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs); 5048 } 5049 5050 #ifdef CONFIG_NO_HZ_COMMON 5051 /* 5052 * There is no sane way to deal with nohz on smp when using jiffies because the 5053 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 5054 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5055 * 5056 * Therefore we need to avoid the delta approach from the regular tick when 5057 * possible since that would seriously skew the load calculation. This is why we 5058 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5059 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5060 * loop exit, nohz_idle_balance, nohz full exit...) 5061 * 5062 * This means we might still be one tick off for nohz periods. 5063 */ 5064 5065 static void cpu_load_update_nohz(struct rq *this_rq, 5066 unsigned long curr_jiffies, 5067 unsigned long load) 5068 { 5069 unsigned long pending_updates; 5070 5071 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5072 if (pending_updates) { 5073 this_rq->last_load_update_tick = curr_jiffies; 5074 /* 5075 * In the regular NOHZ case, we were idle, this means load 0. 5076 * In the NOHZ_FULL case, we were non-idle, we should consider 5077 * its weighted load. 5078 */ 5079 cpu_load_update(this_rq, load, pending_updates); 5080 } 5081 } 5082 5083 /* 5084 * Called from nohz_idle_balance() to update the load ratings before doing the 5085 * idle balance. 5086 */ 5087 static void cpu_load_update_idle(struct rq *this_rq) 5088 { 5089 /* 5090 * bail if there's load or we're actually up-to-date. 5091 */ 5092 if (weighted_cpuload(cpu_of(this_rq))) 5093 return; 5094 5095 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5096 } 5097 5098 /* 5099 * Record CPU load on nohz entry so we know the tickless load to account 5100 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5101 * than other cpu_load[idx] but it should be fine as cpu_load readers 5102 * shouldn't rely into synchronized cpu_load[*] updates. 5103 */ 5104 void cpu_load_update_nohz_start(void) 5105 { 5106 struct rq *this_rq = this_rq(); 5107 5108 /* 5109 * This is all lockless but should be fine. If weighted_cpuload changes 5110 * concurrently we'll exit nohz. And cpu_load write can race with 5111 * cpu_load_update_idle() but both updater would be writing the same. 5112 */ 5113 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq)); 5114 } 5115 5116 /* 5117 * Account the tickless load in the end of a nohz frame. 5118 */ 5119 void cpu_load_update_nohz_stop(void) 5120 { 5121 unsigned long curr_jiffies = READ_ONCE(jiffies); 5122 struct rq *this_rq = this_rq(); 5123 unsigned long load; 5124 struct rq_flags rf; 5125 5126 if (curr_jiffies == this_rq->last_load_update_tick) 5127 return; 5128 5129 load = weighted_cpuload(cpu_of(this_rq)); 5130 rq_lock(this_rq, &rf); 5131 update_rq_clock(this_rq); 5132 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5133 rq_unlock(this_rq, &rf); 5134 } 5135 #else /* !CONFIG_NO_HZ_COMMON */ 5136 static inline void cpu_load_update_nohz(struct rq *this_rq, 5137 unsigned long curr_jiffies, 5138 unsigned long load) { } 5139 #endif /* CONFIG_NO_HZ_COMMON */ 5140 5141 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5142 { 5143 #ifdef CONFIG_NO_HZ_COMMON 5144 /* See the mess around cpu_load_update_nohz(). */ 5145 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5146 #endif 5147 cpu_load_update(this_rq, load, 1); 5148 } 5149 5150 /* 5151 * Called from scheduler_tick() 5152 */ 5153 void cpu_load_update_active(struct rq *this_rq) 5154 { 5155 unsigned long load = weighted_cpuload(cpu_of(this_rq)); 5156 5157 if (tick_nohz_tick_stopped()) 5158 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5159 else 5160 cpu_load_update_periodic(this_rq, load); 5161 } 5162 5163 /* 5164 * Return a low guess at the load of a migration-source cpu weighted 5165 * according to the scheduling class and "nice" value. 5166 * 5167 * We want to under-estimate the load of migration sources, to 5168 * balance conservatively. 5169 */ 5170 static unsigned long source_load(int cpu, int type) 5171 { 5172 struct rq *rq = cpu_rq(cpu); 5173 unsigned long total = weighted_cpuload(cpu); 5174 5175 if (type == 0 || !sched_feat(LB_BIAS)) 5176 return total; 5177 5178 return min(rq->cpu_load[type-1], total); 5179 } 5180 5181 /* 5182 * Return a high guess at the load of a migration-target cpu weighted 5183 * according to the scheduling class and "nice" value. 5184 */ 5185 static unsigned long target_load(int cpu, int type) 5186 { 5187 struct rq *rq = cpu_rq(cpu); 5188 unsigned long total = weighted_cpuload(cpu); 5189 5190 if (type == 0 || !sched_feat(LB_BIAS)) 5191 return total; 5192 5193 return max(rq->cpu_load[type-1], total); 5194 } 5195 5196 static unsigned long capacity_of(int cpu) 5197 { 5198 return cpu_rq(cpu)->cpu_capacity; 5199 } 5200 5201 static unsigned long capacity_orig_of(int cpu) 5202 { 5203 return cpu_rq(cpu)->cpu_capacity_orig; 5204 } 5205 5206 static unsigned long cpu_avg_load_per_task(int cpu) 5207 { 5208 struct rq *rq = cpu_rq(cpu); 5209 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5210 unsigned long load_avg = weighted_cpuload(cpu); 5211 5212 if (nr_running) 5213 return load_avg / nr_running; 5214 5215 return 0; 5216 } 5217 5218 #ifdef CONFIG_FAIR_GROUP_SCHED 5219 /* 5220 * effective_load() calculates the load change as seen from the root_task_group 5221 * 5222 * Adding load to a group doesn't make a group heavier, but can cause movement 5223 * of group shares between cpus. Assuming the shares were perfectly aligned one 5224 * can calculate the shift in shares. 5225 * 5226 * Calculate the effective load difference if @wl is added (subtracted) to @tg 5227 * on this @cpu and results in a total addition (subtraction) of @wg to the 5228 * total group weight. 5229 * 5230 * Given a runqueue weight distribution (rw_i) we can compute a shares 5231 * distribution (s_i) using: 5232 * 5233 * s_i = rw_i / \Sum rw_j (1) 5234 * 5235 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 5236 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 5237 * shares distribution (s_i): 5238 * 5239 * rw_i = { 2, 4, 1, 0 } 5240 * s_i = { 2/7, 4/7, 1/7, 0 } 5241 * 5242 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 5243 * task used to run on and the CPU the waker is running on), we need to 5244 * compute the effect of waking a task on either CPU and, in case of a sync 5245 * wakeup, compute the effect of the current task going to sleep. 5246 * 5247 * So for a change of @wl to the local @cpu with an overall group weight change 5248 * of @wl we can compute the new shares distribution (s'_i) using: 5249 * 5250 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 5251 * 5252 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 5253 * differences in waking a task to CPU 0. The additional task changes the 5254 * weight and shares distributions like: 5255 * 5256 * rw'_i = { 3, 4, 1, 0 } 5257 * s'_i = { 3/8, 4/8, 1/8, 0 } 5258 * 5259 * We can then compute the difference in effective weight by using: 5260 * 5261 * dw_i = S * (s'_i - s_i) (3) 5262 * 5263 * Where 'S' is the group weight as seen by its parent. 5264 * 5265 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 5266 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 5267 * 4/7) times the weight of the group. 5268 */ 5269 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 5270 { 5271 struct sched_entity *se = tg->se[cpu]; 5272 5273 if (!tg->parent) /* the trivial, non-cgroup case */ 5274 return wl; 5275 5276 for_each_sched_entity(se) { 5277 struct cfs_rq *cfs_rq = se->my_q; 5278 long W, w = cfs_rq_load_avg(cfs_rq); 5279 5280 tg = cfs_rq->tg; 5281 5282 /* 5283 * W = @wg + \Sum rw_j 5284 */ 5285 W = wg + atomic_long_read(&tg->load_avg); 5286 5287 /* Ensure \Sum rw_j >= rw_i */ 5288 W -= cfs_rq->tg_load_avg_contrib; 5289 W += w; 5290 5291 /* 5292 * w = rw_i + @wl 5293 */ 5294 w += wl; 5295 5296 /* 5297 * wl = S * s'_i; see (2) 5298 */ 5299 if (W > 0 && w < W) 5300 wl = (w * (long)scale_load_down(tg->shares)) / W; 5301 else 5302 wl = scale_load_down(tg->shares); 5303 5304 /* 5305 * Per the above, wl is the new se->load.weight value; since 5306 * those are clipped to [MIN_SHARES, ...) do so now. See 5307 * calc_cfs_shares(). 5308 */ 5309 if (wl < MIN_SHARES) 5310 wl = MIN_SHARES; 5311 5312 /* 5313 * wl = dw_i = S * (s'_i - s_i); see (3) 5314 */ 5315 wl -= se->avg.load_avg; 5316 5317 /* 5318 * Recursively apply this logic to all parent groups to compute 5319 * the final effective load change on the root group. Since 5320 * only the @tg group gets extra weight, all parent groups can 5321 * only redistribute existing shares. @wl is the shift in shares 5322 * resulting from this level per the above. 5323 */ 5324 wg = 0; 5325 } 5326 5327 return wl; 5328 } 5329 #else 5330 5331 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 5332 { 5333 return wl; 5334 } 5335 5336 #endif 5337 5338 static void record_wakee(struct task_struct *p) 5339 { 5340 /* 5341 * Only decay a single time; tasks that have less then 1 wakeup per 5342 * jiffy will not have built up many flips. 5343 */ 5344 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5345 current->wakee_flips >>= 1; 5346 current->wakee_flip_decay_ts = jiffies; 5347 } 5348 5349 if (current->last_wakee != p) { 5350 current->last_wakee = p; 5351 current->wakee_flips++; 5352 } 5353 } 5354 5355 /* 5356 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5357 * 5358 * A waker of many should wake a different task than the one last awakened 5359 * at a frequency roughly N times higher than one of its wakees. 5360 * 5361 * In order to determine whether we should let the load spread vs consolidating 5362 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5363 * partner, and a factor of lls_size higher frequency in the other. 5364 * 5365 * With both conditions met, we can be relatively sure that the relationship is 5366 * non-monogamous, with partner count exceeding socket size. 5367 * 5368 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5369 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5370 * socket size. 5371 */ 5372 static int wake_wide(struct task_struct *p) 5373 { 5374 unsigned int master = current->wakee_flips; 5375 unsigned int slave = p->wakee_flips; 5376 int factor = this_cpu_read(sd_llc_size); 5377 5378 if (master < slave) 5379 swap(master, slave); 5380 if (slave < factor || master < slave * factor) 5381 return 0; 5382 return 1; 5383 } 5384 5385 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5386 int prev_cpu, int sync) 5387 { 5388 s64 this_load, load; 5389 s64 this_eff_load, prev_eff_load; 5390 int idx, this_cpu; 5391 struct task_group *tg; 5392 unsigned long weight; 5393 int balanced; 5394 5395 idx = sd->wake_idx; 5396 this_cpu = smp_processor_id(); 5397 load = source_load(prev_cpu, idx); 5398 this_load = target_load(this_cpu, idx); 5399 5400 /* 5401 * If sync wakeup then subtract the (maximum possible) 5402 * effect of the currently running task from the load 5403 * of the current CPU: 5404 */ 5405 if (sync) { 5406 tg = task_group(current); 5407 weight = current->se.avg.load_avg; 5408 5409 this_load += effective_load(tg, this_cpu, -weight, -weight); 5410 load += effective_load(tg, prev_cpu, 0, -weight); 5411 } 5412 5413 tg = task_group(p); 5414 weight = p->se.avg.load_avg; 5415 5416 /* 5417 * In low-load situations, where prev_cpu is idle and this_cpu is idle 5418 * due to the sync cause above having dropped this_load to 0, we'll 5419 * always have an imbalance, but there's really nothing you can do 5420 * about that, so that's good too. 5421 * 5422 * Otherwise check if either cpus are near enough in load to allow this 5423 * task to be woken on this_cpu. 5424 */ 5425 this_eff_load = 100; 5426 this_eff_load *= capacity_of(prev_cpu); 5427 5428 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 5429 prev_eff_load *= capacity_of(this_cpu); 5430 5431 if (this_load > 0) { 5432 this_eff_load *= this_load + 5433 effective_load(tg, this_cpu, weight, weight); 5434 5435 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 5436 } 5437 5438 balanced = this_eff_load <= prev_eff_load; 5439 5440 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5441 5442 if (!balanced) 5443 return 0; 5444 5445 schedstat_inc(sd->ttwu_move_affine); 5446 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5447 5448 return 1; 5449 } 5450 5451 static inline int task_util(struct task_struct *p); 5452 static int cpu_util_wake(int cpu, struct task_struct *p); 5453 5454 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p) 5455 { 5456 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p); 5457 } 5458 5459 /* 5460 * find_idlest_group finds and returns the least busy CPU group within the 5461 * domain. 5462 */ 5463 static struct sched_group * 5464 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5465 int this_cpu, int sd_flag) 5466 { 5467 struct sched_group *idlest = NULL, *group = sd->groups; 5468 struct sched_group *most_spare_sg = NULL; 5469 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0; 5470 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0; 5471 unsigned long most_spare = 0, this_spare = 0; 5472 int load_idx = sd->forkexec_idx; 5473 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5474 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5475 (sd->imbalance_pct-100) / 100; 5476 5477 if (sd_flag & SD_BALANCE_WAKE) 5478 load_idx = sd->wake_idx; 5479 5480 do { 5481 unsigned long load, avg_load, runnable_load; 5482 unsigned long spare_cap, max_spare_cap; 5483 int local_group; 5484 int i; 5485 5486 /* Skip over this group if it has no CPUs allowed */ 5487 if (!cpumask_intersects(sched_group_cpus(group), 5488 &p->cpus_allowed)) 5489 continue; 5490 5491 local_group = cpumask_test_cpu(this_cpu, 5492 sched_group_cpus(group)); 5493 5494 /* 5495 * Tally up the load of all CPUs in the group and find 5496 * the group containing the CPU with most spare capacity. 5497 */ 5498 avg_load = 0; 5499 runnable_load = 0; 5500 max_spare_cap = 0; 5501 5502 for_each_cpu(i, sched_group_cpus(group)) { 5503 /* Bias balancing toward cpus of our domain */ 5504 if (local_group) 5505 load = source_load(i, load_idx); 5506 else 5507 load = target_load(i, load_idx); 5508 5509 runnable_load += load; 5510 5511 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5512 5513 spare_cap = capacity_spare_wake(i, p); 5514 5515 if (spare_cap > max_spare_cap) 5516 max_spare_cap = spare_cap; 5517 } 5518 5519 /* Adjust by relative CPU capacity of the group */ 5520 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5521 group->sgc->capacity; 5522 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5523 group->sgc->capacity; 5524 5525 if (local_group) { 5526 this_runnable_load = runnable_load; 5527 this_avg_load = avg_load; 5528 this_spare = max_spare_cap; 5529 } else { 5530 if (min_runnable_load > (runnable_load + imbalance)) { 5531 /* 5532 * The runnable load is significantly smaller 5533 * so we can pick this new cpu 5534 */ 5535 min_runnable_load = runnable_load; 5536 min_avg_load = avg_load; 5537 idlest = group; 5538 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5539 (100*min_avg_load > imbalance_scale*avg_load)) { 5540 /* 5541 * The runnable loads are close so take the 5542 * blocked load into account through avg_load. 5543 */ 5544 min_avg_load = avg_load; 5545 idlest = group; 5546 } 5547 5548 if (most_spare < max_spare_cap) { 5549 most_spare = max_spare_cap; 5550 most_spare_sg = group; 5551 } 5552 } 5553 } while (group = group->next, group != sd->groups); 5554 5555 /* 5556 * The cross-over point between using spare capacity or least load 5557 * is too conservative for high utilization tasks on partially 5558 * utilized systems if we require spare_capacity > task_util(p), 5559 * so we allow for some task stuffing by using 5560 * spare_capacity > task_util(p)/2. 5561 * 5562 * Spare capacity can't be used for fork because the utilization has 5563 * not been set yet, we must first select a rq to compute the initial 5564 * utilization. 5565 */ 5566 if (sd_flag & SD_BALANCE_FORK) 5567 goto skip_spare; 5568 5569 if (this_spare > task_util(p) / 2 && 5570 imbalance_scale*this_spare > 100*most_spare) 5571 return NULL; 5572 5573 if (most_spare > task_util(p) / 2) 5574 return most_spare_sg; 5575 5576 skip_spare: 5577 if (!idlest) 5578 return NULL; 5579 5580 if (min_runnable_load > (this_runnable_load + imbalance)) 5581 return NULL; 5582 5583 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5584 (100*this_avg_load < imbalance_scale*min_avg_load)) 5585 return NULL; 5586 5587 return idlest; 5588 } 5589 5590 /* 5591 * find_idlest_cpu - find the idlest cpu among the cpus in group. 5592 */ 5593 static int 5594 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5595 { 5596 unsigned long load, min_load = ULONG_MAX; 5597 unsigned int min_exit_latency = UINT_MAX; 5598 u64 latest_idle_timestamp = 0; 5599 int least_loaded_cpu = this_cpu; 5600 int shallowest_idle_cpu = -1; 5601 int i; 5602 5603 /* Check if we have any choice: */ 5604 if (group->group_weight == 1) 5605 return cpumask_first(sched_group_cpus(group)); 5606 5607 /* Traverse only the allowed CPUs */ 5608 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { 5609 if (idle_cpu(i)) { 5610 struct rq *rq = cpu_rq(i); 5611 struct cpuidle_state *idle = idle_get_state(rq); 5612 if (idle && idle->exit_latency < min_exit_latency) { 5613 /* 5614 * We give priority to a CPU whose idle state 5615 * has the smallest exit latency irrespective 5616 * of any idle timestamp. 5617 */ 5618 min_exit_latency = idle->exit_latency; 5619 latest_idle_timestamp = rq->idle_stamp; 5620 shallowest_idle_cpu = i; 5621 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5622 rq->idle_stamp > latest_idle_timestamp) { 5623 /* 5624 * If equal or no active idle state, then 5625 * the most recently idled CPU might have 5626 * a warmer cache. 5627 */ 5628 latest_idle_timestamp = rq->idle_stamp; 5629 shallowest_idle_cpu = i; 5630 } 5631 } else if (shallowest_idle_cpu == -1) { 5632 load = weighted_cpuload(i); 5633 if (load < min_load || (load == min_load && i == this_cpu)) { 5634 min_load = load; 5635 least_loaded_cpu = i; 5636 } 5637 } 5638 } 5639 5640 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5641 } 5642 5643 /* 5644 * Implement a for_each_cpu() variant that starts the scan at a given cpu 5645 * (@start), and wraps around. 5646 * 5647 * This is used to scan for idle CPUs; such that not all CPUs looking for an 5648 * idle CPU find the same CPU. The down-side is that tasks tend to cycle 5649 * through the LLC domain. 5650 * 5651 * Especially tbench is found sensitive to this. 5652 */ 5653 5654 static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped) 5655 { 5656 int next; 5657 5658 again: 5659 next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1); 5660 5661 if (*wrapped) { 5662 if (next >= start) 5663 return nr_cpumask_bits; 5664 } else { 5665 if (next >= nr_cpumask_bits) { 5666 *wrapped = 1; 5667 n = -1; 5668 goto again; 5669 } 5670 } 5671 5672 return next; 5673 } 5674 5675 #define for_each_cpu_wrap(cpu, mask, start, wrap) \ 5676 for ((wrap) = 0, (cpu) = (start)-1; \ 5677 (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \ 5678 (cpu) < nr_cpumask_bits; ) 5679 5680 #ifdef CONFIG_SCHED_SMT 5681 5682 static inline void set_idle_cores(int cpu, int val) 5683 { 5684 struct sched_domain_shared *sds; 5685 5686 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5687 if (sds) 5688 WRITE_ONCE(sds->has_idle_cores, val); 5689 } 5690 5691 static inline bool test_idle_cores(int cpu, bool def) 5692 { 5693 struct sched_domain_shared *sds; 5694 5695 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5696 if (sds) 5697 return READ_ONCE(sds->has_idle_cores); 5698 5699 return def; 5700 } 5701 5702 /* 5703 * Scans the local SMT mask to see if the entire core is idle, and records this 5704 * information in sd_llc_shared->has_idle_cores. 5705 * 5706 * Since SMT siblings share all cache levels, inspecting this limited remote 5707 * state should be fairly cheap. 5708 */ 5709 void __update_idle_core(struct rq *rq) 5710 { 5711 int core = cpu_of(rq); 5712 int cpu; 5713 5714 rcu_read_lock(); 5715 if (test_idle_cores(core, true)) 5716 goto unlock; 5717 5718 for_each_cpu(cpu, cpu_smt_mask(core)) { 5719 if (cpu == core) 5720 continue; 5721 5722 if (!idle_cpu(cpu)) 5723 goto unlock; 5724 } 5725 5726 set_idle_cores(core, 1); 5727 unlock: 5728 rcu_read_unlock(); 5729 } 5730 5731 /* 5732 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5733 * there are no idle cores left in the system; tracked through 5734 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5735 */ 5736 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5737 { 5738 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5739 int core, cpu, wrap; 5740 5741 if (!static_branch_likely(&sched_smt_present)) 5742 return -1; 5743 5744 if (!test_idle_cores(target, false)) 5745 return -1; 5746 5747 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 5748 5749 for_each_cpu_wrap(core, cpus, target, wrap) { 5750 bool idle = true; 5751 5752 for_each_cpu(cpu, cpu_smt_mask(core)) { 5753 cpumask_clear_cpu(cpu, cpus); 5754 if (!idle_cpu(cpu)) 5755 idle = false; 5756 } 5757 5758 if (idle) 5759 return core; 5760 } 5761 5762 /* 5763 * Failed to find an idle core; stop looking for one. 5764 */ 5765 set_idle_cores(target, 0); 5766 5767 return -1; 5768 } 5769 5770 /* 5771 * Scan the local SMT mask for idle CPUs. 5772 */ 5773 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 5774 { 5775 int cpu; 5776 5777 if (!static_branch_likely(&sched_smt_present)) 5778 return -1; 5779 5780 for_each_cpu(cpu, cpu_smt_mask(target)) { 5781 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 5782 continue; 5783 if (idle_cpu(cpu)) 5784 return cpu; 5785 } 5786 5787 return -1; 5788 } 5789 5790 #else /* CONFIG_SCHED_SMT */ 5791 5792 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5793 { 5794 return -1; 5795 } 5796 5797 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 5798 { 5799 return -1; 5800 } 5801 5802 #endif /* CONFIG_SCHED_SMT */ 5803 5804 /* 5805 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 5806 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 5807 * average idle time for this rq (as found in rq->avg_idle). 5808 */ 5809 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 5810 { 5811 struct sched_domain *this_sd; 5812 u64 avg_cost, avg_idle = this_rq()->avg_idle; 5813 u64 time, cost; 5814 s64 delta; 5815 int cpu, wrap; 5816 5817 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 5818 if (!this_sd) 5819 return -1; 5820 5821 avg_cost = this_sd->avg_scan_cost; 5822 5823 /* 5824 * Due to large variance we need a large fuzz factor; hackbench in 5825 * particularly is sensitive here. 5826 */ 5827 if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost) 5828 return -1; 5829 5830 time = local_clock(); 5831 5832 for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) { 5833 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 5834 continue; 5835 if (idle_cpu(cpu)) 5836 break; 5837 } 5838 5839 time = local_clock() - time; 5840 cost = this_sd->avg_scan_cost; 5841 delta = (s64)(time - cost) / 8; 5842 this_sd->avg_scan_cost += delta; 5843 5844 return cpu; 5845 } 5846 5847 /* 5848 * Try and locate an idle core/thread in the LLC cache domain. 5849 */ 5850 static int select_idle_sibling(struct task_struct *p, int prev, int target) 5851 { 5852 struct sched_domain *sd; 5853 int i; 5854 5855 if (idle_cpu(target)) 5856 return target; 5857 5858 /* 5859 * If the previous cpu is cache affine and idle, don't be stupid. 5860 */ 5861 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev)) 5862 return prev; 5863 5864 sd = rcu_dereference(per_cpu(sd_llc, target)); 5865 if (!sd) 5866 return target; 5867 5868 i = select_idle_core(p, sd, target); 5869 if ((unsigned)i < nr_cpumask_bits) 5870 return i; 5871 5872 i = select_idle_cpu(p, sd, target); 5873 if ((unsigned)i < nr_cpumask_bits) 5874 return i; 5875 5876 i = select_idle_smt(p, sd, target); 5877 if ((unsigned)i < nr_cpumask_bits) 5878 return i; 5879 5880 return target; 5881 } 5882 5883 /* 5884 * cpu_util returns the amount of capacity of a CPU that is used by CFS 5885 * tasks. The unit of the return value must be the one of capacity so we can 5886 * compare the utilization with the capacity of the CPU that is available for 5887 * CFS task (ie cpu_capacity). 5888 * 5889 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 5890 * recent utilization of currently non-runnable tasks on a CPU. It represents 5891 * the amount of utilization of a CPU in the range [0..capacity_orig] where 5892 * capacity_orig is the cpu_capacity available at the highest frequency 5893 * (arch_scale_freq_capacity()). 5894 * The utilization of a CPU converges towards a sum equal to or less than the 5895 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 5896 * the running time on this CPU scaled by capacity_curr. 5897 * 5898 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 5899 * higher than capacity_orig because of unfortunate rounding in 5900 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 5901 * the average stabilizes with the new running time. We need to check that the 5902 * utilization stays within the range of [0..capacity_orig] and cap it if 5903 * necessary. Without utilization capping, a group could be seen as overloaded 5904 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 5905 * available capacity. We allow utilization to overshoot capacity_curr (but not 5906 * capacity_orig) as it useful for predicting the capacity required after task 5907 * migrations (scheduler-driven DVFS). 5908 */ 5909 static int cpu_util(int cpu) 5910 { 5911 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; 5912 unsigned long capacity = capacity_orig_of(cpu); 5913 5914 return (util >= capacity) ? capacity : util; 5915 } 5916 5917 static inline int task_util(struct task_struct *p) 5918 { 5919 return p->se.avg.util_avg; 5920 } 5921 5922 /* 5923 * cpu_util_wake: Compute cpu utilization with any contributions from 5924 * the waking task p removed. 5925 */ 5926 static int cpu_util_wake(int cpu, struct task_struct *p) 5927 { 5928 unsigned long util, capacity; 5929 5930 /* Task has no contribution or is new */ 5931 if (cpu != task_cpu(p) || !p->se.avg.last_update_time) 5932 return cpu_util(cpu); 5933 5934 capacity = capacity_orig_of(cpu); 5935 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0); 5936 5937 return (util >= capacity) ? capacity : util; 5938 } 5939 5940 /* 5941 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 5942 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 5943 * 5944 * In that case WAKE_AFFINE doesn't make sense and we'll let 5945 * BALANCE_WAKE sort things out. 5946 */ 5947 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 5948 { 5949 long min_cap, max_cap; 5950 5951 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 5952 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 5953 5954 /* Minimum capacity is close to max, no need to abort wake_affine */ 5955 if (max_cap - min_cap < max_cap >> 3) 5956 return 0; 5957 5958 /* Bring task utilization in sync with prev_cpu */ 5959 sync_entity_load_avg(&p->se); 5960 5961 return min_cap * 1024 < task_util(p) * capacity_margin; 5962 } 5963 5964 /* 5965 * select_task_rq_fair: Select target runqueue for the waking task in domains 5966 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 5967 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 5968 * 5969 * Balances load by selecting the idlest cpu in the idlest group, or under 5970 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 5971 * 5972 * Returns the target cpu number. 5973 * 5974 * preempt must be disabled. 5975 */ 5976 static int 5977 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 5978 { 5979 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 5980 int cpu = smp_processor_id(); 5981 int new_cpu = prev_cpu; 5982 int want_affine = 0; 5983 int sync = wake_flags & WF_SYNC; 5984 5985 if (sd_flag & SD_BALANCE_WAKE) { 5986 record_wakee(p); 5987 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) 5988 && cpumask_test_cpu(cpu, &p->cpus_allowed); 5989 } 5990 5991 rcu_read_lock(); 5992 for_each_domain(cpu, tmp) { 5993 if (!(tmp->flags & SD_LOAD_BALANCE)) 5994 break; 5995 5996 /* 5997 * If both cpu and prev_cpu are part of this domain, 5998 * cpu is a valid SD_WAKE_AFFINE target. 5999 */ 6000 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6001 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6002 affine_sd = tmp; 6003 break; 6004 } 6005 6006 if (tmp->flags & sd_flag) 6007 sd = tmp; 6008 else if (!want_affine) 6009 break; 6010 } 6011 6012 if (affine_sd) { 6013 sd = NULL; /* Prefer wake_affine over balance flags */ 6014 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync)) 6015 new_cpu = cpu; 6016 } 6017 6018 if (!sd) { 6019 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ 6020 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6021 6022 } else while (sd) { 6023 struct sched_group *group; 6024 int weight; 6025 6026 if (!(sd->flags & sd_flag)) { 6027 sd = sd->child; 6028 continue; 6029 } 6030 6031 group = find_idlest_group(sd, p, cpu, sd_flag); 6032 if (!group) { 6033 sd = sd->child; 6034 continue; 6035 } 6036 6037 new_cpu = find_idlest_cpu(group, p, cpu); 6038 if (new_cpu == -1 || new_cpu == cpu) { 6039 /* Now try balancing at a lower domain level of cpu */ 6040 sd = sd->child; 6041 continue; 6042 } 6043 6044 /* Now try balancing at a lower domain level of new_cpu */ 6045 cpu = new_cpu; 6046 weight = sd->span_weight; 6047 sd = NULL; 6048 for_each_domain(cpu, tmp) { 6049 if (weight <= tmp->span_weight) 6050 break; 6051 if (tmp->flags & sd_flag) 6052 sd = tmp; 6053 } 6054 /* while loop will break here if sd == NULL */ 6055 } 6056 rcu_read_unlock(); 6057 6058 return new_cpu; 6059 } 6060 6061 /* 6062 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 6063 * cfs_rq_of(p) references at time of call are still valid and identify the 6064 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6065 */ 6066 static void migrate_task_rq_fair(struct task_struct *p) 6067 { 6068 /* 6069 * As blocked tasks retain absolute vruntime the migration needs to 6070 * deal with this by subtracting the old and adding the new 6071 * min_vruntime -- the latter is done by enqueue_entity() when placing 6072 * the task on the new runqueue. 6073 */ 6074 if (p->state == TASK_WAKING) { 6075 struct sched_entity *se = &p->se; 6076 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6077 u64 min_vruntime; 6078 6079 #ifndef CONFIG_64BIT 6080 u64 min_vruntime_copy; 6081 6082 do { 6083 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6084 smp_rmb(); 6085 min_vruntime = cfs_rq->min_vruntime; 6086 } while (min_vruntime != min_vruntime_copy); 6087 #else 6088 min_vruntime = cfs_rq->min_vruntime; 6089 #endif 6090 6091 se->vruntime -= min_vruntime; 6092 } 6093 6094 /* 6095 * We are supposed to update the task to "current" time, then its up to date 6096 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting 6097 * what current time is, so simply throw away the out-of-date time. This 6098 * will result in the wakee task is less decayed, but giving the wakee more 6099 * load sounds not bad. 6100 */ 6101 remove_entity_load_avg(&p->se); 6102 6103 /* Tell new CPU we are migrated */ 6104 p->se.avg.last_update_time = 0; 6105 6106 /* We have migrated, no longer consider this task hot */ 6107 p->se.exec_start = 0; 6108 } 6109 6110 static void task_dead_fair(struct task_struct *p) 6111 { 6112 remove_entity_load_avg(&p->se); 6113 } 6114 #endif /* CONFIG_SMP */ 6115 6116 static unsigned long 6117 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 6118 { 6119 unsigned long gran = sysctl_sched_wakeup_granularity; 6120 6121 /* 6122 * Since its curr running now, convert the gran from real-time 6123 * to virtual-time in his units. 6124 * 6125 * By using 'se' instead of 'curr' we penalize light tasks, so 6126 * they get preempted easier. That is, if 'se' < 'curr' then 6127 * the resulting gran will be larger, therefore penalizing the 6128 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6129 * be smaller, again penalizing the lighter task. 6130 * 6131 * This is especially important for buddies when the leftmost 6132 * task is higher priority than the buddy. 6133 */ 6134 return calc_delta_fair(gran, se); 6135 } 6136 6137 /* 6138 * Should 'se' preempt 'curr'. 6139 * 6140 * |s1 6141 * |s2 6142 * |s3 6143 * g 6144 * |<--->|c 6145 * 6146 * w(c, s1) = -1 6147 * w(c, s2) = 0 6148 * w(c, s3) = 1 6149 * 6150 */ 6151 static int 6152 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6153 { 6154 s64 gran, vdiff = curr->vruntime - se->vruntime; 6155 6156 if (vdiff <= 0) 6157 return -1; 6158 6159 gran = wakeup_gran(curr, se); 6160 if (vdiff > gran) 6161 return 1; 6162 6163 return 0; 6164 } 6165 6166 static void set_last_buddy(struct sched_entity *se) 6167 { 6168 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6169 return; 6170 6171 for_each_sched_entity(se) 6172 cfs_rq_of(se)->last = se; 6173 } 6174 6175 static void set_next_buddy(struct sched_entity *se) 6176 { 6177 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6178 return; 6179 6180 for_each_sched_entity(se) 6181 cfs_rq_of(se)->next = se; 6182 } 6183 6184 static void set_skip_buddy(struct sched_entity *se) 6185 { 6186 for_each_sched_entity(se) 6187 cfs_rq_of(se)->skip = se; 6188 } 6189 6190 /* 6191 * Preempt the current task with a newly woken task if needed: 6192 */ 6193 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6194 { 6195 struct task_struct *curr = rq->curr; 6196 struct sched_entity *se = &curr->se, *pse = &p->se; 6197 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6198 int scale = cfs_rq->nr_running >= sched_nr_latency; 6199 int next_buddy_marked = 0; 6200 6201 if (unlikely(se == pse)) 6202 return; 6203 6204 /* 6205 * This is possible from callers such as attach_tasks(), in which we 6206 * unconditionally check_prempt_curr() after an enqueue (which may have 6207 * lead to a throttle). This both saves work and prevents false 6208 * next-buddy nomination below. 6209 */ 6210 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6211 return; 6212 6213 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6214 set_next_buddy(pse); 6215 next_buddy_marked = 1; 6216 } 6217 6218 /* 6219 * We can come here with TIF_NEED_RESCHED already set from new task 6220 * wake up path. 6221 * 6222 * Note: this also catches the edge-case of curr being in a throttled 6223 * group (e.g. via set_curr_task), since update_curr() (in the 6224 * enqueue of curr) will have resulted in resched being set. This 6225 * prevents us from potentially nominating it as a false LAST_BUDDY 6226 * below. 6227 */ 6228 if (test_tsk_need_resched(curr)) 6229 return; 6230 6231 /* Idle tasks are by definition preempted by non-idle tasks. */ 6232 if (unlikely(curr->policy == SCHED_IDLE) && 6233 likely(p->policy != SCHED_IDLE)) 6234 goto preempt; 6235 6236 /* 6237 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6238 * is driven by the tick): 6239 */ 6240 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6241 return; 6242 6243 find_matching_se(&se, &pse); 6244 update_curr(cfs_rq_of(se)); 6245 BUG_ON(!pse); 6246 if (wakeup_preempt_entity(se, pse) == 1) { 6247 /* 6248 * Bias pick_next to pick the sched entity that is 6249 * triggering this preemption. 6250 */ 6251 if (!next_buddy_marked) 6252 set_next_buddy(pse); 6253 goto preempt; 6254 } 6255 6256 return; 6257 6258 preempt: 6259 resched_curr(rq); 6260 /* 6261 * Only set the backward buddy when the current task is still 6262 * on the rq. This can happen when a wakeup gets interleaved 6263 * with schedule on the ->pre_schedule() or idle_balance() 6264 * point, either of which can * drop the rq lock. 6265 * 6266 * Also, during early boot the idle thread is in the fair class, 6267 * for obvious reasons its a bad idea to schedule back to it. 6268 */ 6269 if (unlikely(!se->on_rq || curr == rq->idle)) 6270 return; 6271 6272 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6273 set_last_buddy(se); 6274 } 6275 6276 static struct task_struct * 6277 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6278 { 6279 struct cfs_rq *cfs_rq = &rq->cfs; 6280 struct sched_entity *se; 6281 struct task_struct *p; 6282 int new_tasks; 6283 6284 again: 6285 #ifdef CONFIG_FAIR_GROUP_SCHED 6286 if (!cfs_rq->nr_running) 6287 goto idle; 6288 6289 if (prev->sched_class != &fair_sched_class) 6290 goto simple; 6291 6292 /* 6293 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6294 * likely that a next task is from the same cgroup as the current. 6295 * 6296 * Therefore attempt to avoid putting and setting the entire cgroup 6297 * hierarchy, only change the part that actually changes. 6298 */ 6299 6300 do { 6301 struct sched_entity *curr = cfs_rq->curr; 6302 6303 /* 6304 * Since we got here without doing put_prev_entity() we also 6305 * have to consider cfs_rq->curr. If it is still a runnable 6306 * entity, update_curr() will update its vruntime, otherwise 6307 * forget we've ever seen it. 6308 */ 6309 if (curr) { 6310 if (curr->on_rq) 6311 update_curr(cfs_rq); 6312 else 6313 curr = NULL; 6314 6315 /* 6316 * This call to check_cfs_rq_runtime() will do the 6317 * throttle and dequeue its entity in the parent(s). 6318 * Therefore the 'simple' nr_running test will indeed 6319 * be correct. 6320 */ 6321 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 6322 goto simple; 6323 } 6324 6325 se = pick_next_entity(cfs_rq, curr); 6326 cfs_rq = group_cfs_rq(se); 6327 } while (cfs_rq); 6328 6329 p = task_of(se); 6330 6331 /* 6332 * Since we haven't yet done put_prev_entity and if the selected task 6333 * is a different task than we started out with, try and touch the 6334 * least amount of cfs_rqs. 6335 */ 6336 if (prev != p) { 6337 struct sched_entity *pse = &prev->se; 6338 6339 while (!(cfs_rq = is_same_group(se, pse))) { 6340 int se_depth = se->depth; 6341 int pse_depth = pse->depth; 6342 6343 if (se_depth <= pse_depth) { 6344 put_prev_entity(cfs_rq_of(pse), pse); 6345 pse = parent_entity(pse); 6346 } 6347 if (se_depth >= pse_depth) { 6348 set_next_entity(cfs_rq_of(se), se); 6349 se = parent_entity(se); 6350 } 6351 } 6352 6353 put_prev_entity(cfs_rq, pse); 6354 set_next_entity(cfs_rq, se); 6355 } 6356 6357 if (hrtick_enabled(rq)) 6358 hrtick_start_fair(rq, p); 6359 6360 return p; 6361 simple: 6362 cfs_rq = &rq->cfs; 6363 #endif 6364 6365 if (!cfs_rq->nr_running) 6366 goto idle; 6367 6368 put_prev_task(rq, prev); 6369 6370 do { 6371 se = pick_next_entity(cfs_rq, NULL); 6372 set_next_entity(cfs_rq, se); 6373 cfs_rq = group_cfs_rq(se); 6374 } while (cfs_rq); 6375 6376 p = task_of(se); 6377 6378 if (hrtick_enabled(rq)) 6379 hrtick_start_fair(rq, p); 6380 6381 return p; 6382 6383 idle: 6384 new_tasks = idle_balance(rq, rf); 6385 6386 /* 6387 * Because idle_balance() releases (and re-acquires) rq->lock, it is 6388 * possible for any higher priority task to appear. In that case we 6389 * must re-start the pick_next_entity() loop. 6390 */ 6391 if (new_tasks < 0) 6392 return RETRY_TASK; 6393 6394 if (new_tasks > 0) 6395 goto again; 6396 6397 return NULL; 6398 } 6399 6400 /* 6401 * Account for a descheduled task: 6402 */ 6403 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6404 { 6405 struct sched_entity *se = &prev->se; 6406 struct cfs_rq *cfs_rq; 6407 6408 for_each_sched_entity(se) { 6409 cfs_rq = cfs_rq_of(se); 6410 put_prev_entity(cfs_rq, se); 6411 } 6412 } 6413 6414 /* 6415 * sched_yield() is very simple 6416 * 6417 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6418 */ 6419 static void yield_task_fair(struct rq *rq) 6420 { 6421 struct task_struct *curr = rq->curr; 6422 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6423 struct sched_entity *se = &curr->se; 6424 6425 /* 6426 * Are we the only task in the tree? 6427 */ 6428 if (unlikely(rq->nr_running == 1)) 6429 return; 6430 6431 clear_buddies(cfs_rq, se); 6432 6433 if (curr->policy != SCHED_BATCH) { 6434 update_rq_clock(rq); 6435 /* 6436 * Update run-time statistics of the 'current'. 6437 */ 6438 update_curr(cfs_rq); 6439 /* 6440 * Tell update_rq_clock() that we've just updated, 6441 * so we don't do microscopic update in schedule() 6442 * and double the fastpath cost. 6443 */ 6444 rq_clock_skip_update(rq, true); 6445 } 6446 6447 set_skip_buddy(se); 6448 } 6449 6450 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6451 { 6452 struct sched_entity *se = &p->se; 6453 6454 /* throttled hierarchies are not runnable */ 6455 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6456 return false; 6457 6458 /* Tell the scheduler that we'd really like pse to run next. */ 6459 set_next_buddy(se); 6460 6461 yield_task_fair(rq); 6462 6463 return true; 6464 } 6465 6466 #ifdef CONFIG_SMP 6467 /************************************************** 6468 * Fair scheduling class load-balancing methods. 6469 * 6470 * BASICS 6471 * 6472 * The purpose of load-balancing is to achieve the same basic fairness the 6473 * per-cpu scheduler provides, namely provide a proportional amount of compute 6474 * time to each task. This is expressed in the following equation: 6475 * 6476 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6477 * 6478 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 6479 * W_i,0 is defined as: 6480 * 6481 * W_i,0 = \Sum_j w_i,j (2) 6482 * 6483 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 6484 * is derived from the nice value as per sched_prio_to_weight[]. 6485 * 6486 * The weight average is an exponential decay average of the instantaneous 6487 * weight: 6488 * 6489 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6490 * 6491 * C_i is the compute capacity of cpu i, typically it is the 6492 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6493 * can also include other factors [XXX]. 6494 * 6495 * To achieve this balance we define a measure of imbalance which follows 6496 * directly from (1): 6497 * 6498 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6499 * 6500 * We them move tasks around to minimize the imbalance. In the continuous 6501 * function space it is obvious this converges, in the discrete case we get 6502 * a few fun cases generally called infeasible weight scenarios. 6503 * 6504 * [XXX expand on: 6505 * - infeasible weights; 6506 * - local vs global optima in the discrete case. ] 6507 * 6508 * 6509 * SCHED DOMAINS 6510 * 6511 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6512 * for all i,j solution, we create a tree of cpus that follows the hardware 6513 * topology where each level pairs two lower groups (or better). This results 6514 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 6515 * tree to only the first of the previous level and we decrease the frequency 6516 * of load-balance at each level inv. proportional to the number of cpus in 6517 * the groups. 6518 * 6519 * This yields: 6520 * 6521 * log_2 n 1 n 6522 * \Sum { --- * --- * 2^i } = O(n) (5) 6523 * i = 0 2^i 2^i 6524 * `- size of each group 6525 * | | `- number of cpus doing load-balance 6526 * | `- freq 6527 * `- sum over all levels 6528 * 6529 * Coupled with a limit on how many tasks we can migrate every balance pass, 6530 * this makes (5) the runtime complexity of the balancer. 6531 * 6532 * An important property here is that each CPU is still (indirectly) connected 6533 * to every other cpu in at most O(log n) steps: 6534 * 6535 * The adjacency matrix of the resulting graph is given by: 6536 * 6537 * log_2 n 6538 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 6539 * k = 0 6540 * 6541 * And you'll find that: 6542 * 6543 * A^(log_2 n)_i,j != 0 for all i,j (7) 6544 * 6545 * Showing there's indeed a path between every cpu in at most O(log n) steps. 6546 * The task movement gives a factor of O(m), giving a convergence complexity 6547 * of: 6548 * 6549 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 6550 * 6551 * 6552 * WORK CONSERVING 6553 * 6554 * In order to avoid CPUs going idle while there's still work to do, new idle 6555 * balancing is more aggressive and has the newly idle cpu iterate up the domain 6556 * tree itself instead of relying on other CPUs to bring it work. 6557 * 6558 * This adds some complexity to both (5) and (8) but it reduces the total idle 6559 * time. 6560 * 6561 * [XXX more?] 6562 * 6563 * 6564 * CGROUPS 6565 * 6566 * Cgroups make a horror show out of (2), instead of a simple sum we get: 6567 * 6568 * s_k,i 6569 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 6570 * S_k 6571 * 6572 * Where 6573 * 6574 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 6575 * 6576 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 6577 * 6578 * The big problem is S_k, its a global sum needed to compute a local (W_i) 6579 * property. 6580 * 6581 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 6582 * rewrite all of this once again.] 6583 */ 6584 6585 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 6586 6587 enum fbq_type { regular, remote, all }; 6588 6589 #define LBF_ALL_PINNED 0x01 6590 #define LBF_NEED_BREAK 0x02 6591 #define LBF_DST_PINNED 0x04 6592 #define LBF_SOME_PINNED 0x08 6593 6594 struct lb_env { 6595 struct sched_domain *sd; 6596 6597 struct rq *src_rq; 6598 int src_cpu; 6599 6600 int dst_cpu; 6601 struct rq *dst_rq; 6602 6603 struct cpumask *dst_grpmask; 6604 int new_dst_cpu; 6605 enum cpu_idle_type idle; 6606 long imbalance; 6607 /* The set of CPUs under consideration for load-balancing */ 6608 struct cpumask *cpus; 6609 6610 unsigned int flags; 6611 6612 unsigned int loop; 6613 unsigned int loop_break; 6614 unsigned int loop_max; 6615 6616 enum fbq_type fbq_type; 6617 struct list_head tasks; 6618 }; 6619 6620 /* 6621 * Is this task likely cache-hot: 6622 */ 6623 static int task_hot(struct task_struct *p, struct lb_env *env) 6624 { 6625 s64 delta; 6626 6627 lockdep_assert_held(&env->src_rq->lock); 6628 6629 if (p->sched_class != &fair_sched_class) 6630 return 0; 6631 6632 if (unlikely(p->policy == SCHED_IDLE)) 6633 return 0; 6634 6635 /* 6636 * Buddy candidates are cache hot: 6637 */ 6638 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 6639 (&p->se == cfs_rq_of(&p->se)->next || 6640 &p->se == cfs_rq_of(&p->se)->last)) 6641 return 1; 6642 6643 if (sysctl_sched_migration_cost == -1) 6644 return 1; 6645 if (sysctl_sched_migration_cost == 0) 6646 return 0; 6647 6648 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 6649 6650 return delta < (s64)sysctl_sched_migration_cost; 6651 } 6652 6653 #ifdef CONFIG_NUMA_BALANCING 6654 /* 6655 * Returns 1, if task migration degrades locality 6656 * Returns 0, if task migration improves locality i.e migration preferred. 6657 * Returns -1, if task migration is not affected by locality. 6658 */ 6659 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 6660 { 6661 struct numa_group *numa_group = rcu_dereference(p->numa_group); 6662 unsigned long src_faults, dst_faults; 6663 int src_nid, dst_nid; 6664 6665 if (!static_branch_likely(&sched_numa_balancing)) 6666 return -1; 6667 6668 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 6669 return -1; 6670 6671 src_nid = cpu_to_node(env->src_cpu); 6672 dst_nid = cpu_to_node(env->dst_cpu); 6673 6674 if (src_nid == dst_nid) 6675 return -1; 6676 6677 /* Migrating away from the preferred node is always bad. */ 6678 if (src_nid == p->numa_preferred_nid) { 6679 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 6680 return 1; 6681 else 6682 return -1; 6683 } 6684 6685 /* Encourage migration to the preferred node. */ 6686 if (dst_nid == p->numa_preferred_nid) 6687 return 0; 6688 6689 if (numa_group) { 6690 src_faults = group_faults(p, src_nid); 6691 dst_faults = group_faults(p, dst_nid); 6692 } else { 6693 src_faults = task_faults(p, src_nid); 6694 dst_faults = task_faults(p, dst_nid); 6695 } 6696 6697 return dst_faults < src_faults; 6698 } 6699 6700 #else 6701 static inline int migrate_degrades_locality(struct task_struct *p, 6702 struct lb_env *env) 6703 { 6704 return -1; 6705 } 6706 #endif 6707 6708 /* 6709 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 6710 */ 6711 static 6712 int can_migrate_task(struct task_struct *p, struct lb_env *env) 6713 { 6714 int tsk_cache_hot; 6715 6716 lockdep_assert_held(&env->src_rq->lock); 6717 6718 /* 6719 * We do not migrate tasks that are: 6720 * 1) throttled_lb_pair, or 6721 * 2) cannot be migrated to this CPU due to cpus_allowed, or 6722 * 3) running (obviously), or 6723 * 4) are cache-hot on their current CPU. 6724 */ 6725 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 6726 return 0; 6727 6728 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 6729 int cpu; 6730 6731 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 6732 6733 env->flags |= LBF_SOME_PINNED; 6734 6735 /* 6736 * Remember if this task can be migrated to any other cpu in 6737 * our sched_group. We may want to revisit it if we couldn't 6738 * meet load balance goals by pulling other tasks on src_cpu. 6739 * 6740 * Also avoid computing new_dst_cpu if we have already computed 6741 * one in current iteration. 6742 */ 6743 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 6744 return 0; 6745 6746 /* Prevent to re-select dst_cpu via env's cpus */ 6747 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 6748 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 6749 env->flags |= LBF_DST_PINNED; 6750 env->new_dst_cpu = cpu; 6751 break; 6752 } 6753 } 6754 6755 return 0; 6756 } 6757 6758 /* Record that we found atleast one task that could run on dst_cpu */ 6759 env->flags &= ~LBF_ALL_PINNED; 6760 6761 if (task_running(env->src_rq, p)) { 6762 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 6763 return 0; 6764 } 6765 6766 /* 6767 * Aggressive migration if: 6768 * 1) destination numa is preferred 6769 * 2) task is cache cold, or 6770 * 3) too many balance attempts have failed. 6771 */ 6772 tsk_cache_hot = migrate_degrades_locality(p, env); 6773 if (tsk_cache_hot == -1) 6774 tsk_cache_hot = task_hot(p, env); 6775 6776 if (tsk_cache_hot <= 0 || 6777 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 6778 if (tsk_cache_hot == 1) { 6779 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 6780 schedstat_inc(p->se.statistics.nr_forced_migrations); 6781 } 6782 return 1; 6783 } 6784 6785 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 6786 return 0; 6787 } 6788 6789 /* 6790 * detach_task() -- detach the task for the migration specified in env 6791 */ 6792 static void detach_task(struct task_struct *p, struct lb_env *env) 6793 { 6794 lockdep_assert_held(&env->src_rq->lock); 6795 6796 p->on_rq = TASK_ON_RQ_MIGRATING; 6797 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 6798 set_task_cpu(p, env->dst_cpu); 6799 } 6800 6801 /* 6802 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 6803 * part of active balancing operations within "domain". 6804 * 6805 * Returns a task if successful and NULL otherwise. 6806 */ 6807 static struct task_struct *detach_one_task(struct lb_env *env) 6808 { 6809 struct task_struct *p, *n; 6810 6811 lockdep_assert_held(&env->src_rq->lock); 6812 6813 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 6814 if (!can_migrate_task(p, env)) 6815 continue; 6816 6817 detach_task(p, env); 6818 6819 /* 6820 * Right now, this is only the second place where 6821 * lb_gained[env->idle] is updated (other is detach_tasks) 6822 * so we can safely collect stats here rather than 6823 * inside detach_tasks(). 6824 */ 6825 schedstat_inc(env->sd->lb_gained[env->idle]); 6826 return p; 6827 } 6828 return NULL; 6829 } 6830 6831 static const unsigned int sched_nr_migrate_break = 32; 6832 6833 /* 6834 * detach_tasks() -- tries to detach up to imbalance weighted load from 6835 * busiest_rq, as part of a balancing operation within domain "sd". 6836 * 6837 * Returns number of detached tasks if successful and 0 otherwise. 6838 */ 6839 static int detach_tasks(struct lb_env *env) 6840 { 6841 struct list_head *tasks = &env->src_rq->cfs_tasks; 6842 struct task_struct *p; 6843 unsigned long load; 6844 int detached = 0; 6845 6846 lockdep_assert_held(&env->src_rq->lock); 6847 6848 if (env->imbalance <= 0) 6849 return 0; 6850 6851 while (!list_empty(tasks)) { 6852 /* 6853 * We don't want to steal all, otherwise we may be treated likewise, 6854 * which could at worst lead to a livelock crash. 6855 */ 6856 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 6857 break; 6858 6859 p = list_first_entry(tasks, struct task_struct, se.group_node); 6860 6861 env->loop++; 6862 /* We've more or less seen every task there is, call it quits */ 6863 if (env->loop > env->loop_max) 6864 break; 6865 6866 /* take a breather every nr_migrate tasks */ 6867 if (env->loop > env->loop_break) { 6868 env->loop_break += sched_nr_migrate_break; 6869 env->flags |= LBF_NEED_BREAK; 6870 break; 6871 } 6872 6873 if (!can_migrate_task(p, env)) 6874 goto next; 6875 6876 load = task_h_load(p); 6877 6878 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 6879 goto next; 6880 6881 if ((load / 2) > env->imbalance) 6882 goto next; 6883 6884 detach_task(p, env); 6885 list_add(&p->se.group_node, &env->tasks); 6886 6887 detached++; 6888 env->imbalance -= load; 6889 6890 #ifdef CONFIG_PREEMPT 6891 /* 6892 * NEWIDLE balancing is a source of latency, so preemptible 6893 * kernels will stop after the first task is detached to minimize 6894 * the critical section. 6895 */ 6896 if (env->idle == CPU_NEWLY_IDLE) 6897 break; 6898 #endif 6899 6900 /* 6901 * We only want to steal up to the prescribed amount of 6902 * weighted load. 6903 */ 6904 if (env->imbalance <= 0) 6905 break; 6906 6907 continue; 6908 next: 6909 list_move_tail(&p->se.group_node, tasks); 6910 } 6911 6912 /* 6913 * Right now, this is one of only two places we collect this stat 6914 * so we can safely collect detach_one_task() stats here rather 6915 * than inside detach_one_task(). 6916 */ 6917 schedstat_add(env->sd->lb_gained[env->idle], detached); 6918 6919 return detached; 6920 } 6921 6922 /* 6923 * attach_task() -- attach the task detached by detach_task() to its new rq. 6924 */ 6925 static void attach_task(struct rq *rq, struct task_struct *p) 6926 { 6927 lockdep_assert_held(&rq->lock); 6928 6929 BUG_ON(task_rq(p) != rq); 6930 activate_task(rq, p, ENQUEUE_NOCLOCK); 6931 p->on_rq = TASK_ON_RQ_QUEUED; 6932 check_preempt_curr(rq, p, 0); 6933 } 6934 6935 /* 6936 * attach_one_task() -- attaches the task returned from detach_one_task() to 6937 * its new rq. 6938 */ 6939 static void attach_one_task(struct rq *rq, struct task_struct *p) 6940 { 6941 struct rq_flags rf; 6942 6943 rq_lock(rq, &rf); 6944 update_rq_clock(rq); 6945 attach_task(rq, p); 6946 rq_unlock(rq, &rf); 6947 } 6948 6949 /* 6950 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 6951 * new rq. 6952 */ 6953 static void attach_tasks(struct lb_env *env) 6954 { 6955 struct list_head *tasks = &env->tasks; 6956 struct task_struct *p; 6957 struct rq_flags rf; 6958 6959 rq_lock(env->dst_rq, &rf); 6960 update_rq_clock(env->dst_rq); 6961 6962 while (!list_empty(tasks)) { 6963 p = list_first_entry(tasks, struct task_struct, se.group_node); 6964 list_del_init(&p->se.group_node); 6965 6966 attach_task(env->dst_rq, p); 6967 } 6968 6969 rq_unlock(env->dst_rq, &rf); 6970 } 6971 6972 #ifdef CONFIG_FAIR_GROUP_SCHED 6973 static void update_blocked_averages(int cpu) 6974 { 6975 struct rq *rq = cpu_rq(cpu); 6976 struct cfs_rq *cfs_rq; 6977 struct rq_flags rf; 6978 6979 rq_lock_irqsave(rq, &rf); 6980 update_rq_clock(rq); 6981 6982 /* 6983 * Iterates the task_group tree in a bottom up fashion, see 6984 * list_add_leaf_cfs_rq() for details. 6985 */ 6986 for_each_leaf_cfs_rq(rq, cfs_rq) { 6987 struct sched_entity *se; 6988 6989 /* throttled entities do not contribute to load */ 6990 if (throttled_hierarchy(cfs_rq)) 6991 continue; 6992 6993 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true)) 6994 update_tg_load_avg(cfs_rq, 0); 6995 6996 /* Propagate pending load changes to the parent, if any: */ 6997 se = cfs_rq->tg->se[cpu]; 6998 if (se && !skip_blocked_update(se)) 6999 update_load_avg(se, 0); 7000 } 7001 rq_unlock_irqrestore(rq, &rf); 7002 } 7003 7004 /* 7005 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7006 * This needs to be done in a top-down fashion because the load of a child 7007 * group is a fraction of its parents load. 7008 */ 7009 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7010 { 7011 struct rq *rq = rq_of(cfs_rq); 7012 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7013 unsigned long now = jiffies; 7014 unsigned long load; 7015 7016 if (cfs_rq->last_h_load_update == now) 7017 return; 7018 7019 cfs_rq->h_load_next = NULL; 7020 for_each_sched_entity(se) { 7021 cfs_rq = cfs_rq_of(se); 7022 cfs_rq->h_load_next = se; 7023 if (cfs_rq->last_h_load_update == now) 7024 break; 7025 } 7026 7027 if (!se) { 7028 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7029 cfs_rq->last_h_load_update = now; 7030 } 7031 7032 while ((se = cfs_rq->h_load_next) != NULL) { 7033 load = cfs_rq->h_load; 7034 load = div64_ul(load * se->avg.load_avg, 7035 cfs_rq_load_avg(cfs_rq) + 1); 7036 cfs_rq = group_cfs_rq(se); 7037 cfs_rq->h_load = load; 7038 cfs_rq->last_h_load_update = now; 7039 } 7040 } 7041 7042 static unsigned long task_h_load(struct task_struct *p) 7043 { 7044 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7045 7046 update_cfs_rq_h_load(cfs_rq); 7047 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7048 cfs_rq_load_avg(cfs_rq) + 1); 7049 } 7050 #else 7051 static inline void update_blocked_averages(int cpu) 7052 { 7053 struct rq *rq = cpu_rq(cpu); 7054 struct cfs_rq *cfs_rq = &rq->cfs; 7055 struct rq_flags rf; 7056 7057 rq_lock_irqsave(rq, &rf); 7058 update_rq_clock(rq); 7059 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true); 7060 rq_unlock_irqrestore(rq, &rf); 7061 } 7062 7063 static unsigned long task_h_load(struct task_struct *p) 7064 { 7065 return p->se.avg.load_avg; 7066 } 7067 #endif 7068 7069 /********** Helpers for find_busiest_group ************************/ 7070 7071 enum group_type { 7072 group_other = 0, 7073 group_imbalanced, 7074 group_overloaded, 7075 }; 7076 7077 /* 7078 * sg_lb_stats - stats of a sched_group required for load_balancing 7079 */ 7080 struct sg_lb_stats { 7081 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7082 unsigned long group_load; /* Total load over the CPUs of the group */ 7083 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7084 unsigned long load_per_task; 7085 unsigned long group_capacity; 7086 unsigned long group_util; /* Total utilization of the group */ 7087 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7088 unsigned int idle_cpus; 7089 unsigned int group_weight; 7090 enum group_type group_type; 7091 int group_no_capacity; 7092 #ifdef CONFIG_NUMA_BALANCING 7093 unsigned int nr_numa_running; 7094 unsigned int nr_preferred_running; 7095 #endif 7096 }; 7097 7098 /* 7099 * sd_lb_stats - Structure to store the statistics of a sched_domain 7100 * during load balancing. 7101 */ 7102 struct sd_lb_stats { 7103 struct sched_group *busiest; /* Busiest group in this sd */ 7104 struct sched_group *local; /* Local group in this sd */ 7105 unsigned long total_load; /* Total load of all groups in sd */ 7106 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7107 unsigned long avg_load; /* Average load across all groups in sd */ 7108 7109 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7110 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7111 }; 7112 7113 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7114 { 7115 /* 7116 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7117 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7118 * We must however clear busiest_stat::avg_load because 7119 * update_sd_pick_busiest() reads this before assignment. 7120 */ 7121 *sds = (struct sd_lb_stats){ 7122 .busiest = NULL, 7123 .local = NULL, 7124 .total_load = 0UL, 7125 .total_capacity = 0UL, 7126 .busiest_stat = { 7127 .avg_load = 0UL, 7128 .sum_nr_running = 0, 7129 .group_type = group_other, 7130 }, 7131 }; 7132 } 7133 7134 /** 7135 * get_sd_load_idx - Obtain the load index for a given sched domain. 7136 * @sd: The sched_domain whose load_idx is to be obtained. 7137 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7138 * 7139 * Return: The load index. 7140 */ 7141 static inline int get_sd_load_idx(struct sched_domain *sd, 7142 enum cpu_idle_type idle) 7143 { 7144 int load_idx; 7145 7146 switch (idle) { 7147 case CPU_NOT_IDLE: 7148 load_idx = sd->busy_idx; 7149 break; 7150 7151 case CPU_NEWLY_IDLE: 7152 load_idx = sd->newidle_idx; 7153 break; 7154 default: 7155 load_idx = sd->idle_idx; 7156 break; 7157 } 7158 7159 return load_idx; 7160 } 7161 7162 static unsigned long scale_rt_capacity(int cpu) 7163 { 7164 struct rq *rq = cpu_rq(cpu); 7165 u64 total, used, age_stamp, avg; 7166 s64 delta; 7167 7168 /* 7169 * Since we're reading these variables without serialization make sure 7170 * we read them once before doing sanity checks on them. 7171 */ 7172 age_stamp = READ_ONCE(rq->age_stamp); 7173 avg = READ_ONCE(rq->rt_avg); 7174 delta = __rq_clock_broken(rq) - age_stamp; 7175 7176 if (unlikely(delta < 0)) 7177 delta = 0; 7178 7179 total = sched_avg_period() + delta; 7180 7181 used = div_u64(avg, total); 7182 7183 if (likely(used < SCHED_CAPACITY_SCALE)) 7184 return SCHED_CAPACITY_SCALE - used; 7185 7186 return 1; 7187 } 7188 7189 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7190 { 7191 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); 7192 struct sched_group *sdg = sd->groups; 7193 7194 cpu_rq(cpu)->cpu_capacity_orig = capacity; 7195 7196 capacity *= scale_rt_capacity(cpu); 7197 capacity >>= SCHED_CAPACITY_SHIFT; 7198 7199 if (!capacity) 7200 capacity = 1; 7201 7202 cpu_rq(cpu)->cpu_capacity = capacity; 7203 sdg->sgc->capacity = capacity; 7204 sdg->sgc->min_capacity = capacity; 7205 } 7206 7207 void update_group_capacity(struct sched_domain *sd, int cpu) 7208 { 7209 struct sched_domain *child = sd->child; 7210 struct sched_group *group, *sdg = sd->groups; 7211 unsigned long capacity, min_capacity; 7212 unsigned long interval; 7213 7214 interval = msecs_to_jiffies(sd->balance_interval); 7215 interval = clamp(interval, 1UL, max_load_balance_interval); 7216 sdg->sgc->next_update = jiffies + interval; 7217 7218 if (!child) { 7219 update_cpu_capacity(sd, cpu); 7220 return; 7221 } 7222 7223 capacity = 0; 7224 min_capacity = ULONG_MAX; 7225 7226 if (child->flags & SD_OVERLAP) { 7227 /* 7228 * SD_OVERLAP domains cannot assume that child groups 7229 * span the current group. 7230 */ 7231 7232 for_each_cpu(cpu, sched_group_cpus(sdg)) { 7233 struct sched_group_capacity *sgc; 7234 struct rq *rq = cpu_rq(cpu); 7235 7236 /* 7237 * build_sched_domains() -> init_sched_groups_capacity() 7238 * gets here before we've attached the domains to the 7239 * runqueues. 7240 * 7241 * Use capacity_of(), which is set irrespective of domains 7242 * in update_cpu_capacity(). 7243 * 7244 * This avoids capacity from being 0 and 7245 * causing divide-by-zero issues on boot. 7246 */ 7247 if (unlikely(!rq->sd)) { 7248 capacity += capacity_of(cpu); 7249 } else { 7250 sgc = rq->sd->groups->sgc; 7251 capacity += sgc->capacity; 7252 } 7253 7254 min_capacity = min(capacity, min_capacity); 7255 } 7256 } else { 7257 /* 7258 * !SD_OVERLAP domains can assume that child groups 7259 * span the current group. 7260 */ 7261 7262 group = child->groups; 7263 do { 7264 struct sched_group_capacity *sgc = group->sgc; 7265 7266 capacity += sgc->capacity; 7267 min_capacity = min(sgc->min_capacity, min_capacity); 7268 group = group->next; 7269 } while (group != child->groups); 7270 } 7271 7272 sdg->sgc->capacity = capacity; 7273 sdg->sgc->min_capacity = min_capacity; 7274 } 7275 7276 /* 7277 * Check whether the capacity of the rq has been noticeably reduced by side 7278 * activity. The imbalance_pct is used for the threshold. 7279 * Return true is the capacity is reduced 7280 */ 7281 static inline int 7282 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7283 { 7284 return ((rq->cpu_capacity * sd->imbalance_pct) < 7285 (rq->cpu_capacity_orig * 100)); 7286 } 7287 7288 /* 7289 * Group imbalance indicates (and tries to solve) the problem where balancing 7290 * groups is inadequate due to ->cpus_allowed constraints. 7291 * 7292 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 7293 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 7294 * Something like: 7295 * 7296 * { 0 1 2 3 } { 4 5 6 7 } 7297 * * * * * 7298 * 7299 * If we were to balance group-wise we'd place two tasks in the first group and 7300 * two tasks in the second group. Clearly this is undesired as it will overload 7301 * cpu 3 and leave one of the cpus in the second group unused. 7302 * 7303 * The current solution to this issue is detecting the skew in the first group 7304 * by noticing the lower domain failed to reach balance and had difficulty 7305 * moving tasks due to affinity constraints. 7306 * 7307 * When this is so detected; this group becomes a candidate for busiest; see 7308 * update_sd_pick_busiest(). And calculate_imbalance() and 7309 * find_busiest_group() avoid some of the usual balance conditions to allow it 7310 * to create an effective group imbalance. 7311 * 7312 * This is a somewhat tricky proposition since the next run might not find the 7313 * group imbalance and decide the groups need to be balanced again. A most 7314 * subtle and fragile situation. 7315 */ 7316 7317 static inline int sg_imbalanced(struct sched_group *group) 7318 { 7319 return group->sgc->imbalance; 7320 } 7321 7322 /* 7323 * group_has_capacity returns true if the group has spare capacity that could 7324 * be used by some tasks. 7325 * We consider that a group has spare capacity if the * number of task is 7326 * smaller than the number of CPUs or if the utilization is lower than the 7327 * available capacity for CFS tasks. 7328 * For the latter, we use a threshold to stabilize the state, to take into 7329 * account the variance of the tasks' load and to return true if the available 7330 * capacity in meaningful for the load balancer. 7331 * As an example, an available capacity of 1% can appear but it doesn't make 7332 * any benefit for the load balance. 7333 */ 7334 static inline bool 7335 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7336 { 7337 if (sgs->sum_nr_running < sgs->group_weight) 7338 return true; 7339 7340 if ((sgs->group_capacity * 100) > 7341 (sgs->group_util * env->sd->imbalance_pct)) 7342 return true; 7343 7344 return false; 7345 } 7346 7347 /* 7348 * group_is_overloaded returns true if the group has more tasks than it can 7349 * handle. 7350 * group_is_overloaded is not equals to !group_has_capacity because a group 7351 * with the exact right number of tasks, has no more spare capacity but is not 7352 * overloaded so both group_has_capacity and group_is_overloaded return 7353 * false. 7354 */ 7355 static inline bool 7356 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 7357 { 7358 if (sgs->sum_nr_running <= sgs->group_weight) 7359 return false; 7360 7361 if ((sgs->group_capacity * 100) < 7362 (sgs->group_util * env->sd->imbalance_pct)) 7363 return true; 7364 7365 return false; 7366 } 7367 7368 /* 7369 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller 7370 * per-CPU capacity than sched_group ref. 7371 */ 7372 static inline bool 7373 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7374 { 7375 return sg->sgc->min_capacity * capacity_margin < 7376 ref->sgc->min_capacity * 1024; 7377 } 7378 7379 static inline enum 7380 group_type group_classify(struct sched_group *group, 7381 struct sg_lb_stats *sgs) 7382 { 7383 if (sgs->group_no_capacity) 7384 return group_overloaded; 7385 7386 if (sg_imbalanced(group)) 7387 return group_imbalanced; 7388 7389 return group_other; 7390 } 7391 7392 /** 7393 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 7394 * @env: The load balancing environment. 7395 * @group: sched_group whose statistics are to be updated. 7396 * @load_idx: Load index of sched_domain of this_cpu for load calc. 7397 * @local_group: Does group contain this_cpu. 7398 * @sgs: variable to hold the statistics for this group. 7399 * @overload: Indicate more than one runnable task for any CPU. 7400 */ 7401 static inline void update_sg_lb_stats(struct lb_env *env, 7402 struct sched_group *group, int load_idx, 7403 int local_group, struct sg_lb_stats *sgs, 7404 bool *overload) 7405 { 7406 unsigned long load; 7407 int i, nr_running; 7408 7409 memset(sgs, 0, sizeof(*sgs)); 7410 7411 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 7412 struct rq *rq = cpu_rq(i); 7413 7414 /* Bias balancing toward cpus of our domain */ 7415 if (local_group) 7416 load = target_load(i, load_idx); 7417 else 7418 load = source_load(i, load_idx); 7419 7420 sgs->group_load += load; 7421 sgs->group_util += cpu_util(i); 7422 sgs->sum_nr_running += rq->cfs.h_nr_running; 7423 7424 nr_running = rq->nr_running; 7425 if (nr_running > 1) 7426 *overload = true; 7427 7428 #ifdef CONFIG_NUMA_BALANCING 7429 sgs->nr_numa_running += rq->nr_numa_running; 7430 sgs->nr_preferred_running += rq->nr_preferred_running; 7431 #endif 7432 sgs->sum_weighted_load += weighted_cpuload(i); 7433 /* 7434 * No need to call idle_cpu() if nr_running is not 0 7435 */ 7436 if (!nr_running && idle_cpu(i)) 7437 sgs->idle_cpus++; 7438 } 7439 7440 /* Adjust by relative CPU capacity of the group */ 7441 sgs->group_capacity = group->sgc->capacity; 7442 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 7443 7444 if (sgs->sum_nr_running) 7445 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 7446 7447 sgs->group_weight = group->group_weight; 7448 7449 sgs->group_no_capacity = group_is_overloaded(env, sgs); 7450 sgs->group_type = group_classify(group, sgs); 7451 } 7452 7453 /** 7454 * update_sd_pick_busiest - return 1 on busiest group 7455 * @env: The load balancing environment. 7456 * @sds: sched_domain statistics 7457 * @sg: sched_group candidate to be checked for being the busiest 7458 * @sgs: sched_group statistics 7459 * 7460 * Determine if @sg is a busier group than the previously selected 7461 * busiest group. 7462 * 7463 * Return: %true if @sg is a busier group than the previously selected 7464 * busiest group. %false otherwise. 7465 */ 7466 static bool update_sd_pick_busiest(struct lb_env *env, 7467 struct sd_lb_stats *sds, 7468 struct sched_group *sg, 7469 struct sg_lb_stats *sgs) 7470 { 7471 struct sg_lb_stats *busiest = &sds->busiest_stat; 7472 7473 if (sgs->group_type > busiest->group_type) 7474 return true; 7475 7476 if (sgs->group_type < busiest->group_type) 7477 return false; 7478 7479 if (sgs->avg_load <= busiest->avg_load) 7480 return false; 7481 7482 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 7483 goto asym_packing; 7484 7485 /* 7486 * Candidate sg has no more than one task per CPU and 7487 * has higher per-CPU capacity. Migrating tasks to less 7488 * capable CPUs may harm throughput. Maximize throughput, 7489 * power/energy consequences are not considered. 7490 */ 7491 if (sgs->sum_nr_running <= sgs->group_weight && 7492 group_smaller_cpu_capacity(sds->local, sg)) 7493 return false; 7494 7495 asym_packing: 7496 /* This is the busiest node in its class. */ 7497 if (!(env->sd->flags & SD_ASYM_PACKING)) 7498 return true; 7499 7500 /* No ASYM_PACKING if target cpu is already busy */ 7501 if (env->idle == CPU_NOT_IDLE) 7502 return true; 7503 /* 7504 * ASYM_PACKING needs to move all the work to the highest 7505 * prority CPUs in the group, therefore mark all groups 7506 * of lower priority than ourself as busy. 7507 */ 7508 if (sgs->sum_nr_running && 7509 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 7510 if (!sds->busiest) 7511 return true; 7512 7513 /* Prefer to move from lowest priority cpu's work */ 7514 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 7515 sg->asym_prefer_cpu)) 7516 return true; 7517 } 7518 7519 return false; 7520 } 7521 7522 #ifdef CONFIG_NUMA_BALANCING 7523 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7524 { 7525 if (sgs->sum_nr_running > sgs->nr_numa_running) 7526 return regular; 7527 if (sgs->sum_nr_running > sgs->nr_preferred_running) 7528 return remote; 7529 return all; 7530 } 7531 7532 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7533 { 7534 if (rq->nr_running > rq->nr_numa_running) 7535 return regular; 7536 if (rq->nr_running > rq->nr_preferred_running) 7537 return remote; 7538 return all; 7539 } 7540 #else 7541 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7542 { 7543 return all; 7544 } 7545 7546 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7547 { 7548 return regular; 7549 } 7550 #endif /* CONFIG_NUMA_BALANCING */ 7551 7552 /** 7553 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 7554 * @env: The load balancing environment. 7555 * @sds: variable to hold the statistics for this sched_domain. 7556 */ 7557 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 7558 { 7559 struct sched_domain *child = env->sd->child; 7560 struct sched_group *sg = env->sd->groups; 7561 struct sg_lb_stats *local = &sds->local_stat; 7562 struct sg_lb_stats tmp_sgs; 7563 int load_idx, prefer_sibling = 0; 7564 bool overload = false; 7565 7566 if (child && child->flags & SD_PREFER_SIBLING) 7567 prefer_sibling = 1; 7568 7569 load_idx = get_sd_load_idx(env->sd, env->idle); 7570 7571 do { 7572 struct sg_lb_stats *sgs = &tmp_sgs; 7573 int local_group; 7574 7575 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 7576 if (local_group) { 7577 sds->local = sg; 7578 sgs = local; 7579 7580 if (env->idle != CPU_NEWLY_IDLE || 7581 time_after_eq(jiffies, sg->sgc->next_update)) 7582 update_group_capacity(env->sd, env->dst_cpu); 7583 } 7584 7585 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 7586 &overload); 7587 7588 if (local_group) 7589 goto next_group; 7590 7591 /* 7592 * In case the child domain prefers tasks go to siblings 7593 * first, lower the sg capacity so that we'll try 7594 * and move all the excess tasks away. We lower the capacity 7595 * of a group only if the local group has the capacity to fit 7596 * these excess tasks. The extra check prevents the case where 7597 * you always pull from the heaviest group when it is already 7598 * under-utilized (possible with a large weight task outweighs 7599 * the tasks on the system). 7600 */ 7601 if (prefer_sibling && sds->local && 7602 group_has_capacity(env, local) && 7603 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 7604 sgs->group_no_capacity = 1; 7605 sgs->group_type = group_classify(sg, sgs); 7606 } 7607 7608 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 7609 sds->busiest = sg; 7610 sds->busiest_stat = *sgs; 7611 } 7612 7613 next_group: 7614 /* Now, start updating sd_lb_stats */ 7615 sds->total_load += sgs->group_load; 7616 sds->total_capacity += sgs->group_capacity; 7617 7618 sg = sg->next; 7619 } while (sg != env->sd->groups); 7620 7621 if (env->sd->flags & SD_NUMA) 7622 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 7623 7624 if (!env->sd->parent) { 7625 /* update overload indicator if we are at root domain */ 7626 if (env->dst_rq->rd->overload != overload) 7627 env->dst_rq->rd->overload = overload; 7628 } 7629 7630 } 7631 7632 /** 7633 * check_asym_packing - Check to see if the group is packed into the 7634 * sched domain. 7635 * 7636 * This is primarily intended to used at the sibling level. Some 7637 * cores like POWER7 prefer to use lower numbered SMT threads. In the 7638 * case of POWER7, it can move to lower SMT modes only when higher 7639 * threads are idle. When in lower SMT modes, the threads will 7640 * perform better since they share less core resources. Hence when we 7641 * have idle threads, we want them to be the higher ones. 7642 * 7643 * This packing function is run on idle threads. It checks to see if 7644 * the busiest CPU in this domain (core in the P7 case) has a higher 7645 * CPU number than the packing function is being run on. Here we are 7646 * assuming lower CPU number will be equivalent to lower a SMT thread 7647 * number. 7648 * 7649 * Return: 1 when packing is required and a task should be moved to 7650 * this CPU. The amount of the imbalance is returned in *imbalance. 7651 * 7652 * @env: The load balancing environment. 7653 * @sds: Statistics of the sched_domain which is to be packed 7654 */ 7655 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 7656 { 7657 int busiest_cpu; 7658 7659 if (!(env->sd->flags & SD_ASYM_PACKING)) 7660 return 0; 7661 7662 if (env->idle == CPU_NOT_IDLE) 7663 return 0; 7664 7665 if (!sds->busiest) 7666 return 0; 7667 7668 busiest_cpu = sds->busiest->asym_prefer_cpu; 7669 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 7670 return 0; 7671 7672 env->imbalance = DIV_ROUND_CLOSEST( 7673 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 7674 SCHED_CAPACITY_SCALE); 7675 7676 return 1; 7677 } 7678 7679 /** 7680 * fix_small_imbalance - Calculate the minor imbalance that exists 7681 * amongst the groups of a sched_domain, during 7682 * load balancing. 7683 * @env: The load balancing environment. 7684 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 7685 */ 7686 static inline 7687 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7688 { 7689 unsigned long tmp, capa_now = 0, capa_move = 0; 7690 unsigned int imbn = 2; 7691 unsigned long scaled_busy_load_per_task; 7692 struct sg_lb_stats *local, *busiest; 7693 7694 local = &sds->local_stat; 7695 busiest = &sds->busiest_stat; 7696 7697 if (!local->sum_nr_running) 7698 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 7699 else if (busiest->load_per_task > local->load_per_task) 7700 imbn = 1; 7701 7702 scaled_busy_load_per_task = 7703 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7704 busiest->group_capacity; 7705 7706 if (busiest->avg_load + scaled_busy_load_per_task >= 7707 local->avg_load + (scaled_busy_load_per_task * imbn)) { 7708 env->imbalance = busiest->load_per_task; 7709 return; 7710 } 7711 7712 /* 7713 * OK, we don't have enough imbalance to justify moving tasks, 7714 * however we may be able to increase total CPU capacity used by 7715 * moving them. 7716 */ 7717 7718 capa_now += busiest->group_capacity * 7719 min(busiest->load_per_task, busiest->avg_load); 7720 capa_now += local->group_capacity * 7721 min(local->load_per_task, local->avg_load); 7722 capa_now /= SCHED_CAPACITY_SCALE; 7723 7724 /* Amount of load we'd subtract */ 7725 if (busiest->avg_load > scaled_busy_load_per_task) { 7726 capa_move += busiest->group_capacity * 7727 min(busiest->load_per_task, 7728 busiest->avg_load - scaled_busy_load_per_task); 7729 } 7730 7731 /* Amount of load we'd add */ 7732 if (busiest->avg_load * busiest->group_capacity < 7733 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 7734 tmp = (busiest->avg_load * busiest->group_capacity) / 7735 local->group_capacity; 7736 } else { 7737 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7738 local->group_capacity; 7739 } 7740 capa_move += local->group_capacity * 7741 min(local->load_per_task, local->avg_load + tmp); 7742 capa_move /= SCHED_CAPACITY_SCALE; 7743 7744 /* Move if we gain throughput */ 7745 if (capa_move > capa_now) 7746 env->imbalance = busiest->load_per_task; 7747 } 7748 7749 /** 7750 * calculate_imbalance - Calculate the amount of imbalance present within the 7751 * groups of a given sched_domain during load balance. 7752 * @env: load balance environment 7753 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 7754 */ 7755 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7756 { 7757 unsigned long max_pull, load_above_capacity = ~0UL; 7758 struct sg_lb_stats *local, *busiest; 7759 7760 local = &sds->local_stat; 7761 busiest = &sds->busiest_stat; 7762 7763 if (busiest->group_type == group_imbalanced) { 7764 /* 7765 * In the group_imb case we cannot rely on group-wide averages 7766 * to ensure cpu-load equilibrium, look at wider averages. XXX 7767 */ 7768 busiest->load_per_task = 7769 min(busiest->load_per_task, sds->avg_load); 7770 } 7771 7772 /* 7773 * Avg load of busiest sg can be less and avg load of local sg can 7774 * be greater than avg load across all sgs of sd because avg load 7775 * factors in sg capacity and sgs with smaller group_type are 7776 * skipped when updating the busiest sg: 7777 */ 7778 if (busiest->avg_load <= sds->avg_load || 7779 local->avg_load >= sds->avg_load) { 7780 env->imbalance = 0; 7781 return fix_small_imbalance(env, sds); 7782 } 7783 7784 /* 7785 * If there aren't any idle cpus, avoid creating some. 7786 */ 7787 if (busiest->group_type == group_overloaded && 7788 local->group_type == group_overloaded) { 7789 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 7790 if (load_above_capacity > busiest->group_capacity) { 7791 load_above_capacity -= busiest->group_capacity; 7792 load_above_capacity *= scale_load_down(NICE_0_LOAD); 7793 load_above_capacity /= busiest->group_capacity; 7794 } else 7795 load_above_capacity = ~0UL; 7796 } 7797 7798 /* 7799 * We're trying to get all the cpus to the average_load, so we don't 7800 * want to push ourselves above the average load, nor do we wish to 7801 * reduce the max loaded cpu below the average load. At the same time, 7802 * we also don't want to reduce the group load below the group 7803 * capacity. Thus we look for the minimum possible imbalance. 7804 */ 7805 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 7806 7807 /* How much load to actually move to equalise the imbalance */ 7808 env->imbalance = min( 7809 max_pull * busiest->group_capacity, 7810 (sds->avg_load - local->avg_load) * local->group_capacity 7811 ) / SCHED_CAPACITY_SCALE; 7812 7813 /* 7814 * if *imbalance is less than the average load per runnable task 7815 * there is no guarantee that any tasks will be moved so we'll have 7816 * a think about bumping its value to force at least one task to be 7817 * moved 7818 */ 7819 if (env->imbalance < busiest->load_per_task) 7820 return fix_small_imbalance(env, sds); 7821 } 7822 7823 /******* find_busiest_group() helpers end here *********************/ 7824 7825 /** 7826 * find_busiest_group - Returns the busiest group within the sched_domain 7827 * if there is an imbalance. 7828 * 7829 * Also calculates the amount of weighted load which should be moved 7830 * to restore balance. 7831 * 7832 * @env: The load balancing environment. 7833 * 7834 * Return: - The busiest group if imbalance exists. 7835 */ 7836 static struct sched_group *find_busiest_group(struct lb_env *env) 7837 { 7838 struct sg_lb_stats *local, *busiest; 7839 struct sd_lb_stats sds; 7840 7841 init_sd_lb_stats(&sds); 7842 7843 /* 7844 * Compute the various statistics relavent for load balancing at 7845 * this level. 7846 */ 7847 update_sd_lb_stats(env, &sds); 7848 local = &sds.local_stat; 7849 busiest = &sds.busiest_stat; 7850 7851 /* ASYM feature bypasses nice load balance check */ 7852 if (check_asym_packing(env, &sds)) 7853 return sds.busiest; 7854 7855 /* There is no busy sibling group to pull tasks from */ 7856 if (!sds.busiest || busiest->sum_nr_running == 0) 7857 goto out_balanced; 7858 7859 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 7860 / sds.total_capacity; 7861 7862 /* 7863 * If the busiest group is imbalanced the below checks don't 7864 * work because they assume all things are equal, which typically 7865 * isn't true due to cpus_allowed constraints and the like. 7866 */ 7867 if (busiest->group_type == group_imbalanced) 7868 goto force_balance; 7869 7870 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 7871 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && 7872 busiest->group_no_capacity) 7873 goto force_balance; 7874 7875 /* 7876 * If the local group is busier than the selected busiest group 7877 * don't try and pull any tasks. 7878 */ 7879 if (local->avg_load >= busiest->avg_load) 7880 goto out_balanced; 7881 7882 /* 7883 * Don't pull any tasks if this group is already above the domain 7884 * average load. 7885 */ 7886 if (local->avg_load >= sds.avg_load) 7887 goto out_balanced; 7888 7889 if (env->idle == CPU_IDLE) { 7890 /* 7891 * This cpu is idle. If the busiest group is not overloaded 7892 * and there is no imbalance between this and busiest group 7893 * wrt idle cpus, it is balanced. The imbalance becomes 7894 * significant if the diff is greater than 1 otherwise we 7895 * might end up to just move the imbalance on another group 7896 */ 7897 if ((busiest->group_type != group_overloaded) && 7898 (local->idle_cpus <= (busiest->idle_cpus + 1))) 7899 goto out_balanced; 7900 } else { 7901 /* 7902 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 7903 * imbalance_pct to be conservative. 7904 */ 7905 if (100 * busiest->avg_load <= 7906 env->sd->imbalance_pct * local->avg_load) 7907 goto out_balanced; 7908 } 7909 7910 force_balance: 7911 /* Looks like there is an imbalance. Compute it */ 7912 calculate_imbalance(env, &sds); 7913 return sds.busiest; 7914 7915 out_balanced: 7916 env->imbalance = 0; 7917 return NULL; 7918 } 7919 7920 /* 7921 * find_busiest_queue - find the busiest runqueue among the cpus in group. 7922 */ 7923 static struct rq *find_busiest_queue(struct lb_env *env, 7924 struct sched_group *group) 7925 { 7926 struct rq *busiest = NULL, *rq; 7927 unsigned long busiest_load = 0, busiest_capacity = 1; 7928 int i; 7929 7930 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 7931 unsigned long capacity, wl; 7932 enum fbq_type rt; 7933 7934 rq = cpu_rq(i); 7935 rt = fbq_classify_rq(rq); 7936 7937 /* 7938 * We classify groups/runqueues into three groups: 7939 * - regular: there are !numa tasks 7940 * - remote: there are numa tasks that run on the 'wrong' node 7941 * - all: there is no distinction 7942 * 7943 * In order to avoid migrating ideally placed numa tasks, 7944 * ignore those when there's better options. 7945 * 7946 * If we ignore the actual busiest queue to migrate another 7947 * task, the next balance pass can still reduce the busiest 7948 * queue by moving tasks around inside the node. 7949 * 7950 * If we cannot move enough load due to this classification 7951 * the next pass will adjust the group classification and 7952 * allow migration of more tasks. 7953 * 7954 * Both cases only affect the total convergence complexity. 7955 */ 7956 if (rt > env->fbq_type) 7957 continue; 7958 7959 capacity = capacity_of(i); 7960 7961 wl = weighted_cpuload(i); 7962 7963 /* 7964 * When comparing with imbalance, use weighted_cpuload() 7965 * which is not scaled with the cpu capacity. 7966 */ 7967 7968 if (rq->nr_running == 1 && wl > env->imbalance && 7969 !check_cpu_capacity(rq, env->sd)) 7970 continue; 7971 7972 /* 7973 * For the load comparisons with the other cpu's, consider 7974 * the weighted_cpuload() scaled with the cpu capacity, so 7975 * that the load can be moved away from the cpu that is 7976 * potentially running at a lower capacity. 7977 * 7978 * Thus we're looking for max(wl_i / capacity_i), crosswise 7979 * multiplication to rid ourselves of the division works out 7980 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 7981 * our previous maximum. 7982 */ 7983 if (wl * busiest_capacity > busiest_load * capacity) { 7984 busiest_load = wl; 7985 busiest_capacity = capacity; 7986 busiest = rq; 7987 } 7988 } 7989 7990 return busiest; 7991 } 7992 7993 /* 7994 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 7995 * so long as it is large enough. 7996 */ 7997 #define MAX_PINNED_INTERVAL 512 7998 7999 static int need_active_balance(struct lb_env *env) 8000 { 8001 struct sched_domain *sd = env->sd; 8002 8003 if (env->idle == CPU_NEWLY_IDLE) { 8004 8005 /* 8006 * ASYM_PACKING needs to force migrate tasks from busy but 8007 * lower priority CPUs in order to pack all tasks in the 8008 * highest priority CPUs. 8009 */ 8010 if ((sd->flags & SD_ASYM_PACKING) && 8011 sched_asym_prefer(env->dst_cpu, env->src_cpu)) 8012 return 1; 8013 } 8014 8015 /* 8016 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8017 * It's worth migrating the task if the src_cpu's capacity is reduced 8018 * because of other sched_class or IRQs if more capacity stays 8019 * available on dst_cpu. 8020 */ 8021 if ((env->idle != CPU_NOT_IDLE) && 8022 (env->src_rq->cfs.h_nr_running == 1)) { 8023 if ((check_cpu_capacity(env->src_rq, sd)) && 8024 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8025 return 1; 8026 } 8027 8028 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8029 } 8030 8031 static int active_load_balance_cpu_stop(void *data); 8032 8033 static int should_we_balance(struct lb_env *env) 8034 { 8035 struct sched_group *sg = env->sd->groups; 8036 struct cpumask *sg_cpus, *sg_mask; 8037 int cpu, balance_cpu = -1; 8038 8039 /* 8040 * In the newly idle case, we will allow all the cpu's 8041 * to do the newly idle load balance. 8042 */ 8043 if (env->idle == CPU_NEWLY_IDLE) 8044 return 1; 8045 8046 sg_cpus = sched_group_cpus(sg); 8047 sg_mask = sched_group_mask(sg); 8048 /* Try to find first idle cpu */ 8049 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 8050 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 8051 continue; 8052 8053 balance_cpu = cpu; 8054 break; 8055 } 8056 8057 if (balance_cpu == -1) 8058 balance_cpu = group_balance_cpu(sg); 8059 8060 /* 8061 * First idle cpu or the first cpu(busiest) in this sched group 8062 * is eligible for doing load balancing at this and above domains. 8063 */ 8064 return balance_cpu == env->dst_cpu; 8065 } 8066 8067 /* 8068 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8069 * tasks if there is an imbalance. 8070 */ 8071 static int load_balance(int this_cpu, struct rq *this_rq, 8072 struct sched_domain *sd, enum cpu_idle_type idle, 8073 int *continue_balancing) 8074 { 8075 int ld_moved, cur_ld_moved, active_balance = 0; 8076 struct sched_domain *sd_parent = sd->parent; 8077 struct sched_group *group; 8078 struct rq *busiest; 8079 struct rq_flags rf; 8080 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8081 8082 struct lb_env env = { 8083 .sd = sd, 8084 .dst_cpu = this_cpu, 8085 .dst_rq = this_rq, 8086 .dst_grpmask = sched_group_cpus(sd->groups), 8087 .idle = idle, 8088 .loop_break = sched_nr_migrate_break, 8089 .cpus = cpus, 8090 .fbq_type = all, 8091 .tasks = LIST_HEAD_INIT(env.tasks), 8092 }; 8093 8094 /* 8095 * For NEWLY_IDLE load_balancing, we don't need to consider 8096 * other cpus in our group 8097 */ 8098 if (idle == CPU_NEWLY_IDLE) 8099 env.dst_grpmask = NULL; 8100 8101 cpumask_copy(cpus, cpu_active_mask); 8102 8103 schedstat_inc(sd->lb_count[idle]); 8104 8105 redo: 8106 if (!should_we_balance(&env)) { 8107 *continue_balancing = 0; 8108 goto out_balanced; 8109 } 8110 8111 group = find_busiest_group(&env); 8112 if (!group) { 8113 schedstat_inc(sd->lb_nobusyg[idle]); 8114 goto out_balanced; 8115 } 8116 8117 busiest = find_busiest_queue(&env, group); 8118 if (!busiest) { 8119 schedstat_inc(sd->lb_nobusyq[idle]); 8120 goto out_balanced; 8121 } 8122 8123 BUG_ON(busiest == env.dst_rq); 8124 8125 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8126 8127 env.src_cpu = busiest->cpu; 8128 env.src_rq = busiest; 8129 8130 ld_moved = 0; 8131 if (busiest->nr_running > 1) { 8132 /* 8133 * Attempt to move tasks. If find_busiest_group has found 8134 * an imbalance but busiest->nr_running <= 1, the group is 8135 * still unbalanced. ld_moved simply stays zero, so it is 8136 * correctly treated as an imbalance. 8137 */ 8138 env.flags |= LBF_ALL_PINNED; 8139 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8140 8141 more_balance: 8142 rq_lock_irqsave(busiest, &rf); 8143 update_rq_clock(busiest); 8144 8145 /* 8146 * cur_ld_moved - load moved in current iteration 8147 * ld_moved - cumulative load moved across iterations 8148 */ 8149 cur_ld_moved = detach_tasks(&env); 8150 8151 /* 8152 * We've detached some tasks from busiest_rq. Every 8153 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8154 * unlock busiest->lock, and we are able to be sure 8155 * that nobody can manipulate the tasks in parallel. 8156 * See task_rq_lock() family for the details. 8157 */ 8158 8159 rq_unlock(busiest, &rf); 8160 8161 if (cur_ld_moved) { 8162 attach_tasks(&env); 8163 ld_moved += cur_ld_moved; 8164 } 8165 8166 local_irq_restore(rf.flags); 8167 8168 if (env.flags & LBF_NEED_BREAK) { 8169 env.flags &= ~LBF_NEED_BREAK; 8170 goto more_balance; 8171 } 8172 8173 /* 8174 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8175 * us and move them to an alternate dst_cpu in our sched_group 8176 * where they can run. The upper limit on how many times we 8177 * iterate on same src_cpu is dependent on number of cpus in our 8178 * sched_group. 8179 * 8180 * This changes load balance semantics a bit on who can move 8181 * load to a given_cpu. In addition to the given_cpu itself 8182 * (or a ilb_cpu acting on its behalf where given_cpu is 8183 * nohz-idle), we now have balance_cpu in a position to move 8184 * load to given_cpu. In rare situations, this may cause 8185 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8186 * _independently_ and at _same_ time to move some load to 8187 * given_cpu) causing exceess load to be moved to given_cpu. 8188 * This however should not happen so much in practice and 8189 * moreover subsequent load balance cycles should correct the 8190 * excess load moved. 8191 */ 8192 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8193 8194 /* Prevent to re-select dst_cpu via env's cpus */ 8195 cpumask_clear_cpu(env.dst_cpu, env.cpus); 8196 8197 env.dst_rq = cpu_rq(env.new_dst_cpu); 8198 env.dst_cpu = env.new_dst_cpu; 8199 env.flags &= ~LBF_DST_PINNED; 8200 env.loop = 0; 8201 env.loop_break = sched_nr_migrate_break; 8202 8203 /* 8204 * Go back to "more_balance" rather than "redo" since we 8205 * need to continue with same src_cpu. 8206 */ 8207 goto more_balance; 8208 } 8209 8210 /* 8211 * We failed to reach balance because of affinity. 8212 */ 8213 if (sd_parent) { 8214 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8215 8216 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8217 *group_imbalance = 1; 8218 } 8219 8220 /* All tasks on this runqueue were pinned by CPU affinity */ 8221 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8222 cpumask_clear_cpu(cpu_of(busiest), cpus); 8223 if (!cpumask_empty(cpus)) { 8224 env.loop = 0; 8225 env.loop_break = sched_nr_migrate_break; 8226 goto redo; 8227 } 8228 goto out_all_pinned; 8229 } 8230 } 8231 8232 if (!ld_moved) { 8233 schedstat_inc(sd->lb_failed[idle]); 8234 /* 8235 * Increment the failure counter only on periodic balance. 8236 * We do not want newidle balance, which can be very 8237 * frequent, pollute the failure counter causing 8238 * excessive cache_hot migrations and active balances. 8239 */ 8240 if (idle != CPU_NEWLY_IDLE) 8241 sd->nr_balance_failed++; 8242 8243 if (need_active_balance(&env)) { 8244 unsigned long flags; 8245 8246 raw_spin_lock_irqsave(&busiest->lock, flags); 8247 8248 /* don't kick the active_load_balance_cpu_stop, 8249 * if the curr task on busiest cpu can't be 8250 * moved to this_cpu 8251 */ 8252 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 8253 raw_spin_unlock_irqrestore(&busiest->lock, 8254 flags); 8255 env.flags |= LBF_ALL_PINNED; 8256 goto out_one_pinned; 8257 } 8258 8259 /* 8260 * ->active_balance synchronizes accesses to 8261 * ->active_balance_work. Once set, it's cleared 8262 * only after active load balance is finished. 8263 */ 8264 if (!busiest->active_balance) { 8265 busiest->active_balance = 1; 8266 busiest->push_cpu = this_cpu; 8267 active_balance = 1; 8268 } 8269 raw_spin_unlock_irqrestore(&busiest->lock, flags); 8270 8271 if (active_balance) { 8272 stop_one_cpu_nowait(cpu_of(busiest), 8273 active_load_balance_cpu_stop, busiest, 8274 &busiest->active_balance_work); 8275 } 8276 8277 /* We've kicked active balancing, force task migration. */ 8278 sd->nr_balance_failed = sd->cache_nice_tries+1; 8279 } 8280 } else 8281 sd->nr_balance_failed = 0; 8282 8283 if (likely(!active_balance)) { 8284 /* We were unbalanced, so reset the balancing interval */ 8285 sd->balance_interval = sd->min_interval; 8286 } else { 8287 /* 8288 * If we've begun active balancing, start to back off. This 8289 * case may not be covered by the all_pinned logic if there 8290 * is only 1 task on the busy runqueue (because we don't call 8291 * detach_tasks). 8292 */ 8293 if (sd->balance_interval < sd->max_interval) 8294 sd->balance_interval *= 2; 8295 } 8296 8297 goto out; 8298 8299 out_balanced: 8300 /* 8301 * We reach balance although we may have faced some affinity 8302 * constraints. Clear the imbalance flag if it was set. 8303 */ 8304 if (sd_parent) { 8305 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8306 8307 if (*group_imbalance) 8308 *group_imbalance = 0; 8309 } 8310 8311 out_all_pinned: 8312 /* 8313 * We reach balance because all tasks are pinned at this level so 8314 * we can't migrate them. Let the imbalance flag set so parent level 8315 * can try to migrate them. 8316 */ 8317 schedstat_inc(sd->lb_balanced[idle]); 8318 8319 sd->nr_balance_failed = 0; 8320 8321 out_one_pinned: 8322 /* tune up the balancing interval */ 8323 if (((env.flags & LBF_ALL_PINNED) && 8324 sd->balance_interval < MAX_PINNED_INTERVAL) || 8325 (sd->balance_interval < sd->max_interval)) 8326 sd->balance_interval *= 2; 8327 8328 ld_moved = 0; 8329 out: 8330 return ld_moved; 8331 } 8332 8333 static inline unsigned long 8334 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 8335 { 8336 unsigned long interval = sd->balance_interval; 8337 8338 if (cpu_busy) 8339 interval *= sd->busy_factor; 8340 8341 /* scale ms to jiffies */ 8342 interval = msecs_to_jiffies(interval); 8343 interval = clamp(interval, 1UL, max_load_balance_interval); 8344 8345 return interval; 8346 } 8347 8348 static inline void 8349 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 8350 { 8351 unsigned long interval, next; 8352 8353 /* used by idle balance, so cpu_busy = 0 */ 8354 interval = get_sd_balance_interval(sd, 0); 8355 next = sd->last_balance + interval; 8356 8357 if (time_after(*next_balance, next)) 8358 *next_balance = next; 8359 } 8360 8361 /* 8362 * idle_balance is called by schedule() if this_cpu is about to become 8363 * idle. Attempts to pull tasks from other CPUs. 8364 */ 8365 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 8366 { 8367 unsigned long next_balance = jiffies + HZ; 8368 int this_cpu = this_rq->cpu; 8369 struct sched_domain *sd; 8370 int pulled_task = 0; 8371 u64 curr_cost = 0; 8372 8373 /* 8374 * We must set idle_stamp _before_ calling idle_balance(), such that we 8375 * measure the duration of idle_balance() as idle time. 8376 */ 8377 this_rq->idle_stamp = rq_clock(this_rq); 8378 8379 /* 8380 * This is OK, because current is on_cpu, which avoids it being picked 8381 * for load-balance and preemption/IRQs are still disabled avoiding 8382 * further scheduler activity on it and we're being very careful to 8383 * re-start the picking loop. 8384 */ 8385 rq_unpin_lock(this_rq, rf); 8386 8387 if (this_rq->avg_idle < sysctl_sched_migration_cost || 8388 !this_rq->rd->overload) { 8389 rcu_read_lock(); 8390 sd = rcu_dereference_check_sched_domain(this_rq->sd); 8391 if (sd) 8392 update_next_balance(sd, &next_balance); 8393 rcu_read_unlock(); 8394 8395 goto out; 8396 } 8397 8398 raw_spin_unlock(&this_rq->lock); 8399 8400 update_blocked_averages(this_cpu); 8401 rcu_read_lock(); 8402 for_each_domain(this_cpu, sd) { 8403 int continue_balancing = 1; 8404 u64 t0, domain_cost; 8405 8406 if (!(sd->flags & SD_LOAD_BALANCE)) 8407 continue; 8408 8409 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 8410 update_next_balance(sd, &next_balance); 8411 break; 8412 } 8413 8414 if (sd->flags & SD_BALANCE_NEWIDLE) { 8415 t0 = sched_clock_cpu(this_cpu); 8416 8417 pulled_task = load_balance(this_cpu, this_rq, 8418 sd, CPU_NEWLY_IDLE, 8419 &continue_balancing); 8420 8421 domain_cost = sched_clock_cpu(this_cpu) - t0; 8422 if (domain_cost > sd->max_newidle_lb_cost) 8423 sd->max_newidle_lb_cost = domain_cost; 8424 8425 curr_cost += domain_cost; 8426 } 8427 8428 update_next_balance(sd, &next_balance); 8429 8430 /* 8431 * Stop searching for tasks to pull if there are 8432 * now runnable tasks on this rq. 8433 */ 8434 if (pulled_task || this_rq->nr_running > 0) 8435 break; 8436 } 8437 rcu_read_unlock(); 8438 8439 raw_spin_lock(&this_rq->lock); 8440 8441 if (curr_cost > this_rq->max_idle_balance_cost) 8442 this_rq->max_idle_balance_cost = curr_cost; 8443 8444 /* 8445 * While browsing the domains, we released the rq lock, a task could 8446 * have been enqueued in the meantime. Since we're not going idle, 8447 * pretend we pulled a task. 8448 */ 8449 if (this_rq->cfs.h_nr_running && !pulled_task) 8450 pulled_task = 1; 8451 8452 out: 8453 /* Move the next balance forward */ 8454 if (time_after(this_rq->next_balance, next_balance)) 8455 this_rq->next_balance = next_balance; 8456 8457 /* Is there a task of a high priority class? */ 8458 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 8459 pulled_task = -1; 8460 8461 if (pulled_task) 8462 this_rq->idle_stamp = 0; 8463 8464 rq_repin_lock(this_rq, rf); 8465 8466 return pulled_task; 8467 } 8468 8469 /* 8470 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 8471 * running tasks off the busiest CPU onto idle CPUs. It requires at 8472 * least 1 task to be running on each physical CPU where possible, and 8473 * avoids physical / logical imbalances. 8474 */ 8475 static int active_load_balance_cpu_stop(void *data) 8476 { 8477 struct rq *busiest_rq = data; 8478 int busiest_cpu = cpu_of(busiest_rq); 8479 int target_cpu = busiest_rq->push_cpu; 8480 struct rq *target_rq = cpu_rq(target_cpu); 8481 struct sched_domain *sd; 8482 struct task_struct *p = NULL; 8483 struct rq_flags rf; 8484 8485 rq_lock_irq(busiest_rq, &rf); 8486 8487 /* make sure the requested cpu hasn't gone down in the meantime */ 8488 if (unlikely(busiest_cpu != smp_processor_id() || 8489 !busiest_rq->active_balance)) 8490 goto out_unlock; 8491 8492 /* Is there any task to move? */ 8493 if (busiest_rq->nr_running <= 1) 8494 goto out_unlock; 8495 8496 /* 8497 * This condition is "impossible", if it occurs 8498 * we need to fix it. Originally reported by 8499 * Bjorn Helgaas on a 128-cpu setup. 8500 */ 8501 BUG_ON(busiest_rq == target_rq); 8502 8503 /* Search for an sd spanning us and the target CPU. */ 8504 rcu_read_lock(); 8505 for_each_domain(target_cpu, sd) { 8506 if ((sd->flags & SD_LOAD_BALANCE) && 8507 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 8508 break; 8509 } 8510 8511 if (likely(sd)) { 8512 struct lb_env env = { 8513 .sd = sd, 8514 .dst_cpu = target_cpu, 8515 .dst_rq = target_rq, 8516 .src_cpu = busiest_rq->cpu, 8517 .src_rq = busiest_rq, 8518 .idle = CPU_IDLE, 8519 }; 8520 8521 schedstat_inc(sd->alb_count); 8522 update_rq_clock(busiest_rq); 8523 8524 p = detach_one_task(&env); 8525 if (p) { 8526 schedstat_inc(sd->alb_pushed); 8527 /* Active balancing done, reset the failure counter. */ 8528 sd->nr_balance_failed = 0; 8529 } else { 8530 schedstat_inc(sd->alb_failed); 8531 } 8532 } 8533 rcu_read_unlock(); 8534 out_unlock: 8535 busiest_rq->active_balance = 0; 8536 rq_unlock(busiest_rq, &rf); 8537 8538 if (p) 8539 attach_one_task(target_rq, p); 8540 8541 local_irq_enable(); 8542 8543 return 0; 8544 } 8545 8546 static inline int on_null_domain(struct rq *rq) 8547 { 8548 return unlikely(!rcu_dereference_sched(rq->sd)); 8549 } 8550 8551 #ifdef CONFIG_NO_HZ_COMMON 8552 /* 8553 * idle load balancing details 8554 * - When one of the busy CPUs notice that there may be an idle rebalancing 8555 * needed, they will kick the idle load balancer, which then does idle 8556 * load balancing for all the idle CPUs. 8557 */ 8558 static struct { 8559 cpumask_var_t idle_cpus_mask; 8560 atomic_t nr_cpus; 8561 unsigned long next_balance; /* in jiffy units */ 8562 } nohz ____cacheline_aligned; 8563 8564 static inline int find_new_ilb(void) 8565 { 8566 int ilb = cpumask_first(nohz.idle_cpus_mask); 8567 8568 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 8569 return ilb; 8570 8571 return nr_cpu_ids; 8572 } 8573 8574 /* 8575 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 8576 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 8577 * CPU (if there is one). 8578 */ 8579 static void nohz_balancer_kick(void) 8580 { 8581 int ilb_cpu; 8582 8583 nohz.next_balance++; 8584 8585 ilb_cpu = find_new_ilb(); 8586 8587 if (ilb_cpu >= nr_cpu_ids) 8588 return; 8589 8590 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 8591 return; 8592 /* 8593 * Use smp_send_reschedule() instead of resched_cpu(). 8594 * This way we generate a sched IPI on the target cpu which 8595 * is idle. And the softirq performing nohz idle load balance 8596 * will be run before returning from the IPI. 8597 */ 8598 smp_send_reschedule(ilb_cpu); 8599 return; 8600 } 8601 8602 void nohz_balance_exit_idle(unsigned int cpu) 8603 { 8604 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 8605 /* 8606 * Completely isolated CPUs don't ever set, so we must test. 8607 */ 8608 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 8609 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 8610 atomic_dec(&nohz.nr_cpus); 8611 } 8612 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 8613 } 8614 } 8615 8616 static inline void set_cpu_sd_state_busy(void) 8617 { 8618 struct sched_domain *sd; 8619 int cpu = smp_processor_id(); 8620 8621 rcu_read_lock(); 8622 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 8623 8624 if (!sd || !sd->nohz_idle) 8625 goto unlock; 8626 sd->nohz_idle = 0; 8627 8628 atomic_inc(&sd->shared->nr_busy_cpus); 8629 unlock: 8630 rcu_read_unlock(); 8631 } 8632 8633 void set_cpu_sd_state_idle(void) 8634 { 8635 struct sched_domain *sd; 8636 int cpu = smp_processor_id(); 8637 8638 rcu_read_lock(); 8639 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 8640 8641 if (!sd || sd->nohz_idle) 8642 goto unlock; 8643 sd->nohz_idle = 1; 8644 8645 atomic_dec(&sd->shared->nr_busy_cpus); 8646 unlock: 8647 rcu_read_unlock(); 8648 } 8649 8650 /* 8651 * This routine will record that the cpu is going idle with tick stopped. 8652 * This info will be used in performing idle load balancing in the future. 8653 */ 8654 void nohz_balance_enter_idle(int cpu) 8655 { 8656 /* 8657 * If this cpu is going down, then nothing needs to be done. 8658 */ 8659 if (!cpu_active(cpu)) 8660 return; 8661 8662 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 8663 return; 8664 8665 /* 8666 * If we're a completely isolated CPU, we don't play. 8667 */ 8668 if (on_null_domain(cpu_rq(cpu))) 8669 return; 8670 8671 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 8672 atomic_inc(&nohz.nr_cpus); 8673 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 8674 } 8675 #endif 8676 8677 static DEFINE_SPINLOCK(balancing); 8678 8679 /* 8680 * Scale the max load_balance interval with the number of CPUs in the system. 8681 * This trades load-balance latency on larger machines for less cross talk. 8682 */ 8683 void update_max_interval(void) 8684 { 8685 max_load_balance_interval = HZ*num_online_cpus()/10; 8686 } 8687 8688 /* 8689 * It checks each scheduling domain to see if it is due to be balanced, 8690 * and initiates a balancing operation if so. 8691 * 8692 * Balancing parameters are set up in init_sched_domains. 8693 */ 8694 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 8695 { 8696 int continue_balancing = 1; 8697 int cpu = rq->cpu; 8698 unsigned long interval; 8699 struct sched_domain *sd; 8700 /* Earliest time when we have to do rebalance again */ 8701 unsigned long next_balance = jiffies + 60*HZ; 8702 int update_next_balance = 0; 8703 int need_serialize, need_decay = 0; 8704 u64 max_cost = 0; 8705 8706 update_blocked_averages(cpu); 8707 8708 rcu_read_lock(); 8709 for_each_domain(cpu, sd) { 8710 /* 8711 * Decay the newidle max times here because this is a regular 8712 * visit to all the domains. Decay ~1% per second. 8713 */ 8714 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 8715 sd->max_newidle_lb_cost = 8716 (sd->max_newidle_lb_cost * 253) / 256; 8717 sd->next_decay_max_lb_cost = jiffies + HZ; 8718 need_decay = 1; 8719 } 8720 max_cost += sd->max_newidle_lb_cost; 8721 8722 if (!(sd->flags & SD_LOAD_BALANCE)) 8723 continue; 8724 8725 /* 8726 * Stop the load balance at this level. There is another 8727 * CPU in our sched group which is doing load balancing more 8728 * actively. 8729 */ 8730 if (!continue_balancing) { 8731 if (need_decay) 8732 continue; 8733 break; 8734 } 8735 8736 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8737 8738 need_serialize = sd->flags & SD_SERIALIZE; 8739 if (need_serialize) { 8740 if (!spin_trylock(&balancing)) 8741 goto out; 8742 } 8743 8744 if (time_after_eq(jiffies, sd->last_balance + interval)) { 8745 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 8746 /* 8747 * The LBF_DST_PINNED logic could have changed 8748 * env->dst_cpu, so we can't know our idle 8749 * state even if we migrated tasks. Update it. 8750 */ 8751 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 8752 } 8753 sd->last_balance = jiffies; 8754 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8755 } 8756 if (need_serialize) 8757 spin_unlock(&balancing); 8758 out: 8759 if (time_after(next_balance, sd->last_balance + interval)) { 8760 next_balance = sd->last_balance + interval; 8761 update_next_balance = 1; 8762 } 8763 } 8764 if (need_decay) { 8765 /* 8766 * Ensure the rq-wide value also decays but keep it at a 8767 * reasonable floor to avoid funnies with rq->avg_idle. 8768 */ 8769 rq->max_idle_balance_cost = 8770 max((u64)sysctl_sched_migration_cost, max_cost); 8771 } 8772 rcu_read_unlock(); 8773 8774 /* 8775 * next_balance will be updated only when there is a need. 8776 * When the cpu is attached to null domain for ex, it will not be 8777 * updated. 8778 */ 8779 if (likely(update_next_balance)) { 8780 rq->next_balance = next_balance; 8781 8782 #ifdef CONFIG_NO_HZ_COMMON 8783 /* 8784 * If this CPU has been elected to perform the nohz idle 8785 * balance. Other idle CPUs have already rebalanced with 8786 * nohz_idle_balance() and nohz.next_balance has been 8787 * updated accordingly. This CPU is now running the idle load 8788 * balance for itself and we need to update the 8789 * nohz.next_balance accordingly. 8790 */ 8791 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 8792 nohz.next_balance = rq->next_balance; 8793 #endif 8794 } 8795 } 8796 8797 #ifdef CONFIG_NO_HZ_COMMON 8798 /* 8799 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 8800 * rebalancing for all the cpus for whom scheduler ticks are stopped. 8801 */ 8802 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 8803 { 8804 int this_cpu = this_rq->cpu; 8805 struct rq *rq; 8806 int balance_cpu; 8807 /* Earliest time when we have to do rebalance again */ 8808 unsigned long next_balance = jiffies + 60*HZ; 8809 int update_next_balance = 0; 8810 8811 if (idle != CPU_IDLE || 8812 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 8813 goto end; 8814 8815 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 8816 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 8817 continue; 8818 8819 /* 8820 * If this cpu gets work to do, stop the load balancing 8821 * work being done for other cpus. Next load 8822 * balancing owner will pick it up. 8823 */ 8824 if (need_resched()) 8825 break; 8826 8827 rq = cpu_rq(balance_cpu); 8828 8829 /* 8830 * If time for next balance is due, 8831 * do the balance. 8832 */ 8833 if (time_after_eq(jiffies, rq->next_balance)) { 8834 struct rq_flags rf; 8835 8836 rq_lock_irq(rq, &rf); 8837 update_rq_clock(rq); 8838 cpu_load_update_idle(rq); 8839 rq_unlock_irq(rq, &rf); 8840 8841 rebalance_domains(rq, CPU_IDLE); 8842 } 8843 8844 if (time_after(next_balance, rq->next_balance)) { 8845 next_balance = rq->next_balance; 8846 update_next_balance = 1; 8847 } 8848 } 8849 8850 /* 8851 * next_balance will be updated only when there is a need. 8852 * When the CPU is attached to null domain for ex, it will not be 8853 * updated. 8854 */ 8855 if (likely(update_next_balance)) 8856 nohz.next_balance = next_balance; 8857 end: 8858 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 8859 } 8860 8861 /* 8862 * Current heuristic for kicking the idle load balancer in the presence 8863 * of an idle cpu in the system. 8864 * - This rq has more than one task. 8865 * - This rq has at least one CFS task and the capacity of the CPU is 8866 * significantly reduced because of RT tasks or IRQs. 8867 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 8868 * multiple busy cpu. 8869 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 8870 * domain span are idle. 8871 */ 8872 static inline bool nohz_kick_needed(struct rq *rq) 8873 { 8874 unsigned long now = jiffies; 8875 struct sched_domain_shared *sds; 8876 struct sched_domain *sd; 8877 int nr_busy, i, cpu = rq->cpu; 8878 bool kick = false; 8879 8880 if (unlikely(rq->idle_balance)) 8881 return false; 8882 8883 /* 8884 * We may be recently in ticked or tickless idle mode. At the first 8885 * busy tick after returning from idle, we will update the busy stats. 8886 */ 8887 set_cpu_sd_state_busy(); 8888 nohz_balance_exit_idle(cpu); 8889 8890 /* 8891 * None are in tickless mode and hence no need for NOHZ idle load 8892 * balancing. 8893 */ 8894 if (likely(!atomic_read(&nohz.nr_cpus))) 8895 return false; 8896 8897 if (time_before(now, nohz.next_balance)) 8898 return false; 8899 8900 if (rq->nr_running >= 2) 8901 return true; 8902 8903 rcu_read_lock(); 8904 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 8905 if (sds) { 8906 /* 8907 * XXX: write a coherent comment on why we do this. 8908 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com 8909 */ 8910 nr_busy = atomic_read(&sds->nr_busy_cpus); 8911 if (nr_busy > 1) { 8912 kick = true; 8913 goto unlock; 8914 } 8915 8916 } 8917 8918 sd = rcu_dereference(rq->sd); 8919 if (sd) { 8920 if ((rq->cfs.h_nr_running >= 1) && 8921 check_cpu_capacity(rq, sd)) { 8922 kick = true; 8923 goto unlock; 8924 } 8925 } 8926 8927 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 8928 if (sd) { 8929 for_each_cpu(i, sched_domain_span(sd)) { 8930 if (i == cpu || 8931 !cpumask_test_cpu(i, nohz.idle_cpus_mask)) 8932 continue; 8933 8934 if (sched_asym_prefer(i, cpu)) { 8935 kick = true; 8936 goto unlock; 8937 } 8938 } 8939 } 8940 unlock: 8941 rcu_read_unlock(); 8942 return kick; 8943 } 8944 #else 8945 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 8946 #endif 8947 8948 /* 8949 * run_rebalance_domains is triggered when needed from the scheduler tick. 8950 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 8951 */ 8952 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 8953 { 8954 struct rq *this_rq = this_rq(); 8955 enum cpu_idle_type idle = this_rq->idle_balance ? 8956 CPU_IDLE : CPU_NOT_IDLE; 8957 8958 /* 8959 * If this cpu has a pending nohz_balance_kick, then do the 8960 * balancing on behalf of the other idle cpus whose ticks are 8961 * stopped. Do nohz_idle_balance *before* rebalance_domains to 8962 * give the idle cpus a chance to load balance. Else we may 8963 * load balance only within the local sched_domain hierarchy 8964 * and abort nohz_idle_balance altogether if we pull some load. 8965 */ 8966 nohz_idle_balance(this_rq, idle); 8967 rebalance_domains(this_rq, idle); 8968 } 8969 8970 /* 8971 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 8972 */ 8973 void trigger_load_balance(struct rq *rq) 8974 { 8975 /* Don't need to rebalance while attached to NULL domain */ 8976 if (unlikely(on_null_domain(rq))) 8977 return; 8978 8979 if (time_after_eq(jiffies, rq->next_balance)) 8980 raise_softirq(SCHED_SOFTIRQ); 8981 #ifdef CONFIG_NO_HZ_COMMON 8982 if (nohz_kick_needed(rq)) 8983 nohz_balancer_kick(); 8984 #endif 8985 } 8986 8987 static void rq_online_fair(struct rq *rq) 8988 { 8989 update_sysctl(); 8990 8991 update_runtime_enabled(rq); 8992 } 8993 8994 static void rq_offline_fair(struct rq *rq) 8995 { 8996 update_sysctl(); 8997 8998 /* Ensure any throttled groups are reachable by pick_next_task */ 8999 unthrottle_offline_cfs_rqs(rq); 9000 } 9001 9002 #endif /* CONFIG_SMP */ 9003 9004 /* 9005 * scheduler tick hitting a task of our scheduling class: 9006 */ 9007 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9008 { 9009 struct cfs_rq *cfs_rq; 9010 struct sched_entity *se = &curr->se; 9011 9012 for_each_sched_entity(se) { 9013 cfs_rq = cfs_rq_of(se); 9014 entity_tick(cfs_rq, se, queued); 9015 } 9016 9017 if (static_branch_unlikely(&sched_numa_balancing)) 9018 task_tick_numa(rq, curr); 9019 } 9020 9021 /* 9022 * called on fork with the child task as argument from the parent's context 9023 * - child not yet on the tasklist 9024 * - preemption disabled 9025 */ 9026 static void task_fork_fair(struct task_struct *p) 9027 { 9028 struct cfs_rq *cfs_rq; 9029 struct sched_entity *se = &p->se, *curr; 9030 struct rq *rq = this_rq(); 9031 struct rq_flags rf; 9032 9033 rq_lock(rq, &rf); 9034 update_rq_clock(rq); 9035 9036 cfs_rq = task_cfs_rq(current); 9037 curr = cfs_rq->curr; 9038 if (curr) { 9039 update_curr(cfs_rq); 9040 se->vruntime = curr->vruntime; 9041 } 9042 place_entity(cfs_rq, se, 1); 9043 9044 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9045 /* 9046 * Upon rescheduling, sched_class::put_prev_task() will place 9047 * 'current' within the tree based on its new key value. 9048 */ 9049 swap(curr->vruntime, se->vruntime); 9050 resched_curr(rq); 9051 } 9052 9053 se->vruntime -= cfs_rq->min_vruntime; 9054 rq_unlock(rq, &rf); 9055 } 9056 9057 /* 9058 * Priority of the task has changed. Check to see if we preempt 9059 * the current task. 9060 */ 9061 static void 9062 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9063 { 9064 if (!task_on_rq_queued(p)) 9065 return; 9066 9067 /* 9068 * Reschedule if we are currently running on this runqueue and 9069 * our priority decreased, or if we are not currently running on 9070 * this runqueue and our priority is higher than the current's 9071 */ 9072 if (rq->curr == p) { 9073 if (p->prio > oldprio) 9074 resched_curr(rq); 9075 } else 9076 check_preempt_curr(rq, p, 0); 9077 } 9078 9079 static inline bool vruntime_normalized(struct task_struct *p) 9080 { 9081 struct sched_entity *se = &p->se; 9082 9083 /* 9084 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 9085 * the dequeue_entity(.flags=0) will already have normalized the 9086 * vruntime. 9087 */ 9088 if (p->on_rq) 9089 return true; 9090 9091 /* 9092 * When !on_rq, vruntime of the task has usually NOT been normalized. 9093 * But there are some cases where it has already been normalized: 9094 * 9095 * - A forked child which is waiting for being woken up by 9096 * wake_up_new_task(). 9097 * - A task which has been woken up by try_to_wake_up() and 9098 * waiting for actually being woken up by sched_ttwu_pending(). 9099 */ 9100 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 9101 return true; 9102 9103 return false; 9104 } 9105 9106 #ifdef CONFIG_FAIR_GROUP_SCHED 9107 /* 9108 * Propagate the changes of the sched_entity across the tg tree to make it 9109 * visible to the root 9110 */ 9111 static void propagate_entity_cfs_rq(struct sched_entity *se) 9112 { 9113 struct cfs_rq *cfs_rq; 9114 9115 /* Start to propagate at parent */ 9116 se = se->parent; 9117 9118 for_each_sched_entity(se) { 9119 cfs_rq = cfs_rq_of(se); 9120 9121 if (cfs_rq_throttled(cfs_rq)) 9122 break; 9123 9124 update_load_avg(se, UPDATE_TG); 9125 } 9126 } 9127 #else 9128 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 9129 #endif 9130 9131 static void detach_entity_cfs_rq(struct sched_entity *se) 9132 { 9133 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9134 9135 /* Catch up with the cfs_rq and remove our load when we leave */ 9136 update_load_avg(se, 0); 9137 detach_entity_load_avg(cfs_rq, se); 9138 update_tg_load_avg(cfs_rq, false); 9139 propagate_entity_cfs_rq(se); 9140 } 9141 9142 static void attach_entity_cfs_rq(struct sched_entity *se) 9143 { 9144 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9145 9146 #ifdef CONFIG_FAIR_GROUP_SCHED 9147 /* 9148 * Since the real-depth could have been changed (only FAIR 9149 * class maintain depth value), reset depth properly. 9150 */ 9151 se->depth = se->parent ? se->parent->depth + 1 : 0; 9152 #endif 9153 9154 /* Synchronize entity with its cfs_rq */ 9155 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 9156 attach_entity_load_avg(cfs_rq, se); 9157 update_tg_load_avg(cfs_rq, false); 9158 propagate_entity_cfs_rq(se); 9159 } 9160 9161 static void detach_task_cfs_rq(struct task_struct *p) 9162 { 9163 struct sched_entity *se = &p->se; 9164 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9165 9166 if (!vruntime_normalized(p)) { 9167 /* 9168 * Fix up our vruntime so that the current sleep doesn't 9169 * cause 'unlimited' sleep bonus. 9170 */ 9171 place_entity(cfs_rq, se, 0); 9172 se->vruntime -= cfs_rq->min_vruntime; 9173 } 9174 9175 detach_entity_cfs_rq(se); 9176 } 9177 9178 static void attach_task_cfs_rq(struct task_struct *p) 9179 { 9180 struct sched_entity *se = &p->se; 9181 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9182 9183 attach_entity_cfs_rq(se); 9184 9185 if (!vruntime_normalized(p)) 9186 se->vruntime += cfs_rq->min_vruntime; 9187 } 9188 9189 static void switched_from_fair(struct rq *rq, struct task_struct *p) 9190 { 9191 detach_task_cfs_rq(p); 9192 } 9193 9194 static void switched_to_fair(struct rq *rq, struct task_struct *p) 9195 { 9196 attach_task_cfs_rq(p); 9197 9198 if (task_on_rq_queued(p)) { 9199 /* 9200 * We were most likely switched from sched_rt, so 9201 * kick off the schedule if running, otherwise just see 9202 * if we can still preempt the current task. 9203 */ 9204 if (rq->curr == p) 9205 resched_curr(rq); 9206 else 9207 check_preempt_curr(rq, p, 0); 9208 } 9209 } 9210 9211 /* Account for a task changing its policy or group. 9212 * 9213 * This routine is mostly called to set cfs_rq->curr field when a task 9214 * migrates between groups/classes. 9215 */ 9216 static void set_curr_task_fair(struct rq *rq) 9217 { 9218 struct sched_entity *se = &rq->curr->se; 9219 9220 for_each_sched_entity(se) { 9221 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9222 9223 set_next_entity(cfs_rq, se); 9224 /* ensure bandwidth has been allocated on our new cfs_rq */ 9225 account_cfs_rq_runtime(cfs_rq, 0); 9226 } 9227 } 9228 9229 void init_cfs_rq(struct cfs_rq *cfs_rq) 9230 { 9231 cfs_rq->tasks_timeline = RB_ROOT; 9232 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 9233 #ifndef CONFIG_64BIT 9234 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 9235 #endif 9236 #ifdef CONFIG_SMP 9237 #ifdef CONFIG_FAIR_GROUP_SCHED 9238 cfs_rq->propagate_avg = 0; 9239 #endif 9240 atomic_long_set(&cfs_rq->removed_load_avg, 0); 9241 atomic_long_set(&cfs_rq->removed_util_avg, 0); 9242 #endif 9243 } 9244 9245 #ifdef CONFIG_FAIR_GROUP_SCHED 9246 static void task_set_group_fair(struct task_struct *p) 9247 { 9248 struct sched_entity *se = &p->se; 9249 9250 set_task_rq(p, task_cpu(p)); 9251 se->depth = se->parent ? se->parent->depth + 1 : 0; 9252 } 9253 9254 static void task_move_group_fair(struct task_struct *p) 9255 { 9256 detach_task_cfs_rq(p); 9257 set_task_rq(p, task_cpu(p)); 9258 9259 #ifdef CONFIG_SMP 9260 /* Tell se's cfs_rq has been changed -- migrated */ 9261 p->se.avg.last_update_time = 0; 9262 #endif 9263 attach_task_cfs_rq(p); 9264 } 9265 9266 static void task_change_group_fair(struct task_struct *p, int type) 9267 { 9268 switch (type) { 9269 case TASK_SET_GROUP: 9270 task_set_group_fair(p); 9271 break; 9272 9273 case TASK_MOVE_GROUP: 9274 task_move_group_fair(p); 9275 break; 9276 } 9277 } 9278 9279 void free_fair_sched_group(struct task_group *tg) 9280 { 9281 int i; 9282 9283 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9284 9285 for_each_possible_cpu(i) { 9286 if (tg->cfs_rq) 9287 kfree(tg->cfs_rq[i]); 9288 if (tg->se) 9289 kfree(tg->se[i]); 9290 } 9291 9292 kfree(tg->cfs_rq); 9293 kfree(tg->se); 9294 } 9295 9296 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9297 { 9298 struct sched_entity *se; 9299 struct cfs_rq *cfs_rq; 9300 int i; 9301 9302 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 9303 if (!tg->cfs_rq) 9304 goto err; 9305 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 9306 if (!tg->se) 9307 goto err; 9308 9309 tg->shares = NICE_0_LOAD; 9310 9311 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9312 9313 for_each_possible_cpu(i) { 9314 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 9315 GFP_KERNEL, cpu_to_node(i)); 9316 if (!cfs_rq) 9317 goto err; 9318 9319 se = kzalloc_node(sizeof(struct sched_entity), 9320 GFP_KERNEL, cpu_to_node(i)); 9321 if (!se) 9322 goto err_free_rq; 9323 9324 init_cfs_rq(cfs_rq); 9325 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 9326 init_entity_runnable_average(se); 9327 } 9328 9329 return 1; 9330 9331 err_free_rq: 9332 kfree(cfs_rq); 9333 err: 9334 return 0; 9335 } 9336 9337 void online_fair_sched_group(struct task_group *tg) 9338 { 9339 struct sched_entity *se; 9340 struct rq *rq; 9341 int i; 9342 9343 for_each_possible_cpu(i) { 9344 rq = cpu_rq(i); 9345 se = tg->se[i]; 9346 9347 raw_spin_lock_irq(&rq->lock); 9348 update_rq_clock(rq); 9349 attach_entity_cfs_rq(se); 9350 sync_throttle(tg, i); 9351 raw_spin_unlock_irq(&rq->lock); 9352 } 9353 } 9354 9355 void unregister_fair_sched_group(struct task_group *tg) 9356 { 9357 unsigned long flags; 9358 struct rq *rq; 9359 int cpu; 9360 9361 for_each_possible_cpu(cpu) { 9362 if (tg->se[cpu]) 9363 remove_entity_load_avg(tg->se[cpu]); 9364 9365 /* 9366 * Only empty task groups can be destroyed; so we can speculatively 9367 * check on_list without danger of it being re-added. 9368 */ 9369 if (!tg->cfs_rq[cpu]->on_list) 9370 continue; 9371 9372 rq = cpu_rq(cpu); 9373 9374 raw_spin_lock_irqsave(&rq->lock, flags); 9375 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 9376 raw_spin_unlock_irqrestore(&rq->lock, flags); 9377 } 9378 } 9379 9380 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 9381 struct sched_entity *se, int cpu, 9382 struct sched_entity *parent) 9383 { 9384 struct rq *rq = cpu_rq(cpu); 9385 9386 cfs_rq->tg = tg; 9387 cfs_rq->rq = rq; 9388 init_cfs_rq_runtime(cfs_rq); 9389 9390 tg->cfs_rq[cpu] = cfs_rq; 9391 tg->se[cpu] = se; 9392 9393 /* se could be NULL for root_task_group */ 9394 if (!se) 9395 return; 9396 9397 if (!parent) { 9398 se->cfs_rq = &rq->cfs; 9399 se->depth = 0; 9400 } else { 9401 se->cfs_rq = parent->my_q; 9402 se->depth = parent->depth + 1; 9403 } 9404 9405 se->my_q = cfs_rq; 9406 /* guarantee group entities always have weight */ 9407 update_load_set(&se->load, NICE_0_LOAD); 9408 se->parent = parent; 9409 } 9410 9411 static DEFINE_MUTEX(shares_mutex); 9412 9413 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 9414 { 9415 int i; 9416 9417 /* 9418 * We can't change the weight of the root cgroup. 9419 */ 9420 if (!tg->se[0]) 9421 return -EINVAL; 9422 9423 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 9424 9425 mutex_lock(&shares_mutex); 9426 if (tg->shares == shares) 9427 goto done; 9428 9429 tg->shares = shares; 9430 for_each_possible_cpu(i) { 9431 struct rq *rq = cpu_rq(i); 9432 struct sched_entity *se = tg->se[i]; 9433 struct rq_flags rf; 9434 9435 /* Propagate contribution to hierarchy */ 9436 rq_lock_irqsave(rq, &rf); 9437 update_rq_clock(rq); 9438 for_each_sched_entity(se) { 9439 update_load_avg(se, UPDATE_TG); 9440 update_cfs_shares(se); 9441 } 9442 rq_unlock_irqrestore(rq, &rf); 9443 } 9444 9445 done: 9446 mutex_unlock(&shares_mutex); 9447 return 0; 9448 } 9449 #else /* CONFIG_FAIR_GROUP_SCHED */ 9450 9451 void free_fair_sched_group(struct task_group *tg) { } 9452 9453 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9454 { 9455 return 1; 9456 } 9457 9458 void online_fair_sched_group(struct task_group *tg) { } 9459 9460 void unregister_fair_sched_group(struct task_group *tg) { } 9461 9462 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9463 9464 9465 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 9466 { 9467 struct sched_entity *se = &task->se; 9468 unsigned int rr_interval = 0; 9469 9470 /* 9471 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 9472 * idle runqueue: 9473 */ 9474 if (rq->cfs.load.weight) 9475 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 9476 9477 return rr_interval; 9478 } 9479 9480 /* 9481 * All the scheduling class methods: 9482 */ 9483 const struct sched_class fair_sched_class = { 9484 .next = &idle_sched_class, 9485 .enqueue_task = enqueue_task_fair, 9486 .dequeue_task = dequeue_task_fair, 9487 .yield_task = yield_task_fair, 9488 .yield_to_task = yield_to_task_fair, 9489 9490 .check_preempt_curr = check_preempt_wakeup, 9491 9492 .pick_next_task = pick_next_task_fair, 9493 .put_prev_task = put_prev_task_fair, 9494 9495 #ifdef CONFIG_SMP 9496 .select_task_rq = select_task_rq_fair, 9497 .migrate_task_rq = migrate_task_rq_fair, 9498 9499 .rq_online = rq_online_fair, 9500 .rq_offline = rq_offline_fair, 9501 9502 .task_dead = task_dead_fair, 9503 .set_cpus_allowed = set_cpus_allowed_common, 9504 #endif 9505 9506 .set_curr_task = set_curr_task_fair, 9507 .task_tick = task_tick_fair, 9508 .task_fork = task_fork_fair, 9509 9510 .prio_changed = prio_changed_fair, 9511 .switched_from = switched_from_fair, 9512 .switched_to = switched_to_fair, 9513 9514 .get_rr_interval = get_rr_interval_fair, 9515 9516 .update_curr = update_curr_fair, 9517 9518 #ifdef CONFIG_FAIR_GROUP_SCHED 9519 .task_change_group = task_change_group_fair, 9520 #endif 9521 }; 9522 9523 #ifdef CONFIG_SCHED_DEBUG 9524 void print_cfs_stats(struct seq_file *m, int cpu) 9525 { 9526 struct cfs_rq *cfs_rq; 9527 9528 rcu_read_lock(); 9529 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 9530 print_cfs_rq(m, cpu, cfs_rq); 9531 rcu_read_unlock(); 9532 } 9533 9534 #ifdef CONFIG_NUMA_BALANCING 9535 void show_numa_stats(struct task_struct *p, struct seq_file *m) 9536 { 9537 int node; 9538 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 9539 9540 for_each_online_node(node) { 9541 if (p->numa_faults) { 9542 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 9543 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 9544 } 9545 if (p->numa_group) { 9546 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 9547 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 9548 } 9549 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 9550 } 9551 } 9552 #endif /* CONFIG_NUMA_BALANCING */ 9553 #endif /* CONFIG_SCHED_DEBUG */ 9554 9555 __init void init_sched_fair_class(void) 9556 { 9557 #ifdef CONFIG_SMP 9558 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 9559 9560 #ifdef CONFIG_NO_HZ_COMMON 9561 nohz.next_balance = jiffies; 9562 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 9563 #endif 9564 #endif /* SMP */ 9565 9566 } 9567