xref: /openbmc/linux/kernel/sched/fair.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 /*
26  * Targeted preemption latency for CPU-bound tasks:
27  *
28  * NOTE: this latency value is not the same as the concept of
29  * 'timeslice length' - timeslices in CFS are of variable length
30  * and have no persistent notion like in traditional, time-slice
31  * based scheduling concepts.
32  *
33  * (to see the precise effective timeslice length of your workload,
34  *  run vmstat and monitor the context-switches (cs) field)
35  *
36  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37  */
38 unsigned int sysctl_sched_latency			= 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
40 
41 /*
42  * The initial- and re-scaling of tunables is configurable
43  *
44  * Options are:
45  *
46  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
47  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49  *
50  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51  */
52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53 
54 /*
55  * Minimal preemption granularity for CPU-bound tasks:
56  *
57  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58  */
59 unsigned int sysctl_sched_min_granularity			= 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
61 
62 /*
63  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
64  */
65 static unsigned int sched_nr_latency = 8;
66 
67 /*
68  * After fork, child runs first. If set to 0 (default) then
69  * parent will (try to) run first.
70  */
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 
73 /*
74  * SCHED_OTHER wake-up granularity.
75  *
76  * This option delays the preemption effects of decoupled workloads
77  * and reduces their over-scheduling. Synchronous workloads will still
78  * have immediate wakeup/sleep latencies.
79  *
80  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
81  */
82 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
84 
85 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
86 
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
89 {
90 	int _shift = 0;
91 
92 	if (kstrtoint(str, 0, &_shift))
93 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94 
95 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 	return 1;
97 }
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99 
100 #ifdef CONFIG_SMP
101 /*
102  * For asym packing, by default the lower numbered CPU has higher priority.
103  */
104 int __weak arch_asym_cpu_priority(int cpu)
105 {
106 	return -cpu;
107 }
108 
109 /*
110  * The margin used when comparing utilization with CPU capacity.
111  *
112  * (default: ~20%)
113  */
114 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
115 
116 /*
117  * The margin used when comparing CPU capacities.
118  * is 'cap1' noticeably greater than 'cap2'
119  *
120  * (default: ~5%)
121  */
122 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
123 #endif
124 
125 #ifdef CONFIG_CFS_BANDWIDTH
126 /*
127  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
128  * each time a cfs_rq requests quota.
129  *
130  * Note: in the case that the slice exceeds the runtime remaining (either due
131  * to consumption or the quota being specified to be smaller than the slice)
132  * we will always only issue the remaining available time.
133  *
134  * (default: 5 msec, units: microseconds)
135  */
136 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
137 #endif
138 
139 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
140 {
141 	lw->weight += inc;
142 	lw->inv_weight = 0;
143 }
144 
145 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
146 {
147 	lw->weight -= dec;
148 	lw->inv_weight = 0;
149 }
150 
151 static inline void update_load_set(struct load_weight *lw, unsigned long w)
152 {
153 	lw->weight = w;
154 	lw->inv_weight = 0;
155 }
156 
157 /*
158  * Increase the granularity value when there are more CPUs,
159  * because with more CPUs the 'effective latency' as visible
160  * to users decreases. But the relationship is not linear,
161  * so pick a second-best guess by going with the log2 of the
162  * number of CPUs.
163  *
164  * This idea comes from the SD scheduler of Con Kolivas:
165  */
166 static unsigned int get_update_sysctl_factor(void)
167 {
168 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
169 	unsigned int factor;
170 
171 	switch (sysctl_sched_tunable_scaling) {
172 	case SCHED_TUNABLESCALING_NONE:
173 		factor = 1;
174 		break;
175 	case SCHED_TUNABLESCALING_LINEAR:
176 		factor = cpus;
177 		break;
178 	case SCHED_TUNABLESCALING_LOG:
179 	default:
180 		factor = 1 + ilog2(cpus);
181 		break;
182 	}
183 
184 	return factor;
185 }
186 
187 static void update_sysctl(void)
188 {
189 	unsigned int factor = get_update_sysctl_factor();
190 
191 #define SET_SYSCTL(name) \
192 	(sysctl_##name = (factor) * normalized_sysctl_##name)
193 	SET_SYSCTL(sched_min_granularity);
194 	SET_SYSCTL(sched_latency);
195 	SET_SYSCTL(sched_wakeup_granularity);
196 #undef SET_SYSCTL
197 }
198 
199 void __init sched_init_granularity(void)
200 {
201 	update_sysctl();
202 }
203 
204 #define WMULT_CONST	(~0U)
205 #define WMULT_SHIFT	32
206 
207 static void __update_inv_weight(struct load_weight *lw)
208 {
209 	unsigned long w;
210 
211 	if (likely(lw->inv_weight))
212 		return;
213 
214 	w = scale_load_down(lw->weight);
215 
216 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 		lw->inv_weight = 1;
218 	else if (unlikely(!w))
219 		lw->inv_weight = WMULT_CONST;
220 	else
221 		lw->inv_weight = WMULT_CONST / w;
222 }
223 
224 /*
225  * delta_exec * weight / lw.weight
226  *   OR
227  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
228  *
229  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
230  * we're guaranteed shift stays positive because inv_weight is guaranteed to
231  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
232  *
233  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
234  * weight/lw.weight <= 1, and therefore our shift will also be positive.
235  */
236 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
237 {
238 	u64 fact = scale_load_down(weight);
239 	u32 fact_hi = (u32)(fact >> 32);
240 	int shift = WMULT_SHIFT;
241 	int fs;
242 
243 	__update_inv_weight(lw);
244 
245 	if (unlikely(fact_hi)) {
246 		fs = fls(fact_hi);
247 		shift -= fs;
248 		fact >>= fs;
249 	}
250 
251 	fact = mul_u32_u32(fact, lw->inv_weight);
252 
253 	fact_hi = (u32)(fact >> 32);
254 	if (fact_hi) {
255 		fs = fls(fact_hi);
256 		shift -= fs;
257 		fact >>= fs;
258 	}
259 
260 	return mul_u64_u32_shr(delta_exec, fact, shift);
261 }
262 
263 
264 const struct sched_class fair_sched_class;
265 
266 /**************************************************************
267  * CFS operations on generic schedulable entities:
268  */
269 
270 #ifdef CONFIG_FAIR_GROUP_SCHED
271 
272 /* Walk up scheduling entities hierarchy */
273 #define for_each_sched_entity(se) \
274 		for (; se; se = se->parent)
275 
276 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
277 {
278 	if (!path)
279 		return;
280 
281 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
282 		autogroup_path(cfs_rq->tg, path, len);
283 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
284 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
285 	else
286 		strlcpy(path, "(null)", len);
287 }
288 
289 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 	struct rq *rq = rq_of(cfs_rq);
292 	int cpu = cpu_of(rq);
293 
294 	if (cfs_rq->on_list)
295 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
296 
297 	cfs_rq->on_list = 1;
298 
299 	/*
300 	 * Ensure we either appear before our parent (if already
301 	 * enqueued) or force our parent to appear after us when it is
302 	 * enqueued. The fact that we always enqueue bottom-up
303 	 * reduces this to two cases and a special case for the root
304 	 * cfs_rq. Furthermore, it also means that we will always reset
305 	 * tmp_alone_branch either when the branch is connected
306 	 * to a tree or when we reach the top of the tree
307 	 */
308 	if (cfs_rq->tg->parent &&
309 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
310 		/*
311 		 * If parent is already on the list, we add the child
312 		 * just before. Thanks to circular linked property of
313 		 * the list, this means to put the child at the tail
314 		 * of the list that starts by parent.
315 		 */
316 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
317 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
318 		/*
319 		 * The branch is now connected to its tree so we can
320 		 * reset tmp_alone_branch to the beginning of the
321 		 * list.
322 		 */
323 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
324 		return true;
325 	}
326 
327 	if (!cfs_rq->tg->parent) {
328 		/*
329 		 * cfs rq without parent should be put
330 		 * at the tail of the list.
331 		 */
332 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
333 			&rq->leaf_cfs_rq_list);
334 		/*
335 		 * We have reach the top of a tree so we can reset
336 		 * tmp_alone_branch to the beginning of the list.
337 		 */
338 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
339 		return true;
340 	}
341 
342 	/*
343 	 * The parent has not already been added so we want to
344 	 * make sure that it will be put after us.
345 	 * tmp_alone_branch points to the begin of the branch
346 	 * where we will add parent.
347 	 */
348 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
349 	/*
350 	 * update tmp_alone_branch to points to the new begin
351 	 * of the branch
352 	 */
353 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
354 	return false;
355 }
356 
357 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
358 {
359 	if (cfs_rq->on_list) {
360 		struct rq *rq = rq_of(cfs_rq);
361 
362 		/*
363 		 * With cfs_rq being unthrottled/throttled during an enqueue,
364 		 * it can happen the tmp_alone_branch points the a leaf that
365 		 * we finally want to del. In this case, tmp_alone_branch moves
366 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
367 		 * at the end of the enqueue.
368 		 */
369 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
370 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
371 
372 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
373 		cfs_rq->on_list = 0;
374 	}
375 }
376 
377 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
378 {
379 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
380 }
381 
382 /* Iterate thr' all leaf cfs_rq's on a runqueue */
383 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
384 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
385 				 leaf_cfs_rq_list)
386 
387 /* Do the two (enqueued) entities belong to the same group ? */
388 static inline struct cfs_rq *
389 is_same_group(struct sched_entity *se, struct sched_entity *pse)
390 {
391 	if (se->cfs_rq == pse->cfs_rq)
392 		return se->cfs_rq;
393 
394 	return NULL;
395 }
396 
397 static inline struct sched_entity *parent_entity(struct sched_entity *se)
398 {
399 	return se->parent;
400 }
401 
402 static void
403 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
404 {
405 	int se_depth, pse_depth;
406 
407 	/*
408 	 * preemption test can be made between sibling entities who are in the
409 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
410 	 * both tasks until we find their ancestors who are siblings of common
411 	 * parent.
412 	 */
413 
414 	/* First walk up until both entities are at same depth */
415 	se_depth = (*se)->depth;
416 	pse_depth = (*pse)->depth;
417 
418 	while (se_depth > pse_depth) {
419 		se_depth--;
420 		*se = parent_entity(*se);
421 	}
422 
423 	while (pse_depth > se_depth) {
424 		pse_depth--;
425 		*pse = parent_entity(*pse);
426 	}
427 
428 	while (!is_same_group(*se, *pse)) {
429 		*se = parent_entity(*se);
430 		*pse = parent_entity(*pse);
431 	}
432 }
433 
434 #else	/* !CONFIG_FAIR_GROUP_SCHED */
435 
436 #define for_each_sched_entity(se) \
437 		for (; se; se = NULL)
438 
439 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
440 {
441 	if (path)
442 		strlcpy(path, "(null)", len);
443 }
444 
445 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
446 {
447 	return true;
448 }
449 
450 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
451 {
452 }
453 
454 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
455 {
456 }
457 
458 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
459 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
460 
461 static inline struct sched_entity *parent_entity(struct sched_entity *se)
462 {
463 	return NULL;
464 }
465 
466 static inline void
467 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
468 {
469 }
470 
471 #endif	/* CONFIG_FAIR_GROUP_SCHED */
472 
473 static __always_inline
474 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
475 
476 /**************************************************************
477  * Scheduling class tree data structure manipulation methods:
478  */
479 
480 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
481 {
482 	s64 delta = (s64)(vruntime - max_vruntime);
483 	if (delta > 0)
484 		max_vruntime = vruntime;
485 
486 	return max_vruntime;
487 }
488 
489 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
490 {
491 	s64 delta = (s64)(vruntime - min_vruntime);
492 	if (delta < 0)
493 		min_vruntime = vruntime;
494 
495 	return min_vruntime;
496 }
497 
498 static inline bool entity_before(struct sched_entity *a,
499 				struct sched_entity *b)
500 {
501 	return (s64)(a->vruntime - b->vruntime) < 0;
502 }
503 
504 #define __node_2_se(node) \
505 	rb_entry((node), struct sched_entity, run_node)
506 
507 static void update_min_vruntime(struct cfs_rq *cfs_rq)
508 {
509 	struct sched_entity *curr = cfs_rq->curr;
510 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
511 
512 	u64 vruntime = cfs_rq->min_vruntime;
513 
514 	if (curr) {
515 		if (curr->on_rq)
516 			vruntime = curr->vruntime;
517 		else
518 			curr = NULL;
519 	}
520 
521 	if (leftmost) { /* non-empty tree */
522 		struct sched_entity *se = __node_2_se(leftmost);
523 
524 		if (!curr)
525 			vruntime = se->vruntime;
526 		else
527 			vruntime = min_vruntime(vruntime, se->vruntime);
528 	}
529 
530 	/* ensure we never gain time by being placed backwards. */
531 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
532 #ifndef CONFIG_64BIT
533 	smp_wmb();
534 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
535 #endif
536 }
537 
538 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
539 {
540 	return entity_before(__node_2_se(a), __node_2_se(b));
541 }
542 
543 /*
544  * Enqueue an entity into the rb-tree:
545  */
546 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
547 {
548 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
549 }
550 
551 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
552 {
553 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
554 }
555 
556 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
557 {
558 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
559 
560 	if (!left)
561 		return NULL;
562 
563 	return __node_2_se(left);
564 }
565 
566 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
567 {
568 	struct rb_node *next = rb_next(&se->run_node);
569 
570 	if (!next)
571 		return NULL;
572 
573 	return __node_2_se(next);
574 }
575 
576 #ifdef CONFIG_SCHED_DEBUG
577 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
578 {
579 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
580 
581 	if (!last)
582 		return NULL;
583 
584 	return __node_2_se(last);
585 }
586 
587 /**************************************************************
588  * Scheduling class statistics methods:
589  */
590 
591 int sched_update_scaling(void)
592 {
593 	unsigned int factor = get_update_sysctl_factor();
594 
595 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
596 					sysctl_sched_min_granularity);
597 
598 #define WRT_SYSCTL(name) \
599 	(normalized_sysctl_##name = sysctl_##name / (factor))
600 	WRT_SYSCTL(sched_min_granularity);
601 	WRT_SYSCTL(sched_latency);
602 	WRT_SYSCTL(sched_wakeup_granularity);
603 #undef WRT_SYSCTL
604 
605 	return 0;
606 }
607 #endif
608 
609 /*
610  * delta /= w
611  */
612 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
613 {
614 	if (unlikely(se->load.weight != NICE_0_LOAD))
615 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
616 
617 	return delta;
618 }
619 
620 /*
621  * The idea is to set a period in which each task runs once.
622  *
623  * When there are too many tasks (sched_nr_latency) we have to stretch
624  * this period because otherwise the slices get too small.
625  *
626  * p = (nr <= nl) ? l : l*nr/nl
627  */
628 static u64 __sched_period(unsigned long nr_running)
629 {
630 	if (unlikely(nr_running > sched_nr_latency))
631 		return nr_running * sysctl_sched_min_granularity;
632 	else
633 		return sysctl_sched_latency;
634 }
635 
636 /*
637  * We calculate the wall-time slice from the period by taking a part
638  * proportional to the weight.
639  *
640  * s = p*P[w/rw]
641  */
642 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
643 {
644 	unsigned int nr_running = cfs_rq->nr_running;
645 	u64 slice;
646 
647 	if (sched_feat(ALT_PERIOD))
648 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
649 
650 	slice = __sched_period(nr_running + !se->on_rq);
651 
652 	for_each_sched_entity(se) {
653 		struct load_weight *load;
654 		struct load_weight lw;
655 
656 		cfs_rq = cfs_rq_of(se);
657 		load = &cfs_rq->load;
658 
659 		if (unlikely(!se->on_rq)) {
660 			lw = cfs_rq->load;
661 
662 			update_load_add(&lw, se->load.weight);
663 			load = &lw;
664 		}
665 		slice = __calc_delta(slice, se->load.weight, load);
666 	}
667 
668 	if (sched_feat(BASE_SLICE))
669 		slice = max(slice, (u64)sysctl_sched_min_granularity);
670 
671 	return slice;
672 }
673 
674 /*
675  * We calculate the vruntime slice of a to-be-inserted task.
676  *
677  * vs = s/w
678  */
679 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
680 {
681 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
682 }
683 
684 #include "pelt.h"
685 #ifdef CONFIG_SMP
686 
687 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
688 static unsigned long task_h_load(struct task_struct *p);
689 static unsigned long capacity_of(int cpu);
690 
691 /* Give new sched_entity start runnable values to heavy its load in infant time */
692 void init_entity_runnable_average(struct sched_entity *se)
693 {
694 	struct sched_avg *sa = &se->avg;
695 
696 	memset(sa, 0, sizeof(*sa));
697 
698 	/*
699 	 * Tasks are initialized with full load to be seen as heavy tasks until
700 	 * they get a chance to stabilize to their real load level.
701 	 * Group entities are initialized with zero load to reflect the fact that
702 	 * nothing has been attached to the task group yet.
703 	 */
704 	if (entity_is_task(se))
705 		sa->load_avg = scale_load_down(se->load.weight);
706 
707 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
708 }
709 
710 static void attach_entity_cfs_rq(struct sched_entity *se);
711 
712 /*
713  * With new tasks being created, their initial util_avgs are extrapolated
714  * based on the cfs_rq's current util_avg:
715  *
716  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
717  *
718  * However, in many cases, the above util_avg does not give a desired
719  * value. Moreover, the sum of the util_avgs may be divergent, such
720  * as when the series is a harmonic series.
721  *
722  * To solve this problem, we also cap the util_avg of successive tasks to
723  * only 1/2 of the left utilization budget:
724  *
725  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
726  *
727  * where n denotes the nth task and cpu_scale the CPU capacity.
728  *
729  * For example, for a CPU with 1024 of capacity, a simplest series from
730  * the beginning would be like:
731  *
732  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
733  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
734  *
735  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
736  * if util_avg > util_avg_cap.
737  */
738 void post_init_entity_util_avg(struct task_struct *p)
739 {
740 	struct sched_entity *se = &p->se;
741 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
742 	struct sched_avg *sa = &se->avg;
743 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
744 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
745 
746 	if (cap > 0) {
747 		if (cfs_rq->avg.util_avg != 0) {
748 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
749 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
750 
751 			if (sa->util_avg > cap)
752 				sa->util_avg = cap;
753 		} else {
754 			sa->util_avg = cap;
755 		}
756 	}
757 
758 	sa->runnable_avg = sa->util_avg;
759 
760 	if (p->sched_class != &fair_sched_class) {
761 		/*
762 		 * For !fair tasks do:
763 		 *
764 		update_cfs_rq_load_avg(now, cfs_rq);
765 		attach_entity_load_avg(cfs_rq, se);
766 		switched_from_fair(rq, p);
767 		 *
768 		 * such that the next switched_to_fair() has the
769 		 * expected state.
770 		 */
771 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
772 		return;
773 	}
774 
775 	attach_entity_cfs_rq(se);
776 }
777 
778 #else /* !CONFIG_SMP */
779 void init_entity_runnable_average(struct sched_entity *se)
780 {
781 }
782 void post_init_entity_util_avg(struct task_struct *p)
783 {
784 }
785 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
786 {
787 }
788 #endif /* CONFIG_SMP */
789 
790 /*
791  * Update the current task's runtime statistics.
792  */
793 static void update_curr(struct cfs_rq *cfs_rq)
794 {
795 	struct sched_entity *curr = cfs_rq->curr;
796 	u64 now = rq_clock_task(rq_of(cfs_rq));
797 	u64 delta_exec;
798 
799 	if (unlikely(!curr))
800 		return;
801 
802 	delta_exec = now - curr->exec_start;
803 	if (unlikely((s64)delta_exec <= 0))
804 		return;
805 
806 	curr->exec_start = now;
807 
808 	schedstat_set(curr->statistics.exec_max,
809 		      max(delta_exec, curr->statistics.exec_max));
810 
811 	curr->sum_exec_runtime += delta_exec;
812 	schedstat_add(cfs_rq->exec_clock, delta_exec);
813 
814 	curr->vruntime += calc_delta_fair(delta_exec, curr);
815 	update_min_vruntime(cfs_rq);
816 
817 	if (entity_is_task(curr)) {
818 		struct task_struct *curtask = task_of(curr);
819 
820 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
821 		cgroup_account_cputime(curtask, delta_exec);
822 		account_group_exec_runtime(curtask, delta_exec);
823 	}
824 
825 	account_cfs_rq_runtime(cfs_rq, delta_exec);
826 }
827 
828 static void update_curr_fair(struct rq *rq)
829 {
830 	update_curr(cfs_rq_of(&rq->curr->se));
831 }
832 
833 static inline void
834 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
835 {
836 	u64 wait_start, prev_wait_start;
837 
838 	if (!schedstat_enabled())
839 		return;
840 
841 	wait_start = rq_clock(rq_of(cfs_rq));
842 	prev_wait_start = schedstat_val(se->statistics.wait_start);
843 
844 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
845 	    likely(wait_start > prev_wait_start))
846 		wait_start -= prev_wait_start;
847 
848 	__schedstat_set(se->statistics.wait_start, wait_start);
849 }
850 
851 static inline void
852 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
853 {
854 	struct task_struct *p;
855 	u64 delta;
856 
857 	if (!schedstat_enabled())
858 		return;
859 
860 	/*
861 	 * When the sched_schedstat changes from 0 to 1, some sched se
862 	 * maybe already in the runqueue, the se->statistics.wait_start
863 	 * will be 0.So it will let the delta wrong. We need to avoid this
864 	 * scenario.
865 	 */
866 	if (unlikely(!schedstat_val(se->statistics.wait_start)))
867 		return;
868 
869 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
870 
871 	if (entity_is_task(se)) {
872 		p = task_of(se);
873 		if (task_on_rq_migrating(p)) {
874 			/*
875 			 * Preserve migrating task's wait time so wait_start
876 			 * time stamp can be adjusted to accumulate wait time
877 			 * prior to migration.
878 			 */
879 			__schedstat_set(se->statistics.wait_start, delta);
880 			return;
881 		}
882 		trace_sched_stat_wait(p, delta);
883 	}
884 
885 	__schedstat_set(se->statistics.wait_max,
886 		      max(schedstat_val(se->statistics.wait_max), delta));
887 	__schedstat_inc(se->statistics.wait_count);
888 	__schedstat_add(se->statistics.wait_sum, delta);
889 	__schedstat_set(se->statistics.wait_start, 0);
890 }
891 
892 static inline void
893 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 {
895 	struct task_struct *tsk = NULL;
896 	u64 sleep_start, block_start;
897 
898 	if (!schedstat_enabled())
899 		return;
900 
901 	sleep_start = schedstat_val(se->statistics.sleep_start);
902 	block_start = schedstat_val(se->statistics.block_start);
903 
904 	if (entity_is_task(se))
905 		tsk = task_of(se);
906 
907 	if (sleep_start) {
908 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
909 
910 		if ((s64)delta < 0)
911 			delta = 0;
912 
913 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
914 			__schedstat_set(se->statistics.sleep_max, delta);
915 
916 		__schedstat_set(se->statistics.sleep_start, 0);
917 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
918 
919 		if (tsk) {
920 			account_scheduler_latency(tsk, delta >> 10, 1);
921 			trace_sched_stat_sleep(tsk, delta);
922 		}
923 	}
924 	if (block_start) {
925 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
926 
927 		if ((s64)delta < 0)
928 			delta = 0;
929 
930 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
931 			__schedstat_set(se->statistics.block_max, delta);
932 
933 		__schedstat_set(se->statistics.block_start, 0);
934 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
935 
936 		if (tsk) {
937 			if (tsk->in_iowait) {
938 				__schedstat_add(se->statistics.iowait_sum, delta);
939 				__schedstat_inc(se->statistics.iowait_count);
940 				trace_sched_stat_iowait(tsk, delta);
941 			}
942 
943 			trace_sched_stat_blocked(tsk, delta);
944 
945 			/*
946 			 * Blocking time is in units of nanosecs, so shift by
947 			 * 20 to get a milliseconds-range estimation of the
948 			 * amount of time that the task spent sleeping:
949 			 */
950 			if (unlikely(prof_on == SLEEP_PROFILING)) {
951 				profile_hits(SLEEP_PROFILING,
952 						(void *)get_wchan(tsk),
953 						delta >> 20);
954 			}
955 			account_scheduler_latency(tsk, delta >> 10, 0);
956 		}
957 	}
958 }
959 
960 /*
961  * Task is being enqueued - update stats:
962  */
963 static inline void
964 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
965 {
966 	if (!schedstat_enabled())
967 		return;
968 
969 	/*
970 	 * Are we enqueueing a waiting task? (for current tasks
971 	 * a dequeue/enqueue event is a NOP)
972 	 */
973 	if (se != cfs_rq->curr)
974 		update_stats_wait_start(cfs_rq, se);
975 
976 	if (flags & ENQUEUE_WAKEUP)
977 		update_stats_enqueue_sleeper(cfs_rq, se);
978 }
979 
980 static inline void
981 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
982 {
983 
984 	if (!schedstat_enabled())
985 		return;
986 
987 	/*
988 	 * Mark the end of the wait period if dequeueing a
989 	 * waiting task:
990 	 */
991 	if (se != cfs_rq->curr)
992 		update_stats_wait_end(cfs_rq, se);
993 
994 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
995 		struct task_struct *tsk = task_of(se);
996 		unsigned int state;
997 
998 		/* XXX racy against TTWU */
999 		state = READ_ONCE(tsk->__state);
1000 		if (state & TASK_INTERRUPTIBLE)
1001 			__schedstat_set(se->statistics.sleep_start,
1002 				      rq_clock(rq_of(cfs_rq)));
1003 		if (state & TASK_UNINTERRUPTIBLE)
1004 			__schedstat_set(se->statistics.block_start,
1005 				      rq_clock(rq_of(cfs_rq)));
1006 	}
1007 }
1008 
1009 /*
1010  * We are picking a new current task - update its stats:
1011  */
1012 static inline void
1013 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1014 {
1015 	/*
1016 	 * We are starting a new run period:
1017 	 */
1018 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1019 }
1020 
1021 /**************************************************
1022  * Scheduling class queueing methods:
1023  */
1024 
1025 #ifdef CONFIG_NUMA_BALANCING
1026 /*
1027  * Approximate time to scan a full NUMA task in ms. The task scan period is
1028  * calculated based on the tasks virtual memory size and
1029  * numa_balancing_scan_size.
1030  */
1031 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1032 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1033 
1034 /* Portion of address space to scan in MB */
1035 unsigned int sysctl_numa_balancing_scan_size = 256;
1036 
1037 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1038 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1039 
1040 struct numa_group {
1041 	refcount_t refcount;
1042 
1043 	spinlock_t lock; /* nr_tasks, tasks */
1044 	int nr_tasks;
1045 	pid_t gid;
1046 	int active_nodes;
1047 
1048 	struct rcu_head rcu;
1049 	unsigned long total_faults;
1050 	unsigned long max_faults_cpu;
1051 	/*
1052 	 * Faults_cpu is used to decide whether memory should move
1053 	 * towards the CPU. As a consequence, these stats are weighted
1054 	 * more by CPU use than by memory faults.
1055 	 */
1056 	unsigned long *faults_cpu;
1057 	unsigned long faults[];
1058 };
1059 
1060 /*
1061  * For functions that can be called in multiple contexts that permit reading
1062  * ->numa_group (see struct task_struct for locking rules).
1063  */
1064 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1065 {
1066 	return rcu_dereference_check(p->numa_group, p == current ||
1067 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1068 }
1069 
1070 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1071 {
1072 	return rcu_dereference_protected(p->numa_group, p == current);
1073 }
1074 
1075 static inline unsigned long group_faults_priv(struct numa_group *ng);
1076 static inline unsigned long group_faults_shared(struct numa_group *ng);
1077 
1078 static unsigned int task_nr_scan_windows(struct task_struct *p)
1079 {
1080 	unsigned long rss = 0;
1081 	unsigned long nr_scan_pages;
1082 
1083 	/*
1084 	 * Calculations based on RSS as non-present and empty pages are skipped
1085 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1086 	 * on resident pages
1087 	 */
1088 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1089 	rss = get_mm_rss(p->mm);
1090 	if (!rss)
1091 		rss = nr_scan_pages;
1092 
1093 	rss = round_up(rss, nr_scan_pages);
1094 	return rss / nr_scan_pages;
1095 }
1096 
1097 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1098 #define MAX_SCAN_WINDOW 2560
1099 
1100 static unsigned int task_scan_min(struct task_struct *p)
1101 {
1102 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1103 	unsigned int scan, floor;
1104 	unsigned int windows = 1;
1105 
1106 	if (scan_size < MAX_SCAN_WINDOW)
1107 		windows = MAX_SCAN_WINDOW / scan_size;
1108 	floor = 1000 / windows;
1109 
1110 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1111 	return max_t(unsigned int, floor, scan);
1112 }
1113 
1114 static unsigned int task_scan_start(struct task_struct *p)
1115 {
1116 	unsigned long smin = task_scan_min(p);
1117 	unsigned long period = smin;
1118 	struct numa_group *ng;
1119 
1120 	/* Scale the maximum scan period with the amount of shared memory. */
1121 	rcu_read_lock();
1122 	ng = rcu_dereference(p->numa_group);
1123 	if (ng) {
1124 		unsigned long shared = group_faults_shared(ng);
1125 		unsigned long private = group_faults_priv(ng);
1126 
1127 		period *= refcount_read(&ng->refcount);
1128 		period *= shared + 1;
1129 		period /= private + shared + 1;
1130 	}
1131 	rcu_read_unlock();
1132 
1133 	return max(smin, period);
1134 }
1135 
1136 static unsigned int task_scan_max(struct task_struct *p)
1137 {
1138 	unsigned long smin = task_scan_min(p);
1139 	unsigned long smax;
1140 	struct numa_group *ng;
1141 
1142 	/* Watch for min being lower than max due to floor calculations */
1143 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1144 
1145 	/* Scale the maximum scan period with the amount of shared memory. */
1146 	ng = deref_curr_numa_group(p);
1147 	if (ng) {
1148 		unsigned long shared = group_faults_shared(ng);
1149 		unsigned long private = group_faults_priv(ng);
1150 		unsigned long period = smax;
1151 
1152 		period *= refcount_read(&ng->refcount);
1153 		period *= shared + 1;
1154 		period /= private + shared + 1;
1155 
1156 		smax = max(smax, period);
1157 	}
1158 
1159 	return max(smin, smax);
1160 }
1161 
1162 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1163 {
1164 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1165 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1166 }
1167 
1168 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1169 {
1170 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1171 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1172 }
1173 
1174 /* Shared or private faults. */
1175 #define NR_NUMA_HINT_FAULT_TYPES 2
1176 
1177 /* Memory and CPU locality */
1178 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1179 
1180 /* Averaged statistics, and temporary buffers. */
1181 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1182 
1183 pid_t task_numa_group_id(struct task_struct *p)
1184 {
1185 	struct numa_group *ng;
1186 	pid_t gid = 0;
1187 
1188 	rcu_read_lock();
1189 	ng = rcu_dereference(p->numa_group);
1190 	if (ng)
1191 		gid = ng->gid;
1192 	rcu_read_unlock();
1193 
1194 	return gid;
1195 }
1196 
1197 /*
1198  * The averaged statistics, shared & private, memory & CPU,
1199  * occupy the first half of the array. The second half of the
1200  * array is for current counters, which are averaged into the
1201  * first set by task_numa_placement.
1202  */
1203 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1204 {
1205 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1206 }
1207 
1208 static inline unsigned long task_faults(struct task_struct *p, int nid)
1209 {
1210 	if (!p->numa_faults)
1211 		return 0;
1212 
1213 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1214 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1215 }
1216 
1217 static inline unsigned long group_faults(struct task_struct *p, int nid)
1218 {
1219 	struct numa_group *ng = deref_task_numa_group(p);
1220 
1221 	if (!ng)
1222 		return 0;
1223 
1224 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1225 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1226 }
1227 
1228 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1229 {
1230 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1231 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1232 }
1233 
1234 static inline unsigned long group_faults_priv(struct numa_group *ng)
1235 {
1236 	unsigned long faults = 0;
1237 	int node;
1238 
1239 	for_each_online_node(node) {
1240 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1241 	}
1242 
1243 	return faults;
1244 }
1245 
1246 static inline unsigned long group_faults_shared(struct numa_group *ng)
1247 {
1248 	unsigned long faults = 0;
1249 	int node;
1250 
1251 	for_each_online_node(node) {
1252 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1253 	}
1254 
1255 	return faults;
1256 }
1257 
1258 /*
1259  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1260  * considered part of a numa group's pseudo-interleaving set. Migrations
1261  * between these nodes are slowed down, to allow things to settle down.
1262  */
1263 #define ACTIVE_NODE_FRACTION 3
1264 
1265 static bool numa_is_active_node(int nid, struct numa_group *ng)
1266 {
1267 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1268 }
1269 
1270 /* Handle placement on systems where not all nodes are directly connected. */
1271 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1272 					int maxdist, bool task)
1273 {
1274 	unsigned long score = 0;
1275 	int node;
1276 
1277 	/*
1278 	 * All nodes are directly connected, and the same distance
1279 	 * from each other. No need for fancy placement algorithms.
1280 	 */
1281 	if (sched_numa_topology_type == NUMA_DIRECT)
1282 		return 0;
1283 
1284 	/*
1285 	 * This code is called for each node, introducing N^2 complexity,
1286 	 * which should be ok given the number of nodes rarely exceeds 8.
1287 	 */
1288 	for_each_online_node(node) {
1289 		unsigned long faults;
1290 		int dist = node_distance(nid, node);
1291 
1292 		/*
1293 		 * The furthest away nodes in the system are not interesting
1294 		 * for placement; nid was already counted.
1295 		 */
1296 		if (dist == sched_max_numa_distance || node == nid)
1297 			continue;
1298 
1299 		/*
1300 		 * On systems with a backplane NUMA topology, compare groups
1301 		 * of nodes, and move tasks towards the group with the most
1302 		 * memory accesses. When comparing two nodes at distance
1303 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1304 		 * of each group. Skip other nodes.
1305 		 */
1306 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1307 					dist >= maxdist)
1308 			continue;
1309 
1310 		/* Add up the faults from nearby nodes. */
1311 		if (task)
1312 			faults = task_faults(p, node);
1313 		else
1314 			faults = group_faults(p, node);
1315 
1316 		/*
1317 		 * On systems with a glueless mesh NUMA topology, there are
1318 		 * no fixed "groups of nodes". Instead, nodes that are not
1319 		 * directly connected bounce traffic through intermediate
1320 		 * nodes; a numa_group can occupy any set of nodes.
1321 		 * The further away a node is, the less the faults count.
1322 		 * This seems to result in good task placement.
1323 		 */
1324 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1325 			faults *= (sched_max_numa_distance - dist);
1326 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1327 		}
1328 
1329 		score += faults;
1330 	}
1331 
1332 	return score;
1333 }
1334 
1335 /*
1336  * These return the fraction of accesses done by a particular task, or
1337  * task group, on a particular numa node.  The group weight is given a
1338  * larger multiplier, in order to group tasks together that are almost
1339  * evenly spread out between numa nodes.
1340  */
1341 static inline unsigned long task_weight(struct task_struct *p, int nid,
1342 					int dist)
1343 {
1344 	unsigned long faults, total_faults;
1345 
1346 	if (!p->numa_faults)
1347 		return 0;
1348 
1349 	total_faults = p->total_numa_faults;
1350 
1351 	if (!total_faults)
1352 		return 0;
1353 
1354 	faults = task_faults(p, nid);
1355 	faults += score_nearby_nodes(p, nid, dist, true);
1356 
1357 	return 1000 * faults / total_faults;
1358 }
1359 
1360 static inline unsigned long group_weight(struct task_struct *p, int nid,
1361 					 int dist)
1362 {
1363 	struct numa_group *ng = deref_task_numa_group(p);
1364 	unsigned long faults, total_faults;
1365 
1366 	if (!ng)
1367 		return 0;
1368 
1369 	total_faults = ng->total_faults;
1370 
1371 	if (!total_faults)
1372 		return 0;
1373 
1374 	faults = group_faults(p, nid);
1375 	faults += score_nearby_nodes(p, nid, dist, false);
1376 
1377 	return 1000 * faults / total_faults;
1378 }
1379 
1380 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1381 				int src_nid, int dst_cpu)
1382 {
1383 	struct numa_group *ng = deref_curr_numa_group(p);
1384 	int dst_nid = cpu_to_node(dst_cpu);
1385 	int last_cpupid, this_cpupid;
1386 
1387 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1388 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1389 
1390 	/*
1391 	 * Allow first faults or private faults to migrate immediately early in
1392 	 * the lifetime of a task. The magic number 4 is based on waiting for
1393 	 * two full passes of the "multi-stage node selection" test that is
1394 	 * executed below.
1395 	 */
1396 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1397 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1398 		return true;
1399 
1400 	/*
1401 	 * Multi-stage node selection is used in conjunction with a periodic
1402 	 * migration fault to build a temporal task<->page relation. By using
1403 	 * a two-stage filter we remove short/unlikely relations.
1404 	 *
1405 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1406 	 * a task's usage of a particular page (n_p) per total usage of this
1407 	 * page (n_t) (in a given time-span) to a probability.
1408 	 *
1409 	 * Our periodic faults will sample this probability and getting the
1410 	 * same result twice in a row, given these samples are fully
1411 	 * independent, is then given by P(n)^2, provided our sample period
1412 	 * is sufficiently short compared to the usage pattern.
1413 	 *
1414 	 * This quadric squishes small probabilities, making it less likely we
1415 	 * act on an unlikely task<->page relation.
1416 	 */
1417 	if (!cpupid_pid_unset(last_cpupid) &&
1418 				cpupid_to_nid(last_cpupid) != dst_nid)
1419 		return false;
1420 
1421 	/* Always allow migrate on private faults */
1422 	if (cpupid_match_pid(p, last_cpupid))
1423 		return true;
1424 
1425 	/* A shared fault, but p->numa_group has not been set up yet. */
1426 	if (!ng)
1427 		return true;
1428 
1429 	/*
1430 	 * Destination node is much more heavily used than the source
1431 	 * node? Allow migration.
1432 	 */
1433 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1434 					ACTIVE_NODE_FRACTION)
1435 		return true;
1436 
1437 	/*
1438 	 * Distribute memory according to CPU & memory use on each node,
1439 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1440 	 *
1441 	 * faults_cpu(dst)   3   faults_cpu(src)
1442 	 * --------------- * - > ---------------
1443 	 * faults_mem(dst)   4   faults_mem(src)
1444 	 */
1445 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1446 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1447 }
1448 
1449 /*
1450  * 'numa_type' describes the node at the moment of load balancing.
1451  */
1452 enum numa_type {
1453 	/* The node has spare capacity that can be used to run more tasks.  */
1454 	node_has_spare = 0,
1455 	/*
1456 	 * The node is fully used and the tasks don't compete for more CPU
1457 	 * cycles. Nevertheless, some tasks might wait before running.
1458 	 */
1459 	node_fully_busy,
1460 	/*
1461 	 * The node is overloaded and can't provide expected CPU cycles to all
1462 	 * tasks.
1463 	 */
1464 	node_overloaded
1465 };
1466 
1467 /* Cached statistics for all CPUs within a node */
1468 struct numa_stats {
1469 	unsigned long load;
1470 	unsigned long runnable;
1471 	unsigned long util;
1472 	/* Total compute capacity of CPUs on a node */
1473 	unsigned long compute_capacity;
1474 	unsigned int nr_running;
1475 	unsigned int weight;
1476 	enum numa_type node_type;
1477 	int idle_cpu;
1478 };
1479 
1480 static inline bool is_core_idle(int cpu)
1481 {
1482 #ifdef CONFIG_SCHED_SMT
1483 	int sibling;
1484 
1485 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1486 		if (cpu == sibling)
1487 			continue;
1488 
1489 		if (!idle_cpu(cpu))
1490 			return false;
1491 	}
1492 #endif
1493 
1494 	return true;
1495 }
1496 
1497 struct task_numa_env {
1498 	struct task_struct *p;
1499 
1500 	int src_cpu, src_nid;
1501 	int dst_cpu, dst_nid;
1502 
1503 	struct numa_stats src_stats, dst_stats;
1504 
1505 	int imbalance_pct;
1506 	int dist;
1507 
1508 	struct task_struct *best_task;
1509 	long best_imp;
1510 	int best_cpu;
1511 };
1512 
1513 static unsigned long cpu_load(struct rq *rq);
1514 static unsigned long cpu_runnable(struct rq *rq);
1515 static unsigned long cpu_util(int cpu);
1516 static inline long adjust_numa_imbalance(int imbalance,
1517 					int dst_running, int dst_weight);
1518 
1519 static inline enum
1520 numa_type numa_classify(unsigned int imbalance_pct,
1521 			 struct numa_stats *ns)
1522 {
1523 	if ((ns->nr_running > ns->weight) &&
1524 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1525 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1526 		return node_overloaded;
1527 
1528 	if ((ns->nr_running < ns->weight) ||
1529 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1530 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1531 		return node_has_spare;
1532 
1533 	return node_fully_busy;
1534 }
1535 
1536 #ifdef CONFIG_SCHED_SMT
1537 /* Forward declarations of select_idle_sibling helpers */
1538 static inline bool test_idle_cores(int cpu, bool def);
1539 static inline int numa_idle_core(int idle_core, int cpu)
1540 {
1541 	if (!static_branch_likely(&sched_smt_present) ||
1542 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1543 		return idle_core;
1544 
1545 	/*
1546 	 * Prefer cores instead of packing HT siblings
1547 	 * and triggering future load balancing.
1548 	 */
1549 	if (is_core_idle(cpu))
1550 		idle_core = cpu;
1551 
1552 	return idle_core;
1553 }
1554 #else
1555 static inline int numa_idle_core(int idle_core, int cpu)
1556 {
1557 	return idle_core;
1558 }
1559 #endif
1560 
1561 /*
1562  * Gather all necessary information to make NUMA balancing placement
1563  * decisions that are compatible with standard load balancer. This
1564  * borrows code and logic from update_sg_lb_stats but sharing a
1565  * common implementation is impractical.
1566  */
1567 static void update_numa_stats(struct task_numa_env *env,
1568 			      struct numa_stats *ns, int nid,
1569 			      bool find_idle)
1570 {
1571 	int cpu, idle_core = -1;
1572 
1573 	memset(ns, 0, sizeof(*ns));
1574 	ns->idle_cpu = -1;
1575 
1576 	rcu_read_lock();
1577 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1578 		struct rq *rq = cpu_rq(cpu);
1579 
1580 		ns->load += cpu_load(rq);
1581 		ns->runnable += cpu_runnable(rq);
1582 		ns->util += cpu_util(cpu);
1583 		ns->nr_running += rq->cfs.h_nr_running;
1584 		ns->compute_capacity += capacity_of(cpu);
1585 
1586 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1587 			if (READ_ONCE(rq->numa_migrate_on) ||
1588 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1589 				continue;
1590 
1591 			if (ns->idle_cpu == -1)
1592 				ns->idle_cpu = cpu;
1593 
1594 			idle_core = numa_idle_core(idle_core, cpu);
1595 		}
1596 	}
1597 	rcu_read_unlock();
1598 
1599 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1600 
1601 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1602 
1603 	if (idle_core >= 0)
1604 		ns->idle_cpu = idle_core;
1605 }
1606 
1607 static void task_numa_assign(struct task_numa_env *env,
1608 			     struct task_struct *p, long imp)
1609 {
1610 	struct rq *rq = cpu_rq(env->dst_cpu);
1611 
1612 	/* Check if run-queue part of active NUMA balance. */
1613 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1614 		int cpu;
1615 		int start = env->dst_cpu;
1616 
1617 		/* Find alternative idle CPU. */
1618 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1619 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1620 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1621 				continue;
1622 			}
1623 
1624 			env->dst_cpu = cpu;
1625 			rq = cpu_rq(env->dst_cpu);
1626 			if (!xchg(&rq->numa_migrate_on, 1))
1627 				goto assign;
1628 		}
1629 
1630 		/* Failed to find an alternative idle CPU */
1631 		return;
1632 	}
1633 
1634 assign:
1635 	/*
1636 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1637 	 * found a better CPU to move/swap.
1638 	 */
1639 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1640 		rq = cpu_rq(env->best_cpu);
1641 		WRITE_ONCE(rq->numa_migrate_on, 0);
1642 	}
1643 
1644 	if (env->best_task)
1645 		put_task_struct(env->best_task);
1646 	if (p)
1647 		get_task_struct(p);
1648 
1649 	env->best_task = p;
1650 	env->best_imp = imp;
1651 	env->best_cpu = env->dst_cpu;
1652 }
1653 
1654 static bool load_too_imbalanced(long src_load, long dst_load,
1655 				struct task_numa_env *env)
1656 {
1657 	long imb, old_imb;
1658 	long orig_src_load, orig_dst_load;
1659 	long src_capacity, dst_capacity;
1660 
1661 	/*
1662 	 * The load is corrected for the CPU capacity available on each node.
1663 	 *
1664 	 * src_load        dst_load
1665 	 * ------------ vs ---------
1666 	 * src_capacity    dst_capacity
1667 	 */
1668 	src_capacity = env->src_stats.compute_capacity;
1669 	dst_capacity = env->dst_stats.compute_capacity;
1670 
1671 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1672 
1673 	orig_src_load = env->src_stats.load;
1674 	orig_dst_load = env->dst_stats.load;
1675 
1676 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1677 
1678 	/* Would this change make things worse? */
1679 	return (imb > old_imb);
1680 }
1681 
1682 /*
1683  * Maximum NUMA importance can be 1998 (2*999);
1684  * SMALLIMP @ 30 would be close to 1998/64.
1685  * Used to deter task migration.
1686  */
1687 #define SMALLIMP	30
1688 
1689 /*
1690  * This checks if the overall compute and NUMA accesses of the system would
1691  * be improved if the source tasks was migrated to the target dst_cpu taking
1692  * into account that it might be best if task running on the dst_cpu should
1693  * be exchanged with the source task
1694  */
1695 static bool task_numa_compare(struct task_numa_env *env,
1696 			      long taskimp, long groupimp, bool maymove)
1697 {
1698 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1699 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1700 	long imp = p_ng ? groupimp : taskimp;
1701 	struct task_struct *cur;
1702 	long src_load, dst_load;
1703 	int dist = env->dist;
1704 	long moveimp = imp;
1705 	long load;
1706 	bool stopsearch = false;
1707 
1708 	if (READ_ONCE(dst_rq->numa_migrate_on))
1709 		return false;
1710 
1711 	rcu_read_lock();
1712 	cur = rcu_dereference(dst_rq->curr);
1713 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1714 		cur = NULL;
1715 
1716 	/*
1717 	 * Because we have preemption enabled we can get migrated around and
1718 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1719 	 */
1720 	if (cur == env->p) {
1721 		stopsearch = true;
1722 		goto unlock;
1723 	}
1724 
1725 	if (!cur) {
1726 		if (maymove && moveimp >= env->best_imp)
1727 			goto assign;
1728 		else
1729 			goto unlock;
1730 	}
1731 
1732 	/* Skip this swap candidate if cannot move to the source cpu. */
1733 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1734 		goto unlock;
1735 
1736 	/*
1737 	 * Skip this swap candidate if it is not moving to its preferred
1738 	 * node and the best task is.
1739 	 */
1740 	if (env->best_task &&
1741 	    env->best_task->numa_preferred_nid == env->src_nid &&
1742 	    cur->numa_preferred_nid != env->src_nid) {
1743 		goto unlock;
1744 	}
1745 
1746 	/*
1747 	 * "imp" is the fault differential for the source task between the
1748 	 * source and destination node. Calculate the total differential for
1749 	 * the source task and potential destination task. The more negative
1750 	 * the value is, the more remote accesses that would be expected to
1751 	 * be incurred if the tasks were swapped.
1752 	 *
1753 	 * If dst and source tasks are in the same NUMA group, or not
1754 	 * in any group then look only at task weights.
1755 	 */
1756 	cur_ng = rcu_dereference(cur->numa_group);
1757 	if (cur_ng == p_ng) {
1758 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1759 		      task_weight(cur, env->dst_nid, dist);
1760 		/*
1761 		 * Add some hysteresis to prevent swapping the
1762 		 * tasks within a group over tiny differences.
1763 		 */
1764 		if (cur_ng)
1765 			imp -= imp / 16;
1766 	} else {
1767 		/*
1768 		 * Compare the group weights. If a task is all by itself
1769 		 * (not part of a group), use the task weight instead.
1770 		 */
1771 		if (cur_ng && p_ng)
1772 			imp += group_weight(cur, env->src_nid, dist) -
1773 			       group_weight(cur, env->dst_nid, dist);
1774 		else
1775 			imp += task_weight(cur, env->src_nid, dist) -
1776 			       task_weight(cur, env->dst_nid, dist);
1777 	}
1778 
1779 	/* Discourage picking a task already on its preferred node */
1780 	if (cur->numa_preferred_nid == env->dst_nid)
1781 		imp -= imp / 16;
1782 
1783 	/*
1784 	 * Encourage picking a task that moves to its preferred node.
1785 	 * This potentially makes imp larger than it's maximum of
1786 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1787 	 * case, it does not matter.
1788 	 */
1789 	if (cur->numa_preferred_nid == env->src_nid)
1790 		imp += imp / 8;
1791 
1792 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1793 		imp = moveimp;
1794 		cur = NULL;
1795 		goto assign;
1796 	}
1797 
1798 	/*
1799 	 * Prefer swapping with a task moving to its preferred node over a
1800 	 * task that is not.
1801 	 */
1802 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1803 	    env->best_task->numa_preferred_nid != env->src_nid) {
1804 		goto assign;
1805 	}
1806 
1807 	/*
1808 	 * If the NUMA importance is less than SMALLIMP,
1809 	 * task migration might only result in ping pong
1810 	 * of tasks and also hurt performance due to cache
1811 	 * misses.
1812 	 */
1813 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1814 		goto unlock;
1815 
1816 	/*
1817 	 * In the overloaded case, try and keep the load balanced.
1818 	 */
1819 	load = task_h_load(env->p) - task_h_load(cur);
1820 	if (!load)
1821 		goto assign;
1822 
1823 	dst_load = env->dst_stats.load + load;
1824 	src_load = env->src_stats.load - load;
1825 
1826 	if (load_too_imbalanced(src_load, dst_load, env))
1827 		goto unlock;
1828 
1829 assign:
1830 	/* Evaluate an idle CPU for a task numa move. */
1831 	if (!cur) {
1832 		int cpu = env->dst_stats.idle_cpu;
1833 
1834 		/* Nothing cached so current CPU went idle since the search. */
1835 		if (cpu < 0)
1836 			cpu = env->dst_cpu;
1837 
1838 		/*
1839 		 * If the CPU is no longer truly idle and the previous best CPU
1840 		 * is, keep using it.
1841 		 */
1842 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1843 		    idle_cpu(env->best_cpu)) {
1844 			cpu = env->best_cpu;
1845 		}
1846 
1847 		env->dst_cpu = cpu;
1848 	}
1849 
1850 	task_numa_assign(env, cur, imp);
1851 
1852 	/*
1853 	 * If a move to idle is allowed because there is capacity or load
1854 	 * balance improves then stop the search. While a better swap
1855 	 * candidate may exist, a search is not free.
1856 	 */
1857 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1858 		stopsearch = true;
1859 
1860 	/*
1861 	 * If a swap candidate must be identified and the current best task
1862 	 * moves its preferred node then stop the search.
1863 	 */
1864 	if (!maymove && env->best_task &&
1865 	    env->best_task->numa_preferred_nid == env->src_nid) {
1866 		stopsearch = true;
1867 	}
1868 unlock:
1869 	rcu_read_unlock();
1870 
1871 	return stopsearch;
1872 }
1873 
1874 static void task_numa_find_cpu(struct task_numa_env *env,
1875 				long taskimp, long groupimp)
1876 {
1877 	bool maymove = false;
1878 	int cpu;
1879 
1880 	/*
1881 	 * If dst node has spare capacity, then check if there is an
1882 	 * imbalance that would be overruled by the load balancer.
1883 	 */
1884 	if (env->dst_stats.node_type == node_has_spare) {
1885 		unsigned int imbalance;
1886 		int src_running, dst_running;
1887 
1888 		/*
1889 		 * Would movement cause an imbalance? Note that if src has
1890 		 * more running tasks that the imbalance is ignored as the
1891 		 * move improves the imbalance from the perspective of the
1892 		 * CPU load balancer.
1893 		 * */
1894 		src_running = env->src_stats.nr_running - 1;
1895 		dst_running = env->dst_stats.nr_running + 1;
1896 		imbalance = max(0, dst_running - src_running);
1897 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
1898 							env->dst_stats.weight);
1899 
1900 		/* Use idle CPU if there is no imbalance */
1901 		if (!imbalance) {
1902 			maymove = true;
1903 			if (env->dst_stats.idle_cpu >= 0) {
1904 				env->dst_cpu = env->dst_stats.idle_cpu;
1905 				task_numa_assign(env, NULL, 0);
1906 				return;
1907 			}
1908 		}
1909 	} else {
1910 		long src_load, dst_load, load;
1911 		/*
1912 		 * If the improvement from just moving env->p direction is better
1913 		 * than swapping tasks around, check if a move is possible.
1914 		 */
1915 		load = task_h_load(env->p);
1916 		dst_load = env->dst_stats.load + load;
1917 		src_load = env->src_stats.load - load;
1918 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1919 	}
1920 
1921 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1922 		/* Skip this CPU if the source task cannot migrate */
1923 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1924 			continue;
1925 
1926 		env->dst_cpu = cpu;
1927 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1928 			break;
1929 	}
1930 }
1931 
1932 static int task_numa_migrate(struct task_struct *p)
1933 {
1934 	struct task_numa_env env = {
1935 		.p = p,
1936 
1937 		.src_cpu = task_cpu(p),
1938 		.src_nid = task_node(p),
1939 
1940 		.imbalance_pct = 112,
1941 
1942 		.best_task = NULL,
1943 		.best_imp = 0,
1944 		.best_cpu = -1,
1945 	};
1946 	unsigned long taskweight, groupweight;
1947 	struct sched_domain *sd;
1948 	long taskimp, groupimp;
1949 	struct numa_group *ng;
1950 	struct rq *best_rq;
1951 	int nid, ret, dist;
1952 
1953 	/*
1954 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1955 	 * imbalance and would be the first to start moving tasks about.
1956 	 *
1957 	 * And we want to avoid any moving of tasks about, as that would create
1958 	 * random movement of tasks -- counter the numa conditions we're trying
1959 	 * to satisfy here.
1960 	 */
1961 	rcu_read_lock();
1962 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1963 	if (sd)
1964 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1965 	rcu_read_unlock();
1966 
1967 	/*
1968 	 * Cpusets can break the scheduler domain tree into smaller
1969 	 * balance domains, some of which do not cross NUMA boundaries.
1970 	 * Tasks that are "trapped" in such domains cannot be migrated
1971 	 * elsewhere, so there is no point in (re)trying.
1972 	 */
1973 	if (unlikely(!sd)) {
1974 		sched_setnuma(p, task_node(p));
1975 		return -EINVAL;
1976 	}
1977 
1978 	env.dst_nid = p->numa_preferred_nid;
1979 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1980 	taskweight = task_weight(p, env.src_nid, dist);
1981 	groupweight = group_weight(p, env.src_nid, dist);
1982 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
1983 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1984 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1985 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
1986 
1987 	/* Try to find a spot on the preferred nid. */
1988 	task_numa_find_cpu(&env, taskimp, groupimp);
1989 
1990 	/*
1991 	 * Look at other nodes in these cases:
1992 	 * - there is no space available on the preferred_nid
1993 	 * - the task is part of a numa_group that is interleaved across
1994 	 *   multiple NUMA nodes; in order to better consolidate the group,
1995 	 *   we need to check other locations.
1996 	 */
1997 	ng = deref_curr_numa_group(p);
1998 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1999 		for_each_online_node(nid) {
2000 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2001 				continue;
2002 
2003 			dist = node_distance(env.src_nid, env.dst_nid);
2004 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2005 						dist != env.dist) {
2006 				taskweight = task_weight(p, env.src_nid, dist);
2007 				groupweight = group_weight(p, env.src_nid, dist);
2008 			}
2009 
2010 			/* Only consider nodes where both task and groups benefit */
2011 			taskimp = task_weight(p, nid, dist) - taskweight;
2012 			groupimp = group_weight(p, nid, dist) - groupweight;
2013 			if (taskimp < 0 && groupimp < 0)
2014 				continue;
2015 
2016 			env.dist = dist;
2017 			env.dst_nid = nid;
2018 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2019 			task_numa_find_cpu(&env, taskimp, groupimp);
2020 		}
2021 	}
2022 
2023 	/*
2024 	 * If the task is part of a workload that spans multiple NUMA nodes,
2025 	 * and is migrating into one of the workload's active nodes, remember
2026 	 * this node as the task's preferred numa node, so the workload can
2027 	 * settle down.
2028 	 * A task that migrated to a second choice node will be better off
2029 	 * trying for a better one later. Do not set the preferred node here.
2030 	 */
2031 	if (ng) {
2032 		if (env.best_cpu == -1)
2033 			nid = env.src_nid;
2034 		else
2035 			nid = cpu_to_node(env.best_cpu);
2036 
2037 		if (nid != p->numa_preferred_nid)
2038 			sched_setnuma(p, nid);
2039 	}
2040 
2041 	/* No better CPU than the current one was found. */
2042 	if (env.best_cpu == -1) {
2043 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2044 		return -EAGAIN;
2045 	}
2046 
2047 	best_rq = cpu_rq(env.best_cpu);
2048 	if (env.best_task == NULL) {
2049 		ret = migrate_task_to(p, env.best_cpu);
2050 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2051 		if (ret != 0)
2052 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2053 		return ret;
2054 	}
2055 
2056 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2057 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2058 
2059 	if (ret != 0)
2060 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2061 	put_task_struct(env.best_task);
2062 	return ret;
2063 }
2064 
2065 /* Attempt to migrate a task to a CPU on the preferred node. */
2066 static void numa_migrate_preferred(struct task_struct *p)
2067 {
2068 	unsigned long interval = HZ;
2069 
2070 	/* This task has no NUMA fault statistics yet */
2071 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2072 		return;
2073 
2074 	/* Periodically retry migrating the task to the preferred node */
2075 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2076 	p->numa_migrate_retry = jiffies + interval;
2077 
2078 	/* Success if task is already running on preferred CPU */
2079 	if (task_node(p) == p->numa_preferred_nid)
2080 		return;
2081 
2082 	/* Otherwise, try migrate to a CPU on the preferred node */
2083 	task_numa_migrate(p);
2084 }
2085 
2086 /*
2087  * Find out how many nodes on the workload is actively running on. Do this by
2088  * tracking the nodes from which NUMA hinting faults are triggered. This can
2089  * be different from the set of nodes where the workload's memory is currently
2090  * located.
2091  */
2092 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2093 {
2094 	unsigned long faults, max_faults = 0;
2095 	int nid, active_nodes = 0;
2096 
2097 	for_each_online_node(nid) {
2098 		faults = group_faults_cpu(numa_group, nid);
2099 		if (faults > max_faults)
2100 			max_faults = faults;
2101 	}
2102 
2103 	for_each_online_node(nid) {
2104 		faults = group_faults_cpu(numa_group, nid);
2105 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2106 			active_nodes++;
2107 	}
2108 
2109 	numa_group->max_faults_cpu = max_faults;
2110 	numa_group->active_nodes = active_nodes;
2111 }
2112 
2113 /*
2114  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2115  * increments. The more local the fault statistics are, the higher the scan
2116  * period will be for the next scan window. If local/(local+remote) ratio is
2117  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2118  * the scan period will decrease. Aim for 70% local accesses.
2119  */
2120 #define NUMA_PERIOD_SLOTS 10
2121 #define NUMA_PERIOD_THRESHOLD 7
2122 
2123 /*
2124  * Increase the scan period (slow down scanning) if the majority of
2125  * our memory is already on our local node, or if the majority of
2126  * the page accesses are shared with other processes.
2127  * Otherwise, decrease the scan period.
2128  */
2129 static void update_task_scan_period(struct task_struct *p,
2130 			unsigned long shared, unsigned long private)
2131 {
2132 	unsigned int period_slot;
2133 	int lr_ratio, ps_ratio;
2134 	int diff;
2135 
2136 	unsigned long remote = p->numa_faults_locality[0];
2137 	unsigned long local = p->numa_faults_locality[1];
2138 
2139 	/*
2140 	 * If there were no record hinting faults then either the task is
2141 	 * completely idle or all activity is areas that are not of interest
2142 	 * to automatic numa balancing. Related to that, if there were failed
2143 	 * migration then it implies we are migrating too quickly or the local
2144 	 * node is overloaded. In either case, scan slower
2145 	 */
2146 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2147 		p->numa_scan_period = min(p->numa_scan_period_max,
2148 			p->numa_scan_period << 1);
2149 
2150 		p->mm->numa_next_scan = jiffies +
2151 			msecs_to_jiffies(p->numa_scan_period);
2152 
2153 		return;
2154 	}
2155 
2156 	/*
2157 	 * Prepare to scale scan period relative to the current period.
2158 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2159 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2160 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2161 	 */
2162 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2163 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2164 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2165 
2166 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2167 		/*
2168 		 * Most memory accesses are local. There is no need to
2169 		 * do fast NUMA scanning, since memory is already local.
2170 		 */
2171 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2172 		if (!slot)
2173 			slot = 1;
2174 		diff = slot * period_slot;
2175 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2176 		/*
2177 		 * Most memory accesses are shared with other tasks.
2178 		 * There is no point in continuing fast NUMA scanning,
2179 		 * since other tasks may just move the memory elsewhere.
2180 		 */
2181 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2182 		if (!slot)
2183 			slot = 1;
2184 		diff = slot * period_slot;
2185 	} else {
2186 		/*
2187 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2188 		 * yet they are not on the local NUMA node. Speed up
2189 		 * NUMA scanning to get the memory moved over.
2190 		 */
2191 		int ratio = max(lr_ratio, ps_ratio);
2192 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2193 	}
2194 
2195 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2196 			task_scan_min(p), task_scan_max(p));
2197 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2198 }
2199 
2200 /*
2201  * Get the fraction of time the task has been running since the last
2202  * NUMA placement cycle. The scheduler keeps similar statistics, but
2203  * decays those on a 32ms period, which is orders of magnitude off
2204  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2205  * stats only if the task is so new there are no NUMA statistics yet.
2206  */
2207 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2208 {
2209 	u64 runtime, delta, now;
2210 	/* Use the start of this time slice to avoid calculations. */
2211 	now = p->se.exec_start;
2212 	runtime = p->se.sum_exec_runtime;
2213 
2214 	if (p->last_task_numa_placement) {
2215 		delta = runtime - p->last_sum_exec_runtime;
2216 		*period = now - p->last_task_numa_placement;
2217 
2218 		/* Avoid time going backwards, prevent potential divide error: */
2219 		if (unlikely((s64)*period < 0))
2220 			*period = 0;
2221 	} else {
2222 		delta = p->se.avg.load_sum;
2223 		*period = LOAD_AVG_MAX;
2224 	}
2225 
2226 	p->last_sum_exec_runtime = runtime;
2227 	p->last_task_numa_placement = now;
2228 
2229 	return delta;
2230 }
2231 
2232 /*
2233  * Determine the preferred nid for a task in a numa_group. This needs to
2234  * be done in a way that produces consistent results with group_weight,
2235  * otherwise workloads might not converge.
2236  */
2237 static int preferred_group_nid(struct task_struct *p, int nid)
2238 {
2239 	nodemask_t nodes;
2240 	int dist;
2241 
2242 	/* Direct connections between all NUMA nodes. */
2243 	if (sched_numa_topology_type == NUMA_DIRECT)
2244 		return nid;
2245 
2246 	/*
2247 	 * On a system with glueless mesh NUMA topology, group_weight
2248 	 * scores nodes according to the number of NUMA hinting faults on
2249 	 * both the node itself, and on nearby nodes.
2250 	 */
2251 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2252 		unsigned long score, max_score = 0;
2253 		int node, max_node = nid;
2254 
2255 		dist = sched_max_numa_distance;
2256 
2257 		for_each_online_node(node) {
2258 			score = group_weight(p, node, dist);
2259 			if (score > max_score) {
2260 				max_score = score;
2261 				max_node = node;
2262 			}
2263 		}
2264 		return max_node;
2265 	}
2266 
2267 	/*
2268 	 * Finding the preferred nid in a system with NUMA backplane
2269 	 * interconnect topology is more involved. The goal is to locate
2270 	 * tasks from numa_groups near each other in the system, and
2271 	 * untangle workloads from different sides of the system. This requires
2272 	 * searching down the hierarchy of node groups, recursively searching
2273 	 * inside the highest scoring group of nodes. The nodemask tricks
2274 	 * keep the complexity of the search down.
2275 	 */
2276 	nodes = node_online_map;
2277 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2278 		unsigned long max_faults = 0;
2279 		nodemask_t max_group = NODE_MASK_NONE;
2280 		int a, b;
2281 
2282 		/* Are there nodes at this distance from each other? */
2283 		if (!find_numa_distance(dist))
2284 			continue;
2285 
2286 		for_each_node_mask(a, nodes) {
2287 			unsigned long faults = 0;
2288 			nodemask_t this_group;
2289 			nodes_clear(this_group);
2290 
2291 			/* Sum group's NUMA faults; includes a==b case. */
2292 			for_each_node_mask(b, nodes) {
2293 				if (node_distance(a, b) < dist) {
2294 					faults += group_faults(p, b);
2295 					node_set(b, this_group);
2296 					node_clear(b, nodes);
2297 				}
2298 			}
2299 
2300 			/* Remember the top group. */
2301 			if (faults > max_faults) {
2302 				max_faults = faults;
2303 				max_group = this_group;
2304 				/*
2305 				 * subtle: at the smallest distance there is
2306 				 * just one node left in each "group", the
2307 				 * winner is the preferred nid.
2308 				 */
2309 				nid = a;
2310 			}
2311 		}
2312 		/* Next round, evaluate the nodes within max_group. */
2313 		if (!max_faults)
2314 			break;
2315 		nodes = max_group;
2316 	}
2317 	return nid;
2318 }
2319 
2320 static void task_numa_placement(struct task_struct *p)
2321 {
2322 	int seq, nid, max_nid = NUMA_NO_NODE;
2323 	unsigned long max_faults = 0;
2324 	unsigned long fault_types[2] = { 0, 0 };
2325 	unsigned long total_faults;
2326 	u64 runtime, period;
2327 	spinlock_t *group_lock = NULL;
2328 	struct numa_group *ng;
2329 
2330 	/*
2331 	 * The p->mm->numa_scan_seq field gets updated without
2332 	 * exclusive access. Use READ_ONCE() here to ensure
2333 	 * that the field is read in a single access:
2334 	 */
2335 	seq = READ_ONCE(p->mm->numa_scan_seq);
2336 	if (p->numa_scan_seq == seq)
2337 		return;
2338 	p->numa_scan_seq = seq;
2339 	p->numa_scan_period_max = task_scan_max(p);
2340 
2341 	total_faults = p->numa_faults_locality[0] +
2342 		       p->numa_faults_locality[1];
2343 	runtime = numa_get_avg_runtime(p, &period);
2344 
2345 	/* If the task is part of a group prevent parallel updates to group stats */
2346 	ng = deref_curr_numa_group(p);
2347 	if (ng) {
2348 		group_lock = &ng->lock;
2349 		spin_lock_irq(group_lock);
2350 	}
2351 
2352 	/* Find the node with the highest number of faults */
2353 	for_each_online_node(nid) {
2354 		/* Keep track of the offsets in numa_faults array */
2355 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2356 		unsigned long faults = 0, group_faults = 0;
2357 		int priv;
2358 
2359 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2360 			long diff, f_diff, f_weight;
2361 
2362 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2363 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2364 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2365 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2366 
2367 			/* Decay existing window, copy faults since last scan */
2368 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2369 			fault_types[priv] += p->numa_faults[membuf_idx];
2370 			p->numa_faults[membuf_idx] = 0;
2371 
2372 			/*
2373 			 * Normalize the faults_from, so all tasks in a group
2374 			 * count according to CPU use, instead of by the raw
2375 			 * number of faults. Tasks with little runtime have
2376 			 * little over-all impact on throughput, and thus their
2377 			 * faults are less important.
2378 			 */
2379 			f_weight = div64_u64(runtime << 16, period + 1);
2380 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2381 				   (total_faults + 1);
2382 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2383 			p->numa_faults[cpubuf_idx] = 0;
2384 
2385 			p->numa_faults[mem_idx] += diff;
2386 			p->numa_faults[cpu_idx] += f_diff;
2387 			faults += p->numa_faults[mem_idx];
2388 			p->total_numa_faults += diff;
2389 			if (ng) {
2390 				/*
2391 				 * safe because we can only change our own group
2392 				 *
2393 				 * mem_idx represents the offset for a given
2394 				 * nid and priv in a specific region because it
2395 				 * is at the beginning of the numa_faults array.
2396 				 */
2397 				ng->faults[mem_idx] += diff;
2398 				ng->faults_cpu[mem_idx] += f_diff;
2399 				ng->total_faults += diff;
2400 				group_faults += ng->faults[mem_idx];
2401 			}
2402 		}
2403 
2404 		if (!ng) {
2405 			if (faults > max_faults) {
2406 				max_faults = faults;
2407 				max_nid = nid;
2408 			}
2409 		} else if (group_faults > max_faults) {
2410 			max_faults = group_faults;
2411 			max_nid = nid;
2412 		}
2413 	}
2414 
2415 	if (ng) {
2416 		numa_group_count_active_nodes(ng);
2417 		spin_unlock_irq(group_lock);
2418 		max_nid = preferred_group_nid(p, max_nid);
2419 	}
2420 
2421 	if (max_faults) {
2422 		/* Set the new preferred node */
2423 		if (max_nid != p->numa_preferred_nid)
2424 			sched_setnuma(p, max_nid);
2425 	}
2426 
2427 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2428 }
2429 
2430 static inline int get_numa_group(struct numa_group *grp)
2431 {
2432 	return refcount_inc_not_zero(&grp->refcount);
2433 }
2434 
2435 static inline void put_numa_group(struct numa_group *grp)
2436 {
2437 	if (refcount_dec_and_test(&grp->refcount))
2438 		kfree_rcu(grp, rcu);
2439 }
2440 
2441 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2442 			int *priv)
2443 {
2444 	struct numa_group *grp, *my_grp;
2445 	struct task_struct *tsk;
2446 	bool join = false;
2447 	int cpu = cpupid_to_cpu(cpupid);
2448 	int i;
2449 
2450 	if (unlikely(!deref_curr_numa_group(p))) {
2451 		unsigned int size = sizeof(struct numa_group) +
2452 				    4*nr_node_ids*sizeof(unsigned long);
2453 
2454 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2455 		if (!grp)
2456 			return;
2457 
2458 		refcount_set(&grp->refcount, 1);
2459 		grp->active_nodes = 1;
2460 		grp->max_faults_cpu = 0;
2461 		spin_lock_init(&grp->lock);
2462 		grp->gid = p->pid;
2463 		/* Second half of the array tracks nids where faults happen */
2464 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2465 						nr_node_ids;
2466 
2467 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2468 			grp->faults[i] = p->numa_faults[i];
2469 
2470 		grp->total_faults = p->total_numa_faults;
2471 
2472 		grp->nr_tasks++;
2473 		rcu_assign_pointer(p->numa_group, grp);
2474 	}
2475 
2476 	rcu_read_lock();
2477 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2478 
2479 	if (!cpupid_match_pid(tsk, cpupid))
2480 		goto no_join;
2481 
2482 	grp = rcu_dereference(tsk->numa_group);
2483 	if (!grp)
2484 		goto no_join;
2485 
2486 	my_grp = deref_curr_numa_group(p);
2487 	if (grp == my_grp)
2488 		goto no_join;
2489 
2490 	/*
2491 	 * Only join the other group if its bigger; if we're the bigger group,
2492 	 * the other task will join us.
2493 	 */
2494 	if (my_grp->nr_tasks > grp->nr_tasks)
2495 		goto no_join;
2496 
2497 	/*
2498 	 * Tie-break on the grp address.
2499 	 */
2500 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2501 		goto no_join;
2502 
2503 	/* Always join threads in the same process. */
2504 	if (tsk->mm == current->mm)
2505 		join = true;
2506 
2507 	/* Simple filter to avoid false positives due to PID collisions */
2508 	if (flags & TNF_SHARED)
2509 		join = true;
2510 
2511 	/* Update priv based on whether false sharing was detected */
2512 	*priv = !join;
2513 
2514 	if (join && !get_numa_group(grp))
2515 		goto no_join;
2516 
2517 	rcu_read_unlock();
2518 
2519 	if (!join)
2520 		return;
2521 
2522 	BUG_ON(irqs_disabled());
2523 	double_lock_irq(&my_grp->lock, &grp->lock);
2524 
2525 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2526 		my_grp->faults[i] -= p->numa_faults[i];
2527 		grp->faults[i] += p->numa_faults[i];
2528 	}
2529 	my_grp->total_faults -= p->total_numa_faults;
2530 	grp->total_faults += p->total_numa_faults;
2531 
2532 	my_grp->nr_tasks--;
2533 	grp->nr_tasks++;
2534 
2535 	spin_unlock(&my_grp->lock);
2536 	spin_unlock_irq(&grp->lock);
2537 
2538 	rcu_assign_pointer(p->numa_group, grp);
2539 
2540 	put_numa_group(my_grp);
2541 	return;
2542 
2543 no_join:
2544 	rcu_read_unlock();
2545 	return;
2546 }
2547 
2548 /*
2549  * Get rid of NUMA statistics associated with a task (either current or dead).
2550  * If @final is set, the task is dead and has reached refcount zero, so we can
2551  * safely free all relevant data structures. Otherwise, there might be
2552  * concurrent reads from places like load balancing and procfs, and we should
2553  * reset the data back to default state without freeing ->numa_faults.
2554  */
2555 void task_numa_free(struct task_struct *p, bool final)
2556 {
2557 	/* safe: p either is current or is being freed by current */
2558 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2559 	unsigned long *numa_faults = p->numa_faults;
2560 	unsigned long flags;
2561 	int i;
2562 
2563 	if (!numa_faults)
2564 		return;
2565 
2566 	if (grp) {
2567 		spin_lock_irqsave(&grp->lock, flags);
2568 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2569 			grp->faults[i] -= p->numa_faults[i];
2570 		grp->total_faults -= p->total_numa_faults;
2571 
2572 		grp->nr_tasks--;
2573 		spin_unlock_irqrestore(&grp->lock, flags);
2574 		RCU_INIT_POINTER(p->numa_group, NULL);
2575 		put_numa_group(grp);
2576 	}
2577 
2578 	if (final) {
2579 		p->numa_faults = NULL;
2580 		kfree(numa_faults);
2581 	} else {
2582 		p->total_numa_faults = 0;
2583 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2584 			numa_faults[i] = 0;
2585 	}
2586 }
2587 
2588 /*
2589  * Got a PROT_NONE fault for a page on @node.
2590  */
2591 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2592 {
2593 	struct task_struct *p = current;
2594 	bool migrated = flags & TNF_MIGRATED;
2595 	int cpu_node = task_node(current);
2596 	int local = !!(flags & TNF_FAULT_LOCAL);
2597 	struct numa_group *ng;
2598 	int priv;
2599 
2600 	if (!static_branch_likely(&sched_numa_balancing))
2601 		return;
2602 
2603 	/* for example, ksmd faulting in a user's mm */
2604 	if (!p->mm)
2605 		return;
2606 
2607 	/* Allocate buffer to track faults on a per-node basis */
2608 	if (unlikely(!p->numa_faults)) {
2609 		int size = sizeof(*p->numa_faults) *
2610 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2611 
2612 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2613 		if (!p->numa_faults)
2614 			return;
2615 
2616 		p->total_numa_faults = 0;
2617 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2618 	}
2619 
2620 	/*
2621 	 * First accesses are treated as private, otherwise consider accesses
2622 	 * to be private if the accessing pid has not changed
2623 	 */
2624 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2625 		priv = 1;
2626 	} else {
2627 		priv = cpupid_match_pid(p, last_cpupid);
2628 		if (!priv && !(flags & TNF_NO_GROUP))
2629 			task_numa_group(p, last_cpupid, flags, &priv);
2630 	}
2631 
2632 	/*
2633 	 * If a workload spans multiple NUMA nodes, a shared fault that
2634 	 * occurs wholly within the set of nodes that the workload is
2635 	 * actively using should be counted as local. This allows the
2636 	 * scan rate to slow down when a workload has settled down.
2637 	 */
2638 	ng = deref_curr_numa_group(p);
2639 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2640 				numa_is_active_node(cpu_node, ng) &&
2641 				numa_is_active_node(mem_node, ng))
2642 		local = 1;
2643 
2644 	/*
2645 	 * Retry to migrate task to preferred node periodically, in case it
2646 	 * previously failed, or the scheduler moved us.
2647 	 */
2648 	if (time_after(jiffies, p->numa_migrate_retry)) {
2649 		task_numa_placement(p);
2650 		numa_migrate_preferred(p);
2651 	}
2652 
2653 	if (migrated)
2654 		p->numa_pages_migrated += pages;
2655 	if (flags & TNF_MIGRATE_FAIL)
2656 		p->numa_faults_locality[2] += pages;
2657 
2658 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2659 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2660 	p->numa_faults_locality[local] += pages;
2661 }
2662 
2663 static void reset_ptenuma_scan(struct task_struct *p)
2664 {
2665 	/*
2666 	 * We only did a read acquisition of the mmap sem, so
2667 	 * p->mm->numa_scan_seq is written to without exclusive access
2668 	 * and the update is not guaranteed to be atomic. That's not
2669 	 * much of an issue though, since this is just used for
2670 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2671 	 * expensive, to avoid any form of compiler optimizations:
2672 	 */
2673 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2674 	p->mm->numa_scan_offset = 0;
2675 }
2676 
2677 /*
2678  * The expensive part of numa migration is done from task_work context.
2679  * Triggered from task_tick_numa().
2680  */
2681 static void task_numa_work(struct callback_head *work)
2682 {
2683 	unsigned long migrate, next_scan, now = jiffies;
2684 	struct task_struct *p = current;
2685 	struct mm_struct *mm = p->mm;
2686 	u64 runtime = p->se.sum_exec_runtime;
2687 	struct vm_area_struct *vma;
2688 	unsigned long start, end;
2689 	unsigned long nr_pte_updates = 0;
2690 	long pages, virtpages;
2691 
2692 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2693 
2694 	work->next = work;
2695 	/*
2696 	 * Who cares about NUMA placement when they're dying.
2697 	 *
2698 	 * NOTE: make sure not to dereference p->mm before this check,
2699 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2700 	 * without p->mm even though we still had it when we enqueued this
2701 	 * work.
2702 	 */
2703 	if (p->flags & PF_EXITING)
2704 		return;
2705 
2706 	if (!mm->numa_next_scan) {
2707 		mm->numa_next_scan = now +
2708 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2709 	}
2710 
2711 	/*
2712 	 * Enforce maximal scan/migration frequency..
2713 	 */
2714 	migrate = mm->numa_next_scan;
2715 	if (time_before(now, migrate))
2716 		return;
2717 
2718 	if (p->numa_scan_period == 0) {
2719 		p->numa_scan_period_max = task_scan_max(p);
2720 		p->numa_scan_period = task_scan_start(p);
2721 	}
2722 
2723 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2724 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2725 		return;
2726 
2727 	/*
2728 	 * Delay this task enough that another task of this mm will likely win
2729 	 * the next time around.
2730 	 */
2731 	p->node_stamp += 2 * TICK_NSEC;
2732 
2733 	start = mm->numa_scan_offset;
2734 	pages = sysctl_numa_balancing_scan_size;
2735 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2736 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2737 	if (!pages)
2738 		return;
2739 
2740 
2741 	if (!mmap_read_trylock(mm))
2742 		return;
2743 	vma = find_vma(mm, start);
2744 	if (!vma) {
2745 		reset_ptenuma_scan(p);
2746 		start = 0;
2747 		vma = mm->mmap;
2748 	}
2749 	for (; vma; vma = vma->vm_next) {
2750 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2751 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2752 			continue;
2753 		}
2754 
2755 		/*
2756 		 * Shared library pages mapped by multiple processes are not
2757 		 * migrated as it is expected they are cache replicated. Avoid
2758 		 * hinting faults in read-only file-backed mappings or the vdso
2759 		 * as migrating the pages will be of marginal benefit.
2760 		 */
2761 		if (!vma->vm_mm ||
2762 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2763 			continue;
2764 
2765 		/*
2766 		 * Skip inaccessible VMAs to avoid any confusion between
2767 		 * PROT_NONE and NUMA hinting ptes
2768 		 */
2769 		if (!vma_is_accessible(vma))
2770 			continue;
2771 
2772 		do {
2773 			start = max(start, vma->vm_start);
2774 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2775 			end = min(end, vma->vm_end);
2776 			nr_pte_updates = change_prot_numa(vma, start, end);
2777 
2778 			/*
2779 			 * Try to scan sysctl_numa_balancing_size worth of
2780 			 * hpages that have at least one present PTE that
2781 			 * is not already pte-numa. If the VMA contains
2782 			 * areas that are unused or already full of prot_numa
2783 			 * PTEs, scan up to virtpages, to skip through those
2784 			 * areas faster.
2785 			 */
2786 			if (nr_pte_updates)
2787 				pages -= (end - start) >> PAGE_SHIFT;
2788 			virtpages -= (end - start) >> PAGE_SHIFT;
2789 
2790 			start = end;
2791 			if (pages <= 0 || virtpages <= 0)
2792 				goto out;
2793 
2794 			cond_resched();
2795 		} while (end != vma->vm_end);
2796 	}
2797 
2798 out:
2799 	/*
2800 	 * It is possible to reach the end of the VMA list but the last few
2801 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2802 	 * would find the !migratable VMA on the next scan but not reset the
2803 	 * scanner to the start so check it now.
2804 	 */
2805 	if (vma)
2806 		mm->numa_scan_offset = start;
2807 	else
2808 		reset_ptenuma_scan(p);
2809 	mmap_read_unlock(mm);
2810 
2811 	/*
2812 	 * Make sure tasks use at least 32x as much time to run other code
2813 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2814 	 * Usually update_task_scan_period slows down scanning enough; on an
2815 	 * overloaded system we need to limit overhead on a per task basis.
2816 	 */
2817 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2818 		u64 diff = p->se.sum_exec_runtime - runtime;
2819 		p->node_stamp += 32 * diff;
2820 	}
2821 }
2822 
2823 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2824 {
2825 	int mm_users = 0;
2826 	struct mm_struct *mm = p->mm;
2827 
2828 	if (mm) {
2829 		mm_users = atomic_read(&mm->mm_users);
2830 		if (mm_users == 1) {
2831 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2832 			mm->numa_scan_seq = 0;
2833 		}
2834 	}
2835 	p->node_stamp			= 0;
2836 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2837 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2838 	/* Protect against double add, see task_tick_numa and task_numa_work */
2839 	p->numa_work.next		= &p->numa_work;
2840 	p->numa_faults			= NULL;
2841 	RCU_INIT_POINTER(p->numa_group, NULL);
2842 	p->last_task_numa_placement	= 0;
2843 	p->last_sum_exec_runtime	= 0;
2844 
2845 	init_task_work(&p->numa_work, task_numa_work);
2846 
2847 	/* New address space, reset the preferred nid */
2848 	if (!(clone_flags & CLONE_VM)) {
2849 		p->numa_preferred_nid = NUMA_NO_NODE;
2850 		return;
2851 	}
2852 
2853 	/*
2854 	 * New thread, keep existing numa_preferred_nid which should be copied
2855 	 * already by arch_dup_task_struct but stagger when scans start.
2856 	 */
2857 	if (mm) {
2858 		unsigned int delay;
2859 
2860 		delay = min_t(unsigned int, task_scan_max(current),
2861 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2862 		delay += 2 * TICK_NSEC;
2863 		p->node_stamp = delay;
2864 	}
2865 }
2866 
2867 /*
2868  * Drive the periodic memory faults..
2869  */
2870 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2871 {
2872 	struct callback_head *work = &curr->numa_work;
2873 	u64 period, now;
2874 
2875 	/*
2876 	 * We don't care about NUMA placement if we don't have memory.
2877 	 */
2878 	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2879 		return;
2880 
2881 	/*
2882 	 * Using runtime rather than walltime has the dual advantage that
2883 	 * we (mostly) drive the selection from busy threads and that the
2884 	 * task needs to have done some actual work before we bother with
2885 	 * NUMA placement.
2886 	 */
2887 	now = curr->se.sum_exec_runtime;
2888 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2889 
2890 	if (now > curr->node_stamp + period) {
2891 		if (!curr->node_stamp)
2892 			curr->numa_scan_period = task_scan_start(curr);
2893 		curr->node_stamp += period;
2894 
2895 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2896 			task_work_add(curr, work, TWA_RESUME);
2897 	}
2898 }
2899 
2900 static void update_scan_period(struct task_struct *p, int new_cpu)
2901 {
2902 	int src_nid = cpu_to_node(task_cpu(p));
2903 	int dst_nid = cpu_to_node(new_cpu);
2904 
2905 	if (!static_branch_likely(&sched_numa_balancing))
2906 		return;
2907 
2908 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2909 		return;
2910 
2911 	if (src_nid == dst_nid)
2912 		return;
2913 
2914 	/*
2915 	 * Allow resets if faults have been trapped before one scan
2916 	 * has completed. This is most likely due to a new task that
2917 	 * is pulled cross-node due to wakeups or load balancing.
2918 	 */
2919 	if (p->numa_scan_seq) {
2920 		/*
2921 		 * Avoid scan adjustments if moving to the preferred
2922 		 * node or if the task was not previously running on
2923 		 * the preferred node.
2924 		 */
2925 		if (dst_nid == p->numa_preferred_nid ||
2926 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2927 			src_nid != p->numa_preferred_nid))
2928 			return;
2929 	}
2930 
2931 	p->numa_scan_period = task_scan_start(p);
2932 }
2933 
2934 #else
2935 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2936 {
2937 }
2938 
2939 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2940 {
2941 }
2942 
2943 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2944 {
2945 }
2946 
2947 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2948 {
2949 }
2950 
2951 #endif /* CONFIG_NUMA_BALANCING */
2952 
2953 static void
2954 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2955 {
2956 	update_load_add(&cfs_rq->load, se->load.weight);
2957 #ifdef CONFIG_SMP
2958 	if (entity_is_task(se)) {
2959 		struct rq *rq = rq_of(cfs_rq);
2960 
2961 		account_numa_enqueue(rq, task_of(se));
2962 		list_add(&se->group_node, &rq->cfs_tasks);
2963 	}
2964 #endif
2965 	cfs_rq->nr_running++;
2966 }
2967 
2968 static void
2969 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2970 {
2971 	update_load_sub(&cfs_rq->load, se->load.weight);
2972 #ifdef CONFIG_SMP
2973 	if (entity_is_task(se)) {
2974 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2975 		list_del_init(&se->group_node);
2976 	}
2977 #endif
2978 	cfs_rq->nr_running--;
2979 }
2980 
2981 /*
2982  * Signed add and clamp on underflow.
2983  *
2984  * Explicitly do a load-store to ensure the intermediate value never hits
2985  * memory. This allows lockless observations without ever seeing the negative
2986  * values.
2987  */
2988 #define add_positive(_ptr, _val) do {                           \
2989 	typeof(_ptr) ptr = (_ptr);                              \
2990 	typeof(_val) val = (_val);                              \
2991 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2992 								\
2993 	res = var + val;                                        \
2994 								\
2995 	if (val < 0 && res > var)                               \
2996 		res = 0;                                        \
2997 								\
2998 	WRITE_ONCE(*ptr, res);                                  \
2999 } while (0)
3000 
3001 /*
3002  * Unsigned subtract and clamp on underflow.
3003  *
3004  * Explicitly do a load-store to ensure the intermediate value never hits
3005  * memory. This allows lockless observations without ever seeing the negative
3006  * values.
3007  */
3008 #define sub_positive(_ptr, _val) do {				\
3009 	typeof(_ptr) ptr = (_ptr);				\
3010 	typeof(*ptr) val = (_val);				\
3011 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3012 	res = var - val;					\
3013 	if (res > var)						\
3014 		res = 0;					\
3015 	WRITE_ONCE(*ptr, res);					\
3016 } while (0)
3017 
3018 /*
3019  * Remove and clamp on negative, from a local variable.
3020  *
3021  * A variant of sub_positive(), which does not use explicit load-store
3022  * and is thus optimized for local variable updates.
3023  */
3024 #define lsub_positive(_ptr, _val) do {				\
3025 	typeof(_ptr) ptr = (_ptr);				\
3026 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3027 } while (0)
3028 
3029 #ifdef CONFIG_SMP
3030 static inline void
3031 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3032 {
3033 	cfs_rq->avg.load_avg += se->avg.load_avg;
3034 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3035 }
3036 
3037 static inline void
3038 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3039 {
3040 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3041 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3042 }
3043 #else
3044 static inline void
3045 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3046 static inline void
3047 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3048 #endif
3049 
3050 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3051 			    unsigned long weight)
3052 {
3053 	if (se->on_rq) {
3054 		/* commit outstanding execution time */
3055 		if (cfs_rq->curr == se)
3056 			update_curr(cfs_rq);
3057 		update_load_sub(&cfs_rq->load, se->load.weight);
3058 	}
3059 	dequeue_load_avg(cfs_rq, se);
3060 
3061 	update_load_set(&se->load, weight);
3062 
3063 #ifdef CONFIG_SMP
3064 	do {
3065 		u32 divider = get_pelt_divider(&se->avg);
3066 
3067 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3068 	} while (0);
3069 #endif
3070 
3071 	enqueue_load_avg(cfs_rq, se);
3072 	if (se->on_rq)
3073 		update_load_add(&cfs_rq->load, se->load.weight);
3074 
3075 }
3076 
3077 void reweight_task(struct task_struct *p, int prio)
3078 {
3079 	struct sched_entity *se = &p->se;
3080 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3081 	struct load_weight *load = &se->load;
3082 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3083 
3084 	reweight_entity(cfs_rq, se, weight);
3085 	load->inv_weight = sched_prio_to_wmult[prio];
3086 }
3087 
3088 #ifdef CONFIG_FAIR_GROUP_SCHED
3089 #ifdef CONFIG_SMP
3090 /*
3091  * All this does is approximate the hierarchical proportion which includes that
3092  * global sum we all love to hate.
3093  *
3094  * That is, the weight of a group entity, is the proportional share of the
3095  * group weight based on the group runqueue weights. That is:
3096  *
3097  *                     tg->weight * grq->load.weight
3098  *   ge->load.weight = -----------------------------               (1)
3099  *                       \Sum grq->load.weight
3100  *
3101  * Now, because computing that sum is prohibitively expensive to compute (been
3102  * there, done that) we approximate it with this average stuff. The average
3103  * moves slower and therefore the approximation is cheaper and more stable.
3104  *
3105  * So instead of the above, we substitute:
3106  *
3107  *   grq->load.weight -> grq->avg.load_avg                         (2)
3108  *
3109  * which yields the following:
3110  *
3111  *                     tg->weight * grq->avg.load_avg
3112  *   ge->load.weight = ------------------------------              (3)
3113  *                             tg->load_avg
3114  *
3115  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3116  *
3117  * That is shares_avg, and it is right (given the approximation (2)).
3118  *
3119  * The problem with it is that because the average is slow -- it was designed
3120  * to be exactly that of course -- this leads to transients in boundary
3121  * conditions. In specific, the case where the group was idle and we start the
3122  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3123  * yielding bad latency etc..
3124  *
3125  * Now, in that special case (1) reduces to:
3126  *
3127  *                     tg->weight * grq->load.weight
3128  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3129  *                         grp->load.weight
3130  *
3131  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3132  *
3133  * So what we do is modify our approximation (3) to approach (4) in the (near)
3134  * UP case, like:
3135  *
3136  *   ge->load.weight =
3137  *
3138  *              tg->weight * grq->load.weight
3139  *     ---------------------------------------------------         (5)
3140  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3141  *
3142  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3143  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3144  *
3145  *
3146  *                     tg->weight * grq->load.weight
3147  *   ge->load.weight = -----------------------------		   (6)
3148  *                             tg_load_avg'
3149  *
3150  * Where:
3151  *
3152  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3153  *                  max(grq->load.weight, grq->avg.load_avg)
3154  *
3155  * And that is shares_weight and is icky. In the (near) UP case it approaches
3156  * (4) while in the normal case it approaches (3). It consistently
3157  * overestimates the ge->load.weight and therefore:
3158  *
3159  *   \Sum ge->load.weight >= tg->weight
3160  *
3161  * hence icky!
3162  */
3163 static long calc_group_shares(struct cfs_rq *cfs_rq)
3164 {
3165 	long tg_weight, tg_shares, load, shares;
3166 	struct task_group *tg = cfs_rq->tg;
3167 
3168 	tg_shares = READ_ONCE(tg->shares);
3169 
3170 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3171 
3172 	tg_weight = atomic_long_read(&tg->load_avg);
3173 
3174 	/* Ensure tg_weight >= load */
3175 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3176 	tg_weight += load;
3177 
3178 	shares = (tg_shares * load);
3179 	if (tg_weight)
3180 		shares /= tg_weight;
3181 
3182 	/*
3183 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3184 	 * of a group with small tg->shares value. It is a floor value which is
3185 	 * assigned as a minimum load.weight to the sched_entity representing
3186 	 * the group on a CPU.
3187 	 *
3188 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3189 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3190 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3191 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3192 	 * instead of 0.
3193 	 */
3194 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3195 }
3196 #endif /* CONFIG_SMP */
3197 
3198 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3199 
3200 /*
3201  * Recomputes the group entity based on the current state of its group
3202  * runqueue.
3203  */
3204 static void update_cfs_group(struct sched_entity *se)
3205 {
3206 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3207 	long shares;
3208 
3209 	if (!gcfs_rq)
3210 		return;
3211 
3212 	if (throttled_hierarchy(gcfs_rq))
3213 		return;
3214 
3215 #ifndef CONFIG_SMP
3216 	shares = READ_ONCE(gcfs_rq->tg->shares);
3217 
3218 	if (likely(se->load.weight == shares))
3219 		return;
3220 #else
3221 	shares   = calc_group_shares(gcfs_rq);
3222 #endif
3223 
3224 	reweight_entity(cfs_rq_of(se), se, shares);
3225 }
3226 
3227 #else /* CONFIG_FAIR_GROUP_SCHED */
3228 static inline void update_cfs_group(struct sched_entity *se)
3229 {
3230 }
3231 #endif /* CONFIG_FAIR_GROUP_SCHED */
3232 
3233 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3234 {
3235 	struct rq *rq = rq_of(cfs_rq);
3236 
3237 	if (&rq->cfs == cfs_rq) {
3238 		/*
3239 		 * There are a few boundary cases this might miss but it should
3240 		 * get called often enough that that should (hopefully) not be
3241 		 * a real problem.
3242 		 *
3243 		 * It will not get called when we go idle, because the idle
3244 		 * thread is a different class (!fair), nor will the utilization
3245 		 * number include things like RT tasks.
3246 		 *
3247 		 * As is, the util number is not freq-invariant (we'd have to
3248 		 * implement arch_scale_freq_capacity() for that).
3249 		 *
3250 		 * See cpu_util().
3251 		 */
3252 		cpufreq_update_util(rq, flags);
3253 	}
3254 }
3255 
3256 #ifdef CONFIG_SMP
3257 #ifdef CONFIG_FAIR_GROUP_SCHED
3258 /*
3259  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3260  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3261  * bottom-up, we only have to test whether the cfs_rq before us on the list
3262  * is our child.
3263  * If cfs_rq is not on the list, test whether a child needs its to be added to
3264  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3265  */
3266 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3267 {
3268 	struct cfs_rq *prev_cfs_rq;
3269 	struct list_head *prev;
3270 
3271 	if (cfs_rq->on_list) {
3272 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3273 	} else {
3274 		struct rq *rq = rq_of(cfs_rq);
3275 
3276 		prev = rq->tmp_alone_branch;
3277 	}
3278 
3279 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3280 
3281 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3282 }
3283 
3284 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3285 {
3286 	if (cfs_rq->load.weight)
3287 		return false;
3288 
3289 	if (cfs_rq->avg.load_sum)
3290 		return false;
3291 
3292 	if (cfs_rq->avg.util_sum)
3293 		return false;
3294 
3295 	if (cfs_rq->avg.runnable_sum)
3296 		return false;
3297 
3298 	if (child_cfs_rq_on_list(cfs_rq))
3299 		return false;
3300 
3301 	/*
3302 	 * _avg must be null when _sum are null because _avg = _sum / divider
3303 	 * Make sure that rounding and/or propagation of PELT values never
3304 	 * break this.
3305 	 */
3306 	SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3307 		      cfs_rq->avg.util_avg ||
3308 		      cfs_rq->avg.runnable_avg);
3309 
3310 	return true;
3311 }
3312 
3313 /**
3314  * update_tg_load_avg - update the tg's load avg
3315  * @cfs_rq: the cfs_rq whose avg changed
3316  *
3317  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3318  * However, because tg->load_avg is a global value there are performance
3319  * considerations.
3320  *
3321  * In order to avoid having to look at the other cfs_rq's, we use a
3322  * differential update where we store the last value we propagated. This in
3323  * turn allows skipping updates if the differential is 'small'.
3324  *
3325  * Updating tg's load_avg is necessary before update_cfs_share().
3326  */
3327 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3328 {
3329 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3330 
3331 	/*
3332 	 * No need to update load_avg for root_task_group as it is not used.
3333 	 */
3334 	if (cfs_rq->tg == &root_task_group)
3335 		return;
3336 
3337 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3338 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3339 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3340 	}
3341 }
3342 
3343 /*
3344  * Called within set_task_rq() right before setting a task's CPU. The
3345  * caller only guarantees p->pi_lock is held; no other assumptions,
3346  * including the state of rq->lock, should be made.
3347  */
3348 void set_task_rq_fair(struct sched_entity *se,
3349 		      struct cfs_rq *prev, struct cfs_rq *next)
3350 {
3351 	u64 p_last_update_time;
3352 	u64 n_last_update_time;
3353 
3354 	if (!sched_feat(ATTACH_AGE_LOAD))
3355 		return;
3356 
3357 	/*
3358 	 * We are supposed to update the task to "current" time, then its up to
3359 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3360 	 * getting what current time is, so simply throw away the out-of-date
3361 	 * time. This will result in the wakee task is less decayed, but giving
3362 	 * the wakee more load sounds not bad.
3363 	 */
3364 	if (!(se->avg.last_update_time && prev))
3365 		return;
3366 
3367 #ifndef CONFIG_64BIT
3368 	{
3369 		u64 p_last_update_time_copy;
3370 		u64 n_last_update_time_copy;
3371 
3372 		do {
3373 			p_last_update_time_copy = prev->load_last_update_time_copy;
3374 			n_last_update_time_copy = next->load_last_update_time_copy;
3375 
3376 			smp_rmb();
3377 
3378 			p_last_update_time = prev->avg.last_update_time;
3379 			n_last_update_time = next->avg.last_update_time;
3380 
3381 		} while (p_last_update_time != p_last_update_time_copy ||
3382 			 n_last_update_time != n_last_update_time_copy);
3383 	}
3384 #else
3385 	p_last_update_time = prev->avg.last_update_time;
3386 	n_last_update_time = next->avg.last_update_time;
3387 #endif
3388 	__update_load_avg_blocked_se(p_last_update_time, se);
3389 	se->avg.last_update_time = n_last_update_time;
3390 }
3391 
3392 
3393 /*
3394  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3395  * propagate its contribution. The key to this propagation is the invariant
3396  * that for each group:
3397  *
3398  *   ge->avg == grq->avg						(1)
3399  *
3400  * _IFF_ we look at the pure running and runnable sums. Because they
3401  * represent the very same entity, just at different points in the hierarchy.
3402  *
3403  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3404  * and simply copies the running/runnable sum over (but still wrong, because
3405  * the group entity and group rq do not have their PELT windows aligned).
3406  *
3407  * However, update_tg_cfs_load() is more complex. So we have:
3408  *
3409  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3410  *
3411  * And since, like util, the runnable part should be directly transferable,
3412  * the following would _appear_ to be the straight forward approach:
3413  *
3414  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3415  *
3416  * And per (1) we have:
3417  *
3418  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3419  *
3420  * Which gives:
3421  *
3422  *                      ge->load.weight * grq->avg.load_avg
3423  *   ge->avg.load_avg = -----------------------------------		(4)
3424  *                               grq->load.weight
3425  *
3426  * Except that is wrong!
3427  *
3428  * Because while for entities historical weight is not important and we
3429  * really only care about our future and therefore can consider a pure
3430  * runnable sum, runqueues can NOT do this.
3431  *
3432  * We specifically want runqueues to have a load_avg that includes
3433  * historical weights. Those represent the blocked load, the load we expect
3434  * to (shortly) return to us. This only works by keeping the weights as
3435  * integral part of the sum. We therefore cannot decompose as per (3).
3436  *
3437  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3438  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3439  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3440  * runnable section of these tasks overlap (or not). If they were to perfectly
3441  * align the rq as a whole would be runnable 2/3 of the time. If however we
3442  * always have at least 1 runnable task, the rq as a whole is always runnable.
3443  *
3444  * So we'll have to approximate.. :/
3445  *
3446  * Given the constraint:
3447  *
3448  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3449  *
3450  * We can construct a rule that adds runnable to a rq by assuming minimal
3451  * overlap.
3452  *
3453  * On removal, we'll assume each task is equally runnable; which yields:
3454  *
3455  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3456  *
3457  * XXX: only do this for the part of runnable > running ?
3458  *
3459  */
3460 
3461 static inline void
3462 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3463 {
3464 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3465 	u32 divider;
3466 
3467 	/* Nothing to update */
3468 	if (!delta)
3469 		return;
3470 
3471 	/*
3472 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3473 	 * See ___update_load_avg() for details.
3474 	 */
3475 	divider = get_pelt_divider(&cfs_rq->avg);
3476 
3477 	/* Set new sched_entity's utilization */
3478 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3479 	se->avg.util_sum = se->avg.util_avg * divider;
3480 
3481 	/* Update parent cfs_rq utilization */
3482 	add_positive(&cfs_rq->avg.util_avg, delta);
3483 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3484 }
3485 
3486 static inline void
3487 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3488 {
3489 	long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3490 	u32 divider;
3491 
3492 	/* Nothing to update */
3493 	if (!delta)
3494 		return;
3495 
3496 	/*
3497 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3498 	 * See ___update_load_avg() for details.
3499 	 */
3500 	divider = get_pelt_divider(&cfs_rq->avg);
3501 
3502 	/* Set new sched_entity's runnable */
3503 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3504 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3505 
3506 	/* Update parent cfs_rq runnable */
3507 	add_positive(&cfs_rq->avg.runnable_avg, delta);
3508 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3509 }
3510 
3511 static inline void
3512 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3513 {
3514 	long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3515 	unsigned long load_avg;
3516 	u64 load_sum = 0;
3517 	u32 divider;
3518 
3519 	if (!runnable_sum)
3520 		return;
3521 
3522 	gcfs_rq->prop_runnable_sum = 0;
3523 
3524 	/*
3525 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3526 	 * See ___update_load_avg() for details.
3527 	 */
3528 	divider = get_pelt_divider(&cfs_rq->avg);
3529 
3530 	if (runnable_sum >= 0) {
3531 		/*
3532 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3533 		 * the CPU is saturated running == runnable.
3534 		 */
3535 		runnable_sum += se->avg.load_sum;
3536 		runnable_sum = min_t(long, runnable_sum, divider);
3537 	} else {
3538 		/*
3539 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3540 		 * assuming all tasks are equally runnable.
3541 		 */
3542 		if (scale_load_down(gcfs_rq->load.weight)) {
3543 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3544 				scale_load_down(gcfs_rq->load.weight));
3545 		}
3546 
3547 		/* But make sure to not inflate se's runnable */
3548 		runnable_sum = min(se->avg.load_sum, load_sum);
3549 	}
3550 
3551 	/*
3552 	 * runnable_sum can't be lower than running_sum
3553 	 * Rescale running sum to be in the same range as runnable sum
3554 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3555 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3556 	 */
3557 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3558 	runnable_sum = max(runnable_sum, running_sum);
3559 
3560 	load_sum = (s64)se_weight(se) * runnable_sum;
3561 	load_avg = div_s64(load_sum, divider);
3562 
3563 	se->avg.load_sum = runnable_sum;
3564 
3565 	delta = load_avg - se->avg.load_avg;
3566 	if (!delta)
3567 		return;
3568 
3569 	se->avg.load_avg = load_avg;
3570 
3571 	add_positive(&cfs_rq->avg.load_avg, delta);
3572 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3573 }
3574 
3575 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3576 {
3577 	cfs_rq->propagate = 1;
3578 	cfs_rq->prop_runnable_sum += runnable_sum;
3579 }
3580 
3581 /* Update task and its cfs_rq load average */
3582 static inline int propagate_entity_load_avg(struct sched_entity *se)
3583 {
3584 	struct cfs_rq *cfs_rq, *gcfs_rq;
3585 
3586 	if (entity_is_task(se))
3587 		return 0;
3588 
3589 	gcfs_rq = group_cfs_rq(se);
3590 	if (!gcfs_rq->propagate)
3591 		return 0;
3592 
3593 	gcfs_rq->propagate = 0;
3594 
3595 	cfs_rq = cfs_rq_of(se);
3596 
3597 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3598 
3599 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3600 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3601 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3602 
3603 	trace_pelt_cfs_tp(cfs_rq);
3604 	trace_pelt_se_tp(se);
3605 
3606 	return 1;
3607 }
3608 
3609 /*
3610  * Check if we need to update the load and the utilization of a blocked
3611  * group_entity:
3612  */
3613 static inline bool skip_blocked_update(struct sched_entity *se)
3614 {
3615 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3616 
3617 	/*
3618 	 * If sched_entity still have not zero load or utilization, we have to
3619 	 * decay it:
3620 	 */
3621 	if (se->avg.load_avg || se->avg.util_avg)
3622 		return false;
3623 
3624 	/*
3625 	 * If there is a pending propagation, we have to update the load and
3626 	 * the utilization of the sched_entity:
3627 	 */
3628 	if (gcfs_rq->propagate)
3629 		return false;
3630 
3631 	/*
3632 	 * Otherwise, the load and the utilization of the sched_entity is
3633 	 * already zero and there is no pending propagation, so it will be a
3634 	 * waste of time to try to decay it:
3635 	 */
3636 	return true;
3637 }
3638 
3639 #else /* CONFIG_FAIR_GROUP_SCHED */
3640 
3641 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3642 
3643 static inline int propagate_entity_load_avg(struct sched_entity *se)
3644 {
3645 	return 0;
3646 }
3647 
3648 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3649 
3650 #endif /* CONFIG_FAIR_GROUP_SCHED */
3651 
3652 /**
3653  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3654  * @now: current time, as per cfs_rq_clock_pelt()
3655  * @cfs_rq: cfs_rq to update
3656  *
3657  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3658  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3659  * post_init_entity_util_avg().
3660  *
3661  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3662  *
3663  * Returns true if the load decayed or we removed load.
3664  *
3665  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3666  * call update_tg_load_avg() when this function returns true.
3667  */
3668 static inline int
3669 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3670 {
3671 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3672 	struct sched_avg *sa = &cfs_rq->avg;
3673 	int decayed = 0;
3674 
3675 	if (cfs_rq->removed.nr) {
3676 		unsigned long r;
3677 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3678 
3679 		raw_spin_lock(&cfs_rq->removed.lock);
3680 		swap(cfs_rq->removed.util_avg, removed_util);
3681 		swap(cfs_rq->removed.load_avg, removed_load);
3682 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3683 		cfs_rq->removed.nr = 0;
3684 		raw_spin_unlock(&cfs_rq->removed.lock);
3685 
3686 		r = removed_load;
3687 		sub_positive(&sa->load_avg, r);
3688 		sa->load_sum = sa->load_avg * divider;
3689 
3690 		r = removed_util;
3691 		sub_positive(&sa->util_avg, r);
3692 		sa->util_sum = sa->util_avg * divider;
3693 
3694 		r = removed_runnable;
3695 		sub_positive(&sa->runnable_avg, r);
3696 		sa->runnable_sum = sa->runnable_avg * divider;
3697 
3698 		/*
3699 		 * removed_runnable is the unweighted version of removed_load so we
3700 		 * can use it to estimate removed_load_sum.
3701 		 */
3702 		add_tg_cfs_propagate(cfs_rq,
3703 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3704 
3705 		decayed = 1;
3706 	}
3707 
3708 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3709 
3710 #ifndef CONFIG_64BIT
3711 	smp_wmb();
3712 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3713 #endif
3714 
3715 	return decayed;
3716 }
3717 
3718 /**
3719  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3720  * @cfs_rq: cfs_rq to attach to
3721  * @se: sched_entity to attach
3722  *
3723  * Must call update_cfs_rq_load_avg() before this, since we rely on
3724  * cfs_rq->avg.last_update_time being current.
3725  */
3726 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3727 {
3728 	/*
3729 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3730 	 * See ___update_load_avg() for details.
3731 	 */
3732 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3733 
3734 	/*
3735 	 * When we attach the @se to the @cfs_rq, we must align the decay
3736 	 * window because without that, really weird and wonderful things can
3737 	 * happen.
3738 	 *
3739 	 * XXX illustrate
3740 	 */
3741 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3742 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3743 
3744 	/*
3745 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3746 	 * period_contrib. This isn't strictly correct, but since we're
3747 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3748 	 * _sum a little.
3749 	 */
3750 	se->avg.util_sum = se->avg.util_avg * divider;
3751 
3752 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3753 
3754 	se->avg.load_sum = divider;
3755 	if (se_weight(se)) {
3756 		se->avg.load_sum =
3757 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3758 	}
3759 
3760 	enqueue_load_avg(cfs_rq, se);
3761 	cfs_rq->avg.util_avg += se->avg.util_avg;
3762 	cfs_rq->avg.util_sum += se->avg.util_sum;
3763 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3764 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3765 
3766 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3767 
3768 	cfs_rq_util_change(cfs_rq, 0);
3769 
3770 	trace_pelt_cfs_tp(cfs_rq);
3771 }
3772 
3773 /**
3774  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3775  * @cfs_rq: cfs_rq to detach from
3776  * @se: sched_entity to detach
3777  *
3778  * Must call update_cfs_rq_load_avg() before this, since we rely on
3779  * cfs_rq->avg.last_update_time being current.
3780  */
3781 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3782 {
3783 	/*
3784 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3785 	 * See ___update_load_avg() for details.
3786 	 */
3787 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3788 
3789 	dequeue_load_avg(cfs_rq, se);
3790 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3791 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3792 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3793 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3794 
3795 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3796 
3797 	cfs_rq_util_change(cfs_rq, 0);
3798 
3799 	trace_pelt_cfs_tp(cfs_rq);
3800 }
3801 
3802 /*
3803  * Optional action to be done while updating the load average
3804  */
3805 #define UPDATE_TG	0x1
3806 #define SKIP_AGE_LOAD	0x2
3807 #define DO_ATTACH	0x4
3808 
3809 /* Update task and its cfs_rq load average */
3810 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3811 {
3812 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3813 	int decayed;
3814 
3815 	/*
3816 	 * Track task load average for carrying it to new CPU after migrated, and
3817 	 * track group sched_entity load average for task_h_load calc in migration
3818 	 */
3819 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3820 		__update_load_avg_se(now, cfs_rq, se);
3821 
3822 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3823 	decayed |= propagate_entity_load_avg(se);
3824 
3825 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3826 
3827 		/*
3828 		 * DO_ATTACH means we're here from enqueue_entity().
3829 		 * !last_update_time means we've passed through
3830 		 * migrate_task_rq_fair() indicating we migrated.
3831 		 *
3832 		 * IOW we're enqueueing a task on a new CPU.
3833 		 */
3834 		attach_entity_load_avg(cfs_rq, se);
3835 		update_tg_load_avg(cfs_rq);
3836 
3837 	} else if (decayed) {
3838 		cfs_rq_util_change(cfs_rq, 0);
3839 
3840 		if (flags & UPDATE_TG)
3841 			update_tg_load_avg(cfs_rq);
3842 	}
3843 }
3844 
3845 #ifndef CONFIG_64BIT
3846 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3847 {
3848 	u64 last_update_time_copy;
3849 	u64 last_update_time;
3850 
3851 	do {
3852 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3853 		smp_rmb();
3854 		last_update_time = cfs_rq->avg.last_update_time;
3855 	} while (last_update_time != last_update_time_copy);
3856 
3857 	return last_update_time;
3858 }
3859 #else
3860 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3861 {
3862 	return cfs_rq->avg.last_update_time;
3863 }
3864 #endif
3865 
3866 /*
3867  * Synchronize entity load avg of dequeued entity without locking
3868  * the previous rq.
3869  */
3870 static void sync_entity_load_avg(struct sched_entity *se)
3871 {
3872 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3873 	u64 last_update_time;
3874 
3875 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3876 	__update_load_avg_blocked_se(last_update_time, se);
3877 }
3878 
3879 /*
3880  * Task first catches up with cfs_rq, and then subtract
3881  * itself from the cfs_rq (task must be off the queue now).
3882  */
3883 static void remove_entity_load_avg(struct sched_entity *se)
3884 {
3885 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3886 	unsigned long flags;
3887 
3888 	/*
3889 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3890 	 * post_init_entity_util_avg() which will have added things to the
3891 	 * cfs_rq, so we can remove unconditionally.
3892 	 */
3893 
3894 	sync_entity_load_avg(se);
3895 
3896 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3897 	++cfs_rq->removed.nr;
3898 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3899 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3900 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3901 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3902 }
3903 
3904 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3905 {
3906 	return cfs_rq->avg.runnable_avg;
3907 }
3908 
3909 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3910 {
3911 	return cfs_rq->avg.load_avg;
3912 }
3913 
3914 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3915 
3916 static inline unsigned long task_util(struct task_struct *p)
3917 {
3918 	return READ_ONCE(p->se.avg.util_avg);
3919 }
3920 
3921 static inline unsigned long _task_util_est(struct task_struct *p)
3922 {
3923 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3924 
3925 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3926 }
3927 
3928 static inline unsigned long task_util_est(struct task_struct *p)
3929 {
3930 	return max(task_util(p), _task_util_est(p));
3931 }
3932 
3933 #ifdef CONFIG_UCLAMP_TASK
3934 static inline unsigned long uclamp_task_util(struct task_struct *p)
3935 {
3936 	return clamp(task_util_est(p),
3937 		     uclamp_eff_value(p, UCLAMP_MIN),
3938 		     uclamp_eff_value(p, UCLAMP_MAX));
3939 }
3940 #else
3941 static inline unsigned long uclamp_task_util(struct task_struct *p)
3942 {
3943 	return task_util_est(p);
3944 }
3945 #endif
3946 
3947 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3948 				    struct task_struct *p)
3949 {
3950 	unsigned int enqueued;
3951 
3952 	if (!sched_feat(UTIL_EST))
3953 		return;
3954 
3955 	/* Update root cfs_rq's estimated utilization */
3956 	enqueued  = cfs_rq->avg.util_est.enqueued;
3957 	enqueued += _task_util_est(p);
3958 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3959 
3960 	trace_sched_util_est_cfs_tp(cfs_rq);
3961 }
3962 
3963 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3964 				    struct task_struct *p)
3965 {
3966 	unsigned int enqueued;
3967 
3968 	if (!sched_feat(UTIL_EST))
3969 		return;
3970 
3971 	/* Update root cfs_rq's estimated utilization */
3972 	enqueued  = cfs_rq->avg.util_est.enqueued;
3973 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3974 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3975 
3976 	trace_sched_util_est_cfs_tp(cfs_rq);
3977 }
3978 
3979 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
3980 
3981 /*
3982  * Check if a (signed) value is within a specified (unsigned) margin,
3983  * based on the observation that:
3984  *
3985  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3986  *
3987  * NOTE: this only works when value + margin < INT_MAX.
3988  */
3989 static inline bool within_margin(int value, int margin)
3990 {
3991 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3992 }
3993 
3994 static inline void util_est_update(struct cfs_rq *cfs_rq,
3995 				   struct task_struct *p,
3996 				   bool task_sleep)
3997 {
3998 	long last_ewma_diff, last_enqueued_diff;
3999 	struct util_est ue;
4000 
4001 	if (!sched_feat(UTIL_EST))
4002 		return;
4003 
4004 	/*
4005 	 * Skip update of task's estimated utilization when the task has not
4006 	 * yet completed an activation, e.g. being migrated.
4007 	 */
4008 	if (!task_sleep)
4009 		return;
4010 
4011 	/*
4012 	 * If the PELT values haven't changed since enqueue time,
4013 	 * skip the util_est update.
4014 	 */
4015 	ue = p->se.avg.util_est;
4016 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4017 		return;
4018 
4019 	last_enqueued_diff = ue.enqueued;
4020 
4021 	/*
4022 	 * Reset EWMA on utilization increases, the moving average is used only
4023 	 * to smooth utilization decreases.
4024 	 */
4025 	ue.enqueued = task_util(p);
4026 	if (sched_feat(UTIL_EST_FASTUP)) {
4027 		if (ue.ewma < ue.enqueued) {
4028 			ue.ewma = ue.enqueued;
4029 			goto done;
4030 		}
4031 	}
4032 
4033 	/*
4034 	 * Skip update of task's estimated utilization when its members are
4035 	 * already ~1% close to its last activation value.
4036 	 */
4037 	last_ewma_diff = ue.enqueued - ue.ewma;
4038 	last_enqueued_diff -= ue.enqueued;
4039 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4040 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4041 			goto done;
4042 
4043 		return;
4044 	}
4045 
4046 	/*
4047 	 * To avoid overestimation of actual task utilization, skip updates if
4048 	 * we cannot grant there is idle time in this CPU.
4049 	 */
4050 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4051 		return;
4052 
4053 	/*
4054 	 * Update Task's estimated utilization
4055 	 *
4056 	 * When *p completes an activation we can consolidate another sample
4057 	 * of the task size. This is done by storing the current PELT value
4058 	 * as ue.enqueued and by using this value to update the Exponential
4059 	 * Weighted Moving Average (EWMA):
4060 	 *
4061 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4062 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4063 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4064 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4065 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4066 	 *
4067 	 * Where 'w' is the weight of new samples, which is configured to be
4068 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4069 	 */
4070 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4071 	ue.ewma  += last_ewma_diff;
4072 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4073 done:
4074 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4075 	WRITE_ONCE(p->se.avg.util_est, ue);
4076 
4077 	trace_sched_util_est_se_tp(&p->se);
4078 }
4079 
4080 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4081 {
4082 	return fits_capacity(uclamp_task_util(p), capacity);
4083 }
4084 
4085 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4086 {
4087 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4088 		return;
4089 
4090 	if (!p || p->nr_cpus_allowed == 1) {
4091 		rq->misfit_task_load = 0;
4092 		return;
4093 	}
4094 
4095 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4096 		rq->misfit_task_load = 0;
4097 		return;
4098 	}
4099 
4100 	/*
4101 	 * Make sure that misfit_task_load will not be null even if
4102 	 * task_h_load() returns 0.
4103 	 */
4104 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4105 }
4106 
4107 #else /* CONFIG_SMP */
4108 
4109 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4110 {
4111 	return true;
4112 }
4113 
4114 #define UPDATE_TG	0x0
4115 #define SKIP_AGE_LOAD	0x0
4116 #define DO_ATTACH	0x0
4117 
4118 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4119 {
4120 	cfs_rq_util_change(cfs_rq, 0);
4121 }
4122 
4123 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4124 
4125 static inline void
4126 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4127 static inline void
4128 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4129 
4130 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4131 {
4132 	return 0;
4133 }
4134 
4135 static inline void
4136 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4137 
4138 static inline void
4139 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4140 
4141 static inline void
4142 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4143 		bool task_sleep) {}
4144 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4145 
4146 #endif /* CONFIG_SMP */
4147 
4148 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4149 {
4150 #ifdef CONFIG_SCHED_DEBUG
4151 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4152 
4153 	if (d < 0)
4154 		d = -d;
4155 
4156 	if (d > 3*sysctl_sched_latency)
4157 		schedstat_inc(cfs_rq->nr_spread_over);
4158 #endif
4159 }
4160 
4161 static void
4162 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4163 {
4164 	u64 vruntime = cfs_rq->min_vruntime;
4165 
4166 	/*
4167 	 * The 'current' period is already promised to the current tasks,
4168 	 * however the extra weight of the new task will slow them down a
4169 	 * little, place the new task so that it fits in the slot that
4170 	 * stays open at the end.
4171 	 */
4172 	if (initial && sched_feat(START_DEBIT))
4173 		vruntime += sched_vslice(cfs_rq, se);
4174 
4175 	/* sleeps up to a single latency don't count. */
4176 	if (!initial) {
4177 		unsigned long thresh = sysctl_sched_latency;
4178 
4179 		/*
4180 		 * Halve their sleep time's effect, to allow
4181 		 * for a gentler effect of sleepers:
4182 		 */
4183 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4184 			thresh >>= 1;
4185 
4186 		vruntime -= thresh;
4187 	}
4188 
4189 	/* ensure we never gain time by being placed backwards. */
4190 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4191 }
4192 
4193 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4194 
4195 static inline void check_schedstat_required(void)
4196 {
4197 #ifdef CONFIG_SCHEDSTATS
4198 	if (schedstat_enabled())
4199 		return;
4200 
4201 	/* Force schedstat enabled if a dependent tracepoint is active */
4202 	if (trace_sched_stat_wait_enabled()    ||
4203 			trace_sched_stat_sleep_enabled()   ||
4204 			trace_sched_stat_iowait_enabled()  ||
4205 			trace_sched_stat_blocked_enabled() ||
4206 			trace_sched_stat_runtime_enabled())  {
4207 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4208 			     "stat_blocked and stat_runtime require the "
4209 			     "kernel parameter schedstats=enable or "
4210 			     "kernel.sched_schedstats=1\n");
4211 	}
4212 #endif
4213 }
4214 
4215 static inline bool cfs_bandwidth_used(void);
4216 
4217 /*
4218  * MIGRATION
4219  *
4220  *	dequeue
4221  *	  update_curr()
4222  *	    update_min_vruntime()
4223  *	  vruntime -= min_vruntime
4224  *
4225  *	enqueue
4226  *	  update_curr()
4227  *	    update_min_vruntime()
4228  *	  vruntime += min_vruntime
4229  *
4230  * this way the vruntime transition between RQs is done when both
4231  * min_vruntime are up-to-date.
4232  *
4233  * WAKEUP (remote)
4234  *
4235  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4236  *	  vruntime -= min_vruntime
4237  *
4238  *	enqueue
4239  *	  update_curr()
4240  *	    update_min_vruntime()
4241  *	  vruntime += min_vruntime
4242  *
4243  * this way we don't have the most up-to-date min_vruntime on the originating
4244  * CPU and an up-to-date min_vruntime on the destination CPU.
4245  */
4246 
4247 static void
4248 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4249 {
4250 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4251 	bool curr = cfs_rq->curr == se;
4252 
4253 	/*
4254 	 * If we're the current task, we must renormalise before calling
4255 	 * update_curr().
4256 	 */
4257 	if (renorm && curr)
4258 		se->vruntime += cfs_rq->min_vruntime;
4259 
4260 	update_curr(cfs_rq);
4261 
4262 	/*
4263 	 * Otherwise, renormalise after, such that we're placed at the current
4264 	 * moment in time, instead of some random moment in the past. Being
4265 	 * placed in the past could significantly boost this task to the
4266 	 * fairness detriment of existing tasks.
4267 	 */
4268 	if (renorm && !curr)
4269 		se->vruntime += cfs_rq->min_vruntime;
4270 
4271 	/*
4272 	 * When enqueuing a sched_entity, we must:
4273 	 *   - Update loads to have both entity and cfs_rq synced with now.
4274 	 *   - Add its load to cfs_rq->runnable_avg
4275 	 *   - For group_entity, update its weight to reflect the new share of
4276 	 *     its group cfs_rq
4277 	 *   - Add its new weight to cfs_rq->load.weight
4278 	 */
4279 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4280 	se_update_runnable(se);
4281 	update_cfs_group(se);
4282 	account_entity_enqueue(cfs_rq, se);
4283 
4284 	if (flags & ENQUEUE_WAKEUP)
4285 		place_entity(cfs_rq, se, 0);
4286 
4287 	check_schedstat_required();
4288 	update_stats_enqueue(cfs_rq, se, flags);
4289 	check_spread(cfs_rq, se);
4290 	if (!curr)
4291 		__enqueue_entity(cfs_rq, se);
4292 	se->on_rq = 1;
4293 
4294 	/*
4295 	 * When bandwidth control is enabled, cfs might have been removed
4296 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4297 	 * add it unconditionally.
4298 	 */
4299 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4300 		list_add_leaf_cfs_rq(cfs_rq);
4301 
4302 	if (cfs_rq->nr_running == 1)
4303 		check_enqueue_throttle(cfs_rq);
4304 }
4305 
4306 static void __clear_buddies_last(struct sched_entity *se)
4307 {
4308 	for_each_sched_entity(se) {
4309 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4310 		if (cfs_rq->last != se)
4311 			break;
4312 
4313 		cfs_rq->last = NULL;
4314 	}
4315 }
4316 
4317 static void __clear_buddies_next(struct sched_entity *se)
4318 {
4319 	for_each_sched_entity(se) {
4320 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4321 		if (cfs_rq->next != se)
4322 			break;
4323 
4324 		cfs_rq->next = NULL;
4325 	}
4326 }
4327 
4328 static void __clear_buddies_skip(struct sched_entity *se)
4329 {
4330 	for_each_sched_entity(se) {
4331 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4332 		if (cfs_rq->skip != se)
4333 			break;
4334 
4335 		cfs_rq->skip = NULL;
4336 	}
4337 }
4338 
4339 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4340 {
4341 	if (cfs_rq->last == se)
4342 		__clear_buddies_last(se);
4343 
4344 	if (cfs_rq->next == se)
4345 		__clear_buddies_next(se);
4346 
4347 	if (cfs_rq->skip == se)
4348 		__clear_buddies_skip(se);
4349 }
4350 
4351 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4352 
4353 static void
4354 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4355 {
4356 	/*
4357 	 * Update run-time statistics of the 'current'.
4358 	 */
4359 	update_curr(cfs_rq);
4360 
4361 	/*
4362 	 * When dequeuing a sched_entity, we must:
4363 	 *   - Update loads to have both entity and cfs_rq synced with now.
4364 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4365 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4366 	 *   - For group entity, update its weight to reflect the new share
4367 	 *     of its group cfs_rq.
4368 	 */
4369 	update_load_avg(cfs_rq, se, UPDATE_TG);
4370 	se_update_runnable(se);
4371 
4372 	update_stats_dequeue(cfs_rq, se, flags);
4373 
4374 	clear_buddies(cfs_rq, se);
4375 
4376 	if (se != cfs_rq->curr)
4377 		__dequeue_entity(cfs_rq, se);
4378 	se->on_rq = 0;
4379 	account_entity_dequeue(cfs_rq, se);
4380 
4381 	/*
4382 	 * Normalize after update_curr(); which will also have moved
4383 	 * min_vruntime if @se is the one holding it back. But before doing
4384 	 * update_min_vruntime() again, which will discount @se's position and
4385 	 * can move min_vruntime forward still more.
4386 	 */
4387 	if (!(flags & DEQUEUE_SLEEP))
4388 		se->vruntime -= cfs_rq->min_vruntime;
4389 
4390 	/* return excess runtime on last dequeue */
4391 	return_cfs_rq_runtime(cfs_rq);
4392 
4393 	update_cfs_group(se);
4394 
4395 	/*
4396 	 * Now advance min_vruntime if @se was the entity holding it back,
4397 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4398 	 * put back on, and if we advance min_vruntime, we'll be placed back
4399 	 * further than we started -- ie. we'll be penalized.
4400 	 */
4401 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4402 		update_min_vruntime(cfs_rq);
4403 }
4404 
4405 /*
4406  * Preempt the current task with a newly woken task if needed:
4407  */
4408 static void
4409 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4410 {
4411 	unsigned long ideal_runtime, delta_exec;
4412 	struct sched_entity *se;
4413 	s64 delta;
4414 
4415 	ideal_runtime = sched_slice(cfs_rq, curr);
4416 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4417 	if (delta_exec > ideal_runtime) {
4418 		resched_curr(rq_of(cfs_rq));
4419 		/*
4420 		 * The current task ran long enough, ensure it doesn't get
4421 		 * re-elected due to buddy favours.
4422 		 */
4423 		clear_buddies(cfs_rq, curr);
4424 		return;
4425 	}
4426 
4427 	/*
4428 	 * Ensure that a task that missed wakeup preemption by a
4429 	 * narrow margin doesn't have to wait for a full slice.
4430 	 * This also mitigates buddy induced latencies under load.
4431 	 */
4432 	if (delta_exec < sysctl_sched_min_granularity)
4433 		return;
4434 
4435 	se = __pick_first_entity(cfs_rq);
4436 	delta = curr->vruntime - se->vruntime;
4437 
4438 	if (delta < 0)
4439 		return;
4440 
4441 	if (delta > ideal_runtime)
4442 		resched_curr(rq_of(cfs_rq));
4443 }
4444 
4445 static void
4446 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4447 {
4448 	clear_buddies(cfs_rq, se);
4449 
4450 	/* 'current' is not kept within the tree. */
4451 	if (se->on_rq) {
4452 		/*
4453 		 * Any task has to be enqueued before it get to execute on
4454 		 * a CPU. So account for the time it spent waiting on the
4455 		 * runqueue.
4456 		 */
4457 		update_stats_wait_end(cfs_rq, se);
4458 		__dequeue_entity(cfs_rq, se);
4459 		update_load_avg(cfs_rq, se, UPDATE_TG);
4460 	}
4461 
4462 	update_stats_curr_start(cfs_rq, se);
4463 	cfs_rq->curr = se;
4464 
4465 	/*
4466 	 * Track our maximum slice length, if the CPU's load is at
4467 	 * least twice that of our own weight (i.e. dont track it
4468 	 * when there are only lesser-weight tasks around):
4469 	 */
4470 	if (schedstat_enabled() &&
4471 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4472 		schedstat_set(se->statistics.slice_max,
4473 			max((u64)schedstat_val(se->statistics.slice_max),
4474 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4475 	}
4476 
4477 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4478 }
4479 
4480 static int
4481 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4482 
4483 /*
4484  * Pick the next process, keeping these things in mind, in this order:
4485  * 1) keep things fair between processes/task groups
4486  * 2) pick the "next" process, since someone really wants that to run
4487  * 3) pick the "last" process, for cache locality
4488  * 4) do not run the "skip" process, if something else is available
4489  */
4490 static struct sched_entity *
4491 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4492 {
4493 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4494 	struct sched_entity *se;
4495 
4496 	/*
4497 	 * If curr is set we have to see if its left of the leftmost entity
4498 	 * still in the tree, provided there was anything in the tree at all.
4499 	 */
4500 	if (!left || (curr && entity_before(curr, left)))
4501 		left = curr;
4502 
4503 	se = left; /* ideally we run the leftmost entity */
4504 
4505 	/*
4506 	 * Avoid running the skip buddy, if running something else can
4507 	 * be done without getting too unfair.
4508 	 */
4509 	if (cfs_rq->skip && cfs_rq->skip == se) {
4510 		struct sched_entity *second;
4511 
4512 		if (se == curr) {
4513 			second = __pick_first_entity(cfs_rq);
4514 		} else {
4515 			second = __pick_next_entity(se);
4516 			if (!second || (curr && entity_before(curr, second)))
4517 				second = curr;
4518 		}
4519 
4520 		if (second && wakeup_preempt_entity(second, left) < 1)
4521 			se = second;
4522 	}
4523 
4524 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4525 		/*
4526 		 * Someone really wants this to run. If it's not unfair, run it.
4527 		 */
4528 		se = cfs_rq->next;
4529 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4530 		/*
4531 		 * Prefer last buddy, try to return the CPU to a preempted task.
4532 		 */
4533 		se = cfs_rq->last;
4534 	}
4535 
4536 	return se;
4537 }
4538 
4539 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4540 
4541 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4542 {
4543 	/*
4544 	 * If still on the runqueue then deactivate_task()
4545 	 * was not called and update_curr() has to be done:
4546 	 */
4547 	if (prev->on_rq)
4548 		update_curr(cfs_rq);
4549 
4550 	/* throttle cfs_rqs exceeding runtime */
4551 	check_cfs_rq_runtime(cfs_rq);
4552 
4553 	check_spread(cfs_rq, prev);
4554 
4555 	if (prev->on_rq) {
4556 		update_stats_wait_start(cfs_rq, prev);
4557 		/* Put 'current' back into the tree. */
4558 		__enqueue_entity(cfs_rq, prev);
4559 		/* in !on_rq case, update occurred at dequeue */
4560 		update_load_avg(cfs_rq, prev, 0);
4561 	}
4562 	cfs_rq->curr = NULL;
4563 }
4564 
4565 static void
4566 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4567 {
4568 	/*
4569 	 * Update run-time statistics of the 'current'.
4570 	 */
4571 	update_curr(cfs_rq);
4572 
4573 	/*
4574 	 * Ensure that runnable average is periodically updated.
4575 	 */
4576 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4577 	update_cfs_group(curr);
4578 
4579 #ifdef CONFIG_SCHED_HRTICK
4580 	/*
4581 	 * queued ticks are scheduled to match the slice, so don't bother
4582 	 * validating it and just reschedule.
4583 	 */
4584 	if (queued) {
4585 		resched_curr(rq_of(cfs_rq));
4586 		return;
4587 	}
4588 	/*
4589 	 * don't let the period tick interfere with the hrtick preemption
4590 	 */
4591 	if (!sched_feat(DOUBLE_TICK) &&
4592 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4593 		return;
4594 #endif
4595 
4596 	if (cfs_rq->nr_running > 1)
4597 		check_preempt_tick(cfs_rq, curr);
4598 }
4599 
4600 
4601 /**************************************************
4602  * CFS bandwidth control machinery
4603  */
4604 
4605 #ifdef CONFIG_CFS_BANDWIDTH
4606 
4607 #ifdef CONFIG_JUMP_LABEL
4608 static struct static_key __cfs_bandwidth_used;
4609 
4610 static inline bool cfs_bandwidth_used(void)
4611 {
4612 	return static_key_false(&__cfs_bandwidth_used);
4613 }
4614 
4615 void cfs_bandwidth_usage_inc(void)
4616 {
4617 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4618 }
4619 
4620 void cfs_bandwidth_usage_dec(void)
4621 {
4622 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4623 }
4624 #else /* CONFIG_JUMP_LABEL */
4625 static bool cfs_bandwidth_used(void)
4626 {
4627 	return true;
4628 }
4629 
4630 void cfs_bandwidth_usage_inc(void) {}
4631 void cfs_bandwidth_usage_dec(void) {}
4632 #endif /* CONFIG_JUMP_LABEL */
4633 
4634 /*
4635  * default period for cfs group bandwidth.
4636  * default: 0.1s, units: nanoseconds
4637  */
4638 static inline u64 default_cfs_period(void)
4639 {
4640 	return 100000000ULL;
4641 }
4642 
4643 static inline u64 sched_cfs_bandwidth_slice(void)
4644 {
4645 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4646 }
4647 
4648 /*
4649  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4650  * directly instead of rq->clock to avoid adding additional synchronization
4651  * around rq->lock.
4652  *
4653  * requires cfs_b->lock
4654  */
4655 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4656 {
4657 	if (unlikely(cfs_b->quota == RUNTIME_INF))
4658 		return;
4659 
4660 	cfs_b->runtime += cfs_b->quota;
4661 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4662 }
4663 
4664 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4665 {
4666 	return &tg->cfs_bandwidth;
4667 }
4668 
4669 /* returns 0 on failure to allocate runtime */
4670 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4671 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4672 {
4673 	u64 min_amount, amount = 0;
4674 
4675 	lockdep_assert_held(&cfs_b->lock);
4676 
4677 	/* note: this is a positive sum as runtime_remaining <= 0 */
4678 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4679 
4680 	if (cfs_b->quota == RUNTIME_INF)
4681 		amount = min_amount;
4682 	else {
4683 		start_cfs_bandwidth(cfs_b);
4684 
4685 		if (cfs_b->runtime > 0) {
4686 			amount = min(cfs_b->runtime, min_amount);
4687 			cfs_b->runtime -= amount;
4688 			cfs_b->idle = 0;
4689 		}
4690 	}
4691 
4692 	cfs_rq->runtime_remaining += amount;
4693 
4694 	return cfs_rq->runtime_remaining > 0;
4695 }
4696 
4697 /* returns 0 on failure to allocate runtime */
4698 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4699 {
4700 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4701 	int ret;
4702 
4703 	raw_spin_lock(&cfs_b->lock);
4704 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4705 	raw_spin_unlock(&cfs_b->lock);
4706 
4707 	return ret;
4708 }
4709 
4710 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4711 {
4712 	/* dock delta_exec before expiring quota (as it could span periods) */
4713 	cfs_rq->runtime_remaining -= delta_exec;
4714 
4715 	if (likely(cfs_rq->runtime_remaining > 0))
4716 		return;
4717 
4718 	if (cfs_rq->throttled)
4719 		return;
4720 	/*
4721 	 * if we're unable to extend our runtime we resched so that the active
4722 	 * hierarchy can be throttled
4723 	 */
4724 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4725 		resched_curr(rq_of(cfs_rq));
4726 }
4727 
4728 static __always_inline
4729 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4730 {
4731 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4732 		return;
4733 
4734 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4735 }
4736 
4737 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4738 {
4739 	return cfs_bandwidth_used() && cfs_rq->throttled;
4740 }
4741 
4742 /* check whether cfs_rq, or any parent, is throttled */
4743 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4744 {
4745 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4746 }
4747 
4748 /*
4749  * Ensure that neither of the group entities corresponding to src_cpu or
4750  * dest_cpu are members of a throttled hierarchy when performing group
4751  * load-balance operations.
4752  */
4753 static inline int throttled_lb_pair(struct task_group *tg,
4754 				    int src_cpu, int dest_cpu)
4755 {
4756 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4757 
4758 	src_cfs_rq = tg->cfs_rq[src_cpu];
4759 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4760 
4761 	return throttled_hierarchy(src_cfs_rq) ||
4762 	       throttled_hierarchy(dest_cfs_rq);
4763 }
4764 
4765 static int tg_unthrottle_up(struct task_group *tg, void *data)
4766 {
4767 	struct rq *rq = data;
4768 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4769 
4770 	cfs_rq->throttle_count--;
4771 	if (!cfs_rq->throttle_count) {
4772 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4773 					     cfs_rq->throttled_clock_task;
4774 
4775 		/* Add cfs_rq with load or one or more already running entities to the list */
4776 		if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
4777 			list_add_leaf_cfs_rq(cfs_rq);
4778 	}
4779 
4780 	return 0;
4781 }
4782 
4783 static int tg_throttle_down(struct task_group *tg, void *data)
4784 {
4785 	struct rq *rq = data;
4786 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4787 
4788 	/* group is entering throttled state, stop time */
4789 	if (!cfs_rq->throttle_count) {
4790 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4791 		list_del_leaf_cfs_rq(cfs_rq);
4792 	}
4793 	cfs_rq->throttle_count++;
4794 
4795 	return 0;
4796 }
4797 
4798 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4799 {
4800 	struct rq *rq = rq_of(cfs_rq);
4801 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4802 	struct sched_entity *se;
4803 	long task_delta, idle_task_delta, dequeue = 1;
4804 
4805 	raw_spin_lock(&cfs_b->lock);
4806 	/* This will start the period timer if necessary */
4807 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4808 		/*
4809 		 * We have raced with bandwidth becoming available, and if we
4810 		 * actually throttled the timer might not unthrottle us for an
4811 		 * entire period. We additionally needed to make sure that any
4812 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4813 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4814 		 * for 1ns of runtime rather than just check cfs_b.
4815 		 */
4816 		dequeue = 0;
4817 	} else {
4818 		list_add_tail_rcu(&cfs_rq->throttled_list,
4819 				  &cfs_b->throttled_cfs_rq);
4820 	}
4821 	raw_spin_unlock(&cfs_b->lock);
4822 
4823 	if (!dequeue)
4824 		return false;  /* Throttle no longer required. */
4825 
4826 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4827 
4828 	/* freeze hierarchy runnable averages while throttled */
4829 	rcu_read_lock();
4830 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4831 	rcu_read_unlock();
4832 
4833 	task_delta = cfs_rq->h_nr_running;
4834 	idle_task_delta = cfs_rq->idle_h_nr_running;
4835 	for_each_sched_entity(se) {
4836 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4837 		/* throttled entity or throttle-on-deactivate */
4838 		if (!se->on_rq)
4839 			goto done;
4840 
4841 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4842 
4843 		qcfs_rq->h_nr_running -= task_delta;
4844 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4845 
4846 		if (qcfs_rq->load.weight) {
4847 			/* Avoid re-evaluating load for this entity: */
4848 			se = parent_entity(se);
4849 			break;
4850 		}
4851 	}
4852 
4853 	for_each_sched_entity(se) {
4854 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4855 		/* throttled entity or throttle-on-deactivate */
4856 		if (!se->on_rq)
4857 			goto done;
4858 
4859 		update_load_avg(qcfs_rq, se, 0);
4860 		se_update_runnable(se);
4861 
4862 		qcfs_rq->h_nr_running -= task_delta;
4863 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4864 	}
4865 
4866 	/* At this point se is NULL and we are at root level*/
4867 	sub_nr_running(rq, task_delta);
4868 
4869 done:
4870 	/*
4871 	 * Note: distribution will already see us throttled via the
4872 	 * throttled-list.  rq->lock protects completion.
4873 	 */
4874 	cfs_rq->throttled = 1;
4875 	cfs_rq->throttled_clock = rq_clock(rq);
4876 	return true;
4877 }
4878 
4879 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4880 {
4881 	struct rq *rq = rq_of(cfs_rq);
4882 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4883 	struct sched_entity *se;
4884 	long task_delta, idle_task_delta;
4885 
4886 	se = cfs_rq->tg->se[cpu_of(rq)];
4887 
4888 	cfs_rq->throttled = 0;
4889 
4890 	update_rq_clock(rq);
4891 
4892 	raw_spin_lock(&cfs_b->lock);
4893 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4894 	list_del_rcu(&cfs_rq->throttled_list);
4895 	raw_spin_unlock(&cfs_b->lock);
4896 
4897 	/* update hierarchical throttle state */
4898 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4899 
4900 	if (!cfs_rq->load.weight)
4901 		return;
4902 
4903 	task_delta = cfs_rq->h_nr_running;
4904 	idle_task_delta = cfs_rq->idle_h_nr_running;
4905 	for_each_sched_entity(se) {
4906 		if (se->on_rq)
4907 			break;
4908 		cfs_rq = cfs_rq_of(se);
4909 		enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4910 
4911 		cfs_rq->h_nr_running += task_delta;
4912 		cfs_rq->idle_h_nr_running += idle_task_delta;
4913 
4914 		/* end evaluation on encountering a throttled cfs_rq */
4915 		if (cfs_rq_throttled(cfs_rq))
4916 			goto unthrottle_throttle;
4917 	}
4918 
4919 	for_each_sched_entity(se) {
4920 		cfs_rq = cfs_rq_of(se);
4921 
4922 		update_load_avg(cfs_rq, se, UPDATE_TG);
4923 		se_update_runnable(se);
4924 
4925 		cfs_rq->h_nr_running += task_delta;
4926 		cfs_rq->idle_h_nr_running += idle_task_delta;
4927 
4928 
4929 		/* end evaluation on encountering a throttled cfs_rq */
4930 		if (cfs_rq_throttled(cfs_rq))
4931 			goto unthrottle_throttle;
4932 
4933 		/*
4934 		 * One parent has been throttled and cfs_rq removed from the
4935 		 * list. Add it back to not break the leaf list.
4936 		 */
4937 		if (throttled_hierarchy(cfs_rq))
4938 			list_add_leaf_cfs_rq(cfs_rq);
4939 	}
4940 
4941 	/* At this point se is NULL and we are at root level*/
4942 	add_nr_running(rq, task_delta);
4943 
4944 unthrottle_throttle:
4945 	/*
4946 	 * The cfs_rq_throttled() breaks in the above iteration can result in
4947 	 * incomplete leaf list maintenance, resulting in triggering the
4948 	 * assertion below.
4949 	 */
4950 	for_each_sched_entity(se) {
4951 		cfs_rq = cfs_rq_of(se);
4952 
4953 		if (list_add_leaf_cfs_rq(cfs_rq))
4954 			break;
4955 	}
4956 
4957 	assert_list_leaf_cfs_rq(rq);
4958 
4959 	/* Determine whether we need to wake up potentially idle CPU: */
4960 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4961 		resched_curr(rq);
4962 }
4963 
4964 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4965 {
4966 	struct cfs_rq *cfs_rq;
4967 	u64 runtime, remaining = 1;
4968 
4969 	rcu_read_lock();
4970 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4971 				throttled_list) {
4972 		struct rq *rq = rq_of(cfs_rq);
4973 		struct rq_flags rf;
4974 
4975 		rq_lock_irqsave(rq, &rf);
4976 		if (!cfs_rq_throttled(cfs_rq))
4977 			goto next;
4978 
4979 		/* By the above check, this should never be true */
4980 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4981 
4982 		raw_spin_lock(&cfs_b->lock);
4983 		runtime = -cfs_rq->runtime_remaining + 1;
4984 		if (runtime > cfs_b->runtime)
4985 			runtime = cfs_b->runtime;
4986 		cfs_b->runtime -= runtime;
4987 		remaining = cfs_b->runtime;
4988 		raw_spin_unlock(&cfs_b->lock);
4989 
4990 		cfs_rq->runtime_remaining += runtime;
4991 
4992 		/* we check whether we're throttled above */
4993 		if (cfs_rq->runtime_remaining > 0)
4994 			unthrottle_cfs_rq(cfs_rq);
4995 
4996 next:
4997 		rq_unlock_irqrestore(rq, &rf);
4998 
4999 		if (!remaining)
5000 			break;
5001 	}
5002 	rcu_read_unlock();
5003 }
5004 
5005 /*
5006  * Responsible for refilling a task_group's bandwidth and unthrottling its
5007  * cfs_rqs as appropriate. If there has been no activity within the last
5008  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5009  * used to track this state.
5010  */
5011 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5012 {
5013 	int throttled;
5014 
5015 	/* no need to continue the timer with no bandwidth constraint */
5016 	if (cfs_b->quota == RUNTIME_INF)
5017 		goto out_deactivate;
5018 
5019 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5020 	cfs_b->nr_periods += overrun;
5021 
5022 	/* Refill extra burst quota even if cfs_b->idle */
5023 	__refill_cfs_bandwidth_runtime(cfs_b);
5024 
5025 	/*
5026 	 * idle depends on !throttled (for the case of a large deficit), and if
5027 	 * we're going inactive then everything else can be deferred
5028 	 */
5029 	if (cfs_b->idle && !throttled)
5030 		goto out_deactivate;
5031 
5032 	if (!throttled) {
5033 		/* mark as potentially idle for the upcoming period */
5034 		cfs_b->idle = 1;
5035 		return 0;
5036 	}
5037 
5038 	/* account preceding periods in which throttling occurred */
5039 	cfs_b->nr_throttled += overrun;
5040 
5041 	/*
5042 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5043 	 */
5044 	while (throttled && cfs_b->runtime > 0) {
5045 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5046 		/* we can't nest cfs_b->lock while distributing bandwidth */
5047 		distribute_cfs_runtime(cfs_b);
5048 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5049 
5050 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5051 	}
5052 
5053 	/*
5054 	 * While we are ensured activity in the period following an
5055 	 * unthrottle, this also covers the case in which the new bandwidth is
5056 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5057 	 * timer to remain active while there are any throttled entities.)
5058 	 */
5059 	cfs_b->idle = 0;
5060 
5061 	return 0;
5062 
5063 out_deactivate:
5064 	return 1;
5065 }
5066 
5067 /* a cfs_rq won't donate quota below this amount */
5068 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5069 /* minimum remaining period time to redistribute slack quota */
5070 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5071 /* how long we wait to gather additional slack before distributing */
5072 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5073 
5074 /*
5075  * Are we near the end of the current quota period?
5076  *
5077  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5078  * hrtimer base being cleared by hrtimer_start. In the case of
5079  * migrate_hrtimers, base is never cleared, so we are fine.
5080  */
5081 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5082 {
5083 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5084 	u64 remaining;
5085 
5086 	/* if the call-back is running a quota refresh is already occurring */
5087 	if (hrtimer_callback_running(refresh_timer))
5088 		return 1;
5089 
5090 	/* is a quota refresh about to occur? */
5091 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5092 	if (remaining < min_expire)
5093 		return 1;
5094 
5095 	return 0;
5096 }
5097 
5098 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5099 {
5100 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5101 
5102 	/* if there's a quota refresh soon don't bother with slack */
5103 	if (runtime_refresh_within(cfs_b, min_left))
5104 		return;
5105 
5106 	/* don't push forwards an existing deferred unthrottle */
5107 	if (cfs_b->slack_started)
5108 		return;
5109 	cfs_b->slack_started = true;
5110 
5111 	hrtimer_start(&cfs_b->slack_timer,
5112 			ns_to_ktime(cfs_bandwidth_slack_period),
5113 			HRTIMER_MODE_REL);
5114 }
5115 
5116 /* we know any runtime found here is valid as update_curr() precedes return */
5117 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5118 {
5119 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5120 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5121 
5122 	if (slack_runtime <= 0)
5123 		return;
5124 
5125 	raw_spin_lock(&cfs_b->lock);
5126 	if (cfs_b->quota != RUNTIME_INF) {
5127 		cfs_b->runtime += slack_runtime;
5128 
5129 		/* we are under rq->lock, defer unthrottling using a timer */
5130 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5131 		    !list_empty(&cfs_b->throttled_cfs_rq))
5132 			start_cfs_slack_bandwidth(cfs_b);
5133 	}
5134 	raw_spin_unlock(&cfs_b->lock);
5135 
5136 	/* even if it's not valid for return we don't want to try again */
5137 	cfs_rq->runtime_remaining -= slack_runtime;
5138 }
5139 
5140 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5141 {
5142 	if (!cfs_bandwidth_used())
5143 		return;
5144 
5145 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5146 		return;
5147 
5148 	__return_cfs_rq_runtime(cfs_rq);
5149 }
5150 
5151 /*
5152  * This is done with a timer (instead of inline with bandwidth return) since
5153  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5154  */
5155 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5156 {
5157 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5158 	unsigned long flags;
5159 
5160 	/* confirm we're still not at a refresh boundary */
5161 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5162 	cfs_b->slack_started = false;
5163 
5164 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5165 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5166 		return;
5167 	}
5168 
5169 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5170 		runtime = cfs_b->runtime;
5171 
5172 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5173 
5174 	if (!runtime)
5175 		return;
5176 
5177 	distribute_cfs_runtime(cfs_b);
5178 }
5179 
5180 /*
5181  * When a group wakes up we want to make sure that its quota is not already
5182  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5183  * runtime as update_curr() throttling can not trigger until it's on-rq.
5184  */
5185 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5186 {
5187 	if (!cfs_bandwidth_used())
5188 		return;
5189 
5190 	/* an active group must be handled by the update_curr()->put() path */
5191 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5192 		return;
5193 
5194 	/* ensure the group is not already throttled */
5195 	if (cfs_rq_throttled(cfs_rq))
5196 		return;
5197 
5198 	/* update runtime allocation */
5199 	account_cfs_rq_runtime(cfs_rq, 0);
5200 	if (cfs_rq->runtime_remaining <= 0)
5201 		throttle_cfs_rq(cfs_rq);
5202 }
5203 
5204 static void sync_throttle(struct task_group *tg, int cpu)
5205 {
5206 	struct cfs_rq *pcfs_rq, *cfs_rq;
5207 
5208 	if (!cfs_bandwidth_used())
5209 		return;
5210 
5211 	if (!tg->parent)
5212 		return;
5213 
5214 	cfs_rq = tg->cfs_rq[cpu];
5215 	pcfs_rq = tg->parent->cfs_rq[cpu];
5216 
5217 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5218 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5219 }
5220 
5221 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5222 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5223 {
5224 	if (!cfs_bandwidth_used())
5225 		return false;
5226 
5227 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5228 		return false;
5229 
5230 	/*
5231 	 * it's possible for a throttled entity to be forced into a running
5232 	 * state (e.g. set_curr_task), in this case we're finished.
5233 	 */
5234 	if (cfs_rq_throttled(cfs_rq))
5235 		return true;
5236 
5237 	return throttle_cfs_rq(cfs_rq);
5238 }
5239 
5240 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5241 {
5242 	struct cfs_bandwidth *cfs_b =
5243 		container_of(timer, struct cfs_bandwidth, slack_timer);
5244 
5245 	do_sched_cfs_slack_timer(cfs_b);
5246 
5247 	return HRTIMER_NORESTART;
5248 }
5249 
5250 extern const u64 max_cfs_quota_period;
5251 
5252 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5253 {
5254 	struct cfs_bandwidth *cfs_b =
5255 		container_of(timer, struct cfs_bandwidth, period_timer);
5256 	unsigned long flags;
5257 	int overrun;
5258 	int idle = 0;
5259 	int count = 0;
5260 
5261 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5262 	for (;;) {
5263 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5264 		if (!overrun)
5265 			break;
5266 
5267 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5268 
5269 		if (++count > 3) {
5270 			u64 new, old = ktime_to_ns(cfs_b->period);
5271 
5272 			/*
5273 			 * Grow period by a factor of 2 to avoid losing precision.
5274 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5275 			 * to fail.
5276 			 */
5277 			new = old * 2;
5278 			if (new < max_cfs_quota_period) {
5279 				cfs_b->period = ns_to_ktime(new);
5280 				cfs_b->quota *= 2;
5281 				cfs_b->burst *= 2;
5282 
5283 				pr_warn_ratelimited(
5284 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5285 					smp_processor_id(),
5286 					div_u64(new, NSEC_PER_USEC),
5287 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5288 			} else {
5289 				pr_warn_ratelimited(
5290 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5291 					smp_processor_id(),
5292 					div_u64(old, NSEC_PER_USEC),
5293 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5294 			}
5295 
5296 			/* reset count so we don't come right back in here */
5297 			count = 0;
5298 		}
5299 	}
5300 	if (idle)
5301 		cfs_b->period_active = 0;
5302 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5303 
5304 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5305 }
5306 
5307 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5308 {
5309 	raw_spin_lock_init(&cfs_b->lock);
5310 	cfs_b->runtime = 0;
5311 	cfs_b->quota = RUNTIME_INF;
5312 	cfs_b->period = ns_to_ktime(default_cfs_period());
5313 	cfs_b->burst = 0;
5314 
5315 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5316 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5317 	cfs_b->period_timer.function = sched_cfs_period_timer;
5318 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5319 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5320 	cfs_b->slack_started = false;
5321 }
5322 
5323 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5324 {
5325 	cfs_rq->runtime_enabled = 0;
5326 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5327 }
5328 
5329 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5330 {
5331 	lockdep_assert_held(&cfs_b->lock);
5332 
5333 	if (cfs_b->period_active)
5334 		return;
5335 
5336 	cfs_b->period_active = 1;
5337 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5338 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5339 }
5340 
5341 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5342 {
5343 	/* init_cfs_bandwidth() was not called */
5344 	if (!cfs_b->throttled_cfs_rq.next)
5345 		return;
5346 
5347 	hrtimer_cancel(&cfs_b->period_timer);
5348 	hrtimer_cancel(&cfs_b->slack_timer);
5349 }
5350 
5351 /*
5352  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5353  *
5354  * The race is harmless, since modifying bandwidth settings of unhooked group
5355  * bits doesn't do much.
5356  */
5357 
5358 /* cpu online callback */
5359 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5360 {
5361 	struct task_group *tg;
5362 
5363 	lockdep_assert_rq_held(rq);
5364 
5365 	rcu_read_lock();
5366 	list_for_each_entry_rcu(tg, &task_groups, list) {
5367 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5368 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5369 
5370 		raw_spin_lock(&cfs_b->lock);
5371 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5372 		raw_spin_unlock(&cfs_b->lock);
5373 	}
5374 	rcu_read_unlock();
5375 }
5376 
5377 /* cpu offline callback */
5378 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5379 {
5380 	struct task_group *tg;
5381 
5382 	lockdep_assert_rq_held(rq);
5383 
5384 	rcu_read_lock();
5385 	list_for_each_entry_rcu(tg, &task_groups, list) {
5386 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5387 
5388 		if (!cfs_rq->runtime_enabled)
5389 			continue;
5390 
5391 		/*
5392 		 * clock_task is not advancing so we just need to make sure
5393 		 * there's some valid quota amount
5394 		 */
5395 		cfs_rq->runtime_remaining = 1;
5396 		/*
5397 		 * Offline rq is schedulable till CPU is completely disabled
5398 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5399 		 */
5400 		cfs_rq->runtime_enabled = 0;
5401 
5402 		if (cfs_rq_throttled(cfs_rq))
5403 			unthrottle_cfs_rq(cfs_rq);
5404 	}
5405 	rcu_read_unlock();
5406 }
5407 
5408 #else /* CONFIG_CFS_BANDWIDTH */
5409 
5410 static inline bool cfs_bandwidth_used(void)
5411 {
5412 	return false;
5413 }
5414 
5415 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5416 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5417 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5418 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5419 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5420 
5421 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5422 {
5423 	return 0;
5424 }
5425 
5426 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5427 {
5428 	return 0;
5429 }
5430 
5431 static inline int throttled_lb_pair(struct task_group *tg,
5432 				    int src_cpu, int dest_cpu)
5433 {
5434 	return 0;
5435 }
5436 
5437 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5438 
5439 #ifdef CONFIG_FAIR_GROUP_SCHED
5440 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5441 #endif
5442 
5443 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5444 {
5445 	return NULL;
5446 }
5447 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5448 static inline void update_runtime_enabled(struct rq *rq) {}
5449 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5450 
5451 #endif /* CONFIG_CFS_BANDWIDTH */
5452 
5453 /**************************************************
5454  * CFS operations on tasks:
5455  */
5456 
5457 #ifdef CONFIG_SCHED_HRTICK
5458 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5459 {
5460 	struct sched_entity *se = &p->se;
5461 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5462 
5463 	SCHED_WARN_ON(task_rq(p) != rq);
5464 
5465 	if (rq->cfs.h_nr_running > 1) {
5466 		u64 slice = sched_slice(cfs_rq, se);
5467 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5468 		s64 delta = slice - ran;
5469 
5470 		if (delta < 0) {
5471 			if (task_current(rq, p))
5472 				resched_curr(rq);
5473 			return;
5474 		}
5475 		hrtick_start(rq, delta);
5476 	}
5477 }
5478 
5479 /*
5480  * called from enqueue/dequeue and updates the hrtick when the
5481  * current task is from our class and nr_running is low enough
5482  * to matter.
5483  */
5484 static void hrtick_update(struct rq *rq)
5485 {
5486 	struct task_struct *curr = rq->curr;
5487 
5488 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5489 		return;
5490 
5491 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5492 		hrtick_start_fair(rq, curr);
5493 }
5494 #else /* !CONFIG_SCHED_HRTICK */
5495 static inline void
5496 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5497 {
5498 }
5499 
5500 static inline void hrtick_update(struct rq *rq)
5501 {
5502 }
5503 #endif
5504 
5505 #ifdef CONFIG_SMP
5506 static inline unsigned long cpu_util(int cpu);
5507 
5508 static inline bool cpu_overutilized(int cpu)
5509 {
5510 	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5511 }
5512 
5513 static inline void update_overutilized_status(struct rq *rq)
5514 {
5515 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5516 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5517 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5518 	}
5519 }
5520 #else
5521 static inline void update_overutilized_status(struct rq *rq) { }
5522 #endif
5523 
5524 /* Runqueue only has SCHED_IDLE tasks enqueued */
5525 static int sched_idle_rq(struct rq *rq)
5526 {
5527 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5528 			rq->nr_running);
5529 }
5530 
5531 #ifdef CONFIG_SMP
5532 static int sched_idle_cpu(int cpu)
5533 {
5534 	return sched_idle_rq(cpu_rq(cpu));
5535 }
5536 #endif
5537 
5538 /*
5539  * The enqueue_task method is called before nr_running is
5540  * increased. Here we update the fair scheduling stats and
5541  * then put the task into the rbtree:
5542  */
5543 static void
5544 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5545 {
5546 	struct cfs_rq *cfs_rq;
5547 	struct sched_entity *se = &p->se;
5548 	int idle_h_nr_running = task_has_idle_policy(p);
5549 	int task_new = !(flags & ENQUEUE_WAKEUP);
5550 
5551 	/*
5552 	 * The code below (indirectly) updates schedutil which looks at
5553 	 * the cfs_rq utilization to select a frequency.
5554 	 * Let's add the task's estimated utilization to the cfs_rq's
5555 	 * estimated utilization, before we update schedutil.
5556 	 */
5557 	util_est_enqueue(&rq->cfs, p);
5558 
5559 	/*
5560 	 * If in_iowait is set, the code below may not trigger any cpufreq
5561 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5562 	 * passed.
5563 	 */
5564 	if (p->in_iowait)
5565 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5566 
5567 	for_each_sched_entity(se) {
5568 		if (se->on_rq)
5569 			break;
5570 		cfs_rq = cfs_rq_of(se);
5571 		enqueue_entity(cfs_rq, se, flags);
5572 
5573 		cfs_rq->h_nr_running++;
5574 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5575 
5576 		/* end evaluation on encountering a throttled cfs_rq */
5577 		if (cfs_rq_throttled(cfs_rq))
5578 			goto enqueue_throttle;
5579 
5580 		flags = ENQUEUE_WAKEUP;
5581 	}
5582 
5583 	for_each_sched_entity(se) {
5584 		cfs_rq = cfs_rq_of(se);
5585 
5586 		update_load_avg(cfs_rq, se, UPDATE_TG);
5587 		se_update_runnable(se);
5588 		update_cfs_group(se);
5589 
5590 		cfs_rq->h_nr_running++;
5591 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5592 
5593 		/* end evaluation on encountering a throttled cfs_rq */
5594 		if (cfs_rq_throttled(cfs_rq))
5595 			goto enqueue_throttle;
5596 
5597                /*
5598                 * One parent has been throttled and cfs_rq removed from the
5599                 * list. Add it back to not break the leaf list.
5600                 */
5601                if (throttled_hierarchy(cfs_rq))
5602                        list_add_leaf_cfs_rq(cfs_rq);
5603 	}
5604 
5605 	/* At this point se is NULL and we are at root level*/
5606 	add_nr_running(rq, 1);
5607 
5608 	/*
5609 	 * Since new tasks are assigned an initial util_avg equal to
5610 	 * half of the spare capacity of their CPU, tiny tasks have the
5611 	 * ability to cross the overutilized threshold, which will
5612 	 * result in the load balancer ruining all the task placement
5613 	 * done by EAS. As a way to mitigate that effect, do not account
5614 	 * for the first enqueue operation of new tasks during the
5615 	 * overutilized flag detection.
5616 	 *
5617 	 * A better way of solving this problem would be to wait for
5618 	 * the PELT signals of tasks to converge before taking them
5619 	 * into account, but that is not straightforward to implement,
5620 	 * and the following generally works well enough in practice.
5621 	 */
5622 	if (!task_new)
5623 		update_overutilized_status(rq);
5624 
5625 enqueue_throttle:
5626 	if (cfs_bandwidth_used()) {
5627 		/*
5628 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5629 		 * breaks in the above iteration can result in incomplete
5630 		 * leaf list maintenance, resulting in triggering the assertion
5631 		 * below.
5632 		 */
5633 		for_each_sched_entity(se) {
5634 			cfs_rq = cfs_rq_of(se);
5635 
5636 			if (list_add_leaf_cfs_rq(cfs_rq))
5637 				break;
5638 		}
5639 	}
5640 
5641 	assert_list_leaf_cfs_rq(rq);
5642 
5643 	hrtick_update(rq);
5644 }
5645 
5646 static void set_next_buddy(struct sched_entity *se);
5647 
5648 /*
5649  * The dequeue_task method is called before nr_running is
5650  * decreased. We remove the task from the rbtree and
5651  * update the fair scheduling stats:
5652  */
5653 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5654 {
5655 	struct cfs_rq *cfs_rq;
5656 	struct sched_entity *se = &p->se;
5657 	int task_sleep = flags & DEQUEUE_SLEEP;
5658 	int idle_h_nr_running = task_has_idle_policy(p);
5659 	bool was_sched_idle = sched_idle_rq(rq);
5660 
5661 	util_est_dequeue(&rq->cfs, p);
5662 
5663 	for_each_sched_entity(se) {
5664 		cfs_rq = cfs_rq_of(se);
5665 		dequeue_entity(cfs_rq, se, flags);
5666 
5667 		cfs_rq->h_nr_running--;
5668 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5669 
5670 		/* end evaluation on encountering a throttled cfs_rq */
5671 		if (cfs_rq_throttled(cfs_rq))
5672 			goto dequeue_throttle;
5673 
5674 		/* Don't dequeue parent if it has other entities besides us */
5675 		if (cfs_rq->load.weight) {
5676 			/* Avoid re-evaluating load for this entity: */
5677 			se = parent_entity(se);
5678 			/*
5679 			 * Bias pick_next to pick a task from this cfs_rq, as
5680 			 * p is sleeping when it is within its sched_slice.
5681 			 */
5682 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5683 				set_next_buddy(se);
5684 			break;
5685 		}
5686 		flags |= DEQUEUE_SLEEP;
5687 	}
5688 
5689 	for_each_sched_entity(se) {
5690 		cfs_rq = cfs_rq_of(se);
5691 
5692 		update_load_avg(cfs_rq, se, UPDATE_TG);
5693 		se_update_runnable(se);
5694 		update_cfs_group(se);
5695 
5696 		cfs_rq->h_nr_running--;
5697 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5698 
5699 		/* end evaluation on encountering a throttled cfs_rq */
5700 		if (cfs_rq_throttled(cfs_rq))
5701 			goto dequeue_throttle;
5702 
5703 	}
5704 
5705 	/* At this point se is NULL and we are at root level*/
5706 	sub_nr_running(rq, 1);
5707 
5708 	/* balance early to pull high priority tasks */
5709 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5710 		rq->next_balance = jiffies;
5711 
5712 dequeue_throttle:
5713 	util_est_update(&rq->cfs, p, task_sleep);
5714 	hrtick_update(rq);
5715 }
5716 
5717 #ifdef CONFIG_SMP
5718 
5719 /* Working cpumask for: load_balance, load_balance_newidle. */
5720 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5721 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5722 
5723 #ifdef CONFIG_NO_HZ_COMMON
5724 
5725 static struct {
5726 	cpumask_var_t idle_cpus_mask;
5727 	atomic_t nr_cpus;
5728 	int has_blocked;		/* Idle CPUS has blocked load */
5729 	unsigned long next_balance;     /* in jiffy units */
5730 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5731 } nohz ____cacheline_aligned;
5732 
5733 #endif /* CONFIG_NO_HZ_COMMON */
5734 
5735 static unsigned long cpu_load(struct rq *rq)
5736 {
5737 	return cfs_rq_load_avg(&rq->cfs);
5738 }
5739 
5740 /*
5741  * cpu_load_without - compute CPU load without any contributions from *p
5742  * @cpu: the CPU which load is requested
5743  * @p: the task which load should be discounted
5744  *
5745  * The load of a CPU is defined by the load of tasks currently enqueued on that
5746  * CPU as well as tasks which are currently sleeping after an execution on that
5747  * CPU.
5748  *
5749  * This method returns the load of the specified CPU by discounting the load of
5750  * the specified task, whenever the task is currently contributing to the CPU
5751  * load.
5752  */
5753 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5754 {
5755 	struct cfs_rq *cfs_rq;
5756 	unsigned int load;
5757 
5758 	/* Task has no contribution or is new */
5759 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5760 		return cpu_load(rq);
5761 
5762 	cfs_rq = &rq->cfs;
5763 	load = READ_ONCE(cfs_rq->avg.load_avg);
5764 
5765 	/* Discount task's util from CPU's util */
5766 	lsub_positive(&load, task_h_load(p));
5767 
5768 	return load;
5769 }
5770 
5771 static unsigned long cpu_runnable(struct rq *rq)
5772 {
5773 	return cfs_rq_runnable_avg(&rq->cfs);
5774 }
5775 
5776 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5777 {
5778 	struct cfs_rq *cfs_rq;
5779 	unsigned int runnable;
5780 
5781 	/* Task has no contribution or is new */
5782 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5783 		return cpu_runnable(rq);
5784 
5785 	cfs_rq = &rq->cfs;
5786 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5787 
5788 	/* Discount task's runnable from CPU's runnable */
5789 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5790 
5791 	return runnable;
5792 }
5793 
5794 static unsigned long capacity_of(int cpu)
5795 {
5796 	return cpu_rq(cpu)->cpu_capacity;
5797 }
5798 
5799 static void record_wakee(struct task_struct *p)
5800 {
5801 	/*
5802 	 * Only decay a single time; tasks that have less then 1 wakeup per
5803 	 * jiffy will not have built up many flips.
5804 	 */
5805 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5806 		current->wakee_flips >>= 1;
5807 		current->wakee_flip_decay_ts = jiffies;
5808 	}
5809 
5810 	if (current->last_wakee != p) {
5811 		current->last_wakee = p;
5812 		current->wakee_flips++;
5813 	}
5814 }
5815 
5816 /*
5817  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5818  *
5819  * A waker of many should wake a different task than the one last awakened
5820  * at a frequency roughly N times higher than one of its wakees.
5821  *
5822  * In order to determine whether we should let the load spread vs consolidating
5823  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5824  * partner, and a factor of lls_size higher frequency in the other.
5825  *
5826  * With both conditions met, we can be relatively sure that the relationship is
5827  * non-monogamous, with partner count exceeding socket size.
5828  *
5829  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5830  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5831  * socket size.
5832  */
5833 static int wake_wide(struct task_struct *p)
5834 {
5835 	unsigned int master = current->wakee_flips;
5836 	unsigned int slave = p->wakee_flips;
5837 	int factor = __this_cpu_read(sd_llc_size);
5838 
5839 	if (master < slave)
5840 		swap(master, slave);
5841 	if (slave < factor || master < slave * factor)
5842 		return 0;
5843 	return 1;
5844 }
5845 
5846 /*
5847  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5848  * soonest. For the purpose of speed we only consider the waking and previous
5849  * CPU.
5850  *
5851  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5852  *			cache-affine and is (or	will be) idle.
5853  *
5854  * wake_affine_weight() - considers the weight to reflect the average
5855  *			  scheduling latency of the CPUs. This seems to work
5856  *			  for the overloaded case.
5857  */
5858 static int
5859 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5860 {
5861 	/*
5862 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5863 	 * context. Only allow the move if cache is shared. Otherwise an
5864 	 * interrupt intensive workload could force all tasks onto one
5865 	 * node depending on the IO topology or IRQ affinity settings.
5866 	 *
5867 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5868 	 * There is no guarantee that the cache hot data from an interrupt
5869 	 * is more important than cache hot data on the prev_cpu and from
5870 	 * a cpufreq perspective, it's better to have higher utilisation
5871 	 * on one CPU.
5872 	 */
5873 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5874 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5875 
5876 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5877 		return this_cpu;
5878 
5879 	if (available_idle_cpu(prev_cpu))
5880 		return prev_cpu;
5881 
5882 	return nr_cpumask_bits;
5883 }
5884 
5885 static int
5886 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5887 		   int this_cpu, int prev_cpu, int sync)
5888 {
5889 	s64 this_eff_load, prev_eff_load;
5890 	unsigned long task_load;
5891 
5892 	this_eff_load = cpu_load(cpu_rq(this_cpu));
5893 
5894 	if (sync) {
5895 		unsigned long current_load = task_h_load(current);
5896 
5897 		if (current_load > this_eff_load)
5898 			return this_cpu;
5899 
5900 		this_eff_load -= current_load;
5901 	}
5902 
5903 	task_load = task_h_load(p);
5904 
5905 	this_eff_load += task_load;
5906 	if (sched_feat(WA_BIAS))
5907 		this_eff_load *= 100;
5908 	this_eff_load *= capacity_of(prev_cpu);
5909 
5910 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5911 	prev_eff_load -= task_load;
5912 	if (sched_feat(WA_BIAS))
5913 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5914 	prev_eff_load *= capacity_of(this_cpu);
5915 
5916 	/*
5917 	 * If sync, adjust the weight of prev_eff_load such that if
5918 	 * prev_eff == this_eff that select_idle_sibling() will consider
5919 	 * stacking the wakee on top of the waker if no other CPU is
5920 	 * idle.
5921 	 */
5922 	if (sync)
5923 		prev_eff_load += 1;
5924 
5925 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5926 }
5927 
5928 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5929 		       int this_cpu, int prev_cpu, int sync)
5930 {
5931 	int target = nr_cpumask_bits;
5932 
5933 	if (sched_feat(WA_IDLE))
5934 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5935 
5936 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5937 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5938 
5939 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5940 	if (target == nr_cpumask_bits)
5941 		return prev_cpu;
5942 
5943 	schedstat_inc(sd->ttwu_move_affine);
5944 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5945 	return target;
5946 }
5947 
5948 static struct sched_group *
5949 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5950 
5951 /*
5952  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5953  */
5954 static int
5955 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5956 {
5957 	unsigned long load, min_load = ULONG_MAX;
5958 	unsigned int min_exit_latency = UINT_MAX;
5959 	u64 latest_idle_timestamp = 0;
5960 	int least_loaded_cpu = this_cpu;
5961 	int shallowest_idle_cpu = -1;
5962 	int i;
5963 
5964 	/* Check if we have any choice: */
5965 	if (group->group_weight == 1)
5966 		return cpumask_first(sched_group_span(group));
5967 
5968 	/* Traverse only the allowed CPUs */
5969 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5970 		struct rq *rq = cpu_rq(i);
5971 
5972 		if (!sched_core_cookie_match(rq, p))
5973 			continue;
5974 
5975 		if (sched_idle_cpu(i))
5976 			return i;
5977 
5978 		if (available_idle_cpu(i)) {
5979 			struct cpuidle_state *idle = idle_get_state(rq);
5980 			if (idle && idle->exit_latency < min_exit_latency) {
5981 				/*
5982 				 * We give priority to a CPU whose idle state
5983 				 * has the smallest exit latency irrespective
5984 				 * of any idle timestamp.
5985 				 */
5986 				min_exit_latency = idle->exit_latency;
5987 				latest_idle_timestamp = rq->idle_stamp;
5988 				shallowest_idle_cpu = i;
5989 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5990 				   rq->idle_stamp > latest_idle_timestamp) {
5991 				/*
5992 				 * If equal or no active idle state, then
5993 				 * the most recently idled CPU might have
5994 				 * a warmer cache.
5995 				 */
5996 				latest_idle_timestamp = rq->idle_stamp;
5997 				shallowest_idle_cpu = i;
5998 			}
5999 		} else if (shallowest_idle_cpu == -1) {
6000 			load = cpu_load(cpu_rq(i));
6001 			if (load < min_load) {
6002 				min_load = load;
6003 				least_loaded_cpu = i;
6004 			}
6005 		}
6006 	}
6007 
6008 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6009 }
6010 
6011 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6012 				  int cpu, int prev_cpu, int sd_flag)
6013 {
6014 	int new_cpu = cpu;
6015 
6016 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6017 		return prev_cpu;
6018 
6019 	/*
6020 	 * We need task's util for cpu_util_without, sync it up to
6021 	 * prev_cpu's last_update_time.
6022 	 */
6023 	if (!(sd_flag & SD_BALANCE_FORK))
6024 		sync_entity_load_avg(&p->se);
6025 
6026 	while (sd) {
6027 		struct sched_group *group;
6028 		struct sched_domain *tmp;
6029 		int weight;
6030 
6031 		if (!(sd->flags & sd_flag)) {
6032 			sd = sd->child;
6033 			continue;
6034 		}
6035 
6036 		group = find_idlest_group(sd, p, cpu);
6037 		if (!group) {
6038 			sd = sd->child;
6039 			continue;
6040 		}
6041 
6042 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6043 		if (new_cpu == cpu) {
6044 			/* Now try balancing at a lower domain level of 'cpu': */
6045 			sd = sd->child;
6046 			continue;
6047 		}
6048 
6049 		/* Now try balancing at a lower domain level of 'new_cpu': */
6050 		cpu = new_cpu;
6051 		weight = sd->span_weight;
6052 		sd = NULL;
6053 		for_each_domain(cpu, tmp) {
6054 			if (weight <= tmp->span_weight)
6055 				break;
6056 			if (tmp->flags & sd_flag)
6057 				sd = tmp;
6058 		}
6059 	}
6060 
6061 	return new_cpu;
6062 }
6063 
6064 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6065 {
6066 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6067 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6068 		return cpu;
6069 
6070 	return -1;
6071 }
6072 
6073 #ifdef CONFIG_SCHED_SMT
6074 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6075 EXPORT_SYMBOL_GPL(sched_smt_present);
6076 
6077 static inline void set_idle_cores(int cpu, int val)
6078 {
6079 	struct sched_domain_shared *sds;
6080 
6081 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6082 	if (sds)
6083 		WRITE_ONCE(sds->has_idle_cores, val);
6084 }
6085 
6086 static inline bool test_idle_cores(int cpu, bool def)
6087 {
6088 	struct sched_domain_shared *sds;
6089 
6090 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6091 	if (sds)
6092 		return READ_ONCE(sds->has_idle_cores);
6093 
6094 	return def;
6095 }
6096 
6097 /*
6098  * Scans the local SMT mask to see if the entire core is idle, and records this
6099  * information in sd_llc_shared->has_idle_cores.
6100  *
6101  * Since SMT siblings share all cache levels, inspecting this limited remote
6102  * state should be fairly cheap.
6103  */
6104 void __update_idle_core(struct rq *rq)
6105 {
6106 	int core = cpu_of(rq);
6107 	int cpu;
6108 
6109 	rcu_read_lock();
6110 	if (test_idle_cores(core, true))
6111 		goto unlock;
6112 
6113 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6114 		if (cpu == core)
6115 			continue;
6116 
6117 		if (!available_idle_cpu(cpu))
6118 			goto unlock;
6119 	}
6120 
6121 	set_idle_cores(core, 1);
6122 unlock:
6123 	rcu_read_unlock();
6124 }
6125 
6126 /*
6127  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6128  * there are no idle cores left in the system; tracked through
6129  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6130  */
6131 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6132 {
6133 	bool idle = true;
6134 	int cpu;
6135 
6136 	if (!static_branch_likely(&sched_smt_present))
6137 		return __select_idle_cpu(core, p);
6138 
6139 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6140 		if (!available_idle_cpu(cpu)) {
6141 			idle = false;
6142 			if (*idle_cpu == -1) {
6143 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6144 					*idle_cpu = cpu;
6145 					break;
6146 				}
6147 				continue;
6148 			}
6149 			break;
6150 		}
6151 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6152 			*idle_cpu = cpu;
6153 	}
6154 
6155 	if (idle)
6156 		return core;
6157 
6158 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6159 	return -1;
6160 }
6161 
6162 /*
6163  * Scan the local SMT mask for idle CPUs.
6164  */
6165 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6166 {
6167 	int cpu;
6168 
6169 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6170 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6171 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6172 			continue;
6173 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6174 			return cpu;
6175 	}
6176 
6177 	return -1;
6178 }
6179 
6180 #else /* CONFIG_SCHED_SMT */
6181 
6182 static inline void set_idle_cores(int cpu, int val)
6183 {
6184 }
6185 
6186 static inline bool test_idle_cores(int cpu, bool def)
6187 {
6188 	return def;
6189 }
6190 
6191 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6192 {
6193 	return __select_idle_cpu(core, p);
6194 }
6195 
6196 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6197 {
6198 	return -1;
6199 }
6200 
6201 #endif /* CONFIG_SCHED_SMT */
6202 
6203 /*
6204  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6205  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6206  * average idle time for this rq (as found in rq->avg_idle).
6207  */
6208 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6209 {
6210 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6211 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6212 	struct rq *this_rq = this_rq();
6213 	int this = smp_processor_id();
6214 	struct sched_domain *this_sd;
6215 	u64 time = 0;
6216 
6217 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6218 	if (!this_sd)
6219 		return -1;
6220 
6221 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6222 
6223 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6224 		u64 avg_cost, avg_idle, span_avg;
6225 		unsigned long now = jiffies;
6226 
6227 		/*
6228 		 * If we're busy, the assumption that the last idle period
6229 		 * predicts the future is flawed; age away the remaining
6230 		 * predicted idle time.
6231 		 */
6232 		if (unlikely(this_rq->wake_stamp < now)) {
6233 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6234 				this_rq->wake_stamp++;
6235 				this_rq->wake_avg_idle >>= 1;
6236 			}
6237 		}
6238 
6239 		avg_idle = this_rq->wake_avg_idle;
6240 		avg_cost = this_sd->avg_scan_cost + 1;
6241 
6242 		span_avg = sd->span_weight * avg_idle;
6243 		if (span_avg > 4*avg_cost)
6244 			nr = div_u64(span_avg, avg_cost);
6245 		else
6246 			nr = 4;
6247 
6248 		time = cpu_clock(this);
6249 	}
6250 
6251 	for_each_cpu_wrap(cpu, cpus, target) {
6252 		if (has_idle_core) {
6253 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6254 			if ((unsigned int)i < nr_cpumask_bits)
6255 				return i;
6256 
6257 		} else {
6258 			if (!--nr)
6259 				return -1;
6260 			idle_cpu = __select_idle_cpu(cpu, p);
6261 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6262 				break;
6263 		}
6264 	}
6265 
6266 	if (has_idle_core)
6267 		set_idle_cores(target, false);
6268 
6269 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6270 		time = cpu_clock(this) - time;
6271 
6272 		/*
6273 		 * Account for the scan cost of wakeups against the average
6274 		 * idle time.
6275 		 */
6276 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6277 
6278 		update_avg(&this_sd->avg_scan_cost, time);
6279 	}
6280 
6281 	return idle_cpu;
6282 }
6283 
6284 /*
6285  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6286  * the task fits. If no CPU is big enough, but there are idle ones, try to
6287  * maximize capacity.
6288  */
6289 static int
6290 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6291 {
6292 	unsigned long task_util, best_cap = 0;
6293 	int cpu, best_cpu = -1;
6294 	struct cpumask *cpus;
6295 
6296 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6297 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6298 
6299 	task_util = uclamp_task_util(p);
6300 
6301 	for_each_cpu_wrap(cpu, cpus, target) {
6302 		unsigned long cpu_cap = capacity_of(cpu);
6303 
6304 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6305 			continue;
6306 		if (fits_capacity(task_util, cpu_cap))
6307 			return cpu;
6308 
6309 		if (cpu_cap > best_cap) {
6310 			best_cap = cpu_cap;
6311 			best_cpu = cpu;
6312 		}
6313 	}
6314 
6315 	return best_cpu;
6316 }
6317 
6318 static inline bool asym_fits_capacity(int task_util, int cpu)
6319 {
6320 	if (static_branch_unlikely(&sched_asym_cpucapacity))
6321 		return fits_capacity(task_util, capacity_of(cpu));
6322 
6323 	return true;
6324 }
6325 
6326 /*
6327  * Try and locate an idle core/thread in the LLC cache domain.
6328  */
6329 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6330 {
6331 	bool has_idle_core = false;
6332 	struct sched_domain *sd;
6333 	unsigned long task_util;
6334 	int i, recent_used_cpu;
6335 
6336 	/*
6337 	 * On asymmetric system, update task utilization because we will check
6338 	 * that the task fits with cpu's capacity.
6339 	 */
6340 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6341 		sync_entity_load_avg(&p->se);
6342 		task_util = uclamp_task_util(p);
6343 	}
6344 
6345 	/*
6346 	 * per-cpu select_idle_mask usage
6347 	 */
6348 	lockdep_assert_irqs_disabled();
6349 
6350 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6351 	    asym_fits_capacity(task_util, target))
6352 		return target;
6353 
6354 	/*
6355 	 * If the previous CPU is cache affine and idle, don't be stupid:
6356 	 */
6357 	if (prev != target && cpus_share_cache(prev, target) &&
6358 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6359 	    asym_fits_capacity(task_util, prev))
6360 		return prev;
6361 
6362 	/*
6363 	 * Allow a per-cpu kthread to stack with the wakee if the
6364 	 * kworker thread and the tasks previous CPUs are the same.
6365 	 * The assumption is that the wakee queued work for the
6366 	 * per-cpu kthread that is now complete and the wakeup is
6367 	 * essentially a sync wakeup. An obvious example of this
6368 	 * pattern is IO completions.
6369 	 */
6370 	if (is_per_cpu_kthread(current) &&
6371 	    prev == smp_processor_id() &&
6372 	    this_rq()->nr_running <= 1) {
6373 		return prev;
6374 	}
6375 
6376 	/* Check a recently used CPU as a potential idle candidate: */
6377 	recent_used_cpu = p->recent_used_cpu;
6378 	if (recent_used_cpu != prev &&
6379 	    recent_used_cpu != target &&
6380 	    cpus_share_cache(recent_used_cpu, target) &&
6381 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6382 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6383 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6384 		/*
6385 		 * Replace recent_used_cpu with prev as it is a potential
6386 		 * candidate for the next wake:
6387 		 */
6388 		p->recent_used_cpu = prev;
6389 		return recent_used_cpu;
6390 	}
6391 
6392 	/*
6393 	 * For asymmetric CPU capacity systems, our domain of interest is
6394 	 * sd_asym_cpucapacity rather than sd_llc.
6395 	 */
6396 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6397 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6398 		/*
6399 		 * On an asymmetric CPU capacity system where an exclusive
6400 		 * cpuset defines a symmetric island (i.e. one unique
6401 		 * capacity_orig value through the cpuset), the key will be set
6402 		 * but the CPUs within that cpuset will not have a domain with
6403 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6404 		 * capacity path.
6405 		 */
6406 		if (sd) {
6407 			i = select_idle_capacity(p, sd, target);
6408 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6409 		}
6410 	}
6411 
6412 	sd = rcu_dereference(per_cpu(sd_llc, target));
6413 	if (!sd)
6414 		return target;
6415 
6416 	if (sched_smt_active()) {
6417 		has_idle_core = test_idle_cores(target, false);
6418 
6419 		if (!has_idle_core && cpus_share_cache(prev, target)) {
6420 			i = select_idle_smt(p, sd, prev);
6421 			if ((unsigned int)i < nr_cpumask_bits)
6422 				return i;
6423 		}
6424 	}
6425 
6426 	i = select_idle_cpu(p, sd, has_idle_core, target);
6427 	if ((unsigned)i < nr_cpumask_bits)
6428 		return i;
6429 
6430 	return target;
6431 }
6432 
6433 /**
6434  * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6435  * @cpu: the CPU to get the utilization of
6436  *
6437  * The unit of the return value must be the one of capacity so we can compare
6438  * the utilization with the capacity of the CPU that is available for CFS task
6439  * (ie cpu_capacity).
6440  *
6441  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6442  * recent utilization of currently non-runnable tasks on a CPU. It represents
6443  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6444  * capacity_orig is the cpu_capacity available at the highest frequency
6445  * (arch_scale_freq_capacity()).
6446  * The utilization of a CPU converges towards a sum equal to or less than the
6447  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6448  * the running time on this CPU scaled by capacity_curr.
6449  *
6450  * The estimated utilization of a CPU is defined to be the maximum between its
6451  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6452  * currently RUNNABLE on that CPU.
6453  * This allows to properly represent the expected utilization of a CPU which
6454  * has just got a big task running since a long sleep period. At the same time
6455  * however it preserves the benefits of the "blocked utilization" in
6456  * describing the potential for other tasks waking up on the same CPU.
6457  *
6458  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6459  * higher than capacity_orig because of unfortunate rounding in
6460  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6461  * the average stabilizes with the new running time. We need to check that the
6462  * utilization stays within the range of [0..capacity_orig] and cap it if
6463  * necessary. Without utilization capping, a group could be seen as overloaded
6464  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6465  * available capacity. We allow utilization to overshoot capacity_curr (but not
6466  * capacity_orig) as it useful for predicting the capacity required after task
6467  * migrations (scheduler-driven DVFS).
6468  *
6469  * Return: the (estimated) utilization for the specified CPU
6470  */
6471 static inline unsigned long cpu_util(int cpu)
6472 {
6473 	struct cfs_rq *cfs_rq;
6474 	unsigned int util;
6475 
6476 	cfs_rq = &cpu_rq(cpu)->cfs;
6477 	util = READ_ONCE(cfs_rq->avg.util_avg);
6478 
6479 	if (sched_feat(UTIL_EST))
6480 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6481 
6482 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6483 }
6484 
6485 /*
6486  * cpu_util_without: compute cpu utilization without any contributions from *p
6487  * @cpu: the CPU which utilization is requested
6488  * @p: the task which utilization should be discounted
6489  *
6490  * The utilization of a CPU is defined by the utilization of tasks currently
6491  * enqueued on that CPU as well as tasks which are currently sleeping after an
6492  * execution on that CPU.
6493  *
6494  * This method returns the utilization of the specified CPU by discounting the
6495  * utilization of the specified task, whenever the task is currently
6496  * contributing to the CPU utilization.
6497  */
6498 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6499 {
6500 	struct cfs_rq *cfs_rq;
6501 	unsigned int util;
6502 
6503 	/* Task has no contribution or is new */
6504 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6505 		return cpu_util(cpu);
6506 
6507 	cfs_rq = &cpu_rq(cpu)->cfs;
6508 	util = READ_ONCE(cfs_rq->avg.util_avg);
6509 
6510 	/* Discount task's util from CPU's util */
6511 	lsub_positive(&util, task_util(p));
6512 
6513 	/*
6514 	 * Covered cases:
6515 	 *
6516 	 * a) if *p is the only task sleeping on this CPU, then:
6517 	 *      cpu_util (== task_util) > util_est (== 0)
6518 	 *    and thus we return:
6519 	 *      cpu_util_without = (cpu_util - task_util) = 0
6520 	 *
6521 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6522 	 *    IDLE, then:
6523 	 *      cpu_util >= task_util
6524 	 *      cpu_util > util_est (== 0)
6525 	 *    and thus we discount *p's blocked utilization to return:
6526 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6527 	 *
6528 	 * c) if other tasks are RUNNABLE on that CPU and
6529 	 *      util_est > cpu_util
6530 	 *    then we use util_est since it returns a more restrictive
6531 	 *    estimation of the spare capacity on that CPU, by just
6532 	 *    considering the expected utilization of tasks already
6533 	 *    runnable on that CPU.
6534 	 *
6535 	 * Cases a) and b) are covered by the above code, while case c) is
6536 	 * covered by the following code when estimated utilization is
6537 	 * enabled.
6538 	 */
6539 	if (sched_feat(UTIL_EST)) {
6540 		unsigned int estimated =
6541 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6542 
6543 		/*
6544 		 * Despite the following checks we still have a small window
6545 		 * for a possible race, when an execl's select_task_rq_fair()
6546 		 * races with LB's detach_task():
6547 		 *
6548 		 *   detach_task()
6549 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6550 		 *     ---------------------------------- A
6551 		 *     deactivate_task()                   \
6552 		 *       dequeue_task()                     + RaceTime
6553 		 *         util_est_dequeue()              /
6554 		 *     ---------------------------------- B
6555 		 *
6556 		 * The additional check on "current == p" it's required to
6557 		 * properly fix the execl regression and it helps in further
6558 		 * reducing the chances for the above race.
6559 		 */
6560 		if (unlikely(task_on_rq_queued(p) || current == p))
6561 			lsub_positive(&estimated, _task_util_est(p));
6562 
6563 		util = max(util, estimated);
6564 	}
6565 
6566 	/*
6567 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6568 	 * clamp to the maximum CPU capacity to ensure consistency with
6569 	 * the cpu_util call.
6570 	 */
6571 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6572 }
6573 
6574 /*
6575  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6576  * to @dst_cpu.
6577  */
6578 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6579 {
6580 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6581 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6582 
6583 	/*
6584 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6585 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6586 	 * the other cases, @cpu is not impacted by the migration, so the
6587 	 * util_avg should already be correct.
6588 	 */
6589 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6590 		lsub_positive(&util, task_util(p));
6591 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6592 		util += task_util(p);
6593 
6594 	if (sched_feat(UTIL_EST)) {
6595 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6596 
6597 		/*
6598 		 * During wake-up, the task isn't enqueued yet and doesn't
6599 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6600 		 * so just add it (if needed) to "simulate" what will be
6601 		 * cpu_util() after the task has been enqueued.
6602 		 */
6603 		if (dst_cpu == cpu)
6604 			util_est += _task_util_est(p);
6605 
6606 		util = max(util, util_est);
6607 	}
6608 
6609 	return min(util, capacity_orig_of(cpu));
6610 }
6611 
6612 /*
6613  * compute_energy(): Estimates the energy that @pd would consume if @p was
6614  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6615  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6616  * to compute what would be the energy if we decided to actually migrate that
6617  * task.
6618  */
6619 static long
6620 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6621 {
6622 	struct cpumask *pd_mask = perf_domain_span(pd);
6623 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6624 	unsigned long max_util = 0, sum_util = 0;
6625 	unsigned long _cpu_cap = cpu_cap;
6626 	int cpu;
6627 
6628 	_cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6629 
6630 	/*
6631 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6632 	 * of another rd if they belong to the same pd. So, account for the
6633 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6634 	 * instead of the rd span.
6635 	 *
6636 	 * If an entire pd is outside of the current rd, it will not appear in
6637 	 * its pd list and will not be accounted by compute_energy().
6638 	 */
6639 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6640 		unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6641 		unsigned long cpu_util, util_running = util_freq;
6642 		struct task_struct *tsk = NULL;
6643 
6644 		/*
6645 		 * When @p is placed on @cpu:
6646 		 *
6647 		 * util_running = max(cpu_util, cpu_util_est) +
6648 		 *		  max(task_util, _task_util_est)
6649 		 *
6650 		 * while cpu_util_next is: max(cpu_util + task_util,
6651 		 *			       cpu_util_est + _task_util_est)
6652 		 */
6653 		if (cpu == dst_cpu) {
6654 			tsk = p;
6655 			util_running =
6656 				cpu_util_next(cpu, p, -1) + task_util_est(p);
6657 		}
6658 
6659 		/*
6660 		 * Busy time computation: utilization clamping is not
6661 		 * required since the ratio (sum_util / cpu_capacity)
6662 		 * is already enough to scale the EM reported power
6663 		 * consumption at the (eventually clamped) cpu_capacity.
6664 		 */
6665 		cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6666 					      ENERGY_UTIL, NULL);
6667 
6668 		sum_util += min(cpu_util, _cpu_cap);
6669 
6670 		/*
6671 		 * Performance domain frequency: utilization clamping
6672 		 * must be considered since it affects the selection
6673 		 * of the performance domain frequency.
6674 		 * NOTE: in case RT tasks are running, by default the
6675 		 * FREQUENCY_UTIL's utilization can be max OPP.
6676 		 */
6677 		cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6678 					      FREQUENCY_UTIL, tsk);
6679 		max_util = max(max_util, min(cpu_util, _cpu_cap));
6680 	}
6681 
6682 	return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
6683 }
6684 
6685 /*
6686  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6687  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6688  * spare capacity in each performance domain and uses it as a potential
6689  * candidate to execute the task. Then, it uses the Energy Model to figure
6690  * out which of the CPU candidates is the most energy-efficient.
6691  *
6692  * The rationale for this heuristic is as follows. In a performance domain,
6693  * all the most energy efficient CPU candidates (according to the Energy
6694  * Model) are those for which we'll request a low frequency. When there are
6695  * several CPUs for which the frequency request will be the same, we don't
6696  * have enough data to break the tie between them, because the Energy Model
6697  * only includes active power costs. With this model, if we assume that
6698  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6699  * the maximum spare capacity in a performance domain is guaranteed to be among
6700  * the best candidates of the performance domain.
6701  *
6702  * In practice, it could be preferable from an energy standpoint to pack
6703  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6704  * but that could also hurt our chances to go cluster idle, and we have no
6705  * ways to tell with the current Energy Model if this is actually a good
6706  * idea or not. So, find_energy_efficient_cpu() basically favors
6707  * cluster-packing, and spreading inside a cluster. That should at least be
6708  * a good thing for latency, and this is consistent with the idea that most
6709  * of the energy savings of EAS come from the asymmetry of the system, and
6710  * not so much from breaking the tie between identical CPUs. That's also the
6711  * reason why EAS is enabled in the topology code only for systems where
6712  * SD_ASYM_CPUCAPACITY is set.
6713  *
6714  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6715  * they don't have any useful utilization data yet and it's not possible to
6716  * forecast their impact on energy consumption. Consequently, they will be
6717  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6718  * to be energy-inefficient in some use-cases. The alternative would be to
6719  * bias new tasks towards specific types of CPUs first, or to try to infer
6720  * their util_avg from the parent task, but those heuristics could hurt
6721  * other use-cases too. So, until someone finds a better way to solve this,
6722  * let's keep things simple by re-using the existing slow path.
6723  */
6724 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6725 {
6726 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6727 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6728 	int cpu, best_energy_cpu = prev_cpu, target = -1;
6729 	unsigned long cpu_cap, util, base_energy = 0;
6730 	struct sched_domain *sd;
6731 	struct perf_domain *pd;
6732 
6733 	rcu_read_lock();
6734 	pd = rcu_dereference(rd->pd);
6735 	if (!pd || READ_ONCE(rd->overutilized))
6736 		goto unlock;
6737 
6738 	/*
6739 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6740 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6741 	 */
6742 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6743 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6744 		sd = sd->parent;
6745 	if (!sd)
6746 		goto unlock;
6747 
6748 	target = prev_cpu;
6749 
6750 	sync_entity_load_avg(&p->se);
6751 	if (!task_util_est(p))
6752 		goto unlock;
6753 
6754 	for (; pd; pd = pd->next) {
6755 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6756 		bool compute_prev_delta = false;
6757 		unsigned long base_energy_pd;
6758 		int max_spare_cap_cpu = -1;
6759 
6760 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6761 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6762 				continue;
6763 
6764 			util = cpu_util_next(cpu, p, cpu);
6765 			cpu_cap = capacity_of(cpu);
6766 			spare_cap = cpu_cap;
6767 			lsub_positive(&spare_cap, util);
6768 
6769 			/*
6770 			 * Skip CPUs that cannot satisfy the capacity request.
6771 			 * IOW, placing the task there would make the CPU
6772 			 * overutilized. Take uclamp into account to see how
6773 			 * much capacity we can get out of the CPU; this is
6774 			 * aligned with sched_cpu_util().
6775 			 */
6776 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6777 			if (!fits_capacity(util, cpu_cap))
6778 				continue;
6779 
6780 			if (cpu == prev_cpu) {
6781 				/* Always use prev_cpu as a candidate. */
6782 				compute_prev_delta = true;
6783 			} else if (spare_cap > max_spare_cap) {
6784 				/*
6785 				 * Find the CPU with the maximum spare capacity
6786 				 * in the performance domain.
6787 				 */
6788 				max_spare_cap = spare_cap;
6789 				max_spare_cap_cpu = cpu;
6790 			}
6791 		}
6792 
6793 		if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6794 			continue;
6795 
6796 		/* Compute the 'base' energy of the pd, without @p */
6797 		base_energy_pd = compute_energy(p, -1, pd);
6798 		base_energy += base_energy_pd;
6799 
6800 		/* Evaluate the energy impact of using prev_cpu. */
6801 		if (compute_prev_delta) {
6802 			prev_delta = compute_energy(p, prev_cpu, pd);
6803 			if (prev_delta < base_energy_pd)
6804 				goto unlock;
6805 			prev_delta -= base_energy_pd;
6806 			best_delta = min(best_delta, prev_delta);
6807 		}
6808 
6809 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
6810 		if (max_spare_cap_cpu >= 0) {
6811 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6812 			if (cur_delta < base_energy_pd)
6813 				goto unlock;
6814 			cur_delta -= base_energy_pd;
6815 			if (cur_delta < best_delta) {
6816 				best_delta = cur_delta;
6817 				best_energy_cpu = max_spare_cap_cpu;
6818 			}
6819 		}
6820 	}
6821 	rcu_read_unlock();
6822 
6823 	/*
6824 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6825 	 * least 6% of the energy used by prev_cpu.
6826 	 */
6827 	if ((prev_delta == ULONG_MAX) ||
6828 	    (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6829 		target = best_energy_cpu;
6830 
6831 	return target;
6832 
6833 unlock:
6834 	rcu_read_unlock();
6835 
6836 	return target;
6837 }
6838 
6839 /*
6840  * select_task_rq_fair: Select target runqueue for the waking task in domains
6841  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6842  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6843  *
6844  * Balances load by selecting the idlest CPU in the idlest group, or under
6845  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6846  *
6847  * Returns the target CPU number.
6848  */
6849 static int
6850 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6851 {
6852 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6853 	struct sched_domain *tmp, *sd = NULL;
6854 	int cpu = smp_processor_id();
6855 	int new_cpu = prev_cpu;
6856 	int want_affine = 0;
6857 	/* SD_flags and WF_flags share the first nibble */
6858 	int sd_flag = wake_flags & 0xF;
6859 
6860 	/*
6861 	 * required for stable ->cpus_allowed
6862 	 */
6863 	lockdep_assert_held(&p->pi_lock);
6864 	if (wake_flags & WF_TTWU) {
6865 		record_wakee(p);
6866 
6867 		if (sched_energy_enabled()) {
6868 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6869 			if (new_cpu >= 0)
6870 				return new_cpu;
6871 			new_cpu = prev_cpu;
6872 		}
6873 
6874 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6875 	}
6876 
6877 	rcu_read_lock();
6878 	for_each_domain(cpu, tmp) {
6879 		/*
6880 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6881 		 * cpu is a valid SD_WAKE_AFFINE target.
6882 		 */
6883 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6884 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6885 			if (cpu != prev_cpu)
6886 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6887 
6888 			sd = NULL; /* Prefer wake_affine over balance flags */
6889 			break;
6890 		}
6891 
6892 		if (tmp->flags & sd_flag)
6893 			sd = tmp;
6894 		else if (!want_affine)
6895 			break;
6896 	}
6897 
6898 	if (unlikely(sd)) {
6899 		/* Slow path */
6900 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6901 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
6902 		/* Fast path */
6903 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6904 
6905 		if (want_affine)
6906 			current->recent_used_cpu = cpu;
6907 	}
6908 	rcu_read_unlock();
6909 
6910 	return new_cpu;
6911 }
6912 
6913 static void detach_entity_cfs_rq(struct sched_entity *se);
6914 
6915 /*
6916  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6917  * cfs_rq_of(p) references at time of call are still valid and identify the
6918  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6919  */
6920 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6921 {
6922 	/*
6923 	 * As blocked tasks retain absolute vruntime the migration needs to
6924 	 * deal with this by subtracting the old and adding the new
6925 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6926 	 * the task on the new runqueue.
6927 	 */
6928 	if (READ_ONCE(p->__state) == TASK_WAKING) {
6929 		struct sched_entity *se = &p->se;
6930 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6931 		u64 min_vruntime;
6932 
6933 #ifndef CONFIG_64BIT
6934 		u64 min_vruntime_copy;
6935 
6936 		do {
6937 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6938 			smp_rmb();
6939 			min_vruntime = cfs_rq->min_vruntime;
6940 		} while (min_vruntime != min_vruntime_copy);
6941 #else
6942 		min_vruntime = cfs_rq->min_vruntime;
6943 #endif
6944 
6945 		se->vruntime -= min_vruntime;
6946 	}
6947 
6948 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6949 		/*
6950 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6951 		 * rq->lock and can modify state directly.
6952 		 */
6953 		lockdep_assert_rq_held(task_rq(p));
6954 		detach_entity_cfs_rq(&p->se);
6955 
6956 	} else {
6957 		/*
6958 		 * We are supposed to update the task to "current" time, then
6959 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6960 		 * have difficulty in getting what current time is, so simply
6961 		 * throw away the out-of-date time. This will result in the
6962 		 * wakee task is less decayed, but giving the wakee more load
6963 		 * sounds not bad.
6964 		 */
6965 		remove_entity_load_avg(&p->se);
6966 	}
6967 
6968 	/* Tell new CPU we are migrated */
6969 	p->se.avg.last_update_time = 0;
6970 
6971 	/* We have migrated, no longer consider this task hot */
6972 	p->se.exec_start = 0;
6973 
6974 	update_scan_period(p, new_cpu);
6975 }
6976 
6977 static void task_dead_fair(struct task_struct *p)
6978 {
6979 	remove_entity_load_avg(&p->se);
6980 }
6981 
6982 static int
6983 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6984 {
6985 	if (rq->nr_running)
6986 		return 1;
6987 
6988 	return newidle_balance(rq, rf) != 0;
6989 }
6990 #endif /* CONFIG_SMP */
6991 
6992 static unsigned long wakeup_gran(struct sched_entity *se)
6993 {
6994 	unsigned long gran = sysctl_sched_wakeup_granularity;
6995 
6996 	/*
6997 	 * Since its curr running now, convert the gran from real-time
6998 	 * to virtual-time in his units.
6999 	 *
7000 	 * By using 'se' instead of 'curr' we penalize light tasks, so
7001 	 * they get preempted easier. That is, if 'se' < 'curr' then
7002 	 * the resulting gran will be larger, therefore penalizing the
7003 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7004 	 * be smaller, again penalizing the lighter task.
7005 	 *
7006 	 * This is especially important for buddies when the leftmost
7007 	 * task is higher priority than the buddy.
7008 	 */
7009 	return calc_delta_fair(gran, se);
7010 }
7011 
7012 /*
7013  * Should 'se' preempt 'curr'.
7014  *
7015  *             |s1
7016  *        |s2
7017  *   |s3
7018  *         g
7019  *      |<--->|c
7020  *
7021  *  w(c, s1) = -1
7022  *  w(c, s2) =  0
7023  *  w(c, s3) =  1
7024  *
7025  */
7026 static int
7027 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7028 {
7029 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7030 
7031 	if (vdiff <= 0)
7032 		return -1;
7033 
7034 	gran = wakeup_gran(se);
7035 	if (vdiff > gran)
7036 		return 1;
7037 
7038 	return 0;
7039 }
7040 
7041 static void set_last_buddy(struct sched_entity *se)
7042 {
7043 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
7044 		return;
7045 
7046 	for_each_sched_entity(se) {
7047 		if (SCHED_WARN_ON(!se->on_rq))
7048 			return;
7049 		cfs_rq_of(se)->last = se;
7050 	}
7051 }
7052 
7053 static void set_next_buddy(struct sched_entity *se)
7054 {
7055 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
7056 		return;
7057 
7058 	for_each_sched_entity(se) {
7059 		if (SCHED_WARN_ON(!se->on_rq))
7060 			return;
7061 		cfs_rq_of(se)->next = se;
7062 	}
7063 }
7064 
7065 static void set_skip_buddy(struct sched_entity *se)
7066 {
7067 	for_each_sched_entity(se)
7068 		cfs_rq_of(se)->skip = se;
7069 }
7070 
7071 /*
7072  * Preempt the current task with a newly woken task if needed:
7073  */
7074 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7075 {
7076 	struct task_struct *curr = rq->curr;
7077 	struct sched_entity *se = &curr->se, *pse = &p->se;
7078 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7079 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7080 	int next_buddy_marked = 0;
7081 
7082 	if (unlikely(se == pse))
7083 		return;
7084 
7085 	/*
7086 	 * This is possible from callers such as attach_tasks(), in which we
7087 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7088 	 * lead to a throttle).  This both saves work and prevents false
7089 	 * next-buddy nomination below.
7090 	 */
7091 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7092 		return;
7093 
7094 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7095 		set_next_buddy(pse);
7096 		next_buddy_marked = 1;
7097 	}
7098 
7099 	/*
7100 	 * We can come here with TIF_NEED_RESCHED already set from new task
7101 	 * wake up path.
7102 	 *
7103 	 * Note: this also catches the edge-case of curr being in a throttled
7104 	 * group (e.g. via set_curr_task), since update_curr() (in the
7105 	 * enqueue of curr) will have resulted in resched being set.  This
7106 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7107 	 * below.
7108 	 */
7109 	if (test_tsk_need_resched(curr))
7110 		return;
7111 
7112 	/* Idle tasks are by definition preempted by non-idle tasks. */
7113 	if (unlikely(task_has_idle_policy(curr)) &&
7114 	    likely(!task_has_idle_policy(p)))
7115 		goto preempt;
7116 
7117 	/*
7118 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7119 	 * is driven by the tick):
7120 	 */
7121 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7122 		return;
7123 
7124 	find_matching_se(&se, &pse);
7125 	update_curr(cfs_rq_of(se));
7126 	BUG_ON(!pse);
7127 	if (wakeup_preempt_entity(se, pse) == 1) {
7128 		/*
7129 		 * Bias pick_next to pick the sched entity that is
7130 		 * triggering this preemption.
7131 		 */
7132 		if (!next_buddy_marked)
7133 			set_next_buddy(pse);
7134 		goto preempt;
7135 	}
7136 
7137 	return;
7138 
7139 preempt:
7140 	resched_curr(rq);
7141 	/*
7142 	 * Only set the backward buddy when the current task is still
7143 	 * on the rq. This can happen when a wakeup gets interleaved
7144 	 * with schedule on the ->pre_schedule() or idle_balance()
7145 	 * point, either of which can * drop the rq lock.
7146 	 *
7147 	 * Also, during early boot the idle thread is in the fair class,
7148 	 * for obvious reasons its a bad idea to schedule back to it.
7149 	 */
7150 	if (unlikely(!se->on_rq || curr == rq->idle))
7151 		return;
7152 
7153 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7154 		set_last_buddy(se);
7155 }
7156 
7157 #ifdef CONFIG_SMP
7158 static struct task_struct *pick_task_fair(struct rq *rq)
7159 {
7160 	struct sched_entity *se;
7161 	struct cfs_rq *cfs_rq;
7162 
7163 again:
7164 	cfs_rq = &rq->cfs;
7165 	if (!cfs_rq->nr_running)
7166 		return NULL;
7167 
7168 	do {
7169 		struct sched_entity *curr = cfs_rq->curr;
7170 
7171 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7172 		if (curr) {
7173 			if (curr->on_rq)
7174 				update_curr(cfs_rq);
7175 			else
7176 				curr = NULL;
7177 
7178 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7179 				goto again;
7180 		}
7181 
7182 		se = pick_next_entity(cfs_rq, curr);
7183 		cfs_rq = group_cfs_rq(se);
7184 	} while (cfs_rq);
7185 
7186 	return task_of(se);
7187 }
7188 #endif
7189 
7190 struct task_struct *
7191 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7192 {
7193 	struct cfs_rq *cfs_rq = &rq->cfs;
7194 	struct sched_entity *se;
7195 	struct task_struct *p;
7196 	int new_tasks;
7197 
7198 again:
7199 	if (!sched_fair_runnable(rq))
7200 		goto idle;
7201 
7202 #ifdef CONFIG_FAIR_GROUP_SCHED
7203 	if (!prev || prev->sched_class != &fair_sched_class)
7204 		goto simple;
7205 
7206 	/*
7207 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7208 	 * likely that a next task is from the same cgroup as the current.
7209 	 *
7210 	 * Therefore attempt to avoid putting and setting the entire cgroup
7211 	 * hierarchy, only change the part that actually changes.
7212 	 */
7213 
7214 	do {
7215 		struct sched_entity *curr = cfs_rq->curr;
7216 
7217 		/*
7218 		 * Since we got here without doing put_prev_entity() we also
7219 		 * have to consider cfs_rq->curr. If it is still a runnable
7220 		 * entity, update_curr() will update its vruntime, otherwise
7221 		 * forget we've ever seen it.
7222 		 */
7223 		if (curr) {
7224 			if (curr->on_rq)
7225 				update_curr(cfs_rq);
7226 			else
7227 				curr = NULL;
7228 
7229 			/*
7230 			 * This call to check_cfs_rq_runtime() will do the
7231 			 * throttle and dequeue its entity in the parent(s).
7232 			 * Therefore the nr_running test will indeed
7233 			 * be correct.
7234 			 */
7235 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7236 				cfs_rq = &rq->cfs;
7237 
7238 				if (!cfs_rq->nr_running)
7239 					goto idle;
7240 
7241 				goto simple;
7242 			}
7243 		}
7244 
7245 		se = pick_next_entity(cfs_rq, curr);
7246 		cfs_rq = group_cfs_rq(se);
7247 	} while (cfs_rq);
7248 
7249 	p = task_of(se);
7250 
7251 	/*
7252 	 * Since we haven't yet done put_prev_entity and if the selected task
7253 	 * is a different task than we started out with, try and touch the
7254 	 * least amount of cfs_rqs.
7255 	 */
7256 	if (prev != p) {
7257 		struct sched_entity *pse = &prev->se;
7258 
7259 		while (!(cfs_rq = is_same_group(se, pse))) {
7260 			int se_depth = se->depth;
7261 			int pse_depth = pse->depth;
7262 
7263 			if (se_depth <= pse_depth) {
7264 				put_prev_entity(cfs_rq_of(pse), pse);
7265 				pse = parent_entity(pse);
7266 			}
7267 			if (se_depth >= pse_depth) {
7268 				set_next_entity(cfs_rq_of(se), se);
7269 				se = parent_entity(se);
7270 			}
7271 		}
7272 
7273 		put_prev_entity(cfs_rq, pse);
7274 		set_next_entity(cfs_rq, se);
7275 	}
7276 
7277 	goto done;
7278 simple:
7279 #endif
7280 	if (prev)
7281 		put_prev_task(rq, prev);
7282 
7283 	do {
7284 		se = pick_next_entity(cfs_rq, NULL);
7285 		set_next_entity(cfs_rq, se);
7286 		cfs_rq = group_cfs_rq(se);
7287 	} while (cfs_rq);
7288 
7289 	p = task_of(se);
7290 
7291 done: __maybe_unused;
7292 #ifdef CONFIG_SMP
7293 	/*
7294 	 * Move the next running task to the front of
7295 	 * the list, so our cfs_tasks list becomes MRU
7296 	 * one.
7297 	 */
7298 	list_move(&p->se.group_node, &rq->cfs_tasks);
7299 #endif
7300 
7301 	if (hrtick_enabled_fair(rq))
7302 		hrtick_start_fair(rq, p);
7303 
7304 	update_misfit_status(p, rq);
7305 
7306 	return p;
7307 
7308 idle:
7309 	if (!rf)
7310 		return NULL;
7311 
7312 	new_tasks = newidle_balance(rq, rf);
7313 
7314 	/*
7315 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7316 	 * possible for any higher priority task to appear. In that case we
7317 	 * must re-start the pick_next_entity() loop.
7318 	 */
7319 	if (new_tasks < 0)
7320 		return RETRY_TASK;
7321 
7322 	if (new_tasks > 0)
7323 		goto again;
7324 
7325 	/*
7326 	 * rq is about to be idle, check if we need to update the
7327 	 * lost_idle_time of clock_pelt
7328 	 */
7329 	update_idle_rq_clock_pelt(rq);
7330 
7331 	return NULL;
7332 }
7333 
7334 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7335 {
7336 	return pick_next_task_fair(rq, NULL, NULL);
7337 }
7338 
7339 /*
7340  * Account for a descheduled task:
7341  */
7342 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7343 {
7344 	struct sched_entity *se = &prev->se;
7345 	struct cfs_rq *cfs_rq;
7346 
7347 	for_each_sched_entity(se) {
7348 		cfs_rq = cfs_rq_of(se);
7349 		put_prev_entity(cfs_rq, se);
7350 	}
7351 }
7352 
7353 /*
7354  * sched_yield() is very simple
7355  *
7356  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7357  */
7358 static void yield_task_fair(struct rq *rq)
7359 {
7360 	struct task_struct *curr = rq->curr;
7361 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7362 	struct sched_entity *se = &curr->se;
7363 
7364 	/*
7365 	 * Are we the only task in the tree?
7366 	 */
7367 	if (unlikely(rq->nr_running == 1))
7368 		return;
7369 
7370 	clear_buddies(cfs_rq, se);
7371 
7372 	if (curr->policy != SCHED_BATCH) {
7373 		update_rq_clock(rq);
7374 		/*
7375 		 * Update run-time statistics of the 'current'.
7376 		 */
7377 		update_curr(cfs_rq);
7378 		/*
7379 		 * Tell update_rq_clock() that we've just updated,
7380 		 * so we don't do microscopic update in schedule()
7381 		 * and double the fastpath cost.
7382 		 */
7383 		rq_clock_skip_update(rq);
7384 	}
7385 
7386 	set_skip_buddy(se);
7387 }
7388 
7389 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7390 {
7391 	struct sched_entity *se = &p->se;
7392 
7393 	/* throttled hierarchies are not runnable */
7394 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7395 		return false;
7396 
7397 	/* Tell the scheduler that we'd really like pse to run next. */
7398 	set_next_buddy(se);
7399 
7400 	yield_task_fair(rq);
7401 
7402 	return true;
7403 }
7404 
7405 #ifdef CONFIG_SMP
7406 /**************************************************
7407  * Fair scheduling class load-balancing methods.
7408  *
7409  * BASICS
7410  *
7411  * The purpose of load-balancing is to achieve the same basic fairness the
7412  * per-CPU scheduler provides, namely provide a proportional amount of compute
7413  * time to each task. This is expressed in the following equation:
7414  *
7415  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7416  *
7417  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7418  * W_i,0 is defined as:
7419  *
7420  *   W_i,0 = \Sum_j w_i,j                                             (2)
7421  *
7422  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7423  * is derived from the nice value as per sched_prio_to_weight[].
7424  *
7425  * The weight average is an exponential decay average of the instantaneous
7426  * weight:
7427  *
7428  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7429  *
7430  * C_i is the compute capacity of CPU i, typically it is the
7431  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7432  * can also include other factors [XXX].
7433  *
7434  * To achieve this balance we define a measure of imbalance which follows
7435  * directly from (1):
7436  *
7437  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7438  *
7439  * We them move tasks around to minimize the imbalance. In the continuous
7440  * function space it is obvious this converges, in the discrete case we get
7441  * a few fun cases generally called infeasible weight scenarios.
7442  *
7443  * [XXX expand on:
7444  *     - infeasible weights;
7445  *     - local vs global optima in the discrete case. ]
7446  *
7447  *
7448  * SCHED DOMAINS
7449  *
7450  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7451  * for all i,j solution, we create a tree of CPUs that follows the hardware
7452  * topology where each level pairs two lower groups (or better). This results
7453  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7454  * tree to only the first of the previous level and we decrease the frequency
7455  * of load-balance at each level inv. proportional to the number of CPUs in
7456  * the groups.
7457  *
7458  * This yields:
7459  *
7460  *     log_2 n     1     n
7461  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7462  *     i = 0      2^i   2^i
7463  *                               `- size of each group
7464  *         |         |     `- number of CPUs doing load-balance
7465  *         |         `- freq
7466  *         `- sum over all levels
7467  *
7468  * Coupled with a limit on how many tasks we can migrate every balance pass,
7469  * this makes (5) the runtime complexity of the balancer.
7470  *
7471  * An important property here is that each CPU is still (indirectly) connected
7472  * to every other CPU in at most O(log n) steps:
7473  *
7474  * The adjacency matrix of the resulting graph is given by:
7475  *
7476  *             log_2 n
7477  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7478  *             k = 0
7479  *
7480  * And you'll find that:
7481  *
7482  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7483  *
7484  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7485  * The task movement gives a factor of O(m), giving a convergence complexity
7486  * of:
7487  *
7488  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7489  *
7490  *
7491  * WORK CONSERVING
7492  *
7493  * In order to avoid CPUs going idle while there's still work to do, new idle
7494  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7495  * tree itself instead of relying on other CPUs to bring it work.
7496  *
7497  * This adds some complexity to both (5) and (8) but it reduces the total idle
7498  * time.
7499  *
7500  * [XXX more?]
7501  *
7502  *
7503  * CGROUPS
7504  *
7505  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7506  *
7507  *                                s_k,i
7508  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7509  *                                 S_k
7510  *
7511  * Where
7512  *
7513  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7514  *
7515  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7516  *
7517  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7518  * property.
7519  *
7520  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7521  *      rewrite all of this once again.]
7522  */
7523 
7524 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7525 
7526 enum fbq_type { regular, remote, all };
7527 
7528 /*
7529  * 'group_type' describes the group of CPUs at the moment of load balancing.
7530  *
7531  * The enum is ordered by pulling priority, with the group with lowest priority
7532  * first so the group_type can simply be compared when selecting the busiest
7533  * group. See update_sd_pick_busiest().
7534  */
7535 enum group_type {
7536 	/* The group has spare capacity that can be used to run more tasks.  */
7537 	group_has_spare = 0,
7538 	/*
7539 	 * The group is fully used and the tasks don't compete for more CPU
7540 	 * cycles. Nevertheless, some tasks might wait before running.
7541 	 */
7542 	group_fully_busy,
7543 	/*
7544 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7545 	 * and must be migrated to a more powerful CPU.
7546 	 */
7547 	group_misfit_task,
7548 	/*
7549 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7550 	 * and the task should be migrated to it instead of running on the
7551 	 * current CPU.
7552 	 */
7553 	group_asym_packing,
7554 	/*
7555 	 * The tasks' affinity constraints previously prevented the scheduler
7556 	 * from balancing the load across the system.
7557 	 */
7558 	group_imbalanced,
7559 	/*
7560 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7561 	 * tasks.
7562 	 */
7563 	group_overloaded
7564 };
7565 
7566 enum migration_type {
7567 	migrate_load = 0,
7568 	migrate_util,
7569 	migrate_task,
7570 	migrate_misfit
7571 };
7572 
7573 #define LBF_ALL_PINNED	0x01
7574 #define LBF_NEED_BREAK	0x02
7575 #define LBF_DST_PINNED  0x04
7576 #define LBF_SOME_PINNED	0x08
7577 #define LBF_ACTIVE_LB	0x10
7578 
7579 struct lb_env {
7580 	struct sched_domain	*sd;
7581 
7582 	struct rq		*src_rq;
7583 	int			src_cpu;
7584 
7585 	int			dst_cpu;
7586 	struct rq		*dst_rq;
7587 
7588 	struct cpumask		*dst_grpmask;
7589 	int			new_dst_cpu;
7590 	enum cpu_idle_type	idle;
7591 	long			imbalance;
7592 	/* The set of CPUs under consideration for load-balancing */
7593 	struct cpumask		*cpus;
7594 
7595 	unsigned int		flags;
7596 
7597 	unsigned int		loop;
7598 	unsigned int		loop_break;
7599 	unsigned int		loop_max;
7600 
7601 	enum fbq_type		fbq_type;
7602 	enum migration_type	migration_type;
7603 	struct list_head	tasks;
7604 };
7605 
7606 /*
7607  * Is this task likely cache-hot:
7608  */
7609 static int task_hot(struct task_struct *p, struct lb_env *env)
7610 {
7611 	s64 delta;
7612 
7613 	lockdep_assert_rq_held(env->src_rq);
7614 
7615 	if (p->sched_class != &fair_sched_class)
7616 		return 0;
7617 
7618 	if (unlikely(task_has_idle_policy(p)))
7619 		return 0;
7620 
7621 	/* SMT siblings share cache */
7622 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7623 		return 0;
7624 
7625 	/*
7626 	 * Buddy candidates are cache hot:
7627 	 */
7628 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7629 			(&p->se == cfs_rq_of(&p->se)->next ||
7630 			 &p->se == cfs_rq_of(&p->se)->last))
7631 		return 1;
7632 
7633 	if (sysctl_sched_migration_cost == -1)
7634 		return 1;
7635 
7636 	/*
7637 	 * Don't migrate task if the task's cookie does not match
7638 	 * with the destination CPU's core cookie.
7639 	 */
7640 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7641 		return 1;
7642 
7643 	if (sysctl_sched_migration_cost == 0)
7644 		return 0;
7645 
7646 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7647 
7648 	return delta < (s64)sysctl_sched_migration_cost;
7649 }
7650 
7651 #ifdef CONFIG_NUMA_BALANCING
7652 /*
7653  * Returns 1, if task migration degrades locality
7654  * Returns 0, if task migration improves locality i.e migration preferred.
7655  * Returns -1, if task migration is not affected by locality.
7656  */
7657 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7658 {
7659 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7660 	unsigned long src_weight, dst_weight;
7661 	int src_nid, dst_nid, dist;
7662 
7663 	if (!static_branch_likely(&sched_numa_balancing))
7664 		return -1;
7665 
7666 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7667 		return -1;
7668 
7669 	src_nid = cpu_to_node(env->src_cpu);
7670 	dst_nid = cpu_to_node(env->dst_cpu);
7671 
7672 	if (src_nid == dst_nid)
7673 		return -1;
7674 
7675 	/* Migrating away from the preferred node is always bad. */
7676 	if (src_nid == p->numa_preferred_nid) {
7677 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7678 			return 1;
7679 		else
7680 			return -1;
7681 	}
7682 
7683 	/* Encourage migration to the preferred node. */
7684 	if (dst_nid == p->numa_preferred_nid)
7685 		return 0;
7686 
7687 	/* Leaving a core idle is often worse than degrading locality. */
7688 	if (env->idle == CPU_IDLE)
7689 		return -1;
7690 
7691 	dist = node_distance(src_nid, dst_nid);
7692 	if (numa_group) {
7693 		src_weight = group_weight(p, src_nid, dist);
7694 		dst_weight = group_weight(p, dst_nid, dist);
7695 	} else {
7696 		src_weight = task_weight(p, src_nid, dist);
7697 		dst_weight = task_weight(p, dst_nid, dist);
7698 	}
7699 
7700 	return dst_weight < src_weight;
7701 }
7702 
7703 #else
7704 static inline int migrate_degrades_locality(struct task_struct *p,
7705 					     struct lb_env *env)
7706 {
7707 	return -1;
7708 }
7709 #endif
7710 
7711 /*
7712  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7713  */
7714 static
7715 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7716 {
7717 	int tsk_cache_hot;
7718 
7719 	lockdep_assert_rq_held(env->src_rq);
7720 
7721 	/*
7722 	 * We do not migrate tasks that are:
7723 	 * 1) throttled_lb_pair, or
7724 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7725 	 * 3) running (obviously), or
7726 	 * 4) are cache-hot on their current CPU.
7727 	 */
7728 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7729 		return 0;
7730 
7731 	/* Disregard pcpu kthreads; they are where they need to be. */
7732 	if (kthread_is_per_cpu(p))
7733 		return 0;
7734 
7735 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7736 		int cpu;
7737 
7738 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7739 
7740 		env->flags |= LBF_SOME_PINNED;
7741 
7742 		/*
7743 		 * Remember if this task can be migrated to any other CPU in
7744 		 * our sched_group. We may want to revisit it if we couldn't
7745 		 * meet load balance goals by pulling other tasks on src_cpu.
7746 		 *
7747 		 * Avoid computing new_dst_cpu
7748 		 * - for NEWLY_IDLE
7749 		 * - if we have already computed one in current iteration
7750 		 * - if it's an active balance
7751 		 */
7752 		if (env->idle == CPU_NEWLY_IDLE ||
7753 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7754 			return 0;
7755 
7756 		/* Prevent to re-select dst_cpu via env's CPUs: */
7757 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7758 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7759 				env->flags |= LBF_DST_PINNED;
7760 				env->new_dst_cpu = cpu;
7761 				break;
7762 			}
7763 		}
7764 
7765 		return 0;
7766 	}
7767 
7768 	/* Record that we found at least one task that could run on dst_cpu */
7769 	env->flags &= ~LBF_ALL_PINNED;
7770 
7771 	if (task_running(env->src_rq, p)) {
7772 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7773 		return 0;
7774 	}
7775 
7776 	/*
7777 	 * Aggressive migration if:
7778 	 * 1) active balance
7779 	 * 2) destination numa is preferred
7780 	 * 3) task is cache cold, or
7781 	 * 4) too many balance attempts have failed.
7782 	 */
7783 	if (env->flags & LBF_ACTIVE_LB)
7784 		return 1;
7785 
7786 	tsk_cache_hot = migrate_degrades_locality(p, env);
7787 	if (tsk_cache_hot == -1)
7788 		tsk_cache_hot = task_hot(p, env);
7789 
7790 	if (tsk_cache_hot <= 0 ||
7791 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7792 		if (tsk_cache_hot == 1) {
7793 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7794 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7795 		}
7796 		return 1;
7797 	}
7798 
7799 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7800 	return 0;
7801 }
7802 
7803 /*
7804  * detach_task() -- detach the task for the migration specified in env
7805  */
7806 static void detach_task(struct task_struct *p, struct lb_env *env)
7807 {
7808 	lockdep_assert_rq_held(env->src_rq);
7809 
7810 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7811 	set_task_cpu(p, env->dst_cpu);
7812 }
7813 
7814 /*
7815  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7816  * part of active balancing operations within "domain".
7817  *
7818  * Returns a task if successful and NULL otherwise.
7819  */
7820 static struct task_struct *detach_one_task(struct lb_env *env)
7821 {
7822 	struct task_struct *p;
7823 
7824 	lockdep_assert_rq_held(env->src_rq);
7825 
7826 	list_for_each_entry_reverse(p,
7827 			&env->src_rq->cfs_tasks, se.group_node) {
7828 		if (!can_migrate_task(p, env))
7829 			continue;
7830 
7831 		detach_task(p, env);
7832 
7833 		/*
7834 		 * Right now, this is only the second place where
7835 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7836 		 * so we can safely collect stats here rather than
7837 		 * inside detach_tasks().
7838 		 */
7839 		schedstat_inc(env->sd->lb_gained[env->idle]);
7840 		return p;
7841 	}
7842 	return NULL;
7843 }
7844 
7845 static const unsigned int sched_nr_migrate_break = 32;
7846 
7847 /*
7848  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7849  * busiest_rq, as part of a balancing operation within domain "sd".
7850  *
7851  * Returns number of detached tasks if successful and 0 otherwise.
7852  */
7853 static int detach_tasks(struct lb_env *env)
7854 {
7855 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7856 	unsigned long util, load;
7857 	struct task_struct *p;
7858 	int detached = 0;
7859 
7860 	lockdep_assert_rq_held(env->src_rq);
7861 
7862 	/*
7863 	 * Source run queue has been emptied by another CPU, clear
7864 	 * LBF_ALL_PINNED flag as we will not test any task.
7865 	 */
7866 	if (env->src_rq->nr_running <= 1) {
7867 		env->flags &= ~LBF_ALL_PINNED;
7868 		return 0;
7869 	}
7870 
7871 	if (env->imbalance <= 0)
7872 		return 0;
7873 
7874 	while (!list_empty(tasks)) {
7875 		/*
7876 		 * We don't want to steal all, otherwise we may be treated likewise,
7877 		 * which could at worst lead to a livelock crash.
7878 		 */
7879 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7880 			break;
7881 
7882 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7883 
7884 		env->loop++;
7885 		/* We've more or less seen every task there is, call it quits */
7886 		if (env->loop > env->loop_max)
7887 			break;
7888 
7889 		/* take a breather every nr_migrate tasks */
7890 		if (env->loop > env->loop_break) {
7891 			env->loop_break += sched_nr_migrate_break;
7892 			env->flags |= LBF_NEED_BREAK;
7893 			break;
7894 		}
7895 
7896 		if (!can_migrate_task(p, env))
7897 			goto next;
7898 
7899 		switch (env->migration_type) {
7900 		case migrate_load:
7901 			/*
7902 			 * Depending of the number of CPUs and tasks and the
7903 			 * cgroup hierarchy, task_h_load() can return a null
7904 			 * value. Make sure that env->imbalance decreases
7905 			 * otherwise detach_tasks() will stop only after
7906 			 * detaching up to loop_max tasks.
7907 			 */
7908 			load = max_t(unsigned long, task_h_load(p), 1);
7909 
7910 			if (sched_feat(LB_MIN) &&
7911 			    load < 16 && !env->sd->nr_balance_failed)
7912 				goto next;
7913 
7914 			/*
7915 			 * Make sure that we don't migrate too much load.
7916 			 * Nevertheless, let relax the constraint if
7917 			 * scheduler fails to find a good waiting task to
7918 			 * migrate.
7919 			 */
7920 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7921 				goto next;
7922 
7923 			env->imbalance -= load;
7924 			break;
7925 
7926 		case migrate_util:
7927 			util = task_util_est(p);
7928 
7929 			if (util > env->imbalance)
7930 				goto next;
7931 
7932 			env->imbalance -= util;
7933 			break;
7934 
7935 		case migrate_task:
7936 			env->imbalance--;
7937 			break;
7938 
7939 		case migrate_misfit:
7940 			/* This is not a misfit task */
7941 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7942 				goto next;
7943 
7944 			env->imbalance = 0;
7945 			break;
7946 		}
7947 
7948 		detach_task(p, env);
7949 		list_add(&p->se.group_node, &env->tasks);
7950 
7951 		detached++;
7952 
7953 #ifdef CONFIG_PREEMPTION
7954 		/*
7955 		 * NEWIDLE balancing is a source of latency, so preemptible
7956 		 * kernels will stop after the first task is detached to minimize
7957 		 * the critical section.
7958 		 */
7959 		if (env->idle == CPU_NEWLY_IDLE)
7960 			break;
7961 #endif
7962 
7963 		/*
7964 		 * We only want to steal up to the prescribed amount of
7965 		 * load/util/tasks.
7966 		 */
7967 		if (env->imbalance <= 0)
7968 			break;
7969 
7970 		continue;
7971 next:
7972 		list_move(&p->se.group_node, tasks);
7973 	}
7974 
7975 	/*
7976 	 * Right now, this is one of only two places we collect this stat
7977 	 * so we can safely collect detach_one_task() stats here rather
7978 	 * than inside detach_one_task().
7979 	 */
7980 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7981 
7982 	return detached;
7983 }
7984 
7985 /*
7986  * attach_task() -- attach the task detached by detach_task() to its new rq.
7987  */
7988 static void attach_task(struct rq *rq, struct task_struct *p)
7989 {
7990 	lockdep_assert_rq_held(rq);
7991 
7992 	BUG_ON(task_rq(p) != rq);
7993 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7994 	check_preempt_curr(rq, p, 0);
7995 }
7996 
7997 /*
7998  * attach_one_task() -- attaches the task returned from detach_one_task() to
7999  * its new rq.
8000  */
8001 static void attach_one_task(struct rq *rq, struct task_struct *p)
8002 {
8003 	struct rq_flags rf;
8004 
8005 	rq_lock(rq, &rf);
8006 	update_rq_clock(rq);
8007 	attach_task(rq, p);
8008 	rq_unlock(rq, &rf);
8009 }
8010 
8011 /*
8012  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8013  * new rq.
8014  */
8015 static void attach_tasks(struct lb_env *env)
8016 {
8017 	struct list_head *tasks = &env->tasks;
8018 	struct task_struct *p;
8019 	struct rq_flags rf;
8020 
8021 	rq_lock(env->dst_rq, &rf);
8022 	update_rq_clock(env->dst_rq);
8023 
8024 	while (!list_empty(tasks)) {
8025 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8026 		list_del_init(&p->se.group_node);
8027 
8028 		attach_task(env->dst_rq, p);
8029 	}
8030 
8031 	rq_unlock(env->dst_rq, &rf);
8032 }
8033 
8034 #ifdef CONFIG_NO_HZ_COMMON
8035 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8036 {
8037 	if (cfs_rq->avg.load_avg)
8038 		return true;
8039 
8040 	if (cfs_rq->avg.util_avg)
8041 		return true;
8042 
8043 	return false;
8044 }
8045 
8046 static inline bool others_have_blocked(struct rq *rq)
8047 {
8048 	if (READ_ONCE(rq->avg_rt.util_avg))
8049 		return true;
8050 
8051 	if (READ_ONCE(rq->avg_dl.util_avg))
8052 		return true;
8053 
8054 	if (thermal_load_avg(rq))
8055 		return true;
8056 
8057 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8058 	if (READ_ONCE(rq->avg_irq.util_avg))
8059 		return true;
8060 #endif
8061 
8062 	return false;
8063 }
8064 
8065 static inline void update_blocked_load_tick(struct rq *rq)
8066 {
8067 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8068 }
8069 
8070 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8071 {
8072 	if (!has_blocked)
8073 		rq->has_blocked_load = 0;
8074 }
8075 #else
8076 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8077 static inline bool others_have_blocked(struct rq *rq) { return false; }
8078 static inline void update_blocked_load_tick(struct rq *rq) {}
8079 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8080 #endif
8081 
8082 static bool __update_blocked_others(struct rq *rq, bool *done)
8083 {
8084 	const struct sched_class *curr_class;
8085 	u64 now = rq_clock_pelt(rq);
8086 	unsigned long thermal_pressure;
8087 	bool decayed;
8088 
8089 	/*
8090 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8091 	 * DL and IRQ signals have been updated before updating CFS.
8092 	 */
8093 	curr_class = rq->curr->sched_class;
8094 
8095 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8096 
8097 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8098 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8099 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8100 		  update_irq_load_avg(rq, 0);
8101 
8102 	if (others_have_blocked(rq))
8103 		*done = false;
8104 
8105 	return decayed;
8106 }
8107 
8108 #ifdef CONFIG_FAIR_GROUP_SCHED
8109 
8110 static bool __update_blocked_fair(struct rq *rq, bool *done)
8111 {
8112 	struct cfs_rq *cfs_rq, *pos;
8113 	bool decayed = false;
8114 	int cpu = cpu_of(rq);
8115 
8116 	/*
8117 	 * Iterates the task_group tree in a bottom up fashion, see
8118 	 * list_add_leaf_cfs_rq() for details.
8119 	 */
8120 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8121 		struct sched_entity *se;
8122 
8123 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8124 			update_tg_load_avg(cfs_rq);
8125 
8126 			if (cfs_rq == &rq->cfs)
8127 				decayed = true;
8128 		}
8129 
8130 		/* Propagate pending load changes to the parent, if any: */
8131 		se = cfs_rq->tg->se[cpu];
8132 		if (se && !skip_blocked_update(se))
8133 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8134 
8135 		/*
8136 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8137 		 * decayed cfs_rqs linger on the list.
8138 		 */
8139 		if (cfs_rq_is_decayed(cfs_rq))
8140 			list_del_leaf_cfs_rq(cfs_rq);
8141 
8142 		/* Don't need periodic decay once load/util_avg are null */
8143 		if (cfs_rq_has_blocked(cfs_rq))
8144 			*done = false;
8145 	}
8146 
8147 	return decayed;
8148 }
8149 
8150 /*
8151  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8152  * This needs to be done in a top-down fashion because the load of a child
8153  * group is a fraction of its parents load.
8154  */
8155 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8156 {
8157 	struct rq *rq = rq_of(cfs_rq);
8158 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8159 	unsigned long now = jiffies;
8160 	unsigned long load;
8161 
8162 	if (cfs_rq->last_h_load_update == now)
8163 		return;
8164 
8165 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8166 	for_each_sched_entity(se) {
8167 		cfs_rq = cfs_rq_of(se);
8168 		WRITE_ONCE(cfs_rq->h_load_next, se);
8169 		if (cfs_rq->last_h_load_update == now)
8170 			break;
8171 	}
8172 
8173 	if (!se) {
8174 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8175 		cfs_rq->last_h_load_update = now;
8176 	}
8177 
8178 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8179 		load = cfs_rq->h_load;
8180 		load = div64_ul(load * se->avg.load_avg,
8181 			cfs_rq_load_avg(cfs_rq) + 1);
8182 		cfs_rq = group_cfs_rq(se);
8183 		cfs_rq->h_load = load;
8184 		cfs_rq->last_h_load_update = now;
8185 	}
8186 }
8187 
8188 static unsigned long task_h_load(struct task_struct *p)
8189 {
8190 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8191 
8192 	update_cfs_rq_h_load(cfs_rq);
8193 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8194 			cfs_rq_load_avg(cfs_rq) + 1);
8195 }
8196 #else
8197 static bool __update_blocked_fair(struct rq *rq, bool *done)
8198 {
8199 	struct cfs_rq *cfs_rq = &rq->cfs;
8200 	bool decayed;
8201 
8202 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8203 	if (cfs_rq_has_blocked(cfs_rq))
8204 		*done = false;
8205 
8206 	return decayed;
8207 }
8208 
8209 static unsigned long task_h_load(struct task_struct *p)
8210 {
8211 	return p->se.avg.load_avg;
8212 }
8213 #endif
8214 
8215 static void update_blocked_averages(int cpu)
8216 {
8217 	bool decayed = false, done = true;
8218 	struct rq *rq = cpu_rq(cpu);
8219 	struct rq_flags rf;
8220 
8221 	rq_lock_irqsave(rq, &rf);
8222 	update_blocked_load_tick(rq);
8223 	update_rq_clock(rq);
8224 
8225 	decayed |= __update_blocked_others(rq, &done);
8226 	decayed |= __update_blocked_fair(rq, &done);
8227 
8228 	update_blocked_load_status(rq, !done);
8229 	if (decayed)
8230 		cpufreq_update_util(rq, 0);
8231 	rq_unlock_irqrestore(rq, &rf);
8232 }
8233 
8234 /********** Helpers for find_busiest_group ************************/
8235 
8236 /*
8237  * sg_lb_stats - stats of a sched_group required for load_balancing
8238  */
8239 struct sg_lb_stats {
8240 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8241 	unsigned long group_load; /* Total load over the CPUs of the group */
8242 	unsigned long group_capacity;
8243 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8244 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8245 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8246 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8247 	unsigned int idle_cpus;
8248 	unsigned int group_weight;
8249 	enum group_type group_type;
8250 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8251 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8252 #ifdef CONFIG_NUMA_BALANCING
8253 	unsigned int nr_numa_running;
8254 	unsigned int nr_preferred_running;
8255 #endif
8256 };
8257 
8258 /*
8259  * sd_lb_stats - Structure to store the statistics of a sched_domain
8260  *		 during load balancing.
8261  */
8262 struct sd_lb_stats {
8263 	struct sched_group *busiest;	/* Busiest group in this sd */
8264 	struct sched_group *local;	/* Local group in this sd */
8265 	unsigned long total_load;	/* Total load of all groups in sd */
8266 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8267 	unsigned long avg_load;	/* Average load across all groups in sd */
8268 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8269 
8270 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8271 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8272 };
8273 
8274 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8275 {
8276 	/*
8277 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8278 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8279 	 * We must however set busiest_stat::group_type and
8280 	 * busiest_stat::idle_cpus to the worst busiest group because
8281 	 * update_sd_pick_busiest() reads these before assignment.
8282 	 */
8283 	*sds = (struct sd_lb_stats){
8284 		.busiest = NULL,
8285 		.local = NULL,
8286 		.total_load = 0UL,
8287 		.total_capacity = 0UL,
8288 		.busiest_stat = {
8289 			.idle_cpus = UINT_MAX,
8290 			.group_type = group_has_spare,
8291 		},
8292 	};
8293 }
8294 
8295 static unsigned long scale_rt_capacity(int cpu)
8296 {
8297 	struct rq *rq = cpu_rq(cpu);
8298 	unsigned long max = arch_scale_cpu_capacity(cpu);
8299 	unsigned long used, free;
8300 	unsigned long irq;
8301 
8302 	irq = cpu_util_irq(rq);
8303 
8304 	if (unlikely(irq >= max))
8305 		return 1;
8306 
8307 	/*
8308 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8309 	 * (running and not running) with weights 0 and 1024 respectively.
8310 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8311 	 * average uses the actual delta max capacity(load).
8312 	 */
8313 	used = READ_ONCE(rq->avg_rt.util_avg);
8314 	used += READ_ONCE(rq->avg_dl.util_avg);
8315 	used += thermal_load_avg(rq);
8316 
8317 	if (unlikely(used >= max))
8318 		return 1;
8319 
8320 	free = max - used;
8321 
8322 	return scale_irq_capacity(free, irq, max);
8323 }
8324 
8325 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8326 {
8327 	unsigned long capacity = scale_rt_capacity(cpu);
8328 	struct sched_group *sdg = sd->groups;
8329 
8330 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8331 
8332 	if (!capacity)
8333 		capacity = 1;
8334 
8335 	cpu_rq(cpu)->cpu_capacity = capacity;
8336 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8337 
8338 	sdg->sgc->capacity = capacity;
8339 	sdg->sgc->min_capacity = capacity;
8340 	sdg->sgc->max_capacity = capacity;
8341 }
8342 
8343 void update_group_capacity(struct sched_domain *sd, int cpu)
8344 {
8345 	struct sched_domain *child = sd->child;
8346 	struct sched_group *group, *sdg = sd->groups;
8347 	unsigned long capacity, min_capacity, max_capacity;
8348 	unsigned long interval;
8349 
8350 	interval = msecs_to_jiffies(sd->balance_interval);
8351 	interval = clamp(interval, 1UL, max_load_balance_interval);
8352 	sdg->sgc->next_update = jiffies + interval;
8353 
8354 	if (!child) {
8355 		update_cpu_capacity(sd, cpu);
8356 		return;
8357 	}
8358 
8359 	capacity = 0;
8360 	min_capacity = ULONG_MAX;
8361 	max_capacity = 0;
8362 
8363 	if (child->flags & SD_OVERLAP) {
8364 		/*
8365 		 * SD_OVERLAP domains cannot assume that child groups
8366 		 * span the current group.
8367 		 */
8368 
8369 		for_each_cpu(cpu, sched_group_span(sdg)) {
8370 			unsigned long cpu_cap = capacity_of(cpu);
8371 
8372 			capacity += cpu_cap;
8373 			min_capacity = min(cpu_cap, min_capacity);
8374 			max_capacity = max(cpu_cap, max_capacity);
8375 		}
8376 	} else  {
8377 		/*
8378 		 * !SD_OVERLAP domains can assume that child groups
8379 		 * span the current group.
8380 		 */
8381 
8382 		group = child->groups;
8383 		do {
8384 			struct sched_group_capacity *sgc = group->sgc;
8385 
8386 			capacity += sgc->capacity;
8387 			min_capacity = min(sgc->min_capacity, min_capacity);
8388 			max_capacity = max(sgc->max_capacity, max_capacity);
8389 			group = group->next;
8390 		} while (group != child->groups);
8391 	}
8392 
8393 	sdg->sgc->capacity = capacity;
8394 	sdg->sgc->min_capacity = min_capacity;
8395 	sdg->sgc->max_capacity = max_capacity;
8396 }
8397 
8398 /*
8399  * Check whether the capacity of the rq has been noticeably reduced by side
8400  * activity. The imbalance_pct is used for the threshold.
8401  * Return true is the capacity is reduced
8402  */
8403 static inline int
8404 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8405 {
8406 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8407 				(rq->cpu_capacity_orig * 100));
8408 }
8409 
8410 /*
8411  * Check whether a rq has a misfit task and if it looks like we can actually
8412  * help that task: we can migrate the task to a CPU of higher capacity, or
8413  * the task's current CPU is heavily pressured.
8414  */
8415 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8416 {
8417 	return rq->misfit_task_load &&
8418 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8419 		 check_cpu_capacity(rq, sd));
8420 }
8421 
8422 /*
8423  * Group imbalance indicates (and tries to solve) the problem where balancing
8424  * groups is inadequate due to ->cpus_ptr constraints.
8425  *
8426  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8427  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8428  * Something like:
8429  *
8430  *	{ 0 1 2 3 } { 4 5 6 7 }
8431  *	        *     * * *
8432  *
8433  * If we were to balance group-wise we'd place two tasks in the first group and
8434  * two tasks in the second group. Clearly this is undesired as it will overload
8435  * cpu 3 and leave one of the CPUs in the second group unused.
8436  *
8437  * The current solution to this issue is detecting the skew in the first group
8438  * by noticing the lower domain failed to reach balance and had difficulty
8439  * moving tasks due to affinity constraints.
8440  *
8441  * When this is so detected; this group becomes a candidate for busiest; see
8442  * update_sd_pick_busiest(). And calculate_imbalance() and
8443  * find_busiest_group() avoid some of the usual balance conditions to allow it
8444  * to create an effective group imbalance.
8445  *
8446  * This is a somewhat tricky proposition since the next run might not find the
8447  * group imbalance and decide the groups need to be balanced again. A most
8448  * subtle and fragile situation.
8449  */
8450 
8451 static inline int sg_imbalanced(struct sched_group *group)
8452 {
8453 	return group->sgc->imbalance;
8454 }
8455 
8456 /*
8457  * group_has_capacity returns true if the group has spare capacity that could
8458  * be used by some tasks.
8459  * We consider that a group has spare capacity if the  * number of task is
8460  * smaller than the number of CPUs or if the utilization is lower than the
8461  * available capacity for CFS tasks.
8462  * For the latter, we use a threshold to stabilize the state, to take into
8463  * account the variance of the tasks' load and to return true if the available
8464  * capacity in meaningful for the load balancer.
8465  * As an example, an available capacity of 1% can appear but it doesn't make
8466  * any benefit for the load balance.
8467  */
8468 static inline bool
8469 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8470 {
8471 	if (sgs->sum_nr_running < sgs->group_weight)
8472 		return true;
8473 
8474 	if ((sgs->group_capacity * imbalance_pct) <
8475 			(sgs->group_runnable * 100))
8476 		return false;
8477 
8478 	if ((sgs->group_capacity * 100) >
8479 			(sgs->group_util * imbalance_pct))
8480 		return true;
8481 
8482 	return false;
8483 }
8484 
8485 /*
8486  *  group_is_overloaded returns true if the group has more tasks than it can
8487  *  handle.
8488  *  group_is_overloaded is not equals to !group_has_capacity because a group
8489  *  with the exact right number of tasks, has no more spare capacity but is not
8490  *  overloaded so both group_has_capacity and group_is_overloaded return
8491  *  false.
8492  */
8493 static inline bool
8494 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8495 {
8496 	if (sgs->sum_nr_running <= sgs->group_weight)
8497 		return false;
8498 
8499 	if ((sgs->group_capacity * 100) <
8500 			(sgs->group_util * imbalance_pct))
8501 		return true;
8502 
8503 	if ((sgs->group_capacity * imbalance_pct) <
8504 			(sgs->group_runnable * 100))
8505 		return true;
8506 
8507 	return false;
8508 }
8509 
8510 static inline enum
8511 group_type group_classify(unsigned int imbalance_pct,
8512 			  struct sched_group *group,
8513 			  struct sg_lb_stats *sgs)
8514 {
8515 	if (group_is_overloaded(imbalance_pct, sgs))
8516 		return group_overloaded;
8517 
8518 	if (sg_imbalanced(group))
8519 		return group_imbalanced;
8520 
8521 	if (sgs->group_asym_packing)
8522 		return group_asym_packing;
8523 
8524 	if (sgs->group_misfit_task_load)
8525 		return group_misfit_task;
8526 
8527 	if (!group_has_capacity(imbalance_pct, sgs))
8528 		return group_fully_busy;
8529 
8530 	return group_has_spare;
8531 }
8532 
8533 /**
8534  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8535  * @env: The load balancing environment.
8536  * @group: sched_group whose statistics are to be updated.
8537  * @sgs: variable to hold the statistics for this group.
8538  * @sg_status: Holds flag indicating the status of the sched_group
8539  */
8540 static inline void update_sg_lb_stats(struct lb_env *env,
8541 				      struct sched_group *group,
8542 				      struct sg_lb_stats *sgs,
8543 				      int *sg_status)
8544 {
8545 	int i, nr_running, local_group;
8546 
8547 	memset(sgs, 0, sizeof(*sgs));
8548 
8549 	local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8550 
8551 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8552 		struct rq *rq = cpu_rq(i);
8553 
8554 		sgs->group_load += cpu_load(rq);
8555 		sgs->group_util += cpu_util(i);
8556 		sgs->group_runnable += cpu_runnable(rq);
8557 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8558 
8559 		nr_running = rq->nr_running;
8560 		sgs->sum_nr_running += nr_running;
8561 
8562 		if (nr_running > 1)
8563 			*sg_status |= SG_OVERLOAD;
8564 
8565 		if (cpu_overutilized(i))
8566 			*sg_status |= SG_OVERUTILIZED;
8567 
8568 #ifdef CONFIG_NUMA_BALANCING
8569 		sgs->nr_numa_running += rq->nr_numa_running;
8570 		sgs->nr_preferred_running += rq->nr_preferred_running;
8571 #endif
8572 		/*
8573 		 * No need to call idle_cpu() if nr_running is not 0
8574 		 */
8575 		if (!nr_running && idle_cpu(i)) {
8576 			sgs->idle_cpus++;
8577 			/* Idle cpu can't have misfit task */
8578 			continue;
8579 		}
8580 
8581 		if (local_group)
8582 			continue;
8583 
8584 		/* Check for a misfit task on the cpu */
8585 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8586 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8587 			sgs->group_misfit_task_load = rq->misfit_task_load;
8588 			*sg_status |= SG_OVERLOAD;
8589 		}
8590 	}
8591 
8592 	/* Check if dst CPU is idle and preferred to this group */
8593 	if (env->sd->flags & SD_ASYM_PACKING &&
8594 	    env->idle != CPU_NOT_IDLE &&
8595 	    sgs->sum_h_nr_running &&
8596 	    sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8597 		sgs->group_asym_packing = 1;
8598 	}
8599 
8600 	sgs->group_capacity = group->sgc->capacity;
8601 
8602 	sgs->group_weight = group->group_weight;
8603 
8604 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8605 
8606 	/* Computing avg_load makes sense only when group is overloaded */
8607 	if (sgs->group_type == group_overloaded)
8608 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8609 				sgs->group_capacity;
8610 }
8611 
8612 /**
8613  * update_sd_pick_busiest - return 1 on busiest group
8614  * @env: The load balancing environment.
8615  * @sds: sched_domain statistics
8616  * @sg: sched_group candidate to be checked for being the busiest
8617  * @sgs: sched_group statistics
8618  *
8619  * Determine if @sg is a busier group than the previously selected
8620  * busiest group.
8621  *
8622  * Return: %true if @sg is a busier group than the previously selected
8623  * busiest group. %false otherwise.
8624  */
8625 static bool update_sd_pick_busiest(struct lb_env *env,
8626 				   struct sd_lb_stats *sds,
8627 				   struct sched_group *sg,
8628 				   struct sg_lb_stats *sgs)
8629 {
8630 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8631 
8632 	/* Make sure that there is at least one task to pull */
8633 	if (!sgs->sum_h_nr_running)
8634 		return false;
8635 
8636 	/*
8637 	 * Don't try to pull misfit tasks we can't help.
8638 	 * We can use max_capacity here as reduction in capacity on some
8639 	 * CPUs in the group should either be possible to resolve
8640 	 * internally or be covered by avg_load imbalance (eventually).
8641 	 */
8642 	if (sgs->group_type == group_misfit_task &&
8643 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8644 	     sds->local_stat.group_type != group_has_spare))
8645 		return false;
8646 
8647 	if (sgs->group_type > busiest->group_type)
8648 		return true;
8649 
8650 	if (sgs->group_type < busiest->group_type)
8651 		return false;
8652 
8653 	/*
8654 	 * The candidate and the current busiest group are the same type of
8655 	 * group. Let check which one is the busiest according to the type.
8656 	 */
8657 
8658 	switch (sgs->group_type) {
8659 	case group_overloaded:
8660 		/* Select the overloaded group with highest avg_load. */
8661 		if (sgs->avg_load <= busiest->avg_load)
8662 			return false;
8663 		break;
8664 
8665 	case group_imbalanced:
8666 		/*
8667 		 * Select the 1st imbalanced group as we don't have any way to
8668 		 * choose one more than another.
8669 		 */
8670 		return false;
8671 
8672 	case group_asym_packing:
8673 		/* Prefer to move from lowest priority CPU's work */
8674 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8675 			return false;
8676 		break;
8677 
8678 	case group_misfit_task:
8679 		/*
8680 		 * If we have more than one misfit sg go with the biggest
8681 		 * misfit.
8682 		 */
8683 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8684 			return false;
8685 		break;
8686 
8687 	case group_fully_busy:
8688 		/*
8689 		 * Select the fully busy group with highest avg_load. In
8690 		 * theory, there is no need to pull task from such kind of
8691 		 * group because tasks have all compute capacity that they need
8692 		 * but we can still improve the overall throughput by reducing
8693 		 * contention when accessing shared HW resources.
8694 		 *
8695 		 * XXX for now avg_load is not computed and always 0 so we
8696 		 * select the 1st one.
8697 		 */
8698 		if (sgs->avg_load <= busiest->avg_load)
8699 			return false;
8700 		break;
8701 
8702 	case group_has_spare:
8703 		/*
8704 		 * Select not overloaded group with lowest number of idle cpus
8705 		 * and highest number of running tasks. We could also compare
8706 		 * the spare capacity which is more stable but it can end up
8707 		 * that the group has less spare capacity but finally more idle
8708 		 * CPUs which means less opportunity to pull tasks.
8709 		 */
8710 		if (sgs->idle_cpus > busiest->idle_cpus)
8711 			return false;
8712 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8713 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
8714 			return false;
8715 
8716 		break;
8717 	}
8718 
8719 	/*
8720 	 * Candidate sg has no more than one task per CPU and has higher
8721 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8722 	 * throughput. Maximize throughput, power/energy consequences are not
8723 	 * considered.
8724 	 */
8725 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8726 	    (sgs->group_type <= group_fully_busy) &&
8727 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8728 		return false;
8729 
8730 	return true;
8731 }
8732 
8733 #ifdef CONFIG_NUMA_BALANCING
8734 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8735 {
8736 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8737 		return regular;
8738 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8739 		return remote;
8740 	return all;
8741 }
8742 
8743 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8744 {
8745 	if (rq->nr_running > rq->nr_numa_running)
8746 		return regular;
8747 	if (rq->nr_running > rq->nr_preferred_running)
8748 		return remote;
8749 	return all;
8750 }
8751 #else
8752 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8753 {
8754 	return all;
8755 }
8756 
8757 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8758 {
8759 	return regular;
8760 }
8761 #endif /* CONFIG_NUMA_BALANCING */
8762 
8763 
8764 struct sg_lb_stats;
8765 
8766 /*
8767  * task_running_on_cpu - return 1 if @p is running on @cpu.
8768  */
8769 
8770 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8771 {
8772 	/* Task has no contribution or is new */
8773 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8774 		return 0;
8775 
8776 	if (task_on_rq_queued(p))
8777 		return 1;
8778 
8779 	return 0;
8780 }
8781 
8782 /**
8783  * idle_cpu_without - would a given CPU be idle without p ?
8784  * @cpu: the processor on which idleness is tested.
8785  * @p: task which should be ignored.
8786  *
8787  * Return: 1 if the CPU would be idle. 0 otherwise.
8788  */
8789 static int idle_cpu_without(int cpu, struct task_struct *p)
8790 {
8791 	struct rq *rq = cpu_rq(cpu);
8792 
8793 	if (rq->curr != rq->idle && rq->curr != p)
8794 		return 0;
8795 
8796 	/*
8797 	 * rq->nr_running can't be used but an updated version without the
8798 	 * impact of p on cpu must be used instead. The updated nr_running
8799 	 * be computed and tested before calling idle_cpu_without().
8800 	 */
8801 
8802 #ifdef CONFIG_SMP
8803 	if (rq->ttwu_pending)
8804 		return 0;
8805 #endif
8806 
8807 	return 1;
8808 }
8809 
8810 /*
8811  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8812  * @sd: The sched_domain level to look for idlest group.
8813  * @group: sched_group whose statistics are to be updated.
8814  * @sgs: variable to hold the statistics for this group.
8815  * @p: The task for which we look for the idlest group/CPU.
8816  */
8817 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8818 					  struct sched_group *group,
8819 					  struct sg_lb_stats *sgs,
8820 					  struct task_struct *p)
8821 {
8822 	int i, nr_running;
8823 
8824 	memset(sgs, 0, sizeof(*sgs));
8825 
8826 	for_each_cpu(i, sched_group_span(group)) {
8827 		struct rq *rq = cpu_rq(i);
8828 		unsigned int local;
8829 
8830 		sgs->group_load += cpu_load_without(rq, p);
8831 		sgs->group_util += cpu_util_without(i, p);
8832 		sgs->group_runnable += cpu_runnable_without(rq, p);
8833 		local = task_running_on_cpu(i, p);
8834 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8835 
8836 		nr_running = rq->nr_running - local;
8837 		sgs->sum_nr_running += nr_running;
8838 
8839 		/*
8840 		 * No need to call idle_cpu_without() if nr_running is not 0
8841 		 */
8842 		if (!nr_running && idle_cpu_without(i, p))
8843 			sgs->idle_cpus++;
8844 
8845 	}
8846 
8847 	/* Check if task fits in the group */
8848 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
8849 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
8850 		sgs->group_misfit_task_load = 1;
8851 	}
8852 
8853 	sgs->group_capacity = group->sgc->capacity;
8854 
8855 	sgs->group_weight = group->group_weight;
8856 
8857 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8858 
8859 	/*
8860 	 * Computing avg_load makes sense only when group is fully busy or
8861 	 * overloaded
8862 	 */
8863 	if (sgs->group_type == group_fully_busy ||
8864 		sgs->group_type == group_overloaded)
8865 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8866 				sgs->group_capacity;
8867 }
8868 
8869 static bool update_pick_idlest(struct sched_group *idlest,
8870 			       struct sg_lb_stats *idlest_sgs,
8871 			       struct sched_group *group,
8872 			       struct sg_lb_stats *sgs)
8873 {
8874 	if (sgs->group_type < idlest_sgs->group_type)
8875 		return true;
8876 
8877 	if (sgs->group_type > idlest_sgs->group_type)
8878 		return false;
8879 
8880 	/*
8881 	 * The candidate and the current idlest group are the same type of
8882 	 * group. Let check which one is the idlest according to the type.
8883 	 */
8884 
8885 	switch (sgs->group_type) {
8886 	case group_overloaded:
8887 	case group_fully_busy:
8888 		/* Select the group with lowest avg_load. */
8889 		if (idlest_sgs->avg_load <= sgs->avg_load)
8890 			return false;
8891 		break;
8892 
8893 	case group_imbalanced:
8894 	case group_asym_packing:
8895 		/* Those types are not used in the slow wakeup path */
8896 		return false;
8897 
8898 	case group_misfit_task:
8899 		/* Select group with the highest max capacity */
8900 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8901 			return false;
8902 		break;
8903 
8904 	case group_has_spare:
8905 		/* Select group with most idle CPUs */
8906 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8907 			return false;
8908 
8909 		/* Select group with lowest group_util */
8910 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8911 			idlest_sgs->group_util <= sgs->group_util)
8912 			return false;
8913 
8914 		break;
8915 	}
8916 
8917 	return true;
8918 }
8919 
8920 /*
8921  * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8922  * This is an approximation as the number of running tasks may not be
8923  * related to the number of busy CPUs due to sched_setaffinity.
8924  */
8925 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8926 {
8927 	return (dst_running < (dst_weight >> 2));
8928 }
8929 
8930 /*
8931  * find_idlest_group() finds and returns the least busy CPU group within the
8932  * domain.
8933  *
8934  * Assumes p is allowed on at least one CPU in sd.
8935  */
8936 static struct sched_group *
8937 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8938 {
8939 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8940 	struct sg_lb_stats local_sgs, tmp_sgs;
8941 	struct sg_lb_stats *sgs;
8942 	unsigned long imbalance;
8943 	struct sg_lb_stats idlest_sgs = {
8944 			.avg_load = UINT_MAX,
8945 			.group_type = group_overloaded,
8946 	};
8947 
8948 	do {
8949 		int local_group;
8950 
8951 		/* Skip over this group if it has no CPUs allowed */
8952 		if (!cpumask_intersects(sched_group_span(group),
8953 					p->cpus_ptr))
8954 			continue;
8955 
8956 		/* Skip over this group if no cookie matched */
8957 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
8958 			continue;
8959 
8960 		local_group = cpumask_test_cpu(this_cpu,
8961 					       sched_group_span(group));
8962 
8963 		if (local_group) {
8964 			sgs = &local_sgs;
8965 			local = group;
8966 		} else {
8967 			sgs = &tmp_sgs;
8968 		}
8969 
8970 		update_sg_wakeup_stats(sd, group, sgs, p);
8971 
8972 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8973 			idlest = group;
8974 			idlest_sgs = *sgs;
8975 		}
8976 
8977 	} while (group = group->next, group != sd->groups);
8978 
8979 
8980 	/* There is no idlest group to push tasks to */
8981 	if (!idlest)
8982 		return NULL;
8983 
8984 	/* The local group has been skipped because of CPU affinity */
8985 	if (!local)
8986 		return idlest;
8987 
8988 	/*
8989 	 * If the local group is idler than the selected idlest group
8990 	 * don't try and push the task.
8991 	 */
8992 	if (local_sgs.group_type < idlest_sgs.group_type)
8993 		return NULL;
8994 
8995 	/*
8996 	 * If the local group is busier than the selected idlest group
8997 	 * try and push the task.
8998 	 */
8999 	if (local_sgs.group_type > idlest_sgs.group_type)
9000 		return idlest;
9001 
9002 	switch (local_sgs.group_type) {
9003 	case group_overloaded:
9004 	case group_fully_busy:
9005 
9006 		/* Calculate allowed imbalance based on load */
9007 		imbalance = scale_load_down(NICE_0_LOAD) *
9008 				(sd->imbalance_pct-100) / 100;
9009 
9010 		/*
9011 		 * When comparing groups across NUMA domains, it's possible for
9012 		 * the local domain to be very lightly loaded relative to the
9013 		 * remote domains but "imbalance" skews the comparison making
9014 		 * remote CPUs look much more favourable. When considering
9015 		 * cross-domain, add imbalance to the load on the remote node
9016 		 * and consider staying local.
9017 		 */
9018 
9019 		if ((sd->flags & SD_NUMA) &&
9020 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9021 			return NULL;
9022 
9023 		/*
9024 		 * If the local group is less loaded than the selected
9025 		 * idlest group don't try and push any tasks.
9026 		 */
9027 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9028 			return NULL;
9029 
9030 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9031 			return NULL;
9032 		break;
9033 
9034 	case group_imbalanced:
9035 	case group_asym_packing:
9036 		/* Those type are not used in the slow wakeup path */
9037 		return NULL;
9038 
9039 	case group_misfit_task:
9040 		/* Select group with the highest max capacity */
9041 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9042 			return NULL;
9043 		break;
9044 
9045 	case group_has_spare:
9046 		if (sd->flags & SD_NUMA) {
9047 #ifdef CONFIG_NUMA_BALANCING
9048 			int idlest_cpu;
9049 			/*
9050 			 * If there is spare capacity at NUMA, try to select
9051 			 * the preferred node
9052 			 */
9053 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9054 				return NULL;
9055 
9056 			idlest_cpu = cpumask_first(sched_group_span(idlest));
9057 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9058 				return idlest;
9059 #endif
9060 			/*
9061 			 * Otherwise, keep the task on this node to stay close
9062 			 * its wakeup source and improve locality. If there is
9063 			 * a real need of migration, periodic load balance will
9064 			 * take care of it.
9065 			 */
9066 			if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
9067 				return NULL;
9068 		}
9069 
9070 		/*
9071 		 * Select group with highest number of idle CPUs. We could also
9072 		 * compare the utilization which is more stable but it can end
9073 		 * up that the group has less spare capacity but finally more
9074 		 * idle CPUs which means more opportunity to run task.
9075 		 */
9076 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9077 			return NULL;
9078 		break;
9079 	}
9080 
9081 	return idlest;
9082 }
9083 
9084 /**
9085  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9086  * @env: The load balancing environment.
9087  * @sds: variable to hold the statistics for this sched_domain.
9088  */
9089 
9090 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9091 {
9092 	struct sched_domain *child = env->sd->child;
9093 	struct sched_group *sg = env->sd->groups;
9094 	struct sg_lb_stats *local = &sds->local_stat;
9095 	struct sg_lb_stats tmp_sgs;
9096 	int sg_status = 0;
9097 
9098 	do {
9099 		struct sg_lb_stats *sgs = &tmp_sgs;
9100 		int local_group;
9101 
9102 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9103 		if (local_group) {
9104 			sds->local = sg;
9105 			sgs = local;
9106 
9107 			if (env->idle != CPU_NEWLY_IDLE ||
9108 			    time_after_eq(jiffies, sg->sgc->next_update))
9109 				update_group_capacity(env->sd, env->dst_cpu);
9110 		}
9111 
9112 		update_sg_lb_stats(env, sg, sgs, &sg_status);
9113 
9114 		if (local_group)
9115 			goto next_group;
9116 
9117 
9118 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9119 			sds->busiest = sg;
9120 			sds->busiest_stat = *sgs;
9121 		}
9122 
9123 next_group:
9124 		/* Now, start updating sd_lb_stats */
9125 		sds->total_load += sgs->group_load;
9126 		sds->total_capacity += sgs->group_capacity;
9127 
9128 		sg = sg->next;
9129 	} while (sg != env->sd->groups);
9130 
9131 	/* Tag domain that child domain prefers tasks go to siblings first */
9132 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9133 
9134 
9135 	if (env->sd->flags & SD_NUMA)
9136 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9137 
9138 	if (!env->sd->parent) {
9139 		struct root_domain *rd = env->dst_rq->rd;
9140 
9141 		/* update overload indicator if we are at root domain */
9142 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9143 
9144 		/* Update over-utilization (tipping point, U >= 0) indicator */
9145 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9146 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9147 	} else if (sg_status & SG_OVERUTILIZED) {
9148 		struct root_domain *rd = env->dst_rq->rd;
9149 
9150 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9151 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9152 	}
9153 }
9154 
9155 #define NUMA_IMBALANCE_MIN 2
9156 
9157 static inline long adjust_numa_imbalance(int imbalance,
9158 				int dst_running, int dst_weight)
9159 {
9160 	if (!allow_numa_imbalance(dst_running, dst_weight))
9161 		return imbalance;
9162 
9163 	/*
9164 	 * Allow a small imbalance based on a simple pair of communicating
9165 	 * tasks that remain local when the destination is lightly loaded.
9166 	 */
9167 	if (imbalance <= NUMA_IMBALANCE_MIN)
9168 		return 0;
9169 
9170 	return imbalance;
9171 }
9172 
9173 /**
9174  * calculate_imbalance - Calculate the amount of imbalance present within the
9175  *			 groups of a given sched_domain during load balance.
9176  * @env: load balance environment
9177  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9178  */
9179 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9180 {
9181 	struct sg_lb_stats *local, *busiest;
9182 
9183 	local = &sds->local_stat;
9184 	busiest = &sds->busiest_stat;
9185 
9186 	if (busiest->group_type == group_misfit_task) {
9187 		/* Set imbalance to allow misfit tasks to be balanced. */
9188 		env->migration_type = migrate_misfit;
9189 		env->imbalance = 1;
9190 		return;
9191 	}
9192 
9193 	if (busiest->group_type == group_asym_packing) {
9194 		/*
9195 		 * In case of asym capacity, we will try to migrate all load to
9196 		 * the preferred CPU.
9197 		 */
9198 		env->migration_type = migrate_task;
9199 		env->imbalance = busiest->sum_h_nr_running;
9200 		return;
9201 	}
9202 
9203 	if (busiest->group_type == group_imbalanced) {
9204 		/*
9205 		 * In the group_imb case we cannot rely on group-wide averages
9206 		 * to ensure CPU-load equilibrium, try to move any task to fix
9207 		 * the imbalance. The next load balance will take care of
9208 		 * balancing back the system.
9209 		 */
9210 		env->migration_type = migrate_task;
9211 		env->imbalance = 1;
9212 		return;
9213 	}
9214 
9215 	/*
9216 	 * Try to use spare capacity of local group without overloading it or
9217 	 * emptying busiest.
9218 	 */
9219 	if (local->group_type == group_has_spare) {
9220 		if ((busiest->group_type > group_fully_busy) &&
9221 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9222 			/*
9223 			 * If busiest is overloaded, try to fill spare
9224 			 * capacity. This might end up creating spare capacity
9225 			 * in busiest or busiest still being overloaded but
9226 			 * there is no simple way to directly compute the
9227 			 * amount of load to migrate in order to balance the
9228 			 * system.
9229 			 */
9230 			env->migration_type = migrate_util;
9231 			env->imbalance = max(local->group_capacity, local->group_util) -
9232 					 local->group_util;
9233 
9234 			/*
9235 			 * In some cases, the group's utilization is max or even
9236 			 * higher than capacity because of migrations but the
9237 			 * local CPU is (newly) idle. There is at least one
9238 			 * waiting task in this overloaded busiest group. Let's
9239 			 * try to pull it.
9240 			 */
9241 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9242 				env->migration_type = migrate_task;
9243 				env->imbalance = 1;
9244 			}
9245 
9246 			return;
9247 		}
9248 
9249 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9250 			unsigned int nr_diff = busiest->sum_nr_running;
9251 			/*
9252 			 * When prefer sibling, evenly spread running tasks on
9253 			 * groups.
9254 			 */
9255 			env->migration_type = migrate_task;
9256 			lsub_positive(&nr_diff, local->sum_nr_running);
9257 			env->imbalance = nr_diff >> 1;
9258 		} else {
9259 
9260 			/*
9261 			 * If there is no overload, we just want to even the number of
9262 			 * idle cpus.
9263 			 */
9264 			env->migration_type = migrate_task;
9265 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9266 						 busiest->idle_cpus) >> 1);
9267 		}
9268 
9269 		/* Consider allowing a small imbalance between NUMA groups */
9270 		if (env->sd->flags & SD_NUMA) {
9271 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9272 				busiest->sum_nr_running, busiest->group_weight);
9273 		}
9274 
9275 		return;
9276 	}
9277 
9278 	/*
9279 	 * Local is fully busy but has to take more load to relieve the
9280 	 * busiest group
9281 	 */
9282 	if (local->group_type < group_overloaded) {
9283 		/*
9284 		 * Local will become overloaded so the avg_load metrics are
9285 		 * finally needed.
9286 		 */
9287 
9288 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9289 				  local->group_capacity;
9290 
9291 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9292 				sds->total_capacity;
9293 		/*
9294 		 * If the local group is more loaded than the selected
9295 		 * busiest group don't try to pull any tasks.
9296 		 */
9297 		if (local->avg_load >= busiest->avg_load) {
9298 			env->imbalance = 0;
9299 			return;
9300 		}
9301 	}
9302 
9303 	/*
9304 	 * Both group are or will become overloaded and we're trying to get all
9305 	 * the CPUs to the average_load, so we don't want to push ourselves
9306 	 * above the average load, nor do we wish to reduce the max loaded CPU
9307 	 * below the average load. At the same time, we also don't want to
9308 	 * reduce the group load below the group capacity. Thus we look for
9309 	 * the minimum possible imbalance.
9310 	 */
9311 	env->migration_type = migrate_load;
9312 	env->imbalance = min(
9313 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9314 		(sds->avg_load - local->avg_load) * local->group_capacity
9315 	) / SCHED_CAPACITY_SCALE;
9316 }
9317 
9318 /******* find_busiest_group() helpers end here *********************/
9319 
9320 /*
9321  * Decision matrix according to the local and busiest group type:
9322  *
9323  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9324  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9325  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9326  * misfit_task      force     N/A        N/A    N/A  force      force
9327  * asym_packing     force     force      N/A    N/A  force      force
9328  * imbalanced       force     force      N/A    N/A  force      force
9329  * overloaded       force     force      N/A    N/A  force      avg_load
9330  *
9331  * N/A :      Not Applicable because already filtered while updating
9332  *            statistics.
9333  * balanced : The system is balanced for these 2 groups.
9334  * force :    Calculate the imbalance as load migration is probably needed.
9335  * avg_load : Only if imbalance is significant enough.
9336  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9337  *            different in groups.
9338  */
9339 
9340 /**
9341  * find_busiest_group - Returns the busiest group within the sched_domain
9342  * if there is an imbalance.
9343  *
9344  * Also calculates the amount of runnable load which should be moved
9345  * to restore balance.
9346  *
9347  * @env: The load balancing environment.
9348  *
9349  * Return:	- The busiest group if imbalance exists.
9350  */
9351 static struct sched_group *find_busiest_group(struct lb_env *env)
9352 {
9353 	struct sg_lb_stats *local, *busiest;
9354 	struct sd_lb_stats sds;
9355 
9356 	init_sd_lb_stats(&sds);
9357 
9358 	/*
9359 	 * Compute the various statistics relevant for load balancing at
9360 	 * this level.
9361 	 */
9362 	update_sd_lb_stats(env, &sds);
9363 
9364 	if (sched_energy_enabled()) {
9365 		struct root_domain *rd = env->dst_rq->rd;
9366 
9367 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9368 			goto out_balanced;
9369 	}
9370 
9371 	local = &sds.local_stat;
9372 	busiest = &sds.busiest_stat;
9373 
9374 	/* There is no busy sibling group to pull tasks from */
9375 	if (!sds.busiest)
9376 		goto out_balanced;
9377 
9378 	/* Misfit tasks should be dealt with regardless of the avg load */
9379 	if (busiest->group_type == group_misfit_task)
9380 		goto force_balance;
9381 
9382 	/* ASYM feature bypasses nice load balance check */
9383 	if (busiest->group_type == group_asym_packing)
9384 		goto force_balance;
9385 
9386 	/*
9387 	 * If the busiest group is imbalanced the below checks don't
9388 	 * work because they assume all things are equal, which typically
9389 	 * isn't true due to cpus_ptr constraints and the like.
9390 	 */
9391 	if (busiest->group_type == group_imbalanced)
9392 		goto force_balance;
9393 
9394 	/*
9395 	 * If the local group is busier than the selected busiest group
9396 	 * don't try and pull any tasks.
9397 	 */
9398 	if (local->group_type > busiest->group_type)
9399 		goto out_balanced;
9400 
9401 	/*
9402 	 * When groups are overloaded, use the avg_load to ensure fairness
9403 	 * between tasks.
9404 	 */
9405 	if (local->group_type == group_overloaded) {
9406 		/*
9407 		 * If the local group is more loaded than the selected
9408 		 * busiest group don't try to pull any tasks.
9409 		 */
9410 		if (local->avg_load >= busiest->avg_load)
9411 			goto out_balanced;
9412 
9413 		/* XXX broken for overlapping NUMA groups */
9414 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9415 				sds.total_capacity;
9416 
9417 		/*
9418 		 * Don't pull any tasks if this group is already above the
9419 		 * domain average load.
9420 		 */
9421 		if (local->avg_load >= sds.avg_load)
9422 			goto out_balanced;
9423 
9424 		/*
9425 		 * If the busiest group is more loaded, use imbalance_pct to be
9426 		 * conservative.
9427 		 */
9428 		if (100 * busiest->avg_load <=
9429 				env->sd->imbalance_pct * local->avg_load)
9430 			goto out_balanced;
9431 	}
9432 
9433 	/* Try to move all excess tasks to child's sibling domain */
9434 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9435 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9436 		goto force_balance;
9437 
9438 	if (busiest->group_type != group_overloaded) {
9439 		if (env->idle == CPU_NOT_IDLE)
9440 			/*
9441 			 * If the busiest group is not overloaded (and as a
9442 			 * result the local one too) but this CPU is already
9443 			 * busy, let another idle CPU try to pull task.
9444 			 */
9445 			goto out_balanced;
9446 
9447 		if (busiest->group_weight > 1 &&
9448 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9449 			/*
9450 			 * If the busiest group is not overloaded
9451 			 * and there is no imbalance between this and busiest
9452 			 * group wrt idle CPUs, it is balanced. The imbalance
9453 			 * becomes significant if the diff is greater than 1
9454 			 * otherwise we might end up to just move the imbalance
9455 			 * on another group. Of course this applies only if
9456 			 * there is more than 1 CPU per group.
9457 			 */
9458 			goto out_balanced;
9459 
9460 		if (busiest->sum_h_nr_running == 1)
9461 			/*
9462 			 * busiest doesn't have any tasks waiting to run
9463 			 */
9464 			goto out_balanced;
9465 	}
9466 
9467 force_balance:
9468 	/* Looks like there is an imbalance. Compute it */
9469 	calculate_imbalance(env, &sds);
9470 	return env->imbalance ? sds.busiest : NULL;
9471 
9472 out_balanced:
9473 	env->imbalance = 0;
9474 	return NULL;
9475 }
9476 
9477 /*
9478  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9479  */
9480 static struct rq *find_busiest_queue(struct lb_env *env,
9481 				     struct sched_group *group)
9482 {
9483 	struct rq *busiest = NULL, *rq;
9484 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9485 	unsigned int busiest_nr = 0;
9486 	int i;
9487 
9488 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9489 		unsigned long capacity, load, util;
9490 		unsigned int nr_running;
9491 		enum fbq_type rt;
9492 
9493 		rq = cpu_rq(i);
9494 		rt = fbq_classify_rq(rq);
9495 
9496 		/*
9497 		 * We classify groups/runqueues into three groups:
9498 		 *  - regular: there are !numa tasks
9499 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9500 		 *  - all:     there is no distinction
9501 		 *
9502 		 * In order to avoid migrating ideally placed numa tasks,
9503 		 * ignore those when there's better options.
9504 		 *
9505 		 * If we ignore the actual busiest queue to migrate another
9506 		 * task, the next balance pass can still reduce the busiest
9507 		 * queue by moving tasks around inside the node.
9508 		 *
9509 		 * If we cannot move enough load due to this classification
9510 		 * the next pass will adjust the group classification and
9511 		 * allow migration of more tasks.
9512 		 *
9513 		 * Both cases only affect the total convergence complexity.
9514 		 */
9515 		if (rt > env->fbq_type)
9516 			continue;
9517 
9518 		nr_running = rq->cfs.h_nr_running;
9519 		if (!nr_running)
9520 			continue;
9521 
9522 		capacity = capacity_of(i);
9523 
9524 		/*
9525 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9526 		 * eventually lead to active_balancing high->low capacity.
9527 		 * Higher per-CPU capacity is considered better than balancing
9528 		 * average load.
9529 		 */
9530 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9531 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9532 		    nr_running == 1)
9533 			continue;
9534 
9535 		switch (env->migration_type) {
9536 		case migrate_load:
9537 			/*
9538 			 * When comparing with load imbalance, use cpu_load()
9539 			 * which is not scaled with the CPU capacity.
9540 			 */
9541 			load = cpu_load(rq);
9542 
9543 			if (nr_running == 1 && load > env->imbalance &&
9544 			    !check_cpu_capacity(rq, env->sd))
9545 				break;
9546 
9547 			/*
9548 			 * For the load comparisons with the other CPUs,
9549 			 * consider the cpu_load() scaled with the CPU
9550 			 * capacity, so that the load can be moved away
9551 			 * from the CPU that is potentially running at a
9552 			 * lower capacity.
9553 			 *
9554 			 * Thus we're looking for max(load_i / capacity_i),
9555 			 * crosswise multiplication to rid ourselves of the
9556 			 * division works out to:
9557 			 * load_i * capacity_j > load_j * capacity_i;
9558 			 * where j is our previous maximum.
9559 			 */
9560 			if (load * busiest_capacity > busiest_load * capacity) {
9561 				busiest_load = load;
9562 				busiest_capacity = capacity;
9563 				busiest = rq;
9564 			}
9565 			break;
9566 
9567 		case migrate_util:
9568 			util = cpu_util(cpu_of(rq));
9569 
9570 			/*
9571 			 * Don't try to pull utilization from a CPU with one
9572 			 * running task. Whatever its utilization, we will fail
9573 			 * detach the task.
9574 			 */
9575 			if (nr_running <= 1)
9576 				continue;
9577 
9578 			if (busiest_util < util) {
9579 				busiest_util = util;
9580 				busiest = rq;
9581 			}
9582 			break;
9583 
9584 		case migrate_task:
9585 			if (busiest_nr < nr_running) {
9586 				busiest_nr = nr_running;
9587 				busiest = rq;
9588 			}
9589 			break;
9590 
9591 		case migrate_misfit:
9592 			/*
9593 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9594 			 * simply seek the "biggest" misfit task.
9595 			 */
9596 			if (rq->misfit_task_load > busiest_load) {
9597 				busiest_load = rq->misfit_task_load;
9598 				busiest = rq;
9599 			}
9600 
9601 			break;
9602 
9603 		}
9604 	}
9605 
9606 	return busiest;
9607 }
9608 
9609 /*
9610  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9611  * so long as it is large enough.
9612  */
9613 #define MAX_PINNED_INTERVAL	512
9614 
9615 static inline bool
9616 asym_active_balance(struct lb_env *env)
9617 {
9618 	/*
9619 	 * ASYM_PACKING needs to force migrate tasks from busy but
9620 	 * lower priority CPUs in order to pack all tasks in the
9621 	 * highest priority CPUs.
9622 	 */
9623 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9624 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9625 }
9626 
9627 static inline bool
9628 imbalanced_active_balance(struct lb_env *env)
9629 {
9630 	struct sched_domain *sd = env->sd;
9631 
9632 	/*
9633 	 * The imbalanced case includes the case of pinned tasks preventing a fair
9634 	 * distribution of the load on the system but also the even distribution of the
9635 	 * threads on a system with spare capacity
9636 	 */
9637 	if ((env->migration_type == migrate_task) &&
9638 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
9639 		return 1;
9640 
9641 	return 0;
9642 }
9643 
9644 static int need_active_balance(struct lb_env *env)
9645 {
9646 	struct sched_domain *sd = env->sd;
9647 
9648 	if (asym_active_balance(env))
9649 		return 1;
9650 
9651 	if (imbalanced_active_balance(env))
9652 		return 1;
9653 
9654 	/*
9655 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9656 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9657 	 * because of other sched_class or IRQs if more capacity stays
9658 	 * available on dst_cpu.
9659 	 */
9660 	if ((env->idle != CPU_NOT_IDLE) &&
9661 	    (env->src_rq->cfs.h_nr_running == 1)) {
9662 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9663 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9664 			return 1;
9665 	}
9666 
9667 	if (env->migration_type == migrate_misfit)
9668 		return 1;
9669 
9670 	return 0;
9671 }
9672 
9673 static int active_load_balance_cpu_stop(void *data);
9674 
9675 static int should_we_balance(struct lb_env *env)
9676 {
9677 	struct sched_group *sg = env->sd->groups;
9678 	int cpu;
9679 
9680 	/*
9681 	 * Ensure the balancing environment is consistent; can happen
9682 	 * when the softirq triggers 'during' hotplug.
9683 	 */
9684 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9685 		return 0;
9686 
9687 	/*
9688 	 * In the newly idle case, we will allow all the CPUs
9689 	 * to do the newly idle load balance.
9690 	 */
9691 	if (env->idle == CPU_NEWLY_IDLE)
9692 		return 1;
9693 
9694 	/* Try to find first idle CPU */
9695 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9696 		if (!idle_cpu(cpu))
9697 			continue;
9698 
9699 		/* Are we the first idle CPU? */
9700 		return cpu == env->dst_cpu;
9701 	}
9702 
9703 	/* Are we the first CPU of this group ? */
9704 	return group_balance_cpu(sg) == env->dst_cpu;
9705 }
9706 
9707 /*
9708  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9709  * tasks if there is an imbalance.
9710  */
9711 static int load_balance(int this_cpu, struct rq *this_rq,
9712 			struct sched_domain *sd, enum cpu_idle_type idle,
9713 			int *continue_balancing)
9714 {
9715 	int ld_moved, cur_ld_moved, active_balance = 0;
9716 	struct sched_domain *sd_parent = sd->parent;
9717 	struct sched_group *group;
9718 	struct rq *busiest;
9719 	struct rq_flags rf;
9720 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9721 
9722 	struct lb_env env = {
9723 		.sd		= sd,
9724 		.dst_cpu	= this_cpu,
9725 		.dst_rq		= this_rq,
9726 		.dst_grpmask    = sched_group_span(sd->groups),
9727 		.idle		= idle,
9728 		.loop_break	= sched_nr_migrate_break,
9729 		.cpus		= cpus,
9730 		.fbq_type	= all,
9731 		.tasks		= LIST_HEAD_INIT(env.tasks),
9732 	};
9733 
9734 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9735 
9736 	schedstat_inc(sd->lb_count[idle]);
9737 
9738 redo:
9739 	if (!should_we_balance(&env)) {
9740 		*continue_balancing = 0;
9741 		goto out_balanced;
9742 	}
9743 
9744 	group = find_busiest_group(&env);
9745 	if (!group) {
9746 		schedstat_inc(sd->lb_nobusyg[idle]);
9747 		goto out_balanced;
9748 	}
9749 
9750 	busiest = find_busiest_queue(&env, group);
9751 	if (!busiest) {
9752 		schedstat_inc(sd->lb_nobusyq[idle]);
9753 		goto out_balanced;
9754 	}
9755 
9756 	BUG_ON(busiest == env.dst_rq);
9757 
9758 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9759 
9760 	env.src_cpu = busiest->cpu;
9761 	env.src_rq = busiest;
9762 
9763 	ld_moved = 0;
9764 	/* Clear this flag as soon as we find a pullable task */
9765 	env.flags |= LBF_ALL_PINNED;
9766 	if (busiest->nr_running > 1) {
9767 		/*
9768 		 * Attempt to move tasks. If find_busiest_group has found
9769 		 * an imbalance but busiest->nr_running <= 1, the group is
9770 		 * still unbalanced. ld_moved simply stays zero, so it is
9771 		 * correctly treated as an imbalance.
9772 		 */
9773 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9774 
9775 more_balance:
9776 		rq_lock_irqsave(busiest, &rf);
9777 		update_rq_clock(busiest);
9778 
9779 		/*
9780 		 * cur_ld_moved - load moved in current iteration
9781 		 * ld_moved     - cumulative load moved across iterations
9782 		 */
9783 		cur_ld_moved = detach_tasks(&env);
9784 
9785 		/*
9786 		 * We've detached some tasks from busiest_rq. Every
9787 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9788 		 * unlock busiest->lock, and we are able to be sure
9789 		 * that nobody can manipulate the tasks in parallel.
9790 		 * See task_rq_lock() family for the details.
9791 		 */
9792 
9793 		rq_unlock(busiest, &rf);
9794 
9795 		if (cur_ld_moved) {
9796 			attach_tasks(&env);
9797 			ld_moved += cur_ld_moved;
9798 		}
9799 
9800 		local_irq_restore(rf.flags);
9801 
9802 		if (env.flags & LBF_NEED_BREAK) {
9803 			env.flags &= ~LBF_NEED_BREAK;
9804 			goto more_balance;
9805 		}
9806 
9807 		/*
9808 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9809 		 * us and move them to an alternate dst_cpu in our sched_group
9810 		 * where they can run. The upper limit on how many times we
9811 		 * iterate on same src_cpu is dependent on number of CPUs in our
9812 		 * sched_group.
9813 		 *
9814 		 * This changes load balance semantics a bit on who can move
9815 		 * load to a given_cpu. In addition to the given_cpu itself
9816 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9817 		 * nohz-idle), we now have balance_cpu in a position to move
9818 		 * load to given_cpu. In rare situations, this may cause
9819 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9820 		 * _independently_ and at _same_ time to move some load to
9821 		 * given_cpu) causing excess load to be moved to given_cpu.
9822 		 * This however should not happen so much in practice and
9823 		 * moreover subsequent load balance cycles should correct the
9824 		 * excess load moved.
9825 		 */
9826 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9827 
9828 			/* Prevent to re-select dst_cpu via env's CPUs */
9829 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9830 
9831 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9832 			env.dst_cpu	 = env.new_dst_cpu;
9833 			env.flags	&= ~LBF_DST_PINNED;
9834 			env.loop	 = 0;
9835 			env.loop_break	 = sched_nr_migrate_break;
9836 
9837 			/*
9838 			 * Go back to "more_balance" rather than "redo" since we
9839 			 * need to continue with same src_cpu.
9840 			 */
9841 			goto more_balance;
9842 		}
9843 
9844 		/*
9845 		 * We failed to reach balance because of affinity.
9846 		 */
9847 		if (sd_parent) {
9848 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9849 
9850 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9851 				*group_imbalance = 1;
9852 		}
9853 
9854 		/* All tasks on this runqueue were pinned by CPU affinity */
9855 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9856 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9857 			/*
9858 			 * Attempting to continue load balancing at the current
9859 			 * sched_domain level only makes sense if there are
9860 			 * active CPUs remaining as possible busiest CPUs to
9861 			 * pull load from which are not contained within the
9862 			 * destination group that is receiving any migrated
9863 			 * load.
9864 			 */
9865 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9866 				env.loop = 0;
9867 				env.loop_break = sched_nr_migrate_break;
9868 				goto redo;
9869 			}
9870 			goto out_all_pinned;
9871 		}
9872 	}
9873 
9874 	if (!ld_moved) {
9875 		schedstat_inc(sd->lb_failed[idle]);
9876 		/*
9877 		 * Increment the failure counter only on periodic balance.
9878 		 * We do not want newidle balance, which can be very
9879 		 * frequent, pollute the failure counter causing
9880 		 * excessive cache_hot migrations and active balances.
9881 		 */
9882 		if (idle != CPU_NEWLY_IDLE)
9883 			sd->nr_balance_failed++;
9884 
9885 		if (need_active_balance(&env)) {
9886 			unsigned long flags;
9887 
9888 			raw_spin_rq_lock_irqsave(busiest, flags);
9889 
9890 			/*
9891 			 * Don't kick the active_load_balance_cpu_stop,
9892 			 * if the curr task on busiest CPU can't be
9893 			 * moved to this_cpu:
9894 			 */
9895 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9896 				raw_spin_rq_unlock_irqrestore(busiest, flags);
9897 				goto out_one_pinned;
9898 			}
9899 
9900 			/* Record that we found at least one task that could run on this_cpu */
9901 			env.flags &= ~LBF_ALL_PINNED;
9902 
9903 			/*
9904 			 * ->active_balance synchronizes accesses to
9905 			 * ->active_balance_work.  Once set, it's cleared
9906 			 * only after active load balance is finished.
9907 			 */
9908 			if (!busiest->active_balance) {
9909 				busiest->active_balance = 1;
9910 				busiest->push_cpu = this_cpu;
9911 				active_balance = 1;
9912 			}
9913 			raw_spin_rq_unlock_irqrestore(busiest, flags);
9914 
9915 			if (active_balance) {
9916 				stop_one_cpu_nowait(cpu_of(busiest),
9917 					active_load_balance_cpu_stop, busiest,
9918 					&busiest->active_balance_work);
9919 			}
9920 		}
9921 	} else {
9922 		sd->nr_balance_failed = 0;
9923 	}
9924 
9925 	if (likely(!active_balance) || need_active_balance(&env)) {
9926 		/* We were unbalanced, so reset the balancing interval */
9927 		sd->balance_interval = sd->min_interval;
9928 	}
9929 
9930 	goto out;
9931 
9932 out_balanced:
9933 	/*
9934 	 * We reach balance although we may have faced some affinity
9935 	 * constraints. Clear the imbalance flag only if other tasks got
9936 	 * a chance to move and fix the imbalance.
9937 	 */
9938 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9939 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9940 
9941 		if (*group_imbalance)
9942 			*group_imbalance = 0;
9943 	}
9944 
9945 out_all_pinned:
9946 	/*
9947 	 * We reach balance because all tasks are pinned at this level so
9948 	 * we can't migrate them. Let the imbalance flag set so parent level
9949 	 * can try to migrate them.
9950 	 */
9951 	schedstat_inc(sd->lb_balanced[idle]);
9952 
9953 	sd->nr_balance_failed = 0;
9954 
9955 out_one_pinned:
9956 	ld_moved = 0;
9957 
9958 	/*
9959 	 * newidle_balance() disregards balance intervals, so we could
9960 	 * repeatedly reach this code, which would lead to balance_interval
9961 	 * skyrocketing in a short amount of time. Skip the balance_interval
9962 	 * increase logic to avoid that.
9963 	 */
9964 	if (env.idle == CPU_NEWLY_IDLE)
9965 		goto out;
9966 
9967 	/* tune up the balancing interval */
9968 	if ((env.flags & LBF_ALL_PINNED &&
9969 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9970 	    sd->balance_interval < sd->max_interval)
9971 		sd->balance_interval *= 2;
9972 out:
9973 	return ld_moved;
9974 }
9975 
9976 static inline unsigned long
9977 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9978 {
9979 	unsigned long interval = sd->balance_interval;
9980 
9981 	if (cpu_busy)
9982 		interval *= sd->busy_factor;
9983 
9984 	/* scale ms to jiffies */
9985 	interval = msecs_to_jiffies(interval);
9986 
9987 	/*
9988 	 * Reduce likelihood of busy balancing at higher domains racing with
9989 	 * balancing at lower domains by preventing their balancing periods
9990 	 * from being multiples of each other.
9991 	 */
9992 	if (cpu_busy)
9993 		interval -= 1;
9994 
9995 	interval = clamp(interval, 1UL, max_load_balance_interval);
9996 
9997 	return interval;
9998 }
9999 
10000 static inline void
10001 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10002 {
10003 	unsigned long interval, next;
10004 
10005 	/* used by idle balance, so cpu_busy = 0 */
10006 	interval = get_sd_balance_interval(sd, 0);
10007 	next = sd->last_balance + interval;
10008 
10009 	if (time_after(*next_balance, next))
10010 		*next_balance = next;
10011 }
10012 
10013 /*
10014  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10015  * running tasks off the busiest CPU onto idle CPUs. It requires at
10016  * least 1 task to be running on each physical CPU where possible, and
10017  * avoids physical / logical imbalances.
10018  */
10019 static int active_load_balance_cpu_stop(void *data)
10020 {
10021 	struct rq *busiest_rq = data;
10022 	int busiest_cpu = cpu_of(busiest_rq);
10023 	int target_cpu = busiest_rq->push_cpu;
10024 	struct rq *target_rq = cpu_rq(target_cpu);
10025 	struct sched_domain *sd;
10026 	struct task_struct *p = NULL;
10027 	struct rq_flags rf;
10028 
10029 	rq_lock_irq(busiest_rq, &rf);
10030 	/*
10031 	 * Between queueing the stop-work and running it is a hole in which
10032 	 * CPUs can become inactive. We should not move tasks from or to
10033 	 * inactive CPUs.
10034 	 */
10035 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10036 		goto out_unlock;
10037 
10038 	/* Make sure the requested CPU hasn't gone down in the meantime: */
10039 	if (unlikely(busiest_cpu != smp_processor_id() ||
10040 		     !busiest_rq->active_balance))
10041 		goto out_unlock;
10042 
10043 	/* Is there any task to move? */
10044 	if (busiest_rq->nr_running <= 1)
10045 		goto out_unlock;
10046 
10047 	/*
10048 	 * This condition is "impossible", if it occurs
10049 	 * we need to fix it. Originally reported by
10050 	 * Bjorn Helgaas on a 128-CPU setup.
10051 	 */
10052 	BUG_ON(busiest_rq == target_rq);
10053 
10054 	/* Search for an sd spanning us and the target CPU. */
10055 	rcu_read_lock();
10056 	for_each_domain(target_cpu, sd) {
10057 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10058 			break;
10059 	}
10060 
10061 	if (likely(sd)) {
10062 		struct lb_env env = {
10063 			.sd		= sd,
10064 			.dst_cpu	= target_cpu,
10065 			.dst_rq		= target_rq,
10066 			.src_cpu	= busiest_rq->cpu,
10067 			.src_rq		= busiest_rq,
10068 			.idle		= CPU_IDLE,
10069 			.flags		= LBF_ACTIVE_LB,
10070 		};
10071 
10072 		schedstat_inc(sd->alb_count);
10073 		update_rq_clock(busiest_rq);
10074 
10075 		p = detach_one_task(&env);
10076 		if (p) {
10077 			schedstat_inc(sd->alb_pushed);
10078 			/* Active balancing done, reset the failure counter. */
10079 			sd->nr_balance_failed = 0;
10080 		} else {
10081 			schedstat_inc(sd->alb_failed);
10082 		}
10083 	}
10084 	rcu_read_unlock();
10085 out_unlock:
10086 	busiest_rq->active_balance = 0;
10087 	rq_unlock(busiest_rq, &rf);
10088 
10089 	if (p)
10090 		attach_one_task(target_rq, p);
10091 
10092 	local_irq_enable();
10093 
10094 	return 0;
10095 }
10096 
10097 static DEFINE_SPINLOCK(balancing);
10098 
10099 /*
10100  * Scale the max load_balance interval with the number of CPUs in the system.
10101  * This trades load-balance latency on larger machines for less cross talk.
10102  */
10103 void update_max_interval(void)
10104 {
10105 	max_load_balance_interval = HZ*num_online_cpus()/10;
10106 }
10107 
10108 /*
10109  * It checks each scheduling domain to see if it is due to be balanced,
10110  * and initiates a balancing operation if so.
10111  *
10112  * Balancing parameters are set up in init_sched_domains.
10113  */
10114 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10115 {
10116 	int continue_balancing = 1;
10117 	int cpu = rq->cpu;
10118 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10119 	unsigned long interval;
10120 	struct sched_domain *sd;
10121 	/* Earliest time when we have to do rebalance again */
10122 	unsigned long next_balance = jiffies + 60*HZ;
10123 	int update_next_balance = 0;
10124 	int need_serialize, need_decay = 0;
10125 	u64 max_cost = 0;
10126 
10127 	rcu_read_lock();
10128 	for_each_domain(cpu, sd) {
10129 		/*
10130 		 * Decay the newidle max times here because this is a regular
10131 		 * visit to all the domains. Decay ~1% per second.
10132 		 */
10133 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10134 			sd->max_newidle_lb_cost =
10135 				(sd->max_newidle_lb_cost * 253) / 256;
10136 			sd->next_decay_max_lb_cost = jiffies + HZ;
10137 			need_decay = 1;
10138 		}
10139 		max_cost += sd->max_newidle_lb_cost;
10140 
10141 		/*
10142 		 * Stop the load balance at this level. There is another
10143 		 * CPU in our sched group which is doing load balancing more
10144 		 * actively.
10145 		 */
10146 		if (!continue_balancing) {
10147 			if (need_decay)
10148 				continue;
10149 			break;
10150 		}
10151 
10152 		interval = get_sd_balance_interval(sd, busy);
10153 
10154 		need_serialize = sd->flags & SD_SERIALIZE;
10155 		if (need_serialize) {
10156 			if (!spin_trylock(&balancing))
10157 				goto out;
10158 		}
10159 
10160 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10161 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10162 				/*
10163 				 * The LBF_DST_PINNED logic could have changed
10164 				 * env->dst_cpu, so we can't know our idle
10165 				 * state even if we migrated tasks. Update it.
10166 				 */
10167 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10168 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10169 			}
10170 			sd->last_balance = jiffies;
10171 			interval = get_sd_balance_interval(sd, busy);
10172 		}
10173 		if (need_serialize)
10174 			spin_unlock(&balancing);
10175 out:
10176 		if (time_after(next_balance, sd->last_balance + interval)) {
10177 			next_balance = sd->last_balance + interval;
10178 			update_next_balance = 1;
10179 		}
10180 	}
10181 	if (need_decay) {
10182 		/*
10183 		 * Ensure the rq-wide value also decays but keep it at a
10184 		 * reasonable floor to avoid funnies with rq->avg_idle.
10185 		 */
10186 		rq->max_idle_balance_cost =
10187 			max((u64)sysctl_sched_migration_cost, max_cost);
10188 	}
10189 	rcu_read_unlock();
10190 
10191 	/*
10192 	 * next_balance will be updated only when there is a need.
10193 	 * When the cpu is attached to null domain for ex, it will not be
10194 	 * updated.
10195 	 */
10196 	if (likely(update_next_balance))
10197 		rq->next_balance = next_balance;
10198 
10199 }
10200 
10201 static inline int on_null_domain(struct rq *rq)
10202 {
10203 	return unlikely(!rcu_dereference_sched(rq->sd));
10204 }
10205 
10206 #ifdef CONFIG_NO_HZ_COMMON
10207 /*
10208  * idle load balancing details
10209  * - When one of the busy CPUs notice that there may be an idle rebalancing
10210  *   needed, they will kick the idle load balancer, which then does idle
10211  *   load balancing for all the idle CPUs.
10212  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10213  *   anywhere yet.
10214  */
10215 
10216 static inline int find_new_ilb(void)
10217 {
10218 	int ilb;
10219 
10220 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10221 			      housekeeping_cpumask(HK_FLAG_MISC)) {
10222 
10223 		if (ilb == smp_processor_id())
10224 			continue;
10225 
10226 		if (idle_cpu(ilb))
10227 			return ilb;
10228 	}
10229 
10230 	return nr_cpu_ids;
10231 }
10232 
10233 /*
10234  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10235  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10236  */
10237 static void kick_ilb(unsigned int flags)
10238 {
10239 	int ilb_cpu;
10240 
10241 	/*
10242 	 * Increase nohz.next_balance only when if full ilb is triggered but
10243 	 * not if we only update stats.
10244 	 */
10245 	if (flags & NOHZ_BALANCE_KICK)
10246 		nohz.next_balance = jiffies+1;
10247 
10248 	ilb_cpu = find_new_ilb();
10249 
10250 	if (ilb_cpu >= nr_cpu_ids)
10251 		return;
10252 
10253 	/*
10254 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10255 	 * the first flag owns it; cleared by nohz_csd_func().
10256 	 */
10257 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10258 	if (flags & NOHZ_KICK_MASK)
10259 		return;
10260 
10261 	/*
10262 	 * This way we generate an IPI on the target CPU which
10263 	 * is idle. And the softirq performing nohz idle load balance
10264 	 * will be run before returning from the IPI.
10265 	 */
10266 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10267 }
10268 
10269 /*
10270  * Current decision point for kicking the idle load balancer in the presence
10271  * of idle CPUs in the system.
10272  */
10273 static void nohz_balancer_kick(struct rq *rq)
10274 {
10275 	unsigned long now = jiffies;
10276 	struct sched_domain_shared *sds;
10277 	struct sched_domain *sd;
10278 	int nr_busy, i, cpu = rq->cpu;
10279 	unsigned int flags = 0;
10280 
10281 	if (unlikely(rq->idle_balance))
10282 		return;
10283 
10284 	/*
10285 	 * We may be recently in ticked or tickless idle mode. At the first
10286 	 * busy tick after returning from idle, we will update the busy stats.
10287 	 */
10288 	nohz_balance_exit_idle(rq);
10289 
10290 	/*
10291 	 * None are in tickless mode and hence no need for NOHZ idle load
10292 	 * balancing.
10293 	 */
10294 	if (likely(!atomic_read(&nohz.nr_cpus)))
10295 		return;
10296 
10297 	if (READ_ONCE(nohz.has_blocked) &&
10298 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10299 		flags = NOHZ_STATS_KICK;
10300 
10301 	if (time_before(now, nohz.next_balance))
10302 		goto out;
10303 
10304 	if (rq->nr_running >= 2) {
10305 		flags = NOHZ_KICK_MASK;
10306 		goto out;
10307 	}
10308 
10309 	rcu_read_lock();
10310 
10311 	sd = rcu_dereference(rq->sd);
10312 	if (sd) {
10313 		/*
10314 		 * If there's a CFS task and the current CPU has reduced
10315 		 * capacity; kick the ILB to see if there's a better CPU to run
10316 		 * on.
10317 		 */
10318 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10319 			flags = NOHZ_KICK_MASK;
10320 			goto unlock;
10321 		}
10322 	}
10323 
10324 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10325 	if (sd) {
10326 		/*
10327 		 * When ASYM_PACKING; see if there's a more preferred CPU
10328 		 * currently idle; in which case, kick the ILB to move tasks
10329 		 * around.
10330 		 */
10331 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10332 			if (sched_asym_prefer(i, cpu)) {
10333 				flags = NOHZ_KICK_MASK;
10334 				goto unlock;
10335 			}
10336 		}
10337 	}
10338 
10339 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10340 	if (sd) {
10341 		/*
10342 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10343 		 * to run the misfit task on.
10344 		 */
10345 		if (check_misfit_status(rq, sd)) {
10346 			flags = NOHZ_KICK_MASK;
10347 			goto unlock;
10348 		}
10349 
10350 		/*
10351 		 * For asymmetric systems, we do not want to nicely balance
10352 		 * cache use, instead we want to embrace asymmetry and only
10353 		 * ensure tasks have enough CPU capacity.
10354 		 *
10355 		 * Skip the LLC logic because it's not relevant in that case.
10356 		 */
10357 		goto unlock;
10358 	}
10359 
10360 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10361 	if (sds) {
10362 		/*
10363 		 * If there is an imbalance between LLC domains (IOW we could
10364 		 * increase the overall cache use), we need some less-loaded LLC
10365 		 * domain to pull some load. Likewise, we may need to spread
10366 		 * load within the current LLC domain (e.g. packed SMT cores but
10367 		 * other CPUs are idle). We can't really know from here how busy
10368 		 * the others are - so just get a nohz balance going if it looks
10369 		 * like this LLC domain has tasks we could move.
10370 		 */
10371 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10372 		if (nr_busy > 1) {
10373 			flags = NOHZ_KICK_MASK;
10374 			goto unlock;
10375 		}
10376 	}
10377 unlock:
10378 	rcu_read_unlock();
10379 out:
10380 	if (flags)
10381 		kick_ilb(flags);
10382 }
10383 
10384 static void set_cpu_sd_state_busy(int cpu)
10385 {
10386 	struct sched_domain *sd;
10387 
10388 	rcu_read_lock();
10389 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10390 
10391 	if (!sd || !sd->nohz_idle)
10392 		goto unlock;
10393 	sd->nohz_idle = 0;
10394 
10395 	atomic_inc(&sd->shared->nr_busy_cpus);
10396 unlock:
10397 	rcu_read_unlock();
10398 }
10399 
10400 void nohz_balance_exit_idle(struct rq *rq)
10401 {
10402 	SCHED_WARN_ON(rq != this_rq());
10403 
10404 	if (likely(!rq->nohz_tick_stopped))
10405 		return;
10406 
10407 	rq->nohz_tick_stopped = 0;
10408 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10409 	atomic_dec(&nohz.nr_cpus);
10410 
10411 	set_cpu_sd_state_busy(rq->cpu);
10412 }
10413 
10414 static void set_cpu_sd_state_idle(int cpu)
10415 {
10416 	struct sched_domain *sd;
10417 
10418 	rcu_read_lock();
10419 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10420 
10421 	if (!sd || sd->nohz_idle)
10422 		goto unlock;
10423 	sd->nohz_idle = 1;
10424 
10425 	atomic_dec(&sd->shared->nr_busy_cpus);
10426 unlock:
10427 	rcu_read_unlock();
10428 }
10429 
10430 /*
10431  * This routine will record that the CPU is going idle with tick stopped.
10432  * This info will be used in performing idle load balancing in the future.
10433  */
10434 void nohz_balance_enter_idle(int cpu)
10435 {
10436 	struct rq *rq = cpu_rq(cpu);
10437 
10438 	SCHED_WARN_ON(cpu != smp_processor_id());
10439 
10440 	/* If this CPU is going down, then nothing needs to be done: */
10441 	if (!cpu_active(cpu))
10442 		return;
10443 
10444 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10445 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10446 		return;
10447 
10448 	/*
10449 	 * Can be set safely without rq->lock held
10450 	 * If a clear happens, it will have evaluated last additions because
10451 	 * rq->lock is held during the check and the clear
10452 	 */
10453 	rq->has_blocked_load = 1;
10454 
10455 	/*
10456 	 * The tick is still stopped but load could have been added in the
10457 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10458 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10459 	 * of nohz.has_blocked can only happen after checking the new load
10460 	 */
10461 	if (rq->nohz_tick_stopped)
10462 		goto out;
10463 
10464 	/* If we're a completely isolated CPU, we don't play: */
10465 	if (on_null_domain(rq))
10466 		return;
10467 
10468 	rq->nohz_tick_stopped = 1;
10469 
10470 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10471 	atomic_inc(&nohz.nr_cpus);
10472 
10473 	/*
10474 	 * Ensures that if nohz_idle_balance() fails to observe our
10475 	 * @idle_cpus_mask store, it must observe the @has_blocked
10476 	 * store.
10477 	 */
10478 	smp_mb__after_atomic();
10479 
10480 	set_cpu_sd_state_idle(cpu);
10481 
10482 out:
10483 	/*
10484 	 * Each time a cpu enter idle, we assume that it has blocked load and
10485 	 * enable the periodic update of the load of idle cpus
10486 	 */
10487 	WRITE_ONCE(nohz.has_blocked, 1);
10488 }
10489 
10490 static bool update_nohz_stats(struct rq *rq)
10491 {
10492 	unsigned int cpu = rq->cpu;
10493 
10494 	if (!rq->has_blocked_load)
10495 		return false;
10496 
10497 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10498 		return false;
10499 
10500 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10501 		return true;
10502 
10503 	update_blocked_averages(cpu);
10504 
10505 	return rq->has_blocked_load;
10506 }
10507 
10508 /*
10509  * Internal function that runs load balance for all idle cpus. The load balance
10510  * can be a simple update of blocked load or a complete load balance with
10511  * tasks movement depending of flags.
10512  */
10513 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10514 			       enum cpu_idle_type idle)
10515 {
10516 	/* Earliest time when we have to do rebalance again */
10517 	unsigned long now = jiffies;
10518 	unsigned long next_balance = now + 60*HZ;
10519 	bool has_blocked_load = false;
10520 	int update_next_balance = 0;
10521 	int this_cpu = this_rq->cpu;
10522 	int balance_cpu;
10523 	struct rq *rq;
10524 
10525 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10526 
10527 	/*
10528 	 * We assume there will be no idle load after this update and clear
10529 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10530 	 * set the has_blocked flag and trig another update of idle load.
10531 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10532 	 * setting the flag, we are sure to not clear the state and not
10533 	 * check the load of an idle cpu.
10534 	 */
10535 	WRITE_ONCE(nohz.has_blocked, 0);
10536 
10537 	/*
10538 	 * Ensures that if we miss the CPU, we must see the has_blocked
10539 	 * store from nohz_balance_enter_idle().
10540 	 */
10541 	smp_mb();
10542 
10543 	/*
10544 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10545 	 * chance for other idle cpu to pull load.
10546 	 */
10547 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
10548 		if (!idle_cpu(balance_cpu))
10549 			continue;
10550 
10551 		/*
10552 		 * If this CPU gets work to do, stop the load balancing
10553 		 * work being done for other CPUs. Next load
10554 		 * balancing owner will pick it up.
10555 		 */
10556 		if (need_resched()) {
10557 			has_blocked_load = true;
10558 			goto abort;
10559 		}
10560 
10561 		rq = cpu_rq(balance_cpu);
10562 
10563 		has_blocked_load |= update_nohz_stats(rq);
10564 
10565 		/*
10566 		 * If time for next balance is due,
10567 		 * do the balance.
10568 		 */
10569 		if (time_after_eq(jiffies, rq->next_balance)) {
10570 			struct rq_flags rf;
10571 
10572 			rq_lock_irqsave(rq, &rf);
10573 			update_rq_clock(rq);
10574 			rq_unlock_irqrestore(rq, &rf);
10575 
10576 			if (flags & NOHZ_BALANCE_KICK)
10577 				rebalance_domains(rq, CPU_IDLE);
10578 		}
10579 
10580 		if (time_after(next_balance, rq->next_balance)) {
10581 			next_balance = rq->next_balance;
10582 			update_next_balance = 1;
10583 		}
10584 	}
10585 
10586 	/*
10587 	 * next_balance will be updated only when there is a need.
10588 	 * When the CPU is attached to null domain for ex, it will not be
10589 	 * updated.
10590 	 */
10591 	if (likely(update_next_balance))
10592 		nohz.next_balance = next_balance;
10593 
10594 	WRITE_ONCE(nohz.next_blocked,
10595 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10596 
10597 abort:
10598 	/* There is still blocked load, enable periodic update */
10599 	if (has_blocked_load)
10600 		WRITE_ONCE(nohz.has_blocked, 1);
10601 }
10602 
10603 /*
10604  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10605  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10606  */
10607 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10608 {
10609 	unsigned int flags = this_rq->nohz_idle_balance;
10610 
10611 	if (!flags)
10612 		return false;
10613 
10614 	this_rq->nohz_idle_balance = 0;
10615 
10616 	if (idle != CPU_IDLE)
10617 		return false;
10618 
10619 	_nohz_idle_balance(this_rq, flags, idle);
10620 
10621 	return true;
10622 }
10623 
10624 /*
10625  * Check if we need to run the ILB for updating blocked load before entering
10626  * idle state.
10627  */
10628 void nohz_run_idle_balance(int cpu)
10629 {
10630 	unsigned int flags;
10631 
10632 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10633 
10634 	/*
10635 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10636 	 * (ie NOHZ_STATS_KICK set) and will do the same.
10637 	 */
10638 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10639 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10640 }
10641 
10642 static void nohz_newidle_balance(struct rq *this_rq)
10643 {
10644 	int this_cpu = this_rq->cpu;
10645 
10646 	/*
10647 	 * This CPU doesn't want to be disturbed by scheduler
10648 	 * housekeeping
10649 	 */
10650 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10651 		return;
10652 
10653 	/* Will wake up very soon. No time for doing anything else*/
10654 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10655 		return;
10656 
10657 	/* Don't need to update blocked load of idle CPUs*/
10658 	if (!READ_ONCE(nohz.has_blocked) ||
10659 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10660 		return;
10661 
10662 	/*
10663 	 * Set the need to trigger ILB in order to update blocked load
10664 	 * before entering idle state.
10665 	 */
10666 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10667 }
10668 
10669 #else /* !CONFIG_NO_HZ_COMMON */
10670 static inline void nohz_balancer_kick(struct rq *rq) { }
10671 
10672 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10673 {
10674 	return false;
10675 }
10676 
10677 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10678 #endif /* CONFIG_NO_HZ_COMMON */
10679 
10680 /*
10681  * newidle_balance is called by schedule() if this_cpu is about to become
10682  * idle. Attempts to pull tasks from other CPUs.
10683  *
10684  * Returns:
10685  *   < 0 - we released the lock and there are !fair tasks present
10686  *     0 - failed, no new tasks
10687  *   > 0 - success, new (fair) tasks present
10688  */
10689 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10690 {
10691 	unsigned long next_balance = jiffies + HZ;
10692 	int this_cpu = this_rq->cpu;
10693 	struct sched_domain *sd;
10694 	int pulled_task = 0;
10695 	u64 curr_cost = 0;
10696 
10697 	update_misfit_status(NULL, this_rq);
10698 
10699 	/*
10700 	 * There is a task waiting to run. No need to search for one.
10701 	 * Return 0; the task will be enqueued when switching to idle.
10702 	 */
10703 	if (this_rq->ttwu_pending)
10704 		return 0;
10705 
10706 	/*
10707 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10708 	 * measure the duration of idle_balance() as idle time.
10709 	 */
10710 	this_rq->idle_stamp = rq_clock(this_rq);
10711 
10712 	/*
10713 	 * Do not pull tasks towards !active CPUs...
10714 	 */
10715 	if (!cpu_active(this_cpu))
10716 		return 0;
10717 
10718 	/*
10719 	 * This is OK, because current is on_cpu, which avoids it being picked
10720 	 * for load-balance and preemption/IRQs are still disabled avoiding
10721 	 * further scheduler activity on it and we're being very careful to
10722 	 * re-start the picking loop.
10723 	 */
10724 	rq_unpin_lock(this_rq, rf);
10725 
10726 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10727 	    !READ_ONCE(this_rq->rd->overload)) {
10728 
10729 		rcu_read_lock();
10730 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10731 		if (sd)
10732 			update_next_balance(sd, &next_balance);
10733 		rcu_read_unlock();
10734 
10735 		goto out;
10736 	}
10737 
10738 	raw_spin_rq_unlock(this_rq);
10739 
10740 	update_blocked_averages(this_cpu);
10741 	rcu_read_lock();
10742 	for_each_domain(this_cpu, sd) {
10743 		int continue_balancing = 1;
10744 		u64 t0, domain_cost;
10745 
10746 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10747 			update_next_balance(sd, &next_balance);
10748 			break;
10749 		}
10750 
10751 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10752 			t0 = sched_clock_cpu(this_cpu);
10753 
10754 			pulled_task = load_balance(this_cpu, this_rq,
10755 						   sd, CPU_NEWLY_IDLE,
10756 						   &continue_balancing);
10757 
10758 			domain_cost = sched_clock_cpu(this_cpu) - t0;
10759 			if (domain_cost > sd->max_newidle_lb_cost)
10760 				sd->max_newidle_lb_cost = domain_cost;
10761 
10762 			curr_cost += domain_cost;
10763 		}
10764 
10765 		update_next_balance(sd, &next_balance);
10766 
10767 		/*
10768 		 * Stop searching for tasks to pull if there are
10769 		 * now runnable tasks on this rq.
10770 		 */
10771 		if (pulled_task || this_rq->nr_running > 0 ||
10772 		    this_rq->ttwu_pending)
10773 			break;
10774 	}
10775 	rcu_read_unlock();
10776 
10777 	raw_spin_rq_lock(this_rq);
10778 
10779 	if (curr_cost > this_rq->max_idle_balance_cost)
10780 		this_rq->max_idle_balance_cost = curr_cost;
10781 
10782 	/*
10783 	 * While browsing the domains, we released the rq lock, a task could
10784 	 * have been enqueued in the meantime. Since we're not going idle,
10785 	 * pretend we pulled a task.
10786 	 */
10787 	if (this_rq->cfs.h_nr_running && !pulled_task)
10788 		pulled_task = 1;
10789 
10790 	/* Is there a task of a high priority class? */
10791 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10792 		pulled_task = -1;
10793 
10794 out:
10795 	/* Move the next balance forward */
10796 	if (time_after(this_rq->next_balance, next_balance))
10797 		this_rq->next_balance = next_balance;
10798 
10799 	if (pulled_task)
10800 		this_rq->idle_stamp = 0;
10801 	else
10802 		nohz_newidle_balance(this_rq);
10803 
10804 	rq_repin_lock(this_rq, rf);
10805 
10806 	return pulled_task;
10807 }
10808 
10809 /*
10810  * run_rebalance_domains is triggered when needed from the scheduler tick.
10811  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10812  */
10813 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10814 {
10815 	struct rq *this_rq = this_rq();
10816 	enum cpu_idle_type idle = this_rq->idle_balance ?
10817 						CPU_IDLE : CPU_NOT_IDLE;
10818 
10819 	/*
10820 	 * If this CPU has a pending nohz_balance_kick, then do the
10821 	 * balancing on behalf of the other idle CPUs whose ticks are
10822 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10823 	 * give the idle CPUs a chance to load balance. Else we may
10824 	 * load balance only within the local sched_domain hierarchy
10825 	 * and abort nohz_idle_balance altogether if we pull some load.
10826 	 */
10827 	if (nohz_idle_balance(this_rq, idle))
10828 		return;
10829 
10830 	/* normal load balance */
10831 	update_blocked_averages(this_rq->cpu);
10832 	rebalance_domains(this_rq, idle);
10833 }
10834 
10835 /*
10836  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10837  */
10838 void trigger_load_balance(struct rq *rq)
10839 {
10840 	/*
10841 	 * Don't need to rebalance while attached to NULL domain or
10842 	 * runqueue CPU is not active
10843 	 */
10844 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
10845 		return;
10846 
10847 	if (time_after_eq(jiffies, rq->next_balance))
10848 		raise_softirq(SCHED_SOFTIRQ);
10849 
10850 	nohz_balancer_kick(rq);
10851 }
10852 
10853 static void rq_online_fair(struct rq *rq)
10854 {
10855 	update_sysctl();
10856 
10857 	update_runtime_enabled(rq);
10858 }
10859 
10860 static void rq_offline_fair(struct rq *rq)
10861 {
10862 	update_sysctl();
10863 
10864 	/* Ensure any throttled groups are reachable by pick_next_task */
10865 	unthrottle_offline_cfs_rqs(rq);
10866 }
10867 
10868 #endif /* CONFIG_SMP */
10869 
10870 #ifdef CONFIG_SCHED_CORE
10871 static inline bool
10872 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
10873 {
10874 	u64 slice = sched_slice(cfs_rq_of(se), se);
10875 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
10876 
10877 	return (rtime * min_nr_tasks > slice);
10878 }
10879 
10880 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
10881 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
10882 {
10883 	if (!sched_core_enabled(rq))
10884 		return;
10885 
10886 	/*
10887 	 * If runqueue has only one task which used up its slice and
10888 	 * if the sibling is forced idle, then trigger schedule to
10889 	 * give forced idle task a chance.
10890 	 *
10891 	 * sched_slice() considers only this active rq and it gets the
10892 	 * whole slice. But during force idle, we have siblings acting
10893 	 * like a single runqueue and hence we need to consider runnable
10894 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
10895 	 * go through the forced idle rq, but that would be a perf hit.
10896 	 * We can assume that the forced idle CPU has at least
10897 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
10898 	 * if we need to give up the CPU.
10899 	 */
10900 	if (rq->core->core_forceidle && rq->cfs.nr_running == 1 &&
10901 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
10902 		resched_curr(rq);
10903 }
10904 
10905 /*
10906  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
10907  */
10908 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
10909 {
10910 	for_each_sched_entity(se) {
10911 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10912 
10913 		if (forceidle) {
10914 			if (cfs_rq->forceidle_seq == fi_seq)
10915 				break;
10916 			cfs_rq->forceidle_seq = fi_seq;
10917 		}
10918 
10919 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
10920 	}
10921 }
10922 
10923 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
10924 {
10925 	struct sched_entity *se = &p->se;
10926 
10927 	if (p->sched_class != &fair_sched_class)
10928 		return;
10929 
10930 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
10931 }
10932 
10933 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
10934 {
10935 	struct rq *rq = task_rq(a);
10936 	struct sched_entity *sea = &a->se;
10937 	struct sched_entity *seb = &b->se;
10938 	struct cfs_rq *cfs_rqa;
10939 	struct cfs_rq *cfs_rqb;
10940 	s64 delta;
10941 
10942 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
10943 
10944 #ifdef CONFIG_FAIR_GROUP_SCHED
10945 	/*
10946 	 * Find an se in the hierarchy for tasks a and b, such that the se's
10947 	 * are immediate siblings.
10948 	 */
10949 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
10950 		int sea_depth = sea->depth;
10951 		int seb_depth = seb->depth;
10952 
10953 		if (sea_depth >= seb_depth)
10954 			sea = parent_entity(sea);
10955 		if (sea_depth <= seb_depth)
10956 			seb = parent_entity(seb);
10957 	}
10958 
10959 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
10960 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
10961 
10962 	cfs_rqa = sea->cfs_rq;
10963 	cfs_rqb = seb->cfs_rq;
10964 #else
10965 	cfs_rqa = &task_rq(a)->cfs;
10966 	cfs_rqb = &task_rq(b)->cfs;
10967 #endif
10968 
10969 	/*
10970 	 * Find delta after normalizing se's vruntime with its cfs_rq's
10971 	 * min_vruntime_fi, which would have been updated in prior calls
10972 	 * to se_fi_update().
10973 	 */
10974 	delta = (s64)(sea->vruntime - seb->vruntime) +
10975 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
10976 
10977 	return delta > 0;
10978 }
10979 #else
10980 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
10981 #endif
10982 
10983 /*
10984  * scheduler tick hitting a task of our scheduling class.
10985  *
10986  * NOTE: This function can be called remotely by the tick offload that
10987  * goes along full dynticks. Therefore no local assumption can be made
10988  * and everything must be accessed through the @rq and @curr passed in
10989  * parameters.
10990  */
10991 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10992 {
10993 	struct cfs_rq *cfs_rq;
10994 	struct sched_entity *se = &curr->se;
10995 
10996 	for_each_sched_entity(se) {
10997 		cfs_rq = cfs_rq_of(se);
10998 		entity_tick(cfs_rq, se, queued);
10999 	}
11000 
11001 	if (static_branch_unlikely(&sched_numa_balancing))
11002 		task_tick_numa(rq, curr);
11003 
11004 	update_misfit_status(curr, rq);
11005 	update_overutilized_status(task_rq(curr));
11006 
11007 	task_tick_core(rq, curr);
11008 }
11009 
11010 /*
11011  * called on fork with the child task as argument from the parent's context
11012  *  - child not yet on the tasklist
11013  *  - preemption disabled
11014  */
11015 static void task_fork_fair(struct task_struct *p)
11016 {
11017 	struct cfs_rq *cfs_rq;
11018 	struct sched_entity *se = &p->se, *curr;
11019 	struct rq *rq = this_rq();
11020 	struct rq_flags rf;
11021 
11022 	rq_lock(rq, &rf);
11023 	update_rq_clock(rq);
11024 
11025 	cfs_rq = task_cfs_rq(current);
11026 	curr = cfs_rq->curr;
11027 	if (curr) {
11028 		update_curr(cfs_rq);
11029 		se->vruntime = curr->vruntime;
11030 	}
11031 	place_entity(cfs_rq, se, 1);
11032 
11033 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11034 		/*
11035 		 * Upon rescheduling, sched_class::put_prev_task() will place
11036 		 * 'current' within the tree based on its new key value.
11037 		 */
11038 		swap(curr->vruntime, se->vruntime);
11039 		resched_curr(rq);
11040 	}
11041 
11042 	se->vruntime -= cfs_rq->min_vruntime;
11043 	rq_unlock(rq, &rf);
11044 }
11045 
11046 /*
11047  * Priority of the task has changed. Check to see if we preempt
11048  * the current task.
11049  */
11050 static void
11051 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11052 {
11053 	if (!task_on_rq_queued(p))
11054 		return;
11055 
11056 	if (rq->cfs.nr_running == 1)
11057 		return;
11058 
11059 	/*
11060 	 * Reschedule if we are currently running on this runqueue and
11061 	 * our priority decreased, or if we are not currently running on
11062 	 * this runqueue and our priority is higher than the current's
11063 	 */
11064 	if (task_current(rq, p)) {
11065 		if (p->prio > oldprio)
11066 			resched_curr(rq);
11067 	} else
11068 		check_preempt_curr(rq, p, 0);
11069 }
11070 
11071 static inline bool vruntime_normalized(struct task_struct *p)
11072 {
11073 	struct sched_entity *se = &p->se;
11074 
11075 	/*
11076 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11077 	 * the dequeue_entity(.flags=0) will already have normalized the
11078 	 * vruntime.
11079 	 */
11080 	if (p->on_rq)
11081 		return true;
11082 
11083 	/*
11084 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
11085 	 * But there are some cases where it has already been normalized:
11086 	 *
11087 	 * - A forked child which is waiting for being woken up by
11088 	 *   wake_up_new_task().
11089 	 * - A task which has been woken up by try_to_wake_up() and
11090 	 *   waiting for actually being woken up by sched_ttwu_pending().
11091 	 */
11092 	if (!se->sum_exec_runtime ||
11093 	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11094 		return true;
11095 
11096 	return false;
11097 }
11098 
11099 #ifdef CONFIG_FAIR_GROUP_SCHED
11100 /*
11101  * Propagate the changes of the sched_entity across the tg tree to make it
11102  * visible to the root
11103  */
11104 static void propagate_entity_cfs_rq(struct sched_entity *se)
11105 {
11106 	struct cfs_rq *cfs_rq;
11107 
11108 	list_add_leaf_cfs_rq(cfs_rq_of(se));
11109 
11110 	/* Start to propagate at parent */
11111 	se = se->parent;
11112 
11113 	for_each_sched_entity(se) {
11114 		cfs_rq = cfs_rq_of(se);
11115 
11116 		if (!cfs_rq_throttled(cfs_rq)){
11117 			update_load_avg(cfs_rq, se, UPDATE_TG);
11118 			list_add_leaf_cfs_rq(cfs_rq);
11119 			continue;
11120 		}
11121 
11122 		if (list_add_leaf_cfs_rq(cfs_rq))
11123 			break;
11124 	}
11125 }
11126 #else
11127 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11128 #endif
11129 
11130 static void detach_entity_cfs_rq(struct sched_entity *se)
11131 {
11132 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11133 
11134 	/* Catch up with the cfs_rq and remove our load when we leave */
11135 	update_load_avg(cfs_rq, se, 0);
11136 	detach_entity_load_avg(cfs_rq, se);
11137 	update_tg_load_avg(cfs_rq);
11138 	propagate_entity_cfs_rq(se);
11139 }
11140 
11141 static void attach_entity_cfs_rq(struct sched_entity *se)
11142 {
11143 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11144 
11145 #ifdef CONFIG_FAIR_GROUP_SCHED
11146 	/*
11147 	 * Since the real-depth could have been changed (only FAIR
11148 	 * class maintain depth value), reset depth properly.
11149 	 */
11150 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11151 #endif
11152 
11153 	/* Synchronize entity with its cfs_rq */
11154 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11155 	attach_entity_load_avg(cfs_rq, se);
11156 	update_tg_load_avg(cfs_rq);
11157 	propagate_entity_cfs_rq(se);
11158 }
11159 
11160 static void detach_task_cfs_rq(struct task_struct *p)
11161 {
11162 	struct sched_entity *se = &p->se;
11163 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11164 
11165 	if (!vruntime_normalized(p)) {
11166 		/*
11167 		 * Fix up our vruntime so that the current sleep doesn't
11168 		 * cause 'unlimited' sleep bonus.
11169 		 */
11170 		place_entity(cfs_rq, se, 0);
11171 		se->vruntime -= cfs_rq->min_vruntime;
11172 	}
11173 
11174 	detach_entity_cfs_rq(se);
11175 }
11176 
11177 static void attach_task_cfs_rq(struct task_struct *p)
11178 {
11179 	struct sched_entity *se = &p->se;
11180 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11181 
11182 	attach_entity_cfs_rq(se);
11183 
11184 	if (!vruntime_normalized(p))
11185 		se->vruntime += cfs_rq->min_vruntime;
11186 }
11187 
11188 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11189 {
11190 	detach_task_cfs_rq(p);
11191 }
11192 
11193 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11194 {
11195 	attach_task_cfs_rq(p);
11196 
11197 	if (task_on_rq_queued(p)) {
11198 		/*
11199 		 * We were most likely switched from sched_rt, so
11200 		 * kick off the schedule if running, otherwise just see
11201 		 * if we can still preempt the current task.
11202 		 */
11203 		if (task_current(rq, p))
11204 			resched_curr(rq);
11205 		else
11206 			check_preempt_curr(rq, p, 0);
11207 	}
11208 }
11209 
11210 /* Account for a task changing its policy or group.
11211  *
11212  * This routine is mostly called to set cfs_rq->curr field when a task
11213  * migrates between groups/classes.
11214  */
11215 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11216 {
11217 	struct sched_entity *se = &p->se;
11218 
11219 #ifdef CONFIG_SMP
11220 	if (task_on_rq_queued(p)) {
11221 		/*
11222 		 * Move the next running task to the front of the list, so our
11223 		 * cfs_tasks list becomes MRU one.
11224 		 */
11225 		list_move(&se->group_node, &rq->cfs_tasks);
11226 	}
11227 #endif
11228 
11229 	for_each_sched_entity(se) {
11230 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11231 
11232 		set_next_entity(cfs_rq, se);
11233 		/* ensure bandwidth has been allocated on our new cfs_rq */
11234 		account_cfs_rq_runtime(cfs_rq, 0);
11235 	}
11236 }
11237 
11238 void init_cfs_rq(struct cfs_rq *cfs_rq)
11239 {
11240 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11241 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11242 #ifndef CONFIG_64BIT
11243 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11244 #endif
11245 #ifdef CONFIG_SMP
11246 	raw_spin_lock_init(&cfs_rq->removed.lock);
11247 #endif
11248 }
11249 
11250 #ifdef CONFIG_FAIR_GROUP_SCHED
11251 static void task_set_group_fair(struct task_struct *p)
11252 {
11253 	struct sched_entity *se = &p->se;
11254 
11255 	set_task_rq(p, task_cpu(p));
11256 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11257 }
11258 
11259 static void task_move_group_fair(struct task_struct *p)
11260 {
11261 	detach_task_cfs_rq(p);
11262 	set_task_rq(p, task_cpu(p));
11263 
11264 #ifdef CONFIG_SMP
11265 	/* Tell se's cfs_rq has been changed -- migrated */
11266 	p->se.avg.last_update_time = 0;
11267 #endif
11268 	attach_task_cfs_rq(p);
11269 }
11270 
11271 static void task_change_group_fair(struct task_struct *p, int type)
11272 {
11273 	switch (type) {
11274 	case TASK_SET_GROUP:
11275 		task_set_group_fair(p);
11276 		break;
11277 
11278 	case TASK_MOVE_GROUP:
11279 		task_move_group_fair(p);
11280 		break;
11281 	}
11282 }
11283 
11284 void free_fair_sched_group(struct task_group *tg)
11285 {
11286 	int i;
11287 
11288 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11289 
11290 	for_each_possible_cpu(i) {
11291 		if (tg->cfs_rq)
11292 			kfree(tg->cfs_rq[i]);
11293 		if (tg->se)
11294 			kfree(tg->se[i]);
11295 	}
11296 
11297 	kfree(tg->cfs_rq);
11298 	kfree(tg->se);
11299 }
11300 
11301 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11302 {
11303 	struct sched_entity *se;
11304 	struct cfs_rq *cfs_rq;
11305 	int i;
11306 
11307 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11308 	if (!tg->cfs_rq)
11309 		goto err;
11310 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11311 	if (!tg->se)
11312 		goto err;
11313 
11314 	tg->shares = NICE_0_LOAD;
11315 
11316 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11317 
11318 	for_each_possible_cpu(i) {
11319 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11320 				      GFP_KERNEL, cpu_to_node(i));
11321 		if (!cfs_rq)
11322 			goto err;
11323 
11324 		se = kzalloc_node(sizeof(struct sched_entity),
11325 				  GFP_KERNEL, cpu_to_node(i));
11326 		if (!se)
11327 			goto err_free_rq;
11328 
11329 		init_cfs_rq(cfs_rq);
11330 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11331 		init_entity_runnable_average(se);
11332 	}
11333 
11334 	return 1;
11335 
11336 err_free_rq:
11337 	kfree(cfs_rq);
11338 err:
11339 	return 0;
11340 }
11341 
11342 void online_fair_sched_group(struct task_group *tg)
11343 {
11344 	struct sched_entity *se;
11345 	struct rq_flags rf;
11346 	struct rq *rq;
11347 	int i;
11348 
11349 	for_each_possible_cpu(i) {
11350 		rq = cpu_rq(i);
11351 		se = tg->se[i];
11352 		rq_lock_irq(rq, &rf);
11353 		update_rq_clock(rq);
11354 		attach_entity_cfs_rq(se);
11355 		sync_throttle(tg, i);
11356 		rq_unlock_irq(rq, &rf);
11357 	}
11358 }
11359 
11360 void unregister_fair_sched_group(struct task_group *tg)
11361 {
11362 	unsigned long flags;
11363 	struct rq *rq;
11364 	int cpu;
11365 
11366 	for_each_possible_cpu(cpu) {
11367 		if (tg->se[cpu])
11368 			remove_entity_load_avg(tg->se[cpu]);
11369 
11370 		/*
11371 		 * Only empty task groups can be destroyed; so we can speculatively
11372 		 * check on_list without danger of it being re-added.
11373 		 */
11374 		if (!tg->cfs_rq[cpu]->on_list)
11375 			continue;
11376 
11377 		rq = cpu_rq(cpu);
11378 
11379 		raw_spin_rq_lock_irqsave(rq, flags);
11380 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11381 		raw_spin_rq_unlock_irqrestore(rq, flags);
11382 	}
11383 }
11384 
11385 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11386 			struct sched_entity *se, int cpu,
11387 			struct sched_entity *parent)
11388 {
11389 	struct rq *rq = cpu_rq(cpu);
11390 
11391 	cfs_rq->tg = tg;
11392 	cfs_rq->rq = rq;
11393 	init_cfs_rq_runtime(cfs_rq);
11394 
11395 	tg->cfs_rq[cpu] = cfs_rq;
11396 	tg->se[cpu] = se;
11397 
11398 	/* se could be NULL for root_task_group */
11399 	if (!se)
11400 		return;
11401 
11402 	if (!parent) {
11403 		se->cfs_rq = &rq->cfs;
11404 		se->depth = 0;
11405 	} else {
11406 		se->cfs_rq = parent->my_q;
11407 		se->depth = parent->depth + 1;
11408 	}
11409 
11410 	se->my_q = cfs_rq;
11411 	/* guarantee group entities always have weight */
11412 	update_load_set(&se->load, NICE_0_LOAD);
11413 	se->parent = parent;
11414 }
11415 
11416 static DEFINE_MUTEX(shares_mutex);
11417 
11418 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11419 {
11420 	int i;
11421 
11422 	/*
11423 	 * We can't change the weight of the root cgroup.
11424 	 */
11425 	if (!tg->se[0])
11426 		return -EINVAL;
11427 
11428 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11429 
11430 	mutex_lock(&shares_mutex);
11431 	if (tg->shares == shares)
11432 		goto done;
11433 
11434 	tg->shares = shares;
11435 	for_each_possible_cpu(i) {
11436 		struct rq *rq = cpu_rq(i);
11437 		struct sched_entity *se = tg->se[i];
11438 		struct rq_flags rf;
11439 
11440 		/* Propagate contribution to hierarchy */
11441 		rq_lock_irqsave(rq, &rf);
11442 		update_rq_clock(rq);
11443 		for_each_sched_entity(se) {
11444 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11445 			update_cfs_group(se);
11446 		}
11447 		rq_unlock_irqrestore(rq, &rf);
11448 	}
11449 
11450 done:
11451 	mutex_unlock(&shares_mutex);
11452 	return 0;
11453 }
11454 #else /* CONFIG_FAIR_GROUP_SCHED */
11455 
11456 void free_fair_sched_group(struct task_group *tg) { }
11457 
11458 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11459 {
11460 	return 1;
11461 }
11462 
11463 void online_fair_sched_group(struct task_group *tg) { }
11464 
11465 void unregister_fair_sched_group(struct task_group *tg) { }
11466 
11467 #endif /* CONFIG_FAIR_GROUP_SCHED */
11468 
11469 
11470 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11471 {
11472 	struct sched_entity *se = &task->se;
11473 	unsigned int rr_interval = 0;
11474 
11475 	/*
11476 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11477 	 * idle runqueue:
11478 	 */
11479 	if (rq->cfs.load.weight)
11480 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11481 
11482 	return rr_interval;
11483 }
11484 
11485 /*
11486  * All the scheduling class methods:
11487  */
11488 DEFINE_SCHED_CLASS(fair) = {
11489 
11490 	.enqueue_task		= enqueue_task_fair,
11491 	.dequeue_task		= dequeue_task_fair,
11492 	.yield_task		= yield_task_fair,
11493 	.yield_to_task		= yield_to_task_fair,
11494 
11495 	.check_preempt_curr	= check_preempt_wakeup,
11496 
11497 	.pick_next_task		= __pick_next_task_fair,
11498 	.put_prev_task		= put_prev_task_fair,
11499 	.set_next_task          = set_next_task_fair,
11500 
11501 #ifdef CONFIG_SMP
11502 	.balance		= balance_fair,
11503 	.pick_task		= pick_task_fair,
11504 	.select_task_rq		= select_task_rq_fair,
11505 	.migrate_task_rq	= migrate_task_rq_fair,
11506 
11507 	.rq_online		= rq_online_fair,
11508 	.rq_offline		= rq_offline_fair,
11509 
11510 	.task_dead		= task_dead_fair,
11511 	.set_cpus_allowed	= set_cpus_allowed_common,
11512 #endif
11513 
11514 	.task_tick		= task_tick_fair,
11515 	.task_fork		= task_fork_fair,
11516 
11517 	.prio_changed		= prio_changed_fair,
11518 	.switched_from		= switched_from_fair,
11519 	.switched_to		= switched_to_fair,
11520 
11521 	.get_rr_interval	= get_rr_interval_fair,
11522 
11523 	.update_curr		= update_curr_fair,
11524 
11525 #ifdef CONFIG_FAIR_GROUP_SCHED
11526 	.task_change_group	= task_change_group_fair,
11527 #endif
11528 
11529 #ifdef CONFIG_UCLAMP_TASK
11530 	.uclamp_enabled		= 1,
11531 #endif
11532 };
11533 
11534 #ifdef CONFIG_SCHED_DEBUG
11535 void print_cfs_stats(struct seq_file *m, int cpu)
11536 {
11537 	struct cfs_rq *cfs_rq, *pos;
11538 
11539 	rcu_read_lock();
11540 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11541 		print_cfs_rq(m, cpu, cfs_rq);
11542 	rcu_read_unlock();
11543 }
11544 
11545 #ifdef CONFIG_NUMA_BALANCING
11546 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11547 {
11548 	int node;
11549 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11550 	struct numa_group *ng;
11551 
11552 	rcu_read_lock();
11553 	ng = rcu_dereference(p->numa_group);
11554 	for_each_online_node(node) {
11555 		if (p->numa_faults) {
11556 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11557 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11558 		}
11559 		if (ng) {
11560 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11561 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11562 		}
11563 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11564 	}
11565 	rcu_read_unlock();
11566 }
11567 #endif /* CONFIG_NUMA_BALANCING */
11568 #endif /* CONFIG_SCHED_DEBUG */
11569 
11570 __init void init_sched_fair_class(void)
11571 {
11572 #ifdef CONFIG_SMP
11573 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11574 
11575 #ifdef CONFIG_NO_HZ_COMMON
11576 	nohz.next_balance = jiffies;
11577 	nohz.next_blocked = jiffies;
11578 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11579 #endif
11580 #endif /* SMP */
11581 
11582 }
11583 
11584 /*
11585  * Helper functions to facilitate extracting info from tracepoints.
11586  */
11587 
11588 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11589 {
11590 #ifdef CONFIG_SMP
11591 	return cfs_rq ? &cfs_rq->avg : NULL;
11592 #else
11593 	return NULL;
11594 #endif
11595 }
11596 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11597 
11598 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11599 {
11600 	if (!cfs_rq) {
11601 		if (str)
11602 			strlcpy(str, "(null)", len);
11603 		else
11604 			return NULL;
11605 	}
11606 
11607 	cfs_rq_tg_path(cfs_rq, str, len);
11608 	return str;
11609 }
11610 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11611 
11612 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11613 {
11614 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11615 }
11616 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11617 
11618 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11619 {
11620 #ifdef CONFIG_SMP
11621 	return rq ? &rq->avg_rt : NULL;
11622 #else
11623 	return NULL;
11624 #endif
11625 }
11626 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11627 
11628 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11629 {
11630 #ifdef CONFIG_SMP
11631 	return rq ? &rq->avg_dl : NULL;
11632 #else
11633 	return NULL;
11634 #endif
11635 }
11636 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11637 
11638 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11639 {
11640 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11641 	return rq ? &rq->avg_irq : NULL;
11642 #else
11643 	return NULL;
11644 #endif
11645 }
11646 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11647 
11648 int sched_trace_rq_cpu(struct rq *rq)
11649 {
11650 	return rq ? cpu_of(rq) : -1;
11651 }
11652 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11653 
11654 int sched_trace_rq_cpu_capacity(struct rq *rq)
11655 {
11656 	return rq ?
11657 #ifdef CONFIG_SMP
11658 		rq->cpu_capacity
11659 #else
11660 		SCHED_CAPACITY_SCALE
11661 #endif
11662 		: -1;
11663 }
11664 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11665 
11666 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11667 {
11668 #ifdef CONFIG_SMP
11669 	return rd ? rd->span : NULL;
11670 #else
11671 	return NULL;
11672 #endif
11673 }
11674 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11675 
11676 int sched_trace_rq_nr_running(struct rq *rq)
11677 {
11678         return rq ? rq->nr_running : -1;
11679 }
11680 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11681