1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 /* 26 * Targeted preemption latency for CPU-bound tasks: 27 * 28 * NOTE: this latency value is not the same as the concept of 29 * 'timeslice length' - timeslices in CFS are of variable length 30 * and have no persistent notion like in traditional, time-slice 31 * based scheduling concepts. 32 * 33 * (to see the precise effective timeslice length of your workload, 34 * run vmstat and monitor the context-switches (cs) field) 35 * 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 37 */ 38 unsigned int sysctl_sched_latency = 6000000ULL; 39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 40 41 /* 42 * The initial- and re-scaling of tunables is configurable 43 * 44 * Options are: 45 * 46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 49 * 50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 51 */ 52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 53 54 /* 55 * Minimal preemption granularity for CPU-bound tasks: 56 * 57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 58 */ 59 unsigned int sysctl_sched_min_granularity = 750000ULL; 60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 61 62 /* 63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 64 */ 65 static unsigned int sched_nr_latency = 8; 66 67 /* 68 * After fork, child runs first. If set to 0 (default) then 69 * parent will (try to) run first. 70 */ 71 unsigned int sysctl_sched_child_runs_first __read_mostly; 72 73 /* 74 * SCHED_OTHER wake-up granularity. 75 * 76 * This option delays the preemption effects of decoupled workloads 77 * and reduces their over-scheduling. Synchronous workloads will still 78 * have immediate wakeup/sleep latencies. 79 * 80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 81 */ 82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 84 85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 86 87 int sched_thermal_decay_shift; 88 static int __init setup_sched_thermal_decay_shift(char *str) 89 { 90 int _shift = 0; 91 92 if (kstrtoint(str, 0, &_shift)) 93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 94 95 sched_thermal_decay_shift = clamp(_shift, 0, 10); 96 return 1; 97 } 98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 99 100 #ifdef CONFIG_SMP 101 /* 102 * For asym packing, by default the lower numbered CPU has higher priority. 103 */ 104 int __weak arch_asym_cpu_priority(int cpu) 105 { 106 return -cpu; 107 } 108 109 /* 110 * The margin used when comparing utilization with CPU capacity. 111 * 112 * (default: ~20%) 113 */ 114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 115 116 /* 117 * The margin used when comparing CPU capacities. 118 * is 'cap1' noticeably greater than 'cap2' 119 * 120 * (default: ~5%) 121 */ 122 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 123 #endif 124 125 #ifdef CONFIG_CFS_BANDWIDTH 126 /* 127 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 128 * each time a cfs_rq requests quota. 129 * 130 * Note: in the case that the slice exceeds the runtime remaining (either due 131 * to consumption or the quota being specified to be smaller than the slice) 132 * we will always only issue the remaining available time. 133 * 134 * (default: 5 msec, units: microseconds) 135 */ 136 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 137 #endif 138 139 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 140 { 141 lw->weight += inc; 142 lw->inv_weight = 0; 143 } 144 145 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 146 { 147 lw->weight -= dec; 148 lw->inv_weight = 0; 149 } 150 151 static inline void update_load_set(struct load_weight *lw, unsigned long w) 152 { 153 lw->weight = w; 154 lw->inv_weight = 0; 155 } 156 157 /* 158 * Increase the granularity value when there are more CPUs, 159 * because with more CPUs the 'effective latency' as visible 160 * to users decreases. But the relationship is not linear, 161 * so pick a second-best guess by going with the log2 of the 162 * number of CPUs. 163 * 164 * This idea comes from the SD scheduler of Con Kolivas: 165 */ 166 static unsigned int get_update_sysctl_factor(void) 167 { 168 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 169 unsigned int factor; 170 171 switch (sysctl_sched_tunable_scaling) { 172 case SCHED_TUNABLESCALING_NONE: 173 factor = 1; 174 break; 175 case SCHED_TUNABLESCALING_LINEAR: 176 factor = cpus; 177 break; 178 case SCHED_TUNABLESCALING_LOG: 179 default: 180 factor = 1 + ilog2(cpus); 181 break; 182 } 183 184 return factor; 185 } 186 187 static void update_sysctl(void) 188 { 189 unsigned int factor = get_update_sysctl_factor(); 190 191 #define SET_SYSCTL(name) \ 192 (sysctl_##name = (factor) * normalized_sysctl_##name) 193 SET_SYSCTL(sched_min_granularity); 194 SET_SYSCTL(sched_latency); 195 SET_SYSCTL(sched_wakeup_granularity); 196 #undef SET_SYSCTL 197 } 198 199 void __init sched_init_granularity(void) 200 { 201 update_sysctl(); 202 } 203 204 #define WMULT_CONST (~0U) 205 #define WMULT_SHIFT 32 206 207 static void __update_inv_weight(struct load_weight *lw) 208 { 209 unsigned long w; 210 211 if (likely(lw->inv_weight)) 212 return; 213 214 w = scale_load_down(lw->weight); 215 216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 217 lw->inv_weight = 1; 218 else if (unlikely(!w)) 219 lw->inv_weight = WMULT_CONST; 220 else 221 lw->inv_weight = WMULT_CONST / w; 222 } 223 224 /* 225 * delta_exec * weight / lw.weight 226 * OR 227 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 228 * 229 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 230 * we're guaranteed shift stays positive because inv_weight is guaranteed to 231 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 232 * 233 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 234 * weight/lw.weight <= 1, and therefore our shift will also be positive. 235 */ 236 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 237 { 238 u64 fact = scale_load_down(weight); 239 u32 fact_hi = (u32)(fact >> 32); 240 int shift = WMULT_SHIFT; 241 int fs; 242 243 __update_inv_weight(lw); 244 245 if (unlikely(fact_hi)) { 246 fs = fls(fact_hi); 247 shift -= fs; 248 fact >>= fs; 249 } 250 251 fact = mul_u32_u32(fact, lw->inv_weight); 252 253 fact_hi = (u32)(fact >> 32); 254 if (fact_hi) { 255 fs = fls(fact_hi); 256 shift -= fs; 257 fact >>= fs; 258 } 259 260 return mul_u64_u32_shr(delta_exec, fact, shift); 261 } 262 263 264 const struct sched_class fair_sched_class; 265 266 /************************************************************** 267 * CFS operations on generic schedulable entities: 268 */ 269 270 #ifdef CONFIG_FAIR_GROUP_SCHED 271 272 /* Walk up scheduling entities hierarchy */ 273 #define for_each_sched_entity(se) \ 274 for (; se; se = se->parent) 275 276 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 277 { 278 if (!path) 279 return; 280 281 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 282 autogroup_path(cfs_rq->tg, path, len); 283 else if (cfs_rq && cfs_rq->tg->css.cgroup) 284 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 285 else 286 strlcpy(path, "(null)", len); 287 } 288 289 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 290 { 291 struct rq *rq = rq_of(cfs_rq); 292 int cpu = cpu_of(rq); 293 294 if (cfs_rq->on_list) 295 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 296 297 cfs_rq->on_list = 1; 298 299 /* 300 * Ensure we either appear before our parent (if already 301 * enqueued) or force our parent to appear after us when it is 302 * enqueued. The fact that we always enqueue bottom-up 303 * reduces this to two cases and a special case for the root 304 * cfs_rq. Furthermore, it also means that we will always reset 305 * tmp_alone_branch either when the branch is connected 306 * to a tree or when we reach the top of the tree 307 */ 308 if (cfs_rq->tg->parent && 309 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 310 /* 311 * If parent is already on the list, we add the child 312 * just before. Thanks to circular linked property of 313 * the list, this means to put the child at the tail 314 * of the list that starts by parent. 315 */ 316 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 317 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 318 /* 319 * The branch is now connected to its tree so we can 320 * reset tmp_alone_branch to the beginning of the 321 * list. 322 */ 323 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 324 return true; 325 } 326 327 if (!cfs_rq->tg->parent) { 328 /* 329 * cfs rq without parent should be put 330 * at the tail of the list. 331 */ 332 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 333 &rq->leaf_cfs_rq_list); 334 /* 335 * We have reach the top of a tree so we can reset 336 * tmp_alone_branch to the beginning of the list. 337 */ 338 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 339 return true; 340 } 341 342 /* 343 * The parent has not already been added so we want to 344 * make sure that it will be put after us. 345 * tmp_alone_branch points to the begin of the branch 346 * where we will add parent. 347 */ 348 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 349 /* 350 * update tmp_alone_branch to points to the new begin 351 * of the branch 352 */ 353 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 354 return false; 355 } 356 357 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 358 { 359 if (cfs_rq->on_list) { 360 struct rq *rq = rq_of(cfs_rq); 361 362 /* 363 * With cfs_rq being unthrottled/throttled during an enqueue, 364 * it can happen the tmp_alone_branch points the a leaf that 365 * we finally want to del. In this case, tmp_alone_branch moves 366 * to the prev element but it will point to rq->leaf_cfs_rq_list 367 * at the end of the enqueue. 368 */ 369 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 370 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 371 372 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 373 cfs_rq->on_list = 0; 374 } 375 } 376 377 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 378 { 379 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 380 } 381 382 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 383 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 384 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 385 leaf_cfs_rq_list) 386 387 /* Do the two (enqueued) entities belong to the same group ? */ 388 static inline struct cfs_rq * 389 is_same_group(struct sched_entity *se, struct sched_entity *pse) 390 { 391 if (se->cfs_rq == pse->cfs_rq) 392 return se->cfs_rq; 393 394 return NULL; 395 } 396 397 static inline struct sched_entity *parent_entity(struct sched_entity *se) 398 { 399 return se->parent; 400 } 401 402 static void 403 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 404 { 405 int se_depth, pse_depth; 406 407 /* 408 * preemption test can be made between sibling entities who are in the 409 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 410 * both tasks until we find their ancestors who are siblings of common 411 * parent. 412 */ 413 414 /* First walk up until both entities are at same depth */ 415 se_depth = (*se)->depth; 416 pse_depth = (*pse)->depth; 417 418 while (se_depth > pse_depth) { 419 se_depth--; 420 *se = parent_entity(*se); 421 } 422 423 while (pse_depth > se_depth) { 424 pse_depth--; 425 *pse = parent_entity(*pse); 426 } 427 428 while (!is_same_group(*se, *pse)) { 429 *se = parent_entity(*se); 430 *pse = parent_entity(*pse); 431 } 432 } 433 434 #else /* !CONFIG_FAIR_GROUP_SCHED */ 435 436 #define for_each_sched_entity(se) \ 437 for (; se; se = NULL) 438 439 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 440 { 441 if (path) 442 strlcpy(path, "(null)", len); 443 } 444 445 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 446 { 447 return true; 448 } 449 450 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 451 { 452 } 453 454 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 455 { 456 } 457 458 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 459 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 460 461 static inline struct sched_entity *parent_entity(struct sched_entity *se) 462 { 463 return NULL; 464 } 465 466 static inline void 467 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 468 { 469 } 470 471 #endif /* CONFIG_FAIR_GROUP_SCHED */ 472 473 static __always_inline 474 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 475 476 /************************************************************** 477 * Scheduling class tree data structure manipulation methods: 478 */ 479 480 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 481 { 482 s64 delta = (s64)(vruntime - max_vruntime); 483 if (delta > 0) 484 max_vruntime = vruntime; 485 486 return max_vruntime; 487 } 488 489 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 490 { 491 s64 delta = (s64)(vruntime - min_vruntime); 492 if (delta < 0) 493 min_vruntime = vruntime; 494 495 return min_vruntime; 496 } 497 498 static inline bool entity_before(struct sched_entity *a, 499 struct sched_entity *b) 500 { 501 return (s64)(a->vruntime - b->vruntime) < 0; 502 } 503 504 #define __node_2_se(node) \ 505 rb_entry((node), struct sched_entity, run_node) 506 507 static void update_min_vruntime(struct cfs_rq *cfs_rq) 508 { 509 struct sched_entity *curr = cfs_rq->curr; 510 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 511 512 u64 vruntime = cfs_rq->min_vruntime; 513 514 if (curr) { 515 if (curr->on_rq) 516 vruntime = curr->vruntime; 517 else 518 curr = NULL; 519 } 520 521 if (leftmost) { /* non-empty tree */ 522 struct sched_entity *se = __node_2_se(leftmost); 523 524 if (!curr) 525 vruntime = se->vruntime; 526 else 527 vruntime = min_vruntime(vruntime, se->vruntime); 528 } 529 530 /* ensure we never gain time by being placed backwards. */ 531 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 532 #ifndef CONFIG_64BIT 533 smp_wmb(); 534 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 535 #endif 536 } 537 538 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 539 { 540 return entity_before(__node_2_se(a), __node_2_se(b)); 541 } 542 543 /* 544 * Enqueue an entity into the rb-tree: 545 */ 546 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 547 { 548 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 549 } 550 551 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 552 { 553 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 554 } 555 556 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 557 { 558 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 559 560 if (!left) 561 return NULL; 562 563 return __node_2_se(left); 564 } 565 566 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 567 { 568 struct rb_node *next = rb_next(&se->run_node); 569 570 if (!next) 571 return NULL; 572 573 return __node_2_se(next); 574 } 575 576 #ifdef CONFIG_SCHED_DEBUG 577 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 578 { 579 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 580 581 if (!last) 582 return NULL; 583 584 return __node_2_se(last); 585 } 586 587 /************************************************************** 588 * Scheduling class statistics methods: 589 */ 590 591 int sched_update_scaling(void) 592 { 593 unsigned int factor = get_update_sysctl_factor(); 594 595 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 596 sysctl_sched_min_granularity); 597 598 #define WRT_SYSCTL(name) \ 599 (normalized_sysctl_##name = sysctl_##name / (factor)) 600 WRT_SYSCTL(sched_min_granularity); 601 WRT_SYSCTL(sched_latency); 602 WRT_SYSCTL(sched_wakeup_granularity); 603 #undef WRT_SYSCTL 604 605 return 0; 606 } 607 #endif 608 609 /* 610 * delta /= w 611 */ 612 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 613 { 614 if (unlikely(se->load.weight != NICE_0_LOAD)) 615 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 616 617 return delta; 618 } 619 620 /* 621 * The idea is to set a period in which each task runs once. 622 * 623 * When there are too many tasks (sched_nr_latency) we have to stretch 624 * this period because otherwise the slices get too small. 625 * 626 * p = (nr <= nl) ? l : l*nr/nl 627 */ 628 static u64 __sched_period(unsigned long nr_running) 629 { 630 if (unlikely(nr_running > sched_nr_latency)) 631 return nr_running * sysctl_sched_min_granularity; 632 else 633 return sysctl_sched_latency; 634 } 635 636 /* 637 * We calculate the wall-time slice from the period by taking a part 638 * proportional to the weight. 639 * 640 * s = p*P[w/rw] 641 */ 642 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 643 { 644 unsigned int nr_running = cfs_rq->nr_running; 645 u64 slice; 646 647 if (sched_feat(ALT_PERIOD)) 648 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 649 650 slice = __sched_period(nr_running + !se->on_rq); 651 652 for_each_sched_entity(se) { 653 struct load_weight *load; 654 struct load_weight lw; 655 656 cfs_rq = cfs_rq_of(se); 657 load = &cfs_rq->load; 658 659 if (unlikely(!se->on_rq)) { 660 lw = cfs_rq->load; 661 662 update_load_add(&lw, se->load.weight); 663 load = &lw; 664 } 665 slice = __calc_delta(slice, se->load.weight, load); 666 } 667 668 if (sched_feat(BASE_SLICE)) 669 slice = max(slice, (u64)sysctl_sched_min_granularity); 670 671 return slice; 672 } 673 674 /* 675 * We calculate the vruntime slice of a to-be-inserted task. 676 * 677 * vs = s/w 678 */ 679 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 680 { 681 return calc_delta_fair(sched_slice(cfs_rq, se), se); 682 } 683 684 #include "pelt.h" 685 #ifdef CONFIG_SMP 686 687 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 688 static unsigned long task_h_load(struct task_struct *p); 689 static unsigned long capacity_of(int cpu); 690 691 /* Give new sched_entity start runnable values to heavy its load in infant time */ 692 void init_entity_runnable_average(struct sched_entity *se) 693 { 694 struct sched_avg *sa = &se->avg; 695 696 memset(sa, 0, sizeof(*sa)); 697 698 /* 699 * Tasks are initialized with full load to be seen as heavy tasks until 700 * they get a chance to stabilize to their real load level. 701 * Group entities are initialized with zero load to reflect the fact that 702 * nothing has been attached to the task group yet. 703 */ 704 if (entity_is_task(se)) 705 sa->load_avg = scale_load_down(se->load.weight); 706 707 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 708 } 709 710 static void attach_entity_cfs_rq(struct sched_entity *se); 711 712 /* 713 * With new tasks being created, their initial util_avgs are extrapolated 714 * based on the cfs_rq's current util_avg: 715 * 716 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 717 * 718 * However, in many cases, the above util_avg does not give a desired 719 * value. Moreover, the sum of the util_avgs may be divergent, such 720 * as when the series is a harmonic series. 721 * 722 * To solve this problem, we also cap the util_avg of successive tasks to 723 * only 1/2 of the left utilization budget: 724 * 725 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 726 * 727 * where n denotes the nth task and cpu_scale the CPU capacity. 728 * 729 * For example, for a CPU with 1024 of capacity, a simplest series from 730 * the beginning would be like: 731 * 732 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 733 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 734 * 735 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 736 * if util_avg > util_avg_cap. 737 */ 738 void post_init_entity_util_avg(struct task_struct *p) 739 { 740 struct sched_entity *se = &p->se; 741 struct cfs_rq *cfs_rq = cfs_rq_of(se); 742 struct sched_avg *sa = &se->avg; 743 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 744 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 745 746 if (cap > 0) { 747 if (cfs_rq->avg.util_avg != 0) { 748 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 749 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 750 751 if (sa->util_avg > cap) 752 sa->util_avg = cap; 753 } else { 754 sa->util_avg = cap; 755 } 756 } 757 758 sa->runnable_avg = sa->util_avg; 759 760 if (p->sched_class != &fair_sched_class) { 761 /* 762 * For !fair tasks do: 763 * 764 update_cfs_rq_load_avg(now, cfs_rq); 765 attach_entity_load_avg(cfs_rq, se); 766 switched_from_fair(rq, p); 767 * 768 * such that the next switched_to_fair() has the 769 * expected state. 770 */ 771 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 772 return; 773 } 774 775 attach_entity_cfs_rq(se); 776 } 777 778 #else /* !CONFIG_SMP */ 779 void init_entity_runnable_average(struct sched_entity *se) 780 { 781 } 782 void post_init_entity_util_avg(struct task_struct *p) 783 { 784 } 785 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 786 { 787 } 788 #endif /* CONFIG_SMP */ 789 790 /* 791 * Update the current task's runtime statistics. 792 */ 793 static void update_curr(struct cfs_rq *cfs_rq) 794 { 795 struct sched_entity *curr = cfs_rq->curr; 796 u64 now = rq_clock_task(rq_of(cfs_rq)); 797 u64 delta_exec; 798 799 if (unlikely(!curr)) 800 return; 801 802 delta_exec = now - curr->exec_start; 803 if (unlikely((s64)delta_exec <= 0)) 804 return; 805 806 curr->exec_start = now; 807 808 schedstat_set(curr->statistics.exec_max, 809 max(delta_exec, curr->statistics.exec_max)); 810 811 curr->sum_exec_runtime += delta_exec; 812 schedstat_add(cfs_rq->exec_clock, delta_exec); 813 814 curr->vruntime += calc_delta_fair(delta_exec, curr); 815 update_min_vruntime(cfs_rq); 816 817 if (entity_is_task(curr)) { 818 struct task_struct *curtask = task_of(curr); 819 820 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 821 cgroup_account_cputime(curtask, delta_exec); 822 account_group_exec_runtime(curtask, delta_exec); 823 } 824 825 account_cfs_rq_runtime(cfs_rq, delta_exec); 826 } 827 828 static void update_curr_fair(struct rq *rq) 829 { 830 update_curr(cfs_rq_of(&rq->curr->se)); 831 } 832 833 static inline void 834 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 835 { 836 u64 wait_start, prev_wait_start; 837 838 if (!schedstat_enabled()) 839 return; 840 841 wait_start = rq_clock(rq_of(cfs_rq)); 842 prev_wait_start = schedstat_val(se->statistics.wait_start); 843 844 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 845 likely(wait_start > prev_wait_start)) 846 wait_start -= prev_wait_start; 847 848 __schedstat_set(se->statistics.wait_start, wait_start); 849 } 850 851 static inline void 852 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 853 { 854 struct task_struct *p; 855 u64 delta; 856 857 if (!schedstat_enabled()) 858 return; 859 860 /* 861 * When the sched_schedstat changes from 0 to 1, some sched se 862 * maybe already in the runqueue, the se->statistics.wait_start 863 * will be 0.So it will let the delta wrong. We need to avoid this 864 * scenario. 865 */ 866 if (unlikely(!schedstat_val(se->statistics.wait_start))) 867 return; 868 869 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 870 871 if (entity_is_task(se)) { 872 p = task_of(se); 873 if (task_on_rq_migrating(p)) { 874 /* 875 * Preserve migrating task's wait time so wait_start 876 * time stamp can be adjusted to accumulate wait time 877 * prior to migration. 878 */ 879 __schedstat_set(se->statistics.wait_start, delta); 880 return; 881 } 882 trace_sched_stat_wait(p, delta); 883 } 884 885 __schedstat_set(se->statistics.wait_max, 886 max(schedstat_val(se->statistics.wait_max), delta)); 887 __schedstat_inc(se->statistics.wait_count); 888 __schedstat_add(se->statistics.wait_sum, delta); 889 __schedstat_set(se->statistics.wait_start, 0); 890 } 891 892 static inline void 893 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 894 { 895 struct task_struct *tsk = NULL; 896 u64 sleep_start, block_start; 897 898 if (!schedstat_enabled()) 899 return; 900 901 sleep_start = schedstat_val(se->statistics.sleep_start); 902 block_start = schedstat_val(se->statistics.block_start); 903 904 if (entity_is_task(se)) 905 tsk = task_of(se); 906 907 if (sleep_start) { 908 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 909 910 if ((s64)delta < 0) 911 delta = 0; 912 913 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 914 __schedstat_set(se->statistics.sleep_max, delta); 915 916 __schedstat_set(se->statistics.sleep_start, 0); 917 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 918 919 if (tsk) { 920 account_scheduler_latency(tsk, delta >> 10, 1); 921 trace_sched_stat_sleep(tsk, delta); 922 } 923 } 924 if (block_start) { 925 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 926 927 if ((s64)delta < 0) 928 delta = 0; 929 930 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 931 __schedstat_set(se->statistics.block_max, delta); 932 933 __schedstat_set(se->statistics.block_start, 0); 934 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 935 936 if (tsk) { 937 if (tsk->in_iowait) { 938 __schedstat_add(se->statistics.iowait_sum, delta); 939 __schedstat_inc(se->statistics.iowait_count); 940 trace_sched_stat_iowait(tsk, delta); 941 } 942 943 trace_sched_stat_blocked(tsk, delta); 944 945 /* 946 * Blocking time is in units of nanosecs, so shift by 947 * 20 to get a milliseconds-range estimation of the 948 * amount of time that the task spent sleeping: 949 */ 950 if (unlikely(prof_on == SLEEP_PROFILING)) { 951 profile_hits(SLEEP_PROFILING, 952 (void *)get_wchan(tsk), 953 delta >> 20); 954 } 955 account_scheduler_latency(tsk, delta >> 10, 0); 956 } 957 } 958 } 959 960 /* 961 * Task is being enqueued - update stats: 962 */ 963 static inline void 964 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 965 { 966 if (!schedstat_enabled()) 967 return; 968 969 /* 970 * Are we enqueueing a waiting task? (for current tasks 971 * a dequeue/enqueue event is a NOP) 972 */ 973 if (se != cfs_rq->curr) 974 update_stats_wait_start(cfs_rq, se); 975 976 if (flags & ENQUEUE_WAKEUP) 977 update_stats_enqueue_sleeper(cfs_rq, se); 978 } 979 980 static inline void 981 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 982 { 983 984 if (!schedstat_enabled()) 985 return; 986 987 /* 988 * Mark the end of the wait period if dequeueing a 989 * waiting task: 990 */ 991 if (se != cfs_rq->curr) 992 update_stats_wait_end(cfs_rq, se); 993 994 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 995 struct task_struct *tsk = task_of(se); 996 unsigned int state; 997 998 /* XXX racy against TTWU */ 999 state = READ_ONCE(tsk->__state); 1000 if (state & TASK_INTERRUPTIBLE) 1001 __schedstat_set(se->statistics.sleep_start, 1002 rq_clock(rq_of(cfs_rq))); 1003 if (state & TASK_UNINTERRUPTIBLE) 1004 __schedstat_set(se->statistics.block_start, 1005 rq_clock(rq_of(cfs_rq))); 1006 } 1007 } 1008 1009 /* 1010 * We are picking a new current task - update its stats: 1011 */ 1012 static inline void 1013 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1014 { 1015 /* 1016 * We are starting a new run period: 1017 */ 1018 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1019 } 1020 1021 /************************************************** 1022 * Scheduling class queueing methods: 1023 */ 1024 1025 #ifdef CONFIG_NUMA_BALANCING 1026 /* 1027 * Approximate time to scan a full NUMA task in ms. The task scan period is 1028 * calculated based on the tasks virtual memory size and 1029 * numa_balancing_scan_size. 1030 */ 1031 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1032 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1033 1034 /* Portion of address space to scan in MB */ 1035 unsigned int sysctl_numa_balancing_scan_size = 256; 1036 1037 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1038 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1039 1040 struct numa_group { 1041 refcount_t refcount; 1042 1043 spinlock_t lock; /* nr_tasks, tasks */ 1044 int nr_tasks; 1045 pid_t gid; 1046 int active_nodes; 1047 1048 struct rcu_head rcu; 1049 unsigned long total_faults; 1050 unsigned long max_faults_cpu; 1051 /* 1052 * Faults_cpu is used to decide whether memory should move 1053 * towards the CPU. As a consequence, these stats are weighted 1054 * more by CPU use than by memory faults. 1055 */ 1056 unsigned long *faults_cpu; 1057 unsigned long faults[]; 1058 }; 1059 1060 /* 1061 * For functions that can be called in multiple contexts that permit reading 1062 * ->numa_group (see struct task_struct for locking rules). 1063 */ 1064 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1065 { 1066 return rcu_dereference_check(p->numa_group, p == current || 1067 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1068 } 1069 1070 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1071 { 1072 return rcu_dereference_protected(p->numa_group, p == current); 1073 } 1074 1075 static inline unsigned long group_faults_priv(struct numa_group *ng); 1076 static inline unsigned long group_faults_shared(struct numa_group *ng); 1077 1078 static unsigned int task_nr_scan_windows(struct task_struct *p) 1079 { 1080 unsigned long rss = 0; 1081 unsigned long nr_scan_pages; 1082 1083 /* 1084 * Calculations based on RSS as non-present and empty pages are skipped 1085 * by the PTE scanner and NUMA hinting faults should be trapped based 1086 * on resident pages 1087 */ 1088 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1089 rss = get_mm_rss(p->mm); 1090 if (!rss) 1091 rss = nr_scan_pages; 1092 1093 rss = round_up(rss, nr_scan_pages); 1094 return rss / nr_scan_pages; 1095 } 1096 1097 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1098 #define MAX_SCAN_WINDOW 2560 1099 1100 static unsigned int task_scan_min(struct task_struct *p) 1101 { 1102 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1103 unsigned int scan, floor; 1104 unsigned int windows = 1; 1105 1106 if (scan_size < MAX_SCAN_WINDOW) 1107 windows = MAX_SCAN_WINDOW / scan_size; 1108 floor = 1000 / windows; 1109 1110 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1111 return max_t(unsigned int, floor, scan); 1112 } 1113 1114 static unsigned int task_scan_start(struct task_struct *p) 1115 { 1116 unsigned long smin = task_scan_min(p); 1117 unsigned long period = smin; 1118 struct numa_group *ng; 1119 1120 /* Scale the maximum scan period with the amount of shared memory. */ 1121 rcu_read_lock(); 1122 ng = rcu_dereference(p->numa_group); 1123 if (ng) { 1124 unsigned long shared = group_faults_shared(ng); 1125 unsigned long private = group_faults_priv(ng); 1126 1127 period *= refcount_read(&ng->refcount); 1128 period *= shared + 1; 1129 period /= private + shared + 1; 1130 } 1131 rcu_read_unlock(); 1132 1133 return max(smin, period); 1134 } 1135 1136 static unsigned int task_scan_max(struct task_struct *p) 1137 { 1138 unsigned long smin = task_scan_min(p); 1139 unsigned long smax; 1140 struct numa_group *ng; 1141 1142 /* Watch for min being lower than max due to floor calculations */ 1143 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1144 1145 /* Scale the maximum scan period with the amount of shared memory. */ 1146 ng = deref_curr_numa_group(p); 1147 if (ng) { 1148 unsigned long shared = group_faults_shared(ng); 1149 unsigned long private = group_faults_priv(ng); 1150 unsigned long period = smax; 1151 1152 period *= refcount_read(&ng->refcount); 1153 period *= shared + 1; 1154 period /= private + shared + 1; 1155 1156 smax = max(smax, period); 1157 } 1158 1159 return max(smin, smax); 1160 } 1161 1162 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1163 { 1164 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1165 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1166 } 1167 1168 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1169 { 1170 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1171 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1172 } 1173 1174 /* Shared or private faults. */ 1175 #define NR_NUMA_HINT_FAULT_TYPES 2 1176 1177 /* Memory and CPU locality */ 1178 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1179 1180 /* Averaged statistics, and temporary buffers. */ 1181 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1182 1183 pid_t task_numa_group_id(struct task_struct *p) 1184 { 1185 struct numa_group *ng; 1186 pid_t gid = 0; 1187 1188 rcu_read_lock(); 1189 ng = rcu_dereference(p->numa_group); 1190 if (ng) 1191 gid = ng->gid; 1192 rcu_read_unlock(); 1193 1194 return gid; 1195 } 1196 1197 /* 1198 * The averaged statistics, shared & private, memory & CPU, 1199 * occupy the first half of the array. The second half of the 1200 * array is for current counters, which are averaged into the 1201 * first set by task_numa_placement. 1202 */ 1203 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1204 { 1205 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1206 } 1207 1208 static inline unsigned long task_faults(struct task_struct *p, int nid) 1209 { 1210 if (!p->numa_faults) 1211 return 0; 1212 1213 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1214 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1215 } 1216 1217 static inline unsigned long group_faults(struct task_struct *p, int nid) 1218 { 1219 struct numa_group *ng = deref_task_numa_group(p); 1220 1221 if (!ng) 1222 return 0; 1223 1224 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1225 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1226 } 1227 1228 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1229 { 1230 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1231 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1232 } 1233 1234 static inline unsigned long group_faults_priv(struct numa_group *ng) 1235 { 1236 unsigned long faults = 0; 1237 int node; 1238 1239 for_each_online_node(node) { 1240 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1241 } 1242 1243 return faults; 1244 } 1245 1246 static inline unsigned long group_faults_shared(struct numa_group *ng) 1247 { 1248 unsigned long faults = 0; 1249 int node; 1250 1251 for_each_online_node(node) { 1252 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1253 } 1254 1255 return faults; 1256 } 1257 1258 /* 1259 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1260 * considered part of a numa group's pseudo-interleaving set. Migrations 1261 * between these nodes are slowed down, to allow things to settle down. 1262 */ 1263 #define ACTIVE_NODE_FRACTION 3 1264 1265 static bool numa_is_active_node(int nid, struct numa_group *ng) 1266 { 1267 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1268 } 1269 1270 /* Handle placement on systems where not all nodes are directly connected. */ 1271 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1272 int maxdist, bool task) 1273 { 1274 unsigned long score = 0; 1275 int node; 1276 1277 /* 1278 * All nodes are directly connected, and the same distance 1279 * from each other. No need for fancy placement algorithms. 1280 */ 1281 if (sched_numa_topology_type == NUMA_DIRECT) 1282 return 0; 1283 1284 /* 1285 * This code is called for each node, introducing N^2 complexity, 1286 * which should be ok given the number of nodes rarely exceeds 8. 1287 */ 1288 for_each_online_node(node) { 1289 unsigned long faults; 1290 int dist = node_distance(nid, node); 1291 1292 /* 1293 * The furthest away nodes in the system are not interesting 1294 * for placement; nid was already counted. 1295 */ 1296 if (dist == sched_max_numa_distance || node == nid) 1297 continue; 1298 1299 /* 1300 * On systems with a backplane NUMA topology, compare groups 1301 * of nodes, and move tasks towards the group with the most 1302 * memory accesses. When comparing two nodes at distance 1303 * "hoplimit", only nodes closer by than "hoplimit" are part 1304 * of each group. Skip other nodes. 1305 */ 1306 if (sched_numa_topology_type == NUMA_BACKPLANE && 1307 dist >= maxdist) 1308 continue; 1309 1310 /* Add up the faults from nearby nodes. */ 1311 if (task) 1312 faults = task_faults(p, node); 1313 else 1314 faults = group_faults(p, node); 1315 1316 /* 1317 * On systems with a glueless mesh NUMA topology, there are 1318 * no fixed "groups of nodes". Instead, nodes that are not 1319 * directly connected bounce traffic through intermediate 1320 * nodes; a numa_group can occupy any set of nodes. 1321 * The further away a node is, the less the faults count. 1322 * This seems to result in good task placement. 1323 */ 1324 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1325 faults *= (sched_max_numa_distance - dist); 1326 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1327 } 1328 1329 score += faults; 1330 } 1331 1332 return score; 1333 } 1334 1335 /* 1336 * These return the fraction of accesses done by a particular task, or 1337 * task group, on a particular numa node. The group weight is given a 1338 * larger multiplier, in order to group tasks together that are almost 1339 * evenly spread out between numa nodes. 1340 */ 1341 static inline unsigned long task_weight(struct task_struct *p, int nid, 1342 int dist) 1343 { 1344 unsigned long faults, total_faults; 1345 1346 if (!p->numa_faults) 1347 return 0; 1348 1349 total_faults = p->total_numa_faults; 1350 1351 if (!total_faults) 1352 return 0; 1353 1354 faults = task_faults(p, nid); 1355 faults += score_nearby_nodes(p, nid, dist, true); 1356 1357 return 1000 * faults / total_faults; 1358 } 1359 1360 static inline unsigned long group_weight(struct task_struct *p, int nid, 1361 int dist) 1362 { 1363 struct numa_group *ng = deref_task_numa_group(p); 1364 unsigned long faults, total_faults; 1365 1366 if (!ng) 1367 return 0; 1368 1369 total_faults = ng->total_faults; 1370 1371 if (!total_faults) 1372 return 0; 1373 1374 faults = group_faults(p, nid); 1375 faults += score_nearby_nodes(p, nid, dist, false); 1376 1377 return 1000 * faults / total_faults; 1378 } 1379 1380 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1381 int src_nid, int dst_cpu) 1382 { 1383 struct numa_group *ng = deref_curr_numa_group(p); 1384 int dst_nid = cpu_to_node(dst_cpu); 1385 int last_cpupid, this_cpupid; 1386 1387 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1388 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1389 1390 /* 1391 * Allow first faults or private faults to migrate immediately early in 1392 * the lifetime of a task. The magic number 4 is based on waiting for 1393 * two full passes of the "multi-stage node selection" test that is 1394 * executed below. 1395 */ 1396 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1397 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1398 return true; 1399 1400 /* 1401 * Multi-stage node selection is used in conjunction with a periodic 1402 * migration fault to build a temporal task<->page relation. By using 1403 * a two-stage filter we remove short/unlikely relations. 1404 * 1405 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1406 * a task's usage of a particular page (n_p) per total usage of this 1407 * page (n_t) (in a given time-span) to a probability. 1408 * 1409 * Our periodic faults will sample this probability and getting the 1410 * same result twice in a row, given these samples are fully 1411 * independent, is then given by P(n)^2, provided our sample period 1412 * is sufficiently short compared to the usage pattern. 1413 * 1414 * This quadric squishes small probabilities, making it less likely we 1415 * act on an unlikely task<->page relation. 1416 */ 1417 if (!cpupid_pid_unset(last_cpupid) && 1418 cpupid_to_nid(last_cpupid) != dst_nid) 1419 return false; 1420 1421 /* Always allow migrate on private faults */ 1422 if (cpupid_match_pid(p, last_cpupid)) 1423 return true; 1424 1425 /* A shared fault, but p->numa_group has not been set up yet. */ 1426 if (!ng) 1427 return true; 1428 1429 /* 1430 * Destination node is much more heavily used than the source 1431 * node? Allow migration. 1432 */ 1433 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1434 ACTIVE_NODE_FRACTION) 1435 return true; 1436 1437 /* 1438 * Distribute memory according to CPU & memory use on each node, 1439 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1440 * 1441 * faults_cpu(dst) 3 faults_cpu(src) 1442 * --------------- * - > --------------- 1443 * faults_mem(dst) 4 faults_mem(src) 1444 */ 1445 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1446 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1447 } 1448 1449 /* 1450 * 'numa_type' describes the node at the moment of load balancing. 1451 */ 1452 enum numa_type { 1453 /* The node has spare capacity that can be used to run more tasks. */ 1454 node_has_spare = 0, 1455 /* 1456 * The node is fully used and the tasks don't compete for more CPU 1457 * cycles. Nevertheless, some tasks might wait before running. 1458 */ 1459 node_fully_busy, 1460 /* 1461 * The node is overloaded and can't provide expected CPU cycles to all 1462 * tasks. 1463 */ 1464 node_overloaded 1465 }; 1466 1467 /* Cached statistics for all CPUs within a node */ 1468 struct numa_stats { 1469 unsigned long load; 1470 unsigned long runnable; 1471 unsigned long util; 1472 /* Total compute capacity of CPUs on a node */ 1473 unsigned long compute_capacity; 1474 unsigned int nr_running; 1475 unsigned int weight; 1476 enum numa_type node_type; 1477 int idle_cpu; 1478 }; 1479 1480 static inline bool is_core_idle(int cpu) 1481 { 1482 #ifdef CONFIG_SCHED_SMT 1483 int sibling; 1484 1485 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1486 if (cpu == sibling) 1487 continue; 1488 1489 if (!idle_cpu(cpu)) 1490 return false; 1491 } 1492 #endif 1493 1494 return true; 1495 } 1496 1497 struct task_numa_env { 1498 struct task_struct *p; 1499 1500 int src_cpu, src_nid; 1501 int dst_cpu, dst_nid; 1502 1503 struct numa_stats src_stats, dst_stats; 1504 1505 int imbalance_pct; 1506 int dist; 1507 1508 struct task_struct *best_task; 1509 long best_imp; 1510 int best_cpu; 1511 }; 1512 1513 static unsigned long cpu_load(struct rq *rq); 1514 static unsigned long cpu_runnable(struct rq *rq); 1515 static unsigned long cpu_util(int cpu); 1516 static inline long adjust_numa_imbalance(int imbalance, 1517 int dst_running, int dst_weight); 1518 1519 static inline enum 1520 numa_type numa_classify(unsigned int imbalance_pct, 1521 struct numa_stats *ns) 1522 { 1523 if ((ns->nr_running > ns->weight) && 1524 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1525 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1526 return node_overloaded; 1527 1528 if ((ns->nr_running < ns->weight) || 1529 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1530 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1531 return node_has_spare; 1532 1533 return node_fully_busy; 1534 } 1535 1536 #ifdef CONFIG_SCHED_SMT 1537 /* Forward declarations of select_idle_sibling helpers */ 1538 static inline bool test_idle_cores(int cpu, bool def); 1539 static inline int numa_idle_core(int idle_core, int cpu) 1540 { 1541 if (!static_branch_likely(&sched_smt_present) || 1542 idle_core >= 0 || !test_idle_cores(cpu, false)) 1543 return idle_core; 1544 1545 /* 1546 * Prefer cores instead of packing HT siblings 1547 * and triggering future load balancing. 1548 */ 1549 if (is_core_idle(cpu)) 1550 idle_core = cpu; 1551 1552 return idle_core; 1553 } 1554 #else 1555 static inline int numa_idle_core(int idle_core, int cpu) 1556 { 1557 return idle_core; 1558 } 1559 #endif 1560 1561 /* 1562 * Gather all necessary information to make NUMA balancing placement 1563 * decisions that are compatible with standard load balancer. This 1564 * borrows code and logic from update_sg_lb_stats but sharing a 1565 * common implementation is impractical. 1566 */ 1567 static void update_numa_stats(struct task_numa_env *env, 1568 struct numa_stats *ns, int nid, 1569 bool find_idle) 1570 { 1571 int cpu, idle_core = -1; 1572 1573 memset(ns, 0, sizeof(*ns)); 1574 ns->idle_cpu = -1; 1575 1576 rcu_read_lock(); 1577 for_each_cpu(cpu, cpumask_of_node(nid)) { 1578 struct rq *rq = cpu_rq(cpu); 1579 1580 ns->load += cpu_load(rq); 1581 ns->runnable += cpu_runnable(rq); 1582 ns->util += cpu_util(cpu); 1583 ns->nr_running += rq->cfs.h_nr_running; 1584 ns->compute_capacity += capacity_of(cpu); 1585 1586 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1587 if (READ_ONCE(rq->numa_migrate_on) || 1588 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1589 continue; 1590 1591 if (ns->idle_cpu == -1) 1592 ns->idle_cpu = cpu; 1593 1594 idle_core = numa_idle_core(idle_core, cpu); 1595 } 1596 } 1597 rcu_read_unlock(); 1598 1599 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1600 1601 ns->node_type = numa_classify(env->imbalance_pct, ns); 1602 1603 if (idle_core >= 0) 1604 ns->idle_cpu = idle_core; 1605 } 1606 1607 static void task_numa_assign(struct task_numa_env *env, 1608 struct task_struct *p, long imp) 1609 { 1610 struct rq *rq = cpu_rq(env->dst_cpu); 1611 1612 /* Check if run-queue part of active NUMA balance. */ 1613 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1614 int cpu; 1615 int start = env->dst_cpu; 1616 1617 /* Find alternative idle CPU. */ 1618 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1619 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1620 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1621 continue; 1622 } 1623 1624 env->dst_cpu = cpu; 1625 rq = cpu_rq(env->dst_cpu); 1626 if (!xchg(&rq->numa_migrate_on, 1)) 1627 goto assign; 1628 } 1629 1630 /* Failed to find an alternative idle CPU */ 1631 return; 1632 } 1633 1634 assign: 1635 /* 1636 * Clear previous best_cpu/rq numa-migrate flag, since task now 1637 * found a better CPU to move/swap. 1638 */ 1639 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1640 rq = cpu_rq(env->best_cpu); 1641 WRITE_ONCE(rq->numa_migrate_on, 0); 1642 } 1643 1644 if (env->best_task) 1645 put_task_struct(env->best_task); 1646 if (p) 1647 get_task_struct(p); 1648 1649 env->best_task = p; 1650 env->best_imp = imp; 1651 env->best_cpu = env->dst_cpu; 1652 } 1653 1654 static bool load_too_imbalanced(long src_load, long dst_load, 1655 struct task_numa_env *env) 1656 { 1657 long imb, old_imb; 1658 long orig_src_load, orig_dst_load; 1659 long src_capacity, dst_capacity; 1660 1661 /* 1662 * The load is corrected for the CPU capacity available on each node. 1663 * 1664 * src_load dst_load 1665 * ------------ vs --------- 1666 * src_capacity dst_capacity 1667 */ 1668 src_capacity = env->src_stats.compute_capacity; 1669 dst_capacity = env->dst_stats.compute_capacity; 1670 1671 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1672 1673 orig_src_load = env->src_stats.load; 1674 orig_dst_load = env->dst_stats.load; 1675 1676 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1677 1678 /* Would this change make things worse? */ 1679 return (imb > old_imb); 1680 } 1681 1682 /* 1683 * Maximum NUMA importance can be 1998 (2*999); 1684 * SMALLIMP @ 30 would be close to 1998/64. 1685 * Used to deter task migration. 1686 */ 1687 #define SMALLIMP 30 1688 1689 /* 1690 * This checks if the overall compute and NUMA accesses of the system would 1691 * be improved if the source tasks was migrated to the target dst_cpu taking 1692 * into account that it might be best if task running on the dst_cpu should 1693 * be exchanged with the source task 1694 */ 1695 static bool task_numa_compare(struct task_numa_env *env, 1696 long taskimp, long groupimp, bool maymove) 1697 { 1698 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1699 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1700 long imp = p_ng ? groupimp : taskimp; 1701 struct task_struct *cur; 1702 long src_load, dst_load; 1703 int dist = env->dist; 1704 long moveimp = imp; 1705 long load; 1706 bool stopsearch = false; 1707 1708 if (READ_ONCE(dst_rq->numa_migrate_on)) 1709 return false; 1710 1711 rcu_read_lock(); 1712 cur = rcu_dereference(dst_rq->curr); 1713 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1714 cur = NULL; 1715 1716 /* 1717 * Because we have preemption enabled we can get migrated around and 1718 * end try selecting ourselves (current == env->p) as a swap candidate. 1719 */ 1720 if (cur == env->p) { 1721 stopsearch = true; 1722 goto unlock; 1723 } 1724 1725 if (!cur) { 1726 if (maymove && moveimp >= env->best_imp) 1727 goto assign; 1728 else 1729 goto unlock; 1730 } 1731 1732 /* Skip this swap candidate if cannot move to the source cpu. */ 1733 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1734 goto unlock; 1735 1736 /* 1737 * Skip this swap candidate if it is not moving to its preferred 1738 * node and the best task is. 1739 */ 1740 if (env->best_task && 1741 env->best_task->numa_preferred_nid == env->src_nid && 1742 cur->numa_preferred_nid != env->src_nid) { 1743 goto unlock; 1744 } 1745 1746 /* 1747 * "imp" is the fault differential for the source task between the 1748 * source and destination node. Calculate the total differential for 1749 * the source task and potential destination task. The more negative 1750 * the value is, the more remote accesses that would be expected to 1751 * be incurred if the tasks were swapped. 1752 * 1753 * If dst and source tasks are in the same NUMA group, or not 1754 * in any group then look only at task weights. 1755 */ 1756 cur_ng = rcu_dereference(cur->numa_group); 1757 if (cur_ng == p_ng) { 1758 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1759 task_weight(cur, env->dst_nid, dist); 1760 /* 1761 * Add some hysteresis to prevent swapping the 1762 * tasks within a group over tiny differences. 1763 */ 1764 if (cur_ng) 1765 imp -= imp / 16; 1766 } else { 1767 /* 1768 * Compare the group weights. If a task is all by itself 1769 * (not part of a group), use the task weight instead. 1770 */ 1771 if (cur_ng && p_ng) 1772 imp += group_weight(cur, env->src_nid, dist) - 1773 group_weight(cur, env->dst_nid, dist); 1774 else 1775 imp += task_weight(cur, env->src_nid, dist) - 1776 task_weight(cur, env->dst_nid, dist); 1777 } 1778 1779 /* Discourage picking a task already on its preferred node */ 1780 if (cur->numa_preferred_nid == env->dst_nid) 1781 imp -= imp / 16; 1782 1783 /* 1784 * Encourage picking a task that moves to its preferred node. 1785 * This potentially makes imp larger than it's maximum of 1786 * 1998 (see SMALLIMP and task_weight for why) but in this 1787 * case, it does not matter. 1788 */ 1789 if (cur->numa_preferred_nid == env->src_nid) 1790 imp += imp / 8; 1791 1792 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1793 imp = moveimp; 1794 cur = NULL; 1795 goto assign; 1796 } 1797 1798 /* 1799 * Prefer swapping with a task moving to its preferred node over a 1800 * task that is not. 1801 */ 1802 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1803 env->best_task->numa_preferred_nid != env->src_nid) { 1804 goto assign; 1805 } 1806 1807 /* 1808 * If the NUMA importance is less than SMALLIMP, 1809 * task migration might only result in ping pong 1810 * of tasks and also hurt performance due to cache 1811 * misses. 1812 */ 1813 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1814 goto unlock; 1815 1816 /* 1817 * In the overloaded case, try and keep the load balanced. 1818 */ 1819 load = task_h_load(env->p) - task_h_load(cur); 1820 if (!load) 1821 goto assign; 1822 1823 dst_load = env->dst_stats.load + load; 1824 src_load = env->src_stats.load - load; 1825 1826 if (load_too_imbalanced(src_load, dst_load, env)) 1827 goto unlock; 1828 1829 assign: 1830 /* Evaluate an idle CPU for a task numa move. */ 1831 if (!cur) { 1832 int cpu = env->dst_stats.idle_cpu; 1833 1834 /* Nothing cached so current CPU went idle since the search. */ 1835 if (cpu < 0) 1836 cpu = env->dst_cpu; 1837 1838 /* 1839 * If the CPU is no longer truly idle and the previous best CPU 1840 * is, keep using it. 1841 */ 1842 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1843 idle_cpu(env->best_cpu)) { 1844 cpu = env->best_cpu; 1845 } 1846 1847 env->dst_cpu = cpu; 1848 } 1849 1850 task_numa_assign(env, cur, imp); 1851 1852 /* 1853 * If a move to idle is allowed because there is capacity or load 1854 * balance improves then stop the search. While a better swap 1855 * candidate may exist, a search is not free. 1856 */ 1857 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1858 stopsearch = true; 1859 1860 /* 1861 * If a swap candidate must be identified and the current best task 1862 * moves its preferred node then stop the search. 1863 */ 1864 if (!maymove && env->best_task && 1865 env->best_task->numa_preferred_nid == env->src_nid) { 1866 stopsearch = true; 1867 } 1868 unlock: 1869 rcu_read_unlock(); 1870 1871 return stopsearch; 1872 } 1873 1874 static void task_numa_find_cpu(struct task_numa_env *env, 1875 long taskimp, long groupimp) 1876 { 1877 bool maymove = false; 1878 int cpu; 1879 1880 /* 1881 * If dst node has spare capacity, then check if there is an 1882 * imbalance that would be overruled by the load balancer. 1883 */ 1884 if (env->dst_stats.node_type == node_has_spare) { 1885 unsigned int imbalance; 1886 int src_running, dst_running; 1887 1888 /* 1889 * Would movement cause an imbalance? Note that if src has 1890 * more running tasks that the imbalance is ignored as the 1891 * move improves the imbalance from the perspective of the 1892 * CPU load balancer. 1893 * */ 1894 src_running = env->src_stats.nr_running - 1; 1895 dst_running = env->dst_stats.nr_running + 1; 1896 imbalance = max(0, dst_running - src_running); 1897 imbalance = adjust_numa_imbalance(imbalance, dst_running, 1898 env->dst_stats.weight); 1899 1900 /* Use idle CPU if there is no imbalance */ 1901 if (!imbalance) { 1902 maymove = true; 1903 if (env->dst_stats.idle_cpu >= 0) { 1904 env->dst_cpu = env->dst_stats.idle_cpu; 1905 task_numa_assign(env, NULL, 0); 1906 return; 1907 } 1908 } 1909 } else { 1910 long src_load, dst_load, load; 1911 /* 1912 * If the improvement from just moving env->p direction is better 1913 * than swapping tasks around, check if a move is possible. 1914 */ 1915 load = task_h_load(env->p); 1916 dst_load = env->dst_stats.load + load; 1917 src_load = env->src_stats.load - load; 1918 maymove = !load_too_imbalanced(src_load, dst_load, env); 1919 } 1920 1921 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1922 /* Skip this CPU if the source task cannot migrate */ 1923 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1924 continue; 1925 1926 env->dst_cpu = cpu; 1927 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1928 break; 1929 } 1930 } 1931 1932 static int task_numa_migrate(struct task_struct *p) 1933 { 1934 struct task_numa_env env = { 1935 .p = p, 1936 1937 .src_cpu = task_cpu(p), 1938 .src_nid = task_node(p), 1939 1940 .imbalance_pct = 112, 1941 1942 .best_task = NULL, 1943 .best_imp = 0, 1944 .best_cpu = -1, 1945 }; 1946 unsigned long taskweight, groupweight; 1947 struct sched_domain *sd; 1948 long taskimp, groupimp; 1949 struct numa_group *ng; 1950 struct rq *best_rq; 1951 int nid, ret, dist; 1952 1953 /* 1954 * Pick the lowest SD_NUMA domain, as that would have the smallest 1955 * imbalance and would be the first to start moving tasks about. 1956 * 1957 * And we want to avoid any moving of tasks about, as that would create 1958 * random movement of tasks -- counter the numa conditions we're trying 1959 * to satisfy here. 1960 */ 1961 rcu_read_lock(); 1962 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1963 if (sd) 1964 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1965 rcu_read_unlock(); 1966 1967 /* 1968 * Cpusets can break the scheduler domain tree into smaller 1969 * balance domains, some of which do not cross NUMA boundaries. 1970 * Tasks that are "trapped" in such domains cannot be migrated 1971 * elsewhere, so there is no point in (re)trying. 1972 */ 1973 if (unlikely(!sd)) { 1974 sched_setnuma(p, task_node(p)); 1975 return -EINVAL; 1976 } 1977 1978 env.dst_nid = p->numa_preferred_nid; 1979 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1980 taskweight = task_weight(p, env.src_nid, dist); 1981 groupweight = group_weight(p, env.src_nid, dist); 1982 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 1983 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1984 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1985 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 1986 1987 /* Try to find a spot on the preferred nid. */ 1988 task_numa_find_cpu(&env, taskimp, groupimp); 1989 1990 /* 1991 * Look at other nodes in these cases: 1992 * - there is no space available on the preferred_nid 1993 * - the task is part of a numa_group that is interleaved across 1994 * multiple NUMA nodes; in order to better consolidate the group, 1995 * we need to check other locations. 1996 */ 1997 ng = deref_curr_numa_group(p); 1998 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 1999 for_each_online_node(nid) { 2000 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2001 continue; 2002 2003 dist = node_distance(env.src_nid, env.dst_nid); 2004 if (sched_numa_topology_type == NUMA_BACKPLANE && 2005 dist != env.dist) { 2006 taskweight = task_weight(p, env.src_nid, dist); 2007 groupweight = group_weight(p, env.src_nid, dist); 2008 } 2009 2010 /* Only consider nodes where both task and groups benefit */ 2011 taskimp = task_weight(p, nid, dist) - taskweight; 2012 groupimp = group_weight(p, nid, dist) - groupweight; 2013 if (taskimp < 0 && groupimp < 0) 2014 continue; 2015 2016 env.dist = dist; 2017 env.dst_nid = nid; 2018 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2019 task_numa_find_cpu(&env, taskimp, groupimp); 2020 } 2021 } 2022 2023 /* 2024 * If the task is part of a workload that spans multiple NUMA nodes, 2025 * and is migrating into one of the workload's active nodes, remember 2026 * this node as the task's preferred numa node, so the workload can 2027 * settle down. 2028 * A task that migrated to a second choice node will be better off 2029 * trying for a better one later. Do not set the preferred node here. 2030 */ 2031 if (ng) { 2032 if (env.best_cpu == -1) 2033 nid = env.src_nid; 2034 else 2035 nid = cpu_to_node(env.best_cpu); 2036 2037 if (nid != p->numa_preferred_nid) 2038 sched_setnuma(p, nid); 2039 } 2040 2041 /* No better CPU than the current one was found. */ 2042 if (env.best_cpu == -1) { 2043 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2044 return -EAGAIN; 2045 } 2046 2047 best_rq = cpu_rq(env.best_cpu); 2048 if (env.best_task == NULL) { 2049 ret = migrate_task_to(p, env.best_cpu); 2050 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2051 if (ret != 0) 2052 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2053 return ret; 2054 } 2055 2056 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2057 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2058 2059 if (ret != 0) 2060 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2061 put_task_struct(env.best_task); 2062 return ret; 2063 } 2064 2065 /* Attempt to migrate a task to a CPU on the preferred node. */ 2066 static void numa_migrate_preferred(struct task_struct *p) 2067 { 2068 unsigned long interval = HZ; 2069 2070 /* This task has no NUMA fault statistics yet */ 2071 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2072 return; 2073 2074 /* Periodically retry migrating the task to the preferred node */ 2075 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2076 p->numa_migrate_retry = jiffies + interval; 2077 2078 /* Success if task is already running on preferred CPU */ 2079 if (task_node(p) == p->numa_preferred_nid) 2080 return; 2081 2082 /* Otherwise, try migrate to a CPU on the preferred node */ 2083 task_numa_migrate(p); 2084 } 2085 2086 /* 2087 * Find out how many nodes on the workload is actively running on. Do this by 2088 * tracking the nodes from which NUMA hinting faults are triggered. This can 2089 * be different from the set of nodes where the workload's memory is currently 2090 * located. 2091 */ 2092 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2093 { 2094 unsigned long faults, max_faults = 0; 2095 int nid, active_nodes = 0; 2096 2097 for_each_online_node(nid) { 2098 faults = group_faults_cpu(numa_group, nid); 2099 if (faults > max_faults) 2100 max_faults = faults; 2101 } 2102 2103 for_each_online_node(nid) { 2104 faults = group_faults_cpu(numa_group, nid); 2105 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2106 active_nodes++; 2107 } 2108 2109 numa_group->max_faults_cpu = max_faults; 2110 numa_group->active_nodes = active_nodes; 2111 } 2112 2113 /* 2114 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2115 * increments. The more local the fault statistics are, the higher the scan 2116 * period will be for the next scan window. If local/(local+remote) ratio is 2117 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2118 * the scan period will decrease. Aim for 70% local accesses. 2119 */ 2120 #define NUMA_PERIOD_SLOTS 10 2121 #define NUMA_PERIOD_THRESHOLD 7 2122 2123 /* 2124 * Increase the scan period (slow down scanning) if the majority of 2125 * our memory is already on our local node, or if the majority of 2126 * the page accesses are shared with other processes. 2127 * Otherwise, decrease the scan period. 2128 */ 2129 static void update_task_scan_period(struct task_struct *p, 2130 unsigned long shared, unsigned long private) 2131 { 2132 unsigned int period_slot; 2133 int lr_ratio, ps_ratio; 2134 int diff; 2135 2136 unsigned long remote = p->numa_faults_locality[0]; 2137 unsigned long local = p->numa_faults_locality[1]; 2138 2139 /* 2140 * If there were no record hinting faults then either the task is 2141 * completely idle or all activity is areas that are not of interest 2142 * to automatic numa balancing. Related to that, if there were failed 2143 * migration then it implies we are migrating too quickly or the local 2144 * node is overloaded. In either case, scan slower 2145 */ 2146 if (local + shared == 0 || p->numa_faults_locality[2]) { 2147 p->numa_scan_period = min(p->numa_scan_period_max, 2148 p->numa_scan_period << 1); 2149 2150 p->mm->numa_next_scan = jiffies + 2151 msecs_to_jiffies(p->numa_scan_period); 2152 2153 return; 2154 } 2155 2156 /* 2157 * Prepare to scale scan period relative to the current period. 2158 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2159 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2160 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2161 */ 2162 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2163 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2164 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2165 2166 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2167 /* 2168 * Most memory accesses are local. There is no need to 2169 * do fast NUMA scanning, since memory is already local. 2170 */ 2171 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2172 if (!slot) 2173 slot = 1; 2174 diff = slot * period_slot; 2175 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2176 /* 2177 * Most memory accesses are shared with other tasks. 2178 * There is no point in continuing fast NUMA scanning, 2179 * since other tasks may just move the memory elsewhere. 2180 */ 2181 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2182 if (!slot) 2183 slot = 1; 2184 diff = slot * period_slot; 2185 } else { 2186 /* 2187 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2188 * yet they are not on the local NUMA node. Speed up 2189 * NUMA scanning to get the memory moved over. 2190 */ 2191 int ratio = max(lr_ratio, ps_ratio); 2192 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2193 } 2194 2195 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2196 task_scan_min(p), task_scan_max(p)); 2197 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2198 } 2199 2200 /* 2201 * Get the fraction of time the task has been running since the last 2202 * NUMA placement cycle. The scheduler keeps similar statistics, but 2203 * decays those on a 32ms period, which is orders of magnitude off 2204 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2205 * stats only if the task is so new there are no NUMA statistics yet. 2206 */ 2207 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2208 { 2209 u64 runtime, delta, now; 2210 /* Use the start of this time slice to avoid calculations. */ 2211 now = p->se.exec_start; 2212 runtime = p->se.sum_exec_runtime; 2213 2214 if (p->last_task_numa_placement) { 2215 delta = runtime - p->last_sum_exec_runtime; 2216 *period = now - p->last_task_numa_placement; 2217 2218 /* Avoid time going backwards, prevent potential divide error: */ 2219 if (unlikely((s64)*period < 0)) 2220 *period = 0; 2221 } else { 2222 delta = p->se.avg.load_sum; 2223 *period = LOAD_AVG_MAX; 2224 } 2225 2226 p->last_sum_exec_runtime = runtime; 2227 p->last_task_numa_placement = now; 2228 2229 return delta; 2230 } 2231 2232 /* 2233 * Determine the preferred nid for a task in a numa_group. This needs to 2234 * be done in a way that produces consistent results with group_weight, 2235 * otherwise workloads might not converge. 2236 */ 2237 static int preferred_group_nid(struct task_struct *p, int nid) 2238 { 2239 nodemask_t nodes; 2240 int dist; 2241 2242 /* Direct connections between all NUMA nodes. */ 2243 if (sched_numa_topology_type == NUMA_DIRECT) 2244 return nid; 2245 2246 /* 2247 * On a system with glueless mesh NUMA topology, group_weight 2248 * scores nodes according to the number of NUMA hinting faults on 2249 * both the node itself, and on nearby nodes. 2250 */ 2251 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2252 unsigned long score, max_score = 0; 2253 int node, max_node = nid; 2254 2255 dist = sched_max_numa_distance; 2256 2257 for_each_online_node(node) { 2258 score = group_weight(p, node, dist); 2259 if (score > max_score) { 2260 max_score = score; 2261 max_node = node; 2262 } 2263 } 2264 return max_node; 2265 } 2266 2267 /* 2268 * Finding the preferred nid in a system with NUMA backplane 2269 * interconnect topology is more involved. The goal is to locate 2270 * tasks from numa_groups near each other in the system, and 2271 * untangle workloads from different sides of the system. This requires 2272 * searching down the hierarchy of node groups, recursively searching 2273 * inside the highest scoring group of nodes. The nodemask tricks 2274 * keep the complexity of the search down. 2275 */ 2276 nodes = node_online_map; 2277 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2278 unsigned long max_faults = 0; 2279 nodemask_t max_group = NODE_MASK_NONE; 2280 int a, b; 2281 2282 /* Are there nodes at this distance from each other? */ 2283 if (!find_numa_distance(dist)) 2284 continue; 2285 2286 for_each_node_mask(a, nodes) { 2287 unsigned long faults = 0; 2288 nodemask_t this_group; 2289 nodes_clear(this_group); 2290 2291 /* Sum group's NUMA faults; includes a==b case. */ 2292 for_each_node_mask(b, nodes) { 2293 if (node_distance(a, b) < dist) { 2294 faults += group_faults(p, b); 2295 node_set(b, this_group); 2296 node_clear(b, nodes); 2297 } 2298 } 2299 2300 /* Remember the top group. */ 2301 if (faults > max_faults) { 2302 max_faults = faults; 2303 max_group = this_group; 2304 /* 2305 * subtle: at the smallest distance there is 2306 * just one node left in each "group", the 2307 * winner is the preferred nid. 2308 */ 2309 nid = a; 2310 } 2311 } 2312 /* Next round, evaluate the nodes within max_group. */ 2313 if (!max_faults) 2314 break; 2315 nodes = max_group; 2316 } 2317 return nid; 2318 } 2319 2320 static void task_numa_placement(struct task_struct *p) 2321 { 2322 int seq, nid, max_nid = NUMA_NO_NODE; 2323 unsigned long max_faults = 0; 2324 unsigned long fault_types[2] = { 0, 0 }; 2325 unsigned long total_faults; 2326 u64 runtime, period; 2327 spinlock_t *group_lock = NULL; 2328 struct numa_group *ng; 2329 2330 /* 2331 * The p->mm->numa_scan_seq field gets updated without 2332 * exclusive access. Use READ_ONCE() here to ensure 2333 * that the field is read in a single access: 2334 */ 2335 seq = READ_ONCE(p->mm->numa_scan_seq); 2336 if (p->numa_scan_seq == seq) 2337 return; 2338 p->numa_scan_seq = seq; 2339 p->numa_scan_period_max = task_scan_max(p); 2340 2341 total_faults = p->numa_faults_locality[0] + 2342 p->numa_faults_locality[1]; 2343 runtime = numa_get_avg_runtime(p, &period); 2344 2345 /* If the task is part of a group prevent parallel updates to group stats */ 2346 ng = deref_curr_numa_group(p); 2347 if (ng) { 2348 group_lock = &ng->lock; 2349 spin_lock_irq(group_lock); 2350 } 2351 2352 /* Find the node with the highest number of faults */ 2353 for_each_online_node(nid) { 2354 /* Keep track of the offsets in numa_faults array */ 2355 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2356 unsigned long faults = 0, group_faults = 0; 2357 int priv; 2358 2359 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2360 long diff, f_diff, f_weight; 2361 2362 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2363 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2364 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2365 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2366 2367 /* Decay existing window, copy faults since last scan */ 2368 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2369 fault_types[priv] += p->numa_faults[membuf_idx]; 2370 p->numa_faults[membuf_idx] = 0; 2371 2372 /* 2373 * Normalize the faults_from, so all tasks in a group 2374 * count according to CPU use, instead of by the raw 2375 * number of faults. Tasks with little runtime have 2376 * little over-all impact on throughput, and thus their 2377 * faults are less important. 2378 */ 2379 f_weight = div64_u64(runtime << 16, period + 1); 2380 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2381 (total_faults + 1); 2382 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2383 p->numa_faults[cpubuf_idx] = 0; 2384 2385 p->numa_faults[mem_idx] += diff; 2386 p->numa_faults[cpu_idx] += f_diff; 2387 faults += p->numa_faults[mem_idx]; 2388 p->total_numa_faults += diff; 2389 if (ng) { 2390 /* 2391 * safe because we can only change our own group 2392 * 2393 * mem_idx represents the offset for a given 2394 * nid and priv in a specific region because it 2395 * is at the beginning of the numa_faults array. 2396 */ 2397 ng->faults[mem_idx] += diff; 2398 ng->faults_cpu[mem_idx] += f_diff; 2399 ng->total_faults += diff; 2400 group_faults += ng->faults[mem_idx]; 2401 } 2402 } 2403 2404 if (!ng) { 2405 if (faults > max_faults) { 2406 max_faults = faults; 2407 max_nid = nid; 2408 } 2409 } else if (group_faults > max_faults) { 2410 max_faults = group_faults; 2411 max_nid = nid; 2412 } 2413 } 2414 2415 if (ng) { 2416 numa_group_count_active_nodes(ng); 2417 spin_unlock_irq(group_lock); 2418 max_nid = preferred_group_nid(p, max_nid); 2419 } 2420 2421 if (max_faults) { 2422 /* Set the new preferred node */ 2423 if (max_nid != p->numa_preferred_nid) 2424 sched_setnuma(p, max_nid); 2425 } 2426 2427 update_task_scan_period(p, fault_types[0], fault_types[1]); 2428 } 2429 2430 static inline int get_numa_group(struct numa_group *grp) 2431 { 2432 return refcount_inc_not_zero(&grp->refcount); 2433 } 2434 2435 static inline void put_numa_group(struct numa_group *grp) 2436 { 2437 if (refcount_dec_and_test(&grp->refcount)) 2438 kfree_rcu(grp, rcu); 2439 } 2440 2441 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2442 int *priv) 2443 { 2444 struct numa_group *grp, *my_grp; 2445 struct task_struct *tsk; 2446 bool join = false; 2447 int cpu = cpupid_to_cpu(cpupid); 2448 int i; 2449 2450 if (unlikely(!deref_curr_numa_group(p))) { 2451 unsigned int size = sizeof(struct numa_group) + 2452 4*nr_node_ids*sizeof(unsigned long); 2453 2454 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2455 if (!grp) 2456 return; 2457 2458 refcount_set(&grp->refcount, 1); 2459 grp->active_nodes = 1; 2460 grp->max_faults_cpu = 0; 2461 spin_lock_init(&grp->lock); 2462 grp->gid = p->pid; 2463 /* Second half of the array tracks nids where faults happen */ 2464 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2465 nr_node_ids; 2466 2467 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2468 grp->faults[i] = p->numa_faults[i]; 2469 2470 grp->total_faults = p->total_numa_faults; 2471 2472 grp->nr_tasks++; 2473 rcu_assign_pointer(p->numa_group, grp); 2474 } 2475 2476 rcu_read_lock(); 2477 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2478 2479 if (!cpupid_match_pid(tsk, cpupid)) 2480 goto no_join; 2481 2482 grp = rcu_dereference(tsk->numa_group); 2483 if (!grp) 2484 goto no_join; 2485 2486 my_grp = deref_curr_numa_group(p); 2487 if (grp == my_grp) 2488 goto no_join; 2489 2490 /* 2491 * Only join the other group if its bigger; if we're the bigger group, 2492 * the other task will join us. 2493 */ 2494 if (my_grp->nr_tasks > grp->nr_tasks) 2495 goto no_join; 2496 2497 /* 2498 * Tie-break on the grp address. 2499 */ 2500 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2501 goto no_join; 2502 2503 /* Always join threads in the same process. */ 2504 if (tsk->mm == current->mm) 2505 join = true; 2506 2507 /* Simple filter to avoid false positives due to PID collisions */ 2508 if (flags & TNF_SHARED) 2509 join = true; 2510 2511 /* Update priv based on whether false sharing was detected */ 2512 *priv = !join; 2513 2514 if (join && !get_numa_group(grp)) 2515 goto no_join; 2516 2517 rcu_read_unlock(); 2518 2519 if (!join) 2520 return; 2521 2522 BUG_ON(irqs_disabled()); 2523 double_lock_irq(&my_grp->lock, &grp->lock); 2524 2525 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2526 my_grp->faults[i] -= p->numa_faults[i]; 2527 grp->faults[i] += p->numa_faults[i]; 2528 } 2529 my_grp->total_faults -= p->total_numa_faults; 2530 grp->total_faults += p->total_numa_faults; 2531 2532 my_grp->nr_tasks--; 2533 grp->nr_tasks++; 2534 2535 spin_unlock(&my_grp->lock); 2536 spin_unlock_irq(&grp->lock); 2537 2538 rcu_assign_pointer(p->numa_group, grp); 2539 2540 put_numa_group(my_grp); 2541 return; 2542 2543 no_join: 2544 rcu_read_unlock(); 2545 return; 2546 } 2547 2548 /* 2549 * Get rid of NUMA statistics associated with a task (either current or dead). 2550 * If @final is set, the task is dead and has reached refcount zero, so we can 2551 * safely free all relevant data structures. Otherwise, there might be 2552 * concurrent reads from places like load balancing and procfs, and we should 2553 * reset the data back to default state without freeing ->numa_faults. 2554 */ 2555 void task_numa_free(struct task_struct *p, bool final) 2556 { 2557 /* safe: p either is current or is being freed by current */ 2558 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2559 unsigned long *numa_faults = p->numa_faults; 2560 unsigned long flags; 2561 int i; 2562 2563 if (!numa_faults) 2564 return; 2565 2566 if (grp) { 2567 spin_lock_irqsave(&grp->lock, flags); 2568 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2569 grp->faults[i] -= p->numa_faults[i]; 2570 grp->total_faults -= p->total_numa_faults; 2571 2572 grp->nr_tasks--; 2573 spin_unlock_irqrestore(&grp->lock, flags); 2574 RCU_INIT_POINTER(p->numa_group, NULL); 2575 put_numa_group(grp); 2576 } 2577 2578 if (final) { 2579 p->numa_faults = NULL; 2580 kfree(numa_faults); 2581 } else { 2582 p->total_numa_faults = 0; 2583 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2584 numa_faults[i] = 0; 2585 } 2586 } 2587 2588 /* 2589 * Got a PROT_NONE fault for a page on @node. 2590 */ 2591 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2592 { 2593 struct task_struct *p = current; 2594 bool migrated = flags & TNF_MIGRATED; 2595 int cpu_node = task_node(current); 2596 int local = !!(flags & TNF_FAULT_LOCAL); 2597 struct numa_group *ng; 2598 int priv; 2599 2600 if (!static_branch_likely(&sched_numa_balancing)) 2601 return; 2602 2603 /* for example, ksmd faulting in a user's mm */ 2604 if (!p->mm) 2605 return; 2606 2607 /* Allocate buffer to track faults on a per-node basis */ 2608 if (unlikely(!p->numa_faults)) { 2609 int size = sizeof(*p->numa_faults) * 2610 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2611 2612 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2613 if (!p->numa_faults) 2614 return; 2615 2616 p->total_numa_faults = 0; 2617 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2618 } 2619 2620 /* 2621 * First accesses are treated as private, otherwise consider accesses 2622 * to be private if the accessing pid has not changed 2623 */ 2624 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2625 priv = 1; 2626 } else { 2627 priv = cpupid_match_pid(p, last_cpupid); 2628 if (!priv && !(flags & TNF_NO_GROUP)) 2629 task_numa_group(p, last_cpupid, flags, &priv); 2630 } 2631 2632 /* 2633 * If a workload spans multiple NUMA nodes, a shared fault that 2634 * occurs wholly within the set of nodes that the workload is 2635 * actively using should be counted as local. This allows the 2636 * scan rate to slow down when a workload has settled down. 2637 */ 2638 ng = deref_curr_numa_group(p); 2639 if (!priv && !local && ng && ng->active_nodes > 1 && 2640 numa_is_active_node(cpu_node, ng) && 2641 numa_is_active_node(mem_node, ng)) 2642 local = 1; 2643 2644 /* 2645 * Retry to migrate task to preferred node periodically, in case it 2646 * previously failed, or the scheduler moved us. 2647 */ 2648 if (time_after(jiffies, p->numa_migrate_retry)) { 2649 task_numa_placement(p); 2650 numa_migrate_preferred(p); 2651 } 2652 2653 if (migrated) 2654 p->numa_pages_migrated += pages; 2655 if (flags & TNF_MIGRATE_FAIL) 2656 p->numa_faults_locality[2] += pages; 2657 2658 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2659 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2660 p->numa_faults_locality[local] += pages; 2661 } 2662 2663 static void reset_ptenuma_scan(struct task_struct *p) 2664 { 2665 /* 2666 * We only did a read acquisition of the mmap sem, so 2667 * p->mm->numa_scan_seq is written to without exclusive access 2668 * and the update is not guaranteed to be atomic. That's not 2669 * much of an issue though, since this is just used for 2670 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2671 * expensive, to avoid any form of compiler optimizations: 2672 */ 2673 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2674 p->mm->numa_scan_offset = 0; 2675 } 2676 2677 /* 2678 * The expensive part of numa migration is done from task_work context. 2679 * Triggered from task_tick_numa(). 2680 */ 2681 static void task_numa_work(struct callback_head *work) 2682 { 2683 unsigned long migrate, next_scan, now = jiffies; 2684 struct task_struct *p = current; 2685 struct mm_struct *mm = p->mm; 2686 u64 runtime = p->se.sum_exec_runtime; 2687 struct vm_area_struct *vma; 2688 unsigned long start, end; 2689 unsigned long nr_pte_updates = 0; 2690 long pages, virtpages; 2691 2692 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2693 2694 work->next = work; 2695 /* 2696 * Who cares about NUMA placement when they're dying. 2697 * 2698 * NOTE: make sure not to dereference p->mm before this check, 2699 * exit_task_work() happens _after_ exit_mm() so we could be called 2700 * without p->mm even though we still had it when we enqueued this 2701 * work. 2702 */ 2703 if (p->flags & PF_EXITING) 2704 return; 2705 2706 if (!mm->numa_next_scan) { 2707 mm->numa_next_scan = now + 2708 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2709 } 2710 2711 /* 2712 * Enforce maximal scan/migration frequency.. 2713 */ 2714 migrate = mm->numa_next_scan; 2715 if (time_before(now, migrate)) 2716 return; 2717 2718 if (p->numa_scan_period == 0) { 2719 p->numa_scan_period_max = task_scan_max(p); 2720 p->numa_scan_period = task_scan_start(p); 2721 } 2722 2723 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2724 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2725 return; 2726 2727 /* 2728 * Delay this task enough that another task of this mm will likely win 2729 * the next time around. 2730 */ 2731 p->node_stamp += 2 * TICK_NSEC; 2732 2733 start = mm->numa_scan_offset; 2734 pages = sysctl_numa_balancing_scan_size; 2735 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2736 virtpages = pages * 8; /* Scan up to this much virtual space */ 2737 if (!pages) 2738 return; 2739 2740 2741 if (!mmap_read_trylock(mm)) 2742 return; 2743 vma = find_vma(mm, start); 2744 if (!vma) { 2745 reset_ptenuma_scan(p); 2746 start = 0; 2747 vma = mm->mmap; 2748 } 2749 for (; vma; vma = vma->vm_next) { 2750 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2751 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2752 continue; 2753 } 2754 2755 /* 2756 * Shared library pages mapped by multiple processes are not 2757 * migrated as it is expected they are cache replicated. Avoid 2758 * hinting faults in read-only file-backed mappings or the vdso 2759 * as migrating the pages will be of marginal benefit. 2760 */ 2761 if (!vma->vm_mm || 2762 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2763 continue; 2764 2765 /* 2766 * Skip inaccessible VMAs to avoid any confusion between 2767 * PROT_NONE and NUMA hinting ptes 2768 */ 2769 if (!vma_is_accessible(vma)) 2770 continue; 2771 2772 do { 2773 start = max(start, vma->vm_start); 2774 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2775 end = min(end, vma->vm_end); 2776 nr_pte_updates = change_prot_numa(vma, start, end); 2777 2778 /* 2779 * Try to scan sysctl_numa_balancing_size worth of 2780 * hpages that have at least one present PTE that 2781 * is not already pte-numa. If the VMA contains 2782 * areas that are unused or already full of prot_numa 2783 * PTEs, scan up to virtpages, to skip through those 2784 * areas faster. 2785 */ 2786 if (nr_pte_updates) 2787 pages -= (end - start) >> PAGE_SHIFT; 2788 virtpages -= (end - start) >> PAGE_SHIFT; 2789 2790 start = end; 2791 if (pages <= 0 || virtpages <= 0) 2792 goto out; 2793 2794 cond_resched(); 2795 } while (end != vma->vm_end); 2796 } 2797 2798 out: 2799 /* 2800 * It is possible to reach the end of the VMA list but the last few 2801 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2802 * would find the !migratable VMA on the next scan but not reset the 2803 * scanner to the start so check it now. 2804 */ 2805 if (vma) 2806 mm->numa_scan_offset = start; 2807 else 2808 reset_ptenuma_scan(p); 2809 mmap_read_unlock(mm); 2810 2811 /* 2812 * Make sure tasks use at least 32x as much time to run other code 2813 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2814 * Usually update_task_scan_period slows down scanning enough; on an 2815 * overloaded system we need to limit overhead on a per task basis. 2816 */ 2817 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2818 u64 diff = p->se.sum_exec_runtime - runtime; 2819 p->node_stamp += 32 * diff; 2820 } 2821 } 2822 2823 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2824 { 2825 int mm_users = 0; 2826 struct mm_struct *mm = p->mm; 2827 2828 if (mm) { 2829 mm_users = atomic_read(&mm->mm_users); 2830 if (mm_users == 1) { 2831 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2832 mm->numa_scan_seq = 0; 2833 } 2834 } 2835 p->node_stamp = 0; 2836 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2837 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2838 /* Protect against double add, see task_tick_numa and task_numa_work */ 2839 p->numa_work.next = &p->numa_work; 2840 p->numa_faults = NULL; 2841 RCU_INIT_POINTER(p->numa_group, NULL); 2842 p->last_task_numa_placement = 0; 2843 p->last_sum_exec_runtime = 0; 2844 2845 init_task_work(&p->numa_work, task_numa_work); 2846 2847 /* New address space, reset the preferred nid */ 2848 if (!(clone_flags & CLONE_VM)) { 2849 p->numa_preferred_nid = NUMA_NO_NODE; 2850 return; 2851 } 2852 2853 /* 2854 * New thread, keep existing numa_preferred_nid which should be copied 2855 * already by arch_dup_task_struct but stagger when scans start. 2856 */ 2857 if (mm) { 2858 unsigned int delay; 2859 2860 delay = min_t(unsigned int, task_scan_max(current), 2861 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2862 delay += 2 * TICK_NSEC; 2863 p->node_stamp = delay; 2864 } 2865 } 2866 2867 /* 2868 * Drive the periodic memory faults.. 2869 */ 2870 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2871 { 2872 struct callback_head *work = &curr->numa_work; 2873 u64 period, now; 2874 2875 /* 2876 * We don't care about NUMA placement if we don't have memory. 2877 */ 2878 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2879 return; 2880 2881 /* 2882 * Using runtime rather than walltime has the dual advantage that 2883 * we (mostly) drive the selection from busy threads and that the 2884 * task needs to have done some actual work before we bother with 2885 * NUMA placement. 2886 */ 2887 now = curr->se.sum_exec_runtime; 2888 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2889 2890 if (now > curr->node_stamp + period) { 2891 if (!curr->node_stamp) 2892 curr->numa_scan_period = task_scan_start(curr); 2893 curr->node_stamp += period; 2894 2895 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2896 task_work_add(curr, work, TWA_RESUME); 2897 } 2898 } 2899 2900 static void update_scan_period(struct task_struct *p, int new_cpu) 2901 { 2902 int src_nid = cpu_to_node(task_cpu(p)); 2903 int dst_nid = cpu_to_node(new_cpu); 2904 2905 if (!static_branch_likely(&sched_numa_balancing)) 2906 return; 2907 2908 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2909 return; 2910 2911 if (src_nid == dst_nid) 2912 return; 2913 2914 /* 2915 * Allow resets if faults have been trapped before one scan 2916 * has completed. This is most likely due to a new task that 2917 * is pulled cross-node due to wakeups or load balancing. 2918 */ 2919 if (p->numa_scan_seq) { 2920 /* 2921 * Avoid scan adjustments if moving to the preferred 2922 * node or if the task was not previously running on 2923 * the preferred node. 2924 */ 2925 if (dst_nid == p->numa_preferred_nid || 2926 (p->numa_preferred_nid != NUMA_NO_NODE && 2927 src_nid != p->numa_preferred_nid)) 2928 return; 2929 } 2930 2931 p->numa_scan_period = task_scan_start(p); 2932 } 2933 2934 #else 2935 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2936 { 2937 } 2938 2939 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2940 { 2941 } 2942 2943 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2944 { 2945 } 2946 2947 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2948 { 2949 } 2950 2951 #endif /* CONFIG_NUMA_BALANCING */ 2952 2953 static void 2954 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2955 { 2956 update_load_add(&cfs_rq->load, se->load.weight); 2957 #ifdef CONFIG_SMP 2958 if (entity_is_task(se)) { 2959 struct rq *rq = rq_of(cfs_rq); 2960 2961 account_numa_enqueue(rq, task_of(se)); 2962 list_add(&se->group_node, &rq->cfs_tasks); 2963 } 2964 #endif 2965 cfs_rq->nr_running++; 2966 } 2967 2968 static void 2969 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2970 { 2971 update_load_sub(&cfs_rq->load, se->load.weight); 2972 #ifdef CONFIG_SMP 2973 if (entity_is_task(se)) { 2974 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2975 list_del_init(&se->group_node); 2976 } 2977 #endif 2978 cfs_rq->nr_running--; 2979 } 2980 2981 /* 2982 * Signed add and clamp on underflow. 2983 * 2984 * Explicitly do a load-store to ensure the intermediate value never hits 2985 * memory. This allows lockless observations without ever seeing the negative 2986 * values. 2987 */ 2988 #define add_positive(_ptr, _val) do { \ 2989 typeof(_ptr) ptr = (_ptr); \ 2990 typeof(_val) val = (_val); \ 2991 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2992 \ 2993 res = var + val; \ 2994 \ 2995 if (val < 0 && res > var) \ 2996 res = 0; \ 2997 \ 2998 WRITE_ONCE(*ptr, res); \ 2999 } while (0) 3000 3001 /* 3002 * Unsigned subtract and clamp on underflow. 3003 * 3004 * Explicitly do a load-store to ensure the intermediate value never hits 3005 * memory. This allows lockless observations without ever seeing the negative 3006 * values. 3007 */ 3008 #define sub_positive(_ptr, _val) do { \ 3009 typeof(_ptr) ptr = (_ptr); \ 3010 typeof(*ptr) val = (_val); \ 3011 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3012 res = var - val; \ 3013 if (res > var) \ 3014 res = 0; \ 3015 WRITE_ONCE(*ptr, res); \ 3016 } while (0) 3017 3018 /* 3019 * Remove and clamp on negative, from a local variable. 3020 * 3021 * A variant of sub_positive(), which does not use explicit load-store 3022 * and is thus optimized for local variable updates. 3023 */ 3024 #define lsub_positive(_ptr, _val) do { \ 3025 typeof(_ptr) ptr = (_ptr); \ 3026 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3027 } while (0) 3028 3029 #ifdef CONFIG_SMP 3030 static inline void 3031 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3032 { 3033 cfs_rq->avg.load_avg += se->avg.load_avg; 3034 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3035 } 3036 3037 static inline void 3038 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3039 { 3040 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3041 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3042 } 3043 #else 3044 static inline void 3045 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3046 static inline void 3047 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3048 #endif 3049 3050 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3051 unsigned long weight) 3052 { 3053 if (se->on_rq) { 3054 /* commit outstanding execution time */ 3055 if (cfs_rq->curr == se) 3056 update_curr(cfs_rq); 3057 update_load_sub(&cfs_rq->load, se->load.weight); 3058 } 3059 dequeue_load_avg(cfs_rq, se); 3060 3061 update_load_set(&se->load, weight); 3062 3063 #ifdef CONFIG_SMP 3064 do { 3065 u32 divider = get_pelt_divider(&se->avg); 3066 3067 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3068 } while (0); 3069 #endif 3070 3071 enqueue_load_avg(cfs_rq, se); 3072 if (se->on_rq) 3073 update_load_add(&cfs_rq->load, se->load.weight); 3074 3075 } 3076 3077 void reweight_task(struct task_struct *p, int prio) 3078 { 3079 struct sched_entity *se = &p->se; 3080 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3081 struct load_weight *load = &se->load; 3082 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3083 3084 reweight_entity(cfs_rq, se, weight); 3085 load->inv_weight = sched_prio_to_wmult[prio]; 3086 } 3087 3088 #ifdef CONFIG_FAIR_GROUP_SCHED 3089 #ifdef CONFIG_SMP 3090 /* 3091 * All this does is approximate the hierarchical proportion which includes that 3092 * global sum we all love to hate. 3093 * 3094 * That is, the weight of a group entity, is the proportional share of the 3095 * group weight based on the group runqueue weights. That is: 3096 * 3097 * tg->weight * grq->load.weight 3098 * ge->load.weight = ----------------------------- (1) 3099 * \Sum grq->load.weight 3100 * 3101 * Now, because computing that sum is prohibitively expensive to compute (been 3102 * there, done that) we approximate it with this average stuff. The average 3103 * moves slower and therefore the approximation is cheaper and more stable. 3104 * 3105 * So instead of the above, we substitute: 3106 * 3107 * grq->load.weight -> grq->avg.load_avg (2) 3108 * 3109 * which yields the following: 3110 * 3111 * tg->weight * grq->avg.load_avg 3112 * ge->load.weight = ------------------------------ (3) 3113 * tg->load_avg 3114 * 3115 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3116 * 3117 * That is shares_avg, and it is right (given the approximation (2)). 3118 * 3119 * The problem with it is that because the average is slow -- it was designed 3120 * to be exactly that of course -- this leads to transients in boundary 3121 * conditions. In specific, the case where the group was idle and we start the 3122 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3123 * yielding bad latency etc.. 3124 * 3125 * Now, in that special case (1) reduces to: 3126 * 3127 * tg->weight * grq->load.weight 3128 * ge->load.weight = ----------------------------- = tg->weight (4) 3129 * grp->load.weight 3130 * 3131 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3132 * 3133 * So what we do is modify our approximation (3) to approach (4) in the (near) 3134 * UP case, like: 3135 * 3136 * ge->load.weight = 3137 * 3138 * tg->weight * grq->load.weight 3139 * --------------------------------------------------- (5) 3140 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3141 * 3142 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3143 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3144 * 3145 * 3146 * tg->weight * grq->load.weight 3147 * ge->load.weight = ----------------------------- (6) 3148 * tg_load_avg' 3149 * 3150 * Where: 3151 * 3152 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3153 * max(grq->load.weight, grq->avg.load_avg) 3154 * 3155 * And that is shares_weight and is icky. In the (near) UP case it approaches 3156 * (4) while in the normal case it approaches (3). It consistently 3157 * overestimates the ge->load.weight and therefore: 3158 * 3159 * \Sum ge->load.weight >= tg->weight 3160 * 3161 * hence icky! 3162 */ 3163 static long calc_group_shares(struct cfs_rq *cfs_rq) 3164 { 3165 long tg_weight, tg_shares, load, shares; 3166 struct task_group *tg = cfs_rq->tg; 3167 3168 tg_shares = READ_ONCE(tg->shares); 3169 3170 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3171 3172 tg_weight = atomic_long_read(&tg->load_avg); 3173 3174 /* Ensure tg_weight >= load */ 3175 tg_weight -= cfs_rq->tg_load_avg_contrib; 3176 tg_weight += load; 3177 3178 shares = (tg_shares * load); 3179 if (tg_weight) 3180 shares /= tg_weight; 3181 3182 /* 3183 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3184 * of a group with small tg->shares value. It is a floor value which is 3185 * assigned as a minimum load.weight to the sched_entity representing 3186 * the group on a CPU. 3187 * 3188 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3189 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3190 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3191 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3192 * instead of 0. 3193 */ 3194 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3195 } 3196 #endif /* CONFIG_SMP */ 3197 3198 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3199 3200 /* 3201 * Recomputes the group entity based on the current state of its group 3202 * runqueue. 3203 */ 3204 static void update_cfs_group(struct sched_entity *se) 3205 { 3206 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3207 long shares; 3208 3209 if (!gcfs_rq) 3210 return; 3211 3212 if (throttled_hierarchy(gcfs_rq)) 3213 return; 3214 3215 #ifndef CONFIG_SMP 3216 shares = READ_ONCE(gcfs_rq->tg->shares); 3217 3218 if (likely(se->load.weight == shares)) 3219 return; 3220 #else 3221 shares = calc_group_shares(gcfs_rq); 3222 #endif 3223 3224 reweight_entity(cfs_rq_of(se), se, shares); 3225 } 3226 3227 #else /* CONFIG_FAIR_GROUP_SCHED */ 3228 static inline void update_cfs_group(struct sched_entity *se) 3229 { 3230 } 3231 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3232 3233 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3234 { 3235 struct rq *rq = rq_of(cfs_rq); 3236 3237 if (&rq->cfs == cfs_rq) { 3238 /* 3239 * There are a few boundary cases this might miss but it should 3240 * get called often enough that that should (hopefully) not be 3241 * a real problem. 3242 * 3243 * It will not get called when we go idle, because the idle 3244 * thread is a different class (!fair), nor will the utilization 3245 * number include things like RT tasks. 3246 * 3247 * As is, the util number is not freq-invariant (we'd have to 3248 * implement arch_scale_freq_capacity() for that). 3249 * 3250 * See cpu_util(). 3251 */ 3252 cpufreq_update_util(rq, flags); 3253 } 3254 } 3255 3256 #ifdef CONFIG_SMP 3257 #ifdef CONFIG_FAIR_GROUP_SCHED 3258 /* 3259 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3260 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3261 * bottom-up, we only have to test whether the cfs_rq before us on the list 3262 * is our child. 3263 * If cfs_rq is not on the list, test whether a child needs its to be added to 3264 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3265 */ 3266 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3267 { 3268 struct cfs_rq *prev_cfs_rq; 3269 struct list_head *prev; 3270 3271 if (cfs_rq->on_list) { 3272 prev = cfs_rq->leaf_cfs_rq_list.prev; 3273 } else { 3274 struct rq *rq = rq_of(cfs_rq); 3275 3276 prev = rq->tmp_alone_branch; 3277 } 3278 3279 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3280 3281 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3282 } 3283 3284 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3285 { 3286 if (cfs_rq->load.weight) 3287 return false; 3288 3289 if (cfs_rq->avg.load_sum) 3290 return false; 3291 3292 if (cfs_rq->avg.util_sum) 3293 return false; 3294 3295 if (cfs_rq->avg.runnable_sum) 3296 return false; 3297 3298 if (child_cfs_rq_on_list(cfs_rq)) 3299 return false; 3300 3301 /* 3302 * _avg must be null when _sum are null because _avg = _sum / divider 3303 * Make sure that rounding and/or propagation of PELT values never 3304 * break this. 3305 */ 3306 SCHED_WARN_ON(cfs_rq->avg.load_avg || 3307 cfs_rq->avg.util_avg || 3308 cfs_rq->avg.runnable_avg); 3309 3310 return true; 3311 } 3312 3313 /** 3314 * update_tg_load_avg - update the tg's load avg 3315 * @cfs_rq: the cfs_rq whose avg changed 3316 * 3317 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3318 * However, because tg->load_avg is a global value there are performance 3319 * considerations. 3320 * 3321 * In order to avoid having to look at the other cfs_rq's, we use a 3322 * differential update where we store the last value we propagated. This in 3323 * turn allows skipping updates if the differential is 'small'. 3324 * 3325 * Updating tg's load_avg is necessary before update_cfs_share(). 3326 */ 3327 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3328 { 3329 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3330 3331 /* 3332 * No need to update load_avg for root_task_group as it is not used. 3333 */ 3334 if (cfs_rq->tg == &root_task_group) 3335 return; 3336 3337 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3338 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3339 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3340 } 3341 } 3342 3343 /* 3344 * Called within set_task_rq() right before setting a task's CPU. The 3345 * caller only guarantees p->pi_lock is held; no other assumptions, 3346 * including the state of rq->lock, should be made. 3347 */ 3348 void set_task_rq_fair(struct sched_entity *se, 3349 struct cfs_rq *prev, struct cfs_rq *next) 3350 { 3351 u64 p_last_update_time; 3352 u64 n_last_update_time; 3353 3354 if (!sched_feat(ATTACH_AGE_LOAD)) 3355 return; 3356 3357 /* 3358 * We are supposed to update the task to "current" time, then its up to 3359 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3360 * getting what current time is, so simply throw away the out-of-date 3361 * time. This will result in the wakee task is less decayed, but giving 3362 * the wakee more load sounds not bad. 3363 */ 3364 if (!(se->avg.last_update_time && prev)) 3365 return; 3366 3367 #ifndef CONFIG_64BIT 3368 { 3369 u64 p_last_update_time_copy; 3370 u64 n_last_update_time_copy; 3371 3372 do { 3373 p_last_update_time_copy = prev->load_last_update_time_copy; 3374 n_last_update_time_copy = next->load_last_update_time_copy; 3375 3376 smp_rmb(); 3377 3378 p_last_update_time = prev->avg.last_update_time; 3379 n_last_update_time = next->avg.last_update_time; 3380 3381 } while (p_last_update_time != p_last_update_time_copy || 3382 n_last_update_time != n_last_update_time_copy); 3383 } 3384 #else 3385 p_last_update_time = prev->avg.last_update_time; 3386 n_last_update_time = next->avg.last_update_time; 3387 #endif 3388 __update_load_avg_blocked_se(p_last_update_time, se); 3389 se->avg.last_update_time = n_last_update_time; 3390 } 3391 3392 3393 /* 3394 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3395 * propagate its contribution. The key to this propagation is the invariant 3396 * that for each group: 3397 * 3398 * ge->avg == grq->avg (1) 3399 * 3400 * _IFF_ we look at the pure running and runnable sums. Because they 3401 * represent the very same entity, just at different points in the hierarchy. 3402 * 3403 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3404 * and simply copies the running/runnable sum over (but still wrong, because 3405 * the group entity and group rq do not have their PELT windows aligned). 3406 * 3407 * However, update_tg_cfs_load() is more complex. So we have: 3408 * 3409 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3410 * 3411 * And since, like util, the runnable part should be directly transferable, 3412 * the following would _appear_ to be the straight forward approach: 3413 * 3414 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3415 * 3416 * And per (1) we have: 3417 * 3418 * ge->avg.runnable_avg == grq->avg.runnable_avg 3419 * 3420 * Which gives: 3421 * 3422 * ge->load.weight * grq->avg.load_avg 3423 * ge->avg.load_avg = ----------------------------------- (4) 3424 * grq->load.weight 3425 * 3426 * Except that is wrong! 3427 * 3428 * Because while for entities historical weight is not important and we 3429 * really only care about our future and therefore can consider a pure 3430 * runnable sum, runqueues can NOT do this. 3431 * 3432 * We specifically want runqueues to have a load_avg that includes 3433 * historical weights. Those represent the blocked load, the load we expect 3434 * to (shortly) return to us. This only works by keeping the weights as 3435 * integral part of the sum. We therefore cannot decompose as per (3). 3436 * 3437 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3438 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3439 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3440 * runnable section of these tasks overlap (or not). If they were to perfectly 3441 * align the rq as a whole would be runnable 2/3 of the time. If however we 3442 * always have at least 1 runnable task, the rq as a whole is always runnable. 3443 * 3444 * So we'll have to approximate.. :/ 3445 * 3446 * Given the constraint: 3447 * 3448 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3449 * 3450 * We can construct a rule that adds runnable to a rq by assuming minimal 3451 * overlap. 3452 * 3453 * On removal, we'll assume each task is equally runnable; which yields: 3454 * 3455 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3456 * 3457 * XXX: only do this for the part of runnable > running ? 3458 * 3459 */ 3460 3461 static inline void 3462 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3463 { 3464 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3465 u32 divider; 3466 3467 /* Nothing to update */ 3468 if (!delta) 3469 return; 3470 3471 /* 3472 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3473 * See ___update_load_avg() for details. 3474 */ 3475 divider = get_pelt_divider(&cfs_rq->avg); 3476 3477 /* Set new sched_entity's utilization */ 3478 se->avg.util_avg = gcfs_rq->avg.util_avg; 3479 se->avg.util_sum = se->avg.util_avg * divider; 3480 3481 /* Update parent cfs_rq utilization */ 3482 add_positive(&cfs_rq->avg.util_avg, delta); 3483 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3484 } 3485 3486 static inline void 3487 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3488 { 3489 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3490 u32 divider; 3491 3492 /* Nothing to update */ 3493 if (!delta) 3494 return; 3495 3496 /* 3497 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3498 * See ___update_load_avg() for details. 3499 */ 3500 divider = get_pelt_divider(&cfs_rq->avg); 3501 3502 /* Set new sched_entity's runnable */ 3503 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3504 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3505 3506 /* Update parent cfs_rq runnable */ 3507 add_positive(&cfs_rq->avg.runnable_avg, delta); 3508 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3509 } 3510 3511 static inline void 3512 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3513 { 3514 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3515 unsigned long load_avg; 3516 u64 load_sum = 0; 3517 u32 divider; 3518 3519 if (!runnable_sum) 3520 return; 3521 3522 gcfs_rq->prop_runnable_sum = 0; 3523 3524 /* 3525 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3526 * See ___update_load_avg() for details. 3527 */ 3528 divider = get_pelt_divider(&cfs_rq->avg); 3529 3530 if (runnable_sum >= 0) { 3531 /* 3532 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3533 * the CPU is saturated running == runnable. 3534 */ 3535 runnable_sum += se->avg.load_sum; 3536 runnable_sum = min_t(long, runnable_sum, divider); 3537 } else { 3538 /* 3539 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3540 * assuming all tasks are equally runnable. 3541 */ 3542 if (scale_load_down(gcfs_rq->load.weight)) { 3543 load_sum = div_s64(gcfs_rq->avg.load_sum, 3544 scale_load_down(gcfs_rq->load.weight)); 3545 } 3546 3547 /* But make sure to not inflate se's runnable */ 3548 runnable_sum = min(se->avg.load_sum, load_sum); 3549 } 3550 3551 /* 3552 * runnable_sum can't be lower than running_sum 3553 * Rescale running sum to be in the same range as runnable sum 3554 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3555 * runnable_sum is in [0 : LOAD_AVG_MAX] 3556 */ 3557 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3558 runnable_sum = max(runnable_sum, running_sum); 3559 3560 load_sum = (s64)se_weight(se) * runnable_sum; 3561 load_avg = div_s64(load_sum, divider); 3562 3563 se->avg.load_sum = runnable_sum; 3564 3565 delta = load_avg - se->avg.load_avg; 3566 if (!delta) 3567 return; 3568 3569 se->avg.load_avg = load_avg; 3570 3571 add_positive(&cfs_rq->avg.load_avg, delta); 3572 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider; 3573 } 3574 3575 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3576 { 3577 cfs_rq->propagate = 1; 3578 cfs_rq->prop_runnable_sum += runnable_sum; 3579 } 3580 3581 /* Update task and its cfs_rq load average */ 3582 static inline int propagate_entity_load_avg(struct sched_entity *se) 3583 { 3584 struct cfs_rq *cfs_rq, *gcfs_rq; 3585 3586 if (entity_is_task(se)) 3587 return 0; 3588 3589 gcfs_rq = group_cfs_rq(se); 3590 if (!gcfs_rq->propagate) 3591 return 0; 3592 3593 gcfs_rq->propagate = 0; 3594 3595 cfs_rq = cfs_rq_of(se); 3596 3597 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3598 3599 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3600 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3601 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3602 3603 trace_pelt_cfs_tp(cfs_rq); 3604 trace_pelt_se_tp(se); 3605 3606 return 1; 3607 } 3608 3609 /* 3610 * Check if we need to update the load and the utilization of a blocked 3611 * group_entity: 3612 */ 3613 static inline bool skip_blocked_update(struct sched_entity *se) 3614 { 3615 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3616 3617 /* 3618 * If sched_entity still have not zero load or utilization, we have to 3619 * decay it: 3620 */ 3621 if (se->avg.load_avg || se->avg.util_avg) 3622 return false; 3623 3624 /* 3625 * If there is a pending propagation, we have to update the load and 3626 * the utilization of the sched_entity: 3627 */ 3628 if (gcfs_rq->propagate) 3629 return false; 3630 3631 /* 3632 * Otherwise, the load and the utilization of the sched_entity is 3633 * already zero and there is no pending propagation, so it will be a 3634 * waste of time to try to decay it: 3635 */ 3636 return true; 3637 } 3638 3639 #else /* CONFIG_FAIR_GROUP_SCHED */ 3640 3641 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3642 3643 static inline int propagate_entity_load_avg(struct sched_entity *se) 3644 { 3645 return 0; 3646 } 3647 3648 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3649 3650 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3651 3652 /** 3653 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3654 * @now: current time, as per cfs_rq_clock_pelt() 3655 * @cfs_rq: cfs_rq to update 3656 * 3657 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3658 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3659 * post_init_entity_util_avg(). 3660 * 3661 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3662 * 3663 * Returns true if the load decayed or we removed load. 3664 * 3665 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3666 * call update_tg_load_avg() when this function returns true. 3667 */ 3668 static inline int 3669 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3670 { 3671 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3672 struct sched_avg *sa = &cfs_rq->avg; 3673 int decayed = 0; 3674 3675 if (cfs_rq->removed.nr) { 3676 unsigned long r; 3677 u32 divider = get_pelt_divider(&cfs_rq->avg); 3678 3679 raw_spin_lock(&cfs_rq->removed.lock); 3680 swap(cfs_rq->removed.util_avg, removed_util); 3681 swap(cfs_rq->removed.load_avg, removed_load); 3682 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3683 cfs_rq->removed.nr = 0; 3684 raw_spin_unlock(&cfs_rq->removed.lock); 3685 3686 r = removed_load; 3687 sub_positive(&sa->load_avg, r); 3688 sa->load_sum = sa->load_avg * divider; 3689 3690 r = removed_util; 3691 sub_positive(&sa->util_avg, r); 3692 sa->util_sum = sa->util_avg * divider; 3693 3694 r = removed_runnable; 3695 sub_positive(&sa->runnable_avg, r); 3696 sa->runnable_sum = sa->runnable_avg * divider; 3697 3698 /* 3699 * removed_runnable is the unweighted version of removed_load so we 3700 * can use it to estimate removed_load_sum. 3701 */ 3702 add_tg_cfs_propagate(cfs_rq, 3703 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3704 3705 decayed = 1; 3706 } 3707 3708 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3709 3710 #ifndef CONFIG_64BIT 3711 smp_wmb(); 3712 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3713 #endif 3714 3715 return decayed; 3716 } 3717 3718 /** 3719 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3720 * @cfs_rq: cfs_rq to attach to 3721 * @se: sched_entity to attach 3722 * 3723 * Must call update_cfs_rq_load_avg() before this, since we rely on 3724 * cfs_rq->avg.last_update_time being current. 3725 */ 3726 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3727 { 3728 /* 3729 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3730 * See ___update_load_avg() for details. 3731 */ 3732 u32 divider = get_pelt_divider(&cfs_rq->avg); 3733 3734 /* 3735 * When we attach the @se to the @cfs_rq, we must align the decay 3736 * window because without that, really weird and wonderful things can 3737 * happen. 3738 * 3739 * XXX illustrate 3740 */ 3741 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3742 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3743 3744 /* 3745 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3746 * period_contrib. This isn't strictly correct, but since we're 3747 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3748 * _sum a little. 3749 */ 3750 se->avg.util_sum = se->avg.util_avg * divider; 3751 3752 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3753 3754 se->avg.load_sum = divider; 3755 if (se_weight(se)) { 3756 se->avg.load_sum = 3757 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3758 } 3759 3760 enqueue_load_avg(cfs_rq, se); 3761 cfs_rq->avg.util_avg += se->avg.util_avg; 3762 cfs_rq->avg.util_sum += se->avg.util_sum; 3763 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3764 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3765 3766 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3767 3768 cfs_rq_util_change(cfs_rq, 0); 3769 3770 trace_pelt_cfs_tp(cfs_rq); 3771 } 3772 3773 /** 3774 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3775 * @cfs_rq: cfs_rq to detach from 3776 * @se: sched_entity to detach 3777 * 3778 * Must call update_cfs_rq_load_avg() before this, since we rely on 3779 * cfs_rq->avg.last_update_time being current. 3780 */ 3781 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3782 { 3783 /* 3784 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3785 * See ___update_load_avg() for details. 3786 */ 3787 u32 divider = get_pelt_divider(&cfs_rq->avg); 3788 3789 dequeue_load_avg(cfs_rq, se); 3790 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3791 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; 3792 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3793 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; 3794 3795 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3796 3797 cfs_rq_util_change(cfs_rq, 0); 3798 3799 trace_pelt_cfs_tp(cfs_rq); 3800 } 3801 3802 /* 3803 * Optional action to be done while updating the load average 3804 */ 3805 #define UPDATE_TG 0x1 3806 #define SKIP_AGE_LOAD 0x2 3807 #define DO_ATTACH 0x4 3808 3809 /* Update task and its cfs_rq load average */ 3810 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3811 { 3812 u64 now = cfs_rq_clock_pelt(cfs_rq); 3813 int decayed; 3814 3815 /* 3816 * Track task load average for carrying it to new CPU after migrated, and 3817 * track group sched_entity load average for task_h_load calc in migration 3818 */ 3819 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3820 __update_load_avg_se(now, cfs_rq, se); 3821 3822 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3823 decayed |= propagate_entity_load_avg(se); 3824 3825 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3826 3827 /* 3828 * DO_ATTACH means we're here from enqueue_entity(). 3829 * !last_update_time means we've passed through 3830 * migrate_task_rq_fair() indicating we migrated. 3831 * 3832 * IOW we're enqueueing a task on a new CPU. 3833 */ 3834 attach_entity_load_avg(cfs_rq, se); 3835 update_tg_load_avg(cfs_rq); 3836 3837 } else if (decayed) { 3838 cfs_rq_util_change(cfs_rq, 0); 3839 3840 if (flags & UPDATE_TG) 3841 update_tg_load_avg(cfs_rq); 3842 } 3843 } 3844 3845 #ifndef CONFIG_64BIT 3846 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3847 { 3848 u64 last_update_time_copy; 3849 u64 last_update_time; 3850 3851 do { 3852 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3853 smp_rmb(); 3854 last_update_time = cfs_rq->avg.last_update_time; 3855 } while (last_update_time != last_update_time_copy); 3856 3857 return last_update_time; 3858 } 3859 #else 3860 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3861 { 3862 return cfs_rq->avg.last_update_time; 3863 } 3864 #endif 3865 3866 /* 3867 * Synchronize entity load avg of dequeued entity without locking 3868 * the previous rq. 3869 */ 3870 static void sync_entity_load_avg(struct sched_entity *se) 3871 { 3872 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3873 u64 last_update_time; 3874 3875 last_update_time = cfs_rq_last_update_time(cfs_rq); 3876 __update_load_avg_blocked_se(last_update_time, se); 3877 } 3878 3879 /* 3880 * Task first catches up with cfs_rq, and then subtract 3881 * itself from the cfs_rq (task must be off the queue now). 3882 */ 3883 static void remove_entity_load_avg(struct sched_entity *se) 3884 { 3885 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3886 unsigned long flags; 3887 3888 /* 3889 * tasks cannot exit without having gone through wake_up_new_task() -> 3890 * post_init_entity_util_avg() which will have added things to the 3891 * cfs_rq, so we can remove unconditionally. 3892 */ 3893 3894 sync_entity_load_avg(se); 3895 3896 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3897 ++cfs_rq->removed.nr; 3898 cfs_rq->removed.util_avg += se->avg.util_avg; 3899 cfs_rq->removed.load_avg += se->avg.load_avg; 3900 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 3901 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3902 } 3903 3904 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 3905 { 3906 return cfs_rq->avg.runnable_avg; 3907 } 3908 3909 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3910 { 3911 return cfs_rq->avg.load_avg; 3912 } 3913 3914 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 3915 3916 static inline unsigned long task_util(struct task_struct *p) 3917 { 3918 return READ_ONCE(p->se.avg.util_avg); 3919 } 3920 3921 static inline unsigned long _task_util_est(struct task_struct *p) 3922 { 3923 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3924 3925 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 3926 } 3927 3928 static inline unsigned long task_util_est(struct task_struct *p) 3929 { 3930 return max(task_util(p), _task_util_est(p)); 3931 } 3932 3933 #ifdef CONFIG_UCLAMP_TASK 3934 static inline unsigned long uclamp_task_util(struct task_struct *p) 3935 { 3936 return clamp(task_util_est(p), 3937 uclamp_eff_value(p, UCLAMP_MIN), 3938 uclamp_eff_value(p, UCLAMP_MAX)); 3939 } 3940 #else 3941 static inline unsigned long uclamp_task_util(struct task_struct *p) 3942 { 3943 return task_util_est(p); 3944 } 3945 #endif 3946 3947 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3948 struct task_struct *p) 3949 { 3950 unsigned int enqueued; 3951 3952 if (!sched_feat(UTIL_EST)) 3953 return; 3954 3955 /* Update root cfs_rq's estimated utilization */ 3956 enqueued = cfs_rq->avg.util_est.enqueued; 3957 enqueued += _task_util_est(p); 3958 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3959 3960 trace_sched_util_est_cfs_tp(cfs_rq); 3961 } 3962 3963 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 3964 struct task_struct *p) 3965 { 3966 unsigned int enqueued; 3967 3968 if (!sched_feat(UTIL_EST)) 3969 return; 3970 3971 /* Update root cfs_rq's estimated utilization */ 3972 enqueued = cfs_rq->avg.util_est.enqueued; 3973 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 3974 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3975 3976 trace_sched_util_est_cfs_tp(cfs_rq); 3977 } 3978 3979 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 3980 3981 /* 3982 * Check if a (signed) value is within a specified (unsigned) margin, 3983 * based on the observation that: 3984 * 3985 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3986 * 3987 * NOTE: this only works when value + margin < INT_MAX. 3988 */ 3989 static inline bool within_margin(int value, int margin) 3990 { 3991 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3992 } 3993 3994 static inline void util_est_update(struct cfs_rq *cfs_rq, 3995 struct task_struct *p, 3996 bool task_sleep) 3997 { 3998 long last_ewma_diff, last_enqueued_diff; 3999 struct util_est ue; 4000 4001 if (!sched_feat(UTIL_EST)) 4002 return; 4003 4004 /* 4005 * Skip update of task's estimated utilization when the task has not 4006 * yet completed an activation, e.g. being migrated. 4007 */ 4008 if (!task_sleep) 4009 return; 4010 4011 /* 4012 * If the PELT values haven't changed since enqueue time, 4013 * skip the util_est update. 4014 */ 4015 ue = p->se.avg.util_est; 4016 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4017 return; 4018 4019 last_enqueued_diff = ue.enqueued; 4020 4021 /* 4022 * Reset EWMA on utilization increases, the moving average is used only 4023 * to smooth utilization decreases. 4024 */ 4025 ue.enqueued = task_util(p); 4026 if (sched_feat(UTIL_EST_FASTUP)) { 4027 if (ue.ewma < ue.enqueued) { 4028 ue.ewma = ue.enqueued; 4029 goto done; 4030 } 4031 } 4032 4033 /* 4034 * Skip update of task's estimated utilization when its members are 4035 * already ~1% close to its last activation value. 4036 */ 4037 last_ewma_diff = ue.enqueued - ue.ewma; 4038 last_enqueued_diff -= ue.enqueued; 4039 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4040 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4041 goto done; 4042 4043 return; 4044 } 4045 4046 /* 4047 * To avoid overestimation of actual task utilization, skip updates if 4048 * we cannot grant there is idle time in this CPU. 4049 */ 4050 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4051 return; 4052 4053 /* 4054 * Update Task's estimated utilization 4055 * 4056 * When *p completes an activation we can consolidate another sample 4057 * of the task size. This is done by storing the current PELT value 4058 * as ue.enqueued and by using this value to update the Exponential 4059 * Weighted Moving Average (EWMA): 4060 * 4061 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4062 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4063 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4064 * = w * ( last_ewma_diff ) + ewma(t-1) 4065 * = w * (last_ewma_diff + ewma(t-1) / w) 4066 * 4067 * Where 'w' is the weight of new samples, which is configured to be 4068 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4069 */ 4070 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4071 ue.ewma += last_ewma_diff; 4072 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4073 done: 4074 ue.enqueued |= UTIL_AVG_UNCHANGED; 4075 WRITE_ONCE(p->se.avg.util_est, ue); 4076 4077 trace_sched_util_est_se_tp(&p->se); 4078 } 4079 4080 static inline int task_fits_capacity(struct task_struct *p, long capacity) 4081 { 4082 return fits_capacity(uclamp_task_util(p), capacity); 4083 } 4084 4085 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4086 { 4087 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4088 return; 4089 4090 if (!p || p->nr_cpus_allowed == 1) { 4091 rq->misfit_task_load = 0; 4092 return; 4093 } 4094 4095 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4096 rq->misfit_task_load = 0; 4097 return; 4098 } 4099 4100 /* 4101 * Make sure that misfit_task_load will not be null even if 4102 * task_h_load() returns 0. 4103 */ 4104 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4105 } 4106 4107 #else /* CONFIG_SMP */ 4108 4109 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4110 { 4111 return true; 4112 } 4113 4114 #define UPDATE_TG 0x0 4115 #define SKIP_AGE_LOAD 0x0 4116 #define DO_ATTACH 0x0 4117 4118 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4119 { 4120 cfs_rq_util_change(cfs_rq, 0); 4121 } 4122 4123 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4124 4125 static inline void 4126 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4127 static inline void 4128 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4129 4130 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4131 { 4132 return 0; 4133 } 4134 4135 static inline void 4136 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4137 4138 static inline void 4139 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4140 4141 static inline void 4142 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4143 bool task_sleep) {} 4144 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4145 4146 #endif /* CONFIG_SMP */ 4147 4148 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4149 { 4150 #ifdef CONFIG_SCHED_DEBUG 4151 s64 d = se->vruntime - cfs_rq->min_vruntime; 4152 4153 if (d < 0) 4154 d = -d; 4155 4156 if (d > 3*sysctl_sched_latency) 4157 schedstat_inc(cfs_rq->nr_spread_over); 4158 #endif 4159 } 4160 4161 static void 4162 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4163 { 4164 u64 vruntime = cfs_rq->min_vruntime; 4165 4166 /* 4167 * The 'current' period is already promised to the current tasks, 4168 * however the extra weight of the new task will slow them down a 4169 * little, place the new task so that it fits in the slot that 4170 * stays open at the end. 4171 */ 4172 if (initial && sched_feat(START_DEBIT)) 4173 vruntime += sched_vslice(cfs_rq, se); 4174 4175 /* sleeps up to a single latency don't count. */ 4176 if (!initial) { 4177 unsigned long thresh = sysctl_sched_latency; 4178 4179 /* 4180 * Halve their sleep time's effect, to allow 4181 * for a gentler effect of sleepers: 4182 */ 4183 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4184 thresh >>= 1; 4185 4186 vruntime -= thresh; 4187 } 4188 4189 /* ensure we never gain time by being placed backwards. */ 4190 se->vruntime = max_vruntime(se->vruntime, vruntime); 4191 } 4192 4193 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4194 4195 static inline void check_schedstat_required(void) 4196 { 4197 #ifdef CONFIG_SCHEDSTATS 4198 if (schedstat_enabled()) 4199 return; 4200 4201 /* Force schedstat enabled if a dependent tracepoint is active */ 4202 if (trace_sched_stat_wait_enabled() || 4203 trace_sched_stat_sleep_enabled() || 4204 trace_sched_stat_iowait_enabled() || 4205 trace_sched_stat_blocked_enabled() || 4206 trace_sched_stat_runtime_enabled()) { 4207 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 4208 "stat_blocked and stat_runtime require the " 4209 "kernel parameter schedstats=enable or " 4210 "kernel.sched_schedstats=1\n"); 4211 } 4212 #endif 4213 } 4214 4215 static inline bool cfs_bandwidth_used(void); 4216 4217 /* 4218 * MIGRATION 4219 * 4220 * dequeue 4221 * update_curr() 4222 * update_min_vruntime() 4223 * vruntime -= min_vruntime 4224 * 4225 * enqueue 4226 * update_curr() 4227 * update_min_vruntime() 4228 * vruntime += min_vruntime 4229 * 4230 * this way the vruntime transition between RQs is done when both 4231 * min_vruntime are up-to-date. 4232 * 4233 * WAKEUP (remote) 4234 * 4235 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4236 * vruntime -= min_vruntime 4237 * 4238 * enqueue 4239 * update_curr() 4240 * update_min_vruntime() 4241 * vruntime += min_vruntime 4242 * 4243 * this way we don't have the most up-to-date min_vruntime on the originating 4244 * CPU and an up-to-date min_vruntime on the destination CPU. 4245 */ 4246 4247 static void 4248 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4249 { 4250 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4251 bool curr = cfs_rq->curr == se; 4252 4253 /* 4254 * If we're the current task, we must renormalise before calling 4255 * update_curr(). 4256 */ 4257 if (renorm && curr) 4258 se->vruntime += cfs_rq->min_vruntime; 4259 4260 update_curr(cfs_rq); 4261 4262 /* 4263 * Otherwise, renormalise after, such that we're placed at the current 4264 * moment in time, instead of some random moment in the past. Being 4265 * placed in the past could significantly boost this task to the 4266 * fairness detriment of existing tasks. 4267 */ 4268 if (renorm && !curr) 4269 se->vruntime += cfs_rq->min_vruntime; 4270 4271 /* 4272 * When enqueuing a sched_entity, we must: 4273 * - Update loads to have both entity and cfs_rq synced with now. 4274 * - Add its load to cfs_rq->runnable_avg 4275 * - For group_entity, update its weight to reflect the new share of 4276 * its group cfs_rq 4277 * - Add its new weight to cfs_rq->load.weight 4278 */ 4279 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4280 se_update_runnable(se); 4281 update_cfs_group(se); 4282 account_entity_enqueue(cfs_rq, se); 4283 4284 if (flags & ENQUEUE_WAKEUP) 4285 place_entity(cfs_rq, se, 0); 4286 4287 check_schedstat_required(); 4288 update_stats_enqueue(cfs_rq, se, flags); 4289 check_spread(cfs_rq, se); 4290 if (!curr) 4291 __enqueue_entity(cfs_rq, se); 4292 se->on_rq = 1; 4293 4294 /* 4295 * When bandwidth control is enabled, cfs might have been removed 4296 * because of a parent been throttled but cfs->nr_running > 1. Try to 4297 * add it unconditionally. 4298 */ 4299 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) 4300 list_add_leaf_cfs_rq(cfs_rq); 4301 4302 if (cfs_rq->nr_running == 1) 4303 check_enqueue_throttle(cfs_rq); 4304 } 4305 4306 static void __clear_buddies_last(struct sched_entity *se) 4307 { 4308 for_each_sched_entity(se) { 4309 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4310 if (cfs_rq->last != se) 4311 break; 4312 4313 cfs_rq->last = NULL; 4314 } 4315 } 4316 4317 static void __clear_buddies_next(struct sched_entity *se) 4318 { 4319 for_each_sched_entity(se) { 4320 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4321 if (cfs_rq->next != se) 4322 break; 4323 4324 cfs_rq->next = NULL; 4325 } 4326 } 4327 4328 static void __clear_buddies_skip(struct sched_entity *se) 4329 { 4330 for_each_sched_entity(se) { 4331 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4332 if (cfs_rq->skip != se) 4333 break; 4334 4335 cfs_rq->skip = NULL; 4336 } 4337 } 4338 4339 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4340 { 4341 if (cfs_rq->last == se) 4342 __clear_buddies_last(se); 4343 4344 if (cfs_rq->next == se) 4345 __clear_buddies_next(se); 4346 4347 if (cfs_rq->skip == se) 4348 __clear_buddies_skip(se); 4349 } 4350 4351 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4352 4353 static void 4354 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4355 { 4356 /* 4357 * Update run-time statistics of the 'current'. 4358 */ 4359 update_curr(cfs_rq); 4360 4361 /* 4362 * When dequeuing a sched_entity, we must: 4363 * - Update loads to have both entity and cfs_rq synced with now. 4364 * - Subtract its load from the cfs_rq->runnable_avg. 4365 * - Subtract its previous weight from cfs_rq->load.weight. 4366 * - For group entity, update its weight to reflect the new share 4367 * of its group cfs_rq. 4368 */ 4369 update_load_avg(cfs_rq, se, UPDATE_TG); 4370 se_update_runnable(se); 4371 4372 update_stats_dequeue(cfs_rq, se, flags); 4373 4374 clear_buddies(cfs_rq, se); 4375 4376 if (se != cfs_rq->curr) 4377 __dequeue_entity(cfs_rq, se); 4378 se->on_rq = 0; 4379 account_entity_dequeue(cfs_rq, se); 4380 4381 /* 4382 * Normalize after update_curr(); which will also have moved 4383 * min_vruntime if @se is the one holding it back. But before doing 4384 * update_min_vruntime() again, which will discount @se's position and 4385 * can move min_vruntime forward still more. 4386 */ 4387 if (!(flags & DEQUEUE_SLEEP)) 4388 se->vruntime -= cfs_rq->min_vruntime; 4389 4390 /* return excess runtime on last dequeue */ 4391 return_cfs_rq_runtime(cfs_rq); 4392 4393 update_cfs_group(se); 4394 4395 /* 4396 * Now advance min_vruntime if @se was the entity holding it back, 4397 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4398 * put back on, and if we advance min_vruntime, we'll be placed back 4399 * further than we started -- ie. we'll be penalized. 4400 */ 4401 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4402 update_min_vruntime(cfs_rq); 4403 } 4404 4405 /* 4406 * Preempt the current task with a newly woken task if needed: 4407 */ 4408 static void 4409 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4410 { 4411 unsigned long ideal_runtime, delta_exec; 4412 struct sched_entity *se; 4413 s64 delta; 4414 4415 ideal_runtime = sched_slice(cfs_rq, curr); 4416 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4417 if (delta_exec > ideal_runtime) { 4418 resched_curr(rq_of(cfs_rq)); 4419 /* 4420 * The current task ran long enough, ensure it doesn't get 4421 * re-elected due to buddy favours. 4422 */ 4423 clear_buddies(cfs_rq, curr); 4424 return; 4425 } 4426 4427 /* 4428 * Ensure that a task that missed wakeup preemption by a 4429 * narrow margin doesn't have to wait for a full slice. 4430 * This also mitigates buddy induced latencies under load. 4431 */ 4432 if (delta_exec < sysctl_sched_min_granularity) 4433 return; 4434 4435 se = __pick_first_entity(cfs_rq); 4436 delta = curr->vruntime - se->vruntime; 4437 4438 if (delta < 0) 4439 return; 4440 4441 if (delta > ideal_runtime) 4442 resched_curr(rq_of(cfs_rq)); 4443 } 4444 4445 static void 4446 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4447 { 4448 clear_buddies(cfs_rq, se); 4449 4450 /* 'current' is not kept within the tree. */ 4451 if (se->on_rq) { 4452 /* 4453 * Any task has to be enqueued before it get to execute on 4454 * a CPU. So account for the time it spent waiting on the 4455 * runqueue. 4456 */ 4457 update_stats_wait_end(cfs_rq, se); 4458 __dequeue_entity(cfs_rq, se); 4459 update_load_avg(cfs_rq, se, UPDATE_TG); 4460 } 4461 4462 update_stats_curr_start(cfs_rq, se); 4463 cfs_rq->curr = se; 4464 4465 /* 4466 * Track our maximum slice length, if the CPU's load is at 4467 * least twice that of our own weight (i.e. dont track it 4468 * when there are only lesser-weight tasks around): 4469 */ 4470 if (schedstat_enabled() && 4471 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4472 schedstat_set(se->statistics.slice_max, 4473 max((u64)schedstat_val(se->statistics.slice_max), 4474 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4475 } 4476 4477 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4478 } 4479 4480 static int 4481 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4482 4483 /* 4484 * Pick the next process, keeping these things in mind, in this order: 4485 * 1) keep things fair between processes/task groups 4486 * 2) pick the "next" process, since someone really wants that to run 4487 * 3) pick the "last" process, for cache locality 4488 * 4) do not run the "skip" process, if something else is available 4489 */ 4490 static struct sched_entity * 4491 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4492 { 4493 struct sched_entity *left = __pick_first_entity(cfs_rq); 4494 struct sched_entity *se; 4495 4496 /* 4497 * If curr is set we have to see if its left of the leftmost entity 4498 * still in the tree, provided there was anything in the tree at all. 4499 */ 4500 if (!left || (curr && entity_before(curr, left))) 4501 left = curr; 4502 4503 se = left; /* ideally we run the leftmost entity */ 4504 4505 /* 4506 * Avoid running the skip buddy, if running something else can 4507 * be done without getting too unfair. 4508 */ 4509 if (cfs_rq->skip && cfs_rq->skip == se) { 4510 struct sched_entity *second; 4511 4512 if (se == curr) { 4513 second = __pick_first_entity(cfs_rq); 4514 } else { 4515 second = __pick_next_entity(se); 4516 if (!second || (curr && entity_before(curr, second))) 4517 second = curr; 4518 } 4519 4520 if (second && wakeup_preempt_entity(second, left) < 1) 4521 se = second; 4522 } 4523 4524 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 4525 /* 4526 * Someone really wants this to run. If it's not unfair, run it. 4527 */ 4528 se = cfs_rq->next; 4529 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 4530 /* 4531 * Prefer last buddy, try to return the CPU to a preempted task. 4532 */ 4533 se = cfs_rq->last; 4534 } 4535 4536 return se; 4537 } 4538 4539 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4540 4541 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4542 { 4543 /* 4544 * If still on the runqueue then deactivate_task() 4545 * was not called and update_curr() has to be done: 4546 */ 4547 if (prev->on_rq) 4548 update_curr(cfs_rq); 4549 4550 /* throttle cfs_rqs exceeding runtime */ 4551 check_cfs_rq_runtime(cfs_rq); 4552 4553 check_spread(cfs_rq, prev); 4554 4555 if (prev->on_rq) { 4556 update_stats_wait_start(cfs_rq, prev); 4557 /* Put 'current' back into the tree. */ 4558 __enqueue_entity(cfs_rq, prev); 4559 /* in !on_rq case, update occurred at dequeue */ 4560 update_load_avg(cfs_rq, prev, 0); 4561 } 4562 cfs_rq->curr = NULL; 4563 } 4564 4565 static void 4566 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4567 { 4568 /* 4569 * Update run-time statistics of the 'current'. 4570 */ 4571 update_curr(cfs_rq); 4572 4573 /* 4574 * Ensure that runnable average is periodically updated. 4575 */ 4576 update_load_avg(cfs_rq, curr, UPDATE_TG); 4577 update_cfs_group(curr); 4578 4579 #ifdef CONFIG_SCHED_HRTICK 4580 /* 4581 * queued ticks are scheduled to match the slice, so don't bother 4582 * validating it and just reschedule. 4583 */ 4584 if (queued) { 4585 resched_curr(rq_of(cfs_rq)); 4586 return; 4587 } 4588 /* 4589 * don't let the period tick interfere with the hrtick preemption 4590 */ 4591 if (!sched_feat(DOUBLE_TICK) && 4592 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4593 return; 4594 #endif 4595 4596 if (cfs_rq->nr_running > 1) 4597 check_preempt_tick(cfs_rq, curr); 4598 } 4599 4600 4601 /************************************************** 4602 * CFS bandwidth control machinery 4603 */ 4604 4605 #ifdef CONFIG_CFS_BANDWIDTH 4606 4607 #ifdef CONFIG_JUMP_LABEL 4608 static struct static_key __cfs_bandwidth_used; 4609 4610 static inline bool cfs_bandwidth_used(void) 4611 { 4612 return static_key_false(&__cfs_bandwidth_used); 4613 } 4614 4615 void cfs_bandwidth_usage_inc(void) 4616 { 4617 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4618 } 4619 4620 void cfs_bandwidth_usage_dec(void) 4621 { 4622 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4623 } 4624 #else /* CONFIG_JUMP_LABEL */ 4625 static bool cfs_bandwidth_used(void) 4626 { 4627 return true; 4628 } 4629 4630 void cfs_bandwidth_usage_inc(void) {} 4631 void cfs_bandwidth_usage_dec(void) {} 4632 #endif /* CONFIG_JUMP_LABEL */ 4633 4634 /* 4635 * default period for cfs group bandwidth. 4636 * default: 0.1s, units: nanoseconds 4637 */ 4638 static inline u64 default_cfs_period(void) 4639 { 4640 return 100000000ULL; 4641 } 4642 4643 static inline u64 sched_cfs_bandwidth_slice(void) 4644 { 4645 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4646 } 4647 4648 /* 4649 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4650 * directly instead of rq->clock to avoid adding additional synchronization 4651 * around rq->lock. 4652 * 4653 * requires cfs_b->lock 4654 */ 4655 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4656 { 4657 if (unlikely(cfs_b->quota == RUNTIME_INF)) 4658 return; 4659 4660 cfs_b->runtime += cfs_b->quota; 4661 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 4662 } 4663 4664 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4665 { 4666 return &tg->cfs_bandwidth; 4667 } 4668 4669 /* returns 0 on failure to allocate runtime */ 4670 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4671 struct cfs_rq *cfs_rq, u64 target_runtime) 4672 { 4673 u64 min_amount, amount = 0; 4674 4675 lockdep_assert_held(&cfs_b->lock); 4676 4677 /* note: this is a positive sum as runtime_remaining <= 0 */ 4678 min_amount = target_runtime - cfs_rq->runtime_remaining; 4679 4680 if (cfs_b->quota == RUNTIME_INF) 4681 amount = min_amount; 4682 else { 4683 start_cfs_bandwidth(cfs_b); 4684 4685 if (cfs_b->runtime > 0) { 4686 amount = min(cfs_b->runtime, min_amount); 4687 cfs_b->runtime -= amount; 4688 cfs_b->idle = 0; 4689 } 4690 } 4691 4692 cfs_rq->runtime_remaining += amount; 4693 4694 return cfs_rq->runtime_remaining > 0; 4695 } 4696 4697 /* returns 0 on failure to allocate runtime */ 4698 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4699 { 4700 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4701 int ret; 4702 4703 raw_spin_lock(&cfs_b->lock); 4704 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4705 raw_spin_unlock(&cfs_b->lock); 4706 4707 return ret; 4708 } 4709 4710 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4711 { 4712 /* dock delta_exec before expiring quota (as it could span periods) */ 4713 cfs_rq->runtime_remaining -= delta_exec; 4714 4715 if (likely(cfs_rq->runtime_remaining > 0)) 4716 return; 4717 4718 if (cfs_rq->throttled) 4719 return; 4720 /* 4721 * if we're unable to extend our runtime we resched so that the active 4722 * hierarchy can be throttled 4723 */ 4724 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4725 resched_curr(rq_of(cfs_rq)); 4726 } 4727 4728 static __always_inline 4729 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4730 { 4731 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4732 return; 4733 4734 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4735 } 4736 4737 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4738 { 4739 return cfs_bandwidth_used() && cfs_rq->throttled; 4740 } 4741 4742 /* check whether cfs_rq, or any parent, is throttled */ 4743 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4744 { 4745 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4746 } 4747 4748 /* 4749 * Ensure that neither of the group entities corresponding to src_cpu or 4750 * dest_cpu are members of a throttled hierarchy when performing group 4751 * load-balance operations. 4752 */ 4753 static inline int throttled_lb_pair(struct task_group *tg, 4754 int src_cpu, int dest_cpu) 4755 { 4756 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4757 4758 src_cfs_rq = tg->cfs_rq[src_cpu]; 4759 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4760 4761 return throttled_hierarchy(src_cfs_rq) || 4762 throttled_hierarchy(dest_cfs_rq); 4763 } 4764 4765 static int tg_unthrottle_up(struct task_group *tg, void *data) 4766 { 4767 struct rq *rq = data; 4768 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4769 4770 cfs_rq->throttle_count--; 4771 if (!cfs_rq->throttle_count) { 4772 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4773 cfs_rq->throttled_clock_task; 4774 4775 /* Add cfs_rq with load or one or more already running entities to the list */ 4776 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running) 4777 list_add_leaf_cfs_rq(cfs_rq); 4778 } 4779 4780 return 0; 4781 } 4782 4783 static int tg_throttle_down(struct task_group *tg, void *data) 4784 { 4785 struct rq *rq = data; 4786 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4787 4788 /* group is entering throttled state, stop time */ 4789 if (!cfs_rq->throttle_count) { 4790 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4791 list_del_leaf_cfs_rq(cfs_rq); 4792 } 4793 cfs_rq->throttle_count++; 4794 4795 return 0; 4796 } 4797 4798 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4799 { 4800 struct rq *rq = rq_of(cfs_rq); 4801 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4802 struct sched_entity *se; 4803 long task_delta, idle_task_delta, dequeue = 1; 4804 4805 raw_spin_lock(&cfs_b->lock); 4806 /* This will start the period timer if necessary */ 4807 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4808 /* 4809 * We have raced with bandwidth becoming available, and if we 4810 * actually throttled the timer might not unthrottle us for an 4811 * entire period. We additionally needed to make sure that any 4812 * subsequent check_cfs_rq_runtime calls agree not to throttle 4813 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4814 * for 1ns of runtime rather than just check cfs_b. 4815 */ 4816 dequeue = 0; 4817 } else { 4818 list_add_tail_rcu(&cfs_rq->throttled_list, 4819 &cfs_b->throttled_cfs_rq); 4820 } 4821 raw_spin_unlock(&cfs_b->lock); 4822 4823 if (!dequeue) 4824 return false; /* Throttle no longer required. */ 4825 4826 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4827 4828 /* freeze hierarchy runnable averages while throttled */ 4829 rcu_read_lock(); 4830 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4831 rcu_read_unlock(); 4832 4833 task_delta = cfs_rq->h_nr_running; 4834 idle_task_delta = cfs_rq->idle_h_nr_running; 4835 for_each_sched_entity(se) { 4836 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4837 /* throttled entity or throttle-on-deactivate */ 4838 if (!se->on_rq) 4839 goto done; 4840 4841 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4842 4843 qcfs_rq->h_nr_running -= task_delta; 4844 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4845 4846 if (qcfs_rq->load.weight) { 4847 /* Avoid re-evaluating load for this entity: */ 4848 se = parent_entity(se); 4849 break; 4850 } 4851 } 4852 4853 for_each_sched_entity(se) { 4854 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4855 /* throttled entity or throttle-on-deactivate */ 4856 if (!se->on_rq) 4857 goto done; 4858 4859 update_load_avg(qcfs_rq, se, 0); 4860 se_update_runnable(se); 4861 4862 qcfs_rq->h_nr_running -= task_delta; 4863 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4864 } 4865 4866 /* At this point se is NULL and we are at root level*/ 4867 sub_nr_running(rq, task_delta); 4868 4869 done: 4870 /* 4871 * Note: distribution will already see us throttled via the 4872 * throttled-list. rq->lock protects completion. 4873 */ 4874 cfs_rq->throttled = 1; 4875 cfs_rq->throttled_clock = rq_clock(rq); 4876 return true; 4877 } 4878 4879 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4880 { 4881 struct rq *rq = rq_of(cfs_rq); 4882 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4883 struct sched_entity *se; 4884 long task_delta, idle_task_delta; 4885 4886 se = cfs_rq->tg->se[cpu_of(rq)]; 4887 4888 cfs_rq->throttled = 0; 4889 4890 update_rq_clock(rq); 4891 4892 raw_spin_lock(&cfs_b->lock); 4893 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4894 list_del_rcu(&cfs_rq->throttled_list); 4895 raw_spin_unlock(&cfs_b->lock); 4896 4897 /* update hierarchical throttle state */ 4898 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4899 4900 if (!cfs_rq->load.weight) 4901 return; 4902 4903 task_delta = cfs_rq->h_nr_running; 4904 idle_task_delta = cfs_rq->idle_h_nr_running; 4905 for_each_sched_entity(se) { 4906 if (se->on_rq) 4907 break; 4908 cfs_rq = cfs_rq_of(se); 4909 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4910 4911 cfs_rq->h_nr_running += task_delta; 4912 cfs_rq->idle_h_nr_running += idle_task_delta; 4913 4914 /* end evaluation on encountering a throttled cfs_rq */ 4915 if (cfs_rq_throttled(cfs_rq)) 4916 goto unthrottle_throttle; 4917 } 4918 4919 for_each_sched_entity(se) { 4920 cfs_rq = cfs_rq_of(se); 4921 4922 update_load_avg(cfs_rq, se, UPDATE_TG); 4923 se_update_runnable(se); 4924 4925 cfs_rq->h_nr_running += task_delta; 4926 cfs_rq->idle_h_nr_running += idle_task_delta; 4927 4928 4929 /* end evaluation on encountering a throttled cfs_rq */ 4930 if (cfs_rq_throttled(cfs_rq)) 4931 goto unthrottle_throttle; 4932 4933 /* 4934 * One parent has been throttled and cfs_rq removed from the 4935 * list. Add it back to not break the leaf list. 4936 */ 4937 if (throttled_hierarchy(cfs_rq)) 4938 list_add_leaf_cfs_rq(cfs_rq); 4939 } 4940 4941 /* At this point se is NULL and we are at root level*/ 4942 add_nr_running(rq, task_delta); 4943 4944 unthrottle_throttle: 4945 /* 4946 * The cfs_rq_throttled() breaks in the above iteration can result in 4947 * incomplete leaf list maintenance, resulting in triggering the 4948 * assertion below. 4949 */ 4950 for_each_sched_entity(se) { 4951 cfs_rq = cfs_rq_of(se); 4952 4953 if (list_add_leaf_cfs_rq(cfs_rq)) 4954 break; 4955 } 4956 4957 assert_list_leaf_cfs_rq(rq); 4958 4959 /* Determine whether we need to wake up potentially idle CPU: */ 4960 if (rq->curr == rq->idle && rq->cfs.nr_running) 4961 resched_curr(rq); 4962 } 4963 4964 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 4965 { 4966 struct cfs_rq *cfs_rq; 4967 u64 runtime, remaining = 1; 4968 4969 rcu_read_lock(); 4970 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4971 throttled_list) { 4972 struct rq *rq = rq_of(cfs_rq); 4973 struct rq_flags rf; 4974 4975 rq_lock_irqsave(rq, &rf); 4976 if (!cfs_rq_throttled(cfs_rq)) 4977 goto next; 4978 4979 /* By the above check, this should never be true */ 4980 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 4981 4982 raw_spin_lock(&cfs_b->lock); 4983 runtime = -cfs_rq->runtime_remaining + 1; 4984 if (runtime > cfs_b->runtime) 4985 runtime = cfs_b->runtime; 4986 cfs_b->runtime -= runtime; 4987 remaining = cfs_b->runtime; 4988 raw_spin_unlock(&cfs_b->lock); 4989 4990 cfs_rq->runtime_remaining += runtime; 4991 4992 /* we check whether we're throttled above */ 4993 if (cfs_rq->runtime_remaining > 0) 4994 unthrottle_cfs_rq(cfs_rq); 4995 4996 next: 4997 rq_unlock_irqrestore(rq, &rf); 4998 4999 if (!remaining) 5000 break; 5001 } 5002 rcu_read_unlock(); 5003 } 5004 5005 /* 5006 * Responsible for refilling a task_group's bandwidth and unthrottling its 5007 * cfs_rqs as appropriate. If there has been no activity within the last 5008 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5009 * used to track this state. 5010 */ 5011 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5012 { 5013 int throttled; 5014 5015 /* no need to continue the timer with no bandwidth constraint */ 5016 if (cfs_b->quota == RUNTIME_INF) 5017 goto out_deactivate; 5018 5019 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5020 cfs_b->nr_periods += overrun; 5021 5022 /* Refill extra burst quota even if cfs_b->idle */ 5023 __refill_cfs_bandwidth_runtime(cfs_b); 5024 5025 /* 5026 * idle depends on !throttled (for the case of a large deficit), and if 5027 * we're going inactive then everything else can be deferred 5028 */ 5029 if (cfs_b->idle && !throttled) 5030 goto out_deactivate; 5031 5032 if (!throttled) { 5033 /* mark as potentially idle for the upcoming period */ 5034 cfs_b->idle = 1; 5035 return 0; 5036 } 5037 5038 /* account preceding periods in which throttling occurred */ 5039 cfs_b->nr_throttled += overrun; 5040 5041 /* 5042 * This check is repeated as we release cfs_b->lock while we unthrottle. 5043 */ 5044 while (throttled && cfs_b->runtime > 0) { 5045 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5046 /* we can't nest cfs_b->lock while distributing bandwidth */ 5047 distribute_cfs_runtime(cfs_b); 5048 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5049 5050 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5051 } 5052 5053 /* 5054 * While we are ensured activity in the period following an 5055 * unthrottle, this also covers the case in which the new bandwidth is 5056 * insufficient to cover the existing bandwidth deficit. (Forcing the 5057 * timer to remain active while there are any throttled entities.) 5058 */ 5059 cfs_b->idle = 0; 5060 5061 return 0; 5062 5063 out_deactivate: 5064 return 1; 5065 } 5066 5067 /* a cfs_rq won't donate quota below this amount */ 5068 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5069 /* minimum remaining period time to redistribute slack quota */ 5070 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5071 /* how long we wait to gather additional slack before distributing */ 5072 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5073 5074 /* 5075 * Are we near the end of the current quota period? 5076 * 5077 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5078 * hrtimer base being cleared by hrtimer_start. In the case of 5079 * migrate_hrtimers, base is never cleared, so we are fine. 5080 */ 5081 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5082 { 5083 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5084 u64 remaining; 5085 5086 /* if the call-back is running a quota refresh is already occurring */ 5087 if (hrtimer_callback_running(refresh_timer)) 5088 return 1; 5089 5090 /* is a quota refresh about to occur? */ 5091 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5092 if (remaining < min_expire) 5093 return 1; 5094 5095 return 0; 5096 } 5097 5098 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5099 { 5100 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5101 5102 /* if there's a quota refresh soon don't bother with slack */ 5103 if (runtime_refresh_within(cfs_b, min_left)) 5104 return; 5105 5106 /* don't push forwards an existing deferred unthrottle */ 5107 if (cfs_b->slack_started) 5108 return; 5109 cfs_b->slack_started = true; 5110 5111 hrtimer_start(&cfs_b->slack_timer, 5112 ns_to_ktime(cfs_bandwidth_slack_period), 5113 HRTIMER_MODE_REL); 5114 } 5115 5116 /* we know any runtime found here is valid as update_curr() precedes return */ 5117 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5118 { 5119 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5120 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5121 5122 if (slack_runtime <= 0) 5123 return; 5124 5125 raw_spin_lock(&cfs_b->lock); 5126 if (cfs_b->quota != RUNTIME_INF) { 5127 cfs_b->runtime += slack_runtime; 5128 5129 /* we are under rq->lock, defer unthrottling using a timer */ 5130 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5131 !list_empty(&cfs_b->throttled_cfs_rq)) 5132 start_cfs_slack_bandwidth(cfs_b); 5133 } 5134 raw_spin_unlock(&cfs_b->lock); 5135 5136 /* even if it's not valid for return we don't want to try again */ 5137 cfs_rq->runtime_remaining -= slack_runtime; 5138 } 5139 5140 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5141 { 5142 if (!cfs_bandwidth_used()) 5143 return; 5144 5145 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5146 return; 5147 5148 __return_cfs_rq_runtime(cfs_rq); 5149 } 5150 5151 /* 5152 * This is done with a timer (instead of inline with bandwidth return) since 5153 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5154 */ 5155 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5156 { 5157 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5158 unsigned long flags; 5159 5160 /* confirm we're still not at a refresh boundary */ 5161 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5162 cfs_b->slack_started = false; 5163 5164 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5165 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5166 return; 5167 } 5168 5169 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5170 runtime = cfs_b->runtime; 5171 5172 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5173 5174 if (!runtime) 5175 return; 5176 5177 distribute_cfs_runtime(cfs_b); 5178 } 5179 5180 /* 5181 * When a group wakes up we want to make sure that its quota is not already 5182 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5183 * runtime as update_curr() throttling can not trigger until it's on-rq. 5184 */ 5185 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5186 { 5187 if (!cfs_bandwidth_used()) 5188 return; 5189 5190 /* an active group must be handled by the update_curr()->put() path */ 5191 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5192 return; 5193 5194 /* ensure the group is not already throttled */ 5195 if (cfs_rq_throttled(cfs_rq)) 5196 return; 5197 5198 /* update runtime allocation */ 5199 account_cfs_rq_runtime(cfs_rq, 0); 5200 if (cfs_rq->runtime_remaining <= 0) 5201 throttle_cfs_rq(cfs_rq); 5202 } 5203 5204 static void sync_throttle(struct task_group *tg, int cpu) 5205 { 5206 struct cfs_rq *pcfs_rq, *cfs_rq; 5207 5208 if (!cfs_bandwidth_used()) 5209 return; 5210 5211 if (!tg->parent) 5212 return; 5213 5214 cfs_rq = tg->cfs_rq[cpu]; 5215 pcfs_rq = tg->parent->cfs_rq[cpu]; 5216 5217 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5218 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5219 } 5220 5221 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5222 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5223 { 5224 if (!cfs_bandwidth_used()) 5225 return false; 5226 5227 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5228 return false; 5229 5230 /* 5231 * it's possible for a throttled entity to be forced into a running 5232 * state (e.g. set_curr_task), in this case we're finished. 5233 */ 5234 if (cfs_rq_throttled(cfs_rq)) 5235 return true; 5236 5237 return throttle_cfs_rq(cfs_rq); 5238 } 5239 5240 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5241 { 5242 struct cfs_bandwidth *cfs_b = 5243 container_of(timer, struct cfs_bandwidth, slack_timer); 5244 5245 do_sched_cfs_slack_timer(cfs_b); 5246 5247 return HRTIMER_NORESTART; 5248 } 5249 5250 extern const u64 max_cfs_quota_period; 5251 5252 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5253 { 5254 struct cfs_bandwidth *cfs_b = 5255 container_of(timer, struct cfs_bandwidth, period_timer); 5256 unsigned long flags; 5257 int overrun; 5258 int idle = 0; 5259 int count = 0; 5260 5261 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5262 for (;;) { 5263 overrun = hrtimer_forward_now(timer, cfs_b->period); 5264 if (!overrun) 5265 break; 5266 5267 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5268 5269 if (++count > 3) { 5270 u64 new, old = ktime_to_ns(cfs_b->period); 5271 5272 /* 5273 * Grow period by a factor of 2 to avoid losing precision. 5274 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5275 * to fail. 5276 */ 5277 new = old * 2; 5278 if (new < max_cfs_quota_period) { 5279 cfs_b->period = ns_to_ktime(new); 5280 cfs_b->quota *= 2; 5281 cfs_b->burst *= 2; 5282 5283 pr_warn_ratelimited( 5284 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5285 smp_processor_id(), 5286 div_u64(new, NSEC_PER_USEC), 5287 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5288 } else { 5289 pr_warn_ratelimited( 5290 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5291 smp_processor_id(), 5292 div_u64(old, NSEC_PER_USEC), 5293 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5294 } 5295 5296 /* reset count so we don't come right back in here */ 5297 count = 0; 5298 } 5299 } 5300 if (idle) 5301 cfs_b->period_active = 0; 5302 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5303 5304 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5305 } 5306 5307 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5308 { 5309 raw_spin_lock_init(&cfs_b->lock); 5310 cfs_b->runtime = 0; 5311 cfs_b->quota = RUNTIME_INF; 5312 cfs_b->period = ns_to_ktime(default_cfs_period()); 5313 cfs_b->burst = 0; 5314 5315 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5316 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5317 cfs_b->period_timer.function = sched_cfs_period_timer; 5318 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5319 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5320 cfs_b->slack_started = false; 5321 } 5322 5323 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5324 { 5325 cfs_rq->runtime_enabled = 0; 5326 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5327 } 5328 5329 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5330 { 5331 lockdep_assert_held(&cfs_b->lock); 5332 5333 if (cfs_b->period_active) 5334 return; 5335 5336 cfs_b->period_active = 1; 5337 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5338 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5339 } 5340 5341 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5342 { 5343 /* init_cfs_bandwidth() was not called */ 5344 if (!cfs_b->throttled_cfs_rq.next) 5345 return; 5346 5347 hrtimer_cancel(&cfs_b->period_timer); 5348 hrtimer_cancel(&cfs_b->slack_timer); 5349 } 5350 5351 /* 5352 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5353 * 5354 * The race is harmless, since modifying bandwidth settings of unhooked group 5355 * bits doesn't do much. 5356 */ 5357 5358 /* cpu online callback */ 5359 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5360 { 5361 struct task_group *tg; 5362 5363 lockdep_assert_rq_held(rq); 5364 5365 rcu_read_lock(); 5366 list_for_each_entry_rcu(tg, &task_groups, list) { 5367 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5368 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5369 5370 raw_spin_lock(&cfs_b->lock); 5371 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5372 raw_spin_unlock(&cfs_b->lock); 5373 } 5374 rcu_read_unlock(); 5375 } 5376 5377 /* cpu offline callback */ 5378 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5379 { 5380 struct task_group *tg; 5381 5382 lockdep_assert_rq_held(rq); 5383 5384 rcu_read_lock(); 5385 list_for_each_entry_rcu(tg, &task_groups, list) { 5386 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5387 5388 if (!cfs_rq->runtime_enabled) 5389 continue; 5390 5391 /* 5392 * clock_task is not advancing so we just need to make sure 5393 * there's some valid quota amount 5394 */ 5395 cfs_rq->runtime_remaining = 1; 5396 /* 5397 * Offline rq is schedulable till CPU is completely disabled 5398 * in take_cpu_down(), so we prevent new cfs throttling here. 5399 */ 5400 cfs_rq->runtime_enabled = 0; 5401 5402 if (cfs_rq_throttled(cfs_rq)) 5403 unthrottle_cfs_rq(cfs_rq); 5404 } 5405 rcu_read_unlock(); 5406 } 5407 5408 #else /* CONFIG_CFS_BANDWIDTH */ 5409 5410 static inline bool cfs_bandwidth_used(void) 5411 { 5412 return false; 5413 } 5414 5415 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5416 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5417 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5418 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5419 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5420 5421 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5422 { 5423 return 0; 5424 } 5425 5426 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5427 { 5428 return 0; 5429 } 5430 5431 static inline int throttled_lb_pair(struct task_group *tg, 5432 int src_cpu, int dest_cpu) 5433 { 5434 return 0; 5435 } 5436 5437 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5438 5439 #ifdef CONFIG_FAIR_GROUP_SCHED 5440 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5441 #endif 5442 5443 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5444 { 5445 return NULL; 5446 } 5447 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5448 static inline void update_runtime_enabled(struct rq *rq) {} 5449 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5450 5451 #endif /* CONFIG_CFS_BANDWIDTH */ 5452 5453 /************************************************** 5454 * CFS operations on tasks: 5455 */ 5456 5457 #ifdef CONFIG_SCHED_HRTICK 5458 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5459 { 5460 struct sched_entity *se = &p->se; 5461 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5462 5463 SCHED_WARN_ON(task_rq(p) != rq); 5464 5465 if (rq->cfs.h_nr_running > 1) { 5466 u64 slice = sched_slice(cfs_rq, se); 5467 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5468 s64 delta = slice - ran; 5469 5470 if (delta < 0) { 5471 if (task_current(rq, p)) 5472 resched_curr(rq); 5473 return; 5474 } 5475 hrtick_start(rq, delta); 5476 } 5477 } 5478 5479 /* 5480 * called from enqueue/dequeue and updates the hrtick when the 5481 * current task is from our class and nr_running is low enough 5482 * to matter. 5483 */ 5484 static void hrtick_update(struct rq *rq) 5485 { 5486 struct task_struct *curr = rq->curr; 5487 5488 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 5489 return; 5490 5491 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5492 hrtick_start_fair(rq, curr); 5493 } 5494 #else /* !CONFIG_SCHED_HRTICK */ 5495 static inline void 5496 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5497 { 5498 } 5499 5500 static inline void hrtick_update(struct rq *rq) 5501 { 5502 } 5503 #endif 5504 5505 #ifdef CONFIG_SMP 5506 static inline unsigned long cpu_util(int cpu); 5507 5508 static inline bool cpu_overutilized(int cpu) 5509 { 5510 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5511 } 5512 5513 static inline void update_overutilized_status(struct rq *rq) 5514 { 5515 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5516 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5517 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5518 } 5519 } 5520 #else 5521 static inline void update_overutilized_status(struct rq *rq) { } 5522 #endif 5523 5524 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5525 static int sched_idle_rq(struct rq *rq) 5526 { 5527 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5528 rq->nr_running); 5529 } 5530 5531 #ifdef CONFIG_SMP 5532 static int sched_idle_cpu(int cpu) 5533 { 5534 return sched_idle_rq(cpu_rq(cpu)); 5535 } 5536 #endif 5537 5538 /* 5539 * The enqueue_task method is called before nr_running is 5540 * increased. Here we update the fair scheduling stats and 5541 * then put the task into the rbtree: 5542 */ 5543 static void 5544 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5545 { 5546 struct cfs_rq *cfs_rq; 5547 struct sched_entity *se = &p->se; 5548 int idle_h_nr_running = task_has_idle_policy(p); 5549 int task_new = !(flags & ENQUEUE_WAKEUP); 5550 5551 /* 5552 * The code below (indirectly) updates schedutil which looks at 5553 * the cfs_rq utilization to select a frequency. 5554 * Let's add the task's estimated utilization to the cfs_rq's 5555 * estimated utilization, before we update schedutil. 5556 */ 5557 util_est_enqueue(&rq->cfs, p); 5558 5559 /* 5560 * If in_iowait is set, the code below may not trigger any cpufreq 5561 * utilization updates, so do it here explicitly with the IOWAIT flag 5562 * passed. 5563 */ 5564 if (p->in_iowait) 5565 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5566 5567 for_each_sched_entity(se) { 5568 if (se->on_rq) 5569 break; 5570 cfs_rq = cfs_rq_of(se); 5571 enqueue_entity(cfs_rq, se, flags); 5572 5573 cfs_rq->h_nr_running++; 5574 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5575 5576 /* end evaluation on encountering a throttled cfs_rq */ 5577 if (cfs_rq_throttled(cfs_rq)) 5578 goto enqueue_throttle; 5579 5580 flags = ENQUEUE_WAKEUP; 5581 } 5582 5583 for_each_sched_entity(se) { 5584 cfs_rq = cfs_rq_of(se); 5585 5586 update_load_avg(cfs_rq, se, UPDATE_TG); 5587 se_update_runnable(se); 5588 update_cfs_group(se); 5589 5590 cfs_rq->h_nr_running++; 5591 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5592 5593 /* end evaluation on encountering a throttled cfs_rq */ 5594 if (cfs_rq_throttled(cfs_rq)) 5595 goto enqueue_throttle; 5596 5597 /* 5598 * One parent has been throttled and cfs_rq removed from the 5599 * list. Add it back to not break the leaf list. 5600 */ 5601 if (throttled_hierarchy(cfs_rq)) 5602 list_add_leaf_cfs_rq(cfs_rq); 5603 } 5604 5605 /* At this point se is NULL and we are at root level*/ 5606 add_nr_running(rq, 1); 5607 5608 /* 5609 * Since new tasks are assigned an initial util_avg equal to 5610 * half of the spare capacity of their CPU, tiny tasks have the 5611 * ability to cross the overutilized threshold, which will 5612 * result in the load balancer ruining all the task placement 5613 * done by EAS. As a way to mitigate that effect, do not account 5614 * for the first enqueue operation of new tasks during the 5615 * overutilized flag detection. 5616 * 5617 * A better way of solving this problem would be to wait for 5618 * the PELT signals of tasks to converge before taking them 5619 * into account, but that is not straightforward to implement, 5620 * and the following generally works well enough in practice. 5621 */ 5622 if (!task_new) 5623 update_overutilized_status(rq); 5624 5625 enqueue_throttle: 5626 if (cfs_bandwidth_used()) { 5627 /* 5628 * When bandwidth control is enabled; the cfs_rq_throttled() 5629 * breaks in the above iteration can result in incomplete 5630 * leaf list maintenance, resulting in triggering the assertion 5631 * below. 5632 */ 5633 for_each_sched_entity(se) { 5634 cfs_rq = cfs_rq_of(se); 5635 5636 if (list_add_leaf_cfs_rq(cfs_rq)) 5637 break; 5638 } 5639 } 5640 5641 assert_list_leaf_cfs_rq(rq); 5642 5643 hrtick_update(rq); 5644 } 5645 5646 static void set_next_buddy(struct sched_entity *se); 5647 5648 /* 5649 * The dequeue_task method is called before nr_running is 5650 * decreased. We remove the task from the rbtree and 5651 * update the fair scheduling stats: 5652 */ 5653 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5654 { 5655 struct cfs_rq *cfs_rq; 5656 struct sched_entity *se = &p->se; 5657 int task_sleep = flags & DEQUEUE_SLEEP; 5658 int idle_h_nr_running = task_has_idle_policy(p); 5659 bool was_sched_idle = sched_idle_rq(rq); 5660 5661 util_est_dequeue(&rq->cfs, p); 5662 5663 for_each_sched_entity(se) { 5664 cfs_rq = cfs_rq_of(se); 5665 dequeue_entity(cfs_rq, se, flags); 5666 5667 cfs_rq->h_nr_running--; 5668 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5669 5670 /* end evaluation on encountering a throttled cfs_rq */ 5671 if (cfs_rq_throttled(cfs_rq)) 5672 goto dequeue_throttle; 5673 5674 /* Don't dequeue parent if it has other entities besides us */ 5675 if (cfs_rq->load.weight) { 5676 /* Avoid re-evaluating load for this entity: */ 5677 se = parent_entity(se); 5678 /* 5679 * Bias pick_next to pick a task from this cfs_rq, as 5680 * p is sleeping when it is within its sched_slice. 5681 */ 5682 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5683 set_next_buddy(se); 5684 break; 5685 } 5686 flags |= DEQUEUE_SLEEP; 5687 } 5688 5689 for_each_sched_entity(se) { 5690 cfs_rq = cfs_rq_of(se); 5691 5692 update_load_avg(cfs_rq, se, UPDATE_TG); 5693 se_update_runnable(se); 5694 update_cfs_group(se); 5695 5696 cfs_rq->h_nr_running--; 5697 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5698 5699 /* end evaluation on encountering a throttled cfs_rq */ 5700 if (cfs_rq_throttled(cfs_rq)) 5701 goto dequeue_throttle; 5702 5703 } 5704 5705 /* At this point se is NULL and we are at root level*/ 5706 sub_nr_running(rq, 1); 5707 5708 /* balance early to pull high priority tasks */ 5709 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5710 rq->next_balance = jiffies; 5711 5712 dequeue_throttle: 5713 util_est_update(&rq->cfs, p, task_sleep); 5714 hrtick_update(rq); 5715 } 5716 5717 #ifdef CONFIG_SMP 5718 5719 /* Working cpumask for: load_balance, load_balance_newidle. */ 5720 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5721 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5722 5723 #ifdef CONFIG_NO_HZ_COMMON 5724 5725 static struct { 5726 cpumask_var_t idle_cpus_mask; 5727 atomic_t nr_cpus; 5728 int has_blocked; /* Idle CPUS has blocked load */ 5729 unsigned long next_balance; /* in jiffy units */ 5730 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5731 } nohz ____cacheline_aligned; 5732 5733 #endif /* CONFIG_NO_HZ_COMMON */ 5734 5735 static unsigned long cpu_load(struct rq *rq) 5736 { 5737 return cfs_rq_load_avg(&rq->cfs); 5738 } 5739 5740 /* 5741 * cpu_load_without - compute CPU load without any contributions from *p 5742 * @cpu: the CPU which load is requested 5743 * @p: the task which load should be discounted 5744 * 5745 * The load of a CPU is defined by the load of tasks currently enqueued on that 5746 * CPU as well as tasks which are currently sleeping after an execution on that 5747 * CPU. 5748 * 5749 * This method returns the load of the specified CPU by discounting the load of 5750 * the specified task, whenever the task is currently contributing to the CPU 5751 * load. 5752 */ 5753 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5754 { 5755 struct cfs_rq *cfs_rq; 5756 unsigned int load; 5757 5758 /* Task has no contribution or is new */ 5759 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5760 return cpu_load(rq); 5761 5762 cfs_rq = &rq->cfs; 5763 load = READ_ONCE(cfs_rq->avg.load_avg); 5764 5765 /* Discount task's util from CPU's util */ 5766 lsub_positive(&load, task_h_load(p)); 5767 5768 return load; 5769 } 5770 5771 static unsigned long cpu_runnable(struct rq *rq) 5772 { 5773 return cfs_rq_runnable_avg(&rq->cfs); 5774 } 5775 5776 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5777 { 5778 struct cfs_rq *cfs_rq; 5779 unsigned int runnable; 5780 5781 /* Task has no contribution or is new */ 5782 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5783 return cpu_runnable(rq); 5784 5785 cfs_rq = &rq->cfs; 5786 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5787 5788 /* Discount task's runnable from CPU's runnable */ 5789 lsub_positive(&runnable, p->se.avg.runnable_avg); 5790 5791 return runnable; 5792 } 5793 5794 static unsigned long capacity_of(int cpu) 5795 { 5796 return cpu_rq(cpu)->cpu_capacity; 5797 } 5798 5799 static void record_wakee(struct task_struct *p) 5800 { 5801 /* 5802 * Only decay a single time; tasks that have less then 1 wakeup per 5803 * jiffy will not have built up many flips. 5804 */ 5805 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5806 current->wakee_flips >>= 1; 5807 current->wakee_flip_decay_ts = jiffies; 5808 } 5809 5810 if (current->last_wakee != p) { 5811 current->last_wakee = p; 5812 current->wakee_flips++; 5813 } 5814 } 5815 5816 /* 5817 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5818 * 5819 * A waker of many should wake a different task than the one last awakened 5820 * at a frequency roughly N times higher than one of its wakees. 5821 * 5822 * In order to determine whether we should let the load spread vs consolidating 5823 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5824 * partner, and a factor of lls_size higher frequency in the other. 5825 * 5826 * With both conditions met, we can be relatively sure that the relationship is 5827 * non-monogamous, with partner count exceeding socket size. 5828 * 5829 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5830 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5831 * socket size. 5832 */ 5833 static int wake_wide(struct task_struct *p) 5834 { 5835 unsigned int master = current->wakee_flips; 5836 unsigned int slave = p->wakee_flips; 5837 int factor = __this_cpu_read(sd_llc_size); 5838 5839 if (master < slave) 5840 swap(master, slave); 5841 if (slave < factor || master < slave * factor) 5842 return 0; 5843 return 1; 5844 } 5845 5846 /* 5847 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5848 * soonest. For the purpose of speed we only consider the waking and previous 5849 * CPU. 5850 * 5851 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5852 * cache-affine and is (or will be) idle. 5853 * 5854 * wake_affine_weight() - considers the weight to reflect the average 5855 * scheduling latency of the CPUs. This seems to work 5856 * for the overloaded case. 5857 */ 5858 static int 5859 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5860 { 5861 /* 5862 * If this_cpu is idle, it implies the wakeup is from interrupt 5863 * context. Only allow the move if cache is shared. Otherwise an 5864 * interrupt intensive workload could force all tasks onto one 5865 * node depending on the IO topology or IRQ affinity settings. 5866 * 5867 * If the prev_cpu is idle and cache affine then avoid a migration. 5868 * There is no guarantee that the cache hot data from an interrupt 5869 * is more important than cache hot data on the prev_cpu and from 5870 * a cpufreq perspective, it's better to have higher utilisation 5871 * on one CPU. 5872 */ 5873 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5874 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5875 5876 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5877 return this_cpu; 5878 5879 if (available_idle_cpu(prev_cpu)) 5880 return prev_cpu; 5881 5882 return nr_cpumask_bits; 5883 } 5884 5885 static int 5886 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5887 int this_cpu, int prev_cpu, int sync) 5888 { 5889 s64 this_eff_load, prev_eff_load; 5890 unsigned long task_load; 5891 5892 this_eff_load = cpu_load(cpu_rq(this_cpu)); 5893 5894 if (sync) { 5895 unsigned long current_load = task_h_load(current); 5896 5897 if (current_load > this_eff_load) 5898 return this_cpu; 5899 5900 this_eff_load -= current_load; 5901 } 5902 5903 task_load = task_h_load(p); 5904 5905 this_eff_load += task_load; 5906 if (sched_feat(WA_BIAS)) 5907 this_eff_load *= 100; 5908 this_eff_load *= capacity_of(prev_cpu); 5909 5910 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 5911 prev_eff_load -= task_load; 5912 if (sched_feat(WA_BIAS)) 5913 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5914 prev_eff_load *= capacity_of(this_cpu); 5915 5916 /* 5917 * If sync, adjust the weight of prev_eff_load such that if 5918 * prev_eff == this_eff that select_idle_sibling() will consider 5919 * stacking the wakee on top of the waker if no other CPU is 5920 * idle. 5921 */ 5922 if (sync) 5923 prev_eff_load += 1; 5924 5925 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5926 } 5927 5928 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5929 int this_cpu, int prev_cpu, int sync) 5930 { 5931 int target = nr_cpumask_bits; 5932 5933 if (sched_feat(WA_IDLE)) 5934 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5935 5936 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5937 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5938 5939 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5940 if (target == nr_cpumask_bits) 5941 return prev_cpu; 5942 5943 schedstat_inc(sd->ttwu_move_affine); 5944 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5945 return target; 5946 } 5947 5948 static struct sched_group * 5949 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 5950 5951 /* 5952 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5953 */ 5954 static int 5955 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5956 { 5957 unsigned long load, min_load = ULONG_MAX; 5958 unsigned int min_exit_latency = UINT_MAX; 5959 u64 latest_idle_timestamp = 0; 5960 int least_loaded_cpu = this_cpu; 5961 int shallowest_idle_cpu = -1; 5962 int i; 5963 5964 /* Check if we have any choice: */ 5965 if (group->group_weight == 1) 5966 return cpumask_first(sched_group_span(group)); 5967 5968 /* Traverse only the allowed CPUs */ 5969 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 5970 struct rq *rq = cpu_rq(i); 5971 5972 if (!sched_core_cookie_match(rq, p)) 5973 continue; 5974 5975 if (sched_idle_cpu(i)) 5976 return i; 5977 5978 if (available_idle_cpu(i)) { 5979 struct cpuidle_state *idle = idle_get_state(rq); 5980 if (idle && idle->exit_latency < min_exit_latency) { 5981 /* 5982 * We give priority to a CPU whose idle state 5983 * has the smallest exit latency irrespective 5984 * of any idle timestamp. 5985 */ 5986 min_exit_latency = idle->exit_latency; 5987 latest_idle_timestamp = rq->idle_stamp; 5988 shallowest_idle_cpu = i; 5989 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5990 rq->idle_stamp > latest_idle_timestamp) { 5991 /* 5992 * If equal or no active idle state, then 5993 * the most recently idled CPU might have 5994 * a warmer cache. 5995 */ 5996 latest_idle_timestamp = rq->idle_stamp; 5997 shallowest_idle_cpu = i; 5998 } 5999 } else if (shallowest_idle_cpu == -1) { 6000 load = cpu_load(cpu_rq(i)); 6001 if (load < min_load) { 6002 min_load = load; 6003 least_loaded_cpu = i; 6004 } 6005 } 6006 } 6007 6008 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6009 } 6010 6011 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6012 int cpu, int prev_cpu, int sd_flag) 6013 { 6014 int new_cpu = cpu; 6015 6016 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6017 return prev_cpu; 6018 6019 /* 6020 * We need task's util for cpu_util_without, sync it up to 6021 * prev_cpu's last_update_time. 6022 */ 6023 if (!(sd_flag & SD_BALANCE_FORK)) 6024 sync_entity_load_avg(&p->se); 6025 6026 while (sd) { 6027 struct sched_group *group; 6028 struct sched_domain *tmp; 6029 int weight; 6030 6031 if (!(sd->flags & sd_flag)) { 6032 sd = sd->child; 6033 continue; 6034 } 6035 6036 group = find_idlest_group(sd, p, cpu); 6037 if (!group) { 6038 sd = sd->child; 6039 continue; 6040 } 6041 6042 new_cpu = find_idlest_group_cpu(group, p, cpu); 6043 if (new_cpu == cpu) { 6044 /* Now try balancing at a lower domain level of 'cpu': */ 6045 sd = sd->child; 6046 continue; 6047 } 6048 6049 /* Now try balancing at a lower domain level of 'new_cpu': */ 6050 cpu = new_cpu; 6051 weight = sd->span_weight; 6052 sd = NULL; 6053 for_each_domain(cpu, tmp) { 6054 if (weight <= tmp->span_weight) 6055 break; 6056 if (tmp->flags & sd_flag) 6057 sd = tmp; 6058 } 6059 } 6060 6061 return new_cpu; 6062 } 6063 6064 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6065 { 6066 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6067 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6068 return cpu; 6069 6070 return -1; 6071 } 6072 6073 #ifdef CONFIG_SCHED_SMT 6074 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6075 EXPORT_SYMBOL_GPL(sched_smt_present); 6076 6077 static inline void set_idle_cores(int cpu, int val) 6078 { 6079 struct sched_domain_shared *sds; 6080 6081 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6082 if (sds) 6083 WRITE_ONCE(sds->has_idle_cores, val); 6084 } 6085 6086 static inline bool test_idle_cores(int cpu, bool def) 6087 { 6088 struct sched_domain_shared *sds; 6089 6090 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6091 if (sds) 6092 return READ_ONCE(sds->has_idle_cores); 6093 6094 return def; 6095 } 6096 6097 /* 6098 * Scans the local SMT mask to see if the entire core is idle, and records this 6099 * information in sd_llc_shared->has_idle_cores. 6100 * 6101 * Since SMT siblings share all cache levels, inspecting this limited remote 6102 * state should be fairly cheap. 6103 */ 6104 void __update_idle_core(struct rq *rq) 6105 { 6106 int core = cpu_of(rq); 6107 int cpu; 6108 6109 rcu_read_lock(); 6110 if (test_idle_cores(core, true)) 6111 goto unlock; 6112 6113 for_each_cpu(cpu, cpu_smt_mask(core)) { 6114 if (cpu == core) 6115 continue; 6116 6117 if (!available_idle_cpu(cpu)) 6118 goto unlock; 6119 } 6120 6121 set_idle_cores(core, 1); 6122 unlock: 6123 rcu_read_unlock(); 6124 } 6125 6126 /* 6127 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6128 * there are no idle cores left in the system; tracked through 6129 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6130 */ 6131 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6132 { 6133 bool idle = true; 6134 int cpu; 6135 6136 if (!static_branch_likely(&sched_smt_present)) 6137 return __select_idle_cpu(core, p); 6138 6139 for_each_cpu(cpu, cpu_smt_mask(core)) { 6140 if (!available_idle_cpu(cpu)) { 6141 idle = false; 6142 if (*idle_cpu == -1) { 6143 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6144 *idle_cpu = cpu; 6145 break; 6146 } 6147 continue; 6148 } 6149 break; 6150 } 6151 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6152 *idle_cpu = cpu; 6153 } 6154 6155 if (idle) 6156 return core; 6157 6158 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6159 return -1; 6160 } 6161 6162 /* 6163 * Scan the local SMT mask for idle CPUs. 6164 */ 6165 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6166 { 6167 int cpu; 6168 6169 for_each_cpu(cpu, cpu_smt_mask(target)) { 6170 if (!cpumask_test_cpu(cpu, p->cpus_ptr) || 6171 !cpumask_test_cpu(cpu, sched_domain_span(sd))) 6172 continue; 6173 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6174 return cpu; 6175 } 6176 6177 return -1; 6178 } 6179 6180 #else /* CONFIG_SCHED_SMT */ 6181 6182 static inline void set_idle_cores(int cpu, int val) 6183 { 6184 } 6185 6186 static inline bool test_idle_cores(int cpu, bool def) 6187 { 6188 return def; 6189 } 6190 6191 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6192 { 6193 return __select_idle_cpu(core, p); 6194 } 6195 6196 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6197 { 6198 return -1; 6199 } 6200 6201 #endif /* CONFIG_SCHED_SMT */ 6202 6203 /* 6204 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6205 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6206 * average idle time for this rq (as found in rq->avg_idle). 6207 */ 6208 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6209 { 6210 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6211 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6212 struct rq *this_rq = this_rq(); 6213 int this = smp_processor_id(); 6214 struct sched_domain *this_sd; 6215 u64 time = 0; 6216 6217 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6218 if (!this_sd) 6219 return -1; 6220 6221 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6222 6223 if (sched_feat(SIS_PROP) && !has_idle_core) { 6224 u64 avg_cost, avg_idle, span_avg; 6225 unsigned long now = jiffies; 6226 6227 /* 6228 * If we're busy, the assumption that the last idle period 6229 * predicts the future is flawed; age away the remaining 6230 * predicted idle time. 6231 */ 6232 if (unlikely(this_rq->wake_stamp < now)) { 6233 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 6234 this_rq->wake_stamp++; 6235 this_rq->wake_avg_idle >>= 1; 6236 } 6237 } 6238 6239 avg_idle = this_rq->wake_avg_idle; 6240 avg_cost = this_sd->avg_scan_cost + 1; 6241 6242 span_avg = sd->span_weight * avg_idle; 6243 if (span_avg > 4*avg_cost) 6244 nr = div_u64(span_avg, avg_cost); 6245 else 6246 nr = 4; 6247 6248 time = cpu_clock(this); 6249 } 6250 6251 for_each_cpu_wrap(cpu, cpus, target) { 6252 if (has_idle_core) { 6253 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6254 if ((unsigned int)i < nr_cpumask_bits) 6255 return i; 6256 6257 } else { 6258 if (!--nr) 6259 return -1; 6260 idle_cpu = __select_idle_cpu(cpu, p); 6261 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6262 break; 6263 } 6264 } 6265 6266 if (has_idle_core) 6267 set_idle_cores(target, false); 6268 6269 if (sched_feat(SIS_PROP) && !has_idle_core) { 6270 time = cpu_clock(this) - time; 6271 6272 /* 6273 * Account for the scan cost of wakeups against the average 6274 * idle time. 6275 */ 6276 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 6277 6278 update_avg(&this_sd->avg_scan_cost, time); 6279 } 6280 6281 return idle_cpu; 6282 } 6283 6284 /* 6285 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6286 * the task fits. If no CPU is big enough, but there are idle ones, try to 6287 * maximize capacity. 6288 */ 6289 static int 6290 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6291 { 6292 unsigned long task_util, best_cap = 0; 6293 int cpu, best_cpu = -1; 6294 struct cpumask *cpus; 6295 6296 cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6297 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6298 6299 task_util = uclamp_task_util(p); 6300 6301 for_each_cpu_wrap(cpu, cpus, target) { 6302 unsigned long cpu_cap = capacity_of(cpu); 6303 6304 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6305 continue; 6306 if (fits_capacity(task_util, cpu_cap)) 6307 return cpu; 6308 6309 if (cpu_cap > best_cap) { 6310 best_cap = cpu_cap; 6311 best_cpu = cpu; 6312 } 6313 } 6314 6315 return best_cpu; 6316 } 6317 6318 static inline bool asym_fits_capacity(int task_util, int cpu) 6319 { 6320 if (static_branch_unlikely(&sched_asym_cpucapacity)) 6321 return fits_capacity(task_util, capacity_of(cpu)); 6322 6323 return true; 6324 } 6325 6326 /* 6327 * Try and locate an idle core/thread in the LLC cache domain. 6328 */ 6329 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6330 { 6331 bool has_idle_core = false; 6332 struct sched_domain *sd; 6333 unsigned long task_util; 6334 int i, recent_used_cpu; 6335 6336 /* 6337 * On asymmetric system, update task utilization because we will check 6338 * that the task fits with cpu's capacity. 6339 */ 6340 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6341 sync_entity_load_avg(&p->se); 6342 task_util = uclamp_task_util(p); 6343 } 6344 6345 /* 6346 * per-cpu select_idle_mask usage 6347 */ 6348 lockdep_assert_irqs_disabled(); 6349 6350 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6351 asym_fits_capacity(task_util, target)) 6352 return target; 6353 6354 /* 6355 * If the previous CPU is cache affine and idle, don't be stupid: 6356 */ 6357 if (prev != target && cpus_share_cache(prev, target) && 6358 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6359 asym_fits_capacity(task_util, prev)) 6360 return prev; 6361 6362 /* 6363 * Allow a per-cpu kthread to stack with the wakee if the 6364 * kworker thread and the tasks previous CPUs are the same. 6365 * The assumption is that the wakee queued work for the 6366 * per-cpu kthread that is now complete and the wakeup is 6367 * essentially a sync wakeup. An obvious example of this 6368 * pattern is IO completions. 6369 */ 6370 if (is_per_cpu_kthread(current) && 6371 prev == smp_processor_id() && 6372 this_rq()->nr_running <= 1) { 6373 return prev; 6374 } 6375 6376 /* Check a recently used CPU as a potential idle candidate: */ 6377 recent_used_cpu = p->recent_used_cpu; 6378 if (recent_used_cpu != prev && 6379 recent_used_cpu != target && 6380 cpus_share_cache(recent_used_cpu, target) && 6381 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6382 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6383 asym_fits_capacity(task_util, recent_used_cpu)) { 6384 /* 6385 * Replace recent_used_cpu with prev as it is a potential 6386 * candidate for the next wake: 6387 */ 6388 p->recent_used_cpu = prev; 6389 return recent_used_cpu; 6390 } 6391 6392 /* 6393 * For asymmetric CPU capacity systems, our domain of interest is 6394 * sd_asym_cpucapacity rather than sd_llc. 6395 */ 6396 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6397 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6398 /* 6399 * On an asymmetric CPU capacity system where an exclusive 6400 * cpuset defines a symmetric island (i.e. one unique 6401 * capacity_orig value through the cpuset), the key will be set 6402 * but the CPUs within that cpuset will not have a domain with 6403 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6404 * capacity path. 6405 */ 6406 if (sd) { 6407 i = select_idle_capacity(p, sd, target); 6408 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6409 } 6410 } 6411 6412 sd = rcu_dereference(per_cpu(sd_llc, target)); 6413 if (!sd) 6414 return target; 6415 6416 if (sched_smt_active()) { 6417 has_idle_core = test_idle_cores(target, false); 6418 6419 if (!has_idle_core && cpus_share_cache(prev, target)) { 6420 i = select_idle_smt(p, sd, prev); 6421 if ((unsigned int)i < nr_cpumask_bits) 6422 return i; 6423 } 6424 } 6425 6426 i = select_idle_cpu(p, sd, has_idle_core, target); 6427 if ((unsigned)i < nr_cpumask_bits) 6428 return i; 6429 6430 return target; 6431 } 6432 6433 /** 6434 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks. 6435 * @cpu: the CPU to get the utilization of 6436 * 6437 * The unit of the return value must be the one of capacity so we can compare 6438 * the utilization with the capacity of the CPU that is available for CFS task 6439 * (ie cpu_capacity). 6440 * 6441 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6442 * recent utilization of currently non-runnable tasks on a CPU. It represents 6443 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6444 * capacity_orig is the cpu_capacity available at the highest frequency 6445 * (arch_scale_freq_capacity()). 6446 * The utilization of a CPU converges towards a sum equal to or less than the 6447 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6448 * the running time on this CPU scaled by capacity_curr. 6449 * 6450 * The estimated utilization of a CPU is defined to be the maximum between its 6451 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6452 * currently RUNNABLE on that CPU. 6453 * This allows to properly represent the expected utilization of a CPU which 6454 * has just got a big task running since a long sleep period. At the same time 6455 * however it preserves the benefits of the "blocked utilization" in 6456 * describing the potential for other tasks waking up on the same CPU. 6457 * 6458 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6459 * higher than capacity_orig because of unfortunate rounding in 6460 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6461 * the average stabilizes with the new running time. We need to check that the 6462 * utilization stays within the range of [0..capacity_orig] and cap it if 6463 * necessary. Without utilization capping, a group could be seen as overloaded 6464 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6465 * available capacity. We allow utilization to overshoot capacity_curr (but not 6466 * capacity_orig) as it useful for predicting the capacity required after task 6467 * migrations (scheduler-driven DVFS). 6468 * 6469 * Return: the (estimated) utilization for the specified CPU 6470 */ 6471 static inline unsigned long cpu_util(int cpu) 6472 { 6473 struct cfs_rq *cfs_rq; 6474 unsigned int util; 6475 6476 cfs_rq = &cpu_rq(cpu)->cfs; 6477 util = READ_ONCE(cfs_rq->avg.util_avg); 6478 6479 if (sched_feat(UTIL_EST)) 6480 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6481 6482 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6483 } 6484 6485 /* 6486 * cpu_util_without: compute cpu utilization without any contributions from *p 6487 * @cpu: the CPU which utilization is requested 6488 * @p: the task which utilization should be discounted 6489 * 6490 * The utilization of a CPU is defined by the utilization of tasks currently 6491 * enqueued on that CPU as well as tasks which are currently sleeping after an 6492 * execution on that CPU. 6493 * 6494 * This method returns the utilization of the specified CPU by discounting the 6495 * utilization of the specified task, whenever the task is currently 6496 * contributing to the CPU utilization. 6497 */ 6498 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6499 { 6500 struct cfs_rq *cfs_rq; 6501 unsigned int util; 6502 6503 /* Task has no contribution or is new */ 6504 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6505 return cpu_util(cpu); 6506 6507 cfs_rq = &cpu_rq(cpu)->cfs; 6508 util = READ_ONCE(cfs_rq->avg.util_avg); 6509 6510 /* Discount task's util from CPU's util */ 6511 lsub_positive(&util, task_util(p)); 6512 6513 /* 6514 * Covered cases: 6515 * 6516 * a) if *p is the only task sleeping on this CPU, then: 6517 * cpu_util (== task_util) > util_est (== 0) 6518 * and thus we return: 6519 * cpu_util_without = (cpu_util - task_util) = 0 6520 * 6521 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6522 * IDLE, then: 6523 * cpu_util >= task_util 6524 * cpu_util > util_est (== 0) 6525 * and thus we discount *p's blocked utilization to return: 6526 * cpu_util_without = (cpu_util - task_util) >= 0 6527 * 6528 * c) if other tasks are RUNNABLE on that CPU and 6529 * util_est > cpu_util 6530 * then we use util_est since it returns a more restrictive 6531 * estimation of the spare capacity on that CPU, by just 6532 * considering the expected utilization of tasks already 6533 * runnable on that CPU. 6534 * 6535 * Cases a) and b) are covered by the above code, while case c) is 6536 * covered by the following code when estimated utilization is 6537 * enabled. 6538 */ 6539 if (sched_feat(UTIL_EST)) { 6540 unsigned int estimated = 6541 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6542 6543 /* 6544 * Despite the following checks we still have a small window 6545 * for a possible race, when an execl's select_task_rq_fair() 6546 * races with LB's detach_task(): 6547 * 6548 * detach_task() 6549 * p->on_rq = TASK_ON_RQ_MIGRATING; 6550 * ---------------------------------- A 6551 * deactivate_task() \ 6552 * dequeue_task() + RaceTime 6553 * util_est_dequeue() / 6554 * ---------------------------------- B 6555 * 6556 * The additional check on "current == p" it's required to 6557 * properly fix the execl regression and it helps in further 6558 * reducing the chances for the above race. 6559 */ 6560 if (unlikely(task_on_rq_queued(p) || current == p)) 6561 lsub_positive(&estimated, _task_util_est(p)); 6562 6563 util = max(util, estimated); 6564 } 6565 6566 /* 6567 * Utilization (estimated) can exceed the CPU capacity, thus let's 6568 * clamp to the maximum CPU capacity to ensure consistency with 6569 * the cpu_util call. 6570 */ 6571 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6572 } 6573 6574 /* 6575 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6576 * to @dst_cpu. 6577 */ 6578 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6579 { 6580 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6581 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6582 6583 /* 6584 * If @p migrates from @cpu to another, remove its contribution. Or, 6585 * if @p migrates from another CPU to @cpu, add its contribution. In 6586 * the other cases, @cpu is not impacted by the migration, so the 6587 * util_avg should already be correct. 6588 */ 6589 if (task_cpu(p) == cpu && dst_cpu != cpu) 6590 lsub_positive(&util, task_util(p)); 6591 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6592 util += task_util(p); 6593 6594 if (sched_feat(UTIL_EST)) { 6595 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6596 6597 /* 6598 * During wake-up, the task isn't enqueued yet and doesn't 6599 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6600 * so just add it (if needed) to "simulate" what will be 6601 * cpu_util() after the task has been enqueued. 6602 */ 6603 if (dst_cpu == cpu) 6604 util_est += _task_util_est(p); 6605 6606 util = max(util, util_est); 6607 } 6608 6609 return min(util, capacity_orig_of(cpu)); 6610 } 6611 6612 /* 6613 * compute_energy(): Estimates the energy that @pd would consume if @p was 6614 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6615 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6616 * to compute what would be the energy if we decided to actually migrate that 6617 * task. 6618 */ 6619 static long 6620 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6621 { 6622 struct cpumask *pd_mask = perf_domain_span(pd); 6623 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6624 unsigned long max_util = 0, sum_util = 0; 6625 unsigned long _cpu_cap = cpu_cap; 6626 int cpu; 6627 6628 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask)); 6629 6630 /* 6631 * The capacity state of CPUs of the current rd can be driven by CPUs 6632 * of another rd if they belong to the same pd. So, account for the 6633 * utilization of these CPUs too by masking pd with cpu_online_mask 6634 * instead of the rd span. 6635 * 6636 * If an entire pd is outside of the current rd, it will not appear in 6637 * its pd list and will not be accounted by compute_energy(). 6638 */ 6639 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6640 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu); 6641 unsigned long cpu_util, util_running = util_freq; 6642 struct task_struct *tsk = NULL; 6643 6644 /* 6645 * When @p is placed on @cpu: 6646 * 6647 * util_running = max(cpu_util, cpu_util_est) + 6648 * max(task_util, _task_util_est) 6649 * 6650 * while cpu_util_next is: max(cpu_util + task_util, 6651 * cpu_util_est + _task_util_est) 6652 */ 6653 if (cpu == dst_cpu) { 6654 tsk = p; 6655 util_running = 6656 cpu_util_next(cpu, p, -1) + task_util_est(p); 6657 } 6658 6659 /* 6660 * Busy time computation: utilization clamping is not 6661 * required since the ratio (sum_util / cpu_capacity) 6662 * is already enough to scale the EM reported power 6663 * consumption at the (eventually clamped) cpu_capacity. 6664 */ 6665 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap, 6666 ENERGY_UTIL, NULL); 6667 6668 sum_util += min(cpu_util, _cpu_cap); 6669 6670 /* 6671 * Performance domain frequency: utilization clamping 6672 * must be considered since it affects the selection 6673 * of the performance domain frequency. 6674 * NOTE: in case RT tasks are running, by default the 6675 * FREQUENCY_UTIL's utilization can be max OPP. 6676 */ 6677 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap, 6678 FREQUENCY_UTIL, tsk); 6679 max_util = max(max_util, min(cpu_util, _cpu_cap)); 6680 } 6681 6682 return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap); 6683 } 6684 6685 /* 6686 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6687 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6688 * spare capacity in each performance domain and uses it as a potential 6689 * candidate to execute the task. Then, it uses the Energy Model to figure 6690 * out which of the CPU candidates is the most energy-efficient. 6691 * 6692 * The rationale for this heuristic is as follows. In a performance domain, 6693 * all the most energy efficient CPU candidates (according to the Energy 6694 * Model) are those for which we'll request a low frequency. When there are 6695 * several CPUs for which the frequency request will be the same, we don't 6696 * have enough data to break the tie between them, because the Energy Model 6697 * only includes active power costs. With this model, if we assume that 6698 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6699 * the maximum spare capacity in a performance domain is guaranteed to be among 6700 * the best candidates of the performance domain. 6701 * 6702 * In practice, it could be preferable from an energy standpoint to pack 6703 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6704 * but that could also hurt our chances to go cluster idle, and we have no 6705 * ways to tell with the current Energy Model if this is actually a good 6706 * idea or not. So, find_energy_efficient_cpu() basically favors 6707 * cluster-packing, and spreading inside a cluster. That should at least be 6708 * a good thing for latency, and this is consistent with the idea that most 6709 * of the energy savings of EAS come from the asymmetry of the system, and 6710 * not so much from breaking the tie between identical CPUs. That's also the 6711 * reason why EAS is enabled in the topology code only for systems where 6712 * SD_ASYM_CPUCAPACITY is set. 6713 * 6714 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6715 * they don't have any useful utilization data yet and it's not possible to 6716 * forecast their impact on energy consumption. Consequently, they will be 6717 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6718 * to be energy-inefficient in some use-cases. The alternative would be to 6719 * bias new tasks towards specific types of CPUs first, or to try to infer 6720 * their util_avg from the parent task, but those heuristics could hurt 6721 * other use-cases too. So, until someone finds a better way to solve this, 6722 * let's keep things simple by re-using the existing slow path. 6723 */ 6724 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6725 { 6726 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6727 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6728 int cpu, best_energy_cpu = prev_cpu, target = -1; 6729 unsigned long cpu_cap, util, base_energy = 0; 6730 struct sched_domain *sd; 6731 struct perf_domain *pd; 6732 6733 rcu_read_lock(); 6734 pd = rcu_dereference(rd->pd); 6735 if (!pd || READ_ONCE(rd->overutilized)) 6736 goto unlock; 6737 6738 /* 6739 * Energy-aware wake-up happens on the lowest sched_domain starting 6740 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6741 */ 6742 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6743 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6744 sd = sd->parent; 6745 if (!sd) 6746 goto unlock; 6747 6748 target = prev_cpu; 6749 6750 sync_entity_load_avg(&p->se); 6751 if (!task_util_est(p)) 6752 goto unlock; 6753 6754 for (; pd; pd = pd->next) { 6755 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6756 bool compute_prev_delta = false; 6757 unsigned long base_energy_pd; 6758 int max_spare_cap_cpu = -1; 6759 6760 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6761 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6762 continue; 6763 6764 util = cpu_util_next(cpu, p, cpu); 6765 cpu_cap = capacity_of(cpu); 6766 spare_cap = cpu_cap; 6767 lsub_positive(&spare_cap, util); 6768 6769 /* 6770 * Skip CPUs that cannot satisfy the capacity request. 6771 * IOW, placing the task there would make the CPU 6772 * overutilized. Take uclamp into account to see how 6773 * much capacity we can get out of the CPU; this is 6774 * aligned with sched_cpu_util(). 6775 */ 6776 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6777 if (!fits_capacity(util, cpu_cap)) 6778 continue; 6779 6780 if (cpu == prev_cpu) { 6781 /* Always use prev_cpu as a candidate. */ 6782 compute_prev_delta = true; 6783 } else if (spare_cap > max_spare_cap) { 6784 /* 6785 * Find the CPU with the maximum spare capacity 6786 * in the performance domain. 6787 */ 6788 max_spare_cap = spare_cap; 6789 max_spare_cap_cpu = cpu; 6790 } 6791 } 6792 6793 if (max_spare_cap_cpu < 0 && !compute_prev_delta) 6794 continue; 6795 6796 /* Compute the 'base' energy of the pd, without @p */ 6797 base_energy_pd = compute_energy(p, -1, pd); 6798 base_energy += base_energy_pd; 6799 6800 /* Evaluate the energy impact of using prev_cpu. */ 6801 if (compute_prev_delta) { 6802 prev_delta = compute_energy(p, prev_cpu, pd); 6803 if (prev_delta < base_energy_pd) 6804 goto unlock; 6805 prev_delta -= base_energy_pd; 6806 best_delta = min(best_delta, prev_delta); 6807 } 6808 6809 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 6810 if (max_spare_cap_cpu >= 0) { 6811 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6812 if (cur_delta < base_energy_pd) 6813 goto unlock; 6814 cur_delta -= base_energy_pd; 6815 if (cur_delta < best_delta) { 6816 best_delta = cur_delta; 6817 best_energy_cpu = max_spare_cap_cpu; 6818 } 6819 } 6820 } 6821 rcu_read_unlock(); 6822 6823 /* 6824 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6825 * least 6% of the energy used by prev_cpu. 6826 */ 6827 if ((prev_delta == ULONG_MAX) || 6828 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6829 target = best_energy_cpu; 6830 6831 return target; 6832 6833 unlock: 6834 rcu_read_unlock(); 6835 6836 return target; 6837 } 6838 6839 /* 6840 * select_task_rq_fair: Select target runqueue for the waking task in domains 6841 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 6842 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6843 * 6844 * Balances load by selecting the idlest CPU in the idlest group, or under 6845 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6846 * 6847 * Returns the target CPU number. 6848 */ 6849 static int 6850 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 6851 { 6852 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6853 struct sched_domain *tmp, *sd = NULL; 6854 int cpu = smp_processor_id(); 6855 int new_cpu = prev_cpu; 6856 int want_affine = 0; 6857 /* SD_flags and WF_flags share the first nibble */ 6858 int sd_flag = wake_flags & 0xF; 6859 6860 /* 6861 * required for stable ->cpus_allowed 6862 */ 6863 lockdep_assert_held(&p->pi_lock); 6864 if (wake_flags & WF_TTWU) { 6865 record_wakee(p); 6866 6867 if (sched_energy_enabled()) { 6868 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6869 if (new_cpu >= 0) 6870 return new_cpu; 6871 new_cpu = prev_cpu; 6872 } 6873 6874 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 6875 } 6876 6877 rcu_read_lock(); 6878 for_each_domain(cpu, tmp) { 6879 /* 6880 * If both 'cpu' and 'prev_cpu' are part of this domain, 6881 * cpu is a valid SD_WAKE_AFFINE target. 6882 */ 6883 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6884 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6885 if (cpu != prev_cpu) 6886 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6887 6888 sd = NULL; /* Prefer wake_affine over balance flags */ 6889 break; 6890 } 6891 6892 if (tmp->flags & sd_flag) 6893 sd = tmp; 6894 else if (!want_affine) 6895 break; 6896 } 6897 6898 if (unlikely(sd)) { 6899 /* Slow path */ 6900 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6901 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 6902 /* Fast path */ 6903 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6904 6905 if (want_affine) 6906 current->recent_used_cpu = cpu; 6907 } 6908 rcu_read_unlock(); 6909 6910 return new_cpu; 6911 } 6912 6913 static void detach_entity_cfs_rq(struct sched_entity *se); 6914 6915 /* 6916 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6917 * cfs_rq_of(p) references at time of call are still valid and identify the 6918 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6919 */ 6920 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6921 { 6922 /* 6923 * As blocked tasks retain absolute vruntime the migration needs to 6924 * deal with this by subtracting the old and adding the new 6925 * min_vruntime -- the latter is done by enqueue_entity() when placing 6926 * the task on the new runqueue. 6927 */ 6928 if (READ_ONCE(p->__state) == TASK_WAKING) { 6929 struct sched_entity *se = &p->se; 6930 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6931 u64 min_vruntime; 6932 6933 #ifndef CONFIG_64BIT 6934 u64 min_vruntime_copy; 6935 6936 do { 6937 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6938 smp_rmb(); 6939 min_vruntime = cfs_rq->min_vruntime; 6940 } while (min_vruntime != min_vruntime_copy); 6941 #else 6942 min_vruntime = cfs_rq->min_vruntime; 6943 #endif 6944 6945 se->vruntime -= min_vruntime; 6946 } 6947 6948 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6949 /* 6950 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6951 * rq->lock and can modify state directly. 6952 */ 6953 lockdep_assert_rq_held(task_rq(p)); 6954 detach_entity_cfs_rq(&p->se); 6955 6956 } else { 6957 /* 6958 * We are supposed to update the task to "current" time, then 6959 * its up to date and ready to go to new CPU/cfs_rq. But we 6960 * have difficulty in getting what current time is, so simply 6961 * throw away the out-of-date time. This will result in the 6962 * wakee task is less decayed, but giving the wakee more load 6963 * sounds not bad. 6964 */ 6965 remove_entity_load_avg(&p->se); 6966 } 6967 6968 /* Tell new CPU we are migrated */ 6969 p->se.avg.last_update_time = 0; 6970 6971 /* We have migrated, no longer consider this task hot */ 6972 p->se.exec_start = 0; 6973 6974 update_scan_period(p, new_cpu); 6975 } 6976 6977 static void task_dead_fair(struct task_struct *p) 6978 { 6979 remove_entity_load_avg(&p->se); 6980 } 6981 6982 static int 6983 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6984 { 6985 if (rq->nr_running) 6986 return 1; 6987 6988 return newidle_balance(rq, rf) != 0; 6989 } 6990 #endif /* CONFIG_SMP */ 6991 6992 static unsigned long wakeup_gran(struct sched_entity *se) 6993 { 6994 unsigned long gran = sysctl_sched_wakeup_granularity; 6995 6996 /* 6997 * Since its curr running now, convert the gran from real-time 6998 * to virtual-time in his units. 6999 * 7000 * By using 'se' instead of 'curr' we penalize light tasks, so 7001 * they get preempted easier. That is, if 'se' < 'curr' then 7002 * the resulting gran will be larger, therefore penalizing the 7003 * lighter, if otoh 'se' > 'curr' then the resulting gran will 7004 * be smaller, again penalizing the lighter task. 7005 * 7006 * This is especially important for buddies when the leftmost 7007 * task is higher priority than the buddy. 7008 */ 7009 return calc_delta_fair(gran, se); 7010 } 7011 7012 /* 7013 * Should 'se' preempt 'curr'. 7014 * 7015 * |s1 7016 * |s2 7017 * |s3 7018 * g 7019 * |<--->|c 7020 * 7021 * w(c, s1) = -1 7022 * w(c, s2) = 0 7023 * w(c, s3) = 1 7024 * 7025 */ 7026 static int 7027 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7028 { 7029 s64 gran, vdiff = curr->vruntime - se->vruntime; 7030 7031 if (vdiff <= 0) 7032 return -1; 7033 7034 gran = wakeup_gran(se); 7035 if (vdiff > gran) 7036 return 1; 7037 7038 return 0; 7039 } 7040 7041 static void set_last_buddy(struct sched_entity *se) 7042 { 7043 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 7044 return; 7045 7046 for_each_sched_entity(se) { 7047 if (SCHED_WARN_ON(!se->on_rq)) 7048 return; 7049 cfs_rq_of(se)->last = se; 7050 } 7051 } 7052 7053 static void set_next_buddy(struct sched_entity *se) 7054 { 7055 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 7056 return; 7057 7058 for_each_sched_entity(se) { 7059 if (SCHED_WARN_ON(!se->on_rq)) 7060 return; 7061 cfs_rq_of(se)->next = se; 7062 } 7063 } 7064 7065 static void set_skip_buddy(struct sched_entity *se) 7066 { 7067 for_each_sched_entity(se) 7068 cfs_rq_of(se)->skip = se; 7069 } 7070 7071 /* 7072 * Preempt the current task with a newly woken task if needed: 7073 */ 7074 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7075 { 7076 struct task_struct *curr = rq->curr; 7077 struct sched_entity *se = &curr->se, *pse = &p->se; 7078 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7079 int scale = cfs_rq->nr_running >= sched_nr_latency; 7080 int next_buddy_marked = 0; 7081 7082 if (unlikely(se == pse)) 7083 return; 7084 7085 /* 7086 * This is possible from callers such as attach_tasks(), in which we 7087 * unconditionally check_preempt_curr() after an enqueue (which may have 7088 * lead to a throttle). This both saves work and prevents false 7089 * next-buddy nomination below. 7090 */ 7091 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7092 return; 7093 7094 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7095 set_next_buddy(pse); 7096 next_buddy_marked = 1; 7097 } 7098 7099 /* 7100 * We can come here with TIF_NEED_RESCHED already set from new task 7101 * wake up path. 7102 * 7103 * Note: this also catches the edge-case of curr being in a throttled 7104 * group (e.g. via set_curr_task), since update_curr() (in the 7105 * enqueue of curr) will have resulted in resched being set. This 7106 * prevents us from potentially nominating it as a false LAST_BUDDY 7107 * below. 7108 */ 7109 if (test_tsk_need_resched(curr)) 7110 return; 7111 7112 /* Idle tasks are by definition preempted by non-idle tasks. */ 7113 if (unlikely(task_has_idle_policy(curr)) && 7114 likely(!task_has_idle_policy(p))) 7115 goto preempt; 7116 7117 /* 7118 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7119 * is driven by the tick): 7120 */ 7121 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7122 return; 7123 7124 find_matching_se(&se, &pse); 7125 update_curr(cfs_rq_of(se)); 7126 BUG_ON(!pse); 7127 if (wakeup_preempt_entity(se, pse) == 1) { 7128 /* 7129 * Bias pick_next to pick the sched entity that is 7130 * triggering this preemption. 7131 */ 7132 if (!next_buddy_marked) 7133 set_next_buddy(pse); 7134 goto preempt; 7135 } 7136 7137 return; 7138 7139 preempt: 7140 resched_curr(rq); 7141 /* 7142 * Only set the backward buddy when the current task is still 7143 * on the rq. This can happen when a wakeup gets interleaved 7144 * with schedule on the ->pre_schedule() or idle_balance() 7145 * point, either of which can * drop the rq lock. 7146 * 7147 * Also, during early boot the idle thread is in the fair class, 7148 * for obvious reasons its a bad idea to schedule back to it. 7149 */ 7150 if (unlikely(!se->on_rq || curr == rq->idle)) 7151 return; 7152 7153 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7154 set_last_buddy(se); 7155 } 7156 7157 #ifdef CONFIG_SMP 7158 static struct task_struct *pick_task_fair(struct rq *rq) 7159 { 7160 struct sched_entity *se; 7161 struct cfs_rq *cfs_rq; 7162 7163 again: 7164 cfs_rq = &rq->cfs; 7165 if (!cfs_rq->nr_running) 7166 return NULL; 7167 7168 do { 7169 struct sched_entity *curr = cfs_rq->curr; 7170 7171 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 7172 if (curr) { 7173 if (curr->on_rq) 7174 update_curr(cfs_rq); 7175 else 7176 curr = NULL; 7177 7178 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 7179 goto again; 7180 } 7181 7182 se = pick_next_entity(cfs_rq, curr); 7183 cfs_rq = group_cfs_rq(se); 7184 } while (cfs_rq); 7185 7186 return task_of(se); 7187 } 7188 #endif 7189 7190 struct task_struct * 7191 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7192 { 7193 struct cfs_rq *cfs_rq = &rq->cfs; 7194 struct sched_entity *se; 7195 struct task_struct *p; 7196 int new_tasks; 7197 7198 again: 7199 if (!sched_fair_runnable(rq)) 7200 goto idle; 7201 7202 #ifdef CONFIG_FAIR_GROUP_SCHED 7203 if (!prev || prev->sched_class != &fair_sched_class) 7204 goto simple; 7205 7206 /* 7207 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7208 * likely that a next task is from the same cgroup as the current. 7209 * 7210 * Therefore attempt to avoid putting and setting the entire cgroup 7211 * hierarchy, only change the part that actually changes. 7212 */ 7213 7214 do { 7215 struct sched_entity *curr = cfs_rq->curr; 7216 7217 /* 7218 * Since we got here without doing put_prev_entity() we also 7219 * have to consider cfs_rq->curr. If it is still a runnable 7220 * entity, update_curr() will update its vruntime, otherwise 7221 * forget we've ever seen it. 7222 */ 7223 if (curr) { 7224 if (curr->on_rq) 7225 update_curr(cfs_rq); 7226 else 7227 curr = NULL; 7228 7229 /* 7230 * This call to check_cfs_rq_runtime() will do the 7231 * throttle and dequeue its entity in the parent(s). 7232 * Therefore the nr_running test will indeed 7233 * be correct. 7234 */ 7235 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7236 cfs_rq = &rq->cfs; 7237 7238 if (!cfs_rq->nr_running) 7239 goto idle; 7240 7241 goto simple; 7242 } 7243 } 7244 7245 se = pick_next_entity(cfs_rq, curr); 7246 cfs_rq = group_cfs_rq(se); 7247 } while (cfs_rq); 7248 7249 p = task_of(se); 7250 7251 /* 7252 * Since we haven't yet done put_prev_entity and if the selected task 7253 * is a different task than we started out with, try and touch the 7254 * least amount of cfs_rqs. 7255 */ 7256 if (prev != p) { 7257 struct sched_entity *pse = &prev->se; 7258 7259 while (!(cfs_rq = is_same_group(se, pse))) { 7260 int se_depth = se->depth; 7261 int pse_depth = pse->depth; 7262 7263 if (se_depth <= pse_depth) { 7264 put_prev_entity(cfs_rq_of(pse), pse); 7265 pse = parent_entity(pse); 7266 } 7267 if (se_depth >= pse_depth) { 7268 set_next_entity(cfs_rq_of(se), se); 7269 se = parent_entity(se); 7270 } 7271 } 7272 7273 put_prev_entity(cfs_rq, pse); 7274 set_next_entity(cfs_rq, se); 7275 } 7276 7277 goto done; 7278 simple: 7279 #endif 7280 if (prev) 7281 put_prev_task(rq, prev); 7282 7283 do { 7284 se = pick_next_entity(cfs_rq, NULL); 7285 set_next_entity(cfs_rq, se); 7286 cfs_rq = group_cfs_rq(se); 7287 } while (cfs_rq); 7288 7289 p = task_of(se); 7290 7291 done: __maybe_unused; 7292 #ifdef CONFIG_SMP 7293 /* 7294 * Move the next running task to the front of 7295 * the list, so our cfs_tasks list becomes MRU 7296 * one. 7297 */ 7298 list_move(&p->se.group_node, &rq->cfs_tasks); 7299 #endif 7300 7301 if (hrtick_enabled_fair(rq)) 7302 hrtick_start_fair(rq, p); 7303 7304 update_misfit_status(p, rq); 7305 7306 return p; 7307 7308 idle: 7309 if (!rf) 7310 return NULL; 7311 7312 new_tasks = newidle_balance(rq, rf); 7313 7314 /* 7315 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7316 * possible for any higher priority task to appear. In that case we 7317 * must re-start the pick_next_entity() loop. 7318 */ 7319 if (new_tasks < 0) 7320 return RETRY_TASK; 7321 7322 if (new_tasks > 0) 7323 goto again; 7324 7325 /* 7326 * rq is about to be idle, check if we need to update the 7327 * lost_idle_time of clock_pelt 7328 */ 7329 update_idle_rq_clock_pelt(rq); 7330 7331 return NULL; 7332 } 7333 7334 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7335 { 7336 return pick_next_task_fair(rq, NULL, NULL); 7337 } 7338 7339 /* 7340 * Account for a descheduled task: 7341 */ 7342 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7343 { 7344 struct sched_entity *se = &prev->se; 7345 struct cfs_rq *cfs_rq; 7346 7347 for_each_sched_entity(se) { 7348 cfs_rq = cfs_rq_of(se); 7349 put_prev_entity(cfs_rq, se); 7350 } 7351 } 7352 7353 /* 7354 * sched_yield() is very simple 7355 * 7356 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7357 */ 7358 static void yield_task_fair(struct rq *rq) 7359 { 7360 struct task_struct *curr = rq->curr; 7361 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7362 struct sched_entity *se = &curr->se; 7363 7364 /* 7365 * Are we the only task in the tree? 7366 */ 7367 if (unlikely(rq->nr_running == 1)) 7368 return; 7369 7370 clear_buddies(cfs_rq, se); 7371 7372 if (curr->policy != SCHED_BATCH) { 7373 update_rq_clock(rq); 7374 /* 7375 * Update run-time statistics of the 'current'. 7376 */ 7377 update_curr(cfs_rq); 7378 /* 7379 * Tell update_rq_clock() that we've just updated, 7380 * so we don't do microscopic update in schedule() 7381 * and double the fastpath cost. 7382 */ 7383 rq_clock_skip_update(rq); 7384 } 7385 7386 set_skip_buddy(se); 7387 } 7388 7389 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7390 { 7391 struct sched_entity *se = &p->se; 7392 7393 /* throttled hierarchies are not runnable */ 7394 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7395 return false; 7396 7397 /* Tell the scheduler that we'd really like pse to run next. */ 7398 set_next_buddy(se); 7399 7400 yield_task_fair(rq); 7401 7402 return true; 7403 } 7404 7405 #ifdef CONFIG_SMP 7406 /************************************************** 7407 * Fair scheduling class load-balancing methods. 7408 * 7409 * BASICS 7410 * 7411 * The purpose of load-balancing is to achieve the same basic fairness the 7412 * per-CPU scheduler provides, namely provide a proportional amount of compute 7413 * time to each task. This is expressed in the following equation: 7414 * 7415 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7416 * 7417 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7418 * W_i,0 is defined as: 7419 * 7420 * W_i,0 = \Sum_j w_i,j (2) 7421 * 7422 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7423 * is derived from the nice value as per sched_prio_to_weight[]. 7424 * 7425 * The weight average is an exponential decay average of the instantaneous 7426 * weight: 7427 * 7428 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7429 * 7430 * C_i is the compute capacity of CPU i, typically it is the 7431 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7432 * can also include other factors [XXX]. 7433 * 7434 * To achieve this balance we define a measure of imbalance which follows 7435 * directly from (1): 7436 * 7437 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7438 * 7439 * We them move tasks around to minimize the imbalance. In the continuous 7440 * function space it is obvious this converges, in the discrete case we get 7441 * a few fun cases generally called infeasible weight scenarios. 7442 * 7443 * [XXX expand on: 7444 * - infeasible weights; 7445 * - local vs global optima in the discrete case. ] 7446 * 7447 * 7448 * SCHED DOMAINS 7449 * 7450 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7451 * for all i,j solution, we create a tree of CPUs that follows the hardware 7452 * topology where each level pairs two lower groups (or better). This results 7453 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7454 * tree to only the first of the previous level and we decrease the frequency 7455 * of load-balance at each level inv. proportional to the number of CPUs in 7456 * the groups. 7457 * 7458 * This yields: 7459 * 7460 * log_2 n 1 n 7461 * \Sum { --- * --- * 2^i } = O(n) (5) 7462 * i = 0 2^i 2^i 7463 * `- size of each group 7464 * | | `- number of CPUs doing load-balance 7465 * | `- freq 7466 * `- sum over all levels 7467 * 7468 * Coupled with a limit on how many tasks we can migrate every balance pass, 7469 * this makes (5) the runtime complexity of the balancer. 7470 * 7471 * An important property here is that each CPU is still (indirectly) connected 7472 * to every other CPU in at most O(log n) steps: 7473 * 7474 * The adjacency matrix of the resulting graph is given by: 7475 * 7476 * log_2 n 7477 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7478 * k = 0 7479 * 7480 * And you'll find that: 7481 * 7482 * A^(log_2 n)_i,j != 0 for all i,j (7) 7483 * 7484 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7485 * The task movement gives a factor of O(m), giving a convergence complexity 7486 * of: 7487 * 7488 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7489 * 7490 * 7491 * WORK CONSERVING 7492 * 7493 * In order to avoid CPUs going idle while there's still work to do, new idle 7494 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7495 * tree itself instead of relying on other CPUs to bring it work. 7496 * 7497 * This adds some complexity to both (5) and (8) but it reduces the total idle 7498 * time. 7499 * 7500 * [XXX more?] 7501 * 7502 * 7503 * CGROUPS 7504 * 7505 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7506 * 7507 * s_k,i 7508 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7509 * S_k 7510 * 7511 * Where 7512 * 7513 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7514 * 7515 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7516 * 7517 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7518 * property. 7519 * 7520 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7521 * rewrite all of this once again.] 7522 */ 7523 7524 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7525 7526 enum fbq_type { regular, remote, all }; 7527 7528 /* 7529 * 'group_type' describes the group of CPUs at the moment of load balancing. 7530 * 7531 * The enum is ordered by pulling priority, with the group with lowest priority 7532 * first so the group_type can simply be compared when selecting the busiest 7533 * group. See update_sd_pick_busiest(). 7534 */ 7535 enum group_type { 7536 /* The group has spare capacity that can be used to run more tasks. */ 7537 group_has_spare = 0, 7538 /* 7539 * The group is fully used and the tasks don't compete for more CPU 7540 * cycles. Nevertheless, some tasks might wait before running. 7541 */ 7542 group_fully_busy, 7543 /* 7544 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7545 * and must be migrated to a more powerful CPU. 7546 */ 7547 group_misfit_task, 7548 /* 7549 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7550 * and the task should be migrated to it instead of running on the 7551 * current CPU. 7552 */ 7553 group_asym_packing, 7554 /* 7555 * The tasks' affinity constraints previously prevented the scheduler 7556 * from balancing the load across the system. 7557 */ 7558 group_imbalanced, 7559 /* 7560 * The CPU is overloaded and can't provide expected CPU cycles to all 7561 * tasks. 7562 */ 7563 group_overloaded 7564 }; 7565 7566 enum migration_type { 7567 migrate_load = 0, 7568 migrate_util, 7569 migrate_task, 7570 migrate_misfit 7571 }; 7572 7573 #define LBF_ALL_PINNED 0x01 7574 #define LBF_NEED_BREAK 0x02 7575 #define LBF_DST_PINNED 0x04 7576 #define LBF_SOME_PINNED 0x08 7577 #define LBF_ACTIVE_LB 0x10 7578 7579 struct lb_env { 7580 struct sched_domain *sd; 7581 7582 struct rq *src_rq; 7583 int src_cpu; 7584 7585 int dst_cpu; 7586 struct rq *dst_rq; 7587 7588 struct cpumask *dst_grpmask; 7589 int new_dst_cpu; 7590 enum cpu_idle_type idle; 7591 long imbalance; 7592 /* The set of CPUs under consideration for load-balancing */ 7593 struct cpumask *cpus; 7594 7595 unsigned int flags; 7596 7597 unsigned int loop; 7598 unsigned int loop_break; 7599 unsigned int loop_max; 7600 7601 enum fbq_type fbq_type; 7602 enum migration_type migration_type; 7603 struct list_head tasks; 7604 }; 7605 7606 /* 7607 * Is this task likely cache-hot: 7608 */ 7609 static int task_hot(struct task_struct *p, struct lb_env *env) 7610 { 7611 s64 delta; 7612 7613 lockdep_assert_rq_held(env->src_rq); 7614 7615 if (p->sched_class != &fair_sched_class) 7616 return 0; 7617 7618 if (unlikely(task_has_idle_policy(p))) 7619 return 0; 7620 7621 /* SMT siblings share cache */ 7622 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 7623 return 0; 7624 7625 /* 7626 * Buddy candidates are cache hot: 7627 */ 7628 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7629 (&p->se == cfs_rq_of(&p->se)->next || 7630 &p->se == cfs_rq_of(&p->se)->last)) 7631 return 1; 7632 7633 if (sysctl_sched_migration_cost == -1) 7634 return 1; 7635 7636 /* 7637 * Don't migrate task if the task's cookie does not match 7638 * with the destination CPU's core cookie. 7639 */ 7640 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 7641 return 1; 7642 7643 if (sysctl_sched_migration_cost == 0) 7644 return 0; 7645 7646 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7647 7648 return delta < (s64)sysctl_sched_migration_cost; 7649 } 7650 7651 #ifdef CONFIG_NUMA_BALANCING 7652 /* 7653 * Returns 1, if task migration degrades locality 7654 * Returns 0, if task migration improves locality i.e migration preferred. 7655 * Returns -1, if task migration is not affected by locality. 7656 */ 7657 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7658 { 7659 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7660 unsigned long src_weight, dst_weight; 7661 int src_nid, dst_nid, dist; 7662 7663 if (!static_branch_likely(&sched_numa_balancing)) 7664 return -1; 7665 7666 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7667 return -1; 7668 7669 src_nid = cpu_to_node(env->src_cpu); 7670 dst_nid = cpu_to_node(env->dst_cpu); 7671 7672 if (src_nid == dst_nid) 7673 return -1; 7674 7675 /* Migrating away from the preferred node is always bad. */ 7676 if (src_nid == p->numa_preferred_nid) { 7677 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7678 return 1; 7679 else 7680 return -1; 7681 } 7682 7683 /* Encourage migration to the preferred node. */ 7684 if (dst_nid == p->numa_preferred_nid) 7685 return 0; 7686 7687 /* Leaving a core idle is often worse than degrading locality. */ 7688 if (env->idle == CPU_IDLE) 7689 return -1; 7690 7691 dist = node_distance(src_nid, dst_nid); 7692 if (numa_group) { 7693 src_weight = group_weight(p, src_nid, dist); 7694 dst_weight = group_weight(p, dst_nid, dist); 7695 } else { 7696 src_weight = task_weight(p, src_nid, dist); 7697 dst_weight = task_weight(p, dst_nid, dist); 7698 } 7699 7700 return dst_weight < src_weight; 7701 } 7702 7703 #else 7704 static inline int migrate_degrades_locality(struct task_struct *p, 7705 struct lb_env *env) 7706 { 7707 return -1; 7708 } 7709 #endif 7710 7711 /* 7712 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7713 */ 7714 static 7715 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7716 { 7717 int tsk_cache_hot; 7718 7719 lockdep_assert_rq_held(env->src_rq); 7720 7721 /* 7722 * We do not migrate tasks that are: 7723 * 1) throttled_lb_pair, or 7724 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7725 * 3) running (obviously), or 7726 * 4) are cache-hot on their current CPU. 7727 */ 7728 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7729 return 0; 7730 7731 /* Disregard pcpu kthreads; they are where they need to be. */ 7732 if (kthread_is_per_cpu(p)) 7733 return 0; 7734 7735 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7736 int cpu; 7737 7738 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7739 7740 env->flags |= LBF_SOME_PINNED; 7741 7742 /* 7743 * Remember if this task can be migrated to any other CPU in 7744 * our sched_group. We may want to revisit it if we couldn't 7745 * meet load balance goals by pulling other tasks on src_cpu. 7746 * 7747 * Avoid computing new_dst_cpu 7748 * - for NEWLY_IDLE 7749 * - if we have already computed one in current iteration 7750 * - if it's an active balance 7751 */ 7752 if (env->idle == CPU_NEWLY_IDLE || 7753 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 7754 return 0; 7755 7756 /* Prevent to re-select dst_cpu via env's CPUs: */ 7757 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7758 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7759 env->flags |= LBF_DST_PINNED; 7760 env->new_dst_cpu = cpu; 7761 break; 7762 } 7763 } 7764 7765 return 0; 7766 } 7767 7768 /* Record that we found at least one task that could run on dst_cpu */ 7769 env->flags &= ~LBF_ALL_PINNED; 7770 7771 if (task_running(env->src_rq, p)) { 7772 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7773 return 0; 7774 } 7775 7776 /* 7777 * Aggressive migration if: 7778 * 1) active balance 7779 * 2) destination numa is preferred 7780 * 3) task is cache cold, or 7781 * 4) too many balance attempts have failed. 7782 */ 7783 if (env->flags & LBF_ACTIVE_LB) 7784 return 1; 7785 7786 tsk_cache_hot = migrate_degrades_locality(p, env); 7787 if (tsk_cache_hot == -1) 7788 tsk_cache_hot = task_hot(p, env); 7789 7790 if (tsk_cache_hot <= 0 || 7791 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7792 if (tsk_cache_hot == 1) { 7793 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7794 schedstat_inc(p->se.statistics.nr_forced_migrations); 7795 } 7796 return 1; 7797 } 7798 7799 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7800 return 0; 7801 } 7802 7803 /* 7804 * detach_task() -- detach the task for the migration specified in env 7805 */ 7806 static void detach_task(struct task_struct *p, struct lb_env *env) 7807 { 7808 lockdep_assert_rq_held(env->src_rq); 7809 7810 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7811 set_task_cpu(p, env->dst_cpu); 7812 } 7813 7814 /* 7815 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7816 * part of active balancing operations within "domain". 7817 * 7818 * Returns a task if successful and NULL otherwise. 7819 */ 7820 static struct task_struct *detach_one_task(struct lb_env *env) 7821 { 7822 struct task_struct *p; 7823 7824 lockdep_assert_rq_held(env->src_rq); 7825 7826 list_for_each_entry_reverse(p, 7827 &env->src_rq->cfs_tasks, se.group_node) { 7828 if (!can_migrate_task(p, env)) 7829 continue; 7830 7831 detach_task(p, env); 7832 7833 /* 7834 * Right now, this is only the second place where 7835 * lb_gained[env->idle] is updated (other is detach_tasks) 7836 * so we can safely collect stats here rather than 7837 * inside detach_tasks(). 7838 */ 7839 schedstat_inc(env->sd->lb_gained[env->idle]); 7840 return p; 7841 } 7842 return NULL; 7843 } 7844 7845 static const unsigned int sched_nr_migrate_break = 32; 7846 7847 /* 7848 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7849 * busiest_rq, as part of a balancing operation within domain "sd". 7850 * 7851 * Returns number of detached tasks if successful and 0 otherwise. 7852 */ 7853 static int detach_tasks(struct lb_env *env) 7854 { 7855 struct list_head *tasks = &env->src_rq->cfs_tasks; 7856 unsigned long util, load; 7857 struct task_struct *p; 7858 int detached = 0; 7859 7860 lockdep_assert_rq_held(env->src_rq); 7861 7862 /* 7863 * Source run queue has been emptied by another CPU, clear 7864 * LBF_ALL_PINNED flag as we will not test any task. 7865 */ 7866 if (env->src_rq->nr_running <= 1) { 7867 env->flags &= ~LBF_ALL_PINNED; 7868 return 0; 7869 } 7870 7871 if (env->imbalance <= 0) 7872 return 0; 7873 7874 while (!list_empty(tasks)) { 7875 /* 7876 * We don't want to steal all, otherwise we may be treated likewise, 7877 * which could at worst lead to a livelock crash. 7878 */ 7879 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7880 break; 7881 7882 p = list_last_entry(tasks, struct task_struct, se.group_node); 7883 7884 env->loop++; 7885 /* We've more or less seen every task there is, call it quits */ 7886 if (env->loop > env->loop_max) 7887 break; 7888 7889 /* take a breather every nr_migrate tasks */ 7890 if (env->loop > env->loop_break) { 7891 env->loop_break += sched_nr_migrate_break; 7892 env->flags |= LBF_NEED_BREAK; 7893 break; 7894 } 7895 7896 if (!can_migrate_task(p, env)) 7897 goto next; 7898 7899 switch (env->migration_type) { 7900 case migrate_load: 7901 /* 7902 * Depending of the number of CPUs and tasks and the 7903 * cgroup hierarchy, task_h_load() can return a null 7904 * value. Make sure that env->imbalance decreases 7905 * otherwise detach_tasks() will stop only after 7906 * detaching up to loop_max tasks. 7907 */ 7908 load = max_t(unsigned long, task_h_load(p), 1); 7909 7910 if (sched_feat(LB_MIN) && 7911 load < 16 && !env->sd->nr_balance_failed) 7912 goto next; 7913 7914 /* 7915 * Make sure that we don't migrate too much load. 7916 * Nevertheless, let relax the constraint if 7917 * scheduler fails to find a good waiting task to 7918 * migrate. 7919 */ 7920 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 7921 goto next; 7922 7923 env->imbalance -= load; 7924 break; 7925 7926 case migrate_util: 7927 util = task_util_est(p); 7928 7929 if (util > env->imbalance) 7930 goto next; 7931 7932 env->imbalance -= util; 7933 break; 7934 7935 case migrate_task: 7936 env->imbalance--; 7937 break; 7938 7939 case migrate_misfit: 7940 /* This is not a misfit task */ 7941 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 7942 goto next; 7943 7944 env->imbalance = 0; 7945 break; 7946 } 7947 7948 detach_task(p, env); 7949 list_add(&p->se.group_node, &env->tasks); 7950 7951 detached++; 7952 7953 #ifdef CONFIG_PREEMPTION 7954 /* 7955 * NEWIDLE balancing is a source of latency, so preemptible 7956 * kernels will stop after the first task is detached to minimize 7957 * the critical section. 7958 */ 7959 if (env->idle == CPU_NEWLY_IDLE) 7960 break; 7961 #endif 7962 7963 /* 7964 * We only want to steal up to the prescribed amount of 7965 * load/util/tasks. 7966 */ 7967 if (env->imbalance <= 0) 7968 break; 7969 7970 continue; 7971 next: 7972 list_move(&p->se.group_node, tasks); 7973 } 7974 7975 /* 7976 * Right now, this is one of only two places we collect this stat 7977 * so we can safely collect detach_one_task() stats here rather 7978 * than inside detach_one_task(). 7979 */ 7980 schedstat_add(env->sd->lb_gained[env->idle], detached); 7981 7982 return detached; 7983 } 7984 7985 /* 7986 * attach_task() -- attach the task detached by detach_task() to its new rq. 7987 */ 7988 static void attach_task(struct rq *rq, struct task_struct *p) 7989 { 7990 lockdep_assert_rq_held(rq); 7991 7992 BUG_ON(task_rq(p) != rq); 7993 activate_task(rq, p, ENQUEUE_NOCLOCK); 7994 check_preempt_curr(rq, p, 0); 7995 } 7996 7997 /* 7998 * attach_one_task() -- attaches the task returned from detach_one_task() to 7999 * its new rq. 8000 */ 8001 static void attach_one_task(struct rq *rq, struct task_struct *p) 8002 { 8003 struct rq_flags rf; 8004 8005 rq_lock(rq, &rf); 8006 update_rq_clock(rq); 8007 attach_task(rq, p); 8008 rq_unlock(rq, &rf); 8009 } 8010 8011 /* 8012 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8013 * new rq. 8014 */ 8015 static void attach_tasks(struct lb_env *env) 8016 { 8017 struct list_head *tasks = &env->tasks; 8018 struct task_struct *p; 8019 struct rq_flags rf; 8020 8021 rq_lock(env->dst_rq, &rf); 8022 update_rq_clock(env->dst_rq); 8023 8024 while (!list_empty(tasks)) { 8025 p = list_first_entry(tasks, struct task_struct, se.group_node); 8026 list_del_init(&p->se.group_node); 8027 8028 attach_task(env->dst_rq, p); 8029 } 8030 8031 rq_unlock(env->dst_rq, &rf); 8032 } 8033 8034 #ifdef CONFIG_NO_HZ_COMMON 8035 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8036 { 8037 if (cfs_rq->avg.load_avg) 8038 return true; 8039 8040 if (cfs_rq->avg.util_avg) 8041 return true; 8042 8043 return false; 8044 } 8045 8046 static inline bool others_have_blocked(struct rq *rq) 8047 { 8048 if (READ_ONCE(rq->avg_rt.util_avg)) 8049 return true; 8050 8051 if (READ_ONCE(rq->avg_dl.util_avg)) 8052 return true; 8053 8054 if (thermal_load_avg(rq)) 8055 return true; 8056 8057 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8058 if (READ_ONCE(rq->avg_irq.util_avg)) 8059 return true; 8060 #endif 8061 8062 return false; 8063 } 8064 8065 static inline void update_blocked_load_tick(struct rq *rq) 8066 { 8067 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8068 } 8069 8070 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8071 { 8072 if (!has_blocked) 8073 rq->has_blocked_load = 0; 8074 } 8075 #else 8076 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8077 static inline bool others_have_blocked(struct rq *rq) { return false; } 8078 static inline void update_blocked_load_tick(struct rq *rq) {} 8079 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8080 #endif 8081 8082 static bool __update_blocked_others(struct rq *rq, bool *done) 8083 { 8084 const struct sched_class *curr_class; 8085 u64 now = rq_clock_pelt(rq); 8086 unsigned long thermal_pressure; 8087 bool decayed; 8088 8089 /* 8090 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8091 * DL and IRQ signals have been updated before updating CFS. 8092 */ 8093 curr_class = rq->curr->sched_class; 8094 8095 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8096 8097 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8098 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8099 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8100 update_irq_load_avg(rq, 0); 8101 8102 if (others_have_blocked(rq)) 8103 *done = false; 8104 8105 return decayed; 8106 } 8107 8108 #ifdef CONFIG_FAIR_GROUP_SCHED 8109 8110 static bool __update_blocked_fair(struct rq *rq, bool *done) 8111 { 8112 struct cfs_rq *cfs_rq, *pos; 8113 bool decayed = false; 8114 int cpu = cpu_of(rq); 8115 8116 /* 8117 * Iterates the task_group tree in a bottom up fashion, see 8118 * list_add_leaf_cfs_rq() for details. 8119 */ 8120 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8121 struct sched_entity *se; 8122 8123 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8124 update_tg_load_avg(cfs_rq); 8125 8126 if (cfs_rq == &rq->cfs) 8127 decayed = true; 8128 } 8129 8130 /* Propagate pending load changes to the parent, if any: */ 8131 se = cfs_rq->tg->se[cpu]; 8132 if (se && !skip_blocked_update(se)) 8133 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8134 8135 /* 8136 * There can be a lot of idle CPU cgroups. Don't let fully 8137 * decayed cfs_rqs linger on the list. 8138 */ 8139 if (cfs_rq_is_decayed(cfs_rq)) 8140 list_del_leaf_cfs_rq(cfs_rq); 8141 8142 /* Don't need periodic decay once load/util_avg are null */ 8143 if (cfs_rq_has_blocked(cfs_rq)) 8144 *done = false; 8145 } 8146 8147 return decayed; 8148 } 8149 8150 /* 8151 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8152 * This needs to be done in a top-down fashion because the load of a child 8153 * group is a fraction of its parents load. 8154 */ 8155 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8156 { 8157 struct rq *rq = rq_of(cfs_rq); 8158 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8159 unsigned long now = jiffies; 8160 unsigned long load; 8161 8162 if (cfs_rq->last_h_load_update == now) 8163 return; 8164 8165 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8166 for_each_sched_entity(se) { 8167 cfs_rq = cfs_rq_of(se); 8168 WRITE_ONCE(cfs_rq->h_load_next, se); 8169 if (cfs_rq->last_h_load_update == now) 8170 break; 8171 } 8172 8173 if (!se) { 8174 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8175 cfs_rq->last_h_load_update = now; 8176 } 8177 8178 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8179 load = cfs_rq->h_load; 8180 load = div64_ul(load * se->avg.load_avg, 8181 cfs_rq_load_avg(cfs_rq) + 1); 8182 cfs_rq = group_cfs_rq(se); 8183 cfs_rq->h_load = load; 8184 cfs_rq->last_h_load_update = now; 8185 } 8186 } 8187 8188 static unsigned long task_h_load(struct task_struct *p) 8189 { 8190 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8191 8192 update_cfs_rq_h_load(cfs_rq); 8193 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8194 cfs_rq_load_avg(cfs_rq) + 1); 8195 } 8196 #else 8197 static bool __update_blocked_fair(struct rq *rq, bool *done) 8198 { 8199 struct cfs_rq *cfs_rq = &rq->cfs; 8200 bool decayed; 8201 8202 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8203 if (cfs_rq_has_blocked(cfs_rq)) 8204 *done = false; 8205 8206 return decayed; 8207 } 8208 8209 static unsigned long task_h_load(struct task_struct *p) 8210 { 8211 return p->se.avg.load_avg; 8212 } 8213 #endif 8214 8215 static void update_blocked_averages(int cpu) 8216 { 8217 bool decayed = false, done = true; 8218 struct rq *rq = cpu_rq(cpu); 8219 struct rq_flags rf; 8220 8221 rq_lock_irqsave(rq, &rf); 8222 update_blocked_load_tick(rq); 8223 update_rq_clock(rq); 8224 8225 decayed |= __update_blocked_others(rq, &done); 8226 decayed |= __update_blocked_fair(rq, &done); 8227 8228 update_blocked_load_status(rq, !done); 8229 if (decayed) 8230 cpufreq_update_util(rq, 0); 8231 rq_unlock_irqrestore(rq, &rf); 8232 } 8233 8234 /********** Helpers for find_busiest_group ************************/ 8235 8236 /* 8237 * sg_lb_stats - stats of a sched_group required for load_balancing 8238 */ 8239 struct sg_lb_stats { 8240 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8241 unsigned long group_load; /* Total load over the CPUs of the group */ 8242 unsigned long group_capacity; 8243 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8244 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8245 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8246 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8247 unsigned int idle_cpus; 8248 unsigned int group_weight; 8249 enum group_type group_type; 8250 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8251 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8252 #ifdef CONFIG_NUMA_BALANCING 8253 unsigned int nr_numa_running; 8254 unsigned int nr_preferred_running; 8255 #endif 8256 }; 8257 8258 /* 8259 * sd_lb_stats - Structure to store the statistics of a sched_domain 8260 * during load balancing. 8261 */ 8262 struct sd_lb_stats { 8263 struct sched_group *busiest; /* Busiest group in this sd */ 8264 struct sched_group *local; /* Local group in this sd */ 8265 unsigned long total_load; /* Total load of all groups in sd */ 8266 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8267 unsigned long avg_load; /* Average load across all groups in sd */ 8268 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8269 8270 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8271 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8272 }; 8273 8274 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8275 { 8276 /* 8277 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8278 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8279 * We must however set busiest_stat::group_type and 8280 * busiest_stat::idle_cpus to the worst busiest group because 8281 * update_sd_pick_busiest() reads these before assignment. 8282 */ 8283 *sds = (struct sd_lb_stats){ 8284 .busiest = NULL, 8285 .local = NULL, 8286 .total_load = 0UL, 8287 .total_capacity = 0UL, 8288 .busiest_stat = { 8289 .idle_cpus = UINT_MAX, 8290 .group_type = group_has_spare, 8291 }, 8292 }; 8293 } 8294 8295 static unsigned long scale_rt_capacity(int cpu) 8296 { 8297 struct rq *rq = cpu_rq(cpu); 8298 unsigned long max = arch_scale_cpu_capacity(cpu); 8299 unsigned long used, free; 8300 unsigned long irq; 8301 8302 irq = cpu_util_irq(rq); 8303 8304 if (unlikely(irq >= max)) 8305 return 1; 8306 8307 /* 8308 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8309 * (running and not running) with weights 0 and 1024 respectively. 8310 * avg_thermal.load_avg tracks thermal pressure and the weighted 8311 * average uses the actual delta max capacity(load). 8312 */ 8313 used = READ_ONCE(rq->avg_rt.util_avg); 8314 used += READ_ONCE(rq->avg_dl.util_avg); 8315 used += thermal_load_avg(rq); 8316 8317 if (unlikely(used >= max)) 8318 return 1; 8319 8320 free = max - used; 8321 8322 return scale_irq_capacity(free, irq, max); 8323 } 8324 8325 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8326 { 8327 unsigned long capacity = scale_rt_capacity(cpu); 8328 struct sched_group *sdg = sd->groups; 8329 8330 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8331 8332 if (!capacity) 8333 capacity = 1; 8334 8335 cpu_rq(cpu)->cpu_capacity = capacity; 8336 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 8337 8338 sdg->sgc->capacity = capacity; 8339 sdg->sgc->min_capacity = capacity; 8340 sdg->sgc->max_capacity = capacity; 8341 } 8342 8343 void update_group_capacity(struct sched_domain *sd, int cpu) 8344 { 8345 struct sched_domain *child = sd->child; 8346 struct sched_group *group, *sdg = sd->groups; 8347 unsigned long capacity, min_capacity, max_capacity; 8348 unsigned long interval; 8349 8350 interval = msecs_to_jiffies(sd->balance_interval); 8351 interval = clamp(interval, 1UL, max_load_balance_interval); 8352 sdg->sgc->next_update = jiffies + interval; 8353 8354 if (!child) { 8355 update_cpu_capacity(sd, cpu); 8356 return; 8357 } 8358 8359 capacity = 0; 8360 min_capacity = ULONG_MAX; 8361 max_capacity = 0; 8362 8363 if (child->flags & SD_OVERLAP) { 8364 /* 8365 * SD_OVERLAP domains cannot assume that child groups 8366 * span the current group. 8367 */ 8368 8369 for_each_cpu(cpu, sched_group_span(sdg)) { 8370 unsigned long cpu_cap = capacity_of(cpu); 8371 8372 capacity += cpu_cap; 8373 min_capacity = min(cpu_cap, min_capacity); 8374 max_capacity = max(cpu_cap, max_capacity); 8375 } 8376 } else { 8377 /* 8378 * !SD_OVERLAP domains can assume that child groups 8379 * span the current group. 8380 */ 8381 8382 group = child->groups; 8383 do { 8384 struct sched_group_capacity *sgc = group->sgc; 8385 8386 capacity += sgc->capacity; 8387 min_capacity = min(sgc->min_capacity, min_capacity); 8388 max_capacity = max(sgc->max_capacity, max_capacity); 8389 group = group->next; 8390 } while (group != child->groups); 8391 } 8392 8393 sdg->sgc->capacity = capacity; 8394 sdg->sgc->min_capacity = min_capacity; 8395 sdg->sgc->max_capacity = max_capacity; 8396 } 8397 8398 /* 8399 * Check whether the capacity of the rq has been noticeably reduced by side 8400 * activity. The imbalance_pct is used for the threshold. 8401 * Return true is the capacity is reduced 8402 */ 8403 static inline int 8404 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8405 { 8406 return ((rq->cpu_capacity * sd->imbalance_pct) < 8407 (rq->cpu_capacity_orig * 100)); 8408 } 8409 8410 /* 8411 * Check whether a rq has a misfit task and if it looks like we can actually 8412 * help that task: we can migrate the task to a CPU of higher capacity, or 8413 * the task's current CPU is heavily pressured. 8414 */ 8415 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8416 { 8417 return rq->misfit_task_load && 8418 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8419 check_cpu_capacity(rq, sd)); 8420 } 8421 8422 /* 8423 * Group imbalance indicates (and tries to solve) the problem where balancing 8424 * groups is inadequate due to ->cpus_ptr constraints. 8425 * 8426 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8427 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8428 * Something like: 8429 * 8430 * { 0 1 2 3 } { 4 5 6 7 } 8431 * * * * * 8432 * 8433 * If we were to balance group-wise we'd place two tasks in the first group and 8434 * two tasks in the second group. Clearly this is undesired as it will overload 8435 * cpu 3 and leave one of the CPUs in the second group unused. 8436 * 8437 * The current solution to this issue is detecting the skew in the first group 8438 * by noticing the lower domain failed to reach balance and had difficulty 8439 * moving tasks due to affinity constraints. 8440 * 8441 * When this is so detected; this group becomes a candidate for busiest; see 8442 * update_sd_pick_busiest(). And calculate_imbalance() and 8443 * find_busiest_group() avoid some of the usual balance conditions to allow it 8444 * to create an effective group imbalance. 8445 * 8446 * This is a somewhat tricky proposition since the next run might not find the 8447 * group imbalance and decide the groups need to be balanced again. A most 8448 * subtle and fragile situation. 8449 */ 8450 8451 static inline int sg_imbalanced(struct sched_group *group) 8452 { 8453 return group->sgc->imbalance; 8454 } 8455 8456 /* 8457 * group_has_capacity returns true if the group has spare capacity that could 8458 * be used by some tasks. 8459 * We consider that a group has spare capacity if the * number of task is 8460 * smaller than the number of CPUs or if the utilization is lower than the 8461 * available capacity for CFS tasks. 8462 * For the latter, we use a threshold to stabilize the state, to take into 8463 * account the variance of the tasks' load and to return true if the available 8464 * capacity in meaningful for the load balancer. 8465 * As an example, an available capacity of 1% can appear but it doesn't make 8466 * any benefit for the load balance. 8467 */ 8468 static inline bool 8469 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8470 { 8471 if (sgs->sum_nr_running < sgs->group_weight) 8472 return true; 8473 8474 if ((sgs->group_capacity * imbalance_pct) < 8475 (sgs->group_runnable * 100)) 8476 return false; 8477 8478 if ((sgs->group_capacity * 100) > 8479 (sgs->group_util * imbalance_pct)) 8480 return true; 8481 8482 return false; 8483 } 8484 8485 /* 8486 * group_is_overloaded returns true if the group has more tasks than it can 8487 * handle. 8488 * group_is_overloaded is not equals to !group_has_capacity because a group 8489 * with the exact right number of tasks, has no more spare capacity but is not 8490 * overloaded so both group_has_capacity and group_is_overloaded return 8491 * false. 8492 */ 8493 static inline bool 8494 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8495 { 8496 if (sgs->sum_nr_running <= sgs->group_weight) 8497 return false; 8498 8499 if ((sgs->group_capacity * 100) < 8500 (sgs->group_util * imbalance_pct)) 8501 return true; 8502 8503 if ((sgs->group_capacity * imbalance_pct) < 8504 (sgs->group_runnable * 100)) 8505 return true; 8506 8507 return false; 8508 } 8509 8510 static inline enum 8511 group_type group_classify(unsigned int imbalance_pct, 8512 struct sched_group *group, 8513 struct sg_lb_stats *sgs) 8514 { 8515 if (group_is_overloaded(imbalance_pct, sgs)) 8516 return group_overloaded; 8517 8518 if (sg_imbalanced(group)) 8519 return group_imbalanced; 8520 8521 if (sgs->group_asym_packing) 8522 return group_asym_packing; 8523 8524 if (sgs->group_misfit_task_load) 8525 return group_misfit_task; 8526 8527 if (!group_has_capacity(imbalance_pct, sgs)) 8528 return group_fully_busy; 8529 8530 return group_has_spare; 8531 } 8532 8533 /** 8534 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8535 * @env: The load balancing environment. 8536 * @group: sched_group whose statistics are to be updated. 8537 * @sgs: variable to hold the statistics for this group. 8538 * @sg_status: Holds flag indicating the status of the sched_group 8539 */ 8540 static inline void update_sg_lb_stats(struct lb_env *env, 8541 struct sched_group *group, 8542 struct sg_lb_stats *sgs, 8543 int *sg_status) 8544 { 8545 int i, nr_running, local_group; 8546 8547 memset(sgs, 0, sizeof(*sgs)); 8548 8549 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8550 8551 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8552 struct rq *rq = cpu_rq(i); 8553 8554 sgs->group_load += cpu_load(rq); 8555 sgs->group_util += cpu_util(i); 8556 sgs->group_runnable += cpu_runnable(rq); 8557 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8558 8559 nr_running = rq->nr_running; 8560 sgs->sum_nr_running += nr_running; 8561 8562 if (nr_running > 1) 8563 *sg_status |= SG_OVERLOAD; 8564 8565 if (cpu_overutilized(i)) 8566 *sg_status |= SG_OVERUTILIZED; 8567 8568 #ifdef CONFIG_NUMA_BALANCING 8569 sgs->nr_numa_running += rq->nr_numa_running; 8570 sgs->nr_preferred_running += rq->nr_preferred_running; 8571 #endif 8572 /* 8573 * No need to call idle_cpu() if nr_running is not 0 8574 */ 8575 if (!nr_running && idle_cpu(i)) { 8576 sgs->idle_cpus++; 8577 /* Idle cpu can't have misfit task */ 8578 continue; 8579 } 8580 8581 if (local_group) 8582 continue; 8583 8584 /* Check for a misfit task on the cpu */ 8585 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8586 sgs->group_misfit_task_load < rq->misfit_task_load) { 8587 sgs->group_misfit_task_load = rq->misfit_task_load; 8588 *sg_status |= SG_OVERLOAD; 8589 } 8590 } 8591 8592 /* Check if dst CPU is idle and preferred to this group */ 8593 if (env->sd->flags & SD_ASYM_PACKING && 8594 env->idle != CPU_NOT_IDLE && 8595 sgs->sum_h_nr_running && 8596 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) { 8597 sgs->group_asym_packing = 1; 8598 } 8599 8600 sgs->group_capacity = group->sgc->capacity; 8601 8602 sgs->group_weight = group->group_weight; 8603 8604 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8605 8606 /* Computing avg_load makes sense only when group is overloaded */ 8607 if (sgs->group_type == group_overloaded) 8608 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8609 sgs->group_capacity; 8610 } 8611 8612 /** 8613 * update_sd_pick_busiest - return 1 on busiest group 8614 * @env: The load balancing environment. 8615 * @sds: sched_domain statistics 8616 * @sg: sched_group candidate to be checked for being the busiest 8617 * @sgs: sched_group statistics 8618 * 8619 * Determine if @sg is a busier group than the previously selected 8620 * busiest group. 8621 * 8622 * Return: %true if @sg is a busier group than the previously selected 8623 * busiest group. %false otherwise. 8624 */ 8625 static bool update_sd_pick_busiest(struct lb_env *env, 8626 struct sd_lb_stats *sds, 8627 struct sched_group *sg, 8628 struct sg_lb_stats *sgs) 8629 { 8630 struct sg_lb_stats *busiest = &sds->busiest_stat; 8631 8632 /* Make sure that there is at least one task to pull */ 8633 if (!sgs->sum_h_nr_running) 8634 return false; 8635 8636 /* 8637 * Don't try to pull misfit tasks we can't help. 8638 * We can use max_capacity here as reduction in capacity on some 8639 * CPUs in the group should either be possible to resolve 8640 * internally or be covered by avg_load imbalance (eventually). 8641 */ 8642 if (sgs->group_type == group_misfit_task && 8643 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 8644 sds->local_stat.group_type != group_has_spare)) 8645 return false; 8646 8647 if (sgs->group_type > busiest->group_type) 8648 return true; 8649 8650 if (sgs->group_type < busiest->group_type) 8651 return false; 8652 8653 /* 8654 * The candidate and the current busiest group are the same type of 8655 * group. Let check which one is the busiest according to the type. 8656 */ 8657 8658 switch (sgs->group_type) { 8659 case group_overloaded: 8660 /* Select the overloaded group with highest avg_load. */ 8661 if (sgs->avg_load <= busiest->avg_load) 8662 return false; 8663 break; 8664 8665 case group_imbalanced: 8666 /* 8667 * Select the 1st imbalanced group as we don't have any way to 8668 * choose one more than another. 8669 */ 8670 return false; 8671 8672 case group_asym_packing: 8673 /* Prefer to move from lowest priority CPU's work */ 8674 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8675 return false; 8676 break; 8677 8678 case group_misfit_task: 8679 /* 8680 * If we have more than one misfit sg go with the biggest 8681 * misfit. 8682 */ 8683 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8684 return false; 8685 break; 8686 8687 case group_fully_busy: 8688 /* 8689 * Select the fully busy group with highest avg_load. In 8690 * theory, there is no need to pull task from such kind of 8691 * group because tasks have all compute capacity that they need 8692 * but we can still improve the overall throughput by reducing 8693 * contention when accessing shared HW resources. 8694 * 8695 * XXX for now avg_load is not computed and always 0 so we 8696 * select the 1st one. 8697 */ 8698 if (sgs->avg_load <= busiest->avg_load) 8699 return false; 8700 break; 8701 8702 case group_has_spare: 8703 /* 8704 * Select not overloaded group with lowest number of idle cpus 8705 * and highest number of running tasks. We could also compare 8706 * the spare capacity which is more stable but it can end up 8707 * that the group has less spare capacity but finally more idle 8708 * CPUs which means less opportunity to pull tasks. 8709 */ 8710 if (sgs->idle_cpus > busiest->idle_cpus) 8711 return false; 8712 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8713 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8714 return false; 8715 8716 break; 8717 } 8718 8719 /* 8720 * Candidate sg has no more than one task per CPU and has higher 8721 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8722 * throughput. Maximize throughput, power/energy consequences are not 8723 * considered. 8724 */ 8725 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8726 (sgs->group_type <= group_fully_busy) && 8727 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 8728 return false; 8729 8730 return true; 8731 } 8732 8733 #ifdef CONFIG_NUMA_BALANCING 8734 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8735 { 8736 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8737 return regular; 8738 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8739 return remote; 8740 return all; 8741 } 8742 8743 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8744 { 8745 if (rq->nr_running > rq->nr_numa_running) 8746 return regular; 8747 if (rq->nr_running > rq->nr_preferred_running) 8748 return remote; 8749 return all; 8750 } 8751 #else 8752 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8753 { 8754 return all; 8755 } 8756 8757 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8758 { 8759 return regular; 8760 } 8761 #endif /* CONFIG_NUMA_BALANCING */ 8762 8763 8764 struct sg_lb_stats; 8765 8766 /* 8767 * task_running_on_cpu - return 1 if @p is running on @cpu. 8768 */ 8769 8770 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8771 { 8772 /* Task has no contribution or is new */ 8773 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8774 return 0; 8775 8776 if (task_on_rq_queued(p)) 8777 return 1; 8778 8779 return 0; 8780 } 8781 8782 /** 8783 * idle_cpu_without - would a given CPU be idle without p ? 8784 * @cpu: the processor on which idleness is tested. 8785 * @p: task which should be ignored. 8786 * 8787 * Return: 1 if the CPU would be idle. 0 otherwise. 8788 */ 8789 static int idle_cpu_without(int cpu, struct task_struct *p) 8790 { 8791 struct rq *rq = cpu_rq(cpu); 8792 8793 if (rq->curr != rq->idle && rq->curr != p) 8794 return 0; 8795 8796 /* 8797 * rq->nr_running can't be used but an updated version without the 8798 * impact of p on cpu must be used instead. The updated nr_running 8799 * be computed and tested before calling idle_cpu_without(). 8800 */ 8801 8802 #ifdef CONFIG_SMP 8803 if (rq->ttwu_pending) 8804 return 0; 8805 #endif 8806 8807 return 1; 8808 } 8809 8810 /* 8811 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8812 * @sd: The sched_domain level to look for idlest group. 8813 * @group: sched_group whose statistics are to be updated. 8814 * @sgs: variable to hold the statistics for this group. 8815 * @p: The task for which we look for the idlest group/CPU. 8816 */ 8817 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8818 struct sched_group *group, 8819 struct sg_lb_stats *sgs, 8820 struct task_struct *p) 8821 { 8822 int i, nr_running; 8823 8824 memset(sgs, 0, sizeof(*sgs)); 8825 8826 for_each_cpu(i, sched_group_span(group)) { 8827 struct rq *rq = cpu_rq(i); 8828 unsigned int local; 8829 8830 sgs->group_load += cpu_load_without(rq, p); 8831 sgs->group_util += cpu_util_without(i, p); 8832 sgs->group_runnable += cpu_runnable_without(rq, p); 8833 local = task_running_on_cpu(i, p); 8834 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8835 8836 nr_running = rq->nr_running - local; 8837 sgs->sum_nr_running += nr_running; 8838 8839 /* 8840 * No need to call idle_cpu_without() if nr_running is not 0 8841 */ 8842 if (!nr_running && idle_cpu_without(i, p)) 8843 sgs->idle_cpus++; 8844 8845 } 8846 8847 /* Check if task fits in the group */ 8848 if (sd->flags & SD_ASYM_CPUCAPACITY && 8849 !task_fits_capacity(p, group->sgc->max_capacity)) { 8850 sgs->group_misfit_task_load = 1; 8851 } 8852 8853 sgs->group_capacity = group->sgc->capacity; 8854 8855 sgs->group_weight = group->group_weight; 8856 8857 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8858 8859 /* 8860 * Computing avg_load makes sense only when group is fully busy or 8861 * overloaded 8862 */ 8863 if (sgs->group_type == group_fully_busy || 8864 sgs->group_type == group_overloaded) 8865 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8866 sgs->group_capacity; 8867 } 8868 8869 static bool update_pick_idlest(struct sched_group *idlest, 8870 struct sg_lb_stats *idlest_sgs, 8871 struct sched_group *group, 8872 struct sg_lb_stats *sgs) 8873 { 8874 if (sgs->group_type < idlest_sgs->group_type) 8875 return true; 8876 8877 if (sgs->group_type > idlest_sgs->group_type) 8878 return false; 8879 8880 /* 8881 * The candidate and the current idlest group are the same type of 8882 * group. Let check which one is the idlest according to the type. 8883 */ 8884 8885 switch (sgs->group_type) { 8886 case group_overloaded: 8887 case group_fully_busy: 8888 /* Select the group with lowest avg_load. */ 8889 if (idlest_sgs->avg_load <= sgs->avg_load) 8890 return false; 8891 break; 8892 8893 case group_imbalanced: 8894 case group_asym_packing: 8895 /* Those types are not used in the slow wakeup path */ 8896 return false; 8897 8898 case group_misfit_task: 8899 /* Select group with the highest max capacity */ 8900 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 8901 return false; 8902 break; 8903 8904 case group_has_spare: 8905 /* Select group with most idle CPUs */ 8906 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 8907 return false; 8908 8909 /* Select group with lowest group_util */ 8910 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 8911 idlest_sgs->group_util <= sgs->group_util) 8912 return false; 8913 8914 break; 8915 } 8916 8917 return true; 8918 } 8919 8920 /* 8921 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain. 8922 * This is an approximation as the number of running tasks may not be 8923 * related to the number of busy CPUs due to sched_setaffinity. 8924 */ 8925 static inline bool allow_numa_imbalance(int dst_running, int dst_weight) 8926 { 8927 return (dst_running < (dst_weight >> 2)); 8928 } 8929 8930 /* 8931 * find_idlest_group() finds and returns the least busy CPU group within the 8932 * domain. 8933 * 8934 * Assumes p is allowed on at least one CPU in sd. 8935 */ 8936 static struct sched_group * 8937 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 8938 { 8939 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 8940 struct sg_lb_stats local_sgs, tmp_sgs; 8941 struct sg_lb_stats *sgs; 8942 unsigned long imbalance; 8943 struct sg_lb_stats idlest_sgs = { 8944 .avg_load = UINT_MAX, 8945 .group_type = group_overloaded, 8946 }; 8947 8948 do { 8949 int local_group; 8950 8951 /* Skip over this group if it has no CPUs allowed */ 8952 if (!cpumask_intersects(sched_group_span(group), 8953 p->cpus_ptr)) 8954 continue; 8955 8956 /* Skip over this group if no cookie matched */ 8957 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 8958 continue; 8959 8960 local_group = cpumask_test_cpu(this_cpu, 8961 sched_group_span(group)); 8962 8963 if (local_group) { 8964 sgs = &local_sgs; 8965 local = group; 8966 } else { 8967 sgs = &tmp_sgs; 8968 } 8969 8970 update_sg_wakeup_stats(sd, group, sgs, p); 8971 8972 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 8973 idlest = group; 8974 idlest_sgs = *sgs; 8975 } 8976 8977 } while (group = group->next, group != sd->groups); 8978 8979 8980 /* There is no idlest group to push tasks to */ 8981 if (!idlest) 8982 return NULL; 8983 8984 /* The local group has been skipped because of CPU affinity */ 8985 if (!local) 8986 return idlest; 8987 8988 /* 8989 * If the local group is idler than the selected idlest group 8990 * don't try and push the task. 8991 */ 8992 if (local_sgs.group_type < idlest_sgs.group_type) 8993 return NULL; 8994 8995 /* 8996 * If the local group is busier than the selected idlest group 8997 * try and push the task. 8998 */ 8999 if (local_sgs.group_type > idlest_sgs.group_type) 9000 return idlest; 9001 9002 switch (local_sgs.group_type) { 9003 case group_overloaded: 9004 case group_fully_busy: 9005 9006 /* Calculate allowed imbalance based on load */ 9007 imbalance = scale_load_down(NICE_0_LOAD) * 9008 (sd->imbalance_pct-100) / 100; 9009 9010 /* 9011 * When comparing groups across NUMA domains, it's possible for 9012 * the local domain to be very lightly loaded relative to the 9013 * remote domains but "imbalance" skews the comparison making 9014 * remote CPUs look much more favourable. When considering 9015 * cross-domain, add imbalance to the load on the remote node 9016 * and consider staying local. 9017 */ 9018 9019 if ((sd->flags & SD_NUMA) && 9020 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 9021 return NULL; 9022 9023 /* 9024 * If the local group is less loaded than the selected 9025 * idlest group don't try and push any tasks. 9026 */ 9027 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 9028 return NULL; 9029 9030 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 9031 return NULL; 9032 break; 9033 9034 case group_imbalanced: 9035 case group_asym_packing: 9036 /* Those type are not used in the slow wakeup path */ 9037 return NULL; 9038 9039 case group_misfit_task: 9040 /* Select group with the highest max capacity */ 9041 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 9042 return NULL; 9043 break; 9044 9045 case group_has_spare: 9046 if (sd->flags & SD_NUMA) { 9047 #ifdef CONFIG_NUMA_BALANCING 9048 int idlest_cpu; 9049 /* 9050 * If there is spare capacity at NUMA, try to select 9051 * the preferred node 9052 */ 9053 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 9054 return NULL; 9055 9056 idlest_cpu = cpumask_first(sched_group_span(idlest)); 9057 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 9058 return idlest; 9059 #endif 9060 /* 9061 * Otherwise, keep the task on this node to stay close 9062 * its wakeup source and improve locality. If there is 9063 * a real need of migration, periodic load balance will 9064 * take care of it. 9065 */ 9066 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight)) 9067 return NULL; 9068 } 9069 9070 /* 9071 * Select group with highest number of idle CPUs. We could also 9072 * compare the utilization which is more stable but it can end 9073 * up that the group has less spare capacity but finally more 9074 * idle CPUs which means more opportunity to run task. 9075 */ 9076 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 9077 return NULL; 9078 break; 9079 } 9080 9081 return idlest; 9082 } 9083 9084 /** 9085 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 9086 * @env: The load balancing environment. 9087 * @sds: variable to hold the statistics for this sched_domain. 9088 */ 9089 9090 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 9091 { 9092 struct sched_domain *child = env->sd->child; 9093 struct sched_group *sg = env->sd->groups; 9094 struct sg_lb_stats *local = &sds->local_stat; 9095 struct sg_lb_stats tmp_sgs; 9096 int sg_status = 0; 9097 9098 do { 9099 struct sg_lb_stats *sgs = &tmp_sgs; 9100 int local_group; 9101 9102 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 9103 if (local_group) { 9104 sds->local = sg; 9105 sgs = local; 9106 9107 if (env->idle != CPU_NEWLY_IDLE || 9108 time_after_eq(jiffies, sg->sgc->next_update)) 9109 update_group_capacity(env->sd, env->dst_cpu); 9110 } 9111 9112 update_sg_lb_stats(env, sg, sgs, &sg_status); 9113 9114 if (local_group) 9115 goto next_group; 9116 9117 9118 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 9119 sds->busiest = sg; 9120 sds->busiest_stat = *sgs; 9121 } 9122 9123 next_group: 9124 /* Now, start updating sd_lb_stats */ 9125 sds->total_load += sgs->group_load; 9126 sds->total_capacity += sgs->group_capacity; 9127 9128 sg = sg->next; 9129 } while (sg != env->sd->groups); 9130 9131 /* Tag domain that child domain prefers tasks go to siblings first */ 9132 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 9133 9134 9135 if (env->sd->flags & SD_NUMA) 9136 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 9137 9138 if (!env->sd->parent) { 9139 struct root_domain *rd = env->dst_rq->rd; 9140 9141 /* update overload indicator if we are at root domain */ 9142 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9143 9144 /* Update over-utilization (tipping point, U >= 0) indicator */ 9145 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9146 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9147 } else if (sg_status & SG_OVERUTILIZED) { 9148 struct root_domain *rd = env->dst_rq->rd; 9149 9150 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9151 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9152 } 9153 } 9154 9155 #define NUMA_IMBALANCE_MIN 2 9156 9157 static inline long adjust_numa_imbalance(int imbalance, 9158 int dst_running, int dst_weight) 9159 { 9160 if (!allow_numa_imbalance(dst_running, dst_weight)) 9161 return imbalance; 9162 9163 /* 9164 * Allow a small imbalance based on a simple pair of communicating 9165 * tasks that remain local when the destination is lightly loaded. 9166 */ 9167 if (imbalance <= NUMA_IMBALANCE_MIN) 9168 return 0; 9169 9170 return imbalance; 9171 } 9172 9173 /** 9174 * calculate_imbalance - Calculate the amount of imbalance present within the 9175 * groups of a given sched_domain during load balance. 9176 * @env: load balance environment 9177 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9178 */ 9179 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9180 { 9181 struct sg_lb_stats *local, *busiest; 9182 9183 local = &sds->local_stat; 9184 busiest = &sds->busiest_stat; 9185 9186 if (busiest->group_type == group_misfit_task) { 9187 /* Set imbalance to allow misfit tasks to be balanced. */ 9188 env->migration_type = migrate_misfit; 9189 env->imbalance = 1; 9190 return; 9191 } 9192 9193 if (busiest->group_type == group_asym_packing) { 9194 /* 9195 * In case of asym capacity, we will try to migrate all load to 9196 * the preferred CPU. 9197 */ 9198 env->migration_type = migrate_task; 9199 env->imbalance = busiest->sum_h_nr_running; 9200 return; 9201 } 9202 9203 if (busiest->group_type == group_imbalanced) { 9204 /* 9205 * In the group_imb case we cannot rely on group-wide averages 9206 * to ensure CPU-load equilibrium, try to move any task to fix 9207 * the imbalance. The next load balance will take care of 9208 * balancing back the system. 9209 */ 9210 env->migration_type = migrate_task; 9211 env->imbalance = 1; 9212 return; 9213 } 9214 9215 /* 9216 * Try to use spare capacity of local group without overloading it or 9217 * emptying busiest. 9218 */ 9219 if (local->group_type == group_has_spare) { 9220 if ((busiest->group_type > group_fully_busy) && 9221 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9222 /* 9223 * If busiest is overloaded, try to fill spare 9224 * capacity. This might end up creating spare capacity 9225 * in busiest or busiest still being overloaded but 9226 * there is no simple way to directly compute the 9227 * amount of load to migrate in order to balance the 9228 * system. 9229 */ 9230 env->migration_type = migrate_util; 9231 env->imbalance = max(local->group_capacity, local->group_util) - 9232 local->group_util; 9233 9234 /* 9235 * In some cases, the group's utilization is max or even 9236 * higher than capacity because of migrations but the 9237 * local CPU is (newly) idle. There is at least one 9238 * waiting task in this overloaded busiest group. Let's 9239 * try to pull it. 9240 */ 9241 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9242 env->migration_type = migrate_task; 9243 env->imbalance = 1; 9244 } 9245 9246 return; 9247 } 9248 9249 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9250 unsigned int nr_diff = busiest->sum_nr_running; 9251 /* 9252 * When prefer sibling, evenly spread running tasks on 9253 * groups. 9254 */ 9255 env->migration_type = migrate_task; 9256 lsub_positive(&nr_diff, local->sum_nr_running); 9257 env->imbalance = nr_diff >> 1; 9258 } else { 9259 9260 /* 9261 * If there is no overload, we just want to even the number of 9262 * idle cpus. 9263 */ 9264 env->migration_type = migrate_task; 9265 env->imbalance = max_t(long, 0, (local->idle_cpus - 9266 busiest->idle_cpus) >> 1); 9267 } 9268 9269 /* Consider allowing a small imbalance between NUMA groups */ 9270 if (env->sd->flags & SD_NUMA) { 9271 env->imbalance = adjust_numa_imbalance(env->imbalance, 9272 busiest->sum_nr_running, busiest->group_weight); 9273 } 9274 9275 return; 9276 } 9277 9278 /* 9279 * Local is fully busy but has to take more load to relieve the 9280 * busiest group 9281 */ 9282 if (local->group_type < group_overloaded) { 9283 /* 9284 * Local will become overloaded so the avg_load metrics are 9285 * finally needed. 9286 */ 9287 9288 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9289 local->group_capacity; 9290 9291 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9292 sds->total_capacity; 9293 /* 9294 * If the local group is more loaded than the selected 9295 * busiest group don't try to pull any tasks. 9296 */ 9297 if (local->avg_load >= busiest->avg_load) { 9298 env->imbalance = 0; 9299 return; 9300 } 9301 } 9302 9303 /* 9304 * Both group are or will become overloaded and we're trying to get all 9305 * the CPUs to the average_load, so we don't want to push ourselves 9306 * above the average load, nor do we wish to reduce the max loaded CPU 9307 * below the average load. At the same time, we also don't want to 9308 * reduce the group load below the group capacity. Thus we look for 9309 * the minimum possible imbalance. 9310 */ 9311 env->migration_type = migrate_load; 9312 env->imbalance = min( 9313 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9314 (sds->avg_load - local->avg_load) * local->group_capacity 9315 ) / SCHED_CAPACITY_SCALE; 9316 } 9317 9318 /******* find_busiest_group() helpers end here *********************/ 9319 9320 /* 9321 * Decision matrix according to the local and busiest group type: 9322 * 9323 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9324 * has_spare nr_idle balanced N/A N/A balanced balanced 9325 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9326 * misfit_task force N/A N/A N/A force force 9327 * asym_packing force force N/A N/A force force 9328 * imbalanced force force N/A N/A force force 9329 * overloaded force force N/A N/A force avg_load 9330 * 9331 * N/A : Not Applicable because already filtered while updating 9332 * statistics. 9333 * balanced : The system is balanced for these 2 groups. 9334 * force : Calculate the imbalance as load migration is probably needed. 9335 * avg_load : Only if imbalance is significant enough. 9336 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9337 * different in groups. 9338 */ 9339 9340 /** 9341 * find_busiest_group - Returns the busiest group within the sched_domain 9342 * if there is an imbalance. 9343 * 9344 * Also calculates the amount of runnable load which should be moved 9345 * to restore balance. 9346 * 9347 * @env: The load balancing environment. 9348 * 9349 * Return: - The busiest group if imbalance exists. 9350 */ 9351 static struct sched_group *find_busiest_group(struct lb_env *env) 9352 { 9353 struct sg_lb_stats *local, *busiest; 9354 struct sd_lb_stats sds; 9355 9356 init_sd_lb_stats(&sds); 9357 9358 /* 9359 * Compute the various statistics relevant for load balancing at 9360 * this level. 9361 */ 9362 update_sd_lb_stats(env, &sds); 9363 9364 if (sched_energy_enabled()) { 9365 struct root_domain *rd = env->dst_rq->rd; 9366 9367 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9368 goto out_balanced; 9369 } 9370 9371 local = &sds.local_stat; 9372 busiest = &sds.busiest_stat; 9373 9374 /* There is no busy sibling group to pull tasks from */ 9375 if (!sds.busiest) 9376 goto out_balanced; 9377 9378 /* Misfit tasks should be dealt with regardless of the avg load */ 9379 if (busiest->group_type == group_misfit_task) 9380 goto force_balance; 9381 9382 /* ASYM feature bypasses nice load balance check */ 9383 if (busiest->group_type == group_asym_packing) 9384 goto force_balance; 9385 9386 /* 9387 * If the busiest group is imbalanced the below checks don't 9388 * work because they assume all things are equal, which typically 9389 * isn't true due to cpus_ptr constraints and the like. 9390 */ 9391 if (busiest->group_type == group_imbalanced) 9392 goto force_balance; 9393 9394 /* 9395 * If the local group is busier than the selected busiest group 9396 * don't try and pull any tasks. 9397 */ 9398 if (local->group_type > busiest->group_type) 9399 goto out_balanced; 9400 9401 /* 9402 * When groups are overloaded, use the avg_load to ensure fairness 9403 * between tasks. 9404 */ 9405 if (local->group_type == group_overloaded) { 9406 /* 9407 * If the local group is more loaded than the selected 9408 * busiest group don't try to pull any tasks. 9409 */ 9410 if (local->avg_load >= busiest->avg_load) 9411 goto out_balanced; 9412 9413 /* XXX broken for overlapping NUMA groups */ 9414 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9415 sds.total_capacity; 9416 9417 /* 9418 * Don't pull any tasks if this group is already above the 9419 * domain average load. 9420 */ 9421 if (local->avg_load >= sds.avg_load) 9422 goto out_balanced; 9423 9424 /* 9425 * If the busiest group is more loaded, use imbalance_pct to be 9426 * conservative. 9427 */ 9428 if (100 * busiest->avg_load <= 9429 env->sd->imbalance_pct * local->avg_load) 9430 goto out_balanced; 9431 } 9432 9433 /* Try to move all excess tasks to child's sibling domain */ 9434 if (sds.prefer_sibling && local->group_type == group_has_spare && 9435 busiest->sum_nr_running > local->sum_nr_running + 1) 9436 goto force_balance; 9437 9438 if (busiest->group_type != group_overloaded) { 9439 if (env->idle == CPU_NOT_IDLE) 9440 /* 9441 * If the busiest group is not overloaded (and as a 9442 * result the local one too) but this CPU is already 9443 * busy, let another idle CPU try to pull task. 9444 */ 9445 goto out_balanced; 9446 9447 if (busiest->group_weight > 1 && 9448 local->idle_cpus <= (busiest->idle_cpus + 1)) 9449 /* 9450 * If the busiest group is not overloaded 9451 * and there is no imbalance between this and busiest 9452 * group wrt idle CPUs, it is balanced. The imbalance 9453 * becomes significant if the diff is greater than 1 9454 * otherwise we might end up to just move the imbalance 9455 * on another group. Of course this applies only if 9456 * there is more than 1 CPU per group. 9457 */ 9458 goto out_balanced; 9459 9460 if (busiest->sum_h_nr_running == 1) 9461 /* 9462 * busiest doesn't have any tasks waiting to run 9463 */ 9464 goto out_balanced; 9465 } 9466 9467 force_balance: 9468 /* Looks like there is an imbalance. Compute it */ 9469 calculate_imbalance(env, &sds); 9470 return env->imbalance ? sds.busiest : NULL; 9471 9472 out_balanced: 9473 env->imbalance = 0; 9474 return NULL; 9475 } 9476 9477 /* 9478 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9479 */ 9480 static struct rq *find_busiest_queue(struct lb_env *env, 9481 struct sched_group *group) 9482 { 9483 struct rq *busiest = NULL, *rq; 9484 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9485 unsigned int busiest_nr = 0; 9486 int i; 9487 9488 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9489 unsigned long capacity, load, util; 9490 unsigned int nr_running; 9491 enum fbq_type rt; 9492 9493 rq = cpu_rq(i); 9494 rt = fbq_classify_rq(rq); 9495 9496 /* 9497 * We classify groups/runqueues into three groups: 9498 * - regular: there are !numa tasks 9499 * - remote: there are numa tasks that run on the 'wrong' node 9500 * - all: there is no distinction 9501 * 9502 * In order to avoid migrating ideally placed numa tasks, 9503 * ignore those when there's better options. 9504 * 9505 * If we ignore the actual busiest queue to migrate another 9506 * task, the next balance pass can still reduce the busiest 9507 * queue by moving tasks around inside the node. 9508 * 9509 * If we cannot move enough load due to this classification 9510 * the next pass will adjust the group classification and 9511 * allow migration of more tasks. 9512 * 9513 * Both cases only affect the total convergence complexity. 9514 */ 9515 if (rt > env->fbq_type) 9516 continue; 9517 9518 nr_running = rq->cfs.h_nr_running; 9519 if (!nr_running) 9520 continue; 9521 9522 capacity = capacity_of(i); 9523 9524 /* 9525 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9526 * eventually lead to active_balancing high->low capacity. 9527 * Higher per-CPU capacity is considered better than balancing 9528 * average load. 9529 */ 9530 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9531 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 9532 nr_running == 1) 9533 continue; 9534 9535 switch (env->migration_type) { 9536 case migrate_load: 9537 /* 9538 * When comparing with load imbalance, use cpu_load() 9539 * which is not scaled with the CPU capacity. 9540 */ 9541 load = cpu_load(rq); 9542 9543 if (nr_running == 1 && load > env->imbalance && 9544 !check_cpu_capacity(rq, env->sd)) 9545 break; 9546 9547 /* 9548 * For the load comparisons with the other CPUs, 9549 * consider the cpu_load() scaled with the CPU 9550 * capacity, so that the load can be moved away 9551 * from the CPU that is potentially running at a 9552 * lower capacity. 9553 * 9554 * Thus we're looking for max(load_i / capacity_i), 9555 * crosswise multiplication to rid ourselves of the 9556 * division works out to: 9557 * load_i * capacity_j > load_j * capacity_i; 9558 * where j is our previous maximum. 9559 */ 9560 if (load * busiest_capacity > busiest_load * capacity) { 9561 busiest_load = load; 9562 busiest_capacity = capacity; 9563 busiest = rq; 9564 } 9565 break; 9566 9567 case migrate_util: 9568 util = cpu_util(cpu_of(rq)); 9569 9570 /* 9571 * Don't try to pull utilization from a CPU with one 9572 * running task. Whatever its utilization, we will fail 9573 * detach the task. 9574 */ 9575 if (nr_running <= 1) 9576 continue; 9577 9578 if (busiest_util < util) { 9579 busiest_util = util; 9580 busiest = rq; 9581 } 9582 break; 9583 9584 case migrate_task: 9585 if (busiest_nr < nr_running) { 9586 busiest_nr = nr_running; 9587 busiest = rq; 9588 } 9589 break; 9590 9591 case migrate_misfit: 9592 /* 9593 * For ASYM_CPUCAPACITY domains with misfit tasks we 9594 * simply seek the "biggest" misfit task. 9595 */ 9596 if (rq->misfit_task_load > busiest_load) { 9597 busiest_load = rq->misfit_task_load; 9598 busiest = rq; 9599 } 9600 9601 break; 9602 9603 } 9604 } 9605 9606 return busiest; 9607 } 9608 9609 /* 9610 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9611 * so long as it is large enough. 9612 */ 9613 #define MAX_PINNED_INTERVAL 512 9614 9615 static inline bool 9616 asym_active_balance(struct lb_env *env) 9617 { 9618 /* 9619 * ASYM_PACKING needs to force migrate tasks from busy but 9620 * lower priority CPUs in order to pack all tasks in the 9621 * highest priority CPUs. 9622 */ 9623 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9624 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9625 } 9626 9627 static inline bool 9628 imbalanced_active_balance(struct lb_env *env) 9629 { 9630 struct sched_domain *sd = env->sd; 9631 9632 /* 9633 * The imbalanced case includes the case of pinned tasks preventing a fair 9634 * distribution of the load on the system but also the even distribution of the 9635 * threads on a system with spare capacity 9636 */ 9637 if ((env->migration_type == migrate_task) && 9638 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 9639 return 1; 9640 9641 return 0; 9642 } 9643 9644 static int need_active_balance(struct lb_env *env) 9645 { 9646 struct sched_domain *sd = env->sd; 9647 9648 if (asym_active_balance(env)) 9649 return 1; 9650 9651 if (imbalanced_active_balance(env)) 9652 return 1; 9653 9654 /* 9655 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9656 * It's worth migrating the task if the src_cpu's capacity is reduced 9657 * because of other sched_class or IRQs if more capacity stays 9658 * available on dst_cpu. 9659 */ 9660 if ((env->idle != CPU_NOT_IDLE) && 9661 (env->src_rq->cfs.h_nr_running == 1)) { 9662 if ((check_cpu_capacity(env->src_rq, sd)) && 9663 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9664 return 1; 9665 } 9666 9667 if (env->migration_type == migrate_misfit) 9668 return 1; 9669 9670 return 0; 9671 } 9672 9673 static int active_load_balance_cpu_stop(void *data); 9674 9675 static int should_we_balance(struct lb_env *env) 9676 { 9677 struct sched_group *sg = env->sd->groups; 9678 int cpu; 9679 9680 /* 9681 * Ensure the balancing environment is consistent; can happen 9682 * when the softirq triggers 'during' hotplug. 9683 */ 9684 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9685 return 0; 9686 9687 /* 9688 * In the newly idle case, we will allow all the CPUs 9689 * to do the newly idle load balance. 9690 */ 9691 if (env->idle == CPU_NEWLY_IDLE) 9692 return 1; 9693 9694 /* Try to find first idle CPU */ 9695 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9696 if (!idle_cpu(cpu)) 9697 continue; 9698 9699 /* Are we the first idle CPU? */ 9700 return cpu == env->dst_cpu; 9701 } 9702 9703 /* Are we the first CPU of this group ? */ 9704 return group_balance_cpu(sg) == env->dst_cpu; 9705 } 9706 9707 /* 9708 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9709 * tasks if there is an imbalance. 9710 */ 9711 static int load_balance(int this_cpu, struct rq *this_rq, 9712 struct sched_domain *sd, enum cpu_idle_type idle, 9713 int *continue_balancing) 9714 { 9715 int ld_moved, cur_ld_moved, active_balance = 0; 9716 struct sched_domain *sd_parent = sd->parent; 9717 struct sched_group *group; 9718 struct rq *busiest; 9719 struct rq_flags rf; 9720 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9721 9722 struct lb_env env = { 9723 .sd = sd, 9724 .dst_cpu = this_cpu, 9725 .dst_rq = this_rq, 9726 .dst_grpmask = sched_group_span(sd->groups), 9727 .idle = idle, 9728 .loop_break = sched_nr_migrate_break, 9729 .cpus = cpus, 9730 .fbq_type = all, 9731 .tasks = LIST_HEAD_INIT(env.tasks), 9732 }; 9733 9734 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9735 9736 schedstat_inc(sd->lb_count[idle]); 9737 9738 redo: 9739 if (!should_we_balance(&env)) { 9740 *continue_balancing = 0; 9741 goto out_balanced; 9742 } 9743 9744 group = find_busiest_group(&env); 9745 if (!group) { 9746 schedstat_inc(sd->lb_nobusyg[idle]); 9747 goto out_balanced; 9748 } 9749 9750 busiest = find_busiest_queue(&env, group); 9751 if (!busiest) { 9752 schedstat_inc(sd->lb_nobusyq[idle]); 9753 goto out_balanced; 9754 } 9755 9756 BUG_ON(busiest == env.dst_rq); 9757 9758 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9759 9760 env.src_cpu = busiest->cpu; 9761 env.src_rq = busiest; 9762 9763 ld_moved = 0; 9764 /* Clear this flag as soon as we find a pullable task */ 9765 env.flags |= LBF_ALL_PINNED; 9766 if (busiest->nr_running > 1) { 9767 /* 9768 * Attempt to move tasks. If find_busiest_group has found 9769 * an imbalance but busiest->nr_running <= 1, the group is 9770 * still unbalanced. ld_moved simply stays zero, so it is 9771 * correctly treated as an imbalance. 9772 */ 9773 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9774 9775 more_balance: 9776 rq_lock_irqsave(busiest, &rf); 9777 update_rq_clock(busiest); 9778 9779 /* 9780 * cur_ld_moved - load moved in current iteration 9781 * ld_moved - cumulative load moved across iterations 9782 */ 9783 cur_ld_moved = detach_tasks(&env); 9784 9785 /* 9786 * We've detached some tasks from busiest_rq. Every 9787 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9788 * unlock busiest->lock, and we are able to be sure 9789 * that nobody can manipulate the tasks in parallel. 9790 * See task_rq_lock() family for the details. 9791 */ 9792 9793 rq_unlock(busiest, &rf); 9794 9795 if (cur_ld_moved) { 9796 attach_tasks(&env); 9797 ld_moved += cur_ld_moved; 9798 } 9799 9800 local_irq_restore(rf.flags); 9801 9802 if (env.flags & LBF_NEED_BREAK) { 9803 env.flags &= ~LBF_NEED_BREAK; 9804 goto more_balance; 9805 } 9806 9807 /* 9808 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9809 * us and move them to an alternate dst_cpu in our sched_group 9810 * where they can run. The upper limit on how many times we 9811 * iterate on same src_cpu is dependent on number of CPUs in our 9812 * sched_group. 9813 * 9814 * This changes load balance semantics a bit on who can move 9815 * load to a given_cpu. In addition to the given_cpu itself 9816 * (or a ilb_cpu acting on its behalf where given_cpu is 9817 * nohz-idle), we now have balance_cpu in a position to move 9818 * load to given_cpu. In rare situations, this may cause 9819 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9820 * _independently_ and at _same_ time to move some load to 9821 * given_cpu) causing excess load to be moved to given_cpu. 9822 * This however should not happen so much in practice and 9823 * moreover subsequent load balance cycles should correct the 9824 * excess load moved. 9825 */ 9826 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9827 9828 /* Prevent to re-select dst_cpu via env's CPUs */ 9829 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9830 9831 env.dst_rq = cpu_rq(env.new_dst_cpu); 9832 env.dst_cpu = env.new_dst_cpu; 9833 env.flags &= ~LBF_DST_PINNED; 9834 env.loop = 0; 9835 env.loop_break = sched_nr_migrate_break; 9836 9837 /* 9838 * Go back to "more_balance" rather than "redo" since we 9839 * need to continue with same src_cpu. 9840 */ 9841 goto more_balance; 9842 } 9843 9844 /* 9845 * We failed to reach balance because of affinity. 9846 */ 9847 if (sd_parent) { 9848 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9849 9850 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9851 *group_imbalance = 1; 9852 } 9853 9854 /* All tasks on this runqueue were pinned by CPU affinity */ 9855 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9856 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9857 /* 9858 * Attempting to continue load balancing at the current 9859 * sched_domain level only makes sense if there are 9860 * active CPUs remaining as possible busiest CPUs to 9861 * pull load from which are not contained within the 9862 * destination group that is receiving any migrated 9863 * load. 9864 */ 9865 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9866 env.loop = 0; 9867 env.loop_break = sched_nr_migrate_break; 9868 goto redo; 9869 } 9870 goto out_all_pinned; 9871 } 9872 } 9873 9874 if (!ld_moved) { 9875 schedstat_inc(sd->lb_failed[idle]); 9876 /* 9877 * Increment the failure counter only on periodic balance. 9878 * We do not want newidle balance, which can be very 9879 * frequent, pollute the failure counter causing 9880 * excessive cache_hot migrations and active balances. 9881 */ 9882 if (idle != CPU_NEWLY_IDLE) 9883 sd->nr_balance_failed++; 9884 9885 if (need_active_balance(&env)) { 9886 unsigned long flags; 9887 9888 raw_spin_rq_lock_irqsave(busiest, flags); 9889 9890 /* 9891 * Don't kick the active_load_balance_cpu_stop, 9892 * if the curr task on busiest CPU can't be 9893 * moved to this_cpu: 9894 */ 9895 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 9896 raw_spin_rq_unlock_irqrestore(busiest, flags); 9897 goto out_one_pinned; 9898 } 9899 9900 /* Record that we found at least one task that could run on this_cpu */ 9901 env.flags &= ~LBF_ALL_PINNED; 9902 9903 /* 9904 * ->active_balance synchronizes accesses to 9905 * ->active_balance_work. Once set, it's cleared 9906 * only after active load balance is finished. 9907 */ 9908 if (!busiest->active_balance) { 9909 busiest->active_balance = 1; 9910 busiest->push_cpu = this_cpu; 9911 active_balance = 1; 9912 } 9913 raw_spin_rq_unlock_irqrestore(busiest, flags); 9914 9915 if (active_balance) { 9916 stop_one_cpu_nowait(cpu_of(busiest), 9917 active_load_balance_cpu_stop, busiest, 9918 &busiest->active_balance_work); 9919 } 9920 } 9921 } else { 9922 sd->nr_balance_failed = 0; 9923 } 9924 9925 if (likely(!active_balance) || need_active_balance(&env)) { 9926 /* We were unbalanced, so reset the balancing interval */ 9927 sd->balance_interval = sd->min_interval; 9928 } 9929 9930 goto out; 9931 9932 out_balanced: 9933 /* 9934 * We reach balance although we may have faced some affinity 9935 * constraints. Clear the imbalance flag only if other tasks got 9936 * a chance to move and fix the imbalance. 9937 */ 9938 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 9939 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9940 9941 if (*group_imbalance) 9942 *group_imbalance = 0; 9943 } 9944 9945 out_all_pinned: 9946 /* 9947 * We reach balance because all tasks are pinned at this level so 9948 * we can't migrate them. Let the imbalance flag set so parent level 9949 * can try to migrate them. 9950 */ 9951 schedstat_inc(sd->lb_balanced[idle]); 9952 9953 sd->nr_balance_failed = 0; 9954 9955 out_one_pinned: 9956 ld_moved = 0; 9957 9958 /* 9959 * newidle_balance() disregards balance intervals, so we could 9960 * repeatedly reach this code, which would lead to balance_interval 9961 * skyrocketing in a short amount of time. Skip the balance_interval 9962 * increase logic to avoid that. 9963 */ 9964 if (env.idle == CPU_NEWLY_IDLE) 9965 goto out; 9966 9967 /* tune up the balancing interval */ 9968 if ((env.flags & LBF_ALL_PINNED && 9969 sd->balance_interval < MAX_PINNED_INTERVAL) || 9970 sd->balance_interval < sd->max_interval) 9971 sd->balance_interval *= 2; 9972 out: 9973 return ld_moved; 9974 } 9975 9976 static inline unsigned long 9977 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9978 { 9979 unsigned long interval = sd->balance_interval; 9980 9981 if (cpu_busy) 9982 interval *= sd->busy_factor; 9983 9984 /* scale ms to jiffies */ 9985 interval = msecs_to_jiffies(interval); 9986 9987 /* 9988 * Reduce likelihood of busy balancing at higher domains racing with 9989 * balancing at lower domains by preventing their balancing periods 9990 * from being multiples of each other. 9991 */ 9992 if (cpu_busy) 9993 interval -= 1; 9994 9995 interval = clamp(interval, 1UL, max_load_balance_interval); 9996 9997 return interval; 9998 } 9999 10000 static inline void 10001 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 10002 { 10003 unsigned long interval, next; 10004 10005 /* used by idle balance, so cpu_busy = 0 */ 10006 interval = get_sd_balance_interval(sd, 0); 10007 next = sd->last_balance + interval; 10008 10009 if (time_after(*next_balance, next)) 10010 *next_balance = next; 10011 } 10012 10013 /* 10014 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 10015 * running tasks off the busiest CPU onto idle CPUs. It requires at 10016 * least 1 task to be running on each physical CPU where possible, and 10017 * avoids physical / logical imbalances. 10018 */ 10019 static int active_load_balance_cpu_stop(void *data) 10020 { 10021 struct rq *busiest_rq = data; 10022 int busiest_cpu = cpu_of(busiest_rq); 10023 int target_cpu = busiest_rq->push_cpu; 10024 struct rq *target_rq = cpu_rq(target_cpu); 10025 struct sched_domain *sd; 10026 struct task_struct *p = NULL; 10027 struct rq_flags rf; 10028 10029 rq_lock_irq(busiest_rq, &rf); 10030 /* 10031 * Between queueing the stop-work and running it is a hole in which 10032 * CPUs can become inactive. We should not move tasks from or to 10033 * inactive CPUs. 10034 */ 10035 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 10036 goto out_unlock; 10037 10038 /* Make sure the requested CPU hasn't gone down in the meantime: */ 10039 if (unlikely(busiest_cpu != smp_processor_id() || 10040 !busiest_rq->active_balance)) 10041 goto out_unlock; 10042 10043 /* Is there any task to move? */ 10044 if (busiest_rq->nr_running <= 1) 10045 goto out_unlock; 10046 10047 /* 10048 * This condition is "impossible", if it occurs 10049 * we need to fix it. Originally reported by 10050 * Bjorn Helgaas on a 128-CPU setup. 10051 */ 10052 BUG_ON(busiest_rq == target_rq); 10053 10054 /* Search for an sd spanning us and the target CPU. */ 10055 rcu_read_lock(); 10056 for_each_domain(target_cpu, sd) { 10057 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 10058 break; 10059 } 10060 10061 if (likely(sd)) { 10062 struct lb_env env = { 10063 .sd = sd, 10064 .dst_cpu = target_cpu, 10065 .dst_rq = target_rq, 10066 .src_cpu = busiest_rq->cpu, 10067 .src_rq = busiest_rq, 10068 .idle = CPU_IDLE, 10069 .flags = LBF_ACTIVE_LB, 10070 }; 10071 10072 schedstat_inc(sd->alb_count); 10073 update_rq_clock(busiest_rq); 10074 10075 p = detach_one_task(&env); 10076 if (p) { 10077 schedstat_inc(sd->alb_pushed); 10078 /* Active balancing done, reset the failure counter. */ 10079 sd->nr_balance_failed = 0; 10080 } else { 10081 schedstat_inc(sd->alb_failed); 10082 } 10083 } 10084 rcu_read_unlock(); 10085 out_unlock: 10086 busiest_rq->active_balance = 0; 10087 rq_unlock(busiest_rq, &rf); 10088 10089 if (p) 10090 attach_one_task(target_rq, p); 10091 10092 local_irq_enable(); 10093 10094 return 0; 10095 } 10096 10097 static DEFINE_SPINLOCK(balancing); 10098 10099 /* 10100 * Scale the max load_balance interval with the number of CPUs in the system. 10101 * This trades load-balance latency on larger machines for less cross talk. 10102 */ 10103 void update_max_interval(void) 10104 { 10105 max_load_balance_interval = HZ*num_online_cpus()/10; 10106 } 10107 10108 /* 10109 * It checks each scheduling domain to see if it is due to be balanced, 10110 * and initiates a balancing operation if so. 10111 * 10112 * Balancing parameters are set up in init_sched_domains. 10113 */ 10114 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 10115 { 10116 int continue_balancing = 1; 10117 int cpu = rq->cpu; 10118 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10119 unsigned long interval; 10120 struct sched_domain *sd; 10121 /* Earliest time when we have to do rebalance again */ 10122 unsigned long next_balance = jiffies + 60*HZ; 10123 int update_next_balance = 0; 10124 int need_serialize, need_decay = 0; 10125 u64 max_cost = 0; 10126 10127 rcu_read_lock(); 10128 for_each_domain(cpu, sd) { 10129 /* 10130 * Decay the newidle max times here because this is a regular 10131 * visit to all the domains. Decay ~1% per second. 10132 */ 10133 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 10134 sd->max_newidle_lb_cost = 10135 (sd->max_newidle_lb_cost * 253) / 256; 10136 sd->next_decay_max_lb_cost = jiffies + HZ; 10137 need_decay = 1; 10138 } 10139 max_cost += sd->max_newidle_lb_cost; 10140 10141 /* 10142 * Stop the load balance at this level. There is another 10143 * CPU in our sched group which is doing load balancing more 10144 * actively. 10145 */ 10146 if (!continue_balancing) { 10147 if (need_decay) 10148 continue; 10149 break; 10150 } 10151 10152 interval = get_sd_balance_interval(sd, busy); 10153 10154 need_serialize = sd->flags & SD_SERIALIZE; 10155 if (need_serialize) { 10156 if (!spin_trylock(&balancing)) 10157 goto out; 10158 } 10159 10160 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10161 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10162 /* 10163 * The LBF_DST_PINNED logic could have changed 10164 * env->dst_cpu, so we can't know our idle 10165 * state even if we migrated tasks. Update it. 10166 */ 10167 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10168 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10169 } 10170 sd->last_balance = jiffies; 10171 interval = get_sd_balance_interval(sd, busy); 10172 } 10173 if (need_serialize) 10174 spin_unlock(&balancing); 10175 out: 10176 if (time_after(next_balance, sd->last_balance + interval)) { 10177 next_balance = sd->last_balance + interval; 10178 update_next_balance = 1; 10179 } 10180 } 10181 if (need_decay) { 10182 /* 10183 * Ensure the rq-wide value also decays but keep it at a 10184 * reasonable floor to avoid funnies with rq->avg_idle. 10185 */ 10186 rq->max_idle_balance_cost = 10187 max((u64)sysctl_sched_migration_cost, max_cost); 10188 } 10189 rcu_read_unlock(); 10190 10191 /* 10192 * next_balance will be updated only when there is a need. 10193 * When the cpu is attached to null domain for ex, it will not be 10194 * updated. 10195 */ 10196 if (likely(update_next_balance)) 10197 rq->next_balance = next_balance; 10198 10199 } 10200 10201 static inline int on_null_domain(struct rq *rq) 10202 { 10203 return unlikely(!rcu_dereference_sched(rq->sd)); 10204 } 10205 10206 #ifdef CONFIG_NO_HZ_COMMON 10207 /* 10208 * idle load balancing details 10209 * - When one of the busy CPUs notice that there may be an idle rebalancing 10210 * needed, they will kick the idle load balancer, which then does idle 10211 * load balancing for all the idle CPUs. 10212 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 10213 * anywhere yet. 10214 */ 10215 10216 static inline int find_new_ilb(void) 10217 { 10218 int ilb; 10219 10220 for_each_cpu_and(ilb, nohz.idle_cpus_mask, 10221 housekeeping_cpumask(HK_FLAG_MISC)) { 10222 10223 if (ilb == smp_processor_id()) 10224 continue; 10225 10226 if (idle_cpu(ilb)) 10227 return ilb; 10228 } 10229 10230 return nr_cpu_ids; 10231 } 10232 10233 /* 10234 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10235 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 10236 */ 10237 static void kick_ilb(unsigned int flags) 10238 { 10239 int ilb_cpu; 10240 10241 /* 10242 * Increase nohz.next_balance only when if full ilb is triggered but 10243 * not if we only update stats. 10244 */ 10245 if (flags & NOHZ_BALANCE_KICK) 10246 nohz.next_balance = jiffies+1; 10247 10248 ilb_cpu = find_new_ilb(); 10249 10250 if (ilb_cpu >= nr_cpu_ids) 10251 return; 10252 10253 /* 10254 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10255 * the first flag owns it; cleared by nohz_csd_func(). 10256 */ 10257 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10258 if (flags & NOHZ_KICK_MASK) 10259 return; 10260 10261 /* 10262 * This way we generate an IPI on the target CPU which 10263 * is idle. And the softirq performing nohz idle load balance 10264 * will be run before returning from the IPI. 10265 */ 10266 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10267 } 10268 10269 /* 10270 * Current decision point for kicking the idle load balancer in the presence 10271 * of idle CPUs in the system. 10272 */ 10273 static void nohz_balancer_kick(struct rq *rq) 10274 { 10275 unsigned long now = jiffies; 10276 struct sched_domain_shared *sds; 10277 struct sched_domain *sd; 10278 int nr_busy, i, cpu = rq->cpu; 10279 unsigned int flags = 0; 10280 10281 if (unlikely(rq->idle_balance)) 10282 return; 10283 10284 /* 10285 * We may be recently in ticked or tickless idle mode. At the first 10286 * busy tick after returning from idle, we will update the busy stats. 10287 */ 10288 nohz_balance_exit_idle(rq); 10289 10290 /* 10291 * None are in tickless mode and hence no need for NOHZ idle load 10292 * balancing. 10293 */ 10294 if (likely(!atomic_read(&nohz.nr_cpus))) 10295 return; 10296 10297 if (READ_ONCE(nohz.has_blocked) && 10298 time_after(now, READ_ONCE(nohz.next_blocked))) 10299 flags = NOHZ_STATS_KICK; 10300 10301 if (time_before(now, nohz.next_balance)) 10302 goto out; 10303 10304 if (rq->nr_running >= 2) { 10305 flags = NOHZ_KICK_MASK; 10306 goto out; 10307 } 10308 10309 rcu_read_lock(); 10310 10311 sd = rcu_dereference(rq->sd); 10312 if (sd) { 10313 /* 10314 * If there's a CFS task and the current CPU has reduced 10315 * capacity; kick the ILB to see if there's a better CPU to run 10316 * on. 10317 */ 10318 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10319 flags = NOHZ_KICK_MASK; 10320 goto unlock; 10321 } 10322 } 10323 10324 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10325 if (sd) { 10326 /* 10327 * When ASYM_PACKING; see if there's a more preferred CPU 10328 * currently idle; in which case, kick the ILB to move tasks 10329 * around. 10330 */ 10331 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10332 if (sched_asym_prefer(i, cpu)) { 10333 flags = NOHZ_KICK_MASK; 10334 goto unlock; 10335 } 10336 } 10337 } 10338 10339 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10340 if (sd) { 10341 /* 10342 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10343 * to run the misfit task on. 10344 */ 10345 if (check_misfit_status(rq, sd)) { 10346 flags = NOHZ_KICK_MASK; 10347 goto unlock; 10348 } 10349 10350 /* 10351 * For asymmetric systems, we do not want to nicely balance 10352 * cache use, instead we want to embrace asymmetry and only 10353 * ensure tasks have enough CPU capacity. 10354 * 10355 * Skip the LLC logic because it's not relevant in that case. 10356 */ 10357 goto unlock; 10358 } 10359 10360 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10361 if (sds) { 10362 /* 10363 * If there is an imbalance between LLC domains (IOW we could 10364 * increase the overall cache use), we need some less-loaded LLC 10365 * domain to pull some load. Likewise, we may need to spread 10366 * load within the current LLC domain (e.g. packed SMT cores but 10367 * other CPUs are idle). We can't really know from here how busy 10368 * the others are - so just get a nohz balance going if it looks 10369 * like this LLC domain has tasks we could move. 10370 */ 10371 nr_busy = atomic_read(&sds->nr_busy_cpus); 10372 if (nr_busy > 1) { 10373 flags = NOHZ_KICK_MASK; 10374 goto unlock; 10375 } 10376 } 10377 unlock: 10378 rcu_read_unlock(); 10379 out: 10380 if (flags) 10381 kick_ilb(flags); 10382 } 10383 10384 static void set_cpu_sd_state_busy(int cpu) 10385 { 10386 struct sched_domain *sd; 10387 10388 rcu_read_lock(); 10389 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10390 10391 if (!sd || !sd->nohz_idle) 10392 goto unlock; 10393 sd->nohz_idle = 0; 10394 10395 atomic_inc(&sd->shared->nr_busy_cpus); 10396 unlock: 10397 rcu_read_unlock(); 10398 } 10399 10400 void nohz_balance_exit_idle(struct rq *rq) 10401 { 10402 SCHED_WARN_ON(rq != this_rq()); 10403 10404 if (likely(!rq->nohz_tick_stopped)) 10405 return; 10406 10407 rq->nohz_tick_stopped = 0; 10408 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10409 atomic_dec(&nohz.nr_cpus); 10410 10411 set_cpu_sd_state_busy(rq->cpu); 10412 } 10413 10414 static void set_cpu_sd_state_idle(int cpu) 10415 { 10416 struct sched_domain *sd; 10417 10418 rcu_read_lock(); 10419 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10420 10421 if (!sd || sd->nohz_idle) 10422 goto unlock; 10423 sd->nohz_idle = 1; 10424 10425 atomic_dec(&sd->shared->nr_busy_cpus); 10426 unlock: 10427 rcu_read_unlock(); 10428 } 10429 10430 /* 10431 * This routine will record that the CPU is going idle with tick stopped. 10432 * This info will be used in performing idle load balancing in the future. 10433 */ 10434 void nohz_balance_enter_idle(int cpu) 10435 { 10436 struct rq *rq = cpu_rq(cpu); 10437 10438 SCHED_WARN_ON(cpu != smp_processor_id()); 10439 10440 /* If this CPU is going down, then nothing needs to be done: */ 10441 if (!cpu_active(cpu)) 10442 return; 10443 10444 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10445 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 10446 return; 10447 10448 /* 10449 * Can be set safely without rq->lock held 10450 * If a clear happens, it will have evaluated last additions because 10451 * rq->lock is held during the check and the clear 10452 */ 10453 rq->has_blocked_load = 1; 10454 10455 /* 10456 * The tick is still stopped but load could have been added in the 10457 * meantime. We set the nohz.has_blocked flag to trig a check of the 10458 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10459 * of nohz.has_blocked can only happen after checking the new load 10460 */ 10461 if (rq->nohz_tick_stopped) 10462 goto out; 10463 10464 /* If we're a completely isolated CPU, we don't play: */ 10465 if (on_null_domain(rq)) 10466 return; 10467 10468 rq->nohz_tick_stopped = 1; 10469 10470 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10471 atomic_inc(&nohz.nr_cpus); 10472 10473 /* 10474 * Ensures that if nohz_idle_balance() fails to observe our 10475 * @idle_cpus_mask store, it must observe the @has_blocked 10476 * store. 10477 */ 10478 smp_mb__after_atomic(); 10479 10480 set_cpu_sd_state_idle(cpu); 10481 10482 out: 10483 /* 10484 * Each time a cpu enter idle, we assume that it has blocked load and 10485 * enable the periodic update of the load of idle cpus 10486 */ 10487 WRITE_ONCE(nohz.has_blocked, 1); 10488 } 10489 10490 static bool update_nohz_stats(struct rq *rq) 10491 { 10492 unsigned int cpu = rq->cpu; 10493 10494 if (!rq->has_blocked_load) 10495 return false; 10496 10497 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 10498 return false; 10499 10500 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 10501 return true; 10502 10503 update_blocked_averages(cpu); 10504 10505 return rq->has_blocked_load; 10506 } 10507 10508 /* 10509 * Internal function that runs load balance for all idle cpus. The load balance 10510 * can be a simple update of blocked load or a complete load balance with 10511 * tasks movement depending of flags. 10512 */ 10513 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10514 enum cpu_idle_type idle) 10515 { 10516 /* Earliest time when we have to do rebalance again */ 10517 unsigned long now = jiffies; 10518 unsigned long next_balance = now + 60*HZ; 10519 bool has_blocked_load = false; 10520 int update_next_balance = 0; 10521 int this_cpu = this_rq->cpu; 10522 int balance_cpu; 10523 struct rq *rq; 10524 10525 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10526 10527 /* 10528 * We assume there will be no idle load after this update and clear 10529 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10530 * set the has_blocked flag and trig another update of idle load. 10531 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10532 * setting the flag, we are sure to not clear the state and not 10533 * check the load of an idle cpu. 10534 */ 10535 WRITE_ONCE(nohz.has_blocked, 0); 10536 10537 /* 10538 * Ensures that if we miss the CPU, we must see the has_blocked 10539 * store from nohz_balance_enter_idle(). 10540 */ 10541 smp_mb(); 10542 10543 /* 10544 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 10545 * chance for other idle cpu to pull load. 10546 */ 10547 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 10548 if (!idle_cpu(balance_cpu)) 10549 continue; 10550 10551 /* 10552 * If this CPU gets work to do, stop the load balancing 10553 * work being done for other CPUs. Next load 10554 * balancing owner will pick it up. 10555 */ 10556 if (need_resched()) { 10557 has_blocked_load = true; 10558 goto abort; 10559 } 10560 10561 rq = cpu_rq(balance_cpu); 10562 10563 has_blocked_load |= update_nohz_stats(rq); 10564 10565 /* 10566 * If time for next balance is due, 10567 * do the balance. 10568 */ 10569 if (time_after_eq(jiffies, rq->next_balance)) { 10570 struct rq_flags rf; 10571 10572 rq_lock_irqsave(rq, &rf); 10573 update_rq_clock(rq); 10574 rq_unlock_irqrestore(rq, &rf); 10575 10576 if (flags & NOHZ_BALANCE_KICK) 10577 rebalance_domains(rq, CPU_IDLE); 10578 } 10579 10580 if (time_after(next_balance, rq->next_balance)) { 10581 next_balance = rq->next_balance; 10582 update_next_balance = 1; 10583 } 10584 } 10585 10586 /* 10587 * next_balance will be updated only when there is a need. 10588 * When the CPU is attached to null domain for ex, it will not be 10589 * updated. 10590 */ 10591 if (likely(update_next_balance)) 10592 nohz.next_balance = next_balance; 10593 10594 WRITE_ONCE(nohz.next_blocked, 10595 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10596 10597 abort: 10598 /* There is still blocked load, enable periodic update */ 10599 if (has_blocked_load) 10600 WRITE_ONCE(nohz.has_blocked, 1); 10601 } 10602 10603 /* 10604 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10605 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10606 */ 10607 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10608 { 10609 unsigned int flags = this_rq->nohz_idle_balance; 10610 10611 if (!flags) 10612 return false; 10613 10614 this_rq->nohz_idle_balance = 0; 10615 10616 if (idle != CPU_IDLE) 10617 return false; 10618 10619 _nohz_idle_balance(this_rq, flags, idle); 10620 10621 return true; 10622 } 10623 10624 /* 10625 * Check if we need to run the ILB for updating blocked load before entering 10626 * idle state. 10627 */ 10628 void nohz_run_idle_balance(int cpu) 10629 { 10630 unsigned int flags; 10631 10632 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 10633 10634 /* 10635 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 10636 * (ie NOHZ_STATS_KICK set) and will do the same. 10637 */ 10638 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 10639 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE); 10640 } 10641 10642 static void nohz_newidle_balance(struct rq *this_rq) 10643 { 10644 int this_cpu = this_rq->cpu; 10645 10646 /* 10647 * This CPU doesn't want to be disturbed by scheduler 10648 * housekeeping 10649 */ 10650 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 10651 return; 10652 10653 /* Will wake up very soon. No time for doing anything else*/ 10654 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10655 return; 10656 10657 /* Don't need to update blocked load of idle CPUs*/ 10658 if (!READ_ONCE(nohz.has_blocked) || 10659 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10660 return; 10661 10662 /* 10663 * Set the need to trigger ILB in order to update blocked load 10664 * before entering idle state. 10665 */ 10666 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 10667 } 10668 10669 #else /* !CONFIG_NO_HZ_COMMON */ 10670 static inline void nohz_balancer_kick(struct rq *rq) { } 10671 10672 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10673 { 10674 return false; 10675 } 10676 10677 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10678 #endif /* CONFIG_NO_HZ_COMMON */ 10679 10680 /* 10681 * newidle_balance is called by schedule() if this_cpu is about to become 10682 * idle. Attempts to pull tasks from other CPUs. 10683 * 10684 * Returns: 10685 * < 0 - we released the lock and there are !fair tasks present 10686 * 0 - failed, no new tasks 10687 * > 0 - success, new (fair) tasks present 10688 */ 10689 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10690 { 10691 unsigned long next_balance = jiffies + HZ; 10692 int this_cpu = this_rq->cpu; 10693 struct sched_domain *sd; 10694 int pulled_task = 0; 10695 u64 curr_cost = 0; 10696 10697 update_misfit_status(NULL, this_rq); 10698 10699 /* 10700 * There is a task waiting to run. No need to search for one. 10701 * Return 0; the task will be enqueued when switching to idle. 10702 */ 10703 if (this_rq->ttwu_pending) 10704 return 0; 10705 10706 /* 10707 * We must set idle_stamp _before_ calling idle_balance(), such that we 10708 * measure the duration of idle_balance() as idle time. 10709 */ 10710 this_rq->idle_stamp = rq_clock(this_rq); 10711 10712 /* 10713 * Do not pull tasks towards !active CPUs... 10714 */ 10715 if (!cpu_active(this_cpu)) 10716 return 0; 10717 10718 /* 10719 * This is OK, because current is on_cpu, which avoids it being picked 10720 * for load-balance and preemption/IRQs are still disabled avoiding 10721 * further scheduler activity on it and we're being very careful to 10722 * re-start the picking loop. 10723 */ 10724 rq_unpin_lock(this_rq, rf); 10725 10726 if (this_rq->avg_idle < sysctl_sched_migration_cost || 10727 !READ_ONCE(this_rq->rd->overload)) { 10728 10729 rcu_read_lock(); 10730 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10731 if (sd) 10732 update_next_balance(sd, &next_balance); 10733 rcu_read_unlock(); 10734 10735 goto out; 10736 } 10737 10738 raw_spin_rq_unlock(this_rq); 10739 10740 update_blocked_averages(this_cpu); 10741 rcu_read_lock(); 10742 for_each_domain(this_cpu, sd) { 10743 int continue_balancing = 1; 10744 u64 t0, domain_cost; 10745 10746 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 10747 update_next_balance(sd, &next_balance); 10748 break; 10749 } 10750 10751 if (sd->flags & SD_BALANCE_NEWIDLE) { 10752 t0 = sched_clock_cpu(this_cpu); 10753 10754 pulled_task = load_balance(this_cpu, this_rq, 10755 sd, CPU_NEWLY_IDLE, 10756 &continue_balancing); 10757 10758 domain_cost = sched_clock_cpu(this_cpu) - t0; 10759 if (domain_cost > sd->max_newidle_lb_cost) 10760 sd->max_newidle_lb_cost = domain_cost; 10761 10762 curr_cost += domain_cost; 10763 } 10764 10765 update_next_balance(sd, &next_balance); 10766 10767 /* 10768 * Stop searching for tasks to pull if there are 10769 * now runnable tasks on this rq. 10770 */ 10771 if (pulled_task || this_rq->nr_running > 0 || 10772 this_rq->ttwu_pending) 10773 break; 10774 } 10775 rcu_read_unlock(); 10776 10777 raw_spin_rq_lock(this_rq); 10778 10779 if (curr_cost > this_rq->max_idle_balance_cost) 10780 this_rq->max_idle_balance_cost = curr_cost; 10781 10782 /* 10783 * While browsing the domains, we released the rq lock, a task could 10784 * have been enqueued in the meantime. Since we're not going idle, 10785 * pretend we pulled a task. 10786 */ 10787 if (this_rq->cfs.h_nr_running && !pulled_task) 10788 pulled_task = 1; 10789 10790 /* Is there a task of a high priority class? */ 10791 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10792 pulled_task = -1; 10793 10794 out: 10795 /* Move the next balance forward */ 10796 if (time_after(this_rq->next_balance, next_balance)) 10797 this_rq->next_balance = next_balance; 10798 10799 if (pulled_task) 10800 this_rq->idle_stamp = 0; 10801 else 10802 nohz_newidle_balance(this_rq); 10803 10804 rq_repin_lock(this_rq, rf); 10805 10806 return pulled_task; 10807 } 10808 10809 /* 10810 * run_rebalance_domains is triggered when needed from the scheduler tick. 10811 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10812 */ 10813 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10814 { 10815 struct rq *this_rq = this_rq(); 10816 enum cpu_idle_type idle = this_rq->idle_balance ? 10817 CPU_IDLE : CPU_NOT_IDLE; 10818 10819 /* 10820 * If this CPU has a pending nohz_balance_kick, then do the 10821 * balancing on behalf of the other idle CPUs whose ticks are 10822 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10823 * give the idle CPUs a chance to load balance. Else we may 10824 * load balance only within the local sched_domain hierarchy 10825 * and abort nohz_idle_balance altogether if we pull some load. 10826 */ 10827 if (nohz_idle_balance(this_rq, idle)) 10828 return; 10829 10830 /* normal load balance */ 10831 update_blocked_averages(this_rq->cpu); 10832 rebalance_domains(this_rq, idle); 10833 } 10834 10835 /* 10836 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10837 */ 10838 void trigger_load_balance(struct rq *rq) 10839 { 10840 /* 10841 * Don't need to rebalance while attached to NULL domain or 10842 * runqueue CPU is not active 10843 */ 10844 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 10845 return; 10846 10847 if (time_after_eq(jiffies, rq->next_balance)) 10848 raise_softirq(SCHED_SOFTIRQ); 10849 10850 nohz_balancer_kick(rq); 10851 } 10852 10853 static void rq_online_fair(struct rq *rq) 10854 { 10855 update_sysctl(); 10856 10857 update_runtime_enabled(rq); 10858 } 10859 10860 static void rq_offline_fair(struct rq *rq) 10861 { 10862 update_sysctl(); 10863 10864 /* Ensure any throttled groups are reachable by pick_next_task */ 10865 unthrottle_offline_cfs_rqs(rq); 10866 } 10867 10868 #endif /* CONFIG_SMP */ 10869 10870 #ifdef CONFIG_SCHED_CORE 10871 static inline bool 10872 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 10873 { 10874 u64 slice = sched_slice(cfs_rq_of(se), se); 10875 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 10876 10877 return (rtime * min_nr_tasks > slice); 10878 } 10879 10880 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 10881 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 10882 { 10883 if (!sched_core_enabled(rq)) 10884 return; 10885 10886 /* 10887 * If runqueue has only one task which used up its slice and 10888 * if the sibling is forced idle, then trigger schedule to 10889 * give forced idle task a chance. 10890 * 10891 * sched_slice() considers only this active rq and it gets the 10892 * whole slice. But during force idle, we have siblings acting 10893 * like a single runqueue and hence we need to consider runnable 10894 * tasks on this CPU and the forced idle CPU. Ideally, we should 10895 * go through the forced idle rq, but that would be a perf hit. 10896 * We can assume that the forced idle CPU has at least 10897 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 10898 * if we need to give up the CPU. 10899 */ 10900 if (rq->core->core_forceidle && rq->cfs.nr_running == 1 && 10901 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 10902 resched_curr(rq); 10903 } 10904 10905 /* 10906 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 10907 */ 10908 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle) 10909 { 10910 for_each_sched_entity(se) { 10911 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10912 10913 if (forceidle) { 10914 if (cfs_rq->forceidle_seq == fi_seq) 10915 break; 10916 cfs_rq->forceidle_seq = fi_seq; 10917 } 10918 10919 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 10920 } 10921 } 10922 10923 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 10924 { 10925 struct sched_entity *se = &p->se; 10926 10927 if (p->sched_class != &fair_sched_class) 10928 return; 10929 10930 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 10931 } 10932 10933 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 10934 { 10935 struct rq *rq = task_rq(a); 10936 struct sched_entity *sea = &a->se; 10937 struct sched_entity *seb = &b->se; 10938 struct cfs_rq *cfs_rqa; 10939 struct cfs_rq *cfs_rqb; 10940 s64 delta; 10941 10942 SCHED_WARN_ON(task_rq(b)->core != rq->core); 10943 10944 #ifdef CONFIG_FAIR_GROUP_SCHED 10945 /* 10946 * Find an se in the hierarchy for tasks a and b, such that the se's 10947 * are immediate siblings. 10948 */ 10949 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 10950 int sea_depth = sea->depth; 10951 int seb_depth = seb->depth; 10952 10953 if (sea_depth >= seb_depth) 10954 sea = parent_entity(sea); 10955 if (sea_depth <= seb_depth) 10956 seb = parent_entity(seb); 10957 } 10958 10959 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 10960 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 10961 10962 cfs_rqa = sea->cfs_rq; 10963 cfs_rqb = seb->cfs_rq; 10964 #else 10965 cfs_rqa = &task_rq(a)->cfs; 10966 cfs_rqb = &task_rq(b)->cfs; 10967 #endif 10968 10969 /* 10970 * Find delta after normalizing se's vruntime with its cfs_rq's 10971 * min_vruntime_fi, which would have been updated in prior calls 10972 * to se_fi_update(). 10973 */ 10974 delta = (s64)(sea->vruntime - seb->vruntime) + 10975 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 10976 10977 return delta > 0; 10978 } 10979 #else 10980 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 10981 #endif 10982 10983 /* 10984 * scheduler tick hitting a task of our scheduling class. 10985 * 10986 * NOTE: This function can be called remotely by the tick offload that 10987 * goes along full dynticks. Therefore no local assumption can be made 10988 * and everything must be accessed through the @rq and @curr passed in 10989 * parameters. 10990 */ 10991 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 10992 { 10993 struct cfs_rq *cfs_rq; 10994 struct sched_entity *se = &curr->se; 10995 10996 for_each_sched_entity(se) { 10997 cfs_rq = cfs_rq_of(se); 10998 entity_tick(cfs_rq, se, queued); 10999 } 11000 11001 if (static_branch_unlikely(&sched_numa_balancing)) 11002 task_tick_numa(rq, curr); 11003 11004 update_misfit_status(curr, rq); 11005 update_overutilized_status(task_rq(curr)); 11006 11007 task_tick_core(rq, curr); 11008 } 11009 11010 /* 11011 * called on fork with the child task as argument from the parent's context 11012 * - child not yet on the tasklist 11013 * - preemption disabled 11014 */ 11015 static void task_fork_fair(struct task_struct *p) 11016 { 11017 struct cfs_rq *cfs_rq; 11018 struct sched_entity *se = &p->se, *curr; 11019 struct rq *rq = this_rq(); 11020 struct rq_flags rf; 11021 11022 rq_lock(rq, &rf); 11023 update_rq_clock(rq); 11024 11025 cfs_rq = task_cfs_rq(current); 11026 curr = cfs_rq->curr; 11027 if (curr) { 11028 update_curr(cfs_rq); 11029 se->vruntime = curr->vruntime; 11030 } 11031 place_entity(cfs_rq, se, 1); 11032 11033 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 11034 /* 11035 * Upon rescheduling, sched_class::put_prev_task() will place 11036 * 'current' within the tree based on its new key value. 11037 */ 11038 swap(curr->vruntime, se->vruntime); 11039 resched_curr(rq); 11040 } 11041 11042 se->vruntime -= cfs_rq->min_vruntime; 11043 rq_unlock(rq, &rf); 11044 } 11045 11046 /* 11047 * Priority of the task has changed. Check to see if we preempt 11048 * the current task. 11049 */ 11050 static void 11051 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 11052 { 11053 if (!task_on_rq_queued(p)) 11054 return; 11055 11056 if (rq->cfs.nr_running == 1) 11057 return; 11058 11059 /* 11060 * Reschedule if we are currently running on this runqueue and 11061 * our priority decreased, or if we are not currently running on 11062 * this runqueue and our priority is higher than the current's 11063 */ 11064 if (task_current(rq, p)) { 11065 if (p->prio > oldprio) 11066 resched_curr(rq); 11067 } else 11068 check_preempt_curr(rq, p, 0); 11069 } 11070 11071 static inline bool vruntime_normalized(struct task_struct *p) 11072 { 11073 struct sched_entity *se = &p->se; 11074 11075 /* 11076 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 11077 * the dequeue_entity(.flags=0) will already have normalized the 11078 * vruntime. 11079 */ 11080 if (p->on_rq) 11081 return true; 11082 11083 /* 11084 * When !on_rq, vruntime of the task has usually NOT been normalized. 11085 * But there are some cases where it has already been normalized: 11086 * 11087 * - A forked child which is waiting for being woken up by 11088 * wake_up_new_task(). 11089 * - A task which has been woken up by try_to_wake_up() and 11090 * waiting for actually being woken up by sched_ttwu_pending(). 11091 */ 11092 if (!se->sum_exec_runtime || 11093 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) 11094 return true; 11095 11096 return false; 11097 } 11098 11099 #ifdef CONFIG_FAIR_GROUP_SCHED 11100 /* 11101 * Propagate the changes of the sched_entity across the tg tree to make it 11102 * visible to the root 11103 */ 11104 static void propagate_entity_cfs_rq(struct sched_entity *se) 11105 { 11106 struct cfs_rq *cfs_rq; 11107 11108 list_add_leaf_cfs_rq(cfs_rq_of(se)); 11109 11110 /* Start to propagate at parent */ 11111 se = se->parent; 11112 11113 for_each_sched_entity(se) { 11114 cfs_rq = cfs_rq_of(se); 11115 11116 if (!cfs_rq_throttled(cfs_rq)){ 11117 update_load_avg(cfs_rq, se, UPDATE_TG); 11118 list_add_leaf_cfs_rq(cfs_rq); 11119 continue; 11120 } 11121 11122 if (list_add_leaf_cfs_rq(cfs_rq)) 11123 break; 11124 } 11125 } 11126 #else 11127 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 11128 #endif 11129 11130 static void detach_entity_cfs_rq(struct sched_entity *se) 11131 { 11132 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11133 11134 /* Catch up with the cfs_rq and remove our load when we leave */ 11135 update_load_avg(cfs_rq, se, 0); 11136 detach_entity_load_avg(cfs_rq, se); 11137 update_tg_load_avg(cfs_rq); 11138 propagate_entity_cfs_rq(se); 11139 } 11140 11141 static void attach_entity_cfs_rq(struct sched_entity *se) 11142 { 11143 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11144 11145 #ifdef CONFIG_FAIR_GROUP_SCHED 11146 /* 11147 * Since the real-depth could have been changed (only FAIR 11148 * class maintain depth value), reset depth properly. 11149 */ 11150 se->depth = se->parent ? se->parent->depth + 1 : 0; 11151 #endif 11152 11153 /* Synchronize entity with its cfs_rq */ 11154 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 11155 attach_entity_load_avg(cfs_rq, se); 11156 update_tg_load_avg(cfs_rq); 11157 propagate_entity_cfs_rq(se); 11158 } 11159 11160 static void detach_task_cfs_rq(struct task_struct *p) 11161 { 11162 struct sched_entity *se = &p->se; 11163 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11164 11165 if (!vruntime_normalized(p)) { 11166 /* 11167 * Fix up our vruntime so that the current sleep doesn't 11168 * cause 'unlimited' sleep bonus. 11169 */ 11170 place_entity(cfs_rq, se, 0); 11171 se->vruntime -= cfs_rq->min_vruntime; 11172 } 11173 11174 detach_entity_cfs_rq(se); 11175 } 11176 11177 static void attach_task_cfs_rq(struct task_struct *p) 11178 { 11179 struct sched_entity *se = &p->se; 11180 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11181 11182 attach_entity_cfs_rq(se); 11183 11184 if (!vruntime_normalized(p)) 11185 se->vruntime += cfs_rq->min_vruntime; 11186 } 11187 11188 static void switched_from_fair(struct rq *rq, struct task_struct *p) 11189 { 11190 detach_task_cfs_rq(p); 11191 } 11192 11193 static void switched_to_fair(struct rq *rq, struct task_struct *p) 11194 { 11195 attach_task_cfs_rq(p); 11196 11197 if (task_on_rq_queued(p)) { 11198 /* 11199 * We were most likely switched from sched_rt, so 11200 * kick off the schedule if running, otherwise just see 11201 * if we can still preempt the current task. 11202 */ 11203 if (task_current(rq, p)) 11204 resched_curr(rq); 11205 else 11206 check_preempt_curr(rq, p, 0); 11207 } 11208 } 11209 11210 /* Account for a task changing its policy or group. 11211 * 11212 * This routine is mostly called to set cfs_rq->curr field when a task 11213 * migrates between groups/classes. 11214 */ 11215 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 11216 { 11217 struct sched_entity *se = &p->se; 11218 11219 #ifdef CONFIG_SMP 11220 if (task_on_rq_queued(p)) { 11221 /* 11222 * Move the next running task to the front of the list, so our 11223 * cfs_tasks list becomes MRU one. 11224 */ 11225 list_move(&se->group_node, &rq->cfs_tasks); 11226 } 11227 #endif 11228 11229 for_each_sched_entity(se) { 11230 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11231 11232 set_next_entity(cfs_rq, se); 11233 /* ensure bandwidth has been allocated on our new cfs_rq */ 11234 account_cfs_rq_runtime(cfs_rq, 0); 11235 } 11236 } 11237 11238 void init_cfs_rq(struct cfs_rq *cfs_rq) 11239 { 11240 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 11241 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 11242 #ifndef CONFIG_64BIT 11243 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 11244 #endif 11245 #ifdef CONFIG_SMP 11246 raw_spin_lock_init(&cfs_rq->removed.lock); 11247 #endif 11248 } 11249 11250 #ifdef CONFIG_FAIR_GROUP_SCHED 11251 static void task_set_group_fair(struct task_struct *p) 11252 { 11253 struct sched_entity *se = &p->se; 11254 11255 set_task_rq(p, task_cpu(p)); 11256 se->depth = se->parent ? se->parent->depth + 1 : 0; 11257 } 11258 11259 static void task_move_group_fair(struct task_struct *p) 11260 { 11261 detach_task_cfs_rq(p); 11262 set_task_rq(p, task_cpu(p)); 11263 11264 #ifdef CONFIG_SMP 11265 /* Tell se's cfs_rq has been changed -- migrated */ 11266 p->se.avg.last_update_time = 0; 11267 #endif 11268 attach_task_cfs_rq(p); 11269 } 11270 11271 static void task_change_group_fair(struct task_struct *p, int type) 11272 { 11273 switch (type) { 11274 case TASK_SET_GROUP: 11275 task_set_group_fair(p); 11276 break; 11277 11278 case TASK_MOVE_GROUP: 11279 task_move_group_fair(p); 11280 break; 11281 } 11282 } 11283 11284 void free_fair_sched_group(struct task_group *tg) 11285 { 11286 int i; 11287 11288 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11289 11290 for_each_possible_cpu(i) { 11291 if (tg->cfs_rq) 11292 kfree(tg->cfs_rq[i]); 11293 if (tg->se) 11294 kfree(tg->se[i]); 11295 } 11296 11297 kfree(tg->cfs_rq); 11298 kfree(tg->se); 11299 } 11300 11301 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11302 { 11303 struct sched_entity *se; 11304 struct cfs_rq *cfs_rq; 11305 int i; 11306 11307 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 11308 if (!tg->cfs_rq) 11309 goto err; 11310 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 11311 if (!tg->se) 11312 goto err; 11313 11314 tg->shares = NICE_0_LOAD; 11315 11316 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11317 11318 for_each_possible_cpu(i) { 11319 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 11320 GFP_KERNEL, cpu_to_node(i)); 11321 if (!cfs_rq) 11322 goto err; 11323 11324 se = kzalloc_node(sizeof(struct sched_entity), 11325 GFP_KERNEL, cpu_to_node(i)); 11326 if (!se) 11327 goto err_free_rq; 11328 11329 init_cfs_rq(cfs_rq); 11330 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 11331 init_entity_runnable_average(se); 11332 } 11333 11334 return 1; 11335 11336 err_free_rq: 11337 kfree(cfs_rq); 11338 err: 11339 return 0; 11340 } 11341 11342 void online_fair_sched_group(struct task_group *tg) 11343 { 11344 struct sched_entity *se; 11345 struct rq_flags rf; 11346 struct rq *rq; 11347 int i; 11348 11349 for_each_possible_cpu(i) { 11350 rq = cpu_rq(i); 11351 se = tg->se[i]; 11352 rq_lock_irq(rq, &rf); 11353 update_rq_clock(rq); 11354 attach_entity_cfs_rq(se); 11355 sync_throttle(tg, i); 11356 rq_unlock_irq(rq, &rf); 11357 } 11358 } 11359 11360 void unregister_fair_sched_group(struct task_group *tg) 11361 { 11362 unsigned long flags; 11363 struct rq *rq; 11364 int cpu; 11365 11366 for_each_possible_cpu(cpu) { 11367 if (tg->se[cpu]) 11368 remove_entity_load_avg(tg->se[cpu]); 11369 11370 /* 11371 * Only empty task groups can be destroyed; so we can speculatively 11372 * check on_list without danger of it being re-added. 11373 */ 11374 if (!tg->cfs_rq[cpu]->on_list) 11375 continue; 11376 11377 rq = cpu_rq(cpu); 11378 11379 raw_spin_rq_lock_irqsave(rq, flags); 11380 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11381 raw_spin_rq_unlock_irqrestore(rq, flags); 11382 } 11383 } 11384 11385 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11386 struct sched_entity *se, int cpu, 11387 struct sched_entity *parent) 11388 { 11389 struct rq *rq = cpu_rq(cpu); 11390 11391 cfs_rq->tg = tg; 11392 cfs_rq->rq = rq; 11393 init_cfs_rq_runtime(cfs_rq); 11394 11395 tg->cfs_rq[cpu] = cfs_rq; 11396 tg->se[cpu] = se; 11397 11398 /* se could be NULL for root_task_group */ 11399 if (!se) 11400 return; 11401 11402 if (!parent) { 11403 se->cfs_rq = &rq->cfs; 11404 se->depth = 0; 11405 } else { 11406 se->cfs_rq = parent->my_q; 11407 se->depth = parent->depth + 1; 11408 } 11409 11410 se->my_q = cfs_rq; 11411 /* guarantee group entities always have weight */ 11412 update_load_set(&se->load, NICE_0_LOAD); 11413 se->parent = parent; 11414 } 11415 11416 static DEFINE_MUTEX(shares_mutex); 11417 11418 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11419 { 11420 int i; 11421 11422 /* 11423 * We can't change the weight of the root cgroup. 11424 */ 11425 if (!tg->se[0]) 11426 return -EINVAL; 11427 11428 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11429 11430 mutex_lock(&shares_mutex); 11431 if (tg->shares == shares) 11432 goto done; 11433 11434 tg->shares = shares; 11435 for_each_possible_cpu(i) { 11436 struct rq *rq = cpu_rq(i); 11437 struct sched_entity *se = tg->se[i]; 11438 struct rq_flags rf; 11439 11440 /* Propagate contribution to hierarchy */ 11441 rq_lock_irqsave(rq, &rf); 11442 update_rq_clock(rq); 11443 for_each_sched_entity(se) { 11444 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11445 update_cfs_group(se); 11446 } 11447 rq_unlock_irqrestore(rq, &rf); 11448 } 11449 11450 done: 11451 mutex_unlock(&shares_mutex); 11452 return 0; 11453 } 11454 #else /* CONFIG_FAIR_GROUP_SCHED */ 11455 11456 void free_fair_sched_group(struct task_group *tg) { } 11457 11458 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11459 { 11460 return 1; 11461 } 11462 11463 void online_fair_sched_group(struct task_group *tg) { } 11464 11465 void unregister_fair_sched_group(struct task_group *tg) { } 11466 11467 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11468 11469 11470 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11471 { 11472 struct sched_entity *se = &task->se; 11473 unsigned int rr_interval = 0; 11474 11475 /* 11476 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11477 * idle runqueue: 11478 */ 11479 if (rq->cfs.load.weight) 11480 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11481 11482 return rr_interval; 11483 } 11484 11485 /* 11486 * All the scheduling class methods: 11487 */ 11488 DEFINE_SCHED_CLASS(fair) = { 11489 11490 .enqueue_task = enqueue_task_fair, 11491 .dequeue_task = dequeue_task_fair, 11492 .yield_task = yield_task_fair, 11493 .yield_to_task = yield_to_task_fair, 11494 11495 .check_preempt_curr = check_preempt_wakeup, 11496 11497 .pick_next_task = __pick_next_task_fair, 11498 .put_prev_task = put_prev_task_fair, 11499 .set_next_task = set_next_task_fair, 11500 11501 #ifdef CONFIG_SMP 11502 .balance = balance_fair, 11503 .pick_task = pick_task_fair, 11504 .select_task_rq = select_task_rq_fair, 11505 .migrate_task_rq = migrate_task_rq_fair, 11506 11507 .rq_online = rq_online_fair, 11508 .rq_offline = rq_offline_fair, 11509 11510 .task_dead = task_dead_fair, 11511 .set_cpus_allowed = set_cpus_allowed_common, 11512 #endif 11513 11514 .task_tick = task_tick_fair, 11515 .task_fork = task_fork_fair, 11516 11517 .prio_changed = prio_changed_fair, 11518 .switched_from = switched_from_fair, 11519 .switched_to = switched_to_fair, 11520 11521 .get_rr_interval = get_rr_interval_fair, 11522 11523 .update_curr = update_curr_fair, 11524 11525 #ifdef CONFIG_FAIR_GROUP_SCHED 11526 .task_change_group = task_change_group_fair, 11527 #endif 11528 11529 #ifdef CONFIG_UCLAMP_TASK 11530 .uclamp_enabled = 1, 11531 #endif 11532 }; 11533 11534 #ifdef CONFIG_SCHED_DEBUG 11535 void print_cfs_stats(struct seq_file *m, int cpu) 11536 { 11537 struct cfs_rq *cfs_rq, *pos; 11538 11539 rcu_read_lock(); 11540 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 11541 print_cfs_rq(m, cpu, cfs_rq); 11542 rcu_read_unlock(); 11543 } 11544 11545 #ifdef CONFIG_NUMA_BALANCING 11546 void show_numa_stats(struct task_struct *p, struct seq_file *m) 11547 { 11548 int node; 11549 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 11550 struct numa_group *ng; 11551 11552 rcu_read_lock(); 11553 ng = rcu_dereference(p->numa_group); 11554 for_each_online_node(node) { 11555 if (p->numa_faults) { 11556 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 11557 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 11558 } 11559 if (ng) { 11560 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 11561 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 11562 } 11563 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 11564 } 11565 rcu_read_unlock(); 11566 } 11567 #endif /* CONFIG_NUMA_BALANCING */ 11568 #endif /* CONFIG_SCHED_DEBUG */ 11569 11570 __init void init_sched_fair_class(void) 11571 { 11572 #ifdef CONFIG_SMP 11573 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 11574 11575 #ifdef CONFIG_NO_HZ_COMMON 11576 nohz.next_balance = jiffies; 11577 nohz.next_blocked = jiffies; 11578 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 11579 #endif 11580 #endif /* SMP */ 11581 11582 } 11583 11584 /* 11585 * Helper functions to facilitate extracting info from tracepoints. 11586 */ 11587 11588 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 11589 { 11590 #ifdef CONFIG_SMP 11591 return cfs_rq ? &cfs_rq->avg : NULL; 11592 #else 11593 return NULL; 11594 #endif 11595 } 11596 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 11597 11598 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 11599 { 11600 if (!cfs_rq) { 11601 if (str) 11602 strlcpy(str, "(null)", len); 11603 else 11604 return NULL; 11605 } 11606 11607 cfs_rq_tg_path(cfs_rq, str, len); 11608 return str; 11609 } 11610 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 11611 11612 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 11613 { 11614 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 11615 } 11616 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 11617 11618 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 11619 { 11620 #ifdef CONFIG_SMP 11621 return rq ? &rq->avg_rt : NULL; 11622 #else 11623 return NULL; 11624 #endif 11625 } 11626 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 11627 11628 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 11629 { 11630 #ifdef CONFIG_SMP 11631 return rq ? &rq->avg_dl : NULL; 11632 #else 11633 return NULL; 11634 #endif 11635 } 11636 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 11637 11638 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 11639 { 11640 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 11641 return rq ? &rq->avg_irq : NULL; 11642 #else 11643 return NULL; 11644 #endif 11645 } 11646 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 11647 11648 int sched_trace_rq_cpu(struct rq *rq) 11649 { 11650 return rq ? cpu_of(rq) : -1; 11651 } 11652 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 11653 11654 int sched_trace_rq_cpu_capacity(struct rq *rq) 11655 { 11656 return rq ? 11657 #ifdef CONFIG_SMP 11658 rq->cpu_capacity 11659 #else 11660 SCHED_CAPACITY_SCALE 11661 #endif 11662 : -1; 11663 } 11664 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity); 11665 11666 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 11667 { 11668 #ifdef CONFIG_SMP 11669 return rd ? rd->span : NULL; 11670 #else 11671 return NULL; 11672 #endif 11673 } 11674 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 11675 11676 int sched_trace_rq_nr_running(struct rq *rq) 11677 { 11678 return rq ? rq->nr_running : -1; 11679 } 11680 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running); 11681